HOW TO "READ" FM TUNER SPECIFICATIONS

ALTAIR 8800

ALSO IN THIS ISSUE:

- An Under-\$90 Scientific Calculator Project
- CCD's-TV Camera Tube Successor?
- Thyrisfor-Controlled Phofoflashers

TEST REPORTS:
Technics 200 Speaker System
Pioneer RT-1011 Open-Reel Recorrar
 Edmund Scientific "Kir \quad In SNYME! y

The finest stered has ever known.

Pioneer believes that any objective comparison of quality/performance/ price between our new SX-1010, SX-939 and SX-838 AM-FM stereo receivers and any other fine receivers will overwhelmingly indicate Pioneer's outstanding superiority and value.
The most powerful ever Pioneer uses the most conservative Pioneer uses the most conservative
power rating standard: continuous power rating standard: continuous power output per channel, with both
channels driven into 8 ohm loads, across the full audio spectrum from

20 Hz to $20,000 \mathrm{~Hz}$. Despite this surpasses any unit ever produced with an unprecedented $100+100$ watts RMS at incredibly low 0.1% distortion. Closely following are the SX-939 $(70+70$ watts RMS) and the SX-838 $(50+50$ watts RMS) both with less than 0.3\% distortion. Dual power
supplies driving direct-coupled supplies driving direct-coupied
circuitry maintain consistent high power output with positive stability. A fail-safe circuit protects speakers and circuitry against damage from overloading

Outstanding specifications

 for flawless reception FM reception poses no challenge to the FM reception poses no chalienge to these fine instruments. Their FM tuner sections are designed with MOS FETs, ceramic filters and phase lock loop circuitry. The result is remarkable sensitivity, selectivity and capture ratio that brings in stations effortiessly, clearly andseparation.
partion. $\quad s X-1010 \quad s x-939 \quad s x-838$ FM Sensitivity (IHF)

the lower tive better) $1.7 \mathrm{uV} \quad 1.8 \mathrm{uV} \quad 1.8 \mathrm{uV}$ $\begin{array}{llll}\text { Selectivity } \\ \text { the better) } & 90 \mathrm{~dB} & 80 \mathrm{~dB} & 80 \mathrm{~dB}\end{array}$ \begin{tabular}{llll}
Capture Ratio

\hline

$\quad 1 \mathrm{~dB} \quad 1 \mathrm{~dB} \quad 1 \mathrm{~dB}$

Cthe lower the better)

\hline Signal/ Noise Ratio \& 72 dB \& 70 dB \& 70 dB
\end{tabular}

Total versatility plus innovations Only your listening interests limit the capabilities of these extraordinary receivers. They have terminals for every conceivable accommodation
records, tape, microphones, headrecords, tape, microphones, head
sets - plus Dolby and 4-channel sets - plus Donnectors. Completely unique on the SX-1010 and SX-939 is tape-to-tape duplication while listening simultaneously to another program source. The SX-838 innovates with its Recording

o receivers the world 3

Earn an extra $\$ 2000$ per year

Find out how you can earn an extra $\$ 2000$ or more per year restoring only a few color and black and white tubes per week. Full color brochure shows you how to make more money and sat-
isfy more customers on almost every call. Write today!

New

467 CRT
Restorer/Analyzer \$279*

With the profit restorer!

Profit in the home. After replacing a component you've often noticed a less than perfect picture. It's almost always due to a weak picture tube. The few minutes you spend with the 467 Restorer will give her pleased to pay for the improved picture.

Profit in the shop. "Sixty-five dollars and the picture still doesn't look as good as it used to!" How many times have your customers said that to you? You need not hear it again! Use the 467 Restorer on every major set working like new.
Most-Powerful Rejuvenation, but most gentle too There's only one CRT Restorer that restores the pic ture to like new and analyzes tube condition so ac-
curately that you can safely guarantee restoration for up to five years. You get extra safety from our automatic restoration method that prevents cathode stripping.
2
ests all eam current that simultaneously. It measures true other testers that measure meaningless cathode to G1 current. Leakage indication even includes cathode to-cathode and there's an exclusive B \& K focus continuity test.
Simplest operation. Exclusive integrated circuitry lets you test all picture tubes with the same, defined-on-the-front-panel procedure . . . including "in-line" distributor or write Dynascan.

JANUARY 1975 VOLUME 7, NUMBER 1

Popular Electronics

FEATURE ARTICLES
THYRISTOR CIRCUITRY FOR ELECTRONIC PHOTOFLASHERS Michele Frank 39 An SCR trigger provides faster recycling, more flashes and quick recharg SOLID-STATE IMAGE SENSORS-TV CAMERA TUBE SUCCESSOR? Harry Garland \& Roger Melen KEYING AND VCA CIRCUITS FOR ELECTRONIC MUSIC INSTRUMENTS, PART I Don Lancaster HOW TO "READ" FM TUNER SPECS ..ian D. Hirsch LIGHTNING DAMAGE INSURANCE JOBS ...hnt T. Frye

CONSTRUCTION ARTICLES

ALTAIR 8800 MINICOMPUTER, PART IH. Edward Roberts \& William Yates AN IGNITION TIMING LIGHT FOR IMPROVING GAS ECONOMY Anthony Caristi BUILD AN UNDER-\$90 SCIENTIFIC CALCULATOR...
IC SPEED CONTROLLER FOR HO MODEL RAILROADS Robert D. Pascoe hio the lantiller for ho model hailroad obert D. Pascoe BUILD THE TRANSISTOR IDENTOMETER \qquad simple squelching circuit for stereo fm tuners \qquad

COLUMNS

AMATEUR RADIO ..bert S. Brier 94
TEST EQUIPMENT SCENE ..
Riuvenating elderly equipment.
\qquad

PRODUCT TEST REPORTS
TECHNICS BY PANASONIC MODEL T-200 SPEAKER SYSTEN
PIONEER MODEL RT-1011L STEREO TAPE RECORDER
PIONEER MODEL RT-1011L STEREO TAPE RECORDER
TRAM DIAMOND 40 AM CB TRANSCEIVER

DEPARTMENTS

EDITORIAL..................

ANUARY 1975

THE HOME COMPUTER IS HERE

For many years, we've been reading and hearing about how computers will one day be a household item. Therefore, we're especially proud to present in this issue the first commercial type of minicomputer project ever published that's priced within reach of many households-the Altair 8800, with an under- $\$ 400$ complete kit cost, including cabinet
To give you some insight to our editorial goal for this momentous project, we were determined not to present a digital computer and watch, but suffer from limited usefulness. High chip costs would have made this a most expensive toy. What we wanted for our readers was a state-of-the-art minicomputer whose capabilities would match those of currently available units mere fraction of the cost.
After turning down three computer project proposals that did not meet these requirements, the breakthrough was made possible with the availability of the Intel 8080 n -channel CPU (central processor unit)-the highest-performance, single-chip processor available at this time. As a result, Altair 8800 offers up to 65,000 words of memory, 256 inputs and outputs simultaneously, buss line expansion, subroutines that are enormously deep, and fast equipment such as a "smart" CRT terminal is expected to be available, too to make up a within-pocket-book-reach sophisticated minicomputer system.
Unlike a calculator-and we're presenting an under-\$90 scientific calculator in this issue, too-computers can make logical decisions for an accounting system, navigation computer, time-shared computer, sophisticated intrusion system, and thousands of other applications. The "power" of Altair 8800 is such that it can handle many programs simultaneously
What we're presenting to you, the Popular Electronics reader, therefore, is a minicomputer that will grow with your needs, rather than one that will be obsoleted as you move more deeply into annual growth rate of some 50%, according to the E.I.A., and with predictions that six out of ten computers sold by 1975 will be mini's, you can be sure that there will be manifold uses we cannot even think of at this time. Meanwhile, the home computer age is here-finally.

Radio Shack deals... from the top of its decks!
The top of our Realistic ${ }^{\circledR}$ line. An Auto-Reverse Dolby deck for 2-hour stereo recordings without flipping the cassette

Rㅡㄹ New 1975

Radio Shack Catalog
OVER 2000 PRODUCTS
EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR
Stereo • Quadraphonic • Phonographs TV Antennas - Radios - Citizens Band Kits - Recorders - Tape - Tools o Tune-Up • Electronic Parts Test Instruments • More!

164 pages of the finest in home and hobby electronics
Respected brand names Respected brand names like
Realistic, Micronta, Archer Science Fair - and there
available only at Radio available only at Radio
Shack stores and dealers Shack stores and dealers
nationwide! see what's really
new in electronics by getting new in electronics by getting
this catalog now.

SEND FOR YOURS TODAY
SEND FOR YOURS TODAY
FILL OUT COUPON BELOW

Nome____ Apt: No
street
city-

The Realistic SCT-7 with Auto-Reverse. What convenience You can record or play an entire concert, on both sides of the tape, for two uninterrupted hours. Or record or play on just one side with Auto-Stop. Or play an entire cassette over and
over without stopping. The SCT-7 does it all-automatically. And what features and sound! Dolby* noise reduction system Bias switch for CrO_{2} or standard tape. Record edit button to insert silence between selections. Headphone jack. Big, illuminated VU meters. And lighted indicators for record, tape
travel direction and Dolby. U.L. listed. What a deal! \#14-897. travel direction and Dolby. U.L. listed. What a dea! $\# 14-89$
and an 8-track deck that's loaded! 14995

The Realistic TR-801 with Digital Timer. It couldn't be easier to use. The unique timer shows the minutes and seconds recorded on each cartridge - you always know exactly how much and eject at the end of each program or just program-4. Repeat and continuous play. Pause and fast forward. Manual power eject. It makes you a recording pro. U.L. listed. \#14-925

There's only one place you can find them
\qquad Radio Shack
OVER 3000 STORES • 50 STATES • 7 COUNTRIES

Build the First, Low-Cost All-Solid-State IV Camera

A VU Meter with No Moving Parts

How Phase-Locked Loops Work

Test Reports:
Marantz 4270 Stereo Receiver
Garrard Zero 100 SB Turntable Ortofon VMS-20E Phono Cartridg Transceiver Data Technology Models
$20 \& 21$ DMM's.

Letters

RUMOR IS NO SECRET
I was surprised to discover, in your October issue, that Radio Canada Interna tional is engaged in "clandestine" broad casting to Russia from Sines in Portugal is "reported to be secretly owned by the West German government.
There was no need for the author to have recourse to rumors about the Sines transmitter, for what he advances as a con
spiratorial secret is published in a spiratorial secret is published in a more
accurate version... in the current world Radio Handbook, page 92, with cross references as to users.

Radio Canalan brown
ada International
Montreal, Can.
an ic by another number
The Exar integrated circuit used in my Private Messages With a Voice Scrambler" project (September 1974) has a new
part number. It is now called the Part number. It is now called the
XR2208CP. Please advise your readers of
this change.
Joseph B. WICKLUND, JR.
Northwest Engineering
Bothell, Wash
SETING THE RECORD STRAIGHT
Mr. Lancaster's series of articles on elecful service to your readers. However "Selecting an Electronic Music Synthesizer" (October 1974) contains a few inaccuracies:

1. The ElectroComp 101 is manufactured
by Electronic Music by Electronic Music Laboratories (EML) which Thas Synthi 100 is manufactured by
2. The Sy EMS (London) Ltd., who also manufacture live-performance EM systems that Mr. Lancaster failed to mention. (The Synth
100 sells for $\$ 30,000$ not $\$ 0.000$). 100 sells for $\$ 30,000$-not $\$ 20,000$):
3 Electronic Music Studios of
Inc., (EMSA) is not a manufacturer but the American distributor for EMS (London)
Ltd's producs. Ltd's products;
3. EMSA and
zip ema and ARP do not have the same zip code; EMSA's is 01002.

Janice B. Andres
Managing Director
EMSA Inc EMSA Inc.
Amherst, Mass.

PE ON THE AIR
Just a note of appreciation for the new larger format. You have made a great magazine a lot more enjoyable. Over the years, I have used or adopted a number of
ideas presented in Popular Electronics here at radio station KORI (FM), a trick that often saved a great deal of time-let alone the money involved when equated against the cost of commercial equivalents. Toм WIRCH
Chief Engineer
KSLM/KRAI (M M)
Salem, Ore.
the parts procurement dilemma
I would like to build the "Nine-Channes Stereo Equalizer" (May 1974) but I am having difficulty finding a dealer who handles
the 5558 op-amp ic's required the 5558 op-amp IC's required. Another
problem is that no pin numbers are shown for the IC in the schematic

Georgetown, Ontario, Canada
You can obtain these IC's from Southwest Technical Products Corp. (see the Parts List in the article for the address). As tor pin numbering, the omission was inten-
tional. The 5558 is available in several package configurations, all with different lead identification

In "Supressing Transients in Solid-State Equipment" (July 1974), it was stated that tor shoral Electric 6RS20-SP4B4 thyrector should be available at local electronics stores. Well, I've tried six different stores
within a 20 -mile radius of my home and within a $20-\mathrm{mile}$ radius of my home and
haven't been abie to locate one that handles this device. Can you help me with a mail-order address?
kenneth L. Metcalf Woodstown, N.J.
The 6RS20-SP4B4 thyrector is available from Newark Electronics, 500 N. Pulaski $\$ 25$ minimim for mail orders. The GE distributor nearest you is at 200 Main Avenue, Clifton, NJ 07014
the amateur radio scene
Congratulations on the return of your Congratuations on the return of your pleased to see it in the October 1974 issue. 1 can hardly wait for the next column to appear. My only criticism is that the column is a quarterly; it should be a monthly.

Edward LeBlanc, VE1AMN
Prince Edward Island, Canada
In the October 1974 "Amateur Radio" column there appear to be two discrepancies in callsigns. The San Francisco
station's callsign should be k101 not K -101, while I believe the correct callsign for King Hussein is JY1-nor WJ1. leboro, Mass. POPULAR ELECTRONICS

The "NEW LOOK" 1975

LAFAYETTE

 radio electronics CATALOGIf you're interested in electronics you NEED this catalog! Completely re-designed for easier-than-ever ordering, with the newest and best Lafayette and national-brand products for ' 75 . And you get the same quality and service that has made Lafayette a leader for 55 years. Iron-clad guarantees! Lowest Prices!
Professional Service! State-of-the-art ment! Pick and choose from over 18,000 quality electronics products! Now, more than ever, we're your "Single-trip" shopping center for everything in electronics.
SAVE ON EXCLUSIVE LAFAYETTE PRODUCTS PLUS THE BEST MAJOR BRAND NAMES
Stereo and 4-Channel Music Systems - Tape Recording Equipment - Car Stereo and Accessories - CB and Ham Gear - Police/Public Service ReceivAntennas. Cameras. TV. PA and Test Equipment - Music Instruments
and Amplifiers - Books - Electronic Calculators - Security Systems
PLUS PARTS, TUBES BATTERIES hardware - all you need FOR QUALITY LIVING THROUGH ELECTRONICS
T'S THE ONLY NATIONALLY DISTRIB MAJOR IT'S THE ONL NATALOG WITH A MA ANE-BRAND FULL-LINE OF THE NEWEST NAMETS SHOWING OFTRONICS PRO
ELECTR 1975!

NEW! Bigger Pages NEW! More Full Color NEW! ${ }_{\text {Easier to: Reaal Iype }}$

The real way to learn digital electronics!

NRI is the only school to train you at home on a real digital computer.

problem and displays the result instantly. The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own $31 / 2$ digit digital multimeter... while you perform hundreds of experiments, building hundreds of circuits, learning organization, operation, troubleshooting and programming.
puter Electronics Course.
This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your
Learn computer design, construction, maintenance and programming techniques on your own digital computer using a professional digital multimeter!
Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics . . . and the best way to learn digital logic and operations is

Only NRI offers you five TV/Audio Servicing Courses

NRI's complete communication course includes your own CB Training Transceiver

Color TV repair is an other big opportunit field right now and
NRI can train you at NRI can train you at
home to service and rehome to service and re-
pair any color or black pair any color or black ment, AM-FM radios, and sound systems
You can choose from courses, starting with a basic servicing cours mplete with 25 .." diag to a Master Color TV course, andsome woodgrain cabinet. No other school offers many choices or so much value.
All courses are available with low down paymen dd convenient monthly payments to fit your budet. And all courses provide professional tools and on training. With the Master Course, for instance, ou receive your own $5^{\prime \prime}$ wide-band triggered sweep olid state oscilloscope, TV pattern generator, $3^{1 / 2}$ ligit digital multimeter and a NRI $25^{\prime \prime}$ diagonal olid state television receiver expressly designed fo coior TV training.

YOU PAY LESS WITH NRI TRAINING

 AND YOU GET MORE FOR YOUR MONEY. NRI employs no salesmen, pays no commissions. W. NRI employs no salesmen, pays no commissions. Wepass the savings on to you in reduced tuitions and pass the savings on to you in reduced tuitions and
ixtras in the way of professional equipment, testing nstruments, etc. You can pay more, but you can't ret better training.
inuary 1975

NRI prepares you for a career in the rapidly expanding field of communications \ldots a field the next decade! NRI can train you at home or one of the thousands of service and maintenance jobs opening in AM and FM Transmission and Receptype Radar, Marine Electronics, Mobile Communications and Aircraft Electronics. You train on your own 23 -channel Johnson Transceiver and AC power supply; a digital multimeter, for digital experiments and precise testing, bitecommunications field of your choice.

NEARLY ONE MILLION STUDENTS IN 60 YEARS HAVE LEARNED AT HOME THE NRI WAY.
Mail the insert card and discover for yourself why NRI is the recognized leader in home study training. No salesman will call. Do it today and get started on that new career

APPROVED UNDER GI BILL
For the career minded, we are approved for vet-
erans benefits. Check box on card for detalls.

MAIL THE INSERT CARD FOR YOUR FREE NRI CATALOG No salesman will call
 ashington. D.C. 20016

New Products

 Additional information on new productscovered in this section is available from
the the manufacturers．Either circle the item＇s
code number on the Reader Service Card code number on the Reader Service Card
inside the back cover or write to the man－ ufacturer at the address given．

HuNNICUT DIGITAL LOGIC PROBE

 The model LCA－2 Logic Circuit Analyzer， plays not only the logic state of a test point plays not only the logic state of a test pointbut also the quality of the logic condition． Four lamps indicate voltage／logic levels Good＂ 0, ＂Bad＂ 0, ＂Bad＂1，＂and Good ＂1．＂The LCA－ 2 is compatible with DTL and the manufacturer，can be appiied to the

input．The LCA－2 is supplied with a 4－foot coaxial cable，BNC connector，and three input adapters．It can indicate polarity／duty
cycle of pulse trains as high as 25 MHz ．The probe measures $5 / 2$－in．long and $5 /$－in in diameter．$\$ 69.50$ ．

PORTABLE FREQuENCY COUNTER
The C－65A Frequency Counter by Great American Miniatures is a completely port－ able unit with a frequency range of 10 Hz to
$65 \mathrm{MHz}(1 \mathrm{~Hz}$ to 65 MHz optional）．The counter uses TTL circuitry and a 6 －digit LED readout．Ah internal nickel－cadmium power source delivers 5 volts＠ 2.2 Ah．A
$2.5-\mathrm{MHz}$ crystal oscillator is used as a time base，and the unit can be used as a secondary frequency standard when calib－ rated against WWV．Sensitivity is 500 mV and short－term stability is 1 part in $106 / 24$
hours．Dimensions of the C－65A costing hours．Dimensions of the C－65A，costing
$\$ 269$, are $6^{\prime \prime} \times 3.5^{\prime \prime} \times 2.9^{\prime \prime}$ ．Weight is 27 ounces．Optional accessories include a $300-\mathrm{MHz}$ prescaler，ac power supply，bat tery charger，coaxial probe，and a carrying case for any or all of the above． The Wahl Clipper Corporation has intro－ duced a line of accessories for its＂Iso－Tip Kit（Cat．\＃7600）includes the iron itself only 8 ＂long and 6 ounces in weight）with a safety lock＂feature to prevent accidental tip heating，a wall mounting bracket，a bat－
ery recharging unit，a \＃7535 general－ purpose tip and instruction booklet．Op－ tional accessories include \＃7545 fine tip． \＃7546 heavy－duty tip．\＃7595 protective carrier and the \＃7585 auto charger plug assembly that fits into a car cigarette lighter for recharging in transit．
CIRCLE NO． 72 ON READER SERVICE CARD

ALIEC＂STONEHENGE I＂LOUDSPEAKER

he Altec Corp．has introduced the Stonehenge I medium－efficiency loud plifiers with a minimum 25 －watt rms powe capacity．The floor－standing Stonehenge eatures a columnar bass－reflex enclosure $12^{\prime \prime}$ high－compliance woofer with －pound magnet structure，a front mounted dividing networking at tenuation control，and a newly－designed direct－radiator tweeter．Stonehenge I is handcrafted of African Afromosian Teak eneers and complemented with a raw on all four sides．The system at $\$ 329$ ，re－ quires 1.4 square feet of floor space，and $16^{\prime \prime} \times 371 /{ }^{\prime \prime} \times 1412^{\prime \prime}$ ．Weight is 75 lbs.
CIRCLE NO． 73 ON READER SERVICE CARD

CLARION AM／FM MPX／8－TRACK CAR PLAYER
Clarion＇s new Model 608 8－track car stereo system incorporates an AM／FM multiplex radio．Among the Model 608 ＇s features are o minimize cross－talk stereo indicator light，stereo／mono switch， 4 －watts rms per

channel output，and a removable faceplate company，the tape platarer According to the company，the tape player has a frequency
response of 50 to $10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N}$ of 45 dB min．and wow and flutter below 0.3% ．
CIRCLE NO． 74 ON PEADER SERVICE CARD

WHITE＇S LIGHTWEIGHT METAL DETECTOR
White＇s Electronics announces its new lightweight，solid－state metal detector，the
Coinmaster IV－4B Series II．This refined version of its earlier models boasts added sensitivity，which is governed by a variable which aid searches over highly mineralized
areas），and longer battery life．A meter is included for visual as well as audible indi－
cation．Address：White＇s Electronics， 1012 Pleasant Valley Road，Sweet Home Oregon 97386.
CIRCLE No． 75 on reader service card
Pioneer front－loading cassetie deck Pioneer Electronics＇Dolbyized Cassette Deck，Model CT－F7171，features front panel access for tape loading and al

be stacked above or below other compo nents．It transport system is powered by a dc servo motor，for high starting torque and immunity to voltage fluctuations Other features include separate bias and Dolby noise reduction，ferrite tape head LED peak－level indicators，memory re－ wind，switchable level limiter and built－in monitoring amplifier and headphone jack． Frequency response： 40 to $13,000 \mathrm{~Hz} \pm 3$
dB（Cro，tape）；wow and flutter：less than 0.1%（WRMS）； $\mathrm{S} / \mathrm{N}: 58 \mathrm{~dB}$（Doblyized）． circle no． 76 on reader service card

KOSS PHASE 2 STEREOPHONES
The new Koss＂Phase 2＂stereo head phones allow the listener to control the According to the manufacturer，the listene can either＂move himself into the center o the orchestra＂or＂expand the musica sphere around himself．＂In either＂loca－
tion＂he can accentuate selected portions of the orchestra，as if he moved toward some of the artists．The Koss Phase 2 em ploys Panoramic Source controls，which are thumbwheels at the lower edge of each earcup，and a two－position Ambience Ex tional stereo mode．The medium－brown earphones are equipped with a $10-\mathrm{ft}$ coiled earphones are equipped
cord and．price is $\$ 75$ ． CIRCLE NO． 77 ON READER SERVICE CARD

JOHNSON MINI－SCAN＇im POCKET MONITOR

The new Johnson＂Mini－Scan＂vhf scan－ ning monitor weighs only 9 ounces，（2559） while measuring $5.9^{\prime \prime} \times 2.6^{\prime \prime} \times 1.4^{\prime \prime}$ ．СMOS scanning circuitry and a newly designed battery life．The unit has a four－channe capacity and a built－in ferrite bar antenna Dual conversion and ceramic filters en－ hance sensitivity，adjacent－channel rejec－ tion，and good overall selectivity．The
Mini－Scan is used on the $146-174-\mathrm{MHz}$ band．Other features are a squelch control
popular electronics
built－in speaker，jacks for earphone or ex ternal speaker，and optional flexible an tenna． CIRCLE No． 78 on reader service card
heath home weather station A professional－type weather station，in kit The ID－1290 Weather Station features solid－state thermometer that display either indoor or outdoor temperature at the flick of a switch，a solid－state anemomete

with switchable ranges for $0-30$ and $0-90$ mph ，and an electronic wind－direction
indicator with individual glowing indicators to give 16 －point resolution around the compass．Sensing devices are mounted on tached to a TV mast．All connecting wires are contained in one cable．The ID1290， housed in a simulated walnut panel，may be mounted vertically or horizontally and is $\$ 89.95$ ，less cable

the price for moving up to a sweep／function generator just came down to \＄149．50

TURNER＂ULTRA－KICKER＂CB ANTENNA

 The Turner Division of the Conrac Corp．， long a leading manufacturer of micro－phones for two－way radios，has introduced a line of＂Signal Kicker＂antennas．The ＂Ultra Kicker＂model＇shows an interesting combination of beam and omnidirectional contigurations．It has five elements．A center folded dipole receives power from the transmission line，and is surrounded by oaded through electronically switched stubs．The antenna can be switched to pro－ vide 8 different radiation patterns in 45－degree steps，but it remains fixed and no rotator is needed．Gain is 6.2 dB over a hront－to－side ratio is 20 dB or better．Cross－ over is 0.6 dB ．Two other models，an om－ nidirectional unit and a rotatable beam，are available at $\$ 79.95$ and $\$ 119.95$ respec－ tively．Price of the＂UltraKicker＂is $\$ 239.95$.
CIRCLE NO． 80 ON READER SERVICE CARD

B \＆K $3^{\prime \prime}$ TRIGGERED SWEEP SCOPE

 Dynascan＇s new B\＆K oscilloscope，Model and a sensitivity of 10 mV per division．In addition to the triggered sweep，sync is fully automatic．A three－step vertical at－ enuator is included，and sweep time is var－ lable from $0.5 \mu \mathrm{~s}$ ， 0.5 s per division，in 19Exact now offers a laboratory－quality
 new Model 195 than traditional audio tes
equipment，such as sine，square，triangle equipment，wach as sine，square，triangle
and swept waveforms．．．even pulses． This new 2 Hz to 200 kHz instrument is
the practical answer to many of your signal source needs，whether you＇re
checking audio equipment，testing bread－ boarded circuilts or teaching at the high
school or college level． An internal sweep generator lets you
sweep，either linearly or logarithmically， the entire audio range of a anplificiers or
speakers without changing ranges or even Speakers without changing ranges or even
touching a knob．The Model 195 has three
$1000: 1$ sweep ranges for frequency 1000：1 sweep ranges for frequency
sweeping plus high a ad low level sine
outputs with amplitude control．Or you
can ontrit outputs with amplitude control．Or you
can control the frequency by an external
voltage（VCF）

The Model 195 is completely portable，
operated by a 9 －volt transistor battery，so you can forget 60 －Hertz hum problem altogether．An optional rechargeable
power supply and charger permits con－
tinuous operation from Ni－Cad bity powe
This is a true instrument ．．．developed by
by one of the world＇s leading designers by one of the world＇s leading designers
and manufacturers of laboratory function
generators and trequency generators and trequency synthesizers．
Find out what the Model 195 can do on
your bench，and move up to a better your bench，and
source of signals．
Price：Model $195 \$ 149.50$ Optional rechargeable power supply，
complete with battery and charger $\$ 25.00$ complete with battery and charger $\$ 25.00$
f．o．0．b Hillshororor
stockegon．Instruments stocked

vailable．Rise time of the vertical amplifie is 35 nanoseconds，overshoot is 3% or less shunted by 35 pF ．The 1431 is supplied with handle／tilt stand，Mylar vector overlay（s he unit can be used as a vectorscope），bu ss probe．It is $\$ 399.00$ ． arcle no． 81 on reader service card
fanon transistorized megaphone The Fanon Model MV－5S is a combination megaphone and warning signal in high－
impact plastic bell and housing．Rated output of the amplifier is 5 W with a $300-\mathrm{yd}$ range．Unit has a built－in weatherproo dynamic mike，pistol－grip talk／signa switch，adjustable volume，and horn alarm． PWeris
 We accept BankAmeric and Master Charge．

Read what the experts say about Heathkit Digital-Design Color TV

- The picture on the GR-2000 can only be described as superb. The Black (Negative) Matrix CRT, the tuner and i-f strip, and the video amplifier provide a picture equal to that of many studio color monitors. 9 (Popular Electronics, April, 1974)
-

The picture quality of the GR-2000 is flawless, natural tints, excellent definition, and pictures are steady as a rock. lt's better than any this writer has ever seen. (Family Handyman, June, 1974)

- The plain truth is, with service and repair costs soaring even for the most insignificant in-home repair, the GR-2000 is the way all color $T V$ sets will have to be made
the near future
Elementary Electronics, May-June, 1974)

25" (diagonal) Heathkit GR-2000 Widely reviewed and acclaimed for its outstanding picture and years-ahead engineering. At the touc of a button, the channel number appears on the screen. The optional clock module displays the time right under the channel readout. The totally solid-state varactor tuner eliminates noisy "clunkers" with contacts that can wear out. Instead, pressing a
button silently selects any of the 16 pre-programmed UHF or VHF stations. The unique fixed-filter IF never needs instrument alignment, so pictures retain unmatched clarity and brilliance year after year. And for the ultimate in convenience, add the optional wireless remote control. The GR-2000 can be custom mounted and optional cabinets start at $\$ 119.95^{*}$.
Kit GR-2000, less cabinet, 147 Ibs., Exp./frt. Kit GRA-2000-1, Digital clock module, 1 lb., mailable

Now-a new generation of Heathkit small-screen color TV with digital readout

GR-500
$19^{\prime \prime}$ (diago

GR-400

GR- $\mathbf{1 5 0 0}$
(diagonal)

Famous Heathkit or $19^{\prime \prime}$ (diagonal). They all have GR-2000-inspired digital channel eadout and optional plug-in clock modules. And in the tradition of the GR-2000, these TV's feature dozens of design innovations. Each uses a precision in-line gun in the picture tube and a slotted shadow mask for a bright picture. The GR-400 and 500's negative-matrix screen provides superior contrast while lumiance and video circuits with black level clamps maintain the ue brightness of televised scenes
A factory-sealed static toroid yoke and magnet assembly com-
pletely eliminates convergence and purity adjustments - and the picture is superior to sets requiring manual adjustments.

