

This HANDBOOK of data on all RCA tubes has been compiled to meet the requirements of electronic engineers for tube information which can be kept up-to-date. Its convenient, loose-leaf form permits the revision of data on existing tubes and the addition of dato on new tubes as they are made available.

The material is arranged in sectians with tabbed separators to facilitate quick reference. The general section contains o table of contents for the complete Handbook, a detailed explanation af tube ratings and typical operating conditions, tube outline drawings, base drawings, and other useful information concerning tubes. The other sections, indexed according to tube classes, contain ratings, characteristics, operating conditions, and curves for the many different tubes in those classes.

The RCA Tube Handbook is especially useful to designers of tube equipment but will prove helpful ta anyone having need for concise data on our various tubes. If further data on any tube type are desired, we shall be glad to be of assistance.

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RCA TUBE Handbook HB-3

GENERAL SECTION

The information in this section, in general, applies to all classes of RCA tubes. It includes the Index of Contents for all sections, preferred-type lists, discussion of ratings, drawings of bases, caps, and tubes, as well as other general information of interest to the equipment designer. GENERAL

For further Technical Information, write to Commercial Engineering, Tube Department, Radio Corporation of America, Harrison, N. J.

7-52

NOTICE

Service sheets for this Handbook will be sent during the subscription period to the subscriber whose name appears in our records.

In case this Handbook is resold or transferred within any subscription period, we shall be glad to register the change and to send service sheets to the new owner providing he notifies us of the change.

Each of the binders for this Handbook has an identifying serial number at the lower right of the inside back cover. Use of these numbers in correspondence pertaining to this Handbook is requested to facilitate its identification in our records.

In order that the new owner may not miss any of the service sheets, notification for change in registration of ownership of this Handbook identified by serial numbers should be forwarded promptly to

Commercial Engineering TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Photolithographed in U.S.A.

Sheets in the RCA Tube Handbook are arranged in the TABLE OF CONTENTS in order of appearance in each section. To facilitate location of tube types when only the type number is known, the INDEX OF TUBE TYPES, which follows the TABLE OF CONTENTS, lists type numbers in numerical-alphabetical-numerical sequence.

The TABLE OF CONTENTS and INDEX OF TUBE TYPES may be used to determine:

(1) location of individual data sheets

- (2) completeness of Handbook
- (3) arrangement of Handbook sheets

Reference is to front of sheet only unless otherwise indicated. Date appearing on sheet is identified by month and year only (i.e., 2-56).

VOLUME 1-2

Frontispiece, 11-50

GENERAL SECTION:

Separator "GENERAL SECTION",	7-52
Table of Contents 1, 2-56	
Table of Contents 2, 2-56	
Table of Contents 3, 2-56	
Index of Tube Types 1, 2-56	
Index of Tube Types 2, 2-56	
Index of Tube Types 3, 2-56	
Index of Tube Types 4, 2-56	
Index of Tube Types 5, 2-56	
Index of Tube Types 6, 2-56	
Index of Tube Types 7, 2-56	
Index of Tube Types 8, 2-56	
Index of Tube Types 9, 2-56	
Index of Tube Types 10, 2-56	
Information on Prices, 1-55	
RCA Preferred Types 1, 1-54	
RCA Preferred Types 2, 1-54	
RCA Preferred Types 3, 1-54	
Types Not Recommended, 3-55	
Interchangeability 1, 9-48	
Interchangeability 2, 9-48	
Tube Ratings 1, 6-43	
Tube Ratings 2, 6-43	
Tube Ratings 3, 6-43	
Tube Ratings 4, 6-43	
Tube Ratings 5, 6-43	
Tube Ratings 6, 6-43	
Tube Ratings 7, 6-43	
Tube Ratings 8, 6-43	
Types of Cathodes 1, 6-43	
Types of Cathodes 2, 6-43	
Types of Cathodes 3, 6-43	
Types of Cathodes 4, 6-43	
Conversion Factors, 92S-5499	HZ

GENERAL SECTION (Cont'd)	
:	SubminiatureFlexible Lead Type, Outlines 1, 5-55 SubminiatureSub-Minar 8-Pin Base Type (On back of Outlines 1) AcornRadial 5-Pin Base Type,
	Outlines 2, 5-55 AcornRadial 5-Pin Base Type with End Terminals (On back of Outlines 2) AcornRadial 7-Pin Base Type
1	Outlines 3, 5-55 Acorn Types (On back of Outlines 3) AniniatureMiniature 7-Pin Base Types, Outlines 4, 5-55
	MiniatureNoval 9-Pin Base Types (On back of Outlines 4) Glass OctalOctal Base Types with T9
	Bulbs, Outlines 5, 5-55 Glass OctalOctal Base Types with
	Tl2 Bulbs, Outlines 6, 5-55 Glass OctalOctal Base Types with ST Bulbs (On back of Outlines 6)
	ock-InLock-In 8-Pin Base Types, Outlines 7, 5-55
	Small 4-, 5-, 6-, and 7-Pin Base Types (On back of Outlines 7) Small 4-, 5-, and 6-Pin & Medium 7-Pin Base Types, Outlines 8, 5-55
UutlinesMetal Tubes:	(On back of Outlines 8) Jutlines 9, 5-55
Bases: 1-Terminal Types 1-Terminal Types 1-Terminal Types 3-Pin Types, Bass 4-Pin Types, Bass 4-Pin Types, Bass 5-Pin Types, Bass 5-Pin Types, Bass 5-Pin Types, Bass 6-Pin Types, Bass 6-Pin Types, Bass 7-Pin Types, Bass 7-Pin Types, Bass 7-Pin Types, Bass 8-Pin Types, Bass	es 1, 11-54 (On back of Bases 1) es 2, 11-54 es 3, 1-55 es 4, 1-55 es 5, 3-55 es 6, 3-55 back of Bases 6) es 7, 3-55 (On back of Bases 7) es 8, 5-55 es 9, 5-55 es 10, 5-55 es 11, 5-55 es 11, 5-55 es 12, 7-55 es 14, 7-55 es 15, 7-55 es 16, 7-55 es 17, 7-55 es 18, 7-57 es 18, 7-57 es 18, 7-57 es 18, 7-57 es 18, 7-57 es

GENERAL SECTION (Cont'd): Bases: 11-Pin Types, Bases 20, 7-55 12-Pin Types, Bases 21, 7-55 14-Pin Types (On back of Bases 21) 14-Pin Types, Bases 22, 7-55 29-Pin Types, Bases 23, 7-55 CATHODE-RAY TUBE SECTION: Separator "CATHODE-RAY TUBE SECTION", 7-52 Cathode-Ray Classification Chart 1, 11-54 Cathode-Ray Classification Chart 2, 11-54 Features of Fluorescent Screens, 11-54 7-52 Average Characteristics of Phosphor No. 1, 92C-6010 Spectral-Energy Emission Characteristic of Phosphor P1, 92CM-5372R1 Persistence Characteristic of Phosphor P1, 92CM-5380R2 (On back of curve 92CM-5372R1) Average Characteristics of Phosphor No. 4, 92C-4979 Spectral-Energy Emission Characteristic of Phosphor No.4 Sulfide Type, 92CM-7316 Persistence Characteristic of Phosphor No. 4, Sulfide Type (On back of curve 92CM-7316) Spectral-Energy Emission Characteristic of Phosphor No. 4, Silicate-Sulfide Type, 92CM-7458 Persistence Characteristic of Phosphor No. 4, Silicate-Sulfide Type (On back of curve 92CM-7458) Spectral Energy Emission Characteristic of Phosphor P4, Silicate Type, 92CM-7335 Persistence Characteristic of Phosphor P4, Silicate Type (On back of curve 92CM-7335) Average Characteristics of Phosphor no.9, 2000 Spectral-Energy Emission Characteristic of Phosphor No.5, 92CM-5559R2 Average Characteristics of Phosphor No.5, 92C-5560 Persistence Characteristic of Phosphor No.5, 92CM-7266 (On back of curve 92CM-5559R2) Spectral-Energy Emission Characteristic of Phosphor No.7, 92CM-6809 Buildup Characteristics of Phosphor No.7, 92CM-6805R1 (On back of curve 92CM~6809) Persistence Characteristics of Phosphor No.7, 92CL-6804R1 Buildup of Phosphor No.7, 92CM-7019R1 Persistence Characteristic of Phosphor No.7, 92CM-7015R1 (On back of curve 92CM-7019R1) Spectral-Energy Emission Characteristic of Phosphor No.11, 92CM-6749 Persistence Characteristics of Phosphor No.11, 92CM-6806R2 (On back of curve 92CM-6749) Spectral-Energy Emission Characteristic of Phosphor P12 92CM-7317 Persistence Characteristic of Phosphor P12, 92CM-7318R1 (On back of curve 92CM-7317) Spectral-Energy Emission Characteristic of Phosphor P14 92CM-7675 Persistence Characteristic of Phosphor P14, 92CM-7326R1 (On back of curve 92CM-7675) Spectral-Energy Emission Characteristic of Phosphor P15, 92CM-6915 Persistence Characteristic of Phosphor P15, 92CM-8540 (On back of curve 92CM-6915)

CATHODE-RAY TUBE SECTION (Cont'd): Spectral-Energy Emission Characteristic of Phosphor P16 92CM-7563 Persistence Characteristic of Phosphor P16, 92CM-7564R1 (On back of curve 92CM-7563) Spectral-Energy Emission Characteristic of Group Phosphor P22, 92CM-7969R2 Persistence Characteristic of Group Phosphor P22 (On back of curve 920M-7969R2) Spectral-Energy Emission Characteristic of Phosphor P24, 92CM-8204 Persistence Characteristic of Phosphor P24, 92CM-8205R1 (On back of curve 92CM-8204) Reference-Line Gauge JETEC No. 110, CE-7391 Reference-Line Gauge JETEC No. 116, CE-7896 (On back of drawing CE-7391) X-Ray Precautions for Cathode-Ray Tubes, 2-56 Definitions of Cathode-Ray Tube Terms, 2-56 (On back of sheet X-Ray Precautions for Cathode-Ray Tubes) For tube types in Cathode-Ray Tube Section, see tube types with letter "C" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1. VOLUME 3-4 PHOTOTUBE SECTION: Separator "PHOTOTUBE SECTION", 7-52 Phototube Classification Chart, 5-54 Definitions of Phototube Terms, 5-54 (On back of sheet Phototube Classification Chart) Phototube Sensitivity and Sensitivity Measurements, 9-50 Spectral Characteristic of Human Eye & of Tungsten Lamp at Color Temperature of 2870 ºK, 920M-6435R1 Spectral Sensitivity Characteristic of Phototube having S-1 Response, 92CM-6056R5 Spectral Sensitivity Characteristic of Photocube having S-3 Response, 92CM-6057R6 (On back of curve 92CM-6056R5) Spectral Sensitivity Characteristic of Phototube having S-4 Response, 92CM-6152R7 Spectral Sensitivity Characteristic of Phototube having S-5 Response, 92CM-6814 Spectral Sensitivity Characteristic of Phototube having S-8 Spectral Sensitivity Characteristic of Phototube having S-0 Response, 92CM-6592R1 Spectral Sensitivity Characteristic of Phototube having S-9 Spectral Sensitivity Characteristic of Phototube having S-10 Response, 92CM-7821R1 (On back of curve 92CM-7274R1) Spectral Sensitivity Characteristic of Phototube Spectral Sensitivity Characteristic of Phototube having S-11 Response, 92CM-8601R1 Spectral Characteristic of 2870°K Light Source and Spectral Characteristic of Light from 2870°K Source after Passing Through Indicated Blue Filter, 9204-7811 Spectral Characteristic of 2870°K Light Source and Spectral Characteristic of Light from 2870°K Source after Passing Through Indicated Red-Infrared Filter, 92CM-7838 (On back of curve 92CM-7811) Frequency-Response Characteristics of Gas Phototubes, 92CM-6864

PHOTOTUBE SECTION (Cont'd): For tube types in Phototube Section, see tube types with letter "P" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1. THYRATRON & IGNITRON SECTION: Separator "THYRATRON & IGNITRON SECTION", 7-52 Thyratron & Ignitron Classification Chart, 5-55 For tube types in Thyratron & Ignitron Section, see tube types with letter "F" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1. MISCELLANEOUS TUBE SECTION: Separator "MISCELLANEOUS TUBE SECTION", 7-52 Max. DC Heater - thode Potentials of Miscellaneous Types, 1-44 For tube types in Miscellaneous Tube Section, see tube types with letter "M" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1. VOLUME 5-6 RECEIVING TUBE SECTION -- Part 1: Separator "RECEIVING TUBE SECTION -- Part 1", 7-52 Classification Chart-Receiving Types 1, 8-54 Classification Chart-Receiving Types 2, 8-54 Classification Chart-Receiving Types 3, 8-54 Classification Chart-Receiving Types 3, 8-54 Classification Chart-Receiving Types 5, 8-54 Diode Considerations, 12-47 Diode Considerations, Diode Circuits, 12-47 Resistance-Coupled Amplifiers 1, 10-47 Resistance-Coupled Amplifiers 2, 8-54 Resistance-Coupled Amplifiers 3, 10-47 10-47 Resistance-Coupled Amplifiers 4, Resistance-Coupled Amplifiers 5, 10-47 Resistance-Coupled Amplifiers 6, 10-47 Resistance-Coupled Amplifiers 7, Resistance-Coupled Amplifiers 8, Resistance-Coupled Amplifiers 9, 10-47 10-47 10-47 Resistance-Coupled Amplifiers 10, 10-47 Resistance-Coupled Amplifiers 11, 10-47 Resistance-Coupled Amplifiers 12, 10-47 Resistance-Coupled Amplifiers 13, 10-47 Resistance-Coupled Amplifiers 14, 10-47 Resistance-Coupled Amplifiers 15, 5-50 Resistance-Coupled Amplifiers 16, 5-50 Resistance-Coupled Amplifiers 17, 6-54 Max. DC Heater-Cathode Potentials of Receiving Types, 1-44 Grid-No.2 Input Rating Chart, 1-55 Heater Warm-Up Time Measurement, 3-55 For tube types in Receiving Tube Section--Part 1 (Type OZ4 to 6DE6), see tube types with letter "R" in "Sec-tion" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1.

TABLE OF CONTENTS

For All Sections

VOLUME 7-8

RECEIVING TUBE SECTION -- Part 2:

Separator "RECEIVING TUBE SECTION -- Part 2", 7-52

For tube types in Receiving Tube Section--Part 2 (Type 6E5 and beyond), see tube types with letter "R" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 3.

SEMICONDUCTOR DEVICE SECTION:

Separator "SEMICONDUCTOR DEVICE SECTION", 6-53 Transistors 1, 6-53 Transistors 2, 6-53 Spectral Sensitivity Characteristic of Photoconductive Cell having S-12 Response, 920M-8569

For types in Semiconductor Device Section, see types with letter "S" in "Section" column of INDEX OF TUBE TYPES starting on sheet INDEX OF TUBE TYPES 1.

VOLUME 9-10

TRANSMITTING TUBE SECTION:

Separator "TRANSMITTING TUBE SECTION", 7-52 Transmitting Tube Guide 1, 1-53 Transmitting Tube Guide 2, 1-53 Transmitting Tube Guide 3, 1-53 Transmitting Tube Guide 4, 1-53 Transmitting Tube Ratings vs. Operating Frequency 1, 4-53 Transmitting Tube Ratings vs. Operating Frequency 2, 4-53 Transmitting Tube Ratings vs. Operating Frequency 3, 5-54 Transmitting Tube Ratings vs. Operating Frequency 4, 8-54 F. C. C. Power Ratings of RCA Transmitting Tubes, 5-50 Recommended Standby Conditions for Transmitting Tubes, 2-50 Circuits for Hot-Cathode Mercury-Vapor & Gas Rectifier Tubes 1, 2-52 Circuits for Hot-Cathode Mercury-Vapor & Gas Rectifier Tubes 2, 2-52 For tube types in Transmitting Tube Section, see tube types with letter "T" in "Section" column of INDEX OF TUBE 1.

٦

INDEX OF TUBE TYPES For All Sections

This INDEX OF TUBE TYPES is arranged in numerical- alphabetical-numerical sequence of tube types. The letter in the "Section" column indicates the particu- lar section in which the tube type will be found. The sections are keyed as follows: C = CATHODE RAY P = PHOTOTUBE F = THYRATRON & IGNITRON R = RECEIVING G = GENERAL S = SEMICONDUCTOR DEVICE M = MISCELLANEOUS T = TRANSMITTING					
 M = MISCELLAREOUS I = HANSMITTING "Indicates that data for this type follow data for another type on same sheet. * Type is approaching obsolescence. Not recommended for new equipment design. Discontinued type. Data retained in Handbook for reference purposes only. Reference is to front of sheet only unless otherwise indicated. Date appearing on sheet is identified by month and year only (i.e., 2-56). 					
Tube : Sheet Type : Date	Tube : Sheet Type & Late				
OA2 M DATA 1, 11-54 M DATA 2, 12-47 OA3 M DATA 2, 12-47 OA3 M DATA 2, 12-47 OA3 M OA3/VR75 DATA, 4-34 OB2 M DATA 1, 1-55 OC3 M DATA 1, 4-34 OD3 M DATA 1, 1-55 OC3 M DATA 1, 1-45 OZ4-C* R TENT. DATA, 9-38 IA3 R IA5-GT/IA5-G TENT. DATA, 4-37 BATA, 4-37 IA6* R IA7-GT/G DATA, 1-43 IAC5* R IAT. CT/C DATA, 1-43 IAC5* R CURVE 92CM-7261 IADS* R TENT. DATA, 9-49 R CURVE 92CM-7251 RCURVE 92CM-7250 IB3-GT R IA5-GT/IC5-G TENT. DATA, 5-41 CURVE 92CM-7250 IB3-GT R IC5-GT/IC5-G TENT. DATA, 5-41 CURVE 92CM-7250	IHS-GT R IHS-GT/G DATA, 1-43 IL4 R TENT. DATA, 6-42 IL6" R TENT. DATA, 6-43 IL6" R TENT. DATA, 6-43 ILA" R TENT. DATA, 5-41 ILA6" R TENT. DATA, 5-41 ILA6" R DATA, 10-47 ILC5" R DATA, 10-47 (On back of ILB4 sheet) ILC5" R DATA, 10-47 (On back of ILD5 sheet) IL65" R DATA, 10-47 (On back of ILD5 sheet) ILS5" R DATA, 10-47 (ID5 sheet) ILS5" R DATA, 10-47 (ID5 sheet) INS-GT R INA. 10-47 (ID5 sheet) INS-GT R INT. DATA, 8-53 INS-GT R STENT. DATA, 8-53 INS-A S STENT. DATA, 8-53				

2-56

TUBE DIVISION

For key to symbols, see front of this sheet

Tube	ن ^{ې کې} Sheet چ ^و & Date	Tube	Sheet
Туре	ශ් & Date	Туре	_ශ ් & Date
1P28	P DATA 1, 7-55	2D21	F DATA, 6-48
	P DATA 2, 7-55		F CURVE CE-6534T2
1700	P CURVE 92CL-65471		F CURVE 92CM-6531R1
1929	P DATA, 8-47 P CURVE 92CM-6472E	2E24	T DATA 1, 11-50 T DATA 2, 11-50
1P37	P DATA, 8-47	¹¹	T DATA 3, 11-50
1P39	P DATA, 8-47		T CURVE 92CM-6659R1
1P40	"DATA, 8-47 (On 1		T DATA 1, 8-54
37.1		sheet)	T DATA 2, 8-54
1941	P DATA, 11-50 P CURVE 92CM-52171		T DATA 3, 8-54 T OUTLINE CE-6607R2
1P42	P DATA, 7-50	יי ג <u>י</u>	T CURVE 92CM-6630
	P CURVE 92CM-67831	2 2F21	C TENT. DATA, 6-46
1Q5-GT*	R 1Q5-GT/1Q5-G DAT	A, 7-41	C OUTLINE CE-6653
1 R 5	R DATA, 5-42		M TENT. DATA, 1-51
164*	R CURVE 92C-6098R R DATA, 1-42		M COUPLING CE-7509 M OUTLINE CE-7507B
154	R CURVE 92C-6175R		M CURVE 92CM-7511
185	R DATA, 6-47		M TENT. DATA 1, 11-48
1T4	R DATA, 1-55 R CURVE 92C-6357		M TENT. DATA 2, 11-48
	R CURVE 92C-6357		M OUTLINE CE-6986VB
116*	R TENT. DATA, 9-49		M COUPLING ARRANGEMENT
	R CURVE 92CM-7257 R CURVE 92CM-7259		CE-7008VB
1174		9N 3 9	S TENT. DATA, 6-53
	R DATA, 11-54 R CURVE 92CM-66691	a	SOUTLINE CE-7970
105	R TENT. DATA, 6-47	2N 33 •	S TENT. DATA, 6-53
	R CURVE 92CM-6172	1 2N34 [®]	S TENT. DATA, 6-53
1- v*	R DATA, 2-40 R TENT, DATA, 11-4		S CURVE 92CM-7962 S TENT. DATA, 6-53
	R TENT. DATA, 11-	in 1 2135	S CURVE 920M-7959
1X2-B	R TENT. DATA, 3-5	2X2-A	M DATA, 9-55
2A3	R DATA, 10-47	3A2	B TENT, DATA, 5-54
	R CURVE 92S- 5233R	3A3	R TENT. DATA, 3-54
2A4-G	M TENT. DATA, 7-4	3A4	M DATA, 12-44 M CURVE 92C-6370
2AF4-A	R DATA, 11-37 R DATA, 3-55	345	M TENT. DATA, 6-42
	C DATA 1, 7-45		M CURVE 92C-6376
	C DATA 2, 7-45	3AL5	R DATA, 7-55
	C CURVE 920M-64101	A1 3AP1-A*	R DATA, 7-55 C DATA, 6-46 "DATA, 7-55 (On 3AL5
	R DATA, 12-47 C DATA, 9-50	3AU6	"DATA, 7-55 (On 3AL5 sheet)
2DP 1	C CIRCUIT CE-6777F	1 3AV6	DATA, 7-55 (On 3AL5
	C CURVE 92CM-6748	u it	i aheet)
2BP11	C DATA, 9-50 M TENT. DATA, 3-43	3B2	R TENT. DATA, 7-55
2C21/1642•		3B25	TTENT. DATA, 7-45
0000 17	M CURVE 92CM-6385		T TENT. DATA 1, 2-52 T TENT. DATA 2, 2-52
2C39-A*	T TENT. DATA 1, 10 T TENT. DATA 2, 10	- 53 - 53 3BC5.	B DATA. 2-56
	T OUTLINE CE-8000	3BN6	R DATA, 2-56 "DATA, 2-56 (On 3BC5
	T CURVE 920M-7998		sheet)
	M TENT. DATA, 11-4	15 3BP1-A	C DATA 1, 7-45
0043*	M CURVE 92CM-6507		C DATA 2, 7-45
2(43	M TENT. DATA, 11-4 M CURVE 92CM-6508		C CURVE 92CM-6412R1
	IN COLUTE 74CM-0300	11	

INDEX OF TUBE TYPES 1

[¹	~ ~ ~		<u>^</u>
Tube	ب من Sheet	Tube	ب کې Sheet کې & Date
Туре	& Date	Type	& Date
-/	8 4 5460	1 -, 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	······································		T
3BY6	"DATA, 2-56 (On 3BC5	4-125A/	1
	sheet)		T DATA 1, 11-48
3BZ6	"DATA, 2-56 (On back of		T DATA 2, 11-48
	3BC5 sheet)		T OUTLINE CE-6764
3C23	F TENT. DATA, 5-46	4-250A/	
3C33	T DATA, 3-48		T TENT. DATA 1, 11-48
2045	T OUTLINE CE-6780 See 6130/3C45		T TENT. DATA 2, 11-48
3C45	"DATA, 2-56 (On back of	4 10004*	T OUTLINE CE-7075
3000	3BC5 sheet)	4-10004	T TENT. DATA 2, 10-53
3CF6	"DATA, 2-56 (On back of		T OUTLINE CE-7930
	3BC5 sheet)	4BC8	B DATA 2-56
3D22-A	F DATA 1, 7-55	4B07 - A.	"DATA, 2-56 (On 4BC8
	F DATA 2, 7-55		sheet)
1	F DATA 3, 7-55	4BZ7	"DATA, 2-56 (On 4BC8
	F CURVE CE-6483T3	1 1	sheet)
1	F CURVES CE-6865T1-6830T	4C33	T DATA, 5-49
3E22*	T TENT. DATA 1, 12-46		T OUTLINE CE-6936
	T TENT. DATA 2, 6-46	4D21	See 4-1254/4D21
3E29	T DATA 1, 5-54	4E27/8001.	T DATA 1, 3-45
	T DATA 2, 5-54 T CURVE 92CM-7927		T DATA 2, 3-45 T CURVE 92CM-6261R1
3JP1	C DATA 1, 8-51		T CURVES 92CM-6262T1 &
001 1	C DATA 2, 8-51		92CM-6263T1
	C CURVE 92CM-7671	4E27A/	
3JP7	C DATA, 8-51	5-125B	T DATA 1, 11-54
3KP1	C DATA, 9-49		T DATA 2, 11-54
	C CIRCUIT CE-6690R1		T DATA 3, 11-54
	C CURVE 92CM-7191		T CURVE 92CM-7512
2KD4*	C CURVE 92CM-7194		M TENT. DATA 1, 6-54
JAF4	C TENT. DATA 1, 11-48 C TENT. DATA 2, 11-48		M TENT. DATA 2, 6-54 M OUTLINE CE-8296-8297B
3KP11	C DATA, 9-49		M TENT. DATA 1, 10-53
3LF4*			M TENT. DATA 2, 10-53
3MP1*	R DATA, 10-47 C TENT. DATA, 7-50		MOUTLINE CE-7858-7857B
	COUTLINE CE-7488		T DATA 1, 1-54
304	R TENT. DATA, 5-41		T DATA 2, 1-54
	R CURVE 92C-6281		T DATA 3, 1-54
3Q5-GT	" 3Q5-GT/G DATA, 5-42		T OUTLINE CE-7153R2
	(On back of 3Q4 curve		T CURVE 92CM-7152R1
	92C-6281)		T DATA, 5-55
31191	C DATA, 9-55	43500A	T DATA, 9-48 T OUTLINE CE-7028
3RP1-A	C TENT. DATA 1, 7-55 C TENT. DATA 2, 7-55	5-125B	See 48274/5-1258
	C CURVE 92CM-7143R1		C TENT. DATA 1, 6-53
38P4		574DE 1	C TENT. DATA 2, 6-53
354	C DATA, 9-55 R DATA, 1-55		C OUTLINE CE-7842
3V4	R[DATA, 1-55	ſ li	C CURVE 92CM-7910
	T TENT. DATA 1, 5-49	5ABP4	C DATA, 11-55 "DATA, 11-55 (On 5ABP4
	T TENT. DATA 2, 5-49	5ABP7	
	T OUTLINE CE-7156		sheet)
1 1	TICURVES CE-7164T-7163T	5ABP11	"DATA, 11-55 (On 5ABP4
		SAMO .	sheet) R DATA, 2-56
		Janua 1	110AIA, 2-30
L			
2-56	THE		INDEX OF TUBE TYPES 2

For key to symbols, see sheet INDEX OF TUBE TYPES 1

	. of	C1	11 առւ		Sheet
Tube	5	Sheet	Tube		
Type o	£	& Date	Туре	q	e & Date
5AN8	DATA.	2-56 (On 5AMB	5W4®.	Γ	
5405	DATA	shcet 2-56 (On: 5AM8) 5₩4-GT•	R	5W4, 5W4-GT/GDATA, 3-43
-	1	sheet) 🛛 5WP11		TENT. DATA 1, 2-49
5AS4			11		TENT. DATA 2, 2-49
5AS8			5 MP 15		TENT. DATA, 6-48
SA18	DAIA,	2-56 (On 5AS8			DRAWING CE-6919
SATID24	TINT	sheet DATA 1, 8-54	' 5X4-G*	1.	CURVE 92CM-6916 DATA, 3-43 (On back of
		DATA 2, 8-54	J 544-0		5W4 sheet)
		92CM-8343	5 40		DATA, 3-55
		2-56 (On back o	f 5Y3-G ⁰ .	l"	DATA, 3-35
JAVO	Dain,	5AS8 sheet		۱.	DATA 1, 1-51
5AYP4	TENT		/// 515-01		DATA 2, 1-51
	OITT I	NE CE-8559			CURVE 92CM-7395
		92CM-7688R2	5Y4-6	I R	DATA, 5-55
5AZ4* I	DATA.	5-49	SYA- GT*		DATA, 5-55 (On 5Y4-G
5BP1-A*	DATA	1. 7-45			sheet)
	DATA	2, 7-45	57.3*	11	DATA, 5-55 (On back of
		92CM-4984R3			5Y4-G sheet)
5CP1-A	DATA	1, 10-51	5Z4	I R	DATA, 9-41
	DATA	2, 10-51	5ZP 16	C	TENT. DATA, 3-51
		NE CE-6408R4			OUTLINE CE-7574
		92CM-6821		lc	CURVE 92CM-7576
5CP7 - A (TENT.	DATA, 4-47	6A3 [•]	R	TENT, DATA, 5-41
5CP11-A (6A6 [•] ·····	R	DATA, 4-37
5CP 12 (6A7*	R	DATA, 4-37 DATA, 7-41
5D22	See 4	-250A/5D22	[6A7S [®]	R	DATA, 12-41
5FP4-A (DATA,	8-51	6A8*,		
		NE CE-6362R4	II 6AR-G*		
5FP7-A	DATA,	8-51	6A8-GT*	"	DATA, 12-41 (On 6A7S
5FP 14 (]]		sheet)
5J6F			11		CURVE 92C-4521
5R4-GY					DATA, 5-52
	CURVE	S CE-6418T1-6415	T 6AB5/6N5*.	R	DATA, 4-40
5T4* E	IDATA,	2-40	[[6AB7~		6AB7/1853 DATA, 12-41
5TP4*				R	CURVES 92C-6144 &
		NE CE-6656R2		١.,	92C-6145
5U4-G H			ALS-GI	I K	6AC5-GT/6AC5-G DATA,
		2, 3-51	6AC7	۱.	5-41 6AC7/1852 DATA, 12-41
		920M-7497 DATA 1, 11-54	DAC(CURVE 92C-6146R1
		DATA 2, 11-54	I CATT C*	15	DATA 0 41
		NE CE-8444R1	100000000000000000000000000000000000000	15	DATA, 9-41 CURVE 92C-6153
		G CHART II	6454*	15	DATA, 11-54
		920M-845	1 64F4-4	h	TENT. DATA, 11-54
, I		92CM-8446	1		CURVE 92CM-7756
5U8			11		CURVE 92CM-7759R1
		DATA, 12-46	6AF6-G		DATA, 12-44
		IT CE-6819	6AG5	R	DATA, 1-55
		92CM-6808	11		CURVE 92CM-6399R2
l le	CURVE	9204-6810	6AG7		DATA 1, 11-52
5UP7	TENT.	DATA, 12-46	II		DATA 2, 11-52
5UP11	TENT.	DATA, 12-46	11	R	CURVES CE-6035T1-6036T1
5V4-G I			6AH4-GT*	R	TENT. DATA, 8-53
••			11		
			┛└┈┈╴		NDEY OF TURE TYPES 2

INDEX OF TUBE TYPES 2

		<u> </u>	ujmouru, see s				
T. 1		. or	CI .	T 1		, to,	01
Tube		S.	Sheet	Tube		<u>.</u>	Sheet
Туре	6	r,	& Date	Type	S	,	& Date
	1						
6AH6*			DATA, 11-49	6AZ8			DATA 1, 3-55
			92CM-7339				DATA 2, 3-55
6AK5	P	DATA,	9-55				92CM-8519
			92CM-6504				92CM-8521
6AK6			DATA, 10-43	101 08	H	CURVE	92CM-8523
<			92C-6449	6B4-G*	I N	TENT.	DATA, 5-41 DATA, 5-41 (On
6AL5			92CM-6561	085	l	1011.	6B4-G sheet)
6AL7-GT*	15	DATA	9208-0301	6B7 •		DATA	
UND/-UI	l n	TYPIC	AL CIRCUITS	0.007			92CM-4880
	Ľ	11110	92CS-7169	6B8*			
6 AM8	l n	TENT	DATA, 3-55	0.00			92C-4660
			CE-8 50 4T	6BA6			
6AN8			DATA, 3-54	00.000			92CM-6609
			92CM-8209				9 2CM- 6620
			92CM-8206				DATA, 9-48
6AQ5	R	DATA,	5-52		R	CURVE	92CM-6982R1
6AQ6	R	TENT.	5-52 DATA, 6-44	1	R	CURVE	92CM-6980R2
	R	CURVE	92CM-6552	6BC4	R	TENT.	DATA, 6-54
6AQ7-GT*	R	DATA,	5-50		R	CURVE	92CM-8241
6AR5*	R	DATA,	5-49	6BC5	R	DATA,	3-55
6AS5			DATA, 3-48	6 BC7	R	TENT.	DATA, 3-54
			92CM-6921R1	6BC8	R	TENT.	DATA, 2-56
6AS6	M	TENT.	DATA, 2-50				92CM-8789
			92CM-7401				92CM-8788R1
			92CM-7408	6BD4-A	R	TENT.	DATA, 6-54
(157.0			92CM-7404		K	CINCU	IT & CURVE
6AS7-G	15	CIDVE	5-55 92CM-6618	CDDC*	ы	TENT	CE-8071R2-8068T1 DATA, 2-50
6459			DATA, 5-54				
0450			92CM-8206	6BE6	R	CIBVE	92CM-6625
6AT6							92CM-6601
	B	CURVE	92CM-6610	6BF5*			DATA, 10-53
6AT8				6BF6			
6AU4-GT*	R	TENT.	DATA, 3-54	6BG6-G			
6AU4-GTA	R	TENT.	DATA, 9-55				92CM-6774R1
6AU5-GT	R	DATA	1, 11-54		R	CURVE	92CM-6776R1
			92CM-7355	6BH6			
6ÀU6	R	DATA,					92CM-6892
			92CM-6611				9 2CM- 689 3
	R		92CM-6623	6BJ6			
	R		92CM-6854				92CM-6867
6AV5-GT*	H		DATA, 4-53				92CM-6870
6 4 11 6			92CM-7941	0584	n D	CTRCU	DATA, 3-55 IT CE-8435
6AV6			8-54 DATA 1, 3-55	COV C			DATA, 5-55
04*0			DATA 1, 3-55 DATA 2, 7-55	6 PK7	1	TENT.	DATA, 6-54
			92CM-8647	6 Pl A	i.	TENT	DATA, 3-55
			92CM-8646	6BL7-GT	B	DATA.	10-53
6AX4-GT	R	DATA.	3-55		IRI	CURVE	92CM-8133
6AX5-GT	R	TENT.	3-55 DATA 1, 2-50	6BN6	R	TENT.	DATA, 2-56
	R	TENT.	DATA 2, 2-50	6BQ6-GT*	R	DATA,	8-54
			92CM-7382		R	CURVE	9 2CM-74 59
1							
				1			
	_			L			
2-56			THEF		١ħ	IDEX (OF TUBE TYPES

BERETO CT	R	A					
/	For All Sections						
For	key to symbols, see sl	eet INDEX	OF TUBE TYPES 1				
Tube Type	es ^c & Date	Tube Type	نې ^{ې Sheet} چ ^{و &} Date				
6BQ6-GTB/ 6CU6	R TENT. DATA, 3-55 R CURVE 920M-8500	6F6, 6F6-G*	R DATA, 5-42 R DATA 2, 5-42				
	R TENT. DATA, 11-52 R CIRCUITS CE-7643-7644 R CURVE 92CM-7538R1 R CURVE 92CM-7550R1	6F7*	R CURVE 92C-4440 R DATA, 9-35 R CURVE 92S-5426 R DATA, 1-43				
6BY5-GA* 6BY6	R TENT. DATA, 5-55 R TENT. DATA, 3-54 R CURVE 92CM-6140 R CURVE 92CM-6138	6G6-G* 6H6,	R DATA, 4-44 R CURVE 92CM-6122R1 R 6H6, 6H6-GT/G DATA,				
6BZ7	R TENT. DATA, 5-55 R CURVE 92CM-8508 R TENT. DATA, 6-54 R DATA 1, 11-54	6J4	B-4 M TENT. DATA, 4-44 M CURVE 92CM-6543				
605.	R CURVE 92C-6378 R 6C5, 6C5-GT/G DATA, 3-43	6J 5-GT 6J 6	R DATA, 9-50 R CURVE 92CM-6448 R DATA, 3-55 R CURVE 92CM-6403R1				
6C8-G*	R CURVE 92C-4511 R DATA, 6-48 R DATA, 12-41 R TENT. DATA, 3-55	6J7, 6J7-G [●] .	R CURVE 920N-7672				
6CB6	R CURVE 920M-8436 R DATA, 3-55 R CURVE 920M-7378 R DATA, 9-55		R DATA 1, 6-48 R DATA 2, 6-48 R CURVES 92CM-6007R1 R TENT. DATA, 7-41 R DATA 1, 10-51				
6CF6 6CG7	R CURVE 92CM-7393 R TENT. DATA, 8-53 R TENT. DATA 1, 1-55		R DATA 1, 10-51 R DATA 2, 10-51 R CURVE 92CM-4881R2 R CURVE 92CM-6313				
6CL6	R TENT. DATA 2, 1-55 R CURVE 920M-8441 R TENT. DATA, 9-52 R CIRCUIT CE-7804 R CURVE 920M-7802		R DATA, 9-41				
	R TENT. DATA 1, 7-55 R TENT. DATA 2, 7-55	6K8-G 6K8-G 6L4	R DATA, 5-41 M TENT. DATA, 5-49 M CURVE 92CM-7202				
6CS6	R CURVE 92CM-8616 R CURVE 92CM-8613 R TENT. DATA, 5-55 See GBQ6-G2B/6CU6	6L6, 6L6-G	R DATA 1, 11-54 R DATA 2, 11-54 R DATA 2, 11-54 R CURVE 92C-4581R1 R CURVE 92C-4581R1 R CURVE 92C-4608				
	See 6BQG-G1B/6CU6 R DATA, 9-41 R TENT. DATA, 6-54 R CURVE 92CM-8330 R CURVE 92CM-8338	6L7, 6L7-G [●]	R DATA, 2-40 R CURVE 92C-4447				
6DE6 6E5 6F4	R TENT. DATA, 9-55 R CURVE 92CM-8578 R DATA, 12-44 M TENT. DATA, 8-44	6N 5 6N6-G [®]	R CURVE 92C-4531 R CURVE 92C-4536 See 6485/685 R TENT. DATA, 12-39				
6F5*, 6F5-GT*	M CURVE 92CM-6567 R DATA, 6-47		R 6N7, 6N7-GT/G DATA, R CURVE 92C-4611				
2.50							

<u> </u>	-				
		jo ^S Sheet			Sheet
Tube		Sheet	Tube		Sheet
Type	ç	ະ & Date	Туре	18	S & Date
	Ş			9	
·····	I				
6P5-GT ⁰	11	6P5-GT/G DATA, 12-42	6557*	B	TENT. DATA, 5-41
		(On back of 6N7 curve	6517*		TENT DATA 19 41
1	1	92C-4611)	4977*	1.	TENT. DATA, 4-46
607*, _		920-4011)	670	1.	DATA, 2-49
607-G [®] ,			0 10		CURVE 92CM-7063
	۱.	DATA, 12-41	dis*		
oqreat		CURVE 92C-4522R2	603	n	DATA, 8-54
6R7*,	ľ	CURVE 92C-4322R2	607-6	n	DATA, 9-41 CURVE 92C-6121
GP7 CT	۱.	(PT CT/CDATA	CIIO		
001-01	۳,	6R7, 6R7-GT/G DATA,	608	1	TENT. DATA, 4-53
101*	۱.,	12-43			CURVE 920M-7873
054	18	DATA, 3-55			CURVE 92CM-7871
0.54-A		TENT. DATA, 3-55		H	TENT. DATA, 5-55
(07 7	ļк	CURVE 92CM-7373	6V6,		
6S7*,	۱.	J.,	6 V6-GT		DATA, 1-53
		DATA, 2-40	1		CURVE 92CM-4807R2
6 58 - GI"	I K	TENT. DATA, 8-47			CURVE 9204-6339R1
	R	CURVE 92CM-6876	6₩4-GT		
6SA7,	_				CURVE 92CM-7091
6SA7-GT.	R	6SA7,6SA7-GT/GDATA,	6₩6-GT	R	TENT. DATA, 10-53
		1-43			CURVE 92CM-7942
		CURVE 92C-4993	6X4		DATA 1, 10-53
		CURVE 92C-4989			DATA 2, 10-53
6SB7-Y*	R	TENT. DATA 1, 4-46		R	RATING CHART II
1		TENT. DATA 2, 4-46			92CM-8024
		CURVE 92CM-6635		R	CURVE 92CM-8031
6SC7	R	DATA, 11-54	6X5 [●] ,	1	
6SF5,		1 1	6X5-GT	R,	6X5, 6X5-GT/G DATA,
6SF5-GT*.	R	DATA, 5-41			3-43
6SF7*			6X8	R	DATA 1, 10-53
	R	CURVE 92C-6256		R	TENT. DATA 2, 9-52
6SG7	R	TENT. DATA, 5-42		R	CURVE 92CM-7532
}		CURVE 92C-6248R2	1		CURVE 92CM-7547R1
6SH7	R	TENT. DATA, 6-42		R	CURVE 92CM-7844
	R	CURVE 92C-6395	6Y6-G*	R	DATA, 9-49
6SJ7,	1			R	CURVE 92CM-6127R1
65J7-GT*.	R	DATA, 6-48	6Z4		See 84/624
	R	CURVE 92CM-4939R1	7A4*	R	TENT. DATA, 5-41
		CURVE 92CM-6444R1	7A5*	11	TENT. DATA, 5-41 (On
1	R	CURVE 92CM-6409R1			back of 7A4 sheet)
6S1K7,			7A6*	R	DATA, 6-47
6SK7-GT*.	R	6SK7, 6SK7-GT/G DATA,	7A7*	а	DATA, 6-47 (On back of
		12-42			7A6 sheet)
	R	CURVE 92C-4938	7 A8*	R	DATA, 5-41
6SL7 - GT	R	DATA, 11-54	7 407*	R	TENT DATA 5-40
,	R	CURVE 92CM-6298	7AF7*	R	DATA, 6-48
65N7-GT*	R	DATA, 4-44	7AG7*	н	DATA, 6-48 (On 7AF7
6SN7 - GTA* .	R	TENT. DATA 1, 6-54			sheet)
1		TENT. DATA 2, 6-54	7 AH7*	B	DATA, 2-49
1	R	CURVE 92CM-8122	7 AU7	B	DATA, 3-55
6SN7-GTB		DATA, 3-55	7B4*	B	DATA. 6-47
6SQ7,	1		7B5*	11	DATA, 6-47 DATA, 6-47 (On back of
6SQ7-GT*.	(R	6SQ7, 6SQ7-GT/GDATA,		I 1	[7B4 sheet)[
	1	12-43	7 B6*	R	DATA, 6-47
		CURVE 92C-6310	7B7*	11	DATA, 6-47 DATA, 6-47 (On back of
6SR7*		TENT. DATA, 4-40			7B6 sheet)
			1		
	_				
2-56				IN	DEX OF TUBE TYPES 4
		TUBED	VISION		

For key to symbols, see sheet INDEX OF TUBE TYPES 1

Tube	ن ^{ی ک} Sheet چ ^و & Date	Tube	30 Sheet
Туре	& Date	Type	e & Date
	2		
7B8*	R DATA, 6-47 C TENT. DATA, 6-48	7Z4*	DATA, 12-47 (On back
7BP7-A*	C TENT. DATA, 6-48		7Y4 sheet)
	C OUTLINE CE-636783		DATA 1, 9-48
7C5*		1 1	DATA 2, 9-48
	7B8 sheet)		DATA 3, 9-48
7C6*	R TENT. DATA, 4-40	1	OUTLINE DETAILS
707*	" TENT. DATA, 5-40 (On		CE-6687V2B
	back of 7C6 sheet)	1	CURVE 92CM-6989
7C24		'9C21 1	DATA 1, 10-47
7091	C DATA, 8-46		DATA 2, 10-47
	C OUTLINE CE-6364R2		CURVE 9204-6457
70P4*	C DATA, 11-49		CURVE 92CM-6458 CURVE 92CM-6462
	COUTLINE CE-6664R1A		
7.00	C CURVE 92CM-6674R1		DATA 1, 10-51
757*	R DATA, 9-48 R DATA, 9-48		DATA 2, 10-51 OUTLINE CE-6447R2-6519
1.0.0	R DATA, 12-47		TENT. DATA 1, 8-46
770*	R DATA, 12-47		DATA 2, 5-49
767*			OUTLINE CE-67 50
	8 DATA, 12-47		CURVE 920M-7269
7.17*	R DATA, 12-47		CURVE 92CM-7234
7JP4*	C TENT. DATA, 9-47		DATA, 5-50
	COUTLINE CE-6667		OUTLINE CE-6663R3A
	C CURVE 9 2CM-6888		CURVE CE-7448
7K7*	R DATA, 5-49		CURVE 92CM-7454
7L7*	R DATA, 5-49 R DATA, 10-47		TENT. DATA, 8-51
7MP7			OUTLINE CE-7629
	COUTLINE CE-7438R3	10KP7	DATA, 11-55
7MP14	C DATA, 10-51		OUTLINE CE-693282
7N7*			TENT. DATA, 7-52
	of 7L7 sheet)		COUTLINE CE-7729 COURVE 920M-7773
7NP4	C TENT. DATA 1, 6-53 C TENT. DATA 2, 11-50	1.0 V*	DATA, 12-46
	C NOTES CE-7476B	10-1	TENT. DATA, 5-42
	C CURVE 92CM-7515		CURVE 92C-6327
7.07*	R TENT. DATA, 5-41	12A8-GT* F	
70P4			TENT. DATA 1, 9-55
1.4.	C OUTLINE CE-7524A	F	TENT. DATA 2, 9-55
	C CURVE 92CM-7 529		CURVE 92CM-8756
787*	R DATA, 10-47	12AH7 - GT* F	DATA, 9-55
7TP4		12AL5F	
	COUTLINE CE-7691	12AQ5 F	TENT. DATA 1, 8-53
	C CURVE 92CM-7688	F	TENT. DATA 2, 5-54
7 77*		12AT6	DATA, 5-54 (On back of
7 419 1	C TENT. DATA 1, 11-52	1.04777	12AQ5 sheet)
7 ₩7*	C TENT. DATA 2, 11-52 DATA, 6-48 (On back of	12AT7	CURVE 92CM-7056
(***	UAIA, 6-48 (Un Dack of 7V7 sheet)	12416	DATA, 2-49 (On back of
7 WP4	C TENT. DATA 1, 7-52	1 1	124T7 CULTRE 92(M-7056)
	C TENT, DATA 2, 7-52	12AU7F	DATA 1, 3-55
	C NOTES CE-7731	F	DATA 2, 3-55
	C CURVE 92CM-7515		DATA, 10-47
7 X7*	R DATA, 3-48	12AV7*F	TENT. DATA: 6-54
	R DATA, 12-47	12AW6F	TENT. DATA, 4-47
	1		CURVE 920M-6855
		1	
L		1	

INDEX OF TUBE TYPES 4

TUBE DIVISION

For key to symbols, see sheet INDEX OF TUBE TYPES 1

·	je st S				
Tube	ુરુ ડ	heet	Tube	10	Sheet
Type	<i>с</i> 8	Date	Type		& Date
- /	_କ ୁ କ		-/20	eş.	
	T				
			1		
12AX4-GT".	R DATA, 3-5.	5	12SC7	"DATA,	9-49 (On 12S8-GT
12AX4-GTA.	"DATA, 3-5	5 (On	· ·	1	sheet)
}	12/	X4-GT sheet)	12SF5,		
12AX7	R DATA, 11-			" DATA.	9-49 (On 12S8-GT
	RICURVE 92CI				sheet)
12477	M TENT. DAT		12SF7*	DATA	9-49 (On back of
	M CURVE 920				12S8-GT sheet)
12477*	R TENT. DAT		12SG7	II DATA	9-49 (On back of
1204 4	R TENT. DAT	n, 3-33	12301	DATA,	
			1.0010		12S8-GT sheet)
	R DATA, 11-	52	12587	"DATA,	9-49 (On back of
12BA7	"[DATA, 11-	52 (On 12BA6			12S8-GT sheet)
		sheet)	12SJ7,		
12BD6*	"[DATA, 11-:	52 (On 12BA6	12SJ7-GT	"DATA,	9-49 (On back of
		sheet)	1		12S8-GT sheet)
12BE6	" DATA, 11-	52 (On 12BA6	12SK7.		
		sheet)	125K7-GT*	B DATA.	3-55
12BF6	יוו אדאתליי	52 (On 12BA6			3-55 (On 12SK7
	1	sheet)	11001-01	<i>DA1A</i> ,	•
1 204 7 *	R DATA, 3-5		10047 07	11	sheet) 3-55 (On 12SK7
100017	DATA, 3-3		12307-01	DATA,	
12BH7-A	R TENT. DAT.	A 1, 3-55			sbeet)
	R TENT. DAT	4 2, 3-55	12SQ7,		
12BQ6-GTB/			12SQ7-GT.	DATA,	3-55 (On 12SK7
	R DATA, 3-5				sheet)
12BY7*	R TENT. DAT.	4,6-54	12SR7	"DATA,	3-55 (On 12SK7
12BY7 - A	R DATA, 3-5.	5			sheet)
12C8*	R DATA, 3-5	5 1	125 7*	M TENT.	DATA, 6-46
12CA5	R TENT. DAT.	A. 3-55	12SX7-GT*.		DATA, 6-46
	R CURVE 92C				92CM-6782
12CU6		-GIB/12CU6	12517*		DATA, 6-46
	C DATA, 11-			MCIBVE	92CM-6786
1	COUTLINE C		12V6-GT		3-55 (On back of
12027.8	C DATA, 11-		1210-01	DAIA,	12SK7 sheet).
	RIDATA, 3-5		1000 07	100.00	
			12#0-01	DAIA,	3-55 (On back of
12J5-GT"	"DATA, 3-5				12SK7 sheet)
		sheet)	12X4	DATA,	3-55 (On back of
12J7-GT	"DATA, 3-5.				12SK7 sheet)
		sheet)	14A4 [•]		
12K7-GT"	"DATA, 3-5	5 (On back of	14A 5 [●]	"DATA,	12-47 (On 14A4
		12H6 sheet)			sheet)
12K8*	"DATA, 3-5.	5 (On back of	1447*	"DATA.	12-47 (On back
	1	12H6 sheet)			of 14A4 sheet)
12KP4-A*	C TENT. DAT.	A. 8-51	14AF7*	R DATA	
	C OUTLINE C		14B6*	"DATA	11-48 (On back
12L6- GT		5 (On back of			of 14AF7 sheet)
1200 01111	Dain, 5-5.	12H6 sheet)	1 4 200	UDATA	11-48 (On back
1210-07*	M DATA, 10-		1400	UNIA,	
12L0-G1			1.00	III DATA	of 14AF7 sheet) 11-48 (On back
12LP4-A	C DATA, 5-5		1405	UATA,	
	C OUTLINE C		1	1_1	of 14AF7 sheet)
	C CURVE 92C		1407*	H DATA,	
1207-GT*	"DATA, 3-5	5 (On back of		See 1	4 B P4/14CP4
1 -	1	12H6 sheet)	14E6 •	"DATA,	11-48 (On back
12S8-GT	R DATA, 9-4	• I			of 14C7 sheet)
12 SA7,			14E7 •	"DATA	11-48 (On back
12SA7-GT*	"DATA, 9-4	9 (On 12S8-GT	1		of 14C7 sheet)
		sheet)	1		
			1		
L					
2-56			<u> </u>	INDEX 4	OF TUBE TYPES 5
2.00		TUBE D	IVISION	MULA	01 100E 111E0 J

TUBE DIVISION

Tube	Sheet	Tube Sheet
Type	يوٽ & Date	Type & Date
		~
14FP4/		17AVP4-A., C DATA, 2-56
14CP4*	C TENT. DATA 1, 2-56	17 BP4-A* C DATA, 2-56
	C TENT. DATA 2, 2-56	17BP4-B* C TENT. DATA 1, 2-56
	COUTLINE CE-8877B	C TENT. DATA 2, 2-56
ł	C CURVE 92CM-8859	C OUTLINE CE-8879B
14F7*		C CURVE 92CM-8861
	of 14C7 shee	
1459*	"DATA, 11-48 (On back	C REFERENCE-LINE GAUGE
	of 14C7 shee	
1487	"DATA, 11-48 (On back	COUTLINE CE-7535B
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of 14C7 shee	
LANDA	C TENT. DATA 1, 11-54	
14/194	CITENT. DATA 2, 11-54	17GP4" C TENT. DATA 1, 5-51
		C TENT. DATA 2, 5-51
	COUTLINE CE-8335R1B	C OUTLINE CE-7601B
	C CURVE 92CM-8392	C CURVE 92CM-7606
14.17	R DATA, 5-50	17HP4/
14N7 •		17 RP 4* C DATA, 2-56
	shee	
1407*	"DATA, 5-50 (On 14J7	C TENT. DATA 2, 2-56
	shee	C TENT. DATA 3, 2-56
14R7*	"DATA, 5-50 (On 14J7	C OUTLINE CE-8880B
	shee	C CURVE 92CL-8862
15GP22*	C TENT. DATA 1, 3-54	17 JP4* C TENT. DATA, 7-52
	C TENT. DATA 2. 3-54	C CURVE 92CM-7753
	COUTLINE CE-8072B1B	COUTLINE CE-7745R2B
	C CURVE 92CM-8067	C CURVE 920M-7652R1
16ADP7		17LP4/
10000	C OUTLINE CE-7690	17VP4* C DATA, 2-56
16AP4-A*		17LP4-A* C TENT. DATA 1, 2-56
10/11 4- 1	COUTLINE CE-7449A	C TENT. DATA 2, 2-56
1	C CURVE 92CM-7471	COUTLINE CE-8881B
16DP4-A*		C CURVE 92CL-8864
16GP4-B*	CITENI. DAIA, 2-52	
10GP4-B		
	C DATA 2, 2-56	C TENT. DATA 2, 7-52
	C CURVE 920M-8875	C OUTLINE CE-77.34R1B
16KP4	See 16RP4/16KP4	C CURVE 92CM-7755
16KP4-A	See 16RP4-A/18KP4-A	17 QP4-A* C TENT. DATA 1, 2-56
	C TENT. DATA, 2-52	C TENT. DATA 2, 2-56
16RP4/		17RP4 See 17HP4/17RP4
16KP4*	C DATA, 2-56	17 TP 4* C TENT. DATA 1, 10-51
16 RP 4- A/		C TENT. DATA 2, 10-51
16KP4 A*.		COUTLINE CE-760 IR IB
	C TENT. DATA 2, 2-56	C CURVE 92CM-7606
	C OUTLINE CE-8878B	17VP4 See 17LP4/17VP4
	C CURVE 92CM-8857	19AP4-B* C TENT. DATA, 9-50
16 TP 4*	C TENT. DATA 1, 8-51	C OUTLINE CE-7502R1
	C TENT. DATA 2, 8-51	C CURVE 92CM-7506
	COUTLINE CE-7632B	19BG6-G* R TENT. DATA, 9-50
	C CURVE 92CM-7628	19BG6-G [*] R TENT. DATA, 9-50 19BG6-GA [*] .R TENT. DATA, 2-56
16WP4-A*	C TENT. DATA, 2-52	19J6* R TENT. DATA, 11-48
	C TENT. DATA 1, 11-55	R CURVE 920M-7061
	C TENT. DATA 2, 11-55	19TB*
	C TENT. DATA 3, 11-55	19T8*R DATA, 9-52 19X8"DATA, 9-52 (On 19T8
	C OUTLINE CE-8341B	
	C CURVE 920M-8746	sheet)
	1C+CURYE 92UM-8/40	
		11

For key to symbols, see sheet INDEX OF TUBE TYPES 1

Tube		Sheet		Tube		jo ⁵ Sheet
Туре	2	e & Date		Туре	ف	& Date
	9				~	_
	Ē					
20CP 4*	C C	TENT. DATA 1, 5-51		21EP4-A*	c	DATA 1, 11-55
		TENT. DATA 2, 5-51 OUTLINE CE-7596B			c	DATA 2, 11-55 OUTLINE CE-7903R1B
		CURVE 92CM-7616		2 IEP4-B*		DATA, 11-55
20CP4-A		See 20DP4-A/20CP4-A				DATA, 2-56
20CP4-D		See 20DP4-C/20CP4-D				TENT. DATA 1, 2-56
20DP4-A/						TENT. DATA 2, 2-56
20CP4-A*.	c	DATA, 2-56				OUTLINE CE-8884B
20DP4-C/		1				CURVE 92CM-8868
20CP4-D*.		TENT. DATA 1, 2-56		21MP4		TENT. DATA, 5-52
		TENT. DATA 2, 2-56				CURVE 92CM-7713
		OUTLINE CE-8882B CURVE 92CM-8866				OUTLINE CE-7646R1B CURVE 92CM-7714
20HP4-A/	۲	CURVE 920M-8866		21 YP4		TENT. DATA 1, 8-54
20MP4*	lc	DATA, 2-56		£11F4		TENT. DATA 1, 8-54 TENT. DATA 2, 8-54
20HP4-D*	١č	TENT. DATA 1, 2-56			č	CURVE 92CM-8368
	c	TENT. DATA 1, 2-56 TENT. DATA 2, 2-56			С	OUTLINE CE-8237B
	c	OUTLINE CE-8883B				CURVE 92CM-8224R1
	С	CURVE 92CL-8867		21YP4-A		
20MP4		See 20 HP4-A/20NP4		21ZP4-A		TENT. DATA 1, 8-54
21ACP4-A 21ALP4-A		DATA, 2-56 DATA 1, 11-55			c	TENT. DATA 2, 8-54 CURVE 92CM-8391
21467 4-4.	ľ	DATA 2, 11-55				OUTLINE CE-8132B1B
	č	DATA 3. 11-55		21ZP4-B		DATA, 8-54
	Ĭč	DATA 3, 11-55 OUTLINE CE-8342R2B	i	24-A*	R	DATA, 4-39
	l c	CURVE 92CL-8771		24CP4-A	С	DATA 1, 11-55
21ALP4-B	c	DATA, 2-56			С	DATA 2, 11-55
21AMP4-A		TENT. DATA 1, 11-55				CURVE 92CM-8648
		TENT. DATA 2, 11-55			c	OUTLINE CE-8233R1B
21AP4*		TENT. DATA 3, 11-55 TENT. DATA 1, 5-51		94004	č	CURVE 92CM-8626 TENT. DATA 1, 11-55
21454		TENT. DATA 2, 5-51				TENT. DATA 2, 11-55
		OUTLINE CE-7649B			č	TENT. DATA 3, 11-55
		CURVE 92CM-7653		24YP4	ċ	DATA, 11-55
2 1ATP 4	c	DATA, 11-55		25A6*		· · ·
21AUP4		See 21AVP4/21AUP4		25A6-GT [●] .	R	25A6, 25A6-GT/GDATA,
21AUP4-A		See 21AVP4-A/21AUP4-A			_	3-43
21AVP4/ 21AUP4		TENT DATA 1 11			R	DATA, 5-52
2 IAUP 4 ,		TENT. DATA 1, 11-55 TENT. DATA 2, 11-55		2 5BQ6 - GTB/	ъ	DATA, 3-55
l		TENT. DATA 3, 11-55		25CU6 25CD6-GA		
		OUTLINE CE-8604B		25CU6		See 25806-GTB/25CU6
(I		CURVE 92CM-8773	١.			DATA, 2-50
21AVP4-A/		, I		25L6-GT	R	DATA, 5-55
		DATA, 11-55		25¥4-GT*	R	DATA, 3-51
21AWP4	1C	TENT. DATA 1, 11-55		2525*	R	DATA, 9-41
		TENT. DATA 2, 11-55		25Z6		1574 0574 CT/CDATE
21AXP22	١č	TENT. DATA 3, 11-55 TENT. DATA 1, 3-55		2526-61.	ĸ	25Z6, 25Z6-GT/GDATA, 3-43
	١č	TENT. DATA 2, 3-55		26A6	м	TENT. DATA, 6-46
	١ć	TENT. DATA 3, 3-55				CURVE 92CM-6788
	c	DRAWING CE-8399R3B				CURVE-92CM-6784
		CURVE 92CM-8566			M	DATA 1, 1-55
1	IC	CURVE 92CM-8565				DATA 2, 1-55
1				. ·	M	CURVE 92CM-6510
	_			<u> </u>	_	

TUBE DIVISION INDEX OF RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

INDEX OF TUBE TYPES 6

INDEX OF TUBE TYPES

For All Sections

For key to symbols, see sheet INDEX OF TUBE TYPES 1

		3, 30013, 300 3	F THEFT	_	
	. of		1		Sheet
Tube	<u>.</u> ~	Sheet	Tube		🖉 Sheet
Туре	. e ^C	& Date	Туре		2 & Date
-/	5		-/	9	a 2000
				_	
0.000					
2000	M ILNI.	DATA, 6-46	81~		DATA, 2-40 (On 80
		92CM-6772			sheet)
2606		DATA, 6-46	82	R	DATA, 9-41 DATA, 9-41 (On back of
		92CM-6789	83	"	DATA, 9-41 (On back of
27*	R DATA,	7-35	1		82 sheet)
27 MP 4*	C TENT.	DATA 1, 8-53	83-**	п	DATA, 9-41 (On back of
	C TENT.	DATA 2, 8-53	{		82 sheet)
	C DRAWI	NG CE-7908	84/6Z4*	R	DATA, 2-40
1	COUTLI	NE CE-7924B	85•	R	DATA, 6-48
1	CCURVE	92CM-7901			CURVE 92CM-5197R1
1		92CM-7902	105		TENT. DATA, 5-46
35A5*			VR105	-	See OC3
		DATA, 12-46	117L7-GT/		
1.0000000000000000000000000000000000000		92CM-6312R1	11717.07*	R	TENT DATA S.A.
35C5	BDATA	1-55	117N7	11	TENT. DATA, 5-41 DATA, 5-41 (On beck of
35L6-GT	B DATA	6.47	11001-01		117L7-GT/117M7-GT
3320-01	B CIEVE	92CM-6309	1		
1		92CM-6307R1	11707 07*		sheet) TENT. DATA, 12-41
2000			11/1/-01		
35W4	R DATA,	9-50			CURVE 92C-6340
		92CM-6615R1	11723	н	DATA, 7-50
35Y4*	R DATA,	12-47			117 Z6-GT/G DATA, 8-43
35Z3*	R DATA,	6-47	VR 150		See OD3
35Z4-GT	DATA,	6-47 (On back of	172		TENT. DATA, 5-46
		35Z3 sheet)	1	F	CURVE CE-6698
35Z5-GT	R 35Z5-	GT/G DATA, 6-43	203-A [®]	Т	DATA, 4-37 CURVE 92S-5463
41*	R DATA,	10-51		Т	CURVE 92S-5463
42*	R DATA,	4-38	207*	т	DATA 1, 9-48
43*	R DATA.	6-37		Т	DATA 2, 9-48
45 [*] 47 [*]	R DATA.	4-38		Τ	TERMINAL-SUPPORT SHELL
47*	B DATA.	11-37		1-	CE-7020
150A5*	RIDATA	12-47		Ιт	CURVE 92CM-4551
50B5	B TENT.	DATA, 1-46			CURVE 92CM-5551
1	BCIEVE	92CM-6603	211*	Ι÷	DATA 1, 5-50
50C5					DATA 2, 5-50
50C6-G*	BDATA	2-50	1		CURVE 92CM-4537
50L6-GT	B DATA	0 41	1917 C*		DATA, 6-47
301.0-01		92CM-6314R1	502 4*	Ľ.	DATA, 5-55
50X6*	B DATA	9204-031401	502-A	12	CURVE CE-7074T1
FOX6 CT	U DATA	2-30 2 50 (D has) - 5	1		CURVES CE-8610T-7072T1
5010-61	DATA,	2-50 (On back of	1	I÷	DATA 11 FF
		50X6 sheet)	13/3-A	Ľ	DATA, 11-55 TENT. DATA, 5-46
50Y7-GT*			579-B	M	TENI. DATA, 5-46
53•		4-37	627	IF.	TENT. DATA, 5-46
FG-67	See 5	728/FG-67	6 29	Ľ	TENT. DATA, 5-46
70L7-GT	R DATA,	12-41	672-A		TENT. DATA, 6-48
70L7-GT*	R CURVE	92C-6324			CURVES CE-6734T1-6929T
71-A*	H DATA,	7 - 35	673		DATA 1, 11-55
75*	R DATA,				DATA 2, 11-55
VR75					CURVE 92CM-8824
76•	R DATA,	6-48	676	F	TENT. DATA, 5-46
	ROURVE	92CM-4175R2	677	F	TENT. DATA, 5-46
77•	R DATA.	9-41	800*	Ιт	DATA 1, 12-44
1	R CURVE	925-5279	1		DATA 2, 12-44
78*		CURVE 92S-5248,		ĥ	CURVES CE- 5377R1
	[]	4-37	801-A*		801-A/801 DATA, 4-40
80*	BIDATA				DATA 2, 4-40
	1.10A1A,	4-40		, ,	10010 2, 9-40
1					
2-56				-	NDEX OF TUBE TYPES 6

INDEX OF TUBE TYPES 6

			syncols, see s	ILEEL INDEX		
Tube		. °	Sheet	Tube		. Shoot
		ర్				C Dileet
Type	c	e ^r	& Date	Туре	3	e ^c & Date
	-	r — — —			r'	·····
000	_		A			
802				815		DATA 1, 10-43
		DATA 2				DATA 2, 10-43
	14	DATA 3	92C-4606			OUTLINE CE-6199R4 CURVE 92CM-6205R1
				016	1	DATA 10 47
803*	1+	DATA	5 92C-4604 & 4605 L, 8-44	826	1	DATA 1 9 47
	ГŤ	DATA	, 0-44) 9-44	020		DATA 2, 8-47
		DATA 3				NOTES CE-6131R2B
			92C-4749		Τ	CURVE 92C-6211
804*				827-R		DATA 1, 8-44
	Т	DATA 2	2-40			DATA 2, 8-44
	Т	DATA 3	3, 2-40		Т	CURVE 92CM-6167
	ľΤ	CURVE	92C-4562R1	828	T	DATA 1, 9-48
805	T	TENT.	DATA, 3-36		 T	DATA 2, 9-48
	Т	DATA 2	2, 4-37			DATA 3, 9-48
806*						CURVE 92CM-6080
1			12-43		T	CURVE 92CM-6082
0.07			92C-4692	829-B		DATA 1, 11-52
807			1, 11-54		1	DATA 2, 11-52
}			i, 11-54		÷	DATA 3, 11-52 CIRCUIT CE-6520R1
1			, 11-54		14	NOTES CE-6397R4B
1	Ι÷	OUTLIN	E CE-4674R4			CURVE 920M-6114R3
			CE-6247T2-	830-B*		TENT. DATA, 3-36
1	Ľ		6244T2			TENT. DATA 2. 3-36
1	Т	CURVES	CE-6246T2-	832-A	Т	DATA 1, 3-51
		E	4689T3		Т	DATA 2, 3-51
808					T	OUTLINE CE-6374R3A
			E CE-4677R3		Т	CURVE CE-4910T1
			92CM-4678	833-A		DATA 1, 3-48
809	IT T	DATA I	, 12-46			DATA 2, 3-48
			2, 12-46 92CM-4836			DATA 3, 3-48 CURVE 92CM-6196
810	ľŕ	DATA	92CM-4030 19-46	824		DATA, 12-42
010	1 T	DATA 2	12-46	034		CURVE 92C-4544
			92C-4981	835	Ι÷	DATA, 12-42
811-A				836	ĥ,	DATA, 12-42 (On 835
	T	DATA 2	, 5-49			sheet)
			E CE-6905	837		DATA, 4-39
	Т	CURVE	92CM-7138			DATA 2, 4-39
812-A			DATA 1, 6-48			DATA 3, 4-39
			DATA 2, 3-51			CURVE 92C-4586
			E CE-6905	0.00*		CURVE 92C-4589
813		DATA 1	92CM-6938	838		DATA, 6-37 CURVE 92C-4404
013	ᆤ	DATA 2	., 9-55	10.1*		DATA, 4-37
5		DATA 3		041		DATA 2, 1-43
		DATA 4		842*	f	DATA, 3-34
1			92CM-4967R2	843	τ	DATA, 7-38
	Т	CURVE	92CM-6926	845	Т	DATA, 4-40
	Т	CURVES	CE-4969T1-	846	ÌТ	DATA, 7-35 (1-36) DATA 2, 3-33 (1-36)
			4970T1		Т	DATA 2, 3-33 (1-36)
814					T	CURVE 92C-4504
	Ţ	DATA 2	11-48		T	CURVE 92S-5554
'	IT.	LORAE	92C-4845			
]				H		
2-56				· • • • • • • • • • • • • • • • • • • •	1.6	NEX OF THRE TYPES 7

849 870 P
/

	4						
\$ \$`	INDEX OF 7	UBE T	YPES				
		Sections					
For	key to symbols, see si		OF TUDE TYDES (
<u> </u>	Rey to symbols, see s						
Tube	Sheet	Tube	Sheet				
Туре	& Date	Туре	& Date				
1,60	9 4 5400	-//-	ର୍ଷ ଅଧିକର				
8 49 [●] · · · · · ·	T DATA, 9-35 (7-38) T DATA 2, 9-35 (7-38)	892	T DATA 1, 2-50 T DATA 2, 2-50				
	T CURVE 92C-4457		T CURVE 92CM-6136R1				
851*	T DATA, 9-35 (4-37)		T CURVE 920M- 4644R3				
	T DATA 2, 9-35 (1-36)	892-R	T DATA 1, 2-50				
	T CURVE 92C-4455		T DATA 2, 2-50				
85/-8	T DATA 1, 7-55 T DATA 2, 7-55	893-A*	T DATA 1, 3-45 T DATA 2, 7-45				
	T TERMINAL-SUPPORT SHELL		TICIRCUITS 92CM-6025R1				
	CE-4653R2	893A-R*	T DATA 1, 3-45				
860*			T DATA 2, 3-45				
	T OUTLINE CE-4318R4 T CURVE 92S-5501		T CURVE 92CM-6022R2 T CURVE 92CM-6186R1				
861*	T DATA, 7-38		T CURVE 92CM-6187R1				
	T DATA 2, 4-33 (9-36)	898-A*	T DATA 1, 11-45				
	T CURVE 92C-5550		T DATA 2, 3-45				
862-A*	T DATA 1, 3-45 T DATA 2, 3-45	1	T CIRCUITS 92CM-4388R3 T CURVE 92CM-4390R3				
[T CURVE 920M-4461R1		T CURVE 92CM-4390R3				
864	M DATA, 3-36	902-A*	CIDATA 1. 7-45				
865*	T DATA, 9-36		C DATA 2, 7-45				
1	T DATA 2, 6-36	000 4*	C CURVE 92CM-4895R1				
966-4	T CURVE 92C-4412 T 866-A/866 DATA, 6-44	908-A	C DATA 1, 6-46 C DATA 2, 6-46				
868	P DATA. 8-47		C CURVE 92CM-5415R5				
869-B	P DATA, 8-47 T DATA 1, 11-52	912*	C DATA, 6-47				
	T DATA 2, 11-52		C OUTLINE CE-4619R3				
872-A	T CURVE 92CM-7634 T 872-A/872 TENT. DATA,	914-A*	C DATA 1, 5-50				
012-8	8-42		C DATA 2, 5-50 C OUTLINE CE-4718R3				
	T TENT. DATA 2, 8-42	917	P DATA, 8-47				
874	M DATA, 8-44		P CURVE 92CM-4360R1				
878*		918	P DATA, 8-47 P CURVE 92CM-4351R2				
	T DATA 2, 5-50	919	P DATA, 8-47				
	T DATA 2, 5-50 T OUTLINE CE-6181R1	920	P DATA, 8-47				
	T_CURVE 92CM-6178R1		P CURVE 92CM-4618R3				
884, 885*	F DATA 1, 12-44 F DATA 2, 12-44	921	P DATA, 6-48 P DATA, 8-47				
889-A	T DATA 1, 6-46		P DATA, 8-47				
	T DATA 2, 6-46	924*	P DATA, 6-46				
1	T CURVE 92C-6086	925	P DATA, 8-47 P CURVE 92CM-6208R1				
	T CURVE 92C-6063 T CURVE 92C-6088	0.96	P CURVE 92CM-6208R1 P DATA, 6-48				
889B-A	T DATA 1, 6-46	927	P DATA, 9-50				
100711 1111	TIDATA 2. 6-46	1	P CURVE 92CM-6258R2				
891		928	P DATA, 8-47				
1	T DATA 2, 2-50	0.00	P CURVE 92CM-6117				
	T CURVE 920M-4551	930	P DATA, 8-47 P DATA, 8-47				
1	T CURVE 92CM-4643R3	1	P CURVE 92CM-4806R1				
891-R		931-A	P DATA 1, 9-55				
1	T DATA 1, 2-50		P DATA 2, 9-55 P CURVE 92CL-6459R3				
			P CURVE 9201-6459H3				
		1					

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

For key to symbols, see sheet INDEX OF TUBE TYPES 1					
Tube		jo ⁵ Sheet	Tube		Sheet
Туре	్రి	& Date	Type	ç	& Date
1,100	ŝ	d Date	1,100	Ş	d Dute
		DATA, 9-50	1854	I	See 6474/1854
935	P	DATA, 7-50 CURVE 92CM-6478R1	1945		TENT. DATA, 6-47
I				M	OUTLINE & CURVE
954		DATA, 6-44	1		CE-6841-6850T
		CURVE 92C-4378	1946	M	TENT. DATA, 6-47
955	M	DATA, 6-44 CURVE 92C-5561R1	1947		TENT. DATA, 6-47
0.57			10.00		CURVE 92CM-6849
956		DATA, 6-44	1949		DATA, 3-54
957	M	CURVE 92C-4672R1 DATA, 6-44	1070	1.	CURVE 920M-6851
		DATA, 6-44	1950	I.M.	DATA, 3-54
9 36 - A		CURVE 920M-6334R1	2050	[r	DATA, 6-48
050					CURVE CE-6540T1
		DATA, 6-44 DATA, 12-39	6 6 9 7	ľ	CURVE 92CM-6274R1
		DATA, 12-39 DATA, 1-43	552(TENT. DATA, 4-47
1009		CURVE 92C-6355	5550		OUTLINE CE-6803 TENT. DATA, 5-46
1611*		DATA, 1-43 (On back of	5550		CURVES CE-6716-6715
1011		1609 curve 92C-6355)	5551		TENT. DATA, 5-46
1612	м	DATA, 1-43	3331		OUTLINE CE-6712
1613	T	DATA 12-43	5552		DATA, 3-51
1614	Ť	DATA, 12-43 DATA 1, 12-46	5552	F	OUTLINE CE-6711R1
		DATA 2, 12-46	5553*		TENT. DATA, 5-46
1616	τ	DATA, 5-42	5554	F	TENT. DATA, 5-46
	Ť	DATA, 8-43	0004		OUTLINE CE-6727
		DATA 2, 8-43	1		CURVES CE-6710-6746
		CURVE 92C-4931	5555		TENT. DATA, 5-46
		CURVE 92C-4924			OUTLINE CE-6726
1620		DATA, 1-43 (On back of	5556		TENT. DATA, 5-46
		1612 sheet)			OUTLINE & CURVE
1621	M	DATA, 1-43	}	1.	CE-6717-6718
1622	М	DATA, 8-43	5557	F	TENT. DATA, 5-46
1623*	Т	DATA, 4-40	5558	Т	DATA, 4-53
	T	DATA 2, 4-40	1	T	CURVE 92CM-7856
1624*	Т	DATA, 1-43	5559		DATA, 3-51
		DATA 2, 1-43		F	CURVES CE-6704T1-7562T
1625	T	DATA, 12-44	5560		DATA, 3-51
		TENT. DATA, 3-41	ł.	F	CURVES CE-6705T1-7568T
16 29	M	DATA, 6-44	5561	T	TENT. DATA, 5-46 TENT. DATA, 6-47
1631"	M	DATA, 11-45	5563	F	TENT. DATA, 6-47
1632	"	DATA, 11-45 (On 1631	1		CURVE CE-6842T1
1633 ^{.0}		sheet)	1	ľ	CURVE 92CM-7197
1033		DATA, 11-45 (On 1631			CURVE 92CM-7267
1/1/8		sheet)	5563-A	F	DATA 1, 1-55
1634		DATA, 11-45 (On back			DATA 2, 1-55
1/25*		of 1631 sheet)			DATA 3, 1-55
1635		DATA, 4-47			DATA 4, 1-55
		CURVE 92C-6358			CURVE 92CM-8302
1640		See 8405/1840	1	Ľ	CURVES CE-8300T-8316T
1642		See 2C21/1842 DATA, 3-48	6 5 6 1	Ľ	CURVE 92CM-8303 TENT. DATA, 4-47
		DATA, 3-48 DATA, 5-51	12281	16	CIRVE 02CH 6022
10 JU-A		OUTLINE CE-489 IR3A	6 5 6 2	Ľ	CURVE 92CM-6822 DATA, 6-48
		CURVE 9 20M-640 4R1	3584	ľ	DATA, 6-48 CURVE 92CM-6823
1852	C	CURVE 92CM-6404H1 See 81C7	6603	Ľ	DATA 5 61
1852		See GAC7 See GAB7	5594	Ľ	DATA, 5-51 TENT. DATA, 4-47
1033		DEE UAD7	3384	1P	11641A, 4-4/
			1		
	_		·		

2-56

٨

TUBE DIVISION INDEX

INDEX OF TUBE TYPES 8

For key to symbols, see sheet INDEX OF TUBE TYPES 1

				<u> </u>				
~ 1		. o ^r	01	11		. °		
Tube		<u>``</u>	Sheet	Tu		سې	Shee	
Туре	~	ຍິ	& Date	Ту	pe ,	e°	& Dat	e
	_			_ <u> </u>				
						_	_	
5588*	T	TENT.	DATA 1, 4-47	57 18.			DATA 1,	
	T	TENT.	DATA 2, 3-51 NE NOTES & MOUNT	11			DATA 2,	
	Т	OUILI	NE NOTES & MOUNT- ARRANGEMENT	11			DATA 3, 92CM-785	
			CE-6835R1B-6833R	57 19.			DATA 1,	
	lт		92CM-6826	1 37 19			DATA 1,	
			92CM-6837				DATA 3.	
5592*			DATA, 4-47	11			92CM-792	
			NE CE-6827	5726.		TENT.	DATA 1,	9-52
			92CM-6838	11	- IN	TENT.	DATA 2,	9-52
			92CM-6843	5728/				
5604-A			DATA 1, 9-55	FG-6'	?*]I	F TENT.	DATA, 3-	54
			DATA 2, 9-55	11	11	FOULT	NE & CURV	
	T	CURVE	NE CE-8568A 92CM-8554	H		CURVE	S CE-8107	R3-7965T
			92CM-8567	5734.			DATA, 11	
			92CM-8561				NE CE-703	
5618			DATA 1, 10-47				92CM-705	
			DATA 2, 10-47	5751.			DATA 1.	
			92CM-6881				DATA 2.	
			DATA, 3-48	11		I CURVE	92CM-794	7
5652	P	TENT.	DATA, 10-47	5762/				
			92CM-6895	7C24			1, 8-53	
5653	P	TENT.	DATA, 9-47	11			2, 8-53	
5654	IM ۳	TENT.	DATA, 1-53	11			3, 8-53 4, 8-53	
30/1			2. 1-54	11			92CM-708	401
			NE CE-6897R1	11			9201-708	
	İτ	CURVE	92CM-6899	5763.			1, 5-54	-
5675	M	TENT.	DATA, 2-50	11		TDATA	2, 5-54	
1	I M	JOUILI	NE CE-7340H1	11			92CM-716	
5690			DATA 1, 4-53	5770.			DATA 1,	
1			DATA 2, 4-53	11			DATA 2,	
1			92CM-7797				NE CE-707 DATA 1,	
Ì			92CM-7895 92CM-7795	5771.			DATA 1, DATA 2.	
			92CM-7796				NE CE-708	
5691			DATA, 3-48				92CM-709	
			NE, 3-48	5786.		TDATA	1, 5-54	-
[92CM-6913			TENT.	DATA 2,	2-49
5692	м	TENT.	DATA, 3-48			T TENT.	DATA 3,	2-49
	M	CURVE	92CM-6257	11			ING CE-71	
5693	M	TENT.	DATA, 3-48	H			92CM-659	93R1
			NE, 3-48	5794.			1, 11-54	
			92CM-6920R1 92CM-6443R1	5814			NE CE-714 DATA 1,	
			92CM-6443R1	5814			DATA 1, DATA 2,	
5696			DATA, 2-49	11			92CM-79	
			92CM-7044	5819.			1, 5-54	
ļ			S CE-7047T-7052T	11	i i	DATA	2, 5-54	
57 13			DATA, 9-48	11	1	PCURVE	92CL-72	58R3
	1		NE CE-6939	5820.			1, 1-55	
ł	IΤ	CURVE	92CM-6942	11			2, 1-55	
				11			NE CE-829	
				- H · · · ·	11	CLCORAF	9201-843	77
				11				
L	_							

TUBE DIVISION

	S 0.	l	Sheet
Tube	Sheet	Tube	jγ° Sheet
Туре	"c⊂ & Date	Type	ຸິ & Date
1 ''	9	-/	S
		L	
1			
5822	F TENT. DATA, 2-52	6080	M DATA 1, 8-53
	M TENT. DATA 1, 9-49		M DATA 2, 8-53
1 1	M TENT. DATA 2, 9-49	6082	M DATA 1, 8-53
	M CURVE 920M-7282	1 1	M DATA 2, 8-53
5825	M TENT. DATA, 9-49		M TENT. DATA 1, 10-53
	MOUTLINE CE-7176		M TENT. DATA 2, 10-53
	T TENT. DATA 1, 5-50	1	M TENT. DATA 3, 10-53
}	T TENT. DATA 2, 5-50	1	M CURVE 920M-8033
	T OUTLINE CE-7432A	6130/ 3C45.	F TENT. DATA 1, 6-54
	T DRAWING CE-7443		F TENT. DATA 2, 6-54
	M TENT. DATA 1, 6-53	6146	T DATA 1, 1-54
1	M TENT. DATA 2, 6-53		T DATA 2, 1-54
1	M TENT. DATA 3, 6-53	1 1	T DATA 3, 1-54
	M CURVE 92CM-7892	1 1	T DATA 4, 1-54
5876	M TENT. DATA 1, 7-50	I I	T CURVE 92CM-8145
	M TENT. DATA 2, 7-50		T CURVE 92CM-7707R1
	M DATA, 1-53		T CURVE 92CM-7711R1
1	M CURVE 920M-7439		T CURVE 920M-7712
	M CURVES 92CM-7440	6150	T TENT. DATA, 5-52
		0159	ITENI. DATA, 5-52
5890	M TENT. DATA, 5-50		T TENT. DATA 1, 7-52
	M OUTLINE CE-7431		T. TENT. DATA 2, 7-52
	M TENT. DATA 1, 2-52		T TENT. DATA 3, 7-52
1	M TENT. DATA 2, 2-52		T TENT. DATA 4, 7-52
1	M TENT. DATA 3, 2-52	1 i	T OUTLINE NOTES & GAUGES
1	M CURVE 92CM-7609R1	1 1	CE-7704B-7705
	M CURVE 920M-7483	1	T CURVE 920M-7771
	T TENT. DATA 1, 3-55		T TENT. DATA 1, 7-52
	T TENT. DATA 2, 3-55		T TENT. DATA 2, 7-52
	T TENT. DATA 3, 3-55		T TENT. DATA 3, 7-52
	T OUTLINE CE-8472A		TOUTLINE CE-7716
	T RATING CHART I		T CURVE 92CM-7728
	92CM-8475		T CURVES CE-7744T-7743T
	TRATING CHART III		T CURVE 92CM-7738
	92CM-8477		T CURVES CE-7740T-7739T
1	T CURVES 920M-8482		T CURVE 92CM-7730
	T CURVES 920M-8483		T CURVES CE-7746T-7752T
5915	M TENT. DATA 1, 9-50	1 I [.]	T CURVE 92CM-7751
l I	M TENT. DATA 2, 9-50		M TENT. DATA, 7-52
	M CURVE 92CM-7499		MOUTLINE CE-7696
	T TENT. DATA 1, 3-51		M CURVE 920M-7727
	T TENT. DATA 2 3-51		T DATA 1, 5-54
5963	M DATA, 9-55		T TENT. DATA 2, 7-52
	M CURVE 920M-7493		
			T TENT. DATA 3, 7-52
3904	M TENT. DATA, 9-50		T OUTLINE CE-7754R2
	M CURVE 920M-7495		T CURVE 92CM-7767
	M TENT. DATA 1, 6-54		T CURVES CE-7768T-7769T
	M TENT. DATA 2, 6-54		M TENT. DATA, 3-54
	M CURVE 92CM-8262	1 1	M CURVE 920M-8150
60 12	F TENT. DATA, 7-52	1 1	M CURVE 920M-8149
1 1	FOUTLINE CE-7635		C TENT. DATA, 9-52
	F CURVE 9204-7747	1	COUTLINE CE-7772
	M TENT. DATA, 8-51		CURVE 920M-7783R1
	M CURVE 920M-7640		C CURVES CE-7820 T-7819TV
6072	MITENT DATA 5 50	1 *	C COLUES CE- (020 1- (019 V
6074	M TENT. DATA, 5-52 M TENT. DATA, 5-52		
00/4	MEILNI, DATA, 5-52		
1	[1	
L		L	
2-56			NDEY OF THEF TYPES O

For key to symbols, see sheet INDEX OF TUBE TYPES 1						
Tube	55 Sheet	Tube	Sheet			
Туре	్ & Date]] Type	چې & Date			
	~~		×			
6 199	P TENT. DATA 1, 11	- 52 6448	T TENT. DATA 1, 5-54			
	P TENT. DATA 2, 11	- 52	T TENT. DATA 2, 5-54			
	P CURVE 920M-7255R	3 [[T TENT. DATA 3, 5-54			
6211	P CURVE 92CM-7814 M TENT. DATA, 1-53		T OUTLINE CE-8256A T OUTLINE CE-8256C			
0-11	M CURVE 920M-7822		T GAUGE CE-8254			
	M CURVE 920M-7824R	1	T CURVE 920M-8252			
6217	P TENT. DATA 1, 11	- 52	T CURVE 92CM-8247			
	P TENT. DATA 2, 11	-52	T CURVE 92CM-8245			
6263	M TENT. DATA 1, 3- M TENT. DATA 2, 3-	54 6472	P TENT. DATA, 5-55 P CIRCUIT CE-8526			
	MINOTES CE-7999B	~	P CURVE 92CM-8029R1			
	M CURVE 920M-8103		P CURVE 920M-8536			
6264	M TENT. DATA 1, 3-		C TENT. DATA 1, 6-54			
	M TENT. DATA 2, 3-	54 }}	C TENT. DATA 2, 6-54			
6 90 2	M CURVE 920M-8105		C CURVE 920M-8274R1			
6 29 3	T TENT. DATA 1, 10 T TENT. DATA 2, 10	- 53 6521	C CURVE 92CM-8271 M TENT. DATA 1, 5-55			
	T RATING CHART I		M TENT. DATA 2, 5-55			
		M-8012	M DRAWING CE-8538-8537B			
	T CURVES CE-8017T-	8016T	M CURVE 920M-8527			
6323*	P DATA, 9-55		M CURVE 920M-8533			
6326	C TENT. DATA 1, 3- C TENT. DATA 2, 3-		T TENT. DATA 1, 8-54			
	C CURVE 920M-8119	54	T TENT. DATA 2, 8-54 T TENT. DATA 3, 8-54			
6328	P TENT. DATA, 3-54	11	T TENT. DATA 4, 8-54			
	P CIRCUIT CE-8127		T RATING CHART II			
	P CURVE 920M-8029		92CM-8348			
< 3 4 0	P CURVE 92CM-7667R	1	T OUTLINE CE-8345A			
6342	P DATA 1, 9-55 P DATA 2, 9-55		T CURVE 92CM-8350 T CURVE 92CM-8346			
	P CURVE 920M-8125R	1	T CURVE 92CM-8351			
	P CURVE 92CL-8123	6570	P TENT. DATA, 3-55			
6372	P DATA 1, 9-55		P CURVE 92CM-8491			
	P DATA 2, 9-55 P CURVE 92CM-8258	6571	C TENT. DATA 1, 5-55			
	P CURVE 920M-8258		C TENT. DATA 2, 5-55 C OUTLINE CE-8511			
6383	T TENT. DATA 1, 8-	54 6655	P TENT. DATA 1, 7-55			
	T TENT. DATA 2, 8-	54	P TENT. DATA 2, 7-55			
	T TENT. DATA 3, 8-		P CURVE 92CM-8603			
	T RATING CHART 920		P CURVE 92CM-8636			
	T NOTES & MOUNTING RANGEMENT CE-83		S TENT. DATA, 7-55 S OUTLINE CE-8579			
	INNIGEMENT CE-55	8320	S CURVE 920M-8584			
	T CURVE 92CL-7771R		S CURVE 92CM-8593			
6405/1640.	P TENT. DATA, 6-54	8000	T DATA 1, 12-46			
	P OUTLINE CE-8229	11	T DATA 2, 12-46			
6417	T DATA, 5-54	8001	T CURVE 92CM-6212 See 4827/8001			
		800 3*	TTENT. DATA. 7-41			
		11	T TENT. DATA, 7-41 T TENT. DATA 2, 7-41			
		8005	T DATA 1, 6-48			
			T DATA 2, 5-49 T OUTLINE CE-6283R2			
			T OUTLINE CE-6283R2 T CURVE 92C-6279			
		11	11 COUVE 920-0219			
-56		TUBE DIVISION	INDEX OF TUBE TYPES 9			

Tube Sheet	Tube 5 Sheet
Type S ADate	Type 5 & Date
8008 T TENT. DATA, 8-42	9001 M DATA, 10-43
8012-A [#] T DATA 1, 11-45	M CLRVE 92C-6291
T DATA 2, 11-45	9002 M DATA, 10-43
T CURVE 92CM-6346	9003 M DATA, 10-43
8013-A M DATA, 9-55	M CURVE 92C-6289
8016 See 183-GT	9004* M TENT. DATA, 12-42
8020 M TENT. DATA, 5-46	M CURVE 92C-6383
8025-A T DATA 1, 11-45 T DATA 2, 11-45	9005 M TENT. DATA, 12-42 M CURVE 92C-6384 9006 M DATA, 10-43

Supplementary TABLE OF CONTENTS For All Sections

ADDITIONS & REVISIONS

GENERAL SECTION:

Supplementary Table of Contents, 10-56 Supplementary Index of Tube Types 1, 10-56 Supplementary Index of Tube Types 2, 10-56 Information on Prices, 4-56 Types Not Recommended, 4-56 Interchangeability 1, 4-56 Interchangeability 2, 4-56 Interchangeability 3, 4-56 Interchangeability 4, 4-56 Conversion Factors, 4-56 Bases: 4-Pin Types, Bases 2, 8-56 7-Pin Types, Bases 10, 6-56 8-Pin Types, Bases 11A, 10-56 8-Pin Types, Bases 12, 10-56 8-Pin Types, Bases 14, 10-56 8-Pin Types, Bases 14A, 10-56 11-Pin Types, Bases 19A, 6-56 12-Pin Types, Bases 20A, 10-56 20-Pin Types, Bases 23, 4-56 29-Pin Types, Bases 24, 4-56 35-Pin Types, Bases 25, 10-56 CATHODE-RAY TUBE SECTION: Cathode-Ray Tube Classification Chart 1, 4-56 Cathode-Ray Tube Classification Chart 2, 4-56 Cathode-Ray Tube Classification Chart 3, 4-56 Spectral-Energy Emission Characteristic of Phosphor P4--Sulfide Type, 92CM-7316 Persistence Characteristic of Phosphor P4--Sulfide Type, 6-56 (On back of curve 92CM-7316) Spectral-Energy Emission Characteristic of Phosphor P7, 92CM-7336 Persistence Characteristic of Phosphor P7, 92CM-7015R4 (On back of curve 92CM-7336) Buildup Characteristics of Phosphor P7, 92CM-7019R3 Buildup Characteristics of Phosphor P7, 92CM-6805R5 (On back of curve 92CM-7019R3) Persistence Characteristics of Phosphor P7, 92CL-6804R5 Spectral-Energy Emission Characteristic of Phosphor P15, 92CM-6915 Persistence Characteristic of Phosphor P15, 92CM-8540R1 (On back of curve 92CM-6915)

Supplementary TABLE OF CONTENTS For All Sections

ADDITIONS & REVISIONS (Cont'd)

PHOTOTUBE SECTION:

Phototube Classification Chart, 4-56 Definitions of Phototube Terms, 4-56 (On back of sheet Phototube Classification Chart) Spectral Sensitivity Characteristic of Phototube having S-5 Response, 92CM-6814R1 Spectral Sensitivity Characteristic of Phototube having S-8 Response, 92CM-6592R2 (On back of curve 92CM-6814R1) Tentative Spectral Sensitivity Characteristic of Phototube having S-13 Response, 92CM-9037 SEMICONDUCTOR DEVICE SECTION:

Tentative Definitions of Semiconductor Device Terms, 6-56 Outlines--Semiconductor Devices: Flexible Lead Type, Outlines 1, 6-56 Linotetrar-Linotetrar 3-Pin Base Types, Outlines 2, 6-56 Bases: Semiconductor Devices, Bases 1, 4-56

DELETIONS

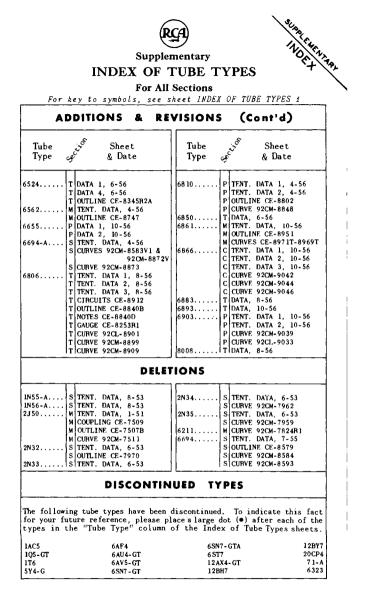
SEMICONDUCTOR DEVICE SECTION:

Transistors 1, 6-53 Transistors 2, 6-53

Supplementary

INDEX OF TUBE TYPES

For All Sections


For key to symbols, see sheet INDEX OF TUBE TYPES 1

ADDITIONS & REVISIONS

		ADDITIONS	& REV	IS		s
Tube	tion.	Sheet	Tube			Sheet
Type	ن چون	& Date	Туре	ę	e.	& Date
OA3	M DATA	4-56	3CS6	B	DATA.	4-56
	MCIRCI	JITS CE-8963	3DT6	н	DATA,	4-56 (On 3CS6 sheet
003	DATA	4-56 (On back	3KP1	l c	DATA	
		of QC3 sheet)				2, 4-56
1AX2*	R TENT.	DATA, 4-56		C	CURVE	92CM-7191R2
1EP1	C TENT.	DATA 1, 6-56		C	CURVE	92CM-6658R2
		DATA 2, 6-56	3KP4		DATA,	4-56 4-56 (On 3KP4
		E 92CM-8938 E 92CM-8975	36. 197	ŧ"	DATA,	4-56 (On 3KP4
2BN 4			38011	11	DATA	sheet 4-56 (On 3KP4
2J41					Dala,	sheet
		INE & NOTES	4-250A/			
		CE-8654B	5D22	T	DATA	1, 8-56
2N77		DATA 1, 6-56				2, 8-56
	S TENT.	DATA 2, 6-56				3, 8-56
		92CM-8592R1				92CM-7078
		92CM-8591R1	5AZP4	1C	TENT.	DATA 1, 4-56
9N 10 4	S CORVE	E 92CM-8585R1 DATA 1, 6-56				DATA 2, 4-56 CE-8556B
2N 104		DATA 2, 6-56	5CG8			
		DATA 3, 6-56	5FP15-A	C C	TENT.	DATA, 10-56
		SISTOR DISSIPATION				NE CE-9001R1
		TING CHART, 92CM-	5TB	R	DATA,	4-56
		8530R1	6 AU8			DATA 1, 4-56
		92CM-8512R1				DATA 2, 4-56
		92CM-8534R1				92CM-8801R1
		5 92CM-8517R2	CAVE CAN			92CM-8803
91105	S CURVE	E 92CM-8544R2 DATA 1, 6-56	CAVS-GAT.	I R	TENT.	DATA, 4-56 DATA 1, 4-56
2N 10 5	S TENT	DATA 2, 6-56	0.000			DATA 2, 4-56
	SCURVE	92CM-8572R1				92CM-8798R1
		92CM-8581R1				92CM-8800
	SCURVE	92CM-8576R1	6BN4			DATA, 6-56
	S CURVE	92CM-8573R1				92CM-8933R1
2N109	S TENT.	DATA, 6-56	6BX7-GT	R	TENT.	DATA, 6-56
		92CM-8599R2	6CB5-A			DATA, 8-56
ON 120	S CURVE	E 92CM-8598R2 DATA, 6-56				NE CE-8988R1 92CM-8437R1
21139		JIT CE-8851R1	6006-04			DATA, 10-56
2N140	S TENT.	DATA, 6-56	0000-000			NE CE-9012
		JIT CE-8850R1				92CM-9016
2N175	S TENT.	DATA, 6-56	6CG8	R	TENT.	DATA 1, 6-56
	islaureve	9204-891481				DATA 2, 6-56
2N215	S DATA,	8-56				92CM-7532
2N2 17 2N2 18	S DATA,	8-56	60710			92CM-7547R1
2N218	S DATA	10-56	00118	1 H	TENT.	DATA 1, 6-56 DATA 2, 6-56
2N2 19 2N2 20	S DATA	10-20				92CM-8207
20220	E DATA	4-56				92CM-8208R1
30.23	FCIRV	, 4- 56 5 CE-6703T2		1.14	1.001172	- > #0(g= 0200111
			{ }			
0-56			L			SUPPLEMENTAR

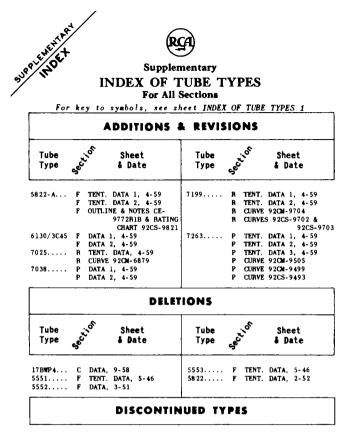
SUPPLEMENTARY INDEX 1

PENENTET	(RC	(A)	
JEY/SET	6	_	
×4×	Supplen	-	
-	INDEX OF T	UBE T	YPES
	For All S	Sections	
	key to symbols, see sh	eet INDEX	OF TUBE TYPES 1
A	DDITIONS & REV	VISIONS	(Cont'd)
Tube	jo [®] Sheet	Tube	Sheet
Туре	ي & Date	Туре	& Date
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	D D.T. 0.54		
60.50	R DATA, 8-56 R CURVE 92CM-8922	2 1AAP 22- A.	C TENT. DATA 1, 8-56 C TENT. DATA 2, 8-56
6CU5	R TENT. DATA, 4-56		C TENT. DATA 3, 8-56
	R CURVE 92CM-8908R1		C CUTOFF DESIGN CHART,
6DQ6-A	R TENT. DATA, 6-56 R OUTLINE CE-8937R1		92CM-8565R C OUTLINE CE-8399R4B
	R CURVE 92CM-8953		C GAUGE CE-8844B
6D <b>T</b> 6		1	C CURVE 92CM-8426R3
		632-B	C CURVE 92CM-8426R3 F TENT. DATA, 8-56
	R CURVE 92CM- 9828		F CURVES CE-9008T-9007T
	R CURVE 92CM-8826	833-A	T DATA 1, 10-56
6K6-GT	R DATA 1, 6-56	1	T DATA 2, 10-56
6T4*	R DATA 2, 6-56 R TENT. DATA, 4-56	1	T DATA 3, 10-56 T DATA 4, 10-56
678	R DATA, 4-56		T OUTLINE CE- 4786R5
8DP4	C TENT. DATA 1, 10-56		T CURVE 92CM-6197
	C TENT. DATA 2, 10-56	917	P DATA, 10-56
	C TENT. DATA 3, 10-56	}	P CURVE 92CM-4360R2
	C OUTLINE CE-8876B	919	P DATA, 10-56 P DATA, 10-56 T DATA, 10-56 T DATA 1, 10-56
	C CUTOFF DESIGN CHARTS CE-9110T-8886T1	922	T DATA 1 10-56
	C CONTOUR DRAWING	5550	T DATA 2, 10-56
	CE-8896B	5794	M DATA, 4-56
	C CURVES CE-9116T-8888T R TENT. DATA, 6-56 R CURVE 92CM-9006	58 19	M DATA, 4-56 P DATA 1, 8-56
12CR6	R TENT. DATA, 6-56		P DATA 2, 8-56
19016	RICUNVE 92CM-9006	1	P CURVE 92CM-8823 P CURVE 92CL-7258R4
12005 12DP7-A	R DATA, 4-56 C DATA, 10-56	60 12	F DATA 1, 4-56
12DQ7 - A	B DATA, 6-56	1	F DATA 2, 4-56
14RP4	C TENT. DATA 1, 6-56	1	F CURVE 92CM-7747
	C TENT. DATA 2, 6-56	6199	P DATA 1, 8-56
	C TENT. DATA 3, 6-56 C OUTLINE CE-8942B		P DATA 2, 8-56 P CURVE 92CM-7255R4
	C CUTOFF DESIGN CHART.		P CURVE 92CL+7812B1
	92CS-8972	6201	M TENT. DATA 1, 10-56
	C CURVE 92CM-8995		M TENT. DATA 2, 10-56
14RP4-A	C DATA, 6-56		M TENT. DATA 3, 10-56
17 ATP4	See 17AVP4/17ATP4	<b>)</b>	M TENT. DATA 4, 10-56
17 ATP 4- A	See 17AVP4-A/17ATP4-A		M CURVE 92CM-9021 M CURVE 92CM-9022
17 AVP4/ 17 ATP4	C TENT. DATA 1. 10-56	6211	M DATA 1. 4-56
	C TENT. DATA 1, 10-56 C TENT. DATA 2, 10-56 C TENT. DATA 3, 10-56		M DATA 2. 4-56
	C TENT. DATA 3, 10-56	6326-A	C TENT. DATA 1, 10-56 C TENT. DATA 2, 10-56
	COUTLINE CE-8341R1B	1	C TENT. DATA 2, 10-56
17 AVP4- A/	C CURVE 92CM-8746R1		C CURVE 92CM-7783R1
	C DATA, 10-56	6499	C CURVE 92CM-8110 C TENT. DATA 1, 8-56
4174FA.	1012017, 10-00	]	C TENT. DATA 2. 8-56
			COUTLINE CE-8891A
			C CURVE 92CM-8948
	]	j i	CICURVE 92CL-8961
10-56	U DAIA, 10-30	0499	C TENT. DATA 2, 8-5 C OUTLINE CE-8891A








Supplementary INDEX OF TUBE TYPES

For All Sections

For key to symbols, see sheet INDEX OF TUBE TYPES 1

#### ADDITIONS & REVISIONS

Tube Type	e S	Sheet & Date	Tube Type	See.	Sheet & Date
1K3	R R	TENT. DATA, 4-59 Outline CE-9889	17AX4-GT. 17B06-GTB	R	DATA, 4-59 DATA, 4-59 (On
1N1763	s	TENT. DATA 1, 4-59		n	17AX4-GT sheet
	S S	TENT. DATA 2, 4-59 CURVES 92CS-9723 &	17DE4		DATA, 4-59 (On 17AX4-GT sheet
	s	92CS-9720 CURVE 92CS-9982	17 DQ6 - A	"	DATA, 4-59 (On back o 17AX4-GT sheet
1N1764	s	TENT. DATA 1, 4-59	21CXP4	С	TENT. DATA 1, 4-59
	s	TENT. DATA 2, 4-59		С	TENT. DATA 2, 4-59
	s	CURVES 92CS-9722 &		С	OUTLINE CE-9910B
		92CS-9721		С	RASTER-CUTOFF-RANGE
	s	CURVE 92CS-9988		-	CHART 92CS-991
3C45	-	See 8130/3C45		С	CURVE 92CM 9909
3CF6	R	DATA, 4-59	21DAP 4	c	TENT. DATA 1, 4-59
3CS6		DATA, 4-59 (On 3CF6	21WP4	C 11	TENT. DATA, 4-59
3DK6	0	sheet) DATA, 4-59 (On 3CF6	21WP4-A		TENT. DATA, 4-59 (On 21WP4 sheet
3UK0		DAIA, 4-59 (Un SCPO sheet)	21XP4-A	с	TENT. DATA, 4-59
3DT6	u.	DATA, 4-59 (On back of	21AP4-A 24AUP4	č	TENT. DATA 1, 4-59
5010		3CF6 sheet)	244014	č	TENT. DATA 2, 4-59
5CG8	R	DATA, 4-59		č	RASTER-CUTOFF-RANGE
5CL8-A		DATA, 4-59 (On 5CG8		C	CHARTS 92CS-9919
		sheet)			92CS-991
5CQ8	н	DATA, 4-59 (On 5CG8		с	OUTLINE CE-9917B
-		sheet)		С	CURVE 92CM-9352
5CZ5	n	DATA, 4-59 (On back of	20 20	Р	TENT. DATA 1, 4-59
		5CG8 sheet)		Р	TENT. DATA 2, 4-59
5 BR8 - A	R	TENT. DATA, 4-59		Р	CURVE 92CL-8641
6CB6-A	R	TENT. DATA, 4-59		Р	CURVE 92CM-8640
	R	CURVE 92CM-9854	5551-A	F	TENT. DATA 1, 4-59
6CL8-A	R	TENT. DATA 1, 4-59		F	TENT. DATA 2, 4-59
	R	TENT. DATA 2, 4-59		F	TENT. DATA 3, 4-59
6DE4	R	TENT. DATA, 4-59		F	RATING CHARTS 92CS-
6DK6	Ŕ	CURVE 92CS-9884		F	9695 & 92CS-969 RATING CHART 92CM-969
DUND	R	TENT. DATA, 4-59 CURVE 92CM-9851R1	5552-A	F	TENT. DATA 1, 4-59
6EA8	R	TENT. DATA, 4-59	3332-A	F	TENT. DATA 1, 4-59 TENT. DATA 2, 4-59
JEA0	R	CURVE 92CM-9866		F	OUTLINE CE-9772R1A
	R	CURVE 92CM-9867		F	RATING CHART 920M-971
6 <b>'T8-A</b>	B	TENT. DATA 1, 4-59	5553-B	F	TENT. DATA 1, 4-59
	R	TENT. DATA 2. 4-59		F	TENT. DATA 2, 4-59
	R	CURVE 92CM-9613R1		F	OUTLINE CE-9838R1A
12AL8	R	TENT. DATA, 4-59		F	RATING CHART 92CM-982
	R	CURVE 92CM-9432		F	RATING CHARTS 92CS-
	R	CURVE 92CM-9423			9825 & 92CS-982
12CN5	R	TENT. DATA, 4-59	5642	D	TENT. DATA, 4-59
12CX6	R	TENT. DATA, 4-59	5686	D	TENT. DATA 1, 4-59
12D4	R	TENT. DATA, 4-59		D	TENT. DATA 2, 4-59
1238	R	TENT. DATA, 4-59	5687	D	TENT. DATA, 4-59
12R5	B	TENT. DATA, 4-59	5750	D	TENT. DATA 1, 4-59



The following types have been discontinued. To indicate this fact for your future reference please place a large dot ( $\oplus$ ) after each of the types in the "Tube Type" column of the Index of Tube Types sheets.

ILC5	17 BWP 4	5553	5822



## INFORMATION ON PRICES

Information as to the retail prices of RCA electron tubes and semiconductor devices described in this handbook may be obtained from your local RCA Tube Distributor. A list of RCA Tube Distributors in your locality will gladly be supplied upon request to Commercial Engineering. RCA. Harrison. N.J.

Equipment manufacturers desiring price information on electron devices for initial installation in equipment will gladly be supplied such information by an RCA Equipment Sales representative, who may be reached at the following RCA Equipment Sales Offices:

- (East) 744 Broad Street Newark 1, New Jersey Humboldt 5-3900
- (Central) Suite 1181 Merchandise Mart Plaza Chicago 54, Illinois Whitehall 4-2900
  - (West) 6355 E. Washington Blvd. Los Angeles 22, California Raymond 3-8361

#### FXPORT

RCA International Division Tube Department Radio Corporation of America 30 Rockefeller Plaza New York 20, N.Y. (U.S.A.)

🗕 Indicates a change.

PRICES



FOR NEW EQUIPMENT DESIGN

This list of Preferred Tube Types is presented to assist equipment manufacturers in formulating their plans for future production of electronic equipment. It is based on a careful survey of the needs of the engineering and manufacturing fields.

The soundness of the Preferred Tube Program, first introduced by RCA in January, 1940, has been proven with the passing years.

By using Preferred Tube Types, electronic-equipment manufacturers can reduce manufacturing costs for the following reasons:

- I. LOWER INITIAL Cost of tubes
- 2. MORE PROFIT THROUGH BETTER DELIVERIES
- 3. IMPROVED QUALITY OF PRODUCT FROM Longer Produc-Tion Runs
- 4. STANDARDIZATION OF FEWER TUBE Types
- 5. CUSTOMER SATISFACTION

- a. We can manufacture more efficiently for stock.
- b. Our production rate on preferred types is more uniform because of smaller demand for other types.
- Fewer tube types mean better deliveries and insure continuous production of electronic equipment.
- a. Tube operator acquires more skill working on one type for a considerable length of time. Such skill results in better quality which means less cost to equipment manufacturers on their production line because of fewer stoppages.
- Permits standardizing fewer accessory parts, such as capacitors, resistors, etc.
- Results in purchasing and stocking economies.
- a. Purchasers of electronic equipment equipped with Preferred Type Tubes will have greater satisfaction, we believe, because these fast-moving types can be regularly stocked and will, therefore, be easier to obtain for renewal purposes.

This list, of course, is subject to change resulting from technological advances in tube design and application. When such changes become necessary, they will be incorporated in revised issues of this list.



Miniature Types are shown in italics

VAC	VACUUM TYPES FOR RF AND AF POWER APPLICATIONS							
	Values shown are Unmodulated Class C Ratings for Continuous Commercial Service							
TYPE								
	OCHOO	1.6	7.5	15	25	50	75	Hc
5763 2E24 2E26 832-A	Beam Beam Beam Beam ^D	15 30 30 36	15 30 30 36	15 30 30 36	15 30 30 36	15 30 30 36	15 30 30 36	watts watts watts watts watts
807° 6146° 829-8° 812-4°	Beam Beam Beam ^{co} Triode	60 67.5 120 175	60 67.5 120 175	60 67.5 120 175	60 67.5 120 175	50 67.5 120 160	40 63 120 130	watts watts watts watts
811-A [®] 8005 [®] 4X150A 813 [®]	Triode Triode Tetrode Beam	175 240 250 360	175 240 250 360	175 240 250 360	175 240 250 360	160 195 250 300	130 250	watts watts watts watts
6161 8000 [•] 4-125A/	Triode Triode	400 500	400 500	400 500	400 500	400 400	400 300	watts watts
4D21 5786 833-A [®] 6181 5762	Tetrode Triode Triode Tetrode Triode	500 1.5 1.8 2.5 8.7	500 1.5 1.8 2.5 8.7	500 1.5 1.8 2.5 8.7	500 1.5 1.75 2.5 8.7	500 1.5 1.5 2.5 8.3*	500 1.5 1.2 2.5 7.9*	watts kw kw kw kw
889RA 6166 892	Triode Tetrode Triode	16 18 30	16 18 22.5	16 18 17	16 18 -	12 17.8†	9.6 17.7†	kw kw kw
5771 5671 5770	Triode Triode Triode	67.5 100 150	60 100 1 <b>50</b>	60 90 150	60 80 135	45 - -	- - -	kw kw kw

Twin Type - input values per tube for push-pull operation.

• Type may be operated at higher ratings in Intermittent commercial and Amateur Service (ICAS) as given in published data for each type.

* For Television Picture Service over the range of 54 Hc. to 216 Hc., the CCS maximum rated input power is 6.5 kw. I for Television Bicture Service over the range of 50 Hc. to 216 Hc. the

For Television Picture Service over the range of 54 Mc. to 216 Mc., the CCS maximum rated input power is 22 kw.

THYRATRONS

2 <b>D</b> 21 672–A 2050	6012	5560 5563 5696

.

IGNI	ΓRO	NS
------	-----	----

5551
5552
5553
5822

RECT	IFIE	RS®
------	------	-----

a

2X2-A	857-B
3B28	866-A
5R4-GY	869-B
673	8008

For additional vacuum-type rectifiers, see listing of types for Receiver Applications.



Miniature Types are shown in italics

VACUU	VACUUM TYPES FOR RF AND AF POWER APPLICATIONS (Cont'd) Values shown are Ummodulated Class C Ratings for Continuous Commercial Service								
UNITS				S FREQUEN	900	CLASS	TYPE		
Hc watts watts watts watts watts watts watts watts watts watts watts watts watts	110 15 30 36 - 56 120 - - 250 - 400	175 15 20 20 36 - 47 120 - - 250 - 400	220 	<b>450</b> 	900 	Beam Beam Beam Beam Beam Triode Triode Triode Tetrode Beam Triode Triode	5763 2E24 2E26 832-A 807 6146 829-B 812-A 811-A 8005 4X150A 813 6161 8000		
watts kw kw kw kw kw kw kw kw kw	500 1.5 - 2.5 7.3* - 17.2† - - - -	470 1.5 2.5 6.1* - - - - -	390 - 2.5 4.5 - - - - -	2.5		Tetrode Triode Triode Triode Triode Triode Triode Triode Triode	4-125A/ 4D21 5786 833-A* 6181 5762 889R-A 6166 892 5771 5671 5770		

## SMALL TYPES FOR INDUSTRIAL AND COMMUNICATION SERVICES

	ENTERTAINMENT TYPES Special interest*	VACUUM TYPES FOR Critical Applications	TYPES FOR Regulator Service	GLOW DISCHARGE TRIODE
6 A X 6 6 A Q 6 6 B J 6 6 C 4	6L6–G 6SC7 6SL7–GT 12 <b>AI</b> 7 [▲]	1620 5690 5691 "Special Red" 5692 Types 5693 5879	0 A2 0 B2 5651 6080	5823

* Also see types for AM, FM, & TV Receivers.

Tapped heater, for 6.3-volt or 12.6-volt operation.



Miniature Types are shown in italics

RECTIFIERS		AMPLIFIERS, OSCILLATORS, & MIXERS						
and	CONVERTERS	Triodes				OUTPUT		
DIODE DETECTORS	Twin	With Diodes	Shārp Cutoff	Remote Cutoff	With	AMPLIFIERS		
	1 R5			184	1T4	185	354	
5U4–G 5Y3–GT 6 <i>AL5</i>	6BE6 6 <b>X</b> 8		6476	6AU6 6CB6	6B <b>A</b> 6		374 6405 6K6-GT 6V6-GT	
6 <b>1</b> 4 35¥4	12BE6	12AU7*	12476		12 <b>8</b> 46		35C5 50C5	

#### TYPES FOR AM AND FM BROADCAST RECEIVER APPLICATIONS

#### TYPES FOR TELEVISION RECEIVER APPLICATIONS

RF		AMP	LIFIERS			SOUND &
TUNER TUBES	IF	Video	Audio	Deflection	DEFLECTION OSCILLATORS	VIDEO DETECTOR
6AF4* 6BQ7-A* 6J6 6I8	6AU6 6BQ7-A 6CB6	6 AU 6 6 CL 6	6425 6476 6K6-GT 6V6-GT	6S₄ 6BQ6–GT 6CD6–G 6₩6–GT	6SN7GT 12AU7▲ 12BH7▲	6 <b>A</b> L5

RECTIFIERS Nigh- Low- DAMPER Voltage Voltage TUBE			
		CONTROL CIRCUITS [®]	
5U4-G	6AX4-GT 6W4-GT	6.AU6 6SN7-GT	
		12AU7▲ 12BH7▲	
	Low- Voltage	Low- Voltage TUBE 5U4-G 6AX4-GT	

* For UHF.

Tapped heater, for 6.3-volt or 12.6-volt operation.

Including synchronizing functions, AGC, etc.

1



Miniature Types are shown in italics

P I	P7	P I I	P   4	P 16
Screen	Screen	SCREEN	Screem	SCREEN
28P1 3JP1* 3RP1 * 5ABP1 5UP1	3JP7* 5ABP7* 5FP7-A 5UP7 7MP7 10KP7 12SP7 16ADP7	28P11 3KP11 5ABP11* 5UP11 5WP11*	5FP14 7MP14	5ZP16 [€]

#### C-R OSCILLOGRAPH TYPES

🕈 Transcriber Type 🕴 Flying-Spot Type

* Post-Deflection Accelerator Type

#### PHOTOTUBES

SINGL	E-UNIT	NULTIPLIER
Si Response	S4 Response	S4 Response
1P40 921 922 927	1P39	931-A 5819 6199

#### CAMERA AND TV STUDIO TYPES

5820	Image Orthicon
6198	Vidicon [©]
2F21	Monoscope

Industrial Type



### RCA TUBE TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN

Certain tube types should be avoided in the design of new equipment because they are approaching obsolescence or have limited or dwindling demand. Such RCA types are listed below for the benefit of equipment designers.

	RECE	IVING TUBE T	YPES	
024-G 1A5-GT 1C5-GT 1D8-GT 1G6-GT 1LA4 1Q5-GT 1S4 1T5-GT 1-v 5T4 5W4-GT 5Y3-G 5Y3-G 5Y3-G 5Y3-G 5Y3-G 5Z3 6A3 6A7 6A8	6A8-G 6A8-GT 6A85/6N5 6A87 6AC5-GT 6AF6-G 6B8 6C6 6C8-G 6F5 6F5-GT 6F6-G 6F7 6G6-G 6J7-GT 6J8-G 6K7	6K7-G 6K7-GT 6Q7 6Q7-GT 6S7 6S7-GT 6S87-GT 6S87-GT 6S87-GT 6S87 6S7 6S7 6S7 6S7 6S7 6S7 6S7 6S7 6S57 6U5 6U5 6U5 6U5 6U5 6U5 7E7	12A8-GT 12AH7-GT 12J7-GT 12J7-GT 12K7-GT 12K7-GT 12SK7-GT 12SK7-GT 1488 14C5 14H7 24-A 25A6 25W4-GT 25Z5 25Z6 26 26 27 35Z4-GT 41	42 43 45 47 56 57 70L7-GT 71-A 75 76 77 78 80 83-v 84/624 117N7-GT 117P7-GT 11726-GT
	TRANSM	ITTING TUBE	TYPES	
10-Y 203-A 207 211 217-C 800	801-A 803 804 830-B 838 841	842 843 846 849 851 860	861 862-A 865 893-A 893A-R 893A-R	1619 1623 1624 1626 8012-A
	CATHOD	E-RAY TUBE T	YPES	
2AP1A 3AP1A 3KP4 58P1A	10FP4—A 12KP4—A 14CP4 16DP4—A	16KP4 16LP4-A 16RP4	16TP4 16WP4A 902A	905–A 908–A 91 <i>3</i>
	(conti	inued on next ;	page)	
JAN. 4, 1954	T		т	TYPES NOT

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 1



### RCA TUBE TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN

#### PHOTOTUBES

#### THYRATRONS

923	924		629	885
		MISCELLANEOUS		
		MISCELLANEOUS		
2 <b>A4-</b> G 2C21/16 2C22	642	2V3–G 559 864		874 878 1634



# POWER TUBES, RECTIFIER TUBES, THYRATRONS, IGNITRONS, VOLTAGE REGULATORS, PHOTOTUBES, CATHODE-RAY TUBES, AND SPECIAL TYPES

	Direct Repla	cement Types*	
Type to be	Replace by	Type to be	Replace by
Replaced	RCA Type	Replaced	RCA Type
0A3/VR75 0C3/VR105 0D3/VR105 0D3/VR150 CE-1(A-D) 1P32 2AP1 2B4 ML-381 3X100A11	0A3 0C3 0B8 868,918 927 2AP1-A 885 2C39-A 2C39-A	RK-25B CE-28(A-D) RK-28 RK28A CE-29(A-D) CE-30(A-D) CE-30(A-D) RK-30 FG-32	802 928 803 803 929,1P39 930,1P40 925 800 5558
ZP572	2C39-A	CE-34	934
2X2/879	2X2-A	RK-39	807
3–50G2	834	CE-41	921
3AP1	3AP1-A	CE-42	922
3BP1	3BP1-A	RK-44	837
3C45	6130/3C45	RK-44	814
3D22	3D22-A	UH-50	834
4D21	4-125A/4D21	R51A	927
4-250A	4-250A/5D22	CE-55	924
4-400A	4-250A/5D22	FG-57	5559
5BP1	5BP1-A	RK-57	805
5CP1	5CP1-A	RK58	838
5CP7	5CP7-A	CE59	5581
5D22	4-250A/5D22	R59A	868,918
5FP7	5FP7-A	R60A	920
5HP1-A	5BP1-A	HY61/807	807
7BP7	7BP7-A	R61A	930
PJ-8	5556	CE64	5583
G9	868	FG67	5728/FG-67
BW-11	834	VR7530	0A3
CE-11V (A-D)	917	FG95	5560
RK-11	1623	CE-98	5582
12DP7	12DP7–A	FG-104	5561
FG-17	5557	VR105-30	0C3
CE-20	927	HF120	211
RK-20A	804	VR150-30	0D3
CE-21(A-D)	920	WT-210-0001	2D21
CE-23(A-D)	923	WT-210-0003	884
PJ-23	868	WT-210-0004	2050
CE-25(A-D)	927	WT-210-0006	6H6
RK-25	802	WT-210-0008	866-A
		is under all circums igh-altitude service	
-56			HANGEABILITY

7

٢



Type to be	Replace by	Type to be	Replace by
Replaced	RCA Type	Replaced	RCA Type
WT-210-0009	84/6Z4	WT-210-0084	6N7-GT
WT-210-0011	0C3	WT-210-0085	50B5
WT-210-0012	80	WT-210-0086	833-A
WT-210-0013	5Z3	WT-210-0087	6K8-GT
WT-210-0015	5557	WT-210-0088	6J5-GT
WT-210-0018	0D3	WT-210-0089	6G6-G
WT-210-0019	83	WT-210-0090	6C6
WT-210-0021	6X5	WT-210-0091	0A4-G
WT-210-0025	117Z6GT	211-D	211
WT-210-0027	872A	FG-235A	5552
WT-210-0028 WT-210-0029 WT-210-0031 WT-210-0037	3Q5-GT 6C5 902-A 117L7-GT/ 117M7-GT	FG-238B 242A 242B WT-245 WT-246	5555 211 211 884 2050
WT-210-0038	172	FG-258A	5553
WT-210-0040	6X4	FG-259B	5554
WT-210-0042	5Y3-GT	WT-261	6H6
WT-210-0044	575-A	WE-261A	835
WT-210-0045	892	WT-262	866-A
WT-210-0048	5U4-G	WT-263	6Z4
WT-210-0052	2AP1-A	WT-269	0C3
WT-210-0053	3AP1-A	WT-270	80
WT-210-0056	5559	WT-270X	5Z3
WT-210-0057	5560	FG-271	5551
WT-210-0058	676	WT-272	5557
WT-210-0060	0Z4	WE-274B	5R4-GY
WT-210-0061	117N7-GT	WT-294	0D3
WT-210-0062	5557	WE-295A	203-A
WT-210-0069	5557	WT-301	83
WT-210-0070	5550	UE-303A	203–A
WT-210-0071	5551	WE-304B	834
WT-210-0072	5552	F-307A	207
WT-210-0073	5553	WT-308	6X5–GT
WT-210-0074	105	CE-309	5557
WT-210-0078	172	CE-311	3C23
WT-210-0079	105	UE-311	211
WT-210-0081	6SJ7	UE-311C	835
WT-210-0082	6V6	UE-317C	217-C
WT-210-0083	7K7	WE-322A	803
RCA types are d	irect replacement	s under all circumst	ances.

.



Type to be	Replace by	Type to be	Replace by
Replaced	RCA Type	Replaced	RCA Type
WE-350A	807	872	872–A
375-A	575–A	872-A/872	872–A
WT-377	117Z6–GT	F-872B	872–A
ML-381	2C39–A	879	2X2–A
WT-389	3Q5–GT	889	889–A
WT-390	6C5	893	893-A
FJ-401	1P29	902	902-A
WE-403A	6AK5	UE-905	805
GL-415	5550	905	905-A
GL-451	8020	906-P1	3AP1-A
ZP-572	2C39-A	908	908-A
WT-606	2D21	914	914-A
WL-630	2050	931	931-A
WL-631	5559	UE-938	838
KU-634	677	UE-949	849
WL-651/656	5552	UE-966A	866-A
WL-652/657	5551	UE-967	5557
WL-653B	5555	UE-972A	872-A
WL-655/658	5553	UE-975A	575-A
672	672-A	1640	6405/1640
678	5563-A	1802-P1	5BP1-A
WL-679	5554	1811-P1	7CP1
WL-681/686	5550	1849	1850-A
NL-715	5557	1850	1850-A
ML-728	5557	1854	6474/1854
WL-735	868	1904	5728/FG-67
801	801-A	2051	2050
811	811-A	2525A5	5BP1-A
812	812-A	5604	5604-A
829	829-B	5814	5814-A
829-A 832 833 C-833 UH-50	829-B 832-A 833-A 833-A 833-A 834	8001 8016 WTT-100 WTT-102 WTT-103	4E27/8001 1B3-GT 6X4 5Y3-GT 6H6
857	857–B	WTT-104	575-A
862	862–A	WTT-105	892
866	866–A	WTT-111	5559
866A/866	866–A	WTT-112	5560
869-A	869–B	WTT-113	676
RCA types are	direct replacemen	ts under all circ	umsta <b>nces</b> .

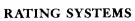


Di	rect Replaceme	nt Types* (Con	t'd)
Type to be Replaced	Replace by RCA Type	Type to be Replaced	Replace by RCA Type
WTT-114	0Z4	WTT-127	833-A
WTT-115	117N7-GT	WTT-128	6K8–GT
WTT-117 WTT-118	5557 105	WTT-129 WTT-130	6J5-GT 6G6-G
WTT-119	172	WTT-131	606
WTT-122	6SJ7	WTT-132	0A4G
WTT-123	6V6	WTT-135	5U4–G
WTT-124 WTT-125	7K7 6N7-GT	WTT-136 WTT-137	2AP1-A 3AP1-A
WTT-125	5085	WTT-139	172
	Simila	r Types∦	
Type to be Replaced	Similar RCA Type	Type to be Replaced	Similar RCA Type
CE-1V(A-D)	930,1P40	4X150G	4X150A
CE-2(A-D)	917,919	CE5(A-D)	927 8000
2B22 2C38	559 2C39-A	5C24 5D24	4-250A/5D22
2E25	2E24	6D22	4X500A
2E30	5618	WT-6	6L6
3B27	836	7C20	5762/7C24
3828 3C21	866-A 838	7C25 7C27	5762/7C24 5762/7C24
3C24	1623	HV-12	806
3-25A3	809	RK-12	809
3-50A4	811-A	CE-13	868
3-75A3 3-250A4	8005 806	CE-13V G-15F	917 927
3-450A4	833-A	HV-18	806
3-1000A2	8000	FV-20	8000
3-1000A4	810	T-20	1623
3X2500A3 4C21	5762/7C24 211	TV-20 TZ-20	810 809
4021	8005	PJ-21	5556
* RCA types ar	e direct replacem	ments under all c	ircumstances.
# RCA types ar be replaced ences, For	e not directly îr because of mecha more înformatio er to respective	nterchangeable wi nical and/or elec n as to degree o	th the types to trical differ- f interchange-



Type to be Replaced	Similar RCA Type	Type to be Replaced	Similar RCA Type
CE-22(A-D)	1P41	HY-57	812-A
PJ-22	917	R-58A	927
X-22	1616	58AWB	927
KU-23	806	59D	929
RK-23	802	CE-60	917
RK-23A 24-G	802	HF–60 HY–60	8005 807
HY-25	809	SK-60	868
25T	809	T-60	8005
RK-27	806	R61BV	929
FG-27A	5559	RK-63	806
HY-30Z	809	SK-63	918
CE-31V	919	RK64	807
FG-33	5728/FG-67 811-A	R64AV HY-69	925 1624
35T		V-70-D	8005
35TG CE-36 (A-D)	808 927	R71A	930,1P40
RK-36	806	R71AV	925
RK-37	808	71D	929
RK-38	806	FP-85	8020
HY-40	812A	FP-85A	8020
T-40	812–A	R85A	928
TZ-40_	811-A	CE-91R	1P37
HY-40Z	811-A	HF-100 100R	8005 8020
RK-41	807		
RK-46 RK87	804 814	100TH 100TL	810 8000
RK-48A	813	111-H	812-A
SR-50	917	ZB-120	838
HY-51A	830B	F123A	806
HY-51B	830-B	HF-125	8005
HY-51Z	838	T-125	810
RK-51	830-B	F-127A	810
SR-51 RK-52	926 811A	F–128A HF–130	851 835
53AWB	927	HF-140	211
SR-53	927 917	143D	2X2-A
НК-54	808	GL-146	805
54–XH	3AP1-A	AB-150	845
T–55	8005	T₩-150	810
RCA types ar be replaced be For more info to respective	e not directly int ecause of mechanical ormation as to degre e tube data.	erchangeable with t and/orelectrical c e of interchangeabi	the types to differences. ility, refer




Type to be	Similar	Type to be	Similar
Replaced	RCA Type	Replaced	RCA Type
150P	803	HK-254	810
150T	806	WE-254B	865
152TH	806	WE-255B	869B
152TL	806	HF-258B	866-A
GL-152	805	WE-259A	24-A
HK-154	808	260A	860
T-155	806	HF-261A	835
C-200	810	WE-264A	864
HF-200	8000	WE-264B,C	864
T-200	806	266B	857-B
C-201 C-202 HD-203A HD-203C HF-203H	805 805 805 805 805 8003	WE-266C WE-267B WE-268A WE-271A WE-274A	857B 872-A 801A 843 5R4GY
WE-205D WE-205E WT-210-0007 WT-210-0067 211B	10Y 10Y 6L6 3C23 211	WE-281A T-282A WE-284B WE-284D WE-284D WE-287A	46 8000 845 845 5557
211C	835	WE298A	862-A
HD-211C	805	300	806
211E	835	WE-301A	83
212E	849	T-303C	8000
WE-214E	217-C	UE-303U	8000
WE-217-A	80	UE-304A	204A
WE-220C	892	WE-304B	6AK5
Z-225	866-A	CE-306	676
WE-231D	864	WE-307A	807
WE-241B	833-A	UE-310	801A
WE-242C	211	WE310A	6C6
T-249B	866-A	UE-311CH	8000
WE-249A	866-A	UE-311T	8003
WE-249B	866-A	UE-311CT	8003
250TH	810	WE-312A	828
250TL	806	315A	673
HF-250	8000	319A	872-A
WE-251A	851	321A	673
WE-252A	842	323B	3C23
HK-253	217-C	WE-339A	807
<pre># RCA types are be replaced   ences. For ability, refe</pre>	e not directly in because of mecha more informatio er to respective	nterchangeable with nical and/or electr n as to degree of i tube data.	the types to ical differ- nterchange-



Type to be Replaced	Similar RCA Type	Type to be Replaced	Similar RCA Type
WE-341AA F-342A	891–R 858	678 NL-710	5563-A 676
343A	858	NL-714	5557
WE-348A C-350	1620 807	WL-734 WL-739	917 927
WE-350B	807	WL-741	923
353A HK-354C	872A 806	T-756 UE-812H	809 8005
HK-354D	806	T-814	806
HK-354E	806	T-822	806
HK-354F MI-356	806 5771	825 C-849A	1623 833-A
ML-356 WE-356A	808	C-849H	833-A
WE-357A F-357A	833-A 857-B	F-857A   861-A	857–В 861
WE-359A	1C21	863	892
WE-361A	835 892	866–B C–872	866-A
F-363A F-367A	892 673	UE-911CH	872-A 835
F369B	869–B	UE-942	842
F-376A WE-393A	835 3C23	NL-1005 1603	5551 1620,5879
WE-394A	627	1816P4A	10FP4-A
WE-395A FJ-405	5823 935	1847 1851	5527 6AC7
WL-450	955 833-A	1899	2F21
WL-460	806	2501-A3	3AP1-A
WL-463 UE-468	806 8000	2501–C3 5514	908–A 811–A
WL-468	810	5516	2E24
WL-471 WL-473	8003 5762/7C24	5591 5604	6AK5 889R-A
WL-473 WL-481	8013-A	5606	892
RH-507 DRJ-524	1949 864	5654 5658	6AK5 880
0RJ-524 GL-546	864 5696	5663	880 5696
578	8020	5666	889-A
NL-615 WL-632A	5558 5560	5667 5668	889R <b>-A</b> 892
WL-632B	5560	5669	892-R
RCA types ar be replaced by For more info to respective	e not directly in ecause of mechanica ormation as to degr e tube data.	terchangeable with 1 and/or electrical ee of interchangeat	the types to differences. bility, refer



Type to be Replaced	Similar RCA Type	Type to be Replaced	Similar RCA Type
5685/C6J 5686 5695 5720/FG-33 5725	676 5763 816 5728/FG-67 6AS6	6336 6346 6347 6348 6394	6080 5551 5552 5553 6082
5736 5788 5891 5918 5934	5726/7C24 5555 5671 5770 579–8	6445 6446 6447 6626 6627	892-R 892 892-R 6073 6074
5959 6140/423A 6155 6156 6333	6130/3C45 5651 4D21/4-125A 4-250A/5D22 892	AX9911	6130/3C45
RCA types are be replaced be For more info to respective	not directly int cause of mechanical rmation as to degre tube data.	erchangeable with and/orelectrical e of interchangeau	the types to differences, bility, refer
RCA types are be replaced be for more info to respective	not directly int cause of mechanical rmation asto degre tube data.	erchangeable with and/orelectrical e of interchangeat	the types to differences. ility, refer
RCA types are bereplaced be for more info to respective	not directly int cause of mechanical rmation as to degre tube data.	erchangeaDle with and/orelectrical e of interchangeat	the types to differences. ility, refer
RCA types are be replaced be for more info to respective	not directly int cause of mechanical rmation as to degre tube data.	erchangeable with and/orelectrical e of interchangeat	the types to differences. ility, refer



#### for Electron Devices

Three Rating Systems are in use by the Electron-Device Industry. The oldest is known as the Absolute-Maximum System, the next as the Design-Center System, and the latest and newest is the Design-Maximum System. Definitions of these systems have been formulated by the Joint Electron Tube Engineering Council (JETEC)—now identified as the Joint Electron Device Engineering Council (JEDEC)—and standardized by National Electrical Manufacturers Association (NEMA) and Electronic Industries Association (EIA) as follows:

#### Absolute-Maximum Rating System

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Absolute-Maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

#### Design-Center Rating System

Design-Center ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation*, equipment-component variation, equipment-control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

The equipment manufacturer should design so that initially no Design-Center value for the intended service is exceeded with a bogey device in equipment operating at the stated normal supply voltage*.

^{*} For an ac power source, 117 wolts plus or minus 10 per cent is accepted USA practice.



#### Design-Maximum Rating System

Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no Design-Maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment-component variation, equipment-control adjustment, load variation, signal variation, and environmental conditions.

#### Differences Between Systems

The significant differences between the three Rating Systems can be summarized as follows:

```
Absolute-Maximum System:
```

Ratings =	Maximum capa- bilities of any electron device of the type rated
-----------	-----------------------------------------------------------------------------

Design-Center System:

Ratings =	Maximum capa- bilities of any electron device of the type rated	-	Allow- ance for electron- device variations	_	Allowance for component and supply variations	
<b>b</b> ' <i>u</i>						

Design-Maximum System:

Ratings =	Maximum capa- bilities of any electron device of the type rated	-	Allow- ance for electron- device variations	
	_ cype raceu _			



A rating is a designation, as established by definite standards, of an operating limit of a tube. Tubes are rated by either of two systems, i.e., the "absolute maximum" system or the "design-center maximum" system. Of the two, the absolute maximum system is the older and dates back to the beginning of tubes. With either system, each maximum rating for a given tube type must be considered in relation to all other maximum ratings for that type, so that no one maximum rating will be exceeded in utilizing any other maximum rating. For convenience in referring to these two systems, the former will hereinafter be called the "absolute system," and the latter, the "design-center system."

In the **absolute system**, the maximum ratings shown for each type thus rated are limiting values above which the serviceability of the tube may be impaired from the viewpoint of life and satisfactory performance. Therefore, in order not to exceed these absolute ratings, the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by an amount such that the absolute values will never be exceeded under any usual condition of supply-voltage variation, load variation, or manufacturing variation in the equipment itself.

The equipment should be designed to operate the filament or heater of each tube type at rated normal value for full-load operating conditions under average voltage-supply conditions. Variations from this normal value due to voltage-supply fluctuation or other causes, should not exceed  $\pm 5$  per cent unless otherwise specified by the tube manufacturer.

^{*} Types rated according to the absolute system have no identification on their data pages issued prior to April 1, 1942. Sheets issued after that date carry the statement "Maximum Ratings Are Absolute Values" preceding the ratings.



In the design-center system** adopted by the receiving-tube industry late in 1939, the maximum ratings shown for each type thus rated are working design-center maximums. The basic purpose underlying this system is to provide satisfactory average performance in the greatest number of equipments on the premise that they will not be adjusted to local power-supply conditions at time of installation. In the setting up of design-center ratings, consideration has been given to three important kinds of power supply commonly in use, i.e., a-c and d-c power lines, storage battery with connected charger, and dry batteries.

In the case of a-c or d-c power lines, the maximum ratings for tubes rated according to the designcenter system have been chosen so that the tubes will give satisfactory performance at these maximum ratings in equipment operated from powerline supplies whose normal voltage including normal variations fall within  $\pm 10$  per cent of a specified center value. In other words, it is basic to the design-center system of ratings for tubes operated from power-line supplies that filaments or heaters as well as positive- and negative-potential electrodes may have to operate at voltages differing as much as  $\pm 10$  per cent from their rated values. It also recognizes that equipment may occasionally be used on power-line supplies outside the normal range, but since such extreme cases are the exception, they should be handled by adjustment made locally.

The choice of  $\pm 10$  per cent takes care of voltage differences in power lines in the U.S.A. where surveys have shown that the voltages delivered fall within  $\pm 10$  per cent of 117 volts. Therefore, satisfactory performance from tubes rated according to the design-center system will ordinarily be obtained

^{**} Types rated according to the **design-center system** are identified on their data pages either by a large star in the index corner or by the statement "Maximum Ratings Are Design-Center Values" preceding the ratings. This statement is used on sheets issued since April 1, 1942.



anywhere in the U.S.A. in equipment designed so that the design-center maximum ratings are not exceeded at a line-voltage-center value of 117 volts. While 117 volts represents present-day conditions, the design-center system permits the utilization of a new line-center value as new surveys may indicate the necessity for such a change.

In the case of storage-battery-with-charger supply or similar supplies, the normal battery-voltage fluctuation may be as much as 35 per cent or more. This fluctuation imposes severe operating conditions on tubes. Under these conditions, latitude for operation of tubes is provided for by the stipulation that only 90 per cent of the design-center maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents is never exceeded for a terminal potential at the battery source of 2.2 volts per cell. While a tube's operating voltages in this service will at times exceed the maximum values, satisfactory performance with probable sacrifice in life will be obtained.

In the cases of dry-battery supply and rectified a-c supply for 1.4-volt tubes, recommended design practice is given in RMA Standard M8-210.

RMA Standard M8-210 (Jan. 8, 1940 Rev. 11-40) is reproduced here for the convenient reference of design engineers with permission of the Engineering Department of the Radio Manufacturers Association. Although worded to cover only receiving tubes, it can be applied to any tube having design-centersystem ratings.

#### * * *

It shall be standard to interpret the ratings on receiving types of tubes according to the following conditions:

1. CATHODE—The heater or filament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or filament circuit should be designed to op-



erate the heater or filament at rated value for fullload operating conditions under average supplyvoltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off in response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.

A. 1.4-Volt Battery Tube Types-The filament power supply may be obtained from dry-cell batteries, from storage batteries, or from a power line. With dry-cell battery supply, the filament may be connected either directly across a battery rated at a terminal potential of 1.5 volts, or in series with the filaments of similar tubes across a power supply consisting of dry cells in series. In either case, the voltage across each 1.4-volt section of filament should not exceed 1.6 volts. With power-line or storage-battery supply, the filament may be operated in series with the filaments of similar tubes. For such operation, design adjustments should be made so that, with tubes of rated characteristics, operating with all electrode voltages applied and on a normal line voltage of 117 volts or on a normal storage-battery voltage of 2.0 volts per cell (without a charger) or 2.2 volts per cell (with a charger), the voltage drop across each 1.4-volt section of filament will be maintained within a range of 1.25 to 1.4 volts with a nominal center of 1.3 volts. In order to meet the recommended conditions for operating filaments in series from dry-battery, storage-battery, or power-line sources it may be necessary to use shunting resistors across the individual 1.4-volt sections of filament.

**B. 2.0-Volt Battery Tube Types**—The 2.0-volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operat-



ing voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.

2. POSITIVE POTENTIAL ELECTRODES — The power sources for the operation of radio equipment are subject to variations in their terminal potential. Consequently, the maximum ratings shown on the tube-type data sheets have been established for certain Design Center Voltages which experience has shown to be representative. The Design Center Voltages to be used for the various power supplies together with other rating considerations are as given below:

A. AC or DC Power Line Service in U.S.A.—The design center voltage for this type of power supply is 117 volts. The maximum ratings of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are design maximums and should not be exceeded in equipment operated at a line voltage of 117 volts.

**B.** Storage-Battery Service—When storage-battery equipment is operated without a charger, it should be designed so that the published maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are never exceeded for a terminal potential at the battery source of 2.0 volts per cell. When storagebattery equipment is operated with a charger, it should be designed so that 90% of the same maximum values is never exceeded for a terminal potential at the battery source of 2.2 volts.

C. "B"-Battery Service—The design center voltage for "B" batteries is the normal voltage rating of the battery block, such as 45 volts, 90 volts, etc. Equipment should be designed so that under no condition of battery voltage will the plate voltages, the screen-supply voltages, or dissipations ever exceed the recommended respective maximum values shown in the data for each tube type by more than 10%.



#### **D.** Other Considerations

**a.** Class  $A_1$  Amplifiers—The maximum plate dissipation occurs at the "Zero-Signal" condition. The maximum screen dissipation usually occurs at the condition where the peak-input signal voltage is equal to the bias voltage.

b. Class B Amplifiers—The maximum plate dissipation theoretically occurs at approximately 63% of the "Maximum-Signal" condition, but practically may occur at any signal voltage value.

c. Converters—The maximum plate dissipation occurs at the "Zero-Signal" condition and the frequency at which the oscillator-developed bias is a minimum. The screen dissipation for any reasonable variation in signal voltage must never exceed the rated value by more than 10%.

d. Screen Ratings—When the screen voltage is supplied through a series voltage-dropping resistor, the maximum screen voltage rating may be exceeded, provided the maximum screen dissipation rating is not exceeded at any signal condition, and the maximum screen voltage rating is not exceeded at the maximum-signal condition. Provided these conditions are fulfilled, the screen-supply voltage may be as high as, but not above, the maximum plate voltage rating.

**3. TYPICAL OPERATION** — For many receiving tubes, the data show typical operating conditions in particular services. These typical operating values are given to show concisely some guiding information for the use of each type. They are not to be considered as ratings, because the tube can be used under any suitable conditions within its rating limitations.

* * *



### **RECEIVING TUBES**

The ratings of all receiving tubes currently used in new equipment are set up according to the designcenter system. Older and obsolescent types of receiving tubes still have absolute maximum ratings because these types are used only for renewal purposes and, therefore, design-center values are of no practical value. Receiving-tube types rated on the design-center system are identified in the Receiving-Tube Section either by a large star in the index corner of each data page or by the statement "Maximum Ratings Are Design-Center Values" preceding the ratings on each data page.

### TRANSMITTING TUBES

The ratings of transmitting tubes grouped in the Transmitting-Tube Section are on the basis of the absolute system. This system enables the transmitter design engineer to choose his design values so as to obtain maximum performance within the tube ratings. Such design procedure has been considered practical for large transmitters where adequate controls are usually incorporated in the design, and ordinarily an experienced operator is present to make any necessary adjustments.

The maximum ratings given for each transmitting type on its data pages apply only when the type is operated at frequencies lower than some specified value which depends on the design of the type. As the frequency is raised above the specified value, the radio-frequency currents, dielectric losses, and heating effects increase rapidly. Most types can be operated above their specified maximum frequency provided the plate voltage and plate input are reduced in accordance with the information given in the table "Transmitting-Tube Ratings vs Operating Frequency" in the front part of the Transmitting-Tube Section.

For certain air-cooled transmitting tubes, two sets



of absolute maximum values are shown to meet diversified design requirements. One set is designated as CCS (Continuous Commercial Service) ratings, while the other is called ICAS (Intermittent Commercial and Amateur Service) ratings.

Continuous Commercial Service is defined as that type of service in which long tube life and reliability of performance under continuous operating conditions are the prime consideration. To meet these requirements, the CCS ratings have been established.

Intermittent Commercial and Amateur Service is defined to include the many applications where the transmitter design factors of minimum size, light weight, and maximum power output are more important than long tube life. These various factors have been taken into account in establishing the ICAS ratings.

Under the ICAS classification are such applications as the use of tubes in amateur transmitters, and the use of tubes in equipment where transmissions are of an intermittent nature. The term "intermittent" is used to identify operating conditions in all applications other than amateur in which no operating or "on" period exceeds 5 minutes and every "on" period is followed by an "off" or standby period of at least the same or greater duration.

ICAS ratings are considerably higher than CCS ratings. They permit the handling of greater power, but tube life under ICAS conditions, of course, is reduced. However, the transmitter designer may very properly decide that a small tube operated with ICAS ratings better meets his requirements than a larger tube operated with CCS ratings. Although such use involves some sacrifice in tube life, the period over which tubes will continue to give satisfactory performance in intermittent service can be extremely long depending on the exact nature of the service.



The choice of tube operating conditions best fitted for any particular application should be based on a careful consideration of all pertinent factors.

### **RECTIFIER TUBES**

Rectifier tubes used principally in receiving equipment are rated according to the design-center system, while those used primarily in transmitting and laboratory equipment are rated according to the absolute system. The method of identifying which rating system is used for any rectifier tube in this Handbook is the same as that for other tubes in the particular section of the Handbook in which data for the rectifier tube are given.

The ratings of rectifier tubes are based on fundamental limitations in the operation of the tubes themselves, and in general include the following: maximum peak inverse plate voltage, maximum peak plate current, and maximum d-c output current.

Maximum peak inverse plate voltage is the highest instantaneous plate voltage which the tube can withstand recurrently in the direction opposite to that in which it is designed to pass current. For mercuryvapor tubes and gas-filled tubes, it is the safe top value to prevent arc-back in the tube operating within the specified temperature range.

In determining peak inverse plate voltage on a rectifier tube in a particular circuit, the equipment designer should remember that the relations between peak value of inverse plate voltage, rms value of input voltage, and average value of output voltage, depend largely on the characteristics of the particular rectifier circuit and the power supply. Furthermore, the presence of transients, such as line surges and keying surges, or waveform distortion, may raise the actual inverse plate voltage to a peak higher than that calculated for sine-wave voltages. Therefore, the actual inverse plate voltage on a rec-



tifier tube should never exceed the maximum peak inverse plate voltage rating for that tube. The peak inverse plate voltage may be determined with an electronic peak voltmeter of the self-contained battery type.

In single-phase, full-wave rectifier circuits with sinewave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate-to-plate voltage supply. In single-phase, half-wave circuits with sine-wave input and pure resistance load, the peak inverse plate voltage is approximately 1.4 times the rms value of the plate voltage supply, but with condenser input to filter, the peak inverse plate voltage may be as high as 2.8 times the rms value of the plate voltage supply.

Maximum peak plate current is the highest instantaneous plate current that a tube can safely carry recurrently in the direction of normal current flow. The safe value of this peak current in hot-cathode types of rectifier tubes is a function of the electron emission available and the duration of the pulsating current flow from the rectifier tube in each halfcycle.

The value of peak plate current in a given rectifier circuit is largely determined by filter constants. If a large choke is used at the filter input, the peak plate current is not much greater than the load current; but if a large condenser is used at the filter input, the peak current may be many times the load current. In order to determine accurately the peak plate current in any rectifier circuit, the designer should measure it with a peak-indicating meter or use an oscillograph.

**Maximum d-c output current** is the highest average plate current which can be handled continuously by a rectifier tube. Its value for any rectifier tube type is based on the permissible plate dissipation of that type. Under operating conditions involving a rapidly



repeating duty cycle (steady load), the average plate current may be measured with a d-c meter. In the case of certain mercury-vapor tubes where the load is fluctuating, it is necessary to determine the average current over the time interval specified on the data pages for these types.

In addition to the above ratings for rectifier tubes, other ratings may be set up for a rectifier tube when the service in which the tube is to be used makes such ratings essential for satisfactory performance. Such ratings are: maximum surge plate current, and maximum heater-cathode potential.

Maximum surge plate current is the highest value of abnormal peak currents of short duration that should pass through the rectifier tube under the most adverse conditions of service. This value is intended to assist the equipment designer in a choice of circuit components such that the tube will not be subjected to disastrous currents under abnormal service conditions approximating a short circuit. This surge-current rating is not intended for use under normal operating conditions because subjecting the tube to the maximum surge current even only once may impair tube life. If the tube is subjected to repeated surge currents, its life will be seriously reduced or even terminated.

Maximum heater-cathode potential is the highest instantaneous value of voltage that a rectifier tube can safely stand between its heater and cathode. This rating is applied to certain rectifier tubes having a separate cathode terminal and used in applications where excessive potential may be introduced between heater and cathode. For convenience, this rating is usually given as a d-c value.

### **CATHODE-RAY TUBES**

The ratings of some cathode-ray tubes are set up on the absolute system while others are set up on the design-center system. Initially, cathode-ray tubes



were all rated according to the absolute system. With the advent of television which presented design conditions similar to those in the receiving-set field, the method of rating popular types of cathoderay tubes was changed to the design-center system. More recently, because of procedure standardized by the RMA Cathode-Ray-Tube Committee, newer types of cathode-ray tubes are being rated on the absolute system. Cathode-ray types rated according to the design-center system are identified in the Cathode-Ray Types Section by a statement to that effect just ahead of the maximum ratings on each data page. The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or (2) an identifying statement that the ratings are according to the absolute system.

### **PHOTOTUBES**

The ratings of all phototubes in the Phototube Section are on the absolute maximum basis. This basis enables the designing engineer to choose design values so as to obtain optimum performance within tube ratings. In the case of gas phototubes, the value to which the plate voltage and the plate current can be raised is abruptly limited by ionization effects. If these are allowed to occur, they may ruin the photosurface almost instantly. While phototubes in general might be rated on the design-center basis, such a procedure, with provision for an adequate factor of safety to take care of all conditions of operation, would impose undue limitations on the use of gas phototubes.

### MISCELLANEOUS SPECIAL TUBES

The ratings of some of the various tube types grouped in the Miscellaneous-Types Section are according to the design-center system while others are according to the absolute system. Miscellaneous types rated on the design-center basis are identified



by a statement to that effect on the data pages or else refer back for ratings to a receiving-tube type whose rating basis is explained under TUBE RATINGS—Receiving Tubes. The data pages of types rated according to the absolute system have either (1) no identifying statement as to the rating system, or (2) an identifying statement that the ratings are according to the absolute system.

### CHARACTERISTICS and TYPICAL OPERATING CONDITIONS

In addition to showing the ratings of each tube type, the data pages for many of the types in this Handbook include "characteristics," such as amplification factor, plate resistance, and transconductance, which help to distinguish between the electrical features of the respective types. Usually, the characteristics shown for any type are obtained for that type in class A service: where class A data are given for the type, the characteristics are included with that data for convenience. Based on a large number of tubes of a given type, the values shown for these characteristics are average values.

Range of Characteristics—The equipment designer should bear in mind that individual tubes of a given type may have characteristics values either side of the average values shown for the type. He should also realize that these characteristics change during the life of individual tubes. In designing equipment, therefore, he should allow for the maximum cumulative variation of any characteristic from the average value of that characteristic as shown in the tabulated data for the type. The exact percentage of the variation will be different for different types of tubes depending on the design of the tubes and their intended application, but in general the designer should consider a probable plus or minus variation of not less than 30 per cent.

Furthermore, the equipment designer should recog-



nize the desirability of designing equipment so that the full range of the operating characteristics of tubes will be utilized. If this practice is not followed, he imposes on the equipment user special replacement problems in that the user will have to select tubes suitable for use in the equipment, and may not be able to obtain the full life capability of such tubes.

Typical Operating Values—Also included on the data pages is information on typical operating conditions for most of the various tubes when used in particular services. These typical operating values are intended to show concisely some guiding information for the use of each type. They must not be considered as ratings because each type can, in general, be used under any suitable conditions within its rating limitations. In referring to these values for transmitting tubes, it should be noted that the power output value is not a rating. It is an approximate tube output, i.e., tube input minus plate loss. Circuit losses must be subtracted from tube output in determining useful output.

Datum Point for Electrode Potentials—In the data for any type in the Handbook, the values for grid bias and positive-potential-electrode voltages are given with reference to a specified datum point as follows. For types having filaments heated with d.c., the negative filament terminal is taken as the datum point to which other electrode voltages are referred. For types having filaments heated with a.c., the mid-point (i.e., the center tap on the filament-transformer secondary, or the mid-point on a resistor shunting the filament) is taken as the datum point. For types having equipotential cathodes indirectly heated, the cathode is taken as the datum point.

Grid Bias vs Filament Excitation—If the filament of any type for which data are given on a d-c basis is to be operated with an a-c supply, the given grid



### **TUBE RATINGS**

#### (continued from preceding page)

bias should be increased by an amount approximately equal to one half the rated filament voltage and be referred to the filament mid-point. Conversely, if it is required to use d-c filament excitation on any filament type for which the data are given on an a-c basis, the grid-bias values as given on the data pages should be decreased by an amount approximately equal to one half the rated filament voltage and be referred to the negative filament terminal instead of the mid-point as in a-c operation.

In practice, the necessity for following this rule depends on circuit conditions and operating requirements. If the bias is relatively small compared with the filament voltage and hum is a consideration, adjustment of the grid bias is ordinarily essential. Conversely, if the bias is relatively large compared with the filament voltage, adjustment of the grid bias may be unnecessary.

When filament excitation of tubes used as Audio Amplifiers is changed from d.c to a.c., the grid return should, in general, be shifted to the mid-point of the filament circuit to minimize hum, and the bias adjusted accordingly. When the excitation is changed from a.c. to d.c., bias adjustment depending on the relative values of bias and filament voltage may be required to provide the full signalhandling capability of the tubes.

When filament excitation of tubes used as R-F Amplifiers is changed, bias adjustment is not requiredunless the change makes the circuit critical as to hum or signal-handling capability. For example, in class C amplifiers, the bias is usually so large in comparison with the filament voltage that adjustment is generally unnecessary.

