
http://hecgeek.blogspot.com/2017/10/wall-o-matic-interfac
e-1.html
http://hecgeek.blogspot.com/2017/10/wall-o-matic-interfac
e-2.html
http://hecgeek.blogspot.com/2017/10/wall-o-matic-interfac
e-3.html

I am trying to get archive.org to create a copy of these
files but I am currently having a problem accessing that
site.

Attached are 1-3 of the content only of the posts, followed
by 1-3 of the page as published.

Household Enterprise Computing Geek

H.E.C. Geek

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

1 of 3 7/17/2020, 8:41 AM

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

2 of 3 7/17/2020, 8:41 AM

The one thing I desperately needed? Projects! Given that I knew I was going to have a lot of free time
coming up in the near future, I reopened my research into the Wall-0-Matic and began to scour eBay.

Background Research

One of the first things I stumbled across were these commercial "products" designed to provide a modern
interface from the wallbox:

CD Adapter
Wallbox2mp3

Unfortunately, these projects were less than desirable for my tastes. I was also looking for a project, not an
off-the-shelf solution. These devices also seemed a bit dated, of limited availability, and quite proprietary.
They also seemed to focus on playback a bit too "locally," rather than using the wall box as an actual

remote for a real stereo system. My house had in-wall speakers installed in many rooms, including the
"diner" room , and I really wanted to use those. Since I had already connected many of my in-wall speakers

to a Sanos rig , I kept wondering if there was a way I could just use that.

The next thing I did was dig into these hobbyist projects which seemed much closer to what I actually
wanted to accomplish:

Wall Box SONOS Controller [Stephen Devlin]
Seeburg Wall-0-Matic [Retro Future Electrics]

Raspberry Pi Project -A 1960s wallbox interfaced with Sanos [Phil Lavin]

One common theme among these projects was simplicity. Minimal components to interface the wallbox to a

Raspberry Pi , and minimal work to control a Sanos system based on the result. They also provided enough
schematic and component details to give me a tangible starting point. Even if I decided to take a different

path with my own project, at least I had a good foundation to build upon.

Project Goals

So thinking through what I wanted to accomplish with this project, I decided I wanted to build a device that
could do the following:

• Provide power to the wallbox

• Read the signal pulses, and decode them into a song selection

• Enqueue selected songs with my Sanos system, simulating the functionality of a jukebox

• Electronically toggle the coin switches, so that inserting actual coins would be optional

At a lower level, I also knew I wanted to take things seriously in the design of the circuit I was going to use
to accomplish all of this. That meant:

• Complete and detailed schematic

• Complete and detailed BOM (bill-of-materials)

• Real fabricated PCB (printed circuit board) design

(The BOM and PCB being things that I'd never actually done before. Every prior circuit of mine was a

hand-constructed mess of wires on a pre-drilled pad-per-hole PCB. Thankfully, in this day and age, doing it
"right" is now quite accessible.)

I'll attempt to break this blog series apart based on the major progression of this project. I may not discuss
things in the actual order that I did them , since there was a lot of back-and-forth between the various
elements. However, it should flow in an order that makes sense. Most likely it'll be something like this:

Subscribe to: Post Comments (Atom)

Awesome Inc. theme. Powered by Blogger.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

3 of 3 7/17/2020, 8:41 AM

Household Enterprise Computing Geek

H.E.C. Geek

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

1 of 5 7/17/2020, 8:47 AM

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

2 of 5 7/17/2020, 8:47 AM

Unfortunately this wallbox basically sat untouched for a few weeks, since I still had to buy the necessary

components (shown above) to power it up and I was preoccupied with other things at the time.

When I finally powered it up , the first thing I discovered was that multiple light bulbs needed replacing. That
much was no big deal, so I just ordered them off Amazon (#51 and #55 bayonet mount light bulbs). I then
discovered that the electrical contacts were dirty, the mechanics needed a little fiddling , and it didn't seem

to be working correctly.

Thankfully it wasn't too hard to find the repair manual online. Of course it was written in 50's speak, and it

was sometimes hard to match the terms and illustrations to what I was seeing inside the actual device.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

3 of 5 7/17/2020, 8:47 AM

I spent the next week or so in a state of constant frustration. I replaced the bulbs, cleaned all the contacts,
tried to adjust and/or understand what parts of the mechanism I could, kept cursing at the DCU ("dual

credit unit") that I was afraid to disassemble , and eventually sorta got it half-working. I got it to the point
where I could manually toggle the coin switches and punch in a selection. Of course it would get stuck part
way through the signaling cycle half the time, and I'm not sure if it worked consistently with actual coins. (It

was also dirty enough that I felt the need to wash my hands every time I was done fussing with it.)