The list of significant advances goes on and on - dual gate FET mixer, FET RF amplifier, 4 tuned circuits (instead of the 3 mos
sets have), automatic fine tuning and preset picture control, hi-fi output jack, slide out chassis. The GR-300 and 400 come complete with walnut veneer cabinets, cabinets for the GR-500 start at $\$ 39.95$.
Kit GR-500, less cabinet, 88 lbs., Exp./frt. 499.95* Kit GR-400, with cabinet, 104 lbs., Exp./frt. 489.95* Kit GR-300, with cabinet, 90 lbs., Exp./frt.4.49.95* GRA-2000-1, clock module for GR-300, 400 \& 500, 1 lb. , mailable

6 unique new Heathkit products you can build yourself

Heathkit

AM/FM Digital Clock Radio-
The GR-1075 is no ordinary clock radio. Big, bright Beckman planar gas discharge tubes display the time. The readouts adjust their brightness automatically as room lighting changes.

A standby battery power supply keeps the clock on time (without the display) if the electricity is interrupted. When the power is restored, the 24-hour alarm will be on time - and so will you. You can wake to your favorite station or a gentle electronic "beep" with adjustable volume. And the radio section uses the same design philosophy as our famous AR-1214
stereo receiver including fixed ceramic filters in the AM and FM circuits and a factory-assembled and aligned FM front-end with $5 \mu V$ sensitivity. With 4 C's, 41 transistors and 35 diodes, the GR-1075's de-
sign is years ahead of ordinary ches sign is years ahead of ordinary clock radios.
Kit GR-1075, less batteries, 10 lbs., mailable, 129.95*
Digital Electronic Car Clock/Timer The GC-1093 is an accurate timepiece for your car, boat or liane. It's an electronic clock and a 20 -hour rally timer, both
with quartz-crystal accuracy. Bright $1 / 2^{\prime \prime}$-tall digits dim autowith quartz-crystal accuracy. Bright $1 / 2^{\prime \prime}$-tall digits dim auto-
matically at night. 12 VDC, mounts on or under the dash.
Kit GC-1093
2 lbs., mailable
62.95*

Dual-Trace Oscilloscope
A professional scope at kit-form savings. DC-15 MHz frequency Aesponse, post-deflection acc
$100 \mathrm{nsec} / \mathrm{cm}$, guaranteed to
rigger up to 30 MHz (typically up to 45 MHz), $1 \mathrm{mV} /$ $X-Y$ capability.
Kit IO-4510
34 (bs., mailable
549.95*

Desktop Electronic/Sliderule Calculator At last, a sliderule calculator that's big enough to use. The ICCumulative memory and register exchanges virtually disina Cumulative memory and register exchanges virtually eliminat plus trig and arc trig in degrees or radians, common and natural logs, powers of e, square roots, inverse pi and exponential functions. Kit IC-2100
4 lbs., mailable
119.95^{*}

Digital Electronic Clocks
with standby power
The GC-1092A is a digital clock with a snooze alarm; the GC-1092D reads the time in 6 digits, the month and date in on time (without the display) even during power interruptions. GC-1092 A\& D,
less batteries, 5 lbs., mailable .each 82.95*

JaNUARY 1975
circle no. 5 on meader service cardo

New Literature

METHODE ELECTRONICS PC BROCHURE "Printed Circuits," a new brochure from tion of various types of printed circuitry including single-sided etched and coated boards, double-sided etched and platedthrough types, additive plated-throughhole circuits, and multi-layer and flexible
boards. The brochure is well-illustrated with explanatory diagrams and photographs. Methode's several multi-paneling concepts are described: "crackerboard," scored-array, "nested-array," and web-ma-
trix panels among them. Address: Methode Electronics, 7447 W. Wilson Ave Chicago IL. 60656.

1974 national mos catalog The new edition of National Semiconduc-
tors Corp.'s MOS IC catalog is now available This latest book contains over 500
pages of design and applications informa ion on the broad National line of standa MOS products, including clocks, ca mation can be found on National's eightand nine-digit calculator circuits, digita clocks for desk-top, alarm and automobil applications, shift registers-both static including ROM's, PROM's, and RAM's, character generators, code converters and microprocessor elements. Address National Semiconductor Corp., Marketin Services Dept., Santa Clara, CA 95051

lafayette 1975 catalog

The latest edition of the Lafayette Radio lectronics catalog is now available fre pon request. It contains over $18,000 \mathrm{item}$ in the consumer electronics field including music systems, CB, ham, and PA gear, tes equipment, antennas and security devices musical instruments, cameras and optics calculators, and many types of parts re the publication has been changed-page size has been increased 45%; larger type and more color have been used; audio equipment has ratings in full compliance with the latest FTC regulations; and majo coverage. The catalog may be obtained
"Quick'n Easy" Channel Scanning with ((ρ)) Pace Scanning Monitors!

Lafayette stores or write to: Lafayette Radio Electronics, Dept PR, Box 10, Syos set, NY 11791
authoritative time and frequency texts
A comprehensive collection of informa tion, theory, and data on time and fre by the National Bureau of Standards. Monograph 140, (\$8.65), "Time and Fre quency, Theory and Fundamentals," describes the field of T / F research, from basic concepts of the measurement of time to the latest developm ming precision imekeep nances.
Technical notes supplement the mono graph. NBS Technical Note 649 ($\$ 1.00$) "The Standards of Time and Frequency in the USA" is also one chapter in the mono
graph. It describes the activities of the two graph. It describes the activities of the two
agencies chiefly involved in the T / F -the NBS and the Naval Observatory Technical Notes 616 (Revised) ($\$ 5.70$) and 656 ($\$.35$) deal with "Frequency Standards and Clocks: A Tutorial Introduction" and ation, Control, and Dissemination by the NBS," respectively. A discussion of the broadcasts of radio stations WWV, WWVH WWVB, and WWVL can be found in the latter Technical Note. The publications are
available from the Government Printing fice, Washington, DC 20402.

rCa linear ic wall chart

Available from RCA is a quick-reference wall chart tiving data on their linear IC's for tion, and information systems applications. Included on the chart (Form No. LIC-247A) are op amps, arrays, differentia amplifiers, broadband (video) amplifiers voltage regulators and thyristor control
devices, AM/FM communications circuits, comparators, and analog multipliers. It also includes a cross-reference of direct replacement types for the products of 12 other manufacturers. Address: RCA Solid State D
08876.

1975 RADIO SHACK CATALOG
Radio Shack's 1975 catalog (No. 250) describes the company's complete line of products byists nome entertainment, hobcatalog has 100 full-color pages featuring Radio Shack's own Realistic stereo and four-channel receivers, automatic turntables, tape recorders and players, speakers, ment. Other products included are Radio Shack electronic calculators, Archer'mantennas, and Archerkitm and Science Fair ${ }^{\text {tm }}$ electronic and hobby kits. Address: Radio Shack, Dept. R-20, 2617 W. Seventh St.
popular electronics

MARK TEN B THE GAS SAVING, PLUG SAVING, TUNF-UP SAVING, ELECIRONIC ICNIION FROM DEHA. NOW AS LOW AS \$4995.

Please send me free literature
Enclosed is \$ \square Ship ppd. \square Ship C.O.D. Please send:
bled @ $\$ 64.95 \mathrm{ppd}$._ Mark Ten B Kit @ $\$ 49.95$ ppd. (12 volt negative ground Mark Ten B assemdard Mark Ten assembled, @ $\$ 49.95$ ppd. $\quad \$ 6$ Volt: Neg. Ground Only. 12 Volt: Specify (12 Volt Positive or Negative Ground Only)

Car Year
Make
Name
Address
City/State
January 1975

If you've ever said.

"There must be a better

Send for a free Career Guidance Booklet that could start you on the road to success in a rewarding new career.

It happens to all of us, sooner or ater. No matter what kind of job we have.

One day, it suddenly strikes home that we're going to have to work for a living, the rest of our lives. And most of us are horrified at the thought of forever being locked into the jobs we now hold.
"Surely," we tell ourselves, "there
must be a way to earn enough extra dollars each month to balance the amily budget. Surely, there must be a way to get the kind of position where you don't have to worry about job security."
"Surely," in other words, "there must be a better way to earn a living!" If you, too, have been thinking these same thoughts, you'll find one

of our free Career Guidance Booklet very helpful at this time. We invite you to send for one.

Your free booklet will describe the opportunities for higher income and greater job security you might ex pect in one of the career fields listed on the coupon and card. It will also explain why ICS can prepare you fo this new career field...right in you own home... in your spare time. regardless of your education or past experience.

In addition, you will receive a free "Demonstration Lesson" that lets you see for yourself why preparing for a more rewarding career-the ICS way -may be a lot easier than you think.

Please bear in mind, as you check off your career choice on the coupon or card, that ICS has a long and distinguished record of success. In fact, since 1890 , more than $8,500,000$ men and women have turned to ICS for career training.

Major corporations use ICS Career Training

ICS has provided training programs for various divisions and branches of companies like Ford; U.S. Steel; Chrysler; Mobil; DuPont; etc.

ICS Career Training is approved or Veterans and Servicemen under the new G.I. Bill, and is accredited by he Accrediting Commission of the Vational Home Study Council

Now it's your turn to discover how S training can start you in a rerding new profession. Just fill in coupon or the attached postpaid and mail it today for your free er Guidance Booklet and free nonstration Lesson.
RYY 1975

Mail attached postage-free card today. If card is missing, use coupon.

FTE International Correspondence Schools $\begin{aligned} & \text { Scranton, Pennsylvania } 18515\end{aligned}$
 Please send me a free Career Guidance Booklet, and a free "Demon-

 stration Lesson" for the field I have checked below. I understand that I am under no obligation.Engineerin
\square Civil
\square Mechanical
Mechanical
\square Electrical
\square Industrial
\square Surveying \& Mapping
Automotive
Automotive Mechanic
Air Conditioning Specialist
\square Transmission Specialist
\square Body Rebuilding
Diesel/Truck Mechanic
Business Management
Execurive Mgt.
Industrial/Production Mgt
Marketing/Advertising M
T.V. Servicing
\square Color T.V. Technician
\square Stereo-Hi-Fi Specialist
\square CATV-MATV Specialist
Electronics
Electronics Technician
FCCLicensing
Computer Servicing
\square Communications/Broadcasting
\square Electrician
Accounting
Business Accountan
CPA Training
\square CPA Training
\square Income Tax Special
Air Conditioni Refrigeration/Heating
Air Conditioning
\square Refrigeration
\square Heating Specialist
Interior Decorating and Design
High School
ICSH.
\square ICS H.S. Diploma Program
H.S. Equivalency Program

Drafting
General
Mechanical
\square Mechanical
\square Architectural
Motel/Hotel Management
\square Motel Management
\square Hotel Executive
Restaurant/Club Mgt
Resort Manageme
Airline/Travel
Aeservations Specialist
Passenger Service
\square Cargo Agent
\square Check here for special information, if age 16 or under
Name

Approved for Veterans' Training. Eligible Institution under the Guaranteed Student Loan Program. Accredited Member National Home Study Council. Canadian resi dents use Scranton, Pa. address for service from ICS Canadian, Ltd. In Hawaii
931 University Ave., Honolulu, Hawaii 96814 .
©1974 ICS

Stereo Scene

MIKES AND MIKING

ALL RIGHT, you want to buy a good microphone so you go for advice to the experts-the record hat does youl Recording engineers today use not one but many micro phones, all of which they conside good' for a particular application. For example, John Woram, a highly experienced studio man and profes sional consultant on recording mat ri, frequently rhapsodizes on the arious characteristics of mikes in professional sound recording magazines. As John tells it, an engineer with a rather undistinguished high requency response to capture a firm, slightly juicy splat from the kick drum (the pedal-operated bass drum in a drum set), while employing a dead-flat ondenser pickup to bring out the dry rustle, sting, and snap of the snare drum. In fact, a drum set, which really constitutes only one instrument in pop ensemble, may have as many as hree to six dif hay hioroph And wore, an an, ortric A electric bass consists of the instrument itself as well as the inductive pickups below each string and the mplifier/speaker conglomeratio from which the sound emerges. The ngineer has the choice of miking coustically through its speaker (which is, after all, part of the "sound" af the instrument), or running a direct eed from the gultar's pickups or amplifier to the recording console. either mixing the two signals on the spot or laying them down in separate racks on the tape for subsequent mix ing. And perhaps he wants to mike the guitar in stereo to give a greater sense of the acoustic field. (Many engineer do not, preferring to make a mono re cording of the instrument and then control its position in the stereo spread" by feeding more or less of it the left or right channel of the final 22
for voice, might have a gradually de scending low-frequency response mid-range. These characteristics, compensate for an emphasis of lows that most directional mikes exhibit a close range ("proximity effect"), and also improve articulation. Fine, but I'm usually out in the boondocks worrying about anything but proximity effects. Now and again, I do feel a need for the mid-range bump (often called "presence boost") and wish I had it But under my normal working condithe music comes when the tape starts rolling and the performance begins), rolling and the performance begins), I mess with such esoterica. (I should mention that proximity-effect compensation and even presence boost can be cut in or out by switching on the cases of some microphones.) So prefer flat frequency response, for th kind of recording I do

Frequency Response. Fre

 quency-response data for a microing its simple electronic output with a meter. You don't have to mike a complex acoustic field às you do with a speaker. But microphone and speaker testing share a common problem: like speakers, microphones are direc tional, sometimes by accident (diffrac tion effects of the case on sound trying to reach the diaphragm, for example) and often by design. The two most types in the amateur's inventory are the omnidirectional meaning a mike that responds equally to sounds im pinging from all directions (or tries to anyway); and the cardioid, which describes a microphone that attempts to respond fully to sounds in front of (wherever its front happens to be) and not at all to sounds approaching from behind it. The polar graphs in Figure 1 Mustrate these pickup patins, sphere, and the cardioid's pattern as a ripe tomato viewed from the sideWhy would you use a direction microphone like a cardioid? Obviously, you'd use it if you didn't like something coming from behind. This could be audience noise or room/ concert-hall reverberation, particularly if it echoes, sounds otherwise nasty, or is just excessive.
There are other directional types, exhibiting a figure-eight polar
popular electronics

Sorry, but when it comes to our fails us How else woud yodes describe a preamplifier that actually - Puts back in what recording studios take out.
recording to closely approximate
the original.

- Vanishes into virtual inaudibility all in most tapes, records, and
FM broadcasts.
- Lets your music (at last) reach ane-like level where cymbals ke kettle drums
- Lets you . . . for the first time hear your music from a
Since its introduction follows the Phase Linear 700 and 400 power amps, the 4000 pre-amp had to be The Peak Unlimiter

The Peak Unlimite

equipment, studios today "peak limit" high-level explosive transients of the source material. Incorporated highly-advanced circuit that peak limiting, immediately routes the signal through a lead network and restores dynamics lost in
eecording to closely approximate he original.

The Downward Expander
Gain riding, a recording technique used to improve low level signal to unfortunately compresses dynamic range that would otherwise be available. The 4000 senses when
gain riding has been used and immediately expands the dynamics reciprocally downward to precisely the intended level.

The AutoCorrelator
The advanced Autocorrelation
Noise Reduction System in the 4000 makes record/tape hiss FM broadcast noise virtually vanish \therefore without effecting musical content reduction is -10 material. Over-all noise 20 kHz . Your music from 20 Hz to background that is silent.

Plus.

the 4000 is an advanced stereo preamp with SQ* and Phase Linear differential logic... its Active Equalizer gives you a truly flat energy
distribution over the full audio spectrum . . . completely passive independent, Step-Tone Controls, allow precise tailoring of the music to your listening environment.
It is, in a word, incredible. Ask your dealer for an audition.

PHASE LINEAR 4000 SPECIFICATIONS Total Distortion: Less than . 25%

Total Noise: High level: 83 dB below 2 volts. Phon: 72 dB below a 10
Tor
Tone Controls: Bass: Monotonically points, $\pm 8 \mathrm{~dB} @ 20 \mathrm{~Hz}$. Hinge points switch selectable begining at 40 Hz
or 150 Hz . Treble: Monotonical increasing and deccreasiong, dual hal hinge
points, $\pm 8 \mathrm{~dB} @ 20 \mathrm{kHz}$. Hinge points points, $\pm 8 \mathrm{~dB} @ 20 \mathrm{kHz}$. Hinge points
switch selectable beginning at 2 kHz
and 8 kHz . and 8 kHz .
Active Equalizer: $6 \mathrm{~dB} / 0 \mathrm{ctave}$ boost
below 50 Hz . Peak Unlimiter: (Nominal peak unlimit rate attack threshold, front panel
variable) 5 dB /micro second for +6 dB variab unlimited operation. Downward Expander: Downward Ulimate limit is -41 dB . Unlimiter
wind thresholds are simultaneously variable.
Auto Correlator (Noise Reduction Systems): High frequency noise reduc-
tion commences at 2 kHz and is 3 dB tion commences at 2 kHz and is 3 dB ,
reaching 10 dB trom 4 kHz to 20 kHz . Weighted overall noise reduction
-10 dB from 20 Hz to 20 kHz

Fig. 1. Mike pickup patterns: (left) ominidirectional; (right) cardioid. sponse (or, to continue the three-
dimensional analogies, a crudely dimensional analogies, a crudely formed dumbell wupercardioid and hypercardioid varieties, which narrow the cardioid's tomato down into a pepper (sometimes even a chili pepper) shape, usually with some leaty growth at the stem indicating less than total success in eliminating rearward sounds. Some of these are beloved by professionals, either for their pickup patterns or for other special qualities. But they are rarely part of the amateur's equipage.
Back to frequency response. The sound-output pattern of a loud-
speaker can also be shown with polar plots. But as any casual audiophile knows, the polar pattern will not be the same at all frequencies. Lows tend to become omnidirectional, while highs may begin to "beam" in a tight super-

Fig. 2. Cardioid pickup patter
at four different frequencies.
cardioid fashion. So it is with microphones, although their directional aberrations are not always the same. Figure 2 shows the polar plots for a cardioid mike at several different frequencies, while Fig. 3 gives its various requency responses for sounds front, or "'on axis'), and at several angles off axis. If the polar plot of Fig. 2 showed the pickup patterns for all fre-
quencies, you could draw Fig. 3 directly from it. What does all this mean? Well, as you may know, the frequency response you hear from a speaker in a room is a combination of its numerous frequency responses at various angles, since reflections from room ears the speaker's output at 60 de grees, 90 degrees, 180 degrees, etc and the frequency response of a microphone (i.e., what it "hears") is also a composite of its various responses at all angles, since it's picking up the same sort of room reflections.
It follows (or so it seems to me) that the real frequency response of a microphone is not the simple on-axis curve, but some kind of summation of the curves in Fig. 3 and many others of the particular recording environment. But since you can't predict the nature of the recording environment, you're ultimately best off, l'd imagine with a mike whose response changes little with incident angle. The microphone of Figs. 2 and 3 is not too bad in this respect. Others will be bet ter still, and some will be worse. And for some microphones you may be in terested in, the relevant data of this afraid, even from the manufacturer. But we all do our best

Microphone Types. There are only three microphone types that interest the serious recordist: moving coil, ribbon, and condenser. The mov ing coil closely resembles a speaker
(and especially a dome-type tweeter) in construction. In operation its cone (or dome) is shuttled to and fro by im pinging sound, and the magnet as the coil that moves with it The ribion type employs a low-mass diaphragm type employs a low-mass diaphragm inductor as it moves within a magnetic field. Condenser microphones consist of a light diaphragm in close proximity to a conductive plate. The diaphragm is polarized-either by an external do voltage source or with a built-in (electret) electrostatic charge-and as is moves relative to the stationary plate in response to air-pressure changes, the varying capac

The time was
frequency responses of these three types were a function of their diaphragms' inherent moving masses, moving coil), better (ribbon), and bes condenser). Improved materials and construction have made remarkable strides in narrowing the gap, so that or dollar-for-dollar basis you can get perfectly acceptable-If not ribbon mikes are complex in construction and not really available below $\$ 100$ apiece. But at around $\$ 150$ you might well pick a ribbon over moving coil or a condenser
Then there is the question of ruggedness and resistance to acoustic overload. To my knowledge I've never had a mike physically overload, but then I don't work close up as a rule. If you plan to, then you should know that at shrugging off the very high soundpressure levels that come from brass, drums, electronic instruments, etc.

Fig. 3. Cardioid frequency response
Some condenser jobs come fairly come condenser jobs come fairly be trusted in these applications. Ribbons used to have a terrible reputation for going mechanically to pieces at the slightest provocation, and sometimes suffering permanent injury. Many of the breed are still quite delicate, but Beyer claims that its ribbons can tolerate sound-pressure levels in excess class; and the Group 128 condenser mikes are said to be equally rugged. As for directional properties, mov-ing-coil and condenser mikes can be made to exhibit practically any pickup pattern. The same is theoretically true for ribbons, but I don't know of any omnidirectional ribbon mikes. Incidentally, lest I have frightened anyone away with my brief reference moving-coil and electret that fine mikes can be had for $\$ 50$ and

Impedance, Sensitivity, Etc. These topics frequently form the bulk of microphone how-to-buy articles. I plan to give them very short shrift.

POPULAR ELECTRONICS

It is imperative, when using longis microphone cables, to set yourself up with low-impedance mikes, whic avoids certain noise and high-fre quency loss problems. Recognizing manufacturer I can think of has de signed his microphone inputs for low mpedance mikes ("suitable for microphone impedances from 150 to 600 ohms" is a typical "specification"). Almost any microphone with true au diophile appeal is going to be availa ble within that range. Some can be switched to higher impedance.
Sensitivity (which is voltage out, for such-and-such a sound-pressure lance) is trickier 1 like a high-oupe mike because, again, I prefer to keep my microphones somewhat away from the instruments, and soundpressure levels are lower out there Therefore I'm often happiest with a condenser, which has and needs it own amplifier (often built into the mi crophone case these days, and pow red by an integral penlight dry cell) Thus, a condenser can have just about any output it pleases, and it may not either. (But there is an additional noise specification-the noise contributed by the microphone's amplifier-to consider.) Mikes with excessively low output would get me into signal-tonoise trouble with my recorder's preamps, however. And excessively high outputs might get the close miker into trouble, since the microphone in puts of most audiophile recorders have electronics before the record levercontrons, and these can overload Bu a passive attenuator consisting of from Shure, Eloctro-Voice, and others, installed in a case for easy microphone line insertion-will take care of that.
Few desirable microphones in realistic (for us) price ranges vary so much in output from the norm that way couldn't be found to make a de cent recording of, say, voice and acoustic guitar. But when you try to discover the optimum mike for your acerload, you find you need noise and puts, comparable sensitivity specs for different brands of microphone (and they're not really comparable at present), and some very difficult-to-get (or believe) data about live-music levels. (Argh!) Instead, I recommend you consult your tape machine's manufac JANUARY 1975
turer. In many cases he'll have had a chance to use the mike that interests you, and has some insights.
Contacting the manufacturer could be particularly helpful if you plan a and say "Which microphone should। buy?"' Familiarize yourself with what's available, narrow your choices down to a few, and let him suggest a final decision in the light of your expressed (in your letter, concisely) recording intentions.
As I've said, I prefer to mike a little distantly. This is because I get a good dose of hall reverberation mixed into the final result, and since being well which I'm used to hearing perfor mances, it sounds truer to me (By the way, when I say "mike distantly," it means that the microphones are usu ally at stage edge or a little beyond and from seven to twelve feet up.)
get all kinds of arguments about my technique, and I pay them no atten tion whatever. True, my tapes would be too dim and muddy for AM radio play (although I absolutely insist they sound fine through good speakers)
they would probably be considered
hopeless. Who cares? Im in business to please myself, not the mass millions. I get the kind of sound I wish I could get on more commercial recordings, and that is the reason I willingly phones, mike stands, cables, and miles of tape through dark Manhattan nights in quest of musical events. For like-minded souls wishing learn about microphones, I can recommend Lou Burroughs' Microphones: Design and Application, rom which l've freely borrowed for this column and its illustrations. It costs an outrageous $\$ 20$ (plus tax and postage, I'm sure) from Sagamore Road, Plainview, N Y 11803 , but it is a truly fine and comprehensive text with revelatory advice on mainte nance.

Correction. An error appeared in ny November 1974 column on peaker failure. In the discussion of oofer-cone offset, the text referred 0 dc amplifier voltages that "may ap pear at the output capacitors." The sentence should have read, "may ap mplifiers using no capacitors."

