INS-AND-OUTS OF COMPUTERS FOR BEGINNERS

AUDIO * STEREO * MUSIC
ADJUST ROOM REVERBERATION WITH
The "Bucket Brigade" Audio Delayer
A $\$ 59$ STEREO PROJECT

Ten Speaker-Enclosure Fallacies Exposed!

"Music Modules" Simplify Synthesizer Kit

PROJECTS FOR SUMMER USE

Test Reports: heath modulus AM/STEREO FM SYSTEM
SOUND CONCEPTS SD-50 AUDIO
DELAY SYSTEM
CRAIG 4104
CB AM MOBILE
CONTINENTAL SPECIALTIES DESIGN MATES

Experience is the best teacher. You might settle for any CB first time around Understandably. A lot of people think they're all pretty much alike. But you'll soon discover that, like everything else, there are exceptions
Ask the pros. America's long distance truckers. These guys talk CB day in and day out. And they demand the best. That's why truckers refer to the Cobra 29 as "The Diesel Mobile'"

Listen to Cobra. You'll hear a big difference Because the Cobra 29 gives you features which assure crystal clear reception. Like switchable noise limiting and blanking, to cut out practically all pulse and ignition interference. Add squelch control and RF gain and you've got exceptional - adjustable-receiver clarity. Even in the heaviest CB traffic You also get Delta Tuning which makes up for the other guy, because even offfrequency transmitters are pulled in. Perfectly.

Talk to Cobra. And you know you're punching through. One glance at the

29's over-sized illuminated meter tells you just how much power you're punching out and pulling in. For voice modulation the DynaMike delivers at 100%. Same way with power: The 29 transmits at maximum power levels.

Sooner or later you'll get a Cobra. And you'll get engineering and craftsmanship second to none Performance that will make your first CB seem obsolete. Reliability and durability that have set standards for the industry. Above all, you'll get power. The power to punch through loud and clear like nothing else. Because when it comes to CB radio, nothing punches through loud and clear like a Cobra.

Corra

Punches through loud and clear.
Cobra Communications, Products of Dynascan Corp. 1801 W. Belle Plaine, Chicago, Illinois 60613

circle mo 14 on free information camo

IF YOUR FIRST CB ISN'T A COBRA YOUR SECOND ONE WILL BE.

Is our newHP-27 an engineering work of art? Orsimply the most powerful preprogrammed calculator we've ever built?

It depends whether you consider versatility artistic.

The HP-27 offers you all the log, trig and exponential functions we've preprogrammed into all our scientifics. Plus new stat and financial functions, new storage capacity, new clearing operations and engineering notation.

That's why we've dubbed it our "Scientific/Plus."

It lets you forecast, allocate resources, analyze costs.
The combination of stat functions, storage registers, selective clearing and RPN logic system with 4-register stack takes the time and trouble out of sophisticated stat calculations.

It performs valuable time-value-of-money calculations.
Whether you're looking to figure your mortgage or build a capital budget, the HP-27 makes the task easy. You might even be able to do both at the same time, thanks to its exceptional storage capacity.

19 memories simplify complex calculations.
You can store constants in 10 addressable storage registers, financial data in five financial registers. And you have four operational registers in the stack for easy data manipulation.
Six clearing operations let you do multiple calculations without destroying data.
You can clear all 10 addressable registers, or just the six used for stat calculations. You can clear the entire stack, or just the " X " register. Or you can clear the prefix keys only, or you can clear the status of the financial registers.
You get uncompromising design, assembly, support.
Three things that have made believers of the million + people who own personal-sized HP calculators. Three prerequisites for a potential engineering work of art.

800-538-7922
(in Calif. 800-662-9862).
The toll-free numbers to call for

complete specs on our new $\$ 200.00$ * HP-27 Scientific/Plus and a nearby dealer. Or send the coupon.

Sales and service from 172 offices in 65 countries. Dept. 2541: 19310 Pruneridge Avenue, Cupertino. CA 95014

Introducing...

SBE Touch/Com The mike that does it all!

SBE adds the ultimate touch of sophistication to CB with the new SBE Touch/Com. It puts all the functions of CB two-way radio communication in the palm of your hand. Change channels, adjust volume and squeich, receive or transmit...all with the flick of a finger on the mike. It features up/down two-speed channel selection and a bright base-station-size LED digital channel readout for fast identification.

The Touch/Com, with the circuitry of the now-famous Formula D, incorporates all of SBE's most advanced CB technology: digital synthesis to cover all 23 channels with a single crystal; phase-lock-loop circuitry for "on-target" frequency stability; positive or negative ground for RV, boat and truck voltage systems; dual conversion for sharp selectivity and rejection of adjacent channel interference. The Touch/Com also features delta tune: crisp, clear audio output; a large, combination power output/" S ' meter, night-lighted for easy viewing.

SBE'S finest CB - now made unquestionably the best by the unique convenience of Touch/Com.

For information write: SBE, Inc., 220 Airport Blvd., Watsonville, CA 95076
FEATURE ARTICLESTEN SPEAKER-ENCLOSURE FALLACIESDavid B. Weems39
Things to look for in designing or buying a speaker "box."
IN'S AND OUT'S OF COMPUTERS FOR BEGINNERS Eugene H. Mitchell 47Understanding character codes, flags, interrupts. DMA, etc
HOW TO USE THE HP-45 CALCULATOR AS A STOPWATCHOR ELAPSED-TIME INDICATORPaul E. Miller67
UNIVERSAL INTERFACE BETWEEN LOW-POWER LOGICAND LOAD DRIVERVern Gregory94
CONSTRUCTION ARTICLES
THE "BUCKET BRIGADE" AUDIO DELAY LINE John H. Roberts 33
Simulates larger listening room and creates special effects.
BUILD A SINE-WAVE INVERTER Martin Meyer 43
Allows operation of as appliances from 12-V vehicle battery.
Allows operation of as appliances from 12-V vehicle battery.
Barton M. Bresnik
Barton M. Bresnik 55 55
POWER-FAILURE ALARM
POWER-FAILURE ALARM
R. M. Stitt 57Makes a complete test in $1 / 60$ th of a second.MUSIC MODULES TO BUILD YOUR OWN SYNTHESIZER Don Lancaster59
COLUMNS
STEREO SCENE Ralph Hodges 20
Dateline 1976.
John McVeigh 28
SOLID STATE 82
Programmable Schmitt Trigger.
CB SCENE Ray Newhall 95
Avoiding CB Ripolfs
EXPERIMENTER'S CORNER Forrest M. Mims 102
Applications for the TTL NAND Gate.
PRODUCT TEST REPORTS
HEATHKIT MODEL AN-2016 "MODULUS" CONTROL CENTER HEATHKIT MODELS AA-1505 AND AA-1506 "MODULUS" POWER AMPLIFIERS 72
SOUND CONCEPTS MODEL SD-50 DELAY UNIT 76
CRAIG MODEL 4104 MOBILE AM CB TRANSCEIVER 78
CONTINENTAL SPECIALTIES "DESIGN MATES" 80
DEPARTMENTS
EDITORIAL Art Salsberg 4
The Second Golden Opportunity for $C B$.
LETTERS 6
OUT OF TUNE 6
"An LED-Readout Audio Power Meter" (March 1976)
Space War Game" (April 1976)NEW PRODUCTS12
NEW LITERATURE 18
NEWS HIGHLIGHTS 30
ELECTRONICS LIBRARY 99
TIPS \& TECHNIQUES 100
OPERATION ASSIST 101
ADVERTISERS INDEX 121

POPULAR ELECTRONICS, June 1976. Volume 9, Number 6, Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S., \$6.98; U.S. Possessions and Canada, \$7.98; all other countries, $\$ 8.98$. Second Class postage paid at New York, NY and at ad ditional mailing offices. Authorized as second class mail by the Post Office Department. Ottawa, Canada and for payment of postage in cash. Subscripthon service and Forms 3579; P.O. Box 2774, Boulder, CO 80302.
POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in tie Reader's Guide to Periodical Literature. COPYRIGHT* 1976 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography. Skiing and Stereo Review

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions. Ziff-Davis Publishing Co., One Park Ave. New York, NY 10016
Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models.
Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS. Circulation Dept.. P.O. Box 2774, Boulder CO 80302 . Please allow at least eight weeks for change of address. Include your old address. enclosing, if possible, an address label from a recent issue.

Popular Electronics

EDGAR W. HOPPER
Pulthher

EDGAR W. HOPPER Pulhther
ARTHUR P. SALSBERG Editorial Dirrctor
LESLIE SOLOMON Technical Editor
JOHN R. RIGGS Managing Edtuor
ALEXANDER W. BURAWA Feature Editor
EDWARD I. BUXBAUM Art Director
JOHN McVEIGH Aswriane b dhor
ANDRE DUZANT Teshnical Mhastrator
PATRICIA BROWN Edtorial Assmiant
LOU GARNER GLENN HAUSER JULIAN D. HIRSCH RALPH HODGES ART MARGOLIS FORREST MIMS JERRY OGDIN WILFRED M. SCHERER Contributing Edifor,
JOSEPH E. HALLORAN Aderething Diractor
JOHN J. CORTON Adurtising Sale's
LINDA BLUM Adertising Seritce Manager
PEGI MCENEANEY Executite Assistan!
STANLEY NEUFELD Associate Pubhsher

ZIFF-DAVIS PUBLISHING COMPANY Popular Electronics
Editorial and Executive Offices One Park Avenue New York. New York 10016 212.725-3500

Hershel B. Sarbin. President
Furman Hebb. Executive Vice Presıdent Vincent Perry. Financial Vice President and Treasurer Phillip T. Heffernan. Senior Vice President. Marketıng Edward D. Muhlfeld Senior Vice President. Sports Division Philip Sine, Senior Vice President Frank Pomerantz. Vice President. Creative Services Arthur W. Buizow, Vice President. Production Lawrence Sporn. Vice President. Circulation George Morrissey, Vice President Sydney H Rogers. Vice President Sidney Holtz. Vice President Al Traına. Vice Presıdent Philip Korsant. Vice President Paul H. Chook. Vice President. Market Planning Charles B. Seton. Secretary
Edgar W Hopper. Vice President. Electronics Div. Willam Ztff. Chairman
W Bradford Briggs. Vice Chaırman

Midwestern Office

The Patus Group, 4761 West Touny Ave.. Lincolnwood llinois 60644. 312 679-1100 GERALD E. WOLFE. THOMAS HOCKNEY Western Office
9025 Wilshire Boulevard, Beverly Hills. CA 90211 213 273-8050; BRadshaw 2-1161 Western Advertising Manager, BUD DEAN Japan: James Yagı
Oıı Palace Aoyama, 6-25. Minami Aoyama 6 Chome. Minato-Ku. Tokyo 407•1930/6821 582-2851

mber Audit Burea
of Circulations rights which will be violated by the making or using of any items disclosed in this issue

THE SECOND GOLDEN OPPORTUNITY FOR CB

When a market reaches the billion-dollar annual sales level, it is truly an important industry. That's where CB radio is today. Whereas unit sales in 1975 were about 4.2 million, projected unit sales for 1976 are for more than 9 million!

This huge growth has brought with it a host of problems-short supply of equipment, minimal discounting, high theft rate, and gross violations of the FCC Rules and Regulations. Solutions can be seen for all but the latter. How can CB'ers be compelled to follow the legal pattern set for them by the FCC? Even the welcome relaxed rules instituted September 15, 1975?

Without a substantial enforcement staff, which we aren't about to get, the FCC is depending heavily on self-policing by CB'ers. This is easier said than done. On sideband, it is successful for the most part. On AM, however, where most CB'ers operate, the rules are blithely ignored in many sections of the country. Some day, this practice is liable to stunt the continuing growth of the Citizens Band-unless something positive is done about it now.

IF CB had followed the original assumption that most users would be small-business people and "consumers" in the same household, this problem could have been handled. But now, with most communications taking place between stations with different licenses for purposes of both neighborliness and emergency motorist assistance, and with the vast number of CB'ers on the air, the situation is out of hand.

Here are some constructive steps that could be taken, with the assistance of far-sighted manufacturers, the FCC and CB'ers:

1. Establish point-of-purchase temporary licenses, making it mandatory to buy a license when the rig is purchased. (The FCC is finalizing thinking on this procedure right now.)
2. Include information with each CB rig on the obligations that go with the communication privilege and how they benefit users in the long run. Taking a page from the Boy Scouts' Merit Badge on Citizenship, an analogy could be drawn by pointing out the value of a library card and how everyone is eventually hurt when books are defaced or returned late.
3. Illustrate how local CB'ers perform self-policing for the good of all concerned. For example, in some areas, there are clubs to which a prospective member must supply name, handle, and license number before being admitted. He is then assigned a club number which is used as part of his handle (following his callsign). No member will talk to a CB'er unless he or she is a member of the club and follows the FCC rules. Other clubs reserve one night a week for a "signal hunt"-tracking down violators, getting their names or auto license numbers, and warning them that they will be reported to the FCC if another violation is heard.
4. Consider the possibility of equipping transceivers with an automatic transmitter identification system that transmits in code the CB'ers callsign everytime he presses the "talk" button. This would put the fear of God into CB'ers and also serve as a theft deterrant. This would have to be predicated on minimal cost to the manufacturer and user, or course.

At this juncture, with CB nowhere near a levelling off point and the promise of more allocated channels in 1977, there is a second golden opportunity to ensure future growth of CB.

Some manner of efficient regulation enforcement is necessary because most CB'ers are not restrained by the tradition that radio amateurs enjoy. Interestingly, if you speak to CB'ers who have lived with the lack of regulation enforcement, you will discover that the great majority would now welcome it. In the long run, it would be to the advantage of manufacturers as well as the citizenry.

This is the Legendary

Parametric Radar Receiver with revolutionary Audio Cueing

PEACE for the Professional Driver

(Ask any long-haul trucker... he'll tell you about it.)

A military type radar receiver that works two to ten times farther than radar. Parametric design provides unparalleled sensitivity, but rejects false signals. No installation or antenna. Adopts to positive or negative ground vehicles.

A unique AUDIO CUEING system announces radar lock-on with a short beep. The visual indicator is then used to estimate where and what type of speed trap is being encountered. The receiver is especially effective against the new moving radar.

IF IT DOESN'T SAY:

IT'S BOGUS!

Proven by thousands of truckers over billions of miles, nationwide, and now available to the general public!

DEDUCT 10\%

If you have paid a SPEED RADAR TICKET in the preceding 12 MONTHS. Send ticket or cancelled check with order (\$89.95). Copies O.K.; original returned.

No Radar Ticket Yet?

TRAVEL NAKED AND QUALIFY SOON!

Please rush me a Fuzzbuster. My check for $\$ 99.95$ is enclosed.

[^0]

COMMENTS ON CUTS

I am pleased to see computer-controlled tape motion for audio cassettes, to generate blocks, in the CUTS ("Computer Bits," March 1976). I had been thinking about the same thing because blocks can be very handy when they're written and read under computer control. However, it wasn't clear what would be read in the 5 -second gap between blocks. I assume it is neither the 2400 - nor the $1200-\mathrm{Hz}$ tones. Assuming the tape has a leader, a block could then be positively identified by blank tape followed by 5 seconds of continuous 1 's. (Remember that the user may rewind the tape into a previous block to find the next block and then let the computer search for a start-of-block.) If the characters are recorded asynchronously (for example, with a keyboard), a 5 -second pause between characters would seem to be a start-of-block.-Philip J. Tubb, Lakewood, CO.

There are no blank spaces on the tape; both leader and "gaps" are filled with the $2400-\mathrm{Hz}$ tone onto which the clock can lock.