From all of this , at least I learned quite a bit about how these devices operate. These things were designed
in an era that pre-dates "electronics" as we know them, and are electro-mechanical in nature. They use a

complex assortment of gears, cams, metal strip contactor switches, motors, and solenoids to accomplish
what you'd do today in a single $0.50 microcontroller. (Even if it was only the 1970's, chances are you'd do

this with a small assortment of transistors and logic chips.)

Eventually, I decided it was in my best interest to give up for now. I didn't feel comfortable disassembling
the parts that needed the most attention , and I really didn't want to focus all of my energy on this stage of

the project. So I decided to just go ahead and actually order a known clean/functional unit, from a dealer
that actually specializes in this sort of thing. I can always return to this unit later, and it'll make a nice

display piece regardless.

Seeburg Wall-0-Matic 100

This journey continued with me ordering a See burg Wall-0-Matic (3W-1) 100 from an actual retro
equipment dealer. This time at least I knew I was getting something that had been cleaned and lubricated

on the inside , in addition to being in good condition on the outside.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

4 of 5 7/17/2020, 8:47 AM

Okay, the buttons could probably use some restoration or replacement, but the rest of it looked excellent.
Especially on the inside ..

When I powered this unit up , everything magically worked. Okay, I might have had to fiddle with the coin
switches a little bit, but those are easy to knock out of place simply by removing the title strip and coin
rejector assemblies. Regardless, I was quite happy. I now had a fully functional and reliable wallbox I could

use as a foundation for the next stage of the project.

Subscribe to: Post Comments (Atom)

Awesome Inc. theme. Powered by Blogger.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

5 of 5 7/17/2020, 8:47 AM

…Building a Seeburg Wall-O-Matic Interface (Part 3)

The way these wallboxes signal a song selection might seem a little weird from a modern perspective.
When you press the buttons on the front, a collection of contacts are closed and a motor wipes a metal
contactor across a studded disk:

On the other side of this is a signal wire coming out of the wallbox. On that signal wire, you basically get a
stream of pulses corresponding to the selection. Of course, those pulses aren't really a clean square wave.
Rather, they're slightly noisy 25VAC. If you hook the signal wire up to an oscilloscope, it looks something
like this:

Each of the other projects I looked at did things a little bit differently, but they all had a common theme:
Rectify the AC, make sure its levels were brought in line with something a microcontroller could handle,
and figure out the rest in software. Some of these projects also used an opto-isolator, so that sensitive
electronics couldn't be damaged by crap coming from the wallbox.

The basic schematic looked something like this:

Decoding the Pulses
What the signal looks like

Wall-O-Matic 100 Contact Wiper Mechanism

Raw pulsed AC waveform

What the other projects did

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

1 of 7 7/17/2020, 8:37 AM

While this approach can be made to work, there's a fair amount of noise you have to account for in
software. The pulses are not contiguous, and they are coming from a mechanism that is fundamentally
prone to contact bounce.

Most of the elements of the basic design seemed good to me. I liked using a voltage regulator to bring
down the levels, and I liked the idea of isolating the wallbox from the microcontroller. However, I didn't like
the idea of having to reliably decode a pulse stream out of noisy rectified AC. With some additional
circuitry, I figured that I could get to a significantly cleaner signal.

It took a fair amount of research and experimentation to come up with this, but here's the circuit I ended up
with. On the input side, it takes pulsed AC from the wallbox's mechanism. On the output side, you get a
clean digital pulse stream that is suitable for triggering interrupts and counting with minimal fuss.

This circuit adds two main elements on top of the previous designs. On the input side, it adds an an
appropriately sized capacitor. This capacitor's purpose is to smooth out the rectified wave just enough that
it is invisible on the other side of the rectifier, but not so much that it obscures the pulse gaps. On the
output side, it adds an RC debouncer designed to make sure the pulses are stable and have clean
transitions. (I have to give credit to Jack Ganssle's page on the topic, for providing one of the most useful
explanations and examples for figuring out this part.)