AUDIO-TECHNICA U.S. INC., Dept. 15P, 33 Shiawassee Ave., Fairlawn, Ohio 44313
AUDIO-TECHNICA U.S., INC.,
In Canada: Superior Electironics, Inc.
CIRCLE No. 6 ON READER SERVICE CARD

ㅍIGEIIIGEITS

Philips \& MCA Market Video Disc

N. V. Philips, based in the Netherlands, and MCA, inc., Los Angeles, have reached an agreement for marketing a Philips/MCA video-disc player and compatible discs for consumer use. An official of MCA states that this development will result in the interchangeability of ing organization to negotiate with others for related patents. It is expected that a liberal licensing policy will enable many companies to participate in the video player technologies of both concerns. The Philips/MCA video-disc player will be manufactured and marketed by
Philips, while MCA, whose resources include the Universal Pictures film library, will produce and market video disc programs

Blank Tape Sales Skyrocketing

Nearly 200 million blank cassette tapes and 30 mil lion blank 8 -track cartridges will be purchased this pany, a major producer of such tapes. The company also states that cassettes, though now considered a hi-fi medium, are being used for speech recording as well as music. Students are recording their lectures, and businessmen are taping their conferences on cassettes jection, will push the total cassette purchases in 1976 to top 340 million. This represents an increase in sales a the rate of 50 million more new cassettes per year.

RCA Introduces Hybrid OP Amps
RCA's Solid State division has introduced a family of hybrid op amps that combine the advantages of
MOS/FET's, bipolar transistors, and COS/MOS on a monolithic chip. Gate-protected PMOS transistors are used in the input circuits of the CA3130 family, to pro vide very high input impedance, low input current, and high-speed performance. The common-mode inputsupply terminal. A bipolar driver provides voltage gain. A COS/MOS drain-loaded inverting amplifier comprises the output stage operating in the Class A mode. The output can be swung within millivolts of either supply rail when used with highly resistive loads, and the gain of this stage depends on the load impedance. Open Hoop The CA3130 series can be used as comparators (COS/MOS interface), wideband amplifiers, voltage regulators and followers, and in timing applications.

Data Transmission on Real-Time TV
A new system of encoding information on broadcast TV signals has been introduced by the Atlantic Re search Corp., Alexandria, ta. The Data-Do
modifies the video signals to cause a small dot to appear modifies the video signals to cause a small dot to appe
in a corner of the receiver's screen, which carries one or more channels of information. A peanut-sized optical
sensor is placed over the dot, and decodes the informa tion which can be printed, displayed, or recorded by a
variety of terminal devices. The manufacturer says that modules can be used without any modification of the TV receiver. This system has many possible uses. It can provide data to accompany any televised event-per ormance records of a player involved in a sports comeven stock market and news reports!

"Under New Proprietorship"

GTE Sylvania and Philco-Ford jointly announced an agreement under which the former would acquire the Philco name and distribution rights for home enter-
tainment products manufactured by Philco-Ford's Home Products Division, and sold in the U.S. and Canada. The agreement does not involve Philco-Ford's line of home refrigerators and freezers, its Telesound operations, or its automotive products. In another development, North American Phillions. ing stock in the Magnavox Company

Trends in the Microwave Industry

The microwave products industry represents 8 per cent of the total electronics industry, and generates
$\$ 2.2$ billion annually in economic activity. This figure is expected to grow to $\$ 2.8$ billion by 1983, according to a report assembled by the Business Communication Company, Stamford, Conn. A le microwave ovent field.

Private-Use TV Station

A new television station, available for private use, has opened in New York City. It is part of a new servic authorized by the Fe, called "Private Television" is to be utilized by business, government, and entertainment users to deliver their programs at lower cost than is possible via other available means. ... Owned and operated by the Microband Corp. of America, the station has its control center located in the Empire State
Building and will provide its full-color private TV transmission facilities to various locations throughout the tri-state area.... The station comes under FCC common-carrier regulations, which restrict its activity to program distribution only. Customers select the transmission time, as well as the individual recelving points, and control the program content. Multiple Distribution Service (MDS
$(2150 \mathrm{MHz})$ and a system of address-encoding to assure program privacy. ... Microband is affiliated with MDS stations in other cities through a national system that plans to use domestic communication TV network Stations are presently in Washington, D.C., Chicago, Houston, Baltimore, and Philadelphia. Coverage for Miami is expected soon.

Sylvania goes one better.

We train you on two TV's instead of one

 (You keep both)With Sylvania's MasterTV Career Pro gram, you get not just one but two TV sets. Color and Black \& White. Both solid-state. Both designed to give you the solid, practical experience you need. Both yours to build, learn with and keep.

With all Sylvania Career Pro grams you get Sur exclusive Auto method of instruction, a modern method of instruction, a modern, which gets you through the basics of electronics quickly and easily. An optional Cassette System, technique that adds an extra dimensio o learning. It's almost like having an instructor right in your own home. A you play the tapes, he'll guide you hrough your lessons, explaining as you read, going over schematics and reinforcing everything you learn! can lead to any number of careergoals. In TV, communications, automation, digital and solid-state electronics. And in fields you haven't even dreamed of Plus specialized advanced train ing and carefully-engineered Project Kits for that "hands-on" training you
need to make it in the world of electronics.
roughout your training, Syvania makes that extra effort to go one better
Send the card or mail in coupon today for our FREE Catalog. And go with Sylvania. SYUNANLA Technical Schools Home Study Division 694-501-0 Syivania Technical Systems, Inc New York, N.Y. 10022
Please send me FREEEillustrated career
catalog. I Understand that lam underno
obligation.

Address
City
State
Age
Veterans: Check nere \square
GIT 5YLVANIA

THT IS PROUD TG ANNIUNCE: THE CT-LOZL TERMINAL SYSTEM

* DISPLAYS UP TO 16 LINES (of 32 Characters) AT ONE TIME
* 1,024 Character - Two Page Memory Capacity - STANDARD.

Plug-In Circuits to adapt the terminal to any requirement at lowest possible cost. *Requires +5 Volts DC @ 2.5 Amps, -5 and -12 Volts @ 20 Ma . * Use with any TV set

Up to date, low power consumption STATIC type MOS Memory
No complicated refresh or power-down circuits needed.
last we can tell you about the most versatile, video位 display terminal kit available al is designed around a basic echnical CT-102. Our 144 bit memory that will display nother board and any wo pages of data on any star 16 lines with 32 characters on for. The two pages consist of ach line. Input may be any source of pas is to be used for keyboard, computer, ecc. Ihe similar display, teaching aid, deaf com

Other applications of a terminal system such as remote time Other applications of a termal system such as remial output. share, RTTY, etc require an interface har CT-S plug-in UART For these applications yourd. This allows you to transmit and card to receive ACSCI 600 baud options are available). The baud. (3 PS 232 type interface connects directly to your standard RS 232 modulator, modem system, or what have you.

If you are going to use the CT-1024 directly with a computer $1 / O$ port that requires a parallel ACSCII input, then you will want our parallel interface card, \#CT-P which
lows either the keyboard, or the computer to access the terminals memory and display data on the screen.

For those applications where it is useful, we also have an "off line edit", or "screen read" plug-in circuit \#CT-E. This allows you to compose a program, or message on the terminals display screen and transmit it out a line at a time when you are finished and satisfied that everything is correct.
If you would like the convenience of complete cursor control, we have our \# CT-CM plug-in board. This gives you Move Right, Move Left, Move Up, Move Down, Home Up, Erase to end of line and Erase to end of frame functions. These are operated by keyswitches, or any other type switches you may wish to use, giving you complete manual control of the cursor.
If the terminal is to be part of a computer system, you might prefer our automatic cursor contral circuit \#CT-CA. This plug-in not only allows you to control the cursor and to perform the functions listed above, but makes possible to perform the functions listed abo functions through the machines software.

CT-1024 Torminal System Kit with CT E Scren Read Plug-in Card K
\#CT-M Manual Cursor Control Plug-in Card Kit
\# CT-P Power Supply for CT-1024-115-230 Volt Primaries.
$\$ 175.00 \mathrm{PPd}$ $\$ 17.50 \mathrm{PPd}$ $\$ 11.50 \mathrm{PPd}$ \$ 15.50 PPd

Popular Electronics
JANUARY, 1975

TESTED

EXGLUSJVE! ALTAIR 8800
 The most powerful minicomputer project ever presented-can be built for under $\$ 400$

```
ALTAIR 8EOO
```


BY H. EDWARD ROBERTS AND WILLIAM YATES

HE era of the computer in every home-a favorite topic among It's mart EIECTRONICs/MITS AItir Populah blown computer that can hold its oun against sophisticated minicomputers now on the market. And it doesn't cost several thousand dollars. In fact, it's in a color TV-receiver's price class -under $\$ 400$ for a complete kit.
The Altair 8800 is not a "demon trator" or souped-up calculator. It is he most powerful computer ever pre red as a construction project in any lectronics magazine. In many ways, ent in ectronic design and top .
ing.
Altair 8800 is a parallel 8 -b instruction cyc january 1975
tral processing unit is a new LSI chip hat is many times more powerful than previous IC processors. It can ac commodate 256 inputs and 256 out puts, all directly addressable, and has compared with 40 in thens (as minicomputer) This means that can write an extensive and program. The basic computer ha 256 words of memory, but it can be economically expanded for 65,000 words. Thus, with full expansion, up to 65,000 subroutines can all be going at the same time.

The basic computer is a complete system. The program can be entered via switches located on the front panel, providing a LED readout in bi nal presented in Populas TRONICS last month can also be used

PROCESSOR DESCRIPTION

Processor: 8 bit paralle Max. memory: 65,000 words (all direct addressable)
Instrut cy cle time: $2 \mu \mathrm{~s}$ (min) dressable) outputs: 256 (all directiy ad dressable)
78 (181 with variants)
Add/substract time: $2 \mu \mathrm{~s}$ Interrupt structure; 8 hardwire 65,000 levels plus software levels
Number of auxiliary registers: 8 plus stack pointer, program counter an accumulator
or static RAM ROM or static RAM, ROM, PROM)
Memory access time: 850 ns static 420 or 150 ns dynamic Ram

atter) is shown in Fig 1 It consists of the following subsystems:
CPU. The heart of the computer is See fig. 2. The CPU performs all the see fig. 2 . ing and makes all decisions. Of particular importance are the decisions the CPU makes concerning what device should have access to the data buss. It makes these decisions by sending status information at the beginning of each computer cycle, telling the memory and the input/output what to expect for the rest of the cycle. The CPU contains the program This device keeps track of the current location in the memory that the processor is using. Also located in the CPU is the arithmetic unit
The CPU used in the 8800 computer, the Intel 8080 LSI chip, is relatively expensive in quantities of one. It was selected, however, because it serves to create a minicomputer whose performance competes with current commercial minicomputers. in practice, a lower-performance processor would have been adequate or the majority of the lasks to initiallydefine. But the problem relathe lesser-power little money would be saved, and it would be doomed to near-future obsolescence for practical purposes. Our intent here was to produce a processor with more than enough power to handle any job.

Still another consideration was programming. The larger the instruction set, the easler the compua 78 inprogram. The 8080 chip has 8 that structions, which level CPU available of the next pow which is really designed (Inters use as a buffer
The CPU contains eight generalpurpose registers, P counter, arithmetic unit, accumulator, stack pointer, instruction decoder, and miscellaneous timing and control circuits. The arithmetic unit is of special interest because it contains the circuitry required to perform arithmetic in both decimal and binary formats.
The stack pointer is the register that keeps track of the subroutine addresses. The 8800 computer unlimited number of subroutines, a feature not available with other microprocessors and absent in many minicomputers. The instruction decoder is the core of the variable-hardware concept. It

Cl, Cs to $\mathrm{C} 13-0.1-\mu \mathrm{F}$ disc capacito

C2- $0.01-\mu \mathrm{F}$ disc capacitor
$\mathrm{C} 3, \mathrm{C} 4-100-\mathrm{pF}$ disc capacitor
C 14 to $\mathrm{C} 20-0.001-\mathrm{HF}$ disc capacito C14 to $\mathbf{I C 1}$-8080 central processing unit IC (Intel)
IC2 to IC5-74L74 IC
IC6 to IC14-8197 IC
IC15, IC17-7402 IC
IC16, IC32, IC33-7404
IC16, IC32, IC33-7404 IC
IC18 to IC20, IC51-74123 IC
IC21-7473 IC
IC22 to IC24, IC50-7400 IC
IC25-7430 IC
IC25-7431 IC
IC
IC27
IC27 to IC31, IC39 to IC41-7405 IC
IC34, IC35- 8111 IC
IC46-742
IC42 to
IC49- 74 L 00 IC
IC52-7406 IC
IC53 to IC58-8111 IC (optional)
LED1 to LED36-Panel-type, red lightemitting diode
(Note: Following are resistors $1 / 2$-watt,
R1, R3, R9 to R31, R56-1000 ohm
R1, R3, R9 to R8
R2, R4, R7, R8- 330 ohm
R5, R33 to R37-2200 ohm
R6-7500 ohm
R32- 100 ohm
R38, R48 to R55-10,000 ohm
R39-200,000 ohm
R40 to R47-470 ohm
R57 to R92-220 ohm
S1 to S16, S25-Spst miniature toggle switch
S 17 to S 2
S17 to $\mathrm{S}_{\text {tary-24- }}$ Spdt spring-loaded, momen tary-action miniature toggle switch XTAL-2-MHz crystal
Misc.-Metal case; power supply (see text); line cord; multiconductor ribbon cable; mounting hardware, sare available Note: The following items are avaliable,
from MITS, Inc., 6328 Lin N.E., from Mirs, Inc., 68108 (Tel.: 505 Albuquerque, N533): partial kit No. 8800PK (includes pc boards and all electronic components (but not case, switches, or power supply), $\$ 298$; complete kit No.
8800 K (contains all parts, including ready-to-use case, switches, and power supply), $\$ 397$; Completely assembled and tested Model 8800 A computer (includes 90 -day warranty), $\$ 498$. Prices do not include postage or delivery charge.
Both kits include detailed assembly and Both kits include detailed assembly and
operating manual. A FREE set of etching and drilling guides, componentplacement diagrams and miscellaneous information is available from the kits sup plier (send self-addressed $812^{n \prime} \times 1$ " en- $^{\text {en }}$
velope with 40 c postage). Check supvelope with 40 postage). Clier or manufacturer for latest ICI plier or manufacturer
price, available separately.
popular electronics

The block diagram of the basic 8800

Fig. 3. The logic associated with the All of the buffers at left. All of the bujfers pc board. Connecting wiring is through a 100-line buss.
decodes the instructions and sets up the various registers, gates, etc., in the CPU for proper functioning. All system timing comes from the CPU. (The logic associated with the CPU is shown in Fig. 3, while the system clock is shown in Fig. 4.)
Memory. A computer memory stores the various binary . These 0 's that make known as bits. Some memories are organized to store 4, 16, 24 or 32 bits to a word, while others-specifically those in the 8800 computer-are organized to store eight bits to a word. Each time the CPU requests data from the memory, a complete word is transmitted. The term byte is interchangeable with the

Printed circuit boards are designed so that the various mating pads are aligned.
ulti-conductor ribbon cable interconnects the boards.

erm word in an 8 -bit processor (The basic 8800 memory is shown in Fig 5.) address first appears until the data is stable is called "access time." In most modern semiconductor-memory minicomputers, it ranges from 15 ns to $30 \mu \mathrm{~s}$. With proper adjustments, any memory speed can be used in the 8800 computer, although standard memory time is 850 ns for a static randomaccessmemory (RAM) and 420 ns for a ries will not appreciably affect the performance of the computer while slower-speed memories will result in an overall reduction in system speed.
In addition to semiconductor RAM's, the processor will also service ROM's (read-only-memories) and PROM's (programmable read-only memories). Access time should be reinforced for the particular memory used.
Any conventional memory can be ing on the buss does not input load ing on the buss does not exceed 50 standard TTL loads. Normal expansion loads to the buss would be one

TC52
signals from this $2-M H z$ clock controlled by
standard low-power load per expan- rent instruction. An automatic stop
Front Panel. The front-panel logic 1. sTop. Stops the protions: mediately after it complocessor
ccurs when power is turned on (in terrupts are disabled).
2. RUN: Starts the processor at the current address.
3. EXAmINE: Causes the data stored at the location (set by the switches) to

Fig. 5. The basic memory contains up to eight 256×4 RAM's, to write over that block
tents can be read out. There are 36 LED status indicators used for the address buss, 8 for the system status latches, and 8 for the data buss. The four remaining LED's are used for indicating memoryprotect, interrupt, system-wait, and hold status.

Power Supply. Four power sources are required to operate the computer: +5 volts at 2 amperes, -5 volts at $500 \mathrm{~mA},-12$ volts at 500 mA , and +8 volts at 6 amperes. The first hree are regulated, while the last is unregulated. The three Teguregulated power the processoripheral cards that can be used to expand the system, each of which has its own 5 -volt regulator on board. This reduces electrical noise and obviates the possibility of total system failure due to the failure of only one regulator.
Expansion. The basic computer is designed for almost unlimited peripheral and memory expansion, using a buss system where all input/output connections merge into a card can be plugged into any slot and it will function properly. The only qualification is that each card have an address decoder to allow the specific card to take what data it needs from the common buss and put data on the buss as required. The processor buff ers are designed to drive 300 external cards, which should be adequar that most applications. Bear
only 17 cards will yery.
ler of different peripheral devices num
38
various mating pads on both are aligned. Multi-conductor flexible ribbon cable interconnects the boards. The front panel control board contains the circuitry for the interfacing between the control switches located on the front panel and the CPU. In addition to the interconections.to the actual processor, this board accepts memory address switches (also on the front panel). The first eight of these switches ($D 0$ to $D 7$) are used to put data into the CPU. The EXAMINE/EXAMINE NEXT, DEPOSIT/ DEPOSIT NEXT, SINGLE STEP, and RUN/ stop switches are also wired directly to the front panel control board. The third board contains the intel 8080 central processing unit LSI chip, two-phase clock and buffers, and the various lines going to the buss. (The buffers are tri-state, high-inputimpedance, high-output-level de-vices.) This board also
flip-flops wired as latches for the eight bits of status information. All input and output wiring to and from the CPU board is via a 100 -line buss
The basic memory board contains 256 eight-bit words of random access memory (RAM). It is directly expandable to 1000 words. This board also contains the input/output data-gating, address-decoding, memory-warl, memory-protect circuits. The mem-ory-wait circuit ald the output data to ory time to stab while the memoryprotect circuit prevents accidental overwriting of the memory. All connections between the CPU and the memory board are via the 100 -line buss.
The four boards, along with the power supply, mount in an 18 -in. deep by $17-\mathrm{in}$. wide by $7-\mathrm{in}$. high (45.7×43.2 $\times 17.7-\mathrm{cm}$) metal cabinet. The various operating switches and Lel. When all cators go on the front panel. When alt this is done hear to be almost empty. However, the internal cabling system is arranged with connectors to accommodate 17 more boards within the case, all connected to the main buss lines. The added boards can be used for memory, input/output devices, control devices, etc. All you have to do is plug the boards into the connectors and the compur the rest.
Part 2 of this article, next month, will describe the operation ome sample
puter and
popular electronics

- HE ELECTRONIC flash system brought "stop action" photo op portunities to camera enthusiasts. It also eliminated the need for changing spent flashbulbs thanks to the storage properties of the elecirolytic capacitor and the use of long-life gaseous lamps. The next major ad vance in electronic flash technology can be pinpointed to 1965 when Honeywell Photographic introduced an photobuffs from having to set f-stops for each shot that was at a different distance. Now electronics has created another plateau in automatic flash technology by adding thyristo control-an SCR that both triggers the flash and stops capacitor discharge when the subject receives suf ficient light. The result? More flashes per battery charge, faster recycling time for the next shot, and short re charge time.

A Flash of Light. For background, here are the various steps that go into here are the various steps that go into light. First,' voltage from a battery, the usual power source in an electronic flash, is converted to ac by means of an oscillator circuit. (This oscillator, by the way, is what causes the characteristic "whine" you hear in the electronic flash unit.) Once the ac is generated, it is stepped up to a higher is converted back to dc by a rectifier after which it is stored in the flash unit's main electrolytic capacitor (Capacitors in modern flash units are capable of storing potentials of about 350 volts.) The flash capacitor is connected to a gas-filled tube. Xenort is the usual gas used, although some other types are available.

flashers
alyzer

- Autopilot for planes, boats, etc.
- Autopilot for planes,
- Time-share computer system
- "Smart" computer
- Brain for a robot
- Pattern-recognition device - Printed matter
- Automatic drafting machine - Automatic controller for heat, conditioning, dehumidifying
- Controller for sound systems
- Digital filter
- Digital filter
- Signal analyzer

At this stage, everything is set for triggering the flash. What is now needed is a high-voltage pulse to ionize the gas in the flashtube to make it conductive so that energy can flow through the tube, where it will be converted to light. This high-v's shutpurse contacts close, causing a small rigger capacitor to release its charge into a spark coil connected to the wall of the flashtube. After the charge on the flash capacitor has been exhausted, the gas becomes de-ionized and no longer conductive. The recharging cycle can then begin. Once the cycle is complete, as indicated by the ready lamp on the flash unit, the flash can again be fired

Automatic Flash. Film exposure is based on wo factors: time and inten based on two factors: time and intensity. With the pre-1965 photoflashers,
the time factor (flash duration) was the time factor at about $1 / 1000$ of a second for most units. Hence, intensity had to be controlled by changing the camera's lens opening (f-stop)
The Honeywell 660 automatic flash employed the first "quench circuit" and operated on the variable of time Now, instead of just one flash duration of perhaps $1 / 1000$ second, the flash unit would give a burst of ligh

Energy used by three electronic flash units shooting the same scene. At (A), the manual unit uses all the voltage stored in flash capacitor to illuminate the scene. Proper exposure is obtained ay quench-tube type, exposure was controlled by the a quench-tube type, exposure of the energy was used to expose the film. Flash unit (C) used the same amount of time and energy as (B) to illuminate the subject properly but unused energy remained in the flash capacitor, resulting in less battery drain

TRACES FROM AN ENERGY-SAVING FLASH UNIT

1000 and $1 / 30,000$ second. The ex posure control was taken from the camera, and the photographer put in the flash unit. The photographer had nly to set an f-stop on his camera, fllowing the recommendations he manuacturer based on the ligh SA of the film. The flash unit would then control the duration of the light Here's how it works Light ing from the flash tube is reflected from the subject back to the flash nit, where it is detected by a photoThe photocell is connected to mill capacitor whose value has been carefully selected based on known criteria (f-stop to be used with given ASA of film, ligint intensity, and distance) that add up to an ex alling on the photocell can be biased ither by using small apertures eutral-density filters placed before By so doing the photocell can be ooled into believing that it takes two hree, or four times as long to illuminate the scene. Responding to the mount of light falling on it, the photocell regulates the charging of he timing capacitor. Once the timing apacitor has reached its full charge in a quench-tube circuit, it closes nother switch that allows the curren owng from he flash capacitor to be series resistance. Here, the energy is xpended in the form of light and heat.
This second tube is never seen by he photographer, and its light never lays a part in the photographic prodis. just a convenient way of dumping the unneeded energy flow ing from the flash capacitor. With this approach, flash durations of up to 70,000 second have been obtaine ith small electronic flash units, per ling us to record such hings as reaking etc. breaking, etc
lographers enough to send most the quench-tube idea brough normous flexibility to electronic lash units, they were still energy was ters. There was no feasible way to arm up the energy flowing from the flash capacitor to the flash tube. The result was that a photographer could flashes per battery or charge in the case of the rechargeable nickel

cadmium battery, this was usually about 40 to 60 flashes

Enter Thyristor Control. In the fall of 1972, Braun introduced the first series-circuit, thyristor-controlled lash units. The much-sought-after small silicon controlled rectifier (SCR) called a "thyristor." Operating as an electronic switch, this little solid-state wonder can handle the load flowing from the flash capacitor and stop it at the precise moment that the exposure control circuit says the subject has received enoughight that stead of having a paraly from the flash capacitor, we now have a series circuit that allows the leftover energy to remain in the flash capacitor.
The thyristor has many advantages, among them: It can switch on and remain on until the current flowing through a dc circuit drops to zero (or near zero). It can be made to open if it receives a very brief low-energy pulse from the opposite direction. The pulse to shut down, of course, comes capacitor connected to the photocell. Used in an electronic flash unit, the thyristor performs two jobs. First, it stops the current flowing from the main flash capacitor, thus regulating the duration of the flash in the same manner the parallel quench circuit did. And it allows the unused energy to remain in the flash capacitor, rather than being wasted. This, in turn, provides ano advartage, because the battery can very quickly
supply the small amount of energy hecessary to recharge the capacitor. Battery power can be conserved meaning more flashes per charge. One series-type thyristor flash unit
known to us recycles in about 2.5 seconds after illuminating a scene 10 $\mathrm{ft}(3.05 \mathrm{~m})$ away. In doing so, it uses only 22 percent of the energy in the flash capacitor. However, if this same unit is fired at a subject $20 \mathrm{ft}(6.1 \mathrm{~m})$ away, it will have used up 90 percent of the stored energy and wirsequire 6 $25 \mathrm{ft}(0.76 \mathrm{~m})$, the recycling time would be only about 0.25 to 0.33 second. In the manual mode (with the photocell covered), or at distances at the very end of the electronic flash's ability to properly illuminate the scene, the thyristor does not receive the reversing pulse from the timing circuit. Instead, it opens after the voltage in the flash capacitor has drop ped to near zero (usually about 1.5 Battery.
and with the storage of energy in th flash capacitor. Before the thyristor made its appearance in flash units, it was necessary each time to supply enough power to bring a fully de pleted capacitor up to full charge. Now, the thyristor has reduced the requirement so that only fractions o the earlier power are discharged charge a paras cases, if the flash unit is used exclusively at the closest working distances twhere the duration of the flash is briefest), it is not uncommon to obtain 700 to 1000 flashes per nickel-cadmium battery

Charge. (On manual, these same bat teries would deliver only about 60 flashes per charge. Since no one shoots exclusively at distances of 2.5 $\mathrm{ft}(0.76 \mathrm{~m})$, the more usual number of flashes per charge is about 100 to 200.

Thyristor-controlled electronic flashes are not likely to glut the marflash makes sense only with the more high-powered flash units. The lowpowered flash units generally require the entire flash charge on the capacitor to illuminate scenes greater than $10 \mathrm{ft}(3.05 \mathrm{~m})$ away; so, there would be no energy savings by building into them a thyristor circuit. Ony flash units where a small amount ould energy would be used in ashotractical and necessary.
Another thing barring the universal Another thing barring the universal
use of the thyristor in electronic photoflash units is that this type of SCR is expensive and can be tricky to make. Quality control must be very tight, which reduces the number of devices available. This means that thyristor suppliers are having a rough time trying to keep up with the demand. Manufacturers trying to get enough thyristors just to meet the emand for flash units now in production.
When you do see a thyristorcontrolled flash unit, you can bet you will have to pay more for it than you are accustomed to do for "conventional" flash units. The type of sophistication built into these flash units does not come cheap. Perhaps when semiconductor manufacturers can crank out his maner crank out resisother manufacturers crank out be anticipated-but not before then.

Who Makes Them. If you want to look for one of the new thyristorcontrolled flash units, ask for any of the following in your local photo store: Argus Model 1272 or Model 1275; Auto Spiralite Thy 1000; Bell \& Howell Model 880; Braun Vario Computer 2000 F022 or 027 ; Honeywel Auto Strobonar 470 ; Metz Mecabe or Model 140 RES; or the Vivtar Auto Thyristor Model 292 or Model 352. Canon, Minolta, and Nikon also market this type of electronic photo flash unit outside the U.S.
popular electronics

A
state-of-the-art
report

on charge-coupled

devices and scanned photodiode arrays.
by harry garland
and roger Melen

A
N EXPERIMENTAL TV camera has been developed that is no larger than a pack of cigarettes. Equipment is being installed at supermarket checkout counters that can automatically read price tags. There is even a machine that enables material All of these developments are made possible by the use of solidstate image sensors- a special type of integrated circuit.
An image sensor can contain hundreds, even thousands, of individual photosensitive elements on a single chip of silicon. It is normally mounted in a standard IC package that is covered with a transparent top. When a scene strikes the image sensor, usually through a lens as shown in Fig. 1, he individual elements of the sensor their outputs displayed.

