Computers\&Electronics

JANUJARY 1984

A SCANNING MONITOR FOR PERSONAL COMPUTERS

HEATH'S 16-BIT COMPUTER TRAINER

LEARNING ASSEMBLY LANGUAGE FOR THE IBM-PC

 WHAT'S NEW IN CP/M?

225 Turnpike Street, Cantor, Massachusetts $020 \varepsilon 1$
Toll-iree: 1-800-343-6833 in Massachusetts (617) 628-8150. Te ex S51-6E4. Circle no. za on free information carc

WHEN YOU JOIN THE LIBRARY OF COMPUTER AND INFORMATION SCIENCES

You simply agree to buy 3 more books-at handsome discounts within the next 12 months.

This up-to-date Second Edition contains:

- Over 1,670 pages of revised, expanded, and updated text
- 550 articles on virtually every aspect of the computer sciences
- Written by 301 distinguished authorities
- Profusely illustrated with over 500 photos, and over 250 diagrams, graphs and charts

ndispensable to consultants, business peo ple, data processing professionals, and enthusiasts, the ENCYCLOPEDIA OF COMPUTER SCIENCE AND ENGINEERING is a veritable data base of information on:

- Hardware
- Software
- Programming languages
- Artificial intelligence
- Computer applications
- Personal computing and much more!
The Encyclopedia is organized to make finding and using its wealth of information an ease. Articles are alphabetically arranged and are cross-referenced to related articles and to specific subject matter. The clear and expanded appendices include abbreviations, acronyms, special notation and terminology, as well as numerical tables, the mainstay of applied technologies. A complete 5,000-term index contains
references to sub-categories, doubles as a computer science dictionary, and is an invaluable tool for locating specific information

Praise For the First Edition:

Called "Impressive. . . comprehensive well done" by Datamation, and "... a real treasure cache" by Business Management, the new Second Edition promises to eclipse Computer Management's statement on the original of "There isn't another book like it." Send for your free 10-day trial.
The Library of Computer and Information Sciences is the oldest and largest book club especially designed for the computer professional. In the incredibly fast-moving world of data processing, where up-to-date knowledge is essential, we make it easy for you to keep totally informed on all areas of the information sciences. In addition, books are offered at discounts up to 30% off publishers' prices. Begin enjoying the club's benefits today!

MEMBERSHIP BENEFITS: In addition to getting the Encyclojedia of Computer Science and Engineering for only \$2.95 when you join, you keep saving substantially on the books you ouy. Also. you will immediately become eligible to participate in our Bonus Book Plan, with savings up to 70% off the jublishers' prices. At $3-4$ week intervals (16 times per year) you will receive the Book Club News. describing the coming hain Selection and Alternate Selections, together with a dated reply card. If you want the Main Selection, do nothing and it will be sent to you automatically. It you prefer another selection or no book at all simply indicate your choice on the selectiond and return it by the date specified. You will have at least 10 days to decide. If. because of late mail delivery of the News, you should receive a book you do not want, we guarantee you should rec
return postage.

The Library of Computer and Information Sciences

(the oldest and most res
book club in the werld)
Riverside, New Jersey 08075
Please accept my application for trial membership and senc me the Encyclopedia of Computer Science and Engineering (44904) for $\$ 2.95$. I agree to purchase at least three addirional Selections or Alternates over the next 12 months. Savings range up to 30% and occasionally even more. My membership is cancelable any time after I buy these three books. A shipping and handling charge is added to all shipments

No-Risk Guarantee: If you are not satisfied-for any reason-you may return the Encyclopedia within 10 days and your membership will be canceled and you will owe nothing.

Name
Name of Firm
(If you want subscription sent to your office)
Address
Apt

City
State
only Prices
(Otter good in Continental U.S and Canada only Prices
slighty higher in Canada.) slightly higher in Canaja.) Computer \& Electronics $1 / 84$
IBM'S PEANUT: A PC IN A JUNIOR-SIZE PACKAGE
38
George Mitchell/Compatibility with PC Senior and some innovations.
BEARCAT COMPUSCAN/2100 SCANNING RECIEVER
48
Joe Desposito/Interfacing a microcomputer with a radio.

WHAT'S NEW IN THE CP/M WORLD?

56 oser Bernard/An up-to-date look at microcomputing's most widespread DOS.

$59 \mathbf{c} \&$ e interviews digital research

NEW HEATHKIT/ZENITH 16-BIT LEARNING

62

Joe Desposito/A powerful combination for "hands-on" self instruction.

GETTING STARTED IN PERSONAL COMPUTING Al Burawa/How they work and choosing what you need.

AN ATARI TAPE INTERFACE

77 Randy Carlstrom/Offers reliable and inexpensive program loading on standard cassette recorders.
CONVERTING PROGRAMS FOR VIC-20, PET, AND

```

\section*{92}
```

Ron Gunn/Tricks and knowledge to make your programs transportable.

```
    ASSEMBLY LANGUAGE PRIMER FOR IBM PC:
    ASSEMBLY LANGUAGE PRIMER FOR IBM PC:
    FEATURING THE }8088\mathrm{ MICROPROCESSOR
    FEATURING THE }8088\mathrm{ MICROPROCESSOR
Robert Lafore
Robert Lafore

\section*{COLUMNS}

\section*{24 BITS \& BYTES/Sol Libes}


\footnotetext{
LES SOLOMON ON COMPUTER HARDWARE
How Computers Create Color.
}

6 EDITORIAL
Art Salsberg/And The [Computer] Beat Goes On

\section*{7 Letters}

\section*{NEW PRODUCTS}

\section*{111 COMPUTER MART/ELECTRONICS CLASSIFIED}

\section*{120 advertiser's index}

THE ELECTRONICS SCIENTIST
96 Forrest M. Mims, III/Rediscovering the Transistor, Low-Cost Radio Control/Adding an Output Interface to a Digital Timer/ A New Fiber-Optic Breakthrough.

\section*{DEPARTMENTS}


\(\qquad\)
COVER PHOTOGRAPH BY GARRY HEERY
COPYRIGHT © 1983 BY ZIFF-DAVIS PUBLISHING COMPANY. All rights reserved. Computers \& Electronics (ISSN 0032-4485) January 1984. Volume 22, Number 1. Published monthly by Ziff-Davis Publishing CO., at One Park Ave., New York, NY 10016. Richard P. Friese, President; Selwyn Taubman, Treasurer; Bertram A. Abrams, Secretary. One year subscription rate for U.S. and Possessions, \$15.97; Canada. \(\$ 20.97\); all other countries, \(\$ 23.97\) (cash orders only, payable in U.S. currency). Second Class Postage Paid at Los Angeles. CA 90052 and at additional mailing offices. Authorized as second class mail by the Post Office Dept, Ottawa, Canada, and for payment of postage in cash. POPULAR ELECTRONICS including ELECTRONICS WORLD trademark registered. Indexed in the Reader's Guide to Periodical Literature. Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying. Popuiar Photography, Skiing, Stereo Review, Electronic Experimenter's Handbook, and Tape Recording \& Buying Guide. PDSTMASTER: Send address changes to COMPUTERS \& ELECTRONICS. Circulation Dept. P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address, enclosing, if possible, an address label from a recent issue. Permissions. Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Elizabeth Amado, Rights and Permissions, Zift-Davis Pubtishing Co., One Park Ave., New York. NY 10016.


\section*{Only one disk guarantees safe passage through the torrid zone of drive heat. Maxell.}

A lifetime warranty. And manufacturing standards that make it almost unnecessary.

Consider this: Every time you take your disk for a little spin, you expose it to drive heat that can sidetrack data. Worse, take it to the point of no return. Maxell's unique jacket construction defies heat of \(140^{\circ} \mathrm{F}\). And keeps your information on track.

And Maxell runs clean. A unique process impregnates lubricants throughout the oxide layer. Extending media and head life. How good is Gold?

Maxell's the disk that many drive manufacturers trust to put new equipment through its paces. It's that bug-free.

So you can drive a bargain. But in accelerated tests, Maxell floppys lead the industry in error-free performance and durability. Proving that if you can't stand the heat you don't stand a chance.
 IT'S WORTH IT.

\title{
Hello, information.
}

Or, how the IBM Personal Computer can bring you the world.


There's a world of information just waiting for you. But to use it, study it, enjoy it and profit from it, you first have to get at it.

Yet the facts can literally be right at your fingertips - with your own telephone, a modem and the IBM Personal Computer.

\section*{Plug into the network.}

The modem that plugs into your phone takes the codes your IBM Personal Computer understands and turns them into signals that can be transmitted over the phone lines.

On the other end of the phone lines are independent information services* ready
for you to access from your home, school, lab or office. So, in minutes, you can tap the resources of over a thousand data bases - and plug into a world of possibilities.

\section*{Something for everyone.}

At home, for example, you can shop through an electronic catalog. Access mortgage amortization and tax depreciation schedules. Study the wines of France, the foods of Italy. Find property to sell, rent, swap or share. And play hundreds of games.

At school, you can bring news into the classroom - as it happens. You can teach and learn with facts about everything from
phrase origins to plane geometry. You can also tap instructional courses and learn how to program the very IBM Personal Computer you're using.

In the lab, you can call up a wealth of mathematical and statistical programs or retrieve scientific and technological data.

In the office, you can plug into the commodities market. Read abstracts of leading publications. Even get census figures to see who's in your major market. And when you're planning a business trip, your IBM Personal Computer can provide airline schedules and car rental information, as well as tell you what the weather is and where the best restaurants are.

\section*{Calling all computers.}

And these outside data bases aren't your only information link, either.

With assigned passwords, you can also have access to data that's stored in your company's IBM minicomputer or mainframe via your IBM Personal Computer.

You can even exchange a sales forecast with a manager two floors down or two thousand miles away - one IBM Personal Computer to another.

So the IBM Personal Computer really can let you call the world. But there's one call to make first. For more information on where to buy the IBM Personal Computer, call 800-447-4700. In Alaska or Hawaii,


\section*{The IBM Personal Computer A tool for modern times}

\section*{Computers\&Electronics}

WILLIAM S. DAVID Publisher
ARTHUR P. SALSBERG Editorial Director
LESLIE SOLOMON Technical Director
JOHN R. RIGGS Managing Editor
JAMES KIEHLE Art Director

\author{
A. W. BURAWA Senior Editor \\ JOSEPH DESPOSITO Technical Editor
}

JOSEF BERNARD Technical Eslitor
ANDRE DUZANT Technical Illustrator
ROBERT LASCARO Assistant Art Director
CARMEN VELAZQUÉZ Production Editor
JEFF NEWMAN Editorial Assistant
Contributing Editors: Walter Buchsbaum,
Len Feldman, Julian Hirsch, Sol Libes,
Forrest M. Mims, III
Editorial and Executive Offices
One Park Avenue, New York, N.Y. 10016212 725-3500

Advertising Sales Offices
New York
Tom Ballou 212 725-3578
Ken Lipka 212 725-3580

\section*{Midwestern}

Robert Vanek, Suite 1400, 180 N. Michigan Ave., Chicago, IL 60601312 346-2600

\section*{Western}

Joe Mesics, J.E.M. Associates, Francisco Bay Office Park, 1750 Montgomery Sireet, San Francisco, CA 94111 415-989-4643

\section*{Representation in Japan}
J.S. Yagi, Iwai Trading Co., Lid. 603 Ginza Sky Heights Bldg., 18-13, Ginza 7-Chome, Tokyo, Japan 104

\author{
Consumer Computers \& Electronics Magazine Division \\ Larry Sporn President \\ Jeff Hammond Vice President, Marketing \\ Carole Mandel Vice President, Circulation \\ Eileen G. Markowitz Vice President, \\ General Manager \\ Seth Alpert Editorial Director \\ Peter J. Blank Creative Director
}

Ziff-Davis Publishing
President Richard P. Friese; President Consumer Magazine Division Albert S. Traina; Executive Vice President, Marketing and Circulation Paul H. Chook; Senior Vice President Phillip T. Heffernan; Senior Vice President Sidney Holtz; Senior Vice President Edward D. Muhlfeld, Senior Vice President Philip Sine; Vice President Baird Davis; Vice President George Morrissey; Treasurer Selwyn Taubman; Secretary Berıram A. Abrams

\footnotetext{
Editorial correspondence: COMPUTERS \& ELECTRONICS, 1 Park Ave., New York, NY 10016 . Editorial contributions must be accompanied by return postage and will be handled with reasonable care; posiage and "ill publisher assumes no responsibility for return or safely of manuscripts, art work, or models submitted.
The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.
}

Momber Audit Bura



\section*{And the \\ [Computer] Beat Goes on}

HERE it is fully two months before the New Year, though our production lead time forces me to write for our initial 1984 issue. As you all know by now, IBM's "Peanut" was unshelled as the "PCjr." A telephone call by an IBM representative alerted us to its public unveiling a day before it was to happen.

The happening was smoothly professional. A bevy of working PCjr's were on hand, manned (womanned?) by IBM'ers who demonstrated how the machine performed with a handful of software packages developed outside the company. The color graphics were vivid and sharp; the wireless keyboard worked beautifully; and IBM should be pleased as punch by the attendant publicity, which it rightly earned.

Other computer makers should count their blessings, too. Firstly, the PCjr is not a low-cost machine. Thus, it is certainly not a mass-market system. Accordingly, you won't see this machine on the discount shelves of Toys 'R Us and other such mass merchandisers. IBM doesn't like to lose control, you know. So this leaves plenty of room for the Commodores, Apples, Radio Shacks, and others to compete. It also settles the stomachs of computer aftermarket makers who will, doubtlessly, introduce a host of devices to make the machine better, such as a substitute keyboard with better keypads.

The year 1983 might go down now as the year in which Christmas buying habits were ignored since PCjr's won't be available until the first quarter of ' 84 , and then not enough to satisfy demands. Coleco, too, appears to be looking toward the New Year for its biggest sales. As a result, one wonders how other personal computer sales will fare around the biggest traditional selling season?

Will there be a really big freeze as buyers take a wait-and-see attitude?

None of the biggies in the home computer market have been knocked off, in my opinion, by the introduction of the Junior. Texas Instruments' 99/4A fell by the wayside before its debut. In fact, the machine was really terminal for a long, long time. Not because it is not a good computer. It's terrific! But it started life on the wrong side of the tracks. -an \(\$ 1100\) price tag for the basic machine, ultra-costly peripherals, an arrogant "we don't have to advertise, our name is Texas Instruments" attitude, and shutting out third-party hardware and software makers by not making an open bus available. It recognized its mistakes too late. Right now, the 99/4A is probably the buy of the decade.
So new microcomputer makers are entering the field, dropping by the wayside, and modifying their wares. The goal: a good slice of a projected \(\$ 92\)-billion market in 1992.
Where does this leave you in making a personal-computer buying decision? Right in the middle, I'm afraid! This is a maturing market with all the attendant fluctuations. Innovative new products will constantly be introduced to tantalize you. This aside, you'll really have to decide which part of the market you should be in: office use, home use, travel use, school use. Reaching this conclusion is the easiest of all, of course. Beyond this point, there are numerous avenues to explore, which we will cover editorially as the months go buy.
The entry of the PCjr in 1984, however, adds an important element into the mix-another standard operating system. But a major one that will drive other computer makers to adopt it, just as the IBM PC small business computer forced others to follow suit in this field. And with the Junior's degree of upward compatibility with the more powerful, larger IBM PC, this could well lead the microcomputer industry closer to the single major operating system standard that's always been considered to be wishful thinking. Given this, I would guess that Japan would start moving in less costly home computers that are compatible with \(\mathrm{PC} j r\), abandoning the MSX standard they fostered.


\section*{COMPUPHOBIA}

Your editorial on the fear of computers in the September issue was really to the point as far as I was concerned. It expressed most of the reasons I did not buy the computer system for which I went shopping last month.
There's no way I can spend that much money unless I know what I am buying. However, none of the employees of the four dealers I visited could speak about computers without throwing out meaningless (to me) jargon; none could tell me if Texas Instruments' computer could be used with the Com-Star printer; and none could tell me just what a specific item of software was about.-Jim Hyde, Waycross, GA.

\section*{PERFECT WRITER MEMORY}

In your review of the Kaypro II computer in the June 1983 issue, it was stated that Perfect Writer's "virtual memory" feature enables the computer to handle word-processing files larger than its 64 K memory. This is not true. Kaypro's version of Perfect Writer is capable of editing files no larger than
about 50 K or 50 pages (depending on your definition of a "page"). The practical limit-that is, the size that permits rapid editing, saving, etc.-is only 20 pages.-A. S. Pfeffer, Kunming, Yunnan, People's Republic of China.

\section*{MAIL-ORDER 2068}

In the article on the Timex Sinclair 2068 computer (November, p. 69), it was stated that one mail-order house planned to offer the computer for \(\$ 148.32\). Whom did he have in mind? Sears Roebuck quotes me \(\$ 179.99\).-S S. Whiting, Pittsburgh, PA.

Best Products, PO Box 25031, Richmond, VA 23260, Catalog page 386, \#150002RDM.

\section*{PETER NERO}

I enjoyed your article about Peter Nero and his use of a personal computer in his artistic and business life. You (and he) might be interested to know that there is, indeed, a Music Printing Option, which can be attached to the Synclavier II Digital Music System to produce printed scores from music played into the system's digital recorder through a real-time keyboard. The Synclavier II (New England Digital Corp., White

River Junction, VT 05001) also includes a 16 -bit, \(128-\mathrm{Kb}\) computer and a \(640 \times\) 480 video terminal.-Frank Benoit, Boston, MA.

\section*{H/Z AND IBM COMPATIBILITY}

I was happy to see the review of the Heath-Zenith-100 in your October issue. This is an excellent machine that has been too long neglected in the press.
It should be noted that it is not true that the Zenith and IBM are totally software incompatible. The Zenith will read directories from all IBM disks that I have had a chance to try. It will read and can use all data files. Most programs require some modification. However, I have one program written for the IBM in compiled BASIC that the Ze nith was able to run with no problems. Another IBM program written in Interpretive BASIC was run by the Zenith after first loading it into the IBM, then saving it in ASCII format.-Erick Smith, Brooktondale, NY.

\section*{OUT OF TUNE}

In "A DC Motor Speed Controller" (October, p 57), Figs. 4 and 7 were inadvertently interchanged, as were Figs. 5 and 8.


Magnetism is a most destructive force to any magnetic media. Even something as simple as a magnetic paper clip holder is capable of erasing valuable data stored on a floppy disk.

The Discwasher \({ }^{\circledR}\) Disckeeper \({ }_{\text {ru }}\) is a magnetically shielded storage system for floppy disks. Disckeeper protects disks against stray magnetic fields from printers, peripheral motors, CRT's, telephone ringers, airport security systems...and even paper clip holders.

Discwasher Disckeeper...for the transportation and storage safety of your important disks.

Disckeeper is no larger than conventional folder packs and is available in three sizes: storage for two-5 1/4" disks, four-5 1/4" disks or two-8" disks.


\title{
Everybody's making money selling microcomputers. Somebody's going to make money servicing them.
}

Now NRI Trains You At Home To Make Money Servicing, Repairing, and Programming Personal and Small Business Computers



Training now includes either the TRS-80 Model 7 Microcomputer with Disk Drive or the TRS-80 Color Computer with Computer Access Card; professional LCD multimeter; the NRI Discovery Lab; and hundreds of demonstrations and experiments.

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that handle things like payrolls, billing, inventory, and other jobs for business of every size... perform household functions including budgeting, environmental systems control, indexing recipes. And thousands of hobbyists are already owners, experimenting and developing their own programs.

\section*{Growing Demand for Computer Technicians}

This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. Department of Labor projects over a \(600 \%\) increase in job openings for the decade; most of them new' jobs created by the expanding world of the computer.

\section*{Learn At Home to Service Any Computer}

NRI can train you for this exciting, rewarding field. Train you at home to service not only microcomputers, but word processors and data terminals, too. Train you at your convenience, with clearly written "bitesize" lessons that you do evenings or weekends, without going to classes or quitting your present job. Your training is built around the latest model of the world's most popular computer. It's the amazing

TRS-80 \({ }^{\text {TM }}\) Model 4 , now with disk drive and the capabilities and features to perform a host of personal and business functions. No other small computer has so much software available for it, no other is used and relied on by so many people. And it's yours to keep for personal and business use.

You get plenty of practical expeence. Under NRI's carefully planned 'ning, you even install a disk drive

at each step. Using the NRI Discovery Lab \({ }^{\circledR 8}\) that also comes as part of your course, you build and study circuits ranging from the simplest to the most advanced. You analyze and troubleshoot using the professional 4 -function LCD digital multimeter you keep to use later in your work. Then you use the lab and meter to actually access the interior of your computer. ..build special circuits and write programs to control them. You "see" your computer at work and demonstrate its power.

\section*{Same Training Available With Color Computer}

NRI offers you the opportunity to train with the TRS-80 Color Computer
as an alternative to the Model 4. The same technique for getting inside is enhanced by using the new NRIdeveloped Computer Access Card. Only NRI offers you a choice to fit your specific training needs.

\section*{Become the Complete Computer Person}

In addition to training in BASIC and advanced machine language, you gain hands-on experience in the operation and application of the latest computers for both business and personal jobs. You're trained to become the fully rounded, new breed of technician who can interface with the operational, programming, and service facets of all of today's computers. You're ready to take your place in the new electronic age.

\section*{Other Opportunities}

NRI has been giving ambitious people new electronic skills since 1914. Today's offerings also include TV/Audio/ Video Systems servicing with training on our exclusive Heath/Zenith com-puter-programmable 25" diagonal color TV ...Industrial Electronics, Design Technology . . and other \(\square\) state-of-the-art courses.


The Catalog is Free. The Training is Priceless.

Send the postage-paid card for our 104-page catalog showing all courses with equipment and complete lesson plans. There's no obligation other than to yourself. See how NRI can help you take advantage of the exciting job and earnings opportunities in the exploding field of microcomputers. If card has been removed, please write to us.


\section*{NRI SCHOOLS}

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, DC 20016


\section*{DAISY-WHEEL PRINTER}

Data Terminals \& Communications' DTC Style Writer daisy-wheel printer features a 35 K (expandable to 67 K ) buffer and a multicopy mode that repeats printing of selected documents without having to reload the buffer from the computer. Features include: bidirectional printing; automatic proportional spacing; Centronics parallel interface; graphics plotting; two-color printing; momentary pause for paper, printwheel and ribbon changing; selftest diagnostic routine; and LED indicators for all error conditions. Options include a forms tractor, bidirectional cut-sheet feeder, 17 type fonts, buffer memory add-in, and a variety of interconnecting cables for most popular computers. \$899. Address: Data Terminals \& Communications, 590 Division St., Campbell, CA 95008.



Morrow's new Model MD1I desktop computer offers 11 M of hard-disk and 400 K of floppy-disk storage, full-size terminal, and eight software packages for just \(\$ 2795\). Hardware features of the single-board computer include: Z80 processor running at \(4 \mathrm{MHz} ; 128 \mathrm{~K}\) of RAM; 8 K of ROM; \(12^{\prime \prime}\) video screen
( \(80 \times 24\) characters) ; parallel Centronics port; and three serial ports. Two of the serial ports are standard RS232 C conligurations; the third can be either RS-232C or any of a number of special modes, including high-speed RS-432, or mainframe-compatible modes like HDLC, SDLC, or bisyn-
chronous. Software packages supplied with the MD1I include: CP/M Plus; BASIC 80, BaZic (North Star compatible BASIC), New Word word processor; LogiCalc spreadsheet; Correct-It spelling checker; and Personal Pearl database manager.
Circle No. 85 on Free Information Card


\section*{INTELLIGENT INTERFACE FOR COMMODORES}

Limbic Systems' "Interpod" is an intelligent 6502 -based transparent multiple interface that gives serial and parallel capabilities to VIC-20 and Commodore 64 computers. It allows the computer to communicate with all Commodore serial IEEE and IEEE-488, as well as RS232, devices. It uses no computer memory, and use of the various I/O ports, including the cartridge slot, is not restricted. The device allows the computer to access from \(1 / 3 \mathrm{M}\) to 10 M mass storage on floppy disks and hard-disk systems. Plugging Interpod into the serial port also allows users to compile BASIC programs on the Commodore 4040 and 8050 drives, using PET SPEED, and gives the VIC-20 and C-64 the capability to communicate with IEEE-based voltmeters, plotters, and other A/D peripherals. \(\$ 180\). Address: Limbic Systems, Inc., 1056 Elwell Ct., Palo Alto, CA 94303.

\section*{BRIEFCASE-SIZE COMPUTER}

The Xerox 1810 portable computer comes with 64 K of RAM, \(80 \times 3\)-character LED display, 200 K microcassette recorder, direct-connect modem, serial and parallel ports, output for video monitor, TV adapter, and slot for plugin ROM cartridges. Software includes appointment calendar, clock with alarm, four-function calculator, text editor, electronic mail, and BASIC. The 8 -bit computer is \(\mathrm{CP} / \mathrm{M}\) compatible and, with addition of an optional Xerox 1850 flat pack can be 16 -bit CP/M-86
and MS-DOS compatible. Addition of the 1850 offers dual 500 K IBM PCcompatible \(5 \frac{1}{4}{ }^{\prime \prime}\) hoppy-disk drives, built-in modem, parallel and serial ports for a monitor, printer/plotter, data and power links, and a facility for using an optional four-color printer/ploter. The 1850 is supplied with 128 K of RAM and is expandable to 512 K . Options include the Xerox 1845 daul \(5^{1 / 4 \prime \prime}\) disk drive expansion unit and a briefcase designed to accommodate the 1810 com- \(^{-}\) puter. \(\$ 2195\) for \(1810, \$ 2495\) for 1850 , \(\$ 1195\) for \(1845, \$ 325\) for briefcase Circle No. 86 on Free Information Card



\section*{ORIGINATE/ANSWER MODEM}

Micromint's build-it-yourself Model ECM-103 is a \(300-\mathrm{bps}\) modem kit based on the Texas Instruments TMS99532 FKS modem chip, which provides all
the necessary modulation, demodula tion, and filtering circuitry to implement a full-duplex serial asynchronous communications link. It requires no calibration or adjusiments and uses no exrernal filtering or frequency setpoint
components. It lends itself to acoustic and direct telephone-line connection through an FCC-registered DAA. Connection to the DTE is via an RS-232C. \$60. Address: Micromint Inc., 561 Willow A ve., Cedarhurst, NY 11516

\section*{SOFTWARE SOURCES}

Low-Cost Word Processor. Commodore Software's Easy Script 64 is a full featured word-processing software package for the Commodore 54 and SX64 portable color computers. Easy Script 64 has the ability to interface with Commodore's Easy Spell 64 spelling checker and to transfer words, phrases. and blocks of text from one location in a document to another. It can change display colors; do global/local hunt-and-find and search-and-replace; go directly to a specified line number; insert/delete characters, words, lines, and blocks; provide sound-effects prompts; print up to 240 characters per line; edit using a special function key; do superscripting and subscripting; and transfer words and phrases. \(\$ 49.95\).

\section*{Circle No. 90 on Free Information Card}

Apple-IBM Connection. Alpha Software has introduced a new version of its Apple-IBM Connection program that supports the Apple IIe and additional communications cards for the Apple II family. The program enables easy transfer of data illes between the Apple II
family and the IBM PC or PC-XT and is now compatible with the Apple Super Serial Card and the California Computer Systems CCS 7710 card. \(\$ 250\). Address: Alpha Software Corp., 12 New England Executive Park, Burlington, MA 01803.

Equation-Solving Software. CalcuPlot is a new software package of mathematical utilities from Human Systems Dynamics that transforms complex equations into easy-to-read graphics for Apple II and IIe computers. The program accepts data from the keyboard, disk files, and even print format VisiCalc files. Solved equations can be plotted one at a time or in sets of tivo or three, all on the same graph. The program can create sequential disk files that can be used with all other software products offered by the company. To be able to use Calcu-Plot, the computer must have 48 K of RAM, Applesoft in ROM, and one or two disk drives. \$150. Address: Human Systems Dynamics, 9010 Reseda Blvd., Suite 222, Northridge, CA 91324.


\section*{CP/M- AND \\ APPLE-COMPATIBLE PORTABLE}

The Abacus portable computer from CompuSource comes standard with Apple and CP/M compatiblity and can optionally be made IBM PC compatible. Hardware features include: full-size keyboard with auto repeat, 64 K of dynamic and 16 K of static RAM, either one or two \(5^{1 / 4}{ }^{\prime \prime}\) floppy-disk drives, five Apple-compatible I/O slots (expandable to seven slots), game paddle port, composite-video and r-f outputs, and high- and low-resolution graphics. \(\$ 1645\) for single-drive unit, \(\$ 1995\) for dual-drive unit, \(\$ 400\) for IBM option. Circle No. 87 on Free information Card

\section*{Introducing the new RX-80.}


\section*{A printer this good could only come from one company. Epson.}

Take a look al the new Epson RX-80 with a critical eye and you'll know what we mean. Epson printers are put together with manufacturing tolerances in the micron range. And meticulously checked for quality one at a time

Our reliability rate is approaching perfection. Which means you'll probably never - ever - have a problem with your RX-80.
A real Epson for only \(\$ 299\).
For a limited time, you can get the RX- 80 for only \(\$ 299\). But just because we made it affordable doesn't mean we've left off the goodies. You get 128 different typestyles with a resolution so sharp you have to look twice to make sure it's dot matrix. You get bidirectional printing, logic seeking, and a speed of

100 characters per second. And you even get programmable forms control, graphics, and a special Quiet Mode to keep the noise down.

\section*{This is your printer.}

No matter what computer you own - or will own - do yourself a favor and make sure your printer is an Epson RX-80.

We build them to be the finest printers on earth. No matter how small the price.

\author{
Number one EPSON \\ And built like it. EPSON AMERICA, INC.
}

3415 Kashiwa Street, Torrance, CA 90505


Telecommunications Software. Source Telecomputing Corp. is marketing a new telecommunications software product called Sourcelink that simplifies use of its electronic service, The Source. The Sourcelink disk provides automatic dial-up and sign-on procedures; direct access to the various services on The Source, through the software or by programming the IBM PC's function keys; simultaneous capture of data from The Source into the IBM PC's memory or onto a disk; ability to turn on/off a printer while using The Source; and simplified transfer of data from IBM PC disks to files on The Source or from The Source files to the computer's memory or disks. Additional features include an editor; ability to automatically dial up as many as five other on-line services; and optional use of color graphics for IBM PCs equipped with 128 K of RAM and 4 - or 16 -color graphics board. \(\$ 149.95\), includes membership to The Source.
Circle No. 91 on Free Information Card
Precompiler for BASIC. Software 128's MetaBASIC is a comprehensive precompiler for interpreter BASIC. It permits large BASIC programs to be developed in modular fashion with "real" subroutine calls (not GOSUBS) to other BASIC program modules. Full argument passing is supported, and subrou-
tines can be nested to any level. MetaBASIC also supports Named Global Common, Data Declaration, Structured Conditional Program Control, and Simplified File I/O using Record Data Constructs. Its Program Compression feature allows interpreter BASIC programs to be written in a structured fashion with liberal use of descriptive remarks without slowing program execution or making file sizes excessive. Metal3ASIC is available for the \(\mathbb{I B M}\) PC for both interpreter and compiler BASIC. \$59. Address: Software 128, 363 Walden St., Concord, MA 01742 .

English Tutor. T.H.E.S.I.S. has ant nounced a new English grammar program for grades 2 through adult. A twodisk program can create students' disks for use in a variety of educational settings. The student disk can be used as a drill for any combination or all parts of speech and can be set to use a specified number of sentences in each session. Sentences can be modified by teacher or parent to match the reading level of the student. Students' results are stored on disk for viewing by teacher or parent. The program is written to work on Apple II + and IIe computers. \(\$ 45.00\) plus \(\$ 3.00 \mathrm{~S} / \mathrm{H}\). Address: T.H.E.S.I.S., PO Box 147, Garden City, MI 48135.
(More on page 22)

PROGRAMMABLE PORT EXPANDER

A low-cost RS-232C A-B-C-D switch that operates under soft ware control or via manual override has been introduced by Digital Laboratories. The Model ESP-1 port expander creates four RS-232C serial ports from one and permits instant switching to different serial peripherals, using two-character instructions (pretix followed by a port designator). It switches four lines per port and can be cascaded to operate unlimited ports. The \(8^{\prime \prime} \times 6^{\prime \prime} \times 1.8^{\prime \prime}\) device consumes 5 watts. It comes with a 4-ft RS-232C DTE cable equipped with 25-pin connector. \$395. Address: Digital Laboratories, Inc., 148 Linden St., Suite 105, Wellesley, MA 02181.

VOLTAGE SPIKE PROTECTOR
General Electric's new Voltage Spike Protector is designed to protect sensitive electrical devices from the effects of high-voltage surges. Rated at 15 amperes, the single-outlet protector plugs between the device to be protected and any three-wire 117 -volt ac power outlet. Protection is provided by a GE MOV varistor, which clamps the potential being delivered from the ac line to the device being protected to a safe level below 600 volts. Power from excessive voltage is harmlessly dissipated as heat. Address: General Electric Co., 316 E. 9 St., Owensboro, KY 42301.


\section*{Two New Products- \\ TurnYour Phone into James Bond}


\section*{The Telephone Voice Changer}

The telephone voice changer gives you a new voice even you yourself wouldn't recognize.

Push a button then call your mother.
Not an "electronic hankerchief" that muffles or filters your voice, the VOICE CHANGER completely restructures the tone and timber. It literally changes the quality of sound.
This is the new, improved model that completely eliminates distortion as it changes your voice. Your own mother would swear it's a stranger calling.
Choose from two separate, distinct Changer Channels. Pushing "Channel 1 " changes timber and texture. Pushing "Channel 2 " creates a second Pushing "Ordinary" sends your own voice through the line.

If you're alone in an office, it'll sound like an employee answering. Use the VOICE CHANGER to reach that doctor, lawyer, or business executive whose secretary knows your voice and who always is "out" when you call. Use it for just plain fun. Anytime you like, during a conversation, push the "ordinary" button and the other person will hear your normal voice.
Compare our unit with others selling for hundreds of dollars more. Low introductory price:

\section*{\(\mathbf{\$ 1 2 9 . 9 5}\). Two for only \(\$ 109.95\) each.}


What's Going On at Home or the Office When You Aren't There?

\section*{The Informer}

Turns your phone into an open ear.
You're away from home when a premonition grabs you. Is the baby asleep, or is he squalling?
From any phone in the world, call home. Use the special "beeper". The Informer opens its super-sensitive microphone and transmits to you, whereever you are, every sound in the room, up to 100 feet away from the phone.
The Informer is not a gadget. It's an FCC-approved electronic instrument, small ( \(3^{\prime \prime} \times 4^{\prime \prime}\) ) but incredibly powerful. Connect it in a few seconds with its standard modular phone plug. No one will see it, but it will pick up every sound in the room, even whispers.

\section*{Get one for-}
-an elderly relative, so you can check during the night, to be sure all is well.
-your office, so you can investigate strange lights and noises without having to go inside.
-your second home, in-town apartment, or mountain cabin, so you can make occasional "Is all well?" calls.

See for yourself this incredible device. Order now at our special low price:
\$149.95. Two for only \(\$ 129.95\) each

\section*{TRY IT AT OUR RISK}

Order now the Telephone Voice Changer or the Informer. Try it for 30 days. If you decide you don't want it, send it back for complete refund. We'II bet, though that after 30 days you'll want several more.

\section*{NEWHORIZONS}

Dept. C1
5-31 Fiftieth Avenue
Long Island City, NY 11101
TELEX: 4993183 HORIZONS - 1983 New Horizons

\section*{For fast service on credit card orders call NOW toll-free: 1-800-453-9600}

IN UTAH CALL 1-800-662-2500
For information call: (201) 370-1234 or use coupon below:
\(\square\) Telephone Voice Changer \$129.95 / \(\quad\) Two only \(\$ 109.95\) ea. \(\square\) The Informer \$149.95 / \(\square\) Two only \$129.95 ea.
+2.75 per total order for shipping
\(\square\) VISA \(\square\) MASTERCARD \# \(\qquad\) Exp. Date \(\qquad\)

\title{
NTS Electronics
}

NTS Intronic Training is a carefully developed

\title{
Learn Robotics, Microcomputers, Microprocessors, Digital Video, Test Equipment and more with NTS IMTRDMIL" home training. Courses include state-of-the-art equipment, lessons and texts to make your hands-on programs exciting and down-toearth practical.
}

HERO 1 is included in two courses, one basic and one advanced. You'll cover principles of industrial electronics, microprocessor troubleshooting, fundamentals of mechanics, and robotic applications in industry. You'll learn analog and digital skills, radio control, fluidic, pneumatic and servo-mechanisms, as well as computer interfacing and robotic programming. HERO 1, complete with arm, gripper and speech synthesis board, is a fully self-contained electro-mechanical robot-the featured unit in the most exciting training programs ever offered in home study and tested learning system providing a thorough intergration of advanced electronic hardware with modern lesson texts. The relationship between theory and practical applications is made clear through the hands-on experience of building and assembling kits of state-of-the-art equipment. Courses include a wide variety of test instruments, both digital and analog, as well as other units not shown here. And, depending on the NTS program you select, you can earn up to 30 CEU credits for successful completion. Our full-
color catalog has complete details. NTS has taught industrial skills for over 78 years-a record that has no equal.

\title{
Training FIRST WITH TOMORROW's TECHNOLOGY
}
1. Advanced "Z Chassis" NTS/HEATH "Smart Set" with computer space command remote control and space phone. Originate or receive telephone calls through this set and the number appears on the screen-store your police and other emergency numbers into memory which may be recalled and auto-dialed at any time. Traditional and incomparable picture quality. Unit has Quartz Controlled Tuning, 178 channel capacity, remote antenna switch accessory for reception of VCR, VDR, Broadcast, Cable, Video Games, and Personal Computer Input (no cable change) plus computer- controlled color. Featured in all-new Video Technology Course.
2. NTS/HEATH HN89A Microcomputer is included in two programs This famous and reliable unit features Floppy Disc Drive, 48K Memory on Board, CRT Terminal with its own Z-80 Processor, and standard keyboard as well as Numerical Input Keyboard. The growing importance of computer knowledge and skills have made these programs increasingly significant. The experience gained in assembling these kits is invaluable in the understanding of computer troubleshooting skills.
3.
3. NTS Microprocessor Trainer is included in our Industrial and

Microprocessor Technology Course. It is a portable unit, contained in a convenient high-impact carrying case. Hardware/ Firmware includes Monitor Operating SystemExpandable User Memory-User Experimental OnBoard Section-Breakpoint Editor-Single Step TraceCassette I/O.



\section*{DESKTOP PERSONAL COMPUTER}

The Model 1050 personal computer system from Visual Technology comes bundled with Multiplan, WordStar 3.3, MailMerge 3.3, DR-Graph graphics, GSX-80 graphics device driver, C BASIC, DEC VT-100 terminal emulator, and \(\mathrm{CP} / \mathrm{M}\) Plus software. It uses a Z80A system and 6502 display processors and comes with 96 K (expandable
to 160 K ) of RAM, 64 K (expandable to 128 K ) of PROM, and 32 K of display memory. Hardware includes: dual \(400 \mathrm{~K} 51 / 4^{\prime \prime}\) disk drives; hi-res ( \(640 \times\) 300) bit-mapped graphics and \(25 \times 80-\) character monochrome display monitor; printer port; modem port; harddisk expansion port; and detached typewriter-style keyboard. Options include a plug-in dual-port serial card and hard-disk system. \$2695.
Circle No. 88 on Free Information Card

Executive Information Service.
Compuserve, Inc. has introduced a package designed to offer the business executive total access to practical business information. The Executive Information Service features a comprehensive package of financial data, current news, decision-support research, and communications options. Among the features it offers are: updated price quotations on over 9000 security issues, information from Standard \& Poor's on more than 3000 companies, access to the Official Airlines Guide Electronic Edition, access to the Associated Press Wire Service, electronic communications through Compuserve's InfoPlex Electronic Mail Service and the U.S. Postal Service's E-COM system, and Electronic Conferencing and Professional Forums, including a forum exclusively for IBM PC users. While the Executive Information Service can be accessed by most computer terminals and communicating word processors, Compuserve's Professional Connection software, for the IBM PC, provides a number of easy-to-use, menu-driven functions valuable to the first-time user. \(\$ 150\).

Circle No. 92 on Free information Card

\section*{PROGRAMMABLE REMOTE CONTROLLER}


The "Autocrat" from Bi-Comm Systems is a microprocessor-based unit that can be used to remotely control electrical devices through existing ac wiring. It is said to be compatible with almost any computing system and energy-management controllers equipped with RS232 C ports. Autocrat plugs directly into an ac outlet to transmit and receive signals over the power line. It can control up to 256 Leviton/BSR devices and is compatible with all BSR X-10 and Leviton CCS accessories. Included in the Autocrat is a battery-backed CMOS clock/calendar, firmware operating system in EPROM, and self-diagnostic routine. The device can operate as a stand-alone processor or a computercontrolled interface, or under telephone modem control. \$485. Address: BiComm Systems, 10 Yorkton Industrial Blvd., St. Paul, MN 55117.


\section*{TRANSPORTABLE COMPUTER}

Radio Shack's new TRS-80 Model 4P is a compact transportable version of the company's Model 4 desktopper. It is totally compatible with all Model 4 programs and can rum all Model III TRSDOS and LDOS disk programs (in

Model III mode). It is also compatible with the CP/M Plus operating system offered by Radio Shack. The Model 4P comes with 64 K of RAM (expandable to 128 K ), two built-in 184 K doubledensity \(5 \frac{1}{4 \prime \prime}\) dish drives, \(9^{\prime \prime}\) hi-res \(80 \times\) 24 display. \(\$ 1799\).
Circle No. 89 on Free information Card

\section*{WORD PROCESSING SYSTEM s995}
(Everything you need for word processing)
PLUS! THE Olympia option!!


\section*{(1) Olympia}


\section*{LOOK AT WHAT YOU GET FOR ONLY \$995.00}
- The powerful 84 K Commodore 64 Computer!
(More features than Apple II)
- 170K Commodore 64 Disk Drive!
- Box of 10 "Loran" Disks!
- Gemini 10X Starmicronics \(10^{\prime \prime}\) Carriage Deluxe 120CPS,

Dot Bit Addressable Tractor-Friction Printer!
- Deluxe Cardco Printer Interface!
- Box of Printer Paper!
- Your choice of \(12^{\prime \prime}\) Green Screen or Amber Screen Monitor!

- Monitor Interface Cable!
- Executive Word Processor, 80 Columns in Color, 20,000 Word Customizable Dictionary, Data Base, Powerful Mail Merge!
- Special Software Coupon that allows \(\$ 100\) to \(\$ 300\) Savings Off of Catalog Sale Prices!

PLUS THE Olympia OPTION!! You can substitute the \(20^{\circ \prime}\) Carriage OLYMPIA typewriter/printer for the GEMINI 10X printer for only \(\$ 395.00\) additional cost!! LIST PRICE \(\$ 799.00\)
15 DAY FREE TRIAL We give you 15 days to try out these SUPER SYSTEM PACKAGES!! If it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!!
90 DAY IMMEDIATE REPLACEMENT WARRANTY If any of the SUPER SYSTEM PACKAGE equipment or programs fail due to faulty workmanship or material we will replace it IMMEDIATELY at no charge!

Add \(\$ 50.00\) for shipping and handling!!

\section*{NEWS, VIEWS \& GOSSIP/BY SOL LIBES}

\section*{RUMORS \& GOSSIP}
- Expect Apple to introduce its long-awaited MacIntosh computer at its annual stockholder's meeting scheduled for this month. That is what they did last year when they announced the Lisa. . . . Hewlett-Packard is rumored to have dropped development of a 68000 -based low-end microcomputer since introducing a unit that runs MS-DOS. . . It is probable that IBM will produce 500,000 home computers this year.... IBM has reportedly ordered about a thousand 16032 chips from National Semiconductor for evaluation. The 16032 is National's new 32-bit microprocessor, which it expects to start sampling January 1. That means that IBM is wide open on which 32 -bit micro to use. Intel 80386 samples are not expected for another 6 months yet. National claims the 16032 has the power of a VAX. . . . Sources report that Microsoft is developing a networking version of MS-DOS, to be called, you guessed it, "MS-Net". ... The IBM XT is doing much better than expected and industry pundits estimate that IBM will need 1.8 million \(10-\mathrm{Mb}\) drives this year with most going to the XT. If true, it means that Seagate Technology, MiniScribe, and IMI are going to make a mint. . . . According to Business Week magazine, "IBM has already ordered enough components to build 2 -million computers" this year.... According to Daniel H. Wilke, IBM PC manufacturing engineer, "a computer is made every 45 seconds."

\section*{APPLE DOINGS}
- Among problems that Apple must address is that of Lisa compatibility and communications. The first part, Apple plans to handle by introducing a plug-in 8088 processor that will allow users to run MS-DOS and most PC-compatible software. This package is being developed by Apple for Microsoft. The second problem will be dealt with by the introduction, hopefully in the first quarter, of networking and communications controllers that will allow Lisas to talk to other micros and to mainframes. In another attempt at industry compatibility, Apple shut down its disk drive manufacturing and had decided to buy its drives outside.

Apple has also announced that it will increase the number of Lisa dealers from 130 to over 200. It is also expected that Apple will introduce a hard disk for the IIe and a plug-in board that will provide the unit with enhanced display features, such as windowing.

\section*{BATTLE OF THE OPERATING SYSTEMS}
- According to John Rowley, President of Digital Research Inc., DRI currently has about 900 contracts with OEMs for CP/M (including both 8-bit and 16 -bit systems), And industry estimates are that Microsoft has about 200 OEM contracts for MS-DOS. Further, Digital Research boasts that \(\mathrm{CP} / \mathrm{M}\) is now running on over 1.5 -million computers worldwide. Similar estimates of systems running MS-DOS are less than half this number.

Digital Research is also known to be developing a new version of Concurrent CP/M-86, upgrading it to have many of the features of CP/M-80+, windowing, and the ability to run MSDOS software. In the meantime, version 3.0 of MS-DOS, which Microsoft had promised to start shipping last fall, has
been delayed. The new version of MS-DOS is expected to be compatible with Microsoft's Xenix multi-user system and concurrency (a la Concurrent CP/M-86).

In the meantime, Digital Research has introduced CP/M80 , which has the operating system and processor integrated on one chip. This is expected to be used by manufacturers of low-cost home computers.

\section*{QUOTATION OF THE MONTH}
- "The shakeout of 1985 is happening now."
-Steve Jobs, Chairman, Apple Computer Corp.


\section*{IBM DROPS 4' DISK DRIVE}
- After nearly a year of trying to find OEM purchasers, IBM has given up on its \(4^{\prime \prime}\) floppy-disk drive. The problem appears to be that the device did not use any of the current disk interface standards; and it was more expensive than the 5.25 " drives.

\section*{IBM BOOSTS STAKE IN INTEL}
- IBM bought another 1.71 -million shares of Intel stock, bringing its interest in Intel up to \(15.2 \%\). It started with \(12.5 \%\), then boosted it to \(13.7 \%\) before the latest purchase. Most of the shares were bought in blocks of 40,000 to 60,000 . Under an agreement between the two companies, IBM can purchase no more than a \(30 \%\) interest in Intel.

While on the subject of stakes, it should be noted that IBM also boosted its equity position in Rolm Corp. from \(15 \%\) to \(17.7 \%\). Rolm makes sophisticated PBX systems. This apparently indicates IBM's intention to start actively competing with AT\&T in this lucrative market. Why not? Isn't AT\&T planning to jump into the computer business?

Along these lines there are rumors that, in the light of IBM's decision to drop the \(4^{\prime \prime}\) floppy, it intends to buy into a disk maker such as either Seagate or Tandon. One question that comes to mind is why hasn't IBM bought into Microsoft?

\section*{PREDICTIONS}
- Egil Juliussen of Future Computing, a market research firm, predicts that, by the end of the year, IBM will have \(18 \%\) of the \(\$ 2.9\)-billion home computer market, and by 1988 it will have \(45 \%\) of the \(\$ 5\).9-billion home market. He said that distribution through mass merchandisers is required and over 10,000 locarions are needed to be a leader in the home market

\section*{CAN AT \& T COMPETE WITH IBM?}
- AT\&T is expected to introduce a personal computer soon to compete head-on with IBM. It is expected to employ a 32-bit micro and run Unix with an emulator that will allow users to run MS-DOS software. According to International Resource Development, Norwalk, CT, a market research outfit, the software is being developed by Microsoft. The system is expected to be significantly more powerful than the XT IBM will probably respond with price reductions on the XT and, later, with the introduction of a more powerful desktop based on a new 32 -bitter.

\section*{ROBOT STANDARDS FOR LANGUAGE \& SAFETY}
- The Industrial Automation Plaming Panel of the American National Standards Institute (ANSI) is pursuing the development of standards for robot programming languages and safety. The lack of language standards is currently making it difficult, if not impossible, to transport software and interface different robots in automated factories.

The National Bureau of Standards (NBS), which previously developed programming standards for CAD/CAM (Computer Assisted Design/Computer Assisted Manufacturing), is also working on a language standard for roboties.

In the area of robotic safety the Robot Institute of America (RIA) and the Underwriters Laboratories (UL) are both working on standards. Areas of concern include installation, programming/teaching, and maintenance.
NBS, RIA and UL are all members of ANSI's panel.

\section*{RANDOM NEWS BITS}
- Move over Gucci and Gloria Vanderbilt! Make way for the "Apple Collection" of clothes and gifts bearing the Apple insignia. Items range from low-cost bumper stickers and cocktail napkins all the way up to a \(\$ 900\) windsurfer bearing the Apple logo. ... Atari has reportedly laid off another 380 staffers in a continuing shift of manufacturing to offshore. .. Binary Star Inc., Bellevue, WA, claims to have developed a high-brightness flat color display panel with almost unlimited area and pixel density using straightforward digital raster scanning. Initial use is expected to be in a threedimensional display for the military and CAD applications, with possible later use in TV. . . IBM has begun letting soft-ware-only stores sell IBM brand software. The first such chain ( 32 stores) is Software Centres International of Los Angeles. . . . There are now over 800 PC dealers in 26 countries outside North America. . . Judging by companies exhibiting at trade shows, training of end users is becoming a big business, with close to a dozen companies already getting into the action.

\section*{Diskette Users... When you've heard from all the animals in the diskette zoo, but you need fast delivery and high quality diskettes.}


Call Communications Electronics
Diskette order desk 800-521-4414 In Canada 800-265-4828

\section*{Choose your brand Choose your price}


For more information about this brand call:


Wabash diskettes: \$1.29 each


Ultra diskettes \(=:\) \$1.39 each
\begin{tabular}{|c|c|}
\hline parm & ceavin \\
\hline 81728 & 1.99 \\
\hline \({ }_{\text {81801 }}^{81701}\) & 2.4.9 \\
\hline 82708 & 3.19 \\
\hline \(\xrightarrow{30007}\) & \({ }^{1.798}\) \\
\hline 50018 & 1,7989 \\
\hline \({ }_{51409}\) & -189 \\
\hline & \\
\hline 51418 & 1:99 \\
\hline S2201 & \({ }_{2}^{2,78}\) \\
\hline 52410 & 2,70 \\
\hline (in & \({ }_{2}^{2,89}\) \\
\hline 52801 & 3 ¢9 \\
\hline
\end{tabular}

CE...your best source for disketten


\section*{3M} diskettesw: \$1.94 each


5

Memorex diskettes \(=\) : \$1.94 each

\(800-538 \cdot 8080\)










 APO/
Mall ordert to: Communications Electronics. Box 1002 . Mall ordorato: Communications Electronics. Box 1002
Ann Arbor, Michigan 48106 U. A A you have a Visa or Master
 in the S . Dial \(000.521-4414\) In Canade order toitrree by
calleng \(800-265-482\). If you are outsiot the U. or in Michigan callong 800-285-4828. If you are outside the U. U. or in Michigan
dilal \(313-973\)-8888. Telex anytume \(810-223-2422\). Order todey


\section*{Compufer Product Division}

\section*{}


Burroughs diskettes: \$2.09 each

Tuncom
800-448-1422


Dysan diskettes: \$2.99 each

 Sonit
\(800.552-2211\)

\section*{LES SOLOMON ON COMPUTER HARDWARE}


\section*{How Computers Create Color}

The NTSC (National Television Systems Committee) method of transmitting and receiving color TV has been around for a few decades and has proved to be reasonably good in reproducing color TV images

Until the introduction of video games and personal computers, all using digital techniques, color TV and color video monitors operated only with analog signals. Since analog and digital techniques are different, circuit designers had to develop new concepts to provide interfaces between the digital circuit and the analog color system to "fool" the latter into thinking that it was receiving an analog color signal instead of a stream of digital pulses.

Different techniques are used by vari-
ous manufacturers. This piece will cover color circuits used within the popular Apple II computer, as an example. The technique is contained in U.S. Patent 4,278,972, "Digitally Controlled Color Signal Generation Means For Use With Display" by Stephen G. Wozniac, assigned to Apple Computer Co.

The Apple II has two color modeshires (high resolution) and lores (low resolution). Each will be covered in turn.

High Resolution. A pixel is a picture element that appears on the screen as a small dot. hires specifications call for a picture that is 192 pixels high by 280 pixels wide. However, the latter number is not quite correct.

As shown in Fig. 1, a single horizontal line can be divided into 280 "cells," each occupied by a single pixel. However, the pixel, being slightly smaller than the cell, can be either centered completely within its cell or it can overlap the adjacent pixel cell. Thus, it is possible to have up to 560 pixel positions on a single horizontal line. In fact, in the monochrome mode, that is exactly how many pixels there are.

In the hires color mode, the circuit is designed so that any one data byte poked by BASIC or machine language into the pertinent screen location contains the binary signals to form either of two sets of colors. One set consists of violet, green, black or white, while the
other set can be selected from blue, orange, black or white. However, you cannot use colors from both sets in the same byte.


Fig. 2. Each color is a certain, number of degrees from reference


\section*{COMPUTER MAIL ORDER}

\section*{F FRANKLIN}


APPLE/FPANKLIN DISKDRIVES

\section*{\(c\)}

B128-80
CBM 64K Memory Board 8032 to 9000 Upgrade 2031 LP Disk Drive 8050 Disk Drive 8250 Disk Dri 4023 Printer
8023 Printer 6400 Printer Z-RAM Sticon Office Soft ROM Visicalc
commodore

\section*{PRDFE日BIONAL} SOFTWARE
Word Pro 2 Plus
Word Pro 3 Plus
Word Pro 4 Plus/5 Plus...each Infopro.
Power

\section*{MODEMS}

ANCHOR
Mark I (RS-232)
Mark II (Atari). Mark IV (CBM/PET Mark V (Osborne) Mark \(V\) (Osborne)
Mark VI (IBM-PC) Mark VI (IBM-PC)
Mark VII (Auto Ans/Auto Dial) Mark XII (1200 Baud)....
TRS-80 Color Computer TRS-80 Color Complat
9 Volt Power Supply HAYES
Smartmodem 300 Smartmodem 1200 Smartmodem 1200B Micromodem I Micromodem II Plus Micromodem IIE. Micromodem 100 Smart Com II Chronograph Chronograph.
NOVATION J.Cat.
SmartCat 103.
Smartcat \(103 / 2\) SmartCat 103/212 AutoCat
212 AutoCa
212 Apple Cat
Apple Cat 212 Upgrade Cat...
D.Cat.

PC-Cat
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ore} \\
\hline \$769.00 & S \\
\hline \$269.00 & \\
\hline \$269.00 & \\
\hline \$299.00 & \\
\hline \$949.00 & \\
\hline \$1199.00 & V \\
\hline \$379.00 & \\
\hline \$569.00 & \\
\hline \$1399.00 & C1 \\
\hline \$499.00 & C \\
\hline \$699.00 & C \\
\hline \$199.00 & c \\
\hline \$125.00 & C \\
\hline \$159.00 & C \\
\hline
\end{tabular}

\author{
\(\$ 159.00\) \(\$ 189.00\)
\(\$ 279.00\) \(\$ 179.00\) \(\$ 179.00\)
\(\$ 399.00\) \(\$ 399.00\)
579.00 \\ \(\$ 79.00\)
}

\section*{\(379.00 \quad 300\) Green.} \(\$ 79.00\) 300 Amber \(\$ 79.00\) Color 1 \(\$ 109.00\) Color 1 plus.
\(\$ 125.00\) Col \(\$ 125.00\) Color 2 Pli.
\(\$ 95.00\) Color 2 Plus \(\$ 169.00\) Color 3. \(\$ 119.00\) Color 4.
\(\$ 299.00\) \(\$ 299.00\)
\(\$ 99.00\)
12 . Green \(5900{ }^{12}\) Graen Hi-Res gorilla \(\$ 50000\) 12 Areen \(\$ 459.00\) \(\$ 459.00\)
\(\$ 265.00\) \(\$ 265.00\)
\(\$ 299.00\) \(\$ 299.00\)
\(\$ 269.00\) \(\$ 269.00\)
\(\$ 29900\) \(\$ 299.00\) \(\$ 89.00\)
\(\$ 199.00\)

\section*{\(\$ 199.00\)}

\section*{\(\$ 99.99\)
\(\$ 179.00\)}
\(\$ 99.99\)
\(\$ 179\)
\(\$ 399.00\)
\(\$ 219.00\)
\(\$ 549.00\)
\(\$ 549.00\)
\(\$ 249.00\)
\(\$ 569.00\)
\(\$ 569.00\)
\(\$ 309.00\) \(\$ 309.00\)
\(\$ 139.99\) \(\$ 149.00\) \(\$ 339.00\)
\(\$ 369.00\)


HOMECOMPUTERS


60OXL
80OXL.

\section*{DISK DRI
MICRO-B CALL Elite 2 3 \\ CALL APPLE HE BTARTERPACK \\ CALL 64 K Apple IIe. Disk Drive \& Controller \\ CALL 80Columncard.Monitor II \(00 \mathrm{~S}^{2}\) COMPLETE \\ \(\$ 219.00\) \(\$ 299.00\)
\(\$ 319.00\) \(\$ 79.00\) \(\$ 89.00\) \\ \(\$ 279.00\) \\ \(\$ 38900\) \\ \(\$ 1499.00\) A2. MICRO-BC S1499.00}

\section*{-WESTE =CANADA = 1.800.648.3314 \(\quad 1.800 \cdot 268 \cdot 4559 \quad 1.800 \cdot 233 \cdot 8950\) \\ In NV call (702)588-5654, Dept. 0107 P.O. Box 6689, Statoline, NV 89449 Order Status \#: 588-5654 \\ In Toronto call (418)828-0868, Dept. 0107 2505 Dunwin Ct., Unit 18 . Missiasauga, Ontario, Canade LsLITI gruga, ontario, cennda
Order Status \(\#: 828-0866\)}

In PA call (717)327-9575, Dept. 0107
477 E. Third St. Williamspon, PA 17701 Order Status \(\%\) : 327-9576 Customer Service Number: 327.1450
hires Circuit Operation. Before we discuss the basic chroma generating circuit within the Apple II, observe from the vector diagram of Fig. 2 how the various colors in the NTSC color system are defined. Note that all colors are referenced as "so many degrees" offset from the \(3.579545-\mathrm{MHz}\) reference burst that establishes the 0 -degree point. Circuitry within the TV receiver or monitor creates the vector pattern. In reality, the various colors blend smoothly into each other and there is no sharp demarcation between colors (as in a rainbow or prism). Color saturation is a function of the pulse duty cycle, as will be explained further along.

The basic chroma generating circuit for the Apple II is shown in Fig. 3. The letter and number in each logic block indicates the IC's physical location on the Apple II motherboard in case the reader wants to use a scope to observe actual circuit operation

Let us start with the violet color. As shown in Fig. 4, this color is generated by having 10101010 ( 85 decimal, 55 hex) present on the D0-D7 data lines. Note that, in this and the following discussions, the LSB (least significant bit) starts the single-file "parade" of binary bits exiting from the shift registers. Note also that, before clocking, the Do bit is always present at the register output.

The two 4 -bit shift registers ( \(B 4\) and \(B 9\) ) are interconnected to form one 8 -bit register. As the data selector ( \(A 8\) ) clocks
the composite 8 -bit shift register, the alternating pattern of 1 s and 0 s is shifted out-LSB first-to be applied to data selector ( \(A 9\) ). Figure 4 shows that this particular square-wave pattern is delayed by 135 degrees from the reference burst. According to the chroma phase diagram of Fig. 2, 135 degrees is the required angle for violet.

For blue, the 8 -bit shift register is provided with 10101011 ( 213 decimal or D5 hex) on the D0 through D7 data lines as shown in Fig. 5. Note that the low-order seven bits for blue are the same as the low-order seven bits for violet ( 10101010 vs. 10101011 ). The difference is in the bit on the D 7 line. For violet, it is a 0 ; and for blue, it is a 1

As shown in Fig. 3, data selector \(A 9\) is driven from register \(B 10\) when bit D7 appears as a logic 1 . This causes the data selector to switch its input from the 8 bit shift register to the output of flipflop All, as in Fig. 5. Observe that the 8 -bit shift register data is also coupled to flip-flop All, which when clocked at a \(14-\mathrm{MHz}\) rate produces a delay equivalent to 90 degrees of phase shift.

Thus, the violet waveform at 135 degrees is delayed a further 90 degrees, producing 225 degrees (blue). Therefore, the difference between violet and blue is the extra 90 degrees of phase shift produced by the action of the logic-1 bit on the D 7 line.

A little study will show how the other colors can be produced by changing the data byte on the Do through D7 lines,
and noting the action when flip-flop All is turned on when bit 7 is a 1 .

If the Do through D7 lines contain all zeros, black will be produced since the 8 -bit shift register output is always low (with All activated, the output is still low). If the D0-D7 lines contain all ones, output of the 8 -bit shift register remains high-even with All turned on by the high at D7-thus producing white.

Low Resolution. The Lores mode uses the same hardware as hires but it is software switched into the arrangement shown in Fig. 6. The major change is that shift registers \(B 4\) and \(B 9\) now form two 4-bit registers instead of a single 8 bit device as used in Hires. Each is selected by data selector \(A 8\).

Unlike the single dot pixels used in the hires mode, each lores pixel is actually a block that is four scanning lines high and seven dots long, with each pixel stored as 4 bits. Data lines Do through D3 feed shift register B4 to determine one pixel, while data lines D4 through D7 feed shift register \(B 9\) to create the other pixel. Thus, the 8 -bit data bus generates two pixels.

The two shift registers actually generate four pixels (on even and odd bytes) with each addressed via the four combinations of the HO and VC signals applied to register \(A 10\) (Fig. 6). The ve signal changes every four scanned lines, while the Ho signal changes every 978 nanoseconds. These signals, along with the blanking signal applied to register AlO,


\section*{from the publishers of PC}

\section*{For IBM Personal Computers in Education, Home and Business Use}


\section*{THE NEW FOUNDAHON FOR IBM PZRFONAL COMPUIERE}

Eulfill all of your expectat ons for your IBM - personal computer with PCjr, the applications magazine written for you and your household! Whether you're completing your banking from home, cataloging your book, record or recipe collections, teaching your pre-schooler math or the alphabet, preparing your taxes or term papers, or just playing games, PGjr. Will enable you to get the most out of all IBM PC's or compatible computers!
PCjr. is written for all members of your household as a tood to utilize your computer to its fullest extent
SUBSCRIBE TODAY AND SAVE UP TO 35\%!

determine which pixel passes through data selector \(A 9\) at any particular time.

Now, let us see how lores color is created using the partial logic arrangement shown in Fig. 7. The output of the selected 4-bit shift register ( \(B 4\) and \(B 9\) ) is passed to two circuits-data selector A9 (Fig. 6) and the video output circuit, and then back to the bottom of the 4 -bit shift register (Fig. 7). Thus, as the shift register is clocked, the data present on data lines D0(D4) through D3(D7) circulates through the register. While this is going on, the HO and VC lines are selecting the desired "pixel."

As shown in the waveforms of Fig. 7, for "plain" green, the waveform is displaced 315 degrees from the reference. The waveform that generates dark green is not a square wave, but has a \(25 \%\) duty cycle (it spends \(3 / 4\) of its time at logic 0 , which is essentially black). The fact that the waveform is at 270 degrees still makes it green, but a little darker since, besides the \(25 \%\) duty cycle, it is also closer to blue on the phase diagram of Fig. 2.

On the other hand, note that the waveform for light green spends \(3 / 4\) of its time at the logic 1 level. Since logic 1 is white, the greenish color is diluted. Thus, you can see how a change in duty cycle changes the saturation (density) of a color.

Obviously, all Os on the data lines produces black, and conversely, all is generates white. This means that a dou-ble-frequency square wave ( 1010 on the
data lines) produces grey.
If you now go back to either Fig. 3 or Fig. 6, you will note that, after leaving flip-flop \(B 10\), the chroma information is matrixed into emitter follower \(Q 3\) along with the horizontal and vertical sync signals and the \(3.579545-\mathrm{MHz}\) reference burst.

Due to the limited bandwidth of the Q3 circuit, the interconnecting cable, the r-f modulator if used, and when coupled with the restricted bandwidth of
the TV receiver, the higher frequencies that form the sharp corners of the square wave are lost. This makes the edges of the square waves round off, making them look somewhat "sineish," and thus acceptable for the NTSC system. Note also that, although the horizontal and vertical sync signals generated by the Apple are not exactly as specified by NTSC, they are close enough so that the bulk of TV receivers and video monitors will lock to them. \(\diamond\)


Fig. 6. In low resolution, the logic is switched by software so that it is arranged as shown here.


\title{
"I built this 16-bit computer and saved money. Learned a lot, too."
}

\section*{Save now by building the Heathkit H-100 yourself. Save later because your computer investment won't become obsolete for many years to come.}

Save by building it yourself. You can save hundreds of dollars over assembled prices when you choose the new H-100 16-Bit/8-Bit Computer Kit - money you can use to buy the peripherals and software cf your choice.
```