BACKWARD CHART PEN

Come now, the graph in Fig. 1 of the March 1976 "Stereo Scene" is a month early for an "April fool" joke. The output of a spectral analyzer cannot loop backward as shown at about 100 Hz . If literally interpreted, this would mean that the sound source has two values at a range of frequencies-a physical impossibility. Whatever peaks and valleys appear in a spectrum, the curve is always smooth, with no negative slope.-James J. Schmidt, Sunnyvale, CA.

Quite right. A slip of a draftsman's pen was responsible for the error.

CREDIT WHERE DUE

With reference to the Tate Directional Enhancement System described in "New Trends In Hi-Fi Electronics" (December 1975), I would like to point out that I am the inventor of the system and the engineer who designed and developed the IC's in cooperation with National Semiconductor Corp. Wes Ruggles, who was erroneously credited with this, has been responsible for the management of the project and the marketing effort.-Martin Willcocks, Huntington, England.

"CARE \& FEEDING" BOOSTERS

We found "The Care and Feeding of NiCd Batteries' (March 1976) to be very pertinent and of great interest to us. Many users feel that NiCd batteries should last forever, and we find it difficult to dissuade users of our products from this belief. Alex Burr's article is a simple-to-digest, detailed answer to our problem.-Axel M. Fritz, Jr., President, Bison Instruments., Minneapolis, MN.
an excellent article on NiCd's. The article was clear and very informative and didn't shy away from the more sophisticated details.-Hugh MacDonald, Menlo Park, CA.

APRIL (FOOL) HOBBY SCENE

Particularly intriguing was the problem of working with MOS circuitry. The geomagnetic aspect is indeed a stickler! However, after spending considerable time wrestling with this dilemma, I believe I have come up with a solution. If the device is housed in a spherical silicate material (available at your local quarry) and if it can be kept in motion (via pushing, kicking, etc.), the result will be a device which cannot accumulate any MOS difficulties. (P.S. The column was outstanding!)-Ron Simprini, Philadelphia, PA.

Congratulations. It took me a while (well into "Golden Oldies') to realize what was going on. But then I nearly died laughing. I haven't seen anything this funny since "Blazing Saddles."-Frank Grether, San Francisco, CA.

These are excerpts from only a few of the many letters Ms. Swampfelder received. By the time this is in print, April Fool's Day will have come and gone, and we hope everyone will have gone back to read the April Hobby Scene and appreciate it for the fun with which it was intended.

Out of Tune

In "An LED-Readout Audio Power Meter" (March, p 35), note an error in Table II, "Ideal Threshold Voltages" for the comparators. The right column, "Voltage," is inverted. The last entry, 4.395, refers to Pin 7 of IC1; the next to last, 3.070, refers to pin 5 of IC1; and so on. The top entry, 0.011, is the threshold for pin 11 of IC3. -Tim Henry

See also "Out of Tune," May 1976.

In "Space War Game" (April, p 42), the parts list omitted the type numbers for $/ \mathrm{C} 7$ and IC8 (4023) and IC9 and IC10 (4001).J.A. Weisbecker.

Motorola CB is here!

Introducing Mocat-The CB radio backed by Motorola's 40 years experience in professional radio communications. Greatlooks. Great performance. Everything you'd expect from a radio built by Motorola. Yet it comes at a very affordable price
Designed and engineered in the USA, Mocat is a 100% solid-state Motorola CB radio with the very latest in technological advances. and exciting features.

Motorola CB means reliability.

 A digital phase lock loop synthesizer assures on-frequency performance on all channels.

Motorola CB means quality

 reception. Automatic gain control cross modulation rejection circuit and optional "Extender" noise blanker circuit give Mocat superior receiver performance.Motorola CB means power. All models feature a rugged plug-in mike with built-in amplifier for maximum transmit signal strength.

Motorola CB means good

 looks. Contemporary styling across the line. Selected models offer easy channel identification with highintensity L.E.D. digital channel read-out and dimmer.
Motorola CB also means high performance and attractively styled antennas and accessories. Motorola $C B$ is the biggest news and greatest value in personal communications today. Mocat from Motorola. Now is the time to own a Motorola CB. For complete details, write us at Motorola, Inc. Dept. CB-700، 1301 East Algonquin Road, Schaumburg, IL 60172.

No other TV/Audio home study school puts prices in Maybe it's because they can't match these values.

No other school gives you a choice of five ways to learn TV/Audio servicing, with complete courses starting as low as $\$ 445$ and convenient, inexpensive time payment plans. No other school includes both an engineered-for-training 25" diagonal color TV and a fourspeaker Quadraphonic stereo in its best course. In fact, to even match this kind of thorough training at another school, you'd have to take an extra course costing hundreds of dollars more. We're proud to quote our prices because we believe you get top educational value from NRI.

You pay less because NRI passes its savings on to its students.

NRI pays no salesmen. We buy no outside "hobby kits" for our experiments or training kits. We design our own equipment with special Power-On features that allow you to experiment as you build. You get low tuition rates without the penalty of exorbitant interest charges for time payments. We pass the savings on to you.
More than 1 million students have come to NRI for home training.
Home study isn't a sideline with NRI. We've been its innovating leader for
over 62 years. More than one million students have enrolled in our many career courses. NRI is one of the few home study schools with a full-time staff of engineers, authors and editors to help you with any problem. NRI graduates will tell you: you can pay more, but you can't buy better training.
Widest choice of courses with digital computer, $C B$, and complete communications.
Send for the free NRI electronics cata\log and check out the full spectrum of courses available, including Color TV, FCC License, Complete Communications Electronics-with Citizens Band radio, Computer Electronics, Marine and Aircraft Electronics, Mobile Communications, etc.
Mail the card for your Free NRI catalog.
No salesman will call.

7 kits: Quadraphonic Stereo... \$445

A basic TV/Audio Servicing Course including 7 training kits for your experiments. You build your own 4 -speaker Quadraphonic System, solid-state volt-ohmmeter, CMOS digital frequency counter, and electronics Discovery Lab. Includes 48 bite-size lessons (18 on color TV), 10 special reference texts with hundreds of servicing shortcuts, tips on setting up your own business, etc. This completely up-to-date course covers black \& white and color TV, FM multiplex receivers, public address systems, antennas, radios, tube, transistor and solid-state circuits.

11 kits: Quadraphonic Stereo and B/W TV... 550

A complete course in B\&W and Color TV Servicing, including 48 lessons (18 on color TV) 10 special reference texts and 11 training kits. Kits you build include 4 -speaker Quadraphonic System, solid-state volt-ohmmeter, CMOS digital frequency counter, electronics Discovery Lab, plus a $12^{\prime \prime}$ diagonal solid-state black \& white portable TV to build and use. At each assembly stage, you learn theory and "Power-On" application of that theory in typical solid-state TV sets.

11 kits: 19" diagonal Color TV... s880
 or low monthly terms

The course includes 42 lessons and 4 reference texts plus kits and experiments to build a superb solid-state $19^{\prime \prime}$ diagonal color TV receiver . . . complete with cabinet, and engineered specifically for training by NRI's own engineers and instructors. This handsome set was designed from the chassis up to give you a thorough understanding of circuitry and professional troubleshooting techniques. You build your own solid state volt-ohmmeter, CMOS digital frequency counter, and experimental electronics Discovery Lab.

14 kits: 25" diagonal color TV and Quadraphonic Stereo... ${ }^{5} 1195.00$

The-ultimate home training in Color TV/Audio servicing with 48 bite-sized lessons, 10 reference texts, and 14 training kits . . . including kits to build a $25^{\prime \prime}$ diagonal color TV, complete with console cabinet; a 4 -speaker Quadraphonic Center; a wide band, solid-state, triggered sweep, service type $5^{\prime \prime}$ oscilloscope; digital integrated circuit color TV pattern generator; a CMOS digital frequency counter, and an electronics Discovery Lab. This gives you thorough TV and Audio training for hundreds of dollars less than the separate courses you'd have to take elsewhere.
This Master Course combines theory with practice, using the "Power-On"" stages for experimentation and learning. Building NRI's equipment will give you the confidence and ability to service any color TV or Audio unit on the market. And you'll have a magnificent TV and quad unit for years of trouble-free performance.

Pro Color: 19' ${ }^{\prime \prime}$ diagonal color TV... s665
 \qquad

An advanced Color TVServicing Course for experienced technicians, 18 lessons, 5 new "Shop Manuals", and NRI 19" diagonal Color TV receiver with cabinet.

New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

SAE DIGITAL FM TUNER

The SAE Mark VIII digital (stereo) FM tuner utilizes monolithic linear-phase filters and a phase-locked-loop multiplex section for alignment. The display consists of four seven-segment LED numeric indicators for

frequency readout, plus two meter movements for tuning. The tuning system is said to have a dial accuracy of 0.004%. Other ratings include: $1.6 \mu \mathrm{VIHF}$ sensitivity, 100 dB spurious response rejection, 120 dB alternate-channel selectivity, 100 dB AM rejection, and $4 \mu V$ stereo switching threshold. There are eight push-push switches on the front panel, including one for selecting 25 or 75μ s deemphasis. $17^{\prime \prime} \mathrm{W}$ $\times 101 / 2^{\prime \prime} \mathrm{D} \times 53 / 4^{\prime \prime} \mathrm{H}(43.2 \times 26.7 \times 14.6 \mathrm{~cm})$; $23 \mathrm{lb}(10.5 \mathrm{~kg})$.

CIRCLE MO. 84 DN FREE IMFORMATION CARD

CB ROOF-MOUNT MOBILE ANTENNA

Antenna Incorporated's Model 12510 is a base-loaded, stainless-steel $34^{\prime \prime}(86.4 \mathrm{~cm})$ whip designed for roof mounting. Features a stainless steel impact spring, sealed base housing, and a 17 -foot (5.2-m) length of RG-58U coaxial cable terminated in a PL-259 plug. Low-angle radiation and a VSWR of $1.5: 1$ or less are claimed. $\$ 21.25$ circle no. 85 on free imformation card

CROWN SINGLE/DUAL-CHANNEL AMPLIFIER

The Model D 150A power amplifier from Crown International features a switch that allows the user to select either mono or stereo operation without having to make internal wiring changes. The 80 -watt/ channel (rms into 8 -ohm loads) unit is said to have a frequency range of 1 to $20,000 \mathrm{~Hz}$
at less than 0.05% harmonic and 1 M distortion (worst cases). Circuitry within the amplifier is designed to protect the amplifier against shorted, mismatched, and open loads without dc fuses and mode switches. Output power in mono is rated at 180 watts rms into 16 ohms at 0.1% THD. The outputs are unbalanced in stereo and balanced in mono. Overall dimensions are: $17^{\prime \prime} \mathrm{W} \times 83 / 4$ "D $\times 51 / 4$ " $\mathrm{H}(43.2 \times 22.2 \times 13.3$ $\mathrm{cm})$ and weight is $25 \mathrm{lb}(11.4 \mathrm{~kg}) . \$ 479$.

$$
\text { CIRCLE MO. } 86 \text { dh fref imformation caro }
$$

TELCO CB CONVERTER FOR CAR RADIOS

Telco's Model 10-73 Hi-Way Alert ${ }^{\text {ni }}$ converter can turn any $A M$ car radio into a $C B$ receiver. The converter, measuring $41 / 8^{\prime \prime} \mathrm{W}$ $\times 33 / 8^{\prime \prime \mathrm{D}} \times 11 / 2^{\prime \prime} \mathrm{H}(10.5 \times 8.6 \times 3.8 \mathrm{~cm})$, is mounted by using adhesive-backed Velcro ${ }^{\text {W }}$ pads supplied. The crystal-controlled converter provides 23-channel CB coverage and is said to provide a $1.5-\mu \vee$ (For 10 $\mathrm{dB} \mathrm{S} / \mathrm{N}$) sensitivity and better than 80 dB down $A M$ feedthrough. Its power cord plugs into the car's cigar lighter receptacle, and the existing $A M$ radio antenna is used. A switch on the front panel provides for $C B$ or radio.

CIRCLE no. 87 OM free information caro

SHURE LIGHTWEIGHT MICROPHONE

The Model SM62 by Shure Brothers is a undirectional dynamic mike with a cardioid pickup pattern. It's designed for hand-held stage and remote interview applications, and is said to be especially suited for picking up brass, drums, guitar and vocals. Frequency response is claimed to be flat and uncolored with minimum feedback. The microphone is $4^{29} / 32^{\prime \prime}(124 \mathrm{~mm})$ long. Other features include a "pop" filter to suppress wind noise and breath sounds, and internal shock isolation to attenuate noise.caused by unstable stands, stages, etc. $\$ 84.00$
circle no. 88 on free information card

TEABERRY MOBILE CB TRANSCEIVER

The Tele "T" AM CB transceiver, with 4 W r-f power output, features a telephone-type handset with a built-in transmit/receive bar. It is completely solid-state in design and has an S/r-f meter, delta tune, PA switch, hi/lo tone control switch, and au-

tomatic noise limiter switch. A loudspeaker is also built-in for use when it is not necessary to have private listening. Price is \$199.99.
circle no. 89 on free information caro

VECTOR TWO-SIDED DIP BREADBOARD

Model 51X Klip-Blok breadboard from Vector Electronic, on an aluminum chassis, allows components to be mounted (solderless medium) and connections made from

both sides of the board. With a total of eight solderless Klip-Bloks, the breadboard accommodates 1214-or 16-pin DIP's or four 24- or 40-pin DIP's on $0.1^{\prime \prime}$ pin centers and $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ row spacing. Additional KlipBloks can be mounted on the unoccupied perforated areas of the Vectorbord ${ }^{\text {® }}$. Numbers along the edges of the $8^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}}(20.3 \times$ 11.4 cm) board identify component locations. The board in the Model 51 X is unclad. The breadboard is also available with a ground-plane-clad board as the Model 51 X -GP. Prices are $\$ 25.50$ and $\$ 29.95$ for the Models 51 X and 51 X -GP, respectively.

CIRCLE mo. 91 on free imformation card

EPICURE BOOKSHELF SPEAKER SYSTEM

The new Epicure 11 is a high-efficiency, two-way bookshelf system with a bass port. Drivers used are a 6 -inch ($15.2-\mathrm{cm}$) controlled-excursion woofer and a 1-inch $(2.5 \mathrm{~cm})$ cone tweeter with a claimed 180degree dispersion. A tweeter level control is built-in. Frequency response is rated at 38 to $20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$. Recommended driving power is 15 to 80 W rms. System impedance is 8 ohms, and system resonance is at 36 Hz . Measures $211 / 2^{\prime \prime} \times 1312^{\prime \prime} \times 91 / 2^{\prime \prime}(54$ $\times 34.3 \times 24.1 \mathrm{~cm}$), and weighs 36 lb . (16.4 kg). $\$ 134.00$

Ctrcle no. 92 on free information card

E\&L MICROCOMPUTER

The Mini-Micro Designer, introduced by E\&L Instrument, is based on Intel's 8080 microprocessor chip. It has direct input via built-in keyboard and input/output buses through external card edge connections or the No. SK-10 interface/breadboarding socket that comes with the microcomputer. Internal status/data is shown by three sets of LED's. Included in the package is a memory card that accommodates 1024 bytes of read/write memory. Complete

The first "wall to wall" lightweight.

Dramatically better trasmission and reception.

 New Telex aviation-type $\mathrm{h} \geqslant \mathrm{ad}$ set.The first lightweigr - iəadset for CB'ers. The same style as worn by pilots arot idt world. So comfortable you may forget you are 'n'earing it. $\mathrm{B} \rightarrow$ reard better. Noise-cancelling pover mike is alwcys pos in fod froperly. Ear piece lets you he ar better. Your CB won't dist roo:hers. And your hands are free. Try the new Tele: C B-88. Nace in IJ.S.A. You'll get the message loud and clear.