Area vs. Image Array. The photosensitive elements of an image sensor can be in either a linear or an area array. In a linear array the elements are in a single line; in an area array, they are in a two-dimensional matrix.
JANUARY 1975

Solid-State Image SensorsTV Camera Tube Successor?

A linear array can be used to produce a two-dimensional picture, but only one line at a time as the image
moves across the sensor. The number of elements in an array determines the resolution of the picture. The effect of resolution on picture quality is shown in Fig. 2. Here, the same picture is scanned by five different linear arrays.
The array with the lowest resolution (32 elements) produced the picture at the right, while the picture on the left was produced by an array with 512

Fig. 2. Photos of displays show how resolution affects picture quality. Number of elements in array increases from right to left.

2500-element area array is shown in Fig. 3. The sensor is electronically scanned and its video output is displayed on a CRT. The array used The reading aid shown in Fig. 5 was developed at Stanford University and has a 144 -element (6×24) image sen-

or. A small camera containing the mage sensor is used to scan a printed page. The outputs of the sensor control a 144-element tactile display that a blind person can feel by fingertip. This reading aid, known as the Optacon Optical to Tactile Converter) is being produced by Telesensory Systems Inc.

Fig. 3. Solid-state imaging system
sing a 50 by 50 using a 50 by 50 sensor array. The mage can be seen

Fig. 5. Reading aid for blind is used by scanning letters with senso in right hand and feeling them with left hand on tactile display.

Th an IC, a 512×320 (163,840 ement) image sensor must be deeloped. This would be a very large sensor indeed, and its development presents a real challenge to the electronics industry. RCA has recently announced an experimental CCD that on, but it is not being produced commercially at this time.

Scanned Photodiode Arrays. In

 the MOS photodiode image sensor, the photosensitive element is a silicon diode. When reverse-biased and in the dark, a very small leakage current flows through a photodiode. This is hines on the diode, current carriers are generated and more current flows; and the current increases as the light intensity is increased.The operation of a scanned photodiode array is shown in Fig. 9. The four diodes are sequentially scanned by a capacitor is shown across each diode The capacitors are not separate components; they represent the inherent capacitances of the diodes. When a diode is selected by the switch, its inherent capacitor charges up through the resistor to the level of the 5 -volt supply. As the switch moves on to another diode, the first capacitor discharges through its photodiode. If no light is hitting the diode, the small dark current will only partially discharge diode the capacitor is more fully discharged by the higher current Now, when that diode is again selected by the switch, an output signal is produced as the capacitor recharges to 5 volts. This video output signal is caused by the voltage drop across the resistor. The more the capacitor is discharged, the greater will be the video signal. Image sensors that operate in this manner are operating in the charge-storage mode
Scanned photodi
Scanned photodiode sensors use the diode array. The photodiodes are actually the source-to-substrate diodes of the MOS transistors. As shown in Fig. 10, the MOS transistors are sequentially "closed" by pulses from a shift register which is indexed by a clock input. Image sensors that include shift register circuitry right on the IC are said to be self-scanned. The Reticon image sensor mentioned earlier is an example of a self-scanned MOS photodiode array.

IF YOU ARE READY FOR SERIOUS CAREER ADVANCEMENT NOW-

Learn College-Level Ilectronics af Home

With CREl's unique Electronic Design Laboratory Program

There is only one way to a career in advanced electronics-through advanced training. You can get such training through a resident engineering college or you can take a CREI specialized college level electronics program at home.

Wide Choice of Programs. CREI offers you program arrangements with fourteen areas of program arrangements with fourteen areas o
specialization in advanced electronics. You can select exactly the area of specialization for the career you want.
CREI also offers program arrangements both for those with extensive experience in electronics and for those with only limited except for a brief introductory level course, which is optional.

Unique Laboratory Program. CREI now offers a unique Electronic Design Laboratory Progra to train you in the actual design of electronic circuits. You also get extensive experience in totype building and in other areas important to your career. The Lab Program makes it easier for you to understand the principles of advanced electronics. Only CREI offers this complete college type laboratory program. The Lab Program includes professiona You will especially appreciate the Electroni Circuit Designer, which is available only through this program and which you will find extremely valuable throughout your profes-
sional career. sional career.

College Credit. You can actually earn college credit through CREI programs, which you can use at recognized colleges for an engineering degree. CREI maintains specific credit transfer arrangements with selected colleges in the U.S

Industry Recognized Training. For nearly 50 years CREI programs have been recognized hroughout the field of electronics. CREI
tudents and graduates hold responsible positions in every area of electronics and are mployed by more than 1,700 leading organi-
ations
Qualifications to Enroll. To qualify for enrollment, you should be employed in electronics r have previous experience or practical train must also be a high school graduate or true equivalent.
All CREI Programs are available under the G.I. Bill

Send for FREE Book. If you are qualified end for CREl's full color catalog describing these college-level programs and your caree card or write for your copy of this book.

cGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D. C. 20016

IGNITION TIMING LIGHT FOR

IMPROVING GAS ECONOMY

OWADAYS, everyone knowshow under conditions of bright daylight, important it is to get the best gas economy possible from an automobile. One of the more is engine factors that affect econor timing is timing. In addlat, mobile engines so required on a that exhausters.
Timing changes for a variety of Tasons. As the parts of an engine wear the timing tends to become retarded. If ignition points are replaced, timing is also disturbed. Furthermore, it is virtually impossible to set the point gap exactly the same as it was when the timing was last set.
Using a dwell meter is a far more accurate method of setting point gap than using a feeler gauge, but even this will not guarantee properignition timing. The fact is, the best to check ignition timing is with a light.
The timing light described here can be built for only a few dollars. Yet, it is designed to percosting $\$ 25$ or more commercial unit cosight enough to use Its light output is bright enough to use

Circuit. The hear of timing light's circuit (Fig. 1) is do-to converter transformer... 1 and current betweing up the bat Q1 and Q2, while seppig volts A fer ery potential to aboulen for this circuit to keep down project size and cost.

The primary winding of $T 1$ (wound "bifilar" method that gives tight coubing accurately locates the center tap The tight coupling is essential to keeping the voltage spikes across the transistors to an absolute minimum. (In this type of circuit, the spikes can easily exceed ten times the supply voltage if a poorly deansisto transtormer is used caifilar winding fo the primary, the voltage spikes acros Q1 and Q2 are well below the 60 -vo rating of the transistors.

PARTS LIST

BY ANTHONY CARISTI

The stepped-up voltage from the secondary of $T 1$ is again stepped up by the voltage-doubler circuit consisting of D1 and D2

Construction. Perhaps the most demanding part of the construction process is the winding of $T 1$. Even so, the job is not difficult, only timeconsuming. The transformer should be wound in the following manner: Start by winding the feedback loop (its leads are labelled 1 through 3 in Fig. 1) on the bobbin supplied with the ferrite core. Use No. 30 enameled wise. This winding consists of 10 turns of wire, interrupted at the 5th turn for a center-tap connection. Conneths of solder $5-1$. . $12.7-m$ the ends and stranded hookup winding Label the center-tap of first turn 2 at the centerleads 1 al a final turn. Then wrap tap, and ang with a layer of thin Mylar the winding we.
or plastic tape.
Next comes the bifilar-wound primary winding. This consists of 27 double turns of No. 30 enameled wire double turns of No. SO enam EIECTRONIC

C1- $0.005-\mu \mathrm{f}, 500$ - volt disc capacitor C -22 - $\mu \mathrm{f}$, 25 -volt tantalum electrolytic C3. C4actor
C3,C4-20- 5 , 150 , capacitor
tifier (1)-volt, $1 / 2$-ampere silicon rec-FTI-250 2070, HEPR0053 or equivalent (Radio Shack No. 272-1145 flash-tube Q1, (Radio Shack No. 272-1145 or similar) transistor (2N5296 or equivalent)
R1- 68 -ohm, $1 / 4$-watt resistor
R2- 560 ohm,
R3- 470 -ohm,
2-watt resistor resistor
R3-470-ohm, 2-watt resistor
T1-Transformer wound on TDK Type
Fig. 1. The dc-to-dc converter (TI) steps

Label one end of a $4-\mathrm{ft}(1.22-\mathrm{m})$ strand of the enameled wire with a 4 . Label one end of a similar strand 5 . Starting wurns of two ends together, wind 27 Using an ohmmeter, determine the unmarked end of the wire that started with 4 and connect it to the end

H5A P2213 Z52H ferrite core and TDK Type BP $2213-612$ bobbin (See text) coded test lead cables; alligator crocodile clips with insulated boots (2) rubber grommet; printed circuit board Dow Corning Silastic cement; mare; No. 30 and No. 36 enameled wir
wire spring-type spark plug cable connecto (available from most automotive supply
outlets); stranded hookup wire; solder;
etc.
The TDK ferrite-core/bobbin assembly is
available for $\$ 3$ from An available for $\$ 3$ from: Anthony Caristi,
69 White Pond Rd., Waldwick, NJ 07473.
p the battery voltage
marked 5. This is the center tap. Th other unmarked end is terminal 6 Cover the winding with tape to hold in place and insulate it from the sec ondary
the secondary winding consists o This is the most 36 enameled wire
sembly. Be sure to accurately coun the number of turns as you go. How many turns you wind will determine the dc potential applied to the flash tube. When you are finished winding atach 5 -in. lengths of stranded label them 7 and 8 . Then wrap th label them 7 and 8 . Then wrap the tape
Circuit proper begin assembling the circuit proper. A printed circuit board mounting (see Fig. 2 for actual-size etching and drilling guide and com ponents placement diagram)
Transformer $T 1$ is mounted on the board with the aid of a 6.32×1-in machine screw, fiber washer, (at the top of the transformer), and a $6-32$ nut. Do not overtighten the hardware or you will crack the core, render ing it useless. (Note: Capacitor C mounts on the board atop C 3 as shown
in Fig. 3) in Fig. 3)
When the circuit board assembly is completely wired, temporarily con and black hookup wires for the posi tive back hookup wives for the posi nect the leads properly polarized to 12 -volt battery or other dc source if the board and transformer are prop erly assembled, you should hear a high-pitched tone when power is applied. This is the vibration of the trans former core as the circuit oscillates. A VOM connected across R4 should provide a 250 -volt reading if the inpu potential to the circuit is set to 14.5 volts. If the circuit does not oscillate the phasing of the feedback winding of $T 1$. may be incorrect, in which case, you can transpose leads 1 and 3 and try again. Remove the temporary eads.
The type of flashlight body best suited for your timing light is shown in the lead photo. You will have to drill board assembly A third hole that permits color-coded battery and plug leads to exit the flashlight body should be lined with a rubber grommet Pas the leads through this hole and con nect and solder them to the appro priate points on the board. Terminate the positive and negative battery leads with insulation-booted alligator or crocodile clips and the plug lead with a spring-type plug-to-cable adapter. Turn over the circuit board and carefully solder a 4-40 machine nut to the copper pads surrounding the mounting holes. Make certain that the nuts are centered over the holes and hat no solder flows into the threads.

The flashtube mounts in the lashlight's reflector. You can enlarge the standard lamp hole in the reflecto with a rat-tail file, working carefully to avoid damaging the reflector or scratching its reflective coating. Th flashtube's fit should be reasonably close without binding. Place on a flat flector assembly face downtube in the surface and insert the fioning it with its enlarged hole, positioning it wertipoint against of the lens. Run a bead of epoxy or Dow Corning Silastic ${ }^{\text {6 }}$ cement between flashtube and reflector and allow the cement to set overnight. Be sure to maintain the flashtube vertical to the lens as the cement sets (Fig. 4).
Once the cement has set, you can complete final assembly. Locate the negative (woven) electrode lead of the flashtube and connect it to the hole marked $F T 1(-)$ in the component placement guide in Fig. 2. Then conits the end of the flashtube opposite its the enative electrode lead) to the FTI (+) point on the board. The only connection left to be made is the spark-plug test lead. Locate this lead and connect and solder it to the highvoltage terminal on the flashtube. (Note: The high-voltage terminal is the metal band affixed to the outside of the flashtube.) Pack the connection with Silastic cement to insulare
set the assembly aside
When the cement has set, slide the circuit board assembly it in place with
light case and anchor

oard assembly shows $T 1$ mounted with
Fig. 3. Wired pc board assembly shows $T 1$
4-40 $\times 1 / 2$-in machine screws. nearest the front of the engine. The two $4-40 \times 1 / 2$-in. machine screws. \quad number-one cylinder on a V8engine is Screw on the reflector assembly flector itself to rotate. If you allow the either on the left or the right.) With the flector itself otate, the flashtube will be damaged or a short circuit will dedamaged
velop.
How to Use. Before making any timing adjustment on your car, set the dwell time of the ignition points according to the recommendation of the manufacturer of your car. This can be accomplished by using a dwell meter on most General Mots with an Allen justing the points wine is running wrench wares, the dwell angle On other car madjusting the point gap must be sear in mind that the dwel angle must always be properly se before the timing is adjusted a changes in the dwell angle will change ignition timing.
Locate the number one cylinder of your car's engine. (On 4- and 6 -cylinder engines, engine shut off, remove the ignitio lead to the number-one cylinder and connect the timing light's plug lead the plug. Replace the ignitio, it is adBefore starting the flywheel and paint thin white line over the timing mark so that it is readily visible. Then refer to the decal, located in the front of the engine compartment of late model cars, to determine the calibration of the timing scale and proper ignition timing specifications.
Remove the rubber hose connected o the vacuum diaphragm of the distributor and plug the hose opening with a pencir. The disa built into the tomatic vacuumadvor on angine is al distributor. Timing the vacuum adways adjusted with the vaclect to do vance disa will set the timing incorrectly and the engine will not operate prop- erly.
erly.
Connect the remaining two timing light cables to the car's battery, observing the proper polarity. Start the engine. The light should now be flashing at a rate of 4 to 5 times per second. Aim the timing light at the lywe mark locate the timing mark. The If timshould appear the bolt that ing is not correct, clamps the diste the distributor in the engine at the proper indicadirectionten the bolt and recheck the timing to make sure it has not changed.
Stop the engine. Remove the timing light and replace the hose to the distributor's vacuum-advance diaphragm. The timing of the engine is now correctly set. It need not be checked again until the points are replaced.

PARTS LIST

$\mathrm{B} 1, \mathrm{~B} 2-3.5$-volt rechargeable batteries $\mathrm{C} 1-50-\mathrm{VF}, 6$-volt electrolytic capacitor $\mathrm{C} 2, \mathrm{C} 3-4.7-\mathrm{VF}, 10$-volt electrolytic
D1 to D3-1N
D4-1N4001 rectifier diod
DS-1N4739 zener diode
DISI-14-digit light-emitting diode scien-
tific display
tific display
IC1,IC2-MOS
IC1,IC2-MOS scientific calculator inte-
grated circuits (see note)
grated circuits (see note)
IC3 to IC5-SN75492
grated circuit (Texas Instruments)
IC6,IC7-SN754917-segment driver integ-
rated circuit (Texas
rated circuit (Texas Instruments)
Q1 to Q3-2N5232 transistor
RI-Optional charging resistor (value con-
tingent on charging current desired)
R2-2.2-megohm, $1 / 4$-watt resistor
R3-22,000-ohm miniature printed circuit
potentiometer
R4-3900-ohm, $1 / 4$
R5-1500-ohm, $1 / 4 /$-watt resistor R6-4.7-ohm, $1 / 4$-watt resistor
R7 to R14-220-ohm, $1 / 4$-watt resistor T1-Special converter transformer
Misc.-Calculator case; keyboard assem-
bly; recharger; bly; recharger; mounting nuts (2); thin
insulating washer; Molex Soldercon printed circuit connectors; fine solder etc.
Notce: The following are available from Network Research Corp., 27 Eagle St. Spring Valley, NY 10977 : complete kit of parts including manual, batteries, and ac
adapter/recharger for $\$ 89.95$ (New York residents add sales tax); \#N1003 keyboard assembly for \$12.00; \#N1002 display assembly for $\$ 19.50$; \#N1001 etched and drilled pc board for $\$ 5.50$ \#N 1000 MOS scientific calculator IC's
for $\$ 60$ the set; ; $\#$ N 1005 trans for $\$ 60$ the set; ; N1005 transformer for
$\$ 3 ;$ \# 1004 interface IC's (5) for $\$ 9.50$ the set.
lem, suppose you wanted to know the equivalent impedance of a 560 -ohm Hz . The solution, 687.5569736 at 2500 about a minute with the calculator considerably more time with paper and pencil
To give you a better idea of how practical the calculator is, you can hrow away your logarithm and trigonometry tables. You won't need them again because they are only a few keystrokes away in your calculator -all figured out to an accuracy of nine well. A places. And that goes for π as capabilities of this calculist of the in the box.)

The Popular Electronics cal culator has built into it two levels o nested parentheses, each of which defunction command This pecuting problem to be "written" into tht culator exactly as it is written down paper. When a new parenthetica statement is opened, the previous re sults and functions are stored in the calculator until that level of paren theses is closed later in the problem. So, a complex problem like

where $a=4, b=5, c=2$, and $d=3$ can be solved quickly with the aid of the parentheses. The keystroke sequence would be: $1,+,\left(,(, 4,+, 5),, x^{2},-,(, 2\right.$
$+, 3,), x^{2}, \sqrt{x},=, 1 / x, \sin x^{y}, 3$, When the last keystroke is $x^{y}, 3,=$ the display will read the answer $8.70831579-09$, which means that the mantissa is the number shown raised to the negative ninth power of 10 $\left(10^{-9}\right)$, which means further that the calculator employed another built-in eature-automatic scientific notation. (The calculator goes automatically to scientific notation whenever the solution is an excessively large or an excessively small number.)
Note that in the above sample probnad mory or external scratch-

About the Circuit. The schematic diagram of the complete scientific calculator is shown in Fig. 1. Special MOS integrated circuits IC1 and IC2 are the heart of the circuit. They acept keyboard entries, perform all mathematical operations demanded, and deliver a multiplexed output to the driver circuitry for the 14 -digit LED isplay. (The display consists of 10 mantissa digits, two exponent digits, one negative-sign digit for the expothe disallow a and radian function notations-sign, left of the mantissa) Buffers /C3 throug
digit-enable lines, while $C 6$ and 14 are the segment drivers for the display. Note that all similar segments are driven simultaneously, with the digit selector choosing the correct digit of the moment.

Because the MOS chips require both positive and negative 7 volts de referenced to common to operate and
only a 7 -volt battery is used in the cal culator, a two-transistor (Q1/Q2) do to-dc voltage converter is required. In conjunction with $T 1, R 4$, and C2, the Qscillator Thit forms a push-pull power oscillator. The output of $T 1$ is rectified by D1 and D2. It is then filtered by C3 to tor Q3 is the volts required. Transisregulator, while potentiometer R3 permits adjustment of the battery's low-voltage cutoff point batery' Rectifier diode point
rom the plug-in charger to pus the ac dc for charging the two batteries. Zener diode $D 5$ keeps the voltage from exceeding the approximately 8 volts required for recharging. An optional resistor (R1) is used to limit the charging current to a safe level.
Construction. There is no practical way of assembling the calculator board. Unfortunately prince circuit must have conduct, son

features of the popular eiectronic

 FULL-FUNCTION SCIENTIFIC CALCHATORBasic ar
divide tween 1.99×10 negative number bebe entered and displayed
Entry can be in either floating point o conversion to scientific notation in very large and very small numerical results
Algebraic problem entry with two levels
of parentheses of parentheses
0 -digit mantissa with 2 -digit exponent
numeric display numeric display, plus battery-low,
minus-sign, radians, disallowedfunction, battery saver display. Positive/negative sign selection for mantissa and exponent
ranscendental functions: \sin, cos, tan,
$\sin ^{-2}, \cos ^{-1}, \tan ^{-1}$, commonlog, natural
Convenience functions: $\sqrt{\mathrm{x}}, 1 / \mathrm{x}, \mathrm{x}^{2}$ Separate memory register for storage of Consfants or intermediate results Chain calculations with any sequence of
functions desired functions desired
ndependent system
Trigonometric functions entry clear frigonometric functions can be perSeparate \leftarrow key with 9 decimal place accuracy
Automatic display cutoff to conserve battery power
Rechargeable ba
Battery charger that doubles as acoperated battery eliminator
and the components must be mountad as close to the board's surface as possible, there is no practical way of making this board at home. While you might be able to make the required double-sided board atstered, whe is no known method that can be used at home to plate-through the holes. Hence, you will have to purchase the pc board from the supplier listed in the Parts List.
Shown in Fig. 2 is the component placement guide for the main board assembly. The view is from the com ponent side of the board. (The two sides of the board are readily identifi able because the bottom side on which no components are
bears the legend BOy installing and Start assembly by installing and soldering into place to installing the three electrolytic capacitors, the diodes, and the transistors, taking care to observe proper polarity and basing. Mount the transistors close to the board's surface. Use a fine pointed soldering tip, thin-strand so der, and a minimum of heat. Fre quently clean the soldering tip with damp rag to remove excessive buildup of solder. This will minimize the poss bility of solder bridges between the closely spaced foil conductors. Do (IC1 ouch or remove hir Morriers until in and leze) trom so
If you inspect $T 1$, you will note that here are three pins in one of its corhers. These pins serve as the installation "key." Install and solder into place the transformer. Potentiometer R3 mounts in the upper-right corner of the board. Then install IC3 through C7 in their respective locations, carefully observing the notch code. As you proceed, carefully inspect the board for the presence of solder bridges. If you locate a solder bridge, reflow older and remove the excess. Install both ends and on both sides to the copper conductors. (Note: There are small holes in the board and the battery contacts are dimpled. When properly installed, the contacts are positioned with their dimples engaging the holes.) Install and solder into place the spring-type battery contacts, making sure that the pin-connector side is vertical to the plane of the board. Mount and solder into place jack J

Straighten a strip of 24 Molex Soldercon ${ }^{\text {® }}$ connectors but do no mo ny $1 /$-in ($16-\times 32-\mathrm{mm}$) piece of mask ing tape from the non-adhesive side Mount the connector strip in the holes ust below the five IC's at the top of the board, pressing down to seat the tape firmly against the board's surface. Flip over the board and solder the protruding pins to the copper foil. Be very careful to avoid solder bridges. Flip over the board again and, using longnose pliers, bend the connector strip back and forth until it parts from the connectors. Be careful to align the connectors properly.
the same fashion as described above, mount a strip of lower edge of
the board. This time, use a 2 -in $(51-\mathrm{mm})$ length of masking tape. (The upper strip of connectors is for the display interconnect, while the low
Straighten four Soldercon strips, each consisting of 14 connectors. In stall these in the holes for IC1 and IC2 Then, before breaking away the con nector strips, make sure the connec tors are straight and that the IC pairs are parallel to each other. Now, before you even consider opening the carrar flly read and become familiar with the procedures for handling MOS de vices by reading the instructions given in the box on page 57
With yourself properly grounded and all conditions for good MOSdevice handling met, open the carrier.
popular electronics

With the IC's still in the carrier, deter mine is which and the location pins 1 . 1 is near the small bump pin 1 . To be absolutely certain o man each ic you can use a smal nagnifying glass to check the IC leads near where they enter the packages Only pin 1 in each case has a tiny hole rilled through it.
With the forefinger of the hand you have grounded pressed against the from its carrier Check to make sure it leads are in straight lines. Then care fully install the IC in its appropriate connectors on the board. First engage the pins along one side of the IC in the connectors. Once this is accomplished, work the leads along the other side into.their connectors. Apply firm, even pressure to the IC to seat it in its connectors. Do not force the IC into the connectors or subject it to torsional forces or you might misalign or ficult, reak of pins. II insertion is difThen, insert and reme an carrie the connectors several times to "form" them. Any DIP IC will do; just make sure to cover all connectors. Now, install the IC from the carrier.
Repeat the above procedure for /C2
The display comes as a completely wired assembly, with its 24 connector pins already mounted in place. Just make sure that the pins are in a straight line. Carefully fit the displayoard pins into their respective connectors on the main board. Press the display board into place so that it rests
The keyboard ics with a slight tilt. plete assembly, including connector pins. Straighten any out-of-line pins and engage them in the connectors along the lower edge of the main board. Gently seat the keyboard asembly in place until the narrower porons of the upper two plastic posts on keyboard assembly engage the maller of the holes above the negative-terminal battery contacts on he main board.
Slide the entire assembly into the tho small plastic tator case untill the end of the keyboard engag the molded slots in the case top At this time two threaded plastic posts should appear through the holes im mediately above the negative batter contacts on the main board, and 11 should slightly protrude through its slot in the case.
Holding the board assembly in place January 1975
in the case, secure the two together with small nuts over the threaded posts. (Note: Because of possible infoil conductor neen nut and close-by ced conductor near the left post, pre washer.)
Place the power switch in the OFF position, and tape it in place until the batteries have been installed. The batleries are marked with + and - signs. The + sides are protected by sleevings that extend beyond the bodies of the such a manner that the batteries will fit into their respective locations in only one way. Slip the batteries into only This completes construction.

SAFE HANDLING OF MOS IC'S
Prior to any construction and before moving MOS IC's from their protective carriers, it's imperative that certain pre cautions be understood and followed Alinsulated-gate MOS devices-can b high electronic fields. Random electrostatic charges must be kept away from MOS devices. Anyone who handles the devices should wear anti-static clothing (preferably cotton) and, if possible, cot ton gloves. Do not wear synthetic fab up static charges.
All working surfaces where MOS de vices are handled should be conductive and at ground potential. Before han dling, you should also be grounded. And possible contact with charg because of or objects.
All apparatus that is to come into conlact with MOS devices must be grounded, including your soldering device in a pover insert or remove a MOS ing or removing a MOS device, touch the grounded surface only after you have grounded yourself. If possible, ground he conductor pattern around the area where the device is to be installed with conductive tape or aluminum foil during MOS device is removed from a circuit, mmediately install it in a protective carrier.
You can ground the tip of your soldering iron by wrapping around its thick strap to a length of meshed cable The free end of the cable then goes to a good ground. To ground yourself, use a simiar procedure. Wrap a length of meshed able snugly around your working-hand cable to a good ground.

Checkout and Adjustment. Plug teries charger into J and let the batdisconnect the charg hours. Then tape from the power switch and set it to $O N$. The right-hand mantissa digit and its decimal point should come on displaying 0 . Leave the power applied and, after about a 30 -second delay, the 0 and decimal point will blank out, being replaced by a minus sign in the exponent display. This indicates that the battery-saver feature is working. Press the clear (C) key to restore 0 . to the display. Feed in the numbers 1 through 0; operate the $+/$ - and EE press the $+1-$) keys; feed in 88 ; and now read -1234567890 degrees-to-radians key; ress diagonal bar segment should a smal to the extreme left of the display. Operate this key again, and the ba should extinguish. Press the C key Press the π key. The display should now read 3.141592654 . Depress C Now, with 0 . displayed in each case press log (common logarithm), '1n (natural logarithm), and $1 / \times$ (recip rocal). In each case, before depres sing C , the disallowed function indicator, an inverted L, should show at the far left of the display.
potentiometer b3 it it is now indicator first fully charge the batteries Plug the battery charger into 11 and the ac out let. With the power switch set to off charge the batteries for about 8 hours. Then use the calculator for about 4 hours. Then, with the power on, adjust R3 with a thin-bladed screwdrive through the hole in the bottom of the main board, until the battery-low indicator (an L at the left of the display) comes on.
Install the back of the calculator case by inserting the two bottom hooks into their respective slots a top end simply snaps into place. Ana row slot at the top of the case is provided to permit the case to be reopened as desired with a coin or screwdriver blade. Simply twist.
The calculator can be operated from fully charged batteries for about 4 to 5 hours. When the charge runs down, simply plug in the recharger. Recharging takes 8 to 10 hours. The battery charger can also be used as a convenient battery eliminator. However, under no circumstances should the echarge be used there are no batteries in the calculator

CONSTRUCTION

IC Speed Controiller for HO Model Railiroads
 Precision low-cost device provides

full control flexibility and simple speed indication option

by robert d. PASCOE tures forwar and decrease-speed crease-speed, all control f́lexibility. In addition, optional lighted pushbutton switches can be used to provide a vis

ual indication of how fast the train is moving on its tracks. The thas light from the lamps.