Probably the clearest way to explain what this circuit does, is to actually show what the pulses look like
across its elements. So here goes, with a sequence of oscilloscope screenshots:

Rectifier, Regulator, Resistors, and Opto-Isolator

Preprocessing the signal

Circuit diagram

Signal Processing Circuit

Tour of oscilloscope screenshots

Output of full wave bridge rectifier

Rectifier output with 2.2uF capacitor

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

2 of 7 7/17/2020, 8:37 AM

Once I had a clean digital-friendly output, it was time to document the actual protocol. I began by capturing
traces like the ones shown below, for a wide range of song selections, while taking notes. Keep in mind
that this is specific to the model 100 unit I was working with, and that its entirely possible that other units
generate different looking pulse streams.

Output of KA78R33 voltage regulator

Output of TPC817C opto-isolator

Input of 74HC14 Schmitt trigger

Output of 74HC14 Schmitt trigger

Figuring out the protocol

Reverse engineering

Pulse stream (Song A-6)

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

3 of 7 7/17/2020, 8:37 AM

I made the following observations:

Pulses appear to be in two groups

Each pulse is ~50ms wide

If the first group has 10 pulses or less, the groups are separated by a long (~814ms) pulse

If there are more than than 10 pulses in the first group, then the groups are separated by a
medium (~174ms) gap

The full pulse sequence is ~2.1 seconds in duration

The first group has 1-10, 12-21 pulses, and appears to be the least-significant figure

The second group has 1-5 pulses, and appears to be the most significant figure

If I chart this out to see how it maps to the song selection buttons, I end up with a sequence like this:

 A1 (1, 1), A2 (2, 1), ..., A10 (10, 1)
 B1 (12, 1), B2 (13, 1), ..., B10 (21, 1)
 C1 (1, 2), C2 (2, 2), ..., C10 (10, 2)
 D1 (12, 2), D2 (13, 2), ..., D10 (21, 2)
 (Note: The letter 'I' is skipped.)

From this information, a pulse decoding function can be written!

I later discovered that the service manual actually did contain an excerpt explaining how these pulses work.
In case anyone is curious, I've reflowed and pasted it below:

Pulse stream (Song B-6)

Reading the manual

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

4 of 7 7/17/2020, 8:37 AM

From this I gather that they were only really paying attention to the rising edge of the pulses. I'm glad I
analyzed the full details, however, as it makes it easier for a robust decoder that can reject invalid/stalled
/flaky selection sequences. It also makes it possible to implement short-but-effective timeouts depending
on where in the pulse sequence we are.

Many years ago at an unrelated tech conference, I managed to acquire an Arduino Uno. It basically sat in
its box until a few months ago, when I realized it could be useful as a "bench tinkering" microcontroller.

Despite never having used an Arduino before, this little device turned out to be the perfect way of testing
my pulse decoding logic. I plugged it into the output of the signal processing circuit (built on a breadboard)
from above, and whipped up a quick-and-dirty sketch that can successfully decode the pulses.

Test decoding

Arduino Uno

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/*
Seeburg 3WA Wall-O-Matic 100
Test sketch

*/

const unsigned long USEC_PER_SEC = 1000000;
const int pin = 7;

void setup() {
pinMode(pin, INPUT);
Serial.begin(9600);
Serial.println("Wall-O-Matic Pulse Tester");
Serial.println("-------------------------");

}

void loop() {
unsigned long lastTimeMs = millis();
unsigned long durationUs;
durationUs = pulseIn(pin, HIGH, 5 * USEC_PER_SEC);
unsigned long pulseTimeMs = millis();
if (durationUs == 0) {
return;

}

int p1 = 0;
int p2 = 0;
bool delimiter = false;

Serial.println("Start of pulses...");

?

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

5 of 7 7/17/2020, 8:37 AM

Even though this post flows from start to finish, there was actually a lot of back-and-forth as I figured
everything out. Part-way through the process, I upgraded from an ancient low-end analog oscilloscope to a
modern digital storage oscilloscope. This tooling upgrade made a huge difference in my ability to
experiment and refine this design. It enabled me to actually see all the signal transitions and glitches, and
to determine all the necessary components to get to a clean pulse train. Early on, the Arduino code was
actually capturing (and attempting to overcome) a lot of signal noise. The final version, however, can pretty
much ignore it as a factor.