Telex CB- 1200 Headset.
Specialy suited for high noise environments.

Telex CB-73 Double Header. Aviation-type. Power rike and noise cancelling

The Pilot People

[^1]
Royce re-invents

Biggest CB breakthrough since the transistor!

THE WIRELESS is here! Royce
brings computer technology to CB!
THE OLD WAY. A tangled mass of wires and hand-soldered connections.
THE WIRELESS. Automated module assembly. Computer tuned and quality controlled
That is why THE WIRELESS chassis promises less chance of failure.

Computer tuning and testing means peak power and performance.
And, automated module assembly assures uniform quality.
Here is greater CB reliability than ever before.
That is why THE WIRELESS by Royce is turning the personal communications world upside-down!

THIE WIRELESS

software takes the user from assembly to system usage. $\$ 125$ for simplest kit to $\$ 500$ for completely assembled, tested system.
circle no. 93 on free imformation card

J.I.L. UNDER-DASH CASSETTE PLAYER

J.I.L. Corporation's Model 607 is a new miniature cassette player designed for under-the-dash installation in virtually all foreign and domestic cars. It can be tucked away in most glove compartments. To assure the most dependable sound performance, the player offers a full complement of

features, including volume and tone controls, "play" indicator, left-to-right balance control, and fast-forward, rewind, and eject buttons.

CIRCLE MO. 94 ON FREE IMFORMATION CARD

FIELD-STRENGTH METER

A compact, easy-to-operate field-strength meter for TV service technicians is available as the Model TVS from Castle Television Tuner Service, Inc. Called Mezzer ${ }^{\mathrm{TM}}$, the instrument measures signals from 300 to $30,000 \mu \mathrm{~V}$; has dial marking for quick identification of signal level for proper color reception (1 to 4 millivolts); features integrated circuit amplifier and meter driver circuits; with electronic voltage regulation. Operates from $9-\mathrm{V}$ transistor batteries, and has battery status indicator.

CIRCLE NO. 95 DN FREE INFORMATION CARD

From the deep jungles of jumbled software, from the rivers of mysterious circuits, he came. Mini-Micro Designer. He was tough and smart. And he glowed with purpose. To teach the people microcomputers.
Learn from the leader in the modern electronics revolution. E\&L's Mini-Micro Designer (MMD-1) comes with a series of educational "modules" that teach you how to design and use a microcomputer. And you get complete documentation and full software support. MMD-1 features the 8080A central processor chip, direct keyboard entry of data/instructions, LED status indicators, and all the apparatus needed to make your first microcomputer. Novice or expert, MMD-1 gets you into action fast. Put a revolutionary on your side. Send for more information today.

CIRCUIT DESIGN, INC.

Prices start at $\$ 125.00$ in kit form.

Division of E\&L instruments
P.O. Box 24

Shelton, Conn. 06484

SENCORE BENCH-TYPE DMM

The Sencore Model DVM34 digital multimeter features a basic 0.1% accuracy and a 15 -megohm input impedance that minimizes circuit loading for increased accuracy and reliability. A range/function format supplies measuring capabilities from $100 \mu \mathrm{~V}$ to 2000 volts $\mathrm{dc}, 100 \mu \mathrm{~V}$ to 1000 volts ac, 10 milliohms (using the special 20 -ohm range) to 20 megohms, and 100 nA to 2 amperes ac and dc. An optional high-* voltage probe permits measurements up to 50 kV dc at 1% accuracy. A high-and-low-power-ohms system is built in for increased accuracy when measuring resistance in solid-state circuits. To take full advantage of the high-accuracy $31 / 2$-digit

display, the DMM employs a single-step autoranging circuit that automatically steps down to the next range on ac and dc volts whenever the reading is 108 or less. $\$ 295$. (\$25 for optional Model HP200 50 kV probe.)
circle no. 96 on free imformation card

CB PREAMPLIFIER

According to Kris Inc., its "Antenna Fire"' CB preamp will provide up to 20 dB receive gain and improve sensitivity when inserted in-line between the transceiver and antenna. The dual MOSFET preamp is pre-tuned. It offers two tuned circuits to improve image and spurious rejection figures. The preamp operates on $12-\mathrm{V}$ mobile supply or $12-\mathrm{V}$ ac adapter. It comes complete with connectors and mounting bracket and measures $5^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}(12.5 \times 10 \times 7.8 \mathrm{~cm})$.
circle mo. g7 an fre imfdrmation card
POPULAR ELECTRONICS

This is an echo chamber?

Yes, and much more! It is the first N -channel Bucket Brigade Device designed with the audio engineer in mind. The SAD-1024 Serial Analog Delay will provide reverberation, echo, tremolo, vibrato and chorus effects in electronic organs and musical instruments. It will equalize speaker systems in an auditorium, or can be used in speech compression or voice scrambling systems. The SAD-1024, which contains two independent sections of 512 analog storage elements will accomplish all of these with a signal-to-noise ratio in excess of 75 dB . The two sections may be used independently or they may be connected in sequence to provide 1024 clock periods of delay. The delay provided by the device can be continuously varied by the clock rate from less than one millisecond to more than one second.
Other performance characteristics include: Signal bandwidth from 0 to 200 KHz , less than 1% total harmonic distortion, 0 dB insertion loss, and less than 5 mW power requirements from a single 15 V power supply.
You get all of these features for less than $1 \$$ per storage element in OEM quantities.
We also offer a complete circuit card to help you evaluate this exciting new device. Other devices for applications such as time base correction in the video bandwidth are also available.
There are over 70 salesmen and 16 distributors to serve you worldwide.

910 Benicia Avenue
Sunnyvale, California 94086
(408) 738-4266 • TWX: 910-339-9343

Let's talk features! Delta tune. Dual conversion receiver. Noise blanker. S/RF meter. Brand J's comparable set gives you none of those things ard Brand L's gives you just one. Another fact: Realistic has Auto-Modulatior for full RF power always, whether you talk loud or soft. It's Radio Shack's new look in mobile CB - the 23 -channel Realistic ${ }^{\circledR}$ TRC-56. With its telephone-type handset you get two big advantages: you can listen privately; you san talk: and listen with greatly reduced background noise. And you can switch to the regular built-in speaker anytime, of course. FCC Type Accepted. Usable with plus or minus ground. Universal dash/floor/cab roof mount included. The money you may save will just about pay for your (Archer) antenna! 17995*

ONLY WHERE YOU SEE THIS SIGN:

TRC-56 SPECIFICATIONS

Sensitivity for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$: 0.5 microvolt Selectivity at $-6 \mathrm{~dB}: \pm 3$ kilohertz Adjacent Channel Rejection: 50 dB Audio Power Output: 3 watts maximum RF Power Output: 4 watts maximum Size: $5^{\prime \prime}$ (maximum in front) $\times 83 / 4 \times 7^{\prime \prime}$

S_-_

A DIVISION OF TANDY CORPORATION OVER 4600 STORES • 50 STATES • 9 COUNTRIES

By Ralph Hodges

DATELINE 1976

JUNE is the "official" beginning of Model Year 1977 for the highfidelity industry. But before we take on the future, let's have a final look at some of the recent developments of 1976, and some things that bode well to be of ongoing significance.

Nonlinear In, Linear Out. Except in the case of pure electronics, distortion-cancellation techniques haven't received a great deal of attention from audio designers in recent years. However, all of a sudden we have two new products that apply the principle in rather novel ways: the Nakamichi Model 600 cassette deck and the Phase Linear Andromeda III speaker system.

Nakamichi calls its version "IM suppression," and in theory at least its operation is pretty straightforward. It's based on the not-unreasonable assumption that it's possible to determine what types and amounts of distortion a recording medium (in this case tape) is going to exhibit when used under typical conditions (in other words, that you can predict with fair accuracy how the signal is going to be "bent" by the medium). Armed with this knowledge, it should then be possible to design a nonlinear circuit that will "bend" the signal by the same amount in the opposite direction. When put together, these two bends will have a combined effect that adds up to "straight." No doubt achieving this in practice is a little trickier than in this oversimplified theory, but the basis is sound.
According to the manufacturer, the IM suppression is aimed at compensating for nonlinearities introduced by tape saturation; and, in so doing, it reduces intermodulation and thirdorder harmonic distortion. Note that-again, in theory-you can apply the compensatory "bend" either before or after the signal is recorded. As it happens, Nakamichi chooses to do it
after, during playback. The claim is cheerfully made that ultimate distortion can be kept to 3 per cent or less for recording levels up to +7 dB , so effective is the technique at extending the useful range of a tape under nearsaturation conditions.

Two key points should be made about the IM suppression technique. First, for optimum results, the tape used should closely match the characteristics of the circuit. Nakamichi has set up the Model 600 for two of its branded cassette tapes, EX and SX, between which the machine is switchable. (Near-equivalents of these tapes are available in other brands also.)

Second, since the circuit operates in playback (and can be switched in or out), it is possible to use it with already-recorded cassettes-even those made on a different machine. This is not a specifically recommended practice, but most tapes and machines are evidently similar enough in their behavior near the tape-saturation point to permit some improvement-if not the maximum improvement-to be realized under a variety of conditions. The manufacturer does offer one caveat in this regard, however: should you ever en-
counter a tape with significantly less distortion than the Model 600 would normally introduce in its record mode, the IM suppression becomes a liability. This is because in attempting to compensate for more distortion than actually exists on the tape, it leaves behind a "remainder" of distortion.

The Massless Tweeter. The Andromeda III, scheduled for introduction very shortly, is Phase Linear's first speaker system, and a rather innovative one. It comes in four pieces: two large mid-range tweeter panels that closely resemble several popular electrostatic designs, a separate bass commode," and an electronic equalizer/signal "conditioner" that is installed in the tape-monitor loop of the receiver or amplifier. This last item does some pretty surprising things to the signal driving the speakers.

As Phase Linear's president Bob Carver describes it, the speaker was sonically modeled on a pair of very high-quality electrostatic headphones. However, when it came down to the final analysis, the cone midranges and tweeters selected for the system were simply not able to imitate the sound of the electrostatics. Carver attributed their deficiency to the relatively high mass of their cone diaphragms, which could not start and stop with the agility of the very light electrostatic film diaphragms. Yet it was his belief that this shortcoming could be compensated for electronically, and this conviction led to what is probably the most interesting aspect of the Andromeda III's design.

If you were to take the Andromeda's equalizer unit and feed it a known input-a brief pulse with a rise and decay time typical of demanding mus-

What are your opportunities in the electronics field? Here are some eye opening facts from ETI.

Q.
What about the job market in electronics?

A.It's good. In fact, it seems to be one of the few fields that stays relatively steady in bad times. Today, for example, estimates indicate that several thousand jobs will be opening up for electronics technicians each year, for years to come. One reason for this is the fact that electronics are the basis of almost all communications, and this is a communications-oriented nation.

0What kind of jobs are you talking about?

A.For example, there are jobs available in electronic/industrial automation, electronic equipment repair and servicing, in the broadcast and radio telephone communications field, at airports, and even in medicine and in hospitals, where electronics are rapidly increasing in importance. And there are hundreds of other jobs opening up as electronics continues to make great strides, in new ideas and developments.

Q.Can such a complicated subject as electronics be successfully taught by the home-study method?

A.Of course it can. Electronics Technical Institute has proven that beyond a shadow of a doubt. Our graduates are working in practically every phase of electronics. This is largely due to the kind of instruction pro-
vided by ETI. For example, its course in the Fundamentals of Electronics features an exclusive teaching system called Autotext. And throughout all the courses the student is thoroughly monitored and carefully guided by a licensed instructor, whose professional and personal interest is to see that he masters every bit of information presented to him. Of course, we must give a lot of credit to our students themselves. They know that no matter how good the instructor and instruction may be, they have to make it work. So most of them apply themselves diligently, and they find the more they learn, the more they want to learn.

Q.But I have a job, and as much as I would like to get into electronics, I can't afford to take time off. How do I get around that?

A.You don't have to take time off from your job. You study at home, in your free time. We do advise, however, that you set aside a certain time for your study schedule and stick to it, even if it's only a couple of hours a day. The beauty of the ETI way of learning is that you work at your own pace, making sure you've completed your assignment thoroughly and completely. We think you'll find, as you go along, that learning the ETI way can be fun.

Q. But I was never very big on books and study. I

 like to work with my hands.A. With your ETI course, you'll get plenty of work with your hands. In fact, the

ETI system of teaching combines hands-on work with study, so that you actually learn by doing. As you move along developing your technical knowledge, you will use, in many phases, specially developed Project Kits. So you apply your knowledge in logical, hands-on sequences. from the first step through completion of basic units. It all adds up to knowledge and self-confidence gained by actually doing the job.

Q.

It all sounds very

- interesting and inviting. But I wouldn't want to commit myself before knowing more.
A. We wouldn't want you to. In fact we insist that you check it out first. All you do is fill out the coupon and mail it to us. We'll send you a colorful new 48-page ETI Career Book that will give you the facts and the many opportunities ETI can open up for you. If you like electronics, you'll enjoy reading this book.

Q. Do I obligate myself in any way by sending for

 your book?A. Absolutely not. The ETI

Career Book is free, and it involves no responsibility on your part, nor will a salesman call on you. All we want to do is to be sure you have all the facts about ETI and what it can mean to your future. And you can get these facts and complete information about ETI's 18 different courses and programs in electronics by filling out and mailing the coupon to us today. We'll send you ETl's Career

Book by return mail. We think it will be a real eye opener for you. Mail the coupon today.

Thisiswhathappens everytimeyou playarecoc.

Introducing Sound Guard.

The first product ever that protects records against wear, without resulting loss in frequency response or fidelity.

Every time you play a record you destroy some of its sound. The culprit is friction. An inevitable result of a hard, diamond stylus tracking soft, vinyl grooves.

Under 200X magnification you can see the damage occur. Tiny shavings of vinyl curl off the record like metal off a lathe.

You literally see sound being worn away. After repeated playings your ears begin to confirm what your eyes have seen.

Until now, no product could protect records against wear without interfering with sound fidelity.

An answer from outer space

From Ball Corporation research into dry lubricants for NASA's Orbiting Solar Observatories came a breakthrough in micro-coatings that can function for long periods under extreme conditions.

One derivative of this new technology is a microscopically thin, dry film that molecularly binds itself to vinyl. Developed into a record preservative this product is now known as Sound Guard.*

How Sound Guard works

Just spray Sound Guard on (it has a non-aerosol pump sprayer). Then buff it with the soft, durable velvet buffing pad provided in the kit.

Sound Guardputsan ultra-thin, dry film on the groove surfaces to substantially reduce wear. (It's selflimiting and may be applied repeatedly without buildup. The film thickness is less than $0.000005^{\prime \prime}$.) One bottle will protect about 20 LP's.

Sound Guard is $d r y$-not wet
and sticky like silicone-type products - so dust or dirt won't accumulate on the stylus or in the grooves. And since it has an anti-stat built in, Sound Guard actually prevents records from attracting dust.

But does Sound Guard adversely affect frequency response or fidelity? For conclusive proof, we asked the most respected of the independent audio laboratories for an exhaustive evaluation. Their results were astounding!

Test results

1. The application of Sound Guard to a stereophonic or CD-4 quadraphonic disc does not in any way degrade audible frequency response.
2. Sound Guard increases the life of the records by significantly reducing record wear.
3. Sound Guard significantly retards increases in random noise content (surface noise) and total harmonic distortion caused by repeated playing.
4. Records treated with Sound Guard do inve attract dust as readily as untreated discs.
(Complete test results will be mailed with every rider.)