About the Circuit. Operational am plifier IC1, in conjunction with transistors Q1 and Q2 (see schematic dia gram), forms a voltage regulator cir cuit. The output voltage from this cir cuit is determined by the voltage at th
wiper at potentiometer $\mathrm{R2}$ and Op amp C2 is connected in a voltage-follower configuration. The dc voltage across C3, the reference for the regulator, is a product of the time a constant current is "pumped" into the capacitor. The two current pumps an system with Q3 the tive pump.

PARTS LIST

Cl- $1000-\mu \mathrm{F}, 50$-volt electrolytic capacit C2, C3-100- $\mu \mathrm{F}$, 50 -volt electrolytic capac itor
1-D8-IN4003 (or similar) silicon diode F1- 0.5 -ampere fuse
11-13-6-volt pilot lamp (optionally in S1-S3) IC1, IC2-741 operational-amplifier integrated circuit (or use dual version) 11-HEP-703 power transistor (Morod

2-2N4400 transistor (or use Motorola HEP-736)
Q3, Q4-HEP-801 FET (Motorola) resistors in parallel)
R2- 10,000 -ohm potentiometer
R3, R4- 4700 -ohm, $1 / 2$-watt resistor
S1-S3-Normally-open pushbutton switch (Use Switchcraft No. LUS-05-01 if built-in 6 -volt lamp is desired)

S4-Spst slide or toggle switch S5-Dpdt, center-off switch T1-26.8-volt, 1 -ampere transforme fuse holder; socket(s) for $I C l$ enclosure perforated board and solder clips; lin cord; strain relief or rubber grommet (for line cord exit hole); dry-transfer letterin kit; machine hardware; hookup wire; sol-

Depressing increase speed switch 51 causes the output voltage at the tracks to increase. Conversely, depressing $S 2$ causes the output voltage oo decrease. And pressing stop switch causes the output voltage to im mediately drop to zero.
A visual indication of the speed at by observing how bright the light from lamps $11-13$. One of theselamps is (optionally) inside each pushbutton switch. The greater the track voltage, the faster the train is moving on th tracks, and the brighter the lamps. The three-diode current limiter composed of $D 5-D 7$ holds the curren being fed to the tracks to approx mately 1 ampere. Hence, the circuit is protected in the event the train track should accidentally be shorted to each other.

Construction. Owing to the simplic ity of the circuit, the entire controller except for $T 1$ and the switches con mounted on a piece of perforated board with the aid of push-in solder January 1975
terminals and sockets for IC1 and IC2. Series-pass transistor Q1 must be mounted in an aluminum heat sink with about 9 sq in . 58 sq cm) of radiat ing area.

You can mount the circuit board as sembly and transformer in any suita ble enclosure. The control switches and potentiometer are best mounted put jacks 11 and niently located on the rear of the closure, as is the exit hole (strain re lieved or rubber-grommet-lined) for the line cord.

In Use. The upper voltage limit to the tracks is determined by the setting of potentiometer R2. To adjust R2, de press increase-speed switch 81 for 10 seconds. The glow of the three lamps will increase in briliance during this interval. Set R2 for the desired upper imit track voltage.
The speed at which the track voltage mined by and decreases is deter and Q4). With the
specified in the Parts List, the voltag change rate is about 2 volts/second Increasing the values of $R 3$ and R^{4} decreases the rate of change, and vice-versa.

So why should the experimenter have to start from scratch when we can give it to them in kit form!
numumann

K
EYING círcuits go by many names. In organs, they are called simply keyers; in traditional electronic voltage-controlled amplifiers (vca's), envelope shapers, or modulators. functionally, they are electronic multipliers. All of them do the same job--they combine pitch information with the envelope information to produce a realistic note or note sequence. Done properly, this sets the attack, sustain, fallback, decay, and snubbing of any note on an individual basis. Ensuche confolects as percussion, the "bite" on the leading edge of a horn sound echos, tremelo, and noise modulation.

A very few older organs did not employ keyers. They simply applied and removed the supply voltage to and from oscillators or used the keys themseives as off/on note controllers. Envelope shaping ability is very limted by this means. At the other exinge, some true computer compospecify the amplitude and frequency estantaneously. With these excep ions virtually every other electronic music system generates tones and envelope information separately. These two signals are then routed into a circuit that provides a combination of the desired loudness and frequency. The keyer or vca might work on any
note in a monophonic instrument, or note in a monophonic instrument, or
one individual keyer can be supplied with each note in a polyphonic system We can use much more sophisticated keying circuitry if we need only a few rather than one for each note. Keying or envelope shaping can take place either before or after the tinbre or tone-quality circuly, working eilher ated or the final highly structured haratedic tone Organs usually employ fixed formant filters; and a polyphonic instrument is usually keyed first and voiced later. In synthesizers, the note will more often be colored by a patchwork of voltage-controlled oscillators (vCO's) and filters (vcf's), place.
of the tone or waveshape without be having like a low-pass filter
To be useful in a circuit, the keyer hould have a medium-to-high tone input mpedance and a low outputimpedance so that it can drive output and mbre circuitry without difficulty burce too heavily. The im the the envelope input would ideally be infinite so that large-value resistors and economical small capacitors could be used for attack-sustain-de cay shaping. This is particularly important on polyphonic instrument where a hundred or more keyer cir cuits might be needed
Keyer design is no simple task, since it shares all the woes of any faithfu electronic analog or digital multiplica tion problem. Let us look at some popular approaches to keyer design. on keyers we will two-part article differential-amplifier four-quadran multiplier and gain block keyers Next month JFET MOSFET Transcon ductance-amplifier and CMOS keyers.

Diode Keyer. The diode keyer by now, fairly obsolete. An ordi nary silicon diode has its small-signal (50 mV or less) ac impedance set by
the direct current through the diode. If there is no current, the diode is an open circuit. For small direct currents the impedance presented to ac signals is given by the ratio 26/l, where l is the current in milliamperes. So, a diode carrying a $0.5-\mathrm{mA}$ current "looks" like 52 ohms to a low-level ac signal routed through it.
In Fig. 2A, one capacitor is used to couple a tone into the diode and use rect current through the diode the disadvantage of this circuit is that it will thump as the envelope appears in the output. A second diode and equal positive and negative signal swings (Fig. 2B) from the envelope circuitry overcome this disadvantage. The two diodes are in series across the en velope circuit but in parallel with the tone input. Two more diodes (Fig 2C) eliminate the extra coupling apacior.
input impedance is low, output im swing into a medium resistive voltage needed for the envelope input But if the diodes are identical and if the con trol voltages are also identical, and if the ac signal level is low enough, the diode keyer can operate without introducing intolerable distortion, and it

will not cost much to make. (A diode keyer will always add some distortion.) Various transistor schemes have been used in keying setups. They are basically diode keyers that use the base-emitter junctions of transistors as the multiplier elements. They ease the loading and impedance problems, but they can introduce thumping if they are not properly designed. e have much better methods.

Differential Amplifier. In Fig. 3A is shown a differential amplifier. It is the most commonly used amplifying circuit at this time and is found in almost all linear integrated circuits. A differntial amplifier normally amplifies the difference between two input signals. Fig. 3A, one input is tied to ground to provide single-ended-input operafion. This circuit can be used as a keyer by routing the tone signal into input X and the envelope into input Y. If a fixed voltage is applied to input , 1 and emitter current will appear in Q1 and Q3. Input A goes to Q1 and comes out of he The emitter signal drives Q3, which stage, operated as a grounded-base stage, signal appears at Q3's collector.
The gain of the circuit in Fig. $3 A$ is obtained from the formula IR/104 where R is the Q3 collector load resistance in kilohms and I is the emitter current in Q3, the 104 comes about because Q3 receives only half the
available current and because $Q 1$ output impedance is equal to the inpu impedance of Q3, which yields a sec ond 2:1 attenuation.
It is important to note that the gain is directly proportional to the emitter current. Change product of the envelope and tone input signals is obtained. This type of circuit is called a vca. It bilaterally and at high speed gives the product of the two input signals.
One obvious problem with this circuit is that the dc drop across Q3's collector load resistor follows the envelope, resulting in two output terms-the desired shaped tone and an undesirable thumping from envelope feedthrough. In Fig. 3B, a second load resistor, in the collector cir cuit of Q1, has been adged. which is cuit has wo the other out-of-phase with the input Both outputs bounce up and down together
A good differential amplifier ignores the common-mode up-and-down bouncing of the input signals. It is only the difference between the two signals that matters. So, by simply adding still another differential amplifier stage to the one shown in Fig. 3B, the output stays at a fixed dc level regardless of the envelope and is a thump-free replica of the desired signal.
Differential amplifiers are widely used in synthesizer vca's. While many
similar devices exist, the RCA CA3000 series linear IC's offer many differen-tial-amplifier possibilities. An ordinary 741 or 5558 operational am plifier can be used to eliminate the common-mode thumping on the last
stage. The differential-amplifier vca stage. The differential-amput impedances, controllable gain, and large signal swing. The envelope signal must be referenced to a negative sup ply, and the input impedance might be a bit lower than we would like it to be. Dynamic range is good and distor tion is low, but the system becomes a bit complex if a separate circuit is used for each polyphonic note. The differential-amplifier vca is a very good choice
sizer circuits.

Four-Quadrant Multiplier. A fourquad rant multiplier is a true electronic multiplier that provides the product of the envelope and pitch inputs directly. No offsets are needed on the envelope input, and the output is normally referenced to ground.
A typical four-quadrant multiplier circuit is shown schematically in Fig. 4. The multiple paths through all the differentially-arranged transistors provide for automatic cancelling of common-mode feedthrough and thumping. As a somanced synthesizgrs the phase of the tone signal is reversed by inverting the envelope.

In basic differential amplifier (A), envelope causes thump in the output. An additional amplifier Fig. 3. In basic differential amplifier (A), envelope causes an ordinary 741 operational amplifier.

Fig. 4 (A) are typical connections for 4 -quadrant
multiplier. Key internal circuitry is shown at (B)

Typical four-quadrant multiplier IC's include Motorola's MC1595 and Analog Devices' AD532. Alternatively, you can use the much lower priced
Signetics 5596 as the key component
in a multiplier of your own design. our-quadrant multiplier is its the None of these IC's is inexpensive. Some exceed $\$ 20$ each and obviously
are too costly if you are considering using one for each note in a polyphonic system. Aside from this, the the best you could hope for.

Gain Block. Several linear IC's offer emote-controlled gain capability that an be used as a keyer circuit Motorola's MFC6040 is a typical example of such a circuit (Fig. 5). It costs about $\$ 1$. Its circuit is one more variant on the differential-amplifier theme

with common-mode bucking. Typical voltage gain, wide open, is $3: 1$ or 10 dB ; attenuation can go as low as 70 dB below full output.
The output swing of the MFC6040 can be up to 6 volts peak-to-peak. One potential disadvantage of the circuit is that the attenuation is somewhat
nonlinear.

SBE Cenlined

SCANNING MONITOR RECEIVERS

 HF/FM • VHF/FM UHF/FMNow-the "Sentinels", a series of fine monitor receivers joins the big, world-wide-accepted line of SBE communications equipment. Single or dual band
models of these versatile, applicationoriented SBE scanners provide coverage of the most widely used VHF/UHF bands. For example, the six different receivers available give $F M$ reception and positive scanning operation for business, industrial (including RCC and other mobile telephone), law enforcement, fire, highway
emergency, traffic advisory, marine-including intership / Ship-to-shore / Coast Guard/Weather - many other services. sIX MODELS:
Sentinel I: Hi-144-171MHz, Lo, 30-51MHz, Sentinel II: $144-171 \mathrm{MHz}$
Sentinel III: $30-51 \mathrm{MHz}$. Sentinel V: $450-470 \mathrm{MH}$
Sentinel VI: $\mathrm{Hi}-450-470 \mathrm{MHz}$,
Lo-144-171 MHz,

8 channels-continuous "scanning
Receiver locks on iirst thannel Receiver focks on tirst chat
on which signal appears. Priority channel feature: Receiver
shifts instantly to designated chan nel whenever carrier appears on it regardless of existing channel status, Channel lock-out buttons: Unwanted channels can be locked out. Manual advance button allows chan
nels to
og scanned manually sase or mobile (AC or DC). Use Base or mobile (AC or DC). Use in
car or home/office. Operates both car or home /oftice. Operates both
on 12vVC for mobile and 115 VVAC for
home station.

Circle No. 32 on reader service card
ig audio volume- 3 to 4 watts.
Fractional microvolt sensity

- Fractional microvolt sensititivity Squelch - Built.in speaker • Jack
for external speaker - Crystals used are readily available types not included).
Complete w \mathbf{w} pluzin teescols Complete $w /$ plug in telescoping anten. na, mobile mounting racket and cor
plug sets for 12 VAC and 115 VAC. Write for Brochure

SBE 220 Airport Blva., Watsonville, CA 95076

THE tuner is the "radio" portion your music system. Although most tuners cover both the AM and FM broadcast bands (and proposed government legislation will make this mandatory), the following comments apply specifically to FM tuners.
The tuner's function is to separate one desired signal from the many intercepted by the antenna, amplity auency modulation to an exact facsimile of the original program, and (if it is a stereo program) subject the detected signal to a complex process which separates it into left and right stereo channels.
Like amplifiers, most tuners tend to sound pretty much alike on ordinary program material. Many people place great store in numerical specifications for such characteristics as sensitivity and selectivity. Actually, neither of these is casy to Auce ofingle pect of the tuner's performance. Numbers are used of course; but they are frequently misunderstood or misinterpreted.

Sensitivity. This refers to the ability of a tuner to receive a weak signal with acceptably low noise and distortion. The IHF Usable Sensitivity rating is most often quoted, although it does not correspond to a really listenable signal. Most good tuners have an IHF sensitivity of less than $3 \mu V$, and some are as low as $1.5 \mu \mathrm{~V}$. Acsible in pracany real difference between two tuners whose sensitivities differed by a factor of two (all else being equal), there is a tendency to make much of differences of a few tenths of a microvolt, a quite insignificant amount More meaningful is the $50-\mathrm{dB}$ Quieting Sensitivity rating included in a proposed IHF tuner standard, but not yet in wide use. Our test reports in Popular Electronics do include it, however. This is usually in the range of 3 to 7 V and epresens he weakes without excessive background hiss For stereo reception, all these sensitivity figures should be multiplied by a factor of ten, which may explain why stereo sensitivity ratings are no widely publicized!
Of course, these sensitivity numbers have no absolute meaning to the consumer who cannot know the actual received signal strengths in his area. In ural locations, one can indeed find
tion, caused by a signal reflecting from various structures and reaching the antenna from different directions and at slightly different times. The tuner specifications related to low multipath distortion are capture ratio (the lower the better, with most good ing 1 dB or less), and AM rejection (ratings in excess of 50 dB are good (ratings in excess of 50 dB are good,
and a few are as high as 70 dB). You should be aware that no tuner can be completely immune to multipath distortion and that the best cure for this and most other FM reception problems is a good directional antenna which can be rotated to obtain best results.
The tuner distortion rating should be well under 1%, and most good tu ners are rated between 0.2% and 0.5% in mono, and about twice as much in ies with modulating frequency, but is often specified at 400 Hz or 1000 Hz , where it is greatest. Comprehensive ratings include a definition of separation over a range of frequencies, such as 100 to $10,000 \mathrm{~Hz}$. If the separation exceeds 20 dB over most of the audio range, you can be assured of a satisfactory stereo effect. Many tuners in all price ranges have 30 to 40 dB of separation over most of the audio band.
Operating Ease. Many important tuner differences relate to their ease of operation, rather than their electrical performance. The tuning dial should be legible and well calibrated. (Some tuners, even high-priced units, are difficult to set accurately to a known frequency because of inadequate dial calibration.) The tuning "feel" should be smooth and positive. Tuning ind cators, whether meters or lights, should give an accurate indication of correct tuning. Interstation-noise muting circuits should be free from bursts of noise as one tunes through a station characteristics are easy to judge fo yeurself and require no technical yourself and
knowledge.

There are several tuners with digital frequency readouts instead of the usual slide-rule dial. This eliminates any problems of dial calibration bu adds appreciably to the cost of the tuner. Compensating for their higher prices is the fact that most digital tuners also have above-average performance in most other respects relating to high fidelity drawer full of unidentified transistors which are of little use unless
the leads and type (pnp or nnn) can be determined. Actually, that's the be determined. Actually, that's the
only really important information only really important information
needed to apply a transistor in a needed to apply a transistor in a begin with. Of course, it's nice to

BUILD THE

TRANSISTOR IDENTOMETER
signals of a few microvolts, and some times the highest possible tuner sensitivity is needed in such locations. In most urban and suburban ts antenn hundreds or even thousands of m crovolts from dozens of stations.

Selectivity. Clearly, high sensitivity is not likely to be an important tuner rating for the city dweller. What abou selectivity? FM stations in any given $0 \mathrm{O}-\mathrm{kHz}$ intervals (alternate chann pacing) If you are located close to powerful FM station and wish to re ceive a far-off station only 400 kHz re moved, you will need high alternatechannel selectivity. Most FM tuners have selectivity ratings between 45 and 60 dB , which is generally ade quate for interference-iree reception. you have a problem, there are selectivity is 90 dB or more-channel expensive, but well worth itifyou heir special qualities
In strong-signal ares some tuners are subject to spurious responses -signals appearing on the dial in unexpected places and sometimes inter fering with a desired signal. The rele rant ratings-image rejection, spurious rejection, i-f rejection-are also numbers being better

Capture Ratio. Amajorcauseor orted FM sound is multipath recep

This distinction provides the type identification.
With the correct phasing of the 3-4 secondary of $T 1$, the exclusive OR signals are accepled by the LED diver thal can its half cycle of the ac signal during is half cycle of slight differences in the voltage levels from turning on the drivers.

Construction. To duplicate the pro-
totype and use the pc boards show Fig. 2, certain mechanical modifi components. Transformer 11 must have its four terminals cut to a size that can fit into the pc board As shown in Fig. 3, two more tabs must be added to terminate a new winding The molded plastic form of this transformer allows adding the two new terminals (3 and 4 on the schematic). The six terminals will
then be spaced three on each side, on $3 / 8-\mathrm{in}$. centers.
urns of \#34 enamelled wire around the original core. There is enough room to do this, although it will take a little patience. Be sure that the new winding is wound in the same direction as the 12 -volt winding aready on the transformer to ensure enamel off thin. (Don't if you should wind the new secondary the wrong

Fig. 2. Foil pattern for
main poard is at left, with component layout at right. Foil pattern
way, it is easier to route the ends to the correct terminals than to start over or modify the pc board. The terminals of $S 2$ must be modified as shown in Fig. 3 so that the switch will fit the pc board as Now you are ready to assemble the circuit on the main board as shown in Fig. 2. The front panel is marked as shown in the photograph with the six switch positions identified. Install SO1 and mount the LED's in small rubber grommets, properly identified.

Fig. 3. Add a winding and and alter switch lugs as show

Then mount the switch on the front panel. Connect the larger board to it with spacers. Note that the large from the a small spacer supporting the rotary switch board f the rotary switch board.
Dolod test leads and put for the in the holes. The leads are terminated with color-coded insulated alligator clips. From the top of the panel, the owest test lead (green) is on a line from the emitter terminal on SO1; the center lead (yellow) is the base; and the upper lead (red) is the collector.

Operation. Connect the three color-coded test leads to the unknown transistor in any order, turn on the LED's illuminates Make sure that this only occurs at one position. The position of the switch will then dentify the leads and the LED will indicate the type.
If the transistor being tested is not good (either open, shorted or leaky), neither indicator may come on or one or both may light at more than one switch setting.
The Identometer will not check FET's, nor will it work "in circuit. When checking power transistors, particularly germanium types, there due to the high leakabe current associated with these transistors. JanUARY 1975

Simple
 Scuelching Circuit
 for Stereo 19M Tuners

BY LAWRENCE N. DWORSKY

M
ANY inexpensive stereo FM tuners have no automatic squelch" to eliminate between-stahave a stereo indicator lamp invariably be used to trigger a very simple squelching circuit like that shown in the schematic.
The add-on squelch circuit shown employs an inexpensive photo Darlington amplifier (HEP1001), operating with its base connection "floa ing". The Darlington amplifier switch es from a very high resistance in dark ness to a very low resistance when illuminated by relatively low light switched to the photo transistor is tially the supply voltage from the tery is applied across the gate-source terminals of both HEP 802 FET's. This pinches off the FET's and causes them to present a very high source-drain resistance across the outputs of the tuner, effectively doing nothing. When there is no light present, photo transistor presents a high resis ance to the gates of the FET's. The source-drain resistance of the FET's therefore drops to about 200 ohms, effectively short-circuiting the outputs of the tuner.

If the tuner being used has an ex ceptionally low output impedance -less than 600 ohms or so-the be-tween-station muting may be insuf 100 -ohm resistor placed in each out put line of the tuner (see phantomed portion of schematic) should remed the problem. Since most amplifiers have a relatively high input imped ance, these resistors should have no effect on system performance.
No power switch is needed with the add-on squelch circuit because bat tery drain is very low. Even when operating at full capacity, the drain is less than $10 \mu \mathrm{~A}$. So, the battery will las just about its shelf life with power con tinuously on, which eliminates the
bother of having to remember to turn on an extra power switch.
When installing the squelch circuit use only shielded audio cable to make the hookups between tuner, squelch er, and amplifier. Also, mount the Dar lington amplifier as close as possible to the stereo indicator lamp in the tuner. This transistor is very sensitive so, care must be taken to insure that "sees" light from only the stereo indicator lamp and not from any other light sources.

"IS TIME we furthered your edu cation by discussing light ning-damage insurance jobs that oo Barney his assistant, during their afternon Coke-break.
A man can't even enjoy a Coke around here without having it lace with knowledge," the red-headed youth grumbled, "but go ahead-i you must.
"ist listener," Mac said, lighting his pipe this kind of a job, and each must be considered: the owner of the damaged electronic equipment, his insurance company, and the service shop called upon to assess the nature and extent of the damage and possibly to repair it. Let's run quickly through the chronology of such a job; then we'll go back and discuss interesting features. "First, an insured who thinks lightning has damaged his radio, TV hi- -f , amateur station, CB transceiver etc., should promptly report this to his insurance agent, who win inct an established service shop. That doesn't mean the insured's brother-in-law who tinkers around with electronics in his spare time!) At the shop a technician carefully examines the equipment to see if the set failure was caused by lightning, the extent of the damage, and the probable cost of re pairing the set. This information is re layed to the insurance agent, directly or through the owner, and the agent calls an adjuster to look at the set. I may be a few days before the adjuste calls al he shop, butwhen he does, he hard evidence that lightning did the damage: so all such eviderce should be carefully preserved for his inspec tion.
"The adjuster reports to the insurance company, which, based on his recommendation, either (1) denies al responsibility due to a lack of evi-
easily briage open switch contacts of radio or TV receiver. Most people don't understand this
"What kind of damage does lightning do?"
"Mark Twain remarked that one thing you could lie about and get away parrot say Lightning stories heard a that. No one can prove you're lying I've seen lightning strike a horizontal antenna and reduce it to a line of little copper beads in the grass below. When a conductor carries a heavy current, forces are developed by the accompanying magnetic field that tend to crush the conductor. This is called the 'pinch' effect. Another time I saw a rubber-covered copper wire that had been hit by lightning and reduced to a rubber tube with no wire inside at all. Stranger still, the rubber insulation seemed to be intact and hardly clude the fragmentation of line bypass capacitors, melted power switch contacts, fused conductors on pc boards, vacuum tube envelopes shattered,

ig. 1. A spark gap arrestor to protect ham antenna is easily made. ruptured filter capacitors, shorted windings in power transformers, anenna input coils of radios and TV sets badly charred, flash burns on the chassis in the vicinity of line cord tiepoints or the power switch, and tubes with burned out filaments. These are some of the things the adjuster will expect to see
"I imagine the action the insurance company takes depends a lot on the olicy the owner has
Right. The usual home owner's policy comes in a variety of types, inwith matching premiums. Naturally, the higher the deductible the lower the premium. TV, amateur, and CB antennas, rotators, and towers are not ordinarily covered by policies that are written to cover the house, garage, and household goods. Even then, with
popular electronics
such a policy, TV sets, radios, and hi-fi's are only covered for their actua cash value. The guy who has never chagrined to discover the may be very his beloved but ten-year-old hi-fi not entitle him to a brand-new stere system at the expense of the insur ance company. He may do well to re cover the cost of a new stereo car tridge.

Fig. 2. In power-line arrestor,
is reduced by resistor.
'But there's another way to go. If he has ham, CB, or hi-fi equipment worth $\$ 500$ or more, he can insure it for full replacement value with a separate pol icy usually labeled a 'personal line floater' or an 'inland marine floater. Then, if his equipment is destroyed, the company will pay enough to buy a new system comparable to the one he $80 ¢$ to better than $\$ 2$ per $\$ 100$ of declared value per year depending on the individual company and the item insured. Jewelry, cameras, tools, serv ice instruments, and similar equip ment in the home can be insured with these policies."
"Seems to me the technician is pretty important in this operation. That he is. Actually do many insur ance jobs here without ever seeing an adjuster. Local agents know me, and they also know the average adjuster is unqualified to assess damage to They're coted electronic equipment the basis for settling the report as sure this arrangement prevails in many other communities, and it puts a lot of responsibility on the technician especially when the equipment belongs to a long-standing customer who feels 'taking' an insurance company isn't really stealing. When one of these starts hinting he wants me to declare his equipment a total loss when it isn't, or to say the damage was caused by lighning when there's no evidence to support this, I suggest tha he take his set to another shop be JANUARY 1975
cause I intend to call things exactly as I see them. Invariably, he then
backs off." backs off."
surance policy? think is the best in surance policy?"
That's easy: prevention. You rarely recover your entire loss through in-
surance; so the best thing to do is try to protect your equipment from lightning damage. You could, of course follow the practice observed in the old French provinces and keep some wood from a lightning-struck tree under your bed, secure in the belief you're fully protected because 'lightning never strikes twice in the same place; but I'd suggest you employ more scientific methods. Start by mak ing sure your house wiring is properly grounded and protected against over Ioads with fuses or circuit breakers. TV lead-ins, antenna rotator control wires, and coax feed lines, Ground metal towers or metal masts mounted on poles or other wooden supports. Make a good common ground if you don't know how-most people don't-order "Lightning Protection Code 1968," NFPA No. 78, from the National Fire Protection Association, 470 Atlantic Avenue, Boston, MA 02210, for a postpaid price of $\$ 1.37$."
"How do lightning arrestors work?" There are many types, but all are surge of to do one job: carry a heavy a conductor safely to ground while leaving that conductor virtually disconnected from ground at all other times. Let me sketch a couple of common types. Shown in Fig. 1 is a homemade spark gap arrestor for use on the open-wire feeders of a ham antenna. Gaps are spaced just wide enough not to arc with full power from the transmitter, but voltage from a nearby discharge will start the arc that carries the heavy current safely to ground. When the surge subsides, the arc stops.
Things are different when the conand high voltage as does avower line primary. Once the arc is started by lightning, the follow-current from the generator would keep it going until the arc electrodes were melted. The arrangement in Fig. 2 prevents this. The nonlinear thyrite resistor has a resistance which decreases exponentially with increasing current. When carrying the heavy discharge current, it is a virtual shortcircuit; but with the lower follow-current, the re-
sistance increases until the voltage drop across it is sufficient to stop the arc. Various resistance and gap types of lightning arrestors are manufactured for use with telephone lines, coaxial cable, twin-lead, etc.
rom lightning occurs mhent damage from lightning occurs when a surge why 1 think it is an excellent idea to install a secondary service light ning arrestor, such as G.E. Model 9L15CCB007, called a Home Lightning Protector, right at the service enrance. Otherwise, pull the plugs on all electronic equipment when you're going to be gone for several days or when you're home and a thundertorm is building.
Do you think a high antenna tower nvites lightning damage to the home?

