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Because this is the eleventh collection of my Scientijc American columns, there 
is little to say in a preface that I have not said before. As in earlier volumes, I 
have made corrections and additions throughout and included addendurns to 

material sent by readers and to update chapters in ways that were not 
easy to squeeze into the earlier text. References cited in the chapters are given 
more fully in the bibliographies that follow the chapters. 

Martin Gardner 
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CHAPTER ONE 

Coincidence 

Don't worry. Lightning never strikes twice in the same 

-BILLY BEE 

Since the beginning of history, unusual coincidences have strengthened belief 
in the influence on life of occult forces. Events that seemed to miraculously 
violate the laws of probability were attributed to the will of gods or devils, God 
or Satan, or at the very least to mysterious laws unknown to science and 
mathematics. 

O n  the other hand, skeptics have argued that in the unthinkably intricate 
snarls of human history, with billions on billions of events unfolding every 
second around the globe, the situation is really the other way around. It is 
surprising that more strange coincidences are not publicized. "Life," wrote G. 
K. Chesterton in Alarms and Discursions, "is full of a ceaseless shower of small 
coincidences. . . . It is this that lends a frightful plausibility to all false doc- 
trines and evil fads. There are always such props of accidental arguments upon 
anything. If I said suddenly that historical truth is generally told by red-haired 
men, I have no doubt that ten minutes' reflection (in which I decline to indulge) 
would provide me with a handsome list of instances in support of it." 

"We trip over these trivial repetitions and exactitudes at every turn," Ches- 
terton continued, "only they are too trivial even for conversation. A man named 
Williams did walk into a strange house and murder a man named William- 
son. . . . A journalist of my acquaintance did move quite unconsciously from a 
place called Overstrand to a place called Overroads." 
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In his Poetics, Aristotle attributes to Agathon the remark that it is probable 
that the improbable will sometimes happen. All the same, most coincidences 
surely go unrecognized. For instance, would you notice it if the license plate of a 
car just ahead of you bore digits that, read backward, gave your telephone 
number? Who except a numerologist or logophile would see the letters U ,  S ,  A 
symmetrically placed in LOUISIANA or at the end O ~ J O H N  PHILIP SOUSA, the name 
ofthe composer of our greatest patriotic marches? It takes an odd sort of mind to 
discover that Newton was born the same year that Galileo died, or that Bobby 
Fischer was born under the sign of Pisces (the Fish). That's not all. "Fish" is 
chess slang for a mediocre player. In 1972, when Bobby Fischer's blunder cost 
him the first game in his famous match in Iceland with Boris Spassky, he said 
afterward, "I'm a fish! I played like a fish!" 

There are two other reasons why strange coincidences are seldom recorded. 
When trivial ones are noticed, it is easy to forget them, and when they are 
remarkable enough to be remembered, one may hesitate to speak about them 
for fear of being thought superstitious. Skeptics maintain that with all of this in 
mind the number of astonishing coincidences that continually occur as the - 

result of ordinary statistical laws is far greater than even occultists realize. 
The ancient view that many coincidences are too improbable to be explained 

by known laws has recently been revived by Arthur Koestler. In his book The 
Roots of Coincidence, he devotes many pages to a theory developed by Paul 
Kammerer, an eccentric Austrian biologist, whose Lamarckian convictions 
were much admired by T. D. Lysenko and who was the hero of Koestler's 
previous book, The Case of the Midwife Toad. Kammerer wrote a book, Das 
Gesetz der Serie (1919), about his theory of coincidences. It describes exactly 
100 coincidences -concerning words, numbers, people, dreams and so on - 
that he had collected over a period of 20 years. 

Kammerer's seventh coincidence is typical. O n  September 18,19 16, his wife 
was in a doctor's waiting room admiring magazine reproductions of ~aint ings 
by a man named Schwalbach. A door opened and the receptionist asked i f ~ r i u  
Schwalbach was in the room. Kammerer's 10th coincidence is even more 
impressive. Two soldiers were separately admitted to the same hospital. They 
were 19, had pneumonia, were born in Silesia, were volunteers in the Transport 
Corps and were named Franz Richter. 

Kammerer was ~ersuaded that such oddities could be accounted for only by 
assuming a universal law, independent of physical causality, that brought "like 
and like together." Koestler is sympathetic to this view. He suggests that some of 
the results of parapsychology, such as the tendency of falling dice to show a 
certain number more often than expected, can be explained not as the influence 
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of mind on matter but as coincidences produced by a transcendent "integrative 
tendency. " 

Estimating the probability that a hidden law is at work behind a series of 
apparent coincidences is a difficult task, and statisticians have developed so- 
phisticated techniques for doing so. How easy it is for our intuitions to go astray 
is illustrated by many familiar paradoxes. If 23 students are in a classroom and 
you pick two at random, the probability that their birthdays (month and day) 
match is about 11365. The probability that at least two ofthe 23 have the same 
birth date, however, is a trifle better than 112. The reason is that now there are 
1 + 2 + 3 + . . . + 22 = 253 possible matching pairs, and figuring the 
exact probability of coincidence is a bit tricky. 

In a class of 35 students the probability of a birthday coincidence rises to 
about 85 percent. If students call out their birth dates one at a time until 
someone raises a hand to indicate that his birthday matches the one just called, 
you can expect a hand to go up after about nine calls (see "Note on the 'Birthday 
Problem,' " by Edmund A. Gehan in The American Statistician, April, 1968, 
page 28). William Moser has pointed out that the chances are better than even 
that two people in a group of 14 will have birth dates that either are identical or 
fall on consecutive days of the year. Among seven people, he calculates, the 
probability is about 60 percent that two will have birthdays within a week of 
each other, and among four people the probability is about 70 percent that two 
will have birthdays within 30 days of each other. 

Variants of the basic idea are endless. The next time you are in a gathering of 
a dozen or more people try checking on such things as the exact amount of 
change each person has, the first names of his parents, the street numbers of his 
home, the playing card each writes secretly on a slip of paper and so on. The 
number of coincidences may be scary. 

Another simple demonstration of an event that seems improbable but actu- 
ally is not can be given with a deck of playing cards. Shuffle the cards, then deal 
them while you recite their names in a predetermined order, say ace to king of 
spades followed by the same sequence for hearts, clubs and diamonds. The 
probability that a card named in advance, such as the queen of hearts, will be 
dealt when it is named is 1/52, but the probability that at least one card will be 
dealt when named is almost 213. Ifyou name only the values, the probability of a 
"hit" rises to 98 percent, or very close to certain. 

In the foregoing instances the probabilities can be calculated precisely. For 
most events in daily life, however, probability estimates of coincidences are 
necessarily vague. For example, a great deal of research has been done on the 
"small-world problem." What is the probability that if you meet a stranger on 
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an airplane, the two of you will have at least one acquaintance in common? Not 
only are accurate statistics hard to come by but also the very terms of the 
problem are impossible to define precisely. Who, for instance, is an "acquaint- 
ance"? 

In spite of such formidable difficulties there is strong evidence that it is 
indeed a smaller world than most people imagine. Suppose a person is given a 
document and asked to transmit it to someone he does not know who lives in 
another city in another part of the U.S. The procedure is to send the document 
to a friend whom he knows on a first-name basis and who seems the most likely 
to know the "target" person. The friend in turn then sends the document to one 
of his friends with the same instructions, and the chain continues until the 
document reaches the target. How many intermediate links will the chain have? 
Most people guess about 100. When psychologist Stanley Milgram made 
actual tests, he found that the links varied from two to 10 and that the median 
was five. 

Pick two women at random. The  s rob ability that both are wearing green 
shoes is low, but if you consider 20 ways the women can match-color of eyes, 
first names, type of hairdo and so on - the probability of a coincidence is close 
to certainty. It is hard to believe, but gross miscarriages ofjustice have resulted 
from a failure to understandjust such trivial truths. In 1964 a black man and his 
white wife were convicted of a muggins in San Pedro, Calif., mainly because 
they were the only couple in the area who matched the reports of witnesses on 
five counts: the girl was a blonde, she had a ponytail, her companion was black, 
he had a beard, they drove a yellow car. The  prosecutor estimated each proba- 
bility separately- 1/10 for a yellow car, 111,000 that a couple are black and 
white, and so on- then he multiplied the five fractions and convinced the jury 
that the probability was 1112,000,000 that a matching couple lived in the 
vicinity. Not until four years later (see Time, April 26, 1968, page 41) did the 
California Supreme Court reverse the decision after a judge less ignorant of 
mathematics persuaded the court that the estimate should have been about 
411100. 

Anyone who watches carefully for coincidences involving himself can easily 
find them. "Did you ever notice that remarkable coincidence?" F. Scott Fitz- 
gerald wrote in 1928 to the British writer Shane Leslie. "Bernard Shaw is 61 
years old, H. G. Wells is 5 1, G. K. Chesterton is 41, you're 31, and I'm 21 -all 
the great authors of the world in arithmetical progression." Carl Sandburg was 
quoted in The New York Times, January 6, 1967, as saying that having com- 
pleted his 89th birthday he confidently expected to live to 99. He had two 
great-grandfathers and a grandfather who had died in years that were multiples 
of 11. Having got safely past 88, Sandburg expected to go on to 99. Unfortu- 
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nately he died six months later. Lewis Carroll recorded in his diary that most 
good things that happened to him, of which the best were meeting new and 
comely little girls, occurred on Tuesdays. 

Surely the strangest coincidence involving a major U.S. magazine was the 
case ofthe "deadly double" ads in The New Yorker, November 22,1941, which 
generated rumors about Japanese undercover agents for many years after. The 
long-submerged rumors surfaced in 1967 when a former U.S. naval intelli- 
gence agent, Ladislas Farago, told the story in a press release for his book The 
Broken Seal, an account of American and Japanese intelligence operations 
before World War 11. Sixteen days before Pearl Harbor The New Yorker ran two 
advertisements (pages 32 and 86) for a new dice game called The Deadly 
Double [see Figure 11. Were these advertisements placed by the Japanese to 
inform their undercover agents of the planned attack on Pearl Harbor? 

Farago's press release pointed out the following correlations. The attack was 
on December 7. In the smaller first advertisement, note the 12 (for December) 
on one die and the 7 on the other. Above the dice are the words "Achtung. 
Warning. Alerte!" The numbers 5 and 0, Farago said, could have indicated the 
planned time for the attack, which did not start until 7:00 A.M. The XX, or 20. is 
the approximate latitude of Pearl Harbor. Farago admitted that he did not know 
what the 24 stood for. 

The  second advertisement shows two people playing the dice game during 
an air raid, with the XX repeated on the symbol ofthe double-headed eagle. A 
Times story of March 12, 1967, based on Farago's press release, stated that the 
mysterious dice game had never existed. Farago told the Times that he had first 
learned of the ads from his friend A1 Hirschfeld, the newspaper's theatrical 
caricaturist. When Farago questioned officials at The New Yorker, he said, 
"They were very closemouthed about it." 

These fantastic allegations were quickly dissipated by the Time's follow-up 
story on March 14. The dice game did exist. Mrs. E.  Shaw Cole, widow of the 
man who invented it, had been found in Montclair, N.J. She had helped her late 
husband, Roger Paul Craig, write the ads. Several New York department stores 
were selling the game in 1941. Agents of the Federal Bureau of Investigation, 
Mrs. Cole said, actually had visited them after the Pearl Harbor attack, but any 
relation between the attack and the ads was just "one big coincidence." 

"What can I say?" said Farago. 
Several years ago I asked Dr. Matrix, the famous numerologist, for his 

opinion on the advertisements. The XX, he told me, indicates that two X's are 
to be appended to the alphabet. The first numbe-r on the die, 12, instructs us to 
count to the 12th letter, L. The second number 24, tells us to count 24 letters 
forward from L, including of course the extra X's, and carrying the count back 



See Advertisement Page 86 1 @a 1 I MONARCH PUBLISHING CO. 
Now York I 

W e  hope )ou'll never have to spend a 
long winter's n ~ g h t  in an  alr-raid shelter, 
but we were just thinking . . . it's only 
common sense to be prepared. If you're 
not too busy between now and Christ- 
mas, why not  sit down and plan a list of 
the things you'll wan t  to  have on hand. 
. . . Canned goods, of course, and can- 
dles, Sterno, bottled water, sugar, coffee 
or  tea, brand),  and plenty of cigarettes, 
sweaters and blankets, books or maga- 
zines, vitamin capsules . . . and though 
it's no time, really, to be thinking of 
whnt's fashionable, we  bet that most 
of your friends will remember to in- 
clude those intriguing dice and chips 
which make Chicago's favorite game 

THE 
DEADLY DOUBLE 

$2.50 at leading Sporting Coodo 
and Department Stores Everywhere 

Figure 1 Two advertisements that appeared in The New Yorker for 
November 22. 1941. 
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to the beginning. This second count ends on H. The 7 on the die at the right tells 
us to count seven letters forward from H to 0. The three letters found in this 
straightforward manner are L, H and 0, the initials of Lee Harvey Oswald. 
The  advertisements in The New Yorker appeared in the November 22, 1941, 
issue. November 22 was the date of President John F. Kennedy's assassination, 
and 22 added to 1941 is 1963, the year of the assassination. 

It is easy to understand how anyone personally involved in a remarkable 
coincidence will believe that occult forces are at work. You can hardly blame the 
winner of the Irish Sweepstakes for thinking that Providence has smiled on him 
even though he knows it is absolutely certain that someone will win. Gamblers 
are particularly susceptible to this belief, and they tend to be more superstitious 
than most. In every big city in the U.S. there are thousands of policy "hunch 
players" who like to bet on numbers prominent in the news. It is hardly 
surprising that now and then such hunches pay off. In 1958, for example, 48 
people died when a Jersey Central commuter train plunged into Newark Bay. 
The  last car taken from the water was shown in newspapers and on television 
with its number 932 clearly visible. Thousands ofManhattan policy players bet 
on 932 and won. A similar coincidence was reported in The New York Times for 
January 24, 1967. The  President's daughter, Luci Johnson Nugent, had just 
given birth to a boy weighing eight pounds 10 ounces. All over Brooklyn bets 
were made on various permutations of these three digits. When 081 won, 
Brooklyn policy banks were closed for days because of the losses. 

In science, as in daily life, it is not always easy to know if an observed 
correlation of "like and like" is pure coincidence or evidence of underlying 
structure. It was coincidence (plus some fudging) that the planetary orbits fitted 
Kepler's pattern of nested Platonic solids but not coincidence that data on their 
orbits fitted his patterns of ellipses. It is undoubtedly coincidental that the disks 
ofthe sun and moon, seen from the earth, are almost exactly the same size. The 
sun's diameter is 400 times that ofthe moon, but incredibly it is just 400 times as 
far away, as though nature planned it that way to give us a spectacular display of 
the sun's corona during a total eclipse. O n  the other hand, for half a century 
most geologists were convinced that the fit of the edges of the land masses on 
each side of the Atlantic was sheer coincidence. Alfred L. Wegener's theory 
that the two land masses had once been a supercontinent that had split and 
drifted apart (a notion that had been advanced by Francis Bacon) was consid- 
ered crankish until about 10 years ago. Now it is the preferred hypothesis. 

There are similar difficulties in mathematics. The curious repetition of 1828 
in the first nine decimals of e (2.718281828 . . .) is almost certainly coinci- 
dental. Consider now the square roots of ,999 and .9999999. They are respec- 
tively .9994 . . . and .99999994. . . . Is it accidental that in each case the 



Figure 2 Benson Ho's answer. 

irrational square root of a decimal fraction consisting of n 9's begins with n 9's 
followed by a 4? No, as Richard G. Gould has pointed out in a letter; it can be 
shown to be true of all such "rep-9" decimal fractions. You have only to express 
their square roots as (1 - expand the expression by the binomial 
theorem and interpret the results properly to establish the theorem. 

The  number 4 is a square number, and if YOU append to it the next consecu- 
tive square number, 9, the result is 49, another square. Is it a coincidence or a 
special case of a general law? One more curious question (both will be answered 
next month): An old brainteaser asks for the ordering principle behind the 
sequence 8549176320, which contains all 10 digits. The answer is that they are 
in the alphabetical order of their names. When the Massachusetts Institute of 
Technology's Technology Review printed this answer in its issue of July, 1967, 
page 10, it added a second answer that had been supplied by a reader named 
Benson P. Ho. His solution is best explained by his diagram [see Figure 21. The 
digit above the right arm of each V is subtracted from the digit above the left 
arm. Ifthe result is negative, add 10. The result goes under each V. Arrow pairs 
point to digits that are the sum of the two digits at the back of each arrow. If the 
sum is greater than 10, subtract 10. Note that the diagonal series of digits, when 
they are read upward, repeats the original series. It is a remarkable coincidence. 
O r  is it? 

ANSWERS 

Neither of the two numerical oddities are coincidences. 
S. N. Collings, in The Mathematical Gazette (December, 1971, page 418), 

generalizes the fact that joining consecutive squares 4 and 9 produces the 
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square 49 as follows: Let (n - 1)2 and n2 be two consecutive squares. Join them 
to form a two-digit number in a notation with a base of n2 + 1. (In the case of 

+ 3* the base is 32 + 1 = 10.) The new number will be (n - 1)' X 
(n2 + 1) + n2, which equals the square number (n2 - n + I ) ~ .  

Philip G. Smith, Jr., discovered that a reverse procedure always yields the 
same square. Interpret each of the squares in a base equal to the smaller square 
plus 1, put the larger of the two squares in front of the smaller and interpret the 
result in a base equal to the smaller square plus 1. In decimal notation: consecu- 
tive squares 9 and 16 join to produce square number 169. If the opposite 
procedure is followed, the result is 9 followed by 16, with 16 regarded as a single 
symbol of base-17 notation. The number's decimal equivalent is (9 X 17) + 
16 = 169, the same square that was obtained before. 

O n  the surface it seems surprising that both procedures always give the same 
result, but, as Smith showed, it is merely a special case of the following general 
theorem. Let x and y be any positive real numbers. If both are expressed in base 
x + 1, andx is appended toy, the value is the same as expressing the numbers in 
base y + 1 and appending y to x. In the first case the value is y(x + 1) + x, and 
in the second x(y + 1) + y. The two expressions are clearly equivalent. 

The pattern that Benson P. Ho found for the series 8549176320 is a ho, ho, 
ho hoax. It is not hard to show that any series of digits ending in 0 ,  subjected to 
Ho's procedure, will give the same result. 

ADDENDUM 

Judith Bronowski wrote to correct my statement that Francis Bacon anticipated 
continental drift. It is true that in the second book of Novum Organum (Section 
28), Bacon spoke of the remarkably similar shapes of the Atlantic coasts of 
South America and Africa, but his only explanation was that this could "not be 
attributed to mere accident." The earliest known record of explaining this 
seeming coincidence by assuming that a continent split and the two parts 
drifted from each other is, according to Bronowski, in a book called The Creation 
and Its Mysteries Revealed, by Antonio Snider-Pelligrini (Paris, 1858). The 
book had no influence on geologists. Wegener was apparently the first to 
suggest continental drift as a serious scientific theory. 
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CHAPTER TWO 

The Binary Gray Code 

The binary Gray code is fun, 
For in it strange things can be done. 

Fifteen, as you know, 
Is one, oh, oh, oh, 

And ten is one, one, one and one. 

Although the decimal system is now in common use throughout the world, 
mathematicians and computers often manipulate integers by using other sys- 
tems, some with such exotic features as mixed bases, negative bases, irrational - 

bases or floating points. One of the most useful of these systems-one with 
surprising puzzle applications - is the Gray code. 

The  first puzzle application of a Gray code, which I shall describe below, was 
in 1872, when a binary version provided an elegant solution to a much older 
mechanical puzzle. The term "Gray," however, derives from Frank Gray, a 
research physicist at the Bell Telephone Laboratories, who died in 1969. His 
contributions to modern communication technology were immense. The -. 

method now in use for compatible color television broadcasting was developed 
by Gray (numerologists note!) in the 1930's. In the 1940's he devised what was 
soon to be called the binary Gray code to avoid the large errors that could arise 
in transmitting signals by pulse code modulation (PCM). The first publication 
ofthis code was in his U.S. Patent 2632058 (March 17,1953) for a Gray coder 
tube that eliminated the quantizing grid wires used in early PCM transmission 
tubes. 
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Exactly what is a Gray code? It is a way of symbolizing the counting numbers 
in a positional notation so that when the numbers are in counting order, any 
adjacent pair will differ in their digits at one position only, and the absolute 
difference at that position will be 1. For instance, 193 and 183 could be adjacent 
counting numbers in a decimal Gray code (the middle digits differ by I),  but 
not 193 and 173, nor 134 and 143. There is an infinity ofGray codes, since they 
apply to any base system and for each base there are many different ways to 
construct the code. 

To appreciate the value of such a system, consider what happens when the 
odometer of a car reads 9,999 miles. T o  register the next mile, five wheels must 
rotate to show 10,000. Because the wheels move slowly, there is little chance of 
error. But if counting is recorded electronically at enormously high speeds, 
when two or more digits change simultaneously the likelihood of producing a 
false number zooms upward. The probability is greatly reduced if the counting 
procedure requires only one decision whenever the magnitude to be coded is 
halfway between two adjacent quantized steps, regardless of whether the mag- 
nitude is increasing or decreasing. If the counting is by Gray code, only one 
digit of the counter changes by only one unit at each step. 

The  mileage meter is a familiar example ofwhat are called analog-to-digital 
(AID) converters. A continuous (in this case always increasing) variable, the 
mileage (or, if you prefer, the number of times the car wheels have rotated) is 
given a digital output. There are many other control systems in which analog- 
to-digital conversion must proceed at enormously high speed while the variable 
being measured fluctuates rapidly. Examples include wind-tunnel simulations 
of airplanes and guided missiles, and PCM applications where voltages, shaft 
positions, wave amplitudes of sounds, colors and so on must be translated 
almost instantly to a digital output signal. At one time a human observer would 
take pointer readings or inspect a curve on a graph, record the magnitude in 
digital form and feed this information to a computer. Today the slow and 
errorprone middleman is eliminated by analog-to-digital converters connected 
directly to the computer. A great increase in accuracy and often a considerable 
saving in hardware result from counting scales in Gray codes. 

Binary Gray codes are the simplest. If we limit the code to one digit, there are 
only 2 l  = 2 numbers, O and 1. Disregarding reversals, there is only one Gray 
code: 0, 1. W e  can graph this as a straight line, its ends labeled 0 and 1 [see 
Figure 3, IeH. The  Gray code is obtained by moving along the line in either 
direction. A Gray code for two binary digits has 2' = 4 numbers: 00, 01, 10 
and 11. The corners of a square can be labeled with these numbers [see Figure 3, 
middle]. The  labeling is such that the binary numbers at any pair of adjacent 
corners differ in only one place. W e  can start at any corner and visit all four 
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Figure 3 Graphs for one (left), two (middle) and three-digit (right) binary Gray codes. 

corners by going clockwise or counterclockwise around the square. Ifwe ignore 
reversals, this produces four Gray codes. The line starting at 00 yields the Gray 
code 00, 01, 11, 10. The code is cyclic because the path can return to 00. 

A Gray code for three-digit binary numbers has Z3 = 8 numbers that can be 
placed on the corners of a cube [see Figure 3, right]. Adjacent corners have binary 
triplets that differ in only one place. Any continuous path that visits every 
corner once only generates a Gray code. For example, the path shown by the 
dashed line starting at 000 produces 000, 001, 011, 010, 110, 111, 101, 100. 
This is a cyclic code because the path can return from 100 to 000 in one step. 
Such paths are called Hamiltonian paths after the Irish mathematician William 
Rowan Hamilton. As the reader has probably guessed, binary Gray codes 
correspond to Hamiltonian paths on cubes of n dimensions. A Gray code for 
four-digit binary numbers has Z4 = 16 numbers that fit the corners of a hyper- 
cube in 4-space, for five digits a hypercube in 5-space and so on. Interested 
readers will find this covered in detail in E. N. Gilbert's paper (see the bibliogra- 

phy). 
Gray codes for other bases correspond to Hamiltonian paths on more com- 

plicated n-dimensional graphs. The number of Gray codes for any base in- 
creases explosively as the number of digits increases. The number of Gray 
codes, even for the binary system, is known only for four or fewer digits. 

An ill-fated attempt to obtain the number for five binary digits is recounted in 
Graph Theory and Its Applications, by Ronald C. Read, who wrote a BFI program 
for finding the number of Hamiltonian paths on the five-dimensional cube. BFI 
is Read's acronym for brute force and ignorance. ("It should be BFBI," he has 
since remarked, "the second B standing for 'Bloody,' but one has to preserve a 
measure of decorum in published papers.") "These are algorithms," he ex- 
plains, "devoid of any subtlety whatever, which simply keep thumping the 
problem on the back until it disgorges an answer." After the program ran for a 
short time (on a computer in Kingston, Jamaica), a sample of the output was 
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examined in order to estimate how long the run would be. The guess was 10 
hours, and so the computer was set to run unattended overnight. During the 
night a tropical thunderstorm cut the power supply, and the computer stopped. 

"Idle curiosity," Read continues, "prompted us to look to see where the 
program had got to before being so abruptly terminated, and in doing so we 
discovered that we had made a rather serious error in calculating our previous 
estimate of the running time. Our revised estimate turned out to be more like ten 
years!" 

Read sensibly abandoned the project. The problem was not solved until 
1980 (see the addendum). 

For practical purposes it is important to select a Gray code with two desider- 
ata: ( I )  rules for its formation should apply to the entire set of counting 
numbers; (2) it should have simple conversion rules for translating a standard 
number to its Gray code equivalent and vice versa. 

The simplest Gray code with both features is called a reflected Gray code. 
For most mathematicians it is the Gray code. To convert a standard binary 
number to its reflected Gray equivalent, start with the digit at the right and 
consider each digit in turn. Ifthe next digit to the left is even (0), let the former 
digit stand. If the next digit to the left is odd (I) ,  change the former digit. (The 
digit at the extreme left is assumed to have a 0 on its left and therefore remains 
unchanged.) For example, applying this procedure to binary number 1101 11 
gives the Gray number 101 100. 

T o  convert back again, consider each digit in turn starting at the right. If the 
sum of all digits to the left is even, let the digit stay as it is. If the sum is odd, 
change the digit. Applying this procedure to 101100 restores the original 
binary number 1 10 1 1 1. 

Inspection of the numbers from 0 through 42 and their reflected binary Gray 
code equivalents will show that every two adjacent Gray numbers differ at only 
one place, and of course the difference is necessarily 1 [see Figure 41. It is called a 
reflected code because the series can be generated rapidly by the following 
algorithm. Start with 0, 1 as a one-digit Gray code, then reflect (reverse) and 
append the digits to get 0,  1, 1 , O .  Next put 0's in front ofthe first two numbers 
and 1's in front ofthe last two numbers. The result is a two-digit Gray code: 00, 
01, 11, 10. T o  extend the series to three-digit Gray numbers, reflect the 
two-digit code 00, 01, 11, 10, 10, 11, 01, 00. As before, put 0's in front ofthe 
first half of these numbers and 1's in front of the last half: 000, 001, 01 1, 010, 
110, 11 1, 101, 100. This corresponds to a Hamiltonian path starting at 000 on 
a cube. 

Proceeding in this fashion, first reflecting the entire series, then adding 0's 
and 1's on the left, one can quickly generate the reflected binary Gray code to 
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FEDCBA FEDCBA 

0  2  1  
1  O} 1  22 1 1 1 0 1  
2  1 1  23 

l l 1 l 1 1  
1 1 1 0 0  

3  1 0  24 
4  1 1 0  25 1 0 1 0 1  
5  26 ' ' ' 1  27 

1 ° l o O 1  
1 0 1 1 1  

6  1 0 1  1 0 1 1 0  
7 1 0 0  28 1 0 0 1 0  
8  29 
9  1 1 0 1  1 1 0 0 }  30 1 0 0 0 1  

10 1 1 1 1  3  1  
0 ° 1  l 1  

1 0 0 0 0  
11 1 1 1 0  32 
12 1 0 1 0  33 1 1  0 0 0 1  
13 34 

00001 
1 1 0 0 1 1  

14 1 0 0 1  l o l l }  35 1 1 0 0 1 0  
15 1 0 0 0  36 1 1 0 1 1 0  
16 37 
17 1 1  0 0 1  O o O 1  38 1 1 0 1 0 1  
18 1 1 0 1 1  39 

1 1 0 1 1 1 1  
1 1 0 1 0 0  

19 1 1 0 1 0  40 
20 1 1 1 1 0  4  1  1 1 1 1 0 1  

42 1 1 1 1 0 0 1  1 1 1 1 1 1  

Figure 4 Reflected binary Gray code for 0 through 42. 

any desired counting number. Note that for each set of n-tuplets the code is 
cyclic in that the first and last n-tuplets also differ at only one spot. If the code is 
used by a counter consisting of wheels, such as the usual mileage meter, the 
meter can go from its highest number back to 0's with a final unit change ofonly 
one wheel. 

In 1872 Louis Gros published in Lyon a brochure on Thiorie du Baguenodier. 
"Baguenodier" (more commonly spelled "baguenaudier") is the French name 
for a classic puzzle known in the English-speaking world as Chinese rings, 
although any connection between the puzzle and China is unknown to me. In 
his brochure Gros applied a binary notation to this puzzle for the first time. The 
puzzle had been first described in 1550 by Girolamo Cardano in his De 
Subtilitate Rerum, and it was later analyzed at considerable length by John 
Wallis in his Algebra in 1693. 

Many versions of the Chinese rings (the number of rings can vary) are 
currently on sale around the world. If you are handy with tools, the puzzle can 
be made with curtain rings, stiff wire and a strip of wood with holes drilled 
through it [see Figure 51. 
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Figure 5 Chinese ring puzzle. 

The object of the puzzle is to free all the rings from the double bar. For a first 
move the two end rings can be dropped either individually or both at once. T o  
simplify the solution, we shall assume that only one of the two end rings is 
dropped at a time. With the exception of those two rings (which can always be 
taken off or put on simultaneously), a ring will come off or go on only when its 
immediate neighbor closer to the end is on and all the other rings beyond are off. 
This is the peculiar feature of the puzzle that makes it so frustrating and 
repetitious. 

Let each ring be represented by a binary digit: 1 for on, O for off. The binary 
Gray number for 42 [see Figure 61 is 11 11 11. Ifwe let this represent the six rings 
on the upper rod, each Gray number going from 42 back to 0 shows which ring 
is to be removed or put on to solve the puzzle in a minimum number of moves! 
For n rings it is apparent that to determine the number of moves required, we 
simply write n as a Gray number of n units, convert it to standard binary and so 
obtain the answer. In this case the Gray number 111 111 corresponds to 
1010 10 in standard binary, which is 42 in decimal notation. (Gros explained all 
this in a slightly different way, but it amounts to the same thing.) To find the 
number by formula, use %(2" +' - 2) when n is even and l/11(2"+' - 1) when 
n is odd. 

W e  have assumed that for each move only one ring is removed or put on. The  
braces in Figure 4 indicate pairs of moves that can be made simultaneously with 
the two end rings. If these are counted as single moves, the six-ring puzzle can 
be solved in 3 1 moves instead of 42. The formulas for this "fast way" of solving 
an n-ring puzzle are 2"-' - 1 if n is even and 2"-' if n is odd. 

With a six-ring puzzle the slow-to-fast ratio is 42131 = 1.355; for seven rings 
it is 85164 = 1.328. The ratios continue as 1.338, 1.332, 1.334,. . . . N. S. 
Mendelsohn has shown that this oscillating series converges rapidly to 1%. 
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Figure 6 First six positions for solving ring puzzle using the Gray code. 

Twenty-five rings require 22, 369, 621 steps. Assuming that a skilled operator 
can do 50 steps a minute, he could solve the puzzle the slow way, working 10 
hours per day, in a little more than two years. By doing it the fast way, however, 
he could cut the time by about half a year. 

Jesse R. Watson of Altadena, Calif., headed a firm called Watson Products 
that manufactured a handsome, six-ring, aluminum version of the rings in the 
early 1970's. In his instructions he asked the following question: Suppose the 
initial position for an n-ring puzzle has the last ring (the one nearest the handle) 
on and all other rings off. Watson calls this the position of "maximum effort" 
because it requires more moves than any other position to take all the rings off. 
Assuming that the slow method is used, what simple formula gives the required 
minimum number of moves? 

The  binary Gray code also solves the well-known Tower of Hanoi puzzle, in 
which n disks of diminishing sizes are stacked in a pyramid. The problem is to 
transfer them one at a time to a second spot, using a third spot as a temporary 
resting place with the proviso that no disk be placed on top of a smaller disk. 
(See Chapter 6 of The Scientijc American Book of Mathematical Puzzles €3 
Diversions.) T o  solve this puzzle for five disks, label the disks of the initial 
pyramid, starting with the smallest, from A to E. Label the columns of Figure 4 
from A to F as shown. Take the Gray numbers in sequence. At each step move 
the disk that corresponds to the column in which there is a change of digit. The 
sequence begins ABACABAD. . . . O n  every move a disk can be transferred 
to only one spot. The sequence solves the puzzle in 2n - 1 moves, which in this 
case is 31. 

Rules for converting numbers in other base systems to reflected Gray num- 
bers are simple generalizations of the rules for binary numbers. (There are 
several general conversion procedures, but I give the simplest here.) If the base 
is even, the rules are the same as for the binary system, except that when a digit 
is altered it is changed to its "complement" with respect to n - 1 when n is the 
base, that is, to its difference from n - 1. In the binary system, n - 1 = 1, so 
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GRAY GRAY 

16 13 
17 12 
18 11 
19 10 
20 20 
2 1 21 
22 22 
23 23 
24 24 
25 25 
26 26 
27 27 
28 28 
29 29 
30 39 

Figure 7 Reflected decimal Gray code 

that this means a simple change of 0 to 1 or 1 to 0.  In the decimal system, 
numbers are complemented with respect to 9 (that is, subtracted from 9). 
Therefore to convert a decimal number to a Gray number take each digit in turn 
beginning at the right. If the next digit to the left is even, leave the former digit 
unchanged. If the left digit is odd, complement the former digit. For example, 
1972 becomes 1027. To convert back to the decimal system, work with sums. If 
all digits to the left have an even sum, let the digit stand. If the sum is odd, 
subtract the digit from 9. 

Only a slight modification of rules is required for numeral systems with an 
odd base. In such cases the sum rule applies to conversion in either direction. In - - 
the ternary system, for instance, complementation is with respect to 2. Regard- 
less of which way you convert, complement when the sum on the left is odd; 
otherwise let the digit stand. Ternary Gray numbers, in counting order, are 0 , l .  
2 ,  12, 11, 10, 20, 21, 22, 122, 121, 120, . . . . 

In all bases, Gray counting numbers of the reflecting type (unless otherwise 
specified, these are considered the Gray numbers for a given base) are quickly 
determined by generalizing the procedure given for binary numbers. This is 
best explained by using the decimal systemis an example [see Figure 71. Note 
that the unit's column begins with the sequence 0 through 9; then it proceeds 
from 9 through 0 ,  then from 0 through 9 and so on. In the 10's column, ten 0's 
(not shown) are followed by ten l ' s ,  then by ten 2's, ten 3's and so on through 
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ten 9's until 99 is reached. Now the doublets are reflected after every 100 steps, 
and in the third column from the right a hundred 0's are followed by a hundred 
l ' s ,  then by a hundred 2's and so on until 999 is reached. The reader should 
have little difficulty applying this procedure to other base systems. In the 
ternary system, for example, reflections occur in the right column every third 
step, in the next column every ninth step, in the next column every 27th step 
and so on through increasing powers of 3. 

Because Gray codes are relatively unknown to students of recreational math- 
ematics, I suspect they have many puzzle applications other than the ones given 
here. I would be glad to hear from readers who know of recreational uses for 
Gray codes with bases greater than 2. 

ANSWER 

From a "maximum effort" position (only the last ring is on the bar), zn - 1 
moves are required to remove all the rings by the slow method. Numbers of this 
form are called Mersenne numbers. The same formula gives the number of 
moves required for transferring n disks in the Tower of Hanoi puzzle. 

Henry E. Dudeney, in his discussion ofthe puzzle (see the bibliography), has 
this to say about a "maximum position" task. "If there are seven rings and you 
take offthe first six, and then wish to remove the seventh ring, there is no course 
open to you but to reverse all those 42 moves that never ought to have been 
made. In other words, you must replace all the seven rings on the loop and start 
afresh!" 

ADDENDUM 

The limerick at the head of the chapter is only half anonymous. It is my 
variation on the following anonymous tribute to the binary system: 

The binary system is fun, 
For with it strange things can be done. 

Two as you know 
Is a one and an oh, 

And five is one hundred and one. 

Like so many mathematical ideas, the origin of the Gray code fades into 
history. George R. Stibitz, a physiologist at Dartmouth Medical School, sent me 
a copy of his 1943 patent (No. 2,307,868), applied for in 1941 when he was 
with Bell Laboratories. It describes a counting device using elastic balls and 
magnets. Electric pulses shift the balls back and forth, varying their positions in 
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accord with the cyclic Gray code. Recalling this patent prompted Stibitz to 
write: 

An ingenious fellow one day 
Wrote numbers a new-fangled way. 

As earlier had Stibitz, 
But that name inhibits 

Historians who call the code "Gray." 

So far as I have been able to learn, the earliest technical use of the Gray code 
was by   mile Baudot (1845 - 1903), a French engineer who applied the cyclic 
code to telegraphy. For details and references see "Origins ofthe Binary code," 
by G. G. Heath in Scientijc American, August, 1972, pages 76-83. 

The term "reflected code" was first used by Gray in his 1953 patent. 
"Because this code in its primary form may be built up from the conventional 
binary code by a sort of reflection process and because other forms may in turn 
be built up from the primary form in similar fashion, the code in question, 
which has as yet no recognized name, is designated in this specification and in 
the claims as a 'reflected binary code.' " 

Sydney N. Afriat, an economist at the University of Ottawa, has written an 
entire book about the Chinese rings, The Ring of Linked Rings, published in 
London in 1982 by Duckworth and Company. Afriat also discusses the Tower 
of Hanoi and how the two puzzles are solved by the Gray code. The book 
includes computer programs for both puzzles and an extensive bibliography. 

In recent years several mechanical puzzles have been marketed that use a 
Gray code for their solution. A notable example is The Brain, invented by 
computer scientist Marvin H .  Allison, Jr., and made in the 1970's by a com- 
pany called Mag-Nif. It consists of a tower of eight transparent plastic disks that 
rotate horizontally around their centers. The disks are slotted, with eight 
upright rods going through the slots. The rods can be moved to two positions, in 
or out, and the task is to rotate the disks to positions that permit all the rods to be 
moved out. The Gray code supplies a solution in 170 moves. 

A curious puzzle called Loony Loop - its complicated history would require 
a chapter - consists of four intertwined steel loops and a ring of nylon cord that 
seems permanently captured by the loops. The task is to free the nylon cord. 
The puzzle generalizes to n metal loops and is solved by applying a ternary 
Gray code to a sequence of moves. 

Many readers reminded me of the similarity of Gray codes to a word puzzle 
invented by Lewis Carroll, called Doublets, better known today as Word 
Ladders. The idea is to change a word to one of the same length by altering one 



letter at a time, forming a different word at each step, in a minimum number of
steps. (See the chapter on Carroll in my New Mathematical Diversions from Scientific
American.) As often noted, word ladders resemble the way the genetic code is altered
by evolutionary mutations. On the relation of the Gray code to word-ladder prob-
lems, see “The Arithmetic of Word Ladders,” by Rudolph W. Castown, in the quar-
terly journal Word Ways, Vol. 1, August, 1968, pages 165–169.

The Gray code solves many brainteasers that appear from time to time. A typ-
ical example is the switching puzzle on page 26 of The Surprise Attack in
Mathematical Problems, by L. A. Graham (Dover, 1968). An earlier instance is
Problem 319, solved in American Mathematical Monthly, December, 1938, pages
694–696. Imagine a light bulb connected to n switches in such a way that it lights
only when all the switches are closed. A push button opens and closes each
switch, but you have no way of knowing which push opens and which closes.
What is the smallest number of pushes required to be certain you will turn on the
light regardless of how the switches are set at the outset? This device, by the way,
is the basis of an amusing trick, unpatented and inventor unknown, that is cur-
rently sold in magic stores under various trade names. Louis Tannen’s Magic
Studio in Manhattan sells it under the name Electronic Monte. There are three
push buttons and one light. The magician demonstrates how a single button
seems to control the light, but the control mysteriously changes from one push
button to another, like the pea in a three-shell game.

Many legends tell how the rings puzzle was invented in ancient China, but the
world’s expert on early Chinese inventions, Joseph Needham, finds no evidence of
its Asian origin. (See his Science and Civilization in China, Vol. 3, page 111.) The
Japanese became so intrigued by the puzzle in the 17th century that they wrote
Haiku poems about it, and symbols of the linked rings appeared on heraldic
emblems. There is a large literature on the puzzle in both China and Japan, but I
know of no published bibliography.

The rings were sometimes used in Europe as a whimsical locking device for bags
and chests. In England the puzzle was usually called the “tiring irons,” probably
because it is tiring to solve, especially if the rings are large and heavy. According to
the Oxford English Dictionary, it was earlier called “tarrying irons,” perhaps
because one is long delayed in solving it. Among its quotations, the OED gives the
following 1782 doggerel:

Have you not known a small machine 
Which brazen rings environ,
In many a country chimney seen
Y-clep’d a tarring-iron?
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The puzzle has been sold around the world in hundreds offorms. A beautiful 
hand-carved ivory version with nine rings (from the puzzle collection of Tom 
Ransom of Toronto) provided the cover for the May 1977 issue of Computer. 
The  puzzle illustrates the last-in - first-out principle of stack machines, the topic 
of five articles in the issue. At the other extreme is a small seven-ring version I 
found advertised in a 1936 Johnson Smith and Company catalog, where it is 
called the "Chinese Ringbar Puzzle"; price: 15 cents. "This is an extremely 
difficult puzzle," the description reads, "yet very simple when you are familiar 
with the method. . . . You may try forever and not be able to remove the bar 
from the rings. Just as you think you are getting it done, you are further off the 
solution than ever, and you have to give up in despair." 

An elaborate electronic version of the puzzle, with eight lights and eight push 
buttons, is the topic of "The Princeps Puzzle," by James W. Cuccia, in Popular 
Electronics. The article gives detailed instructions on how to make the thing. (I 
am indebted to Dr. Burton J. Bacher for calling this article to my attention.) 

Science and Invention, September, 1927, page 397, describes a "marvelous 
escape trick" in which a "fair damsel" is shackled on the stage in the manner 
shown in Figure 8. Diagrams show how the lady is released by manipulating 
the rings around her arms and legs in the manner of the Chinese puzzle. This 
preposterous stage trick, the article says, was invented by one Theodore P. 
Brunner of Los Angeles, who has it protected by U.S. Patent 1,625,452. 

Since my column on Gray codes was published in Scientijic American in 
1972, the number of 5-bit codes-the same as the number of Hamiltonian 
paths on a five-dimensional cube - has been determined. A good upper bound 
has been established for the 6-bit Gray code. 

At the 1980 IEEE International Conference on Circuits and Computers, at 
Port Chester. N.Y., a paper was presented titled "Gray Codes: Improved 
Upper Bounds and Statistical Estimates for n > 4 bits," and published in 1983 
(see the bibliography). The authors were Jerry Silverman, Virgil E. Vickers and 
John L. Sampson, electrical engineers at the Rome Air Development Center, 
Hanscom Air Force Base, Chicopee, Mass. Their estimates for the 5- and 6-bit 
codes were based on Monte Carlo techniques. 

The  authors open with a succinct definition of an n-bit Gray code as "a list of 
all the 2" binary n-tuples ordered so that adjacent elements differ by a change in 
only one bit." They point out that such codes are widely used in AID conver- 
sion, shaft encoding, codes for data retrieval, control mechanisms, switching 
and network theory and experimental design. Although the reflected binary 
code is the most widely used, other types of Gray codes are preferred for special 
purposes. Finding a formula for the number of n-bit Gray codes as a function of 
n remains a difficult unsolved combinatorial problem. 



THE BINARY GRAY CODE 23 

Figure 8 An absurd stage trick using the Chinese rings. 

Their statistical estimates agreed with the exact value for the 4-bit code to 
within 0.06 percent. To test their estimate for the 5-bit code they made a precise 
calculation on a PDP-11 computer. At first they feared the running time would 
be about 11 years, but by taking advantage of symmetries and a "look ahead" 
method that predicts dead-end branches, they were able to reduce the running 
time to 750 hours. "We are happy to report," the three researchers told me in a 
1980 letter, "that a five-dimensional fly can walk along the edges of a five- 
dimensional cube in exactly 187,499,658,240 ways." 

W e  need to make clear just what this number counts. It allows the fly to start 
at any corner of the hypercube and trace a Hamiltonian path that ends at any 
other corner. Reversals of each path are included. (Ifreversals are excluded, the 
number must be halved.) The number of Hamiltonian circuits -paths starting 
anywhere but ending on a corner adjacent to the starting corner-is 
58,O 18,928,640. This, too, includes reversals. If you want the corresponding 
figures for paths and circuits that start only at the corner taken as zero, then each 
of the above figures must be divided by 2" = 32, where n is the dimension 
number. 
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Because my column did not disclose the numbers for Hamiltonian paths and 
circuits (including reversals) on lower-order cubes, I give them below: 

n Hamiltonian circuits Hamiltonian (noncyclic) paths 

The Hanscom researchers were the first to publish the figures for the 5-bit 
Gray code, but they were not the first to find them. After my column appeared, 
the same results were sent to me in the fall of 1972 by David Vanderschel of 
Houston, Alex G .  Bell and Peter Hallowell of the Rutherford High Energy 
Laboratory in Chilton, England, and Steve Winker of Naperville, Ill. None 
published their results, but I reported them in my column for April, 1973. The 
fact that all four programs agreed is strong evidence that the numbers are 
accurate. 

The  number of 6-bit Gray codes remains unknown. The Hanscom re- 
searchers estimate it as close to 2.4 X a number so large that it is probably 
not possible to determine it precisely in any reasonable computer time, unless, 
of course, someone discovers a formula or some new algorithm shortcuts. 

I don't know if anyone has noticed this before, but it occurred to me that the 
number of Gray ternary codes of n digits is equal to the number of Hamiltonian 
paths on n-cubical lattices with three points on each edge and the faces toroi- 
dally joined. This is best explained with examples. 

There are six one-digit ternary Gray codes. W e  represent them on the single 
edge of a one-dimensional "cube" by three points, then close the ends of the line 
to make a circle, as shown in Figure 9a. By starting at any point and counting 
reversals, we see that the six Hamiltonian paths provide the one-digit codes 
012, 120, 201 and their reversals; 210, 021 and 102. 

The two-digit ternary Gray codes are obtained from the square lattice shown 
in Figure 9b. Its nine points are labeled with the nine two-digit combinations of 
0 , l  and 2. Points on each side ofthe square are connected to the three points on 
the opposite side. The  graph can, of course, be drawn on a torus with three 
parallel lines going around it one way and three circling it the other way. The 
number of Gray codes is the number of Hamiltonian paths on this graph. 
Already it is not easy to see how to count the paths systematically, and I have 
made no attempt to do so. 

For three-digit ternary codes we go to the cubical lattice shown in Figure 9c, 
its 27 points labeled with the 27 three-digit combinations of 0, 1 and 2. As 
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Figure 9 Ternary Gray codes as Hamiltonian paths. 

before, imagine each point connected by a line (not shown) to the correspond- 
ing point on the opposite face. The procedure clearly generalizes to n-dimen- 
sional hypertoruses. Gray codes with bases higher than 3 can be similarly 
generated by Hamiltonian paths on more complicated hyperlattices. 
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CHAPTER THREE

Polycubes

In 1958 Piet Hein’s Soma cube was first introduced to U.S. puzzle buffs in my
September Scientific American column. (The column is reprinted in The 2nd
Scientific American Book of Mathematical Puzzles & Diversion.) The puzzle has since
been sold around the world under a variety of trade names. The only author-
ized version is marketed in the U.S. by Parker Brothers, with an informative
booklet written and illustrated by Piet Hein. Three issues of Soma Addict, a
newsletter edited by Thomas V. Atwater, were published, as well as many articles
on Soma in mathematical journals.

The Soma pieces are a subset of what have been called polycubes. These are
solid figures created by joining unit cubes at their faces. Like their flat cousins
the polyominoes, they pose an extraordinarily difficult combinatorial problem:
Given n cubes, is there a formula for calculating the number of distinct poly-
cubes of order n? If so, it has not yet been found, although there are, of course,
recursive procedures by which all polycubes of order n can be constructed:
Simply add a cube in all possible ways to each polycube of order n – 1 and elim-
inate duplicates. Since there is no way to “turn over” an asymmetric polycube in
4-space analogous to the way an asymmetric polyomino can be reversed in 3-
space, mirror-image pairs of polycubes are considered different. It is obvious
that for orders 1 and 2 only one polycube is possible for each and that three unit
cubes can form two polycubes. It also is easy to determine that there are eight
tetracubes and 29 pentacubes. Several computer programs have verified a hand
computation, first made by David Klarner, that there are 166 hexacubes. As far
as I am aware, the number of heptacubes is still undetermined.

The Soma cube consists of the seven irregular shapes [See Figure 10] that can
be formed by combining three or four unit cubes — all nonconvex polycubes
of orders 1 through 4. There are 240 distinct ways (not counting rotations and
reflections) that the seven pieces will form a 3-by-3-by-3 cube. This was first
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Figure 10 The seven Soma pieces. 

determined by John Horton Conway and M. J. T. Guy and has since been 
verified by many computer programs. Parker's Soma booklet states that Con- 
way and Guy used a computer for their work- an error I am now happy to 
correct. As Conway puts it in a letter, he and Guy, both mathematicians at the 
University of Cambridge, obtained the 240 solutions by hand "one wet after- 
noon" when they had no more-pressing chores. 

"I think for a puzzle the size of Soma," Conway adds, "it's an admission of 
defeat to use a computer. If you find the right way of organizing the material, it 
should take less time to do the whole thing by hand than it does to program the 
machine." By first establishing a few ingenious theorems (some of which were 
found by Guy's father, R. K. Guy) and using a parity coloring technique, they 
were able to check all possibilities with great efficiency. 

Conway and Guy later discovered that if you begin with any of 239 solutions 
(one solution is an anomaly), all of the others can be obtained in 238 steps by 
altering the position of no more than three pieces at each step. Conway has 
drawn a large graph (which he calls the Somap) showing how the 239 solutions 
are linked to one another and giving each solution a concise notation, called its 
"somatype." The map does not give any one solution, but once you have built 
the cube in any of the 239 ways, the map enables you to transform it to all the 
others by moving two or three pieces at a time. The map is too complex to 
reproduce here, but you will find it on pages 802 - 803 of Winning Ways, Vol. 2, 
by Elwyn R. Berlekamp, John H. Conway and Richard Guy (Academic, 1982). 

The  Soma cube's popularity flows from the enormous variety of pleasing 
shapes that can be made with its pieces and from the many clever ways of 
proving that certain 27-cube shapes are impossible. It is not, however, the first 
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Figure 11  Polycube pieces for the Diabolical cube. 

polycube dissection of the order-3 cube to be marketed as a puzzle. A six-piece 
set was sold in Victorian England under the name of the Diabolical cube [see 
Figure 11, top]. (Its pieces are reproduced on page 108 of Puzzles Old and New, 
by "Professor Hoffmann," published in London in 1893.) I do not know how 
many basic solutions the Diabolical cube has, but perhaps a reader can tell me. I 
found only eight. The pieces can be cut from wood or made by gluing together 
alphabet blocks. As Piet Hein has noted, the unknown inventor surely intended 
a dissection of the cube into a set of "flat" polycubes containing one each of 
orders 2 through 7.  