Like it or your money back

We're understandably excited
fidelity protection.
As of now, the only way you can buy Sound Guard is by order. ing direct. Just fill in the coupon (or write: Sound Guard, P.O. Box 3300, Muncie, IN 47302) and enclose your check or money order payable to Sound Guard. $\$ 5.99$ for one Sound Guard kit plus $\$ 1.00$ for postage and handling.

For two or more kits, pay $\$ 5.99$ each and we'll pay postage and handling. If not satisfied return the unused portion and we'll refund your money or replace the product at your option.

Sound Guard keeps your good sounds sounding good.

Sound Guard

P.O. Box 3300, Muncie, IN 47302

Yes, I'm interested in Sound Guard.
\square Please send me one Sound Guard kit. I am enclosing a check or money order for $\$ 6.99$ ($\$ 5.99$ plus $\$ 1.00$ for postage and handling).
\square Please send me___ Sound Guard kits. I am enclosing a check or money order for \qquad (\$5.99 each kit-postage and handling free). Make check or money order payable to Sound Guard.

```
Name
```

Address
City \qquad State \qquad Zip (please print clearly) PE 6

ical material, for example-the output would show the following significant alterations. First, the leading edge of the waveform would be steeper in slope than the input's. Second, where the input's waveform would ultimately return to the zero axis, the output signal would overshoot the axis for a brief time. What is happening is that the equalizer is attempting to offset the comparative slowness of the drivers by exaggerating the rise time of the signal (the steeper slope) and by braking the drivers (the overshoot) more drastically than the original input signal wuuld

Of course, the conditioning applied to the signal has been carefully adjusted to complement the characteristics of the individual drivers used. And according to Carver, conditioning is used throughout the audio range in the appropriate amounts. Certainly there will be skeptics to doubt that this kind of electrical manipulation could ever turn a cone into an electrostatic diaphragm. But to my ears, having been exposed to the Phase Linear product for about an hour, the speaker gave a very credible imitation of a good full-range electrostatic-except in the bass, where it was much more potent.

Heavyweight Receivers. The pioneer SX-1250, at 160 watts per channel, is now the most powerful receiver generally available. Among the runners-up are the Marantz 2325 (125 watts per channel), the Kenwood KR9400 (120 watts), the JVC S600 (110 watts), and the Sansui 9090 (110 watts). Even bigger receivers could be made, certainly, but the question being asked within the industryespecially by those who have yet to break the $100+100$ mark-is should they be? The issue seems to hinge on a further question: What is the essential appeal of the receiver (as a generic
product) to the consumer? Does he buy it because it means fewer components to mess with; and if so, will he really find it a convenience to have all his electronics on a single chassis that is growing too heavy to lift and too big to fit on any shelf? Or does he choose a receiver because its built-in tuner eliminates one more agonizing buying decision he would otherwise have to make; or simply because his Uncle Fred has one? For consumers who don't want to get too deeply involved in system building, the receiver seems to have acquired a reputation as a practical, economical, good-sense approach to high-fidelity sound. Will a huge receiver with every imaginable feature and tremendous output capability miss the market by violating that image?

Many manufacturers are actively seeking answers to these questions right now. Their decisions are only complicated by the prospect (some-
time in the future) of Class D and other innovations, promising high-power capability in rather small packages. In any case, in a short time we should have some indication of whether the super-receivers of 1976 are dinosaurs or the progenitors of a new breed.

The Tape Tangle. In semi-public announcements recently, Nakamichi and Tandberg have made it clear that they are going to drop-or at least de-emphasize-chromium-dioxide capability on their future cassette decks in favor of ferric-oxide tapes with cobalt additives, such as TDK's SA. Why this dramatic break with past practice? The companies cite several reasons.
First, both manufacturers are believers in the superiority of permalloy as a material for cassette record-play heads, and prefer to use ferrite heads only in other applications. Being a softer material. permalloy is said to wear at an accelerated rate with chromium-dioxide tape. (On the other hand, Advent Corp., which also uses permalloy record-play heads, has sponsored extensive wear tests with chromium dioxide and remains committed to the tape.)

Second, both companies share the opinion that chromium dioxide has uniformity problems that defy current manufacturing procedures. And third, although chrome's performance remains essentially unsurpassed at high frequencies, there are welldocumented weaknesses at mid and

$$
\text { I) } / \text { mitmic r'(luyes }
$$ THE VERY BEST

Speakers are our only business. They have to be better!
ATs engineers take special pride in the KC-55, our top-of-the-line speaker acoustically designed for the GB ope actor who demands the very best in clarity and intelligibility across the entire voice range.

Beautifully crafted, the KC-55 makes any equipment setup look better. And, by simply removing the base, our patented press snap locking positioner, mounted in nobile units, jermizs any directional adjustment required. Just like our bestselling KC-35 speaker.

AFS . : the only company with the patented WORKING WALL ${ }^{\text {© }}$ enclosure, featuring cross laminated, tubular fiberboard construction to deaden static, eliminate voice distortion.
Available at CB dealers everywhere.

World Wide Headquarters

Exclusive Canadian Distributor
Múntz Canada Ltd.
1149 Pioneer Road
Burlington Ontario, Canada (416) 639-5373

AFS/KRIKET ${ }^{\circ}$ speakers are manufaztured in the U.S.A. using American materials and craftsmen.
Copyright 1976 Acoustic Fiber Sound Systems, Inc.

Nobody has a 4K RAM board that gives you so much for your money. It's fully compatible with the Altair 8800 .

Through the front panel or under software control, you can write protect or unprotect any 1 K group of RAM's. Also under software control you can check the status of any 4K RAM board in 1 K blocks to determine whether it's protected or not. The board has LED's that clearly show you the memory protect status of each 1 K block and which block is active. And there's a circuit provided that will let you prevent the loss of data in the memory if there's a power failure. This low power board has a guaranteed 450 ns cycle timeno wait cycle required. There's nothing like the IMSAI 4K RAM board around.

Dealer inquiries invited.

IMS Associates, Inc.

low frequencies. Overall, Tandberg and Nakamichi feel that the Super Avilyn (SA) type of formulation equals the performance of chrome at high frequencies and surpasses it for longer wavelengths, without being as abrasive on heads.

Well and good, but does this development presage any complex incompatibilities between tapes and machines? Yes and no. SA is designed for about the same bias and equalization requirements as chromium dioxide. Therefore, a cassette machine's bias and equalization switch positions should do about the same thing, whether they're labeled SA or CrO_{2}. However, the Dolby circuits are a different story. According to my information, $S A$ is about 3 dB more sensitive than chrome, which is certainly enough to upset the tracking of the Dolby B noise reduction process. I have tried an SA cassette with a machine whose Dolby circuits were set up for chromium dioxide, and the compression of dynamics during playback was immediately obvious. Logically, the opposite effect should be obtained when chrome tape is used on an SA-adjusted machine. So, if you have hopes of using both types of tape on the same cassette deck, you had better choose a machine with readily accessible Dolby calibration controls.

AM Stereo. The idea of $A M$ stereo-by no means a new one-is apparently gaining ground once more. There are several proposed methods for doing the job, all of them using the existing AM channels and employing a carrier that is both amplitude and, in effect, frequency modulated at the same time. To provide reasonable compatibility with existing mono receivers, the sum of the stereo channels ($L+R$) amplitude modulates the carrier and the difference ($L-R$) signal frequency or phase modulates it.

The only significant problem comes, predictably, from the restrictions on the spectrum space allotted each AM broadcaster. High modulation levels give rise to extensive sidebands that must be kept from interfering with adjacent stations. However, sideband limiting can result in significant amounts of distortion. A related difficulty, arising from "high" levels of frequency modulation, is distortion of the amplitude envelope. Consequently, troubles for existing receivers occur.

Arrayed in opposition to these problems (and also in more-or-less competitive stances toward one another) are the systems of CBS, RCA, General Electric, Philco, Westinghouse, Sansui, and other companies. Because none of the systems enjoys a clear margin of superiority, it looks as if we're due for another stand-off between industrial giants. However, the prospect of AM stereo seems likely to attract much more understanding and support than four-channel FM broadcasting has been able to muster so far.
Who of the general public will benefit from AM stereo? Certainly those who live in the FM fringes and can receive, at most, one or two FM stations with sufficient signal strength to permit stereo listening. Those who regularly drive long distances will have a much better chance of picking up usable stereo signals once they've installed the appropriate receiver. For those who live in urban and suburban areas well served with diverse FM programming, the direct benefits are not so obvious; but there may be some unexpected indirect ones. For example, during the recent period when the current four-channel matrix systems were taking shape, there was some fairly strong resistance to all the phase-shifting that would have to go on in matrixed recordings. Among the more vigorous protestors were some from the radio industry who argued-quite rightly-that phase shift between channels is a burden to the $A M$ and mono FM broadcaster, who is at the mercy of the largely unpredictable cancellations and reinforcements of information that will take place when he tries to combine the signals.
I can recall some pretty feisty altercations, with the matrix proponents shouting that mono compatibility could go hang and the radio contingent saying that four-channel should go hang. However, AM stereo could be a long stride toward eliminating mono altogether. Record companies would then no longer feel constrained (if they do now) to pay special attention to phase in their products, with the possible result that more random-phase information would begin appearing on records. And it seems clear beyond a shadow of a doubt that a wealth of random-phase content greatly enhances the sonic spaciousness of a recorded performance, whether reproduced quadraphonically or in conventional stereo.

Can anyone beat

When it comes to microcomputers, Altair from MITS is the leader in the field.

The Altair 8800 is now backed by a complete selection of plug-in compatible boards. Included are a variety of the most advanced memory and interface boards. PROM board, vector interrupt, real time clock, and prototype board.

Altair 8800 peripherals include a revolutionary, low cost floppy disk system, Teletype, ${ }^{T M}$ line printer, and soon-to-be-announced CRT terminal.

Software for the Altair 8800 includes an assembler, text editor, monitor, debug. BASIC. Extended BASIC, and a Disk Operating System. And this software is not just icing on the cake -it has received industry wide acclaim for its efficiency and revolutsonary features.

But MITS hasn't stopped with the Altair 8800. There is also the Altair 680-complete with memory and selectable interface-built around the new 6800 microprocessor chip. And soon-to-be-announced are the Altair 8800a and the Altair 8800b.

MITS doesn't stop with just supplying hardware and software, either. Every Altair owner is automatically a member of the Altair Users Group througn which he has access to the substantial Alair software library. Every Altair owner is informed of up-to-date developments via a free subscription to Computer Notes. Every Altair owner is assured that he is dealing with a company that stands firmly behind its products.

After all. we didn't become the leader by messing around. Shouldn't you send for more information or visit one of our Altair dealers?

Hobby
 Scene (çョ」

Have a problem or question on circuitry, components, parts availability, etc.? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, NY 10016. Though all letters can't be answered individually, those with wide interest will be published.

By John McVeigh

VARIABLE DELAY POWER SHUTOFF

Q. 1 need a timer (preferably solidstate) to turn off my stereo after I fall asleep. Maximum delay of 1 to $11 / 2$ hours would be fine.
-David Custer, Timonium, MD A. In the circuit shown, the 555 acts as a one-shot, providing gate current

for the triac. With the 1.5-megohm pot set for maximum resistance, power cutoff will occur about $11 / 2$ hours after the normally open pushbutton switch is depressed. Use two $2000-\mu \mathrm{F}$ electrolytics to derive the required timing capacitance (try to get close-tolerance units). The $1: 1$ isolation transformer is included for safety reasons. Both the transformer and triac are not specified, since they will have to be chosen to accommodate whatever load you want to power.

SINAD

Q. I was reading receiver specs the other day, and came across the word SINAD. What does it mean?
-Robert Wyatt, Oxford, CT
A. SINAD is an acryonym derived from signal (SI), noise (N), and distor-
tion (AD). It is a figure of merit in communications systems. The noises referred to are Johnson or white noise; shot, thermal, and recombination noise, man-made impulses (electrical equipment, power lines, ignition systems, etc); and vibrational (microphonics). Distortion might be produced by improper amplifier conditions, detector nonlinearities, improper modulation, etc. Many consider the SINAD yardstick to be superior to the S / N and quieting ratings for communications, since it takes into account the distortion produced by the system. A SINAD ratio of 12 dB is generally considered to be the minimum acceptable figure. It is characteristically noisy and "hashy." A SINAD ratio of 20 dB or more represents a good, reliable grade for voice service.

CARRIER CURRENT AND DIGICLOCKS

Q. Will the operation of an electronic digital clock be affected by a carriercurrent remote control system which injects a $120-\mathrm{kHz}$ signal onto the ac line? Is there some way of keeping the signal from getting to the counters?
-Allan Silburt, Downsview, Ontario A. In most cases, the power transformer, which has considerable reactance at 120 kHz , will provide the re-

quired rejection. However, if the signal is very strong, it could cause the counting circuitry to act up. If this is the case, install the series-tuned LC trap shown in the figure at the $60-\mathrm{Hz}$ reference tap-off. U,se a $0.02-\mu \mathrm{F}, 75-\mathrm{V}$ ceramic capacitor (Lafayette 33 F 69063) for C and a $1-10-\mathrm{mH}$ width coil (Miller 6322, Lafayette 34 F 88525) for L. Adjust L for normal clock counting.

MEDIUMWAVE LISTENING

Q. How can I join a mediumwave listening club and where is the one closest to me?
-W.E. Osborne, Eau Gallie, FL A. National Radio Club, Box 127 , Boonton, N.J. 07005. Also try ANARC,

557 N. Madison Ave., Pasadena, CA 91101. It's an association that can supply a list of affiliated clubs.

RECORD PLAYER RFI

Q. I've just moved to a new town, and find my record player picks up radio broadcasts as soon as it's turned on-even when no record is being played! What can I do about it?
-Harry Birdsall, Bloomfield, N.J.
A. You are experiencing RFI (radio frequency interference). Somewhere within the record player, signals are getting in and being rectified (detected). Try shielding external speaker leads and/or bypassing them to ground with $0.001-\mu \mathrm{F}$ disc capacitors. If this doesn't work, shielding the enclosure and/or installing bypass capacitors at other points may be necessary. Does the volume control have any effect? If not, the point of rectification is between the control and the final audio amp. If it does, look back toward the cartridge. Ferrite beads on the tone arm wires might help.

COAX IMPEDANCE

Q. Why does my supposedly 52 -ohm coax line read less than 1 ohm on my VTVM?
-Leon Brown, Bayside, NY A. This type of coaxial line has an impedance (or opposition to r-f ac current) of 52 ohms, not a dc resistance of this value. That's what you're measuring with your VTVM. The impedance of a transmission line depends on the size of the conductors used, their spacing, their material composition, and that of the dielectric between them.

COMMERCIAL CODE STATION

Q. I occasionally pick up a CW station at about 8.100 MHz with the call letters WCC. While it appears to be commercial traffic, it makes excellent code practice. Where is it located?
-Grenville Beem, Silver Spring, MD
A. The station you are listening to is located in Chatham, Massachusetts, and is engaged primarily in ship-toshore traffic with ocean-going vessels. Although it is excellent practice to copy such stations, keep FCC regulations in mind. It's illegal to divulge the contents of any message you copy to a third party, nor can you use such information for personal (financial) gain.

New Zenith Color Picture Tube

A cooperative venture between Zenith Radio Corp. and Corning Glass Works over a four-year period has resulted in a new color TV picture tube of decreased depth and weight. The deflection angle of the new tube is 100°. The narrow-neck tube has a striped negative guard band phosphor screen, slot-type aperture mask assembly, highresolution electron gun, hybrid deflection yoke,

and lower-cost glass components. The tube (at right above) is $2 \frac{1 / 2^{\prime \prime}}{}(6.4 \mathrm{~cm})$ shorter and more than $2 \mathrm{lb}(1 \mathrm{~kg})$ lighter than other $19^{\prime \prime}(48.3-\mathrm{cm})$ color picture tubes. Zenith plans to use the new picture tube in a portion of its $19^{\prime \prime}$ color TV receiver line in late summer.

