Popular Hectronics

Build a

9-BAND STERED EQUALIZER

Overcomes room
acoustic problems

How to Select a SHORTWAVE RECEIVER
plus English-Language Broadcast Directory

HOW TO BUILD:

- Home Freezer Temperature Alarm
- FLIP- A New CMOS Game
- Micropower Audible Continuity Tester

TEST REPORTS:

- Concord CR-400 4-Channel Receiver
- Koss HV-1 Stereo Headphones
- Pace CB-1023 SSB/AM CB Transceiver
- RCA WR-525 TV Signa
- Helpmate CD-5 Autom

CBEI-the only home-study collego-lavel training

(c)

prodrem which niwe in electronic circt

 only CREI offers you a complete

 only CREI offers you a complete college-level Electronic Design Laboratory to speed your learning

Popular Electronics

FEATURE ARTICLES
33 WHAT TO LOOK FOR IN A SHORTWAVE RECEIVER Richard W. Wood
Evaluating broadcast coverage, technical and operating needs.
41 ENGLISH-LANGUAGE SHORTWAVE BROADCASTS Roger Legge
Frequencies and times for May through August.
43 HOW RADIO-CONTROL SYSTEMS WORK fred Marks
Types of systems used to operofe model planes, cars, and boats.
62 BUYING AND USING A POCKET CALCULATOR John I. frye
76 WHAT'S NEW IN ELECTRONIC MUSIC SYNTHESIZERS? Craig Anderton
Digital techniques, new controllers, and module construction.
CONSTRUCTION STORIES
27 BUILD THIS NINE-CHANNEL STEREO EQUALIZER Gary Kay
Low distortion, no ringing, $\pm 12 \mathrm{~dB}$ control.
47 MICROPOWER AUDIBLE CONTINUITY TESTER William D. Kraengel, Jr.
Tests semiconductor junctions safely.
48 BUILD A HALL-EFFECT MAGNETOMETER L. George Lawrence
Good Science Fair project. Probes magnetic field strengths.
58 BUILD FLIP: A CMOS GAME COMPUTER Joseph A. Weisbecker
Challenge a handful of IC chips to a game of logic.
81 HOME-FREEZER THAW ALARM Franklinc. Willoughby
Protects food investment.

POPULAR ELECTRONICS, May 1974, Volume 5, Number 5. Published monthly at One Park Ave., New York, NY 10016. One year subscription rate for U.S., U.S. Possessions and Canada, $\$ 6.00$; all other countries, $\$ 8.00$. Second class postage paid at New York, N.Y. and at additional mailing offices. Authorized as second class mail by the Post Office Department, Ottawa, Canada and for payment of postage in cash. Subscription service and Forms 3579: P.O. Box 2774, Boulder, CO 80302. Editarial offices for manuscript contributions, reoder inquiries, etc.: One Park Ave., New York, NY 10016.
POPULAR ELECTRONICS including ELECTRONICS WORLD, Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.

Copyright © 1974 by ZIFF-DAVIS PUBLISHING COMPANY. All rights reserved.

ALEXANDER W, BURAWA
Assuriale Editor
ANDRE DUZANT
Teehnical lihstrato

ELLEN S. FINKELSTEIN

JOSEPM E. HALLORAN
drertising Dircetor
JOMN J. CORTOM Advertising Sules
MADELEINE LITTMAN
adertislug sertice Monager
PEGI MCENEANEY
STANLEY NEUFELD
NEEY NEUFE
FURMAN M, MEBB
Group 1'P, Electronics \& Photo

THE SCENES
10 STEREO SCENE Ralph Hodges
24 HOBBY SCENE
82 SOLID STATE Lou Garner
86 CB SCENE Len Buckwalter
88 TEST EQUIPMENT Leslie Solomon

PRODUCT TEST REPORTS

65 CONCORD MODEL CR-400 AM/STEREO FM 4-CHANNEL RECEIVER
67 KOSS MODEL HV-1 STEREO HEADPHONES
68 RCA MODEL WR-525A TV MARKER/SIGNALYST
69 PACE SIDETALK MODEL CB-1023 AM/SSB CB TRANSCEIVER
70 HELPMATE MODEL CD-5 AUTOMATIC GARAGE DOOR OPENER

DEPARTMENTS
6 EDITORIAL Milton S. Snitzer
Qualifying TV Service Technicions
8 LETTERS
22 NEWS HIGHLIGHTS
94 NEW PRODUCTS
97 NEW LITERATURE
98 ELECTRONICS LIBRARY

COMING NEXT MONTH

The Cassefte Recording Medium
How to Make Double-Sided PC Boards
Build a Single-IC Weather Receiver CMOS Microlab for Digital BreadBoarding

Midwestern Office
The Pattis Group, 4761 West Touhy Ave. lincolnwood, IDinois 606-14, 312679.1100 GERALD E. WOLFE, GEORGE B. MANNION

Western Office
9025 Wilshire Boulevard, Beverly Hills, California 90211
213 273.8050; BRadshow 2.1161
Western Advertising Manager, BUD DEAN
Japen: Jame; Yagi
Oii Palase ADyama; 6.25 , Minami Aoyama 6 Chome, Minaso-Ku, Tokyo 407-1930 6821

MPA

Ziff-Davis also publishes Boafing, Car and Driver, Cyclo, Flying, Modern Bride, Popular Photography, Skiing, and Stereo Review.

Forms 3579 and all subscription correspondence should be addressed to POPULAR ELECTRONICS, Circulation Department, P.O. Box 2774, Boulder, CO 80302, Please allow at least eight weeks for change of address. Include your old address, as well as new-enclosing, if possible, an address label fram a recent issue.

Editorial contributions must be accompanied by refurn postage and will be handled with reasonable core; how. ever, publisher assumes no responsibility for refurn of safety of art work, photographs, models, or manuscripts.

By Milton S. Snitzer, Editor

QUALIFYING TV SERVICE TECHNICIANS

The pros and cons of licensing television service technicians have been advanced over and over for years. Proponents emphasize the importance of building up the "professionalism" of the business and establishing a better public image by setting minimum technical qualifications. (A byproduct of this would be the squeezing out of "moonlighters' who, with a low overhead, can charge less than regular shops.)

On the contrary side, there are those who are against licensing because (they say) it would merely create a bureaucratic system and tap the technician's income.

There are various forms of licensing, of course. State examinations can be established for qualifying technicians; electronics service associations can certify their own members; and states or cities can institute "registration" programs, relying on the mere establishment of a service business as the criterion for granting a license.

After all these years, however, little progress has been made. For example, only a few states boast technician license laws. New York is now in the process of establishing regulations for technicians who operate in any area of electronics repair-from TV to phonos. Details of the bill before committee (F1630) have not been made available. We understand, though, that technical competence will not be one of the prerequisites since it is said that only an "interview" procedure will be used in the licensing procedure. Such a system will hardly assure better service for the consumer.

The International Society of Certified Electronics Technicians (ISCET), a subsidiary of a national service dealers association, has registered about 7000 technicians. Requirements for the registration are four or more years of experience and/or schooling and the passing of a written exam. Since there are 204,000 technicians and 74,400 dealers (according to NESDA), the number registered by ISCET is relatively small; but the program is respected within the field. Being registered by ISCET should certainly aid a technician looking for a job. (For more information on the quarterly exams, write ISCET, 1715 Expo Lane, Indianapolis, IN 46224.)

The ISCET program and the regulations enacted by some state and local governments are good starts, of course, but much remains to be done to develop more public confidence.

Save time and money by joining the

Electronics and Control Engineers' Book Club

Here is a professional club designed specifically to meet your $H_{\text {day-to-day engineering needs by providing practical books }}$ in your field on a regular basis as below publisher prices.

How the Club operates: Basic to the Club's service is its publication. the Electronics and Control Enopineers Book Club Bulletin, which brings you news of books in your field. Sent to members without cost, it announces and drscribes in detail the Club's featured book of the month as well as alternate selections which are available at special members' prices.
When you want to examine the Club's feature of the month, you do nothing. The book will be mailed to gou as a regular part of your Club service. If you prefer one of the alternate selec-tions-or if you want no book a: all for that month-you notify the Club by returning the convenient card enclosed with each Bulletin.
As a Club member, you agree only to the purchase of four books over a two-year period. Considering the many books published annually in your field, there will surely be at least four that you would want to own anyway. By joining the Club, you save both money and the trouble of searchiug for the best books.

MAIL THIS COUPON TODAY

ELECTRONICS AND CONTAOL ENGINEERS' BOOK CLUB

 582 Princeton Road. Hightstown. N.J. 08520Please entoll me mis memher of the Electronics and Control Engineers' Hook Club and send me the two books indieated below. I am to receive the bonus for just $\$ 1.00$, and my first selection at the specinl Club price shown. These hooks are to be shipped on apspecial and i may relurn them both without cost or further oblization. If I decide to keep the booka. I akree to purchase as few as four booky during the next two yeurs at special Club prices (at least 15% below lint 1

Write Code No. of bonus book here

Write Code No, of
first selection here

Name

Address

State
210

New-Low Distortion COMPRESSOR expander

Restore the original dynamic range of your musicincrease your stereo separation, OR make your own background music with our new compressor-expander kit. Our circuit uses an electronic gain control integrated circuit for fast attack, slow release type operation with none of the lags and distortion found in the old photocell lamp controlled circuits. Expansion beginning level and compression beginning signal levels are adjustable. Up to 20 db of expansion and 40 db of compression are available with less than 1.0% THD under worst case conditions. Typically less than $.05 \%$. under most operating conditions. Frequency response of 2 Hz to $100,000 \mathrm{~Hz}$. Self contained power supply. Connects to preamp output, or to "Tape Monitor" jacks if available.
EX-1 Kit. 3.0 lbs. $\$ 29.95$

REVERB ADAPTOR

Put more life into your music with this self powered stereo reverb adaptor system. The reverb circuit electronically simulates the longer reverberation time of a large hall, giving your music more life and realism. Separate spring units and controls for each channel may be used with any stereo system by connecting the adaptor between the amplifier and preamp.
No. 239 Reverb Adapter Kit with two spring units Shipping Weight $51 / 2 \mathrm{lbs}$.

Circle the reader service card number below for a FREE copy of our latest catalog.

TIT SOUTHWEST TECHNICAL PRODUCTS CORPORATION DEPT. PE

219 W. Rhapsody, San Antonio, Texas 78216

CIRCLE NO. 30 ON READER SERVICE CARD

ADDS MEMORY CIRCUIT TO LOGIC PROBE

After a few weeks of using the logic probe ("Assemble a Lorv-Cost Logic Probe," September 1973) it became apparent that the clevice needed a "memory" circuit to make it complete. The simple addition of a JK Hip-Hop, diode, LED, resistor, and momally closed switch pro-

vides the prol)e with the memory function that really comes in handy for "trapping" very fast pulse indications. The parts are added to the prole's circuit as shown in the drawing.

Keitio D. Wentzel.
Charlotte, N.C.
Many thanks for passing on to our readers your practical modification that will almost double the versatility of the prohe.

ABOUT CYBERNETICS AND R/C MODELING

How does one get into cybernetics? My main interest as a miversity student majoring in
electrical engineering is artificial intelligence, with a secondary interest in industrial robots. Incidentally, "How To Get Started In R/C Modeling" (February 1974) was great. However, you failed to list in the table one of the largest manufacturers of R / C gear: Kraft Systems, Inc., 450 West California Ave., Vista, CA 92083.

Tom Paden
KVA 0821 (Class C); KGN 5865 (Class D) New Castle, Pa.

If your interest is in cybernetics, look into compater programming and engineering. Mix logether elements of electronic telemetry and control, mechanical engineering, hydraulic (or pneumatic) science, and cybernetics, and you have a good fom should be able to obtain more information on these topics at your university.

We apologize for failing to mention Kraft Systems in the R/C story.

WHY DID THE AUTHOR USE. . .?

I enjoved reading "Luxurv Features to Add to Digital Clocks" (December 1973). But why did the author use three 7485 IC's when only two were needed? Each IC contains fonr com-

parators; so, the one used for the tens of minutes could also be used for the tens of hours. For even lower pachage count, the circuit shown can be used.

Michael Scotr Kiron, Inva

Why an author chooses to we one arrangement or 1C when another would provide the same results depends on a number of variables. For example, he might have to use what was available in his locale. But whatever the reason, the object is to obtain a properly functioning circuit.

DEGREE REQUIREMENT WAIVED! The need for Circuit Designers is so great that employers will put aside the degree requirement to move up or hire men with these skills. In every Industry, there are men holding these prestigious positions who do not have a degree in engineering. WHY NOT YOU?

UP-TO-DATE INTENSIVE TRAINING! Our programs are not a rehash of the electronics you already know, but intensive training in the electronics you don't know. They offer you "hands-on" learning of how to design circuits using the latest devices. Included are: Transistors, IC's, FET's, IC power supply regulators; UJT's .. plus more. ARE YOU READY FOR TODAY'S ELECTRONICS?

LOW COST HIGHLY SPECIALIZED COURSES! Because these courses are highly specialized, you can choose a curriculum which best suits your needs. And most important, you can learn at a price you can best afford. CAN YOU AFFORD TO WAIT ANOTHER DAY?
FREE
Send for proof on how you can qualify for training as a circuit designer!

Genilemen, please send me complete details on your CIRCUIT DESIGN courses.
Name Age
Address
City \qquad
\qquad State \qquad Zip It is understood that there is no obligation on my part and that no salesman will call.
'a uholly owned subsidiary of Kurz-Kasch, inc.

Phone 513/296-1020 2876 CULVER AVENUE DAYTON, OHIO 45429

CIRCLE NO. 6 ON READER SERVICE CARD

 Stereo Scene

Here are some statements we have read with remarkable regularity in andio magazines in the last few months: "You must have several hundred watts in reserve to approach the levels of live music in the home... Nothing call compare with the unstrained ease that a super-power anplier brings to the reproduction of large orchestral fortissimos. . We wonder if 700 watts is enough!"
Surprisingly (unless, of course, vou understand the acyuisitive nature of the trine aurliophile), statements such as these are driving some sound buffs into a veritable frenev of buying. The major manufacturers of super-power amplifiers report that demand continues to outstrip supply.
Those of you who were not remembered in your rich uncle's will (and hence remain "super-powerless") or who arc actually satisfied with 60 watts for each speaker are probably begimning to wonder what all the excitement is about.

Two Plus Two Isn't Four. Obviously, one thing a super-power amplifier call do is play recordings louder. One question is: How much louder? As it happens, a 600 walt amplifier is not ten times as loud as a fio-watt amplifier. At best, it can play approximately twice as lond-for reasons havins to d o with the nomlinear behavior of the human hearing mechanism.
The unit of loudness level is the phon. Largely through statisticul studies of human test subjects, a phom scale has been created. It relates the londness sensations perceived by the "average" ear to actual sound

Do You Need Super-power?

By Ralph Hodges

intensity in decibels (dB) as measured by electronic instruments. For sounds of about 1000 Hz , the phon and dB scales correspond. Thus, at that frequency, a level of 0 phon (or dB) is roughly the threshold of hearing for most people, while 120 phons or dB approaches the point at which the ear's nomal operation begins to break down under sensory overload.

The relationship between sound intensity, perceived loudness, and amplifier power can be explained as follows. An increase of 10 dB or 10 phons results in ant approximate doubling of perceived loudness. (From here on, we assme that phons and dib's are equivalent for the important musical frequencies.) This requires a ten-fold increase in amplifier power $(60 \times 10=600$ watts $=$ twice as loud). A 3-dB increase, which yields an incremental, but significant rise in loudness, requires twice as much power. Figure 1 shows these various relationships in graphical form.

Most sounds in nature-excepting such rare cataclysms as the explosion of Krakatoa -are safely below the level of 100 phons. But, as in so many other things, man's ingemity has outdone nature. I suspect that many factory persomel endure levels of 100 phois or more throughout the working day (a situation actually prohibited by law). The pneumatic jackhammer so familiar on city streets does a good deal better than that. Sound-level meters have indicated that the output of a symphony orehestra can exceed 105 dB on climaxes; jet aircraft engines (and a few electronic bands during the height of the acid-rock era) top 120 dB at close range.

At mid-frequencies, let's say that a particular speaker system achieves an output of about 90 dB at a clistance of 3 feet when driven with 1 watt of random noise. Accordingly, 10 watts of drive should produce a $100-\mathrm{dB}$ level; 100 watts should give 110 dB ; and, if the speaker could survive

THE RIGHT PICKERING CARTRIDGE FOR YOUR EQUIPMENT IS THE BEST CARTRIDGE MONEY CAN BUY.

They feature low frequency tracking and high frequency tracing ability*!

Pickering offers you "The Best of Both Worlds" in DISCRETE 4 -channel and in STEREO cartridges. These cartridges have been specifically designed and engineered not only to peak specifications and performance characteristics, but also to achieve total compatability with your music system to help you get the most out of it.

Only Pickering has developed a way for you to be absolutely certain you select the "right" cartridge for your music system. We did it first for STEREO by developing our Dynamic Coupling Factor rating system-DCF for short-which identifies pick-up performance in terms of a quantitative measurement. The value of a DCF rating lies not only in its merit to define low frequency tracking ability but also in its measure as an index of high frequency (8 to 50 kHz) tracing ability. Pickering's DCFrated pick-ups have exceptional high frequency tracing characteristics, vital for both STEREO and DISCRETE 4 -channel performance. The Pickering cartridge exactly
"right" for maximum performance with your equipment is simple to select because of this rating method.

Now, Pickering is also applying application engineering techniques and DCF ratings to its DISCRETE cartridges. They fulfill the stringent requirements necessitated by the sophisticated nature of discrete discs.

So, whether STEREO or DISCRETE is your preference, choose from "The Best of Both Worlds" the Pickering cartridge exactly right for your equipment.

For further intormation write to Pickering \& Co., Inc., Dept, E 101 Sunnyside Blva., Plainview, New York 11803 "traceAbinty-T.M.

PICKERING

"for those who can hear the difference"
it, 120 dB should be available from 1000 watts. On the basis of these figures, a 100 watt amplifier could produce only four times as much sound as a 1 -watt amplifier; and a 1000 -watt amplifier only eight times as much. So, it is obvious that the law of diminishing returns catches up with the super-power set pretty quickly. Furthermore, if we compute the maximum acoustic outputs attainable from our typical speaker when used with a 40 -watt amplifier (for example), the result is 106 dB . With a $200-$ watt amplifier, we get 113 dB . Unquestionably, the latter is louder; but a level of 106 dB in an average listening room is more than enough for most people. So what is the point of the additional 160 watts? Ob viously, it is more than simply an order of loudness.

Music Isn't Steady State. So far, we have talked about power and dB levels as if we experience them as fixed values. However, music levels are anvthing but constant. On a millisecond-to-millisecond basis, the vari-

Fig. 1. Sound-pressure-level changes related to amplifier power requirements and perceived loudness changes. Base is 25 watts (0 dB).
ations in level are liable to be much greater than the ear can appreciate.

A grod sound-level meter is designed to respond to acoustic phenomena in a "human" fashion. As such, it gives a fair indication of the average levels at any one time. But experience has taught us to expect frequent short-term peaks in music that the meter is too slow to follow. To predict how much these peaks exceed the average level at any moment is impossible; but knowledgeable people have suggested that $10-\mathrm{dB}$ spikes are rather routine, so we will use that figure for the purpose of discussion. Providing 10 dB of headroom before an amplifier starts clipping means that average levels will have to be cut back by that amount. Thus they will be down to 96 dB for our hypothetical 40 -watt amplifier, and 103 dB for the 200 -watt unit. With these reductions, we begin to get into listening levels that, while still loud, are not extraordinarily loud for the serious listener.

Some Psychoacoustic Factors. It would appear then, based on these figures, that the super-power amplifier does have something going for it. However it is difficult to reconcile the numbers with the actual experience of listening to music. Several years ago, few would have suggested that levels exceeding 110 dB (even for brief instants) were necessary to realistic music reproduction. If 60 watts per chamel was once considered an ample rating, why is it necessary now to have 150 watts per chamel? How much better can all of that power actually sound?

Perhaps these basic questions can be answered by dealing with some specific problems in a logical progression:
(1) Why don't these brief peaks at an intensely high level seem unbearably loud, forcing one to turn down the volunce and thereby reduce the amplifier power requirements.?

For brief sounds, the sensation of houdness depends on duration as well as intensity. According to an article in the HewlettPackurd Jounal (November 1967) by Wolfgang E. Ohme, any sound lasting less than about 100 milliseconds (0.1 second) will sound softer than a steady sound of equal intensity. A 10 -millisecond sound must be at least 10 dB stronger than a steady sound of equal intensity in order to seem as loud (see Fig. 2).

Now 100 milliseconds may seem short to

Fig. 2. Below 100 ms , short sounds must be more intense to seem as loud as longer sounds. (Courtesy Hewlett-Packard Journal)
the human auditory mechanism, but to an amplifier it is 100 cycles at 1000 Hz (or 10 cycles at 100 Hz). This is more than enough time for any music-power capabilities to be exhausted and for amplifier clipping to set in. So the peaks, though they may not sound so loud, require substantial power capability.
(2) If the ear discriminates against very short sounds anyway, why would it notice if the amplifier clips (and distorts) them?

We are not sure; but apparently it does under some circumstances. Distortion and its audibility are subjects of much argument. The main objection to distortion seems to be that it is somehow out of tume with the rest of the music. If the ear senses distortion in the same way that it senses the harmonic values of sound (pitch), then, according to Harry F. Olson's Music, Pluysics and Engineering, 13 milliseconds is sufficient time for distortion to be heard. The conclusion to be drawn (purely speculatively) is that the ear is almost ten times quicker in responding to distortion than to intensity. In short, an amplifier's ability to cope with severe peaks may not be heard, but its inability to do so can be heard.
(3) Then why doesn't music reproduced by "inadequate" 60 -vatt amplificers sound intolerably distorted?

Obviously some kinds of music present lesser peak demands than others. Also, many recordings are electronically compressed as they are made, which greatly reduces or eliminates the peaks. But I suspect that much distortion goes unnoticed because of the psychoaconstic phenomenon of "masking."

Masking is the aural mechanism by which a loud somel can render a softer one partially or completely inaudible. It is dependent on the intensities and frequencies of both the
masking and masked sounds. Lower (in frequency) sounds can mask higher sounds, but the reverse seems not to be true. Also the closer together the two sounds are in frequency, the more effective the masking.

Although it is a familiar phenomenon, masking is hard to grasp intuitively because it is largely beyond our control. A fully masked sound cannot be heard, even by straining or concentrating. The best way to ummask it is to get closer to the source, thereby making it louder. This is difficult to do when many sources are coming through just two speakers, umless the masked sound has one of the speakers all to itself.

Like any sound, distortion can be masked. Theoretically, at moderate listening levels, comparatively large amounts of distortion (l percent or more) can go unheard because they are softer than the ambient noise level of the room. But at $100-\mathrm{dB}$ listening levels, 1 -percent distortion achicves a $60-\mathrm{dB}$ level, which is certainly loud enough to be audible. Evidently. it is sometimes masked by the music itself.

Making Some Tests. Concocting theories is certainly more fun than dealing with cold reality; but to make sure that the theories were not too far from the truth, I made some listening tests. Using speakers of typical acoustic-suspension efficiency and amplifiers rated at 60 and 200 watts per channel, I tried to determine if there was anything really objectionable about the smaller amplifier.

The first program source was a dise with a wide dynamic range (an advance copy of the latest in the Lincoln Mayorga/Mastering Labs series), produced by the directdisc cutting technique. The music consists of big-band pop arrangements of familiar tunes, with bright, clear brass and a varicty of outrageous percussion transients. Despite the dynamic demands of this material, getting the 60 -watt amplifier into trouble involved some rather high volume-control settings. Hiss from the preamplifier filled the room and the speaker fuses were blown twice when the toncarm was set down on the record. Finally, at an average level of 101 dB on a Realistic Sound Level Meter, the "stramed" sound of clipping occurred on drums and percussion. At 102 dB , the amplifier was into hard clipping.

With a total of 120 watts (2 times 60) and not considering room factors, this is the point at which one would expect clipping to

Energy shortages tell us we have to change our driving style. Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot.

The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.

P.O. Box 1147, Dept. PE

Grand Junction, Colo. 81501
(303) 242-9000

- Please send me free literature

Enclosed is $\$ \quad \square$ Ship ppd. \square Ship C.O.D. Please send: Mark Ten B assembled @ $\$ 59.95 \mathrm{ppd}$ Mark Ten B Kit@ \$44.95 ppd. (12 volt negative ground only) _ Standard Mark Ten assembled, @ \$44.95 ppd. 6 volt: Neg. Ground Only 12 Volt: Specify Pos. Ground Neg. Ground Standard Mark Ten Deltakit @ $\$ 29.95$ ppd. (12 Volt Positive or Negative Ground Only)
\qquad
1 Car Year Make_..

WORTH

 LOOKING FOR!
SOLDERING

 IRONS - GUNSBY THE WORLD'S LARGEST MANUFACTURER OF SOLDERING IRONS

Get the right soldering tool for your jobs. You'll find the right product at the right price in the Lenk line - at better hardware and supply stores.

CORDLESS

PENCIL TYPE IRONS

Battery Powered COMPLETE WITH RECHARGER

PACEMAKER

Instant type gun at a low, low cost AND OTHERS

ALL MADE IN U.S. A. BY SKILLED CRAFTSMEN

If your dealer does not have the Lenk line, please send us his name and address.

since WALL-LENK MANUFACTURING COMPANY BOX 3349 KINSTON. N C 28501
 CIRCLE NO. 35 ON READER SERVICE CARD

Put more punch in your work.

With a Greenlee Chassis Punch you can punch clean, true holes in seconds. Round, square. key or D. In 16-ga. metal, hard rubber, plastic or epoxy. Available at radio and electronics parts dealers. Write for catalog E-730. Greenlee Tool Co, 1764 Columbia Ave., Rockford, III. 61101

GREENLEE TOOL CO

A Unit of Ex-Cell-O Corporation $\times \bar{\sim} \mathbf{D}_{A}$
CIRCLE NO. 17 ON READER SERVICE CARD
start on 10 - d 13 peaks. However, since the clipping was clearly audible, the highest peaks were in all probability much more severe.

Sivitching to the 200 -watt amplifier (which sounded much cleaner at these levels), we noted peaks on the neter of +4 dB (that is, 106 dB) on single beats of a kettledrum and +8 or more on continuous rolls. The bass, with an obvious assist from room conditions, convulsed the meter to +10 and above on certain notes. The meter was too slow to register most of the "snap" transients (wood block, chimes, etc.), but I was surprised to see it peg solidly on a relatively mild-sounding piano run.

The brass sounds were almost unbearably loud, vet registered a mere 105 dB during ear-splitting climaxes. So the relation between amplifier power and loudness is deceptive. According to the acoustic measurements, the 60-watt amplifier could have provided much more of the brass than I could take. But it couldn't manage the accompanying transient signals, which were subjectively much less overwhelming.

Then I tried a selection fairly typical of the Beatles' hard-rock creations, "Helter Skelter." A few seconds of this at 102 dB was all I wanted, but I was able to confirm that the sound was excessively (and equally) dirty from both amplifiers. Listening at a slightly reduced level, it was obvious that the recording was absolutely bereft of any dynamic range. Vocals, guitar, and drums were all compressed to an almost uniform level. Except for an occasional twitch due to the electric bass, the meter hovered steadily at about 99 dib.

So hard-core Beatles fans can save their money. It is unlikely that anvone could stav itr the same room with "Helter Skelter" plaving at a level that would clip a 60 -watt amplifier. But for those buving new records with high dynanic ranges (such as classical recordings that capture the low fundamentals of pipe organs), super-power is all asset. Also, there are some new air-suspension speaker sustems with massive woofers that demand very high power. One mandafacture of such a speaker system states that 200 watts per channel is required, and that severe clipping occurs with an amplifier rated for 100 watts per channel. Other considerations are the size of the listening room, the furnishings, and the number of speakers. Adding it all up, you may find that vou need inore power than you ever imagined. \widehat{b}

Partners in Scientific Calculations

Desk-Top Scientific Calculator -
The 7.440 Scientific Calculator does the basic arithmetic functions plus ten transcendental functions. Algebraic problem entry with two deep nesting parentheses makes it possible to enter a problem just the way you would write it. Either floating decimal mode or scientific notation. A separate memory register can be used for storage of an intermediate result or of a constant. Trigonometric functions can be performed using either degree or radian entry. There is also a radian mode indication. A separate π key. and factor reversal ($x-y$) are also featured.
The 14-digit LED display provides ton-digit precision for mantissa and two-digit precision for exponent. There is full sign change capability for both mantissa and exponent, and fulf chain caleulation with any sequence of functions desired. Also featured are automatic error indications for overflow, under flow, and forbidden apera. tions. The 36 -key keyboard has separate clear and clear entry keys to prevent having to clear the whole problem in the event of an erroneous entry. The calculation range is 10^{99} to 10^{-99}

KEYBOARD FUNCTIONS:

Sine - Arcsine - Cosine - Arccosine - Tangent - Arctangent - $e^{x} \cdot \operatorname{In} x \cdot \log _{10} 0^{x} \cdot x^{V} \cdot \sqrt{x}, 1 / x$ - Addition - Subtraction - Multiplication - Division SIZE: $812^{\prime \prime} \times 12^{\prime \prime} \times 312^{\prime \prime}$
PRICE: Kit S199.95 Assembled $\$ 299.95$

Progipanimer
Desk-Top Computer -
The programmer can program the $\mathbf{7 4 4 0}$ to do extremely long or often used calculator operations. Instead of repeatedly entering into the calculator a formula in which only certain variables change, a formula can be entered once into the programmer and then be stored and run at will.

The programmer automatically executes all steps of the program until it sees a tocation within the formula where a variable is to be entered. It then halts execution, but once the variable is entered into the calculator, the continue key is pressed agoin and all remaining steps of the formula are executed until the programmer sees another variable entry or an "End of Program" command.

FEATURES:

256 programming steps with option of expandabifity to 512 steps - Program code for each function key on the calculator - Constant power to the RAM's prectudes destruction of stored programs - Sixteen-key array to enter the address or instruction in hexadecimal - Six annunciator lights to give clear identification of programmed pauses: two to indicate a halt or end of program - Two RUN modes of operation: Continuous or step - S-Key to halt execution anywhere in the program.

Kit: Programmer . . . \$199.95 - Expansion . . . S79.95 Assembled: Programmer . . \$299.95-Expansion . . \$129.95

Warranty: Full two-vear warranty on assembled units, ninety days on kits.
Prices subject to change without notice.
Available from your local Olson Electronics Deater.