Fig. 3. A metal antenna tower properly grounded, provides a cone properly grounded, provide.
"Quite to the contrary, if the tower is metal and properly grounded or has the metal mast properly grounded, it actually provides a cone of protecpex of the cone is at the top of the grounded antenna, and the radius of he base is equal to the height of the tower. A direct strike of lightning to any object inside this cone is very unlikely."
"All
"All right, let's recapitulate: quiz your insurance agent and read your policy carefully to see exactly what electronic equipment. To protect that equipment, use lightning arrestors on all leads entering the house, including the power leads. Make good grounds and bond them together. Pull plugs during storms or when you're going to be away from home, and don't try to con the service technician into helping you defraud the insurance company. If he goes along with that, he'll cheat you, too!'

It takes more than books to learn about electronics.
 III. Digital Trainer helps you learn the latest in
 integrated circuits so you'll have a solid background in

Bell \& Howell Schools introduces three fascinating learn-at-home programs featuring some of the finest equipment available as your "teachers". Choose the program you preferthen mail card for free details today!

Experience is the best teacher, without a doubt. And when it comes to learning electronics, we feel it's hands-on experience with state-of-the-art equipment Schools'learn-at-home programs you work with some of the most up-to-date equipment. Equipment that's being used today-and will be used tomorrow. So the skills and knowledge you acquire will be useful for years to come.

Of course, with all our learn-at-home programs you'll have plenty of lab manuals and basic principles to work with. And you'll also get exciting "teachers" to help make electronics come alive
Lab Starter Kit gives you hands-on experience with the very first lesson

We get you started with the basics in an exciting way! At the very beginning you get a fully-assembled volt-ohm meter as well as design panels, modular connectors, experimental parts and battery. So you don' just read about electronics principles, you actually see them at work!
You build your own Electro-Lab ${ }^{\text {Wi }}$ electronics training system.

Whatever program you choose, you get your own home laboratory including oscilloscope, digital multimeter-and design console to give you actual experience in wiring, soldering assembling, testing, trouble-shooting and circuit analyzing.
I. Learn new skills in the field of Home Entertainment Electronics including building the new generation color TV

What better or more exciting way to learn digital electronics! Once you have the basics under your belt and get into colo theory and service, you'll build a $25^{\prime \prime}$ diagonal color TV and probe into the digital technology behind digital channel numbers that flash on the ... a digital clock that flashes the time to the second and an automatic channel selector

u get

As you put the set together, you Il discove how advanced integrated circuitry works, how to trouble-shoot it and much more. Upon completion of the program you'll have gained the specialized occupational skils to service color TVs s plus the principles hat you can apply And you'll have the home etion to understand and work with new produc applications as they're developed, too!
II. Use professional communications equipment as you delve into Communication Electronics

Here's how to pick up skills in the vital field of two-way radio, widely used in public safety, marine, industrial and transportation areas. Bell \& Howell Schools Communication Electronics Program can help prepare you for the FCC licensing exam, right through to 1 skill in two-way radio, radar or commercial teach you sk broadcastin

For a refundable deposit, you get to use the special two-way radio equipment lab featuring an $F M$ transceiv frequency meter, and
modulation meter. All modulation meter. All
regular, first-rate commercial grade test equipment.

Industrial Digital Electronics.

Digital technology is setting new standards of accuracy and beginning a revolution in industry. For example, more precise control in refining, manufacturing plants, food And now you can learn about this technology with Bell \mathcal{E} Howell Schools'unique Digital Trainer. You'll analyze and experiment with various types of
 integrated circuits so you'll have a solid background in
modern digital electronics and its applications to industry. You study at home in your spare time ... Because these are home study programs, you
an learn electronics without missing day of work or a single paycheck. You study at your convenienceYou study at your conveniencer
without being a classroom captive. If you ever have any questions, you can call our toll free number for he You can also meet and talk shop
students and instructors at "help sessions" held in 50 cities at various times throughout the year. Bell $\&$ Howell Schools tries to give you more personal attention than any other learn-atme program
Decide which exciting program you're interested in ... you can check more than one. Then mail postagepaid card today for free information-no obligation!

Taken for vocational purposes, these courses are approved by the state approval agency for Veterans' Benefits. Please check box on card for free information. Naturally, we cannot offer assurance of income opportunities.

Meter 4 2. Design Console 3. Modulation
eter 4. Digital Multimeter 5. Triggered Sweep Oscilloscope 6. Lab Starter Kit Multimeter 7. Frequency Meter 8. FM
Transceiver $9.25^{\prime \prime}$ Diagonal Color TV 10. Alignment Generator 1. Lesson Tape Player 12. Digital Trainer

TECHNICS BY PANASONIC MODEL T-200 SPEAKER SYSTEM

 (A Hirsch-Houck Labs Report)Compact, inexpensive system with room-filling sound

THE Technics Model T-200 is the least expensive of a new series of loudspeaker Systems from
Panasonic. It is a compact system that measures $213 / 4$ in by 12 in. by $101 / 2$ in deep ($55.2 \times 30.5 \times 26.7 \mathrm{~cm}$) and weighs slightly less than 30 lb (136 kg). The oiled walnut cabinet contrasts with an attractive sculptured, acoustically transparent grille that is available in either blue or brown
The two-way system contains a $10-\mathrm{in}$. $(25.4-\mathrm{cm}$) acoustic-suspension woofer that crosses over at 1800 Hz to a $13 / 4-\mathrm{in} .(4.45-\mathrm{cm})$ cone-type tweeter. The rated dispersion angle of the tweeter is 120° in both the horizontal and vertical planes. A switch is provided on the rear of the cabinet to permit the tweeter level to be set for normal or 3 dB attenuation. (Flattest overall response is obtained with maximum tweeter output.) The system has a rated nominal impedance of 8 ohms . The retail price of the Technics
Model T-200 speaker system is $\$ 99.95$.

Laboratory Measurements. The response of the speaker system was measured in a "normal" listening 78
varied the drive level to maintain onstant 90 -dB sound-pressure leve SPL) at a distance of 1 meter from the woofer, the distortion was somewhat
higher than we have measured on some other speakers of the same size, but it was not audible on program material.
The tone-burst response was fairly good. There were no signs of severe ringing or generation of spurious frequencies throughout the operating range of the system. Efficiency wa moderately low, as would be expected input of 1 watt in the midrange produced a 90-dB SPL at a 1-meter distance. This corresponds to about $80-\mathrm{dB} \mathrm{SPL}$ in the normal listening area of a typical room, which is about as loud as most people would care to lis ten to music in their homes.
The electrical impedance of the sys tem was 50 hms at 20 HZ and between 100 and 200 Hz . It peaked at 18 ohms a the $62-\mathrm{Hz}$ bass resonance point. A frequencies higher than 1000 Hz , the mpedance was typically 15 to 18 ohms.
User Comment. The general shape f the measured response curve fo he T-200 was confirmed by our simulated live-versus-recorded listening mitate the T - 200 was used to corded program played through a ret ered program played "live" ougharer The T-200's midrange and highs were virtually perfect but there was a slightly full quality in the lower midrange and upper bass range This ap peared to correspond with the fact

that the average woofer level was a few decibels higher than was the aver age tweeter level. "shelf" response cut) was applied a requencies below 1000 Hz with an octave-band equalizer, the speake

PIONEER MODEL RT-1011L STEREO TAPE RECORDER
A Hirsch-Houck Labs Report)
Logic-controlled recorder handles $10^{1 / 2}$-inch reels.

T
HE U.S. Pioneer Electronics Model RT-1011L stereo tape recorder features three motors, three heads, solenoid-operated transport, cm / s) operating speeds. This quartertrack recorder is designed to accommodate tape reels measuring up to $101 / 2 \mathrm{in} .(26.7 \mathrm{~cm})$ in diameter. The transport is "logic controlled" so that any operating mode or speed can be selected from any other without hav ing to first press the STOP button. Yet, he tape is fully protected agains breakage and spilling

General Description. The record er's tape loading procedure is simplified by a guide roller arm that locks out of the way when it is moved to its limit so that the tape takes a straight-line path across the heads, over the capstan, and over a tensioning arm as it goes to the take-up reel. The tensionJANUARY 1975
shut-off switch in the event of tape breakage and when the tape runs out Two large illuminated meters ind cate both recording and playback levels. The meters monitor the line outputs so that the playback indications vary with the setting of the playback level controls. Located above the meters is a red light that comes is whe on both blow seater is accond mode. for 00 - to 5000 is a slandard jack for 600 - to 50,000 -ohm dynamic mirophones
Locking pushbutton switches con trol ac power, tape tensioning for 7 -in reels, and tape speed Other pushbut tons are labeled REC PLAY REWIND FAST FORWARD, and stop For easy identifica tion, the rec button is red while the sTOP button is larger than the others. Although the pushbuttons energize solenoids, they are designed to mechanically lock into position to permit the recorder to be set up in advance for recording. When line power is later applied by an external clock timer, the deck goes directly into its recording mode.
Five lever switches supplement the pushbuttons. Two place the channels individually into the recording mode when the rec button is pressed. This is a satety feature that prevents acciden al tape erasure. It also serves as means of recording on one channe while playing back through the other for echo and sound-on-sound (he lat ler requiring external patching Two more levers provide excep
ting the original sound in an $\mathrm{A}-\mathrm{B}$ comparison. The highs were obviously peak-free and very well dispersed.
Listening to this speaker system one is apt to find it difficult to believe expensive compact system. It gives a room-filling sound suggestive of a much larger system and provides exceptionally good musical balance and overall smoothness. The T-200 illustrates most effectively how the proper combination of conventional drivers and crossover components by a knówledgeable designer can produce a total sound character that is greater than the sum of its parts
CIRCLE No. 65 ON READER SERVICE CARD
tional flexibility in adapting the re corder to any type of tape. They separately control recording bias and equalization. Each has positions for STD (standard) and LH (low noise/high-output) tape formulations A table in the comprehensive instruc tion manual provided with the record er suggests switch setting combinations for many popular tapes. Alterna tively, optimum conditions can be de termined by recording and listening, The last lever switch connects the line outputs to either the source (input) signal or to the playback amplifier's outputs.
Concentric control knobs are provided for independently adjusting the One pair of controls is for the mi crophone inputs, while the other is for the line inputs A third pair of concen tric controls permits the playback level to be adjusted in each channel A stereo headphone jack is located on the recorder's front panel. The line inputs and outputs and a DIN socket that repeats the two are located on the rear of the recorder
The recorder can be operated vertically or horizontally. It measures 17 in high by $167 / 8 \mathrm{in}$. wide by 8 15/16 in. deep ($43.2 \times 42.9 \times 22.9 \mathrm{~cm}$) and weighs $49 \mathrm{lb}(22.3 \mathrm{~kg})$. It comes with walnut side panels, a $101 / 2-$-in. metal reel, and two reel-hub adapters for professional-size reels with large center holes.
The retail price of the Pioneer Model RT-1011 stereo tape recorder is $\$ 599.95$.
Laboratory Measurements. Using Ampex test tapes, we found the playback equalization of the tape

corder to be very accurate at both speeds. It was within $\pm 0.5 \mathrm{~dB}$ from 50 Hz to $15,000 \mathrm{~Hz}$ at $71 / 2$ ips and within $\pm 0.8 \mathrm{~dB}$ from 50 Hz to 7500 Hz at $33 / 4$ ips. (These are the frequency limits of the test tapes.)
We used 3M No. 207 tape for the balance of our tests. We measured the record/playback response with all four combinations of switch settings. Although the differences were slight, we concluded that the LH bias and STD equalization settings yielded the flattest overall frequency response
Using a -20-dB recording level at $33 / 4$ ips, the overall response was within $0-\mathrm{dB}$ recording level, tape saturation (expected at this speed) caused a sharp drop-off in response beyond sharp drop-off in response beyond
7000 Hz At $71 / 2 \mathrm{ips}$, the response at the -20 dB level was a very flat 2.5 dB from 20 Hz to $24,500 \mathrm{~Hz}$. It was within $\pm 1 \mathrm{~dB}$ from 25 Hz to $21,000 \mathrm{~Hz}$. Saturation was less of a problem at higher recording levels at $71 / 2 \mathrm{ips}$. Hence, the $0-\mathrm{dB}$ response did not begin to fall off appreciably until we reached $12,000 \mathrm{~Hz}$. The line inputs required 43 mV for a $0-\mathrm{dB}$ recording level. This produced a maximum playback output of 0.5 volt. The microphone sensitivity was 0.18 mV for 0 dB , while the amplifiers over-
prise, the flutter was reduced when the guide roller arm was locked in its loading position. (It normally plays an important part in reducing flutter.) The flutter measurements were then 0.08% and 0.12% respectively. Wow was the residual of the test tapes, measuring 0.01% to 0.02%.
The tape transport operated smoothly and appeared to be foolproof. When going from either fast speed to PLAY, the tape came to a stop in about a second and paused for 2 or 3 seconds before going into play. The trol can be used to eliminate even this trol can be used to elim.
The headphone outputs had very good volume levels, even with 200 ohm high-impedance phones.

User Comment. Despite an ability to accommodate $101 / 2-\mathrm{in}$. reels, this is very much a home tape recorder-an outstandingly fine one. In ease of loading and handling, it is about as simple and straightforward as any machine we have used. Its frequency response, distortion, and noise levels are among the best we have measured and would do justice in most respects to any professional recorder.
Due to the calibration of the deck's meters, it is eminently practical to maintain average music recording levels near the 0 -dB mark. The meter pointers can be permitted to swing to
full-scale and beyond on peaks with-full-scale and beyond on peaks w
out serious risk of over-recording. out serious risk of over-recording.
Needless to say, the deck did a fla less job of recording from phonograph and tuner sources as well as of playing back commercially recorded tapes. At a surprisingly reasonable price, the Pioneer Model RT-1011L offers an impressive combination of high performance and operating versatility.
Circle no. 66 on reader service card

HEWLETT-PACKARD MODEL 5381A FREQUENCY COUNTER

Seven-digit, laboratory-grade instrument operates to 80 MHz
ity are more critical when complex filters are involved since they don't work ters are involved since they don t work
properly unless they are tuned "on the properly
Although there are many reliable frequency counters, it is nice to see that one more big name (HewlettPackard) has entered the relatively low-cost market with their Model 5381A Frequency Counter (\$249).
This 7-digit (LED) laboratory-grade instrument has a frequency range of 10 Hz to 80 MHz (which means it can be used in the CB and ham ranges).

POPULAR ELECTRONICS
ensitivity is 25 mV up to 20 MHz and
50 mV to 80 MHz . Accuracy is +1 count plus or minus the time-base accuracy. The time base uses a $1-\mathrm{MHz}$ crystal that ages less than $0.3 \mathrm{ppm} /$ month, $\pm 10 \mathrm{ppm}$ from 0° to $40^{\circ} \mathrm{C}$, and $\pm 1 \mathrm{ppm}$ for a 10% line voltage variation.
Gate times can be selected manu-
ally and the resolution is 10 Hz at the
0.1 -second gate time, 1 Hz at the

1 -second gate time and 0.1 Hz at the 10 -second gate time. The input impedance is 1 megohm shunted by 50 pF . Even at the most sensitive settings, the 200 volts (peaks ac plus dc) without us dc) without harm.
Physically, the 5381A is quite pleasing in appearance, with a clean, uncluttered look. It is $3.5^{\prime \prime}$ high $6.25^{\prime \prime}$
wide, and $9.755^{\prime \prime}$ deep. It weighs 4.75 Ib and has a built-in tilt stand

User Comment. We had the opportunity of using the 5381A for several weeks on a variety of electronic SCA traps and half a dozen or so filters in SSB and SSTV rigs, and checking a number of countdown circuits in digital projects, we really got to like the look of the seven-digit, easy-to-read display. In the MHz mode, reading the value down to three decimal places was easy, while in the Hz mode, reso-
lution was 0.1 Hz . lution was 0.1 Hz .
thop even was in regular use in the "brownout" days when the so-called

TRAM DIAMOND 40 AM CB TRANSCEIVER

Has output circuit protection, SWR bridge and noise blanker

THE Tram Diamond 40 is a 23 channel crystal-synthesized mobile transceiver designed for AM operation on the Citizens Band microphone-gain control fere a amplifier protection circuitry, built-in SWR bridge, switchable noise blanker (in addition to the usual AM-type noise limiter), and a theft-deterrent mobile mounting bracket. An edgewise meter movement indicates relative signa strength on receive and relative out put power or SWR on transmit. Also included are the usual adjustable squelch, Detta tune, public-address The transmitter oper microphone. power when the transceiver is con nected to a nominal 138 -volt dc consource The power source can ber either a positive-or a negative-ground system. Reverse-polarity protection is provided in either case. Stability of critical circuits under varying source voltages is assured by means of a built-in electronic voltage regulator. The transceiver measures 8 in . by $63 / 4 \mathrm{in}$. by $21 / 2 \mathrm{in}$. $(20.3 \times 17.1 \times 6.4 \mathrm{~cm})$ January 1975
and weighs 6 pounds (2.7 kg). It retails

The Receiver. According to our tests, the double-tuned receiver has The sensitivity mity and selectivy. $d B(S+N) / N$ at 30% modulation and 1000 Hz . Adjacent-channel rejection was nominally 60 dB while good communication quality was main 450 to 2400 Hz overall bandpass
The bipolar r-f input amplifier is equipped with shunt diodes that serve as protection against overloads. The
first conversion to a 10.0 - to 10.04 $\mathrm{MHz} \mathrm{i}-\mathrm{f}$ is accomplished with the aid of a FET mixer. A bipolar-transisto mixer is used for the second conversion to a $455-\mathrm{kHz}$ i-f. Selectivity is obtained by using a ceramic-filter bypass at the emitter of the second mixer and a ceramic filter at the input of the twostage $455-\mathrm{kHz}$ i-f section.
Application of dual agc voltages to the r-f stage, plus a single loop to the second mixer, provides an exceptionally flat output response level. Only a 4-dB output change occurred with a $\mu \mathrm{V}$) A 3-dB signal variation (at 1-10 60 -dB input change (at $10-10,000 \mu \mathrm{~V}$), and a $6-\mathrm{dB}$ change with an input excursion of 80 dB (at $10-100,000 \mu \mathrm{~V}$) Approximately $50 \mu \mathrm{~V}$ of input signal was needed to register s 9 on the meter.
Other measurements indicated an $80-\mathrm{dB}$ rejection of the primary image
not have to worry about the accurate settings on the various frequency racy of the 5381 A , even with 5% to 8% power reductions, enabled us to make critical adjustments. A number of $C B$
checked and aligned with each other after which, communication between, units was improved due to the closer $r-f$ alignment. The tone-alert accessories were also re-aligned so that the systems worked as they did when brand new.
For use at even higher frequencies, Hewlett-Packard also has a Model 5382 A , a $225-\mathrm{MHz}$ version, which costs $\$ 450$.
\qquad Circle no. 67 on reader service card
and 70 and $90 \mathrm{~dB} \mathrm{i-f} \mathrm{signal} \mathrm{rejection} \mathrm{at}$ $10-10.04 \mathrm{MHz}$ and 455 kHz , respectively. Spurious-signal rejection measured 55 dB minimum.
The noise blanker is a parallel-gate setup in which an IC is used at the front end and for gating the output of the second mixer. It can be turned on and off while simultaneously shifting in and out of the circuit a series-gate type a-f automatic noise limiter (anl). This noise-reducing setup proved to be extremely effective. It attenuated noise pulses of 30 to 40 dB above a $0.25 \mu \mathrm{~V}$ signal down to near inaudibility in the presence of the signal. Its use drops the overall gain on weak signals by 4 to 6 dB , but the sensitivityA noise limiter is unaffected
(A noise limiter is simply an audio frequency signal peak clipper. Usually set to provide 100% modulation, it clips any signallevel that exceeds that required for full modulation. The
blanker, on the other hand, interrupts the r-f signal path momentarily during high-level noise pulses ahead of the selectivity circuits. A limiter is a simple device that operates well enough, but because of its clipping action can cause a-f signal distortion when clip ping takes place. The blanker is more sophisticated, operating only for short noise-signal durations. Because it in terrupts the signal path, it is not distortion producing.)
The push-pull class-B output amplifier is driven by an IC. In our tests, i tortion at the onset of clipping with a ortion at the onset of clipping with a
$1000-\mathrm{Hz}$ test signal with clipping the output was 4.5 watts at 10% distortion A thermistor-compensated squelch frequency sensitive circuits in ball park,"'dialaccuracy and resetabil-

Frequency Synthesizer. The crystal frequency synthesizer in the Diamond 40 employs six crystals in the $16.965-$ to $17.215-\mathrm{MHz}$ range. Four of the crystals are cut for the 9.545 - to $9.585-\mathrm{MHz}$ range for the receiver and four are cut for the $10.0-$ to $10.04-\mathrm{MHz}$ range for the transmitter. During transmit, the frequency tolerance held to within 440 Hz on any channel. The Delta-tune circuit for the receiver is detented at its center position, allowing the CB'er to "feel" when it is set to the middle of the channel.
The Transmitter. A triple-tuned bandpass-coupling network minimizes spurious responses from the
synthesizer mixer for the transmitter. The r-f power output amplifier em ploys a triple-tuned output-matching driver stage and power amplifier is accomplished with the receiver's a-f setup plus a speech amplifier for the mike. (The latter is automatically switched in for this mode.)
With operation from a 13.8 -volt source the r-f carrier output measured 4.5 watts. The distortion measured 9% at 100% modulation at 1000 Hz , and the frequency response was 270 to 2700 Hz at the $6-\mathrm{dB}$ points. Adjacentchannel splatter, using a $2500-\mathrm{Hz}$ standard EIA test tone, was -50 dB . Advancing the mine gat-signal level (a practice the operating manual advises
against) caused clipping and in-

EDMUND SCIENTIFIC KIRLIAN ELECTROPHOTOGRAPHY KIT Experimental photography provides fascinating results.

Electrophotography kit is set up onHOTOGRAPHY with electricity goes back to the 19th century. But it wasn't until Czechoslovakian researchers in 1939 published "electrophotographs" of leaves displaying terest in the field emerged. It was the Russian scientists, the Kirlians, however, who truly developed the method in depth over the years, creating a wide range of patented apparatus for use in various fields.
Kirlian photography permits one to view brilliant emanations from organic or inorganic objects, made visibubject is phaphically only when the frequency electrical currents. Using color film, the images are spectacular revealing all colors, shades, patterns
creased the adjacent-channel splatter to -40 dB . With speech at normal mod ulating levels, the splatter was somethe point where the modulation starts to make the transmitter-on lamp blink slightly will usually hold the modulation within acceptably safe limits.
The fail-safe setup in the transmitter functions as follows: If the antenna line is badly mismatched to the transmitter, the resulting SWR will produce a large reflected voltage from the SWR bridge. This voltage is then used to disable the transmitter drive and thus damage under improper load conditions. This is a protective scheme we would like to see more of in transmit ters.
CIRCLE NO. 68 on reader service card
sary lead wire. Calling it a kit is really a misnomer, as one does not truly "build" it. For example, the variable voltage step-down transformer and the high-frequency induction coil are
fully assembled. What one does is set up the system from assembled components.
The high-quality step-down transformer, which is plugged into a $117-\mathrm{V}$ ac source, provides output voltages that can be varied from three to eight volts. It includes an on-off switch. The high-frequency induction coil, which is fed the step-down transformer's low ac voltage, converts the voltage to a high-frequency, high-voltage output. High frequencies are developed by a
set of vibrating contacts that interrupt the input at a rapid rate Though output voltage from the induction coil is put voltage from the induction coil is very high, the secondary's output cur-
rent is quite low, being limited by core saturation. Nonetheless, great care should be taken when operating the device to avoid a shock.

Setting up the "Kirlian" kit is simple enough. Assuming a suitable darkened room for photographic developing purposes, here are the assembly steps: The cardboard shipping container is used as a support for setting up, folding one side's flaps inside and poking a pencil-size hole in the closed bottom to pass the high-voltage lead. coilingide high-voltage induction lead is pulled through the hole so that it protrudes from the carton. Now the carton is resting on its open side, the closed top acting as a platform with closed top acting as a platform with The twin power leads of the inducThe twin power leads of the induc-
and degrees of brilliance. Some observers describe it as a pulsing energy source. Scientific interest revolves "bio-energy" force which displays changes as a result of anger, illness, or fear in a human; lack of water in a plant; etc.
The Edmund Scientific Company's "Kirlian" Electrophotography Kit (No. 71,938) at $\$ 49.95$ uses the principle described, opening up a new world of photography for experimenters

What It Is. Edmund's "Kirlian" photography kit consists of a variable ow-voltage transformer; a highcoil; metal electrode; glass plate; photo changing bag; and all neces-
ion coil are brought out from the bot om edge of the carton and plugged into the jacks of the variable lowvoltage step-down transformer that is positioned outside the carton. Stripping about one inch of insulation from the high-voltage lead protruding from
the carton top, the lead is bent 90 de-

Kirlian photograph of a begonia leaf showing the

 corona around the edge.grees, with the excess wire pushed back into the carton. The square metal electrode is then placed on top of the HV electrode lead and the perimeter of the metal is taped to the carton with masking tape. Next, the glass dielectric plate is centered atop the electrode and taped down.
If a suitable darkroom is not available, the photo changing bag should be used. Here, a hole is poked through high-voltage to accommodate the ghents on top ine lead plus com pon with the bare placed inside the ing on the carton.
Completing se
tests should be map, the following graphing an object. The stepdown transformer control should be set to its maximum, eight volts. Powering the device, you should hear "buzzing' of the interrupter contacts of the high-frequency coil. Next, the user's hand should be placed on the glass dielectric plate. The result should be a slight tingling sensation due to capacitive coupling of the highfrequency current. In the dark, a corona discharge should be seen from heard (Caution: a crackling sound equipment if the glass dielectric plate s damaged; limit skin area exposures to about one minute per day; use in a well ventilated area to prevent ozone buildup; use a pair of glass-lensed sunglasses when viewing the corona so that shortwave ultraviolet rays JANUARY 1975

The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products more than 3 million EICO product and performance.

"Build-it-Yourself" and save

 up to 50% with our famous electronic kits.For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 \not \subset$ for fast first class mail service
EICO-283 Malta Street,
Brooklyn, N.Y. 11207
Leadership 1945.
since
साने

learn by doing!