Another dissection of the cube into six polycubes was made by the Polish 
mathematician J.  G. Mikusiriski [see Figure 12, middle]. It appears in Hugo 
Steinhaus's Mathematical Snapshots (Oxford University Press, 1950). These 
pieces are currently on sale here and abroad under several trade names. There 
are just two solutions, both difficult to find. Still another interesting cube 
dissection, suggested by Thomas H. O'Beirne of Glasgow, is to cut the order-3 
cube into nine tricubes, all shaped like the 3-piece of the Diabolical cube. 
Random attempts to build a cube with the nine tricubes are likely to be very 
frustrating unless you hit on a systematic procedure. 

Figure 12 Polycube pieces for J. G. Mikusinski's cube 



Gorilla Camel 

Swan 

Tyrannosaurus 

Goose 

Bird 

Figure 13 Soma animals created by Rev. John W. M. Morgan 

Duck 

Giraffe 

Nine animals from a zoo of several dozen Soma figures created by Rev. John 
W. M .  Morgan, vicar ofSt. Matthew's Church in Luton, England, are shown in 
Figure 13. The  animals all have bilateral symmetry except for the giraffe, whose 
head leans to one side (he is thinking), and the dog, whose hidden rear portion 
violates symmetry. The  bird actually will perch on one leg as shown. 



Three Soma structures of a delightful new type were created by Benjamin
L. Schwartz of McLean, Va. [see Figure 14]. The penthouse has a cubical hole
at its center and is not hard to construct. The tower is flat on its two hidden
sides and has three interior holes. The stairway also has three interior holes.
The last two are difficult to build. In both cases the three holes are inside,
invisible from all angles.

Another pleasant exercise is to construct Schwartz’s three figures with the
six Diabolical-cube pieces. None is possible with the holes on the interior, but
each can be made with one or more holes at the back, so that the structures
appear as shown in the illustration.

The notorious wall in Piet Hein’s instruction booklet is an insoluble Soma
problem [see Figure 15]. Many impossibility proofs have now been found, but 

CHAPTER THREE     32

Figure 15    The impossible wall

Figure 14 Soma structures with hidden holes: (a) penthouse, (b) staircase and (c ) tower
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the simplest (discovered independently by many Soma addicts) is based on the 
wall's 10 corner cubes, shown shaded in the illustration. If each Soma piece is 
considered in turn, it is apparent that five of the pieces can provide only one 
corner cell each and that the other two can provide no more than two each. All 
together, therefore, the pieces can supply a maximum of nine corners. Since 
there are 10 corners, the wall is impossible. It is possible, however, to build a 
wall that from the front looks exactly like the one in the illustration. Ifthe wall is 
viewed from behind, however, the hidden corner (indicated by the arrow) is 
missing, and an extra cube protrudes at some other spot. 

The corner proofof impossibility applies also to the six pieces of Mikusiriski's 
cube but not to the Diabolical pieces. Unfortunately, they will not make a 
genuine wall either, and readers may enjoy proving it by a different technique. 
The Diabolical pieces will, however, like the Soma pieces (but not Miku- 
siriski's), make an ersatz wall that appears genuine from the front. This is a 
harder task than forming the Diabolical cube. There are several ways to do it 
with one hole hidden below the top center corner and one back-projecting cube 
at the base, where it is hard to see even when looking downward from the front. 
A not-so-funny joke to play on a victim is to let him see a false wall from the front 
(formed by either Soma or Diabolical pieces), knock the wall apart and then 
offer him $50 if he can rebuild the structure (with no holes, of course) within 
three hours. 

The building of fake structures opens up numerous amusing possibilities. 
One can build Soma bricks that are 3 by 3 by 4 or 2 by 3 by 6, that appear solid 
but are actually hollow in back like the fa~ades of buildings on a movie set. A 
spurious 2-by-2-by-8 tower can even display two extra cubes on top. A 1-by-4- 
by-6 Soma wall, standing on edge, has three invisible cubes projecting from the 
back. Of course, gravity must be taken into account in problems of this type 
because the structures should be capable of standing alone, without the aid of 
adhesive or concealed supports. 

Many people have worked on structures formed from larger sets of poly- 
cubes. The eight tetracubes were manufactured in Hong Kong in 1967 (by E. S. 
Lowe Co., Inc.) and marketed as the Wit's End puzzle. The set came boxed as a 
2-by-2-by-8 solid. A 2-by-4-by-4 solid also is possible. Indeed, a group in the 
Artificial Intelligence Laboratory at the Massachusetts Institute of Technology 
used a computer to show that it had 1,390 basic solutions. Both of these solids 
are enlarged replicas of two of the tetracubes, and enlarged replicas of the 
remaining six tetracubes can also be made. 

The 29 pentacubes are the subject of U.S. Patent 3,065,970, November 27, 
1962, issued to Serena Sutton Besley. Unfortunately, no rectangular solid has 
5 X 29 = 145 unit cubes, but by adding a duplicate pentacube, Mrs. Besley 
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obtained 150 unit cubes. The 30 pieces will form bricks of 5 by 5 by 6, 3 by 5 by
10, 2 by 5 by 15 and 2 by 3 by 25. Klarner had earlier found that if the 1-by-1-by-
5 piece is omitted, the remaining 28 pentacubes will form two separate 2-by-5-by-
7 solids. Two solutions are given by Solomon W. Golomb in his Polyominoes, page
118. Other problems devised by Klarner, using 28 or fewer pentacubes, are in
Golomb’s book on pages 159–160.

If the 12 pentominoes are given a unit thickness, the set is known as the solid
pentominoes [see Figure 16]. Golomb introduces this popular set of polycubes on
page 116 of his book and gives additional problems with them on pages 158–159.
The set will form enlarged replicas of ten of the pieces. When Golomb’s book
appeared, the W and X pieces had been proved impossible, but replicating the F
piece (sometimes called the R piece) remained undecided until 1970. It was solved
by J. M. M. Verbakel of the Philips Research Laboratories in the Netherlands. It
is not known if his solution (see the bibliography) is unique.

C. J. Bouwkamp, associated with the same laboratory, reported in 1969 (see the
bibliography) on his computer programs that produced all the solutions for pack-
ing the 12 solid pentominoes in boxes of 2 by 3 by 10, 2 by 5 by 6 and 3 by 4

Figure 16 The solid pentominoes.
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by 5. The number of basic solutions is 12, 264 and 3,940. respectively. Bouw- 
kamp's paper gives the 12 solutions for the 2 by 3 by 10 and comments on some 
of their unusual properties. In July, 1967, the Technological University of 
Eindhoven published Bouwkamp's 310-page Catalogue of Solutions ofthe Rec- 
tangular 3 X 4 X 5 Solid Pentomino Problem. 

An unusual task that links the solid pentominoes with the Soma puzzle has 
been proposed by J. Edward Hanrahan of La Mesa, Calif. He reports that it is 
possible to form 4-by-4-by-2 solids with the Soma pieces so that on the upper 
4-by-4 layer there will be five cubical holes joined to form hollow molds for each 
of the 12 solid pentominoes except the I pentomino, which is obviously too long 
to fit. 

Working with cubical holes suggests many curious and unsolved polycube 
questions. What, for example, is the largest volume of empty space that can be 
put inside a solid formed with a specified set of polycubes? "Inside" can be 
defined in various ways. What is the maximum number of unit holes that do not 
touch one another or touch the outside surface (under various definitions of 
"touch")? 

Here is an intriguing, unpublished and unsolved hole problem that can be 
worked on with a set of either the flat pentominoes or the solid ones. Stephen 
Barr of New York (not Stephen Barr the writer, who lives in Woodstock, N.Y.) 
recently set himself the task of creating a flat-pentomino pattern having the 
maximum number of unit holes that do not in any way touch the perimeter or 
one another. (Each hole must be surrounded by eight squares.) His best result, 
12 holes, is shown in Figure 17 in one of several solutions. It can be proved that 
14 holes are impossible. I leave it to readers to settle the question of whether or 
not a pattern with 13 holes can be achieved. 

Figure 1 7  The  maximum-hole problem 



ANSWERS
Solutions to the Soma tasks of building the penthouse (with one interior hole)
and the tower and stairsteps (each with three inside holes) are shown in Figure
18. Numerals indicate the pieces as they are numbered in Figure 10.

Thomas H. O’Beirne’s simple procedure for building the 3-by-3-by-3 cube
with nine bent tricubes is to use six of them to make three 1-by-2-by-3 slabs.
The remaining three tricubes are piled into a stack of height 3; then the slabs
are placed vertically [see Figure 19]. The picture is a view of the cube from above.

I said that the number of heptacubes had not been calculated. I have since
learned from David Klarner and C. J. Bouwkamp that an ALG0L-60 program,
written in 1969 by A. J. Dekkers at the Philips Research Laboratories in the
Netherlands, found 210 –  1 = 1,023 heptacubes. This was confirmed in 1972
with a program written by Timothy L. Bock, of Oberlin, Ohio. The results of
an earlier program were proved faulty by Klarner’s father, who had built a set
of wooden heptacubes that included several the program had missed. Klarner
assures me that the complete set of heptacubes will pack a 2-by-6-by-83 box,
but whether it packs a 3-by-4-by-83 box is not yet known.

Bouwkamp, who also works at the Philips Laboratories, informs me that he
wrote a program in 1970, proving that J. M. M. Verbakel’s way of replicating
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Figure 18 Solutions to the Soma problems.
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Figure 19 Solution to the tricube problem. 

the F-pentacube with the 12 solid pentominoes is unique. "It is understand- 
able," Bouwkamp comments, "that in Golomb's book the replication of this 
~entacube was left undecided, and most remarkable that Verbakel hit on it by 
trial and error." 

ADDENDUM 

Wade E. Philpott, of Lima, Ohio, was the only reader who sent all 13 solutions 
to the Diabolical cube. I once had occasion to show this puzzle to John Horton 
Conway of the University of Cambridge. He mentally labeled the pieces with a 
checkerboard coloring; he then began testing the pieces rapidly, talking out 
loud and occasionally scribbling a note. It was like watching Bobby Fischer play 
blitzkrieg chess. About 15 minutes later he announced that there were just 13 
solutions. To distinguish them, designate each piece of the Diabolical cube by 
the number of unit cubes it contains. There are three ways in which the two 
largest pieces, 6 and 7, can go: 

1. Parallel and side by side. When properly placed, with the 5-piece wrapped 
around a projecting cube of 6, the 4-piece can go in three places. There are five 
solutions. 

2.  Parallel but on opposite sides of the cube. There are two solutions. 

3. Perpendicular to each other. Crossing in one way yields four solutions, 
another way two, or six solutions in all. 

Philpott also sent a proof that a pattern of 14 unit holes, each surrounded by 
eight cells, cannot be achieved with the 12 pentominoes. The proof establishes 
that at least 59 squares are needed to surround 14 holes. On all such patterns 



each pentomino, except the P and W pieces, will fit. Adding a 60th cell will
accommodate only one of the two pieces, proving that the 60 cells of the pen-
tomino set are not enough. Essentially the same proof had earlier been formu-
lated by Joseph Madachy.

Readers too numerous to mention sent 13-hole solutions to the problem. The
beautifully symmetrical one shown in Figure 20a was found only by Andrew L.
Clarke of Freshfield, England. It so intrigued C. J. Bouwkamp that he wrote a
computer program to see if the pattern was unique. He found just one other
solution [see Figure 20b], except for rotations and reflections.

If the conditions allow holes to touch the border and also one another at their
corners, how many holes are possible? The maximum is 18. The pattern shown
in Figure 21, first discovered by Christer Lindstedt of Sweden, may be unique
except for a trivial shift of the straight pentomino. If the holes are not restricted
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Figure 20 Symmetrical solutions to the 13-hole problem.



Figure 21 18-unit holes 

to unit squares, there are many 18-hole solutions. (See "Pentomino Problem," 
in Journal of Recreational Mathematics, Vol. 17, No. 3, 1984 - 1985, pages 
220 - 224.) 

The  solution I gave for the Soma penthouse with the interior hole is not very 
stable. John Conway informed me that pieces 4 , 5 , 6  and 7 can each be used to 
make the projecting "penthouse," and that the most stable configuration is 
obtained by forming the cube shown in Figure 22, removing the 7-piece, 
inverting it, and replacing it. The structure is so stable that if you turn it upside 
down and put a book on top, it will balance on its projecting cube. This solution 
was also sent to me by Geof D. Clayton, of Beaverton, Ore. 

Figure 22 How to make a stable penthouse 



I was wrong in saying that the dog in the Reverend John Morgan’s Soma zoo
had an asymmetrical rear portion. Peter Neuret of West Germany, sent a symmet-
rical solution. “My dog was infuriated to read that his hidden rear portion violates
symmetry,” Morgan wrote. “Just come over here and say that again to his face.”
Morgan sent two symmetrical solutions.

David Bird of England, raised the interesting question, What is the lowest-
order polycube that contains a unit hole completely surrounded? The answer is
an order-11 polycube. Six unit cubes are needed to cover the hole’s six sides, and
five more are required to join them. Note that even if we exclude higher-order
polycubes with no interior holes, there are surely structures interlocked in such a
way that they cannot be built without going through a fourth dimension. I have
no idea what the simplest example would be.

Mathematical Digest, a school periodical in Christchurch, New Zealand, in issue
No. 58 (1978) introduced the six polycubes shown in Figure 23. The editors call
it the Lesk cube after its designer Lesk Kokay, who had been seeking a dissection
of the 3-by-3-by-3 cube into six polycubes that would form the cube in only one
way. Unfortunately, it has at least three solutions.

Is there a six or seven-piece dissection with a unique solution? If so, it has not
come to my attention. In 1973 an order-3 cube with, as I recall, seven pieces was
on sale in the U.S. under the trade name Qube. The box stated that it had only
one solution, but this was achieved by a black-and-white checkerboard coloring
of tsshe pieces and the requirement that the cube be similarly colored.

Tom Marlow wrote from England to say that the number of hexacubes and
heptacubes were known as far back as 1948. In The Fairy Chess Review, Vol. 7, 1948,
page 8, Dr. J. Niemann gave the number of heptacubes as 1,023, along with a neat
system for classifying them. His figure for the hexacubes was 167, but this was
corrected to 166 in a later issue.

Sets of the 12 solid pentominoes have been marketed both here and abroad
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Figure 23 The Lesk cube.
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under various trade names. In the U.S. a handsome polished hardwood set is 
available from Kadon Enterprises, 1227 Lorene Drive, Pasadena, Md. 21122. 
It is called Quintillions and comes with a 9-by-12 checkerboard on which 
games can be played with the pieces. The other 17 pentacubes (those that are 
not "flat") are also available from Kadon as Super Quintillions. The company 
also sells "Quint-Art" sculptures, produced by bonding together Quintillion 
pieces. A four-page Quint-Gram, issued twice a year since 1981, is devoted to 
puzzles based on the solid pentominoes. See the bibliography for other refer- 
ences to pentomino problems. 

Joseph Dorrie of Madison Heights, Mich., proposed another subset of the 
pentacubes - those pieces that are no longer than three units wide along any of 
the three coordinate directions. There are 25 such pieces, and they form what 
Dorrie calls the "Dorian cube," a term he has copyrighted. 

Another set of polycubes suggested for puzzle purposes consists of all the 
polycubes in orders 1 through 5 .  Scott L. Forseth, in "Solid Polyomino Con- 
structions," in Mathematics Magazine, Vol. 19, 1976, pages 137 - 139, shows 
how these 41 polycubes will pack a 2-by-3-by-31 = 186 box. He found two 
solutions and thinks there are many others. 

In 1979 a Los Altos, Calif., firm called Lemmel Associates introduced a 
puzzle game called Putzl. Invented by L. E. Minnick, it uses two sets ofthe eight 
tetracubes, each a different color. One player uses one set; his opponent, the 
other. They take turns placing one of their pieces on the table. The object is to 
build an order-4 cube. When a visible face of this cube is completed, the face is 
won by the player who has the most squares of his color on the face. (The game 
can be played in reverse, the win going to the person with the least of his color on 
the face.) A played piece must fit snugly on the previously placed pieces without 
creating any holes or extending beyond the imagined order-4 cube. If no such 
play is possible, the player passes. The game ends when no play can be made, 
and the winner is the person who has captured the most faces. The cube's top 
face is rarely completed, although the 16 pieces will form the cube. Minnick has 
prepared a handbook for the game. 

Lakeside Industries, a division of Leisure Dynamics of Minneapolis, mar- 
keted in 1969 a series of six polycube puzzles under the name Impuzzables. 
Each consisted of a set of five, six or seven plastic polycubes, each set a different 
color, that fitted together to make a 3-by-3-by-3 cube. The colors were assigned 
in order of difficulty from the easiest (yellow) to the hardest (blue). Gerard 
D'Arcey, a California game inventor, designed the puzzles. 

Without knowing any of the polycube shapes, or even how many there are to 
each impuzzable, how quickly can you prove that all the polycubes from all six 
sets will build a 3-by-6-by-9 brick? 
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Bacon's Cipher 

Cryptography is a science of deduction and controlled experiment; hypothe- 
ses are formed, tested and often discarded. But the residue which passes the 
test grows and grows until finally there comes a point -when the experimenter 
feels solid ground beneath his feet: his hypotheses cohere, and fragments of 
sense emerge from their camouflage. The code "breaks." Perhaps this is best 
defined as the point when the likely leads appear faster than they can be 
followed up. It is like the initiation of a chain-reaction in atomic physics; once 
the critical threshold is passed, the reaction propagates itself. 

-JOHN CHADWICK, The Decipherment of Linear B 

It is not hard to understand why philosophers and historians of science are so 
divided in their opinions about Sir Francis Bacon, the Elizabethan writer, 
philosopher and Lord Chancellor. O n  the one hand, his insights into scientific 
method were primitive and defective. O n  the other, he had a prophetic vision of 
science as a vast, collective and systematic enterprise that could provide human- 
ity with undreamed-of knowledge. And knowledge, he insisted, is power. For 
the first time man would have the power to master nature and control his own 
destiny. 

Although Bacon had little skill in mathematics, he did invent an ingenious 
cipher system of considerable interest to students of both recreational mathe- 
matics and word play. The "biliteral cipher," as Bacon called it, was one ofthe 
earliest demonstrations of how easily information can be transmitted by a 
simple binary code. The system is related to a fascinating combinatorial prob- 
lem that has practical applications to error-correcting codes. Not least, Bacon's 
cipher has been responsible for the funniest-and most bizarre claims ever 



propounded by the Baconians—those never-give-up pseudoscholars who still
labor mightily to convince the world that Bacon wrote the plays of Shakespeare.

There are hints about the biliteral cipher in Bacon’s Advancement of Learning
(1605), but he did not fully disclose the method until he expanded his brief
remarks on ciphers for the later encyclopedic edition of this work in Latin, De
Augmentis Scientiarum (1623). In Book 6 he repeats his earlier summary of the
three virtues every good cipher should have: (1) “Easy and not laborious to
write”; (2) “Safe and impossible to decipher”; (3) “If possible, such as not to
raise suspicion.”

A cipher with the third merit, known as a “concealment cipher,” is one in
which the very existence of the true cipher text is not suspected. Bacon first
explains a whimsical concealment dodge using two cipher alphabets. The gen-
uine message is written with one set of symbols, then a false message is written
with a second set. The two ciphers are interwoven to make a single cipher text.
If this is intercepted and a translation demanded of the sender, he strikes out the
symbols of the true text, explaining that they are what cryptographers today call
“nulls,” meaningless symbols inserted only to make the cipher harder to break.
He then reveals the key to the remaining symbols. Because an intelligible mes-
sage now emerges, Bacon writes, who would suspect that the apparent nulls actu-
ally conceal another message?

“But for avoiding suspicion altogether,” Bacon continues, “I will add another
contrivance, which I developed myself when I was at Paris in my early youth.”
The contrivance, the biliteral cipher, is based on a key that assigns to each letter
of the alphabet a different sequence of two symbols in groups of five. As Bacon
explains, there are 32 such sequences, more than enough for the English alpha-
bet, which in Bacon’s day consisted of 24 letters. (I and J were interchangeable,
as were U and V.) Bacon used a and b for the two symbols, assigning aaaaa to
A, aaaab to B, aaaba to C and so on.

“Nor is it a slight thing which is thus by the way affected,” Bacon writes. “For
instance we see how thoughts may be communicated at any distance of place by
means of any object perceptible either to the eye or ear, provided only that those
objects are capable of two differences, as by balls, trumpets, torches, gunshots,
and the like.” Indeed, the Morse telegraphic code is essentially a biliteral sound
cipher, although pauses are used as a kind of third symbol so that no more than
four dots and dashes are needed for each letter.

Bacon’s plan was to use this cipher for concealing the plaintext (message to
be enciphered) in an innocent-looking “cover text.” One has only to distinguish
between two different ways of printing each letter. A crude method would be to
let italicized letters stand for a and roman letters for b. The word “Bacon,” with
only the first letter italicized, would represent the permutation abbbb, which in
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Bacon's alphabet means Q. It is obvious that any cover text, provided it is five 
times the length of the plaintext, can be printed so that it carries the secret 
message. 

The difference between roman and italicized letters is, ofcourse, too obvious. 
Bacon proposed using two type fonts that differed in minute ways. Only 
someone aware of these subtle differences would know how to scan the printing, 
label each letter a or b, divide the letters into quintuplets and read the hidden 
message. Bacon gave two examples of how these fonts could conceal a message. 
A short Latin cover text meaning "Do not go until I come" deciphers as a 
message of opposite advice: "Flee." A longer example of how "anything can be 
written by anything" is a passage Bacon took from a letter of Cicero [see Figure 
241. When the letters are labeled a and b (according to the two fonts), the 
concealed Latin message (copied from one the Spartans had once sent by a 
cylindrical ciphering device called a scytale) translates into English as "All is 
lost. Mindarus is killed. The soldiers want food. W e  can neither get hence, nor 
stay longer here." 

Elizabethan printing was so crude by modern standards that no two appear- 
ances of the same letter on a page, when examined under a strong magnifying 
glass, are exactly alike. Lead molds were imperfect, type was often damaged, 
ink dried irregularly on rough and dampened paper, and printers often mixed 
fonts on the same page. It is not surprising that anyone persuaded that Bacon 
wrote the plays of Shakespeare would suspect that Bacon might have used his 
own cipher to state the fact in early folios, perhaps even pepper the pages with 
other secret revelations. 

Elizabethan printing has provided Baconians with a marvelous arena for the 
unhampered play of unconscious impulses. With a magnifying glass in hand 
and flexible biliteral rules allowing a and b forms of each letter to be distin- 
guished in any possible way (and in more than one way for each letter), a clever 
Baconian can extract from a long passage of Shakespeare's almost any short 
message he likes. The  first appearance of a T may be labeled a because it has a 
slightly thinner upright line than other T's; the next T may be labeled a because 
it has a tiny curl at the end of the crossbar, and so on. Cipher keys are allowed to 
vary from passage to passage. If a Baconian is not a mountebank, the secret 
messages he finds will spring from deep within his subconscious, like the 
messages spelled on Ouija boards or by automatic handwriting or transmitted 
by mediums from the Great Beyond. 

Strangely enough, the first major effort to decipher Shakespeare's plays did 
not exploit Bacon's cipher. The  flamboyant Populist politician from Minne- 
sota, Ignatius Donnelly, used a different system, even more farfetched, for his 
1,000-page crank work The Great Cryptogram (1888). (This tome and Don- 



Figure 24 A letter of Cicero's in which the two type fonts conceal 
a secret war dispatch. 
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nelly's Atlantis and Ragnarok form the most impressive set of crackpot works 
written by an American before 1900.) It remained for Mrs. Elizabeth Wells 
Gallup (1846- 19341, a Michigan teacher and high school principal, to apply 
Bacon's own cipher with unflagging persistence to Shakespeare's plays, pro- 
ducing the best and most hilarious plaintexts in the history of Baconiana. 

Like Donnelly, Mrs. Gallup is a splendid specimen of the intelligent, 
learned, honest and thoroughly self-deluded crank. Her opus The Biliteral 
Cipher of Sir Francis Bacon Discovered in His Works and Deciphered by Mrs. 
Elizabeth Wells Gallup (1899) had a shattering impact on fellow Baconians. She 
found secret messages not only in the Shakespeare folios but also in the writings 
of Marlowe, Spenser, Burton and other writers whose books she believed had 
also been written by Bacon. "Queene Elizabeth is my true mother," one 
message read, "and I am the lawful1 heire to the throne. Find the Cipher storie 
my bookes containe; it tells great secrets, every one ofwhich, if imparted openly, 
would forfeit my life." Many of the great secrets turned out to be bawdy details 
of Elizabethan court life. 

"Surprise followed surprise," wrote Mrs. Gallup, "as the hidden messages 
were disclosed, and disappointment as well was not infrequently encountered. 
Some of the disclosures are of a nature repugnant, in many respects, to my very 
soul. . . . As a decipherer I had no choice, and I am in no way responsible for 
the disclosures, except as to the correctness of the transcription." 

"Colonel" George Fabyan (the military title was honorary), a wealthy textile 
manufacturer, became Mrs. Gallup's convert and major benefactor. He 
brought her to Riverbank Laboratories on his 500-acre estate in Geneva, Ill., 
where he established a staff of cryptanalysts to work under Mrs. Gallup's 
supervision. She remained there for 20 years, studying photographic enlarge- 
ments of Elizabethan manuscripts and trying to teach her bewildered staff how 
to decipher them. 

Ironically, as David Kahn observes in his book The Codebreakers, it was at 
Riverbank that young William F. Friedman was first introduced to the art of 
code-breaking. Later he became one of the world's greatest cryptanalysts. (It 
was his team that cracked the Japanese "purple code" of World War 11.) While 
he was at Riverbank, he met and married another of Mrs. Gallup's assistants, 
Elizabeth Smith. The two eventually became the most illustrious husband- 
and-wife team in the history of cryptanalysis. Both, I hasten to add, quickly 
caught on to how Mrs. Gallup was deceiving herself. Indeed, the chapters 
devoted to Mrs. Gallup in their book The Shakespearean Ciphers Examined 
totally demolish Mrs. Gallup's monumental and pathetic lifetime labors. 

Back to mathematical reality. In recent decades mathematicians have devel- 
oped many ingenious procedures for forming cyclic chains in which all possible 



sequences of n symbols, taken k at a time, are given once only by each set of k
adjacent symbols. For example, consider the 32-symbol chain

aaaaabbbbbabbbaabbababbaaababaab
If you view the chain as cyclic (end joined to beginning), every group of five

adjacent symbols is one of the 25 = 32 sequences of a and b in sets of five.
There are 2,048 ways to construct such a chain, if reversals are considered dif-
ferent. For two symbols the formula giving the number of chains is

2(2k–1–k)

where k is the number of symbols in a group. Any of the 2,048 chains provides
a convenient way of recording the key to a biliteral cipher. Simply print the
alphabet, with the first six digits appended to bring the number of symbols to
32, in a circle and add the chain of a’s and b’s inside the circle [see Figure 25]. To
obtain the sequence for, say, R, check the set of five symbols that start at R and
go clockwise (or the other way if you prefer) around the circle.

The cipher has many unusual applications. A deck of 52 playing cards, for
instance, can be arranged so that the colors (or odd and even values, or high and
low cards or any other binary division) will encipher a 10-letter word or phrase.
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Of course, three-symbol chains provide triliteral ciphers, four symbols provide 
quadriliteral ciphers (the genetic code!) and so on. 

Although it is a defect of Bacon's system that a cipher text must be five times 
as long as the plaintext, a remarkable merit of the system is that more than one 
message can be hidden in the same cipher text. One has only to choose letters 
carefully so that they can be divided into a's and b's in more than one way. 
Consider, for example, 

GkwRt ceUya porrE 

Our cipher key will again be the concentric circles in Figure 25, reading 
clockwise. If a stands for letters whose positions in the alphabet are odd (a, c, 
e, . . .), and b for even-positioned letters (b, d, f, . . .j, the text deciphers as 
aaabb aaaaa babba, which spells CAT. If a refers to a letter in the first half of the 
alphabet and b to letters in the second half, the same text deciphers as aabbb 
aabba bbbba, which spells DOG. And if a means uppercase and b lowercase, the 
translation is abbab bbabb bbbba, or PIG. 

Here is an exercise for readers: 

QUZGF MTXYX JLUN XNEEN WLREW TSNJE 

Using the same key as before, can you determine three ways ofbifurcating the 
alphabet so that the above cipher text can be translated in three ways, each 
giving a six-letter last name of a famous mathematician? (Hints: The three 
divisions have to do with the name of a poet, legs and topology.) 

Although Bacon himself did not make the metaphor explicit, his cipher may 
be taken as symbolic of the curious way he viewed scientific knowledge. It is an 
attitude still held today by many philosophers and scientists. Bacon did not 
believe that the laws of science were infinite in number. Like his fellow Angli- 
cans, he was convinced that God had created a natural world that was sharply - .  
cut off from the supernatural. In this world a finite number of simple principles 
combine, like the variables of an n-literal cipher, to form all the laws of nature. 

The 19th-century English logician John Venn made this point in his Empiri- 
cal Logic (page 357), where he described Bacon's position as an "alphabetical 
view of the Universe, in its extremest form. . . . W e  find [the universe] all 
broken up, partitioned, and duly labeled in every direction; so that, enormously 
great as is the possible number of combinations which these elements can 
produce, they are neverthelessfinite in number, and will therefore yield up their 
secrets to plodding patience when it is supplied with proper rules." 
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Science, to pursue the metaphor, is one stupendous task of cryptanalysis. 
Bacon was persuaded that eventually, and not far in the future either, all the 
ciphers would be broken and mankind would know not all truth by any means, 
but all the basic natural laws. The  future of science would then be merely a 
filling in of details and the exploitation of laws by new inventions. 

Although few scientists today would venture such a prediction, more limited 
Baconian sentiments are often expressed with reference to a particular science. 
Nigel Calder, in his vivid survey of the new astronomy, Violent Universe (Vi- 
king, 1969), suggests that our century may turn out to be unique in the history 
of astronomy as the century in which astronomers first became "know-alls," 
omniscient in the sense of having mapped the fundamental outlines of the entire 
cosmos. "Or," Calder adds, "will our descendants smirk about our ideas as we 
do about those of our ancestors?" 

Who  can be sure, even with reference to a single science, whether in the long 
run (whatever that means) Bacon will be proved right or wrong? W e  can say 
that at the moment nature appears to be far shaggier and more complicated 
than the Lord Chancellor suspected. There are ciphers within ciphers within 
ciphers, and there is not a clue in sight about whether any ofthese regresses has 
an end. 

ANSWERS 

The three translations ofthe Baconian cipher are Fermat, Galois, Newton. The 
three biliteral keys respectively are 

1. Any letter in WILLIAM SHAKESPEARE is a; all others are b. 

2. Any letter with one or more legs when printed as acapital is a (A, F, H ,  I,  K, 
M, N, P,  Q, R, T, X, Y). No-leg letters are b. 

3. Any letter that in simplest capital form is topologically equivalent to a line 
segment is a (C, I,  L, M ,  N, S, U, V, W, Z). All others are b. 

ADDENDUM 

I received a fascinating letter from Marguerite Gerstell, then an instructor at the 
Florida Institute of Technology in Jensen Beach. Using the same circular key 
that I used for my puzzle, she encoded the names o f j u e  eminent mathemati- 
cians in the following cipher text: 

HUUSN IUUII YPDAW WVALP EZRWZ TISOS 
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"Four of them are easy to find," she wrote. "Anyway, a smart gal can help 
you with the fifth." 

Here is how she did it: 

1. NAPIER is encoded by replacing all vowels (including Y) in the cipher text 
with a and all other letters with b. 

2. EUCLID is encoded by replacing with a all letters whose ordinals (position in 
the alphabet) are multiples of a square greater than 1. 

3. KUMMER is encoded by substituting a for letters that are among the first 15 
of the alphabet. 

4. CAUCHY is encoded by replacing left-right symmetrical letters by a. 

5 .  CANTOR is encoded by substituting a for letters not in the phrase "anyway a 
smart gal. " 

A surprising thought occurred to Gerstell. Why not use the name itself as a 
basis for distinguishing a and b? She sent four examples of cipher texts, each 
concealing the names of three mathematicians, by using this curious self-refer- 
ence technique. Here is one of them: 

ZYMWL EIGAI UMBOI JULRY MYEGA IXYZM LOSUL 

The three names are Zermelo, Galileo and Fourier. In each case the name is 
encoded by letting a stand for letters in the name being concealed. As Gerstell 
pointed out, it is not easy to accomplish this with more than three names. It 
would be an interesting challenge, she wrote, to try to maximize the number of 
names that could be simultaneously encoded in this way. 

Gerstell's cipher texts all use the same cyclic chain that I suggested for a 
biliteral cipher. Such chains are now known as de Bruijn sequences, after the 
Dutch mathematician N. G. de Bruijn. For a fascinating history of such chains 
see "Memory Wheels," by Sherman K. Stein, in the second edition of his 
Mczthematics: The Man-Made Universe (Freeman, 1969). In recent years mathe- 
matically minded magicians have invented a variety of bewildering card tricks 
based on de Bruijn sequences. References to where you can find some of them 
are in the answer section of Chapter 12 in my Magic Numbers of Dr. Matrix 
(Prometheus, 1985). For a recent article, with a good bibliography, on de 
Bruijn sequences see "De Bruijn Sequences-A Modern Example of the 
Interaction of Discrete Mathematics and Computer Science," by Anthony 
Ralston in Mathematics Magazine, Vol. 55, 1982, pages 131 - 143. 



Someone ought to write a book about the sad life of Mrs. Gallup. Little
seems to be on record about her. Apparently she taught at various public
schools in Michigan (at Wayne, Flint, Fenton and Holly) and was a principal of
the Holly high school. Friedman says she died in 1934, but an obit in the British
periodical Baconia (October, 1935, page 106), called to my attention by David
Shulman, gives the date of her death as April 1933 and her age as 87. She was
born February 4, 1846, near Waterville, N.Y., educated at State Normal College
of Michigan and was later a graduate student at the University of Marburg and
the Sorbonne. I have been unable to determine what subject she taught or who
Mr. Gallup was.

All her tomes were published by Howard Publishing Company, Detroit,
which I take to be her own company. The first edition of her opus (1899) was
a mere 246 pages, but the second edition (1900) expanded it to 480 pages. The
third edition (1901) is even larger—two volumes. In 1902 she issued a booklet
titled Bi-literal Cipher of Francis Bacon: Replies to Criticisms. Concerning the
Bi-literal Cipher of Francis Bacon, Discovered in His Works: Pros and Cons of the
Controversy was a 1910 book of 229 pages. She also published (1901) a 147-page
work titled The Tragedy of Anne Boleyn: A Drama in Cipher Found in the Works of Sir
Francis Bacon.

A bibliography of articles about Mrs. Gallup’s obsessions would run to many
pages. Here are the few references I was able to track down.

“Mrs. Gallup’s Cipher.” Blackwood’s Magazine, Vol. 171, 1902, pages 267–269.

“Mrs. Gallup and Francis Bacon.” Andrew Lang in The Monthly Review, Vol. 2,
1902, pages 146–162.

“Mrs. Gallup’s Bad History.” Robert S. Rait in Fortnightly Review, Vol. 77, 1902,
pages 328–334.

Studies in the Bi-literal Cipher of Francis Bacon. Gertrude Horsford Fiske. J. W. Luce,
1913.

“The Encyclopedia Britannica and Mrs. Gallup.” B. Wright in Baconia, No. 132,
1949, pages 154–160.

A picture of Mrs. Gallup can be found in Friedman’s book, cited earlier, and
a different photograph appears in all her books.

Georg Cantor, by the way, the genius who founded modern set theory, was a
passionate believer in the Bacon–Shakespeare theory. During his later years of
manic depression, when he was dabbling in theosophy and other occult mat-
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ters, he wasted enormous amounts of time trying to prove the theory, lecturing 
on the topic and writing many articles. Cantor believed that his set theory had 
been directly inspired by God and was therefore flawless. His biblical studies 
convinced him that Jesus was the natural son of Joseph of Arimathea, and he 
wrote the pamphlet Ex Oriente Lux to prove it. (See "Georg Cantor's Creation of 
Transfinite Set Theory: Personality and Psychology in the History of Mathe- 
matics," by Joseph W. Dauben in Annals ofthe New York Academy ofSciences, 
Vol. 32 1 ,  1979, pages 27 - 44, a volume titled Papers in Mathematics, edited by 
Paul Meyer.) 

I closed my column by expressing doubts that science was near discovering 
that everything in physics could be explained, as Bacon suggested, by a finite set 
of laws. At the moment this hope has sprung up again among many top 
physicists, who believe they are on the verge of constructing a grand unified- 
field theory that will cover all the forces of nature and explain why all the 
particles are just what they are. See my review of two recent books expressing 
this euphoria: "Physics: The End of the Road?", in The New York Review of 
Books, June 13, 1985, pages 31 - 34. 
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CHAPTER FIVE 

Doughnuts: 
Linked and Knotted 

As you ramble on through life, brother, 
Whatever be your goal, 

Keep your eye upon the doughnut 
And not upon the hole! 

A torus is a doughnut-shaped surface generated by rotating a circle around an 
axis that lies on the plane of the circle but does not intersect the circle. Small 
circles, called meridians, can be drawn around the torus with radii equal to that 
of the generating circle. Circles of varying radii that go around the hole or center 
of the torus on parallel planes are called parallels [see Figure 261. Both meridians 
and parallels on a torus are infinite in number. There are two other less obvious 
infinite sets of "oblique" circles with radii equal to the distance from the center 
of the generating circle to the center of the torus's hole. Can you find them? 
Members of one set do not intersect one another, whereas any member of one 
set twice intersects any member of the other. 

T o  a topologist, concerned only with properties that do not alter when a 
figure is elastically deformed, a torus is topologically equivalent to the surface of 
such objects as a ring, a bagel, a life preserver, a button with one hole, a coffee 
cup, a soda straw, a rubber band, a sphere with one handle, a cube with one hole 
through it and so on. Think of these surfaces as a thin membrane that can be 
stretched or compressed as much as one wishes. Each can be deformed until it 
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Axis .J Parallel 

Figure 26 The torus 

becomes a perfect toroidal surface. In what follows, "torus" will mean any 
surface topologically equivalent to a torus. 

A common misunderstanding about topology is the belief that a rubber 
model of a surface can always be deformed in three-dimensional space to make 
any topologically equivalent model. This often is not the case. A Mobius strip, 
for example, has a handedness in 3-space that cannot be altered by twisting and 
stretching. Handedness is an extrinsic property it acquires only when embed- 
ded in 3-space. Intrinsically it has no handedness. A 4-space creature could 
pick up a left-handed strip, turn it over in 4-space and drop it back in our space 
as a right-handed model. 

A similar dichotomy applies to knots in closed curves. Tie a single overhand 
(or trefoil) knot in a piece of rope and join the ends. The surface of the rope is 
equivalent to a knotted torus. It has a handedness, and no amount of fiddling 
with the rope can change the parity. Intrinsically the rope is not even knotted. A 
4-space creature could take from us an unknotted closed piece of rope and, 
without cutting it, return it to us as knotted in either left or right form. All the 
properties of knots are extrinsic properties of toruses (or, if you prefer, one- 
dimensional curves that may be thought of as toruses whose meridians have 
shrunk to points) that are embedded in %space. 

It is not always easy to decide intuitively if a given surface in 3-space can be 
elastically deformed to a different but topologically equivalent surface. A strik- 
ing instance, discussed more than 20 years ago [see "Topology," by Albert W. 
Tucker and Herbert S. Bailey, Jr., in Scientific American, January, 19501, con- 
cerns a rubber torus with a hole in its surface. Can it be turned inside out to 
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Figure 27 Reversible cloth torus. 

make a torus of identical shape? The  answer is yes. It is hard to do with a rubber 
model (such as an inner tube), but a model made of wool reverses readily. 
Stephen Barr, in his Second Miscellany of Puzzles (Macmillan, 1969), recom- 
mends making it from a square piece of cloth. Fold the cloth in half and sew 
together opposite edges to make a tube. Now sew the ends ofthe tube together to 
make a torus that is square shaped when flattened. For ease in reversing, the 
surface hole is a slot cut in the outer layer of cloth [shown by the broken line in 
Figure 2 71. 

After the cloth torus is turned inside out, it is exactly the same shape as 
before, except that what were formerly meridians have become parallels, and 
vice versa. T o  make the switch visible, sew or ink on the model a meridian of 
one color and a parallel of another so that both colors are visible from either side 
of the cloth. In 1958 Mrs. Eunice Hakala sent me a model she had made by 
cutting off the ribbed top of a sock and joining the tube's ends. The ribbing 
provides a neat set of parallels that turn into meridians afier the torus is 
reversed. 

Let us complicate matters by considering a torus tied in a trefoil knot. If we 
ignore handedness, there are only two such toruses: one with an external knot 
and one with an internal knot [see Figure 28 a,b]. A way to visualize the 



Figure 28 Torus with outside knot (a), inside knot (b) and pseudoknots (c) 

internally knotted torus is to imagine that the externally knotted torus on the lefi 
is sliced open along a meridian outside the knot. One end is turned back, as 
though reversing a sock; then the tube is expanded and drawn over the entire 
knot, and its ends are joined once more. Or  imagine a solid wood cube with a 
hole bored through it that, instead of going straight, ties a knot before it emerges 
on the opposite side. The surface of such a cube is topologically equivalent to an 
internally knotted torus. 

You might suppose that a torus could be simultaneously knotted externally 
and internally, but it can't be done. One kind of torus seems to have both an 
outside and an inside knot [see Figure 2 8 ~ 1 .  Actually both knots are humbugs. 
Untying the outer knot simultaneously unties the inner one, proving that the 
model is topologically the same as an unknotted torus - its hole elongated like 
the hole of a garden hose. 

Although an outside-knotted torus is intrinsically identical with an inside- 
knotted one, it is not possible to deform one to the other when it is embedded in 
3-space. Ifthere is a hole in the side of an outside-knotted torus, can the torus be 
reversed in 3-space to put the knot inside? In the answer section I shall show 
how R. H.  Bing, a topologist at the University of Wisconsin, answers this 
question with a simple sketch. 

A similar but harder problem is solved by Bing in his paper "Mapping a 
3-Sphere onto a Homotopy 3-Sphere," in Topology Seminar, Wisconsin, 1965, 
edited by Bing and R. J. Bean (Princeton University Press, 1966). Imagine a 
cube with two straight holes [see Figure 2 9 ~ 1 .  Its surface is topologically the same 
as a two-hole doughnut. W e  can also have a cube with two holes, one straight, 
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Figure 29 Three varieties of a two-hole torus. 

one knotted [Figure 29b1. It is not possible in 3-space to deform the second cube 
so that the knot dissolves and the model looks like the first one. A third cube has 
one straight hole and one knotted hole with the knot around the straight hole 
[Figure 2 9 ~ 1 .  Can this cube be elastically deformed until it becomes the first 
model? It is hard to believe, but the answer is yes. Bing's proof is so elegant and 
simple that the diagrams for it are almost self-explanatory [see Figure 301. In 
elastic deformation a hole can be moved any distance over a surface without 
altering the surface's topology. As the hole moves, the surface merely stretches 
in back and shrinks in front. In Bing's proofthe knotted tube is drawn as a single 

Figure 30 R. H. Bing's proof. 
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line to make the proofeasier to follow. The hole, at the base ofthis tube is moved 
over the cube's surface, as indicated by the arrows, dragging the tube along with 
it. It goes left to the base of the other tube, climbs that tube's side, moves to the 
right across the top of the cube, circles its top hole counterclockwise, continues 
left around the other hole, over the cube's front edge, down the front face, - 
around the lower edge to the cube's bottom face and then across that face to the - 

position it formerly occupied. It is easy to see that the tube attached to this hole 
has been untied. Naturally the procedure is reversible. If you had a sufficiently 
pliable doughnut surface with two holes, you could manipulate it until one hole 
became a knot tied around the other. 

Topologists worried for decades about whether two separate knots side by 
side on a closed rope could cancel each other; that is, could the rope be 
manipulated until both knots dissolved? No pair of canceling knots had been 
found, but proving the impossibility of such a pair was another matter. It was 
not even possible to show that two trefoil knots of opposite handedness could 
not cancel. Proofs ofthe general case were not found until the early 1950's. One 
way of proving it is explained by Ralph H. Fox in "A Quick Trip through Knot 
Theory," in Topology of 3-Manijolds and Related Topics, edited by M .  K. Fort, Jr. 
(Prentice-Hall, 1963). It is a reductio ad absurdum proof that unfortunately 
involves the sophisticated concept of an infinity of knots on a closed curve and 
certain assumptions about infinite sets that must be carefully specified to make 
the proof rigorous. 

When John Horton Conway, the University of Cambridge mathematician, 
was in high school, he hit on a simpler proof that completely avoids infinite sets 
of knots. Later he learned that essentially the same proof had been formulated 
earlier, but I have not been able to determine by whom. Here is Conway's 
version as he explained it years ago in a letter. It is a marvelous example ofhow a 
knotted torus can play an unexpected role in proving a fundamental theorem of - 

modern knot theory. 
Conway's proof, like the one for the infinite knots, is a reductio ad absurdum. 

W e  begin by imagining that a closed string passes through the opposite walls of 
a room [see Figure 311. Since we shall be concerned only with what happens 
inside the room, we can forget about the string outside and regard it as being 
attached to the side walls. O n  the string; are knots A and B. Each is assumed to - 
be genuine in the sense that it cannot be removed by manipulating the string if it 
is the only knot on the string. It also is assumed that the two knots will cancel 
each other when both are on the same closed curve. The  proof applies to pairs of 
knots of any kind whatever, but here we show the knots as simple trefoils of 
opposite parity. If the knots can cancel, it means that the string can be manipu- 
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Figure 31 John Horton Conway1s proof. 

lated until it stretches straight from wall to wall. Think of the string as being 
elastic to provide all the needed slack for such an operation. In the center figure 
we introduce an elastic torus around the string. Note that the tube "swallows" 
knot A but "circumnavigates" knot B (Conway's terminology). Any parallel 
drawn on this tube, on the section between the walls, obviously must be knotted 
in the same way as knot B. Indeed, it can be shown that any line on the tube's 
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surface, stretching from wall to wall and never crossing itself at any spot on the 
tube's surface, will be knotted like knot B. 

"Now," writes Conway, "comes the crunch." Perform on the string the 
operation that we assumed would dissolve both knots. This can be done 
without breaking the tube. Because the string is never allowed to pass through 
itself during the deformation, we can always push the tube's wall aside if it gets 
in the way. The third drawing in Figure 31 shows the final result. The string is 
unknotted. The  tube may have reached a horribly complicated shape impossi- 
ble to draw. Consider a vertical plane passing through the straight string and 
cutting the twisted tube. W e  can suppose that the tube's cross section will look 
something like what is shown with the possibility ofvarious "islands," but there 
will necessarily be two lines, XY and MN, from wall to wall that do not cross 
themselves at any point on the vertical plane. Each line will be unknotted. 
Moreover, each line also is a curve that does not cross itselfon the tube's surface. 
As we have seen, all such lines were (before the deformation) knotted like knot 
B. The deformation has therefore removed a knot equivalent to knot B from 
each of these two lines. Therefore knot B, alone on aline, can be removed by 
manipulating that line. But knot B, by definition, is a genuine knot that cannot 
be so removed. W e  have contradicted an assumption. If two knots on a string 
can cancel, neither knot (since the same proof can be applied to knot A) can be 
genuine. Both must really hcve been pseudoknots. 

Although a one-hole torus can be embedded in 3-space in only three ways 
(outside knot, inside knot, no knot), a two-hole torus has so many bizarre forms 
that the number is, I believe, not yet known. In some cases it can be reduced to a 
simpler form by deformation. For example, a tube-through-hole is equivalent to 
an ordinary two-hole doughnut [see Figure 321, but what about the other two 
figures [b and c]? They are among several dozen monstrosities sketched by Piet 
Hein in a moment of meditation on two-hole toruses. In b an inside knot goes 
through an outside one, and in c an outside knot goes through a hole. 1s it 
possible, by deformation, to dissolve the inside knot of b and the outside knot 
of c? 

With more complicated pairs of two-holers embedded in 3-space, proofs that 
one can be deformed to the other are not so easy. As one of Piet Hein's "grooks" 
puts it: 

There are doughnuts and doughnuts 
with knots and with no knots 
and many a doughnut 
so nuts that we know not. 



Figure 32 Two-hole toruses. 

Here are three more toroidally knotty questions 

1. How many closed curves can be drawn on a torus, each a trefoil knot of the 
same handedness, so that no two curves cross each other at any point? 

2. If two closed curves are drawn on a torus so that each forms a trefoil knot 
but the knots are of opposite parity, what is the minimum number of points at 
which the two curves will intersect each other? 

3. Show how to cut a solid two-hole doughnut with one slice of a knife so that 
the result is a solid outside-knotted torus. The "slice" is not, of course, planar. 
More technically, show how to remove from a two-hole doughnut a section 
topologically equivalent to a disk so that what remains is a solid knotted torus. 
(This amusing result was discovered by John Stallings in 1957 and communi- 
cated to me by James Stasheff.) 
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Figure 33 Solution to torus-reversed problem 

ANSWERS 

R. H.  Bing shows how an internally knotted torus can be reversed through a 
hole to produce an externally knotted torus [see Figure 331. A small hole, h,  is 
enlarged to cover almost the entire side of the cylinder, leaving only the shaded 
strip on the right. The top and bottom disks ofthe cylinder are flipped over, and 
the hole is shrunk to its original size. 

As in reversing the unknotted torus through a hole, the deformation inter- 
changes meridians and parallels. You might not at first think so because the 
circle, m,  appears the same in all three pictures. The fact is, however, that 
initially it is a parallel circling the torus's elongated hole, whereas after the 
reversal it is a meridian. Moreover, after the reversal the torus's original hole is 
no longer through the knotted tube, which is now closed at both ends. As 
indicated by the arrow, the hole is now surrounded by the knotted tube. 

Piet Hein's two-hole torus, with an internal knot passing through an external 
one, is easily shown to be the same as a two-holer with only an external knot. 
Simply slide one end of the inside knot around the outside knot (in the manner 
explained earlier) and back to its starting point. This unties the internal knot. 
Piet Hein's two-holer, with the external knot going through a hole, can be 
unknotted by the deformation shown in Figure 34. 
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Figure 34 Unknotting a two-hole torus. 

Answers to the final three toroidal questions are as follows: 

1. An infinity of noncrossing closed curves, each knotted with the same 
handedness, can be drawn on a torus [see Figure 35 top]. If a torus surface is cut 
along any of these curves, the result is a two-sided, knotted band. 

2. Two closed curves on a torus, knotted with opposite handedness, will 
intersect each other at least 12 times. 

3. A rotating slice through a solid two-hole doughnut is used to produce a 
solid that is topologically equivalent to a solid, knotted torus [see Figure 35, 
bottom]. Think of a short blade as moving downward and rotatingone and a half 
turns as it descends. If the blade does not turn at all, two solid toruses result. A 
half-turn produces one solid, unknotted torus. One turn produces two solid, 
unknotted, linked toruses. Readers may enjoy investigating the general case of n 
half-turns. 



Figure 35 Knotted, nonintersecting curves on a torus (a) and rotating slice 
through a two-hole torus (b)  

ADDENDUM 
In studying the properties oftopological surfaces, one must always keep in mind 
the distinction between intrinsic properties, independent of the space in which 
the surface is embedded, and properties that arise from the embedding. The 
"complement" of a surface consists of all the points in the embedding space that 
are not in the surface. For example, a torus with no knot, one with an outside 
knot and one with an inside knot all have identical intrinsic properties. No two 
have topologically identical complements; hence, no two are equivalent in their 
extrinsic topological properties. 

John Stillwell, a mathematician at Monash University, Australia, sent several 
fascinating letters, in which he showed how an unknotted torus with any 
number of holes - such toruses are equivalent to the sufaces of spheres with 



DOUGHNUTS: LINKED AND KNOTTED 67 

Figure 36 The surface on the left can be continuously deformed to the surface on 
the right. 

handles - could be turned inside out through a surface hole. He was not sure if 
a knotted torus, even with only one hole, can be turned inside out through a hole 
in its surface. I leave this as a problem for the reader. 