IIITS
 "Creative Electranits"

6328 Linn, N.E., Albuquerque, New Mexico 87108 505/265.7553 Telex Number 668401

Enclosed is a Check for S
BankA nericard =

- Master Charge =
Ciedt Card Expration Date
Inclute $\$ 500$ for Postage and Handling
DKit
- Model 7440 - 7440 Programmer DExpansion
\square Please Send intormation on Entire Mits tine.
HAME
ADDRESS
CITY
STATE \& 2IP

The better the the better you

 And

 And youcan youcan get started get started for just for just $\$ 10$. $\$ 10$.

 COMPU-TRAINER

 Only $\$ 10$ down gets you into any NTS Home-Study Courses in Electronics.* Just $\$ 10$ that can lead to a top-dollar job, a big, bright career in electronics
 As an NTS student, you'll acquire the experience and know-how that comes with first hand training on NTS "pro" equipment. Equipment you'll build and keep. Our courses include equipment like the $5^{\prime \prime}$ solid-state oscilloscope, a transistor and tubetester, a vector monitor scope, 74 sq. in. B\&W TV, or a solid-state stereo AM-FM receiver. The unique
 NTS DIGITAL GR-2000 SOLID STATE COLOR TV WITH 315 SQ. IN. PICTURE AND VARACTOR DIGITAL TUNING
 new NTS Digital GR-2000 Color TV with first-ever features like silent varactor diode tuning; digital channel selection, digital clock, an option at additional cost; and big 315 sq . in. ultra rectangular screen. This is just a sampling of the kind of better equipment that gets you better equipped for the electronics industry.
 By following the easy-to-read NTS lessons, you learn the theory behind these tools of the trade. You'll learn and develop skill and confidence fast.

equipment

Choose from 12 NTS Electronics Courses, including Color TV and B\&W TV Servicing, Electronics and Computer Technology, Electronics Communications \& FCC, and Industrial \& Altomation Electronics. All courses can prov de you excellent opportunities to expand your career in the exciting world of electronics! So get started right now by checking the coupon and mailing it today.
Classroom Training at Los Angeles. You can take classroom training at Los Angeles in surnny Southern California. NTS occupies a city block with over
a million dollars in facilities devoted exclusively to technical trairing. Check tox in coupon.
Approved for Veteran Training. Accredited Member: National Association of Trade \& Technical Schools: National Home Study Council

NATIONAL EAman SCH00LS

TECHNICAL-TRADE TFAINING SINCE 1905 Resident \& Home Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

News Highlights

CBS Labs VP Receives Patent for SQ Quadraphonic Disc
Benjamin B. Baner, Vice President for Acoustics and Magnetics of CBS Labs has been awarded patent number 3,70,901 covering his invention of the $\mathrm{SQ}^{\mathrm{TM}}$ stereo-compatible quadraphonic disc. Together with companion patents issued and pending, it provides broad coverage of the invention of the $S Q$ quadraphonic record system. Mr. Baner has made mumerous contributions to theoretical and applied acoustics, including the invention of the phase-shift type of cardioid microphone which is miversally used, as well as methods and apparatus for measurements of sond and vibration. He introduced several imovations in transducer designs, developed a 1 -gram movinginagnet phono pickup (precursor of the modern high-fidelity reproducer), and made significant improvements in modern stereophonic dise technology.

Chip Shortage Slows Watch Makers

Digital electronic watch makers have been plagued with one shortage after another. First it was the quartz crystals that are used to establish the operating frequency, now it is another important ingredi-ent-the CMOS chip that does the dividing and timing. Semiconductor makers seem to have given priority to other MOS products that they can deliver more readily and to those on which the vields are higher. In the meantime, the digital watch makers are chafing at the bit in an cflort to get going into a market that still promises to reach over $\$ 50$ million by 1976.

IEEE Releases Manpower Report

The Manpower Committee of the IEEE has released its manpower report for 1973, "Career Outlook in Engincering (USA)." The report states that generally "career opportunities in clectronics will contimue to grow (however) . . it will be necessary to remain flexible and ever ready to transfer to another area as activity changes in focus and grows in turn to meet market demands." The report urges engineers to keep abreast of new developments and avoid over-specialization in their education. The 225 -page report is available to IEEE members at $\$ 10$ and to nonmembers at $\$ 15$ from the Institute of Electrical and Electronics Engincers, Inc., 345 East 47th St., N.Y., N.I. 10017.

Hearing Aid Battery Recharged by the Sun

The Ultima in-the-ear hearing aid is powered by a sealed nickelcadmium rechargeable battery that operates the aid for 24 to 36 hours. To recharge the battery, the aid is inserted into a recharger overnight. The recharger contains a rechargeable high-capacity alkaline battery which has 2 to 3 months of recharging power. To keep the recharging battery fully charged, a six-cell silicon solar battery is built atop the recharging unit. By exposing the solar cell to about 10 hours of sme shine, about 1 month's recharging power is applied to the alkaline battery which can then be used to recharge the tiny nickel-cadminm cell built into the hearing aid. Covered by a 5 -year guarantee with no batteries to buy, the entire system sells for jnct under $\$ 400$.

There's a wealth of enjoyment and information in Sams books for the hobbyist.

One or more of the eight shown here could be right down your alley.

tape recording for the HOBBYIST. 3rd Edition
 By Arthur Zuckerman

Everything you need to know to get the most from your tape recorder. The book discusses the advantages, disadvantages, maintenance, and repair of the different types of machines and microphones available. It also covers their many uses, ranging from recorded letters to sound effects and video tape recording. 192 pages, softbound. No. 21016 \$4.95

ELECTROSTATICS HANDBDOK

By Charles Green

An introduction to one of the great natural forces - electrostatic electricity. You learn its fundamentals firsthand by building educational and entertaining demonstration projects. Each chapter in the book includes groups of projects that cover different aspects of electrostatic electricity generation, detection, and use. 128 pages, softbound
No. 21023 \$4.25

5-MINUTE ELECTRONIC

PROJECTS

By Len Buckwalter
While each project can be created in just minutes, in total the book provides many hours of pleasure. It presents, in complete detail, dozens of projects that can be made with simple tools and inexpensive components. The projects start with simple demonstrations and grow progressively more complex. enabling you to learn by building. 96 pages, softbound. No. $20968 \quad \$ 3.95$

LED CIRCUITS \& PROJECTS

By Forrest M. Mims III
The recently developed and fast-growing field of uses for light emitting diodes (LED) is graphically presented in this highly readable book. Following an introduction to the theory of LEDs. the book covers the many varied LED circuits and applications. Chapters cover installation, operating hints, multiplecolor LEDs, diode laser theory, and much more. 176 pages, softbound. No. 21006 \$4.95

HOWARD W SAMS \& CO., INC.
4300 W. 62nd St., Indianapolis, Ind. 46206

[^0]
-in

High-Voltage Geiger Supply
Q. I am experimenting with an old Geiger counter. Unfortwately, I can no longer buy the high-coltage batteries that the unit reraires. Is there a simple 300 -rolt converter that could be potcered from the intemal bat-tery:-
A. The circuit shown at the right will gen-- Wate about 300 volts de-at a very low current, but enough for vour Geiger tube.

A Do-Nothing Box

Q. I want to duplicate a Do-Nothing box that a friend of mine has, but it is potted in plastic so 1 can't see the circuit. The seven neon lamps just blink in a random fashion. How is this done?
A. Use the circuit at the left. Capacitors should be between 0.1 and $1 \mu \mathrm{~F}$ (low leakage) ; resistors between 220 k and 2.2 megohms. Use a pair of series-connected 67% or 90 -volt dry batteries.

Needs an Audio Amplifier

Q. I like to experiment with crystal sets, but I don't like to wear earphones all the lime. I need a small, lou-cost audio amplifier that I can build from junk-box or other readily available parts.
A. All you need for this amplifier is a couple of transistors, two capacitors, a ficed resistor, and a volume control (plus a speaker of course). To extend battery life, or to add a little smoothing if an ac supply is used, connect a capacitance of 200 inicrofarads between the 9 -volt supply and ground. If you don't have a 16 ohm speaker, try using the output transformer and speaker from an old transistor radio.

Have a problem or question on circuitry, components, parts availability, etc.? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, NY 10016. Though all Ietters can't be answered individually, those with wide interest will be published.

There are some things you'll appreciate about a Dual right away. Others will take years.

You can appreciate some things about a Dual turntable right in your dealer's showroom: its clean functional appearance the precision of its tonearm adjustments and its smooth, quiet operation.

The exceptional engineering and manufacturing care that go into every Dual turntable may take years to appreciate. Only then will you actually experience, play after play, Dual's precision and reliability. And how year atter year, Dual protects your precious records; probably your biggest investment in musical enjoyment.

It takes more than features.

If you know someone who has owned a Dual for several years, you've probably heard all this from him. But you may also wish to know what makes a Dual so different from other automatic turntables which seem to offer many of the same features. For example, such Dual innovations as: gimbal tonearm suspensions, separate anti-skating scales for conical and elliptical styli, and rotating single play spindles.

It's one thing to copy a Dual feature; it's quite another thing to match the precision with which Duals are built.
specification. Only by maintaining this kind of tolerance can tonearm calibrations for stylus pressure and anti-skating be set with perfect accuracy

Other Dual features are built with similar precision. The roior of every Dual motor is dynamically balanced in all planes of motion. Additionally, each motor pulley and drive wheel is individually examined with special instruments to assure perfect concentricity.

The Dual guarantee.

Despite all this precision and refinement, Dual turntables are ruggedly built, and need not be babied. Which accounts for Dual's unparalleled record of reliability, an achievement no other manufacturer can copy. Your Dual includes a full year parts and labor guarantee; up to four times the guarantee that of her automatic turntables offer.

If you'd like to read what several independent testing laboratories have said about Dual furntables, we'll be pleased to send you reprinis of their impartial reports. To appreciate Dual performance first hand, we suggest you visit your franchised United Audio dealer.

But your full appreciation of Dual precision won't really begin until a Dual is in your system and you hear the difference it will make on your own records. Play after play. Year atter year.

The gimbal, for example.

A case in point is the tonearm suspension. Dual was the first manufacturer of automatics to offer a true twin-ring gimbal suspension. More importantly, every Dual gimbal is hand assembled and individually tested with precision instruments especially developed by Dual. The vertical bearing friction of this gimbol is specified at 0.007 gram, and quality control procedures assure that every unit will meet this

3-1/2 digit multimeter with 6 to 13 times the accuracy of a typical analog meter

The industry's most popular bench-type VOM, compared above to our Model 282 Digital Multimeter, has 3% full scale DC accuracy. On the 50 -volt scale, that's an accuracy of ± 1.5 volts, or an accuracy of reading of 7.5% at about 20 volts. The 282's accuracy of reading is $0.5 \% \pm 1$ least significant digit, or ± 0.11 volt. Divide those two figures- 1.5 by 0.11 -and you find that the $\mathbf{2 8 2}$ has $\mathbf{1 3 . 6}$ times the accuracy at that reading.

Even at readings close to 50 volts, where the analog multimeter is most accurate, Model 282 remains more than six times as accurate as the analog multimeter.

As for ease of reading . . . the picture above shows Model 282 and the analog meter to scale. Put it where you'd normally set up your multimeter and see for yourself how much more easily you can read the 282's bright digital display.

And there's more-automatic polarity, clear out-of-range indication, automatically positioned decimal point, 100\% overrange capability, complete overload protection, 10 megohms input impedance and a three-position handle that doubles as a stand for tilt-up viewing. Plus a Model PR-21 probe with switchable 100 K ohm isolation resistor to prevent capacitive loading while measuring DC in RF circuits.

And all for almost an analog price! Now in stock at your local distributor or write Dynascan.

BUILD THIS

NINE-CHANNEL Kan STEREO EQUALIZER

Active op-amp filters produce very low distortion,
no ringing. Eighteen independent control positions offer full flexibility.
BY GARY KAY

AN INCREASING number of audiophiles are adding equalizers to their hi-fi/ stereo equipment. These ausiliary devices permit adjusting the response of the system in relatively small frequence increments to achieve a desired effect-whether it be to compensate for room acoustics or speaker deficiencies, or just to please their own personal tastes.

If you are contemplating adding an equalizer to your system. hut are concerned about the cost of a commercial unit with enough flexibility, you will want to consider huilding the unit described here. Designed for a stereo system, it has nine 1 -octave adjustments in each chamel. Using integrated circuit (op ainp) active filters, the equalizer has an intermal ac power supply. Boost and cut limits are $\pm 12 \mathrm{~dB}$; voltage handling limit is 2 V rins; and the rotal harmonic distortion is a low 0.05 percent.

The frequency response of the equalizer
is from 20 to $20,000 \mathrm{~Hz}(3 \mathrm{~dB})$, hum and noise is 65 dB below l volt ims, input impedance is 100,000 ohms, and output impedance is less than 10,000 ohms. Connection to an operating audio svstem can be made between the preamp-out/power-ampinput jacks or between the tape-out/tapemonitor imput jacks.

The nine gain controls are centered at 50 , $100,200,400,800,1600,3200,6400$, and 12.800 Hz . Athough the lowest and highest frequency filters are bandpass types, their use in a feedback loop gives them a low-pass/high-pass response. The enclosure of the entire arrav of active bandpass filters in a feedback loop also provides low noise and distortion.

The arrangement of the potentiometer knobs for both channels on the front of the equalizer provides a true graphic representation of the tonal compensation. The equalizer can also lie used in an electronic musical instrument system by connecting it

between the preamp and the power amplifier.

How It Works. The schematics for one channel and the power supply are shown in Fig. 1. The input to the chamel is coupled through capacitor CI to voltage divider R1R2. One of the two op amps in $I C l$ buffers the input from the voltage divider and provides a low-impedance source for the nine active filters. Each of the latter is composed of an operational amplifier ($1 / 2$ of $I C I$ and hoth halves of IC.-IC5) with the related resistors and capacitors. The outputs of the
bandpass networks are then summed in one half of ICF, whose output is fed back through R:3-RII. Slicle potentiometers RI2 through R20 vary the overall gain of the feedback loop at the operating frequency of each filter.

Since the filter circuit has unity gain at (0-dB equalization settings, it is necessary to follow the summer with an amplifier made up of the second half of IC6. The amplifier also provides the signal inversion necessary to keep the input and output signals in phase.

An equalizer in-out switch (S1) is pro-

PARTS LIST

For equalizer boards 11 of earh for each hoard):
 (:2, C11-6).22- μ F ranacilor
C3,C12-0.12- K cupacitor
($4, \mathrm{C13}-0.056-\mu \mathrm{F}$ ctapucitor
6.5,(74-27,000-pF caparitor

C6,C15-15.000-pF capacitor
(7, C16-8200-pF apmector
C8,C17-3900-pF rapacitor
C'9,C18-1800-pl tapucitor
C10,C19-1000.pF capacilor
C20-4700.pr capuctor
C22-10- $\mu \mathrm{F}, 60$-voll electrolylic capacitor
ICI.IC6-5.558 op amp IC,
/ $1, J 2$--Audio connector
Un/ess otherwise noted, resistors are 1/4-wath.
R1,R78-100.000-ohm
R2,R76.R77-10.000-ohm
R3-RIIR21-R20-470-ohm
RI2.R20-10.000-ohm slide potentioneter
R:30.R38- 3900.0 hm
R.39-R17- 17.000 -ohm

R48-R56 - 6800 -ohm
R57.R65-680.ohm
R66-R71-22,000-ohm.
R75-100-ohm
Following componiots on right hoard only:
C23-0.047-uF caparitor
11-Neon lamp ($\mathrm{NE}-2 \mathrm{E}$) and holder
R79-7.5.000-ohm resistor
S2-Dpelt swiluh
Following component on leff boand only:
Sl-Dpde swilch
Following on power supply:
(24,C25-1000 $\mu \mathrm{F}, 25$ wolt electrolytic rupacitor
III D4 - IN5060 remifier diode
FI - 0.5-A inser and holder
Tl-Transiormer: secondary: 24 VCT, 30 $m A$
Misc.-Suitable enclosure knobs for stide notentiometers (18), rubber lieet (4), lime cord, mounting hardurare, efe.
Nout The Iollowing are available from Southwest Technicell Products. $2 / 9$ II. Rhapsody, Sun Antonio TX 78216: Circual bourds (\#216-3B) at sil.7. (1 (1b): complete hill with case (\#216) "11 899.50 (4 (b). Add sufficient amount to cover shippins accord ing to weishis giten.
vicled so that the unit can be bypassed if desired.

Construction. Three printed circuit boards are used: one each for left chamel, right chamel, and power supply (see Fig. 2). By monnting all of the switches and controls on the circuit brards, wiring is kept to a minimum.

When mounting the components on the boards. be sure to orient the dindes, integrated circuits, and electrolvtic capacitors property. See the component layout diagrains in Fig. 2.

Photo of left-channel board including S1.
Several jumpers are used on the two equalizer boards, as indicated by the solid lines on the component layout diagrams. The jumpers can be made by stripping the insulation from the ends of short lengths of \#24 hook-up wire.

The pc boards with the slider potentiometers attached can be momed in the chassis in one of a number of wavs. They can be mounted one above the other, or, as shown in the photo of the prototype, thev can be side-by-side. In cither case, he sure that sufficient room is left in the slots for the potentioneter ams so that they slide smoothly without binding.

The stides should be identified on the front panel as to center frequency and the amount of boost (+1 ㅇ at the top) and attenuation (-12 at the bottom).

The power supply can be mounted in any converient spot in the chassis, but be careful to keep leads carrving audio signals as far as possible from the supply, to avoid hum.

Operation. If the stereo sustem has separate components, attach the equalizer between the preamp and the power amplifier. Altematively. it can be connected to the tape-out and the tape-monitor input jacks. If neither of these is possible, it will be necessary to find the spot in the equip-

Prototype arrangement of power supply.

Fig. 2. Foil patterns and component layouts (left at top) are shown half-size. A foil pattern for the power supply is not shown, but one can be made easily.
ment where the preanp feeds the power amplifier. In any case, the imput level to the equalizer should not exceed 2 volts ms .

After installation, set the audio system tone control for flat response. Using just the equalizer's controls for tone compensa-
tion will provide a better graphic representation of the equalization preferred.

Compensating for room aconstics is a bit tricky, but it can be acomplished by using a sound pressure level meter and test record.

What to look for in a SHORTWAVE RECEIVER

Evaluating your broadcast coverage, technical and operating needs.

VARIOUS types of receivers are commonly used by shortwave listeners. They range from multiband radios to professional communications receivers (not to be confused with less-sophisticated communica-tions-type receivers). Budget permitting, the serious SW listener will opt for the commumications receiver since it pulls in more stations (especially distant ones) and provides clearer reception on otherwise marginal stations. Shortwave communications receivers are both general-couerage (i.e., covering a specified range of frequency contimonsly, without a gap) or cover certain designated, limited bands.

What Coverage to Look For. If shortwave broadeast listening is your thing, then the bands yon are interested in fall between 2.3 and 26.1 MHz (megahertz, the old mega-(eycles-per-second or Mc / s). But they are not continuous throughout this range; in fact, only about a tenth of that spectrum is used by broadcasting stations officially, with a few more (in combtries as varied as Britain, China, Israel, Egypt, and Spain) spilling over bevond the designated shortwave broadcast bands in happy defiance of

Drake's DSR-1 communications receiver.

BY RICHARD E. WOOD
International Telecommmications Union regulations. Unlike the amateur bands, which are in a hamonic relationship to each other, on $3.5,7,1+\mathrm{MHz}$, and so om, the international broadeast bands have no regular frequency relationship. Thus, receiver design hased upon hamonic principles is not possible.

The frequencies you will need inchade the international bands: $75,49,41,31,25,19$, 16, 1.3, and 11 meters, as they are popularly known. Of these, the 75 - and 41 -meter bands are uot supposed to be used for broadcasts to the Americas, where they are an integral part of the s()- and 40 -meter ham bands, respectively. But you will still want them, either to listen to the anatemes there or to thme in to the broadcasts which are directed to North America, in some cases under the pretext of being intended for the "Atlantic Islands."

In any case, Radio Tirama, the voice of China's Emopean ally, Albania, is there on 7300 kHz all year round, while Radio Moscow's North American service relies chicfly upon the 41 -meter band diring the Virth American winter, the main frequencies heing 7150 and 7205 kHz , often supplemented by half a dozen others. At the high-frequency end, be sure that your receiver covers 13 meters, as it gives pristine reception of Enrope during the day and Australia in the evening, plus many other areas. A receiver without i:3 meters-particularly in areas avay from the East Coast-may not give much good listening during the loours of daylight. So unless you're strictly a night owl, don't forget 13 meters (21.45-21.75

MHz). Going higher, the 11 -meter band, while not obligatory at the present stage in the sunspot cycle, when it is really too high for effective use over nomal paths on the earth, is a useful band to have. For those days of good conditions it may bring localquality reception of Britain, Norway, or South Africa (almost the only foreign coumtries which are using it now) during the otherwise downswing midday hours.

Heath's GR-78 SW receiver sold as a kit.
For the sounds of cumbias from Colombia, merengues from the Dominican Republic, valses from Venezucla, the tropical bands are not to be missed. And, while you're not likely to find the BBC, Radio Nederland, or other popular major broadcasters on them, they are best for real shortwave broadeast DX. The number of rate comentries which can be heard only on the tropical bands is staggering: Belize, Gambia, Nepal, Cook Islands, and Reunion, to name just five. And, because of the greater interference on the international bands, or other reasons, many countries which operate on, say, 25,31 , or 49 meters are actually inuch easier to hear on 60 , 90 , or 120 meters: Honduras, Venezuela, Colombia, Bolivia, and almost all the African repulbics such as Upper Volta, Togo, Sierra Leone, Kenya, and Senegal. Thus, be sure you have coverage of $2.3-2.5 \mathrm{MHz}$ (120 meters), $3.2-3.4 \mathrm{MHz}$ (90 meters where vou'll also hear the very handy CIIU
time signal from Ottawa, Canada), and 4.75-5.06 MHz (60 meters with WWV located at 5 MHz).

Other Receiver Considerations. Besides the above-specified frequency coverage, an SWL receiver should have the best possible characteristics of sensitivity and selectivity. Sensitivity is the ability to receive weak sig"nals and raise them up, as the saying goes, "out of the mud:" to raise them above the background noise level, caused mainly by static' (the effects of thunderstorms near and far), man-made noise, and internal receiver noise. Most genuine communications receivers today have no lack of sensitivity. It is worth checking each band, however, to make sure that sensitivity does not slump at either end of the tuning range, while peaking in the middle. Weaker signals are likely to be encountered at the high-frequency end of the shortwave spectrum, so check your reception in the 13 -meter band and on 11, when open (carefully).

As more and more stations come onto the unexpanded shortwave broadcast bands, selectivity becomes more and more important. Check to see whether you have a choice of bandwidths: and if you do, check to sec how intelligible (readable) amplitude modulated signals are at each bandwidth setting. The human voice should not be so clipped as to be incomprehensible. Getting rid of heterodynes (piercing whistles caused by stations too close, generally within 1 or 2 kHz of each other) can be performed by a notch-filter. It enables one to take a "slice" out of a range of frequencies, as narrow as possible, in order not to destroy the still-wanted frequencies. Check also whether you can change to a narower bandwidth without switching in the BFO (beat-frequency oscillator). You will need the $13 F O$ for CW (Morse code) signals, but not for broadcasting stations using audio modulation.

Typical shortwave receiver will have the circuits and features shown here.

Do I Need a Preamplifier? A preamplifier adds sensitivity, not selectivity. If your problem is weak signals, then perhaps a preamp is what you need. A good preamp will raise the signals without significantly raising the noise level. The bugaboo of preamplifiers is the production of images. A properly tuned preamp should not produce spurious radiations or images of powerful stations on frequencies where they are not supposed to be. It is wise to gromed the preamp and receiver rogether with a braided metal strap. As we have said, lack of sensitivity is the least of the problems in a contemporary receiver, at least with the major shortwave broadcasters with their average transmitter power of 250 kW !

What About Grounding? A good ground doesn't look fancy. In fact, most of it is boried and you don't see it at all. But it makes a big difference. The best practical ground is a copper rod driven into moist earth. One reason why Alaskan AM stations are not easy to hear in the "Lower 48 " is because of the permafrost which prevents the digging of a good grounding system. Anyway, unless yon live directly on top of permafrost or in a wasteland of solid concrete, hammer that gromed rod in deep and clamp a heavy-gange wire from it (copper again, preferably) to the " C " (sometimes "E" for the British "Earth") comnection of your receiver. Some SWL's keep the ground moist in dry weather by positioning their copper rod directly under the drip of an air conditioning mit. This is a good technique, as long as the air conditioner does not produce r-f noise. A substitute ground can be rigged by ruming a wire to a cold water pipe or any connection leading to ground.

How Do I Pinpoint Frequency? Shortwave receiver design has progressed recently in
the field of calibration. Exact frequency read-out to within the nearest assigned shortwave broadcast chamel, i.e., to within 5 kHz , is now available on moderately priced SW receivers. This is a real breakthrongh, taking much guesswork out of thming and letting you dial your fatvorite station every time. Some SWL's won't settle today for less than that when purchasing new equipment, although many still enjoy the oderstyle equipment which requires the compilation of a logging scale or the nse of an cxternal calibrator. The internal calibrator in many receivers, with tones marking every megahertz, or every 500 and 100 kHz , is still as useful as ever and featured on many of the latest models of shortwave communications receivers.

The most sophisticated form of calibration is the electronic digital display of a frequency of great accuracy, say, one tenth of a kilohertz. Such displays represent the state-of-the-art and are found on receivers in the $\$ 2000$ price bracket. However, the same effect, a direct read-off of figures making up the exact frequency to which you are tumed, is achieved by the digital dial, now found on reasomably priced equipment. A regular tuning scale with pointer remains the most common method and, if accurate, can give good results.

A bandspread scale is another desirable tuming-accuracy feature. Keep in mind, also, that frequency calibration can be checked by tming to WWV time signals.

What About Crystals? Yes, if you have a favorite frequeney to which you wish to tume regularly and are using a crystalcontrolled set, you can insert a compatible crystal for just that frequency. An FM station in Washington, D.C., for example, which regularly relays the BBC news, has a crystal for 9510 kHz (which makes it a double relay, since BBC 9510 kHz beamed

More sophisticated receivers use dual-conversion with two oscillators/i-f amps.

Discover the ease and excitement of learning Electronics with

 programmed equipment NRI Sends you When you train at home with NRI, you train with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering " 3 -Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.

NRI-The Leader in Electronics Training for more than Fifty Years

Earn \$5 to \$7 an hour spare or full time in

TV-RADIO SERVICING

Color television sales are soaring. And so is the demand for trained repairmen. If you can service TV sets, portable radios, tape recorders, hi-fi sets, phonographs and auto radios, you'll always be in demand. It's one of your best routes to sparetime earnings, a good paying job or a business of your own. NRI trains you quickly and expertly, showing you how to get started in servicing soon after you enroll, earning as you learn. NRI trains you in today's method of installing and repairing all electronic equipment for the home -including solid state Color TV. You even build, experiment with and keep to enjoy your own solid-state radio plus your choice of black-andwhite or the new $25^{\prime \prime}$ diagonal solid state Color TV receiver NRI developed from the chassis up for training. Like thousands of others, you can soon be earning good money in your spare time . . . the easy NRI way.

There's money and success a waiting you in COMMUNICATIONS
 MOBILE RADIO \& BROADCASTING

NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a TVOM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone.cw transmitter suitable for transmission on the 80 -meter amateur band. Whichever of these five intensely practical NRI Communications courses you choose, you prepare for your FCC License exams, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as
COMPUTER

TECHINCIAN

Ours is rapidly becoming the age of the computer . . . and NRI can train you to cash in on the opportunities in this field. Only NRI trains you at home on a real computer-not a simple logic trainer, but a complete, stored program digital computer using over 50 integrated circuits. As you build the NRI Computer, you explore all fundamental logic circuits, then how to combine them in a complete, stored program com. puter. You observe the "heart" of a real computer. You solve typical problems and learn how to locate faults with diagnostic programs. Bite-size texts make studying easier. Prove to yourself what nearly a million NRI students could tell youthat you get more for your money from NRI. Check the card and mail it today for your free NRI Color Catalog. NO SALESMAN WILL CALL. NRI Training, 3939 Wisconsin Ave., Washington, D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI

NRI Kits and Equipment

Dollar for dollar, you get more value from NRI training kits, because theyare designed as educational tools. In the TV-Radio Servicing Course, for instance, the end product is a superb $25^{\prime \prime}$ diagonal color TV your whole family will enjoy. The set is designed so that, while building it, you can introduce and correct defects . . . for trouble-shooting and hands-on experience in circuitry and servicing. The kits include, at no additional cost, a wide-band service type oscilloscope and color crosshatch generator, and other valuable equipment that will let you start earning money in your spare time making repairs . . . even before the course is completed.

Panasonic's RF-5000A portable SW receiver.
to North Americal comes via the Atlantic Relay Station on Ascension 1sland). Radio Japan sent some of its regnlar monitors a little hand-held portable with crystals for three leading NHK frequencies, 9505 , 1510.5 , and 17825 kHz . For receivers which come equipped with a certain range of frequencies and which are programmed to accept additional crystals, sets of crystals for the tropical bands, the aeronantical bands, the amateur bands, etc., may be bought and inserted.

Now-the Antenna. Strictly speaking, your antema is your receiver. It seizes the incoming signals, then your receiver amplifics and converts them. But the antema's role is the basic one. The most common SWL antema is the dipole. To make a dipole, take any reasonably sturdy gange of wire, shiclded or mishiclded, and measure it out. A half-rate dipole will measure half the wavelength at the center of the band for which the dipole antema is being cut, minus one twenticth (5%). If von make all your measurements in meters, this should be easy to work out and it will give you practice with the metric system, which we will be using all the time eventually. Take the 19 -meter hand, one of the most popular. A wavelengh toward the middle of that band is 19.6 meters; a half-wave, then would be 9.8 meters: a twentieth of that would be roughly half a meter. So your half-wane dipole should be 9.3 meters long. Fold it and cut it precisely in the middle. There, insert an insulator or, better still, a balun. That is the point where vour transmission line or lead-in to the receiver is inserted. This can be ordinary twin-lead, but
it's better to spend a little money and use RC-58/ U coaxial cable. If you hang the dipole between two trees or buildings, or between a mast or a house, or in any other hanging position, the balum and transmission line junction will be the vulnerable stress-point. So check it thoroughly for physical strength and give the coax comection a good weatherproofing either by encasing it in a watertight bos or by greasing it thoroughly. Don't forget lightning arresters for shortwave or any other antenna that is installed outdoors.