Perform more than 200 exciting experiments with CIE's fascinating ELECTRONICS LABORATORY PROGRAM!

84

You get your own 161-piece electronics laboratory... with authentic electronic components used by industry!

You learn how to construct circuits and connect them with a soldering iron, which is part of your CIE laboratory equipment.
This "hands on" experience is extremely valuable in applying what you learn.
Prepare now for a high inco Electronic miracles are changing today's world with breathtaking speed.
And with this growth in electronics technology has come a brand new electronics technicians, trained in theory and practice to build the products, operate them and service them during the Seventies. "Don't just wait for something to ready now for a career you'll really ready now for a career you'll really of opportunity for advancement.
Experience with experiments is your best teacher
"Hands on" experience helps to re"Hands on" experience helps to relearn by doing, you discover the "how" as well as the "why." You'll find out for yourself the right way as well as the wrong way to use electronic componeng. How to construct your own circuits, to discover trouble with CIE's special Auto-Programmed ${ }^{\text {® }}$ Lessons, you learn faster and easier than you'd believe possible.
CIE's fascinating course, Electronics Technology with Laboratory, teaches you Electronics by making yourself, with your own hands.
mportance of FCC License
and our Money-Back Warranty
Many important jobs require an FCC License and you must pass a But, a recent survey of 787 CI graduates reveals that better than 9 out of 10 CIE grads passed the FCC License exam
That's why we can offer this fa mous Money-Back Warranty: when JANUARY 1975

Testing and troubleshooting are an imTesting and troubleshooting are an imincluded in your laboratory is a precision "multimeter" to diagnose electrical and
ne career in Electronics...th
you complete our Laboratory Course, which provides FCC License preparation, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This wartime all your FCC Licen your money back!
You'll have high paying job opportunities
Electronics is still young and growing. in nearly every one of the new excitelectronics skills and know you find in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. With a CIE Diploma and an FCC License you can choose the career field you small company a big corporation, a ness for yourself.
Here's how two students carved out new carers: After his CIE training, Edward J. Dulaney, President of D \& A Manu-

Modern space-age components like this C (integrated circuit) are professional in many of your
piece by piece y piece by piece your knowledge grows
Science of the Seventies.
facturing, Inc., Scottsbluff, Nebraska, acturing, Inc., Scottsbluff, Nebraska,
moved from TV repairman to lab technician to radio station chief engineer to manufacturer of electronic equipment with annual sales says, "While $\$ 500,000$. Ed Dulaney says, While studying with CIE, I made my present business possible," Marvin Hutchens, Woodbridge, Virginia, says: "I was surprised at the elevancy of the CIE course to actual working conditions. Im now serGreater Washington area. My in the ings have increased $\$ 3,000$. I bought a new home for my family and I feel more financially secure than ever before.
Send now for 2 FREE BOOKS Mail the reply card or coupon for our on how to get your FCC License. Fo your convenience, we will try to have a representative call. If coupon is missing, write: Cleveland Institute of Cleveland, Ohio 44114. Do it now!

A소송

Approved
under

G.I. Bill

All CIE career

 courses are ap.proved for educaproved for educa-
tional benefits under the G.I. Bill. If you are a veteran
or in servica or in service now,
check box for G.l. check box for G.l.
Bill information.

C $\frac{\text { cleveland Institute of Electronics, Inc. }}{1775 \text { East } 17 \text { th Streat }}$ East 17th Street. Clevelarno. Dilios, Inc. 44114 Accredited Member National Home Study Council
Please send me your two fREE books:

1. Your illustrated school catalog, "Succeed in Electronics."
2. Your book, "How to Get a Commercial FCC

1 am especially interested in: \quad Elecectronics Technology with Laboratory

\square Veterans and Servicemen: Check here for G.I. Bill information.
CIRCLE NO. 9 ON READER SERVICE CARD

LOOKING INTO THE CRYSTAL BALL

1
F YOU＇VE been a regular reader of this column，you now that I enjoy playing an annual guessing game with the electronics industry，predicting what new semiconduc each yeals or technological advances proven accurate better than 90% of the time．Because o this record，some have accused me of being an inspired prophet．Not so！
Actually，my annual predictions are based on an extrapo lation of known developments in the industry．A＂guessti mate＂of where present trends are leading and what could be done whed presente fiction authors，but extended to the that used by science－fiction authors，but e
immediate，rather than the distant future．
Sometimes，my predictions have proven early by a year or so－simple examples of over－optimism and expecta tions that the industry would move faster in some areas than in others．Just as often，however，I＇ve goofed in the opposite direction，predicting a new development which is announced before the colum appears in print．
Let＇s see how I fared with the predictions made in January，1974．As you may recall，I predicted：
－A substantial drop in the prices of digital electronic watches from the present hundreds of dollars．Score one for the OM！Surprising just about everyone and catcing Semiconductor Corporation＇s Novus Consumer Product Division（1177 Kern Avenue，Sunnyvale，CA 94086）intro－ duced a line of six digital electronic watches in early fall with a list price on one model of only $\$ 125.00$
－Comparable reductions in the prices of digital electronic clocks．Score another！At the same time that Novus an－ nounced its new low－priced electronic watches，it also announced a line of three digital electronic alarm clocks． The lowest priced model in the line lists at $\$ 34.95$ ！
－LED＇s at prices comparable to those of miniature incan－ descent lamps in small quantities．Another home run （bull＇s－eye，or whatever）！Recent advertisements in these pages offered type MV50 sat six equivents at eig forc and Mini－Red LED＇s similar to the MV50 at a whopping ten for a dollar
－The introduction of control－function IC＇s as stock items． －The introduction of control－function IC＇s as stock items listing all of the various control IC＇s now available through major distributors，but two moderately priced types which should be of interest to serious experimenters are the 88

SGS－ATES L120 and L121（SGS－ATES Semi－conductor Corp．， 435 Newtonville Ave．，Newtonville，MA 02160）．Both devices are offered in 16 －pin DIP＇s，both are priced at $\$ 6.00$ each in unit quantities，and both are intended for contro functions in industrial and consumer applications．The L120 is a Triac／SCR phase control and the L121 a Triac／SCR burst control．
－The development of one or more new solid－state transducers．WOW！We really hit the jackpot on this one Sucers during 1974 with the National Semiconductor Corporation now offering so many types that it recently published the industry＇s first catalog／handbook on pres－ published the industry＇s first catalog／handbook on pres Pressure and Temperature，the 160 －page volume is much more than a mere listing of device specifications and op－ tions．It covers general transduction theory as well as the theory of operation of IC transducers in particular，and includes a number of useful tables plus a lengthy glossary of transduction－related terms．The book＇s applications section discusses automotive，medical，and audio uses， cable fault location，and even musical instruments，such as an electronic clarinet that comes on like a Sousaphone
Copies of the book are available without charge on let Copies or the book are avarlable wervices Department National Semiconductor Corporation， 2900 Semiconduc－ tor Drive，Santa Clara，CA 95051
tor Drive，introduction of low－cost（about \＄100）prepro－ grammed business calculators．Another winner！Virtually all major calculator manufacturers have introduced inex－ pensive special purpose models．Casio，Inc．（Consumer Products Div．，One World Trade Center，New York，N．Y 10048），for example，offers one model，the Mini Root， which can supply square roots at the touch of a button and which provides automatic percentages for figuring mark－ ups and discounts，at a list price of only $\$ 54.95$ ．The Cole－ Parmer Instrument Co．（ 7425 North Oak Park Ave． Chicago，IL 60648）offers a metric conversion computer And these are but a small sampling of the models intro And these are but a
duced during 1974！
－Digital electronic test instruments，such as VOM＇s and frequency meters，at prices comparable to those of in－ struments using moving－coil meter movements．Is there any doubt？
－Development of a new semiconductor manufacturing technique or a refinement in current techniques which will

POPULAR ELECTRONICS
mprove quality，increase yield rates，and lower costs． admit to＂hedging＂slightly on this prediction，offering two alternatives．However，fortunately for the OM，both options were fulfilled during 1974．Nearly every major semiconduc－
tor manufacturer was able to improve production tech－ tor manufacturer was able to improve production tech－ niques to the point of boosting product quality while，at the same time，lowering prices．In addition，several firms in－ troduced new techniques．RCA，for example，introduced a technological advance for the semiconductor industry by Combining MOS and bipolar devices－PMOS，bipolar and COS／MOS－on a single chip．The first device offered based Supplied in an 8 －lead TO－5 package，the CA3130 features a gate－protected p－channel MOSFET input stage with an extremely high input impedance of 1.5×10^{12} ohms and a complementary－symmetry（COS／MOS）output stage capa－ ble of swinging the output signal voltage to within a mere 10 mV of either supply voltage terminal．In addition，the device offers a wide $15-\mathrm{MHz}$ bandwidth and has a sink and source current capability of 20 mA ．Short－circuit pro－ tected，the CA3130 has a broad range of applications， including ground－referenced single－supply and fast sample－hold amplifiers，long duration timers and mono－ band amplifiers，voltage－folle comparators and wide－ detectors，single－supply full－wave precision rectifiers，and photo－diode sensor amplifiers．
－The announcement of an unusual new solid－state device．Another score！Not one，but several unusual new devices were introduced during 1974，many of which were discussed in these pages（including the CA3130）．In mak ing the original prediction，I suggested that one possibility was a special type of LED，speculating that it might have bilateral switch characteristics．In fact，a family of unusual new LED＇s was introduced by Litronix，Inc．（ 19000 Home－ stead Road，Vallco Park，Cupertino，CA 95014）－the characteristics．These devices do not have switching chara－in bipolar as we speculated，but do incorporate a on dc supply voltages of from 4.5 to 125 volts withou external current limiting resistor．

Things to Come．Now for our predictions for 1975： －A price break－through on solid－state imaging devices， possibly as a result of a new manufacturing technique．On a long term－several year－basis，I anticipate that video cameras and，perhaps，priced in a comparable range． ［Next month＇s issue will fulfill Lou Garner＇s prophecy－Ed］ －The development of personal health monitors for pa－ tients subject to sudden attacks or seizures．I envision a device no larger than a hearing aid which would alert the user in advance of a possible attack．
－Digital electronic watches in the range of $\$ 50$ to $\$ 60$ ．At the same time，I expect electronic watches in the hundred－dollar range to include a calendar feature，and， perhaps，even an integral alarm．
－A digital MPG（miles－per－gallon）meter for automotive applications．Such an instrument has been proposed but， as yet，is not in commerical production．I expect that it will trofitting but will be offered later as an actessory for re－ by one or more major manufacturers．
－A low－cost electronic calculator designed specifically for the children＇s market．As I visualize this product，it will January 1975

Find whatever circuit you need－instantly

THE LARGEST
COLLECTION EVER Over 3,600 circuit diagrams，complete
with component values，in one handy
volume，all clearly indexed and cross－ referenced for speedy answers to you
immediate design needs．

CUIDEBOOK OF

 ELEGTRONIC CIRGUITSBy John Markus
1068 pages，$\$ 24.50$
 name it，you＇ll find the circuit that
needs in this，the largest single－vol
illustrated circuits everto be pubished
131 CHAPTERS，each devoted to a particular type of construction and adjustment details，design precaution and other practical data．The advantages and disadvan－
tages of the various circuits are also given so you can tages of the various circulits are also given so you can
decide quickly and easily what best meets your needs t the moment．
FAST，EASY USE．The Index has over 10,000 entries
that list－and cross－reference－circuits by all their difier－ ent names，by performance parameters，by apelications，

SAMPLE CONTENTS

And in case you missed Markus＇two previous circuit
books，use the coupon below to order examination copies．92，，ooo already sold．Absolutely no duplication SOURCEBOOK OF ELECTRONIC By John Markus 888 pp． $81 / 2^{\prime \prime} \times 11^{\prime \prime} \$ 23.50$ 3． 0000 different circuits with walues and exact source
dations． ELECTRO
LECTRONIC CIRCUITS MANUAL

At your local bookstore or use coupon betow tor
$=-\operatorname{FREE}$ 10－DAY EXAMINATION
McGraw－Hill Book Company
1221 Avenue of the Americas，New York，N．Y． 10020

Name－

Chacte No． 22 ON READEA SERVICE CAAB
be a basic 4 -function calculator, but will be sold with a booklet slanted to teach a child not only to use the calculator, but to relate to standard mathematical techniques. It may also include several "game" features. The selling price probably will be well under $\$ 20.00$, based on present alues.

- An increasing variety of multipurpose consumer and clock/calendar/calculator or a combination intercom/dicclock/calendar/c
tating machine.
- The development of low-cost portable electronic games. These would be based on calculator technology, but would be self-contained and, unlike Magnavox's Odyssey, would not require a TV set.
- The development of a high-output or high-intensity LED. A standard LED can be pulsed at currents many times higher than its average continuous rating (typically, 1 A for a 50 mA LED). If designed specifically for pulse applications, it may be possible to use a LED as a light source for special purpose photography (such as
rophotography), or even as a warning light.
- The development although not necessarily the commercial production, of solid-state energy control centers for cial production, of solid-state energy control centers for all heating/cooling efficiency becomes more and more important. There are many ways in which solid-state circuitry and devices could be used to increase the efficiency of building heating/cooling systems. Typically, controls to monitor temperature and humidity, adjusting energy flow to maintain the proper levels without waste, controls to adjust blower speed to an optimum level for heating or cooling, and warning systems to alert the user to system inefficiencies (such as clogged filters)
That does it! Next January, we'll check our score
Readers Circuit. If you've used an ohmmeter to any extent, you've probably been frustrated on several occa sions when trying to interpolate a value at the "squeezed" end of the nonlinear scale found on most such instruments. A little frustration apparently was too much for reader M. J. Guenther (1169 Prairie Rd., Port Coquitlam, B.C., Canada), for he put on his thinking cap and devised a linear scale ohmmeter, which he proceeded to build and has been using for some time. His circuit is illustrated above.
Guenther's design features a pair of op amps, IC1 and $I C 2$, a reference voltage source, established by $R 1$, various
ranges, selected by $S 1$, and a voltmeter readout. Test terminals BP1 and BP2 are provided for checking unknown resistance ($R x$) values.
The reference voltage obtained from $R 1$, stabilized by voltage follower IC1, is applied to /C2's non-inverting input. At the same time, IC2's output is coupled back to its inverting input through a voltage divider consisting of the unknown resistor, $R x$, and a preselected range resistor, $R 2$ thru $R 5$. The net result is that / 2 's output voltage is equal to the reference voltage plus the reference voltage times the ratio of the unknown and range resistors. When a voltmeter is used to check the potential difference between IC2's noninverting input and its output, the initia rectly proportional to the unknown resistor's value, the basic requirement for a linear scale.
Guenther used type 741C op amps in his model, but suggests that a single type 747 dual op amp or other 741 types may serve as well. The pin connections will vary, of 90

Linear scale ohmineter uses two intergrated circuits. When the circuit is potentioneters), the meter reading is potentiometers, the meter reading is
course, depending on whether a DIP, TO, or minidip type device is used. Range selector S1 is a single-pole, fourposition rotary switch, R1 a conventional linear potentiometer, and R2, R3, R4 and R5 are small trimmer pots, although full-sized controls may be used. A dual 18 -volt regulated (or zener stabilized) dc power supply is required high-impedance VTVM or FET VM.
In his letter, Guenther writes that he assembled his model as part of a home-built FET voltmeter, providing a pushbutton switch between IC2's output and the voltmeter's input to prevent an off-scale reading when the est terminals are open.
Except for establishing the readout voltmeter range, the reference voltage adjustment, $R 1$, is completely noncritical, according to Guenther. He suggests calibrating the instrument by using mid-scale value precision (1% or better) resistors as test units to adjust each range potentiometer. In his model, Guenther used test resistors (as Rx) of 50, respectively to provide ranges of $0-100,0-1,000,0-10,000$ and $0-100,000$ ohms.

Device/Product News. If my discussion of field-effect transistors and their applications in last November's column stimulated your interest in these versatile devices, you may want to investigate recent offerings by Siliconix, Inc. (2201 Laurelwood Road, Santa Clara, CA 95054): these include a pair of vhf/uhf FET's and a new series of monolithic matched dual FET's.
The new vhf/uhf devices are basically the popular U310 n-channel high-frequency JFET supplied in epoxy TO-92 or ceramic OD-81 package configurations. These devices may be used as amplifiers, oscillators or mixers.
siconix's new dual JFET s, designated the E410 family, and medium-frequency small-signal differential amplifiers requiring matched gate-source voltage, high commonmode rejection ratio and low output conductance. The three units, types E410, E411 and E412, have a maximum $\mathrm{G}-\mathrm{G}$ voltage of $\pm 40 \mathrm{~V}$, a maximum $\mathrm{G}-\mathrm{D}$ or $\mathrm{G}-\mathrm{S}$ rating of -40 V , and a maximum gate current of 50 mA , with a tota POPULAR ELECTRONICS
package dissipation of 350 mW . Their common-mode reection ratio is at least 70 dB .
In addition to its new FET's, Siliconix also has andiodes intended for circuits requiring clipping clamping or over-voltage protection. Identified as the PAD family (pico-ampere diode), the new devices feature minute leakage currents ranging from $1 \mathrm{pA}(P A D-1)$ to 100 pA (PAD-100) and extremely low interelectrode capacitances of 0.8 to 2.0 pF . The typical forward voltage drop for all units is 0.8 volts, the maximum forward current is 50 mA , and the total device dissipation 300 mW .
A new series of low-voltage varistors has been introduced by GE's Semiconductor Products Department (Bldg. 7, MD \#49, Electronics Park, Syracuse, NY 13201). Performing somewhat like back-to-back zener diodes, these devices are ideal for protecting costly power transiscurrent inductive circuits, such as power supplies, inverters, converters, alarms, solenoid drivers, and audio amplifiers. Physically similar to disc ceramic capacitors, the new devices, designated the "ZA" series, are offered with ratings from 26 Volts dc, 20 Volts rms to 81 Volts dc, 60 Volts rms.
Motorola's Semiconductor Products Division (P.O. Box 20924, Phoenix, AZ 85036) has announced five new ruggedized r-f power transistors which should be of interest to hams and other communications buffs. Designed for $40-\mathrm{to}-110-\mathrm{MHz}$ mid-band international mobile radio applications, he new devices, types MRF 230 through MRF 234, 25 watts output, respectively Individual device gains are kept within 10 dB , while operation at VSWR's of up to 30:1, at any phase angle, can be tolerated. Unit prices range from $\$ 2.30$ for the MRF 230 to $\$ 16.90$ for the MRF 234 . Back East, RCA's Solid State Division (Box 3200, Somerville, $N J$ 08876) has introduced three new families of medium-power transistors and eight new general-purpose IC op amps.
The RCA29/SDH, RCA31/SDH and RCA41/SDH series are single-diffused hometaxial-base versions of the RCA29, RCA31, and RCA 41 epitaxial base series, respectively, and are intended for a wide variety of switching and amplifier applications, such as series and shunt regulators and driv-
ers and output stages of high-fidelity amplifiers. All the devices are supplied in JEDEC TO-22AB packages The RCA29/SDH series has typical turn-on and turn-off times of $2.3 \mu \mathrm{~s}$ and $6 \mu \mathrm{~s}$, respectively, with a minimum beta of 15 , measured at 1 ampere. $V_{\text {CEO }}$ ratings range from 40 to 100 volts, depending on type. Featuring similar turn-on and turn-off times, but a minimum beta of 10 , measured at 3 amperes, the RCA31/SDH series is offered with comparable $\mathrm{V}_{\text {ceo }}$ ratings. Finally, the RCA41/SDH series has typical turn-on and turn-off times of $3.2 \mu \mathrm{~s}$ and $3.7 \mu \mathrm{~s}$, a minimum beta of 15 at 3 amperes, and voltage ratings of 40,60 , and 80 volts, depending on type.
Designated types CA107T, CA207T, CA307T, CA101T, CA101AT, CA201T, CA201AT and CA301AT, RCA's new IC op amps are direct replacements for standard industry
types such as the $107,207,307,101,101 \mathrm{~A}, 201,201 \mathrm{~A}$ and 301 A in packages with similar terminal arrangements These are dual-supply, high-input-impedance devices suitable for use in sample and hold, comparator, lowfrequency waveform generator, long-interval timer, summing amplifier, and multivibrator applications. All eight types are furnished in 8-lead TO-5 style cases. JANUARY 1975

EVERYTHING YOU
 WANTED TO KNOW AbOUT CD IGNITION SYSTEMS BUT DIDN'T KNOW WHOM TO ASK.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name

Address
City
State Zip

CLIP OU'T THIS AD AND SEND TO-
TRI-STAR CORP.
P. O. Box 1727 Dept. E

Grand Junction, Colo. 81501

CB'S RED BARON

HERE we were at 1,000 feet, ur wings at a crazy angle, the ground rushing up, when all of a sudden.
That's how it felt when I recently look a ride with one of the world's
rarest birds--a flying CB reporter. His rarest birds--a flying CB reporter. His
name is Morgan Kaolian, and he pilots a flivver of a plane on weekends for a local radio station located near the big boating areas of New York and Connecticut. Morgan's become something of a legend in these parts because he buzzes through the air for 18 hours every weekend to deliver half-hourly broadcasts of weather, fishing, sea conditions and road traffic, plus a few surprises. When I caught wind tha cided to investigate and mabe wangle a free hop in his flying machine. Most people think flying reporters The plane is aviation's Model A; a two-place Cessna-150 that cruises about 90 mph , squeezes 15 miles from a gallon of gas and emits about as many decibels as an overweight wasp. A helicopter, on the other hand noisily chomps the air, costs upwards of $\$ 80$ an hour to operate and is usu ally an expensive big-city bird. cost and CB takes a share of the credit in the electronic department. When I first spoke to Morgan on the phone he asked me how much weighed. "One hundred ninety," I replied, wondering if the beefy figure would ground me. The reason he asked is that the plane is loaded to the gunnels with radio equipment and sprouts antennas like a flying por cupine. A two-way vhf link on 161.7 MHz carries his voice to the ground station on 600 kHz In the instrument panel there's an AM receiver so he can monitor the radio announcer for cues (but a closer look reveals it to be 92
easy if I were a 5-channel tape recor 8 der, but Morgan has been doing it fo 8 years and easily sorts out the audio
bedlam. As the 100 horses of the Cessna engine struggled to lift us into Cessna engine struggled to lift usint the air, I regretted the box
had eaten the night before.
"Hey, here comes Eddie Ricken-
backer!" It was the first CB voice of the flight. Morgan wheeled the plane around and headed toward a row of boats moored below, then lowered the plane's right wingtip to point out a single cabin cruiser. "That's the city police," he explained. "They monitor channel 13. Morgan exchanged pleasantries with he foaessed at the good fortune of CB-equipped boat good fortune of CB-equipped boat men in the area. Maybe the U.S. Coast but there's a good chance they'll be intercepted by this channel 13 search-and-rescue team.
On an average weekend Morgan saves about two boats in distress. It's most efficient if the boat has a CB rig because its captain simply calls on channel 13 and may speak directly to the aerial angel-of-mercy himself. The range of a cbith its lofty antenna, and talking distances of 50 miles are average (or double that when altitudes rise to three or four thousand feet). If a boat has no CB, Morgan may flit to a nearby boat and direct it to the crippled craft. When radio communications won't work he relies on more sensational feats. He'll drop written instructions in a sandwich bag or fly down low and shout directions. Won't the noise drown out your voice? I asked, with some doubt No, kill the engine gliding down. ming the waves reaps another bonanza for CB'ers in the area It's fish-spotting by air. To demonstrate he lowered the Cessna's nose and
sked me, "Do you have any aversion to low flying?'" As the sea rapidly filled the windshield, I replied, " N -n-n-no. Blue fish, he explained, are visible as they break the surface, while bunkers expose themselves by hrashing about. Schools of fish elow the surface look like dark holes. If he spots any giveaway signs, call in He's even been known to as sist unlucky anglers with a helpful 'Follow me.
The plane was now over land and flying parallel to a busy interstate thruway. Although he gives traffic reports on his regular AM broadcasts, wanted to see the interaction between a CB-equipped plane and an automobile in motion. We raised a mobile who described himself as a

$C B$ set is carried in
pocket behind seat.
of lumber travelling on Route 1 . Seconds later, over a tangle of roads choked with homeward-bound vehicles, Morgan started circling. "Do you see it?", he asked me. All I could see was traffic-but it seemed he spotted everything below about an hour before I did
see you!'" peek-a-booed the yellow Chevy. Finally, looking like a Tonka Toy, the teeny mobile with its
matchstick load of lumber caught my eye. Morgan nudged me and, with a gleam in his eagle eye, said; "I estimate he's going 30 miles per hour." He squeezed the CB mike and fired the question.
"I'm going 30 miles per hour" answered the yellow pickup. Morgan's ability to interface with road traffic has even rescued lost sous on the ground. One lime on CB January 1975

It's worth a call
(301)488-9600

Antenna, on plane's fuselage,
is cut for channel 13.
the church is on Brooklawn Road? Some fellow is on his way to a wed ding and he's lost
Where are you?" asked Morgan. When the driver gave his location, Morgan swooped
"Is that you in
"Th that you in the red Corvette?" "That's me
straight ahead." Chalk up another save for CB. Morgan even saw the man going to the wedding!
The airport runway lights were already glowing as our Cessna touched down at the end of the day. Moments before we had listened on channel 10 , with its CB-equipped truckers talking of roads and loads, or inviting each other to coffee at the next stop. I was another driver if he had a "reefer." Morgan quickly explained that he meant a "refrigerated" truck. (He seems to know a little about everything, which may explain why he's also called the "Flying Mouth.") A twist of the selector to CB channel 9 brought remarkable silence, considering that it's often misused and our receiving range in the air was so great.
Morgan and his aerial antics via CB may serve as an inspiration for other ing tremendous goodwill for CB and proving the medium's worth in public service. The only precaution is that this sort of activity should be done only by experienced airmen. Morgan has a good luck charm (an "evil eye") pinned to the roof of his cabin, but his 8 years of accident-free reporting is also helped by 4,000 hours in the air and his experience as a military flier. hand, to to we can say Cb is land, at sea-and in the air, too!
 m"

6330 Frank ford Ave.
Baltimore, Md. 21206
hone Daily 9 AM to 9 PM Saturday 9 AM to 4 PM
Phone (301) $488-9600$

CIRCLE NO. 37 ON READER SERVICE CARD

Catalog
VALUE PACKED WITH THOUSANDS OF
CCTRONIC BARGAINS

 Puse Exclusive
Olson Prouctis al
Low, Low Prices
Olson Electronics Dept 260 S. Forge St.. Akron, Ohio 44327
Name
Stree
City
State

By Herbert S. Brier, W9EGQ

RECEPTION AND THE ATMOSPHERE

- AVE you ever turned your receiver on and tuned across band only to find that it was com pletely dead? This has probably hap pother The first reaction is "Oh, no Something's gone wrong with my re ceiver!" In most cases though the fault lies not in the gear but in the propagation conditions affecting the band or bands. Why are bands so fickle and unpredictable?
The reasons for such occurrences lay in the interaction of the atmos phere, the sun, and radio waves. Let's consider the nature of these relationships, and how they affect radio communications.
Our atmosphere consists of four distinct regions-the troposphere, the stratosphere, the ionosphere, and the exosphere. Two these stration of radio waves, The troposphere, which extends from 0 to 7 miles, 10 to 11.2 km) can act as a waveguide for vhf and uhf signals, but has little effect on hf transmissions, as does the stratosphere, which extends from 7 to 25 miles (11.2 to 40 km). From 25 to approximately 250 miles (40 to 400 km) we find the ionosphere. In this region, rarified gas molecules and atoms can lose some of their electrons when excited by solar radiation. They disassociate into ions and free electrons, having positive and negative charges, thousands of times more massive than the electrons, they tend to be much less mobile. The electrons, however, tend to cluster in layers--the D layer, at $37-57$ miles ($60-92 \mathrm{~km}$), the E layer, at 62-71 miles $(110-115 \mathrm{~km})$, the F_{1} layer, at 99 miles (160 km), and the F_{2} layer, found between 130 and 261 miles ($210-420 \mathrm{~km}$), depending on the season, the degree of ionization, and other variables. (See diagram shown at right.)
At night, the picture changes slightly. In the absence of the ionizing 94

Other waves leave the antenna at varous angles from the tangent. Let us ook at two of the signals. The wave with the higher departure angle, also called the wave angle or angle of radiation, first enters the D layer, where it is attenuated to a degree inversely proportional to its frequency. This is due to the fact that each time the signal collides with an electron or ion, part of its energy is lost in exciting the particle. Since the D layer is so dense, much attenuation takes place low frequencies (5 MHz and below) that most of the signal doesn't make it through this layer. This is why 160 and 80 meters are usually "dead" during the daytime, but can open up at night. and/or of high enough frequency, it will pass through the D layer with a good degree of strength. It will then travel up to the E layer. If the E ioniza tion is high enough, and the wave angle is below a critical value, it will be reflected back toward the earth a about the same angle as the incident one. The wave will then pass throug good distance from the transmitter.
If the E layer is not highly ionized, the wave will pass through it and reach one of the F layers, although its direction may be modified by partial bending. When the wave reaches the F layer, it will be reflected back toward earth if the wave angle is less than the critical value, and the fre quency is below the "maximum usable frequency," or MUF. If the angle and/or frequency is greater than these values, the wave will pass into space. If the wave is sent back, it will pass through the other layers, and perhaps be sent back up by the layer at another point The greates range avaitable from a "single hop"

Signals may be reflected by a layer of the ionosphere or escape into space. Range is determined by layer height and wave angle

FREE INFORMATION:

Learning more about a product that's advertised or mentioned in an article in this month's issue is as simple as one, two, three. And absolutely free.