Stillwell also posed the following question. Suppose two ordinary doughnut 
surfaces are linked, and one has a hole in its surface. Can the torus with the 
surface hole "swallow" the other torus so that at the finish the eaten torus is 
completely inside the cannibal? The answer is yes. I gave this problem in my 
April 1977 column in Scientijic American; the answer appeared the following 
month. 

Many beautiful, counterintuitive problems involving links and knots in tor- 
uses have been published. See Rolfsen's book, cited in the bibliography, espe- 
cially the startling problem on page 95, where he shows that the surface on the 
left of Figure 36 is topologically equivalent to the surface shown on the right. 
For other curious equivalences ofthis sort see Herbert Taylor's torus problem in 
my Scientijic American column for December 1979, and "The Toroids of Dr. 
Klonefake," Problem 9, in my Science Fiction Puzzle Tales (Clarkson Potter, 
1981). 
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CHAPTER SIX 

The Tour of the Arrows 
and Other Problems 

1. THE TOUR OF THE ARROWS 

Sketch a large 4-by-4 checkerboard on a sheet of paper, obtain 16 paper 
matches, and you are set to work on this new solitaire puzzle. The matches 
represent arrows that point in the direction of the match head. Put a single spot 
on both sides of one match, two spots on both sides of eight matches and three 
spots on both sides of seven matches. When a match is placed on a square ofthe 
board pointing north, south, east or west, the single spot means it points to the 
immediately adjacent cell, two spots mean it points to the second cell and three 
spots mean it points to the third cell. 

Seven matches can be placed to map a closed tour [see Figure 371. Start at any 
match of the seven and place your finger on the cell to which it points. The 
arrow on that cell gives the next "move." Follow the arrows until you return (in 
seven moves) to where you started. The  problem is to place all 16 matches, one 
to a cell so that they map a closed tour that visits every cell. There are just two 
solutions, not counting rotations and reflections. 

The tour will have a length of 1 + (2 X 8) + ( 3  X 7) = 38. It is not hard to 
prove that this is the longest closed tour that can be made on the board by using 
any combination of the three types of arrows. Brian R. Barwell, a British 
engineer who introduced the problem in theJournal ofRecreational Mathematics 
(October, 19691, found that only one other maximum-length tour is possible. It 
requires six 3-arrows, ten 2-arrows and no 1-arrow. Readers are invited to 
search for all three patterns. 

The arrows are, of course, merely a convenient way to map a maximum- 
length, closed tour by a chess rook, which lands on each cell exactly once. 
(Queen tours of this type are less interesting because there are so many of them; 
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Figure 37 A closed arrow tour 

bishop tours cannot close and cannot visit all cells; and knight tours cannot vary 
in length.) The  2-by-2 field is trivial, and the 3-by-3 is easily analyzed. (Its 
maximum tour has a length of 14.) As far as I know, the 5-by-5 and all higher 
squares have yet to be investigated. 

2. FIVE COUPLES 

My wife and I recently attended a party at which there were four other married 
couples. Various handshakes took place. No one shook hands with himself (or 
herself) or with his (or her) spouse, and no one shook hands with the same 
person more than once. 

After all the handshakes were over, I asked each person, including my wife, 
how many hands he (or she) had shaken. T o  my surprise each gave a different 
answer. How many hands did my wife shake? (From Lars Bertil Owe of Lund, 
Sweden.) 

3. SQUARE-TRIANGLE POLYGONS 

An unlimited number of cardboard squares and equilateral triangles, each with 
unit sides, are assumed to be available. With these pieces it is easy to form 
convex polygons with from 3 to 10 sides [see Figure 381. Can you make an 
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Figure 38 Convex polygons with from 3 to 10 sides 

11-sided convex polygon with the pieces? And what is the largest number of 
sides a convex polygon formed by the pieces can have? 

4. TEN STATEMENTS 

Evaluate each of the 10 statements as to its truth or falsity: 

1. Exactly one statement on this list is false. 

2. Exactly two statements on this list are false. 

3. Exactly three statements on this list are false. 

4. Exactly four statements on this list are false. 

5. Exactly five statements on this list are false. 

6. Exactly six statements on this list are false. 

7 .  Exactly seven statements on this list are false. 

8.  Exactly eight statements on this list are false. 

9. Exactly nine statements on this list are false. 

10. Exactly ten statements on this list are false. 

5. PENTOMINO FARMS 

Victor G. Feser of Saint Louis University has proposed four maximum-area 
problems, each using the full set of 12 pentominoes. Three have been solved, 
and the fourth is probably solved. 
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Figure 39 Pentomino fence problems 

1. Form a rectangular "fence" around the largest rectangular field. The 
4-by-7 has been proved maximum [see Figure 39a]. 

2. Form a rectangular fence around the largest field of any shape. The 
maximum is 61  unit squares [see Figure 39b]. 

3. Form a fence of any shape around the largest rectangular field. The 
9-by-10 is maximum [see Figure 39c]. 

4. Form a fence of any shape around the largest field of any shape. (As in the 
preceding problems, the fence must be at least one unit thick at all points.) This 
is the most difficult of the four. In Figure 39d you see a solution of 127 squares. 
This was believed to be maximum until Donald E. Knuth, the Stanford com- 
puter scientist, recently raised it to 128. Knuth has an informal proof that 128 
cannot be exceeded. Readers will find it a pleasant and difficult task to find a 
128 solution. 
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6. THE UNEVEN FLOOR 

A kitchen has an uneven floor. There are no "steps," but the continuous 
random waviness of the linoleum is such that when one tries to place on it a 
small square table with four legs, one leg is usually offthe floor, causing the table 
to wobble. If one does not mind the table top being on a slant, is it always 
possible to find a place where all four legs are firmly on the floor? Or  can a floor 
wave in such a way that no such spot is available? The  problem can be answered 
by a simple, elegant proof. 

7. THE CHICKEN-WIRE TRICK 

This strange parlor trick comes from Tan Hock Chuan, a Chinese professional 
magician who lives in Singapore. He described it in a letter to Johnnie Murray, 
an amateur conjuror of Portland, Maine, who passed it on to me. 

A blank sheet of paper about eight by five inches (half a sheet of typewriter 
paper works nicely) is initialed by an onlooker so that later it can be identified. 
The magician holds it behind his back (or under a table) for about 30 seconds. 
When he brings it back into view, it is covered with creases that form a regular 
hexagonal tessellation [see Figure 401. How is it done? The performer is usually 
accused of pressing it against a piece of chicken wire, but the creasing actually is 
done without using anything except the hands. 

Figure 40 Chicken-wire folds 



Figure 41 Where was the white king? 

8. WHERE WAS THE KING? 

The philosopher-mathematician-logician Raymond Smullyan invented this 
elegant chess problem when he was a student at the University of Chicago in 
1957. He showed it to his friend William Browder, now a distinguished 
mathematician at the university, who passed it on to his father, Earl Browder, 
former head of the Communist Party in the U.S. and an ardent chess player. 
The  father sent it to the Manchester Guardian, where it was inadvertently 
published without mentioning Smullyan. A later issue gave proper credit for 
the problem, and other retrograde problems by Smullyan ran in subsequent 
issues. 

A retrograde chess problem is one that can be solved only by deducing the 
moves that precede the position shown. In this case we see in Figure 41 a 
position in a legal game just after the white king has been knocked offthe board. 
Where was the king standing? and what was White's last move? 

9. POLYPOWERS 

By convention, the value of a ladder of exponents such as 

is computed by starting at the top and working down. The highest pair equals 4, 
then z4 = 16, and 216 = 65,536. How large is 265,536? A few years ago Geof- 
frey W. Hoffmann of West Germany sent me a computer printout of this 
number. It starts 20035 . . . and has 19,729 digits. Adding another 2 to the 
ladder gives a number that will never be calculated because the answer, as 
Hoffmann put it, would require the age of the universe in computer time and 
the space of the universe to hold the printout. 

Even a ladder as short as three 9's is 9387,420,489, a number of more than 360 
million digits. In 1933 S. Skewes published a paper in which he showed that if 
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n(x) is the number of primes less than x, and li(x) is the logarithmic integral 
function, then n(x) - li(x) is positive for some x less than 

an integer said to be the largest known to play a role in a nontrivial theorem. 
In 1971 Aristid V. Grosse, one of the pioneer atomic chemists at Columbia 

University in 1940 (he is now president of Germantown Laboratories, Inc., 
affiliated with the Franklin Institute), began an investigation of exponential 
ladders of identical numbers that are calculated in the opposite direction (up) 
and their relations to down ladders. He coined the term "polypowers" for 
ladders of both types. Ladders of two x's are called "dipowers," of three x's 
"tripowers" and so on, according to the Greek prefixes. The  value of x can be 
rational or irrational, transcendental, complex or entirely imaginary. In most 
cases the polypowers are single valued, continuous and differentiable. Since 1 to 
any polypower of 1 is 1, all these functions and their derivatives, when graphed 
against x, cross one another at x = 1, and their values at 0 are the limits as x 
approaches 0. Grosse's notes, which already fill many volumes, lead into a lush 
jungle of unusual theorems as well as new classes of numbers. 

U p  and down dipowers obviously are identical, but for all higher polypowers 
the two directions give different numbers. The  triplet of 9's, for example, when 
calculated upward is a number of only 77 digits. Except for the triplet of 2's, 
going "up all the way" on a ladder of identical integers gives the minimum 
number, and "down all the way" gives the maximum. In what follows, the 
arrows indicate these maximum and minimum numbers. 

What happens when up and down ladders of different lengths are equated? 
If an up triplet of x's equals a down triplet of x's, x = 2. ( W e  exclude x = 1 as 
being trivial.) Each additional x on the up ladder increases the value ofx by 1. If 
three down x's equal four up  x's, x = 3; if three down equals five up, x = 4 and 
SO on. 

As an introduction to polypowers, readers are asked to solve the three . ~- 

equations below, which begin a series with down tetrapowers on the left: 

Readers may enjoy investigating ladders of fractional x's, reciprocals ofx and 
more exotic forms. Grosse has also developed the concept of a perfect poly- 
power, that is, x to the xth power (up or down) an x number oftimes. (Example: 



π to the πth power, π times up, is 588,916.33+.) The reverse operation to poly-
powers he calls “polyroots.” Have these fields been investigated before? In spite
of considerable effort, neither he nor I have uncovered references.

ANSWERS

1. The three ways of forming maximum-length arrow tours on the 4-by-4 field
are shown in Figure 42.

Edward N. Peters, on the faculty of the University of Rochester Medical
School, discovered a general procedure for constructing maximum-length rook-
tours on square boards of any size. See his paper “Rooks Roaming Round Regular
Rectangles,” in Journal of Recreational Mathematics, Vol 6, 1973, pages 169–173.

Frederick Hartmann of Rolling Hills Estates, Calif., extended the analysis to
nonsquare rectangular boards, but so far as I know, his results remain unpub-
lished. When the board is n × 1, it reduces to the “worst-route” problem for a
postman delivering mail to a row of n houses (see my Sixth Book of Mathematical
Games from Scientific American, W. H. Freeman, 1971, Chapter 23). Maximum-length
rook tours on these linear boards are unique from n = 1 through 4, then increase
in number steadily as n exceeds 4. For n = 7, for example, there are 18 such tours.

Hartmann gave an algorithm for constructing at least one maximum-length
tour on any rectangular board. If m and n are the lengths of the sides, with m
equal to or greater than n, and C is obtained from the table shown in Figure 43,
the formula for the length of the tour is

For square boards of side n the formula reduces to

with C = 1 for odd n and C= 2 for even n.

2 5
3

3n n
C

−
+

n m n
C
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3 10
6

2 2+ −
+
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Figure 42 Answer to arrow tours
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(n/2)  indicates the greatest integer contained in 
the ( ). 

m 

even 
odd 
even 
even 
odd 
odd 

Figure 43 Table for the value of C 

Figure 44 (from Hartmann) gives the maximum-length rook tours for values 
of m and n through 12. Neither Peters nor Hartmann attempted the much more 
difficult task of finding a formula for the number of distinct tours on a given 
board. 

n 

even 
odd 
odd 
odd 
even 
even 

Figure 44 Maximum-length rook tours for m X n boards from 1 X 2 through 
12 X 12 

{n /2 )  

- 
- 

even 
odd 
even 
odd 

C 

2 
1 

312 
112 
0 
1 
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MY WIFE 

Figure 45 Answer to the handshaking problem 

2. Among the five married couples no one shook more than eight hands. 
Therefore if nine people each shake a different number of hands, the numbers 
must be 0, 1 , 2 , 3 , 4 , 5 , 6 , 7  and 8. The person who shook eight hands has to be 
married to whoever shook no hands (otherwise he could have shaken only seven 
hands). Similarly, the person who shook seven hands must be married to the 
person who shook only one hand (the hand ofthe person who shook hands only 
with the person who shook eight hands). The person who shook six must be 
married to the person who shook two, and the person who shook five must be 
married to the person who shook three. The only person left, who shook hands 
with four, is my wife. 

The  above reasoning, which makes use of the familiar "pigeonhole princi- 
ple." can be clarified by diagramming the problem [see Figure 451. Every graph 
that lacks loops and multiple edges must contain at least two points that have the 



Figure 46 Eleven-sided and 12-sided convex polygons 
and three other polygons of 11 sides 

same number of lines attached to them. In this case the graph has only two such 
points, those representing me and my wife. 

3. ,4n 11-sided convex polygon can be formed with unit-sided squares and 
equilateral triangles, as shown in Figure 46, [top left]. The angles possible for a 
convex polygon formed with the pieces are 60,90,  120 and 150 degrees. For a 
polygon with the maximum number of sides, all angles must be 150 degrees. 
The number of sides will then be 12. Figure 40 [top right] shows the smallest 
example. 

Several readers "proved" that an 11-sided polygon could not be formed with 
squares and equilateral triangles of unit sides. The flaw, of course, was failing to 
realize that a side could be more than one unit long. 

Wade Philpott pointed out that any convex pentagon formed with unit 
equilateral triangles can be used as the core of an 11-sided polygon. Simply 
place unit squares next to each triangle and complete the perimeter with six 
triangles. The solution I gave leads to an infinite family of 11-sided polygons, 
shown in the middle of Figure 46. At the bottom are two other examples with 
different inner pentagons. The problem derives from one posed by Joseph 
Malkewitch in Mathematics Magazine and answered by Michael Goldberg in 
the May 1969 issue, page 158. 
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4. Only the ninth statement is true. 
David L. Silverman contributed the problem to the Journal of Recreational 

Mathematics, January, 1969, page 29, presenting it in the form of 1,969 state- 
ments. Underwood Dudley answered it in the October issue, page 231, as 
follows: "At most one of the statements can be true because any two contradict 
each other. All the statements cannot be false, because this implies that the list 
contains exactly zero false statements. Thus exactly one statement can be true. 
Thus exactly n - 1 are false, and the ( n  - 1)st (the 1,968th) statement is true." 

Alan Brown pointed out that if the word "exactly" is removed from each of 
the 10 statements in the logic problem, there is a different and unique solution: 
The  first five statements are true; the last five, false. 

The problem obviously generalizes to as many statements as you care to add. 
What happens if you decrease the number to just one? 

1. Exactly one statement on this list is false 

Norman Pos wrote to point out that the problem then reduces to the tradi- 
tional liar paradox: "This sentence is false." T o  circumvent the paradox, Pos 
added a zero statement at the beginning: 

0. Exactly none of the statements on this list is false 

Pos was surprised to discover that this shifts the one true statement from 
position n - 1 to position n. That adding such a statement at the top of, say, 
1,000 numbered statements would shift the unique true sentence from next-to- 
last to last he found an amusing case of syntactical "action at a distance." 

5. A solution to the farm problem, enclosing 128 square units, is shown in 
Figure 47. 

I learned later that this problem had been proposed by R. J.  French in The 
Fairy Chess Review, Vol. 4,  1939, page 43. French said the area was more than 
120. 1 have not been able to determine if the problem was answered in subse- 
quent issues. 

After I published Knuth's 128 solution, Yoichi Kotani sent a proof, along 
with 1,440 solutions, that 128 is the maximum. Robert Reid Dalmau of Lima, 
Peru, sent the same set of solutions. In 1978 Takakazu Shimauchi published in 
Japanese a proof that 128 is the maximum (Sugaku Seminar, March, 1978, 
pages 11-16). 

For references on pentomino farm problems in the Journal of Recreational 
Mathematics, see the issues for January, 1968, pages 55 -61; October, 1968, 
pages 234-235; July, 1969, pages 187- 188; andVol. 17, No. 1,1984- 1985, 
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Figure 47 The largest pentomino "farm" 

pages 75 - 77. If the 12 pieces are allowed to touch only at corners and all edges 
are required to be horizontal and vertical, a farm of 160 square units is the 
largest known. If the pieces are allowed any orientation and corner touching, 
the area can be raised to slightly more than 161. 

6. A square table can always be placed somewhere on a wavy floor with all 
four legs touching the floor. T o  prove this, put the table anywhere. Assume that 
only three legs, A,  B, C, are on the floor and D is off[see Figure 481. It is always 
possible for three legs to touch the floor because three points, anywhere in 
space, mark the corners of a triangle. Rotate the table 90 degrees around its 
center, keeping legs A and B always on the floor. This brings the table to a 
position where C is now the only leg that does not touch the floor. 

During the rotation D has moved to the floor and C has left it. But D must 
have touched the floor before C left, otherwise there would be a position at 
which only A and B would touch the floor, and we know that it is always 
possible for three legs to touch. At some point in the rotation, therefore, all four 

Figure 48 The wobbly-table proof 
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legs must have been in contact with the floor. A similar argument can be applied 
to wobbly rectangular tables by giving them 180-degree rotations. 

Many readers called attention to two tacit assumptions that are necessary to 
make this proof valid: 

1. The table, like all normal tables, has four legs of equal length, their lower 
ends at the corners of a square. 

2. The  legs of the table are sufficiently long and the unevenness of the floor is 
sufficiently mild, so while the table is rotated, there is never a moment at which 
three legs cannot be made to touch the floor. 

The theorem is actually useful. Suppose you have a circular table with four 
legs that wobbles a bit when you move it to a porch. Ifyou don't mind the table's 
surface being on a slight slant, you don't have to search for something to slip 
under a leg: Just rotate the table to a stable position. If you have to stand on a 
four-legged stool or chair to replace a light bulb and the floor is uneven, you can 
always rotate the stool or chair to make it steady. 

7. T o  put a chicken-wire pattern of creases into a small sheet of paper, first 
roll the sheet into a tube about half an inch in diameter. With the thumb and 
forefinger of your left hand, pinch one end of the tube flat. Keeping pressure on 
the pinch with your left hand, your right thumb and forefinger, pinch the tube 
flat at a spot as close as possible to the first pinch, making the pinch at right 
angles to the first one. Press firmly with both hands, at the same time pushing 
the two pinches tightly against each other to make the creases as sharp as 
possible. Now the right hand retains its pinch while the left hand makes a third 
pinch adjacent to and perpendicular to the second one. Continue in this way, 
alternating hands as you move along the tube, until the entire tube has been 
pinched. (Children often do this with soda straws to make "chains.") Unroll the 
paper. You will find it hexagonally tessellated in a manner that is most puzzling 
to the uninitiated. 

John H. Coker wrote to say that when he was a child in Yugoslavia in the early 
1930's, his schoolteacher rolled and pinched notes to other teachers in this 
manner. Because it is extremely difficult to unroll such a tube and then re-roll it 
exactly as before, the tube provided security from the eyes of children asked to 
transmit the notes. 

8. Place the pieces as shown in Figure 49, and make the following moves: 

White 

1 

Black 

B-Q4 (check) 
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Figure 49 Retrograde chess 

White  Black 

2 P-B4 P takes P 
en passant 
(double check) 

3 K takes P (check) 

Removing the White king will now leave the position given with the state- 
ment of the problem. 

In addition to books of philosophical essays and logic problems, Raymond 
Smullyan published two collections of his marvelous chess problems: The  Chess 
Mysteries of Sherlock Holmes (Knopf, 1979) and The  Chess Mysteries of the 
Arabian Knights (Knopf, 198 1). 

9. The key to simplifying the three polypower equations is the basic law 

= .(bXc) 

Applying this to the first equation gives 

The two bottom x's are equal; therefore their parenthetical exponents are 
equal. Cancel the bottom x's and repeat the procedure: 

The bottom x's again drop out, leaving x X  = 2, which gives x the value 
1.55961-k. 
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The same procedure simplifies the second equation (down-4 equals up-4) to 
X~ = 3, and x = 1.82545t. Each succeeding equation increases the value ofxX 

by 1. The third equation reduces to xX = 4, or x = 2. 
The general procedure is to replace the up ladder by a number one less than 

the number of its x's and remove two x's from the down ladder. (Example: 
Down-5 = up-5 reduces to down-3 = 4.) 

Correspondence about polypowers was unusually heavy, and readers raised 
many interesting questions. Several readers pointed out that parentheses could 
be placed on a ladder in a variety ofways. In fact, the number ofways is given by 
the sequence known as the Catalan numbers. However, not all ways of paren- 
thesizing give distinct values for the ladder. Determining the number of such 
values is a difficult problem, and I do not know the solution. 

Many readers called attention to unusual, little-known theorems about infi- 
nite ladders of exponents. Consider, for example, a ladder of x's that grows 
steadily upward to infinity. I would have thought that if x is greater than 1 the 
ladder's value (working from top down) would diverge as the ladder grows. 
This is not true. If x is an integer, the value diverges only if x exceeds elie = 

1.4446. . . . If x is a real number, it converges only if it is equal to or greater 
than eFe = 0.0659 . . . and equal to or less than elle. I found this amazing. 

A delightful paradox is related to the above theorem. Assume that an infinite 
ladder ofx's has a value of 2. What is the value ofx? Because all the x's above the 
bottomx form an infinite chain, we can assume that the value ofthis chain is also 
2. Substituting 2 for this chain gives the equation x2 = 2, for which x = fi. 

All well and good. Now apply the same dodge to an infinite ladder of x's that 
equals 4. This leads to x4 = 4, so again x = &. How can an infinite ladder 
converge to two different numbers? Actually, an infinite ladder of square roots 
of 2 cannot converge to 4, and in this case the dodge is not applicable. To show 
this exactly is complicated. You will find it explained in "A Matter of Defini- 
tion," by M. C. Mitchelmore in American Mathematical Monthly, Vol. 81, 1974, 
pages 643 - 647. 

For general discussions of infinite ladders see "Infinite Exponentials," by 
D. F. Barrow in American Mathematical Monthly, Vol. 43, 1936, pages 150- 
160; "Exponentials Reiterated," by R. A. Knoebel, ibid., Vol. 88, 1981, pages 
235-252; and "Infinite Exponentials," by P. J. Rippon in Mathematical Ga- 
zette, Vol. 67, 1983, pages 189-196. Knoebel gives a long bibliography of 
earlier references. 

Several readers sent references relevant to Grosse's labors, but unfortunately 
they were all in German or French. I still know of no good references in English 
to the sort of problems Grosse has been investigating. 

Some comments on big numbers may be of interest. I mentioned that the 
largest number that can be written in conventional notation with no symbols 
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9 
other than three digits is 9' . In the next-to-last chapter of Ulysses, Joyce reveals 
that Leopold Bloom was once fascinated by this number, and a paragraph is 
devoted to describing how big it is. 

Skewes is pronounced Skew-ease. The large number that bears his name was 
based on the assumption that the Riemann hypothesis is true. What if it isn't? In 
1955 Skewes published a proofthat the number would then be the much larger 

For an entertaining account of all this see "Skewered!" by Isaac Asimov in 
Fantasy and Science Fiction, November, 1974. Skewes made his calculations at 
the request of J.  E. Littlewood, who tells about it in the chapter titled "Large 
Numbers" in A Mathematician's Miscellany (Methuen, 1953). 

Even Skewes's second number is very tiny and no longer the largest ever 
involved in a legitimate proof. The record is now held by Ronald L. Graham, of 
Bell Laboratories. Graham's number arose in connection with a problem in a 
branch of graph theory called Ramsey theory. (See my Scientijic American 
column for November 1977.) The number can be expressed compactly only in 
a special notation devised by Donald E. Knuth for handling numbers of such 
unimaginable magnitude. 
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Napier's Bones 

In his celebrated Budget ofParadoxes Augustus De Morgan defines a "grapho- 
math" as a person ignorant of mathematics who tries to describe a mathemati- 
cian. As an example, he quotes from the second chapter of Sir Walter Scott's 
novel The Fortunes of Nigel, in which David Ramsay, a whimsical clockmaker 
and amateur mathematician, swears "by the bones of the immortal Napier!" 

It is hard to tell from the passage whether Scott actually was uninformed or 
whether he merely intended Ramsay to make an ignorant or ajoking remark. In 
any case, "Napier's bones" have nothing to do with the skeletal remains of 
Baron John Napier (1550 - 1617), the Scottish mathematician who discovered 
logarithms and who was the first important mathematician of Britain. The 
phrase refers to a set of numbered rods that Napier invented for doing multipli- 
cation. W e  shall discuss his method later, but first some remarks about Napier 
himself. 

His father, Sir Archibald Napier, master of the Scottish mint, was just 16 
when John was born. And John was a mere 13 when he entered the University 
of St. Andrews. He left the university without getting a degree, took over the 
family castle and estates at Merchiston (now part of Edinburgh), married and 
had one son and one daughter, was widowered, remarried and continued the 
symmetry with five sons and five daughters. The Protestant Reformation in 
Scotland had started at about the time John was born, and while a youth at St. 
Andrews he became a passionate Calvinist with a compulsion to explicate 
biblical prophecy. In 1593 he published what he always considered his master- 
piece (much more important than logarithms), the full title of which was "A 
Plane Discovery of the whole Revelation of Saint Iohn: set downe in two 
treatises: The one searching and proving the true interpretaiion thereof: The 
other applying the same paraphrastically and historically to the text. Set foorth 
by John Napier L, of Marchistoun younger. Whereunto are annexed certaine . - 
Oracles of Sibylla, agreeing with the Revelation and other places of Scripture. 
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Edinburgh, printed by Robert Walde-grave, printer to the King's Majestie, 
1593. Cum privilegio Regali." 

It was the first major Scottish work on the Bible and one ofthe most thorough 
attempts ever made before or since to explore the symbolism of the Apocalypse. 
It is ironic that today, when many college students seem more interested in the 
Second Coming than in current politics, there is no available reprint ofNapier's 
treatise. It was enormously influential in its day, with 21 English editions and 
numerous European translations. 

Perhaps the main reason the book is out of print is that Napier made a slight 
miscalculation about the end of the world. He had been strongly influenced by 
the religious speculations of Michael Stifel, a German algebraist who proved 
that Pope Leo X was the Antichrist by rearranging the Roman numerals in LEO 

DECIMVS to make DCLXVI, or 666, the notorious "mark ofthe Beast." Where did 
Stifel get the x? From Leo X and because LEO DECIMVS has 10 letters. What - 
happened to the M? He left that out because it stood for mysterium. Stifel 
predicted that the world would end on October 3, 1533. Napier perceived that 
this was a mistake. He decided that it was the Pope of 1593 who was the actual 
Antichrist. God had ordained that exactly 6,000 years would elapse between 
the earth's creation and its destruction. Since there was some uncertainty about 
the exact date ofcreation, Napier set the end ofthe world as being between 1688 
and 1700. 

Napier begins his book by apologizing for having written it in a language so 
base as English, and he concludes it by appealing to the pope as follows: 

"In summar conclusion, if thou o Rome aledges thyselfe reformed, and to 
beleeue true Christianisme, then beleeue SaintJohn the Disciple, whome Christ 
loued, publikely here in this Reuelation proclaiming thy wracke, but if thou 
remain Ethnick in thy priuate thoghts, beleeuing the old Oracles of the Sibyls 
reuerently keeped somtime in thy Capitol: then doth here this Sibyl1 proclame 
also thy wracke. Repent therefore alwayes, in this thy latter breath, as thou 
louest thine Eternal1 salvation. Amen. " 

"Strange," comments De Morgan in his Budget, "that Napier should not 
have seen that this appeal could not succeed, unless the prophecies of the 
Apocalypse were no true prophecies at all." 

After clearing up the apocalyptic mysteries, Napier turned his ingenuity 
toward ways of defending Scotland against a threatened invasion by Catholic 
Spain. His 1596 document was titled Secrett lnventionis, profitabill and necessary 
in theis dayesfor defense ofthis Iland, and withstanding ofstrangers, enemies ofGod's 
truth and religion. It describes three inventions: mirrors for setting fire to enemy 
ships (shades of Archimedes!), a machine gun and a metal chariot (that is, a 
tank) housing soldiers who could fire through holes in the sides. 



Napier’s next book, the Latin title of which begins Mirifici Logarithmorum
Canonis Descriptio... (A Description of the Marvelous Rule of Logarithms...), appeared
in 1614. This was the book in which Napier explained logarithms, called them
logarithms (a term he coined), and gave the world its first log table. It has often
been pointed out that if exponents had then been in use, logarithms would have
immediately been recognized as a great toil saver but Napier conceived of them
without reference to exponents at all. This is not the place to explain how he
arrived at logs the hard way by considering the relation of an arithmetic series
to a geometric series. The London geometer Henry Briggs quickly realized that
10 was the most convenient base for logarithmic calculations in the decimal sys-
tem, and Napier at once agreed. It is said that when the two men first met at
Merchiston Castle (where Briggs remained for a month), they admired each
other for 15 minutes before either spoke a word.

Navigators and astronomers, notably Johannes Kepler, found the base-10
logs (or common logarithms as they are now called) invaluable, and years of
drudgery were devoted by Briggs and others to preparing better and better log.
tables. (Today it is faster to compute a log all over again on a pocket electronic
calculator—it takes less than a second—than to look it up in a book!) In
Napier’s posthumous work Mirifici Logarithmorum Canonis Constructio…(1619) he
explained how he calculated his original logs. In doing so he made systematic
use of a decimal point, placing it above the baseline and using it exactly as it is
used today in England.

Two of the most amusing of many anecdotes about Napier are recounted by
Howard W. Eves in his delightful In Mathematical Circles. Because a neighbor’s
pigeons were flying onto Napier’s estate and eating grain, Napier told his neigh-
bor that he would impound the birds as payment. The neighbor replied hat
Napier was welcome to any pigeon he could catch alive. Napier scattered
brandy-soaked peas over his grounds and the pigeons were soon staggering
about in such a stupor that he had no trouble collecting all of them in a sack.

It was a time when almost everyone in Scotland (including Napier) believed
in astrology and black magic. One day Napier called his servants together and
told them that his black rooster had the occult power to tell him which servant
had been stealing from the estate. One at a time each servant was asked to enter
a dimly lighted room and stroke the bird’s back. As Napier had anticipated, only
the guilty person, fearing exposure, would not do as asked. Napier had covered
the rooster’s black feathers with soot, and so only the guilty servant emerged
with clean hands.

The age was also one of intense interest in calculating. The average person
did arithmetic on his fingers, but more skillful mathematicians took great
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Figure 50 Rabdoiogy, or "Napier1s bones" 

delight in completing tedious computations. Napier's hobby was to find ways to 
simplify such work. Logarithms were, of course, his best invention, but in 1617 
(the year he died) he brought out a little book called Rabdologia that explained 
three other methods of calculating. The book's title was his name for the first 
method, one that soon became known as "Napier's bones" because it used rods 
that often were made of animal bone. 

The  reader is urged to make a set of Napier's bones by labeling 11 strips of 
heavy cardboard (or Popsicle sticks, tongue depressors or any other available 
wooden strips) as shown in Figure 50. The index rod is not essential, but it 
makes it easier to locate desired rows. Each of the rods has a digit at the top. 
Below the digit, from the top down, are the products when that digit is multi- 
plied successively by numbers 1 through 9. The set of bones obviously is 
nothing more than a multiplication table cut into strips so that it can be 
manipulated manually, with a zero strip added to serve as a placeholder. 

The  procedure is ridiculously simple. Suppose you wish to multiply 4,896 by 
7. Rods topped with 4, 8 , 9  and 6 are placed side by side with the index rod on 
the left [see Figure 511. Only row 7 (the multiplier) is considered. Write down 2, 
the last digit of the row, as the final digit ofthe product. The product's next digit 
(working to the left on both rods and paper) is obtained by adding the next pair 
of digits (the diagonally adjacent digits inside the little parallelogram) of the 
row. They are 4 + 3, so put down 7 as the second digit from the end of your 
product. The sum of the next pair (6 + 6 = 12) is more than 9, therefore write 
2 as the third digit ofthe product and carry 1. The next pair, 5 and 8, add to 13, 
but you are carrying 1, so the sum is 14. Put down 4 and again carry 1. The last 
digit of the row is 2. Two plus 1 is 3, so 3 is the final digit (on the left) of your 
product. 
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Figure 51 4,896 X 7 = 34,272 

You have now obtained the correct answer, 34,272, by using only simple 
addition. Of course, if you know your multiplication table through the 9's, you 
can do it just as easily without the rods. In Napier's day, however, the ordinary 
person's ability to calculate was feeble, so the rods became an instant success 
throughout Great Britain and continental Europe. 

T o  multiply 4,896 by a larger number, say 327, it is necessary to obtain three 
partial products and add them in the usual way. In other words, write down 
34,272 (the product of 4,896 and 7);  then put below it the products obtained 
from rows 2 and 3, jogging them to the left in the standard manner, 

then add to obtain the final product. 
The rods are of little use unless you have more than one set because a 

multiplicand may contain duplicate digits. Napier's rods had square cross 
sections, each face of a rod corresponding to one of the strips in our cardboard 
set. He arranged the four columns so that the top digits on opposite sides of each 
rod added to 9. The following are the quadruplets of Napier's set of 10 bones: 
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It is clear that such a set of 10 rods can handle all multiplicands of 10 digits or 
fewer that are possible to form with the rods, but many multiplicands cannot be 
formed, so it was advisable to own more than one set. As a little puzzle in 
combinatorics, can the reader determine the largest multiplicand one set of 
Napier's bones will form such that all smaller multiplicands can also be formed 
by the set? As a second exercise, find the corresponding largest multiplicand for 
two sets of Napier's bones. 

Napierls rods can be used for division too, but the process is more trouble 
than it is worth. In short division you must select rods that form the desired 
dividend on the row for the digit divisor and read offthe quotient from the top. 

g rods 
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If the dividend cannot be formed, form the largest number you can that is less
than the dividend and subtract that number from the dividend to obtain the
remainder. In long division the rods can be used for determining the successive
products of the divisor and each digit in the quotient.

The charm of Napier’s rods lies in their simplicity. If we are willing to compli-
cate them a bit, however, we can eliminate the bother of having to carry 1’s in our
head. The cleverest way of doing this was invented about 1890 by Henri Genaille,
a French civil engineer. The picture of these rods is almost self-explanatory [see
Figure 52]. They work exactly like Napier’s except that the product is read direct-
ly from right to left. Start with the digit at the top right of the desired row. The
next digit is the one to which the shaded triangle (at the left of the previous digit)
points. From now on move from each digit into the shaded triangle directly at its
left and go to the digit to which it points. For example, to multiply 673 by 8, start
with 4 at the top right [see Figure 53], and see how easily you can move to the left
through the chain of triangles to obtain the product 5,384.

Both Napier’s bones and Genaille’s rods are marvelous teaching devices
because it is not hard to see why they work, and when you do, you obtain valu-
able insight into the multiplication procedure. If you have difficulty under-
standing why Genaille’s rods operate, you can find it explained in the article by B.
R. Jones (see the bibliography), from which our illustrations were taken.

The second calculating method in Rabdologia had to do with arranging metal
plates inside a box. It is too complicated and impractical to explain here. But
Napier’s third method, which he regarded as being primarily an amusement,
requires only a chessboard and a supply of counters. By moving the counters as
you would rooks or bishops, you can do addition, subtraction, multiplication, divi-
sion and square roots all in the binary system, as explained in the next chapter.

Figure 53
673 × 8 = 5,384
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ANSWERS 

A single set of Napier's original 10 rods will form every multiplicand of 11,110 
or less. Two sets will form every multiplicand of 11 1,111,110 or less. For n sets 
of bones the number is 471 1's followed by a 0. 

ADDENDUM 

Napier had no notion of a "base" for his logarithms. The matter is complicated, 
but, as Carl Boyer explains in his History of Mathematics, if you divide all 
Napier's numbers and logarithms by lo7, you have a system practically the 
same as one based on lie. Natural logs based on e later came to be known as 
Napierian logarithms, even though Napier never had such a system. Boyer does 
a good job clarifying the confusing details. 

Napier's bones were based on an ancient way of multiplying that came to be 
called the Gelosia system, because its lattice lines looked like the gratings on 
Italian windows. There is a good account of this, together with a survey of the 
curious mechanical devices (some with rotating cylindrical rods) that came 
after Napier's bones, in the paper by M. R. Williams cited in the bibliography. 

I had assumed that David Ramsay, mentioned in the first paragraph of the 
chapter, was invented by Scott. Not so. He actually lived and made and sold 
clocks and watches for a living. He served James I as an astrologer, as did his son 
William. In 1652 William published a book on astrology with a curious 
dedication to his father that reads in part: "It's true your carelessness in laying 
up while the sun shone for the tempests of a stormy day hath given occasion to 
some inferior-spirited people not to value you according to what you are by 
nature and in yourself, for such look not to a man longer than he is in prosper- 
ity. . ." 

William Lilly, a famous British astrologer of the time, wrote an autobiogra- 
phy in which he gives a hilarious account of how he, David Ramsay and others 
tried to locate a treasure reportedly buried in the cloisters of Westminster 
Abbey. It was late at night, and a great wind developed that prevented their 
dowsing rods from turning. Lilly writes that he "dismissed the demons," but 
that the real cause of their failure was that they were surrounded by more than 
30 people who kept laughing and deriding them. Lilly's autobiography is also 
the source of the anecdote I gave about the first meeting of Napier and Briggs. 

Where today are Napier's body bones? Nobody seems to know. As Williams 
discloses, there are reports of his having been buried in at least two different 
spots in Edinburgh. 
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CHAPTER EIGHT 

Napier's Abacus 

"Napierls bones" (the topic of the previous chapter) are the calculating rods 
that were invented by John Napier, the 16th-century Scottish mathematician 
who discovered logarithms. In Rabdologia, the book in which Napier first 
explained his "bones," he also described a curious method of calculating by 
moving counters across a chessboard. This method, which seems to have been 
completely forgotten, deserves to be remembered for several reasons: It is not 
only a pleasant recreation but also a valuable teaching device and of consider- 
able historic interest. It is the world's first binary computer, and it came almost 
100 years before Leibniz explained how to calculate with binary numbers! 
Although Napier did not express numbers explicitly in binary notation, we 
shall see how his counting board is equivalent to doing so. 

The use of checkered boards and cloths for calculating was widespread in 
Europe during the Middle Ages and the Renaissance. English words such as 
"exchequer," "check" and "counter" derive from these boards; even "bank" 
comes from the German word for counting board, Rechenbank. The algorithms 
for calculating on these boards, however, were clumsy. By adopting a binary 
system and basing his algorithms on old methods ofmultiplying by "doubling," 
Napier created a remarkably efficient counting board unlike any that had been 
in use before. 

Napier's counting board is a chess-board of arbitrary size, with columns and 
rows labeled by the doubling series l , 2 , 4 , 8 ,  16,32, .  . . . These numbers are, 
of course, successive powers of 2. Before explaining Napier's methods for 
multiplying, dividing and extracting square roots, let us see how his board can 
be used for addition and subtraction. Suppose we want to add 89 + 41 + 
52 + 14. Each number is expressed by placing counters on a row of the board 
[see Figure 54a]. A counter has the value of its column. (Ignore the row numbers 
on the right margin.) Thus the fourth row shows 89 as the sum of 64 + 16 + 
8 + 1. If you think of each counter as 1 and the empty cells as 0, then 89 is 
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Figure 54 Binary addition: 89 + 41 + 52 + 1 4  

represented in binary notation as 1011001, and similar notations can be made 
for the other three numbers. The counters can be positioned rapidly because 
any positive integer is uniquely represented as a sum of the powers of 2. Start at 
the left and put a counter on the largest power less than the number to be 
represented; then move right and place a counter on the next larger power that, 
when added to the previous power, will not exceed the desired number. Con- 
tinue in this way until the unique binary representation is obtained. 

T o  add the four numbers, first move all the counters down like rooks in chess 
to the bottom row [see Figure 54b]. Adding the values of all these counters will 
give the correct sum, but we want to express the sum in binary notation. To do 
this, "clear" the row of multiple counters on a cell by the following procedure. 
Start at the right, taking each cell in turn. Remove every pair of counters on a cell 
and replace them with a single counter on the adjacent cell to the left. W e  shall 
call this "halving up." Clearly it will not affect the sum of the counters's values 
because every pair of counters of value n is replaced by one counter of value Zn. 
The final result after clearing is the binary number 11000100, or 196 in 
decimal notation [see Figure 54~1. 

Subtraction is almost as simple. Suppose you want to take 83 from 108. 
Represent the larger number on the second row and the smaller on the bottom 
row, as shown in Figure 55a. You can now do subtraction in the usual manner, 
starting at the right and borrowing as you go, but I prefer to alter the entire 
second row (preserving the total value of its counters) until each counter on the 
bottom row has one or two counters above it, and no empty cell on the bottom 
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Figure 55 Binary subtraction: 108 - 83 

row has more than one counter above it. This is done by "doubling down" on 
the second row - removing a counter and replacing it with two counters on the 
next cell to the right. How the top row looks after it is transformed to meet the 
two specified conditions is shown in b. The next step is to "king" (as in 
checkers) each counter on the bottom row by moving a counter on top of it from 
the cell directly above. After this is done, the second row shows in binary 
notation the difference between the two numbers. In this case it is 11001, or 25, 
as shown in Figure 55c. 

A different subtraction method is to "complement" the smaller number and 
add. A number is complemented by placing a counter on each of its empty cells 
and removing all counters originally there. In other words, each 0 is changed to 
1,  and each 1 to 0. (If the subtrahend has fewer digits than the minuend, before 
complementing you must add zeros to the left of the subtrahend until it is the 
same length as the minuend.) Add the two numbers, clear the row by halving 
up and transfer the counter at the extreme left to the extreme right. Clear again if 
necessary. T o  use the preceding example, we change 1010011 to its comple- 
ment 101100. Adding and clearing produces 10011000. Shifting the counter 
from left to right gives 11001, or 25, the correct difference. 

Multiplication is delightfully easy. Napier explains it with the example 
19 X 13 = 247. One number, say 19, is indicated below the board by marking 
the proper columns; the other number, 13, by marking the proper rows. A 
counter goes on each cell at the intersection of a marked row and column [see 
Figure 5 6 ~ 1 .  Every counter not on the column at the extreme right is moved 
diagonally up and right (like a chess bishop) until it is on the rightmost column. 
The result is shown in b. The sum of the values of these counters (as indicated 
on the right margin) is 247, the desired product, but we wish to express it in 
binary notation. That is quickly done by halving up until the column is cleared. 
The  final result is 11 1101 11, or 247, as shown in c. 

It is easy to see why it works. Counters on the first row keep their values when 
moved to the right, counters on the second row double in value, counters on the 
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Figure 56 Binary multiplication: 19 X 13 

third row quadruple in value and so on. The procedure is equivalent to multi- 
plying with logarithms to base 2. In our example, 19 is expressed as z4 + 2' + 
2', and 13 as z3 + 22 + 2'. Cross multiplying in the familiar manner (remem- 
bering the basic law of exponents: x n  X x rn = xn+rn ) yields z7 + 
z6 + 2 . z4 + 2 . 23 + 2' + 2' + 2'. This corresponds exactly to Napier's 
procedure. Indeed, moving the counters is equivalent to cross multiplying. W e  
are, in effect, multiplying by adding exponents. 

Napier was not the first to recognize that powers of 2 can be multiplied by 
adding their exponents. As early as 1500 it had been clearly explained with 
exponential notation by Nicolas Chuquet, a physician oflyons, in the algebraic 
part of his Triparty en la sciences des nombres. It is Napier, however, who gets the 
credit for the first mechanical device operating with logs based on 2. 

Napier next explains how to do long division on his abacus, using the 
example 250 + 13. The procedure, as one would expect. is the reverse of 
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Figure 57 Binary division: 250 + 13 

multiplication. Complications arise that make it difficult to explain, although in 
practice one soon learns to do it quickly. The divisor, 13, is marked at the 
bottom ofthe board, and the dividend is indicated by counters on the column at 
the extreme right [see Figure 57a]. You must now move the dividend counters 
like chess bishops, down and left, to produce a pattern that has counters (one to 
a cell) only on marked columns, and each marked column must have its 
counters on the same rows. Only one such pattern can be formed, but to do so it 
is necessary at times to double down on the right column, that is, remove single 
counters, replacing each with a pair of counters on the next lower cell. 

Start with the top counter and move it diagonally to the leftmost marked 
column. If you see that you cannot proceed to form the desired pattern, return 
the counter to its original cell, double down and try again. If the first attempt 
fails, the second will succeed in beginning the required pattern, although more 
doubling down may be necessary. Continue in this manner, doubling down 
whenever you see that you must, gradually filling in the pattern by extending it 
down and right until finally the unique pattern is constructed [see Figure 5 7b]. 
After the final counter at the bottom right corner of the pattern is in place, you 
will have three counters left over. They represent the remainder. The rows 
containing counters are marked on the right margin, symbolizing 1001 1, or 19, 
the correct quotient. The three extra counters give the fraction 3/13. 
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Figure 58 Binary extraction of square root: J1,238 

A similar procedure is used to find integral square roots. If the root is not 
integral, the procedure gives the root of the largest square less than the original 
number. Counters left over then represent the difference between that number 
and the original. Napier demonstrates by finding the square root of the largest 
square less than 1,238. This requires a board extended higher than the stan- 
dard chessboard. As in division, the number is represented by counters on the 
right-most column [see Figure 58a]. Since no divisor is marked on the bottom, 
how do we form a pattern? W e  must move counters diagonally down to 
produce a pattern with two properties: (1) Every column with counters must 
have its counters on the same rows, and (2) the pattern must have bilateral 
symmetry along the diagonal passing through the board's lower right corner. 
This ensures, of course, that multiplier and multiplicand are identical. As 
before, start with the top counter and see if you can move it to the diagonal of 
symmetry. If you can, that is the correct first move. If you cannot, double down 
and move one of the counters to the diagonal of symmetry. Continue in this 
fashion, doubling down when necessary, until the required symmetrical pattern 
is achieved. The result is 35 X 35 = 1,225, with 13 leftover counters that 
represent the difference between the square and 1,238. 
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Figure 59 Patterns for squaring 1 through 15 

The 15 patterns that generate all squares from 1 through 225 are shown in 
Figure 59. Studying them will familiarize you with the kind of pattern that must 
be formed for square roots. Note that in every pattern each row and column has 
a counter on the diagonal of symmetry. 

Napier's device will operate with any base notation, but above base 2 it is 
necessary to work with multiple counters on single cells. As the base increases, 
the system becomes progressively more cumbersome and uninteresting, and 
more multiplying must be done in the head. For example, to multiply 77 by 77 
in decimal notation each of the four cells at the lower right corner must hold 
7 X 7 = 49 counters. After moving them to the right column you have 49 
counters on the bottom cell, 98 on the next and 49 on the next. Then every set of 
10 counters on a cell is replaced by a single counter immediately above it, 
resulting finally in counters on four cells that signify the product, 5,929. 

The most interesting extension of Napier's board was suggested by Donald 
E. Knuth, the Stanford computer scientist. A checkered board can be used very 
efficiently for calculating in the "negabinary system." Because this remarkable 
notation is based on powers of - 2,  the rows and columns of the board are 
labeled with the series + 1, -2, + 4, - 8, + 16, - 32, . . . , in which alternate 
powers are negative. The main virtue of negabinary is that every positive and 
every negative integer can now be uniquely represented in binary notation 
without the use of signs. Examples are 13 = 11101 (16 - 8 + 4 + 1) and 
-13 = 110111 (-32 + 16 + 4 - 2 -k 1). 
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Figure 60 Negabinaq notation of integers 

The negabinary forms of positive and negative integers from 1 through 20 
are shown in Figure 60. Note that every positive number has an odd number of 
negabinary digits and every negative number has an even number of negabi- 
nary digits. Every odd number, regardless of sign, ends in 1; every even 
number, regardless of sign, ends in 0. Many other basic theorems are easily 
discovered. For example, a negabinary number is divisible by 3 if and only if its 
number of 1's is a multiple of 3. Observe that every palindromic negabinary 
number on the list (a number that is the same in both directions) is a positive or 
a negative prime. Is this true in general? If not, what is the first exception? 

I know of no better way to become acquainted with this extraordinary 
notation (so rich in recreational possibilities) than to calculate with it on Na- 
pier's board. Addition is handled exactly as before except that in clearing the 
sum the following two rules are observed: 

1. A pair of counters on one cell and a single counter on the next higher cell 
cancel one another. Remove all three. 

2. If any cells still have double counters, remove each pair and put single 
counters on each of the two next higher cells. 



The clearing procedure, thanks to the cancellation rule, is unusually rapid [see
Figure 61, left].

The fastest way to do subtraction is to change the sign of the subtrahend and
add! Changing the sign is the same as multiplying by –1, or 11 in negabinary.
Since multiplying by 11 is the same as adding a number to itself, with one repli-
ca shifted one cell to the left, we can reverse the sign of any negabinary num-
ber by the following simple algorithm: Add a new counter to every cell that is
immediately to the left of a counter originally there, then clear the row as
explained. For example, 11(–1 in decimal notation) becomes 121, but the first
two digits cancel (by rule 1), leaving 1, which is positive. Applying the algorithm
again restores 11, or –1. When this algorithm is used on standard binary num-
bers, by the way, it is the same as multiplying by 3. (Do you see why?)

Any two negabinary numbers can be multiplied by using Napier’s procedure
and clearing the result according to negabinary rules. The product will have the
correct sign when translated into decimal notation. Try multiplying –4 and –6.
They are 1100 and 1110 in negabinary [see Figure 62]. After multiplying and
clearing, you get 1101000, or +24. If you had multiplied –4 and +6, or +4 and
–6, the result would have been 111000, or –24.

Division and square-root procedures are much trickier, although interested
readers should be able to devise them. In square roots both positive and neg-
ative roots appear as solutions. Are there ways to use Napier’s board efficient-
ly for converting a signed binary number to negabinary, and vice versa? Yes; we
can exploit two simple algorithms given by Knuth as the answer to Exercise 12
on page 177 of his Seminumerical Algorithms [see bibliography]. Readers are encour-
aged to work them out before checking the answers section.

It is hard to believe, but the idea of negative-base notation (it applies to any
radix) did not occur to anyone until the 1950’s, when many people indepen-
dently thought of it. In 1955, when Knuth was a high school senior, he wrote
a short paper on it for a science talent search, but the first published account
(at least in English) seems to be a short letter by Louis B. Wadel in IRE Transac-
tions on Electronic Computers (Vol. EC-6, 1957, page 123). The term “negabi-
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Figure 61 Clearing rules for negabinary and Fibonacci notations
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Figure 62  Negabinary multiplication: - 4 X - 6 

nary" was coined by Maurits P. de Regt, wk ose series of pioneering articles on 
negative radix arithmetic is listed in the bibliography. 

Knuth also suggests the Fibonacci labeling, 1, 2 ,  3, 5, 8, 13, . . . , for 
Napier's board. It is difficult to multiply or divide with it, but addition and 
subtraction can be handled by representing each integer as the sum of the 
fewest possible Fibonacci numbers. Start by putting a counter on the column 
with the highest value less than the number to be represented; then work 
downward until the desired sum is obtained. (This method of representing a 
number uniquely in Fibonacci notation is known as Zeckendorf's theorem.) 
For example, 19 is uniquely indicated by 101001, or 13 + 5 + 1. The adding 
procedure is the same as Napier's except that a row is cleared by the following 
two rules: 

1. If single counters are on adjacent cells of the board, remove them and put 
one counter on the next higher cell. 

2. For every pair of counters on the same cell, remove them and put one 
counter on the next higher cell and one on the second lower cell. 

For example, two counters on cell 13 are replaced by one on cell 21 and one on 
cell 5 [see Figure 61, right]. 