The Vee antenna is essentially a folded dipole whose mid-point feeds directly down to the receiver via the transmission line, as above, while the two ends, rather than following a straight line, form a "V" shape encompassing an angle of, say, 30 or 40 degrees, as clesired.

The L antenna looks, of course, like the letter L. It mus vertically, say, up a pole or the side of a house, then bends at right angles and from there horizontally into the receiver. There are many other kinds of antemas which can be built with simple wire, and antenna experimenting is part of the fun of SWL-ing. Antenna kits and prebuilt SWL antemnas, including a multi-band dipole and a vertical, may be bought commercially.

[^1]
ENGLISH-LANGUAGE SHORTWAVE BROADCASTS

MAY-AUGUST

By Roger Legge

TO EASTERN NORTH AMERICA

TIME—EDT	TIME-GMT	STATION	FREQUENCIES, MHz
7:15-8:30 a.m.	1115-1230	Melbourne, Australia	9.58, 11.71
7:30-8:00 a.m.	1130-1200	Jerusalem, Israel	15.13, 17.71
8:00-8:55 a.m.	1200-1255	Montreal, Canada	5.97, 11.825, 15.315
8:00-9:00 a.m.	1200-1300	Peking, China	11.685, 15.095
4:00-4.45 p.m.	2000-2045	Jerusalam, Israel	$9.445,9.785,15,100$
6:00-9:00 p.m.	2200-0100	London, England	$5.975,9.51,9.58,11.78$
6:30-8:30 p.m.	2230-0030	Johannesburg, S. Africa	$5.98,9.585,9.695,11.97$
7:00-7:30 p.m.	2300-2330	Helsinki, Finland	15.185
7:00-8:30 p.m.	2300-0030	Moscow, U.S.S.R,	$7.15,9.685,11.87,11.90,15.21$
7:45-8:45 p.m.	2345-0045	Tokyo, Japan	15.27, 15.445
8:00-8:30 p.m.	0000-0030	Tirana, Albania	7.065, 9.78
8:00-9:00 p.m.	0000-0100	Peking, China	15.06, 17.673
		Sofia, Bulgaria	9.70
8:30-9:00 p.m.	0030-0100	Stockholm, Sweden	11.895
8:30-10:45 p.m.	0030-0245	Johannesburg, S. Africa	$5.98,9.585,9.695,11.97$
8:30 p.m.-3:00 a.m.	0030-0700	HCJB, Quito, Ecuador	$9.56,11.915,15.115$
8:40-9:00 p.m.	0040-0100	Brussels, Belgium	9.55
9:00-9:15 p.m.	0100-0115	Vatican City	5.995, 9.605, 11.845
9:00-9:20 p.m.	0100-0120	Rome, Italy	$9.575,11.81$
9:00-9:30 p.m.	0100-0130	Budapest, Hungary	$9.833,11.91,15.155$

9:00-9:45 p.m.	0100-0145	Berlin, E. Germany Madrid, Spain
9:00-9:55 p.m.	0100-0155	Montreal, Canada
9:00-10:00 p.m.	0100-0200	Peking, China
		Prague, Czechoslovakia
9:00-11:00 p.m.	0100-0300	Melbourne, Australia
9:00-11:30 p.m.	0100-0330	London, England
9:00 p.m.-1:00 a.m.	0100-0500	Havana, Cuba
9:00 p.m.-1:00 a.m.	0100-0500	Moscow, U.S.S.R.
9:30-10:30 p.m.	0130-0230	Bucharest, Romania
9:30-10:50 p.m.	0130-0250	Cologne, W. Germany
9:45-10:15 p.m.	0145-0215	Berne, Switzerland
10:00-10:30 p.m.	0200-0230	Stockholm, Sweden
10:00-10:45 p.m.	0200-0245	Lisbon, Portugal
10:00-11:20 p.m.	0200-0320	Hilversum, Holland
10:00-11:30 p.m.	0200-0330	Cairo, Egypt
10:00 p.m.-12 mdt	0200-0400	Peking, China
10:30-11:00 p.m.	0230-0300	Beirut, Lebanon
10:30-11:15 p.m.	0230-0315	Berlin, E. Germany
11:00-11:30 p.m.	0300-0330	Bucharest, Romania
		Budapest, Hungary
11:00 p.m.-12:00 mdt	0300-0400	Buenos Aires, Argentina
		Prague, Czechoslovakia

$9.73,11.89$
$6.065,11.925$
$6.085,11.835$
$7.12,9.78,15.06,17.855$
$7.345,9.74,11.99$
$15.32,17.795,21.74$
$5.975,9.58,11.78,11.82$
11.93
$7.15,9.665,9.685,11.735 .11 .90$
$5.99,9.57,11.94$
$6.04,9.545,9.69$
$6.12,9.535,11.715,15.305$
11.955
6.025, 11.935
11.73 (via Bonaire)
9.475
$15.06,15.51,17.855$
11.79
9.73, 11.89
$9.57,11.94,15.25$
$9.833,11.91,15.155$
9.69 (Mon.-Fri.)
5.93, 7.345, 9.74, 11.99

TO WESTERN NORTH AMERICA

TIME-PDT	TIME—GMT	STATION	FREQUENCIES, MHz
7:00-7:15 a.m.	1400-1415	Tokyo, Japan	9.505
8:00-8:15 a.m.	1500-1515	Tokyo, Japan	9.505
4:00-5:30 p.m.	2300-0030	London, England	9.74 (via Canada)
5:00-7:00 p.m.	0000-0200	London, England	9.51, 11.78, 11.82
5:30 p.m.-12 mdt	0030-0700	HCJB, Quito, Ecuador	$9.56,11.915,15.115$
6:00-8:00 p.m.	0100-0300	Melbourne, Australia	15.32, 17.795, 21.74
		Moscow, U.S.S.R.	17.775, 17.865 (via Khabarovsk)
		Peking, China	15.06, 15.51, 17.855
6:30-7:30 p.m.	0130-0230	Tokyo, Japan	$15.235,15.445,17.825$
6:30-7:45 p.m.	0130-0245	Johannesburg, S. Africa	5.98, 9.585, 9.695, 11.97
7:00-8:20 p.m.	0200-0320	Hilversum, Holland	11.73 (via Bonaire)
7:00-8:30 p.m.	0200-0330	Cairo, Egypt	9.475
7:00-8:50 p.m.	0200-0350	Taipei, Taiwan	15.345, 17.72, 17.89
7:00-9:15 p.m.	0200-0415	London, England	9.51, 11.82 (via Ascension Is.)
8:00-8:30 p.m.	0300-0330	Seoul, Korea	15.335
8:00-8:45 p.m.	0300-0345	Madrid, Spain	$6.065,11.925$
8:00-9:00 p.m.	0300-0400	Buenos Aires, Argentina	9.69 (Mon.-Fri.)
		Prague, Czechoslovakia	5.93, 7.345, 9.74, 11.99
8:00-10:00 p.m.	0300-0500	Peking, China	15.06, 17.735, 17.855
8:30-9:00 p.m.	0330-0400	Stockholm, Sweden	11.705
		Tirana, Albania	6.20, 7.30
8:30-9:15 p.m.	0330-0415	Berlin, E. Germany	$9.65,11.825,11.97$
8:30-11:00 p.m.	0330-0600	Havana, Cuba	11.76, 11.93
8:30 p.m.-12:30 a.m.	0330-0730	M sscow, U.S.S.R.	15.18, 17.72, 17.865
9:00-9:15 p.m.	0400-0415	Tokyo, Japan	15.105
9:00-9:30 p.m.	0400-0430	Sofia, Bulgaria	9.70
9:00-9:45 p.m.	0400-0445	Lisbon, Portugal	$6.025,11.935$
9:00-9:55 p.m.	0400-0455	Montreal, Canada	$6.135,9.655$
9:15-9:45 p.m.	0415-0445	Budapest, Hungary	$9.833,11.91,15.155$
9:30-10:00 p.m.	0430-0500	Berne, Switzerland	$5.98,9.725,11.715$
		Bucharest, Romania	$5.99,9.57,11.94$
9:35-10:55 p.m.	0435-0555	Cologne, W. Germany	6.085, 9.605 (via Canada)
10:00-10:55 p.m.	0500-0555	Montreal, Canada	$6.135,9.655$
10:00-11:20 p.m.	0500-0620	Hilversum, Holland	$9.715,11.73$ (via Bonaire)
11:00-11:15 p.m.	0600-0615	Tokyo, Japan	15.105
11:00 p.m.-12 mdt.	0600-0700	Buenos Aires, Argentina	9.69 (Mon.-Fri.)
11:30 p.m. 1:00 a.m.	0630-0800	Havana, Cuba	9.525

A
GROWING number of hobbvists has been attracted to radio-control modeling due to new solid-state designs and exam-free CB licensing. The electronic gear in today's modeling provides wide response Hexibility and high reliability in extremely compact, lightweight packages. (See also "Radio Control For Hoblyyists," February 1974.)

There are two commonly used basic schemes in R / C equipment. The simplest is a refined version of single-channel, pulseproportional control. The other, a digital system, is a sophisticated feedback proportional control that utilizes pulse-position modulation.

Pulse-Proportional Systems. The only tone-modulated, pulse-proportional system we know of on the market today is made by Ace R/C. Its major advantages are minimal weight and low cost. It is used primarily in situations where multi-channel flexibility is not required.

In the Ace R/C system, a $600-\mathrm{Hz}$ tone is pulsed on and off at the transmitter to drive an actuator in the receiver. The receiver demodulates the received pulsed tone and produces a square-wave output that reproduces the pulses originally sent to the transmitter's tone modulator.

The switching outputs of the receiver
comect one end of the actuator or the other (depending on the command initiated at the transmitter) to the positive voltage supply. This type of system is limited to one proportional function. The repetition rate is from 6 to s pulses per second. The model under control does not respond to individual pulses. Instead, it follows the average position.

Digital-Proportional Systems. Digital systems all use the same pulse-position modulation scheme, with the r-f envelope amplitude-modulated by a series of pulses at a specific interval (frame length) of from 10 to 15 milliseconds. Each pulse is separated from the others by a nominal 1.5 milliseconds. This separation is independently and continuously variable by ± 0.5 millisecond (maximum) for control. The decoded output to a digital feedback servo is a pulse that duplicates the original control input to an accuracy of 99.75 percent.

The block diagram of a typical digitalproportional transmit/receive system is shown in Fig. 1. The wavetrain illustrated is for a five-chamel system.

The objective of digital encoding and decoding is to oltain a specific width-control pulse for each servo in the system. The length of the pulse must be variable over the desired control range. Timing and syin-

Fig. 1. Block diagram of contemporary five-channel digi-tal-proportional transmit and receive system is complete as shown except for servos. The decoder system, shown on facing page, uses typical IC's.

TRANSMITTER/ENCODER
(A)
chronization of the scheme is shown in Fig. 2. The times indicated are approximate and are representative of those used in current systems.

A typical encode decode process takes place as follows. The clock oscillator in Fig. 1A establishes the repetition rate of the system, which is usually 10 to 16 milliseconds or 60 to 100 Hz . The trailing edge of the frame pulse triggers the first stage. Upon being triggered, the first stage changes state for a period of time determined by the control potentiometer.

The output of each stage is gated by a diode to an BC differentiator, and a small spike at the input to the squaring block occurs at the trailing edge of the stage's output pulse. This spike is also coupled to the next stage for triggering. Stage two stays on for its commanded period (t 2 in Fig. 2). Stages three through five follow in like manner. Then 3 to 8 milliseconds are permitted to clapse to allow the decoder to reset. The clock, having completed its 15 -millisecond period, changes state to restart the cecle.

The gated output spikes appear at the input to the squaring amplifier in the first frame of pulses. The squaring stage converts each spike to a well-defined pulse with a 0.3 -millisecond nominal width for control of the mochulator.

The position of each pulse relative to the preceding pulse is the transmitted infor-mation-hence, pulse-position modulation. The rise and fall times of the pulsed r-f envelope must be carefully controlled to obtain an acceptable sideband spectrom.

The receiver attempts to reproduce the encoded envelope with the best possible fidelity for presentation to the decoder.

Digital-Decoder. The decoder, shown in block diagram form in Fig. 1B and schematically in Fig 3, is typical of modern 1C decoders. The output of the receiver is a train of tivo (for one chamnel) to nine (for eight channels) pulses per frame. The inverters switch between a 4.8 -volt high level to almost zero for the low level. Transistor Q1 serves primarily as an inverter for the incoming signal, although it also provides a slight amomet of amplification.

The pulse train that comes off the collector of $Q I$ proceeds to two stages. The stage consisting of inverters 4 and 5 generates the "set" pulse, while the one made up of inverters $\underline{2}$ and 3 shapes the pulse train to form the clock or "shift" pulses.

The shift-pulse shaper accepts the pulse train, squares it, and slightly stretches it by feedback through C.3. The low output from inverter 2 is shifted high by inverter 6 to provide the proper output. The shaped

clock pulses are then passed to an eight-bit shift register.

Upon receipt of the syne pulse, the diode and C.4 act as a "sample-and-hold" circuit or pulse stretcher. Discharging through inverter 4, C4 places the inverter in a high state. At this point, the pulse is stretched across the entire pulse train. The output from inverter 5 is square and low during the period when the pulse train is present.

The shift register is set by having the output of the inverter high at the instant the first clock pulse is received. The set is immediately driven low until after the last pulse is received. Flip-flop FFI in the register is inhibited from shifting to high at its Q output until the next frame of information is received. (see Fig. 1B).

The two control functions are entered at the set (S) input of FFI and at the clock imputs. When there is no information present during the sync (set) pause period, the FFI through $\dot{F} F \&$ Q outputs are low. As soon as the first clock pulse is received, FFI's Q outpui goes high. Unless it "sees" a high input at SA and SB, which it does at the instant the first clock pulse is received, $F F I$ (at its Q output) cannot shift. It remains high until the second clock pulse is received, at which time it goes low.

If the S input of $F F I$ were to remain high at all times, FFl would simply shift high
alternately at its Q and not-Q outputs every time a clock pulse is received. Now, FFI camot shift again as long as the output of inverter 5 is low. This is why the pause between frames is called the sync or "set" pause.
Bear in mind that the Q output of $F F 2$ cannot shift high until the S input is high. It sees a high level only when the Q output of FFI is high. As soon as FFI's Q output is driven high, FF2 is set to shift high at its Q output when the second pulse, which

Fig. 2. Waveforms show timing and synchronization of digital signals. Those at (A) are for one frame of encoder; (B) is for decoder; and (C) shows control variations.

Fig. 3. Schematic diagram of the decoder shows how the 8 -bit shift register in IC is used to simplify the circuit. Transistor Q1 is inverter and amplifier for input.
sets the Q outut of FFI to low, is received. The Q output of $F F 2$ remains high nutil the third pulse is received to drive it low and the Q output of FFi3 high, and so on down the line through $F F F .5$. As soon as C.5 and C6 have discharged after the last pulse, the output of inverter 5 returns to high, setting FFI for the next frame.

The Servo. Figure 4 is a block diagram of a digital leedback servo. Almost all servo amplifiers now consist of a specially clesigned IC that contains all the control functions shown in the diagram. The only external components needed are used for dead-band, travel, and feedback sensitivity trimming. Thee servo functions as follows.

First, a relevence pulse is generated, its width determined by the feedback element as positioned by the servo output arm. The incoming signal may be wider or narrower than the reference pulse. The comparator,

Fig. 4. Most of the functions in digital servo are included in a single $1 C$ device.
usually a diode-resistor network, determines the relative width of the pulses (see Fig. 5).

The pulse stretcher and trigger convert the error pulse, measured in microseconds, to a longer pulse suitable for turning on the servo driver. The driver then applies $B+$ power to the servo motor, providing full power at any position.

Fig. 5. Diode-resistor comparator determines relative width of pulses in digital servo.

As the motor and servo arm are driven, the leedback element is repositioning to vield a pulse that is exactly equal in width to the input pulse. The repositioning can take several frames to occir because full servo travel reguires 0.5 to 1.0 second, depending on such factors as gearing and battery voltage.

Summing Up. Radio control for modeling has come a long way since the 1950's. With today's equipment, containing the sophisticated electronics described here, the modeler has at his command a control system that responds in a mamer very similar to the systems used in full-size aircraft, racing and standard cars, and boats.

Micropower Audible Continuity Tester

SEMICONDUCTOR JUNCTION TESTER USES 55-uA TO SOUND ALARM

BY WILLIAM D. KRAENGEL, JR.

THERE are many low-power ohmmeters whose test voltages are such that they will not cause semiconductor junctions to break down and give erroneous readings. (They are also low enough that they will not destroy a semiconductor junction.) These instruments are very useful when measuring resistance in a semiconductor circuit; but, as is true of all meter-type instruments, they require the user to look at the meter in order to determine the results. In continuity checking this can be a decided disadvantage.

For several reasons it is desirable that a continuity tester be small, portable and audible. Not all continuity checking is done on the workbench. Quite often, it is necessary to hold the probes in place while standing on a Jadder, working in the dark (at least where the points to be checked (an't be seen), or squeezing into a small space.

> PARTS LIST
> Al-SC-628 Mallory Sonalert (or similar)
> BI-9-volt battery or six AA cells
> II, I2-Banana jack
> Oi-Transistor (HEP724 or similar)
> RI-25,000-ohm trimmer potentiometer
> R2-10-megohm, $1 / 4-$ watt resistor
> R3- 820,010 -ohm, $1 / 4$-wath resistor
> SI-Spsi switch
> Misc-Battery clips, suitahle plastic cass, test leads, etc.

Fig. 1. Transistor is biased just below operational point. When resistance between J1 and J2 is less than 1500 ohms, Q1 turns on and alarm goes off.

To avoid some of these problems, the micropower audible continuity tester described here can be a real boon to the technician and experimenter. The tester applies 0.3 volt at about $55 \mu \mathrm{~A}$ to the circuit under test. It can be used without regard to polarity on circuits containing diodes, transistors or IC's since the tester interprets their presence as an open circuit. It will, however, indicate continuity through any resistance of less than approximately 1500 ohms. The tester can be carried in a pocket, with just the two test leads carricd in the hands.

About the Circuit. The circuit is slown in Fig. 1. In operation, Q1 is biased just below conduction by voltage divider R2 and R3. Potentiometer RI controls the test volage and hence the sensitivity of the tester. Nomally, a test voltage of about 0.3 volt is available between $/ 1$ and 12 . When there is 1500 ohuns or less betwem $/ 1$ and 12, the small additional voltage from RI biases Q2 into conduction cansing the andible alarm to somud. Potentiometer RI can be adjusted to maintain a fixed test voltage as the battery ages.

Construction. The circuit call be assembled on a small piece of perf board, with the entire mit, including the battery, honsed in a small plastic case. Mount the alam, the switch, and the two comectors on the front cover. Power can be oltained from either a conventional 9 -volt transistor radio battery or six AA cells in series.

A Note of Caution. One might be tempted to make the tester even more sensitive than it is but there is a practical limit to the maximum sensitivity that can be msed. There is a definite leakage that is inherent to all semiconductor devices. Power semiconductors can have a leakage much greater than that normally associated with signal semiconductors. If the sensitivity of the continuity tester is made too great, it will interpret this leakage as continuity and give a false indication.

BUILD A
 HALL-EFFECT MAGNETOMETER

Probe magnetic fields with this home-built instrument

By L. GEORGE LAWRENCE

1V 1879. E.H. Hall published a paper in which he described how a magnetic field, when passing through a current flowing in a thin piece of metal, produced a voltage between the edges of the metal. The same effect was also observed to greater degree in semiconductor materials such as germamiam. silicon, and various indium compounds.

Hatl-effect devices can sense magnetic forces without making phusical contact. Such devices made from semiconductors are used to measure magnetic forces in almost every phase of applied electronics and power generation, including such cliverse applications as the manufacture of razor blades, satellites, and large tractor tires.

In this article, we will tell how to construct a versatile Hall-effect magnetometer. It will not only demonstrate the principles of the Hall-effect operation, but will also make an educational Science Fair project. A commonly availiable IC, a transistor and conventional components are used in the project.

How a Magnetometer Works. The Hall generator can be a very thin strip of conductor through which a current is passed from A to B as shown in Fig. 1. If a galvamometer is comnected to directly opposite points at the sides of the strip (a and b),
the potential between the points will he the same, and the galvamometer will not register a deflection. However, Hall discovered that if a very strong magnetic field $(+B)$ is then applied at right angles to the strip's plane, the state of electrical balance is disturbed. The meter then indicates a potential difference between points a and b.

By holding control current I constant, Hall voltage V_{1} depends directly on +B (the magnetic flux density). If both I_{c} and $+B$ are variable, the output (V_{H}) is proportional to the product of the two terms. Also, with the magnetic flux and control current held constant, V_{11} becomes a function of the angle between $+B$ and the Hall generator's active area.

Todity, Hall-eflect devices are widely used in moasuring current, usually by mag-netic-field induction. Since the magnitude of a magnetic field at a given point is proportional to the current creating the field. the Hall voltage is proportional to the current level. Amplification is needed to make the small Hall voltage readable on a meter.

In Fig. 2 are shown various types of Hall-effect sensor applications. The simplest configuration (Fig. 2A) involves nothing more than a llall gencrator mounted near a current-carrying conductor. This application works exceptionally well where very high direct currents-such as those re-

quired by automobile starters-must be measured without making contact. The magnetometer of which the Hall generator is a part is calibrated against a high-curent sonce of known value.

Hall generators with flux-ring concentrators (Fig. 213) provide increased sensitivity. The smaller the width of the gap in the concentrator (such as in an Arnold Engineering "Silectron" core), the higher the system's sensitivity.

Another flux-field concentrator arrangement is shown in Fig. 2C. Here a $\frac{1}{4}-\mathrm{in}$. diameter rod of ferrite or high-permealility steel, such as molypermalloy, makes a good concentrator. About 500 amperc-turns of field strength is the bottom measurable limit with this arrangement.

In Fig. 3 is shown another concentrater. Note how concentrator length L iniproves the magnetic sensitivity of the Hall generator (such as the F.W. Bell Type BH-702).

Fig. 1. Hall generator is a thin strip of conductor with a current flowing through it. With a magnetic field applied at right angles to the current, a potential difference occurs.

Fig. 2. A simple current sensor is shown at (A). In (B), the Hall generator has a flux concentrator ring. A Moly permalloy strip concentrator is shown in (C).

Molypermalloy strip concentrators measuring 0.014 in. by 0.25 in. are simply bonded to the Hall generator's main body and suitably secured in epoxy to avoid meehanical damage to the Hall device due to accidental bending.

A Home-Built Magnetometer. The magnetometer shown schematically in Fig. 4 can be built in a home workshop. Its highly flexible design can accommodate different types of Hall generators and their excitation currents. It has special provisions for use with the 741 IC amplifier, and the meter is casily calibrated.

The Hall generator specified is a Bell Type BH-702 that requires a control current of 200 mA so that, when suspended in a 100 -gauss magnetic field, the opencircuit Hall voltage is about 10 mV . The generator has an operating temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ (boiling point of water), which is typical of many similar Hall-effect devices.

The generator's control current is regulated by QI, whose operating bias is set by $B I$ and $R 8$. A simple adjustment of $R 8$ will permit the system to accommodate other Hall generators that require different control currents. (You simply connect a de ammeter in the collector circuit of $Q 1$ and adjust $R 8$ to set the required current.)

The Hall generator's output is fed into a high-gain operational amplifier (ICI) whose gain is set by R.3. Null adjustment $R .5$ is vital for zeroing the amplifier under quiescent conditions (Hall generator energized but without a magnetic field applied). Calibration control $R 7$ permits proper fullscale settings of the meter.

Construction. The electronic components can be easily mounted on perforated phenolic board as shown in Fig. 5. The four batteries should be held in place with pipe clamps and holders for 1.5 -volt D-size cells.

The three switches, meter, connector, and potentiometer R3 mount on the front panel of the chassis case. Use a 0-to-10 dial scale for R3, and make up a "Calibration Reference" card. Affix the latter to the case's front panel.

Constructing the main unit is not critical. However, special consideration must be

Fig. 3. Graph at top shows how length of concentrators improves magnetic sensitivity.

Fig. 4. Schematic of magnetometer. Transistor Q1 supplies plate current, and op amp IC1 is amplifier.

```
B1,B2-1.5-role ID cell
B.3,B+ 9-volt buttery
Hall Gemerator-BH-702 (F.W. Be/l)*
IC/ -74/C op amp
ML-l-mA meter (Caleciro DI-912 or
    simi/ar)
pl-4-pin plug with aluached color-coded
    lerols (see text)
(1)-HEP-51 transistor
RI,R2-2700-ohm, 1/2-wall resistor
R3-850.000.ohm linear potentiometer
R4-1500-ohm, 1-wall resistor
R5,R7-10.000-olum linear potentiometer
R6-3.300-ohm,1/2-watt resistor
R8-150-ohm, l-walt resistor (adjusted for
    recommended Hall-element current)
B1,B2—1.5-role I cell
B.3,B1-9-volt batuery
/Cl-74/C op amp
M1-l-mA meter (Calectro DI-912 or similar)
Pl-4-pin plug with allached color-coded leords (see text)
(1)-HEP-51 transistor
\(R 1, R 2\) - 2700-ohnt, \(1 / 2\)-uall resistor
R3-850.000.ohm linear potentiometer
R4-1500-ohm, 1-wath resistor
R5,R7-10.000-ohm linear potentiometer
R8-150-ohm, l-walt resistor (adjusted for recommended Hall-element current)
```

R9. 10,000 ohm, $1 / 2$-walt resistor
Sl,S2-Dpst switrh
S3-Dpde suitch
SOI-4-pin socket to matrh PI
Misc.-D.cell holder (2), pipe clamps (2) for 9 -voll huthery. buttery comectors (2), suitable chassis, calibruted dial for R3, prolie holder, cement, wire, monntins hardworr, etc.
*Matll generaters of different sensivivity ranges and prices are available from (amons others) F. W. Bell, Inc.. 4949 Freeuay Drive East. Columbus, Ohio 43229; anid Ohio Semiaronics Inc., 1205 Chesapeake Ave., Columhus, Ohio, 43212.
taken when assembling the probe for the llall generator (see Fig. 6). First, remernber that Hall generators are very fragile and camot be handled like most miniature electronic components. Their aluminumoxide substrates are brittle. So, use only the leads to move and locate the generator. Avoid putting tension on the leads and bending them close to the substrate. Bends must be at least is in. away from the substrate.

The Hall generator can be housed in a small plastic tube containing a paper filler to provide mechanical support. The Hall plate, being small, can be bouled to a glass or non-magnetic mount with eposy cement to form a fillet and protect the
leads from breakage. Position the Hall plate inside the tube so that the "active" $(+B)$ side faces the tube's wall. Mark this position with red paint or some other means of identification; it is the Hall generator's most sensitive area. Typically, the ceramic sub-strate-onto which the actual Hall plate is bonded-will face away from the probe's wall. Watch for special markings, since different manufacturers use different indicators.

Final assembly of the probe involves cutting the generator's four leads to a suitable length and connecting them to the magnetometer's 4 -conductor, color-coded feeder cable. In the prototype, a 4 -contact Amphenol No. 91-MC4M1-38.5 plug and No.

Fig. 5. Photo shows interior of prototype.
91-PC4F-385 receptacle were used to make the connection. A 5 - or 4 -ft-long cable will suffice for most applications. Be sure to irsulate the solder comections.

Calibration. Prior to calibrating the magnetometer, remember that most Hall generators are high-current devices that heat up very rapidly unless some form of heat sinking is provided. Therefore, activate the probe for only a few seconds at a time, turning it off immediately after measurements are completed.

Precise calibration depends on whether the Hall generator is of the high- or lowsensitivity type. Calibrations can be made by using either magnets of known field strength or a conductor through which a known magnitude of current is passed.

With the Hall probe comected to the
input, start the nulling procedure by turning on $S I$ and S2. Set $R 3$ for maximum gain. If the meter's pointer deflects with no external field present, adjust the setting of $R .5$ until the pointer drops to zero.

To calibrate the magnetometer in given values of direct current, use a high-current battery charger or a fully charged battery as the eurrent source. Connect the current source, with a rheostat, switch, and ammeter, in series with a length of cable. With the magnetometer activated, hold the Hall probe adjacent to the encrgized cable and set the R3 gain control for a given indication on the meter (say a scalar value of 0.5 for a current of 10 amperes). Touch up calibration control 127 to assure pointer deflection above and below that range.

The value on the dial of 233 , together with the meter indication, provide your calibration reference. Enter this on the card on the front of the magnetometer. Calibration with reference magnets is accomplished in a similar manner, but the meter indications are referred to magnetic field strength (gauss) instead of current.

Applications for the Hall-effect magnetometer are limited only by your imagination. It is very useful, for example, in servicing automotive or marine electrical systems. The electrical system of the vehicle can be "mapped" (while energized); and then when trouble occurs, you can use the map to locate areas where abnormal conditions indicate the trouble.

Excellent frequency response and high speed make Hall-effect generators most valuable for physics experiments. If, for example, an oscilloscope is comected across the meter in the magnetometer, high-energy discharge of capacitors can be observed. It is also possible to duplicate Hall's original discovery by using strip conductors.

HALL GENERATOR
POSITION MARK
PAINTED ON

Fig. 6. Construction of probe. Position Hall generator near tube wall for best sensitivity.

Build yourself a better car! Build an Archerkit" from Radio Shack

Deluxe, High-Intensity Timing Light Kit "Go" in every gallon! It delivers 50% more spark power for faster acceleration and more complete combustion. That means you get better gas mileage, and your points and plugs will last 3 to 10 times longer. An in/out button lets you make instant performance comparisons with your old ignition. And it makes tuneups easier. The thorough step-by-step manual makes it easy for even a first-time kit builder to assemble and install-no wires to cut. Improves any 12 -volt negative ground vehicle. \#28-3203.

Tune-up aid for any engine. For full power \& economy. Bright flash is visible even in daylight! \# 28-4016.
1995 with All Cables

Aetar: prices may vary at individual stores.