H-100 SERIES COMPUTER SPECIFICATIONS: USER MEMDRY: 128K-76BK bytes* MICROPROCESSORS: 16-bit: 8088 8-bit: 8085 DISK STORAGE: Built-in standard $5.25^{\prime \prime}$ disk drive, 320K bytes/disk KEYBOARD: Typewriter-style, 95 keys, 13 function keys: 18-key numeric pad GRAPHICS: Always in graphics mode. $640 \mathrm{~h} / 225 \mathrm{v}$ resolution; up to eight colors are available** COMMUNICATIONS: Two RS-232C Serial Interface Ports and one parallel port

```

``` **Optional.
```

The H-100 is easy to build - the step-by-step Heathkit manual shows you how. And every step of the way, you have our pledge - "We won't let you fail." Help is as close as your phone, or the nearest Heathkit Electronic Center. ${ }^{\dagger}$
And what better way to learn state-of-the-art computing techniques than to build the world's only 16 -bit/8-bit computer kit? To run today's higher-speed, higher-performance 16 -bit software you nead an H -100. It makes a big difference by processing more data faster.
Dual microprocessors fo power and compatibility. The $\mathrm{H}-100$ handles both high-performance 16 -bit software and most current Heath/Zenith 8-bit software.
Want room to grow? The H-100's standard 128 K byte Random Access Memory complement can be expanded to 768 K bytes - compared to a 64 K standard for many desktop complters
And the industry-standard S-100 card slots support memory expansion and additional peripheral devices, increasing future upgradability of the $\mathrm{H}-100$.
High-capacity disk storage, too.Tาe H-100's 5.25" floppy disk drive can store 320 K bytes on a single disk. The computer also supports an optional second $5.25^{\prime \prime}$ and external $8^{\prime \prime}$ floppy disk drives. And an optional internal Winchester disk drive will be available soon.
For more information, circle the reader service number below. Better yet, visit your Heathkit Electronic Center for a demonstration!

The $\mathrm{H}-100$ gives me the most for my computer dollar!


Compony

# ـIncina $\Delta$ nnlo 

## COMPUTER VIDEO GAMES

Hands-On Reviews of Recently Released Game Software

## GATEWAY TO APSHAI

ROM Cartridge for Atari 400/800 Epyx Computer Software, 1043 Kiel Ct., Sunnyvale, CA 94089; 408-745-0700.

Graphics ${ }^{*} \star \star \star$ Gameplay *ぇt<br>Sustained Interest $\star \star \star \star$<br>Type: Joystick action/maze/adventure game<br>Memory Required: Resident ROM

encountered. Otherwise, the monster can get a couple of hits on you while you lake your hand off the joystick to press the "Start" key. These monsters include such unlikely creatures as the Mamba Snake, the Ghouls and the Slime Mold (called "Fungus" on the screen).

By hitting the "Select" key, you can retrieve a set of keys from your bag to open locked dungeon doors that bar your progress with annoying frequency. That means getting out of the fight


Some of the graphics for "Murder by the Dozen" are fascinating.

Once again, we're presented with an adventure game-maze combination from Epyx, this time on a plug-in ROM cartridge. The object of the game is to complete all eight levels, scoring as many points as possible along the way. You complete a level by moving your hero through a maze of dungeons, fighting off monsters and avoiding traps, while picking up treasures to score points.

This is also a time-oriented game; if you haven't finished in 6.5 minutes, your hero is automatically transported to the slart of the next deeper level. If that sounds like you're getting a freebee, forget it. Your five lives won't last long enough to run the clock out unless you decide to pace the floor in just one dungeon.

I found that keeping the game in the "fight" mode (selected with the "Start" key) helps to save a little time in doing battle with the several types of monsters
mode, which inevitably lays your hero open to danger

During the game, when you use the Select key, you can check on such things as your status: strength, agility, luck, health, etc. You will also be able to see a full inventory of the treasures, spells, and useful objects that you're carrying.

Gateway has eight levels, 16 dungeons on a level, and about 60 rooms in each dungeon. That's a whopping 7500 different rooms for you to explore, which is a tall order no matter how much time you have.

The automatic screen scrolling is effortless and smooth, which means that the Epyx programmers have fine-tuned this particular aspect of the maze. This is an especially good game for adventure and maze game lovers. It has so many convolutions and twists and turns that it should be good for many an evening of enjoyment.

## MURDER BY THE DOZEN

## Diskette for Apple, Commodore 64 and IBM PC

CBS Software, One Fawcett Pl., Greenwich, CT 06836; 203-622-2500.

Graphics $\star \star \star \star$
Gameplay $\star \star \star \star$
Sustained Interest $\star \star \star \star$
Mype: Keyboard mystery game
Memory Required: 48 K

Mystery lovers rejoice! This latest entry in the convoluted pathways of computerized sleuthing is a combination text game with some throwaway graphics that help give you proper perspective. Some of the graphics are just window dressing; others, like the three-dimensional city map, are a pleasure and joy for computer nuts like me.

There are 12 possible cases; you pick the one you want to work on. They're all murders, and some are rather improbable.

CBS has supplied a mountain of documentation: a detective (instruction) manual, a book of clues that tells you the meaning of clue numbers that appear on the screen, a special printed pad to keep track of the case, and a confidential book of solutions.

The game is really designed more as a parlor exercise with up to four players matching wits with one another. It's exceptionally well done, intriguing, and one of the better text-style mystery computer games we've seen.

## B.C.'S QUEST FOR TIRES

## Diskette or ROM cartridge for Atari 400/800

Sierra On-Line, Inc., Sierra On-Line Bldg., Coarsegold, CA 93614; 209-683-6858.

Graphics $\star \star \star \star$
Gameplay $\star \star \star$
Sustained Interest $\star \star \star$
Meme: Joystick action game
Memory Required: 32 K

If you follow the comic strips, you're familiar with B.C. and star character Thor who is always riding on his uniwheel. The graphics and animation of this game-actually designed by the comic strip's creator, Johnny Hart, are true to the sense and feel of the newspaper version.

Thor is at once comical and semitragic as he rides his wheel across the
country to try to rescue Cute Chick, who's being held a prisoner by a dinosaur. The trip is loaded with hazards: boulders and craters to be jumped over, tree limbs to duck under, a river to cross by hopping stepping-stone fashion across turtle's backs. And on the other side awaits arch enemy Fat Broad with her club ready to do Thor in.

Then comes the lava pit, which our hero can cross by grabbing onto Dooky Bird's legs. Then there are a rushing, dangerous downhill sprint, crossing a ravine, ducking a volcanic eruption, and finally one more river to cross just before the dinosaur cave. Can Thor finally save Cute Chick from her fate? It all depends on your skill.

## HARD HAT MACK

Diskette for Apple II
Electronic Arts, 2755 Campus Dr., San Mateo, CA 94403; 415-571-7171

## Graphics $\star \star \star \star+$

Gameplay $\star \star \star \star+$

## Sustained Interest $\star \star \star \star$

Type: Two-button joystick or keyboard strategy/action game

Memory Required: 48 K

When we see a game with the Electronic Arts logo, we expect excellence, and Hard Hat is no exception. This is a multilevel, get-through-the-task-and-avoid-being-killed kind of game. If you have an analog joystick with two firing buttons, it goes a bit easier and faster.

Mack is trying to work on his construction job-putting steel girders into place and then riveting them. But he has


In Level 2, Hard Hat Mack rides a girder to the top to collect tool boxes.
two enemies and several on-the-job hazards. The first enemy is called OSHA (that Federal safety agency that finds danger in every job situation) and the second is a vandal. If Mack runs afoul of either one, he loses a life.

He can also get hit by runaway hot rivels that fall and bounce down the screen, and he can fall off a girder. He has an elevator to help him get between construction levels on the screen. So much for the dangers in the first level.

The second level gets harder. Mack has to jump on conveyers and ride a girder up into the stratosphere to collect tool boxes. He has to avoid his usual en-

Thor has to cross a river by hopping from one turtle's back to another.

emies plus added dangers.
In the very difficult third level, Mack has to collect all the steel blocks and drop them through holes in the girders into the rivet machine. There's an elevator in this level that Mack can use, and he has to watch for the port-a-potti. There are three more levels, but we aren't good enough to see them yet.

## OIL'S WELL

Diskette for Atari 400/800 Sierra On-Line, Inc., Sierra On-Line Bldg., Coarsegold, CA 93614. 209-083-6858.

## Graphics \#\#**

 Gameplay $\star$ ** $\star$ Sustained Interest **** Type: Joystick action game Memory Required: 32 KThis is another one of those games inspired by Pac-Man, but in our opinion, it's much more original and interesting than most of the copycats. You have to go after the oil field with a drill bit that looks very much like old Pac-Man himself, but he's attached to a pipeline that stakes around mazelike shafts and passageways gobbling up oil "pellets", oozies and goblets.

There are land mines which can destroy the bit but not the pipe. The oozies-of which there are plenty, will destroy your extended pipe if you let them get near it. The only defense is to retract to the wellhead in a hurry with the firing button on the joystick.

This is a high-speed, high-skill game, and certainly one of the better of the twitch variety that we've seen recently.

# roin yous COMPIIER FIISTHE oilc HRCTDEHIS. FE <br>  



RROMRISOFT
Now the excitement of original arcade graphics and sound effects comes home to your computer.
Introducing ATARISOFT. ${ }^{\text {TM }}$ A new source for computer software.
If you own a Commodore VIC 20 or 64, a Texas Instruments 99/4A, an IBM or an Apple II, you can play the original arcade hits.
DONKEY KONG by Nintendo, CENTIPEDE, ${ }^{\text {M }}$ PAC-MAN, DEFENDER, ROBOTRON: 2084, STARGATE and DIG DUG. (On the TI 99/4A you can also play Protector II, Shamus, Picnic Paranoia and Super Storm.)
So, start playing the original hits on your computer.
Only from ATARISOFT.
Some games also available on
ColecoVision and Intellivision.

## ATARISOFT"

Now your computer fits the arcade hits.
DONKEYKONG, Mario and NINTENDO are trademarks and 0 Nintendo 981, 1983. PAC-MAN and characters are trademarks of Bally Midway Mfg. Co. sublicensed to Atari, Inc, by NamcoAmerica, lic. DEFENDER is a trademark of Williams Electronics ROBOTRON: 2084 is a trademark and © of Williams 1982. man factured under license from Williams Electronics. Inc. STARGATE is a trademark and © of Williams 1981. manufactured under license from Williams Electronics. Inc. DIG DUG is created and designed by Namco Ltd. manufactured under license by Atari, Inc. Trademarks and O Namco 1982. PROTECTOR II is a trademark of Synapse Software Corporation, manufactured under license by Atari. inc. SHAMUS is a trademark of Synapse Software Corporation. manufactured under license by Atari. Inc. PICNIC PARANOIA is a trademark of Synapse Software Corporation. manufactured by Atari, Inc. SUPER STORM is engineered and designed by Synapse Software Corporation, manufactured under license by Atari. Inc ATARISOFT 'M products are manufactured by Atari, Inc. for use on the above referenced machines and are not made. licensed or approved ty the manufacturers of these machines. COMMODORE 64. VIC 20, TEXAS INSTRUMENTS 99/4A. IBM, APPLE COLECOVISION and INTELLIVISION are respectively trademarks of Commodore Electronics Limited, Texas instruments, Internationa Business Machines Corp., Applé Computer, Inc.. Coleco Industries Inc. and Mattel, Inc. A * Warner Communications Company.
01983 Atari, Inc. All rights reserved



# INSIDE STORY 

 IBM's Peanut: A PCinaJunior-size Package

Offering upward compatibility with the PC, jr reveals some surprizes, including a cordless keyboard By George Mitchell

THE long-awaited IBM home system is here and it sports some interesting surprises.
Although the new system was longago dubbed the Peanut, supposedly the internal IBM code name for the project, the name being used is the PCjr. And, not so surprisingly, the name pretty much tells the tale-though it is certainly not a precise chip off the old block.
For example, the PCjr still uses the IBM PC's Intel 8088 microprocessor operating at 4.77 MHz and the $\operatorname{DOS} 2.1$ in the disk-oriented version, which is a new generation of PC-DOS utilized on the larger machines.

Even with the similarities in processor and operating system, however, there are a number of differences between the IBM PC and PCjr. Specifically, the latter is designed to work with a standard home television set, has a cordless keyboard, and uses a desktop transformer for power, much like an Atari 800 does. Other features of the system include:

- 64 K bytes of dynamic RAM, expandable to a maximum of 128 K . Of this, 16 K is dedicated to the video buffer.
- 64 K bytes of ROM, containing pow-er-on diagnostics, cassette BASIC interpreter, cassette operating system, I/O drivers, dot patterns for 256 characters in graphics mode, and a diskette bootstrap loader.
- Two ROM cartridge program slots
- A cassette interface.
- Interfaces for adding joysticks, modem, light pen, and I/O expansion.

In addition, the system console, which measures $13.9^{\prime \prime} \times 11.4^{\prime \prime} \times 3.8^{\prime \prime}$ and tips the scale at less than 6 lb without disk drive ( 9 lb with a single drive), includes individually keyed connectors on the rear panel for attaching a variety of I/O devices.
The "entry" unit, without disk drives but with 64 K of memory, cordless keyboard, transformer, and two cartridge slots, is expected to carry a price tag of $\$ 669$. To attach the unit to your color television set, add another $\$ 30$ for the connector cable. What you then have is a cassette-based BASIC system that is capable of displaying 40 characters on the screen and up to 16 colors.

Adding additional functions costs more, of course. For example, expect to pay in the neighborhood of $\$ 1269$ for the "enhanced" system that includes 128 K of main memory and a $360-\mathrm{Kb}$ disk drive. Cost will be higher, though, to make it all happen for this option-laden machine. So add $\$ 30$ for a TV set connector, $\$ 175$ for a thermal printer, etc., etc. You can add other items such as a joystick, internal modem, carrying case, adapter cable for an IBM color display, and a keyboard cord. Generally speaking, you will have more than


Using infrared communication, the keyboard is said to be able to be used 20 ft away from the base unit.
$\$ 1900$ invested in the machine if you purchase everything, excluding software, firmware, and color display.

The Keyboard's Cordless. One of the exciting features of the $\mathrm{PCj} r$ is its keyboard. Measuring approximately $131 / 2^{\prime \prime}$ $\times 61 / 2^{\prime \prime} \times 1^{\prime \prime}$ and weighing 25 oz with 4 AA batteries, the keyboard features a typewriter-style 62 -key layout, cursorkey control cluster, and a single function key.

Although the keyboard looks standard enough, it communicates with the system through two infrared-emitting diodes. The keystrokes are encoded with pulse-modulation techniques, which are then detected by the base unit.

IBM claims that the keyboard can be used 20 feet away from the base unit and that it has a wide 60 -degree arc of operation. Physical obstacles will block the signal of course.

You don't have to rely on the IR link, however. IBM provides, at additional cost, a cable connection. This cable not only provides power to the keyboard but establishes a serial link for the encoded data by disengaging the battery power and IR link. IBM says that this option must be used when more than one unit is used in the immediate area to avoid interference.

Because the PCjr keyboard differs greatly from the standard PC keyboard, aside from its much smaller size and slightly-sculpted, Chiclet-like keys, IBM allows emulation via SHIFT CONTrol keys. It's claimed a user can then do everything on the $\mathrm{PC} j r$ that he does on the larger PC keyboard. To facilitate this, cardboard overlays are offered for
the PCjr keyboard. These are designed to be written or typed on so that specific application overlays can be created. Basically, this seems to be a cheap solution to what will probably be a very complex problem for serious users. Letters and numbers aren't marked directly on keys, by the way.

Apparently, the reason for the cordless keyboard is that positioning of the control section can be more flexible when used in the home and for playing games. However, some observers think that this foreshadows the IBM office communication system. The keys are supposedly full-travel types with membrane contacts.

Memory and Display Can Be Expanded. The very basic PCjr comes with 64 K of built-in dynamic memory
and the ability to display 40 characters. Expanding both is handled via the memory and display expansion option, which you can expect to pay around $\$ 140$ for.
This module enables you to have a $625 \times 480$ resolution, 80 columns, and up to six pages of display memory. Moreover, an additional 64 K of 150 nanosecond dynamic RAM is added. The board plugs into a 44-pin connector on the system board. This connector is the only I/O expansion on the system board.

You can probably expect a variety of manufacturers to offer multifunction boards to fit this connector by the first quarter of this year. But be aware that the electrical power to the PCj is minimal. A single $60-$ VA transformer supplies the power, and extending the memory beyond 128 K would severely drain its capabilities. Additionally, little space is available inside the system unit, and stacked boards won't fit.

Interestingly, the PCjr doesn't provide you with as much usable memory as you may wish, as you can see in Table I. Notice that only 112 K bytes maximum is available, due to the 16 K required for the video buffer. And when using the new DOS 2.1 only 82 K bytes is available. As a result, many programs that work on a full-sized PC won't fit. However, IBM has modified some (EasyWriter 1.15 and most of the PFS software) to work in the limited memory.

Although there is little space inside the system cabinet, IBM has designed an internal 300 -bps auto/answer auto/ dial modem. This plugs into a special connector on the system board, and the telephone jack extends from the rear. Since the modem does employ serial signals and uses the interrupt structure of the PCjr, the connector may offer add-

## APPLES MACINTOSH OFFERS MORE FOR LESS

If you're not an IBM fan and like the Apple world, the Macintosh personal computer is just a month away.

According to sources close to the company, Apple's latest entry is expected to be unveiled at the annual stock holders' meeting in early January.

The machine, which features Lisa-like functions such as the mouse cursor controller, uses a 68000 processor, has dual $51 / 4$ " standard disk drives rather than the unreliable Twiggy drives, includes a $7^{\prime \prime}$ (diagonal measurement) monochrome integrated CRT, and provides composite video output for use with a color monitor or television.

The full-size typewriter keyboard, although not cordless, may be easier to use than any other machine offered in its price class. (You can probably expect to pay
less than $\$ 3000$ for the Macintosh when it finally appears on the market.)

As enticing as Macintosh sounds, it, too, may have some shortcomings. Specifically, it may be lacking in software. To date, not enough has been developed for Lisa, so why should Macintosh have great early software support? It seems that most programming shops are tuned in to creating products for the 8088 CPU rather than the 68000 .

However, it is believed that Macintosh may have a heads-up chance at getting software by offering more than just an Apple operating system. You might expect to see Digital Research's CP/M-68K and VisiCorp's Visi-On on the machine. In addition, it appears that Microsoft is preparing to offer its popular Multitool series on the machine.

# Radio Shack Presents the Transportable TRS-80 

The New Model 4P Computer-From the World's Largest Computer Retailer


## The Computer for Today's Upwardly Mobile Society

 If you're headed for success, our newest TRS-80 can help you get there in record time. The Model 4P is a compact, disk-based desktop computer with a big difference: it has a handle. So wherever your work may take you, you can get a handle on scheduling problems, ever-changing sales projections, and last minute reports. It's like having your office with you on trips, at home-anywhere!
## A Completely Portable, Self-Contained System

We don't sacrifice features for portability, either. The Model 4P comes standard with two 184,000-character disk drives and 64 K internal memory. You also get a full 80character by 24 -line $9^{\prime \prime}$ display, an electric typewriter-quality keyboard with numeric keypad, and printer and communications interfaces. And you can add an extra 64 K of memory, an internal modem or even external hard disk drives!

## "Off the Shelf" <br> Software

In addition to running the entire selection of TRS-80 Model III/4 disk software, you can add the optional CP/M Plus ${ }^{\text {sM }}$ operating system to use thousands of additional ready-to-run programs.

TRS-80 Model 4P Computer

$$
179900
$$

Commercial Lease Available For Only $\$ 65$ Per Month (Pius Applicable Use/Sales Tax)
on makers a solution as to where to plug things in.

Cartridges Add Programs. Following an Atari- and TI-like concept, the PCjr also comes equipped with two 28 pin ROM cartridge slots.
The cartridges include a number of games, educational software, and, apparently, an IBM logo. You can look for: Monster Math, Animation Creation, Bumble Games, Juggles' Butterfly, Turtle Power, Personal Communications Manager, and Casino Games, to name a few. Cartridge BASIC is also available as an option for $\$ 75$.
There are expected to be about 50 cartridges available by the time you read this, and an equal number of disk- based software packages.

DOS 2.1, a Better O/S. Once you tire of using the PCjr as a cassette-based system (1500-baud transfer is used on the cassette) or cartridge system, you will more than likely upgrade to a diskbased system.

You can choose to use one single drive in concert with cartridge BASIC and the cassette $\mathrm{O} / \mathrm{S}$ to maximize system operation and minimize cost. (IBM does not presently offer an outboard second drive, though the system is said to be able to support it with the proper controller electronics to go with it.) You can upgrade the entire system by adding serial and parallel adapters, a thermal printer, and a host of other options.

Once you've added everything, you have a fairly complete system, though only a one-drive system. And DOS 2.1 completes the picture. The $\$ 65 \mathrm{O} / \mathrm{S}$ comes with a user's guide and a DOS reference manual.

Like previous versions, DOS 2.1 operates on all prior PC models, but earlier versions of DOS don't work on the PCjr. The new version works with either single- or double-density disk drives, can support a hard disk (an option that may come for the $\mathrm{PC} j r$ ).
One aspect of DOS 2.1 to be considered is that it has higher memory requirements than previous versions (about 12 K bytes more than 1.1). In addition, it supports graphics screen dump to the printer, global file name searches,

and supports multiple-disk I/O memory buffers to speed disk performance.
You can also have job stream command sequences, and support current date and time in directory entries. Further background operations such as file print are included, and you can divert parallel printer output to serial.
The basic commaads of DOS 2.1 are similar to previous versions, with some added functions and commands to ease its use, as shown in Table II.

Generally speaking, the use of DOS 2.1 and the cordless keyboard may be the real hallmarks of the system. The rest is almost pedestrian.

Setting Up. Setting up the PCjr is fairly simple. You can use the keyboard cable or operate in a cordless mode. You can then connect the system console to either your color TV, a standard composite video monitor, or, through a $\$ 20$ adapter cable, the IBM color display via a plug on the rear of the system console. If you plan anything serious, you should probably consider getting the higherclass display. The popular BMC color monitor will work nicely, I believe. Be aware, however, that, if you plan to have sound effects, you do need the television receiver since the system uses the speaker in the TV set. If you want the better display and sound, you'd have to kludge up a speaker on the system console.
The 2-lb, 13-oz desktop stepdown transformer is plugged into a connector at the rear and supplies power to the entire system.
Once you have everything plugged in and turned on, you're greeted with the IBM logo and 16 color bars. While this screen is being displayed, the system is self-checking, and a single beep and change to BASIC 1.1 signifies that everything is operating correctly.

You can choose to run Keyboard Adventure, which is built into the system ROM. This is entered by tapping the escape key during the system start-up sequence. This program uses a cartoon character to take you through the use of the keyboard.

Early Conclusions. The $\mathrm{PC} j$; finally emerging out of the swell of rumors under the guise of "Peanut," is a classy home personal computer. Sure there's a list of wish-it-hads that could be made; but, price aside, it's an impressive package-for the home, that is, not for heavy small-business use. After all, it would be unfair to compare, say, a student's home electric typewriter with a heavy-duty office typewriter
Nonetheless, the keypads, though operating smoothly, are not a touch-typist's delight owing to their size and

TABLEM-DOSCOMM	
Function	DOS Command or Utility
Configuration File (CONFIG. SYS)	BREAK = ON/OFF BUFFERS = DEVICE = FILES $=$
Substitute diskette drive assignments	ASSIGN
Batch file support	.BAT
Check for Ctri/Break Interrupt	BREAK
Check diskette or fixed disk	CHKDSK
Clear screen	CLS
Compare files	COMP
Copy files	COPY
Set date	DATE
Set time	TIME
Delete files	DEL, ERASE
List directory	DIP
Compare diskettes	DISKCOMP
Copy diskette	DISKCOPY
Format diskette or fixed disk	FORMAT
Graphics screen dump	GRAPHICS
Set display or printer options	MODE
Remark within batch file, then wait	PAUSE
Print files in "Background"	PRINT
Change DOS prompt	PROMPT
Recover file	RECOVER
Remark from batch file	REM
Rename a file	RENAME, REN
Transfer DOS to another diskette or fixed disk	
Set time of day	TIME
Display file contents	TYPE
Display DOS version	VER
Write-verify data to diskette	VERIFY
Display disk(ette) label	VOL
Line editor	EDLIN
Load, alter, display/execute files	debug
Link-edit a compiled program	LINK
Change directory	CHDIR
Substitute screen \& keyboard	CTTY
Convert .EXE files to .COM format	EXE2BIN
Search for string in file	FIND
Create a sub-directory	MKDIR
Pause after displaying screenful	MORE
Specify directory paths	PATH
Remove directory	RMDIR
Set environment	SET
Sort data	SORT
Oisplay directory paths	TREE
Initialize a fixed disk	FDISK
Backup fixed disk files to diskette	BACKUP
Restore files from diskette to fixed disk	RESTORE

shape. The same could be said for keys of some very fine electric typewriters, too. Further, people who aren't proficient typists might find the absence of markings directly on the keys disconcerting. Instead, they're marked on the keyboard's base. Apparently, the anticipated use of a variety of keyboard overlays led IBM to make this decision (each key can be programmed for special applications). Furthermore, it would have been nice to have a numeric keypad.
Color video quality of a model demonstrated was excellent, with 16 individual colors in medium-resolution and four colors in high-resolution.

When we get our hands on a $j r$ for a reasonable period of time, we'll get more details on it for you. Meanwhile, I'd liken this machine to Cadillac's "Cimarron" small automobile. It will compete at the top of the nonbusiness personal computer area. Other less prestigious machines will get you there also, of course.

# Last Night, 39 Musicians had A COMPUSERVE CONFERENCE, SO DID 31 M.D.S, 49 SPORTS FANS AND 640 APPLE POLISHERS, and No One had To Leave Home. 

## The Electronic Forum, Cheaper than Long Distance and Much More Rewarding.

Every night on the CompuServe Information Service, professional and social groups discuss a wide range of subjects. From what's new in medical technology to what's nouvelle in continental cuisine.

And every day more computer owners who share a common interest are discovering this exciting new way to exchange ideas and even transfer hard copy data.

And besides electronic forums, they leave messages for each other on our national bulletin board, "talk" informally on our CB simulator, and communicate via CompuServe's electronic mail.

But best of all, in most cases, CompuServe subscribers get all of these state of the art communications options, plus a world of on-line information and entertainment for the cost of a local phone call plus connect time.

To become part of this flexible communications network, all you
need is a computer, a modem and Compuserve. CompuServe connects with almost any personal computer, terminal, or communicating word processor.

To receive an illustrated guide to CompuServe and learn ho you can subscribe, contact or call

## CompuServe <br> Consumer Information Service. P.O. Box 20212

5000 Arlington Centre Blva... Columbus. OH 43220
800-848-8199
In Ohio call 614-457-0802

## At CIE, you get electronics career training from specialists.



If you're interested in learning how to fix air conditioning, service cars or install heating systems - talk to some other school. But if you're serious about electronics... even earning an Associate Degree... come to CIE -The Electronics Specialists.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Be sure to shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type-with serious career goals in electronics-take a close look at what we've planned for you at CIE. What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries-on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson takes one or two principles and helps you master them -before you start using them!

## How practical is the training?

This is the next big important question. After all, your career will be built on what you can doand on how well you do it.

Here are ways some of CIE's career courses help you get your "hands-on" training...

## With CIE's Personal

Training Laboratory...
you learn and review the basicsperform dozens of experiments. Plus, you use a 3 -in-1 precision Multimeter to learn testing, checking, analyzing!

## When you get your own

 5 MHz , solid-state oscilloscope, you take some real professional steps. You use it as a doctor uses an X-ray machine-to "read" waveform patterns...lock them in...study, understand and interpret them! When you get your Digital Learning Laboratory, you'llbe into digital theory-essential training today for anyone who wants to keep pace with the state of the art of electronics. With CIE's Digital Lab, you'll be applying in dozens of fascinating ways the theory you've learned. For example, you'll compare analog and digital devices. You'll learn to make binary to decimal conversions and to work with semiconductor devices and circuits. You'll see how digital equipment is vital to today's exciting, growing fields such as security... where digital theory provides the brains for space-age alarm and protective devices. You'll build your Microprocessor Training Laboratory, a working microcomputer-from "scratch." You'll also learn how to program and interface it with displays, memories, switches, and more.

## Earn An Associate Degree from CIE.

One of the best credentials you can have in electronics -or any other career field -is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science


Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114 Accredited Member National Home Study Council

MAIL TODAY!




The $101 / 4^{\prime \prime} \times 91 / 2^{\prime \prime}$ enclosure houses receiver and CPU.

The number of frequencies that can be monitored at one time with a scanner is typically less than ten, although some top-of-the-line models scan as many as 50. In contrast, the CompuScan system can monitor 200 frequencies at a time. Additionally, it displays pertinent information about the frequency (such as its source of transmission), and maintains a $\log$ of selected frequencies.

CompuScan can receive frequencies in the following ranges:

30- 50 MHz Low-Band VHF (FM)

> 118-136 MHz Aircraft (AM) 144-148 MHz 2-M Amateur (FM)
> 148-174 MHz High-Band VHF (FM) $421-450 \mathrm{MHz} 70-\mathrm{cm}$ Amateur (FM) $450-470 \mathrm{MHz}$ UHF Band (FM) $470-512 \mathrm{MHz}$ UUHF-T Band (FM)

The CompuScan scanning receiver system includes the receiver, a whip antenna and cable, interface cable, software on $51 / 4^{\prime \prime}$ disk, and power supply. To run the system reviewed here, you need a Commodore-64 microcomputer, whose keyboard is used as the front-end

On the bottom are the RS-232 port and accessory connector.

tuning selector, and one disk drive. Suggested retail price of the system is $\$ 499.95$

Hardware. The Bearcat CompuScan/ 2100 system includes a state-of-the-art scanning receiver that operates under microprocessor control. Patented features such as track tuning, enhance scanner sensitivity. A block diagram of the microprocessor control section is shown in Fig. 1.

A modest $101_{4} 4^{\prime \prime} \times 9^{1 / 2^{\prime \prime}} \times 2^{1 / 4^{\prime \prime}}$ enclosure houses both receiver and microprocessor circuitry. The microprocessor is a Z-8 with an on-board UART. The unit interfaces to the host computer through an RS-232 port that provides TTL compatible signals as well as true RS-232. An RS-232 interface cable that plugs into the user port of the Commodore 64 is included with the package. Also included is a system disk, and ac adapter.

Four auxiliary outputs on the receiver permit the user to connect accessories such as an audio tape recorder to the receiver. One of the outputs connects to a normally open relay that closes when a signal is present. The other three outputs each provide 200 mA current sink capacity (to ground) under various control conditions.

Supplied with the receiver is a telescoping whip antenna (with base) and $20^{\prime}$ of RG-58 cable. The antenna can be easily maneuvered in a room for maximum response. The receiver has an internal speaker, and volume and squelch controls. If desired, the speaker and controls can be disabled and replaced by comparable external devices.

Software. CompuScan software is completely menu driven. The system comes up in "Standby" mode, which presents five options to the user: Manual, Scan, Search, Quit, and Zero.

Manual mode is selected by pressing M on the keyboard. This brings up a display of "Bank 1" that contains channels 1 to 20, plus additional information for each channel (Fig. 2). The information indicates whether or not a channel is locked out, a delay is set, or the auxiliary bits are set. To select a channel from bank 1 (or any other bank), you just enter the channel number. To change to a different bank, press C , and then enter the appropriate bank number.

When you select a channel, the receiver automatically tunes to the frequency and broadcasts a signal if it is present. A screen appears, too, showing corresponding channel data (Fig. 3). If you are entering information for the first time, you must input the frequency first. Once the frequency is entered, you may then input additional information
that pertains to it. LOCK OUT causes the scanner to pass over the frequency when in the scan mode. DELAY causes the receiver to remain tuned to a given channel in scan mode about two seconds following the loss of signal on that channel. This feature is useful for transmissions that are followed by a response on the same frequency. COUNT keeps track of the number of times a frequency is found to have a signal present during a scan sequence. Selecting this option zeroes the count.

Choices 5 through 8 of the channel data menu allow you to set the auxiliary bits. These bits refer to special control signals present at the accessory jack on the bottom of the receiver. AUX 1 activates built-in relay contacts when set and a signal is present. This is useful for connecting a cassette tape recorder to the scanner. When aUX 2 is set and a signal is present, it sinks 250 mA (max) for controlling external devices such as alarms. AUX 3 and AUX 4, when set, sink 200 mA whenever a channel is sampled


Interior of the scanner shows the main and CPU boards.



162.550 180	625 108	6.6605	6. 9375
477. 1125	477. 0375	476. 6885	476.8123
478.3125	147.3608	152.5180	152.5790
$152.9350$	$152.989$	$\begin{gathered} 173.355 \\ 1081 \end{gathered}$	$985$
454.4560	454.556	454.375	4. 45080

## To selsct a channel to receive or change any data, eriter CHnMmi. mi.. (i-2ab)

To select any moded enter

Enter Selection
Then repess (RET)

Fig. 2. Display of Bank 1 shows channels 1 to 20.


To change data, press ITEM NUMEER : (1-9) To seizet another channel, press : it To retern to minumb mode: press