CHAPTER EIGHT 104 

If you imagine the row extended two more cells to the right, with values of 1 
and 0 (or, alternatively, that the columns are labeled 0 ,  1, 1, 2, 3, 5 ,  . . . ), 
then the above two rules suffice. Otherwise there are two exceptions. A pair of 
counters on 2 is replaced by one on 3 and one on 1, and a pair on 1 is replaced by 
one on 2. 

T o  subtract, I know of no better way than the "kinging" procedure explained 
for binary subtraction. You must, of course, first change the minuend to the 
required pattern by applying the two clearing rules in reverse. There may be a 
better method. Indeed, there may be all kinds of clever algorithms for calculat- 
ing on Napierls board, in various notations, that no one has yet discovered. 

ANSWERS 

T o  change a signed binary number to negabinary 

1. Express the number in binary on row 2. 

2. If the number is positive, move all counters that have negative values (in 
negabinary) down like rooks to the first row. (On a standard chessboard this 
means moving down all counters on white squares.) If the number is negative, 
move down all counters of positive value (those on black squares). 

3 .  Regard both rows as negabinary numbers. Subtract the first row from the 
second, using the procedure explained in the previous chapter for negabinary 
subtraction. 

4. Clear the bottom row by negabinary rules 

To convert a negabinary number to a signed binary 

1. Express the number in negabinary on row 2. 

2 .  If the number is positive (an odd nurnber of digits), move down all the 
negative counters (white squares). Ifthe nurnber is negative (an even number of 
digits), move down all positive counters (black squares). 

3. Regard both rows as binary numbers. Subtract the first row from the 
second, using a binary procedure. 

4. Clear the answer by binary rules and prefix the proper sign (plus if the 
original number was positive, minus if it was negative). 

The  answer to the question about negabinary palindromes is that the small- 
est composite number that is palindromic in negabinary is 21. Its positive form 
is 10 10 1 ; its negative form is 1 11 11 1. 



Figure 63 Fibonacci notation for 7 X 7 

ADDENDUM 

John Harris of Santa Barbara, Calif., discovered an ingenious way to multiply 
numbers in Fibonacci notation, using the Napier counting board. He added an 
extra 1-row and I-column outside the heavy line to the counting board [see 
Figure 631. Suppose you want to multiply 7 by 7. Place the counters according to 
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Napier's rules [see a]. More counters are now positioned according to the 
following rule: O n  the diagonal that extends down and to the right from each 
counter, n, put a counter on every alternate cell, starting with the cell two cells 
away from counter n [b]. 

Each counter outside the heavy line is moved to the nearest cell inside the line 
[c]. Now move all counters up and to the right along their diagonals to the heavy 
line [dl. Clear the column according to the Fibonacci clearing rules given earlier 
[el. The  counters, reading from the top down, give the correct product in 
Fibonacci notation. Readers familiar with the Fibonacci series will enjoy prov- 
ing that Harris's algorithm works. Division by this method, however, seems to 
be hopelessly complicated. 

Napier's abacus furnishes insights into many important combinatorial for- 
mulas. For example, in how many ways can you make a selection from n 
different objects? The answer 2" - 1 is apparent from the way the columns (or 
rows) are labeled. Let the eight columns of the standard chessboard be eight 
objects. Each selection of columns corresponds to a binary number from 1 to 
I 1  11 11 11, or 255. That 255 = 28 - 1 is obvious, because adding 1 to it makes 
the binary number 100000000, or 28 = 2.56. 

Assuming one counter to a cell, we ca.n ask several questions about the 
number of patterns of a specified kind that can be placed on an n X n chess- 
board. How many patterns can be formed in which each nonempty column has 
its counters on the same rows? Clearly this is the same as asking how many 
products can be made by multiplying two numbers, each from 1 through 
2" - 1. How many of these patterns have bilateral symmetry along the main 
diagonal that passes through the board's lower right corner? This is the same as 
asking how many squares can be made by squaring a number from 1 through 
2" - 1. How many patterns can be made with no restrictions whatever? Think 
of the rows as joined to form one long chain of n X n cells. Every pattern will be 
expressed by a binary number from 1 through 2(nXn) - 1. If we count the 
absence of all counters as a pattern, the number of patterns possible is 2"'. 

Donald Knuth called my attention to the entertaining article "Binary Nota- 
tion," by E. William Phillips in the British publicationJourna1 of the Institute of 
Actuaries, Vol. 67,1936, pages 187 -221. The  purpose ofthe paper is to defend 
a notation based on 8 as superior to decimal notation. To show how easily 
numbers can be multiplied when given in binary notation, the author reinvents 
Napier's abacus without realizing it. 

Christopher J.  Schultz wrote to propose the following procedures for chang- 
ing a signed binary number to a negabinary number, and vice versa. In many 
ways they are simpler than the algorithms I gave. 
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1. If the number is positive, check the next-to-rightmost column; if negative, 
check the rightmost column. 

2. If the column contains a counter, consider the columns to the left of it a 
complete binary number and add 1 to it, using binary arithmetic and clearing 
rules. 

3. Move two columns to the left and repeat step 2. Continue in this way 
through the entire number. 

T o  change a negabinary number to a signed binary number: 

1. Starting at the left, check the next-to-first column. 

2. If the column contains a counter, consider the columns to the left of it a 
complete binary number and subtract 1 from it, using binary arithmetic and 
clearing rules. 

3. Move two columns to the right and repeat step 2. Ifthe last column checked 
is the rightmost column, sign the number negative; otherwise sign it positive. 

Many readers suggested ways, which they considered better than the one I 
gave, for performing division on Napier's abacus and also for dividing and 
doing square roots in Fibonacci notation. Craige Schensted was inspired by 
Napier's device to invent a chessboard computer on which many astonishing 
calculations can be made. The basic idea is to allow the columns to be labeled 
with the powers of one base and the rows to be labeled with the powers of a 
different base. Each cell represents the product of its row and column numbers. 
It would require a long chapter to do justice to the elegant ways Schensted found 
for using such a board to solve problems that otherwise would be difficult. 

I gave 1950 as the date on which papers about negative-base number systems 
first began to appear. In his History ofBinary and other Nondecimal Numeration 
[see the bibliography], Anton Glaser disclosed that in 1885 Vittorio Griinwald 
published an article in which he covered all the basic arithmetical operations in 
a negative-10 system. This is the only reference to negative-base notation 
known to me prior to 1950. 
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CHAPTER NINE 

Sim, Chomp and Race track 

New mathematical games of a competitive type, demanding more intellectual 
skill than luck, continue to proliferate both in the U.S. and abroad. In Britain 
they have become so popular that a monthly periodical called Games and 
Puzzles was started in 1972 just to keep devotees informed. st rate^ and Tactics 
(a bimonthly with offices in New York City) is primarily concerned with games 
that simulate political or military conflicts, but a column by Sidney Sackson 
reports on new mathematical games of all kinds. Sackson's book A Gamut of 
Games (Random House, 1969) has a bibliography of more than 200 of the best 
mathematical board games now on the market. 

Simulation games are games that model some aspect of human conflict: war, 
population growth, pollution, marriage, sex, the stock market, elections, rac- 
ism, gangsterism-almost anything at all. They are being used as teaching 
devices, and some notion of how widely can be gained from the fact that a 1973 
catalogue, The Guide to Simulation Gamesfor Education and Training, by David 
W .  Zuckerman and Robert E. Horn, runs to 500 pages. 

We will take a look at three unusual new mathematical games. None requires 
a special board or equipment; all that is needed are pencil and paper (graph 
paper for the first game) and (for the third) a supply of counters. 

Race Track, virtually unknown in this country, is a truly remarkable simula- 
tion of automobile racing. I do not know who invented it. It was called to my 
attention by Jurg Nievergelt, a computer scientist at the University of Illinois, 
who picked it up on a recent trip to Switzerland. 

The game is played on graph paper. A racetrack wide enough to accommo- 
date a car for each player is drawn on the sheet. The track may be of any length 
or shape, but to make the game interesting it should be strongly curved [see 
Figure 641. Each contestant should have a pencil or pen of a different color. T o  
line up the cars, each player draws a tiny box just below a grid point on the 
starting line. In the example illustrated the track will take three cars, but for 
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Figure 64 The Race Track game 

simplicity a race of two cars is shown. Lots can be drawn to decide the order of 
moving. In the sample game, provided by Nievergelt, Black moves first. 

You might suppose that a randomizing device now comes into play to 
determine how the cars move, but such is not the case. At each turn a player 
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simply moves his car ahead along the track to a new grid point, subject to the 
following three rules: 

1. The new grid point and the straight line segmentjoining it to the preceding 
grid point must lie entirely within the track. 

2. No two cars may simultaneously occupy the same grid point. In other 
words, no collisions are allowed. For instance, consider move 22. Gray, the 
second player, would probably have preferred to go to the spot taken by Black 
on his 22nd move, but the no-collision rule prevented it. 

3. Acceleration and deceleration are simulated in the following ingenious 
way. Assume that your previous move was k units vertically and m units 
horizontally and that your present move is k' vertically and m' horizontally. The 
absolute difference between k and k' must be either 0 or 1, and the absolute 
difference between m and m' must be either 0 or 1. In effect, a car can maintain 
its speed in either direction, or it can change its speed by only one unit distance 
per move. The  first move, following this rule, is one unit horizontally or 
vertically, or both. 

The first car to cross the finish line wins. A car that collides with another car 
or leaves the track is out of the race. In the sample game Gray slows too late to 
make the first turn efficiently. He narrowly avoids a crash, and the bad turn 
forces him to fall behind in the middle of the race. He takes the last curve 
superbly, however, and he wins by crossing the finish line one move ahead of 
Black. Neither driver, I should add, always makes his best moves. 

Nievergelt programmed Race Track for the University of Illinois's Plato IV 
computer-assisted instruction system, which uses a new type of graphic display 
called a plasma panel. Two or three people can play against one another, or one 
person can play alone. The game became so popular that the authorities made it 
inaccessible for a week to prevent students from wasting too much time on it. 

Our second pencil-and-paper game is called Sim, after Gustavus J. Sim- 
mons, a mathematician at the Sandia Corporation laboratories in Albuquerque, 
who invented it when he was working on his Ph.D, thesis on graph theory. He 
was not the first to think of it (the idea occurred independently to a number of 
mathematicians), but he was the first to publish it and to analyze it completely 
with a computer program. In his note titled "On the Game of Sim" (see the 
bibliography) he says that one of his colleagues picked the name as short for 
S I M ~ ~  SIMmOnS, and because the game resembles the familiar game of nim. 

Six points are placed on a sheet of paper to mark the vertexes of a regular 
hexagon. There are 15 ways to draw straight lines connecting a pair of points, 
producing what is called the complete graph for six points [see Figure 651. Two 



Figure 65 The game of Sim 

Sim players take turns drawing one of the 15 edges of the graph, each using a 
different color. The first player to be forced to form a triangle of his own color 
(only triangles whose vertexes are among .the six starting points count) is the 
loser. 

If only two colors are used for the edges of a chromatic graph, it is not hard to 
prove that six is the smallest number of points whose complete chromatic graph 
is certain to contain a triangle with sides all the same color. Simmons gives the 
proof as follows: "Consider any vertex in a completely filled-in game. Since five 
lines originate there, at least three must be the same color -say blue. No one of 
the three lines joining the end points of these lines can be blue ifthe player is not 
to form a blue triangle, but then the three interconnecting lines form a red 
triangle. Hence at least one monochromatic (all one color) triangle must exist, 
and a drawn game is impossible." 

With a bit more work a stronger theorem can be established. There must be 
at least two monochromatic triangles. A detailed proof of this is given by Frank 
Harary, a University of Michigan graph theorist, in his paper "The Two-Tri- 
angle Case of the Acquaintance GraphH [see the bibliography]. Harary calls it an 
acquaintance graph because it provides the solution to an old brainteaser: Of 
any six people, prove that at least three are mutual acquaintances or at least 
three are mutual strangers. Harary not onjy proves that there are at least two 
such sets but also shows that if there are exactly two, they are of opposite types 
(colors on the graph) if and only if the two sets have just one person (point) in 
common. 

Because Sim cannot be a draw, it follouis that either the first or the second 
player can always win if he plays correctly. When Simmons wrote his note in 
1969, he did not know which player had the win, and in actual play among 
equally skillful players wins are about equally divided. Later he made an 
exhaustive computer analysis showing that the second player could always win. 
Because of symmetry, all first moves are alike. The computer results showed 
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that the second player could respond by coloring any of the remaining 14 edges 
and still guarantee himself a win. (Actually, for symmetry reasons, there are 
only two fundamentally different second moves: one that connects with the first 
move, and one that does not.) 

After the first player has made his second move, exactly half of the remaining 
plays lead to a sure win for the second player and halfto a sure loss, assuming, of 
course, that both sides play rationally. If 14 moves are made without a win, the 
last move, by the first player, will always produce two monochromatic triangles 
of his color. This 14-move pattern is unique in the sense that all such patterns 
are topologically the same. Can you find a way of coloring 14 edges of the Sim 
graph, seven in one color and seven in another, so that there is no monochro- 
- - 

matic triangle on the field? 
The  most interesting unanswered question about Sim is whether there is a 

relatively simple strategy by which the second player can win without having to 
memorize all the correct responses. Even if he has at hand a computer printout 
ofthe total game tree, it is of little practical use because it is enormously difficult 
to locate on the printout a position isomorphic to the one on the board. Sim- 
mons's computer results have been verified by programs written by Michael 
Beeler at the Artificial Intelligence Laboratory of the Massachusetts Institute of 
Technology and, more recently by Jesse W. Croach, Jr., of West Grove, Pa., 
but no one has been able to extract from the game tree a useful mnemonic for the 
second player. 

Sim can, of course, be played on other graphs. O n  complete graphs for three 
and four points the game is trivial, and for more than six points it becomes too 
complicated. The pentagonal five-point graph, however, is playable. Although 
a draw is possible, I am not aware of any proof that a draw is inevitable if both 
sides make their best moves. 

Our third game, which I call Chomp, is a nim-type game invented by David 
Gale, a mathematician and economist at the University of California at Berke- 
ley. Gale is the inventor of Bridg-it, a popular topological board game still on 
the market. What follows is based entirely on results provided by Gale. 

Chomp can be played with a supply of counters [see Figure 661 or with 0 ' s  or 
X's  on a sheet of paper. The counters are arranged in a rectangular formation. 
Two players take turns removing counters as follows. Any counter is selected. 
Imagine that this counter is inside the vertex of a right angle through the field, 
the base of the angle extending east below the counter's row and its other side - 

extending vertically north along the left side of the counter's column. All 
counters inside the right angle are removed. This constitutes a move. It is as 
though the field were a cracker and a right-angled bite were taken from it by 
jaws approaching the cracker from the northeast. 
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Figure 66 Chomp on a 5-by-6 field 

The object ofthe game is to force your opponent to chomp the poison counter 
at the lower left corner of the array [black counter]. The reverse form of Chomp 
-winning by taking this counter - is trivial because the first player can always 
win on his first move by swallowing the entire rectangle. 

What is known about this game? First, we dispose of two special cases for 
which winning strategies have been found. 

1. When the field is square, the first player wins by taking a square bite whose 
side is one less than that ofthe original squ<ue. This leaves one column and one 
row, with the poison piece at the vertex [see Figure 6 7, leftl. From now on the first 
player "symmetrizes." Whatever his oppclnent takes from either line, he takes 
equally from the other. Eventually the second player must take the poison piece. 

Figure 67 Winning first bites on square field, 2-by-n field and n-by-2 field 
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2. When the field is 2 by n, the first player can always win by taking the 
counter at top right [see Figure 67, middle and right]. Removing that counter 
leaves a pattern in which the bottom row has one more counter than the top row. 
From now on the first player always plays to restore this situation. One can 
easily see that it can always be done and that it ensures a win. The same strategy 
applies to fields of width 2,  except now the first player always makes sure that 
the left column has one more counter than the right column. 

With the exception of these two trivial cases, no general strategy for Chomp 
is known. There is, however, and this is what makes Chomp so interesting, a 
simple proof that the first player can always win. Like similar proofs that apply 
to Bridg-it, Hex, generalized ticktacktoe and many other games, the proof is 
nonconstructive in that it is of no use in finding a winning line of play. It only 
tells you that such a line exists. The proof hinges on taking the single counter at 
the upper right corner in the opening move. There are two possibilities: ( I )  It is 
a winning first move; (2) it is a losing first move. If it is a losing one, the second 
player can respond with a winning move. Put another way, he can take a bite 
that leaves a position that is a sure loss for the first player. But no matter how the 
second player bites, it leaves a position that the first player could have left if his 
first bite had been bigger. Therefore ifthe second player has a winning response 
to the opening move oftaking the counter at top right, the first player could have 
won by a different opening move that left exactly the same pattern. 

In short, either the first player can always win by taking the counter at top 
right, or he can always win by some other first move. 

"We normally think of nonconstructive proofs in mathematics as being 
proofs by contradiction," Gale writes. "Note that the above proof is not of that 
type. W e  did not start by assuming that the game was a loss for the first player 
and then obtain a contradiction. W e  showed directly that there was a winning 
strategy for the first player. The word 'not' was never used in the argument. Of 
course we used implicitly the fact that any game of this kind is a win for either 
the first or the second player, but even the proof of this fact can be given by a 
simple inductive argument that does not use any law of the excluded middle." 

This is essentially all that is known about Chomp except for some curious 
empirical results Gale obtained from a complete computer analysis of the 
3-by-n game for all n's equal to or less than 100. In every case it turned out that 
the winning first move is unique. Figure 68 shows the winning moves for 3-high 
fields of widths 2 through 12. Rotating and reflecting these patterns give 
winning moves on 3-wide fields of heights 2 through 12 because any m-by-n 
game is symmetrically the same as the n-by-m game. 

A winning first move on a 3-high field must be one or two rows deep. (A 
3-deep bite would leave a smaller rectangle and thus throw the win to the 
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Figure 68 Winning first bites on 3-by-n fields 

second player.) Roughly 58 percent of the winning first moves are two rows 
deep, and 42 percent are one row deep. Note that the 1-row moves either stay 
the same or increase in width as n increases, and the same is true of the 2-row 
moves. A partial analysis of all 3-high fields with widths less than 171 showed 
that the sole exception to this rule occurs when n is 88. The winning first move 
on the 3-by-88 rectangle is 2 by 36, which is one unit less wide than the winning 
2-by-37 move on the 3-by-87 field. "Phenomeila like this," Gale writes, "lead 
one to believe that a simple formula for the winning strategy might be quite hard 
to come by." 

There are two outstanding unproved conjectures: 

1. There is only one winning first move on all fields. 

2. Taking the counter at the top right corner always loses except on 2-by-n (or 
n-by-2) fields. 

The second conjecture has been established only for fields with widths or 
heights of 3. Readers are invited to discover the unique winning openings on 
4-by-5 and 4-by-6 rectangles. 

ANSWERS 

Sim has only one basic position (variants are topologically identical) that allows 
the game to go 14 moves without a monochrome triangle [see Figure 69, top]. 
The  4-by-5 and 4-by-6 fields for Chomp are won by the unique first moves 
shown at the bottom of Figure 69. 
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Figure 69 Sim game that ends on move 15 and winning chomps 

David Gale, who invented Chomp, has considered the game on infinite 
rectangular arrays. Readers may enjoy proving (on the basis of the given 
theorems) that the first player wins on n-by-infinity fields (provided that n is not 
2) and on infinity-by-infinity squares but loses on 2-by-infinity arrays. 

ADDENDUM 

The three games prompted a variety of interesting letters. Many readers felt that 
Race Track rules should not allow one car to win if another car on the same 
move could also cross the finish line. They suggested giving the win to the car 
farthest from the finish line at the end of the move. Joe Crowther was the first of 
many readers who proposed drawing one or two patches on the roadway to 
represent oil slicks. Cars are required to move at a constant speed and direction 
when passing wholly or partly through each patch. J. P. Schell, in addition to oil 
slicks, proposed adding upgrades and downgrades to force cars to speed up or 
slow down, as well as stationing pretty girls along the track to distract drivers. 
Others suggested adding pit stops here and there and requiring a driver to lose 
one move by coming to zero velocity within any one pit of his choice. Some 
readers thought it would simplify the game if the finish line were always drawn 
along one of the grid lines. 

David Pope suggested a fast-acceleration move. Whenever a car slows to a 
full stop, it can, on the next move, go any desired distance in either or both ofthe 
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two directions. Tom Gordon, who welcomed the game as a teaching device for 
his high school physics students, added a power-braking option that allows a 
car to reduce both coordinates by two units, provided the move continues the 
preceding move in a straight line. 

C. R. S. Singleton described two novel variants of the game: (1) Instead of a 
track, numbered gates are marked on the graph. Cars must pass through the 
gates in numerical order. (2) A series of numbered checkpoints are substituted 
for the track. Cars must visit each checkpoint by ending a move on that point. 

Michael D. Greenberg and his friends at the Westinghouse Aerospace 
Division in Baltimore adopted two rules to offset the advantage of a first move: 
(1) Slant the starting line (as in actual racing) and allow the second player to 
choose between the two starting points. (2) Allow cars to occupy the same point 
at the same time. They also preferred to draw the track along grid lines to avoid 
arguments over whether a point was on the track or inside it. Two British 
readers, Giles Vaughan-Williams and John Kinory, devised rules allowing cars 
to brake and skid when rounding a sharp curve at high speed. 

I have been unable to determine the origin of Race Track. A car-race game 
very similar to it appeared under the name of Le Zip in a French book by Pierre 
Berloquin, Le Livre des Jeux, published about 1971. It is reprinted in Berlo- 
quin's book 100Jeux de Table (Paris, 1976). A version of Race Track appeared 
as game 13 in the Hewlett-Packard Games Pac 1 book (1976) for use with the 
company's HP-67 and HP-97 calculators. 

The game of Sim on a complete graph for five points is now known to be a 
draw ifplayed rationally. (All draws are topologically equivalent to a pentagram 
of one color inscribed in a pentagon of the other color. Think of the points as 
balls connected by elastic strings. If one pattern can be changed to another, they 
are considered identical.) A complete game tree for five-point Sim was hand- 
constructed by Eugene A. Herman of Grinnell College and Leslie E. Shader of 
the University ofWyoming. Jesse W. Croach, Jr., of West Grove, Pa., was able 
to draw the tree by extracting information from his computer printout for 
six-point Sim. The  first computer prograrn written specifically for five-point 
Sim was by Ashok K. Chandra of the Artificial Intelligence Laboratory at 
Stanford University. It produced a complete tree in a few seconds. The  results 
were confirmed by Michael Beeler's program. 

Both Chandra and Herman noticed that a good strategy in five-point Sim is 
to form a closed circuit of four edges of your color, with a fifth edge attached to 
any of the four dots. This guarantees your win. Herman noticed that as soon as a 
dot has three edges of the same color attached to it a draw becomes impossible. 
Variations and generalizations of Sim came from several readers. 



Figure 70 Chomp as a divisor game 

The most surprising letter (to put it mildly) was from G. J. Westerink, of 
Veenendaal in the Netherlands, disclosing that the game of Chomp is isomor- 
phic with a number game invented by the late Fred Schuh, a mathematician at 
Delft Technical College. It is one of the prettiest isomorphisms I have ever 
encountered in recreational mathematics. The game does not appear in 
Schuh's Master Book of Mathematical Puzzles and Recreations (Dover, 1968), 
but he explained it in a 195 1 paper cited in the bibliography. Two players agree 
on any positive integer, N. A list is made of all the divisors (including N and 1); 
then players take turns crossing out a divisor and all its divisors. The person 
forced to take N loses. Planar Chomp corresponds to this game when N has 
exactly two prime divisors, solid Chomp to the game when N has three prime 
divisors, four-dimensional Chomp when N has four prime divisors and so on. 

This is best made clear with an example. Consider N = 432, a number that 
prime-factors to z4 X 33. Draw a rectangular Chomp field with sides of5 and 4 
(the exponents raised by I ) ,  and label the four rows with powers of 3 and the 
five columns with powers of 2. Counters have values that are products of their 
row and column [see Figure 701. The equivalence of Chomp to the divisor game 
is now readily apparent. Moreover, any integer whose prime factors have the 
formula m4 X n3 will correspond to the same Chomp field. Incredibly, most of 
the theorems discovered by David Gale for his game of Chomp (including the 
beautiful proof of first-player win) had been discovered by Schuh in arithmeti- 
cal form! 

Schuh offered to play readers by correspondence, using N = 720. Because 
the factors of 720 are z4 X 32 X 5',  it corresponds to Chomp on a 5-by-3-by-2 
field. This proved to have two winning first moves (counters 36 and 48 when 
numbered according to the system explained). Like Gale, Schuh was unable to 
find a strategy for first-player win, a way to determine a winning first move short 
of constructing the game tree or a two-prime (planar Chomp) game that had 
more than one winning first move. 
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The first counterexample to the conjecture that all planar games have unique 
winning first moves was found by Ken Thompson of Bell Laboratories. His 
computer program produced many examples of fields with two first-move wins, 
the smallest being 8 by 10. The winning rnoves leave either five columns of 8 
and five of 4, or eight columns of 8 and two of 3. This has been confirmed by 
Beeler. In 1981 Gil Golani, a student of Z. Wakeman, a mathematician at 
Ben-Gurion University of the Negev, Israel, wrote a PASCAL program that 
found a violation of the conjecture on an even smaller board. The two winning 
first moves for a 6-by-13 rectangle are to take two columns of three lines or five 
columns of two lines. 

Cubical Chomp is an interesting challenge. It is easily seen that the winning 
first move on the order-2 cube is to take the order-1 cube from the corner. 
Westerink's analysis ofthe order-3 cube reveals that the winning first move is to 
take an order-2 cube from the corner. I previously gave Gale's simple proof that 
the winning move for any square of order n :is to take a square of order n - 1 .  Do 
winning first moves on all cubes of order n consist in taking a cube of order 
n - I?  If so, does this generalize to n-space cubes? 

David Gale reported that in three-dimensional chomp a 2-by-m-by-n game is 
a trivial win for the first player even when m or n or both are infinite. The first 
player simply leaves a 2-by-infinity field-.a loss for the opponent. The 3 by 3 
by 3 and the 3 by 3 by infinity apparently are still unsolved. 

In a later letter Gale reported the followir~g result. Suppose the initial field has 
any finite number of counters in each row but an infinite number in the bottom 
row. Regardless of the pattern, the game is a win for the first player. Moreover, 
the winning first move is unique. Gale sent an ingenious nonconstructive proof 
by contradiction. As in his previous proof of first-player win in standard 
Chomp, it does not provide what the winning first move is. 

Alan Barnert, a Manhattan ophthalmologist and friend, made a right-angled 
scoop for playing Chomp with a field of raisins. Players ate the raisins scooped 
on each move until only the poison raisin remained. 

David Klarner, in "How to Be a Winner" (see the bibliography), explains 
how to draw a directed "state graph" that makes visually clear exactly how a 
first player wins a game of Chomp. Figure 71  shows such a graph for the 2-by-3 
game. O n  the left the actual positions after each move are shown. Arrows 
indicate possible transitions. O n  the right is a more abstract diagram of the 
same graph. Winning states are black. The first player's strategy is to make the 
initial black move at the top, then to always play to a winning (black) state on his 
next move. He is certain to reach the final winning state at the bottom. For 
larger fields, of course, such graphs quickly become too complex to draw. 
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Figure 71 A state graph for 2 X 3 chomp 
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Elevators 

Elevators, unlike cars, trains, planes, ships and other common modes of trans- 
portation, have been unduly neglected by recreational mathematicians. In this 
chapter we undertake to rectify the situation by considering four unusual 
elevator problems. The first three were provided by Donald E. Knuth, a 
computer scientist at Stanford University and author of a classic seven-volume 
work in progress titled The Art of Computer Programming. Before discussing two 
combinatorial problems that appear for the first time in his third volume, we 
consider a well-known probability paradox with a startling generalization that 
Knuth discovered a few years ago. 

George Gamow and Marvin Stern introduced the elevator paradox in the 
prologue to their little book Puzzle-Math (Viking, 1958). Gamow once h'ad an 
office on the second floor of a seven-story building in San Diego, and Stern had 
an office on the sixth floor. When Gamow wanted to go up to see Stern, he 
noticed that in about five cases out of six the first elevator to stop on his floor was 
going down. It seemed as if elevators were being manufactured on the roof and 
then sent down the shafts to be stored in the basement. For Stern the situation 
was the opposite. When he wanted to go down to see Gamow, about five times 
out of six the first elevator to arrive was on its way up. Were elevators being 
fabricated in the basement and then sent to the roof to be carried off by 
helicopters? 

The explanation, as Knuth pointed out later, requires a few idealizing as- 
sumptions. Suppose each elevator travels independently in continuous cycles 
from bottom floor to top and back again, moving with constant speed and with 
the same average waiting time on each floor. Thus at the time a button is pushed 
on any floor, we can assume that each elevator is at a random point in its cycle. 

For a single elevator, calculating the probability that it is on its way down 
when it stops on a given floor is quite easy. Stern, on the sixth floor, has five 
floors below and one above; therefore the probability is 516 that the elevator is 
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below him and will be moving up when it arrives. Gamow, on the second floor, 
has five floors above and one below; therefore the probability is 516 that the 
elevator is above him and will reach his floor on its way down. Gamow and 
Stern explained this in their book, but then they made a slip. If there is more 
than one elevator, they wrote, the probabilities "of course remain the same." 
The  slip is understandable because the statement seems so intuitively true. 
Apparently Knuth was the first to realize that it is not true at all! Indeed, as the 
number of elevators approaches infinity the probability that the first elevator to 
stop on any floor (except the top or bottom floors) is going up (or down) 
approaches exactly 1!2 -a rather unexpected result. Yet the probability (for, 
say, the second floor) remains 516 for every individual elevator, and all elevators 
are equally likely to be the next to arrive. 

The solution for two or more eievators is complicated by conditional proba- 
bilities. ,4s Knuth puts it: "The choice of which elevator is first to arrive on the 
second floor is partly contingent on whether it was above us or below, since an 
elevator that is below the second floor when we begin to wait is likely to arrive 
ahead of an elevator that is above (all other things being equal)." In his 1969 
paper [see the bibliography], Knuth analyzes Gamow's situation as follows: 
Consider the portion of an elevator's route that starts at the hurth floor, then 
goes down to the first floor and up to the second, a total of 4/12 = ?4 of the entire 
route. During the first half of this portion the elevator stops next at the second 
floor going down, and during the other half it will next stop going up. Therefore 
we may call it the unbiased portion, since it is not biased toward up or down. 

If there are n elevators, Knuth now distinguishes two cases: 

1. No elevator is in the unbiased portion. The probability of this is (213)", 
since it is 213 for each elevator. The next elevator to stop on the second flocr will 
be going down. 

2. At least one elevator is in the unbiased portion. The probability is 1 - 
(213)". W e  can ignore any elevator outside the unbiased portion, since one of 
those in the unbiased portion will necessarily reach the second floor first. In this 
case the elevator will be going down with probability 112. 

Combining these results gives a probability of (213)" + %(1 - (213)") = 

% + %(213)" that the first elevator to arrive on the second floor will be going 
down. If there are just two elevators running, in Gamow's seven-story building, 
the first elevator to stop at the second floor will be headed downward with 
probability % + 219 = 13118. This is slightly less than 516, so Gamow's 
chances of catching an up elevator have improved. If there are seven elevators, 
the probability of an elevator's going down would be 2,31514,374, which is not 
far from 112. 
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Knuth gives the general formula for any building by defining p as the 
distance from a given floor to the bottom di~rided by the distance between top 
and bottom floors. For Gamow p is 116; for Stern p is 516. The general formula 
for all values of p between O and 1 is 

The pair of vertical lines indicates the absolute value of the expression between 
them. The probability approaches 112 as n ,  the number of elevators, ap- 
proaches infinity. 

Our second elevator problem is from the third volume of Knuth's series, a 
book that deals entirely with computer techniques of sorting and searching for 
information. Like its two predecessors, it is comprehensive in scope, written in a 
clear, informal style (although at times it is necessarily terse and technical) and 
rich in humor, historical data and problems of great recreational interest. O n  
pages 11 through 7 2 ,  for instance, Knuth brilliantly summarizes almost every- 
thing known about the combinatorial properties of permutations, a topic that 
ties in with scores of classic puzzle problems. The book's exercises concern 
such entertaining topics as solitaire card games, shuffling, anagrams, snow- 
plows, the design of tennis tournaments (including Lewis Carroll's flawed 
efforts to find a design that does the best possible justice to the second-best 
player), rook problems, sorting puzzles, the unsolved weight-ranking problem, 
the Josephus problem, parking problems, Fibonacci numbers, the "tableaux" 
ofAlfred Young (which have a curious relevance to the eightfold way ofparticle 
theory) and a hundred other things that lead straight into recreational mathe- 
matics. 

Here we are concerned with pages 357 through 360, where Knuth regards 
the elevator as a model of one-tape computer sorting. A building has n floors, 
each holding exactly c people. There is a single elevator that carries at most b 
people. W e  assume that the building is full (contains cn people). Exactly c 
persons want to go to each floor: c to the first floor, c to the second floor and so 
on. Some people may already be on their desired floor, but it is more interesting 
to assume that all or most are misfits who want to be on another floor. 

The elevator always starts at the bottom. It moves up and down, loading and 
unloading passengers, until each person is where he wants to be. The elevator 
then returns to the first floor. A movement of the elevator from any floor to the 
next floor above or below will be called a unit trip. The problem is to find an 
algorithm that will sort all the people in a minimum number of unit trips. This 
operation is equivalent, of course, to minimizing the distance traveled or (as- 
suming a constant elevator speed) to minimizing the time required for the 
sorting. 
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As Knuth points out, the people correspond to records that are to be com- 
puter-sorted. The building is the tape, the floors are blocks on the tape and the 
elevator is the computer memory. A computer can do such things as duplicate 
records or chop them into parts to be stored temporarily in different blocks. It 
turns out, however, that a clever algorithm discovered by Richard M. Karp 
enables the elevator to do its job with peak efficiency without having to dupli- 
cate or partition any passenger. 

Let k be the number of the floor, uk the number of misfits on k and all lower 
floors who want to go higher than k,  and dk the number of misfits on k and all 
higher floors who want to go lower than k. It is not hard to see that uk = dk+ 
For example, suppose k equals 3. The theorem states that all people on Floors 3,  
2 and 1 who want to go above Floor 3 are equal in number to those on Floor 4 
and higher who want to go below Floor 4. (It is like the old wine-and-water 
problem. In a filled building the people who go up from a bottom portion of the 
building must be replaced by the same number of people in the top portion who 
want to go down.) Both u, (misfits on the tclp floor) and dl (misfits on the first 
floor) are, of course, zero, since no one wants to go above the top floor or below 
the first floor. 

Because the elevator holds at most b people, it must make at least 1 uk lb  1 
trips from Floor k to the next floor above, where 1 1 symbolizes the roundup 
function (the value is rounded up to the nearest integer). Similarly, the elevator 
must make at least 1 dk l b  1 trips from k down to the next floor below. Ifwe now 
calculate [ u k / b  1 and dklb  1 for each floor, the sum of all these integers will 
be the least number of trips that the elevator must make to sort everyone. 

Karp's algorithm achieves this minimum if uk is not zero for any floor except 
the top one and provided that the number of people each floor can hold is not 
less than the number the elevator can hold. The procedure calls for the assump- 
tion that the elevator is always in either the ui3 state or the DOWN state. It starts in 
the UP state and repeats the following algorithm until everyone is sorted: 

1. When the elevator is in the UP state, if anyone (in the elevator or on the floor 
where it has just stopped) wants to go up, fill the elevator with those of the 
highest destination, with all others remaining on the floor, then move the 
elevator up one floor. Otherwise, change to the DOWN state. 

2. When the elevator is in the DOWN state, fill it with those people ofthe lowest 
destination (who are on the elevator or on the current floor) and move the 
elevator down one floor. Then change the elevator to the UP state if there are no 
misfits on lower floors who want to go to the new current floor or higher. 

T o  see exactly how this operates, consider a five-floor problem [see Figure 721. 
Each floor holds three people. Each person is represented by a numeral that 
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Figure 72 Five-story-building elevator problem 

indicates the floor he wishes to go to. The empty elevator on the right can hold 
only two people. In this problem all the people in the building are misfits except 
for one 2-person who is already on Floor 2. In order to calculate the minimum 
distance the elevator must travel, first list the u k / b  and dk /b  values for each floor 
and then list these values rounded up [see illustration]. Note the positions of the 
zeros and the fact that the sequence of values for u k / b  is repeated in the d k / b  
column except that the sequence starts one floor higher. This repetition is true 
of all such charts and is a consequence of the theorem uk = dk+l .  The sum of 
the rounded-up values is 18, so we know the elevator must make at least 18 unit 
trips to accomplish the sorting and then return to the first floor. 

Figure 73 shows what happens when we apply Karp's algorithm. (The final 
step is not shown.) Observe that occasionally people are taken off the floor on 
which they wish to stay. In some cases the procedure will carry a person in one 
direction when he wants to go in the other. "This represents," Knuth writes, 
"their sacrifice to the common good." 

T o  get a feeling for the spooky way Karp's algorithm does its job, readers are 
urged to work out the problem of sorting 45 people in a nine-floor building with 
an elevator that holds three people [see Figure 741. First calculate the minimum 
number of unit steps needed. Then draw the building on a sheet of cardboard, 
fill the rooms with small cardboard counters bearing the proper numerals and 
see how easy it is to apply Karp's algorithm to achieve the minimum. Of course, 
you can make up endless similar tasks, altering the variables k, c and b as you 
please and shuffling the people any way you like in the building. 

If one or more floors have uk = O (that is, no one on that floor or below wants 
to go above that floor), yet some higher floor has uk > 0, the building becomes 
divided into disconnected regions. The minimum is achieved by handling each 
region separately according to Karp's algorithm and then piecing together the 
individual schedules. This procedure increases the number of unit trips by 
twice the number of floors that must be passed even though they have uk = 0. A 
little experimenting on buildings with one or more uk = 0 floors below the top 
one will make clear why that is so. It amounts to the fact that the elevator has to 
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? 

Figure 73 Richard M. Karp's algorithm 
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Figure 74 Nine-story building elevator problem 

make special trips upward to take care of all higher disconnected regions and 
then return to the bottom. 

Our third elevator problem, discussed on pages 374 through 376 in Knuth's 
third volume, is based on results obtained by Robert W. Floyd while he was 
working on efficient ways to rearrange records in a magnetic-disk file. This time 
instead of minimizing distance we want to minimize the number of stops 
required by the elevator to complete the sorting. Floyd was able to establish a 
nontrivial lower bound, but no general algorithm is known that achieves the 
best possible results, except of course a brute-force trial of all possible elevator 
schedules. 

Consider a building where the number of floors, the number of people to a 
floor and the elevator capacity are each six [see Figure 751. One of ~ n u t h ' s  
exercises is to sort the 36 people correctly by starting and ending the elevator on 
the first floor and to do it in no more than 12 stops. I shall give Floyd's solution 
in the answer section. 

Floyd's method of computing the lower bound is too complicated to explain 
here, but for this problem it gives 10 stops. Even in this simple case it is not 

Figure 75 Robert W. Floyd's elevator problem 



Figure 76 A Japanese elevator problem 

known whether there is a solution in 10 or 11 stops. The initial position is not, of 
course, considered a "stop," but the final move to the first floor is. 

Our final problem is from Kobon Fujimura's latest Japanese puzzle book, 
Dialogue about Puzzles (Tokyo, 1971; there is no English translation), which he 
coauthored with Michio Matsuda. Chapter :i is devoted to an elevator problem 
that is a cleverly disguised form of a well-known problem in coding theory. In a 
building of k floors there are n elevators. Each stops on the top and bottom floors 
and on exactly m floors in between (always stopping on the same m floors). W e  
wish to determine the minimum number ofelevators that will enable a person to 
go from any floor to any other without changing elevators. For example, sup- 
pose a building has eight floors and each elevator stops on top and bottom floors 
and three floors in between. One schedule for a minimum of six elevators that 
makes it possible for a person to go directly from any floor to any other floor is 
shown in Figure 76. - 

As an introduction to this class of problerr~s, readers are asked to answer the 
following question. Each elevator in a 10-floor building stops on top and bottom 
floors and four floors in between. What is the minimum number of elevators 
that will enable a person to ride from any floor to any other without changing 
elevators? 

ANSWERS 

Richard Karp's elevator algorithm requires a. minimum of 72 unit trips to sort 
the 45 people in the nine-floor building. The solution to the second elevator 



Figure 77 An answer to the elevator problem 

problem is given as the answer to Exercise 16 in section 5.4.9 of Donald E. 
Knuth's The A r t  of Computer Programming: Vol. 3, Sorting and  Searching. The  
best solution known requires 12 stops as follows: 

The solution to Kobon Fujimura's elevator problem, a disguised version of 
an old combinatorial problem of block design, is shown in Figure 77. 
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ADDENDUM 

Robert Floyd's elevator problem was solved i n  11 steps by such a large number 
of readers that listing names is impossible. Most solvers proved 11 to be 
minimal. 

A sample 11-move solution (it is not unique) is 23456 to Floor 2,33445 to 3, 
444556 to 4,255566 to 5,122666 to 2,566666 to 6,123455 to 5,123344 to 4, 
112333 to 3, 11122 to 2, 11111 to 1. 

Solomon W. Golomb was the first to inform me (by telephone) of an 11-step 
solution. Later he sent a 14-page typescript on the general problem when floors, 
number of people per floor and elevator capacity all equal k. As he (and others) 
proved, 2k - 2 steps (minimal even with uinlimited elevator capacity) can be 
achieved only if k is less than 5. For k greater than 4,2k - 1 is the lower bound. 
Floyd's lower bound shows that 2k - 1 is impossible if k is 14 or greater. 

Allen J. Schwenk wrote to explain how Kobon's problem could be solved by 
translating it into graph theory. The problem is represented by a complete 
graph of k points, where k is the number of floors between top and bottom 
floors. An elevator that stops at m of these floors specifies a subgraph. Schwenk 
showed that a lower bound for the minimurn number of elevators that solve a 
problem of this kind is given by the formula 

Unfortunately, the lower bound is not always obtainable. For example, ifk = 7 
(nine floors altogether) and m = 4, the formula gives 4 as the lower bound, but 
actually five elevators are necessary. It seems likely, as pointed out in the 
bibliography's 1975 reference (]ournu1 of Recreational Mathematics), the num- 
ber of elevators is either given by the formula, or one more elevator is required. 

"The Gamow-Stern Elevator Problem." Donald E. Knuth inlournal ofRecreationa1 
Mathematics, Vol. 2, 1969. pages 131 - 137. 

The Art of Computer Programming: Vol. 3, Sorting and Searching. Donald E. Knuth. 
Addison-Wesley. 1973. 

"An Elevator Problem." Kobon Fujimura inlournal ofRecreationa1 Mathematics, Vol. 
8, 1975, pages 54-56. 
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Crossing Numbers 

Modern graph theory is raising many curious questions that appear to be 
simple but turn out to be extraordinarily complex. An entertaining class of such 
problems, some the basis of classic puzzles, are those that have to do with 
"crossing numbers." As Paul Erdijs and Richard K. Guy wrote in "Crossing 
Number Problems" (see the bibliography), "Almost all questions that one can 
ask about crossing numbers remain unsolved." 

Before explaining what a crossing number is, a few fundamental terms must 
be defined. A graph is a figure consisting of points and lines connecting some of 
the points. The points are called nodes (or vertices), and the lines are called 
edges (or arcs). Only the graph's topological structure is significant. Think of 
the nodes as little spheres joined by elastic strings. Two graphs may look quite 
different, but if they represent two ways of placing the same ball-and-string 
model on a surface, they are considered identical. 

Where two edges intersect at a point other than their nodes, the point in 
common is called a crossing. A graph can always be drawn so that no edge 
crosses itself or crosses an edge joined to one of its nodes, and so that no more 
than two edges go through any one crossing. Such a drawing is called a "good" 
drawing. Put another way, a good drawing is one in which each crossing 
involves two lines that join a distinct set of four points. When a good drawing is 
designed so that the number of crossings is as small as possible, the minimum 
number is called the crossing number of that graph. 

T o  make this clearer, consider what is called the complete graph for n points. 
This is a graph on which every pair of nodes are joined by one edge. It is obvious 
that the crossing number for complete graphs of one, two and three points is 0, 
and it takes only a moment of pencil doodling to find that it is also O for four 
points. graph with a crossing number of 0 is called a planar graph. - - 

The simplest nonplanar graph is the complete graph for five points. It has a 
crossing number of 1. This means that, try as you will, you cannot join all pairs 
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Figure 78 Proof that the complete five-point graph has a crossing number of 1 

of the five nodes without producing at least one crossing. This can be proved 
informally as follows. All forms of the complete graph for four points consist of 
three mutually contiguous regions [see Figure 781. A fifth point (shown as a 
circle) must go either inside one of the three regions or outside the entire figure. 
When the fifth point is inside, you cannot connect it to the node outside its 
region without crossing an edge. When the fifth point is outside, you cannot get 
from it to the interior node without crossing an edge. The crossing is indicated 
by the arrow. (For a different proof see page 94 of Graphs and Their Uses, 
Random House, 1963, by Oystein Ore, an excellent introduction to graph 
theory.) 

The  fact that the complete graph for five points is not planar establishes that a 
map of five regions cannot be drawn so that every pair of regions share a 
boundary. If such a map could be drawn, we could put a point inside each 
region, connect each pair of points by an edge that crosses the border shared by 
the two regions containing those points and do this without creating crossings. 
In other words, we would be able to draw a complete graph of five points with a 
crossing number of 0.  As we have seen, that is impossible. Unfortunately this 
does not prove the famous 4-color map theorem. 

It is true that for any map, say of many hundreds of regions, any specified set 
of five regions can always be colored with four colors without having two 
adjacent regions ofthe same color. Until 1976 it was conceivable, however, that - 

five colors might still be required for the entire map. If you tried to color it with 
four, there could always be a place where you ran into trouble. If you eliminated 
the trouble at that place by recoloring regions, the trouble would pop up at some 
other spot. That five regions cannot mutually touch was established long ago, 
but the 4-color map theorem, an altogether different matter, was not solved 
until 1976. 

One might suppose it would be simple to write a formula for the crossing 
number of a complete graph of n points, but this is unsolved. In 1960, writing in 
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Nabla (the Bulletin of the Malayan Mathematical Society), Guy conjectured 
that the formula is 

The brackets indicate that the number inside is rounded down to the nearest 
integer. It has been proved that the crossing number cannot exceed the value of 
this expression, but the formula has been verified as exact only for n through 10. 

If we divide the number of points into odd and even, we can express Guy's 
formula in more conventional ways. For n even the formula is 

For n odd it is 

Complete graphs for six and seven points, with crossing numbers of 3 and 9 
respectively, are shown in the bottom of Figure 79. The graph for six points 
(like that for five) is unique, but there are six variations ofthe seven-point graph. 
They are dissimilar in the sense that, ifyou regard the graph as being embedded 
in the plane, you cannot change one to the other (in terms ofour ball-and-string 
model) without lifting a ball off the plane to carry it over an edge or a node. 

Figure 79 Six-~oint  graph (left) and seven-point graph (right) 
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Complete graphs of eight, nine and ten points are known to have crossing 
numbers of 18, 36 and 60 respectively, as given by Guy's elegant formula. The 
eight-point graph has three variants. The number jumps to 41 1 for the nine- 
point graph, then goes down to 37 for the 10-point graph. Note the curious fact 
that when n is odd the number of variants is much larger than when n is even, a 
feature that continues for all higher n's. - 

An interesting side question occurred to Guy. Can a complete graph with the 
minimum number of crossing points always be drawn by restricting the edges 
to straight-line segments? He found that the answer is yes for seven or fewer 
points and also for nine points, but for eight points the rectilinear crossing 
number (as it is called when all edges are straight) is 19, not 18. Little is known 
about rectilinear crossing numbers for complete graphs of more than nine 
points, although it has been proved that for 10 or more points the rectilinear 
crossing number is greater than the crossing number. It has been conjectured 
that the 10-point graph has a rectilinear crossing number of 62. 

Here is a pleasant little problem for which a very simple polynomial formula 
is readily available: What is the maximum number of edges that can be drawn, 
as part of a complete graph for n points, without a crossing? (Example: For the 
six-point graph the maximum is 12.) 

A formula for the crossing number of complete bigraphs (or bipartite graphs) 
of m and n points also has not yet been discovered. Such a graph has each point 
in set m joined to each point in set n, but no edges connect an m point to an m 
point or an n point to an n point. Complete bigraphs with points of 1,1, 1,2,2,2 
and 2,3 have crossing numbers of 0. The 3,3 graph, known as the Thomsen 
graph, has a crossing number of 1. 

Students of recreational mathematics will at once recognize the 3,3 case as 
the old "utilities puzzle," so called because Henry Ernest Dudeney presented it 
with the following story line. There are three houses and three utility sources: 
water, gas and electricity. The puzzle is to draw lines connecting each house to 
each utility without any crossings. It cannot be done because the crossing 
number of this graph is 1 [see Figure 801. 

The best conjecture (made by K. Zarankiewicz in 1954) for the crossing- 
number formula of a complete bigraph is 

As with the previous formula, the brackets indicate rounding down, and it 
has been demonstrated by Zarankiewicz that the crossing number is equal to or 
less than the number given by the formula. The formula's accuracy has been 
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Figure 80 The utilities problem 

established (by Daniel J. Kleitman) only for values of m and n through 6. The 
crossing number for the 7,7 bigraph is not known. Using Zarankiewicz's 
formula and other arguments, Kleitman proved that this number must be 77, 
79 or 81. He ends his 1970 paper with the one-word sentence "Which?" 

A rectilinear graph, from the article by Guy and Erdos mentioned earlier, for 
the 7,7 case with 81 crossings is shown in Figure 81. So far this construction 
method (in which each set of points is arranged in a straight line, and the two 
lines are perpendicular) has produced rectilinear graphs that give the lowest 
crossing numbers known. No one has yet proved that it always does so, al- 
though Kleitman told me he believes it does. 

As in the case of complete graphs, it is not hard to find a simple polynomial 
expression for the maximum number of edges that can be drawn, as part of a 
complete bigraph of m,n points, without a crossing. (Example: For the 3,3 
graph the maximum is 8.) Can the reader give the formula? 

Some recent work has been done on the crossing numbers of other types of 
graphs, notably graphs on the plane for the skeletons of n-dimensional cubes, 



and complete graphs and complete bigraphs on such surfaces as the torus, the
Klein bottle and the projective plane. (Graphs drawn on a sphere are the same
as those drawn on a plane, because the sphere can be punctured at any spot not
on the graph and flattened to a plane without altering the graph’s topological
structure.)

Richard K. Guy, Tom Jenkyns and Jonathan Schaer, in their paper “The
Toroidal Crossing Number of the Complete Graph,” prove that the toroidal cross-
ing numbers for seven, eight, nine and ten points are 0, 4, 9 and 23 respectively.
(The zero crossing number for seven points on the torus corresponds to the fact
that a maximum of seven regions, mutually bordering, can be drawn on the torus.)
For 11 points, 42 is strongly believed to be the toroidal crossing number. The best
results known for 12, 13, 14, 15 and 16 points are 70, 105, 154, 226 and 326
respectively. The paper gives upper and lower bounds for n greater than 10.

Guy and Jenkyns, writing on toroidal crossing numbers for complete bi-
graphs, give upper and lower bounds for sufficiently large m and n. The toroidal
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Figure 81 The complete 7,7 bipartite rectilinear graph (81 crossings)
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Figure 82 The four-schoolhouses problem 

crossing number for a 3,3 graph is 0, which means that the utilities graph is 
solvable on the torus. Indeed, the authors prove that it can be solved on the torus 
even if there are four houses and four utilities. The toroidal crossing number is 
also 0 for graphs of 3 ,4 ,3 ,5  and 3,6.  Complete bigraphs of4 ,5 ,5 ,5 ,5 ,6  and 6,6 
have toroidal crossing numbers of 2,  5 ,  8 and 12 respectively. An interesting 
classroom project is to find ways of drawing these graphs, and those in the 
preceding paragraph, on the surface of a large model of a doughnut. 