READ WHAT THE THE NEW HEATHKIT

EXPERTS SAY ABOUT DICITAL COLOR TV

Furthermore, the Heathkit GR-2000 is an easier kit-form TV to build. POPULAR ELECTRONICS pointed out that "Each semiconductor has its own socket and there are 12 factory-fabricated interconnecting cables... The complete color adjustments can be performed in less than an hour."
And here's what RADIO-TV REPAIR said about service: "...virtually every function of the TV receiver has been broken down to a miniature plug-in circuit assembly...if trouble develops you simply pop out the correct board and check it yourself... Heath provides free technical consultation, and if you do need factory service, as we said, the costs are low, well below that for (conventional color TV) insurance protection."
To sum up, POPULAR ELECTRONICS concluded its study by stating, "In our view, the color TV of the future is here - and Heath's GR-2000 is it!'
Why not see what the experts have seen? The Heathkit Digital Color TV - without question the most remarkable TV available today. Mail order price for chassis and tube, $\$ 649.95$. Remote Control, $\$ 79.95$ mail order. Clock, $\$ 29.95$ mail order. Cabinets start at $\$ 139.95$.

Send for your FREE '74 Heathkit Catalog describing the amazing new Heathkit Digital Color TV in detail. If post paid card has
 been removed, write: Heath

Company, Dept. 10-5,
Benton Harbor, Mich. 49022.
HEATH
Schlumberger
heatheit electronic c
Retail prites slighly hig CENTERS Units of Schlumberger Producls Corporation Retail prices slightly higher
 Miami (tialeah) Tamporland Hills, COLO Denver. CONN Hartord (Avon); FLA. apolis. KANSAS Kansas CA (Milanta dLL Chicago Downers Grove IND. Indian.
 apors (Nopkins) MO Si Louis. NEB Omaha, NJ Fait Lawn NY Burtalo (Am(woodawh) Cleveland Columbus: PA. Philadelphia, Piltsburgn: A I: Prourdence
(Warwick); TEXAS: Oalias, Houston, WASH Seatle, Wis Milwaukee.

BULD

Do you dare challenge a handful of CMOS chips to a game of logic?

BY JOSEPH A. WEISBECRER

HERE IS a fascinating new electronic game based on digital logic. Called "Fip,", "t will introduce you to some basic computer concepts, pose a number of interesting mathematical questions, and provide a set of challenging puzzles. The puzzles are easily solved, however, when the proper logic sequence is understood." Using lowcost CMOS logic and LED readouts, construction of Flip is simplified.

Circuit Operation. There are 8 flip-flops (A through H) connected as shown in Fig. 1. Eight LED indicators on the front panel show the state of each flip-flop (Fig. 2). A trigger pulse applied to a flip-flop reverses its state. Monentary-contact switches S1, S2, and S3 p ovide trigger pulses for flipllops A, B, and C. For example, pressing switch S1 will trigger flip-flop A so that, if LED1 was on, it will go off, and vice versa. The transition from off to on also supplies a pa se to trigger flip-flop D. The reversal of D then supplies a trigger pulse to F or G.

The circuits in Fig. 1 actually form a number of 2 and 3 -bit interacting counters. For example, Hip-flops C, E, and G form a 3-bit binary counter that is triggered each fime S.3 is pressed. Figure 3 shows how this counter works. Pressing the reset switch, S.4, sets the C, E, and G lights as shown in the top rov. Now, repeated pressing of $S 3$ causes the lights to go on and off in the 3 -bit binary sequence shown in Fig. 3. The combinations of flip-flops $B E H, B D F, A D F$, etc. also form 3-bit binary counters.

The circuit in Fig. 1 also contains 8 "memory" cells which remember an 8-bit pattern. This pattern (or state) can be
modified by the input switches and is displayed by the LED's. A wired-in "program" controls the change-in-state of the device as a function of the previous state and an input switch. Pressing a single input switch 8 times always returns the device to its initial state, thereby demonstrating its ability to count input switch depressions.

In Fig. 1, IC5 and IC6 are quad 2 -input NAND gates comnected to form three set/ reset flip-flops for debounce of the switches. Eight D-type flip-flops are provided by ICI through IC4, which are triggered by a positive-going edge. Flip-flops A, B, and C are triggered directly by the three debounce flip-flops. Flip-flops D, E, F, G, and H are each triggered by transitions of other flipflops. The capacitance-resistance combinations differentiate the outputs of these flipflops to form positive pulses. For example, $C 1-R 1$ and C7-R7 differentiate the positivegoing not-Q outputs of A and D to feed an OR gate formed by $D 1$ and $D 7$ and trigger flip-flop E. Trigger pulses for D, E, G, and H are derived in a similar manner.

Integrated circuits IC7 and IC8 are hexinverting buffers used to drive the displays. Resistors R22 through R29 were chosen to limit the LED current to about 7 mA . Any LED that provides reasonable brightness for this current can be substitutedpossibly reducing the cost. Resistors R22$R 29$ can also be reduced in value to increase the brightness of the LED's; but this loads

[^2]

Fig. 2. Arrangement of LED's on the front panel of Flip.

IC7 and IC8 above rated values and will also decrease battery life.

Construction. The Flip circuit uses CMOS logic circuits since they require low power, have good noise immunity and can be operated with unregulated voltage between 3 and 15 V . However, in using CMOS, some precautions must be kept in mind. All unused gates must have their inputs tied to the plus or minus supply voltage to prevent potential chip burn-out. Care must also be taken in installing the devices. Avoid any possibility of static charges on the inputs. Keep them in the insulation in
which they are shipped until ready to solder and use a grounded soldering iron. Lowtemperature solder and a low-power iron should be used.

Diodes D1 through D10 are not critical; low-current switching types (silicon) were used in the prototype.

The circuit can be assembled on a perf board or on a pc board as shown in Fig. 4. To avoid complexity on the pc board, some short cuts have been taken. Note that C1 through C10, D1 through D10, and R1 through R10 are attached together as shown in the insert in Fig. 4 before inserting the loose ends in the pc board. Note that the capacitor end is called out as A, the diode end as B and the resistor end as C on the overall component layout.

There are 19 jumpers that must be made of thin insulated wire and connected between similarly numbered points in Fig. 4 (point 1 to point 1 , etc. up to point 16 to point 16). The last three jumpers are from point 17 on IC1, IC 2 and IC3 to point X, the reset circuit.

The eight LED's and the three switches are mounted on the front panel as shown in Fig. 2 and the photo. Also mount the

Fig. 3. It takes eight operations of a pushbutton to make the cycle. This shows which LED's come on in sequence.

reset and on/off switches on the front panel. The lines connecting the lights on the front panel can be added in any way desired.

Testing. Turning on the power switch should cause a random pattern to appear on the LED display. Pressing the reset switch should result in the P1 pattern of Fig. 5. If it doesn't, check the reset wiring and voltage connections. After obtaining the Pl pattern, press switches A, B, and C one at a time to verify that all flip-flops are being triggered properly as indicated in Fig. 3. Check signals and wiring for any that fail to operate properly. If the signals to a flipflop are correct but it still fails to trigger, replace the chip.

Use. Figure 5 shows how Flip is used to solve puzzles. Pressing reset switch S4 provides the pattern of lights shown at P1. As a sample problem, try to get from pattern P1 to pattern P2 by pressing one or the other of the input switches just 7 times. The other patterns in Fig. 5 can be obtained with the indicated number of switch operations.

An interesting game that can be played

\$ 888888

Fig. 4. Either a perf board or printed circuit board can be used for the circuit. Note how the C-D-R assembly is made. Be sure to install the jumpers.

Fig. 5. Pattern after reset is P1. To get P2, press switches as shown. Other patterns take indicated number of switch operations.
is to try to generate specific patterns, with players taking turns pressing just one switch at a time. Starting with the reset switch operated to set the original pattern, the goal is to obtain a pattern consisting of a triangle of lights (either ACDEG or BDEFH). It doesn't matter if additional lights are on as long as one of the two winning triangles appears. Of course, other patterns, easier or harder, can be chosen as the winning pattern. Since it is possible to predict what pattern is going to appear next, considerable skill can be developed.

Flip provides some insight into why bugs occur in large computers after months or even years of use. These machines have thousands of possible states, many of which remain untested until someone happens to write a program that causes one of these states to occur. Flip, with only 8 flip-flops, has relatively few possible states, but it is still nontrivial in a mathematical sense. For example, how many of the potential 256 states (or patterns) can be obtained starting from the reset state? Can you develop an algorithm (set of rules) for finding the shortest sequence of switch depressions to transform one pattern to another?

Here is another interesting property of Flip. If the sum of the lights that are on in the top and bottom rows is even, then pressing A, B, and C any number of times will leave this sum even. In other words, the parity of these 6 bits (lights) can't be changed by the input switches. This concept of parity is used for error checking in computers. For example, a switch input can only change the parity of the 6 bits of the top and bottom rows if a circuit malfunction occurs. This condition could easily be detected and used to turn on an error light. ${ }^{-}$

Fig. \mathbb{I}

PARTS LIST

B1-9-volt alkaline/mercury battery Cl-C10-0.033- $\mu \mathrm{F}$ disc capacitor (low voltage)
D1-D10-Silicon diode (1N914 or similar)
IC1-IC4-CD4013 integrated circuit IC5,IC6-CD4011 integrated circuit IC7,IC8-CD4049 integrated circuit

LEDI-LED8-Any light-emitting diode
R1-R21-10,000-ohm, $1 / 4$-vatt resistor
R22-R29-1000-ohm, $1 / 4$-watt resistor
Sl-S4-Spdt switch, momentary closed (Alco MSP-105F or similar)
S5-Spst switch
Misc.--Battery connector, suitable cabinet, "dry-transfer" type, adhesive tape, etc.

MAC'S SERVICE SHOP Buying and Using A Pocket Calculator

By John T. Frye, w9EGV, IKHD4167

"ARE Y'OU buving anoluer pocket calculator?" Barner incredulously asked his employer as he discovered the latter poring over several calculator brochures spread out on the service bench.
"No, I'm just getting ready to tell other prople how to buy and use one," Mac replied. "Every week more and more poople ask me what kind of a calculator to buy. Knowing math is my arocation and electronies is my vocation, they figure these two interests shoukl come together and make me a real authority on the subject of electronic pocket calculators-which, of course, is not true. But I have been fascinated by these deviees ever sincer Sharp put one of the first omes on the market; and I never miss a chance to play with a new one. I decided that before 1 started dishing out advice on what to buy. lid better get it all together, becanse new calculators with new features are coming on the market every werek or so."
"Good!" Barney enclaimed. "lie been thinking abont investing; so you can lay yom advice on me. Not that I'll take it, but I like to hear yon talk-especially since, when youre lecturing the, yon can't expect me to be slaving away at the lench."
"If anyone per catches von slaving away" anywhere. I hope they send me a telegram," Mate retorted, "lant my spiel goes sonething like this."

What to Consider. "The important points to consider are: (1) why yon think you need a pocket calculator: (2) how old you are; (3) how much math vouve had or plan to take: (4) where you will be using the calculator: (5) who else will share its use; and (6) how ins ch yom want to pay."
"With most people, that last point comes first," Banney observed.
"It shouldn't, because a good calculator, like a good slide mule or a good camera,
should be a long-time investment whose usefulness and power increase with familiarity. That doesn't mean you should buy the most expensive, but other considerations should come before price."
"What's age got to do with it?"
"Probably some modern educators will disagree, but I don't think you should give a kid a calculator until he is at least ont of the eighth grade. Up till then, he should be learning the basies of mathematical computation with a pencil and paper. I'm amazed at how many high school youngsters today seem to have a very shaky acquantance with the multiplication tables. I'd want a kid of mine to know there's another way to do long division besides pushing buttons on a calculator in the proper sequence.
"At the other end of the scale, there's not much point in an eklerly person's buying a calculator that has functions bevond his present grasp of mathematics because it's milikely that his understanding will be expanded. Addition, subtraction, multiplication, and division comprise all the math many people know or need. An inexpensive but reliable four-function calculator will make their necessary daily computations easier, more accurate, and more pleasant. They don't need transcendental functions to batance their check book.
"But if you're buying a calculator for a jumior or senior high school student who plans to go on to college and take an engineering course, give him one he will not outgrow, one that represents a challenge and a powerful aid in his school work. What he needs is an 'electronic slide rule' type of calculator that has pre-programmed full trigonometric and inverse functions with decimal angle conversion to either degrees/ minutes/seconds or radians. It should also be capable of performing common and natural logarithnic functions, exponential func-
tions, square roots, squares, reciprocals, polar ordinate conversion, statistical accumulation with mean and standard deriation calculations, pi, U.S./metric conversion of length, weight, and volune units, fixedpoint or scientific display modes, addressable memory registers (the more the botter), register review, polar arithmetic, factorial function, a dynamic range from $10^{-1,0}$ to $10^{\prime \prime \prime \prime}$. ."
"Whoa!" Barney interrupted. "Do you mean there is such an animal still called a 'pocket calculator'? It would have to be as big as a bread box and weigh at least twenty pounds.
"Not true," Mac denied, shaking his head vigorously. "Hewlett Packard's HP'45. the Cadillac of the pocket calculators at $\$ 395$, measures $5.8^{\prime \prime}$ by $3.2^{\prime \prime}$ by 0.7-1.3"; yet it has all the features 1 mentioned and more. It weighs just 9 ounces and wedges snugly into a man's shirt pocket or slips casily into his coat pocket. For that matter, the HP-35, the first scientific pocket calculator that came on the market only two scant years ago and is still going strong at $\$ 295$, has the great majority of the functions inentioned and is the same size and weight.
"But you don't need to go that high to get a multifunction calculator. Unicom's Model 202SR sells for $\$ 195$ and has twenty kevs and thirty functions. Bownar's Model MX-100-1 'Scientific' Bomar Brain sells for $\$ 179.95$ and has twenty functions, thirteen of which are termed 'scientific.' Texas Instruments' SR-10 Electronic Slicle Rule features scientific notation, reciprocals, squares, square roots, change-sign, and nearly a 200 decade range. It sells for just under $\$ 100$. Sharp has introduced the PC-1801 'pocket computer that performs twelve different scientific functions and sells for under $\$ 200$. MITS Inc. has a whole line of desktop and pocket calculators including an interesting Model 941, a handheld metric converter available in kit ($\$ 1.30$) or assembled form (\$150)."
"I'd think the power some for the calculator would be an important consideration," Barney hazarded.
"It is. That's where your use for the calculator comes in. If you plan to use it only at home or in the office, a straight ac model will suffice. Some of the calculators are powered by alkaline flashlight batteries to achieve low-cost portability, which is fine if you plan to use the instrument only occasionally and for short periods of time. But
let me warn you that using a calculator grows on vou. I find myself reaching for mine a dozen times a day-almost a reflex whenever I think abont numbers. The best arangement for use in the home, the classroom, and the field is to have the calculator powered by self-contained nickel-cadmium rechargeable batteries with an external phagin charger for use when as is available. When plugged in, the calculator operates from the line with the batteries 'floating' across the charging voltage."
"You said you were going to advise people on how to buy and use pocket calculattors. Wouldn't the user's manual tell you how to use the thing?"

Improving the Four-Banger. "Not in the way I mean. The manual tells you how to add, subtract, multiply, and divide on a four-function calculator; but I want to make that four-hanger do a lot more than that After all, we can't all afford HP-45's, but we still have at least an occasional need to make some of the calculations the IIP- 45 does with a single key-stroke. I want to get the same answer on my four-function jol, and I'm willing to punch a few more keys and use a pencil-and-paper 'memory' to do it. Suppose, for example, we want to extract the square root of a mumber such as 539 with this basic Sharp Model EL-8 here on the bench. We shall use the formma $T=(N / A+A) / 2$ where N equals the number whose square root were seeking-in this case 539-A is a trial root, and T is the second trial root or the answer.
"Let's take 20 as the first trial root, although it obviously is way off. When we try this in the formula, we get 23.475. Squaring this yields 551.07562 , which is not close enough. We plug 23.475 into the formula as A and come up with 23.217798 . This squared is $5: 39.06614$, which probably is close enongh for all practical purposes; but just for the heck of it let's plug 23.217798 into the fommula at A. Now we get 23.216373, and that squared is 538.99997 . That's much closer than near beer; so let's quit. Unless you start with a trial root that is ridiculously far off, you only need two or three operations of the formula to come up with a root that is plenty close enough for all practical purposes."
"Yeah, but how about extracting other roots, or raising a number to certain power? Can you do that on your four-speed job?"
"Why not? All I have to do is get myself

The Ultimate in Ignition Systems! ELIMINATES BREAKER POINTS. \star Perfect Timing and Dwell never change!

- The Allison Breakerless System eliminates the Points and Condenser, replacing them with an Opto-Electronic Trigger, using a Light-Emitting Diode and Phototransistor. The only "TRUE" Electronic Ignition! Gives 40 times more Timing Accuracy than ANY system using mechanical Breaker-Points! Unlimited RPM. Smoother running. .. (No timing fluctuation as with Magnetic units). Unaffected by Temperature, Moisture, or Vibration! All Solid-State Components. Easier Starting under any condition. Increased Horsepower Sparkplugs last longer. Perfect timing increases engine Efficiency and Gas Mileage up to 30% !
Quick and Easy Installation! Tested and Proven reliability.
Only $\mathbf{\$ 4 9 9 5}$ - SATISFACTION GUARANTEED!
(Stale Make, Year, Engine Size). (Calif. Res. add Tax).
- CONVERT YOUR "C-D" UNIT TO BREAKERLESS! "TRIGGER-UNIT" ONLY $\$ 34.95$
- Send Postcard for fREE BROCHURE Today. ALLISON AUTOMOTIVE CO.
P. O. Box 881-P, TEMPLE CITY, CAL. 91780

CIRCLE NO. 1 ON READER SERVICE CARD

SAVE!

MONEY - TIME •FREIGHT
quality stereo equipment at lowest PRICES.
YOUR REQUEST FOR QUOTATION RETURNED SAME DAY.
FACTORY SEALED CARTONS-GUARANTEED AND INSURED.
SAVE ON NAME BRANDS LIKE A.D.C.

OYNACO	A.R
KLH	FISHER
KOSS	SHURE

AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL-FROM

12 E. Delaware Place Chicago, Illinois 60611 312-664-0020

a set of log tables. Four-place tables would be fine for most practical problems, though I use six-place tables. If a person docsin' remember how to use logarithms, he can bone up on the subject in one evening. With logarithms, extracting any root of a number is a matter of simple division. Suppose we want to extract the 11 th root of $48,828,125$. We look up the logarithm of this number and find it is 7.688669 . Dividing this by 11 on the calculator, we get 0.698970. The talbles reveal the antilog of this to be 5 . The process is reversible. We could have multiplied the logarithm of 5 by 11 and got the antilog of $48,828,125$.
"Using scientific notation and the calculator is an casy way to multiply and divide very large or very small numbers. To write a number in scientific notation, yon move the decimal point right or left until you have only one integer to the left of the decimal. Then you indicate this number is moltiplied by 10 raised to a power equal to the mumber of places von moved the decimal, giving the exponent a negative sign if you moved the decimal to the right. For example, the distance to the sun is $93,005,000$ miles. We can write this as $9.3005 \times 10^{\circ}$. The mass of an clectron can be written as $9.1091 \times 10^{-2 *} \mathrm{~g}$. instead of the a whward $0.000,000,000,000$,$000,000,000,000,000,910,91 \mathrm{~g}$. With numbers in this form. you can multiply and divicle them by doing the computation on the significant figures with the calculator and adjusting the exponent of 10 in the ansiver according to the law of exponents. For instance, 3.141×10^{-2} multiplied by $3.00 \times$ $10^{\prime \prime \prime}$ yiclds 9.423×10^{-2}.

Here's one final little trick. If you want pi to greater accmacy than $22 / 7$, write 1333.35. which you notice consists of doubling the first three odd integers. Now divide the last three digits, 355, by the first three, 113, on the calculator. That 3.1415929 you see showing is accurate to 8.47 millionths of 1%.
"To sum" it all up, a calculator should match the owner's mathematical abilityjust as a generator delivers the most power when the impedance of the load matches the intenal impedance of the generator. A student, however, will want to buy the best "electronic slide-mule" calculator he can afford because he's matching it to what he eventually expects to know. On the other hand, if all you have is a four-banger, keep in mind that there are many ways of enhancing the power of a simple calculator."

Product Test Reports

CONCORD MODEL CR-400 AM/STEREO FM 4-CHANNEL RECEIVER (A Hirsch-Houck Labs Report)

AI' A SUCGESTED retail price of $\$ 300$, the Concord Model CR-400 is one of the lowest priced 4-chamel receivers on the market. The CR-400 contains an AM/stereo FM tumer and four anplifiers, each of which is specified at 12 watts continuous ontput power with less than 1 percent distortion. In addition, the adx inputs can be used with an external CD- 4 clemodulator for playing diserete f-chamel discs.

General Description. The tipe outputs and monitoring iuputs of the CR-400 receiver are intended for use with a 2 -chamel recorder, but a secomd 4-chamol tape input is available for plaving prerecorled 4 -channel open-reel and S-trach cartridge tapes. The receiver has all Fan over ontput ahead of its multiplexing and de-emphasis circuits Io drive an external demodulator should the FCC approve a discrete 4 -chamel FM broadeasting svstem.

For deriving rear chanthels from 2 -channel programs, a sintioter: operating mode drives the rear speaters from the difference ($\mathrm{L}-\mathrm{R}$) component of the stereo program. Similar in principle to the well-kmown "Dybaquad" system, the sywruetic lature in the receiver uses the rear-chamol amplifiers to provide greater flexibility in balancjug front and reat chamets.

The FM tumer has an FET r-f amplifier and ceramic filters in its i-f section, while a
single IC serves ats the i-f amplifier on AM and FM. IC's are also used for the FM's multiplex demodulator and the SQ matrix decoder.

Four lights on the front panel are used for balancing purposes, with their brightbess levels being proportional to the output level from cach chamel. The light array also provides instant identification of mono, stereo, and 4 -channel programs. The tuning dial's pointer is illuminated in white, changing to red when a stereo FM1 broadcast is received.

The output stages of the amplifier are electronically protected against overloads and short circuit by an SCR that cuts ofl the supply voltage to the amplifier and lights a beset legend above the dial scales in the event a problem arises. Shutting ofl the receiver for a few seconds resets the systern, which can be tumed on again if the fanlt has been remedied.

An fai fine tuving control supplements the main ruvina knol. A dual powers switeh located on the recever's ram apron can bo set to provide increased output power when the front-channel amplifiers are operated in the 2 -chamel mode.

Laboratory Measurements. The amplifier outputs of the CR-400 receiver clipped at 12.3 watts/chamnel (all four channels clriven into 8 -ohm loads at 1000 Hz) during our tests. All subsequent measurements were made with only two channels driven, vielding outputs of 13 watts/chamel into 8 ohms, 17.7 watts into 4 ohms, and 7.5 watts into 16 ohms . In the dual power mode, the maximmon available power rose to 15.1 watts/ channel into 8 ohms and 23.5 watts/channel into 4 ohms.

The $1000-\mathrm{Hz}$ THD was 0.5 percent at a 0.1 -watt output, dropping to 0.12 percent

at 10 watts and remaining at close to this figure at 12 watts, which was just below the clipping point. 1 M distortion was 1.35 percent at 0.1 watt and 3.9 percent at 1.2 mW . But it was less than 0.5 percent at outputs between 1.5 and 14 watts.

At full power (12 watts/channel), THD was less than 0.3 percent from 55 to 20,000 Hz (typically about 0.17 percent). Full power could not be maintained at very low
freguencies, and distortion rose below 3.5 Hz. At half power, however, THD was less than 0.3 percent from 20 to $20,000 \mathrm{~Hz}$, and at one-tenth power, it exceeded 0.3 percent only at frequencies greater than $15,000 \mathrm{~Hz}$.

Through the aux inputs, 120 mV drove the amplifiers to an output of 10 watts; 30 mV was required at the phovo inputs. The noise levels were low, respectively -73 and -70.7 dB in aux and phovo. Phono overload occurred at 45 mV , an acceptable level for most cartridges. The aux inputs could also be overloaded, but this required an imput signal level of 5.7 volts and can be clisregarded as a potential source of distortion.

The RIAA phono equalization was within $\pm 0.8 \mathrm{clB}$ from 20 Hz to $20,000 \mathrm{~Hz}$. Cartridge inductance had less effect on the high-frequency response than with most amplifiers we have tested.

In general, the FM tuner met or surpassed its specifications. The IHF usable sensitivity was $3.3 \mu \mathrm{~V}$ in mono and $9.0 \mu \mathrm{~V}$ in stereo. The $50-\mathrm{dB}$ quieting sensitivity was $3.7 \mu \mathrm{~V}$ in mono (very good), but was $60 \mu \mathrm{~V}$ in stereo. Distortion at the $50-\mathrm{dib}$ quieting level was about 0.3 percent in mono and 1.6 percent in stereo. At $1000 \mu \mathrm{~V}$ input, the S / N ratio was 63 dB in mono and 59 dB in stereo.

Image rejection was 50 dB and capture ratio was 2.6 dB . Altemate-chamel selectisity was 39.5 dB below the set frequency and 74 dB above it. In stereo, chamel separation was an excellent 30 to 35 dB from 30 to $15,000 \mathrm{~Hz}$. The $19-\mathrm{kHz}$ pilot carrier leakage was an unusually low -73.5 dB . AM rejection was 52 dB , and the automatic stereo switching threshold was $6 \mu \mathrm{~V}$.

User Comment. Obviously a $\$ 300$ 4-chinnnel receiver cannot be expected to match the performance of a comparably priced 2 -channel receiver or a 4 -chamel receiver selling at a much higher price. The budget-priced Concord Model CR-400 delivers budget performance, but it is honestly rated and does what is clamed of it.

During our use test, we found that the fis fle tunivg control had a range of a little more than one channel width. In reality, the tuner was alont as cass to tune with its man tuning control as any other receiver. The far fine tuning; conitrol simply adds extra convenience.

An A-B comparison test against another receiver costing about twice as much revealed that the major difference between it and the CR-400 was the latter's slightly higher background hiss.

With SQ-encoded discs, the 4 -chamel performance of the CR-400 was typical of

that obtained with any simple matrix decoder. In this respect, the receiver matehes some of the highest priced t-chamel gear. The sinthetic mode generates some degree of "ambience" in the rear channels from out-of-phase material in a stereo program. While it did not offer an improvement over using the $S Q$ matrix, its inclusion could hardly be considered an extravagance since it required only one extra switch position.

KOSS MODEL HV-1 STEREO HEADPHONES (A Hirsch-Houck Labs Report)

THE Koss Model IIV-1 (the "IIV" stands for High Velocity) stereo headphones are lightweight, weighing in at only $9 \frac{1}{2}$ ounces, exclusive of cord. Unlike most phones that depend on a tight seal aromed the ear for hest bass performance, the $1[V-1$ rests on porous foam pads that provide no isolation from ambient sound; one can hear extemal somods as well with the phones on as with them off. By the same token, the phone sounds can be heard clearly in the room, especially when listening at high levels. In fact, the phones are designed to provide
excellent sound quality and low distortion at high listening levels.

The HV-I phones are comfortable to wear for extended periods of listening. Each carcup contains a 2 -in. diaphragm made from 1 -mil Mylar. The diaphragms are driven by a 1 -in. diameter voice coil. The outside of the earcup is vented, and the compliant diaphagm suspension resonates at about 200 Hz-roughly an octave lower than the resonance of the stifl suspensions used in saded phones. The resonance is damped by the acoustic resistance of the ear coushion and the internal structure of the carcup. The useful frequency response of the phones extends far below the resonance point.

The phones are relatively efficient, producing a $95-\mathrm{dB}$ sound pressure level in the wearer's car with only 0.6 volt applied drive. They are capalble of very high undistorted output, on the order of 1.32 dB in the $200-\mathrm{Hz}$ region, where much musical energy is concentrated, without damage or serious distortion-to the phones, that is.

The Koss HV-1 phones are fitted with an integrated coiled cord that extends to 10 : 1 . They are designed to operate from any amplifier with an output impedaner of from 3.2 ohms to 600 ohms. They retail for $\$ 40$.

Laboratory Measurements. The measured frequency response of a headphone is critically dependent upon the dimensions and design of the compler or "artificial ear" used to match the headset to the microphone. We tested the HV-1 phones in a Koss coupler, a slightly modified ANSI headphone coupler.

The response curve for the phones had a broad maximum centered at 200 Hz but spanning several octaves. There were the usual midrange irregularities, found in wirtually all phones, but the overall frequency response was a very good $\pm 7 \mathrm{~dB}$ from 20 Hz to beyond the $15,000-\mathrm{Hz}$ upper limit of our microphone calibration.

With a 1 -volt signal applied, the acoustic output of the phones varied between 95 and 109 dB over the full frequency range. This level, which would be uncomfortably loud for many listeners, can easily be achieved when driving the phones from any amplifier known to us. At 1000 Hz , the distortion was only 2.6 percent at a $120-\mathrm{dB}$ sound pressure level. At 200 Hz , the distortion was less than 2 percent for any output up to 132 dB SPL, at which point, we began to hear some buzzing. Of course 132 dB would be an earsplitting level to even the most dedicated rock-music enthusiast.

The electrical impedance of the HV-1 phones was a uniform 150 to 200 ohms from 20 Hz to $20,000 \mathrm{~Hz}$.

User Comments. The Koss phones had an open, airy quality which most people find to their liking. Subjectively, this effect comes closer to that of loudspeaker listening than that of tightly sealed headphones.

The overall sound quality was so grod that we compared it to the expensive Koss Model ESP-9 electrostatic phones which were the best we had previously tested and which are considered by some people to be a standard of headphone sound quality. Although the HV-l's did not match the sound provided by the ESP-9's, the differences were not great. The HV-1 had a fuller, warmer sound, easily explained by their response curve which emphasized the lower midrange and had somewhat less output at both extremes of the audio range. The HV-l's sound smooth and free from obvious coloration. For good sound, we feel that the HV-I's offer strong competition to far more expensive stereo headphones. On the whole, they rank at or near the top of all phones we have tested for output level capabilities.
RCA MODEL WR.525A TV MARKER/SIGNALYST

RCA MODEL WR-525A TV MARKER/SIGNALYST

THE SERVICE technician has at his disposal a great variety of test instruments, each for a specific job in testing and/or measuring. Most such instruments can be classified as voltage/current/resistance measuring devices, display instruments (oseilloscopes, vectorscopes, etc.), signal-generating equipment, or component-value checkers.