Grid Current and Driving Power—The typical values of d-c grid current and driving power shown for triodes and tetrodes in class B r-f service and in class C service are subject to variations depending on the impedance of the load circuit. High-impe-



dance load circuits require more grid current and driving power to obtain the desired output. Lowimpedance circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. In comparison, the d-c grid current and driving power shown for beam tubes and pentodes in class B r-f service and in class C service are not as critical to variations in load-circuit conditions. In any event. sufficient grid current should be used so that the stage is "saturated," i.e., so that a small change in grid current results in negligible change in power output. Regardless of the type of tube used, the driving stage should have a tank circuit of good regulation and should be capable of delivering power in excess of the indicated power by a factor of several times.



### **TYPES OF CATHODES**

### AND THEIR USE

In electron tubes, a cathode is an electrode which is the primary source of electron or ion emission. There are two broad classes of cathodes, i.e., hot and cold. "Hot cathodes" are defined as cathodes which are heated or otherwise operate at elevated temperature (frequently incandescent) in order to function as emitters. In contrast, "cold cathodes" are defined as cathodes which do not rely on heat or on elevated temperature in order to function as emitters.

### HOT CATHODES

Hot cathodes commonly in use in electron tubes are classified as directly heated, indirectly heated, and ionic-heated.

A directly heated cathode, or filament-cathode, is a wire or ribbon which is heated by the passage of current through it. It is further classified by identifying the filament material or the electron-emitting material. Such materials in regular use are pure tungsten, thoriated tungsten, and metals coated with alkaline-earth oxides. Each of these materials has distinctive advantages which are utilized in the design of tubes for particular applications.

PURE-TUNGSTEN FILAMENTS are used in certain tubes, especially those for high-voltage transmitting service. Since these filaments must operate at a high temperature of about 2500°C (a dazzling white) to emit sufficient electrons, a relatively large amount of filament power is required. The operating life of these filaments is determined by the rate of tungsten evaporation. Their failure, therefore, occurs through decreased emission or burn-out.

Pure-tungsten filaments give best life performance when they are operated so as to conserve their emitting capability. They are designed with voltage and current ratings in accord with the service expected of the particular tube type. However, in applications where the normal emission at rated voltage is not



required, the filament can be operated at a somewhat reduced voltage. The extent of the reduction depends on the peak emission requirements of the application as well as on the percentage regulation of the filament voltage. When these are known, the correct operating filament voltage for any tungstenfilament type can be calculated from its filamentemission characteristic. The permissible regulation in transmitters may be checked by reducing the filament voltage (with the transmitter under normal operation) to a value such that reduction in output can just be detected. The filament voltage must then be increased by an amount equivalent to the maximum percentage regulation of the filament-supply voltage and then increased further by approximately 2 per cent to allow for minor variations in emission of individual tubes. It follows that the better the regulation, the less the filament operating voltage and, therefore, the longer the filament life.

It should be noted that a reduction of 5 per cent in the filament voltage applied to tubes with pure-tungsten filaments will approximately double their life. A reduction of 15 per cent will increase the filament life almost tenfold.

During long or frequent standby periods, pure-tungsten-filament tubes may be operated at decreased filament voltage to conserve life. When the average standby time is an appreciable portion of the average duty cycle and is less than 2 hours, it is recommended that the filament voltage of all but the largest types be reduced to 80 per cent of normal; and that for longer periods, the filament power be turned off. For the largest types, such as the 898, it is recommended that the filament voltage be reduced to 80 per cent of normal during standby operation up to 12 hours; and that for longer periods, the filament power be turned off.

For turning on filament power, a filament starter should be used so as to increase the voltage gradually and to limit the high initial rush of current through



### **TYPES OF CATHODES**

(continued from preceding page)

the filament. It is important that the filament current never exceed, even momentarily, a value of more than 150 per cent of normal, unless the tube data specify otherwise. Similarly, as an added precaution, the filament power should be turned off gradually to prevent cooling strains in the filament.

THORIATED-TUNGSTEN FILAMENTS are now used mainly in certain transmitting and special tubes. Thoriated-tungsten filaments are made from tungsten impregnated with thoria. Due to the presence of thorium, these filaments liberate electrons at a more moderate temperature of about 1700°C (a bright yellow), and are, therefore, much more economical of filament power than are pure-tungsten filaments. The operating life of thoriated-tungsten filaments is ordinarily ended by a decrease in electron emission. Decreased emission, however, may be caused by the accidental application of too high filament, screen, or plate voltage. If the over-voltage has not been continued for a long time, the activity of the filament can often be restored by operating the filament at its normal voltage for 10 minutes or longer without plate, screen, or grid voltage. The reactivation process may be accelerated by raising the filament voltage to not higher than 120 per cent of normal value for a few minutes. This reactivation schedule is often effective in restoring the emission of thoriated-tungsten filaments in tubes which have failed after normal service. Sometimes a few hundred hours of additional life may be obtained after reactivation.

The operating voltage of a thoriated-tungsten filament should, in general, be held to within  $\pm 5$  per cent of its rated value. However, in transmitting applications where the tube is lightly loaded, the filament may be operated on the low side—as much as 5 per cent below normal voltage. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, additional service may be obtained by operating the fila-



ment above its rated voltage. It should be noted that a tube having a thoriated-tungsten filament should never be operated under emission-limited conditions since this type of operation may overheat the tube and cause permanent loss of emission.

During standby periods in transmitting service, thoriated-tungsten filaments may be operated according to the following recommendations to conserve life. For short standbys of less than 15 minutes duration, the filament voltage of all but the largest types should be reduced to 80 per cent of normal; for longer periods, the filament power should be turned off. For the largest types, such as the 827-R and 861, it is recommended that the filament voltage be reduced to 80 per cent of normal during standby operation up to 2 hours; and that for longer periods, the filament power be turned off.

COATED FILAMENTS are used in receiving tubes, certain transmitting tubes, most mercury-vapor rectifiers, and some special tubes. Coated filaments employ a relatively thick coating of alkaline-earth compounds on a metallic base as a source of electronic emission. The metallic base carries the heating current. These filaments operate at a low temperature of about 800°C (a dull red) and require relatively little power to produce a copious supply of electrons.

For proper performance of these types, rated filament voltage should, in general, be applied at the filament terminals. However, when coated-filament, high-vacuum tubes are used in transmitting service with light loading, the filament voltage may be reduced as much as 5 per cent below normal to conserve life. Then, as conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, the gradual increase may be carried above rated filament voltage to obtain additional service. In the case of gas or vapor tubes, it is important that these types be operated, in general, at rated filament voltage. However, if the line regu-



lation regularly and consistently does not-exceed 1 to 2 per cent, it is practical to reduce the filament voltage slightly (not over 5 per cent) with benefit to tube life.

During standby periods of less than 15 minutes, the filament voltage of quick-heating, high-vacuum types, such as the 1616 and 1624, should be reduced to 80 per cent of normal: for longer periods, the filament power should be turned off. In contrast, the voltage of coated filaments in gas or vapor tubes should not be reduced during standbys except under conditions explained in the preceding paragraph. In general, the filament voltage of small and medium types, such as the 866-A/866 and 872-A/872. should be maintained at normal rated value during standbys up to 2 hours; for longer periods, the filament power should be turned off. For large types. such as the 857-B, the filament voltage should be maintained at normal rated value during standbys up to 12 hours; for longer periods, the filament power should be turned off.

After having given normal service or after having been operated at excessive voltage, coated filaments lose their emission. When such is the case, their usefulness may be considered as terminated.

An indirectly heated cathode, or heater-cathode, consists of a heater wire enclosed in a thin metal sleeve coated on the outside with electron-emitting material similar to that used for coated filaments. The sleeve is heated by radiation and conduction from the heater through which current is passed. Useful emission does not take place from the heater wire. An important feature of this kind of cathode construction is that the functions of heating and emission can be independent of each other.

HEATER-CATHODES, or unipotential cathodes as they are frequently called, are used in high-vacuum tubes operating at low plate voltage, such as receiv-



ing tubes, low-power transmitting tubes, and small special tubes. They also find application in mercuryvapor tubes and in cathode-ray tubes. Heater-cathodes, like coated filaments, provide a copious supply of electron emission at low cathode temperature (a dull red).

For proper performance of heater-cathode tubes, rated heater voltage should, in general, be applied at the heater terminals. However, when heatercathode high-vacuum tubes are used in transmitting service and are lightly loaded, the heater voltage may be reduced as much as 5 per cent below normal to conserve life. As conditions require, the voltage should be increased gradually to maintain output. Toward the end of life, the gradual increase may be carried above rated heater voltage to obtain additional service.

During standby periods of less than 15 minutes, the heater voltage of high-vacuum tubes should be maintained at normal rated value; for longer periods, the heater power should be turned off. In the case of vapor or gas tubes, the heater voltage should be maintained at normal during standby periods up to 12 hours; for longer periods, the heater power should be turned off.

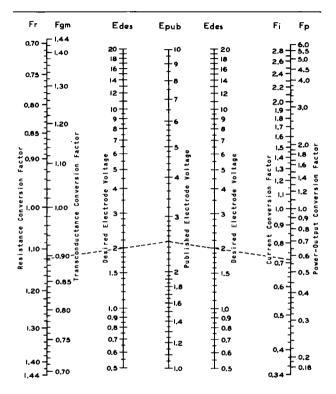
An ionic-heated cathode is one which liberates electrons when it is subjected to intense positive ion bombardment. The bombardment may be so intense as to raise the temperature of the cathode, frequently causing it to become visibly hot. The ionicheated cathode in radio tubes has found application in gas rectifiers intended primarily for automobile receiver service.

## **COLD CATHODES**

The designation "cold cathode" is commonly used in referring to those cathodes which emit electrons when they are subjected to bombardment by other electrons, ions, or metastable atoms. Cathodes of



this type are sometimes designated as secondaryemission cathodes. They are used in certain glowdischarge tubes, and also in multiplier phototubes where they contribute to electron multiplication in the successive dynode stages.


Not customarily referred to as cold cathodes, although they are such, is another group of emitters known as photocathodes. By definition, a photocathode is one which emits electrons when it is energized with radiant flux, such as light, infra-red radiation, or ultra-violet radiation. Such cathodes are used in phototubes. When used in gas phototubes, these cathodes not only emit under the influence of radiant flux but also as a result of bombardment and thus become partial secondary-emission cathodes.

Photocathodes are classified according to the spectral response characteristics of their respective photoactive surfaces. The S1 photosurface gives high response to red and near infra-red radiation. The S2 photosurface is similar to the S1 surface but extends somewhat further into the infra-red region. The S3 photosurface has a spectral response characteristic which is closest to that of the eye. The S4 photosurface has exceptionally high response to blue and blue-green radiation with negligible response to red radiation.

Exposure of photocathodes to intense light, such as direct sunlight, may decrease the sensitivity of the tubes in which they are used, even though there is no voltage applied. The magnitude and duration of the decrease depend on the length of the exposure. Permanent damage to a phototube may result if it is exposed to radiant energy so intense as to cause excessive heating of the cathode.



# CONVERSION FACTORS



#### CONVERSION FACTOR NOMOGRAPH

The Conversion Factor Nomograph shown above may be used to determine the approximate characteristics of an electron tube when all the electrode voltages are changed in the same proportion from the published or measured values.

The conversion factors obtained from the nomograph are applicable to triodes, tetrodes, pentodes, and beam power tubes when the plate voltage, grid-No.1 voltage, and grid-No.2 voltage are changed simultaneously by the same factor. They may be used for any class of tube operation (class A, AE₁, AB₂, B, or C).

The nomograph may be used to determine the proper value for each conversion factor for a specified relationship  $(F_{p})$ 

TUBE DIVISION	CONVERSION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY	FACTORS



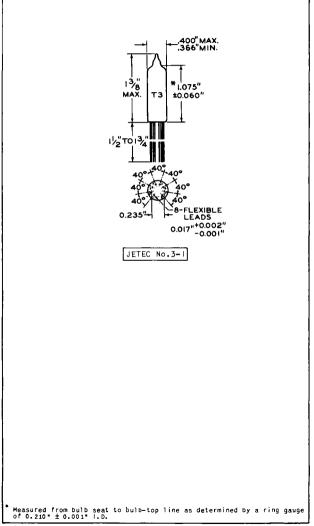
# CONVERSION FACTORS

between published or measured values ( $E_{pub}$ ) and desired values ( $E_{des}$ ) of operating voltage. The dashed lines on the nomograph indicate the correct procedure for determining each of these conversion factors when it is desired to reduce the operating electrode voltage from 250 to 200 volts.

#### EXAMPLE

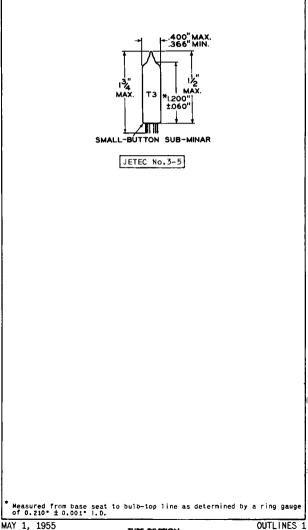
Published characteristics for a typical pentode are listed below for a plate voltage of 250 volts. If it is desired to determine the characteristics of this tube for a plate voltage of 200 volts, the voltage conversion factor,  $F_{e}$ , is equal to 200/250 or 0.8. The values for the other conversion factors are obtained from the nomograph. By use of these factors characteristics values at aplate voltage of 200 volts are obtained.

	Published Value	Conversion Factor	Desired Value	
Plate Voltage	250	0.8	200	volts
Grid-No.2 Voltage	250	0.8	200	volts
Grid-No.l Voltage	- 15	0.8	-12	volts
Plate Current	30	0.72	21.6	ma
Grid-No.2 Current	6	0.72	4.3	ma
Plate Resistance (Approx.)	0.13	1.12	0.15	megohm
Transconductance	2000	0.89	1780	μπhos
Load Resistance	10000	1.12	11200	ohms
Total Harmonic Distortion	10	unchanged	ю	%
MaxSignal Power Output	2.5	0.57	1.42	watts


### LIMITATIONS

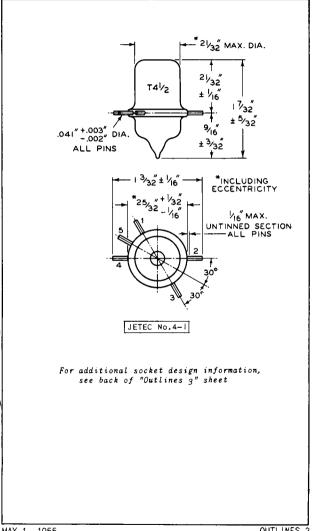
Because this method for conversion of characteristics is necessarily an approximation, progressively greater errors will be introduced as the voltage conversion factor (Fe =  $E_{des}/E_{pub}$ ) departs from unity. In general, it may be assumed that results obtained will be approximately correct when the value of Fe is between 0.7 and 1.5. When Fe is extended beyond these limits (down to 0.5 or up to 2.0), the accuracy becomes considerably reduced and the results obtained can serve only as a rough approximation.

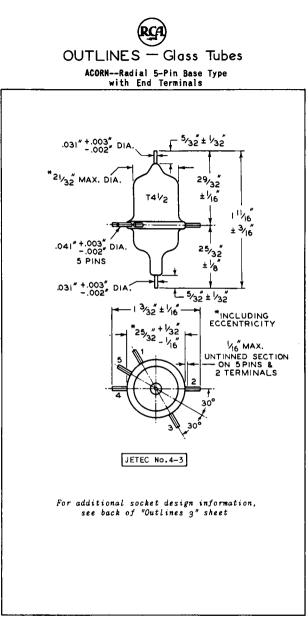
It should be noted that this method does not take into account the effects of contact potential or secondary emission in electron tubes. Contact potential, however, may safely be neglected for most applications because its effects are noticeable only at very low grid-No.1 voltages. Secondary emission may occur in conventional tetrodes at low plate voltages. For such tubes, therefore, the use of conversion factors should be limited to regions of the plate characteristic in which the plate voltage is greater than the grid-No.2 voltage. For beam power tubes, the regions of both low plate currents and low plate voltages should also be avoided.




SUBMINIATURE -- Flexible Lead Type

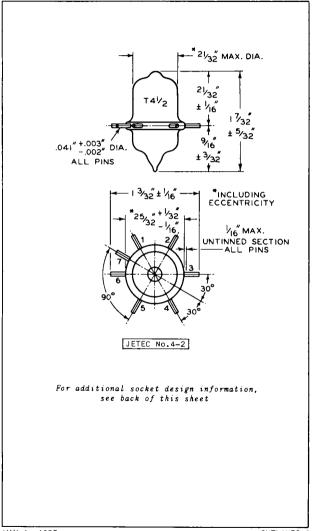






SUBMINIATURE--Sub-Minar 8-Pin Base Type

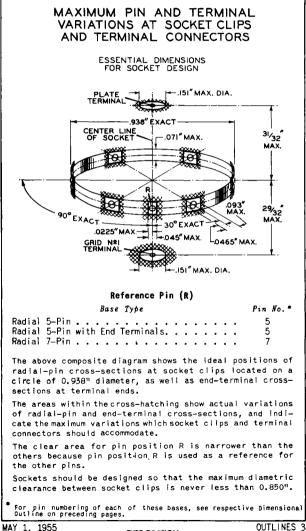





ACORN--Radial 5-Pin Base Type

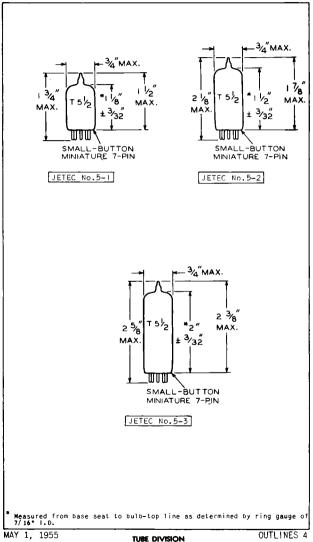






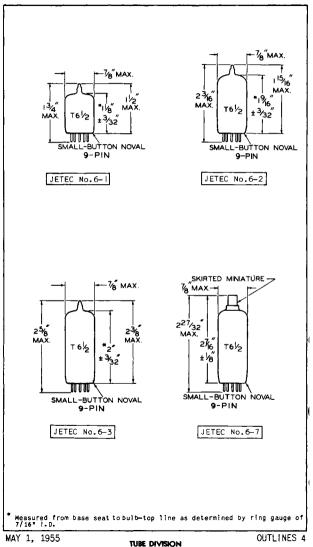

ACORN--Radial 7-Pin Base Type

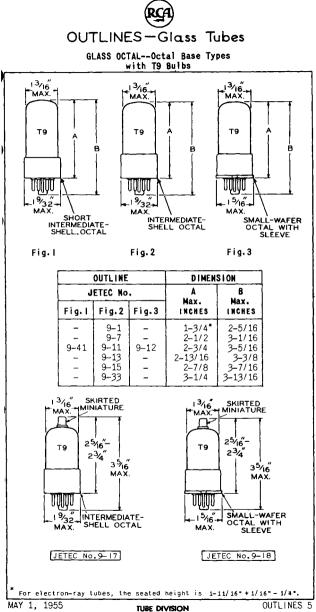




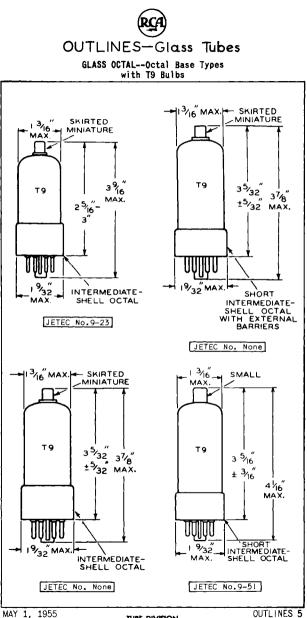

ACORN TYPES







MINIATURE--Miniature 7-Pin Base Types



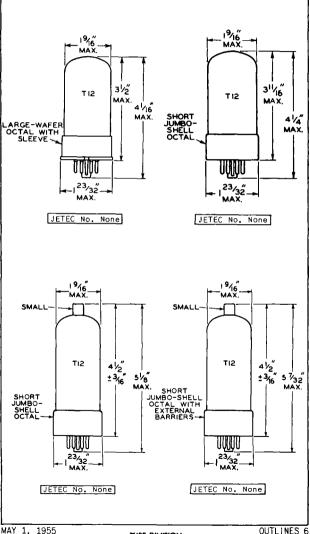


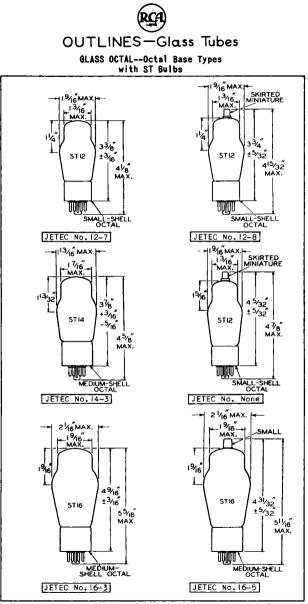

MINIATURE--Noval 9-Pin Base Types





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

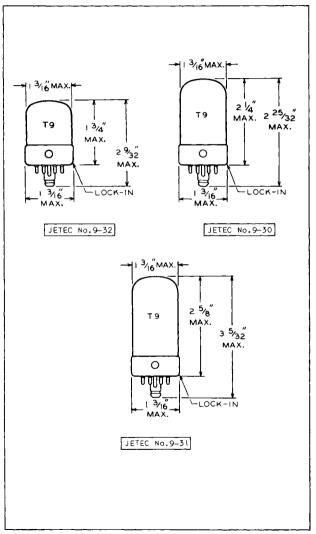
OUTLINES 5

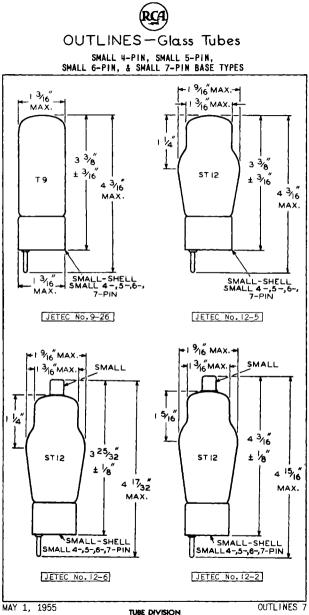


GLASS OCTAL--Octal Base Types with Ti2 Bulbs

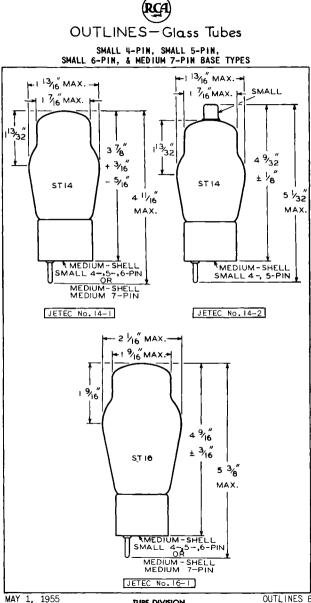





MAY 1, 1955

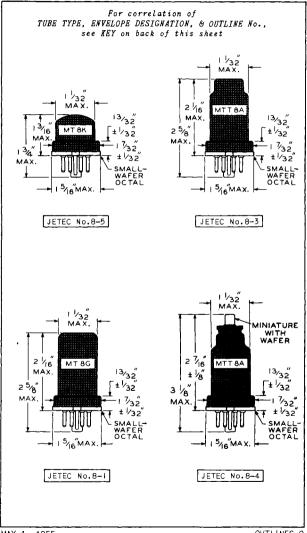

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

OUTLINES 6




LOCK-IN--Lock-In 8-Pin Base Types



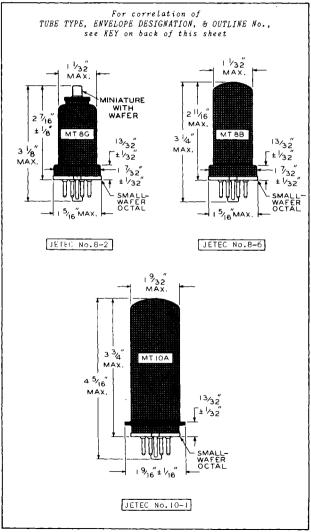



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY






MAY 1, 1955

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

OUTLINES 8



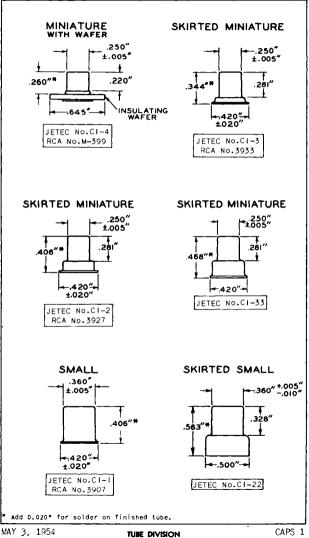




KEY

Type	Envelope	Outline	Type	Envelope	Outline
No.	Designation	Jetec No.	No.	Designation	Jetec No.
'024	MTT8A	8-3	6ST7	MT8G	8–1
5T4	MT10A	10-1	6SZ7	MT8G	8–1
5W4	MT8B	8-6	6V6	MT8B	8–6
524	MT8B	8-6	6X5	MT8B	8–6
6A8	MT8A	8-4	12A6	MT8B	8–6
6AB7	MT8G	8–1	12C8	MTT8A	8-4
6AC7	MT8G	8–1	12H6	MT8K	8-5
6AG7	MT8B	8–6	12K8	MT8G	8-2
6B8	MTT8A	8–4	12SA7	MT8G	8-1
6C5	MT8G	8–1	12SC7	MT8G	8-1
6F5 6F6 6H6 6J5 6J7	MTT8A MT8B MT8K MT8G MT8A	8-4 8-6 8-5 8-1 8-4	12SF5 12SF7 12SG7 12SH7 12SH7 12SJ7	MT8G MT8G MT8G MT8G MT8G	8-1 8-1 8-1 8-1 8-1
6K7 6K8 6L6 6L7 6N7	MTTBA MT8G MT10A MTT8A MT8B	8-4 8-2 10-1 8-4 8-6	12SK7 12SQ7 12SR7 12SW7 12SW7 12SY7	MT8G MT8G MT8G MT8G MT8G	8–1 8–1 8–1 8–1 8–1
6Q7 6R7 6S7 6SA7 6SB7-	MTT8A MTT8A MT8G MT8G -Y MT8G	8-4 8-4 8-2 8-1 8-1	25A6 25L6 25Z6 502-A 1611	MT8B MT8B MT8B MT8G MT8B	8-6 8-6 8-1 8-6
6SC7	MT8G	8-1	1612	MTT8A	8-4
6SF5	MT8G	8-1	1613	MT8B	8-6
6SF7	MT8G	8-1	1614	MT10A	10-1
6SG7	MT8G	8-1	1619	MT10A	10-1
6SH7	MT8G	8-1	1620	MT18A	8-4
6SJ7	MT8G	8–1	1621	MT8B	8-6
6SK7	MT8G	8–1	1622	MT10A	10-1
6SQ7	MT8G	8–1	1631	MT10A	10-1
6SR7	MT8G	8–1	1632	MT8B	8-6
6SS7	MT8G	8–1	1634	MT8G	8-1
6SS7	MT8G	8–1	1634 5693	MT8G MT8G	8–1 8–1

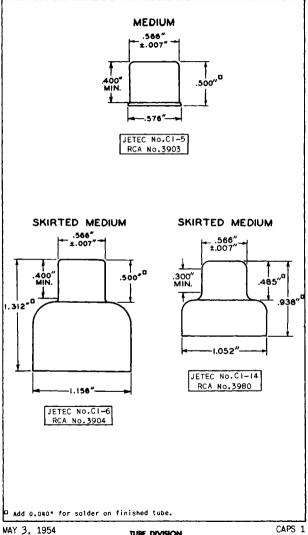
٦




### MINIMUM DIAMETERS

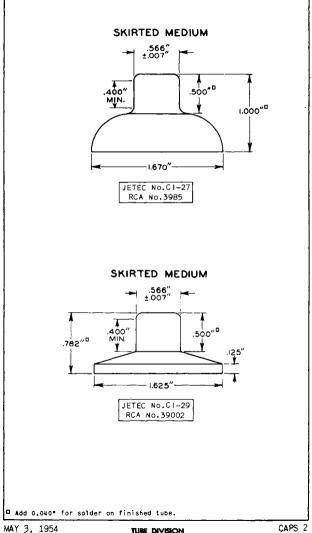
Until such time as the Handbook pages covering bases are re- issued to include minimum diameters of wafers, shells, and sleeves, this provisional sheet will supply these minimum diameters for the following bases to supplement the maximum diameters which are shown on the respective base drawings.					
Base	Minimum				
3-PIN & 4-PIN TYPES:	Diameter				
Peewee 3-Pin Small 4-Nub. WD 4-Pin. Tapered Small 4-Pin. Small 4-Pin. Medium 4-Pin. Medium 4-Pin with Bayonet. Jumbo 4-Pin. Super-Jumbo 4-Pin.	0.610" 0.970" 1.097" 1.136" 1.337" 1.337" 1.337" 1.840" 2.177"				
5-PIN TYPES:					
Small 5-Pin Medium 5-Pin Giant 5-Pin	1. 136" 1. 337" 2. 142"				
6-PIN TYPES:					
Small 6-Pin Medium 6-Pin	1.136" 1.337"				
7-PIN TYPES:					
Small 7-Pin Medium 7-Pin Medium 7-Pin with Bayonet Giant 7-Pin	1.136" 1.337" 1.337" 2.146"				
8-PIN TYPES:					
Dwarf Shell Octal 8-Pin. Dwarf Metal Shell Octal 8-Pin. Small Shell Octal 8-Pin. Intermediate Shell Octal 8-Pin. Snall Wafer Octal 8-Pin.	1.028" 1.015" 1.136" 1.235" 1.271"				
with Sleeve No. R1483	1.271" 1.198"				
with Sleeve No. T254 Wafer Medium Shell Octal 8-Pin Large Wafer Octal 8-Pin	1. 198" 1. 271" 1. 369" 1. 337" 1.677"				
with Sleeve No. T253	1.677"				
12-PIN & 14-PIN TYPES:	1.845"				
Medium Shell Diheptal 14-Pin	2.200"				

٠

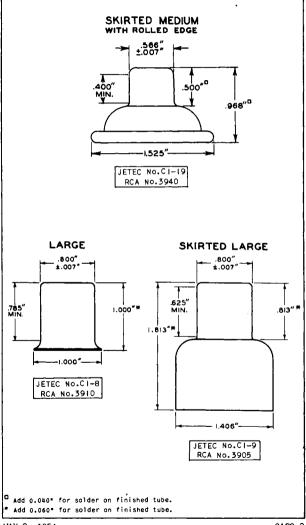





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

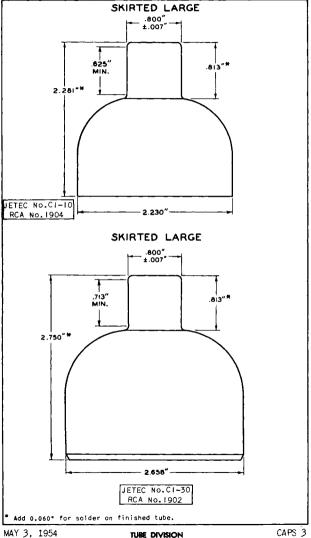



1 - TERMINAL TYPES (CAPS)



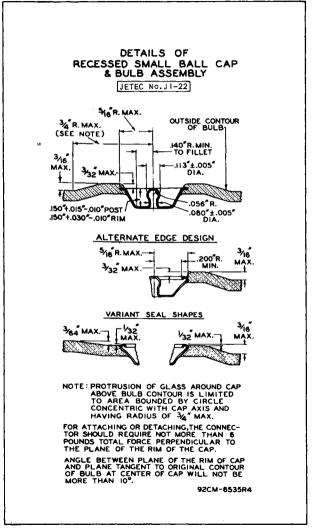



1 TERMINAL TYPES (CAPS)

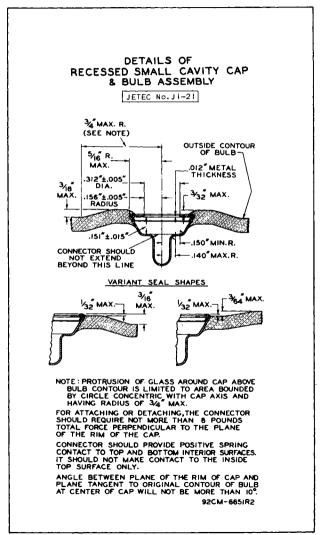




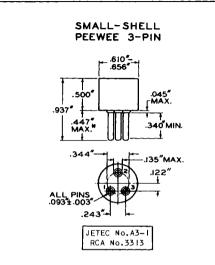



1-TERMINAL TYPES (CAPS)




TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

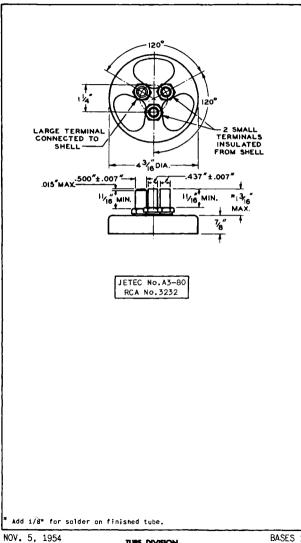






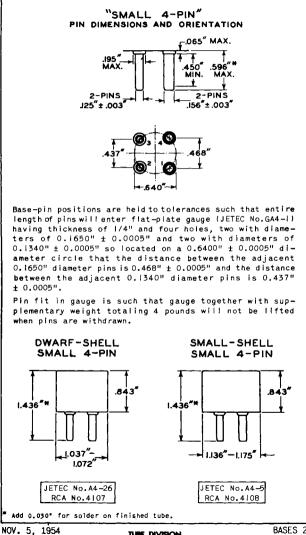





Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge (JETEC No.GA3-1) having thickness of 1/4" and three holes with diameters of 0.1030"- 0.1035" so located on a 0.3440"  $\pm$  0.0005" diameter circle that the distance along the chord between two adjacent hole centers is 0.2340"  $\pm$  0.0005" and the distance along the chord between the remaining pin and the two adjacent pins is 0.3175"  $\pm$  0.0005".

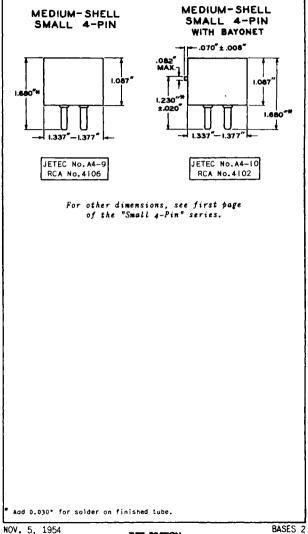
Pin fit in gauge is such that gauge together with supplementary weight totaling 2 pounds will not be lifted when pins are withdrawn.


* Add 0.020* for solder on finished tube.

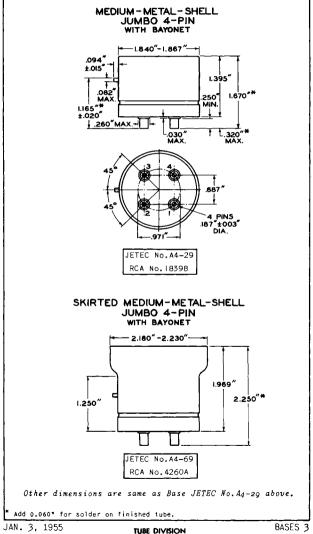




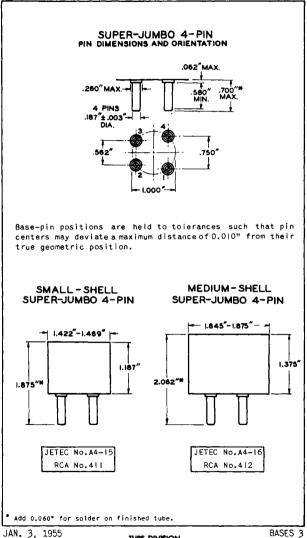



4-PIN TYPES

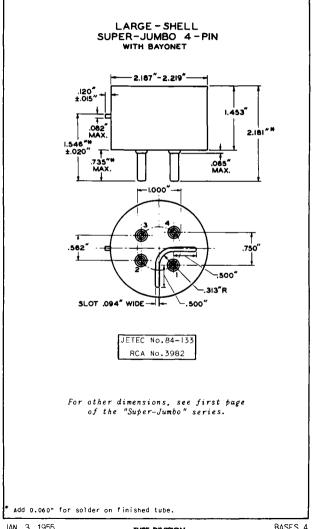



TUBE DIVISION EADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY

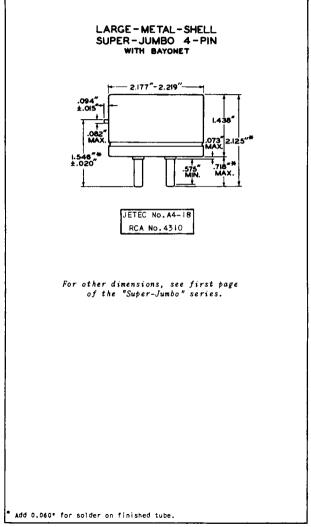



4-PIN TYPES



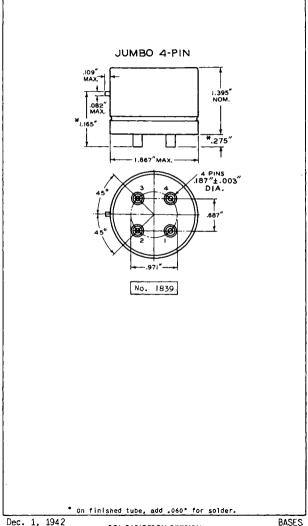




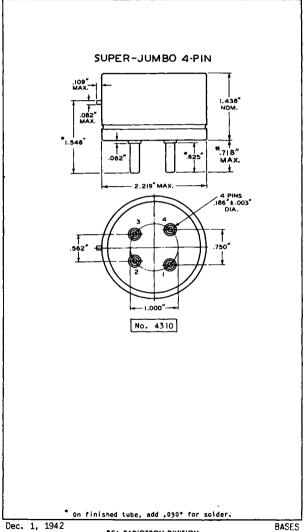




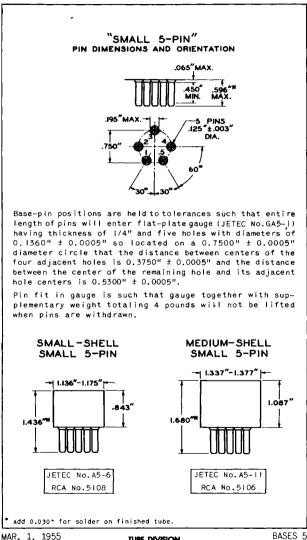







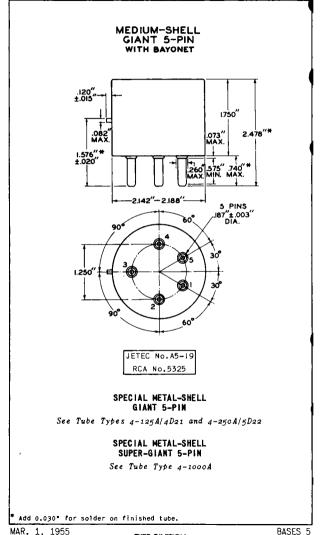




S






,








TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





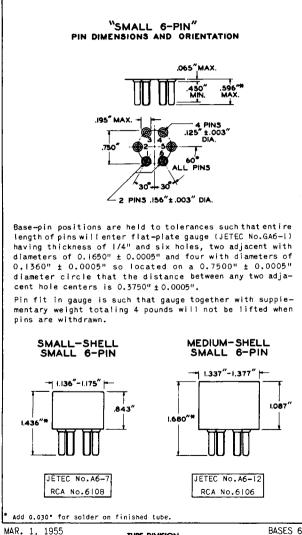


## SMALL-SHELL DUODECAL 5-PIN

For details of this base, see corresponding DUODECAL 12-PIN type

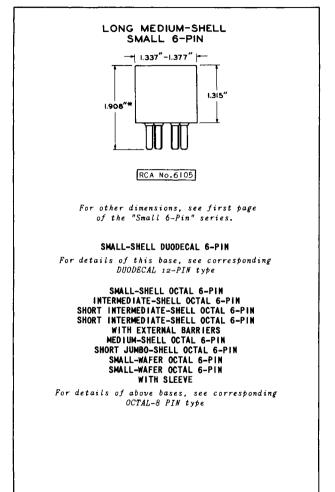
DWARF-SHELL OCTAL 5-PIN SMALL-SHELL OCTAL 5-PIN SMALL-WAFER OCTAL 5-PIN WITH SLEEVE INTERMEDIATE-SHELL OCTAL 5-PIN SHORT INTERMEDIATE-SHELL OCTAL 5-PIN SHORT INTERMEDIATE-SHELL OCTAL 5-PIN WITH EXTERNAL BARRIERS MEDIUM-SHELL OCTAL 5-PIN SHORT JUMBO-SHELL OCTAL 5-PIN

For details of above bases, see corresponding OCTAL 8-PIN type


SMALL RADIAL 5-PIN

See OUTLINES--Glass Types

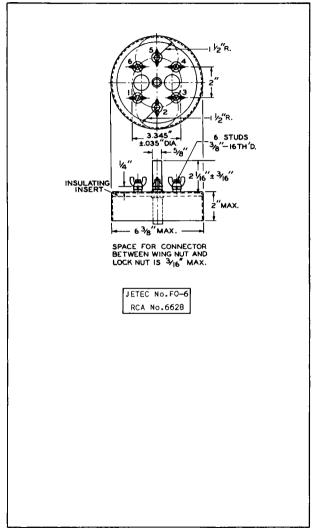
MEDIUM-MOLDED-FLARE SEPTAR 5-PIN


See Tube Type 4-65A

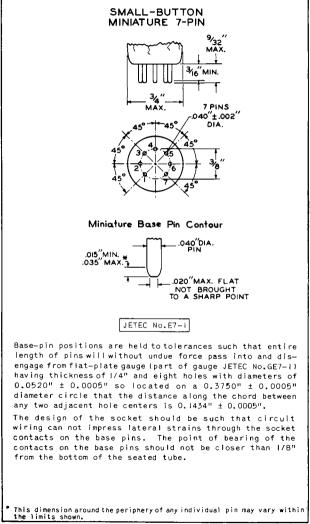




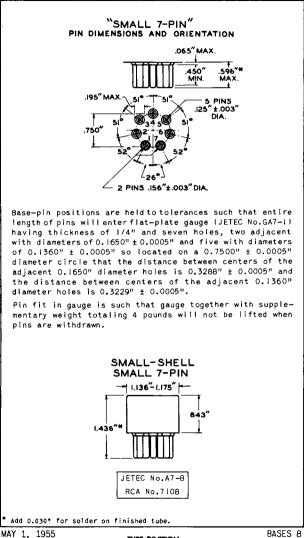
TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY







* Add 0.030* for solder on finished tube.



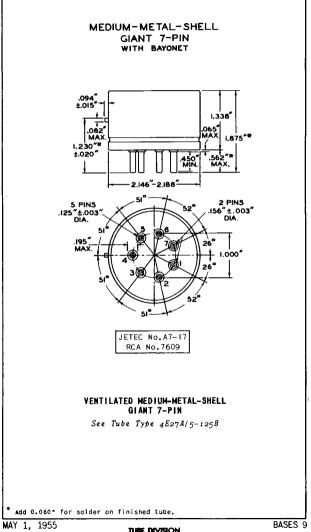

6-TERMINAL TYPES



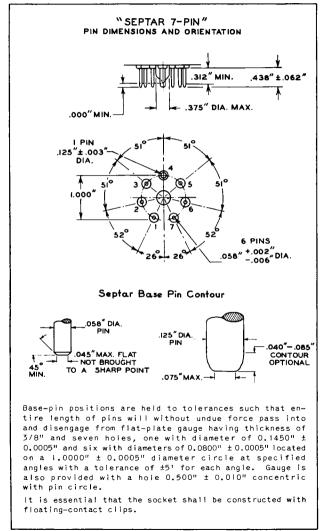




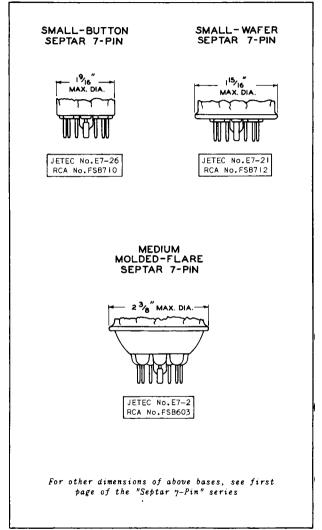







TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY









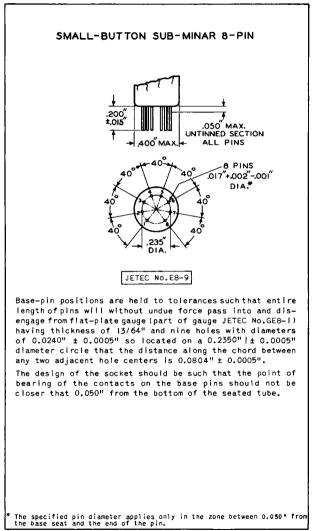




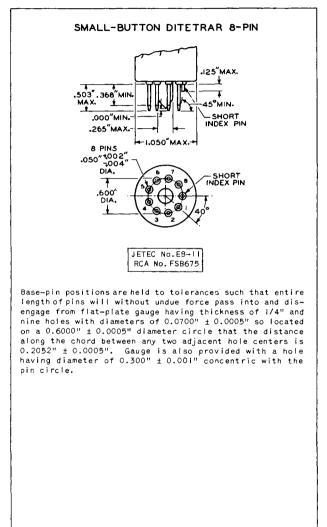



## SMALL-SHELL DUODECAL 7-PIN

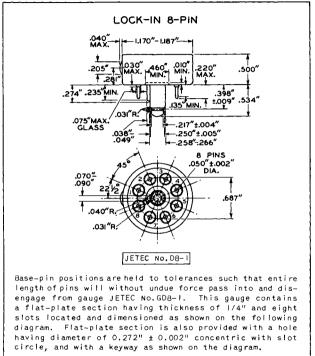
For details of this base, see corresponding DUODECAL 12-PIN type

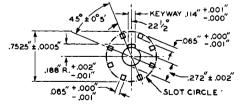

SMALL-SHELL OCTAL 7-PIN INTERMEDIATE-SHELL OCTAL 7-PIN SHORT INTERMEDIATE-SHELL OCTAL 7-PIN WITH EXTERNAL BARRIERS MEDIUM-SHELL OCTAL 7-PIN SHORT JUMBO-SHELL OCTAL 7-PIN SMALL-WAFER OCTAL 7-PIN SMALL-WAFER OCTAL 7-PIN WITH SLEEVE

For details of above bases, see corresponding OCTAL 8-PIN type

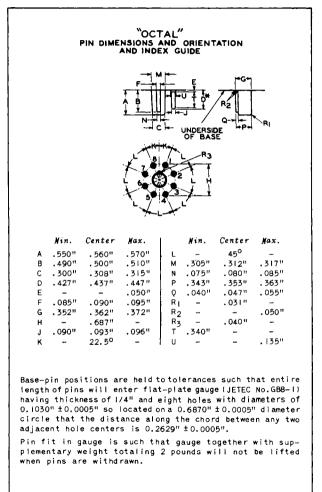

## SMALL RADIAL 7-PIN

See OUTLINES--Glass Tubes



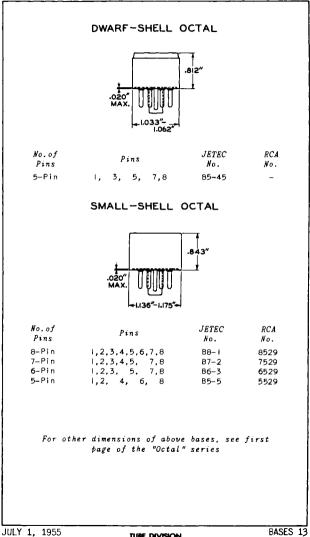




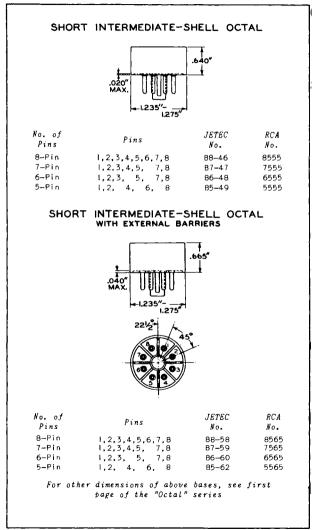




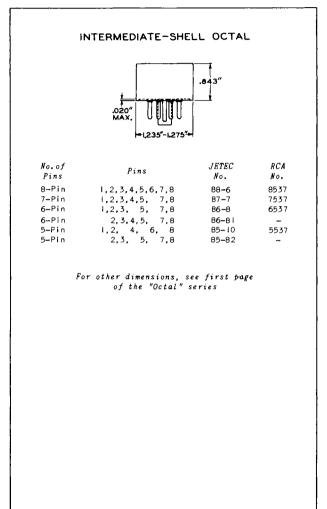





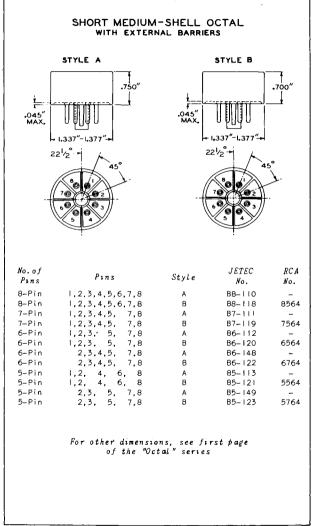

* Add 0.030" for solder on finished tube.


Solder bit (fillblied tube)

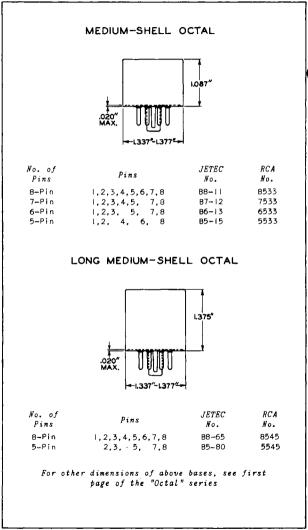




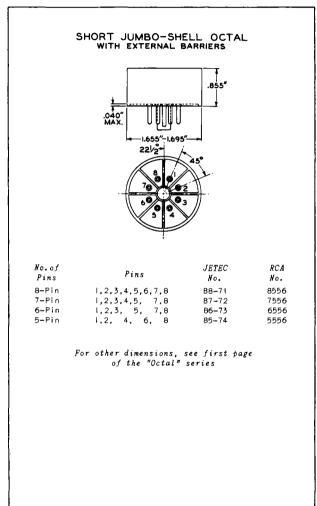




. - - - -

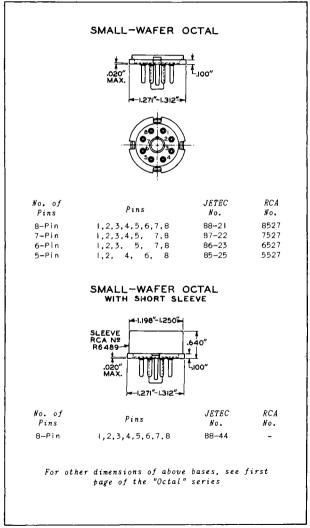






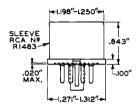







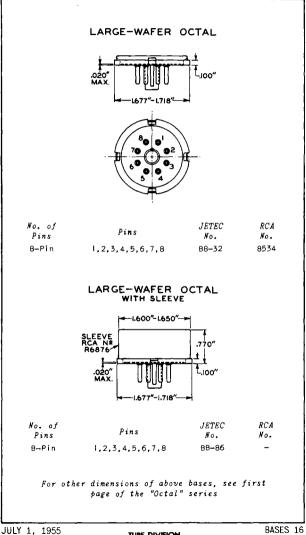




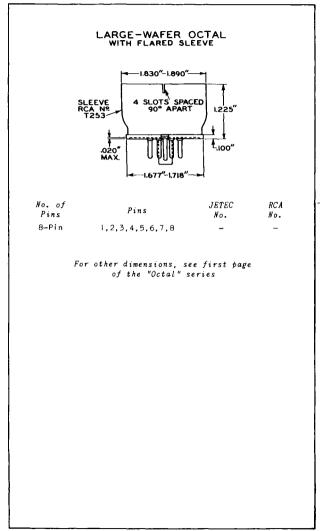




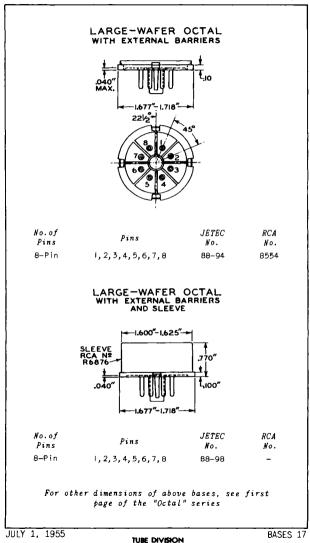






No. of Pins	Pins	JETEC No.	RCA No.
8-Pin	1,2,3,4,5,6,7,8	B8-26	-
7-Pin	l,2,3,4,5, 7,8	87-27	-
6-Pin	1,2,3, 5, 7,8	86-28	-
5-Pin	1,2, 4, 6, 8	85-30	-

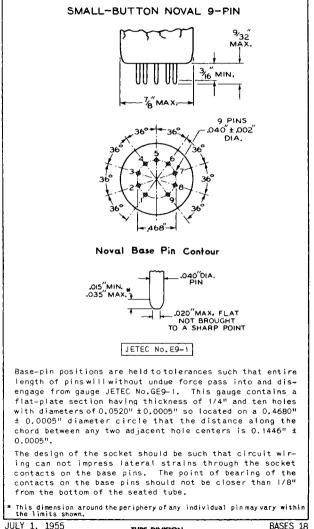

For other dimensions, see first page of the "Octal" series



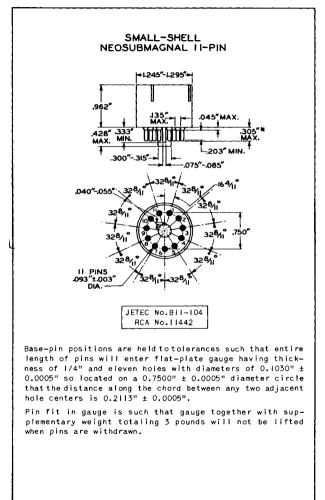



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





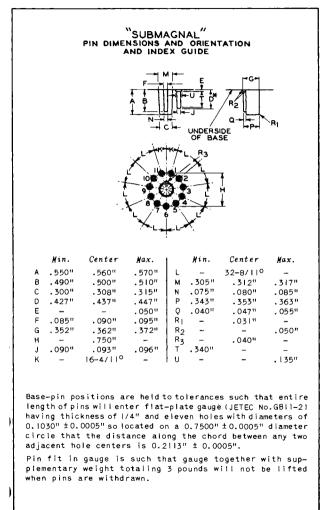



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

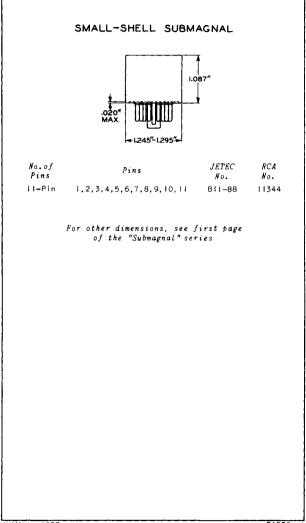




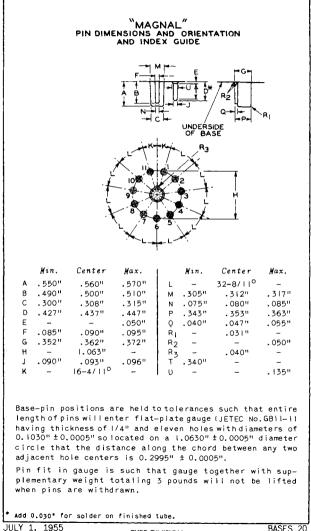




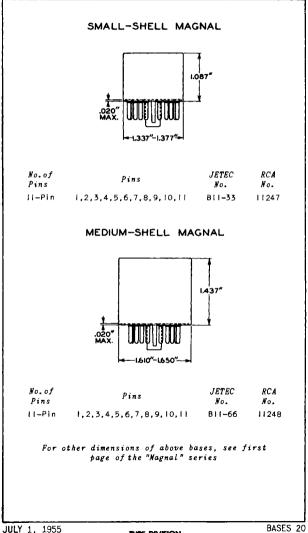

* Add 0.030" for solder on finished tube.


_____

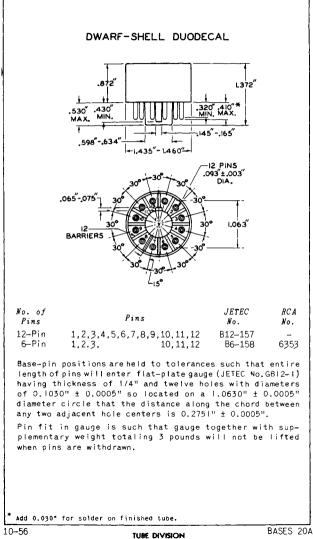




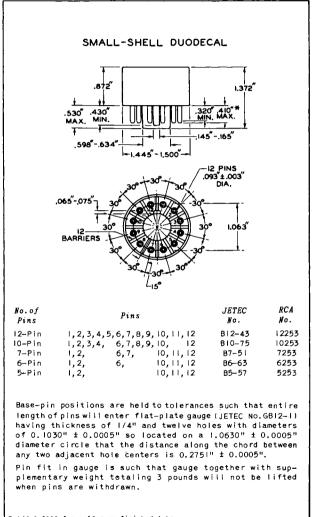

* Add 0.030* for solder on finished tube.





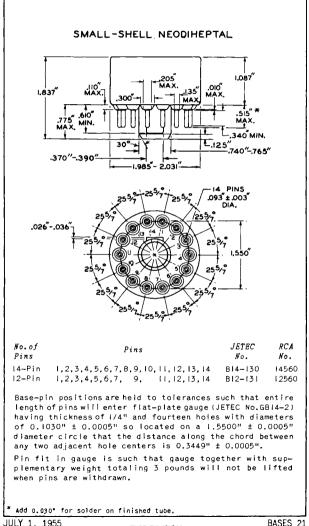





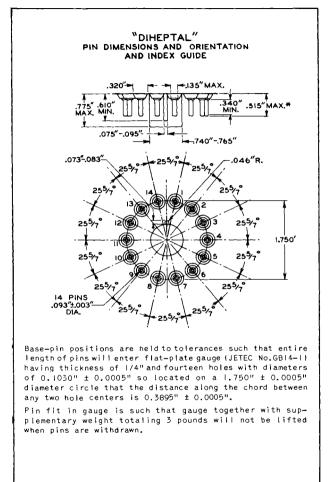







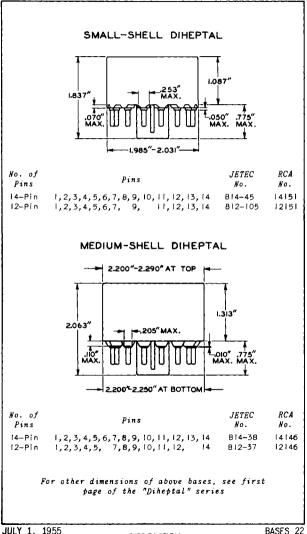



* Add 0.030* for solder on finished tube.

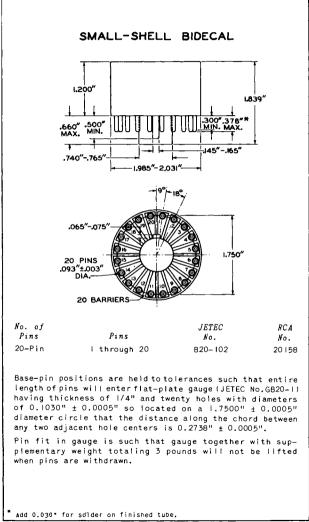




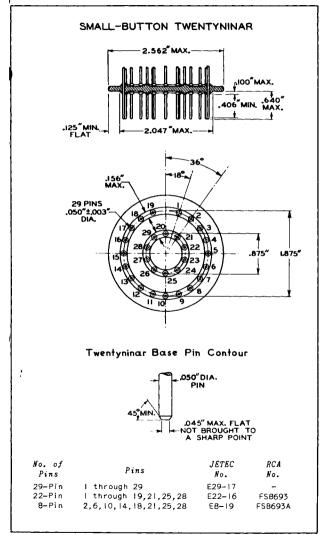





* Add 0.030" for solder on finished tube.


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





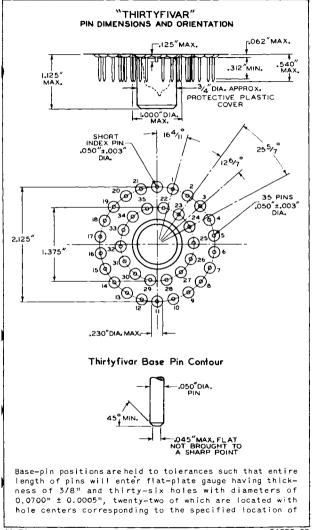

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY











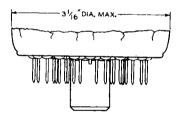

#### SMALL-BUTTON TWENTYNINAR (CONT'D)

Base-pin positions are held to tolerances such that entire length of pins will enter flat-plate gauge having thickness of 3/8" and twenty-nine holes with diameters of 0.0700"  $\pm$  0.0005", nineteen of which are located with hole centers corresponding to the specified location of pin centers on a 1.8750"  $\pm$  0.0005" diameter circle, and ten of which are located with hole centers corresponding to the specified location of pin centers on a 0.8750"  $\pm$ 0.0005" diameter circle concentric with the 1.8750" circle.

Pin fit in gauge is such that entire length of pins will, without undue force, enter into and disengage from the gauge.








#### THIRTYFIVAR (CONT'D)

pin centers on a 2.1250"  $\pm$  0.0005" diameter circle, and fourteen of which are located with hole centers corresponding to the specified location of pin centers on a 1.3750"  $\pm$  0.0005" diameter circle concentric with the 2.1250" circle.

Pin fit in gauge is such that entire length of pins will, without undue force, enter into and disengage from the gauge. Gauge is also provided with a hole 1.000" diameter minimum concentric with pin circles.

SMALL-BUTTON THIRTYFIVAR



No.of Pins	Pins	JETEC No.	RCA No.
35-Pin	l through 35	E35-28	**
33-Pin	Omit pins 24 and 30	E33-29	-
31-Pin	Omit pins 24 and 30; pins 23 and 31 are trimmed to same di- mension as index pin.	E31-36	-

## For other dimensions of above base, see first page of the "Thirtyfivar" series



Amplification Factor  $(\mu)$  is a special case of mufactor. It is the ratio of the change in plate voltage to a change in control-electrode voltage under the conditions that the plate current remains unchanged and that all other electrode voltages are maintained constant. It is a measure of the effectiveness of the control-electrode voltage relative to that of the plate voltage upon the plate current. The sense is usually taken as positive when the voltages are changed in opposite directions. As most precisely used, the term amplification factor refers to infinitesimal changes. 1E62

Class A Amplifier:* An amplifier in which the grid bias and the alternating grid voltages are such that plate current in a specific tube flows at all times

1E69

The ideal class A amplifier is one in which the alternating component of the plate current is an exact reproduction of the form of the alternating grid voltage, and the plate current flows during the 360 electrical degrees of the cycle. The characteristics of a class A amplifier are low efficiency and output.

**Class AB Amplifier:*** An amplifier in which the grid bias and alternating grid voltages are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle. 1E70

The characteristics of a class AB amplifier are efficiency and output intermediate to those of a class A and a class B amplifier. The idle plate current and attendant dissipation may be made substantially less than is possible with class A amplifiers. This amplifier has been called class A prime.

Definitions taken from the 1933 Report of the Standards Committee of the I.R.E. are followed by the definition number in the report.

[•] To denote that grid current does not flow during any part of the input cycle, the suffix 1 may be added to the letter or letters of the class identification. The suffix 2 may be used to denote that grid current flows during some part of the cycle.



#### (continued from preceding page)

**Class B Amplifier:** An amplifier in which the grid bias is approximately equal to the cutoff value so that the plate current is approximately zero when no exciting grid voltage is applied and so that plate current in a specific tube flows for approximately one half of each cycle when an alternating grid voltage is applied. 1E71

The ideal class B amplifier is one in which the alternating component of plate current is an exact replica of the alternating grid voltage for the half cycle when the grid is positive with respect to the blas voltage, and the plate current flows during 180 electrical degrees of the cycle. The characteristics of a class B amplifier are medium efficiency and output.

**Class C Amplifier:** An amplifier in which the grid bias is appreciably greater than the cutoff value so that the plate current in each tube is zero when no alternating grid voltage is applied, and so that plate current in a specific tube flows for appreciably less than one half of each cycle when an alternating grid voltage is applied. 1E72

Class C amplifiers find application where high platecircuit efficiency is a paramount requirement and where departure from linearity between input and output is permissible. The characteristics of a class C amplifier are high plate-circuit efficiency and high power output.

**Control-Grid**—**Plate Transconductance**  $(g_m)$  is the name for the plate-current-to-control-grid-voltage transconductance. This is ordinarily the most important transconductance and is commonly understood when the term "transconductance" is used.

1E56

Formerly it was known as mutual conductance. See definition of Transconductance.

Conversion Transconductance  $(g_{c})$  is the quotient

• See preceding page.



#### (continued from preceding page)

of the magnitude of a single beat-frequency component  $(f_1 + f_2)$  or  $(f_1 - f_2)$  of the output-electrode current by the magnitude of the control-electrode voltage of frequency  $f_1$ , under the conditions that all direct electrode voltages and the magnitude of the electrode alternating voltage  $f_2$  remain constant and that no impedances at the frequencies  $f_1$  or  $f_2$  are present in the output circuit. As most precisely used, the term refers to infinitesimal changes. 1E60

When the performance of a frequency converter is determined, conversion transconductance is used in the same way as transconductance is used in singlefrequency amplifier computations.

**Deflection Factor of a cathode-ray oscillograph tube** is the reciprocal of the deflection sensitivity. 3E11

Deflection Sensitivity of a cathode-ray oscillograph tube is the quotlent of the displacement of the electron beam at the place of impact by the change in the deflecting field. It is usually expressed in millimeters per volt applied between the deflecting electrodes or in millimeters per gauss of the deflecting magnetic field. 3E10

Direct Capacitance between two electrodes in a multielectrode tube is the ratio of the charge placed on either electrode to its resulting change in potential above the other electrode when all remaining (n-2)electrodes are at the potential of the first electrode, the charge placed on the second electrode being equal to the sum of the charges placed on all the other electrodes.

Electrode Current is the current passing to or from an electrode through the vacuous space. 1E39

The terms grid current, anode current, plate current, etc., are used to designate currents passing to or from these specific electrodes.

Electrode Dissipation is the power dissipated in the



#### (continued from preceding page)

form of heat by an electrode as a result of electron and/or ion bombardment. 1E46

Electrode Voltage is the voltage between an electrode and a specified point of the cathode. 1E40

The terms grid voltage, anode voltage, plate voltage, etc., are used to designate the voltage between these specific electrodes and the cathode.

Gas Amplification Factor of a phototube is the factor of increase in the sensitivity of a gas phototube due solely to the ionization of the contained gas. For a gas phototube having a structure such as to permit saturation to occur at a voltage (approximately 25 volts) less than that causing appreciable ionization, the gas amplification factor at a specified operating voltage is the ratio of the sensitivity measured at that voltage. 4E5

Grid Driving Power is the average product of the instantaneous value of the grid current and of the alternating component of the grid voltage over a complete cycle. This comprises the power supplied to the biasing device and to the grid. 1E42

Input Capacitance of a vacuum tube is the sum of the direct capacitances between the control grid and the cathode and such other electrodes as are operated at the alternating potential of the cathode. This is not the effective input capacitance, which is a function of the impedances of the associated circuits. 1E67

Modulation Factor in an amplitude-modulated wave is the ratio of half the difference between the maximum and minimum amplitudes to the average amplitude.

In linear modulation the average amplitude of the envelope is equal to the amplitude of the unmodulated wave, provided there is no zero-frequency com-



#### (continued from preceding page)

ponent in the modulating signal wave (as in telephony). For modulating signal waves having unequal positive and negative peaks, positive and negative modulation factors may be defined as the ratios of the maximum departures (positive and negative) of the envelope from its average value to its average value. (See Percentage Modulation.)

1T-39

Mu-Factor ( $\mu$ -factor) is the ratio of the change in one electrode voltage to the change in another electrode voltage, under the conditions that a specified current remains unchanged and that all other electrode voltages are maintained constant. It is a measure of the relative effect of the voltages on two electrodes upon the current in the circuit of any specified electrode. As most precisely used, the term  $\mu$ -factor refers to infinitesimal changes. 1E61

Output Capacitance of a vacuum tube is the sum of the direct capacitances between the output electrode (usually the plate) and the cathode and such other electrodes as are operated at the alternating potential of the cathode. This is not the effective output capacitance, which is a function of the impedances of the associated circuits. 1E68

Peak Forward Plate Voltage is the maximum instantaneous plate voltage in the direction in which the tube is designed to pass current. 1E43

**Peak Inverse Plate Voltage** is the maximum instantaneous plate voltage in the direction opposite to that in which the tube is designed to pass current.

1E44

**Peak Plate Current** is the maximum instantaneous plate current passing recurrently through the tube in the direction of normal current flow.

Percentage Modulation is the modulation factor expressed in per cent. 1T-40

Plate Resistance is the quotient of the alternating



#### (continued from preceding page)

plate voltage by the in-phase component of the alternating plate current, all other electrode voltages being maintained constant. This is the effective parallel resistance and is not the real component of the electrode impedance. As most precisely used, the term refers to infinitesimal amplitudes.

Sensitivity of a phototube is basically defined as the quotient of the current through the tube by the radiant flux received by the cathode. The term "radiant flux" includes both visible radiation (light) and invisible infra-red and ultra-violet radiation. When stated in accordance with this basic definition, sensitivity is usually given in terms of microamperes per microwatt of radiant flux.

For convenience, sensitivity is frequently stated in terms of visible radiation only, and is then known as Luminous Sensitivity. When so stated, it is usually expressed in terms of microamperes per lumen of light flux, and depends on the color of the light or the spectral distribution of the radiant flux used to excite the phototube.

2870 Tungsten Sensitivity is the luminous sensitivity when the incident luminous flux is produced by a tungsten-filament lamp at a color temperature of 2870 degrees Kelvin.

When a phototube is used under steady illumination, its luminous sensitivity is known as Static Luminous Sensitivity. This is defined as the direct anode current produced by the light flux divided by the incident light flux of constant value.

When the light input to a phototube varies, as at audio frequency in sound reproduction, the luminous sensitivity is identified as Dynamic Sensitivity, and may be conveniently defined as the quotient of the amplitude of variation in anode current to the amplitude of variation in light input.

In high-vacuum phototubes, the dynamic sensitivity



#### (continued from preceding page)

is ordinarily independent of frequency. In gas phototubes, the dynamic sensitivity falls off at the higher frequencies because there is a time lag between the current component produced by the secondary electrons resulting from excited atoms and positive ions arriving at the cathode. As the phase difference between these two components increases with increasing frequency of light variation, the net current variation decreases with consequent reduction in sensitivity. In the application of gas phototubes to audio frequencies, this effect is relatively unimportant but can be compensated for, if desired, in the design of the associated amplifier.

In the design of equipment utilizing phototubes, consideration should always be given to the effect of the time constant of the circuit consisting of the phototube and its associated load in reducing the performance capability of the phototube with increasing frequency.

**Transconductance** from one electrode to another is the quotient of the in-phase component of the alternating current of the second electrode by the alternating voltage of the first electrode, all other electrode voltages being maintained constant. As most precisely used, the term refers to infinitesimal amplitudes. 1E55

**Tube Voltage Drop** in a gas or vapor-filled tube is the plate voltage during the conducting period.

1E45

RCA TUBE Handbook HB-3

# CATHODE-RAY TUBE SECTION

This section pertains to RCA tubes for signal-to-image, image-to-signal, and imageto-image applications. It includes data on cathode-ray tubes for oscillographic and picture-reproduction use, camera tubes for television pickup, and monoscopes for testing the performance of television equipment.

For further Technical Information, write to Commercial Engineering, Tube Department, Radio Corporation of America, Harrison, N. J.

7-52



### **PRICES**[□] OF CATHODE-RAY TUBE TYPES

1 ype	Schedule D [®]	Schedule J [▲]	<b>T</b> ype	Schedule D⊕	Schedule T
2API - A4	-	\$ 10.55	112DP7-B	-	\$ 72.50
28P1	-	9.60	12KP4-A4	\$39.50	-
28P11	-	11.00	12LP4	-	•
2F21	-	105.00	12LP4-A	32.00	- 1
3AP1-A4	-	15.75	12597	-	47.40
38P1 - A	-	16.50	14CP44	35.00	-
3JP1	-	19.00	14EP4	35.00	-
3JP7	-	23.00	16ADP7	-	55.00
3KP1	-	14.50	16AP4-A	46.00	-
3KP44	\$20.00	-	16DP4-A4	39.00	-
3KP11	-	16.50	16GP4	46.00	-
3MP1	-	14.75	16GP4-A	-	•
3RP1	-	14.50	16GP4-B	46.00	-
5BP1-A4	-	22.50	16GP4-C	-	•
5CP1-A	-	23.25	16KP44	37.00	-
5CP7-A	-	27.25	16LP4-A4	40.00	-
5CP11-A	-	27.50	16RP44	37.00	-
5CP12	-	27.00	16TP4#	37.00	-
5FP4-A	-	41.75	16WP4-A+	40.00	-
5FP7-A	-	30.25	178P4-A	36.00	-
5FP14	-	30.25	17CP4	35.00	-
5TP4	60.00	-	17GP4	46.00	
5UP1	-	17.75	17HP4	38.25	-
5UP7	-	20.25	17.194	36.00	-
5UP11	-	22.00	17LP4	38.25	-
5WP11	-	70.00	170P4	36.00	-
5WP15	-	70.00	17TP4	36.50	-
5ZP16	-	71.25	19AP4	-	•
78P7-A	-	48.50	19AP4-A	59.00	-
7CP1	-	30.75	19AP4-8	59.00	- 1
7DP4	31.50	-	19AP4-D	-	•
7JP1	-	23.50	20CP4	51.50	-
7JP4	26.00	-	20MP4	54.00	-
7MP7	-	39.50	21AP4	55.00	-
7MP14	-	39.50	21MP4	57.00	-
7NP4	-	600.00	902-A4	-	12.50
7QP4	-	39.50	905-A4	-	65.25
7ŤP4	-	52.00	908-A4	-	16.50
7VP1	-	25.00	912	-	155.00
7WP4	-	630.00	9134	-	15.50
9AP4	-	•	914-A	-	93.50
10BP4	-	•	1850-A	-	540.00
108P4-A	28.00	-	5527	-	49.90
10FP4-A+	35.00	-	5820	-	1200.00
10KP7	-	50.00	5826	-	1300.00
10SP4	-	54.00	6198	-	360.00
12AP4*	-	•			
			-		
Discontinued purpose only.		sheet has	been retained	in book for	reference
□,⊕,≜,♣,*: See					
APRIL 1, 1953		TUBE DEP	ARTMENT	CATHODE-	RAY TUBE
	RADIO CORPO		RICA, HARRISON, NEW J	ERSEY	PRICES



### PRICES[®] OF CATHODE-RAY TUBE TYPES

- This price list applies only in the united States of America and is subject to change without notice. All prices are exclusive of all Federal, State and local excise, sales, and similar taxes.
- Schedule D shows list prices for tube types priced for distribution through dealer and service channels.
- Schedule u shows list prices for tube types priced for distribution through other than dealer and service channels.
- Not recommended for new equipment design.
- * For data see 9AP4/1804-P4 and 12AP4/1803-P4, respectively.

#### INFORMATION ON PURCHASING ABOVE TYPES

Information as to where RCA Cathode-Ray fube fypes can be purchased may be obtained from our regional office nearest you or from fube Departmant, Radio Corporation of America, Horrison, J.



When choosing tube types, the equipment designer should refer to the RCA PREFERRED TYPES LIST and its companion list - TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN - both of which appear in the General Section.

Enve- lope	Focus- ing Method	Deflec- tion Method	Alumi- nized Screen	Minimum Screen Size Inches	Max. Ultor Volts⊕	TUBE TYPE
Direct	L-Viewin	g	<u> </u>	L		L
Blac	k & Whi	te				
G	E	м	NO	6 Dia.	8000	1 7DP4
00000	E	E	No	6 Dia.	6000	7JP4
Ğ	м	м	No	9-1/8 Dia.	12000	10BP4-
Ğ	м	м	Yes	9-1/8 Dia.	12000	IOFP4-
Ğ	м	м	Yes	11-1/8 Dia.	12000	12KP4-
Ğ	м	м	No	II Dia.	12000	12LP4-
						14EP4/
G	. M	м	No	11-3/8 × 8-1/2	14000	14CP4
ତ୍ତି ତ୍ତି ତ୍	E	м	No	11-3/8 × 8-1/2	14000	14HP4
$\overline{\mathbb{M}}$	м	м	No	14-3/8 Dia.	14000	16AP4-
õ	м	м	No	14-1/2 Dia.	15000	16DP4-
M	м	м	No	14-3/8 Dia.	14000	16GP4-
ĕ	м	м	No	14-1/2 Dia.	14000	16LP4-
					14000	16RP4
G	м	м.,	No	13-1/2 × 10-1/8	16000	I6KP4
						16RP4-/
G	м	м	Yes	13-1/2 × 10-1/8	16000	16KP4-
6	м	м	No	13-1/2×10-1/8	14000	16TP4
000000	M	M	No	14-1/2 Dia.	16000	16WP4-
ĕ	E	M	No	$14 - 1/4 \times 10 - 3/4$	16000	17 AVP
	Ε	M	Yes	$14 - 1/4 \times 10 - 3/4$	16000	17 AVP4
	м	м	No	14-1/4 × 10-3/4	16000	178P4-
믱	м	M	Yes	14-1/4 × 10-3/4	16000	178P4-
M	M	M	No	14-3/8 × 10-11/16	16000	176P4-
M	E	M	NO	14-3/8 × 10-11/16	16000	
	- E	(V)	NO	14-5/8 × 10-11/10	10000	17GP4
G	Ε	м	No	14-1/4 × 10-3/4	16000	178P4
G	E	м	Yes	14-1/4 × 10-3/4	16000	
G	м	M		$14-1/4 \times 10-3/4$	18000	17HP4-
G	M	м	No	14-1/4 × 10-5/4	18000	17JP4
G	Е	м	Yes	14-1/4 × 10-3/4	16000	17LP4/
						17VP4
G	E	M	Yes	14-1/4 × 10-3/4	16000	17LP4-
딸	м	м	No	14-1/4 x 10-3/4	16000	17QP4
្រា	м	м	Yes	14-1/4 × 10-3/4	18000	170P4-
M	E	м	No	14-3/8 × 10-11/16	16000	17TP4
6	м	м	No	7- /4 Dia.	16000	19AP4-
Desig	gn⊷center	values.				
] = G1	ass recta	ngular.	(G) = (	Glass round.	E = Elect	rostatio
= Met	tal recta	ngular.	Ŧ	letal round.	M = Magne	
-56					CATH	

# CLASSIFICATION CHART CATHODE-RAY TUBE SECTION

KINES	COPES (C	ont'd)		···· ··· ··· ···		
Enve- ìope	Focus- ing Method	Deflec- tion Method	Alumi- nized Screen	Minimum Screen Size Inches	Max. Ultor Volts®	tube type
Direct	t-Viewin	g				
Blac	k & Whi	te				
G	м	м	No	17 x 12-3/4	18000	20CP4
						200P4-A/
G	M	м	NO	17 x 12-3/4	18000	20CP4-A
6		м	Yes	17 x 12-3/4	18000	20DP4-C/
G	м	M	res	/ x  2-5/4	18000	20CP4-D
G	E	м	No	17 × 12-3/4	16000	20HP4-A/
_	F		Yes	17 x 12-3/4	16000	20MP4 20HP4D
G	E M	M	Yes	17 x 12-5/4	20000	21ACP4-A
9 9	E	l M M	Yes	19-1/8 x 15	18000	21ALP4-A
G	E	M	Yes	19-1/8 x 15	20000	21ALP4-B
	_	M	Yes	19-1/8 x 15	18000	21ALP4-0
G	м	M	No	19-1/8 x 13-11/16	18000	21AP4
۶G	M E	M	Yes	19-1/8 x 15	18000	21ATP4
G	E	( ^M	162		10000	21AVP4/
G	Ε	М	NO	19-1/8 × 15	18000	21AUP4
-	-					21AVP4-A/
G	E	м	Yes	19-1/B x 15	18000	21AUP4-A
_	м	м	Yes	19-1/8 x 15	18000	21AWP4
	M	M	No	19-1/8 x 13-7/8	18000	21EP4-A
图	M	м	Yes	19-1/8 x 13-7/8	18000	21EP4-8
믱	E	м	NO	19-1/8 x 13-7/8	18000	21FP4-A
<u>ଗଗଗଗଗଆରେଗଗ</u> ର	E	м	Yes	19-1/8 x 13-7/8	18000	21FP4-C
	E	м	No	18-1/8 x 13-11/16	16000	21MP4
	E	м	NO	19-1/8 x 14-3/16	18000	21YP4
	E	м	Yes	19-1/8x 14-3/16	18000	21YP4-A
	м	м	No	19-1/8 x 14-3/16	18000	21ZP4-A
	м	м	Yes	19-1/8 × 14-3/16	18000	21ZP4-8
	м	м	Yes	21-1/4 × 16-3/4	20000	24CP4-A
G	E	М	Yes	21-1/4 × 16-3/4	20000	240P4-A
G	E	м	Yes	21-1/4 x 16-3/4	20000	24YP4
	M	м	Yes	23-7/16 x 18-1/8	18000	27MP4
<u> </u>	191	) IVI	105	25 11 10 x 10 110	1 10000	
Coli	or					
G	E	м	Yes	- /2 x 8-5/8	20000	15GP22
l m	E	м	Yes	19-1/16 x 15-1/4	25000	21AXP22
Monito						
_				6 Die	1 10000	70P4.
G	M	M	No	6 Dia.	10000	70P4. 7TP4
©	E	M	Yes Yes	6 Dia. 9-1/8 Dia.	14000	10SP4
G	E	I M	l les		1 1-000	10017
_			<b>•</b> • •			
	ass recta		G = Glass			trostatic.
[M] = Me	tal recta	ngular.	one = Desig	n-center values.	M = Magn	et IC.
1-56					CATH.	-RAY TUBE
			TUBE	DIVISION	. CLASS	. CHART 1
		EADIO COR	ORATION OF A	MERICA, HARRISON, NEW JERS	er	

1



When choosing tube types, the equipment designer should refer to the RCA PREFERRED TYPES LIST and its companion list - TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN - both of which appear in the General Section

KINESC	OPES (Con		General	Sectio	n		
Enve- lope	Focus- ing Method	Deflec- tion Method	Alumi- nized Screen	Scre	inimum Sen Size nches	Max. Ulto Volts	r   1058E
Projec	tion		•			• • • • •	····
0000	E E E	M M M	Yes Yes Yes Yes	4-1/ 5 ×	4 Dia. 4 Dia. 3-3/4 3-3/4*	40000 27000 80000 80000	5TP4
View-F	inder						
© ©	E M	M M	Yes No		/4 Dia. /4 Dia.	10000 8000	
Transc	riber						
© I	E	м	Yes	4-1/	4 Dia.	27000	)   5WPI1
CAMERA	TUBES						
Ma	jor Use	Focusin Method		ection thod	Image Inch		tube Type
Iconos	copes				• • •		
Film Pi	,	E	1	м	4-3/4 x	3-9/16	1850-A
Industr Labor	ial & ratory	E		E	1.4 Dia	uonal	5527
	Orthicons	. –	•		,	.ge	1 332
_	· & Studio	•			1		1
Picku		м		м	1.6 Dia	0	5820
Color F	rickup	м	I	м	1.6 Dia	igonal	6474/1854
Vidico							
Industr Film Pi		M M	ļ	M M	0.62 Di 0.62 Di		6 198 6326
tive Quali tive Quali optic throw	optical sy ty circle optical sy ty rectang al system, distance		AZP4 prov f faceplat 5TP4 prov eplate. provides a	rides an te. When ides a 2 When use a 20' x	8' x 6' p n used wit 4" x 18" p ed with su 15' pictur	icture. h suitat icture. itable e at a p	ple reflec- ple reflec- reflective projection-
		except pro alues excep			stance is		olute value.
	und glass.		E = Elect				= Magnetic.
L	_						

# CLASSIFICATION CHART FOR TYPES IN CATHODE-RAY TUBE SECTION

Approx. Bulb Dia.	Max. Ultor				TUBE TYPES fied by Pho	sphort		
Inches	¥olts [⊕]	PI	P4	P5	P7	PII	P12	P14
lectro	ostatio	Focus a	nd Def	lectio	n			
2	600	902-A	1 - 1	ł –	- 1	- 1	I –	- 1
2	1000	2API-A	- 1	-	-	-	-	-
2	2500	28P1	- 1	-	-	28P11	- 1	_
3	1500	3API-A	- 1	908-A	-	-	-	+
3	2000	3BPI-A	1 - 1	-	-	-	-	-
3	2500	3KP1	3KP4	-	-	3KPII	-	-
3	2500	3MPI	-	-	-	-	-	-
3	2500	∫*3RPI  3RPI-A	3RP4	-	-	-	-	-
5	2000	SBPI-A	-	-	-	-	-	-
5	2500	5UP1	-	- 1	5UP7	5UP H	- 1	- 1
5	15000	912	-	-	-	-	- 1	-
7	4000	7VP1	-		-	-	-	-
9	7000	914-A	- 1	1 – 1	-	- 1	1 -	_
Post-	-Deflec	tion Acc	elerat	or Typ	es			
3	4000 [●]	3JP1	- 1		3JP7	-	-	-
5	6000 [●]	5A8P1	5ABP4		5ABP7	5ABP11	-	-
5	4000 [●]	5CPI-A	-	- 1	5CP7-A	5CP11-A	5CP12	-
agnet	ic Focu	is and De	flecti	on				
5	8000	- 1	- 1	1 - 1	5FP7-A	-	- 1	5FP 14
7	8000	-	-	-	78P7-A	-	-	-
7	8000	-	-	-	7MP7	-	-	7MP14
10	10000	-	-	-	IOKP7	-	-	-
12	10000	-	-	-	∫ 120P7-A	- 1	-	- 1
12					<u></u> 12DР7−В			
16	14000	-	- 1	-	I6ADP7	- 1	I -	-
lectro	static	Focus,	Magnet	ic Def	lection			
7	8000	7CP1	] -	1 - 1		- 1	1 -	-
See sh Simila Maximu	ieet FEA ir to 3R im post-	values. TURES OF F P1 except ultor volt DP7-A exce	for fla s.	t facep		ate.		



When choosing tube types, the equipment designer should refer to the RCA PREFERRED TYPES LIST and its companion list - TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN - both of which appear in the General Section.

Approx.		_		_					
Bulb Dia. Inches	Phosphor		Maximum Ultor Volts ^e		Focus- ing Method		Deflec- tion Method		tube Type
Computer	Storage Tube	-						<b>t</b> -	
3	Storage Surface	Į	2500	1	Е	Į	Е	I	657 1
lying-S	Spot Cathode-Ray T	ub	es						
Black	& White								
5 5	P15 P16		27000 27000	ļ	E E		M M	ł	5WP 15 5ZP 16
Color									
5 L	P24	L	27000	I	E	L	м	ł	5AUP24
lonoscop	)e								
5	Resolution Chart	Ł	1500	ł	E	L	м	ł	2F21



### FEATURES OF FLUORESCENT SCREENS

Fluorescent screens of the cathode-ray tubes covered in this Section are identified according to phosphor number, e.g., PI, P4, P5, etc.

Phosphor PI produces a brilliant spot having green fluorescence and medium persistence. Types having this phosphor are particularly useful for general oscillographic applications in which recurrent wave phenomena are to be observed visually.

**Phosphor P4** is a highly efficient screen having white fluorescence and medium persistence. Types having this phosphor are of particular interest for television picture tubes.

**Phosphor P5** produces a highly actinic spot having bluish fluorescence and very short persistence. Types having this phosphor are especially useful in photographic applications involving film moving at very high speeds.

Phosphor P7 is a long-persistence, cascade (two-layer) screen. During excitation by the electron beam, this phosphor produces a bluish fluorescence of short persistence. After excitation, the screen exhibits a greenish-yellow phosphorescence which persists for several minutes. Types having this phosphor are particularly useful where either extremely low-speed recurrent phenomena or medium-speed nonrecurrent phenomena are to be observed.

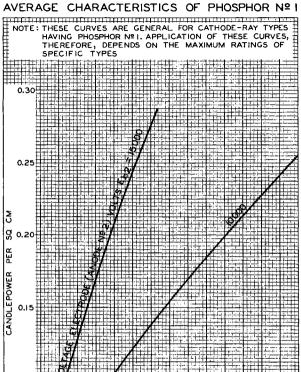
Phosphor PII produces a brilliant actinic spot of bluish fluorescence and has sufficiently short persistence to permit its use in all moving film photographic applications without blurring except in those where film moves at a high speed. PII screens, because of their unusually high brightness characteristic, may also be used for visual observation of phenomena.

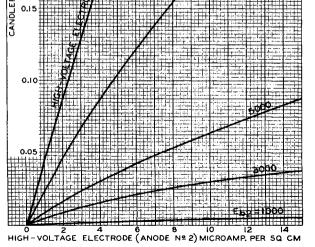
**Phosphor P12** is a medium-long-persistence phosphor which exhibits both orange fluorescence and phosphorescence. Types utilizing this phosphor are particularly useful for observing low- and medium-speed recurring phenomena.

**Phosphor P14** is a medium-long-persistence cascade (two-layer) screen. During excitation by the electron beam, this phosphor exhibits purple fluorescence of short persistence. After excitation, it exhibits an orange phosphorescence which persists for a little over a minute. Types utilizing this phosphor are particularly useful for observing either low- and medium-speed non-recurring phenomena or high-speed recurring phenomena.

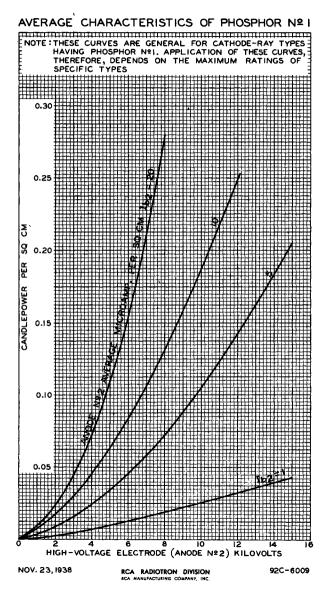
**Phosphor P15** produces a spot of very short persistence and having both blue-green and near-ultraviolet fluorescence. The persistence of the latter is even shorter than that of the blue-green fluorescence, a feature which makes this phosphor particularly suitable for the high-speed scanning requirements of a flying-spot signal generator.




### FEATURES OF FLUORESCENT SCREENS

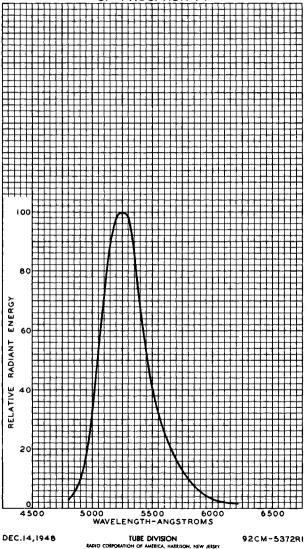

**Phosphor P16** produces a spot of extremely short persistence and has both violet and near-ultra violet fluorescence and phosphorescence. This phosphor is particularly useful for the high-speed scanning requirements of a flying-spot signal generator because it features a stable exponential decay characteristic.

**Phosphor P22** is the designation for three separate phosphors. used in combination in a color picture tube. The separate phosphors are blue, green, and red, respectively. The persistence of the group phosphorescence is classified as medium.


Phosphor P24 has a spectral-energy emission characteristic with peak in the blue-green region and with sufficient range to provide useable energy over the visible spectrum required for generating color signals from color transparencies. The persistence of the phosphor is extremely short.

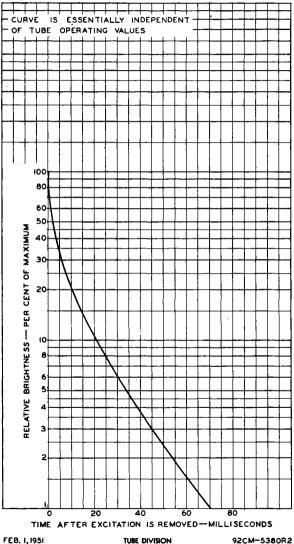






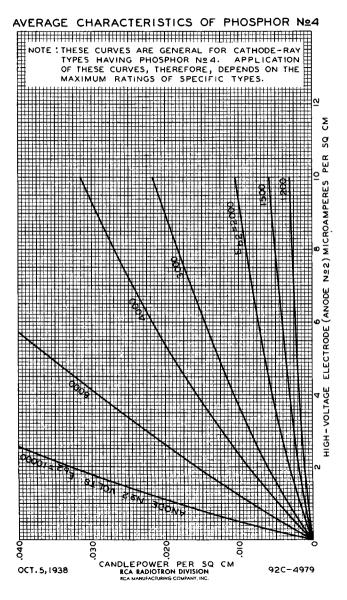




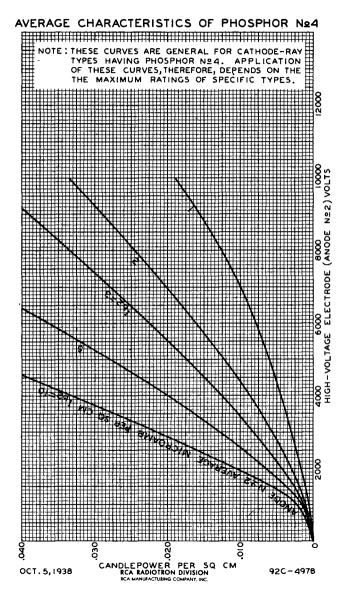



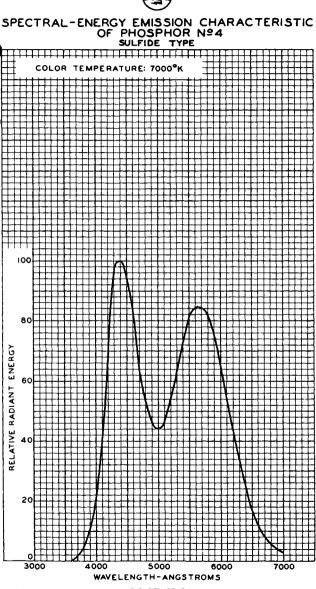

### SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR PI






### PERSISTENCE CHARACTERISTIC OF PHOSPHOR P1





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

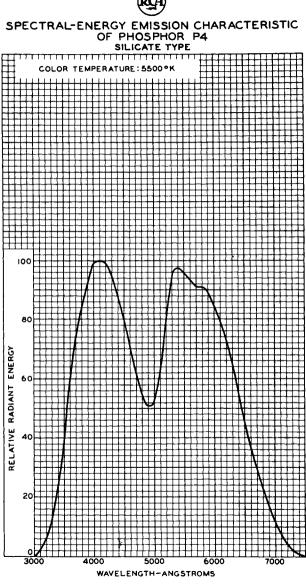








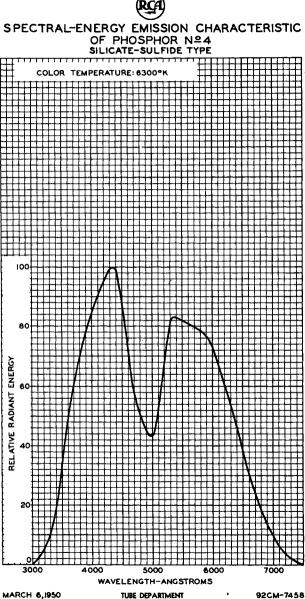



JULY 5,1949

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



### PERSISTENCE CHARACTERISTIC OF PHOSPOR Nº 4 SULFIDE TYPE


The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.

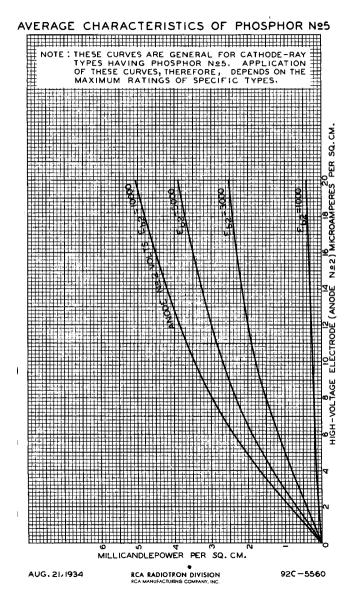


TUBE DIVISION

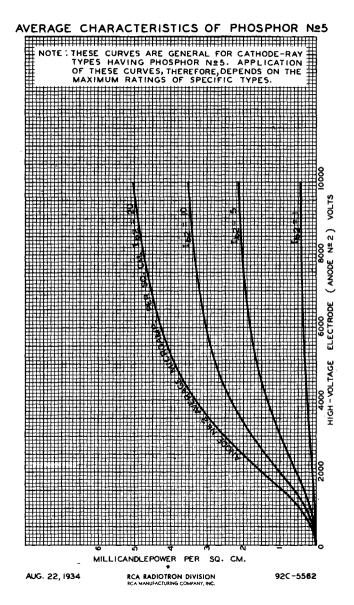
# PERSISTENCE CHARACTERISTIC OF PHOSPOR P4 SILICATE TYPE

The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.



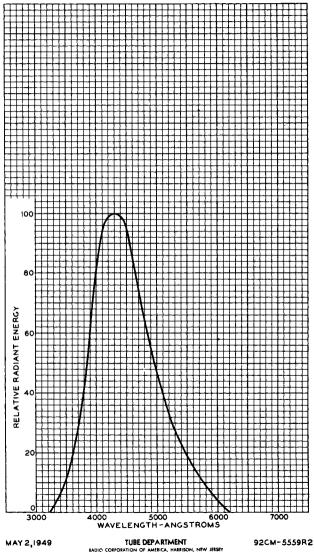

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




### PERSISTENCE CHARACTERISTIC OF PHOSPOR Nº 4 SILICATE-SULFIDE TYPE

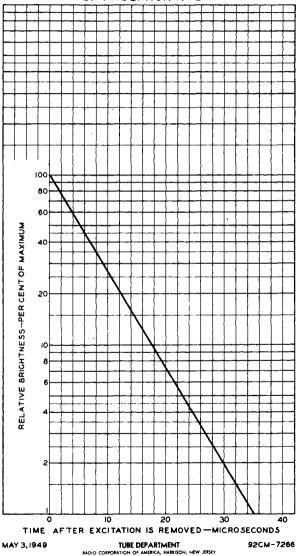
The persistence of the phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.



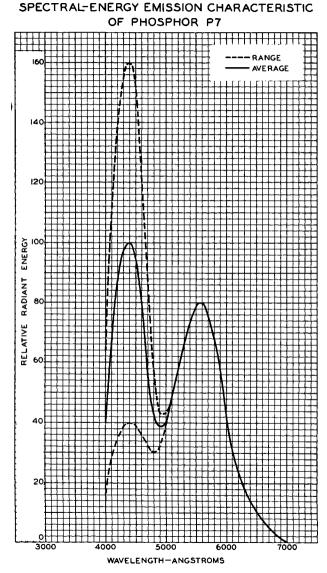






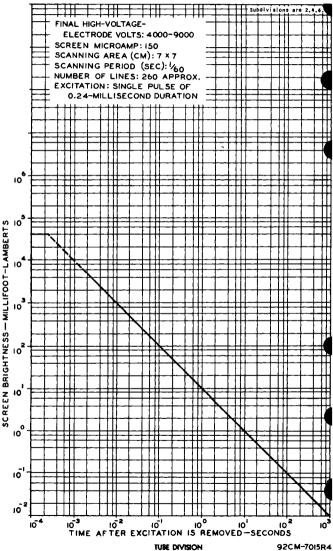

# SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR Nº 5






### PERSISTENCE CHARACTERISTIC OF PHOSPHOR Nº 5

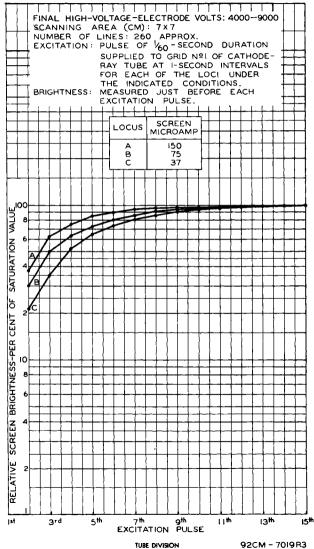







TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



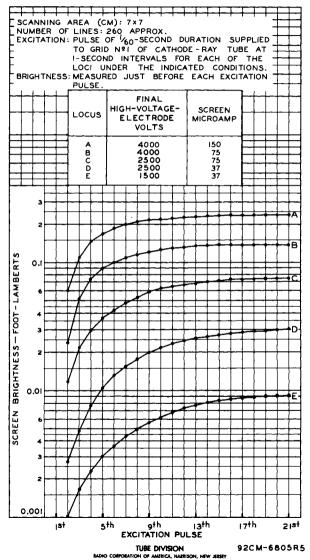

#### PERSISTENCE CHARACTERISTIC OF PHOSPHOR P7

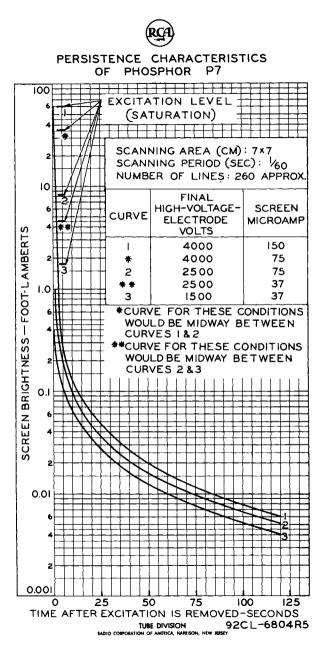


RADIO CORPORATION OF AMERICA, HARRISON, NEW JEISEY



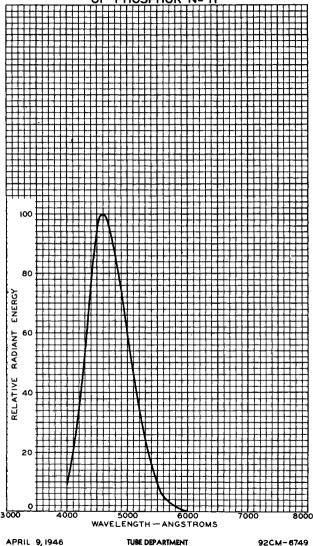
### BUILDUP CHARACTERISTICS OF PHOSPHOR P7





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM - 7019R3

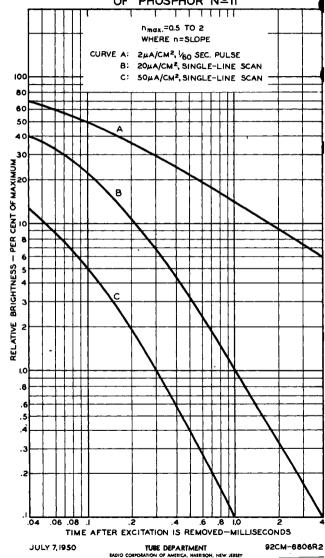



#### BUILDUP CHARACTERISTICS OF PHOSPHOR P7



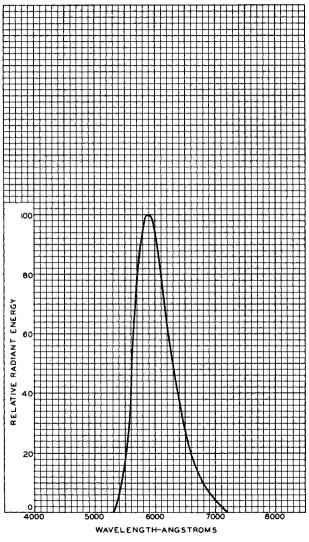





# SPECTRAL-ENERGY EMISSION CHARACTERISTIC



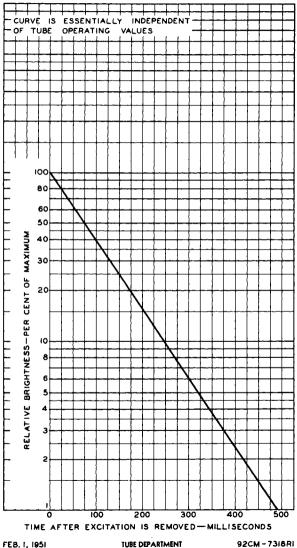
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




### PERSISTENCE CHARACTERISTICS OF PHOSPHOR NºII





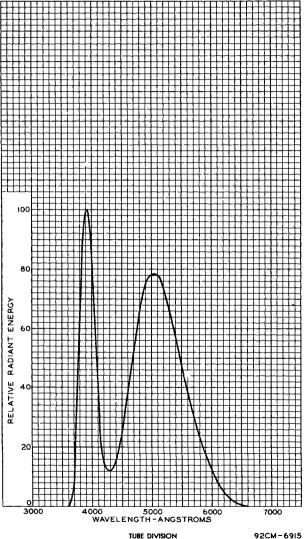

## SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR P12



JULY 18, 1949



### PERSISTENCE CHARACTERISTIC OF PHOSPHOR PI2

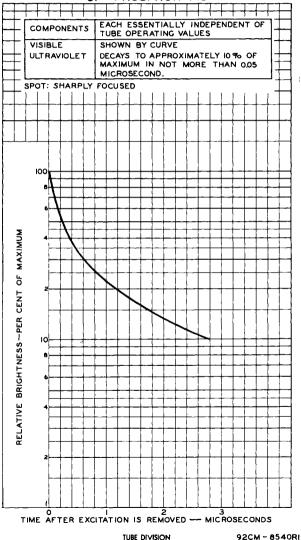



FEB. 1, 1951

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



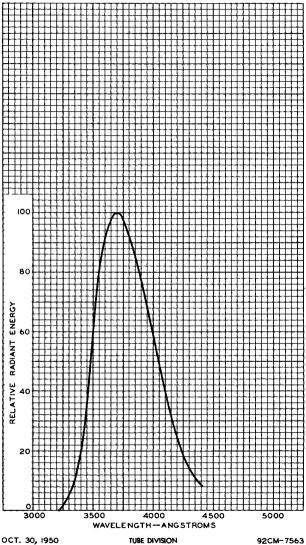
# SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR PI5




BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-6915

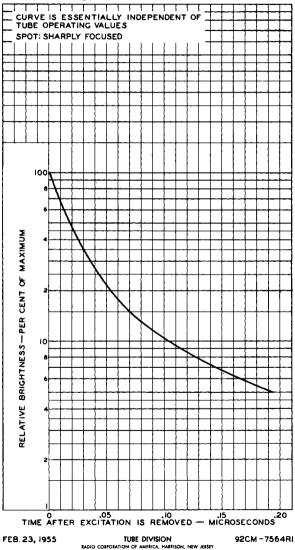



#### PERSISTENCE CHARACTERISTIC OF PHOSPHOR PI5



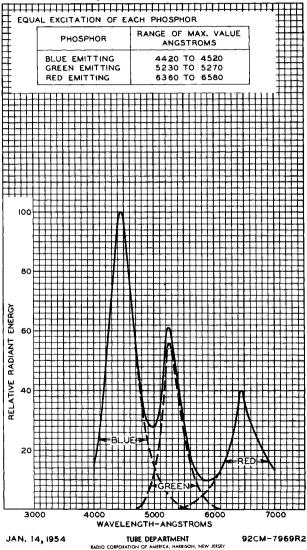
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




# SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF PHOSPHOR P16



BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

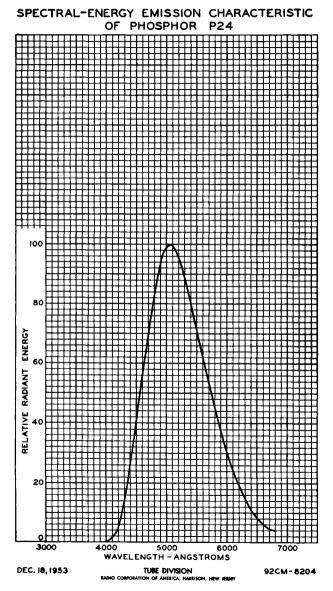



## PERSISTENCE CHARACTERISTIC OF PHOSPHOR PI6



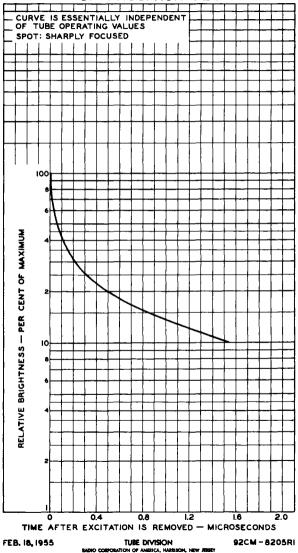


### SPECTRAL-ENERGY EMISSION CHARACTERISTIC OF GROUP PHOSPHOR P22



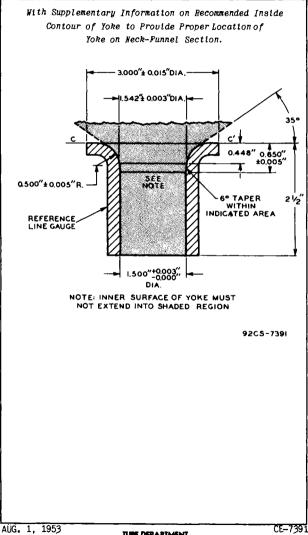



# PERSISTENCE CHARACTERISTIC OF GROUP PHOSPHOR P22


The persistence of the group phosphorescence is such that its brightness does not exceed 7 per cent of the peak value in 33 milliseconds after excitation is removed.

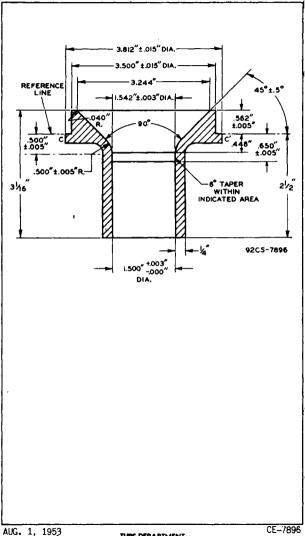







# PERSISTENCE CHARACTERISTIC OF PHOSPHOR P24






# REFERENCE-LINE GAUGE JETEC Nº 110





REFERENCE-LINE GAUGE JETEC Nº 116





# X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES

#### WARNING

All types of cathode-ray tubes may be operated at voltages (where ratings permit) up to 16 kilovolts (absolute value) without personal injury on prolonged exposure at close range.

Above 16 kilovolts, special shielding precautions for X-ray radiation may be necessary.



# DEFINITIONS OF CATHODE-RAY TUBE TERMS

**Ultor.** The "ultor" in a cathode-ray tube is the element to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection.

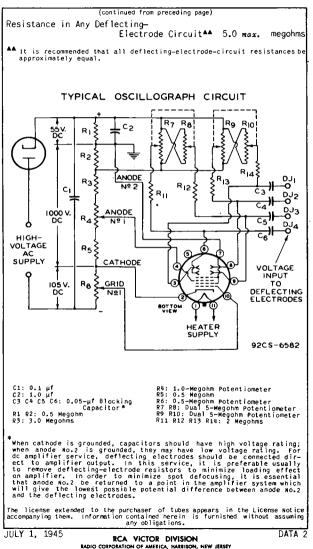
**Post-Ultor.** The "post-ultor" in a cathode-ray tube is the element to which is applied a dc voltage higher than the ultor voltage for accelerating the electrons in the beam after its deflection.

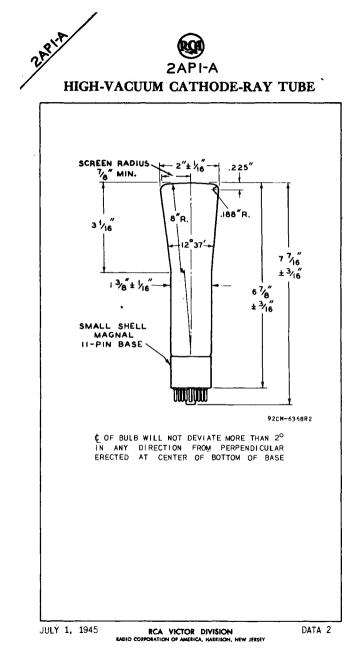


# NR BIA HIGH-VACUUM CATHODE-RAY TUBE

Supersedes Type 2AP1

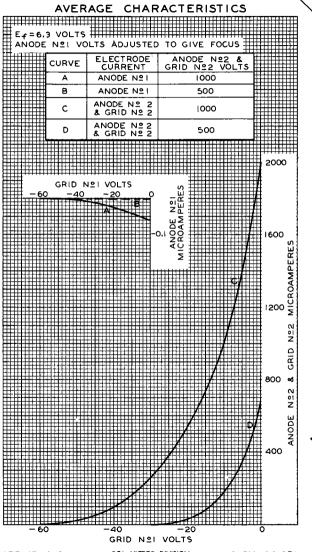
ł	
	General:
	Heater, for Unipotential Cathode: Voltage 6.3 ± 10% ac or dc volts Current 0.6
	Grid No.2 $DJ_1$ and $DJ_2$ are nearer the screen
	$DJ_3$ and $DJ_4$ are nearer the base
	With DJ ₁ positive with respect to DJ ₂ , the spot is deflected toward pin 4. With DJ ₃ positive with respect to DJ ₄ , the spot is deflected toward pin 1. The angle between the trace produced by DJ3 and DJ4 and its intersection with the plane through the tube axis and pin 1 does not exceed $10^{\circ}$ .
	The angle between the trace produced by DJ3 and DJ4 and the trace produced by DJ1 and DJ2 is $90^{\circ} \pm 4^{\circ}$ .


2API-A


# 24914 HIGH-VACUUM CATHODE-RAY TUBE

(continued from preceding page)
Maximum Ratings, Absolute Values:
ANODE-No.2 & GRID-No.2 VOLTAGE 1100 max. volts ANODE-No.1 VOLTAGE
GRID-No.1 (CONTROL ELECTRODE) VOLTAGE: Negative Value
PEAK VOLTAGE BETWEEN ANODE NO.2 AND ANY DEFLECTING ELECTRODE 660 max. volts PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode 125 max. volts Heater positive with respect to cathode 10 max. volts
Typical Operation:
Anode-No.2&Grid-No.2 Voltage* . 500 1000 volts Anode-No.1 Voltage for Focus at 75% of Grid-No.1 Volt-
age for Cutoff 125 250 volts
Grig—No.1 Volt. for Visual Cutoff≢ _30 _60 volts Max. Anode—No.1 Current Range≜ . Between -50 and +10 µamp. Deflection Sensitivity:
DJ1 and DJ2 0.220 0.110 mm/v dc DJ3 and DJ4 0.260 0.130 mm/v dc
Deficition Factor:**         115         230         v dc/in.           DJ1 and DJ2         .         .         .         .         115         230         .         v dc/in.           DJ3 and DJ4         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .
<ul> <li>★ Brilliance and definition decrease with decreasing anode-No.2 voltage. In general, anode-No.2 voltage should not be less than 500 volts.</li> <li>Individual tubes may require between +20% and -45% of the values shown with grid-No.1 voltages between zero and cutoff.</li> </ul>
I visual extinction of stationary focused spot. Supply should be adjust- able to ± 50% of these values.
See curve for average values, Individual tubes may vary from these values by ± 20%.
Spot Position:
The undeflected focused spot will fall within a 10-mm square centered at the geometric center of the tube face and having one side parallel to the trace produced by DJ and DJ_2. Suit- able test conditions are: anode-No.2 voltage, 1000 volts; anode-No.1 voltage, adjusted for focus; deflecting-electrode resistors, I megohm each, connected to anode No.2; the tube shielded from all extraneous fields. To avoid damage to the tube, grid-No.1 voltages.
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms Impedance of Any Deflecting-Electrode Circuit at Heater-Supply Frequency 1.0 max. megohm




# L'POL P HIGH-VACUUM CATHODE-RAY TUBE







URDIA



APR. 17, 1945

RCA VICTOR DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6410RI

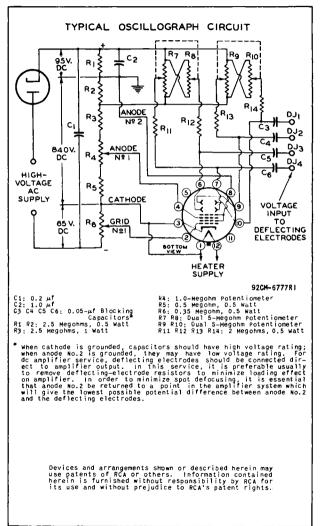


ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

DATA

Genera	1	:	

Heater, for Unipotential Cathode: Voltage. . . . . . . . . . 6.3 . . ac or dc volts Current. . . . . . . . . 0.6 amo Direct Interelectrode Capacitances (Approx.): Grid No.1 to All Other Electrodes. . . щuf 8  $DJ_1$  to  $DJ_2$  . . . . . . . . . . 2 μµf  $\mathbb{D}_3^{\frac{1}{2}}$  to  $\mathbb{D}_4^{\frac{1}{2}}$  . . . . . . . . . . . .  $\overline{2}$ μµf DJ1 to All Other Electrodes. . . . . DJ2 to All Other Electrodes. . . . . DJ2 to All Other Electrodes. . . . . . DJ3 to All Other Electrodes. . . . . . 11 μµf 8 шuf 7 μµf DJ₄ to All Other Electrodes. . . R μµf < Phosphor (For Curves, see front of this Section) . No.1 Fluorescence . . . . . . . . . Green Persistence. . . Medium Electrostatic Focusing Method Deflection Method. . . . . . Electrostatic . . 7-5/8" ± 3/16" Overall Length . . . Greatest Diameter of Eulb. . . 2" ± 1/16" Minimum Useful Screen Diameter . 1-3/4" Mounting Position. . . . . . Any . Small-Shell Duodecal 12-Pin 12F Pin 8 - Anode No. 2. Pin 1-Heater Grid No.2 Pin 2-Grid No.1 Pin 3 - Cathode Pin 9 - Deflecting Pin 4 - Anode No. 1 Flectrode Pin 5-Internal  $\mathbb{D}_2$ Connection-Pin 10 - Deflecting Do Not Use Electrode Pin 6 - Deflecting DJ1 Electrode Pin 11-Internal DJa Connection--Pin 7 - Deflecting Do Not Use Electrode Pin 12-Heater DJ⊿ D.T, and DJ₂ are nearer the screen  $D\dot{J}_3$  and  $D\ddot{J}_4$  are nearer the base With DJ1 positive with respect to DJ2, the spot is deflected toward pin 4. With DJ3 positive with respect to DJ4, the spot is deflected toward pin 1. The plane through the tube axis and pin No.4 may vary from the trace produced by DJ1 and DJ2 by an angular tolerance (measured about the tube axis) of 10°. The angle between DJ1 - DJ2 trace and DJ3 - DJ4 trace is 900 ± 30. 🗲 Indicates a change

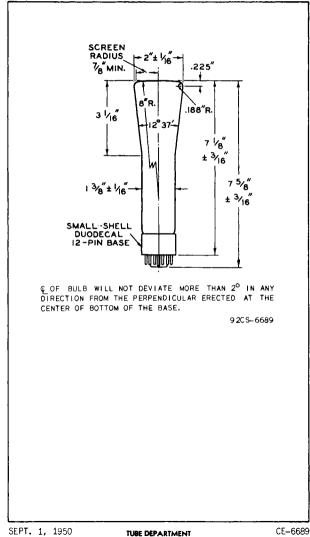

**RAD** 

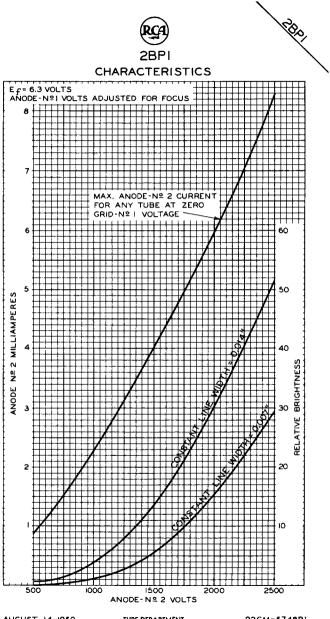




	· · · · · · · · · · · · · · · · · · ·
	Maximum Ratings, Design-Center Values:
-7	ANODE-No.2 [•] VOLTAGE
-	Negative bias value.         200 max.         volts           Positive bias value.         0 max.         volts           Positive peak value.         2 max.         volts
	PEAK VOLTAGE BETWEEN ANODE No.2 AND ANY DEFLECTING ELECTRODE 500 max. volts
	PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode. 125 max. volts Heater positive with respect to cathode. 125 max. volts
	Equipment Design Ranges:
	For any anode-No.2 voltage $(E_{b_0})$ between 500* and 2500 volts
	Anode-No.1 Voltage 15% to 28% of Eb2 volts
*	Max.Grid-No.1 Voltage for Visual Cutoff 6.75% of Eb2 volts Max.Anode-No.1
	Current Range15 to +10 microamperes
+	Deflection Factors:         Dif & Dig.         Dif &
	Examples of Use of Design Ranges:
i	For anode-No.2 voltage of 1000 2000 volts
	Anode-No.1 Voltage 150 - 280 300 - 560 volts Max. Grid-No.1 Voltage
	for Visual Cutoff67.5 -135 volts Deflection Factors: DJ1 & DJ2 115-155 230-310 volts dc/in. DJ3 & DJ4 74-100 148-200 volts dc/in.
	Maximum Circuit Values:
	Grid-No.1-Circuit Resistance 1.5 max. megohms Resistance in Any Deflecting- Electrode Circuit ^o 5.0 max. megohms
	Brilliance and definition decrease with decreasing anode—No.2 voltage. A value as low as 500 volts is recommended only for low—velocity de- flection and low room—light levels.
	o It is recommended that the deflecting-electrode-circuit resistances to conserving talk equal
	<ul> <li>Anode No.2 and grid No.2 which are connected together within tube, are referred to herein as anode No.2. The product of anode-No.2 voltage and average anode-No.2 current should be limited to 6 watts.</li> </ul>
	D The center of the undeflected, focused spot will fall within a circle having a 5.0-mm radius concentric with the center of the tube face.
	→ Indicates a change.



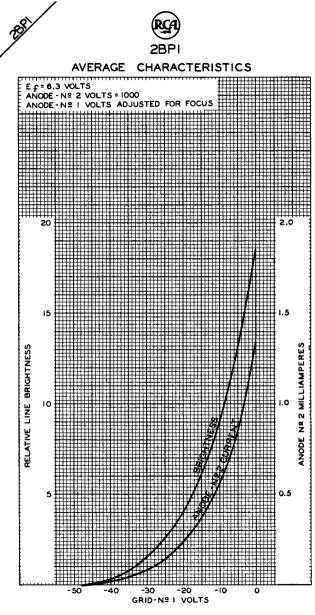




SEPT. 1, 1950

CE-6777R1

Rep








AUGUST 14, 1950

92CM-6748R1

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



AUGUST 14, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY



ELECTROSTATIC FOCUS

ELECTROSTATIC DEFLECTION

**SO**DII

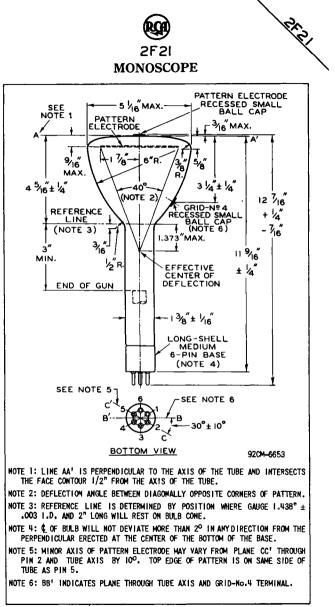
The 2BP11 is the same as the 2BP1 except that it has a phosphor of the short-persistence, blue-fluorescence type designated P11. The blue radiation of the P11 screen is highly actinic and has sufficiently short persistence to permit use of the 2BP11 in all moving film photographic applications without blurring except in those where film moves at a high speed. The 2BP11 is also quite satisfactory for visual observation of phenomena because its phosphor has unusually high brightness for a blue screen.

In general, operation of the 2BP11 at an anode-No.2 voltage less than 1000 volts is not recommended.

THE SPECTRAL-ENERGY EMISSION CHARACTERISTIC and the PERSISTENCE CHARACTERISTIC of the P11 Phosphor are shown at the front of this Section MONOSCOPE



5-INCH MAGNETIC-DEFLECTION TYPE Supersedes Type 1899


Supersedes Type 1899	
General:	:
Pin 2-Grid No.2 3 En	. 7 μμf . 5 μμf ration on next page 2-5/16" x 3-1/16" Up to 500 lines . Electrostatic 
1 6	
Maximum Ratings, Design-Center Values:	
PATTERN-ELECTRODE VOLTAGE. GRID-No.4 (COLLECTOR) VOLTAGE. GRID-No.3 (FOCUSING ELECTRODE) VOLTAGE. GRID-No.2 (ACCELERATING ELECTRODE) VOLT. GRID-No.1 (CONTROL ELECTRODE) VOLTAGE: Negative Bias Value. Positive Bias Value. PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode	125 max. volts 0 max. volts 125 max. volts
Heater positive with respect to cathode	125 max. volts
Typical Operation: ¶ Pattern-Electrode Voltage Grid-No.4 Voltage., Grid-No.3 Voltage for Focus at	1000 volts 1050 volts
0.5 µamp Grid-No.4 Current Grid-No.2 Voltage Grid-No.1 Voltage for	
Visual Cutoff on Monitor∦ Internal Resistance between	
Grid No.4 and Pattern Electrode Grid-No.4 Current	Greater than 1 meg. 0.5 µamp
<b>↑</b> , <b>▲</b> ; see next page. IINE 20, 1946	
	TENTATIVE DATA



# 2F2I MONOSCOPE

Pattern-Electrode Signal Current (Peak-to-Peak) 0.5 approx.µamj Resolution Capability**
faximum Circuit Value:
Grid-No.1-Circuit Resistance 1.5 max. megohms
Individual tubes may require between + 20% and - 20% of these values. Deflection must be maintained at all times. When scanned area does no cover entire pattern, the beam current should be reduced according and time of operation limited to prevent damaging the pattern. Supply should be adjustable between + 40% and - 80% of this value.
PATTERN
575
9263-6665

•





# IMAGE ORTHICON

MAGNETIC FOCUS--MAGNETIC DEFLECTION

#### DATA

DA	TA
General:	- 1
Heater, for Unipotential Cathoo Voltage	3 ± 10%       ac or dc volts         amp       amp         bec       μμf         See Curve       See Curve         bec       Magnetic         bec       Magnetic         bec       Magnetic         bec       Magnetic         bec       Magnetic         bec       bec         bec
End Base	less than 20° from the vertical . Small-Shell Diheptal 14-Pin BOTTOM VIEW
Pin 1-Heater Pin 2-Grid No.4 Pin 3-Grid No.3 Pin 4-Internal Connec- tion	DIRECTION OF LIGHT: PERPENDICULAR TO LARGE END OF TUBE
Pin 5-Dynode No.2 Pin 6-Dynode No.4 Pin 7-Anode Pin 8-Dynode No.5 Pin 9-Dynode No.3 Pin 10-Dynode No.1,	
Grid No.2 Pin 11 - Internal Connec- tionDo Not Use Pin 12 - Grid No.1 Pin 13 - Cathode	
Pin 14 - Heater	WHITE INDEX LINE ON FACE
Shoulder Base	••••• Jumbo Annular 7-Pin
Pin 1-Grid No.6 Pin 2-Photocathode Pin 3-Internal Connec- tion-Do Not Use Pin 4-Internal Connec- tionDo Not Use	Pin 5-Grid No.5 Pin 6-Target Pin 7-Internal Connec- tion-Do Not Use
← Indicates a change.	
NAD 15 1010	

MAR. 15, 1948

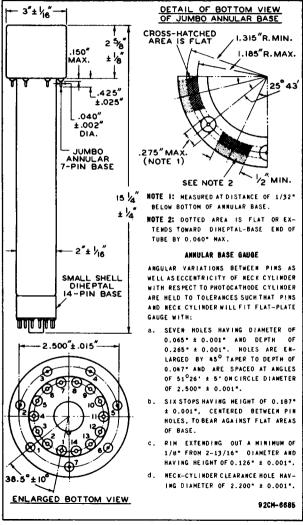
2023



2P23 IMAGE ORTHICON

· · · · · · · · · · · · · · · · · · ·			
Maximum Ratings, Absolute Values:			
PHOTOCATHODE VOLTAGE	-550	max.	volts
PHOTOCATHODE ILLUMINATION.	50	max.	
PHOTOCATHODE ILLUMINATION	65	max.	
OPERATING TEMPERATURE OF BULB AT	••		
LARGE END OF TUBE (Target Section)	35	min.	o
TEMPERATURE DIFFERENCE BETWEEN TARGET			
SECTION AND ANY PART OF BULB HOTTER			
THAN TARGET SECTION.	5	max.	°0
GRID-No.6 VOLTAGE.	-550		
TARGET VOLTAGE:	-000	max	VUILS
Positive value	50	max.	volts
Negative value		max.	
GRID-No.5 VOLTAGE		max.	
GRID-No.4 VOLTAGE		max.	
GRID-No.3 VOLTAGE		max.	
GRID-No. 2 & DYNODE-No. 1 VOLTAGE.	350	max.	volts
GRID-No.1 VOLTAGE:			
Negative bias value		max.	
Positive bias value.	0	max.	volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect to cathode		max.	
Heater positive with respect to cathode		max.	
ANODE-SUPPLY VOLTAGE	1650		
VOLTAGE PER MULTIPLIER STAGE	350	max.	volts
→Typical Operation:			
Photocathode Voltage (Image Focus)	-300 to	-500	volts
Grid-No 6 Voltago (Accolerator)	/**	000	
80% of photocathode voltage*	-240 to	-400	volts
Target Voltage Grid-No.5 Voltage (Decelerator) ••	0		volts
Grid-No.5 Voltage (Decelerator).	0 to		volts
igi igi no.4 voitade theam focusi	160 to		volts
Grid-No.3 Voltage#	225 to		volts
Grid-No.2 & Dynode-No.1 Voltage	300	500	
Grid-No.2 & Dynode-No.1 Voltage. Grid-No.1 Voltage (For Picture Cutoff)	-15 to	OF	volts volts
Dynode-No.2 Voltage.	600	-00	
Dynode-No.3 Voltage	880		volts
Dynode-No.4 Voltage.	1160		volts
Dynode-No.5 Voltage.			volts
Anode Voltage.	1450		volts
Anode Current.	1500		volts
Target Temperature Range	50	••	μamp
Ratio of Peak-to-Peak Highlight	35 to	60	, oc
Video-Signal Current to			
RMS Noise Current (Approx.).	25		
Minimum Peak-to-Peak Blanking Voltage	35		• ·
Field Strength at Center of	10		volts
Focusing Coil	75		
	/5		gausses
•,*,•,••,#: See next page.			
->indicates a change.			
k	· · · ·		

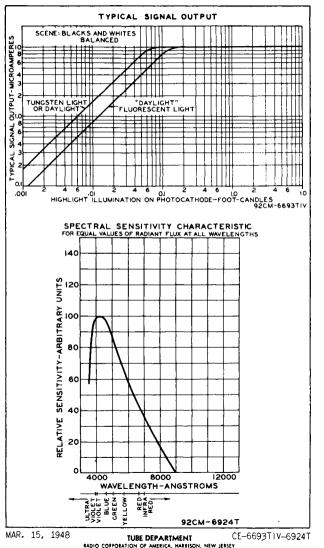





Focusing-Coil Current (Approx.) for		
coil listed below)	75	ma
Deflecting-Coil Current (Approx. for		1
assembly listed below):		
Horizontal (Peak to Peak)	625	ma
	290	
Vertical (Peak to Peak)	290	ma
Alignment-Coil Current (Approx. for	<b>a</b>	
coil listed below}	0 to 30	ma
Components:		
-		
Deflecting-Coil Assembly (Includes		
Keyed Jumbo Annular 7-Pin Socket)	RCA Type No.	201D75
Focusing-Coil Assembly	RCA Type No.	202D75
Alignment-Coil Assembly	RCA Type No.	204075
Hor. Deflection Output Transformer	RCA Type No.	
Ver. Deflection Output Transformer	RCA Type No.	204T2
ver, berrection output fransformer.	RCA Type No.	20412
Ratio of dynode voltages is shown under Typic.	al Operation.	
* For best operation, this voltage should be a indicated value. For simplified equipment, t	djustable within	± 25% of
Indicated varue. For simplified equipment, t	nis voitage can b	e fixed.
<ul> <li>Adjustable within ± 3 volts of indicated valuoff.</li> </ul>	e, with blanking	voltage
Taps at 0, 30, 60, and 90 volts are recommend		
most uniform resolution and signal output ove	eu, sei ai vontag rentire oicture	area.
# Adjust to give the most uniformly shaded pict		
		Jighun
OPERATING NOTES		
		- 4 - 4 - 1
After the 2P23 has been inserted in		
voltages applied, allow it to warm up for		
the camera lens iris closed. Then, proc	eed with norma	l oper-
ating adjustments.		
When the equipment design or operating		
that the maximum temperature rating or		
difference will be exceeded, provision s		
rect a blast of cooling air from the dih	eptal-base end	of the
tube along the entire length of the bulb s		
the space between the bulb surface and		
flecting coil and its extension. For t		
blower is satisfactory, but it should run		
vent vibration of the 2P23 and the associ		
ment. Unless vibration is prevented, dist may occur. To keep the operating tempera		
of the tube from falling below 45°C, som	ture of the ra	TOILAD
heating should be employed. Ordinarily,	adequate heat	
supplied by the focusing coil, deflection	coile and ass	ocleted
amplifier tubes so that the temperature	can be control	lled by
the amount of cooling air directed along		
Resolution of better than 400 lines		
picture can be produced by the 2P23 when	the highlight	111um1-1
nation is above the knee of the typical		
for this type. To utilize such resoluti		
horizontal direction with the standard		
lines, it is necessary to use a video amp	lifier having	a band-
width of at least 5.5 megacycles. The m.	aximum resolut	ion ob-
tainable is limited by the mesh-screen p		
		-
←Indicates a change.		

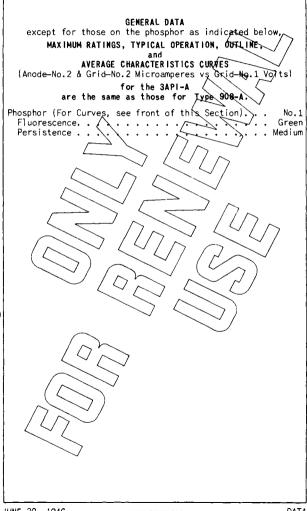
MAR. 15, 1948











2023

# CHARACTERISTIC CURVES











JER I A

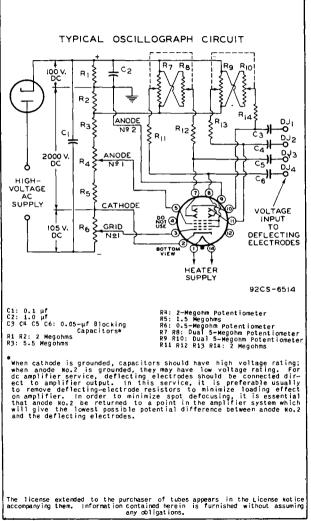


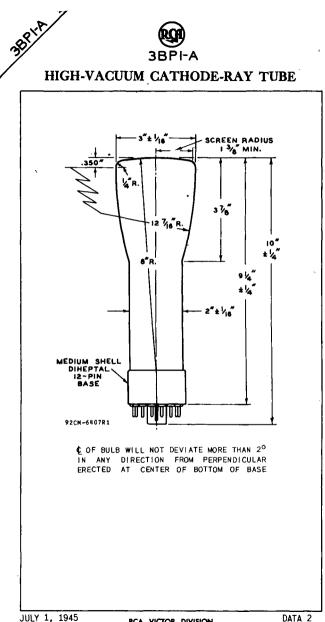
General: Heater, for Unipotential Cathode: Voltage. . . . . . . . 6.3 ± 10% . . . . ac or dc volts Current. . . . . . . . . . 0.6 amp. Direct Interelectrode Capacitances (Approx.): Grid No.1 to All Other Electrodes. 8.5 μµf Cathode to All Other Electrodes. 8.0 μµf 2.0 ццf μµf uuf μµf μuf μµf μµf μµf Phosphor (For Curves, see front of this Section) . . . No.1 Fluorescence Green Persistence. . . Medium Focusing Method. . . Flectrostatic Deflection Method. . . . . . . . . . . . . . . . . Electrostatic Overall Length . . . Uverail Length . Greatest Diameter of Bulb. 10" ± 1/4" 3" + 1/16" Minimum Useful Screen Diameter . . . . . . . . . . 2-3/4" se . . . . . . . . . . . . . . . . . . Mediur Basing Designation for BOTTOM VIEW . . 140 Pin 9-Anode No.2 Pin 1-Heater 7.8 Pin 2 - Cathode Grid No.2 Pin 3-Grid No.1 Pin 10-Deflecting Pin 4-Internal Con. 4 Electrode Do Not Use DJ₂ Pin 5-Anode No.1 Pin 11-Deflecting Pin 7-Deflecting Electrode KEY Electrode DJ3 DJ1 Pin 8-Deflecting Pin 12 - No Conn. Electrode DJA Pin 14-Heater  $DJ_1$  and  $DJ_2$  are nearer the screen  $DJ_3$  and  $DJ_4$  are nearer the base With DJ1 positive with respect to DJ2, the spot is deflected toward pin 5. With DJ3 positive with respect to DJ₄ the spot is deflected toward pin 2. The angle between the trace produced by  $DJ_1$  and  $DJ_2$  and its intersection with the plane through the tube axis and pin 5 does not exceed 10⁰. The angle between the trace produced by  $DJ_3$  and  $DJ_4$  and the trace produced by  $DJ_1$  and  $DJ_2$  is 900  $\pm$  30. Maximum Ratings, Abolute Values: ANODE-No.2 & GRID-No.2 VOLTAGE 2200 max. volts ANODE-No.1 VOLTAGE 1100 max. voits DATA 1 JULY 1. 1945 RCA VICTOR DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



٤





# HIGH-VACUUM CATHODE-RAY TUBE

(continued from preceding page)					
GRID-No.1 (CONTROL ELECTRODE) VOLTAGE:					
Negative Value					
PEAK VOLTAGE BETWEEN ANODE No.2 AND ANY DEFLECTING ELECTRODE 550 max. volts					
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode 125.max. volts Heater positive with respect to cathode 10 max. volts					
Typical Operation:					
Anode-No.2 & Grid-No.2 Voltage . 1500 2000 volts					
Anode No.1 Voltage for Focus at 75% of Grid—No.1 Volt—					
age for Cutoff . 430 575 volts					
Grid—No.1 Voit.for Visual Cutoff# -45 -60 voits Max. Anode—No.1 Current Range≜ Between -50 and +10 µamp.					
Max. Anode—No.1 Current Range≜ Between —50 and +10 µamp. Deflection Sensitivity:					
DJ1 and DJ2 0.169 0.127 mm/v dc					
DJ3 and DJ4 0.229 0.172 mm/v dc					
Deflection Factor:** DJ1 and DJ2					
UJ1 and DJ2 150 . 200 v dc/in. DJ3 and DJ4					
<ul> <li>Brilliance and definition decrease with decreasing anode-No.2 voltage. In general, anode-No.2 voltage should not be less than 1500 volts.</li> <li>Individual tubes may require between ±20\$ and -30\$ of the values shown with grid-No.1 voltages between zero and cutoff.</li> <li>Visual extinction of stationary focused spot. Supply should be adjustable to ± 50\$ of these values.</li> <li>A see curve for average values.</li> <li>Individual tubes may vary from these values by ± 20\$.</li> </ul>					
Spot Position:					
The undeflected focused spot will fall within a 15-mm square centered at the geometric center of the tube face and having one side parallel to the trace produced by DJ and DJ2. Suit- able test conditions are: anode-No.2 voltage, 1500 volts; anode-No.1 voltage, adjusted for focus; deflecting-electrode resistors, I megohm each, connected to anode No.2; the tube shielded from all extraneous fields. To avoid damage to the tube, grid-No.1 voltages.					
Maximum Circuit Values:					
Grid-No.1-Circuit Resistance 1.5 max. megohms Impedance of Any Deflecting-Electrode					
Circuit at Heater-Supply Frequency 1.0 max. megohm Resistance in Any Deflecting-					
Electrode Circuit ^{AA} 5.0 max. megohms AA It is recommended that all deflecting-electrode-circuit resistances					
be approximately equal.					
JULY 1, 1945 RCA VICTOR DIVISION DATA :					

3BPI-A

388.1986 HIGH-VACUUM CATHODE-RAY TUBE









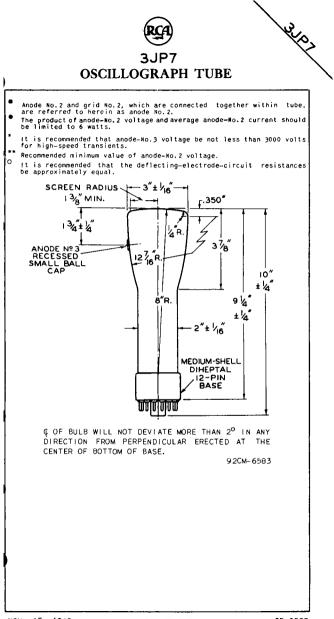
**OSCILLOGRAPH TUBE** POST-DEFLECTION ACCELERATOR

ELECTROSTATIC DEFLECTION ELECTROSTATIC FOCUS

DATA	
veneral:	
Heater, for Unipotential Cathode:	
Voltage 6.3 Current 0.6	ac or dc volts
Direct Interelectrode Capacitances (App	amo
Unrect Interelectrode Lapacitances (App	rox.):
Grid No.1 to All Other Electrodes Cathode to All Other Electrodes	••• 8 ••• μμf
Die to Dio	
DJ1 to DJ2	$ 2.5 \mu\mu f$ 2 $\mu\mu$ f
$DJ_1$ to All Other Electrodes	
$W_2$ to All Other Electrodes	$ 7 \mu\mu f$
Di ta All Othar Electrodoc	7
Die to All Other Electrodes	8 muf
Phosphor (For Curves see front of this	Section) No.7
Phosphor (For Curves, see front of this Fluorescence	Bluel
Phosphorescence.	Greenish-Yellow -
Persistence.	Long
Focusing Method	
Deflection Method	Electrostatic
Overall Length	10" ± 1/4"
Overall Length	3" ± 1/16"
Minimum Usetul Screen Diameter	
Mounting Position	Any
Сар	. Recessed Small Ball
Base Medium	-Shell Diheptal 12-Pin
Vounting Position. Cao	14J ₁
Pin 1-Heater	Pin & - Anode No.2,
Pin 2 - Cathode	Grid No.2
Pin 3 - Grid No.1 (7.0)	Pin 10 - Deflecting
(9)	Electrode
Connection-	DJ2
Do Not Use	Pin 11 - Deflecting
Pin 5 - Anode No.1 3	Electrode
Pin 7-Deflecting	D1
Electrode	Pin 12 – No
DJ3	Connection
Pin 8 – Deflecting	Pin 14 - Heater
Electrode DJ ₄	Cap - Anode No.3
$DJ_1$ and $DJ_2$ are nearer th	a coraan
$DJ_{3}$ and $DJ_{4}$ are nearer t	the base
With $DJ_1$ positive with respect to $DJ_2$ ,	the spot is deflected
toward pin 5. With DJ3 positive with spot is deflected toward pin 2.	respect to W4, the
The plane through the tube axis and	each of the following
items may vary from the trace produced	by DJ1 and DJ2 by the
following angular tolerances measured	about the tube axis :
Pin 5, 10°; Cap (on same side of tube a	as pin 5), 10 ⁰ .
The angle between $DJ_1 - DJ_2$ trace and $DJ_3$	
	🛶 Indicates a change.
NOV. 15, 1949 TIRE DEPARTMENT	DATA



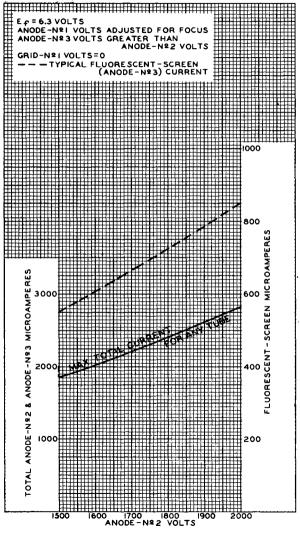
r




## **OSCILLOGRAPH TUBE**

Maximum Ratings, Design-Center Values:	
	olts
ANODE-NO.2 VOLTAGE 2.3:1 max.	olts
Negative bias value         200 max.           Positive bias value         0 max.           Positive peak value         2 max.	volts volts volts
PEAK HEATER-CATHODE VOLTAGE:	olts olts
	olts
Equipment Design Ranges: For any anode-No 3 voltage (Ebs) between 2000° and 4000 v	olts
and any anode-No.2 voltage (Eb2) between 1500** and 2000 1	
Anode-No.1 Voltage 20% to 34.5% of Eb2 Max. Grid-No.1 Voltage for	olts
Visual Cutoff 4.5% of Eb2 v Anode-No.1 Current for any Operating Condition	volts μamp
When         Ebg = 2 × Ebg           DJ1 & DJ2         85 to 115         v dc/in./kv o           DJ3 & DJ4         62.5 to 85         v dc/in./kv o	f Eb2 f Eb2
<i>When Eb₃ = Eb₂</i> DJ1 & DJ2 68 to 92 v dc/in./kvo DJ3 & DJ4 50 to 68 v dc/in./kvo	f Eb2 f Eb2
Examples of Use of Design Ranges:	
	olts) olts
Anode-No.1 Voltage 400-690 300-515 400-690 Max. Grid-No.1 Volt-	olts
	olts
DJ1 & DJ2 136-184 127-173 170-230 v do	c/in. c/in.
Maximum Circuit Values:	
Resistance in any Deflecting-	johms
Electrode Circuit ^o 5.0 max. meg	johms
■,●,*,**, ^O : See mext page.	
NOV 15 1949	DATA

NOV. 15, 1949


٦

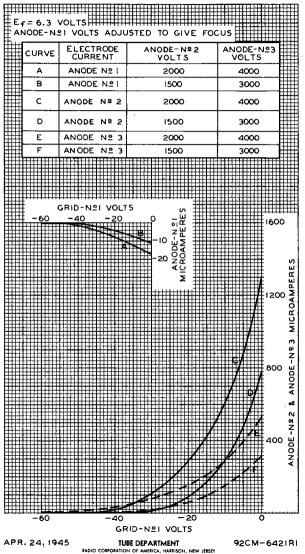






#### CHARACTERISTICS




DEC. 30, 1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





#### AVERAGE CHARACTERISTICS

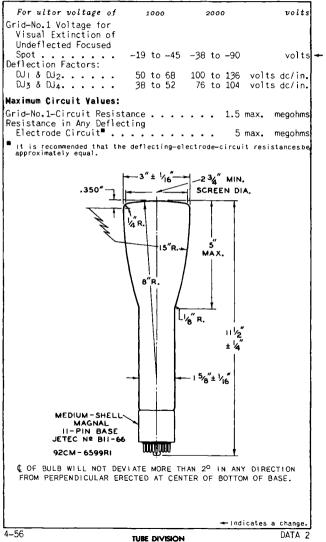


**3KPI** 



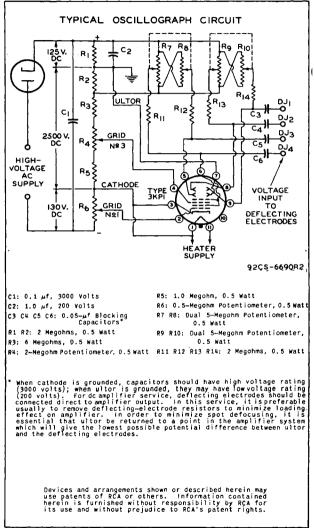
# **OSCILLOGRAPH TUBE**

030	JILLUGKAFN IUDE
ELECTROSTATIC FC	CUS ELECTROSTATIC DEFLECTION
	DATA
General:	
Heater, for Unipoter	
Voltage	
Current	0.6 ± 10%
	be capacitances (Approx.). other electrodes $\dots \dots
Deflecting electro	
deflecting elect	
Deflecting electro	
deflecting elect	
DJ1 to all other e	electrodes 11 $\mu\mu$ f
DJ2 to all other e	electrodes 8 µµf
DJ3 to all other e	electrodes
_DJ4 to all other e	electrodes
Faceplate	
	s, see front of this Section) P1
Phosphorescence . Persistence	
Focusing Method	
Deflection Method	Electrostatic
	Eulb
	n Diameter
Sulb	
Base Mec	ium-Shell Magnal 11-Pin (JETEC No.B11-66)
Basing Designation	tor BOTTOM VIEW 11M
Pin 1-Heater	Pin 8-Deflecting
Pin 2–Gria No.1	Electrode
Pin 3-Cathode	DJ2
Pin 4 - Grid No.3	Pin 9-Deflecting
Pin 5 - Deflecting Electrode	3 7 Electrode
DJ3	
Pin 6 - Deflecting	Pin 10 - Internal
Electrode	Connection- Do Not Use
DJa	(1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$
Pin 7-Ultor	
(Grid No.2,	
Grid No.4,	
Collector	
	nd DJ ₂ are nearer the screen
DJ ₃ a	and DJ ₄ are nearer the base
	←Indicates a change.
4-56	TUBE DIVISION DATA 1





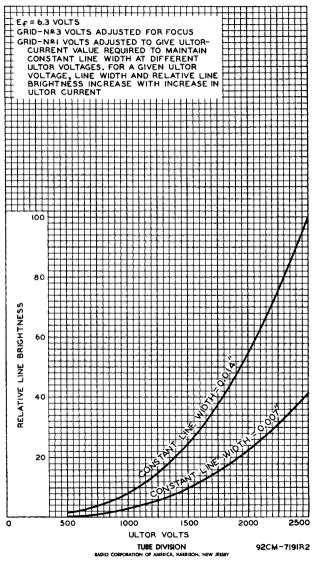

With DJ1 positive with respect to DJ2, the spot is deflected toward pin 4. With DJ3 positive with respect to DJ4, the spot is deflected toward pin 1. The plane through the tube axis and pin 1 may vary from the trace produced by DJ3 and DJ4 by  $\pm 10^\circ$  (measured about the tube axis). The angle between  $M_1 - M_2$  trace and  $M_3 - M_4$  trace is 90° ±30. Maximum Ratings, Design-Center Values: UI TOR VOLTAGE . 2500 max. volts ULTOR INPUT (AVERAGE) . watts 6 max. GRID-No.3 VOLTAGE . 1000 max. volts GRID-No.1 VOLTAGE: 200 max. volts Negative bias value . . volts Positive bias value . . 0 max. . Positive peak value . volts 2 max. PEAK VOLTAGE BETWEEN ULTOR AND ANY DEFLECTING ELECTRODE. . . 500 max. volts PEAK HEATER-CATHODE VOLTAGE: 125 max. volts Heater negative with respect to cathode . Heater positive with respect to cathode . 125 max. volts Equipment Design Ranges: For any ultor voltage (Ec_A) between recommended minimum" and 2500 volts Grid-No.3 Voltage for Focus . . . 16% to 30% of E_{c.} volts Grid-No.1 Voltage for Visual Extinction of Undeflected Focused 1.9% to 4.5% of Ec. volts Spot. . . . . . . . . . Grid-No.3 Current for Any Operating Condition. . . . -15 to +10 µamo Deflection Factors: v dc/in./kv of Ec4  $W_1 \& W_2 ....$ 50 to 68 v dc/in./kv of Ec 38 to 52 ## Examples of Use of Design Ranges: For ultor voltage of 1000 2000 volts Grid-No.3 Voltage 160 to 300 320 to 600 volts for Focus . . . . . . . . Brilliance and definition decrease with decreasing ultor voltage. Rec-ommended minimum for the 3KPL in general service is 1000 volts but a value as low as 500 volts may be used under conditions of low-velocity deflection and low ambient-light levels. ## The center of the undeflected focused spot will fall within a circle having 7.5-mm radius concentric with the center of the tube face. - Indicates a change.

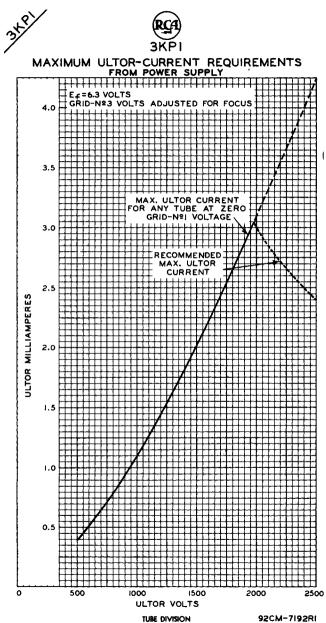








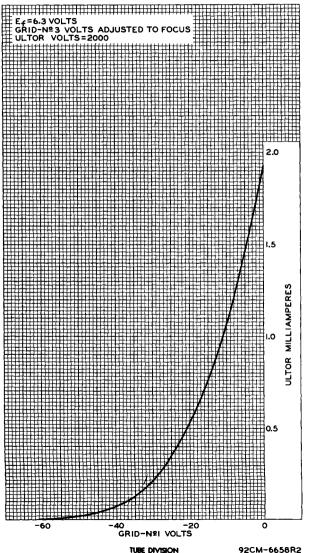





### CHARACTERISTICS






RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7192RI





#### AVERAGE CHARACTERISTIC



ADIO CORPORATION OF AMERICA, HARRISON; NEW JEESEY





ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 3KP4 is the same as the 3KP1 except for the following items:

#### General:

Phosphor (For curves, Fluorescence Phosphorescence .	see	front	of	this	section).	. P4	-Sult	fide Type
Fluorescence								. White
Phosphorescence .								White
Persistence	• •	• • •	•	•••			•••	. Short

In general, operation of the 3KP4 at an ultor voltage less than 1500 volts is not recommended.

The PERSISTENCE CHARACTERISTICS of the P4-sulfide phosphor are the same as those shown for the PII phosphor at the front of this Section

# 3KP7

## **OSCILLOGRAPH TUBE**

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 3KP7 is the same as the 3KP1 except for the following items: General:

Phosphor (For Curves,	see front	t of this Section).	P7
Fluorescence			. <b></b> .Blue
Persistence			Short
Phosphorescence		. <b></b> Gre	eenish-Yellow
Persistence			Long
In general eneratio	a af tha 3	KD7 at an ulter u	

In general, operation of the 3KP7 at an ultor voltage less than 1500 volts is not recommended.