While this was a lengthy post, there's definitely more to come.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

do {
unsigned long elapsed = (pulseTimeMs - lastTimeMs) - (durationUs / 1000);

lastTimeMs = pulseTimeMs;
Serial.print("Pulse: ");
if (durationUs < 1000) {

Serial.print(durationUs, DEC);
Serial.print("us");

} else {
Serial.print(durationUs / 1000, DEC);
Serial.print("ms");

}
Serial.print(", elapsed: ");
Serial.print(elapsed, DEC);
Serial.println("ms");

if (p1 > 0 && !delimiter && (durationUs / 1000) > 500) {
delimiter = true;
Serial.println("----DELIMITER (PULSE)----");

}
else {
if (p1 > 0 && !delimiter && elapsed > 100) {
delimiter = true;
Serial.println("----DELIMITER (GAP)----");

}
if (!delimiter) {
p1++;

}
else {
p2++;

}
}
durationUs = pulseIn(pin, HIGH, (delimiter ? 1 : 3) * USEC_PER_SEC);
pulseTimeMs = millis();

} while (durationUs > 0);

Serial.println("Done.");
Serial.print("-> Signal: ");
Serial.print(p1, DEC);
Serial.print(", ");
Serial.print(p2, DEC);
Serial.println();

if (p2 < 1 || p2 > 5) {
Serial.println("Pulse 2 invalid value");
return;

}

char letter;
int number;
if (p1 >= 1 && p1 <= 10) {
number = p1;
letter = 'A' + (p2 - 1) * 2;

}
else if (p1 >= 12 && p1 <= 21) {
number = p1 - 11;
letter = 'A' + ((p2 - 1) * 2) + 1;

}
else {
Serial.println("Pulse 1 invalid value");
return;

}

// Skipping 'I' for some reason
if (letter > 'H') { letter++; }

Serial.print("-> Song: ");
Serial.print(letter);
Serial.print(number, DEC);
Serial.println();
Serial.println();

}

Concluding thoughts

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

6 of 7 7/17/2020, 8:37 AM

Posted by Derek at 1:57 AM

Labels: Arduino, Jukebox, Oscilloscope, Seeburg, Wall-O-Matic, Wallbox

Post a Comment

No comments:

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

7 of 7 7/17/2020, 8:37 AM

Household Enterprise Computing Geek

H.E.C. Geek

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

1 of 3 7/17/2020, 8:40 AM

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

2 of 3 7/17/2020, 8:40 AM

The one thing I desperately needed? Projects! Given that I knew I was going to have a lot of free time
coming up in the near future, I reopened my research into the Wall-0-Matic and began to scour eBay.

Background Research

One of the first things I stumbled across were these commercial "products" designed to provide a modern
interface from the wallbox:

CD Adapter
Wallbox2mp3

Unfortunately, these projects were less than desirable for my tastes. I was also looking for a project, not an
off-the-shelf solution. These devices also seemed a bit dated, of limited availability, and quite proprietary.
They also seemed to focus on playback a bit too "locally," rather than using the wall box as an actual

remote for a real stereo system. My house had in-wall speakers installed in many rooms, including the
"diner" room , and I really wanted to use those. Since I had already connected many of my in-wall speakers

to a Sanos rig , I kept wondering if there was a way I could just use that.

The next thing I did was dig into these hobbyist projects which seemed much closer to what I actually
wanted to accomplish:

Wall Box SONOS Controller [Stephen Devlin]
Seeburg Wall-0-Matic [Retro Future Electrics]

Raspberry Pi Project -A 1960s wallbox interfaced with Sanos [Phil Lavin]

One common theme among these projects was simplicity. Minimal components to interface the wallbox to a

Raspberry Pi , and minimal work to control a Sanos system based on the result. They also provided enough
schematic and component details to give me a tangible starting point. Even if I decided to take a different

path with my own project, at least I had a good foundation to build upon.

Project Goals

So thinking through what I wanted to accomplish with this project, I decided I wanted to build a device that
could do the following:

• Provide power to the wallbox

• Read the signal pulses, and decode them into a song selection

• Enqueue selected songs with my Sanos system, simulating the functionality of a jukebox

• Electronically toggle the coin switches, so that inserting actual coins would be optional

At a lower level, I also knew I wanted to take things seriously in the design of the circuit I was going to use
to accomplish all of this. That meant:

• Complete and detailed schematic

• Complete and detailed BOM (bill-of-materials)

• Real fabricated PCB (printed circuit board) design

(The BOM and PCB being things that I'd never actually done before. Every prior circuit of mine was a

hand-constructed mess of wires on a pre-drilled pad-per-hole PCB. Thankfully, in this day and age, doing it
"right" is now quite accessible.)