Print or type your name and address on the attached, postage-paid card. Use only one card per person.

Circle the num-

 ber[s] on the card that correspond to the number[s] at the bottom of the advertisement or article for which you want more information.CKey numbers for advertised products also appear in the Advertisers' Index.J

Simply mail the postage-paid card.

Use only one card per person
 NAME

ADDRESS

CIT CZip Code must be included to insure $_{\text {STATE }}^{\text {STM }}$

$$
\sum_{\text {lar. } 1} P^{31,1975)}
$$

Do you build or assemble electronic equipment?
A) Yes BJ No If yes, please check below.
C) \square From complete kits ${ }^{\text {D }} \square$ From senarate
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ $\begin{array}{lllllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 \\ 29 & 30\end{array}$ $\begin{array}{lllllllllllllllllllllllll}16 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45\end{array}$

 NAMEADDRESS
CITY STATE ZID

> Do you build or assemble electronic equipment? $\begin{array}{ll}\text { A) Yes B) } \square \mathrm{No} \text { If yes, please check below. } \\ \text { C) } \\ \text { From complete kits } & \text { D) } \\ \text { From separate part }\end{array}$
$\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ $\begin{array}{lllllllllllllllllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 28 & 30\end{array}$ $\begin{array}{llllllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 \\ 45\end{array}$
 616263646566676869707172737475

POPULAR ELECTRONICS PE1751 se only one card per person.

ADDRESS
CITY [Zip Code must be included to insure delivery) (Void after Mar. $_{\text {ST1. 1975) }}^{\text {STA }}$ Do you build or assemble electronic equipment? A) Yes B) \square No If yes, please check below.
$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 15\end{array}$

 $46474849505152535455 \quad 5657 \quad 585960$

BUSINESS REPLY MAIL

No postage necessary if mailed in the United States
postage will be paid by

Popular Electronics

RO. Box 2905
Clinton, lowa 52732

First Class Permit No. 217 Clinton, lowa

BUSINESS REPLY MAIL
No postage necessary

Popular Electronics P.O. Box 2905 Clinton, lowa 52732

First Class
Permit No. 217
Clinton, Iowa

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY

Popular Electronics
 P.O. Box 2905
 P.O. Box 2905 Clinton, lowa 52732

> It's by the editors of POPULAR ELECTRONCS

TRONICS-with features and articles and com-
plete lao-ested instructions hat guarantee successtur fun and
hours and months of mind-absorbing projects 10 or
practicality. This latest 1975 Winter Edition helps you get it practicality. This latest 1975 winter Etition helps you get it
together. with a score of build-i-1-yourself projects. Now
vou you can con firm extra-sensory-perception with "THE ESP
COMPUTER TESTER"! It's the sophisticated random-rumber
 complementary-metal-oxide semiconductors, the hothest de-
vice today THE ALPH BRAIN WAVE FEEDBACK MONITOR vice today o THE ALPHA BRAN WAVE FEDBBACK MONITOR
can help you produce the brain-wave frequency band to clear
your mind of distracting theught

 getting started this ivita "how-to "guide will
nelp you get greate value, raeater enionment out of
every minute you spend with your equipment. CITTZENS' BAND

 quencies,
tory of at manges in mecivers for pich
public service broadcasts.
ONLY $\$ 1.25$

Rick, WB9EWQ, uses a Heathkit lectronic Keyer with $H W$ and HW-101 transceivers.
off the F layer is about 2500 miles 4000 km) $(2000 \mathrm{~km})$ from E-layer reflection.
The range available from this iono spheric reflection (also called sky wave propagation) depends on the height of the layer(s), the degree o onization, the angle of radiation and transmitter output power. In the dia gram are two sky waves received at A and R_{2}. The angle of radiation of the wave reaching R_{1} is much greater ance, as you can see is much toss While it is possible to cover the dis ance to R_{2} by more than one ho with a higher angle of radiation, the rulti-hop signal will be weaker. Each time the wave hops, it loses about B or one " S " unit of strength. A two-hop signal would thus be 12 dB weaker than one which arrives after single jump
Amateurs who wish to work DX ar interested in having ântennas which ower tow it appled ound that the median wave bal or distant signals arriving at the r ceiver antenna on the hf band are- $28 \mathrm{MHz}, 9$ degrees; 21 MHz $12-14$ degrees; $14 \mathrm{MHz}, 15$ degrees; 7 MHz , 30 degrees; and 3.5 MHz , unde 45 degrees. For horizontal dipoles he following heights will give the de ired radiation patterns: 28,21 and 1 $\mathrm{MHz}-70$ feet; $7 \mathrm{MHz}-70$ to 90 feet and $3.5 \mathrm{MHz}-90$ to 140 feet. These ere time when a low, since there height would be more desirab

Solar Influences. The degree of

 nization is dependent on the ac tivities of the sun, and the proximity of the earth to the sun. Sunspots are directly related to the levels of solar radiation. When there are many sun JANUARY 1975spots, the ionization level go up There is an eleven year sunspot cycle. The last maximum occurred about years ago, and we are now well int As we are well int
of the current sunspot cycle the year $21-$, and $28-\mathrm{MHz}$ bands will normally be dead after dark for the next few months-except for unpredictable "short-skip" propagation conditions that can occur at any time on these bands. In addition, unless you have better-than-average $3.5-$ and $7-\mathrm{MHz}$ antennas, signals on these frequen cies become weak and hard to work as the evening progresses. If your an you may hear operators with gotch, $3.5-$ and $7-\mathrm{MHz}$ antennas having no trouble working stations you can barely copy. Unless you can put up better low-frequency antennas the easiest way to cope with the situation is to do more daytime operating. Although the $28-\mathrm{MHz}$ band will often be dead, even in the daytime, the 3.5 to-21-MHz bands are and should continue to be useful for distances from 100 to several thousand miles from morning to years.

You will also feel the effects of seasonal influences. Since the earth is closer to the sun in winter, F_{2} ioniza are the rule. E-layer MUF's are generally lower in winter than in summer The F_{1} layer often disappears entirely during the winter, while it demonstrates MUF's of about 5 MHz in the summer. Night-time MUF's during the winter of the minima may drop to less than 4 MHz , as you will notice ove If hf conditions
point conditions deteriorate to the ble, and you are looking for more QSO's, investigate the amateur vhf scene. If your attention has been focussed on the frequencies below 30 MHz , you cannot imagine the population explosion that has taken place on the amateur frequencies above 50 MHz -especially on the $144-148-\mathrm{MHz}$ band. This is due to the wide availars and candy When size of a big box of conjunction with the vhf repeaters that have sprung up all over the country, ultra-reliable local communicafions have become an actuality for any operator within 25 or 30 miles of a elaborate

For further information on modern vhf operation, try the VHF Handbook For Radio Amateurs, by Herbert S . Brier, W9EGQ, and William I. Orr W6SAl, Radio Publications, Inc., Wil ton, Conn., or $F M$ and Repeaters,
ARRL, Newington, Conn. These books are available from most amateur equipment distributors.
In addition, do not hesitate to put out a couple of CQ's on an apparently dead band. One of the never-ending fascinations of amateur radio is its unpredictability. Also, the bands are often open to remote localities; and no one ever finds out because of the ack of activity at the right times and places. Evidence of this is furnished

News and Views. Send news, comments and pictures for possible publication in this column to: Amateur Radio, Herbert S. Brier, ci/o Popular Electronics, One Park Ave New York, NY 10016.

SELECTED CONTESTS

ARRL VHF SS Contest; 2:00 p.M. Iocal time, Saturday, Jain 7, to midnight, local time, Sunday, Jan. 8, 1975. Exchange: number of contest contact: " A " if your power input is less than 50 watts, " B " "check" last two digits of year licensed; ARRL section.
International DX Contest (ARRL) 0001 GMT, Feb. 4 to 2359 GMT, Feb. 5 and same time March 4 and 5; phone Same times, Feb. 17 and 18, and March
17 and name of your state or province to each DX station worked. Receive signal re port and power input. Score: add the number of different stations worked o each band and multiply by
different countries worked
different countries worked
Feb. 4 , to 2359 GMT Feb 12 0001 GM total of 30 hours. Novices can work anybody. Others work only novices. Ex change call letters, signal reports, and name of ARRL section. Novice scoring worked to the highest code speed recorded on your ARRL code-proficiency certificate. Multiply by the sum of sec fions and countries (oller han ARRL ections) worked
Complete literature and last-minute are available from ARRL, Newington, CT 06111, upon request accompanied by an addressed return envelope. Affix 8 ents postage for 3ra class return, 30 cents for first
same address.
?

g
 Test Equipment Scene

REJUVENATING ELDERLY EQUIPMENT

THOUGH most of us would like to purchase the best test gear that we can afford, we often have o compromise when it comes to cost. This means that many workbenches may have test gear whose specificafions are not much better than the equipment being tested. In which case, we may be violating one of (and basic rules of good engineering (and one order of magnitude more accurate than the device being tested. In many instances, a few more years can be squeezed out of the old gear circuits swiping partial or whole ELECTRONICS Although most of us hever build even a small percentage of never build even a small percentage of take a close look at them with an eye for ideas to improve our present test equipment. Over the past few years, we have found many circuits that could be used to upgrade our test gear. The pest part of this approach is the very low cost involved. (The few hours of bench time required to assemble the circuits are actually enjoysomething
omething
Consider an elderly square-wave generator. This old timer might do cies; but as the frequency goes up, the output square wave probably resembles a badly warped triangle wave, at best. You can try to improve the highfrequency response by using the output to drive some digital logic, such as a flip-flop. This would work, but you will need a 5 -volt power supply, and the frequency will be halved. A work fine However you mid probat to try the circuit shown at (A) It converts the battered old waveform into an impressive square wave with fast rise and fall times, reaching way out in frequency. The amplitude is also constant over the entire span. We built this 98
used. To reduce this loading effect, wo began using a $10: 1$ divider to increase the input impedance. But this, natur ally, reduced the signal level available to the scope. We then had to crank the vertical gain way up, and sync sometimes became unstable. The circult phown at (B) uses a form of bootstrap somewhere and 1000 megohms The circuit has unity gain, while the upper frequency equalization is determined by the setting of the 5000 -ohm potentiometer.
The rise time is quite fast, and is estimated at about hall a micro second. The circuit was built on a nar old metal cigar tube container, as a probe. We have had no circuit loading problems.
Although we have shown only a couple of relatively simple ideas, there are many more. Where do these ideas come from? When we receive our quota of construction and ham magazines, besides reading those articles that interest us, we take a look at all the circuits, searching for ideas see something that could be of use, we clip it out and file it in a set of folders that are categorized by applicationsaudio, test gear, power supplies, etc. If you don't like the idea of cutting up

Circuit (A) can be used to improve the waveform on a square-wave generator while (B) can be added o an oscilloscope to

POPULAR ELECTRONICS
magazines, then start a card file, recording the title of the article, the
magazine, the month and year, the page number, arid the idea you have in mind. At some later date when you are looking for help, all you do is look in your files under the proper heading, ind the article, break out the soldering iron, and update.

Circuit Loading. Several times in the past, we have mentioned that measuring voltage with a VOM is not the same as measuring it with a VTVM, VTM, DMM or any other high-inputresistance instrument.
Let us take the case of a circuit having a 10 -volt power supply and a series output resistance of $50,000 \mathrm{ohms}$. If you are using a VOM with a $20,000-0 \mathrm{hm}$ dc resistance, the current flow through the circuit will be 10 / (7 x $10^{\prime \prime}$), with the 70,000 ohms being the sum of the 50,000 -ohm series resisance and 20,00 -ohm VOM resisamperes. The voltage 1.43×10 to the VOM $\left(1.43 \times 10^{-1}\right)\left(2 \times 10^{1}\right)$ or 2.86 volts. The error is then ($10-2.86$) 10 times 100 or 71.4%.
If you plug the VTVM 10 -megohm input resistance into the above equations in place of the 20,000 ohms of the VOM, you will find that the current now becomes 9.95×10^{-7} amperes. The voltage drop across the VTVM is now 9.95 volts, and the error is only 0.5%.
your own VOM the dc resistance of your own VOM and VTVM (or other ment) to determine for vourself just how inaccurate those voltage mea surements have been in the past mea will see that the higher the input resistance of the voltage measuring device the greater the accuracy

JANUARY 1975

$\mathrm{ml\mid l} \ln$ tosh catalog

 and FM DIRECTORYGet all the newest and latest information on the new McIn tosh Sol-
id State equipment in the McIntosh catalog. In addotion you vill
receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEND
TODAY!

| McIntosh Laboratory, Inc. Binghamton, N.Y. 13904
 $1 \begin{aligned} & \text { Binghamton } \\ & \text { Dept. PE }\end{aligned}$
 I name
 | ADDRESS

CITY
 STATE
For in a hurry for your catalog please send the coupon to McInto For non rush service send the Readeres Service Card to the magazine.
CIRCLE NO. 23 ON READER SERVICE CARD

highly simplified manner. Short-answer, multiple-choice questions and problems conclude each chapter
Published by Prentice-Hall, Inc., En glewood Cliffs, NJ 07632.462 pages \$14.95, hard cover.
oigital computers:
OIGITIAL COMPUTERS:
CIRCUITS ANO CONCEPTS
by Deem, Muchow, and Zeppa This is a sophisticated text for the technician, engineering student, or practicing engineer who wants to know how digital
systems operate, and how such systems can be designed at minimum cost and parts count. Among the topics covered ar number systems, Boolean algebra, logic
symbology, code and data representation Karnaugh maps, and simplification of logical expressions. Circuitry is not neglected A thorough description of the RTL, DTL TTL, ECL and CMOS logic families is in cluded. Shift registers, combinational and
sequential circuits, decoders and encod sequential circuits, decoders and encod
ers, timing and control operations are analyzed and implemented to realize mathematical operations in the serial and parallel modes. Memories are given specia consideration
Published by Reston Publishing Company Box 537, Reston, Va. 22090. 376 page \$14.95, clothbound

MODERN RECORDING TECHNIQUES
by R. E. Runstein
This new work introduces the reader to the equipment and practices found in today's multitrack recording studios. In the firs chapter, the acoustical, mechanical, elec trical and magnetic means of transforming a live performance into a disc are outlined.
Later chapters describe consoles, microphones, mixing, noise-reduction and monitoring. Finally, automated mixdown disc cutting and pressing, and quad raphonic disc systems are presente Published by Howard W. Sams \& Co., 4300 pages. \$9.95, paperback.

basic electricity: a text-lab manua

 (Fourth Edition)by P. Zbar
Designed as a programmed text for an in troductory electricity laboratory course this volume presents basics of theory as well as practical applications of electricity
The reader is introduced to the passive cir cuit elements and their properties. Ohm's Law, series and parallel circuits, and voltage dividers are explained with actual cir cuits the reader can assemble. Kirchoff's Laws, Thevenin's and Norton's Theorems,
and maximum power transfer are explored Time constants, reactive circuits, impedance, and ac analysis conclude th course. If the book is used as a lab manua popular electronics
tudents who follow it should gain a basic Published by McGraw-Hill Book Co., 1221 Avenue of the Americas, New York, NY 10020. \$6.95, soft cover.

VHF HanOBOOK FOR RADIO AMATEURS
by Herb Brier and William Orr This guide to the "line-of-sight" frequen cies begins with a short history of vhf ex popular vht bands include more than 13 MHz of spectrum space, more than four times the capacity of the hf bands. Since many amateurs are moving higher and higher to avoid congestion and QRM, this newcomers to the high bands. Vhf propagation, caused by ionospheric reflection, moonbounce, tropospheric, auroral, and meteor effects is explained. The Oscar series of satellites is examined, and special emphasis is given to earth-station configcluding repeaters, mobile links, and toneencoding controls is discussed. Design theory and construction practices for anennas, solid-state amplifiers and receiving circuits are explained and illustrated. Published by Radio Publications, Box 149,
Witton, CT 06897.336 pages. 55.95 , soft Wilton, CT 06897. 336 pages. $\$ 5.95$, soft
cover.

ELECTRONIC TEST EQUIPMENT AND HOW TO USE IT

by J. Risse
A guide to the practical uses and proper operation of test equipment, this book gives principles, functions, and applica-
tions for tube and semiconductor testers, signal generators, capacitance and inductance bridges, and oscilloscopes. A list of key questions is included at the end of each chapter to allow the reader to check him
self on new material as it is presented. Published by Tab Books, Blue Ridge Sum mit, PA 17214. 204 pages. $\$ 7.95$, hard cover; \$4.95, paperback.

solid state ignition systems

by R. Graf and G. Whaten Fundamentals of the various electronic ig nition systems that are becoming more and more popular in today's cars are dissystem is examined. Inductive-discharge and capacitive-discharge using solid-stat components are covered by describing representative types offered by auto manufacturers and supply houses. Trigger
methods, from breaker-point (with CDI) to magnetic "pointless" systems available as an option on most new American cars are included.
Published by Howard W. Sams \& Co., 4300 W 62nd Street, Indianapolis, IN 46206. 136 pages. $\$ 4.50$.
JANUARY 1975

without soldering for as little as $\$ 300$

SAVE!
 MONEY - TIME - FREIGHT

 A AT LOWEST PRICES.J YOUR RERUEST FOR RUOTA. - factory sealed cartons-
f Save on name brands like:
Ot A.D.C. NAME KRANDS A.R.
DYNACO

SHURE KOSS
FISHER SONY
and more than 50 Others BUY THE MODERN WAY BY MAIL-FROM

Department 217S 12 East Delaware 312-664-0020
CIRCLE NO. 18 ON READER SEEVICE CARD

IDV2 SAVE ON

Brand Name Audio Gomponents BVIIL
Write Today for Our
FREE Audio Catalog Rex mex Auble Cataig

\qquad

DIXIE HI-FIDELITY

 Name. | Name |
| :--- |
| Address |

Adaress
City_
State
State

 Hobby Scene

TONE CONTROL FOR BACKGROUND MUSIC Q. I purchased a low-cost, generalutility, solld-state preampilfler and ground music on my open patio. Now I find that I need some form of tone control to get a better sound. Is there a slimple way to do thls?
A. The tone control shown here can be inserted between the preamp and the power amplifier. You will have to get the power supply from the amplifier

ONE-TRANSISTOR PUSH-PULL OUTPUT
Q. Is it possible to arrange a onetrans/stor push-pull output to drive two speakers-one in the emitter cir. cult and one In the collector?
A. This circuit can be used to drive a pair of 4-ohm speakers with a 1 -watt output. Adjust the value of $R 1$ to give the voltage drops shown across the speakers and the output stage.

A ONE-TIME SWEEP GENERATOR

Q. I need some kind of r-f sweep generator to allgn the l-f of a recelver clal unlt-just something slmple for thls one-shot allgnment.
A. You could try the basic circuit shown here. The UJT output goes to

the horizontal (external) input of the scope; and you can set the desired sweep rate with the potentioneters. The varactor can be any one in the range of about 50 pF . Use a Miller 9003 coil with a range of 380 to 1000 kHz for a $455-\mathrm{kHz}$ i-f or a Miller 4505 (10 to 14 MHz) for a $10.7-\mathrm{MHz}$ i-f. Other coils
can be used for other ranges.

POPULAR ELECTRONICS

ELECTRONICS MARKET PLACE

 Adveriser to supply cuts. . For frequinacy rates, please Inquire.
GENERAL INFORMATION: FIrst word In all ads set in boll caps at

 (for example, March issue closes January 1st. Send order and remittance to POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016,
Attention: Hal Cymes.

 Learn the secrets of youir telephone $\int^{\text {rato }}$ facts never published for the publit A UNIQUE REFERENCEGGUDE
IO THE INSIDE STORY

 DESCRAMBLERS several models that work with all
scanners and tunable receivers, Automatic Activated

 WHHLLESALE BURGLAA ALARM supolies. Catalog S1.00
retundabie). Elin, 161 w Bonad, Chestrut Hill, Mass.

musical instruments

 Garden Cily, New York 1350 ,

 "ubanted citizens band dealer-distributors Send this Ad to
PAL ELECTRONICS CO.
P. O. Box 778 • Westminster Ca. 92683

[^0]

POPULAR ELECTRONICS

JANUARY 1975
ADVERTISERS INDEX

home entertainment films

ENOY YEAR ROUND MOVIES IN YOUR HOME, Prices
Continue to ralse Uuv we will diver Columbla Picturses like

 and Sporitite catalog avaiable, 25 cents, each. SPORT
LTE. Dept. PE-1, Box 24-500, speedway, Incliana 46224. magazines and books

isn't a lost art. AUDIO

 isn't a lost art. Readers of theAudio Amateur magazine are cusAudio Amateur magazine are cus-
tomizing and scratch building their equipment with gusto and great results. Free prospectus tells all. Box 30P, Swarthmore PA 19081

RECORDS

OLDIES. 45Trm. Free Cataiog. Corny's Record Shop, Box
166TA, Mason, Orio 45040.

RUBBER STAMPS

 MADE-TO.ORDDR STAMPS. Low Prices. Free Catalog. A
legheny, Box 14A, East Mckesporr, PA A 15035 .

PLASTICS

$\overline{\text { CASTOLITE pours like water, hardens Ilike glass withow }}$

repairs and services

 HYPNOTISM
 FFREE Hyonotism. Sell-Hypososis. Sieep Learring Catalog
Frawer H400. Auidoso., New Mexico
 stamps

DO-IT-YOURSELF

TELEPHONES UNLMITED, equipment, suppies. Cataliog
50 cents Box 1654 .

FREE

- REDUCE YOUR PROJECT COSTS
- MONEYBACK GUAARET COSTS
24-HOUR SHIPMENT
- aLL TESTED AND GUaranteed

JANUARY SPECIALS: 2N5163 TYPE N.CHANNEL FET GP Amp \& Switch 741 Freq. Compensated Op Amp (DIP/TO-5/MINI-DI 1N914 Dr IN4148 TYPE GP DIODE $100 \mathrm{~V} / 10 \mathrm{~mA}$ MM5316 Digital Alarm Clock-Snooze/Alarm/Timer Hrs, Mins, Secs - with Specs/Schematics	
${ }_{32}^{32}$	

ADVA

electronics
Tel. (415) 851 1-0455
CIRCLE NO. 1 ON READER SERVICE CARD MAGNETS

MAGNETS. All tyees. Specials-20 disc, or 10 barar, or 2 stick,
or 8 assonted magnets, s1.0. Magnets, Box $192-H$. Randal stion

ETEERS FORWARDED. Will Stamp and Zii. Max. 2, 50
Eents. Malo, P.O. Box 1597, Boston. Mass. O2104. miscellaneous

Expanded Listening Enjoyment. Just plug the Sound Perfection. You have to listen to believe. special adapter into the earphone jack of any Open Audio. Enjoy the sound. Yet, be part of Mono Cassette Recorder, Portable Radio or TV what's going on around you. That's the big thing and enjoy the OA-3 into the special adapter
 Revolutionary. So slender. So light. So comfortabout "open audio
Prediction. The OA-3 will be your favorite "comPrediction. The
ponent" in your hi-fi stereo system. $\$ \mathbf{3 9 9 5}$

The Dual 12290 . Why many music lovers will sethe for nothing less.

Many serious music lovers are not satisfied unless every component in their system is the very finest in its class, with cost secondary. The 1229Q, Dual's highest-priced multi-play turntable, is one of these "no compromise" components.

The 1229 Q is a full-sized turntable with a twelve-inch dynamically balanced platter that weighs a full seven pounds. Its massive platter is driven by Dual's powerful Continuous-Pole/ synchronous motor.

The $8-3 / 4^{\prime \prime}$ tonearm is mounted in a true gyroscopic gimbal that centers and balances it within both axes of movement. All four tonearm pivots turn on identical low-friction bearings permitting flawless tracking at as low as 0.25 gram. And since a turntable of the 1229Q's calibre is used most frequently in the single-play mode, the tonearm is designed to track at precisely the correct angle in that mode. With the exclusive Mode Selector, tracking angle can be instantly adjusted for correct tracking at mid stack in the multi-play mode.

Low capacitance tonearm leads and an anti-skating system with separate calibrations for conical, elliptical and CD-4 styli, make the 1229Q compatible with any stereo and four-channel cartridge available or likely to be available in the foreseeable future. Other features include a calibrated illuminated strobe with adjustable viewing angle, and cueing damped up as well as down to prevent bounce.

The 1229Q is too new for test reports to have appeared, but reports on its immediate predecessor, the Dual 1229, indicate why it was the largest selling quality turntable ever made. Stereo Review called its rumble measurements "among the best we have yet made on a turntable." High Fidelity said, "It takes one step further the progressive improvements that have made top Dual models among the most popular turntables in component systems for the better part of a decade, to judge by readers' letters."

Stereo \& HiFi Times' noted, "I unhesitatingly recommend it to anyone looking for the best possible record playing equipment." And Popular Electronics rated it "the equal of any combination of record playing components known to us."

Of course, not everyone can afford the 1229Q's price: $\$ 259.95$. But every Dual turntable, starting with the 1225 at $\$ 129.95$, provides the same high quality materials, carefully finished parts and meticulous quality control that have long earned Dual its reputation for reliability.

Thus which Dual you select is not terribly important. Your choice can be made in terms of the level of refinement you require. And if, like many music lovers, you require every refinement it is possible to have in a multi-play turntable, chances are you too will choose the Dual 1229Q.
${ }^{\circ}$ United Audio Products
120 So. Columbus Ave., Mt. Vernon, N.Y. 10553
Exclusive U.S. Distribution Agency for Dual

[^0]:

 ## ELECTRONIC FACTORY

 ## EMPLOYMENT OPPORTUNITIES