## 3KPII

## **OSCILLOGRAPH TUBE**



SHO

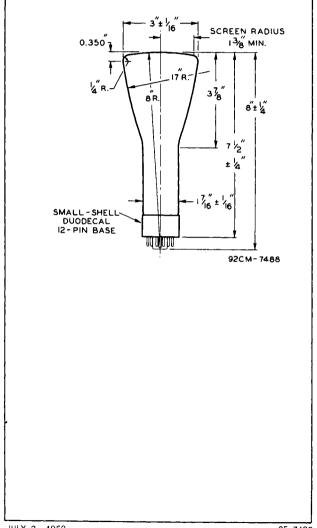
ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

ſ	DATA				
ŀ	General:				
	Pin 6-No Pin 11-Cathode				
ļ	Connection Pin 12-Heater				
	$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base				
	With $\mathbb{D}_1$ positive with respect to $\mathbb{D}_2$ , the spot is deflected toward pin 4. With $\mathbb{D}_2$ positive with respect to $\mathbb{D}_4$ , the spot is deflected toward pin 1. The plane through the tube axis and pin 4 may vary from the trace produced by $\mathbb{D}_1$ and $\mathbb{D}_2$ by an angular tolerance (measured about the tube axis) of 10°.				
	Maximum Ratings, Design-Center Values:				
	ANODE-No.2 VOLTAGE#				
	<ul> <li>Anode No.2 and grid No.2 which are connected together within tube, are referred to herein as anode No.2.</li> </ul>				
	# The product of anode-No.2 voltage and average anode-No.2 current should be limited to 6 watts.				

JULY 3, 1950

TENTATIVE DATA






ANODE-No.1 VOLTAGE 1000 max. GRID-No.1 VOLTAGE:	volts
Negative bias value	volts
Positive bias value 0 max.	volts
Positive peak value	volts
PEAK VOLTAGE BETWEEN ANODE No.2 AND	
ANY DEFLECTING ELECTRODE 500 max.	volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode. 125 max.	volts
Heater positive with respect to cathode. 125 max.	volts
Equipment Design Ranges:	-
For any anote-To 2 voltage (Eb.) between	1
recommended minimum [*] and 250	0 volts
Anode-No.1 Voltage 20% to 35% of Eb ₂	volts
Max. Grid-No.1 Voltage	
for Visual Cutoff . 6.3% of Eb ₂	volts
Anode-No.1 Cur. for any	
	amperes
Deflection Factors:	
$DJ_1 \& DJ_2 115$ to 145 v dc/in./kv	of ED2
$D_3^{-1} \& D_4^{-1} \dots 110 \text{ to } 140 \text{ v dc/in./kv}$	of LD2
Examples of Use of Design Ranges:	
For anode-No.2 voltage of 1000 2000	volts
Anode-No.1 Voltage 200-350 400-700	volts
Max. Grid-No.1 Voltage	
for Visual Cutoff63 -126	volts
Deflection Factors:	
	dc/in.
ປັງຈັບປັ ₄ 110–140 220–280 volts	dc/in.
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max.	megohms
Resistance in Any Deflecting-	Ŭ
	megohms
* Brilliance and definition decrease with decreasing anode-No.2 Recommended minimum for the 3MP1 in general service is 1000 v a value aslow as 500 volts may be used under conditions of lo ity deflection and low ambient-light levels.	olts but
a value as low as 500 volts may be used under conditions of lo	w-veloc-
I ty deflection and low ambient-light levels.	
It is recommended that the deflecting-electrode-circuit resist approximately equal.	ances de
1	
1	
L	





OSCILLOGRAPH TUBE







ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION The 3RP1 is the same as the 3RP1-A except for the following items: General: Faceplate. . . Spherical Clear Glass . . . . . Bulb... . . . . . . J-24P1 . . . . . . . . . . . . Weight (Approx.) 7 07 3″± ¦{;° SCREEN DIA. 0.350 2 3/ MIN. 17 R 4 1/16 MAX. ő 'n. 13/1 ± 16 9½ SMALL - SHELL ±½ DUODECAL IO-PIN BASE OR SMALL-SHELL DUODECAL 12-PIN BASE JETEC Nº BI2-43 LHORDO 92CM-7119RI CENTER LINE OF BULB WILL NOT DEVIATE MORE THAN 20 IN ANY DIRECTION FROM PERPENDICULAR ERECTED AT CENTER OF BOTTOM OF BASE.





ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

### DATA

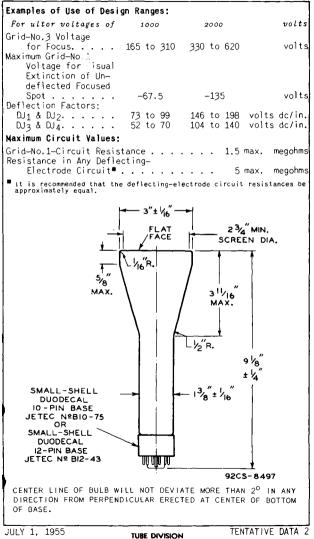
General:		
Heater, for Unipotentia	al Cathode:	
Voltage		ac or dc volts
Current	$0.6 \pm 10\%$	
Direct Interelectrode	Capacitances (App	prox.1:
Grid No.1 to all oth	er electrodes	8 μμf
Deflecting electrode	DI1 to	· · · · ·
deflecting electro		2 μμf
Deflecting electrode		
deflecting electron		2 μμf
DJ1 to all other ele		
DJ2 to all other ele		
DJ3 to all other ele		
Did to all other elec	trodes	8 μμ1
Faceplate .		Flat Clear Glass
Faceplate . Phosphor (For Curves,	see front of this	Section) P1
Eluorescence.		Green
Phosphorescence		
Persistence		
Focusing Method		
Deflection Method		
Overall Length		9-1/8" + 1/4"
Greatest Diameter of B	 .lh	2" + 1/16"
Minimum Useful Screen I	Diameter	
Mounting Position		Ληγ
Mounting Position Weight (Approx.)		
Bulb		L_24S1
Bulb	ell Duodecal 10-	-Pin (JETEC No B10-75)
or Small-S	nell Duodecal 10-	-Pin (JETEC No.B12-43)
Basing Designation fr	nr POTTOM VIEW	· · · · · · · · · · · · · · · 12E
Pin 1 - Heater	P	vin 8 – Ultor
Pin 2 - Grid No.1		(Grid No.2,
Pin 3 - Cathode		Grid No.4,
Pin 4 - Grid No.3	<u>6</u>	Collector)
Pin 5 ⁴ Internal	∮ P	Pin 9 - Deflecting
Connection-	ex L JAD	Electrode
Do Not Use	a ter to a	DJ2
Pin 6 - Deflecting		Pin 10 - Deflecting
Electrode		Electrode
DJ3	0-0	DJ1
Pin 7 - Deflecting	F	Pin 11 [▲] - Internal
Electrode		Connection-
DJ4	_	Do Not Use
	P	2in 12 - Heater
DJ ₁ and I	)J ₂ are nearer th	e screen
DJ ₃ and	DJ ₄ are nearer t	he base
Pins 5 and 11 are omitted	from the 10 pin he	
I I I I I I I I I I I I I I I I I I I	from the ro-pin bas	56.
1		
JULY 1, 1955		TENTATIVE DATA 1

General

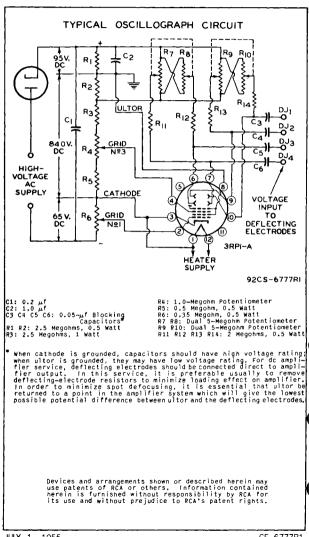
TENTATIVE DATA 1



i



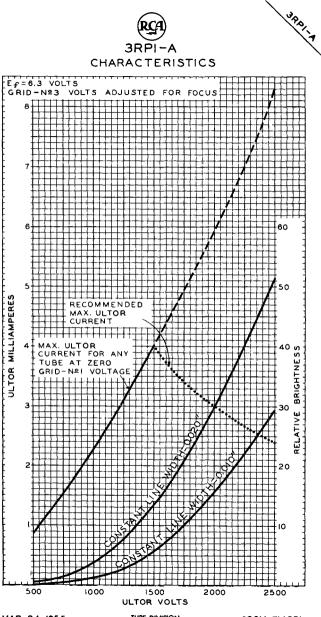

# **OSCILLOGRAPH TUBE**


With DJ1 positive with respect to DJ2, the spot is deflected toward pin 4. With DJ3 positive with respect to DJ4, the spot is deflected toward pin 1.
The plane through the tube axis and pin 1 may vary from the trace produced by DJ3 and DJ4 by $10^{\circ}$ (measured about the tube axis).
The angle between DJ DJ_ trace and DJ DJ_ trace is 90° $\pm$ 3°.
Maximum Ratings, Design-Center Values:
ULTOR ^O VOLTAGE
Negative bias value 200 max. volts Positive bias value 0 max. volts
Positive peak value 2 max. volts PEAK VOLTAGE BETWEEN ULTOR AND
ANY DEFLECTING ELECTRODE 500 max. volts PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode. 125 max. volts Heater positive with respect to cathode. 125 max. volts
Equipment Design Ranges:
For any ultor voltage $(E_{C_A})$ between 500* and 2500 volts
Grid-No.3 Voltage for Focus 16.5% to 31% of E _{c4} volts Maximum Grid-No.1 Voltage for Visual Extinction of Un-
deflected Focused Spot6.75% of Ec ₄ volts Grid-No.3 Current for Any Operating Con-
dition μamp Deflection Factor:
DJ1 & DJ2.         73 to 99         v dc/in./kv of Ec4           DJ3 & DJ4.         52 to 70         v dc/in./kv of Ec4           Spot Position.         ##
,
O The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 3PP1-A, the ultor function is performed by grid No.4. Since grid No.4. grid No.2, and collector are connected to- gether within the 3PP1-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.
<ul> <li>The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 3RP1-A, the ultor function is performed by grid No.4. Since grid No.4. y grid No.2, and collector are connected together within the 3RP1-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.</li> <li>Brilliance and definition decrease with decreasing ultor voltage. A value as 500 volts is recommended only for low-velocity deflection.</li> </ul>
O The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 3PP1-A, the ultor function is performed by grid No.4. Since grid No.4. grid No.2, and collector are connected to- gether within the 3PP1-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.
<ul> <li>The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 3RP1-A, the ultor function is performed by grid No.4. Since grid No.4. y grid No.2, and collector are connected together within the 3RP1-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.</li> <li>Brilliance and definition decrease with decreasing ultor voltage. A value as 500 volts is recommended only for low-velocity deflection.</li> </ul>





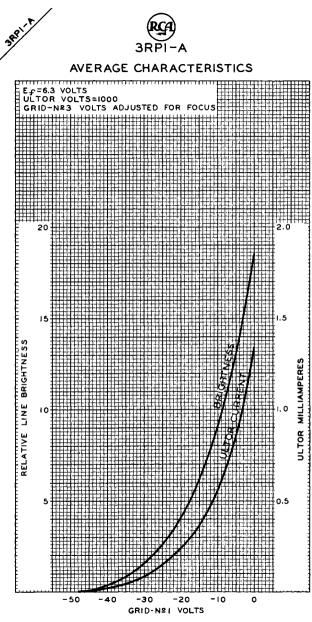







3RPI-A OSCILLOGRAPH TUBE

JULY 1, 1955


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



MAR. 24, 1955

92CM-7143RI

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY



MAR. 24, 1955

TUBE DIVISION RADIO CORPORATION OF AMPRICA, HARRISON, NEW JEESEY





ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 3RP4 is the same as the 3RP1 except for the following items: General: Phosphor (For Curves, see front of this Section) . P4-Sulfide Type Fluorescence . . . . . . White . . . Phosphorescence. . . . White . . . . . Persistence.... Short . . . . In general, operation of the 3RP4 at an ultor volt-age less than 1500 volts is not recommended.

9





POST-DEFLECTION ACCELERATOR

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

.....

DATA

General:
Heater, for Unipotential Cathode:         Voltage
Pin 1 - Heater Pin 2 - Cathode Pin 3 - Grid No.1 Pin 4 - No Con- Do Not Use Pin 5 - Grid No.3 Pin 7 - Deflecting Electrode DU ₃ Pin 8 - Deflecting Electrode DU ₄ Pin 10 - Deflecting Pin 10 - Deflecting Electrode DU ₁ Pin 12 - No. Con. Pin 12 - No. Con. Pin 14 - Heater (Grid No.2, Grid No.4) Pin 10 - Deflecting Electrode DU ₁ Pin 12 - No. Con. Pin 14 - Heater (Grid No.5, Collector)
$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base
With $DJ_1$ positive with respect to $DJ_2$ , the spot is deflected toward pin 5. With $DJ_3$ positive with respect to $DJ_4$ , the spot is deflected toward pin 2. The plane through the tube axis and each of the following items may vary from the trace produced by $DJ_1$ and $DJ_2$ by

TENTATIVE DATA 1

ć



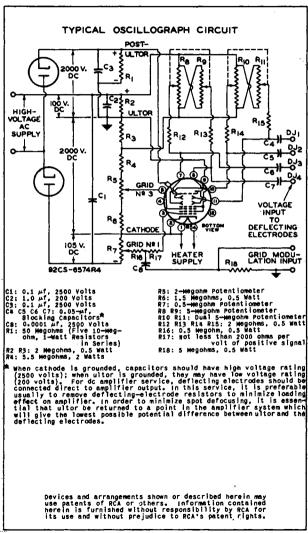
SABPI

the following angular tolerances (measured about the tube axis): Pin 5, 10⁰; side terminal (on same side of tube as pin 5), 10°. Angle between  $DJ_1 - DJ_2$  trace and  $DJ_3 - DJ_4$  trace is 90° ± 1.5°. Maximum Ratings, Design-Center Values; 6000 max. POST-ULTOR VOLTAGE . . . . . . volts ULTOR^A VOLTAGE volts 2600 max. RATIO OF POST-ULTOR VOLTAGE 2.3:1 max. TO ULTOR VOLTAGE 1000 max. volts GRID-No.3 VOLTAGE . . . GRID-No.1 VOLTAGE: 200 max. voits Negative bias value . Positive bias value⁰. . . 0 max, volts 2 max. volts Positive peak value . . . . PEAK VOLTAGE BETWEEN ULTOR AND 500 max. volts ANY DEFIECTING ELECTRODE . . . . PEAK HEATER -- CATHODE VOLTAGE: AK HEATER-CATHODE VULIAGE: Heater negative with respect to cathode. 125 max. volts 125 max. volts Equipment Design Ranges: For any post-ultor voltage ( $E_{C,G}$ ) between 2000" and 6000 volts and any ultor voltage ( $E_{C,d}$ ) between 1500"" and 2600 volts Grid-No.3 Voltage for Focus . . 20% to 34.5% of Eca . . . volts Grid-No.1 Voltage for Visual Extinction of Undeflected Focused Spot . . . . . . . . 2.6% to 4.3% of E_{C4} . . . volts Grid-No.3 Current for Any Operating Condition . . . . -15 to +10 ••• µamol Deflection Factors:# When Ecs = 2 x Ecs 26.5 to 36 v dc/in./kvof Ec4 . . . .  $DJ_1 \& DJ_2 \dots \dots$ DJ3 & DJ4 . . . . . . . . . . 18 to 24 v dc/in./kvof Ec4 When Bcs = Bca .... 14.5 to 19.5 v dc/in./kvof Eca DJ3 & DJ4 . . Spot Position . . . . ## Examples of Use of Design Ranges; For post-ultor volts voltage of 4000 2000 3000 and ultor 2000 volts voltage of 2000 1500 Grid-No.3 Volt. 400 to 690 300 to 515 400 to 690 --52 to --87 --39 to --65 --52 to --87 volts for Focus Grid-No.1 Volt.ª volts ●, ▲, ⁰, ^{*}, ^{**}, [#], [#], [#], [□]: See next page. TENTATIVE DATA 1 JUNE 1, 1953

TUBE DEPARTMENT





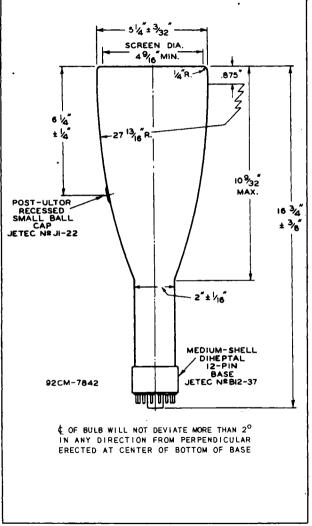

7

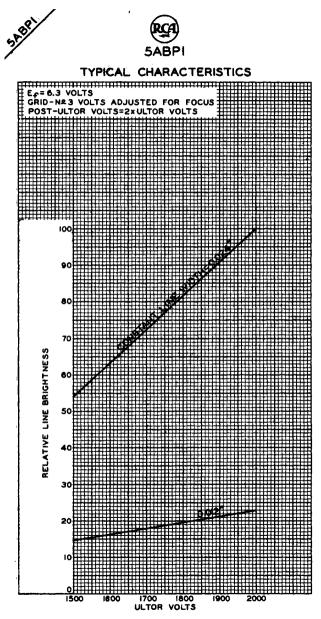
# **OSCILLOGRAPH TUBE**

De	flea	cti	on	Fac	to	rs:	#																
	DJ1							43	to	58		40	) t (	5	4		53	to	72	1	/d	c/ir c/ir	•
1	DJ3		-						10	39		27		00	o		30	10	48	`	/ 0	C7 11	'•
£	ximu																	_					
	id—l sist										•	•	•	•	•	•	1	.5	max	•	me	gohn	ns
<b>[</b> ```	010							ode			ui	t∎			•		5	.0	max		me	gohr	ns
				1	tor					0 - F		•	<b>^</b>	16	•	ha	a 14	t	rada	• •		ich	
	appl	lie	da	de	vol	tag	e h	ighe m A	r 1 fte	ha	n t	he	ŭl1 fla	i or	v	01	tag	e i	for a	ACC.	e le	ich rati s, t on a "pos	ng
	post	i-d	efle erfo	ecti erme	on d b	acce	id i	ati	on wi	fun	ict i	on	an nve	d nie	the	8 C	oli re	lec fer	tor	fun to	ćti as	on a "pos	re t-
	ulto	òr ⁶	•											- 1				• -					
	the	h	ghe	st	dc	vol	tagi	s⊸ra s fo	y t	acc	• 1	era.	tir	9	th		ele	ct	rons	ir		ppli ne be s pe ed t simp	am
	for	med	۵y.	gri	d N	0.4	S	ince	g	rid	NO	•4	and	ġ	ri	d	NO.	za	re c	onn	ect	ed t	6
6	as '	ul	tor	fo	r c	onve	nie	nce	ín	pre	se	nti	ng	dai	ta	an	d c	urv	es.			Jimp	
ľ	At o	or uld	be	ade	nis que≀	rat te t	ing.	th imit	e e	ne u	alt	ive or	re inp	s i ut	st: po	a no owe	r t	or ore	the 5 wat	ts,	or	supp	יי
*	it volt	is Ls	rec for	omini hia	nde hS	d t	hat Sci	the anni	p no.	ost	-u 1	t or	• •	011	aç	je	be	no	t le:	55	tha	n 30	00
**	Rec	0mm	ende	η be	ini	nun	val	ue c	r أ	u1ta	or ·	v 0 1	tag	e.									
#	The def	de 1ec	flea	ctin n se	ig e Insi	lec: tiv	trod ity	es i and	, L	an nse	d D Que	unt 1	are ly i	e d pro	le s xiu	ig ice	ned le	to SS	hav thar	e e	xtr 111-	a-hi scre lefle atic The th	gh
	def tio	lec n m	tio ay l	n. De 1	wit imi	h pi ted	to.	def ⊾in	lec ic he	tio es;	nia w{	CCE tho	e)ei ut	po:	ic st-	n, −de	th	e 1 cti	engt ion a	h c	of d eler	lefle atic	ic-
	def	lec ctr	tio	n to sai	o fu re,	1} s the	refo	en d pre,	ia: mo	met: pre	er ' su	wil ita	l o ble	rd	i ni or	ar i ti	ily he	be sig	obta nal	vol	ed. tag	The e th	an a
	101			1 11110 -	vas		JILA	uv.															
1	uit	or d –	vol	tage	of 1ta	200	00 V	olté	, , , , , ,	gri	d#	0.3	vo	lt	ag	ei	nd ju is	st	ed to		ive ble	volt focu , ea ulto he u 2.5-	18. Ch
	def	lec	tin	g e Shi	lect e 1d	r od	e co	onne a 1	cte	ed i xtr	hr and	oug	h a s f	ie ie	-m 1d	eg s.	ohm th	re	sist ente	or	to f t	ulto he u	<u> </u>
ł.	def rad	lec	ted	ncer	ocu	sed c w	spo	the	111	i fa nte	11 r o	wî f t	th he	in tu	a be	c i fa	rci	e	havl	ng	a 1	2.5-	-19/1
D	For	۷I	s ua	1 с.	itof	fo	f un	defi	lec	teđ	fo	cus	ed	s p	ot	•							1
•	t be	is ap	rec prox	omm ima	endi tel	ed t y ec	hat ual	th:	e d	ef1	eci	t i n	ge	1e	ct	ro	18-	cir	cuit	re	sis	tanc	es
																							1
																							- 1
																							-1
																							1
<u> </u>			4.05						_				-			_		77	NTAT		_	ATA	_

TENTATIVE DATA 2







5ABPI OSCILLOGRAPH TUBE





**OSCILLOGRAPH TUBE** 





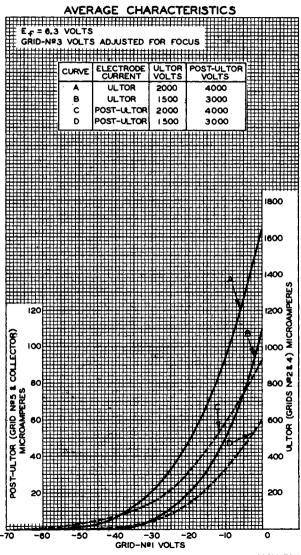
FEB.11,1953

TUBE DEPARTMENT BADIO CONFORATION OF AMERICA, HABILION, NEW JERSEY 92CM-6820Ri





### CHARACTERISTICS E = 6.3 VOLTS GRID-Nº3 VOLTS ADJUSTED FOR FOCUS POST-ULTOR (GRID Nº 5 & COLLECTOR) VOLTS GREATER THAN ULTOR (GRIDS Nº 2 & Nº 4) VOLTS GRID-NºI VOLTS=0 MAX. TOTAL CURRENT FOR ANY TUBE YPICAL FLUORESCENT-SCREEN (POST-ULTOR) CURRENT 160 4000H MICROAMPERES 3500 140 MICROAMPERE 120 3000 100 ULTOR & POST-ULTOR 2500 -SCREEN 80 2000 -LUORESCENT 60 1500 **IOTAL** 1000 40 20 500 n C 2200 2400 1400 1600 1800 2000 2600 ULTOR VOLTS


FEB. 3, 1953

TUBE DEPARTMENT

92CM-7910







FEB.4,1953

TUBE DEPARTMENT





POST-DEFLECTION ACCELERATOR ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The FABPA is the same as the FABPi except for the following items: General: Phosphor (For curves, see front of this section). . P4-Sulfide Type Fluorescence. . . . White Phosphorescence . White Persistence . . Short

#### THE PERSISTENCE CHARACTERISTICS

of the P4-sulfide phosphor are the same as those shown for the PII phosphor at the front of this Section

# 5ABP7 OSCILLOGRAPH TUBE

POST-DEFLECTION ACCELERATOR

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 5ABP7 is the same as the 5ABP1 except for the following items:

#### General:

Phosphor (For Curves,	see	front	of this	Section)	P7
Fluorescence.					Blue
Persistence					Short
Phosphorescence				Greeni	ish-Yellow
Persistence	• • •				Long

# 5ABP11 OSCILLOGRAPH TUBE

POST-DEFLECTION	ACCELERATOR
ELECTROSTATIC FOCUS	ELECTROSTATIC DEFLECTION

The 5ABP11 is the same as the 5ABP1 except for the following items: General: P11 Phosphor (For Curves, see front of this Section). .Blue Fluorescence. . . . .Blue Phosphorescence . Short Persistence . . . .

5AUP24



COLOR FLYING-SPOT CATHODE-RAY TUBE

ELECTROSTATIC FOCUS For use in flying-Spot Color Video-Signal Generators

#### DATA

#### General:

Heater, for Unipotential Cathode: Voltage.... . . . ac or dc volts 6.3 Current. . . . . . . 0.6 amp Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. . μµf Cathode to all other electrodes. . 5 μμf (500 max. *μ*μf External conductive neck coating to ultor* 1100 min. μμf Faceplate, Flat. . . . Clear Glass Phosphor. Metal-Backed (For Curves. see front of this section) . P24 Fluorescence . . . Light Green Phosphorescence. . . Light Green Persistence. . . Extremely Short Focusing Method. . . . Electrostatic Deflection Method. . . . . . Magnetic Deflection Angle (Approx.) . . 40⁰ Overall Length . . . 12-1/2" ± 3/8" Greatest Diameter. . . 5" ± 1/8" Minimum Useful Screen Diameter . 4-1/4" Mounting Position. . . . . Any Weight (Approx.) . . 1.4 lbs . . . . . Cap. . . . . . . . . . Recessed Small Cavity (JETEC No.J1-21) BOTTOM VIEW Pin 1-Heater Pin 11 - Cathode  $\widehat{\mathbf{n}}$ Pin 2-Grid No.1 Pin 12-Heater Pin 6-Grid No.3 Cap - Ultor Pin 7 – Internal (Grid No.4. Connection--Collector Do Not Use C-External Pin 10 - Grid No.2 Conductive Neck Coating SOCKET CONTACTS CORRESPONDING TO VACANT PIN POSITIONS 3, 4, 5, 8, AND 9 SHOULD BE REMOVED Maximum Ratings, Design-Center Values: ULTOR* VOLTAGE . . 27000 max. volts volts GRID-No.3 VOLTAGE. . 6000 max. GRID-No.2 VOLTAGE. 350 max. volts * The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the SAUP24, the ultor function is performed by grid No.4. Since grid No.4 and collector are connected together within the SAUP24, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.

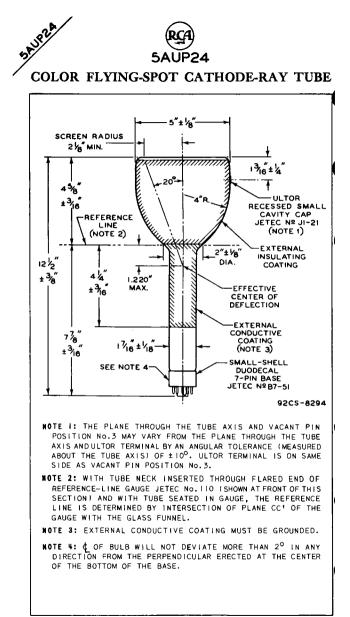


SAUP2A

# COLOR FLYING-SPOT CATHODE-RAY TUBE

GRID-No.1 VOLTAGE:	
Negative bias value	volts volts volts volts volts volts
Characteristics Range Values for Equipment Design:	
For any ultor voltage (Ec ₄ ) between 20000 [®] and 27000 v	olts
Grid-No.3 Voltage for Focus with Ultor Current of 200 $\mu\text{amp.}$ . 17% to 21.5% of $\text{E}_{\text{C4}}$ Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1	
voltage (Ec1) for visual extinc- tion of undeflected focused spot 2 to 5 times Ec1 Grid-No.1 Voltage for Visual Ex- tinction of Undeflected Focused Spot when circuit design utili-	volts
zes grid-No.2 voltage (E _{C2} ) at fixed value	volts
ultor current of 200 µamp 170 Grid-No.2 Current	μamp μamp
Examples of Use of Design Ranges:	
For ultor voltage of 27000	volts
Grid-No.3 Voltage for Focus with	
Ultor Current of 200 µamp 4600 to 5800 Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1 voltage of -70 volts for visual	volts
Ultor Current of 200 µamp 4600 to 5800 Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1 voltage of -70 volts for visual extinction of undeflected fo- cused spot	volts volts
Ultor Current of 200 µamp 4600 to 5800 Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1 voltage of -70 volts for visual extinction of undeflected fo- cused spot	
Ultor Current of 200 µamp 4600 to 5800 Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1 voltage of -70 volts for visual extinction of undeflected fo- cused spot	volts volts
Ultor Current of 200 µamp 4600 to 5800 Grid-No.2 Voltage when circuit design utilizes fixed grid-No.1 voltage of -70 volts for visual extinction of undeflected fo- cused spot	volts volts egohms

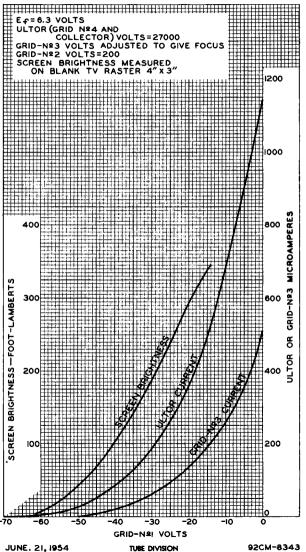



SAUGUT

# COLOR FLYING-SPOT CATHODE-RAY TUBE

#### OPERATING CONSIDERATIONS

*Resolution* of better than 800 lines at the center of the reproduced picture can be produced by the 5AUP24 when it is operated with 27000 volts on the ultor. At lower ultor voltages, the resolution capability decreases. To obtain high resolution in the horizontal direction, it is necessary to use a video amplifier having a bandwidth of about 20 megacycles.


For x-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section.







### AVERAGE CHARACTERISTICS



cos



# VIEW-FINDER KINESCOPE

METAL-BACKED SCREEN

MEIAL-BACKEL

1



MAGNETIC DEFLECTION

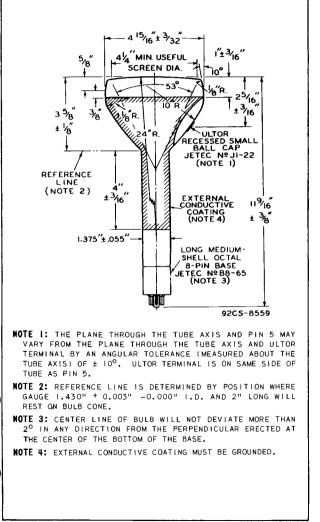
D	Δ	Ŧ	۵
v	~		-

General:	
Heater, for Unipotential Cathode: Voltage	c volts . amp μμf μμf μμf μμf
Faceplate, Spherical	r Glass e Type,
Fluorescence         Phosphorescence         Persistence         Focusing Method         Deflection Method         Deflection Angle (Approx.)         Overall Length         Greatest Diameter of Buib         Picture Size (within minimum-useful-screen area)         3-3/8" x         Weight (Approx.)         Ultor         Terminal	53° ± 3/8" ± 3/32" 4-1/4" 2-1/2" 1b 6 oz . Any .J1-22)
Pin 1 - No Connec- tion Pin 2 - Heater Pin 3 - Grid No.2 Pin 4 - No Connec- tion Pin 5 - Grid No.1 Pin 5 - Grid No.1	No.4,
Maximum Ratings, Design-Center Values:         ULTOR VOLTAGE•.       10000 max.         GRID-No.3 VOLTAGE.       1500 max.         GRID-No.2 VOLTAGE.       410 max.	volts volts volts
<ul> <li>The "ultor" in a cathode-ray tube is the electrode to which is the highest dc voltage for accelerating the electrons in the be to its deflection. In the SAYPA, the ultor function is perfu grid No.u. Since grid No.W and collector are connected togethe the SAYPA, they are collectively referred to simply as "ult convenience in presenting data and curves.</li> </ul>	applied am prior ormed by r within or" for
NAX 1 1055	
MAY 1, 1955 TUBE DIVISION TENTATI	VE DATA

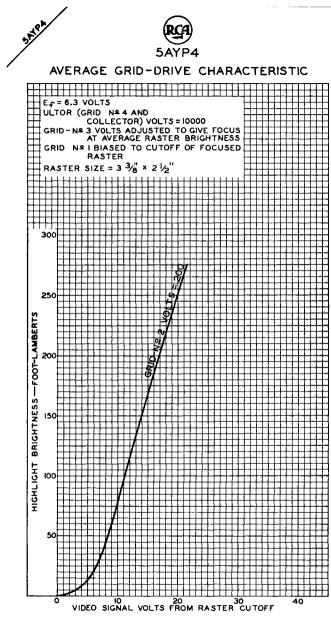
TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





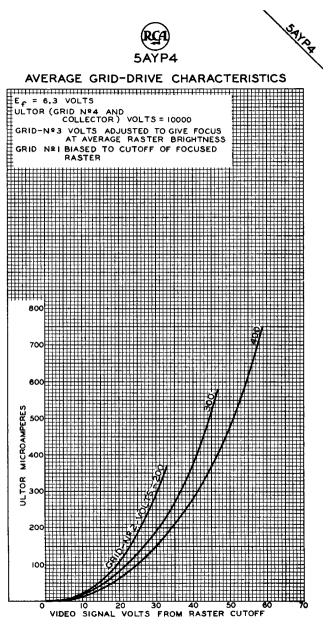

## **VIEW-FINDER KINESCOPE**

· · · · · · · · · · · · · · · · · · ·			
GRID-No.1 VOLTAGE: Negative bias value Positive bias value Positive peak value PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect Heater positive with respect		125 max. 0 max. 2 max. 180 max. 180 max.	volts volts volts volts volts volts
Equipment Design Ranges:			
For any ultor voltage (Ec ₄ ) and grid-No.2 voltage (Ec ₂ Grid-No.3 Voltage for Focus	between 5000* ,) between 200	2nd 10000 vo and 410 vol	lts ts
with Ultor Current of 100 µamp	9.8% to 14.1	L% of E _{C4}	volts
Raster	8.5% to 23.5 See Cur	ves	volts
Grid-No.2 Current	-15 to		µamp.
Centering Magnet	0 to	8 g	ausses
Examples of Use of Design Ran	ges:		
For ultor voltage of and grid-No.2 voltage of Grid-No.3 Voltage for	7000 200	10000 300	volts volts
Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for Visual Extinction of Focused Raster	680 to 990 9	980 to 1410 -25 to -71	volts volts
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max. m	egohms
<ul> <li>Brilliance and definition decrea general, the ultor voltage shoul</li> <li>Grid-Wo.3 current increases as t</li> </ul>	se with decreasin d not be less tha he ultor voltage	g ultor volta n 5000 volts. is decreased.	ge. In
NAV 1 1955		TENTATI	
NAV 1 1055			


TUBE DIVISION RADIO CORPORATION OF AMÉRICA, HARRISON, NEW JERSEY

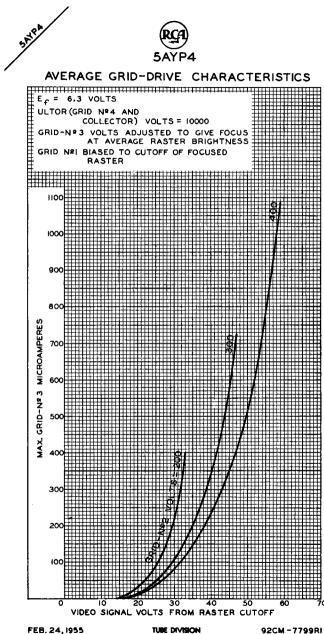


**VIEW-FINDER KINESCOPE** 




SPIPA




FEB. 24, 1955

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



FEB. 24, 1955

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 7688R2



RADIO COBPORATION OF AMERICA, HABRIDON, NEW JE

92CM - 7799RI





ALUMINIZED FLUORESCENT SCREEN FORCED-AIR COOLED AT MAXIMUM ULTOR INPUT

ELECTROSTATIC FOCUS

General:

MAGNETIC DEFLECTION

#### DATA

Heater. for Unipotential Cathode: Voltage. . . . . . . . . 6.3 . . . ac or dc volts Current. . . . . . . .  $0.6 \pm 10\%$ . . . .amo Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. . 8 max. μµuf Cathode to all other electrodes. . . . . . 5 µџf Faceplate. Spherical . . . . . . . . . Non-browning Glass . . 1.519 Phosphor (For curves, see front of this section). . P4-Silicate Type Aluminized Fluorescence . . . White Phosphorescence. . . White Persistence. . . . . . Medium . .Electrostatic Focusing Method. . . . . . . . . . . Deflection Method. . . . . Magnetic . . Deflection Angle (Approx.) 500 . 12-3/16" ± 3/8" Greatest Diameter of Bulb. 5" ± 1/8" . . . Minimum Useful Screen Diameter . . . . . . 4-1/2" Minimum Optical-Quality-Circle Diameter. . . . . . . 4-1/4" 1-1/2 lbs . . . . . Mounting Position. . . . . . . . Any Mounting Position. . . . . Molded-On Insulated Cable 48" Long Bulb . . . . . . . . . . J-4Ŏ . . . . . . . . . . Base . . . . . Small-Shell Duodecal 7-Pin (JETEC No.B7-51) Pin 1 - Heater Pin 11 - Cathode Pin 2 - Grid No.1 Pin 12 - Heater Pin 6 - Grid No.3 т Flexible Pin 7 - Internal Cable - Ultor Connection-O (Grid No.4. Do Not Use 62 Collector) Pin 10 - Grid No.2 NOTE: Socket contacts for vacant pin positions 3.4.5.8. and 9 should be removed so that maximum insulation is provided for pins 6 and 7. Air Flow to Face (When average ultor input exceeds 9 watts): An adequate air flow sufficient to limit the faceplate temperature to the specified value should be delivered perpendicularly from a nozzle having a diameter of about 2 inches onto the face of the tube when it is in operation. The blower should have adequate capacity to provide for a total system pressure drop including that of the air filter. oc Face Temperature . . . 100 max.





<b>/ · · · · · · · · · · · · · · · · · </b>		
Maximum Ratings, Absolute Values:		
ULTOR VOLTAGE.	. 40000 max.	volts
ULTOR INPUT (AVERAGE):	• 40000 max.	10113
Without forced-air		
cooling of faceplate	. 9 max.	watts
With forced-air	• 3 max•	Walls
cooling of faceplate	. 12 max.	watts
	. 12 max.	volts
GRID-No.3 VOLTAGE.		volts
GRID-No.2 VOLTAGE	. 400 max.	vorts
	150 000	volts
Negative bias value	. 150 max. . 0 max.	volts
Positive peak value	. 0 max. 2 max.	volts
PEAK HEATER-CATHODE VOLTAGE:	• 2 max.	vorts
Heater negative with respect to cathode	. 175 max.	volts
Heater positive with respect to cathode		volts
neater positive with respect to cathode	• 10 max •	vurts
Equipment Design Ranges:		
For any ultor voltage $(E_{C_A})$ between 3500	0* and 40000 v	olts
Grid-No.3 (Focusing Electrode)		
Voltage for ultor current		
of 300 µamp 18.5% to	22.5% of E _{C4}	volts
Grid-No.2 Voltage when cir-		
cuit design utilizes grid-		
No.1 voltage (Ec.) at		
fixed value for raster		
	.4 times E _c ,	volts
Grid-No.1 Voltage for Visual	¢(	
Extinction of Focused		
Raster when circuit design		
utilizes grid-No.2 voltage		
$(E_{c_2})$ at fixed value18.5% to	-46.5% of E _{C2}	volts
Maximum Grid-No.3 Current	2	
for ultor current of		i
300 μamp	100	μamp
Grid-No.2 Current	5 to +15	μamp
Examples of Use of Design Ranges:		
For ultor voltage of 36000	volts	
Grid-No.3 (Focusing Electrode)		
Voltage for ultor current		
	to 8100	volts
Grid-No.2 Voltage when cir-		
cuit design utilizes grid-		
No.1 voltage of -65 volts		
	to 350	volts
Grid-No.1 Voltage for Visual		
Extinction of Focused Raster		
when circuit design utilizes		
grid-No.2 voltage of 200		
	' to -93	volts
*: See next page.	•••	
4-56	TENTATIVE	
4-00 TUBE DIVISION	I ENTATIVE	UNIN I

TUBE DIVISION EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

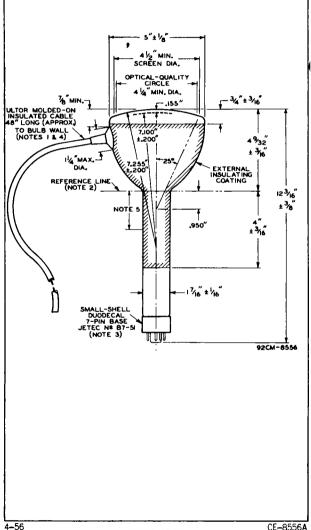




### Maximum Circuit Values:

Grid-No.1-Circuit Resistance . . . . . 1.5 max. megohms

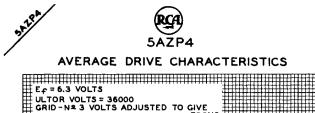
* Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 35000 volts.

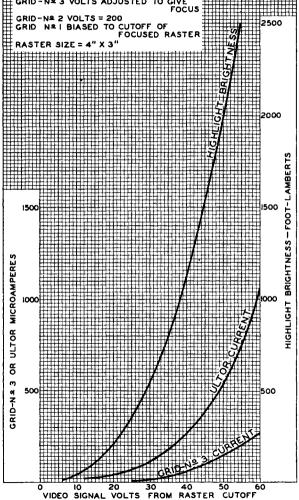

#### OPERATING CONSIDERATIONS

X-ray radiation is produced at the face of the 5AZP4 when it is operated at its normal ultor voltage. These rays can constitute a health hazard unless the tube is adequately shielded. For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section.

An air-cooling system is required to cool the face of the 5AZP4 when the tube is operated with an average ultor input in excess of 9 watts. The system consists of a suitable blower and air duct, having an outlet diameter of about 2 inches, directed perpendicularly onto the face of the tube. The air flow must be adequate to limit the faceplate temperature to  $100^{\circ}$ C. The cooling air must not contain water, dust, or other foreign matter. The aircooling system should be electrically interconnected with the ultor power supply to prevent operation of the tube without cooling.










- **NOTE 1:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION No.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR-CABLE CONNECTION AT BULB WALL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  20°. ULTOR-CABLE CONNECTION IS ON SAME SIDE AS VACANT PIN POSITION No.3.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE GAUGE 1.500" + 0.003" - 0.000" I.D. AND 2" LONG WILL REST ON BULB CONE.
- **NOTE 3:** SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNT-ED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. SOCKET CONTACTS CORRESPONDING TO VACANT P'N POSITIONS NO.3, 4, 5, 8, AND 9 SHOULD BE REMOVED IN ORDER TO PROVIDE MAXIMUM INSULATION FOR PINS NO.6 AND 7.
- NOTE 4: ULTOR CABLE SHOULD NOT BE SHARPLY BENT WITHIN 3" OF BULB WALL.
- NOTE 5: THE WINDINGS OF THE DEFLECTING YOKE SHOULD NOT EXTEND MORE THAN 2" FROM THE REFERENCE LINE TOWARD THE BASE. THEY SHOULD BE INSULATED TO WITHSTAND 20 KV AND BE SPACED AT LEAST I/IO" FROM THE TUBE NECK.



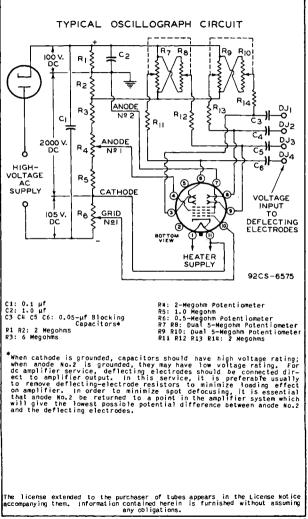


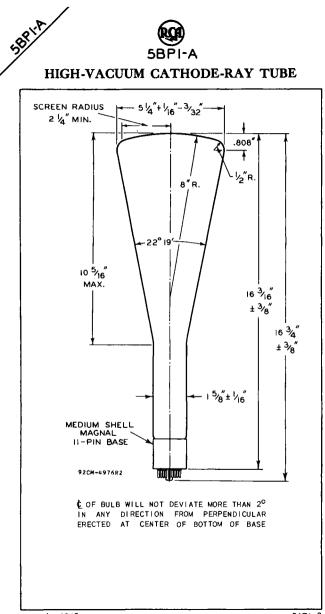


# AIGGE HIGH-VACUUM CATHODE-RAY TUBE Supersedes Type 5BP1

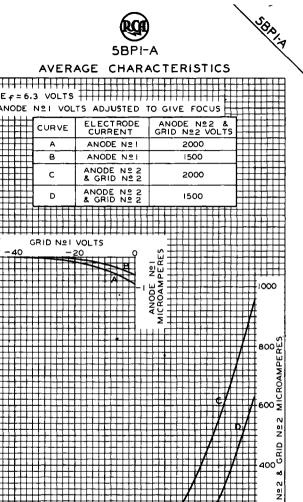
	Superseaes Type 5BP1
General:	
Voltage Current Direct In Grid NC DJ1 to DJ2 to DJ2 to DJ3 to DJ3 to DJ3 to DJ3 to DJ3 to DJ3 to DJ3 to DJ4 to Phosphor Fluores Persist Focusing Deflectic Overall I Greatest Minimum I Mounting Base . Basing Pin 1- Pin 2- Pin 5- Pin 6-	for Unipotential Cathode: $6.3 \pm 10\%$
	$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base
flecte DJ4, th The an- its in pin h The an	$D_{\parallel}$ positive with respect to $D_{2}$ , the spot is de- d toward pin 4. With $D_{3}$ positive with respect to he spot is deflected toward pin 1. gle between the trace produced by $D_{3}$ and $D_{4}$ and tersection with the plane through the tube axis and does not exceed 10°. gle between the trace produced by $D_{13}$ and $D_{14}$ and ace produced by $D_{1}$ and $D_{12}$ is 90° ± 3°.







## HIGH-VACUUM CATHODE-RAY TUBE

(continued from preceding page)
Maximum Ratings, Absolute Values:
ANODE-No.2 & GRID-No.2 VOLTAGE
Positive Value
Typical Operation:
Anode-No.2 & Grid-No.2 Voltage [*] . 1500 2000 volts Anode-No.1 Volt. for Focus at 75%
of Grid-No.1 Volt. for Cutoff . 337 450 volts Grid-No.1 Volt. for Visual Cutoff #30 -40 volts Max. Anode-No.1 Current Range . Between -50 and +10 μamp. Deflection Sensitivity:
DJ1 and DJ2 0.404 0.303 mm/v dc DJ3 and DJ4 0.446 0.334 mm/v dc Deflection Factor:**
DJ1 and DJ2 63 84 v dc/in. DJ3 and DJ4 57 76 v dc/in.
<ul> <li>Brilliance and definition decrease with decreasing anode-No.2 voltage. In general, anode-No.2 voltage should not be less than 1500 volts.</li> <li>Individual tubes may require between +25% and -30% of the values shown with grid-No.1 voltages between zero and cutoff.</li> <li>I visual extinction of stationary focused spot. Supply should be adjust- able to ± 50% of these values.</li> <li>See curve for average values.</li> <li>Individual tubes may vary from these values by ± 17%.</li> </ul>
Spot Position:
The undeflected focused spot will fall within a 15-mm square centered at the geometric center of the tube face and having one side parallel to the trace produced by DJ1 and DJ2. Suit- able test conditions are: anode-No.2 voltage, 1500 volts; anode-No.1 voltage, adjusted for focus; deflecting-electrode resistors, I megohm each, connected to anode-No.2; the tube shielded from all extraneous fields. To avoid damage to the tube, grid-No.1 voltage should be near cutoff before applica- tion of anode voltages.
Maximum Circuit Values:
Grid—No.1 — Circuit Resistance 1.5 max. megohms Impedance of Any Deflecting—Electrode Circuit at Heater—Supply Frequency 1.0 max. megohm Resistance in Any Deflecting— Electrode Circuit▲ 5.0 max. megohms
It is recommended that all deflecting-electrode-circuit resistances be approximately equal.




S. O. D. HIGH-VACUUM CATHODE-RAY TUBE











- 40 FEB. 7, 1945 -30

ANODE

А

в

с

D

-20

-10

92CM-4984R3

Ó

ANODE

GRID NºI VOLTS RCA VICTOR DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





## **OSCILLOGRAPH TUBE**

POST-DEFLECTION ACCELERATOR

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

DATA	·		
General:			
General:         Heater, for Unipotential Cathode:         Voltage	. amp . μμf . μμδ . μμδ . μμδ . μμδ . μμδ . μλδ . μδ . μδ		
Pin 4 - Internal Con. Do not use Pin 5 - Anode No.1 Pin 7 - Deflecting Pin 8 - Deflecting Electrode DJ ₄ Pin 14 - Heat. Cap - Anode	tr.D2 ecting tr.D1 on- ection er		
DJ, and DJ, are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base			
With $D_1$ positive with respect to $D_2$ , the spot i flected toward pin 5. With $D_3$ positive with resp $D_4$ , the spot is deflected toward pin 2. The plane through the tube axis and each of the fol items may vary from the trace produced by $D_1$ and I the following angular tolerances measured about the axis: Pin 5, 10°; Cap (on same side of tube as p	ect to lowing DJ ₂ by tube		
10°. The angle between the trace produced by $W_1$ and $W_2$ the trace produced by $W_3$ and $W_4$ is 90° ± 3°.	2 and		

.



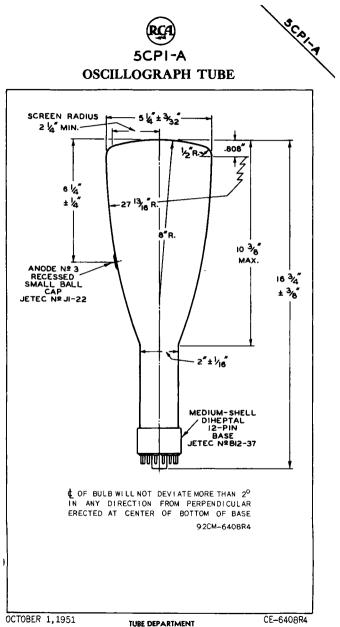
5CPI-A **OSCILLOGRAPH TUBE** 

	volt: μam kv of Eb kv of Eb kv of Eb kv of Eb volt: 690 volt: -90 volt: 06 megohm megohm
5 to +10 $E_{b_2}$ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 1 to 42 v dc/in./ 7 to 37 v dc/in./ ## 3000 4000 1500 2000 to 515 375 to 10 to -67.5 -30 to 9 to 80 78 to 1 10 to 68 66 to 1.5 max.	volt: μami kv of Eb; kv of Eb; kv of Eb; volt: volt: 690 volt: -90 volt: 90 □ megohm
5 to +10 $E_{b_2}$ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 1 to 42 v dc/in./ 7 to 37 v dc/in./ ## 3000 4000 1500 2000 to 515 375 to 10 -67.5 -30 to 10 to 80 78 to 1	volt: μam kv of Eb; kv of Eb; kv of Eb; volt: 690 volt: 90 volt: 06 ε
5 to +10 $E_{b_2}$ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 1 to 42 v dc/in./ 7 to 37 v dc/in./ ## 3000 4000 1500 2000 to 515 375 to 10 -67.5 -30 to 10 to 80 78 to 1	volt: μam kv of Eb; kv of Eb; kv of Eb; volt: 690 volt: 90 volt: 06 ε
5 to +10 <b>x</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 1 to 42 v dc/in./ 7 to 37 v dc/in./ ## 9000 4000 1500 2000	volt: wami kv of Eb; kv of Eb; kv of Eb; volt: volt: 690 volt:
5 to +10 <b>x</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 1 to 42 v dc/in./ 7 to 37 v dc/in./ ## 9000 4000 1500 2000	, voit: μam kv of Eb; kv of Eb; kv of Eb; kv of Eb; volt: volt:
5 to +10 <b>c</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 1 to 42 v dc/in./ 7 to 37 v dc/in./	, voit: μami kv of Eb kv of Eb kv of Eb kv of Eb
5 to +10 <b>c</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 11 to 42 v dc/in./ 7 to 37 v dc/in./	. voit: پیمس kv of Eb; kv of Eb; kv of Eb;
5 to +10 <b>c</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 11 to 42 v dc/in./ 7 to 37 v dc/in./	. voit: پیمس kv of Eb; kv of Eb; kv of Eb;
5 to +10 <b>c</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2 11 to 42 v dc/in./ 7 to 37 v dc/in./	. voit: پیمس kv of Eb; kv of Eb; kv of Eb;
5 to +10 <b>c</b> Eb ₂ 9 to 53 v dc/in./ 3 to 45 v dc/in./ 2	. voit: سعمر kv of Eb; kv of Eb;
5 to +10 <b>c</b> E _{b2} 9 to 53 v dc/in./ 3 to 45 v dc/in./	. voit: پیمس kv of Eb;
- 5 to +10 r Eb ₂ 9 to 53 v dc/in./	. voit: پیمس kv of Eb;
5 to +10 x Eb ₂	. νοιτ: μam
-	. voit:
-	. voit:
0 4.5% of Eb2	. volt
· · · · · · · · · · · · · · · · · · ·	
34.5% of Eb2	
veen 2000"* and 40 tween 1500 [*] and 20	oo volts
athode. 125 ma	
athode. 125 ma	x. volt
, ECTRODE 500 ma	x. volt
2 ma	x. volt
0 ma	
200 ma	x. volt
2.3:1 1000 ma	x. volt
es:	
e	s: 4000 ma 2000 ma


TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



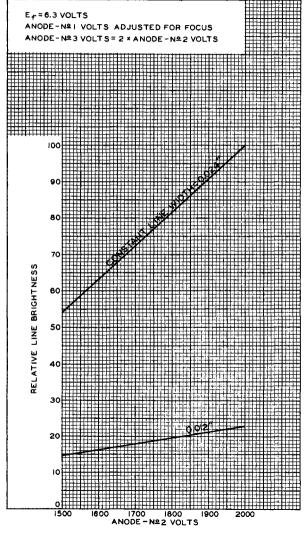



- * Anode No.2 and grid No.2, which are connected together within tube, are referred to herein as anode No.2.
- At or near this rating, the effective resistance of the anode supply should be adequate to limit the anode-No.2 input power to 6 watts.
- ** It is recommended that anode-No.3 voltage be not less than 3000 volts for high-speed scanning.
- Recommended minimum value of anode-No.2 voltage.
- For visual cutoff of undeflected focused spot.
- Volts dc/in.
- With heater voltage of 6.3 volts, anode-No.3 voltage of #000 volts, anode-No.2 voltage of 2000 volts, anode-No.1 voltage adjusted to focus, grid-No.1 voltage adjusted to give spot that is just visible, each deflecting electrode connected through 1-megohm resistor to anode No.2, and tube shielded from all extraneous fields, the center of the undeflected, focused spot will fall within a circle having a 12.5-mm radius concentric with the center of the tube face.
- It is recommended that the deflecting-electrode-circuit resistances be approximately equal.





5CPI-A OSCILLOGRAPH TUBE

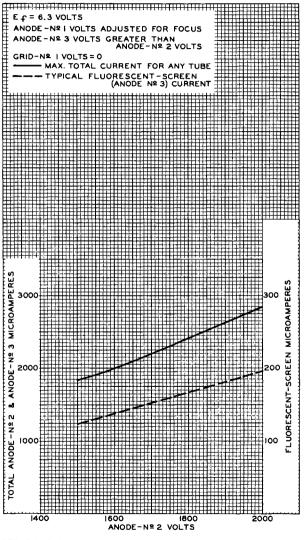

OCTOBER 1,1951



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY







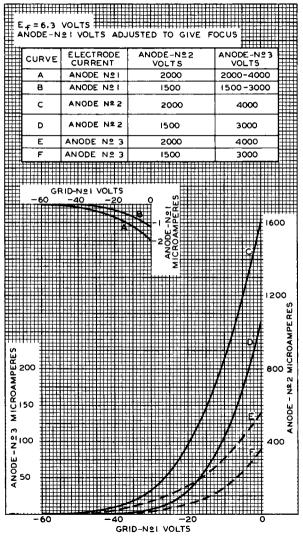

DEC. 23,1946





## CHARACTERISTICS




DEC. 24, 1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY





### AVERAGE CHARACTERISTICS



DEC. 26, 1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 5CP7-A is the same as the 5CP1-A, except that it has a screen of the greenish-yellow, long-persistence type, designated P7.

The SPECTRAL-ENERGY EMISSION CHARACTERISTIC. as well as PERSISTENCE CURVES of BUILDUP and DECAY for the P7 PHOSPHOR are shown at the beginning of this Section.



SCOLLAR

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 5CP11-A is the same as the 5CP1-A, except that it has a screen of the short-persistence, blue-fluorescence type designated P11. Its highly actinic fluorescent spot of unusually high brightness makes the 5CP11-A particularly useful for photographic recording. Because its improved phosphor has exceptional brightness for a blue screen, the 5CP11-A is also quite useful for visual observation of phenomena.

The SPECTRAL-ENERGY EMISSION CHARACTERISTIC, as well as the PERSISTENCE CHARACTERISTIC for the P11 PHOSPHOR are shown at the beginning of this Section.





## OSCILLOGRAPH TUBE

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 5CP12 is the same as the 5CP1-A except that it utilizes a medium-long-persistence screen which exhibits orange fluorescence and phosphorescence.

Because of its medium-long persistence, the 5CP12 is particularly useful where low- and medium-speed recurring phenomena are to be observed. However, it may also be used for observing low-and medium-speed, non-recurring phenomena but its efficiency is low. The persistence is such that the 5CP12 can be operated with scanning frequencies as low as 10 cycles per second without excessive flicker.

It will be noted that the phosphorescence decays exponentially with a time constant of about 120 milliseconds with the result that the low-level phosphorescence is of relatively short duration. Because of this characteristic, the 5CP12 provides high contrast between new and old information with change in target position. Therefore, the 5CP12 is suitable for short-range radar equipment involving medium-speed recurrent phenomena.

The P12 screen is more susceptible to burning than other phosphors. Therefore, the 5CP12 should be operated with the rated maximum anode-No.3 voltage and with the lowest anode-No.3 current which will give the desired brightness.

THE SPECTRAL-ENERGY EMISSION CHARACTERISTIC and the PERSISTENCE CHARACTERISTIC of the P12 Phosphor are shown at the front of this Section.





MAGNETIC FOCUS MAGNETIC DEFLECTION
DATA
General:
Heater, for Unipotential Cathode:         Voltage.       6.3 ± 10%       ac or dc volts         Current.       0.6       amp         Direct Interelectrode Capacitances (Approx.):       Grid No.1 to All Other Electrodes.       8.5       µµf         Cathode to All Other Electrodes.       8.5       µµf         Phosphor (For Curves see front of this section).       No.4         Fluorescence.       Medium         Focusing Method.       Magnetic         Deflection Method       530         Overall Length       11–178" ± 3/8"         Greatest Diameter of Bulb.       4–15/16" ± 3/32"         Minimum Useful Screen Diameter       3" x 4"         Mounting Position.       Any         Cap.       Recessed Small Ball         Base       Long Medium-Shell Octal 8–Pin         BOTTOM VIEW       Network
Pin 1 - No Connection Pin 2 - Heater Pin 3 - Grid No. 2 Pin 4 - No Connection Pin 4 - No Connection Pin 5 - Grid No. 1 Pin 6 - No Pin 7 - Cathode Pin 8 - Heater Cap - Anode, Grid No. 3
Maximum Ratings, Design-Center Values:
ANODE & GRID-No.3 VOLTAGE 8000 max. volts GRID-No.2 VOLTAGE
Positive bias value
Heater positive with respect to cathode. 125 max. volts
Typical Operation:
Anode & Grid-No.3 Voltage"
*,0,▲,□; See next page.

AUG. 15, 1946

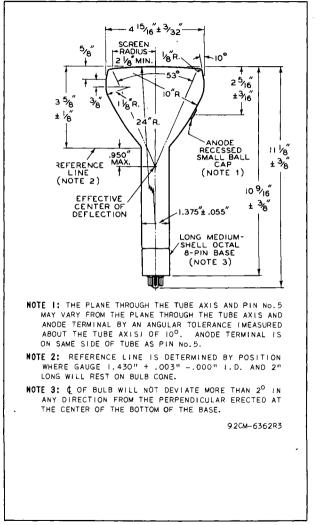
TENTATIVE DATA

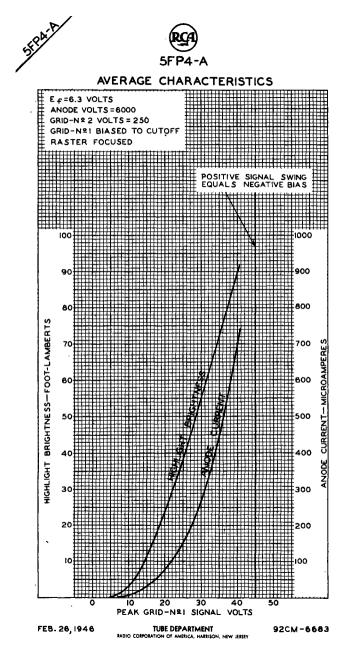
.





#### Maximum Circuit Values:


Grid-No.1-Circuit Resistance


1.5 max. megohms

- Brilliance and definition decrease with decreasing anode voltage. In general, the anode voltage should not be less than 4000 volts.
- O Visual extinction of undeflected focused spot. Supply should be adjustable to + 55% and #5% of indicated value.
- For RCA Focusing Coil, Stock No.522446, or equivalent, with the combined grid-kc.1-bias voltage and video-signal voltage adjusted to produce a highlight brightness of 10 foot-lamberts on a 2-7/8* x 3-7/8* picture area.
- To deflect beam from side to side of a raster 3-7/8* wide with RCA Deflection Yoke, Stock No.51586, or equivalent. Coil current varies directly as the square root of the anode voltage.













**OSCILLOGRAPH TUBE** 

MAGNETIC FOCUS MAGNETIC DEFLECTION

## DATA

General:		
General: Heater, for Unipotential Voltage Current Direct Interelectrode Cap Grid No.1 to All Other Grid No.2 to All Other Cathode to All Other El Phosphor (For Curves, see Fluorescence Persistence of Phosphor Focusing Method Deflection Method Deflection Angle (Approx. Overall Length Greatest Diameter of Bult Minimum Useful Screen Dia Mounting Position Cap Base	6.3 0.6 	): 
Base	BOTTOM VIEW	≻Shell Octal 8-Pin
Pin 3- Grid No.2	3 III 6 Pi Pi	n 6- No Connection n 7- Cathode n 8- Heater ap - Anode, Grid No.3
Maximum Ratings, Design-	Center Values:	
ANODE VOLTAGE		B000 max. volts 700 max. volts
Negative bias value. Positive bias value ⁴ . Positive peak value. PEAK GRID-No.1 DRIVE FROM PEAK HEATER-CATHODE VOLT. Heater negative with r Heater positive with r	AGE:	125 max. volts 0 max. volts 2 max. volts 65 max. volts 125 max. volts 125 max. volts
Typical Operation:		
Anode Voltage [*] Grid-No.2 Voltage Grid-No.1 Voltage Range ⁰ Focusing-Coil Current ⁴ . Spot Position	250 25 to -70 - 75 to 102	7000 volts 250 volts -25 to -70 volts 99 to 135 ma -
●,□,*,○,▲,減: See next page.		
JUNE 15, 1948		TENTATIVE DATA

JUNE 15, 1948



## SFP7-A OSCILLOGRAPH TUBE

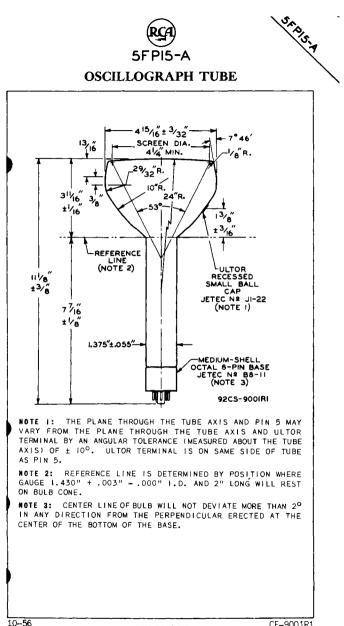
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
Minimum Circuit Values:
When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherent regulation of the power supply permits the instantaneous short- circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:
Grid-No.1-Circuit Resistance 150 min. ohms Grid-No.2-Circuit Resistance 820 min. ohms
Anode-Circuit Resistance 9100 min. ohms
The resistors used should becapable of withstanding the volt- ages involved.
Components:
RCA Focusing Coil RCA Type No. 202D1
Anode and grid No.3, which are connected together within tube, are referred to herein as anode.
At or near this rating, the effective resistance of the anode supply should be adequate to limit the anode input power to 6 watts.
Brilliance and definition decrease with decreasing anode voltage. In general, the anode voltage should not be less than 4000 volts.
^O For visual extinction of undeflected focused spot.
For JETEC Focusing Coll Mo.106, or equivalent, with center line of air gap approximately 2-3/4* from reference line (see Outline Drawing), and total anode current of 200 microamperes.
# The center of the undeflected, unfocused spot will fall within a circle having 9 mm radius concentric with the center of the tube face.
OUTLINE DIMENSIONS for Type 5FP7-A are the same as those for Type 5FP4-A
AVERAGE CHARACTERISTIC CURVE for Type 5FP7-A is the same as that shown for Type 7BP7-A

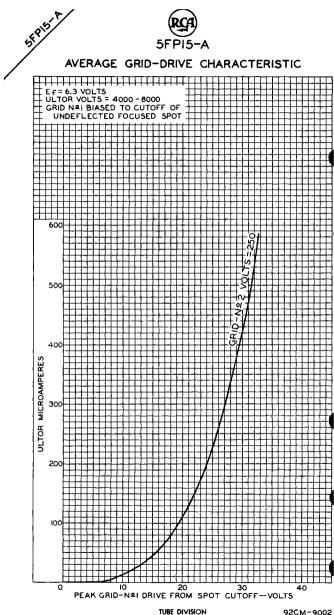
5FPI5-A

**OSCILLOGRAPH TUBE** 



MAGNETIC FOCUS


MAGNETIC DEFLECTION


DATA

DATA
General:
Heater, for Unipotential Cathode: Voltage 6.3
Direct Interelectrode Capacitances (Approx.):
Grid No.1 to all other electrodes 8 μμf Cathode to all other electrodes 5 μμf
Cathode to all other electrodes 5 $\mu\mu$ f
Faceplate, Spherical
Fluorescence
Visible radiation
Phosphorescence
Persistence of visible radiation
Focusing Method
Deflection Method
Tube Dimensions:
Overall length.         11-1/8" ± 3/8"           Greatest diameter of bulb         4-15/16" ± 3/32"
Minimum Useful Screen Diameter
Weight (Approx.)
Mounting Position
Bulb
Basing Designation for BOTTOM VIEW
Pin 1 - No Connec- tion Pin 6 - No Connec- tion
Pin 2 - Heater 3 No Pin 7 - Cathode
Pin 3 - Grid No.2 Pin 4 - No Connec-
tion (Grid No.3, Pin 5 - Grid No.1 (Grid No.3)
Maximum Ratings, Design-Center Values:
ULTOR VOLTAGE 8000 max. volts GRID-No.2 VOLTAGE
GRID-No. 1. VOLTAGE:
Negative bias value
Positive peak value
PEAK HEATER-CATHODE VOLTAGE:
Heater positive with respect to cathode . 125 max. volts Heater positive with respect to cathode . 125 max. volts
At or near this rating, the effective resistance of the ultor supply should be adequate to limit the ultor input power to 6 watts.

I

5FP151A	R	A)		
<b>'</b>	OSCILLOGI		£	
For any and gr Grid-No.1 Extinct	<b>Design Ranges:</b> <i>ultor voltage</i> $(E_{c_2})$ <i>rid-No.2 voltage</i> $(E_{c_2})$ Voltage for Visual tion of Undeflected d Spot Current	between 4000% a between 150 an -10% to -28% -15 to +		volts lts volts µamp
Focusting_C	Coil Current (DC) ⁰⁰ .	$\sqrt{E_{c_3}/4000} \times 96$	] ± 15%	ma
Spot Posit			-	
Examples o	of Use of Design Range	es:		
and grid Grid-No.1	or voltage of 1-No.2 voltage of Voltage for Visual	4000 250	5000 250	volts volts
	tion of Undeflected J Spot Coil Current (DC)	-25 to -70 -2 82 to 110 91	5 to -70 to 123	volts ma
	ircuit Values:		1.5 max.	maanhme
Grid-No.1-	-Circuit Resistance.		1.0 max.	negonins
1	SPECIAL PERF	ORMANCE DATA		
<b>Line Width</b> For Ultor For Ultor	n: Voltage of 4000 Volt: Voltage of 5000 Volt	s 0.01 s 0.00	0 max.▲ 9 max.▲	inch inch
# Brilliand general, OO For spec position 2-3/4" f	ce and definition decreas the ultor voltage should cimen focusing coil sim red with air gap toward f rom Reference Line (See I	e with decreasing I not be less than	ucing Coil	90.106
## With the undeflec	licroamperes. e tube shielded from ex ted, unfocused, low-inte .9-mm radius concentric w	traneous fields, nsity spot will fa with the center of	the center 11 within the tube f	- of the a circle ace.
With JET followin 200 micr Raster v adjusted is contr guishabl raster h the numb	Y-mm ratus concentre No. TEC Deflecting Yoke No. TEC Deflecting Yoke No. Togneres, grid-No.2 volta width is adjusted to 11 togive sharpest focus al acted until Individual sc e. <i>Line</i> width is express leight measured at the ce, er of scanning lines (49,	120, or equivale tage of 6.3 volts ge of 250 volts, an .4 cm and focusin t center of tube fr anning lines are sed as the quotien nterline of the tu	nt, and un , ultor cu d a 49-line g-coil cur ace. Raste just barely t of the co ube face di	der the rrent of raster, rent is r height distin- ntracted vided by
L				





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





PROJECTION KINESCOPE

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION

DA [*]	ſ٨
	_

General:	
Heater, for Unipotential Cathode:	
	ac or dc volts
Current 0.6	атр
Direct Interelectrode Capacitances (Appro	x.):
Grid No.1 to All Other Electrodes	. 7.5 μμf
Direct Interelectrode Capacitances (Appro Grid No.1 to All Other Electrodes Cathode to All Other Electrodes	. 5.0 μμf
External Conductive Costing to Anode No.	2 (500 max. μμf
	1 100 min
Phosphor (For Curves, see front of this S	Section) No.4
Fluorescence and Phosphorescence	White
Persistence of Phosphorescence	Medium
Focusing Method	
Deflection Method.	Magnetic
Deflection Angle (Approx.)	50°
Overall Length	11-3/4" ± 3/8"
Overall Length	5" ± 1/8"
IMinimum Useful Screen Diameter	4-1/2"
Minimum Optical-Quality-Circle Diameter.	4_1/4"
Mounting Position.	Any
Cap.	Ally
Base	Shall Duadaaal 7 Dia
Basing Designation for BOTTOM VIEW	-Sherr Duodecar /-Pin
busing besignation for borrow view	· · · · · · · . 12C
Pin 1-Heater	Pin 10-Grid No.2
Pin 2-Grid No.1	Pin 10-Grid No.2
	Pin 11-Cathode
Pin 7- Internal Con P2	Pin 12 - Heater
Do Not Use	Cap - Anode No.2
	1
	1
Maximum Ratings, Design-Center Values:	}
ANODE-No.2 VOLTAGE	27000 max. volts
ANODE-No.1 VOLTAGE	6000 max. volts
	350 max. volts
GRID-No.1 (CONTROL ELECTRODE) VOLTAGE:	550 max. volus
Negative bias value.	150 max. volts
Positive bias value.	0 max. volts
Positive peak value	
PEAK HEATER-CATHODE VOLTAGE:	2 max. volts∢
Heater negative with respect to cathode	
During equipment warm-up period not	•
exceeding 15 seconds	410
After equipment warm-up period	410 max. volts
Heater positive with respect to cathode	175 max. volts.←
4	e 10 max. volts
Typical Operation:	
Anode-No.2 Voltage*	27000 volts
Anode-No.1 Voltage for Focus	
Anode-No.1 Voltage for Focus when anode-No.2 current is 200 µa	4320 to 5400 volts -
Anode-No.1 Voltage for Focus	

i.



Grid-No.2 Voltage**. . 200 Grid-No.1 Voltage for Visual Cutoff^O -42 to -98 Anode-No.2 Current . . . 200 Max. Anode-No.1 Current. 65 Max. Grid-No.2 Current . ±15 Maximum Circuit Values: Grid-No.1-Circuit Resistance . . . . . 1.5 max.megohms →Minimum Circuit Values: When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherent regulation of the power supply permits the instantaneous shortcircuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows: Grid-No.1-Circuit Resistance . . 180 min. Grid-No.2-Circuit Resistance 390 min. Anode-No.1-Circuit Resistance. . 6800 min. Anode-No.2-Circuit Resistance. . 30000 min. The resistors used should be capable of withstanding the voltages involved. Components: RCA Type No. 201D2 Deflection Yoke. . Horizontal Output Transformer (for RCA Type No.211T2 use with two 6BG6-G's). Vertical Output Transformer. . . . RCA Type No. 204T2 Brilliance and definition decrease with decreasing anode voltages. In general, anode No.2 voltage should not be less than 20000 volts. Subject to variation of  $\pm$ 40% if it is desired to operate any tube at a grid-wo.1 cutoff bias of -70 volts. Visual extinction of undeflected focused spot.

PROJECTION KINESCOPE

⇒indicates a change.

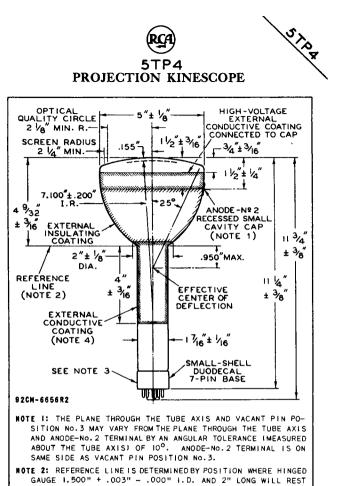
0

volts

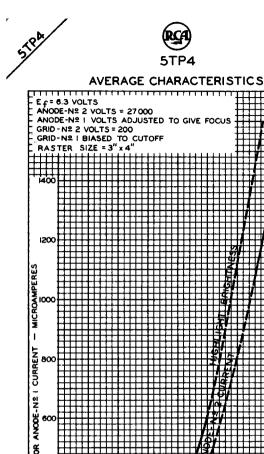
volts

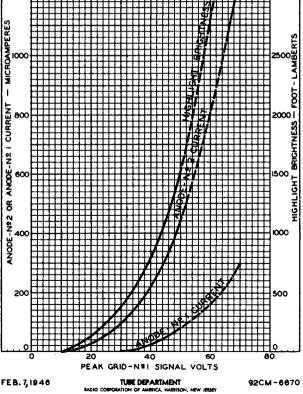
щa

щa


uа

ohms


ohms


ohns

ohms



- ON BULB CONE. NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED;
- IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY.
- NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.





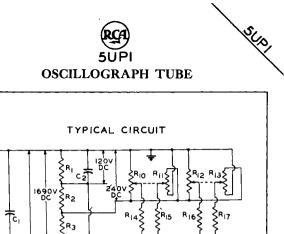
н

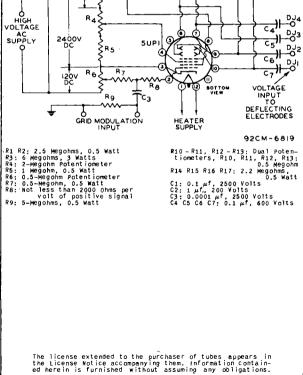


SURI

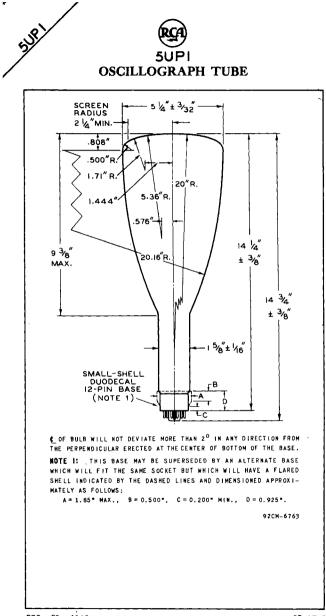
## **OSCILLOGRAPH TUBE**

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

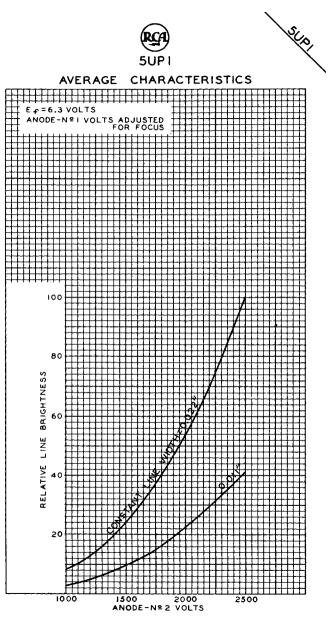

General:


ueneral:	
Heater, for Unipotential Cathode:       Voltage.       6.3 ± 10%       ac or dc         Voltage.       0.6	μμf μμf μμf μμf μμf μμf μμf μμf μμf μμf
Find 2 between the trace produced by DJ ₂ and DJ ₂ $DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base With DJ ₁ positive with respect to DJ ₂ , the spot is flected toward pin 4. With DJ ₃ positive with respect DJ ₄ , the spot is deflected toward pin 1. The angle between the trace produced by DJ ₁ and DJ ₂ its intersection with the plane through the tube axis pin 1 does not exceed 10°. The angle between the trace produced by DJ ₃ and DJ ₄ the trace produced by OJ ₁ and DJ ₂ is 90° ± 3°.	to and and



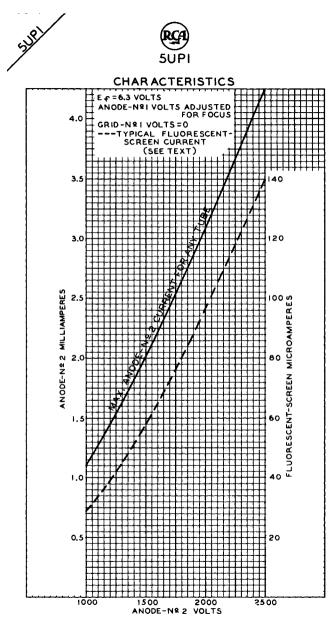

5UPI OSCILLOGRAPH TUBE

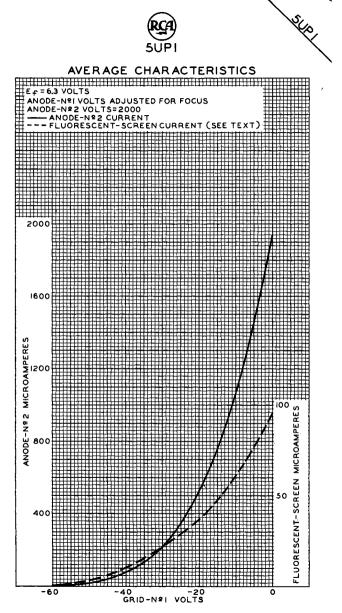
Maximum Ratings, Design-Center Values:	ĺ
ANODE-No.2 VOLTAGE	volts
ANODE-No.1 VOLTAGE 1000 max.	volts
GRID-No.1 (CONTROL ELECTRODE) VOLTAGE:	
Negative bias value	volts
Positive bias value	volts
	volts
PEAK VOLTAGE BETWEEN ANODE No.2	
AND ANY DEFLECTING ELECTRODE 500 max.	volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode. 125 max.	volts
Heater positive with respect to cathode. 125 max.	volts
Equipment Design Ranges:	and to a
For any anode-No.2 voltage $(Eb_2)$ between 1000 [*] and 2500	
Anode-No.1 Voltage 17% to 32% of E _{b2}	volts
Max. Grid-No.1 Voltage	
for Visual Cutoff 4.5% of E _{b2} · · ·	volts
Anode-No.1 Current for	
Any operating condition to the	croamp
Deflection Factors:	~ F 5.
DJ ₁ & DJ ₂	
DJ3 & DJ4 23 to 31 v dc/in./kv	~' ~62
Examples of Use of Design Ranges:	1
For anode-No. 2 voltages of 1000 2000	volts
Anode-No.1 Voltage 170 - 320 340 - 640	volts
Max. Grid-No.1 Voltage	1
for Visual Cutoff -45 -90	volts
Deflection Factors:	1
DJ1 & DJ2 28-38.5 56-77 volts	
$D_{3} \& D_{4} \dots D_{3} = 23 - 31$ 46 - 62 volts	dc/in.
Maximum Circuit Values:	
	egohms
Resistance in Any Deflecting	
Electrode Circuit ^e 5.0 max. m	eyonms
* Recommended minimum value.	. 1
It is recommended that the deflecting-electrode-circuit resignation of the second s	stances
be approximately equal.	n tube
Anode No.2 and grid No.2, which are connected together within are referred to herein as anode No.2.	
	- 1
	1
	}
	1
	1






CE-6819





DEC. 20, 1946



NOV. 7,1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA. HARRISON, NEW JERSEY





NOV. 11, 1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6810





ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

The 5UP7 is the same as the 5UP1, except that it has a screen of the greenish-yellow, long-persistence type, designated P7. Persistence of useable brightness can be obtained with an anode-No.2 voltage of as low as 1500 volts.

The SPECTRAL-ENERGY EMISSION CHARACTERISTIC, as well as PERSISTENCE CURVES of BUILDUP and DECAY for the P7 PHOSPHOR are shown at the beginning of this section





ELECTROSTATIC FOCUS

ELECTROSTATIC DEFLECTION

The 5UP11 is the same as the 5UP1, except that it has a screen of the short-persistence, blue-fluorescence type designated P11. Its highly actinic fluorescent spot of unusually high brightness makes the 5UP11 particularly useful for photographic recording. Because its improved phosphor has exceptional brightness for a blue screen, the 5UP11 is also quite useful for visual observation of phenomena. Radiation of useable intensity can be obtained with anode-No.2 voltages as low as 1500 volts.

The SPECTRAL-ENERGY EMISSION CHARACTERISTIC of the P11 PHOSPHOR is shown at the beginning of this section



# SWAII TRANSCRIBER KINESCOPE

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION

ſ

DATA
General:
General:         Heater, for Unipotential Cathode:         Voltage.       6.3       ac or dc volt         Current.       0.6       am         Direct Interelectrode Capacitances:       Grid No.1 to All Other Electrodes.       7.5       am         Cathode to All Other Electrodes.       5.       yu         External Conductive Coating to Anode No.2       \$500 max.       yu         Phosphor (For Curves, see front of this Section).       P1         Fluorescence.       Shor       Shor         Persistence.       Shor       Shor         Deflection Method.       Shor       Shor         Deflection Method.       Shor       Shor         Scatest Diameter of Bulb.       So       So         Munimum Useful Screen Diameter       4-1/4       Raster Size (Approx.).       And         Gase.       Small-Shell Duodecal 7-Pi       Basing Designation for BOTTOM VIEW       12         Pin 1- Heater       Pin 10 - Grid No.2       Pin 11 - Cathode       Pin 11 - Cathode         Pin 6 - Anode No.1       Pin 12 - Heater       Pin 12 - Heater       Pin 12 - Heater
Maximum Ratings, Design-Center Values: ANODE-No.2 VOLTAGE
Anode-No.2 Voltage"
*: See next page. FEB. 1, 1949 THRE DEPARTMENT TENTATIVE DATA

1.

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



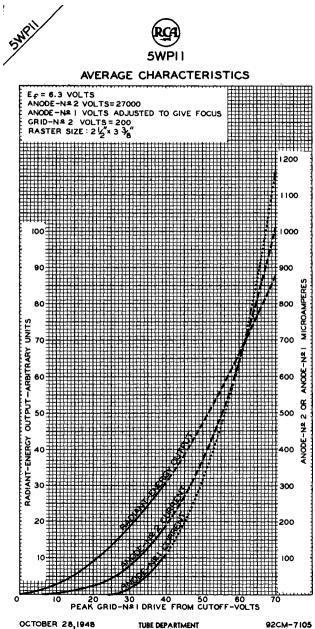
r

PII 5

#### TRANSCRIBER KINESCOPE

Anode-No.1 Voltage Range for Anode-No.2 Current of 20 µamp 4200 to 5400 volts Grid-No.2 Voltage ^{**} 200 volts Grid-No.1 Voltage for Visual Cutoff42 to -98 volts Anode-No.2 Current
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
Minimum Circuit Values:
When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherent regu- lation of the power supply permits the instantaneous short- circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:
Grid-No.1-Circuit Resistance
Components: Deflecting YokeRCA Type No. 201D11 Hor. Deflection Output Transformer: For use with 6AS7-G booster scanning tu be and separate high-voltage supply RCA Type No. 204T1
and separate nigh-voltage supply RCA lype No. 20411 For use with single high-voltage tripler supply employing 3 183-GT/8016's RCA Type No. 211T2 Ver. Deflection Output Transformer RCA Type No. 204T2
<ul> <li>Brilliance and definition decrease with decreasing anode voltages. In general, anode-No.2 voltage should not be less than 15000 volts.</li> <li>Subject variation of ± 40\$ when grid-No.1 voltage cutoff is desired at -70 volts.</li> </ul>
OPERATING NOTES
Soft x-rays are produced when the 5WP11 is operated with an anode-No.2 voltage above approximately 20000 volts. These rays can constitute a health hazard unless the tube is adequately shielded. Relatively simple shielding should prove adequate, but the need for this precaution should be considered in equip- ment design.
Resolution of better then 700 lines at the center of the re- produced picture can be produced by the 5WP11. To utilize such resolution capability in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to use a video amplifier having a band-width of at least 10 megacycles.
FEB. 1, 1949 TUBE DEPARTMENT TENTATIVE DATA 1




# SWAII

#### TRANSCRIBER KINESCOPE

The screen of the 5WPII has highly actinic blue radiation, and is particularly effective for photography. The presistence of the radiation is sufficiently short to prevent "carry over" from one frame to the next. The persistence is dependent to some extent on the current density in the focused spot, and decreases with current density.

Operation of the 5WP11 results in gradual browning of the face. The rate of browning increases markedly with increase in anode-No.2 voltage, is proportional to beam current, and is inversely proportional to the scanned area. The browning is most noticeable during initial operation; thereafter, a gradual increase in the amount of browning will be observed during the life of the tube.

> OUTLINE DIMENSIONS for the 5WP11 are the same as those for the 5WP15



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



#### 5WP15

## SARE FLYING-SPOT CATHODE-RAY TUBE

FLECTROSTATIC FOCUS MAGNETIC DEFLECTION

For use in Flying-Spot Video-Signal Generators

#### DATA General: Heater, for Unipotential Cathode: Direct Interelectrode Capacitances: Grid No.1 to All Other Electrodes. . . . 7.5 μuf Cathode to All Other Electrodes. . . . . 5 щuf (500 max. щuf External Conductive Coating to Anode No.2. ງ 100 min. 🛄 🕺 🕺 🕺 🕺 🕺 🕺 🕺 Phosphor . . . . . . No.15 Fluorescence Visible Radiation. . . . . . . Blue-Green . . . . . . . Invisible Radiation. . . . . . . . . . . Near Ultraviolet Phosphorescence: Persistence of Visible Radiation . . . . . . Very Short Persistence of Invisible Radiation . . . Extremely Short Focusing Method. . . . . . . . . . . . . . . . Electrostatic Deflection Method. . . . . . . . . . . . . . . . Magnetic Deflection Angle (Approx.) . . . . . . 50° . . . . . 11-7/16" ± 3/8" $5" \pm 1/8"$ Minimum Useful Screen Diameter . . . . . . . . . 4-1/4" Minimum Inside Diameter of Deflecting Coil . . . . 1.505" Pin 1-Heater 6) (7) Pin 10-Grid No.2 Pin 2-Grid No.1 Pin 11 - Cathode Pin 6 - Anode No.1 Pin 12 - Heater Pin 7- Internal Con.-Do Not Use Cap - Anode No.2 Maximum Ratings, Design-Center Values; ANODE-No.2 VOLTAGE . . . . 27000 max. volts ANODE-No.1 VOLTAGE . . . 6000 max. voltsi GRID-No.2 VOLTAGE. . . 350 max. volts GRID-No.1 VOLTAGE: Negative bias value. . . . . 150 max. volts Positive bias value. . . . 0 max. volts Positive peak value. . . . 2 max. volts PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds. . . 410 max. volts After equipment warm-up period . . . . 125 max. volts Heater positive with respect to cathode. 125 max. volts

JUNE 15, 1948

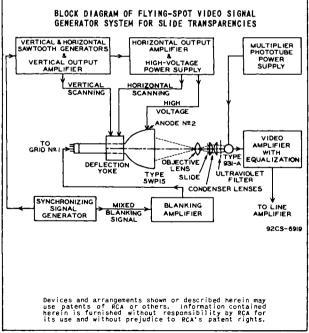
#### TUBE DEPARTMENT

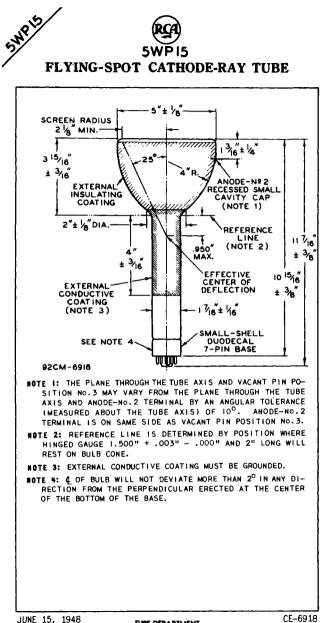
TENTATIVE DATA

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

**5WPI5** 

# SMPIS FLYING-SPOT CATHODE-RAY TUBE


Typical Operation;
Anode-No.2 Voltage*
Anode-No.2 Current of 150 µamp 3000 to 3800 volts
Grid-No.2 Voltage**
Grid-No.1 Voltage for Visual Cutoff ⁰ 42 to -98 volts
Anode-No.2 Current 150 μamp
Max. Anode-No.1 Current
Grid-No.2 Current Range15 to +15 μamp
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
Minimum Circuit Values:
When the output capacitor of the power supply is capable of
storing more than 250 microcoulombs, and when the inherent
regulation of the power supply permits the instantaneous short-
circuit current to exceed 1 ampere, the effective resistance
in circuit between indicated electrode and the output capacitor should be as follows:
Grid-No.1-Circuit Resistance 180 min. ohms
Grid-No.2-Circuit Resistance
Anode-No.1-Circuit Resistance
Anode-No.2-Circuit Resistance
The resistors used should be capable of withstanding the volt-
ages involved.
Components:
Deflecting Yoke RCA Type No. 201D11
Brilliance and definition decrease with decreasing anode voltages. In general, anode-woltages, voltage should not be less than 15000 volts.
** Subject to variation of ± 40% when grid-No.1 voltage cutoff is desired
at -70 volts. O visual extinction of undeflected focused spot.
OPERATING NOTES
Soft x-rays are produced when the 5WP15 is operated with an
anode-No.2 voltage above approximately 20000 volts. These rays can constitute a health hazard unless the tube is ade-
quately shielded. Relatively simple shielding should prove
adequate, but the need for this precaution should be con-
sidered in equipment design.
Resolution of better than 700 lines at the center of the re-
produced picture can be produced by the 5WP15. To utilize
such resolution capability in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to
use a video amplifier having a band-width of at least 10
megacycles.
The bius-green radiation decays hyperbolically to about 30
per cent of its initial value in 1.5 microseconds. The ultra-

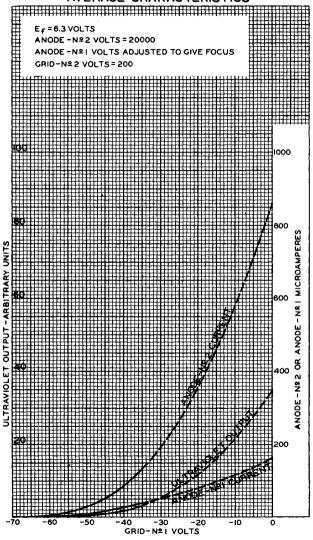



violet radiation has an equivalent exponential decay with a time constant less than 0.05 microsecond. The frequency response of the ultraviolet radiation is substantially constant for a range of 3 megacycles and then decreases exponentially toward zero at approximately 100 megacycles.

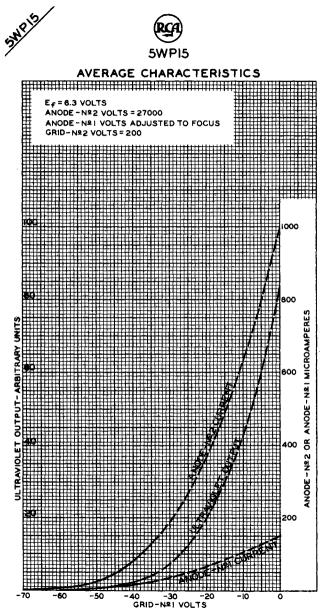
The P15 screenismore sensitive to heat than other standard types of phosphors. It shows a decrease in efficiency with increase in temperature. Use of forced air from a small blower directed against the face of the tube is, therefore, suggested to counteract the heating effect of the electron beam when optimum efficiency of the screen is desired at maximum anode-No.2 current.

Operation of the 5WP15 results in gradual browning of the face. The rate of browning increases markedly with increase in anode-No.2 voltage, is proportional to beam current, and is inversely proportional to the scanned area. The browning is most noticeable during initial operation; thereafter, a gradual increase in the amount of browning will be observed during the life of the tube.






**TUBE DEPARTMENT** RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY






#### AVERAGE CHARACTERISTICS



DEC.5,1947



DEC.8,1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, MARRISON, NEW 1995

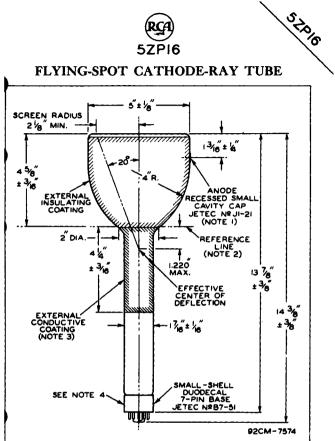


## 31910 FLYING-SPOT CATHODE-RAY TUBE

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION For use in Flying-Spot Video-Signal Generators

DATA	
General:         Heater, for Unipotential Cathode:         Voltage	amp µµf µµf µµf µµf µµf 0.16 colet colet colet 40° 3/8" 1/8" 1/8" 1/4" Any -51) de
Pin 6-Grid No.3 Pin 7 - Internal Con Do Not Use Pin 10 - Grid No.2 Socket CONTACTS CORRESPONDING TO VACANT PIN POSITIONS 3, 4, 5, 8, & 9 SHOULD BE REMOVED	
GRID-No.3 VOLTAGE	olts olts olts olts
Positive peak value	olts olts
After equipment warm-up period 150 max. v	olts olts olts

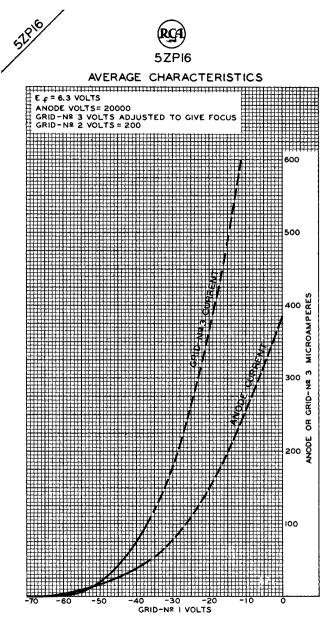



57¹⁶

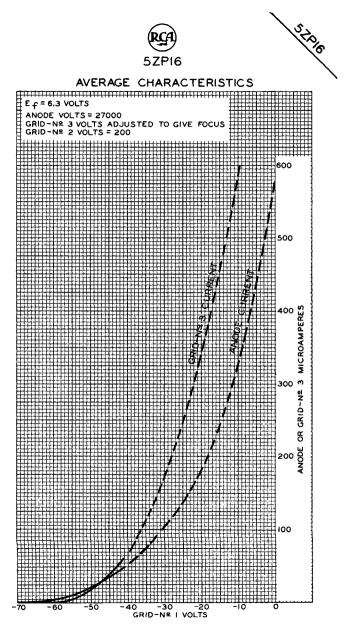
c

### FLYING-SPOT CATHODE-RAY TUBE

Typical Operation:					
Anode Voltage*		20	000	27000	volts
Grid-No.3 Voltage Range for		4700	. 100	C200 1 120	
Anode Current as Indicated Grid-No.2 Voltage**	1.		± 12% 00	6300 ± 12% 200	volts
Grid-No.1 Voltage for Visual	i	2	00	200	vore.
Extinction of Undeflected					
Focused Spot ^o			70	-70	volt
Anode Current			25	15	μami
Max. Grid-No.3 Current for				25	
Anode Current as Indicated			75 to +15	25 -15 to +15	µam;
Grid-No.2 Current Range	•	-15	10 +15	-15 (0 (15	$\mu am$
Maximum Circuit Values:					
Grid-No.1-Circuit Resistance	э.			1.5 max. m	egohms
* Brilliance and definition dec general, the anode voltage sho ** subject to variation of + HOS	reas	se with not be	decreas less th	ing anode volta an 20000 volts tage cutoff is:	age. in desired
** Subject to variation of ± 40% at the average cutoff value or					
O Subject to variation of ± 40\$ 200 volts.	whe	m grid-	No. 2 vol	tage is mainta	lined a
OPERA	NIT/	G NOTE	s		
I-Ray Warning. X-ray rad	iati	ion is p	roduce	d at the fac	e of
the 5ZP16 when it is opera	ted	at its	norma	l anode volt	age.
These rays can constitute					
is adequately shielded f relatively simple shield					
sure that it provides th	he.r	requir	ed pro	tection aga	inst
personat injury.			•		
Resolution of better than	100	00 1in€	es at t	he center of	the
reproduced picture can be	pro	duced t	y the	5ZP16 when i	t is
operated with 27000 volt					
voltages, the resolution high resolution in the hor	cap	abilit; atal di	y decre	ases. To ob	
to use a video amplifier					
megacycles.					
The ultraviolet output of	the	5ZP 16	isa li	near functio	on of
the anode current. For	an	y part	icular	value of a	node
current, the ultraviolet	ou	tput i	s appro	oximately 50	per
cent higher when the 5ZP					olts
on the anode than when op	era	ted wi	th 2000	o vorts.	
MARCH 1. 1951				TENTATI	
MARCH 1, 1951	DEB	ARTMEN	r	TENTATI	VEUA


TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




**NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm 10^{\circ}$ . ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION No.3.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY INTERSECTION OF PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

NOTE 3: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.



DEC. 26, 1950



DEC. 26, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7576

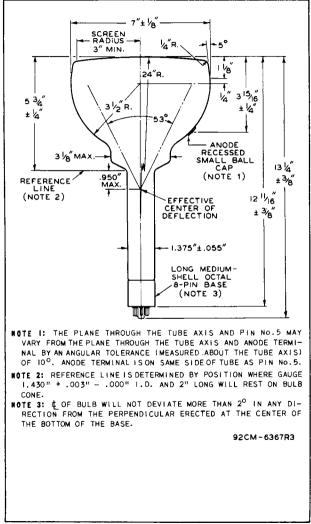


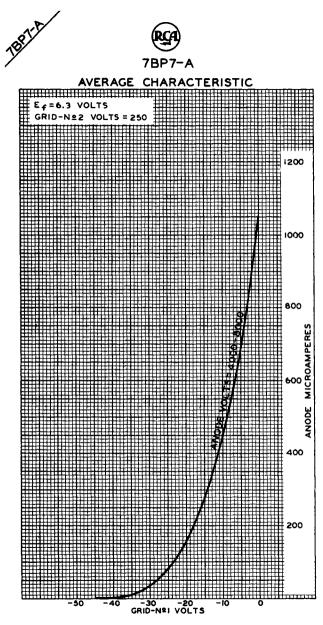


MAGNETIC FOCUS MAGNETIC DEFLECTION

#### DATA

General:	
Heater, for Unipotential Cathode:         Voltage.       6.3         Current.       0.6         Direct Interelectrode Capacitances (Approx.):         Grid No.1 to All Other Electrodes.         Cathode to All Other Electrodes.         Cathode to All Other Electrodes.         Phosphor (For Curves, see front of this Section)         Fluorescence.         Phosphorescence.         Possiborescence.         Focusing Method.         Deflection Method.         Overall Length.         Overall Length.         Maximum Useful Screen Diameter         Mounting Position.         Cap.         Base         BOTTOM VIEW	.5 μμf 7 μμf 5 μμf No.7 Blue Yellow Long gnetic gnetic 530 ± 3/8" ± 1/8" • 6" • Any 1 Ball
Pin 1 - No Connection Pin 2 - Heater Pin 3 - Grid No.2 Pin 4 - No Connection Pin 5 - Grid No.1 Pin 5 - Grid No.1 Pin 6 - No Pin 7 - Cathode Pin 8 - Heater Connection Pin 7 - Cathode Pin 8 - Heater Connection Pin 6 - No Connection Pin 7 - Cathode Pin 8 - Heater Cap - Anode, Grid No.1	
Maximum Ratings, Design-Center Values:	
ANODE VOLTAGE	volts volts
Negative bias value.       125 max.         Positive bias value ⁰ 0 max.         Positive peak value.       2 max.         PEAK GRID-No.1 DRIVE FROM CUTOFF       65 max.         PEAK HEATER-CATHADE VOLTAGE:       125 max.         Heater negative with respect to cathode.       125 max.         Heater positive with respect to cathode.       125 max.	volts volts volts volts volts volts
Typical Operation:	
Anode Voltage*       4000       7000         Grid-No.2 Voltage.       250       250         Grid-No.1 Voltage Range ⁰ -25 to -70       -25 to -70         Focusing-Coil Current*       75 to 102       99 to 135         Spot Position.       *       -	volts volts volts ma
●□,*,0,▲,#: See next page.	





7BP7-A OSCILLOGRAPH TUBE

Naximum Circuít Values:
Grid-No.1-Circuit Resistan <del>ce</del> 1.5 max. megohms
Minimum Circuit Values:
When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherent regulation of the power supply permits the instantaneous short- circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:
Grid-No.1-Circuit Resistance 150 min. ohms Grid-No.2-Circuit Resistance 820 min. ohms Anode-Circuit Resistance 9100 min. ohms
The resistors used should be capable of withstanding the volt- ages involved.
Components:
RCA Focusing Coil RCA Type No. 202D1
Anode and grid No.3, which are connected together within tube, are re- ferred to herein as anode.
At or near this rating, the effective resistance of the anode supply should be adequate to limit the anode input power to 6 watts.
* Brilliance and definition decrease with decreasing anode voltage. In general, the anode voltage should not be less than #000 volts.
^O For visual extinction of undeflected focused spot.
For JETEC Focusing Coll No.106, or equivalent, with center line of air gap approximately 2-3/#* from reference line (see Outline Drawing), and total anode current of 200 microampres.
# The center of the undeflected unfocused spot will fall within a circle having 12 mm radius concentric with the center of the tube face.

٦







MAR.22,1948

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

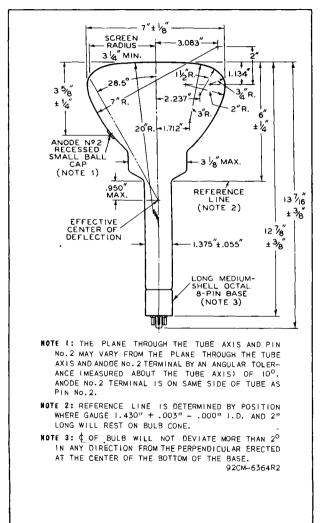


ELECTROSTATIC FOCUS, MAGNETIC DEFLECTION

#### General:

Heater, for Unipotential Cathode:         Voltage	ic ic ic ic ic ic ic ic ic ic
Maximum Ratings, Design-Center Values:	
ANODE-No.2 VOLTAGE	ts ts ts ts
Heater negative with respect to cathode. 125 max. vol Heater positive with respect to cathode. 125 max. vol	
Typical Operation:	
Anode-No.2 Voltage*	ts
Voltage for Cutoff ^o . 780 1365 vol	
Grid-No.2 Voltage	
*, ⁰ ,**: See next page.	

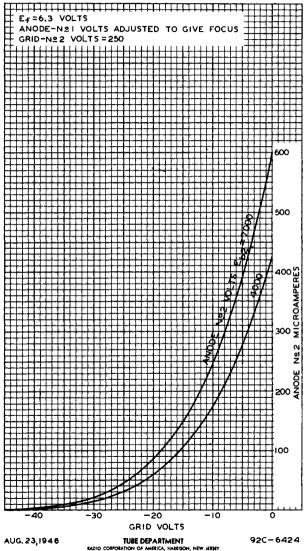
tcor






	_	_																	_	_
•	Bri In -	11i gen	anc era	e an 1, 1	nd d the	efi ano	nit de-1	ion 10.2	decr	eas tag	ewi est	th di nouli	ecre i no	asi t be	ng a les	nod s t	e-4c han	400	volt 0 vo	age Its
0	Ind	ivi	dua	1 t	ube	S ma	ay r	equi	re b	etw	een	~30	ar		20%	of 1	the v	alu	es s	ho
* *																			d be	
	jus	tab	le	to	50	≴ c	of is	ndic	ated	va	lue	•								
Ma	cimu	/ḿ	Cir	cu	it	٧a	lue	s :												
Gr	id—N	ю.	1-0	lir	cui	t	Res	ist	ance	e.					1.	5 п	nax.	r	nego	hт
						1														
						1														