I'll attempt to break this blog series apart based on the major progression of this project. I may not discuss
things in the actual order that I did them , since there was a lot of back-and-forth between the various
elements. However, it should flow in an order that makes sense. Most likely it'll be something like this:

Subscribe to: Post Comments (Atom)

Awesome Inc. theme. Powered by Blogger.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 1) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-1.html

3 of 3 7/17/2020, 8:40 AM

Household Enterprise Computing Geek

H.E.C. Geek

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

1 of 5 7/17/2020, 8:46 AM

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

2 of 5 7/17/2020, 8:46 AM

Unfortunately this wallbox basically sat untouched for a few weeks, since I still had to buy the necessary

components (shown above) to power it up and I was preoccupied with other things at the time.

When I finally powered it up , the first thing I discovered was that multiple light bulbs needed replacing. That
much was no big deal, so I just ordered them off Amazon (#51 and #55 bayonet mount light bulbs). I then
discovered that the electrical contacts were dirty, the mechanics needed a little fiddling , and it didn't seem

to be working correctly.

Thankfully it wasn't too hard to find the repair manual online. Of course it was written in 50's speak, and it

was sometimes hard to match the terms and illustrations to what I was seeing inside the actual device.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

3 of 5 7/17/2020, 8:46 AM

I spent the next week or so in a state of constant frustration. I replaced the bulbs, cleaned all the contacts,
tried to adjust and/or understand what parts of the mechanism I could, kept cursing at the DCU ("dual

credit unit") that I was afraid to disassemble , and eventually sorta got it half-working. I got it to the point
where I could manually toggle the coin switches and punch in a selection. Of course it would get stuck part
way through the signaling cycle half the time, and I'm not sure if it worked consistently with actual coins. (It

was also dirty enough that I felt the need to wash my hands every time I was done fussing with it.)

From all of this , at least I learned quite a bit about how these devices operate. These things were designed
in an era that pre-dates "electronics" as we know them, and are electro-mechanical in nature. They use a

complex assortment of gears, cams, metal strip contactor switches, motors, and solenoids to accomplish
what you'd do today in a single $0.50 microcontroller. (Even if it was only the 1970's, chances are you'd do

this with a small assortment of transistors and logic chips.)

Eventually, I decided it was in my best interest to give up for now. I didn't feel comfortable disassembling
the parts that needed the most attention , and I really didn't want to focus all of my energy on this stage of

the project. So I decided to just go ahead and actually order a known clean/functional unit, from a dealer
that actually specializes in this sort of thing. I can always return to this unit later, and it'll make a nice

display piece regardless.

Seeburg Wall-0-Matic 100

This journey continued with me ordering a See burg Wall-0-Matic (3W-1) 100 from an actual retro
equipment dealer. This time at least I knew I was getting something that had been cleaned and lubricated

on the inside , in addition to being in good condition on the outside.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

4 of 5 7/17/2020, 8:46 AM

Okay, the buttons could probably use some restoration or replacement, but the rest of it looked excellent.
Especially on the inside ..

When I powered this unit up , everything magically worked. Okay, I might have had to fiddle with the coin
switches a little bit, but those are easy to knock out of place simply by removing the title strip and coin
rejector assemblies. Regardless, I was quite happy. I now had a fully functional and reliable wallbox I could

use as a foundation for the next stage of the project.

Subscribe to: Post Comments (Atom)

Awesome Inc. theme. Powered by Blogger.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 2) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-2.html

5 of 5 7/17/2020, 8:46 AM

Household Enterprise Computing Geek

H.E.C. Geek

Monday, October 30, 2017

Building a Seeburg Wall-O-Matic Interface (Part 3)

The way these wallboxes signal a song selection might seem a little weird from a modern perspective.
When you press the buttons on the front, a collection of contacts are closed and a motor wipes a metal
contactor across a studded disk:

On the other side of this is a signal wire coming out of the wallbox. On that signal wire, you basically get a
stream of pulses corresponding to the selection. Of course, those pulses aren't really a clean square wave.
Rather, they're slightly noisy 25VAC. If you hook the signal wire up to an oscilloscope, it looks something
like this:

Each of the other projects I looked at did things a little bit differently, but they all had a common theme:
Rectify the AC, make sure its levels were brought in line with something a microcontroller could handle,
and figure out the rest in software. Some of these projects also used an opto-isolator, so that sensitive
electronics couldn't be damaged by crap coming from the wallbox.