```
NOTE: YES & NO itens will toggle
 automatically if selected
```

Make selaction
Fig. 3. When a channel is selected, its data appears.
(a signal need not be present). These bits are useful for antenna switching.

With the мемо feature, you can insert up to four lines of information about a channel. Information might include the source of the broadcast, names, telephone numbers, codes, required procedures, etc.

From Manual mode, you may select up to three "Priority" channels. Priority operation causes CompuScan to monitor the channels regardless of what the user may be doing otherwise. If CompuScan picks up a signal while scanning or searching, it will also sample the priority channels at approximately 2 -second intervals. If a signal ap-
pears on a priority channel, CompuScan switches the broadcast to that signal.

Scan mode is the "business" mode of CompuScan and can be entered from either standby or manual modes. You may choose the number of banks you wish to scan ( 10 banks of 20 channels each are available). Channels within each bank can be skipped over during the scanning process by choosing the lockout feature while in manual mode.

Once you start scanning, a graphic appears on the screen that shows you the channels being scanned. For example, when the receiver scans channels 1 through 20, the screen looks like the one shown in Fig. 4A. An $L$ beneath a chan-
nel number means that the channel is locked out; an asterisk means that the channel has been sampled, and no signal was found. If a signal is present on a channel, the screen changes to that shown in Fig. 4B. It shows the channel, its frequency, and any information about the channel that was included when first stored. If the channel loses its signal, the receiver automatically begins scanning again. If you want to interrupt the process, you may do so with one of the five options shown at the bottom of the screen (Fig. 4B).

Search mode allows you to search for active frequencies between upper and lower limits that you enter. The frequencies that you enter must be valid ones, which means that they must lie within the band limits of the receiver (Fig. 5)

There is one other search feature that I didn't review, but which will be included in the final product. It's called the Search/Store/Count feature. In effect, the system in this mode does not stop and transmit a signal. Instead, it pauses momentarily and stores the frequency. When through with the search, the system displays the number of frequencies stored. Also, you can step through the frequencies to get a count of how often each was encountered during the search. If the frequency is of interest to you, you can automatically store it in a data bank

The final two options of the Standby Menu are Zero and Quit. CompuScan automatically counts how many times a signal is present on a frequency during scan mode and displays a running total on the channel-data screen. Zero allows you to zero these counts for all channels stored in the system. When you are through operating the scanner, Quit closes all the files.

There are a few other noteworthy features of the software. Whenever you make an improper entry, the screen blinks in red. This gives you a quick visual feedback that an error has been made. If you load the software and forget to turn the receiver on, NO RESPONSE comes up on the display. This is a reminder to turn the receiver on.

All the data you enter is stored on the system disk. Thus, there is no need for a separate data disk. The program itself is written in BASIC. A spokesman for Electra indicated that the program could have been written in machine code to achieve optimum performance However, it was decided instead to allow users access to the code if they wanted to modify it in any way. The complete program listing in BASIC is available from Electra. The listing is well commented and contains a crossreference table.

# Here's How You Can Learn 16-Bit Technology. And Graduate To One Of Today's Most Powerful And Advanced Microcomputers. 

Now you zan master $1 飞$-bit tectinology with an all-new Advancec Microprocessor course. And build hands-on experience with the only 16 -bit nicrocomputer specifically designed for the hobbyist working engineer and student.

## Advanced Microprocessor Course

This all-new self-stud; course EE-8088) provides indepth coverage of 16-bi-, state-cf-the-art technology.
You will gain a thorcugh understanding of microprocessors from this 1200 page zourse. In 10 easy-to-
 understand L ints, starting with microcomputer basics, you'll cover all phases of 16-bit microprocessing. Assembly language. Program writing. Addressing modes. Dynartic and static RAM. And hardware interfacing.
And כy using your 16:bit Trainer/Learning Computer for hands-on experiments (cver 60 included), you'll gain actual circuit interface and software programming experience with an 8088 microprocessor system.

## Trainer/Learning Computer

A unique combination of design features makes this versatile r icroprocessor systemmuch more than a "teaching machine." Use it as a trainer with the Advanced Microprocessor course. Lse it as an experimental design zomputer. And use it to run a wide variety of 16-bit software - including Z-Cos, Multiplan, Z-Basic,

Condor File Manager, and much more. In its most basic form, the Trainer/ Learning Computer is a 16-bit,

The unit also features a serial $\$ / O$ printer port, cassette interface and a detached 95-key keyboard (including 16 function keys and a rumeric keypad) which generates a full ASCII character set. It's available either in kit form or factory assembled.
And you can take advantage of the system's H/Z-100 computer design he-itage ay easily upgrading it to a disk-based, 16 -zit misrocomputer that will run H/Z-100 series sottware
 and many other forthcoming programs.

Fully Upgradeable The powertul upgrade package and variety of accessories allow you to make the basic 16-bit system more powerful and versatile. You can add 128K or 192K bytes of RAM. Floppy disk controller. 48TPI double-sided, double-density, single or dual floppy disk drive. Bitmapped video graphics or full-color graphics. Two RS-232 ports. Progranmable timer. And a Centronicscompatible printer pot.

## Learn on it. Design with it.

Use it as a 16-bit computer.
It's the only 16-bit mizroprocessor system specifically designed to integrate theory with a hands-on understanding of how 16-b t computers work. And it's from Heathkit/Zenith Educational Systems, the world-leader in problem-solving courses, trainers and accessories to help you learn sfate-of-the-art technology.
cassette-כased microcomputer. Its unique Jesign "eatures access ports and solderless breadboards to al ow you to build interfaces, design and modify circuits, or simply experiment with the inner workings of the mitroprocessor system.
The basic system has an 8088 processor, 32K ROM (including asszmbler, editor and debugger) and 16K RAM.



## - Slamh present on Chemper z

Frequency 478.5625
NYC Precincts $1,5,6,7,9,13$

## Press

## H : To HOLD on Current Channel

C : To Continue SCaNMI*G
H : Return to Manual mode
E : Return to STANDEY mode
F : To select SEARCH mode
Fig. 4. At top ( $\mathbf{A}$ ) is scan of 1 to $\mathbf{2 0}$. Screen changes to (B) below if a signal is present on a channel.


Hake seiection?
Fig. 5. This screen shows band limits of frequencies.

Using CompuScan. Initial setup of the CompuScan receiver is fairly simple. A cable must be connected between an RS-232 connector on the underside of the receiver and the user port of the Commodore-64. The receiver also connects to a telescoping whip antenna with a $20^{\prime}$ length of RG-58 cable. Then all you have to do is plug the ac adapter into a wall socket and plug its jack into
the receiver. This procedure has to be done only once and it can be left as is thereafter.

Loading the program takes a little over a minute. When you run it, data on the disk is loaded into RAM. This takes another $11 / 2$ minutes or so. The soft ware comes up in standby mode, which is a menu that allows you to enter any of the other modes of the system. When you
first use the system, you must enter manual mode and load frequencies into the data banks. If you're not familiar with the frequencies to tune to in your area, there are publications available to find out what they are. Electra publishes a pamphlet that lists local frequencies and who is transmitting on them. They also publish the "Betty Bearcat" frequency directory for different regions of the U.S. Your local dealer can help you find this information.

Once you've loaded the frequencies into the data banks, you can switch into scan mode. You can scan all or some of the data banks by listing the appropriate bank numbers, which the program queries you for. Any channels within the banks that you don't want scanned must be locked out while in manual mode. A typical frequency that you would want to lock out is the weather broadcast. Since this is a continuous broadcast, the scanner would never leave the station once it tuned it in. After you've determined the banks you want to scan, you press $G$ and the scanner begins operation.

The procedure just outlined is the basic scanner operation; but there are other options, too. Suppose you wanted to listen to the weather channel. You can call the station up by inputting its channel number while in manual mode. You might also be interested in searching for active frequencies in your listening area. If you were interested in the aircraft band, you would enter frequencies between 118 and 136 MHz while in search mode. The scanner would then search between the frequency boundaries you entered, and broadcast whatever it found.

User Comments. I used the CompuScan scanning receiver with a Commodore-64. Setting up the hardware was straightforward and easily done. Loading the software, however, presented a problem. It appears that Commodore is having compatibility problems with its disk drives. For example, a disk that runs on one 64 drive might not run on another. After trying a few different disks, however, the programs did run. One other small problem appears to have its roots in the architecture of the Commodore-64.

When data is being loaded from the disk into RAM there are sometimes delays of a few seconds or more right in the middle of an operation. For example, if the frequencies of bank 1 are being listed on the screen, the computer sometimes stops in midstream. After a few seconds, it resumes the listing. This is because the Commodore-64 has no provision for dimensioning strings. Thus, RAM is allocated for storage and
then must be re-allocated once the area is filled.

Loading frequencies into the data banks is a little time consuming, but it's done only once. Besides loading the frequencies, it's wise to insert a memo so that you can later recall who transmits the frequency. You'll have to experiment with the frequencies in your area to find those that will provide the information that you're interested in.

Once into the scan mode, I found reception to be quite good. Sometimes the receiver gets stuck on a station that's not transmitting anything intelligible. But the software allows you to press C to continue scanning. If this happens during every scan cycle, you can omit the frequency entirely or just lock it out by switching back to manual mode and making the adjustments.

Conclusions. The marriage of a scanner receiver and a personal computer adds a great deal of utility to the receiver. I was able to enter any frequencies I wanted, limited only by the frecfency range of the receiver. The receiver scans up to 200 frequencies at a time, and can store them to disk with any relevant information. This is certainly a quality improvement over any scanning receiv-

TECHNICAL SPECIFICATIONS   BEARCAT COMPUSCAN/2100 SCANNING RECEIVER	
R-f sensitivity:	$30-50 \mathrm{MHz}: 0.6 \mu \mathrm{~V}$
	118-136 MHz: (AM): $1.0 \mu \mathrm{~V}$
	$144-148 \mathrm{MHz}: 0.6 \mu \mathrm{~V}$
	$148-174 \mathrm{MHz}: 0.6 \mu \mathrm{~V}$
	$421-450 \mathrm{MHz}: 1.0 \mu \mathrm{~V}$
	$450-470 \mathrm{MHz}: 1.0 \mu \mathrm{~V}$
	$470-512 \mathrm{MHz}: 1.0 \mu \mathrm{~V}$
Squich sensitivity:	Equal or better than specified under r-f sensitivity
I-f selectivity:	-60 dB @ $\pm 25 \mathrm{kHz}$
Audio output:	$1 \mathrm{Wrms}, 10 \%$ THD (max.) into internal speaker.
	$2 \mathrm{Wrms}, 10 \%$ THD (max.) total (internal and 8-ohm external speakers or 8 -ohm external only)
Scan speed:	15 channels/second nominal during any bank.
	100 ms to change banks.
	60 ms additional to bank change when priority is programmed
Channel capacity:	200 (10 banks, 20 channels each)
Memo capacity:	4 lines, 30 characters each available for each of the 200

er on the market today. Additional search features and access to control signals make the combination of computer and scanner even more attractive.

But as with all marriages, sonetimes there are problems. The problem with the Commodore-64 disk loading is something to watch out for.

Some obvious software utility is missing, too. For example, there is no provision to output stored frequencies to a
printer. Though a user has access to the code and might indeed insert this feature, it really should be provided.

Overall, I think that the Bearcat CompuScan receiver is a fine product. For the scanner enthusiast it offers features that have been unavailable up to now. For the computer enthusiast it offers an exciting new add-on product that could develop into a lifetime interest.

## 



# WHAT'S NEW IN THECP/M WORLD? 

## The state of CP/M: an up-to-date look at microcomputing's most widely used disk operating system

The most prevalent disk operating system in use today is the one known as CP/M. If you are using a computer other than the IBM PC or one of its work-alikes, you are almost certainly using $\mathrm{CP} / \mathrm{M}$. If you own an Osborne, a Kaypro, a Morrow, or any one of a number of medium- to high-end 8 -bit systems designed for serious use, you are using CP/M.

Even if you own an Apple or a TRS80 , or another computer that originally came with a different operating system, you may very well now be using CP/M. Why is it that this "antique" of an operating system-it's been available for microcomputers for over eight years-is still so much in use . . and why is it that even many brand new systems use it in preference to another?

Certainly there are operating systems that are more manageable than $\mathrm{CP} / \mathrm{M}$, that offer more features, and that are easier to understand. How does CP/M manage to hold on and, perhaps more important, why is it likely to be with us for a long time to come despite MS-DOS and its derivatives?

A Little Background. CP/M, which stands for Control Program for Microcomputers, was created as a programmer's tool. It was never intended to be "user friendly." Evidence of this is found in the utilities, like ED, ASM, and DDT that are included as part of the standard CP/M package. These utilities are intended for the creation and debugging of assembly-language programs-certainly not the purpose for which you bought your computer. It's probably fair to say that most present-day owners of CP/M systems never even bother to run these utilities. Still, they are supplied with every CP/M disk and we may be able to understand why a little later.

CP/M was created in the early 1970 s by Gary Kildall to fill a need he had for a disk operating system to assist him in his work. At the time he was with Intel Corporation, the company that produced the first microprocessors. There

## By Josef Bernard

were other disk operating systems around (after all, it was IBM that had developed the floppy disk), but they were tailored to much larger and more complex computers than Gary was using. What he needed was a simple tool to allow him to work with his little 8-bit microprocessor, not some 32 -bit giant Thus came about CP/M. Kildall later left Intel and formed his own company, Digital Research, Inc., to distribute


Digital Research markets much more than CP/M.

CP/M as well as develop and market new CP/M products.

When the first disk drives for microcomputers arrived on the market, most of them came with their own proprietary operating systems. Notable among these were the NorthStar DOS (which still has a small but ardent following today) and PTDOS from the now-defunct Processor Technology, a pioneer in microcomputers. Some of these disk operating systems were good and some were awful. All, though, shared a common flaw. They could be used only with the specific systems they came with and, worse, programs written to run using one operating system were totally incompatible with computers using another.

All disk drives require a piece of hardware called a controller, which is an interface between the computer and the drive. Before the days of all-in-one computers, the controller was supplied as a plug-in board, and was usually sold together with the disk drive and operating system. This was probably the first example of bundled software for microcomputers. (The word-processing and spreadsheet packages included in the price of many computers now are cur-rent-day bundled software.)

As the microcomputer industry grew, some companies began selling controller boards that were not associated with a specific computer or disk drive. The majority of these were intended for computers using the S-100 bus. These computers consisted generally of a cabinet, a power supply, and a motherboard carrying a hundred control, data, and address lines into which could be plugged an assortment of CPU (microprocessor) boards, memory boards, input/output boards, etc. Among the etceteras were disk-controller boards.

Given the general nature of the S-100 systems, it was only natural that the disk operating systems provided for S100 controller boards also be as nonspecific as possible. Under these circumstances, $\mathrm{CP} / \mathrm{M}$ was the ideal candidate. The rest is history.

A Universal DOS. Virtually all of the early-and most of the current-disk operating systems were intimately tied into the computer system for which they were intended. For example, PTDOS, mentioned earlier, could be used only on Processor Technology computers, and only with the disk drives offered by that company. It was an excellent operating system, but could be used by relatively few. Similarly, the NorthStar DOS was intimately linked to the NorthStar controller board, and would work with no other. Not so CP/M.
In designing CP/M, Gary Kildall made it independent of any particular computer or controller board. Of course, certain parts of $\mathrm{CP} / \mathrm{M}$ has to be compatible with the computer system it was being used with, but these parts were supplied in a form that could be altered by a manufacturer or knowledgeable computer user to conform to his own equipment. That is probably one strong reason for the assembly-language utilities that are still provided with the operating system. Not only did you get the DOS, but you also get the tools you needed to tailor it to your requirements.

CP/M's universality is due largely to the fact that it is formed of modules. The most important of these is the BIOS, or Basic Input/Output System. It is the portion of the CP/M that controls the disk drive, and that allows the computer to communicate with the outside world through terminals, printers, and other peripheral devices.
The portion of the BIOS that controls the disk drive must be tailored specifically to the disk controller and to the physical drive itself. Once that is done, though, little more work need be performed on it. This is because CP/M uses a number of what are termed function calls.
Each function call performs a specific task, like reading the directory of files (programs or assemblages of data) that are contained on the disk, opening or closing files (very important to keep various programs and data files from intermingling and turning into valueless garbage), and controlling the flow of information between the computer and various peripherals.
Every function call is assigned a number, and, to use one, all that is necessary is to refer to its number. So, a programmer does not have to write a series of routines to get data into or out of the computer, or to read it from or write it to the disk. All he has to do is use the appropriate function call. This may seem unimportant, but the effect it ultimately has on the programs you use is significant.

The other concept that makes CP/M


ATI's CP/M course builds confidence in using the DOS.
so convenient, and its use so widespread, is the one of logical devices. As opposed to a physical device, like a specific printer or console device (usually a terminal), a logical device is more a generalization of a device type. The most frequently encountered logical device in CP/M is the LIST device, which is generally a printer. The particulars of the various physical devices are described in the BIOS for a particular system, and they are then referred to by their logical names.


## An intimidating message from CP/M.

Instead of writing a program that instructs the computer to send its output to a Diablo Model 1650 serial-interfaced using xon/XOFF protocol and connected to the port designated " 2 F ," all the programmer has to do is instruct the program to output the data to the LIST device. The BIOS takes care of all the detail work.

That's all well and good for the programmer, but how does it benefit you?

Transportability. The significance of CP/M's BDOS (Basic Disk Operating System) and BIOS is that, once they are configured for a particular computer system, virtually any program written to run under $\mathrm{CP} / \mathrm{M}$ can make use of them to run on any CP/M system with-
out modification! This ability to go from one system to another without having to castomize a program for each one is called transportability.
For the programmer, this means that he does not have to write a separate version of his program for each computer he intends it to run on. The use of function calls and logical devices makes a single version almost universal.

For you, it means that almost any CP/M-compatible program you choose is guaranteed to run on your system. Furthermore, because CP/M is so convenient for programmers to use (and because the greater the number of systems their programs can run on, the more they will sell) there are well over 2000 pieces of $\mathrm{CP} / \mathrm{M}$-compatible software for you to choose from!
(Compare this to the fact that many programs written to run on IBM's Personal Computer under PC-DOSIEM's version of MS-DOS-will not run on other MS-DOS-based computers. When you look at the ads for PClike computers, read the fine print; you'll see what we mean.)

Fear of CP/M. If CP/M is so wonderful, why is there so much trepidation about using it? Most people who purchase CP/M-based systems seem afraid even to concede its existence, and are content to run the 'Stars, 'Calcs, and other applications programs it supports.

Part of the desire to avoid contact with CP/M is probably due to its history. In its early days, CP/M frequently was supplied unconfigured, in skeletal form, and required someone with extensive assembly-language-programming experience and an intimate knowledge
of how the hardware of a system should be organized to get it running. Coupled with that was a thick and nearly incomprehensible set of manuals that even experienced programmers puzzled or wept over at times. Furthermore, when a CP/M system was successfully configured, the novice computer user still had to refer to those impossible manuals if he wanted to get anything done, even if it was only copying a file from one disk to another.

Another factor stems from one of man's earliest instincts: fear of computers. Even though they may have been persuaded to purchase, and even use, them fairly regularly, many people are
if special printers or other peripherals have to be added, there are usually utilities supplied by the computer manufacturer that make their installation about as easy as selecting items from a menu.

Additionally, the latest manuals from Digital Research are easier to understand. Finally, a number of book and software publishers have hopped on the CP/M bandwagon with titles intended to help you fathom the intricacies of what may be the world's most popular but least-understood disk operating system.

Almost every major publisher has at least one book on the shelves with a title like "The Complete CP/M User's


## Power! is utility for CP/M that makes it easy to use.

scared to get more involved with computers than they have to. Perhaps it's the idea of irretrievably losing data, or maybe it's just the thought that "If I touch the wrong key, the thing'll blow up!"

In truth, it's very hard to break a computer. If you hit the wrong key you may cause the computer to do something you don't expect it to, but it's not going to blow up. And if you are working with a disk you've set aside for practice purposes, you're not going to lose any irreplaceable data or programs.

Finally, there's the "who-needs-it" syndrome. You've learned how to use your word processor, so what else do you have to know? Though computers and operating systems are becoming more and more "transparent," letting you concentrate on the work you bought the computer for, one day you may find out what you have to know. . the hard way

Fortunately, using and learning about $\mathrm{CP} / \mathrm{M}$ is a lot easier than it used to be. First, almost every CP/M computer sold today comes with the operating system already installed. Moreover,

Guide" or "Three Weeks to Better CP/M." There are books written for experienced programmers and books written for complete neophytes. A trip to a nearby computer or book store will give you a chance to examine a variety of works on the subject, and you can select the one(s) that you feel most comfortable with.

An interesting entry at the software level is a training course on disk from ATI (American Training International, Inc., 3800 Highland Avenue, Suite 300, Manhattan Beach, CA 90266). The disk comes with a rather skimpy manual and, in fact, does not go into many aspects of $\mathrm{CP} / \mathrm{M}$ itself. Despite those shortcomings, though, it is an amazingly powerful learning tool, especially for those who suffer from a "what-if-I-break-the-computer" complex.

The disk simulates the CP/M environment. As you progress through the lessons, it looks and feels as though you are using $\mathrm{CP} / \mathrm{M}$; but it is all really an illusion created by the program. You get nowhere near the real CP/M your system is running.

If you make a mistake, the worst that
happens is that the program (metaphorically) slaps your hand and makes you do it again until you get it right. By the time you've finished the course, you may not be an expert on CP/M, but you'll be comfortable with it and able to learn more about it on your own.

8 Bits/16 Bits. It is interesting to look at what 16 -bit computers offer that 8 -bit ones don't. It is generally assumed that more bits make a better computer, but that is not necessarily the case.

What are the advantages of a 16 -bit computer over an 8 -bit one? The answer usually given is speed and the ability to address larger amounts of memory (needed for large programs and for manipulating large amounts of data). Some might also mention the color and graphics capabilities of most of the 16 -bit machines.

To tackle the last point first, many 8bit computers-even the lowly VIC 20 - have color and graphics capability. The resolution of some 8 -bit systems even approaches that of the 16 -bitters. And, if high-resolution, full-palette color is required, there are add-on boards and systems for 8 -bit computers that make machines like the IBM PC's abilities look insignificant.

As for memory size, the 8088 microprocessors used in almost all 16bit computers can address about 1 megabyte (one million bytes) directly. While that figure may make the Z80's 64 thousand bytes of addressable memory look paltry in comparison, it should be noted that several schemes are routinely used in 8 -bit systems to extend their capacity that far and beyond.

Finally, there is speed. For most purposes, 8 -bit systems already operate as fast as necessary, and may even have some speed in reserve. After all, how many people can type faster than their computers? The advantage of 16 -bit CPUs is their ability to cope with larger chunks of data, primarily numbers. However, although the 8088 is a 16 -bit CPU internally, it is essentially an 8 -bit device as far as the rest of the computer system is concerned. All its 16 -bit data transfers to and from memory, for example, have to be broken up into two 8bit operations. That slows it down considerably. Actually, in running a given program, many 8 -bit systems, running theoretically more slowly than the 16 bit systems they were being compared to, have been demonstrated to run that same program more quickly than their 16 -bit competitors!

State of CP/M. If $\mathbf{C P} / \mathrm{M}$ is so wonderful, what's all the to-do about the MSDOS family? Why doesn't CP/M dominate the 16 -bit computer world, as it
does the 8-bit computer world?
Part of the answer lies, unfortunately, in intercorporate politics, and that's a subject we'll leave for another time. Actually, there is a 16 -bit version of $\mathrm{CP} / \mathrm{M}$ called CP/M-86 that competes with MS-DOS; but, largely because of its originally high price, it has found little acceptance.
At the CP/M 83 East show held in Boston last fall, not much new in the way of $\mathrm{CP} / \mathrm{M}$ hardware and software was shown. There were a few new computer systems, but nothing out of the ordinary. Most of the new CP/M soft ware shown was of interest to people who wished to upgrade at the system, rather than the application, level.

Embarassingly, in fact, two of the most interesting new pieces of (application) software, OZ, a business management system from Fox \& Geller, and an improved spreadsheet program, SuperCalc3 from Sorcim, were shown running on 16 -bit IBM PCs! The CP/M versions, we were told, would be available early in 1984.

Does this mean that 8 -bit $\mathrm{CP} / \mathrm{M}$ is dead? Not by a long shot! First, there ex ists a large established base of 8 -bit computers. It would be unrealistic to assume that the owners of all those systems would discard them overnight in favor

## CP/M is not dead-by a long shot.

of 16 -bit machines. $\mathrm{CP} / \mathrm{M}$ applications software will still be written for them.

Second, many of the new computers being introduced, as well as some of the current best sellers, use 8-bit microprocessors. Even some of the 16 bit systems include a second, 8-bit Z80 CPU and the $\mathrm{CP} / \mathrm{M}$ operating system. This would seem to indicate recognition that $\mathrm{CP} / \mathrm{M}$ is still a strong force in the soft ware industry.
Nor has Digital Research dropped out of the 16 -bit arena. Although its CP/M-86 seems to have missed the boat, with MS-DOS in its various versions dominating the market, there also exists a 16 -bit version of $\mathrm{CP} / \mathrm{M}$ called Concurrent CP/M. It allows a 16 -bit computer to run several programs simultaneously, and there were numerous programs being run under Concurrent $\mathrm{CP} / \mathrm{M}$ at the Boston show.

The ideal computer has often been conceived of as being able to supply any kind of information at any time. If, for example, you were writing a letter on your word processor and needed to look up a name and address to include in it, you would like to be able to find that information without having to leave the word-processing program.

With most operating systems in use today, you would have to save the portion of the letter you had already written on disk, exit the word-processing program, run your database program, make a note of the name and address, then restart the word processor and insert that information.

With an operating system like Concurrent $\mathrm{CP} / \mathrm{M}$, you could have both programs running at the same time (together, perhaps, with a communications program that could automatically download the closing stock-market prices for your later perusal) and simply "glance" from one to the other.

Most popular applications programs can now run under Concurrent $\mathrm{CP} / \mathrm{M}$, and the list is growing almost daily.

In answer to the question; "What is the state of $\mathrm{CP} / \mathrm{M}$ ?" the answer is that, despite rumors to the contrary, it's still in very good health and continuing to flourish.

# C\&E Interviews Digital Research 

AT the CP/M83 East show held in Boston last fall, Computers \& Electronics had the opportunity to interview Gary Kildall, the developer of $\mathrm{CP} / \mathrm{M}$ and founder (and now Chairman of the Board and Chief Executive Officer) of Digital Research, Inc., and John Rowley, President and Chief Operating Officer of the company. Following are some excerpts from that interview. The two are not identified individually in their remarks.

C\&E: Here you are with $C P / M$ and CP/M-86, and there's Microsoft with MS-DOS. What do you think is going to happen?
DRI: That's a question I get asked a lot. At any point in time in the evolution of $\mathrm{CP} / \mathrm{M}$ there's been a competitor of some sort. It could be Unix. . . . In the early days it was Oasis. There's always somebody out there competing with you. I think it's pretty clear that PCDOS is the competition, incidentally, not MS-DOS.
$\mathbf{C \& E}$ : What's the difference between the two?
DRI: I don't think most people understand that those are two different areas
of competition. PC-DOS is sold in quite large quantities because of IBM. MSDOS is not anywhere near as much a competitor for us. In terms of volume it's less than half of what CP/M-86 is. So we don't view MS-DOS as major compeititon. PC-DOS is the major competition.
C\&E: What about CP/M versus PCDOS? That's the real issue.
DRI: We started out originally with the idea that CP/M-86 was an entry-level operating system for 16 -bit microcomputers because where our marketing has always been is the office-oriented systems. We've sold mainly to Fortune 5000 or Fortune 1000 companies. The orientation we've had from the beginning was to go toward Concurrent $\mathrm{CP} / \mathrm{M}$. That was the original design for 16-bit machines, because that's the operating system that more closely matches the capabilities of 16 -bit machines. Once you've used a system like Concurrent CP/M, an operating system like CP/M-86 or PC-DOS is pretty primitive. Concurrent $\mathrm{CP} / \mathrm{M}$ is really the focus of the 16 -bit processors and there is no competition for that at all. We see a very strong growth now through

CP/M-86 to Concurrent $\mathrm{CP} / \mathrm{M}$ and to the networking systems. That's what the strategy's been all along.
C\&E: So CP/M-86 is more or less an interim operating system.
DRI: Well, in fact, it is. It's a starter system. The idea is if you have a small memory system and you want to be able to get as much functionality as you can in it, then you can use CP/M-86. It is a starter system in that, as you add more memory and more peripherals and so forth, then the growth is into Concurrent.
That's always been the strategy, and it's paying off quite nicely out there right now because, to get some product differentiation and to do some of the things that are necessary in systems like data communications, manufacturers are realizing they have to have something like Concurrent.
C\&E: What's the software base like currently?
DRI: Anything that runs under CP/M86 will run under Concurrent. There are quite a large number of packages [that run] under CP/M-86. We have our own CP/M Library, with 20 of the most popular titles, and we're going to be increas-
ing that significantly. The independent software vendors are lining up something on the order of 500 packages to run under CP/M-86. There could easily be well over 1000 applications right now.
$\mathbf{C \& E}$ : Will they all run concurrently?
DRI: Sure. Concurrent CP/M has all the file protection needed to keep those programs from interfering or working with one-another's data files. That's a major feature of Concurrent. It also has significant compatibility

Incidentally, there's a difference between running concurrently and using Concurrent CP/M, just like there is in local area networks. (You can use them for file transfer and as a distributed operating system, which are two different things.) What we're seeing now is vendors using Concurrent to do multiprocessing in one environment. That is, data communications linked up, say, with word processing.
C\&E: Getting back to our original question-what about CP/M versus MS-DOS?
DRI: The question is really much larger. If you take a look at those two-CP/M-86 and MS-DOS-where our competition likes to focus, there's a heated battle there. But if you take it to Concurrent, there's no battle at all. We'll be retailing four different versions of Concurrent. When manufacturers start bundling CP/M-86 and/or MSDOS, it will be just like having a button on the machine-an on button. Turn it on and you're in CP/M or MS-DOS. Now they're looking for product differentiation, and Concurrent is really the only significant product differentiator right now for personal computing.
C\&E: You're getting more into retailing products now, aren't you.
DRI: Yes, there's a whole retail program and, talking about the $\mathrm{CP} / \mathrm{M} \mathrm{Li}-$ brary, we have a whole manufacturing facility that I don't think any of the other microcomputer manufacturers have. C\&E: At several of the press conferences we've attended here, we've noticed that a lot of the new software is running under MS-DOS or PC-DOS, though this is a CP/M show. It almost looks as though $\mathrm{CP} / \mathrm{M}$ is being ignored. DRI: Well, that's clearly not the case. Certainly by far the majority of the packages running down at the show are CP/M based.

You shouldn't be surprised by that, though, if you think about it. The thing that's confusing is that, when you said PC-DOS, that should not be surprising because the IBM PC is absolutely the number-one seller; it drags the most software. So if we were not Digital Research-if we didn't have operating systems and were just coming out with
applications-the first market we would probably go to would be IBM. We'd program some unique application and put it on PC-DOS.

Back in the 8 -bit heyday, people would go to Apple DOS. But there was no confusion. They'd go to Apple DOS and then they'd come to $\mathrm{CP} / \mathrm{M}$. They found that all the popular Apple applications were on $\mathrm{CP} / \mathrm{M}$. And, there were many popular $\mathrm{CP} / \mathrm{M}$ applications that might not have gotten to Apple DOS. That's why 1 out of 5 Apples gets sold with CP/M.
C\&E: What about the 8 -bit versus 16 bit situation? Where do you see things going?
DRI: There's sort of a stratification of computer systems. There are the $\$ 500$ $\$ 1000$ machines, there are the portables and the nonportable 8 -bit machines that have been around for some time; there's a variety of 16 -bit machines, and there's also the 16 bit IBM generic-type ma-

## "If we were not Digital Research... we would probably try the IBM market first."

chine. Then you get into the high-performance 16 -bit machines and the minis.

What has happened is that the 8 -bit market is essentially $\mathrm{CP} / \mathrm{M}$. The lowend machines are either $\mathrm{CP} / \mathrm{M}$ or emulations of $\mathrm{CP} / \mathrm{M}$ machines of some sort (basically because $\mathrm{CP} / \mathrm{M}$ is a good design for that type of machine). The portables are a mixture of 8 - and 16 -bit machines, typically, again because all the 8 -bit machines are $\mathrm{CP} / \mathrm{M}$ machines. The 16 -bitters are mixtures using CP/M-86 or MS-DOS. The IBM generic types are often MS-DOS because what they're trying to do is emulate PCDOS . . . as best they can. But the others tend to be Concurrent $\mathrm{CP} / \mathrm{M}$ to get the product differentiation and to get the growth back because they're not interested in the IBM. Their idea is to get some other product that's different and better than what's around. The future systems that are being designed are all basically (designed for) Concurrent, because they have no choice. The new OEMs [Original Equipment Manufac-
turers] are looking at Concurrent, not strictly MS-DOS or CP/M.
C\&E: Do you see a future for 8 -bit machines?
DRI: Oh yes, definitely!
C\&E: We mean not only at the low end, but at higher levels.
DRI: Yes. you see, 8-bit machines are very inexpensive to build; and, as a result, they're probably going to be less expensive as an overall computer system. For most people's requirements, they do a fine job. If you take a look at most of the programs running on 16 -bit machines, they're running in a 64 K area anyway; most compilers don't even generate code for outside of a 64 K region. And if you're talking about assembly language, with 64 K you can rule the world!

That, together with the fact that in a 16-bit machine the code is not nearly as dense as 8 -bit code. There's probably a 20 to $100 \%$ difference in the size of the assembly-language code, which means that there's basically no reason for them [8-bit machines] to go away.

A number of new 8 -bit machines are just starting to really build up their sales. Finally, some programs which are among the classics on a Z80, $6-\mathrm{MHz}$ device, run faster there than on an IBM PC. Literally, if you push the buttons at the same time, you'll end up faster on your 8 -bit machine. A lot of the 16 -bit mystique is related to the marketing field ... 16 is bigger than 8 . That's not to say that there's anything wrong with the 16 -bit direction. There are lots of applications, for example, like DR Logo, that wouldn't have been developed for an 8 -bit processor because they require large memory areas. But that's a different kind of function.
C\&E: Do you have any opinions about the MSX "standard" for BASIC?
DRI: Well, the Japanese do believe in standards because they have a manufacturing country. So if they can get into high-volume production (that's why they're so intrigued with $\mathrm{CP} / \mathrm{M}$ ), they endorse the standards. But if you ask the manufacturers, they do not endorse MSX. In fact, the JEDA, which Microsoft tried to have endorse MSX, has said formally that it does not endorse it. However, they do endorse the concept of standardization. It started out with a bang; but in general, the large companies are not endorsing it as a standard.

The reason is that it isn't a viable alternative for standardization in home computing. You really need an operating system [rather than a language].
C\&E: Where does DRI stand on this matter?
DRI: We've introduced, in Europe and Japan, a derivative of CP/M called per-


Gary Kildall, creator of CP/M and founder of Digital Research
sonal $\mathrm{CP} / \mathrm{M}$, which is not available in the States yet, but will be later this fall. So we have that, and some other technologies related to providing, first of all, an environment that is friendly and very usable in the home.

Obviously CP/M itself was written much more for programmers. . . not for my 11 -year-old son. Personal CP/M is a derivative of $\mathrm{CP} / \mathrm{M}$ which has a much more user-friendly interface and is just very much more consumer-oriented. But it still carries the compatibilfty at the BDOS level-at the systemcall level-of $\mathrm{CP} / \mathrm{M}$ so that, if you did want to run some $\mathrm{CP} / \mathrm{M}$-based software, that's fine-there's no problem. You could run CP/M-based software or you could write new applications and you'd have a different user interface.
$\mathbf{C \& E}$ : This is not available in this country yet.
DRI: No, but we're working with other companies and . . you'll hear about it later this fall. But in discussing MSX you almost have to discuss this particular alternative because, in reality, in Japan, the three largest manufacturers have already gotten involved . . . at the low end . . . and here in the US, I think you'll see the same thing. You'll see a variety of the home computer manufacfurers in the US take that derivative of
$\mathrm{CP} / \mathrm{M}$ as an operating system.
C\&E: What else do you have in the works?
DRI: We are working with Zilog and some of the silicon manufacturers to move CP/M right into the Z80 architecure so if you buy a Z80, you'll get $\mathrm{CP} / \mathrm{M}$ because it'll be on a single chip. The whole thing has become an integral part of how you construct a home computer. There's also some associated technology that allows us to bring home computer applications ... but we can't talk about that yet.
C\&E: Do you think you'll find a big market down at the level of machines like the Spectravideo, Adam, and the Commodore computers?
DRI: I think the whole idea of our Consumer Division is to get into those markets where we haven't really been before. The Consumer Division's first product-DR Logo-is already out and, as things open up-like the Adam and the Commodore 64-we intend to have products that will facilitate each one of these. We will have products that consumers can buy through mass-merchandising channels.
C\&E: For example?
DRI: DR Logo is a product where sales volumes are going to be extremely high. If we look at the DR Logo Learning

Library-that is an associated learning library of Logo-based software-we would say that $80 \%$ of the revenues of Digital Research will come through it and will be brought back either to the consumer or the educational/institutional segment. We've got some things going that you'll be hearing about in the next three to six months. They'll just keep rolling out.
C\&E: Digital Research products have not previously been noted known as particularly user-friendly. Is DR Logo going to be different?
DRI: We had an on-line help facility in DR Logo to begin with; it was using abbreviated help commands. Now we basically have the entire reference manual available as an on-line help facility. If you hit help, you don't even have to go into the manual any more.
C\&E: Do you have any final comments? DRI: The main thing for Computers \& EIECTRONICS is probably that you're going to find that computers in the home are going to be a lot more environ-mental-sensitive. Home computers are going to be operating controllers and be out into the homes a little bit more than just as a keyboard and display. That's delinitely going to be exciting over the next two years . . . and we're definitely going to be in the middle of it.

# NEW HEATHKIT/ZENITH 16-BIT LEARNING COMPUTER 

> Powerful, expandable semi-kit combines with educational course for "hands-on"' self instruction

## By Joe Desposito

BUILD-it-yourself microcomputers, so prevalent in the mid-tolate 1970's, have now almost vanished from the scene. But the big daddy of the electronic kit business, the Heath Company, continues to support such products. Its latest kit computer, the ET-100 Learning Computer, is a 16 bit trainer that can be expanded into a full-blown system.

The Learning Computer consistş of a cassette-based 16-bit computer with detached keyboard, and a top-mounted experimental breadboard. The computer trainer is fully functional in its basic configuration and needs only a video monitor for display and standard cassette tape recorder for data storage. (Alternatively a TV set and optional modulator can be used for the display.) Suggested retail price of the ET-100 Learning Computer kit is $\$ 999.95$ (\$1499.95 factory assembled).

With the ET-100, you can learn the fundamentals of 16 -bit microprocessors (specifically Intel's 8088 CPU) and as-sembly-language programming. The breadboard atop the main unit gives you access to the 8088 for interfacing the computer to the outside world.

Unlike some kit computers, this one doesn't really have to be built from scratch-the main logic board and keyboard come pre-assembled and tested. Though this might offend some purists, it should encourage those who are somewhat gun-shy (solder, that is).

Here then, is an over-the-shoulder view of what it takes to build a 16-bit microcomputer (circa 1983) accompanied by a review of the product as trainer.


The ET-100 breadboard can be used to perform experiments.

Electronic Assembly. A computer kit usually conjures up visions of microprocessor, RAM, and support chips by the truckload. Not so with the ET-100. There are three printed-circuit boards to assemble: the breadboard, keyboard logic, and power supply, but notably missing is the main logic board.

The main logic board for the ET-100 is so complex that it is assembled and tested at Heath. This may steal away some kit-building glamour, but it most certainly avoids major problems in getting the computer to work. The keyboard, too, comes wired, thaugh the keyboard logic board does not.

Building a Heathkit is an exercise in organization. You're expected to set aside a workplace for the project and to have the proper tools needed for the job. Since correct soldering techniques are
so important to success, the assembly manual reviews them for you. I used three soldering devices during the project: a $25-\mathrm{W}$ pencil iron for IC and other semiconductor soldering, a 40-W pencil iron for general-purpose soldering, and a $140-\mathrm{W}$ gun for heavy duty work. Confident but realistic, I also kept a de-soldering bulb close at hand.

Soldering components to the breadboard, keyboard logic, and power supply pc boards is straightforward. Assembly instructions have you soldering components to the board one section at a time. When each section is finished, there is a checklist of commonly made errors. These include unsoldered connections, poor solder connections, and solder bridges, plus correct installation of ICs, tantalum capacitors, diodes, and resistor packs. I'm usually very careful
when I build a kit, so I considered skipping these checks. But after finding two capacitors soldered in place in the wrong direction, I was glad I didn't. Skipping checks might save time initially, but could prove to be disastrous at the end.

Most of the cables are constructed from scratch. This means cutting wires to size, stripping the ends, soldering them to spring connectors, and then inserting them in socket shells. I found this to be the most tedious part of the kit construction.

Mechanical Assembly. There is as much, if not more, time spent on mechanical assembly of the ET- 100 as there is on electronic assembly. Even the solderless breadboards come disassembled! You have to push many, many metal connectors into plastic holes to complete the assembly.

A piece of advice on mechanical assembly is in order here. If you intend to build the ET-100, purchase a few ice cube trays. Then when you have to sort the myriad screws and hex nuts included with the kit, you'll be well prepared. This will help you immensely when a 6 $32 \times 5 / 8$ " black screw (rather than 8-32 $\times 3 / 8^{\prime \prime}$ ) is called for, or when it's necessary to distinguish between a \#6 fiber flat washer and a \#6 shoulder washer.

If you're not familiar with press-in nuts, you'll get ample opportunity to learn about them. These nuts must be placed over holes in the plastic enclosure, heated with a soldering gun, and pressed into the holes once the plastic begins to melt.

Final Checkout. After what Heath figures to be about nine hours of construction, you'll be ready to test the final product. (Why did it seem more like 18 hours to me?) The initial tests are resistance checks and voltage measurements. If you successfully build the power supply, you'll find $\pm 5 \mathrm{~V}$ and $\pm 12$ $V$ in the appropriate places. Then it's

; LAEEL/   ; NAME	(IPCODE/   IIIRECT.	OPERANLIS/ ARCUMENT
	ORG	Q9FFH
NLMBER	EQLI	OFFOOH
	MOV	AX, NLIMBER
	MOV	CX, VAF
	ADII	$A X, C X$
	MOV	STORE, AX
	HLT	
VAR	DW	OOFFH
STORE	RW	1
	END	Fig. 1

just a matter of whether the keyboard and main logic board will function properly. Since the main logic board is preassembled and checked, there's a good chance the system will work. Mine did the first time, and that's a good feeling.

The Working Unit (Hardware). When you hear the term "microcomputer trainer," you usually think of a unit with a hex keypad for program and data entry. The ET-100 is very different in this respect-it uses a full-size keyboard. The keyboard is detachable and
an 8041 Universal Peripheral Interface (UPI) on the main board through the coiled cord. The 8041 is also a dedicated 8-bit microprocessor with internal RAM and ROM. When a key is pressed, the 8021 sends the code to the 8041 . The 8041 then generates an interrupt to tell the CPU that a key has been pressed. The CPU accesses the 8041 and the ASCII code is put on the data bus.

The computer contains the main logic board, power supply, fan, interface connectors, and breadboard. On the main logic board is Intel's 8088 microprocessor, 16 K RAM (expandable to 64 K on

TECHNICAL SPECIFICATIONS HEATHKIT ET-100 16-BIT LEARNING COMPUTER

Central processor unit:	Type iAPX 88/10 (8088)
Clock rate:	5 MHz
On-board memory:	16K RAM (expandable to 64K)
User memory (incl. EA-100):	Expandable to 192 K
ROM space:	One 64 K page; 32 K for monitor, editor, etc.; 16 K reserved for MTR-100 ROM.
Video RAM:	2K
Video controller:	68 A45 CRTC
Display format:	24 rows of 80 char. or 20 rows of 40 char.
Character type:	5X9 dot matrix; 8X10 dot matrix graphics
Character set:	96 ASCII characters; 32 graphics
Keyboard:	95 keys: 61 alphanumeric; 16 function and control; 18 numeric and control.
Serial 1/0:	RS-232 (DCE)
Baud rate:	$300,600,1200,2400,4800,9600$, default baud rate 4800
Cassette data rate:	300 bald
Primary power:	100 W
Keyboard dimensions:	$181 / 4{ }^{\prime \prime} \mathrm{W} \times 31 / 2^{\prime \prime} \mathrm{H} \times 71 / 4$ "D
Main unit dimensions:	$181 / 4{ }^{\prime \prime} \mathrm{W} \times 4 \frac{1}{2}{ }^{\prime \prime} \mathrm{H} \times 121 / 2^{\prime \prime} \mathrm{D}$
Weight:	21 lb

connects to the computer through a coiled wire. The computing unit is distinguished by three solderless breadboards sitting on top of it that are used for microprocessor interfacing experiments.

The keyboard has 95 full-travel keys, which includes a standard (QWERTY) alphanumeric keyboard, as well as separate numeric keypad. The keyboard generates a full 96 -character ASCII set that can be displayed in 2480 -character lines on a video monitor, or in 2040 character lines on a standard TV set (using an optional modulator). There are four cursor-control keys, 13 function keys, and assorted others. Some of the special keys are delete or insert a character, delete or insert a line, line feed, and fast repeat. Line feed moves the cursor to the next line, but has no effect on the entry of a command or instruction. All keys will repeat when pressed and held down; the fast repeat key is used to increase the repeat speed.

Inside the keyboard enclosure is an 8021 keyboard encoder, which is a dedicated 8-bit microprocessor with internal RAM and ROM. It decodes the keyboard matrix and communicates with
board), 32 K ROM, and 2 K video RAM. Also on the main board are an 8255 programmable peripheral interface (PPI) and 68A45 cathode-ray-tube controller (CRTC), among other things. Part of the PPI's parallel ports are used by the system and part are routed to the breadboard for experiments. Video display is controlled by the CRTC. It generates the addresses needed to refresh the screen and also generates the horizontal and vertical sync pulses.

The power supply produces +5 V dc at $6 \mathrm{~A},+12 \mathrm{~V}$ dc at 1 A , and -12 V dc

at 500 mA for the system. There is also power available at the breadboard ( +5 V dc at $1 \mathrm{~A},+12 \mathrm{~V}$ dc at $500 \mathrm{~mA},-12$ V dc at 100 mA , and -5 V dc at 100 mA ), which is independently regulated from the logic board supply for protection. Line filtering is provided by a capacitor and toroid inductance combination to remove or reduce "noise" from the power line.

At the rear of the computer are the connectors supplied with the standard ET-100: a composite video output, RS232 port, and cassette I/O. Also on the rear panel are a $110-\mathrm{V}$ ac line, cord,

on/off power switch, and fuse compartment for a $1.5-\mathrm{A}$ slow-blow fuse. A LOW/NOR switch permits compensation for consistently low line voltage by connecting to a tap on the power transformer in the Low position.

The breadboard, which takes most of the top of the computer, can be used to perform experiments with the ET-100. The large center area consists of three solderless breadboards (one removable). There are several smaller breadboard blocks, which connect to specific places inside the console. The Power block supplies $\pm 5$ and $\pm 12 \mathrm{~V} \mathrm{dc}$. The Address and Data blocks give you access to A0 through A19 and D0 through D7 of the 8088 CPU. The PPI block allows you to access the 8255A Programmable Peripheral Interface. Since some parts of the PPI are used by the system, you must be careful not to program any part of the chip that you can't access. The System block consists of the reset line, a $60-\mathrm{Hz}$ output, a $5-\mathrm{MHz}$ system clock output, and a light-pen input to the CRTC for light-pen experiments. The $M P U$ block contains several lines that are available from the 8088. All access lines are buffered to protect the 8088 microprocessor from damage.

The Working Unit (Firmware). The system firmware includes a 16 K ROM that contains an assembler and a 16 K ROM that contains a monitor, editor
and debugger. The monitor is in control of the system when you turn it on. Through it you can gain access to the assembler, editor and debugger. You can also run, save, load and list programs, among other things.

The ET-100 assembler is based on the CP/M-86 assembler. You can assemble a program from source code created with the monitor's editor, or from source code saved on cassette tape or downloaded from the RS-232 port.

To gain an idea of how the system works, let's suppose you wanted to enter a program into the computer. After turning on the computer, you would be greeted with a prompt that looks like a "greater than" symbol ( $>$ ). To get into the editor, you simply type EDIT and press return. Once in the editor, you type your program in assembly language. A typical program to add two numbers is shown in Fig. 1. After typing in the program, a CTRL $Z$ will allow you to exit the editor

At this point you can assemble the program by typing ASM86 and pressing return. The assembled version of the program of Fig. 1 is shown on Fig. 2. Any errors in the code are noted at the bottom of the display. To correct an error, you must return to the editor and make the correction, then return to the assembler and reassemble the program.

Once assembled, the program can be loaded into the debugger. You enter this mode by typing DEBUG at the monitor prompt. The debugger allows you to


## Simple, even for adults.

load a program, single step through it while watching register and memory contents, and change the program if necessary. The debugger display is shown in Fig. 3. The nine Flag registers are shown across the top left, the contents of each register are shown on the left side of the screen, and the contents of memory are shown on the right side of the screen. Debugger commands are entered at the bottom of the screen. When you're satisfied that your program will run correctly, you can exit the debugger by typing, Q , and then use


Fig. 4


## With 3M diskettes, your computer never forgets.

$3 M$ diskettes remember everything, every time. Because at 3M, reliability is built into every diskette. We've been in the computer media business for over 30 years. And we've never settled in. We're constant y improving and perfecting our product line, from computer tape and data cartridges to floppy disks.
3 M diskettes are made at 3M. That way, we have complete control over the entire manufacturing process. And you can have complete confidence in the reliability of every 3M diskette you buy.
Look in the Yellow Pages under Computer Supplies and Parts for the 3M distributor nearest you. In Canada, write 3M Canada, Inc., London, Ontario. If it's worth remembering, it's worth 3 M diskettes.


3M hears you...
monitor commands to run the program, save it to tape, or print it out.

Using the ET-100. The ET- 100 can be used for learning to program the 8088 in assembly language (as shown above), or it can be used to learn the basics of hardware interfacing to a microprocessor. A typical experiment that uses both hardware and software techniques is interfacing the microprocessor to an external data display.

Figure 4 is a circuit diagram that shows the ET-100 breadboard connections to the address lines, data lines, and $10 / \bar{M}$ and $\overline{W R}$ control lines of the 8088 . This circuit can be used with a program that will alternately turn all of the data LEDs on and off (Fig. 5).

In operation, bistable octal latch $I C l$ is enabled whenever a decoded address is accessed. Any data appearing on the data lines at that time is latched into $I C l$. Since the output control pin ( $\overline{\mathrm{OC})}$ of $I C l$ is tied to ground, the data LED will follow the latched data level of the output pin it is connected to.

This simple experiment shows how the 8088 can be interfaced with the outside world with the ET-100. Extending this experiment, one could envision actuating a display for an operator to read, or sending a digital control signal to an electromechanical device.

Documentation. The ET-100 comes complete with an assembly manual and user's manual. The assembly manual takes you step by step through the construction and testing of the ET-100. The user's manual provides a description of the system, and all the technical data you'll need. For the hardware, there are data sheets and schematics. For software, there are the commands for the editor, monitor, and debugger, plus a complete description of the 8088 instruction set

The Microprocessor Course and System Expansion. There are two ways to enhance the value of your ET100. First is with the "Advanced Microprocessors" individual learning program that sells for $\$ 99.95$. This 1200 -page book is a complete training course for 16 -bit microprocessors. Although Heath uses the term "advanced," the course also covers the fundamentals of microprocessors, programming and interfacing.

The other way of enhancing the ET100 is to expand it into a disk-based 16 bit computer system. An expansion accessory kit priced at $\$ 1299.95$ ( $\$ 1999.95$ factory assembled and tested) adds features that include 128 K RAM, a 320 K disk drive, and bit-mapped video. The system can then run all current

CF/M ASM8S 1.1 SOURCE: SOURCE, A86

		[LABEL/   ; NAME	$\begin{aligned} & \text { QPCOIE/ } \\ & \text { DIRECT. } \end{aligned}$	QPERANDS/ ARGUMENT
8000		LED_ADR	EQU	8890 H
0601		LED_OFF	End	1
0090880080			mov	AX, LED_ADR
(1003 8ED8			MOV	DS, AX
0005 BRO100		START:	MOV	BX, LED_DFF
9088 33ca			XOR	$A X, A X$
00048807			MOV	[BX], AL
GALC E8ACHO	0018		CALL	delay
GQGF BBalot			MOV	BX, LED_OFF
012 B0FF			Mov	AL , 6FFH
00148807			MOV	[BX], AL
0016 E8.6200	001 B		CALL	DELAY
019 EBEA	0005		IMPS	START
$0018 \mathrm{B9} 9400$		DELAY:	MOV	Cx,4
$001 E$ BB08CF		REPEAT:	MOV	Bx, 53000
002148		AGAIN:	DEC	BX
002290			NOP	
0023 75FC	0021		INZ	AGAIN
0025 E2F7	Q01E		L00P	REPEAT
(0)27 C3			RET	
			END	

ENL OF ASSEMBLY. NUMRER OF ERRORS: O LSE FACTOR: $16 \%$

Fig. 5
16-bit software under the Z-100 operating system, Z-DOS (MS-DOS), including such programs as Multiplan, WordStar, Lotus 1-2-3, and PeachText. Further system expansion is also possible to add more memory ( 192 K ), color graphics, and dual drives. Even after it is fully upgraded, however, the ET- 100 can be returned to its training mode with a simple keyboard command.

Conclusion. If you've ever built a Heathkit, you're aware of the incredible care this company takes in guiding you through the construction of a project. All you have to do is cooperate by extending some care on your own part to have a successful kit-building experience.

Kit builders might regret that so much of the kit is pre-assembled, but it's clearly a case of the technology outdistancing the skills of the kit-building enthusiast. Though much of the kit building tasks are mundane, it does give you a good understanding of the construction and interconnection techniques used.

I think the ET-100 is an excellent learning tool. With it a person can gain an in-depth understanding of the 8088 CPU , one of the most popular microprocessors available today. Though much more expensive than some 8 -bit microprocessor trainers, the ET-100 gives one a handle on a microprocessor that's most often found in new businessoriented personal computers. This fact and its expandability feature make the price, in my opinion, less of a factor in the buying decision.

A good review should highlight both the positive and negative features of a product. However, I feel hard-pressed to find anything that disturbs me about the ET-100.


For new readers who have not yet joined the computer revolution, this is your invitation to a learning adventure that will prime you for a smooth entry into home or business computing.

The personal computer has had an ever-growing influence on our everyday lives in business, in education, and in the home. It's helping businessmen to plan, forecast, and generally manage their enterprises; educators to more effectively motivate and teach students from elementary school to gradu-ate-level school; and home users to become computer literate, keep track of family finances,

and play action games in full color with sound effects.

The most popular uses of personal computer systems are in the areas of word processing, financial spreadsheets, database management, games, education, and telephone communications with data banks and other computers.

The manner in which you perceive a personal computing system depends largely on what you know-and don't knowabout computing in general. Therefore, we've geared this introductorylevel article toward demystifying personal computer hardware and software terms.

## By Alexander W. Burawa

## How a Computer Works

All computers, regardless of how simple or complex they are, have in common three major sections: input/ output (abbreviated I/O), memory, and processor. Without any one or more of these sections, no computer is complete, nor can it operate in any meaningful way. Although I/O, processor, and memory are usually combined within a computer, each has a separate and distinct function.

To help make sense of the various sections that make up a personal computer (indeed, any computer) and to explain their purposes and importance to the computing process, you should understand what a computer is and what it does. There is nothing really mysterious or magical about a computer, nor are you required to know every technical detail of its design or operation to be able to use its processing power.

In very basic terms, a computer is an information or data processor. It takes information fed into it from the outside world, through the input portion of the I/O sec-
tion, and does whatever it has been programmed to do with the information. Then, after processing the information according to the detailed instructions in a program, the computer sends the results back to the outside world through the output portion of the $I / O$ section. This information is presented in the form the user can understand and may be displayed on the TVlike screen of a video display monitor or printed out on paper.

To be able to take in the desired information, the computer must have some convenient means for loading (entering) the data. This may be a typewriter-like keyboard, a disk or cassette-tape drive, or some other mechanism that can be used for entering data and instructions. Frequently, more than one entry device is used, such as a keyboard and a disk drive; new data is fed in from the keyboard, while the program that is to process it might come from a preprogrammed magnetic disk.

Once information is fed into a computer, the processor acts upon it according to the steps detailed in the program. To be able to operate efficiently, a place inside the computer is used to store the data and instructions until needed by the processor and any intermediate results of processing. This is the task of the memory section.

Finally, a video display screen or a hard-copy printer is fed the results of processing through the output portion of the computer's input/output section.

Information processing inside a computer can have any number of meanings, depending on the applications software (program) being used. In word processing, for example, the processing function executes commands that allow you to change characters, words, and even whole blocks of


Inbasicterms a computer takes information from the outside world and processes it.

All data and instructions entered into a computer are manipulated according to a precise set of instructions detailed in a computer program. As data and instructions are entered-whether by running a magnetic disk or tape with the program already on it or by keying in your own program-they're stored in memory until needed by the processor. Intermediate results of manipulations are stored in memory, too, at locations different from those used for data and instructions.

There's nothing arbitrary or random in the way in which the computer's processor assigns memory locations to the data and instructions fed to it. The processor manages its memory by assigning data and instructions to specific blocks of memory for instant recall.

Whatever form of information processing is performed, at some point in the program you want the results in a form you can use. In the case of word processing, this will usually be a document or letter printed out on paper. It's the task of the output portion of the computer's $\mathrm{I} / \mathrm{O}$ section and a hard-copy printer (a peripheral that's not part of the computer's basic system) to provide the results of word processing and many other forms of processing. In many cases, however, you may want a nonpermanent output, in which case, the results of processing may be displayed on the system's video display screen instead of being printed out on paper.

Now that we've introduced the basic sections that make up even the most elementary of computers, let's look at each section in greater detail.

## Input Devices

A common data-entry (input) device for modern computers takes the form of a standard QWERTY type-typed-in copy; formats letters and reports to give them a professionally finished appearance; and performs any number of editing operations available with the software package. Another program might allow you to alphabetize long lists of names or words or place in order numerical data. Yet another program might permit you to quickly and accurately perform mathematical computations in the sciences and engineering. From the foregoing, it's obvious that "processing" is a catch-all term that refers to the multitude of data and information manipulations available with a given software applications package.
writer-like keyboard that has the usual alphabetic, numeric, and punctuation keys. To these are added the special-character and special-function keys required by and unique to computing. Though such a keyboard is the most common entry device used in computing, it's only one of many input devices available.

Computers can also obtain data from other computers over the telephone lines, using a device called a "modem" (more about this later). They can also obtain what they need from magnetic tape in any number of guises ranging from an audio cassette, to a solid-state cartridge, to disks that superficially resemble audio
records. Yet another input device, very popular with computers with games-playing capabilities, is the socalled "joystick," which is used for controlling the action of video games and sometimes for much more serious applications. There are also a number of other specialized input devices, such as the light pen and the barcode reader that "reads" optical coding, and analog-to-digital (A/D) converters that feed such nondigital information as temperature, pressure, weight, etc., into the computer after converting it to a form the computer can use. And information can be entered by vocalizing it-speaking to a computer equipped with an electronic "ear."

We'll discuss input (and output) devices in much greater technical detail in a later section. For now, to understand how computers do what they do, it's enough to know that the input/output section is a major and very important part of any computer system. It's this I/O section that makes it possible for us to communicate and interact with the computer.

Output devices are usually grouped with input devices, since both are managed by the same section in the computer. Output devices, such as the printer and video display unit are required only after information has been processed within the computer. The video display unit, however, is also used to display data as it's being entered from the keyboard and instructions from programs being used, as well as for display of output information.

Before we get too deep into a discussion of output devices, however, let's take a look at the processor and memory sections, which are next in the computer flow.

## The Processor

In a very real sense, the processor is the "brain" of the computer, since it orchestrates the flow of data into and out of the computer's memory section and from and to the outside world, in addition to actually processing of data. This device goes by a number of names, all of which refer to the same thing. Among the names in common use are "central processing unit" (commonly abbreviated CPU) and simply "processor." In the case of the personal computer, another name commonly used is "microprocessor," which is derived from the microscopic size of its processor circuits.

For the sake of efficiency, the processor accepts in-
structions and sther information several bits at a time in parallel chunks. One could say that it takes a "bite" at a time, except that in computing the spelling is "byte." Just how many bits at a time it can handle is called the processor's word size, which has a direct influence in determining how powerful a given processor is and, thus, the power of the computer in which it's used.

The microprocesscr is actually a miniature computer in its own right. It's made from a single integrated-circuit (IC) "chip" on which are thousands of basically very simple on/off circuits that act like switches. Though these circuits are very simple individually, they're combined in complex arrangements and there are so many of them that the microprocessor, in all its designs, is among the most complex devices ever created by human ingenuity. With all this complexity and power, the typical microprocessor is a very low-cost


The I/o section makes it porsible for us to comm unicafe with the computer device. In fact, the more popular microprocessors in current use average only a few dollars each to manufacture.

As we've already mentioned, the word size of a microprocessor determines just how powerful in terms of processing the device can be. The first microprocessors, introduced in the early 1970s, handled 4-bit words and, consequently, were known as 4-bit processors. By 1975, when personal computing made its debut, the word size had increased to 8 bits, with the introduction of Intel's popular 8080, followed by Motorola's MC6800 microprocessors and Mostek's 6502 devices. Today, the most popular processors used in personal computers are still 8-bit devices. However, a new generation of 16 -bit microprocessors will likely surpass them in the business-orient-
ed computer area.
There are a few different types of microprocessors in current use in personal computers. Each is more or less incompatible with all the others. Furthermore, even the same types cannot often use the same software because each design has its own special approach to processing information.

Understanding how computers work and the task of the processor requires some understanding of how programs (the processor's instructions) are stored in the computer's memory. A computer stores its instructions and data at locations in memory called "addresses."

When the processor needs the contents stored in a particular location, it sends the location's address out over its bus, along with a signal that tells the memory system that the processor wants to "read" the contents at that address. Since the processor reads several bits of data simultaneously, that's also the manner in which it's stored in the computer's memory section.

The retrieved data can be either an instruction or a number. If it's an instruction, the processor performs the required operation and then sends out a new address call to memory to retrieve the next instruction or piece of data. This process continues until the entire program stored in memory has been executed.

Sometimes, an instruction, such as a mathematical operation, requires a number to be processed. In a stored-program computer, that number is usually located in memory at a location immediately following the location of the instruction. At other times, the data immediately following the instruction is another address in memory where the number can be found, instead of the number itself. In any case, it's the processor's task to interpret each instruction, sending out new addresses to memory, which, in turn, sends back more instructions and data to be processed.

The concept of stored programs, in which all of a processor's instructions are stored in sequential addresses in memory and intermixed with numbers, is common to all modern computers. The steps performed are very similar to those in an ordinary calculator, which accepts a number and then an instruction, such as + for addition or $\times$ for multiplication, and then another number, followed by another instruction, such as $=$ to obtain the result.

The major difference between how a computer and a calculator perform a mathematical operation is significant. In a computer, instructions and numbers are stored in memory and are automatically "fetched" when needed. In a calculator, on the other hand, numbers and instructions are entered one at a time by hand. More advanced "programmable" calculators operate in a manner similar to a computer in performing mathematical operations, but the computer extends the concept to include handling of nonmathematical symbols as well.

A computer, "thinks" only in terms of 1 s and Os. You might wonder, then, how it's able to extend its process-
ing power to manipulate letters and numbers. To understand this process requires a closer look at a byte. To simplify this discussion, we will limit it to 8 -bit processors, which handle 8-bit bytes.

Since each of the eight bits in a byte can be either a 1 or a 0 , there are a total of 256 different possible bytes. This number is derived from the fact that the number of different combinations of a string of a binary number " $n$ " bits long is $2^{\text {n }}$. Thus, a byte has $2^{8}$, or 256 , different possibilities.

With 256 possible variations, one byte is assigned to each upper- and lower-case letter of the alphabet and one each for the ten digits ( 0 through 9). The remaining 194 bytes are assigned to punctuation, graphics, and special characters. Thus, while the bit is the basic unit of information, the 8-bit byte is used to represent numbbets and letters. For microcomputers, this is based on the widely accepted ASCII (American Standards Com-


A computer "thinks" only in
terms of Is and Os
in the processor itself.
In a typical processor instruction cycle, as mentioned above, an address is sent out to memory to retrieve an instruction stored in a specific location (address). To send out the address, the processor loads it into a onebyte memory called the address counter.

How does the processor know at what address to look for an instruction? When the processor is first powered up, the address counter contains all 0 s. This means that the processor expects to find its very first instruction in the computer's memory at address 0000 . From here, the address counter keeps incrementing, or adding one for Over 18 Years!

## Time- and Money-Saving Advice Practical Troubleshooting \& Repair Tips <br> $\qquad$ State-of-the-art Technology . . . hundreds of Projects . . . Plus, Exceptional Savings Select 6 Books for Only ${ }^{\text {s }} \mathbf{2}^{95}$ <br> (Values to \$123.70)




List $\$ 15.95$


List $\$ 17.95$


FREE guide to mail order sources for electronic parts and components
A $\$ 6.95$ Electronics
Value! Buyers

## FREE When You Join Now

## 7 very good reasons to join The Electronics Book Club

- Big Savings. Save $20 \%$ to $75 \%$ on books sure to increase your computer know-how
- No-Risk Guarantee. All books returnable within 10 days without obligation at Club expense
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 13 times a year with hundreds of up-to-the-minute titles you can pick from " "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But ... if you want an Alternate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Bonus Books. Immediately get a Dividend Certificate with every book purchased and qualify for big discounts of $60 \%$ to 80\%
- Extra Bonuses. Take advantage of added-value promotions, plus special discounts on software, games, and more
- Exceptional Quality. All books are first-rate publisher's editions selected by our Editorial Board and filled with useful, up-to-the-minute information
or more to its own value, to locate each successive address at which it expects to find succeeding instructions. Additionally, certain instructions used to modify the address counter cause the processor to look in different areas of memory for instructions. These are called jumps or branches and are part of a programmer's strategy in writing programs.

Wherever it comes from, the instruction arriving on the data bus enters the processor's instruction register (IR), which stores it for decoding by the processor's control section. The control section is the actual "brain" of the processor. It's the responsibility of this section to interpret each instruction and to orchestrate the other parts of the processor into action at the proper time.

In some cases, an instruction might simply fetch a number or letter from memory so that the next instruction can send it out to a printer or video monitor. In other cases, the instructions use the arithmetic logic unit to perform mathematical and/or logic operations. Logic operations combine bytes of data according to certain rules to produce a desired result. Frequently, the result is redeposited in memory for later use by still another instruction that "writes" data back into the computer's memory.

## The Memory

Once a computer accepts the data and instructions fed into it through the input portion of the I/O section, it either stores it for later use or processes it immediately. Storage, which is the function of the memory section of the computer, is required to hold the computer's applications program and other information.

Memory devices for computers to store data and programs are available in many different configurations. The capacity of its memory system is often used as the yardstick by which a computer's processing power is measured. The more memory a computer has, the larger the program it can accommodate. In fact, many applications programs can operate only in those computers that have at least a certain amount of user memory available. Computers with very little memory may not have enough memory capacity to run word-processing, data-base management, and other highly sophisticated software and, thus, are "underpowered" in this respect.

Computer memory is generally divided into two cate-
gories. One is working memory (frequently referred to as user $R A M$ ) and preprogrammed $R O M$. The other is so-called mass memory.

Working Memory can be thought of as an arrangement of "bins," each of which can store one and only one byte of information. Each of these bins has a unique numbered "address." The bins are subdivided into a set number of slots, the number reflecting the number of bits that make up the computer's word size. In an 8-bit computer, each memory bin has eight slots to accommodate the eight 1 s and 0 s that make up its word size. Each slot in the memory bin accommodates only one 1 or 0 . No two locations in memory can have the same address, but two or more addresses (memory locations) can have the same character programmed into them.

When the computer's processing section requires a specific piece of information from memory, it looks up the location's address and goes directly to that location

> RAM is used to temporarily store data, while ROM has data penmanently stored
 to fetch the data it needs. It doesn't have to step through each location in memory between the last location addressed and the current location to be addressed in order to arrive where it wants to be. Instead, it "jumps" directly to the location being called. This ability to jump directly to any location in memory gives the computer's processor the ability to randomly access any given address; for this reason, the arrangement of address locations is called random-access memory and is commonly abbreviated RAM.
In most computers, the majority of working memory is user RAM, but a portion of working memory is almost invariably set aside for a different kind of memory called read-only memory, which is commonly abbreviated $R O M$. As is the case with RAM, ROM locations in memory can be accessed randomly. However, since ROM contains programming that must be executed in a specific sequence, access to its memory locations isn't usually random; thus, ROM isn't considered to be random-access memory.

There's one major difference between RAM and ROM-RAM is used to temporarily store data until needed, while ROM has data permanently stored in it. When a computer is through using data in RAM, the data can be erased and replaced with new data. Not so with ROM; whatever data is preprogrammed into ROM isn't ordinarily erasable by the computer user. Hence, RAM can be thought of as a blackboard that
can be used and erased over and over, each time with different information. ROM, on the other hand, is more like a typewritten page that's nonerasable and always contains the same information.

Another important difference between RAM and ROM has to do with the data retentivity of the two different types of memory. Data stored in RAM is volatile, which means that it remains in memory only as long as power is applied and hasn't been interrupted. Any interruption in power to RAM will erase whatever data was stored; this data is then irretrievably lost. On pow-er-up, the computer's RAM memory will have nothing in it. ROM, by contrast, is a nonvolatile memory system; anything programmed into it as it's delivered from the factory will remain in it, regardless of whether or not power is applied.

RAM and ROM are all-electronic devices. They're actually integrated-circuit (IC) chips, like the microprocessor. These solid-state devices, along with the input/output and processor sections, make up part of what is termed the computer's hardware. (The ROM can also be thought of as being software in the sense that it contains program data necessary to the functioning of the computer. In fact, because the programmed ROM shares many of the characteristics of both hardware and software, it's frequently called "firmware."). Because they're totally electronic devices that directly connect to the computer's processor section via a met-al-conductor data bus, they can transfer data at almost the speed of light.

Mass Memory is one step removed from the computer's processor and is available to the processor only by first passing through working memory.

Mass-memory storage is a relatively low-cost approach to meeting the large data needs of a computer. It's usually composed of a magnetic material that can have recorded on it the desired information. There are two basic magnetic-media massstorage devices in common use in personal computing systems. These are standard cassettes and disks.

The cassette medium is the least expensive form of mass storage ( $\$ 50$ to $\$ 150$ ). Though it can store large masses of data, it's not very practical for serious computing. Compared to disk media, cassette storage is relatively unreliable, slow in operation, and lacking in flexibility. It's mentioned here only to inform you that

it exists and offers a low-cost introduction to mass storage.

The next step up in the mass-storage medium is the so-called "floppy disk" and its drive. As its name implies, the floppy storage medium is in the form of a flexible disk of thin Mylar on both sides of which is deposited a coating of magnetic-oxide that serves as the recording medium. Depending on the type of disk drive and the type of disk being used, one or both sides are accessible for program and data storage. The floppy disk gets its name from the nature of the storage medium, which is very flexible (or, in the modern idiom, "floppy") when not housed inside its nonremovable protective plastic jacket.

Floppy disks are available in a number of sizes, ranging from the $8^{\prime \prime}$ diameter floppy, to the $5^{1 / 4^{\prime \prime}}$ minifloppy, to the $3^{\prime \prime}$ to $4^{\prime \prime}$ microfloppy. Each size disk is designed for a specific drive type and is incompatible with the others. In terms of storage capacity, $8^{\prime \prime}$ floppy disks can store considerably more data than can $51 / 4^{\prime \prime}$ minifloppies. The microfloppy has a storage capacity the equal of $51 / 4^{\prime \prime}$ minifloppies, due to much tighter manufacturing and operating-control tolerances.
Floppy disks are capable of storing information ranging from 80,000 bytes (abbreviated 80 K ) in older $51 / 4^{\prime \prime}$ drives to in excess of 1 million bytes (abbreviated 1 M ) in the newest drives, depending on media size and whether or not the disks and drives are single- or doublesided. As a rule, double-sided disks can store two or more times the program and data information than can be stored on single-sided disks of the same density.

For much greater storage capacity, it's necessary to step up to hard-disk systems, which can store anywhere from 5 -million bytes on up to and beyond 160 -million bytes of program and data information.

The storage medium inside hard-disk drives (frequently called "Winchester" drives) consists of rigid, or "hard," metal disks on which is deposited the magnet-ic-oxide recording material. The disks themselves are sealed inside dust-proof chambers.

The need for mass memory is basically one of economics. Fast, immediately accessible working memory is expensive, not only in terms of the cost of the devices themselves but also in terms of the space they require inside the computer and in power consumption.


## BY TOM \& KELDA RILEY

Make your own game controls... repair that old joystick that's been sitting in your closet...have your own project assistant in your home, ready when you are! The COMPUTER CONTROLLER COOKBOOK gives you complete schematics and mechanical drawings for building and repairing joysticks, paddles and game devices for your Apple ${ }^{\oplus}$ or Atari ${ }^{\oplus}$ computer, with a special section showing you how to adapt these to most major machines. Imagine building your own Super Joystick, Annunciator, Airplane Wheel, Foot Pedals, Sketch Pad or Multiple Connector from purchased and scavenged parts and then using them on your own computer! Imagine saving up to half the cost of usual commercial prices and having your controls last up to twice as long! Imagine the hours of enjoyment and learning you'll get from the COMPUTER CONTROLLER COOKBOOK!

Order your copy today!
Apple is a registered trademark of Apple Computer Inc. Atari is a registered trademark of Atari Inc.

CREATIVE COMPUTING PRESS Dept. NJ8F, 39 East Hanover Avenue, Morris Plains, NJ 07950

Please send me COMPUTER CONTROLLER COOKBOOK(s) at $\$ 11.95^{*}$ plus $\$ 2.00$ postage and handling each. Outside U.S.A. add $\$ 3.00$ per order. \#8C.
$\square$ Payment enclosed \$ $\qquad$ *Residents of CA, NJ , and NY State add applicable sales tax.
$\square$ Charge my:
$\square$ American ExpressVisa $\qquad$ MasterCard

Card No. Exp. Date $\qquad$
State $\qquad$ Zip
For faster service, PHONE TOLL FREE 1-800-631-8112
(In NJ call 201-540-0445)
Signature $\qquad$

## A simple FSK interface permits loading and storing programs on a conventional cassette recorder



## By Randy Carlstrom

ONE thing you learn quickly when you become a menber of the computer revolution is that, while your computer's initial purchase price may have been dirt-cheap, the other things you need to make it useful-like a cassette recorder or disk drive, printer, and other peripheral devices-generally cost far more than you'd expect. The computer itself may turn out to be the least expensive part of your system, and it becomes a case of the tail wagging the dog.

It is difficult to justify purchasing a peripheral that costs more than the computer with which it was designed to operate. Having purchased an Atari 400 computer for less than $\$ 80$ (including an Atari rebate) from a lccal hobby-and-toy store, I couldn't quite bring myself to pay more for the data recorder than I had for the computer. If you belong in the same category and own a standard cassette player/recorder of decent quality, or if you already own an Atari recorder and find that it's not
quite as reliable as you'd like it to be, read on-for less than $\$ 20$ you now have afcess to the wealth of Atari cassette programs.

Circuit Description. The Atari data recorder differs from a conventional audio cassette recorder because the fre-quency-shift keyed (FSK) modulator circuit is incorporated into its design, rather than being an integral part of the computer, as is usually the case. This article describes a simple single-chip FSK interface, designed to operate with the Atari computers, based on the Exar XR-2211 integrated circuit. This interface will permit loading and storing programs using a conventional cassette tape recorder.
Basic operation of the FSK tape interface is shown in Fig. 1. The modulator section accepts digital pulses from the computer (representing the program or data in the computer that is in the process of being stored) and converts them into audio tones, which are
readily "stored" by a tape recorder. In the case of the Atari computers, a logic I is represented by a $5327-\mathrm{Hz}$ tone and a logic 0 by a $3955-\mathrm{Hz}$ tone. The demodulator section performs the reverse operation. It accepts the recorded data tones from the tape player and translates them back into their original binary format. The resulting puises are then sent on to the computer for final processing. (If this sounds strangely simitar to a modem, it's because the two are almost identical in operation. The only difference is that the sones are sent between a computer and tape deck via a cable, rather than back and forth over telephone lines.)

A block diagram of the XR-2211 integrated circuit is shown in Fig. 2. The small, numbered circles are the package pin leads. This versatile device contains an input preamplifier, a voltage-controlled oscillator (VCO), two phase detectors, two voltage comparators, and a reference voltage source. These functional bdocks are internally connected to

# "Peripherals may wind up costing more than the computer itself." 

form a phase-locked loop (PLL).
When a signal of sufficient amplitude is present at the FSK input (pin 2), the loop formed by phase detector $\mathrm{A}, R 2$, and the VCO attempts to track the input frequency. If the input signal is within the capture range of the PLL (the range of frequencies over which the loop can lock in), the VCO will track any small changes in the input frequency. The resulting changes in the VCO control voltage at the output of the phase detector (pin 11) are filtered by C2 and the data filter, C4 and R4. This signal is a facsimile of the original data and is amplified and shaped by comparator A. Inverter Q1 provides the proper data polarity for the computer. Typical waveforms are shown in Fig. 3.

Phase detector B, filter C5 and RS, and comparator $B$ form a lock-detection circuit. Any time the input signal falls outside the PLL's capture range (or if the input signal is lost), pin 6 of compar-


Fig. 2. Block diagram of the XR-2211 integrated circuit.
ator $B$ is low. This pin is usually connected directly to the FSK demodulator's output (pin 7) to prevent chatter, should the PLL become unlocked.

The input preamplifier is actually a limiting amplifier that is able to accommodate a wide range of input signal levels. Ten millivolts rms is sufficient to cause limiting, but signals as large as 3 V rms can be used. This makes the PLL relatively immune to the volume (gain) setting of the tape recorder.

A schematic of the complete project is shown in Fig. 4. Resistors R9 and R11 form a $40-\mathrm{dB}$ attenuator betweeen the computer's FSK output and $J 2$, which connects to the microphone input of the recorder. Approximately 10 mV rms is delivered to $J 2$ during program save operations, providing the proper recording level for most recorders. The value of $R 9$ can be changed (or it can be removed) if necessary to suit the requirements of your tape recorder.

Fig. 3. Timing diagram for the circuit shown in Fig. 4.


Construction. The cassette interface can be built using any convenient construction technique and can be housed in its own enclosure or mounted inside the computer's case. If the latter method is chosen, two holes must be drilled in the case for mounting $J 1$ and $J 2$. The five power and I/O connections from the interface board can be soldered directly to the mounting pins of the computer's serial I/O connector. (This eliminates P1, and the serial I/O connector is left free for use with other peripherals.) However, this method is recommended only for the skilled and/or dauntless since the computer's warranty is automatically voided.

Alignment and Operation. One adjustment is necessary to ensure reliable operation of the interface. It involves setting the free-running frequency of the PLL's VCO. The following steps outline the procedure:

1. Connect an ohmmeter between pin 12 of $I C 1$ and ground. Adjust R13 until the ohmmeter indicates approximately 21 kilohms, then disconnect the ohmmeter.
2. Connect a shielded cable from the earphone or speaker jack of a cassette recorder to $J I$ (EAR) of the interface. Place a program tape in the recorder and rewind it completely. If the interface wasn't installed inside the computer, make certain plug Pl is plugged into the computer's serial I/O connector at this time. Turn on the computer power.
3. Press the play button on the recorder. The first 10 seconds or so of the tape should consist of a steady $5327-\mathrm{Hz}$ tone, which can be verified by listening to the television speaker. During this period, adjust R13 so that pin 11 of $I C 1$ is -2.6 V with respect to pin 10 . If you don't have access to an ohmmeter or voltmeter, you can center R13 and slowly adjust it until the program loads suc-
cessfully through the interface.
Operation of the cassette interface is similar to that of the Atari data recorder. Programs can be loaded by following the instructions that accompany the program cassette. As a program is loaded, you will hear a buzzing sound from the television speaker. This is normal and indicates that the Atari is happy with the data it is receiving from the tape recorder. When saving programs on tape, follow the instructions given with the programming language used. Remember to press the RECORD button on the recorder.
If the interface was aligned properly as outlined above, programs should load very reliably, since this interface has proven to be more reliable than the Atari 410 data recorder. If you experience any problems, adjust the recorder's volume and/or tone controls. If that doesn't help, the recorder may not be quite up to par, in which case a good tape-head cleaning may be in order.

Errors occurring at the beginning of a loading sequence can often be attributed to leaving an insufficient amount of tape leader before the actual data began on the tape. (The computer doesn't really begin accepting data from the recorder until approximately 5 to 10 seconds after the computer's RETURN key has been pressed.) A tape that refuses to load past a certain point (usually at the same point and somewhere in the middle) is a classic example of the "bargaintape syndrome." Some cheaper tapes often contain "dead spots" where the FSK signal drops out momentarily-a phenomenon almost certain to succeed in confusing your computer.

Bit-Copying Tapes. It is a simple matter to make backup copies of any of your tapes using the cassette interface and the circuit shown in Fig. 5. This circuit simply remodulates the serial data stream from the demodulator, bit by bit, and consequently doesn't care if the program is BASIC, machine language, or even copy-protected. A second tape recorder "listens in" on J3 while the first recorder is playing the original program tape through $J /$ (Fig. 6).
"So," you say, "why not just patch two recorders together to duplicate tapes?" This method will work, in general, if you use a good quality recording to start with. However, it has been the author's experience that many of the commercially available cassettes tend to degrade with time, especially those that are favorites of the family and are constantly being used and abused. You can be sure that a "patched" duplicate made from such marginal tapes will be even more margina!!

It is recommended that the alignment


Fig. 4. Schematic of the interface. The wiring side of P1 is shown.

## PARTS LIST

C1,C12-0.01- $\mu \mathrm{F}, 5 \%$ polyester capacitor
C2-0.0022- $\mu \mathrm{F}$ ceramic capacitor
C3,C6,C7,C8,C10,C14-0.1- $\mu \mathrm{F}$ ceramic capacitor
C4,C9-0.005- $\mu \mathrm{F}$ ceramic capacitor
C5-0.022- $\mu \mathrm{F}$ ceramic capacitor
C11,C15-1- $\mu \mathrm{F}$ electrolytic or tantalum capacitor
C13- $10-\mu \mathrm{F}$ electrolytic or tantalum capacitor
IC1—XR-2211 FSK demodulator/tone decoder (Exar)
IC2-XR-2206 function generator (Exar)
J1, J2, J3-Miniature phone jack
P1-13-pin Atari mating plug
Q1-2N3904 npn transistor
The following are $1 / 4-$ W, $5 \%$ carbon resis
tors unless otherwise specified:
R1-18 kilohms
R2-75 kilohms
R3,R5-470 kilohms
R4- 100 kilohms
R6,R21,R22-5.1 kilohms
R7-22 ohms
R8,R12,R15,R23-33 kilohms
R9,R16-470 ohms (selected, see text)
R10,R11-47 kilohms

R13,R18,R20-10-kilohm trimmer potentiometer
R14-200 ohms
R17-20 killohms
R19-15 kilohms
Misc.-Suitably etched and drilled pC board or perf board; IC sockets; 5-canductor cable; solder; enclosure; etc.

Note: The following are avallable from RC Systems inc., 121 W. Winesap Rd., Bothell, WA 98012: Kit of parts for cassette interface/duplicator, including etched and drilled pc board, No. AK-1, for $\mathbf{\$ 2 9 . 9 5}$. Also available separately from the same source: Kit of parts for cassette interface only, No. AK-2, for S19.95; etched and drilled pc board for interfacel duplicator. No. AB-1, for $\$ 5.00$; etched and drilled pc board for cassette interface, No. AB-2, for $\$ 4.00$; XR-2211 IC for \$5.25; XR-2206 IC for \$5.00; Atari 13 -pln mating plug, No. -AP-1, for S6.50. Please include S 1.75 shipping and handling on all orders. Wasinington state residents, add $7.8 \%$ sales tax.
of the modulator circuit in Fig. 5 be performed with a frequency counter. With the counter connected to pin 2 of IC2, short pin 9 to ground and adjust $R / 8$ for 3995 Hz . Remove the short from pin 9 and adjust $R 20$ for 5327 Hz . (Note that the computer must be turned on to make these adjustments.) If you don't
have access to a frequency counter, you can use the following alternate procedure:

1. With a jumper wire or shielded cable, connect $J 3$ of the modulator to $J 1$ of the demodulator
2. Short pin 9 of IC2 to ground and adjust $R 18$ unt:l pin 11 of $I C 1$ is +2.6 V


Fig. 5. Schematic of a circuit to remodulate the serial data.
with respect to pin 10 .
3. Remove the short from pin 9 and short the base of $Q 1$ (the lead that connnects to $R 8$ ) to ground.
4. Adjust $R 20$ until pin 11 of $I C 1$ is
-2.6 V with respect to pin 10 . Remove the short from $Q 1$ and the connection between $J 1$ and $J 3$.

Since $I C l$ is acting as a frequency discriminator during these adjustments, the accuracy of these adjusiments will depend on how accurately $R 13$ was set. The value of $R 16$ sets the recording level at $J 3$, which may need to be selected to suit the drive requirements of the second recorder.

The operation of the demodulator is not affected in any way by the modulator and can remain connected permanently. In fact, it's a good idea to have the computer load the original tape during the duplication process. If the original tape loads successfully, you can be reasonably certain the duplicate copy is accurate.

The remodulation process does a marvelous "cleanup" job of marginal tapes. In fact, I use my duplicates all the time, saving the originals for backups. Also, I don't get so upset now if my recorder gets hungry and chews up a $\$ 40$ game cassette!

Fig. 6. Modulator and demodulator interconnections.


## 7 Good reasons why you should subscribe to Creative Computing. It's the Number One magazine of computer applications and software! <br> There's one place you can always be sure of <br> We give you probing features on program-

learning more about microcomputer software and applications: Creative Computing.
Every month Creative Computing provides you with a continuing education on everything related to microcomputers and computer equipment. Useful articles, "how to" tutorials, exciting new applications, games and "no hoids barred" reviews of the latest software and equipment make up a major part of Creative Computing's editorial content
ming breakthroughs and important news. Plus in-depth articles on elementary, intermediate and advanced software and applications topics-to help you develop your knowiedge and skills, save hundreds (perhaps thousands) of dollars in unneeded software, discover uses for your personal computer that you might never have considered. Articles that increase your overall "computer consciousness." Here's how:


Creative Computing discusses business applications in simple, nontechnical language.
If you're a business person who needs to know about the latest developments in word processing and office applications, turn to Creative Computing. We clarify such business applications as investment analysis, futures evaluations, data base management, mailing list programs, text editing, word processing and simulations. And all the software available for business people.

## 6 <br> Creative Computing features the state of the art.

Columns on the most popular personal computers, a "software legal forum," letters to the editor. Reviews of books, games, organizations, dealers and events. Fascinating interviews with leading innovators, equipment designers, program developers and game inventors-men and women who'll give you a real glimpse of the future!


Creative Computing helps you decide which computer equipment is best for you.
Our tough, no-nonsense equipment profiles arm you with the facts before you walk into a computer store. You'll know the right questions to ask and how to cut through the jargon and sales hype. We give you authoritative guidance in deciding what you need, what you don't need-and ,
what's right for you and your pocketbook. what's right for you and your pocketbook

We started out as a computer education publication, and we're still committed to the educational community. We regularly carry articles on designing educational software, evaluating educational software, teaching concepts and terminology in computer education, text editing applications for literature and computer simulations in the classroom-plus a great deal more

## 5 <br> Creative Computing brings you hours of mind-expanding game entertainment.

We've got a soft spot for the computer game addict-and computer game software. We know you want to understand more about the new computer games flooding the market: which ones are easiest to learn? Require the most skill? Offer the most surprises? Give you the best graphics? Provide the most challenge? Contain a new twist? Creative Computing brings you the answers


Our price is right.
By subscribing to Creative Computing now, you can save as much as $33 \%$ off the full subscription price. To learn elsewhere what you'll learn from Creative Computing, you might spend hundreds of dollars in course fees and books. Then you'd have to winnow out what you could use from all that you'd learned. But Creative Computing does that for you, so you'll have time to enjoy your own computing interests. And that saving of time makes this offer very inexpensive indeed

Join over 150,000 Creative Computing readers by subscribing today! Just use the coupon at right.

## Creative Computing • P.O. Box 5214 • Boulder, Colorado 80322

## YES! Send me Creative Computing for: <br> $\square$ One year ( 12 issues) for $\$ 19.97$-I save 20\%! <br> $\square$ Two years ( 24 issues) for $\$ 36.97$-I save $26 \%$ ! <br> Three years ( 36 issues) for $\$ 49.97-$ save $33 \%$ !

 Savings based on full one-year subscription price of $\$ 24.97$.Check one
Payment enclosed.
Bill me later.
$\mathrm{Mr} . / \mathrm{Mrs}$ / $/ \mathrm{Ms}$. $\qquad$
(please print full name)
Address
$\qquad$
State

# Assembly Language Primer for IBM PC: Featuring the soss Mieroprocessor 

Learning and using assembly language By Robert Lafore

## INTRODUCTION

ASSEMbly language has the reputation of being difficult to learn; especially from the pages of a magazine. We think this reputation is largely undeserved, and that assembly language can be taught as simply and easily as other languages such as BASIC and Pascal. In the following article, we present assembly language for the absolute beginner: the person who has never programmed in assembly language before

This article is excerpted from the forthcoming Assembly Language for the IBM PC, a Waite Group book by Robert Lafore. (As you may recall, Mr. Lafore and Mr. Waite wrote Soul of $C P / M$, serialized in these pages in 1983.) This new book is a complete introduction to 8088 assembly language and forms part of an integrated series of New American Library language books on the IBM PC issued under the dual Plume/Waite imprint.
How is it possible to teach assembly language so simply? Mr. Lafore makes use of several innovative techniques. First, by basing his work on the IBM PC, he en-
sures that everyone will be working with exactly the same equipment. Books which attempt to teach assembly language for a particular microprocessor chip must be excessively vague about the actual commands used to perform a given operation, since the same chip can be used in many different machines.
Assembly Language for the IBM PC also uses the "miniassembler" built into the DEBUG program. This feature provides a greatly simplified entry into assembly language, since the reader need not start off by learning the complexities of the full-scale IBM MacroAssembler program. Finally, by making use of the powerful DOS functions built into the operating system, the book can start out with programs that are very short and simple, but that nevertheless accomplish significant tasks. As you will learn, programming through DOS functions is the professional approach; it means your programs will work on all computers that run a version of the popular MS-DOS operating system.
For those of you who have always wanted to learn assembly language, but have not known how to begin, this is your chance!

ASSEMBLY LANGUAGE is always the fastest and most powerful language for a given computer. It is essential in programs where pure speed of operation is important, such as graphics, sorting, and sustained number-crunching. It is also the only language that can make use of all of a particular machine's hardware features. With higher-level languages, such as BASIC or Pascal, the programmer is always insulated from the computer by the language itself-he can only do what the writers of the language decided he should be able to do, so inevitably he cannot tap the full power of the computer.

For these reasons, many types of programs-such as operating systems, compilers, word processors, and graphics programs-are almost always written in assembly language. If you want to do this sort of programming, then you need to know assembly language.

But assembly language is not only
practical, it is also a fascinating and rewarding field of study. Because it is so close to the physical reality of the computer, everything you do in assembly language is the result of the way the

computer operates, not the way designers of a higher-level language decided to do things for the sake of ease and convenience.

We can think of higher-level languages as being like stodgy luxury sedans: they're comfortable and easy to use, but the steering is imprecise, the suspension insulates you from the feel of the road, and if you try to push them too fast they slide into the ditch.

Assembly language, on the other hand, is the sports car of computer languages. In a sports car you're close to the road, the steering, brakes and gears are light and precise, and the car is built for speed and efficiency. It may not be as comfortable as a sedan, but it's fast and, more important, it's fun to drive.

Is Assembly Language Hard to
Learn? Unfortunately, assembly language has developed the reputation of being difficult to learn. Many people-

even those who had no trouble learning a higher-level language such as BASIC-think that assembly language is somehow beyond them. This belief is fostered by many assembly-language books which, strange as it may seem, appear to be written with the assumption that the reader already knows about the subject. For instance, many assemblylanguage books start off by listing and describing all of the scores of microprocessor instructions. As a result, most readers give up before finishing the text.

We believe that assembly language, in spite of its reputation, is actually not much harder to learn than any other computer language, provided it is presented so you do not feel overwhelmed at the beginning. It's this sort of easy, step-by-step presentation that will be used in this series.

The series is intended primarily for the person who has no previous acquaintance with assembly language: the rank beginner. However, it will also


Fig. 2

Fig. 1

package: ASM and MASM. MASM stands for "Macro ASseMbler," and is a full-scale assembler with all the bells and whistles. If you use it, you'll need a minimum of 96 K of RAM.

ASM, which is sometimes called the "Small Assembler," is a more modest version of MASM. It will run in a 64 K system if you are using PC-DOS Version 1.0 or 1.1 . However, if you are using DOS Version 2.0, then you will need a minimum of 96 K , with 128 K being preferable if you get into writing long programs.

You can use any video display you like, since the concepts we'll explain here don't require the use of color. However, all the examples we'll give are based on an 80 -column display. If you are using only 40 columns, you will need to do a little mental reformatting to compare the printouts here with those on your screen, but that should not pose a major problem.

It's very nice, but not absolutely necessary, to have a printer when writing assembly-language programs. A printed listing is convenient for debugging and for following the overall operation of a program, but a printer is like a house in the country: If you have one, you'll love it, but if you don't, you'll get along just fine anyway.

You'll find the Technical Reference Manual for your computer extremely useful. It's packed full of details about the computer's operation, and many of those details will become important to us as we explore the things assembly language can do. And, of course, keep
benefit the programmer who knows assembly language for a microprocessor other than the 8088 described here, and who wants to learn how the 8088 works.

Why the 8088 ? There are several reasons. First, because it's the microprocessor used in the IBM PC, a computer enjoying unprecedented sales growth, as well as work-a-like computers such as Compaq, Columbia Data Products and others. Second, if you want to learn about the new 16 -bit technology, the 8088 chip in such computers is the ideal device to use.

What You'll Need. This is very much a hands-on series. Although you can gain a general understanding of assembly language by reading it without a computer at your disposal, you'll be far better off if you have a computer on your desk before you start to read. As with other languages-both human and computer-it's only through practice that real mastery is achieved.

We'll assume therefore that you have access to an IBM PC using PC-DOS or to another $8088-\mathrm{CPU}$ based computer


Fig. 3
using MS-DOS. (Virtually everything we'll do can be done under either operating system. From now on, though, we'll speak only in terms of the PC and PC-DOS.) You'll need at least one flop-py-disk drive. You won't be able to use a cassette-based computer, since the assembler program and various other pieces of software we'll make use of all require a disk operating system like PC-

## DOS or MS-DOS

How much memory do you need to create assembly-language programs? That depends on which assembler you want to use. When you buy the standard IBM Macro Assembler for the PC, you actually get two assemblers in the same
handy the manuals for your assembler and for the other programs we'll be using to create our own.

You can use any of the current releases of PC-DOS: $1.0,1.1$, or 2.0 . However, there are some advantages to using Version 2.0. First, PC-DOS Version 2.0 contains a very useful enhancement to the DEBUG program that is part of the disk operating system (DOS), and which we'll be using quite a bit. This is a "mini-assembler," built right into DEBUG. The first assembly-language programs we write will be created with DEBUG's mini-assembler rather than the more cumbersome ASM or MASM. You can also use older versions of DE-


Fig. 4
BUG that do not contain the mini-assembler (we'll show you how), but it will be easier if you have it.

Three of the utility progams that come with PC-DOS are essential to following the lessons we're going to present. The first is DEBUG, which we've already mentioned. It's used to monitor, debug and edit assembly-language programs. Learning how to use it is vital to an understanding of assembly language.
The second utility is LINK, a program used to change an intermediate form of assembly language programs, call OBJ (for OBJect) files, into an executable program called an EXE file. (We'll explain these terms as we go along.)

The last is EXE2BIN, which converts EXE (EXEcutable) files to COM (COMmand) files. COM files are another, somewhat simpler, form of executable program.
Finally, once we start writing longer assembly-language programs, you'll need some sort of word processor to create what are known as the source files. These are text files, just like letters or other documents, but they contain the assembly-language instructions that will later be assembled for use by the microprocessor.
PC-DOS comes with a text editor called EDLIN (for EDit LINes). Though it's possible to use EDLIN to create assembly language source files, its limitations will become apparent as your programs become longer, and you'll probably want a good word processor anyway

Assembly Language. Let's start by talking about assembly language in general-how it differs from higher-level languages such as BASIC-and about the operation of an assembler and how it differs from the interpreter or compiler used in higher-level languages.

If you're familiar with a higher-level language such as BASIC or Pascal, you know that there is a certain level of abstraction involved in program statements in these languages. A BASIC statement such as:

$$
\text { LET } A=3
$$

is operating on an abstract level. That is, we don't usually know, or need to know,
where in the computer " $A$ " is, or what changes are taking place in the computer when $\mathbf{A}$ is assigned the value of 3 . This is because higher-level languages are oriented toward the handling of numbers with algebra-like formulas. Programmers using higher-level languages need that abstraction; they want to be insulated from what's really going on inside the computer so they can concentrate on the formulas.
In contrast, assembly language operates on a very concrete level. It deals with bits, with bytes, with words (two bytes side-by-side), with registerswhich are physical places in the microprocessor where bytes and words are stored-and with memory locations, which have specific numerical addresses and specific physical locations in the memory chips inside the computer.

What Does an Assembler Do? If you've written programs in BASIC,
you're familiar with the two-step process involved: First you write a group of BASIC program statements that make up a program; then later, when you execute the program, these statements are "interpreted" or changed into machinelanguage instructions that are executed by the microprocessor.

This process in BASIC is made to appear "invisible" to the user. The individual program lines are interpreted one at a time, and the resulting machinelanguage instructions for each line are executed by the microprocessor before the next line is interpreted. (Figure 1 shows how this works.)

In compiled languages such as Pascal, things are handled a little differently . The user first creates a source file, which is a text file of the entire program. This is then changed into machine-language instructions by a compiler program. (Actually, a utility called a linker is used too, but we'll ignore it for the moment.) In a compiled language the entire program is transformed into machine language all at once.

Assembly language resembles a compiled language more than it does an interpreted language such as BASIC. An assembly-language source file consist-


Fig. 5
ing of the text of the program is first created. This is then assembled into machine language by an assembler program. The assembler performs a process very similar to that of a compiler except that-as we'll see a little later-there is a far closer correspondence between an assembly-language instruction and a machine-language instruction than there is between a Pascal statement and the group of machine-language instructions that result from it.

What we've just described is the traditional way of transforming an assem-bly-language program into machine language instructions. To start with, however, we're going to use a different approach; we're going to use the miniassembler in DEBUG. Using DEBUG, it's almost as easy to create and run short assembly-language programs as it is to create and run interpreted programs.

DEBUG vs. an Assembler. There are
several reasons why we've decided to start with DEBUG rather than with ASM or MASM. First, DEBUG is a much easier program to operate than the others. To type in and execute a program using DEBUG requires calling up only DEBUG itself, a simple process. Using an assembler, on the other hand, involves using a text editor, the assembler itself, a linker program called LINK, and often another program called EXE2BIN. Each of these programs requires a rather complex series of commands to make it work. We figured you'd have enough on your mind being introduced to a new computer language without having to learn how to operate all those other programs at the same time.

DEBUG's second advantage is that programs written with it require less "overhead" memory than those written with an assembler. This overhead comes in the form of program statements that must appear in the ASM source file, but are not necessary in DEBUG. (Don't worry if you don't understand what's meant by some of the terms we've used. Everything will be explained eventually.) The reason these additional statements are necessary in the assembler is difficult to explain at this point, so let's just say that by using DEBUG you avoid having to start your day with a lot of incomprehensible program lines.

Third, using DEBUG puts you in closer contact with what is really going on in your computer than using an assembler does. DEBUG has features that make it possible to get down to the most


Fig. 6

BUG will do just fine. Table I summarizes the advantages and disadvantages of DEBUG and assemblers.

Window of the Soul. An old saying has it that "the eyes are the windows of the soul."

We might say that DEBUG is the window of the 8088 's soul. Besides being useful for assembling programs, DEBUG is also used to examine and modify the contents of memory locations; to load, store, and start programs; and to examine and modify registers. In other words, DEBUG is designed to put us in touch with various physical features of the PC-DOS or MS-DOS computer.

Before we write our landmark, firstever 8088 assembly-language program, we're going to get to know our way around DEBUG; rev it up, so to speak, find out where the controls are, and taxi it out of the hangar and around the runway. Then we'll be ready for takeoff.


Fig. 7
fundamental level of your computer's operation (short of opening up the cover and probing about with logic probes and oscilloscopes). Sooner or later, if you write programs in assembly language, you're going to have to understand this fundamental level and learn to use DEBUG; so now seems like a good time to start.

Of course, as we'll find out later, an assembler has all sorts of powerful features that make it indispensable for long programs, but for the moment, DE-

Getting DEBUG Rolling. All right, let's leap into the cockpit, get a firm grip on the keyboard, and get DEBUG rolling! We'll assume that you have a disk with DEBUG on it inserted into drive A , and that the " $\mathrm{A}>$ " prompt is waiting for your next move. (If you have a Winchester disk you'll have to make sure that DEBUG has been copied to it, and you'll also have to imagine a "C>" whenever you see "A >" here.) DEBUG is one of the programs provided
on the "system disk" that contains your computer's operating system.
Following the DOS prompt, enter the program name "DEBUG". (When we tell you to "enter" something here, we mean to type the "something" and then press the EnTER key just to the left of the numeric keypad on the PC's keyboard.)

When DEBUG is loaded into the computer it will display its prompt, a single dash ("-"), which tells you that it's ready to listen to what you have to tell it.

The "D" Command. You can tell DEBUG what to do by typing in single-letter commands, usually followed immediately by one or more numbers. When we refer to these single-letter commands here we'll usually use upper-case letters, like "D," to make them stand out. However, when you type them in you can use either upper or lower case. For example, enter the letter " $d$ " followed by the digits " 1 " " 0 " " 0 ". You should see a display like the one shown in Fig. 2

Wow! Look at all those numbers! What does it all mean? First of all, you may not see all zeros on your display as we show here. What the "D" command has done is to "dump" or display a portion of your computer's memory on the screen. Each pair of numbers represents one byte, or eight bits, of data stored in a particular memory location. If your

## TABLEIADVANTAGESAND DISADVANTAGES

## DEBUG

Easy to run
Low-overhead programs
Close to the machine
Not so versatile
Good on short programs

## Assembler

Hard to run
More program overhead Isolated from the machine Very versatile Good on long programs
computer's memory happened to have other data in it before you loaded DEBUG, it will appear here when you type "D", so you may well see all sorts of junky-looking numbers, like those in Fig. 3.

All the numbers there are in hexadecimal form. In fact, hexadecimal is the only numbering system DEBUG knows about, so if you aren't already acquainted with this way of representing numbers, now is the time to find out about it. A good discussion of numbering systems appeared in the December 1983 issue of Computers \& Electronics.

Let's adopt this convention: Hexadecimal numbers-except for those in program listings or where the context makes clear what they are-will be followed by the small letter "h" to distinguish them from decimal numbers. Decimal numbers-again, unless the context makes it clear-will be followed by a small "d". Numbers from 0 to 9 are the same in both systems, so they don't really need a distinguishing letter, although they sometimes will have one for consistency. Of course, since DEBUG speaks only hexadecimal (hex for short), it doesn't use an " $h$ " on its displays, and you should not put one after hexadecimal numbers you type in as DEBUG commands.

It requires two hexadecimal digits to represent an 8 -bit byte of data. This two-digit hex number can range in value from 00h to FFh (0d to 255d). Thus, all the two-digit numbers in Fig. 3 fall into this range. There are 16 of these numbers on each line of the display. The dashes in the middle of the display are placed there for clarity, to separate the eight left-hand bytes on the line from the eight right-hand bytes.

Addresses. The numbers in the column at the left of Figs. 2 and 3 (like 08F 1:0120) are the memory addresses of the bytes of data displayed. Each byte shown in the dumps occupies a specific address, as illustrated in Fig. 4.

The vertical column to the left represents an actual section of your computer's memory. Note how the byte in each memory location corresponds to a particular number in the DEBUG dump shown in Fig. 3.

Each address consists of two numbers separated by a colon. The number to the right of the colon (like 0100) is called the offset address, and for our purpose is the only portion of the address we'll be concerned with. The number to the left of the colon is called the segment address, and is used when addressing very high (above 64 K ) memory locations. Since our programs are not going to be anywhere near that large, we can safely ignore it.

Notice how each offset address (we'll just refer to them as addresses from now on, since we will not be using the segment portion) in the left-hand column of a DEBUG dump ends with a zero. If you're familiar with hexadecimal numbers you should understand why this is so. There are 16 d , or 10 h , bytes in each line, so when you've counted from 0 h to to Fh, you're ready to increase the ten's (actually sixteen's) column by one, since

10 is the number that comes after $F$ in hex. So we display 16d (10h) bytes, and then move down one line, increment the address by 10 h , and display 10 h more bytes. The display would be easier to read and understand if it had the 1 's column values of the address printed across the top, as shown in Fig. 5, but it doesn't

Anyway, it should be clear that the first byte on the top row is at memory

## FREE CATALOG OF COMPUTER EQUIPMENT AND HARD-TO-FIND TOOLS

Jensen's new catalog is jam-packed with hard-to find precision tools, tool kits, tool cases, test equipment and computer accessories used by electronic technicians, sophisticated hobbyists, scientists, engineers, laboratories and government agencies
Call or write for your free copy today


## JENSEN TOOLS INC.

7815 S. 46th St., Phoenix, Arizona 85040 (602) 968-6231
Circle No. 8 on Free Information Card

location 0100 , the next is at 0101 , the next at 0102, and so on. Similarly, the first byte on the second row is at 0110 , the second at 0111, etc.

The "F" Command. Want to see the display change? An easy way to do this is to use DEBUG's " F " or FILL command. This command fills a part of memory with a particular hex number.

To use FILL, you enter " $f$ ' followed immediately by three numbers separated by spaces. The first of these numbers is the address where you want to start filling, the second is the address where you want to stop filling, and the third is the constant (from 00h to FFh) that you want the locations from the first address to the second to be filled with. Notice that while the data to be filled in consists of two-digit hex numbers (representing bytes), the addresses are fourdigit hex numbers. Of course, you don't need to type leading zeros, so you can type fewer than four digits for the addresses when appropriate, as it is here. At the DEBUG prompt ("-") enter this:

## f120 14 ff

The first " $F$ " (remember, it can be upper or lower case) is the FILL command. It is followed by, respectively, the starting address of the fill, the ending address of the fill, and the value (FFh) that will be used. When you hit ENTER, nothing appears to happen. To see what's changed, you have to dump the same part of memory again. A dump of locations 100 h through 170 h is shown in Fig. 6.

Look at that! All the memory locations between 120 h and 14 Fh are now filled with FF, just as you specified with the " $F$ " command. As for the rest, if you started out with numbers other than zero in memory, they'll still be there instead of the zeros shown in the dump.

ASCII Codes. You may be wondering about all the little dots and odd characters on the right-hand side of the dump display. These are the characters (like " $A$ ", " $B$ ", and so on) that the numbers to the left represent. The number that represents a particular character is called its $A S C I I$ value. (ASCII stands for "American Standard Code for Information Interchange.") As you probably know, the ASCII code is the normal way to represent characters in a computer's memory.

Since neither 00 nor FF represents a printable ASCII character, the positions in the ASCII display corresponding to those numbers are filled with dots, which indicate "no printable char-
acter." (If your computer's memory was filled with junk rather than all zeros to begin with, some of the num-bers-20h through 7 Eh -may have represented printable characters.) To see the character display change, along with the numbers, let's try filling in parts of memory with numbers that we know represent characters.

Enter the following three DEBUG commands (the "-" is, of course, DEBUG's prompt):

$$
\begin{aligned}
& -f 100 \\
& -f 178 \\
& -\mathrm{f} \\
& -\mathrm{d} 100
\end{aligned}
$$

You'll get the display shown in Fig. 7. The character corresponding to 61 h is a small "a," and 24 hex is the code for the dollar sign, "\$," We can see them both as numbers, and to the right as characters.

So far we've talked about how assembly language differs from higher-level languages, and also explained something about the operation of the DEBUG utility program. You may find it useful at this point to experiment a bit with DEBUG. Try filling in different constants to see how they look when you dump them. Examine different parts of memory. (You may be surprised at what you find!) You'll be using DEBUG a great deal as we go on, and you should feel comfortable with it.

Your First Program. Although you're now going to write your first assemblylanguage program, you don't know as-
sembly language yet. There will be many aspects of the process that won't seem completely clear to you. Don't worry about this! Our approach is to show you first what something looks like, and afterwards explain why it looks that way and how it works

By moving in this direction, from the concrete to the abstract, rather than the other way around, we hope to avoid the sort of academic theory-oriented descriptions that leave most readers confused, bored, and frustrated. Instead, you'll first get the feeling of the process (the roar of the motor and the rush of the wind in your hair, to return to our earlier flying analogy); later we'll explain what happened.

Different DOSs. There's a small problem we'd better deal with right away. This has to do with which version of DOS you're using. As noted previously, the DEBUG in DOS Version 2 (that is, Versions 2.0 and later) contains a builtin mini-assembler that will help in the creation of assembly-language programs. The DEBUG in DOS Version 1 (Versions 1.0 and 1.1 ) does not have this capability, so for those readers using this version we need to take a slightly different tack

We'll handle the situation in the following way. We'll first explain how to type in a program if you're using DOS Version 1. Even if you have Version 2, you should read this part, try it out, and understand it. There are two good reasons for this. The first is that you will be introduced to a new DEBUG com-


Fig. 8


Fig. 9