#### AVERAGE CHARACTERISTICS

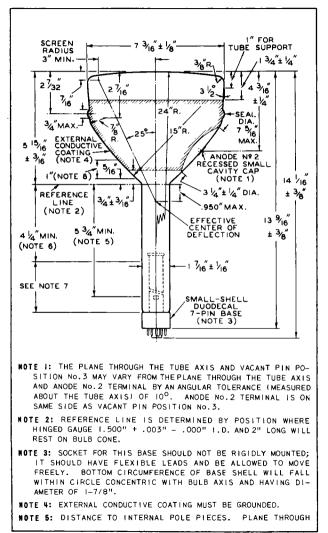




#### KINESCOPE

``````````````````````````````````````
RCA 7DP4
7DP4
KINESCOPE
ELECTROSTATIC FOCUS MAGNETIC DEFLECTION DATA
General:         Heater, for Unipotential Cathode:         Voltage, 6,3
Minimum Useful Screen Diameter 6" Raster Size (Approx.)
Pin 2 - Grid No.1 Pin 6 - Anode No.1 Pin 7 - Internal Con Do Not Use Pin 10 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater Cap - Anode No.2, Grid No.3
Maximum Ratings, Design-Center Values:
ANODE-No.2 VOLTAGE 8000 max. volts ANODE-No.1 VOLTAGE
Negative bias value.       125 max. volts         Positive bias value.       0 max. volts         Positive peak value.       2 max. volts         PEAK HEATER-CATHODE VOLTAGE:       Heater negative with respect to cathode:
During equipment warm-up period not exceeding 15 seconds 410 max. volts After equipment warm-up period 150 max. volts Heater positive with respect to cathode. 150 max. volts -
■, •: See next page. ← Indicates a change.




### RCA 7DP4 KINESCOPE

Max. Anode-No.1 C Maximum Circuit V Grid-No.1-Circuit → Minimum Circuit V	e*
rent to 5 ma. If circuit current 1 more than 250 mic	ion to limit the continuous short-circuit cur- the supply permits the instantaneous short- to exceed 1 ampere, or is capable of storing rocoulombs, the effective resistance in cir- dicated electrode and the output capacitor lows:
Grid-No.1-Circuit Grid-No.2-Circuit Anode-No.1-Circui Anode-No.2-Circui The resistors use ages involved.	Resistance 470 min. ohms t Resistance 2700 min. ohms
Components: Ion-Trap Magnet [#] → Deflecting Yoke [*] • Anode No. 2 and g referred to here	RCA Type No.203D1 RCA Type No.201D12 rid No.3, which are connected together within tube, are in as anode No.2.
<ul> <li>The product of ann never exceed 6 wi</li> <li>Brilliance and di In general, anodi</li> <li>With the combiner justed to produce</li> <li>5-1/2* picture ai</li> <li>Visual extinction</li> <li>The dc current reg operating conditi</li> </ul>	ode=No.2 voltage and average anode=No.2 current should atts. efinition decrease with decreasing anode=No.2 voltage. e=No.2 voltage should not be less than 5000 volts. d grid=No.1 bias voltage and video=signal voltage ad- a highlight brightness of 12 foot=lamberts on a W * x rea. n of undeflected focused spot. uired by this magnet is approx. 70 ma. for the typical
square root of th	ie anode-No.2 voltage.

→Indicates a change.





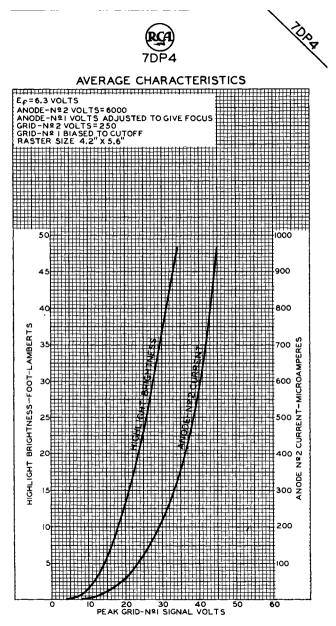








#### (continued from preceding page)


PIN NO.6 ANDTUBE AXIS PASSES THROUGH LINE JOINING CENTERS OF POLE PIECES. DIRECTION OF PRINCIPAL FIELD OF ION-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO PIN NO.6 AND SOUTH POLE TO PIN NO. 12.

NOTE 6: LOCATION OF DEFLECTING YOKE MUST BE WITHIN THIS SPACE.

NOTE 7: KEEP THIS SPACE CLEAR FOR ION-TRAP MAGNET.

NOTE 8: FOR TUBE SUPPORT WHICH MUST NOT COVER SPECIFIED CLEAR AREA AROUND ANODE CAP.

92CM-6664R1



OCT. 14,1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



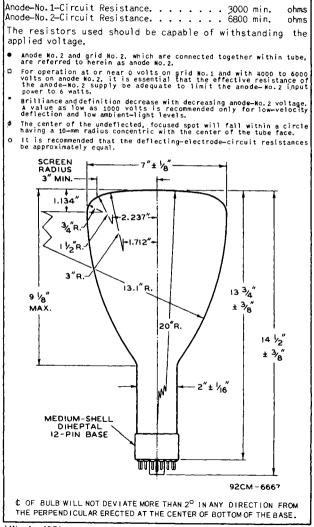
1 JAI

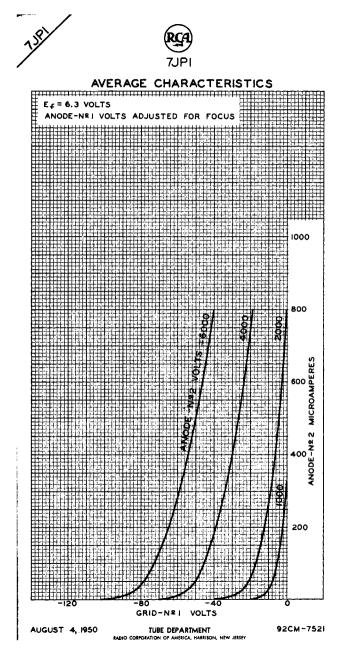
#### **OSCILLOGRAPH TUBE**

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

#### DATA

Heater, for Unipotential Cathode:         Voltage
Electrode Do Not Use DJ4 Pin 14-Heater
$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base
With DJ ₁ positive with respect to DJ2, the spot is de- flected toward pin 5. With DJ3 positive with respect to DJ4, the spot is deflected toward pin 2. The plane through the tube axis and pin 5 may vary from the trace produced by DJ1 and DJ2 by an angular toler- ance (measured about the tube axis) of $10^{\circ}$ . Angle between DJ1 - DJ2 trace and DJ3 - DJ4 trace is $90^{\circ} \pm 3^{\circ}$ .




Maximum Ratings, Design-Center Values:
ANODE-No.2 VOLTAGE ^D 6000 max. volts
GRID-No.1 VOLTAGE:
Negative bias value
Positive bias value 0 max. volts
Positive peak value
ANY DEFLECTING ELECTRODE 750 max. volts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode. 125 max. volts
Heater positive with respect to cathode. 125 max. volt
Equipment Design Ranges:
For any anode-No.2 voltage (Eb ₂ ) between 1000 [*] and 6000 volts
Anode-No.1 Voltage 27% to 40% of Eb2 volts
Max. Grid-No.1 Voltage
for Visual Cutoff 2.8% of Eb2 volts
Anode-No.1 Current for any
Operating Condition. —15 to +10 microam
Deflection Factors:
DJ1 & DJ2
DJ3 & DJ4
Spot Position #
Examples of Use of Design Ranges:
For anode-No.2 voltage of 2000 4000 volt.
Anode-No.1 Voltage 540-800 1080-1600 volt
Max. Grid-No.1 Voltage
for Visual Cutoff56 -112 volts
Deflection Factors:
DJ1 & DJ2 62-82 124-164 volts dc/in
DJ3 & DJ4
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohm:
Resistance in Any Deflecting-
Electrode Circuit ^o 5.0 max. megohm
Minimum Circuit Values:
The power supply should be of the limited-energy type wit
lipherent regulation to limit the continuous short-circui
current to 5 milliamperes. If the supply permits th
instantaneous short-circuit current to exceed 1 ampere, o
is capable of storing more than 250 microcoulombs, th
effective resistance in circuit between indicated electrod and the output capacitor should be as follows:
Grid-No.1-Circuit Resistance
●,□,*,#,o: See next page.
JAN. 1, 1951 TUBE DEPARTMENT TENTATIVE DATA









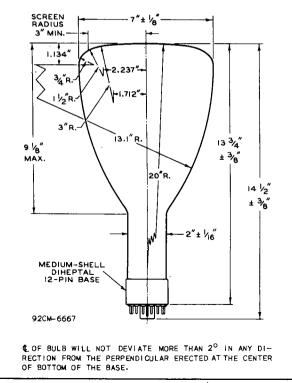


### KINESCOPE

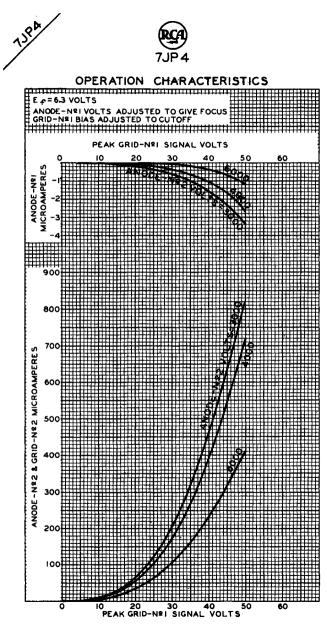


ELECTROSTATIC FOCUS---ELECTROSTATIC DEFLECTION Supersedes Type 7GP4*

General: Heater, for Unipotential Cathode: . . . ac or dc volts 6.3 ± 10% . Voltage. . . . . . . . . . 0.6 amo Current. . . . . . . . Direct Interelectrode Capacitances (Approx.): 8.5 Grid No.1 to All Other Electrodes. . . . μuf Cathode to All Other Electrodes. . . 9.5 μµf 3.5 μµf  $DJ_3$  to  $DJ_4$ .  $DJ_1$  to All Other Electrodes. 2.0 μuf 11.0 uuf DJ₂ to All Other Electrodes. . . . . DJ₃ to All Other Electrodes. . . . . 11.0 uuf 8.0 μµf 8.0 DJ₄ to All Other Electrodes. . . μµf Phosphor (For Curves, see front of this Section) No. 4 Fluorescence . . . . White Persistence. . . . Medium Electrostatic Focusing Method. . . Deflection Method. . . Electrostatic 14-1/2" ± 3/8" ± 1/8" 6" Minimum Useful Screen Diameter x 5-1/2" Raster Size. . . . Mounting Position. . . . Anv Medium-Shell Diheptal 12-Pin Pin 9-Anode No.2. Pin 1-Heater Pin 2 - Cathode Grid No.2 Pin 3-Grid No.1 Pin 10 - Deflecting Pin 4 - No Electrode Connection DJ2 Pin 11 – Deflectina Pin 5 - Anode No.1 Pin 7-Deflecting Electrode Electrode DJ 1 DJ3 Pin 12 - Internal Pin 8 - Deflecting Connection-Electrode Do Not Use D.14 Pin 14 - Heater  ${\rm DJ}_1$  and  ${\rm DJ}_2$  are nearer the screen  ${\rm DJ}_3$  and  ${\rm DJ}_4$  are nearer the base With DJ1 positive with respect to DJ2, the spot is deflected toward pin 5. With DJ3 positive with respect to  $DJ_A$ , the spot is deflected toward pin 2. The plane through the tube axis and pin 5 may vary from the trace produced by  $DJ_1$  and  $DJ_2$  by an angular tolerance (measured about the tube axis) of  $10^\circ$ . The angle between the trace produced by DJ₁ and DJ₂ and the trace produced by DJ₃ and DJ₄ is  $90^{\circ} \pm 3^{\circ}$ . The 7JP4 replaces the 7GP4 provided no connections are mage to the 7GP4 socket contacts for pins 4 and 12.


TJPA

# 7JP4 KINESCOPE

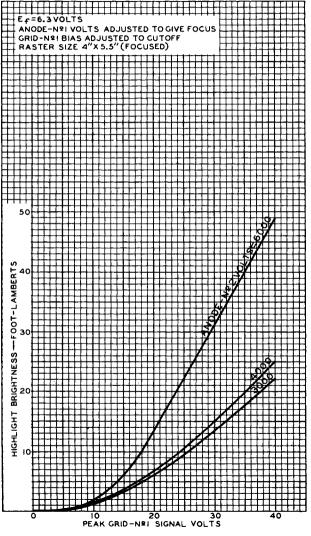

Maximum Ratings, Design-Center Values:
ANODE-No.2 & GRID-No.2 VOLTAGE 6000 max. volts
ANODE-No.1 VOLTAGE
GRID-No.1 (CONTROL ELECTRODE) VOLTAGE:
Negative bias value 200 max. volts
Positive bias value#, Positive bias value#, Positive bias value#
Positive peak value
PEAK VOLTAGE BETWEEN ANODE NO.2
AND ANY DEFLECTING ELECTRODE 750 max. volts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode:
During equipment warm-up period not exceeding 15 seconds 410 max. volts
exceeding 15 seconds 410 max. volts After equipment warm-up period 125 max. volts
Heater positive with respect to cathode. 125 max. volts
heater positive with respect to cathode. 125 max. vorts
Equipment Design Ranges:
For any anode-No.2 voltage (Eb2) between 3000* and 6000 volts
Anode-No.1 Voltage
for Focus ^o 27% to 40% of E _{b2} volts
Grid-No.1 Voltage for
Visual Cutoff 1.2% to 2.8% of E _{b2} volts
Anade-No.1 Current for Any
Operating Condition -15 to +10 µamp
Deflection Factors:
DJ1 & DJ2 31 to 41 v dc/in./kv of Eb2 DJ3 & DJ4 ● 25 to 34 v dc/in./kv of Eb2
$D_3 \& D_4 = \dots D_3 \& D_4 = \dots D_4 \oplus D_4 = \dots D_3 \& D_4 = \dots D_4 \oplus D_4 = \dots D_4 \oplus D_4 = \dots D_4 \oplus $
Examples of Use of Design Ranges:
For anode-No.2 voltage of 6000 volts
Anode-No.1 Voltage 1620 to 2400 volts Grid-No.1 Voltage forVisual Cutoff     -72 to -168 volts
Grid-No.1 Voltage forVisual Cutoff _72 to -168 volts
Deflection Factors: Dia & Dia 186 to 246 volts dc/in.
DJ & DJ2 186 to 246 volts dc/in. DJ3 & DJ4 150 to 204 volts dc/in.
103 & 004 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
Resistance in Any Deflecting
Electrode Circuit ^o . 5.0 max. megohms
Winimum Circuit Values:
When the output capacitor of the power supply is capable of
storing more than 250 microcoulombs, and when the inherent
regulation of the power supply permits the instantaneous
short-circuit current to exceed 1 ampere, the effective re-
sistance in circuit between indicated electrode and the out-
put capacitor should be as follows:
Grid-No.1-Circuit Resistance
Anode-No.1-Circuit Resistance
Anode-No.2-Circuit Resistance 6800 min. ohms
# [*] ,□,0,⊕: See next page.
SEPT. 2. 1947 TIME DEPARTMENT TENTATIVE DATA



- # At or near this rating, with 4000 to 6000 volts on anode No.2, the effective resistance of the anode-No.2 supply should be adequate to limit the anode-No.2 input power to 6 watts.
- Brilliance and definition decrease with decreasing anode_No.2 voltage.
   With the combined grid_No.1 bias voltage and video_signal voltage ad-
- With the combined grid-wo.1 bias voltage and video-signal voltage adjusted for a highlight brightness of 12 foot-lamberts on a 4" x 5-1/2" picture area.
- It is recommended that the deflecting-electrode-circuit resistances be approximately equal.
- The JJP4 is designed to be used in television circuits with horizontai deflection applied to deflecting electrodes DJ3 and DJ4, and should be so used to obtain maximum picture width. When the JJP4 is operated in this way, the deflecting voltage required to produce the vertical height is approximately the same as that required to produce the horizontal width of a television picture of standard proportions.



128 P




AUG. 21,1947





#### OPERATION CHARACTERISTICS

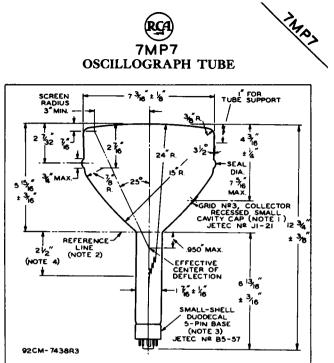


AUG. 14,1947

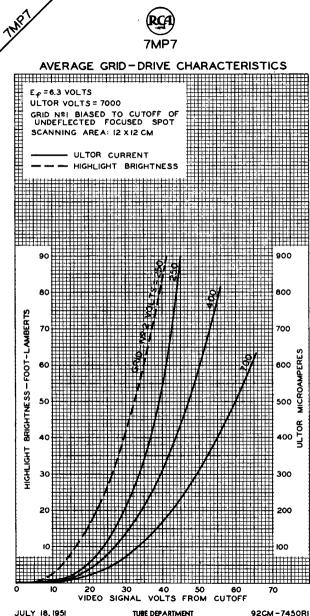
TUBE DEPARTMENT INDIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6888






**OSCILLOGRAPH TUBE** 

OSCILLOGRAPH TUBE			
MAGNETIC FOCUS MAGNETIC DEFLECTION			
DATA			
General:			
Heater, for Unipotential Cathode:			
Voltage 6.3 ac or dc vol	ts		
	mp		
Direct Interelectrode Capacitances (Approx.):			
	μf		
	μf		
Phosphor (For Curves, see front of this Section)	P7		
	ue		
Phosphorescence Greenish-Yell	ow		
Persistence Lo	ong		
Focusing Method	ič		
Deflection Method Magnet	ic		
	500		
Overall Length			
Greatest Diameter of Bulb			
Minimum Useful Screen Diameter	6"		
	Any		
Cap Recessed Small Cavity (JETEC No.J1-2			
Base Small-Shell Duodecal 5-Pin (JETEC No.85-5	57)		
BOTTOM VIEW			
$\sim$			
Pin 1-Heater Pin 11-Cathode	- 1		
Pin 2-Grid No.1 Pin 12-Heater			
Pin 10-Grid No.2			
Collecto	r		
Maximum Ratings, Design-Center Values:			
Ultor [•] VOLTAGE	lts		
GRID-No. 2 VOLTAGE:			
	lts		
Negative Value (DC or Peak AC)	lts		
GRID-No.1 VOLTAGE:	[		
	lts		
	lts		
	ts		
	lts		
PEAK HEATER-CATHODE VOLTAGE:	. 1		
	lts		
Heater positive with respect to cathode. 125 max. vo	lts		
	- 1		
	1		
In the 7M-types, grid No.9 which has the ultor function, and collect are connected together within the tube and are conveniently referred.	or		
to collectively as "ultor". The "ultor" in a cathode-ray tube is t	che		
In the 7M-types, grid No.3 which has the ultor function, and collect are connected together within the tube and are conveniently refer to collectively as "ultor". The "ultor" in a cathode-ray tube is t electrode, or the electrode in combination with one or more addition electrodes connected within the tube to it, to which is applied t highest dc voltage for accelerating the electrons in the beam prior its delection.	hal I		
highest dc voltage for accelerating the electrons in the beam prior	to		
	- I		
At or near this rating, the effective resistance of the ultor sup should be adequate to limit the ultor input power to 6 watts.	ply		




JP7 71 **OSCILLOGRAPH TUBE** 

	Typical (	Operation:				
		ltage <b>*</b> .		4000	7000	volts
		2 Voltage .		250	250	volts
_		1 Voltage 9 2 Current 7		-27 to -63 -15 to +15	-27 to -63 -15 to +15	volts µamp
		-Coil Curre		-13 (0 +15	-15 (6 /15	10.0
	1 (	DC Approx.	**	64 ± 15%	85 ± 15%	ma
→	Spot Pos	ition	• • • •		**	
	Maximum (	Circuit Val	ues:			
	Grid-No.	1-Circuit	Resistance		1.5 max.	megohms
	* Brillia	ince and defi	nition decr	ease with decre	asing ultor volt than 4000 volts	age. In
	general O For vis	, the ultor Sual extincti	on of undef	lected, focused	spot.	•
	** For spe	cimen focusi	ing coil sim	ilar to JETEC	Focusing Coil No	.109 po-
	sitione from Re microam	d with air ga eference Lin mperes.	p toward fac e (see Out)	ceplate and cent ine Drawing) a	Focusing Coil Mo er line of alr ga nd ultor curren	p 2-3/4* t of 200
	# The cer	ter of the un	deflected,	unfocused spot	will fall within r of the tube fa	a circle
	naving	12-mm radius	concentric	with the cente		
	t					
						1
			•			
						1
						1
i						
i						
I						1
1						
j						
						1
					-> Indicates	a change
	OCTOBER 1	1051				DATA



- **NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND BULB TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  10°. BULB TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.3.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE REFERENCE-LINE GAUGE (JETEC No.112) 1.500 + .003"-.000" I. D. AND 2" LONG WILL REST ON BULB CONE.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED: IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DIAMETER OF 1-7/B".
- NOTE 4: LOCATION OF DEFLECTING YOKE MUST BE WITHIN THIS SPACE.



JULY 18, 1951

92CM - 7450RI

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



#### **OSCILLOGRAPH TUBE**

#### MAGNETIC FOCUS

MAGNETIC DEFLECTION

IN RIG

The 7MP14 is the same as the 7MP7 except that it utilizes a medimum-long-persistence, cascade (two-layer) screen which exhibits purple fluorescence of short persistence and orange phosphorescence which persists for a little over aminute under conditions of adequate excitation and ambient light.

Because of its medium-long-persistence, the 7MP14 is particularly useful where either low- and medium-speed non-recurring phenomena or high-speed recurring phenomena are to be observed. Furthermore, two or more phenomena can be observed simultaneously on the screen by means of a suitable switching arrangement.

The persistence is such that the 7MP14 without filter can be operated with scanning frequencies as low as 30 cycles per second without excessive flicker. When used with yellow filter, such as Wratten No.15 (G), the 7MP14 can be operated with much lower scanning frequencies.

In general, operation of the 7MP14 at an ultor voltage below 4000 volts will not give persistence of useable brightness.

THE SPECTRAL-ENERGY EMISSION CHARACTERISTIC and the PERSISTENCE CHARACTERISTIC of the P14 Phosphor are shown at the front of this Section





METAL-BACKED FLUORESCENT SCREEN FORCED-AIR COOLED

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION

ELECTROSTATIC FOCUS MAG	NETIC DEFLECTION
General: DATA	
Hoston for Uningtontial Cathoday	
Heater, for Unipotential Cathode:	
Voltage 6.6	ac or dc volts
Current 0.62	amp
Direct Interelectrode Capacitances (Appro	
Grid No.1 to All Other Electrodes	12 μμf
Cathode to All Other Electrodes	6 μμf
Phosphor (For Curves, see front	
of this Section) No.4S	ilicate-Sulfide Type
Fluorescence and Phosphorescence	White
Persistence of Phosphorescence	Medium
Focusing Method.	Electrostatic
Deflection Method	Magnetic
Deflection Angle (Approx.)	
Overall Length	19-1/2" ± 5/8"
Greatest Diameter of Bulb (Excluding Side	
Maximum Radius of Tube (Including Side Ca	4-11/32"
Quality Rectangle of Face Plate	
(See Outline Drawing)	5" x 3-3/4"
Mounting Position	Any
Basing Designation For BOTTOM VIEW	14N
	in 9-Grid No.3
Pin 2-Cathode 🖉 🖗 🖡	'in 10 – No Conn.
Pin 3-Grid No.1 9//10 F	Pin 11 – No Conn.
Pin 4-Grid No.2	vin 12 – No Conn.
Pin 5 - No Conn.	oin 13-Int. Conn
Pin 6 – No Conn.	Do Not Use
Pin 7 – No Conn.	oin 14 - Heater
Pin 8 - No Conn.	Cap - Anode
	· · ·
NOTE: Socket contacts for pins No.5, 6	
12, and 13 should be removed so	
insulation is provided for	
Air Flow to Face	40 cfm
The specified air flow should be delivered p nozzle having a diameter of about 2 inches ont while it is in operation. The blower should hav	erpendicularly from a
nozzle having a diameter of about 2 inches ont while it is in operation. The blower should have	o the face of the tube
provide for a total system pressure drop includin	g that of the air filter.
Face Temperature	100 max. ^o C
	••••••••••••••••••••••••••••••••••••••
CATHODE-DRIVE* SERVIC	E
Unless otherwise specified, voltage vo	alues are positive
with respect to grid He	. 1
Maximum Ratings, Absolute Values:	
ANODE-to-GRID-No.1 VOLTAGEO	. 80000 max. volts
	,
", ⁰ : See next page	🕳 Indicates a change
t t tot what page	- Increates a suange

JUNE 1, 1953

)

TUBE DEPARTMENT

TENTATIVE DATA 1

TNP4

**PROJECTION KINESCOPE** 

GRID-No.3-to-GRID-No.1 VOLTAGE 20000 max.	volts
GRID-No.2-to-GRID-No.1 VOLTAGE 850 max.	volts
GRID-No.2-to-CATHODE VOLTAGE 600 max.	volts
CATHODE-to-GRID-No.1 VOLTAGE:	
Positive bias value	volts
Negative bias value	volts
Peak negative value	volts
AVERAGE ANODE CURRENT	ma
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period	
not exceeding 15 seconds . 410 max.	volts
After equipment warm-up period 150 max.	volts
Heater positive with respect to cathode. 150 max.	volts
Typical Operation:	
Anode-to-Grid-No.1 Voltage# 75000	volts
Grid-No.3-to-Grid-No.1 Voltage 16000 - 18000	volts
Grid-No.2-to-Grid-No.1 Voltage	
for Pattern Cutoff 400 - 600	volts
Cathode-to-Grid-No.1 Voltage 125	volts
Cathode-to-Grid-No.1 Video Voltage:	
Peak positive value (Black level) 0	volts
Peak negative value (White Level) 125	volts
Max. Grid-No.3 Current	μamp
Max. Grid-No.2 Current Range15 to +15	μamp
GRID-DRIVE** SERVICE	
Unless otherwise specified, voltage values are positi	ve
	ve
Unless otherwise specified, voltage values are positi	ve
Unless otherwise specified, voltage values are positi with respect to cathode	ve
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values:	
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ^O	volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts volts ma
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts ma volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ^O	volts volts volts volts volts ma volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts ma volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ^O	volts volts volts volts volts ma volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGEO	volts volts volts volts volts volts volts volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGEO	volts volts volts volts volts volts volts volts volts volts volts
Unless otherwise specified, voltage values are positi with respect to cathode Maximum Ratings, Absolute Values: ANODE VOLTAGE ⁰	volts volts volts volts volts volts volts volts volts volts volts

THPA



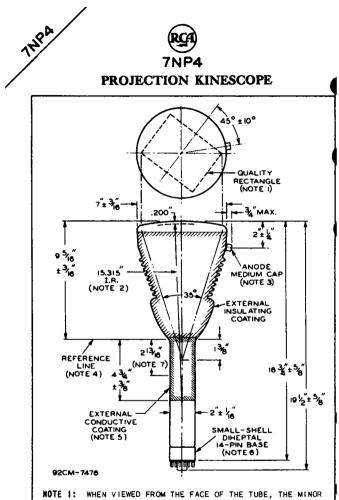


#### Typical Operation:

Anode Voltage#	. 16000 - 18000 . 400 - 600	volts volts volts volts
<pre>Grid-No.1 Video Voltage: Peak negative value (Black level). Peak positive value (White level). Max. Grid-No.3 Current Max. Grid-No.2 Current Range</pre>	. 155 . 15	volts volts μamp μamp

#### Maximum Circuit Values:

Grid-No.1-Circuit Resistance . . . . 1.5 max. megohms


# Brilliance and definition decrease with decreasing anode-to-grid-No.1 voltage or anode voltage. In general, the anode-to-grid-No.1 voltage or the anode voltage should not be less than 70000 volts.

#### OPERATING NOTES

X-ray radiation is produced at the face of the 7NP4 when it is operated at its normal anode voltage. These rays can constitute a health hazard unless the tube is adequately shielded. Make sure that the shielding provides the required protection against personal injury.

The air-cooling system required to cool the face of the 7NP4 consists of a blower and an air duct, having an outlet diameter of about 2 inches, directed perpendicularly onto the face of the tube. An air flow of 40 cubic feet per minute at the tube face is required to provide adequate cooling. In a typical system with air filter, the total system static pressure is approximately 0.25 inch of water. The cooling air must not contain water, dust, or other foreign matter. The air-cooling system should be electrically interconnected with the anode power supply to prevent operation of the tube without cooling.

Darkening of face occurs during normal operation of the 7NP4 with resulting decrease in the light transmitted by the face. The rate of darkening increases rapidly with increase in anode voltage, is proportional to the beam current, and is inversely proportional to the scanned area. The darkening develops rapidly during initial operation; thereafter, a gradual increase in the amount of darkening will be observed during the life of the tube. The darkening, however, can be decreased periodically throughout the life of the tube by bleaching the face as prescribed in the 7NPA bulletin.



- **NOTE 1:** WHEN VIEWED FROM THE FACE OF THE TUBE, THE MINOR AXIS OF THE 5" x 3-3/4" QUALITY RECTANGLE IS LOCATED  $45^{\circ} \pm 10^{\circ}$  in a counter-clockwise direction from a plane through the anode terminal and the tube axis.
- NOTE 2: INSIDE SURFACE OF FACE PLATE WITHIN THE QUALITY RECTANGLE MAY VARY ± 0.006" FROM THE SPHERICAL SURFACE HAVING A 15.315" RADIUS.
- NOTE 3: THE PLANE THROUGH BASE PIN NO.9 AND THE TUBE AXIS MAY VARY FROM THE PLANE THROUGH THE ANODE TERMINAL AND THE TUBE AXIS BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 10⁰. THE ANODE TERMINAL IS ON SAME SIDE AS PIN NO.9.

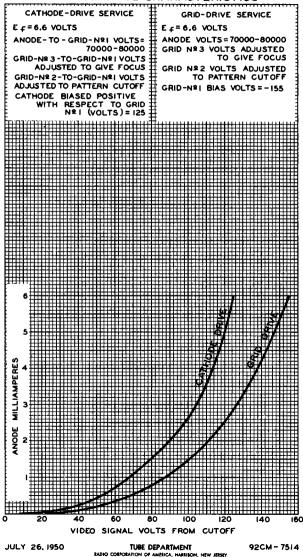
NOV. 1, 1950





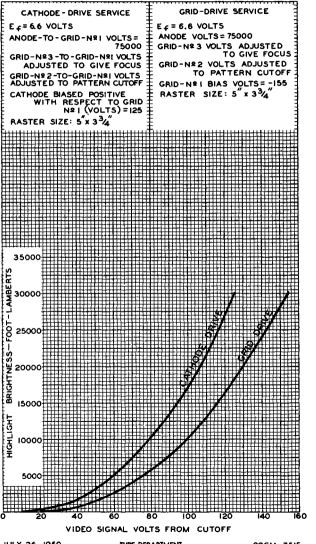
NOTE 4: REFERENCE LINE IS DETERMINED BY POSITION WHERE GAUGE 2.100" ± .001" I.D. AND 3" LONG WILL REST ON BULB CONE.

NOTE 5: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.


NOTE 6: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. SOCKET CONTACTS FOR PINS 5, 6, 7, B, IO, II, 12, AND I3 SHOULD BE REMOVED IN ORDER TO PROVIDE MAXIMUM INSULATION FOR PIN NO.9.

NOTE 7: EFFECTIVE DEFLECTING FIELD MUST BE WITHIN THIS SPACE.

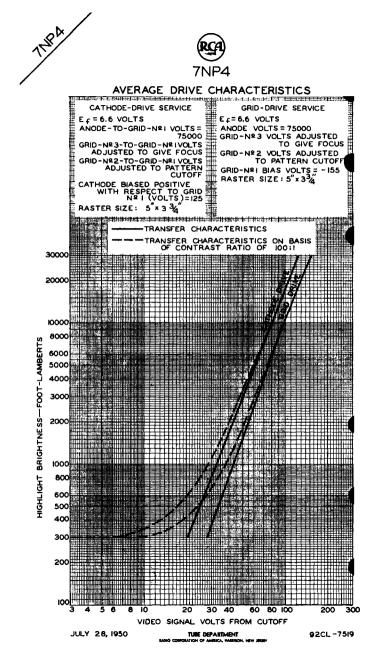




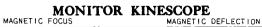

#### AVERAGE DRIVE CHARACTERISTICS






#### AVERAGE DRIVE CHARACTERISTICS




JULY 26, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7515

TH OF







10.84

|--|

DATA
General:
Heater, for Unipotential Cathode:       Voltage.       ac or dc volts         Voltage.       6.3       ac or dc volts         Current.       0.6       amp         Direct Interelectrode Capacitances (Approx.):       Grid No.1 to All Other Electrodes.       6       apf         Grid No.1 to All Other Electrodes.       6
Pin 1-Heater Pin 11-Cathode
Pin 2-Grid No.1 / Pin 12-Heater
Pin 10 - Grid No. 2 ( Cap - Anode Cap - Anode
Maximum Ratings, Design-Center Values:
ANODE VOLTAGE*
GRID-No.1 VOLTAGE:
Negative bias value
Positive bias value
Positive peak value
Heater negative with respect to cathode: During equipment warm-up period
not exceeding 15 seconds 410 max. volts
After equipment warm-up period 150 max. volts Heater positive with respect to cathode. 150 max. volts
<b>Typical Operation:</b> Anode Voltage**volts
The product of anode voltage and average anode current should be limited to 6 watts.
limited to 6 watts. Brilliance and definition decrease with decreasing anode voltage. In general, the anode voltage should not be less than 6000 volts.

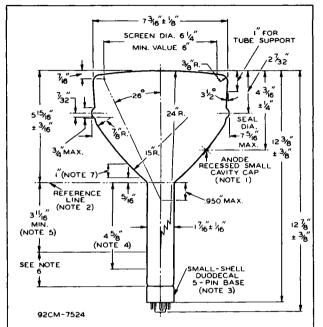
JAN. 1, 1951

ſ





# MONITOR KINESCOPE


Grid-No.2 Voltage	volts
tion of Undeflected Focused Spot33 to -77 Focusing-Coil Current (DC, approx.)# 80 Field Strength of Single-Field	volts ma
	usses
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max. me	egohms
Minimum Circuit Values:	
The power supply should be of the limited-energy type inherent regulation to limit the continuous short-ci current to 5 milliamperes. If the supply permits the in taneous short-circuit current to exceed 1 ampere, or is ca of storing more than 250 microcoulombs, the effective resis in circuit between indicated electrode and the output capa should be as follows:	rcuit nstan- apable stance
Grid-No.1-Circuit Resistance 150 min.	ohms
Grid-No.2-Circuit Resistance 470 min. Anode-Circuit Resistance	ohms ohms
The resistors used should be capable of withstandin applied voltage.	g the
<ul> <li>For specimen focusing coil similar to JETEC Focusing Coil % positioned with air gap toward kinescope screen, and center I air gap 3 inches from Reference Line (see Outline Drawing). indicated current is for condition with combined grid-No. voltage and video-signal voltage adjusted to produce a hig brightness of 40 foot-lamberts on a 5-3/4* x 4* picture areas focused at center of screen.</li> <li>Measured at center of field with General Electric Gauss Meter No.409X51.</li> </ul>	

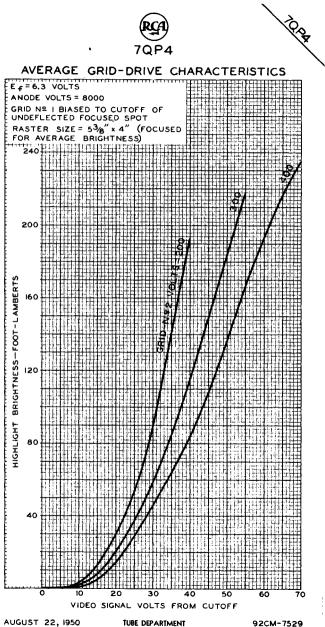
L





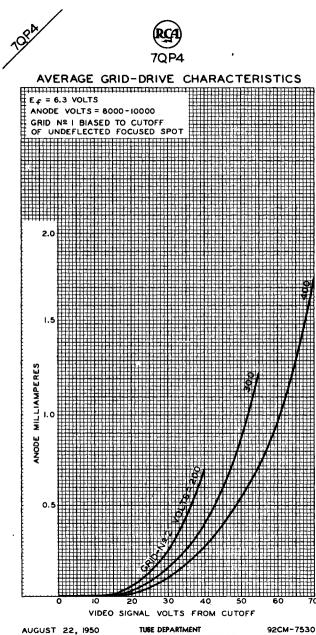
#### MONITOR KINESCOPE




- **NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $10^{\circ}$ . ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.3.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE HINGED GAUGE 1.500" + .003" - .000" I.D. AND 2" LONG WILL REST ON BULB CONE.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DIAMETER OF 1-7/8".
- NOTE 4: DISTANCE FROM REFERENCE LINE FOR LOCATING CENTER OF ION-TRAP MAGNETIC FIELD. DIRECTION OF FIELD OF THE ION-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO VACANT PIN POSITION No.8 AND SOUTH POLE TO PIN NO.2.

TOPA




# MONITOR KINESCOPE

NOTE 5: LOCATION OF DEFLECTING YOKE MUST BE WITHIN THIS SPACE.
NOTE 6: KEEP THIS SPACE CLEAR FOR SINGLE-FIELD, ION-TRAP MAGNET.
NOTE 7: FOR TUBE SUPPORT WHICH MUST BE KEPT AT LEAST 2" AWAY FROM ANODE CAVITY CAP.



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

⁹²CM-7529



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



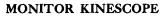


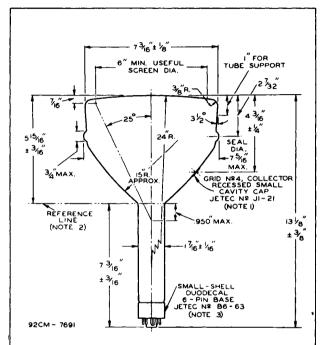
METAL-BACKED SCREEN ELECTROSTATIC FOCUS MAG

MAGNETIC DEFLECTION

	······································	···· ]
DATA		
General:		
Heater, for Unipotential Cathode: Voltage	P4-Sulfid Electro Ma 13-1/8" 7-3/16" 5-3/8 JETEC No.	amp µµf Glass e Type White Short Static gnetic 500 ± 3/8" ± 1/8" " × 4" J1-21)
	2 - Heater ap - Grid M Colle (Ul	lo.4,
Maximum Ratings, Design-Center Values:		
ULTOR VOLTAGE	2000 max. 2000 max. 410 max. 125 max. 0 max. 2 max.	volts volts volts volts volts volts
<ul> <li>For curves, see front of this Section.</li> <li>In the 7TP4, grid No.4 which has the ultor function, connected together within the tube and are conven collectively as "ultor". The "ultor" in a cathod electrode, or the electrode in combination with one electrodes connected within the tube to it, to whis to its deflection.</li> </ul>	and collec: iently refer e-ray tube or more add ich is appli in the beam	tor are red to is the itional ed the prior

TENTATIVE DATA





RCA 7 T P 4 MONITOR KINESCOPE

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period	
at shooting to the set	volts
After equipment warm-up period 180 max.	
Heater positive with respect to cathode. 180 max.	volts
Equipment Design Ranges:	
For any ultor voltage $(E_u)$ between 10000° and 12000 vo and grid-No.2 voltage $(E_{\rm C,2})$ between 150 and 410 volt	lts s
Grid-No.3 Voltage for Focus with Ultor Current of 100 $\mu$ amp 11.6% to 15.8% of E _u v Grid-No.1 Voltage for Visual Extinction of Undeflected	volts
	olts
Grid-No.2 Current15 to +15 Field Strength of Adjustable	µamp:
	Isses
Examples of Use of Design Ranges:	
For ultor voltage of 10000	volts
and grid-No.2 voltage of 200	volts
Grid-No.3 Voltage for Focus with Ultor Current of 100 $\mu$ amp . 1160 to 1580 Grid-No.1 Voltage for Visual Extinction of Undeflected	volts
Focused Spot22 to -52	volts
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max. me	gohms
* Brilliance and definition decrease with decreasing ultor voltage general, the ultor voltage should not be less than 10000 volts. **Grid—No.3 Current increases as the ultor voltage is decreased.	e. In(
	Í
	1
FEB 1 1952 TENTATIVE	DATA

TUBE DEPARTMENT RADIO COBFORATION OF AMERICA, HARRISON, NEW JERSEY

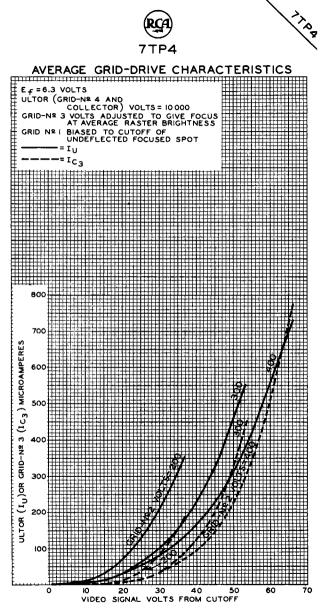






- NOTE 1: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND BULB TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS OF  $\pm$  10°. BULB TERMINAL IS ON SAME SIDE AS PIN NO.6.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE REFERENCE-LINE GAUGE (JETEC No.112) 1.500" + 0.003" - 0.000" 1.D. AND 2" LONG WILL REST ON BULB CONE.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DIA-METER OF 1-778".

TRE


TIPA



# AVERAGE GRID-DRIVE CHARACTERISTICS E = 6.3 VOLTS ULTOR (GRID-Nº 4 AND COLLECTOR) VOLTS = 10000 GRID-Nº 3 VOLTS ADJUSTED TO GIVE FOCUS AT AVERAGE RASTER BRIGHTNESS GRID Nº I BIASED TO CUTOFF OF UNDEFLECTED FOCUSED SPOT RASTER SIZE = 5 3/8 × 4" 300 250 ò HIGHLIGHT BRIGHTNESS-FOOT-LAMBERTS 5 200 150 100 50 TT 20 40 60 80 VIDEO SIGNAL VOLTS FROM CUTOFF

OCT. 3, 1951

TUBE DEPARTMENT RADIC CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7687



OCT. 3, 1951

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7688



LADI

#### **OSCILLOGRAPH TUBE**

ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

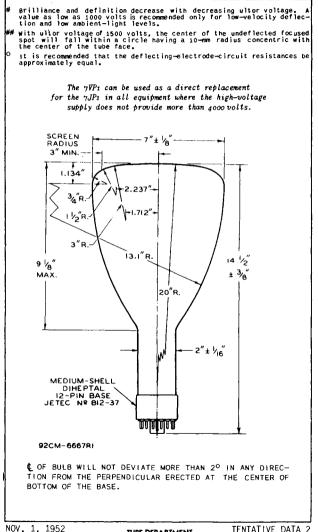
D	A	T	A

UATA	
General:	
Heater, for Unipotential Cathode:	
	ac or dc volts
Current 0.6	amol
Direct Interelectrode Capacitances (App)	rox.):
Direct Interelectrode Capacitances (App Grid No.1 to All Other Electrodes .	6μμf
4 UJ1 to UJ2	βμμf
UJ3 to UJ4	2 μμf
DJ1 to All Other Electrodes	9μμf
DJ2 to All Other Electrodes	3 µµf 2 µµf 9 µµf 9 µµf 9 µµf 7 µµf
DJ3 to All Other Electrodes	
_ DJ4 to All Other Electrodes	
Faceplate	Clear Glass
Phosphor (For Curves, see front of this	Section, P1
Fluorescence and Phosphorescence	Green
Persistence of Phosphorescence	
Focusing Method	Electrostatic
Overall Length	1/_1/2" + 2/9"
Greatest Diameter of Bulb	7"+1/2"
Overall Length	
Mounting Position	Anvi
Bulb	
Bulb Medium-Shell Diheptal 12	-Pin (JETEC No.B12-37)
BOTTOM VIEW	
Pin 1 - Heater	Pin 9-Ultor●
Pin 2 - Cathode	(Grid No.2,
Pin 3-Grid No.1	Grid No.4,
Pin 4 - No	Collector)
	Pin 10-Deflecting
Pin 5-Grid No.3 Pin 7-Deflecting	Elect. DJ2 Pin 11-Deflecting
Electrode	Elect. DJ
DJ3	Pin 12 - Internal
Pin 8-Deflecting	Connection-
Electrode	Do Not Use
DJA	Pin 14 - Heater
$DJ_1$ and $DJ_2$ are nearer the	e screen
$DJ_3$ and $DJ_4$ are nearer t	1
With DJ1 positive with respect to D.	J ₂ , the spot is de-
flected toward pin 5. With DJ3 positi	ive with respect to
DJ4, the spot is deflected toward pin	2.
The plane through the tube axis and	nin 5 may vary from
the trace produced by Dili and Dip by a	an angular tolerance
the trace produced by $DJ_1$ and $DJ_2$ by a (measured about the tube axis) of $\pm 1$	LOO. Angle between
$DJ_1 - DJ_2$ trace and $DJ_3 - DJ_4$ trace is S	90° ± 3°.
	-
	-
•: See next page.	
NOV. 1, 1952 THE DEPARTMENT	TENTATIVE DATA 1
NUV. 1, 1952 TUBE DEPARTMENT	LEGIALITE DATA 1

TUBE DEPARTMENT






# **OSCILLOGRAPH TUBE**

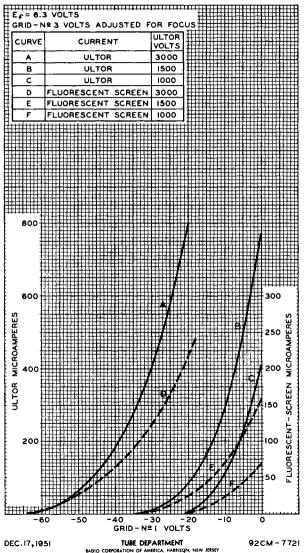
Maximum Ratings, Design-	Center Values:		
ULTOR® VOLTAGE		4000	max. volts
GRID-No.3 VOLTAGE		2000	
GRID-No.1 VOLTAGE: Negative bias value .		200	max. volts
Positive bias value* .			max. volts
Destation and selection		2	max. volts
PEAK VOLTAGE BETWEEN ULT			
ANY DEFLECTING ELE		750	max, volts
PEAK HEATER-CATHODE VOLT Heater negative with r		nda 125	max, volts
Heater positive with r			max. volts
Equipment Design Ranges: For any ultor voltage		1000# and w	non valts
Grid-No.3 Voltage for Fo			volts
Maximum Grid-No.1 Voltage for Visual Extinction	je		Vorts
Undeflected Focused Sp		of Eu	volts
Grid-No.3 Current	-15 te	o +10	µamp
Deflection Factors:	21 +	o 41 v dc/	in./kv of E _u
DJ1 & DJ2 DJ3 & DJ4		534 v dc/	in./kv of Eu
Spot Position	#i		
Examples of Use of Desig	yn Ranges:		
For ultor voltage of	1500	3000	volts
Grid-No.3 Voltage for Focus	400 to 600	800 to 1200	volts
Maximum Grid-No.1 Volt- age for Visual Extinc-	400 10 000	000 10 1200	
tion of Undeflected			
Focused Spot	-42	-84	volts
	47 to 62	93 to 123	volts dc/in.
$DJ_3 \& DJ_4 \dots$	38 to 51	75 to 102	volts dc/in.
Maximum Circuit Values:			
Grid No.1-Circuit Resist	ance	1.5 m	ax, meqohms
Resistance in Any Deflec		1.0	unt mogorino
	ode Čircuit ^o	5.0 m	ax. megohms
•			
In the 7VP1, grid No.4 which lector are connected toget	ch has the uitor her within the t	ube and are co	nveniently re-
ferred to collectively as is the electrode. or the	"ultor." The "L electrode in co	ntor" in a cat Indination wit	thode⊶ray tube h one or more
In the 7VP1, grid No.4 which lector are connected toget ferred to collectively as is the electrode, or the add itional electrodes con applied the highest dc vo heam orior to its deflecti	nnected within t ltage for accele	he tube to it rating the ele	, to which is ctrons in the
beam pirter ve ive deriverit.			
* At or near this rating, t should be adequate to limit	he effective res t the ultor input	istance of the power to 6 wa	tts.
¥, <b>##</b> , ^O : See next page.			
IOV 1 1052		TENT	ATIVE DATA 1
NOV. 1, 1952	TUBE DEPARTMENT	TENT	ALLAE DATA I





#### OSCILLOGRAPH TUBE




TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA 2





#### AVERAGE CHARACTERISTICS







METAL-BACKED FLUORESCENT SCREEN

FORCED-AIR COOLED

MAGNETIC DEFLECTION ELECTROSTATIC FOCUS DATA General: Heater, for Unipotential Cathode: Voltage . . . . . . . . ac or dc volts 6.6±5% Current . . . . . . . . 0.62 amo Direct Interelectrode Capacitances (Approx.): Grid No.1 to All Other Electrodes . . . . 12 шf Cathode to All Other Electrodes . . . 6 μµf Phosphor (For Curves, see front of this Section) . . P4--Silicate-Sulfide Type Fluorescence and Phosphorescence White Persistence of Phosphorescence Medium Electrostatic Focusing Method . . Deflection Method . . . . Magnetic . . . Deflection Angle (Approx.) . . 35° 19-7/16"±5/8" Overall Length . . . Greatest Diameter of Bulb (Excluding Side Cap). . . 7" ± 3/16" Maximum Radius of Tube (Including Side Cap) . . 4-11/32" Quality Rectangle of Faceplate 5" x 3-3/4" (See Outline Drawing) . . . . Refractive Index for Faceplate Glass 1.469 Medium (JETEC No.C1-5) Сар..... . . . . . . . . . Mounting Position . . . Anv Plastic-Filled. Small-Shell Diheptal 14-Pin Base . . . . (JETEC No. B14-45) BOTTOM VIEW Pin 1 - Heater Pin 10 - No Conn. ര Pin 2 - Cathode Pin 11-No Conn. Pin 3-Grid No.1 Pin 12-No Conn. Pin 4 - Grid No.2 Pin 13-Int. Conn.-Do Not Use Pin 5 - No Conn. Pin 6 - No Conn. Pin 14 - Heater Pin 7 - No Conn. Cap-Ultor (Grid No.4. Pin 8-No Conn. Collector) Pin 9-Grid No.3 NOTE: Socket Contacts for pins No.5, 6, 7, 8, 10, 11, 12, and 13 should be removed so that maximum insulation is provided for pin No.9. Alr Flow to Face 40 cfml The specified air flow should be delivered perpendicularly from a nozzle having a diameter of about 2 inches onto the face of the tube while it is in operation. The blower should have adequate capacity to provide for a total system pressure drop including that of the air filter. oC Face Temperature . . 100 max.



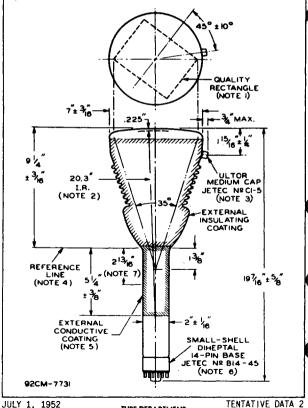


CATHODE-DRIVE* SERVICE							
Unless otherwise specified, voltage values are posit	ive						
with respect to grid No.1							
Maximum Ratings, Absolute Values:							
ULTOR [•] -to-GRID-No.1 VOLTAGE ⁰ 80000 max.	volts						
GRID-No.3-to-GRID-No.1 VOLTAGE 20000 max.	volts						
GRID-No.2-to-GRID-No.1 VOLTAGE 850 max.	volts						
GRID-No.2-to-CATHODE VOLTAGE 600 max.	volts						
CATHODE-to-GRID-No.1 VOLTAGE:							
Positive bias value	volts						
	volts						
Peak negative value       2 max.         AVERAGE ULTOR CURRENT       2 max.	voits						
PEAK HEATER-CATHODE VOLTAGE:	ina.						
Heater negative with respect to cathode:							
During equipment warm-up period	1						
not exceeding 15 seconds . 410 max.	volts						
After equipment warm-up period 150 max.	volts						
Heater positive with respect to cathode. 150 max.	volts						
Typical Operation:	[						
Ultor-to-Grid-No.1 Voltage# 75000	volts						
Grid-No.3-to-Grid-No.1 Voltage 16000 - 18000	volts						
Grid-No.2-to-Grid-No.1 Voltage							
for Pattern Cutoff 400 - 600	volts						
Cathode-to-Grid-No.1 Voltage 125	volts						
Cathode-to-Grid-No.1 Video Voltage:							
Peak positive value (Black level). 0	volts						
Peak negative value (White level)	volts						
Max. Grid-No.3 Current	µamp.						
max. Griu-no.2 Current Range15 to +15	μamp						
GRID-DRIVE** SERVICE							
Unless otherwise specified, voltage values are posit	ive						
with respect to cathode							
Manimum Dakinga di ta 17.1							
Maximum Ratings, Absolute Values:							
ULTOR [®] VOLTAGE ⁰	volts						
In the 7WPM, grid No.4 which has the ultor function and collec	tor are						
connected together within the tube and are conveniently references to the second se	is the						
In the YWR, grid No.4 which has the litor function and concerced together within the tube and are conveniently refered to the set of the set	itional						
highest do voltage for accelerating the electrons in the beam p	rior to						
its deflection.							
* Cathode drive is the operating condition in which the video varies the cathode potential.	signal						
** Grid drive is the operating condition in which the video signal the grid-No.1 potential.	varies						
The grid-woll potential. O The product of ultor-to-grid-No.1 voltage, or ultor voltage, an age ultor current should be limited to 160 watts.	d aver-						
	ſ						
* See next page.							





1	GR1D-No.3 VOLTAGE	volts
	GRID-No.2 VOLTAGE	volts
	GRID-No.1 VOLTAGE:	10113
1	Negative bias value	volts
	Positive bias value 0 max.	volts
	Peak positive value	volts
1	AVERAGE ULTOR CURRENT	ma
1	PEAK HEATER-CATHODE VOLTAGE:	INCL
	Heater negative with respect to cathode:	1
	During equipment warm-up period	
	not exceeding 15 seconds . 410 max.	volts
	After equipment warm-up period 150 max.	volts
	Heater positive with respect to cathode . 150 max.	volts
H	Typical Operation:	
1	Ultor Voltage#	volts
	Grid-No.3 Voltage	volts
	Grid-No.2 Voltage for Pattern Cutoff . 400 - 600	volts
	Grid-No.1 Voltage	volts
	Grid-No.1 Video Voltage:	/
	Peak negative value (Black level) 0	volts
	Peak positive value (White level) 155	volts
	Max. Grid-No.3 Current	µamp
	Max. Grid-No.2 Current Range15 to +15	μamp
		. ,
-	Maximum Circuit Values:	
	Grid—No.1—Circuit Resistance 1.5 max. m	negohms
	Brilliance and definition decrease with decreasing ultor-to-g	rid-No.1
	Brilliance and definition decrease with decreasing ultor-to-gi voltage or ultor voltage. In general, the ultor-to-grid-No.i or the ultor voltage should not be less than 7000 volts.	voltage
	OPERATING NOTES	
4	<i>X-ray radiation</i> is produced at the face of the 7WP4 it is operated at its normal ultor voltage. For x	
	shielding considerations, see sheet X-RAY PRECAUTION	
	CATHODE-RAY TUBES at front of this Section.	
		1
	The air-cooling system required to cool the face of	
	7WP4 consists of a blower and an air duct, having an	
	let diameter of about 2 inches, directed perpendicu	
)	onto the face of the tube. An air flow of 40 cubic	
	per minute at the tube face is required to provide	
	quate cooling. In a typical system with air filter	
	total system static pressure is approximately 0.25	
	of water. The cooling air must not contain water, o	
	or other foreign matter. The air-cooling system sh	
	be electrically interconnected with the ultor power su	uppiy
	to prevent operation of the tube without cooling.	]
ĺ		
	•	


2





#### OPERATING NOTES (Cont'd)

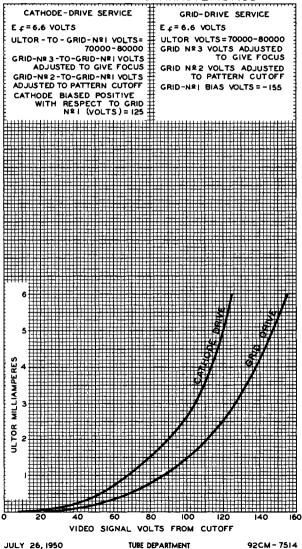
Darkening of face occurs during normal operation of the TWP4 with resulting decrease in the light transmitted by the face. The rate of darkening increases rapidly with increase in ultor voltage, is proportional to the beam current, and is inversely proportional to the scanned area. The darkening develops rapidly during initial operation; thereafter, a gradual increase in the amount of darkening will be observed during the life of the tube. The darkening, however, can be decreased periodically throughout the life of the tube by bleaching the face as prescribed in the bulletin.



TUBE DEPARTMENT "





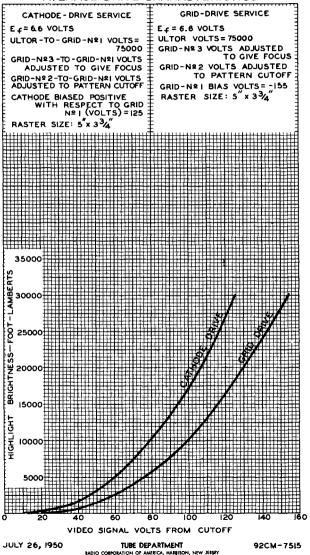

## **PROJECTION KINESCOPE**

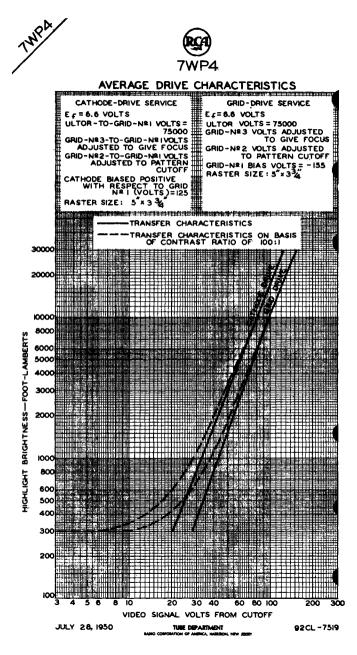
- NOTE 1: WHEN VIEWED FROM THE FACE OF THE TUBE, THE MINOR AXIS OF THE 5" x 3-3/4" QUALITY RECTANGLE IS LOCATED  $45^{\circ} \pm 10^{\circ}$  in a counter-clockwise direction from a plane through the ultor terminal and the tube axis.
- NOTE 2: INSIDE SURFACE OF FACEPLATE WITHIN THE QUALITY Rectangle may vary ± 0.006" from the spherical surface having a 20.3" radius.
- NOTE 3: THE PLANE THROUGH BASE PIN No.9 AND THE TUBE AXIS MAY VARY FROM THE PLANE THROUGH THE ULTOR TERMINAL AND THE TUBE AXIS BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $10^{\circ}$ . The ULTOR TERMINAL IS ON SAME SIDE AS PIN No.9.
- NOTE 4: REFERENCE LINE IS DETERMINED BY POSITION WHERE GAUGE 2.100" ± 0.001" I.D. AND 3" LONG WILL REST ON BULB CONE.
- NOTE 5: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.
- NOTE 6: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. SOCKET CONTACTS FOR PINS 6, 7, 8, 10, 11, 12, AND 13 SHOULD BE REMOVED IN ORDER TO PROVIDE MAXIMUM INSULATION FOR PIN No.9.
- NOTE 7: EFFECTIVE DEFLECTING FIELD MUST BE WITHIN THIS SPACE.





## AVERAGE DRIVE CHARACTERISTICS





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



THR B











SMALL, COMPACT, RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

DATA

General :
Heater, for Unipotential Cathode: Voltage 6.3
Current 0.6 ± 10% amp Direct Interelectrode Capacitances:
Grid No.1 to all other electrodes 6 $\mu\mu f$
Lathode to all other electrodes
External conductive coating to ultor {350 max. µµf 250 min. µµf
Faceplate, Spherical
Light transmission (Approx.)
Phosphor (For Curves, see front of this section)P4-Sulfide Type
Fluorescence
Phosphorescence
Persistence
Focusing Method Electrostatic
Deflection Method
Diagonal
Horizontal
Vertical. $\ldots$ $68^{\circ}$
Ion-Trap Gun Requires External Single-Field Magnet
Tube Dimensions:
Overall length 10-7/16" ± 5/16"
Greatest width
Greatest height $-1/32''$
Diagonal
Neck length 6-1/2" ± 3/16"
Screen Dimensions (Minimum):
Greatest width
Greatest height
Diagonal
Projected area
Weight (Approx.)
Mounting Position
Bulb
Basing Designation for BOTTOM VIEW
, · · ·
Pin 1-Heater Cap - Ultor
Pin 2-Grid No.1 Pin 3-Grid No.4 (Grid No.3, Grid No.5,
Pin 3-Grid No.4 Grid No.5, Pin 10-Grid No.2 Collector
Pin 11-Cathode C - External
Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater Official Pin 12-Heater Official Pin 12-Heater Official Pin 10-Grid No.2 Official Collector Collector Collector Collector Collector
Coating
}



## (RCA) 8DP4 KINESCOPE

#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode

#### Maximum Ratings, Design-Center Values:

naktinan natings, pesign-center fattes.	
ULTOR VOLTAGE	3000 max. volts
Positive value	500 max. volts
Negative value	500 max, volts
GRID-No.2 VOLTAGE.	300 max. volts
GRID-No.1 VOLTAGE:	Juo max. vuits
Negative peak value	130 max. volts
Negative bias value	100 max. volts
Positive bias value	0 max. volts
Positive peak value	2 max. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode.	180 max. volts
Heater positive with respect to cathode.	180 max. volts
Equipment Design Ranges:	
With any ultor voltage $(E_{C,5}k)$ between 4000 *	and 8000 volts
and grid-No.2 voltage (Ec2k) between 85 an	ia 300 voits
Grid-No.4 Voltage Required for Focus:	
Changes directly with Ec5k at the rate of a	pproximately 30
volts for each 1000-volt change in Ecsk	
Changes inversely with E _{C2k} at the rate of a volts for each 100-volt change in E _{C2k} .	approximately 25
Volts for each 100-volt change in Ec2k.	he rote of an
Changes inversely with ultor current at t proximately 22.5 volts for each 50-µamp ch	
ultor current.	lange in
For typical values, see Examples of Use of	Design Ranges
Grid-No.1 Voltage (Ecik) for	beargn hangeer
Visual Extinction of	
Focused Raster	off Design Chart
for Gri	d-Drive Service
Grid-No.1 Video Drive from	
Raster Cutoff	
(Black Level):	
White-level value	
(Peak positive) Same value as dete except video drive is p	ermined for E _{c1k}
except video drive is p	positive voltage
Grid-No.4 Current25 to +25	μamp
Grid-No.2 Current15 to +15 Jon-Trap Magnet Current	μamp
Average **	ma
(Average) ^{**} $\sqrt{E_{c5k}/8000} \times 32$ Minimum Field Strength of	110
PM Ion-Trap Magnet 6.	gausses
PM Ion-Trap Magnet§ $\sqrt{E_{c_5k}/8000} \times 36$ Field Strength of Adjust-	3
able Centering Magnet 0 to 5	gausses
	5
▲,#,**,§: See next page.	

TENTATIVE DATA 1



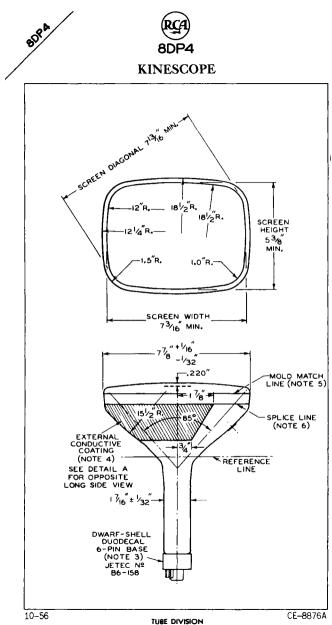
#### 17 T. T. T

KINES	P4 BCOPE		490g k
Examples of Use of Design Range With ultor voltage of and grid-No.2 voltage of Grid-No.4 Voltage for	6000 150	8000 200	volts volts
Focus with Ultor Current of 100 μamp Grid-No.1 Voltage for Visual Extinction of	+15 to +315	+60 to + <b>360</b>	volts
Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	–13 to –35	-17 to -46	volts
White-level value (Peak positive)	13 to 35	17 to 46	volts
Minimum Field Strength of PM Ion-Trap Magnet	31	36 9	gausses
Maximum Circuit Values: Grid-No.1-Circuit Resistance.		1.5 max. r	negohms
Unless otherwise specified, with respect Maximum Ratings, Design-Center	to grid No.1 Values:		
ULTOR-TO-GRID-No.1 VOLTAGE GRID-No.4-TO-GRID-No.1 VOLTAGE Bositive velue		8000 max. 500 max.	volts volts
Positive value		500 max.	volts
GRID-No. 2-TO-GRID-No. 1 VOLTAGE CATHODE-TO-GRID-No. 1 VOLTAGE:		400 max.	volts
Positive peak value		130 max.	volts
Positive bias value		100 max.	volts
Negative bias value Negative peak value		0 max. 2 max.	volts volts
PEAK HEATER-CATHODE VOLTAGE:		L max.	
Heater negative with respect		180 max.	volts
Heater positive with respect		180 max.	volts
▲ Grid drive is the operating condit the grid-No.1 potential with respet # Brilliance and definition decrea	ion in which the the the the to cathode.	he video signa sing ultor vol	1 varies
Brilliance and definition decrea ultor-to-grid-No.1 voltage. In g to-grid-No.1 voltage should not be	less than 400	0 volts.	
Cathode drive is the operating condition the cathode potential with respect t	tion in which t ogrid No.1 and	he video signa the other ele	1 varies ctrodes.
**,§: See next page.			
10-56 TUBE D		TENTATIVE	DATA 2



(RCA) 8DP4

#### **KINESCOPE**


Equipment Design Ranges: With any ultor-to-grid-No.1 voltage  $(E_{c,g_1})$  between 4000⁶ and 8000 volts and grid-No. 2-to-grid-No. 1 voltage (Ecagi) between 100 and 400 volts Grid-No.4-to-Grid-No.1 Voltage Required for Focus: Changes directly with  $E_{c_rg_1}$  at the rate of approximately 30 yolts for each 1000-wolt change in  $E_{c_rg_1}$ . Changes inversely with  $E_{c_rg_1}$  at the rate of approximately 25 volts for each 100-volt change in  $E_{c_rg_1}$ . Changes inversely with ultor current at the rate of approximately 22.5 volts for each 50-µamp change in ultor current. For typical values, see Examples of Use of Design Ranges. Cathode-to-Grid-No.1 Voltage (E_{kg1}) for Visual Extinction of Focused Raster . . . . . . . . See Cutoff Design Chart for Cathode-Drive Service Cathode-to-Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak negative)....Same value as determined for E_{kg,} -25 to +25 μamβ White-level value Grid-No.4 Čurrent. . . . . . µamol Grid-No.2 Current. . . . . . -15 to +15 Ion-Trap Magnet Current (Average)**....  $\sqrt{E_{c_{59}}}$ , 78000 × 32 ma Minimum Field Strength of  $\sqrt{E_{c_{59}}/8000} \times 36$ PM lon-Trap Magnet§. . . . gausses Field Strength of Adjustable Centering Magnet. . . . 0 to 5 gausses Examples of Use of Design Ranges: With ultor-to-grid-No.1 6000 8000 volts voltage of and grid-No. 2-to-grid-No. 1 volts 200 voltage of 150 Grid-No.4-to-Grid-No.1 Voltage for Focus with Ultor Current of 100  $\mu$ amp. . . . . . . . . +15 to +315 +60 to +360 volts ** For JETEC ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness. Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-No.1voltage. In general, the ultor voltage or ultor-to-grid-No.1 voltage should not be less than 4000 volts. §: See next page.





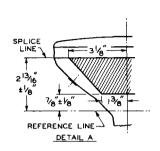
## **KINESCOPE**

Cathode-to-Grid-No.1 Voltage for Visual Extinction of Fo- cused Raster Cathode-to-Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak negative) Minimum Field Strength of PM lon-Trap Magnet	14 to 30 14 to 30 31	17 to 39 17 to 39 36	volts volts gausses
		0	yausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance	• • • • •	1.5 max.	-
For specimen PM ion-trap magnet, equivalent, located in optimum pos brightness. For a given equipment from the specified minimum value by more will insure use of a PM ion-trap m to permit satisfactory performance w For X-ray shielding con. X-RAY PRECAUTIONS FO, at front of t	siderations, R CATHODE-RA	see sheet	
1			



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

CO P 8DP4 **KINESCOPE** - 107/6" ± 5/16"-3 15/16 ± 1/8"-- 61/2" ± 3/16". REFERENCE LINE (NOTE 2) +¹/16 6¹/16[°] - ¹/32[°] ĥ ULTOR RECESSED SMALL CAVITY CAP JETEC Nº JI-21 ' (NOTE I) 27 1/4 "R: - 19/16" ± 1/8" a 10 21/16 ംറ് 3510 <u>____</u> ŝ ŝ ,^{\1}2 92CL-8876


10-56

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

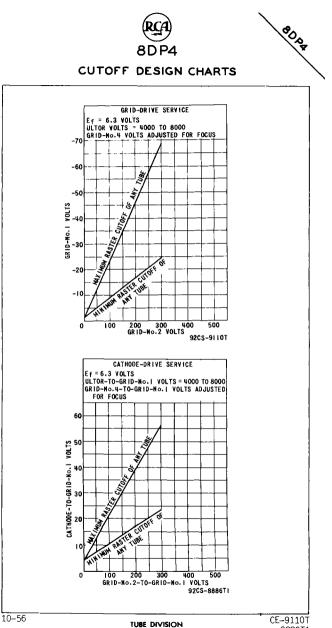
CE-8876B

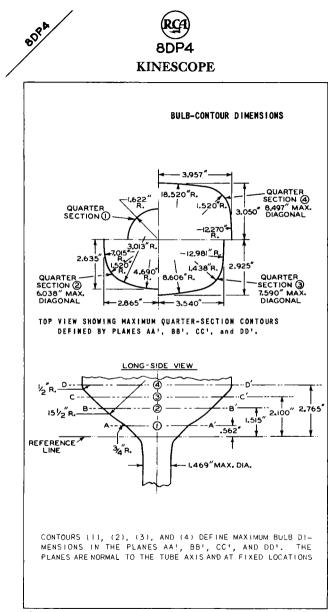


RCA 8DP4 KINESCOPE

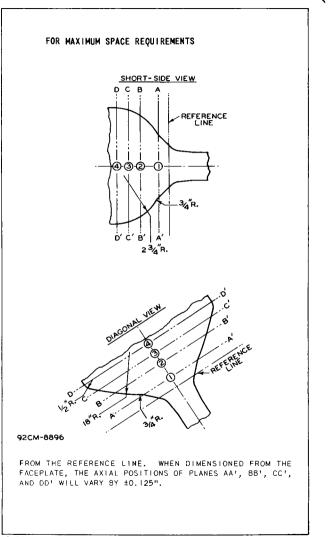


NOTE 1: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION No.6.


**NOTE 2:** WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO. 116 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.


NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BERIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AT THE REFERENCE LINE AND HAVING A DIAMETER OF 1-5/8 INCHES.

NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

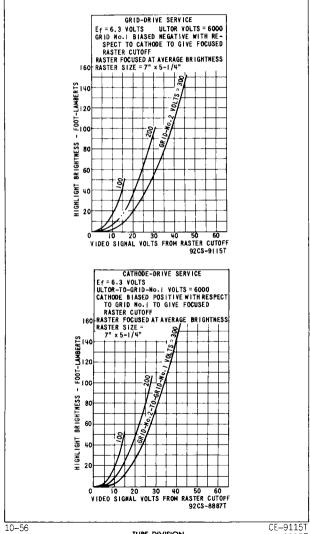

NOTE 5: THE MAXIMUM RADIAL DISPLACEMENT OF THE FACE PANEL JUST ABOVE THE MOLD MATCH IS 0.040" WHEN THE TUBE IS ROTATED ABOUT THE AXIS OF THE NECK AND SUPPORTED AT THE REFERENCE LINE.

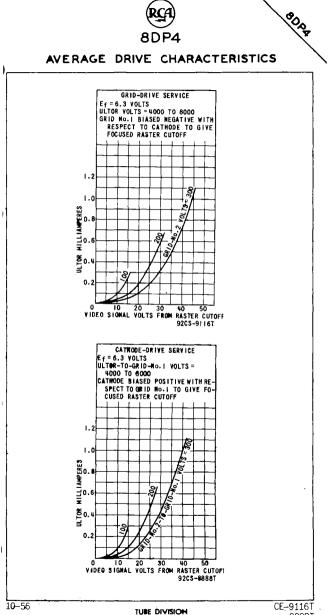
NOTE 6: BULGE AT SPLICE-LINE SEAL WILL NOT PROTRUDE BEYOND THE MAXIMUM ENVELOPE SURFACE AT THE MOLD-MATCH LINE.











^QO_P





AVERAGE DRIVE CHARACTERISTICS



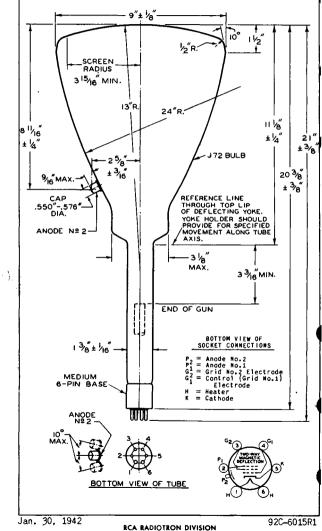


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

-8888T

9AP4/1804-P4




## **KINESCOPE**

······································	
Heater Coated Unipote	ntial Cathode
Voltage 2.	
Current 2.	1 amp.
Focus	Electrostatic
Deflection	Magnetic 🛥
Phosphor	No.4
Fluorescence	White
Persistence	Medium -
Direct Interelectrode Capacitar	
Grid No.1 to All Other Election	
	°odes 9 μμf → 21" ± 3/8"
Overall Length	21 <u> </u>
Diameter	
Bulb	J-72
Сар	Medium Metal
Base	Medium 6-Pin
MAXIMUM RATINGS and TYPIC	AL OPERATING CONDITIONS
Maximum Ratings Are Based on a Line	-Voltage Design Center of 117 Volts 🔫
High-Voltage Electrode (Anode No	.2) Volt. 7000 max. volts
Focusing Electrode (Anode No.1)	
Accelerating Electrode (Grid No.	2) Volt. 250 max. volts
Control Electrode (Grid No.1)	olt. Never positive
Fluorescent Screen Input Power/	
Fixed Pattern	2.5 max. mw
Moving Pattern	
Grid Circuit Resistance	1.5 max. megohms 🔫
Typical Operation:	(should be connected to one side
Cathode	{Should be connected to one side or to mid-tap of heater winding
Anode No.2 Voltage	6000 7000 volts
Anode No.1 Voltage	1225 1425 approx. volts
Grid No.2 Voltage	250 250 volts
Grid No.2 Voltage Grid No.1 Voltage ^O Adjusted	to give suitable luminous spot
Grid No.1 Signal-Swing Volt.	25 25 approx.volts 🔫
	on decrease with decreasing
• •	the anode No.2 voltage should
not be less than 5000 volt:	
Supply should be adjustable to ± 2	of the value shown. Itage is required for current cut- is necessary to use the maximum
Approximately 35% of Grid No.2 vo off when, in some applications it	itage is required for current cut-
I DEFMISSIBLE OF ID-CIFCUIT FESISTANC	P
Peak-to-peak value for good brill greater brilliance, up to twice th	ance with good resolution. For
greater officiance, up to twice th	is value should be available.
The Characteristic Curves j	or the 9AP4 are the same
as those for	the 12AP4.
1	
1	
- Indicates a change.	
Jan. 30, 1942	DATA
Jan. 50, 1942 RCA RADIOTR	ON DIVISION





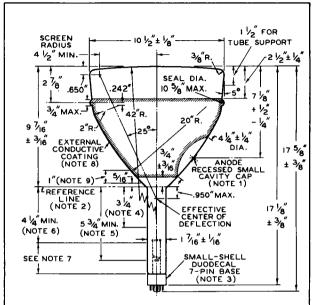
#### **KINESCOPE**



RCA RADIOTRON DIVISION RCA MANUFACTURING COMPANY, INC.

10BP4 Delite

## KINESCOPE


KINESCOPE
MAGNETIC FOCUS MAGNETIC DEFLECTION
MAGNETIC DEFLECTION         DATA         DATA         General:         Heater, for Unipotential Cathode:         Voltage
Grid No.3 Maximum Ratings, Design-Center Kalues: ANODE VOLTAGE ANODE VOLTAGE GRID-No.2 VOLTAGE. Negative bias value. Positive bias value. Positive bias value. Positive bias value. Positive peak value. Positive peak value. Peak HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds. After equipment warm-up period. After equipment warm-up period. After equipment warm-up period. Max. volts After equipment warm-up period. Max. volts After equipment warm-up period. See next page. - Indicates a change. Max. volts Max. volts M



# IOBP4 KINESCOPE

Typical Operation:         Anode Voltage*         Anode Voltage*         Grid-No.2 Voltage         Grid-No.1 Voltage*         Grid-No.1 Voltage*         Grid-No.1 Voltage*         Grid-No.1-Circuit Resistance         Maximum Circuit Values:         When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:         Grid-No.2-Circuit Resistance       150 min. ohr Grid-No.2-Circuit Resistance         Grid-No.2-Circuit Resistance       1000 min. ohr Anode-Circuit Resistance         Components:       1000 min. ohr Grid-No.2-Circuit Resistance         Ion-Trap Magnet*       RCA Type No.2030         Deflection Yoke*       RCA Type No.2031         Focusing Coil**       RCA Type No.2031         Focusin	Typical Operation:	
Grid-No.2 Voltage.       250 volt         Grid-No.1 Voltage ⁰ -27 to -63 volt         Maximum Circuit Values:       -27 to -63 volt         Maximum Circuit Values:       Issue (Construct)         When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:         Grid-No.1-Circuit Resistance       150 min. ohr Grid-No.2-Circuit Resistance	filling and the second s	
Grid-No.2 Voltage.       250 volt         Grid-No.1 Voltage ⁰ -27 to -63 volt         Maximum Circuit Values:       -27 to -63 volt         Maximum Circuit Values:       Issue (Construct)         When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:         Grid-No.1-Circuit Resistance       150 min. ohr Grid-No.2-Circuit Resistance	Anode Voltage*	olt
Grid-No.1 Voltage ⁰		
Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max.megohn Minimum Circuit Values: When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous shorn circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capace itor should be as follows: Grid-No.1-Circuit Resistance		volt
Grid-No.1-Circuit Resistance 1.5 max.megohn Minimum Circuit Values: When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capace itor should be as follows: Grid-No.1-Circuit Resistance	•	
<pre>Winimum Circuit Values: When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistant in circuit between indicated electrode and the output capacitor should be as follows: Grid-No.1-Circuit Resistance</pre>		
<pre>When the output capacitor of the power supply is capable of storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous shori circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows: Grid-No.1-Circuit Resistance</pre>		junin
<pre>storing more than 250 microcoulombs, and when the inherer regulation of the power supply permits the instantaneous shor circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows: Grid-No.1-Circuit Resistance</pre>		
regulation of the power supply permits the instantaneous short circuit current to exceed 1 ampere, the effective resistance in circuit between indicated electrode and the output capace itor should be as follows: Grid-No.1-Circuit Resistance		
<pre>circuit current to exceed 1 ampere, the effective resistanc in circuit between indicated electrode and the output capaci itor should be as follows: Grid-No.1-Circuit Resistance</pre>		
<pre>in circuit between indicated electrode and the output capacitor should be as follows: Grid-No.1-Circuit Resistance</pre>		
<pre>itor should be as follows: Grid-No.1-Circuit Resistance</pre>		
Grid-No.1-Circuit Resistance		apac
Grid-No.2-Circuit Resistance		ohr
Anode-Circuit Resistance		
The resistors used should be capable of withstanding the voltages involved. Components: Ion-Trap Magnet [#]		
ages involved. Components: Ion-Trap Magnet [#] Deflection Yoke ⁴ The anode and grid No.3 which are connected together within tube an referred to herein as anode. Brilliance and definition decrease with decreasing anode voltage. general, the anode voltage should not be less than 8000 volts. Visual extinction of undeflected focused spot. The docurrent required by this magnet is approx. 109 ma. for the typic. operating conditions shown. The horizontal deflecting-coil current required by this yoke to produ Broture width is approx. WIO ma. peak-to-peak under the typic. operating conditions shown. The current varies directly as the squa root of the anode voltage.		
<ul> <li>Ion-Trap Magnet[#]</li></ul>		volt
<ul> <li>Ion-Trap Magnet[#]</li></ul>	Components:	
Deflection Yoke*	RCA Type No.	2030
Focusing Coil**		
<ul> <li>referred to herein as anode.</li> <li>Brilliance and definition decrease with decreasing anode voltage.</li> <li>general, the anode voltage should not be less than 8000 volts.</li> <li>Visual extinction of undeflected focused spot.</li> <li>The dc current required by this magnet is approx. 109 ma. for the typic opperating conditions shown.</li> <li>The horizontal deflecting-coil current required by this yoke to produ 8° picture width is approx. 470 ma. peak-to-peak under the typic opperating conditions shown. The current varies directly as the squaroot of the anode voltage.</li> </ul>		
<ul> <li>Brilliance and definition decrease with decreasing anode voltage. general, the anode voltage should not be less than 8000 volts.</li> <li>Visual extinction of undeflected focused spot.</li> <li>The dccurrent required by this magnet is approx. 109 ma. for the typic. operating conditions shown.</li> <li>The horizontal deflecting-coil current required by this yoke to produ 8° picture width is approx. #70 ma. peak-to-peak under the typic. operating conditions shown. The current varies directly as the squa root of the anode voltage.</li> </ul>	The anode and grid No.3 which are connected together within tut	e ar
<ul> <li>general, the anode voltage should not be less than 8000 volts.</li> <li>Visual extinction of undeflected focused spot.</li> <li>The dccurrent required by this magnet is approx. 109 ma. for the typic.</li> <li>operating conditions shown.</li> <li>The horizontal deflecting-coil current required by this yoke to produgt ture width is approx. W70 ma. peak-to-peak under the typic.</li> <li>operating conditions shown. The current varies directly as the squaroot of the anode voltage.</li> </ul>	* Brilliance and definition decrease with decreasing anode voltage	e. 1
<ul> <li>The dc current required by this magnet is approx. 109 ma. for the typic operating conditions shown.</li> <li>The horizontal deflecting-coil current required by this yoke to produge the typic operating conditions shown. The current varies directly as the squaroot of the anode voltage.</li> </ul>		
<ul> <li>operating conditions shown.</li> <li>The horizontal deflecting-coil current required by this yoke to produge the four width is approx. #70 ma. peak-to-peak under the typic operating conditions shown. The current varies directly as the squaroot of the anode voltage.</li> </ul>	14	pica
<ul> <li>as picture width is approx. #10 ma. peak-to-peak under the typic. operating conditions shown. The current varies directly as the squa root of the anode voltage.</li> <li>The dc current required by this coil is approx. 115 ma. for the typic. operating conditions shown and using combined grid-Ho.1 bias volta, and video-signal voltage adjusted to produce a highlight brightness i 20 food-lamberts on a 6* x 8* picture area. Distance from reference line (see Outline Drawing) to center line of air gap is approx. 3-1/4</li> </ul>	operating conditions shown.	
operating conditions shown. The current varies directly as the squa root of the anode voltage. ** The dc current required by this coll is approx. 115 ma. for the typic operating conditions shown and using combined grid-Ho.1 bias volta and video-signal voltage adjusted to produce a highlight brightness 20 foot-lamberts on a 6* x 8* picture area. Distance from referen line (see Outline Drawing) to center line of air gap is approx. 3-1/4	8" picture width is approx. 470 ma. peak-to-peak under the ty	pica
** The dc current required by this coil is approx. 115 ma. for the typic operating conditions shown and using combined grid-No.1 bias volta and video-signal voltage adjusted to produce a highlight brightness 20 foot-lamberts on a 6* x 8* picture area. Distance from referent line (see Outline Drawing) to center line of air gap is approx. 3-1/4	operating conditions shown. The current varies directly as the s root of the enode voltage.	quar
operating conditions shown and using combined grid—No.1 bias volta; and video—signal voltage adjusted to produce a highlight brightness 20 foot-lamberts on a 6* x 8* pricture area. Distance from referen line (see Outline Drawing) to center line of air gap is approx. 3–1/4	** The dc current required by this coil is enprox. 115 ma. for the ty	nica
and video-signal voltage adjusted to produce a highight bright hess 20 food-lamberts on a 6° x 8° picture area. Distance from referen line (see Outline Drawing) to center line of air gap is approx. 3–1/4	operating conditions shown and using combined grid-No.1 bias vo	ltag
line (see Outline Drawing) to center line of air gap is approx. 3-1/4	and video-signal voltage adjusted to produce a highlight brightne 20 foot-lamberts on a 6" x 8" picture area. Distance from refe	ess o Fenc
	line (see Outline Drawing) to center line of air gap is approx. 3-	1/4
	operating conditions shown and using combined grid-worthers and video-signal voltage adjusted to produce a highlight brightn 20 foot-lamberts on a 6° x 8° picture area. Distance from refe line (see Outline Drawing) to center line of air gap is approx. 3-	olt ess re -1/
	1	





IOBP4 KINESCOPE

- NOTE I: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 10°. ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.3.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE HINGED GAUGE 1.500" + .003" - .000" I.D. AND 2" LONG WILL REST ON BULB CONE.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BERIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DI-AMETER OF I-7/8".
- NOTE 4: APPROX. DISTANCE TO CENTER OF FOCUSING-COIL AIR GAP.

NOTE 5: DISTANCE TO INTERNAL POLE PIECES. PLANE THROUGH PIN NO.6 AND TUBE AXIS PASSES THROUGH LINE JOINING CENTERS OF POLE PIECES. DIRECTION OF PRINCIPAL FIELD OF 10N-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO PIN NO.6 AND SOUTH POLE TO PIN NO.12.





#### (continued from preceding page)

NOTE 6: LOCATION OF DEFLECTING YOKE AND FOCUSING-COIL AIR GAP MUST BE WITHIN THIS SPACE.

NOTE 7: KEEP THIS SPACE CLEAR FOR ION-TRAP MAGNET.

NOTE 8: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 9: FOR TUBE SUPPORT WHICH MUST NOT COVER SPECIFIED AREA AROUND ANODE CAP.

92CM-6663R2

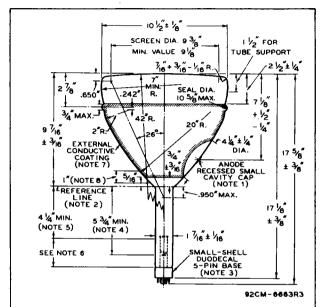
IOBP4-A

**KINESCOPE** 



E MAGNETIC DEFLECTION

DATA
General:
Heater, for Unipotential Cathode:
Voltage
External Conductive Coating to Anode          2000 max. µµf         500 min. µµf         Face Plate (Transmission of about 65%). RCA "Filterglass"         Phosphor (For Curves, see front of this Section) No.4-Sulfide Type         Fluorescence and Phosphorescence White         Persistence of Phosphorescence
Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 10-Grid No.2 Pin 10-Grid No.2 Pin 12-Heater Cap -Anode, Grid No.3
Maximum Ratings, Design-Center Values:
ANODE [©] VOLTAGE [©]
Negative bias value
exceeding 15 seconds 410 max, volts After equipment warm-up period 150 max, volts Heater positive with respect to cathode. 150 max, volts
<ul> <li>Anode and grid No.3, which are connected together within tube, are re- ferred to herein as anode.</li> <li>The product of anode voltage and average anode current should be limited to 6 watts.</li> </ul>










KINESCOPE



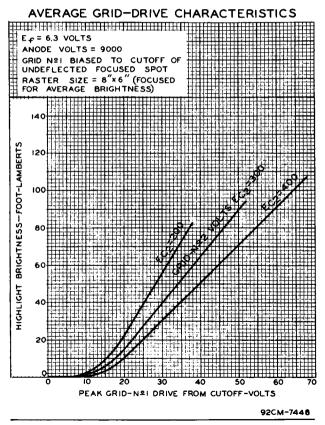
- NOTE 1: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 10°. ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION No.3.
- NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE HINGED GAUGE 1.500" + .003" - .000" I.D. AND 2" LONG WILL REST ON BULB CONE.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BERIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE MORE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DIAMETER OF 1-778".
- NOTE 4: DISTANCE TO INTERNAL POLE PIECES. PLANE THROUGH VACANT PIN POSITION No.6 AND TUBE AXIS PASSES THROUGH LINE JOINING CENTERS OF POLE PIECES. DIRECTION OF PRINCIPAL FIELD OF ION-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO VACANT PIN POSITION No.6 AND SOUTH POLE TO PIN NO.12.
- NOTE 5: LOCATION OF DEFLECTING YOKE AND FOCUSING-COIL MUST BE WITHIN THIS SPACE.

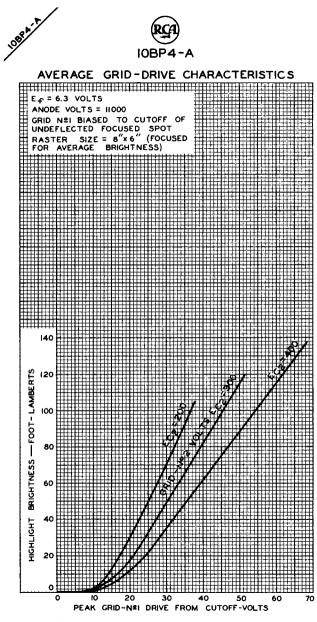




NOTE 6: KEEP THIS SPACE CLEAR FOR ION-TRAP MAGNET.

NOTE 7: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.


NOTE 8: FOR TUBE SUPPORT WHICH MUST NOT COVER SPECIFIED CLEAR AREA AROUND ANODE CAP.

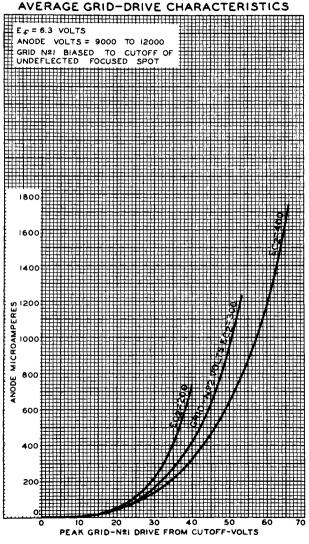





#### CURVES

The following Grid-Drive Characteristics Curves are for the condition with grid No.1 biased to give visual extinction of the undeflected, focused spot. Inviewing television pictures, it will be found that the actual cutoff voltage corresponding to black in the picture is approximately 5 volts less negative than shown on the curves; similarly, the grid-No.1 drive to obtain a given anode current or light output is also about 5 volts less.





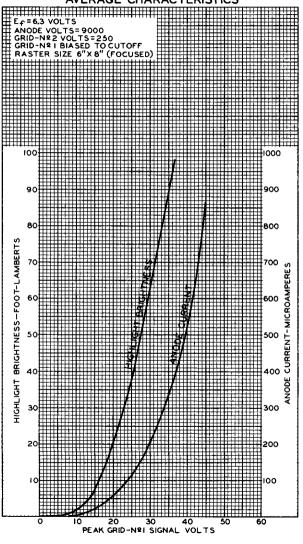

FEB. 15, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY








FEB. 21, 1950

92CM - 7454





#### AVERAGE CHARACTERISTICS



OCT. 9, 1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6675R2



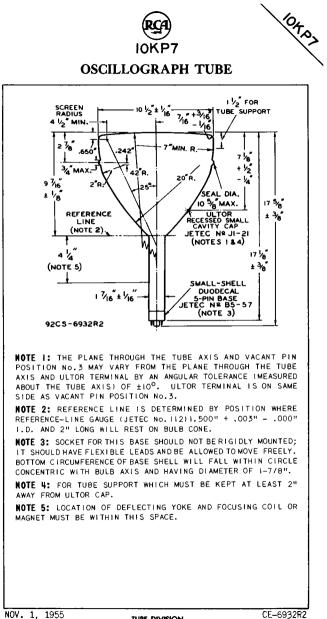
MAGNETIC FOCUS



MAGNETIC DEFLECTION

DATA General: Heater, for Unipotential Cathode: 6.3 . . .ac or dc volts Voltage . . . . . . . . . . Current . . 0.6 ± 10% . . amo . . . . . . . . . . Direct Interelectrode Capacitances (Approx.): Grid No.1 to all other electrodes . . 6 μµf Cathode to all other electrodes . . 5 μµf Faceplate . . . . . . . . . . Filterglass Light transmission (Approx.). . . . 77% . . **P**7 Phosphor (For Curves, see front of this section). Blue Fluorescence. . . . Phosphorescence . Greenish-Yellow Persistence . . . .Long Focusing Method . . .Magnetic . Deflection Method . . . . .Magnetic . Deflection Angle (Approx.). -. 50° 17-5/8" ± 3/8" Overall Length . . Greatest Diameter of Bulb . . . .  $10-1/2" \pm 1/16"$ . 9" Minimum Useful Screen Diameter. . Weight (Approx.). . . 10 lbs . . . . . . Mounting Position . . . . . . Any J-84 Bulb. . Rase. Pin 1 - Heater Pin 12 - Heater Pin 2 - Grid No.1 Can - Ultor (Grid No.3. Pin 10 - Grid No.2 Collector Pin 11 - Cathode Maximum Ratings, Design-Center Values: ULTOR[®] VOLTAGE. 10000 max. volts GRID-No.2 VOLTAGE: Positive value (DC or Peak AC). . . . 700 max. volts Negative value (DC or Peak AC). . 180 max. volts GRID-No.1 VOLTAGE: 180 max. volts Negative bias value . 0 max. volts Positive bias value^{*}. . . volts 2 max. Positive peak value . . . The "ultor" in a cathode-ray tube is the electrode to which is applied the highest devoltage for accelerating the electrons in the beam prior to its deflection. In the 10KP7, the ultor function is performed by grid No.3. Since grid No.3 and collector are connected together with-in the 10KP7, they are collectively referred to simply as "ultor" for convenience in presenting data and curves. See next page.

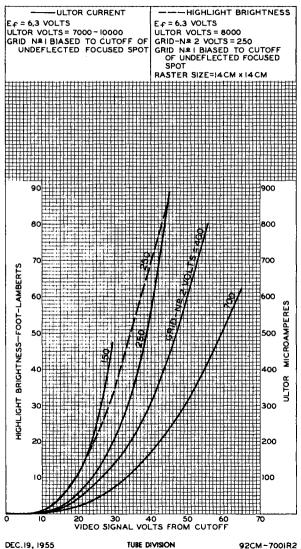
NOV. 1. 1955


-Indicates a change.

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



IOKP7 OSCILLOGRAPH TUBE


·			
PEAK GRID-No.1 DRIVE FROM CUTO PEAK HEATER-CATHODE VOLTAGE:	FF	65 max.	volt
Heater negative with respect Heater positive with respect		125 max. 125 max.	volts volts
- Equipment Design Ranges:			
For any ultor voltage (E _{C2} ) and grid-No.2 voltage (E _{C2} )	between 7000* ) between 150	and 10000 1 and 700 vol	volts Its
Grid-No.1 Voltage for Visual			
Extinction of Undeflected Focused Spot	-10.8% to -25	.2% of E _{C2}	volt
Grid-No.2 Current	-15 to	+15 ² T	μam
Focusing-Coil Current (DC) ⁰⁰	$\sqrt{\frac{Lc_3}{7000}} \times 99$	± 15%	m
Spot Position	##		
Examples of Use of Design Rang			
For ultor voltage of and grid-No.2 voltage of	7000 250	9000 250	volt: volt:
Grid-No.1 Voltage for Visual Extinction of Undeflected	-	-	
Focused Spot		-27 to -63	volt
,, ,,	99 ± 15%	112 ± 15%	m.
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance .			negohm
<ul> <li>At or near this rating, the effect should be adequate to limit the u</li> <li>Brilliance and definition decreas</li> </ul>	e with decreasin	ng ultor volta	ige. In
general, the ultor voltage should	not be less tha	in 7000 volts.	
OO For specimen focusing coll sim positioned with air gap toward f 3-1/4* from Reference Line (See Di of 200 microamperes.	aceplate and ce mensional Outlin	nter line of se) and ultor	air gap current
## The center of the undeflected, unf having an 18-mm radius concentric	ocused spot will with the center	fall within a of the tube	circle face.
		<ul> <li>Indicates a</li> </ul>	
NOV. 1, 1955			DAT







#### AVERAGE GRID-DRIVE CHARACTERISTICS



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



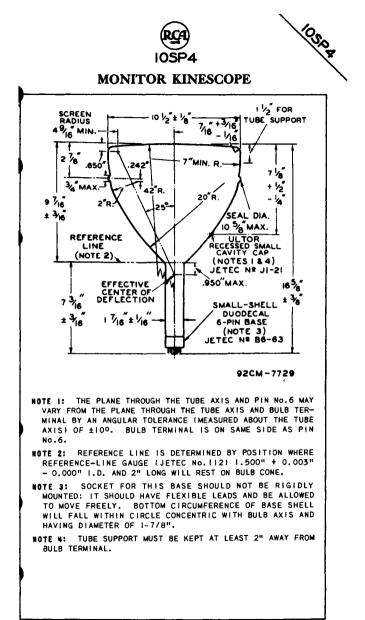


## MONITOR KINESCOPE

ELECTROSTATIC FOCUS

MAGNETIC DEFLECTION

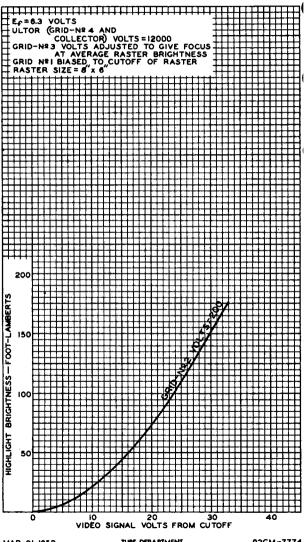
#### DATA


DATA
General:
Heater, for Unipotential Cathode:
Voltage 6.3 ac or dc volts
Current 0.6
Direct Interelectrode Capacitances (Approx.):
Grid No.1 to All Other Electrodes 6 $\mu\mu$ f
Cathode to All Other Electrodes 5 $\mu\mu$ f
Faceplate, Spherical
Phospher ^o , Metal-Backed P4—Sulfide Type
Fluorescence and Phosphorescence
Persistence of Phosphorescence
Focusing Method Electrostatic
Deflection Method Magnetic
Deflection Angle (Approx.)
Overall Length
Greatest Diameter of Bulb 10-1/2"±1/8" Minimum Useful Screen Diameter
Picture Size (Within minimum-useful-screen area) 8"×6"
Mounting Position
Cap Recessed Small Cavity (JETEC No. J1-21)
Base Small-Shell Duodecal 6-Pin (JETEC No. B6-63)
BOTTOM VIEW
Pin 1-Heater Pin 12-Heater
Pin 2-Grid No.1
$4/\sqrt{3}$ Collector)
Pin 10-Grid No.2
Pin 11 - Cathode
Maximum Ratings, Design-Center Values:
ULTOR® VOLTAGE
GRID-No.3 VOLTAGE
GRID-No.2 VOLTAGE 410 max. volts
GRID-No.1 VOLTAGE:
i negacive blas value
Positive bias value 0 max. volts Positive peak value 2 max. volts
Positive peak value
• For curves, see front of this Section.
For curves, see front of this Section. In the 10SPM.grid No.w which has the ultor function, and collector are connected together within the tube and are conveniently referred to collectively as "ultor". The "ultor" in a cathode-ray tube is the electrode, or the electrode in combination with one or more additional electrodes connected within the tube to it, to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection.
connected together within the tube and are conventently referred to collectively as "ultor". The "ultor" in a cathode-ray tube is the
electrode, or the electrode in combination with one or more additional electrodes connected within the tube to it, to which is applied the
highest dc voltage for accelerating the electrons in the beam prior to
its deriection.



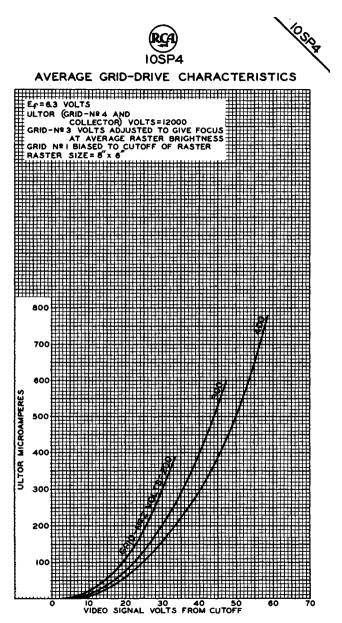


MONITOR KINESCOPE


PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode:
During equipment warm-up period
not exceeding 15 seconds . 410 max. volts
After equipment warm-up period 180 max. volts
Heater positive with respect to cathode . 180 max. volts
Equipment Design Ranges:
For any ultor voltage (E _u ) between 10000° and 14000 volts
and grid-No.2 voltage $(E_{C_{\alpha}})$ between 150 and 410 volts
Grid-No.3 Voltage for Focus with
Ultor Current of 100 µamp 11.7% to 15.9% of Eu volts
Grid-No.1 Voltage for
Visual Extinction of
Max. Grid-No.3 Current** See Curves
Grid-No.2 Current
Field Strength of Adjustable
Centering Magnet 0 to 8 gausses
Examples of Use of Design Ranges:
For ultor voltage of 12000 14000 volts
and grid-No.2 voltage of 200 200 volts
Grid-No.3 Voltage for
Focus with Ultor
Current of 100 µamp . 1400 to 1900 1640 to 2225 volts
Grid-No.1 Voltage for
Visual Extinction of
8" x 6" Raster18 to -48 -18 to -48 volts
Naximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
GING-NO.1-CITCUTT RESISTANCE
Brilliance and definition decrease with decreasing ultor voltage. I
Brilliance and definition decrease with decreasing ultor voltage. I general, the ultor voltage should not be less than 10000 volts.
"" Grid-No.3 Current increases as the ultor voltage is decreased.
For y ray objection encoderations for these
For x-ray shielding considerations, see sheet
X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES
at front of this Section

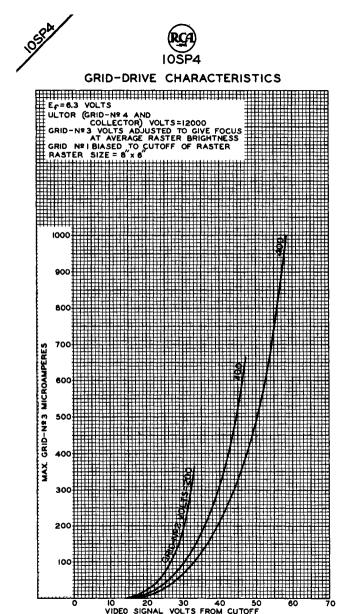


10584




### AVERAGE GRID-DRIVE CHARACTERISTIC




MAR. 21, 1952

TUBE DEPARTMENT EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



MAR. 21, 1952

TUBE DEPARTMENT BADIO CORPORATION OF AMERICA, HARRISON, NEW JEISEY 92CM-7773



MAR. 21, 1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

12DP7-A **OSCILLOGRAPH TUBE** 



MAGNETIC FOCUS

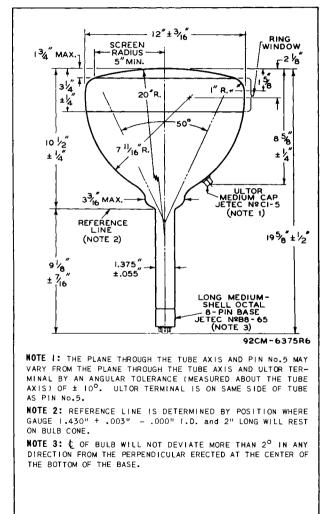
.

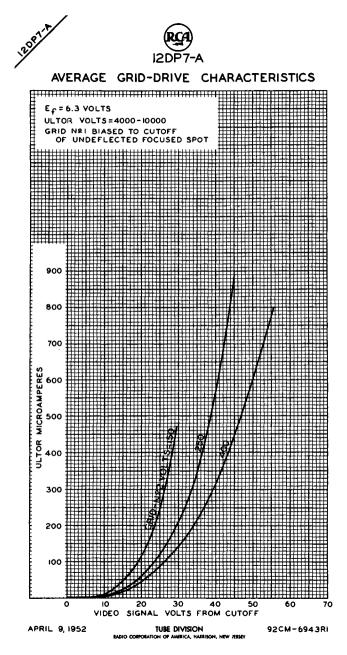
MAGNETIC DEFLECTION

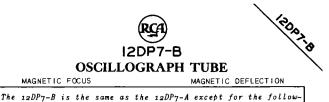
DATA

ŀ	eneral:	
	Heater, for Unipotential Cathode: Voltage	
ļ	Direct Interelectrode Capacitances (Approx.): Grid No.1 to all other electrodes 9 μμf Cathode to all other electrodes 6 μμf	
	Faceplate, Spherical	
	hosphor (For Curves, see front of this Section) P7 Fluorescence	
	Persistence Short Phosphorescence	
	PersistenceLong	
ł	Deflection Method	
	Dverall Length	
	Minimum Useful Screen Diameter	
	Mounting Position	
	3ulb	-
	or Long Medium-Shell Octal 5-Pin (JETEC No.85-80) Basing Designation for BOTTOM VIEW	
	Pin 1 - No Connec- tion Pin 6 - No Connec- tion tion	
ļ	Pin 2 - Heater Pin 3 - Grid No.2	
	Pin 4 - No Connec- tion (Grid No.3,	
	Pin 5 - Grid No.1 U Collector)	
	<b>4aximum Ratings,</b> <i>Design-Center Values:</i> ULTOR VOLTAGE	
	GRID-No.2 VOLTAGE:	l I
	Positive value (DC or Peak AC) 700 max. volts Negative value (DC or Peak AC) 180 max. volts	
	GRID—No.1 VOLTAGE: Negative bias value	
	Positive bias value*	4
	At or near this rating, the effective resistance of the ultor supply should be adequate to limit the ultor input power to 6 watts.	
	← Indicates a change.	
7	DATA	

RCA 12DP7-A OSCILLOGRAPH TUBE


volts PEAK GRID-No.1 DRIVE FROM CUTOFF . . . . 65 max. PEAK HEATER-CATHODE VOLTAGE: 125 max. volts Heater negative with respect to cathode . 125 max. volts Heater positive with respect to cathode . Equipment Design Ranges: For any ultor voltage (Ec.) between 4000" and 10000 volts and grid-No.2 voltage (Ec.) between 150 and 750 volts Grid-No.1 Voltage for Visual Extinction of Undeflected -10% to -28% of Ec. volts Focused Spot ... . . . . . -15 to +15 *µ*атр Grid-No.2 Current. . . . Focusing-Coil Current (DC)⁰⁰ ± 15% 88 ma Spot Position. . ## Examples of Use of Design Ranges: volts For ultor voltage of 7000 4000 and grid-No.2 voltage of volts 250 250 Grid-No.1 Voltage for Visual Extinction of Undeflected -25 to -70 -25 to -70 volts Focused Spot . . . . Focusing-Coil Current (DC) . 75 to 102 99 to 135 ma Maximum Circuit Values: 1.5 max. megohms Grid-No.1-Circuit Resistance . . . Brilliance and definition decrease with decreasing ultor voltage. general, the ultor voltage should not be less than 4000 volts. 10 OO For specimen focusing coil similar to JETEC Focusing Coil No.166 positioned with air gap toward faceplate and center line of air gap u-1/0" from Reference Line (See Dimensional Outline) and ultor current of 200 microamperes. ## The center of the undeflected, unfocused spot will fall within a circle having a 20-mm radius concentric with the center of the tube face.


120PTA



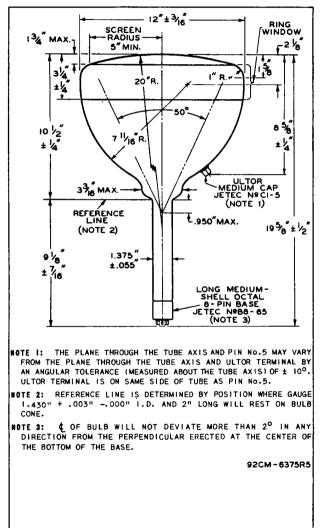


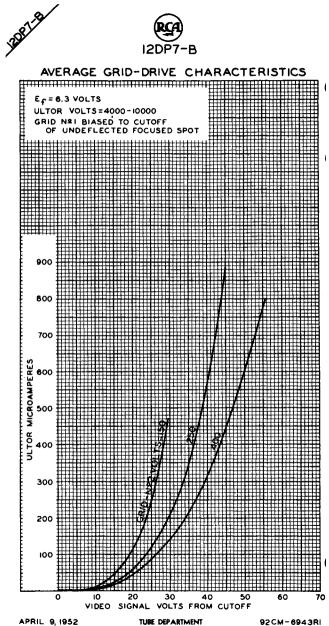

**OSCILLOGRAPH TUBE** 







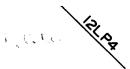

The 12DP7-B is the same as the 12DP7-A except for the follo ing items:


### General:





**OSCILLOGRAPH TUBE** 






RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-6943RI





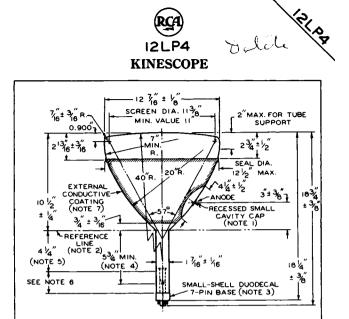
SEPT. 15, 1949

TENTATIVE DATA



# I2LP4 KINESCOPE

Typical Operation:			
Anode Voltage*	9000	11000	volts
Grid-No.2 Voltage	250	250	volts
Grid-No.1 Voltage for Visual			
Extinction of Undeflected Focused Spot	_27 to 63	-27 to .63	volts
Focusing-Coil Current	-27 10 -05	-27 (0 -0)	VULLS
(DC, Approx.)**.	<b>1</b> 15	125	ma
Ion-Trap Magnet Current (DC)#.	155	180	ma
Maximum Circuit Values:			
Grid-No.1 - Circuit Resistance		1.5 max.	megohms
Minimum Circuit Values:			
The power supply should be of inherent regulation to limit current to 5 milliamperes. If	t the cont	inuous short-d	circuit


current to 5 milliamperes. If the supply permits the instantaneous short-circuit current to exceed 1 ampere, or is capable of storing more than 250 microcoulombs, the effective resistance in circuit between indicated electrode and the output capacitor should be as follows:

voltages. * Brilliance and definition decrease with decreasing anode voltage.in general, the anode voltage should not be less than 9000 volts.

- general, the anode voltage should not be less than 9000 volts. * For JETC Focusing Coll No.106, or equivalent, positioned with center line of air gap approximately 3-1/4" from Reference Line (See outline Drawing). The indicated currents are for the condition with the combined grid-No.1 bias voltage and video-signal voltage adjusted to produce a highlight brightness of 25 foot-lamberts for 9000 volts, or 30 foot-lamberts for 11000 volts, on a 7-1/2" x 10" picture area.
- For JETEC ion-Trap Magnet No.108, or equivalent, located with main pole pieces longitudinally opposite internal pole pieces, and rotated to give good line focus with maximum brightness.

#### CURVES

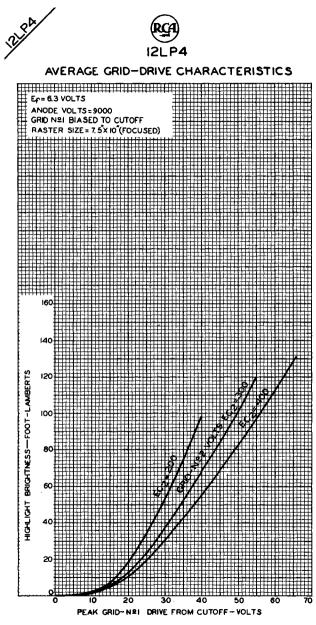
The following Grid-Drive Characteristics Curves are for the condition with grid No.1 biased to give visual extinction of the undeflected, focused spot. In viewing television pictures, it will be found that the actual cutoff voltage corresponding to black in the picture is approximately 5 volts less negative than shown on the curves; similarly, the grid-No.1 drive to obtain a given anode current or light output is also about 5 volts less negative.



NOTE I: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $10^{\circ}$ . ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.3.

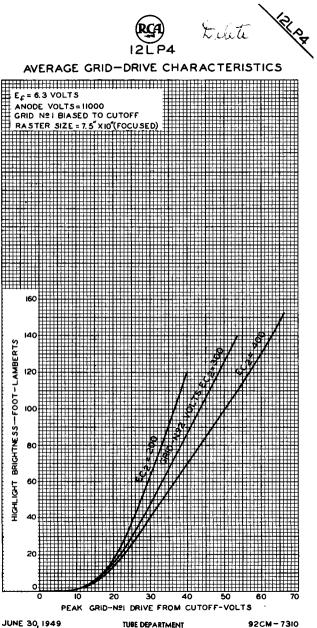
NOTE 2: REFERENCE LINE IS DETERMINED BY POSITION WHERE HINGED GAUGE 1.500" + .003" - .000" I.D. AND 2" LONG WILL REST ON BULB CONE.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILLFALL WITH-IN CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING DIAMETER OF 1-7/8".

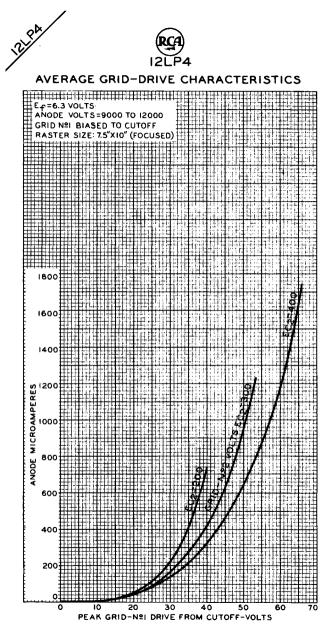

NOTE 4: DISTANCE OF INTERNAL POLE PIECES. PLANE THROUGH PIN NO.6 AND TUBE AXIS PASSES THROUGH LINE JOINING CENTERS OF POLE PIECES. DIRECTION OF PRINCIPAL FIELD OF ION-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO PIN NO.6 AND SOUTH POLE TO PIN NO.12.

NOTE 5: LOCATION OF DEFLECTING YOKE AND FOCUSING-COIL MUST BE WITHIN THIS SPACE.

NOTE 6: KEEP THIS SPACE CLEAR FOR ION-TRAP MAGNET.


NOTE 7: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

92CM-7276




JUNE 28, 1949

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7309



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



JUNE 23,1949

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





# KINESCOPE

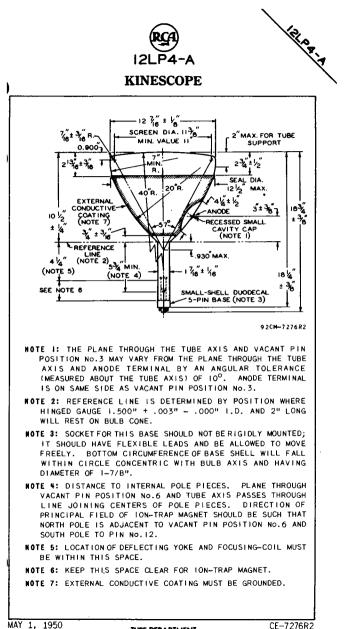
MAGNETIC	FOCUS
----------	-------

ſ

#### MAGNETIC DEFLECTION

D	A	T	A

DAIA
General:
Heater, for Unipotential Cathode:       ac or dc volts         Voltage
External Conductive Coating to Anode
Face Plate (Transmission of about 65%)       RCA "Filterglass"         Fhosphor (For Curves, see front of this Section)       No.4-Sulfide Type         Phosphor (For Curves, see front of this Section)       No.4-Sulfide Type         Fluorescence and Phosphorescence        White         Persistence of Phosphorescence        Medium         Focusing Method        Magnetic         Deflection Method        570         Ion-Trap Gun        Requires External Double-Field Magnet         Overall Length        12-7/16 ± 1/8"         Screen Diameter        12-3/8"         Mounting Position           Cap.        Small-Shell Duodecal 5-Pin         Base         Small-Shell Duodecal 5-Pin
Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater Cap -Anode, Grid No.3
Maximum Ratings, Design-Center Values:
ANODE [®] VOLTAGE [*]
Negative bias value.       125 max. volts         Positive bias value.       0 max. volts         Positive peak value.       2 max. volts         PEAK HEATER-CATHODE VOLTAGE:       Heater negative with respect to cathode:
During equipment warm-up period not exceeding 15 seconds 410 max. volts After equipment warm-up period 150 max. volts Heater positive with respect to cathode. 150 max. volts
<ul> <li>Anode and grid No.3, which are connected together within tube, are referred to herein as anode.</li> <li>The product of anode voltage and average anode current should be limited to 6 watts.</li> </ul>



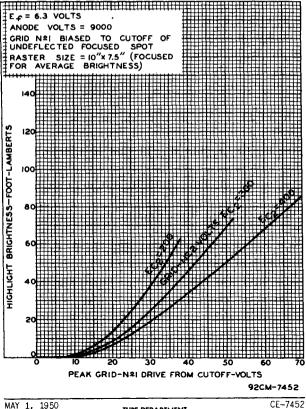

12LP4-A

**KINESCOPE** 

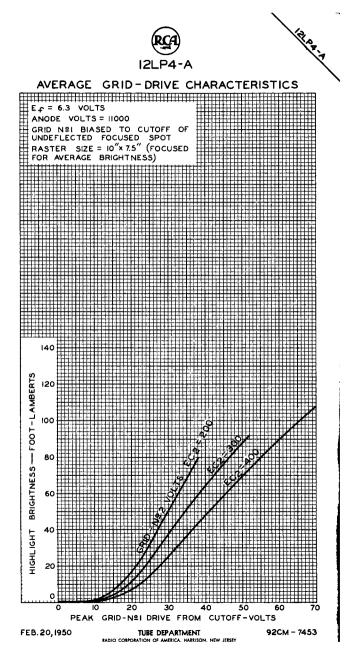
Anode Voltage*	9000	11000	volt
Grid-No.2 Voitage Grid-No.1 Voltage for Visual Extinction of Undeflected	250	250	volt
Focused Spot Focusing-Coil Current	-27 to -63	-27 to -63	volt
(DC, Approx.)**. Ion-Trap Magnet Current (DC)*	115 155	125 180	m M
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance.		. 1.5 max.	megohm
Minimum Circuit Values:			
rent to 5 milliamperes. If the neous short-circuit current to of storing more than 250 mich tance in circuit between indi capacitor should be as follows Grid-No.1-Circuit Resistance. Grid-No.2-Circuit Resistance Anode-Circuit Resistance The resistors should be capal voltages.	o exceed 1 rocoulombs, icated elec s:	ampere, or is the effective trode and the . 150 min. . 470 min. . 15000 min	capabl e resis e outpu . ohm . ohm
Components:			
Horizontal-Deflection-Output & For use with pulse-operated giving 10000-12000 volts Horizontal Linearity Control Width Control Vertical-Deflection Output Tra Deflecting Yoke. Ion-Trap Magnet (Permanent-Mag Focusing Coil ⁰⁰ . Brilliance and definition decrea general, the anode voltage shou	high-volta ansformer gnet Type). ase with decr Id not be les	ge supply R( R( R( R( R( R( R( R(	CA-217T CA-207R CA-206R CA-204T CA-205D CA-203D CA-203D CA-202D tage. 1

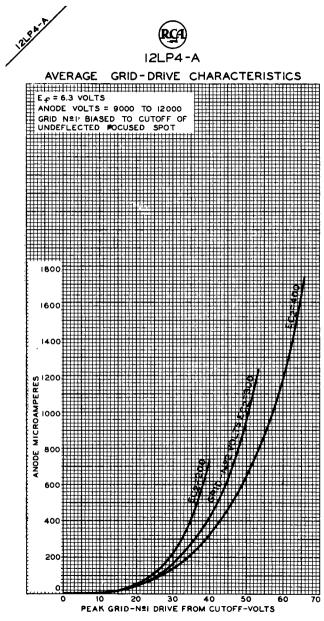
i






RCA 12LP4-A KINESCOPE


#### CURVES


The following Grid-Drive Characteristics Curves are for the condition with grid No.1 biased to give visual extinction of the undeflected, focused spot. Inviewing television pictures, it will be found that the actual cutoff voltage corresponding to black in the picture is approximately 5 volts less negative than shown on the curves; similarly, the grid-No.1 drive to obtain a given anode current or light output is also about 5 volts less,

# AVERAGE GRID-DRIVE CHARACTERISTICS



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





MAR. 23, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY 92CM - 7306RI





RECTANGULAR GLASS TYPE

MAGNETIC FOCUS

MAGNETIC DEFLECTION

DATA

	General:	l
	Heater, for Unipotential Cathode:	İ.
	Voltage 6.3	ļ
	Heater, for Unipotential Cathode:           Voltage.         6.3	l
	Direct Interelectrode Capacitances:	l
	Grid No.1 to all other electrodes 6 $\mu\mu$ f	l
1	Grid No.1 to all other electrodes 6 $\mu\mu$ f Cathode to all other electrodes 5 $\mu\mu$ f	L
	External conductive coating to ultor 2000 max. $\mu\mu$ f	
	$[750 \text{ min}, \mu\mu f]$	t
	Faceplate, Spherical	
	Light transmission (Approx.)	L
	Fluorescence	ł
	Phosphorescence.	
	Persistence	
	Focusing Method	
	Focusing Method	
	Deflection Angles (Approx.):	l.
	Diagonal	Ļ
1	Horizontal	L
	Vertical	L
	lon-Trap GunRequires External Single-Field Magnet Tube Dimensions:	1
	Overall length	
	Greatest width	
	Greatest height	
	Diagonal	
	Neck length	ł
	Screen Dimensions (Minimum):	L
	Greatest width	L
	Greatest height	L
1	Diagonal	L
	Projected area	
	Weight (Approx.)	
	Mounting Position	1
	Bulb	
ł	Base	
	Basing Designation for BOTTOM VIEW	l
	Pin 1-Heater Cap-Ultor	L
	Pin 10 - Grid No 2	
	Pin 11 – Cathode V ( Sternal )	1
.	Pin 12-Heater Conductive	
1	Coating Coating	Į.
		ſ
		1
		L

TUBE DIVISION

WE PA

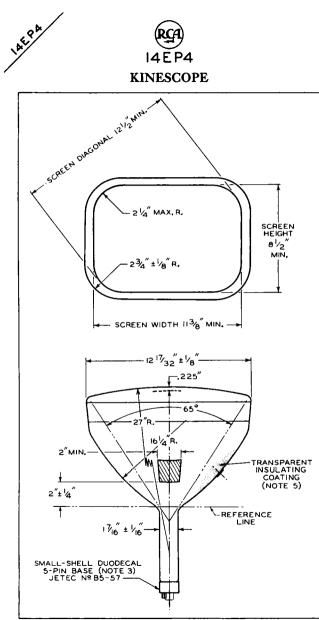
# I4EP4 KINESCOPE

h			
Maximum Ratings, Design-Center	Values:		
ULTOR VOLTAGE		<b>1</b> 4000 max	
GRID-No.2 VOLTAGE		410 max	. volts
Negative bias value		125 max	. volts
Positive bias value		0 max	
Positive peak value		2 max	. volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect			
During equipment warm-up pe			
not exceeding 15 seconds After equipment warm-up per	· · · · · ·	410 max 150 max	
Heater positive with respect		150 max	
Equipment Design Ranges:			
With any ultor voltage $(E_{C,3})$	etween 1000	o* and 1400	volts
and grid-No.2 voltage (Ec.3)	between 20	o and 110 v	olts
Grid-No.1 Voltage for		•	
Visual Extinction of			
Focused Raster	-9.3% to -	24% of E _{C2}	volts
Grid-No.1 Video Drive		-	
from Raster Cutoff			
(Black Level): White-level value			
(Peak positive)	9.3% to 2	4% of Eco	volts
Grid-No.2 Current.	-15 t	o +15 🕺	μamp
Focusing-Coil Current (DC)°.	$\int \frac{E_{C3}}{14000} \times$	107] ± 10%	ma
lon-Trap Magnet Current	L- V 14000	J	
(Average)**	LC3	_ × 28	ma
Minimum Field Strength of	[™] 1400	0	
PM Ion-Trap Magnets	Ec3	<del>.</del> × 31	qausses
	$\sqrt{1400}$	ō * )1	yausses
Field Strength of Adjustable Centering Magnet	0 t	0.8	gausses
Examples of Use of Design Range		0.0	gausses
With ultor voltage of	12000	14000	volts
and grid-No.2 voltage of	700	300	volts
Grid-No.1 Voltage for		5	-
Visual Extinction of			
	-28 to -72	-28 to -72	volts
Grid-No.1 Video Drive			
from Raster Cutoff (Black Level):			
White-level value			
(Peak positive)	28 to 72	28 to 72	volts
Focusing-Coil Current (DC)	99 ± 10%		ma
Minimum Field Strength of			
PM ion-Trap Magnet	29	31	gausses
*, ⁰ ,**,§: see next page.			
2-56		TENTATIV	E DATA 1
TUBE D	IVISION		

TUBE DIVISION



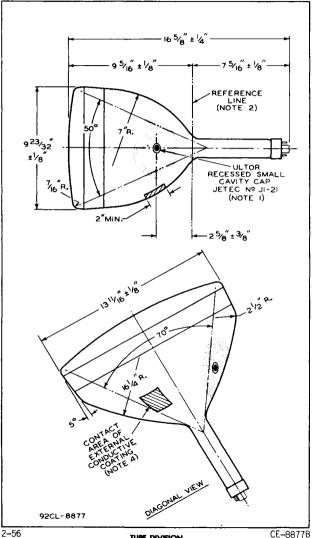



## **KINESCOPE**

#### Maximum Circuit Values:

Grid-No.1-Circuit Resistance . . . . . 1.5 max. megohms

- Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 10000 volts.
- general, the Bittor vortage should not be tool shan been then O For specimen focusing coil similar to JETEC Focusing Coil No.109 positioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference Line (See Dimensional Dutline). The indicated current is for condition with sharp focus at center of picture area and combined grid-No.1 voltage and video-signal voltage adjusted to produce a highlight brightness of 30 fool-lamberts measured on an Indian Head Test Pattern set for a 11-1/8* x 8-5/16* picture size.
- ** For JETEC Ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate ad justment to permit satisfactory performance without loss of highlight brightness.


For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section



14EP4

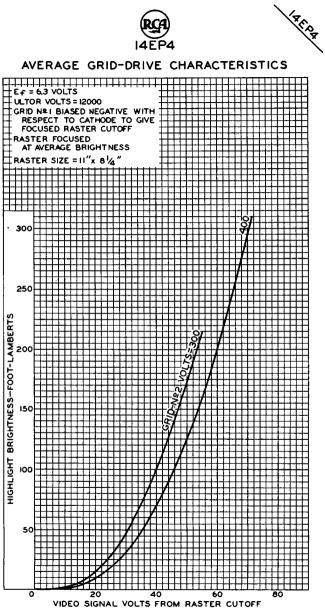


**KINESCOPE** 

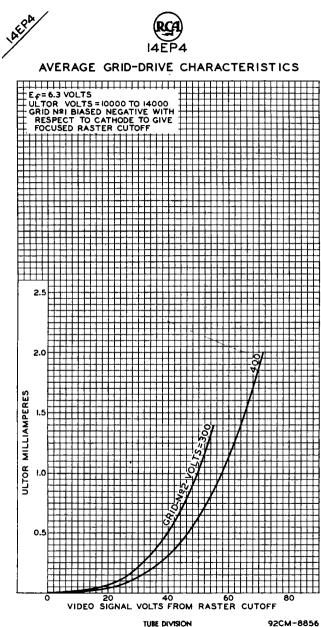




# RCA) 14EP4 KINESCOPE


**NOTE 1:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.6.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.


NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-1/2".

NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE COM-TACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EX-TERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINT-LESS CLOTH.



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JESSEY



EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8856





# **KINESCOPE**

RECTANGULAR GLASS TYPE

MAGNETIC DEFLECTION

	DATA	
General:		
Heater, for Unipotential Cat	hode:	
Voltage	6.3	ac or dc volt
Current	0.6 ± 10% .	am
Direct Interelectrode Capaci	tances:	
Grid No.1 to all other ele Cathode to all other elect	ctrodes	. 6 µµ
Cathode to all other elect	rodes	. 5 <i>μμ</i>
External conductive coating	a to ultor [●]	. 5 μμ .∫2000 max. μμ
	g u	1 750 min. uu
Faceplate, Spherical		Filterglas
Light Transmission (Approx	.)	
Phosphor (For Curves, see front o	f this Section).	. P4—Sulfide Typ
Fluorescence		White
Phosphorescence		White
Persistence		Shor
Focusing Method		. Electrostati
Deflection Method		Magneti
Deflection Angles (Approx.):		-0
Diagonal		
Horizontal		
Vertical		50
lon-Trap Gun Requ	ires External	Single-Field Magne
Tube Dimensions:		40.05/008.000
Overall length	• • • • • • •	• 16-25/32" ± 3/8
Greatest width		$12-1//32" \pm 1/8$
Greatest height		• 9-23/32" ± 1/8
Diagonal		· 13-11/16" ± 1/8
Screen Dimensions (Minimum): Greatest width		11-1/8
Greatest height.		
Diagonal		12_1/4
Diagonal		10 16
Mounting Position		Δη
Mounting Position	sed Small Cavi	ty LIFTEC No.11-21
Bulb	Sed Sharr Curr	J109-1/
Base Small-Shel	l Duodecal 6-E	in LIFTEC No. B6-63
	TOM VIEW	
		o
Pin 1-Heater	0	Cap - Ultor
Pin 2-Grid No.1		(Grid No.3, Grid No.5, Collector) C-External
Pin 6-Grid No.4		Grid No.5.
Pin 10 - Grid No.2		Collector)
Pin 11 - Cathode		C-External
Pin 12-Heater 💰		Conductive
	~ •	Coating
•		
•: See next page.		
IOV E 1064		TENTATIVE DATA

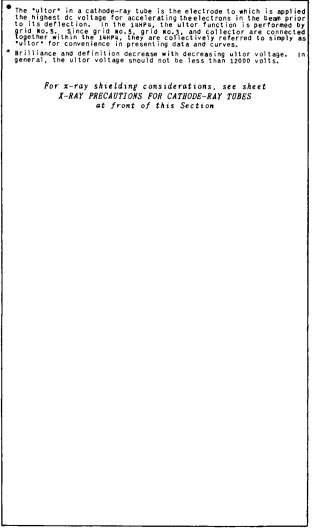
NOV. 5, 1954

TENTATIVE DATA 1

TUBE DIVISION



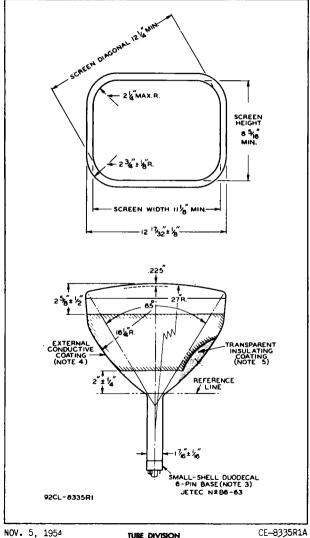
(RCA) 14HP4 KINESCOPE


···· ·································			
Maximum Ratings, Design-Cente	r Values:		
ULTOR [•] VOLTAGE		. 14000 max.	volts
GRID-No.4 VOLTAGE:		500 may	volts
Positive value	• • • • • •	. 500 max. . 500 max.	
GRID-No.2 VOLTAGE.		500 max.	
GRID-No.1 VOLTAGE:		. 000 max.	10103
Negative bias value		. 125 max.	volts
Positive bias value		. 0 max.	
Positive peak value		. 2 max.	. volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respec		:	
During equipment warm-up	period		۰.
not exceeding 15 sec	onds.	. 410 max.	
After equipment warm-up p			
Heater positive with respec	t to cathode	. 180 max.	, volts
Equipment Design Ranges:			
For any ultor voltage (E _{C5} )			
and grid-No.2 voltage (Ec	2) between 2	00 and 500 v	olts
Grid-No.4 Voltage for Focus			
with Ultor Current of			1
$100 \ \mu \text{amp}$	-0.4% to +	2.2% of Ec5	volts
Grid-No.1 Voltage for Visual Extinction of Focused			
Raster	_9 39 to _	24% of Ec2	volts
Grid-No.4 Current.		to +25	µamp
Grid-No.2 Current		to +15	μатр
Field Strengthof Single-Field		-	
Ion-Trap Magnet (Approx.).	$\sqrt{E_{c5}}$	× 32	gausses
···· ····	V 12000	× )2	3
Field Strength of Adjustable			
Centering Magnet	0 1	to 8	gausses
Examples of Use of Design Rang	jes :		
For ultor voltage of	12000	14000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.4 Voltage for Focus		-	
with Ultor Current of			•
100 μamp	–50 to +265	–55 to +310	volts
Grid-No.1 Voltage for Visual			
Extinction of Focused	–28 to –72	29 + 2 72	volts
Raster	-28 10 -72	-20 10 -72	vorts
Ion-Trap Magnet.	32	35	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		. 1.5 max.	megohms
di la-No.1-ci culti Resistance		. 1.5 max.	negonina
,*: See next page.			
OV. 5, 1954	DIVISION	TENTATIV	E DATA 1

TUBE DIVISION



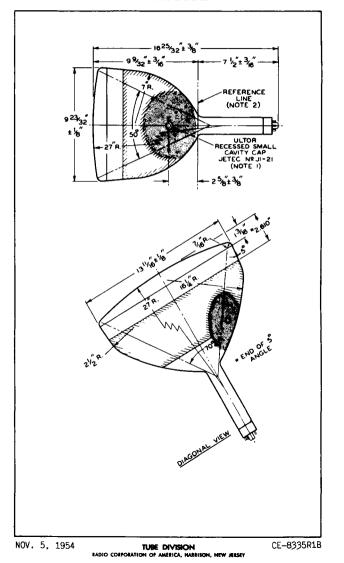



# **KINESCOPE**



2




14HP4 **KINESCOPE** 



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

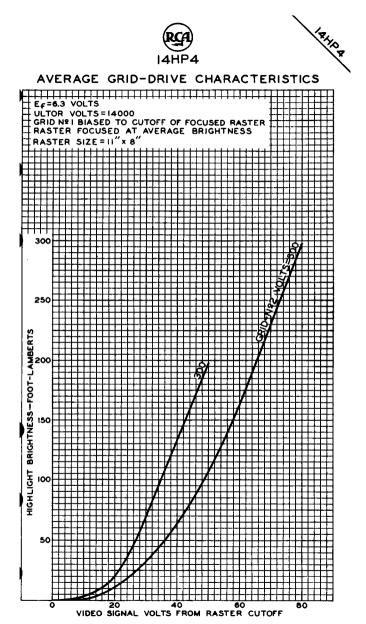






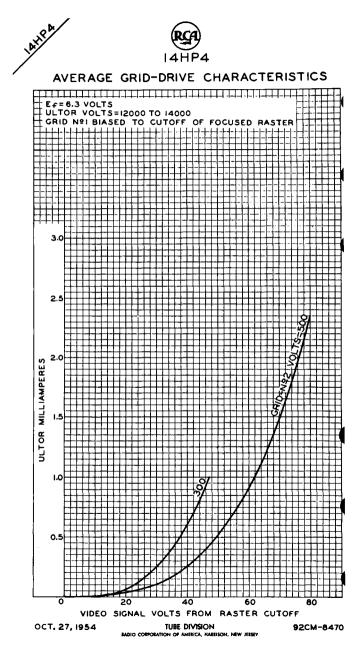


## RCA 14HP4 KINESCOPE


**NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THEPLANE THROUGH THE TUBE AXIS AND ULTOR TERMI-NAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS)OF ± 30°. ULTOR TERMINAL IS ON SAME SIDE AS PIN NO.6.

**NOTE 2:** WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BERIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALLWITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2~1/2".


NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT, DRY, LINTLESS CLOTH.



AUG. 19, 1954

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY 92CM-8392







THREE-GUN SHADOW-MASK TYPE ELECTROSTATIC CONVERGENCE

General

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION

#### DATA

General:	
Electron Guns, Three	ed
Heater, for Unipotential Cathode of Each Gun,	
Paralleled with Each of the Other Two	1
Heaters within Tube:	
Voltage (AC or DC) 6.3 vol	ts
Current	mp
Current 1.8 a Direct Interelectrode Capacitances(Approx.):	ן קיייי
Direct Interelectrode Capacitances(Approx.).	
Grid No.1 of Any Gun to All Other	
Electrodes Except the No.1 Grids	4
	μf
Cathode of Blue Gun + Cathode of	- 1
Green Gun + Cathode of Red Gun	_
	μf
Grid No.3 (Of Each Gun Tied within	
Tube to No.3 Grids of Other Two	
	μf
Grid No.4 (Common to the Three	
	μf
[3000 max. u	μf
External Conductive Coating to Ultor. 1500 min.	μf
Faceplate, Spherical	iss
Screen, Flat:	
Type Metal-Backed, Tricolor, Phosphor-D	ot
I Plate Filtergla	ISS
Light Transmission (Approx.)	0%
Size (Rounded Sides—See Dimensional	~~
Outline) 11-1/2" x 8-5/	8"
Area	ŏ.
Phosphor (Three Separate Phosphors, collectively).	22
Phosphor (Inree Separate Phosphors, collectively).	22
Fluorescence and Phosphorescence of Separate Phosphors, respectively Blue, Green, F	204
Separate Phosphors, respectively blue, dieen, i	ieu
Persistence of Group Phosphorescence Med	
Dot Arrangement Approx. 195,000 triangular group	15,
each consisting of blue dot, green o and red dot (total of 585,000 dot	
and red dot (total of 585,000 dot	.57
Focusing Method Electrostat	IC
Convergence Method Electrostat	. I C
Deflection Method Magnet	.IC
Deflection Angles (Approx.):	
Horizontal	5°
Vertical	50
Tube Dimensions:	
Maximum Overall Length	'8"
Greatest Diameter:	
At faceplate	32"
At metal flange	ıх.
At faceplate         14-5/8" ± 5/3           At metal flange         15-3/4" ma           Weight         25	ibs



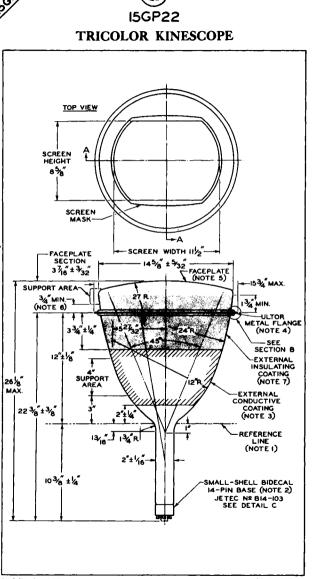
٢



## TRICOLOR KINESCOPE

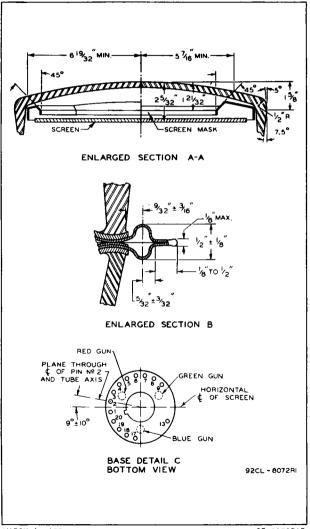
1

Mounting Position	J126
Pin 1: Heater Pin 2: Cathode of Red Gun Pin 3: Grid No.1 of Red Gun Pin 4: Grid No.2 of Red Gun Pin 5: No Connection Pin 6: Grids No.3 Pin 7: Cathode of Green Gun Pin 8: Grid No.1 of Green Gun Pin 8: Grid No.1	Gun Gun f •5, •6,
Maximum Ratings, Design-Center Values:	
ULTOR® VOLTAGE	volts volts volts volts volts volts volts volts volts volts
Equipment Design Ranges:	
For ultar voltage $(E_{C5})$ of 18000 to 20000 volts Grid-No.4 (Converging Electrode) Voltaget 42.5% to 51% of $E_{C5}$ Grid-No.3 (Focusing Electrode) Voltage 12% to 19% of $E_{C5}$	volts volts
<ul> <li>The *ultor* in a cathode-ray tube is the electrode to which is the highest dc voltage for accelerating the electrons in the bey to its deflection. In the 15GP22, the ultor function is perfor gether within the tube, they are collectively referred ultor*, for convenience in presenting data and curves.</li> <li>This value is the product of ultor voltage and average current n at the ultor terminal with a dc ammeter.</li> </ul>	applied am prior ormed by cted to- mply as measu <b>red</b>
see next page.	,
	DATA 1
MARCH 1, 1934 TUBE DEPARTMENT	DATA I


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY






Grid-No.2 Voltage (Each Gun) when circuit design uti- lizes grid-No.1 Voltage (E _{C1} ) at fixed value for raster cutoff (each gun) 2 to 4.5 times E _{C1} Grid-No.1 Voltage for Visual Extinction of Fo- cused Raster (Each Gun) when circuit design uti- lizes grid-No.2 voltage	volts
(E _{c2} ) at fixed value         (each gun)       22.5% to 50% of E _{c2} Grid-No.4 Current       -5 to +5         Maximum Grid-No.3 Current       300         Grid-No.2 Current       -15 to +15         Beam-Current Ratio to       -15 to +15	volts μamp μamp μamp
Produce Illuminant-C White: Red Gun to Green Gun 4:1 to 1:1 Blue Gun to Green Gun 1.5:1 to 0.5:1 Maximum Raster Shift in Any Direction from Screen Center ⁹ 1-1/4	inches
Examples of Use of Design Ranges:	4
For ultor voltage of 20000 volts	
Grid-No.4 (Converging Electrode) Voltaget 8500 to 10200 Grid-No.3 (Focusing Electrode)	volts
Voltage 2400 to 3800 Grid-No.2 Voltage (Each Gun) when circuit design utilizes grid-No.1 voltage of -70 volts for raster cutoff (each gun) . 140 to 315 Grid-No.1 Voltage for Visual Extinction of Focused Raster (Each Gun) when circuit design	volts volts
utilizes grid-No.2 voltage of 200 volts (each gun)	volts
200 volts (each gun)45 to -100 Circuit Values:	10103
Grid-No.1-Circuit Resistance (Each Gun). 1.5 max. Dynamic Converging Voltage (Approx.)** . 900 Dynamic Focusing Voltage (Approx.)** . 225	megohms volts volts
<ul> <li>This range does not include the dc component of the dynamic or voltage.</li> <li>Centering of the raster on the screen is accomplished by passicurrent of the required value through each pair of deflecting compensate for the raster shift resulting from optimum adjust convergence, color purity, and concentricity.</li> <li>Peak-to-peak value. This ac voltage having essentially parabot form is synchronized with scanning and does not include an developed during the blanking time.</li> </ul>	ing direct coils to tments for



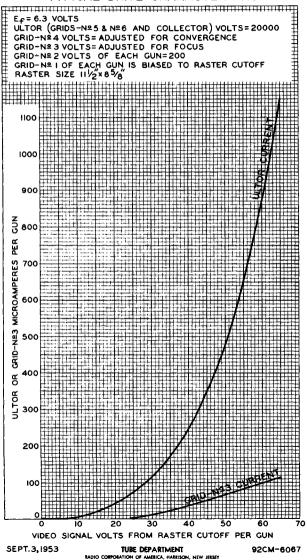


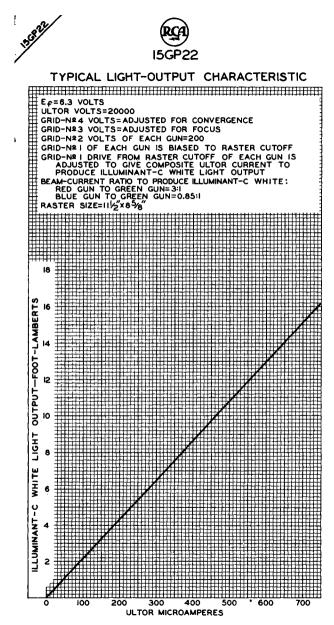












NOTE 1: REFERENCE LINE IS DETERMINED BY POSITION WHERE A CYLINDRICAL GAUGE 2.400" ± 0.001" I.D. WHICH IS HELD CONCENTRIC WITH TUBE NECK AXIS WILL REST ON FUNNEL.
NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH FACEPLATE-SECTION AXIS AND HAVING A DIAMETER OF 3".
NOTE 3: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.
NOTE 4: METAL FLANGE OPERATES AT HIGH VOLTAGE. ADEQUATE INSULATION MUST BE PROVIDED BETWEEN THE FLANGE AND ANY GROUNDED ELEMENT IN THE RECEIVER TO PREVENT THE POSSI- BILITY OF ELECTRICAL LEAKAGE INCLUDING CORONA.
NOTE 5: MASK MATERIAL BEARING ON THE FACEPLATE MUST HAVE INSULATING QUALITIES ADEQUATE FOR ONE HALF THE APPLIED ULTOR VOLTAGE TO MINIMIZE SURFACE LEAKAGE BETWEEN METAL FLANGE AND MASK.
NOTE 6: TUBE SHOULD NOT BE SUPPORTED IN THIS AREA.
NOTE 7: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINT- LESS CLOTH.





### TYPICAL DRIVE CHARACTERISTIC





JAN. 13, 1954

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JELSEY 92CM-8073RI





## **OSCILLOGRAPH TUBE**

METAL-SHELL ENVELOPE

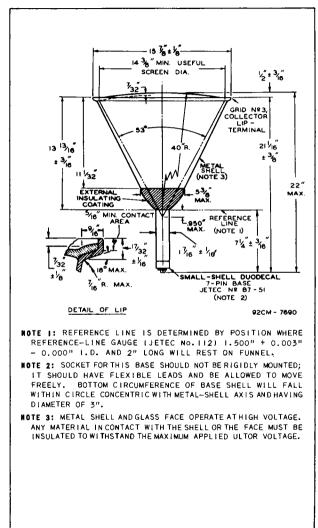
MAGNETIC FOCUS MAGNETIC DEFLECTION

#### DATA

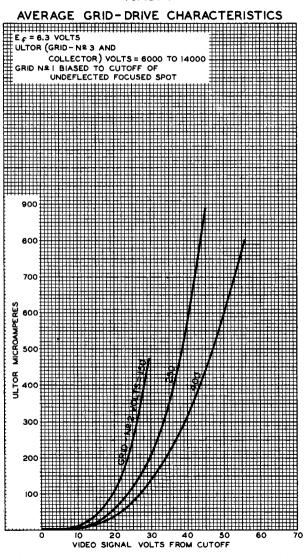
	- I
General:	J
Heater, for Unipotential Cathode:	1
Voltage 6.3 ac or oc volt:	s
Current 0.6 am	ρĺ
Direct Interelectrode Capacitances (Approx.):	
Grid No.1 to All Other Electrodes 6 $\mu\mu$	fĺ
Cathode to All Other Electrodes $\dots \dots	- 1
Faceplate, Spherical	
Light Transmission (Approx.)	
Phosphor (For Curves, see front of this Section)	·· I
	· I
Persistence	
martinan oforall Longent	
Minimum Useful Screen Diameter	
Ultor Terminal Metal-Shell Li	
Mounting Position	У
Base Small-Shell Duodecal /-Pin (JEIEC NO.B/-51)	1
BOTTOM VIEW	
Pin 1-Heater Pin 10-Grid No.2	
Pin 2-Grid No.1 Pin 11-Cathode	- [
Pin 6 - No Pin 12 - Heater	
Connection 4/ 5 10 Cap-Ultor	1
Pin 7 – No (Grid No.3,	- 1
Connection OTO Collector)	
Maximum Ratings, Design-Center Values:	
ULTOR [®] VOLTAGE	5
IGRID-No.2 VOLTAGE:	Ĩ
Positive value (DC or Peak AC) 410 max. volt	s
Negative value (DC or Peak AC) 180 max. volt	
GRID-No.1 VOLTAGE:	Ĩ
Negative bias value	5
Positive bias value $\phi$ 0 max. volt	- 1
Positive peak value	- 1
PEAK GRID-No.1 DRIVE FROM CUTOFF 65 max. volt	
PEAK GRID-NO.1 DRIVE FROM COTOTI	
In the 16ADP7, grid No.3 which has the ultor function, and collector are connected together within the tube and are conveniently referred to collectively as "ultor". The "ultor" in a cathode-ray tube is the electrode, or the electrode in combination with one or more additional electrodes connected within the tube to it, to which is applied the highest dc voltage for acceleration the electrons in the beam prior to	-
are connected together within the tube and are conveniently referred	1
electrode, or the electrode in combination with one or more additional	í I
electrodes connected within the tube to it, to which is applied the	
its deflection.	1
$\phi$ At or near this rating, the effective resistance or the ultor sunnl	, l
$\phi$ At or near this rating, the effective resistance or the ultor supply should be adequate to limit the ultor input power to 6 watts.	
FEB. 1, 1952 TUBE DEPARTMENT TENTATIVE DA	ΤA

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




I6ADP7 OSCILLOGRAPH TUBE

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode . 125 max. Heater positive with respect to cathode . 125 max.	volts volts
Typical Operation:	
Ultor Voltage*	volts
	volts
Grid-No.2 Voltage	VOILS
Grid-No.1 Voltage for Visual Extinction	volts
of Undeflected Focused Spot27 to -63 Grid-No.2 Current15 to +15	
Grid-No.2 Current	<i>μ</i> aπp
Focusing-Coil Current (DC) ⁰⁰	ma
Spot Position ##	
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max. r	negohms
Brilliance and definition decrease with decreasing ultor volta general, the ultor voltage should not be less than 8000 volts.	ge. In
⁰⁰ For specimen focusing coil similar to JETEC Focusing Coil No. sitioned with air gap toward faceplate and center line of 3-1/4" from Reference Line (see Outline Drawing) and ultor cur	air gap j
3-1/4" from Reference Line (see Outline Drawing) and ultor cur 200 microamperes.	rent of
	circle
## The center of the undeflected, unfocused spot will fall within a having 25-mm radius concentric with the center of the tube far	e.
	[
	I
	1
]	






## **OSCILLOGRAPH TUBE**







I6ADP7

OCT. 5, 1951

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 7692





## **KINESCOPE**

METAL-CONE ENVELOPE

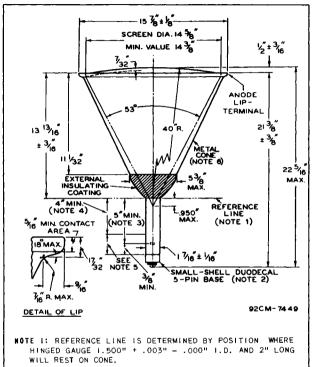
MAGNETIC FOCUS MAGNETIC DEFLECTION Supersedes Type 16AP4

 _	_	_

DATA

General:
Heater, for Unipotential Cathode: Voltage
<pre>Maximum Ratings, Design-Center Values: ANODE^{DV}OLTAGEO</pre>




I6AP4-A

**KINESCOPE** 

RCA) 16AP4-A

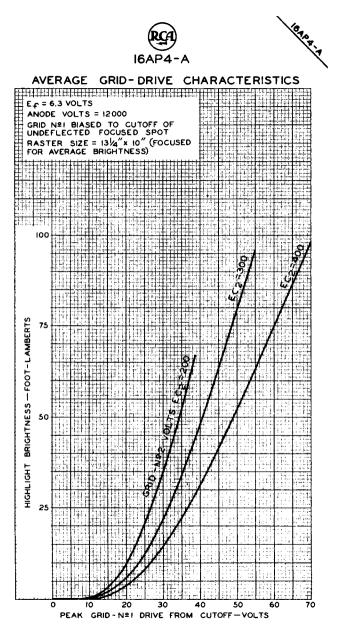






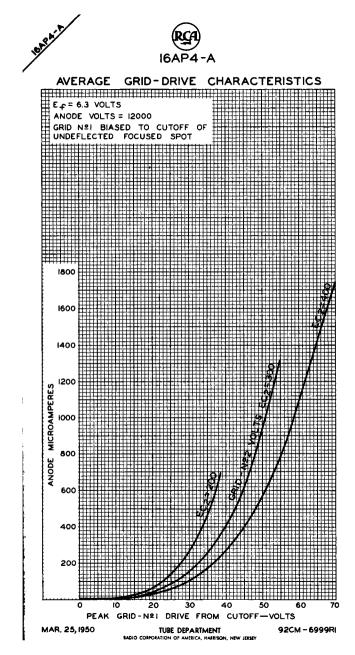
- NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN CIRCLE CONCENTRIC WITH CONE AXIS AND HAVING DIAMETER OF 3".
- NOTE 3: DISTANCE TO INTERNAL POLE PIECES. PLANE THROUGH VACANT PIN POSITION NO.6 AND TUBE AXIS PASSES THROUGH LINE JOINING CENTERS OF POLE PIECES. DIRECTION OF PRINCIPAL FIELD OF ION-TRAP MAGNET SHOULD BE SUCH THAT NORTH POLE IS ADJACENT TO VACANT PIN POSITION NO.6 AND SOUTH POLE TO PIN NO.12.
- NOTE 4: LOCATION OF DEFLECTING YOKE AND FOCUSING-COIL MUST BE WITHIN THIS SPACE.






#### NOTE 5: KEEP THIS SPACE CLEAR FOR ION-TRAP MAGNET.

NOTE 6: METAL CONE AND GLASS FACE OPERATE AT HIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE CDNE OR THE FACE MUST HAVE INSULATING PROPERTIES ADEQUATE FOR 15500 VOLTS.


#### CURVES

The following Grid-Drive Characteristics Curves are for the condition with grid No.1 biased to give visual extinction of the undeflected, focused spot. In viewing television pictures, it will be found that the actual cutoff voltage corresponding to black in the picture is approximately 5 volts less negative than shown on the curves; similarly, the grid-No.1 drive to obtain a given anode current or light output is also about 5 volts less.



MAR. 22, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 7471







ROUND GLASS TYPE

MAGNET	IC.	FOCUS

١

MAGNETIC DEFLECTION

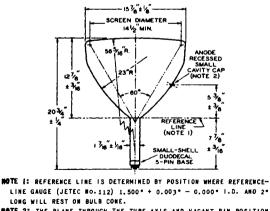
	D	A	T	A
--	---	---	---	---

, vara	1
General:	
Heater, for Unipotential Cathode:	6 μμf     5 μμf     Filterglass     Filterglass     P4-Sulfide Type     Mite     Magnetic     Magnetic     Magnetic     Obuble-Field Magnet     20-3/4" ± 1/4"     15-7/8" ± 1/8"     Any     ity (JETEC No.J1-21)
Pin 2 - Grid No.1	Pin 12 - Heater
Pin 10 - Grid No.2	Cap – Anode
Maximum Ratings, Design-Center Values:	
ANODE         VOLTAGE.         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< th=""><th>. 15000 max. volts . 410 max. volts</th></t<>	. 15000 max. volts . 410 max. volts
Negative bias value	. 125 max. volts . 0 max. volts . 2 max. volts
Heater negative with respect to cathode During equipment warm-up period not	:
exceeding 15 seconds	
After equipment warm-up period Heater positive with respect to cathode	
Typical Operation:	
Anode Voltage*	. 12000 volts
*Brilliance and definition decrease with decreas general, the anode voltage should not be less t	ing anode voltage. In han 9000 volts.
<u></u>	



## (RCA) 16DP4-A KINESCOPE

Grid-No.2 Voltage	250	volts
Grid-No.1 Voltage ⁰	27 to63	volts
Focusing-Coil Current (DC, Approx.)†	115	ma
Ion-Trap-Magnet Current (DC, Approx.)#.	110	ma
Maximum Circuit Values: Grid-No.1-Circuit Resistance	1.5 max.	megohms


⁹ For visual extinction of undeflected, focused spot.

For specifient focusing coil similar to JETEC Focusing Coil No.109 positioned with air gap toward kinescope screen and center line of air gap 3-1/4 inches from Reference Line (see Oulline Drawing). The indicated current is for condition with combined grid-No.1 bias voltage and videosignal voltage adjusted to produce a highlight brightness of 20 footlamberts on a 14-1/2* x 10-1/4* picture area sharply focused at center of screen.

For specimen ion-trap magnet similar to JETEC Ion-Trap Wagnet No.108 located in optimum position and rotated to give maximum brightness.

#### OPERATING NOTES

X-Ray Marming. When operated at anode voltages up to 16 kilovoits, the 160P4-A does not produce any harmful x-ray radiation. However, because the rating of the tube permits operation at voltages as high as 16.5 kilovoits (absolute value), shielding of the 160P4-A for x-ray radiation may be needed to protect against possible injury from prolonged exposure at close range whenever the operating conditions involve voltages in excess of 16 kilovoits.



**NOTE 2:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY AN ANGULAR TOLERANCE (MEASUREO ABOUT THE TUBE AXIS) OF ± 10°. ANODE TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.3.

TENTATIVE DATA





## **KINESCOPE**

ROUND METAL-SHELL TYPE

MAGNETIC FOCUS

MAGNETIC DEFLECTION

MAGNETIC FOCUS MAGN	ETTC DEFLECTION	
DATA		
General:		
Heater, for Unipotential Cathode: Voltage		
Voltage	ac or dc volts	
Direct Interelectrode Capacitances:		-
Direct Interelectrode Capacitances: Grid No.1 to all other electrodes Cathode to all other electrodes	с <i>5</i>	
Grid No.1 to all other electrodes	6 μμf	
Cathode to all other electrodes Faceplate, Spherical	$\mu \mu$	
light transmission (Approx.)		
Light transmission (Approx.) Phosphor (For Curves, see front of this section).	PM Sulfido Typo	
Fluorescence	. F4Sullinge Type	
Phosphorescence.		
Persistence.		-
Forusing Method	Nagnotic	-
Focusing Method	Magnetic	
Deflection Angle (Approx )	700	
Deflection Angle (Approx.)	Single-Field Magnet	
Tube Dimensions:		
	17-11/16"	
Maximum overall length	15-7/8" ± 1/8"	
Minimum Useful Screen Diameter		-
Weight (Approx.)	11 lbs	-
Weight (Approx.)	Any	
Ultor Terminal	Metal-Shell Lip	
Ultor Terminal	in (JETEC No.85-57)	-
Basing Designation for BOTTOM VIEW		-
	letal-Shell Lip -	
Pin 2 - Grid No.1	Ultor	
Pin 10 - Grid No.2	(Grid No.3, Collector)	
Pin 11 - Cathode 2	confector)	
Maximum Ratings, Design-Center Values:		
	14000 max. volts	
ULTOR VOLTAGE	410 max. volts	
GRID-No.1 VOLTAGE:	410 1142. 10113	l
Negative bias value	125 max. volts	I
Positive bias value		
Positive peak value		1
PEAK HEATER-CATHODE VOLTAGE:		l
Heater negative with respect to cathode:		1
During equipment warm-up period		
not exceeding 15 seconds	410 max. volts	
After equipment warm up period	1EO may valte	
Heater positive with respect to cathode.	150 max. volts	
	- Indicates a change.	
2.50	0.171	

ISUPA D

I6GP4-B KINESCOPE

1

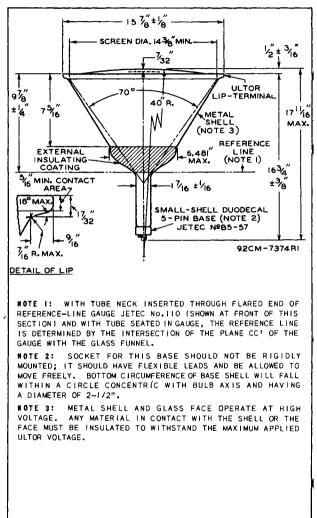
Equipment Desi	gn Ranges:		
	r voltage (Ec ₃ ) betu		
and grid-l	10.2 voltage (Éc ₂ ) be	tween 200 and 410	volts
Grid-No.1 Volt Visual Extin Focused Rast Grid-No.1 Vide from Raster	nction of er eo Drive	-9.3% to -24% of E	Ec ₂ volt
White-level Grid-No.2 Curi	(Peak positive) ^{-ent}	9.3% to 24% of Ed 15 to +15	- μam
Focusing-Coil Ion-Trap Magne		$\sqrt{\frac{-15}{14000} \times 107} \pm 10$	)%36 т
(Average)** Minimum Field	 Strength of	$\sqrt{\frac{-63}{14000}} \times 28$	m
PM lon-Trap		$\sqrt{\frac{L_{c_3}}{14000}} \times 31$	gausse
Centering Ma	agnet	0 to 8	gausse
	se of Design Ranges:		
With ultor and grid-No.	oltage of 2 voltage of	12000 300	.volt volt
Grid-No.1 Volt Visual Extin Focused Rast Grid-No.1 Vide from Raster	nction of ter o Drive Cutoff (Black Level):	-28 to -72	volt
White-level	value (Peak positive) Current (DC)	28 to 72 99 ± 10%	volt
Minimum Field PM Ion-Trap	Strength of	29	gausse
For specimen tioned with ai 3 inches from current is for and combined produce a hig dian Head Tes	d definition decrease w ultor voltage should not focusing coil similar to rgap toward kinescope s Reference Line (See Dia r condition with sharp grid-No.1 voltage and v hight brightness of 30 t Pattern set for a 10° - Trap Magnet No.117, o t of the pole pieces low No.2 and rotated to giv	JETEC Focusing Coil N creen and center line ensional Outline). Th focus at center of pi ideo-signal voltage a foot-lamberts measure x 13-1/4* picture siz	o.109 posi of air ga e indicate cture are djusted to d on an In- e.
§ See next page.		- Indicate	s a change

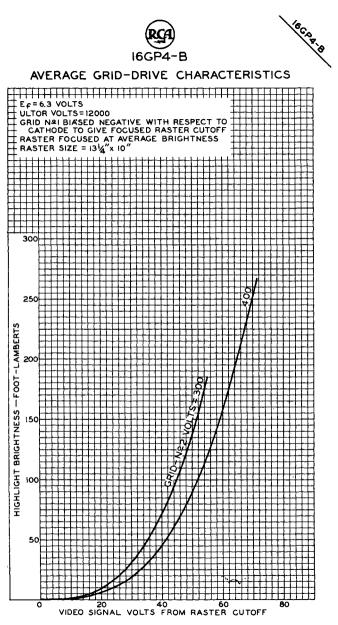
16GP4-B



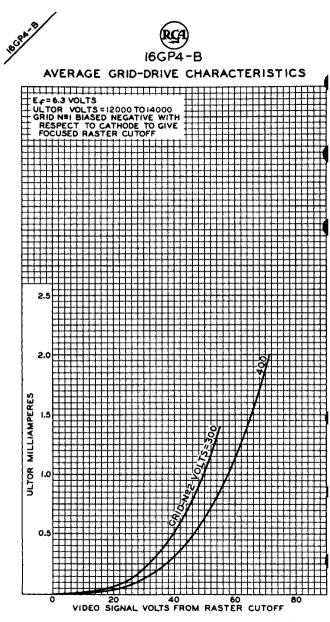
### **KINESCOPE**

#### Maximum Circuit Values:


Grid-No.1-Circuit Resistance. . . . . . 1.5 max. megohms


§ For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

> For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section




RCA) 16GP4-B KINESCOPE





TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



TUBE DIVISION BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





MAGNETIC FOCUS

ROUND GLASS TYPE MAGNETIC DEFLECTION

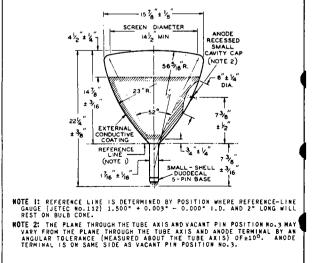
DATA		٦
General:		
Current 0.6 Direct Interelectrode Capacitances: Grid No.1 to All Other Electrodes Cathode to All Other Electrodes ExternalConductive Coating to Anode	2000 max, 750 min. Filterglaa: 	np uf uf uf uf uf uf uf uf uf uf
	in 12 - Heater Cap - Anode C - External Conduct. Coating	
Maximum Ratings, Design-Center Values:		
ANODE VOLTAGE	14000 max. volt 410 max. volt	ts
Negative bias value Positive bias value Positive peak value	125 max. volt O max. volt 2 max. volt	ts
Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds After equipment warm-up period Heater positive with respect to cathode	410 max. vol 125 max. vol 125 max. vol	ts
Typical Operation:		
Anode Voltage	12000 volt	ts
FEB. 1, 1952 TUBE DEPARTMENT	TENTATIVE DA	TĂ

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



## RCA 16LP4-A KINESCOPE

Grid—No.2 Volt <b>age</b> Grid—No.1 Voltage ^o	300 -33 to -77	volts volts
Focusing-Coil Current (DC, Approx.)	110	ma
lon-Trap-Magnet Current (DC, Approx.)∦ .	120	ma


#### Maximum Circuit Values:

Grid-No.1-Circuit Resistance . . . . . 1.5 max. megohms

- ⁰ For visual extinction of undeflected focused spot.
- For specimen focusing coil similiar to JETEC Focusing Coil No.106 positioned with air gap toward kinescope screen, and center line of air gap about 3-1/4" inches from Reference Line (see Outline Drawing). The indicated current is for the condition with the combined grid-No.1 Dias voltage and video-signal voltage adjusted to produce a highlight brightness of 20 foot-lamberts on a 14-1/2" x 10-1/4" picture area sharply focused at center of screen.
- For specimen ion-trap magnet similiar to JETEC ion-Trap Hagnet No.100 located in optimum position and rotated to give maximum brightness.

#### OPERATING NOTES

X-Ray Warning. When operated at or below the maximum anode-voltage rating shown in the tabulated data, the (6LP4-A does not produce any harmful x-ray radiation. All types of picture tubes may be operated at voltages (if ratings permit) up to 16 kilovolts (absolute value) without personal injury on prolonged exposure at close range. Above 16 kilovolts, special shielding precautions for x-ray radiation may be necessary.



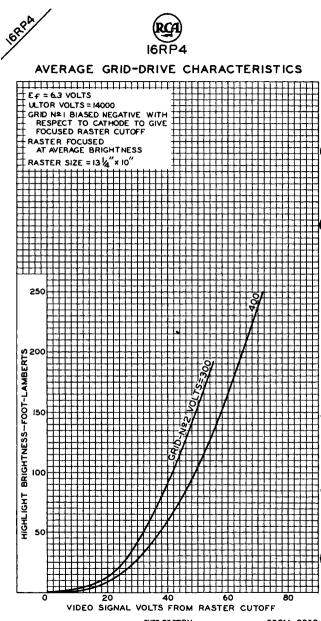
#### TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA

_____






### KINESCOPE

RECTANGULAR GLASS TYPE

MAGNETIC FOCUS

MAGNETIC DEFLECTION

The 16RP4/16KP4 is the same as the 16RP4-A/16KP4-A except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.



TUBE DIVISION BADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY 92CM-8858



KINESCOPE



RECTANGULAR GLASS TYPE MAGNETIC FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

General: Heater, for Unipotential Cathode: Voltage. . . . . . . . 6.3 . ac or dc volts Current. . . . . . . . . . 0.6 ± 10% . . . . . . . . amp Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. . μµf 6 Cathode to all other electrodes. . . 5 unt 1500 max. μµf External conductive coating to ultor . 750 min. µц . . . . . . Filterolass Faceplate, Spherical . . . Light transmission (Approx.) . . . . 66% Phosphor (For curves, see front of this section) . . P4--Sulfide Type Aluminized Fluorescence . . White Phosphorescence. . White Short Persistence. . . Focusing Method. Magnetic Deflection Method. Magnetic Deflection Angles (Approx.) Diagonal . . 70⁰ Horizontal . . 65⁰ 500 Vertical . . . Ion-Trap Gun . . . . . . Requires External Single-Field Magnet Tube Dimensions: Overall length . . . 18-3/4" ± 3/8" Greatest width . . . 14-3/4" ± 1/8" 11-1/2" ± 1/8" Greatest height. 16-1/8" ± 1/8" Diagonal . . . 7-1/2" ± 3/16" Neck length. . . Screen Dimensions (Minimum): Greatest width . . 13-1/2" 10-1/8" Greatest height. Diagonal . . . . 14-7/8" Projected area . . 131 sq. in. . 16 lbs Weight (Approx.) . Mounting Position. . . Anv .... Recessed Small Cavity (JETEC No.J1-21) Cao. . . . . J129 Bulb.. Basing Designation for BOTTOM VIEW . . . . . . . . 12N Pin 1-Heater Cap - Ultor (Grid No.3, Pin 2-Grid No.1 Collector) Pin 10-Grid No.2 C - External Pin 11 - Cathode Conductive Pin 12 - Heater Coating



# I6RP4-A KINESCOPE

Maximum Ratings, Design-Center	Values:		
ULTOR VOLTAGE		. 16000 max.	
GRID-No.2 VOLTAGE		. 410 max.	volts
GRID-No.1 VOLTAGE: Negative bias value		. 125 max.	volts
Positive bias value		. 0 max.	
Positive peak value		. 2 max.	volts
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect	to cothodor		
During equipment warm-up p			
not exceeding 15 seconds		. 410 max.	
After equipment warm-up pe		. 150 max. . 150 max.	
Heater positive with respect	to cathode	. 100 max.	voits
Equipment Design Ranges:			
With any ultor voltage (E _{C3} ) and grid-No.2 voltage (E _C	between 1200 Jetween 20	0 and 10000	o voits olts
Grid-No.1 Voltage for	,	0 2/10 4/10 0	
Visual Extinction of			
Focused Raster.	-9.3% to -	24% of Ec _{.2}	volts
Grid-No.1 Video Drive from Raster Cutoff			
(Black Level):			
White-level value	0.24 1.2	AM - E F	
(Peak positive) Grid-No.2 Current	9.3% to 2 -15 t	4% of Ec ₂	volts µamp
	- <u>Fa</u>	7	ma
Focusing-Coil Current (DC) ⁰ .	$\sqrt{\frac{1}{16000}}$ ×	115 ± 20%	ma
Ion-Trap Magnet Current	Ec3	× 30	
(Average)**	V 16000		ma
Minimum Field Strength of	Ec 3	-	
PM Ion-Trap Magnet§	$\sqrt{\frac{16000}{16000}}$	× 33	gausses
Field Strength of Adjustable		to 8	gausses
Centering Magnet Examples of Use of Design Rang			gaadaada
With ultor voltage of	12000	14000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.1 Voltage for			
Visual Extinction of Focused Raster	-28 to -72	-28 to -72	volts
Grid-No.1 Video Drive	20 10 -72	20 10 72	,,,,,,,
from Raster Cutoff			
(Black Level): White-level value			
(Peak positive)	28 to 72	28 to 72	volts
Focusing-Coil Current (DC).	100 ± 20%	108 ± 20%	ma
Minimum Field Strength of PM Ion-Trap Magnet	29	31	qausses
", o, **, §: see next page.	~~		J
2-56		TENTATIV	
Z-00 TUBE I	NOISION	TENTATIV	LUAIAI

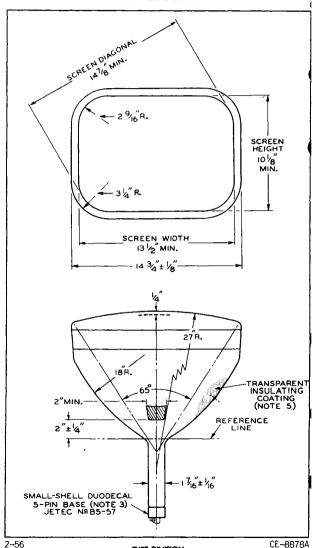
16RP4-A

IGP P P. P	

#### **KINESCOPE**

#### Maximum Circuit Values:

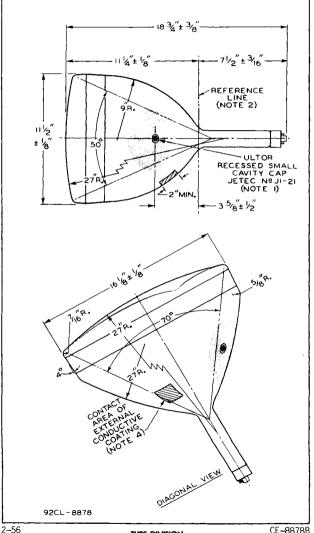
b


Grid-No.1-Circuit Resistance . . . . . . 1.5 max. megohms

- * Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 12000 volts.
- 9 For specimen focusing coil similar to JETEC focusing Coil No. 109 positioned with air gap toward kinescope screen and center line of air gap 3-1/2 inches from Reference line (*Sze Dimensional Outline*). The indicated current is for condition with sharp focus at center of picture area and combined grid-No.1 voltage and video-signal voltage adjusted to produce a highlight brightness of 30 foot-lamberts measured on an India and Test Picture size.
- ** For JETEC Ion-Trap Magnet No. 117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum orightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section




16RP4-A **KINESCOPE** 



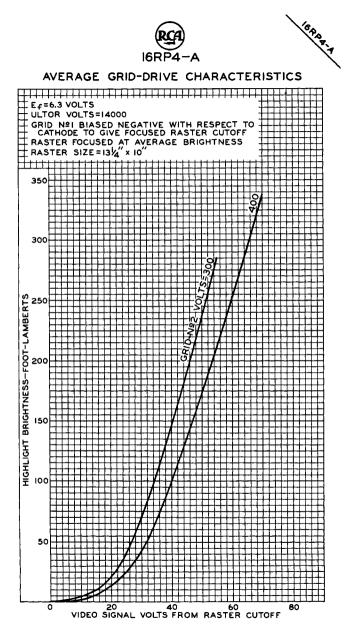
16RP4-A



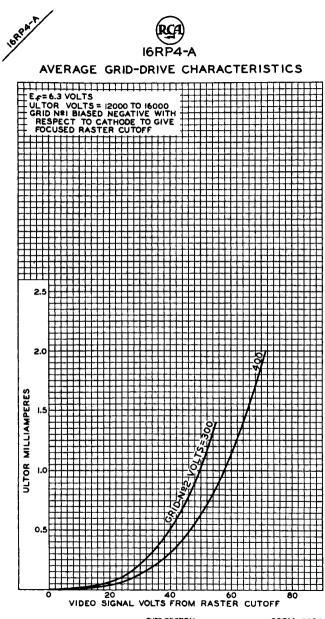







# RCA) 16RP4-A KINESCOPE

NOTE I: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION No.6.


NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-3/4".

NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY 92CM-8857



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-8894





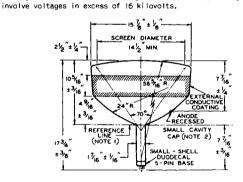
ROUND GLASS TYPE

MAGNETIC DEFLECTION
---------------------

	G	en	e	ra	I	:
--	---	----	---	----	---	---

MAGNETIC FOCUS

DATA


General:	DATA	
Current irect interelectrode Grid No.1 to All O	· · · · 6.3 · · · · · · 0.6 · · ·	
Faceplate, Soherical Light Transmission Phosphor (For Curves, s Fluorescence and Pl Persistence of Pho: Focusing Method Deflection Method Deflection Angle (App Ion-Tran Gun Greatest Diameter of Minimum Screen Diame: Mounting Position Cap	ee front of this Section) hosphorescence sphorescence	Filterglass 
Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode		Pin 12-Heater Cap-Anode C-External Conduct. Coating
Maximum Ratings, Des	ign-Center Values:	
ANODE VOLTAGE GRID-No.2 VOLTAGE . GRID-No.1 VOLTAGE:	· · · · · · · · · · · ·	. 16000 max. volts . 410 max. volts
Positive bias value Positive peak value PEAK HEATER-CATHODE	e	. 0 max. volts 2 max. volts
During equipment excee After equipment v	warm-up period not eding 15 seconds warm-up period th respect to cathode	. 410 max, volts . 125 max, volts
<b>Typical Operation</b> Anode Voltage Grid-No.2 Voltage	· · · · · · · · · · · · · · · · · · ·	. 12000 volts . 250 volts

18WPA-1

ſ

# RCA 16WP4-A KINESCOPE

Grid-No.1 Voltage for Visual Extinction of Undeflected Focused Spot27 to 63 Focusing-Coil Current (DC, Approx.) ^o . 100 Ion-Trap Current (Approx.) [†] 120	volts ma ma
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max. m	egohms
⁹ For specimen focusing coil similar to JETEC Focusing Coil positioned with air gap toward kinescope screen and center lin gap 3-1/4 inches from Reference Line (see Outline Drawing). Ti cated current is for condition with combined grid-No.1 bias vol video-signal voltage adjusted to produce a highlight brightnes foot-lamberts on a 14-1/2* x 10-1/4* picture area sharply foc center of screen.	ne of air ne indi- tage and s of 20
For specimen ion-trap magnet similar to JETEC lon-Trap Magnet located in optimum position and rotated to give maximum brightm	No.108
OPERATING NOTES	1
X-Ray Warning. When operated at anode voltages up to 16 kilos the 16WP4-A does not produce any harmful x-ray radiation. Ho because the rating of the tube permits operation at anode volta high as 17.6 kilovolts (absolute value), shielding of the 16WP4 x-ray radiation may be needed to protect against possible injur prolonged exposure at close range whenever the operating cond	wever, ges as -A for y from



- NOTE 1: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.11C (SNOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE C." OF THE GAUGE WITH THE GLASS FUNNEL.
- **NOTE 2:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.3 May vary from the plane through the tube axis and anode terminal by an angular tolerance (measured about the tube axis) of  $\pm$  10°. Anode terminal is on same side as vacant pin Position No.3.





RECTANGULAR GLASS TYPE

LOW-VOLTAGE FOCUS

MAGNETIC DEFLECTION

#### DATA General: Heater, for Unipotential Cathode: . . ac or dc volts 0.6 ± 10% . . Current. . . . . . . . . Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. μµf 6 Cathode to all other electrodes. . . 5 $\mu\mu f$ 11500 max. μµf External conductive coating to ultor 1200 min. шuf Faceplate, Spherical, Filterglass . . . Light transmission (Approx.) . . . . . . . . . 74% Phosphor (For Curves, see front of this Section) . P4-Sulfide Type Fluorescence . . . . . . White Phosphorescence. . . .White . . .Shorti Persistence. . . . . .Electrostatic Focusing Method. . . . . . Magnetic Deflection Method. Deflection Angles (Approx.): Diagonal . 900 850 Horizontal . . 68⁰ Vertical . . . . Tube Dimensions: 15-5/8" ± 3/8" Overall length . . . . 15-25/64" ± 1/8" . . 12-9/32" ± 1/8" Greatest width . Greatest height. ... 16-5/8" ± 1/8" Diagonal . . . . . . . 6-1/2" + 3/16" Neck length. . . Screen Dimensions (Minimum); 14 - 5/16" Greatest width . . Greatest height. . 11-1/8" Diagonal . . . . 15-9/16" Projected area . 149 sq. in. Weight (Approx.) . . . . . Mounting Position. . . . . . . . . . Anv Recessed Small Cavity (JETEC No.J1-21) Cap. . . . . . . . . . . Bulb... . . J-133 . . . . . Basing Designation for BOTTOM VIEW.... . . . . . 12L Pin 1 - Heater Cap - Ultor (Grid No.3. Pin 2 - Grid No.1 Pin 6 - Grid No.4 Grid No.5. Pin 10 - Grid No.2 Collector Pin 11 - Cathode C - External Conductive Pin 12 - Heater Coating

TENTATIVE DATA 1

TUBE DIVISION





#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode Maximum Ratings. Design-Center Values: ULTOR VOLTAGE . . . . . 16000 max. volts GRID-No.4 VOLTAGE: Positive value. . 1000 max. volts Negative value. . . 500 max. volts GRID-No.2 VOLTAGE 500 max. volts GRID-No.1 VOLTAGE: volts Negative peak value . 200 max. Negative bias value . . 140 max. volts . . . 0 max. volts Positive bias value . Positive peak value . 2 max. volts PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds . . . 410 max. volts 180 max. volts After equipment warm-up period. . . . . Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage  $(E_{C,g,k})$  between 12000# and 16000 volts and grid-No.2 voltage  $(E_{C,g,k})$  between 200 and 500 volts Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp . . . _ -0.4% to +2.2% of Ec. k volts Grid-No.1 Voltage for Visual Extinction of ••• -9.3% to -24% of Ecak volts Focused Raster. . . Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 9.3% to 24% of Ecok volts -25 to +25 Grid-No.4 Current . . . uamp -15 to +15 Grid-No.2 Current . . uamp Ion-Trap Magnet Current Ecsk (Average)** . . . . × 30 ma 16000 Minimum Field Strength of PM Ion-Trap Magnet§ . . . x 33 gausses 16000 Field Strength of Adjustable 0 to 8 Centering Magnet. . . . . aausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. #,**,§: See next page.





Examples of Use of Design Ra	nges:		
With ultor voltage of	14000	16000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for	-55 to +310	-65 to +350	volts
Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	-28 to -72	-28 to -72	volts
White-level value (Peak positive) Minimum Field Strength of	28 to 72	28 to 72	volts
PM lon-Trap Magnet	31	33	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max.	megohms
CATHODE-I	DRIVE" SERVICE	E	
Unless otherwise specifie with respe	d, voltage va ct to grid No	lues are pos .1	itive
Maximum Ratings, Design-Cent	er Values:		
ULTOR-TO-GRID-No. 1 VOLTAGE.		. 16000 max	. volts
GRID-No.4-TO-GRID-No.1 VOLTA Positive value	GE:	. 1000 max	volts.
Negative value		. 500 max	
GRID-No. 2-TO-GRID-No. 1 VOLTA	GE	. 640 max	. volts
GRID-No. 2-TO-CATHODE VOLTAGE CATHODE-TO-GRID-No.1 VOLTAGE		. 500 max	. volts
Positive peak value		. 200 max	. volts [!]
Positive bias value		. 140 max	
Negative bias value		0 max	
Negative peak value PEAK HEATER-CATHODE VOLTAGE: Heater negative with respe	•••••• ct to cathode	• 2 max :	• volts
During equipment warm-up			
not exceeding 15		. 410 max	
After equipment warm-up Heater positive with respe		. 180 max	
Cathode drive is the operating c the cathode potential with respe			
the cathode potential with respe	ιι το griα ΝΟ. 1 έ	ang the other el	ectrodes.
10-56 TUD		TENTATIV	E DATA 2



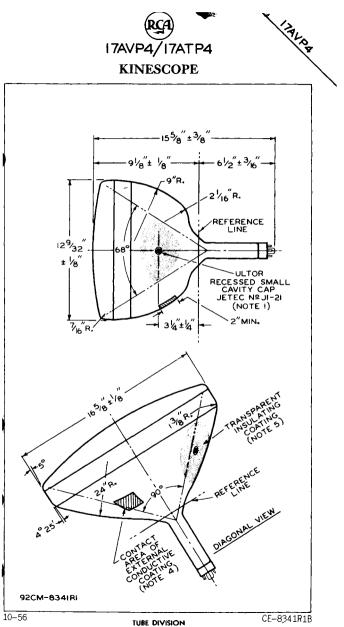


Equipment Design Ranges:	
With any ultor-to-grid-No.1 voltage (Ec5g1) between 12000# and 160	oo volts
and grid-No.2-to-grid-No.1 voltage (Ec281) between	
220 and 6	40 VOLES
Grid-No.4-to-Grid-No.1 Voltage	
for Focus with Ultor Current of 100 $\mu$ amp 0% to 2.6% of E _{cro}	volts
Current of 100 $\mu$ amp 0% to 2.6% of E _{c591} Cathode-to-Grid-No.1 Voltage	VUILS
for Visual Extinction	
of Focused Raster 8.5% to 19.4% of Ec291	volts
Cathode-to-Grid-No.1 Video	(
Drive from Raster Cutoff (Black Level):	
White-level value	
(Peak negative) 8.5% to 19.4% of E _{c.291}	volts
Grid-No.4 Current25 to +25	μamp
Grid-No.2 Current15 to +15	μamp
$\begin{bmatrix} \text{Ion-Trap Magnet Current} \\ (\text{Average})^* & \dots & \sqrt{\frac{E_{c_591}}{16000}} \times 30 \end{bmatrix}$	
$(\text{Average})^{**}$ $\sqrt{\frac{-c_5 g_1}{16000}} \times 30$	ma
Minimum Field Strength of PM Ion-Trap Magnet§ $\sqrt{\frac{E_{c_591}}{16000}} \times 33$	gausses
Field Strength of Adjustable	
Centering Magnet 0 to 8	gausses
Examples of Use of Design Ranges:	
With ultor-to-grid-No.1	
voltage of 14000 16000	volts
and grid-No.2-to-grid-No.1 voltage of 300 300	volts
Grid-No.4-to Grid-No.1 Voltage	
for Focus with Ultor	
Current of 100 µamp 0 to 365 0 to 415	volts
Cathode-to-Grid-No.1 Voltage	
for Visual Extinction of Focused Raster	volts
of Focused Raster 25 to 58 25 to 58 Cathode-to-Grid-No.1 Video	VUIUS
Drive from Raster Cutoff	
(Black Level):	
White-level value	volts
(Peak negative) 25 to 58 25 to 58 Minimum Field Strength of	vorts
PM Ion-Trap Magnet	gausses
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance, 1.5 max.	megohms
#,**,§: See next page.	

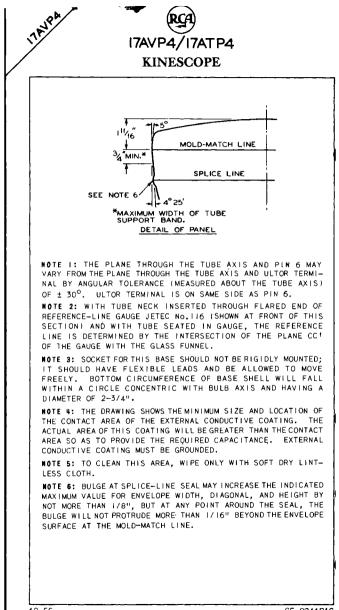
TENTATIVE DATA 2

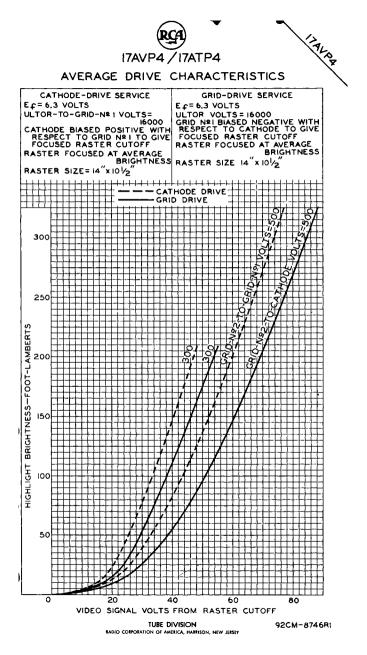


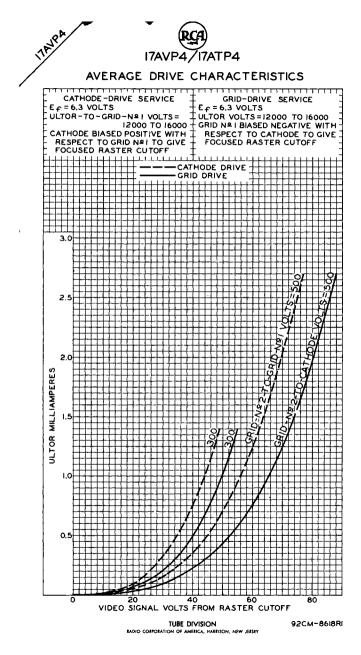



- Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-No.1 voltage. Ingeneral, the ultor voltage or ultor-togrid-No.1 voltage should not be less than 12000 volts.
- ** For JETEC Ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E#37, or equivalent, located in optimum position and rotated to give maximum orightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight Drightness.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section


TENTATIVE DATA 3



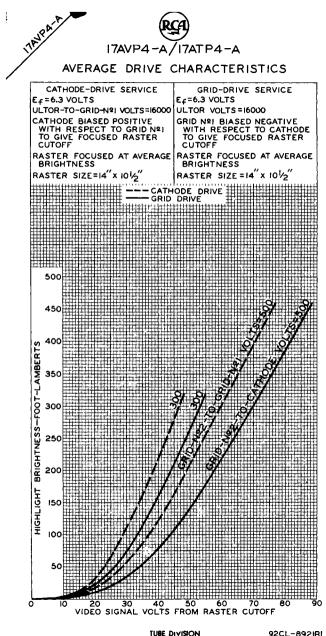


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY












RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

The 17AVP4-A/17ATP4-A is the same as the 17AVP4/17ATP4 except that it has an *alum:nized phosphor* and greater light output as shown by the curves on the back of this sheet.

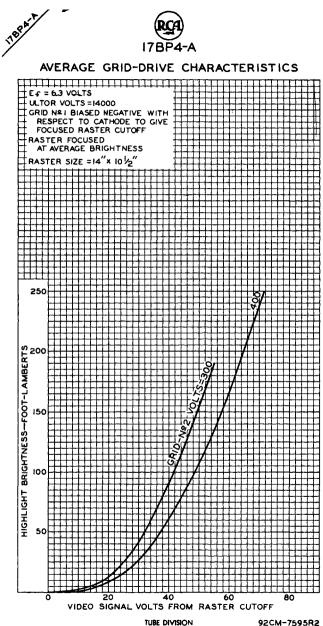


EADIO CORPORATION OF AMERICA. HARRISON, NEW JERSE

92CL-892IRI






### **KINESCOPE**

RECTANGULAR GLASS TYPE

MAGNETIC FOCUS

MAGNETIC DEFLECTION

The 17BP4-A is the same as the 17BP4-B except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





## **KINESCOPE**

RECTANGULAR	GLASS	TYPE
MAGNETIC FOC	115	

1

#### ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

General:
Heater, for Unipotential Cathode: Voltage
External conductive courting to urisi 1, 750 min. µµf         Faceplate, Spherical
Horizontal
Overall length       19-3/16" ± 3/8"         Greatest width       15-25/64" ± 1/8"         Greatest height       12-9/32" ± 1/8"         Diagonal       16-5/8" ± 1/8"         Neck length       7-1/2" ± 3/16"         Screen Dimensions (Minimum):       10
Greatest width



# I7BP4-B KINESCOPE

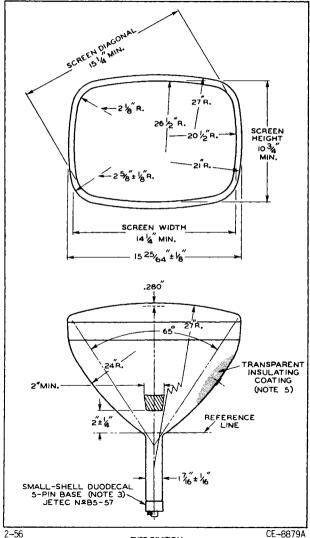
Maximum Ratings, Design-Center	Values:		}
ULTOR VOLTAGE.	101013.	16000 max.	. volts
GRID-No.2 VOLTAGE.		410 max.	
GRID-No.1 VOLTAGE:		410 1000	
Negative bias value		125 max.	. volts
Positive bias value		0 max.	. volts
Positive peak value		2 max	. volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect			
During equipment warm-up p		440	
not exceeding 15 seconds After equipment warm-up pe		410 max. 150 max.	
Heater positive with respect		150 max.	
		100	
Equipment Design Ranges: With any ultor voltage (Ecs)	hatween soon	a= a=d 16000	
and grid-No.2 voltage (Ec3)			
Grid-No.1 Voltage for	5	•	
Visual Extinction of			
Focused Raster	-9.3% to -	24% of E _{C2}	volts
Grid-No.1 Video Drive			
from Raster Cutoff			
(Black Level): White-level value			.
(Peak positive)	9.3% to 2	19 of Fa	volts
Grid-No.2 Current.	15 t	o +15	μamp
Focusing-Coil Current (DC) ^o .		106 ± 10%	ma
			1112
Ion-Trap Magnet Current	Ec3	_	
(Average)**	$\sqrt{\frac{1600}{1600}}$		ma
Minimum Field Strength of	/ Ec3		
PM Ion-Trap Magnet§	1	<del>-</del> × 33	gausses
Field Strength of Adjustable	¥ 1600	0	
Centering Magnet	0 t	o 8	gausses
Examples of Use of Design Rang	es:		
With ultor voltage of	12000	14000	volts
and grid-No.2 voltage of	300	300	volts
and grid-No.2 voltage of Grid-No.1 Voltage for	300	300	volts
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of	-	-	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster	-	300 -28 to -72	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive	-	-	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff	-	-	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive	-	-	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	-	-	
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) Focusing-Coil Current (DC).	-28 to -72	-28 to -72	volts
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value Focusing-Coil Current (DC). Minimum Field Strength of	-28 to -72 28 to 72 92 ± 10%	-28 to -72 28 to 72 99 ± 10%	volts volts ma
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) Focusing-Coil Current (DC) . Minimum Field Strength of PM Ion-Trap Magnet	-28 to -72 28 to 72	-28 to -72 28 to 72	volts volts
and grid-No.2 voltage of Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) Focusing-Coil Current (DC). Minimum Field Strength of	-28 to -72 28 to 72 92 ± 10%	-28 to -72 28 to 72 99 ± 10%	volts volts ma gausses

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 17BP4-B

#### **KINESCOPE**

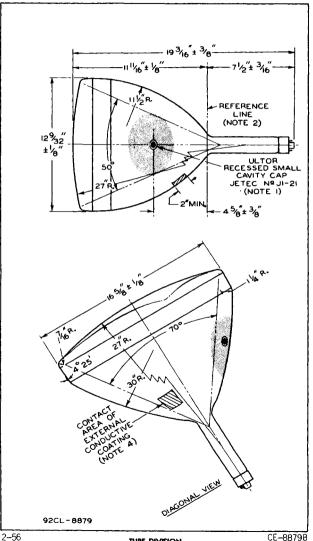
iias ₹.8

#### Maximum Circuit Values:


Grid-No.1-Circuit Resistance . . . . . . 1.5 max. megohms

- * Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 12000 volts.
- Or for specimen focusing coil similar to JETEC Focusing Coil No.109 positioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference line (See Dimensional Outline). The indicated current is for condition with sharp focus at center of picture area and combined grid-No.1 voltage and video-signal voltage adjusted to produce a highlight brightness of 30 foot-lamberts measured on an Indian editer strengther screen bright screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen screen
- ** For JETEC lon-Trap Magnet No. 117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- and grid No.2 and rotated to give maximum originiess. For specimen PM ion-trap magnet, such as Heppner Model No.5437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section




17BP4-B **KINESCOPE** 



17BP4-B **KINESCOPE** 

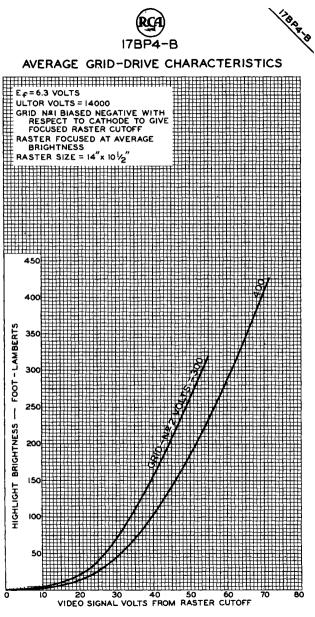




TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



# RCA 17BP4-B KINESCOPE


**NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION No.6.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.


NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-3/4".

NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINT∽ LESS CLOTH.



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW HEREY



I7CP4



KINESCOPE RECTANGULAR METAL-SHELL TYPE

ł

MAGNETIC DEFLECTION

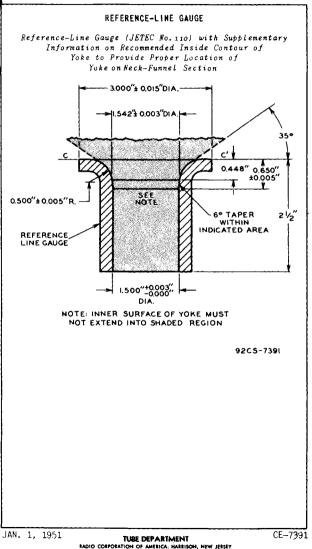
MAGNET MAGNE	THE DEFECTION	
DATA		
General:		
Heater, for Unipotential Cathode:		
Heater, for Unipotential Cathode: Voltage	ac or dc v	olts
Current 0.6		атр
Grid No.1 to All Other Electrodes Cathode to All Other Electrodes	6	μµf
Cathode to All Uther Electrodes	5 Tracted Cilter	<i>µµ</i> 1
Face Plate (Transmission of about 65%) F Phosphor (For Curves, see front of this Section)	No 4-Sulfide	Type
Fluorescence and Phosphorescence		
Persistence of Phosphorescence		Short
Focusing Method	Magr	netic
Deflection Method	Magr	netic
Deflection Angles (Approx.):		
Diagonal		700
Horizontal		66 ⁰ 50 ⁰
Ion-Trap Gun Requires External, S	ingle-Field Ma	-00 annei
Maximum Overall Length		10
Waximum Overall Length	16-13/16" ± 1	3/16
ireatest Width of lube at Lip	. 15-15/16" ±	1/8
Greatest Height of Tube at Lip	. 12-1/4" ±	1/8
Screen Size	· · 14-5/8" :	
Mounting Position.		Any
Anode Terminal . Base Small-Shell Duodecal 5-Pi	. Metal-Shell	LII
Basing Designation for BOTTOM VIEW		12D
	Pin 12-Heater	
	Metal-Shell Li	p:
Pin 10-Grid No. 2 4/ 🔨 🔎	And	ode
Pin 11-Cathode 🛛 🖉 🕦		
Maximum Ratings, Design-Center Values:	10000	
ANODE VOLTAGE ^O	410 max.	volt volt
GRID-No.1 VOLTAGE:	410 1104.	
Negative bias value		volt
Positive bias value	0 max.	volt
Positive peak value	2 max.	volt
PEAK HEATER-CATHODE VOLTAGE:		
Heater negative with respect to cathode:		
During equipment warm-up period not exceeding 15 seconds	410 max	volt
After equipment warm-up period	180 max.	volt
Heater positive with respect to cathode.	180 max.	volt
⁰ The product of anode voltage and average anode cur	rent should be li	mited
to 6 watts.		



RCA I7CP4

# **KINESCOPE**

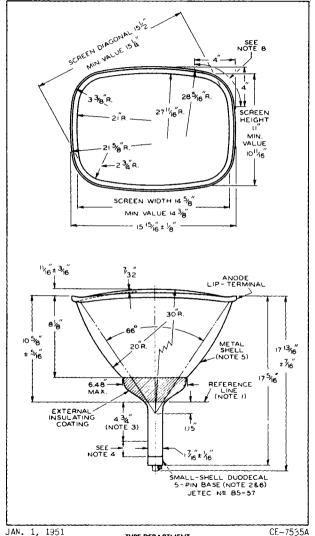
1


Typical Operation:				
Anode Voltage* Grid-No.2 Voltage Grid-No.1 Voltage fo Extinction of Unde	flected	12000 300	14000 300	volts volts
Focused Spot		–33 to <b>–</b> 77	-33 to -77	volts
Focusing Coil Curren Field Strength of Sir	t (DC)≜.	96 ± 6% I	104 ± 6%	ma
lon-Trap Magnet§ . Ion-Trap Magnet Curre		45	50	gausses
(DC, approx.)#	• • • •	70	-	ma
Maximum Circuit Value	es:			
Grid-No.1-Circuit Re:	sistance .	• • • • •	1.5 max	k. megohms
Minimum Circuit Valu	es:			
circuit current to e more than 250 microco cuit between indica should be as follows Grid-No.1-Circuit Re Grid-No.2-Circuit Re	ulombs,.t ted elect : sistance. sistance.	he effective	e resistance ne output c . 150 mi . 470 min	e in cir- apacitor n. ohms n. ohms
Anode-Circuit Resist The resistors used sh plied voltage.	-	apable of w	. 18000 mi ithstanding	
Brilliance and defini general, the anode vo For specimen focusir positioned with air air gap about 3 inches indicated currents ar biss voltage and vide	Itage shoul ng coil sin gap toward from Refer for the c o-signal vo	d not be less miliar to JETE kinescope scr ence Line (se condition with ltage adjuste	than 12000 vo C Focusing C een, and cent e Outline Dram the combined d to produce a	pits.
Sharply focused at Sharply focused at Measured at center o No.409X51.	f field wit	screen. Ch General Ele	ectric Gauss M	leter, Cat.
Sharply focused at Sharply focused at No.409X51.	f field wit magnet sim sition and	th General Ele th General Ele tiliar to JETEC rotated to giv	ectric Gauss M	leter, Cat.
Sharply focused at S Measured at center o No.409X51.	f field wit magnet sim sition and OPERAT!	nd a 14-378-3 screen. h General Elli illar to JETEC rotated to giv NG NOTES	ectric Gauss M lon—Trap Magn re mäximum bri	leter, Cat. et No.111, ghtness.

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





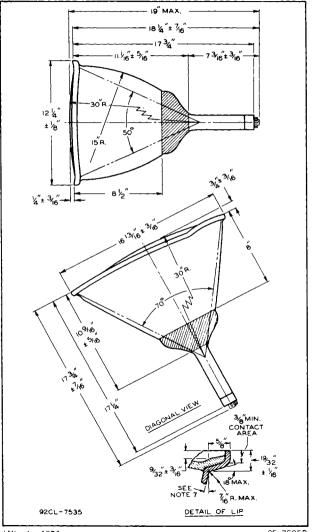

## **KINESCOPE**





RCA 17CP4

**KINESCOPE** 

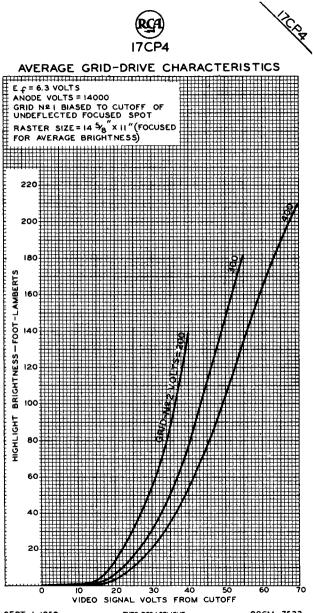



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



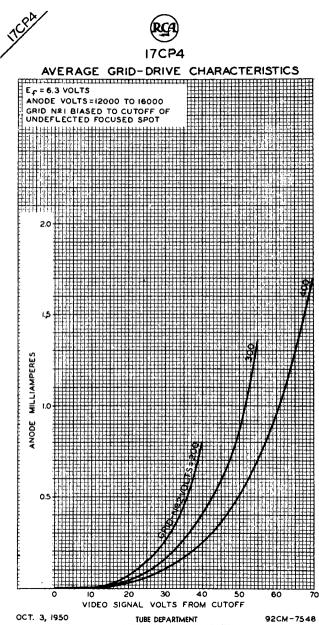


#### **KINESCOPE**




JAN. 1, 1951

17CPA


# ITC P4

NOTE 1: WITH TURE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE (JETEC No.110) AND WITH TUBE SEATED IN GAUGE. THE REFERENCE LINE IS DETERMINED BY THE INTER-SECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL. NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL SHELL AXIS AND HAVING A DIAMETER OF 2-3/4". NOTE 3: LOCATION OF DEFLECTING YOKE AND FOCUSING DEVICE MUST BE WITHIN THIS SPACE. NOTE 4: KEEP THIS SPACE CLEAR FOR SINGLE-FIELD. ION-TRAP MAGNET. DIRECTION OF THE FIELD OF THE TON-TRAP MAGNET SHOULD BE SUCH THAT THE NORTH POLE IS ADJACENT TO VACANT PIN POSITION No.8 AND THE SOUTH POLE TO PIN No.2. NOTE 5: METAL SHELL AND GLASS FACE OPERATE AT HIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE. MUST HAVE INSULATING PROPERTIES ADEQUATE TO WITHSTAND THE APPLIED ANODE VOLTAGE PLUS 10%. NOTE 6: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE MAJOR AXIS OF THE GLASS FACE BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 100. NOTE 7: IN THIS REGION THE ANGULAR VARIATION AROUND PERIPHERY OF SHELL IS Nº TO 18º. NOTE 8: SUPPORT TUBE BY LIP ONLY AT CORNERS WITHIN THIS SPACE.



SEPT. 1, 1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 7533



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





RECTANGULAR METAL-SHELL TYPE

ELECTROSTATIC FOCUS MAGNETIC DEFLECTION

DATA	
General:	
Heater, for Unipotential Cathode:	
Heater, for Unipotential Cathode: Voltage	+
Current.	amol
Direct Interelectrode Capacitances:	~~~
	μf
	μf
Face Plate (With about 66% light transmission) Frosted Filtergla	
Phosphor No.4-Sulfide Ty	pe
Fluorescence and Phosphorescence Whi	
Persistence of Phosphorescence Sho	ort
Focusing Method Electrostat Deflection Method	ic
Deflection Method	ic
Deflection Angles (Approx.):	
	70 ⁰
	6 ⁰
Vertical	50°
Vertical	et
Maximum Overall Length	.6."
Greatest Diagonal of Tube at Lip 10-13/10" ± 3/1	0
Greatest Height of Tube at Lip 12-17/10" ± 1/	0"
Greatest neight of tube at Lip $\dots \dots	8
Screen Size	
Witor [•] Terminal	in
Ultor® Ťerminal Metal-Shell L Base Small-Shell Duodecal 6-Pin (JETEC No.86-6	31
BOTTOM VIEW	· · ·
Pin 1-Heater Pin 12-Heater Pin 2-Grid No.1	
Pin 6-Grid No.4 (Carried ) Metal-Shell Lip-	
$\begin{array}{c} \text{Fin} & \text{O-Grid No.4} \\ \text{Pin} & 10 - \text{Grid No.2} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	
Pin 11 - Cathode Collector	
	'
Maximum Ratings, Design-Center Values:	
	.
	lts
	lts
GR D-No.2 VOLTAGE	lts
Negative bias value	+ -
	ts
Positive peak value	
PEAK HEATER-CATHODE VOLTAGE:	- 3
Heater negative with respect to cathode:	
During equipment warm-up period	
not exceeding 15 seconds . 410 max. vol	ts
After equipment warm-up period 180 max. vol	ts
Heater positive with respect to cathode. 180 max. vol	ts
•: See next page.	

MAY 1, 1951

#### TUBE DEPARTMENT

TENTATIVE DATA 1

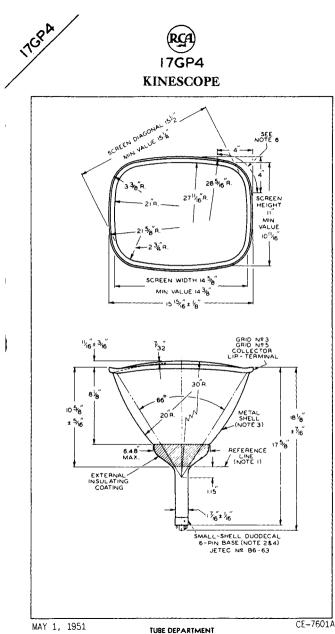
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TCPA

I7GP4 KINESCOPE

Equipment Design Ranges:	
For any ultor voltage $(E_u)$ between 12000 and grid-No.2 voltage $(E_{C_0})$ between 150	* and 16000 volts o and 500 volts
Grid-No.4 Voltage for Ultor	25.9% of Eu volts
Focused Spot	5.7% of E _{C2} volts to +25 μamp to +15 μamp
Field Strength of Adjustable	to 8 gausses
Examples of Use of Design Ranges:	10 0 g==0000
For ultor voltage of 12000 and grid-No.2 voltage of goo Grid-No.4 Voltage for	14000 volts 300 volts
Ultor Current of 100 μamp	2670 to 3620 volts -33 to -77 volts
(Rated Strength) 35	40 gausses
Maximum Circuit Values: Grid-No.1-Circuit Resistance	. 1.5 max. megohms
In the 17GP4, grid No.5 which has the ultor fu collector are connected together within the tub referred to collectively as "ultor". The "ul tube is the electrode, or the electrode in co more additional electrodes connected within th is applied the highest dc voltage for acceler, the beam prior to its deflection.	nction, grid No.3, and e and are conveniently tor" in a cathode-ray mbination with one or e tube to it, to which ating the electrons in
general, the ultor voltage should not be less	than 12000 volts.
† For visual extinction of undeflected focused s	pot.

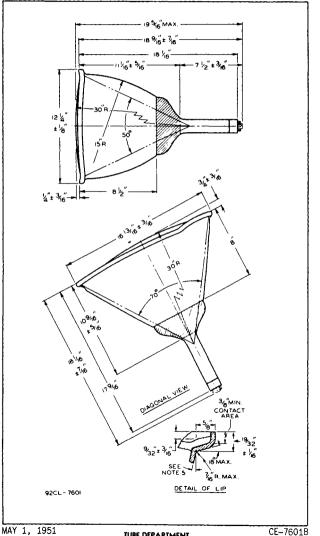
TENTATIVE DATA 1






#### OPERATING NOTES

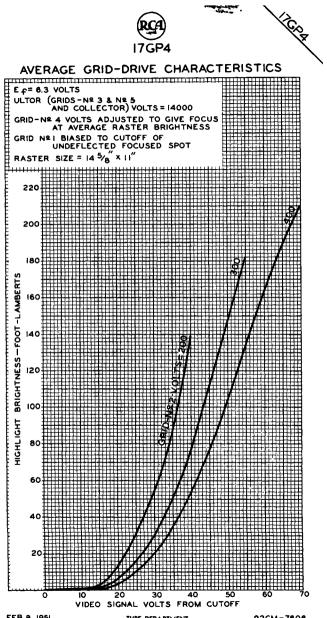
X-Ray Warning. When operated at ultor voltages up to 16 kilovolts, the 17GP4 does not produce any harmful x-ray radiation. However, because the rating of the tube permits operation at voltages as high as 17.6 kilovolts (absolute value), shielding of the 17GP4 for x-ray radiation may be needed to protect against possible injury from prolonged exposure at close range whenever the operating conditions involve voltages in excess of 16 kilovolts.


Direction of the field of the ion-trop magnet should be such that the north pole is adjacent to vacant pin position No.8 and the south pole to pin No.2.



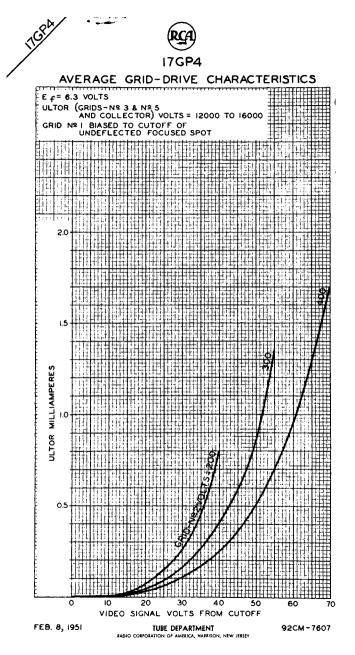
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY










- NOTE I: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- **WOTE 2:** SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL-SHELL AXIS AND HAVING A DIAMETER OF 2-3/4".
- NOTE 3: METAL SHELL AND GLASS FACE OPERATE AT HIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE MUST BE INSULATED TO WITHSTAND THE MAXIMUM APPLIED ULTOR VOLTAGE.
- NOTE 4: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE HORIZONTAL AXIS OF THE GLASS FACE BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF ± 10°.
- NOTE 5: IN THIS REGION THE ANGULAR VARIATION AROUND PERI-PHERY OF METAL SHELL IS  $0^{\rm O}$  TO  $18^{\rm O}.$
- NOTE 6: SUPPORT TUBE BY LIP ONLY AT CORNERS WITHIN THIS SPACE.



FEB.8, 1951

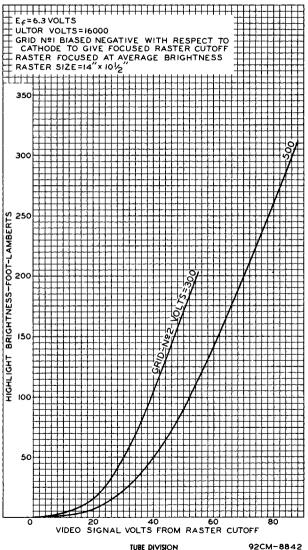
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7808







RECTANGULAR GLASS TYPE


LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

The 17HP4/17RP4 is the same as the 17HP4-B except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.





#### AVERAGE GRID-DRIVE CHARACTERISTICS



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8842





RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS

)

ALUMINIZED SCREEN MAGNETIC DEFLECTION

DATA

General:
Heater, for Unipotential Cathode: Voltage
Grid No.1 to all other electrodes 6 ##f Cathode to all other electrodes 5 ##f External conductive coating to ultor {1500 max. ##f 750 min. ##f
Faceplate, Spherical
Fluorescence
Deflection Angles (Approx.): Diagonal
Overall length         19-3/16" ± 3/8"           Greatest width         15-25/64" ± 1/8"           Greatest height         12-9/32" ± 1/8"
Neck length
Diagonal         15-1/4"           Projected area         140 sq. in.           Weight (Approx.)         18 lbs           Mounting Position         Any           Cap         Recessed Small Cavity (JETEC No.J1-21)
Bulb
Pin 2 - Grid No.1 Pin 6 - Grid No.4 Pin 10 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater Pin 2 - Grid No.1 Pin 6 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater Pin 12 - Heater Pin 12 - Grid No.2 Collector) Conductive Conductive Contactive

TUBE DIVISION



# RCA) 17HP4-B KINESCOPE

#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode Maximum Ratings, Design-Center Values: INTOR VOLTAGE. . . 16000 max. volts GRID-No.4 VOLTAGE: Positive value . 1000 max. volts volts 500 max. Negative value . GRID-No.2 VOLTAGE. 500 max. volts GRID-No.1 VOLTAGE: 125 max. volts Negative bias value. . . 0 max. Positive bias value. . . volts Positive peak value. 2 max. volts PFAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds . . . . . 410 max. volts 180 max. After equipment warm-up period . . . . volts 180 max. volts Heater positive with respect to cathode. Equipment Design Ranges: With any ultor voltage (Ecsk) between 12000# and 16000 volts and grid-No.2 voltage (Ec.,k) between 150 and 500 volts Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp . . . . -0.4% to +2.2% of Ecsk volts Grid-No.1 Voltage for Visual Extinction of volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value 9.3% to 24% of Ec2k volts (Peak positive) Grid-No.4 Current . . . -25 to +25 *µ*amp -15 to +15 Grid-No.2 Current . uamp Ion-Trap Magnet Current Ec_sk (Average)** . πа x 30 Minimum Field Strength of -c. PM |on-Trap Magnet8 . . . 33 gausses 6000 Field Strength of Adjustable Centering Magnet . . 0 to 8 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. #,^{**},§: See next paye. 2-56 TENTATIVE DATA 1 TUBE DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

17HP4-B

### **KINESCOPE**



Examples of Use of Design Ram	nges:		
With ultor voltage of	14000	16000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for	-55 to +300	-65 to +350	volts
Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff	-28 to -72	-28 to -72	volts
(Black Level): White-level value			
(Peak positive)	28 to 72	28 to 72	volts
Minimum Field Strength of PM Ion-Trap Magnet	31	33	qausses
Maximum Circuit Values:			5
Grid-No.1-Circuit Resistance.		1.5 max.	megohms
			mogoring
CATHODE-DR	TVE SERVICE		
Unless otherwise specified			itive
	t to grid No		
Maximum Ratings, Design-Cente	r Values:		
ULTOR-TO-GRID-No.1 VOLTAGE . GRID-No.4-TO-GRID-No.1 VOLTAGE		. 16000 max	. volts
Positive value		. 1000 max	
Negative value	•••••	. 500 max	
GRID-No.2-TO-GRID-No.1 VOLTAG GRID-No.2-TO-CATHODE VOLTAGE	<u>.</u>	<ul> <li>625 max</li> <li>500 max</li> </ul>	
CATHODE-TO-GRID-No.1 VOLTAGE:		• 000 max	• •0113
Positive bias value		. 125 max	
Negative bias value		. 0_max	
Negative peak value PEAK HEATER-CATHODE VOLTAGE: Heater negative with respec	••••••	. 2 max	• volts
During equipment warm-up	period		
not exceeding 15 second	ls	. 410 max	
After equipment warm-up p	period	. 180 max	
Heater positive with respec	t to cathode	. 180 max	. volts
Cathode drive is the operating co the cathode potential with respec	ndition in which t to grid No.1 a	the video sign nd the other el	nal varies lectrodes.
∦,**,§: See next page.			

TUBE DIVISION



RCA 17HP4-B KINESCOPE

Equipment Design Ranges:			-
With any ultor-to-grid-No.1 vo	ltage (Ec.g	.) between	
	1200	o# and 1600	oo volts
and grid-No.2-to-grid-No.1 vol	tage (Ec ₂ g ₁	) between	
		165 and 62	20 volts
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor		~ ~ ~	• •
Current of 100 $\mu$ amp	0% to 2.6	% of Ec ₅ g ₁	volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction			
of Focused Raster	8.5% to 19	.4% of Ec ₂	a. volts
Cathode-to-Grid-No.1 Video	0.00 00 10	212 01 202	91
Drive from Raster Cutoff			
(Black Level):			
White-level value			.
(Peak negative)	8.5% to 19	.4% of Ec2	g, volts
Grid-No.4 Current	-25	to +25 to +15	μamp μamp
			ματιμ
Ion-Trap Magnet Current (Average)**	/Ec ₅ g	<u>1</u> × 30	та
	$\sqrt{1600}$	<u> </u>	Inca
Minimum Field Strength of			
PM [on-Trap Magnet §	$\sqrt{\frac{\text{Ec}_5 g}{1600}}$	$\frac{1}{6} \times 33$	gausses
Field Strength of Adjustable	¥ 1000	0	
Centering Magnet	0	to 8	gausses
Examples of Use of Design Ranges	:		
With ultor-to-grid-No.1			
voltage of	14000	16000	volts
and grid-No.2-to-grid-No.1			
voltage of	300	300	volts
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor	0 +- 205	0 4 - 415	
Current of 100 µamp Cathode-to-Grid-No.1 Voltage	0 to 365	0 to 415	voits
for Visual Extinction			
of Focused Raster	25 to 58	25 to 58	volts
Cathode-to-Grid-No.1 Video	20 10 00	20 10 00	
Drive from Raster Cutoff			
(Black Level):			
White-level value	25 +- 50	05 H. FO	
(Peak negative) Minimum Field Strength of	∠5 to 58	∠5 to 58	VOITS
PM lon-Trap Magnet	31	33	gausses
Maximum Circuit Values:	/-		3200000
Grid-No.1-Circuit Resistance		1.5 max.	medohre
a la moti cui cui cui cui cui cui cui cui cui cu	• • • • •	1.J max.	meyonins
<b>#</b> ,**,δ: See next page.			
		TENTATIN	

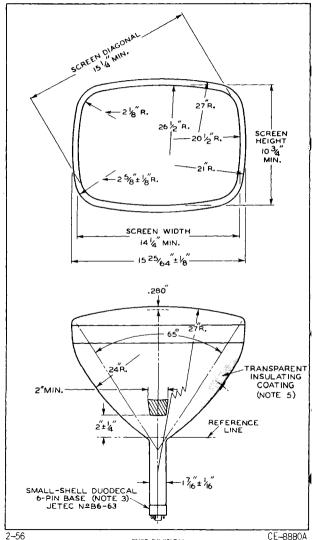
í

TUBE DIVISION





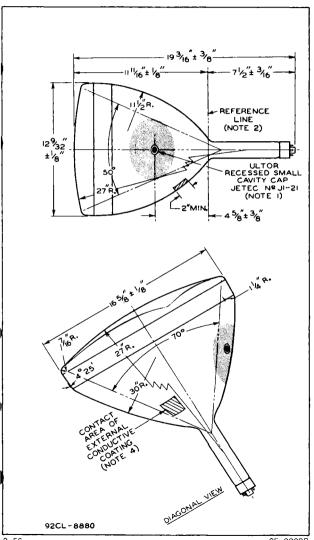
Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-No.1 voltage. In general, the ultor voltage or the ultor-to-grid-No.1 voltage should not be less than 12000 volts.


** For JETEC 10n-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.

For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not excedure the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

> For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section




RCA 17HP4-B KINESCOPE



17HP4-B







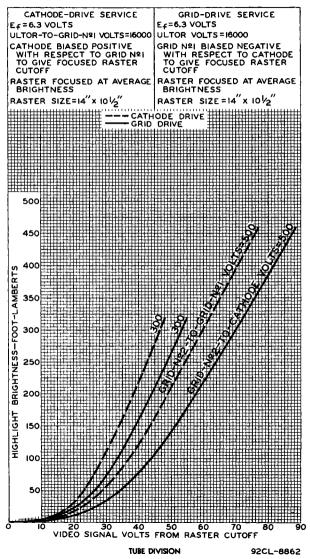


# RCA) 17HP4-B KINESCOPE

NOTE I: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF ± 30°. ULTOR TERMINAL IS ON SAME SIDE AS PIN NO.6.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

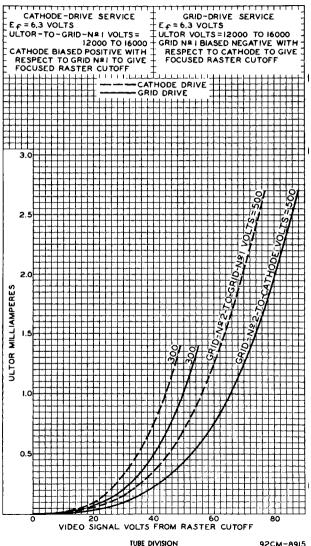
**NOTE 3:** SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF  $2-3/4^{n}$ .


NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEANTHIS AREA, WIPE ONLY WITH SOFT DRY LINT-LESS CLOTH.






#### AVERAGE DRIVE CHARACTERISTICS







#### AVERAGE DRIVE CHARACTERISTICS



RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY

MAGNETIC DEFLECTION

1118 B

•	٠	-	
V	A	L	A

**OPE** 

TYPE

KINĖ

MAGNETIC FOCUS

RECTANGULAR GLASS

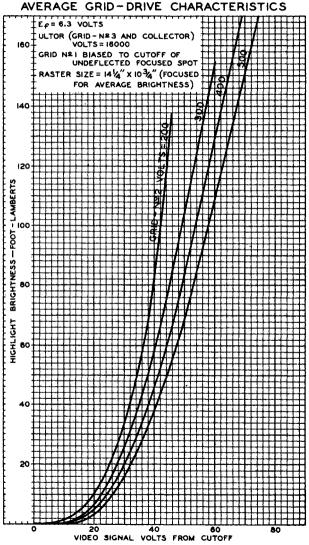
General:	*****	
Heater, for Unipoter		
Voltage Current Direct Interelectrod Grid No.1 to All C Cathode to All Oth	0.6 le Capacitances: lther Electrodes	ac or dc volts amp 6 پسر f
External Conductiv	e Coating to Ultor®	∫750 max. µµf  500 min. µµf
Phosphor (For Curves, Fluorescence and I Persistence of Pho Focusing Method Deflection Method Deflection Angles (/ Diagonal Horizontal	Approx.)	Filterglass 68% 900). P4Sulfide Type 
Tube Dimensions: Overall Length. Greatest Diagonal Greatest Width. Greatest Height.	· · · · · · · · · · · · ·	<pre>1, Single-Field Magnet     19-3/16" ± 3/8"     16-5/8" ± 1/8"     15-3/8" ± 1/8" 12-9/32" + 1/8" -7/<b>32"</b></pre>
Diagonal Weight (Approx.) . Mounting Position. Cap	Recessed Small Cav	
Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater		Cap-Ultor (Grid No.3, Collector) C-External Conductive Coating
Maximum Ratings, Des	ign-Center Values:	
ULTOR® VOLTAGE		• • 18000 max. volts
In the 17JP4, grid 1 connected together v collectively as "uit electrode, or the el electrodes connected highest dc voltage to its deflection.	No.3 which has the ultor within the tube and are or". The "ultor" in a ectrode in combination y within the tube to it for accelerating the e	function and collector are conveniently referred to cathode-ray tube is the with one or more additional , to which is applied the lectrons in the beam prior
JULY 1, 1952	TUBE DEPARTMENT	TENTATIVE DATA

TUBE DEPARTMENT TADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY



RCA I 7JP4

# **KINESCOPE**

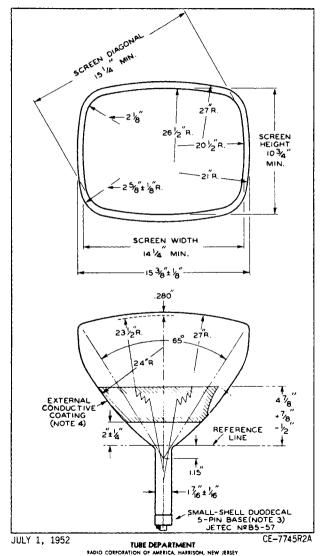

······································			
GRID-No.2 VOLTAGE	• • • • • •	410 max.	volts
Negative bias value		125 max.	volts
Positive bias value		0 max.	
Positive peak value		2 max.	volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect t			1
During equipment warm-up per		410	
not exceeding 15 second After equipment warm-up peri		410 max. 150 max.	
Heater positive with respect t		150 max.	
Equipment Design Ranges:			
	Ween 12000#	and 18000	nalte
For any ultor voltage $(E_u)$ bet and grid-No.2 voltage $(E_{c2})$	between 150	and 10000	lts.
Grid-No.1 Voltage for Visual	·····	,	
Extinction of Undeflected			
Focused Spot	11% to 25.	7%5 of E _{c2}	volts
Grid-No.2 Current	15 to	-	μатр
Focusing-Coil Current (DC)00		$\frac{1}{5} \times 96 \pm 10$	)% ma
Field Strength of Single-Field Ion-Trap Magnet (Approx.)** .			gausses
Field Strength of Adjustable Centering Magnet		5 to 8	gausses
Examples of Use of Design Ranges			gausses
		16000	volts
For ultor voltage of and grid-No.2 voltage of	14000 300	300	volts
Grid-No.1 Voltage for Visual	300	300	
Extinction of Undeflected			
	-33 to77	-33 to -77	volts
Focusing-Coil Current (DC).		110 ± 10%	ma
Ion-Trap Magnet			
(Rated Strength)	45	50	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance .		1.5 max.	megohms
Brilliance and definition decrease general, the ultor voltage should be accessed as a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	with decreasi	an ultar val	tage. In
	not be less th	an 12000 vol	ts.
⁰⁰ For specimen focusing coil simil	not be less th ar to JETEC F	an 12000 vol ocusing Col	ts. 1 No.109
OO For specimen focusing coil simil positioned with air gap toward kin air gap 3 inches from Reference li	ar to JETEC F nescope screer ne (see Outling	an 12000 vol ocusing Col and center ne Brawing).	ts. 1 No.109 1 line of The in-
of For specimen focusing should positioned with air gap toward ki air gap 3 inches from Reference Li dicated current is for condition w	not be less th ar to JETEC F nescope screer ne (see Outlin ith combined g	ocusing Col ocusing Col and center ne Brawing). rid-No.1 bla	ts.   No.109   line of The in- s voltage
general, the liter voitage should of For specimen focusing coil simil positioned with air gap toward ki air gap 3 inches from Reference Li dicated current is for condition w and video-signal voitage adjusted of 30 foot-lamberts on a 14-1/4*x1 at center of screen.	not be less th ar to JETEC f nescope screer ne (see Outlis ith combined g to produce a 0-3/4" picture	ng ditor vol an 12000 vol cousing Col 1. and centel ne Drawing). rid-No.1 bla highlight bl area sharpl	ts. I No.109 I ine of The in- s voltage ightness y focused
^{CO} For specimen focusing coll simil positioned with air gap toward kin air gap 3 inches from Reference Li dicated current is for condition w and video-signal voltage adjusted of 30 foot-lamberts on a 14-1/4"x1 at center of screen.	ar to JETEC F nescope screer ne (see Outlis ith combined g to produce a 0-3/4" picture	ocusing Col and center be Brawing). rid—No.1 bla highlight br area sharpl	<pre>1 No.109 1 line of The in- s voltage ightness y focused</pre>
^{CO} For specimen focusing coll simil positioned with air gap toward kin air gap 3 inches from Reference Li dicated current is for condition w and video-signal voltage adjusted of 30 foot-lamberts on a 14-1/4"x1 at center of screen.	ar to JETEC F nescope screer ne (see Outlis ith combined g to produce a 0-3/4" picture	ocusing Col and center be Brawing). rid—No.1 bla highlight br area sharpl	<pre>1 No.109 1 line of The in- s voltage ightness y focused</pre>
Cor specimen focusing coll simil positioned with air gap toward kin dicated current is for condition w and video-signal voltage adjusted of 30 foot-lamberts on a 14-j/W × 1 at center of screen. With a specimen ion-trap magnet si the located in optimum position and the ion-trap magnet current is B2 tage is 14000 volts and grid-No.2	ar to JETEC f nescope screer ne (see Outf4: ith combined g to produce a 0-3/4" picture 	cousing Col and centel and centel and centel and centel rid-No.1 bla highlight bu area sharpl c lon-Trap Mu c maximum br c when the u volts.	<pre>1 No.109 1 line of The in- s voltage ightness y focused</pre>
For specimen focusing coll simil positioned with air gap toward kin air gap 3 inches from Reference Li dicated current is for condition w and video-signal voltage adjusted of 30 foot-lamberts on a 14-1/4"x1 at center of screen.	ar to JETEC F nescope screer ne (see Outlin ith combined g to produce a 0-3/4° picture imilar to JETEC rotated to giv milliamperes d voltage is 300 crations, see s	tocusing Col and centel Brawing). rid-No.1 bla highlight bl area sharpl C lon-Trap Wi e maximum br c when the u volts. sheet X-RAY	} No.109 - line of The in- s voltage - ightness y focused agnet No. - ightness, }tor vol-

JULY 1, 1952

TENTATIVE DATA



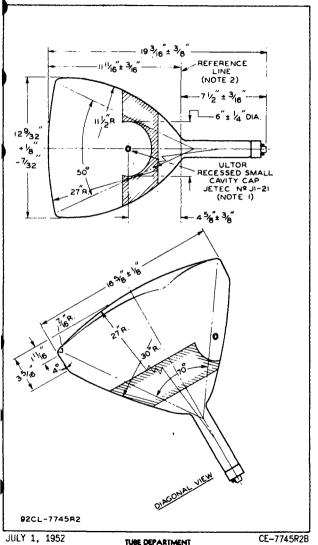





FEB. 13, 1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





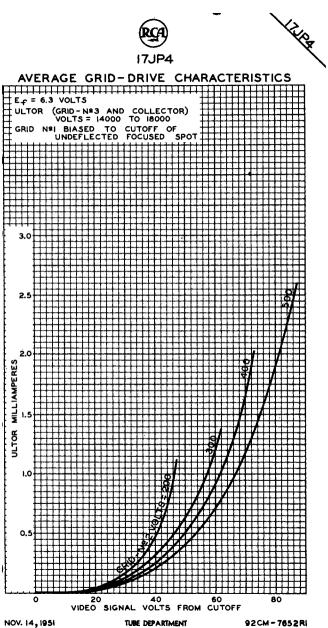












RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



(RCA) 17JP4 KINESCOPE

- **NOTE 1:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.6.
- NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC No.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-3/4".

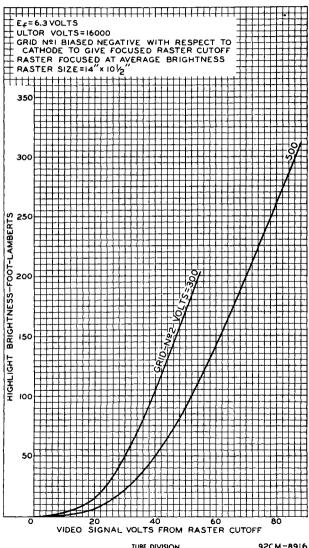
NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSTY






RECTANGULAR GLASS TYPE

LOW-VOLTAGE FOCUS

MAGNETIC DEFLECTION

The 17LP4/17VP4 is the same as the 17LP4-A except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.





TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





RECTANGULAR GLASS TYPE

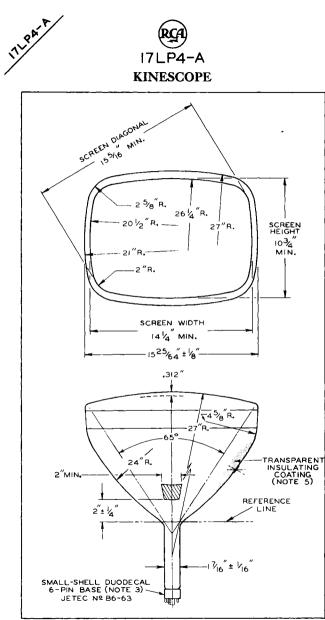
I

ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

General:
Heater, for Unipotential Cathode:         Voltage
Faceplate, Cylindrical
Fluorescence
Deflection Angles (Approx.): Diagonal
Overall length
Screen Dimensions (Minimum):         14-1/4'           Greatest width         14-1/4'           Greatest height         10-3/4'           Diagonal         15-5/16'           Projected area         140, in.           Weight         140, in.
Weight (Approx.)
Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater Pin 12-Heater Pin 12-Grid No.4 Pin 12-Heater Pin 12-Heat

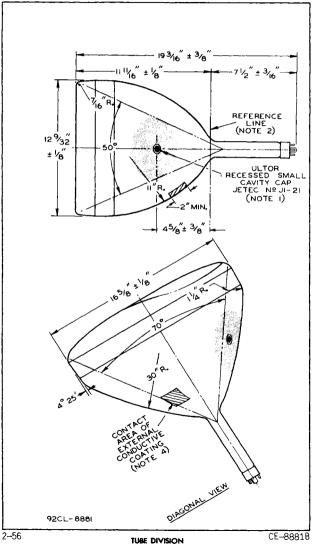
ITLPA'A


# (RCA) 17LP4-A KINESCOPE

Maximum Ratings, Design-Center Values:	
ULTOR VOLTAGE	<. volts
Positive value	
Negative value	
GRID-No.2 VCLTAGE:	<ul> <li>volts</li> </ul>
GRID-No.1 VOLTAGE:	
Negative bias value	
Positive bias value 0 max	
Positive peak value 2 max	<. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period not exceeding 15 seconds 410 max	. volts
After equipment warm-up period	
Heater positive with respect to cathode. 180 max	
	· · · · · · · ·
Equipment Design Ranges:	
With any ultor voltage (Ec5) between 12000# and 1600	
and grid-No.2 voltage (Ec ₂ ) between 150 and 500 v	olts
Grid-No.4 Voltage for	
Focus with Ultor	
Current of 100 μamp0.4% to +2.2% of Ec	5 volts
Grid-No.1 Voltage for	-
Visual Extinction of	, . I
Focused Raster9.3% to -24% of Ec	2 ^{volts}
Grid-No.1 Video Drive from	
Raster Cutoff (Black Level): White-Level value	
(Peak positive) 9.3% to 24% of Ecz	volts
Grid-No.4 Current	μamp
Grid-No.2 Current	μamp
$ \begin{array}{c} \text{[Ion-Irap Magnet Current} \\ \text{(Average)}^{*} \\ \end{array} \\ \begin{array}{c} \text{Ec}_{5} \\ 16000 \\ \end{array} \times 30 \end{array} $	ma
Minimum Field Strength of Ecs. an	
PM Ion-Trap Magnet § $\sqrt{\frac{Ec_5}{16000}} \times 33$	gausses
Field Strength of Adjustable	
Centering Magnet 0 to 8	gausses
	Ŭ I
# Brilliance and definition decrease with decreasing ultor vo general, the ultor voltage should not be less than 12000 vol	ltage. In
** For JETEC ion-Trap Magnet No.117, or equivalent, located trailing edge of the pole pieces located over the gap bety No.1 and grid No.2 and rotated to give maximum brightness.	veen grid
A For specimen PM ion_tran mannet such as Monopor Model No	F#37 OF
§ For specimen PM ion-trap magnet, such as Neppner Hodel No equivalent, located in optimum position and rotated to giv brightness. For a given equipment application, the tolerance the strength of the PM ion-trap magnet should be added to th	e maximum
brightness. For a given equipment application, the tolerance the strength of the PM ion-trap magnet should be added to th	range for e minimum i
value. The maximum strength of this magnet should not exceed t	he speci-
value. The maximum strength of this magnet should not exceed t fied minimum value by more than 6 gausses. This procedure wi use of a PM ion-trap magnet allowing adequate adjustment satisfactory performance without loss of nighlight brightnes	to permit
satisfactory performance without loss of nighlight brightnes	s.
L	






Examples of Use of Design Ran		<u>_</u>	
With ultor voltage of	14000	16000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.4 Voltage for Focus with Ultor			
Current of 100 $\mu$ amp	55 to +300	-65 to +35	0 volts
Grid-No.1 Voltage for			
Visual Extinction of Focused Raster	–28 to –72	-28 to -72	volts
Grid-No.1 Video Drive			
from Raster Cutoff (Black Level):			
White-level value			
(Peak positive) Minimum Field Strength of	28 to 72	28 to 72	volts
PM Ion-Trap Magnet	31	33	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max.	megohm
For X-ray shielding c			



CE-8881A

17LP4-A **KINESCOPE** 

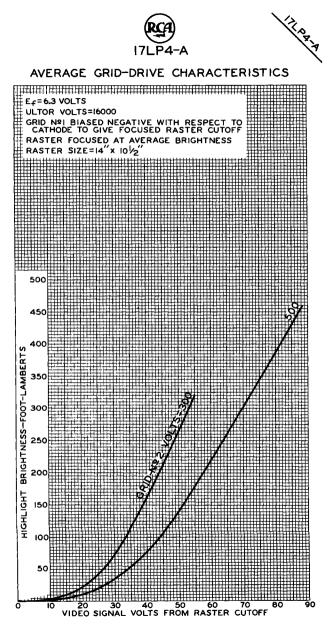




RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

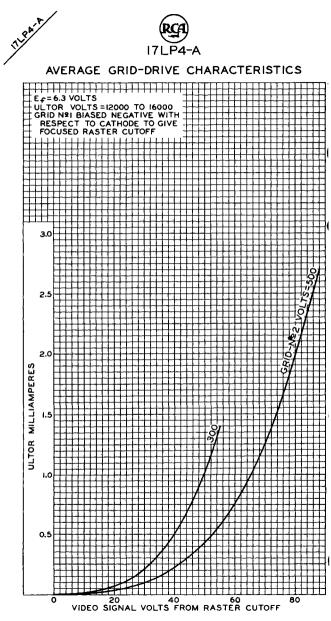


# RCA 17LP4-A KINESCOPE


NOTE I: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF ± 30°. ULTOR TERMINAL IS ON SAME SIDE AS PIN NO.6.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-3/4".


NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINT→ LESS CLOTH.



TUBE DIVISION

92CL-8864



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





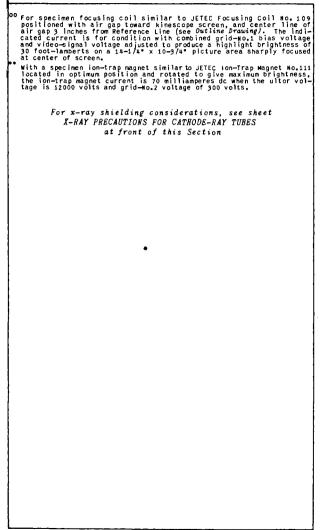
## **KINESCOPE**

RECTANGULAR GLASS TYPE

RECTANGULAR GLASS TYPE MAGNETIC FOCUS MAGNETIC DEFLECTION
DATA
General:
Heater, for Unipotential Cathode:
Voltage          6.3          ac or dc volts           Current          0.6          amp
Direct Interelectrode Capacitances:
Grid No.1 to All Other Electrodes 6 $\mu\mu$ f
Cathode to All Other Electrodes $\dots$ 5 $\mu\mu$
(1500 -
External Conductive Coating to Ultor • $\begin{cases} 1500 \text{ max} & \mu\mu \\ 750 \text{ min} & \mu\mu \end{cases}$
Faceplate, Cylindrical With Toric
Inner Surfacet
Light Transmission (Approx.)
Phosphor (For Curves, see front
of this Section) P4—Sulfide Type
Fluorescence and Phosphorescence
Persistence of Phosphorescence Short
Focusing Method Magnetic
Deflection Method Magnetic Deflection Angles (Approx.):
Diagonal
Horizontal
Vertical
Ion-Trap Gun Requires External, Single-Field Magnet
Tube Dimensions:
Overall Length 19-3/16" ± 3/8"
Greatest Diagonal
Greatest Width
Greatest Height
Minimum Screen Dimensions:
Greatest Width
Diagonal $$ $15-5/16'$
Weight (Approx.)
Mounting Position
Cap Recessed Small Cavity (JETEC No. J1-21)
Base
L.
Pin 1-Heater Cap-Ultor (Grid No.3, Pin 2-Grid No.1 Collector)
Pin 2-Grid No.1 Collector) Pin 10-Grid No.2 C-External
Pin 10-Grid No.2 C-External Conductive
Pin 12 - Heater Conductive
The toric surface in the 170P4 is described by a segment of a circle
having a radius of about 60° rotated about a straight line which is
positioned in a plane passing through the axis of the cylindrical
The toric surface in the 170PW is described by a segment of a circle having a radius of about 60° rotated about a straight line which is (1) parallel to the axis of the outer cylindrical surface, (2) positioned in a plane passing through the axis of the cylindrical surface and the center element thereof, and (3) spaced approximately 25° from the cylindrical surface.
•: See next page.
JULY 1, 1952 TUBE DEPARTMENT TENTATIVE DATA

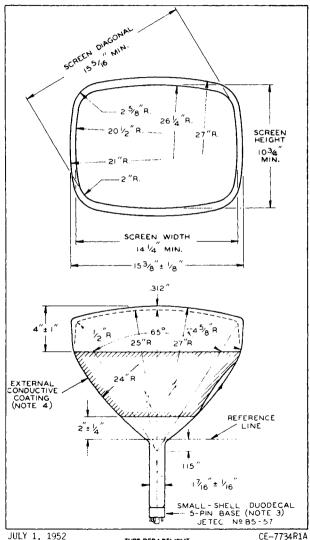
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




I7QP4 KINESCOPE

			·	
Maximum Ratings, Des	ign-Center	Values:		
ULTOR [®] VOLTAGE			. 16000 ma	x. volts
GRID-No.2 VOLTAGE.			. 410 ma	x. volts
GRID-No.1 VOLTAGE:				
Negative bias value			. 125 ma	x. volts
Positive bias value	e		. 0 ma	
Positive peak value			. 2 ma	x. volts
PEAK HEATER-CATHODE				
Heater negative with			e:	
During equipment				<b>.</b> .
		15 second		
After equipment				
Heater positive wi	in respect	to cathode	e. 150 ma	x. volts
Equipment Design Rang	-			
For any ultor volt. and grid-No.2 vo				
Grid-No.1 Voltage fo	r Visua)			
Extinction of Unde				
Focused Spot		11% to 25.	7% of Eca	volts
Grid-No.2 Current.		-15 to	+15_ 2	μamp
Focusing-Coil Curren	t (DC) ⁰⁰	$\sqrt{\frac{E_u}{12000}}$	x 96 ±6%	та
Field Strength of Si	nale-	L • 12000	L	
Eield lon-Tran Mag	nēt	<u></u>		
(Approx.)*	•	$\frac{-E_{\mu}}{12000}$	x 42	gausses
Field Strength of Ad		V 12000		-
Centering Magnet .		0 to	8	gausses
Examples of Use of D	esign Rang	jes:		
For ultor voltage	of	12000	14000	volts
and grid-No.2 volt	age of	300	300	volts
Grid-No.1 Voltage fo	r Visual			
Extinction of Unde				
Focused Spot		–33 to –77	-33 to -77	volts
Focusing-Coil Curren	t (DC) .	96 ± 6%	104 ± 6%	ma
lon-Trap Magnet				
(Rated Strength) .		40	45	gausses
Maximum Circuit Valu	0e '			
			1 5	manahma
Grid-No.1-Circuit Re	sistance .	• • • • •	. 1.5 max.	. megohnus
•				
in the 170P4, grid No	.3 which has it bin that	the ultor f	unction and co	llector are
collectively as ult	or The	ultor in a	cathode-ray	ube is the
<ul> <li>In the 170PM, grid wo connected together w collectively as "ult electrode, or the electrodes connected highest dc voltage for its deflection</li> </ul>	within the	tube to it,	to which is	applied the
highest dc voltage for its deflection.	r accelerati	ing the elect	rons in the De	am prior to
113 del lectrona				
# Brilliance and defini general, the ultor vo	Itage should	not be less	than 12000 v	lts.
⁰⁰ ,**: See next page.				
JULY 1, 1952		ARTMENT	TENTATI	VE DATA 1
		CONTRACTOR		

TUBE DEPARTMENT

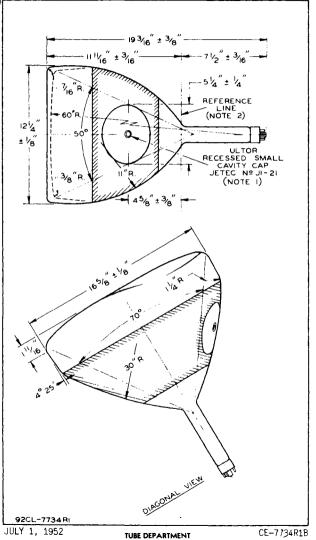



100










TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-7734R1A



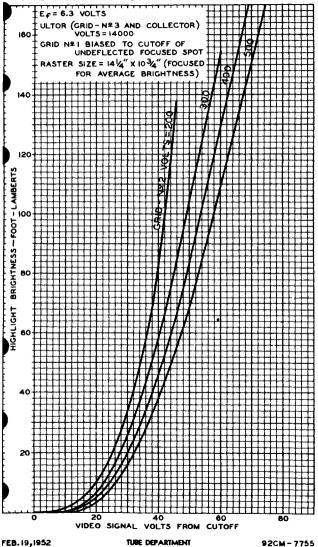


**KINESCOPE** 



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

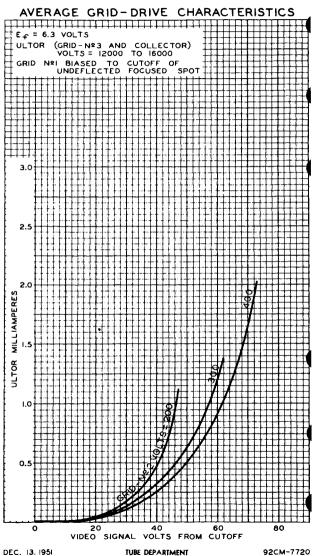
TOPA	
/	




- NOTE I: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND BULB TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm 30^{\circ}$ . Bulb terminal is on same side as vacant Pin Position No.6.
- NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 2-3/4".
- NOTE 4: EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.






### AVERAGE GRID-DRIVE CHARACTERISTICS



BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY







RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7720





## KINESCOPE

RECTANGULAR GLASS TYPE MAGNETIC FOCUS

#### ALUMINIZED SCREEN MAGNETIC DEFLECTION

DATA

Gen	eral:	
V C Dir G C	ter, for Unipotential Cathode: oltageac or dc volt urrentan ect Interelectrode Capacitances: rid No.1 to all other electrodes	٤f
E	xternal conductive coating to ultor {1500 max. بس 750 min. بس	
Factors Pho For Deff Deff Deff V V N Scr G G G G G C D N N Scr Bul Bass Bu P P P	eplate, Cylindrical	is seduce to c pop t """""""""""""""""""""""""""""""""
P	Tin 2 - Grid No.1 Vin 10 - Grid No.2 Vin 11 - Cathode Vin 12 - Heater Conductive Coating	



## (RCA) 17QP4-A KINESCOPE

Maximum Ratings, Design-Center Val	ues:	
ULTOR VOLTAGE	18000 ma	x. volts
GRID-No.2 VOLTAGE	500 ma	ix. volts
GRID-No.1 VOLTAGE:		
Negative bias value	125 ma	ıx. volts
Positive bias value	0 ma	x. volts
Positive peak value	2 ma	
PEAK HEATER-CATHODE VOLTAGE:		·· · ····
Heater negative with respect to		
During equipment warm-up peric		
not exceeding 15 seconds		
After equipment warm-up period	l 150 ma	x. volts
Heater positive with respect to		x. volts
Equipment Design Ranges:		
With any ultor voltage (Ec ₃ ) betu	een 14000* and 180	oo volts
and grid-No.2 voltage (Ec ₂ ) be	tween 150 and 500	volts
		Ş
Grid-No.1 Voltage for		ļ
Visual Extinction of		!
	-9.3% to -24% of Ec	2 volts
Grid-No.1 Video Drive		~
from Raster Cutoff		ļ
(Black Level):		
White-level value	0.000 +. 0400 - 5 5-	
	9.3% to 24% of Ec	
Grid-No.2 Current	15 to <u>+</u> 15	μamp
	Fc-	1
Focusing-Coil Current (DC)° 🔨	$\sqrt{\frac{Ec_3}{16000} \times 111} \pm 10\%$	, ma
Lien Tran Magnet Current	V 16000 ]	
Ion-Trap Magnet Current	1 t.c3 y 20	ma
(Average)**	$\sqrt{\frac{\text{F.c_3}}{16000}} \times 30$	ma
Minimum Field Strength of	. 10000	
Minimum Field Strength of	Ecz ac	
PM  on-Trap Magnet§ • • • • •	$\sqrt{\frac{16000}{16000}} \times 33$	gausses
En a construction of Automatical State	A TONOO	1
Field Strength of Adjustable	0,1,0	
Centering Magnet	0 to 8	gausses
Examples of Use of Design Ranges:		1
		volts
With ultor voltage of	14000	
and grid-No.2 voltage of	300	volts
Grid-No.1 Voltage for		ľ
Visual Extinction of		
France Dester	20 + 272	volts
Focused Raster	28 to72	VOITS
Grid-No.1 Video Drive		
from Raster Cutoff		1
(Black Level):		1
White-level value		6
(Peak positive)	28 to 72	volts
	$104 \pm 10\%$	ma
Focusing-Coil Current (DC)	104 ± 10%	ma
Minimum Field Strength of		
PM lon-Trap Magnet	31	gausses
*, ⁰ ,**,§: See next page.		
2_56	TENTAT	IVE DATA 1

2–56

TENTATIVE DATA 1

170P4-A

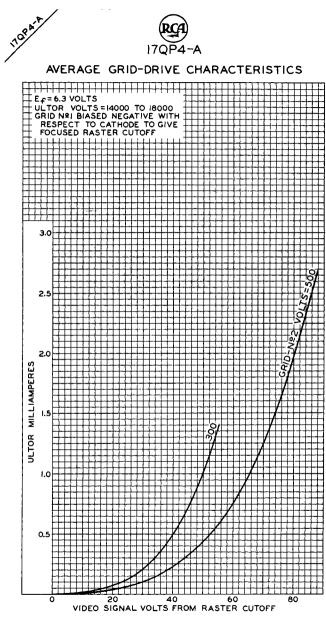
### **KINESCOPE**



#### Maximum Circuit Values:

Grid-No.1-Circuit Resistance . . . . . . 1.5 max. megohms

- Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 14000 volts.
- General, the article should be used to be the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
- ** For JETEC Ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- a long the original and the set of the maximum original structure and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the


For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section

#### DIMENSIONAL OUTLINE

for Type 17QP4-A is the same as that shown for Type 17LP4-A, except that the 17QP4-A has a Small-Shell Duodecal 5-Pin Base

#### HIGHLIGHT BRIGHTNESS vs DRIVE CURVES

for Type 17QP4-A are the same as those shown for Type 17LP4-A



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





RECTANGULAR METAL-SHELL TYPE

LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

LOW-VOLTAGE FOCUS	MAGNETIC DEFLECTION
DATA	
General:	
Heater, for Unipotential Cathode:	an an da valta
Voltage	ac or dc volts
Direct Interelectrode Capacitances:	amp
Grid No 1 to All Other Electrodes	6 μμf
Grid No.1 to All Other Electrodes. Cathode to All Other Electrodes	
Face Plate (With about 66% light transmiss	sion) Frosted Iteralass
Phosphor (For Curves, see front of this S	
Eluorescence and Phosphorescence .	White
Persistence of Phosphorescence Focusing Method	Short
Focusing Method	Electrostatic
Deflection Method	Magnetic
Deflection Angles (Approx.):	0
Diagonal	· · · · · · · · · · 70°