RFI Bill Before Senate

On February 25, Senator Barry Goldwater introduced radio-frequency interference legislation into the U.S. Senate as Bill No. S. 3033. It is virtually identical to the RFI bill introduced into the House of Representatives last year by Mr. Charles A. Vanik. The bill places the responsibility of providing RFI suppression on the manufacturers, importers, and sellers to provide interferencereducing circuits in audio and visual electronic equipment.

Tubes Live!

Though solid state appears to have taken over, vacuum-tube equipment is still very much alive, even in hi-fi. LUX Audio of America, for example, is marketing a new monophonic power amplifier and matching stereo preamplifier using tubes. The Model MB-3045 power amplifier has a new triode tube developed by LUX and NEC, which is said to be the first triode that makes possible a high-power, low-distortion (50 watts at 0.3% THD) triode amplifier. The new Model CL-35 tube-type stereo preamp is rated at 0.06% harmonic distortion at 2 volts output. LUX developed the new components to satisfy the demands of sophisticated audiophiles who prefer "tube sound" to
"transistor sound," especially when amplifiers are driven to clipping.

Heartbeat Digital Watch

A transducer capable of providing a digital readout (on a watch, for instance) is to be marketed by Pulse Watch, Inc., of Tiburon, CA. The Orr transducer (invented by Thomas Orr, of Warsash, England) consists of a light-emitting diode in the center of an annular, thin-film photovoltaic detector. The LED illuminates the skin and penetrates the tissue. Light reflected back from the skin onto the detector is modulated by the rhythmic changes in blood absorption in the tissue. The signal is then electronically processed and can be displayed or recorded.

Citizens Band in Europe

The current boom in Citizens Band activity in the U.S. is paralleled by similar interest in West Germany, Italy and other European countries. The German authorities have allocated frequencies from 26.965 to 27.275 MHz at a spacing of 10 kHz , providing 26 channels with certain exclusions. Power is limited to two watts input, and two types of transceivers are available-one requiring a license but no payment, and the other requiring payment of a monthly fee. CB , incidentally, is not yet allowed in Great Britain.

Holographic Credit Cards

As an aid to the prevention of falsification and fraudulent alteration of credit cards, ID cards, passports, etc., Siemens has developed a system of making a hologram of the original card and incorporating it in the card. Consequently, if the original is altered in any way, the hologram is unchanged, and the two can be compared in a special reader to check validity. A helium-neon laser is used to make the hologram and must also be used to read the hologram. During the checking procedure, two pictures appear on a liquid-crystal screen on the reader: a conventionally produced image of the card and a similar-sized reconstruction of the hologram.

Home Microprocessor By 1985?

Sperry Univac thinks so! According to Dr. Val E Herzfeld, Vice President, Business Planning and Development, within the next ten vears a new type of small. inexpensive computer may be monitoring the heating and cooling systems in vour home, helping your wife plan her menus, and flashing a "paperless newspaper" on a screen in your den. Such a home microprocessor should cost no more than a major appliance like a refrigerator and would be small enough to fit into a desk drawer, says Dr. Herzfeld

The Black Watch Kit \$29.95

Dimensions:
Weight:
Strap:
Case:

Batteries:
$11 / 2^{\prime \prime} \times 1^{\prime \prime} \times 3 / 10^{\prime \prime}$
$1 / 2 \mathrm{oz}$.
3/4" wide
Specially designed unbreakable black matte plastic. Water resistant. Mallory RM41H. One year life with normal use.

THE KIT CONTAINS

1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries battery-clip
9. black strap
10. full instructions for building and use.
All you provide is a fine soldering iron and a pair of cutters.

The Black Watch by Sinclair is unique. Controlled by a quartz crystal... powered by two hearing aid batteries...it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash... just touch the front of the case to show hours and minutes and minutes and seconds in bright red LEDs. There's a re-set control on the back.
*Guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second day. In building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

Take advantage of this norisks, money-back offer today!

The Sinclair Black Watch is fully guaranteed. Return your kit undamaged within 10 days and we'll refund the cost of your kit without question.

NOW ALSO AVAILABLE WITH DATE! Sinclair Radionics Inc. 375 Park Avenue New York, New York 10022

Manufactured in the U.S. Suggested selling price $\$ 399.95$.
CB 113 - Medium-priced, full-feature model. Suggested selling price $\$ 229.95$.
CB 162 - The feature-loaded, handsome unit with an amazing price tag. Suggested selling price $\$ 199.95$.
Is Pace for you? We think Number One deserves \#?
Write us -
Pathcom Inc.,
(Los Angeles).
Pi 5 E
Harbor City.
When you've got a Pace, CA 90710 yau've gat the warid by the ears.
PACE TWO-WAY RADIOS, PRODUCTS OF PATHCOM INC.

THE SOUND of recorded music being played is a listening experience that changes according to the room you are in. If the room is too "live" or too "dead", the sound appears to be unnatural. When the room has an ultra-modern decor and lots of glass window areas, the effect on the music is "bouncey." With heavy drapes, carpeting, and thickly padded furniture, plus a minimum of hard surfaces, the effect approaches that of an anechoic chamber-with very little sound reflection.

For the latter, you can either throw away your sofa pillows and pull down the drapes, or you can add a timedelay device to your audio system to create a more natural ambience. Since you may not care to redecorate, you can create an echo (audio signal time delay) and reverberation (later reflections) and achieve a livelier sound.

Until recently, the only means of obtaining an audio signal delay has been through the use of very expensive electronic equipment. Now there is a new type of IC-the "bucket brigade"-and you can build your own delay system for as little as $\$ 39$ in mono and $\$ 59$ in stereo. Connected between source and preamp or preamp and power amplifier (at the tape monitoring jacks possibly), it provides an adjustable, signal echo that can enhance the sound in most home listening rooms. With minor connection changes, it also can be used as a phasor/flanger, giving you a sound effect for tape recording purposes and electric-guitar playing used by the professionals.

The bucket-brigade IC is a MOStype shift register that contains two 512-stage registers in a single 14 -pin package. When an audio signal is applied to the input of the bucket brigade and a clock generator drives the IC. the signal is stepped along stage by stage until it comes out delayed a discrete interval in time. By adding this delayed signal to the original, reverberation is simulated.

In addition to providing real-time ambience, the bucket-brigade circuit can be used with a tape recorder to provide simulated stereo sound from mono sources. a means for "double voicing," and "phasor/flanging."

Technical Details. If you can delay an audio signal, you can create a number of useful sound effects. The most obvious is simulating echo. though delays provided by the bucket

Allows user to simulate

larger listening room.
Also used by recordists and musicians for special sound effects.

Fig. 1. Firequency betwer"l motrches on a comb filter is adjusted by curying the clock firequenc!.
brigade are too short to be discerned as discrete echoes. Recirculating the delayed signal at reduced gain can approximate the natural decay of echoes in a reverberant room. By adding some gain during the recirculation of the delayed signal, you can create an unnatural "door-spring" effect on the music.

Delay an instrument or voice track by 30 or 40 ms and add the delayed signal back to the original signal, and you will make the output sound fuller and give it the effect of more than the original number of voices or instruments. This commonly used technique is known as "double voicing."

Another popular short-delay effect is a strange sound that results from a technique known as "phasing" or "reel flanging." The name is derived from its original implementation where a tape recorder was used to create the time delay and the friction of a well-placed hand on the outside edge of the tape-feed reel varied the delay to produce the acoustic effect. This effect can be created totally by electronic means by delaying the signal 0.5 to 5 ms while adding or subtracting the delayed signal from the original signal.

In the phasor/flanger mode, the frequency and its multiples whose wavelengths are equal to the time delay will be completely cancelled out while all other frequencies are reinforced. The result is a comb filter whose frequency between the notches is adjusted by varying the clock frequency (Fig. 1). In this manner, a tonal quality can be imparted to nontonal sound such as drums, cymbals, and even voices.

The phasor/flanger mode can be used to simulate stereophonic sound from a monophonic source. To do this, the phased output derived by adding the delayed signal goes to one channel, while the output derived by subtracting the delayed signal goes to the other. To the listener, the phasing
effect cancels leaving a reasonable pseudo-stereo effect.

The basic block diagrams of the delay-line and phasor/flanger circuits are shown in Fig. 2. The hearts of the circuits, of course, are the bucketbrigade IC's, which can directly process analog signals. The circuits do not require costly analog-to-digital and digital-to-analog converters. When the clock pulse from the flipflop is applied to the bucket-brigade IC, the dc voltage present at the input is shifted into the register. The discrete bits are transferred stage by stage with successive clock pulses until, after 256 pulses, they reach the end of the line and provide the output.

The output waveform is smoothed by a low-pass filter and duplicates whatever signal was present at the input but delayed in time by 256 times the period of the clock frequency. (Period is equal to the reciprocal of the
frequericy.) For example, if the clock frequency is $100,000 \mathrm{~Hz}$, the delay would be $256 \times 1 / 100,000=2.56 \mathrm{~ms}$.

Since the audio signal at the input is being sampled at a rate determined by the clock frequency, a theoretical limit of half the clock frequency is the highest audio frequency that can be reliably passed. However, owing to practical limitations, a third of the clock frequency is a more reasonable design goal. Circuits can be cascaded to provide longer time delays at high clock rates, but the increase in noise in the series-connected circuits might outweigh the increase in bandwidth.

In the delay mode, the two shift registers are connected in series, which allows twice the clock frequency to be used. Therefore, twice the bandwidth of a single shift register can be programmed for the same time delay. Even in this double-bandwidth mode, the clock frequency required for a

Fig. .2. Basic block diagrams of the delay line and the phasorfflanger circuits.

Fig. 3. Schematic of delay line for one channel. Resistor values for different delay configurations are given in the table below left.

table of filter resitor values

A B C D (all values in kilohms)

R1	100	200	300	390
R2	130	270	390	510
R3	36	75	110	150
R4	100	200	300	390
R6	75	75	75	75
R9	47	91	130	180
R10	43	82	130	160
R11	120	240	360	470
R12	10	20	30	39
R13	56	110	160	220
R14	33	68	100	130
R15	68	100	200	270
R16	110	240	360	470
R26	200	200	200	200

$A=10 \mathrm{~ms}$ or less, -3 dB at $15,000 \mathrm{~Hz}$
$B=20 \mathrm{~ms}$ or less, -3 dB at 7500 Hz
$\mathrm{C}=30 \mathrm{~ms}$ or less, -3 dB at 5000 Hz
$D=40 \mathrm{~ms}$ or less, -3 dB at 3800 Hz

PARTS LIST FOR FIG. 3

C1.C4.C11-1- $\mu \mathrm{F}$, 25-volt electrolytic capacitor
The following are 5% polystyrene capacitors:
C $2-1300 \mathrm{pF}$
C3-24 pF
C $5, \mathrm{C} 8-510 \mathrm{pF}$
C6-43 pF
C7-1200 pF
C9-100 pF
C $10-47 \mathrm{pF}$

40-ms delay limits the bandwidth to a maximum input signal frequency of 3750 Hz , which is adequate for voice but less than adequate for many musical instruments. In most applications where the delayed signal is added to the original signal, the reduction in bandwidth will be masked by the high-frequency signals present in the original. To compensate for normal signal attenuation, an 8.5-dB amplifier is used between the shift registers.

In the phasor/flanger mode, the

C $18-0.01-\mu \mathrm{F}$ ceramic disc capacitor
IC I.IC3-1458 dual operational amplifier IC2-MN3001 dual analog shift register (Matsushita)
IC4-4001 CMOS quad NOR gate IC5-4013 CMOS dual D flip-flop PI- 100.000 -ohm putentiometer
R1 through R4,R6,R9 through R16.R26See Table
R5.R8- $100,000-\mathrm{ohm}, 1 / 4-$ watt, $5 \% /$ resistor R7-200.000-ohm, $1 / 4$-watt, 5% resistor Note-See Parts List for Fig. 5 for kit information.
maximum delay required is about 5 ms , which is short enough that a single shift register can be used without compromising the bandwidth. The second shift register is therefore connected in parallel with the first to improve the S / N ratio. The signals are added in-phase, while the noise adds and subtracts randomly.

How It Works. The schematic diagrams of the delay-line and phasor/ flanger configurations of the circuit

A BUCKET-BRIGADE SHIFT-REGISTER ANALOGY

While the first clock is high, the "odd" buckets are dumped into the next consecutive "even" bucket. When the second clock is high, the even buckets are dumped into the next consecutive odd buckets. In this manner. individual charges are transferred along the line one stage at a time.

The drawing is a schematic representation of four typical stages of the MN3001 analog shift register. Each MN3001 IC contains two 512-stage shift registers. Note that stages A and C are connected to one clock, while stages B and D are connected to the other clock to provide the odd/even relationship.

Fig. :. Sichematic of cireut for phasorftenger.

PARTS LIST FOR FIG. 4

CI through CII-Same as for Fig. 3 Cl8-0.01- $\mu \mathrm{F}$ ceramic disc capacitor ICI through IC 5 -Same as for Fig. 3 The following resistors are $1 / 4$ watt, 5% tolerance:
RI.R4,R5.R8,R26.R31-100,000 ohms R2-130.000 ohms

R3-36,000 ohms
R6, R $7-200,0000$ ohms
R9-1.R9-2-91,000 ohms
R10-43.000 ohms
R11-120.000 ohms
R12- 10.000 ohms
R13-56.000 ohms

R14-33.000 ohms
R15-68.000 ohms
R16- 11.000 ohms
R26- 100.000 ohms
R27 through R $30-5100$ ohms
Note-See Parts List for Fig. 5 for kit information.
are shown in Fig. 3 and Fig. 4, respectively. In both cases, quad NOR gate IC4 is wired as an astable multivibrator operating at twice the desired clock rate's frequency. The output of $1 C 4$ goes to flip-flop IC5, which provides a pair of complementary (180° out of phase with each other) output clock pulses with 50% duty cycles. These pulses then "clock" the shift registers in IC2. Frequency determining resistor R16 is fixed in the delay configuration, while resistance can be added via a pair of connectors to change the clock frequency in the phasor/flanger.

The audio input signal is conditioned by seven poles of low-pass filtering in which IC3 and half of IC1 are used. The filters provide a total of $42-\mathrm{dB} /$ octave attenuation above the tuning frequency. For example, if the filter were tuned for 5000 Hz , a $10,000-\mathrm{Hz}$ signal would be attenuated by more than 100:1.

When filters are designed with high-gain operational amplifiers (op amps), it is possible to have their outputs increase before rolling off at the rate of 6 dB /octave per pole. Such filters are termed "under damped." By carefully selecting the proper balance of under-damped and over-damped (RC) filter sections, it is possible to design a filter that is flat in the desired
passband so that it is 3 dB down at the tuning frequency and has a roll-off rate of 6 dB times the number of poles

This is what has been done in the delay-line and phasor/flanger circuits.

Quite a bit of mathematical compu-

Fig. s. Schemutic of pones-suphly cirent.
Pats List includes kit information for all circuits.