```
-al00
08Fl:0100 mov dl,l
08Fl:0102 mov ah,2 enter these lines
08Fl:0104 int 2l
08Fl:0106 int 20
08Fl:0108 <------simply press ENTER here
-_<----------------now you're back in DEBUG
```

Fig. 10

# Get all the facts about the IBM Personal Computer. 

## Get PC Magazzne!

Whether you already own an IBM Personal Computer or you're thinking about buying one, you need $P C$. $P C$ is the independent guide to IBM Personal Computers. Each issue is packed with the latest information for everyone who's interested in IBM Personal Computers.
This is the magazine for finding out how to put together the best IBM "PC" system...and how to get the most out of it. Every two weeks you'll receive hundreds of colorful pages of evaluations, insights, and straight talk from respected experts-professionals in computer science as well as lawyers, businessmen, writers, educators and many others.
$P C$ covers software, hardware, applications, and every other topic of importance to the thousands of IBM Personal Computer users who read it. To make sure that we give you the facts you need, we include a special "User-to-User" section, a "PC Wish List," and news about IBM Personal Computer clubs, events and publications.
Right now you can save up to $24 \%$ on an introductory subscription. And if you're ever dissatisfied with $P C$, just write and tell us-you'll receive a prompt refund for all the unmailed issues remaining in your subscription.


Yes! teS. I want to subscribe
$\square$ One year ( 26 issues) only $\$ 29.97$ - $14 \%$ off!
$\square$ Two years only $\$ 52.97-24 \%$ off!
Savings based on full one-year subscription rate of $\$ 34.97$.
CHECK ONE: $\square$ Payment enclosed $\square$ Bill me later
Mr./Mrs./Ms.
(please print full name)
8 H 443
Company
Address
City $\qquad$ State

Zip
Offer valid only in the U.S, its territories and possessions. Please allow 30 to 60 days for delivery of first issue.


Fig. 11
mand: the "E" (for Enter) command. The second is that, after you've typed in the program using "E," you'll be better able to appreciate how lucky you are to have DOS Version 2, with its advanced version of DEBUG and its miniassembler.

Using the "E"' Command. Now we'll create an assembly-language program using DEBUG's "E" command. (The term "assembly language" is actually not quite right in this particular instance, as we'll see later on, but that needn't concern us now.) If you have DOS Version 1, this is the only way to use DEBUG to create a program. If you have Version 2, you should follow along anyway, typing in the commands.

The purpose of the " $E$ " command is to enter a byte (or bytes) of data into memory. It's like the " $F$ " command, except that you can enter a series of different bytes; they don't all have to have the same value, as they do with "F."

The series of bytes we're going to enter with " $E$ " will constitute our program. To insert this program into memory, when you see the DEBUG prompt, you enter the command "E," followed immediately by the address where you want the program to go. In our case, we're going to put it at location 100 h , so we enter "e" followed by " 100 ." The program will respond by printing out the address, followed by its current contents, as shown in Fig. 8.

As shown there the content of location 100 happens already to be 61 h , since that's what we put there with the "F" command earlier. However, it doesn't really matter what was there before: The important thing is that we're going to put it there now.

To "enter" a two-digit hex number into this location we type the number followed by-not the ENTER key-the space bar. The space bar has the effect of entering a number into one memory location and then advancing to the next one. The enter key, on the other hand, enters the number and then terminates the entire " $E$ " command and returns us
to the DEBUG prompt. After you have entered a number and pressed the space bar, the command will then print out the old contents of the next location and wait for you to type in the new contents.

The series of hexadecimal numbers we want to type in is the following:

$$
\begin{array}{r}
\mathrm{B} 2 \\
1 \\
\mathrm{~B} 4 \\
2 \\
\mathrm{CD} \\
21 \\
\mathrm{CD} \\
20
\end{array}
$$

These are the numbers that constitute our program. Type each number, press the space bar, type the next number, and so on. After you've typed in all eight numbers, the screen should look like Fig. 9 (minus our comments, of course).

Note that if you don't type any number at all before hitting the space bar, the byte in that location will remain un-
through this section so you know what you're missing and, more important, because future program descriptions are going to be based on the "A" command approach outlined here. You'll need to know both approaches so you can use "E" even though we're talking about " $A$ "; that is, translate our descriptions of the " $A$ " approach into operations with "E." This won't be as difficult as it probably seems, so read on. (Or, better yet, hurry out and buy a copy of DOS Version 2.)

The " $A$ " command accomplishes the same thing as the " $E$ " command. Therefore, it is putting the bytes that constitute our program into memory-but it does so in a different way.

When we use the " $A$ " command we don't insert hexadecimal bytes into memory directly. Instead, we type in a series of mnemonic symbols. ("Mnemonic" simply means "easy to remember." The idea is that these symbols are supposed to be easier to remember than the hexadecimal numbers they represent.) These codes are two- or threecharacter names that stand for certain assembly-language instructions. The instruction tells the microprocessor what operation is to be done. The instruction mnemonic is usually followed by a space and then by some letters and numbers that indicate what the operation is to be done $t o$.

Expressed in mnemonic symbols, our program looks like this:

$$
\begin{aligned}
& \operatorname{mov} d l, 1 \\
& \operatorname{mov} \\
& \text { int } 21 \\
& \text { int } 20 \\
& \text { int } 20
\end{aligned}
$$

- u100,106<----you enter this
08F1:0100 B201 MOV
$08 \mathrm{Fl}: 0102 \mathrm{~B} 402$ MOV
$08 \mathrm{Fl}: 0104 \mathrm{CD} 21$ INT
DL, 01
$\mathrm{AH}, 02$
21
out all this

Fig. 12
changed, as you will discover if you make a typing mistake.

After you type the last number, press ENTER to tell DEBUG you're through. This should cause the DEBUG promp: ("-") to reappear.

If you make a mistake at any time, just press ENTER to get back to the DEBUG prompt and start over.

You've now placed your program in the computer's memory, from location 100 to location 107 , using the " $E$ " command. We'll explain how to execute, or "run," the program in a moment.

Using the "A" Command. Here's where you DOS Version I users become, briefly, just spectators. You should read

It looks short, but absolutely incomprehensible, doesn't it? That's all right, it won't be long before you can churn out this kind of thing in your sleep. We're going to type in this program, then dissect it a little and see if we can get a feel for how the " $A$ " approach differs from the "E" approach, and for what assembly language is all about.

Enter the letter "A," followed by the address where you want the program to start. Here's a rule you should remember: Programs written in $D E B U G$ should always start at 100 h . The reasons for this will become clear later when we talk about the difference between COM files and EXE files.

When you enter " $A$ " followed by an
address, DEBUG will automatically echo the address:

$$
-\mathbf{a} 100
$$

08 f1:0100 --
DEBUG will then sit there waiting for you to type in the mnemonic codes for your program.

On the first line, enter "mov d1,1". That's "mov" as in the first three letters of "move," followed by a space, which is important, then " $\mathrm{dl}, 1$ ". with the letter "1", followed immediately by a comma and the number " 1 ." Don't confuse letters and numbers. The screen should now look like this:

$$
\begin{aligned}
& \text { 08F1:0100 mov dt. } 1 \\
& \text { 08F1:0102 }
\end{aligned}
$$

You've just typed your first line of assembly language!

The assembler is waiting for line two. Enter "mov ah, 2". Then the third line, "int 21 " and the fourth, "int 20 ".

After you've finished these four lines, you're done. So when the program says:

$$
08 \mathrm{f} 1: 0108
$$

you simply press ENTER to let it know you're through assembling this program and want to get back to DEBUG's prompt. Your screen should then look like Fig. 10.

So you now have two different ways to enter your program, depending on which version of DOS you have. In either case the program itself should be sitting in memory, waiting to be executed. There's a lot to say about the relationship between these two approaches to putting a program into memory, but if you're a real red-blooded programmer you can't wait to run the program. Let's do that first, and talk later.

Running the Program. What does the program do? Does it balance your checkbook? Calculate accounts receivable? We're afraid it's not as ambitious as that. Let's see what happens when we run it. To execute the program we use the "G" (for "Go") command. Simply enter the letter " g ." It's not followed by any numbers (at this time). This will cause the program to be executed, just as entering "RUN" does in BASIC, and you'll see a little happy face on the screen smiling at you. Isn't that the cutest thing you ever saw? (No? Well, what did you expect from an 8 -byte program?)

If you didn't get a happy face, you probably made a mistake typing in the program. It's easy to mistype something, what with all the numbers and unfamiliar symbols. Start with the " $E$ " or " $A$ " command and
try again.
Unfortunately, mistakes in assemblylanguage programs can have more serious consequences than those in higherlevel languages like BASIC. In higher-level languages the interpreter or compiler usually protects the operating system from the consequences of errors in programming by keeping your machine running and displaying something like, "Error in line 2034."

In assembly language, however, there is no such protection. Assembly language is the most fundamental level of the machine. There is nothing on a "supervisory level" overseeing the assem-bly-language program, as the interpreter or compiler does in higher-level languages. So if you make a mistake in assembly language it is woefully easy to "crash" your operating system-that is, alter parts of it in memory so that it no longer works and you need to reset the entire computer, either by hitting the ALT, CTRL, and DEL keys simultaneously or, in even worse cases, by turning the entire computer off and then on again. But all this is academic. You're never going to make a programming error! Are you?

Figure 11 shows the results of dumping locations 100 through 170 using the " $D$ " command. And there, in the first eight locations, from 100 to 107 , is our program. You can see this by comparing the numbers on the display with those typed in using "E." Our program has overlayed the 61 s that were there before.

The symbols at the right2.4. M ! M -are meaningless. They just happen to be the ASCII equivalents of the numbers that make up the program.

What Assemblers Really Do. If you typed in the program using "E," you probably aren't too surprised to see these numbers reappear when you look in memory with "D." After all, you entered the numbers into memory, and there they are, just where you put them.

But how did they get there if you used the " $A$ " command? You typed in mnemonic instructions and, lo and behold, there are the numbers sitting in memory. What's happened here is what this series is all about: The " A " command assembled the mnemomic instructions into hex numbers. This is the function of an assembler; both of DEBUG's mini-assembler that you invoke with the "A" command and of its large-scale relatives ASM and MASM. We'll have more to say about this later. First let's look at our program from another perspective.

The "U" Command. There's a more elegant and useful way to look at our program than by using " $D$ " as we did above:
the "U" command. We've assembled our program with " A " or typed in the pre-assembled hex numbers with "E." Now let's use the " $U$ " command to unassemble it. " $U$ " is the opposite of the "A" command. Where "A" takes us from symbolic mnemonic codes to the hex digits of machine language. " $U$ " takes us from hex digits back to mnemonic codes. (Actually, the usual word for "unassemble" is "disassemble.")

To "unassemble" your program, enter "U," followed by the address where you want to start disassembling, then a comma, and then the address where you want to stop disassembling, as you see it in Fig. 12.
"U" shows the program in both hex codes and mnemonic instructions, all nicely arranged for you to admire! Thus the new number B 201 is the machinelanguage equivalent of the assembly language statement "MOV DL, 01 ," and so on for the other instructions. As before, the numbers on the left, such as "08F1:0100'" are the addresses of the locations occupied by the program. There's an address printed for each instruction, and since each of the instructions happens to occupy just two bytes, the addresses are all even numbered: $100,102,104$, and 106.

Machine Language and Assembly Language. The hex numbers on the left in the "U" listing in Fig. 12 are what is called machine language. These numbers occupy specific memory locations, and the 8088 microprocessor looks in these locations, takes the numbers out of them, figures out what they mean, and executes them. These numbers are called "machine language" because it's the machine-the microprocessorthat understands them and operates on them. As far as we humans go, such numbers are hard to understand and virtually impossible to remember. For a human to decipher a program written entirely in hex numbers requires the most masochistic form of mental discipline, while the microprocessor chip, no larger than a fingernail, handles it easily. It is perhaps better not to dwell on the philosophical implications of this.
Take heart, however. The mnemonic instructions in the column on the right in the listing are not comprehensible to the microprocessor, clever though it may be. They form what is properly called "assembly language." And while you may not understand them now, you will when you finish reading this material.

If you want to pursue learning assembly language with the IBM PC, additional articles that build on this one can be read in upcoming issues of our sister publication, $P C$ magazine.


Using a few tricks and knowing what can and cannot be done allow you to make your programs transportable

## By Ron Gunn

QUESTIONS often fly at our local Commodore-user meetings regarding the interchangeability of VIC, PET, and Commodore-64 programs. We've found out a lot and this article will supply precise answers to many of those questions, since the programs are quite transportable once you know the rules. Now you can renumber your VIC or C-64 program on a nearby PET, and then run it. Additionally, you can find out when it's practical to permanently convert that great game or utility and when it's not. For now, let's see what works and what doesn't.
[Editor's Note: The ROM sets in some Commodore computers may be different from those in the ones used by the author. This may result in different memory locations being used for certain functions. If you encounter difficulties, try peeking memory locations around the ones suggested to see what happens as you change modes. This can tell you a lot.]

The first thing to realize is that PET, VIC, and C-64 programs use different parts of memory. This is why a VIC program seems to disappear when you load it into a PET. It is not really gone; it's still there if you know where to look. PET programs start at location 1024 in memory; C-64 programs start at 2048; and, just to make it interesting, VIC programs can start at 4096, 1024, or 4608. What does all of this mean to you?

You can use the above numbers to tell the PET where to look for the program.

VICs and C-64s don't need to be told because they have been set up to do the correct thing automatically when programs load in. To run a C-64 or VIC program on a PET, use the following procedures: If it's a C-64 program, type the following line onto the screen and press RETURN.

## POKE 2048,0:POKE 41,8

The C-64 program can now be loaded, listed, manipulated, saved, and even run. Once the PET knows where it's located, all is well.

The same is true of a VIC program, except that some guesswork may be required. Use one of the following three lines to load your VIC program into your PET:

> POKE 4096,0 : POKE 41,16
> POKE 1024,0 POKE 41,4
> POKE 4608,0 : POKE 41,18

The first line locates a program saved from a plain 5 K VIC, the second line locates a program saved when the VIC has a 3 K expander installed, and the third line locates a program saved from a VIC with 8 K or more of expansion memory working. Use only one of these lines at a time, then try a load and see what's there. You can't hurt anything from the keyboard, so if you guess wrong, just try again.

The second line above represents the normal state of the PET when it's
turned on, so if you haven't poked the PET yet, it's still in that state. Use that second line when you want it to find PET programs after you've already entered one of the others. (Or you can turn it off to reset.)

Color. Color characters can be transferred between the VIC and C-64 and show up in screen listings on all three computers. When running, the PET simply ignores them. You can add color symbols if you're using a VIC or C-64, but they don't even exist on the PET keyboard. If you intend to do some color editing on a PET, then add a line to the VIC or C-64 program while it's in that computer:

9998 PRINT" $12345678^{\prime \prime}$
The statement at 9998 is an example of an unused line-one that isn't intended to be a functional part of a program. Be sure to hold the CTRL key down while typing in the numbers within the quotes. You will get a set of weird reverse characters, the ones that invoke color. Use this line within quotes in Print statements on the PET. Whenever you need a color character, just type the line number you will need instead of 9998 and then edit around these color characters you can't type in

You will need a list of the colors those weird characters represent. If you use the numerical sequence above, they will stand for black, white, red, cyan, purple, green, blue, and yellow. If you want more colors, then continue on. Once you have typed " 12345678 " with the CTRL key held down, then do it again with the COMmODORE key held down You will get eight more symbols that represent, in sequence, orange, brown, light red, gray 1, gray 2, light green, light blue, and gray 3 . Now you will be sure to have plenty of color in that converted program.

Here's an example: Your C-64 program is in a PET and you want to edit in a print statement that says "HOLD IT" in red. It will become line 1212. Go to line 9998 and neatly type 1212 over the 9998. Press return. This will replicate line 9998 at 1212 . With the new line at 1212, delete everything inside the quotes except the third weird character, which is the symbol for red. Add the rest of the new line. The result will be:

## 1212 PRINT"[RED]HOLD IT"

Remember, too, the pokes that control the screen background colors. For a white screen, for instance, you would "POKE 53281,1" on your C-64; and you would "POKE 36879,27" on your VIC.

Sound. This is the one area where the three computers are the least compatible. That's the bad news. The good news is that the computers usually ignore each other in the sound areas, so few unexpected crashes occur. You are looking at PET sound programming when you see Poke at locations 59464 and 59466 in a program. VIC programs will have a sound POKE at 36874 through 36878. The significant sound capabilities of the C-64 are accessed through a poke at locations 54272 through 54296.

Each computer has a different ability to create sound, so when you are considering a program conversion, you are limited to finding out what the original sound was and where it was, and then finding substitute coding for it. The one constant thing is that the original coding will not produce what you want.

In the PET, sound is usually produced by manipulating the CB2 line of the user port. This is single-channel sound and it has to be turned off within the program before the program ends. The VIC has three channels of sound with relatively coarse adjustments available. The C-64 supports elaborate control of its three sound channels. Sound for both VIC and C-64 stops when you hold down the RUN/STOP key and press restore.

Screen Size. The Commodore 64 and the PET both have the same 40 -column screen width and 24 -line screen height. Screen output written for one will fit the other exactly. The VIC screen is 22 columns wide by 23 lines high and will handle about half a screenful of information from the other machines in its own way, with wild wraparounds and strangely linked lines. Reading VIC material on a C-64 or PET yields a well-formatted output along the left half of the screen.

To properly read screen displays from the other machines on your VIC, you will have to do modifications to your screen-print statements. A quick and dirty method is to create these lines in the program:

```
9996 GET Z$:IF Z$=""THEN
 9996
9997 RETURN
```

Put a new line in the original program at every half-screen of information:

## 1291 GOSUB 9996

This will force the display to stop until you tap a key. All of this is shown in Table I. While the original screen formatting won't be preserved, at least you'll get to see most of it.

Function Keys. These keys are unique
to the VIC and C-64 and do not exist on the PET. The values they return are CHR $\$(133)$ through $\mathrm{CHR} \$(140)$ on both machines. These values are consecutive, so unshifted function keys $\mathrm{F} 1, \mathrm{~F} 3$, F5, and F7 will return values of 133,134 , 135, and 136. There is no key on the PET that will return these values, so a trick is in order.

Find the places in a VIC or C-64 program where CHR $\$$ values between 133 and 140 are used. That's where the function keys are detected. For operation on a PET, let's use the numbers 1 through 8 as substitute function keys. Since the number 1 is actually $\operatorname{CHR} \$(49)$, we can make a substitution in the program. If the program says:

## 220 IF A $\$=\mathrm{CHR} \$(133)$

and we change it to:

$$
220 \text { IFA\$=CHR\$(49) }
$$

then we can dummy up the number keys to operate the program. With this kind of change, the number keys will act like the function keys in the original VIC/C64 program.

This example of use of the function keys

$$
\begin{aligned}
& 2000 \text { GET AS: A=ASC }(A \$)-132 \\
& 2010 \text { ON A GOTO } \\
& 2050,2060,2180,3500
\end{aligned}
$$

would convert to:

$$
\begin{aligned}
& 2000 \text { GETAS:A=ASC (AS)-48 } \\
& 2010 \text { (nochange) }
\end{aligned}
$$

Here, the first function key would be converted to a value of 1 in variable $A$ because it has a value of 133 , and 132 is subtracted from it. This would send program execution to line 2050. After the conversion, the number 1 would send program execution to line 2050.

Upper- and Lower-case. Many programs will initialize the UPPER/ LOWER or UPPER/GRAPHICS mode while setting up. Table II shows the numbers you can use to make the appropriate conversions.

You can confirm these values yourself. Try this one on your VIC. Enter: PRINT PEEK(36869) return. Now press SHIFT/COMMODORE key to change character sets, and enter the PRINT PEEK statement again. The number in 36869 should originally have been 194. Then it should have changed to 192.

Screen Manipulations. Some programs bypass the programmable cursor movements and poke directly to the screen memory. This is done for conve-

# Hirea fast thinker. 



## 5 MHz CPU Card

- Intel 8085A-2 microprocessor $\square$ Hardware floating point Performs calculations six times faster than other CPUs $\square$ On-board monitor in PROM $\square 1 K$ RAM scratch pad $\square$ Keyboard or RS232C terminal $\square$ Variable clock frequency

PRICE-\$375
(California tesidents add 6\% sales tax)

## Call or write Artec for details.



605 Old County Rd., San Carlos, CA 94070 Telephone (415) 592-2740
CIRCLE NO. 55 ON FREE INFORMATION CARD
nience and speed. Screen memory starts at 32768 on the PET and 1024 on the C64. In the VIC, the screen memory locations vary for different amounts of memory. A good description of how to find the screen memory is in the VIC manual.

To avoid confusion in converting a program that pokes values directly into the screen memory, convert it on the original machine to accept an offset from the "start of screen" location. On a PET, for example, set a variable $\mathrm{SC}=32768$. Now use SC in all screen poke calculations and debug the program. When it works, set $\mathrm{SC}=1024$ and load it into a C-64.

You will need the description in the VIC programmer's manual to simplify the job of pokeing the VIC screen. You will rapidly find out why some software written for the VIC doesn't work when extra memory is switched in.

Automatic Conversion. It is possible and, in fact, practical to make a program conversion that will work on two machines. This could even be automatic if the program could sense which machine it was running on. Consider the following:

```
9991SC=1024:IF
 PEEK(62006)=73 and
 PEEK(41)=4 THEN SC=32768
```

This sets the beginning of screenmemory variable SC to the start of a C64 screen. If two conditions are met that are true in 4.0 PETs, then the start of the screen variable is one the PET can use. This program can poke to either a PET or a C-64 screen. Moreover, now that the identification has been made, all kinds of adjustments can occur. The correct upper-case or graphics poke can be made, the correct sound code switched in, and so on.

For example: The program is running in a C-64, and line 9991 has just executed, so $\mathrm{SC}=1024$. Program execution continues at line 9992:

```
9992 IF SC=1024 THEN POKE
 53281,1: POKE
 53272,21:
 S=1: GOTO 9994
9993 POKE 59468, 12:S=0:REM
 LINE 9992 IFC-64, 9993
 IF PET-VARIABLE S SETS
 SOUND
```

9994 (next actual line in
program)

Random Tidbits. A PET with a Programmer's Toolkit installed can load VIC or C-64 programs directly into the PET's normal program area starting at location 1024. Simply type NEW and

## TABLE I

1200 PRINT `'THIS TEXT IS FORMATTED TO PRINT OUT ON ' * 1200 PRINT` 'THIS TEXT IS FORMATTED TO PRINT OUT ON ' *
1210 PRINT ' 'THE FORTY COLUMN SCREEN OF A PET OR' '
1210 PRINT ' 'THE FORTY COLUMN SCREEN OF A PET OR' '
1220 PR INT ' 'COMMODORE-64. IF IT IS PRINTEDON A',
1220 PR INT ' 'COMMODORE-64. IF IT IS PRINTEDON A',
1230 PRINT' 'VIC, THENHALF OF ITWILL SCROLL OFF',
1230 PRINT' 'VIC, THENHALF OF ITWILL SCROLL OFF',
1240 PRINT"'THE SCREEN BEFORE YOU CAN READ IT, ',
1240 PRINT"'THE SCREEN BEFORE YOU CAN READ IT, ',
1250 PRINT ' 'THE WAY TO STOP THIS IS TO ADD A LINE '.
1250 PRINT ' 'THE WAY TO STOP THIS IS TO ADD A LINE '.
1260 PRINT ' 'AT THE HALF SCREEN POINT THAT HOLDS' '
1260 PRINT ' 'AT THE HALF SCREEN POINT THAT HOLDS' '
1270 PRINT ' 'THE REST UNTIL YOU TAP AKEY. YOU ' '
1270 PRINT ' 'THE REST UNTIL YOU TAP AKEY. YOU ' '
1280 PRINT` 'MUST HAVE ADDED TWOL INES : 9996/9997'. 1280 PRINT` 'MUST HAVE ADDED TWOL INES : 9996/9997'.
1290 PRINT ' 'FIRST. THESE LINES WOULD JUST ABOUT' '
1290 PRINT ' 'FIRST. THESE LINES WOULD JUST ABOUT' '
1291 GOSUB 9996 : REM L INE ADDED FOR VIC OPERATION * * *
1291 GOSUB 9996 : REM L INE ADDED FOR VIC OPERATION * * *
1300 PRINT' 'FILLAVIC SCREEN NOW, AND NEEDED TO'"
1300 PRINT' 'FILLAVIC SCREEN NOW, AND NEEDED TO'"
1310 PRINT ' 'BE STOPPED BY THE ADDED L INE 1291''
1310 PRINT ' 'BE STOPPED BY THE ADDED L INE 1291''
1320 PRINT' 'TOSTOP IT FOR READING. NOW, YOUMAY'"
1320 PRINT' 'TOSTOP IT FOR READING. NOW, YOUMAY'"
1330 PRINT' 'NOT NEED THIS TRICK IF YOU ARE AN' '
1330 PRINT' 'NOT NEED THIS TRICK IF YOU ARE AN' '
1340 PRINT' 'EXCELLENT SPEED READER, BUT THE REST''
1340 PRINT' 'EXCELLENT SPEED READER, BUT THE REST''
1350 PRINT' 'OF US SURE DO!''
1350 PRINT' 'OF US SURE DO!''

## TABLE II

PET
VIC
C-64
53272,23
UPPER/GRAPHICS
POKE 59468, 12
36869,192
53272,21
then APPEND. This may be necessary in the case of large C-64 programs since all of the PET's memory is then utilized.

VIC and PET data handling on cassette is excellent. If you are having data (or program) problems with your cassette, have the head aligned at 10 kHz using a standard audio test tape. Timing problems cause C-64 handling of cassette data to be shaky. If you have to work with large amounts of data, use a disk, which is very reliable.

Long Lines. You may be aware of the VIC's 88 -character $(4 \times 22)$ line length. Will VIC programs with lines this long fit into a PET or C-64, both of which have 80 -character program lines? The answer is yes, they will fit, and the excess won't be unceremoniously dumped into that great bit-bucket in the sky. There is one limitation: The PET and C64 screen editors won't handle more than 80 characters, so you've got to be tricky in editing the longer VIC lines in those machines.

There are two things to do: Read the section of the VIC manual that shows how to abbreviate BASIC keywords with a letter followed by a shifted second letter, and then use this shorthand to create lines of 80 characters or less. Such lines will expand to more than two lines on the 40 -character screen when listed, which is all right. They must be entered on two lines, however, or the wraparound past the second line will disappear

The following example will make this
clearer. Consider this VIC line:

```
30440 CLOSE2:CLOSE3
 PG$="":RESTORE
 AT=PEEK(1): INPUTB$
 PRINTRIGHT$(C$,3):
 FORI 1=0TO1250
```

This line is 85 characters. Let's say that you are editing it on a C-64 and you want to change the 1250 to 1750 . If you simply edited the change, the last few characters would be over the editor's 80 -character limit, and those characters would be lost. Try it and you'll see. Now try reentering the line this way:

```
30440 CL[shift-0]2:CL
 [shift-0]3:PG$=
 "":RE[shift-S]:
 AT=P[shift-E](1)
 INPUTB$:?R[shift-I]
 (C$,3):F[shift-0]
 l1=0TO1750
```

Agreed, this is shifty, but when you enter the above with single-shifted characters in place of the brackets, the line will be only 65 characters and will fit easily within the two-line limit. Try it, then list it. The listed version will run over onto a third line on the screen. The loop value will be 1750 . The impossible edit has just been made.

Conversions to Avoid. There are times when the chances for a successful conversion are less than if you were to rewrite the program from scratch. Let's
identify these turkeys so you won't waste a lot of time.

Be sure that all of the program you are converting is practical to replace. If it has machine-language sections and you aren't interested in machine-language programming, then avoid it. If you are interested in machine language, then by all means give it a try, as the conversion of existing routines is one of the very best ways to learn any kind of programming.

If the program runs on a C-64 and uses sprites for graphics, then you won't be able to duplicate them in any VIC or PET program. Any substitute you come up with will be much slower and will move around in increments of one character, not one pixel. On the other hand, the use of sprites in a program converted for use on a C-64 may allow for significant enhancement. This is well worth doing, and there is always extra room in a C-64 when any VIC or PET program is loaded in.

If the program features sound, then be prepared to rewrite the whole thing. There is virtually nothing that will transport from machine to machine. Atari 800 sound programs would be just as close!

If the conversion is to a VIC, then the
limited size of the VIC's screen must be considered. Watch out for one other quirk also: The VIC screen editor will wrap up to four lines together. This is because of the 88 -character VIC logical line and is due to a system bug. This then produces blank lines that you didn't program in and don't want. To avoid this, only print lines on the screen that are less than 22 characters long. Any character in the 22nd space sets the wraparound and brings on the problem. The screen is small enough already without the extra blank lines.

Simple Conversions. If a program performs lots of calculations-trig functions like SIN or TAN, string manipulations like LEFTS or RIGHTS, math functions like log or EXP, useful things like RND, DEF FN or the clock, TI\$-these are identical for all the machines and will run perfectly on any one. The only exception is the RND function (often used in games) where the seed may have to be changed. If you start with the same "random" sequence each time and your program has the command RND(1) in it, then change it to RND( -1 ) and a truly random sequence will be delivered each time in all three machines.

If you have data stuffed everywhere in floating point, integer, or stringsubscripted arrays, then convert with confidence. These arrays are very powerful ways of handling data and will look like $\mathrm{A}(\mathrm{X})$ or $\mathrm{B} \%(\mathrm{X}, \mathrm{Y})$ or $C \$(X, Y, Z)$ or even $D(X, Y, Z, T)$. All of these machines handle these important arrays in the same way and your data and results will be identical.

You may wish to temporarily stuff a program from one type of Commodore computer into another just to take advantage of enhancements it might have like RENUMBER, FIND, or REPLACE. Or, your objective may be to permanently convert a program running on one of these machines to work on another. The information above will show you how to do this.

Some conversions are simple, and the information above may lead you to them right away. Others are more difficult and a cost-to-benefit analysis is very much in order. Don't forget to consider the added knowledge that you will gain from doing the job. If you have the interest, then converting something that already works so that it will work on some other machine is one of the best ways to learn any phase of programming.

PROFESSIONAL SOFTWARE FOR MICRO'S

* Insurance Agency Management
* Medical Office Management
* Dental Office Management
* Property Management
* Legal Time Accounting
* Professional Time Accounting


Runs On CP/M, CP/M-86 \& MS-DOS
UNIVAIR INTERNATIONAL 9024 ST. CHARLES ROCK ROAD ST. LOUIS.MISSOURIU.SA. 63114
(314) 426-1099


Dealers
Welcome

## THE ELECTRONICS SCIENTIST



> Rediscovering the Transistor
> Low-Budget Radio Control Output Interface for a Digital Timer

## By Forrest M. Mims, III

Chances are the last circuit you assembled used one or more integrated circuits and few, if any, transistors. That's because falling prices and a wealth of functions have made integrated circuits so pervasive that circuits employing discrete transistors alone are fast beconning rare.
Nearly all the circuits I design and build use integrated circuits. However, while writing a new book last summer ("Getting Started in Electronics," Radio Shack, 1983), I was reminded that there remain many simple applications for which individual ransistors are ideally suited

In this column we'll examine several simple but very useful transistor circuits you may have overlooked in favor of more complicated integrated circuit versions. We'll also compare a few transistor circuits with versions made with IC's to determine if the transistor versions are indeed simpler
Next, we'll experiment with an inexpensive radio control module kit with many possible applications. Finally, we'll greatly expand the capabilities of a midget digital timer by adding a do-ityourself output interface.

## Rediscovering the Transistor

With the availability of literally hundreds of different kinds of integrated circuits, it's common to design even the simplest circuit around one or nore

IC's when a transistor or two would suftice. For example, the usual way to drive a meter or trigger a relay in response to a changing voltage or current is to use an operational amplifier or comparator. Often the same function can be performed with one or two transistors
Another common example is the pulse generator. Most designers use a timer, such as the popular 555 or a pair of cross-coupled gates, when a simple pulse generator is required. Often, however, a simple two-transistor circuit will perform the same function with fewer components.
Let's look at several practical examples of how a simple transistor circuit can provide some or all the functions of an integrated circuit version. I think you'll agree with me that simple transistor circuits still have an important role to play in electronies today

Moisture Detection Circuits. If asked to design a moisture detection circuit, the typical design engineer will use an op amp or comparator as the principal active circuit element. Figure I shows a much simpler approach.

The ultra-simple circuits in Fig. 1 each use a single bipolar transistor as the active element. Most common silicon npu small-signal transistors (2N2222, 2N3904, etc.) can be used.

The moisture meter can be used to measure the level of moisture in a flower pot or in garden soil. Probes can be made from nails or, even better, stainless steel wire. The circuit is calibrated by adjusting $R 2$ for a meter reading of 1 milliampere when the soil moisture is at the desired level.

The moisture-activated relay in Fig. I is a modified version of the moisture meter. The relay is actuated when the moisture level exceeds the level determined by $R 2$. If you replace the sensor probes with a circuit board upon which has been etched an interlacing, conblike grid, the circuit will be actuated when a rain-drop bridges the gap between the two foil patterns.
It's interesting to compare these circuits with integrated versions. The most obvious difference is cost. A suitable transistor can be purchased for under 15 cents if you're willing to pay a dollar or two for a bag of a dozen or more.

Another advantage of the transistor version is simplicity. A transistor has only three connection leads, while connections must be made to at least five of the eight pins of a typical op amp. Furthermore, since most transistors are equipped with leads rather than pins, the transistor moisture detection circuits can be easily assembled on a perfo-
rated board the size of a postage stamp.
Finally, at least one of the transistor circuits can be powered by a pair of penlight cells. (The relay circuit requires more voltage to drive the relay.) Though CMOS op amps that can be powered by as little as a volt or two are available, they are far more costly than a single transistor.

## A Two-Transistor Metronome/Tone

Source. Figure 2 shows a simple metronome circuit that, together with its two transistors and a speaker, includes only


## TO KEEP UP WITH TODAY'S'm mand TECHNOLOG ${ }^{5}$..YOU HAVE <br>  <br> When you turn to Computers \& Electronics, you're reading the world's foremost publication covering the microcomputer industry where last night's discovery is today's technology. Computers \& Electronics is your direct link to state-of-the-art information in: <br> Microcomputer Developments <br> Whether you're investing $\$ 300$ or $\$ 3000$, turn to Computers \& Electronics first. You'll find candid test reports of all major new microcomputers... from the Commodore 64 to the Apple ${ }^{\text {Tm }}$ ile to the IBM-PCXT. And you'll discover which unit has the power,

 software and expansion capability to meet your specific needs. At your specific budget.
## New Peripherals and Software

Micro programs and add-ons are increasing almost geometrically. Let Computers \& Electronics sort it all out for you.
You'll get features like a buyer's
 guide to printers. A preview of the first workable economical thesaurus program that runs on virtually any CP/M-based system. Advance looks at new producfs like a joystick for Visicalc ${ }^{*}$... disk drive assemblies... a color monitor for the IBM-PC.

## Increase Your Computer Science I.Q.

Computers \& Electronics will enlighten you with easy-to-understand discussions of computer fundamentals. Such as the series on learning 16 -bit microcomputer technology and an in-depth look at the structure of $\mathrm{CP} / \mathrm{M}$. You'll also delve into the future with articles like Super Chip: next-generation personal computers with double the performance at a lower price.

six components. Ordinarily the ubiquitous 555 timer is used to make a simple circuit like this. However, the 555 version also requires six components (assuming it, too, employs a resistor in series with its frequency-control potentiometer).

Many common silicon switching and small-signal transistors can be used for $Q 1$ and $Q 2$ in Fig. 2. The click rate can be adjusted by adjusting $R 1$ or changing Cl's value. Since the transistors have leads rather than pins, it's easy to build this circuit on a small perforated board.

FET Electrometer. The electrometer in Fig. 3 is a good circuit to try on a dry winter day. Though it uses only four components, its meter will indicate the presence of static charges up to several feet away. The circuit I tried, for instance, can detect from several feet away the presence of a plastic comb which I charged by stroking through my hair. Even very small movements of the charged comb will cause the meter needle to respond in kind. Potentiometer $R 2$ allows the circuit to be calibrated.

You can make a permanent version of the electrometer to check for the pres-

Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through


No commuting to class. Study at your own pace, while continuing your present job. Learn from easy-to-understand lessons, with help from your home-study instructors whenever you need it.

In the Grantham electronics program, you first earn your A.S.E.T. degree, and then your B.S.E.T. These degrees are $a c^{-}$ credited by the Accrediting Commission of the National Home Study Council.

Our free bulletin gives full details of the home-study program, the degrees awarded, and the requirements for each degree. Write for Bulletin ET-84.
Grantham College of Engineering 2500 So. LaCienega Blvd. Los Angeles, California 90034

ence of static electricity near computers and other devices that can be affected by electrostatic discharges. For best results, install the circuit in a plastic box. A circuit board will not be necessary, since the leads of the FET and R1 can be soldered directly to the meter and the potentiometer. Q1 should be placed near the top portion of the box. A short, stubby "antenna" wire should extend from the top of the box.

More sophisticated electrometers can be made with CMOS op amps. But they are more costly, trickier to design, and harder to construct. For a simple indication of the presence of static electricity, the ultra-simple single FET circuit in Fig. 3 may be a better choice.

A FET Timer. When faced with the need to design a timer, I inevitably use a 555 or its CMOS counterpart, the 7555. For brief timing durations of a few minutes, the simple FET circuit in Fig. 4 may be a better choice. Certainly, it's simpler, easier to build, and less expensive.

In operation, when $S l$ is switched to RESET, $C 1$ is charged to near the power supply voltage through $R 2$. When $S 1$ is switched to Time, $C l$ is slowly discharged through $R 2$. Eventually, the
voltage on $C 1$ falls low enough to allow Q1 to switch on, thus allowing the piezoelectric buzzer to sound.

Power MOS Timers. VMOS, TMOS, DMOS, and other MOSFET power transistors can be used to make more effective, longer duration timing circuits than the simple FET version in Fig. 4. Thanks to the ultra-high-impedance input of the MOSFET, time delays of up to half an hour or even longer are possible. And, again, the necessary circuitry is simpler than an IC version using the 555, 7555 or similar timer chips.
Figure 5 shows two simple timers in which a power MOSFET (Q1) plays the key role. $Q 1$ can be a VN10, VN67, IRFD-1Z3 or other common power MOSFET.
The circuit in Fig. 5A is an "Off After Delay" timer. In operation, the piezoelectric buzzer is normally off. When $S l$ is momentarily closed, however, $C 1$ is charged, thus switching on $Q 1$ and the buzzer. When Cl eventually discharges through natural leakage paths, transistor Q1 switches off and silences the buzzer.

Very long time delays are possible when $C l$ has a high capacity. For best results, use a capacitor having a very
low-loss dielectric. To control the timing cycle, you can add a resistor across C1. This resistor, RI, will provide a discharge path for the charge on $C 1$.

Figure $5 B$ is a modified version of the circuit in Fig. 5A. Here a bipolar transistor (Q2) inverts the switching status of $Q 1$, thus providing an 'On After Delay" operating mode. In this case, the piezoelectric buzzer sounds after the time delay is complete.
Though I used a piezoelectric buzzer in both circuits in Fig. 5, you can use a relay, small lamp, motor, portable radio or other device. In any case, do not exceed the power rating of Q1 in Fig. 5A or Q2 in Fig. 5B. The latter circuit includes a series resistor ( $R 3$ ) to limit current through $Q 2$ and the piezoelectric buzzer. If it's necessary to reduce the drive current in the circuit in Fig. 5A, insert an appropriate series resistor between the positive supply and the controlled device.

## Low-Cost Radio Control

Ever since I began experimenting with aerial photography from kites and balloons, I've maintained an active interest in low-cost radio-control equipment. In a previous installment of "Experimenter's Corner" in this magazine (January 1983), I described in some detail two moderately priced radio-control systems with which I've experimented. I also related how I used a simple radio-control system salvaged from a toy car as well as standard radiocontrol systems to control an airborne Kodak disc camera.

After experimenting with various kinds of radio-control systems, I found that those having both a crystal-controlled transmitter and receiver are far more reliable than those in which only the transmitter is crystal controlled.

Generally, the cheap systems used in ra-dio-controlled toy cars do not have a crystal-controlled receiver.

My preference for crystal-controlled receivers is due to the serious noise and interference problems that often occur. Since a non-crystal-controlled receiver is broadly tuned, it may detect signals from CB radios and other sources being broadcast on nearby frequencies.

Though the commercial radio-control systems having crystal-controlled receivers are generally far superior to their non-crystal-controlled counterparts, there are some applications in which interference may not pose a serious problem. In these cases, if you have a need for a very low-cost radio control system, you may wish to consider a pair of pre-assembled remote control modules recently offered for sale by Radio Shack (catalog number 277-1012). These circuits appear very similar to those used in inexpensive radio-controlled cars.

The modules, which are sold together, include a crystal-controlled transmitter and a non-crystal-controlled receiver. The transmitter board is $1^{\prime \prime}$ wide and $3.6^{\prime \prime}$ long. The receiver board is $1.4^{\prime \prime}$ wide and $3^{\prime \prime}$ long. Both modules are powered by a 9 -volt battery. In addition, the receiver requires a pair of 1.5 volt cells if the circuit is to drive the two small dc motors for which purpose it was originally designed.

Figure 6 is a block diagram showing both the transmitter and receiver. The transmitter consists of a $27.145-$ megahertz crystal-controlled oscillator which drives a single-stage radio-frequency amplifier. A two-transistor multivibrator modulates the amplifier with several switch-selectable combinations of audio-frequency control signals.

Figure 7 shows the circuitry of the


Fig. 6. Block diagram of remote-control module pair.


## Largest Selection of Equipment Available

 \$Buy Warehouse Direct \& Save \$

Send $\$ 2$ for complete catalog of converters and equipment Quantily Discounts - Visa • Master Charge Add $5 \%$ shipping - Mich, residents add $4 \%$ sales tax

CAD Electronics, Inc.<br>P.O. Box 21, Jenison, MI 49428<br>(616) 609-2440



Model D10685

Ideal for Arcade games, oscilloscope test equipment.
$\$ 24.95$ (plus $\$ 5.00$ shipping charge)
$\rightarrow-$
AUDIO
CASSETTE TAPE
90 minutes of recording $\$ .75$ ea. (in lots of 10 )


Model F10689


CREDIT CARD SIZE
CALCULATOR
Smaller than average
credit card, 3/8" thick. Large keys for easy use. Adds, subtracts,multiplies, divides, sq. rt., percentage, \& memory $\$ 4.95$ ea.

OY STICK" VIDEO AME CONTROLLER Fits Atari video game, Sears video arcade \& others.
$\$ 5.91 \mathrm{ea}$.
Model F10584

## ELECTRONICS INTERNATIONAL <br> P.O. BOX 3919

SARASOTA, FLORIDA 33578
WRITE FOR FREE CATALOG. \$10 Minimum Order
Many other VCR audio \& electronic items
Circle No. 10 on Free Information Card

## CALCULATOR SAVINGS

 Call tor Low Pricas on all Accesaorles and Soltware
II CC-40 Compact 6K Expandable Computer . $\$ 199.99$ CC-40 Solid State Solifware. TI-55-II Scientific Calculator w/ Statistics LCD Programmer Hexadecimal Convertor TI-5310 Desk Printing Financial

Shird PC. 1250 Pocket Extended BASIC Computer CE- 125 Printer/Microcassette for PC- 1250
PC- 1500 Advanced Handheld Computer PC-1500 Ad Advanced BK Handheld Computer CE- 150 Cassette Intric/4-color Printer Plotter CE-151 4K Memory for 1500/A.
CE-155 8K Memory Expansion Box for 1500/A CEE-158 RS-232C \& Parallel Interface for 1500/A CE-161 16K Memory Expan with Battery Back-u PC. 1500/A ROM Software Modules
Casie FX-700P Handheld Computer. 1568 steps
FA-3 Cassette Adapter for FX-700P. FP- 1220 -column printer tor FX-700P FX-98 Credtt card Solar Scientific Calculator FX-450 Sclentific Calculator with Hexadecimal IE-2500 Spanish Translator Wateh. CFX-20 Scientific Calculator Watch 49.99
.34 .99
.99 .99
49.99 88
88
8

 ORDER 800-421-5188 TOLL-FREE


Tam's Inc, Dept
14932 Ga, Dept CE-
14932 Garfield Ave. Paramount, CA 90723 (213) 633-3262
transmitter's oscillator (Q2) and r-f amplifier (Q1). Transformers $T 1$ and $T 2$ can both be adjusted for peak operating performance. For simplicity, Fig. 7 shows the audio-frequency modulator as a function block. I'll have more to say about the modulator later.

The receiver consists of an inductive-ly-tuned (non-crystal) radio-frequency amplifier and detector followed by a stage of audio-frequency amplification. Two filters and a network of output driver transistors complete the circuit.

In its intended operating mode, the receiver's output stages are connected to two small dc motors. One motor, the one which propels the toy car, is always on when the receiver is on. It propels the car in a forward direction when the transmitter signal is tone-modulated. When the carrier from the signal is not modulated, the motor's direction of rotation is reversed, and the car is propelled backwards.

The second motor controls the direction of travel. It steers the car either left or right, depending upon which of two modulation frequencies is selected.

Figure 8 is a simplified view of one of the two receiver's motor drive circuits. Depending upon the control signals at the inputs to each output stage, the polarity of the voltage at output terminals A and B is reversed. See the truth table in Fig. 8 for details.

Incidentally, the circuit in Fig. 8 can be implemented with power MOSFETs. I once described one way this can be done in a "Project of the Month" column for this magazine (October 1982).

Modifying the Transmitter. In this month's lead topic I discussed the advantages of using discrete transistors rather than integrated circuits in some
simple circuits. Radio Shack's radiocontrolled modules, however, go too far. Both circuits use transistors exclusively, the receiver having 18 of them!

Although both the transmitter and receiver work well, I decided to modify the transmitter to permit transmission of a much wider range of carrier signals. I also designed a relatively simple circuit that replaces the mechanical switches used to control the carrier tone with logic signals. The external modulator circuit shown in Fig. 9 illustrates the latter circuit.

Though the transmitter's on-board, two-transistor multivibrator can be modified, I chose to use a 555 timer IC. This is a good example of where an IC


Fig. 8. Receiver polarity reversal output stage.


Fig. 7. Radio Shack remote-control transmitter.
provides more versatile operation than a transistor version.

In operation, the 555 oscillates at a frequency determined by $R 2$ and $C 1$. Logic signals at inputs A and B determine which of two values of $R I$ is selected, thereby controlling the modulation frequency. The output from the modulator (pin 3 of the 555) should be connected directly to the 68 -ohm resistor shown as $R 2$ in the circuit diagram supplied with the transmitter module. Use the transmitter's 9 -volt battery to power the circuit.

You can easily modify the modulator circuit in Fig. 9 by changing the values of $R 1, R_{2}^{2}$, and C1. For fast carrier-frequency changes, you can substitute potentiometers for $R 1$ and $R 2$. The receiver can also be modified.

Modifying the Receiver. Though the Radio Shack receiver was designed to drive small dc motors, it will also drive other devices. Figure 10, for example, shows how it can be used to drive a pair of tricolor LEDs.

It's very simple to connect the LEDs to the receiver module. Be sure to use the two series resistors to limit the current to the LEDs to a safe value.

The truth table in Fig. 9 shows the various color and on-off combinations of the two LEDs for all four logic combinations that can be applied to inputs A and B. Of course, the LEDs will also respond to the various control combinations available from the unmodified transmitter.

Gaing Further. If you're interested in



Now you can use this ONE power-feed shop to turn rough lumber into moldings, trim, flooring, furniture -ALL popular patterns. RIP-PLANE-MOLD. . separately or all at once with a single motor. Low Cost You can own this power tool for only $\$ 50$ down. 30-Day FREE Trial! $\begin{gathered}\text { SEND FOR } \\ \text { SXCITNG }\end{gathered}$ NO OBLIGATION-NO SALESMAN WILL CALL RUSH COUPON FOLEY-BELSAW CO TODAY! 90396 FIELD BLDG


Foley-Belsaw Co. 90396 Field Bldg Kansas City, Mo. 64111
$\square$ YES ${ }_{\text {PLANER }}^{\text {Please send me complete facts about }}$ PLANER-MOLDER-SAW and details about 30 -day trial offer.
flame
Address
city
State
Circle No. 13 on Free information Card

puby laser ray gun - intense visible red beam, burns and welds the hardest metals. HAZARDOUS device. Kils availabie.RUB3PLANS CARbon dioxide burning and cuting Laser - produces a continuous beam of energy. HAZARDOUS device - Kits aval. visible lasea light gun - produces intense red beam for special effiects and other various optical applications. Hand-held LGU3 PLANS $\$ 10.00$ LGU3K KIT/PLANS (minus tube) $\mathbf{5 9 9} .50$ R PULSED LASER RIFLE 9000 at $200-2000$ per second BEGINNER POCKET LASER KIT/PLANS (minus diode) S 119.50 duces an excellent monochromatic source of light.LHCZ PLANS.. $\$ 5.00$ LHC2K... KITPIANS. $\$ 24.50$	
	ilgh energy variable and programmable pain field GENERATORS. REOUIRE NO CONTACI - Recently developed device produces directional fields of moderate to high SPL capa le of producing intense pain and discomtort. haZARDOUS IF NOT USEO WITH OISCRETION SOLO FOR ANIMAL CONTROL MAY BE USED IN CERTAIN INSTANCES TO DISCOURAGE UN WANTED ENCOUNTERS    Phasor burning wano - capable of burning flesh. gener-      PARALYZING SHOCKING WAND - produces 100,000 walt pulses of stunning power GIIW. PLANS $\$ 10.00$ PGIWK KIT/PLANS $\quad \$ 79.50 ~$ Above elecirical devices are hand-heid and may be used for PERSONAL DEFENSE
	SNOOPER PHONE - allows user to call his premises and listen In without the phone ever ringing.   SNP2. . PLANS. . 57.00 SNP2K . . KIT/PLANS. $\$ 49.50$ LONG RANGE WIRELESS MIKE - miniature device clearly transmils over 1 mile.   WIRELESS TELEPHONE TABTMK. KIT/PLANS $\quad \mathbf{5 3 4 . 5 0}$ WIRELESS TELEPHONE TRANSMITTER - long range all automatic. undelectable.   talk PLans 57.00 VWPM5K. KIT/PLANS. $\$ 34.50$ TALK AND TELL - clearly and automatically records boin sides ol a relephone conversation when phone is being used.   TAT2K KIT/PLANS $\$ 14.50$ TAT20 READY TO USE $\$ 24.50$
	TO: SCIENTIEIC SYSTEMS   TO: SCIENTIFIC SYSTEMS   DEPT O1, P. O. BOX 716 AMMERST. NH 03031

experimenting with these low-cost ra-dio-control units, by now you may have already thought of other possible modifications. Besides electronic modifications and enhancements, you can physically modify the circuits so they will better fit a pair of small enclosures.

The transmitter is particularly wellsuited for physical modification since the carrier modulator and r-f oscillator are at opposite ends of the circuit board. It's a simple matter to cut the board in half and mount the r-f oscillator section on a separate board upon which you can then assemble an IC modulator like the one in Fig. 9. Or you can stack the two halves of the existing board to form a more compact transmitter assembly.

Summing up, this pair of radio-control modules offers many possibilities for experimentation. Be sure to keep in mind the limitations of the receiver and the low power of the transmitter. For applications requiring more range and better noise and interference immunity, spend more money and buy a system that's completely crystal-controlled and includes on-board noise rejection circuitry.

## Adding an Output Interface to a Digital Timer

One of the handiest gadgets in my office is a West Bend Electronic Timer ${ }^{\prime \prime \prime}$. This compact, crystal-controlled device is a digital countdown timer that sounds an alarm at the conclusion of a preset, user-programmable interval. The interval can range from 1 second to 99 min utes and 99 seconds.
Figure 11 is a pictorial view of the timer's front panel. The unit is operated by keying in the desired interval and pressing start. When the count reaches 00 M 00 S , the timer emits a rapid series of attention-getting chirps. The chirps will sound for one minute or until the STOP/RESET key is pressed
The countdown can be halted temporarily by pressing stop/reset. The countdown will resume when START is pressed. Pressing stop/reset twice clears the display to 00 M 00 S .

Adding Output Leads. On the back of the timer is a handy clip that allows the unit to be attached to a belt or pocket. It also functions as a desk stand. A magnet in the clip permits the timer to be temporarily attached to a metal surface.

Just below the bottom of the clip is a small Phillips screw. When this screw is removed, the back panel of the timer can be gently pried away from the front
panel by inserting a flat screwdriver blade in the continuous, thin slot that separates the two panels. Be sure to pry along the bottom slot near the screw hole to avoid breaking the plastic snap retainers on the inside, upper edge of both panels.

After you lift the back panel away, temporarily set aside the power cell. Note the wires leading to a cylindrical component in the back panel. This is the piezoelectric alerter. The volume of sound that can be delivered by an alerter so small is truly remarkable.

Use a grounded or battery powered soldering iron to remove both alerter leads from the circuit board. Wrap appropriately colored lengths of wrapping wire around the exposed wires of each lead, solder in place, and then solder the two pairs of connection wires back to their original locations on the circuit board. Be sure to solder the leads to the correct locations, for if their polarity is reversed the alerter will not sound

Drill a small hole in the timer's back panel. Then thread the two wrapping wire leads through the hole and replace the back panel. Be sure the battery contacts are properly aligned before replacing the screw. (You can see the contacts by removing the battery cover on the back panel.)

Replace the battery (plus polarity side up) and check the timer for proper operation. Now you are ready to assemble the interface circuit.

An SCR Interface. The timer alarm signal consists of approximately eight bursts per second of 125 -microsecond pulses having a 2.4 -volt peak-to-peak amplitude. The pulses have a frequency of 4 kilohertz. Figure 12 shows a simple SCR interface that switches on upon arrival of the first pulse and remains on until manually reset.
The SCR alone can control loads up to its rated capacity. I used a relay to
provide isolation between the timer and the load and to increase the circuit's switching power. $D I$ reduces the possibility of $8-\mathrm{Hz}$ chatter while the timer's alarm is sounding. $D 2$ protects the SCR from reverse voltage developed across the relay's coil when the reset switch is opened.

Not all SCR's will be reliably triggered by the timer's alarm signal. I had good results with Motorola's SCR 1128 and Radio Shack's 276-1067.

Incidentally, you're on your own when you modify a manufactured electronic device such as this timer! Any warranty may be voided. And you must exercise caution to avoid damaging the timer's internal circuitry. You must also use caution and follow appropriate safety requirements should you use the modified timer to control line-powered devices.

Interface Applications. You can use the modified timer to control a darkroom enlarger, outdoor lighting, battery chargers, appliances, radios, and television sets. For best results, install the interface and relay on a small board and mount it adjacent to a 9 -volt battery holder in a suitable enclosure. Provide


Fig. 11. Front panel
of West Bend timer.

suitable plugs and jacks for connecting the timer to the interface and the interface to the device being controlled.

The timer can be clipped to a suitable shoulder or extension on the interface enclosure. Alternatively, you can use adhesive-backed squares of hook and loop fasteners. This will allow you to remove the timer when it's not being used to control the interface.

WARNING: You must follow safe wiring procedures if you use this circuit to control devices powered by the household line. Insulate all exposed connections. Do not exceed the contact ratings of the relay. The timer and interface should not be used for any application in which a circuit malfunction might cause injury to people or property.

Going Further. The timer I used is made by The West Bend Company (Box 1976, West Bend, WI 53095). I purchased mine at a department store for about $\$ 12$.

Recently I've seen advertisements from three other companies showing timers having an almost identical appearance to the West Bend unit, but selling for as much as $\$ 29.95$ ! You may be able to modify these and other digital timers with the help of the circuit in Fig. 12. In any case, shop around for the best buy. You may save more than enough to pay for the interface circuit . . . and possibly enough to buy a second timer!

## A New Fiber-Optic Breakthrough

For the past decade, several major telecommunications companies and laboratories have engaged in an unofficial contest to establish a world record for the transmission of lightwave communications through the longest length of uninterrupted optical fiber. The signal must not be boosted along its path by the use of lightwave repeaters or regenerators.

The winner of this contest changes every few months and sometimes more often than that. The previous champion, Bell Laboratories, held the record for four months. Recently, however, scientists at Japan's Nippon Telegraph and Telephone announced a new record at a Tokyo conference on lightwave communications. The Japanese scientists successfully transmitted a 445.8-megabits-per-second signal through an optical fiber 134 kilometers ( 83.27 miles) long!

The optical source for this latest telecommunications achievement was a
state-of-the-art distributed-feedback laser emitting at a wavelength of 1.53 micrometers in the near-infrared. At this wavelength, the optical fiber used in the demonstration had an optical attenuation of only $0.23 \mathrm{~dB} / \mathrm{km}$.

Incidentally, while the Japanese record may stand for a while, it will inevitably fall before the onslaught of new technological advances. Though the eventual distance record for conventional sources and fibers may not far exceed the recent Japanese figure, new sources and fibers designed to operate farther into the infrared may eventually provide repeaterless links of up to a thousand miles or more!

## Device <br> Developments

An Integrated Tone Ringer. Motorola has introduced the MC34012 tone ringer IC, the latest in a rapidly growing family of chips designed for telephone applications. The MC34012 permits the heavy and bulky electromechanical bell assembly in a conventional telephone to be replaced by a piezoelectric alerter.

In operation, the MC34012 is powered by the ac ring signal transmitted through the telephone line. The chip rectifies this signal and generates a square wave that drives the alerter. The chip's internal oscillator and frequency dividers provide a $12.5-\mathrm{Hz}$ warble and tones that alternate between a high and low frequency. The sound volume can be adjusted by means of an external potentiometer between the chip and the alerter.

Telephone circuitry and equipment must be highly reliable and remain unaffected by voltage transients that may arrive through the telephone line. The MC34012 incorporates an internal SCR that fires when the on-chip voltage regulator draws more than 50 milliamperes, thereby protecting the chip's input circuitry.

Though primarily intended for telephone applications, the MC34012 would make an ideal sound generator chip for any kind of electronic, audible warning device. Three different versions of the chip in 8-pin miniDIP packages are available: $400 / 500 \mathrm{~Hz}, 800$ / $1000 \mathrm{~Hz}, 1600 / 2000 \mathrm{~Hz}$.

When this chip reaches the experimenter market, it should be reasonably priced because it sells for only $\$ 1.24$ in quantities of 100 . As soon as I can obtain a sample, I'll experiment with it and relate the results in a future column.

## Build Your Own

 IBM-PC Compatible:Here are the boards, assembly instructions and parts you need. . . plus full back-up service from Netronics!

Complete instructions show you how to build an IBM PC compatible that can run ANY-not just "popular"-IBM-PC programs!
Motherboard functionally duplicates IBM-PC...fea tures $1 \mathrm{BM}-\mathrm{PC}$ compatible BIOS ROM plus five empty sockets for ROMs of your choice. Sockets will accept IBM-PC PROMs or other PROMs.
Instructions include step-by-step procedure for transfer fing ROMis from a pe onto a floppy disk, which can then be mailed away for ROM duplication.
Board kits include printed curcwit board, some hard
to-get parts, and detailed assembly instructions.
Complete kits include printed circuit boards, all
parts, and detailed assembly instructions.
Manuals only, $\$ 5.00$ per kit.
IBM-PC Compatible 16-bit Motherboard with IBM compatible BIOS ROM- $\square$ Board kit, \$89.95/ $\square$ Complete kit, add \$140.00
IBM-PC Compatible Keyboard in cabinet (wired \& tested). $\$ 229.95$
$64 \mathrm{k} / 256 \mathrm{k}$ Memory with serial port with DB-25 connector $\square$ Board kit ( 64 k ), \$39.95/[ Complete kit ( 64 k ), add $\$ 134.00 / \square$ Each additional 64 k block (to 256 k ), add $\$ 75.00$
Four Drive Disk Controller with hard disk SAS1 interface, parallel printer port, clock/calendar- $\square$ Board kit, $\$ 69.95 / \square$ Parts for Four Drive Disk Controller, add $\$ 130.00 / \square$ Parts for Parallel Printer Port, add $\$ 30.00$ $\square$ Clock/Calendar, add $\$ 45.00 / \square$ SASI Interface, $\$ 50.00 / \square$ All 4 functions wired and tested, $\$ 329.95$.
IBM-PC Compatible Color Board (or B\&W) - $\square$ Board IBM-PC Compatible Color Board (or B\&W)- $\square$ Boa
kit with ROM, $\$ 89.95 / \square$ Wired and tested, $\$ 299.95$. Printer/Spooler Board with 64 k buffer, clock calendar, parallel printer ports-D Board kit with ROM, $\$ 49.95$
Modem Board, 300 BPS, direct connect/originate/auto dial/auto answer plus 2 serial ports- $\square$ Board kit with telephone company connectors, \$49.95
Power Supply $\square$ Complete kit, \$179.95/ $\square$ Extra nower for hard disk option, add $\$ 20.00$
$\square$ Cabinet for PC, steel with brushed aluminum front panel and simulated oak cover, $\$ 199.95$
$\square 51 / 4 "$ Disk Drive, DSDD (wired \& tested), $\$ 269.95$ $\square 10$ Megabyte Hard Disk with controller \& softwar (wired \& tested), \$1295.50
Netronics offers complete service deparment to customers

## TERMINALS

(Terminals require ASCII keyboard and power supply.)
$\square$ Power fransformer for either terminal, $\$ 9.95$
SmartVid Deluxe Terminal, 80 characters by 24 lines, mi croprocessor controlled with editing, reverse video and more- $\square$ Board kit (includes board, character generator, video controller, 2 k system ROM), \$99.95/ $\square$ Complete kit add $\$ 100.00$
FastVid Deluxe Terminal, 64 or 32 characiers $\times 16$ lines, baud rate to 19 kilobaud- $\square$ Board kit (includes controller, character generator, and PROM), \$49.95/ $\square$ Complete kit, add $\$ 50.00$

SPEECH
Electric Mouth Apple/S. 100 Speech Board, with National NSC Digitalker speech chip- Apple/ $\mathrm{S}-100$ (Please check your choice.)/G Board kit (wilh Digitalker and 150 word vocabulary set), $\$ 69.95 / \square$ Complete kit, add $\$ 30.00$ 口 2nd Word Set (iso words), add $\$ 39.95$ SpeakEasy Universal Talking Board, operates with computers and terminals or in the stand-alone mode. Uses same power supply as terminals (see above). $\square$ Board kit (includes VORTRAX speech chip and system ROM), $\$ 89.95 / \square$ Complete kit, add $\$ 60.00 / \square$ Cabinet, add $\$ 15.00$

## S-100 DYNAMIC RAM BOARD

16k/64k RAM Board uses popular 4116 chips- $\square$ Board kit (includes 8202 controller), $\$ 69.95 / \square$ Complete ki ELF II BEGINNER'S PAK
ELF II is a complete 256 byte, fully expandable learning computer with excellent documentation that explains hardware and software fundamentals, Learn to program in machine language! Learn the essence of how all computers operate and "think"! If you can afford to think about an 1BM-PC or IBM-PC compatible, you can' afford nor to have an ELF 1 ! beginner's pak! $\square$ Complete kit, \$139.95
USE YOUR CREDIT CARD! CALL TOLL FREE 1.800 -- 243-7428 (In Connecticut call 203-354-9375)

To order by mail, check boxes above for products you desire. Mail entire ad with remittance to:
Netronics R \& D, Ltd.
333 Litchfield Road, New Milford, CT 06776
Total enclosed \$_(Conn. res. add tax) $\square$ Visa
$\square$ MasterCard Acct. \#
Exp Date _ Signature
Print
Name
Address
City
State
Zip

## 





Circle No. 3 on Free Information Card


## 



## 



## 

STATIC RAMS

 DYNAMIC RAMS

TMS4027	$4096 \times 1$	(250ns)
UPD411	$4096 \times 1$	(300ns)
MM5280	$4096 \times 1$	(300nt)
MK4108	$8192 \times 1$	(200ns)
MM5298	$8192 \times 1$	(250ns)
41.16-300	16384*1	(300ns)
4116-250	16384 \% 1	(250ns)
4116-200	$16384 \times 1$	(200ns)
4116-150	16384*1	(150ns)
4116-120	$16384 \times 1$	(120ns)
2118	$16384 \times 1$	(150ne) (5v)
MK4332	$32768 \times 1$	(200ns)
4164-200	$65536 \times 1$	(200ns) (5v)
4164-150	$65536 \times 1$	(150ns) (5v)
MCM6665	$65536 \times 1$	(200ns) (5v)
TMS4164-15	$65536 \times 1$	(150ns) (5v)


		8200		$Z-80$		8000		6500	
68000	59.95	8202	24.95			8035	5.95	6502	4.95
6800	3.95	8203	39.95	2.5 M		8039	6.95	6504	6.95
6802	7.95	8205	3.50	z80-CPU	3.95	INS-8060	17.95	6505	8.95
6803	19.95	8212	1.80	Z80-CTC	4.49	INS-8073	49.95	6507	9.95
6808	13.90	8214	3.85	Z80-DART	10.95	8080	3.95	6520	4.35
6809 E	19.95	8216	1.75	Z80-DHA	14.95	8085	5.95	6522	7.95
6809	11.95	8224	2.25	Z80-PIO	4.49	8085A-2	11.95	6532	9.95
6810	2.95	8226	1.80	Z80-S10/0	16.95	8086	29.95	6545	22.50
6820	4.35	8228	3.49	Z80-510/1	18.95	8087	CALL	2 M 2 Hz	
6821	3.25	8237	19.95	Z80-S10/2	16.95	8088	39.95		
6828	14.95	8237-5	21.95	280-S510/9	16.95	8089	89.95	6502A	6.95
6840	12.95	8238	4.49	4.0 Mhz		8155	6.95	6522 A	9.95
6843	34.95	8243	4.45			8155-2	7.95	6532A	11.95
6844	25.95	8250	10.95	Z80A-CPU	4.95	8156	6.95	6545A	27.95
6845	14.95	8251	4.49	Z80A-CTC	4.95	8185	29.95	6551A	11.95
6847 6850	11.95 3.25	8253	6.95	Z80A-DART	11.95	8185-2	39.95	3 MHZ	
6850 6852	3.25 5.75	8253-5	7.95	Z80A-DMA	16.95	8741	39.95	65028	14.95
6860	9.95	${ }^{8255} 8$	4.49 5.25	Z80A-PIO	4.95	8748	24.95 24.95	DISC CONTR.	
6875	6.95	8257	7.95	Z80A-SIO/O	16.95	CRT		1771	16.95
6880	2.25	8257-5	8.95	Z80A-SIO/1	16.95			1791	24.95
6883 68047	22.95	8259	6.90	Z80A-SIO/2	16.95	CONTROULERS		1793	26.95
68047 68488	24.95 19.95	8259-5	7.50	Z80A-SIO/9	16.95	6845	22.50	1795	49.95
88800 $=1$ MHZ ${ }^{\text {m }}$		8271	79.95 39.95	6.0 Mhz		38B45	19.95	1797 2791	49.95 54.95
68800	10.95	8275	29.95	Z80B-CPU	11.95	HD46505SP	15.95	2793	54.95
68802	22.25	8279	8.95	zBOB-CTC	13.95	6847	11.95	2795	59.95
68809 E	29.95	8279-5	10.00	Z80B-PIO	13.95	MC1372	6.95	2797	59.95
68809	29.95	8282	6.50	Z80B-DART	19.95	68047	24.95	6843	34.95
68810	6.95	8283	6.50	280B-SIO/2	39.95	8275	29.95	8272	39.95
68821	6.95	8284	5.50	280B-SIO/2	39.95	7220	99.95	UPD765	39.95
68840	19.95	8286	8.50	ZILOG		CRT5027	39.95	MB8876	29.95
68845	19.95	8287	8.50			CRT5037	49.95	MB8877	34.95 17.95
68850 68800	H2 ${ }^{5.95}$	8288 8289	25.00 49.95	28671	34.95 39.95	TMS9918A	39.95 49.95	1691 2143	17.95 18.95

EPROMS
$\begin{array}{rr}256 \times 8 & (1 \mathrm{us}) \\ 1024 \times 8 & \text { (450ns) }\end{array}$
1024 x 8 (450ns) (5v)
$2048 \times 8$ ( 450 ns ) ( 5 v ) $2048 \times 8$ (350ns) (5v) $2048 \times 8$ ( 450 ns ) (5v) $2048 \times 8$ (450ns) $4096 \times 8$ (450ns) (5v) $4096 \times 8$ (450ns) (5v)
$4096 \times 8$ (250ns) $4096 \times 8$ (250na) (5v) $4096 \times 8(200 \mathrm{~ns})(5 \mathrm{v})$
$4096 \times 8(450 \mathrm{~ns})(5 \mathrm{v})(21 \mathrm{vPGM})$ $4096 \times 8$ (250ns) (5v) (21vPGM) $4096 \times 8$ (200na) (5v) (21vPGM)
$8192 \times 8$ (450ns) (5v)
$8192 \times 8$ (250ns) (5v) $8192 \times 8$ (200ns) (5v)
$8192 \times 8$ (450ns) (5v) $8192 \times 8$ ( 450 ns ) ( 5 v ) ( 24 pln ) $16384 \times 8$ (300ns) (5v)
4 pin)

1702 2708<br>1702 2708 2758<br>2758 2716 2716<br>2716-1 TMS2516 TMS2516 TMS2532 2732 2732-250 $2732-200$ $2732 A-4$ 2732A 2732A-2 2764<br>2764-250 TMS2564 MC68764 27128

EPROM ERASERS


#### Abstract

^[ (P) $\qquad$ ]


 uasi-StaticCRYSTALS
8
1.84
2.0
2.0
2.097152
2.4576
3.2768
3.2768
3.579545
4.0
5.0

## $27322_{32 \mathrm{kerom}} \$ 485$ 2784 saк eprom Sg 95

7400


1974123 $\begin{array}{ll}19 & 74125 \\ .19 & 74126 \\ 19 & 74132\end{array}$ $\begin{array}{ll}.19 & 74 \\ .19 & 74\end{array}$ $\begin{array}{ll}.25 & 7 \\ .29 & 74 \\ .29 & 741\end{array}$

## 74S00

74500	. 32	745168	3.95
74502	. 35	74S169	3.95
74503	. 35	745174	95
74504	. 35	745175	. 95
74505	. 35	745181	3.95
74508	. 35	745182	2.95
74509	. 40	745188	1.95
74510	. 35	745189	6.95
74S11	. 35	74S194	1.49
74S15	. 35	745195	1.49
74S20	. 35	74S196	1.49
74522	. 35	74S197	1.49
74S30	. 35	745201	6.95
74S32	. 40	74S225	7.95
74S37	. 88	74 S 240	2.20
74S38	. 85	745241	2.20
74S40	. 35	745244	2.20
74551	. 35	745251	. 95
74S64	. 40	745253	. 95
74565	. 40	74S257	. 95
74S74	. 50	74S258	. 95
74585	1.99	74S260	. 79
74S86	. 50	745273	2.45
74S112	. 50	74S274	19.95
74S113	. 50	745275	19.95
745114	. 55	74S280	1.95
74S124	2.75	745287	1.90
74S132	1.24	745288	1.90
74S133	. 45	745289	6.89
74S134	. 50	74S301	6.95
74S135	. 89	74S373	2.45
74S138	. 85	74S374	2.45
74S139	. 85	74S381	7.95
74S140	. 55	745387	1.95
74S151	. 95	74S412	2.98
74S153	. 95	74S471	4.95
745157	. 95	745472	4.95
74S158	. 95	745474	4.95
74S161	1.95	745482	15.25
74S162	1.95	745570	2.95
745163	1.95	74S571	2.95

CMOS

> 4000
 LM339 . 99 LM565 . 99 LM

## RCA

$\begin{array}{rl} & \\ 1.49 & L \\ .89 & L \\ 3.95 & L \\ 2.95 & L \\ 2.50 & L \\ 2.75 & L \\ .59 & L \\ .75 & L \\ .79 & L \\ .49 & U \\ .55 & L \\ .98 & L \\ .35 & L \\ .35 & L \\ .40 & L \\ .69 & L \\ .59 & L \\ 1.19 & L \\ 1.95 & L \\ 1.49 & L \\ 1.69 & L \\ 1.89 & \text { L } \\ 1.19 & R \\ 1.69 & R \\ 6.95 & R \\ 1.59 & L\end{array}$ $K=$ то-3
$\begin{array}{ll}\text { CA } 3082 & 1.65 \\ \text { CA } 3083 & 1.55\end{array}$

	SWITCHES   SPDT mini-toggle DPDT mini-toggle SPST minl-pushbutton		1.25 1.50 .39
		EXA $\times 82206$	${ }_{3.75}$
EQUIVALENT		XR 2207 XR 2208 KR	3.75   3.75
SS/DD 10 FOR \$175 EA.		XR 2211 $\times \mathrm{XR} 2240$	5.25 3.25

# SHACK HAS THE PARTS YOU NEED AT LOW PRICES! 

Highest Quality!
Factory Fresh!

## Operational Amplifiers

Type		Cat No	Each
741	(Single)	276-007	79
MC1458	(Dual)	276-038	99
LM324	(Quad)	276-1711	1.29
TLO82	(Dual)	276-1715	1.89
TL084	(Quad)	276-1714	2.99
LM3900	(Quad)	276-1713	1.39
LM339	(Quad)	276-1712	1.49
Audio Power Amplifiers			
Type		Cat. No.	Each
$\begin{aligned} & \text { LM383/TDA2002 } \\ & \text { LM386 } \\ & \text { TA7205AP } \\ & \text { LM380 } \end{aligned}$		276-703	3.19
		276-1731	1.09
		276-705	2.99
		276-706	1.59
Tantalum   - 20\% Tolerance   - Standard IC Pin Spacing			
$\mu \mathrm{F}$	WVDC	Cat. No	Each
0.1	35	272.1432	49
0.47	35	272-1433	49
1.0	35	272-1434	49
2.2	35	272-1435	59
10	16	272-1436	69
22	16	272-1437	79

Electrolytic Capacitors

Axial Leads			
$\mu \mathrm{F}$	WVDC	Cat. No.	Each
4.7	35	$272-1012$	49
10	35	$272-1013$	59
22	35	272.1014	69
47	35	272.1015	69
100	35	$272-1016$	79
220	35	$272-1017$	.89
470	35	$272-1018$	99
1000	35	$272-1019$	1.59
2200	35	$272-1020$	2.49
3300	35	272.1021	2.99
4700	35	$272-1022$	3.59
470	50	272.1046	1.59
1000	50	$272-1047$	1.99
2200	50	$272-1048$	3.49


PC-Mount Leads			
FF	WVDC	Cat. No.	Each
220	16	$272-956$	79
470	16	$272-957$	.89
1000	16	$272-958$	99
4.7	35	$272-1024$	49
10	35	$272-1025$	.59
22	35	$272-1026$	.69
47	35	$272-1027$	.69
100	35	$272-1028$	79
220	35	$272-1029$	.89
470	35	$272-1030$	.99
1000	35	$272-1032$	1.59
100	50	$272-1044$	89

## SPST DIP Switches <br> 

For digital or low-current switching. Mount in DIP sockets or on PC boards. Style may vary.

Fig.	Positions	Fits Socket	Cat. No.	Each
C	8	16 -pin DiP	$275-1301$	1.99

No Mail-Order Delays!

Special-Purpose ICs


## 1295

(A) Voice Synthesizer Set. Get into solid-state talk! The SPO256 speech processor, a 28 -pin NMOS LSI device, uses a stored program to synthesize speech or complex sounds. Works with a ew simple support parts, or use the 14-pin SPR16 serial speech ROM, included, for computer interfacing With data 276-1783
(B) MF10 Dual Switched Filter. Versatile CMOS building block for active filters-eliminates the need for expensive, close-tolerance parts. High performance, yet very easy to use. 20-pin DIP with data. 276-2329

## Voltage Regulator ICs

Type	Adjustable	Cat No.	Each
$\begin{aligned} & \text { LM723 } \\ & \text { LM317T } \end{aligned}$	$\begin{aligned} & 0 \text { to } 40 \mathrm{VDC} \\ & 1.2 \text { to } 37 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 276-1740 \\ & 276-1778 \end{aligned}$	$\begin{array}{r} .89 \\ 2.79 \\ \hline \end{array}$
Type	Fixed Output	Cat. No.	Each
7805	+ 5 VDC	276-1770	1.59
7812	+ 12 VDC	276-1771	1.59
7815	+ 15 VDC	276-1772	1.59
7905	-5 VDC	276-1773	1.59
7912	-12 VDC	276-1774	1.59

4000-Series CMOS ICs
with Pin-Out and Specs

Type	Cat. No	Each
4001	$276-2401$	.79
4011	$276-2411$	.79
4013	$276-2413$	.99
4017	$276-2417$	1.49
4023	$276-2423$	.99
4049	$276-2449$	.99
4066	$276-2466$	.99

TTL Digital ICs
With Pin-Out and Specs

Type	Cat. No.	Each
7400	$276-1801$	.59
7404	$276-1802$	79
7408	$276-1822$	79
7447	$276-1805$	1.19
7490	$276-1808$	89

Replacement Transistors

Type		Cat. No.	Each
2N1305	PNP	$276-2007$	1.19
MPS222A	NPN	$276-2009$	.79
PN2484	PNP	$276-2010$	.89
MPS3904	NPN	$276-2016$	.69
TIP31	NPN	$276-2017$	.99
TIP3055	NPN	$276-2020$	1.59
MPS2907	PNP	$276-2023$	.79
MJE34	PNP	$276-2027$	1.49
2N3053	NPN	$276-2030$	.89
MPS3638	PNP	$276-2032$	79
TIP120	NPN	$276-2068$	1.29
2N3055	NPN	$276-2041$	1.99
MJ2955	PNP	$276-2043$	2.19
2N4124	NPN	$276-2057$	.59
2N4401	NPN	$276-2058$	.59
MPSA06	NPN	$276-2059$	.59
MPSA13	NPN	$276-2060$	.59
MPSA42	NPN	$276-2061$	.69
MU4891	UJT	$276-2029$	.99
2SD313	NPN	$276-2048$	1.79
2SC945	NPN	$276-2051$	.79
2SC1308	NPN	$276-2055$	7.95
2N3819	NFFET	$276-2035$	.99
MPF102	NFET	$276-2062$	.99

## Computer Connectors

Type	Positions	Cat. No.	Each
ID Card Edge	34	$276-1564$	4.95
ID Card Edge	50	$276-1566$	4.95
Card-Edge Socket	44	$276-1551$	2.99
ID D-Sub Male	25	$276-1559$	4.99
ID D-Sub Female	25	$276-1565$	4.99
Solder D-Sub Male	25	$276-1547$	2.99
Solder D-Sub   Female	25	$276-1548$	3.99
Hood	-	$276-1549$	1.99

Power Transformers 120VAC Primaries

Type	Volts	Current	Cat No	Each
Mini	6.3	300 mA	$273-1384$	2.59
Mini	12.0	300 mA	$273-1385$	2.79
Mini	24.0	300 mA	$273-1386$	2.99
Mini	12.0	CT 450 mA	$273-1365$	3.59
Mini	24.0	CT 450 mA	$273-1366$	3.99
Std.	6.3	1.2 A	$273-050$	3.79
Std.	12.6 CT	1.2 A	$273-1505$	3.99
Std.	25.2	1.2 A	$273-1480$	4.39
H-D	12.6 CT	3.0 A	$273-1511$	5.99
H-D	25.2 CT	2.0 A	$273-1512$	6.29
H-D	18.0 CT	2.0 A	$273-1515$	6.99

$1 / 4$-Watt, 5\% Resistors $39^{\circ}$

Ohms	Cat. No
10	$271-1301$
100	$271-1311$
150	$271-1312$
220	$271-1313$
270	$271-1314$
330	$271-1315$
470	$271-1317$
1 k	$271-1321$
1.8 k	$271-1324$
2.2 k	$271-1325$
3.3 k	$271-1328$
4.7 k	$271-1330$
6.8 k	$271-1333$


Ohms	Cat No
10 k	$271-1335$
15 k	$271-1337$
22 k	$271-1339$
27 k	$271-1340$
33 k	$271-1341$
47 k	$271-1342$
68 k	$271-1345$
100 k	271.1347
220 k	271.1350
470 k	$271-1354$
1 meg	$271-1356$
10 meg	$271-1365$
	-

## 21-Range, 30,000 Ohms/Volt Multitester

## $49{ }^{95}$

- 5" Color-Coded Scale
- Overload Protected

Our best VOM! Features
"beep" continuity function and easy access to battery fuse compartment. Mea sures $A C$ and DC volts, DC
current up to 10 amps, resistance and decibels $6^{11 / 16 \times 57 / 16 \times 2^{5 / 8} \text { ". Includes probes, leads, own }}$ er's manual. Batteries extra. 22-210