Horizontal	· · · · · · · · · · · 66 ⁰
Vertical Requires Exte	50°
Non-Trap Gun Requires Exte	rnal, Singre-Field Magnet
Greatest Diagonal of Tube at Lin	16-13/16" + 3/16"
Greatest Width of Tube at Lip.	15-15/16" + 1/8"
Greatest Height of Tube at Lin	12-1/4" + 1/8"
Greatest Height of Tube at Lip Greatest Height of Tube at Lip Screen Size	14-5/8" × 11"
Mounting Position.	
Ultor• Terminal	Metal-Shell Lip
Base Small-Shell Duodec	al 6-Pin (JETEC No.B6-63)
BUTIUM VIEW	1
Pin 1-Heater	Pin 12-Heater
Pin 2-Grid No.1	Metal-Shell Lip-
Pin 6-Grid No.4	Grid No.3,
	Grid No.5,
Pin 11 - Cathode	Collector
Ŭ <b>T</b> ® Ŭ	
Maximum Ratings, Design-Center Value	s:
ULTOR® VOLTAGE	
GRID-No.4 VOLTAGE.	500 max. volts
GRID-No.2 VOLTAGE	500 max. volts
GRID-No.1 VOLTAGE:	
Negative bias value	125 max. voits
Positive bias value	0 max. volts
Positive peak value	2 max. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to ca	thode:
During equipment warm-up period	110 may 114
not exceeding 15 seconds	410 max. volts
Heater positive with respect to con	180 max. volts thode. 180 max. volts
not exceeding 15 seconds After equipment warm-up period . Heater positive with respect to car	thoue, too max, voits
•: See next page	
	TENTATINE DATA 4

OCTOBER 1,1951

)

TENTATIVE DATA 1

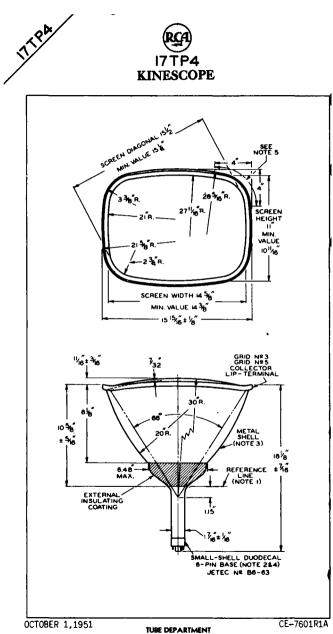
TUBE DEPARTMENT TE



## (RCA) 17 T P4 KINESCOPE

Equipment Design Ranges:	
For any ultor voltage (Eu) between 12000*	and these volts
and grid-No. 2 voltage (Ec2) between 150	and 500 volts
Grid-No.4 Voltage for Focus	
With Ultor Current of 100 µamp 0% to 2. Grid-No.1 Voltage for Visual	5% of E _u volts
Extinction of Undeflected	
Focused Spot	
Grid—No.4 Current	
Field Strength of Single-Field	
I lon-Trap Magnet (Approx.)** 1/ <u>Eu</u> Field Strength of Adjustable	x 33 gausses
Field Strength of Adjustable 12000 Centering Magnet 0 to	8 gausses
	.gauttoot
Examples of Use of Design Ranges:	16000 volts
For ultor voltage of 14000 and grid-No.2 voltage of. 300	300 volts
Grid-No.4 Voltage for Focus	2
With Ultor Current of 100 µamp 0 to 350	0 to 400 volts
	-33 to -77 volts
Ion-Trap Magnet	40 gausses
(Rated Strength) 35	40 gausses
Maximum Circuit Values:	1.5 max. megohms
Grid-No.1-Circuit Resistance	1.5 max. megorina
<ul> <li>In the 17TP4, grid No.5 which has the ultor func</li> </ul>	tion, grid No.3, and
<ul> <li>In the 17P#, grid No.5 which has the ultor func collector are connected together within the tube referred to collectively as "ultor". The "ulto tube is the electrode, or the electrode in combine additional electrodes connected within the tube applied the highest do voltage for accelerating beam prior to its deflection.</li> </ul>	and are conveniently or in a cathode-ray
additional electrodes connected within the tube	to it, to which is
beam prior to its deflection.	the electrons in the
Brilliance and definition decrease with decreasin general, the ultor voltage should not be less tha	ig ultor voltage. In in 12000 volts,
With a specimen ion-trap magnet similar to JETEC 111 located in optimum position and rotated to give the ion-trap magnet current is 65 milliamperes dcw	ion-Trap Magnet No. maximum brightness.
the ion-trap magnet current is 65 milliamperes dc w is 14000 volts.	hen the ultor voltage
For visual extinction of undeflected focused spot	•

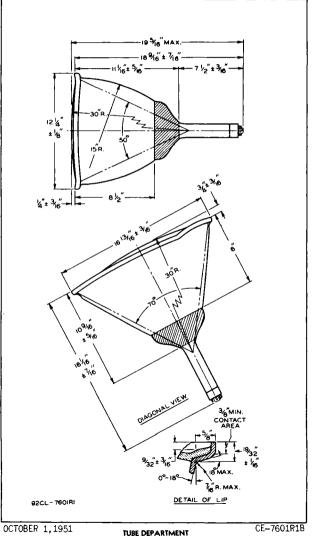
TUBE DEPARTMENT






#### OPERATING NOTES

*X-Ray Warning.* When operated at ultor voltages up to 16 kilovolts, the 17TP4 does not produce any harmful x-ray radiation, However, because the rating of the tube permits operation at voltages as high as 17.6 kilovolts (absolute value), shielding of the 17TP4 for x-ray radiation may be needed to protect against possible injury from prolonged exposure at close range whenever the operating conditions involve voltages in excess of 16 kilovolts.


Direction of the field of the ion trap magnet should be such that the north pole is adjacent to vacant pin position No. 8 and the south pole to pin No. 2.

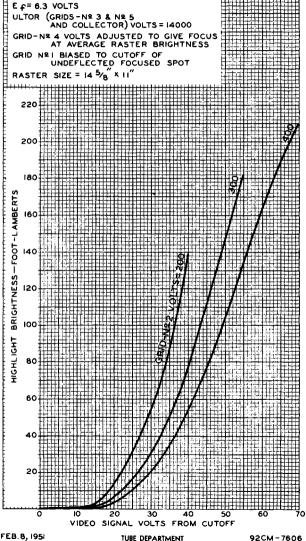


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



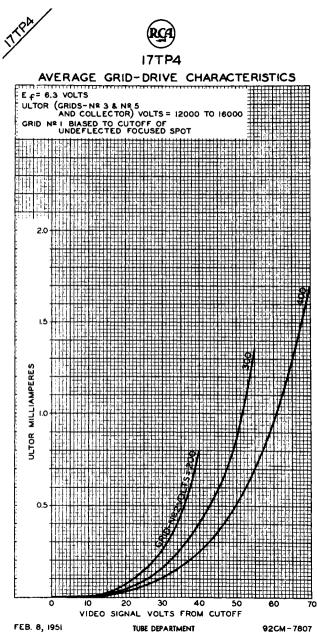





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Ń	\$ •	/
•		

# (RCA) 17 TP4 KINESCOPE


- NOTE I: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL-SHELL AXIS AND HAVING A DIAMETER OF 2-3/4".
- NOTE 3: METAL SHELL AND GLASS FACE OPERATE AT HIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE MUST BE INSULATED TO WITHSTAND THE MAXIMUM APPLIED ULTOR VOLTAGE.
- NOTE 4: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE HORIZONTAL AXIS OF THE GLASS FACE BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  10°.
- NOTE 5: SUPPORT TUBE BY LIP ONLY AT CORNERS WITHIN THIS SPACE.





RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM - 7606



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7807



KINESCOPE



The 19AP4 is like the 19AP4-B except that it has a face plate made of *unfrosted*, *clear glass*. As a result, the light output is about 30% greater than shown by the curves

#### under Type 19AP4-B.

## 19AP4-A KINESCOPE

The 19AP4-A is like the 19AP4-B except that it has an *unfrosted Filterglass* face plate. The light output is essentially the same as that of the Type 19AP4-B.

As soon as feasible, the 19AP4-B will supersede the 19AP4 and 19AP4-A.





METAL-CONE ENVELOPE MAGNETIC DEFLECTION

MAGNETIC FOCUS

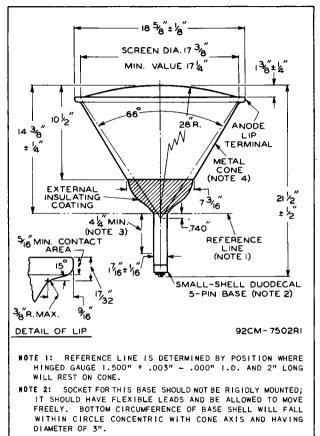
Supersedes Type 19AP4-A

____

DATA

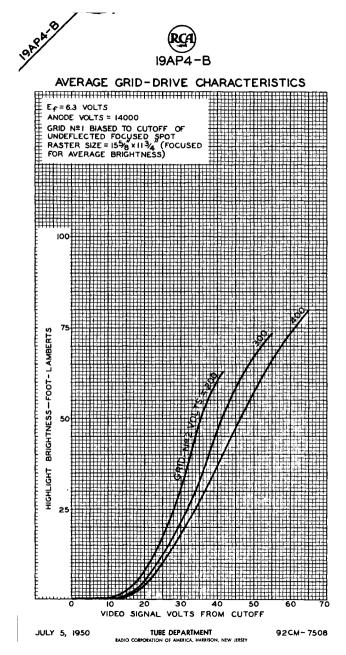
1 2010	
General:	
Heater, for Unipotential Cathode:	
Voltage	volte
Current 0.6	amp
Crid No. 1 to All Other Floateday	c
Grid No.1 to All Other Electrodes 7 Cathode to All Other Electrodes 5	μµf
Cathode to All Other Electrodes 5	, <i>μμ</i> f
Face Plate Frosted RCA "Filtere	ass"
Phosphor (For Curves, see front of this Section) No.4-Sulfide	
Fluorescence and Phosphorescence	White
	ledium
Focusing Method	
Deflection Method	
Deflection Angle (Approx.)	66°
Ion-Trap Gun Requires External Single-Field N	
Overall Length	1/2"
Greatest Diameter of Envelope 18-5/8" 1	
	-3/8"
Mounting Position.	Any
Anode Terminal Metal-Cor	e Lip
Base Small-Shell Duodecal	
Basing Designation for BOTTON VIEW	12D1
Pin 1-Heater Pin 12-Heater	
Pin 2-Grid No.1 (Metal-Cone Lip:	
Pin 10-Grid No.2 🥄 / 🔨 🎾 Anode,	
Pin 11-Cathode 🔹 💭 Grid N	0.3
	ŕ
Maximum Ratings, Design-Center Values:	
ANODE ^D VOLTAGE	volts
ANODE         VOLIAGE         19000 max.           GRID-No.2 VOLTAGE         410 max.	volts
GRID-No.1 VOLTAGE:	
Negative bias value	volts
Positive bias value O max.	volts
Positive peak value	volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period not	
exceeding 15 seconds 410 max.	volts
	volts
	volts
¹⁰ Anode and grid wo.3, which are connected together within tube, a ferred to here in as anode.	
<ul> <li>The product of anode voltage and average anode current should be 1 to 6 watts.</li> </ul>	
to 6 watts.	
<ul> <li>The product of anode voltage and average anode current should be 1 to 6 waits.</li> <li>Has transmission of about 65\$.</li> </ul>	
to 6 watts.	




I9AP4-B KINESCOPE

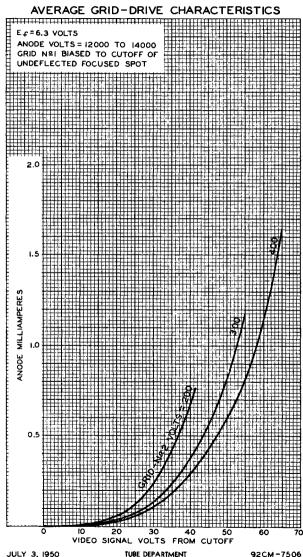
Typical Operation:			
Anode Voltage*	12000	14000	volts
Grid-No.2 Voltage.	300	300	volts
Grid-No.1 Voltage for Visual Extinction of Undeflected			
Focused Spot	-33 to -77	<b>-</b> 33 to -77	volts
Focusing-Coil Current (DC. Approx.) [®]	140	150	ma
Ion-Trap Magnet Current	140	150	Incl
(DC, Approx.)# Field Strength of Single-Fiel	75	80	ma
Ion-Trap Magnet (Approx.)†	45	50	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		. 1.5 max.	megohms
Minimum Circuit Values:			
The power supply should be of inherent regulation to limit the rent to 5 ma. If the supply circuit current to exceed 1 more than 250 microcoulombs, cuit between indicated elections of the should be as follows: Grid-No.1 - Circuit Resistance for a contract of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the sec	the continuou permits the ampere, or i the effectiv trode and t e e capable of ase with decrea d not be less or equivalent, wing). The lin wing). The lin wing). The lin ghight bright 11, or equival	us short-circ instantaneou s capable of re resistance he output c. . 150 min . 470 min . 22000 min withstanding asing anode vol than 12000 vol positioned win dicated curren voltage and vio ross of 18 foot 0000 volts, on ent, located i ss.	suit cur- is short- is storing e in cir- apacitor h. ohms h. o

19AP4-B


**KINESCOPE** 






NOTE 3: LOCATION OF DEFLECTING YOKE AND FOCUSING COIL MUST BE WITHIN THIS SPACE.

NOTE 4: METAL CONE AND GLASS FACE OPERATE ATHIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE CONE OR THE FACE MUST HAVE INSULATING PROPERTIES ADEQUATE TO WITHSTAND THE APPLIED ANODE VOLTAGE PLUS 10%.









JULY 3, 1950

92CM-7506

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





### **KINESCOPE**

The 19AP4-D is like the 19AP4-B except that it has a face plate made of *frosted*, *clear glass*. As a result, the light output is about 30% greater than shown by the curves under Type 19AP4-B.

As soon as feasible, the 19AP4-B will supersede the 19AP4-D.

ţ





RECTANGULAR GLASS TYPE

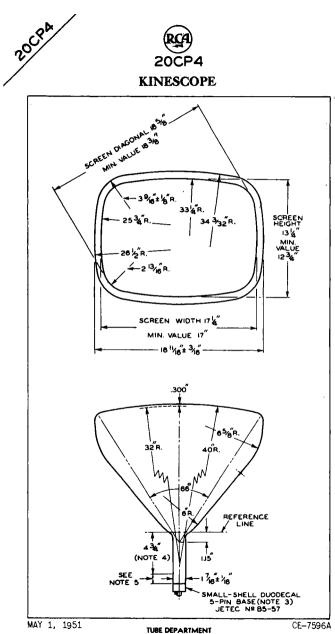
MAGNETIC FOC	JS	MAGNETIC	DEFLECTION

DATA	٦
General:	
Heater, for Unipotential Cathode:       Voltage.       ac or dc volt         Voltage.       6.3       ac or dc volt         Current.       0.6       ar         Direct Interelectrode Capacitances:       6       µµ         Cathode to All Other Electrodes.       6       µµ         Face Plate (With about 66% light transmission)       Filterglas         Phosphor (For Curves, see front of this Section)       No.4-Sulfide Typ         Fluorescence and Phosphorescence       Shor         Fccusing Method.       Magneti         Deflection Angles (Approx.):       Diagonal         Diagonal       70	uf uf ss e t c ic
Horizontal	50 00 21 3"
Pin 1 - Heater Pin 2 - Grid No.1 Pin 10 - Grid No.2 Pin 2 - Grid No.2 Pin 10 - Grid No.2 Pin 2 - Heater Cap - Anode	
Maximum Ratings, Design-Center Values:           ANODE VOLTAGE.         18000 max. volt           GRID-No.2 VOLTAGE.         140 max. volt           GRID-No.1 VOLTAGE:         410 max. volt	
Negative bias value.       125 max. volt         Positive bias value.       0 max. volt         Positive peak value.       2 max. volt         PEAK HEATER-CATHADE VOLTAGE:       4 max. volt         Heater negative with respect to cathode:       4 max. volt	ts
During equipment warm-up period not exceeding 15 seconds 410 max. volt After eouipment warm-up period 150 max. volt Heater positive with respect to cathode. 150 max. volt	s



20CP4 KINESCOPE

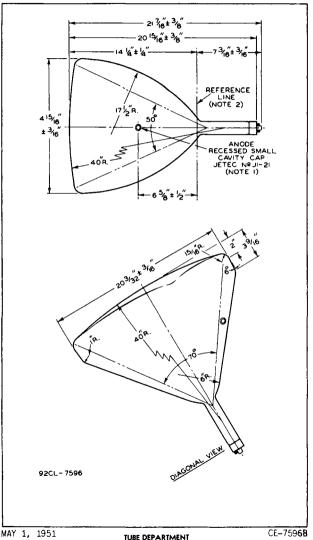
r			
Typical Operation:			
Anode Voltage*	14000	16000	volts
Grid-No.2 Voltage Grid-No.1 Voltage for Visual	300	300	volts
Extinction of Undeflected			
Focused Spot	-33 to -77 104 ± 10%	-33 to -77 110 ± 10%	volts ma
Field Strength of Single-	104 1 100	110 1 108	11101
Field, Ion-Trap Magnet	50	55	
(Approx.) †	50	55	gausses
Maximum Circuit Values:		1 E may	
Grid-No.1-Circuit Resistance			megohms
Brilliance and definition decreases general, the anode voltage should be anode by the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of t	ease with decre ild not be les:	easing anode vo s than 14000 vo	ltage. In lts.
For specimen focusing coil sin positioned with air gap toward air gap about 3 inches from R The indicated currents are for Ro.1 bias voltage and video-s highlight brightness of 30 foo area sharply focused at center	iliar to JETE	C Focusing Col	No.109,
air gap about 3 inches from R The indicated currents are for	eference Line the condition	(see Outline with the combi	Drawing). ned grid-
No.1 bias voltage and video-s highlight brightness of 30 foo	ignal voltage t-lamberts on	adjusted to p a 17" × 12-3/4	• picture
area sharply focused at center Heasured at center of field wi	of screen. th General Ele	ctric Gauss Ne	ter. Cat.
No. 409X51.			
		•	






#### OPERATING NOTES

**X-Ray Warning.** When operated at or below 16000 volts, the 20CP4 does not produce any harmful x-ray radiation. In general, picture tubes may be operated at voltages (if ratings permit) up to 16000 volts without personal injury on prolonged exposure at close range. Above 16000 volts, special shielding precautions for x-ray radiation may be necessary.

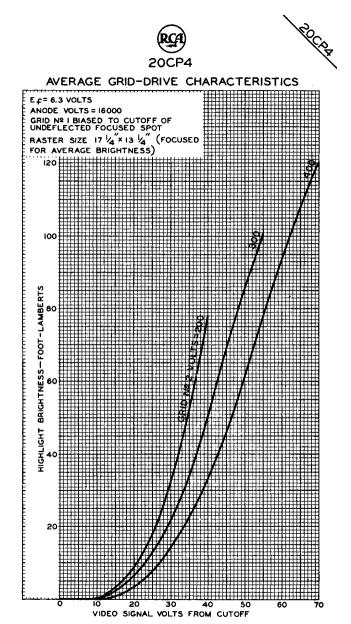

Direction of the field of the ion-trap magnet should be such that the north pole is adjacent to vacant pin position No.8 and the south pole to pin No.2.



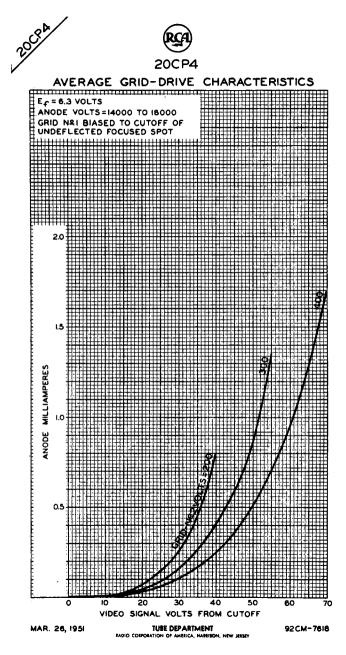
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY








TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



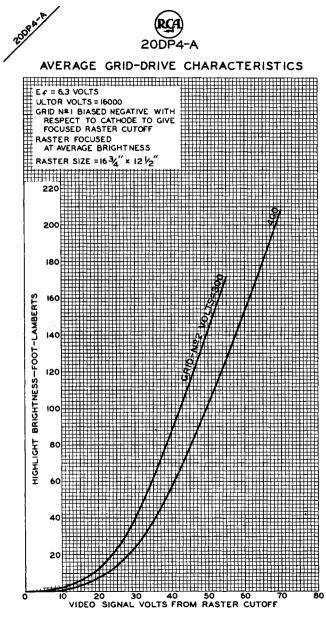

# (RCA) 20CP4 KINESCOPE

- NOTE I: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ANODE TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ANODE THE TUBE AXIS) OF  $\pm$  30°. ANODE THE TUBE AXIS ON SAME SIDE AS VACANT PIN POSITION NO.6.
- NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 3".
- NOTE 4: LOCATION OF DEFLECTING YOKE AND FOCUSING DEVICE MUST BE WITHIN THIS SPACE.
- NOTE 5: KEEP THIS SPACE CLEAR FOR SINGLE-FIELD, ION-TRAP MAGNET.












RECTANGULAR GLASS TYPE

MAGNETIC FOCUS MAGNETIC DEFLECTION

The 20DP4-A/20CP4-A is the same as the 20DP4-C/20CP4-D except that it utilizes a non-aluminized phosphor and has a light output as shown by the curves on the back of this sheet.



TUBE DIVISION





RECTANGULAR GLASS TYPE MAGNETIC FOCUS

ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

	General:
l	Heater, for Unipotential Cathode: Voltage
	Cathode to all other electrodes5 μμf External conductive coating to ultor [750 max. μμf 500 min. μμf Faceplate, Spherical
	Light transmission (Approx.)
	Fluorescence
	Diagonal
	Overall length
	Screen Dimensions (Minimum):         17"           Greatest width         12-3/4"           Greatest height         12-3/4"           Diagonal         18-3/8"           Projected area         199 sq.in.           Weight (Approx.)         30 lbs
)	Mounting Position
	Pin 1 - Heater Pin 2 - Grid No.1 Pin 10 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater Pin 12 - Heater Pin 12 - Gathode Pin 12 - Heater Pin 12 - Heater

TUBE DIVISION



20DP4-C KINESCOPE

1

Maximum Ratings, Design-Center	Values:		
ULTOR VOLTAGE		18000 max.	volts
GRID-No.2 VOLTAGE.		410 max.	volts
	•••••	410 max.	vorts
GRID-No.1 VOLTAGE:		105	• •
Negative bias value		125 max.	volts
Positive bias value		0 max.	volts
Positive peak value		2 max.	volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect	to cathode:		
During equipment warm-up pe			
not exceeding 15 seconds		410 max.	volts
After equipment warm-up per		180 max.	volts
		180 max.	
Heater positive with respect	to cathode.	180 max.	volts
Equipment Design Ranges:			
With any ultor voltage (Ec ₃ ) b	etween 14000	* and 18000	volts
and grid-No.2 voltage (Ec ₂ )	between 150	and 110 00.	lts
5			
Grid-No.1 Voltage for			
Visual Extinction of	0.07		• .
Focused Raster	-9.3% to	-24% of Ec ₂	voits
Grid-No.1 Video Drive			
from Raster Cutoff			
(Black Level):			
White-level value			
(Peak positive)	9.3% to	24% of Ec ₂	volts
Grid-No.2 Current		to +15	µamp
	L LEC		passinp
Focusing-Coil Current (DC) ^o	$\sqrt{\frac{1000}{16000}}$ ×	110 ± 10%	ma
lon-Trap Magnet Current		_	
(Average)**	∧/_ ^{LC} 3_		ma
(Atorage)	V 16000	× 30	IIIG
Minimum Field Strength of	Ec.		
PM lon-Trap Magnet§	A/3	× 33 (	ausses
· · · ·	V 16000	~ //	,
Field Strength of Adjustable	•		
Centering Magnet	0 t	08 9	gausses
Examples of Use of Design Range	s:		
With ultor voltage of	14000	16000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.1 Voltage for			
Visual Extinction of			
Focused Raster	-28 to -72	-28 to -72	volts
Grid-No.1 Video Drive	-0 10 72	20 00 12	
from Raster Cutoff			
(Black Level):			
(Black Level): White-level value			
	20 4 72	20 + 70	
(Peak positive)	28 to 72	28 to 72	
Focusing_Coil Current (DC)	103 ± 10%	110 ± 10%	ma
Minimum Field Strength of			
PM lon-Trap Magnet	31	33 g	ausses
*, ⁰ ,**,§: See next page.	-		
		TENTATIVE	
2–56 <b>Tube D</b> i	VISION	TENTATIVE	UATA ]
	· · · · · · · · ·		

TUBE DIVISION

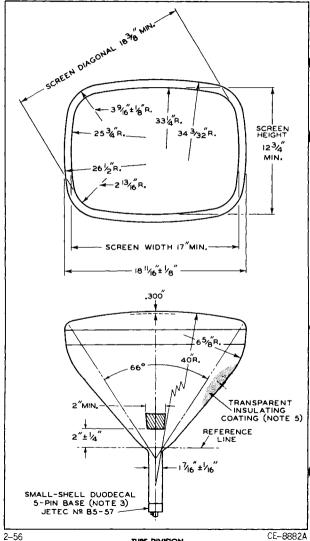
20DP4-C

#### **KINESCOPE**

NOOR F.C
Ľ

#### Maximum Circuit Values:

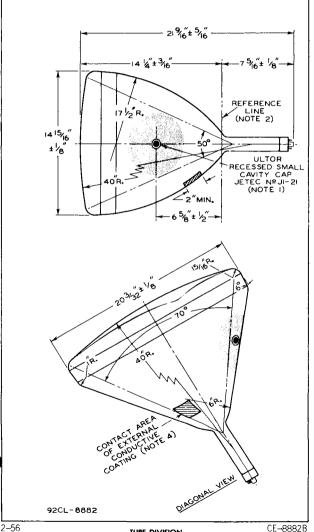
۱


Grid-No.1-Circuit Resistance. . . . . . 1.5 max. megohms

- * Brilliance and definition decrease with decreasing ultor voltage. In general, the ultor voltage should not be less than 14000 volts.
- O For specimen focusing coil similar to JETEC focusing Coil No.109 positioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference Line (See Disensional Outline). The indicated current is for condition with sharp focus at center of picture area and combined grid-No.1 voltage and video-signal voltage adjusted to produce a highlight brightness of 30 foot-lamberts measured on an Intional Test Test Screen for a 17* x12-3/4* picture size.
- ** For JETEC Ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section




20DP4-C **KINESCOPE** 



CE-8882A

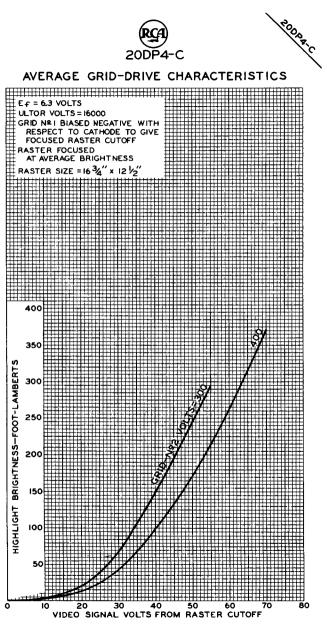




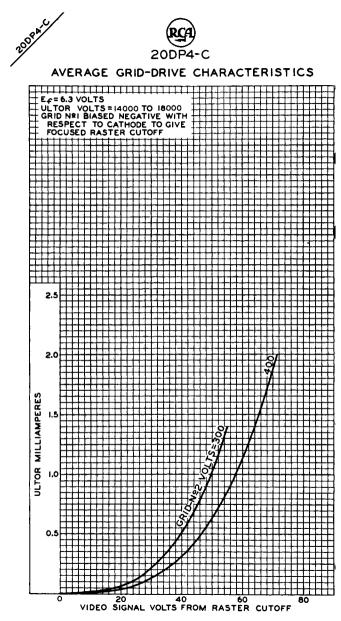




# (RCA) 20DP4-C KINESCOPE


**NOTE I:** THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  30°. ULTOR+TERMINAL IS ON SAME SIDE AS VACANT PIN POSITION NO.6.

NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.


NOTE 3: SOCKETFOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 3".

NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED.

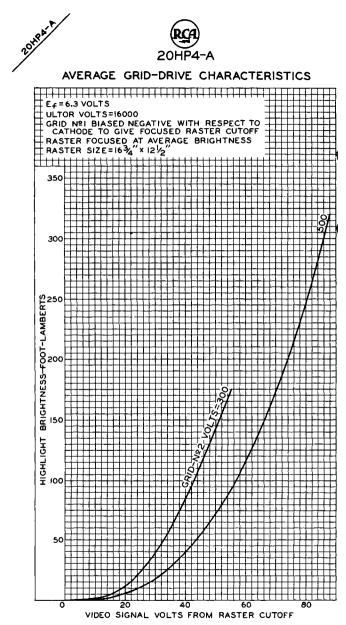
NOTE 5: TO CLEAN THIS AREA, WIPE ONLY WITH SOFT DRY LINT-LESS CLOTH.



TUBE DIVISION IADIO CORPORATION OF AMERICA, HABIIISON, NEW JUSEY 92CM-8866



TUBE DIVISION RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY






RECTANGULAR GLASS TYPE

LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

The 20HP4-A/20NP4 is the same as the 20HP4-D except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS

ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

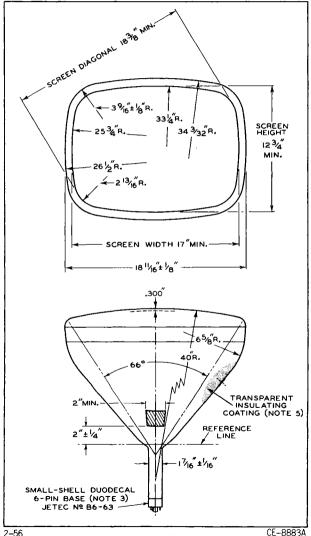
1	DATA	ł
Ge	neral:	
ł	ater, for Unipotential Cathode: Voltage	s
1	Grid No.1 to all other electrodes 6 $\mu\mu$ Cathode to all other electrodes 5 $\mu\mu$	f
	External conductive coating to ultor {1500 max. µµ 750 min. µµ	1
Fa Ph	ceplate, Spherical	s % e
	Aluminize	e e t
De	flection Method	c
10	Diagonal	0
	De Dimensions:       21-3/4" ± 3/8         Greatest width       18-11/15" ± 1/8         Greatest height       14-15/16" ± 1/8         Diagonal       20-3/32" ± 1/8         Neck length       7-1/2" ± 3/16'         reer. Dimensions (Minimum):       14-15/16" ± 1/8	0 0
We Mo Ca Bu Ba	Greatest width       17         Greatest height       12-3/4         Diagonal       18-3/8         Projected area       19 8,4         ight (Approx.)       30 lb         unting Position          p.          Recessed Small Cavity (JETEC No.JI-21         lb          se          Small-Shell Duodecal 6-Pin (JETEC No.86-63	"".sy)1)
	Basing Designation for BOTTOM VIEW	L



# (RCA) 20HP4 - D KINESCOPE

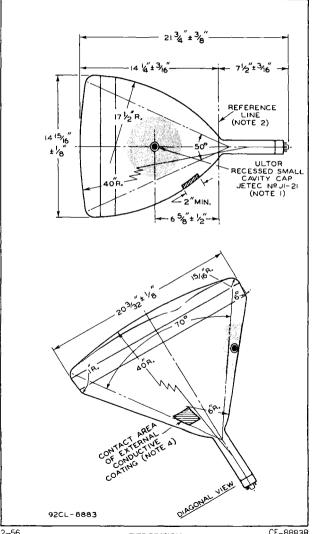
Maximum Ratings, Design-Center Values:	
ULTOR VOLTAGE	volts
Positive value         1000 max.           Negative value         500 max.           GRID-No.2 VOLTAGE         500 max.	volts
GRID-No.1 VOLTAGE:       Negative bias value.       125 max.         Positive bias value.       0 max.         Positive peak value.       2 max.         PEAK HEATER-CATHODE VOLTAGE:       2	volts
Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds 410 max. After equipment warm-up period 180 max. Heater positive with respect to cathode. 180 max.	volts
Equipment Design Ranges:	
With any ultor voltage (Ec ₅ ) between 14000% and 16000 and grid-No.2 voltage (Ec ₂ ) between 150 and 500 vo	
Grid-No.4 Voltage for Focus with Ultor Current of 100 $\mu$ amp0.4% to +2.2% of Ec ₅ Grid-No.1 Voltage for Visual Extinction of	volts
Focused Raster9.3% to -24% of Ec ₂ Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value	volts
(Peak positive)         9.3% to 24% of Ec2           Grid-No.4 Current.         -25 to +25           Grid-No.2 Current.         -15 to +15	volts μamp μamp
Ion-Trap Magnet Current (Average)** $\sqrt{\frac{Ec_5}{16000}} \times 30$	ma
Minimum Field Strength of PM Ion-Trap Magnet § $\sqrt{\frac{Ec_5}{16000}} \times 33$	gausses
Field Strength of Adjustable Centering Magnet 0 to 8	gausses
<ul> <li>Brilliance and definition decrease with decreasing ultor vol general, the ultor voltage should not be less than 14000 voll "For JETEC ion-Trap Magnet No.117, or equivalent, located trailing edge of the pole pieces located over the gap betw No.1 and grid No.2 and rotated to give maximum brightness.</li> <li>For specimen PM ion-trap magnet, such as Heppner Model No. equivalent, located in optimum position and rotated to give brightness. For agiven equipment application, the tolerance n the strength of the PM ion-trap magnet should be added to the value. The maximum strength of this magnet should not exceed th fied minimum value by more than 6 gausses. This procedure will use of a PM ion-trap magnet allowing adequate adjustment t satisfactory performance without loss of highlight brightness.</li> </ul>	with the een grid

20HP4-D




## **KINESCOPE**

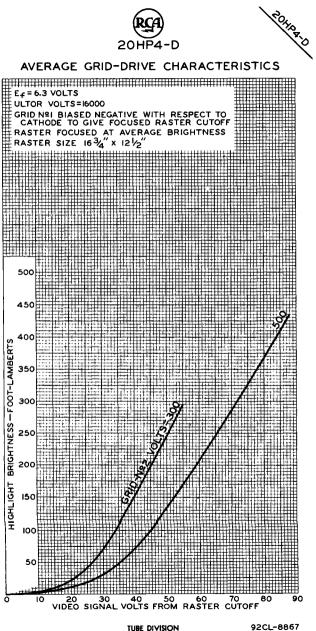
With ultor voltage of 14000 16000 volts and grid-No.2 voltage of 300 300 volts Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp55 to +300 -65 to +350 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value	Examples of Use of Design R			
and grid-No.2 voltage of 900 900 volts Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp55 to +300 -65 to +350 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		-	16000	analta
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp55 to +300 -65 to +350 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES				volts
Focus with Ultor Current of 100 µamp55 to +300 -65 to +350 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		-		
Grid-No.1 Voltage for Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms <i>For X-ray shielding considerations, see sheet</i> <i>X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES</i>	Focus with Ultor			
Visual Extinction of Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		-55 to +300	-65 to +350	volts
Focused Raster28 to -72 -28 to -72 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES				
Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		-28 to -72	–28 to –72	volts
(Black Level): White-level value (Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES	Grid-No.1 Video Drive			
White-level value (Peak positive)       28 to 72       28 to 72       volts         Minimum Field Strength of PM Ion-Trap Magnet       31       33       gausses         Maximum Circuit Values: Grid-No.1-Circuit Resistance       1.5 max. megohms         For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES				
(Peak positive) 28 to 72 28 to 72 volts Minimum Field Strength of PM Ion-Trap Magnet 31 33 gausses Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES				
PM       Ion-Trap Magnet       31       33       gausses         Maximum Circuit Values:         Grid-No.1-Circuit Resistance.       1.5       max.       megohms         For X-ray shielding considerations, see sheet       X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES	(Peak positive)	28 to 72	28 to 72	volts
Maximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		21	22	
Grid-No.1-Circuit Resistance 1.5 max. megohms For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES		16	>>	gausses
For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES				
X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES	Grid-No.1-Circuit Resistanc	e	. 1.5 max.	megohms




RCA 20HP4-D KINESCOPE

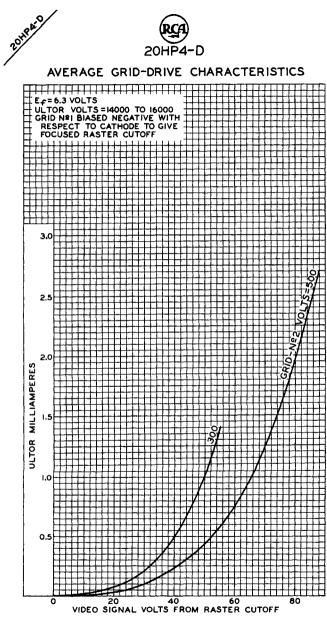


20HP4-D **KINESCOPE** 









# (RCA) 20HP4-D KINESCOPE

NOTE I: THE PLANE THROUGH THE TUBE AXIS AND PIN No.6 MAY VARY FROM THE PLANE THROUGH THE AXIS AND ULTOR TERMINAL BY ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF ± 30°. ULTOR TERMINAL IS ON SAME SIDE AS PIN No.6. NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC NO.IIO (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFER-ENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL. NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED: IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH BULB AXIS AND HAVING A DIAMETER OF 3". NOTE 4: THE DRAWING SHOWS THE MINIMUM SIZE AND LOCATION OF THE CONTACT AREA OF THE EXTERNAL CONDUCTIVE COATING. THE ACTUAL AREA OF THIS COATING WILL BE GREATER THAN THE CONTACT AREA SO AS TO PROVIDE THE REQUIRED CAPACITANCE. EXTERNAL CONDUCTIVE COATING MUST BE GROUNDED. TO CLEAN THIS AREA. WIPE ONLY WITH SOFT DRY LINT→ NOTE 5: LESS CLOTH.



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

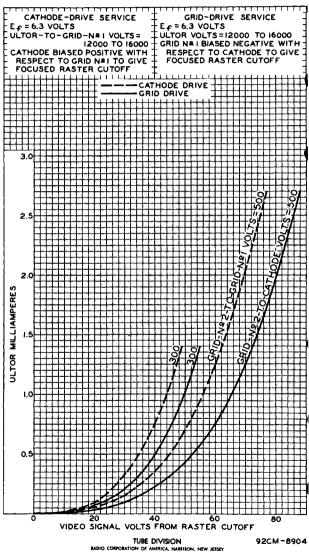
92CL-8867



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY






RECTANGULAR GLASS TYPE MAGNETIC FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

The 21ACP4-A is the same as the 21AMP4-A except that it has a maximum ultor voltage rating of 20000 volts and has ULTOR CUR-RENT vs DRIVE curves as shown on the back of this sheet.





## AVERAGE DRIVE CHARACTERISTICS



2IALP4-A KINESCOPE



RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS	ALUMINIZED SCREEN MAGNETIC DEFLECTION
DATA	
General:	
Heater, for Unipotential Cathode Voltage	es: st
Phosphorescence. Persistence. Persistence. Persistence. Deflection Method. Peflection Method. Peflection Method. Peflection Method. Persistence (Approx.): Diagonal Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx.): Persistence (Approx	
Overall length	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Greatest height. Diagonal Projected area Weight (Approx.) Mounting Position Cap. Bulb Base Base Base Basing Designation BOTTOM VIEW	55 sq. in. 255 sq. in. 255 sq. in. 255 sq. in. 24 lbs Any Small Cavity (JETEC No.J1-21) J171 (90 ⁰ ) Jodecal 6-Pin (JETEC No.B6-63) V
Pin 1 - Heater Pin 2 - Grid No.1 Pin 6 - Grid No.4 Pin 10 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater	Cap - Ultor (Grid No.3, Grid No.5, Collector) C - External Conductive Coating
•: See next page.	- Indicates a change.
NOV. 1. 1955	DATA 1

NOV. 1, 1955

#### TUBE DIVISION EADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY

DATA 1





#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode

#### Maximum Ratings, Design-Center Values:

	ULTOR [•] VOLTAGE					
	ULTOR® VOLTAGE	"				
	Positive value	s١				
	Negative value*					
	GRID-No.2 VOLTAGE	s				
	GRID-No.1 VOLTAGE:	Í				
	Negative bias value	s				
	Positive bias value	s				
	Positive peak value 2 max. volt	<b>s</b> [				
	PEAK HEATER-CATHODE VOLTAGE:	1				
	Heater negative with respect to cathode:					
	During equipment warm-up period					
	not exceeding 15 seconds 410 max. volt					
	After equipment warm-up period 180 max. volt	- 1				
	Heater positive with respect to cathode. 180 max. volt	s				
	Equipment Design Ranges:					
	With any ultor voltage ( $E_{C,gk}$ ) between 14000 [#] and 18000 volts					
	and grid-No.2 voltage $(E_{c_2k})$ between 200 and 500 volts					
	Grid-No.4 Voltage for					
	Focus with Ultor					
	Current of 100 $\mu$ amp $-0.4\%$ to +2.2% of E _{C5k} volt	s				
	Grid-No.1 Voltage for	1				
	Visual Extinction of					
	Focused Raster9.3% to -24% of E _{c2k} volt	s				
	Grid-No.1 Video Drive from Taster Cutoff					
	(Black Level):					
	White-level value	ļ				
	(Peak positive) 9.3% to 24% of E _{c2k} volt	s				
	Grid-No.4 Current25 to +25 μam	p				
	Grid-No.2 Current15 to +15 μαπι	ρ				
•	Ion-Trap Magnet Current					
	(Average)**	a				
	V16000					
•	Minimum Field Strength of PM lon-Trap Magnet§ $\sqrt{\frac{E_{C5k}}{16000}} \times 33$ gausses	1				
	PM lon-Trap Magnet§ $\sqrt{\frac{10000}{100000}} \times 33$ gausses	s				
	Field Strength of Adjust- able Centering Magnet. 0 to 8 gausse	_				
	Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode.	;				
	ine griu-mull potential with respect to cathode.					
	A # # ## D					
;	•,*,#,**,§: See next page	_				
	NOV. 1, 1955 TUBE DIVISION DATA	1				

EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

2IALP4-A

### **KINESCOPE**



Examples of Use of Design Ran	ges;		
With ultor voltage of	16000	18000	voits
and grid-No.2 voltage of	300	400	volts
Grid-No.4 Voltage for Focus with Ultor	-		
Current of 100 µamp Grid—No.1 Voltage for Visual Extinction of	-65 to +350	/5 to +400	volts
Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	-28 to -72	-37 to -96	volts
White-level value (Peak positive) Minimum Field Strength of	28 to 72	.37 to 96	volts
PM Ion-Trap Magnet	33	35 g	ausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max. m	egohms
	IVE SERVICE		
Unless otherwise specified with respec	, voltage valu t to grid No.1		ive
Maximum Ratings, Design-Cente	r Values:		
ULTOR - TO-GRID-No.1 VOLTAGE. GRID-No.4-TO-GRID-No.1 VOLTAGE	•••••	18000 max.	volts
Positive value	• • • • • • •	1000 max.	volts
Negative value*	<u>.</u>	500 max.	volts
GRID-No.2-TO-GRID-No.1 VOLTAG GRID-No.2-TO-CATHODE VOLTAGE	<b>E</b>	625 max.	volts
CATHODE-TO-GRID-No.1 VOLTAGE:		500 max.	volts
Positive bias value		125 max.	volts
Negative bias value		0 max.	volts
Negative peak value PEAK HEATER-CATHODE VOLTAGE: Heater negative with respec		2 max.	volts
During equipment warm-up not exceeding 15 second		410 max.	volts
After equipment warm-up p		180 max.	volts
Heater positive with respec		180 max.	volts
The "ultor" in a cathodeay tube the highest dc voltage for acceler to its deflection. In the 21ALP by grid No.5. Since grid No.5. g together within the 21ALP-A, the as "ultor" for convenience in pre This value has been specified to ac voltage is provided for dynam Cathode drive is the operating varies the cathode potential	i take care of th ic focusing.	e.condition w	here an
other electrodes.		⊷ Indicates a	
OV 1 1955			DATA 2

NOV. 1, 1955

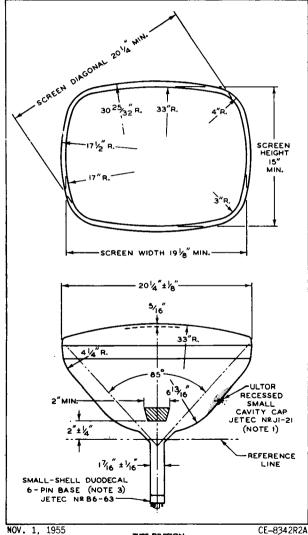


2IALP4-A **KINESCOPE** 

Equipment Design Ranges:			
With any ultor-to-grid-No.1 vo	ltage (E _{C581} 14000	) between # and 18000	volt
and grid-No.2-to-grid-No.1 vol			
		220 and 620	vol:
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor			
Current of 100 µamp	0% to 2.6%	of Ecro	vol
Cathode-to-Grid-No.1 Voltage	0,0 10 2.00	CC591	
for Visual Extinction			
of Focused Raster	8.5% to 19.4	a of F	
	0.50 10 15	291 CC291	volt
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff			
(Black Level):			
White-level value			•
(Peak negative)	8.5% to 19.4	1% of Ec291	volt
Grid-No.4 Current	-25 to	5 +25	μar
Grid-No.2 Current	–15 to	o +15	μar
lon-Trap Magnet Current	(F	-	
(Average)**.	Lc59	$\frac{1}{2} \times 30$	,
(Average)	1600	5 ^ / 0	'
Minimum Field Strength of PM			
lon-Trap Magnet§	A [	1 × 33 9	ausse
	V 16000	)^ <i>^</i>	,
Field Strength of Adjustable	• • • •		
Centering Magnet	0 t	o 8 g	jauss
Examples of Use of Design Ranges	:		
With ultor-to-grid-No.1			
voltage of	16000	18000	vol
and grid-No.2-to-grid-No.1		-	
voltage of	300	400	vol
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor			
	0+0.415	0 to 470	vol
Current of 100 µamp.	0 to 415	010470	VOL
Cathode-to-Grid-No.1 Voltage			
for Visual Extinction		04.4 - 70	
of Focused Raster	25 to 58	34 to 78	vol
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff			
(Black Level):			
White-level value			_
(Peak negative)	25 to 58	34 to 78	vol
Minimum Field Strength of			
PM Ion-Trap Magnet	33	35 g	jauss
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max. r	negohi
#,**,§: See next page.	-	Indicates a	Ch8n/

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY

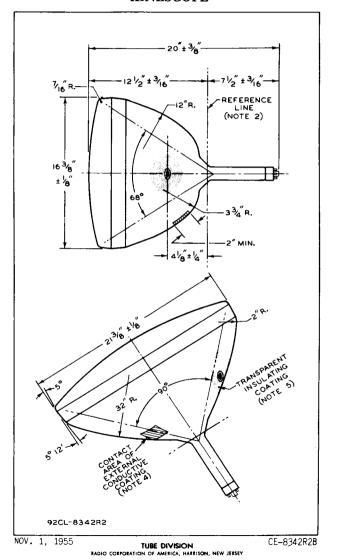





- Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-wo.1 voltage. In general, the ultor voltage or ultorto-grid-wo.1 voltage should not be less than 14000 volts.
- ** For JETEC ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E&37, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

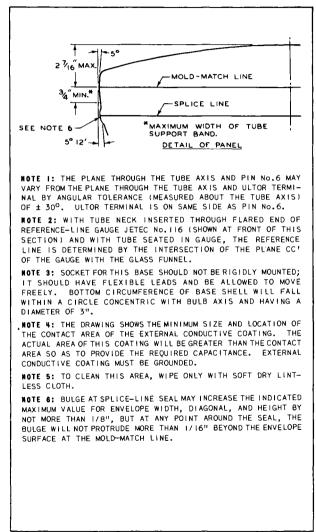
For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section

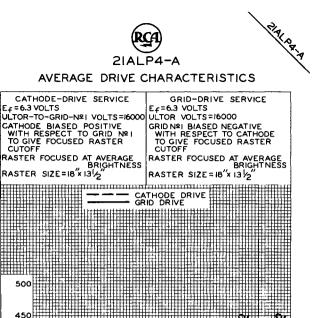


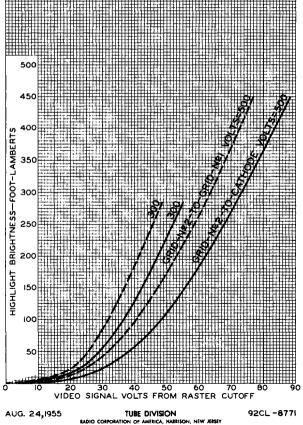

RCA 2IALP4-A KINESCOPE



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


(RCA) 21ALP4-A KINESCOPE

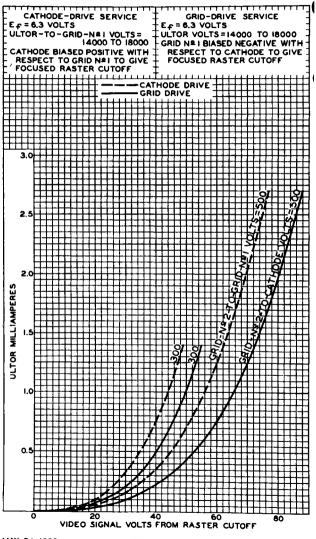





2IALP4-A KINESCOPE









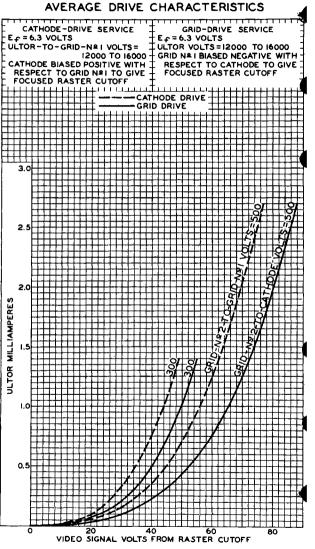



AVERAGE DRIVE CHARACTERISTICS



MAY 24, 1955






RECTANGULAR GLASS TYPE

ALUMINIZED SCREEN MAGNETIC DEFLECTION

The 21ALP4-B is the same as the 21ALP4-A except that it has a maximum ultor voltage rating of 20000 volts and has ULTOR CUR-RENT vs DRIVE curves as shown on the back of this sheet.





2IALP4-B





RECTANGULAR GLASS TYPE MAGNETIC FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

General: Heater. for Unipotential Cathode: Voltage..... 6.3 ac or dc volts 0.6 ± 10% . . Current. . . . . . . . amn' Direct Interelectrode Capacitances: Grid No 1 to all other electrodes. . 6 μµf Cathode to all other electrodes. . . 5 μuf (750 max. μµf External conductive coating to ultor 1500 min. μµf Faceplate, Spherical . . . . . Filterglass . . Light transmission (Approx.) . . . . 75% Phosphor (For curves, see front of this Section). -Sulfide Type Aluminized Fluorescence . . White White Phosphorescence. Persistence. . Short Focusing Method. Magnetic . Deflection Method. Magnetic Deflection Angles (Approx.) 900 Diagonal . 85° Horizontal Vertical . . 68⁰ Requires External Single-Field Magnet lon-Trap Gun . Tube Dimensions: Overall length . . 20" ± 3/8" Greatest width . . 20-1/4" + 1/8" 16-3/8" ± 1/8" 21-3/8" ± 1/8" Greatest height. . . . . . ± 1/8" Diagonal . . Screen Dimensions (Minimum): 19-1/8" Greatest width . . 15" Greatest height. 20-1/4" Diagonal . . . 255 sa. in. Projected area 24 lbs Weight (Approx.) Mounting Position. . Any . (JETEC No.J1-21) Сар. . . . . . . . . . Recessed Small Cavity Bulb . J171 (90°) . . . . . Basing Designation for BOTTOM VIEW . . . 12N . . . . . . Pin 1 – Heater Cap - Ultor c c Pin 2 - Grid No.1 (Grid No.3, Pin 10 - Grid No.2 Collector) 6 Pin 11 - Cathode C - External Pin 12 - Heater Conductive Coating The "ultor" in a cathode-ray tube is the electrode to which is applied the highest devoltage for accelerating the electrons in the Deam prior to its deflection. In the 21AMPU-A, the ultor function is performed by grid No.3. Since grid No.3 and collector are connected together within the 21AMPU-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves. TENTATIVE DATA 1 NOV. 1. 1955



# RCA 21AMP4-A KINESCOPE

GR I D-DR I VE	SERVICE		
Unless otherwise specified, with respect		ies are pos	itive
Maximum Ratings, Design-Center	Values:		
ULTOR VOLTAGE	••••	. 18000 max . 500 max	
Negative bias value Positive bias value Positive peak value	· · · · · ·	125 max 0 max 2 max	. volts
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect During equipment warm-up pe			-
not exceeding 15 s After equipment warm-up per Heater positive with respect	econds	. 180 max	. volts
Equipment Design Ranges:		•	
With any ultor voltage $(E_{C_2k})$ is	etween 1400	o* and 1800	o volts
and grid-No.2 voltage (É _{C2k} )	between 20	o and 500 i	volts
Grid-No.1 Voltage for Visual Extinction of Focused Raster Grid-No.1 Video Drive	9.3% to -24	ãofEc₂k	volts
from Raster Cutoff (Black Level):			
White-level value (Peak positive) Grid-No.2 Current	9.3% to 24%		volts µamp
Focusing-Coil Current (DC) ^o .	L 1 16000	108 ± 20%	ma
Ion-Trap Magnet Current (Average)**	$\sqrt{\frac{E_{C3k}}{16000}}$	× 30	ma
Minimum Field Strength of PM Ion-Trap Magnets	$\sqrt{\frac{E_{C3k}}{16000}}$	× 33	gausses
Field Strength of Adjustable Centering Magnet	0 to	в	gausses
Examples of Use of Design Range	9:		
With ultor voltage of	16000	18000	volts
and grid-No.2 voltage of Grid-No.1 Voltage for	300	400	volts
Visual Extinction of Focused Raster			
Grid drive is the operating conditient the grid-No.1 potential with respectively with respectively.	on in which t t to cathode.	he video sign	al varies
*,0, **,§: See next page.			
NOV. 1, 1955 TUBE DI		TENTATIV	E DATA 1

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 2IAMP4-A



## **KINESCOPE**

Grid-No.1 Vid from Raster	Cutoff			
	(Black Level):			
White-level				
	(Peak positive)	28 to 72	37 to 96	volts
Focusing-Coil	Current (DC)	108 ± 20%	115 ± 20%	ma
Minimum Field				
PM Ion-Trap		33	35	qausses
	magnet	))	))	yausses
Maximum Circui	it Values:			
			1 5	
Grid-No.1-Ciro	cuit Resistance .	• • • • •	1.5 max. 1	negohms
	CATHODE-DRI	VE [®] SERVICE		
	••••••			
Unless othe	rwise specified,		es are posit	:1Ve
	with respect	to grid No.1		
Maximum Rating	s, Design-Center	Values:		
ULTOR-TO-GRID-			18000 max.	volts
		•••••		volts
	GRID-No.1 VOLTAGE		625 max.	
	CATHODE VOLTAGE .		500 max.	volts
	ID-No.1 VOLTAGE:			• •
Positive bia	as value		125 max.	volts
Negative bia	as value		0 max.	volts
Negative pea	ak value		2 max.	volts
PEAK HEATER-CA	ATHODE VOLTAGE:		,	
	tive with respect	to cathode:		
	ipment warm-up pe			
			410 max.	volts
	ceeding 15 second			
	pment warm-up per		180 max.	volts
Heater posit	ive with respect	to cathode .	180 max.	volts
Equipment Desi	ign Ranges:			
	or-to-grid-No.1 v		1) between 5* and 18000	volts
and grid-No.	2-to-grid-No.1 vo	Itage (Ecog)	) between	
-	-	2- 1	220 and 620	volts
Cathodo-to Cri	d-No.1 Voltage			
for Visual f				
		0 50 +0 10	IT OF E.	volts
of Focused F		8.5% to 19.4	+# 01 EC291	voits
Cathode-to-Gr				
Drive from F	Raster Cutoff			
1	(Black Level):			
White-level	value			
	(Peak negative)	8.5% to 19.4	4% of Econt	volts
			-201	
Cathode drive varies the cat electrodes.	is the operating control of the second second second second second second second second second second second se	ondition in whi respect to gri	ich the video d No.1 and th	signal ne other
	d definition decreas No.1 voltage. Ingen oltage should not be	e with decreas eral, the ultor less than 1400	ing ultor vol voltage or the D volts.	tage or ultor-
0,**,§: see next	page.			
NOV. 1, 1955		· · · · ·	TENTATIVE	DATA 2
	TUBE DI			UNIN Z
	RADIO CORPORATION OF AME	RICA, HARRISON, NEW J	ERSEY	



21AMP4-A KINESCOPE

Grid-No.2 Current	—15 to +15 μamp
Focusing-Coil Current (DC) ^o . $\sqrt{\frac{E}{1}}$	<u>c391</u> × 108 ± 20%/ ma 16000
Ion-Trap Magnet Current (Average)**	$\sqrt{\frac{E_{c391}}{10000}} \times 30$ ma
Minimum Field Strength of PM Ion-Trap Magnet§	$\sqrt{\frac{E_{c3g_1}}{16000}} \times 33$ gausses
Field Strength of Adjustable Centering Magnet	0 to 8 gausses
Examples of Use of Design Ranges:	
With ultor-to-grid-No.1	
and grid-No.2-to-grid-No.1	50,00 18000 volts
voltage of 3 Cathode-to-Grid-No.1 Voltage	300 400 volts.
for Visual Extinction of Focused Raster 25 Cathode-to-Grid-No.1 Video Drive from Raster Cutoff (Black Level):	to 58 34 to 78 volts
Minimum Field Strength of	to 58 34 to 78 volts 8±20% 115±20% ma 33 35 gausses
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance	1.5 max. megohms
O For specimen focusing coil similar to JETEC tioned with air gap toward kinescope screer 3 inches from Reference Line (Sze Diemension current is for condition with sharp focu- and combined grid-No.1 voltage and video- produce a highlight brightness of 30 foor- dian Nead Test Pattern set for a 19-1/8">	c Focusing Coil No.109 posi- n and center line of air gap nad Outlfmel. The indicated s at center of picture area signal voltage adjusted to lamberts measured on an In- x 15° picture size.
For JETEC ion-Trap Magnet No.117, or eq trailing edge of the pole pieces located ov and grid No.2 and rotated to give maximum	uivalent, located with the verthe gap between grid No.1 brightness.
§ For specimen PM ion-trap magnet, such as equivalent, located in optimum position i brightness. For a given equipment applicat the strength of the PM ion-trap magnet sho value. The maximum strength of this ma specified minimum value by more than 6 ga insure use of a PM ion-trap magnet allow permit satisfactory performance without to	s Heppner Model No.E437, or and rotated to give maximum Lion, the tolerance range for- ould be added to the minimum gnet should not exceed the usses. This procedure will wing adequate adjustment to oss of highlight brightness.
For X-ray shielding considerat X-RAY PRECAUTIONS FOR CATHO at front of this Se	DDE-RAY TUBES

TENTATIVE DATA 2





# DIMENSIONAL OUTLINE for Type 21AMP4-A is the same as that shown for Type 21ALP4-A, except that the 21AMP4-A has a Small-Shell Duodecal 5-Pin Base CURVES for Type 21AMP4-A are the same as those shown for Type 21ALP4-A





RECTANGULAR METAL-SHELL TYPE MAGNETIC FOCUS

MAGNETIC DEFLECTION

Direct Interelectrode Capacitances: Grid No.1 to All Other Electrodes 6 µµµ Cathode to All Other Electrodes 5 µµµ Faceplate (With about 66% Light transmission) Frosted Filterglass Phosphor (For Curves, see front of this Section). No.4Sulfide Type Fluorescence and Phosphorescence White Persistence of Phosphorescence	DATA	
Voltage 6.3	General:	
BOTTOM VIEW Pin 1 - Heater Pin 2 - Grid No.1 Pin 10 - Grid No.2 Pin 11 - Cathode Maximum Ratings, Design-Center Values: ULTOR® VOLTAGE. GRID-No.2 VOLTAGE. Regative bias value. Negative bias value. Positive peak value. In the 21APW, grid No.3, which has the ultor function, and collector are connected together within the tube and are conveniently referred to collectively as "ultor". The "ultor" in a cathode-ray tube is the electrode, or the electrode in combination with one or more additional electrodes onnected within the tube to it, to which is applied the highest dc voltage for accelerating the electrons in the beam prior	Voltage.       6.3	amp µµf µµf rglass e Type White Short gnetic . 70° . 66° . 50° Magnet -5/16" ± 1/4" ± 1/8" . 4ny
ULTOR VOLTAGE	BOTTOM VIEW Pin 1 - Heater Pin 2 - Grid No.1 Pin 10 - Grid No.2 Pin 11 - Cathode Pin 11 - Cathode BOTTOM VIEW Pin 12 - Heate Metal - Shell Grid N H H H H H H H H H H H H H	r Lip <u>-</u> 0.3,
GRID-No.2 VOLTAGE.       500 max. volts         GRID-No.1 VOLTAGE:       125 max. volts         Positive bias value.       125 max. volts         Positive bias value.       0 max. volts         Positive peak value.       2 max. volts         Positive peak value.       2 max. volts         In the 21APu, grid No.3, which has the ultor function, and collector       are conveniently referred         in connected together within the tube and are conveniently referred       is the ultor function are additional         electrodes connected within the tube to it, to which is applied the highest dc voltage for acceleration the electrons in the beam prior		14.
<ul> <li>Negative bias value</li></ul>	GRID-No.2 VOLTAGE	volts volts
In the 21AP¥, grid No.3, which has the ultor function, and collector are connected together within the tube and are conveniently referred to collectively as "ultor". The "ultor" in a cathode-ray tube is the electrode, or the electrode in combination with one or more additional electrodes connected within the tube to it, to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection.	Positive bias value 0 max.	volts volts volts
	In the 21APN, grid No.3, which has the ultor function, and col are connected together within the tube and are conveniently re to collectively as "ultor". The "ultor" in a cathode-ray tube electrode, or the electrode in combination with one or more addi electrodes connected within the tube to it, to which is appli highest dc voltage for accelerating the electrons in the beam to its deflection.	lector ferred is the tional ed the prior

MAY 1, 1951

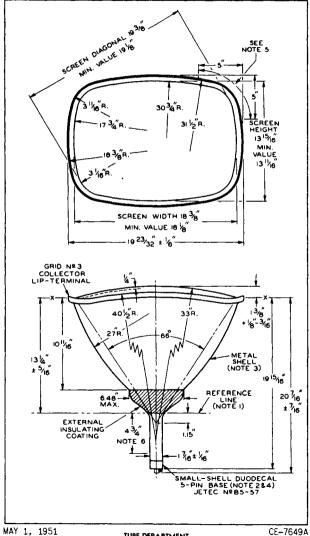
21494

(RCA) 21AP4 KINESCOPE

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to During equipment warm-up peric not exceeding 15 seconds. After equipment warm-up period Heater positive with respect to	od ••••••••••••••••••••••••••••••••••••	410 max. 180 max. 180 max.	volts
heater positive with respect to	cathoue	100 max.	vorts
Typical Operation:			
Ultor Voltage [*] 1 Grid-No.2 Voltage Grid-No.1 Voltage for Visual Extinction of Undeflected	.4000 300	16000 300	volts volts
F	8 to -77 -3	33 to -77	volts
Focusing-Coil Current (DC) ⁰⁰ . 10 Field Strength of Single-	4 ± 6% 1	10 ± 6%	ma
Field Ion-Trap Magnet Ion-Trap Magnet Current	45	50	gausses
(DC, approx.)# Field Strength of Adjustable	90	-	та
Centering Magnet (	) to 8	0 to 8	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance	• • • •	1.5 max.	megohms
Frilliance and definition decrease w general, the ultor voltage should no OD for specimen focusing coil similar positioned with air gap toward kine air gap 3 inches from Reference Li indicated current is for condition wi age and video-signal voltage adjuste to sector of or for a 18-3/8* for the sector of or for a 18-3/8*	t be less th	an 14000 vol	ts.
focused at center ut screent			
# For specimen ion-trap magnet similar located in optimum position and rot	ated to give	maximum bri	ghtness.



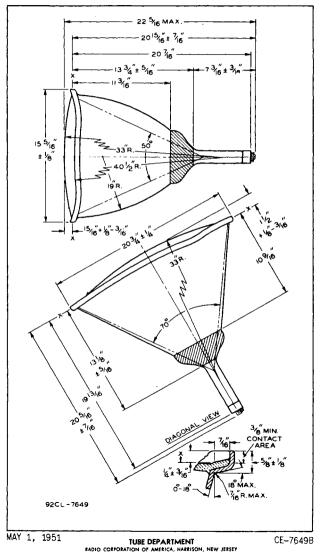



#### OPERATING NOTES

*I-Ray Warning.* When operated at ultor voltages up to 16 kilovolts, the 21AP4 does not produce any harmful x-ray radiation. However, because the rating of the tube permits operation at voltages as high as 19.8 kilovolts (absolute value), shielding of the 21AP4 for x-ray radiation may be needed to protect against possible injury from prolonged exposure at close range whenever the operating conditions involve voltages in excess of 16 kilovolts.

Direction of the field of the ion-trap magnet should be such that the north pole is adjacent to vacant pin position No.8 and the south pole to pin No.2.




2IAP4 KINESCOPE

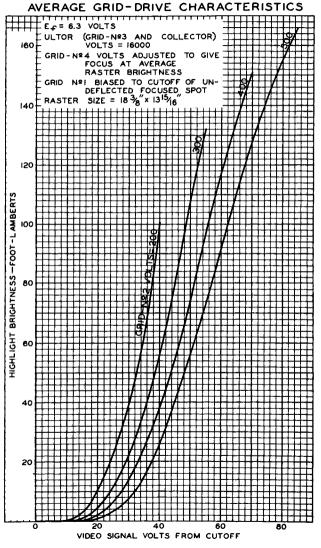


TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





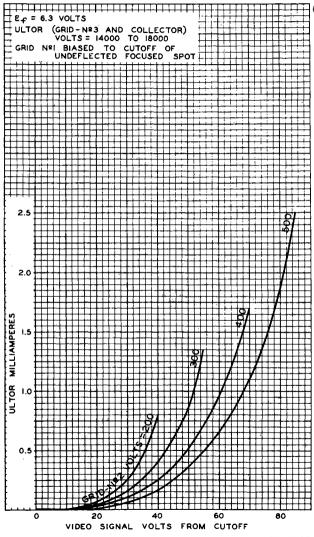







- NOTE 1: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JETEC No.110 (SHOWN AT FRONT OF THIS SECTION) AND WITH TUBE SEATED IN GAUGE, THE REFERENCE LINE IS DETERMINED BY THE INTERSECTION OF THE PLANE CC' OF THE GAUGE WITH THE GLASS FUNNEL.
- NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BERIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL-SHELL AXIS AND HAVING A DIAMETER OF 3-1/4".
- NOTE 3: METAL SHELL AND GLASS FACE OPERATE AT HIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE MUST BE INSULATED TO WITHSTAND THE MAXIMUM APPLIED ULTOR VOLTAGE.
- NOTE 4: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN POSITION NO.6 MAY VARY FROM THE HORIZONTAL AXIS OF THE GLASS FACE BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF  $\pm$  10⁰.
- NOTE 5: SUPPORT TUBE IN LIP REGION ONLY AT CORNERS WITHIN THIS SPACE.
- NOTE 6: LOCATION OF DEFLECTING YOKE AND FOCUSING DEVICE MUST BE WITHIN THIS SPACE.








MAY 18, 1951







MAY 11, 1951

92CM - 7652

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





RECTANGULAR GLASS TYPE	ALUMINIZED SCREEN MAGNETIC DEFLECTION
The 21ATP4 is the same as the items:	e 21 ALP4-A except for the following
Direct Interelectrode Capaci External conductive coatir	itances: ng to ultor $\begin{cases} 1500 \text{ max. } \mu\mu f \\ 1200 \text{ min. } \mu\mu f \end{cases}$





RECTANGULAR GLASS TYPE

)

LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

#### DATA

General:	
Heater, for Unipotential Cathode:         Voltage       6.3         Current       0.6 ± 10%         Direct       Interelectrode Capacitances:         Grid No.1 to all other electrodes       6         Cathode to all other electrodes       5	p  f
External conductive coating to ultor {1500 max	f
Faceplate, Spherical.       Filterglass         Light transmission (Approx.).       719         Phosphor (for curves, see front of this section).       P4—Sulfide Type         Fluorescence       White         Phosphorescence       White         Persistence       Short         Coeffection Method       Electrostatic         Deflection Method       720         Horizontal.       720         Vertical.       533	
Ion-Trap Gun.        Requires External Single-Field Magnet         Tube Dimensions:       Overall length.           Overall length.             Greatest width.              Greatest height               Diagonal.                Diagonal.	
Screen Dimensions (Minimum):       19-1/8"         Greatest width.       15"         Greatest height       20-1/4"         Projected area.       255 sq. in.         Weight (Approx.).       24 lbs         Mounting Position       Any         Cap.	· · · · · · · · · · · · · · · · · · ·
Base Small-Shell Duodecal 6-Pin (JETEC No.B6-63) Basing Designation for EOTTOM VIEW	
•: See next page. NOV. 1, 1955 TUBE DIVISION TENTATIVE DATA :	

TUBE DIVISION



# RCA 2IAVP4 KINESCOPE

#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode Maximum Ratings, Design-Center Values: ULTOR[®] VOLTAGE . . . . . . . 18000 max. volts GRID-No.4 VOLTAGE: Positive value . 1000 max. volts Negative value* GRID-No.2 VOLTAGE. 500 max. volts 500 max. volts GRID-No.1 VOLTAGE: 125 max. volts Negative bias value Positive bias value 0 max. volts 2 max. Positive peak value volts PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds. . . 410 max. volts After equipment warm-up period . . . . 180 max. volts 180 max. volts Heater positive with respect to cathode. Equipment Design Ranges: With any ultor voltage ( $E_{C_Sk}$ ) between 14000# and 18000 volts and grid-No.2 voltage ( $E_{C_2k}$ ) between 200 and 500 volts Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp . . . . -0.4% to +2.2% of Ecsk volts Grid-No.1 Voltage for Visual Extinction of ....-9.3% to -24% of Ecok Focused Raster volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 9.3% to 24% of Ec2k volts Grid-No.4 Current . . . . . -25 to +25 *µ*атр Grid-No.2 Current -15 to +15 μamp Ion-Trap Magnet Current
 (Average)** . . . . . . Ec5k 16000 × 30 ma Minimum Field Strength of Ecsk PM |on-Trap Magnet§ . . . × 33 gausses Field Strength of Adjustable gausses Centering Magnet. . . . . 0 to 8 Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. , *, **#**, **,§: See next page. NOV. 1. 1955 TENTATIVE DATA 1 TUBE DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





## **KINESCOPE**

١

·			
Examples of Use of Design Ra	nges:		
With ultor voltage of	16000	18000	volts
and grid-No.2 voltage of	300	400	volts
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for	-65 to +350	-75 to +400	volts
Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value	-28 to -72	-37 to -96	volts
(Peak positive) Minimum Field Strength of		37 to 96	volts
PM Ion-Trap Magnet	33	35 g	ausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max. m	negohms
CATHODE-	DRIVE" SERVICE		
Unless otherwise specifie			ine
	ct to grid No.		
Maximum Ratings, Design-Cent	er Values:		
ULTOR [®] -TO-GRID-No.1 VOLTAGE GRID-No.4-TO-GRID-No.1 VOLTA		18000 max.	volts
Positive value		1000 max.	volts
Negative value*		500 max.	volts
GRID-No.2-TO-GRID-No.1 VOLTA	GE	625 max.	volts
GRID-No.2-TO-CATHODE VOLTAGE CATHODE-TO-GRID-No.1 VOLTAGE		500 max.	volts
Positive bias value		125 max.	volts
Negative bias value		0 max.	volts
Negative peak value		2 max.	volts
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respec	t to cathode:		
'During equipment warm-up			
not exceeding 15	seconds	410 max.	volts
After equipment warm-up	period	180 max.	volts
Heater positive with respec		180 max.	volts
The "ultor" in a cathode-ray tu the highest dc voltage for acce to its deflection. In the 21A' grid No.5. Since grid No.5, gr gether within the 21AVPu, they "ultor" for convenience in pres	be is the electro elerating the elec VP4, the ultor fu 'id No.3, and col' are collectively enting data and o	ode to which is ctrons in the be inction is perfo lector are connec referred to si curves.	applied am prior ormed by cted to- imply as
This value has been specified t voltage is provided for dynamic	o take care of the focusing.	e condition whe	re an ac
Cathode drive is the operating of the cathode potential with respectively and the cathode potential with re	ondition in which ct to grid No.1 a	the video signa nd the other elec	l varies ctrodes.
<b>#,**,§:</b> See next page.			
NOV. 1 1955		TENTATIVE	DATA
TUB	e division		2

TUBE DIVISION



2IAVP4

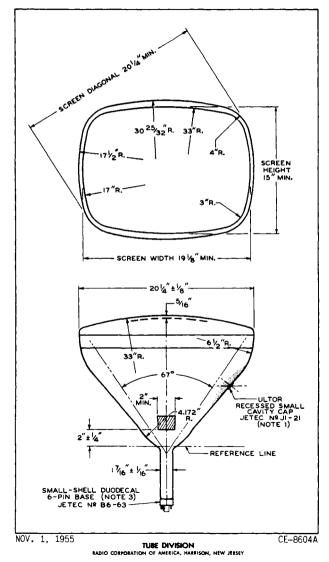
## **KINESCOPE**

í

Equipment Design Ranges:			
With any ultor-to-grid-No.1 voi	tage (E _{CEE1} )	between	
	140001	f and 18000	volts
and grid-No.2-to-grid-No.1 voli	tage (E _{C 281} )	between	• .
	4	220 and 620	volts
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor	N# +- 2 6#	f r	vol+o
Current of 100 µamp ( Cathode-to-Grid-No.1 Voltage	0% to 2.6% o	' [_] c ₅ 91	volts
for Visual Extinction			
	.5% to 19.4% (	of Econ	volts
Cathode-to-Grid-No.1 Video		0291	
Drive from Raster Cutoff			
i (Black Level):			
White-level value (Peak negative) 8.	5% to 19 4%	of E	volts
Grid-No.4 Current	-25 to +	25	μamp
Grid-No.2 Current	-15 to +		µamp
Ion-Trap Magnet Current	IF.		
Ion-Trap Magnet Current (Average)**	$\sqrt{\frac{E_{c_5g_1}}{16000}}$	x 30	ma
Minimum Field Strength of		-	
PM lon-Trap Magnet§	$\sqrt{\frac{E_{c_591}}{2}}$	x 33	gausses
	V 16000		9-00000
Field Strength of Adjustable Centering Magnet	0 to 8		qausses
Centering Magnet	0 10 8		yausses
Examples of Use of Design Ranges	:		
With ultor-to-grid-No.1			
voltage of	16000	18000	volts
and grid-No.2-to-grid-No.1			volts
voltage of	300	400	VOLLS
Grid-No.4-to Grid-No.1 Voltage			
for Focus with Ultor Current of 100 µamp'	0 to 415	0 to 470	volts
Cathode-to-Grid-No.1 Voltage	0 10 420	0 10 4/0	
for Visual Extinction			
of Focused Raster	25 to 58	34 to 78	volts
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff (Black Level):			
White-level value			
(Peak negative)	25 to 58	34 to 78	volts
Minimum Field Strength of		,	
PM Ion-Trap Magnet	33 .	35 (	gausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance		1.5 max. i	negohms
			5
4 <b>6</b>			
*,**,§: See next page.			
NOV. 1, 1955 TUBE DIV		TENTATIVË	DATA 2
	INCOM.		

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

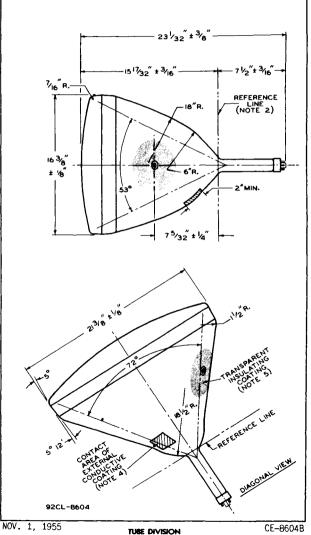





- # Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-wo.1 voltage.in general, the ultor voltage or ultor-togrid-wo.1 voltage should not be less than 14000 volts.
- For JETEC lon-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- 6 For specimen PN ion-trap magnet, such as Heppner Model No.E#37, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section

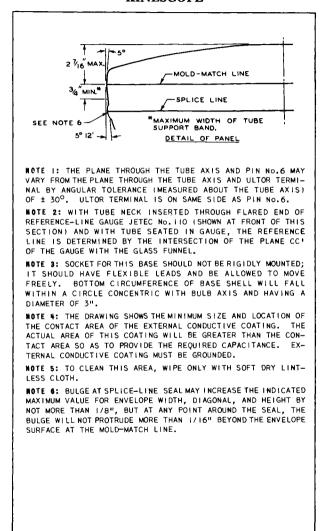



RCA 2IAVP4 KINESCOPE





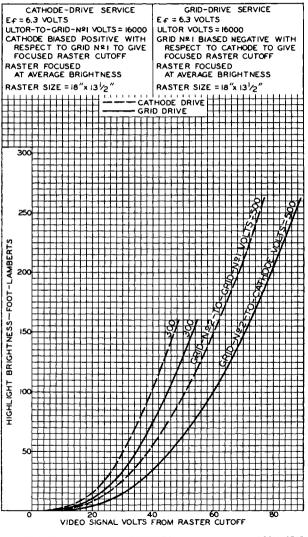







RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



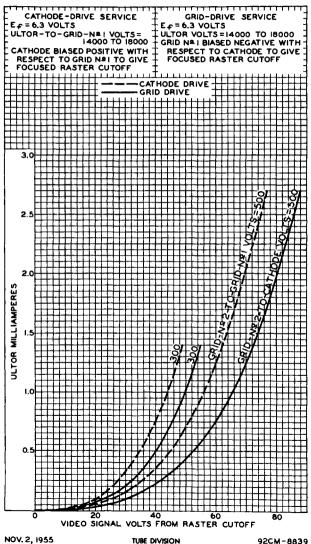

(RCA) 21AVP4 KINESCOPE







## AVERAGE DRIVE CHARACTERISTICS




AUG. 26, 1955





#### AVERAGE DRIVE CHARACTERISTICS



RADIO CORPORATION OF AMERICA, HARRISON, NEW JELSEY





## **KINESCOPE**

RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

The 21AVP4-A/21AUP4-A is the same as the 21AVP4/21AUP4 except for the following item: Phosphor (For curves, see front of this section) . . P4-Sulfide Type

Aluminized

CURVES

for Type 21AVP4-A/21AUP4-A are the same as those shown for Type 21ALP4-A





RECTANGULAR GLASS TYPE MAGNETIC FOCUS

ALUMINIZED SCREEN MAGNETIC DEFLECTION

DATA

2010
General:
Heater, for Unipotential Cathode:
Voltage 6.3 ac or dc volts
Current 0.6 ± 10%
Direct Interelectrode Capacitances:
Grid No.1 to all other electrodes $\dots 6$ $\mu\mu$ f
Cathode to all other electrodes $\dots$ $5$ $\mu\mu$ f
1500 - 15
External conductive coating to ultor• [1500 max. μμτ 1200 min. μμf
Faceplate, Spherical
Light transmission (Approx.).
Phosphor (For curves, see front of this section). P4-Sulfide Type
Aluminized
Fluorescence,
Phosphorescence
Persistence
Focusing Method
Deflection Method
Deflection Angles (Approx.):
Diagonal
Vertical
Ion-Trap Gun Requires External Single-Field Magnet Tube Dimensions:
Overall length
Greatest width
Greatest height
Diagonal
Screen Dimensions (Minimum):
Greatest width
Greatest height
Diagonal
Projected area
Weight (Approx.)
Mounting Position
Cap
Bulb
Base Small-Shell Duodecal 5-Pin (JETEC No.B5-57)
Basing Designation for BOTTOM VIEW
Pin 1 - Heater Cap - Ultor
Pin 2 - Grid No.1
Pin 10 - Grid No.2
Pin 11 - Cathode 🔰 📈 🖉 C - External
Pin 12 - Heater (2) (1) Conductive
() () Coating
<b>0</b> 0
The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 21AWP4, the ultor function is performed by grid No.3. Since grid No.3 and collector are connected together within the 21AWP4, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.
to its deflection. In the 21AWP4, the ultor function is performed by
grid No.3. Since grid No.3 and collector are connected together within
convenience in presenting data and curves.
NOV. 1 1955 TENTATIVE DATA 1

NOV. 1, 1955

#### TUBE DIVISION RADIO CORPORATION OF AMERICA HAPPISON, NEW JERSEY

TENTATIVE DATA 1



## RCA 21AWP4 KINESCOPE

GR I D-DR I VE	SERVICE		
Unless otherwise specified,		es are pos	itive
with respect			
Maximum Ratings, Design-Center	values:	19000	. volts
ULTOR VOLTAGE GRID-No.2 VOLTAGE GRID-No.1 VOLTAGE:		18000 max 500 max	
Negative bias value Positive bias value Positive peak value PEAK HEATER-CATHODE VOLTAGE:	· · · · · · · ·	125 max 0 max 2 max	. volts
Heater negative with respect During equipment warm-up pe not exceeding 15 s After equipment warm-up per Heater positive with respect	riod econds iod	410 max 180 max 180 max	<ul> <li>volts</li> </ul>
Equipment Design Ranges:			
With any ultor voltage $(E_{C_3k})$ b	etween 14000	• and 1800	o volts
and grid-No.2 voltage $(E_{C2k})$	between 200	and 500 v	olts
Grid-No.1 Video Drive	9.3% to -24%	of E _{c2} k	volts
from Raster Cutoff (Black Level): White-level value			
(Peak positive) Grid-No.2 Current.	9.3% to 24% o 15 to +3	of E _{c2} k 15_	volts µamp
Focusing-Coil Current (DC) ^o .	$\sqrt{\frac{E_{C3k}}{16000}} \times 10^{-10}$	08 ± 20%	ma
Ion-Trap Magnet Current (Average)**	$\sqrt{\frac{E_{C3k}}{16000}}$	× 30	ma
Minimum Field Strength of PM Ion-Trap Magnet§	/Ecok	× 33	gausses
Field Strength of Adjustable Centering Magnet	0 to 8		gausses
Examples of Use of Design Range	s:		
With ultor voltage of	16000	18000	volts
and grid-No.2 voltage of Grid-No.1 Voltage for	300	400	volts
	-28 to -72		volts
Grid drive is the operating condit the grid-No.1 potential with respect the grid-No.1 potential with respect to the grid with respect to the grid with respect to the grid	ion in which the ct to cathode.	e video sigr	al varies
*,O,**,§: See next page.			
NOV. 1, 1955 TUBE D	VISION	TENTATIV	E DATA 1





## **KINESCOPE**

Grid-No.1 Video Drive from Raster Cutoff	
(Black Level): White-level value (Peak positive) 28 to 72	37 to 96 volts
Focusing-Coil Current (DC). 108 ± 20% Minimum Field Strength of	37 to 96 volts 115 ± 20%/ ma
PM Ion-Trap Magnet 33	35 gausses
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance	1.5 max. megohms
CATHODE-DRIVE® SERVICE	
Unless otherwise specified, voltage value with respect to grid No.1	s are positive
Maximum Ratings, Design-Center Values:	Í
ULTOR-TO-GRID-No.1 VOLTAGE.	18000 max. volts
GRID-No. 2-TO-GRID-No. 1 VOLTAGE.	625 max. volts
GRID-No.2-TO-CATHODE VOLTAGE.	500 max. volts
CATHODE-TO-GRID-No.1 VOLTAGE:	
Positive bias value	125 max. volts
Negative bias value	0 max. volts
Negative peak value	2 max. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period	
not exceeding 15 seconds	410 max. volts
After equipment warm-up period	180 max. volts
Heater positive with respect to cathode .	180 max, volts
Equipment Design Ranges:	
14000	) between = and 18000 volts
	220 and 620 volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction	
of Focused Raster 8.5% to 19.4	% of E _{C291} volts
Cathode-to-Grid-No.1 Video	2-1
Drive from Raster Cutoff	
(Black Level):	
White-level value	<i>d</i>
(Peak negative) 8.5% to 19.4	% of Ec2g1 volts
Cathode drive is the operating condition in which varies the cathode potential with respect to grid electrodes.	ch the video signal No.1 and the other
* Brilliance and definition decrease with decreasi	ng ultor voltage or
<ul> <li>Brilliance and definition decrease with decreasi ultor-to-grid-No.1 voltage. In general, the ultor vi to-grid-No.1 voltage should not be less than 14000</li> </ul>	oftage or the ultor- volts.
⁰ ,**,§: See next page.	
NOV. 1, 1955 TUBE DIVISION	TENTATIVE DATA 2

EADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



2IAWP4 KINESCOPE

Grid-No.2 Current	$-15$ to $+15$ $\mu$ amp
Focusing-Coil Current (DC) ^o .	$\sqrt{\frac{E_{c_{3}g_{1}}}{16000}} \times 108 \pm 20\%$ ma
lon-Trap Magnet Current (Average)**	$\sqrt{\frac{E_{c_3g_1}}{16000}} \times 30$ ma
Minimum Field Strength of PM lon-Trap Magnet§	$\sqrt{\frac{E_{c_3g_1}}{16000}} \times 33 \qquad \text{gausses}$
Field Strength of Adjustable Centering Magnet	0 to 8 gausses
Examples of Use of Design Range	s:
With ultor-to-grid-No.1	
voltage o and grid-No.2-to-grid-No.1	f 16000 18000 voits
voltage o	f 300 400 volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction	
of Focused Raster Cathode-to-Grid-No.1 Video	. 25 to 58 34 to 78 volts
Drive from Raster Cutoff (Black Level)	:
White-level value (Peak negative	
Focusing-Coil Current (DC) Minimum Field Strength of	
PM lon-Trap Magnet	• 33 35 gausses
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance	1.5 max. megohms
produce a highlight brightness of dian Head Test Pattern set for a 2	to JETEC Focusing Coil No.109 Posi- pe screen and center line of air gap Jiegnstonal Outline). The indicated arp focus at center of picture area di video-signal voltage adjusted to 30 foct-lamberts measured on an In- 94 VA* x 15 picture size.
** For JETEC lon-Trap Magnet No.111 trailing edge of the pole pieces lo and grid No.2 and rotated to give	/, or equivalent, located with the cated over the gap between grid No.1 maximum brightness.
§ For specimen PM ion-trap magnet, equivalent, located in optimum pc brightness. For a given equipmer for the strength of the PM ion-trap mum value. The movimum strength r	such as Heppner Model No.E437, or sition and rotated to give maximum tapplication, the tolerance range magnet should be added to the mini- of this magnet should not exceed the han 6 gausses. This procedure will et allowing adequate adjustment to thout.loss of highlight brightness.
For X-ray shielding com X-RAY PRECAUTIONS FO at front of t	OR CATHODE-RAY TUBES

TENTATIVE DATA 2





#### DIMENSIONAL OUTLINE

for Type 21AWP4 is the same as that shown for Type 21AVP4/21AUP4, except that the 21AWP4 has a Small-Shell Duodecal 5-Pin Base

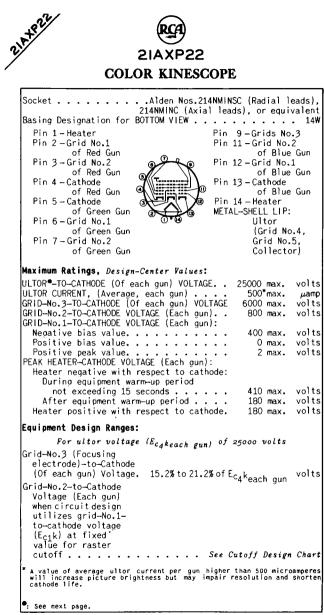
#### CURVES

for Type 21AWP4 are the same as those shown for Type 21ALP4-A





## COLOR KINESCOPE


THREE-GUN SHADOW-MASK TYPE	ELECTROSTATIC FOCUS
MAGNETIC CONVERGENCE	MAGNETIC DEFLECTION

DATA

General	:
---------	---

Electron Guns, Three with Axes Tilted	
Toward Tube Axis	Blue, Green, Red
Each Gun. Paralleled with Each of	
the Other Two Heaters within Tube:	
Voltage 6.3	. ac or dc volts
Current 1.8	
[Direct Interelectrode Capacitances (Approx.):	
Grid No.1 of any gun to all other	
electrodes except the No.1 grids	
of the other two guns	7 <i>μ</i> μf
Cathode of blue gun + cathode of green	
gun + cathode of red gun to all	10 5
other electrodes	16 <i>μ</i> μf
Grid No.3 (Of each gun tied within tube to No.3 grids of other two	
guns) to all other electrodes	af
Faceplate, Spherical	9 $\mu\mu$ f
Light transmission (Approx.)	77%
Screen, on Inner Surface of Faceplate:	
Type Metal-Backed, Tricol	lor. Phosphor-Dot
Phosphor (Three separate phosphors, collect	tively) P22
Fluorescence and phosphorescence of	
separate phosphors, respectively	Blue, Green, Red
Persistence of group phosphorescence	Medium
Dot arrangement	oup consisting of
blue dot, greer	n dot, and red dot
Spacing between centers of adjacent dot trios	(Approx.) 0.029"
Size (Minimum): Greatest width	10 1/16
Height	
Projected area	255 sq iq
Focusing Method.	
Convergence Method	Magnetic
Deflection Method	Magnetic
Deflection Angles (Approx.):	Ŷ
Horizontal	70 ⁰
Horizontal	•••• 55 ⁰
Tube Dimensions:	
Maximum overall length	25-5/16"
Diameter:	
At lip	20-9/16" ± 1/8"
At flange	21-1/4" max.
Weight (Approx.)	
Mounting Position,	Metal_Shell Lie
Ultor [●] Ťerminal	IFTEC No B12-131)
The second second repeat 12-1 in the	(1) 10, 012 1) 1)
•	
: See next page.	
MAR. 1, 1955 TUBE DIVISION	TENTATIVE DATA 1
RADIO CORPORATION OF AMERICA, HARRISON, NEW JER	

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



TUBE DIVISION

MAR. 1. 1955

TENTATIVE DATA 1





## COLOR KINESCOPE

Grid-No.1-to-Cathode Volt- age (Each gun) for Visual	
Extinction of Focused	
Raster when circuit de-	
sign utilizes grid-No.2- to-cathode voltage	
(E _{c2k} ) at fixed value See Cutoff Design Char	rt
Variation in Raster	
Cutoff Between Guns	
in Any Tube ± 21% of average of highest and lowest cutoff values	
Grid-No.3 Current for ultor	
current of 800 μamp45 to +75 μar	πp
Grid-No.2 Current (Each gun)5 to +5 μar	πp
Percentage of Total Ultor Current Supplied by Each Gun:	
To produce Illuminant-C White	
(I.C.I. Coordinates x = 0.310, y = 0.316):	
Red gun 47 to 67 per ce	nt
Blue gun 11 to 24 per ce	
Green gun 20 to 33 per ce	nt
To produce White of 8500°K +	
27M.P.C.D. (I.C.I. Coordin- ates x = 0.287, y = 0.316):	
$\begin{array}{c} \text{a tes } x = 0.267, \ y = 0.9167. \\ \text{Red gun} \dots \dots \dots \dots \dots \dots 42 \text{ to } 60 \qquad \text{per ce} \end{array}$	nt
Blue gun 12 to 27 per ce	
Green gun 23 to 38 per ce	nt
Maximum Raster Shift in Any	
Direction from Screen Center ^a . 1 inc	2n
Maximum Compensation to be Pro- vided by the Following Components:	
Purifying coil or magnet Raster shift of 1" in any di rection from screen cente	
Converging component (Each gun):	
For static convergence-	1
After adjustment has been	
made for optimum color	
purity and dynamic convergence	ا «۵
the highest dc voltage for accelerating the electrons in the beam pri	or
grid No.4. Since grid No.4, grid No.5, and collector are connected t	0- 0-
• The "ultor" in a cathode-ray tube is the electrode to which is appli the highest dc voltage for accelerating the electrons in the beam pri to its deflection. In the 21AXP22, the ultor function is performed grid Mo.w. Since grid Mo.w. grid No.5, and collector are connected t gether within the 21AXP22, they are collectively referred to simply "ultor" for convenience in presenting data and curves.	as
^D centering of the raster on the screen is accomplished by passing dire current of the required value through each pair of deflecting colls compensate for raster shift resulting from adjustments for optimum colls	ct
compensate for raster shift resulting from adjustments for optimum co	)n-
vergence and color purity.	
	┛

MAR. 1, 1955



# 2IAXP22 COLOR KINESCOPE

For dynamic convergencet-
Effected by mmf of approxi- mately parabolic waveshape synchronized with scanning
Horizontal:
Red spot and green spot Shift of 1/4" Blue spot
Vertical:
Red spot and green spot
Blue-positioning magnet (Blue gun):
After adjustment has been made for color purity
and dynamic convergence
Examples of Use of Design Ranges:
For ultor voltage of 25000 volts
Grid-No.3 (Focusing electrode)- to-Cathode (Of each gun) Voltage
Grid-No.2-to-Cathode Voltage (Each gun) when circuit design utilizes grid-No.1-to-cathode voltage of -70 volts for raster cutoff
Grid-No.1-to-Cathode Voltage (Each gun) for Visual Extinction of Focused Raster when circuit design utilizes grid-No.2-to- cathode voltage of 200 volts45 to -100 volts
Limiting Circuit Values:
High-Voltage Circuits:
In order to minimize the possibility of damage to the tube caused by a momentary internal arc, it is recommended that the <i>ultor power supply</i> and the <i>grid-No.3 power supply</i> be of the limited-energy type with inherent regulation to limit the continuous short-circuit current to 50 milliamperes. In addition, to prevent cathode damage with resultant decrease in tube life, the effective resistance between the ultor power supply output capacitor and the ultor, and the effective resistance between grid-No.3 power supply output capacitor and the grid-No.3 electrode should not be less than 50000 ohms. These resistances should be capable of withstanding the maximum instantaneous currents and voltages in their indicated values apply when RCA test yoke is used with the 21AXP22.

21AXP22



### COLOR KINESCOPE

respective circuits. It is to be noted that the effectiveness of the resistance between the ultor power supply output capacitor and the ultor may be impaired if capacitance in excess of 750  $\mu\mu$ f is introduced between the kinescope and ground by the mounting arrangement of the kinescope.

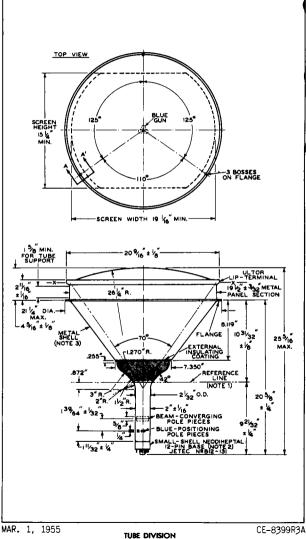
In equipment utilizing a well-regulated ultor power supply, the grid-No.g-circuit resistance should be limited to 7.5 megohms.

Low-Voltage Circuits:

Grid-No.l-Circuit Resistance (Each gun). . 1.5 max. megohms

When the cathode of each gun is not connected directly to its associated heater, the grid-No.2-to-heater circuit, the grid-No.1-to-heater circuit, and the cathode-to-heater circuit, should each have an impedance such that their respective power sources in combination will not supply an instantaneous or continuous short-circuit current of more than 300 milliamperes total. Such current limitation will prevent heater burnout in case of a momentary internal arc within the tube.

When the cathode is connected directly to the heater, the grid—No.2-to-heater circuit, and the grid—No.1-to-heater circuit should have an impedance such that their respective power sources in combination will not supply an instantaneous or continuous short-circuit current of more than 300 milliamperes total. Such current limitation will prevent heater burnout in case of a momentary internal arc within the tube.


#### X-RAY WARNING

X-ray radiation is produced by the 21AXP22 when it is operated at its normal ultor voltage. The radiation is through the faceplate, and is sufficient to require the adoption of safety measures in TV receivers. Shielding such as that provided by a 1/4-inch thickness of safety glass (lime) in front of the faceplate, should prove adequate to provide protection against personal injury from prolonged exposure at close range when the tube is operated at its maximum ultor voltage rating.

When this tube is being serviced outside of the TV receiver cabinet, it should never be operated without providing adequate X-ray shielding in front of faceplate. Because the ultor voltage may rise above its maximum rated value for short periods during adjustment with increase in the amount of X-ray radiation, provision should be made for placing a 3/B-inch thickness of safety glass in front of the faceplate to avoid the hazard of X-ray radiation.



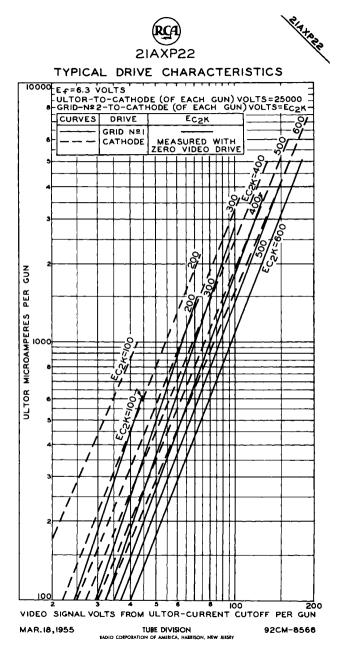
2IAXP22 COLOR KINESCOPE



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



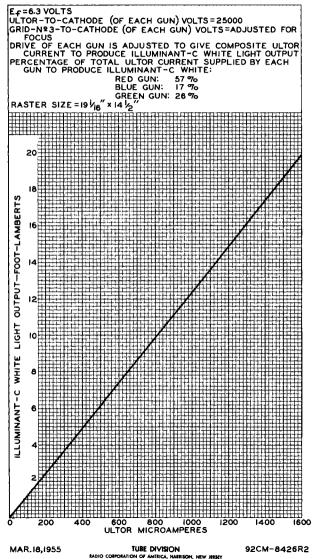
92CL-8399R3




# (RCA) 2IAXP22 COLOR KINESCOPE

**NOTE I:** REFERENCE LINE IS DETERMINED BY POSITION WHERE A CYLINDRICAL GAUGE 2.465" ± 0.001" I.D. CONCENTRIC WITH NECK AXIS, WILL REST ON ENVELOPE FUNNEL.

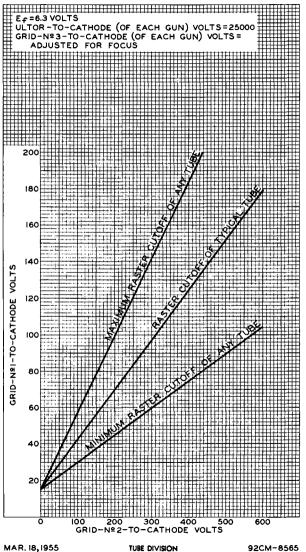
NOTE 2: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNT-ED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL-SHELL AXIS AND HAVING A DIAMETER OF 3".


NOTE 3: METAL SHELL AND GLASS FACE OPERATE AT HIGH VOLT-AGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE MUST BE INSULATED TO WITHSTAND THE MAXIMUM APPLIED ULTOR VOLTAGE.








## TYPICAL LIGHT-OUTPUT CHARACTERISTIC







## CUTOFF DESIGN CHART



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



2iC+8₽



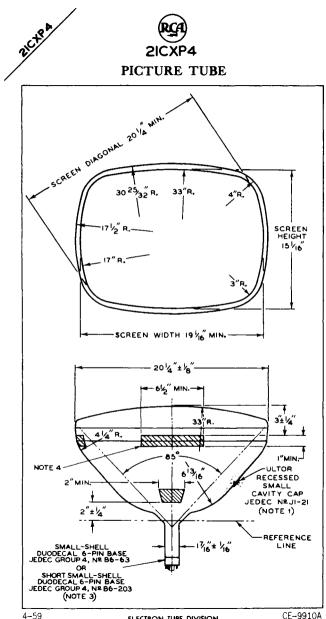
RECTANGULAR GLASS TYPE ALUMINIZED SCREEN LOW-VOLTAGE ELECTROSTATIC FOCUS MAGNETIC DEFLECTION LOW GRID-No.2 VOLTAGE CATHODE-DRIVE TYPE With heater having controlled warm-up time

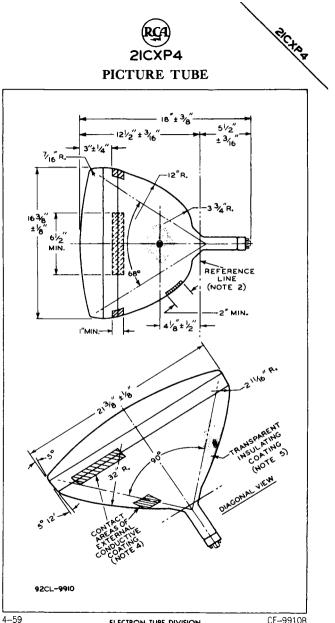
DATA

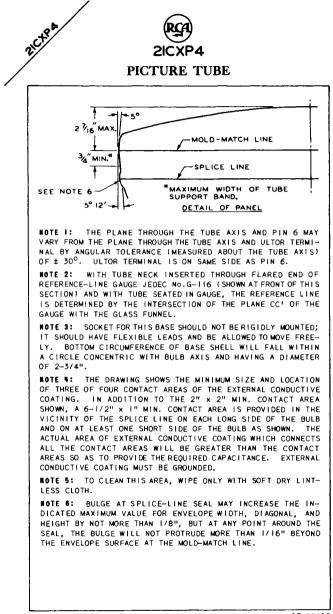
Bala
General:
<ul> <li>Heater, for Unipotential Cathode:</li> <li>Voltage</li></ul>
Direct Interelectrode Capacitances: Grid No.1 to all other electrodes
Light transmission (Approx.)
Fluorescence
Deflection Angles (Approx.): Diagonal
Overall length
Greatest width         19-1/16"           Greatest height         15-1/16"           Diagonal         20-1/4"           Projected area         262 sq. in.           Weight (Approx.)         24 lbs           Operating Position         Any           Cap.         Recessed Small Cavity (JEDEC No.JI-21)
Bulb

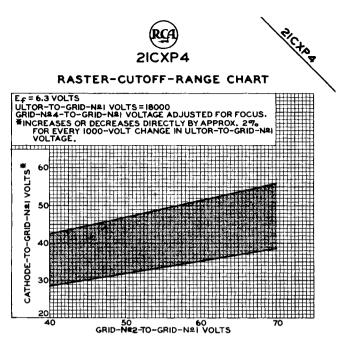
TENTATIVE DATA 1

/				
cte ^a	RCA			
9/	2ICXP4			
	PICTURE TU	JBE		
Basing Designation	for BOTTOM VIEW		• • • •	1
Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater		)	Grid Colle -Extern	uctive
	CATHODE-DRIVE® SE	RVICE		
	specified, voltages the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		are pos	itive
Maximum Ratings, Des	ign-Center Values	: (		
ULTOR-TO-GRID-No.1 V	OLTAGE	· {20000 12000	max. min	vol vol
GRID-No.4-TO-GRID-No				
Positive value		. 1000	max.	vol vol
Negative value GRID-No.2-TO-GRID-No	1 VOLTAGE	. 64	max. max.	vol
CATHODE-TO-GRID-No.1	. VOLTAGE:	• • • •		
Positive-peak valu		. 200		vol
Positive-bias valu Negative-bias valu		. 140		vol vol
Negative-peak valu		. 2		vol
PEAK HEATER-CATHODE Heater negative wi to cathode: During equipment	VOLTAGE: th respect			
not exceeding	15 seconds	. 410	max.	vol
After equipment	warm-up period .	. 180	max.	vol
Heater positive wi to cathode		. 180	max.	vol
Equipment Design Ran	290	-50		
	to-grid-No.1 voli	tape (E	.) beta	veen
12000 and 2000	o volts and grid Ec _{2g1} ) between 40	<i>i−N</i> o.2−to-	-grid-M	10.1
Grid-No.4-to-Grid-No Voltage for focus Cathode-to-Grid-No.1	Voltage	O to	350	vol
(E _{kg1} ) for visual of focused raster ⁴	extinction	laster-Cut	off-Ran	ge Cha
Cathode-to-Grid-No.1 Drive from Raster	Cutoff (Black Lev	el):		
White-level value				
(Peak negative).				
	C ka 1	except v		
■,●,§,▲: See next page.		ne	egative	voita

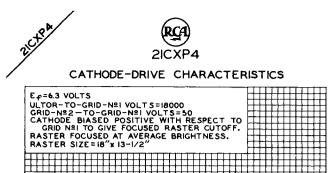

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

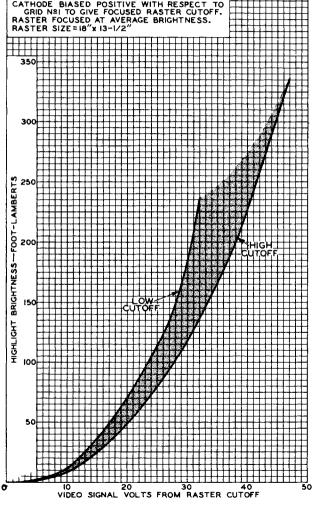


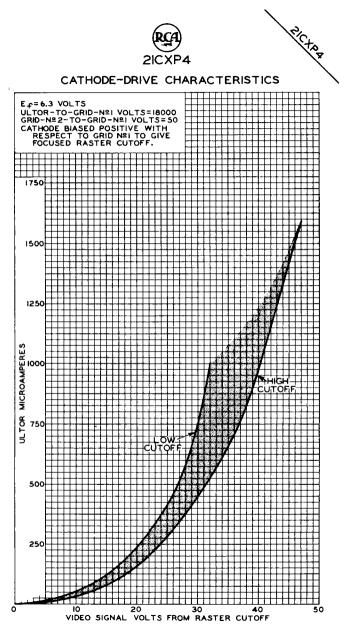


²¹C+8₽

Grid Fiel	-No.4 Current	-25 to +25 -15 to +15	<u>µ</u> а µа
	le Centering Magnet"	0 to 8	gausses
[	ples of Use of Design Ranges:		
1	th ultor-to-grid- No.1 voltage of d grid-No.2-to-grid-	18000	volts
	No.1 voltage of	50	volts
fc Cath	-No.4-to-Grid-No.1 Voltage r focus	0 to 350	volts
ot Cati	focused raster	32 to 47	volts
	<pre>ive from Raster Cutoff(Black Level): ite-level value</pre>	-32 to -47	volts
	mum Circuit Values:	<i>y</i> ₂ to 11	
	-No.1-Circuit Resistance	1.5 max.	megohms
e l	thode drive is the operating condition in ries the cathode potential with respect to g ectrodes.		
Th lu th si su su	is value is a working design-center minimum. te minimum, ultor-to-grid-wo.t voltage is 11. Serviceability of the ZICXP4 will be impai aner has the responsibility of determining that under the worst probable operatin pply-voltage variation and equipment variati tor-to-grid-Wo.t voltage is never less than 1	. The equivale ,000 volts, bel red. The equip a minimum desi g conditions i on the absolute 1.000 volts.	ent obso- low which pment de- ign value nvolving e minimum
S Th tu st No	e grid—No.4—to-grid—No.1 voltage required for be is independent of ultor current and will ant for values of ultor-to-grid—No.1 voltage 1 voltage within design ranges shown for the	focus of any in remain essentia e or grid-No.2- ese items.	ndividual ally con- -to-grid-
Th 2 an cr	e cathode-to-grid-No.1 voltage (E _{kg1} ) will in per cent for every 1000-volt increase in ult d will decrease by approximately 2 per cent ase in ultor-to-grid-No.1 voltage.	or-to-grid-No.1 for every 1000-	oximately L voltage -volt de-
Di no de	stance from Reference Line for suitable PM ( lexceed $2-1/2^4$ . Excluding extraneous fields flected focused spot will fall within a ci lius concentric with the center of the tube f it the earth's magnetic field can cause as mu on of the spot from the center of the tube fac	centering magne , the center of rcle having a	et should f the un- 3/8-inch
	For X-ray shielding consideration X-RAY PRECAUTIONS FOR CATHODE- at front of this Sectio	RAY TUBES	
1			






92CS-99II





ELECTRON TUBE DIVISION BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





# PICTURE TUBE

RECTANGULAR GLASS TYPE LOW-VOLTAGE ELECTROSTATIC FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

Intended for use in equipment having series heater-string arrangement

DATA
General:
Heater, for Unipotential Cathode:         Voltage       6.3      ac or dc volts         Current       0.6      ac         Warm-up time (Average)       11      sec         For definition of heater warm-up time and method of determining       it, see sheet IEATER WARM-UP TIME MEASUREMENT at front of         Receiving Tube Section.
Direct Interelectrode Capacitances: Grid No.1 to all other electrodes 6 μμ Cathode to all other electrodes 5 μμ External conductive coating to ultor {2500 max. μμ Z000 min. μμ Faceplate, Spherical
Aluminized Phosphorescence
Overall length.       14-11/16" ± 5/16'         Greatest width.       20-1/4" ± 1/8'         Greatest height       16-3/8" ± 1/8'         Diagonal.       21-3/8" ± 1/8'         Neck length       5-7/16" ± 1/8'         Screen Dimensions (Minimum):       5-7/16" ± 1/8'
Greatest width

LIDAPA	RCA				
DAT					
<b>v</b> /	2IDAP4				
<b>P</b> ]	CTURE 7	TUBE			
Base		mall-But ement 2,			
Basing Designation f				· · ·	
Pin 1-Heater Pin 2-Grid No.1 Pin 3-Grid No.2 Pin 4-Grid No.4 Pin 6-Grid No.1 Pin 7-Cathode Pin 8-Heater		0	C – E	ltor Grid N Collec xterna Conduc Coatir	lo.5, tor) 1 tive
6	RID-DRIVE* SE	RVICE			
Unless otherwise sp wit	ecified, volt h respect to		ies are	posit	ive
Maximum and Minimum Ra	tings, Design	-Center	Values	:	
ULTOR VOLTAGE			18000 12000		vol
GRID-No.4 (FOCUSING) V	OLTAGE:		(12000-	min.	vol
Positive value		• • •	1000	max.	vol
Negative value GRID-No.2 VOLTAGE	•••••••••	• • •	500 500	max. max.	vol vol
GRID-No.1 VOLTAGE:		•••	000	max.	•0,
Negative-peak value		· · ·	200	max.	vol
Negative-bias value Positive-bias value		• • •	140	max. max.	vol vol
Positive-peak value			2		vol
PEAK HEATER-CATHODE VO					
Heater negative with During equipment w					
not exceeding 15			410	max.	vol
After equipment wa	rm−up period.		180	max.	vo]
Heater positive with	respect to ca	thode.	180	max.	vol
Equipment Design Range					
With any ultor voltage and grid-No.2 volt	(Ecsk) betwe	en 12000	and	18000.	volt
ana grid-No.2 volt	age (Eczk) be				
Grid-No.4 Voltage for Grid-No.1 Voltage (E _{C)}	rocus∘ k)	(	) to <b>4</b> 00		vol
for visual extinc- tion of focused rast	er. Saa	Raster-	Cutoff	-Ronco	Cha
	S		Grid-D		
Grid No.1 Video Drive From Raster Cutoff					
(Black Level):					
White-level value					
(Peak positive)		me value			
	Εc	∣k excep		o dr≀v tive v	
			P031	v	Jira
≜.●,§: See next page.					





)

RECTANGULAR GLASS TYPE

RECTANGULAR GLASS	S TYPE
MAGNETIC FOCUS	MAGNETIC DEFLECTION
DATA	
General:	
Heater, for Unpotential Cathode:	1
Voltage 6.3 .	ac or dc volts
Current $0.6 \pm 10$	
Direct Interelectrode Capacitances:	
Grid No.1 to all other electrodes	6
Cathode to all other electrodes	
	(750
External conductive coating to ult	
Faceplate.Cylindrical	l500 min. μμf
Light transmission (Approx.)	
Phosphor (For curves, see front of this s	
Fluorescence.	White
Phosphorescence	White
Persistence	Short
Focusing Method	
Deflection Method	
Deflection Angles (Approx.):	••••••••••••••••••••••••••••••••••••••
Diagonal.	
Horizontal.	
Vertical.	500
Ion-Trap Gun Requires Ext	ernal Single-Field Magnet
Tube Dimensions:	ernar erngre i rera magnet
Overall length.	23" ± 3/8"
Greatest width	20-1/4" ± 1/8"
Greatest height	15-9/16" ± 1/8"
Diagonal	
Screen Dimensions (Minimum):	
Greatest width	19–1/8"
Greatest height	13-7/8"
Diagonal	
Projected area	238 sq. in.
Weight (Approx.)	29 lbs
Mounting Position	Any
Cap Recessed Smal	1 Cavity (JETEC No.J1-21)
Bulb	J170
	al 5-Pin (JETEC No.B5-57)
Basing Designation for BOTTOM VIEW	
Pin 1 - Heater	Cap - Ultor
Pin 2 - Grid No.1 5/2 -	(Grid No.3,
Pin 10 - Grid No.2	Collector)
Pin 11 - Cathode	🖻 C - External
Pin 12 - Heater	Conductive
	Coating
• The fullers in a cathorn out tube is the	Plastrada ta which is set
The "ultor" in a cathode-ray tube is the the highest dcvoltage for accelerating the to its deflection. In the 21FW-A, the grid No.3. Since grid No.3 and collector the 21FW-A, they are collectively refer convenience in presenting data and curves	electrode to which is applied in the electrons in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior in the beam prior i
to its deflection. In the 21EP4-A, the L	ultor function is performed by
the 21EP4-A, they are collectively refer	rred to simply as "ultor" for
convenience in presenting data and curves	s.
	- Indicates a change.

#### TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DATA 1

21EP&**

ß 2IEP4-A **KINESCOPE** 

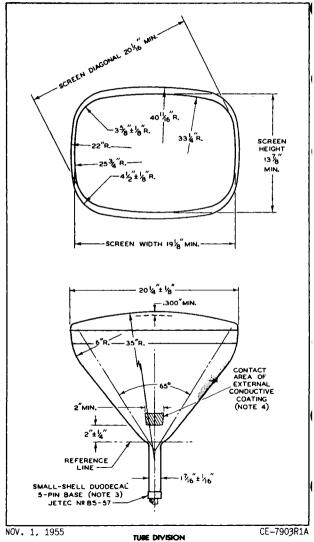
Maximum Ratings, De	sign-Center	Values:		
ULTOR VOLTAGE.			18000 max.	volts
GRID-No.2 VOLTAGE.			500 max.	
GRID-No.1 VOLTAGE:			555ux	
Negative bias val	ue		125 max.	volts
Positive bias va			0 max.	
Positive peak val			2 max.	
PEAK HEATER-CATHODE		• • • • • •	z max.	, vuits
		A		
Heater negative v				
During equipmen			440	
	ding 15 secor		410 max.	
After equipment			180 max.	
Heater positive w	with respect	to cathode.	180 max.	, volts
- Equipment Design Ka				
1 · · · -	-			
For any ultor vol				
and grid-No.2 t	-	oetween 200	ana 500 VC	oits
Grid-No.1 Voltage				
Visual Extinction				
Focused Raster .		-9.3% to -24	1% of L _{C2}	volts
Grid-No.2 Current.		15 to	+15	µamp.
Focusing-Coil Curre	ent (DC) ⁰⁰ .	$\sqrt{\frac{Ec_3}{X}} \times 1$	10 ± 20%	ma
		Y <u>16000</u>	1	
lon-Trap Magnet Cu	rent	/ Ec3 _		
(Average) ^{**}		$\sqrt{\frac{16000}{16000}} \times 3$	0	ma
Minimum Field Stren	nath of	10000		
PM lon-Trap Magne		$\sqrt{\frac{LC_3}{K}} \times 3$	3	gausses
	•	₩ 16000 ^ _	/	gueooco
Field Strength of A				
Centering Magnet	• • • • • •	0 to	8	gausses
Examples of Use of Design Ranges:				
For ultor volta	ge of	14000	16000	volts
and grid-No.2 1	•	300	300	volts
Grid-No.1 Voltage	•	5	5	
Visual Extinction				
Focused Raster		-28 to-72	-28 to -72	volts
Focusing-Coil Curre		$103 \pm 20\%$	$110 \pm 20\%$	ma
Minimum Field Stre		10/1 200	110 1 200	1163
PM Ion-Trap Magne		31	33	gausses
		/-		3 200000
Maximum Circuit Va				
Grid-No.1-Circuit	Resistance .	••••	1.5 max.	megohms
# Brilliance and defi general, the ultor **	voltage should	not be less th	an 14000 vol	ts.
** For JETEC lon-Trap trailing edge of the and grid No.2 and r	Magnet Ho.11 pole pieces l otated to give	7, or equivale ocated over the maximum bright	nt, located gap between g ness.	with the grid No.1
00,§: See next page.			- Indicates a	a change.
NOV. 1, 1955				DATA 1
	TUBE D	VISION		

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





٦

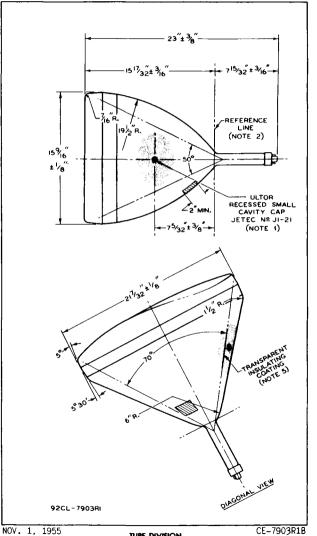

	<ul> <li>For specimen focusing coil similar to JETEC Focusing Coil No.109 positioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference line (See Diemsional Quitine). The indicated current is for condition with sharp focus at center of picture area and combined grid-Ho.1 voltage and video-signal voltage adjusted to produce a highlight Orightness of 30 foot-lamberts measured on an Indiane distance. The indicated for specimen PM ion-trap magnet, such as Heppner Model No.1937, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the minimum value. The maximum strength of this magnet should be added to the minimum value sup or than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.</li> </ul>
	For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section
	AVERAGE GRID-DRIVE CHARACTERISTICS
	for Type 21EP4-A are the same as those shown for Type 21AVP4/21AUP4
1	

NOV. 1, 1955

r



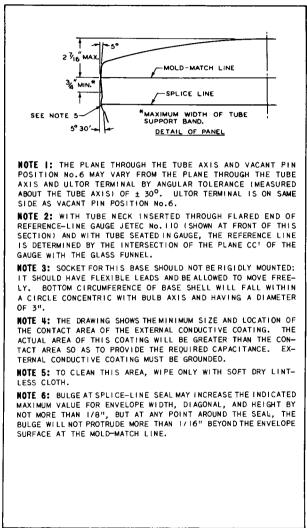
# RCA) 2IEP4-A KINESCOPE




RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY

2IEP4-A

**KINESCOPE** 






TUBE DIVISION RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY



2IEP4-A KINESCOPE







RECTANGULAR GLASS TYPE MAGNETIC FOCUS

)

ALUMINIZED SCREEN MAGNETIC DEFLECTION

The 21EP4-B is the same as the 21EP4-A except for the following item: Phosphor (For curves, see front of this section). P4-Sulfide Type

Aluminized

HIGHLIGHT BRIGHTNESS vs DRIVE CURVES for Type 21EP4-B are the same as those shown for Type 21ALP4-A

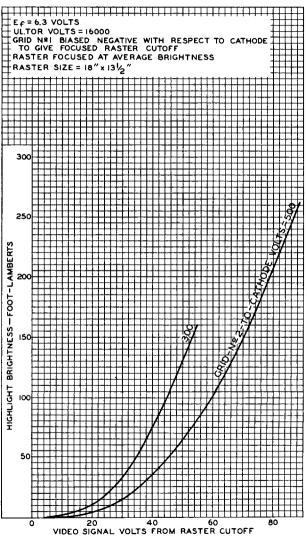




## KINESCOPE

RECTANGULAR GLASS TYPE

LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION


The 21FP4-A is the same as the 21FP4-C except that it utilizes a *non-aluminized phosphor* and has a light output as shown by the curves on the back of this sheet.

.





#### AVERAGE GRID-DRIVE CHARACTERISTICS







# **KINESCOPE**

RECTANGULAR GLASS TYPE LOW-VOLTAGE FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

#### DATA

DATA
General:
Heater, for Unipotential Cathode:
Voltage 6.3 ac or dc volts Current 0.6 ± 10%
Grid No.1 to all other electrodes 6 uuf
External conductive coating to ultor (750 max. µµf
Cathode to all other electrodes 5 $\mu\mu$ f External conductive coating to ultor
Aluminized Fluorescence
Persistence
Deflection Angles (Approx.):         Diagonal         70°           Horizontal         65°         65°           Vertical         50°
on-Trap GunRequires External Single-Field Magnet Tube Dimensions: Overall length
Greatest width
Greatest width         19-1/8"           Greatest height         13-7/8"           Diagonal         20-1/16"           Projected area         238 sq.in.
Weight (Approx.)
Bulb
Pin 1 - Heater Pin 2 - Grid No.1 Pin 6 - Grid No.4 Pin 10 - Grid No.2 Pin 11 - Cathode Cap - Ultor (Grid No.3, Grid No.5, Collector) C - External
Pin 12 - Heater 20 Conductive Coating

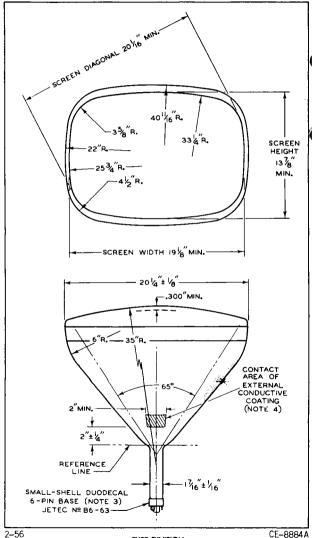
TUBE DIVISION

215 PAr.C

# 2IFP4-C KINESCOPE

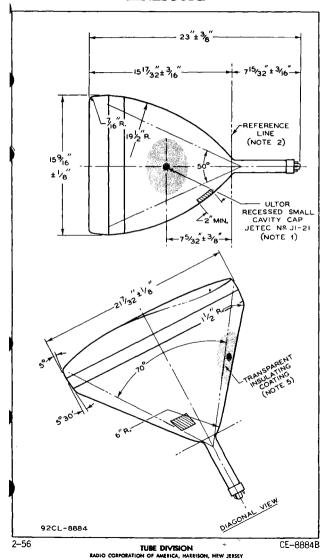
Maximum Ratings, Design-Center Values:	
ULTOR VOLTAGE	volts
GRID-No.4 VOLTAGE:	
Positive value 1000 max.	
Negative value	volts
GRID-No.2 VOLTAGE	volts
GRID-No.1 VOLTAGE: Negative bias value	volts
Positive bias value 0 max.	
Positive peak value	
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period	
not exceeding 15 seconds 410 max.	
After equipment warm-up period 180 max.	
Heater positive with respect to cathode. 180 max.	volts
Equipment Design Ranges:	
With any ultor voltage (Ec5) between 14000# and 18000	volts
and grid-No.2 voltage (Ec ₂ ) between 200 and 500 vo	lts
Grid-No.4 Voltage for	
Focus with Ultor	
Current of 100 µamp0.4% to +2.2% of Ec ₅	volts
Grid-No.1_Voltage for	
Visual Extinction of Focused Raster9.3% to -24% of Ec ₂	volts
Grid-No.1 Video Drive from	VUILS
Raster Cutoff (Black Level):	
White-level value	
(Peak positive) 9.3% to 24% of Ec ₂	volts
Grid-No.4 Current	μamp
Grid-No.2 Current15 to +15	µamp
[on-Trap Magnet Current (Average)**	
$(\text{Average})^{**}$	ma
Minimum Field Strength of	
PM Ion-Trap Magnet § $\sqrt{\frac{Ec_5}{10000}} \times 33$	gausses
¥ 16000	Ĵ
Field Strength of Adjustable	
Centering Magnet 0 to 8	gausses
# Brilliance and definition decrease with decreasing ultor vol general, the ultor voltage should not be less than 14000 volt	tage. In
** For JETEC ion-Trap Magnet No,117, or equivalent, located trailing edge of the pole pieces located over the gap betw Woil and grid No.2 and rotated to give maximum brightness.	een grid
No.1 and grid No.2 and rotated to give maximum brightness.	
§ For specimen PM ion-trap magnet, such as Heppner Model No. equivalent, located in optimum position and rotated to give	L437, or maximum
brightness. For a given equipment application, the tolerance r	ange for
value. The maximum strength of this magnet should not exceed the	e speci-
For specimen PM ion-trap magnet, such as Heppner Model No. equivalent, located in optimum position and rotated to give brightness. For agiven equipment application, the tolerance r the strength of the PM ion-trap magnet should be added to the value. The maximum strength of this magnet should not exceed th fied minimum value by more than 6 gausses. This procedure wil use of a PM ion-trap magnet allowing adequate adjustment t satisfactory performance without loss of highlight brightness	i insure o permit
satisfactory performance without loss of highlight brightness	•





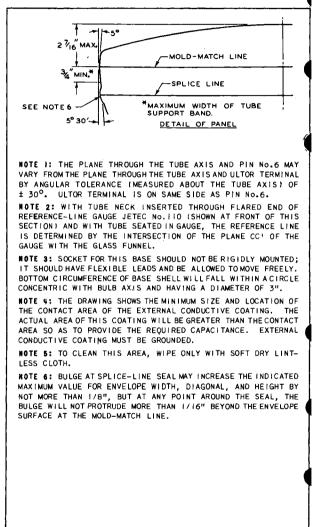

# **KINESCOPE**

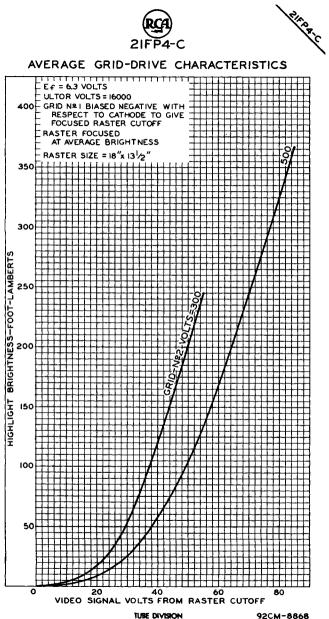
1				
	Examples of Use of Design Ra	inges:		
		14000 300	16000 300	volts volts
)	Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for Visual Extinction of	-55 to +300	-65 to +350	volts
		-28 to -72	-28 to72	volts
ji	(Black Level): White-level value			
	(Peak positive) Minimum Field Strength of	28 to 72	28 to 72	volts
	PM lon-Trap Magnet	31	33 g	gausses
	Maximum Circuit Values:			
	Grid-No.1-Circuit Resistance	· · · · · · ·	1.5 max. r	negohms
		n.		




21FP4-C **KINESCOPE** 

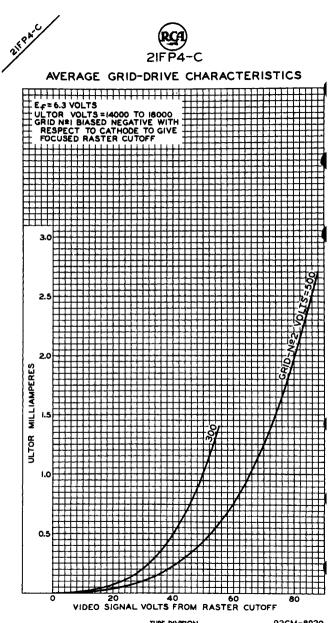



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 2IFP4-C KINESCOPE









(RGA) 2IF P4-C KINESCOPE





BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8868



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-8920





RECTANGULAR METAL-SHELL TYPE

LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION

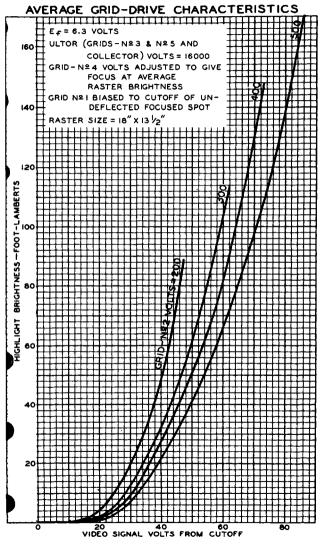
	DATA	
General:		
Heater, for Unipotent	ial Cathode:	
Voltage		ac or dc volts
Current	0.6	ama
Direct Interelectrode		
Grid No.1 to All Ot	ther Electrodes	6 µµ
Cathode to All Othe	r Electrodes	
Faceplate, Spherical		. Frosted Filterglas
Light Transmission		
		P4—Sulfide Typ
Fluorescence		White
Phosphorescence.		
Persistence		Shor
Focusing Method		Electrostatio
Deflection Method.		Magneti
Deflection Angles (Ap		
Diagonal		704
Horizontal		66
Vertical		
Ion-Tran Gun	Requires Externa	l, Single-Field Magne
Tube Dimensions:		,
Maximum Overall Len	ath	
Greatest Diagonal.		$ 20 - 3/4" \pm 1/4"$
Greatest Width		19-23/32" ± 1/8
Greatest Height		. 15-5/16" ± 1/8
Screen Dimensions:		
Greatest Width		183/8'
Greatest Height		
Diagonal		19-3/8
Weight (Approx.)		18 [°] lb:
Mounting Position		Ang
Ultor [®] Terminal		Metal-Shell Li
BaseSma	11-Shell Duodecal (	6-Pin (JETEC No.86-63)
	BOTTOM VIEW	
Pin 1-Heater	0	Pin 12-Heater
Pin 2-Grid No.1		Metal-Shell Lip-
		Grid No.3.
Pin 6-Grid No.4		Grid No.5.
Pin 10-Grid No.2	$\sqrt{\pi}$	Collector
Pin 11-Cathode		corrector
Fill II - Catilode	0-6	
<b>Aaximum Ratings,</b> Desi	gn-Center Values:	
JLTOR [®] VOLTAGE	-	
		· · · · · · · · · ·
In the 21MP4, grid No.	5 which has the ultor	function, grid No.3, and tube and are conveniently tor [®] in a cathode-ray tube tion with one or more ad-
referred to collectivel	u logether within the y as "ultor." The "ul	tor" in a cathode-ray tube
is the electrode, or the	e electrode in combina	tion with one or more ad-
the highest dc voltage f	oraccelerating the el	to it, to which is applied ectrons in the beam prior
AY 1. 1952	TUBE DEPARTMENT	TENTATIVE DAT

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



۹

2IMP4 **KINESCOPE** 

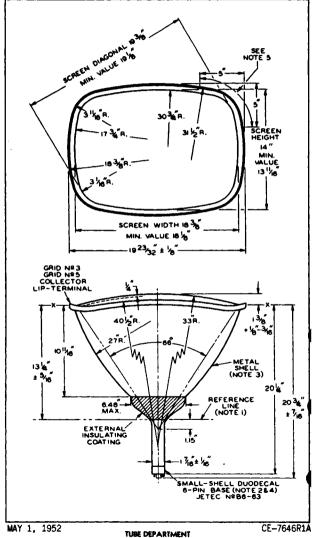

GRID-No.4 VOLTAGE:	
Positive value 1000 max.	volts
Negative value [*]	volts
GR1D-No.2 VOLTAGE	volts
GRID-No.1 VOLTAGE:	
Negative bias value	volts
Positive bias value 0 max.	volts
Positive peak value	volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode: During equipment warm-up period	
not exceeding 15 seconds 410 max.	volts
After equipment warm-up period 180 max.	volts
Heater positive with respect to cathode. 180 max.	volts
Equipment Design Ranges:	
For any ultor voltage $(E_u)$ between 14000# and 16000 v and grid-No.2 voltage $(E_{C_0})$ between 150 and 500 vol	
Grid-No.4 Voltage for Focus	
with Ultor Current of	
$100 \ \mu \text{amp}$	volts
Grid-No.1 Voltage for Visual	
Extinction of Undeflected	
Focused Spot	volts
Grid-No.4 Current25 to +25	μатр
Grid-No.2 Current15 to +15	μamp
Field Strength of Single-Field	
Ion-Trap Magnet (Approx.) V ^{LU} x 45 9  Field Strength of Adjustable	ausses
IFIEID SLIENULI UL ADIUSLADIE	
	ausses
Centering Magnet 0 to 8 g	ausses
Centering Magnet 0 to 8 g Examples of Use of Design Ranges:	
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000	volts
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 300 300	
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 300 300 Grid-No.4 Voltage for Focus	volts
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 300 300 Grid-No.4 Voltage for Focus with Ultor Current of	volts volt
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 300 300 Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp	volts volts volts
Centering Magnet0 to 8gExamples of Use of Design Ranges:70 to 8gFor ultor voltage of1400016000and grid-No. 2 voltage of300300Grid-No. 4 Voltage for Focus300	volts volts volts
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 300 300 Grid-No.4 Voltage for Focus with Ultor Current of 100 μamp55 to +300 -65 to +350 Grid-No.1 Voltage f33 to -77 -33 to -77 Ion-Trap Magnet	volts volts volts
Centering Magnet0 to 8gExamples of Use of Design Ranges:1400016000For ultor voltage of300300grid-No. 4 voltage for Focus300300with Ultor Current of100 µamp	volts volts volts volts
Centering Magnet0 to 8gExamples of Use of Design Ranges:1400016000For ultor voltage of300300Grid-No.4 Voltage for Focus300300With Ultor Current of 100 µamp	volts volts volts volts ausse
Centering Magnet0 to 8gExamples of Use of Design Ranges:1400016000For ultor voltage of300300Grid-No.4 Voltage for Focus300300With Ultor Current of 100 µamp	volts volts volts volts
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of	volts volts volts volts ausse
Centering Magnet0 to 8gExamples of Use of Design Ranges:1400016000For ultor voltage of300300Grid-No.4 Voltage for Focus300300with Ultor Current of100 µamp	volts volts volts volts ausser hegohms here an
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of 900 300 Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp	volts volts volts volts ausser hegohms here an
Centering Magnet0 to 8gExamples of Use of Design Ranges:1400016000For ultor voltage of300300Grid-No.4 Voltage for Focus300300with Ultor Current of100 µamp	volts volts volts volts ausser hegohms here an
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of	volts volts volts volts ausser hegohms here an
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of	volts volts volts volts ausser hegohms here an
Centering Magnet 0 to 8 g Examples of Use of Design Ranges: For ultor voltage of 14000 16000 and grid-No. 2 voltage of	volts volts volts lausse here an age. In

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TI.



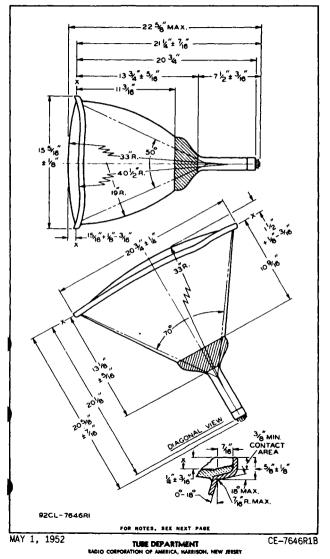
#### 2**IMP4**

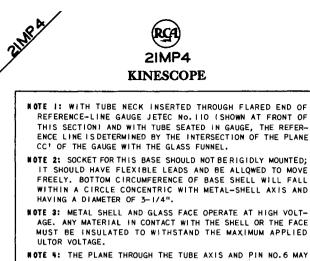



NOV. 29, 1951

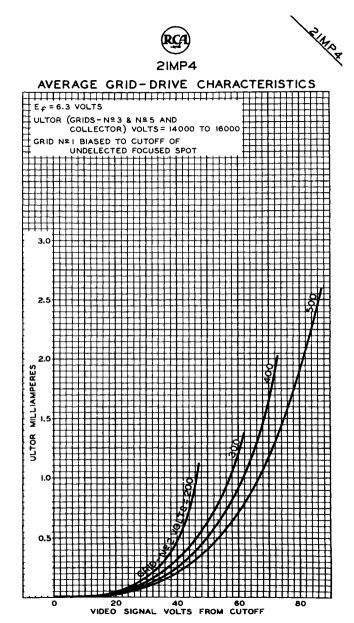
NIAR R




RCA 2IMP4 KINESCOPE




RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY










- NOTE 4: THE PLANE THROUGH THE TUBE AXIS AND PIN NO.6 MAY VARY FROM THE HORIZONTAL AXIS OF THE GLASS FACE BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF ± 10⁰.
- NOTE 5: SUPPORT TUBE IN LIP REGION ONLY AT CORNERS WITHIN THIS SPACE.



NOV. 29, 1951

92CM-7714

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JEE



MAGNETIC FOCUS

MAGNETIC DEFLECTION

#### DATA

Data -
General:
Heater, for Unipotential Cathode: Voltage
Faceplate, Spherical
Deflection Angles (Approx.): Diagonal
Tube Dimensions:       0verall length
Greatest width
Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater Pin 12-Heater P
Maximum Ratings, Design-Center Values:
ULTOR VOLTAGE
Negative-bias value.         125 max.         volts           Positive-bias value.         0 max.         volts           Positive-peak value.         2 max.         volts
4-59 ELECTRON TUBE DIVISION TENTATIVE DATA

ELECTRON TUBE DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



2IWP4, 2IWP4-A PICTURE TUBES

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds After equipment warm-up period Heater positive with respect to cathode.	410 max. 180 max. 180 max.	volts volts volts
Maximum Circuit Values: Grid-No.1-Circuit Resistance	1.5 max.	

For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section





LITER'S

RECTANGULAR GLASS TYPE ALUMINIZED SCREEN LOW-VOLTAGE

RECTANGULAR GLASS TIPE	ALUMINIZEU SUREEN
LOW-VOLTAGE ELECTROSTATIC FOCUS	MAGNETIC DEFLECTION
DATA	
General:	
Heater, for Unipotential Cathode: Voltage	10%amp tive {2500 max. μμf 
Deflection Angles (Approx.): Diagonal	Aluminized

Phosphor (For Curv vpe zed Deflection Anale Diagonal . 700 660 Horizontal 500 Vertical . . Electron Gun . . . .lon-Trap Type Requiring External Single-Field Magnet Tube Dimensions: Overall length . 22-7/16" ± 3/8" Greatest width . 18-11/16" ± 1/8" . 14-15/16" ± 1/8" Greatest height. . . 20-5/8" ± 3/16" Diagonal . . . Neck length. . . . Radius of curvature of faceplate (External surface). . 40" Screen Dimensions (Minimum). Greatest width . . . 17-3/8" Greatest height. 13-5/8" Diagonal . . . 19-1/2" . Projected area . . . 224 sq. in. Operating Position . . . . . Any ٠ Cap. . . . . . . . . . . . . Recessed Small Cavity (JEDEC No.J1-21) Base . . Small-Shell Duodecal 6-Pin (JEDEC Group 4, No.B6-63) Recessed Small Cavity (JEDEC No. J1-21) 

Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 10-Grid No.2 Pin 11 - Cathode Pin 12-Heater



Cap-Ultor (Grid No.3. Grid No.5. Collector) C - External Conductive Coating

Maximum Ratings, Design-Center	Values:
ULTOR VOLTAGE	Values: 18000 max. volts
Positive value	1000 max. volts
Negative value	500 max. volts

TENTATIVE DATA

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



2IXP4-A PICTURE TUBE

GRID-No.1 VOLTAGE:			
Negative-bias value	125	max.	volts
Positive-bias value	0	max.	volts
Positive-peak value	2	max.	volts
PEAK HEATER-CATHODE VOLTAGE:			1
Heater negative with respect to cathode:			[
During equipment warm-up period			
	410	max.	volts
	180	max.	volts
Heater positive with respect to cathode.	180	max.	volts
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance	1.5	max.	megohms
For X-ray shielding considerations, X-RAY PRECAUTIONS FOR CATHODE-RAY at front of this Section			





RECTANGULAR GLASS TYPE

MAGNETIC DEFLECTION

General:         Heater, for Unipotential Cathode:         Voltage       6.3       ac or dc volt         Current       0.6       ar         Direct Interelectrode Capacitances:       Grid No.1 to all other electrodes       6         General:		DATA	
Voltage6.3ac or dc voltCurrent0.6arDirect Interelectrode Capacitances:Grid No.1 to all other electrodes6Grid No.1 to all other electrodes5µµExternal conductive coating to ultoro{750 max.µµFaceplate, Spherical	General:		
Direct Interelectrode Capacitances: Grid No.1 to all other electrodes . 6 /// Cathode to all other electrodes . 5 /// External conductive coating to ultoro {750 max. /// Faceplate, Spherical	Voltage	6.3	ac or dc volts
External conductive coating to ultoro{750 max. 44Faceplate, Spherical	Direct Interelectrode Grid No.1 to all oth	Capacitances: er electrodes .	
Faceplate, Spherical			_o ∫750 max <b>. μμ</b> f
Vertical       5         Jon-Trap Gun        Requires External Single-Field Magn         Tube Dimensions:       0verall length          Overall length        20-1/32" ± 3/3         Greatest width        20-1/4" ± 1/4         Greatest width           Diagonal           Screen Dimensions (Minimum):       Greatest width          Greatest width           Greatest height           Diagonal           Greatest width           Greatest height           Diagonal           Greatest height           Diagonal           Yeight (Approx.)           Mounting Position           Cap           Base           Base           Pin 1 - Heater           Pin 2 - Grid No.1	Faceplate, Spherical Light Transmission ( Phosphor (For curves, see Fluorescence Phosphorescence . Persistence Focusing Method . Deflection Method . Deflection Angles (App Diagonal	Approx.)	(000 mm), Filterglass 759 (on) . P4—Sulfide Type White
Greatest width       20-1/4" ± 1/4         Greatest height       15-9/16" ± 1/4         Diagonal       21-7/32" ± 1/4         Screen Dimensions (Minimum):       21-7/32" ± 1/4         Greatest width       19-1/8         Greatest width       20-1/4" ± 1/4         Greatest width       21-7/32" ± 1/4         Greatest width       14-3/10         Diagonal       20-1/4" ± 1/4         Greatest width       14-3/10         Diagonal       20-1/4" ± 1/4         Projected area       20-1/4" ± 1/4         Weight (Approx.)       20-1/4" ± 1/4         Mounting Position       24 H         Mounting Position       24 H         Cap       24 H         Mounting Position       24 H         Base       5mall-Shell Duodecal 6-Pin (JETEC No.J1-2:         Bulb       11         Base       Small-Shell Duodecal 6-Pin (JETEC No.B6-6;         BOTTOM VIEW       Pin 1-Heater         Pin 2-Grid No.1       Grid No.3,         Pin 6-Grid No.2       Grid No.2         Olictor)       Collector)	Vertical Ion-Trap Gun Tube Dimensions:	. Requires Exter	nal Single-Field Magnet
Greatest width	Greatest width Greatest height Diagonal	· · · · · · · · · · · · · · · · · · ·	23-1/32" ± 3/8" 20-1/4" ± 1/8" 15-9/16" ± 1/8" 21-7/32" ± 1/8"
BOTTOM VIEW Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 0-Grid No.2	Greatest width . Greatest height . Diagonal . Projected area . Weight (Approx.) . Mounting Position . Cap Bulb	Recessed Small (	J170
Pin 11 - Cathode C - External Pin 12 - Heater Conductive Coating Coating	Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 10-Grid No.2 Pin 11-Cathode		Cap-Ultor (Grid No.3, Grid No.5, Collector) C-External Conductive
^O The "ultor" in a cathode-ray tube is the electrode to which is applitude highest dc voltage for accelerating the electrons in the beam power to its deflection. In the 21yPa, the ultor function is performed get hos. Since grid No.5, and collector are connected to get her within the 21yPa, they are collectively referred to simply "ultor" for convenience in presenting data and curves.	^D The "ultor" in a cathode the highest dc voltage for to its deflection. In grid No.5. Since grid N gether within the 21YP4, "ultor" for convenience	-ray tube is the el raccelerating the the 21YPM, the ulto o.5, grid No.3 and , they are collecti in presenting data a	0

AUG. 16, 1954

TUBE DIVISION





#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode

Maximum Ratings, Design-Center Values:

ULTOR VOLTAGE	x. volts
GRID-No.4 VOLTAGE: Positive value	x. volts
Negative value	
GRID-No.2 VOLTAGE	
GRID-No.1 VOLTAGE:	A. VOICS
Negative bias value	x. volts
Positive bias value 0 ma	
Positive peak value	
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode:	
During equipment warm-up period	
not exceeding 15 seconds 410 ma	x. volts
After equipment warm-up period 180 ma	
Heater positive with respect to cathode . 180 ma	x. volts
Equipment Design Ranges:	
With any ultor voltage $(E_{C5k})$ between 14000* and 180	oo volts
and grid-No.2 voltage $(E_{C2k})$ between 200 and 500	volts
Grid-No.4 Voltage for	
Focus with Ultor	
Current of 100 μamp0.4% to +2.2% of E _{c5k}	volts
Grid-No.1 Voltage for	
Visual Extinction of	
Focused Raster9.3% to -24% of Ec2k	volts
Grid-No.1 Video Drive	
from Raster Cutoff	
(Black Level):	
White-level value	- 1 + -
(Peak positive) . 9.3% to 24% of E _{c2k}	olts
Grid-No.4 Current25 to +25	μamp
Grid-No.2 Current15 to +15 Field Strength of Single-Field	μamp
Ion-Trap Magnet (Approx.) . $\sqrt{\frac{con}{14000}} \times 40$	gausses
Field Strength of Adjustable	
Centering Magnet 0 to 8	gausses.
<b>v</b>	I
l.	
Grid drive is the operating condition in which the video si the grid—No.1 potential with respect to cathode.	gnal varies
she gire-wort potential with respect to cathole.	
	:
• : See next page.	

AUG. 16, 1954





٦

# **KINESCOPE**

Examples of Use of Design R	anges;		
With ultor voltage of	16000	18000	volts
and grid-No.2voltage of	300	300	volts
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for	-65 to +350	-70 to +395	volts
Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	-28 tg -72	-28 to -72	volts
White-level value (Peak positive) Field Strength of	28 to 72	28 to 72	volts
Ion-Trap Magnet	43	45	gauss <b>es</b>
Maximum Circuit Values:			
Grid-No.1-Circuit Resistanc		. 1.5 max.	nnegohnn-s
	-DRIVE" SERVI	-	
Unless otherwise specif with resp	ied, voltage v bect to grid N		itive
Maximum Ratings, Design-Cer	ater Values:		
ULTOR-TO-GRID-No.1 VOLTAGE		. 18000 max.	volts
Positive value		. 1000 max.	volts
Negative value		. 500 max.	volts
GRID-No.2-TO-GRID-No.1 VOL GRID-No.2-TO-CATHODE VOLTA		. 625 max. . 500 max.	volts volts
CATHODE-TO-GRID-No.1 VOLTA		• 500 likex.	vorta
Positive bias value		. 125 max.	volts
Negative bias value		. 0 max.	volts
Negative peak value PEAK HEATER-CATHODE VOLTAG Heater negative with res During equipment warm-	pect to cathod	• 2 max. de:	volts
	15 seconds .	. 410 max.	volts
After equipment warm-u			volts
Heater positive with res	pect to cathod	le 180 max.	volts
Cathode drive is the operating the cathode potential with res	condition in which	ch the video signand the other e	nal varies lectrodes.
This value has been specified voltage is provided for dynami	to take care of ic focusing.	the condition w	here an ac
*: See next page.			

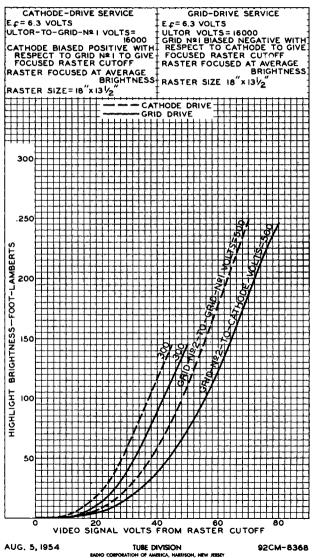
AUG. 16, 1954

21784

1

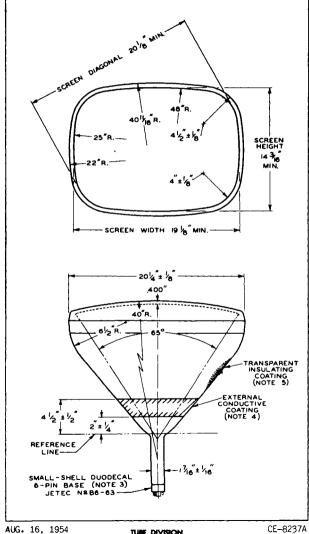
RCA 21YP4 KINESCOPE

Equipment Design Ranges:			
With any ultor-to-grid-No.1 voltage (b and grid-No.2-to-grid-No.1 voltage	c5g1) between 1	4000 <b>* an</b> d 18	ooo volts
	(E _{C2g1} ) between	220 and 620	volts
Grid-No.4-to-Grid-No.1 Voltage			[
for Focus with Ultor Current of 100 µamp	0% to +2.6%	of E-E-A	volts
Cathode-to-Grid-No.1 Voltage	0.0 10 12.00	UL COGI	VUILS
for Visual Extinction			
of Focused Raster	8.5% to 19.49	≴ofE _{c2a1}	volts
Cathode-to-Grid-No.1 Video		31	
Drive from Raster Cutoff			-
(Black Level): White-level value			
(Peak negative)	8.5% to 19.4	K of Fagar	volts
Grid-No.4 Current	-25 to	+25	µатр
Grid-No.2 Current	-15 to	+15	μamp
Field Strength of Single-Field	/F = 1	-	
lon-Trap Magnet (Approx.) .	$\sqrt{\frac{E_{c5g1}}{1}}$	x 40	gausses
Etald Strength of Adjustship	<b>y</b> 14000		
Field Strength of Adjustable Centering Magnet	0 to	8	qausses
		0	gaaooco
Examples of Use of Design Ranges	11		
With ultor-to-grid-No.1 voltage of	16000	18000	volts
and grid-No.2-to-grid-No.1 voltage	of 300	300	volts
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor Current	0.4. 415	0 +- 170	
of 100 µamp	0 to 415	0 to 470	volts
for Visual Extinction of			
Focused Raster	25 to 58	25 to 58	volts
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff			
(Black Level):			
White-level value (Peak negative)	25 to 58	25 to 58	volts
Field Strength of	25 10 56	25 10 50	VOILS
Ion-Trap Magnet	43	45	gausses
	-		Ŭ I
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance .		1.5 max.	megohms
Brilliance and definition decrease wi to-grid-No.1 voltage. In general, the No.1 voltage should not be less than	th decreasing ul e ultor voltage (	tor voltage or the ultor	or ultor- -to-grid-
No.1 voltage should not be less than	14000 volts.		
			1
For x-ray shielding cons	iderations,	see sheet	
X-RAY PRECAUTIONS FOR		TUBES	
at front of th	his Section.		
			1


7

TUBE DIVISION



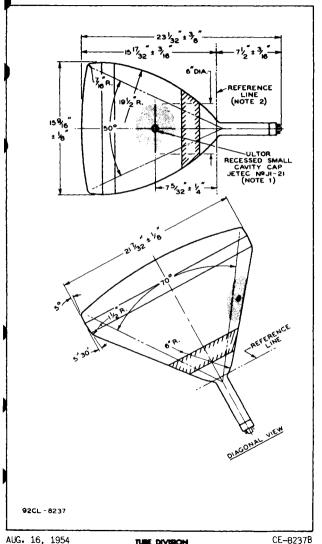



### AVERAGE DRIVE CHARACTERISTICS





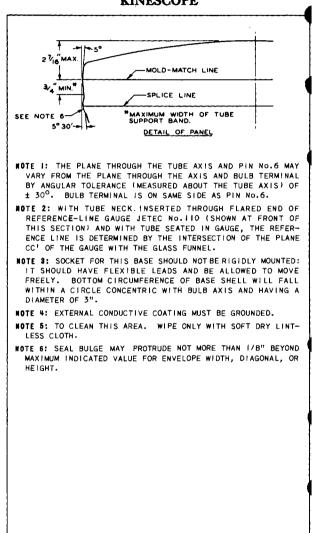





TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JESSEY



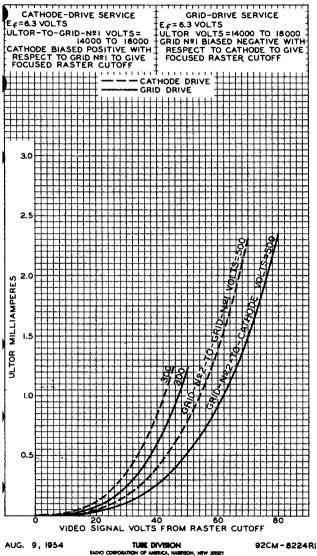



**KINESCOPE** 



TUBE DIVISION BADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY




RCA 21YP4 KINESCOPE







#### AVERAGE DRIVE CHARACTERISTICS





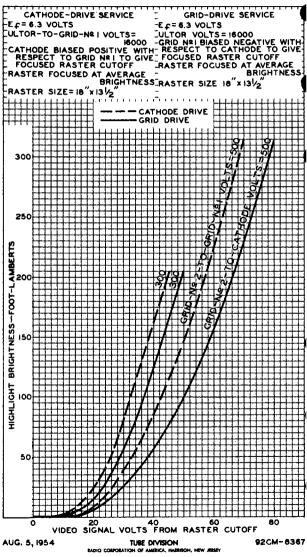


### **KINESCOPE**

The 21YP4-A is like the 21YP4 except that it has a metalbacked screen and greater light output as shown by the curves on the back of this page.

)

)


)

)





### AVERAGE DRIVE CHARACTERISTICS







KINESCOPE

RECTANGULAR GLASS TYPE

MAGNETIC FOCUS	MAGNETIC DEFLECTION
General:	DATA
Heater, for Unipotent Voltage Current Direct Interelectrode Grid No.1 to all ot Cathode to all othe External conductive	
Faceplate, Spherical Light Transmission Phosphor (For curves, see Fluorescence Persistence Focusing Method Deflection Angles (Ap Diagonal Horizontal Vertical	effont of this Section). P4—Sulfide Type White Short Magnetic Magnetic Magnetic
Tube Dimensions: Overall length . Greatest width Greatest height . Diagonal . Screen Dimensions (Mi Greatest width . Diagonal . Projected area Weight (Approx.) . Mounting Position . Cap .	23-1/32" ± 3/8" 20-1/4" ± 1/8' 20-1/4" ± 1/8' 15-9/16" ± 1/8' 21-7/32" ± 1/8' 14-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16' 241-3/16'
Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater The "ultor" in a cathod the highest dc voltage to its deflection. In grid No.3. Since grid the 212M-A, they are	E-ray tube is the electrode to which is applle for accelerating the electrons in the beam prio to 212PU-A, the ultor function is performed b io.3 and collector are connected together withi collectively referred to simply as "ultor" for g data and curves.

# TUBE DIVISION





#### GRID-DRIVE* SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode

Maximum Ratings, Design-Center Values:

ULTOR VOLTAGE		18000 max. 500 max.	
GRID-NO.1 VOLTAGE:		J00 IIdx.	10113
Negative bias value		125 max.	
Positive bias value		0 max.	
Positive peak value		2 max.	volts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with respect During equipment warm-up p			
not exceeding 15		410 max.	volts
After equipment warm-up pe		180 max.	
Heater positive with respect		180 max.	
Equipment Design Ranges:			
With any ultor voltage (E _{C3k} ) and grid-No.2 voltage (E _{C2k}	between 14000 ;) between 200	* and 1800 and 500 v	o voits oits
Grid-No.1 Voltage for Visual Extinction of			
Focused Raster	-9.3% to -24%	of Ecor	volts
Grid-No.1 Video Drive		-02K	
from Raster Cutoff (Black Level):			
White-level value (Peak positive)	9.3% to 24%	of E-ol	volts
Grid-No.2 Current		15_ 02.1	$\mu amp$
Focusing-Coil Current (DC) ^o .	$\sqrt{\frac{c_{\rm c3k}}{14000}} \times 1$	.04] ± 10%	ma
Field Strength of Single-Field	Ec3k		
Ion-Trap Magnet (Approx.) .	$\sqrt{14000}$	x 42	gausses
Field Strength of Adjustable	·		
Centering Magnet	0 to 8	3	gausses
Examples of Use of Design Rang	es:		
With ultor voltage of	16000	18000	volts
and grid-No.2 voltage of	300	300	volts
Grid-No.1 Voltage for			
Visual Extinction of Focused Raster	• -28 to -72	28 to72	volts
Grid drive is the operating condi the grid-wo.1 potential with respe	tion in which th	e video sign	al varies
the grid-noir potentiar with respe	et to cathoget		
*, ⁰ : See next page.			
		TENTATIVE	

AUG. 16, 1954





6

# KINESCOPE

Grid-No.1 Video Drive from Raster Cutoff (Black Level):
White-level value
(Peak positive) 28 to 72 28 to 72 volts
Focusing-Coil Current (DC) 110 ± 10% 118 ± 10% ma
Field Strength of
lon-Trap Magnet 45 48 gausses
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
CATHODE-DRIVE" SERVICE
Unless otherwise specified, voltage values are positive
with respect to grid No.1
Maximum Ratings, Design-Center Values;
ULTOR-TO-GRID-No.1 VOLTAGE
GRID-No.2-TO-GRID-No.1 VOLTAGE 625 max. volts GRID-No.2-TO-CATHODE VOLTAGE 500 max. volts
CATHODE-TO-GRID-No.1 VOLTAGE:
Positive bias value
Negative bias value 0 max. volts
Negative peak value
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode:
During equipment warm-up period
not exceeding 15 seconds 410 max. volts
After equipment warm-up period 180 max. volts
Heater positive with respect to cathode . 180 max. volts
Equipment Design Ranges:
With any ultor-to-grid-No.1 voltage (E _{C381} ) between 14000 [*] and 18000 volts
and grid-No. 2-to-grid-No. 1 voltage (E _{c2g1} ) between
220 and 620 volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction
of Focused Raster 8.5% to 19.4% of E _{C201} volts
Cathode-to-Grid-No.1 Video
Drive from Raster Cutoff
(Black Level):
White-level value (Peak negative) 8.5% to.19.4% of E _{c2d1} volts
(reak negative) 0.00 to.13.40 of CC2g1 Volts
Cathode drive is the operating condition in which the video signal varies the cathode potential with respect to grid No.1 and the other electrodes.
Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid-wo.1 voltage. In general, the ultor voltage or the ultor- to-grid-wo.1 voltage should not be less than 14000 volts.
⁰ : See next page.
AUG. 16. 1954 THE DRAFTON TENTATIVE DATA 2

AUG. 16, 1954

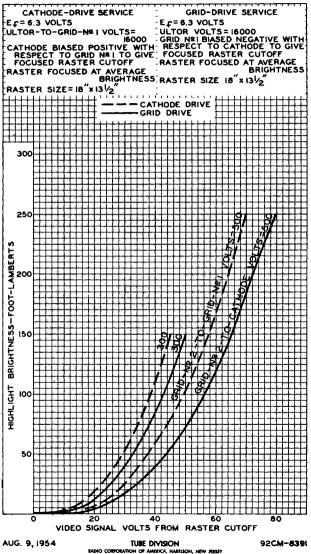
h.





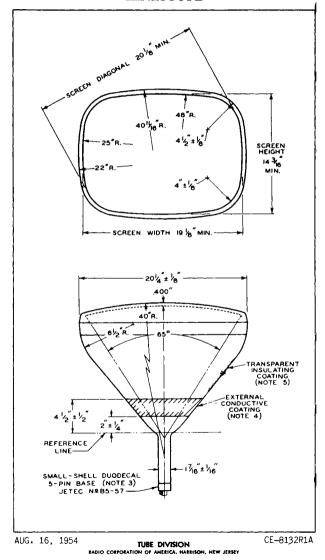
**KINESCOPE** 

_ <del></del>					
Grid-No.2 Current	<u>-1</u> 5 to <u>+</u>	15	μamp		
Focusing-Coil Current (DC) ^o . $\sqrt{2}$	<u>[∟]c3g1</u> × 104	± 10%			
Field Strength of Single-Field Ion-Trap Magnet (Approx.)	$\sqrt{\frac{E_{c3g1}}{14000}} \times$	ם 42 g	jausses		
Field Strength of Adjustable Centering Magnet	0 to 8	l g	gausses		
Examples of Use of Design Ranges:					
Wish ulass as suid lis s					
With ultor-to-grid-No.1 voltage of	16000	18000	volts		
and grid-No.2-to-grid-No.1 voltage of	300	300	volts		
Cathode-to-Grid-No.1 Voltage for Visual Extinction			1		
of Focused Raster Cathode-to-Grid-No.1 Video Drive from Raster Cutoff	25 to 58	25 to 58	volts		
(Black Level): White-level value					
(Peak negative) Focusing-Coil Current (DC)	25 to 58 110±10%5	25 to 58 118±10%	volts ma		
Field Strength of Ion-Trap Magnet	45	48 g	ausses		
  Maximum Circuit Values:					
Grid-No.1-Circuit Resistance	•••••	.5 max.	megohmi		
⁹ For specimen focusing coil similar to JETEC Focusing Coil NO.109 positioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference Line (see Dimensional Outline). The inclusted current is for condition with combined grid-No.1 bias voltage and video signal voltage adjusted to produce a highlight brightness of 30 foot-lamberts on a 19-1/8" x 14-3/16" picture area sharply focused at center of screen.					
For x-ray shielding consid X-RAY PRECAUTIONS FOR C at front of this	ATHODE-RAY				
Ultor current ús D are the same as shown					


4

TUBE DIVISION

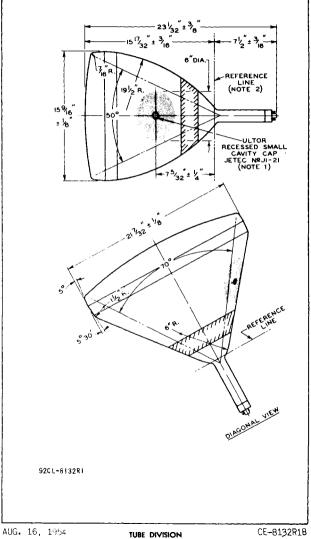





### AVERAGE DRIVE CHARACTERISTICS

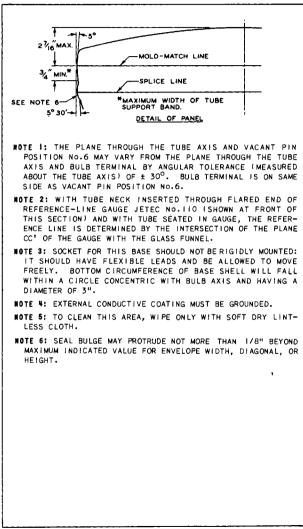





RCA 21ZP4-A KINESCOPE





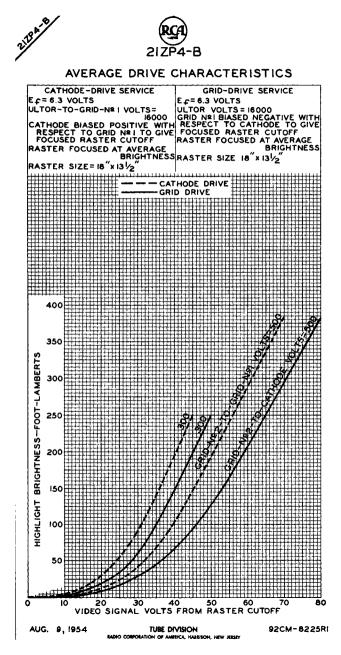



**KINESCOPE** 





RCA 2IZP4-A KINESCOPE








# **KINESCOPE**

The 21ZP4-B is like the 21ZP4-A except that it has a metalbacked screen and greater light output as shown by the curves on the back of this page. .







### PICTURE TUBE

RECTANGULAR GLASS TYPE ALUMINIZED SCREEN LOW-VOLTAGE ELECTROSTATIC FOCUS MAGNETIC DEFLECTION With heater having controlled warm-up time

#### DATA General: Heater, for Unipotential Cathode: . . . . ac or dc volts Voltage. . . . . . . . 6.3 For definition of heater warm-up time and method of determining it. see sheet HEATER WARN-UP TIME NEASUREMENT at front of Receiving Tube Section. Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. . . 6 μµf Cathode to all other electrodes. . . . . . 5 μµf (2500 max. шuf External conductive coating to ultor . . . 1700 min. μµf Light transmission (Approx.) . . . . . . . . . . . 74% Phosphor (For Curves, see front of this Section). . P4-Sulfide Type Aluminized . . . . . White Fluorescence . . . . . . . . .White Persistence. . . . . . . . . . . . .Short . . . . . . . . . . . . . Electrostatic Focusing Method. . . . Deflection Method. . . . . . . . . . . . . . . . . . Magnetic Deflection Angles (Approx.): Diagonal . . . . . 900 85° Horizontal . . . 68⁰ Vertical . . . . . . • Tube Dimensions: Overall length . . . . . . . ... 18-1/8" ± 3/8" Radius of curvature of faceplate (External surface). . 40" Screen Dimensions (Minimum): Greatest width . . . . . . . . 21-7/16" Greatest height. . . . . . . . . . . 16-7/8" . . . 22-13/16" Operating Position . . . . . . . Any . . . . Cap. . . . . . . . Recessed Small Cavity (JEDEC No.J1-21) Bulb.. . . .J192A/B

Short Small-Shell Duodecal 6-Pin (JEDEC Group 4, No.B6-203), or Small-Shell Duodecal 6-Pin, Arrangement 1 (JEDEC Group 4, No.B6-63)

Base . .

ANYPA	RCA		
	24AUP4 PICTURE TU	BE	
Basing Designation	for BOTTOM VIEW .		•••
Pin 1-Heater Pin 2-Grid No.1 Pin 6-Grid No.4 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater		Cap - Ultor (Grid N: Grid N: Collec C - Externa Conduc Coatin	o.5 tor 1 tiv
	GRID-DRIVE* SERVI	CE	
	specified, voltage with respect to cat		ive
Maximum Ratings, Des			
ULTOR VOLTAGE		∫20000_ max.	vo
GRID-No.4 (FOCUSING)	VOLTAGE:	• {12000 [•] min.	vo
Positive value		. 1000 max.	vo
Negative value GR D-No.2 VOLTAGE GR D-No.1 VOLTAGE:		. 500 max. . 500 max.	vc vc
Negative-peak valu		. 200 max.	vo
Negative-bias valu Positive-bias valu		. 140 max. . 0 max.	vc vc
Positive-peak valu PEAK HEATER-CATHODE Heater negative wi During equipment not exceeding After equipment	VOLTAGE: th respect to cathod twarm-up period 15 seconds warm-up period	. 2 max. le: . 410 max. . 180 max.	va va va
Heater positivewi	th respect to cathod	le. 180 max.	vo
Equipment Design Ran	-		
	itage (E _{C2k} ) betwe	12000 and 20000 : en 200 and 500 vol	vol ts
Grid-No.4 Voltage fo focus§ Grid No.1 Voltage (E		• -75 to +400	vo
Grid-No.1 Voltage (E visual extinction focused raster	of See Ra	ster-Cutoff-Range	Сл
Grid-No.1 Video Driv Raster Cutoff (Bla White-level value	e from	for Grid-Drive S	
(Peak positive)	Ecik	value as determin except video driv positive v	e i
Grid-No.4 Current		•25 to +25	
▲,♣,§: See next page.			
4–59	ELECTRON TUBE DIVISI	TENTATIVE	DAT

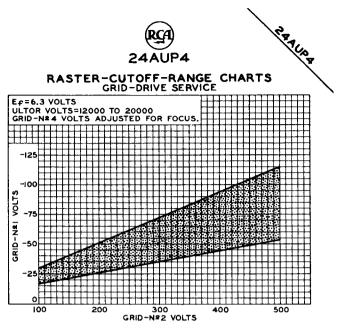
ELECTRON TUBE DIVISION ' RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





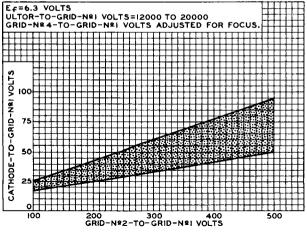
# PICTURE TUBE

Grid-No.2 Current	-15 to +15 μa					
Centering Magnett	0 to 8 gausses					
Examples of Use of Design Ranges:						
With ultor voltage of	18000 volts					
and grid-No.2 voltage of	300 volts					
Grid-No.4 Voltage for focus Grid-No.1 Voltage for visual	-75 to +400 volts					
extinction of focused raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	-35 to -72 volts					
White-level value	35 to 72 volts					
Maximum Circuit Values;						
Grid-No.1-Circuit Resistance	1.5 max. megohms					
CATHODE-DRIVE# S	SERVICE					
Unless otherwise specified, volta with respect to gr						
Maximum Ratings, Design-Center Value						
	í20000 max. volts					
ULTOR-TO-GRID-No.1 VOLTAGE	12000 [®] min. volts					
GRID-No.4-TO-GRID-No.1 VOLTAGE: Positive value.	1000 max. volts					
Negative value.	500 max. volts					
GRID-No.2-TO-GRID-No.1 VOLTAGE.						
GRID-No.2-TO-CATHODE VOLTAGE CATHODE-TO-GRID-No.1 VOLTAGE:	500 max. volts					
Positive-peak value	200 max. volts					
Positive-bias value	140 max. volts					
Negative-bias value	0 max. volts					
Negative-peak value	2 max. volts					
Heater negative with respect to cat	hode:					
During equipment warm-up period						
not exceeding 15 seconds						
After equipment warm-up period.						
Heater positive with respect to cat	hode. 180 max. volts					
Equipment Design Ranges:						
With any ultor-to-grid-No.1 voltage $(E_{C_5g_1})$ between 12000 and 20000 volts and grid-No.2-to-grid-No.1 voltage $(E_{C_2g_1})$						
between 225 and 6.						
Grid-No.4-to-Grid-No.1 Voltage for focus§. Cathode-to-Grid-No.1 Voltage	75 to +400 volts					
(E _{kg1} ) for visual extinction of focused raster See	Raster-Cutoff-Range Chart					
	for Cathode-Drive Service					
4-59 ELECTRON TUBE DIV	ISION TENTATIVE DATA 2					

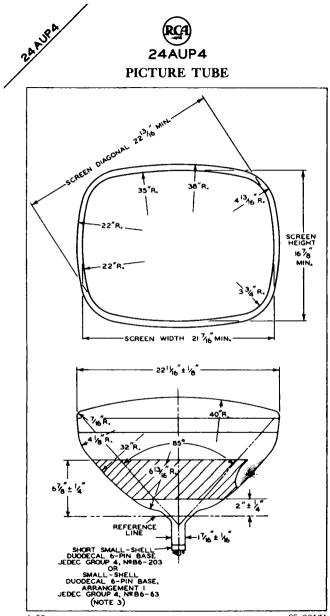

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

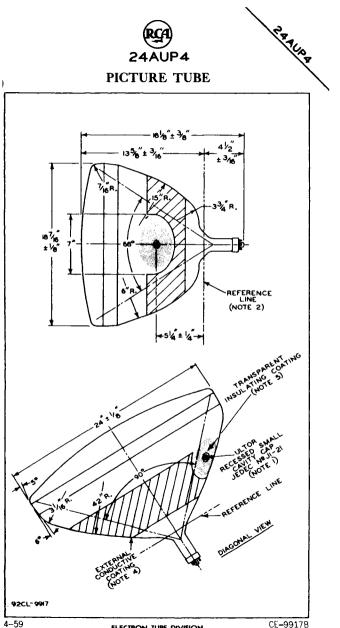


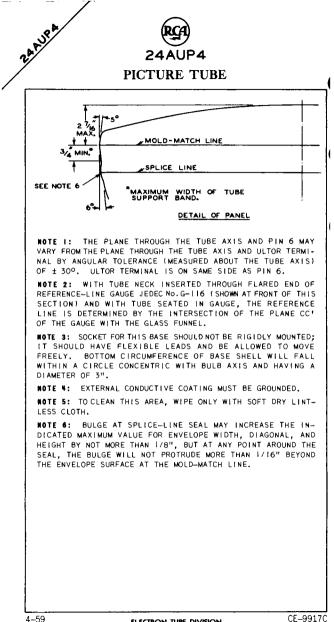



# PICTURE TUBE

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Cathode-to-Grid-No.1 Video	
Drive from Raster Cutoff	
(Black Level):	
White-level value	
	Same value of determined for
(Peak negative)	Same value as determined for
	E _{kg1} except video drive is a
	negative voltage
Grid-No.4 Current	25 to +25 μa
Grid-No.2 Current	15 to +15 μa
Field Strength of Adjustable	
Centering Magnet [†]	O to 8 gausses
l	-
Examples of Use of Design Range	s:
With ultor-to-grid-	
No.1 voltage of	18000 volts
and grid-No.2-to-grid-	10000
No.1 voltage of	300 volts
	300 volts
Grid-No.4-to-Grid-No.1	
Voltage for focus	. –75 to +40C volts
Cathode-to-Grid-No.1 Volt-	
age for visual extinction	
of focused raster	. 33 to 60 volts
Cathode-to-Grid-No.1 Video	, . , .
Drive from Raster Cutoff	
(Black Level):	
White-level value	<ul> <li>-33 to -60 volts</li> </ul>
	• // to oo to to to
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance	1.5 max. megohms
▲	
Grid drive is the operating condit the grid-No.1 potential with respe	ion in which the video signal varies of to cathode
This value is a working design-ce	ter minimum. The equivalent chrom
lute minimum ultor-or ultor-to-gri	d-No.1 voltage is 11,000 volts, be-
low which the serviceability of	the 24AUP4 will be impaired. The
design value such that under the	worst probable operating conditions
involving supply-voltage variatio	nter minimum. The equivalent abso- d-No.1 voltage is 11.000 volts, be- the 24AUP4 will be impaired. The sibility of determining a minimum worst probable operating conditions and equipment variation the abso- id-No.1 voltage is never less than
lute minimum ultor-or ultor-to-gr  , 11,000 volts.	id-No.1 voltage is never less than
	-to-orid-No 1 voltage required for
focus of any individual tube is in	dependent of ultor current and will
remain essentially constant for va	lues of ultor voltage (or ultor-to-
yriu-mo.1 voitage) or grid-No.2 ' , voltage) within design ranges show	4-to-grid-No.1 voltagé required for dependent of ultor current and will lues of ultor voltage (or ultor-to- voltage (or grid-No.2-to-grid-No.1 n for these items.
To tage for Reference Line for not exceed 2-1/4". Excluding extr deflected focused spot will fail radius concentric with the center that the earth's magnetic field ca tion of the spot from the center o Cathode drive is the operation c	suitable PM centering magnet should
not exceed 2-1/4". Excluding extr	aneous fields, the center of the un-
deflected focused spot will fall radius concentric with the center	within a circle having a 1/2-inch
that the earth's magnetic field ca	n cause as much as 1/2-inch deflec-
tion of the spot from the center o	f the tube face.
trodes.	respect to grid No.1 and other elec-
For X-ray shielding con	
X-RAY PRECAUTIONS FO	
at front of t	his Section
4-59 ELECTRON TU	TENTATIVE DATA 2
ELECTRON TO	



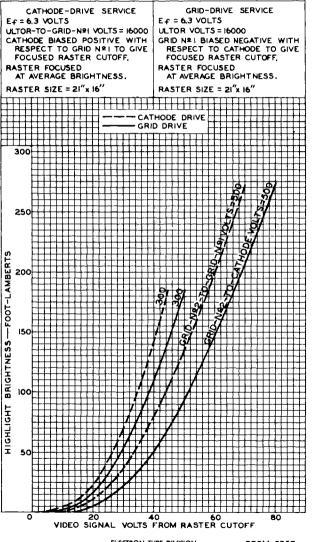


9205-9919


#### CATHODE-DRIVE SERVICE



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 9205-9918










L'ARURA

# AVERAGE DRIVE CHARACTERISTICS



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-9352



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

24CP4-A KINESCOPE



RECTANGULAR GLASS TYPE MAGNETIC FOCUS ALUMINIZED SCREEN MAGNETIC DEFLECTION

DATA

General:	
Heater, for Unipotential Cathode: Voltage 6.3	<b>-</b>
Direct Interelectrode Capacitances: Grid No.1 to all other electrodes 6 µµf Cathode to all other electrodes 5 µµf	
External conductive coating to ultor	
Faceplate, Spherical	-
Fluorescence	
Focusing Method	
Diagonal	÷
Tube Dimensions:       0verall length.       21-1/8" ± 3/8"         Greatest width.       22-11/16" ± 1/8"         Greatest height.       18-7/16" ± 1/8"         Diagonal.       24" ± 1/8"	
Screen Dimensions (Minimum):           Greatest width.         21-1/4"           Greatest height         16-3/4"           Diagonal.         22-5/8"	
Projected area	•
Bulb. J192 Base. Small-Shell Duodecal 5-Pin (JETEC No.85-57) Basing Designation for BOTTOM VIEW	•-
Pin 1 - Heater Pin 2 - Grid No.1 Pin 10 - Grid No.2 Pin 11 - Cathode Pin 12 - Heater Pin 2 - Heater Pin 2 - Grid No.3, Pin 10 - Grid No.2 Pin 12 - Heater Pin 2 - Grid No.4 Pin	
The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dcvoltage for accelerating the electrons in the beam prior to its deflection. In the 2NCPH-A, the ultor function is performed by grid Ko.3. Since grid Ko.3 and collector are connected together within the 2NCPH-A, they are collectively referred to simply as "ultor" for convenience in presenting data and curves.	
NOV. 1. 1955 DATA 1	

#### TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DATA 1





#### GRID-DRIVEA SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode Maximum Ratings, Design-Center Values: ULTOR VOLTAGE . 20000 max. volts . . . GRID-No.2 VOLTAGE 500 max. volts GRID-No.1 VOLTAGE: Negative bias value . 125 max. volts Positive bias value . 0 max. volts Positive peak value . 2 max. volts PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds . . . 410 max. volts volts After equipment warm-up period. . . . . 180 max. Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage (Ecak) between 16000° and 20000 volts and grid-No.2 voltage (Ec2k) between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster. . . . . . -9.3% to -24% of Ecok volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value 9.3% to 24% of Ecok (Peak positive) volts -15 to +15 Grid-No.2 Current . . . μamp Focusing-Coil Current (DC)^o x 108 ma ± 20% Ion-Trap Magnet Current (Average)** . . . . ma x 30 Minimum Field Strength of PM Ion-Trap Magnet9 . . x 33 aausses Field Strength of Adjustable 0 to 8 Centering Magnet gausses Examples of Use of Design Ranges: With ultor voltage of 16000 18000 volts volts and grid-No.2 voltage of 300 100 Grid-No.1 Voltage for Visual Extinction of Focused Raster. . . . . -28 to -72 -37 to -96 volts Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. ,⁰, **, §: See next page. - Indicates a change. NOV. 1, 1955 DATA 1 TUBE DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

24CP4-A



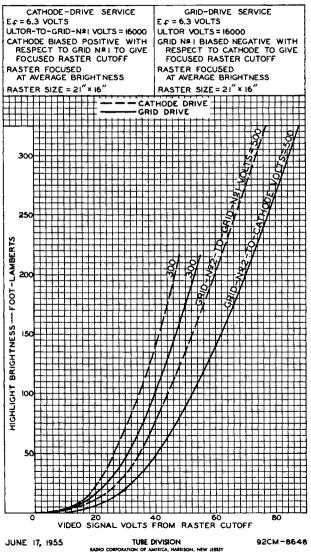
**KINESCOPE** 

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se				
Grid-No.1 Video Drive from Raster Cutoff (Black Level):				
White-level value				
(Peak positive)	28 to 72	37 to 96	volts	-
Focusing-Coil Current (DC).	108 ± 20%	115 ± 20%	mа	+
Minimum Field Strength of				
PM lon-Trap Magnet	33	35	gausses	+
Maximum Circuit Values:				
Grid-No.1-Circuit Resistance		1.5 max.	megohms	
CATHODE-DRIV	SERVICE			
Unless otherwise specified, v with respect t		s are posi	tive	
Maximum Ratings, Design-Center Ve	lues:			
ULTOR-TO-GRID-No.1 VOLTAGE		20000 max.	volts	
GRID-No.2-TO-GRID-No.1 VOLTAGE.		625 max.		
GRID-No.2-TO-CATHODE VOLTAGE.		500 max.	volts	
CATHODE-TO-GRID-No.1 VOLTAGE:		125 max.		
Positive bias value Negative bias value		0 max.		
Negative peak value		2 max.	volts	
PEAK HEATER-CATHODE VOLTAGE:		2 1102.	VOILS	1
Heater negative with respect to	cathode:			
During equipment warm-up per				1
not exceeding 15 seconds		410 max.		1
After equipment warm-up peri		180 max.		1
Heater positive with respect to	o cathode .	180 max.	volts	Į.
Equipment Design Ranges:				
With any ultor-to-grid-No.1 vo	16000	* and 2000	o volts	
and grid-No.2-to-grid-No.1 vol:	age (20281)	petween 220 and 62	a volte	
Cathada ta Crid No. 1 Valtaga		220 686 02	0 00003	1
Cathode-to-Grid-No.1 Voltage for Visual Extinction				
of Focused Raster 8	.5% to 19.4%	of Ford	volts	Į
Cathode-to-Grid-No.1 Video				
Drive from Raster Cutoff				
(Black Level):				
White-level value				
(Peak negative) 8	.5% to 19.4%	of Ec291	volts	
Cathode drive is the operating cond varies the cathode potential with re electrodes.	lition in which spect to grid	ch the video No.1 and th	signal ne other	
Brilliance and definition decrease ultor-to-grid-No.1 voltage. In generato- to-grid-No.1 voltage should not be left	with decreasi Al, the ultor ess than 16000	ng ultor vol voltage or the volts.	tage or e ultor-	
0				
O: See next page.	4	- Indicates a		l
NOV. 1, 1955 TUBE DIV	SION		DATA 2	



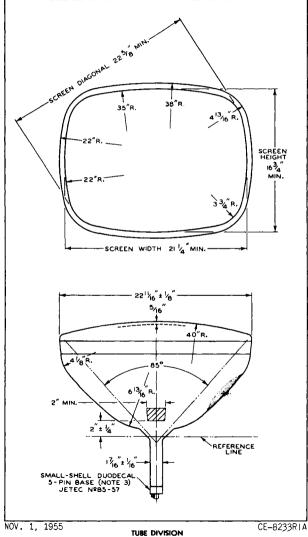
24CP4-A

**KINESCOPE** 


	Grid-No.2 Currentμαπρ
-	Focusing-Coil Current (DC)°. $\sqrt{\frac{L_{C391}}{10000} \times 108} \pm 20\%$ ma
-	Ion-Trap Magnet Current $\sqrt{\frac{E_{c.391}}{1000}} \times 30$ ma
-	Minimum Field Strength of $\sqrt{\frac{16000}{\frac{5}{2}}}$ PM Ion-Trap Magnets $\sqrt{\frac{5}{2}}$ x 33 gausses
	Field Strength of Adjustable Centering Magnet 0 to 8 gausses
-	Examples of Use of Design Ranges:
1	With ultor-to-grid-No.1
	voltage of 16000 18000 volts and grid-No.2-to-grid-No.1
	voltage of 300 400 volts
	Cathode-to-Grid-No.1 Voltage for Visual Extinction of Focused Raster
	Cathode-to-Grid-No.1 Video Drive from Raster Cutoff
	(Black Level): White-level value (Peak negative) 25 to 58 34 to 78 volts
	Focusing-Coil Current (DC) 108±20% 115±20% ma Minimum Field Strength of PM Jon-Trap Magnet 33 35 gausses
	Naximum Circuit Values: Grid-No.1-Circuit Resistance 1.5 max. megohms
	For specimen focusing corrisimilar to strict rocusing corrison by pos- tioned with air gap toward kinescope screen and center line of air gap 3 inches from Reference Line (See Dimensional Outline). The indicated current is for condition with sharp focus at center of picture area and combined grid-No.1 voltage and video-signal voltage adjusted to produce a highlight brightness of 30 foot-lamberts measured on an In- dian Mead Test Pattern set for a 21* x 16* picture size.
	For JETEC 10n-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
	5 For specimen PM ion-trap magnet, such as Heppner Model No.EU37, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the stength of the PM ion-trap magnet should be added to the minimum value. The maximum value by more that 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adquate adjustment to permit satisfactory performance without loss of highlight brightness.
	For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section
	🛥 Indicates a change.

NOV. 1, 1955

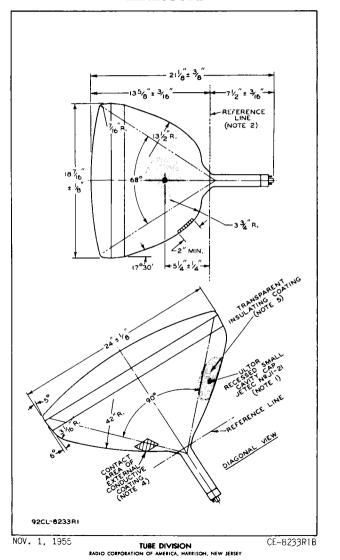





### AVERAGE DRIVE CHARACTERISTICS

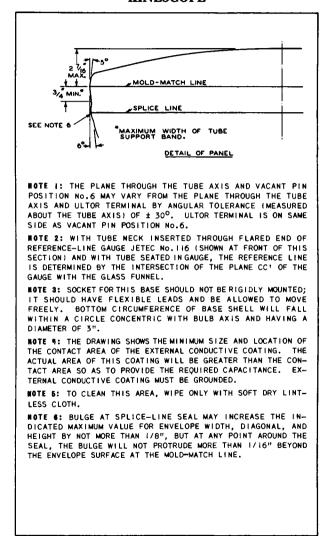





RCA 24CP4-A KINESCOPE



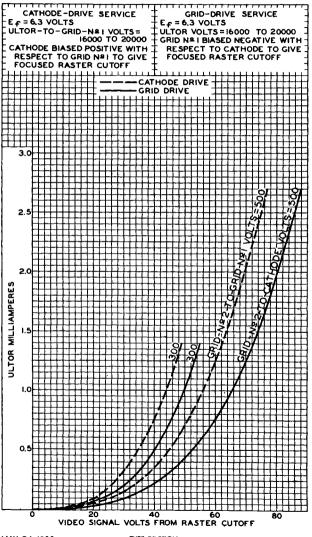
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY











(RGA) 24CP4-A KINESCOPE







AVERAGE DRIVE CHARACTERISTICS



MAY 24, 1955

TUBE DIVISION MADIO CORPORATION OF AMERICA, HARRISON, NEW JELSEY

#### **KINESCOPE**



RECTANGULAR GLASS TYPE ALUMINIZED SCREEN LOW-VOLTAGE FOCUS MAGNETIC DEFLECTION DATA General: Heater, for Unipotential Cathode: . . . ac or dc volts Voltage . . . . . . . . . 6.3 Direct Interelectrode Capacitances: Grid No.1 to all other electrodes. . . . щuf Cathode to all other electrodes. . . . 5 μμf . . {750 max. {500 min. щuf External conductive coating to ultor шf . . . . . . Filterglass Faceplate, Spherical . . . . . . . . . . . . 71% Light transmission (Approx.) . . . . . . . . . . Phosphor (For curves, see front of this section). . P4-Sulfide Type Aluminized Fluorescence . . White Phosphorescence. . . White Persistence. . . . . . . Short . . . Focusing Method. . . . . . . Electrostatic Deflection Method. . . . . . . . . . . Magnetic Deflection Angles (Approx.): 900 Diagonal . . 850 Horizontal . 68^d Vertical . . . . ion-Trap Gun . . . . Requires External Single-Field Magnet Tube Dimensions: Overall length . . . 21-1/8" ± 3/8" 22-11/16" ± 1/8" Greatest width . . . . . . . . . . . . . . 18-7/16" ± 1/8" Greatest height. . . . . . . . . . . Diagonal . . . . . . . 24" ± 1/8" Screen Dimensions (Minimum): Greatest width . . 21-1/4" Greatest height. . . . . . . . . . . . . . . 16-3/4" . . 22-5/8" Diagonal . . . . . . . . . . . . . . . . . . 319 sq. in. Projected area . . . Mounting Position. . . . . . . . . . Any Cap. . . . . . . . . Recessed Small Cavity (JETEC No.J1-21) Pin 1 - Heater Cap - Ultor Pin 2 - Grid No.1 (Grid No.3. Pin 6 - Grid No.4 Grid No.5. Pin 10 - Grid No.2 Collector) Pin 11 - Cathode C - External Pin 12 - Heater Conductive Coating See next page. TENTATIVE DATA 1 NOV. 1. 1955 TUBE DIVISION

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



# **KINESCOPE**

#### GRID-DRIVEA SERVICE

Unless otherwise specified, voltage values are positive with respect to cathode Maximum Ratings, Design-Center Values: 20000 max. volts GRID-No.4 VOLTAGE: Positive value . 1000 max. volts REGATIVE Value*. . GRID-No.2 VOLTAGE. . Negative value* 500 max. volts 500 max. volts GRID-No.1 VOLTAGE: Neoative bias value. . . . . . . . . 125 max. volts Positive bias value. . . . volts 0 max. Positive peak value.... PEAK HEATER-CATHODE VOLTAGE: 2 max. volts Heater negative with respect to cathode: During equipment warm-up period 410 max. not exceeding 15 seconds. . volts 180 max. volts After equipment warm-up period . . . Heater positive with respect to cathode. 180 max. volts Equipment Design Ranges: With any ultor voltage ( $E_{C, c,k}$ ) between 16000[#] and 20000 volts and grid-No. 2 voltage (Ecak) between 200 and 500 volts Grid-No.4 Voltage for Focus with Ultor Current of 100  $\mu$ amp. . . . -0.4% to +2.2% of E_{C5k} volts Grid-No.1 Voltage for Visual Extinction of Focused Raster . . . -9.3% to -24% of E_{cok} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White—level value (Peak positive) 9.3% to 24% of E_{cok} volts Grid-No.4 Current. . . . . . -25 to +25 *µ*amp Grid-No.2 Current. . . -15 to +15 uamp Ion-Trap Magnet Current (Average)**. . . . . . . ma x 30 16000 Minimum Field Strength of PM Ion-Trap Magnet§. . . . gausses × 33 Field Strength of Adjustable Centering Magnet . . . . . 0 to 8 gausses Grid drive is the operating condition in which the video signal varies the grid—No.1 potential with respect to cathode.

•,*,**#**,**,§: See next page.

# **KINESCOPE**



Examples of Use of Design Rang	ges:		
With ultor voltage of	16000	18000	volts
and grid-No.2 voltage of	300	400	volts
Grid-No.4 Voltage for Focus with Ultor Current of 100 µamp Grid-No.1 Voltage for	-65 to +350	-75 to +400	volts
Visual Extinction of Focused Raster Grid-No.1 Video Drive from Raster Cutoff (Black Level):	–28 to –72	37 to96	volts
White-level value (Peak positive) Minimum Field Strength of PM Ion-Trap Magnet	28 to 72 33	37 to 96 35	volts gausses
	11	20	gaasses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance .		1.5 max.	megohms
	IVE SERVICE		
Unless otherwise specified, with respect	, voltage val t to grid No.		tive
Maximum Ratings, Design-Center	r Values:		
ULTOR - TO-GRID-No.1 VOLTAGE. GRID-No.4-TO-GRID-No.1 VOLTAGE		20000 max.	volts
Positive value		1000 max.	volts
Negative value*		500 max.	
GRID-No.2-TO-GRID-No.1 VOLTAG		625 max.	
GRID-No.2-TO-CATHODE VOLTAGE		500 max.	volts
CATHODE-TO-GRID-No.1 VOLTAGE: Positive bias value		125	volts
Negative bias value		125 max. 0 max.	
Negative blas value		2 max.	
PEAK HEATER-CATHODE VOLTAGE:		2	
Heater negative with respec			
During equipment warm-up			• .
not exceeding 15 s		410 max.	
After equipment warm-up p		180 max.	
Heater positive with respec			
The "ultor" in a cathode-ray tube the highest dc voltage for acceler to its deflection. In the 200Pa- grid No.5, Since grid No.5, grid gether within the 200Pa-A, they a "ultor" for convenience in preser	A, the ultor ful No.3, and colle The collectively Inting data and c	inction is perf ctor are conner referred to s curves.	cted to- imply as
* This value has been specified to t voltage is provided for dynamic f	ake care of the	condition whe	ere an ac
Cathode drive is the operating cond the cathode potential with respect	dition in which 1	he video signa	l varies
₩,**,§: See next page.			

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



# **KINESCOPE**

Equipment Design Ranges:			
With any ultor-to-grid-No.1 v	itage (Ec.F.	) between	
	16000	# and 20000	volts
and grid-No.2-to-grid-No.1 vo.			
Ū į		220 and 620	volts
Grid-No.4-to-Grid-No.1 Voltage			
for Focus with Ultor			
Current of 100 $\mu$ amp	0%/to 2.6%/	of Form	volts
Cathode-to-Grid-No.1 Voltage	00 00 2000		
for Visual Extinction			
of Focused Raster	8.5% to 19.4	% of Econ	volts
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff			
(Black Level):			
White-level value			
(Peak negative)	8.5% to 19.4	% of Ec291	volts
Grid-No.4 Current	25 to	+25	μamp
Grid-No.2 Current	–15 to	+15	μamp
Ion-Trap Magnet Current	· · · · ·		
(Average)**	$\sqrt{\frac{E_{c5g1}}{16000}}$	× 30	ma
-	V 16000	~ )0	
Minimum Field Strength of	Fern		
PM lon-Trap Magnet§	$\sqrt{\frac{E_{c_5g_1}}{16000}}$	× 33 9	ausses
Field Strength of Adjustable	<b>V</b> 16000		
Centering Magnet	0 tc		ausses
centering magnet	0.0	yo y	ausses
Examples of Use of Design Range	5:		
With ultor-to-grid-No.1			
voltage of	16000	18000	volts
and grid-No.2-to-grid-No.1			
voltage of	300	400	volts
Grid-No.4-to Grid-No.1 Voltage	2		
for Focus with Ultor			
Current of 100 μamp	0 to 415	0 to 470	volts
Cathode-to-Grid-No.1 Voltage	0 00 /10	0 10 170	
for Visual Extinction			
of Focused Raster	25 to 58	34 to 78	volts
Cathode-to-Grid-No.1 Video			
Drive from Raster Cutoff			
(Black Level):			
White-level value			
(Peak negative)	25 to 58	34 to 78	volts
Minimum Field Strength of			
PM Ion-Trap Magnet	33	35 g	ausses
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance .		1.5 max. n	eachme
ging-no.1-circuit nesistance .		1.0 1044. 1	9011113
<b>#,**,§</b> : See next page.			
		TENTATINE	DATA 2

NOV. 1, 1955

TUBE DIVISION II II BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





- Brilliance and definition decrease with decreasing ultor voltage or ultor-to-grid=ko.1voltage. In general, the ultor voltage or ultor-to-grid=ko.1voltage bould not be less than 16000 volts.
- For JETEC ion-Trap Magnet No.117, or equivalent, located with the trailing edge of the pole pieces located over the gap between grid No.1 and grid No.2 and rotated to give maximum brightness.
- For specimen PM ion-trap magnet, such as Heppner Model No.E437, or equivalent, located in optimum position and rotated to give maximum brightness. For a given equipment application, the tolerance range for the strength of the PM ion-trap magnet should be added to the Ş. The strength of the PM function magnet should be able to the minimum value. The maximum strength of this magnet should not exceed the specified minimum value by more than 6 gausses. This procedure will insure use of a PM ion-trap magnet allowing adequate adjustment to permit satisfactory performance without loss of highlight brightness.

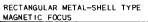
For X-ray shielding considerations, see sheet X-RAY PRECAUTIONS FOR CATHODE-RAY TUBES at front of this Section

#### DIMENSIONAL OUTLINE

for Type 24DP4-A is the same as that shown for Type 24CP4-A, except that the 24DP4-A has a Small-Shell Duodecal 6-Pin Base

#### CURVES

#### for Type 24DP4-A are the same as those shown for Type 24CP4-A






RECTANGULAR GLASS T	YPE ALUMINIZED SCREEN
LOW-VOLTAGE FOCUS	MAGNETIC DEFLECTION
The 24YP4 is the same a items:	is the 24DP4-A except for the following
Direct Interelectrode C	Capacitances:
External conductive c	coating to ultor $\begin{cases} 1500 \text{ max. } \mu\mu f\\ 1200 \text{ min. } \mu\mu f \end{cases}$







١

1

METAL-BACKED SCREEN MAGNETIC DEFLECTION

L'INB &

### DATA

	General:			
	Heater, for Unipotential Cathode:         Voltage       6.3         Vurrent       0.6         Direct Interelectrode Capacitances (Approx.):         Grid No.1 to All Other Electrodes         Cathode to All Other Electrodes			
1	Cathode to All Other Electrodes 5 $\mu\mu$ f Faceplate, Spherical Frosted Filterglass Light Transmission (Approx.)			
	Weight (Approx.)			
	Pin 1-Heater Pin 2-Grid No.1 Pin 10-Grid No.2 Pin 11-Cathode Pin 12-Heater Pin 12-Heater P			
	GRID-DRIVE ^A SERVICE Unless otherwise specified, voltage values are positive with respect to cathode			
	Maximum Ratings, <i>Design-Center Values:</i> ULTOR® VOLTAGE			
	♥,▲: See next page.			
	AUG. 1, 1953 TUBE DEPARTMENT TENTATIVE DATA 1			

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



# 27MP4 KINESCOPE

1

GRID-No.2 VOLTAGE				
Negative bias value			. 500 max.	volts
Positive bias value			175	
Positive peak value				
<pre>FEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds 100 max. volts After equipment warm-up period 100 max. volts Heater positive with respect to cathode . 180 max. volts <b>Equipment Design Ranges:</b> With any ulter voltage ($E_{C_2k}$) between 16000° and 18000 volts and grid-No.2 voltage ($E_{C_2k}$) between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of Ec2k volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of Ec2k volts Grid-No.2 Current</pre>		• • • • • •		
Heater negative with respect to cathode: During equipment warm-up period not exceeding 15 seconds			• Z 1160.2	vuits
During equipment warm-up period not exceeding 15 seconds 410 max. volts After equipment warm-up period 180 max. volts Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage $(E_{C_2k})$ between 16000° and 18000 volts and grid-No.2 voltage $(E_{C_2k})$ between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{C2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{C2k} volts Grid-No.2 Current		to cathodo:		
not exceeding 15 seconds 410 max. volts After equipment warm-up period 180 max. volts Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage $(E_{C_2k})$ between 16000° and 18000 volts and grid-No.2 voltage $(E_{C_2k})$ between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{C2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{C2k} volts Grid-No.2 Current				
After equipment warm-up period 180 max. volts Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage $(E_{C_2k})$ between 16000° and 18000 volts and grid-No.1 voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{C2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{C2k} volts Grid-No.2 Current $-15$ to $+15$ µamp Focusing-Coil Current (DC) ⁰⁰ . Field Strength of Single-Field ion-Trap Magnet (Approx.). $\sqrt{\frac{E_{C3k}}{16000} \times 50}$ gausses Examples of Use of Design Ranges: With ultor voltage (E _{C3k} ) of 16000 16000 volts Grid-No.1 Vidage for Visual Extinction of Focused Raster $-37$ to $-73$ $-49$ to $-97$ volts Grid-No.1 Vidage for Visual Extinction of Focused Raster $-37$ to $73$ $49$ to $97$ volts Grid-No.1 Video Drive (Peak positive) $37$ to $73$ $49$ to $97$ volts Focusing-Coil Current (DC). $110 \pm 10\%$ mathematical extinction of Focused Raster $-37$ to $-73$ $49$ to $97$ volts Grid-No.1 Vidage for Visual Extinction of Focused Raster Cutoff (Black Level): White-level value (Peak positive) $37$ to $73$ $49$ to $97$ volts Focusing-Coil Current (DC). $110 \pm 10\%$ mathematical extinction of Focused Raster Cutoff (Rated Strength) 50 50 gausses <b>a</b> drid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>a</b> . <b>b</b> . <b>b</b> . <b>b</b> . <b>b</b> . <b>b</b> . <b>b</b> . <b>b</b> . <b>c</b> . <b>b</b> . <b>c</b> .			. 410 max.	volts
Heater positive with respect to cathode . 180 max. volts Equipment Design Ranges: With any ultor voltage $(E_{C_2k})$ between 16000" and 18000 volts and grid-No.2 voltage $(E_{C_2k})$ between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{C2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{C2k} volts Grid-No.2 Current			• • • • • • • • • •	
With any ultor voltage $(E_{C_2k})$ between 16000 ⁺ and 18000 volts and grid-No.2 voltage $(E_{C_2k})$ between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of $E_{C_2k}$ volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of $E_{C_2k}$ volts Grid-No.2 Current				
and grid-No.2 voltage $(E_{C2k})$ between 200 and 500 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{C2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{C2k} volts Grid-No.2 Current	Equipment Design Ranges:			
Grid-No.1 Voltage for Visual Extinction of Focused Raster 12.3% to 24.3% of E _{c2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current				
Visual Extinction of Focused Raster 12.3% to 24.3% of E _{c2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current		) between 20	o and 500 v	olts
Focused Raster 12.3% to 24.3% of E _{c2k} volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current				
Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current		10.00 + 04	24 -5 5	
from Raster Cutoff (Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current		12.3% to 24	JN OT LC2k	voits
(Black Level): White-level value (Peak positive) 12.3% to 24.3% of E _{c2k} volts Grid-No.2 Current $\dots \dots				
White-level value (Peak positive) 12.3% to 24.3% of $E_{c2k}$ volts Grid-No.2 Current				
(Peak positive) 12.3% to 24.3% of $E_{C2k}$ volts Grid-No.2 Current				
Grid-No.2 Current		12.3% to 24	3% of East	volte
Focusing-Coil Current (DC) ⁰⁰ . Field Strength of Single-Field Ion-Trap Magnet (Approx.). Field Strength of Adjustable Centering Magnet 0 to 8 gausses Field Strength of Adjustable Centering Magnet 0 to 8 gausses <b>Examples of Use of Design Ranges:</b> With ultor voltage ( $E_{cgk}$ ) of 16000 16000 volts and grid-No. Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% m Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>5.</b> ,				
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco			ר <u>ר</u>	,
Field Strength of Single-Field $\sqrt{\frac{E_{C3k}}{16000}} \times 50$ gausses Field Strength of Adjustable $\sqrt{\frac{E_{C3k}}{16000}} \times 50$ gausses Field Strength of Adjustable $\sqrt{\frac{E_{C3k}}{16000}} \times 50$ gausses Examples of Use of Design Ranges: With ultor voltage of Design Ranges: With ultor voltage ( $E_{C3k}$ ) of 16000 16000 volts and grid-No. voltage ( $E_{C3k}$ ) of 300 400 volts Grid-No.1 Voltage for $\sqrt{\frac{1}{2}}$ volts Grid-No.1 Voltage for $\sqrt{\frac{1}{2}}$ volts Grid-No.1 Voltage for $\sqrt{\frac{1}{2}}$ volts Grid-No.1 Voltage for $\sqrt{\frac{1}{2}}$ volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value $\sqrt{\frac{1}{2}}$ volts Focusing-Coil Current (DC). 110 ± 10% 110 ± 10% m Jon-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>5.</b> , ⁵⁰ see next page.	Focusing-Coil Current (DC) ⁰⁰ .	$\sqrt{\frac{E_{\rm C3k}}{10000}}$	110 ± 10%	ma
ion-Trap Magnet (Approx.) . $\sqrt{\frac{-52N}{16000}} \times 50$ gausses Field Strength of Adjustable Centering Magnet 0 to 8 gausses <b>Examples of Use of Design Ranges:</b> With ultor voltage ( $E_{C_2k}$ ) of 16000 16000 volts and grid-No. voltage ( $E_{C_2k}$ ) of 300 400 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% m ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>e.</b> ,,	-	L A TOOOO		
Field Strength of Adjustable Centering Magnet 0 to 8 gausses Examples of Use of Design Ranges: With ultor voltage (E _{cgk} ) of 16000 16000 volts and grid-No. 1 Voltage (E _{cgk} ) of 300 400 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value {Peak positive} 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% me ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. For the grid-No.1 potential with respect to cathode.		<u> </u>	k . 50	
Centering Magnet 0 to 8 gausses Examples of Use of Design Ranges: With ultor voltage (Ecgk) of 16000 16000 volts and grid-No. voltage (Ecgk) of 300 400 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value {Peak positive} 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% mm ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>5.</b> , 00: See next page.		[°] V 1600	ю х зо	yausses
Examples of Use of Design Ranges: With ultor voltage (E _{C3k} ) of 16000 16000 volts and grid-No. voltage (E _{C3k} ) of 300 400 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mm jon-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. For the set page.		Á.+	- 0	
With ultor voltage $(E_{C3k})$ of 1600016000voltageand grid-No. voltage $(E_{C3k})$ of 300400voltageGrid-No.1 Voltage forVisual Extinction ofFocused Raster37 to -73-49 to -97Visual Extinction offrom Raster Cutoff(Black Level):			56	yausses
and grid-No. voltage (E _{c2k} ) of goo 400 volts Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive (From Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mm Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. <b>5.</b> , ⁵⁰⁰ : See next page.			-	• .
Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mail Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. For the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	With ultor voltage (E _{C3k} ) of	16000	16000	volts
Grid-No.1 Voltage for Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value {Peak positive} 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% me ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. •.*, ^{coo} : See next page. UC 1 1052	and grid-No. voltage (E _{c2k} ) of	300	400	volts
Visual Extinction of Focused Raster37 to -73 -49 to -97 volts Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mm Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. For the senext page. MC 1 1052				
Grid-No.1 Video Drive from Raster Cutoff (Black Level): White-level value (Peak positive) 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mm Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. 9,*,00: See next page. NC 1 1052				
from Raster Cutoff (Black Level): White-level value {Peak positive} 37 to 73 49 to 97 volts Focusing-Coil Current (DC) 110 ± 10% mm ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-Wool potential with respect to cathode. •, *, *********************************		-37 to -73	<b>49 to97</b>	volts
(Black Level): White-level value {Peak positive} 37 to 73 49 to 97 volts Focusing-Coil Current (DC). 110 ± 10% mm ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. •, *, *********************************	Grid-No.1 Video Drive			
White-level value (Peak positive) 37 to 73 49 to 97 volts         Focusing-Coil Current (DC) 110 ± 10% mm jon-Trap Magnet (Rated Strength) 50 50 gausses         Grid drive is the operating condition in which the video signal varies the grid-woll potential with respect to cathode.         •, ", "Oo: See next page.         VC 1       1052				
(Peak positive) 37 to 73 49 to 97 volt: Focusing-Coil Current (DC) 110 ± 10% 110 ± 10% mi ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-wo.1 potential with respect to cathode. •, *, *********************************				
Focusing-Coil Current (DC). 110 ± 10% 110 ± 10% ma Ion-Trap Magnet (Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode. •,*,**********************************				• -
<ul> <li>ion-Trap Magnet         (Rated Strength) 50 50 gausses</li> <li>Grid drive is the operating condition in which the video signal varies the grid-wo.1 potential with respect to cathode.</li> <li>*, *, **, ****************************</li></ul>				
(Rated Strength) 50 50 gausses Grid drive is the operating condition in which the video signal varies the grid-wo.1 potential with respect to cathode. •,*,°°: See next page.		110 ± 10%	$110 \pm 10\%$	ma
Grid drive is the operating condition in which the video signal varies the grid-No.1 potential with respect to cathode.		50	FO	
•, [#] , ⁰⁰ : See next page.				•
	Grid drive is the operating condit the grid-No.1 potential with respe	ion in which t ct to cathode.	he viđeo sign	al varies
AUG. 1, 1953 TUBE DEPARTMENT TENTATIVE DATA 1				
	NUG. 1, 1953 TUBE DEP	ARTMENT	TENTATIV	E DATA 1

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



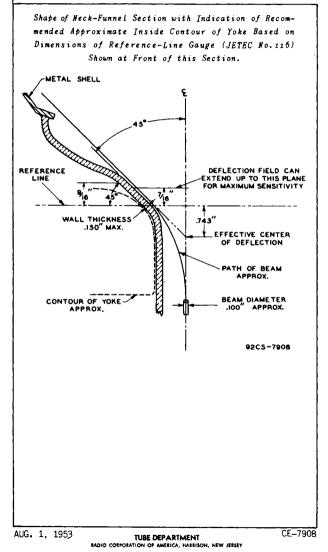


# **KINESCOPE**

۱r

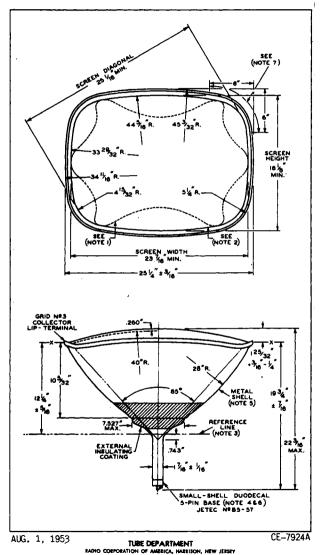
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms
CATHODE-DRIVE SERVICE
Unless otherwise specified, voltage values are positive
with respect to grid No.1
Maximum Ratings, Design-Center Values:
ULTOR -TO-GRID-No.1 VOLTAGE 18000 max. volts
GRID-No.2-TO-GRID-No.1 VOLTAGE 625 max. volts GRID-No.2-TO-CATHODE VOLTAGE 500 max. volts
GRID-No.2-TO-CATHODE VOLTAGE 500 max. volts CATHODE-TO-GRID-No.1 VOLTAGE:
Positive bias value
Negative bias value 0 max. volts
Negative peak value
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode:
During equipment warm-up period
not exceeding 15 seconds 410 max. volts
After equipment warm-up period 180 max. volts
Heater positive with respect to cathode. 180 max, volts
Equipment Design Ranges:
With any ultor-to-grid-No.1 voltage (E _{C2g1} ) between
16000* and 18000 volts
and grid-No.2-to-grid-No.1 voltage (E _{c2g1} ) between
220 and 620 volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction
of Focused Raster 11% to 19.7% of E _{C2q1} volts
Cathode-to-Grid-No.1 Video
Drive from Raster Cutoff
(Black Level):
White-level value (Peak negative) 11% to 19.7% of E _{cont} volts
(Peak negative) 11% to 19.7% of E _{c2g1} volts Grid-No.2 Current
Focusing-Coil Current (DC) ⁰⁰ . $\left[\sqrt{\frac{E_{c}3g1}{16000}} \times 110\right] \pm 10\%$ ma
The "ultor" in a cathode-ray tube is the electrode to which is applied the highest dc voltage for accelerating the electrons in the beam prion to its deflection. In the 27MP4, the ultor function is performed by grid No.3. Since grid No.3 and collector are connected together within the 27MP4, they are collectively referred to simply as "ultor" for con- venience in presenting data and curves.
the highest dc voltage for accelerating the electrons in the beam prior to its deflection. In the 27MP4, the ultor function is performed by
grid No.3. Since grid No.3 and collector are connected together with the 27MPH, they are collectively referred to simply as "ultor" for con-
venience in presenting data and curves.
Cathode drive is the operating condition in which the video signal varies the cathode potential with respect to grid wo.1 and the other electrodes.
Brilliance and definition decrease with decreasing ultor voltage of ultor-to-grid-wo,1 voltage, in general, the ultor voltage or the ultor to-grid-Wo,1 voltage should not be less than 16000 volts.
, to-gi iu-n0+1 voitage snobiu not de 1855 than 10000 voits+
00. See next page
[00]; see next page.
AUG. 1, 1953 TUBE DEPARTMENT TENTATIVE DATA 2 RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY




27MP4 KINESCOPE

Field Strength of Single-Field Ion-Trap Magnet (Approx.)	$\sqrt{\frac{E_{c3}}{160}}$	<u>g1</u> × 50	gausses
Field Strength of Adjustable Centering Magnet	0	to 8	gausses
Examples of Use of Design Ranges	:		
With ultor-to-grid-No.1 voltage (E _{C2F1} ) of	16000	16000	volts
and grid-No.2-to-grid-No.1 voltage (E _{C2g1} ) of	300	400	volts
Cathode-to-Grid-No.1 Voltage for Visual Extinction	<u> </u>	4	
of Focused Raster Cathode-to-Grid-No.1 Video Drive from Raster Cutoff	33 to 59	44 to 79	volts
(Black Level): White-level value			
(Peak negative) Focusing-Coil Current (DC)	-33 to -59 110 ± 10%	-44 to -79 110 ± 10%	volts ma
Ion-Trap Magnet (Rated Strength)	50	50	gausses
Meximum Circuit Values:			
Grid-No.1-Circuit Resistance .		1.5 max.	megohms
OD For specimen focusing coll simil positioned with air gap toward kine gap 3 inches from Reference Line ( dicated current is for condition w signal voltage adjusted to produce lamberts on a 23-7/16*x18-1/8* pic of screen.	ar to JETEC scope screen see Dimension ith combined   a highlight   ture area sha	Focusing Co and center 1 bol Outline, bias voltage brightness of rply focused	il No.109 Ine of air The In- and video 30 foot- at center
For x-ray shielding cons X-RAY PRECAUTIONS FOR at front of t	CATHODE-RA	Y TUBES	

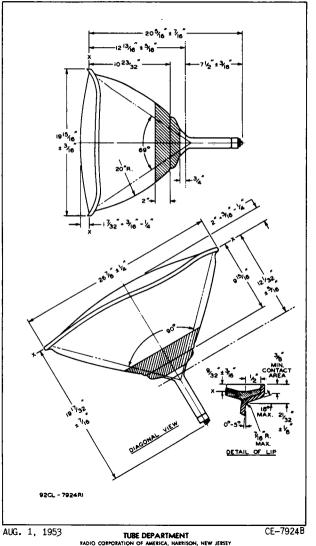
TUBE DEPARTMENT











RCA 27MP4 KINESCOPE



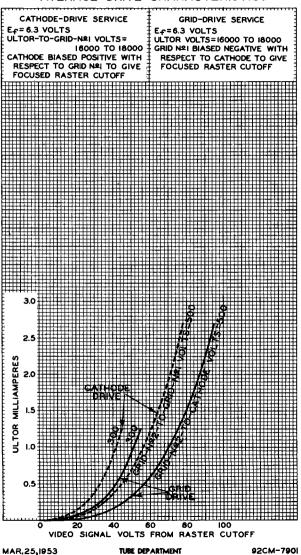
27MP4

**KINESCOPE** 

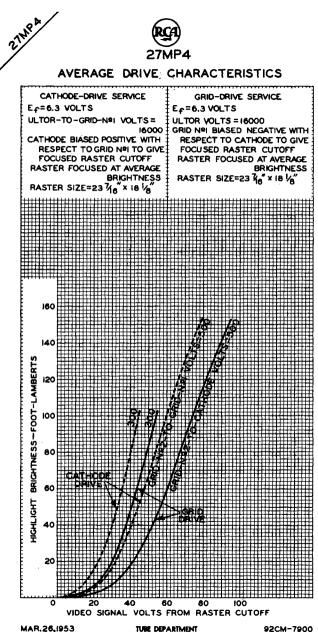







# RCA 27MP4 KINESCOPE

NOTE 1: APPROXIMATE BOUNDARY OF SPHERICAL SURFACE HAVING 40" RADIUS. OUTSIDE THIS BOUNDARY, THE CURVATURE OF THE SURFACE IS BLENDED INTO THE RIM. (SEE NOTE 2).
NOTE 2: FACEPLATE SHAPE AT PERIMETER OF SCREEN CONFORMS TO SURFACE OF SPHERE HAVING 50" RADIUS.
NOTE 3: WITH TUBE NECK INSERTED THROUGH FLARED END OF Reference-line gauge jetec no.116 (Shown at Front of This Section) and with tube seated in gauge, the Refer- ence line is determined by the intersection of the Plane CC' of the gauge with the glass funnel.
NOTE 4: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED; IT SHOULD HAVE FLEXIBLE LEADS AND BE ALLOWED TO MOVE FREELY. BOTTOM CIRCUMFERENCE OF BASE SHELL WILL FALL WITHIN A CIRCLE CONCENTRIC WITH METAL-SHELL AXIS AND HAVING A DIAMETER OF 3-1/4".
NOTE 5: METAL SHELLAND GLASS FACE OPERATE ATHIGH VOLTAGE. ANY MATERIAL IN CONTACT WITH THE SHELL OR THE FACE MUST BE INSULATED TO WITHSTAND THE MAXIMUM APPLIED ULTOR VOLTAGE.
NOTE 6: THE PLANE THROUGH THE TUBE AXIS AND VACANT PIN Position No.6 May vary from the horizontal axis of the glass face by an angular tolerance (measured about the tube axis) of $\pm$ 10°.
NOTE 7: SUPPORT TUBE IN LIP REGION ONLY AT CORNERS WITH- In This Space.



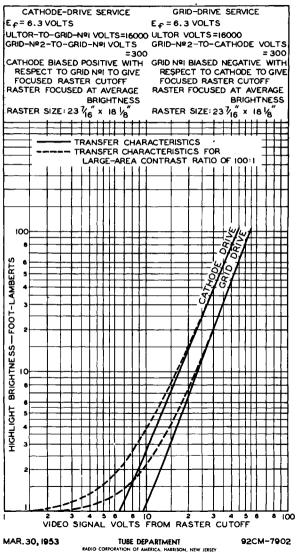



### AVERAGE DRIVE CHARACTERISTICS



BADIO CORPORATION OF AMERICA, HARRISON, NEW JE




RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7900





### AVERAGE DRIVE CHARACTERISTICS





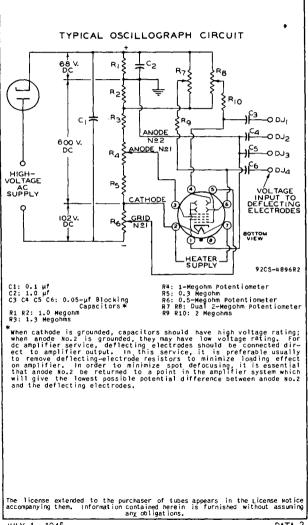
# HIGH-VACUUM CATHODE-RAY TUBE

#### General:

Heater, for Unipotential Cathode: Voltage	(Approx.): s 7.5 μμf 8.5 μμf this Section) No.1 
$DJ_1$ and $DJ_2$ are near $DJ_3$ and $DJ_4$ are near	
With DJ positive with respect flected toward pin 3. With DJ DJ4, the spot is deflected towar The angle between the trace pr its intersection with the plane pin 1 does not exceed 10°. The angle between the trace pro the trace produced by DJ and	positive with respect to d pin 1. oduced by DJ3 and DJ4 and through the tube axis and oduced by DJ3 and DJ4 and
Maximum Ratings, Absolute Values: ANODE-No.2 & GRID No.2 VOLTAGE. ANODE-No.1 VOLTAGE. GRID-No.1 (CONTROL ELECTRODE) VOLT Negative Value. Positive Value. PAK VOLTAGE BETWEEN ANODE No.2 AN DEFLECTING ELECTRODE DJ1	330 max. volts AGE: 125 max. volts 0 max. volts

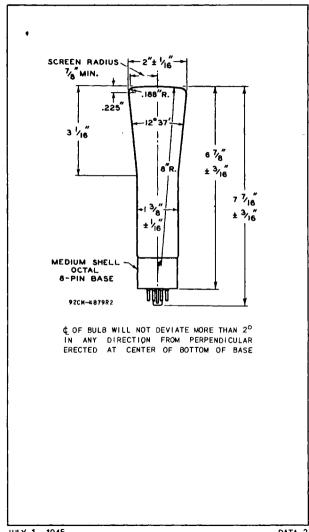
.

902:P



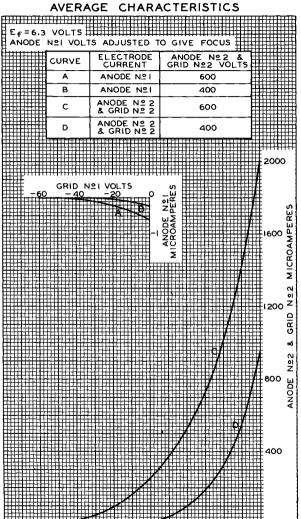



# HIGH-VACUUM CATHODE-RAY TUBE


(continued from preceding page) Typical Operation: Anode No.2 & Grid No.2 Voltage* • • 400 600 . . . volts Anode No.1 Voltage for Focus at 75% of Grid-No.1 Voltage for Cutoff • . . 100 150 volts Grid-No.1 Volt. for Visual Cutoff#, -40 -60 voltsi Max. Anode-No.1 Current Between -50 and +10 Range иатр. Deflection Sensitivity: DJ1 and DJ2 . . . . . . . . 0.273 0.183 . . . mm/v dc DJa and DJ4 . . 0.326 0.217 mm/v dc Deflection Factor:** DJ1 and DJ2 . . . 93 139 . . v dc/in. 78 117 DJ3 and DJ4 . . . . v dc/in. ★ Brilliance and definition decrease with decreasing anode-Ho.2 voltage. In general, anode-No.2 voltage should not be less than 400 volts. Individual tubes may require between +20% and -35% of the values shown with grid-Ho.1 voltages between zero and cutoff. # Visual extinction of stationary focused spot. Supply should be adjustable to ± 50% of these values. See curve for average values. Individual tubes may vary from these values by  $\pm$  20%. Spot Position: The undeflected focused spot will fall within a 10-mm square centered at the geometric center of the tube face and having one side parallel to the trace produced by DJ1 and DJ2. Suitable test conditions are: anode-No.2 voltage, 600 volts; anode-No.l voltage, adjusted for focus; deflecting-electrode resistors, I megohm each for DJ | and DJ.4, connected to anode No.2; the tube shielded from all extraneous fields. To avoid damage to the tube, grid—No.1 voltage/should be near cutoff before application of anode voltages. Maximum Circuit Values: Grid-No.1-Circuit Resistance . . . . . . 1.5 max. megohms Impedance of Any Deflecting-Electrode Circuit at Heater-Supply Frequency megohm 1.0 max. Resistance in Any Deflecting-Electrode Circuit** 5.0 max. meaohms It is recommended that both deflecting-electrode-circuit resistances be approximately equal.

902: A HIGH-VACUUM CATHODE-RAY TUBE




902-A

HIGH-VACUUM CATHODE-RAY TUBE



902iA





APR. 13, 1945

-60

GRID NºI VOLTS RCA VICTOR DIVISION MOIO CORIOLATION OF AMERICA, HARRISON, NEW JERSEY

40

20

92CM-4895RI

0

902.A

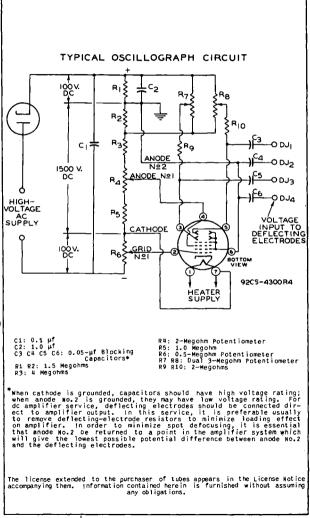


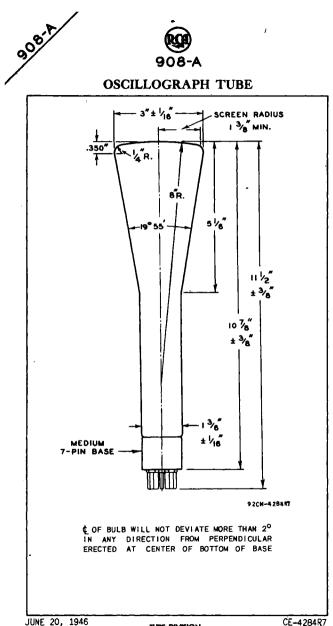


OSCILLOGRAPH TUBE Supersedes Type 908

General:
Heater, for Unipotential Cathode: Voltage
$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base
With DJ ₂ positive with respect to DJ ₁ , the spot is de- flected toward pin I. With DJ ₄ positive with respect to DJ ₃ , the spot is deflected toward pin 6. The angle between the trace produced by DJ ₃ and DJ ₄ and its intersection with the plane through the tube axis and pin 6 does not exceed $10^{\circ}$ . The angle between the trace produced by DJ ₃ and DJ ₄ and the trace produced by DJ ₁ and DJ ₂ is $90^{\circ} \pm 3^{\circ}$ .
Maximum Ratings, Design-Center Values:
ANODE-No.2 & GRID No.2 VOLTAGE 1500 max. volts ANODE-No.1 VOLTAGE 1000 max. volts GRID-No.1 (CONTROL ELECTRODE) VOLTAGE: Negative Value




# **OSCILLOGRAPH TUBE**

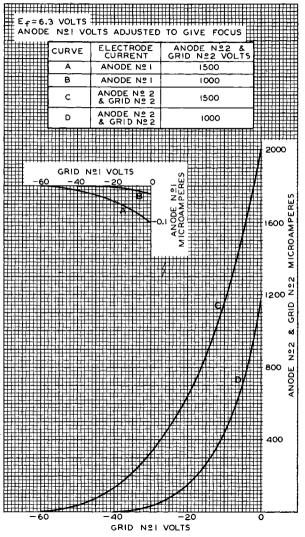

(continued from preceding page) Typical Operation: Anode No.2 & Grid No.2 Voltage* . . 1000 1500 . volts Anode No.1 Voltage for Focus at 75% of Grid-No.1 Voltage for Cutoff® . 430 287 volts Grid-No.1 Volt. for Visual Cutoff#. -33 -50 volts Max. Anode-No.1 Current Range≜. Between -50 and +10 uamp. Deflection Sensitivity: DJ1 and DJ2 . . . . . . . . . 0.334 0.223 . . mm/v dc DJ3 and DJ4 . . . . . . . . . . . . Deflection Factor:** . 0.348 0.233 . mm/v dc DJ1 and DJ2 . . . . . 76 114 . . v dc/in. DJR and DJA . 73 109 . . v dc/in. Brilliance and definition decrease with decreasing anode—No.2 voltage. In general, anode—No.2 voltage should not be less than 1000 volts. Individual tubes may require between +29% and -44% of the values shown with grid-Ho.1 voltages between zero and cutoff. Visual extinction of stationary focused spot. Supply should be adjust-able to ± 50% of these values. See curve for average values. ** Individual tubes may vary from these values by  $\pm$  20%. Spot Position: The undeflected focused spot will fall within a 15-mm square centered at the geometric center of the tube face and having one side parallel to the trace produced by DU and DU2. Suitable test conditions are: anode-No.2 voltage, 1500 volts; anode-No.1 voltage, adjusted for focus; deflecting-electrode resistors, I megohm each for DJ and DJ3, connected to anode No.2; the tube shielded from all extraneous fields. To avoid damage to the tube, grid-No.1 voltage should be near cutoff before application of anode voltages. Maximum Circuit Values: . 1.5 max, megohms Grid_No.1 Circuit Resistance . Impedance of Any Deflecting-Electrode Circuit at Heater-Supply Frequency 1.0 mox. megohm Resistance in Any Deflecting-Electrode Circuit^{AA} 5.0 max. megohms It is recommended that both deflecting-electrode-circuit resistances be approximately equal.

908-h










TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, HEW JERSEY



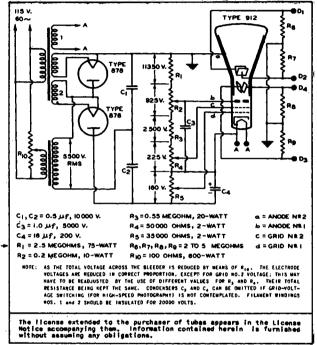






APR. 18, 1945

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-5415R5

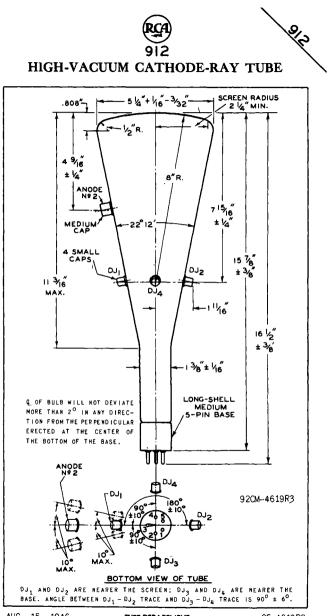





#### **HIGH-VACUUM CATHODE-RAY TUBE** HIGH-INTENSITY ELECTROSTATIC-DEFLECTION TYPE WITH 5" MEDIUM-PERSISTENCE SCREEN FOR OSCILLOGRAPHIC USE Heater Coated Unipotential Cathode a-c or d-c volts Voltage 2.5 2.1 amp. Current Fluorescent Screen: Phosphor No.1 Material Greenish Pattern Color Direct Interelectrode Capacitances: 14 max. uuf Grid to all other electrodes DJ1 to DJ2 3 max. uuf DJ3 to DJ4 1.5 max. μµf Overall Length 16-1/2" ± 3/8" 5-1/4" + 1/16" - 3/32"Maximum Diameter Rulb. J-42 Caps: Medium Metal Anode No.2 Deflecting Electrodes (Four) Small Metal Medium 5-Pin Micanol Base BOTTOM VIEW Pin 1 - Heater Сар (Deflecting Pin 2-Grid No.2 Over Electrode 3 DJ Pin 3 - Anode No.1 Pins DJ2 1 & 5 Pin 4 - Grid No.1 DJ4r Deflecting Pin 5-Heater. Cap Cathode 0ver Electrode Pin 2 Single Medium Cap -DJ3 Deflectina Anode No.2 Cap Cap (Deflecting Over Electrode Pin 4 DJ₄ Over Electrode Pin 3 DJ1 MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS Maximum Ratings Are Based on a Line-Voltage Design Center of 117 Volts High-Voltage Electrode (Anode #2) Voltage 15000 max. volts 4500 max. volts Focusing Electrode (Anode #1) Voltage 250 max. volts Accelerating Electrode (Grid #2) Voltage Never positive Control Electrode (Grid #1) Voltage Grid Voltage for Current Cut-off -125 approx.volts Peak Voltage Between Anode #2 and any deflecting electrode 7000 max. volts Typical Operation: 2.5 volts Heater Voltage 2.5 2.5 1 00 00 15000 volts Anode #2 Voltage 5000 Anode #1 Voltage 3000 approx.volts 1000 2000 volts Grid #2 Voltage 250 250 250 Grid #1 Voltage Adjusted to give suitable luminous spot Deflection Sensitivity: 0.083 0.028 mm/volt d.c. DJ1 to DJ2 0.041 DJ3 to DJ4 0.102 0.051 0.034 mm/volt d.c. With maximum voltages on Anode \$1 and Grid \$2. 🗕 Indicates a change.

912/

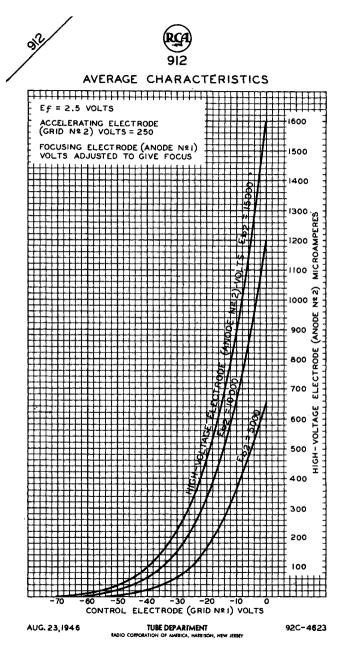
TYPICAL OSCILLOGRAPH CIRCUIT USING THE 912 WITH VOLTAGE-DOUBLING POWER SUPPLY




92C-4621R1

## FLUORESCENT-SCREEN CHARACTERISTICS

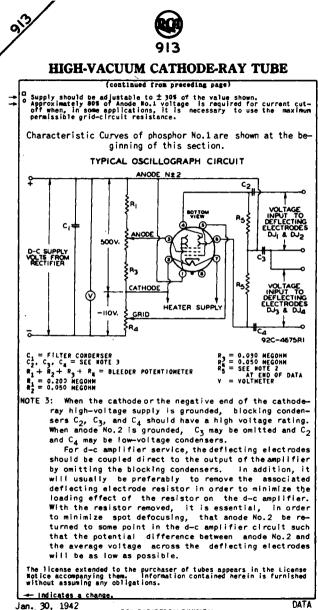
CURVES SHOWING THE AVERAGE CHARACTERISTICS, SPECTRAL EMERGY CHARACTERISTIC, AND PERSIST-ENCE CHARACTERISTIC OF PHOSPHOR NO.I ARE SHOWN AT THE BEGINNING OF THIS SECTION.


-Indicates à Change.



AUG. 15, 1946

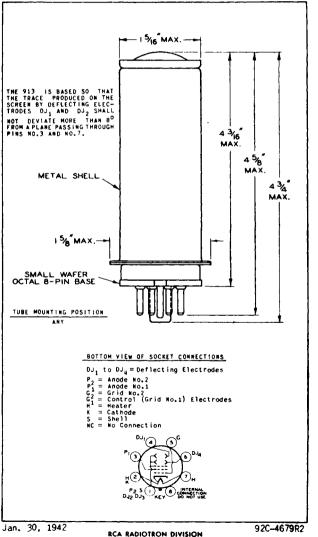
#### TUBE DEPARTMENT RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY


CE-4619R3

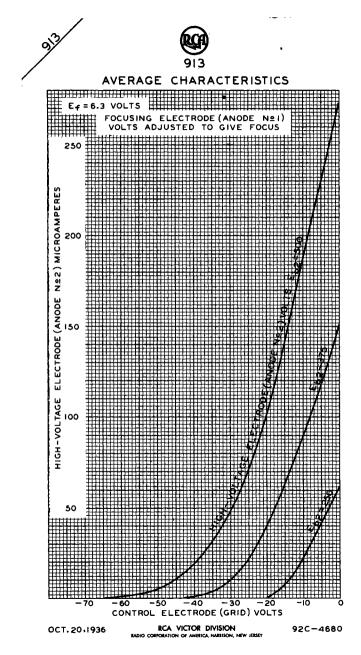




## **HIGH-VACUUM CATHODE-RAY TUBE**


Coated Unipotential Cathode Heater Voltage 6.3 a-c or d-c volts 0.6 Current amp. Focus Electrostatic Deflection Flectrostatic Electrodes  $D_1$  and  $D_2$  (upper): Electrodes  $D_3$  and  $D_4$  (lower): nearest to screen nearest to base  $\mathbb{D}_1$  is on the same side of tube as pins No.2 and No.4  $\mathbb{D}_3$  is on the same side of tube as pins No.2 and No.8 Phosphor No.1 Fluorescence Green Medium Persistence Direct Interelectrode Capacitances: Control Electrode (Grid) to All Other Electrodes 8 µµf Deflecting Electrode DJ₁ to Deflecting Electrode DJ₂ 2.5 µµf Deflecting Electrode  $\Omega_3$  to Deflecting Electrode  $\Omega_4$ 2.5 uuf Maximum Overall Length 4-3/4" 1-5/8" Maximum Diameter Metal Shell, MT-10 Bulb Small Wafer Octal 8-Pin Base MAXIMUM RATINGS and TYPICAL OPERATING CONDITIONS Maximum Ratings Are Based on a Line-Voltage Design Center of 117 Volts High-Voltage Electrode (Anode No.2) Volt. 500 max. volts Focusing Electrode (Anode No.1) Volt. 200 max. volts Control Electrode (Grid) Volt. Never positive Peak Voltage Between Anode No.2 and 250 max. Any Deflecting Electrode volts Grid Circuit Resistance Impedance of Any Deflecting-Electrode 1.5 max. meaohms Circuit at Heater-Supply Frequency 1.0 max. meaohm Typical Operation: Anode No.2 Voltage Anode No.1 Voltage 250 500 volts 50 100 approx. volts Adjusted to give suitable luminous spot Grid Voltage^o Deflection Sensitivity: 0.15 0.07 mm/volt d.c. Electrodes  $D_1 \& D_2$ 0.10 mm/volt d.c. Electrodes DJ3 & DJ4 0.21 NOTE 1: Brilliance and definition decrease with decreasing anode voltages. In general the anode No.2 voltage should not be less than 250 volts. The d-c potential of each deflecting electrode is NOTE 2: maintained essentially equivalent to that of anode No.2 by connecting resistors having values not greater than 10 megohms between each deflecting electrode and anode This arrangement by suitable choice of resistor No.2. values minimizes pattern distortion and pattern drift resulting from unbalanced potentials on the deflecting electrodes. The smaller the resistor values, the less the distortion for a given beam current. ۰. See next page. Indicates a change.






9[3

# **HIGH-VACUUM CATHODE-RAY TUBE**



RCA MANUFACTURING COMPANY INC





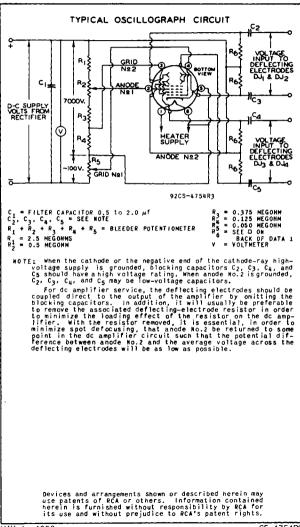
ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

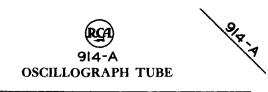
General: DATA	
Deflection Method Elec Overall Length	amp . μμf . μμf . μμf . No.1 . Green . Medium trostatic trostatic
Mounting Position.	Anv
Caps:       Anode No.2       Ease       Long Medium-Shell Sm.         Base       Bottom VIEW       Bottom VIEW       Pin 1 - Heater       Cap         Pin 1 - Heater       Cap       Over       Pin 5         Pin 2 - Anode No.1       DJa       Over       Pin 5         Pin 3 - Grid No.2       DJa       Over       Pin 5         Pin 5 - Cathode       DJa       Over       Pin 5         Pin 6 - Heater       DJa       Over       El         Single Medium Cap-       P2       1 & 6       DJa         Anode No.2       Cap       Cap       DJa       Def         Single Medium Cap-       P2       Sover       El       DJa         Over       DJa       Over       El       DJa         Over       Electrode       Pins       DJa         Pin 2       DJa       3 & 4       DJa	lecting ectrode fecting ectrode 3 lecting ectrode
$DJ_1$ and $DJ_2$ are nearer the screen $DJ_3$ and $DJ_4$ are nearer the base	
With DJ positive with respect to DJ the spot is de toward pin 2. With DJ positive with respect to D spot is deflected toward pins 1 and 6.	J ₄ , the
The angle between the trace produced by DJ ₁ and DJ ₂ intersection with the plane through the tube axis a does not exceed 10 ⁰ .	nd pin 2
The angle between the trace produced by DJ ₃ and DJ ₄ ; trace produced by DJ ₁ and DJ ₂ is $90^{\circ} \pm 6^{\circ}$ .	and the
	ax. volts
ANODE-No.1 VOLTAGE	

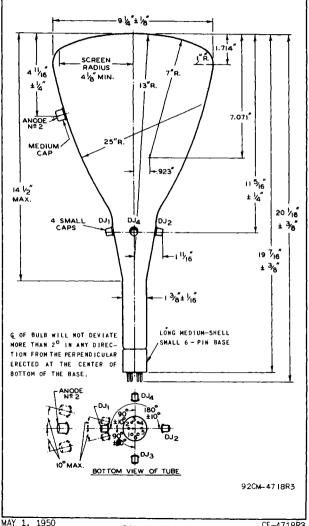
94.4



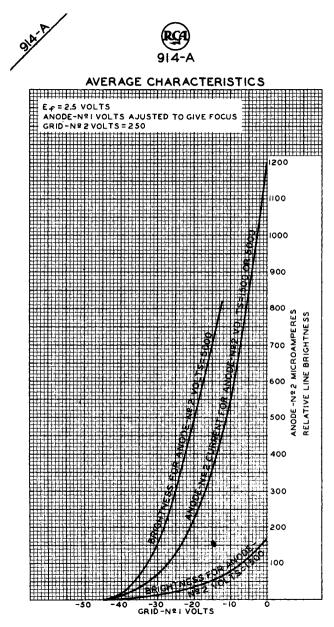



GR!D No.2 VOLTAGE	ax. volts
Negative bias value	ax. volts
Positive bias value 0 ma	ax. volts
Positive peak value	
PEAK VOLTAGE BETWEEN ANODE No. 2	
AND ANY DEFLECTING ELECTRODE 3000 ma	ax. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathode 125 ma	ax. volts
Heater positive with respect to cathode 125 ma	ax. volts
-> Equipment Design Ranges:	
For any anode-No. 2 voltage (Eb ₂ ) between 1500 and 70	oo volts*
Anode-No.1 Voltage 15% to 26% of Eb2	. volts
Grid-No.? Voltage 250	volts
Max. Grid-No.1 Voltage	
for Visual Cutoff. 30% of Eb2	, volts
Max, Anode-No.1	
Current Range, -15 to + 10	. μaπp
Deflection Factors:	, .
DJ1 to DJ2 38 to 54 v dc/in./	kv of Eb2
DJ3 to DJ4 30 to 44 v dc/in./	kv of Eb2
	~~~~
→ Examples of Use of Design Ranges:	
For Anode-No.2 Volt. of 1500 2500 5000 7000	o volts
Anode-No.1 Voltage 225-390 375-650 750-1300 1050-	1800 volts
Grid-No.2 Voltage . 250 250 250 250) volts
Max. Grid-No.1 Volt.	
for Visual Cutoff -75 -75 -75 -75	5 volts
Deflection Factors:	ł
DJ ₁ to DJ ₂ 57-81 93-135 190-270 266-3	
D_3 to D_4 45-66 75-110 150-220 210-3	308 vdc∕in
Maximum Circuit Values:	
Grid-No.1-Circuit Resistance 1.5 max.	megohmis
Resistance in Any Deflecting-Electrode	inego, ing
Circuit ^e 5 max.	megohms
The power supply should be of the limited-energy	type with
inherent regulation to limit the continuous shor	t-circuit
inherent regulation to limit the continuous shor current to 5 milliamperes. If the supply permits th	ne instan–
taneous short-circuit current to exceed 1 ampere, or i	s capable
of storing more than 250 microcoulombs, the effe	ctive re-
sistance in circuit between indicated electrode and t	he output
.	
* grilliance and definition decrease with decreasing anode-wo in general, anode-No.2 voltage should not be less than 1500	voltage.
In general, anode-wolld voltage should not be ress than 1000	resistance
be approximately equal.	
	s a change.
MAY 1, 1950 TUBE DEPARTMENT	DATA 1