After looking over and working with RCA's Model WR-525A Marker/Sigmalyst ($\$ 46.50$ at RCA distributors), we found
it difficult to classify this instrument in a single category. Essentially, it is a batterypovered r-f signal generator that is tumable across all 12 vhf TV chamels. This makes it ideal for use as a signal marker generator when using an r-f sweeper. Unlike most other r-f generators, the WR-525A can be externally modulated by an audio or video signal of up to 4.5 MHz in frequency, making this small ($4 / \frac{1 / 2}{} \mathrm{in} . \times 3 \frac{1 / 2}{2} \mathrm{in} . \times 3 \mathrm{in}$.) instrument a good substitute TV transmitter when needed.

Our standard bench-type sweep generator has excellent crystal-controlled markers built into it; so, we were at a loss as to just how to use the WR-525A. We subsequently learned that there were potential applications for this compact instrument from RCA in the modulation mode. This mode enabled us to check TV receivers on any whf channel supplying the WR-525A with the video output of a color-bar/dot generator, or by supplying the unit with the video extracted from our bench TV receiver. Employed this way, we were able to use the WR-525A to
check each channel of a TV tuner. If there were any noticcable differences between chamels, it meant that the tumer had to be checked out.

We could also check TV receivers being used on the local CATV line where all 12 chamels are active. While the TV receiver was tuned to an on-the-air channel, the modulated WR-525A was tuned to either adjacent chamel (one side at a time) to check for adjacent-channel interforence.

CATV service techmians will find the WR-525A a handy device to have around.

It can be used to "ring out" suspect coaxial cables, using it to simulate any of the desired commercial TV broadcast channels available.

We also found another use for the instrument. It appears that some department stores in the New York area are using CCTV systems with each camera operating on a different whf chamel, but all on a single, although complex, coaxial cable setup. Using the WR-525A supplied with video from a battery-powered TV receiver, we have successfully checked out a complete r-f coax system of this type.

PACE SIDETALK MODEL CB-1023 AM/SSB CB TRANSCEIVER

THE Pace Sidetalk Model CB-1023 is designed to provide the punch power of sin-gle-sideband operation while maintaining compatibility with the AM transceivers still in widespread use. The rig is a mobile unit, which operates from a nominal $12-\mathrm{volt}$ de source. It uses a negative- or positiveground system (for which reverse-polarity protection is provided). It functions at the full legal input of 15 watts PEP on SSB and 5 watts on AM on any of the 23 class-D CB channels.

The transceiver measures $9^{\frac{3}{4}} \mathrm{in}$. be $7 \frac{1}{4} \mathrm{in}$. by $2 \frac{1}{4}$ in. and weighs only ty ${ }^{3}$ pounds. Complete with detachable push-to-talk dynamic microphone and mohile momenting hardware the CB-1023 retails for $\$ 3330$).

Receiver Section. Employing single conversion to a $7.8-\mathrm{MHz}$ i-f, the receiving section has excellent sensitivity. We measured it at $0.15 \mu \mathrm{~V}$ on SSB and $0.3 \mu \mathrm{~V}$ on $\mathrm{A} M$ with 400 or 1000 Hz modulation for $10 \mathrm{~dB}(\mathrm{~S}+$ $\mathrm{N}) / \mathrm{N}$. (The manufacturer's ratings are 0.5 and $1.0 \mu \mathrm{~V}$, respectively.) Image and other spurious-signal rejection was a minimum of 60 dB down- 10 dB better than specified. This performance is obtaimed with a front-ond consisting of a bipolar transistor r-f amplifier and a dhal-gate FET mixer.

High sensitivity is uswally obtained at the expense of good signal-handling capability. This can be the result of overload, intermodulation products, cross-modulation, and desensitization by an adjacent-channel sigmal. To prevent this in the CB-1023, there is an r-f gain control that allows the user to reduce sensitivity.

The same i-f section is used for both SSB and AM with separate detectors for each

mode of operation. Selectivity and sideband selection are ohtained with a common erystal filter preceding the i-f chain. The filter has a $6-\mathrm{dB}$ handwidth that is rated at ± 2100 Hz (4200 Hz overall).

For SSB, the heterodyning frequency from the sunthesizer is placed so that the resulting i-f is at one skirt of the filter, producing an overall SSB a-f response of 300 to 3100 Hz at 6 dB . The unwanted-sideband suppression at 1000 Hz was 45 dB .

For AM reception, the heterodyning frequency is shifted so that the frequency of the i-f falls at the center of the filter passband. This results in a double-sideband signal for which the overall a-f response was found to be 450 to 3200 Hz at 6 dB . Adja-cent-chamel rejection was mominally 40 dB .

A common age is used for both operational modes, holding the a-f output to within 3 dB with a change of $80 \mathrm{~dB}(1-10,000 \mu \mathrm{~V})$ in the r-f input signal. Approximately $30 \mu \mathrm{~V}$ of input signal was needed to register $\mathrm{S}-9$ on the meter. (The meter doubles as an r-f output indicator on transmit, at which time a red lamp also comes on.)

A variable squelch for both AM and SSB can be adjusted over a threshold-sensitivity range of 0.3 to $5000 \mu \mathrm{~V}$. A slight delay at squelch release holds the receiver open between words during SSB use.

A noise blanker can be switched into or
out of the circuit (with an a-f noise limiter when used on AM). The overall eflectiveness between in and out appears to be greater on AM than on SSB, since the noise is imherently less on SSB. With impulsenoise peaks of $10 \mu \mathrm{~V}$ or more, the overall noise attennation with the blanker on was at least 20 dB.

Extemal speaker jacks are furnished for the receiver and for PA work. At the rated 3 watts a-f output, the distortion at 1000 Hz was 5 percent. But 8 watts into all 8 -ohm speaker could still be obtained before clipping set in.

Frequency Synthesizer. The frequency synthesizer employs ten ervstals and provides heterodyning frequencies in the 19 MHz range. Only one crestal is used at the 1)fo. Sidebands are switched by placing the heterodyning signal at the low side of the CB signal for LSB and at the high side for USB work. The latter is accomplished by remixing the synthesizer output with the second hamonic of the bfo.

This setup eliminates the need for up to five additional crystals, keeps the signal at the best side of the sideband filter, and maintains the operating frequency with
operation on either one of the sidebands.
A clamifier control provides for on-frequency operation. At its midpoint, cach chamel was within 50 Hz of the assigned frequency, and the clabifier's range was nominally $\pm 900 \mathrm{~Hz}$.

Transmitter Section. Transmissions are set up in the conventional mamer, using a balancel modulator and the sideband filter for SSB. For AM, the receiver's a-f sustem collector-modulates the r-f driver and poweroutput amplifier. The latter is designed to work into a 50 -ohm (nominal) load from a multi-clement output-matching and filtering network.

Operating from the standard EIA test potential of 13.8 volts de, the SSB output was 8.5 watts PEP with third and fifthorder distortion products at onset of maximum output down 19 and 28 dB , respectively, below maximum single-tone output. Unvanted-sideband and carrier sup)pression were 45 dB (at 1000 Hz) and 55 dB , respectively. Overall $6-\mathrm{dB}$ response was 200 to 4500 Hz .

With AM, the carrier output was 3.5 watts with a good waveform. The overall $6-\mathrm{dB}$ response was 450 to 3200 Hz .

Circle No. 68 on Reader Service Card

HELPMATE MODEL CD-5 AUTOMATIC GARAGE DOOR OPENER

BASICALLY, atr automatic garage door opener consists of a power head with an clectric motor; a trolle and rail assembly; a mechanical drive system; a radio control transmitter and separate receiver; mounting brackets; and a manually operated switch. All of these items-and a variety of improvements-are included in the Helpmate Model CD-5 automatic garage door opener that sells for $\$ 140$.

General Description. The CD-5 is a heary-duty residential system designed for casy owner installation. It emplovs a hefty豦-hp motor rather than a | 1 |
| :---: | hp wit. Hence. the system can open and close light and heasy doors ranging in size up to 20 ft wide. The system works equally well with one-piece or sectional and track or trackless doors.

The radio control transmit/receiver system can be chosen to operate on the 225 -260- MHz high whf band, $350-400-\mathrm{MHz}$ ubf bancl, or $410-450-\mathrm{MHz}$ uhf band. A puisedtone scheme kevs a given transmitter to a specifie receiver. (Extra remote-control transmitters are avalable for families with two or more cars at $\$ 20$ each.) Maximum range is about 150 ft .

The power-head motor is an instant-reverse. capacitor-start type with thermal overload protection. It is activated manually by depressing a wall-mounted switch or remotely by keving the transmitter. The 800 pom speed of the motor is reduced by a large pulley that, in turn, drives a roller
chain attached to a trolley. The door arm assembly links the trolley to the garage door. As a safety feature, the door's travel reverses in the event the door encounters an olstacle while closing.

A 75-watt lamp comes on when the svstem is activated and remains on for approximately two minutes, after which it exlinguishes automatically. This gives ample time to close the door and leave the garage.

Accessories are available for special problems. For example, ant extension kit can be obtained for using the CD-5 with garage doors exceeding 7 ft in height. There are also kits for reinforeing light metal and fiberglass doors.

User Comments. Installing the gatage door opener is not a particularly difficult task. Rather, it is a time-consuming one, especially if you haven't done this sort of work before. The completely assembled power head is housed in an attractive onclosure (nothing is exposed) that is casily hung from rafters or the ceiling.

The rail consists of four sections of 1%-in. tubing that butt into each other. The trolley rides on this with the chain assembly attached to each side and in sprockets at each end of the rail. Traveling at $6.5 \mathrm{in} . /$ second, doors open and close at a smoothly controlled speed. The door is automatically locked by the mechanism; so, there is no need for a lock and key.

A thoughtfut feature in the CD-5 svitem is a quick-release hitch pin that uncouples the door arm from the trolley in seconds to permit manual opening and closing should electrical service be interrupted. In these davs of power failures and brown-outs, the idea of power interruption is not a farfetched possibility.

When the door is coming down, not much is required to cause it to reverse autonatically. Therefore, vou will never have to worry alout a child becoming accidentally pimed under the door. The fact that the door reverses itself is a particularly nice feature since most door openers simply stop and require a command to start to reverse.

After the CD-5 system was installed, we checked its radio-control setup. The bat-tery-powered transmitter opened the door at distances well beyond 50 ft . We did not attempt to verify the maximum range of the radio control link, but we have no doubt that the 150 -ft specification is valid.

NEW FREE CATALOG OF CIRCUIT DESIGN \& BREADBOARDING EQUIPMENT!

DISCRETE COMPONENTS WITH NO SOLDERING!

Circuit Design's new catalog has everything you need to take you from circuit concept to working hardware in minutes. Featured items include the great SK-10 socket for solderless circuit design and testing, the NEW SK-20 socket (only $\$ 2.75$) for smaller circuits, the versatile Digi Designer (in kit form or assembled), a new Op-Amp Designer, plus power supplies, pulse generators, digital logic courses, plug-in socket boards, and much more.

Write today for your free copy.

CIRCUIT DESIGNS, INC.

P.O. Box 24, Shelton, Conn. 06484

Exclusive mail order dist. for E\&L Instruments.
CIRCLE NO. 7 ON READER SERVICE CARD

Save on stereo! Buy direct from us and you save money with our high-volume prices on mere than 100 name brands. Order from the brancll nearest you.

Midwest Hifi Wholesale ${ }_{\text {« mal order division }}$
 2455b Wisconsin Ave. 3309 E. J W Carpenter Frwy, Downers Grove, IIl 60515 Irving, Tex 75062

One of our most successful students wrote this ad!

> Harry Remmert decided he needed more electronics training to get ahead. He carefully "shopped around" for the best training he could find. His detailed report on why he chose CIE and how it worked out makes a better 'ad" than anything we could tell you. Here's his story, as he wrote it to us in his own words.

By Harry Remmert

66 FTER SEven years in my present position, I was made painfully aware of the fact that I had gotten just about all the on-the-job training available. When I asked my supervisor for an increase in pay, he said, "In what way are you a more valuable employee now than when you received your last raise?" Fortunately, I did receive the raise that time, but I realized that my pay was approaching the maximum for a person with my limited training.
"Education was the obvious answer, but I had enrolled in three different night school courses over the years and had not completed any of them. I'd be tired, or want to do something else on class night, and would miss so many classes that I'd fall behind, lose interest, and drop out.

The Advantages of Home Study

"Therefore, it was easy to decide that home study was the answer for someone like me, who doesn't want to be tied down. With home study there is no schedule. I am the boss and I set the pace. There is no cramming for exams because I decide when I am ready, and only then do I take the exam. I never miss a point in the lecture because it is right there in print for as many re-readings as I find

Harry Remmert gives his CIE Electronics course much of the credit for starting him on a rewarding career. He tells his own story on these pages.
neccessary. If I feel tired, stay late at work, or just feel lazy, I can skip school for a night or two and never fall behind. The total absence of all pressure helps me to learn more than I'd be able to grasp if I were just cramming it in to meet an exam deadline schedule. For me, these points give home study courses an overwhelming advantage over scheduled classroom instruction.
"Having decided on home study, why did I choose CIE? I had catalogs from six different schools offering home study courses. The CIE catalog arrived in less than one week (four days before I received any of the other catalogs). This indicated (correctly) that from CIE I could expect fast service on grades, questions, etc. I eliminated those schools which were slow in sending catalogs.

FCC License Warranty Important

"The First Class FCC Warranty* was also an attractive point. I had seen " Q " and "A" manuals for the FCC exams, and the material had always seemed just a little beyond my grasp. Score another point for CIE.

- CIE backs its courses with this famous Money-Back Warranty: when you complete a CIE license preparation course, you'll be able to pass your FCC during completion time allowed for your course.
"Another thing is that CIE offered a complete package: FCC License and technical school diploma. Completion time was reasonably short, and I could attain something definite without dragging it out over an interminable number of years. Here I eliminated those schools which gave college credits instead of graduation diplomas. I work in the R and D department of a large company and it's been my observation that technical school graduates generally hold better positions than men with a few college credits. A college degree is one thing, but I'm 32 years old, and 10 or 15 years of part-time college just isn't for me. No, I wanted to graduate in a year or two, not just start.
"When a school offers both resident and correspondence training, it's my feeling that the correspondence men are sort of on the outside of things. I wanted to be a full-fledged student instead of just a tag-a-long, so CIE's exclusive home-study program naturally attracted me.
"Then, too, it's the men who know their theory who are moving ahead where I work. They can read schematics and understand circuit operation. I want to be a good theory man.
"From the foregoing, you can see I did not select CIE in any haphazard fashion. I knew what I was looking for, and only CIE had all the things I wanted.

Two Pay Raises in Less Than a Year

"Only eleven months after I enrolled with CIE, I passed the FCC exams for First Class Radiotelephone License with Radar Endorsement. I had a pay increase even before I got my license and another only ten months later.
"These are the tangible results. But just as important are the things I've learned. I am smarter now than I had ever thought I would be. It feels good to know that I know what I know now. Schematics that used to confuse me completely are now easy for me to read and interpret. Yes, it is nice to be smarter, and that's probably the most satisfying result of my CIE experience.

Praise for Student Service

"In closing, I'd like to get in a compliment for my Correspondent Counselor who has faithfully seen to it that my supervisor knows I'm studying. I think the monthly reports to my supervisor and generally flattering commentary have been in large part responsible for my pay increases. My Counselor has given me much more student service than "the contract calls for," and I certainly owe him a sincere debt of gratitude.
"And finally, there is Mr. Tom Duffy, my instructor. I don't believe I've ever had the individual attention in any classroom that I've received from Mr. Duffy. He is clear, authoritative, and spared no time or effort to answer my every question. In Mr. Duffy, I've received everything I could have expected from a full-time private tutor.
"I'm very, very satisfied with the whole CIE experience. Every penny I spent for my course was returned many

For man with prior electronics training ...
 Electronics Engineering Course

.. Covers steady-state and transient nefwork theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus. A college-level course for men already working in Electronics.
times over, both in increased wages and in personal satisfaction."

Perhaps you too, like Harry Remmert, have realized that to get ahead in Electronics today, you need to know much more than the "screwdriver mechanics." They're limited to "thinking with their hands"...learning by taking things apart and putting them back together ... soldering connections, testing circuits, and replacing components. Understandably, their pay is limited - and their future, too.

But for men like Harry Remmert, who have gotten the training they need in the fundamentals of Electronics, there are no such limitations. He was recently promoted, with a good increase in income, to the salaried position of Senior Engineering Assistant working in the design of systems to silence submarines. For trained technicians, the future is bright. Thousands of men will be needed in virtually every field of Electronics from two-way mobile radio to computer testing and troubleshooting.

Send for Complete Information - FREE

Many men who are advancing their Electronics career started by reading our illustrated school catalog, "Succeed in Electronics." It tells of the many electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you're "shopping around" for the training you need to move up in Electronics, this interesting book may have the answers you want. We'll send it to you FREE. With it, we'll also include our other helpful book, "How To Get A Commercial FCC License."

To get both FREE books, just fill out and mail the reply card. For your convenience, we will try to have a representative call. If card is missing, use coupon below.

APPROVED UNDER G.I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Dhio 44114

 Accredited Member National Home Study Council
Cleveland Institute of Electronics, Inc.

1776 East 17th Street. Lieveland. Ohio 44114
Please send me your two FREE books:

1. Your school catalog. "Succeed in Electronics."
2. Your book on "How To Get A Commercial FCC License."
I am especially interested in:

Name
(Please Print)
Address
City

\square Veterans t Servicemen: Check here for G. I. Bill information

TIIE ELECTRONIC music synthesizer is here to stay. You can hear the result of this umion of art and technology in many TV commercials. Synthesizers are also well represented in pop music dise and tape recordings and on the sound tracks of modern motion pictures. And now they are showing up in a variety of forms in private homes and schools!

Why this sudden acceptance? One rea-
modular-lype symbesizer. We will also look at the mini-synthesizer, an increasingly popular type of musical instrument, and the ase of electronic music modules for modifying the sounds of instruments such as guitars and pianos.

Controllers. The most popular syuthesizer controller is the organ-type keyboard, even though it limits the sunthesizer in which it

WHAT'S NEW IN

son is that synthesized music provides an exciting and "different" mediun of expression. Another is that consumer demand has spured diversity and pushed prices clown as synthesizer systems went into mass production. Perhaps the most important reason is that no prior musical knowledge or traming is needed to procluce music on a synthesizer.

Since synthesizer technology is still in its infancy, many changes are taking place. Here js an overview of new ideas and devices in the synthesizer field. This includes alternatives to the conventional organ-type keyboard, applications of digital techniques to a primarily analog field, and the attempts being made to solve the cumbersone interconnection problems of the traditional
is used to those who are familiar with the keyboard technique. Other disadvantages are complexity and high cost.

Robert Moog, a prominent electronic music equipment inventor, recognized these problems. To overcome this deficiency, he developed the ribbon controller, a device similar to a one-string fretless guitar. Moving a finger up and down the "string" produces control voltage changes in pitch, (something more unusual) amplitude, or filter resonance. In Fig. 1, a resistance wire, fed by a constant-current source that provides a uniform voltage drop, runs the length of the instrument body. Suspended above this wire is a steel ribhon that, when pressed, picks off a voltage from the wire.

Fig. 1. Ribbon controller for synthesizer, developed by Moog.

The magnitude of the voltage depends upon where the contact is made. This voltage goes to a storage capacitor and highimpedance buffer that "remembers" the voltage until a change occurs in the system.

Adjacent to the ribbon/wire assembly are two parallel metal plates that act as a capacitance in a high-frequence oscillator. Pressing on the ribbon closes the gap between the plates, squelching the oscillator and causing a trigger voltage to appear at the output of a Schmitt trigger. The advantage of a rib)-
of discrete adjustable control voltages, tratditionally done by docking a "bucketbrigade" counter in which cach clock pulse advances a voltage down the counter, stage by stage. At the output of each stage is a control for varying the voltage level.

Synthetic Somed Lalos has developed a different "touch-controlled expression" approach. In it is a printed circuit board with two adjacent insulated concluctive pads. Lying flat on this board is a piece of conductive foam. The copper pads on the board nor-

Applications of computer techniques to the music
field, alternatives to the conventional keyboard, and use
of electronic music modules

BY CRAIG ANDERTON

bon controller is that very subtle glides from note to note and dramatic multi-octave sweeps are possible.

Another Moog innovation is the percussion controller that resembles a drum but is actually a drumstick-activated controller. Striking the drum head produces a sharp pulse at the output of a transclucer (see Fig. 2). A peak stretcher conditions this pulse, which is theon sampled by a sample-and-hold circuit to produce a control voltage output. Simultancously, a Schmitt trigger delivers a trigger output for use with envelope generators and other triggerable synthesizer modules.

Another type of controller called a sequencer (Fig. 3), illustrates a musical use of digital logic. Basically, it produces a series
mally have a high resistance between them But pressing down on the foam causes the resistance to decrease. This variable resistance is then converted to a variable voltage by an interface amplifier. A low-pass filter keeps transients and noise out of the interface amplifier.

E μ Systems has devised a modular digital sequencer. A complete sequencer includes such modules as a voltage-controlled clock; two 8 -position address gencrators that provide cight (expandable to 64) decoded outputs; two 256 -word memory modules that can be programmed via keyboard, analog voltage source, or binary code; and other modules, such as a potentiometer matrix, amalog switch, inverter OR gate, one-shot multivibrator, and latch. Taken rogether,

Fig. 2. A percussion controller that is actuated by a drumstick.
these modules provide a very apable sequencing system.

EMS (of Lonclon) Lttl. has attacked the problem in a differcut way with its 256 word "KS" memory kevboard. As a melody is plaved. the keybord information enters the memory at every clock pulse (limited to one rote at a time). With a finite memory, programming a 20 -second seduence of 256 events with good resolution is possible. Setting the elock speed slower provides more playing time but decreases definition. Conversely, incrowsing the clock speed increases definition, but culs down on playing time.

The KS system has such interesting features als a meter whose percent of full-scale deflection indicates how much memory has been used; transposition pads for rassing the entire sequence a third, a liftlo, a semitone, or anything dse up to an octave; a trigger output; and a real-time (not stored) output. A block diagram is shonen in Fig. 4.

The organ-type keyboard controller has also molergone chanses. Many companies are working on adding extra motes and voices to angment the basic monotomic (one-note-at-a-time) synthesizer somed. Methods currently used to obtain more than one-note-at-a-time include digital mutliplexing systems, constant-cmment schemes that compare the voltages present at the low and high ends of the kevbourd's resistor string; and buidting a scparate oscillator, vea (voltage-controlled amplifier), and vef (voltage-controlled filter) for each note required. Most synthesizers now offer two simultaneors notes or voices-with certan limitations.

On smaller synthesizers, another feature that adds kevhoard versatility is a "bend" control. Operated with the left hamd, it allows the plaver to slide the pitch of a note plaved on the keyonard up or down several semitones. Also, touch-sensitive keyboards are becoming more popular, with their advantages of no moving parts and greater resistance to wear and tear.

Mini-Synthesizers. The synthesizer was originally conceived as a studio device. To produce synthesized music, a multi-track tape recorder was needed because synthesizers, for all their complexity, could play only one note at a time. Complex timbres or harmonies had to be constructed, laver by Jayer, on tape. And because sounds were created in a building-block mamer by connecting the various modules together with patch cords, synthesizers were virtually useless for live performances. If that were mot enough, they were large, fickle, and susceptible to drift and other bugs.

Now, many types of low-priced minisynthesizers are on the market. Thev have stable oscillators and require wo patching (switches and potentioneters route the signals). Some minis even have patching facilitics for studio use, giving the operator extra options. These instruments use regular sunthesizer function blocks in a non-modular, predetermined order. A typical sunthesizer block diagram is shown in Fig. 5. Connections between modnles are normally closed. Inswating a patch cord opens them aud rontes the signal to a different module.

The mini offers a varicty of features; how many depends ou how much money you are prepared to invest. The ElectroComp Mooled 101 ($\$ 150(1)$ inchurles a ring modulator, vea, multi-mede filter, mise source, sample-andhold prosisions, two-voice kerboard, four oscillators, mixers, two envelope generators, and a microphone preamplifier. Most inputs and outputs are available at a patch bay for the operator who wants to create custom signal paths.

Less expensive minis, like the ARP" "Pro Soloist," ustally sacrifice the patch bay, an oscillator or livo, and the more esoteric effects. such as ring modulation. On the other hand, thev are smaller, lighter, and contain fewer things that call go wrong. PAIA Electronics even offers a complete minisynthesizer kit for those who would rather build their onvo.

Fig. 3. This type of controller, called a sequencer, uses simple digital counter circuit.

Fig. 4. Block diagram of KS memory keyboard by EMS Ltd. using 256 -word memory.

Modifiers. Like any other new idea, synthesizers have taken a little while to catch on. This is due mainly to such factors as high cost, the use of organ controller keyhoards, and the fact that people are just plain scared of all those dials. As a result, a large number of devices now exist, using synthesizer modales, to add synthesizer effects to conventional musical instruments. One of the first of these was the Oberheim "Music Modulator" shown in block diagram
form in Fig. 6. Note how simple it is compared to keyboard systems.

Filters are popular, starting with the simple bandpass filter (waa-waa effect) and going up to the state-variable filter, set in the notch position, 10 yield imitation "phasing" effects. Another powerful building block for instrument modifiers is the envelope-follower madule. It consists of a precision de rectifier that detects the amplitude envelope of an input signal and transforms it into a de

Fig. 5. Typical mini:synthesizer block diagram. Function order is usually predetermined.

Fig. 6. Oberheim Music Modulator is used with conventional instruments.
voltage that call vary parameters of other modules (as in the Scamoon "Funk Machine" in which an onvelope follower and a bandpass filter give an antomatic waa-waa effect).

An interesting refinement of the voltagefollower concept is the EMS pitch-tovoltage converter ($\mathrm{P}-\mathrm{VC}$) that provides a comection between traditional instruments and voltage-controlled instruments. Although its major function is to convert an audio imput into a de control voltage that is precisely propertional to the pitch, the P-VC also contains an envelope follower that provides either a duplicate of the original envelope, a new envelope shape, or an inverted (hackwards tape effect) envelope. There is also a built-in sawtooth oscillator that can track the input signal.
A_{n} interesting feature of the P-VC is that it can track instroments with a high harmonic content. Thanks to special filtering in the P-VC, a fundamental comprising 10 percent or more of the total signal insures proper tracking.

EMS also makes a modifier called the "Hi-Fli." It has a batch of sunthesizer modules, including a ring modulator, filter, envelope generator, mixer, fuzz (harmonic generator), and foot-pedal controllers.

IC's For The Experimenter. A lot of help for the experimenter is coming from semiconductor companies that are designing IC's suitable for use in electronic music applications. Signetics, for example, offers the 556 veo that is tumable over a $10: 1$ range with triangle and square-wave outputs; the 555 timer that can be used as an oscillator or an envelope generator; and the 565 phase-locked loop that is good for pitch-to-voltage conversion.

Intersil makes the 80.38 function generator, a voo that has a tuming range of 1000: 1 and generates sine, triangle, square, and wher waveforms. The Exar XR-205 is a function generator; XR-S200 is a multi-
function IC with a vco, four-quadrant analog multiplier, and op amp on the same chip; XR-2240 timer has a built-in binary counter. Motorola's offerings indude the MFC4040 toggle flip-flop designed for octave division, MFC6020 (dual MFC4040), and MFC6040 vca.

A variety of analog-multiplier IC's is also available, the 5595 being the least expensive but requiring considerable outboard circuitry. For about three times the price, Intersil's 8013 is far simpler to use.

Other IC's useful in electronic music are the low-noise 739 (hual op amp for filters and preamps; the CD4046 micropower phase-locked loop; the 74 C 154 CMOS version of the 74154 for making a 16 -step sequencer, a digital wave-form generator or an envelope generator; and the CD 4016 quad analog switch that is used as a voltagecontrolled switch.

Looking to the Future. The trend towards integrated packages of synthesizer modules, rather than modular systems (started by the mini-synthesizers) will continue. This will result in electronic instruments with simpler operation, lower prices, and extreme portability for live performances. Modular synthesizers, on the other hand, will become more sophisticated, mixing digital and analog techniques. A patching system using andalog switch matrices and programmed patches will probably show up soon; and to simplify transportation, synthesizers will aim for higher and higher densitics.

You can also expect refinements, such as touch-sensitive keyboards, to become commonplace, thanks to chips like comparators. It is also the opinion of this author that more and more voltage-controlled parameters will be put under the control of the musician. This may mean less "spectacular" synthesizer effects, but a more "human" and subtle somod. As musicians learn to tame this now meedim, synthesizers will complement pre-electronic instruments.

HOME-FREEZER THAW ALARM Protects Food Investment

Soutuds alarm

when freezer
temperature
rises above
safe, preset
value

IF YOU have a home freezer unit, you probably have a sizable investinent in stored food. All that food can be lost if, for some reason, the temperature inside the freezer rises to the thaw point. For about $\$ 10$, you can build a thaw alam to wam you of rising temperature long before the thatw point is reached.

The thaw alam is adjustable over a temperature range of $0^{\circ} \mathrm{F}$ to room temperature. By adjusting it to trip at $10^{\circ} \mathrm{F}$, the freezer can be opened to put in or take out food without triggering a false alam.

The alarm's circuit (see schematic) is simple. Thermistor probe TH1 (Solid State Devices No. GB42P2, available from Allied Electronics as stock No. 791-0441, at $\$ 3.60$ each) goes into the freczer and serves as the temperature sensor. The temperature

Thermistor probe, inside freezer, changes resistance with temperature to trigger SCR.
at which the alarm trips is governed by the setting of R1. Resistor $R 2$ is a gate current limiter for SCRI (the tripping device), while capacitor C1 prevents transients from tripping the SCR when reset switch $S 1$ is operated. A Mallory No. SC628 Sonalert ${ }^{(1)}$ is the "beeper."

Power for the circuit is provided by ant ordinary 9 -volt battery (B1). Since current drain when the alam is on standby is only $30 \mu \mathrm{~A}, \mathrm{Bl}$'s service life should be essentially the same as its shelf life. Even when the alarm trips, current consumption is still only 4 mA . To provide continuous, reliable protection, however, it is recommended that $B 1$ be replaced every sis months or so.

Temperature adjustment, via $R 1$, is made only after the probe, TH1, has been in the freezer for a half hom or so. Rotate R1's knols stowly just to the point at which the Sonalert starts to beep. Then back off just a bit until the alam no longer sounds when Sl is depressed and lot gor.