Old puzzle books contain many problems based on crossing numbers. Here 
is an easy problem from one of Dudeney's books. Four boys lived in four houses 
and went to four schools. Show how the boy in house A can walk to school A, 
boy B to school B, boy C to school C and boy D to school D without any of their 
paths crossing one another or going outside the large square boundary [see 
Figure 821. Of course, there must be no tricks such as running a path through a 
house or a school. 

ANSWERS 

The formula for the maximum number of noncrossing edges that can be drawn 
as part of a complete graph for n points is 3(n  - 2) for n greater than 2. The 
corresponding formula for complete bigraphs of m,n points is 2 ( m  + n - 2 ) .  

"Odd," a friend once remarked of the bigraph formula, "that the number is 
always even." Proofs of both cases are not difficult. These formulas for non- 
crossing edges are of no help in finding formulas for crossing numbers because 
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Figure 83 Solution to the schoolhouses problem 

there is no known way to predict the minimum number of crossings produced 
by the edges not drawn. 

One solution to the four-schoolhouses puzzle, in which four boys have to 
reach their respective schools without any oftheir paths crossing one another or 
going outside the boundary, is shown in Figure 83. 

ADDENDUM 

The search for formulas for minimal crossing numbers was initiated in 1944 by 
the Hungarian mathematician Paul TurAn. He was working in a war labor 
camp, at a brick factory outside Budapest. Here is how he told the story in "A 
Note of Welcome" in the first issue of Thelournal of Graph Theory, Vol. 1, 1977, 
pages 7 - 9: 

There were some kilns where the bricks were made and some open 
storage yards where the bricks were stored. All the kilns were connected by 
rail with all the storage yards. The  bricks were carried on smal! wheeled 
trucks to the storage yards. All we had to do was to put the bricks on the 
trucks at the kilns, push the trucks to the storage yards, and unload them 
there. W e  had a reasonable piece rate for the trucks, and the work itselfwas 
not difficult; the trouble was only at the crossings. The trucks generally 
jumped the rails there, and the bricks fell out of them; in short this caused a 
lot of trouble and loss of time which was rather precious to all of us (for 
reasons not to be discussed here). W e  were all sweating and cursing at such 
occasions, I too; but nolens-volens the idea occurred to me that this loss of 



time could have been minimized if the number of crossings of the rails had
been minimized. But what is the minimum number of crossings? I realized after
several days that the actual situation could have been improved, but the exact
solution of the general problem with m kilns and n storage yards seemed to be
very difficult and again I postponed my study of it to times when my fears for
my family would end. But the problem occurred to me again not earlier than
1952, at my first visit to Poland where I met Zarankiewicz. I mentioned to him
my “brick-factory”-problem.

Turán goes on to tell how Zarankiewicz believed he had solved the bigraph
crossing-number problem, but a gap was found in his proof, and the problem
became the notorious unsolved question that it remains today.

Roger Baust pointed out in a letter that when the maximum number of non-
crossing lines is drawn for a set of points, the graph will consist entirely of
regions that are each surrounded by just three points, including the regions out-
side the graph.

Donald Miller sent a generalization of the bigraph (bipartite) problem I asked
readers to solve. Instead of two sets of points, consider the “multipartite graph
consisting of k sets of points, where k can take any integer value. No points with-
in a set may be joined, but we wish to connect as many points as possible, with-
out any lines crossing, that belong to different sets. The maximum number of
such noncrossing lines is 2(a + b + c + d +…) + k – 6, where a, b, c,… are the
numbers of points in each set. Thus, for three sets the formula is 2(a + b + c) – 3.
For four sets it is 2(a + b + c + d) – 2. Note that if a complete graph of n points
is viewed as a special case of k sets, each consisting of just one point, the formu-
la reduces to 3(n – 2) as previously observed.

The most important practical application of crossing-number theory is in the
designing of printed circuits and microchips, where it is desirable to have as few
crossings of lines as possible. A more whimsical application is to the spelling of
words and phrases. See “Ensnaring the Elusive Eodermdrome,” by G. Bloom,
J. W. Kennedy and P. J. Wexler, and “Dictionary of Eodermdromes” by A. Ross
Eckler, both in Word Ways (a quarterly journal devoted to word play), Vol. 13,
1980. For example, if the 15 different letters of supercalifragilisticexpialidocious are
attached to the points of a 15-point graph with no crossings, the word can be
spelled by tracing a continuous path from point to point. Eodermdromes are
words that cannot be spelled in this way on planar graphs. The challenge is to find
graphs on which they can be spelled with as few crossings as possible.

D. Singer, in an unpublished paper, proved that the rectilinear crossing number
for the complete graph of 10 points must be at least 61, and he constructed such a
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Figure 84 A complete rectilinear graph for 10 points, proving its crossing number 
can be as low as 62. Is it 61? 

graph with 62 crossings [see Figure 841. Guy has pointed out (personal commu- 
nication) that by examining the 41 1 known varieties ofthe complete graph for 9 
points it should not be difficult to pin the number down to either 61 or 62, but at 
this writing it has not been done. 

Guy called my attention to two very simple ways of proving that the crossing 
number is I for both the complete graph of five points and the 3,3 bigraph. Both 
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are reductio ad absurdurn proofs based on Euler's famous formula for maps 
drawn on a plane or sphere. The  sphere case is the easiest to explain. If a map is 
drawn on a sphere, the regions, lines and points are related by the formula 
R = L + 2 - P, where R stands for regions, L for lines and P for points. 

Assume that five points can be joined to make a complete graph with no 
crossings. By Euler's formula there will be 10 + 2 - 5 = 7 regions. View each 
line as a boundary with two "sides," one belonging to each of the two regions 
separated by the line. There will be 2 X 10 = 20 sides. But if there are seven 
regions, each region will have three sides, making a total of 21. Contradiction! A 
complete graph for five points, with no crossings, is impossible, and we know 
such a graph can be constructed with one crossing. 

The  proof for the 3,3 bigraph is similar. Euler's formula shows there are 
9 + 2 - 6 = 5 regions, assuming the map has no crossings. In this case each 
region has four "sides," or 4 X 5 = 20 sides in all. But twice the number of 
lines is 2 X 9 = 18. Again there is a contradiction, proving that the 3,3 bigraph 
without a crossing is impossible, and again such a graph can be exhibited with 
one crossing. 

In 1983 Michael Garey and David Johnson, at Bell Laboratories, proved that 
the problem of calculating the crossing number of a graph (their proof can be 
extended to cover rectilinear crossing numbers) belongs to a class of problems 
known as NP-complete. As the number of points of a complete graph increases, 
the task of calculating the graph's crossing number quickly goes outside the 
bounds of reasonable computing time. This means there is probably no efficient 
algorithm that will design microchips or printed circuits, with a large number 
of impulse-carrying lines, so that the crossings are reduced to the absolute 
minimum. 
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Point Sets on the Svhere 

Two unusual problems involving the surface of a sphere, which only recently 
have been partly solved, provide an entertaining introduction to some elemen- 
tary topological properties of point sets. The ingenious partial solutions are not 
hard to understand. It would, however, be hard to imagine two problems in 
combinatorial point-set geometry more remote from foreseeable practical ap- 
plications unless one thinks of recreational mathematics (with its two virtues: 
amusement and instruction) as a branch of applied mathematics. 

The first problem was raised by the Polish mathematician J.  G. Mikusiriski. 
(It is Problem 84 in The New Scottish Book, a collection of unsolved problems 
edited by H. Fast and S. Swierczkowski, published in Warsaw in 1958.) Is it 
possible, Mikusiriski asked, to completely cover the surface of a sphere with 
congruent, nonoverlapping arcs of great circles? The word "congruent" must 
be carefully defined. As it is used here, it means more than equality of length 
and curvature. Two great-circle arcs of the same length may differ topologically 
with respect to their end points. There are three possibilities: An arc is "closed" 
if it contains both end points, "open" if it excludes both end points and 
"half-open'' if it contains one end point but not the other. Two great-circle arcs 
are congruent when they are the same length and have the same topological 
properties. 

In a 1964 paper John Horton Conway and Hallard T. Croft, both at the 
University of Cambridge, proved that the sphere could be covered with con- 
gruent arcs of the half-open type and could not be covered with congruent arcs 
of the open type. Whether or not it can be covered with congruent closed arcs 
remains unanswered. 

Before explaining these results, the authors first solve the analogous problem 
of covering the Euclidean plane with congruent line segments ofthe three types. 
If all the segments are half-open, the answer is obviously yes. Divide the plane 
into an infinity of horizontal lines. Each line is then filled with half-open 
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Figure 85 Plane with half-open line segments 
Line with closed segments 

segments placed head to tail [see Figure 85,  top]. In this illustration and subse- 
quent ones, a closed end is indicated by a dot. The head of each segment 
supplies the missing end point at the tail of the next segment. 

If the segments are closed, the answer is again yes, but a proof is less trivial. It 
is impossible to fill a line with closed segments even ifthey are allowed to vary in 
length. Figure 85, bottom, shows part of a line divided into closed segments. 
Because segments are not allowed to overlap, there is no way to join the 
segments without leaving points uncovered at the joints. Think of the line as the 
real-number line. Each dot (closed end of a segment) represents a real number. 
Between any two real numbers, however, there is an uncountable infinity of 
other real numbers. At every meeting spot of two closed ends an uncountable 
infinity of points remain uncovered. A meeting of two open ends fails to cover a 
single point between them, therefore open segments on a line leave a countable 
infinity of points uncovered. The  only way to catch all the points is to have at 
each joint an open end meet a closed end. 

Conway and Croft succeed in covering the Euclidean plane with congruent 
closed segments by first building a vertical pillar of segments, which goes north 
and south to infinity [see 1 in Figure 861. O n  each side they place horizontal 
pillars [2 and 31, one extending east to infinity, the other west to infinity. Each of 
these horizontal pillars is open at the finite end, so it joins a side of the vertical 
pillar without leaving any uncovered points in between. Slanted pillars [4, 5, 6 
and 71, open at their finite ends, are added. Eight more slanted pillars go into the 
gaps [only two, 8 and 9, are shown], then the new gaps are filled with 16 slanted 
pillars, then 32, and so on, all going to infinity and open at their finite ends. 
After an infinite number of such steps, every point on the plane will be covered 
by congruent, nonoverlapping closed segments. The plane cannot be covered 
with congruent open segments, but the proof is complicated, and readers who 
want it should refer to the paper by Conway and Croft, in the bibliography. 

The authors next turn to Mikusiriski's sphere problem. A covering of the 
sphere by congruent half-open arcs was found by Conway. Assume a unit 
radius for the sphere. W e  choose (for a reason that will soon be apparent) 
half-open arcs of a length that is an integral fraction equal to or less than 



one-fifth of a great circle. The first step is to cover the northern hemisphere, except
for the north pole and the equator, with such arcs. Let the arcs fan outward from
the pole, all with their open tails at the pole, thus leaving the pole uncovered [see
Figure 87]. The rest of the hemisphere is now divided into an infinite set of thinner
and thinner rings, each covered as shown with downward-pointing arcs. It is obvi-
ous that we can slant the arcs in these rings so that their slopes approach zero as
the rings approach the equator but do not include it. (Does the reader see why this
could not be done with arcs equal to one quarter of a great circle?)

The north pole is covered by the following trick. Select a chain of arcs from
the pole to the equator, each arc with its head at the tail of the next; then reverse
all these arcs so that they point the other way. The top arc covers the pole with
its closed end. The entire northern hemisphere is now covered by a cap that is
open along its base circle.

A similar procedure caps the southern hemisphere. The final step is to “put a
girdle round about the earth” (as Conway and Croft write, quoting Puck) to cover
the equator. The girdle is a closed chain of head-to-tail arcs. That is why
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Figure 86 Covering the plane with closed segments
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NORTH POLE 

Figure 87 Covering sphere with half-open congruent arcs 

the arcs must be integral fractions of a great circle. After the girdling the entire 
sphere is covered. 

For Croft's remarkable proof that the sphere cannot be covered with con- 
gruent open arcs, which is too technical to give here, the reader must consult the 
paper he wrote with Conway. Whether congruent closed arcs can cover the 
sphere appears to be a difficult question, as yet unsettled. The Conway-Croft 
paper extends the problem to n-dimensional spaces with some unexpected 
results. For example, three-dimensional space can be completely filled by the 
perimeters of nonoverlapping congruent circles. 

Our second problem, from Paul Erdos, is unpublished, although Erdos 
undoubtedly has mentioned it in one of his many lectures on i~nsolved problems 
in graph theory. W e  wish to color all points on the surface of a unit sphere so 
that no matter how we inscribe an equilateral triangle of side & (the largest 
such triangle that can be inscribed) the triangle will have each corner on a 
different color. What is the minimum number of required colors? 

It is easy to prove that six colors are sufficient by coloring the sphere as shown 
in Figure 88. The polar caps, both open along their boundaries, have parallel 
base circles whose diameters are h. The rest of the sphere is divided into four 
congruent regions, each closed along its northern, southern and eastern 



borders, as shown by the heavy black lines on the perimeter of the dark shaded
region; that is, these three borders belong to that colored region. A quick bit of
spherical trigonometry shows that points A and B are less than 120 degrees apart,
so they cannot be the vertexes of an inscribed equilateral triangle of . Each
of the six regions is, of course, a different color.

A clever modification of this coloring, by Ernst G. Straus, proves that five col-
ors also are sufficient. Straus’s coloring (here published for the first time) is given
in a forthcoming paper by Gustavus J. Simmons of the Sandia Corporation in
Albuquerque, N.M. The paper [see the bibliography; it was published in 1974] is
devoted mainly to Simmons’s proof that a 3-color solution to the problem is not
possible. Before explaining Simmons’s elegant argument, let us see how Straus
achieved his 5-coloring [see Figure 89]. The north polar region is covered by a cap
identical with the north polar cap of the 6-coloring and is also open along its cir-
cular base. The rest of the sphere is divided into four identical regions, each
closed along its northern and eastern borders, as indicated by the heavy black line
on the dark shaded region. One color is given to the cap and to the south pole.
Four other colors are assigned to the four quadrant regions.

I now give the proof of 3-color impossibility in Simmons’s words. Illustrations
for this proof, as well as for the 5- and 6-colorings, were supplied by Simmons.

“Assume that there is a 3-coloring of the unit sphere satisfying Erdös’
problem. Choose any great circle on this sphere and inscribe an equilateral

3
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Figure 88 A 6-coloring of a sphere



triangle of side in it. By hypothesis, the three vertexes are each a differ-
ent color. Clearly the circle of radius formed on the surface of the
sphere by rotating the equilateral triangle about the axis of symmetry through
any vertex must be 2-colored [see Figure 90, left].

“Furthermore, every pair of diametrically opposite points on this circle
must be of different colors since they are vertexes of an equilateral triangle
having the fixed vertex of the generating triangle as a third vertex. All circles
of radius on the unit sphere, which we shall refer to as base circles, have
these same properties.

“Choose an arbitrary great circle on the unit sphere and inscribe a Star of
David on it [see Figure 90, right]. Next rotate the equilateral triangles of the star
about the axis of symmetry through each vertex in turn to form the six base
circles [see Figure 91].

“By the symmetry of the construction, it is easy to see that each pair of
points connected by [dotted] lines are diametrically opposite each other in
one of the base circles and hence must be of different colors. Now, if A has
color 1 and B has color 2, then neither G nor H can have color 3. For if G
had color 3 (by assertions 1 and 2), J would have color 1 and C and D would
both have to have color 3, hence (by assertion 2) E would have color 1 and
F color 2. But then K would have to have color 1, which is impossible (by
assertion 3) since J also has color 1. On the other hand, if A and B both
have the same color 1, then G and H cannot have a different color 2. For if

3 2/

3 2/
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Figure 89 Ernst G. Straus’s 5-coloring of a sphere



Figure 90 (left) Inscribed and rotated equilateral triangle 
(right) Inscribed Star of David 

i 

Figure 91 Six base circles from Star of David 
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G had color 2, say, then C and D would both have to have color 2 also and 
hence E would be color 3. But thenlwould have to be either color 2 or 3 (by 
assertion I )  and at the same time would have to be color 1 (by assertion 2),  
which is impossible. 

"Therefore, by rotating the configuration about the AB axis, it follows 
that all the points of the equatorial great circle swept out by G and H are 
colored by the same color or two colors as A and B are. Hence every 
equilateral triangle inscribed in the equator has two vertexes of the same 
color. This contradicts the initial assumption and completes the proof that 
a 3-coloring is not possible." 

It still, however, leaves Erdos's problem not fully resolved. W e  know that five 
colors are sufficient, and at least four are necessary. How many colors are both 
necessary and sufficient? No one yet knows whether the answer is 4 or 5 .  

What about the analogous problem for the plane; that is, what minimum 
coloring of the plane ensures that every equilateral triangle of unit side will have 
its corners on different colors? Reflecting on the fact that any two corners of an 
equilateral triangle are the same distance apart, it seems intuitively clear to us 
that this is the same as asking for a minimum coloring ofthe plane so that every 
unit line segment has its end points on different colors. The intuition is correct. 
The  equivalence of the two problems follows from a beautiful theorem of Erdos 
and N. G. de Bruijn (1951). It states that a planar graph has a chromatic 
number k if, and only if, k is the chromatic number for all its finite subgraphs. 
(The chromatic number of a graph is the minimum number ofcolors needed for 
coloring its vertexes so that no two adjacent vertexes are the same color.) 

By the same reasoning the sphere problem discussed earlier is the same as 
asking for a minimum coloring of the unit sphere so that every inscribed line 
segment of length h has its ends on different colors. In graph-theory terms, 
What is the chromatic number of the graph on the sphere in which any two 
nodes are connected if, and only if, they are separated by an angle of 120 
degrees? 

The  planar problem can be expressed in graph-theory language as, What is 
the chromatic number ofthe infinite graph on the plane in which any two points 
are connected if, and only if, they are a unit distance apart? This question is also 
due to Erdos, and it too is unsolved. Indeed, the gap between upper and lower 
bounds is even wider. See Chapter 18 of my Wheels, Lije, and Other Mathemati- 
cal Amusements (W.  H. Freeman, 1983) for proofs that four colors are neces- 
sary, and seven sufficient. 

Here is an easy but delightful problem, of unknown origin, that readers may 
wish to solve. Simmons showed in 1971 [see the bibliography] that if the points 
of the plane are arbitrarily given a finite number of different colors, there will be 
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Figure 92 Solution to coloring problem 

an uncountable infinity of monochromatic equilateral triangles - that is, trian- 
gles with all corners the same color. Long before this was established, however, 
it was possible to prove a much weaker theorem by using only seven points. The 
problem is this: Using just seven points, show that if the points on the plane are 
divided arbitrarily into two differently colored sets, at least one set will contain 
the vertexes of a monochromatic equilateral triangle. 

ANSWERS 

Using no more than seven points, prove that if the points of the plane are 
arbitrarily colored by two colors (say red and black), at least one set will contain 
the vertexes of a monochromatic triangle. The proof is as follows. Consider any 
two red points. Call them 1 and 2 and add five more points in a triangular lattice 
pattern [see Figure 921. T o  avoid red equilateral triangles, 3 and 4 must be black. 
This in turn requires that 5 be red (otherwise triangle 3, 4, 5 is blue), which in 
turn requires that 6 be black (otherwise triangle 2 , 5 ,  6 is red). Point 7 must be 
red or black. If red, triangle 1, 5, 7 is red; if black, triangle 4, 6 ,  7 is black. 
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CHAPTER THIRTEEN 

Newcomb's Paradox 

A common opinion prevails that the juice has ages ago been pressed out of 
the free-will controversy, and that no new champion can do more than warm up 
stale arguments which every one has heard. This is a radical mistake. I know of 
no subject less worn out, or in which inventive genius has a better chance of 
breaking open new ground. 

One of the perennial problems of philosophy is how to explain (or explain 
away) the nature of free will. If the concept is explicated within a framework of 
determinism, the will ceases to be free in any commonly understood sense, and 
it is hard to see how fatalism can be avoided. Che sarh, sarh. Why work hard for 
a better future for yourself or for others if what you do must always be what you 
do do? And how can you blame anyone for anything if he could not have done 
otherwise? 

O n  the other hand, attempts to explicate will in a framework of indetermin- 
ism seem equally futile. If an action is not caused by the previous states of 
oneself and the world, it is hard to see how to keep the action from being 
haphazard. The notion that decisions are made by some kind of randomizer in 
the mind does not provide much support for what is meant by free will either. 

Philosophers have never agreed on how to avoid the horns of this dilemma. 
Even within a particular school there have been sharp disagreements. William 
James and John Dewey, America's two leading pragmatists, are a case in point. 
Although Dewey was a valiant defender of democratic freedoms, his metaphys- 
ics regarded human behavior as completely determined by what James called 
the total "push of the past." Free will for Dewey was as illusory as it is in the 
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psychology of B. F. Skinner. In contrast, James was a thoroughgoing indeter- 
minist. He believed that minds had the power to inject genuine novelty into 
history- that not even God himself could know the future except partially. 
"That," he wrote, "is what gives the palpitating reality to our moral life and 
makes it tingle . . . with so strange and elaborate an excitement." 

A third approach, pursued in depth by Immanuel Kant, accepts both sides of 
the controversy as being equally true but incommensurable ways of viewing 
human behavior. For Kant the situation is something like that pictured in one of 
Piet Hein's "grooks": 

A bit beyond perception's reach 
I sometimes believe I see 
That Life is two locked boxes, each 
Containing the other's key. 

Free will is neither fate nor chance. In some unfathomable way it partakes of 
both. Each is the key to the other. It is not a contradictory concept, like a square 
triangle, but a ~ a r a d o x  that our experience forces on us and whose resolution 
transcends human thought. That was how Niels Bohr saw it. He found the 
situation similar to his "principle of complementarityH in quantum mechanics. 
It is a viewpoint that Einstein, a Spinozist, found distasteful, but many other 
physicists, J. Robert Oppenheimer for one, found Bohr's viewpoint eriormously 
attractive. 

What has free will to do with mathematical games? The answer is that in 
recent decades philosophers of science have been wrestling with a variety of 
queer "prediction paradoxes" related to the problem of will. Some of them are 
best regarded as a game situation. One draws a payoff matrix and tries to 
determine a player's best strategy, only to find oneself trapped in a maze of 
bewildering ambiguities about time and causality. 

A marvelous example of such a paradox came to light in 1970 in the paper 
"Newcomb's Problem and Two Principles of Choice" by Robert Nozick, a 
philosopher at Harvard University. The paradox is so profound, so amusing, so 
mind-bending, with thinkers so evenly divided into warring camps, that it bids 
fair to produce a literature vaster than that dealing with the prediction paradox 
of the unexpected hanging. (See Chapter 1 of my Unexpected Hanging and Other 
Mathematical Diversions.) 

Newcomb's paradox is named after its originator, William A. Newcomb, a 
theoretical physicist at the University of California's Lawrence Livermore 
Laboratory. (His great-grandfather was the brother of Simon Newcomb, the 
astronomer.) Newcomb thought ofthe problem in 1960 while meditating on a 
famous paradox of game theory called the prisoner's dilemma. A few years later 



NEWCOMB'S PARADOX 157 

Newcomb's problem reached Nozick by way of their mutual friend Martin 
David Kruskal, a Princeton University mathematician. "It is not clear that I am 
entitled to present this paper," Nozick writes. "It is a beautiful problem. I wish 
it were mine." Although Nozick could not resolve it, he decided to write it up 
anyway. His paper appears in Essays in Honor of Carl G. Hempel, edited by 
Nicholas Rescher and published by Humanities Press in 1970. What follows is 
largely a paraphrase of Nozick's paper. 

Two closed boxes, B1 and B2, are on a table. B1 contains $1,000. B2 
contains either nothing or $1 million. You do not know which. You have an 
irrevocable choice between two actions: 

1. Take what is in both boxes 

2. Take only what is in B2 

At some time before the test a superior Being has made a prediction about 
what you will decide. It is not necessary to assume determinism. You only need 
be persuaded that the Being's predictions are "almost certainly" correct. If you 
like, you can think of the Being as God, but the paradox is just as strong if you 
regard the Being as a superior intelligence from another planet, or a supercom- 
puter capable of probing your brain and making highly accurate predictions 
about your decisions. If the Being expects you to choose both boxes, he has left 
B2 empty. If he expects you to take only B2, he has put $1 million in it. (If he 
expects you to randomize your choice by, say, flipping a coin, he has left B2 
empty.) In all cases B1 contains $1,000. You understand the situation fully, the 
Being knows you understand, you know that he knows and so on. 

What should you do? Clearly it is not to your advantage to flip a coin, so that 
you must decide on your own. The paradox lies in the disturbing fact that a 
strong argument can be made for either decision. Both arguments cannot be 
right. The problem is to explain why one is wrong. 

Let us look first at the argument for taking only B2. You believe the Being is 
an excellent predictor. If you take both boxes, the Being almost certainly will 
have anticipated your action and have left B2 empty. You will get only the 
$1,000 in B1. Contrariwise, if you take only B2, the Being, expecting that, 
almost certainly will have placed $1 million in it. Clearly it is to your advantage 
to take only B2. 

Convincing? Yes, but the Being made his prediction, say a week ago, and 
then left. Either he put the $1 million in B2, or he did not. "If the money is 
already there, it will stay there whatever you choose. It is not going to disappear. 
If it is not already there, it is not going to suddenly appear if you choose only 
what is in the second box." It is assumed that no "backward causality" is 
operating; that is, your present actions cannot influence what the Being did last 
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week. So why not take both boxes and get everything that is there? If B2 is filled, 
you get $1,001,000. If it is empty, you get at least $1,000. If you are so foolish as 
to take only B2, you know you cannot get more than $1 million, and there is 
even a slight possibility of getting nothing. Clearly it is to your advantage to take 
both boxes! 

"I have put this problem to a large number of people, both friends and 
students in class," writes Nozick. "To almost everyone it is perfectly clear and 
obvious what should be done. The difficulty is that these people seem to divide 
almost evenly on the problem, with large numbers thinking that the opposing 
half is just being silly. 

"Given two such compelling opposing arguments, it will not do to rest 
content with one's belief that one knows what to do. Nor will it do to just repeat 
one of the arguments, loudly and slowly. One must also disarm the opposing 
argument; explain away its force while showing it due respect." 

Nozick sharpens the "pull" of the two arguments as follows. Suppose the 
experiment had been done many times before. In every case the Being pre- 
dicted correctly. Those who took both boxes always got only $1,000; those who 
took only B2 got $1 million. You have no reason to suppose your case will be 
different. If a friend were observing the scene, it would be completely rational 
for him to bet, giving high odds, that if you take both boxes you will get only 
$1,000. Indeed, if there is a time delay after your choice of both boxes, you 
know it would be rational for you yourself to bet, offering high odds, that you 
will get only $1,000. Knowing this, would you not be a fool to take both boxes? 

Alas, the other argument makes you out to be just as big a fool if you do not. 
Assume that B1 is transparent. You see the $1,000 inside. You cannot see into 
B2, but the far side is transparent and your friend is sitting opposite. He knows 
whether the box is empty or contains $1 million. Although he says nothing, you 
realize that, whatever the state of B2 is, he wants you to take both boxes. He 
wants you to because, regardless of the state of B2, you are sure to come out 
ahead by $1,000. Why not take advantage ofthe fact that the Being played first 
and cannot alter his move? 

Nozick, an expert on decision theory, approaches the paradox by consider- 
ing analogous game situations in which, as here, there is a conflict between two 
respected principles of choice: the "expected-utility principle" and the "domi- 
nance principle." T o  see how the principles apply, consider the payoff matrix 
for Newcomb's game [see Figure 931. The argument for taking only B2 derives 
from the principle that you should choose so as to maximize the expected utility 
(value to you) of the outcome. Game theory calculates the expected utility of 
each action by multiplying each of its mutually exclusive outcomes by the 
probability of the outcome, given the action. W e  have assumed that the Being 
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Figure 93 Payoff matrix for Newcomb's paradox 

predicts with near certainty, but let us be conservative and make the probability 
a mere .9. The expected utility of taking both boxes is 

The  expected utility of taking only B2 is 

Guided by this principle, your best strategy is to take only the second box. 
The  dominance principle, however, is just as intuitively sound. Suppose the 

world divided into n different states. For each state k mutually exclusive actions 
are open to you. If in at least one state you are better off choosing a, and in all 
other states either a is the best choice or the choices are equal, then the 
dominance principle asserts that you should choose a. Look again at the payoff 
matrix. The states are the outcomes of the Being's two moves. Taking both 
boxes is strongly dominant. For each state it gives you $1,000 more than you 
would get by taking only the second box. 

That is as far as we can go into Nozick's analysis, but interested readers 
should look it up for its mind-boggling conflict situations related to Newcomb's 
problem. Nozick finally arrives at the following tentative conclusions: 

If you believe in absolute determinism and that the Being has in truth 
predicted your behavior with unswerving accuracy, you should "choose" 
(whatever that can mean!) to take only B2. For example, suppose the Being is 
God and you are a devout Calvinist, convinced that God knows every detail of 
your future. O r  assume that the Being has a time-traveling device he can launch 
into the future and bring back with a motion picture of what you did on that 
future occasion when you made your choice. Believing that, you should take 
only B2, firmly persuaded that your feeling of having made a genuine choice is 
sheer illusion. 

Nozick reminds us, however, that Newcomb's paradox does not assume that 
the Being has perfect predictive power. If you believe that you possess a tiny bit 
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offree will (or alternatively that the Being is sometimes wrong, say once in every 
20 billion cases), then this may be one of the times the Being has erred. Your 
wisest decision is to take both boxes. 

Nozick is not happy with this conclusion. "Could the difference between one 
in n and none in n, for arbitrarily large finite n, make this difference? And how 
exactly does the fact that the predictor is certain to have been correct dissolve the 
force ofthe dominance argument?" Both questions are left unanswered. Nozick 
hopes that publishing the problem "may call forth a solution which will enable 
me to stop returning, periodically, to it." 

One such solution, "to restore [Nozick's] peace of mind," was attempted by 
Maya Bar-Hillel and Avishai Margalit, of Hebrew University in Jerusalem, in 
their paper "Newcomb's Paradox Revisited" (see the bibliography for the next 
chapter). They adopt the same game-theory approach taken by Nozick, but 
they come to an opposite conclusion. Even though the Being is not a perfect 
predictor, they recommend taking only the second box. You must, they argue, 
resign yourself to the fact that your best strategy is to behave as $the Being has 
made a correct prediction, even though you know there is a slight chance he has 
erred. You know he has played before you, but you cannot do better than to play 
as if he is going to play after you. "For you cannot outwit the Being except by 
knowing what he predicted, but you cannot know, or even meaningfully guess, 
at what he predicted before actually making your final choice." 

It may seem to you, Bar-Hillel and Margalit write, that backward causality is 
operating-that somehow your choice makes the $1 million more likely to be 
in the second box- but this is pure flim-flam. You choose only B2 "because it 
is inductively known to correlate remarkably with the existence of this sum in 
the box, and though we do not assume a causal relationship, there is no better 
alternative strategy than to behave as if the relationship was, in fact, causal." 

For those who argue for taking only B2 on the grounds that causality is 
independent of the direction of time- that your decision actually "causes" the 
second box to be either empty or filled with $1 million-Newcomb proposed 
the following variant of his paradox. Both boxes are transparent. B1 contains 
the usual $1,000. B2 contains a piece of paper with a fairly large integer written 
on it. You do not know whether the number is prime or composite. Ifit proves to 
be prime (you must not test it, of course, until after you have made your choice), 
then you get $1 million. The  Being has chosen a prime number if he predicts 
you will take only B2 but has picked a composite number if he predicts you will 
take both boxes. 

Obviously you cannot by an act of will make the large number change from 
prime to composite, or vice versa. The nature ofthe number is fixed for eternity. 
So why not take both boxes? Ifit is prime, you get $1,001,000. If it is not, you get 
at least $1,000. (Instead of a number, B2 could contain any statement of a 
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decidable mathematical fact that you do not investigate until after your choice.) - 

It is easy to think of other variations. For example, there are 100 little boxes, 
each holding a $10 bill. If the Being expects you to take all of them, he has put 
nothing else in them. But if he expects you to take only one box- perhaps you 
pick it at random- he has added to that box a large diamond. There have been 
thousands of previous tests, half of them involving you as a player. Each time, 
with possibly a few exceptions, the player who took a single box got the 
diamond, and the player who took all the boxes got only the money. Acting 
pragmatically, on the basis of past experience, you should take only one box. 
But then how can you refute the logic of the argument that says you have 
everything to gain and nothing to lose if the next time you play you take all the 
boxes? 

These variants add nothing essentially new. With reference to the original 
version, Nozick halfheartedly recommends taking both boxes. Bar-Hillel and 
Margalit strongly urge you to "join the millionaire's club" by taking only B2. 
That is also the view of Kruskal and Newcomb. But has either side really done 
more than just repeat its case "loudly and slowly"? Can it be that Newcomb's 
paradox validates free will by invalidating the possibility, in principle, of a 
predictor capable of guessing a person's choice between two equally rational 
actions with better than 50 percent accuracy? 

ADDENDUM 

So many letters poured in about Newcomb's paradox that I asked Robert 
Nozick if he would be willing to look them over and write a guest column about 
them. T o  my delight, he agreed. I packed a large carton with the correspon- 
dence and took it along on a visit to the Artificial Intelligence Laboratory at 
M.I.T. During this visit I had the pleasure of lunching with Nozick on the 
Harvard Yard and depositing my carton of letters on his desk. Although his 
column did not run in Scientijic American until eight months after my column on 
the topic, it seems appropriate to place it directly after this chapter. It will have a 
longer addendum and a bibliography. 

In 1974, shortly after Nozick's column appeared, Basic Books issued his 
controversial defense of political libertarianism, Anarchy, State, and  Utopia. It 
won the 1975 National Book Award, catapulting Nozick into the ranks of major 
U.S. philosophers. Reading Nozick, a collection of papers attacking and defend- 
ing him, edited by Jeffrey Paul, came out in 1981. That same year Harvard 
University Press published Nozick's massive Philosophical Explanations, boost- 
ing his reputation still higher. It won Phi Beta Kappa's Ralph Waldo Emerson 
award for the year. As far as I know, Nozick has not written about Newcomb's 
paradox since he wrote the chapter you are about to read. 
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Reflections on 
Newcomb's Paradox 

By Robert Nozick 

Newcomb's problem involves a Being who has the ability to predict the choices 
you will make. You have enormous confidence in the Being's predictive ability. 
He has already correctly predicted your choices in many other situations and 
the choices of many other people in the situation to be described. W e  may 
imagine that the Being is a graduate student from another planet, checking a 
theory ofterrestrial psychology, who first takes measurements ofthe state of our 
brains before making his predictions. (Or we may imagine that the Being is 
God.) There are two boxes. Box 1 contains $1.000. Box 2 contains either $1 
million or no money. 

You have a choice between two actions: taking what is in both boxes or taking 
only what is in the second box. Ifthe Being predicts you will take what is in both 
boxes, he does not put the $1 million in the second box. If he predicts you will 
take only what is in the second box, he puts the $1 million in the second box. (If 
he predicts you will base your choice on some random event, he does not put the 
money in the second box.) You know these facts, he knows you know them and 
so on. The Being makes his prediction ofyour choice, puts the $1 million in the 
second box or not and then you choose. What do you do? 

There are plausible arguments for reaching two different decisions: 

1. The expected-utility argument. If you take what is in both boxes, the Being 
almost certainly will have predicted this and will not have put the $1 million in 



the second box. Almost certainly you will get only $1,000. If you take only what
is in the second box, the Being almost certainly will have predicted this and put
money there. Almost certainly you will get $1 million. Therefore (on plausible
assumptions about the utility of the money for you) you should take what is in
the second box [see Figure 94].
2. The dominance argument. The Being has already made his prediction and either put
the $1 million in the second box or has not. The money is either in the second box
or it is not. The situation, whichever it is, is fixed and determined. If the Being put
the $1 million in the second box, you will get 1,001,000 if you take both boxes and
$1 million if you take only the second. If the Being did not put the money in the
second box, you will get $1,000 if you take both boxes and no money if you take
only the second box. In either case you will do better by $1,000 if you take what is
in both boxes rather than only what is in the second box [see Figure 95].

Each argument is powerful. The problem is to explain why one is defective.
Of the first 148 letters to Scientific American from readers who tried to resolve
the paradox, a large majority accepted the problem as being meaningful and
favored one of the two alternatives. Eighty-nine believed one should take only
what is in the second box, 37 believed one should take what is in both boxes —
a proportion of about 2.5 to one. Five people recommended cheating in one
way or another, 13 believed the problem’s conditions to be impossible or
inconsistent and four maintained that the predictor cannot exist because the
assumption that he does leads to a logical contradiction.

Those who favored taking only the second box tried in various ways to under-
cut the force of the dominance argument. Many pointed out that if you thought
of that argument and were convinced by it, the predictor would (almost certainly)
have predicted it and you would end up with only $1,000. They interpreted the
dominance argument as an attempt to outwit the predictor. This position makes
things too simple. The proponent of the dominance argument does believe he will
end up with only $1,000, yet nevertheless he thinks it is best to take both boxes.
Several proponents of the dominance principle bemoaned the fact that rational
individuals would do worse than irrational ones, but that did not sway them.
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Figure 94 Payoff matrix for expected-utility argument
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HE PUT $1,000,000 HE DID NOT PUT $1,000,000 
INTO BOX 2 INTO BOX 2 

TAKE BOTH $1,001,000 $ l c O  1 
TAKE ONLY SECOND $1,000,000 

Figure 95 Payoff matrix for dominance argument 

Stephen E. Weiss of Morgantown, W. Va.. tried to reconcile the two views. 
He suggested that following the expected-utility argument maximizes expecta- 
tion, whereas following the dominance argument maximizes correct decision. 
Unfortunately that leaves unexplained why the correct decision is not the one 
that maximizes expectation. 

The assumptions underlying the dominance argument - that the $1 million 
is already in the second box or it is not and that the situation is fixed and 
determined - were questioned by Mohan S. Kalelkar, a physicist at the Nevis 
Laboratories of Columbia University, who wrote: "Perhaps it is false to say that 
the Being has definitely made one choice or the other, just as it is false to say that 
the electron [in the two-slit experiment] went through one slit or the other. 
Perhaps we can only say that there is some amplitude that B2 [second box] has 
$1 million and some other amplitude that it is empty. These amplitudes 
interfere unless and until we make our move and open up the box. . . . To 
assert that 'either B2 contains $1 million or else it is empty' is an intuitive 
argument for which there is no evidence unless we open the box. Admittedly 
the intuitive evidence is strong, but as in the case of the double-slit electron 
diffraction our intuition can sometimes prove to be wrong." 

Kalelkar's argument makes a version of the problem, in which the second 
box is transparent on the other side and someone has been staring into it for a 
week before we make our choice, a significantly different decision problem. It 
seems not to be. Erwin Schrijdinger, in a famous thought experiment, imagined 
a cat left alone in a closed room with a vial of cyanide that breaks if a radioactive 
atom in a detector decays. Must a disciple of Niels Bohr assert that the cat is 
neither alive nor dead, Schrodinger asked, until measurements have been made 
to decide the case? Even if one accepts the Bohr interpretation of quantum 
mechanics, however, what choice does one make, in Newcomb's problem, 
when one knows that others can see into the box from the other side and observe 
whether it is filled or empty? 

- ~ 

Many who wrote asserted that the dominance argument assumes the states to 
be probabilistically independent of the actions and pointed out that this is not 
true for the two states "The $1 million is in Box 2" and "The $1 million is not in 
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Box 2." The states would be probabilistically independent ofthe actions (let us 
assume) in the matrix for the utility argument, which has the states "He predicts 
correctly" and "He predicts incorrectly." Here, however, there is no longer 
dominance. Therefore it appears that the force of dominance principles is 
undercut. "It is legitimate to apply dominance principles if and only ifthe states 
are probabilistically independent of the actions. If the states are not probabilis- 
tically independent of the actions, then apply the expected-utility principle, 
using as the probability-weights the conditional probabilities of the states given 
in the actions." The quotation is from my original 1970 essay, which formu- 
lated this position, then went on to reject it as unsatisfactory for the following 
reasons. 

Suppose a person knows that either man S or man T is his father, but he does 
not know which. S died of some very painful inherited disease that strikes in 
one's middle thirties, and T did not. The disease is genetically dominant. S 
carried only the dominant gene. T did not have the gene. If S is his father, the 
person will die of the dread disease. If T is his father, he will not. Furthermore, 
suppose there is a well-confirmed theory that states that a person who inherits 
this gene will also inherit a tendency toward behavior that is characteristic of 
intellectuals and scholars. S had this tendency. Neither T nor the person's 
mother had such a tendency. The person is now deciding whether to go to 
graduate school or to become a professional baseball player. He prefers (al- 
though not enormously) the life of an academic to that of a professional athlete. 
Regardless of whether or not he will die in his middle thirties, he would be - 

happier as an academic. The choice of the academic life would thus appear to 
be his best choice. 

Now suppose he reasons that if he decides to be an academic, the decision 
will show that he has such a tendency, and therefore it will be likely that he 
carries the gene for the disease and so will die in his middle thirties, whereas if 
he chooses to become a baseball player, it will be likely that T is his father; . . 

therefore he is not likely to die of the disease. Since he very much prefers not 
dying of the disease (as a baseball player) to dying early from the disease (as an 
academic), he decides to pursue the career of an athlete. Surely everyone would 
agree that this reasoning is perfectly wild. It is true that the conditional proba- 
bilities of the states " S  is his father" and "Tis his father" are not independent of 
the actions "becoming an academic" and "becoming a professional athlete." If 
he does the first, it is very likely that S is his father and that he will die of the 
disease; if he does the second, it is very likely that T is his father and therefore 
unlikely that he will die of the disease. But who his father is cannot be changed. 
It is fixed and determined and has been for a long time. His choice of how to act 
legitimately affects our (and his) estimate of the probabilities of the two states, 



but which state obtains (which person is his father) does not depend on his
action at all. By becoming a professional baseball player he is not making it less
likely that S is his father; therefore he is not making it less likely that he will die
of the disease.

This case, and others more clearly including a self-reference that this case
may seem to lack, led me to think probabilistic nonindependence was not suf-
ficient to reject the dominance principle. It depends on whether the actions
influence or affect the states; it is not enough merely that they affect our judg-
ments about whether the states obtain. How do those who reject the domi-
nance principle for Newcomb’s problem distinguish it from those other cases
where dominance principles obviously apply even though there is probabilistic
nonindependence?

But one must move carefully here. One cannot force a decision in a difficult
case merely by finding another similar case where the decision is clear, then
challenging someone to show why the decision should be different in the two
cases. There is always the possibility that whatever makes one case difficult and
the other clear will also make a difference as to how they should be decided.
The person who produces the parallel example must not only issue his chal-
lenge; he must also offer an explanation of why the difficult case is less clear,
an explanation that does not involve any reason why the cases might diverge in
how they should be decided. Interested readers can find my additional parallel
examples, where dominance is appropriate, plus an attempt to explain why
Newcomb’s case, although less clear, is still subject to dominance principles in
my original essay, “Newcomb’s Problem and Two Principles of Choice” in
Essays in Honor of Carl G. Hempel (see bibliography).

This obligation to explain differences in the clarity of parallel examples in
order to show that no different decision should be made also rests on those
who argued in their letters for taking only what is in the second box. For exam-
ple, it rests on Robert Heppe of Fairfax, Va., who said that the situation “is
isomorphic with one in which the human moves first and openly,” and on A. S.
Gilbert of the National Research Council of Canada, who called the Newcomb
case “effectually the same as” one where you act first and an observer attempts
to communicate with a “mindreader” in the next room who then guesses your
choice, using a payoff matrix identical with Newcomb’s.

A large number of those who recommended taking only the second box
performed the expected-value calculation and concluded that, provided the
probability that the Being was correct was at least .5005, they would take only
the second box. Not only did they see no problem at all, but they either
maximized expected monetary value or made utility linear with money in the
range of the problem. Otherwise the cutoff probability would be different.
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William H. Riker of the department of political science at the University of 
Rochester suggested that people making different decisions merely differed in 
their utility curves for money. Such persons, however, need not differ in their 
choices among probability mixtures of monetary amounts in the standard 
situations in order to calibrate their utilities. 

Those who favored taking both boxes made almost no attempt to diagnose 
the mistakes ofthe others. An exception is William Bamberger, an economist at 
Wayne State University. He wrote that the proponent of choosing only the 
second box "computes not the alternative payoffs of choosing one or two boxes 
for a given individual, but the average payoff of those who choose two as 
opposed to the average observed payoff of those who choose one." The prob- 
lem, of course, is how to compute the probability for a given individual of his 
payoff for each choice. Should one use the differing conditional probabilities, or 
ignore them because dominance applies only when the states are probabilistic- 
ally independent of the action (and so when for each state its conditional 
probabilities on each act is the same), or ignore them because the conditional 
probabilities of the state on the acts are to be used only when they represent 
some process of the act's influencing or affecting which state obtains? 

A number of respondents said their choice would depend on whether the 
predictor made his prediction after they had at least started to consider the 
problem. If so, they would do their best to decide to take only the second box (so 
that this data would be available to the predictor), and some added that they 
hoped they would change their mind at the last minute and take both boxes. 
(They gave the predictor too little credit.) O n  the other hand, if the predictor 
made his   re diction before they even considered the problem, these writers 
believed they would take both boxes, since there was no possibility of their 
deliberations affecting the prediction that had been made. 

Several respondents maintained that if the conditions of the problem could 
be realized, we might be forced to revise our views about the impossibility of 
backward causality. Newcomb himself seems to think that special difficulties 
arise for proponents of backward causality if the predictor writes some term 
designating an integer on a slip of paper in the second box, with the under- 
standing that you get $1 million only if that integer is a prime. Of course, the 
predictor writes a prime if, and only if, he predicts that you will take the second 
box. How can your choice determine whether a number is prime or composite? 
The advocate of backward causality need not think it does. What your choice 
affects, in his view, is what term the predictor writes down (or wrote down 
earlier), not whether the integer it designates is prime or composite. 

The  reasoning of some of the letters indicates it would be useful to specify 
precisely the conditions whereby we could discover in which time-direction 
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causality operates. Might one even say that some conditions universally preced- 
ing certain decisions are part of the effects of the decision (by backward 
causality) rather than part of the cause? 

Not everyone was willing to choose one or the other action. Among the five 
respondents who suggested some form of cheating, Robert B. Pitkin, editor of 
American Legion Magazine, speculated that Dr. Matrix, the numerologist, 
would walk in with a device to scan the contents of the boxes, take the boxes 
with the money in them and never open an empty box. "He quite naturally 
succeeded in getting all the money, for the rule of bridge that one peek is worth 
two finesses applies here too. . . . By introducing a choice which the Being has 
not anticipated, and is not permitted to take into account, he achieves a stun- 
ning victory for free will." (What prevents the Being from taking this into 
account?) 

Other letter writers also struck blows for free will. Nathan Whiting of New 
York would take both boxes but would open only the first one, leaving the 
second box unopened. Ralph D. Goodrich, Jr., of Castle Rock, Colo., would 
take only the first box. Richard B. Miles of Los Altos, Calif., also recommended 
a "creative" solution: Turn to another person before you make your choice and 
offer to sell him for $10.000 the contents of whatever box or boxes you choose. 

Isaac Asimov wrote: "I would, without hesitation, take both boxes. . . . I 
am myself a determinist but it is perfectly clear to me that any human beiilg 
worthy of being considered a human being (including most certainly myself) 
would prefer free will, if such a thing could exist. . . . Now, then, suppose you 
take both boxes and it turns out (as it almost certainly will) that God has 
foreseen this and placed nothing in the second box. You will then, at least, have 
expressed your willingness to gamble on his nonomniscience and on your own 
free will and will have willingly given up a million dollars for the sake of that 
willingness - itself a snap of the finger in the face of the Almighty and a vote, 
however futile, for free will. . . . And, of course, if God has muffed and left a 
million dollars in the box, then not only will you have gained that million butfar 
more important you will have demonstrated God's nonomniscience, If you take 
only the second box, however, you get your damned million and not only are 
you a slave but also you have demonstrated your willingness to be a slave for that 
million and you are not someone I recognize as human." (No one wrote to argue 
for taking only the second box on the grounds that either it results in getting $1 
million or it demonstrates the Being's fallibility, either of which is desirable.) 

Those who held that the conditions ofthe problem could not be realized were 
of two types. There were those who believed the situation to be physically 
impossible because the Being could not predict all the information input of 
every light signal that would arrive at your eyes in the appropriate time interval. 
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("To gain such knowledge the Being must have a physical agency for collecting 
information that travels faster than the speed of light," wrote George Freder- 
icks, a physicist at the University of Texas.) And there were those who argued 
that if the room is closed, the problem reduces to that of Maxwell's demon- a 
suggestion made by Fredericks and by John A. Ball of the Harvard College 
Observatory. 

Those who believed the conditions of the problem to be inconsistent as well 
as physically impossible said that the almost certain predictability of decisions 
was inconsistent with free will, and therefore with making choices, yet the 
problem assumed that genuine choices could be made. This is a hard argument 
to drive through because it appears to be the choices that are predicted. The 
relevant connections are difficult to get straight. Predictability of decisions does 
not logically imply determinism under which the decisions are caused (for 
example, the possibility of backward causality where an uncaused decision 
causes an earlier prediction, or "seeing ahead" in time in a block universe). 

Nor, we should note in passing, does determinism entail predictability, even 
in principle. Events could be fixed in accordance with scientific laws that are 
not recursive. Is determinism incompatible with free will? It seems to many to 
be so, yet the argument that determinism is incompatible with responsibility for 
action, which free will implies, depends on a notion of responsibility insuffi- 
ciently worked out to show precisely how the connections go. Some say merely 
that a free act is an uncaused one. Yet being uncaused obviously is not sufficient 
for an act to be free; one surely would not be responsible for such an action. 
What other conditions, then, must be satisfied by an uncaused act if it is to be a 
free one? The literature on free will lacks a satisfactory specification of what a 
free action would be like (given that "uncaused" is not enough). Perhaps if we 
were given this specification of additional conditions, they would turn out to be 
sufficient apart from the action's being uncaused. 

Another problem will help to exhibit some complicated relations between 
free will and determinism. It has been asserted (by C. S. Lewis, for instance) 
that no determinist rationally can believe in determinism, for if determinism is 
true, his beliefs were caused, including his belief in determinism. The idea 
seems to be that the causes of belief, perhaps chemical happenings in the brain, 
might be unconnected with any reasons for thinking determinism true. They 
might be, but they need not be. The causes might "go through" reasons and be 
effective only to the extent that they are good reasons. In the same way it might 
be a causal truth about someone that he is convinced only by arguments that 
constitute specified types of good reasons (deductive, inductive, explanatory 
and so on). 

Some philosophers have argued recently that we know some statement p only 
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if part of the cause (or more broadly the explanation) of our believing p is, if we 
pursue the story far enough, the fact that p is true. You know this page is before 
you now only if its being there is part of the explanation of why you believe it is 
there. If psychologists are stimulating your brain to create the illusion that you 
are seeing a printed page, you would not really know there is a page before you 
even if a psychologist happened to have left one on the table in front of you. The 
page's being there would not play the proper causal role in the story of your 
belief. Ifwe do not mind our beliefs being caused by the facts, and indeed find it 
somewhat plausible to think we have knowledge only to the extent that they are, 
then we may also find it less disturbing that our actions are caused by certain 
types of facts holding in the world -for example, the fact that it would be better 
to do one thing rather than another. T o  say this, of course, is not to present a - 

theory of free action; it is merely to hint that it may be possible to remove the 
sting of determinism. This approach is a comfortable one when we act cor- 
rectly, but it is difficult to see how it can be extended plausibly to wrong acts 
where questions of responsibility are particularly pressing. 