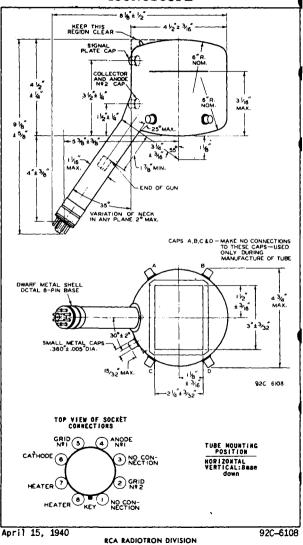
	capacitor should be as follows:
ł	Grid-No.1-Circuit Resistance 150 min. ohms
ļ	Grid-No.2 - Circuit Resistance
	Anode-No.1 - Circuit Resistance 2000 min. ohms Anode-No.2 - Circuit Resistance
	The resistors should be capable of withstanding the applied voltages.
ĺ	
1	
ļ	
1	
1	
1	
ļ	
ł	
ĺ	
-	
Ì	
1	
ł	
ļ	
ļ	
Ì	
ĺ	



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-4718R3

JULY 19,1946

TUBE DEPARTMENT RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY


<u>For use i</u>	n portable television	cameras
Heater Coat	ed Unipotential Catho	ode
Voltage	6.3	a-c or d-c volts
Current	0.6	amp.
Deflection	0.0	Magnetic
Type of Pickup		Direct
Direct Interelectrod	· Canaditance:	Direct
	llector & Anode No.2	
•	•	10 approx wif
	al shielding)	10 approx.µµf
	1 Other Electrodes	12 max. µµf
Dimensions		See Outline Drawing
Caps (two)		Small Metal
Base	Dwarf Meta	1 Shell Octal 8-Pin
MAXIMUM RATING	S and TYPICAL OPERATI	NG CONDITIONS
High-Voltage Electro	de (Anode No.2)	
& Collector Voltag		1200 max. volts
	de (Grid No.2) Voltag	
Focusing Electrode (400 max. volts
Control Electrode (G		Never Positive
Grid No.1 Volt. for		-50 approx.volts
Anode No.2 & Collect		0.5 max. µamp.
Ambient Temperature	or current	40 max. °C
		40 maxC
Typical Operation:		6.2
Heater Voltage O		6.3 volts
Anode No.2 & Colle	ctor voltage	1000 volts
Grid No.2 Voltage	•	1000 volts
Anode No.1 Voltage		300 approx.volts
Grid No.1 Voltage		-40 approx.volts
_ Anode No.2 & Colle		0.1 approx.µamp.
Design maximum for 11	-volt line. measured, the mosaic shou connected to one side or	ad and by 131
O The cathode should be	easured, the mosaic shou connected to one side or	, preferably, to the
mid-tap of the heater	winding.	
Should be adjusted and vide sufficient video	outout.	value which will pro-
≇ Maximum d→c resistance	winding. I set at largest negative output, in the grid circuit shoul set at value giving best	d not exceed 1 megohm.
• Should be adjusted and	l set at value giving best Nactor impedance is a f	rocus.
image brilliance, and be	lector impedance is a f am current, and is in the mal beam current is in t	order of a few megohms
The signal-plate re	sistive load should be a collector Impedance if quired in all frequencies value of signal-plate lo m, with low values of loa atio are low. With high v e increased. In either ca isized and must be equal	pproximately one-tenth
of the signal plate-to-	collector impedance if	constant signal output
A practical design	value of signal-plate lo	ad impedance is in the
order of 0.1 to 0.5 megoi	m. With low values of loa	d resistance, gain and
output-to-noise ratio an	atio are low. with high v e increased. In either ca	se, the low video fre-
quencies are over-empha	sized and must be equal	ized by a video stage
having low low-frequency Signal output curre	gain. Int varies with beam curren	t. illumination level.
and bias lighting, but is	in the order of 0.15 mic	roampere peak to peak.
Good operation can be o	of 7 foot_candles	illumination level on
The spectral sensit	ivity of the 1848 is adjust	ed for outdoor pickup.
The d-c resistance one megohm.	rgain. ratin, and must be equal ratin the order of 0.15 mic botained with a highlight of 7 foot-candles. ivity of the 1848 is adjust in the signal-plate circui	t should be limited to
one wegonis		

.

ICONOSCOPE

RCA MANUFACTURING COMPANY, INC.

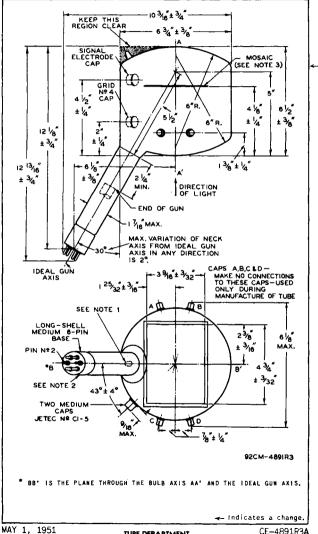
ICONOSCOPE

DATA

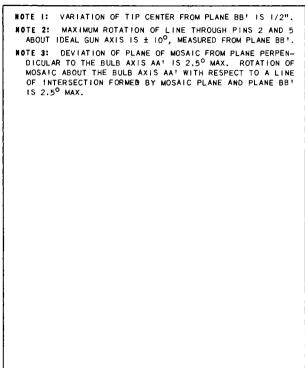
General:		
		1
Heater, for Unipotential Cathode:		
Voltage $6.3 \pm 10\%$		
Current 0.6		атр
Direct Interelectrode Capacitances (Approx.):		
Grid No.1 to All Other Electrodes	5.5	μμf.
Signal Electrode to Grid No.4 ⁰	10	µµuf
Mosaic, Photosensitive:	-	. 1
Response	See	Curve
Useful Size of Rectangular Image		. 1
(4 x 3 Aspect Ratio) 5.75	" max. dia	agonal 🖛
Focusing Method	Electros	static
Deflection Method	Mag	gnetic
Deflection Angle (Approx.)		550
Max. Width of Mounted Tube	8	3-1/8"
Height of Mounted Tube	10-3/16" ±	± 3/4"
Depth of Mounted Lube	2-13/16" ±	£ 3/4"I
Mounting Position Mosaic in	vertical	plane
Minimum Deflecting-Coil Inside Diameter	• • • •	1-1/2"
Moinimum Deflecting-Coil Length Medium (Caps (Two)		< <u>-1/4</u> " ←
(Caps (Iwo) Medium	JEIEC NO.	.01-5/
Base Long Medium-Sn	ell Small	6-Pin
BOTTOM VIEW		
Pin 1-Heater 3 1 4	(See Out)	line
Pin 2-Grid No. 2 Caps	{See Out Drawing	
Pin 3-Grid No.3 2 5 SJ	- Signal Electro - Grid No.	3
Pin 3-Grid No.3 O	Flectro	ode
Pin 5-Cathode G_A	-Grid No.	. 4
Pin 6-Heater	(Colle	ctor)
DIRECTION OF LIGHT		
ł		
Maximum Ratings, Absolute Values:		
AVERAGE MOSAIC ILLUMINATION.	50 max.	ft-c 🔶
OPERATING TEMPERATURE OF BULB		
	40 max.	°C 🖛
	200 max.	
GRID-No.4 (COLLECTOR) VOLTAGE 1	200 max.	
	450 max.	
GR1D-No.2 VOLTAGE	200 max.	volts
GRID-No.1 VOLTAGE:		
Negative bias value		volts
Positive bias value	0 max.	volts
PEAK HEATER-CATHODE VOLTAGE:		1
Heater negative with respect to cathode.	125 max.	volts
Heater positive with respect to cathode.	10 max.	
	0.5 max.	µamp
⁰ With external shield.		
• Averaged over any interval of 1 sec. max 1	ndicates >	change
IAV 1 1051	indicates a	
MAT 1, 1951 THEF OFPARTMENT		DATA

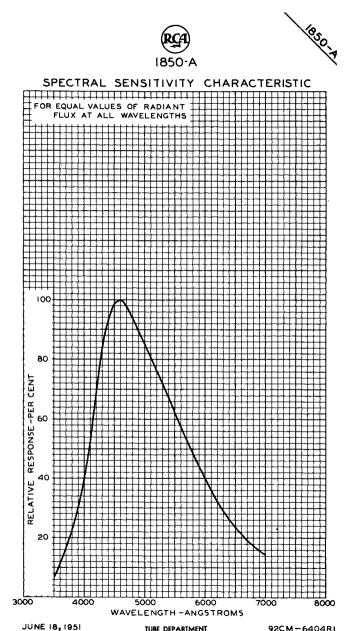
1

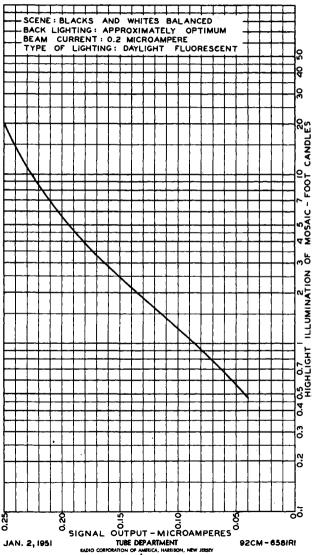
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


1850-A ICONOSCOPE

Typical Operation and Characteristics:		
Signal-Electrode Voltage	1000	volts
Grid-No.4 Voltage.	1000	volts
Grid-No.3 Voltage (Beam Focus)-	240 +- 200	volts
24% to 36% of Grid-No.4 Voltage	240 to 360 1000	volts
-Max. Grid-No.1 Voltage for Pattern	1000	VOIC
Cutoff 7% of Grid-No.4 Voltage	-70	volts
-Grid-No.4 Current		
(With no illumination on mosaic)* External Load Resistance	0.1 to 0.2	µamp
-Illumination on Mosaic:	0.1	megohr
Steady Highlight Value for Slides	4 to 6	ft-c
Average Pulsed Highlight Value		
for Motion-Picture Film	10 to 20	ft-o
Ratio of Peak-to-Peak Highlight		
Video-Signal Current to RMS Noise Current (Approx.).	100	
Minimum Peak-to-Peak Blanking Voltage.	20	volt
Deflecting-Coil Current (Approx.):**		
Horizontal (Peak to peak)	600	m
Vertical (Peak to peak)	140	Ш
Maximum Circuit Values:		
Grid-No.1-Circuit Resistance	1.0 max.	megoh
* Allowance should be made for leakage currents. ** For RCA Deflecting Yoke No.201076.		
1		
·		
1		
1		
}		
		change
MAY 1 1951		DAT

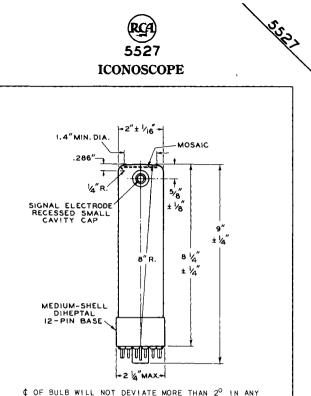



ICONOSCOPE



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6404RI

TYPICAL SIGNAL-OUTPUT CHARACTERISTIC


ELECTROSTATIC FOCUS ELECTROSTATIC DEFLECTION

ELECTROSTATIC FOC	US ELECTRO	STATIC DEFLECTION
General:		
Heater, for Unipotentia Voltage Current Direct Interelectrode (Grid No.1 to All Othe Signal Electrode to /	6.3 ± 10% 0.6 Capacitances (Ap er Electrodes . All Other Electr and External S	7.5 µµµf odes Shield 5 µµf
Maximum Diameter Mounting Position Cap	ct ratio)	Electrostatic 1.4" Diagonal 9" ± 1/4" 8-1/4" ± 1/4" 2-1/4"
Pin 1 - Heater Pin 2 - Cathode Pin 3 - Grid No.1 Pin 4 - Internal Connection - Do Not Use Pin 5 - Grid No.3 Pin 7 - Deflecting Electrode DJ3	DIRECTION OF LIGHT:	Pin 9-Anode No.2, Grid No.4 Pin 10-Deflecting Electrode DJ2 Pin 11-Deflecting Electrode DJ1 Pin 12-Internal Connection-
Pin 8-Deflecting Electrode DJ4		Do Not Use Pin 14 - Heater Cap - Signal Electrode
Maximum Ratings, Design	n-Center Values:	
SIGNAL-ELECTRODE VOLTA GRID-No.4 & GRID-No.2 GRID-No.3 VOLTAGE . GRID-No.1 VOLTAGE:	OLTAGE	900 max volts 900 max volts 450 max volts
Negative bias value Positive bias value PEAK HEATER-CATHODE VO Heater negative with	LTAGE:	100 max volts 0 max volts
to Heater positive with	respect	125 max volts
AMBIENT TEMPERATURE . MOSAIC ILLUMINATION .		10 max volts 40 max ^o C 50 max. foot-candles
▲ With external shield.		
APRIL 15 1947		

Typical Operation: Signal-Electrode Voltage 800 volts Grid-No.4 & Grid-No.2 Voltage . . 800 volts Grid-No.3 Voltage for Focus. : . 125 to 250 volts Grid-No.1 Voltage Adjust for best picture Max. Grid-No.1 Voltage for Picture Cutoff . . volts -75 Max. Deflecting Voltages (Peak-to-Peak)*: DJ & DJ2 (Vertical) DJ & DJ2 (Vertical) DJ3 & DJ4 (Horizontal) Min. Peak-to-Peak Blanking Voltage 120 volts 100 volts 30 volts 0.025 Signal-Output Current (Approx.) μamp Output Resistor (Approx.) . . . 1.0 megohm Maximum Circuit Values: Grid-No.1-Circuit Resistance . . 1.0 max. . . megohm Resistance in any Deflecting-Electrode Circuit^D . . 5.0 max. . megohms To scan picture of 1.4" diagonal (4 x 3 aspect ratio). It is recommended that the deflecting-electrode-circuit resistances be approximately equal. The SPECTRAL SENSITIVITY CHARACTERISTIC curve for the 5527 is the same as that shown for Type 1850-A.

 ${\bf C}$ of Bulb will not deviate more than $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base.

THE PLANE THROUGH THE TUBE AXIS AND BASE-PLUG KEY MAY VARY FROM THE PLANE THROUGH THE TUBE AXIS AND SIGNAL ELECTRODE TERMINAL BY AN ANGULAR TOLERANCE (MEASURED ABOUT THE TUBE AXIS) OF 20° . SIGNAL ELECTRODE TERMINAL IS ON SAME SIDE AS BASE-PLUG KEY.

DJI AND DJ2 ARE NEARER THE MOSAIC; DJ3 AND DJ4 ARE NEARER THE BASE. WITH DJI POSITIVE WITH RE-SPECT TO DJ2, THE SPOT IS DEFLECTED TOWARD PIN 5. WITH DJ3 POSITIVE WITH RESPECT TO DJ4, THE SPOT IS DEFLECTED TOWARD PINS I AND 2. WITH DJI AND DJ2 USED FOR VERTICAL DEFLECTION, THE VERTICAL AXIS OF THE SCANNED AREA OF THE MOSAIC IS PARALLEL TO VERTICAL PLANE THROUGH PINS 5 AND 12 WITHIN $\pm 15^{\circ}$. THE ANGLE BETWEEN THE SCANNING DIRECTION PRODUCED BY DJI AND DJ2 IS 90° $\pm 3^{\circ}$.