When you build the thaw alarm, carefully solder thin wires to THI. Make these wires long enough to reach the eirenit proper, located atop or somewhere near the freezer. After first insulating the soldered connections at TH1, slip a length of insulating tulsing over the probe assembly. Pack looth ends of the tubing with silicone rubber caulking compound. When the caulk sets, place the probe assembly in the freezer. \rightarrow

By Lou Garner

IFF YOU have ever blown an expensive power transistor, don't feel bad-youre in good company, Although there are no firm statistics, there's a good chance that nearly evervone who has done much work with tramsistors has had the misfortune of having one blow out at one time or another. If you haven't-by sheer luck-enjoyed the umewarding experience as yot, you ve something to look forvard to in the future.

Power tramsistoms may be damaged by any one of several conditions-incorrect parameters or bias, open or shorted componernts, simple wiring errors, accidental shorts, overloads, higher than rated voltages, or extreme ambient tomperatures. Quite often, danage results from a condition known as thermal rumaxay. For onc reansm or another (such as a change in bias, extreme loading, or whatever), the transistor starts drawing excessive errent. This leads to internal heating, reducing the transistor's effective intemal resistance and leating to a finther increase in current and even higher temperature. Once started, the altemating conditions of temperature increase and corrent increase keep building until the tramsistor is destroyed moless the corrent is limited by external means. This may be clone by using a series resistor, a current-limited power supply, a cirenit breaker, or a fuse.

For those of us who have blown more than our shate of power transistors, there is, as a famous radio commentator used to say, "grond news tonight." The National Semiconductor Corporation (2900 Semiconductor Drive, Santa Clara, CA 950.51) has recently introduced a power "transistor" that protects itself and anything comnected to it from short circuits and overtoad conditions. Designated the LM195, the device is actually a threeterminal bi-polar monolithic IC that simulates a 40 -watt transistor with a high sivitching speed.

The L\I195 contains some 50 compon-
ents in a circuit that both drives and protects a large multi-emitter npo power transistor, rendering the unit virtnally blowout-proof at output current levels of up to 2 amperes and at input and output voltage levels of 40 V. The current-limiting and thermal-shutdown circuits built into the device cut off the output stage if the output current exceeds the 2 -A level or if the chip temperature exceeds $16.5^{\circ} \mathrm{C}$. About the only way the device can be harmed is by applying an excessive voltage. If this happens, the LM195, unlike conventional power transistors, fails safe. It becomes an open circuit, discomnecting the loid.

Electrically, the LMI95 looks like a p p transistor driving an npm Darlington with an overall gain of over 1 million. Two versions are available, the L.M 195, designed for operation from -55 to $1.50^{\circ} \mathrm{C}$ and a lower priced unit, the LM3.95, intended for use over the $0-$ to $-125^{\circ} \mathrm{C}$ range.

Circuit Potpourri. In his recent articles "The IC' Time Machine" (November 1973) and "Applications for the IC Time Machine" (Januany 1974), our co-cditor, Walter G. Jung, discussed the type 555 IC timer in detail, mentioning that several manufacturers were offering dual versions of this versatile and interesting device, including Signetics

Blow-OutProof Transistor

Fig. 1. Tone-burst generator uses dual timer, has pitch and interval controls.
(type NE5556A), Exar (type XR-2556CP), and Lithic Systems (type LS555-2). Another firm may now be added to the roster of producers of the 5.55 and its dual version, the 556. This is Ravtheon's Semiconductor Division (350 Ellis Strcet, Mountan View, CA 94042). Raytheon has kicked off its introduction of these IC timers by producing a 16 -page bookle featuring both device specifications and a varicty of practical circuit applications. Three valuable circuits alsstracted from that booklet are shown in Figs. 1, 2 and 3 ; all use the type 556 dual device.
lou can use the tone-burst generator in Fig. 1 as ant attention-getting alam, incorporate it in musical rhythm equipment,
utilize it for special sound effects, or employ it in any similar application. In operation, one timer section serves as a slow-speed astable multivibrator to gate the second timer (an audio-frequency oscillator) at preset intervals. The gate control signal is applied to the scoond timer's "reset" terminal (pin 10). Separate controls are provided for adjusting both the audio piteh and the burst interval.

The auto burglar alam control circuit given in Fig. 2 utilizes one timer section (A) to provide a time delay, thus permitting the driver to enter, exit, or disarth the alarm. This eliminates the need for an easily defeated external "disarm" switeh. Note that a

Fig. 2. Auto burglar alarm control circuit uses one timer to provide a delay.
separate sensor switch is provided on the front door only to control the delay circuit. All other sensor switches (rear door, luggage compartment, hood, etc.) are connected in parallel. The control circuit's output signal is used to switch an external alarm system.

Suitable for use as cither a frequency or speed alarm control, the circuit shown in Fig. 3 employs one timer section to compare the input signal frequency to a preset RC time constant. If the signal frequency exceeds the allowable value, the timer's output remains in a high state, causing the second timer's output to shift to a low state and activate the separate alarm.
85036), this 216 -page volume covers all phases of rectifier use, from basics through applications. Included are tables, graphs, circuits and specifications. A useful addition to any technical bookshelf, it is priced at $\$ 2.50 /$ copy.

Linear Integrated Circuits Data Book, 3rd Edition. Another Motorola publication, this massive 800 -page book contains device listings, data sheets, package outlines, pinouts, schematic diagrams, an interchangeability guide and a listing of available Application Notes. "Quick Selector Guides" are provided for each device category to facilitate the location of specific data. The volume is $\$ 3.00$.

Fig. 3. For frequency or speed alarm control, timer compares input to preset constant.

Books, Brochures, et al. Unlike the slowgrinding Mill of the Gods, the printing presses of our semiconductor manufacturers are almost setting new records in turning out useful and valuable literature. Among the recont offerings:

Amperex High Power RF Transistors. Published by the Amperex Electronic Corporation (230 Duffy Ave., Hicksville, NY 11802), this 640-page book, contains 24 application reports which cover subjects ranging from single-sideband drivers and amplifiers to vhf and uhf FM power amplifiers. Among the circuits described are a single-stage power amplifier for 40 watts output in the $470-\mathrm{MHz}$ band and a wideband (1.6 to 28 MHz) linear power amplifier for 165 watts PEP. Suitable for advanced experimenters, serious hams, technicians and engineers, the book is priced at $\$ 15.00$ per copy, including a 2 -year subscription to future reports.

Silicon Rectifier Mandbook, 2nd Edition. Published by Mutorola Semiconductor Products, Inc. (P.O. Box 20924, Phoenix, AZ

Linear IC Direct-Replacement Guide, publication CRG-110A. Available on request, this useful guide is printed on heavy card stock pre-punched for loose-leaf binding. Published by RCA's Solid State Division (Box 3200 , Somerville, NJ 08876), the guide cross-references the products of 13 industry manufacturers. It should be extremely handy in locating a device for a project or for replacement.

Application Note AN-76. Available on written request from the National Semiconductor Corporation (2900 Semiconductor Drive, Santa Clara, CA 95051), this publication covers the practical aspects of using modern clock drivers in MOS memory systems and includes application information on driving various types of shift registers and RAM's using logic control.

Application Note AN-79. Also available from National Semiconductor, this paper covers the complete circuit and operating description of the LM121 IC preamplifier, discusses the techniques for achicving low drift, and includes circuit applications.

Device/Product News. Converting an existing piece of electronic test equipment from vacuum-tube to solicl-state operation is not considered a feasible procedure under most conditions. It requires a complete redesign of the cirenit, replacement of virtually every component, and a complete rewiring job. But the conversion can be a cinch if it is accomplished by replacing vacnum tubes with FETRONS, hybrid JFET devices with characteristics (except for a filament) closely duplicating those of the vacumm tubes they are designed to replace.

Recognizing that many users would like (o) convert their older test instriments to solid-state operation, Teledyue Semiconductor (1300 Terra Bella Ave., Momotain View, CA $94(043)$ has introduced the first two of a planned series of hits for replacing vachmm tobles with FETRONS. One is designed to replace the meter tubes in the Hewlett Pachard HP400 VTVM, while the ohler kit replaces all tubes in the Tektronix CA oscilloscope pluy-in module. The HP400 kit contains five PETRONS and sells for $\$ 48.00$, while the 15 FETRON CA kit is priced at $\$ 110.00$.

Featuring medium-power TTL, drivecapat bility, low power dissipation, high moise immunity, and good temperature stability, RCA's new 3 -state COS/MOS gate (CD) 4048A) has threc binary control inputs which permit the selection of 1 of 8 output functions of eight input variables. The eight output functions are or, Nor, AND, cand, OR/AND, OR/XAND, AND/OB, and ANB/NOR. An "expand" input permits cascading of several CD4048A's to obtain functions of 16 , 24, or more variables. The device is available in 16-lead ceramic or plastic DIP's, in a 16 -lead flat pack, and in chip form.

Working with r-f? Then you will be interested in Motorola's new r-f transistors designed for 28 -volt de tramsmitter applications -types MRF5174, MRF5175 and MRF5176 . Of these, the MRF5174 is rated at ? watts output and 12 dB gain at $400 \mathrm{MH} \%$, the MRF5175 at 5 watts output and 11 dB gain at the same frequency, and the VBF5176 at 15 watts output and 10 dB gain. All three devices are for $200-\mathrm{to}-600-\mathrm{Alaz}$ operation and are supplied in SOE (Stripline Opposed Emitter) ceramic stud packages. Unit prices range from $\$ 6.00$ for the MRF5174 to $\$ 17.00$ for the MRF5176. ©

CHOICE OF OISPLAY MODES
You can decide to display time only, dale only, or a continuous 10 -second cycle in which lime alternates with date You can operate on a
12-hour of 24 -hour international time sequence And you can change all display modes instantly any time you wish - by flicking simple controls

The highest quality digital clock/calendar you can build or buy!

This new Digital Concepts electronic digital clock and calendap indicates the hours, minutes and seconds ... or the month and the day... or alternates between time and date at 10 second intervals. Glowing orange digital readout (a continuous character . 55 inch high) is visible from almost any viewing angle, no matter how light or dark the room.

Operation is totally silent, with accuracy to within seconds a month; life expectancy is an incredible 100,000 hours
Beautifully easy to assemble in just one evening-The contemporary hand rubbed oiled walnut cabinet is Ideal for home, office or place of business. And a very memorable gift. All components of the kit mount on two interlocking printed circuit boards, for easy assembly in one evening, using only a soldering iron and a pair of diagonal cutters. The only wire in the kit is the line cord. The kit comes complete with one MOS/LSI integrated circult, full 6 -digit planar gas-discharge readout, and all other highest quality components you'll need. The Digital clock and calendar is also available factory assembled.

Enclosed please find my check or money order for \$ or charge my \square MasterCharge or \square BankAmericard account number
Expiration date \qquad to cover the following order:
kit(s) of electronics only,
Model Ck-100@ \$68.00 each.
cabinet(s) with face and mounting hardware, Model C-31 @ \$18.00 each.
factory assembled calendar/clock(s),
Model EC-102@ \$108.00 each.
Add $\$ 3.00$ to cover costs of postage and handling.
digital concepts
247 Route 46, Saddle Brook, New Jersey 07662
Order now for immediate delivery-Send this coupon with your check or money order for fast delivery anywhere in the world. Money back guarantee if not fully satisfied.

Name
Address

By Len Buckwalter, IKQA5012

WE GET our CB from a speaker burking avay somewhere under the dashboard. But the chairman of the board of Transulvania Oil probably listens over a telephone handset. The captain of a Boeing jumbo jet monitors with phones clamped to his head. Thanks to a couple of novel designs now reaching the CB marketplace, these deluxe features are mo longer limited to transceivers that cost more than a Volksuagen.

The most unnsual rig in many months was recently brought out by E. F. Johnson in

New E. F. Johnson rig has telephone handset.
what the company calls a "radiotelephone configuration." Translated, that means there is a telephone hamolset that looks exactly like the one on a home phone. Instead of listening throngh a loudspeaker and speaking over a mike, you simply remove the handset from its eradle and start communicating. A push-to-talk bar near the middle of the handset is for sending. The resemblance to a true radiotelephone is hardly an accident since Johnson purchases the housings from the same company that supplies radiotelephone manufacturers.

There are a couple of advantages to be gained from CB'ing with a handset. Since the receiver is held directly to the ear, noisy conditions of road and car are cut down. Also, weak signals are more easily under-
stood over headphones than through a loudspeaker. (The rig, incidentally, has a loudspeaker to alert the operator to an incoming call when the handset is in the cradle.) Yet another benefit is the privacey of listeningif that should be an important factor. Last, but certainly not least, is the prestige of using a handset instead of an old-fashioned mike.

The Boom Mike. Another novel item for "hollering and hearing" is from Telex, the headphone people. They are preparing to introduce a "boom mike headset" for the Ciber. It is designed to replace, or supplement, any rig's existing mike and speaker. A headphone, as mentioned earlier, has the advantage of excluding traffic and other noises that might be heard in the cab of a truck or the pilot house of a looat cleaving through the water. Telex, though, is using just one headphone because it is aganst the law in some states to drive with looth ears covered up.

Even urore interesting is the "boom mike" part of the new prodnct. As shown in the photo o: next page, the boom is attached to the back of the headphone and curves around the wearers cheek. It positions the microphone squarely in front of the mouth for close talking and allows virtually handsfree operation. Boom mikes are especially popular among professional pilots becanse

> Hearing \& Speaking Accessories

Telex headset has earphone, boom mike.
they eliminate furnbling and cord-fouling in the cockpit. It is still necessary, however, to have some sort of press-to-talk switch, which Telex supplies as a part of the cord itself.

It slouid le possible to modify just about any existing CB rig to use a boon mike headset. Althongh Telex is still putting the finishing touches on the product, it will probably include a ceranic mike rated at 2000 ohms. Since there are so many connector stykes for CB inputs. the mike cord will be supplied miterminated so that any plug ean be attached.

Eren if you don't buy a boom mike, you can still modify almost any $C B$ receriver to be used with a headphone. Many recovers have a provision for the use of an cxtemal speaker. This jack can be used for anl callphone by making one smatl additiom. Since an earphone is far more sensitive than a speaker, the siguat must be attenuated. Of course, this can be done by adjusting the tront-panel volume control; but the knob, for a comfortable listening level, may be only slightly eracked open and, thus, diffi-

Fig. 1. Adding a jack for external speaker.
cult to adjust. One way to avoid the problem is to install a 100 -ohm potentiometer, as shown in Fig. 1, and use it to reduce the andio power clelivered to the carphone.

If the receiver has no external speaker
outputs, an earphone jack can be added to the speaker circuit as shown in Fig. 2. The CB audio circuit is a tupical one, with one side of the speaker comected to chassis ground. Note that a wire from the audio output transformer was originally comected to the hot side of the speaker. This wire is broken, ats indicated by the " X " in Fig. 2, and reconnected to the center of a closedcircuit jack. Mount the jack at somec comvenient point on the front or rear panel. With this arrangement, the speaker is automatically disabled when the earphone is plogged in. If the earphone is too loud, simply add the 100 -ohm potentioneter as in Fig. 1 to serve as a coarse volumic adjustment. Set the potentiometer for normal earphone level with the CB sel's volime control about one-quarter open. Then leave the potentiometer at that setting. Day-to-day adjustments are usually more convenient to make at the set's regular volume control.

Fig. 2. Circuit for adding headphone jack.
External Speakers. That external speaker jack mentioned earlier is one of the more valuable additions that can be made to a CB receiver. There are many instances when the sert's built-in speaker simply won't deliver the audio to the right place. If the transceiver is in a bedroom. For instance, it's pretty hard to monitor it when you are puttering around in the basement workshop or polishing the car. If you are using CB in one of the trades-construction, plambing, etc. -you may not hear catls from a truck set white you're on the job. And the distance between a campsite and a parked antomobile may put the mobile rig out of carshot.

The external speaker solves these problems. To add a speaker, start by installing the closed-cireuit jack shown in Fig. 2. Since you'll be listening at a remote point, it is also handy to add a vohme control at the second speaker. A 100 -ohm wirewound potentiometer can be installed in series with one leg of the speaker circuit. This permits you to decrease the sound at the remote speaker. If the potentioneter is set at full volume, and there is insufficient signal, turn the set's volnime control to a higher setting.

By Leslie Solomon, Technical Editor

SEVERAL times, in previous columns, we have mentioned that the triangle waveform is the ideal signal to use in checking audio systems. The idea has generated quite a bit of mail-some pro and some con. A number of readers have also asked for a suggestion for a low-cost circuit of a triangle waveform generator that could be used in audio testing. Ever eager to please, this month we present such a circuit.

For the op amps, a pair of 741 's can be used; but, in the long run, it will cost less to use a single 747, which is a dual op amp. It is also possible to use the 709 type of op amp, but then it is necessary to use compersation elements to prevent oscillation from throwing everything out of kilter.

The first part of the circuit is a simple variable-frequency square-wave generator ($/ C I$). The second part is an integrator that converts the square waves to triangles. If you already have a square-wave genertor, it can be used to drive the integrator directly. Circuit operation of the square-wave generator is as follows. When the output of ICI is at maximum positive, the noninverting input (marked +) is held to $1 / 2 \mathrm{~V}_{\text {... }}$ by the voltage divider made up of $R 1$ and $R 2$. At the same time, capacitor $C 1$ is charged up through the series combination of R4 and potentiometer R3 (frequency control). As soon as the charge on C1 reaches $1 / 2 V_{\text {c. }}$, its
action on the inverting (-) input of $I C I$ causes the op amp to switch to its maximum negative output.

The noninverting input is now clamped at $-\frac{1 / 2}{2} \mathrm{~V}_{1,}$ and $C 1$ starts to discharge to maximum negative. When the capacitor voltage slightly exceeds $-\frac{1}{2} \mathrm{~V}_{\mathrm{c}}$, the op amp switches again to its maximum positive output and the cycle repeats.

The output of this op amp is a square wave whose frequency is determined by the setting of R3. The values of $C I$ and $R .3$ can be varied to provide other frequency values of intercst. However, with the 741, the upper frequency limit is not very high, and the output waveform will not be a good square wave. The frequency used for triangle waveform testing is about 100 Hz (using the component values shown here).

The second op amp is connected as a conventional integrator with a capacitor in the feedback network. When a constint voltage (such as the top and bottom flat portions of a square wave) is applied to the integrator, capacitor C2 starts to receive a charge at a constant rate and the voltage across the capacitor increases in a linear fashion. The capacitor is charged in one direction on the positive portion of the input square wave to produce one side of the triangle. One the negative portion of the square wave, the capacitor is rapidly

ATriangle Waveform Generator

switched to provide the other side of the triangle.

If you are in the mood to experiment, try various values for the feedback capacitor and square waves of different frequencies. Yon can leam a lot about op amp operation in this way.

The ontput goes throngh a nompolarized (apacitor coupling and a level control which determines the amplitude being fed to the test circuit.

Cosmetics. Many people build test equipment based on circuits and ideas given in this, and other, magazines. Unfortunately, the builder doesn't alsways realize that a project is not really complete when the electronic portion has been put together. Some seem to feel that finding and finishing a decent cabinct, using proper front-panel lettering, and having decent test leads and access connectors are merely frills that donit really count. They don't realize that, considering the amount of time and mones they have put into a project, they should take cnough pride in it to make it look presentable. It shouldn't have to be hidden away-unfortunately, we have seen some that deserve just that fate.

That's why we say that, if you are going to build a project (in this case, a piece of useful test equipment), give at least some thought to the cabinet and how it looks.

How do you do this? Start loy getting catalogs from suppliers. (Manv are advertised in this magazine.) Take a look at all of the cal)incts, pilot lamp housings, switches, knols, and other items that go on the outside of a project. Don't forget rubber feet. They not only dress up a project; they also keep it from slipping off the workbench. A little paint or some self-adhering patternod plastic also goes a long way toward making a project look like a fairy princess instead of ars ugly duckling. There are all sorts of selfadhering trims too-gold or silver metal stripping, for instance.

You cin always make a fancy front panel by cutting out a piece of stiff cardboard that will just fit the panel size. Paint it, add some lettering, and cement it onto the front of the chassis. Or, yon can use the monnting hardware of the conterols on the front to keep the facing in place. Don't forget to keep some "stick-on" lettering on hand to make the labeling look professional.

In finishing a chassis, you can use one of the various metallic sprays.

2 Hz to 200 kHz frequency range Sine, square, and triangle outputs Linear and logarithmic sweep Battery powered for maximum portability

 All of the above in the

 All of the above in the function generator below function generator below

 for only \$149.95.

Well, Wavetek's done it again-another function generator first. For under 150 bucks, you can get a complete audio signal source with the capability of generators costing several times as much. With our new Model 30, you can generate sine, square, and triangle wavelorms over a frequency range of 2 Hz to 200 kHz . You can also sweep the trequency
in either the linear or logarithmic mode. The battery-powered Model 30 operates anywhere with complete line isolation. And for unlimited line operation, you can get an optional rechargeable power supply kit. At $\$ 149.95$, the Model 30 has performance and versatility that everyone can afford. So don't just sit there. Order one.
P.O. Box 651, San Diego. Cahf 92112: TWX 910-335-2007, Tel. (714) 273-2.200

DIGTAL

Bell \& Howell Schools announces an exciting new at-home learning program that includes this advanced color TV with digital features... you build it yourself!

You leam valuable skills in electronics through experiments and testing as you build a color television that's ahead of its time!

You've seen TV's that swivel, TV's with radios built in. TV's small enough to stuff in a suitcase and TV's that have remote control.
But now comes a color television with features you've never seen before. Features now possible as a result of the new applications of digital electronics ---- features that make Bell \& Howell's new 25 -inch diagonal color TV ahead of its time! You learn about . . .

Channel numbers that flash big and clear right on the screen. An on-screen digital clock that flashes the time in hours, minutes and seconds with just the push of a button. An automatic channel selector that you pre-set to skip over "dead" channels and go directly to the channels of your choice.

And to insure highest quality performance, this new TV has silent, all-

You build and keep this revolutionary new Bell \& Howell $25^{\prime \prime}$ diagonal color TV with amazing digital features!
Mail the postage-free card today for complete details, free!
electronic tuning, "state-of-the-art" integrated circuitry, Black Matrix picture tube for a brighter, sharper picture and 100% solid-state chassis for longer life and dependability.

Perform fascinating

 experiments with the exclusive Electro-Lab ${ }^{\text {² }}$ electronics training system. It's yours to build and keep!Designed exclusively for our students, this Bell \& Howell Electro-Lab*
gives you up-to-date "tools of the trade," including instruments you can use professionally ater you finish the program.

A digital multinteter that measures voltage, current and resistance and displays its findings in big, clear numbers. Far more accurate and readable than conventional "needle pointer" meters

meters that require guesswork and interpretation.

The solid-state "triggered sweep" oscilloscope is a "musr" for accurate analysis of digital circuitry. Includes DC wideband vertical amplifier and "triggered sweep" feature to lock in signals for easier observation.

The design console is a valuable device for setting up and examining circuits without soldering! Features patented modular connectors, AC power supply and transistorized dual range DC power supply.

R TV IS HEREI

Build it yourself... the perfect way to discover the exciting field of digital electronics!

It's part of a complete

 learn-at-home program!Imagine spending your spare time actually building your own 25 -inch diagonal color TV! It's a project you can work on right in your home. You'll enjoy the challenge ...exploting the new systems of digital circuitry and performing experiments to test what you learn.

There's no travelling to classes, no lectures to attend, and you don't have to give up your job or paycheck just because you want to get ahead. When you finish this new Bell \& Howell Schools program you'll have learned new skills. plus you'll have a great color IV to keep and enioy for years!

You need no prior electronics background!

You'll receive a special Iab Starter Kit with your first lesson so that you can get inmediate "hands on" experience to help you better understand newlyleamed electronics principles. Later, you'll use your new knowledge and leam valuable skills as you build the color TV. You can take advantage of our toll-free phone-in assistance service throughout the program and also our in person "help sessions" held in

Digital electronics is changing our lives!

There's a lot more to digital electronics than just the numbers! True, that's what you see on more and more products like digital calculators, clocks and watches. But behind the numbers lies a fantastic technology that's creating higher standards of accuracy and dependability. The versatility of digital electronics has begun another industrial revolution. Its growth and applications are giving us new and better ways of doing things and spectacular products like this new Bell \& Howell color TV with digital features!

Pick up valuable skills in electronics that could lead to extra income, full or part time ... perhaps a business of your own!

Once you complete this new learn-at-home program from Bell \& Howel! Schools, you'll have the specialized skills to service color TV's plus the knowledge that you can apply to repair a variety of home electronics equipment. No better or more practical alhome training in electronics is available anywhere!

These skills could open up new income opportunities for you full or part time. While many of our students do not ask for employment assistance, it is available. Of course, no assurance of income opportunities can be offered. Get the complete story on this exciting, learn-at-home program...the worlds first color TV course employing digital electronics technology!

Mail card today for full details, free!

If card has been removed write: an Efictronies Home Stuay Senoos

- 0 EOM

ص BEL E HOWEL SCHOOLS
${ }_{4} 141$ Beimoni. Chicago. Ilinois 60641

$F E$
 New Products

Additional information on new products covered in this section is acailable from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back coter or write to the manufacturer at the address giten.

SANSUI FIVE-DRIVER SPEAKER SYSTEM

Sansui's Model SP-2500 three-ıvay speaker sysfell has a $12-\mathrm{in}$. wooter, two 5 -in. midrange drivers, and two 2 -in. hom-type twecters. The midrange drivers are angled toward each other to provide a crossfire of sound. They have concave aluminum radiators mounted on the voice coil bobbins to yield smooth transition to the fweeters with little phase disruption. The newly

developed wooter is clesigned to assure smooth response even at low trequencies and allows the amplifier sigual to be fed into it, bypassing the crossover network. The sound diffuser adjacent
to the twecters creates an acoustic lens effect. Frequency range of the system is 30 Hz to 20,000 H_{z}, and power-handling capacity is 80 watts. (Price is $\$ 209.95$.)

Circle No. 70 on Reader Service Card

SENCORE FET MULTIMETER

The first thing one notices different abont Sencore's Model FE27 Big Henry FET multimeter is the total absence of the traditional range/function switch. In its place are 16 pushbutton switches arranged in two rows of cight

each. The upper row controls power to the instrument and the test functions, while the lower controls the range to be used. The user simply presses one button in each row. The only other controls on the front panel are thomboperated zero-adjust and ohms-adjust potentiometers. (Price is $\$ 1.50$.)

Circle No. 71 on Reader Service Card

REGENCY 10-CHANNEL SCANNING MONITOR

The Regency Electronics, Inc., Model ACT-R $10 / \mathrm{H} / \mathrm{L} / \mathrm{U}$ is a 10 -chamel scamning monitor radio that can be programmed for any combination of frequencies in the uhf, high vhf, and low vhif bands. It can be used to monitor police. fire, civil defense, marine, weather, and business radio. It features pushbutton program control for each chamel and for both automatic and

Get all the news and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
nammal operation. The receiver scans at a rate of approximately 15 chamels per second while searching for an active signal. It automatically stops to pemit monitoring any transmission it detects, then automatically resumes scamming. (Price is $\$ 169$ plus crvstals.)

$$
\text { Circle No. } 72 \text { on Reader Service Card }
$$

NU-CONCEPT DESOLDERING TOOL

A desoldering tool that provides a simple solution to 14 - and $16-$ pin clual in-line intequated circuit removal is being marketed by Nu-Concept Computer Systems Inc. Designated the PAK-$\mathrm{X}-\mathrm{TR} A \mathrm{C}^{\text {rM }}$, it enables the user to remove soldered-in IC's from printed circuit boards in seconds. In use. it is a one-handed tool that weighs less than 8 ounces.

$$
\text { Circle No. } 73 \text { on Reader Service Card }
$$

NEW-TRONICS 2-METER COLINEAR ANTENNA

The Hustler 2 -meter colinear Moclel G6-144-A antenna is expressly designed tor repeater or fixed-station operation. FCC accepted for repeater application, the antenna is conservatively rated at 6 dB gain, based on EIA Standard RS-329 (gain over a half-wave dipole). Special features are built into the 117-in. antema, including high-power capability. slunt feed with de grounding, easily accessible SO-23), four radials, heav-duty construction, and U-bolt mounting. (Price is $\$ 49.95$.)

Circle No. 74 on Reader Service Card

HEATHKIT HIGH-RESOLUTION FREQUENGY COUNTER KIT

The new Heathkit Model IB-I10:3 frequency counter responds out to 180 MHz with high, resolution through the use of a phase-locked

Frequency multiplier. Pushbulton switch selection pemits multiplication by $1,10,100$, or 1000. A temperature-compensated crystal oscillator generates the time base, and three pushbutfons provide $1-\mathrm{ms}$. 100 ms , and $1-\mathrm{s}$ gate times. Input sensitivity is 50 mV to 120 MHz and 100 mV from 120 MHz to 180 MHz . A rear-panel switch permits bypassing the intemal oscillator to permit the use of any external time base (up to 3 V). The display consists of an 81\%-digit cold-cathode neon indicator array. Indicators

The ideal way to save your valuable copies, keep them well protected and make it easy for you to refer to any issue at any time. Both decorative and attractive enough to enhance the decor of any room. each case holds a full year's copies. Constructed of reinforced fiberboard, these durable cases are covered in a rich-textured leatherette. The gold embossed back adds to its elegance and makes each case a welcome addition to your bookshelf or cabinet.

Magazine cases are available for any of your favorite magazines. They're only $\$ 4.50$ each, 3 for $\$ 12.50$, in any combina tion of titles ordered. Add 50c per case for postage and han dling. Outside U.S.A. add $\$ 1.00$ per case ordered.

Check One: $\quad \square$ All Black $\quad \square$ Maroon Back, Black Sides
Print Name.
Address
City \quad State \quad Zip__

PAYMENT MUST ACCOMPANY ORDER

Let us know 6 to 8 weeks in advance so that you won't miss a single issue of POPULLAR ELECTRONICS INCLUDING Electronics World

Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.
Write to: P.O. Box 2774, Boulder, Colo., 80302 giving the following information.

\square Extend subscription.
\square Enter new subscription.

${ }^{(1)} \square 5$ yrs. $\$ 21{ }^{(2)} \square 3$ yrs. $\$ 15$. ${ }^{(3)} \square 1$ year $\$ 6$

\square Payment enclosed (l extra issue per yr. as a BONUS)
\square Bill me later.

name
address
city
Add'l postage print $\$ 2$ per year outside U.S., its possessions \& Canada.

are provided for gate, overrange, unlocked operating conditions, and for $\mathrm{MHz}, \mathrm{kHz}$, and Hz . (Price is $\$ 379.95$.)