Proponents of the C. S. Lewis position might reply that the determinist 
should not feel so comfortable. Even though he says he is caused to believe in - 

determinism (and anything else) by what are good reasons, he must also 
maintain that he is caused to believe that such reasons are good reasons. He may 
have a second set of reasons for believing the first set of reasons are good. Now, 
however, his opponent can raise the same question as before. Why does he 
believe the second set of reasons? The determinist must end either by finding 
self-supporting reasons (which say of themselves that they are good reasons) or 
by admitting that the best explanation of why he believes they are good reasons 
is that they are. This surely leaves his opponent unsatisfied, and the match 
seems to be a draw. 

Those who believe in free will find themselves in similar dilemmas. Kurt 
Rosenwald of Washington wrote: "When I was 19 or 20, I thought about the 
free-will problem . . . and I came to this conclusion: If we make an exhaus- 
tive study ofthat problem, and finally arrive at the result that our will is free, we 
still will not know whether our will is indeed free or our mind is of such a nature 
that we have to find our will to be free, although it is not, in fact, free. This 
became one of my reasons for studying not philosophy but the natural sciences. 
Thinking about it now, 50-k years later, it still seems to me that I was right." But 
does not the possibility that we are caused to believe in false conclusions apply 
also to conclusions in the natural sciences? And to the verdict of 504- years 
later? 

I published my original essay after thinking about Newcomb's problem 
intermittently for five years. In that essay I expressed the hope that someone 
would come forth with a solution to the problem that would enable me to stop 
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returning to it. It is not surprising that no one did, yet it is surprising (to me) that 
the mere act of publishing Newcomb's problem, and sending my thoughts on it 
into the world, rid me of it. That is, I was rid of it until the problem was 
presented in Scientijic American and I was invited to read more than 650 pages 
of letters about it. Unfortunately the letters do not, in my opinion, lay the 
problem to rest. And they have started me thinking about it again! You can't 
win. 

ADDENDUM (BY M. G.) 

Although the growing literature on Newcomb's problem proves that philoso- 
phers are still far from agreement on how to handle it, let me set down some 
tentative ~ersonal  views. 

My sympathies are with those who say the predictor cannot exist. Even if 
strict determinism in some sense holds for every event in the history of the 
universe, I believe that certain events are in principle unpredictable when 
predictions are allowed to interact causally with the event being predicted. W e  
have here, I am persuaded, something analogous to the resolution of semantic 
paradoxes. Contradictions arise whenever a language is allowed to talk about 
the truth or falsity of its own statements, or when sets are allowed to be members 
of themselves. W e  can escape the semantic paradoxes by permitting talk about 
the truth of a sentence only in a metalanguage. "This sentence is false" simply is 
not a sentence. The notorious paradox of the barber who shaves every person 
and only those persons who do not shave themselves, and who himself belongs 
to the set of ~ersons ,  is a barber who cannot exist. It is not logically inconsistent 
to suppose that the future is totally determined, whether or not an omniscient 
God exists, but as soon as we permit a superbeing to make predictions that 
interact with the event being predicted, we encounter contradictions that 
render the existence of such a superpredictor impossible. 

Consider the simplest case. A superbeing knows that when you go to bed 
next Thursday you will take off your shoes. If the superbeing keeps this knowl- 
edge from you, there is no problem; but if the superbeing informs you of the 
prediction, you can falsify it easily by going to bed with your shoes on. At this 
point we touch the mystery of free will, about which I have a chapter in my Whys  
ofa  Philosophical Scrivener (Morrow, 1983). I agree with those who say that 
Newcomb's problem in no way settles the question of whether the future is 
completely determined, but I do maintain that it brings us face to face with the 
eternal, and to me unanswerable, problem of defining what is meant by free 
choice. 

Although I don't believe it, the state of the world a hundred years from now 
may be determined in every detail by the state of the world now. Innumerable 
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future events obviously can be predicted with almost certain accuracy, but other 
events are the outcome of such complex causes that even if determinism is true it 
seems likely there is no possible way they could be predicted by any technique 
faster than allowing the universe itselfto unroll to see what happens. ( W e  leave 
aside the notion of a God outside of time who sees the past and future simulta- 
neously, whatever that means.) All this is by the way. The main point is that 
when a prediction interacts with the predicted event, whether human wills are 
involved or not, logical contradictions can arise. A familiar example is the 
supercomputer asked to predict if a certain event will occur in the next three 
minutes. If the prediction is no, it turns on a green light. If yes, it turns on a red 
light. The  computer is now asked to predict whether the green light will go on. 
By making the event part of the prediction, the computer is rendered logically 
Impotent. 

It is my view that Newcomb's predictor, even if accurate only 5 1 percent of 
the time, forces a logical contradiction that makes such a predictor, like Ber- 
trand Russell's barber, impossible. W e  can avoid contradictions arising from 
two different "shoulds" (should you take one or two boxes?) by stating the 
contradiction as follows. One flawless argument implies that the best way to 
maximize your reward is to take only the closed box. Another flawless argument 
implies that the best way to maximize your reward is to take both boxes. 
Because the two conclusions are contradictory, the predictor cannot exist. 
Faced with a Newcomb decision, I would share the suspicions of Max Black 
and others that I was either the victim of a hoax or of a badly controlled 
experiment that had yielded false data about the predictor's accuracy. O n  this 
assumption, I would take both boxes. 

But, you may ask, how would I decide if I made what I would regard as a 
counterfactual posit that the predictor was what it was claimed to be? I suppose 
if I could persuade myself that the predictor existed I might take only the closed 
box even though it would be logically irrational. But I cannot so persuade 
myself. It is as if someone asked me to put 91 eggs in 13 boxes, so each box held 
seven eggs, and then added that an experiment had proved that 91 is prime. O n  
that assumption, one or more eggs would be left over. I would be given a million 
dollars for each leftover egg, and 10 cents if there were none. Unable to believe 
that 91 is a prime, I would proceed to put seven eggs in each box, take my 10 
cents and not worry about having made a bad decision. 
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CHAPTER  FIFTEEN

Reverse the Fish
and Other Problems

1. THE GUNPORT PROBLEM
Determining the shortest possible game of cram (see Chapter 19) is equivalent
to what Bill Sands called the domino “gunport problem.” (See his article, “The
Gunport Problem,” in Mathematics Magazine, Vol. 44, 1971, pages 193–196).

The problem is simply stated: What is the maximum number of 1-by-1
“holes” that can be obtained by arranging dominoes on an m-by-n field? It is
assumed that m and n are each greater than 1.

Sands was able to prove that the number of holes cannot exceed the num-
ber of dominoes. He also showed that if either side of the field is a multiple of
3, a repeated pattern provides a simple way of achieving the maximum number
of holes [see Figure 96]. In other words, if one side of the field is of the form
3k, the maximum number of holes is mn/3. Otherwise the maximum number
of holes must be less than this.

Figure 96 Pattern for maximizing “gunports” when one side of the rectangle is 3k
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Figure 97 Maximum gunports on rectangles having no sides of form 3k 

Murray Pearce of Bismarck, N.D., writing in the November 1973 issue ofthe 
London monthly Games & Puzzles, conjectured that if neither side is 3k but 
both are equal modulo 3 (that is, both are either 3k + 1 or 3k + 2), the 
maximum number of holes is (mn - 4)/3, and if one side is 3k + 1 and the 
other 3k + 2, the maximum is (mn - 2)/3. Examples of how the predicted 
maximum can be obtained for the three types of fields that have no side equal to 
3k are shown in Figure 97. 

Pearce's formulas set a maximum of 26 holes for the 8-by-10 field. Sands 
confessed he was unable to do better than 24 holes, using 28 dominoes. Can the 
reader find a 26-hole solution, using 27 dominoes? 

2. FIGURES NEVER LIE 

An old burlesque routine involves two simpleminded men who divide 28 by 7 
to get 13, then verify this result by multiplying 13 by 7 to get 28 and finally 
double-check it by adding 13 seven times to get 28. This is how Irvin S. Cobb 
told the story in his anthology of 366 jokes (one for leap year), A Laugh a Day 
Keeps the Doctm Away (1923): 

"Three patricians of the coal yards fared forth on mercy bent, each in his 
great black chariot. Their overlord, the yard superintendent, had bade them 
deliver to seven families a total of twenty-eight tons of coal equally divided. 

"Well out of the yards, each with his first load, Kelly and Burke and Shea 
paused to discuss the problem of equal distribution- how much coal should 
each family get? 

" ' 'Tis this way,' argued Burke. ' 'Tis but a bit of mathematics. Ifthere are 7 
families an' 28 tons o' coal ye divide 28 by 7, which is done as follows: Seven 
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into 8 is 1, 7 into 21 is 3, which makes 13.' He triumphantly exhibited his 
figures made with a stubby pencil on a bit of grimy paper: 

"The figures were impressive but Shea was not wholly convinced. 'There's a 
easy way o' provin' that,' he declared. 'Ye add 13 seven times,' and he made his 
column of figures according to his own formula. Then, starting from the bottom 
of the 3 column, he reached the top with a total of 21 and climbed down the 
column of l ' s ,  thus; ' 3 ,6 ,9 ,12 ,15 ,  18 ,21 ,22,23,24,25,26,27,28. '  'Burke is 
right,' he announced with finality. 

"This was Shea's exhibit: 

" 'There is still some doubt in me mind,' said Kelly. 'Let me demonstrate in 
me own way. If ye multiply the 13 by 7 and get 28, then 13 is right.' He 
produced a bit of stubby pencil and a sheet ofpaper. ' 'Tis done in this way,' he 
said. 'Seven times 3 is 21; 7 times 1 is 7, which makes 28. ' 'Tis thus shown that 
13 is the right figure and ye're both right. Would ye see the figures?' 

"Kelly's feat in mathematics was displayed as follows; 



REVERSE THE FISH AND OTHER PROBLEMS 179 

" 'There is no more argyment,' the three agreed, so they delivered thirteen tons 
of coal to each family." 

The comedian Flournoy Miller made effective use of the routine and pub- 
lished his version of it in his book Shuflin' Along. A few years ago Flip Wilson 
did the bit on his television show and was sued by Miller's daughter for 
unauthorized use of the material. The case was apparently settled out of court. 

"Is there something special about the numbers 7,  13 and 28?" asked the late 
William R. Ransom, a mathematician at Tufts University. The  answer is no. 
There are just 22 triplets of numbers-one number is a single digit, the other 
two are two digits each-that can be substituted for 7 ,  13 and 28 without 
changing a single word in the routine. Readers are asked to list the 22 triplets. 

3. FUNCTIONAL FIXEDNESS 

Past experience sometimes has a negative effect on creative thinking. When this 
involves a difficulty in seeing how a familiar object can be used in an unortho- 
dox way, psychologists call it a manifestation of "functional fixedness." Here 
are two problems, familiar to psychologists, that illustrate the concept: 

You are seated at a bare table and given six objects: a board, pliers open to 
maximum extent, two small metal angle irons with screw holes, a peg and a 
length of wire that has been used to bind the peg firmly to the board [see Figure 
981. How can you arrange these objects so that the board becomes a horizontal 
stand several inches above the tabletop and firm enough to support a vase of 
flowers? 

Figure 98 The stand problem 
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TABLE-TENNIS 

Figure 99 The string problem 

You are in a bare room. Two strings hang from the ceiling [see Figtire 991. 
Your problem is to tie the ends together. When you grasp one end ofthe string, 
however, the other dangles many feet beyond your reach. You are not allowed to 
use anything you are wearing or have on your person (such as your stockings for 
the purpose of swinging them to catch a string), but you may use any or all of 
three objects on the floor: a table-tennis ball, a small horseshoe magnet and a 
postage stamp. 

4. MONOCHROMATIC CHESS 

Here is another brilliant and unorthodox chess problem by Raymond Smul- 
lyan. Figure 100 shows the position of an end game with only five men on the 
board: the black and white kings, two white pawns and one pawn of unknown 
color (shown in gray). During the course of the game no piece has moved from a 
square of one color to a square of another color. Is the unknown pawn black or 
white? 

5 .  THE TWO BOOKCASES 

Robert Abes, of the Courant Institute of Mathematical Sciences at New York 
University, originated this problem. A room 9 by 12 feet contains two book- 
cases that hold a collection of rare erotica. Bookcase AB is 8% feet long, and 
bookcase CD is 4% feet long. The bookcases are positioned so that each is 
centered along its wall and one inch from the wall. 

The owner's young nephews are coming for avisit. He wishes to protect them 
and the books from each other by turning both bookcases around to face the 
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BLACK 

WHITE 

Figure 100 Smullyan's monochromatic problern 

wall. Each bookcase must end up in its starting position but with its ends 
reversed [see Figure 1011. The bookcases are so heavy that the only way to move 
them is to keep one end on the floor as a pivot while the other end is swung in a 
circular arc. The bookcases are narrow from front to back, and for purposes of 
the problem we idealize them to straight line segments The ends of the 
bookcases cannot pass through walls in mid-swing, or through each other. 
What is the minimum number of swings required to reverse the two bookcases? 

9 FEET 

Figure 101 The bookcases problem 
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6. IRRATIONAL PROBABILITIES 

It is very easy to use a penny as a randomizer for deciding between two 
alternatives with probabilities expressed by rational fractions. Suppose you 
wish to decide between A and B, with a probability of 317 for A and 417 for B. 
The number of equally likely ways a penny can fall when flipped n times is 2", so 
three flips of the coin give eight possible triplets: HHH, HHT,  H T H  and so on. 
Eliminate one triplet; then pick any three of the remaining seven and designate 
them triplets that decide for A. The  other four triplets decide for B. Flip the 
penny three times. If the result is the eliminated triplet, ignore it and flip three 
more times. Eventually you will flip one of the seven triplets. The chance that 
this will be a triplet in the set of three is clearly 317, with 417 as the probability 
that it will be in the set of four. 

The  procedure is easily extended to a decision between n alternatives, each 
with a rational ~robability. Suppose there are three alternatives with the proba- 
bilities A = 113, B = 112 and C = 116. Use the above procedure to decide 
between 113 and 213 (the sum of 112 and 116). If the decision is for A, you are 
finished. Otherwise you must continue by deciding between B and C. T o  do so, 
divide 112 (B's fraction) by 213 to obtain 314, and divide 116 (C's fraction) by 
213 to obtain 114. The penny is used as before to decide between B = 314 and 
C = 114. The procedure obviously generalizes to n alternatives, provided that 
the probabilities are rational fractions. 

Moreover, the coin need not be a fair one. Suppose it is biased and falls heads 
with a probability of 1 1 ~ .  The probability of heads followed by tails remains 
equal to the probability of tails followed by heads, and so you simply flip 
doublets, ignoring HH and T T .  Let H T  count for heads and T H  count for tails. 
With this new definition of heads and tails, each equally likely, the biased coin 
clearly can be used for deciding between n alternatives, each with rational 
probabilities. 

Suppose, now, you wish to decide between n alternatives, each with an 
irrational probability. For example: A is the fractional part of the square root of 
2 ,  B is the fractional part of n and C = 1 - ( A  + B). If you can decide between 
two irrational probabilities using a fair coin, you can do it with a biased coin by 
redefining heads and tails as explained; and if you can decide between two 
irrational alternatives, you can decide between any number of irrational alter- 
natives by the method given for n rational alternatives. 

But how can a coin be used to decide between two irrational probabilities? 
Let us focus the problem with a precise example. A = ,1415926535 . . . , the 
fractional part of n .  B = .8584073464 . . . , which is 1 - A. You wish to 



decide between A and B by flipping a fair coin. A delightful procedure for doing
this, which applies to all irrational fractions, was recently devised by Persi
Diaconis. It will be disclosed in the answer section. (Hint: The method makes use
of binary notation.)

7. WHO’S BEHIND THE MAD HATTER?
The following problem, by John F. Collins of Santa Monica, Calif., appeared in
the August 1968 issue of Word Ways.

“The March Hare and the Mad Hatter were sipping their eggnog and watch-
ing the crowd when Alice happened to glance in the Hare’s direction and ask,
‘Why are you giving me such an angry look?’

“‘I’m not giving it to you, I’m giving it back,’ replied the Hare.
“‘I didn’t look crossly at you.’
“‘Well, somebody did,’ the Hare said, turning to glare at the Hatter.
“Just then, someone came up from behind and put his hands over the Hatter’s

eyes.
“‘Guess who!’ said the newcomer in a thin, flat voice.
“The Hatter froze for a moment and declared, rather coldly, ‘I have no use for

practical jokers.’
“‘Ha! Neither have I,’ retorted the stranger, still keeping his hands over the

Hatter’s eyes.
“At that, the Hatter seemed to accept the challenge of the game and started

asking a series of questions in a manner that mingled hope with care.
“Question: ‘Ahem. Would you, by chance, be in a black suit this evening?’
“Answer: ‘I would, but not by chance, by design.’
“Q. ‘I presume you’re a member of all the posh clubs?’
“A. ‘Afraid not. Never even been invited.’
“Q. ‘Surely you’re better than average?’
“A. ‘Yes, indeed!’
“Q. ‘Not spotted, I hope?’
“A. ‘Knock wood.’
“Q. ‘Married?’
“A. ‘No, happy.’”

Who is behind the Mad Hatter?

8. REVERSE THE FISH
This charming brainteaser for children is well known in Japan but not in this
country. I found it in a Japanese puzzle book by Kobon Fujimura. Arrange eight
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Figure 102 The toothpick puzzle 

toothpicks and one button as shown in Figure 102. Now see if you can change 
the position ofjust three toothpicks and the button so that the fish looks exactly 
the same as before except it is now swimming in the opposite direction. 

9. THE INTERSECTING CIRCLES 

This is one of those elegant theorems in old-fashioned plane geometry that seem 
at first to be exceedingly difficult to establish but that yield readily to the right 
insight. Three circles of unit radius, with centers at X, Y, 2, intersect at a 
common point, 0 [see Figure 1031. The problem is to prove that the other three 
intersection points, A, B, C, lie on a circle that also has a unit radius. The 
problem comes by way of Frank R. Bernhart. 

ANSWERS 

1. Figure 104 shows one way of placing 27 dominoes on an 8-by-10 field to 
form 26 holes. Found by Capt. John C. Huval, it was published in Mathematics 
Magazine for November 1972. Many trivial variations can be produced by 
sliding one domino, by switching to adjacent dominoes or by rotating a 3-by-3 
pattern of three dominoes. 



Figure 103 Intersecting-circle theorem 

Kenneth M. Brown and Jon Petersen each proved that Murray Pearce's 
formulas for the gunport problem cannot be exceeded. It remains an open 
question whether there are rectangles for which Pearce's upper bounds cannot 
be achieved. Petersen and Douglas W. Oman independently found a proce- 
dure showing that all rectangles with areas smaller than 224 could meet the 
upper bounds. The general case is undecided, with the 14-by-16 rectangle 
being a likely candidate for the smallest counterexample. According to Pearce's 

Figure 104 ,4 solution to the gunport problem 
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conjecture, it should be possible to cover it with 75 dominoes that leave 74 
holes. 

2. The  22 triplets that can be substituted for 7, 13 and 28 in Irvin S. Cobb's 
story are 

Readers interested in how William R. Ransom solved this problem will find 
it explained in his delightful but little-known book, One Hundred Mathematical 
Curiosities ( J .  Weston Walch, 1955). Using more liberal interpretations of the 
dialogue in the old burlesque routine, Joseph H. Engel, Sumner Shapiro and 
Alan Wayne found other triplets of figures that could be added to the 22 that 
satisfy a strict interpretation of the dialogue. Wayne recalled having seen the 
routine performed several times on stage by the Abbott and Costello comedy 
team. 

3. The board is supported by the pliers and wooden peg [see Figure 1051. T o  
tie together the ends of the two hanging cords, tie the magnet to one end and 
start the cord swinging. Hold the end ofthe other string and catch the swinging 
magnet. 

For the shelf-making problem E. N. Adams, Bill Kruger and Susan Southall 
each showed how the pliers could be opened and wired to the peg to make a 
tripod, and also how the angle irons could be wired flat to each end of the peg to 
make a stand. The second solution was also proposed by R. C. Dahlquist, P. C. 
Eastman and Ronald C. Read. Don L. Curtis threaded the wire through end 
holes of the angle irons and with the pliers tightened the wire around the board 
so that the angle irons were rigidly perpendicular to the board. He sent a 
photograph to prove that the stand supported a heavy vase of flowers. Robert 
Rosenwald and Allan Kiron each thought of using the pliers as a hammer for 
knocking corners of the angle irons into the board to make supports. 

Several readers spotted a mistake in the illustration for the problem of 
knotting the ends of two hanging strings. The strings are too short to be tied. 
Paul Nelles considered the situation in which a side wall is so close to each string 
that if the magnet were tied to one end it woud collide with the wall when the 
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string is swung. He suggested tying the table-tennis ball to the cord (or fastening 
it with the stamp), then swinging the string so that the ball bounces offthe wall. 
Michael McMahon suggested using the stamp to attach the ball to the string 
and then, with a corner of the magnet, addressing the ball and mailing it to the 
other side of the room. 

4. The  key to Raymond Smullyan's monochromatic chess problem lies in the 
position of the two- white pawns. W e  were told that no piece has moved to a 
square of a different color; therefore the only way the white king could have 
escaped from his home square is by castling. The castling must have been on 
the king's side; otherwise the white rook would have moved from a black square 
to a white one. Ifthe pawn of unknown color is white, it must have been a rook's 
pawn that moved to its present square by capturing. But if this was what 
happened, the white king could not have reached its present position. The 
rook's pawn, before it made its capture, would have confined the king to KN1 
and in its present position would confine the king to KN1 and KR2. Therefore 
the pawn in question is black. 

The  black -and white sides of the chessboard were properly identified in 
Raymond Smullyan's monochromatic chess problem, but several readers asked 
themselves whether the problem could still be solved ifthe sides were reversed. 
Two readers independently sent the following "proof" that the uncolored 
pawn still must be black. Assume that the pawnis white. T o  reach the position 
shown in the problem, the pawn must move at least three times: a first move of 
two squares, then two captures. The other two white pawns must make at least 
four moves each to reach their positions. This includes six captures. Thus at 
least eight captures of black pieces, all on black squares, must be made by the 
three white pawns. At the start of the game Black has eight pieces on black 
squares. But one of them, the king's knight, cannot move from its original cell. 
Black therefore has only seven white pieces on black cells that are available for 
capture. The initial assumption must be false. The uncolored pawn is black. 
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Unfortunately the proof is false also. William J. Butler, Jr., sent a legal game, 
conforming to the monochromatic proviso of the problem, in which the sides 
are reversed and the position shown in the problem is reached with the uncol- 
ored pawn being white. The flaw in the above "proof" is that it overlooks the 
fact that black pawns on initial white cells can be captured en passant by white 
pawns on black cells. 

5 .  Eight swings are enough to reverse those two bookcases. One solution: (1) 
Swing end B clockwise 90 degrees; (2) swing A clockwise 30 degrees; (3) swing 
B counterclockwise 60 degrees; (4) swing A clockwise 30 degrees; (5) swing B 
clockwise 90 degrees; (6) swing C clockwise 60 degrees; (7) swing D counter- 
clockwise 300 degrees; (8) swing C clockwise 60 degrees. 

"If you moved bookcase AB in fewer than five swings," writes Robert Abes, 
who originated this problem, "then you put an end through a wall in mid- 
swing, or (more likely) wound up with its front side still facing out. Ifyou moved 
bookcase CD without a 300-degree second swing, you either wasted a swing or 
scooped a hollow out of a wall. Thanks to Jim Lewis for helping me move the 
large bookcase." 

Wayne E. Russell noted that the bookcase problem did not rule out rhe 
possibility that the room was much higher than the cases. He showed that by 
raising one end of the large case high enough it could be reversed in three 
swings. Johannes Sack discovered the surprising fact that the minimum-move 
solution does not correspond to a solution with a minimum expenditure of 
energy. The given three-move reversal of the small bookcase carries the cass at 
least 33 feet. If four moves are used (D counterclockwise 90 degrees, C counter- 
clockwise 60 degrees, D counterclockwise 60 degrees, C clockwise 30 degrees), 
the case is carried only 18.8 feet, an energy saving of 43 percent. 

6. Here is how a coin can be used to decide between alternatives A and B with 
probabilities expressed by any rational or irrational fraction. 

Notational rules: 

a. Express A as an endless binary fraction. 

b. Number the digits 1, 2, 3, 4, . . . and similarly number the flips of the 
coin. The nth digit is called the "corresponding digit" of the nth flip. 

c. Let the value of each flip be 1 for heads, O for tails. 

Procedural rules: 

a. If the value of a flip equals its corresponding digit, flip again. 

b. If the value of a flip is less than its corresponding digit, stop. This decides 
for A. 

c. If the value of a flip is more than its correspor~ding digit, stop. This decides 
for B. 
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Let us see how this works when A is 113 and B is 213. In binary form 
A = .01010101 . . . and B = .10101010. . . . The sequence of flips stops 
with a decision for A if and only if tails (value 0)  appears on a flip whose 
corresponding digit is 1 in the endless binary fraction for A. The 1's are in even 
positions; therefore the probability of this happening is 1 1 2 ~  + l / z4  + 1 1 2 ~  
+ . . . .  

The sum ofthis series is .01010101. . . . This is obvious when we consider 
its binary fractions: 

Similarly, the sequence of flips stops with a decision for B if and only if heads 
(value 1)  appears on a flip corresponding to 0 in the endless fraction for A. The 
0's are in odd positions; therefore the probability of this happening is 112 + 
1 1 2 ~  + l / z5  + . . . . This is the same as summing .1 + .001 + ,00001 + 
. . . , a series that just as obviously adds to .10101 . . . = 213. 

The specific problem given was to decide between A equaling the fractional 
part of TC and B equaling 1 - A. First express A as a binary fraction: 

As before, the probability of stopping with a decision for A is the probability 
that you get a tail (0) on a flip whose corresponding digit is 1. This probability is 
equal to the binary fraction itself, because the fraction is expressing the proba- 
bility as the sum of an endless series of binary fractions, each a reciprocal of a 
power of 2. And the probability of stopping with a decision for B is the 
probability you will get a head (1) on a flip whose corresponding digit is 0. 

In the first case the probability is l lz3  + 1 1 2 ~  + 112" + . . . . (The su- 
perscripts are the positions of the 1's in the binary fraction for A,)  The sum is 
.OOI00100001 . . . . the binary fraction for A. 

In the second case the probability is 112 + 1 1 2 ~  + 112~  + . . . . (The su- 
perscripts are the positions of the 0's in the binary fraction for A.) The sum is 
. I101 101 11 10 . . . , which is the complement of the previous fraction; that 
is, 1's have been replaced by O's, and 0's by 1's. It is the binary fraction for B. 

It is not hard to see why the method works. Probability A is expressed as a 
sum of an endless series of probabilities. Each is a disjoint event, so their sum 
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must equal probability A. There is, of course, a rapidly decreasing probability 
that the flipping will not stop, but this probability is vanishingly small. The 
sequence continues only as long as flip values keep matching their correspond- 
ing digits. O n  the nth toss the probability of such a match is 112n, which has zero 
measure in the endless series. In other words, the procedure is practically 
certain to stop, usually quite soon, with a decision. 

7. Once you guess that the stranger is a card - and what a card! -the rest is 
easy. "Thin, flat voice" is the first hint. The dialogue eliminates first the Joker, 
then the suits of hearts, diamonds and clubs. A lack of spots makes the stranger 
a face card, and being unmarried eliminates the king and queen. Only the jack 
of spades is left. 

8. The fish swims the other way if you move three toothpicks and the button 
as shown in Figure 106. 

Sharon Cammel and Jonathan Schonsheck, in a joint letter, pointed out that 
there are just two ways to move three toothpicks and make the fish swim the 
other way: one way sending it a trifle higher in the water, the other sending it 
lower. Tom Kellerman, age eight, found that by moving two toothpicks he 
could make the fish swim either up or down, although the fish became shorter 
and fatter. 
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Figure 107 Proof of the circle theorem 

9. Draw three line segments connecting 0 to each of the centers, X, Y and 2, 
of the three circles. Add six line segments to connect each center to the two 
nearest of the intersection points, A, B and C. The  nine line segments are shown 
in black in Figure 107. Each line segment is a unit in length; therefore the lines 
form three rhombuses. Now through each ofthe intersection points A, B and C 
draw another line [dotted], making each line parallel to a radius line segment of 
one of the circles. This forms three additional rhombuses. Because opposite 
sides of parallelograms are equal, we know that the three dotted line segments 
are equal and that each is one unit in length. Consequently they meet at a point, 
Q, that is the center of a circle with a radius of one unit. The intersection points 
A,  B and C lie on this circle, which is the assertion we were asked to prove. 

Many readers sent other ways of proving the theorem. For discussions of the 
problem see George Polya, Mathematical Discovery, Vol. 2 ,1965 ,  pages 53 - 58; 
and Ross Honsberger, Mathematical Gems 11, the Mathematical Association of 
America, 1976, page 18. 



Look-See Proofs 

There is no more effective aid in understanding certain algebraic identities than 
a good diagram. One should, of course, know how to manipulate algebraic 
symbols to obtain proofs, but in many cases a dull proof can be supplemented 
by a geometric analogue so simple and beautiful that the truth of a theorem is 
almost seen at a single glance. 

Consider, for example, a basic summation identity: The sum of the first n 
positive integers is half of n(n  + 1). In equation form, 

The first n consecutive positive integers can be depicted by dots in triangular 
formation [see Figure 1081. Two such triangles fit together to form a rectangular 
array containing n(n + 1) dots. Because each triangle is halfofthe rectangle, we 
see at once that the formula for the number of dots in each triangle is half of 
n(n  + 1). 

This simple proof goes back to the ancient Greeks. They called any number 
of the form %n(n -k 1) a triangular number, and any number of the form n2 a 
square number because it could be represented by a square array of dots. Figure 
109, left, shows how square arrays prove that the sum ofthe first n odd integers is 
n2. Think of the pattern as extending any desired distance to the right and 
down. Each reversed L-shaped strip contains the odd number of circles indi- 
cated at the top. It is obvious that each additional strip, that is, each new odd 
number in the series 1 + 3 + 5 . . . , enlarges the square by one unit on a 
side and that the total number of dots in each square bounded by the nth odd 
number is n2. 

The Greeks also used square arrays to establish the identity 1 + 2 4- 3 f 
. . . + n + . . . + 3 + 2 + 1 = n2. The case for n = 5 is shown in Figure 
109, right. Is any explanation necessary? 
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Finding a formula for the sum of the squares of the first n integers takes a bit 

more doing. Consider the squares of the first five integers. As we have seen, any 
square can be represented as the sum of consecutive odd integers starting with 1 
[see Figure 11 01. In these arrays a row of nine dots occurs once, a row of seven 
dots twice, five-dot rows three times, three-dot rows four times and one-dot 
rows five times. The 15 rows can be stacked, beginning with the longest on the 
bottom, to form a skyscraper. By placing square arrays for 12, 2', 3', 4' and 5' 
on each side of the skyscraper, we can make a rectangle with a height equal to 
the sum of the first n integers. As we have seen, this sum is Mn(n 4- 1). The 
width of the rectangle is 2n  -1- 1. The total number of dots in the rectangle is the 
product of height and width: 

Figure 109 Sum of first n odd integers is n 2 

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 5 2  



The skyscraper, which represents the sum of the squares of the first n 
numbers, is one-third of the rectangle. Dividing the above formula by 3,  
therefore, gives the formula for the skyscraper, which is the formula we seek: 

The formula should be familiar to all students of recreational mathematics. It 
gives the number of different squares, of all sizes, that can be found on a 
chessboard with n cells on a side. The standard 8-by-8 board, for example, 
contains 8(8  -k 1)(16 + 1)16 = 204 different squares. It is not hard to see that 
the formula applies. An 8-by-8 square appears only once on the board. If a 
7-by-7 square is placed on the board, it can be shifted to 2' = 4 positions. A 
6-by-6 square can be shifted to 3' = 9 positions (eight on the border and one in 
the center), a 5-by-5 to 4' = 16 positions and so on. 

The sum of the cubes of the first n integers is involved in a remarkable 
identity that astounds most students when they first encounter it. The sum of 
the first n cubes equals the square of the sum of the first n integers. In algebraic 
form, 

An old diagram for it is shown in Figure 11 1. The square array of numbers, 
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Figure 111 l3  + z3 + 33 + 43 + !i3 = (1  + 2 + 3 + 4 + 512 

which extends down and right to infinity, is simply the multiplication table. 
Each number is the product of the number at the left of its row and the number 
at the top of its column. The table is divided into bent strips, and the sum of 
the numbers in each nth strip is n3. With a square of five bent strips the sum 
of all the numbers is l3 + z3 + 33 + 43 + 53. Since this square is the multipli- 
cation table through 5 ,  it is equally clear that the sum of all the numbers is 
( 1 + 2 + 3 + 4 + 5 ) ( 1 + 2 + 3 + 4 + 5 ) , 0 r ( 1 + 2 + 3 + 4 + 5 ) ~ .  

Unfortunately this geometric analogue is not as good a "look-see" proof as 
the preceding examples are. It is not instantly obvious that the numbers in each 
nth bent strip have a sum of n3. A more elegant geometric analogue of the same 
identity was devised by Solomon W. Golomb and published in 1965. The 
isomorphism [see Figure 1121 is easily explained. The large square has a side 
that equals the sum of the first eight integers, so its area is 

This gives one side ofthe identity. For the other side note that the large square is 
made up of one square of side 1, two squares of side 2, three of side 3, four of side 
4 and so on up to eight squares of side 8. For squares of even sides there is a 
square overlap, shown in black, but each overlap is adjacent to an empty square 
region, shown white, which is the same size. W e  can therefore take one of each 
pair of black overlapping squares and use it for plugging the hole next to it and, 
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in this way, eliminate all overlaps and holes. Now, 1 X l2 = 13, 2 X 22 = 23, 
3 X 32 = 33 and so on. In other words, the total area is l3 + Z3 + 33 + 43 + 
53 + 63 + 73 + s3, which is the other side of the identity. 

In the same article Golomb provides another proof, based on a suggestion by 
Warren Lushbaugh, for the same summation identity [see Figure 1131. The 
squares shown have sides 1 , 2 , 3 , 4  and 5. There are no holes or overlaps. Each 
square of side n appears 4n times. We can write the identity 

which simplifies to the same identity as before. The sum of the first n integers is 
%n(n + I ) ,  and since the square of this equals the sum of the first n cubes, we 
can represent the sum of the first n cubes by the compact formula 

This too is a formula that puzzlists should know. It not only gives the number 
of different cubes, of all sizes, contained in a cubical chessboard of side n but 
also gives the number of different rectangles of all sizes (including squares) in a 
flat chessboard of side n. Thus the standard chessboard of side 8 contains 1,296 
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rectangles, and a three-dimensional board of side 8 contains 1,296 cubes. We 
can "see" how this counts the cubes by the same mechanical argument we 
applied to the squares of a chessboard. There is one largest cube of side 8. ,4n 
order-7 cube goes in z3 = 8 corners, an order-6 cube in 33 = 27 spots and so 
on. 

The flat board provides still another geometric way ofproving that the sum of 
the first n cubes equals the square of the sum of the first n integers. Robert G. 
Stein explained in 1971 how two counting arguments for the number of 
rectangles in a square chessboard give the two sides of the identity. See also 
Gene Murrow's more detailed solution of the rectangle-counting problem in his 
1971 article. 

W e  turn now to another class of geometric analogues: dissections that illus- 
trate simple identities involving squares that are the sums of other squares and 
cubes that are the sum of other cubes. Take, for instance, the familiar Pythago- 
rean triplet 32 + q2 = 5'. It is the only such triplet of consecutive positive 
integers. How can we cut an order-5 square into the fewest number of poly- 
ominoes that can be rearranged to make two squares of sides 3 and 4; Two 
solutions in four pieces-one with the 3-square intact, the other with the 
4-square intact - are shown in Figure 114, top. The dissection cannot be done 
with fewer pieces. No polyomino can be longer than four units; therefore the 
5-square must be divided by a cut joining left to right sides and by another cut 
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Figure 11 4 5' = 3' + 4' (top) and 
7' = 2' + 3' + 6' (bottom) 

joining top to bottom- a procedure that must produce at least four pieces. 
Because there are many four-piece solutions, recreational geometers amuse 
themselves by adding other provisos. In the two solutions shown, the total 
cutting length (10 units) is minimal, and in the top solution all the polyominoes 
are rectangles. 

Henry Ernest Dudeney's puzzle books contain many dissection problems 
that illustrate other square identities. For example, the solution of Problem 357 
in 536 Puzzles and Curious Problems is an analogue of 2' + 3' + 6' = 7'. The 
pattern has six pieces and a cutting length of 27 [see Figure 102, bottom]. Can the 
reader find a better solution with only five polyominoes? 

Two cubes cannot have a cubical sum, but w3 + x3 + y3 = z3 has an infinity 
of integral solutions. The only solution in consecutive positive integers (indeed, 
the only solution with the first three terms consecutive) is 33 + 43 + j 3  = 63.  
This suggested to the British mathematician John Leech the following pretty 
problem: How can the order-6 cube be cut along integral lattice planes into a 
minimum number of polycubes (pieces formed by joining unit cubes) that will 
make separate cubes of sides 3,  4 and 5? 

E.  H. Wheeler was the first to solve it. His eight-piece solution was published 
in Eureka (an annual publication of the Archimedean Mathematical Society of 
the University of Cambridge), Volume 14,  195 1, page 23. In Wheeler's dissec- 



Figure 115 Order -6 cube's dissection by Wheeler (a), O'Beirne (b)  and D u q  (c) 

tion, shown by the six cross sections in the left column of Figure 115, the 3-cube 
remains intact. (Cross sections of the intact cubes are shaded in all three 
solutions.) A simpler eight-piece solution was later found by J. H. Thewlis of 
Argyll, Scotland, which Thomas H. O'Beirne of Glasgow further simplified as 
shown in the illustration's middle column. The 4-cube remains intact, and only 
two polycubes are not rectangular blocks. A remarkable eight-piece dissection, 
with the 5-cube intact, found in 1970 by Emmet J. D u e  of Oak Park, Ill., is 
shown in the column at the right. 

O'Beirne asked himself: What is the minimum number of pieces for a 
solution of this problem in which all the polycubes are "blocks" (rectangular 
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Figure 11 6 Five-piece dissections for 72 = 6' + 32 4- z2 
parallelepipeds)? It proved to be a difficult question. There must, of course, be 
at least eight polycubes, regardless oftheir shapes. No polycube can be six units 
long in any direction. This requires that the 6-cube be divided by at least three 
intersecting slices: one cutting all left-to-right rows, one cutting all front-to-back 
rows and one cutting all top-to-bottom columns. The procedure produces at 
least eight polycubes. By more complicated reasoning O'Beirne was able to 
show that an eight-piece dissection is not possible with all rectangular blocks. 

Is it possible with nine blocks? Yes, In 197 1 O'Beirne obtained a nine-block 
dissection that he believes is unique, although he has not been able to prove it. It 
is difficult to find the nine-block dissection without using a computer program. 
O'Beirne's solution is given in the answer section. 

In working on this polycube problem and others, it is helpful to have a few 
hundred plastic interlocking cubes of different colors. Such cubes are available 
from firms that sell mathematical supplies to teachers. 

ANSWERS 

The first problem was to improve on Dudeney's dissection of a 7-square into six 
pieces that form squares of sides 2, 3 and 6. At the top of Figure 116 is shown a 
five-piece dissection. I thought this was unique in having the minimal cutting 
length of 16 units, but Graham Lord sent the five-piece dissection shown at the 
bottom of Figure 116 that also has a cut length of 16. 

Figure 117 shows in six cross sections how 'Thomas H. O'Beirne sliced a 
6-cube into nine rectangular blocks (the min.imum) that can be reassembled to 
make separate cubes of sides 3, 4 and 5. No two "bricks" in this remarkable 



Figure 11  7 Nine-block dissections for 63 = 5 3  + 43 + 33 

dissection are alike. O'Beirne has shown that a dissection in eight blocks is not 
possible, but it is not known whether his nine-piece dissection is unique. 

ADDENDUM 

Alistair J.  McIntosh wrote from England to comment on the multiplication 
square shown in Figure 11 1. If we draw on its matrix any rectangle that has its 
top left cell in the top left corner of the matrix, the number in the bottom right 
corner of the rectangle gives the number of cells in the rectangle. Knowing this, 
further inspection of the table at once discloses a variety of arithmetical truths 
not otherwise obvious. For example, we see that multiplication is commutative 
because an m-by-n rectangle has the same number of cells as an n-by-m rectan- 
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a-b 

Figure 11 8 Visual proofs of two identities 

gle. W e  see why square numbers are called square and why the square numbers 
must be on a main diagonal of the table. If we move one step diagonally up and 
right from any square number, we hit a number one less than the square. This 
clearly is the same as comparing the area of a square with the area of a rectangle 
having one side that is one less than the side of the square and another side that 
is one more than the side of the square. In algebraic terms we have uncovered 
the identity n2 - 1 = ( n  + l ) ( n  - 1 ) .  Many other algebraic equations can be 
understood by carefully studying the matrix. . - 

I did not have space in my column for mentioning how easy it is to diagram 
the familiar identities ( a  + b)' = a2 + 2ab + b2 and ( a  - b)2 = 

a2 - 2ab + b2. 
The diagrams in Figure 118 are look-see proofs of these two equations. 

Although these diagrams are as old as algebra, it is surprising how few teachers 
bother to display them to students. Figure 119 shows how readily this type of 
diagram can be extended to three dimensions to display the cubic equation 
( a  + b)3 = a3 + 3a2b + 3ab2 + b3. If I were teaching algebra, I would have 
this model available for students to take apart to verify the identity by calculat- 



b 

Figure 11 9 (a + b)3 = a3 + 3a2b + 3ab2 + b3 

ing the volumes of the eight polycubes and adding them to get the volume of the 
cube they form. (In the picture, only the a3 piece is not visible.) 

If we do not require that the two smaller squares, in a dissection of the 
5-square to a 3-square and a 4-square, be separated but allow them to be joined, 
the 3' + 4' = 5' equality can be displayed by a dissection ofjust three pieces, 
as shown in Figure 120. Similar reductions in the number ofpieces can be made 
for other models of square and cubic identities. Consider the slicing of the 
6-cube into polycubes that will form cubes of sides 3, 4 and 5 .  If the three 
smaller cubes are allowed to be attached, E. J.  Duffy found scores of solutions in 
as few as six pieces, including many that produce a neat tower ofthe 3-cube on 
the +cube on the 5-cube. Can a solid joining the three cubes be produced by 
cutting the 6-cube into fewer than six polycubes? This question remains unan- 
swered. 

A famous anecdote tells how G. H. Hardy, visiting the East Indian mathe- 
matician Ramanujan in a hospital, remarked that the number of his cab, 1729, 
was a dull number. O n  the contrary, Ramanujan promptly replied, it is the 

- 
Figure 120 A 3-piece proof of 3' + 4' = 5' 
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smallest integer that can be expressed as the sum of two cubes in two different 
ways: 1729 = l3 + 1 2 ~  = g3 + lo3. In 19701. H. Cadwell published apaper 
(see the bibliography) showing how a 7 X 13 X 19 = 1,729 block can be cut 
into 12 polycubes that will form a pair ofcubes with sides 1 and 12 and a pair of 
cubes with sides 9 and 10. 
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CHAPTER  SEVENTEEN

Worm Paths

Fashionable methods of teaching mathematics to children come and go. (The
last to go was the “new math” fiasco.) One of these days mathematics teach-
ers will discover what John Dewey tried to tell them 75 years ago: Children
learn best by doing something they enjoy. With this in mind, Seymour A.
Papert, a former assistant to Jean Piaget, who is now working in the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology, has
designed a variety of animal robots that can be controlled by a desk comput-
er. One of them is a “turtle” with a pen on its underside. Suitably programmed,
the turtle draws geometric figures by crawling across large sheets of paper on
the floor.

Defining geometric figures as paths generated by a moving point is an
ancient idea. Consider a square. Instead of calling it a four-sided polygon with
equal sides and angles, call it the path traced by a worm crawling over a plane
according to the following rule: Go straight for distance k, turn 90 degrees left
and repeat until the path returns to its origin.

The idealized worm (moving point) can obviously be programmed to gener-
ate any pattern of lines. A challenging recreational task now presents itself.
What kinds of program, with extremely simple rules, give interesting or beauti-
ful patterns? A good way to simplify rules is to restrict the worm to paths along
a regular lattice. This enables one to experiment with rules by drawing paths on
square or isometric graph paper. Better still, if one has access to a computer
with a display screen, one can write simple programs and then enjoy the spec-
tacle of watching a path of light grow on the screen.

Frank C. Odds, a British biochemist, recently proposed a class of rules for
generating patterns that he named spirolaterals. The worm crawls a distance of
one unit, turns, crawls two units, turns, crawls three units and so on, traversing
distances in counting order until the length of a path segment reaches a speci-
fied integer, n, when the procedure starts over. The turning angle is always the
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Figure 121 Spirolaterals of orders 1 through 8 with all turns in same direction 

same, but the directions of turn may be right or left according to the worm's 
program. The number n, which is the number of segments in the counting 
series and also the number of turns before the series repeats, is called the order 
of the spirolateral. 

Two examples will make this clear. If the order is 1, the angle is 90 degrees 
and all turns are in the same direction, the spirolateral is a square. If the order is 
7 ,  the angle is 90 and all turns are the same, the spirolateral has a pleasing closed 
pattern. Figure 12 1 shows all the right-angle spirolaterals of orders 1 through 8 
when all turns are the same. It is easy to see why Odds chose the name 
spirolateral: "lateral" for flat surface, and "spiro" for the square spirals that 
generate the figures. 

Note that spirolaterals oforders 4 and 8 do not close (return to the origin). As 
Odds puts it, they meander jerkily to infinity. Indeed, it is not hard to prove that 
there is no closure for orders in the series 4, 8, 12, 16, . . . , that two repeti- 
tions of the square spiral will close the figure (producing twofold symmetry) if 
the order is in the series 2, 6, 10, 14, . . . and that all other orders close after 
four repetitions and have fourfold symmetry. 

There is no reason why all turns must be the same way, but when they vary 
the situation becomes complicated enough to call for a compact notation. Odds 
suggests writing the angle as a subscript of the order number and using a 
superscript on the left or the right to show which turns are left and which right. 
For example, 1'7990 defines the spirolateral generated by nine turns of 90 
degrees, with left turns preceding segments 1 and 7 and (by implication) all the 



Figure 122 Ninety-degree spirolaterals with mixed turns: ggO6 (left) s901'438 (right) 

other segments turning right. The same spirolateral could be defined by putting 
a superscript on the right to indicate right turns, 99,2'394'5,6,8,9, but the first 
notation seems preferable. 

Figure 122 shows two right-angle spirolaterals with mixed left and right 
turns. Figure 123 shows spirolaterals with angles of 36, 45 and 60 degrees. 
Spirolaterals with 60-degree turns can be easily drawn on isometric paper. 
Those with 45-degree angles are not hard to construct with a ruler and a 
draftsman's triangle, but those with other angles take more doing. Any angle 
that is an exact divisor of 180 degrees will generate a spirolateral. 

Not much is known about spirolaterals. Sometimes two different rules pro- 

Figure 123 Spirolaterals (a) 336 (b) 1345 (c) z~~ (d) 1'2560 (el 3560 ( f )  2560 
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duce spirolaterals that are mirror images (for example 1'2'3790 and 5'6'7790), but 
no one knows how to predict this without drawing the figures. Nor is it known 
how to tell from looking at a spirolateral's formula, except in special cases, 
whether or not the figure will close and, if it does, how many repetitions are 
needed to close it. 

A few years ago John Horton Conway of the University of Cambridge 
suggested a new approach to worm paths. Instead of viewing the worm as an 
explorer, view it as an eater. Food is confined to the lines of an arbitrarily large 
grid. The worm hatches from an egg at one node and then starts to crawl along 
grid lines, eating as it goes. A fixed set of rules determines the worm's decision 
at each node. It is assumed that the worm never traverses a segment already 
eaten. No segment lengths need to be specified, only the direction of turn, the 
direction depending solely on the state (eaten or uneaten) of all segments 
meeting at that node. 

"Paterson's Worm," by Michael Beeler, a memorandum issued in 1973 by 
M.I .T. 's  Artificial Intelligence Laboratory, deals entirely with such worm 
tracks. What follows, either directly quoted or paraphrased, is taken from the 
memorandum with the permission of Beeler and Marvin L. Minsky, who heads 
the laboratory. 

"Certain prehistoric worms fed on sediment in the mud at the bottom of 
ponds," Beeler's memorandum begins. "For efficiency, they would not retrace 
paths which had already been traveled, since little food was left there. Yet food 
probably occurred in patches, so it was desirable to stay near previous trails. 
Worms had innate 'rules' regarding how close to 'eaten paths' to stay, how far to 
go before turning around, how sharp a turn to make, etc. These rules varied 
from species to species, and paleontologists can trace the development of 
species and determine the similarity of different species by comparing fossil 
records ofworm tracks. (See Science maqazine, 2 1 November 1969, for further - 
details and a discussion of computer simulation of natural worm tracks.) 

"Early in 1971, Michael Paterson [a computer scientist at the University of 
Warwick] mentioned to me a mathematical idealization of the prehistoric 
worm. He and John Conway had been interested in a worm constrained to eat 
food only along the grid lines of graph paper. . . . 

"If a worm, arriving at a node with no segments eaten (except of course the 
one it just ate), should find in its rules, 'For this distribution, go straight,' then 
the worm will go straight forever. Since this is neither interesting to us, nor very 
useful to a real worm, which would quickly reach the edge of its food patch, we 
discard it. W e  require that, upon discovering a virgin node, all sets of rules must 
say to turn. T o  avoid mirror-image duplication, we require that the turn be to 
the worm's right (clockwise as seen from above)." 
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Figure 124 Fossil tracks of the only two species of simple quadrille worms 

Consider what Beeler calls a "simple quadrille worm": a worm crawling on a 
square grid and turning right at each node. What happens after it traces a 
square? It cannot turn right again because this would take it along an eaten 
segment. It has only two choices. If it is programmed to turn left if, and only if, it 
cannot turn right, it will trace two squares [see Figure 124a1. No uneaten 
segments are available, so the worm dies. If it is programmed to go straight 
when it cannot go right, and left when it cannot go straight or right, it will trace 
five squares before it expires at its origin [b]. These two fossil tracks exhaust the 
variety of species of simple quadrille worms. 

T o  avoid a worm's early demise, Conway proposed that quadrille worms 
have the ability to "look ahead" and see the distribution of eaten and uneaten 
segments at each ad!acent node. For example, a worm could be programmed to 
turn right if, and only if, it senses that this will take it to a node where four 
uneaten segments meet. Otherwise it goes straight. The result is a simple square 
spiral. If the rule is to turn left whenever a right turn leads to a node with an 
eaten segment, the path is a more interesting spiral [see Figure 1251. It is easy, of 
course, to produce more elaborate paths by complicating the rules. 

The rules may allow anything. What happens when rules allow look-ahead 
worms to hop? What happens when barriers are suitably placed or when the 
grid is bounded on all sides? What happens when two or more worms of the 
same or different species interact? What happens when a newly hatched worm 
crawls a short distance along a defined path (such as a straight line of three 
units) before its repetitive behavior starts? How about two armies of worms 
crawling toward each other, each army obeying a different program? Are there 
possibilities here for competitive games? Are there interesting paths or patterns 
in three dimensions and higher dimensions? 

Beeler avoids such difficult questions by confining his attention to what I 
shall call "simple isometric worms": worms that feed along an isometric grid of 



CHAPTER SEVENTEEN 210 

Figure 125 Infinite path of a look-ahead quadrille worm that turns left when it 
cannot turn right 

unit equilateral triangles. They are simple worms because they do not look 
ahead. With the isometric grid, however, six segments (not four) meet at each 
node. It seems to be a trivial difference, but, as Beeler makes clear, the possibili- 
ties for variant rules allow the definition of no fewer than 1,296 species. 