9205-6803

56355

IMAGE ORTHICON

MAGNETIC FOCUS-MAGNETIC DEFLECTION

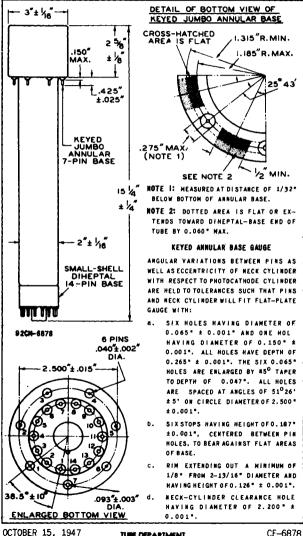
DATA

DATA
General:
Heater, for Unipotential Cathode: Voltage 6.3 ± 10% ac or dc volts Current 0.6 amp Direct Interelectrode Capacitance: Anode to All Other Electrodes 20
less than 20° from the vertical End Base
BOTTOM VIEW Pin 1-Heater Pin 2-Grid No.4 Pin 3-Grid No.3 Pin 4-Internal Connec- tion-Do Not Use Pin 5-Dynode No.2 Pin 6-Dynode No.4 Pin 7-Anode Pin 8-Dynode No.5 Pin 9-Dynode No.5 Pin 9-Dynode No.1, Grid No.2 Pin 10-Dynode No.1, Grid No.2 Pin 12-Grid No.1 Pin 13-Cathode Pin 14-Heater BOTTOM VIEW DIRECTION OF LIGHT: PERPENDICULAR TO LARGE END OF TUBE DIRECTION OF LIGHT: PERPENDICULAR TO DIRECTION OF LIGHT: DIRECTION OF LIGHT: DIRECTI
Shoulder Base Keyed Jumbo Annular 7-Pin Pin 1-Grid No.6 Pin 5-Grid No.5 Pin 2-Photocathode Pin 6-Target Pin 3-Internal Connec- Pin 7-Internal Connec- tion-Do Not Use tion-Do Not Use Pin 4-Internal Connec- tion-Do Not Use

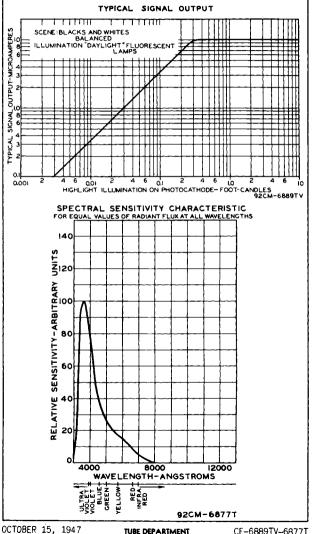
PHOTOCATHODE VOLTAGE	
	olts
PHOTOCATHODE ILLUMINATION	ft-c
PHOTOCATHODE ILLUMINATION 50 max. OPERATING TEMPERATURE OF ANY PART OF BULB 65 max.	ంర
OPERATING TEMPERATURE OF BULB AT	Ŭ
LARGE END OF TUBE (Target Section) 45 min.	°C
TEMPERATURE DIFFÉRENCE BETWEEN TARGET	Ŭ
SECTION AND ANY PART OF BULB HOTTER	
THAN TARGET SECTION	00
	olts
ITARGET VOLTAGE:	5,13
	olts
	olts
	olts
	olts
IGRID-No.3 VOLTAGE	olts
GRID-NO.2 & DYNODE-NO.1 VOLTAGE	olts
IGRID-No.1 VOLTAGE:	orta
	olts
	olts
	0113
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode 125 max. v	olts
	olts
	olts
	olts
VOLIAGE PER MULTIPLIER STAGE	UILS
Typical Operation:	
Photocathode Voltage (Image Focus)300 to -500 v	olts
Grid-No.6 Voltage (Accelerator)-	
80% of photocathode voltage240 to -400 v	olts
Target Voltage• 0 v	olts
	olts
	olts
Grid-No.3 Voltage##	olts
	olts
Grid-No.1 Voltage (For Picture Cutoff) -35 to -100 v	olts
	olts
	olts
Dynode-No.4 Voltage	olts
Dynode-No.5 Voltage	olts
Anode Voltage	olts
Anode Current	μa
Target Temperature Range 45 to 60	μa oc
Ratio of Peak-to-Peak Highlight	
Video-Signal Current to	
RMS Noise Current (Approx.) 70	
Institution roan to roan the standy	olts
Field Strength at Center of Focusing	
Coil 75 gau	sses

OCTOBER 15, 1947

TENTATIVE DATA 1



Focusing-Coil Current (Approx. for coil listed below). 75 ma Deflecting-Coil Current (Approx. for assembly listed below): 625 ma Horizontal (Peak to Peak). 290 ma Alignment-Coil Current (Approx. for coil listed below). 0 to 30 ma Components: Deflecting-Coil Assembly (Includes Keyed Jumba Anular 7-Pin Socket). RCA Type No. 201075 Deflecting-Coil Assembly (RCA Type No. 202075 Alignment-Coil Assembly RCA Type No. 204075 Alignment-Coil Assembly RCA Type No. 204075 Alignment-Coil Assembly RCA Type No. 204075 Hor. Deflection Output Transformer RCA Type No. 20417 Ver. Deflection Output Transformer RCA Type No. 20417 * Ratio of dynode voltages is shown under Typical Operation. adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire picture area. ## Adjust to give the most uniformly shaded picture near maximum signel. Adjust to give the most uniformly shaded picture near maximum signel.		····		
Deflecting-Coil Current (Approx. for assembly listed below): Horizontal (Peak to Peak)				
 Horizontal (Peak to Peak)	Deflecting-Coil Curr	ent (Approx. for	75	ma
Alignment-Coil Current (Approx. for coil listed below) 0 to 30 ma Components: Deflecting-Coil Assembly (includes Keyed Jumbo Annular 7-Pin Socket) RCA Type No. 201075 Focusing-Coil Assembly RCA Type No. 202075 Alignment-Coil Assembly RCA Type No. 204075 Hor. Deflection Output Transformer RCA Type No. 204072 Ratio of dynode voltages is shown under Typical Operation. Adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution andmost uniform background shading over entire picture area. ## Adjust to give the most uniformly shaded picture near maximum signal.	Horizontal (Peak t	o Peak)	625	тa
<pre>coil listed below) 0 to 30 ma Components: Deflecting-Coil Assembly (includes Keyed Jumbo Annular 7-Pin Socket) RCA Type No. 201D75 Focusing-Coil Assembly RCA Type No. 202075 Alignment-Coil Assembly RCA Type No. 204D75 Hor. Deflection Output Transformer RCA Type No. 204T1 Ver. Deflection Output Transformer RCA Type No. 204T2 Ratio of dynode voltages is shown under Typical Operation. Adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire picture area. # Adjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniformly shaded picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal. Hadjust to give the most uniform picture near maximum signal to the picture near maximum signal to the picture near maximum signal to the picture near maximum signal to the picture near maximum signal to the picture near maximum signal to the picture near maximum sin the picture near maximum signal to the pict</pre>			290	ma
Deflecting-Coil Assembly (Includes Keyed Jumbo Annular 7-Pin Socket). RCA Type No. 201D75 Focusing-Coil Assembly RCA Type No. 204D75 Alignment-Coil Assembly RCA Type No. 204D75 Hor. Deflection Output Transformer . RCA Type No. 204T1 Ver. Deflection Output Transformer . RCA Type No. 204T2 Ratio of dynode voltages is shown under Typical Operation. Adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire picture area. ## Adjust to give the most uniformly shaded picture near maximum signal.			0 to 30	ma
 Keyed Jumbo Annular 7-Pin Socket). RCA Type No. 201D75 Focusing-Coil Assembly RCA Type No. 204D75 Alignment-Coil Assembly RCA Type No. 204D75 Hor. Deflection Output Transformer . RCA Type No. 204T1 Ver. Deflection Output Transformer RCA Type No. 204T2 Ratio of dynode voltages is shown under Typical Operation. Adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire picture area. ## Adjust to give the most uniformly shaded picture near maximum signal. 				
 Adjustable within ± 3 volts of indicated value, with blanking voltage off. Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire pleture area. ## Adjust to give the most uniformly shaded picture near maximum signal. 	Keyed Jumbo Annula Focusing-Coil Assemb Alignment-Coil Assem Hor. Deflection Outp	ar 7-Pin Socket). bly	RCA Type No. RCA Type No. RCA Type No.	202D75 204D75 204T1
Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and most uniform background shading over entire picture area. ## Adjust to give the most uniformly shaded picture near maximum signal.	 Ratio of dynode volt Adjustable within ± 			voltage
	Taps at 0, 30, 60, a most uniform resolut	ind 90 volts are recomme ion and most uniform bac	nded. Set at voltage kground shading ove	giving rentire
	₩# Adjust to give the m	nost uniformly shaded pi	cture near maximum	signal.
	1			
	,			
	1			



5655

CTOBER 15, 1947 TUBE DEPARTMENT CE-6889TV-6877T radio coefforation of america, harrison, new jergey

MAGNETIC FOCUS	MAGNETIC DEFLECTION
	DATA
General:	•
Heater, for Unipotential Cat Voltage Current Direct Interelectrode Capaci Anode to All Other Electro Photocathode Spectral Respon Image Size (3 x 4 aspect rat Focusing Method Overall Length Greatest Diameter of Bulb Minimum Deflecting-Coil Insi Deflecting-Coil Length Focusing-Coil Length Alignment-Coil Length Photocathode Distance Inside Operating Position	6.3 ± 10%
End Base	BOTTOM VIEW DIRECTION OF LIGHT: PERPENDICULAR TO LARGE END OF TUBE
Pin 2 - Photocathode Pin 3 - Internal Connec- tionDo Not Use Pin 4 - Internal Connec- tionDo Not Use	Pin 6-Target Pin 7-Internal Connec- tionDo Not Use

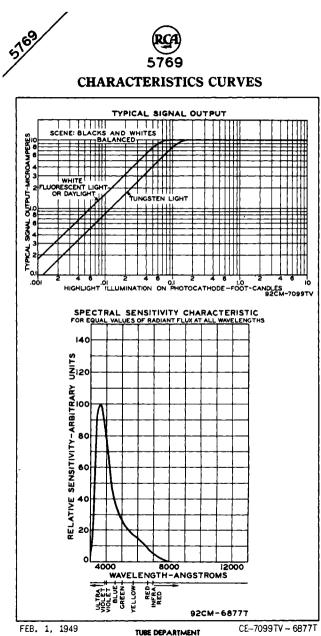
Maximum Ratings, Absolute Values:]
PHOTOCATHODE VOLTAGE	E0	volts
	50 max. 50 max.	
OPERATING TEMPERATURE OF ANY PART OF BULB		ft-c °C
	65 max.	ΨU
OPERATING TEMPERATURE OF BULB AT		°c
	35 min.	чC
TEMPERATURE DIFFERENCE BETWEEN TARGET		
SECTION AND ANY PART OF BULB HOTTER	_	0.0
THAN TARGET SECTION	5 max.	°C
	50 max.	volts
TARGET VOLTAGE:		
	50 max.	volts
	50 max.	volts
GRI D-No. 5 VOLTAGE	50 max.	volts
GRID-No.4 VOLTAGE	00 max.	volts
	00 max.	volts
GRID-No.2 & DYNODE-No.1 VOLTAGE 3	50 max.	volts
GRID-No.1 VOLTAGE:		
Negative bias value 1	25 max.	volts
Positive bias value	0 max.	volts
PEAK HEATER-CATHODE VOLTAGE:		
Heater negative with respect to cathode. 1	25 max.	volts
Heater positive with respect to cathode.	10 max.	volts
ANODE-SUPPLY VOLTAGE 16	50 max.	volts
VOLTAGE PER MULTIPLIER STAGE	50 max.	volts
Typical Operation:		
Photocathode Voltage (Image Focus)300	to500	volts
Grid-No.6 Voltage (Accelerator)-		I
den er priotosatilous rereger i tra	to -400	volts
Target Voltage	0	volts
Grid-No.5 Voltage (Decelerator) •• 0	to 100	volts
	to 240	volts
[Grid=No.3 Vo]tage##	to 330	volts
	00	volts
Grid-No.1 Voltage (For Picture Cutoff)45	to –115	volts
Dynode-No.2 Voltage 6	00	volts
Dynode-No.3 Voltage	80	volts
$D_{investor} = A = A = Voltoro = 11$	60	volts
Dynode-No.5 Voltage	50	volts
Anode Voltage 15	.50 00	volts
Anode Current	50	μa
Target Temperature Range	to 60	őč
Target Temperature Range		
for Maximum Signal Output:		
With 2870°K Tungsten Illumination 0.	15	ft–ċ
with White Fluorescent Illumination		
or Daylight. 0.	07	ft-c
Ratio of Peak-to-Peak Highlight Video-		
Signal Cur. to RMS Noise Current (Approx.)	35	
€, ● ● ,##: See next page.		
FEB. 1, 1949 THE DEPARTMENT TO	ENTATIVE	DATA 1

Minimum Peak-to-Peak Blanking Voltage 10	volts
Field Strength at Center of Focusing Coil 75	gausses
Focusing-Coil Current (Approx. for coil	-
coil listed below) 75	ma
Deflecting-Coil Current (Approx. for	
assembly listed below):	1
Horizontal (Peak to Peak)	ma
Vertical (Peak to Peak)	maj
Alignment-Coil Current (Approx. for coil	
listed below) 0 to 30	ma
Components:	
Deflecting-Coil Assembly (Includes	
Keyed Jumbo Annular 7-Pin Socket) RCA Type No.	201D75
Focusing-Coil Assembly RCA Type No.	
Alignment-Coil Assembly RCA Type No.	204D75
Hor, Deflection Output Transformer RCA Type No.	204T1
Ver. Deflection Output Transformer RCA Type No.	204T2
A	1

e Ratio of dynode voltages is shown under Typical Operation.

Adjustable from -3 to +5 volts with blanking voltage off.

Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and signal output over entire picture area. ## ddiust to give the most uniformly shaded picture near maximum signal.


OPERATING NOTES

After the 5769 has been inserted in its sockets and the voltages applied, allow it to warm up for 1/2 to 1 hour with the camera lens iris closed. Then, proceed with normal operating adjustments.

When the equipment design or operating conditions are such that the maximum temperature rating or maximum temperature difference will be exceeded, provision should be made to direct a blast of cooling air from the diheptal-base end of the tube along the entire length of the bulb surface, i.e., through the space between the bulb surface and the surrounding deflecting coil and its extension. For this purpose, a small blower is satisfactory, but it should run at low speed to prevent vibration of the 5769 and the associated amplifier equipment. Unless vibration is prevented, distortion of the picture may occur. To keep the operating temperature of the large end of the tube from falling below 35° C, some form of controlled heating should be employed. Ordinarily, adequate heat will be supplied by the focusing coil, deflecting coils, and associated amplifier tubes so that the temperature can be controlled by the amount of cooling air directed along the bulb surface.

Resolution of better than 400 lines at the center of the picture can be produced by the 6769 when the highlight illumination is above the knee of the typical signal-output curve for this type. To utilize such resolution capability in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to use a video amplifier having a bandwidth of at least 5.5 megacycles. The maximum resolution obtainable is limited by the mesh-screen portion of the target.

> OUTLINE DIMENSIONS for the 5769 are the same as those shown for Type 5655

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

FOR OUTDOOR AND STUDIO PICKUP

MAGNETIC FOCUS MAGNETIC DEFLECTION DATA General: Heater, for Unipotential Cathode: Voltage 6.3 ± 10% ac or dc volts Current 0,6 . amp Direct Interelectrode Capacitance (Approx.): Anode to all other electrodes *μ*μ.f 12 Photocathode, Semitransparent: Response . . . See accompanying Spectral Sensitivity curve Rectangular image (4 x 3 aspect ratio): Useful size of 1.6" max. Diagonal Orientation of . . . Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through the center of faceplate and pin No.7 of the shoulder base. Focusina Method . Magnetic Deflection Method Magnetic Overall Length . . . 15-3/16" ± 1-4" Greatest Diameter of Bulb 3" ± 1/16" Minimum Deflecting-Coil Inside Diameter 2-3/8" Deflectina-Coil Lenath 5" Focusing-Čoil Length 10" Alianment-Coil Length 15/16" Photocathode Distance Inside End of Focusing Coil . . . 1/2" Operating Position: Any except with diheptal base up and tube axis at angle of less than 20⁰ from vertical BOTTOM VIEW Pin 1-Heater DIRECTION OF LIGHT: Pin 2-Grid No.4 PERPENDICULAR TO Pin 3-Grid No.3 LARGE END OF TUBE Pin 4-Internal Connection-Do Not Use Pin 5-Dynode No.2 Pin 6-Dynode No.4 Pin 7 - Anode Pin 8-Dynode No.5 Pin 9-Dynode No.3 Pin 10 - Dynode No.1. Grid No.2 Pin 11-Internal Connection-Do Not Use Pin 12 - Grid No.1 Pin 13-Cathode Pin 14 - Heater WHITE INDEX LINE (Continued on next page) ---Indicates a change.

Shoulder Base Key	ved Jumbo Annular 7-Pin
Pin 1-Grid No.6 Pin	5-Grid No.5
Pin 2 - Photocathode	
Pin 3-Internal Connec- Pin	6 – Target
tion-Do Not Use	
	7-Internal Connec-
tion-Do Not Use	tion-Do Not Use
	1101-D0 NOT 036
Maximum Ratings, Absolute Values:	
PHOTOCATHODE :	
	550
Voltage	•••• -550 max• volts
Illumination	50 max. ft-c
OPERATING TEMPERATURE:	
Of any part of bulb	50 max. ^o C
Of bulb at large end of tube	
(target section)	35 min. ℃
TEMPERATURE DIFFERENCE:	
Between target section and any part	
of bulb hotter than target section	5 max. ^о С
GRID-No.6 VOLTAGE	
- TARGET VOLTAGE:	obo maxe vorto
Positive value	10 max. volts
Negative value	10 max. volts
GRID-No.5 VOLTAGE	150 max. volts
GRID-No.4 VOLTAGE	300 max. volts
GRID-No.3 VOLTAGE	400 max. volts
GRID-No.2 & DYNODE-No.1 VOLTAGE	350 max. volts
GRID-No.1 VOLTAGE:	
Negative bias value	125 max. volts
Positive bias value	O max. volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to cathe	ode . 125 max. voltsi
Heater positive with respect to cathe	
- ANODE-SUPPLY VOLTAGE*	1070
VOLTAGE PER MULTIPLIER STAGE	
+ Typical Operation and Characteristics:	
Photocathode Voltage (Image Focus)	_300 to _500 volts
Grid-No.6 Voltage (Accelerator)-	005 A. 075
75% of photocathode voltage	225 to -375 volts
Target Voltage ^o	. 0 to 3 volts
Grid-No.5 Voltage (Decelerator)	. 0 to 125 volts
Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage [#]	. 160 to 220 volts
Grid-No.3 Voltage*	. 225 to 330 volts
Grid-No.2 & Dynode-No.1 Voltage	. 300 volts
Grid-No.1 Voltage for Picture Cutoff	45 to -115 volts
* Ratio of dynode voltages is shown under Typi	ical Abaration
Adjustable from -3 to +5 volts with blanking	voltage off
Adjustable from -3 to +5 voits with blanking Adjust to give the most uniformly shaded pic	y voltage off.
" Aujust to give the most uniformly shaded pic	.cure near maximum signal,
	Indicates a change.
IAN 3 1955	DATA 1

JAN. 3, 1955

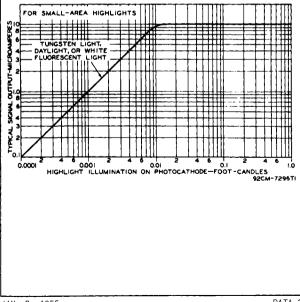
	Dynode-No.2 Voltage	600	volts
	Dynode-No.3 Voltage	800	volts
	Dynode-No.4 Voltage	1000	volts
	Dynode-No.5 Voltage	1200	volts
	Anode Voltage	1250	volts
	Anode Current (DC)	30	µamp
	Signal-Output Current (Peak to peak)	2 to 15	μamp
,	Target Temperature Range	35 to 45	°C
1	Ratio of Peak-to-Peak Highlight Video-	-	
1	Signal Current to RMS Noise Current		
	(Approx.)	35	
I	Minimum Peak-to-Peak Blanking Voltage	5	volts
	Field Strength at Center of Focusing Coil▲	75	gausses
	Field Strength of Alignment Coil (Approx.)	0 to 3	gausses
1	· · · · ·		

Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coll, with the indicator located outside of and at the image end of the focusing coll.

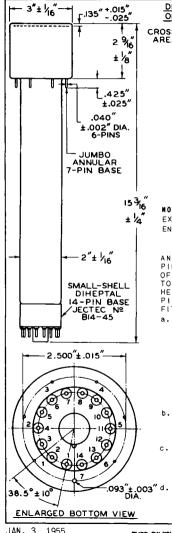
OPERATING CONSIDERATIONS

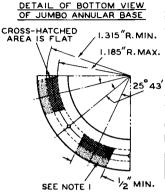
When the equipment design or operating conditions are such that the maximum temperature rating or maximum temperature difference as given under Maximum Ratings will be exceeded. provision should be made to direct a blast of cooling air from the diheptal-base end of the tube along the entire length of the bulb surface, i.e., through the space between the bulb surface and the surrounding deflecting-coil assembly and its extension. Any attempt to effect cooling of the tube by circulating even a large amount of air around the focusing coil will do little good, but a small amount of air directly in contact with the bulb surface will effectively drop the bulb temperature. For this purpose, a small blower is satisfactory, but it should be run at low speed to prevent vibration of the 5820 and the associated amplifier equipment. Unless vibration is prevented, distortion of the picture may occur.

To keep the operating temperature of the large end of the tube from falling below $35^{\circ}C$, some form of controlled heating should be employed. Ordinarily, adeqfate heat will be supplied by the focusing coil, deflecting coils, and associated amplifier tubes so that the temperature can be controlled by the amount of cooling air directed along the bulb surface. If, in special cases, a target heater is required, it should fit between the focusing coil and the bulb near the shoulder of the tube, and be non-inductively wound.


Resolution in excess of 500 lines at the center of the picture can be produced by the 5820. The Amplitude Response Characteristic shows the relative center amplitude response versus television line number for the 5820 when it is operated with the highlights at the knee of the light

transfer characteristic and at one lens stop above the knee and at a temperature of 35° C. To utilize such resolution capability in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to use a video amplifier having a bandwidth of at least 6 megacycles. The maximum resolution obtainable is limited by the mesh-screen portion of the target.


For very high illumination or for individual tubes with exceptionally high photocathode sensitivity, it may not be possible to stop the lens down far enough to reduce the highlight illumination on the photocathode to a value near the knee of the transfer characteristic. When such a condition is encountered, the use of a Wratten neutral filters selected to give the required reduction in illumination is recommended. Ordinarily, two filters—one having 10% transmission and the other 20%—will give sufficient choice.



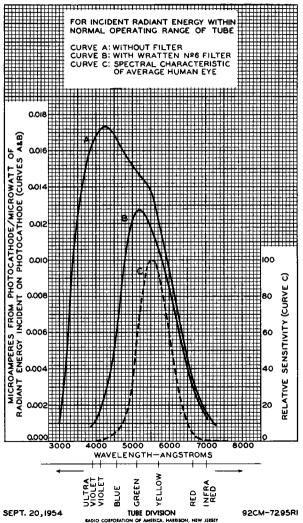
NOTE I: DOTTED AREA IS FLAT OR EXTENDS TOWARD DIHEPTAL-BASE END OF TUBE BY 0.060" MAX.

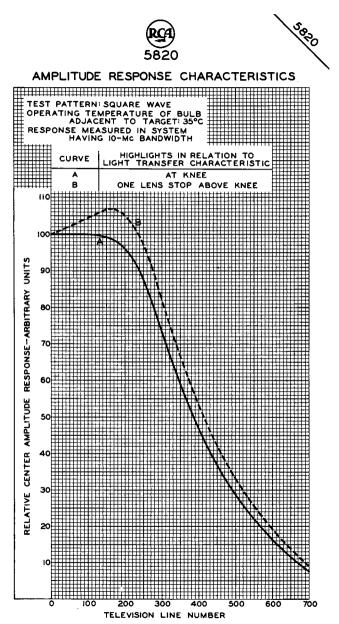
ANNULAR BASE GAUGE

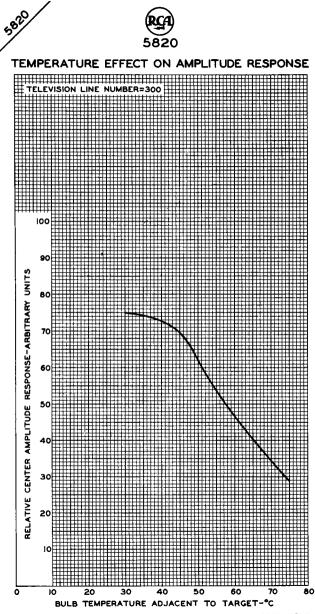
ANGULAR VARIATIONS BETWEEN PINS AS WELL AS ECCENTRICITY OF NECK CYLINDER WITH RESPECT TO PHOTOCATHODE CYLINDER ARE HELD TO TOLERANCES SUCH THAT PINS AND NECK CYLINDER WILL FIT FLAT-PLATE GAUGE WITH:

- a. SIX HOLES HAVING DIAMETER OF 0.065" ± 0.001" AND ONE HOLE HAVING DIAMETER OF 0.150" ± 0.001". ALL HOLES HAVE DEPTH OF 0.265" ± 0.00 1. THE SIX 0.065" HOLES ARE ENLARGED BY 45° TAPER TO DEPTH OF 0.047". ALL HOLES ARE SPACED AT ANGLES OF 51º26' ±5' ON CIRCLE DIAME-TER OF 2.500" ± 0.015".
- b. SIX STOPS HAVING HEIGHT OF 0.187" ± 0.001" CENTERED BETWEEN PIN HOLES, TO BEAR AGAINST FLAT AREAS OF BASE.
- c. RIM EXTENDING OUT A MINIMUM OF 1/8" FROM 2-13/16" DIAME-TER AND HAVING HEIGHT OF 0.126" ± 0.001".
 - NECK-CYLINDER CLEARANCE HOLE HAVING DIAMETER OF 2.200" ± 0.001".

92CM-8293RI


JAN. 3, 1955


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-8293R1


SPECTRAL SENSITIVITY CHARACTERISTIC WITH AND WITHOUT FILTER

SEPT. 23, 1954

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

MAR.15,1954

TUBE DIVISION DIO CORPORATION OF AMERICA, HARRISON, NEW FRISEY 92CM-8272

VIDICON

MAGNETIC FOCUS		MAGNETIC DEF	LECTION
	DATA		
General:			
Heater, for Unipotential Voltage Current Direct Interelectrode Ca Signal Electrode to Al	• • 6.3±10% • • 0.6 pacitance: 1	• • • • • •	or dc volts amp
	lectrodes	4.5	µµuf
Spectral Response		• • •	See Curve
Photoconductive Layer: Maximum Useful Diagona Image (4 x 3 Aspect Orientation of Quality tained when the horizor	Ratio) RectangleP ntal scan is es	0.62 roper orientations sentially paral	lei to the
plane passing through th			
Focusing Method Deflection Method Overall Length Greatest Diameter (Exclu Maximum Radius (Includin Bulb Operating Position Base Small-B Pin 1-Heater Pin 2-Grid No.1 Pin 3- Int. Conn	ding Side Tip g Side Tip) .) 6) 1.1 	. Magnetic -1/4" ± 1/4" 25" ± 0.010" . 0.805" T-8 Any C No.E8-11) hode ter
Do Not Use Pin 4- Int. Conn Do Not Use Pin 5-Grid No.2 Pin 6-Grid No.3, Grid No.4	SHORT PIN IC DIRECTION OF LIGHT TO FACE END OF TO) Sig E Short Inde Int W	nal lectrode
Maximum Ratings, Absolut			
SIGNAL-ELECTRODE VOLTAGE GRID-No.4 & GRID-No.3 VO GRID-No.2 VOLTAGE GRID-No.1 VOLTAGE:	LTAGE	125 350 350	max. volts
Negative bias value . Positive bias value . PEAK HEATER-CATHODE VOLT			max. volts max. volts
Heater negative with respect to Heater positive with	cathode	125	max. volts
	cathode		max. volts max. oC

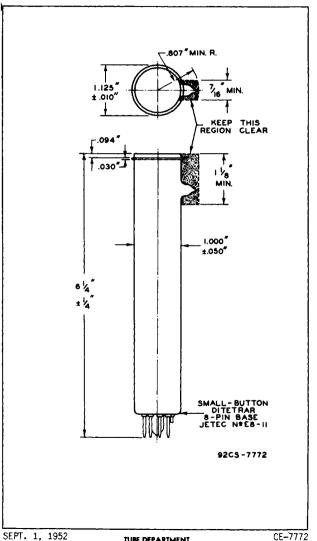
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RCA 6198

VIDICON

Typical Operation and Characteristics:		
For scanned area of 1/2"	" x 3/8"	
Signal-Electrode Voltage for		
Dark Current of 0.02 µamp	10 to 125	volts
Grid-No.4 (Decelerator) & Grid-		
No.3 (Beam Focus) Voltage	200 to 300	volts
Grid-No.2 (Accelerator) Voltage	300	volts
Grid-No.1 Voltage	•	
(For picture cutoff)	-45 to -100	volts
Signal-Output Current:*		
	0.1 to 0.2	μamp
Minimum, with 0.6 foot-candle of		
uniform 2870°K tungsten il-		
lumination on tube face	0.02	μamp
Uniform 2870°K Tungsten Illumi-		
nation on Tube Face to Produce		
Signal-Output Current of		<i>c</i> .
0.1 to 0.2 μ amp	3 to 10	ft–c
Ratio (Approx.) of Tube-Face []]umi-		
nation Required to Produce Signal-		
Output Current of 0.2 µamp to That	20	
Required to Produce 0.02 µamp	30	
Minimum Peak-to Peak		
Blanking Voltage:	20	volts
When applied to grid No.1	30	voits
When applied to cathode	10	VOILS
Field Strength at Center of	40	0306606
Focusing Device	40	gausses
Field Strength of Adjustable	0 to 4	qausses
	0 10 4	9203555

Defined as the component of the signal-electrode current after the darkcurrent component has been subtracted.

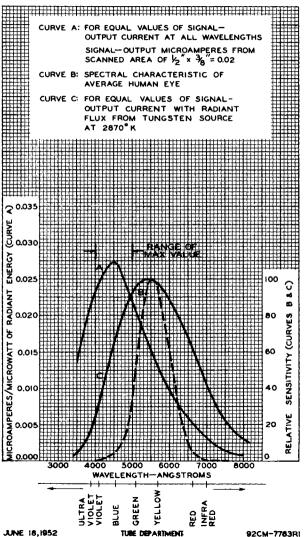

OPERATING CONSIDERATIONS

The base pins of the 6198 flt the ditetrar 8-pin connector such as Cinch No.54A18088, or equivalent.

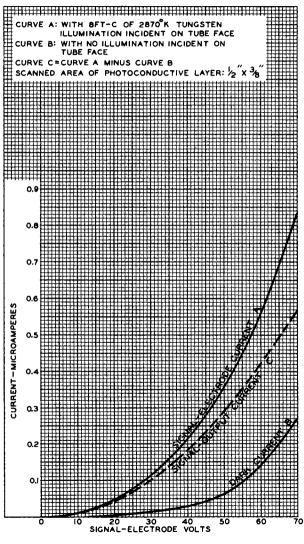
Resolution of better than 350 lines at the center of the plcture can be produced by the 6198. To utilize the resolution capability of the 6198 in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to use a video amplifier having a bandwidth of at least 6 megacycles per second. The maximum resolution obtalnable is limited by the size of the scanning-beam spot.



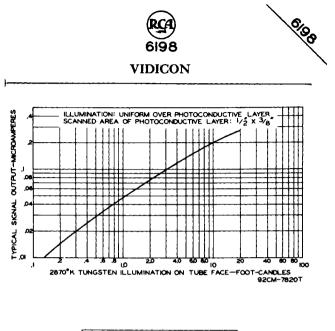
6100

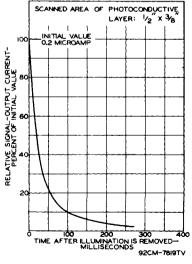


SPECTRAL SENSITIVITY CHARACTERISTIC



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY




TYPICAL CHARACTERISTICS

JUNE 17, 1952

TUBE DEPARTMENT BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

VIDICON FOR PICKUP FROM MOTION-PICTURE FILM 600-LINE RESOLUTION

D	A	T	A

DATA
General:
Heater, for Unipotential Cathode: Voltage 6.3±10% ac or dc volts Current 0.6
All Other Electrodes 4.5 μμf Spectral Response See Curves Photoconductive Layer: Maximum Useful Diagonal of Rectangular Image (4 x 3 Aspect Ratio) 0.62 inch Orientation of Quality Rectangle—Proper orientation is obtained when the horizontal scan is essentially parallel to the
Plane passing through the tube axis and short index pin. Focusing Method Magnetic Deflection Method
Pin 1: Heater Pin 2: Grid No.3 Pin 3: Grid No.3 Pin 4: Int. Conn Do Not Use Pin 5: Grid No.4, Grid No.5 Defection of LIGHT: Make No Defection of LIGHT: Make No Defection of LIGHT: Make No
Maximum Ratings, Absolute Values: SIGNAL-ELECTRODE VOLTAGE GRID-No.5 & GRID-No.4 VOLTAGE GRID-No.3 VOLTAGE GRID-No.3 VOLTAGE GRID-No.4 VOLTAGE GRID-No.3 VOLTAGE GRID-No.4 VOLTAGE GRID-No.3 VOLTAGE GRID-No.3 VOLTAGE GRID-No.3 VOLTAGE GRID-No.1 VOLTAGE GRID-No.1 VOLTAGE
Negative bias value
This capacitance, which effectively is the output impedance of the 6326, is increased by about 3 $\mu\mu$ f when the tube is mounted in the RCA de- flecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms.

MARCH 1, 1954

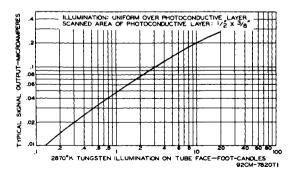
٢

TUBE DEPARTMENT

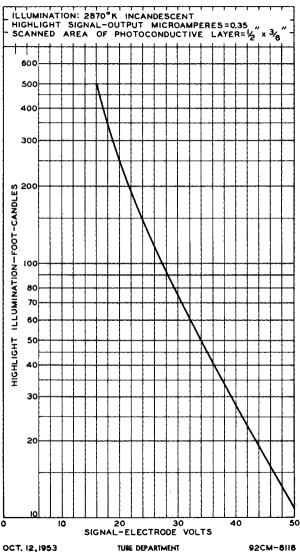
Г

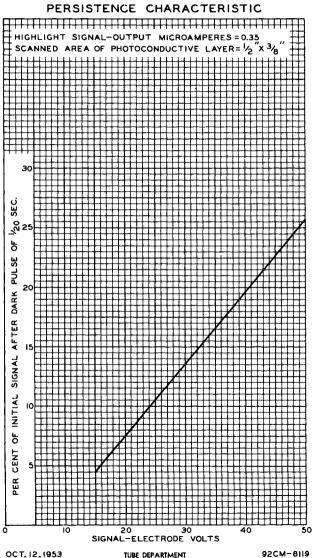
RCA) 6326 VIDICON

FACEPLATE: Illumination	1000 max. 60 max.	ft-c °C
Typical Operation with Static Focusing:		
Grid No.3 connected to grids No. scanned area of 1/2" x 3		
scannea area of 1/2" x 3 Faceplate []lumination:	/ ð "	
Average Highlight≜, for		
	0 to 300	ftc
Constant, for pickup from trans- parencies or opaques .	10	ftc
Signal-Electrode Voltage:		
For pickup from film 1 For pickup from transparencies	0 to 30	volts
or opaques 3	0 to 60	volts
Grid-No.5 (Decelerator) and Grids-No.4 & No.3 (Beam-Focus		
Electrodes*) Voltage . 20	0 to 300	volts
Grid-No.2 (Accelerator) Voltage	300 5 to -1 00	volts volts
	3 to 0.4	µamp
Average Signal-Output Current# 0.	1 to 0.2	μamp
Maximum Dark Current: For pickup from film	0.004	μamp
For pickup from transparencies		
or opaques	0.02	μamp
Characteristic for signal-output		
current between 0.02 μ amp and	0.65	
0.2 μamp Visual Equivalent Signal-to-Noise	0.05	
Ratio (Approx.) ^o	300:1	
Minimum Peak-to-Peak Blanking Voltage: When applied to grid No.1	40	volts
When applied to cathode	10	volts
Field Strength of Adjustable Alignment Coil	0 to 4	gausses
, °		Ŭ
Averaged over the time of one TV frame. Beam focus is obtained by combined effect of g	rids-No.4 & No.	3_voltage
 Beam focus is obtained by combined effect of g which should be adjustable over indicated range Coil with 40 milliamperes passing through it. 	, and KCA-2170	I Pocusing
Defined as the component of the signal-electrode current component has been subtracted.	current after	the dark-
Government of the system of the low-noise cascode ty Because the noise in such a system is predominate type, the visual equivalent signal-to-noise rat of highlight video-signal current to rms noise a factor of 3.	pe having 8-Mcl ly of the high- io is taken as current, mult	bandwidth. -frequency the ratio iplied by


٦

TUBE DEPARTMENT


Typical Operation with Dynamic Focusing: Grid No.3 used separately as Dynamic Focusing Electrode; scanned area of 1/2" x 3/8" Values are the same as shown above for Typical Operation with Static Focusing except as follows: Grid-No.5 (Decelerator) and Grid-No.4 (Beam-Focus Electrode**) Voltage 200 to 300 volts Grid-No.3 (Dynamic-Focus Electrode**) Voltage: volts 200 to 300 DC value volts Peak-to-peak value (Approx.). . . . 60 Static beam focus is obtained by combined effect of grid-No.4 voltage which should be adjustable over indicated range, and RCA-217DI focusing Coll with 40 milliamperes passing through it. Dynamic beam focus to give improved edge focus is supplementary to static beam focus and is accomplished by adjusting the dc grid-No.3 voltage to the same value as that of grid No.4 and by applying to grid No.3 an ac voltage having parabolic waveform. BASE CONNECTOR The base pins of the 6326 fit the ditetrar 8-contact connector, such as Cinch No.54A18088, or equivalent. SPECTRAL SENSITIVITY CHARACTERISTIC. DIMENSIONAL OUTLINE. and BASE DIMENSIONS are the same as shown for Type 6198



TYPICAL CHARACTERISTIC

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

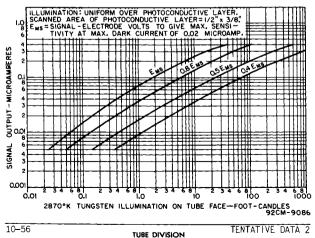
6326

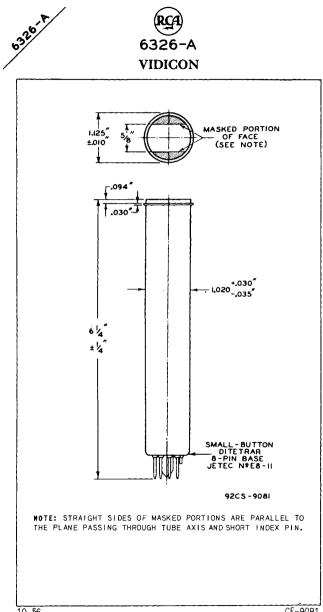
600-LINE RESOLUTION For film and live pickup with color or black-and-white TV cameras

The 6326-A is an improved version of the 6326 and is unilaterally interchangeable with it. DATA General: Heater. for Unipotential Cathode: Voltage 6.3 ± 10% ac or dc volts Current . . 0.6 amo Direct Interelectrode Capacitance: Signal electrode to all other electrodes. μµf Spectral Response See Curves Photoconductive Layer: Maximum useful diagonal of rectangular image (4 x 3 aspect ratio). 0.62" Orientation of quality rectangle---Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the faceplate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Focusing MethodMagnetic . . . Deflection Method . . .Magnetic Overall Length. . . 6-1/4" ± 1/4" . . . 1.125" ± 0.010" Greatest Diameter . . Weight (Approx.). . . 2 oz Operating Position. . . . Approx. horizontal. or faceplate up T-8 Bulb. Base Connector. Cinch No.54A18088, or equivalent Basing Designation for BOTTOM VIEW. 8HL FLANGE Pin 1 - Heater Pin 7 - Cathode Pin 2-Grid No.1 Pin 8-Heater (3 Pin 3-Grid No.3 Flange - Signal ۳P Pin 4 - Internal Flectrode (2)Short Index Pin-Connection-Do Not Use Internal Pin 5-Grid No.2 Connection-SHORT Pin 6 - Grid No.4. DIN Make No Connection Grid No.5 DIRECTION OF LIGHT: INTO FACE END OF TUBE Maximum Ratings, Absolute Values: SIGNAL-ELECTRODE VOLTAGE. . . . 100 max. volts GRID-No.5 & GRID-No.4 VOLTAGE 350 max. volts This capacitance, which effectively is the output impedance of the 6326-A, is increased by about 3 $\mu\mu$ f when the tube is mounted in the deflecting-yoke and focusing-coil assembly. The resistive component of the output impedance is in the order of 100 megohms. 10-56 TENTATIVE DATA 1

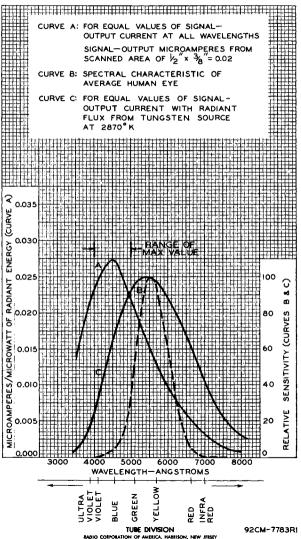
632101

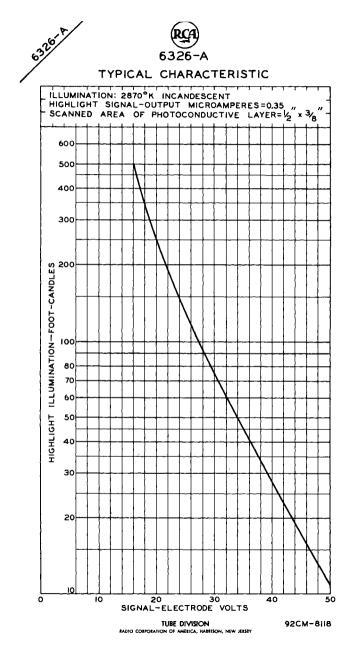
GRID-No.3 VOLTAGE	350 max.	
GR1D-No.2 VOLTAGE	350 max.	volts
Negative bias value	125 max,	volts
Positive bias value	0 max.	
PEAK HEATER-CATHODE VOLTAGE:		
Heater negative with		
respect to cathode	125 max.	volts
Heater positive with		•
respect to cathode	10 max.	volts
FACEPLATE:	1000	£1 .
Illumination	1000 max. 60 max.	
	ov max.	- U
Typical Operation with Static Focusing:		
Grid No.3 connected to grids No.4		
scanned area of 1/2" x 3/8		
Faceplate Illumination:		
Average highlight ^A , for	5 0 · 000	
pickup from film.	50 to 300) ft-c
Constant highlight,		
for pickup from limited- motion live scenes	20	ftc
Signal-Electrode Voltage:	20	11-0
For pickup from film.	20 to 40	volts
For pickup from limited-motion	20 10 40	
live scenes	40 to 70	volts
Grid-No.5 (Decelerator) and		
Grids-No.4 & No.3 (Beam-Focus		
Electrodes*) Voltage	200 to 300	
Grid-No.2 (Accelerator) Voltage	300	volts
Grid-No.1 Voltage for	45 4 . 10	0
Picture Cutoff	-45 to -10 0.3 to 0.4	
Average Signal-Output Current*	0.1 to 0.2	
Peak Signal-Output Current	0.3 to 0.4	
Maximum Dark Current:	0.) (0 0.4	- padinp
For pickup from film.	0.004	μamp
For pickup from limited-motion		P
live scenes	0.02	<i>μ</i> amp
Average "Gamma" of Transfer		
Characteristic for signal-output		
current between 0.02 µamp and		
0.2 μamp.	0.65	
Visual Equivalent Signal-to-Noise	300:1	
Ratio (Approx.) ⁰	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
When applied to grid No.1	40	volts
When applied to cathode	10	volts
Field Strength of Adjustable	10	
Alignment Coil.	0 to 4	gausses
▲,*,●, [#] , ^O : See next page.		
10-56 TUBE DIVISION	TENTATIVE	DATA 1
TUBE DIVISION		

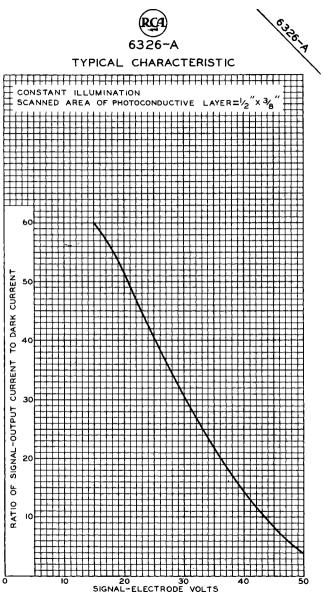

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



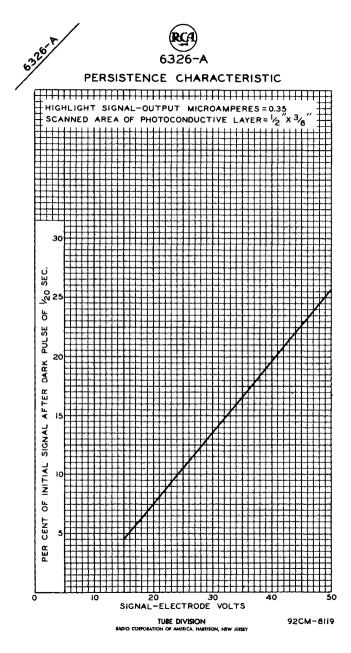
Typical Operation with Dynamic Focusing:				
	Grid No.g used separately as Dynamic Focusing Electrode; scanned area of 1/2" x 3/8"			
St	lues are the same as those shown for <i>Typical Operation with</i> atic Focusing except as follows: id-No.5 (Decelerator) and Grid-No.4			
Gr	(Beam-Focus Electrode**) Voltage 200 to 300 volts id-No.3 (Dynamic-Focus Electrode**) Voltage:			
	DC value			
▲ * • *	Averaged over the time of one TV frame. Beam focus is obtained by combined effect of grids-No.4 & No.3 voltage which should be adjustable over indicated range, and a focusing coil having an average field strength of 40 gausses. With no blanking voltage on grid No.1. Defined as the component of the signal-electrode current after the dark-current component has been subtracted. For amplifier system of the low-noise cascode type having 8-MC band- width. Because the noise in such a system is predominately of the high-frequency type, the visual equivalent signal-to-noise ratio is taken as the ratio of high system current to rms noise			
**	current, multiplied by a factor of 3. Static beam focus is obtained by combined effect of grid-No.4 voltage which should be adjustable over indicated range, and a focusing coil having an average field strength of 40 gausses. Dynamic beam focus to give improved edge focus is supplementary to static beam focus and is accomplished by adjusting the dc grid-No.3 voltage to a value about 60 volts lower than that of grid No.4 and by applying to grid No.3 an a voltage having parabolic waveform.			


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





SPECTRAL SENSITIVITY CHARACTERISTICS



TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8110

FOR SIMULTANEOUS COLOR PICKUP

MAGNETIC FOCUS MAGNETIC DEFLECTION

DATA General Heater, for Unipotential Cathode: . . . ac or dc volts Voltage 6.3 ± 10% ampere Current 0.6 Direct Interelectrode Capacitance: Anode to all other electrodes 20 μµf Photocathode, Semitransparent; Response . . . See accompanying Spectral Sensitivity curve Rectangular image (4 x 3 aspect ratio): Useful size of 1.6" max. Diagonal Orientation of . . . Proper orientation is obtained when the vertical scan is essentially parallel to the plane passing through center of faceplate and pin No.7 of the shoulder base. Magnetic Focusing Method . . Deflection Method Magnetic 15-3/16" ± 1/4" Overall Length Greatest Diameter of Bulb . . . Minimum Deflecting-Coil Inside Diameter 2-3/8" 5" Deflecting-Coil Length 10" Focusing-Coil Length 15/16" Alignment-Coil Length Photocathode Distance Inside End of Focusing Coil . . . 1/2" Operating Position: Any except with diheptal base up and tube axis at angle of less than 20° from vertical (JETEC No. B14-45) BOTTOM VIEW Pin 1-Heater DIRECTION OF LIGHT: Pin 2-Grid No.4 PERPENDICULAR TO Pin 3-Grid No.3 Pin 4-Internal Connec-LARGE END OF TUBE tion-Do Not Use Pin 5-Dynode No.2 Pin 6-Dynode No.4 Pin 7 - Anode Pin 8-Dynode No.5 DY> Pin 9-Dynode No.3 ić (4 Pin 10-Dynode No.1, Grid No.2 Pin 11- Internal Connection-Do Not Use ACET Pin 12-Grid No.1 Pin 13-Cathode Pin 14 - Heater WHITE INDEX LINE (Continued on next page) ON FACE

TUBE DIVISION

6

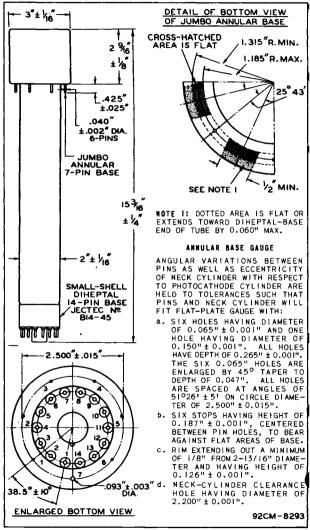
IMAGE ORTHICON

Shoulder Base	Keyed Jumbo Annular 7-Pin Pin 5-Grid No.5
Pin 2 - Photocathode Pin 3 - Internal Connec- tion-Do Not Use	Pin 6–Target
Pin 4 - Internal Connec- tion-Do Not Use	Pin 7-Internal Connec- tion-Do Not Use
Maximum Ratings, Absolute Values:	
PHOTOCATHODE: Voltage	550 max. volts 50 max. ft-c
OPERATING TEMPERATURE: Of any part of bulb Of bulb at large end of tube	50 max. ^o C
(target section)	•••• 35 min• °C
Between target section and any pa of bulb hotter than target sect GRID-No.6 VOLTAGE	ion 5 max. ^o C
TARGET VOLTAGE: Positive value Negative value GRID-No.5 VOLTAGE	10 max. volts
GRID-No.4 VOLTAGE GRID-No.3 VOLTAGE GRID-No.2 & DYNODE-No.1 VOLTAGE	
GRID-No.1 VOLTAGE Negative bias value Positive bias value	
PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to ca Heater positive with respect to ca	athode. 125 max. volts athode. 10 max. volts
ANODE-SUPPLY VOLTAGE*	
Typical Operation and Characteristic	:9:
Photocathode Voltage (Image Focus) Grid-No.6 Voltage (Accelerator)—	
75% of photocathode voltage Target Voltage ⁰	Oto 3 volts
Grid-No.4 Voltage (Beam Focus) Grid-No.3 Voltage# Grid-No.2 & Dynode-No.1 Voltage	160 to 220 volts
Grid-No.1 Voltage for Picture Cutof	f45 to -115 volts
 Ratio of dynode voltages is shown under . Adjustable from -3 to +5 volts with blan Adjust to give the most uniformly shaded 	king voltage off.
L	

٦

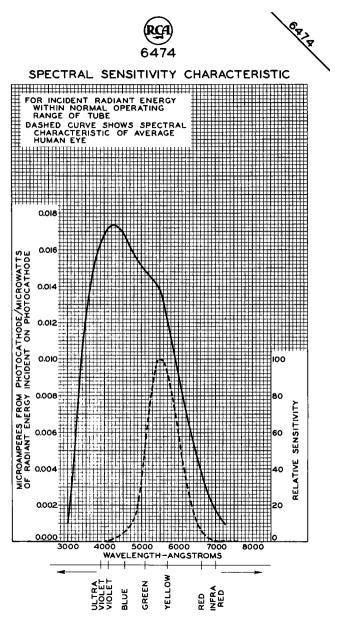
ĺ	Dynode-No.2 Voltage	600	volts
	Dynode-No.3 Voltage	800	volts
	Dynode-No.4 Voltage	1000	volts
	Dynode-No.5 Voltage	1200	volts
	Anode Voltage	1250	volts
	Anode Current (DC)	30	μ amp
Ì	Signal-Output Current (Peak to peak)	3 to 20	μamp
1	Target Temperature Range	35 to 45	°C
	Ratio of Peak-to-Peak Highlight Video-		
	Signal Current to RMS Noise Current		
ļ	(Approx.)	60	
	Minimum Peak-to-Peak Blanking Voltage	5	volts
	Field Strength at Center of Focusing Coil*	75	gausses
Į	Field Strength of Alignment Coil (Approx.)	0 to 3	gausses

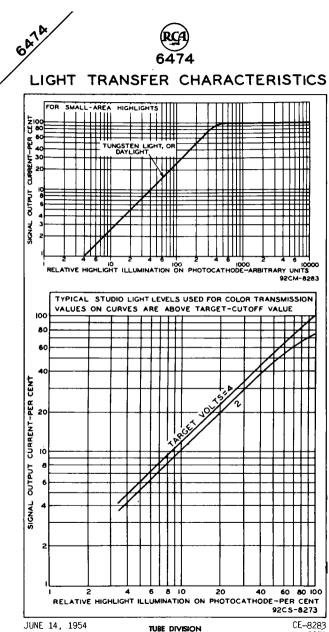
Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil, with the indicator located outside of and at the image end of the focusing coil.


OPERATING CONSIDERATIONS

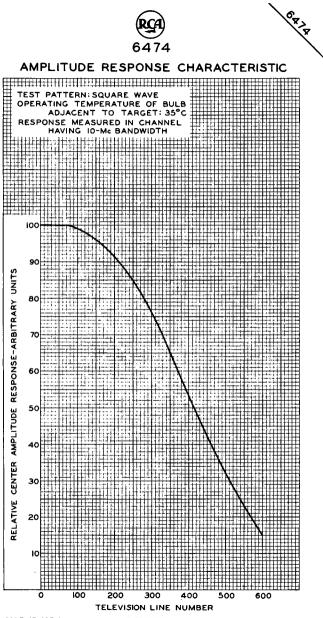
When the equipment design or operating conditions are such that the maximum temperature rating or maximum temperature difference as given under Maximum Ratings will be exceeded, provision should be made to direct a blast of cooling air from the diheptal-base end of the tube along the entire length of the bulb surface, i.e., through the space between the bulb surface and the surrounding deflectingcoil assembly and its extension. Any attempt to effect cooling of the tube by circulating even a large amount of air around the focusing coil will do little good, but a small amount of air directly in contact with the bulb For surface will effectively drop the bulb temperature. this purpose, a small blower is satisfactory, but it should be run at low speed to prevent vibration of the 6474 and the associated amplifier equipment. Unless vibration is prevented, distortion of the picture may occur.

To keep the operating temperature of the large end of the tube from falling below $35^{\circ}C$, some form of controlled heating should be employed. Ordinarily, adequate heat will be supplied by the focusing coil, deflecting coils, and associated amplifier tubes so that the temperature can be controlled by the amount of cooling air directed along the bulb surface. If, in special cases, a target heater is required, it should fit between the focusing coil and the bulb near the shoulder of the tube, and be non-inductively wound.

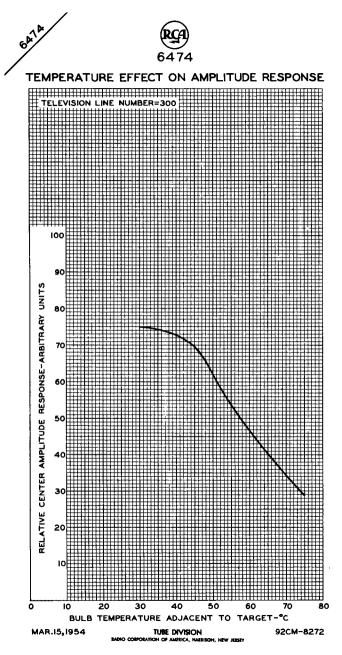




JUNE 14, 1954


CE-8293

TUBE DIVISION RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

MAR. 15, 1954

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-827i

COMPUTER STORAGE TUBE

SINGLE-BEAM. PRIMARY-CURRENT-MODULATION TYPE REDISTRIBUTION WRITING CAPACITANCE-DISCHARGE READING

DATA
General:
Heater, for Unipotential Cathode:
Voltage 6.3 ac or dc volts
Current 0.6
Direct Interelectrode Capacitances (Approx.):
Grid No.1 to all other electrodes 6.5 $\mu\mu$ f
Grid No.1 to deflecting electrode DJ1 0.2 $\mu\mu$ f
Grid No.1 to deflecting electrode DJ_2^1 0.2 $\mu\mu$ f
Grid No.1 to deflecting electrode W_2^2 0.2 $\mu\mu f$
Grid No.1 to deflecting electrode DJ_{4} 0.2 $\mu\mu f$
Cathode to all other electrodes
DJ_1 to DJ_2 2.8 $\mu\mu$ f
DJ_3 to DJ_4
D_{1} to all other electrodes 9 $\mu\mu$ f
D_{2}^{1} to all other electrodes 9 $\mu\mu$ f
DJ_2 to all other electrodes 8 $\mu\mu$ f
DJ_{Λ} to all other electrodes
Focusing Method Electrostatic
Deflection Method Electrostatic
Deflecting-electrode
arrangement See Dimensional Outline
Storage Surface On inner surface of faceplate
Signal-Output Electrode Metal plate or 50-line (minimum)
mesh covering external surface
of faceplate and capacitively
coupled to the storage surface.
(This electrode is not supplied
with the tube).

Overall Length 11-1/2" ± 1/4" . 3" ± 1/16" Greatest Diameter of Bulb. . . 9 oz Weight (Approx.) . . Mounting Position. Center of tube face must be at same elevation as or at higher elevation than tube base. . . . Recessed Small Cavity (JETEC No.J1-21) Small-Shell Duodecal 10-Pin (JETEC No.B10-75) Cap. Base . . . BOTTOM VIEW Pin 1-Heater Pin 9-Deflecting

(4

3

Electrode DJ₂ Pin10 - Deflecting Electrode DJ Pin12-Heater Cap - Collector SS - Storage Surface⁴

Pin 8-Ultor (Grids No.2 & No.4) The Signal-Output Electrode is capacitively coupled to the Storage Surface.

Pin 2-Grid No.1

Pin 4 - Grid No. 3

Pin 6-Deflecting

Pin 7 - Deflecting

Electrode DJ4

Electrode DJa

Pin 3 - Cathode

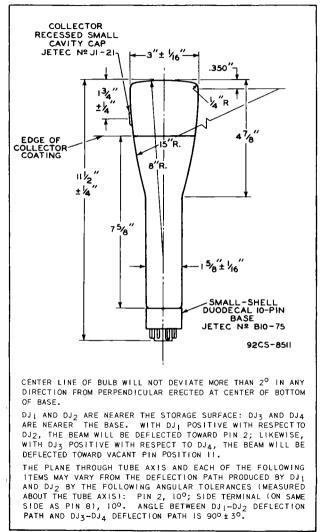
TUBE DIVISION RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY

TENTATIVE DATA 1

Maximum Ratings, Design-Center Values:	
COLLECTOR VOLTAGE:	
Difference between collector	
voltage and ultor voltage 150 max.	volts
ULTOR VOLTAGE	volts
GRID-No.3 VOLTAGE	volts
GRID-No.1 VOLTAGE:	VUIUS
Negative bias value	volts
	volts
Positive peak value	volts
PEAK VOLTAGE BETWEEN ULTOR AND	۰.
ANY DEFLECTING ELECTRODE 500 max.	volts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with	
respect to cathode 125 max.	volts
Heater positive with	
respect to cathode	volts
Equipment Design Ranges:	
For any ultor voltage (E_{C_A}) between 1000 and 2500 v	olts
Collector Voltage 95% to 105% of Ec4	volts
$Grid-No.3$ Voltage 20% to 28% of E_{CA}	volts
Grid-No.3 Voltage 20% to 28% of E _{C4} Max. Grid-No.1 Voltage	VOITS
for Beam-Current Cutoff 2.4% of Ec4	volts
Max. Grid-No.3 Current	
Range15 to +10	μатр
Deflection Factors:	
QU1 & QU2	of Ec4
DU3 & DU4	of Ec4 of Ec4
Di₁ & Di2	of Ec4 of Ec4
DU3 & DU4	of Ec4 of Ec4
DU3 & DU4 35.5 to 48.5 v dc/in./kv Focused-Beam Position ## Examples of Use of Design Ranges:	of Ec4
DJ3 & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position ## Examples of Use of Design Ranges: For ultor voltage of 1000 2500	of Ec4 of Ec4 volts
DJ3 & DJ4	of Ec4
DJ3 & DJ4	of Ec4
DJ3 & DJ4	of Ec4 volts volts
DJ3 & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position ## Examples of Use of Design Ranges: For ultor voltage of 1000 2500 Collector Voltage 950 to 1050 2375 to 2625 Grid-No.3 Voltage 200 to 280 500 to 700 Max. Grid-No.1 Volt-	of Ec4 volts volts
DJ3 & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position ## Examples of Use of Design Ranges: For ultor voltage of 1000 2500 Collector Voltage 950 to 1050 2375 to 2625 Grid-No.3 Voltage 200 to 280 500 to 700	of Ec4 volts volts
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position ## Examples of Use of Design Ranges: For ultor voltage of 1000 2500 Collector Voltage 950 to 1050 2375 to 2625 Grid-No.3 Voltage 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam-	of Ec4 volts volts volts
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff24 -60 Deflection Factors:	of Ec4 volts volts volts volts
DJ3 & DJ4	of Ec4 volts volts volts volts
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-Mo.1 Volt- age for Beam- -24 -60 Deflection Factors: DJ. 39 to 53 97.5 to 133 volts DJ & DJ4. 35.5 to 48.5 89 to 122 volts	of Ec4 volts volts volts dc/in. dc/in.
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-Mo.1 Volt- age for Beam- -24 -60 Deflection Factors: DJ. 39 to 53 97.5 to 133 volts DJ & DJ4. 35.5 to 48.5 89 to 122 volts	of Ec4 volts volts volts dc/in. dc/in.
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-Mo.1 Volt- age for Beam- -24 -60 Deflection Factors: DJ.4 & DJ.2 39 to 53 97.5 to 133 volts DJ & DJ4 35.5 to 48.5 89 to 122 volts	of Ec4 volts volts volts dc/in. dc/in.
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-Mo.1 Volt- age for Beam- -24 -60 Deflection Factors: DJ.4 & DJ.2 39 to 53 97.5 to 133 volts DJ & DJ4 35.5 to 48.5 89 to 122 volts	of Ec4 volts volts volts dc/in. dc/in.
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-Mo.1 Volt- age for Beam- -24 -60 Deflection Factors: DJ.4 & DJ.2 39 to 53 97.5 to 133 volts DJ & DJ4 35.5 to 48.5 89 to 122 volts	of Ec4 volts volts volts dc/in. dc/in.
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: *** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff. -24 -60 Deflection Factors: 39 to 53 97.5 to 133 volts DJ & DJ2. 39 to 53 97.5 to 122 volts * The "ultor" in a storage tube is the electrode to which is appin highest dc voltage of accelerating the electrons in the best to its deflection. In the 6571, the ultor function is perfor grid No.4. Since grid No.4 and grid No.2 are connected togethet the s51, they are collectively referred to simply as "ultor" "	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: *** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff. -24 -60 Deflection Factors: 39 to 53 97.5 to 133 volts DJ & DJ2. 39 to 53 97.5 to 122 volts * The "ultor" in a storage tube is the electrode to which is appin highest dc voltage of accelerating the electrons in the best to its deflection. In the 6571, the ultor function is perfor grid No.4. Since grid No.4 and grid No.2 are connected togethet the s51, they are collectively referred to simply as "ultor" "	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-
DJ & DJ4 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: ** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- -60 Deflection Factors: DJ & DJ2 39 to 53 97.5 to 133 volts DJ & DJ2 39 to 53 97.5 to 133 volts olts The "ultor" in a storage tube is the electrode to which is appining the circle. in the 6571, the ultor function is perforgrid No.2 are connected together The dist derive are drid with and grid No.2 are connected together the ds51, they are collectively referred to simply as "ultor" venience in presenting data and curves.	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: *** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff. -24 -60 Deflection Factors: 39 to 53 97.5 to 133 volts DJ & DJ2. 39 to 53 97.5 to 122 volts * The "ultor" in a storage tube is the electrode to which is appin highest dc voltage of accelerating the electrons in the best to its deflection. In the 6571, the ultor function is perfor grid No.4. Since grid No.4 and grid No.2 are connected togethet the s51, they are collectively referred to simply as "ultor" "	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: *** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff. -24 -60 Deflection Factors: 39 to 53 97.5 to 133 volts DJ & DJ2. 39 to 53 97.5 to 122 volts * The "ultor" in a storage tube is the electrode to which is appin highest dc voltage of accelerating the electrons in the best to its deflection. In the 6571, the ultor function is perfor grid No.4. Since grid No.4 and grid No.2 are connected togethet the s51, they are collectively referred to simply as "ultor" "	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-
DJ & DJ A. 35.5 to 48.5 v dc/in./kv Focused-Beam Position. ## Examples of Use of Design Ranges: *** For ultor voltage of 1000 2500 Collector Voltage. 950 to 1050 2375 to 2625 Grid-No.3 Voltage. 200 to 280 500 to 700 Max. Grid-No.1 Volt- age for Beam- Current Cutoff. -24 -60 Deflection Factors: 39 to 53 97.5 to 133 volts DJ & DJ2. 39 to 53 97.5 to 122 volts * The "ultor" in a storage tube is the electrode to which is appin highest dc voltage of accelerating the electrons in the best to its deflection. In the 6571, the ultor function is perfor grid No.4. Since grid No.4 and grid No.2 are connected togethet the s51, they are collectively referred to simply as "ultor" "	of Ec4 volts volts volts dc/in. dc/in. lied the mprior rmed by rom con-

Storage Characteristics for Ultor Yoltage of 2500 Volts: Storage-Surface Boundary (In terms of deflection voltage):
In the D1-D2 direction from posi- tion of undeflected focused beam ±109 volts
In the DJ3-DJ4 direction from posi- tion of undeflected focused beam . ±100 volts Blemish Factor*, for storage surface within indicated boundary 0.5 max.
Spill (Determined for Double-Dot Pattern):** Under conditions involving 255 references to "spill" element
and 1 reference to "test" element
Separation Between Storage Elements, in either the D1-D2 or D3-DJ4 direction in terms of deflection voltage:
At center of storage surface 8 max. volts At midpoint on each side of storage-surface boundary 10 max. volts
Maximum Circuit Values:
Grid-No.1-Circuit Resistance 1.5 max. megohms Resistance in Any Deflecting-
Electrode Circuit [®] 1.0 max. megohm
Blemish factor is defined as the factor by which the normal positive signal is reduced by the blemish.
spin is indicative of the doministr. spin is indicative of the amount of binary information that can be stored by the tube. The storage capability is determined by the sepa- ration between two storage elements at which the signal from one element is changed by no more than a specified amount after repeated references to the other element. For the 6571, the separation is measured, in terms of deflection voltage, when the amplitude of the negative signal of the 'test' element has decreased to 500 of its maximum negative amplitude. The maximum negative amplitude is deter- mined by separating the two elements far enough to eliminate the effects of secondary electron redistribution from the 'spill' element.
It is recommended that the deflecting-electrode-circuit resistances be approximately equal.
OPERATING CONSIDERATIONS
 Shielding. In typical computer applications, the 6571 is mounted in a compartment having effective magnetic and electrostatic shielding. It is recommended that the bulb be provided with a tight-fitting electrostatic shield extending from the base to the collector coating. (See Dimensional Outline). This external shield supplements the shielding action of the collector in preventing cross-coupling between the electron gun and the external signal electrode. A signal-output electrode shaped to conform with the external context of the four of the context of the state of
external contour of the faceplate and placed in contact with the entire area of the faceplate is required. The signal-output electrode is connected to a low-noise video

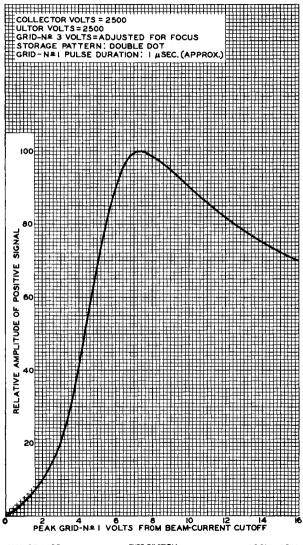
amplifier having sufficient gain to amplify signals from a fraction of a millivolt to the desired level.


The amount of information that can be stored by the 6571 is dependent on the manner in which it is operated, and is affected by the stability of the deflecting system, freedom from noise in the associated output circuit, the number of regenerations compared with the number of addresses, and the effectiveness of the electrostatic and magnetic shielding.

In general, the number of storage elements is proportional to the operating ultor voltage. For the greatest number of storage elements, the 6571 should be operated at the rated maximum ultor voltage and so that the peak grid-No.1 drive is less than that required for the maximum positive amplitude but high enough to provide a satisfactory output signal.

It is recommended that the beam current be limited to the minimum value which provides satisfactory signal amplitude.

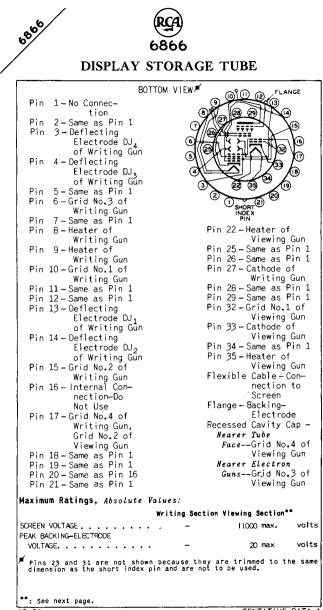
The storage characteristics in the tabulated data and curve are based on the use of a double-dot pattern. In this method of storage, the positive signal is produced by adjusting the beam current and the distance between two dot storage elements so that the optimum positive signal is produced when the "test" element is addressed. Other methods of storage such as superimposed focused and defocused spots or dots and dashes may be used equally well with the 6571.



85.J

AVERAGE CHARACTERISTIC

JAN. 27, 1955



DISPLAY STORAGE TUBE

4"-DIAMETER DISPLAY

NON-EQUILIBRIUM WRITING GRID-CONTROL READING (VIEWING)

DATA General: Writing Section Viewing Section Heater, for Unipotential Cathode: Voltage (AC or DC).... 6.3 6.3 volts 0.6 0.6 amp Minimum Cathode Heating Time before other electrode voltages are applied. 30 sec Direct Interelectrode Capacitances (Approx.):0 Grid No.1 to all other tube electrodes 18 6 $\mu\mu$ f Cathode to all other tube electrodes 4.2 6.5 μµf Deflecting electrode DJ, to deflecting electrode DJ. . . 1.8 μuf Deflecting electrode DJ, to deflecting electrode DJ ... 1.8 шuf DJ, to all other tube electrodes. 7.5 μµf DJ, to all other tube electrodes. 8 μµf -Di to all other tube electrodes. 6 шuf DJ, to all other tube electrodes. 7. μµf Focusing Method Electrostatic None Deflection Method Electrostatic None Deflecting-Electrode Arrangement. See Dimensional Outline Phosphor. High-Visual-Efficiency Type. Aluminized Fluorescence Yellow Phosphorescence. Yellow 5-1/8" ± 1/16" Bulb Terminals: Caps (Two). Recessed Small Cavity (JETEC No.JI-21) Flexible cable. See Dimensional Outline Socket...... Alden Part No.435SBA, or equivalent Base. Small-Button Thirtyfivar 31-Pin (JETEC No.E31-36) ^O without external shield.

TENTATIVE DATA 1

6866

DISPLAY STORAGE TUBE

	Writing	Section V	iewing Sectio	on**
	Equivaler	it Values		
GRID-No.4 VOLTAGE 2	900 max.*	150 max.**	' 300 max.	volts
GRID-No.3 VOLTAGE	000 max.*	-	·300 max.	volts
GRID-No.2 VOLTAGE 2	750 max.*	-	150 ma×.	volts
CATHODE VOLTAGE	-	-2900 max.**	۰ <u>-</u>	volts
GRID-No. I VOLTAGE:				
Negative bias value	200	max.*	100 max.	volts
Positive bias value	0	max.*	0 max.	volts
Positive peak value	2	max.*	0 max.	voits
PEAK VOLTAGE BETWEEN				
GRID NO.4 AND ANY				
DEFLECTING ELECTRODE.	500	max.	-	volts
PEAK HEATER-CATHODE				
Heater negative with				
respect to cathode	125	max.*	25 max.	volts
Heater positive with	129	max.	129 11844.	VOIUS
respect to cathode	125	max.*	125 max.	volts
	12		120 11201	10110
V	IEWING SE	CTION**		
Operating Values and Ty	pical Per	formance Ch	aracterist	ics:
Screen Voltage	5000	10000	10000	volts
DC Backing-Electrode				
Voltage	5	5	5	volts
Grid-No.4 Voltage	150	210	150	volts
Grid-No.3 Voltage#	25 to 125	50 to 150	25 to 125	
Grid-No.2 Voltage	50 to 75	70 to 105	50 to 75	volts
Grid-No.1 Voltage"	0 to -50	0 to -75	0 to -50	_
Maximum Screen Current	350	600	350	<i>µ</i> атр
Maximum Peak Backing-		0	1.5	-
Electrode Current Maximum Grid-No.4 Current	1.5	23	1.5	ma. ma
Maximum Grid-No.3 Current	2 1.5	2	1.5	ma
Maximum Cathode Current	1.5	2	1.5	ma
Writing Speed 1	300000	300000	00000	in./sec
Number of Half-Tone Steps	5	5	5	
Viewing Duration	40	20	40	sec
Maximum Erasing-Uniformity	10	20		
Factor ^{CO}	0.5	0.5	0.5	
Stored-Spot Diameter ¹¹	0.020	0,020	0.020	in.
Resolution [®]	50	50	50 l	ines/in.
Brightness 🍨	175	1750	950	f 1
** voltages are shown with	respect to	cathode of Via	ewing Gun.	
# Adjusted for brightest,				
Grid No.2 of the Viewing			ally to grid	No.4 of
the Writing Gun.			-	
 For conditions with comt No.2 voltage, and grid- 	bined adjus	tment of grid	-No.1 voltag	e, grid-
pattern.	NO. 9 VOICAY	e to give bit	3	
* †† □ ▲ □□ ⊕ . See next	0.946			
10-56	page.		TENTATIV	
10-00	TUBE DIV	ISION	TENTATIV	L UATA Z

DISPLAY STORAGE TUBE

WRITING SECTION® Range Values for Equipment Design:* With any grid-No.2 voltage $(E_{C_{n}})$ between 500 and 2750 volts 95% to 105% of Ec. volts 14% to 28% of Ec, volts Maximum Grid-No. | Voltage for Cutoff of Undeflected -4.6% of Ec, Focused Spot. volts Maximum Grid-No.3 Current -15 to +10 *µa*mp Maximum Cathode Current See Curve Deflection Factors: DJ_1 and DJ_2 28 to 38 y dc/in./ky of Ec. 28 to 38 v dc/in./kv of Ec. Examples of Use of Design Ranges:* With grid-No.2 voltage of volts 1500 2500 Grid-No.4 Voltage (E_{Cu}) 1425 to 1575 2375 to 2625 volts Grid-No.3 Voltage for Focus . . 210 to 420 350 to 700 volts Maximum Grid-No.i Voltage for Cutoff of Undeflected Focused Spot. +115 volts -69 Deflection Factors when Ec1 = Ec2: DJ, and DJ, 42 to 57 70 to 95 v dc/ln. DJa and DJ₁₁ 42 to 57 70 to 95 v dc/in. Equivalent Values for Examples of Writing-Gun Voltages Referred to Cathode of Viewing Gun: Cathode Voltage -1450 to -1395 -2450 to -2395 volts Grid-No.2 Voltage -25 to +180 -75 to +230 volts Grid-No.3 Voltage for Focus . . -1240 to -975 -2100 to -1695 volts Grid-No.4 Voltage 50 to 105 volts 50 to 105 VIEWING SECTION and WRITING SECTION Circuit Values: Grid-No.I-Circuit Resistance (Either gun) . . 1.0 max. megohm . . . Resistance in Any Deflecting-Electrode Circuit[®] . . . 0.1 max. meaohm Backing-Electrode-Circuit Resistance. 0.005 max. meaohm Series Current-Limiting Resistance in Screen Circuit. 1.0 min. meaohm Voltages are shown with respect to cathode of Writing Gun. Voltages are shown with respect to cannot or mining during the source under conditions of writing from just zero brightness (view-ing-beam cutoff) to maximum brightness with grid No.1 of writing Gun at -10 volts with respect to cathode of writing Gun, and grids No.2 and No.4 of Writing Gun at +2500 volts with respect to cathode of writ-ing Gun. n Observed with an RCA-2F21 Monoscope display. ▲ □□ ♣ ♣ ♠ ##,■: See next page. 10-56 TENTATIVE DATA TUBE DIVISION

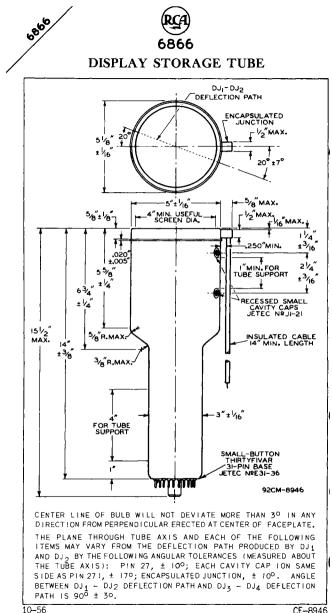
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DISPLAY STORAGE TUBE

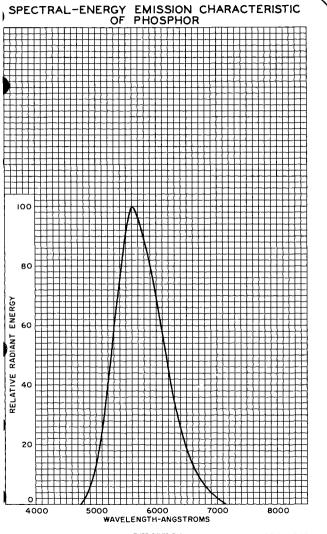
- Expressed in terms of the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cutoff) to 105 of the maximum brightness.
- Defined as $(t_2 t_1)/t_2$, where

 - time measured from start of erasing to instant at which any screen area is reduced to zero brightness.
 time measured from start of erasing to instant at which entire screen area is reduced to zero brightness.

Measured by shrinking-raster method and with grids No.2 and No.4 of Writing Gun at +2500 volts with respect to cathode of Writing Gun. Measured with entire storage grid written to produce maximum bright-ness and with screen at indicated voltage.


- The cathode of the writing Gun is operated at about -2500 volts with respect to the cathode of the viewing Gun which is usually operated at ground potential.
- The center of the undeflected focused beam will fall within a circle having a 10-mm radius concentric with the center of the face under the following conditions: grids No.2 and No.4 of Writing Gun, grid No.3 of Writing Gun at +2500 volts with respect to cathode of Writing Gun, grid No.3 of Writing Gun at voltage to give focus, grid No.1 of Writing Gun at voltage which will permit storage of a charge just sufficient to give a barely perceptible spot on screen, Viewing Section operating under normal conditions, and tube shielded against extraneous fields. ##
- It is recommended that the deflecting-electrode-circuit resistances be approximately equal.

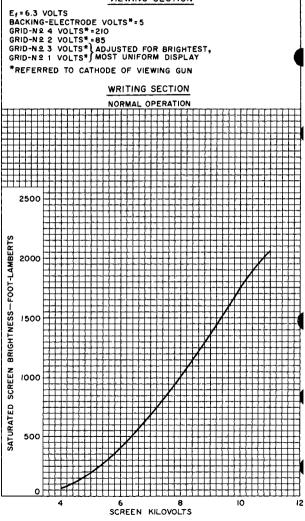
OPERATING CONSIDERATIONS


Magnetic shielding must be provided to prevent external fields from interfering with the required accurate control of the low-velocity viewing beam. A cylindrical shield of properly annealed high-permeability material about 1/16-inch thick is usually satisfactory. The screen cable should be placed outside the shield.

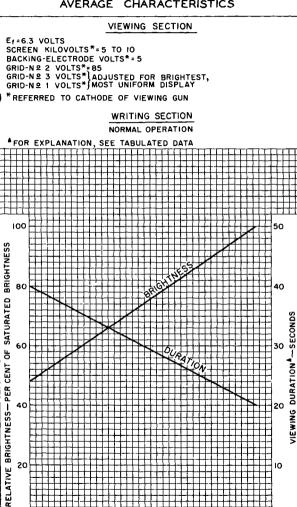
The metal flange at the face end of the tube requires the use of a spring-contact ring bearing against the edge of the flange.

To prevent possible damage to the tube, allow the viewinggun beam current to reach normal operating value before turning on the writing-gun beam current, and keep the viewing beam on until the writing beam is turned off.

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-9042


6866

AVERAGE CHARACTERISTIC


VIEWING SECTION

TUBE DIVISION RADIO COMPORATION OF AMERICA, HARRISON, NEW JERSEY

AVERAGE CHARACTERISTICS

20

ο

150

170

190

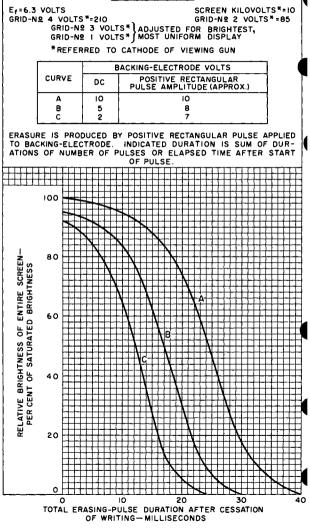
GRID-Nº 4 (VIEWING SECTION) VOLTS

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

210

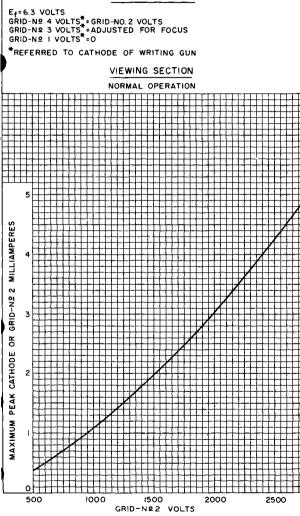
0

10


6866

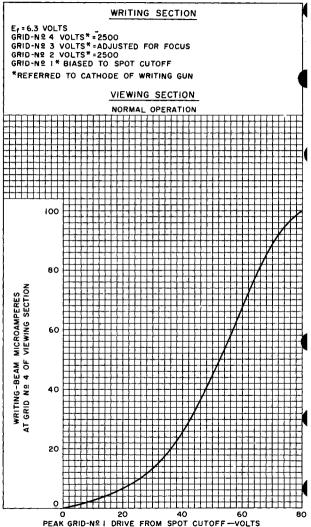
TYPICAL ERASURE CHARACTERISTICS

VIEWING SECTION


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

CURRENT CHARACTERISTIC FOR WRITING GUN

WRITING SECTION


TUBE DIVISION RADIO CORPORATION OF AMERICA, HABRISON, NEW JERSEY

92CM-9046

TYPICAL DRIVE CHARACTERISTIC FOR WRITING GUN

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-9048

RCA TUBE Handbook HB-3

PHOTOTUBE SECTION

This section contains data on RCA phototubes having a variety of spectral responses, shapes, and sizes. It includes both gas and vacuum single-unit types as well as multiplier types for diversified applications.

For further Technical Information, write to Commercial Engineering, Tube Department, Radio Corporation of America, Harrison, N. J. PHOTOTUBES

PRICES^D OF PHOTOTUBE TYPES

· · · · · · · · · · · · · · · · · · ·			
Type	Schedule D	Schedule	
[P2]	-	+ E0 00	
I P22		\$ 50.00 14.75	
IP28		15.50	
P20		2.95	
		2.85	
P37 P39		1.75	
1940		1.90	
1941		2.80	
1942		5.70	
868		2.50	
917		3.50	
918	-	3.10	
919		3.50	
920		4.15	
921		-	
922		1.95	
9234		2.05	
9244		3.30	
925		2.40	
926		2.90	
927		-	
928		2.85	
929		1.50	
930		1.65	
931-4		8.60	
934		3.40	
935		7.80	
5581		2.25	
5582		2.65	
5583		3.05	
5584		3.95	
5652		6.55	
5819		55.00	
6199		55.00	
6217		70.00	
This price list applies only in the	United Stat	es of America an	d is sub-
ject to change without notice. All State and local excise, sales, and	prices are e	exclusive of all	Federal,
Schedule U shows user prices for			
through other than dealer and servi	ce channels,	•	
Schedule D shows list prices for through dealer and service channels	tube types	priced for dist	tribution
not recommended for new equipment d	esign.		
INFORMATION ON PURCHASING ABOVE TYPES			
Information as to where RCA Phot obtained from our regional office ne Radio Corporation of Imerica, Marriso	otube Types arest you o m, I.J.	can be purchas or from fube De	ed may be partment,

When choosing tube types, the equipment designer should refer to the RCA PREFERRED TYPES LIST and its companion list - TYPES NOT RECOMMENDED FOR NEW EQUIPMENT DESIGN - both of which appear in the General Section.

Response	S-1	S-3	S-4	S-5	S-8	S-9	S-10	S-11
SINGLE-UNIT PROTOTUBES							<u> </u>	
Vacuum Types	917 919 922 ⁰ 925 6570 [‡]	926 ⁰	1P39 929 934 5653	935		1P42•		
Gas Types	1P40 1P41• 868 918 923 924• 927 928* 930 6405/ 16404	1P29	1P37 5581 5582 5583					
TWIN PHOT	OTUBES	6						
Vacuum Types			5652					
Gas Types	920		5584					
MULTIPLIE	R PHO	OTUBE	S				•	•
Vacuum Types			1P21▲ 931-A▲ 6323§▲ 6328§▲ 6472§▲	1P28 ▲	1P22▲		6217 * *	5819 6199 6342 6372 6655 6810
PHOTOCONDUCTIVE CELLS See Semiconductor Device Section								
Cartridge type. § For headlight-control service. Low-microphonic type. 9-stage type. Head-on type. 10-stage type. * Non-directional type. 14-stage type.								

١

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DEFINITIONS OF PHOTOTUBE TERMS

Radiant Sensitivity. The quotient of output current by incident radiant power of a given wavelength, at constant electrode voltages.

Cathode Radlant Sensitivity. The quotient of current leaving the photocathode by incident radiant power of a given wavelength.

Luminous Sensitivity. The quotient of output current by incident luminous flux, at constant electrode voltages.

Cathode Luminous Sensitivity. The quotient of current leaving the photocathode by the incident luminous flux.

Current Amplification. Ratio of the output current to the photocathode current, at constant electrode voltages.

Equivalent Anode-Dark-Current Input. The quotient of the anode dark current by the luminous sensitivity.

Equivalent Noise Input. That value of incident luminous flux which when modulated in a stated manner produces an rms output current equal to the rms noise current within a specified bandwidth.

Electrode Dark Current. The electrode current which flows when there is no radiant flux incident on the photocathode.

Nedian. That value in a series such that half of the tubes in the series are on one side of it, and half on the other.

PHOTOTUBE SENSITIVITY

GENERAL CONSIDERATIONS

The range of luminous-sensitivity limits given for a phototube on the data sheets of this Section is that which the tube will display when operated under low-current conditions.

If the tube is to be operated under conditions approaching its maximum-current rating, the equipment design should provide for a wider sensitivity range having a minimum value equal to one-half of that shown for low-current operation. The sensitivity of a phototube under such high-current conditions is dependent upon the tube type; as follows:

I. Single-Unit and Twin Phototubes

- a. Gas Types: For high-current operation, and particularly in applications in which the type is subjected to these higher values continuously, a drop in sensitivity below the values for low-current operation may be expected, the extent of the drop being affected by the severity of the operating conditions. After a period of idleness, a gas phototube usually recovers most of its initial sensitivity.
- b. Vacuum Types: Unlike gas phototubes, this class of phototubes shows negligible drop in sensitivity values for different degrees of illumination and over long periods of use. The output current of a vacuum phototube is a linear function of the exciting illumination under normal operating conditions. The frequency response is flat up to frequencies at which transit-time effects become the limiting factor.

2. Multiplier Phototubes

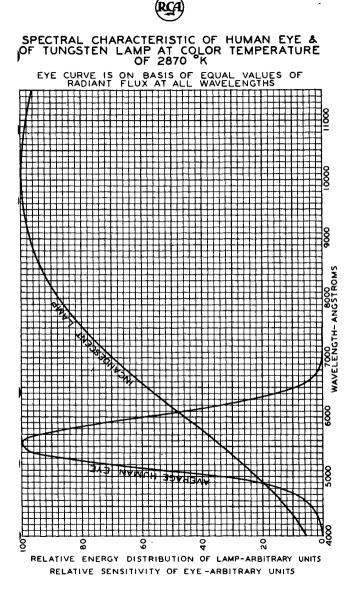
Although RCA Multiplier Phototubes are vacuum types, a drop in sensitivity is to be expected from this class of phototubes when operated at high anode-current values. The extent of the drop is affected by the nature and severity of the operating conditions to which the tube is subjected. After aperiod of idleness, the multiplier phototube usually recovers asubstantial percentage of this loss of sensitivity.

Multiplier-phototube-sensitivity values are dependent on the respective amplification of each dynode stage. Hence, large variations in sensitivity can be expected between individual tubes of a given type. The overall amplification of a multiplier phototube is equal to the average amplification per stage raised to the <u>n</u>th power, where <u>n</u> is the number of stages. Thus, very small variations in amplification per stage changes in overall tube amplification.

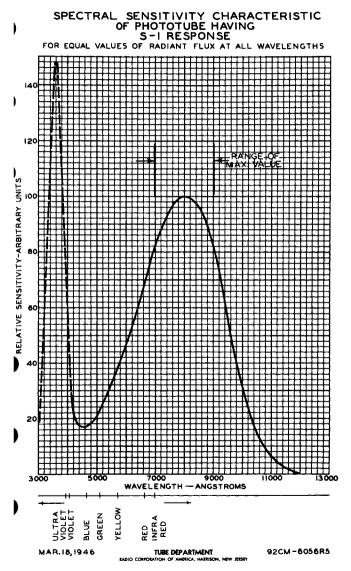
Because these overall changes are very large, it is advisable for designers to provide adequate adjustment of the supply voltage per stage so as to be able to adjust the amplification of individual tubes to the desired design value. It is suggested that an overall voltage-adjustment (continued on next page)

range of at least 2 to 1 be provided. When the output Current can be controlled by change in the illumination of the photocathode of the multiplier phototube, the required range of adjustment in the voltage per stage can be reduced.

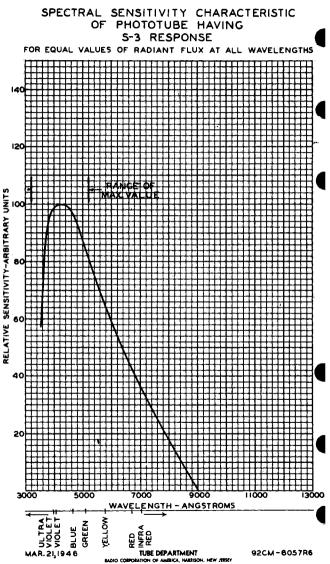
SENSITIVITY MEASUREMENTS

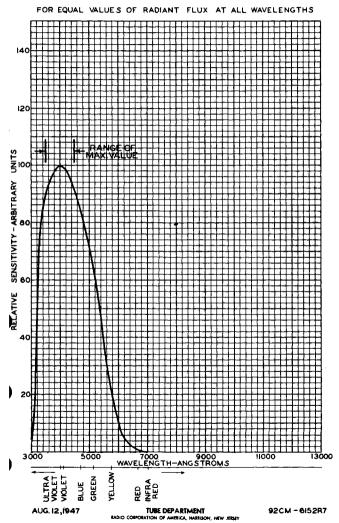

The luminous-sensitivity values shown on the datapages of this Section are measured according to the following procedures:

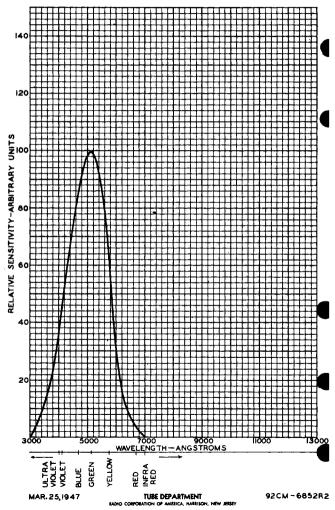
I. Single-Unit and Twin Phototubes


- a. Gas Types: The light source consists of a tungsten lamp operating at a filament color temperature of 2870°K. For the 0-cycle measurements, a light input of 0.1 lumen is used, unless otherwise specified. For the 5000- and 10000 cycle measurements, the light input is varied sinusoidally about a mean value of 0.015 lumen from zero to a maximum of twice the mean. For all measurements, a dc anode-supply voltage of 90 volts and a 1.0-megohm load resistor are employed. Under these conditions, the effect of tube capacitance is negligible.
- b. Yacuum Types: The light source consists of a tungsten lamp operating at a filament color temperature of 2870°K. A steady light input of 0.1 lumen is used, unless otherwise specified, together with a dc anode-supply voltage of 250 volts and a 1-megohm load resistor.

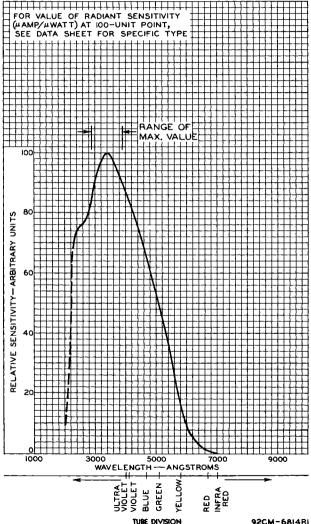
2. Multiplier Phototubes


The light source consists of a tungsten lamp operating at a filament color temperature of 2870° K. A light flux of 10 microlumens from a rectangular aperture approximately 0.8" long and 0.2" wide is projected normal to the cathode in the direction noted on the basing diagram and out line. The load resistor has a value of 0.01 megohm. The applied voltages are specified on the individual data sheets.



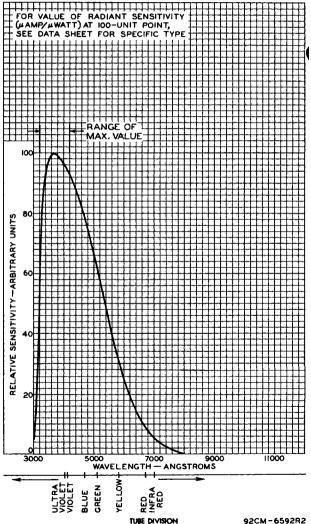

SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-4 RESPONSE

SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-4 RESPONSE

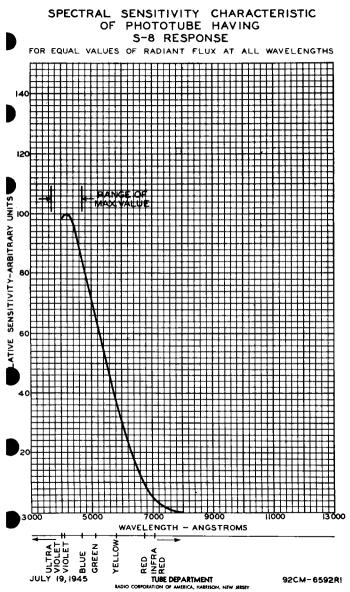

RADIANT FLUX FROM TUNGSTEN SOURCE AT 2870 °K

SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING RESPONSE S-5

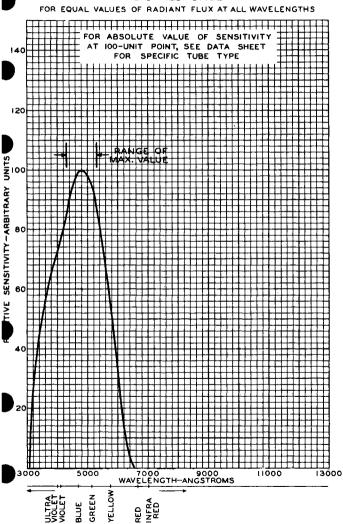
FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

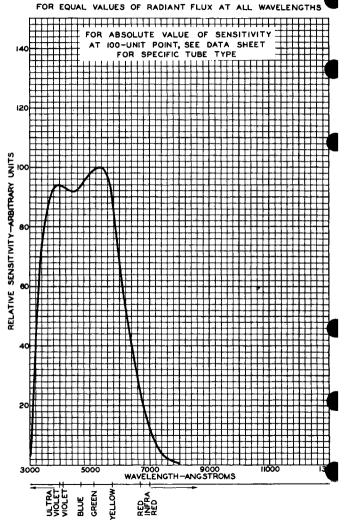
92CM-6814Ri


SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-8 RESPONSE

FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS


RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

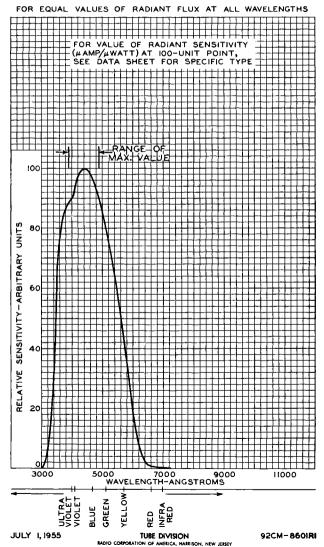
SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-9 RESPONSE



TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

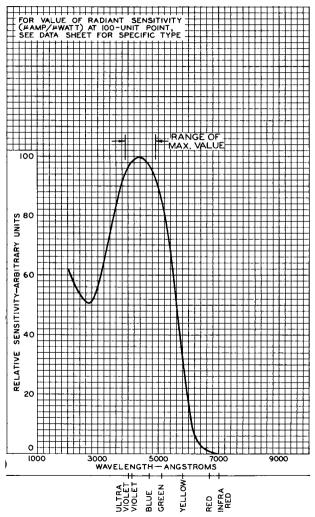
NOV. II 1952

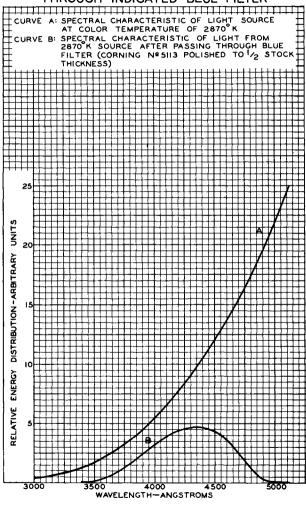
SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-10 RESPONSE



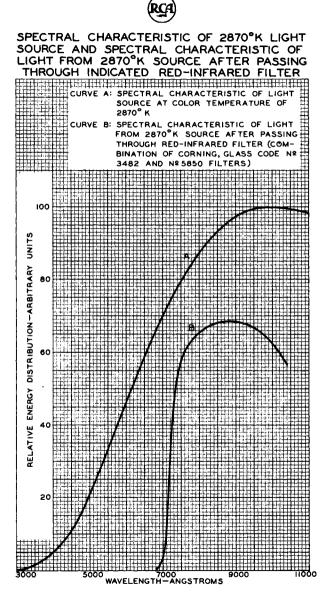
NOV. 11,1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-782/RI


SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-II RESPONSE

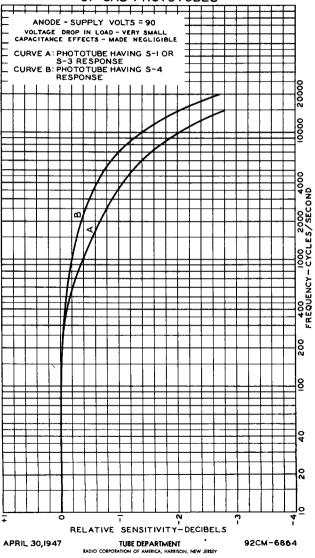

TENTATIVE SPECTRAL SENSITIVITY CHARACTERISTIC OF PHOTOTUBE HAVING S-I3 RESPONSE

FOR EQUAL VALUES OF RADIANT FLUX AT ALL WAVELENGTHS


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

JULY 17, 1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



SEPT. 3, 1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 7838

FREQUENCY-RESPONSE CHARACTERISTICS OF GAS PHOTOTUBES

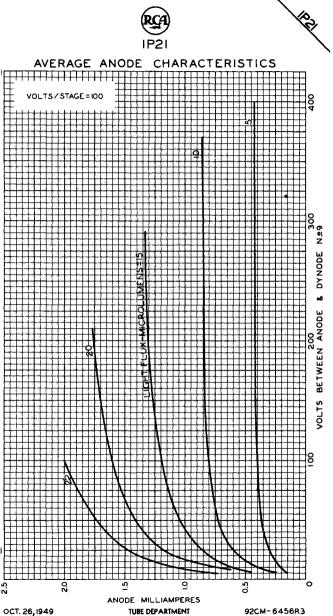
IP2I

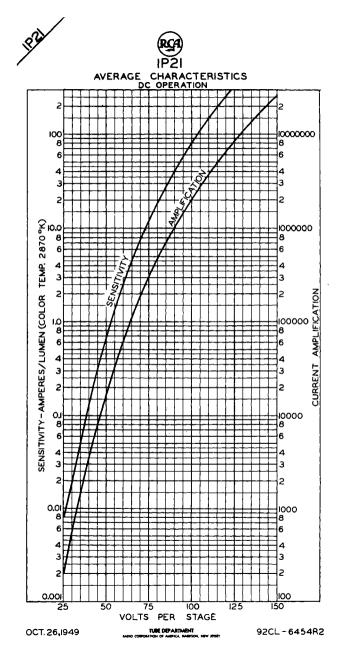
MULTIPLIER PHOTOTUBE 9-STAGE TYPE WITH S-4 RESPONSE For applications involving very low light levels

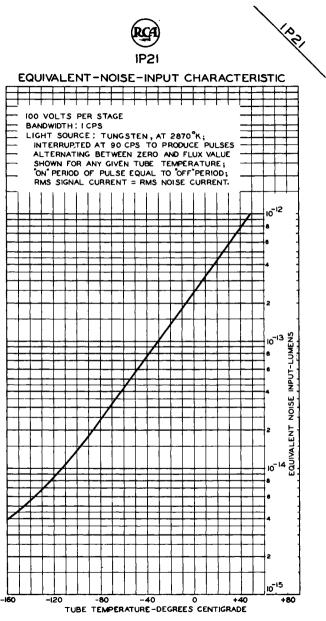
DATA

DATA	1
General:	
Spectral Response	
Wavelength of Maximum Response 4000 ± 500 angstroms	
Cathode:	
Minimum Projected Length*	
Minimum Projected Width*	L
Direct Interelectrode Capacitances:	
Anode to Dynode No.9	
Anode to All Other Electrodes. $\dots \dots	
Maximum Overall Length	
Maximum Seated Length	1
Seated Length to Center of Cathode 1-15/16" ± 3/32"	1
Maximum Diameter	1
Bulb	1
Mounting Position	
Base Small-Shell Submagnal 11-Pin.	
Non-Hygroscopic	
Basing Designation for BOTTOM VIEW	1
	1
Pin 1-Dynode No.1	ł.
Pin 2-Dynode No.2 4 3 8 Pin 8-Dynode No.8	
Pin 3- Dynode No.3 A A Pin 9- Dynode No.9	
Pin 4 - Dynode No.4 Ye Pin 10 - Anode	
Pin 5-Dynode No.5 ② 🖉 🔟 Pin 11-Cathode	
Pin 6 - Dynode No.6 🛛 🖓 🖤	1
DIRECTION OF LIGHT	
Novimum Patienza, Abastuta Vaturat	
Maximum Ratings, Absolute Values:	
ANODE-SUPPLY VOLTAGE (DC or Peak AC) ^D . 1250 max. volts	
SUPPLY VOLTAGE BETWEEN DYNODE No.9	ł
and ANODE (DC or Peak AC) 250 max. volts	
PEAK ANODE CURRENT	
AVERAGE ANODE CURRENTO 0.1 max. ma	
AMBIENT TEMPERATURE	
Characteristics:	-
With 100 volts per dynode stage and	Γ
100 volts between dynode No.g and anode	
<u>Min.</u> <u>Av.</u> Max.	1
Anode Dark Current * 0.1 µamp	
Sensitivity:	
At 4000 Angstroms 74000 - μamp/μwatt	
Luminous≜	(
Current Amplification - 2000000 -	
Equivalent Noise Input ^a 5 x 10 ⁻¹³ - lumen	
For the more usual applications, the 931-A is recommended.	
The use of about 50 volts between dynode No.9 and anode will give im-	1
The use of about 50 volts between dynode Wo.9 and anode will give improved operating stability without sacrifice in sensitivity as explained in note under Type 931-A.	1
• On plane perpendicular to indicated direction of incident light.	1
□, ○, #, ●, ▲, ■, A: See next page. ←Indicates a change.	j
NOV 15 1949	-

NOV. 15, 1949


TUBE DEPARTMENT RADIO CORFORATION OF AMERICA, HARRISON, NEW JERSEY


Characteristics: With 75 volts per dynode stage and 50 volts between dynode No.0 and anode Aν. Sensitivity: At 4000 Angstroms. . 11000 µamp/µwatt Luminous4. 12 amp/lumen Current Amplification 300000 Referred to cathode. Averaged over any interval of 30 seconds maximum. Dark current due to thermionic emission and ion feedback may be reduced by the use of refrigerants. • For maximum signal-to-noise ratio, operation below 1000 volts is recommended, Measured under conditions specified on sheet "PROTOTUBE SENSITIVITY and MEASUREMENTS" at the front of this Section. Ratio of anode sensitivity to cathode sensitivity. Addition of anoue sensitivity to controve sensitivity. Defined as the value where the rms output current is equal to the rms ncise current determined under the following conditions: 100 volts per stage, 25°C tube temperature, bandwidth of 1 cycle per second, tungsten light source at 2870PK interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The 'on' period of the pulse is equal to the 'off' period. The output current is measured through a filter which passes only the fundamental frequency of the pulses. OUTLINE DIMENSIONS for Type 1P21 are the same as those for Type 931-A SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section


MULTIPLIER PHOTOTURE

-> Indicates a change.

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

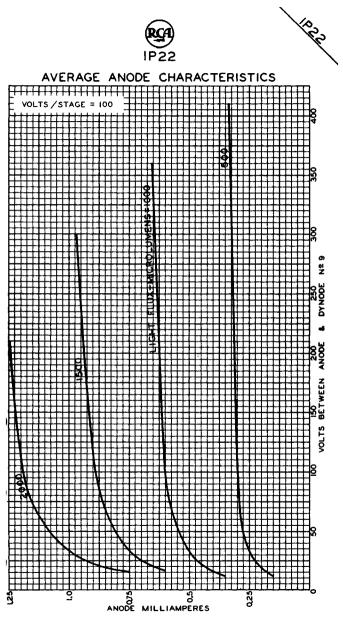
OCT. 27, 1949

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7018R1

MULTIPLIER PHOTOTUBE

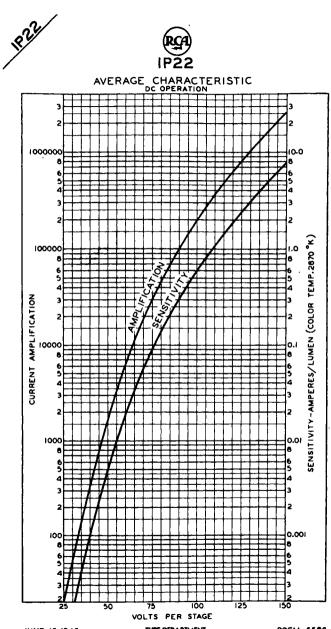
9-STAGE TYPE WITH S-8 RESPONSE

DATA General: Spectral Response 5-8 Wavelength of Maximum Response 4200 ± 500 angstroms Cathode: Minimum Projected Length* 15/16" Minimum Projected Width* 5/16" Direct Interelectrode Capacitances: Anode to Dynode No. 9 4 *ш*иf Anode to All Other Electrodes . 6.5 µµf Maximum Overall Length. 3-11/16" Maximum Seated Length . . 3-1/8" Seated Length to Center of Cathode ± 3/32" 1 - 15/16Maximum Diameter. . . 1-5/16" Bulb. T-9 Mounting Position Any Small-Shell Base. . . Submagnal 11-Pin. Non-Hygroscopic Basing Designation for BOTTOM VIEW 11K Pin 1- Dynode No.1 Pin 7- Dynode No.7 Pin 2- Dynode No.2 Pin 8- Dynode No.8 Pin 3- Dynode No.3 Pin 9- Dynode No.9 Pin 4- Dynode No.4 Pin 10- Anode Pin 5- Dynode No.5 Pin 11- Cathode Pin 6- Dynode No.6 DIRECTION OF LIGHT Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) volts SUPPLY VOLTAGE BETWEEN DYNODE No.9 and ANODE (DC or peak AC) 250 max. volts PEAK ANODE CURRENT. . . 10 max. ma AVERAGE ANODE CURRENT^O 1 max. ma AMBIENT TEMPERATURE . . 50 max. 00 Characteristics: With 100 volts per dynode stage and 100 volts between dynode No.9 and anodet Min. Aυ._ Nax, Anode Dark Current# 0.25 μamp Sensitivity: At 4200 Angstroms . . 370 µamp/µwatt Luminous⁴ . . . 0.115 0.6 50 amp/lumen Current Amplification 200000 - 1×10^{-10} Luminous Detectivity* . . lumen The use of about 50 volts between dynode No.9 and anode will give improved operating stability without sacrifice in sensitivity as explained in note under Type 931-A. On plane perpendicular to indicated direction of incident light. o Referred to cathode. • • • see next page. Indicates a change


MAR. 15, 1948

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DATA


1022

1922	RCA	
Y	IP22	
	MULTIPLIER PHOTOTUBE	
+ Character		
	With 75 volts per dynode stage and 50 volts between dynode No.g and anode	
Sensitivi At 4200	ity: Ο Angstroms	uwat
Luminou		
# Dark cur	over any interval of 30 seconds maximum. rent due to thermionic emission and ion feedback may be re- se of refrigerants.	duce
	mum signal-to-noise ratio, operation below 1000 volts is	
	Lunder conditions specified on sheet "PHOTOTUBE SENSITIVIT 'ITY MEASUREMENTS" at the front of this Section.	Y AN
	l anada anantalulau an anabada anantalulau	
noise cu stage, 2	rent determined under the following conditions: 100 volt 15°C tube temperature, bandwidth of 1 cycle per second, tun	s pe gste
incident The "on"	anode sensitivity to callode sensitivity. as the value where the rms output current is equal to the irrent determined under the following conditions: 100 volt 15°C tube temperature, bandwidth of 1 cycle per second, tun unce at 2870°K interrupted at a low audio frequency to pr radiation pulses alternating between zero and the value st period of the pulse is equal to the "off" period. The o is measured through a filter which passes only the fundame y of the pulses.	ated utpu
current frequenc	is measured through a filter which passes only the fundam y of the pulses.	enta
	OUTLINE DIMENSIONS for Type 1P22	
	are the same as those for Type 931-A	
	SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-8 Response	
	is shown at the front of this Section	
+ Indicate	es a change.	
MAR. 15,	1948 TIDE DEPARTMENT	DA

MAR.12, 1948

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6585RI

JUNE 15,1945

TUBE DEPARTMENT RADIO CONFORATION OF AMERICA, HARRISON, NEW JERSEY

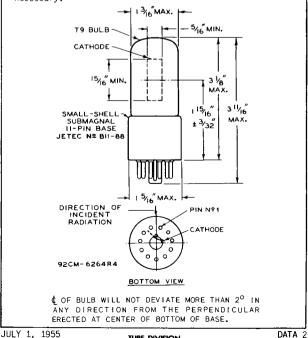
9-STAGE TYPE WITH S-5 RESPONSE

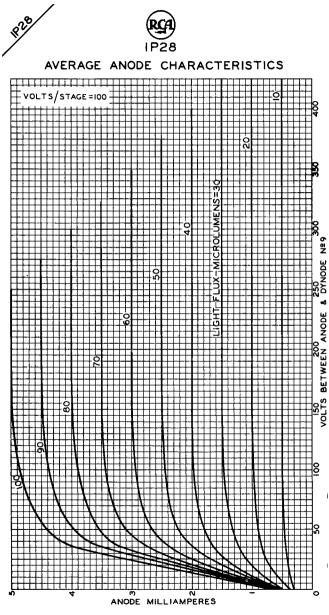
DATA	
------	--

DATA	
General:	
Spectral Response	
Minimum projected length*	-
Anode to dynode No.9	
Maximum Seated Length	
Useful Cathode Area 1-5/16" ± 3/32" Maximum Diameter	+ +
Basing Designation for BOTTOM VIEW	
Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3 - Dynode No.3 Pin 4 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 Pin 9 - Dynode No.6 Pin 9 - Dynode No.9 Pin 10 - Anode Pin 11 - Cathode	
DIRECTION OF INCIDENT RADIATION	
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.9 AND ANODE (DC or Peak AC) 250 max. volts AVERAGE ANODE CURRENT• 0.5 max. ma AMBIENT TEMPERATURE	
Characteristics Range Values for Equipment Design:	+
Under conditions with supply voltage (E) across voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode	
With E = 1000 volts (except as noted)	
Min. Median Max.	
Sensitivity: Radiant, at 3400 μ angstroms – 61800 – μαmp/μwatt	
* On plane perpendicular to the indicated direction of incident radiation. • Averaged over any interval of 30 seconds maximum.	
- Indicates a change.	

MULTIPLIER PHOTOTUBE

				I
	Min.	Median	Max.	
Cathode radiant, at		0.050		
3400 angstroms .	-	0.050	-	<i>µ</i> amp <i>lµ</i> watt
	10	50	200	
At 0 cps	10	47.5	300	amp/lumen amp/lumen
At 100 Mc	-	47.5	-	
Cathode luminous.	-	1,250,000	-	µamp/lumen
Current Amplification. Equivalent Anode-Dark-	-	1,230,000	-	
Current Input	_	_	1.25 × 10	9 lumen
Equivalent Noise			1.23 × 10	- iunen
Inout:				
Luminous ⁴	_	7.5×10^{-13}	_	lumen
Ultraviolet †	_	8 × 10 ⁻¹⁶	_	watt
-				watt
With E = 750 volts (exc	ept a	s noted)		
	Min.	Median	Max.	
Sensitivity:				
Radiant at 3400				
angstroms		7900	-	µamp/µwatt
Cathode radiant, at				
3400 angstroms	-	0.050	-	<i>µ</i> amp/ <i>µ</i> watt
Luminous:				
At O cps	-	6.4	-	amp/lumen
Cathode luminous▲	-	40		µamp/lumen
Current Amplification.	-	160000	-	
For conditions where the l ted at a color temperatur is used. The load resist	ight s e of 2	ource is a tung 870°K. A ligh	sten-filamen t input of 1	t lamp opera- 0 microlumens
is used. The load resist	or has	a value of 0.0	01 megohm.	
For conditions the same light flux is 0.01 lumen all other electrodes conn	as sno and 10 ected	wn under (●) (0 volts are ap) touether as an	except that plied betwee	n cathode and
Measured at a tube temper	ature	of 25 ⁰ C and wi	th the succi	v voltage (F)
Measured at a tube temper adjusted to give a lumino current caused by thermio	us sen	sitivity of 20	amperes per	lumen. Dark
current caused by thermic by the use of a refrigera	onic en	nission and ior	i feedback m	ay be reduced
		io. operation	with a sunol	v voltage (F)
For maximum signal-to-noi below 1000 volts is recon	mended	•		,
Under the following condit tube temperature, ac-ampli light source at color temp frequency to produce incid and the value stated. The period. The output curr only the fundamental free	ions:	Supply voltage	e (E) is 100	0 volts, 25°C
ight source at color temp	eratur	anu-width df 1 e of 2870°K in	terrupted at	a low audio
frequency to produce incid	lent ra	diation pulses	alternating	between zero
period. The output curre	ent is	measured throu	igh a filter	which passes
. only the randamental free	100.003	of the paraca.		
Determined under the same is made of a monochromati	condit	ions as shown i ce having radi	under (★) ex ation at 25%	cept that use 7 angstroms
	Curve	es showing		
VARIATION IN SENSIT			HODE for T	ype 1P28
are the same				
1				
		IVITY CHARAC		
		having S-5Re		
is shown at	: the	front of thi	s Section	


MULTIPLIER PHOTOTUBE

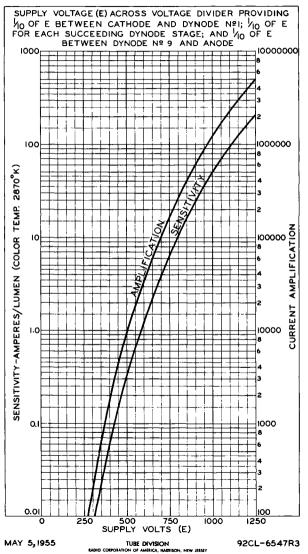

OPERATING CONSIDERATIONS

The operating stability of the IP28 is dependent on the magnitude of the anode current and its duration. When the IP28 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the IP28 usually recovers a substantial percentage of such loss in sensitivity.

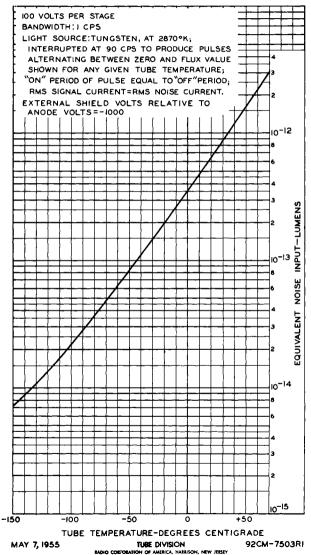
The use of an average anode current well below the maximum rated value of 0.5 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 10 microamperes, and the tube should be given a warm-up period of about 1/2 hour under load conditions.

Electrostatic and/or magnetic shielding of the IP28 may be necessary.

MAY 6,1955

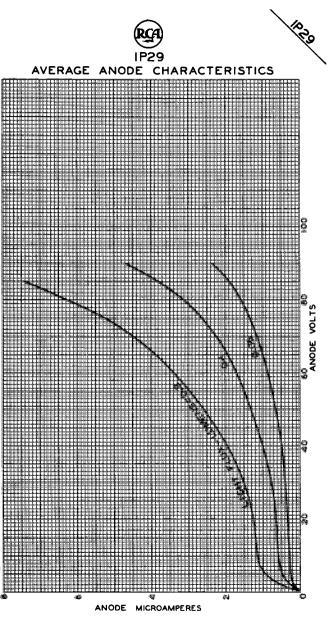

92CM-6632R3

TUBE DIVISION EADID COEPORATION OF AMERICA, HARRISON, NEW JEESEY


AVERAGE CHARACTERISTICS

1928

EQUIVALENT-NOISE-INPUT CHARACTERISTIC



I

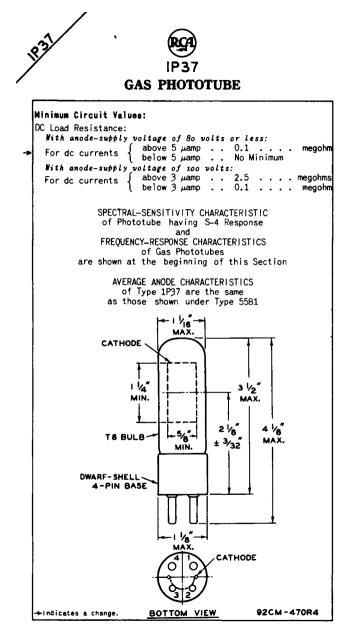
F

DATA
General:
Spectral Response
Cathode: Shape
Pin 1 - No Connection Pin 2 - Anode DIRECTION OF LIGHT Pin 3 - No Connection Pin 4 - Cathode
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC). 100 max. volts PEAK CATHODE CURRENT. 20 max. pamp PEAK CATHODE-CURRENT DENSITY. 100 max. µamp/sq.in. AVERAGE CATHODE CURRENT ⁰ 5 max. µamp AWBHENT TEMPERATURE 100 max. °C
Character istics:
<u>Min.</u> <u>Av.</u> <u>Max.</u>
Dark Current at 90 Volts. – – 0.10 μamp Sensitivity: At 4200 Angstroms – 0.01 – μamp/μwatt
Luminous: At 0 Cycles
Gas Amplification Factor 9 ^a On plane perpendicular to indicated direction of incident light. ^O Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode-supply voltage is limited to 80 volts.
← Indicates a change.

182³ GAS PHOTOTUBE Minimum Circuit Values: DC Load Resistance: With anode-supply voltage of 80 volts or less: above 5 µamp . . 0.1 . . . megohm For dc currents below 5 µamp No Minimum With anode-supply voltage of 100 volts: 2.5 . . megohms above 3 µamp For dc currents below 3 µamp megohm 0.1 . OUTLINE DIMENSIONS for Type 1P29 are the same as those for Type 1P37 SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-3 Response and FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes are shown at the beginning of this Section -> Indicates a change.

AUG. 6,1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6472Ri



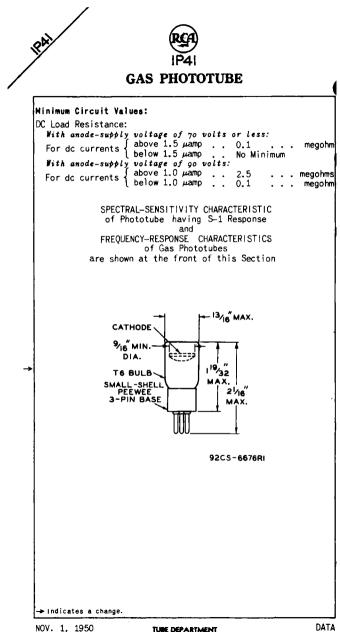
WITH S-4 RESPONSE

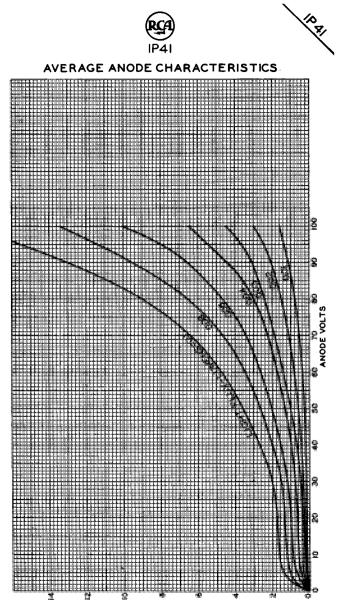
<u>DATA</u>		
General:		
Spectral Response		F
Maximum Overall Length. Maximum Seated Length Seated Length to Center of Cathode Maximum Diameter Bulb		
Pin 1 - No Connection Pin 2 - Anode	Pin 3-No Connection Pin 4-Cathode	
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC). PEAK CATHODE CURRENT. PEAK CATHODE CURRENT DENSITY. AVERAGE CATHODE CURRENT AMBIENT TEMPERATURE Character istics:	. 100 max volts . 20 max μamp . 100 max. μamp/sq.in. . 5 max μamp . 75 max °C	•
Inn.	Av. Nax.	
	– 0.05μamp 0.125 – μamp/μwatt	
Luminous: At 0 Cycles75 At 5000 Cycles At 10000 Cycles Gas Amplification Factor	135 205 μamp/lumen 124 – μamp/lumen 108 – μamp/lumen – 5.5	
On plane perpendicular to indicated direct O Averaged over any interval of 30 seconds r be doubled when anode-supply voltage is 1	tion of incident light. maximum. Average current may imited to 80 volts.	

-Indicates a change.

ļ

AUGUST 15, 1947




GAS PHOTOTUBE

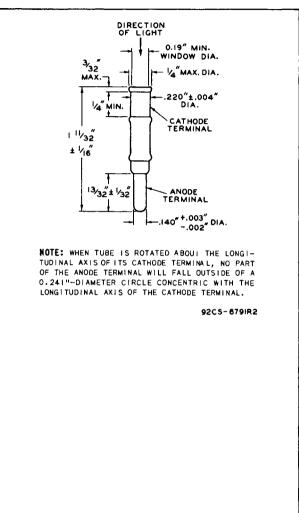
END TYPE WITH S-I RESPONSE

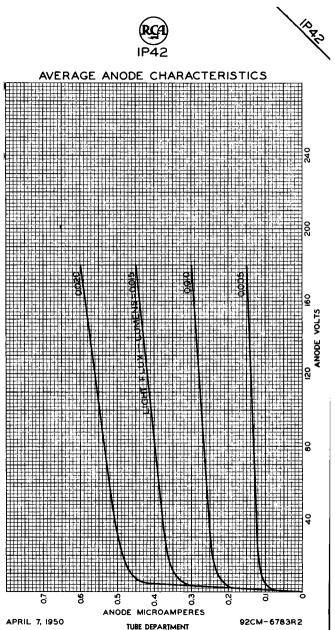
DATA	
General:	
Spectral Response	S-1 troms
Minimum Diameter. 1. Direct Interelectrode Capacitance 1. Maximum Overall Length 2- Maximum Seated Length 1-1 Maximum Diameter. 1-1 Maximum Diameter. 1 Bulb. 1 Mounting Position 1 Base. Snall-Shell Peewee Basing Designation for BOTTOM VIEW 2	2F2
Pin 1 - No Connection Pin 2 - Anod Pin 3 - Cath DRECTION OF LIGHT INTO END OF BULLS	
PEAK CATHODE CURRENT 5 max	volts µannp
PEAK CATHODE-CURRENT DENSITY. 75 max. µamp/s AVERAGE CATHODE CURRENT ⁰ . 1.5 max. AMBIENT TEMPERATURE 100 max.	q.in. μamp . ^ο C
Characteristics:	i
DC Dark Current at 90 Volts: 0.1 Sensitivity:	µamp.
At 8000 angstroms 0.009 - μamp/ Luminous:	µwatt
Low Houss At 0 cps. 50 90 145 μamp/ At 5000 cps. - - 77 - μamp/ At 10000 cps. - - 67 - μamp/ Gas Amplification Factor. - - 8.5	lumen
O Averaged over any interval of 30 seconds maximum. Average curren be doubled when anode-supply voltage is limited to 70 volts. ▲ Measured with .06 lumen.	t may _e
← indícates a ci	hange.

RE

ANODE MICROAMPERES

92CM-5217R3


END TYPE WITH S-9 RESPONSE


DATA	
General:	
Spectral Response	÷
Minimum Diameter. 0.19" Direct Interelectrode Capacitance 1.9 µµf Overall Length. 1-11/32" ± 1/16" Maximum Diameter. 1/4" Bulb. T-2 Mounting Position Any	¢-
Small End: Anode	
DIRECTION OF LIGHT	
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) PEAK CATHODE CURRENT. PEAK CATHODE CURRENT DENSITY. AVERAGE CATHODE CURRENT 0. O.4 max. µamp AMBIENT TEMPERATURE	
Characteristics:	
Dark Current at 180 Volts μαπρ	
Sensitivity: At 4800 Angstroms 0.020 - μamp/μwatt Luminous 20 30 50 μamp/lumen	<u>ب</u>
 O Averaged over any interval of 30 seconds maximum. ▲ Measured under conditions specified on sheet "PHOTOTUBE SENSITIVITY and SENSITIVITY MEASUREMENTS", at the front of this Section, except that the anode supply is 180 volts and the light flux is 0.015 lumen. 	
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-9 Response is shown at the front of this Section	
← Indicates a change.	

ſ

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DATA		
General:		•
Spectral Response		
Basing Designation for BOTTOM VIEW		
Pin 1 - No Connection Pin 2 - Anode	Pin 3-No Connection Pin 4-Cathode	
Maximum Ratings, Absolute Values:		+
ANODE-SUPPLY VOLTAGE (DC or Peak AC). PEAK CATHODE CURRENT PEAK CATHODE-CURRENT DENSITY AVERAGE CATHODE CURRENT ^O AMBIENT TEMPERATURE	100 maxvolts 20 maxµamp 100 max.µamp/sq.in. 5 maxµamp 100 max°.	
Characteristics:		*
	<u>lv. Max.</u>	
	– 0.1 μamp 009 – μamp/μwatt	
Luminous: At 0 Cycles 50 At 5000 Cycles At 10000 Cycles Gas Amplification Factor	90 145 μamp/lumen 77 – μamp/lumen 67 – μamp/lumen – 8	
* On plane perpendicular to indicated directic O Averaged over any interval of 30 seconds may be doubled when anode-supply voltage is limited be doubled when anode-supply voltage is limited.		
	-	
🖌 Indicates a change.		

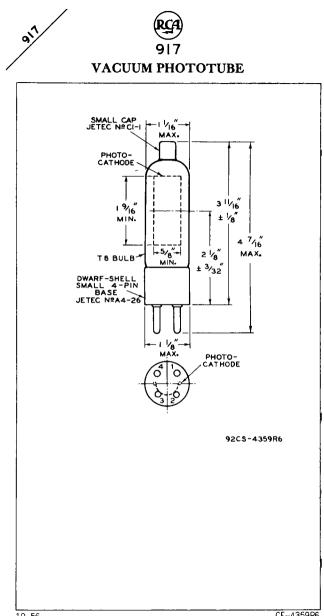
868 GAS PHOTOTUBE

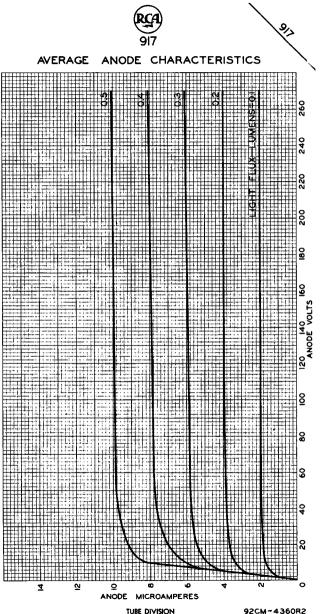
Minimum Circuit Values: DC Load Resistance: With anode-supply voltage of 80 volts or less: above 5 µamp 0.1 megohm For dc currents below 5 μamp ... No Minimum With anode-supply voltage of 100 volts: above 3 µamp ... 2.5 megohms For dc currents | below 3 µamp ... 0.1 megohm OUTLINE DIMENSIONS for Type 868 are the same as those for Type 1P37 SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response and FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes are shown at the beginning of this Section AVERAGE ANODE CHARACTERISTICS of Type 868 are the same as those shown under Type 1P41

► Indicates a change.

VACUUM PHOTOTUBE

LOW-LEAKAGE TYPE WITH ANODE-TERMINAL CAP AND CHI RESPONSE


For light-measuring and relay applications


DATA

DATA			
General:			
Cathode: Shape. Minimum projected length* Minimum projected width* Direct Interelectrode Capacitance. Maximum Overall Length Seated Length Seated Length to Center of Cathode Mounting Position. Weight (Approx.) Bulb Cap Base Basing Designation for BOTTOM VIEW.	Semicyl indrical 		
$ \begin{array}{c} \text{tion} \\ \text{Pin } 2 - \text{No Connec-} \end{array} \left(\left(\begin{array}{c} \\ \end{array} \right) \right) \\ \text{Pin} \end{array} \right) $	3 - No Connec- tion 4 - Cathode ap - Anode		
Maximum Ratings, Absolute Values:			
ANODE-SUPPLY VOLTAGE (DC or Peak AC) . 500 AVERAGE CATHODE-CURRENT DENSITYO 30	max. μamp/sq.in max. μamp		
Characteristics, At 250 Volts on Anode:			
Min. Median Max			
Sensitivity: Radiant, at 8000 angstroms 0.0018 - Luminous≜ 12 20 40 Anode Dark Current	µamp/µwatt µamp/lumen		
at 25°C 0.0	5 μamp		
* On plane perpendicular to indicated direction of in	ident light.		
 Averaged over any interval of 30 seconds maximum. For conditions where the light source is a tungsten-fil at accolor temperature of 2870%. A dc anode supply megohm load resistor, and a light input of 0.1 lume 	ment lamp operated of 250 volts, a 1- are used.		
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response is shown at front of this Section			
L	Indicates a change.		
10 56			

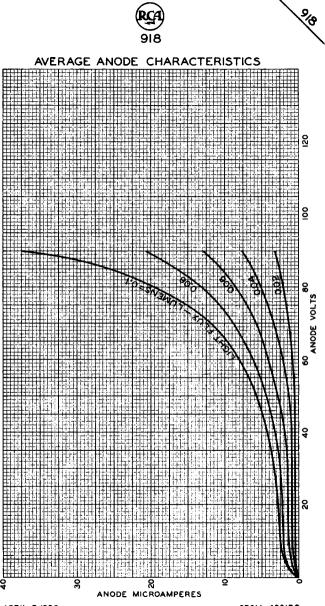
ſ

213

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

DATA

DATA
General:
Spectral Response
Shape Semi-Cylindrical Minimum Projected Length* 1-1/4" Minimum Projected Width* 5/8" Direct Interelectrode Capacitance 3 µµf Maximum Overall Length 4-1/8" Maximum Seated Length 3-1/2" Seated Length to Center of Cathode 2-1/8" ± 3/32" Maximum Diameter 1-1/8" Bulb T-8 Mounting Position Any
Base Dwarf-Shell Small 4-Pin Basing Designation for BOTTOM VIEW
Pin 1-No Connection Pin 2-Anode Direction or Light Pin 3-No Connection Pin 4-Cathode
Maximum Ratings. Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) PEAK CATHODE CURRENT
Characteristics: <u>Nin. Av. Nax.</u>
Dark Current at 90 Volts – . Ο.1 μαπρ Sensitivity:
At 8000 Angstroms 0.015 - μamp/μwatt
Luminous: At 0 Cycles 120 150 220 μamp/lumen At 5000 Cycles 120 - μamp/lumen At 10000 Cycles 105 - μamp/lumen Gas Amplification Factor 7.0
On plane perpendicular to indicated direction of incident light. O Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode-supply voltage is limited to 70 volts.
≪indicates a cnange.

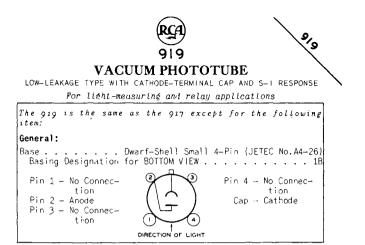


1

918 GAS PHOTOTUBE

	Minimum Circuit Values:
	DC Load Resistance: With anode-supply voltage of 70 volts or less:
->	below 5 µamp No Minimum
->	With anode-supply voltage of go volts: For dc currents { above 3 µamp 2.5 megohms below 3 µamp 0.1 megohm
	OUTLINE DIMENSIONS for Type 918 are the same as those for Type 1P37
	SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response and
	FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes
	are shown at the beginning of this Section
	-Indicates a change.

1



APRIL 7, 1950

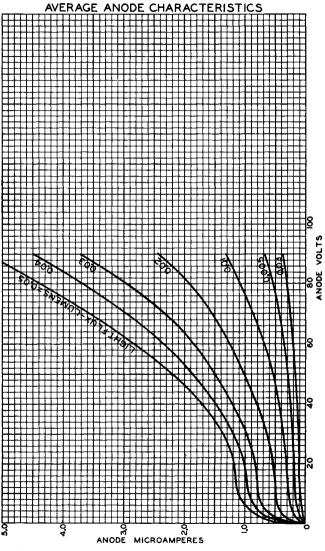
TUBE DEPARTMENT

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-435IR2

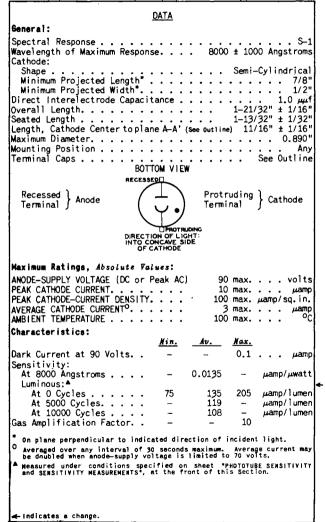
TWIN TYPE WITH S-I RESPONSE

DATA

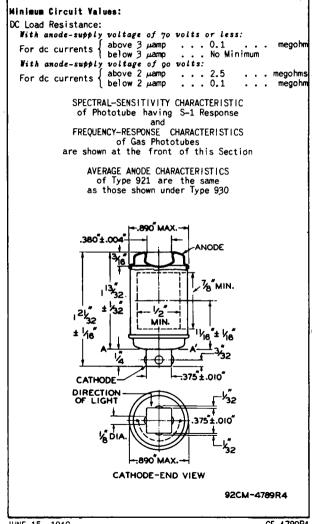

DATA		
General:		+
Spectral Response	S-1 ngstroms	
Cathodes (Each): Shape Quarter-Cyl	indrical	
Minimum Projected Width*	1-3/16" 1/4"	
Direct Interelectrode Capacitances:	1.6 <i>щ</i> иf	
Cathode to Cathode ^D	1.8 µµuf 0.44 µµuf	
Maximum Overall Length	4"	
	3-3/8" ± 3/32"	
Maximum Diameter	1-3/16" T-9	
Mounting Position	Any	
BOTTOM VIEW		
Pin 1 - Cathode,	e, t No.1	
Pin 2 – Anode, Pin 4 – Cath		
	L NO.1	
Maximum Ratings, Absolute Values (Each Unit):		4.
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 90 max	. volts	-
PEAK CATHODE CURRENT. 6 max. PEAK CATHODE-CURRENT DENSITY. 50 max.	. μamp	
AVERAGE CATHODE CURRENT ^O 2 max AMBIENT TEMPERATURE 100 max	<i>µ</i> атр °С	
Characteristics:		*
Min. <u>Av. Max.</u> Dark Current at 90 Volts 0.1	. <i>µ</i> атр	
Sensitivity:	mp/μwatt	
Luminous:	mp/lumen	
At 5000 Cycles 85 - μα	mp/lumen mp/lumen	
At 10000 Cycles 74 - μα Gas Amplification Factor 9	mp/ rumen	
* On plane perpendicular to indicated direction of incident lig	ht.	
Anodes grounded.		
 Cathodes grounded. Averaged over any interval of 30 seconds maximum. Average ct be doubled when anode-supply voltage is limited to 70 volts. 	rrent may	
I DE DOUDLES WOED ADODE-SUDDLY VOLTAGE IS LIMITED TO 70 VOITS.		
Measured with .04 lumen.		

016

9²⁰ GAS PHOTOTUBE Minimum Circuit Values: DC Load Resistance: With anode-supply voltage of 70 volts or less: For dc currents { below 2 µamp above 2 µamp . . . 0.1 megohm . . . -No Minimum With anode-supply voltage of go volts: r above 1 µamp 2.5 megohms . . For dc currents | below 1 µamp 0.1 megohm OUTLINE DIMENSIONS for Type 920 are the same as those for Type 5584 SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response and FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes are shown at the beginning of this Section -pindicates a change. AUGUST 15, 1947

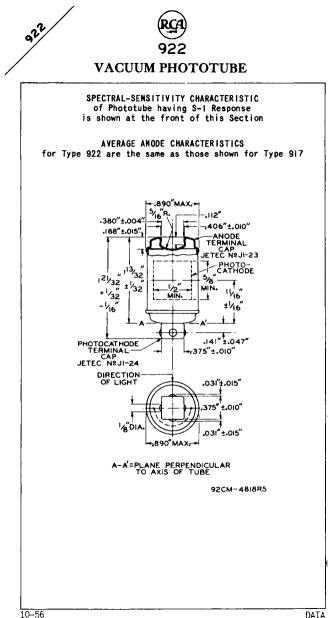

SEPT. 19, 1947

TUBE DEPARTMENT NADIO CONFORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-4618R3

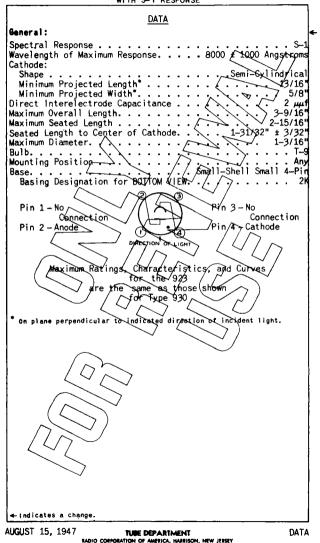


CARTRIDGE TYPE WITH S-I RESPONSE

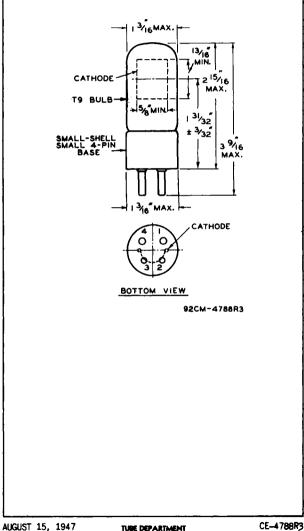
JUNE 15, 1948

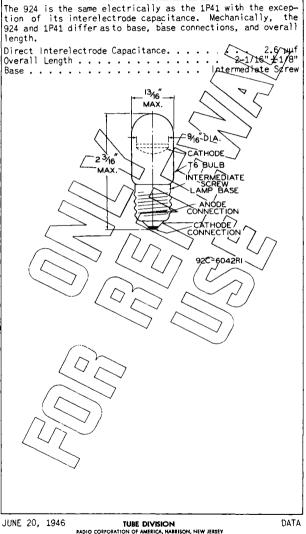


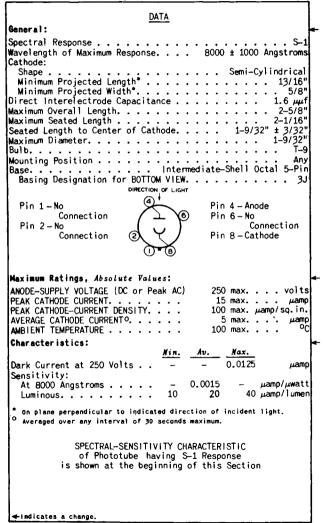
CARTRIDGE TYPE WITH S-I RESPONSE

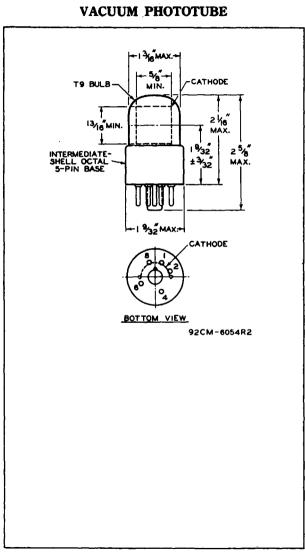

For relay applications

DATA
General:
Spectral Response
Wavelength of Maximum Response 8000 ± 1000 angstroms
Cathode:
Shape Semicylindrical
Minimum projected length [*]
Direct Interelectrode Capacitance
Overall Length
Seated Length
Length from Center of Useful Cathode Area to Plane A-A' (See Dimensional Outline) 11/16" ± 1/16"
Maximum Diameter. \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots
Mounting Position
Weight (Approx.)
Terminals:
Recessed cap JETEC No. J1-23
Protruding cap JETEC No.J1-24 Basing Designation
Basing Designation
$\left\{\begin{array}{c} \text{Recessed} \\ \text{Cap} \end{array}\right\} \text{Anode} \qquad \left(\begin{array}{c} \bot \\ Cap \end{array}\right) \begin{array}{c} \text{Protruding} \\ \text{Cap} \end{array}\right\} \text{Cathode}$
DIRECTION OF LIGHT: INTO CONCAVE SIDE OF CATHODE
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC). 500 max. volts
AVERAGE CATHODE-CURRENT DENSITYO 30 max. µamp/sq.in. +
AVERAGE CATHODE CURRENT ^O
AMBIENT TEMPERATURE 100 max, ^{OC}
Characteristics, At 250 Volts on Anode:
Min. Median Kax.
Sensitivity:
Radiant, at
8000 angstroms. $-$ 0.0018 $ \mu$ amp/ μ watt $-$
Luminous 10 20 40 μamp/lumen
at 25° C 0.005 μ amp
* On plane perpendicular to indicated direction of incident light. • Averaged over any interval of 30 seconds maximum.
For conditions where the light source is a tungsten-filament lamp oper-
For conditions where the light source is a tungsten-filament lamp oper- ated at a color temperature of 2070°K. A dc anode supply of 250 volts, a 1-megohm load resistor, and a light input of 0.1 lumen are used.
-Indicates a change.
10-56 DATA DATA

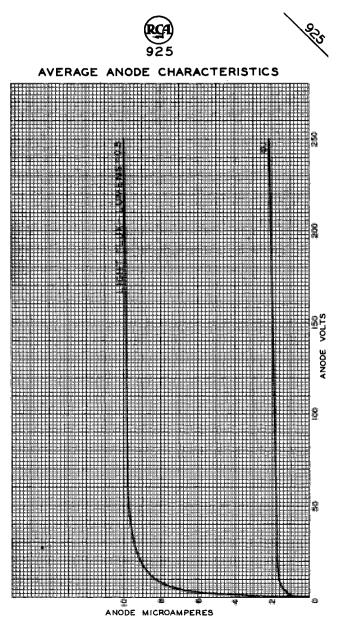








SHORT TYPE WITH S-I RESPONSE

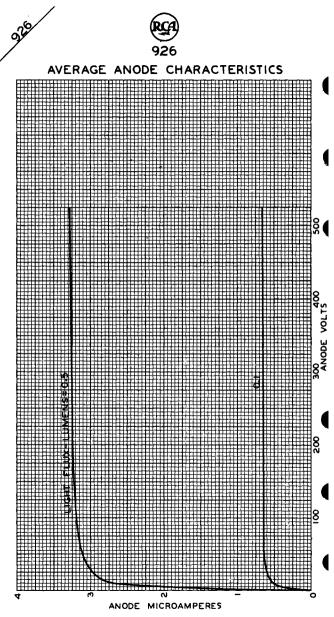


925

. . . .

JULY 31,1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JEESEY 92CM-6208RI



VACUUM PHOTOTUBE CARTRIDGE TYPE WITH S-3 RESPONSE

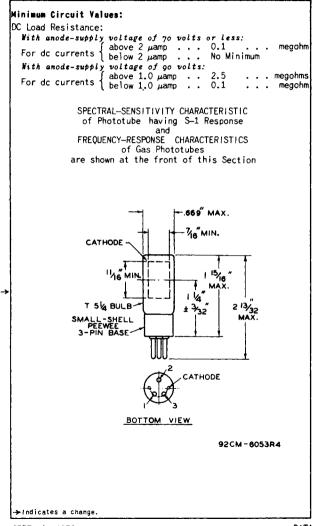
DATA

DATA			
General:			
Spectral Response			
Wavelength of Maximum Response 4200 ± 1000 Angstroms			
Cathode:			
Shape			
Seated Length			
Mounting Position			
BOTTOM VIEW			
RECESSED			
Recessed) / Protruding)			
Terminal Anode (,) Terminal Cathode			
DIRECTION OF LIGHT: INTO CONCAVE SIDE			
INTO CONCAVE SIDE OF CATHODE			
Maximum Ratings, Absolute Values:			
· · ·			
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 500 max volts			
PEAK CATHODE CURRENT. 15 max. µamp DEAK CATHODE CURRENT. 100 max. 100 max. 100 max.			
PEAK CATHODE-CURRENT DENSITY. 100 max. μamp/sq.in. AVERAGE CATHODE CURRENT 5 max.			
AVERAGE CATHODE CURRENTO 5 max μamp ΔΜΒΙΕΝΤ ΤΕΜΡΕRATURE 100 max °C			
Characteristics:			
<u>Hin.</u> <u>Av.</u> <u>Max.</u>			
Dark Current at 250 Volts 0.005 μamp			
Sensitivity:			
At 4200 Angstroms 0.0016 - μamp/μwatt			
Luminous≜			
* On plane perpendicular to indicated direction of incident light.			
^O Averaged over any interval of 30 seconds maximum.			
▲ Measured under conditions specified on sheet "PHOTOTUBE SENSITIVITY and SENSITIVITY MEASUREMENTS" at the front of this Section.			
OUTLINE DIMENSIONS for Type 926			
are the same as those for Type 921			
SPECTRAL-SENSITIVITY CHARACTERISTIC			
of Phototube having S-3 Response is shown at the front of this Section			
is shown at the mont of this section			
- Indicates a change.			

JUNE 15, 1948

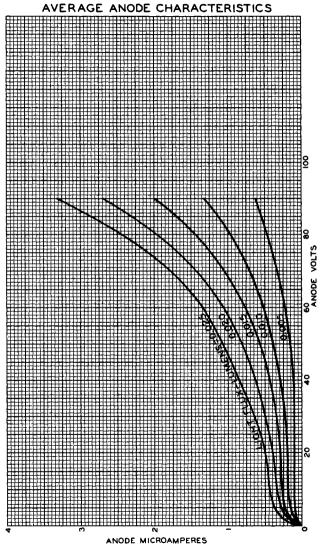
AUG.4,1947

TUBE DEPARTMENT RADIO CONFORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 6209RI



WITH S- I RESPONSE

DATA	
General:	
Spectral Response	
Shape Semi-Cylindrical Minimum Projected Length* 11/16" Minimum Projected Width* 7/16" Direct Interelectrode Capacitance 2 µµf Maximum Overall Length 2-13/32" Maximum Seated Length 1-15/16" Seated Length to Center of Cathode 1-1/4" ± 3/32" Maximum Diameter 0.669" Bulb T-5-1/4 Mounting Position Any Base Small-Shell Peewee 3-Pin Basing Designation for BOTTOM VIEW 2F DIRECTION of LICHT 2F	4 4 4 4
Pin 1-No Connection	
Maximum Ratings, Absolute Values:	
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 90 max volts PEAK CATHODE CURRENT 6 max	
Characteristics: Nin. Av. Max.	
DC Dark Current [®] μamp Sensitivity:	
At 8000 angstroms 0.0125 - μamp/μwatt Luminous:	
At 0 cps. 75 125 185 μamp/lumen At 5000 cps. - 110 - μamp/lumen At 10000 cps. - - 100 - μamp/lumen Gas Amplification Factor. - 100 - μamp/lumen	
 On plane perpendicular to indicated direction of incident light. Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode-supply voltage is limited to 70 volts. At 250C and 90 volts. 	
<- Indicates a change.	

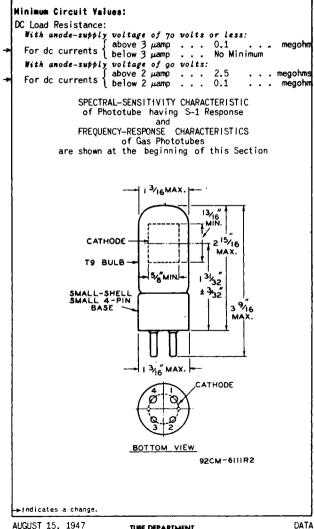

ſ

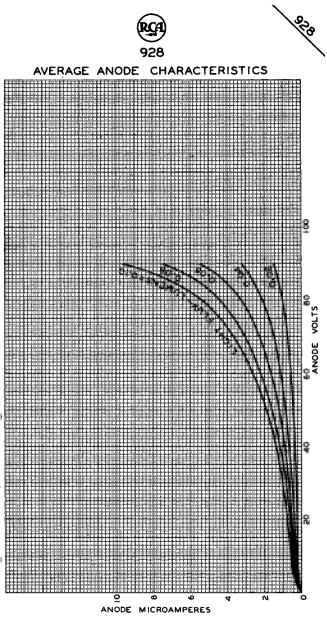
APRIL 5,1950

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-6258R2

NON-DIRECTIONAL TYPE WITH S- I RESPONSE


DATA


ſ

DATA
General:
Spectral Response
Shape
Pin 1 - No Connection Pin 2 - Anode Pin 4 - Cathode
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 90 maxvolts PEAK CATHODE CURRENT. 10 maxµamp PEAK CATHODE-CURRENT DENSITY. 100 max.µamp/sq.in. AVERAGE CATHODE CURRENT ⁰
Characteristics:
<u>Min. Av. Max.</u>
Dark Current at 90 Volts 0.1 μamp Sensitivity:
Sensitivity: At 8000 Angstroms – 0.0065 – μamp/μwatt Luminous:
At 0 Cycles 40 65 100 μamp/lumen At 5000 Cycles - 56 - μamp/lumen At 10000 Cycles - - 50 - μamp/lumen Gas Amplification Factor - - 10
O Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode-supply voltage is limited to 70 volts.
←Indicates a change.

928

JAN. 16, 1940

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6117

WITH S-4 RESPONSE

DATA

DATA				
General:				
Spectral Response				
Cathode: Shape Semi-Cylindrical Minimum Projected Length [*]				
Minimum Projected Width*				
Maximum Overall Length				
Seated Length to Center of Cathode 1-5/8" ± 3/32" Maximum Diameter				
Mounting Position Any Base Intermediate-Shell Octal 5-Pin Basing Designation for BOTTOM VIEW				
Pin 1 - No Connection				
Pin 2-No - Connection 2 Pin 8-Cathode				
Maximum Ratings, Absolute Values:				
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 250 max volts PEAK CATHODE CURRENT 20 max μamp PEAK CATHODE-CURRENT DENSITY 100 max. μamp/sq.in. AVERAGE CATHODE CURRENT ⁰ 5 max μamp AMBIENT TEMPERATURE 75 max				
Characteristics:				
Hin. Av. Hax.				
Dark Current at 250 Volts Ο.0125 μamp Sensitivity:				
At 4000 Angstroms 0.042 - μamp/μwatt Luminous 25 45 70 μamp/lumen				
* On plane perpendicular to indicated direction of incident light. O Averaged over any interval of 30 seconds maximum.				
OUTLINE DIMENSIONS for Type 929 are the same as those for Type 5581				
are the same as those for Type 5581 SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response				

I

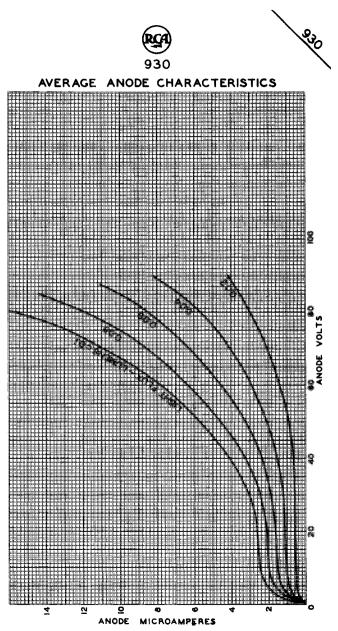
929

AVERAGE ANODE CHARACTERISTICS HIT ┇╢╪┇╪ Ħ ĦŦ Ht ┝╋╋╋ ╺┼┼┼┽╪┼┼┼┼┼┼ H _ -╈╋╋ ╁┼┼┼┟┼┼┼ --╅╂┨┼┼┼┼┼ <u>╡</u>╪╡<u>┙</u>╪╡<u></u>╪╡<u></u>╡╡╡╡╡╡╡╡ Ħ Ħ -m VOLT 200 200 200 200 200 Ŧ 11118 1 Н H ---Ħ --+ +++ Ŧ -------. Ŧ ±18 П 111-HH*** ╈╫╋┿┿╸ 111 H Ŧ HT Ŧ Ц Ħ ₩ -H 111 H ₿ ŦŦŦ п **└┼┼┼**┡ Ħ m **AI** ANODE MICROAMPERES

AUG. 4, 1947

TUBE DEPARTMENT MOTO CONFORTION OF AMERICA, HABRISON, NEW JERSEY 92CM-615IRI

DATA


DATA
General:
Spectral Response S-1 Wavelength of Maximum Response 8000 ± 1000 Angstroms Cathode: Shape Shape 13/16" Minimum Projected Length* 13/16" Direct Interelectrode Capacitance 2.4 µµf Maximum Overail Length 3-1/16" Maximum Seated Length 2-1/2" Seated Length to Center of Cathode 1-5/8" ± 3/32" Maximum Diameter 1-9/32" Bulb T-9 Mounting Position Any Base Intermediate-Shell Octal 5-Pin Basing Designation for BOTTOM VIEW 3-1
Pin 1 - No Connection Pin 2 - No Connection Connection Connection Pin 8 - Cathode
Maximum Ratings, Absolute Values:. ANODE-SUPPLY VOLTAGE (DC or Peak AC). 90 max volts PEAK CATHODE CURRENT 100 max μ amp < PEAK CATHODE-CURRENT DENSITY 100 max
Character istics:
Min. <u>Av. Hax.</u> Dark Current at 90 Volts – – 0.1 , <u>wamp</u>
Sensitivity: At 8000 Angstroms – 0.0135 – μamp/μwatt
Luminous: At 0 Cycles
* On plane perpendicular to indicated direction of incident light. O Averaged over any interval of 30 seconds maximum. Average current may be doubled when anode-supply voltage is limited to 70 volts.
👞 Indicates a change.

Ninimum Circuit Values: DC Load Resistance: With anode-supply voltage of 70 volts or less: above $3 \mu \text{amp} \dots 0.1$ megohm For dc currents { below 3 µamp No Minimum . . . With anode-supply voltage of go volts: above 2 µamp . . . 2.5 megohms For dc currents | below 2 µamp . . meaohn 1 . OUTLINE DIMENSIONS for Type 930 are the same as those for Type 5581 SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-1 Response and FREQUENCY-RESPONSE CHARACTERISTICS of Gas Phototubes are shown at the beginning of this Section ->indicates a change.