Circle No. 75 on Reader Service Card

Phase linear stereo preamplifier

The new lhase Linear Morlel 4000 preamplifier is designed to elimitate the inherent noise produced durines the recording process and to restore dynamic rames. It leatures the "Auto

Cormator" noise reduction sistem that makes record/tape hiss and fal broadeant noise virtaally vanish withont affecting musical comtent. Susic altering recording techniques, such as "peak unlimiting" and "gain riding". used to put the tull range of innsical sound on tape or dise, are compensated for by the preamp. The preamp"s "Peak Inlimiter" and "Downward Expander" selse whether these technigues have been used and antomaticatly corrects them. (Price is $5 \overline{50} 9.9$)

Circle No. 76 on Reader Service Card

MITS 8-DIGIT CALCULATOR WITH MEMORY

An 8-tigit/8-lunction hanct-held calculator with built-in memory function is available factorywired and in kit fom from MITS. Inc. The Model 908 M calculator performs the usual four arithmetic functions, square, square root, reciprocal, and percent. The memory feature can he used as a comstant, temporary storage register, or an accumulator. The niser can doose between fixed and forting decimal. Other features include raised. positive-tonch heys; true credit balance sign display; algebratic inode of entry;
leading and trailing zero suppression; overtow inclication; automatic display cutoff; and lowbattery indication. (1'rice is $\$ 99.95$ in hit form, $\$ 129.95$ factor! wired.)

Circle No. 77 on Reader Service Card

TURNER NOISE.CANCELLING MICROPHONE

Tumer's Model ND 3501 M microphone was designed specifically for use in mobile communications applications where traffic, equipment, motor, or any other unwanted background noise presents a problem. The mike has a frequency range of 100 to soon Hz and an impedance of 2000 ohms to complement all solid-state equipment in which the input impedance is between fiol and 5000 ohms. It has an output level of
$60 \mathrm{~dB}\left(0 \mathrm{~dB}=1 \mathrm{~m} \mathrm{~d}^{+} / 10\right.$ microbars $)$. It is wired for relay switching, but it can be easily converted for dectronic switching.

$$
\text { Circle No. } 78 \text { on Reader Service Cord }
$$

AUDIOTEX STEREO MICROPHONE MIXER

You can increase the mumber of microphone inputs to your tape recorder or amplifier with the new stereo mike mixer (Cat. No. 30-2320) from GC Electronics, Audiotex Division. The mixer feeds up to four high-impedance signals to a single high-impedance input. It has provisions for incrasing or decreasing the volume of any channel while feeding or holding the other channels at a constant level.

Circle No. 79 on Reader Service Card

TEAC DELUXE 3.MOTOR/3-HEAD TAPE DEGK

Teac's Model $33000 \mathrm{~S}-2 \mathrm{~T}$ looks and is designed to handle like a professional mastering tape deck. It has three motors and three heads, a two-tach/2-channel format, 15 and $7 / 1 / 2 \mathrm{ips}$ speeds, 10%-in. tape reel capacity, remote control capability, and total pushbutton transport control with logie circuitry. Separate bias and equalization switches arc provided for standard and high-energy tapes. A reel size selector automatically presets motor torque and holdback tension. A precision narrow-gap tape head design is said to offer the highest possible frequence response and a signal-to-noise ratio of 60 dB . (Price is $\$ 679.50$.)

Circle No. 80 on Reader Service Card

SBE "Sentinel", high performance, full-feature scanning receiver. VHF, UHF and Hi-Lo models.

[^3]Write for full line scanner brochure

LINEAR
SYSTEMS, INC. 220 Airport Blvd., Watsonville, CA 95076

MOTOROLA CMOS DATA BOOK

More than 300 pages of CMOS product data, basic technology and applications information, and product selector guicles are in Motorola's "MaMOS Integrated Circuits Data Book." Data is included on 68 separate functions, some of the more useful of which are: an Arithmetic Lowic Unit, Look Ahead Carrv Block, (64-bit RAM, 1024-bit ROM, and Successive Approximation Register (for A/D applicat tions). The Data Book is $\$ 2.50$ Lrom Motomola Semiconductor Products, Inc., Technical Information Center, P.O. Box 20924, Phoenix, AZ 850:36.

RADIO SHACK ELECTRONIC PARTS CATALOG

Radio Shack has added more than 20nt hard-to-find electronics items to its parts and test equipment line, all of which are listed and described in the "Qwik-Fill" 1974 Electronic Parts Catalog (No. AE-74). The 5?-page cataloge lists a variety of special-porpose tubes, transistors, readouts, $D^{2} \mathrm{C}$ and IC equipment, relays, resistors, capacitors, potentiometers, transfommers, test instruments, and more. Adclress: Radio Shack, 2617 W. Seventh St., Fort Worth, TX 76107

EDMUND SCIENTIFIC CATALOG

Hundreds of new items have been added to the latest edition (No. $\mathbf{7} 42$) of the Edmund Scientific catalog. In its 180) illustrated pages are listed and described more than 4500 items. Coverage inclucles toys and ganes, electronic and light effects gaderets, scientific materials, astronomy and optics equipment, and much more. Among the electronic items to be found are the Bio-Rhythm Charting and Analysis hit, lasers, solar-powered radio hit, electronic calculator/digital clock combination, and a handheld metal locator. Address: Edmund Scientific Co., 380 Edscorp Bkg., Barrington, NJ 08007.

CALECTRO FET CIRCUIT BOOK

For 25e", you can get the "FET Circuit Book" (Cat. No. FR-172) from Calectro Division of GC Electronics. It gives a basic introduction to the techmical details of the field-effect transistor and provides schematics for nine different circuits. Address: GC Electronics, Division of Hydrometals, Inc., 400 S. Wyman St., Rockford, IL 61101.

Your Complete Electronics Buying Guide

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

BE CHOOSEY
 YOU CAN AFFORD TO WITH EICO

The more you know about electronics, the more you'll appreciate EICO. We have a wide range cf products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. If you prefer, you can "Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Burglar-Fire Alarm Systems and name of nearest EICO distributor. check reader service card

CIRCLE NO. 13 ON READER SERVICE CARD

> EVERYTHING YOU
> WANTED TO KNOW ABOUT CD IGNITION SYSTEMS BUT DIDN'T KNOW WHOM TO ASK.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name

Address

Cily

State \qquad

CLIP OUT' T'HIS AD AND SEND 'TO \rightarrow
TRI-STAR CORP.
P. O. Box 1727 Dept. E

Grand Junction, Colo. 81501
CIRCLE NO. 33 ON READER SERVICE CARD

ELECTRONICS SHOP PRACTICES, EQUIPMENT, AND MATERIALS

by Clyde N. Herrick

As its title implies, this book is primatily an exposition on the proper fabrication techniques to use when assembling original electronicequipment. While it is written for the techni-cian-in-training, the material covered is invalnable to hobbyists and experimenters who make their own gear from basic parts. Among the topics are salety rules and tools, parts iclentification and codes and symbols, basic hardware, soldering, cabling and harness making, drawings and bhueprints, atid much more.
Published by Prentice-Hall, Inc., Englewood Cliffs, NJ 07633. Hard cover, 340 pages. $\$ 14.95$.

CASSETTE TAPE RECORDERS: HOW THEY WORK-CARE \& REPAIR

by Walter G. Salm
This book is an up-to-date guide to cassette recorder alignment, adjustment, maintenance, and repair for the technician, hobbyist, andiophile, or anyone who wants to develop a wellrounded understanding of cassette recorlers. The text explains how cassette recorlers work, how various svstems differ, and why the calssette is now challenging open-reel tapes as the record/playback system most suitable for serious hi-fi applications. Much useful data on recording techniques involving microphones, mike nixers, and volume levels is inclucled.
Published by Tab Books, Blue Ridge Summit, PA 17214, 204 pages. 57.95 hard cover; $\$ 4.95$ soft cover.

WORLD RADIO \& TV HANDBOOK 1974

When a specialized handbook like this has wome into its 28 th edition, there is very little in it that can be considered "new and exciting." Be that as it may, this is a comprehensive compilation on radio and TV broadcasting throughout the world. Updated during the latter part of 1973 for use in 1974 , it contains all the information needed loy the serious listener, including stations, callsigns, frequencies, schedules, languages, power, etc.
Distributed by Gilfer Associutes, Inc., Box 239, Park Ridge, NJ 076i56. Soft cover. 40 s pases. $\$ 7.50$.

ELECTRONICS MARKET PLACE

NON-DISPLAY CLASSIFIED; COMMERCIAL RATE: for firms or indl. viduals offering commercial products or services, $\$ 1.60$ per word (including name and address). Minimum order $\$ 16.00$. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance, READER RATE: for individuals with a personal item to buy or sell, $\$ 1.00$ per word (including name and address.) No minimum! Payment must accompany copy. DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($25 / \mathbf{g}^{\prime \prime}$ wide), $\$ 200.00$. $2^{\prime \prime}$ by 1 column, $\$ 400.00 .3^{\prime \prime}$ by 1 column, $\$ 600.00$. Advertiser to supply cuts. For frequency rates, please inquire.

GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st. Send order and remittance to POPULAR ELECTRDNICS, One Park Avenue, New York, New York 10016, Attention: Hal Cymes.

FOR SALE

FREE! DargaIn catalog. Fiber optics, LED's, transistors, dlodes, rectifiers, SCR's, triacs, parts. Poly Paks, Box 942, Lynnfield, Mass. 01940.
government Surdus Receivers. Transmitters, Snooperscopes, Radios, Parts, Picture Catalog 25c. Meshna. Nahant. Mass. 01908.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 8TH Ave, S.W., Largo, Fla. 33540.

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS, Bluffton. Ohio 45817.

RADIO-T.V. Tubes-36c each. Send for free catalog. Cornell, 4213 University. San Diego, Calif. 92105.

AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students ... Construction Plans-Complete, including drawings, schematics. parts list with prices and sources ... Robot Man - Psychedelic shows - Lasers - Emotion/Lie Detector Touch Tone Dial-Quadrasonic Adapter-Transistorized Ignition - Burglar Alarm—Sound Meter ... over 60 items. Send 25 coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh, N.C. 27607.

METERS-Surpius. new, used, panel or portable. Send for list Hanchett, Box 5577, Riverside, CA 92507.

PYROTECHNICAL chemicals, casings, tools, supplies, fuse, literature. Giant, illustrated catalogue/handbook includes formulas. instructions-50¢, with samples- $\$ 1.00$. Westech, Box 593, Logan, Utah 84321.

WE SELL CONSTRUCTION PLANS. TELEPHONE: Answering Machine, Speakerphone, Carphone, Phonevision. Auto Diater, Touch Button Diater, Central Dial System. TELEVISION: $\$ 35.00$ Color Converter, Video Tape Recorder. \$25.00 Camera. HOBBYIST: Electron Microscope, 96 Hour Tape Music System, Ultrasonic Dishwasher, Radar-Oven. Plans $\$ 4.95$ each. NEW ITEM: \$75. Electronic Pocket Calculator, $\$ 7.50$. COURSES: Telephone Engineering $\$ 39.50$. Detective Electronics $\$ 22.50$, Integrated Circuit Engineering, \$49.50. NEW SUPER HOBBY CATALOG plus year's sub. scription to Electronic New Letter AIRMAILED \$1.00. Don Britton Enterprises, 6200 Wilshire Blvd., Los Angeles, Calif. 90048.

JAPAN HONG KONG DIRECTORY. World products information. $\$ 1.00$ today. World Trade Inquiries, Hillyard, Washington 99207.

SCOPES, meters, test equipment, military and industrial surplus. Write for free "Bargain Bulletins". Lawrence Instruments, P.O. Box 744, Sunbury, Pa. 17801.

TEST EQUIPMENT, Aerospace-Laboratory Grade. Request your needs; witl mail appropriate catalogs (we have 24 catalog categories). Only for Engineers, Businesses, Schoois and advanced Technicians, Goodheart, Box 1220PE, Beverly Hills, Calif. 90213.

WAVEFORM GENERATOR KIT 8038 Function Generator IC Produc. ing Sine, Square, Triangular Waveforms, $\$ 10.00$. Write for catalog. Photolume Corporation, 118 East 28 th Street, New York, N.Y. 10016.

DIGITAL ELECTRONICS: Complete schematics, parts lists, theories -Discrete Component Digital Clock, $\$ 3.00$ - Sound Sensitive Switch, \$1.50. Increase technical competence, hobby skillsComplete Course in Digital Electronics is highly effective, $\$ 10.00$. Free literature. DYNASIGN, Box 60A7, Waytand, Mass. 01778.
SOUND SYNTHESIZER KITS-Surf \$11.95, Wind \$11.95, Wind Chimes $\$ 16.95$. Electronic Songbird $\$ 6.95$. Musical Accessories, many more. Catalog free. PAIA Electronics, Box J14359, Oklahoma City, OK 73114.

Disiohes

Qualiy Elictromie Componemes

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS

Value	1	10-89*	100.240°	Value	1	10.99-	100-240*
$1 \mathrm{ufd} / 50 \mathrm{~V}$	14 c	12c	11 c	$100 \mathrm{ufd} / 16 \mathrm{~V}$	190.	15c	14 c
2.2 ufd/ 50 V	14 c	12 c	lic	$100 \mathrm{ufd} / 25 \mathrm{~V}$	24 c	18 c	17c
3.3 ufd/35v	14 c	126	17 c	$220 \mathrm{ufd} / 16 \mathrm{~V}$	24 c	18 c	17 c
$4.7 \mathrm{ufd} / 35 \mathrm{~V}$	146	12 c	1 l	220 ufd $/ 25 \mathrm{~V}$	35c	25 c	24 c
10 uid 16 V	13 c	10c	9 c	$330 \mathrm{ufd} / 16 \mathrm{~V}$	356	258	24.
10 ufd/25V	14.	11 c	10c	$330 \mathrm{ufd} / 25 \mathrm{~V}$	44 C	35 c	32 c
$22 \mathrm{uid} / 16 \mathrm{~V}$	14 c	1 ic	10c	470 ufd/16 V	37 c	30c	27 c
$22 \mathrm{ufd} / 25 \mathrm{~V}$	15c	13c	12c	470 ufd/25 V	49\%	39 c	35 c
$33 \mathrm{utd} / 16 \mathrm{~V}$	150	12 c	11 c	. $1000 \mathrm{ufd} / 16 \mathrm{~V}$	49\%	39 c	35 c
$33 \mathrm{utd} / 25 \mathrm{~V}$	17c	13 c	12 c	$1000 \mathrm{ufd} / 25 \mathrm{~V}$	75c	60 c	55 c
$47 \mathrm{ufd} / 16 \mathrm{~V}$	17c	14 c	13 c	2200 ufd 16 V	75 c	60 C	558
$47 \mathrm{ufd} / 25 \mathrm{~V}$	196	15c	14 c	-10 pes per	asit	evolue	

$1 / 2$ \& $1 / 4$ WATT CARBON COMP. RESISTORS

5 each of the 85 standard 10% values (2.2-22M) $1 / 2 \mathrm{~W}$ Resistors (425 pcs) Sorted by votue $512 / 5 \mathrm{set} \quad 2-4$ are $\$ 1 / / \mathrm{set} \quad 5-9$ are $\$ 10 / \mathrm{set}$.
5 each of the 70 standord 10% volues ($10-5.6 \mathrm{M}$) $1 / 4 \mathrm{~W}$ Resistors (350 pcs) Sorted by value $\$ 12 / \mathrm{sel} \quad 2-4$ ure $\$ 11 / \mathrm{set} \quad 5-9$ are $\$ 10 / \mathrm{set}$. Also ovailabie ore TTL \& Linear ic's, Sticon Rectifiers. Molex Pins, LfD Readou's \& Lamps. Tronsistors. IC Sackets, Slide 5 wirches, Reed Reiays ond more!

Send for free catalog or Mail Readers Service Cord C.O.D. ORDERS ACCEPTED FOR SAME DAY SHIPMENT CALL 218-681-6674

Orders Less Thon $\$ 10.00$ Add 25 c - Others Postpoid

DIGI-KEY

Thief River Falls, MN 56701
CIRCLE NO. 11 ON READER SERVICE CARD

FREE 1974 CATALOG!!

NEW

回3 Char. Height YELLOW MAN 81 and red MAN 74 LEDs. $3-4$ only $\$ 5.00$ each Also available with 7490, 7447, 7475 latch and G-10 epoxy board for 2,4 , or 6 digits.
POWER SUPPLY KITS!
$5,12,15 \mathrm{vDC}$ " $1 \mathrm{Amp} \pm 15^{\pi} \pm .1$ or 1 amp . Short Circuit, thermal overload protection. All models include space for transformer on the circuit board. 5 v kit for only $\$ 8.95$ (less transformer). Instructions included.
RESISTORS - $5 \% 1 / 2$ watt CARBON FILM Superior to composition in everyway, but at the same low price 12c each. Quantity Discounts.
CAPACITORS for bypassing, coupling, etc. Sub-miniature case. .001-22uF, 100 vDC .001 15c each. Quantity Discounts.
ALUMINUM ELECTROLYTICS 1-2200 uF from $16-50 \mathrm{vDC}$. These are high quality ICC units at a very low price.
OTHER 7400 SERIES PARTS AVAILABLE as well as op amps, transistors, display bezels, and cases for your projects. MANY OTHER KITS also. All products guaranteed NAME BRANDS ONLY. Mastercharge and Bank Americard accepted.

Tracy Design Corporation
 15870 Schaefer
 Detroit, Mich. 48227

CIRCLE NO. 31 ON READER SERVICE CARD
MECHANICAL, ELECTRONIC devices catalog 10¢. Greatest Values -Lowest Prices. Fertik's, 5249 "D", Philadelphia, Pa. 19120.

SURPLUS electronic parts and pieces. Monthly bicture flyer free. Startronics, Box 17127, Portland, Oregon 97217
BURGLAR-FIRE alarm components. hardware. Free catalog-information. Silmar, 133 S.W. 57 Ave., Miani, Florida 33144.

DISCOUNT PRICES

B \& K, SENCORE, LEADER Test Equipment
GAYTHEON, ICC/MULLARD Tubes
TELEMATIC Test Jigs
Free Catalog
FORDHAM RADIO SUPPLY CO. INC. 558 Morris Ave., Bronx. N.Y. 10451

FREE CATALOG. Parts. circuit boards for POPULAR ELECTRONICS projects. PAIA Electronics, Box C14359, Oklahoma City, OK 73114.

YOU SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory, Deals. Catalog \$1 (redeemabie). ETCOA Electronics, Box 741, Montreal, H3C 2V2. U.S. Inquiries.

ELECTRONIC Parts wholesale. Catalog 10¢. Donlyn Electronics, P.0. Box 15421, Phoenix, Arizona 85060.

FREE Catalog lists resistors, tubes, transistors, rectifiers, condensers. Lools, tuners. etc. Hytron Hudson, Dept. PE, 2818 Kennedy Blvd., Union City. N.J. 07087
BURGLAR-FIRE alarm supplies and information. Free catalog. Protecto Alarm Sales. Box 357-G. Birch Run, Michigan 48415.
free catalog. IC's, Puts, Transduceis, Thermocouples, Led's, Transistors, Circuit Boards, parts. Chaney's, Box 15431, Lakewood, Colo. 80215

LASER parts catalog, 60 c . Moynihan, 107 North Brighton, Atlantic City, New Jersey 08401.

AUTHENTIC, INSTRUMENIED, FLYING ROCKETS for casual or serious experimenters. Over 80 scale original, multi-stage or ready-to-fly models. Solid-propellant engines for safe, electric launch system liftoffs up to 2,500 feet. Measure altitude, temp. inversons, more. Real telemetry, electronic tracking, aerial still and movie photography with super-miniaturized equipment. New, detailed tech manual and full-color catalog. 25¢ from ESTES INDUSIRIES Dept. 18W, Penrose, Colo. 81240.

ELECTRONIC ORGAN KITS, KEYBOARDS and many components. Independent and divider tone generators. Alt diode keying. I.C. circuitry. Supplement your Artisan Organ. 35̧̧ for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. C, 5872 Amapola Drive, San Jose, Calif. 95129.

CALCULATOR OWNERS: Use your $+-x \div$ calculator to compute square roots, cube roots, $\sin (x), \cos (x), \tan (x), \arcsin (x)$, $\arccos (x), \arctan (x)$, logarithms. exponentials, and more! Quickly. Accurately, Easily! Send today for the IMPROVED AND EXPANDED EDITION of the first and best calculator manual-now in use throughout the world . . . only $\$ 2.00$. Unconditional money-back guarantee-and FAST service! Mallmann Optics and Electronics, Dept. 15A, 836 South 113, West Allis, Wisconsin 53214.

BUGGED??? New locator finds them fast. Write, Clifton, 11500-L N.W. 7th Avenue, Miami, Florida 33168.

TELEPHONE "BUGGED"? Countermeasures Brochure \$1.00. Negeye, Drawer 547, Pennsboro, W. VA 26415.
japanese transistors, Wholesale Prices, Free Catalog. West Pacific Electronics, Box 25837, W. Los Angeles, CA 90025.

ELECTROSLEEP, acupuncture. Catalog of 200 more projects free. Cimarron Labs, G-13060 Center Rd., Clio, Michigan 48420.

We sell money making construction manuals!-Reclaim refined GOLD and SILVER for EXCELLENT fuli time or part time money!-Color Catalog 25¢-Airmailed 50¢. Creative Products, Dept. PE-574, 8415 Lofland, Houston, Texas 77055.

HEAR POLICE/FIRE Dispatchers! Catalog shows exclusive directories of "confidentia!" channels, receivers. Send 10¢ stamp. Communications, Box 56-PE, Commack, N.Y. 11725.

FIREWORKS NEWS-Magazine Covering Commercial-Display Fireworks, Sources, Construction, Pyrotechnical Supplies, Fuse, Literature. Free Catalogs/Book ist With Subscription! Calendar Year \$9.00 "1974" Fireworks Buyers' Guide" \$5.95. Pyro Press, Box 12010 N, Lexington, Kentucky 40511.

DRAKE and Swan Receivers, Transmitters, Transceivers, Accessories. New Boxed 1974 models, trade-in's taken. Slep Electronics, P.O. Box 100, Otto, North Carolina 28763.
$1 / 2$ WATT Resistors all values $2 ¢$. Minimum $\$ 2.00$. Lectronix, Box 1067, Southgate, Michigan 48195.

LOW NOISE RESISTORS-carbon film. Brand new as IOW as $\$ 2.25$ each. Components Center-PE, Box 134, N.Y., N.Y. 10038.

CIRCLE NO. 28 ON READER SERVICE CARD

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes requirad No electronic experience neces sary. Illustrated plans. \$2.00. Sanders, Dept. A-33, Box 92102, Houston, Texas 77010.

BIOFEEDBACK. Professional instruments: Electroencephalophone, Galvanic Skin Response. JkJ, 8102E, Bainbridge, WA 98110.
alpha wave Monitors-rree brochure. MedLab, Box 31035, San Francisco, CA 94131.

PROFESSIONAL Record Cleaner eliminates dust and static. Only available from Canada. $\$ \$.50$ postpaid. Dept. P, P.0. Box 5207 Stn. B., Victoria, Canada. U.S. Inquiries.
dIGITAL IC Manual--Latest Edition-1500 types by lypes/diagram number, \$3.95. 32-function digital computer kit-IC. transistors, instructions. \$14.00. IC applications manual-numerous circuits-Analog/Digital, \$3.95. Electronetics, P.O. Box 127, Hopedale, Mass. 01747.

NE555V: $\$ 1.10$; MOR10A: $\$ 2.50$; IC's: Digital. Linear: LED'S. Catalog: 10C. Electronic Discount Sales, 138 N. 81 st Street, Mesa, Ariz. 85207.

CITIZENS BANO equipment discount prices. Free List. CRS Communications, 2271 Morris Avenue, New York, N.Y. 10453.

CITIZEN'S band radio, scanners, stereo. discounts. Free Catalog Capitol Sound, Box 3523, Des Moines. Lowa 50322
POWER SUPPLY PLANS, precision regulated 9 to $12 \mathrm{vdc}, 2$ amps $\$ 5.00$. Airborne Systems, Box 1175, Hartford. Conn. 06101.

EXPERIMENTER MINICOMPUTERS! Write M.P. Engineering, Dept. 2, Box 378, Belmont. Massachusetts 02178.
FREE Professional Experimenters Catalog. Walton Electronics, Box 503E, Bethany, Oklahoma 73008.

TAPE RECORDER COMPUTER $1 / 0$, other plans. Free Catalog. M.P. Publishing Co., Box 378, Belmont, Massachusetts 02178.

THE CALCULATOR HANDBDOK 127 pages practical applications short čuts, algorithms. \$1.25 plus 39 postage and handling Techniplan, Box 51, Baldwin, New York 11510.
FREE! Diodes and catalog. BDJ Electronics, 11 Revere, Tappan, New York 10983.
SCREW ORIVER with built in flashlite with four interchangeable parts, \$1.25. Write: Baez \& Santana, 565 Academy St., N.Y., N.Y. 10034.

CO IGNITIONS, VHF/UHF monitors, crystals, CB radios. Southland. Box 3591-B, Baytown, Texas 77520.
$\overline{C R Y S T A L S}$, Scanners, $\$ 3.88$, include make and frequency. \bar{G} Enterprises. P.O. Box 461 PC , Clearfield, UT 84015.
IINEAR IC's, most types avai'able, send for free list. Semi-Lin Enterprises, P.0. Box 992, Santa Ana, Calif. 92702.
AUTOMATIC telephone recording and debugging equipment. Top quality. Lowest wholesale prices. Viking International, Box 632 E , Newhall, California 91321
RAOIOTELEVISION Diagram Manuals, essential 14 volumes, $\$ 48.75$ value. only $\$ 19.95$, postpaid. Publications, 1760 Balsam, Highland Park. Illinois 60035
ELECTRONIC TEST INSTRUMENT CATALOG-160 illustrated pages list over 5,000 new, used and reconditioned test instruments600 manufacturers. Send $\$ 2.50$ refundable with first purchase. Tucker Electronics, P.0.B. 1050, Gariand, Texas 75040.
PRACTICAL APPLICATIONS OF Digital IC's. 100's of tips, circuits, projects. on TTL. $443 \mathrm{pp}, \$ 19.95$. Money Back Guarantee, GEA, P.O. Box 285, Northfield, Ohio 44067.

PLANS AND KITS

RAOAR DETECTOR KIT, alerts you to hidden radar "traps" transistorized. clips to visor, \#1 seller worldwide over 12 years. Send check, charge or call. Bank Americard, Master Charge $\$ 29.95$. Assembled, $\$ 39.95$, guaranteed. Kartronix-PE, 4017 Coronado Place, Oklahoma City, Oklahoma 73122. (405) 842-1493.
electronic Slot Machine type game. Plans $\$ 5.00$. Kab, 1923 Fern, Royal Oak, Michigan 48073.
CB MOBILE co-phase antenna harness. VSWR $1 \cdot 1: 1$ match.
Plans $\$ 2.00$. Enclose self-addressed stamped envelope. DUFFY'S, P.O. Box 808, Nevada City, Ca. 95959 .

Strangle TV Commercials! Sound revives automatically! Devilish plans $\$ 2.00$. Hobby Electronics, Box 2172E, Capistrano Beach, Calif. 92624.

TESLA COIL-40' SPARKS! Plans! \$7.50. Information 75c. Huntington Electronics, Box 2009-P, Huntington, Conn 06484.

FREE Semiconductors with purchase of detailed plans. Digital clock, stereo amplifier, Dwell Meter, and more. $\$ 3.50$. Box 245 , Littleton, Mass. 01460.

MILES ELECTRONICS CO has better kits for a lower price. Let us custom design a circuit to fit your needs. 100, 200, 400 watt RMS stereo power speakers. All you need is a preamp or tuner. Systems are studio quality. 4000 Oid College Rd., Bryan, Texas 77801.

SIMPLE DIGITAL READOUT CONSTRUCTION PLANS: $10,000 \mathrm{rpm}$ tach, 12 V crystal clock, reaction timer, thermometer, portable stopwatch (manual and photocell), R/C checker, crystal time base (clock). $\$ 2$ each. Digi-Dec, 342 S.E. 32 nd, Portland, $O R$ 97214.

DIGITAL COMPUTER complete plans; Send $\$ 7.00$ to Walter, 58700 Bremen Highway, Mishawaka, Indiana 46544.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free cataiog. LYLE CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218.

DERIVE 4 channel sound from your present stereo without any expensive devices. Send $\$ 1.00$ for easy instructions to: Surround Sound, 96 Home St., Somerset, N.J. 08873.

WANTED

Quicksilver, Platinum, Silver, Gold, Ores Analyzed. Free circu. lar. Mercury Terminal, Norwood, Mass. 02062.
CAPACITORS WANTED: Computer-Grades, Tantalums, Mylars Discs.-Cash Paid-National Electronics Supply, Dept. P1, 7231-B Garden Grove Blvd., Garden Grove, Calif. 92641.

MAIL ORDER CONCERN Seeks Security Oriented Products. Box 671, Westwood, New Jersey 07675.

TUBES

RADIO \& T.V. Tubes-36C each. Send for free Catalog. Cornell, 4213 University. San Diego, Calif. 92105.
RECEIVING \& INDUSTRIAL TUBES, TRANSISTORS. All BrandsBiggest Discounts. Technicians. Hobbyists. Experimenters-Request free giant Catalog and SAVE! ZALYTRON, 469 Jericho Turnpike, Mineola, N.Y. 11501.

TUBES "OIdies". Iatest. Lists free. Steinmetz, 7519 Maplewood, Hammond. Indiana 46324

SAVE money on parts and transmitting-receiving tubes, foreigndomestic. Send 25 c for glant catalog. Refunded first order. United Radio Company, 56-P Perry Street. Newark, N.J. 07105.
TUBES receiving. factory boxed. low prices. free price list. Transleteronic. Inc., 1306 40th Street, Brooklyn, N.Y. 11218A, relephone: 212-633-2800.

CASH Paid for obsolete receiving tubes WE300B, WE350B, WE252A, WE310A, WE274A, WE262B, WE284D, RCA45, RCA50, and Movie Theatre we amplifier models $91 \mathrm{~B}, 86 \mathrm{~F}$. Contact: M. Takabe, 303 Fifth Avenue, N.Y.C. (212) 679-1970.

TAPE AND RECORDERS

RENT 4-Track open reel tapes-all major labels- $\mathbf{3 , 0 0 0}$ different -free brochure. Stereo-Parti, 55 St . James Drive, Santa Rosa, Ca. 95401.