All simple worms, quadrille or isometric, obey three general rules: 

1. If no segments have been eaten at a node (except the segment just traveled), 
the worm turns right. 

2. If all segments at the node have been eaten, the worm dies. 

3. If only one segment at the node is uneaten, the worm takes it. 

As we have seen, a simple quadrille worm following the above rules en- 
counters only one "field" in which it must choose. Since it has only two choices, 
we can define only two species. The isometric grid, in contrast, offers a simple 
worm four major fields (one consisting of four subfields) in which decisions 
must be made. It is the behavior of these simple isometric worms that Paterson 
became interested in, and Beeler's memorandum also is primarily concerned 
with their behavior. 
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The four major fields and all their choices are shown in Figure 126. The black
lines indicate uneaten segments, the dotted lines are eaten segments of the worm’s
path and the arrows show how the worm approaches and leaves a node.

Figure 126 Fields of choice for simple isometric worms
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Figure 127 Path traced by 14 simple isometric worms 

The four fields are the following: 

1. The  worm approaches a node with no eaten segments other than the one it 
has just traversed. Its right turn can be either "gentle" (120 degrees) or "sharp" 
(60 degrees). Number of choices: two. 

2. The worm meets one eaten segment as it returns for the first time to its 
origin. As the chart shows, it can approach this node along any of five different 
segments. For each approach there is a choice of leaving by one of four uneaten 
segments. Number of choices: four. 

3. The worm meets two eaten segments as it returns to a point along its path. 
The node will be the vertex of either a sharp turn or a gentle one. In either case 
the approach can be made in four ways. For each way the worm can leave by 
one of three uneaten segments. Number of choices: 3 X 3 X 3 X 3 = 81. 

4. The worm meets three eaten segments as it returns for the second time to its 
origin. This can happen in 10 ways, but each requires only a choice between 
two ways of leaving the node. Number of choices: two. 

Meeting four or five eaten segments does not offer the worm a choice. In the 
first case it must take the only remaining uneaten segment. In the second case it 
has no segment to take, so it dies. Thus there are 2 X 4 X 81 X 2 = 1,296 sets 
of rules, each defining a distinct species of simple isometric worm. 

Beeler uses the pattern shown in Figure 127 to explain how the rules work. 
The notation adopted here (Beeler uses a more compact notation based on octal 
and binary digits) identifies this as a fossil path generated by a la2b3acac4b 
worm. The formula tells us that when the worm faces a choice in Field 1, it 
follows Rule a. (It makes a gentle, not a sharp, turn.) For Field 2 it chooses b. 
The  four subscripts after 3 refer to the four subfields of Field 3, where choices a, 
c, a, c are in the worm's feeding program. Finally, for Field 4 the worm selects b. 
As Beeler suggests, the reader might pause at this point to see if he can trace the 
path on a sheet of isometric paper, following the seven rules given by the 



formula. (It is necessary at each node to rotate the paper until the pattern at that
node corresponds to the proper diagram on the chart.)

The path just described is generated by 14 worms. Some trace it exactly the
same way. For example, the choice presented by the first subfield of Field 3
never arises; therefore it does not matter which of the three choices, a, b or c, is
in the program. We indicate this in the formula by putting the three choices
inside parentheses: 1a2b3(abc)cac4b The formula now describes three different
worms. Each draws the same path the same way. Other worms draw the same
path in different ways.

Beeler’s computer program explored the behavior of all 1,296 species of
simple isometric worms. Results show that 209 species generate paths that are
unique, in the sense that no other species generates them. Forty-six paths are
each characteristic of two species, and 44 paths belong to more than two. Thus
there are 299 distinct paths all together.

The simplest of the 299 paths is the radioactivity symbol [see Figure 123c]. It
has the smallest length (nine units) and also the fewest number of nodes
(seven). It is the path traced by the largest number of worms, no less than 162
species. Using parentheses to show alternatives, we obtain one formula, which
defines all 162:

1b2(ac)3(abc)(abc)(abc)(abc)4a

The formula shows at once that it describes 2 × 3 × 3 × 3 × 3 = 162 sets of
rules. If the reader will test this formula on isometric paper, he will find that,
regardless of the choice he makes inside each pair of parentheses, the radioac-
tivity symbol will result.

Is there a longest path? No, because many paths never return to their origin
a third time and are therefore infinite. A trivial infinite path of a type called the
zipper is produced by 54 sharp worms with the formula 1b2d3(abc)(abc)b4(ab) [see
Figure 128].

Other worms spiral forever around their origin. The spiral shapes can be
hexagons, diamonds, triangles, stars and asymmetric shapes such as the one
shown in Figure 129. “Shoot growers,” another class of infinite paths, start in
a conventional way, and then the worm falls into a curious spiraling action that
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Figure 128 Zipper path of 54 sharp worms
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Figure 129 Three-pointed spiral by a 1,2,3,b,4, worm 

keeps repeating itself with regular displacements, creating a rod that shoots off 
to infinity [see Figure 1301. 

The longest of the known finite paths is shown in Figure 131. The path is 
generated by a la2d~cbac4b worm and has 220,142 units. Note the crystalline 
regularity of the border and the lines that crisscross near the border, and how 
strikingly this symmetry contrasts with the dishevelment near the center. The 
point of origin, not identifiable, is at a spot just to the left of the center of the 
pattern. 

One speaks of "known" finite paths because about a dozen worms have 
paths so long that no one yet knows whether they are finite or infinite. The path 
generated by lb2a3bcM4b, for instance, was tracked by Beeler to a length of 10 
million units without revealing whether the worm dies or goes on gorging itself 
forever. 

Some path patterns have outlines as unstructured as a cloud [see Figure 1321. 
Others, such as the "superdoily," display the rigid sixfold symmetry of a snow 
crystal [see Figure 133.1 Note the six-pointed star in the center. Occasionally one 
such star or more appear as randomly situated white spots inside a gray plenum 
of closely packed unit triangles. Sometimes the stars are separated; sometimes 
they are partially merged to form binary or ternary systems. The situation is not 
unlike that of the physical world, in which low-order mathematical laws gener- 
ate a rich assortment of both patterned and unpatterned objects, as well as 
objects in which order and disorder, symmetry and asymmetry are crazily 
mixed. 
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Figure 130 Shoot grower by a 1,2d3,-4b worm 

Beeler's work clearly has just scratched the surface of isometric-worm pathol- 
ogy. His program investigated only the simplest genus, with no attempt to 
complicate the genetic rules or to find out what happens when simple worms 
interact with barriers, boundaries or other worms of the same or different 
species. 



Figure 131 Part of the longest known finite path generated by a simple isometric 
worm. The entire path is about twice as large as the segment shown on this page. 
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Figure 132 Cloud path generated by a gentle worm 1a2ab,3,4 

O n  August 13, 1973, Newsweek ran a story about Papert's turtle. A girl who 
had ranked near the bottom of her mathematics class was programming the 
turtle to draw a certain design. "That math must be fun," said a passing visitor. 
"There ain't nothin' fun in math," the girl replied. She had no idea she was 
doing math, reported Newsweek, and Papert saw no reason to tell her. 

ADDENDUM 

Some of the questions raised about "spirolaterals" have been answered by 
readers. The main problem-How can you determine from a spirolateral's 
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Ffgure 133 The superdoily 1a2d3cbaa4b 

formula whether it closes and, if it does, in how many repetitions? -was solved 
by James Thomas, William Laubenheimer, Steven Wolfson and E. Lawrence 
McMahon. It turns out (as other readers also reported) that a spirolateral results 
whenever the angle of turn is a rational number. If the angle is irrational, the 
spirolateral remains within a bounded region but never closes. 

Thomas gave the following procedure: First determine the angle's supple- 
ment (its difference from 180 degrees). Multiply this by the difference between 
the number of left turns and number of right turns. (The difference is equal to 
the spirolateral's order minus twice the number of left turns.) 

From the above result, keep subtracting 360 until the remainder is between 
- 180 and 180. Take the absolute value and call it x .  This represents the net 
angular change after each cycle. Ifx equals 0, there is either no closure (and the 
spirolateral is infinite) or it closes after the first cycle. 

If x is not zero, divide it into the lowest multiple of 360 that it will go into 
evenly. The result is the number of cycles required to close the spirolateral. 

T o  express this procedure by a compact formula, McMahon proposed 
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letting n equal the spirolateral's order, k equal the number of left turns and m 
equal 360 divided by the rational angle. Write the fraction 

and reduce to lowest terms. Ifthe result is an integer, the spirolateral either does 
not close or closes after one cycle. If the result is an integral fraction, alb, the 
figure closes after b cycles. 

Seymour Papert of MIT  now heads his own firm, Logo Systems, Inc., in 
Montreal, where he continues to explore and develop ways of teaching math to 
children by way of computer systems that use an extremely flexible language 
called LOGO, which he invented. The original mechanical turtle that crawled 
over the floor has become a "turtle" symbol on the computer screen. Manipu- 
lated by a keyboard or ajoystick or a mouse, the little beast traces patterns on the 
screen. Not only does the turtle teach geometry, but by giving it velocity and 
acceleration- Papert calls the enhanced reptile a "dyna-turtle" -it can teach 
elementary physics. You'll find all this explained in Papert's delightful book 
Mindstorms: Children, Computers, and Powerful Ideas, published by Basic Books 
in 1980. 

David Maynard, a computer hacker with Electronic Arts, in San Mateo, 
Calif., read my column on worms and was inspired to invent an exciting 
computer game in which two, three or four worms battle one another on the 
screen. The  game was introduced by Electronic Arts in 1983 as WORMS, one of 
several games on a floppy disk called "Golden Oldies" that runs on a Commo- 
dore or Atari. The triangular grid is toroidal-top and bottom, and left and 
right sides, wrap around. Each worm is a finite-state machine programmed by 
its player. When a worm moves, a sound output identifies the worm and which 
way it is moving. When a node is eaten, it changes to a color that indicates 
which worm ate it. The  player whose worm eats the most nodes is the winner. 
The game is too complex to analyze but great fun to play, and players soon 
develop intuitive skills. In its December 1983 issue, Omni selected WORMS as 
one of the year's 10 best games. 

Michael Beeler, who now works for a computer firm in Cambridge, Mass., 
tells me that, so far as he knows, all the worms listed in his memo as "uncertain" 
as to whether they are mortal or immortal are still uncertain. The memo is out of 
print, but copies can be purchased from NTIS Information Center, Springfield, 
Va., or from M.I.T. Microproduction Laboratory. 

A letter from Geoffrey Wyvill, in England, described an amusing worm 
path. Consider the counting numbers as they are represented in binary nota- 
tion. Assign to each number a 1 or a 0,  depending on whether there is an odd or 
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Figure 134 Samples of R. L. Phillips's complex spirolaterals 
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an even number of 1's in the number. This generates the sequence 
1 , I  , 0 , 1  ,O,O, 1,l ,O,O, 1 ,O, . . . . Give this sequence to a worm, telling it to go 
straight ahead one step at each 0 and to turn left at each 1 and go one step. 
Wyvill expected the path to be "large and rambling." T o  his surprise, the worm 
never left the closed path shown below: 

I passed Wyvill's letter along to Beeler, who had no difficulty proving that 
the poor worm is permanently trapped. 

R. L. Phillips, an engineer at the University of Michigan, wrote a computer 
program for generating complex spirolaterals. He sent me a large number of 
sample printouts, from which I have selected the six shown in Figure 134. 
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CHAPTER EIGHTEEN

Waring’s Problems

In 1909 David Hilbert, the noted German mathematician, proved a lucky guess
about numbers that had been made 139 years earlier by the English algebraist
Edward Waring. Hilbert’s proof, one of his great achievements, has led to sig-
nificant developments in number theory and has raised a myriad of fascinating
related questions. Many of the questions, unsolved to this day, are so easy to
understand, and so amenable to amateur empirical research by anyone with
tables of powers and a desk computer, that perhaps a reader of this chapter will
be the first to lay some of them to rest.

It all started in 1770 when Waring, in his book Meditationes Algebraicae, made
the following conjecture: Every positive integer (he said in substance) can be
expressed as the sum of no more than n positive kth powers, the value of n
being a function of k. He stated that n equals 4 for squares, 9 for cubes and 19
for fourth powers, which is to say that every integer is the sum of no more than
four squares or nine cubes or 19 fourth powers. For example, if you start
investigating the natural numbers, you quickly discover that 7 is the smallest
number that requires four squares (4 + 1 + 1 + 1), but the next number, 8,
requires only two (4 + 4). Is there a number that requires more than four posi-
tive squares? Waring said no.

How about cubes? The smallest number requiring nine cubes is 23 (two 8’s
plus seven l’s). The smallest number requiring 19 fourth powers is 79 (four
16’s and fifteen l’s), the smallest requiring 37 fifth powers is 223 (six 32’s and
thirty-one l’s) and so on. Waring’s conjecture was that for every power there
is a maximum number of positive powers required to express every natural
number.

It seems unlikely that Waring, a mathematician of middling ability, had any
powerful, secret techniques for proving his conjecture even for squares and
cubes. More likely the values he gave for squares, cubes and fourth powers were
just plausible surmises supported by flimsy empirical evidence.



At about the same time that Waring recorded his conjecture, his value of n = 4
for squares was verified. Fermat had believed this “four-square theorem” to be
true, but Lagrange was the first to prove it. Some of the proofs are elementary but
not short. Readers interested in working through a proof will find one clearly
explained in The Enjoyment of Mathematics, by Hans Rademacher and Otto Toeplitz.

Hilbert’s 1909 proof of Waring’s general theorem was merely an existence
proof; it gave no procedure for calculating the minimum number of kth pow-
ers. The proof, ingenious but difficult, was later improved in many ways. The
simplest version, by the Russian number theorist Y. V. Linnik, is the last “pearl”
in a marvelous little book by A. Y. Khinchin called Three Pearls of Number
Theory. Linnik’s proof is so “elementary,” Khinchin says, that any good math-
ematician can master it in a mere three weeks of concentrated study!

As soon as mathematicians were convinced by Hilbert that Waring’s theo-
rem was true, they began searching in earnest for a formula that would give the
minimum number of kth powers. The symbol g(k), or “little gee” as it became
known, was adopted as the symbol for this set of numbers. Euler had easily
shown that the formula

where brackets indicate that the inside expression is rounded down to the near-
est integer, gives a lower bound for g(k). Mathematicians had long suspected
that this formula is also an exact expression for g(k). The suspicion was strength-
ened soon after Hilbert published his proof, when it was shown that g(3) is
indeed 9, as the formula predicts and as Waring had correctly guessed. That g(4)
equals 19 has not yet been proved. Leonard Eugene Dickson established 35 as
an upper bound; then almost 40 years went by before modern computers
allowed further progress. The value was lowered to 30 in 1971; the following
year H. E. Thomas, Jr., brought it down to 23, where, so far as I know, it
remains today.* That g(5) is 37 was proved in 1964 by Jing-jun Chen.

Since 1964 the value of “little gee” for k = 6 and all higher values has been
shown to conform to Euler’s formula for all k from 6 through 200,000. There
are strong grounds for believing that no higher k values violate the formula. It
has been known since 1957 that there is at most only a finite number of viola-
tions for k greater than 5, but the proof does not tell how to find such viola-
tions if indeed they exist. Most mathematicians today who have worked on
Waring’s problem are convinced that Euler’s formula holds for all k, even
though it has not been completely proved.
——————
* In 1986 Balasubramanian et al. showed g(4) = 19.
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Much harder to pin down are the values of “big gee “or G(k), the symbol for
the smallest number of kth powers needed to express all integers after a certain
point. In the case of squares the value of “big gee” was well known in Euler’s
day. It is 4, the same as the value of “little gee.” It is not hard to show that inte-
gers of the form 4a(8x + 7), where a and x are any nonnegative integers, require
four squares to express them as a sum. The least such integer is 7, and the series
continues: 15, 23, 28, 31, 39….

For cubes the situation is enormously more complicated; indeed, the value of
G(3) is far from known. Number theorists had long been puzzled by the fact that
23 and 239 were the only integers they could find that required as many as nine
cubes to express them. (For example, 23, is the sum of the cubes of 2, 2, 1, 1, 1,
1, 1, 1, 1.) In 1939 Dickson proved the astonishing fact that among the infinity of
integers only 23 and 239 require nine cubes. All integers above 239 can be
expressed as the sum of eight or fewer cubes. Hence G(3) is no higher than 8.

The value of G(3) was soon lowered to 7 or less when it was established that
only 15 integers require eight cubes: 15, 22, 50, 114, 167, 175, 186, 212, 231, 238,
303, 364, 420, 428 and 454. It is conjectured that beyond 454 all integers are the
sums of seven or fewer cubes, but the conjecture remains far from proved.

“Big gee” for cubes is probably smaller than 7, but no one is sure. The largest
number known to require seven cubes is 8,042 (the sum of the cubes of 19, 10,
4, 4, 3, 3, 1). It is known that there are infinitely many integers for which three
cubes are not enough. The value of G(3), therefore, is either 4, 5, 6 or 7. If the
first figure is correct, as some number theorists hope, it means that there is a
largest integer beyond which all integers can be expressed as the sum of no
more than four positive cubes.

In view of the enormous difficulty of settling the value of G(3), it is surpris-
ing that in 1939 the value of G(4) was shown to be 16 by Harold Davenport. It
is the only “big gee” above G(2) that is known exactly.

An infinite number of integers can, of course, be expressed as the sum of
one, two or three cubes. Do you remember the famous story about G. H. Hardy
and his Indian friend Srinivasa Ramanujan? When Hardy visited Ramanujan in a
hospital and told him that he had been taken there in a taxicab numbered 1729,
an “uninteresting number,” Ramanujan promptly responded that it was by no
means uninteresting. It was the smallest integer that could be expressed as the
sum of two cubes in two different ways. (1,729 is the sum of the cubes of 10
and 9, and 12 and 1.)

Many generalizations and variations of Waring’s problem have been pro-
posed, and the literature on such questions is voluminous. One of the oldest
and most obvious variants is to allow negatives of powers as well as the posi-
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tives. The first important analysis of this problem was a 1934 paper by Hardy’s
associate E. M. Wright. (He and Hardy coauthored the classic Introduction to the
Theory of Numbers.) Wright titled his paper “An Easier Waring’s Problem,” and it
has been called that ever since in spite of the fact that finding values for g(k)
turned out to be incredibly difficult. Wright called it “easier” because it is easi-
er to prove that g(k) exists.

To avoid confusing the big and little “gees” of the easier Waring’s problem
from the classic one, let’s put E or e (for “easier”) in front of the g’s. Of course,
the existence of eg(k) follows immediately from Hilbert’s 1909 proof, but
Wright meant that, aside from the proof of Waring’s problem, the existence of
eg(k) when negative powers are allowed is much easier to obtain directly. But cal-
culating eg(k) for the “easier” variant is quite a different matter. To this day it is
known only for squares, in contrast to Waring’s problem, where it is known for
all values of k through 200,000 except for the stubborn case of fourth powers.
“I had thought myself of writing a short expository article sometime on the
‘easier’ Waring problem,” Wright said in a letter when I wrote to him for infor-
mation, “to acknowledge quite how absurd my title for it has turned out to be.”

The case for squares is trivial. An elementary application of the calculus of
finite differences is sufficient to establish that eg(2) equals 3 for the easier prob-
lem. As shown in Figure 135, first put down a row of consecutive squares
beginning with 1. The next row gives the differences between each adjacent pair
of squares. Note that this row consists of consecutive odd numbers. It is clear
that every odd number is the difference between two squares. Equally obvious
is the fact that every even number can be expressed as the difference between
two squares plus or minus 1. Since 1 is a square, we see that eg(2) equals 3. More
formally, every number of the form 2x + 1 (that is, every odd number) equals
(x + 1)2 – x2, and every even number, 2x, equals x2 – (x – 1)2 –12.

It is almost as easy to show that EG(2), “big gee” for squares, also is 3.
Although some even numbers are themselves squares and others are the sum of,
or difference between, two squares, there is an infinite class of even numbers (of
the form 8x + 6, where x is any nonnegative integer) that require three squares
(positive or negative) for their expression. These are numbers in the series 6, 14,
22, 30….

THE BINARY GRAY CODE     225

Figure 135 Proof that eg(2) = 3 for “easier” Waring problem
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It is hard to believe, but the values of “big gee” and “little gee” for cubes in
the easier Waring problem and for all higher powers are still unknown. It is con-
jectured, but far from proved, that if negatives of powers are allowed, all posi-
tive integers can be expressed as the sum of no more than four cubes.

That five cubes suffice is easily demonstrated. Again we use the calculus of
finite differences. The cubes provide the first row [see Figure 136]. Calculate two
rows of differences. Note that numbers in the third row, 12, 18, 24, 30, 36,…,
are consecutive multiples of 6. Each of these numbers can be expressed by four
cubes. Consider 18. The table shows that 18 is the difference between the two
numbers above it, 19 and 37. Nineteen is the difference between the two cubes
above it, 8 and 27, and 37 is the difference between cubes 27 and 64. It follows
that 18 = (64 – 27) – (27 – 8) = 43 – 33 – 33 + 23. Clearly this procedure pro-
vides a four-cube expression for any multiple of 6.

It remains to show that numbers that are not multiples of 6 can be expressed
by five cubes. Consider the five numbers between 18 and 24. They are 19, 20,
21, 22 and 23. Each of these numbers differs by a cube from a multiple of 6.
The two end numbers, 19 and 23, differ by 1 from a multiple of 6, so that we
can express 19 by adding 1 to the four cubes that express 18, and express 23 by
subtracting 1 from the four cubes that express 24. The remaining numbers are
20, 21 and 22. Twenty differs by 23 from 12, and 22 differs by 23 from 30; there-
fore we can express 20 by adding 8 to the four cubes that express 12, and we
can express 22 by subtracting 8 from the four cubes that express 24. Only 21
remains. It differs by 33 from 48; therefore we can express 21 by taking 27 from
the four cubes that express 48. This procedure applies to all the numbers that
lie between multiples of 6. By adding or subtracting a suitable cube to or from
a set of four other cubes, we can express every nonmultiple of 6 by five cubes.

Hardy and Wright, in their Introduction to the Theory of Numbers, give a shorter
proof, based on the fact that n3 – n = 0 (mod 6). This leads to the following for-
mula for expressing any number, n, with five cubes:

n = n3 – 6x = n3 – (x + 1)3 – (x – 1)3 + x3 + x3

where x is a suitable positive integer. Neither this formula nor the previous pro-
cedure indicates how to express n with the fewest number of cubes; they only

Figure 136 Proof that eg(3) ≤ 5 for some easier Waring problem
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show how to do it with five cubes. For instance, the procedure tells us that 
15 = 83 - 73 - 73 + 63 - 33. The Hardy and Wright formula leads to the 
more monstrous expression 15 = 1 5 ~  - 5613 - 5593 -k 5603 + 5603. Actu- 
ally 15 can be expressed with as few as three cubes: z3 + 23 - 13. 

The big question, still unresolved, is whether four cubes (allowing negative 
cubes) are sufficient for expressing every positive integer. No one has proved 
they are. No one has found a counterexample. The simplest expressions known 
to me, with four or fewer cubes, for integers 1 through 99 are listed in Figure 
137. ("Simplest" means that the number ofcubes is minimized, and an expres- 
sion is given with the smallest absolute value for the cube of largest absolute 
value.) The chart is based on information supplied by George Shombert, Jr., of 
Beaver, Pa., supplemented by the results of two computer programs. In 1955 
J. C. P. Miller and M.  F. C. Woollett, using a computer at the University of 
Cambridge, searched for three-cube expressions of integers 1 through 100 
within a range of cubes through 3 ,200~  (see the bibliography). In 1964 the 
search was extended through integer 999 within a range of cubes through 
65,5363 by V. L. Gardiner, R. B. Lazarus and P. R. Stein, using a computer at 
the Los Alamos National Laboratory of the University of California (see the 
bibliography). 

Note that four cubes are needed for every number with a digital root of 4 or 5. 
(The digital root of a number is obtained by adding the number's digits, then 
adding the digits in the result and continuing until one digit remains. It is the 
same as the value of the number modulo 9.)  It is not hard to show that every 
number equal to 4 or 5 (mod 9) [shaded numbers in Figure 1371 requires at least 
four cubes. 

One way to do it makes use ofthe old accountant's trick for checking addition 
by digital roots. The sum of any set of integers, positive or negative, has a digital 
root equal to the root of the sum of the roots of the same set of numbers. Every 
cube has a digital root of 1, 8 or 9. No pair ofthese roots (the possible pairs are 
11, 18, 19 ,88 ,89  or 99), whatever their signs, has a sum with a digital root of4 
or 5. (When adding a negative root, it is often convenient to change the minus 
sign to plus and the root to its complement with respect to 9. Thus 1 - 8 is the 
same as 1 + 1, giving the positive digital root of 2.) Consequently no integer 
equal to 4 or 5 (mod 9) can be expressed by two cubes. 

Moreover, no triplet of digital roots 1, 8 or 9, whatever their signs, has a sum 
with digital root 4 or 5. Therefore no triplet of cubes can express a number 
equal to 4 or 5 (mod 9). W e  not only have established that eg(3) for the easier 
problem is at least 4 but also have found an infinite class of integers (those of 
form 9x + 4 and 9x + 5)  that require at least four cubes. Both eg(3) and EG(3) 
are each at least 4. 



Figure 137 Simplest cube expressions known for numbers 1 through 99 
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W e  have learned still more. A check ofthe possible quadruplets of 1,8 and 9 
reveals just four patterns that give a digital root of 4. They are 1,1,1,1; - 8 , 1 ,  1,  
1; - 8,  - 8,  1, 1; and - 8,  - 8, - 8, 1. Similarly. just four patterns give a digital 
rootof5:8,8,8,8;8,--1,- 1,-1;8,8,-1,-l;and8,8,8,-1.Therefore.in 
searching for four-cube solutions of integers equal to 4 or 5 (mod 9), we need to 
consider only cubes with digital roots of 8 (cubes of 2 , 5 , 8 ,  11, . . . ) or cubes 
with digital roots of 1 (cubes of 1, 4, 7,  10, . . . ). All integers with roots not 4 
or 5 have been shown to have expressions of four or fewer cubes, so only 
numbers equal to 4 or 5 (mod 9) remain in doubt. 

Observe that most of the numbers on the chart that are not equal to 4 or 5 
(mod 9) have known three-cube expressions. Some were not easy to come by, 
notably the expression for 87 in which each cube has four digits. Miller and 
Woollett failed to find this expression, but it was trapped by the Los Alamos 
program. 

The number 100 has an elegant four-cube expression: It is the sum of the 
cubes of 1 , 2 , 3  and 4. However, three three-cube expressions of 100 are known. 
In the simplest, each cube is a digit. Can the reader find this expression before 
checking the answer section where I shall give all three? 

Many number theorists believe, although it has not been proved, that all 
integers not equal to 4 or 5 (mod 9) have three-cube expressions. Ifso, the value 
of eg(3) for the easier Waring problem is settled. Do you see why? To obtain a 
four-cube expression for a number equal to 4 (mod 9), we have only to add l3 to 
a three-cube expression for the number just below it; to obtain a four-cube 
expression for a number equal to 5 (mod 9), we have only to subtract l3 from a 
three-cube expression for the number just above it. Perhaps readers can dis- 
cover three-cube solutions for 30, 33, 42, 52, 74, 75 and 84, which may have 
three-cube expressions, none of which has yet been found. In particular, can 
anyone express 30 with three cubes or prove that it cannot be done? It is 
astonishing that this continues to be an open question. 

The number 12 is also of special interest. It is the smallest integer known for 
which only one three-cube solution is known. Most integers with three-cube 
expressions can be expressed by three cubes in more than one way. In some 
cases a number can be expressed by three cubes in infinitely many ways. For 
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example, 2 can be expressed by substituting any positive integer for x in the 
following identity: (6x3 + 1)3 - (6x3 - I ) ~  - ( 6 ~ ~ ) ~ .  O n  the other hand, no 
one has yet found more than two ways to express 3 (cubes of 1,1, 1 and - 5,4, 
4). There is a noticeable paucity of three-cube solutions for numbers with 
digital roots of 3 and 6. Five of the numbers listed above for which three-cube 
solutions have yet to be found are numbers of this form. 

Number theorists distinguish between primitive and derived solutions. A 
primitive solution is one in which the cubes have no common factor. A derived 
solution is one in which they do. Derived solutions are obtainable from primi- 
tive solutions by multiplying each cube root by n and the number itself by n3, 
where n is any integer greater than 1. Twelve solutions in Figure 137 are 
derived: 16, 24, 32, 40, 48, 56, 64, 72, 80 and 96 (by multiplying primitive 
solutions by 2) ,  and 54 and 81 (by multiplying primitive solutions by 3). For 
example, the solution for 16 is obtained from the primitive solution for 2 by 
multiplying 2 by Z3 and each cube root by 2. The solution for 54 is derived from 
the primitive solution for 2 by multiplying 2 by 33 and each cube root by 3. The 
derived solutions for 24 and 80 are the only known solutions for those numbers. 
Note that a derived solution is not always the simplest. From 11 = 33 - 
z3 - Z3 we can derive 88 63 - 43 - 43, but the primitive solution on the 
chart is simpler. 

What about eg(4), the smallest number of fourth powers needed to express 
any integer? In 1941 W. Hunter (see the bibliography) showed that the number 
is either 9 or 10. For powers higher than four, the spread between upper and 
lower bounds is much greater. 

ANSWERS 
The ~ r o b l e m  was to express 100 as the sum of three cubes, allowing each cube 
to be positive or negative. The  three known solutions are 73 - 63 - 33, 
1903 - 1613 - 13g3 and 1,870~ - 1,797~ - 903~. 

BIBLIOGRAPHY 
Waring's Problem 

"Waring's Problem and Related Results." Leonard Eugene Dickson in History of the 
Theory of Numbers, Vol. 2. Chapter 25. Chelsea, 1952. Reprint of the 1919 editlon. 

"An Elementary Solution of Waring's Problem." A. Y. Khinchin in Three Pearls of 
Number Theory, Chapter 3. Graylock, 1952. 

"On L'aring's Problem." Hans Rademacher and Otto Toeplitz in The Enjoyment of 
Mathematics, Chapter 9 .  Princeton University Press, 1957. 



WARING'S PROBLEMS 23 1 

"Waring's Problem." W .  J. Ellison in American .Mathematical Monthly, Vol. 78, 
1971, pages 10-36. Lists 146 references. 

"Waring's Problem." I. N. Herstein and I. Kaplansky in Matters Mathematical, 
Chapter 2, Section 8 .  Harper and Row, 1974. 

"Waring's Problem." Charles Small in Mathematics Magazine, Vol. 50, 1977, pages 
12 - 16. 

The Easier Waring's Problem 

"An Easier Waring's Problem." E. M. Wright in The Journal ofthe London Mathe- 
matical Society, Vol. 9 ,  1934, pages 267-272. 

"The 'Easier' Waring Problem." W. H.  J. Fuchs and E. M .  Wright in The Quarterly 
Journal of Mathematics, Vol. 10, 1939, pages 190-209. 

"The Representation of Numbers by Sums of Fourth Powers." W. Hunter in The 
Journal of the London Mathematical Society, Vol. 16, 1941, pages 177 - 179. 

"Solutions of the Diophantine Equation x3 + y3 + 23  = k." J. C.  P. Miller and 
M. F.  C. Woollett in The Journal of the London Mathematical Society, Vol. 30, 1955, 
pages 101 - 110. 

"Solutions of the Diophantine Equation x3 + y3 = z3 - d." V. L. Gardiner, R. B. 
Lazarus and P. R. Stein in Mathematics ofComputation, Vol. 18, 1964, pages 408 -413. 

Tables of Solutions of the Diophantine Equation x3 + y3 = z3 - d. V. L. Gardiner, 
R. B. Lazarus and P. R. Stein. Los Alamos Scientific Laboratory informal report 
UC-32, issued November 1973. Recent copies (Number LA-UR-85-2540) can be 
obtained from Paul Stein. Los Alamos National Laboratory, POB 1663, Los Alamos. 
NM 87545. 



CHAPTER NINETEEN 

Cram, Bynum and 

There are many simple two-person games (for example, nim) for which per- 
fect-play strategies are known. Other games, such as dots-and-squares, may 
appear just as simple but actually are so complex that no strategy has yet been 
found except when the game is played on special fields. In this chapter we 
consider several elegant new games that have extremely simple rules and about 
which relatively little is known. Some may not have general strategies; if they 
do, perhaps a reader of this book will be the first to discover them. 

Our first game, as far as I am aware, has not been described before in print, 
although a few mathematicians have been involved with it since the early 
1950's. I originally heard of it from Geoffrey Mott-Smith, the author of several 
books on games and puzzles. He told me it had been invented by a friend, who 
called it "plugg." Since then I have received letters from a number of mathema- 
ticians who independently invented the same game. In 1966 John Horton 
Conway gave it some thought, and although he did not succeed in cracking it, 
he did formulate a partial strategy with which the final stages of a game could be 
analyzed by standard nim theory. 

The game can be played in various ways, all isomorphic. If the "board" is a 
rectangular lattice of dots in unit square formation, the rules are as follows. 
Players alternately draw a line that connects two orthogonally adjacent dots. No 
line may touch a dot after it has been joined to another. In the standard form of 
the game the last player to connect two dots is the winner. (In misbre, or reverse, 
play the last to move is the loser.) Let's call thegame "dots-and-pairs." Clearly it 
is a graph-theory game. 

If a supply of counters is handy, one can arrange the counters to form the 
lattice; then each move consists in removing two orthogonally adjacent 
counters. Another way to play dots-and-pairs is to sketch a checkered field on 
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a b 

Figure 138 Symmetrical winning strategy for cram on even-even fields (a)  and 
even-odd fields (b)  

paper or outline it on graph paper. A move consists in coloring two orthogonally 
adjacent cells or, more simply, drawing a line that eliminates the "domino." 

Still another way to play the game-the most pleasant-is to place domi- 
noes on a checkerboard. The markings on the dominoes are, of course, irrele- 
vant. All that matters is that each domino must cover just two squares. Players 
alternately place one domino until no further play is possible. W e  shall call this 
version of the game "cram." It is the simplest nontrivial polyomino-placing 
game. 

Winning strategies for cram are known only for certain boards. If, for 
instance, the field is rectangular with two even sides and the game is standard 
(the last to play wins), the second player wins easily by symmetry play. He 
simply makes each move symmetrically opposite his opponent's last move [see 
Figure 138a]. T o  eliminate this strategy, we can add a new rule: The second 
player's first move must not be symmetrical with respect to the first player's 
opening move. With this proviso the game can be played on a standard 
chessboard with 32 dominoes. It is not known which player has the win. 

If standard cram is played on an even-by-odd rectangle, the first player wins 
by taking the two central cells, then playing symmetrically thereafter [see Figure 
138bl. This strategy can be eliminated by denying the center to the first player 
on his opening move. 

No general strategy is known for the reverse form of cram on even-even or 
even-odd fields, and no general strategy is known for standard or reverse play 
on odd-odd fields. Even when one of the odd sides in an odd-odd field is 
reduced to 1, the game is complex and still unsolved. In 1973 David Singmas- 
ter, then at the Istituto Matematico in Pisa, wrote a computer program for the 
1-by-m field, standard game, with m less than 1,000. Assuming that the first 
player loses (because he cannot move) when m equals 0 or 1, Singmaster found 
151 values of m that give the win to the second player. For m less than 100 the 
values are 0, 1, 5,  9, 15, 21, 25, 29, 35, 39, 43, 55, 59, 63, 73, 77, 89, 93, 97. 



Figure 139 Standard crosscram with a first-player win 

When m is even, the first player wins, of course, by taking the center and 
playing symmetrically. When m is odd, he wins for all values less than 100 that 
are not in the above set. I know of no computer analysis of the reverse game for 
1-by-m fields. 

Square fields of only the lowest orders have been investigated. The 3-by-3 
game is trivial. It takes just a few minutes of analysis to see that the second player 
wins the standard game and loses the reverse game. The 4-by-4, with symmetry 
play denied the second player in standard play, takes considerably more work. 
Conway found it to be a second-player win in both standard and reverse play. 

What about the 5-by-5? Because it is odd-by-odd, symmetry strategy is ruled 
out and no special rules are needed. Who has the win in standard play? In 
mis?re? As far as I know, neither question has yet been answered. 

Cram is an "impartial" game. This means that any possible move can be 
made by either player. "Partial" games, or what Conway prefers to call "unim- 
partial" games, are those in which moves open to one player are denied to the 
other. Chess and checkers, for example, are partial games because each player 
can move only the pieces of his color. W e  can convert cram to a partial game by 
a rule proposed by Goran Andersson, who wrote to me about it in 1973. . - 

The rule is delightfully simple. One player must make all his moves horizon- 
tally; the other must make all his moves vertically. Call it "crosscram." This, of 
course, instantly eliminates symmetry play from all rectangular boards. The 
3-by-3, as before, can be quickly disposed of. The first player wins the standard 
game provided that his first move does not include a corner cell. The second 
player wins the reverse game. Crosscram in the 4-by-4 form is sufficiently 
complicated to make a good pencil-and-paper game [see Figure 1391. Does the 
first or second player win the standard game? The reverse game? 

Both cram and crosscram can be regarded as special cases of more general 
games. Cram is a special case of Piet Hein's Tac Tix, now more commonly 



CRAM, BYNUM AND QUADRAPHAGE 235 

Figure 140 Bynum's game with a second-player win 

called nimbi. (See Chapter 15 of The Scientij5c American Book of Mathematical 
Puzzles & Diversions.) Nimbi is usually played with a square array of counters. 
A move consists in removing as many orthogonally adjacent counters as de- 
sired, not just a pair, from any orthogonal row. Crosscram is a special case of 
partial nimbi in which the rules restrict one player to horizontal rows and the 
other to vertical. 

Another interesting form of partial nimbi was invented in 1972 by James 
Bynum of Tacoma, Wash., who has permitted me to describe it here. It is the 
same as partial nimbi except that each play must have a maximum length; that 
is, the orthogonally adjacent cells must be bounded on each end by either the 
field's border or an opponent's perpendicular move. The game's first move 
must necessarily be an entire row or column [see Figure 1401. 

Bynum's game was solved in 1973 by Conway. Mist.re play is almost trivial. 
The second player wins on all square boards, and if the board is a nonsquare 
rectangle, the player whose moves parallel the shorter dimension wins regard- 
less of whether he goes first or second. The winning rule is this: Pick one of the 
two sides that parallel your moves, then always play as close to that side as 
possible. Standard play is more interesting. The first player has the win on all 
square boards as well as on all nonsquare rectangles with sides of the same 
parity (even-even or odd-odd). O n  even-odd rectangles the player whose moves 
parallel the even dimension wins regardless of who plays first. 

Interested readers may enjoy seeing if they can develop a set of strategic rules 
that will ensure a win for the player who has the win. The game yielded readily 
to Conway's theory of unimpartial games. I shall say no more about his analysis 
because it will be included in a book on unimpartial game theory that Conway is 
reported to be writing. 
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Quadraphage (square-eater) is a partly explored family of games invented 
and named by David L. Silverman in the late 1940's. He suggested the basic 
idea to Richard '4. Epstein, who mentions one version briefly on page 406 of his 
The Theory of Gambling a n d  Statistical Logic. Silverman discusses two other 
versions on page 186 in his book ofgame puzzles, Your Move. Elwyn Berlekam~ 
has done considerable work on quadraphage, which he will summarize in a 
book on games that he is preparing in collaboration with Conway and Richard 
K. Guy. Here I shall introduce only some of the game's simpler aspects. 

Quadraphage games are played on a chessboard of side n, usually square. 
Pieces consist of one chess piece, usually a king, and a supply of counters. The  
counters are the quadraphages, which I shall call quads for short. Each quad 
"eats" the cell on which it is placed, thus preventing the klng from moving to 
that cell. The  game starts with the king on the central square if the board is 
odd-odd or on one ofthe four central squares ifthe board is even-even. The rest 
of the board is empty. One player moves the king in the usual manner. The 
other c layer places counters, q at a time, on Q cells. As in the game of go, 
counters do not move once they are placed. The object of the king is to get safely 
to the edge of the board. The quads try to box in the king so that it cannot 
escape. The  quad player conventionally goes first; then the players move 
alternately. 

If q equals 4 (four squares eaten on each move), it is easy to show that the king 
can be captured in no more than three moves on all boards of side 5 or greater. 
(Of course, the king escapes immediately on a +board.) If q equals 3, it takes 
only a little more effort to find that the king can be trapped on boards of side 6 or 
greater. 

When q equals 2, the game starts to get interesting. The king escapes on the 
7-board but can be trapped on the 8-by-8 and all larger boards. The strategy is 
to move first as shown in Figure 141. Ifthe king's first move is toward one ofthe 
white corner cells, say the northwest corner, one quad goes on the cell two 
squares west of the king, and the other quad goes on the cell immediately north 
ofthat square. Thereafter (and also ifthe king makes any other first move except 
toward a corner white cell) the strategy is to block the king by placing quads on 
white border cells. When the king is adjacent to the border, then, of course, 
quads must go side by side to prevent his escape. 

What about q = l? Can the king always escape no matter how large the 
board? Surprisingly, it cannot. Berlekamp has proved that on a board as small 
as 33-by-33 the king is lost. Unfortunately both proof and strategy are too 
complicated to give here. Golomb has shown that ifthe king's moves are limited 
to orthogonal moves and q equals 1, the king escapes on the 7-board but can be 
trapped on the 8-board. 
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Figure 141 Two quads to trap king on an 8-by-8 board 

Although the king escapes easily on a standard chessboard, a pleasant game 
(proposed by Silverman) results if the king tries to maximize its moves before 
reaching the border. Quads, placed one per move, try either to trap the king or 
to force it to the border as quickly as possible. If the king escapes, it is awarded 
one point for each quad on the board. No points are awarded if the king is 
trapped. The game is particularly enjoyable when played on the order-18 go 
board. 

The  go board, with its large supply of stones, is a handy tool for working on 
the many unsolved quadraphage problems. What, for instance, happens when 
the king is replaced by a different chess piece? If the piece is a bishop, rook or 
queen, we must limit the length of its move to avoid triviality. Assume that the 
board is infinite but the piece cannot move a distance ofmore than, say, a billion 
squares. With this limitation a bishop is easily captured in a goose chase along a 
diagonal by placing three quads per move as shown in Figure 142a. Once the 
ends are blocked, the bishop can be confined to the diagonal. Three quads per 
move can similarly trap a rook in a goose chase along an orthogonal, as shown in 
b, and seven can trap a queen along either an orthogonal or a diagonal. Can the 
bishop or rook be trapped by two quads per move? By one? Can the queen be 
trapped by fewer than seven? 

If the piece is a knight, we must consider it free when it lands on a cell that is 
second from the border, because on its next move it can leap over a border cell. 
O n  boards of sides 5 , 6  and 7 the centered knight has eight moves to freedom, so 
eight quads obviously are needed to trap it. Five quads per move will trap the 
knight on the order-8 board, and four per move are sufficient for the order-9. 
Figure 143 shows one of several winning first moves for each board, although I 
must add that I am not certain all this information is correct. 

Can three quads per move trap a knight on an infinite board? One quad per 



Figure 142 How three quads per move trap bishop (a) and rook (b) on infinite boards 

move surely is insufficient, although Berlekamp reports he has yet to see a 
rigorous proof. 

ANSWERS 

The first player wins the direct 4-by-4 crosscram game, but only if he takes two 
central cells or two at the middle of a side. The first player also wins the reverse 
game. There seem to be no simple strategies for either form of play, and the 
game trees are too complicated to give here. Several readers sent proofs that the 
second player wins 5-by-5 direct crosscram but loses the reverse game. 

Although crosscram remains unsolved in general for both direct and reverse 

Figure 143 Trapping a knight on order-8 board (left) and order-9 board (right) 
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Figure 144 How to trap a rook with two quads per move 

play, Bynum's game is solved for all rectangular boards. You'll find a complete 
analysis, along with several delightful variations, in Chapter 15 of Conway's On 
Numbers and Games. Conway calls Bynum's game "one of the most interesting 
we have studied." More on the game, as well as discussions ofcrosscram, which 
the authors call the "domineering" game, can be found in Winning Ways (see 
the bibliography). 

If a rook's maximum move in a game of quadraphage is n cells, it can be 
trapped by two quads per move on a board of side 2n + 2. The strategy is to 
consider the unobstructed paths from the rook to sides ofthe board and to place 
the quads adjacent to the rook to block its movement to the two nearest sides. (If 
two borders are the same distance away, choose either one.) Figure 144 shows 
the strategy on a go board, the rook limited to maximum moves of eight cells. 
The rook clearly can never reach the edge. Eventually it must head toward a 
quad. When this happens, quads on each side confine it to a segment of the 
path, and entrapment quickly follows. 

The same procedure will trap a bishop within the borders of a sawtooth 
board that is 2n + 2 on the side, where n is the longest move allowed for the 
bishop. Figure 145 shows how the strategy operates on a 18-by-18 sawtooth 
board when the bishop can move no more than eight cells along the diagonals. 
Such boards of 2n + 2 on the side are (for bishops) isomorphic with chess- 
boards of 4n + 3 on the side. The sawtooth board shown is therefore equivalent 



Figure 145 How to trap a bishop with two quads per move 

to a 35-by-35 chessboard on which the bishop is confined to cells that have the 
same color as the corner squares. 

A similar strategy using four quads per move will trap the queen. For n 
greater than 2 a board of at least 4n  + 2 on a side seems necessary. (Thus a 
queen with maximum move 8 can be trapped on a 34-sided field.) The  first 
move is to put quads on the four corner cells. Thereafter use the "nearest sides" 
strategy. When there is a choice between blocking equal paths on an orthogonal 
and a diagonal, block the orthogonal. 

ADDENDUM 

Many readers resolved the question of who wins 5-by-5 cram. The second 
player wins the direct game but loses when the play is reversed. A correspon- 
dent in Sweden, Magnus Tideman, sent the most complete analysis. He also 
showed that the first player wins the direct 3-by-5 game but loses the reverse 
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3-by-5. The second player wins the reverse 4-by-5. The first player wins reverse 
3-by-6. O n  the 3-by-7 field the first player wins the direct game but loses when 
played in reverse. No general strategies are known. 

A variation of cram, played by placing dominoes on a 6-by-6 field according 
to special rules, was on sale in France in the early 1970's under the trade name 
Cogito. 

When cram is played on a 1-by-m field-let's call it linear cram- it is a 
game that was proposed as early as 1934 by T. R. Dawson, writing in the 
December issue of his Fairy Chess Review> He described a generalization of 
kayles in which players alternately remove k adjacent counters from n rows. If 
n = 1 and k = 2,  the game is linear cram. The game is also isomorphic with 
Regulus, presented as an unsolved game in David L. Silverman's book Your 
Move. 

In its standard (direct) form, linear cram was completely solved in 1956 by 
Richard K. Guy and Cedric A. B. Smith in their classic paper on nimlike games, 
"The G-values of Various Games" (see the bibliography). In their notation the 
game has the name of .07 for reasons we need not go into here. As noted earlier, 
when m is even, the first player wins by taking the center and playing symmet- 
rically. When m is odd, the game develops a curious periodicity of 34. The 
complete solution is that the second player wins on all boards, and only those 
boards, with a number of cells equal to 0,  1, 15,35 or (modulo 34) to 5 , 9 , 2  l , 2 5  
and 29. 

In reverse form, linear cram remains unsolved. Computer programs for fields 
up through 43 in length show second-player wins for m = 2 , 3 , 7 , 8 ,  12,16, 17, 
21 ,22 ,26 ,  30, 31, 35,36 and 40. There is a periodicity hereof 14-the figures 
conforming to 2 , 3 , 7 , 8 ,  12 (modulo 14) -but whether this periodicity persists 
for higher values of m is still not known. Ashok Chandra, an IBM research 
mathematician, found an elegant proof that the second   layer can win reverse 
cram on all fields of 2-by-(2m + 1). 

When linear cram is played with straight trominoes (1-by-3 rectangles), Guy 
and Smith call it the ,007 game. This "James Bond" version, as Conway refers 
to it in Winning Ways, is solved only for the direct game on odd fields. The first 
player wins by taking the center and playing symmetrically. When m is even, no 
periodicity has yet been detected in the game's G-values (Grundy numbers), 
nor has tromino cram been solved for either odd or even m in the reverse form of 
play. Conway has shown that tromino cram is isomorphic with ticktacktoe 
played on a linear field when the object is to get three adjacent marks and both 
players use the same mark. Frank Harary, the graph theorist, calls it one-color 
linear ticktacktoe. For such a simple game, it is astonishing that it is so difficult 
to solve. 
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In the game of quadraphage, many readers sent proofs that one quad per 
move is sufficient to trap a rook or bishop, and three quads per move will catch a 
queen. In the rook case, assume the rook is limited to n cells per move. The 
trapping strategy, on the minimum board of side 8n2 + 3,  is to use the first 4n 
moves to place (regardless of how the rook moves) n quads at the top of each top 
corner and at the bottom ofeach bottom corner. All four corners can be sealed in 
this way before the rook can attack a corner cell. Since the rook can then attack 
only one border cell at a time, single quads suffice to complete the entrapment. 

As explained earlier, a bishop on a sawtooth board is equivalent to a rook on a 
regular board. For that reason the strategy just described will trap a bishop with 
one quad per move on a sawtooth-bordered board of side 8n2 + 3 or the 
isomorphic chessboard of side 16n2 + 5 .  A similar strategy traps a queen with 
three quads per move on a board of side 2n[8n/3] + 3,  where n is the maximum 
distance the queen is permitted to move and the brackets indicate rounding up 
to the nearest integer. Regardless of the queen's initial moves, the strategy is to 
place 2n quads (three per move) on both sides of each corner. This prevents the 
queen from attacking more than three border cells on all subsequent moves. 
Chandra showed that if the queen's maximum move is 2 it can be trapped by 
two quads per move on a board of side 67 or possibly smaller. 

Several readers found that the knight can be trapped with three quads per 
move. E. N. Adams showed how to do this on the 19-by-19 go board and 
possibly on a board as small as 16-by-16. A surprising letter from Jerry Butters 
gave a procedure for trapping a knight with just two quads per move. His 
13-page proof requires a board of side 4,500. This size can surely be reduced 
considerably, but at present there are only conjectures about how small the 
board can be. If only one quad is placed at a time, the knight can probably 
escape on the infinite board, but no one seems close to proving it. 

Vast regions of quadraphage remain unexplored. W e  can, for example, raise 
questions about the trapping of two or more chess pieces not necessarily alike. 
W e  can consider "fairy" chessmen, such as a superqueen that also moves like a 
knight, or a rook or bishop with the added knight move. Since we can invent 
bizarre chessmen that move according to any specified set of rules, the range of 
quadraphage-type games obviously is unlimited. 

Conway has considered such pieces as the Angel, which has the power to 
move to any cell that can be reached by n king moves, with n being given any 
value you like. For example, n can be 1,000. Because the Angel has wings, it can 
fly over quads to any vacant cell within its 1,000 range. As the authors of 
Winning Ways put it, the Devil (who plays the quads) "wins if he can surround 
the Angel with a sulphurous moat, a thousand squares wide, of eaten squares." 
With the Devil limited to one quad per move, it seems probable that the angel 



can always escape, although no one has found an explicit strategy to prove it. In
addition to Conway, Andreas Blass, a mathematician at the University of
Michigan, has given some thought to the Angel and to devilish tactics for trap-
ping it. Blass and Conway have proved the surprising result that the Devil, lim-
ited to only one quad per move, can infinitely often compel the Angel to move
inward for any arbitrary finite distance! The proof involves constructing arcs of
quads that force the Angel to back up in order to get around a blocking arc.

Blass and Conway have also studied such chessmen as the Pope, an angel
without wings; the Fool, an angel that never moves south; and the Flee, an angel
that is not allowed to move inward toward the cell where it started. Blass has
shown that the Fool, which rushes in where Angels fear to tread, can always be
trapped on a sufficiently large board by the Devil playing one quad per move.