AUGUST 15, 1947

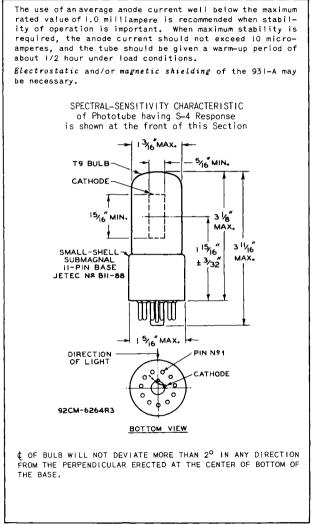
AUG. 4,1947

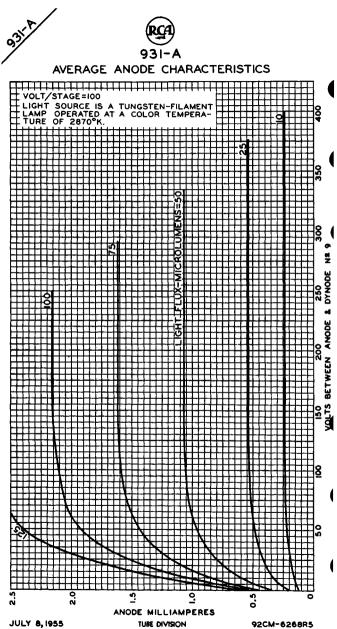
TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM - 4806RI

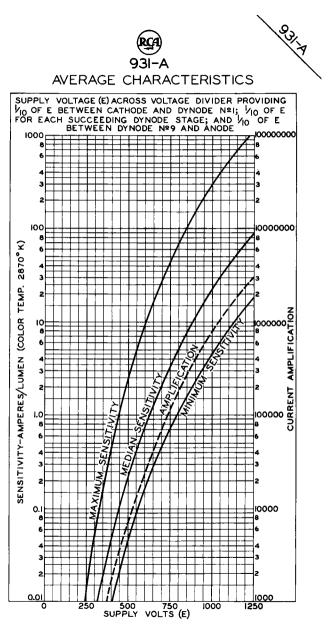
9-STAGE TYPE WITH S-4 RESPONSE

DATA

General:
Spectral Response
Minimum projected length*
Anode to dynode No.9
of Useful Cathode Area 1-15/16" ± 3/32" Maximum Diameter 1-5/16" Mounting Position Any
Weight (Approx.) Bulb
Basing Designation for BOTTOM VIEW
Pin 1 - Dynode No.1 Pin 7 - Dynode No.7 Pin 2 - Dynode No.3 Pin 8 - Dynode No.8 Pin 3 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 Pin 10 - Anode Pin 6 - Dynode No.6 Pin 11 - Cathode
DIRECTION OF LIGHT
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.9 AND ANODE (DC or Peak AC)
AVERAGE ANODE CURRENT
Characteristic Range Values for Equipment Design:
Under conditions with supply voltage (E) across voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode
With E = 1000 volts (except as noted)
Hin, Hedian Max.
Sensitivity: Radiant, at 4000 angstroms - 24000 - μamp/μwatt
 On plane perpendicular to the indicated direction of incident light. Averaged over any interval of 30 seconds maximum.
- Indicates a change.
SEPT. 1, 1955 TUBE DIVISION DATA 1


MULTIPLIER PHOTOTUBE

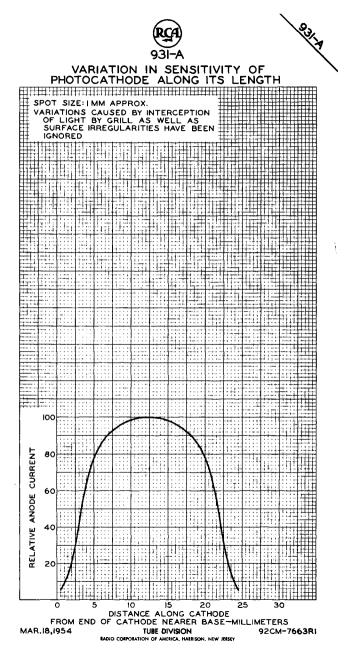

<u></u>	·			
	Min.	Median	Max.	
Cathode radiant, at				
4000 angstroms	-	0.03	-	<i>µ</i> amp/ <i>µ</i> watt
Luminous:				
At O cps	4.5	24	300	amp/lumen
At 100 Mc	-	23	-	amp/lumen
Cathode luminous ^A	-	30		µamp/lumen
Current Amplification .	-	800,000	-	
Equivalent Anode-Dark-			0.5 40-	a .
Current Input®	-	-	2.5 × 10 ⁻	ອ lumen
Equivalent Noise		9.5×10^{-1}	3	1
Input*	-	9.5 × 10 -		lumen
With E = 750 volts (exce	at as	noted		
	Min.	Median	Max.	
Sensitivity:				
Radiant, at 4000				
angstroms	-	3300	-	µamp/µwatti
Cathode radiant, at		0.02		ana (
4000 angstroms Luminous:●	-	0.03	-	µamp/µwatt
At 0 cps.		3.3		amp/lumen
Cathode luminous	-	30	_	µamp/lumen
Current Amplification .	_	110.000	_	panpr ranen
		,		
For conditions where the li	ght so	urce is a tung	sten-filamen	t lamp opera-
 For conditions where the li ted at a color temperature is used. The load resisto 	r has	70°K. A ligh a value of 0.	t input of 1 01 meachm.	0 microlumens
For conditions the same a	s show	n under (🌢)	except that	the value of
For conditions the same a light flux is 0.01 lumen a all other electrodes conne	nd 100	volts are ap	plied betwee	n cathode and
Measured at a tube tempera	ture of	25 ⁰ C and wi	th the suppl	v voltage (F)
 Measured at a tube tempera adjusted to give a luminou current caused by thermior 	s sens	itivity of 20	amperes per	lumen. Dark
by the use of a refrigeran	ic em i t.	ssion and ion	n Feedback m	ay be reduced
For maximum signal-to-nois below 1000 volts is recomm		, operation	with a suppl	y voltage (E)
below 1000 volts is recomm	ended.			
Under the following condition of the second state of the second	itions: at = 10	Supply vo	ltage (E) is h respect to	1000 volts,
tube temperature, ac-ampli	fier b	andwidth of 1	cycle per sea	ond, tungsten
frequency to produce incide	eratur ent rad	e of 2870°K i iation pulses	alternating	t a low audio between zero
and the value stated. The	on pe	riod of the pu	lse is equal	to the off
Under the following cond external shield operated tube temperature, ac-ampli light source at color temp frequency to produce incide and the value stated. The period. The output currer only the fundamental frequencies.	uency c	f the pulses	•	whiten passes
OPERA	TING	CONSIDERATI	UNS	
The operating stabili	ty of	the 931-A	is depende	nt on the
magnitude of the anor	-		•	
the 931-A is operated				
drop in sensitivity				
expected. The exten	t of	the drop b	elow the t	tabulated
sensitivity values dep				
conditions. After a p				
recovers a substantia	al per	centage of	such los	s in sen-
sitivity.				
SEPT. 1, 1955				DATA 1
	TUBE	DIVISION		



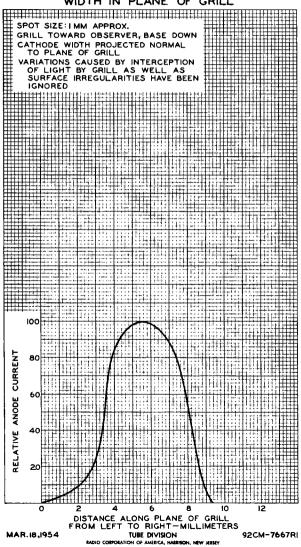
MULTIPLIER PHOTOTUBE



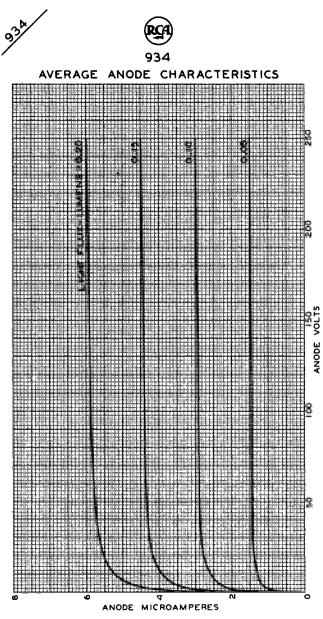
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



92CL-6459R3


RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY

VARIATION IN SENSITIVITY OF PHOTOCATHODE ACROSS ITS PROJECTED WIDTH IN PLANE OF GRILL

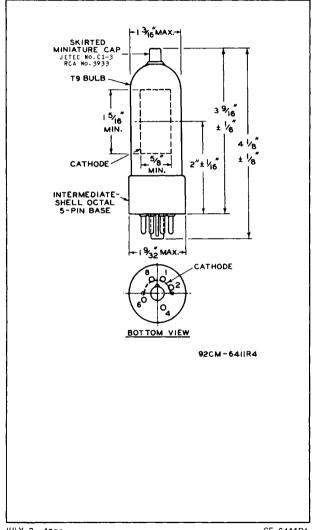


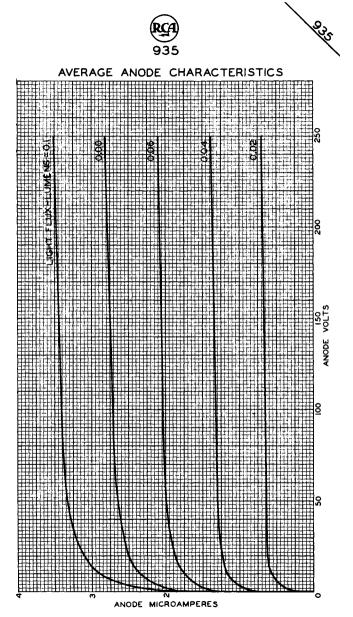
WITH S-4 RESPONSE

DATA
General:
Spectral Response
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) 250 max volts PEAK CATHODE CURRENT
Characteristics:
Min. Av. Max. DC Dark Current ⁰ . - - 0.005 . μamp Sensitivity: - - 0.028 - μamp/μwatt Luminous. . 15 30 70 μamp/lumen
 [*] On plane perpendicular to indicated direction of incident light. • Averaged over any interval of 30 seconds maximum. D At 25^oC and 250 volts.
OUTLINE DIMENSIONS for Type 934 are the same as those for Type 927
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section
← Indicates a Change.

OCT. 16, 1944

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


VACUUM PHOTOTUBE


WITH S-5 RESPONSE

DATA
General:
Spectral Response
ShapeSemi-Cylindrical Minimum Projected Length*Semi-Cylindrical Minimum Projected Width*Minimum Projected Width* $5/8"$ Direct Interelectrode Capacitance $0.6 \ \mu\muf$ Overall Length $4-1/8" \pm 1/8"$ Seated Length $3-9/16" \pm 1/8"$ Seated Length $2-9/16" \pm 1/8"$ Maximum Diameter $2" \pm 1/16"$ Mounting Position $1-9/32"$ Bulb $1-9/32"$ Bubb $1-9/32"$ Pin 1-No $1-9/32"$ Direction of ConnectionPin 6-No ConnectionPin 2-No $2-9/32"$ Connection $1-9/32"$ Pin 4-No $2-9/32"$ Connection $2-9/32"$ Pin 4-No $2-9/32"$ Connection $1-9/32"$ Pin 4-No $2-9/32"$ Connection $1-9/32"$ Pin 4-No $2-9/32"$ Connecti
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) 250 max volts PEAK CATHODE CURRENT
Characteristics:
<u>Hin. Av.</u> <u>Max.</u> Dark Current at 250 Volts — — 0.0005 μamp
Sensitivity: At 3400 Angstroms 0.032 - μamp/μwatt< Luminous
 On plane perpendicular to indicated direction of incident radiation. Averaged over any interval of 30 seconds maximum. Measured under conditions specified on sheet "PHOTOTUBE SENSITIVITY AND SENSITIVITY MEASUREMENTS" at the front of this Section.
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-5 Response is shown at the beginning of this Section
Indicates a change.

935 VACUUM PHOTOTUBE

APRIL 20, 1950

92CM-6478RI

2020

MULTIPLIER PHOTOTUBE

iO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE WITH 1-1/2"-DIAMETER, CIRCULAR, LOW-RESISTIVITY, SEMITRANSPARENT PHOTOCATHODE AND S-II RESPONSE SHORT TIME-RESOLUTION CAPABILITY

DATA General: Spectral Response. S-11 Wavelength of Maximum Response 4400 ± 500 angstroms Cathode, Semitransparent, Low-Resistivity: Shape. Circular with conductive grating Window Area including grating 1.8 sa. in. Minimum diameter 1.5 in. Index of refraction. 1.51 Direct Interelectrode Capacitances (Approx.): μµ 4.4 Anode to all other electrodes. . . 7 *щ*f Maximum Overall Length 5-13/16" . 4-7/8" ± 3/16" Maximum Diameter 2-5/16" Operating Position . . Anv Weight (Ăpprox.) . 5 oz . . Ви1Б.... .T16 Medium-Shell Diheptal 14-Pin Base . . (JEDEC Group 5, No.B14-38), Non-hyaroscopic Pin 1-Dynode No.1 Pin 10-Dynode No.10 Pin 2 - Dynode No.2 Pin 11 - Anode Pin 3-Dynode No.3 Pin 12 - Internał Pin 4 - Dynode No. 4 Connection— Pin 5 - Dynode No.5 Do Not Use Pin 6 - Dynode No.6 Pin 13 – Focusing Pin 7 - Dynode No.7 Electrode DIRECTION OF LIGHT: Pin 14 - Photo-INTO END OF BULB Pin 8 – Dynode No.8 Pin 9 - Dynode No.9 cathode Maximum Ratings, Absolute Values: SUPPLY VOLTAGE BETWEEN ANODE AND CATHODE (DC or Peak AC). . . 1500 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No. 10 AND ANODE (DC or Peak AC). . . . 250 max. volts DYNODE-No.1 SUPPLY VOLTAGE (DC or Peak AC). . . . 400 max. volts FOCUSING-ELECTRODE VOLTAGE (DC or Peak AC). . . 400 max. volts AVERAGE ANODE CURRENT® 2 max. ma 0.1 max. lumen CATHODE ILLUMINATION AMBIENT TEMPERATURE. 75 max. °C •.§: See next page. 4-59 TENTATIVE DATA 1 ELECTRON TUBE DIVISION

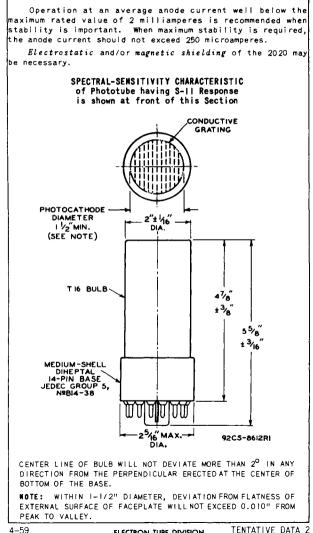
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

	e Value	s for Equips	ent Design:	
Under conditions divider providing No.l; 1/12 of E 1/12 of E betwee	g I/6 o for eac	f E between h succeeding	cathode and dynode stag	dynode
With E = 1250	•			cus-
ing electrode*				
	Nin.	Nedian	Nax.	
Sensitivity:				
Radiant, at 4400				
angstroms	-	4800	-	<i>μ</i> a/μ
Cathode radiant, at				
4400 angstroms .	-	0.04	-	μa/μ
Luminous:				
At O cps	2.5	6	75	amp/lume
With dynode No.10				
as output		2.0		(1
electrode "	-	3.6	-	amp/lume
Cathode luminous:				
With tungsten	20	50		1
light source ^A .	30	50	-	µa/lume
With blue light	0.00			
source [®] ♦	0.03	-	-	μ
Current		1 20000		
Amplification	-	120000	*	
Equivalent Anode- Dark-Current				
Input ^{®0}		2 5 4 10-10	2 25 4 10-9	lume
	-			
Equivalent Naisa		2.0 / 10	2120 / 20	i une
Equivalent Noise	_			
Equivalent Noise Input [*]		7 × 10 ⁻¹ 2	_	lume
Equivalent Noise Input [*]	volts	7 x 10 ⁻¹² (Except as m	- oted) and fo	lume cus-
Equivalent Noise Input [*]	volts * conne	7 x 10 ⁻¹² (Except as n cted to dync	- oted) and fo de No.1 at so	lume cus-
Equivalent Noise nput* With E = 1500 ing electrode	volts	7 x 10 ⁻¹² (Except as m	- oted) and fo	lume cus-
Equivalent Noise Input [*] <i>With E = 1500</i> <i>ing electrode</i> Sensitivity:	volts * conne	7 x 10 ⁻¹² (Except as n cted to dync	- oted) and fo de No.1 at so	lume cus-
Equivalent Noise Input [*] <i>With E = 1500</i> <i>ing electrode</i> Sensitivity: Radiant, at 4400	volts * conne	7 x 10 ⁻¹² (Except as n cted to dync Nedian	- oted) and fo de No.1 at so	lume ocus- ocket
Equivalent Noise Input [*] <i>With E = 1500</i> <i>ing electrode</i> [*] Sensitivity: Radiant, at 4400 angstroms	volts * conne	7 x 10 ⁻¹² (Except as n cted to dync	- oted) and fo de No.1 at so	lume ocus- ocket
Equivalent Noise Input [*] <i>With E = 1500</i> <i>ing electrode</i> Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at	volts * conne	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400	- oted) and fo de No.1 at so	lume ocus- ocket
Equivalent Noise Input [*] <i>With E = 1500</i> <i>ing electrode</i> Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms .	volts * conne	7 x 10 ⁻¹² (Except as n cted to dync Nedian	- oted) and fo de No.1 at so	lume ocus- ocket μa/μ
Equivalent Noise Input* With E = 1500 ing electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: •	volts * conne Nin. _ _	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04	- oted) and fo de No.1 at so Hax. -	lume ocus- ocket μα/μ μα/μ
Equivalent Noise Input* With E = 1500 ing electrode' Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms . Luminous: At 0 cps	volts * conne	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400	- oted) and fo de No.1 at so	lume ocus- ocket μα/μ μα/μ
Equivalent Noise Input* With E = 1500 ing electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10	volts * conne Nin. _ _	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04	- oted) and fo de No.1 at so Hax. -	lume ocus- ocket μα/μ μα/μ
Equivalent Noise Input* With E = 1500 ing electrode' Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10 as output	volts * conne Nin. _ _	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28	- oted) and fo de No.1 at so Hax. -	lume ccus- ccket μa/μ μa/μ amp/lume
Equivalent Noise Input* With E = 1500 ing electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10 as output electrode* .	volts * conne Nin. _ _	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04	- oted) and fo de No.1 at so Hax. -	lume ccus- ccket μα/μ μα/μ amp/lume
Equivalent Noise Input* With E = 1500 ing electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10 as output electrode* . Cathode luminous:	volts * conne Nin. _ _	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28	- oted) and fo de No.1 at so Hax. -	lume ccus- ccket μα/μ μα/μ amp/lume
Equivalent Noise Input* With E = 1500 ing electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10 as output electrode Cathode luminous: With tungsten	volts * conne Nin. - - 12 -	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28 17	- oted) and fo de No.1 at so Hax. -	lume ccus- pcket μα/μ μα/μ amp/lume amp/lume
Equivalent Noise Input* With E = 1500 ing electrode' Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms Luminous: At 0 cps With dynode No.10 as output electrode [¶] . Cathode luminous: With tungsten light source [*] .	volts * conne Nin. - - 12 -	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28	- oted) and fo de No.1 at so Hax. -	lume cus-
Equivalent Noise Input* With E = 1500 ing electrode' Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms. Luminous: At 0 cps With dynode No.10 as output electrode Cathode luminous: With tungsten light source*. With blue_light	volts conne Nin. - 12 - 30	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28 17	- oted) and fo de No.1 at so Hax. -	lume ccus- pcket μa/μ μa/μ amp/lume μa/lume
Equivalent Noise Input* With E = 1500 ing electrode' Sensitivity: Radiant, at 4400 angstroms Cathode radiant, at 4400 angstroms Luminous: At 0 cps With dynode No.10 as output electrode [¶] . Cathode luminous: With tungsten light source [*] .	volts conne Nin. - 12 - 30	7 x 10 ⁻¹² (Except as m cted to dyna Nedian 22400 0.04 28 17	- oted) and fo de No.1 at so Hax. -	lume ccus- pcket μa/μ μa/μ amp/lume amp/lume

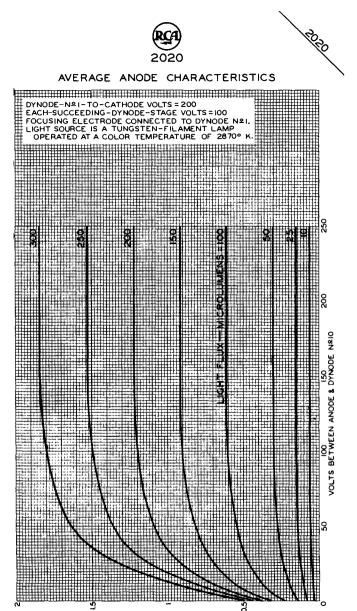
2020

ELECTRON TUBE DIVISION

-

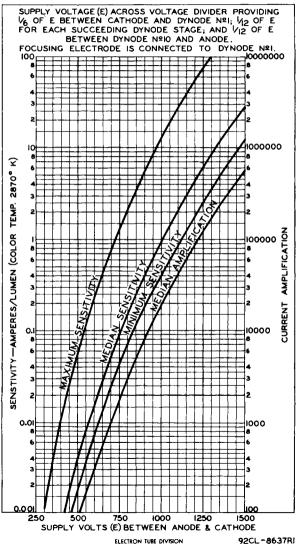


1020


٦

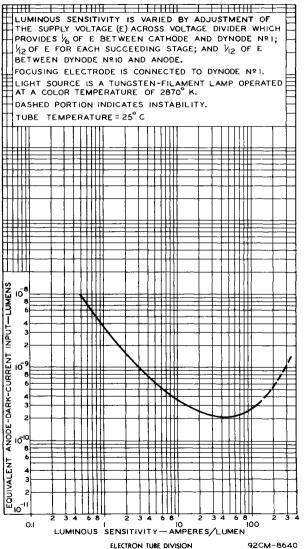
MULTIPLIER PHOTOTUBE

1	Averaged over any interval of 30 seconds maximum.	
27	Above this value of cathode illumination, serious loss in linearity between light input and anode current will be caused by the resistivity of the cathode. For continuous light input of 0.1 lumen from tungsten light source at 2870° K incident on cathode area having diameter of $-1/4 * 1/8^\circ$, and with dynode-No.1 voltage of 200 volts, the loss in linearity will not exceed 30 per cent depending on the magnitude of the cathode current. At 0.1 lumen, the corresponding continuous cathode distribution of the exciting illumination.	
3	In general, the focusing electrode is connected to dynode No.1 at the socket and operated at the same fixed potential as dynode No.1. However, in applications critical as to magnitude, uniformity, or speed of the response, the focusing electrode may be connected to the adjustable arm of a potentiometer between cathode and dynode No.1 in the voltage divider, and operated at an optimum potential within a range of 10 to 50 per cent of the dynode. No.1 potential.	
	For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2070° K. A light input of 10 microlumens is used. The load resistor has a value of 0.01 megohm.	
	An output current of reversed polarity to that obtained at the anode may be provided by using dynode No.10 as the output electrode. With this arrangement, the load is connected in the dynode-No.10 circuit and the anode serves only as a collector. The value of sensitivity at dynode No.10 is approximately 60 per cent of that when the anode is the output electrode. Specifically, the sensitivity measured at dynode No.10 is equal to $(1-1/g)$ times the sensitivity measured at the anode, where "g is the gain of the dynode-No.10 seque.	
ľ	For conditions the same as shown under (4) except that the value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected together as anode.	
	Under the following conditions: Light incident on the cathode is transmitted through ablue filter (Corning, Glass Code Wo.5113 polished to 1/2 stock thickness) from a tungsten-filament lame operated at a color temperature of 2870°K. The value of light flux on the filament is 0.01 Jumen. The load resistor has a value of 0.01 megohm, and 200 volts are applied between cathode and all other electrodes connected together as anode.	
	For spectral characteristic of this source, see sheet SPECTRAL CHAR- ACTERISTIC OF 2870° X LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870° K SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.	
	Measured at a tube temperature of 25 ⁰ C and with the supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission may be reduced by the use of a refrigerant.	
ľ	For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1250 volts is recommended.	L
	⁶ Under the following conditions: Supply voltage (E) is 1250 volts, 25 ⁰ -C tube temperature, ac-amplifier bandwidthof 1 cycleper second, tungsten light source of 2870 K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The *on* period of the pulse is equal to the *off* period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.	
	OPERATING CONSIDERATIONS	
	The operating stability of the 2020 depends on the magnitude and duration of the anode current. When the 2020 is operated at high values of anode current, a drop in sensitivity (some- times called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 2020 usually recovers a substantial percentage of such loss if	
	sensitivity.	1

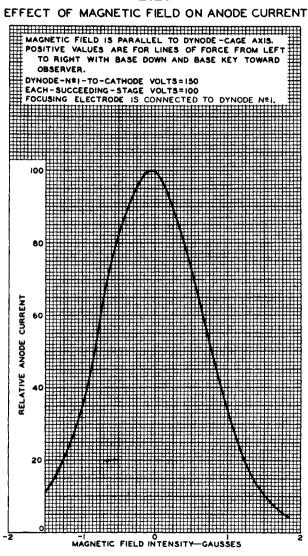

2020

ANODE MILLIAMPERES

2020 CHARACTERISTICS


2020

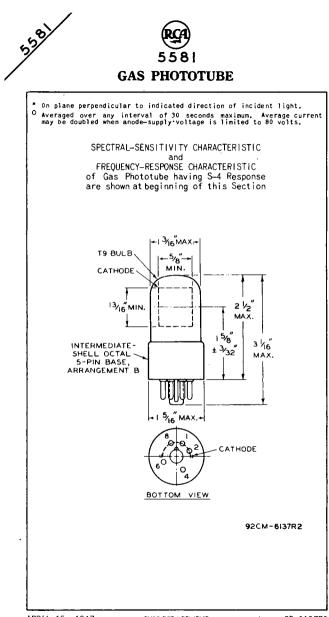
ADIO COMO TION OF AMERICA, HARRISON, NEW JEISEY


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

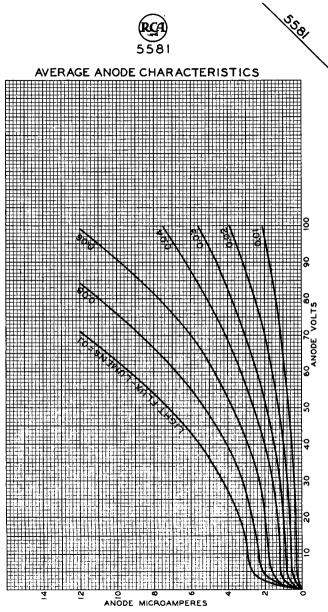
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

122

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-8136R1


BLUE-SENSITIVE

DATA

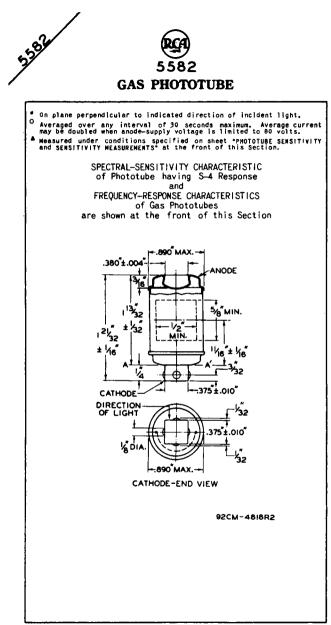

Maximum Seated Length. 2-1/2" Seated Length to Center of Cathode 1-5/8" ± 3/32" Maximum Diameter 1-5/16 Bulb - 1-5/A" Mounting Position - -	DATA
Wavelength of Maximum Response 4000 ± 500 Angstroms Cathode: Shape	General:
Shape. Semi-Cylindrical Minimum Projected Length* 13/16" Minimum Projected Width* 5/8" Direct Interelectrode Capacitance. 2.6 μμf Maximum Overall Length 3-1/16" Maximum Seated Length 3-1/16" Maximum Seated Length 1-5/8" ± 3/32" Maximum Diameter 1-5/8" ± 3/32" Maximum Diameter 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bult 100 Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max. PEAK CATHODE-CURRENT 1 100 max. 100 max. </td <td>Wavelength of Maximum Response 4000 ± 500 Angstroms</td>	Wavelength of Maximum Response 4000 ± 500 Angstroms
Pin 1 - No Connection Pin 2 - No Connection Pin 4 - Anode Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max volts PEAK CATHODE CURRENT \cdot 10 max	Shape. Semi-Cylindrical Minimum Projected Width* 13/16" Direct Interelectrode Capacitance. 2/8" Maximum Overall Length 3-1/16" Maximum Seated Length 2-1/2" Seated Length to Center of Cathode 1-5/8" ± 3/32" Maximum Diameter 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bulb 1-5/16" Bottom Of Light Any Base Intermediate-Shell Octal 5-Pin BOTTOM VIEW DIRECTION OF LIGHT
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max volts PEAK CATHODE CURRENT 100 max µamp/ PEAK CATHODE-CURRENT DENSITY 100 max µamp/sy.in. AVERAGE CATHODE CURRENT DENSITY 100 max µamp/sy.in. AVERAGE CATHODE CURRENT DENSITY 75 max µamp/ AMBIENT TEMPERATURE 75 max µamp/ AMBIENT TEMPERATURE 75 max $^{\circ}C$ Characteristics: <u>Min.</u> <u>Av.</u> <u>Max.</u> Dark Current at 90 Volts 0.125 - µamp/µwatt Luminous: At 4000 Angstroms 0.125 - µamp/µwatt Luminous: At 0 Cycles 75 135 205 µamp/lumen At 5000 Cycles 124 - µamp/lumen At 10000 Cycles 5.5 Minimum Circuit Values: DC Load Resistance: With anode-supply voltage of 80 volts or less For dc currents { above 3 µamp No Minimum With anode-supply voltage of 100 volts For dc currents { above 1 µamp 2.5 megohms For dc currents { above 1 µamp 0.1 megohms below 1 µamp 0.1 megohms For dc currents { above 1 µamp 0.1 megohms For dc currents { above 1 µamp 0.1 megohms Particular Particular Pin 1-No Connection Pin 2-No Connection Pin 4-Anode Pin 4-Anode Pin 8-Cathode	
PEAK CATHODE CURRENT10 max. μ ampPEAK CATHODE CURRENT DENSITY100 max. μ amp/sq.in.AVERAGE CATHODE CURRENT3 max. μ ampAMBIENT TEMPERATURE.75 max.°CCharacteristics:Min. <u>Mun.</u> Mark Current at 90 VoltsO ark Current at 90 VoltsO ark Current at 90 VoltsOutput-0.050.Bensitivity:-0.125-At 4000 Angstroms0.125At 0 Cycles108At 0 Cycles108At 0 Cycles108At 10000 CyclesGas Amplification Factor5.5Minimum Circuit Values:-0.1.megohmFor dc currentsabove 3 μ amp.No MinimumWith anode-supply voltage of soo voltsmegohmFor dc currentsabove 1 μ amp.0.1.Mith anode-supply voltage of soo voltsFor dc currentsabove 1 μ amp.0.1.Babove 1 μ amp.0.1.megohm	Maximum Ratings, Absolute Values:
Dark Current at 90 Volts 0.050 µamp Sensitivity: At 4000 Angstroms, 0.125 - µamp/µwatt Luminous: At 0 Cycles,	ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 maxvolts PEAK CATHODE CURRENT ···. 10 maxμamp PEAK CATHODE-CURRENT DENSITY ···. 100 max.μamp/sq.in. AVERAGE CATHODE CURRENT ⁰ ···. 3 maxμamp
Dark Current at 90 Volts 0.050 μ amp Sensitivity: At 4000 Angstroms, 0.125 - μ amp/ μ watt Luminous: At 0 Cycles	Characteristics: Nin. Av. Max.
Luminous: At 0 Cycles	Dark Current at 90 Volts 0.050 µamp
At 0 Cycles	
DC Load Resistance: With anode-supply voltage of 80 volts or less For dc currents $\begin{cases} above 3 \ \mu amp \ \cdot \ \cdot \ 0.1 \ \cdot \ \cdot \ megohm \\ below 3 \ \mu amp \ \cdot \ \cdot \ No \ Minimum \end{cases}$ With anode-supply voltage of 100 volts For dc currents $\begin{cases} above 1 \ \mu amp \ \cdot \ 2.5 \ \cdot \ \cdot \ megohm \\ below 1 \ \mu amp \ \cdot \ 0.1 \ \cdot \ \cdot \ megohm \end{cases}$	At 0 Cycles 75 135 205 μamp/lumen At 5000 Cycles 124 - μamp/lumen At 10000 Cycles 108 - μamp/lumen
With anode-supply voltage of 80 volts or less For dc currents $\begin{cases} above 3 \ \mu amp \ \cdot \ \cdot \ 0.1 \ \cdot \ \cdot \ megohm \\ below 3 \ \mu amp \ \cdot \ \cdot \ No Minimum \end{cases}$ With anode-supply voltage of 100 volts For dc currents $\begin{cases} above 1 \ \mu amp \ \cdot \ \cdot \ 2.5 \ \cdot \ \cdot \ megohms \\ below 1 \ \mu amp \ \cdot \ \cdot \ 0.1 \ \cdot \ \cdot \ megohm \end{cases}$	Minimum Circuit Values:
For dc currents $\begin{cases} above 1 \ \mu amp \dots 2.5 \dots megohms \\ below 1 \ \mu amp \dots 0.1 \dots megohm \end{cases}$	With anode-supply voltage of 80 volts or less For dc currents $\begin{cases} above 3 \ \mu amp \ \cdot \ \cdot \ 0.1 \ \cdot \ \cdot \ below 3 \ \mu amp \ \cdot \ \cdot \ No Minimum \end{cases}$ With anode-supply voltage of 100 volts
. See next page.	For dc currents { above 1 μamp 2.5 megohms. below 1 μamp 0.1 megohm
	See next page.

APRIL 15, 1947

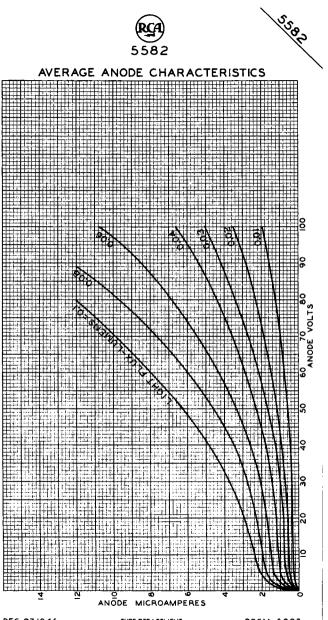
TUBE DEPARTMENT TENTATIVE DATA

DEC.22,1946

92CM-6822


۱

CARTRIDGE TYPE WITH S-4 RESPONSE



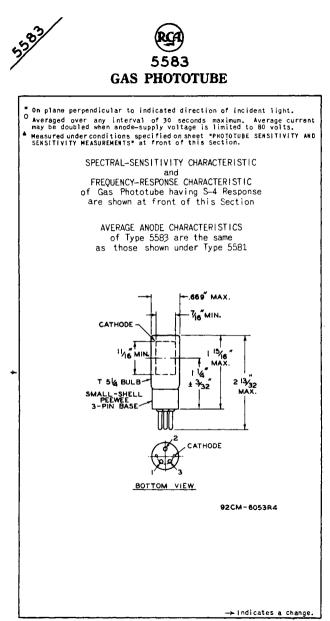
DATA	
General :	
Spectral Response	
Shape. Semi-Cylindrical Minimum Projected Length". 5/8" Minimum Projected Width". 1/2" Direct Interelectrode Capacitance. 1.0 µµf Overall Length. 1-21/32" ± 1/16" Length, Cathode Center to plane A-A' (see outline) 11/16" ± 1/16" Maximum Diameter. 0.890" Mounting Position. Any Terminal Caps. See Outline BOTTOM VIEW 1100	
Recessed } Anode Terminal } Anode Direction of Light INTO CONCAVE SIDE OF CATHODE	
Maxlmum Ratings, Absolute Values:	
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max volts PEAK CATHODE CURRENT 10 max µamp PEAK CATHODE-CURRENT DENSITY 100 max. µamp/sq.in. AVERAGE CATHODE CURRENT ⁰	
Characteristics:	
<u>Hin.</u> <u>Av.</u> <u>Max.</u>	
Dark Current at 90 Volts 0.050 µamp Sensitivity:	
At 4000 Angstroms — 0.11 — μamp/μwatt Luminous:≜	•
At 0 Cycles 80 120 175 µamp/lumen At 5000 Cycles 110 – µamp/lumen At 10000 Cycles 96 – µamp/lumen Gas Amplification Factor 5.5	•
Ninimum Circuit Values:	
DC Load Resistance: With anode-supply voltage of 80 volts or less For dc currents { above 3 μamp 0.1 megohm below 3 μamp No Minimum With anode-supply voltage of 100 volts	
For dc currents { above 1 μamp 2.5 megohms below 1 μamp 0.1 megohm	
*, ⁰ ,≜: See next page. ← Indicates a change.	

JUNE 15, 1948

JUNE 15, 1948

DEC.27,1946

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6823



GAS PHOTOTUBE

WITH S-4 RESPONSE

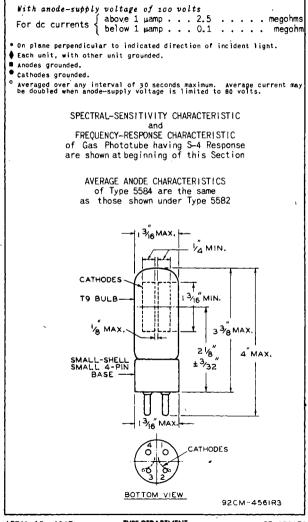
DATA

DATA
General:
Spectral Response
Shape. Semi-Cylindrical Minimum Projected Width* 11/16" Minimum Projected Width* 7/16" Direct Interelectrode Capacitance. 2.0 µµf Maximum Overall Length 2-13/32" Maximum Seated Length 1-15/16" Seated Length to Center of Cathode 1-1/4" ± 3/32" Maximum Diameter 0.669" Bulb T-5-1/4 Mounting Position Any Base Small-Shell Peewee 3-Pin Basing Designation for BOTTOM VIEW 2F DIRECTION OF LICHT 2F
Pin 1-No Connection
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max volts PEAK CATHODE CURRENT
Characteristics:
Hin. Av. Haz.
Dark Current at 90 Volts 0.050 µamp Sensitivity:
At 4000 angstroms — 0.125 — μamp/μwatt Luminous:▲
At 0 cps
DC Load Resistance:
Vith anode-supply voltage of 80 volts or less For dc currents { above 3 µamp 0.1 megohm With anode-supply voltage of 100 volts
For dc currents { above 1 µamp 2.5 megohms below 1 µamp 0.1 megohm
*, 0, ▲: See next page.

MAY 1, 1951

TUBE DÉPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-6053R4

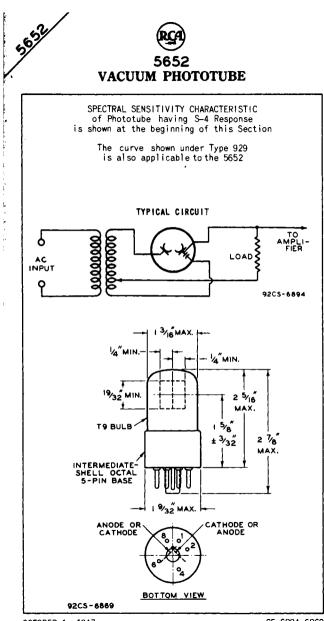
BLUE SENSITIVE, TWIN TYPE


General: DATA
Spectral Response
Wavelength of Maximum Response 4000 ± 500 Angstroms
Cathode (Each): ShapeQuarter-Cylindrical
Minimum Projected Length* 1-3/16"
Minimum Projected Width [*]
Cathode to Anode \blacklozenge 1.6 $\mu\mu$ f
Cathode to Cathode 1.8 µµf
Anode to Anode ● 0.44 μμf Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 2-1/8" ± 3/32" Maximum Diameter 1-3/16"
Bulb
Mounting Position Any Base
Base Small-Shell Small 4-Pin Basing Designation for BOTTOM VIEW 4BG
Pin 1 Cathode, Q • 3 Pin 3 Anode,
Unit No.2 Unit No.1 Pin 2-Anode. Pin 4-Cathode,
Unit No.2
DIRECTION OF LIGHT
Maximum Ratings, Absolute Values (Each Unit):
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 100 max volts
PEAK CATHODE CURRENT 10 max μamp PEAK CATHODE-CURRENT DENSITY 50 max. μamp/sg.in.
AVERAGE CATHODE CURRENTO 2 may
AMBIENT TEMPERATURE
Characteristics (Each Unit): <u>Kin. Av. Max.</u>
Dark Current at 90 Volts 0.050 µamp
Sensitivity:
At 4000 Angstroms – 0.11 – μamp/μwatt Luminous:
At 0 Cycles 80 120 175 uamo/lumen*
Ат 5000 Cycles – 110 – µamp/lumen At 10000 Cycles – 96 – µamp/lumen
Gas Amplification Factor 5.5
Minimum Circuit Values (Each Unit):
DC Load Resistance:
With anode-supply voltage of 80 volts or less For dc currents∫ above 3 µamp 0.1 megohm
below 3 µamp No Minimum
, , , , , \bullet , O : See next page.

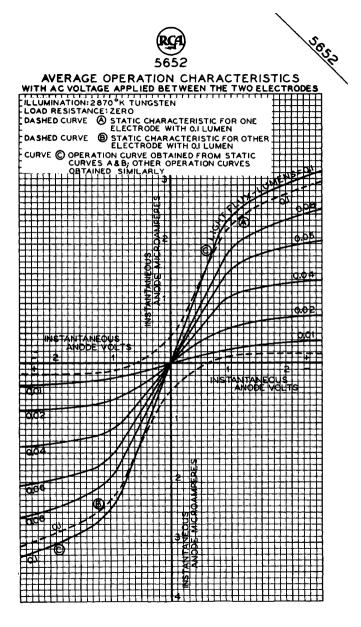
APRIL 15, 1947

TENTATIVE DATA

RCA 5584 GAS PHOTOTUBE



COMPOSITE ANODE-CATHODE TYPE WITH S-4 RESPONSE


DATA

General:
Spectral Response
Spectral Response
Cathode:
Shape
Minimum Projected Length*
Minimum Projected Width [*]
Minimum Projected Width [*]
Balancing Capacitance (C ₂) ^D
Capacitance Difference Between
C_1 and C_2 Not more than 0.3 $\mu\mu$ f
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 1-5/8" ± 3/32"
Maximum Diameter
Mounting Position
Base Intermediate-Shell Octal
5-Pin, Non-hygroscopic
Basing Designation for BOTTOM VIEW 2AB
Pin 1: No URECTION OF LIGHT Pin 6: No
Connection (4) Pin 2: Balancing (6) Pin 8: Anode or
Capacitance (4) (6) Cathode
Pin 4: Cathode or
Anode C
$() \bullet (a)$
00
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC). 250 max volts
PEAK CATHODE CURRENT (For
either electrode) 12 max μamp
PEAK CATHODE-CURRENT DENSITY 100 max. μamp/sq.in.
AVERAGE CATHODE CURRENT (For either electrode) ^ο 4 max μamp
either electrode) ^o . 4 max µamp AMBIENT TEMPERATURE ^o C
AMBIENT TEMPERATURE 70 max
Characteristics:
<u>Min. Av. Max.</u>
Dark Current at 250 Volts. – – 0.01 μamp
Sensitivity:
At 4000 Angstroms 0.042 - μamp/μwatt
Luminous 30 45 70 µamp/lumen
* On plane perpendicular to indicated direction of incident light.
Measured between base pins 4 and 8.
Measured between base pins 2 and 4.
O Averaged over any interval of 30 seconds maximum.

OCTOBER 1, 1947 TUBE DEPARTMENT EADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY

CE-6894-6869

•

VACUUM PHOTOTUBE

WITH S-4 RESPONSE

DATA

DATA
General :
Spectral Response
Wavelength of Maximum Response 4000 ± 500 Angstroms
Cathode:
Shape
Shape
Minimum Projected Bength
Minimum Projected Width*
Maximum Overall Length
Maximum Seated Length
Seated Length to Center of Cathode 1-5/8" ± 3/32"
Maximum Diameter
Mounting Position
Pro-
Base Intermediate-Shell Octal 5-Pin Basing Designation for BOTTOM VIEW
basing Designation for BULLUM VIEW
DIRECTION OF LIGHT
Pin 1 – No 🕢 † Pin 4 – Anode i
Connection Pin 6-No
Pin 2 – No $(- \times)^{6}$ Connection
Connection Pin 8-Cathode
$\langle \!$
Maximum Ratings, Absolute Values:
-
PEAK CATHODE CURRENT 20 max µamp
PEAK CATHODE-CURRENT DENSITY 100 max. µamp/sq.in.
AVERAGE CATHODE CURRENT ^O 5 max µamp AMBIENT TEMPERATURE
AMBIENT TEMPERATURE 75 max °C
Characteristics:
<u>Nin. Av. Nax.</u>
Dark Current at 250 Volts 0.25 μαπρ
Sensitivity:
At 4000 Angstroms 0.042 - μamp/μwatt
Luminous \ldots \ldots 20 45 $100 \mu amp/lumen$
* On plame perpendicular to indicated direction of incident light.
^O Averaged over any interval of 30 seconds maximum.
OUTLINE DIMENSIONS for Type 5653
are the same as those for Type 5581
are the same as those for type JOL
SPECTRAL-SENSITIVITY CHARACTERISTIC
of Phototube having S-4 Response
of Filotoube naving 3-4 Response
is shown at beginning of this Section
AVERAGE ANODE CHARACTERISTICS
of Type 5653 are the same
as those shown under Type 929

IO-STAGE, HEAD-ON TYPE WITH . I-1/2" SEMI-TRANSPARENT CATHODE AND S-4 RESPONSE

I-1/2" SEMI-TRANSPARENT CATHODE AND S-4 RESPONSE
DATA
General:
Spectral Response
Wavelength of Maximum Response 4000±500 angstroms
Cathode, Semi-Transparent:
Shape
Window:
Area 1.8 so. in.
Minimum diameter
Index of refraction 1.51
Direct Interelectrode Capacitances (Approx):
Anode to dynode No.10 4.2 μμf
Anode to all other electrodes 6.5 $\mu\mu$ f
Overall Length
Seated Length
Maximum Diameter
Mounting Position
Bulb
Base Medium-Shell Diheptal 14-Pin, Non-hygroscopic (JETEC No.B14-38)
BOTTOM VIEW
Pin 1 - Dynode No.1 Pin 9 - Dynode No.9
Pin 2 - Dynode No.2 Pin 10 - Dynode Na.10
Pin 3 – Dynode No.
Pin 4 - Dynode No.4 (Pin 12 - No Pin 5 - Dynode No.5 (No.) (Pin 12 - No
Pin 5 - Dynode No.5 3 (2) (2) Connection Pin 6 - Dynode No.6 (2) Pin 13 - Internal Con.
Bin 7 Dunada No 7
Pin 8 - Dynode No.8 INTO END OF BULB Pin 14 - Cathode
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) ⁿ 1250 max. volts
SUPPLY VOLTAGE BETWEEN DYNODE No.10
AND ANODE (DC or Peak AC) 150 max. volts
SUPPLY VOLTAGE BETWEEN CATHODE
AND DYNODE No.1 (DC or Peak AC) 300 max. volts -
ANODE CURRENT:
Peak
Average ^o
AMBIENT TEMPERATURE 75 max. ^{OC}
Referred to cathode.
^O Averaged over any interval of 30 seconds maximum.
🗲 Indicates a change

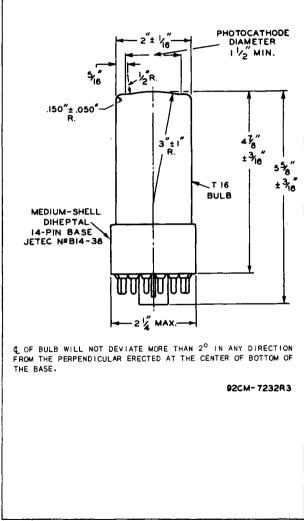
Characteristics Range Valu	es foi	r Equipment D	esign;	
Under conditions with s	upply	voltage (E)	across	voltage
divider providing 1/6 d				
No.1; 1/12 of E for eac				
1/12 of E between dynode				-9-,
•			M	
	Min.		Max.	
With B = 1000 volts (excep	ot as	noted)		
Sensitivity:				
Radiant, at 4000				
angstroms	-	23200	-	µamp/µwatt
Luminous:				
At 0 cps	10	25	-	amp/lumer
At 100 Mc	-	22	-	amp/lumer
Cathode radiant. at				
4000 angstroms	-	0.0464	-	µamp/µwatt
Cathode luminous:				
With tungsten				
light source≜	40	50	-	µamp/lumen
With blue light		•••		<i>p</i>
source	0.04	-	-	µamp
Current Amplification	-	500000	-	P
Equivalent Anode-Dark-		500000		
Current Input	_	8.5×10^{-10}	2 × 10 ⁻	-9 lumer
	-	2×10^{-11}	2 ~ 10	lúmer
Equivalent Noise Input [#] .	-	2 X 10 -	-	i unei
With E= 750 volts (except Sensitivity: Radiant, at 4000		,		
angstroms	-	2320	-	µamp/µwati
Lumninous: 🌢				
At O cps	-	2.5	••	amp/lumer
Cathode radiant at				
4000 angstroms	-	0.0464	-	µamp/µwatt
Cathode luminous:				
With tungsten				-
ľight source≜	40	50	-	µamp/lumer
With blue light				
source●	0.04	-	-	μam
Current Amplification	-	50000		, ,
For conditions where the ligh ated at a color temperature o is used. The load resistor h	t sour f 2870 as a vi	ce is a tungste ok. A light in alue of 0.01 me	n-filame put of 1 gohm.	nt lamp oper- 0 microlumen
For conditions the same as light flux is 0.01 lumen and and all other electrodes conn	shown i that i ected	under (🌢) exce 50 volts are ap together as ano	pt that plied be de.	the value of tween cathode
under the following condition mitted through a blue filter 1/2 stock thickness) from a temperature of 28700K. The lumen. The load resistor has applied between cathode and anode.	is; Lig (Corn tungste value s a val all oth	ht incident on ing, Glass Code on-filament lam of light flux of ue of 0.01 mego mer electrodes of	the cath No.511 p operation the f hm, and connecte	node is trans. 3 polished to ed at a colo ilter is 0.0 150 volts and d together as
♦,●, [●] ,A: See next page			→ India	ates a change
WAY 3 1954				DATA 1
	UBE DIN	/ISION ICA, HARRISON, NEW JR		DATA

- ♦ For Spectral Characteristic of this source, see sheet SPECTRAL CHARAC-TERISTIC OF 2870^oK LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870^oK SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at from of this section.
- Heasured at a tube temperature of 25°C and with the supply voltage (E) adjusted to give luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.
- For maximum signal-to-noise ratio, operation below 1000 volts is recommended.
- under the following conditions: Supply voltage (E) is 1000 volts, 25^{0} C tube temperature, $a_{\rm Camplifier}$ bandwidth of 1 cycle per second, tungsten light source of 2870 K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output trent is measured through a filter which passes only the fundamental frequency of the pulses.

OPERATING CONSIDERATIONS

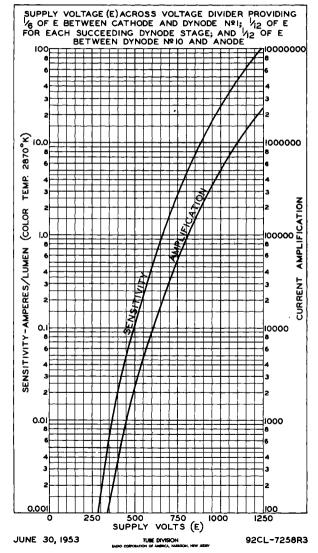
The operating stability of the 5819 is dependent on the magnitude of the anode current and its duration. When the 5819 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 5819 usually recovers a substantial percentage of such loss in sensitivity.

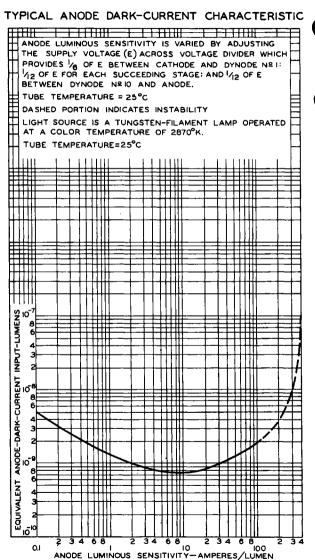
The use of an average anode current well below the maximum rated value of 0.75 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 100 microamperes.


> Electrostatic and/or magnetic shielding of the 5819 may be necessary.

AVERAGE ANODE CHARACTERISTICS are the same as those shown for Type 6199

SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section





5818

RCA 5819

FEB. 6, 1953

92CM-7920RI

IO-STAGE, HEAD-ON TYPE WITH

1-1/4" SEMI-TRANSPARENT CATHODE AND S-4 RESPONSE

DATA

DATA
General:
Spectral Response
Shape Circular Window;
Area 1.2 so. in. Minimum Diameter 1.24 in. Minimum Diameter of Flat Surface 1 Index of Refraction 1.51 Direct Interelectrode Capacitances (Approx.):
Anode to Dynode No.10 4 μμf Anode to All Other Electrodes 7 μμf Overall Length 4-3/8"±3/16" Seated Length 3-7/8"±3/16" Maximum Diameter 1-9/16" Bulb T-12 Mounting Position Anode and 12-Pin, Non-hygroscopic [JETEC No.812-43]
EOTTOM VIEW
Pin 1 - Dynode No.1Image: Constraint of constra
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) ^D 1250 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.10 AND ANODE (DC or Peak AC) 150 max. volts ANODE CURRENT:
Peak
© Referred to cathode. O Averaged over any interval of 30 seconds maximum.

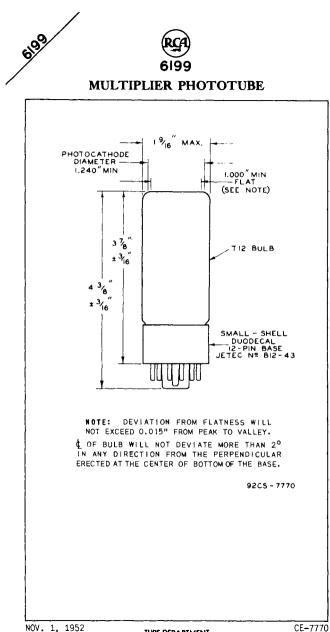
ſ

p				
CHARACTERISTICS RA	NGE VAL	UES FOR EQ	UIPMENT I	DESIGN
Under conditions with	sucol	v voltage	(E) acros	s voltage
divider providing 1/				
No.1; 1/12 of E for				
1/12 of E between dyn				tage, and
			noue	-
With E = 1000 volts (exc	ept as	noted)		
ļ.	Min.	Av.	Max.	1
Sensitivity:				1
Anode, at 4000				ļ
angstroms	-	22300	_	µamp/uwatt
Luminous:				
Anode: †				(
At O cps	10	24	-	amp/lumen
At 100 Mc	-	22	-	amp/lumen
Cathode:				
With Tungsten				
Light Source	20	40	-	µamp/lumen
With Blue				
Light Source ^{●●}	0.028	-		µamp.
Current Amplification	-	600000	-	
Equivalent Anode-Dark-		10	-	
Current Input*• .	-	8 × 10 ⁻¹⁰	2.5 × 10 ⁻⁵	
Equivalent Noise Input*	-	4 × 10-12	-	lumen
With E = 750 volts (excep	t as n	oted)		
	Nin.	Αv.	Hax.	
Search to the second			Heat	
Sensitivity:				
Anode, at 4000		2230		µamp/µwatt
angstroms Luminous:	~	2250	_	μαπρ/μωαιι
Anode:† At 0 cps		2.4	_	amp/lumen
Cathode:	-	2.4	-	amp/ rumen
With Tungsten				
Light Source	20	40	-	µamp/lumen
With Blue	40	40		
Light Source	0.028	-	-	µamp
Current Amplification	-	60000	_	r
For conditions where the 1 ated at a color temperature is used. The load resisto	ight sou	rce is a tun	gsten-filar	ment lamp oper-
is used. The load resisto	e of 287 rhas a	0°k. A ligh value of 0₌0	t input of 1 meachm.	10 microlumens
For conditions the same a	s shown	under (†)	except tha	t the value of
For conditions the same a light flux is 0.01 lumen a and all other electrodes c	nd that	150 volts ar	e applied t	oetween cathode
and all other electrodes c	ione. Li	abt incident	on the car	thode is trans-
mitted through a blue filt	er (Cor	ning, Glass	Code No.51	13 polished to
1/2 stock thickness) from	a tungst he value	en→filament of light fl	lamp opera	ted at a color filter is 0.01
Under the following condit mitted through a blue filt. 1/2 stock thickness) from temperature of 2870%. TI lumen, The load resistor applied between cathode an	has a va	lue of 0.01	megohm, and	1 150 volts are
applied between cathode an anode.	10 a11 01	ther electro	des connect	.eu together as
applied between cathode an anode.	10 all 01	ther electro	des connect	eu together as
applied between cathode an anode.	10 all 01	ther electro	des connect	eu together as

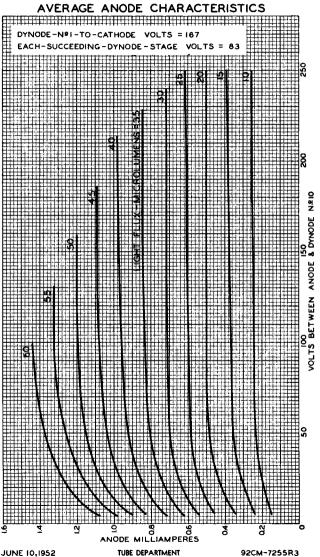
♦,,,*,,,*: See next page.

NOV. 1, 1952

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

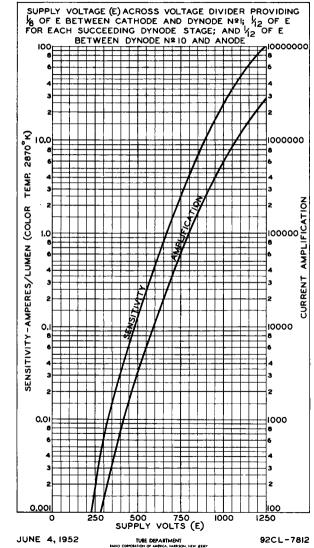


- FOR Spectral Characteristic of this source, see sheet SPECTRAL CHARAC-TERISTIC OF 2870^{CK} LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870^{CK} SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.
- Ratio of anode sensitivity to cathode sensitivity under conditions of 2870°K tungsten light input.
- Defined as the quotient of the dc anode dark current by the anode luminous sensitivity. It is measured at a tube temperature of 25° C and with the supply voltage (E) adjusted to give an anode luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.
- For maximum signal-to-noise ratio, operation below 1000 volts is recommended.
- A Defined as the value where the rms output current is equal to the rms noise current determined under the following conditions: Supply voltage (E) is 1000 volts, 250C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source of 28700K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulse.


OPERATING NOTES

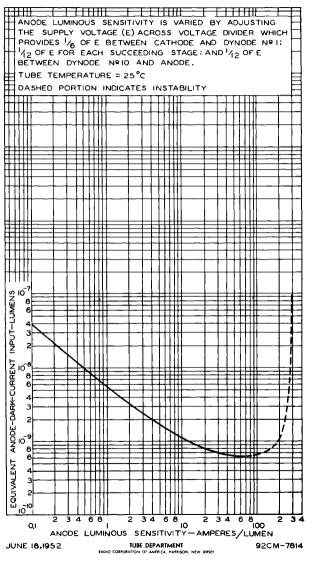
Performance of the 6199 is affected by magnetic fields. It will be observed with certain orientations of the 6199 that the earth's magnetic field is sufficient to cause a noticeable decrease in the response of the tube. Therefore, it may be desirable to provide magnetic shielding for the 6199 particularly when it is to be used in a strong magnetic field.

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-4 Response is shown at the front of this Section



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

6.09



649

TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

IO-STAGE, HEAD-ON TYPE WITH

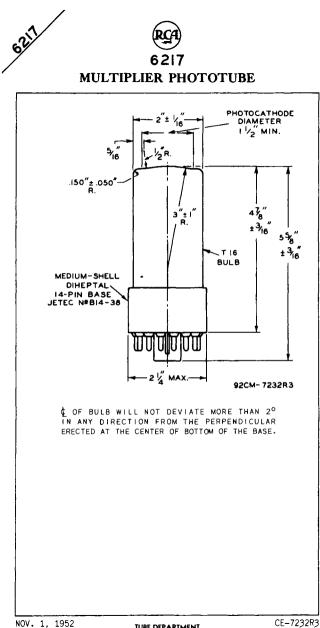
1-1/2" SEMI-TRANSPARENT CATHODE AND S-10 RESPONSE

1-1/2" SEMI-TRANSPARENT CATHODE AND S-TO RESPONSE
DATA
General:
Spectral Response
Wavelength Range of Highest-
Response Region 3700 to 5600 angstroms Cathode, Semi-transparent:
Shape
Window:
Area 1.8 sq. in.
Minimum Diameter 1.5 in.
Index of Refraction 1.51
Direct Interelectrode Capacitances:
Anode to Dynode No.10 4.2 μμf
Anode to All Other Electrodes 6.5 $\mu\mu$ f
Overall Length
Maximum Diameter
Mounting Position
Bulb
Base Medium-Shell Diheptal 14-Pin, Non-hygroscopic
(JETEC No. B14-38)
Basing Designation for BOTTOM VIEW
Pin 1-Dynode No.1 Pin 9-Dynode No.9
Pin 2 - Dynode No.2 🛛 🖓 🚱 Pin 10 - Dynode No.10
Pin 3 - Dynode No.3 💽 🔭 💭 Pin 11 - Anode
Pin 4 - Dynode No.4 (4 A HO Pin 12 - No
Pin 5-Dynode No.5 Pin 6-Dynode No.6
Pin 6-Dynode No.6 Pin 13-InternalCon. Pin 7-Dynode No.7 Do Not Use
Pin 8-Dynode No.8 Pin 14-Cathode
DIRECTION OF LIGHT:
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. volts
SUPPLY VOLTAGE BETWEEN DYNODE No. 10
AND ANODE (DC or Peak AC) 150 max. volts
ANODE CURRENT: Peak
Average ^o 0.75 max. ma
Average for Minimum Fatigue ⁰ 0.1 max. ma
AMBIENT TEMPERATURE
Referred to cathode.
^D Averaged over any interval of 30 seconds maximum.

				010H
CHARACTERISTICS RAP Under conditions with		•		
divider providing 1/60				
1/12 of E for each suc				
between dynode No.10 a			age, and	17 12 OF E
-				
With E = 1000 volts (exc	ept as	noted)		
	Min.	Αυ.	∦ax.	
Sensitivity:				
Anode, at 5400				
angstroms	-	8500	-	µamp/µwatt
Luminous:				
Anode:*				
At O cps	10	24	-	amp/lumen
At 100 Mc	-	21	-	amp/lumen
Cathode:				
With Tungsten				
Light Šource● .	20	40	-	µamp/lumen
With Red-Infrared				
Light Source#0.	0.05	-	-	µamp
Current Amplification.	_	600000	-	<i>,</i> .
Equivalent Anode-Dark-				_
Current Input**	_	1 × 10-8	2.5×10	-8 lumen
Equivalent Noise Input##	-	4 × 10-11		lumen
With E = 750 volts (exce	pt as	noted)		
	Min.	Av.	Max.	
Sensitivity:				
Anode, at 5400				
angstroms	-	850	-	µamp/µwatt
Luminous:				
Anode:*				
At O cps		2.4	-	amp/lumen
Cathode:				·
With Tungsten				
Light Source• .	20	40	-	µamp/lumen
With Red-Infrared				, , ,
Light Source*.	0.05	-	-	μamp
Current Amplification.	_	60000	-	
* For conditions where the 1 ated at a color temperature is used. The load resistor	ight sou	irce is a tung	sten-filame	ent lamp oper-
is used. The load resistor	has a	value of 0.01	megohm.	
 For conditions the same a light flux is 0.01 lumen ar and all other electrodes co 	s shown nd that	under (*) ex 150 volts are	cept that applied be	the value of tween cathode
and all other electrodes co	nnected	abt incident	ande.	Ma is trace
mitted through a red-infr	ared fi	lter (combina	ation of Co	orning, Glass
Code Nos. 3482 and 5850 fil	lters) f	rom a tungste	n∽filament filast_flu	lamp operated
ter is 0.1 lumen. The load	resisto	r has a value	of 0.01 me	gohm, and 150
volts are applied between	cathode	and all oth	er electro	les connected
response in the tail of t	the rest	oonse charact	eristic ar	d provides a
under the following condition mitted through a red-infr Code wos. 3482 and 5850 fl at a color temperature of ter is o.1 lumen. The load volts are applied between tresponse in the tail of t critical criterion for the * + **	respons	e in the red	band.	
♦,■, ^{**} ,##: See next page.				
NOV. 1, 1952			TENTA	TIVE DATA 1
		ARTMENT		

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

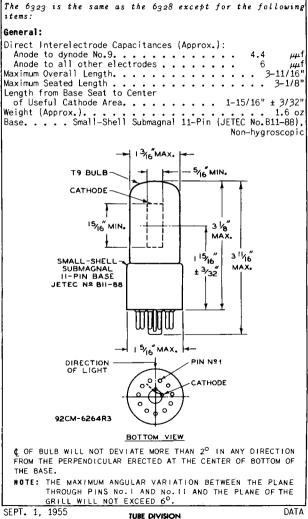
- For Spectral Characteristic of this source, see sheet SPECTRAL CHAR-ACTERISTIC OF 2870°K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870°K SOURCE AFTER PASSING THROUGH INDICATED RED-INFRARED FILTER at front of this section.
- Ratio of anode sensitivity to cathode sensitivity under conditions of 2870^oK tungsten light input.
- ** Operined as the quotient of the dc anode dark current by the anode luminous sensitivity. After tube has been in the dark for 30 minutes, the equivalent dark-current inputs measured at a tube temperature of 250C and with the supply voltage (E) adjusted to give an anode luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.
- Befined as the value where the rms output current is equal to the rms noise current determined under the following conditions: Supply voltage (E) is 1000 volts, 250C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source of 2870% interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.


OPERATING NOTES

Performance of the 6217 is affected by magnetic fields. It will be observed with certain orientations of the 6217 that the earth's magnetic field is sufficient to cause a noticeable decrease in the response of the tube. Therefore, it may be desirable to provide magnetic shielding for the 6217 particularly when it is to be used in a strong magnetic field.

> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-10 Response is shown at the front of this Section

AVERAGE ANODE CHARACTERISTICS, SENSITIVITY CHARACTERISTIC, and CURRENT AMPLIFICATION CHARACTERISTIC


are the same as those shown for Type 6199

9-STAGE TYPE WITH S-4 RESPONSE For Headlight-Control Service

9-STAGE TYPE WITH S-4 RESPONSE

FOR HEADLIGHT-CONTROL SERVICE

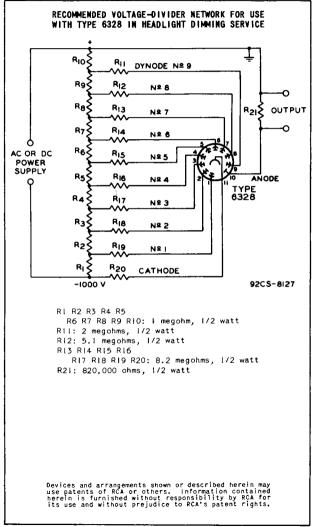
DATA
General:
Spectral Response
Cathode: Minimum Projected Length [*]
Direct Interelectrode Capacitances: Anode to Dynode No.9 4.2 μμf Anode to All Other Electrodes 5.5 μμf
Maximum Overall Length
of Useful Cathode Area 1-9/16" ± 3/32" Maximum Diameter 1-5/16" Bulb T-9
Mounting Position
Basing Designation for BOTTOM VIEW 11K
Pin 1: Dynode No.1 (5) (7) Pin 7: Dynode No.7
Pin 2: Dynode No.2 Pin 8: Dynode No.8
Pin 3: Dynode No.3 Pin 9: Dynode No.9
Pin 4: Dynode No.4 Pin 10: Anode
Pin 5: Dynode No.5 (2) Pin 11: Cathode
Pin 6: Dynode No.6
DIRECTION OF LIGHT
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. volts
SUPPLY VOLTAGE BETWEEN DYNODE No.9 AND ANODE (DC or Peak AC)
AVERAGE ANODE CURRENT ^o
AMBIENT TEMPERATURE
* On plane perpendicular to the indicated direction of light (see Dimen- sional Outline).
⁰ Averaged over any interval of 30 seconds maximum.

Γ

Characteristics Range Values for Equipment Design: Under conditions with supply voltage (E) across voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.0 and anode With E = 1000 volts Nin. Av. Max. Sensitivity: Radiant, at 4000 angstroms . . . 32500 µamp/µwatt Luminous: At O cps . . . 5 35 250 amp/lumen . . At 100 Mc 33 amo/lumen Electrode Dark Current (At 25°C): Anode 0.1 *µ*amp . . Any other electrode 0.75 *µ*атр

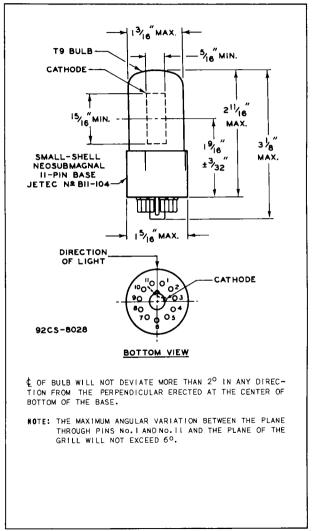
For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 28700k. A light input of 10 microlumens is used. The load resistor has a value of 0.01 megohm.

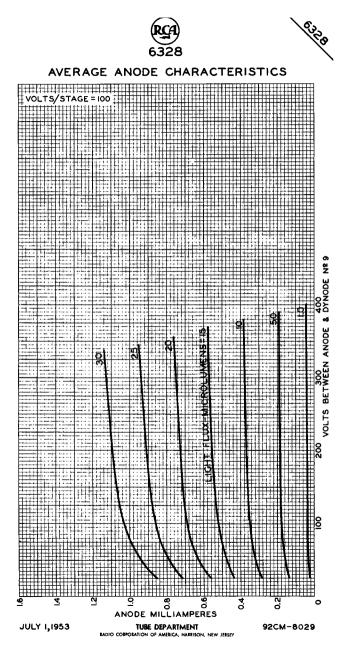
OPERATING CONSIDERATIONS

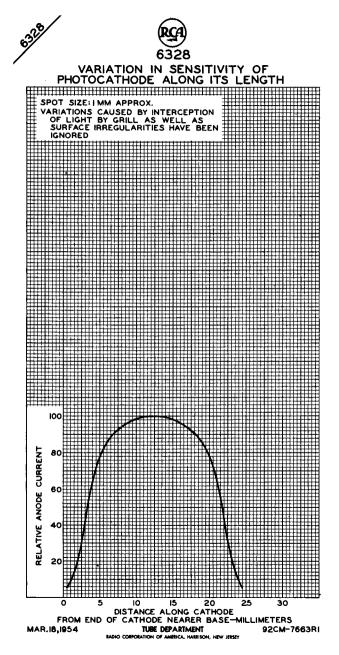

The operating stability of the 6328 is dependent on the magnitude of the anode current and its duration. When the 6328 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6328 usually recovers a substantial percentage of such loss in sensitivity.

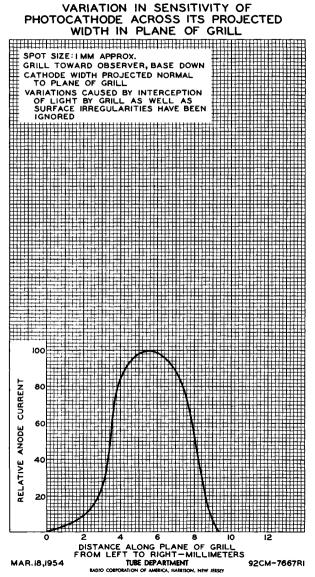
The use of an average anode current well below the maximum rated value of 0.1 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 10 microamperes.

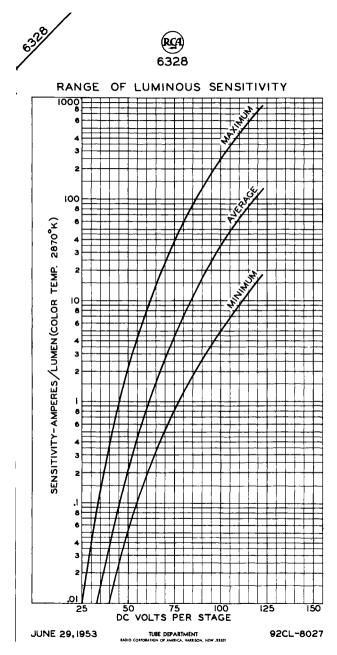
A recommended design of voltage-divider network for use with the 6328 to provide stable operation and long tube life is shown in the accompanying circuit. This design provides linear operation within the range normally required for dimming. At higher light levels, the network design limits the tube output to a safe value. The indicated design values provide dimming operation for an anode current in the range between 5 and 10 microamperes.











10-STAGE, HEAD-ON TYPE WITH 1-11/16" SEMITRANSPARENT CATHODE AND S-11 RESPONSE

SHORT TIME-RESOLUTION CAPABILITY

DATA General: Spectral Response. S-11 Wavelength of Maximum Response 4400 ± 500 angstroms Cathode, Semitransparent: . . . Circular Shane. Window: Area . . 22 sa. in. Minimum diameter . . 1-11/16 in. Index of refraction. . . . 1.51 Direct Interelectrode Capacitances (Approx.): Anode to dynode No.10. 4.4 μµf Anode to all other electrodes. μµf Maximum Overall Length . . 5-13/16" Seated Length. . . . " ± 3/16" Maximum Diameter . . . 2-1/4" Mounting Position. . . Any Weight (Approx.) . . 5.2 ozl Bulb T-16 Base Medium-Shell Diheptal 14-Pin (JETEC No.B14-38). Non-hygroscopic BOTTOM VIEW Pin 1 - Dynode No.1 Pin 10 - Dynode No.10 Pin 11 - Anode Pin 2 - Dynode No.2 Pin 12 - Internal Pin 3 - Dynode No.3 Pin 4 - Dynode No.4 Connection-Pin 5 - Dynode No.5 Do Not Use Pin 6 - Dynode No.6 Pin 13 - Focusing Pin 7 - Dynode No.7 Flectrode Pin 14 - Cathode Pin 8 - Dynode No.8 Pin 9 - Dynode No.9 DIRECTION OF LIGHT: Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC or Peak AC) . . . 1500 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.10 volts-AND ANODE (DC or Peak AC). 250 max. DYNODE-No.1 SUPPLY VOLTAGE (DC or Peak AC). . . . 400 max. volts FOCUSING-ELECTRODE VOLTAGE (DC or Peak AC) . 400 max. volts AVERAGE ANODE CURRENT 2 max. ma AMBIENT TEMPERATURE. . °C 75 max. Averaged over any interval of 30 seconds maximum.

6342

	Characteris	tics Range V	alues fo	r Equipmen	t Design	:
	divider No.l; l/	nditions with providing 1/ 12 of E for	6 of E each su	between c icceeding	athode a dynode s	ind dynode
	1/12 of E	between dyn	ode No.I	0 and anod	e	
	With E = 12	50 volts lexe	cept as	noted) and		
	Focusing El	ectrode* con	nected t	o Dynode N	0.1 at s	ocket
			Min.	Median	Max.	
	Sensitivity					
-	Radiant.					
-		0 angstroms.		6000		
-	Cathode r		_	0000	-	µamp/µwatt
	-	0 angstroms -		0.048	_	µamp/µwatt
	Luminous:		-	0.040	_	pramp / private c
		s	. 3	7.5	100	amo/lumen
	Cathode		,)	7.5	100	anp/ rumen
	With tu					
		ght source≜ ⋅	40	60	_	µamp/lumen
		ue light	40	00		peamp? rumen
		source®.	0.04	-	-	μamp
	Current Amo	lification.		125000	-	<i>µ</i> =. <i>µ</i>
		Anode-Dark-		-		
	Curr	ent Input®		2×10^{-10}	2 × 10 ⁻⁹	lumen
		Noise Input*		7×10^{-12}	-	lumen
		1 4				
		oo volts (exc ectrode* conv				a hat
	Focusing El	ectrode con	iected t	o Dynoue w	0.1 41 3	
			Min.	Median	Nax.	1
	Sensitivity	:				
+	Radiant,	at				
	440	0 angstroms.	-	28000	-	μamp/μwatt
+	Cathode r					
		0 angstroms.	-	0.048	-	$\mu amp/\mu watt$
	Luminous:					
	At 0 cp		-	35	-	amp/lumen
	Cathode 1					
	With tu					
		ght source* .	40	60	-	µamp/lumen
	WITH DI	ue light	0.04			
	Current Ame	source [⊕] .		600000	-	μamp
		lification	_	600000	-	ļ
	In general, socket and in applicat response, t of a poten divider, an per cent of	the focusing e operated at the ions critical a he focusing ele tiometer betwe d operated at an the dynode-No.	lectrode same fixe is to magn ctrode ma en cathod optimum	is connected d potential a nitude, unifo y be connected le and dynod potential wi	to dynod Isdynode N Ormity, or d to the a le No.1 in thin a rang	e No.1 at the o.1. However, speed of the djustable arm the voltage e of 10 to 60
	For conditi ated at a co	ons where the l lor temperature he load resisto	ignt sour	ce is a tungs ⁹ K. A light	ten-filami input of	ent lamp oper- LO microlumens
	▲ ⊕ ♦ ⊕ ≡ ★.	See next page.			-+ Indic	ates a change.
						لصغب مباسمه
	SEPT. 1, 19		tube di	VISION		DATA 1
		PADIO CORDOR				

RADIO CORPORATION OF AMERICA, HARRISON, NEW JEPSEY

- For conditions the same as shown under ($\dot{\bullet}$) except that the value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected together as anode.
- Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning, Glass Code Wo.5113 polished to 1/2 stock thickness) from a tungsten-filament lamp operated at a color temperature of 2870°K. The value of light flux on the filter is 0.01 lumen. The load resistor has avalue of 0.01 megohm, and 200 volts are applied between cathode and all other electrodes connected together as anode.
- For spectral characteristic of this source, see sheet SPECTRAL CHAR-ACTERISTIC OF 2870% LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870% SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER AT Front of this section.

Measured at a tube temperature of 25°C and with the supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.

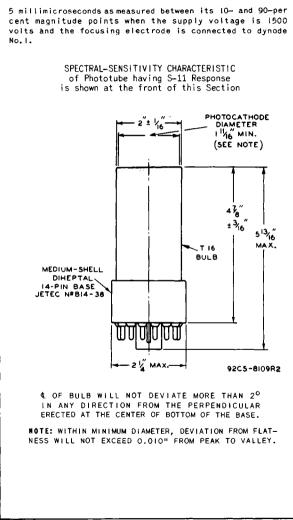
For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1250 volts is recommended.

under the following conditions: Supply voltage (E) is 1250 volts, 25^{0} C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source of 2870% interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The 'on' period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

OPERATING CONSIDERATIONS

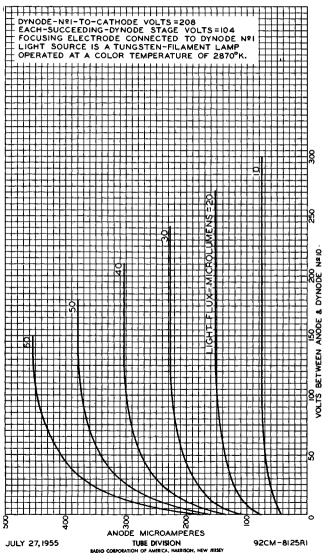
The operating stability of the 6342 is dependent on the magnitude of the anode current and its duration. When the 6342 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6342 usually recovers a substantial percentage of such loss in sensitivity.

The use of an average anode current well below the maximum rated value of 2 milliamperes is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 250 microamperes.


Electrostatic and/or magnetic shielding of the 6342 may be necessary.

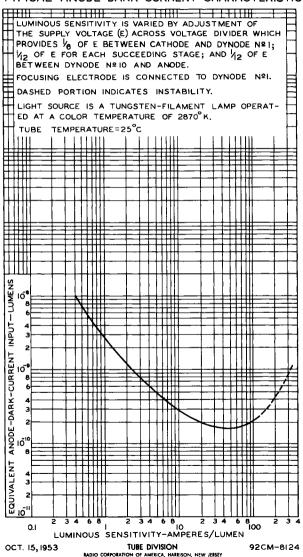
The material of which the dynodes of the 6342 are made has stable, high-current carrying capabilities and permits the use of a tube manufacturing process which minimizes regenerative effects such as afterpulses. The relative freedom of the 6342 from afterpulses and its small spread in electron transit time make it particularly useful for fast coincidence scintillation counting.

Because the 6342 offers the advantage of small spread in electron transit time, it has a fast pulse rise time. For an input pulse having a rise time of I millimicrosecond or less, the rise time of the pulse at the anode is about

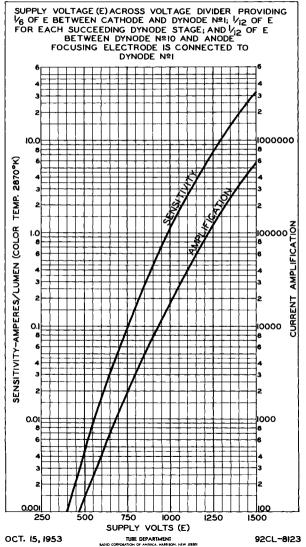


SEPT. 1, 1955

63422


AVERAGE ANODE CHARACTERISTICS

6342


TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

AVERAGE CHARACTERISTICS

10-STAGE TYPE WITH

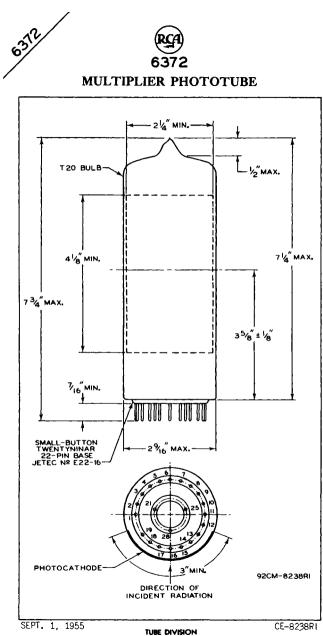
4-1/8" x 3" SEMITRANSPARENT CATHODE AND S-11 RESPONSE

DATA

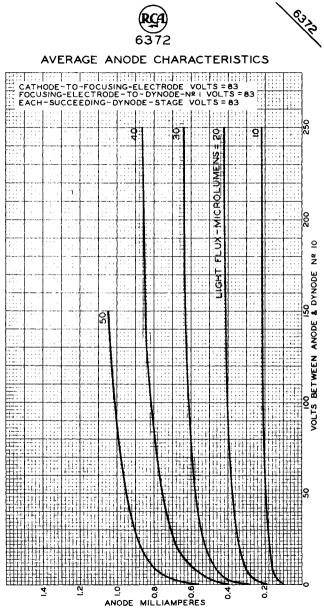
	1
General:	
Spectral Response.	. S-11 +
Wavelength of Maximum Response 4400 ± 500 ang	stroms 🗕
Cathode, Semitransparent:	
Shape	drical
Window:	
Minimum length	in.
Minimum width (Along	
circumference of bulb)	in.
	q. in.
Index of refraction	····]
Direct Interelectrode Capacitances (Approx.):	-
Anode to dynode No.10.	μμf
Anode to all other electrodes 6.5	$\mu\mu$
	7-3/4"
	7-1/4"
Length from Base Seat to Center	·
of Useful Cathode Area	+ 1/8"
	-9/16"
Mounting Position.	. Any
Weight (Approx.)	9 oz
	T-20
Base Small-Button Twentyninar 22-Pin (JETEC No.E.	
BOTTOM VIEW	,
Pin 1 - Anode	
Pin 2 - Dynode No.10	
Pin 3 - Dynode No.9	- 1
Pin 4 - Dynode No.8	
Pin 5 - Dynode No.7 Pin 6 - Dynode No.6	
Pin 7 - Dynode No.5	
Pin 8 - Dynode No.4	
Pin 9 - Dynode No.3	
Pin 10 - Dynode No.2	
Pin 11 - Dynode No.1	ł.
Pin 12 - Internal Connec-	
tion-Do Not Use	
Pin 13 - Focusing	
Electrode	
Pin 14 - Same as Pin 12	IDENT
Pin 15 - Same as Pin 12	NUN I
Pin 16 - Cathode PINS 1-19: ON 1% DIA. PIN CIRCLE	
Pin 17 - Same as Pin 12 Pins 21,25,28; ON 36 DIA. PIN CIRCL	LE
1 111 10 = 3 ame as 1111 12	
Pin 19 - Same as Pin 12	
Pin 21 - Same as Pin 12	
Pin 25 - Same as Pin 12	
Pin 28 - Same as Pin 12	ļ
- Indicates a	change
- Indicates a	change.

Ł	daximum Ratings, Absol				•
	ANODE-SUPPLY VOLTAGE (SUPPLY VOLTAGE BETWEEN	DYNODE	No.10		
ļ	DYNODE-No.1 SUPPLY VOL	TAGE	Peak AC)		max. volt
1	DC or Peak) FOCUSING-ELECTRODE_VOL	TAGE			max. volt
	DC or Peak) AVERAGE ANODE CURRENT AMBIENT TEMPERATURE		• • • • • • • • • • • •	0.75	max. volt: max. m max. ⁰
ľ	Characteristics Range	· · · · · Values	for Equipme		
	Under conditions wit divider providing 1 electrode; 1/12 of E No.1; 1/12 of E for e of E between dynode With E-1000 volts (exc	/12 of betweer ach suc No.10 a	E between c n focusing e cceeding dyn and anode	athode and lectrode a	l focusing and dynode
l		Min.	Nedian	Hax.	
	Sensitivity: Radiant, at 4400				
	angstroms Cathode radiant, at	-	16000	-	µamp/µwat
	4400 angstroms Luminous:	-	0.026	-	µamp/µwat
	At O cps At 100 Mc Cathode luminous: With tungsten	5 -	20 19	-	amp/lume amp/lume
	light source▲ With blue light	20	33	-	µamp/lume
ļ	sourcet♦ Current Amplification	0.026 -	600000	-	μam
ł	Equivalent Anode- Dark-Current Input	-	5 × 10 ⁻⁹	1 × 10 ⁻⁸	lume
ł	Equivalent Noise Input*®	-	1×10^{-10}	-	lume
	Averaged over any interv For conditions when the ated at a color temperatu is used. The load resis For conditions the same light flux is 0.01 lumer all other electrodes cor Under the following condi mitted through a blue fl 1/2 stock thickness} for temperature of 2870 k. Jumen. The load resisto applied between cathode anode.	light so re of 28 tor has as show and 150 unected t tions: L ilter (CC m a tung The valu	urce is a tung 70 ⁰ K, A light a value of 0.0 wo under () volts are ap ogether as an ight incident orning, Glass sten-filament ue of light fi alue of 0.01 i	<pre>sten-filame input of 1 b1 megohm. axcept that plied betwee ode. on the cath Code No.511 lamp operat ux on the f negohm. and</pre>	the value of an cathode and ode is trans- 3 polished to ed at a colo ilter is 0.0 150 volts ar
ļ.					
l	♦,♣,*,■: See next page.			+ Indica	ites a change.

- For Spectral Characteristic of this source, see sheet SPECTRAL CHARACTERISTIC OF 2870°K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 2870°K SOURCE AFTER PASSING THROUGH INDICATED BLUE FILTER at front of this section.
- Measured at a tube temperature of 25°C and with the supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.
- Winder the following conditions: Supply voltage (E) is 1000 volts, 25^{9} C tube temperature, ac-amplifier bandwidthof 1 cycle per second, tungsten light source of 2870^{9} K interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The "on" period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.
- For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.


OPERATING CONSIDERATIONS

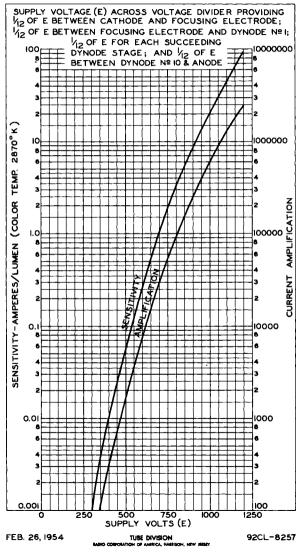
The operating stability of the 6372 is dependent on the magnitude of the anode current and its duration. When the 6372 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6372 usually recovers a substantial percentage of such loss in sensitivity.


The use of an average anode current well below the maximum rated value of 0.75 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 100 microamperes.

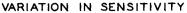
Electrostatic and/or magnetic shielding of the 6372 may be necessary.

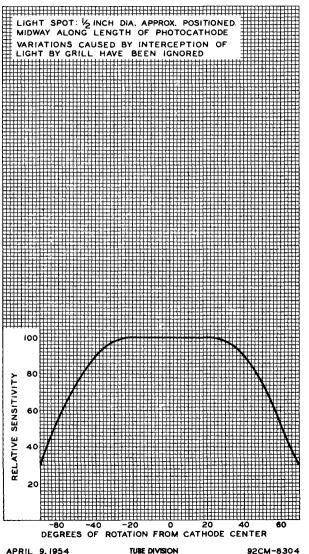
SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-11 Response is shown at the front of this Section

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


FEB. 26, 1954

TUBE DIVISION RADIO CORPORATION OF AMERICA, MARIISON, NEW JERSEY 92CM-8258

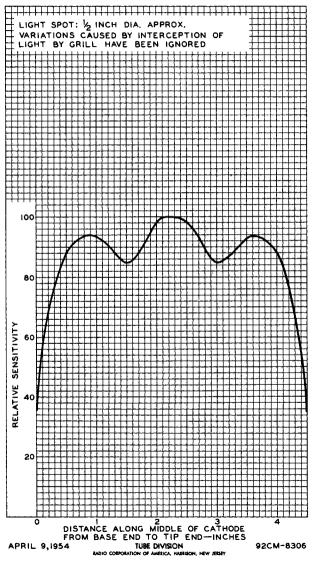




AVERAGE CHARACTERISTICS

APRIL 9, 1954

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


92CM-8304

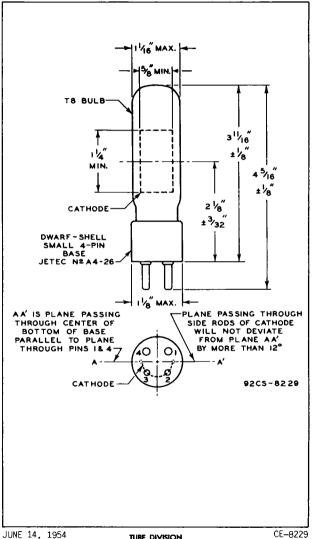
ests.

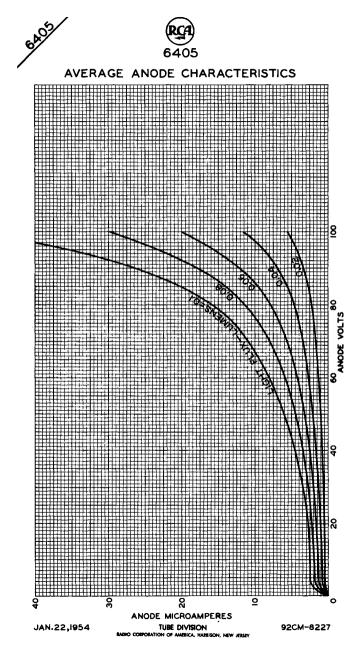
VARIATION IN SENSITIVITY

LOW-MICROPHONIC TYPE WITH S-1 RESPONSE

DATA

General: Snectral Response S-1 Wavelength of Maximum Response . . . 8000 ± 1000 angstroms Cathode: Semicylindrical . . . 1-1/4" Minimum projected width*.... 5/8" 3 μμ.f Direct Interelectrode Capacitance . . Overall Length $4-5/16" \pm 1/8"$ 3-11/16" ± 1/8" 2-1/8" ± 3/32" 1-1/8" Maximum Diameter . . . Mounting Position . . . Any Weight (Approx.) 1.3 oz . . . T-8 Bulb . Dwarf-Shell Small 4-Pin (JETEC No.A4-26), Base Non-hydroscopic BOTTOM VIEW Pin 1 - No Pin 3-No Connection Connection Pin 2 - Anode Pin 4 - Cathode DIRECTION OF LIGHT Maximum Ratings, Absolute Values: Rating I Rating II ANODE-SUPPLY VOLTAGE (DC or Peak AC) . . . 70 max. 90 max. volts AVFRAGE CATHODE-CURRENT DENSITY 25 max. µamp/sq.in. 50 max. AVERAGE CATHODE CURRENT^o.... 10 max. 5 max. *µ*ато °C AMBIENT TEMPERATURE . . 100 max. 100 max. Characteristics at 90 Volts on Anode: Nin. Av. Max. Sensitivity: Radiant at 0.0135 8000 angstroms . . . µamp/µwatt * On plane perpendicular to indicated direction of incident light. O Averaged over any interval of 30 seconds maximum.




6405 GAS PHOTOTUBE

ſ <u>·····</u>	-			
	Min.	Av.	∦ax.	
Sensitivity:				
Luminous:				
At O cps	. 80	135	200	µamp/lumen
At 5000 cps		116	_	µamp/lumen
At 10000 cps		100	_	µamp/lumen
Sensitivity Difference	•	100		pamp; ramen
Between Highest Value				
and Lowest Value Along				
Cathode Length	_	_	,25	µamp/lumen
Gas Amplification Factor	• -	-	- 23	pamp/ runen
Anode Dark Current:	• -	_	5	
			0.1	
At 25°C	• -	-	0.1	μ amp
Minimum Circuit Values:				
With anode-supply voltage of				
with anoae-supply voltage of	70 0	orless	90	volts
DC Load Resistance:				
For dc currents above				
5 μamp	. 0.	1 min.	-	megohmi
For dc currents below				
5 μamp		0 min.	-	megohm
For dc currents above				
3 µатр		~	2.5 mi	n. megohmis
For dc currents below				· ·
3 μamp			0.1 mi	n. megohm
	-			
For conditions where the light of the lig	ht sourc	e is a tung: Or Adca	sten-filam node supp	ent lamp oper- ly of 90 valte
and a 1-megohm load resistor	are use	d. For the	0-cycle m	easurements, a
light input of 0.1 lumen is L	ised. Fo	r the 5000	and 10000-	cycle measure
For conditions where the lig ated at a color temperature and a '_megohm load resistor light input of 0.1 lumen is u ments, the light input is 0.015 lumen from zero to a m	naximum o	f twice the	mean.	mean value of
Measured under the same cor	ditions	as indicate	ed under	(A) with light
Measured under the same cor input of 0.1 lumen and a lig	ht spot	1/2 inch in	diameter.	(/ #100 1.g.)
SPECTRAL-SEN				
of Phototut	be havir	ng S—1 Res	ponse	
	and			
FREQUENCY-RE	SPONSE	CHARACTER	ISTICS	
of (Gas Pho	totubes		
are shown at t	he from	nt of this	Section	

9-STAGE TYPE WITH S-4 RESPONSE For Headlight-Control Service

DATA
General:
Spectral Response
Minimum projected length*
Anode to dynode No.9 4.2 $\mu\mu$ f Anode to all other electrodes 5.5 $\mu\mu$ f Maximum Overall Length (Excluding leads) 2-3/4" Maximum Envelope Length (Excluding tip) 2-1/4" Length from Envelope Seal to
Length From Enverope Sear to Center of Useful Cathode Area Maximum Diameter Maimum Diameter Bulb Bulb Generation Hounting Position Weight (Approx.) Cerminals, Flexible Lead
BOTTOM VIEW
Lead 1 - Cathode Lead 2 - Dynode No.1 Lead 3 - Dynode No.2 Lead 4 - Dynode No.3 Lead 6 - Dynode No.5
DIRECTION OF LIGHT
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.9 AND ANODE (DC or Peak AC)
AVERAGE ANODE CURRENTO 0.1 max. ma AMBIENT TEMPERATURE
* On plane perpendicular to the indicated direction of light (<i>See Dimen-sional Outline).</i> • Averaged over any interval of 30 seconds maximum.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

Under conditions with supply voltage (E) across voltage divider providing 1/10 of E between cathode and dynode No.1; 1/10 of E for each succeeding dynode stage; and 1/10 of E between dynode No.9 and anode

With E = 1000 volts

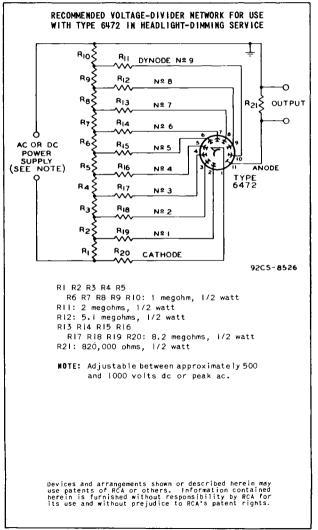
Min. Nedian Max.

Sensitivity: Radiant, at 4000				
angstroms	-	32500	-	µamp/µwatt
Luminous: A				
At 0 cps	5	35	250	amp/lumen
At 100 Mc	-	33	-	amp/lumen
Electrode Dark Current				
(At 25 ^o C):			1	
Anode	-	-	0.25	µamp]
Any other electrode	-	-	0.75	μamp

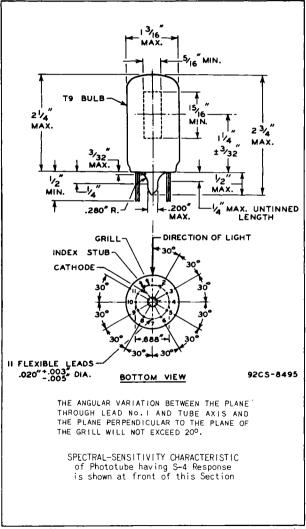
For conditions where the light source is a tungsten-filament lamp operated at a color temperature of 2870%. A light input of 10 microlumens is used. The load resistor has a value of 0.01 megohm.

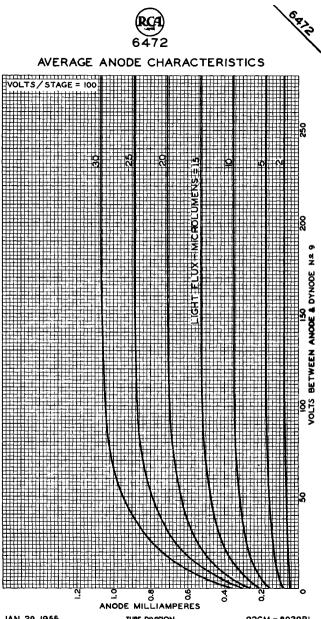
With sine-wave, 60-cycle supply voltage adjusted to give sensitivity of 7.5 amperes per lumen.

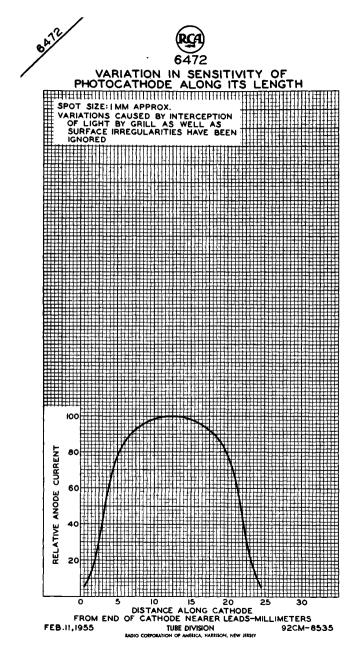
OPERATING CONSIDERATIONS

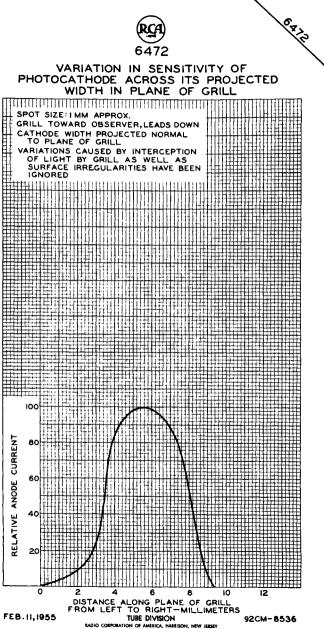

The operating stability of the 6472 is dependent on the magnitude of the anode current and its duration. When the 6472 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6472 usually recovers a substantial percentage of such loss in sensitivity.

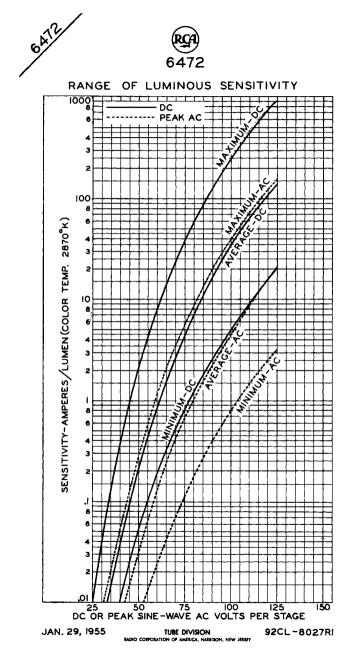
The use of an average anode current well below the maximum rated value of 0.1 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 10 microamperes.


A recommended design of voltage-divider network for use with the 6472 to provide stable operation and long tube life is shown in the accompanying circuit. This design provides linear operation within the range normally required for dimming. At higher light levels, the network design limits the tube output to a safe value. The indicated design values provide dimming operation for an anode current in the range between 5 and 10 microamperes on basis of dc operation. When operation at other current values is desired, the values of the resistors can be changed proportionately.

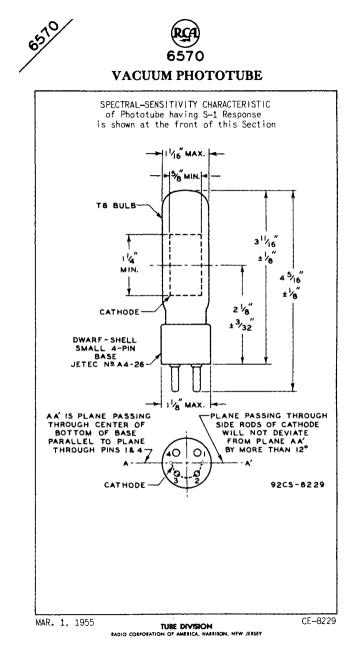


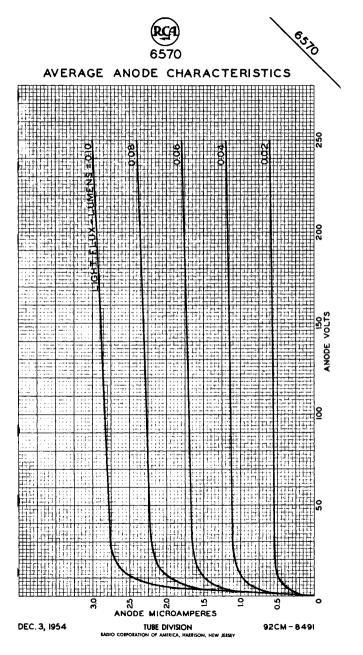



JAN. 29, 1955


92CM - 8029RI

TUBE DIVISION BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY





VACUUM PHOTOTUBE

DATA

bala
General:
Spectral Response
Cathode: Shape Semicylindrical Minimum projected length* 1-1/4" Minimum projected width* 5/8" Direct Interelectrode Capacitance 3 µµf Overall Length 3-11/16" ± 1/8" Seated Length 3-11/16" ± 1/8" Seated Length to Center of Cathode 2-1/8" ± 3/32" Maximum Diameter 1-1/8" Mounting Position 1.3 oz Bubb. 1.3 oz Base. Dwarf-Shell Small 4-Pin (JETEC No.A4-26), Non-hygroscopic BOTTOM VIEW BOTTOM VIEW
Pin 1 - No Connection
Pin 2-Anode Pin 4-Cathode
DIRECTION OF LIGHT
Maximum Ratings, Absolute Values:
ANODE-SUPPLY VOLTAGE {DC or Peak AC}
Characteristics at 250 Volts on Anode:
Min. Av. Max.
Sensitivity: Radiant at 8000 angstroms – 0.0027 – μamp/μwatt Luminous [#]
Value Along Cathode Length▲ – – 4.5 µamp/lumen
Anode Dark Current at 25°C – – 0.013 μ amp
* On plane perpendicular to indicated direction of incident light.
O Averaged over any interval of 30 seconds maximum.
For conditions where the light source is a tungsten-filament lamp oper- ated at a color temperature of 2870%. A dc ande supply of 250 volts, a 1-megohm load resistor, and a light input of 0.1 lumen are used.
a 1-megonm load resistor, and a light input of 0.1 lumeh are used. Measured under the same conditions as indicated under (#) with light in- put of 0.1 lumen and a light spot 1/2 inch in diameter.

IO-STAGE, HEAD-ON TYPE WITH

1-11/16" SEMITRANSPARENT CATHODE AND S-11 RESPONSE

DATA

General:		
Spectral Response	S-11	
Wavelength of Maximum Response 4	400 ± 500 angstroms	
Cathode, Semitransparent:		
Shape	Circular	
Window:		
Area	2.2 sq. in.	
Minimum diameter	1-11/16 in.	
Index of refraction	1.51	
Direct Interelectrode Capacitances (Approx	.):	
Anode to dynode No.10.	.4.4 μμf	
Anode to all other electrodes	. 7 μμf	
Maximum Overall Length	5-13/16"	
Seated Length	4-7/8" ± 3/16"	
Maximum Diameter	2-5/16"	-
Mounting Position	Anyl	
(Weight (Approx.)	5.2 oz	-
Bulb	T-16	
Base Medium-Shell Diheptal 14-Pin	(JETEC No. B14-38),	
	Non-hygroscopic	
Basing Designation for BOTTOM VIEW	1444	-
Pin 1-Dynode No.1 (7) (1) Pin	10 - Dynode No. 10	
	11 – Anode	
	12 - Internal	
Pin 4 - Dynode No.4	Connection-	
Pin 5-Dynode No.5	Do Not Use	
	13-Focusing	1
Pin 7 - Dynode No.7	Electrode	
Pin 8 - Dynode No.8 DIRECTION OF LIGHT: Pin	14 - Cathode	i
Pin 9 - Dynode No.9 INTO END OF BULB	14 041.000	
Maximum Ratings, Absolute Values:		
ANODE-SUPPLY VOLTAGE (DC or Peak AC)	. 1250 max. volts	
SUPPLY VOLTAGE BETWEEN DYNODE No. 10		
AND ANODE (DC or Peak AC)	250 max volts	+
DYNODE-No.1 SUPPLY VOLTAGE		
(DC or Peak AC)	. 300 max. volts	
FOCUSING-ELECTRODE VOLTAGE		
(DC or Peak AC)	. 300 max. volts	
AVERAGE ANODE CURRENT	. 0.75 max. ma	
AMBIENT TEMPERATURE	. 75 max. ^o C	
• Averaged over any interval of 30 seconds maximum.		
	-Indicates a change.	
10 FC		

66555

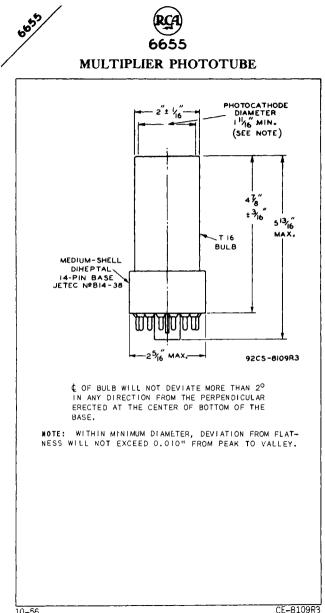
6655

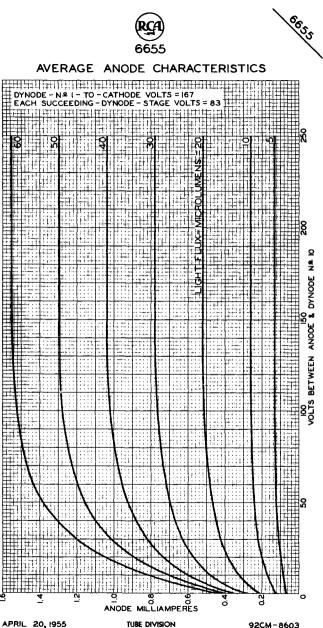
6855

divider providing	with sup	for Equipme ply voltage between cath	(E) acro	ss voitage
<pre>1/12 of E for each between dynode No.</pre>	h succeed	ing dynode s		
With E = 1000 volts			d	
Focusing Electrode*	connecte	d to Dynode	No.1 at s	ocket
-	Min.	Median	Max.	
Sensitivity:				
Radiant, at				
4400 angstroms		20000	-	µamp/µwati
Cathode radiant, a		20000		panprpnae
4400 angstroms		0.040		µamp/µwat
Luminous:				P
At O cps	10	25	_	amp/lumer
With dynode No	10			- F
as output ele				
trode**••••	–	15	-	amp/lumer
Cathode luminous:				
With tungsten				
light source.		50	-	µamp/lume
With blue light				
source®∳		-	-	μam
Current Amplificatio		500000	-	
Equivalent Anode-Da Current Input e .	гк—	8.5 x 10 ⁻¹⁰	2 x 10 ⁻⁹	1
Equivalent Noise Inpu		7×10^{-12}	2 X 10 -	'lumen Tumen
Dark Current to Any		/ X 10	-	runer
Electrode Except				
LIGOLIOUG LACOPT				
Anode (At 25°C).		-	0.75	щати
		- r rotadl and	0.75	μ amj
Anode (At 25°C) With E = 750 volts Focusing Electrode*	(except a			
With E = 750 volts	(except a	d to Dynode		
With E = 750 volts	(except a connecte	d to Dynode	No.1 at s	
With E = 750 volts Focusing Electrode*	(except a connecte	d to Dynode	No.1 at s	µamı ocket
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms	(except a connecte Min.	d to Dynode	No.1 at s	ocket
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at	(except a connecte Min.	d to Dynode . Median	No.1 at s	
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms 4400 angstroms	(except a connecte Min. at	d to Dynode . Median	No.1 at s	ocket µamp/µwat
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms 4400 angstroms Luminous:	(except a connecte Min. at	d to Dynode Median 2000 0.040	No.1 at s	ocket µamp/µwati µamp/µwati
With E = 750 volts Focusing Electrode Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps	(except a connecte Min. at	d to Dynode . Median 2000	No.1 at s	ocket µamp/µwati
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous:	(except a connecte Min. at	d to Dynode Median 2000 0.040	No.1 at s	ocket µamp/µwat µamp/µwat
With E = 750 volts Focusing Electrode [★] Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode Iuminous: With tungsten	(except a connecte Min. . – at . –	d to Dynode Hedian 2000 0.040 2.5	No.1 at s	ocket µamp/µwat µamp/µwat amp/lumer
With E = 750 volts Focusing Electrode Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tungsten light source	(except a connecte Nin. at 	d to Dynode Median 2000 0.040	No.1 at s	ocket µamp/µwati µamp/µwati
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tungsten]ight source With blue light	(except a connecte Hin. at 	d to Dynode Hedian 2000 0.040 2.5	No.1 at s	ocket µamp/µwat µamp/µwat amp/lumen µamp/lumen
With E = 750 volts Focusing Electrode [★] Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tungsten light source [♠]	(except a connecte Hin. 	d to Dynode Hedian 2000 0.040 2.5 50 -	No.1 at s	ocket µamp/µwat µamp/µwat amp/lumer
With E = 750 volts Focusing Electrode* Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tungsten]ight source With blue light	(except a connecte Hin. 	d to Dynode Hedian 2000 0.040 2.5	No.1 at s	ocket µamp/µwat µamp/µwat amp/lumen µamp/lumen
With E = 750 volts Focusing Electrode [★] Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tungsten light source [♠]	(except a connecte	d to Dynode Hedian 2000 0.040 2.5 50 50000	No.1 at s Hax. - - - - - - -	ocket μamp/μwat μamp/μwat amp/lumen μamp/lumen μamp/lumen
With E = 750 volts Focusing Electrode [★] Sensitivity: Radiant, at 4400 angstroms Cathode radiant, a 4400 angstroms Luminous: At 0 cps Cathode luminous: With tongsten light source With blue light source [⊕] . Current Amplificatio	(except a connecte Min. at at 40 0.04 DD ihe light surfature of sistor has	d to Dynode Hedian 2000 0.040 2.5 50 50000	No.1 at s Hax. - - - - - - - - - - - - - - - - - - -	ocket μamp/μwat μamp/μwat amp/lumen μamp/lumen μamp/lumen

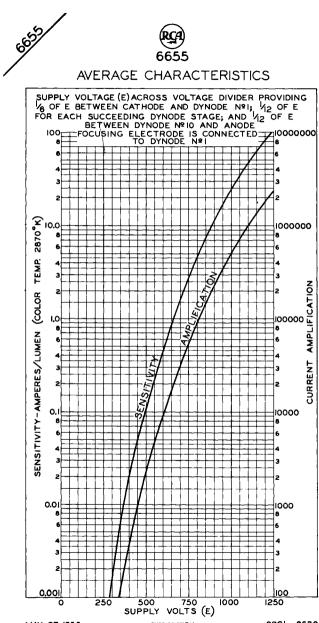
- In general, the focusing electrode is connected to dynode No.1 at the socket and operated at the same fixed potential as dynode No.1. However, in applications critical as to magnitude, uniformity, or speed of the response, the focusing electrode may be connected to the adjustable arm of a potentiometer Detween cathode and dynode No.1 in the voltage divider, and operated at an optimum potential within a range of 10 to 60 per cent of the dynode-No.1 potential.
- ** An output current of opposite polarity to that obtained at the anode may be provided by using dynode No.10 as the output electrode. with this arrangement, the load is connected in the dynode-No.10 circuit and the anode serves only as collector.
- For conditions the same as shown under (b) except that the value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected together as anode.
- Under the following conditions: Light incident on the cathode is transmitted through a blue filter (Corning, Glass Code No.5113 polished to 1/2 stock thickness) from a tunysten-filament lamp operated at a color temperature of 2870°K. The value of light flux on the filter is 0.01 lumen. The load resistor has a value of 0.01 megonm, and 200 volts are applied between cathode and all other electrodes connected toyether as anode.
- ♥ For spectral characteristic of this source, see sneet SPECTRAL CHARACTERISTIC OF 28700K LIGHT SOURCE AND SPECTRAL CHARACTERISTIC OF LIGHT FROM 28700K SOURCE AFTER PASSING THROUGH INDICATEO BLUE FILTER at front of this section.
- Measured at a tube temperature of 25°C and with the supply voltage (E) adjusted to give a luminous sensitivity of 20 amperes per lumen. Dark current caused by thermionic emission and ion feedback may be reduced by the use of a refrigerant.
- For maximum signal-to-noise ratio, operation with a supply voltage (E) below 1000 volts is recommended.
- (c) before the following conditions: Supply voltage (E) is 1000 volts, 25°C tube temperature, ac-amplifier bandwidth of 1 cycle per second, tungsten light source of 2870% interrupted at a low audio frequency to produce incident radiation pulses alternating between zero and the value stated. The 'on' period of the pulse is equal to the "off" period. The output current is measured through a filter which passes only the fundamental frequency of the pulses.

OPERATING CONSIDERATIONS


The operating stability of the 6655 is dependent on the magnitude of the anode current and its duration. When the 6655 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6655 usually recovers a substantial percentage of such loss in sensitivity.


The use of an average anode current well below the maximum rated value of 0.75 milliampere is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 100 microamperes.

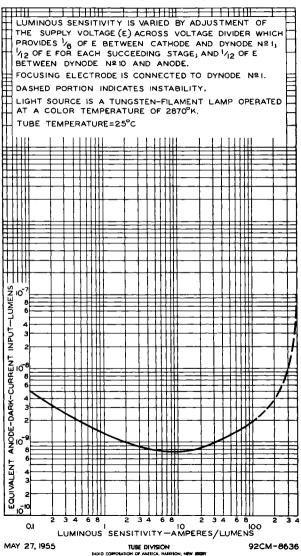
Electrostatic and/or *magnetic* shielding of the 6655 may be necessary.


SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-II Response is shown at the front of this Section

+Indicates a change.

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

MAY 27, 1955


92CL-8638

TUBE DIVISION BADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

EFFECT OF MAGNETIC FIELD ON ANODE CURRENT MAGNETIC FIELD IS PARALLEL TO DYNODE -CAGE AXIS. POSITIVE VALUES ARE FOR LINES OF FORCE FROM LEFT TO RIGHT WITH BASE DOWN AND BASE KEY TOWARD OBSERVER. DYNODE-NºI-TO-CATHODE VOLTS=150 EACH-SUCCEEDING-STAGE VOLTS=100 FOCUSING ELECTRODE IS CONNECTED TO DYNODE NºI 100 80 RELATIVE ANODE CURRENT 60 40 20

-I O I MAGNETIC FIELD INTENSITY-GAUSSES

MAY 7,1955

2

92CM-8136R1

14-STAGE, HEAD-ON TYPE WITH

1-11/16" SEMITRANSPARENT CATHODE AND S-11 RESPONSE

SHORT TIME-RESOLUTION CAPABILITY

DATA
General:
Spectral Response
Window: Area 2.2 sq. in. Minimum diameter. 1-11/16 in. Index of refraction 1.51 Direct Interelectrode Capacitances (Approx.): Anode to dynode No.14 2.4 µµf Anode to all other electrodes 5.5 µµf Dynode No.14 to all other electrodes. 7.5 µµf Maximum Overall Length
Basing Designation for BOTTOM VIEW. Pin 1 - No Connec- tion Pin 2 - Dynode No.1 Pin 3 - Dynode No.3 Pin 4 - Dynode No.3 Pin 5 - Dynode No.7 Pin 5 - Dynode No.7 Pin 5 - Dynode No.9 Pin 7 - Dynode No.13 Pin 9 - Grid No.2 (Accelerating Described of BULE) Electrode) Pin 10 - Dynode No.14 Pin 12 - Dynode No.12 Pin 12 - Dynode No.12 Pin 14 - Dynode No.6 Pin 15 - Dynode No.6 Pin 16 - Dynode No.9 Pin 17 - Dynode No.2 Pin 19 - Grid No.2 Electrode) Pin 10 - Dynode No.13 Pin 9 - Grid No.2 Pin 10 - Dynode No.13 Pin 9 - Grid No.2 Pin 10 - Dynode No.14 Pin 12 - Dynode No.12 Pin 13 - Dynode No.4 Pin 14 - Dynode No.4 Pin 19 - Grid No.2 Pin 19 - Grid No.1 (Focusing Electrode) Pin 20 - Photocathode
Maximum Ratings, Absolute Values: ANODE-SUPPLY VOLTAGE (DC) 2300 max. volts SUPPLY VOLTAGE BETWEEN DYNODE No.14 400 max. volts SUPPLY VOLTAGE BETWEEN ACCELERATING- 1500 max. volts SUPPLY VOLTAGE BETWEEN ACCELERATING- 1500 max. volts DYNODE-No.1 SUPPLY VOLTAGE (DC) 400 max. volts FOCUSING-ELECTRODE SUPPLY VOLTAGE (DC) 400 max. volts AVERAGE ANODE CURRENT 2 max. ma AMBIENT TEMPERATURE 75 max. OC Averaged over any interval of 30 seconds maximum. 200 max. volts
Are ages and any theorem of 30 seconds maximume

)

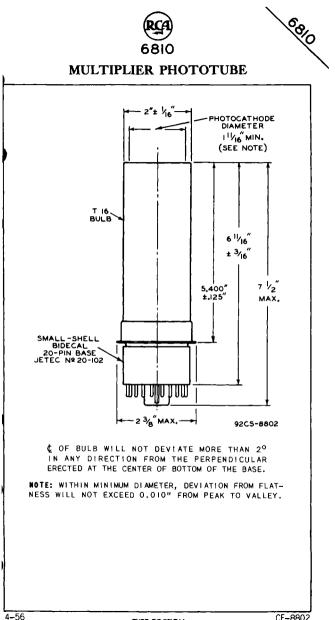
1

Characteristics Range				-		
Under conditions wi						
divider providing			0			
With $E = 2000$ volts					elerating-	
Electrode, Voltage adj	ustea t	-	-			
		Min.	Median	Max.		
Sensitivity:						
Radiant, at			0.6		/	
4400 angstroms Cathode radiant;	• • •	-	0.6	-	amp/µwati	
at 4400 angstroms		_	0.048	-	µamp/µwati	
Luminous:					,	
At 0 cps		120	750	4500	amp/lumer	
With dynode No.14						
as output			6.05		11	
electrode t Cathode luminous:	• • •	-	525	-	amp/lumer	
With tungsten						
light source▲ .		40	60	_	µamp/lumer	
With blue light						
source⊕∳		0.04		-	μam¢	
Current Amplification		-	12.5×10^{6}	-		
Equivalent Anode-Dark Current Input®	-	_	5 x 10-10	2×10^{-9}	9 Jumer	
Equivalent Noise Inpu	t *	_	6 x 10-12	-	lumer	
Dark Current to Any			• • • •			
Electrode Except						
Anode (At 25°C)		-	-	0.75	μamp	
With E = 2300 volts (except as noted) and Accelerating-						
Electrode Voltage adj	usted t	o give	maximum g	ain		
		Hin.	Median	Max.		
Sensitivity:						
Radiant, at						
4400 angstroms, .		-	3.2	-	amp/µwwatt	
Cathode radiant,			0.040			
at 4400 angstroms	• • •	-	0.048	-	µamp/µwati	
Luminous: At O cos		660	4000	28000	amp/lumer	
With dynode No.14	•••	000	4000	20000	amprinamen	
as output						
electrodet		-	2800	-	amp/lumer	
Cathode luminous:						
With tungsten light source ^A .		40	60	_	µamp/lumer	
With blue light	•••	40	00	-	µamp/ rumer	
source®\$		0.04	-	-	μam	
Current Amplification	1	-	66 x 106	-		
å,†,≜,⊕,♦,⊕,≡, ★: See nex	t page.					
1-56				TENTA	TIVE DATA	
	TU	e divisi	ON			

TABLE						
VOLTAGE TO BE PROVIDED BY	DIVIDER					
Between	5.4% of Supply Voltage (E) multiplied by					
Cathode and Focusing Electrode Focusing Electrode and Dynode No.1 Dynode No.1 and Dynode No.2 Dynode No.2 and Dynode No.3 Dynode No.3 and Dynode No.3 Dynode No.4 and Dynode No.5 Dynode No.5 and Dynode No.6 Dynode No.6 and Dynode No.6 Dynode No.7 and Dynode No.7 Dynode No.7 and Dynode No.9 Dynode No.9 and Dynode No.9 Dynode No.9 and Dynode No.10 Dynode No.11 and Dynode No.12 Dynode No.13 and Dynode No.13 Dynode No.14 and Anode	1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Anode and Cathode For conditions where the light source is a tung ated at acolor temperature of 2070K. A light is used. The load resistor has a value of 0.0	18.5 Isten-filament lamp oper- input of 0.1 microlumen					
is used. The load resistor has a value of 0.01 megoham. An output current of opposite polarity to that obtained at the anode may be provided by using dynode No.1% as the output electrode. With this arrangement, the load is connected in the dynode-No.1% circuit and the anode serves only as collector. The value of sensitivity at dynode No.1% is approximately 70% of that when the anode is the out- put electrode. Specifically, the sensitivity measured at dynode No. 14 is equal to (1-1/g) times the sensitivity measured at the anode, where "g is the gain of the dynode-No.1% sage.						
For conditions the same as shown under (a) e light flux is 0.01 lumen and 200 volts are app all other electrodes connected together as and	xcept that the value of lied between cathode and de.					
Under the following conditions: Light incident mitted through a blue filter (corning, Glass 1/2 stock thickness) from a tungsten-filament temperature of 2870°k. The value of light fl lumen. The load resistor has avalue of 0.01 m applied between cathode and all other electrod anode.	Code No.5113 polished to lamp operated at a color ux on the filter is 0.01 legohm, and 200 volts are les connected together as					
For spectral characteristic of this source, ACTERISTIC OF 28700K LIGHT SOURCE AND SPECTRAL FROM 28700K SOURCE AFTER PASSING THROUGH INDIC of this section.	CATED BLUE FILTER at front (
Measured at a tube temperature of 25 ^o C and wit adjusted to give a luminous sensitivity of 2000 current caused by thermionic emission and ion by the use of a refrigerant.	feedback may be reduced					
 For maximum signal-to-noise ratio, operation we below 2000 volts is recommended. Under the following conditions: Supply voltage tuber the following conditions: Supply voltage tuber and the second burgsten of the second burgsten of a low audio frequency to produce a lternating between zero and the value stated pulse is equal to the 'off' period. The out through a filter which passes only the fundamenta 	vith a supply voltage (£) • (£) is 2000 volts, 259C - 2000 volts, ac-ampifier nt source of 2870 K in- ncident radiation pulses The "on" period of the put current is measured 1 frequency of the pulses.					

OPERATING CONSIDERATIONS

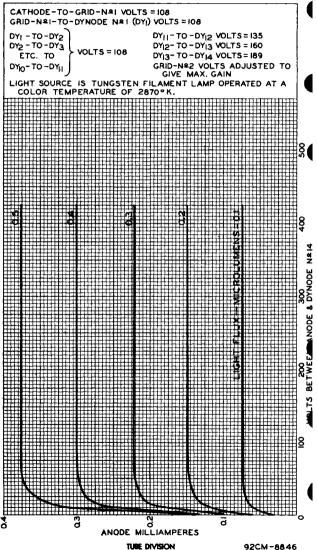
The operating stability of the 6810 is dependent on the magnitude of the anode current and its duration. When the 6810 is operated at high values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 6810 usually recovers a substantial percentage of such loss in sensitivity.


The use of an average anode current well below the maximum rated value of 2 milliamperes is recommended when stability of operation is important. When maximum stability is required, the anode current should not exceed 250 microamperes.

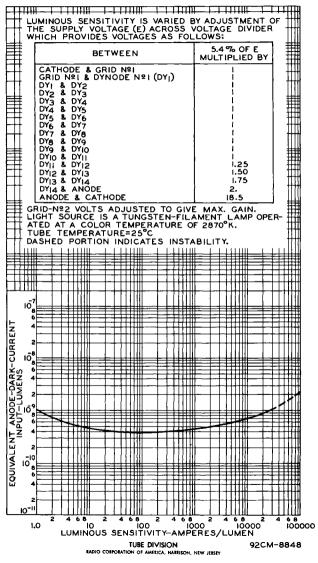
Electrostatic and/or *magnetic shielding* of the 6810 may be necessary.

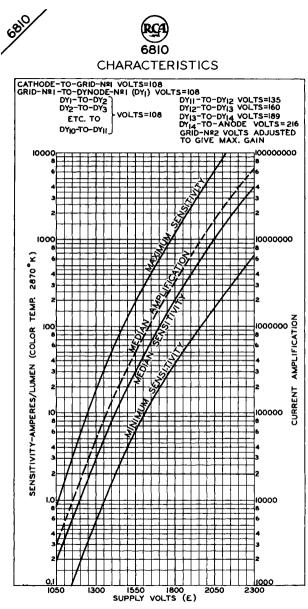
The material of which the dynodes of the 6810 are made has stable, high-current carrying capabilities and permits the use of a tube manufacturing process which minimizes regenerative effects such as afterpulses. The relative freedom of the 6810 from afterpulses and its small spread in electron transit time make it particularly useful for fast coincidence scintillation counting.

Because the 6810 offers the advantage of small spread in electron transit time, it has a fast pulse rise time. As a result, the 6810 has very short time-resolution capability, i.e., in the order of 1 or 2 millimicroseconds. For an input pulse having a duration of 1 millimicrosecond or less, the time spread of the pulse at the anode is about 9 millimicroseconds measured at 50 per cent of the maximum pulse height, when the supply voltage is 2000 volts and the focusing electrode is connected to dynodé No.1.


> SPECTRAL-SENSITIVITY CHARACTERISTIC of Phototube having S-11 Response is shown at the front of this Section

AVERAGE ANODE CHARACTERISTICS




IO CORPORATION OF AMERICA, HARRISON, NEW JEREY

TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC

TUBE DIVISION MORE CONFORMED OF AMERICA, HARRISON, NEW JERRY 92CL-8845

6903

MULTIPLIER PHOTOTUBE

IO-STAGE, HEAD-ON TYPE WITH

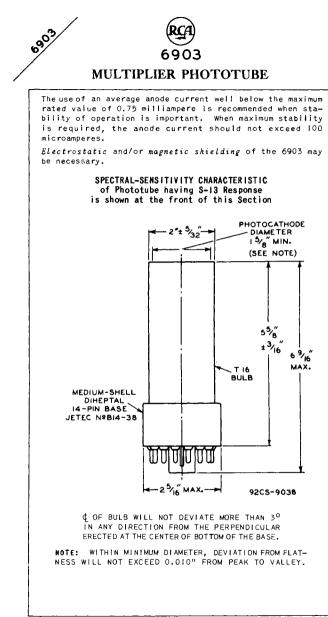
1-5/8" SEMITRANSPARENT CATHODE AND S-13 RESPONSE

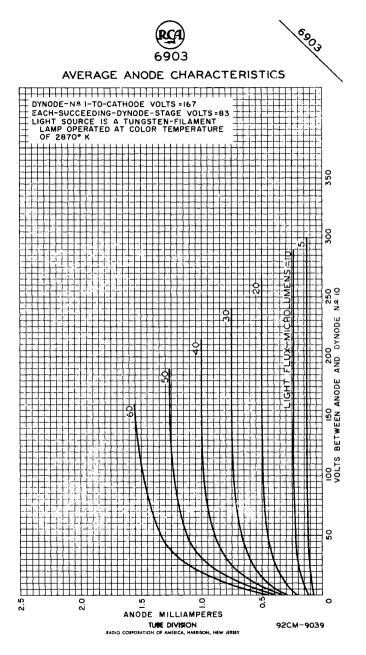
DATA

General:	
Spectral Response	13 ms
Shape Circul Window:	ar
Area	n. n.
Index of refraction at 2000 angstroms . 1.51 Direct Interelectrode Capacitances (Approx.):	
Anode to all other electrodes	μf μf
Maximum Overall Length	.6"
	ny
Weight (Approx.)	16
Fused Sili Maximum thickness	0"
Non-hygroscop	
Pin 1 - Dynode No.1 Pin 2 - Dynode No.2 Pin 3 - Dynode No.3 Pin 3 - Dynode No.3 Pin 12 - Internal	
Pin 4 - Dynode No.4 Pin 5 - Dynode No.5 Pin 6 - Dynode No.6 Pin 7 - Dynode No.7 Pin 7 - Dynode No.7	
Pin 8 - Dynode No.8 Pin 9 - Dynode No.9 Pin 9 - Dynode No.9 Pin 9 - Dynode No.9	
Maximum Ratings, Absolute Values:	
ANODE-SUPPLY VOLTAGE (DC or Peak AC) 1250 max. vol SUPPLY VOLTAGE BETWEEN DYNODE No.10	
AND ANODE (DC or Peak AC) 250 max. vol DYNCDE-No.1 SUPPLY VOLTAGE	
(DC or Peak AC)	
	ts ma °C
Averaged over any interval of 30 seconds maximum.	Ĭ
	1

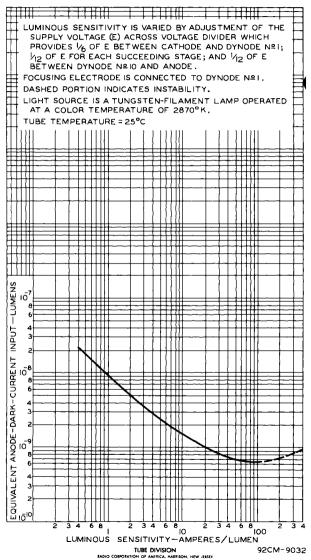
6903

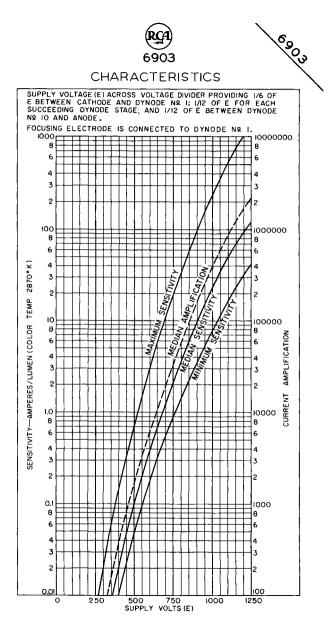
MULTIPLIER PHOTOTUBE


Characteristics Range V	alues	for Equipme	nt Design	:	
Under conditions with divider providing 1/6 1/12 of E for each su between dynode No.10	ofE b cceedi	etween catho ing dynode s	ide and dy	node No.1;	
With E = 1000 volts (except as noted) and Focusing Electrode* connected to Dynode No.1 at socket					
Focusing Electrode ⁻ con				ocret	
	Min.	Median	Max.		
Sensitivity:					
Radiant, at 4400 angstroms	-	19000	-	µamp/µwatt	
Cathode radiant, at 4400 angstroms	-	0.047	_	μ amp/ μ wati	
Luminous: At 0 cps	8	24	240	amp/lumer	
With dynode No.10 as output elec- trode** Cathode luminous:	-	14	-	amp/lumer	
With tungsten light source ^A With blue light	40	60	-	µamp/lumer	
source [®]	0.04	-	-	μam	
Current Amplification. Equivalent Anode-Dark-	-	400000	-		
Current Input ^{⊕∎} Equivalent Noise input:	-	1 × 10 ⁻⁹	3 × 10-9	lumer	
Luminous* Ultraviolet Dark Current to Any	-	6.7 × 10 ⁻¹² 1.6 × 10 ⁻¹⁴	-	lume wat	
Electrode Except Anode (At 25ºC)	-	-	0.75	μam	
With E = 750 volts (exc	ept as	s noted) and			
Focusing Electrode* con	nected			ocket	
	Nin.	Median	Max.		
Sensitivity:					
Radiant, at 4400 angstroms	-	1650	-	µamp/µwat	
Cathode radiant, at 4400 angstroms	-	0.047	-	µamp/µwat	
Łuminous:↓ At 0 cps With dynode No.10	-	2.1	-	amp/lume	
as output elec- trode**	-	1	_	amp/}ume	
For conditions where the li ated at a color temperature is used. The load resiste	ight so of 28 or has	urce is a tung 70°K. A light a value of 0.0	sten-filame input of 1 1 megohm.	ent lamp oper- O microlumens	
*,**, ≜,⊕,∳,⊕,∎, ≭,†: See ne>	(t page				
1056	TUR		TENT	ATIVE DATA .:	


TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

		Min.	Nedian	Max.	
(Cathode luminous:				
	With tungsten				
	light source*	40	60	-	µamp/lumen
	With blue light				
	source [⊕] ♥	0.04	-	-	<i>μ</i> amp
Çu	rrent Amplification.	-	35000	-	
*	In general the focusing	electro	de is connec	ted to dyna	de No 1 at the
	In general, the focusing socket and operated at the	same fix	ed potential	as dynode N	o.1. However,
	in applications critical response, the focusing arm of a potentiometer b	l as to m electrod	agnitude, un e may be cor	iformity, o inected to	r speed of the the adjustable
	arm of a potentiometer b	etween c	athode and d	ynode No.1	in the voltage
	divider, and operated at 60 per cent of the dynod	i an opti Je-No.1 p	mum potentia otential.	I within a	range of 10 to
**				hat obtaine	d at the anode
	An output current of opp may be provided by using this arrangement, the 1	g dynode	No. 10 as the	e output el	ectrode. With
	and the anode serves onl	ly as col	lector.	the dynode	
•	For conditions the same light flux is 0.01 lumen	as show	n under (🌢)	except tha	t the value of
	all other electrodes con	and 150 inected t	voits are ap ogether as a	pileo betwe node.	en cathode and
⊕					hode is trans-
	mitted through a blue fi	ilter (Co	rning, Glass	Code No.51	13 polished to
	temperature of 2870°K.	The valu	e of light f	lux on the	filter is 0.01
	Under the following condi mitted through a blue fi 1/2 stock thickness) fro temperature of 2870 K. Jumen. The load resist are applied between cat	or has a	value of 0.	01 megohm,	and 150 volts
	gether as anode.	.noue and	all other	electrodes	connected to-
٠.	For spectral characteris	stic of t	his source,	see sheet	SPECTRAL CHAR-
	For spectral characteris ACTERISTIC OF 2870 K L LIGHT FROM 2870 K SOURCE	IGHT SOU	IRCE AND SPE	CTRAL CHAR	ACTERISTIC OF
	at front of this section	1.			
÷	Measured at a tube temper adjusted to give a lum Dark current caused by	ature of	25 ⁰ C and wi	th the supp	ly voltage (E)
	adjusted to give a lum Dark current caused by	thermion	ensitivity o Nicemission	of 20 amper and ion fe	es per lumen. Redback may be
_	reduced by the use of a	refriger	ant.		
•	For maximum signal-to-	noise ra	atio operati	on with a s	upply voltage
×	(E) below 1000 volts is	nditions	· Supply yo	1+200 (5) 6	£ 1000 volts
	Under the following co 25°C tube temperature, tungsten light source o	ac-amplif	fier bandwid	th of 1 cyc	le per second,
	to produce incident radi	f 2870°K Lation ou	interrupted lses alterna	at a low a ting betwee	n zero and the
	value stated. The "on	period	of the puls	se is equal	to the "off"
	to produce incident radi value stated. The "on period. The output curr only the fundamental fre	rent is m equency o	easured thro f the pulses	ugn a filte •	r which passes
t	Determined under the	same cor	nditions as	shown und	er (★) except
	that use is made of mo	nochroma	tic source ≀	having radi	ation of 2537
	angstroms.				
	OPER	ATING C	ONSIDERATI	ONS	
	The operating stabi	ility o	f the 690	3 is dep	endent on
	the magnitude of th	e anod	e current	and its	duration.
	When the 6903 is opera				
	a drop in sensitivit				
					tabulated
	sensitivity values de	epends o	n the sever	ity of the	operating
	conditions. After a	period	of idlenes	s, the 69	03 usually
	recovers a substanti:	al perc	entage of	such loss	in sensi-
1	tivity.				

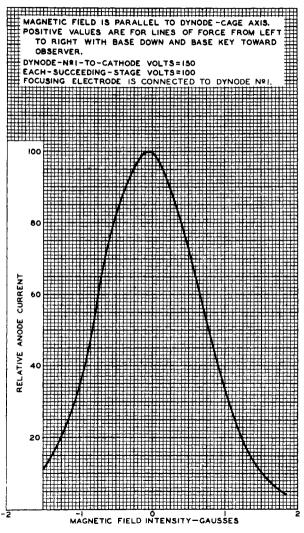




ୢୄ୶ୖ

RCA 6903

TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC


TUBE DIVISION AND CORPORATION OF AMERICA, HARRISON, NEW RESEY

92CL-9033

bog

EFFECT OF MAGNETIC FIELD ON ANODE CURPENT

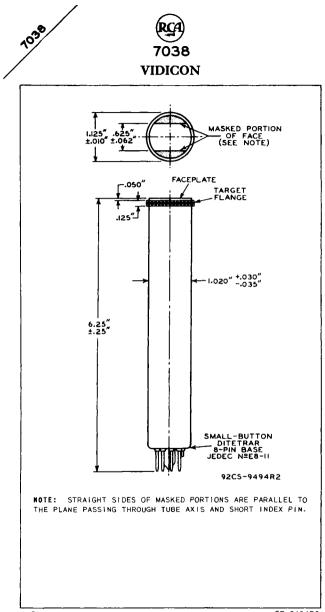
600-LINE RESOLUTION

For film and live pickup with color or black-and-white TV cameras

DATA

General:
Heater, for Unipotential Cathode: Voltage
Target to all other electrodes 4.6 Spectral Response See Curves Photoconductive Layer:
 Maximum useful diagonal of rectangular image (4 x 3 aspect ratio) 0.62" Orientation of quality rectangle—Proper orientation is obtained when the horizontal scan is essentially parallel to the straight sides of the masked portions of the face- plate. The straight sides are parallel to the plane passing through the tube axis and short index pin. The masking is for orientation only and does not define the proper scanned area of the photoconductive layer. Focusing Method Magnetic Deflection Method
Basing Designation for BOTTOM VIEW
Maximum Ratings, Absolute Values:
For scanned area of 1/2" x 3/8" GRID-No.3 & GRID-No.4 VOLTAGE. 350 max. volts GRID-No.2 VOLTAGE. 350 max. volts GRID-No.1 VOLTAGE: 350 max. volts Pogative-bias value. 125 max. volts Positive-bias value. 0 max. volts
See next page. ←Indicates a change.
4-59 ELECTRON TUBE DIVISION DATA 1

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



7038 VIDICON

PEAK HEATER-CATHODE VOLTAGE:		
Heater negative with respect to cathode	. 125 ma:	<. volts
Heater positive with respect to cathode		
DARK CURRENT	. 0.25 ma	
PEAK TARGET CURRENT.	. 0.55 ma	
FACEPLATE:	. 0.00 ma	~·• µ~·
Illumination	. 1000 ma:	k. ft⊸c
Temperature	. 60 ma	
, , , , , , , , , , , , , , , , , , , ,		
Typical Operation:		
For scanned area of 1/2" x 3	18" and	
faceplate temperature of 30° i	to 35° C	
Grid-No.4 (Decelerator) & Grid-No.3		
	50 ^m to 300	volts
Grid-No.2 (Accelerator) Voltage	300	volts
Grid-No.1 Voltage for picture		
	45 to -100	volts
Average "Gamma" of Transfer Charac-		
teristic for signal-output current	0.65	
between 0.02 µa and 0.2 µa	0.05	
Visual Equivalent Signal-to-Noise Ratio (Approx.) ^o	300:1	
(Ratio (Approx.)°	500:1	
Voltage:		i
When applied to grid No.1	75	volts
When applied to cathode	20	volts
Field Strength at Center of Focusing	20	10113
Coil (Approx.)	40	qausses
Field Strength of Adjustable	40	gadooco
Alignment Coil [®]	0 to 4	gausses
	- D/	°
Maximum-Sensitivity Operation for Lin		
Faceplate Illumination (Highlight) .	2	ft–c
Maximum Target Voltage required to		
produce dark current of 0.2 μ a		•.
in any tube**	110	volts
Target Voltaget	50 to 100	volts
Dark Current [*] .	0.2	μa
	.4 to 0.5	μa
Signal-Output Current:#	2 + 0 0 2	
	.2 to 0.3 .08 to 0.1	μa
Average	.00 10 0.1	μa
Average-Sensitivity Operation for Liv	ve-Scene Pic	kup
Faceplate Illumination (Highlight) .	15	ft—c
Maximum Target Voltage required to		
produce dark current of 0.02 μa in any tube* [*]		
in any tube**	60	volts
Target Voltage ^T	30 to 50	volts
Dark Current	0.02	μa
	.3 to 0.4	μa
. * □ • 0		
4-59 ELECTRON TUBE DIVISION		DATA 1
+ UV ELECTRON TUBE DIVISION		DATA I

Signal-Output Current:#	
Peak 0.3 to 0.4	μa
Average 0.1 to 0.2	μa
Ninimum-Lag Operation for Film Pickup	
Faceplate Illumination (Highlight), 100	ft—c
Maximum Target Voltage required to	
produce dark current of 0.004 μa in any tube [*] ¹ ₄	volts
Target Voltaget	volts
Dark Current 0.004	μa
Target Current (Highlight) 0.3 to 0.4	μa
Signal-Output Current:# Peak0.3 to 0.4	μa
Average 0.1 to 0.2	ша µa
This capacitance, which effectively is the output impe 7038, is increased when the tube is mounted in the def and focusing-coil assembly. The resistive component o	dance of the lecting-yoke
impedance is in the order of 100 megohms.	
Beam focus is obtained by combined effect of grid-No.3 w should be adjustable over indicated range, and a focusing an average field strength of NO gausses.	voltage which
Definition, focus uniformity, and picture quality decre creasing grid-No.4 and grid-No.3 voltage. In general, grid No.3 should be operated above 250 volts.	ase with de-
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
With no blanking voltage on grid No.1.	
Measured with high-gain, low-noise, cascode-input-ty having bandwidth of 5 Mc. Because the noise in such having bandwidth of 5 Mc. Because the noise in such	a system is
predominately of the high-frequency type, the visual equiv to-noise ratio is taken as the ratio of highlight video-s to rms noise current, multiplied by a factor of 3.	ignal current
The alignment coil should be located on the tube so the	at its center
The alignment coil should be located on the tube so this is at a distance of 3-11/16 inches from the face of the positioned so that its axis is coincident with the axis	tube, and be
the deflecting yoke, and the focusing coil.	
** The target voltage for each 7038 must be adjusted to tha gives the desired operating dark current.	t value which
Indicated range for each type of service serves only t the operating target-voltage range normally encountered.	
The deflection circuits must provide extremely linear	scanning for
The deflecting circuits must provide extremely linear good black-level reproduction. Dark-current signal is to the scanning velocity. Any change in scanning veloci black-level error in direct proportion to the change	proportional
black-level error in direct proportion to the change velocity.	in scanning
	raet currents
Video amplifiers must be designed properly to handle ta of this magnitude to avoid amplifier overload or picture	
Befined as the component of the target current after the component has been subtracted.	dark-current

LOW-POWER (0.6-WATT) HEATER 600-LINE RESOLUTION For use under severe shock and vibration, high humidity, and altitudes up to 50,000 feet in small, compact, transistorized TV cameras

DATA General: Heater, for Unipotential Cathode: Voltage. 6.3 ± 10% . . . ac or dc volts Direct Interelectrode Capacitance: Target to all other electrodes щuf . . See Curves Photoconductive Laver: Maximum useful diagonal of rectangular image (4 x 3 aspect ratio). 0.62" Orientation of quality rectangle-Proper orientation is obtained when the horizontal scan is essentially parallel to the plane passing through the tube axis and short index pin. Overall Length 5.12" ± 0.06" Pin 7 - Cathode Pin 1 - Heater Pin 2-Grid No 1 Pin 8 - Heater Pin 3-Internal Flange - Target Connection-Short Index Pin -(2)Do Not Use Same as Pin 4 - Same as Pin 3 Pin 3 Pin 5 - Grid No.2 Pin 6 - Grid No.4, Grid No.4, DIRECTION OF LIGHT: Grid No.3 INTO FACE END OF TUBE Maximum Ratings, Absolute-Maximum Values: For altitudes up to 50,000 feet and scanned area of 1/2" x 3/8" volts GRID-No.2 VOLTAGE. 350 max. volts GRID-No.1 VOLTAGE: Negative-bias value. 125 max. volts PEAK HEATER-CATHODE VOLTAGE: Positive-bias value. .0 max. volts Heater negative with respect to cathode . . 125 max. volts Heater positive with respect to cathode . . 10 max. volts See next page. 4-59

ELECTRON TUBE DIVISION

TENTATIVE DATA 1

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

RCA 7263 VIDICON

DARK CURRENT		0.25 max		
Illumination Temperature (Operating	or storage).	1000 max		
Typical Operation:				
For scanned	area of 1/2" x	- 218" and	1	
faceplate ter	mperature of 30	0 to 35° C		
Grid-No.4 (Decelerator)		55		
Grid-No.3 (Beam-Focus- Electrode*) Voltage . Grid-No.2 (Accelerator)	Voltage	250 ^m to 300 300	volts volts	
Grid-No.1 Voltage for pi cutoff	cture	-45 to -100	. 1	
Average "Gamma" of Trans Characteristic for sig output current between	nal-	-45 10 -100	volts	
0.02 μa and 0.2 μa Visual Equivalent Signal		0.65	l	
Noise Ratio (Approx.) ^o		300:1		
Minimum Peak-to-Peak Bla Voltage:		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
When applied to grid N	0.1	75	volts	
When applied to cathod	e	20	volts	
Field Strength at Center				
Focusing Coil (Approx.)	40	gausses	
Field Strength of Adjust Alignment Coil®	able	0.4.4		
		0 to 4	gausses	
Maximum-Sensitivity	Operation for	Live-Scene Pic	kup	
Faceplate Illumination (Maximum Target Voltage r produce dark current o	equired to	2	ft-c	
in any tube**		110	volts	
Target Voltaget		60 to 100		
Dark Current [®] . Target Current (Highligh		0.2	μa	
Signal-Output Current:#		0.4 to 0.5	μa	
Peak		0.2 to 0.3	μa	
5		0.08 to 0.1	μa	
Average-Sensitivity	Operation for	Live-Scene Pic	kup	
Faceplate Illuminiation Maximum Target Voltage r produce dark current o		15	ft-c	
		60	volts	
Target Voltaget		30 to 50	volts	
Dark Current		0.02	μa	
Target Current (Highligh	t) =	0.3 to 0.4	μα	
1.50	-	TENTATIN	E DATA 1	
4-59 ELECTRON TUBE DIVISION TENTATIVE DATA 1 RADIO CORPORATION OF AMERICA, MARRISON, NEW JERSEY				

Signal-Output Current:#				
Peak 0.3 to 0.4	μa			
Average 0.1 to 0.2	μa			
Minimum-Lag Operation for Film Pickup				
Faceplate Illumination (Highlight). 100	ft-c			
Maximum Target Voltage required to	10-0			
produce dark current of 0.004 μa				
in any tube**	volts			
larget Voltage! 15 to 25	volts			
Dark Current 0.004	μa			
Target Current (Highlight)■ 0.3 to 0.4 Signal-Output Current:#	μa			
Peak 0.3 to 0.4	μa			
Average 0.1 to 0.2	μa			
This capacitance, which effectively is the output impedance 7263, is increased when the tube is mounted in the deflect	e of the ing-yoke			
and focusing-coll assembly. The resistive component of the impedance is in the order of 100 megohms.	e ŏutput			
Beam focus is obtained by combined effect of grid-No.3 volta should be adjustable over indicated range, and a focusing col	ige which			
should be adjustable over indicated range, and a focusing col an average field strength of 40 gausses.	1 having			
	ase with			
Definition, focus uniformity, and picture quality decrea decreasing grid-No.4 and grid-No.3 voltage. In general, grid grid No.3 should be operated above 250 volts.	No.4 and			
With no blanking voltage on grid No.1.				
Heasured with high-gain, low-noise, cascode-input-type amplified and the second sec	er having			
of the high-frequency type, the visual equivalent signal-	to-noise			
bandwildth of 5 Mc. Because the noise in such a system is predo of the high-frequency type, the visual equivalent signal- ratio is taken as the ratio of highlight video-signal curren noise current, multiplied by a factor of 3.	t to rms			
The alignment coll should be located on the tube so that it	s center			
The alignment coll should be located on the tube so that it is at a distance of 3-11/16 inches from the face of the t be positioned so that its exists is coincident with the axis of its exist.	ube, and the tube,			
the deflecting yoke, and the focusing corr.	1			
The target voltage for each 7263 must be adjusted to that val gives the desired operating dark current.				
Indicated range for each type of service serves only to illust operating target-voltage range normally encountered.	irate the			
	ning for			
The deflecting circuits must provide extremely linear scan good black-level reproduction. Dark-current signal is prop to the scanning velocity. Any change in scanning velocity pr black-level error in direct proportion to the change in	ortional			
black-level error in direct proportion to the change in sealing to the	scanning			
velocity. Video amplifiers must be designed properly to bandle target	currents			
Video amplifiers must be designed properly to handle target of this magnitude to avoid amplifier overload or picture dis #				
Defined as the component of the farget current after the dark component has been subtracted.	k-current			
SPECIAL PERFORMANCE.DATA				
In connection with the following tests, sample 726;	3's will			
maintain resolution as determined with a RETMA Res				
Chart, or equivalent, and will faithfully reproduce all	resolu-			
tion wedges and grey scales of the chart.				
Vibration Tests:				
These tests are performed under conditions for A				
Sensitivity Operation for Live-Scene Pickup on a sam	nple lot			

TENTATIVE DATA 2

RCA 7263 VIDICON

of tubes from each production run. Tubes and their associated components§ are vibrated on apparatus providing dynamic conditions similar to those described in MIL-E-52728♦, paragraph 4.7.1.

Resonance. Tubes and associated components§ are vibrated (per the method of MIL-E-52728), paragraph 4.7.1.1) for 1 hour at $+25^{\circ}$ C, for 15 minutes at 0° C, and for 15 minutes at $+55^{\circ}$ C.

Cycling. Tubes and associated components§ are vibrated (per the method of MIL-E-52728§, paragraph 4.7.1.2 pertaining to specimen without vibration isolators) for 1 hour at +25° C, for 15 minutes at 0° C, and for 15 minutes at +55° C.

Temperature-Pressure (Altitude) Tests:

Tubes and associated components§ are subjected (per the method of MLL-E-5400[®] paragraph 3.2.20, 3.2.20.1, and 3.2.20.1.1) to the separate and combined effects of varying temperature 0° to +55° C and varying barometric pressure 30 to 3.4 inches of mercury. The pressures correspond to sea level and to an altitude of 50,000 feet, respectively.

Shock Tests:

These tests are performed with no voltages applied and on a sample lot of tubes from each production run. Tubes and their associated components§ are subjected in these tests (per MIL-E- 5400° , paragraph 3.2.21.2.1) to 18 impact shocks of 15 g consisting of 3 shocks in opposite directions along each of three mutually perpendicular axes of the tube. Each shock impulse has a duration of 11 ± 1 milliseconds with a maximum impact acceleration occurring at approximately 5.5 milliseconds.

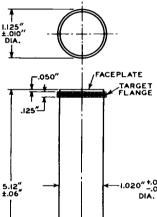
Temperature-Humidity Tests:

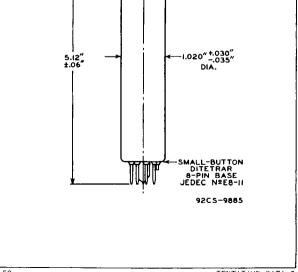
These tests are performed with no voltages applied to the 7263. The 7263 and associated components§ are subjected {per the method of MiL-E-5400[®], paragraph 3.2.20.2B} to relative humidities up to and including 100 per cent at temperatures up to and including $\pm 50^{\circ}$ C.

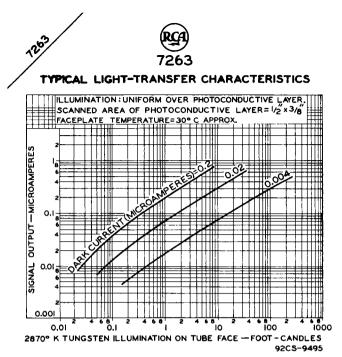
§ Tube socket such as Cinch No.54418088 and RCA Assembly No.200SDU501, or equivalent, which consists of the deflecting colls. focusing coll, alignment coll, shield, and target connector.

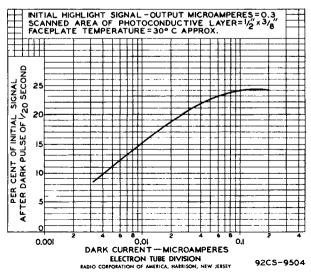
5 June 1957, Procedure I of Military Specification.

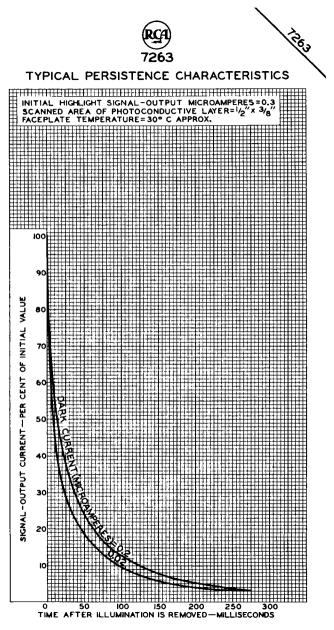
1 January 1956.

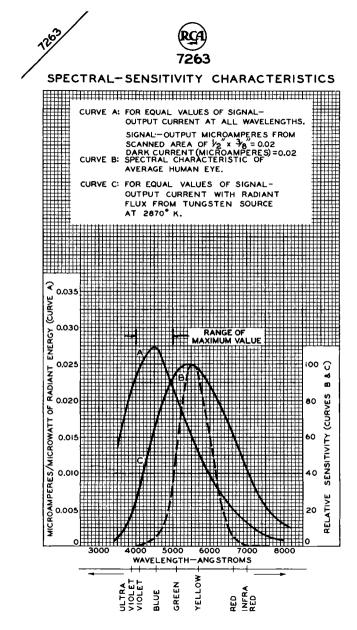

OPERATING CONSIDERATIONS


The *target connection* is made by a suitable spring contact bearing against the edge of the target flange. This spring contact may conveniently be provided as part of the focusingcoil design.

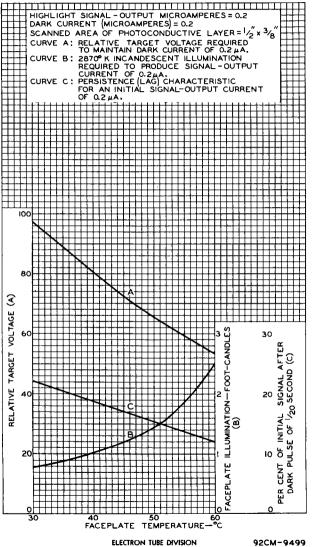

Support for the 7263 should be provided such that, under vibration and shock, the tube will not be displaced with respect


to the focusing, deflecting, and alignment fields. Suitable support is provided for the tube and its socket in the RCA Deflection Assembly 200SDU501, or equivalent. Orientation of the 7263 in its support should be such that the horizontal scan is essentially parallel to the plane passing through the tube axis and short index pin.

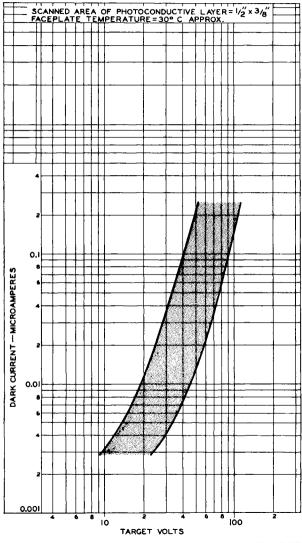




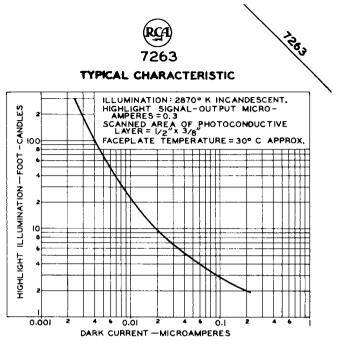
TYPICAL PERSISTENCE CHARACTERISTIC


ELECTRON TUBE DIVISION RADIO CONFORATION OF AMERICA, HARRISON, NEW JERSEY

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY



DARK-CURRENT RANGE

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92C5-9493

ADV Plans, LLC

Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines, brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at <u>www.theclassicarchives.com</u>, or our ebay stores:

TheClassicArchives ADVPlans SuperShedPlans