The basic schematic looked something like this:

Decoding the Pulses
What the signal looks like

Wall-O-Matic 100 Contact Wiper Mechanism

Raw pulsed AC waveform

What the other projects did

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

1 of 7 7/17/2020, 8:38 AM

While this approach can be made to work, there's a fair amount of noise you have to account for in
software. The pulses are not contiguous, and they are coming from a mechanism that is fundamentally
prone to contact bounce.

Most of the elements of the basic design seemed good to me. I liked using a voltage regulator to bring
down the levels, and I liked the idea of isolating the wallbox from the microcontroller. However, I didn't like
the idea of having to reliably decode a pulse stream out of noisy rectified AC. With some additional
circuitry, I figured that I could get to a significantly cleaner signal.

It took a fair amount of research and experimentation to come up with this, but here's the circuit I ended up
with. On the input side, it takes pulsed AC from the wallbox's mechanism. On the output side, you get a
clean digital pulse stream that is suitable for triggering interrupts and counting with minimal fuss.

This circuit adds two main elements on top of the previous designs. On the input side, it adds an an
appropriately sized capacitor. This capacitor's purpose is to smooth out the rectified wave just enough that
it is invisible on the other side of the rectifier, but not so much that it obscures the pulse gaps. On the
output side, it adds an RC debouncer designed to make sure the pulses are stable and have clean
transitions. (I have to give credit to Jack Ganssle's page on the topic, for providing one of the most useful
explanations and examples for figuring out this part.)

Probably the clearest way to explain what this circuit does, is to actually show what the pulses look like
across its elements. So here goes, with a sequence of oscilloscope screenshots:

Rectifier, Regulator, Resistors, and Opto-Isolator

Preprocessing the signal

Circuit diagram

Signal Processing Circuit

Tour of oscilloscope screenshots

Output of full wave bridge rectifier

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

2 of 7 7/17/2020, 8:38 AM

Once I had a clean digital-friendly output, it was time to document the actual protocol. I began by capturing
traces like the ones shown below, for a wide range of song selections, while taking notes. Keep in mind
that this is specific to the model 100 unit I was working with, and that its entirely possible that other units
generate different looking pulse streams.

Rectifier output with 2.2uF capacitor

Output of KA78R33 voltage regulator

Output of TPC817C opto-isolator

Input of 74HC14 Schmitt trigger

Output of 74HC14 Schmitt trigger

Figuring out the protocol

Reverse engineering

Pulse stream (Song A-6)

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

3 of 7 7/17/2020, 8:38 AM

I made the following observations:

Pulses appear to be in two groups

Each pulse is ~50ms wide

If the first group has 10 pulses or less, the groups are separated by a long (~814ms) pulse

If there are more than than 10 pulses in the first group, then the groups are separated by a
medium (~174ms) gap

The full pulse sequence is ~2.1 seconds in duration

The first group has 1-10, 12-21 pulses, and appears to be the least-significant figure

The second group has 1-5 pulses, and appears to be the most significant figure

If I chart this out to see how it maps to the song selection buttons, I end up with a sequence like this:

 A1 (1, 1), A2 (2, 1), ..., A10 (10, 1)
 B1 (12, 1), B2 (13, 1), ..., B10 (21, 1)
 C1 (1, 2), C2 (2, 2), ..., C10 (10, 2)
 D1 (12, 2), D2 (13, 2), ..., D10 (21, 2)
 (Note: The letter 'I' is skipped.)

From this information, a pulse decoding function can be written!

I later discovered that the service manual actually did contain an excerpt explaining how these pulses work.
In case anyone is curious, I've reflowed and pasted it below:

Pulse stream (Song B-6)

Reading the manual

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

4 of 7 7/17/2020, 8:38 AM

From this I gather that they were only really paying attention to the rising edge of the pulses. I'm glad I
analyzed the full details, however, as it makes it easier for a robust decoder that can reject invalid/stalled
/flaky selection sequences. It also makes it possible to implement short-but-effective timeouts depending
on where in the pulse sequence we are.

Many years ago at an unrelated tech conference, I managed to acquire an Arduino Uno. It basically sat in
its box until a few months ago, when I realized it could be useful as a "bench tinkering" microcontroller.