PARTS LIST FOR FIG. 5

C12-470- $\mu \mathrm{F}$, 35 -volt electrolytic capacitor
C 13.C $15, \mathrm{C} 16-0.01-\mu \mathrm{F}$ dise capacitor
C $14-100-\mathrm{pF}$ dise capacitor
C $17-33-\mu \mathrm{F}, 25$-volt electrolytic capacitor
DI.D2-IN4001 rectifier diode

D3-1N968 (20-volt) zener diode
F1-1/10-ampere fuse
IC $6-723$ precision voltage regulator
The following resistors are $1 / 4$ watt. $5 / 8$ tolerance:
R $17-1000$ ohms
R18-1 megohm
R19- 10 ohms
R20-8200 ohms
R21-7500 ohms
R22-33.000 ohms
R23-2400 ohms

R24-2200 ohms
R25-5100 ohms
TI-Power transformer with two 28 -volt secondaries at 50 mA each
Misc.-Chassis: line cord: phono jacks (4): control knobs (2): rubber grommet; spacers: machine hardware: hookup wire: solder; etc.
Note: The following items are available from Phoenix Systems. P.O. Box 73. Saugatuck Sta.. Westport. (T 06880): Complete kit of parts (delay line or phasor/flanger) No. P-1220-M (mono) for $\$ 39.00$; complete kit of parts No. P-1220-S (stereo) for $\$ 59.00$; etched and drilled pe board No. P-1220-B for $\$ 5.00$: MN300l analog shift register IC No. P-1220-C for \$15.9). Add \$1.00 for shipping and handling. Connecticut residents, please add sales tax.

CLAIMED SPECIFICATIONS

Delay Line:
Frequency response
15 to $15,000 \mathrm{~Hz}$ $(+2 /-3 d B)$
Distortion (THD)

Input impedance

Clipping level

Signal-to-noise

Phasor/Flanger:
Frequency response 15 to $15,000 \mathrm{~Hz}$ ($+2 /-3 \mathrm{~dB}$)
Distortion (THD)

Input impedance Typically less than 0.75% (1000 $\mathrm{Hz}, 1 \mathrm{Vrms})$ Greater than 100,000 ohms
tation is normally required to determine the values of the filter resistors to use. To simplify matters, you can select the appropriate resistor values from the Table of Filter Resistor Values. Use this Table for selecting resistor values for only the delay-line circuit. (The filter resistor values specified in Fig. 4 and its accompanying Parts List will provide an optimized $5-\mathrm{ms}$ delay, with the output 3 dB down at $15,000 \mathrm{~Hz}$ for the phasor/flanger.)

The power supply is shown in Fig. 5. It uses a voltage regulator, IC6, to generate the main 15 -volt supply output. The shift register requires supplies of both +1 and +20 volts. The +20 -volt line is obtained through the

use of zener diode D3, while the +1 volt line is derived from the voltage divider consisting of R22 and R23. Since the op amps are being operated from a single-ended supply, it is necessary to have the 10.5 -volt supply line serve as the reference point in the circuit for these IC's.

Construction. The actual-size etching and drilling guide, the same for both circuit configurations but wired differently as required, is shown in Fig. 6A. The parts-placement guides for the delay-line and phasor/flanger con-
figurations are shown in Figs. 6B and 6 C , respectively.

Before installing any components on the board, mount and solder into place the wire jumpers. Then, wire the board as in Fig. 6B or Fig. 6C. depending on the desired mode of operation. Be careful to properly orient all semiconductor devices and electrolytic capacitors. Be sure to handle the MOS devices with care to prevent them from being damaged by static charges. You can mount the IC's directly on the board or use sockets. Use a low-power soldering iron (25 to 35

Fig. 6. Abore (A) is etching and drilling guide for pre hoard. It coll be lised for either channel for delay-line circuit. or for the phasorftanger: At left (B) is compoment latyont for one chamel of delay line. It includes the poucer supply. Component layents for phasorftanger and secoml chamel of stereo delayl line are on wext page.

Fig. 6. Component layout at top is for phasorltanger (C). Below (D) is for second channel of stereo system. It uses power supply in first channel.
watts) and fine solder, and watch out for solder bridges between the closely spaced pads on the board.

The wiring guide for the second pc board for a delay line for stereo is shown in Fig. 6D. Note that the power supply section is not repeated; you get power and clock pulses from the first board via wire interconnections.

Solder lengths of hookup wire to the pads that are to interconnect with the
off-the-board pots and jacks. Then drill holes for the line cord, jacks, pots, and board mounting in a $5^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ $(12.7 \times 10.1 \times 7.6 \mathrm{~cm})$ aluminum chassis box. Locate the line cord and jack holes on a wall directly opposite the wall through which the pot holes have been drilled

Use machine hardware and spacers to mount the pc board assembly to the floor of the aluminum box. If you are

HANDS-ON EVALUATION

Both the time-delay and phasor/flanger configurations of this circuit should keep the home recordist occupied for hours, if not days. While the effects are not as apparent as those obtained with professional delay and flanging systems, this system does not cost the $\$ 4000$ or so demanded for such top-of-the-line professional system.

The flanging effect is heard only while the potentiometer is in motion, at which time the variable comb filter sweeps across the audio bandwidth to create the "flanging" sound. At rest, the combfiltered sound is noticeable, but it is not as apparent as one would expect from looking at the peaks and dips that occur at regular intervals on the frequency response curve.

Although you might not have occasion to use the flanger as a mono-to-stereo generator, don't overlook this operating mode for the enhancement of a singleoutput reverberation device. Reverberation is very diffuse by nature, and the flanger outputs, when panned left and right, are a noticeable improvement over a regular mono reverb return. When used in this application, the potentiometer remains at rest.

Use only one output when applying flanging to a recording. For an interesting Doppler effect, try combining the two outputs while rapidly revolving the pot. Better still, replace the standard pot with a free-spinning pot. (Connect the resistance element in series with R16 and the wiper to either end of the element.)

On the delay line, the recirculation control must be used sparingly. A little goes a long way, and the "door spring" effect can easily get out of control. If you build both circuit configurations, you can experiment by wiring the flanger into the delay line's recirculation path. The slight additional delay in feedback creates even more echoes at the delay line's output. It also helps to keep the door spring from becoming a steadystate squeal.
-John Woram,
Woram Audio Associates
assembling a stereo delay line mount the second board assembly over the first with short spacers and machine hardware after interconnecting the power-supply and clock-drive lines with hookup wire. (Be sure to make the interconnections before fastening the boards together.) Connect and solder the free ends of the hookup wires from the board(s) to the appropriate lugs in the jacks and pots. ©

Ten
 AUDIO
 BY DAVID B. WEEMS

SEVERAL years ago the U.S. Patent Office granted a patent for a speaker enclosure that had some unique internal reflectors. Its inventor claimed that the reflectors, by bouncing the sound back and forth, enabled any speaker to reproduce longer wavelength bass in a compact box. The fact that the patent was issued shows that the inventor recognized a great need. Unfortunately it does not show that a new set of natural laws would be necessary to make the invention work.

Experimenters have contributed many interesting and imaginative (often flawed) speaker enclosures to the high fidelity and stereo scene. Many of them have been adopted and are commercially produced. But com-
mercial production is no proof of merit. How about a cheap speaker buried in a thin-walled unpadded box? This commercial flop was called a "cavity generator." It really sounded as bad as you'd expect. Then there was the bass reflex with ports shaped like f-holes on a violin for (one supposes) a more musical bass. If you like to mix pets and audio components, how about the "cat's door" speaker? This one had a small swinging door in the back. Presumably this was the answer for anyone who couldn't choose between a sealed box and one with a port.

Some bizarre speaker systems are good, but they don't always work the way their designers think they will. Novices misinterpret speaker box
theory. They overlook hidden snags, because after all, what looks easier to make than a simple box?

They are also often misled by old speaker box fallacies. Stories about speaker systems can be loaded with colorful misconceptions. Even wellknown manufacturers sometimes promote them in their advertising. A current table model radio, for example, was introduced with the claim that its wooden cabinet gave it "the same mellow resonance that grandma's big console used to have." Aside from the suggestion that resonance is good, this statement gives credence to a fallacy that has been around a long time. Its roots probably go back some 300 years. In deference to its age we'll consider it first.

Wooden speaker cabinets have a good 'tone.'

This old one is surely a hangover from the mysterious art of violin making that reached its peak in the 17th century. That's when the families of Amati and Stradivari developed methods of using certain woods which produced instruments of great esteem. But a loudspeaker is not a musical instrument. Its function is to change electrical energy into acoustic energy without adding to the original signal.

Wood is only one of many materials suitable for speaker boxes. Its popularity is based on convenience and appearance. Dense materials, such as brick or concrete, are better. Having greater rigidity, they are less likely to vibrate and add false tones. Any material that is acoustically opaque, sufficiently rigid, and reasonably well damped can be used.

Enclosure wall panels should have a low resonant frequency.

This might be called a high-level fallacy because it is often believed by people who are otherwise well informed about speaker systems. They know that all panels, like speakers, have resonance. The general rule for speakers goes: low resonance, good; high resonance, bad.

For box panels the reverse is true. Unlike speakers, box walls should produce no sound at all. Making a panel more rigid helps in two ways. It reduces the amplitude of any vibration, lowering its sound level; and it raises the panel's resonant frequency. Upper-bass and midrange frequencies can be more easily absorbed by using acoustic damping material in the box.

Panel braces should cross the short dimension of the panel.

There is a common belief, sometimes supported by mathematics, that braces around the mid-section of a box (Fig .1 A) add more rigidity than lengthwise braces (Fig. 1B). The reasoning is that a short brace is more rigid than a long brace. But the goal

3hree

Fig. 1. Braces are us.sually put achess short dimension of pemels (A). Lengthatise braces (B) make panels stititer.

should be to produce greater rigidity in the walls, not the braces.
Another theory says that braces should be installed diagonally. The advantage of diagonal bracing, it is said, is that one brace can resist stress in two directions.

About 15 years ago Peter Tappan did some experiments to find the effects of various kinds of bracing. He found that a panel with a fundamental resonance of 60 Hz had the resonance raised to 100 Hz by a cross brace, to 115 Hz by a diagonal brace, and to 160 Hz by a lengthwise brace. He concluded that the lengthwise brace was most effective because it divided the panel into the narrowest possible sections. Ideally, a brace should be installed slightly off center so that it breaks the panel into two unequal parts. Opposite sides, which have the same dimensions, should have dissimilar bracing.

4our

All speaker box walls should be $3 / 4^{\prime \prime}$ thick.

This is an old rule of thumb. When most speaker enclosures were floor models made of plywood, it was good enough. Now, when speaker boxes take many sizes, assume various shapes, and contain unusual materials, wall thickness should be matched to individual box requirements.

Thick plywood is a good choice for large panels. Plywood backs, for example, should usually be at least $3 / 4^{\prime \prime}$ thick. But to use $3 / 4^{\prime \prime}$ walls for a miniature speaker would be wasteful.

For other materials, weight is a good guide to adequate thickness; but there are exceptions. Consider a thin-walled enclosure made of steel, for example. It could be satisfactorily rigid and yet produce inferior sound because of poor damping. If you suspect wall damping problems, use the knuckle test. Rap the sides with your knuckles and listen. You should hear a dead thump rather than a hollow drummy sound.

Damping material is useful in eliminating bass boom, but too much can cause rolloff at high frequencies.

Various damping materials, such as fiberglass, dacron batting, and other fuzzy substances, are used to absorb unwanted sound. These absorbents are most effective in the midrange frequency band. Don't underrate this ability. Midange reflections inside the box interact with the speaker cone to produce a rough frequency response. The proper use of damping material can greatly reduce listening fatigue.

Stuffing a box does little to control bass boom (much less than electrical damping on the speaker). but it can affect bass range. The stuffing, by absorbing and giving up heat, changes the condition of sound propagation in the box from adiabatic to isothermal. This change reduces the velocity of sound, shortening the wavelength. In effect, the enclosure "acts" larger. Because of increased acoustical resistance, a stuffed box reduces speaker efficiency.

The second part of fallacy 5, that acoustic treatment inside the box can depress the highs, is a common case of mistaken judgement. Padding the inside of a box often removes excessive brightness. Careless listeners sometimes interpret the reduction of midrange peaks as a loss of highs.

The outside shape of a speaker box has no effect on the sound.

One problem with most speaker enclosures is that they are box-shaped. Opposite parallel walls produce internal reflections, but the problem is usually treatable. Externally, sharp corners and projections at the front edge of the box cause diffraction effects as the sound waves reach those corners. The diffracted waves overlap. producing destructive interference and uneven frequency response. ideally the front of the enclosure should curve away from the speaker, like a sphere. As a compromise solution, the front corners of box-shaped enclosures can be made free of projections and even rounded off or chamfered.

A speaker should be centered on the speaker board.

A speaker in the center of a speaker board looks right. It can sound bad. Equidistant from each side, it is positioned where it will promote standing wave formation in the box. Centered speakers also aggravate the diffraction problem discussed in 6.

To insure in-phase operation,

 woofers and tweeters need only be wired with proper polarity and installed on the same board.Most audio fans know that they must "phase" speakers in a stereo or 4-channel system. Polarity should also be observed when wiring woofers and tweeters into a crossover network. But there are other, more subtle, causes of phase distortion. One of these is unequal sound-path length from multiple sources.
Speaker phase distortion was first recognized in 1935 when some Hollywood sound men noticed an echo in a tap dancing sequence by film star Eleanor Powell. They traced the source of the echo to the theater speaker, a large two-way horn system. Unequal path length was the demon. The bass horn was 8 feet longer than the treble horn. The dancer's sharp transients uncovered a kind of distortion that had gone unrecognized in music and speech.

Multiple speakers on a common speaker board can produce sound with unequal path length in at least two ways. The woofer cone, because of its greater depth, is usually located a few inches behind the shallow tweeter cone. And sometimes there is a lateral distance between the cones (Fig. 2). These two distances introduce phase shift in any sound reproduced by both cones. When the difference in path lengths is equal to one-

half wavelength, the phase angle is 180°, causing cancellation. For woofers and tweeters the phase problem extends through the band of frequencies in which their response overlaps, usually about a half octave on each side of the crossover frequency.

Phase distortion can also occur when a well-designed speaker is placed on its side. If that placement puts a horizontal distance between drivers with overlapping frequency bands, it can cause phase distortion except at the one listening position where the path lengths are equal.

With proper design a small box can give both good efficiency and a full bass range.

This might be called the wishful thinking fallacy. Compact speakers can reproduce low-frequency bass (as proved by acoustic suspension speakers). But to get a woofer with an ultra-low resonance (a necessity in a small box), engineers must increase both the compliance and mass of the cone. Newton's Second Law of Motion tells us that the added mass requires more energy to accelerate it. So fullrange acoustic suspension speakers are inefficient.
Can a light cone be made compliant enough to give both good efficiency and a full bass range in a small box? No. First, there are practical problems with ultra-high compliance. A floppy cone is hard to protect during shipment, for example. There are also theoretical limits. A speaker's fundamental resonance varies inversely with the square root of its compliance. So to reduce a speaker's resonant frequency by increased compliance alone from, say 60 Hz to 30 Hz , the compliance must be made 4 times as great.

To get a $15-\mathrm{Hz}$ resonance with the same speaker, its compliance would have to be increased to 16 times the original value. But such a speaker, even if practical, would be defeated by a small box. An electrical circuit equivalent to the mechanical circuit of the speaker in the box (Fig. 3) shows that the compliance of the trapped air is in

Fig. 3. Electrical schematic belore is equivalent to mechanical circuit of a speaker in an enclosure.

series with the cone compliance. When two capacitances appear in series, the smaller capacitance (Cmb) limits the total capacitance (or compliance) no matter how great the other capacitance (compliance).

The example shown here is for a closed box speaker system. Reflex speakers have a theoretical efficiency advantage of 3 dB over closed boxes, but the minimum box volume for satisfactory reflex operation is greater than that for a closed box.
Any speaker designer faces the conflicting requirements of efficiency, low-frequency response, and space. He can make a small speaker offer high efficiency and a limited bass range, or it can have low efficiency and a full bass response. He cannot give it all three.