1930-1962 Radio Programs. Reels, $\$ 1.00$ Hour! Cassettes, $\$ 2.00$ Hour! ... Mammoth Catalog, \$1.00. AM Treasures, Box 192F, Babylon, N.Y. 11702

OLD radio programs on tape. Thousands avai'ab!e. Six hours, $\$ 8.00$. Cata'ogue, 25c. Nostalgic Radio, Box 29Q, Peoria, IL 61601.

16,000 OLD RADIO SHDWS on tape. Catalog $\$ 2.00$, supplement $50 ¢$ (refundable). Hart Enterprises, 1329H George Washington, Richland, WA 99352

PERSONALS

MAKE FRIENDS WDRLDWIDE through international correspon. dence. Ilfustrated brochure free. Hermes, Berlin 11, Germany.

BUGGED??? . . Detectors locate hidden transmitters. Literature 25c. Security, Box 671, Westwood, N. J. 07675.

MOVIE FILMS

8MM-SUPER 8-16MM MOVIES! Biggest Selection! Lowest Prices! Free Catalog! Cinema Eight, Box PE, Chester. Connecticut 06412.

TOOLS

WRAP Toot $\$ 1.00$, Wire, Panels. Xycon, Box 9341, Phoenix, AZ. 85020 .

ELECTRICAL SUPPLIES AND EQUIPMENT

PLATING Equipment, Portable Platers, Supplies and "KnowHow." Build your own tanks for nickel. chrome, etc. Easy-toinstall PVC liners. Rectifier components-all sizes. Schematics, parts lists, formulas, operating instructions for all plating. Guaranteed to save you $25 \%-75 \%$. Some good units for sale. Write for details. Platers Service Company, 1511-PE Esperanza, Los Angeles. Calif. 90023.

GOVERNMENT SURPLUS

GOVERNMENT Surplus. How and Where to Buy in Your Area. Send \$2.00. Surplus Information, Headquarters Bldg., Box $30177-\mathrm{PE}$, Washington. D.C. 20014.

ELECTRONIC Equipment and Parts. Big 36 page Free Catalog. Send for your copy today! Fair Radio Sales, Box 1105-P, Lima, Ohio 45802.

MANUALS for Govt Surp'us radios, test sets, scopes. List 50¢ (coin). Books, 7218 Roanne Drive, Washington, D.C. 20021

ELECTRONIC gadgets and parts. Send for free bulletin. Aeroparts, International Airport, Box 1492, Def Rio, Texas 78840.

CIRCLE NO. 2 ON READER SERVICE CARD

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-trouble-shooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.

LEARN WHILE ASLEEP, Hypnotize! Strange catalog free. Autosuggestion, Box 24-ZD, Olympia, Washington 98501

DEGREE IN ELECTRONICS through correspondence. Free catalog. Grantham, 2000 Stoner Avenue, Los Angeles, California 90025.

INTENSIVE 5 week course for Broadcast Engineers. F.C.C. First Class license. Radio Engineering Incorporated, 52 S. Palm Ave. Sarasota, Florida 33577

SHORTCUTS To Success! Highly Effective, Profitable Short Courses. (75 Choices). Study At Home. Diploma Awarded. Our 27th Year. Free Literature. CIEE-D, Box 10634, Jackson, Miss. 39209.

DEGREE Program in Electronics Engineering. Our 27th Year! Free literature. Cook's Institute, Dept. 13, Box 10634, Jackson, Miss. 39209.

EARN College Degrees at home. Many subjects. Florida State Christian University, P.O. Box 1674, Fort Lauderdale, Florida 33302.

DIGITAL:THEORY,DESIGN , CONSTRUCTION
 LOGIC
 NEWSLETTER ${ }^{\oplus}$
 SAMPLE COPY $\$ 1.00$
 LOGICNEWSLETTER
 POB 252
 WALDWICK,N.J. 07463

SCORE high on F.C.C. Exams ... Over 300 questions and answers. Covers 3 rd , 2nd, 1 st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests, $\$ 26.50$. R.E.I., Inc, Box 806, Sarasota, Fla. 33577.

ELECTRONICS career training at home. College level communications, FCC license, Broadcast Engineering, Satellite Communications. Free Catalog. Genn Tech., 5540 Hollywood Bivd., Los Angeles, Calif. 90028

INVENTIONS WANTED

CASH-ROYALTIES for patented, unpatented inventions. Global Marketing Service, 2420-P 77th, Oakland, California 94605.

INVENTORS: Protect your ideas! Free "Recommended Proce. dure". Washington Inventors Service, 422T Washington Building, Washington, D.C. 20005.

PATENT Searches including Maximum sneed. full airmail renort and closest patent copies. Quality searches expertly adminis. tered. Complete secrecy guaranteed. Free Invention Protection forms and "Patent Information," Write Dept. 9. Washington Patent Office Search Bureau, Benjamin Franklin Substation, P.O. Box 7167, Washington, D.C. 20044.

FREE PAMPHLET: "Tips on Safeguarding Your Invention." Write: United States Inventors Service Company, 708-7 Carry Building, Washington, D.C. 20005.

INVENTORS! Either we will seil your Invention before you or anyone else does, or we will pay you a cash bonus. Get Free Invention Evaluation and information: Write Gilbert Adams Organization. Invention Brokerage, Dept. 20, 80 Wall St., New York, NY 10005.

FILE your own patent application. Complete information and materials. Write: Inventor's Guide, 468-R, Goodspeed Road, Virginia Beach, Virginia 23451.

FREE "DIRECTORY OF 500 CORPORATIONS Seeking New Prod. ucts." For information regarding Development, Sale, Licensing of your patented/unpatented invention, write for FREE "INVENTOR'S KIT NO. A.73, RAYMOND LEE ORGANIZATION, 230 Park Avenue, New York, N.Y. 10017.

MUSICAL INSTRUMENTS

30% DISCOUNT name brand musical instruments. Free Catalog. Freeport Musie, 455N, Ruute 110, Melvilte, N.Y. 11746.

WhOLESALE! Professional Guitars, PA Systems, Altec Speakers, 240 W RMS Amplifiers. Free Catalog, Carvin, Escondido, Calif. 92028.
$30 \%+$ DISCOUNT. Name Brand Musical Instruments. Free Catalog. Continental Music, Dept. H, P.O. Box 3001, Garden City, New York 11530.

REAL ESTATE

FREE . . . NEW . . . BIG . . . SUMMER CATALOG! Describes and pictures hundreds of farms, ranches, town and country homes, businesses coast to coast! Specify type property and location preferred. UNITED FARM AGENCY, 612-EP, West 47th St., Kansas City, Mo. 64112.

SOLID STATE SYSTEMS, JNS now has a wider selection of LED displays, lower prices. Now available are:

$\star 7$-segment numeric displays in 3 colors
 Resistor packages for each display
 9-digit calculator displays

Catalog Numbe:	Description	Character		Price Each					Groupingcode code	
		Height	Color	1.49	50.99	100499	500.999	1000-up		
21.00001	OPCOA SLA 1 , 7-Segrnent, 15mA, left decimal	$0.33^{\prime \prime}$	Red	2.00	1.85	1.70	1.55	1.40	10	
11.48001	Pkg of 8 current limiting resistors for SLA-1			. 36	. 32	. 28	. 24	. 20	16	
21-10001	OPCOA SLA-11, 7-Segment. 40 mA , lett decimal	0.33 "	Green	2.00	1.85	1.70	1.55	1.40	10	
21-20001	OPCOA SLA-21, 7 -Seqment, 40 mA , left 0 ecimat	0.33 "	Yellow	2.00	1.85	1.70	1.55	1.40	10	
11-58001	Pkg. of 8 current limiting resistors for SLA-11\& 21	----		. 36	32	. 28	24	. 20	16	
24.00002	OPCOA SLA-2, 1. 15 mA	0.33"	Red	2.00	1.85	1.70	1.55	1.40	10	
11-44002	Pkg. of 4 current limiting resistors for SLA-2	-.---		20	. 17	. 14	. 12	. 10	16	
24-10001	OPCOA SLA $12, \pm 1.40 \mathrm{~mA}$	$0.33^{\prime \prime}$	Green	2.00	1.85	1.70	1.55	1.40	10	
24.20001	OPCOA SLA $22, \pm 1,40 \mathrm{~mA}$	$0.33^{\prime \prime}$	Yellow	2.00	1.85	1.70	1.55	1.40	10	
11.54002	Pkg. of 4 current limiting resistors for SLA. 12 \& 22		--.--	20	. 17	. 14	. 12	. 10	16	
23-00011	OPCOA SLA.1C, 7 Seqment with Calon, 15 mA	$0.33^{\prime \prime}$	Red	2.30	2.15	2.00	1.85	1.70	10	
11-49011	Pkg. of 9 current limiting resistors for SLA-1C			40	. 36	. 32	. 28	. 24	16	
23-10011	OPCOA SLA-11C, 7 -segment with Colon, 40 mA	$0.33^{\prime \prime}$	Green	2.30	2.15	2.00	1.85	1.70	10	
23.20011	OPCOA SLA-21C, 7-Segment with Colon, 40 mA	$0.33^{\prime \prime}$	Yellow	2.30	2.15	2.00	1.85	1.70	10 16	
11.59011	Pkg. of 9 current limiting resis. for SLA.11C \& 21C		40	36	. 32	. 28	24		
21.00007	OPCOA SLA-7, 7 -segment, 20 mA , left decimal	$0.33^{\prime \prime}$	Red	1.50	1.40	1.30	1.20	1.10	10	
11.48007	Pkg. of 8 current limiting resistors for SLA-7			.36 .150	.32 .40	.28 .3	.24 .20	.20 1.10	16 10	
24-00009	OPCOA SLA $9,51,20 \mathrm{~mA}$	$0.33^{\prime \prime}$	Red	1.50	1.40	1.30 14	1.20 12	1.10 .10	10	
11.44009	Pkg. of 4 current limiting resistors for SLA 9			. 20	.17 140	.14 .30	.12 1.20	.10 .10	16	
21.00008	OPCOA SLA-8, 7 -segment, 20mA, left decimal	$0.33^{\prime \prime}$	Red	1.50	1.40	1.30	1.20	1.10	16	
11.48007	Pkg. of 8 current limiting resistors for SLA. 8			36	. 32	.28 130	24 1.20	.20 1.10	16 10	
24.00010	OPCOA SLA-10, $=1,20 \mathrm{~mA}$	0.33 "	Red	1.50	1.40	1.30	1.20	1.10	16	
11.44009	Pkg. of 4 current limiting resistors for SLA-10			. 20	. 17	14 .130	-12	.10 110	16	
21-10008	OPCOA SLA-18, 7 -segment, 40 mA , left decimal	0.33"	Green	1.50	1.40 32	1.30 28	1.20 24	1.10 20	16	
11.58008	Pkg. of 8 current limiting resistors for SLA 18	- ${ }^{\circ}$. 36	. 32	. 28	. 24	$\begin{array}{r}20 \\ \hline 1.10\end{array}$	$\frac{16}{10}$	
24.10010	OPCOA SLA-20, 1.40 mA	0.33"	Green		1.40	1.30 14	1.20	1.10 10	16	
11.54010	Pkg. of 4 current limiting resistors for SLA. 20	0.33"	Yellow	.20 1.50	.17 1.40	.14 1.30	1.20	1.10	10	
21.20008	OPCOA SLA-28, 7 -segment, 40 mA , left decimal	$0.33^{\prime \prime}$	Yellow	1.50 .36	1.40 .32	1.30 .28	1.20 .24	1.10 .20	16	
11.58008	Pkg. ol 8 current limiting resistors for SLA. 28	0.33"	Yellow	.36 1.50	1.32 1.40	1.28 1.30	1.20	1.10	10	
24.20010	OPCOA SLA $30, \pm 1,40 \mathrm{~mA}$	$0.33^{\prime \prime}$	Yellow	1.50	$\underline{1.40}$	$\frac{1.30}{14}$	1.20	10	16	
11.54010	Pkg. of 4 current limiting resistors for SLA-30		Red	. 20 5.50	.17 5.10	.14 4.70	- 4.30	.10 3.90		
$21-00003$	OPCOA \$LA-3H, 7-segment. 30 mA , right decimal	$0.77^{\prime \prime}$	Red	5.50 .36	5.10 .32	4.70 .28	4.30 .24	3.90 .20	16	
11.48003	Pkg. of 8 current timiting resistors for SLA.3H	077"	Yeliow	.36 5.50	. 5 5.10	.28 4.70	r 4.30	3.90	10	
21-20003	OPCOA SLA-23H. 7 -segment, 30 mA , right ifecimal	0.77'	Yeliow	5.50 .36	5.10 .32	4.70 .28	4.30 .24	3.90 .20	16	
11.58003	Pkg. of 8 current limiting resistors ior SLA-23H	0.77"	Red	. 5.50	5.10.	28 4.70				
24-00004	OPCOA SLA $4 \mathrm{H}, \pm 1,30 \mathrm{~mA}$, right decimal	0.77"	Red	5.50 .24	5.10.	4.70 .18	4.30 .15	3.90 .12	16	
11.45004	Pkg. of 5 current limiting resistors for SLA-4H	0.77"	Yellow	5. 24	21 5.10	.18 4.70	.15 4.30	3.90	10	
24.20004	OPCOA SLA $24 \mathrm{H}, \pm 1,30 \mathrm{~mA}$, right decimal	0.77	Yellow	5.50 .24	5.10 .21	. 18	. 15	. 12	16	
11.55004	Pkg. of 5 current limiting resistors for SLA-24H	0.125*	Red	. 24 10.00	9.25	.18 8.50	.15 7.75	7.00	10	
29.00125	OPCOA 98 125 , 9-digit calculator display	0.125***	Green	10.00	9.25	8.50	7.75	7.00	10	
29-10125	OPCOA G98125, 9-digit calculator display	0.125°	Green	10.00	9.25	8.50	1.7			

All resistors in packages are supplied for operation with 5 V TTL supply.
All items with the same grouping code may be combined for quantity pricing.

SOUDD STATS SYSTENS INS.

WRITE: SOLID STATE SYSTEMS, INC. P. O. BOX 617

COLUMBIA, MISSOURI 65201

PHONE (IOLL FREE)

800-325-2595:800-325-2981
rubtione Ac.

BUSINESS OPPORTUNITIES

[^4]
HIGHLY PROFITABLE ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DE, Box 248, Walnut Creeek, CA 94597.

EMERGENCY Highway kit boldly says you need help. 4 large self-stick eye-catching, pliable plastic posters. \$3.00. Chun Lam, Box 5662, LA, CA 90055
TELEPHONE answering machine manufacturer is looking for dealers. Our high-fidelity unit takes 90 messages. It can even ask questions from callers! Retail Value $\$ 225$. For limited time anyone can buy one sample at factory cost for only $\$ 78$. Telephonic, 4880 49th Street North, St. Petersburg, Florida 33709.
Wanted cmame mex DEALER-DISTRIBUTORS
SEND THIS AD TO:
PAL ELECTRONICS CO.
P. O. BOX 778 - WESTMINSTER, CA. 92683

MAKE $\$ 1,500$ per month from your home. Timothy Hamlin, Route 5, Box 500, Ashland, Kentucky 41101.
$\$ 178.00$ WEEKLY. Work one hour daily. Free brochure. FAS, Box 13703-A, San Antonio TX, 78213.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. DetailS FREE. Aviation Employment information Service, Box 240E, Northport, New York 11768.
AGENTS WANTED - Can you sell a Telephone Answering Machine for $\$ 49.50$??? If you can, you can make BIG MONEY representing us! Free details! Palomar, Box 17384 E , Jacksonville, Florida 32216.

EMPLOYMENT INFORMATION

EXCITING Overseas jobs. Directory $\$ 1.00$. Research Associates, Box 1167-E, Kailua, Hawaii 96734.
BETTEF RESUMES (satisfaction guaranteed). Free starter Resume Package: JOB CAMPAIGN, 91 Market Street, Annapolis, Maryland 21401.

TREASURE FINDERS

FREE-Valuable Treasure Finder catalog sent by return mail. Find Coins, Rings. Gold. Silver. Metals, Relics. Write today. JETCO, Dept. CPE, Box 26669. EI Paso. Texas 79926
FREE FACT-FILLED CATALOG. World s largest line of metal detectors. Modets as ION as $\$ 49.50$ and up. Two year Guarantee. Three factory locations, U.S. and Canada, plus over 1,000 dealers and 35 Service Centers from coast to coast. No finer instruments made at any price. Bucget terms. Write: White's Electronics, Inc.. Rm\# 391, 1011 Pleasant Valley Road, Sweet Home, Oregon 97386.
FAMILY FUN! OUTDOOR ADVENTURE! Find valuable coins and treasure with world famous metal detectors. Free illustrated booklet. Detectron, Dept. PE, Box 243, San Gabriel, Ca'f. 91778.

RUBBER STAMPS

RUBBER address stamps. Free catalog. 45 type styles. Jackson's, Box 443G, Franklin Park, III. 60131.

SPORTS ACTION FILMS

SAVE ENERGY-OROER BY MAIL! 1974 Catalogs ready for immediate delivery. Make your selection from Columbia, Castle or Sportite Films Catalogs at 25 c each (coin or stamps). May SPECIAL: Ali-Frazer \#2, 2 -reeler, B\&W, $\$ 16.95$ PPD; Eastman Color, $\$ 33.95$ delivered. SPORTLITE, Elect-5 Dept., Box 500, Speedway, Indiana 46224

PLASTICS

CASTOLITE pours like water, hardens like glass without heat. Crystal clear, colors. Embed flowers, seashells, momentos, anything. Make fine gifts. Form flexible molds over any pattern, size. Reproduce your own designs in plastics, candle wax, metal, plaster, cement. Profitable. Illustrated Manual and Catalog Only 50¢. CASTOLITE, Dept. 74E/PE, Woodstock, III. 60098.

RESORTS AND TRAVEL

BERTH \& Partownership in 155 ft . 3-masted Barquentine for $\$ 10,700$. Join in Europe, assist conversion then hetp sail on 2-year Adventure \& Business World Voyage. Write: R. Bruderer, IYC, Box 149 Broadway, NSW. Australia 2007.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective. Details free. ASR Foundation, Box 7566EG. Fort Lauderdale, Florida 33304.
FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer HAOO, Ruidoso. New Mexico 88345.

AMAZING self-hypnosis record re!eases fantastic mental power. instant results! Free trial. Write: Forum (AA5, 333 North Michigan, Chicago 60601.

BOOKS

FREE catalog aviation/electronic/space books. Aero Publishers, 329PE Aviation Road, Fallbrook, California 92028.
FREE book prophet Elijah coming before Christ. Wonderful bible evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619.
B00KS-thousands titles, bargains. Catalog Free. Cassiano, 92.27 New York Blvd., Jamaica, New York 11433.

736 PAGES of the good old days, 1908 Sears Catalogue. $\$ 2.89 \mathrm{pp}$. Return in 10 days if not delighted. No C.0.D.'s. Jay, Box 103, St Mary's City, Md. 20686.

REPAIRS AND SERVICES

TECHNICAL services-Engineers will answer or give opinion on technical questions. $\$ 5.00$ fee with request. Will custom design, modify or construct circuits, kits or equipment. Quotation: EECO, Box 64622, Baton Rouge, La 70806.
ETCHED CIRCUIT BOARDS from your foil patterns, same size or reduced, phenolic or glass, silver plated, fast service. Write for price list. Box 302, Cote-St-Luc, Quebec, Canada. U. S. Inquiries.

MAGNETS

MAGNETS. All types. Specials-20 disc, or 10 bar, or 2 stick, or 8 assorted magnets, $\$ 1.00$ Magnets, Box 192-H, Randallstown, Maryland 21133.

miscellaneous

WINEMAKERS: Free illustrated catalog yeasts, equipment. Semplex, Box 12276p, Minneapolis, Minn. 55412.
CATALOGS! Receive many! Catalog Directory $\$ 1.00$. Box 33098 , nistrict Heights, Md. 20028.

LIVE IN THE WORLD OF TOMORROW...TODAY!

 Stock No. 60,215AV

HOW TO BEAT THE ENERGY CRISIS

Shop Solar Headquarters USA that's us! Our "Solar House Plans" book gives det. on bldg 5 homes;
 hi-output Silicon Solar Cell can
power a boat, toy car: Conversion kit shows how sun's energy becomes electricity to run smatl motors, etc. Solar Cooker cooks great; Furnace kit goes to 2000° !
(SOLAR HOME PLANS) (SILICON CELL) No. 30,538AV. (SILICON CELL)
No. $60,505 A V$. (CONVERSION KIT) No. $71,653 A V$. (PORT, SOLAR COOKER) No. 70,533AV. . (SOLAR FURNACE KIT).

MAIL COUPON FOR CIANT FRE cataloct

180 PAGES - MORE THAN 4,500 UNUSUAL BARGAINS!

- Completely new '74 Catalog. Packed with huge selection of telescopes, microscopes. binoculars, ecology and Unique Lighting items parts, kits, \mid ecology and unique 100's of charts, illustration. For hobhyists, experi\mid menters, schools, industry.

IEDMUND SCIENTIFIC Co.

| 300 Edscorp Building, Barrington, N.J. 08007
| Please rush Free Giant Catalog "AV'

Why a Sylvania home training program may be your best investment for a rewarding career in electronics.

1. LEADER IN ELECTRONICS TRAINING Over the years, Sylvania Resident Schools have trained thousands of students for key positions in electronics. Now, through Sylvania Home Training, you can receive the same high-quality career training at home. 2. AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY, EASILY.
AUTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that can help you learn electronics quickly and easily

3. CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that is almost like having an instructor in your own home. On cassette tapes, an instructor guides you through your AUTOTEXT lessons, explaining the material as you read it.
4. SPECIALIZED ADVANCED TRAINING With our advanced courses, you can start on a higher level and skip work you know.
5. PERSONAL SUPERVISION THROUGHOUT

All during your program, your exams are

In the Master TV/Radio Servicing Program. you build and keep the all solid-state black and white TV set the color TV set, the oscilloscope and multimeter shown
reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and helpyou over any "rough spots" that may develop.
6. HANDS-ON TRAINING

Many programs come with valuable kits to give practical application to your studies. In our Master TV Radio Servicing Program, for example, you actually build and keep an all solid-state black and white TV set, a color TV set, an oscilloscope, and a multimeter

7. FCC LICENSE TRAINING MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program - or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations Our money-back agreement assures you of your money back if you take. and fail to pass, the FCC examination taken within 6 months after completing the course.
8. CONVENIENT PAYMENT PLANS

You get a selection. of tuition plans. And, there are never any interest charges.

LET SYLVANIA TRAIN YOU FOR A BIG FUTURE CAREERIN ELECTRONICS

Please rush me Free lllustrated Career CATALOG and more information about Sylvania's CASSETTE SYSTEM. I understand that I am under no obligation and that no salesman will call. I am interested in:

Send
for your FREE CATALOG right now!

The Sylvania Cassette System An exciting conceptnew in electronics home training

It's almost like having an instructor in your own home.

This innovative learning-by-hearing approach is designed to get you started more quickly and easily towards an electronics career. The CASSETTE SYSTEM adds an extra dimension to AUTOTEXT, the step-bystep planned instruction which simplifies the mechanics of learning. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. And now the CASSETTE SYSTEM is available as an optional extra to all students enrolling in basic, fundamental, and career programs.
"HANDS-ON" TRAINING
In addition, you get the all-important "Hands-On" training. You perform experiments and build a number of pieces of electronics test equipment that are yours to keep. In the Master TV/Radio Servicing
program you build and keep an all solidstate black \& white TV set and a color TV set, oscilloscope and multimeter

CHOOSE FROM EXCITING CAREERS

Whether your career goal is radio/TV servicing, digital technology, communications or industrial electronics, Sylvania Home Study gets you started towards that career with the training you might have thought was too expensive, too drawn-out, or too hard to learn.

NO SALESMAN WILL CALL

If you want an exciting, rewarding career in electronics, discover which Sylvania course or program is for you. Send the attached card today.

51 SYLVAN/A

BUSINESS REPLYMAIL

No Postage Stamp Necessary it Mailed in U S.A

Postage will be paid by -

SYIVANIA TECHNICAL SCHDOL Home Study Division 909 Third Avenue New York, N.Y. 10022

FOR FREE ILLUSTRATED CAREER CATALOG

and more information about Sylvanias CASSETTE SYSTEM send postage paid reply card TODAYI

Popular Electronics
 RBADFR SHRVICE

Here's an easy and convenient way for you fo get addisional information about products advertised or mentioned editorially (if is has a reader service number) in this issue. Just follow the directions below... and the material will be sent to you promptly and free of charge.

On the attached postage- free card, print or iype your name and address on the lines indicated.

Circle the number (s) that corresponds to the key number(s) at the botiom or next to the advertisement or ediforial mention that is of inferest to you. (Key numbers for advertised products also appear in the Advertisers' Index.)

Simply cut out

the card and mail.
No postage
required.

FRA: WROMMAMON

1974 ELEHROONO EPPEAMENIEAR TLNDIOOK spring Edition

Helps you get it together... with a score of butid-it-yourself projects.

You can count on ELECTRONIC EXPERIMENTER'S HANDBOOK. It's by the editors of Popular Electronics - with features and articles and complete lab-tested instructions that guarantee successful hours and months of mind-absorbing projects for fun and practicality.
How about BOUNCING, BOUNCING, BOUNCING - a fascinating analog computer programmed to solve an intriguing problem. Then there's the MEMO-O-PROBE LOGIC LEVEL INDICATOR-a probe that not only reveals high and Iow TTL or DTL logic states but captures low-duty-cycle pulses that even a scope might miss. Or a TC SWITCH FOR REMOTE CON-

TROL handy device with which you can turn off the TV without getting out of bed, start the morning coffee perking or turn on house lights when you have both hands full. You can bulld the 2-TONE "WAVERLY" ALARM-it can be used as a panic button, novelty audio device, an electronic doorbell, a selective call, a burglar alarm, and more. There's an issue full of other brain teasers including HEADS ' n ' TAILS -the electronic coin flipper - DiGI-VIEWERthe handy digital IC tester that can be built for under \$20 - CRYPTO-LOCK-the electronically activated, small in size, burglar-proof lock • SIGNAL-DIFFERENCE STEREO BALANCE METER • AN ELECTRONIC CLINICAL THERMOMETER - SOUND ACTIVATED PHOTOFLASH ATTACHMENT • CONSTRUCTING PC BOARDS -a useful technique for making professional-looking-printed circuit boards • PLUS other challenging and stimulating build-it-yourself projects.

HERE'S HOW TO ORDER

Send your order to Ziff-Davis Service Division, Dept. EEH, 595 Broadway, New York, N. Y. 10012. Print your name and address clearly, specify "1974 ELECTRONIC EXPERIMENTER'S HANDBOOK-Spring Edition," enclose \$1.25 plus 35c for postage and handling. (Outside U.S.A. copies are $\$ 2.50$ each, postpaid.)

Shake. rattle \& roll.

Welcome to our chamber of horrors. Inside the Shure Quality Control laboratory, some of the most brutal product tests ever devised are administered to Shure microphones. The illustration above shows a "shaking" machine at work on a Shure microphone and noise-isolation mount. It's only one in a battery of torturous tests that shake, rattle, roll, drop, heat, chill, dampen, bend, twist, and generally commit mechanical, electrical and acoustical mayhem on off-the-production-line samples of all Shure microphones. It's a treatment that could cause lesser microphones to become inoperative in minutes. This kind of continuing quality control makes ordinary "spot checks" pale by comparison. The point is that if Shure microphones can survive our chamber of horrors, they can survive the roughest in-the-field treatmend you can give them! For your catalog, write:

Shure Brothers Inc.
222 Hartrey Ave., Evanston, III. 60204
In Canada, A. C. Simmonds \& Sons Lid.

CIRCIE INO. 32 ON READER SERYICE CARD

[^0]: Order from your Electronics Parts Distributor, or mail to Howard W. Sams \& Co., Inc
 Send books checked at right. \$ \qquad
 encloses. Please include sales tax where applicatile. Canadian prices slightly higher.

[^1]: "What I don't understand is why it only shorts out on Mondays."

[^2]: Flip is an electronic version of a plastic computer game called "Think-A-Dot" made by Edu-Cards Corp. An article entitled "Mathematical Theory of Think-A-Dot" in the Sept.-Oct. 1967, issue of Mathematics Magazine provided a detailed analysis of the game. The original Think-A-Dot instruction book also provided an extensive discussion of the device, with methods for demonstrating counting, udding, and subtracting of 8 -bit binary numbers.

[^3]: - 8 xtal controlled channels - Automatic or manual scanning - Lockout of any channel Priority Chammel! Provides instant shift to preselected channel when priority signal appears —by-passes other channels - 12VDC and 115 VAC operation for car or home use - Big audio - $3 / 4$ watts . Telescoping antenna, mounting bracket, 2 power cords - Compact

[^4]: I MADE $\$ 40,000.00$ Year by Mailorder! Helped others make money! Start with $\$ 15.0 \mathrm{C}$-iree Proof. Torrey, Box 318.N, Ypsilanti, Michigan 48197

 FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

 MAILORDER MILLIONAIRE he'ps beginners make $\$ 500$ weekly. Free report revea's secret plan! Executive (1K5), 333 North Michigan, Chicago 60601.

 PIAND TUNING LEARNED QUICKly AT home! Tremendoas field! Musical knowledge unnecessary. Gl approved. Information free. Empire School, Box 450327, Miami 33145
 $\$ 2000.00$ MONTHLY selling information by mail. Ropchan, Box 161X, Saginaw, Oregon 97472.

 FREE Secret Book "2042 Unique Proven Enterprises." Fabulous "Little Knowns." Work home! Haylings-8H, Cartsbad, California 92008.

 DO SIMPLE ADDRESSING-Mailing. Receive $\$ 12.95$ orders. Keep $\$ 8.00$ profit. Details Free. Quality, Box 9-ZD, East Rockaway, N.Y. 11518.

 START SMALL, highly profitable electronic production in your basement. Investment, knowledge unnecessary. Postcard brings facts. Barta-CE, Box 248, Walnut Creek, California 94597.
 \$200.DO DAILY In Your Mailbox! Your opportunity to do what mail-order experts do. Free detai's. Associates, Box 136-1, Holland, Michigan 49423.

 EARN $\$ 15,000$ annually plus. Full year trial p'an Import-Mailorder business. Postcard brings details: Northeast Imports, Box 121PE5, Fremont, N.H. 03044.