Despite never having used an Arduino before, this little device turned out to be the perfect way of testing
my pulse decoding logic. I plugged it into the output of the signal processing circuit (built on a breadboard)
from above, and whipped up a quick-and-dirty sketch that can successfully decode the pulses.

Test decoding

Arduino Uno

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/*
Seeburg 3WA Wall-O-Matic 100
Test sketch

*/

const unsigned long USEC_PER_SEC = 1000000;
const int pin = 7;

void setup() {
pinMode(pin, INPUT);
Serial.begin(9600);
Serial.println("Wall-O-Matic Pulse Tester");
Serial.println("-------------------------");

}

void loop() {
unsigned long lastTimeMs = millis();
unsigned long durationUs;
durationUs = pulseIn(pin, HIGH, 5 * USEC_PER_SEC);
unsigned long pulseTimeMs = millis();
if (durationUs == 0) {
return;

}

int p1 = 0;
int p2 = 0;
bool delimiter = false;

Serial.println("Start of pulses...");

?

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

5 of 7 7/17/2020, 8:38 AM

Even though this post flows from start to finish, there was actually a lot of back-and-forth as I figured
everything out. Part-way through the process, I upgraded from an ancient low-end analog oscilloscope to a
modern digital storage oscilloscope. This tooling upgrade made a huge difference in my ability to
experiment and refine this design. It enabled me to actually see all the signal transitions and glitches, and
to determine all the necessary components to get to a clean pulse train. Early on, the Arduino code was
actually capturing (and attempting to overcome) a lot of signal noise. The final version, however, can pretty
much ignore it as a factor.

While this was a lengthy post, there's definitely more to come.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

do {
unsigned long elapsed = (pulseTimeMs - lastTimeMs) - (durationUs / 1000);

lastTimeMs = pulseTimeMs;
Serial.print("Pulse: ");
if (durationUs < 1000) {

Serial.print(durationUs, DEC);
Serial.print("us");

} else {
Serial.print(durationUs / 1000, DEC);
Serial.print("ms");

}
Serial.print(", elapsed: ");
Serial.print(elapsed, DEC);
Serial.println("ms");

if (p1 > 0 && !delimiter && (durationUs / 1000) > 500) {
delimiter = true;
Serial.println("----DELIMITER (PULSE)----");

}
else {
if (p1 > 0 && !delimiter && elapsed > 100) {
delimiter = true;
Serial.println("----DELIMITER (GAP)----");

}
if (!delimiter) {
p1++;

}
else {
p2++;

}
}
durationUs = pulseIn(pin, HIGH, (delimiter ? 1 : 3) * USEC_PER_SEC);
pulseTimeMs = millis();

} while (durationUs > 0);

Serial.println("Done.");
Serial.print("-> Signal: ");
Serial.print(p1, DEC);
Serial.print(", ");
Serial.print(p2, DEC);
Serial.println();

if (p2 < 1 || p2 > 5) {
Serial.println("Pulse 2 invalid value");
return;

}

char letter;
int number;
if (p1 >= 1 && p1 <= 10) {
number = p1;
letter = 'A' + (p2 - 1) * 2;

}
else if (p1 >= 12 && p1 <= 21) {
number = p1 - 11;
letter = 'A' + ((p2 - 1) * 2) + 1;

}
else {
Serial.println("Pulse 1 invalid value");
return;

}

// Skipping 'I' for some reason
if (letter > 'H') { letter++; }

Serial.print("-> Song: ");
Serial.print(letter);
Serial.print(number, DEC);
Serial.println();
Serial.println();

}

Concluding thoughts

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

6 of 7 7/17/2020, 8:38 AM

Subscribe to: Post Comments (Atom)

Posted by Derek at 1:57 AM

Labels: Arduino, Jukebox, Oscilloscope, Seeburg, Wall-O-Matic, Wallbox

Post a Comment

No comments:

Awesome Inc. theme. Powered by Blogger.

H.E.C. Geek: Building a Seeburg Wall-O-Matic Interface (Part 3) http://hecgeek.blogspot.com/2017/10/wall-o-matic-interface-3.html

7 of 7 7/17/2020, 8:38 AM

	Seeburg-Wallbox-DIY-Inderx
	Seeburg-1
	Seeburg-2
	Seeburg-3
	Seeburg-1-all
	Seeburg-2-all
	Seeburg-3-all