Bass reflex enclosures always boom. That's why they are called "boom boxes."

This fallacy has been promoted by both sides in the reflex/closed-box war. "I like bass," some say; meaning that any kind of bass is desirable. Closed-box fans say, "Reflex speakers give one-note bass."

The belief that a reflex system will inevitably have more boom than closed-box systems is wrong on two counts. Any kind of dynamic woofer, particularly if its Q is high, can boom.

Cheap speakers with small magnets have a higher Q than speakers with adequate magnetic field strength in the voice-coil gap. Well-designed reflex enclosures produce no more obnoxious boom than other types.
If you have a reflex system that booms excessively, the box may be too large or too small for optimum performance. In either case, the solution is simple. Cover the port and operate the speaker as a closed-box system. If the boom persists, your problem is more basic than a mistuned bass reflex enclosure.

There are probably more fallacies having to do with speaker systems than about any other audio component. When you consider how difficult it is to measure and analyze speaker
behavior, however, that's no wonder. Sometimes it is a case of mistaken identity. Fallacies crop up when somebody mistakenly identifies effect as cause, form as function, or even
inferior performance as superior performance. The ten fallacies listed here are only a few samples. So stay alert. You may discover a brand new one yourself.

"cAMPING OUT,"' whether it be in one of the new modern campers, a trailer, a tent, or even a boat, is one of today's most popular ways of "getting away from it all." There always comes a time, however, when we miss some of the creature comforts that we left at homecomforts that can only be provided by electrical appliances. Unfortunately, appliances that work on 12 volts dc are relatively expensive.

You can, however, use a dc-to-ac inverter, enabling you to utilize ac equipment you already own. As some readers might have already discovered, though, most of these devices deliver a form of square wave that prevents their use with equipment that is
sensitive to the interference caused by square waves. This includes TV receivers, audio equipment, CB gear and some test instruments. With the inverter described here, you can now get 117 volts of $60-\mathrm{Hz}$ sine-wave power at 100 watts from a conventional $12-$ volt battery system. In addition, the in-

SPECIFICATIONS

Input:
Output:
Distortion:
Charge Current: 15 A max (selflimiting)
verter can be used to recharge vehicle batteries at 15 amperes from any 117volt, $60-\mathrm{Hz}$ power source.

The inverter can also be preset to deliver power at any frequency from 50 to 400 Hz , making it useful for operating some surplus electronic gear designed for 400 Hz . As an integrated standby power source it can even be used for power-failure emergencies in the home.

How It Works. As shown in Fig. 1, the first stage in the inverter is a lowdistortion sine-wave oscillator (IC1A) whose frequency can be adjusted by R1. The output of the oscillator is amplified and isolated from the load by a combination of an op amp and

PARTS LIST
$\mathrm{C} 1-0.082-\mu \mathrm{F}$ Mylar capacitor
$\mathrm{C} 2-0.002-\mu \mathrm{F}$ disc capacitor $\mathrm{C} 3, \mathrm{C} 5 . \mathrm{C}, \mathrm{C} 7-47-\mu \mathrm{F}$. 16 -volt electrolytic C4- $220-\mu \mathrm{F}, 16$-volt electrolytic capacitor $\mathrm{C} 8-2.2-\mu \mathrm{F}$. 16 -volt electrolytic capacitor C. 10 capacitor $10(0)-\mu \mathrm{F}, 16$-volt, pc-type electrolyC $10-1000-\mu \mathrm{F}, 16$-volt, pc-type electroly C11,C12.C13-0.01- $\mu \mathrm{F}$ disc capacitor CB- 18 -A circuit breaker (Litllefuse) D1 to D9-IN4001 diode 1C 1-747 dual op amp
M
P--117-volt male sock
Q2-2N 5354 transistor
Q3, (24-60407 ransistor (RCA)
$0510(010-2 \mathrm{~N} 305 \mathrm{~S}$ (matched gain at 5A)
RI, R11-50, 200 -ohm potentiometer
Following resistors are 10%, $1 / 4$-watt:
R2.R4-68, (0) O ohms
R5.R19.R22-220 ohms
R6.R7.R12.R13,R20.R21-10,001) ohms
R9- 510 ohms
R $10-1000$ ohms
R15-120.000 ohms
R16-470.(000) ohms
R17-560.000) ohms
$\mathrm{R} 17-560.000$ ohms
R 18 - 220.000 ohms
S 1 --5-pole, double-throw switch
S01-117-volt chassis-mounting socket
 Misc.-Suitable chassis, rubber feet, grommet for battery lines, press-on type,
silicone grease, aluminum for heat sink silicone grease, aluminum for heat sink.
$3 / 4^{\prime \prime}$ standoff insulators. Nole-The following are available from
Netronies Research and Development Netronics Research and Development
Ltd., Rt. 6. Bethel Meadows. Bethel, CT 06801 : complete kit including case and
heat sink at $\$ 69.95$. plus $\$ 3.00$ postage heat sink at $\$ 69.95$. plus $\$ 3.00$ postage
and handling. Also available separately are: output ransformer T 2 at $\$ 27.95$;
driver transformer $\mathrm{T1}$ at $\$ 4.00$; Si at $\$ 2.70$: meter M1 at $\$ 4.50$: circuit breaker suolsisural ssoent payrieu xis:00'es at $\$ 12.00$; pe board at $\$ 4.00$. Separate part orders add $\$ 2.00$ postage and han-
dling. Connecticut residents add sales tax.

Fig. 2. Instimations and dimensions for mating the heat sink. It must have at least Ente sq. in. of cooling surface.
discrete-transistor class-B pair (/C1B, Q1 and Q2) and $T 1$.
Transistors Q3 and Q4 are medium-power amplifiers, each one Darlington-connected to three highpower transistors (Q8, Q9, Q10 and Q5, Q6, Q7). Transformer $T 2$ is the load for the high-power transistors and provides the 117 -volt output at the preset sine-wave frequency.

Load regulation is provided by feedback from the emitter of $Q 7$ to potentiometer R11 and then to the oscillator. Reguation from no load to full load is better than 6%.

When switch S1 is set to Charge, the circuit (except for Q5 through Q10) is disconnected from the battery, and the six high-power transistors act as rectifiers. The secondary of $T 2$ is connected so that the proper charging current is obtained.
An 18 -ampere circuit breaker is mounted on the output stage heat sink
to monitor the temperature and current drain. If the heat sink gets too hot due to improper ventilation, the current rating of the circuit breaker reduces proportionately. Thus, the inverter is protected from improper mounting or application.

The zero-center ammeter (M1) indicates the current drain when the circuit is inverting and the charging current when it is recharging a battery.

Construction. The crucial element in the assembly is the construction of the heat sink. To keep the operating temperature below $100^{\circ} \mathrm{C}$, the heat sink must have more than 500 square inches of area. Details of the construction are shown in Fig. 2. Note that there are nine sections of $1 / 32^{\prime \prime}$-thick aluminum in the heat sink, with holes drilled to mount the six power transistors.

After drilling the holes for the trans-
istors, remove the burrs. The transistors share common mounting holes with three transistors on one side of the sink and three on the other. Use silicone grease under the transistors to insure intimate thermal contact with the heat sink. The transistor cases are not insulated from the sink as all collectors are connected in parallel. The heat sink is insulated from the metal case by four insulated stand-offs. Do not try to use a smaller heat sink or you will run the risk of damaging the transistors.

The remainder of the circuit is mounted on a pc board (Fig. 3). Note that the cases of diodes D10 and D11 are actually thermally bonded to the heat sink. The cutout in the board allows the diodes to contact the heat sink (with silicone grease to insure the contact). Transistors Q3 and Q4 are also mounted so they touch the heat sink. Their collectors are at the same potential as those of the power transistors. Drill suitable holes to attach the pc board to the lips on one end of the heat sink.

After selecting a chassis, mount the heat sink on four insulated stand-offs. The metal chassis must be floating, not connected to input or output.

The emitter resistors for transistors Q5 through Q10 are made of 14 -inch lengths of \# 22 wire. It is important that the lengths of the resistors be as nearly the same as possible so that the transistors share equal amounts of the current. The secondary of $T 2$ is at 117 volts ac so use care in routing the leads. Dress leads away from the heat sink and use wire rated at $105^{\circ} \mathrm{C}$.

The leads from the inverter to the battery (through the rear of the case) may carry as much as 18 amperes, so use heavy gauge wire or lengths of line cord with both leads in parallel for each side. If the connection is very long, use four parallel wires for each side to keep the voltage drop in the leads to less than 0.5 volt.

When assembly is complete, check again to make sure there is no connection between the case and the input or output.

Testing. With the cover off, set Ri and R11 to their mid-positions. Connect the battery leads to a highcurrent 12 -volt source (vehicle battery). Turn the inverter on and note that the meter indicates less than 2 A drain. If this is not the case, immediately turn off the unit and determine the reason.

Fig. S. Etching and ditling guide and component layout for pe board. D10. D11, Q3. and Q4 touch heat sink.

If the meter indication is correct, turn off the inverter and connect a 117 -volt ac meter and a 100 -watt lamp to SO1. Keep in mind that this is a hazardous voltage. Turn the inverter on and adjust $R 11$ to obtain 117 volts at SO1.

Use a frequency counter or the circuit shown in Fig. 4 to adjust $R 1$ for 60 Hz . In using the circuit in Fig. 4, adjust R1 until the neon lamp does not flash (zero beat).

Fig. 4. Use this ciment to tume the imrerter to 60 Hz .

Operation. This equipment, like any ac line-powered gear, must be treated with great care. The cabinet should be adequately ventilated at all times. The design is safe up to an ambient of $120^{\circ} \mathrm{F}$. If the circuit breaker trips, check the ventilation and possibly reduce the output voltage slightly. It is good practice not to operate any electronic gear in an ambient in which a human is not comfortable.

SO YOU HAVE finally found what you hope is the last solder bridge on your homebuilt computer, put the case on, and turned the dining table back to your wife. Now you are ready to start using your computer; but after one long evening of working the switches and watching the lights, you realize you don't really know how.
Did you read the operating manual? If so, you would have found that there are a number of "input/output ports" available. However, you can't just feed data through an input port and expect it to come flowing from the output port. You have to have some peripheral devices to attach to those input and output ports.

A peripheral device can be a teletypewriter, card reader, paper-tape punch, CRT terminal, etc. Magnetic tape and discs are also part of the peripheral device scene. However, these devices don't just sit there and communicate with the computer automatically. You have to know how they work and how to "talk" to them through the input/output ports.

Every device has its own idiosyncracies. There are two main characteristics that we will consider here: character codes and speed.

Character Codes. The easiest way to get a good feel for the concept of a character code is to design an input
device. First, we must decide upon its alphabet; that is, we must describe precisely the entire set of characters that this device will recognize. We then order these characters in whatever arrangement suits our fancy and number them from 0 to n, where n is the number of distinct characters in our alphabet.
The device is now constructed so that when it recognizes a specific character, say the 17th character in its alphabet, it transmits its number, 17, (in binary, of course) to the computer's input port.

The question arises: how many bits are needed to uniquely code an alphabet? The answer is that we need at
IN's and OUT's of

Understanding

 character codes, flags, interrupts, DMA, and othercomputer terms.
least $\log _{2} n$. Conversely, if a character code contains n bits per character, then the maximum number of characters is 2^{n}. Thus, an 8 -bit code can describe a 256 -character alphabet.

Another question is: how many characters do we need in an alphabet? In English, we need 26 letters, 10 digits, a number of punctuation characters, and a blank. Never forget that a blank is a character! If we allow for eleven punctuation characters we find we need a total of 48 characters. Note that we have 26 letters with no discrimination between upper and lower case. If we want both cases, we must add another 26 characters-upper and lower case of a given English letter are two completely different characters to a computer! The total is now 74 characters.

Five bits would give us 32 characters which is not enough. Six bits would permit 64 characters, so 6 bits is the minimum number we need for a reasonable alphabet, although we need at least 7 if we are to recognize both upper and lower case letters. For years the 6-bit code was a default industry standard and the default character set was the 48 characters available on the IBM model 026 keypunch. When IBM introduced the 360 computer they went to a model 029 keypunch with 64 characters. The computer, however, used an 8-bit character code.
You may have heard of a character code known as ASCII (American Standard Computer Information Interchange) which is used in the newer teletypewriters. This has an 8 -bit code and 128 characters including upper and lower case. However, most teletypewriters have only upper case letters.
To build an output device, we go through a similar procedure. The major difference is that when the computer gives it a binary number, the output device produces the corresponding character of its alphabet, not necessarily the same as that of the input device.

Data Rate. Let's say the output device is a typewriter with a speed of 10 characters per second. Let's type the letters "AB". First, we put the code for an "A" in the output port, followed by the code for a "B". In your computer this would take a few microseconds. But it takes the device $1 / 10$ of a second to type the A! Thus, it would do one of
two things: type the A and never see the B, or never see the A and type out the B.

What we must do is put the code for the A in the output port, then do some. thing else for $1 / 10$ of a second (we may just have to waste $1 / 10$ of a second by looping), then put the code for B in the port.

Let's leave the computer and look at the output port from the eyes of the device. First it "sees" the code for an A so it prints an A; then it looks back at the port and sees the code for a B and prints a B; then it looks back at the port and sees the code for a B (it's still there!) so it prints it. And so on, ad nauseum. We obviously need some method to avoid this. One way is to define a character code which means "do nothing" (this is NOT a blank). We will give this code a name; it is the null character. Then to send "AB" we output A (we really mean we output the code for an A), wait, output B, wait, then output null. The device prints the A, prints the B, then continuously does nothing so long as the null remains in the port. But this process can be improved.

One way to solve our problem is to use a special flip-flop, called a flag, for each output port. As long as the flag is reset (zero), the output device does nothing. If the flag is set, the device outputs the character from the output port and resets the flag. Thus, in general, we no longer need a null character; the flag bit takes its place. The control pulse generated by the computer to load the data into the output port is also used to set the flag.
We gained something else. If the computer can somehow determine the state of the flag bit, it can tell if the character previously in the output has yet been accepted by the device. This means that we no longer have to waste a programmed amount of time and assume the device has processed the character, but we can verify, by testing the flag. This is important when different models of the same computer run at different speeds. An Intel 8008-1 running at full speed cannot properly drive a teletypewriter using a program developed on a standard 8008, because the do-nothing loop has been programmed to waste the correct number of cycles for the 8008 clock. The do-nothing loop which tested the flag would work on either computer, because the device supplies the timing. This means that each output port
must be associated with an input port to input the flag.

We must arrange the power-up logic so that all the flags are initially reset to prevent the output devices from outputting garbage when the machine is first turned on. Also, it would be nice to have a master clear button to force all the flags to zero if we need to manually stop and restart the computer. In some cases, it would be useful to have a special output port connected to the same master clear logic so the program could reset all flags with one instruction. We may also want the ability to set or reset individual flags under program control. This would require another output port for each output device. Thus, a full-blown flag facility would require two output ports and one input port for each output device. Similarly, it would need two input ports and one output port for each input device. Actually two output ports and one input port could handle all the flags if you dedicate one input and one output port to reading a flag and writing (setting or resetting) a flag, and another output port to specifying which flag is to be read or written.

Now let's look at an input using the flag bit. The input device would read a character, place its code in the input port, and set the flag. The program would then test the flag, find it set, and then read the character from the input port, resetting the flag. The problem here is that the operation is initiated by the device, not the program (this may be desirable in some applications). Usually, we don't want the input device to function until the program invites it to. This implies that we need two bits-one to tell the device to operate, and one to tell the computer that the operation is complete. Let us use our flag bit for the latter function and add an additional bit (a control bit) to control the device.