You’ll find a brief discussion of quadraphage in Winning Ways, volume 2,
along with an extension of the game in which the square-eater places both black
and white go stones on each move. Only a fixed number of stones of each color
are available. The black stones remain fixed, but a white stone can be moved to
any empty cell, leaving uneaten the cell from which it moved. At each move the
square-eater has three options:

1. Place one stone of either color on a vacant cell.
2. Move a wandering (white) stone.
3. Pass.
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CHAPTER TWENTY 

The I Ching 

The 1 Ching (~ronounced ee jing), or Book of Changes, is one ofthe world's oldest 
books and also one ofthe most enigmatic. For more than 2,000 years it has been 
used in the East as a book of divination, and it still is studied with awesome 
reverence as a rich source of Confucian and Taoist wisdom. Tens of thousands 
of young people in the U.S. (particularly in California), caught up in the current 
occult explosion and eager to know more about Eastern mysticism and early 
Chinese history, are now consulting the 1 Ching as seriously as they consult the 
Ouija board or the tarot cards. C. G. Jung was convinced of the 1 Ching's 
extraordinary power to foretell the future; he even asked it about the prospects 
of American sales of a new English translation of itself and got an optimistic 
answer. More recent pundits who are deep into occultism-England's Colin 
Wilson, for example - have written about their experiences with the 1 Ching's 
terrifying oracular accuracy. 

The  early history of the 1 Ching is unknown. Most likely it began as early as 
the eighth century B.C. as a collection of peasant omen-texts; then slowly over 
the centuries these documents became combined with stick divination prac- 
tices. A few centuries before Christ, near the end of the Chou dynasty, it 
acquired its present form and became one of the five great classics of the 
Confucian canon. 

The  combinational foundation ofthe 1 Ching consists of 64 hexagrams. They 
display every possible permutation of two types of line when taken six at a time. 
Each hexagram has a traditional Chinese name. The two kinds of line proclaim 
the basic duality of Chinese metaphysics: The broken line corresponds to yin, 
the unbroken line to yang. If we take the lines two at a time, there are 2' = 4 
ways to combine them into what are called digrams, and 23 = 8 ways to form 
trigrams. The trigrams, with their Chinese names and symbolic meanings, are 
shown in Figure 146. 
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FAMILY 
TRIGRAM NAME IMAGES TRAITS RELATIONS PARTS OF BODY ANIMALS 

Figure 146 The eight trigrams and some o f  their meanings 

- - - - - 
- - - - 

- - - - 
- - - ,, 

There are two ancient ways of displaying the eight trigrams in a circle. The 
oldest, known as the Fu Hsi arrangement after the mythical founder of China's 
first dynasty (the Hsia dynasty, 2205 - 1766 B.c.) is shown at the left in Figure 
147. Note that opposite pairs are complementary both in symbolic meaning 
and in the mathematical sense that each is obtained from the other by replacing 
yin lines with yang and yang lines with yin This arrangement, usually sur- 
rounding the familiar yin-yang symbol, is still widely used throughout China, 

KEN 

SUN 

LI 

TUI 

Figure 147 Fu H s i  arrangement o f  trigranls (left) and King Wen arrangement (right) 

MOUNTAIN 

WIND 
WOOD 

FIRE 
SUN 
LIGHTNING 
SUMMER 

LAKE 
MARSH 
RAIN 
AUTUMN 

RESTING 
STUBBORN 
UNMOVING 

GENTLE 
PENETRATING 
FLEXIBLE 

BEAUTIFUL 
DEPENDING 
CLINGING 

JOYFUL 
SATISFIED 
COMPLACENT 

YOUNGEST 
SON 

FIRST 
DAUGHTER 

SECOND 
DAUGHTER 

YOUNGEST 
DAUGHTER 

HAND 

THIGH 

EYE 

MOUTH 

DOG 

BIRD 

PHEASANT 

SHEEP 
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6 5 - -- -- - -- -- - -- -- - 
SUNG HS~J 

2 1 - -  - -- - -- - -- - -- - -- - 
K'UN CH'IEN 

-- 
SHlH CHUN 

14 13 -- --  - -- - -- -- -- 
TA YU T'UNG JEN 

10 9 -- -- - -- --  - -- -- 
LU HSIAO CH'U 

- -  - -  - -  
P'I 

- -  -- 
CH'IEN 

22 21 -- -- -- -- - - -- -- - -  -- 
PI SHlH HO 

18 17 -- --  - --  - - -- - --  -- 
KU SUI 

- -  - -  - -  - - 
KUAN LIN 

-- 
TA KUO LI K'AN TA CH'U WU WANG 

34 33 - -  - -- - -- -- - -- - -- 
TACHUANG TUN 

35 
- - 
- -  - -  - -  
CHIN 

- -  - - 
CHlEN MlNG I 

44 46 45 - -  - -  - -  - --  - - -- - --  - -  - -  
S H ~ N G  TS'UI 

42 4 1 -- - -- - -  --  - -  - -  - -  - -- 
I SUN 

- - 
K'UN 

- -  
KOU KUAl 

54 53 - -  - --  - - -- --  - - --  - -- 
KUEl ME1 CHlEN 

50 49 - -- - -  - -- -- - -- -- - 
TlNG KO 

58 57 - -  - -- - -- - -  - -- - -- 
TU I 

SUN 

- - 
WE1 CHI HSIAO KUO 

CHUNG FU CHI CHI 

Figure 148 King Wen  arrangement of the 64 I Ching hexagrams 



THE I CHING 247 

Japan and Korea as a good-luck charm to put over doorways and onjewelry. It is 
also called the "earlier heaven" or "primal arrangement." The King Wen 
arrangement (after the legendary father of the founder of the Chou dynasty), 
shown at the right in Figure 147 (also called the "later heaven" or "inner-world 
arrangement"), abandons the complementary positioning of the Fu Hsi se- 
quence, so the trigrams at the cardinal points of the compass symbolize the 
seasons in cyclic order. If one starts at south (traditionally shown at the top) and 
going clockwise, the hexagrams at the cardinal points stand for summer, fall, 
winter and spring. 

The oldest way of arranging the 64 hexagrams, which is known as the King 
Wen sequence, is the order in which they appear in the 1 Ching [see Figure 1481. 
The rows are taken from right to left as the numbering indicates. Note that the 
hexagrams are paired in a singular way. Each odd-numbered hexagram is 
followed by a hexagram that is either its inverse or its complement. If the odd 
hexagram has twofold symmetry (is the same upside down), it is complemented 
to produce the next hexagram. If it lacks twofold symmetry, it is inverted. 

Is there any kind of mathematical order that determines the sequence in 
which the hexagram pairs follow one another? This is an unsolved problem. 
From time to time a student of the I Ching announces his discovery of a 
mathematical scheme underlying the arrangement of pairs, but on closer in- 
spection it turns out that so many arbitrary assumptions are made that, in effect, 
the order must be assumed before it emerges from the analysis. As far as anyone 
knows, the pairs ofthe King Wen sequence are in random order, and there is no 
known basis for determining which member of a pair precedes the other. 

Not until the I l th  century did Chinese scholars discover a very simple and 
elegant way to order the hexagrams. This arrangement is attributed to Fu Hsi 
[ s e e ~ i g u r e  1491. The white space at the bottom represents the t'ai chi, the state of 

Figure 149 How six yin-yang divisions generate the 64 hexagrams 
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the universe when it was "without form, and void" (as Genesis 1:2 puts it). This 
undifferentiated chaos divides into the yin (gray) and yang (black) halves of the 
row labeled 1. In row 2 we see the yin dividing into yin and yang, and similarly 
the yang. These binary divisions continue upward for six steps. 

The chart now automatically gives all the polygrams of orders 1 through 6. 
Divide rows 1 and 2 vertically into four equal parts, replace the gray in each part 
with broken (yin) lines and you have the four digrams. Rows 1 , 2  and 3, divided 
vertically into eight equal parts, give the eight trigrams. Rows l , 2 , 3  and 4, in 16 
parts, give the 16 tetragrams, rows 1, 2, 3, 4 and 5, in 32 parts, give the 32 
pentagrams, and rows 1, 2, 3, 4, 5 and 6, in 64 parts, give the 64 hexagrams. 
Figure 150 shows the hexagrams in their traditional Fu Hsi, or "natural," 
order. Taking them from right to left, starting at the bottom row, one sees that 
the hexagrams correspond to those provided by the Fu Hsi chart when read 
from left to right. 

W e  are now ready to understand why Leibniz, who thought he had invented 
the binary system in the late 17th century, was so staggered when he first 
learned ofthe Fu Hsi sequence from Father Joachim Bouvet, a Jesuit missionary 
in China. Substitute 0 f i r  each unbroken line, 1 for each broken line, then take 
the hexagrams in order, reading upward on each, and you get the sequence 
000000, 000001, 000010, 00001 1, . . . , 11 11 11. It is none other than the 
counting numbers from O through 63 expressed in binary notation! 

Both Leibniz and Father Bouvet were convinced that Fu Hsi, smitten by 
divine inspiration, had discovered binary arithmetic, but there is not the slight- 
est evidence for this. The 1 lth-century 1 Ching scholars had done no more than 
discover a natural way to arrange the hexagrams. It was not until the time of 
Leibniz that the Fu Hsi sequence was recognized as being isomorphic with a 
useful arithmetical notation. 

Since the powers of 2 turn up everywhere in mathematical and physical 
structures, it is not surprising that Chinese scholars have been able to apply the 
64 hexagrams to almost everything, from crystal structures to the solar system 
and the cosmos. Z. D. Sung, in his amusing little book The Symbols of Yi King 
(see the bibliography), tells how he was rotating a matchbox in his hand one day 
(to simulate the earth's rotation as it goes around the sun) when he suddenly 
perceived a natural way to generate the eight trigrams at the corners of a cube. 

Let the three Cartesian coordinates of a unit cube, x, y, z, indicate the first, 
second and third digits of a three-digit binary number. Label the corner where 
the coordinates originate with 000. The other corners are labeled with three- 
digit binary numbers for 0 through 7, with 0 and 1 indicating the distance ofthe 
corner from the origin in each coordinate direction. The eight numbers corre- 
spond, of course, to the eight trigrams, with complementary trigrams at diamet- 



Figure 150 The Fu Hsi sequence that corresponds to binary numbers 0 through 63 

rically opposite corners of the cube [see Figure 1511. By a similar procedure, 
corners of unit hypercubes generate the higher-order polygrams. The 64 hexa- 
grams correspond to six-digit binary numbers at the corners of a six-dimen- 
sional hypercube. 

Instead of plunging into higher dimensions, Sung divides the cube into 64 
smaller cubes that he identifies with the 64 "moods" of the classical syllogism. 
(The major premise, the minor premise and the conclusion of a syllogism can 
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yin 110 - 

Figure 151 Trigrams generated by a cube 

each be of four different forms, giving 64 possible moods.) Sung was probably 
unaware that this had been done earlier by C. Howard Hinton in his 1904 book 
The Fourth Dimension, London: Allen and Unwin  a ages 90 - 106). Hinton 
takes a curious step into hyperspace. By considering the four "figures" of each 
syllogism (an ancient division based on the ordering of the subject, predicate 
and middle terms), he obtains 256 varieties that he identifies with the 256 cells 
of a 4-by-4-by-4-by-4 hypercube. Cells corresponding to traditionally valid 
syllogisms are colored black; the hypercube is then projected onto an ordinary 
4-by-4-by-4 cube. The black cells are seen to be symmetrically disposed around 
one corner of the cube except for one cell that should be black but is not. This 
led Hinton to the discovery that the anomalous syllogism is valid after all if one 
applies a more liberal interpretation to syllogisms, one in which the predicate is 
quantified as well as the subject. 

But we have strayed from the I Ching. The book (aside from its "Ten Wings," 
which are appendixes by Confucian metaphysicians) consists essentially of the 
64 hexagrams, each followed by a brief explanation of the symbol and six 
"appended judgments." If the book is to be used as an oracle, one of the 
hexagrams must be randomly selected, and this must be done in such a way that 
the rules tell how to transform the chosen hexagram to a second one, 
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The oldest selection ~rocedure,  still followed by those who take the 1 Ching 
the most seriously, calls for 50 yarrow stalks, each one to two feet long. Ifyarrow 
stalks are not obtainable, 50 thin wooden sticks will serve. They should be kept 
in a lidded receptacle at a spot not lower than a man's shoulders. The I Ching, - 
carefully wrapped in clean silk, is kept alongside the sticks. 

The  book must never be consulted lightly. If you ask it something frivolous or 
in a skeptical mood, the book gives frivolous or meaningless answers. One 
should be completely relaxed, physically and mentally. It is essential to think of 
nothing, throughout the ceremony, other than the question being asked. 

Let us assume you are asking the I Ching a question and also casting the sticks. 
Your first step is to unwrap the book, spread the silk on a table and place the 
book on top. (The cloth protects the 1 Ching from impure surfaces.) An incense 
burner and the receptacle containing the sticks are placed beside the book. 
With your back to the south, make three kowtows, touching your forehead to 
the ground; then, still kneeling, pass the 50 sticks three times through the 
incense smoke by holding them horizontally and moving your hand in a 
clockwise circle. Return one stick to its container. It plays no further role in the 
ceremony. 

Put the 49 sticks on the cloth, then with your right hand quickly divide them 
randomly into two piles. Call the left pile A, the other B. Take a stick from B and 
put it between the last two fingers of your left hand. With your right hand, ~ u s h  
away four sticks at a time from pile A until one, two, three, or four sticks remain. 
Place those sticks between second and third fingers of your left hand. Next 
diminish pile B by pushing away four sticks at a time until one, two, three or 
four sticks remain. Place these between your left first and second fingers. (This 
last step can be shortened. Because the sum of the two remainders must be 0, 
modulo 4, the second remainder is easily calculated from the first.) Your left 
hand now holds either five or nine sticks. (The possible combinations are 1, 1, 
3; 1, 2, 2; 1, 3, 1; and 1, 4, 4.) Put all these sticks to one side. 

The  remaining sticks are bunched together, and exactly the same dividing 
procedure is repeated with them, beginning with the random division into two 
piles. At the finish your left hand will hold either four or eight sticks. (The 
possible combinations are 1, 1, 2; 1 , 2 ,  1; 1, 3 , 4 ;  and 1, 4,3.)  Place them aside, 
next to the group put aside previously. 

Bunch the remaining sticks and repeat the dividing procedure a third time. - 

Your left hand again will hold either four or eight sticks. Put them aside, next to 
the two groups already there. 

The  number of sticks that now remain will be either 24, 28, 32 or 36. Count 
them by groups of four (that is, divide the total number by 4). The quotient will 
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be 6, 7,  8 or 9. These four digits are the ritual numbers, which indicate the 
character of the bottom line ofthe hexagram. Ifthe digit is even (6 or 8), the line 
is yin (broken); if it is odd (7 or 9) ,  the line is yang (unbroken). But the ritual 
numbers tell you more. Seven and 8 mean that the line (whether yin or yang) is a 
stable line that cannot be altered. Six and 9 indicate a "moving;" line that can be - 
changed (for reasons soon to be explained) to its opposite. 

~ l i  49 sticks are now bunched together, and the entire ritual is repeated to 
obtain the hexagram's second line from the bottom. Four more repetitions give 
the remaining four lines. The entire ceremony, performed without haste, takes 
about 20 minutes. 

Look up the chosen hexagram in the I Ching and study its accompanying text 
carefully. The text will answer your question and give counsel with reference to 
the present situation. If all six lines of the hexagram are stable, that is the end of 
the matter. But if one line or more are moving, change them to their opposites 
and look up the new hexagram. The commentary will pertain to what you can 
expect in the future if you follow the counsel of the first hexagram. 

After the one or two hexagrams have been written down and the relevant 
passages in the I Ching have been read and meditated on, light another stick of 
incense, make three more kowtows of gratitude, put the sticks back in their box, 
rewrap the 1 Ching in its silk and put book and sticks back in their usual high 
place. 

Those too lazy to go through the ancient stick ritual can use a simpler method 
of casting that has been popular in China for several centuries. It calls for three 
identical coins, preferably old Chinese coins with square holes. They should be 
kept polished and should never be removed from their container except when 
the I Ching is being consulted. Observe the same beginning ritual followed for 
the sticks: kowtowing, kneeling, passing the coins through the incense and so 
on. Shake the coins in your cupped hands and let them drop simultaneously to 
the cloth. Having previously decided on which sides of the coins are yin and 
which yang, consult the following chart to determine whether the throw gives 
you 6, 7,  8 or 9. 

Three yins = 6 (a moving yin line) 

Two yins, one yang = 7 (static yang line) 

Two yangs, one yin = 8 (static yin line) 

Three yangs = 9 (moving y ang line) 

(If one thinks of the yin side as 2 and the yang side as 3, the sum of the three 
values will be the desired ritual number.) 
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Working out the probabilities provided by the stick and coin procedures 
reveals a subtle difference between the two devination methods. As far as 
picking the initial hexagram is concerned, the methods are virtually the same, 
but the probabilities are not the same in choosing the second hexagram. It is not 
hard to show that in both procedures the probability of choosing a broken line at 
each of the six steps is 112, the same as that of choosing an unbroken line. (This 
assumes that each time the sticks are randomly divided into piles A and B and A 
is reduced to one, two, three or four sticks, the probabilities for each of the four 
outcomes are equal. This is not strictly true, but the deviations from equality are 
so slight that they have a negligible effect on the final results.) Thus, any 
hexagram has the same probability of being selected as any other. The two 
procedures are also alike in giving a probability of 114 that a given line will be 
moving. Since there are six lines, 614, or I%, lines of a hexagram, on the 
average, will be moving. 

w h e n  coins are used, the probability that a broken line will change is the 
same (114) as the probability that an unbroken line will change, and similarly 
the probability is 314 that each type of line will remain stable. But when sticks 
are used, this is not the case. The probability that a broken line will change is 
1116 as compared to 3/16 for an unbroken line (or respective probabilities of 
7116 versus 5/16 that the lines will remain stable). In other words, when sticks 
are cast, it is three times more likely that an unbroken line will change than a 
broken one. It is true that any hexagram is as likely to be chosen first as any 
other, but the more broken lines a hexagram has the more likely it is that it will 
appear as the second hexagram. Purists who object to coin-casting have sound 
mathematical support. Not only does the stick ritual discourage frivolous con- 
sultation, but also its asymmetry produces a more interesting set of probabili- 
ties. W e  shall say nothing about such impious corruptions as the practice of 
obtaining the ritual numbers from dollar bills, license plates, telephone num- 
bers and so on. 

T o  readers who may wish to experiment with the 1 Ching, my first recommen- 
dation is the Richard Wilhelm and C. F. Baynes translation, rendered into 
English from the German. Two good paperback translations are also available: 
one by James Legge and one by John Blofeld. 

The Wilhelm-Baynes volume includes the famous foreword by Jung in 
which he explains the oracular power of the 1 Ching by his theory of "synchro- 
nicity," a theory defended by Arthur Koestler in his book The Roots of Coinci- 
dence. According to Jung, the 1 Ching's predictions, and relevant events that 
actually happen, are not causally linked in the Western scientific sense. They 
are "acausally" related in the Eastern metaphysical sense ofbeing parts of a vast 
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cosmic design that lies beyond the reach of science but is partially accessible to 
the subconscious mind of the person who casts the sticks. The 64 hexagrams 
and their meanings are Jungian archetypes, deeply engraved on the collective 
unconscious of humanity. 

Tough-minded skeptics who test the 1 Ching realize at once why the book 
seems to work. The text is so ambiguous that, no matter what hexagrams are 
selected, it is always possible to interpret them so that they seem to apply to the 
question. Indeed, the scope for intuitive interpretation is so great that in China 
before Mao (I do not know how it is today) there was a large class ofprofessional 
1 Ching interpreters whose services were available for a fee on street corners, at 
fairs and in marketplaces. Surely one reason for the popularity of coin-casting 
was that it maximized the profits of these fortune-tellers by speeding up their 
readings. 

And if the 1 Ching's predictions fail to materialize? Well, perhaps the text was 
not correctly interpreted, or maybe you were not in the right frame of mind 
when you were tossing the sticks or coins. Besides, the future is not completely 
determined. The 1 Ching, like the stars of astrology, does no more than indicate 
probable trends. 

Tender-minded believers in the occult, who have not yet consulted the 1 
Ching and who long for powerful, mysterious magic, are hereby forewarned. 
This ancient book's advice can be far more shattering psychologically than the 
advice of any mere astrologer, palmist, crystal gazer or tea-leaf reader. 

ADDENDUM 

My remarks on how the probability distributions differ between using the 
yarrow stalks and the three coins were based on the article by F. van der Blij 
cited in the bibliography. Persi Diaconis, a Stanford University statistician, 
called my attention to the fact that van der Blij assumes that when the 49 sticks 
are divided "randomly," each possible division is equally likely. In actual 
practice this could hardly be the case. Distribution around the middle (24125 
sticks) is likely to be more peaked than distributions near the extremes (1148). 

An advantage of the coin method is that it provides a fairer distribution of 
choices. O n  the other hand, if you believe in Jungian synchronicity you might 
suppose that whatever acausal forces are operating they would be stronger on a 
hand division of sticks than on the way one flips a coin. There is also the 
possibility that if a person is thoroughly familiar with the 1 Ching his uncon- 
scious mind may guide the division of sticks toward appropriate passages. I 
hasten to add that I buy none of the above. 
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There is an easy way to test the hypothesis that the seemingly beautiful and 
relevant responses of the 1 Ching are no more than the result of your mind 
seizing on ways to apply ambiguous passages to your situation at the moment, 
like the way devotees of astrology deceive themselves into thinking there are 
paranormal correlations between their lives and horoscope readings. The test is 
this. Go carefully through the stick ritual for a friend who is a passionate 
believer in the powers ofthe 1 Ching. But instead of reading the passage selected 
by the ritual, read instead a passage you selected before you began the ritual. It is 
highly probable that your friend will be enormously impressed by the 1 Ching's 
advice. 

It is advisable not to explain the hoax unless you are prepared for an angry 
reaction. If you yourself are a true believer, you can, of course, argue that 
precognition and synchronicity guided your choice of a passage. Even if you 
know the friend's question in advance and search for the most inappropriate 
passage you can find, you'll discover there are always ways of making such a 
passage appropriate. This is the great secret of the 1 Ching's success down 
through the centuries. 

There are few signs that the occult revolution is abating in the United States. 
A dozen or more worthless ~ a ~ e r b a c k s  about the 1 Ching are currently in print, 
published by firms eager to squeeze as much money as ~ossible from gullible 
readers who hunger for the paranormal. 
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The La$er Curve 

The Kettle-Griffith-Moynihan Scheme for a New Electricity Supply. 
Traveling in the Olden T ~ m e s , ~  American Lake Poetry. the Strangest Dream 
that was ever ~ a l f d r e a m t . ~  

41've lost the place, where was I? 
5~omething happened that time I was asleep, torn letters or was there snow? 

-JAMES JOYCE, Finnegans W a k e  

Economists love to draw curves. In the early decades of modern capitalism, 
classical economists were fond of explaining prices by constructing supply and 
demand graphs such as the one shown in Figure 152. Ifthe price of a commod- 
ity is on the level indicated by the broken line a,  it is easy to see from where this 
line crosses the curves that people will buy less of the product. Since the seller 
will have an oversupply, he will lower its price to get rid of it. If the prices are on 
the lower level of the broken line b, increased demand will bid up the product's 
price and the seller will produce more. 

These up and down forces stabilize the price at E, the equilibrium point 
where the amounts demanded and supplied are equal. At this point, according 
to early classical theory, the seller maximizes profit. If there is a general increase 
in demand, with supply constant, the demand curve shifts to the right and E 
rises. If there is a general increase in supply, with demand constant, the supply 
curve shifts to the right and Efalls. If both curves move to the left or the right the 
same distance, E stays at the same level. 

These curves are still indispensable because supply and demand play basic 
roles in any economy, even one without free markets; but these days economists 
refer to them less, because in a mixed economy such as ours hundreds of 
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I DEMAND SUPPLY 

I 
0 QUANTITY - 

Figure 152 Classical supply and demand curves 

variables play havoc with the curves. The government, by innumerable strata- 
gems, keeps many prices far above or below what they would be in a free 
market. Organized labor pushes up wages, and companies pass the increases 
along to prices, in what Arthur M. Okun of the Brookings Institution calls "the 
invisible handshake." Oligopolists find subtle ways of getting together to avoid 
market fluctuations, something they must do to remain efficient. 

In the 1960's, when Keynesian economics was still carrying all before it 
("We are all Keynesians now," said Richard Nixon), many economists were 
impressed by the Phillips curve. This curve was first proposed in 1958 by the 
London economist Alban William Housego Phillips and applied to the U.S. 
economy in 1960 by neoKeynesians Paul A. Samuelson and Robert M. Solow. 
As you can see in Figure 153, a typical Phillips curve plots the inverse relation 
between unemployment and inflation. By taking into account the ability of 
labor and business to administer prices, the Phillips curve indicates that the 
double goals of full employment and price stability are not compatible in a 
mixed economy. Full employment (F) is attainable only at the cost of steady 
inflation. Stable prices (zero inflation) are impossible without high unemploy- 
ment ( U ) .  

What to do? The best we can hope for, implies the curve, is to find a 
reasonable trade-off that does the minimum amount of harm. If prices rise too 
high, let a recession pull them down. If too many people are out of work, let 
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Figure 153 The Phillips curve 

inflation restore their jobs. With luck a government may find a point on the 
curve where "normal" unemployment will combine with an acceptable mild 
inflation of, say, 4 or 5 percent per year. 

While economists were arguing about the "cruel dilemma" posed by the 
Phillips curve - the difficulty of finding a trade-off that would not lead to either 
a deep recession or a galloping inflation- a funny thing happened. During the 
late 1950's and early 1960's the economy got itself into the mysterious state of 
"stagflation" where, contrary to the curve, unemployment and inflation began 
to rise simultaneously. The  Phillips curve started to disintegrate. 

Keynesians struggled to rescue the curve. It was soon obvious that there is no 
such thing as a Phillips curve that is stable in the short run. The curve can be 
drawn dozens of ways, depending on what variables (including psychological 
expectations) are taken into account, and it varies widely from time to time and 
place to place. Is there a Phillips curve that is stable in the long run? Some say 
yes, some say no. Even if there is, economists disagree on how to apply it. 
Should the government try somehow to slide up and down the curve, with 
inflation and unemployment fluctuating like a seesaw? Should it try "looping" 
around the curve in various risky ways? 

According to Keynesians, a force called demand-pull tries to twist the curve 
into a vertical straight line, while another force called cost-push tries to twist it 
into a horizontal line. The  long-run curve compromises with a steep downward 
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slope. What is needed, of course, is some way of shifting the entire curve back 
down and to the left to allow trade-offs that will not lead to social chaos. Some 
economists, for example John Kenneth Galbraith, believe this can be done only 
by combining fiscal and monetary policies with wage and price controls. Noth- 
ing could be worse says Milton Friedman. In Friedman's monetarist view the 
long-run Phillips curve is a vertical line at the "natural rate" of unemployment, 
and any tradeoff effort to reduce unemployment below that line will set off an 
explosive inflation. 

The  Phillips curve, Daniel Bell wrote in 1980 (summarizing earlier remarks 
by Solow), "provided more employment for economists . . . than any public- 
works program since the construction of the Erie Canal." If unemployment is 
plotted against inflation for the 1960's, the result is a reasonably smooth curve. 
But if the same chronological plotting is done for the 1970's, as the U.S. 
economy drifted deeper into stagflation, the result is what the Wonnacotts, in 
their textbook Economics, call a "mess." Today the Phillips curve has become 
little more than an out-of-focus symbol of the fact that inflation and unemploy- 
ment are not independent evils but are func:tionally linked in complex ways that 
nobody is yet able to understand. 

Now, as a result of the upsurge of interest in "supply-sideH economics, the 
curve of the hour is a brand-new one called, with strangely resonant overtones, 
the Laffer curve. Arthur B. Laffer is a 41-year-old professor of business at the 
University of Southern California. The curve was named and first publicized by 
Jude Wanniski, a former writer for The Wall Street Journal, in his bible of 
supply-side theory, confidently titled The W a y  the World Works. Figure 154 
shows how Wanniski orients the Laffer curve at the beginning of his Chapter 6. 

Is it not a thing of beauty bare? As any child can see from inspecting the 
curve's lower end, if the government drops its tax rate to nothing it gets nothing. 
And if it raises its tax rate to 100 percent, il: also gets nothing. Why? Because in 
that case nobody will work for wages. If all income went to the state, people 
would revert to a barter economy in which a painter paints a dentist's house 
only if the dentist caps one of the painter's teeth. 

The  Laffer curve gets more interesting when we slide along its arm toward 
the center. At point A,  where taxes are not quite 100 percent, people will find it 
to their benefit to take some of their income in taxable wages. At point B the 
economy hums along with unfettered high production, but because tax rates are 
low the government gets the same small arnount it would get if taxes were at A. 

Now look at point E at the extreme right of the curve. That is where the tax 
rate maximizes government revenue. If taxes fall below E ,  that may stimulate 
production, but it obviously diminishes government revenue. Because E, by 
definition, is the point of maximum revenue, the government also must get less 
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0 GOVERNMENT REVENUE - 
Figure 154 The Laffer curve 

if taxes rise above E. The supply-siders stress many reasons for this being so. 
Some rich people find it unprofitable to work as productively as before. Some 
escape from excessive tax burdens by finding unproductive "shelters." Some 
even move to another country where taxes are low. If the government is relying 
on high taxes for welfare programs, millions of people are encouraged not to 
work at all. Why work ifyou can get almost the same income from welfare? Big 
corporations spend less on research and development. Entrepreneurs, the 
backbone of dynamic growth, are less willing to take risks. As a result of these 
factors and others, the economy becomes sluggish and tax revenues decline. 

It is important to understand, Wanniski tells us, that E is not necessarily at 
the 50 percent level, although it could be. The shape of the Laffer curve 
obviously changes with circumstances. Thus, in time of war, when people and 
business are persuaded that a sacrificial effort is essential, they are willing to 
accept a high tax rate while they keep production booming. In peacetime they 
are less altruistic. 

Now, the heart ofthe supply-side argument is the conviction that our current 
economy is somewhere near C, far too high on the Laffer curve. Lowering taxes 
(which some supply-siders believe calls for huge cuts in welfare spending) will 
give the supply side ofthe economy such a shot in the arm that the U.S. will slide 
down the Laffer curve to point E, perhaps not right away but soon. Tax 
revenues eventually will rise enough to take care of increased funding of the 
military, stagflation will end, dynamic growth will begin, the budget will be 
balanced by 1984 and the American dream will regain its luster. 

Of course, supply and demand are always intertwined, but the supply-siders 
call themselves supply-siders in order to emphasize how they differ from 
neo-Keynesians. John Maynard Keynes stressed the importance of maintaining 
demand by minimum-wage laws and welfare payments. The Lafferites turn 
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this around and stress the importance of stimulating supply. With the govern- 
ment offthe back of business production will soar, new inventions will be made, 
more people will be employed and real wages will rise. Everyone benefits, 
particularly the poor, as prosperity trickles down from the heights. 

The second book to gild the virtues of Lafferism is George Gilder's Wealth - 

and Poverty. The title intentionally plays on the title of Henry George's best 
seller Progress and Poverty, which created a stir late in the 19th century by 
recommending the abolition of all taxes except a single tax on land. Gilder's 
book is more impassioned than Wanniski'!;. "Regressive taxes help the poor!" 
Gilder exclaims on page 188. William Safi.re once described capitalism as the 
"good that can come from greed." Gilder is furious when people talk like that; 
he finds capitalism motivated by the good that comes from "giving." By this he 
means that the best way to give the poor what they want, particularly the 
unemployed young men and women of minority groups, is to leave the free 
market alone so that the economy will start growing again. 

The trouble with the Laffer curve is that, like the Phillips curve, it is too 
simple to be of any service except as the syinbol of a concept. In the case of the 
Laffer curve the concept is both ancient and trivially true-namely that when 
taxes are too high they are counterproductive. The problem is how to define 
"too high." No economist has the foggiest notion of what a Laffer curve really 
looks like except in the neighborhood of its end points. Even if economists did 
know, they would not know where to put the economy on it. Neoconservative 
Irving Kristol, defending supply-side economics in Commentary, writes that he 
cannot say where we are on the Laffer curve, but he is sure we are "too far up." 
President Reagan's across-the-board tax cuts are, he says, just what we need in 
order to slide the economy toward point E. 

T o  bring Laffer's curve more into line with the complexities of a mixed 
economy dominated by what Galbraith likes to call the "technostructure," and 
also with other variables that distort the curve, I have devised what I call the 
neo-Laffer (NL) curve. The NL curve is shown in Figure 155. Observe that 
near its end points this lovely curve closely resembles the old Laffer curve, 
proving that it was not a totally worthless first approximation. '4s the curve 
moves into the complexities of the real world, however, it enters what I call the 
"technosnarl." In this region I have based the curve on a sophisticated statistical 
analysis (provided by Persi Diaconis, a statistician at Stanford University) ofthe 
best available data for the U.S. economy over the past 50 years. Since the data 
are represented on the graph by a swarm of densely packed points, the actual 
shape of the curve is somewhat arbitrary. Nevertheless, it dramatizes a number 
of significant insights. 

Consider any value r on the revenue axis within the segment directly below 
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Figure 155 T h e  neo-Laffer (NL) curve 

the technosnarl. A vertical line through r intersects the snarl at multiple points. 
These points represent values on the tax-rate axis that are most likely to produce 
revenue r.  Note that this also applies to the maximum value of r, producing 
multiple points E on the technosnarl. In brief, more than one tax rate can 
maximize government revenue. 

Consider any value ton the tax-rate axis within the segment directly to the left 
of the technosnarl. A horizontal line through t also intersects the snarl at 
multiple points. These points represent values on the revenue axis that are most 
likely to result from tax rate t. 

Note that at some intersection points lowering taxes from a given tax rate will 
lower revenue, and that at other points for the same tax rate it will raise revenue. 
Even if we could determine at which point to put the economy, it is not clear 
from the snarl just what fiscal and monetary policies would move the economy 
fastest along the curve to the nearest point E. 

Like the old Laffer curve, the new one is also metaphorical, though clearly a 
better model of the real world. Since it is a statistical reflection of human 
behavior, its shape constantly changes, like the Phillips curve, in unpredictable 
ways. Hence the curve is best represented by a motion picture that captures its 
protean character. Because it takes so long to gather data and even longer to 
analyze all the shift parameters, by the time an NL curve is drawn it is out of 
date and not very useful. I have been told in confidence, however, by one of 
Jack Anderson's more reliable informants that the Smith Richardson Founda- 
tion has secretly funded a multimillion-dollar project at Stanford Research 
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International to study ways of improving the construction of NL curves. It is 
possible that with better software, using the fast Cray computer at the Lawrence 
Livermore Laboratory, one will be able to assign current probability values to 
the multiple intersection points. If one can do so, the NL curve could become a 
valuable forecasting tool for rational Federal decisions. 

The Lafferites combine supreme self-confidence with a supremely low opin- 
ion of their detractors. Of the 18 economists who have won Nobel prizes, only 
two, Milton Friedman and Gunnar Myrdal, appear in the index of T h e  W a y  the 
World Works. Not even Alan Greenspan, now of the abandoned "old right," 
gets a mention. You might suppose that, since Friedman and Wanniski are 
both mentors to conservatives, Wanniski would have a high opinion of Fried- 
man. Not so. Wanniski goes to great lengths in his book to explain why three 
famous economic models - Marxian, Keynesian and Friedmanian - are all 
wrong. They cannot even explain why the economy crashed in 1929. 

There is now an enormous literature on the many causes of the crash, much 
of it written by eminent economists. W e  can throw it all away. Wanniski has 
figured out the real reason. There would have been nothing wrong with the 
stock market if Herbert Hoover had just left it alone. Instead he and Congress 
made a stupid political blunder. Writes Wanniski: "The stock market Crash of 
1929 and the Great Depression ensued because of the passage of the Smoot- 
Hawley Tariff Act of 1930." 

How did it happen that the crash occurred in October of the previous year? It 
is simple. The stock market, says Wanniski, anticipated the dire consequences 
of the coming restraints on free trade. Not all supply-siders agree. Jack Kemp, 
the New York congressman who coauthored the Kemp-Roth tax bill (which 
paved the way for Reagan's fiscal program), is one who does. In Kemp's rousing 
book A n  American Renaissance, he assures us that Wanniski has "demonstrated 
beyond any reasonable doubt" the truth of his remarkable discovery. 

What do professional economists make of radical supply-side theory? Most 
of them, including the most conservative, regard it in much the same way as 
astronomers regard the theories of Immanuel Velikovsky. T o  Galbraith it is "a 
relatively sophisticated form of fraud." Walter W. Heller has likened it to 
laetrile, and Solow terms it "snake oil." Vice-president Bush has called it 
"voodoo economics." Herbert Stein labeled it "punk economics" (as in "punk 
rock"), and Martin Feldstein described it as "excess rhetorical baggage." 
Nevertheless, the books by Wanniski, Gilder and Kemp are said to have much 
influence in the current Administration. 

Lafferites enjoy heaping praise on one another. Laffer, the hero of Wan- 
niski's book, is quoted on the back of the paperbound edition as saying: "In all 
honesty, I believe it is the best book on economics ever written." Kristol, on the 
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front cover, is more restrained. He thinks it is "the best economic primer since 
Adam Smith." Gilder asserts Wanniski "has achieved an overnight influence 
of nearly Keynesian proportions." Gilder has been greeted with similar eu- 
phoria. David Stockman, President Reagan's budget director, has hailed 
Wealth and Poverty as "Promethean in its intellectual power and insight. It 
shatters once and for all the Keynesian and welfare-state illusions that burden 
the failed conventional wisdom of our era." 

How puzzled the President must be by the violent clash between his old 
friend Friedman and his Lafferite advisers! (The clash is not only over Fried- 
man's monetary views but also over his distaste for the supply-side "gold bugs" 
who are urging an immediate return to the gold standard.) In the business 
section of The New York Times, Wanniski's attack on Friedman was vitriolic. 
The  burden of it is that although Friedman is "barely five feet tall," he "weighs" 
so much that he is now an enormous "deadweight burden" on the backs of 
Menachem Begin, Margaret Thatcher, Ronald Reagan and the U.S. economy. 

Will the Lafferism of the Administration succeed, or will it, as many econo- 
mists fear, eventually plunge the nation into higher inflation and higher unem- 
ployment? Economists cannot know. The technosnarl is too snarly. The idle 
rich might not invest their tax savings, as Lafferites predict, but might spend it 
on increased conspicuous consumption. The hardworking poor and middle 
class might decide to work less productively, not more. Big corporations and 
conglomerates might do little with their tax savings except acquire other com- 
panies. 

Of course, ideologues of all persuasions think they know exactly how the 
economy will respond to the Administration's strange mixture of Lafferism and 
monetarism. Indeed, their self-confidence is so vast, and their ability to rational- 
ize so crafty, that one cannot imagine any scenario for the next few years, that 
they would regard as falsifying their dogma. The failure of any prediction can 
always be blamed on quirky political decisions or unforeseen historical events. 
It is inconceivable, for example, that Friedman would consider the triple-digit 
inflation in Israel or the recent riots in Britain or high U.S. stagflation in 1983 as 
suggesting the slightest blemish on his monetarist views even though he enthu- 
siastically supported Begin, Thatcher and Reagan, and all three have in turn 
been strongly influenced by Friedman's brand of monetarism. 

As for the Lafferites, they have all kinds of outs in case Reagan's policies lead 
to disaster. Some will blame it on Friedman, Others may follow an escape plan 
mapped out by William F. Buckley. Although the Administration's tax and 
budget cuts have been called the biggest in American history, Buckley thinks 
both cuts are not big enough. "The trouble with the Reagan tax cuts," he wrote 
in National Review (July 24), "is (a) they are insufficient, and insufficiently 



targeted; and (b) the cuts in the budget are equally insufficient.… You cannot
make long-range, significant cuts by concentrating on only a single one-third of
the budget. It is the equivalent of saying you are going to lose weight by exer-
cising only your right leg.”

One can hope that President Reagan will not try to reconcile these conflict-
ing conservative views by resorting to astrology. This possibility is not quite as
remote as one might think. In an interview with Angela Fox Dunn the President
said he followed the daily advice for his sign in the syndicated horoscope of
Carroll Righter. Born on February 6, Reagan is an Aquarian. “I believe you’ll
find,” he told Dunn, “that 80 percent of the people in New York’s Hall of Fame
are Aquarians.”

President Reagan and his wife Nancy have for many years been personal
friends of both Righter (who advises Gloria Swanson and other Hollywood fig-
ures) and the astrologer Jeanne Dixon, who lives in Washington. “I’m not con-
sidered one of his advisers,” Dixon cryptically told newspaper columnist
Warren Hinckle, “but I advise him.” Joyce Jillson, who writes a syndicated
astrology column for The Chicago Tribune and has among her clients several
Hollywood studios and multinational corporations, says that in 1980 Reagan
aides paid her $1,200 for horoscopes on eight prospective vice-presidential can-
didates. The White House communications director has, however, called her a
liar. Michael Kramer writes in New York Magazine: “Ronald Reagan, says Ronald
Reagan, is a nice, well-intentioned man who loves his family, likes to consult his
horoscope before making major decisions, and cries when he watches Little
House on the Prairie.”

Will the President seek help from the zodiac in trying to decide whether to
follow Friedman or Laffer or someone else? One may never know. As the Yale
economist William Nordhaus put it (The New York Times, August 9, 1981): “We
can only hope that supply-side economics turns out to be laetrile rather than
thalidomide.”

ADDENDUM
Book collections of my Scientific American columns have taken them in rough
chronological order, but the previous chapter is a rare exception. It was my last
column, appearing in the December issue of 1981.

Ronald Wilson Reagan had been president for a year. It may be hard to
believe today, but the extreme supply-siders had convinced him that if he
lowered taxes it would give the economy such a shove that defense spending
could be increased, the entitlement programs preserved, and the budget bal-
anced by 1984 with a healthy surplus. At least that’s what Reagan told the
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voters. There is now some evidence that he and his advisors anticipated a large 
deficit but kept this secret because they were convinced that only such a deficit 
would persuade Congress to dismantle welfare. In any case, everybody except a 
few diehard supply-siders such as Arthur Laffer, Jack Kemp and his writer 
friends, the economist Paul Craig Roberts and, of course, the president himself 
now realizes that the 1980 campaign promises were fantasy. The one big 
achievement of the Reagan administration has been lowering the inflation 
rate-but at what a cost! 

It's no economic mystery that inflation can be checked if you pay the Keynes- 
ian price of a severe recession and a monstrous deficit. Indeed, one of the many 
ironies of Reagan's career is that although he began his first term as a radical 
rightist - it's not easy to pin the label "conservative" on him - he ended the 
term by reviving a moribund Keynes. Economists now generally agree that the 
recession was caused by the Fed's tight money policy (plus other things), and it 
ended only when the Fed abruptly eased the money supply in 1983, again aided 
by other factors. These other factors included rising government spending on 
defense, increased purchasing power created by tax cuts, and the sheer fact that 
depressions are cyclical. Whatever the multiple reasons, Reagan was lucky. 
The  depression ended just before his 1984 campaign. The point, however, is 
this: Everything happened according to classical Keynesian doctrine. 

"Reagan became the ultimate Keynesian," was how Lester Thurow put it 
(see Karen Arenson's article, "Heroes of the Economic Recovery, " New York 
Times, Sunday, January 19, 1984). "Regardless ofwhat he said he was doing, it 
was simply the old Keynesian medicine at work, stop and go economics. It got 
us out of the worst recession since the depression, and we're now in the go 
phase. But the problem is that we will eventually stop." 

At the time I am typing this (late 1985), Reaganism is falling apart, and it is 
impossible to predict how Congress will eventually handle the deficit catas- 
trophe without cutting defense, chipping away at social security, raising taxes, 
or some combination ofthe three. One thing, though, is clear. The Laffer curve - 

is a joke. It seemed like a good idea to reprint my column about it now rather 
than hold it for the final volume of the series 10 years from now when the curve 
will be remembered (ifat all) only as a quaint curiosity. By then we should know 
how the nation met the deficit crisis. Unless taxes are steeply raised in the next 
few years, the only viable alternative short of a major war seems to be a pumping 
up of the money supply (equivalent almost to printing money) to wipe out debts 
at the cost of an unthinkable inflation. 

The  big stumbling blocks are Reagan's persistent hope for an economic 
miracle, and his declaration that he would never raise taxes or trim defense 
spending and Social Security. When he was governor of California, he similarly 
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did his best to reduce taxes and chop welfare. "The entire graduated income tax 
structure was created by Karl Marx," Reagan said in 1966. He wanted to 
declare war on Vietnam ("We could pave the whole country and put parking 
stripes on it, and still be home for Christmas"). He described welfare recipients 
as "a faceless mass waiting for a handout." Yet when the state budget jumped 
up 122 percent, Reagan approved the largest tax increase in the history of 
California. By the end of his second term we will know if he is capable of 
approving a tax increase for the nation ever1 though he promised in 1984 that 
this would be done "over my dead body." Reagan knows, of course, that the 
Democrats will never stop recalling Walter Mondale's campaign prediction 
that the administration would be forced to raise taxes to prevent the deficit from 
wrecking the economy. 

Reagan wants to go down in history as the far-sighted president who reversed 
what he sees as evil drifts toward socialism, toward accommodation with the 
godless Soviet Union, and toward a general decay of morality and Christian 
faith. He wants to be remembered as the David who slew the Goliath of Big 
Government, unraveled the welfare state and put a free market back at the 
center of the economy. More likely he w~l l  be seen by future historians as 
another Herbert Hoover. ("We should soon, with the help of God, be in sight of 
the day when poverty will be banished from the nation," said Hooverjust before 
the Big Crash of 1929). Conservative writer William Safire (in an August 1985 
column) described Reagan's present strate.g as the "masterly inactivity" of a 
leader too stubborn to go back on his "demogogic pre-election promises," 
standing on the bridge of the ship of state "smiling into the fog, as we head 
toward his trillion-dollar iceberg." - 

My neo-Laffer curve produced a flood of letters, many from indignant 
readers who actually took the curve seriously. Some conservative economists 
congratulated me for saying what they had avoided saying out of respect for a 
newly elected, enormously popular president. David Warsh, of the Boston 
Globe, wrote a feature article about my curve ("No Laffing in D.C. This Week," 
December 15,1981). I was taken to task by several economists for implying that 
the Laffer curve was something the profess~~on considered significant, when in 
fact it was the product of media hype. Three letters, two blasting me and one 
defending me, were published in Scientijic American (March, 1982). 

Neither supply-siders not monetarists buy the old Phillips curve. Indeed, as 
we have seen, they apparently sold Reagan on the dream that inflation could be 
checked without either wage and price corltrols or a recession. In some cases 
their understanding of economic realities behind the curve was on a primitive 
level. Leonard Silk, describing the 1982 economic summit conference at Ver- 
sailles (New York Times, June 11, 1982) reported a briefing of reporters by 
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supply-sider Donald Regan, then Secretary of the Treasury. "If you recall the 
Phillips curve," said Regan, "that's where the more you have of inflation, the 
more unemployment you'll have- and the less inflation, the less unemploy- 
ment. " 

Of course, Regan had it exactly wrong. The curve shows inflation and 
unemployment moving in opposite directions. Regan, Silk reminded his readers, 
had been an English major at Harvard. There was sharp disagreement at the 
conference over whether the Phillips curve could be made to go away, though 
everybody agreed it would be great if it would. Meanwhile, added Silk, "The 
president is still clinging to the Laffer curve, with its claimed relationship 
between lower taxes, and higher production, national income, and tax reve- 

, t  nues. 
Jude Wanniski has been almost as subdued lately as Milton Friedman, but 

Laffer and Gilder continue to bubble over with supply-side enthusiasm. In the 
Washington Post (August 20, 1985) Laffer maintained that the drop in inflation 
was not the result of tight money; it resulted from an increase in the supply of 
goods. "The size of our national debt is not a crisis situation," he said a few days 
later (Sacramento Bee, August 29,1985). "It is by no means a reason to overturn 
Reaganomics. It's far better to keep tax rates low and run temporary deficits 
than it is to raise tax rates and destroy economic growth." Congress, according 
to Laffer, is solely to blame for the big deficit because it refused to cut nonde- 
fense spending enough. 

Gilder's latest work, The Spirit of Enterprise (1984) is another breathless 
hymn to the invisible hand of Adam Smith. "No one understands the entrepre- 
neurial spirit and the entrepreneurial basis of economic growth better than 
George Gilder," said his friend Irving Kristol, who seems unable to curb 
hyperbole whenever he is asked to supply a jacket blurb for a book by a 
supply-sider. 

Keynesian economists naturally see Gilder's book in a different light. "Only 
someone with a sense of humor could survive reading this book," commented 
Robert Solow ( N e w  Republic, October 22, 1984). "And no one with any trace of 
a sense of humor could have written it. . . . the prose is mind numbing. . . . 
if he wrote a chapter in praise of lettuce, it could turn you against green leafy 
vegetables forever. " 

Here is how Solow said what I tried to convey with my neo-Laffer curve: 

The truth is that the tradeoff between incentive and equity in taxation is 
a complicated and tough issue of public policy. Our  tax system probably 
does a terrible job. It is riddled with loopholes that tend to direct energy 
into unproductive activities. It does not achieve much real equity (and even 
less nowadays). If we had the will to reform it-which we do not-we 
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might gain on both the equity and incentive sides. But it is neither clever 
nor honorable to do as Gilder does and submerge the equity issues in 
undocumented claims and claptrap. It irl-esistably reminds one of what 
Bernard Shaw is supposed to have said to Samuel Goldwyn as they nego- 
tiated over the royalties for a film versior~ of one of Shaw's plays: "Mr. 
Goldwyn, you seem to be interested only in art, while I care only about 
money." 

David Stockman, as we all know, resigned in 1985 as budget director after 
another outburst of harsh and honest words about Reaganomics. Incidentally, it 
has been reported that Stockman used to baby-sit for Daniel Patrick Moynihan. 
Contrary to James Joyce's prophecy (see the epigraph of this chapter), Moyni- 
han never bought his baby-sitter's supply-side mythology. Exactly where 
Stockman stands today on the " promethean" intellects of Wanniski and Gilder 
is not clear. Perhaps he will tell us in the memoirs he is writing, and for which 
Harper and Row paid him more than $2 million. T o  quote Joyce again: 
"Stockins of Winning's Folly Merryfalls. . . . Godamedy, you're a delville of a 
tolkar!" 
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KNOTTED DOUGHNUTS 
AND OTHER MATHEMATICAL ENTERTAINMENTS 

This eleventh and latest collection 
of Martin Gardner's Scientific Amer- 
ican columns consists of an entirely 
new set of problems and paradoxes, 
teasers and tricks that will enhance 
the author's already considerable 
reputation as a master mathemirti- 
cal conjuror. 

From coincidences that seem to 
violate the laws of probability, to the 
mysterious sequence of hexagrams 
in the 1 Ching, to the controversigl 
and uproarious pseudoscientific 
economics of the Laffer curve, Knot- 
ted Doughnuts and Other Mathe- 
matical Entertainments reveals just 
how instructive and amusing recre- 
ational mathematics can be. 

Gardner introduces his readers to 
mathematical games such as Sim, 
Chomp, and Race Track; to New- 
comb's paradox; to the pencil- 
noodling delights of Worm Paths; 
and to many other mind-bending 
and challenging puzzles and 
problems. 

This is a book to refer to again and 
again, one that will provide hours of 
enjoyment for recreational math de- 
votees, game buffs, or those who 
simply want to sharpen their wits. 

Born iir Tblsa, Oklahoma, MARTIN 
GARDNER introduced readers to  
hundreds of mathematical enter- 
tainments in his highly successful 
"Mathematical Games" column in 
Scientific American. Profiled in both 
Tlme and Newsweek, GaMner is the 
author of over 40 books, including 
aha! Gotcha; aha! Insight; The Anno- 
tated Alice; The Flight of  Peter 
Fromm (a novel); Science: Good, 
Bad, and Bogus; The Whys of a Phil- 
osophical Scrivener; and ten pre- 
vious collections of his Scientific 
American columns. In 1983 he was 
the recipient of the Science Writer of 
the Year award from the American 
Institute of Physics1U.S. Steel Foun- 
dation. He lives in Hendersonville, 
North Carolina. 
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