## Home Computer Programs

Reg. 7.95
Save ${ }^{\text {s }} \mathbf{5}$
$\mathbf{2 9 5}^{95}$

For TRS-80 16 K
Models I, III, 4


Listings for over 75 useful programs-financial, automotive, kitchen helpmates, filing, math tu toring, metric and temperature conversions. games and more. 330 pages
62-2069
Sale 2.95

# Computers Electronics Marketplace 

CLASSIFIED RATES: Per Word, 15 Word Minimum. COMMERCIAL: $\$ 5.00$. PERSONAL: $\$ 3.00$, EXPAND-AD $: \$ 7.50$. Ads set in all bold type @ $20 \%$ premium. Ads set with background screen @ $25 \%$ premium. IISPLAY: $1^{\prime \prime} \times 21_{4}^{\prime \prime}, \$ 605.00 .2^{\prime \prime} \times 214^{\prime \prime}, \$ 1,165.003^{\prime \prime} \times 21 / 4^{\prime \prime}, \$ 1,675.00$. GENERAL INFORMATION: Frequency rates and prepayment discounts available. Payment musi accompany order except credit card-Am. Ex., Diners, MC, VISA (include exp. date)-or accredited ad agency insertions. Copy subject to publisher's approval; must be typewritten or printed. First word set in caps. Advertisers using P.O. Boxes MUST supply permanent address and telephone number. Orders not acknowledged. They will appear in next available issue after receipt. Closing date: 1 st of the 2 nd month preceding cover date (e.g., Mar. issue closes Jan. 1). Send order \& remittance to: Classified Advertising, COMPUTERS \& ELECTRONICS Magazine, 1 Park Avenue, New York, NY 10016. To Charge your ad to a major credit card, call Lois Price at (212) 725-4312

## FOR SALE

GOVERNMENT and industrial surplus receivers, transmitters, snooperscopes, electronic parts, Picture Cata$\log 25$ cents. Meshna, Nahant, Mass. 01908.
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS, Bluffton, Ohio 45817.
RECONDITIONED TEST EQUIPMENT $\$ 1.00$ for catalog. WALTER'S TEST EQUIPMENT, 2697 Nickel, San Pablo, CA 94806. (415) 724-0587

ELECTRONIC CATALOG. Over 4,500 items. Parts, \& components. Everything needed by the hobbyist or technician. $\$ 2.00$ postage \& handling (United States Only). refundable with first $\$ 15.00$ order. T \& M Electronics, 472 East Main St., Patchogue, NY 11772. (516) 289-2520.
PRINTED CIRCUIT BOARDS, your artwork. Quick delivery. Reasonable. Atlas Circuits, Box 892, Lincolnton, NC 28092. (704) 735-3943.

SATELLITE TELEVISION... HOWARD/COLEMAN boards to build your own receiver. For more information write... ROBERT COLEMAN, Rt. 3, Box 58-APE, Travelers Rest, S.C. 29690.
RF MODULATORS for SATELLITE TELEVISION, MICROCOMPUTERS CCTV. Also monitors, cameras, kits. FREE VIDEO CATALOG. Phone (402) 987-3771. Dealers Welcomed. ATV RESEARCH, 13-P Broadway, Dakota City, NE 68731.

CABLE TV CONVERTERS \& EQUIPMENT. Plans and parts. Build or buy. For more information send \$2:00: C \& J ELECTRONICS INC., P.O. Box 21, Jenison, MI 49428.
FREE FLYER! IC's, resistors, capacitors, jacks, etc., plus SSM music synthesizer/audio IC's, power amp modules, analog delay IC's, computer books, and more. Also plans for anatog delay/chorus unit! PGS Electronics, Route 25 , Box 304 Terre Haute, IN 47802.


## IF YOU ARE READY TO BUY OR SELL COMPUTER EQUIPMENT, YOU NEED. EAmpuTER SHapren

Over 100 pages each month Deal with individuals nationwide Low ad rate. only 12 t a word. Subscription: $\$ 15 / y$ year. MC 8 VISA. Money back guaraniee 407 S. Washingtion. P. $O$ Box F596. Titusville. FL 32781 (305) 269-3211

FOLICE CODE UNSCRAMBLERS, lets you hear the coded messages of Police, Fire and Medical channels; plus other scanner accessories, satisfaction guaranteed. DNE inc Rt. 7. Box 257-A, Hot Springs, AR 71901. (501) 623-6027

## GABLE TY

CONVERTERS \& EQUIPMENT
We have the largest selection of JERROLD and OAK cable converters and equipment. Such as: Jerrold SB-3, Oak N12 and Jerrold 61 channel remote control converter with FULL features DRX3-DIC-105. Plus others.

## CABLE TV KITS

Cable TV Kit (Jerrold gated pulse) 39.95 We also have a large selection of cable TV and kits including all parts, silk screen, PC board and complete instructions.

Send for informative catalogue $\$ 2.00$
J \& W ELECTRONICS, INC.
P.O. Box 61-K

CUMBERLAND, RI. 02864

WHOLESALE: MATV/CATV/VCR equipment, Antennas, Audio, Cables, Adapters, Original and Replacement Cartridges, Styli, Telephone Accessories. Radios. Cassette Recorders, Speakers, etc. Send letterhead for catalog, 212-897-0509, D\&WP, 68-12 110th St., Forest Hills, NY 11375.
FREE CATALOG. Large selection of electronic kits and parts. Chaney Electronics, Box 27038, Denver, Colorado 80227 (303)781-5750.
FREE Catalog of special function IC's and quality components. Goldsmith Scientific, Box 318M, Commack, New York 11725.
ELECTRONIC KITS-LOw cost Power Supplies, Amplifiers, Alarm Systems, etc. Catalog \$0.25. CBBI, Box 222. North Granby, СT 06060

## Wortds Most Remarkable Radar Jammer!



Causes speed radar guns and devices to read out your choice of either a percentage of your true speed when in automatic mode (example: Your spead; 76 mph . auto mode set displayed -57 mph , or the speed that you dial in when in manual mode. Transmits only in the presence of speed radar, or by manual overide. Operates on both $X$ and $K$ bands. WARNING: The device described in this literature is not legal for use against police radar, and is not FCC approved.
For complete literalure and plan package, serd $\$ 14.95$ to: Philips Instrument Design Co. Inc. 8135 S.W. Nimbus, Building 11 , Suite 1114 C
Beaverion, Oregon 97005
BUILD AND SAVE, TV EARTH STATION, DETECTIVE ELECTRONICS. Video Recorders, Color Cameras, advanced Telephone Projects. BROADCAST Electronics. 50 page color catalog of unusual electronic projects AIR MAILED $\$ 3.00$; with 3 hour audio cassette dramatization of our catalog $\$ 5.00$. Don Britton Enterprises, PO Drawer G, Waikiki, Hawaii 96815 .
PRINTED CIRCUIT BOARDS ... Projects this issue. Also custom boards, your artwork or ours. Quallty. Competitive prices, Century Instruments, 400 Maxey Court, \#4, Yukon, Oklahoma 73099. (405) 354-0347.


## MULTI-CHANNEL MICROWAVE

Complete Antenna Systems from ${ }^{3} 69^{95}$ Full 800 Mhz Range Tune 1.9-2.7 Ghz Includes all ITFS Channels DEALERS WANTED COO's and Credit Card Orders call TOLL FREE
1-800-247-1151


ELECTRONICS
6009 N. 61 Avenue
Glendale. AZ 85301
1-602-247-1151


SEND FOR FREE DISCOUNT CATALOG: electronic components, parts. HORIZON SALES, P.O. BOX 646, Framingham, MA 01701. (617) 875-4433.
DIGITAL TRAINERS AND POWERED BREADBOARDS .. The most complete selection available ... at the lowest prices. For free catalog write, C-Systems. Box 2482. Evergreen. CO 80439.
LOWEST POSSIBLE PRICES ANYWHERE COMputers Hardware-Sottware-Printers, Audio, Video, Car Stereo ELECTRIFIED DISCOUNTERS, 996 Orange Ave.. West Haven, CT 06516. MC/VISA. (203) 937-0106.
PRINTED CIRCUIT ARTWORK, DESIGN/LAYOUT. Quality, protessional, prompt (216) 263-6930. SOMMER CIRCUIT DESIGN, P.O.B. 635, wooster, OH 44691.
CABLET.V. EQUIPMENT. Channel 3 or 4 notch filter $\$ 20.00$. Information \$1.00. Goldcoast, PO. Box 63/6025A, Margate, FL 30363. (305) 752-9202.
FREE! 1984 CATALOGUE. 1001 bargains. Speakers-parts-tubes-video cassettes-record changers-tape re-corders-kits. EVERYTHING IN ELECTRONICS. Write: McGEE RADIO \& ELECTRONICS, 1901 McGee Street, Kansas City, M0 64108-1891.
PARABOLIC DISHES AND BRACKETS $20^{\prime \prime} \$ 6.70$ ea $28^{-}$ $\$ 15.00$ ea . Iots of 100 VIKING PRECISIONINC. 4631 South 35th Place, Phoenix. AX 85040; (602) $276 \cdot 6218$

AESISTORS. $1 / 4 W^{4}$ W $5 \%$ C.F., $3^{*}$ ea., $1 \%$ Metalfims. NO MINIMUMS. Quantity Discounts. Write: JR. INDUSTRIES, 5834-A Swancreek, Toledo, OH 43614.
PRINTED CIRCUIT BOARDS. QUICK PROTOTYPES PROduction design reflow solder Send print or description for quote to KIT CIRCUITS, Box 235, Clawson. MI 48017
T.: \& A.ADIO TUBES 59 each Send for free catalog. Corroll, 4212 University San Diego. CA 92105
SATEILITE TV RECEIVER BREAKTHROUGH! Build your ,n., ... netcral quality receiver now! Instruction manLals, scriematics, circuit boards! Send stamped envelepe. XAVE' Box 25647 Dept 22V. Tempe, AZ 85282.
MULTI-CONDUCTOR CABLE-2 TO 36 COND. AVAIL. FOR FREE INFO SHEET, WRITE: GORDON DEWEY RD 1, CenraciSquare NY 13038.
CABLE TV products Wireless, corded \& settop convertors Seria $\$ 300$ for intormation. ADDITIONAL OUTLET CORP. 111 E Commercial Blvd, Ft. Lauderdale, FL 33334.
CABLE TV SECRETS, the informative publication the cable companies are trying to ban. HBO, Movie Channel, Showtime converters, etc. Send $\$ 8.95$ to: CABLE FACTS, Box 711-PE, Pataskala, Ohio 43062.
30 CHANVEL WIRED remote CA TV converter kits Complète "'lue.erything 39 95. Cable Sales 3868 Trade Ctr. Dr. Ans is Del $\$ 148104$ C.OD or Certified Funds Other

U-FIX M Oak CA TV converters-M-26 Buy one get one free 19.95 Cable Sd $e^{2}=3868$ Trade Ctr Dr. Ann Arbor Mich. 15.95 Cable $0 d e=3868$ Trade Cr Dr. Ann Arbor Mich.
4104 C $O$ or Certlied Funds Other Converters syaiiabre


TIME-
SHARE
Only you and your fellow computer experts will know what time it is with this binary numeral wall clock. Handsome simulated walnut finish, accurate quartz movement with sweep second hand. Perfect for office or home. Runs on one AA battery (not incl). $111 / /^{\prime \prime}$ diagonal. 1 yc. warranty. 10 day money-back guarantee.
$39^{95}$ Plus $\$ 3.50$ ea. for ship. E handling. Fla residents add $5 \%$ sales tax.
Visa or MasterCard accepted. Include card \#,
Expiration date and signature with order.
Send for our free COMPUTERMANIA Catalog of other unique items for the computer buff. Call Todl-Free Mon.-Fri. 9am-6pm 1-800-B-E-S-W-E.E-T • In Fla. (305) 687.9338 SWPRt STHTR inc. 15490 NW 7th Ave., Dept. CE123. N. Miami, FL 33169

12 SATELLITE DISH AND POLAR MOUNT. TOtal weight 125-Ibs. For $\$ 189.00$. For information send $\$ 4.95$ (Refundable u.p.) to: Satellite Operational Systems, P.O. Box 2002, Titusville, FL 32781.

LCD PEN WATCH, excellent for everyone. Special, 2 for $\$ 7.00$. Calculator alarm wrist watch $\$ 14.00$. Wireless telephones. Water purification system-plans $\$ 5.00$. Guaranteed, fantastic, unusual gift items available. Send $\$ 1.00$ for catalog. Next day shipment. Visa/Master card. Starburst Industries, 6354 Van Nuys Blvd., Suite 161, Van Nuys, CA 91401. (213) 994-5671.
COMMUNICATIONS SECURITY and electronics are our specialty. Send $\$ 3.00$ for our incredible catalog. A.T.I.S., Dept. E. 61 Gatchell, Buffalo, NY 14212.
HOW TO STOP unauthorized use of your computer, car, stereo. etc. Details $\$ 1.00$ (refundable). Stark Electronics, Box 11963, Edmonton. Alta, T5J 3LI. US INQUIRIES.
ELECTRONIC LOCKS! Keypad operated. Pushbutton privacy for autos. homes. computers, bench equipment, VCR's, stereos, telephones .... Complete ILLUSTRATED PLANS $\$ 6.95$ ppd., MILTON OMNISEARCH, Box 5044 , Dept. C. Ormond Beach, FL 32074.

## COMPUTER EQUIPMENT/PARTS

SAVE 90\% Build Your Own Minicomputer. Free Details. Digatek, 2723 West Butler Dr., Suite 20C, Phoenix, AZ 85021. APPLE BUILDERS-Send stamp for our flyer of Apple parts. IC sets, ROM sets, component packages, Shu-gart-Apple modification kits, Apple 9-track tape drives etc. Electrovalue, P.O. Box 376-P, Morris Plains. NJ 07950. HARD DISK DRIVE LIQUIDATION. Major OEM is liquidating inventory of unused Shugart $8^{\prime \prime}$ SA 10025.33 megabyte hard disk drives. $\$ 380$ each. Western Digital's controller, \$350. Call: LIOUIDATORS, 803-877-9828, or send check/money order to: 105 S . Main St., Greer, SC 29651.

FREE DISCOUNT CATALOG OF SYSTEMS, PERIPHERALS AND SOFTWARE. Most major brands. Descriptions complete with options and accessories. Please indicate your specific interest and application. MICRO TREND INC., 2001 Kirby Drive. Suite \#906, Houston, TX 77019. (713) 520-0107.
FREE! Computer supplies catalog-Low prices-Satisfaction guaranteed-DATA SYSTEMS, Box 99, Fern Park, Florida 32730. (305) 788-2145
QUALITY VINYL DUST COVERS. VIC-20, Atari 400/800, Apple, Coleco, VCS. Only $\$ 6.50$. Topware, Box 92, Princeton, IL 61356.
FREE 56-PAGE COMPUTER CATALOG crammed full of thousands of the best buys and lowest prices aroundl A.P. Computer Products, 8 Division St., Holtsville, NY 11742, (516) 698-8636.

USED COMPUTER terminals, printers, modems, cables, surplus electronic parts. Specials: CRT's $\$ 20.00$, Modems $\$ 20.00$, Modems $\$ 35.00$. Catalog $\$ 1.00$. Rondure Company, "The Compuser Room" CE, 2522 Butler Street. Dallas, TX 75235. (214) 630-4621.
DISK FILE- $\$ 9.95$ holds 150 disks: includes dividers, labels, backstops for $5 \frac{114^{\prime \prime}}{}$ and $8^{\prime \prime}$. Call: $800 / 225-0044$. Weber's, Box 104CA, Adelphia, NJ 07710.
MONEY BACK GUARANTEE. Easy to install circuit adds intercom/Hold capability to phones for under $\$ 10$. Plans $\$ 5.00$. Information SASE dB Enterprises, Box 8, Oradell, NJ 07649.
48 K computer U.S. $\$ 380.00$ or hundreds Apple compatible software details U.S. $\$ 1.00$ Reliant P.O. Box 33610. Sheungwan Hong Kong.
AUDIO DEN, call us for our service, our experience and especially our prices. We carry Adcom, Audio Research, Denon, Infinity, Nakamicht, Polk, SAE, Revox and Klipsch. We ship anywhere in the USA. Experienced with overseas sales. AUDIO DEN LTD., Smith Haven Piaza, 2021 Nesconset Highway, Lake Grove, New York 11755. (516) 360-1990.

## COMPUTER SOFTWARE

DISCOUNT SOFTWARE-Available for Apple, TRS-80, IBM/PC and TI 99/4 personal computers. Professional applications for the doctor, dentist, attorney, school administrator, teacher, contractor and general office personnel. Catalog $\$ 1.00$. Write for MONTHLY SPECIAL OFFERS! Creative Discount Software, 256 S. Robertson Blvd., Suite 2156, Beverly Hills, CA 90211.

COMPUTER PAPER-SAVE\$\$S; TOp quality. Low singie carton prices. Free shipping via UPS. Call A-1, 405 Third, Long Beach, Ca., (800) 628-8736 or (213) 804-1270.
TI-99/4A PROGRAMMERS: Affordable Softwarel Catalog, only \$1. PROGRAMS SOFTWARE, 1435 Burnley Square North, Columbus, Ohio 43229.
FREE VIC-20 and COMMODORE 64 USERS GROUP MEMBERSHIP with software purchase. Why pay to belong to a users group when you don't have to? Benefits: Newsletter, extensive club library, discounts, contests. questions hot-line and more! Free details-(803) 797-1533. Lords of Basic, P.O. Box 459, Dept. 102 Ladson, SC 29456.
DISKETTE FORMAT CONVERSIONS/DOWNLOADING, from $\$ 500$. Port-A-Sott, 423 \# 800 N, Orem, UT 84057. 801/ 226-6704.
VIC 2040 COLUMN DISPLAY. On tape, 8.95: NDPE, 102 Hickory Ct., Portland, IN 47371.

MONEY BACK GUARANTEE, Easy to install circuit adds intercom/Hold capability to phones for under $\$$ io. Plans $\$ 5.00$. information SASE dB Enterprises. Box a Oradell, NJ 07649 ,
DISKETTE FORMAT CONVERSIONS/DOWNLOADING, from $\$ 500$. Port-A-Sott, 423 \# 800 N , Orem, UT 84057, 801/; 226-6704.
HORSE RACE SOFTWARE-TRS-80, C64 VIC20, CALL OR WRITE for free catalogue, Computer Research Tools, 725 South Evanwood Ave., West Covina, Calif. 91790 (213) 962 1688.

TI-99/4A OWNERS: 8-Program cassette-\$9.95 p.p.-TIbasic, free list. V\&S Software, 2709 Chollet Dr., Tallahassee. FL 32303.
TOP NAME BRAND PROGRAMS and Games. Try before you buy! Don't get burned, info: SEMI-Z, R.D. \#4, Box 69, Danville, PA 17821
VIC 20/s64-WHOLESALE PRICES ON ALL PRODUCTS! Send SASE: Omni Micronics, 404 Auburn Road, Waynesville, NC 28786
TI-99/4A OWNERS. Send for free catalog of new and exciting, low cost software. D.E., Box 690, Hicksville, NY 11801.

VIC $20 / \mathrm{COMMODORE}$ G4 SOFTWAAE.FREE CATALOOG! inexpensive, practical programs: Education/Home/Business. Over 50 titles! FARTHEST FRINGE S.A. 101 High. way Blvd, N. Pekin, 14.61554.
SUPERIOR VIC-20 SOFTWARE! Educational programs and Adventure games. FREE program summaries with price list. Creative Workshop, PO Box 2725, Dept. 22 . Spring Valley, CA 92077.
FREE CATALOG OF DISCOUNT SOFTWARE. Specify computer. The Floppy Disk, Box 5392C, North Hollywood, CA 91616.
TI-99/4A SOFTWARE: Programs for astronomy, Mathematics, Finance, Education. Send 40 for catatog Eastbench Software, 1290 Cliffside Drive, Logan. UT 84321.
TI-99/4A "99-CALC" Electronic Spreadsheet Program In Extended Basic. 16K. Cassette and Instructions $\$ 20.00$ PP. P.C. BARNES, 24631 Via San Fernando, Mission Viejo, CA 92692.

TAX-HELP PROGRAM for ATARI, 1040, 1040A, 1040EZ. $\$ 7.95$ cassette. Krause \& Son, P.O. Box 624, Severna Park, MD 21146.
HORSE-CYBER-TRS 80, I, ili, IV, Color/VIC-20/C64. Horse race programs that teach themselves how to handicap. Write Computer Research Tools, 725 South Evanwood Ave., W. Covina, CA 91790, or call for message (213) 962 1688.

FREE ATARI 400800/Commodore-64/T199-4A/Timex/ VIC-20 programs! Send stamps. Dealers weicome! Box 5222-CD, San Diego, California 92105.
COMMODORE 64/Vic 20-Assembler, Disassembler, Basic Compiler, Spread Sneet. \$15 each. Specify computer. Free complete list for SASE: Software Solutions, PO Box 542, Sylvania, OH 43560.

## COMPUTER HARDWARE

Eagle PC-2 \$2738; Compu Pro 816A \$3998; Daisy Rider 2000 \$1197; Epson, Call; Okodata 92 \$509; Hayes 1200 $\$ 505$; etc. WCB (707) 544-5304, 1800C Hobbie Lane, Santa Rosa, CA 95407.
DISCOUNT HARDWARE/SOFTWARE- $30 \%$ MINIMUM BELOW RETAIL! Educational, business, entertainment software for Apple II, Atari 400/800, Ti 99/4A, Vic 20, Commodore 64, IBM-PC. HARDWARE: Gemini 10x- $\$ 300$. Okidata 82A- $\$ 370.00$ Microprism 480- $\$ 490$. RANA 1000- $\$ 300$. Send $\$ 1$ for complete hardware/software catalog. Specify make. MULTI VIDEO SERVICES, P.O. BOX 246, East Amherst, NY 14051 (716) 688-0469.

## COMPUTER PUBLICATIONS

USER'S BOOK for HP-41C/41CV. Hundreds of tech niques and RPN subroutines. Send $\$ 15$ per copy U.S.A./ Canada, (elsewhere \$20) to: Corvallis Software Dept. 3. P.O Box 1412, Corvallis, Oregon. 97339. (503) 754-9245
"HOW to Debug BASIC Programs." \$6 PF, MBG. TIS, Box 921, Dept. C1, Los Alamos, NM 87544.
DON'T WASTE YOUR MONEY! If you are buyIng a computer you need to read 101 QUESTIONS AND ANSWERS YOU MUST CONSIDER BEFORE YOU BUY. AISO included as a FREE Bonus. THE PLAIN ENGLISH COMPUTER GLOSSARY-over 40 pages. $\$ 5.00$. Triple-C Publishing P.O. Box 699A. Demopolis, Alabama 36732
"HOW to Debug BASIC Programs." \$6 PP, MBG. TIS, Box 921. Dept. C1, Los Alamos, NM 87544.

ROBOTICS BOOKS-Design, Theory, Construction. Send $\$ 1.00$ for catalog. KOHN/CE1 Box 16265, Alexandria, VA 22302.

## COMPUTER REPAIR

COMPUTER REPAIRS - SIX MONTH WARRANTY. OUF highly qualified technicians will diagnose and repair all makes of computers and peripherals including OSI, Osborne, Apple, Diablo, Hazeltine, and Televideo. Computer Development Systems Inc., 18 Matthews St., Terryville, CT 06786. (203) 583-5993

## TIMEX/SINCLAIR

KROK, STAR SEARCH, NOAH'S ARK, finest programs available. Machine Language action, graphics. SASE Brown Cottage, 5486 Bright Hawk, Columbia, MD 21045.
ZX DATA-FINDER, ZX PRO/FILE \& much mare professional/game/hobby machine language software. Free Catalog. ROBOTEC, INC., Box 55, Rossford, OH 43460. (419) 666 -2410. VISA/MC

TIMEX SINCLAIR owners-get monthly news, tips, programs, projects to expand $1000 / 1500 / \mathrm{Z} \times 81$, \$29 per year. Back issues available. SYNTAX, RD2 Box 457, Harvard, MA 01451.

5 TS/1000 PROGRAMS FOR $\$ 5$. Send SASE for details: Programs 3763 W. Crocus, Phoenix, AZ 85023
"MUST-HAVE"! UTILITY SOFTWARE. Cassettes-relocatable machine language. SASE for BROCHURE-SIRIUS WARE, 6 Turning Mill Rd., Lexington, MA. 02173.
TIMEX/SINCLAIR VIC-20 Bible pack design build any peripheral imaginable includes cassettes $\$ 39.95$. Into. $\$ 6.0 n$ refundable. Jorge Sampson, Box 38663, Houston, TX 77288.

ARTIFICIAL INTELLIGENCE PROGRAM. COnverse with ZX-81/TS 1000. 16K. Cassette, \$10. Dynabyte, Box 2021 Michigan City, IN 46360
BIO-RHYTHMS PLOTTED. Know your critical days and your good days- 30 day plots-cass. Tape $\$ 6.75$, listing $\$ 2.50$, both 16 K and 2 K included, LAKAR, 36 Western Ave Morristown, NJ 07960.
MR. BARTENDER-lists over 200 drinks alphabetically and by liquor, cass tape- $\$ 6.75$, listing $\$ 2.50 .16 \mathrm{~K}$, LAKAR, 36 Western Ave., Morristown, N $J 07960$.
"HOW TO MARKET YOUR TIMEX/SINCLAIR SOFTWARE". Informative guide for turning your programs into profits- $\$ 14.95$, money order, VISA, M.C. (incl. card no \& exp. date). Softmark Associates, Dept. CE2, 210 Fifth Ave., NY, NY 10010
TS/1000-Great values on home/finance software. Free information: Ace Software, 2 E. Oak Ave., Moorestown, NJ 08057

## C.B.EQUIPMENT

CB MODIFICATIONS, conversions, books, plans, kits, repairs. Catalog \$2. CBCI, Box 31500PE, Phoenix, AZ 85046. (602) 996-8700.

## PLANS AND KITS

FREE KIT CATALOG contains test equipment. Phone (209) 772-2076. DAGE SCIENTIFIC, Box 144, Valley Springs, CA 95252.

ROBOTICS-BOOKS-build your own robot. Write now for FREE catalog! Kohn Co./CE11, Box 16265, Alexandria, VA 22302.

PROJECTION TV ... CONVERT your TV to project 7 foot picture... Results comparable to $\$ 2,500$ projectors...Total Cost less than $\$ 30.00$... PLANS AND $8^{\prime \prime}$ LENS $\$ 19.95$.... 1 lustrated information FREE. Macrocoma-ce, Washington Crossing, Pennsylvania 18977. Creditcard orders 24 Hours, Crossing, Penn
(215) 736-3979

DIGITAL OSCILLOSCOPE $-4^{\prime \prime} \times 61 / 2^{\prime \prime}$ size screen. Build for less than $\$ 150.00$. Plans $\$ 6.00$. Mike McGlinchy, 1878 Newell Ave., Walnut Creek, CA 94595
BATON WITH LIGHTS writes your messages in thin air! Fabulous educational toy! Complete plans using inexpensive parts $\$ 5.00$. WORDWAND, POB 595, Ozona, FL 33560.

## MAILING LISTS

COMPUTER SHOW ATTENDEES N.Y., N.J.: 15,000 NAMES. $\$ 30 / \mathrm{M}$. P/S labels. For info, (201) 297-2526.

## ALARMS

BURGLAR-FIRE ALARMS for home, business, auto. Install yourself and save. Installation manual/catalog shows how. Shows latest equipment, accessories. Lowest prices. Send $\$ 1.00$ (refundable). BURDEX SECURITY, Box 82802CEL, Lincoln, NE 68501.

## WANTED

GOLD, electronic, circuit board scrap, silver, platinum, tantalum; mercury. Ores, metals assayed. Samples evaluated. Wholesale Terminal, toll free 1-800-932-1010, (617) 326-3442 in Mass.
WANTED: OId Western Electric, RCA, tubes, Amplifiers, Speakers. Mcintosh, Marantz, Amplifiers, THORENS, Garrard Turntable. 713-728-4343.
AUTHOR SEEKS TRUE COMPUTER experiences in hacking/crime/twisting. Pay if used. Box 5115, Tahoe City, CA 95730.

## TUBES

TUBES: "OIdies", Latest. Suppiies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519PE Maplewood, Hammond, Ind. 46324
TV \& RADIO TUBES, $59^{\circ}$ each. Send for free catalog. Cornell, 4213 University, San Diego, CA 92105.

## PERSONALS

SUNBELT SINGLES looking for a person of quality. Check our group. Details Box 83395, Oklahoma City, OK 73148.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.Ds. Free revealing details. Counseling, Box 317-EP1, Tustin, California 92680.
SCANDINAVIAN SINGLES, ALL AGES, seek correspondence, sincere, friendships. Details: (send stamp). Scannaclub CE, Box 4, Pittsford, NY 14534.
FREE WORLD'S LARGEST PARTNER PHOTO CATALOG for friend ship and marriage. Personalized introductions INTERCONTACT, Box 12, Toronto, Canada M4A 2MB

## INSTRUCTION

REPAIR ELECTRONIC ORGANS--Revised home study course covers all current makes and models. Free booklet. Niles Bryant School, P.O. Box 20153, Sacramento, CA 95820.

UNIVERSITY DEGREES BY SPECIAL EVALUATION of existing credits and Job Experience. Fast, inexpensive. Call (614) 863-1791. Or write: EvaLuation, Box 13151-A1, Columbus, Ohio 43213.
F.C.C. COMMERCIAL RADIOTELEPHONE LICENSE. Home Study. Fast, Inexpensive! Free details. COMMAND, D-100 Box 2223, San Francisco 94126.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.s . . . Free revealing details. Counseling, Box 317 PE1, Tustin, California 92680.
UNIVERSITY Degrees! Economical home study for Bachelor's, Master's, Doctorate. Prestigious faculty counsels for independent study and life experience credits. Free proof-Richard Crews, M.D. (Harvard), President, Columbia Pacific University, 1415 Third Street, Suite D511, San Rafael, CA 94901; Toll Free: 800/227-1617, Ext. 480; California: 800/772-3545, Ext. 480.
EXPERIMENTAL ANALYSES of solar activity and Pacific area meteorology and seismology. Info: Sase. IWS, 11625 W. McKinney Ave., Fresno CA 93711

FOR INVENTORS
INVENTORS! IDEAS HAVE VALUE!
Ever think of an idea, forget it and see it tater on the market? Many people don't forget, aci quickly and are rewarded by American Industry. Write down your idea! We offer free disclosure registration and initial consultation regarding your idea's potential value. Call or write without delay for your free information package.

> AMERICAN INVENTOFS CORPORATION 82 Broad St, Dept. CE Westfietd, MA 01086
> $413-568-3753$
> A fee Based Marketing Company Otfices Coast to Coast

INVENTIONS, IDEAS, NEW PRODUCTS WANTED! Industry presentation/national exposition. Call free 1-800-528-6050-Arizona, 1-800-352-0458. X831

PATENT AND DEVELOP your invention. FREE PATENT INFORMATION. Richard L. Miller, P.E., 3612-E, Woolworth Building, New York, NY 10007, (212) 267-5252.
NONPROFIT foundation helps inventors. Widest range of services. Free recording forms. Free evaluation. Affiliated llinventors Foundation, 501-D lowa, Colo. Spgs. CO 80909.


## flease refer to heading on first page of this section for ad placernent information <br> COMMERCIAL: $\$ 5.00$. PERSONAL: $\$ 3.00$, EXPAND-AD $\$ \$ 7.50$

\# OF WORDS $\quad$ OF INSERTIOINS

- PAYMENT ENCLDSED $\$$
- CHARGE You will be billed monthly a American Express ■ Diners a Visa a MasterCharge-interbank *


## Account \# Exp. Date

SIGNATURE
PRINT NAME
ADDRESS
CITY _STATE ZIP

## BUSINESS OPPORTUNITIES

FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dalias: Texas 75201

MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES, 92-K 11 Brighton 11 th, Brooklyn, New York 11235 .

ERASE DEBTS with little-known law-create wealth!! Details FREE-Wealth Kit, No. EE1, Billings, NY 12510
MAILORDER OPPORTUNITY! Start profitable home business without experience or capital. Information free. Mail Order Associates Inc., Dept 566, Montvale, NJ 07645
ONE MAN CRT FACTORY. T.V.'s, Business machines, Monitors, Scopes, VDT's. $\$ 3.00$ rebuilding nets $\$ 100-\$ 500$ each tube. Higher profits overseas. New/used. FACTORY, 1909 Loulse, Crystal Lake, IL 60014. (815) 459-0666.
BORROW $\$ 300-\$ 30,000$ INTEREST FREE! Keep indefinitely! Free Details. Write: American, 1601 Main, Plainfield. Indiana 46168.
LCD WATCH $\$ 2.50$, Penwatch $\$ 2.00$, catalogue $\$ 1.00$. Reliant Engineering Company, P.O. Box 33610 , Sheungwan, Hong Kong.
BORROW $\$ 30,000$ without interest! All ellgible. Repay anytime. Free details! Infohouse-508CE, 533 Sutter, San Francisco, CA 94102

SMALL COMPUTER BUSINESSES ... Over 100 you can start anywhere-anytime. Unique 40 pg . catalogue- $\$ 1$ C.B.I.E.K., P.O. Box 4759, Santa Barbara, CA 93103.

BUMPER STICKER PRINTING DEVICE. Cheap, simple, portable. Free details. Bumper, POB 22791 (PE), Tampa, FL 33622.
PROJECTION TV... MAKE \$\$\$'s assembling Projectors Easy...Results comparable to $\$ 2,500$ projectors...Your total cost less than $\$ 20.00 \ldots$ PLANS, $8^{\prime \prime}$ LENS \& Dealers Information $\$ 17.50$... Illustrated information FREE ... Macro-coma-cex, Washington Crossing, Pennsylvania 18977. Creditcard orders 24 Hours (215) 736-2880.
ACQUIRE WEALTH! BOrrow $\$ 30,000$ interest free! Keep indefinitely. Erase debts with little-known law! Free details: Financial Technologies, Box 40434C, Fayetteville, N.C. 28309.

MOONLIGHT WITH YOUR MICRO! Handbook describes 25 proven money-making ideas! \$5. Microbucks, PO Box B, Southfields. NY 10975.

## REAL ESTATE

NEW ... FREE CATALOG! Top real estate values coast to coast! Please specify types, property and location desired. UNITED FARM AGENCY, 612-EP West 47 th, Kans as City, MO 64112

## EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768
JOBS OVERSEAS - Big money fast. $\$ 20,000$ to $\$ 50,000$ plus per year. Call 1-216-453-3000, ext. 4601 .
GOVERNMENT JOBS-Thousands of vacancies must be filled immediately. $\$ 17,634$ to $\$ 50,112$. Call 716-842-6000, Ext 3909.
SAUDI ARABIA. Send stamped, self-addressed envelope to Ralph Lemons, Box 6805, Thousand Oaks, CA 91360.

OVERSEAS Positions. Hundreds of top paying positions available. TAX free incomes. Attractive benefits. Opportunities for all occupations, skilled trades, professionals, management, technicians etc. Free details. Overseas Employment Services, Dept. CE, P.O. Box 460, Town of Mount Royal, Quebec, Canada H3P3C7.

## GOVERNMENT SURPLUS

IS IT TRUE YOU CAN BUY JEEPS FOR \$ 44 THROUGH THE U.S. GOVERNMENT? Get the facts today! Call (312) 7421142 Ext. 4649.

## BOOKS \& MAGAZINES

PUBLISHERS' OVERSTOCKS. BARGAIN BOOKS 2,000 titles, all subjects! Free catalog: Hamilton's, 98-85 Clapboard, Danbury, CT 06810 .

## GAMES

ATTENTION-VIC2O SOFTWARE! Writer for a free catalog ORA, 22 Georgia Avenue, Providence, RI 02905.

## RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Free catalog 1 800-851-4945, Jackson's, E-100, Brownsville Rd.t Mt Vernon, III. 62864

## RETAIL ROSTER

## CALIFORNIA

P.C. COMPUTERS, 10166 San Pablo Ave., El Cerrito 94530 (415) 527-6044. Commodore 64, VIC-20, Pet Specialists. In-House Maintenance.

## CONNECTICUT

C\&E DISTRIBUTING-Edgewood Drive, Jewett City 0635 ! (203) 423-0657. Retail outlet and wholesaling for dealers.

## NEW HAMPSHIRE

COMPUTER MART of NEW HAMPSHIRE, 170 Main Street Nashua 03060. 603-883-2386. THE APPLE SPECIAL ISTS. Full line Hardware/Software. Training/Service

## BUILD THE LATEST ELECTRONIC DEVICES IN YOUR WORKSHOP

Create 27 exciting. low-cost, useful elec tronic devices for your home, car hi-fi, darkroom and personal computer with the new 1984 Electronic Handbook, from the publishers of Computers \& Electronics. A perfect gift for the electronic hobbyist

Send \$4.95-
$\$ 3.95$ plus $\$ 1.00$ shipping \& handing to ELECTRONIC EXPERIMINTER'S HANDBOOK CN 1914, Morristown, NJ 07960
MA. MI, MO NJ, NY State \& VT, please add local sales tax.


Computer Mart
RATE: Ads are " by 3 ". 1 insertion: $\$ 935.00 .6$ insertions: $\$ 900.00$ ea. 12 insertions, $\$ 865.00$ ea. Closing date: 1st of the 2 nd mo. preceding cover date. Send order and remittance to Computer Mart. Computers \& Electronics, 1 Park Ave., N. Y., N.Y. 10016. Direct inquines to (212) 725-42 15.


CFACLE NO. 99 ON FAEE INFORMATION CARD

> DISCOUNT COMPUTER EOUIPMENT

LOWEST PRICES on Printers, Disk Drives, Software, and Other Computer Equipment! EPSON Star Micronics Okidata Tandon, TEAC \& Many Others.
Call toll-free for a FREE catalog:
800-331-3896
In Okiahoma Call 918/825-4844

## EPROM ERASER \$39.95 EPROM PROGRAMMER \$146



Now we can make any computer sing as well as talk，for only $\$ 219$ ．

## MICROSETTE

As teatured in Ciarcia＇s Circuit Cellar． ＂BYTE＂Magazine Seplember． October 1982

## Microvox．

MICROVOX is a completely sell contained protessiona voice quallity text－to－speech synthesizei MICROVOX may be easily intertaced to any computer modem RS－232C serial or paraliei output device
－ 6502 Microprocessor based text－to－speech algorthm －SC．01A phoneme based speech synthesizer
64 Crystal controlled inflecion tevels
3000 character butfe：
－RS－232C and parallel port intertaces
－On board power supply
－Music and sound ettects capability
mvor Microvox Assembled \＆Tested

51／4－Inch DISKETTES
－Single or double sided，all double density（SSDD，DSDD）
－Soft sector，reinforced hub． CASSETTES
－Error－free computer grade

ITEM	10 PACK	50 PACK
SSDD	$\$ 25.00$	$\$ 100.00$
DSDD	35.00	150.00
C－10	7.50	32.50
C－20	9.00	39.00
C－60	11.00	50.00
C－90	15.00	70.00

UPS SHIPPING INCLUDED
CA Cutomers add taxe

## MICROSETTE CO． 475 Ellis St．，Mtn．View， CA 94043 （415）968－1604

CIPCLE NO， 122 ON FREE INFORMATION CAIVO


## TS1000 <br> 2X81



## 3－Color Keyboard

 Symbols with Conversion Instructions－Plastic Ts1000－ZX81 keyboard symbols in Black，Red and Blue．Opaque background． Will fit all standard－size keys．Adhesive backing for easy application．
－Simple illustrated instructions will show you how to convert a cheap（about $\$ 20$ ）surplus keyboard to a full－size TS $1000 / Z \times 81$ console． ．as easy as stringing wire on a fence．
－Do＇s and Don＇ts for selecting a surplus key－ board．
－Bonus for the＂pro＂－Schematic Diagram of Computer

## MULE Electronics <br> ＊12＊

Dept．ヨィロ
444 Lincoin Biva
Venice，California goeg！
＊Add $\$ 1.50$ P\＆H．California residents add $6.5 \%$ tax．Money－back guarantee，of course．

CIRCLE HO．， 109 ON FAEE INFORMATION CARD

## FREE catalog：

Just let us know and we＇ll mail you a FREE Creative Comput－ ing Catalog－16 pages filled with books，buyer＇s guides， magazines，and more！
To get your FREE catalog， write to：Creative Computing Catalog．Dept．NA9x 39 East Hanover Ave．，Morris Plains， NJ 07950


CIRCLE NO． 125 ON FREE INFORMATION CARD

## maxell．

Floppy Discs CALL NOW－TOLL FREE 1－800－328－DISC
Dealer inquiries invited．C．O．D．＇s and charge cards accepted．
All orders shipped from stock． within 24 hours．Call toll FREE．


North Hills Corporation 3564 Rolling View Dr．
While Bear Lake，MN 55110 1．800－328－D1SC
MN Call Collect 1．612－770．0485

THE ONE－THE ONLY
＇THE BOX＇
Now Innovation for TIMEX SINCLAIR users
－Eliminatos Save－Laad Program troubles
－Saves time on Save－Load Proprams
－Stops ground hoops－Easy VU METER MONITOR －Remote pause cassette switch
－Easy hook up between Computor and recorder （Pin plug cable inchuded）
does not voio timex－sinclair warranty


Dimensions $3^{\prime \prime} \times 2^{\prime \prime} \times 4^{\prime \prime}$
Sond 526.95 Check or Money Order To：SCONZO \＆SONS 724 montauk Hwr．，Bappor．NY 11705
M／C－VISA Call：（516）472－1700 or（212）297－0976 COO－AOO $\$ 2.00$－Alow 4.6 week delivery N．Y．S．Res．add salos bx

## Vobuax sc－01A SPEECH SYNTHESIZER <br>  <br> \＄42 Each Frifitists hundreds）

 Order in Ones or ThousandsThe SC－OIA Speech Synthesizer is a completely selt－contained solid stafe device．This single chip phonetically synthesizes continuous speech of unlimited vocabulary
Computer intertaces and fext－to－speech algorithms also available tor product development．
Micromint is the largest U．S distributor of the SC－01A．Call us for a price quote．
Call 1－800－645－3479，in N．Y．1－516－374－6793 MICROMINT INC．
561 Willow Avenue Cedarhurst．NY 11516
shipping \＆handiting．

HAVING LOADING
PROBLEMS ?


## GET A Z-DUBBER

eccuuse of the great vancion in casselte recorders used with the
X80/81/Tsiono (some in very poor shape). you mary be havng
hab/81/Ts: 000 (some in very poor shape). you mary be havng a
hard ume locang cosse"ie programs the (2.Dubber) connects be
liween the cassene recorder and the computer. and dts circuitry pro
duces a much beller siln iod tor the ecomputer orocd The (Z Dubbe
$\qquad$
CHARGEOR COD ORDERS CALI
1-800-227-3800
ASK FOR OPERATOR 225
BYTESTZE PO BOX 12309 DEPT CJ MICRO TECHHOLOGY SEATTLE, WA 9
CALI OR WRITE FOR DEALER INFORMATION


## SAVE 90\%

IBMachine with a $40 \%$ plus in performance-8086 based system with 128 KB memory two RS232 Ports plus a Centronics Port for - \$235 Upgradable!

CPMachine-4MHz Z80A based 64 KB memory, two RS232 Ports for $\sim \$ 120.00$
16/32 bit commercial workhorse a 68000 based, 128 KB memory three RS232 Ports for - \$265 Expandabie!

Floppy Interface $\$ 60,25 \times 80$ CRTs $\$ 200$, Sottware, Boards ROMs, Parts and MORE!

> FREE CATALOG

DIGATEK CORPORATION

## SUITE 7

2723 West Butler Drive
Phoenix AZ 85021
Why waste money on a Commodore, Atari, Tl , etc. when a system with a future costs less?

TRS-80 + MOO I, IH, COCO T199/4a TIMEX 1000, OSBORNE, others

## GOLD PLUG - 80

Eliminate disk reboots and data loss due to oxidized contacts at the card edge connectors. GOLD PLUG 80 solders to the board edge connector. Use your existing cables. (if gotd plated)

GOLD PLUG BO Mod I (6) Keyboard/El (modi) $\$ 54.95$ Individual connectors COCO Disk Module (2) Ground tab extensions Disk Drives (all R.S.) Gold Disk Cable 2 Drive Four Drive Cable GOLD PLUG 80 Mod III (6) Intemal 2 Drive Cabte Mod lil Expansion port USA shipping $\$ 1.45$ Foreign $\$ 7$

MC/VISA

## TRS-80 <br> COMPUTER DISCOUNTS

- Factory Direct
- Best Prices Anywhere
- No Out-of-State Taxes
- 100\% Radio Shack Warranty
- Free Price List
- Authorized TRS-80

SCOTT TASSO ASSOCIATES
175 North Delsea Drive Vineland, N.J. 08360

800-257-0426
NJ 609-691-7100

CIRCLE NO. 134 ON FREE INFORMATION CARD


CIACLE NO, 126 ONFREE INFORMATION CARD


CONVERT YOUR TV
TO A HIGH QUALITY MONITOR


USE WITH COMPUTERS, VCR's \& CAMERAS
Kit permits Dual Mode oper.
ation on B\&W or Color sets
ACVM

- Hi-resolution - Up to 80
characters per line - Wide bandwidth * Direct
Video - Safe-Easy installation
DVM-1 Hot Chasis kit with Audio available
Send for complete Audio/Video equipmen catalog.


Box 411. Los Angeles, CA 90028
(213) 466-5533

CIRCLE NO. 113 ON FREE INFORMATION CARL

## ATTENTION APPLE LOVERS

 100\% APPLE COMPATIBLEDISK DRIVE
DUAL DISK CONTROLLER
Z-80 BOARD
80 COLUMN BOARD

## MONITORS

ZENITH ZVM 121 $12^{\prime \prime}$ Green Screen
AMDEK COLORI + $13^{\prime \prime}$ Color

## FREE BROCHURE

## !!CALL US FOR

## LOWEST PRICES ON

 OTHER ACCESSORIES!!XICOM COMPUTER PRODUCTS
414 B. West Fifth Sreet
Naperville, llinois 60566
(3 12) 961 -1616
CIRCLE NO, 131 ON FRE INFORMATION CARD

CIRCLE NO. 129 ON FREE INFORMATION CARD

## PERSONAL ROBOTSS PERIPHERALS FOR HEATHS HERO. 1 ROBOT

VOICE COMMAND SYSTEM: VOREC-CMOS Microprocessor (65CO2) based speech recognition board mounts next to and interfaces with the HERO MEMCOM 80ARD.

- Speaker-dependent with nearly instantaneous word recognition rates
- Recognition accuracy about $98 \%$.
- Operates without need for microphone
- 256 word vocabulary
- 16K onboard battery backed static RAM VOCOL-High level language firmware in EPROMS for the HERO MEMCOM BOARD. - Supports Immediate and Deferred execuition of voice commands.
- Automatic command training session handled by robot.
VOCOL Source Code: $\$ 55.00$ extra
(not sold separately)
HERO MEMCOM BOARD: PRICE: $\$ 295$
Provides means to develop programs for the robot using a personal computer. Expands. robot's memory with an additional 30K of RAM APPLE-HERO COMMUNICATOR: PRICE- $\$ 159$ Hardware and software to implement two-way high speed parallel communication betwoen an APPLE* computer and HERO- $\dagger$ robot equipped with our HERO MEMCOM BOARD MICROMATION, INC. VISA/MASTERCARD 9104 Red Branch Road Check/Money Order Columbia MD 21045 Check/Money Order Columbia, 1201021 Add $\$ 3.00 /$ Shipping (301) 730-1237

CIACEE NO. 138 ON FREE INFORMATION CARD

PROMPT DELIVERY! AND
try to beat these ic prices


The World's Largest Selection of Cross Assemblers

Z-80 CP/M Based or MSDOS/CPM-86 Based Macroassemblers and Crossassemblers.

All feature: Powerful linker that will link up to 400 modules, no limit on program size, fast operation, Intel hex format converter. Powerful Macro sections. Full Satisfaction Guaranteed or your money back!
Z-80, 6502, Z-8, 6800-6809, 8748, 8051
Only $\$ 79.50$ each
Z-8000 and 8086/88 With 8080/Z-80
Translator Only \$179.50 8086/88 Macroassembler with linker and each! 8080/Z-80 Transiator
Z-80 Macroassembler with 8080 to $\mathrm{Z}-80$ converter, Linker Only To Order: Call us at (303) 752-4382
M/C, Visa and COD orders accepted. Add $\$ 6.50$ ea for S8H.
Full satisfaction Guaranteed ORDER TODAY!

## 2500ADSOFTMAREINC

17200 E. Ohio Dr
Aurora, CO 80017

## Put 64K CP/M 2.2

 in your TRS-80 ModeI III.Our plug-in Shuflle board il comes with 16 and gives you the full
power of 64 K CPIM 22 the industry standard,

operating system
Tap into over 2.000 off- -he-shelf business programs such as dBASE il, SuperCalc. WordStar, eli

READ/WRITE and RUN soft ware from Osborne Xerox. Superbrain, Kayproll, HP 125 and TeleVided You can e
CPIM 86 .
Simple to install. Shufile eoard !ll plugs into two existing sockets inside your Model III. No permanen
modifications, no cut traces, no soldering Youll be modfications, no cut lraces. no soldering. Yoult be
up and funning in minutes. For only $\$ 299$. Includes MBASIC Interpreter, a software manual and a first class use''s manual. Coming soan an $80 \times 24$ Video Board and a Floppy Disk Controller video Board and a Floppy Disk Controlter.
See the Shufl leboard at your local compute store or order directly from us. Credit card orders store or order directly form us. Credit card orders
shipped directly from stock. Sorry, no COD's. Free page brochure Call (415) 786 -9685 -9$)$ ): WiNmemory
vid
24219 Clawiter Rd. Hayward CA. 94545
CIRCLE NO. 120 ON FREE INFORMATION CKRID

COMMODORE
TIMEX
1983 TAX RETURN HELPER

Fast and easy
income tax preparation.

- Form 1040 and Schedules A.B.C.D.E

Enter and modify data on a screen copy
Works like a spreadsheet all the lines affected by a change are instantly up. dated.
Form 1040 and Schedule automatically corelated
Price is tax deductible
Cassette: VIC 20 (16K RAM) or C64 TIMEX 1000 (16K RAM) TIMEX 2068 Disc: VIC 20(16K RAM) or C64 (Add $\$ 1.50 \mathrm{~S} \& \mathrm{H}$ ). Check, MO or credit card KSOFT CO.
VEA 845 WELLNER RD NAPERVILLE. 146054 Deater inquiries welcome
"CONTROL YOUR WORLD . WITH YOUR VIS-20

With simple circuits using low cost parts and our program supplied on cassette tape, we'll show
you how to use your COMMODORE VIC-20 for: you how to use your COMMODORE VIC-20 for - Burglar Alarm-2 Zone, Time Controlled - Fire Alarm - 2 Zone, Time Controlled - Dusk to Dawn Lighting with Photo Cell - Furnace and Air Cond., Clock and Thermosta E Clock Controlled Appliance Switches

Simple program variations in basic can operate lights, motors, furnaces, machines, heat pumps radios, sound systems, test equipment,
ming pools, garden watering, and more.

- Your video screen will display simultaneously - Two Digital Temperatures - Dightal Time - Two Analog Inputs - Five Input Ports Status - Eigh Output Ports Status
get a low cost education in computer control order your cassette and instruction book now $\$ 39.90$ PRICE INCLUDES POSTAGE
Terms: MASTER CARDNISA
The Continental Press, Inc., Elizabéthtown, PA 17022
Toll free: 800-233-0759 Collect in PA: (717). 367-1836



## PLEASF

Give us a chance to save you the largest amount possible on
TRS-80 PRODUCTS
Get your Best Price Then...


## Call Us At:

1-800-768-6661

## Rand's

COMPUTMR CORNWR
101 Fry Blvd. Sierra Vista
Instate: (608) 488-4080

## SALES POWER

Sync not only sells itself at a nice profit, it helps sell the hardware and soft ware in your store too. Because it goes home with customers and continues to influence buying decisions long after you're closed for the day. Let's talk now.
CALL COLLECT: (212) 725-7679

Or write:
2D Ziff-Itavis Publishing
One Park A venue
New York. NY 10016



## Genuine Oak

Venner ${ }^{5} 89^{95}$ Each
Completely Finished - Ready for Use Excellent for Student, Home or Office Send name and address with check or money order for $\$ 89.95$ per unit. Specity model no. Add $\$ 15.00$ for castors. Include $\$ 10.95$ for prompt shipping. Mail to: C.F.M.
P.O. Box 520652 - Salt Lake Chy, UT 84152
 MONEY BACK GUARANTEE
A diviston of
Timeless Computer Furniture Manufacturers


## WESELL TIMEI

TIME FOR DECISIONS. TIME FOR LEISURE. YOUR TIME. ISA's software gives it back to you.
SUPER* DATABASE-\$199.00

- EASY! FAST!
- General purpose business program DBMS

ManageMint" - $\$ 395.00 \&$ up.

- PERT/CPM project control system
(Both menu driven tor IBM PC, CPM \& all TRS-80)
INSTITUTE FOR SCIENTIFIC ANALYSIS P.O. BOX 7186, DEPT. C-1 WILMINGTON, DE. 19803
(215) 358-3735/orders only (800) 44 1-7860 M.C. \& VISA accepted.

CTRCLE NO. 117 ON FREE INFORMATION CARिE

Get more out of your Apple with the MICRO on the Apple Serles
Vols. 1, 2, \& 3 $\$ 24.95$
$+\$ 2.00$ shipping each volume
Each book includes mare
than 30 programs all on DISKETTE
Machine Language Aids
I/O Enhancements
Runtime Utllities
Graphics \& Games
Hardware \& Reference Information
To order toll free:
1-800-345-8112
In PA 1-800-662-2444 MICRO INK, Dept. CE P.O. BOX 6502 Amherst, NH 03301 603-889-4330

## Сомmodore 64

## OR

TIMEX SINCLAIR
COMPUTER?
BETSTARTEO WITH SOFTWARE

GAMES, BUSINESS, EDUCATION, TUTORIAL
WRITE FOR
FREE
CATALOG
fuIfn enterpriges
4N 650 RIDGEWOOD BENSENVILLE, II., 60106 (312) 543-4225

CIRCLE NO. 116 ON FREE INFORWATION CARO

## TIMEX-Sinclair MODEM

hew Smart, Menu Driven
SOFTWARE Included FREE

- Send \& Receive Programs by Phone
- Copy Information Into Memory. Print It. Review t. Save It On Tape. Send Text From Memory
- Use Timex 2040 Printer or Any RS-232 Printer - RS-232 Printer Port Provided.
- No Exira Memory Required. But With 64k Memory You Can Store Up To 60 Full Screens. RS-232 Printer Interface $\$ 59{ }^{95}$ Kit $\$ 69$ Ass BB-1 Control Module. 8 Relays 8 TTL Inputs $\$ 69^{\text {as }}$ UM-64 64K Memory Battery Backup, Prom/Rom Socket. Rese: Sw Pius Exclusive Feature Copy the Timex Rom into the $0-8 \mathrm{~K}$ MODIFY it to suit your needs. Add new commands Con \$11 \$129\% Assembled Gorilla/Banana Printer Discounted to only $\$ 239$. 4 See Leading Edge" Ad in this magazine
BYTE-BACK CO. At. 3 Box 147 Brodie Ad Leesville S.C 29070 CK COD VISA M/C AM EXP Ph. 803-532-5812 Add $\$ 4.95$ shipping to all orders 10 day money back guarantee plus 90 -day warranty

CIRCLE NO. 114 ON FREE INFORMATION CARD


Best Prices On TRS-80 Computers
Our 6th year of discounts Ed or Joe McManus Fgt. Prepaid. Save Tax Toll Free 800-231-3680 Marymac Industries, Inc 22511 Katy Fwy., Katy (Houston) Tx 77450 1.713-392-0747 Telex 774132

It's simple.
CALL \& SAVE MONEY 1-800-841-0860
Czcommodore - DRIVES - PRINTERS MONITORS • SOFTWARE CALL FOR BEST PRICES TRS-80 FRANKLIN COLUMBIA EPSON Albat国 GMITH
CORONA

MICRO MANAGEMENT SYSTEMS
TELEMARKET DEPT. 12
2803 THOMASVILLE RD. EAST
CAIRO. GEORGIA 31728
GA. 8 INFO 912-377-7120

## POWER LINE PROBLEMS?

SPIKE-SPIKERSTw...The Solution!
Minimize equipment damoging spikes and conducted RF noise to or from sensitive equipment. Ironsient surge protection plus low pass RFI hosh filtering. All units 120 V iSA


DELUXE $\$ 79.95$
Dual 5 -stage filtered kis. A swith sockets

Kalglo Electronics Co., Inc. Order Factory Direct 6584 Ruch Rd, Dept C.E 215-837-0700 Bethlehem PA 18017
dealers invited

CIRCLE NO. 133 ON FREE INFORMATION CARD


## ComputersaElectronics

## ADVERTISERS INDEX

## RS no.

ADVERTISER
PAGE no
50
3
55
9

29
19
60
11

14
66

## SALES <br> POWER

Microsystems not only sells itself at a nice profit, it helps sell the hardware and software in your store too. Because it goes home with customers and continues to influence buying decisions long after you're closed for the day. Let's talk now.

CALL COLLECT:
(212) 725-7679

Orwrite:
20 Ziff-llavis Publishing One Park Avenue New Yurk. NY 10016


Minimum order, 10 conies. We pay all shipping costs

	Fuji SVEA . . . . . . . . . . . . . . . . . . . . . 55
	Grantham College of Engineering . . 98
4	Halix Institute . . . . . . . . . . . . . . . . . . 95
24,28	Heath Co. . . . . . . . . . . . . . . . . . . 53,31
41	IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
21	Jameco Electronics . . . . . . . . . . . . . . 104
22	JDF Microdevices . . . . . . . . . . . 108-109
23	J \& R Music World . . . . . . . . . . . . . . . . 87
8	Jensen Tools . . . . . . . . . . . . . . . . . . 87
20	Leading Edge . . . . . . . . . . . . . Cover 2
48	3M..................... . . . . . . . . 65
	MacMillan Book Club . . . . . . . . . . . . . 1
30	Maxell . . . . . . . . . . . . . . . . . . . . . . . . . . 3
	Memtek Products . . . . . . . . . . Cover 3
	National Technical Schools ..... 18-21
	Netronics, R \& D Ltd. . . . . . . . . . . . 103
17	New Horizons . . . . . . . . . . . . . . . . . . . . 17   NRI Schools . . . . . . . . . . . . . . . . . . 8-11
40	Protecto . . . . . . . . . . . . . . . . . . . . . . 23
	Radio Shack . . . . . . . . . . . . . . . . 41,110
36	Scientific Systems . . . . . . . . . . . . . . 101
	Sintec Co.... . . . . . . . . . . . . . . . . . . 105
39	Tab Books . . . . . . . . . . . . . . . . . 71.73
42	Tam's Inc. . . . . . . . . . . . . . . . . . . . 100
79	Univair, Inc. . . . . . . . . . . . . . . . . . . . . . 95

Classified Advertising . . . . . . . . 111-120
Cleveland Institute of
Etectro
. .... 44-47

29	Commodore Computer ...............	C-4
19	Communication Electronics . . . . . . . .	25
60	CompuServe . . . . . . . . . . . . . . . . . . . 43	

60 CompuServe .............. . . . . . . . . . . . 43
11 Computer Mail Order . . . . . . . . . . . . . . . 27

14 Digi-Key Corp. . . . . . . . . . . . . . . 106-107
66 Discwasher . . . . . . . . . . . . . . . . . . . . . . . 7

10 Electronics International .......... 100
25 Epson . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

12,13 Foley-Belsaw . . . . . . . . . . . . . . . . 99,101

STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION (Required by 39 U.S.C. 3685)

Title of publication: Computers \& Electronics a. Publication No. 00324485
2. Date of filing: October 1, 1983
3. Frequency of issue: Monthly
a. No. of issues published annually: 12
b. Annual subscription price: $\$ 15.97$
4. Location of known office of publication: One Park Ave nue, New York, New York 10016
5. Location of the headquarters or general business of fices of the publishers: One Park Avenue, New York New York 10016
6. Names and complete addresses of publisher, editor and managing editor: Publisher: William S. David, One Park Avenue, New York, Now York 10016; Editor: Ar thur P. Salsberg, One Park Avenue, New York, New York 10016; Managing Editor: John R. Riggs, One Fark Avenue, New York, New York 10016.
7. Owner: Ziff-Davis Publishing Company, One Park Ave nue, New York, N.Y. 10016; Ziff Corporation, One Park Avenue, New York, N. Y. 10016
B. Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of tota amount of bonds, mortgages or other securities: None
10. Exient and Nature of Circulation

Average	Actual No.
No. Copies	Coples of
Each Issue	Single Issue
During	Published
Preceding	Nearest to
12 Months	Filing Date

A. Total No. Copies
Printed (net-press run) $\quad 591,231 \quad 718,991$
B. Paid circulation

1. Sales through
dealers and carriers. street vendors and counter sales

$$
134,59
$$

167,900
2. Mail subscriptions
346.646

437,400
C. Total Paid Circulation
(sum of 1081 and 1082 ) $481,238 \quad 605,300$
D. Free distribution
by mail, carrier
or other means,
samples, com-
plimentary, and
other free copies
$28,901 \quad 20,864$
E. Total distribution
(sum of C and D)
$510,139 \quad 626,164$
F. Copies not distributed

1. Office use, left over, unaccounted, spoiled after printing

1817
1,527
2. Returns from news agents
$79,275 \quad 91,300$
G. Total (sum of $E, F 1$, and 2 -should equal net press run shown in $A$ )
591. 231
718.991 rect and complete.


# For Your Most important Computing Needs 



## EasyScript 64

Displays 764 lines $\times 240$ characters. Prints to 130 columns. Works with EasySpell 64


Easy Finance I-
Loan Analysis
12 loan functions. Bar graph forecasting as well as caiculation


Accounts Payable/ Checkwriting
11 functions. Automatic billing. 50 vendors/disk.


Easy Finance IIBasic Investment Analysis
16 stock investment functions. Investment bar graph.


Accounts

## Receivable/Billing

11 billing functions. Printed statements.


EasyCalc 64
Multiple electronic spreadsheet with color bar graph eature. 63 columns $x$ 254 rows.


Easy Finance IIIAdvanced Investment
Analysis
16 capital investment
functions. Bar graphs.


## General Ledger

8 general ledger options. Custom income statement, trial balances, reports.


The Manager
Sophisticated database system with 4 built-in applications, or design your own. Text, formulas, graphics.


Easy Finance IVBusiness
Management
21 business management features. Bar graphs.

## Inventory

Management
1000 inventory items. Full reports.

( E commaciore
SuperExpander 64
21 special commands. Combine text with high resolution graphics. Music and game sounds.

EASY   FINANOEV	
3 3cmanam:	60
Q coimn	doter

Easy Finance VStatistics and Forecasting
Assess present/future sales trends with 9 statistics and forecasting functions


## Payroll

24 different payroll functions. Integrated with G/L system.