For output:

1. Set the control bit to start the device.
2. Put data in the output port, and reset the flag.
3. The device accepts the data and sets the flag.
4. The computer repeats from step 2 until all the data has been output.
5. The computer resets the control bit to stop the device.
For input:
6. Set the control bit to start the device and reset the flag bit.
7. The device puts data into the input port and sets the flag.
8. The computer reads the data from the port and resets the flag.
9. This repeats from step 2 until all the data has been input.
10. The computer resets the control bit to stop the device.

Call Me, I Won't Call You. If you are working when the phone rings, and you stop to answer it, you have been interrupted. The caller may have an urgent request for some information in which case you suspend what you are doing to supply the information, then return to your original task. On the other hand, the call may be simply to inform you that you are to be in a meeting at a later time. In this case, you post the request on your memo pad or calendar and at the proper time, stop what you are doing and attend the meeting. The call may also be to inform you that something you had previously requested of the caller has been completed. Such a facility, called interrupt, can be built into a computer.

If you have only one phone on your desk, you must ask the caller to identify himself when the phone rings, since many different people can interrupt you over the same phone. In a computer, this method is called a basic interrupt facility. Another method is a vectored interrupt facility.

To illustrate, you may have a desk full of phones, with each number known to only one prospective caller. In this case, it is not necessary to have the caller identify himself. You know who it is by which phone is ringing. Alternatively, a small number of people may be given the same number so a particular phone does not uniquely identify the caller, but limits the possible callers to a small set. To implement an interrupt facility within the computer, we do the following:

1. Save the address of the next instruction in some specific place; in machines with a stack, it is usually convenient to stack it.
2. Force the program counter to a specific address.

In a basic interrupt facility, the address used in step 2 is the same, regardless of who interrupted. In a vectored interrupt facility, the address used is a function of the particular interrupt. (See the restart instruction on Intel machines.)

Now we can produce an even better input/output system than we have to date. Just wire the flag bit true output to the interrupt line. Actually, we should probably AND the flag and control bits and wire this to the interrupt line. Then, when the control bit is set (the device has been invited to operate) and the flag bit is set (the device has operated) the computer will be interrupted. Thus, we no longer need a timing loop to assume the operation is complete nor a test loop to verify the operation is complete. Simply go on with the program or go into a donothing loop until the interrupt occurs. No test is needed since the occurrence of the interrupt will automatically tap the computer on its shoulder and give it the address of another program to execute. This other program is called the interrupt service routine.

A Mind-Reading Machine. You may have noticed that we have been sending only one character at a time. Usually, a peripheral device has a line length that it prefers. Punched cards generally use 80 characters, printers 132, typewriters 72 to 90 , etc. In many cases, these are specified in terms of the maximum number of characters. Such a group of characters is called a record. Some devices must transmit an entire record at a time, while others transmit incrementally; one character
at a time. There is usually some character in a hard-copy machine's 'alphabet' which does not print, but causes the carriage to be returned, thus defining the end of the record. Some devices, such as discs, are built so that, once a transmission is started, an entire record must be transmitted. For this reason, a common method of programming prepares the entire record in the computer's memory, and then sends one character at a time. If the entire record is in memory, there must be a better way to output it!

Suppose we built an "intelligent" output port that operated as follows: In lieu of putting the individual characters in the port, we give the port the address of the first character and tell it the number of characters to transmit. Then we allow the "intelligent" port to reach into memory at its own speed to fetch the characters and pass them on to the device. Such an intelligent port is called a direct memory access device, since it reaches directly into memory as it performs its function.

But if the DMA is accessing memory and the computer is accessing memory, can't things get fouled up when they both attempt to access at the same time? They sure can! To use such a facility, the computer must be appropriately designed. Read your manual again. If you have a machine built around the Intel 8080 you will find a pin called HLDA (hold acknowlege) and another labeled hold. When hold is raised, the computer finishes its current cycle, switches the address and data buses to the high impedance state, and raises the HLDA line. At this point the memory bus is available to the DMA with no interference from the CPU (central processing unit). When HoLD is dropped, the CPU resumes its execution. Thus, the DMA can directly access the memory for either input or output. If the device attached to the DMA is medium- to low-speed, the HOLD line is dropped after every access to permit the CPU to operate. If the device is fast, the DMA can lock the HOLD line high and seize the memory for the duration of the transfer.

There are a number of methods to implement this DMA. The simplest assigns a particular address to each DMA when it is built or installed. The programmer must put the first character of each record for the DMA device at this address. Then, all he has to do is set the control bit and reset the flag, through an output port, to start the

Advanced Electronics

Engineers design electronic circuits

 -so can you!Only CREI offers you a choice of 18 home study programs in electronics with circuit design, plus special arrangements for engineering degrees

Circuit design is perhaps the one qualification that distinguishes advanced technical personnel and engineers from the average electronics technician.

If you can design electronic circuits, you can more readily understand the circuitry of all types of electronic equipment. Thus you can more easily handle the repair and maintenance of such equipment, as well as assist in the development of new electronic systems.

The ability to design electronic circuits to solve practical engineering problems is one of the most valuable skills you can possess. Those with this ability are sought after and command positions of far greater responsibility, prestige and pay than the average technician.

If you are going to have a worthwhile career in the field of electronics, the ability to design circuits is a skill you will want to acquire.

Circuit design in all CREI programs

CREI covers circuit design in its home study programs in electronics. This is one of the factors that makes CREI training different from most other home study schools. CREI programs, of course, are college level-the same level of training you will find in any college or university offering programs in electronic engineering technology.

CREI training, however, is designed for home study. The programs give you effective, step-by-step training to help you move up in your career in electronics by using your spare time for technical self improvement.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in prototype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Career Training at Home

Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training

Engineering Degree

CREI offers you special arrangements for earning engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer clectronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to
(1) $\begin{aligned} & \square \\ & \square\end{aligned} \begin{aligned} & \text { CAPITOL } \\ & \text { RADIO } \\ & \text { ENGINEERING } \\ & \text { INSTITUTE }\end{aligned}$

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

3939 Wisconsin Avenue Northwest
Washington, D.C. 20016
Accredited Member National Home Study Council
McGraw-Hill Continuing Education Center

Sharpen youraftair's Memory.

Add Processor Technology's new 8KRA Static Memory Module to your Altair or IMSAI system. You'll have 8192 eight-bit word capacity, using full speed, low power RAM's, manufactured to stringent military standards. The 8KRA uses less power per bit than any other true static memory module (including our own 4KRA); so that two flashlight "D" cells will maintain memory for $4-5$ hours. (Re-charging circuitry for Ni -Cad cells and battery connectors are on the card.) The 8KRA occupies any 8 K segment at 1 K intervals within the 8080 addressing range. Card address is selected by a DIP switch at the top of the card. And, all 76 Integrated Circuits have their own premium grade, lowprofile IC sockets for reliability and easier assembly, testing, or repair.
8KRA 8192-word Static Memory Module \$295 4KRA 4096-word Static Memory Module $\$ 154$ (all sockets included)

Write Us, about our other plug-in modules, compatible with the 8800 system.
transfer. When the operation is finished, the DMA sets the flag, and, optionally, an interrupt occurs. The problem here is that each record for the device must start in the same location and must be the same length.

A more flexible arrangement uses an output port to feed the address and the record length to the DMA. This would require a transmission of 4 characters in the proper order. At this time the DMA could start its function. Again, when the operation was finished, the flag would be set and/or an interrupt could be requested. An even more flexible arrangement would permit several devices to be attached to the DMA. The program would output 5 characters to the DMA to start it (2 characters for the address, 2 for the number of characters to transfer, and one to identify the device and specify the direction, input or output). Using an 8 -bit character, we could use 1 bit to specify the direction (0 means output and 1 input, say) and the other 7 bits to specify one of 128 devices. By using an additional bit to inform the DMA whether to interrupt or not gives us more flexibility and still permits us to handle 64 devices. Of course, only one device can be in use at any given instant. A DMA such as that described above is sometimes referred to as a basic input/output channel. Note that, while the DMA is functioning, the CPU can still operate, possibly at a reduced speed due to the fact that the DMA is stealing memory cycles from the CPU. If the DMA is locking the HOLD line high, the CPU cannot operate, of course, until the transfer is complete.
Since the DMA can effectively lock out the CPU, we must arrange the power-up and master clear logic so that no DMA will attempt operation until the CPU directs it to.

Control And Status Signals. There are two types of transmissions yet to be considered: control signals sent to the device, and status signals received from the device.
Control signals cause the device to perform non-data operations such as start a new line, start a new page, backspace, etc. There are two ways to send such signals to the device. The first is to have a separate control path to the device from the computer, while the second is to define certain alphabetic characters as control characters rather than data to be
printed. It is this second method that is used in ASCII. In many cases, the same bus which carries the data also carries the control signals, but a secondary line is raised to indicate that the information is control data and not alphabetic data. Control signals are used to cause tape drives to rewind or backspace over a record, a disc drive to select a different track, a hard-copy machine to return the carriage (and, usually, start a new line), printers to skip to a pre-defined spot on the page, erase the screen on a CRT, etc.
Status codes are sent from the device to the computer and generally are used to convey information about the device's condition. Common items of information which are conveyed to the computer are the status of the device's power supply (on or off); an indication that it is busy (for instance, a carriage return takes much longer than typing one character); that one or more characters were sent (or received) erroneously during the last transmission; that a tape drive is at the beginning of the tape and should not be backspaced further; that a tape drive is at the end of the tape and no further attempt should be made to read or write it; etc. Status information can be treated in much the same way as control information. It can be returned to the computer over a separate bus; it can come over the data bus accompanied by a signal which identifies it as status rather than data; or it can be built into the device's alphabet.

Notice that input devices now, in general, have an output type of characteristic, so we can send an input-device control signal. In the same way, output devices generally provide for input of their status. The two can also interact. A particular device may send status information to the computer onty after it has been invited to do so by a command signal. In many cases, the system protocol requires a device to send status information at the end of every transmission. In some cases, the "standard" status is assumed to be that every thing is fine unless something goes wrong. In such cases, we frequently find that the status information is wired to an interrupt so that, as long as the transmission is proceeding according to plan, nothing happens; but an interrupt occurs if an unusual condition arises. At this time the interrupt program can request the status to obtain the details of what happened. $\stackrel{\rightharpoonup}{ }$

POWER-FAILURE ALARM

Lets you know when a power outage occurs.

sUMMER or winter, night or day, a power outage in your local utility system can cause all sorts of problems in your home. Heating and cooling systems shut down, refrigerators and freezers come to a halt, and your electric alarm clock stops, making you late for work.

The power-failure alarm is a battery-powered device that sounds an alarm when a power failure occurs Then you can, at least, turn off devices that might blow fuses when the power returns and take what other steps are necessary to protect your property.

How It Works. Battery B1 (Fig. 1) gets a constant trickle charge from the transformer through D1 and R1. As shown here, the battery is made up of two 1.25-V NiCd cells. Sealed NiCd or lead-acid storage cells with higher voltage ratings could be used Vented secondary batteries can be used if the electrolyte is checked every few months. If carbon-zinc or manganese-alkaline cells are used, the value of $R 1$ should be increased to 47,000 ohms. Remember also that manganese-alkaline and mercury cells may burst when recharged.

The alarm generator consists of a two-transistor astable multivibrator and associated loudspeaker, while the trigger portion uses an SCR and related bias components. The SCR is in a feedback loop from the emitter of Q2. The gate of SCR1 is biased low enough to keep it from firing by the combination of R3 and R4. When a power outage occurs, the voltage from the battery turns on the SCR, and the multivibrator provides an audiofrequency signal to the speaker

Author's prostotype mes aseembled

The time delay provided by C1 and R3 is used to keep the system from operating in case there is only a brief loss of power (which can be caused by lightning) or a line transient.

In standby operation, the circuit draws less than 1 mA , which is supplied by the trickle charging current. When an outage occurs, and the SCR turns on, the current increases to 15 mA for a $2.5-\mathrm{V}$ battery and 50 mA for a $4.5-\mathrm{V}$ source.

The lamp circuit is optional and can be used to check the battery. The lamp can also be made to glow during a power outage by connecting a silicon diode between the LAMP position of S1 (anode of the diode) and the anode of SCR1 (cathode of the diode).

Construction. The prototype of the alarm was assembled on a small piece of perforated board with point-topoint wiring. For transformer $T 1$, use a standard recharging unit which plugs directly into a wall socket. This provides a safety feature in that only 6.3 volts is used in the chassis.

Mount the completed assembly in any type of enclosure with only S1 and some speaker holes on the top. (The

PARTS LIST

B1-Two 1.25-V NiCd cells (Lafayette 32F47400 or similar)
$\mathrm{Cl}-100-\mu \mathrm{F}, 10-\mathrm{V}$ electrolytic capacitor
$\mathrm{C} 2-0.05-\mu \mathrm{F}$ disc capacitor
D1.D2- 1 N 4001 diode
11-2.5-to-3.0-V lamp (or \#48)
(Q1-2N3638 transistor
Q2-2N2621 transistor
RI- 680 -ohm, $1 / 4-\mathrm{W} \quad 10 \%$ resistor (or $47,000-\mathrm{ohm}$, see text)
Rं2-3300-ohm, $1 / 4-$ W 10% resistor
R3,R4,R5- 10,000 -ohm, $1 / 4-$ W 10% resistor R6- 1000 -ohm, $1 / 4-\mathrm{W} 10 \%$ resistor
R7-100-ohm, $1 / 4-\mathrm{W} 10 \%$ resistor
SCR 1-Silicon controlled rectifier (GE-X5 or 2 N 5060)
SPKR-8- or 10 ohm speaker (Lafayette 99 F 60972 or similar)
SI-Spdt switch
T1-6.3 volt, low-current "wall-socket" transformer (Lafayette 33F37029 or similar)
Misc.-Suitable enclosure, rubber grom met. mounting hardware circuit board, etc.

Fig. 1. The turo-trensistor aledio oscillater. is inoperable until the SCR conducts. This occurs when the poner line fails and the buttery coltage is applied to the $S \mathrm{CR}$ gute. Do not use an on-oft suitch with the unit.
author used a $100-\mathrm{ft}$, $35-\mathrm{mm}$ film container.) The optional "grain-of-wheat" lamp can be mounted in a hole drilled in the container using epoxy glue to secure it in place. Since none of the parts is critical, feel free to experiment with "junk box" items.

To test the device, turn the switch to

OFF, plug the transformer in a power outlet, and then turn the switch to ALARM. Unplug the transformer from the wall socket. After a few seconds, the alarm should sound, continuing even when the transformer is put back in the socket. This locking feature reminds you to reset clocks if you were
not at home when the outage occurred.

If you are using rechargeable cells, connect a current meter in series with the battery and check that, with the transformer plugged in, the charging current is within the limits prescribed for the cell.

Qesign of Digital Systems is written for the engineer seeking to learn more aboul digtal electronics its six volumes - each $11-1 / 2 \times 8-1 / 4$ - are
packed with intormation. diagrams and questions designed to tead you 5 tep-by-slep through number systems and Boolean algebra, to memories. counters and simple arithmetic circuis, and finally 10 a complete understanding of the
 Digital Computer Logic and Electronics is designed tor the beginner No
mathemeticalknowledge other than simple arthmetic is assumed though the student shout have an aptitude for logical thought itconsisis of lour volumes each $11.1 / 2^{*} \times 8-1 / 4^{\prime \prime}-$ and serves as an introduction to ine subject o student engineer Contents include Binary. Octal and dectmal number systems, convers ion
petween number systems ANO. OR, NOR and NAND gates and nverters Boolean algebra and tuth 1 ables. De Morgans Laws. design of logic cricuts
using NOH gates A -S and J-K thip tiops. binary counters. Shifl registers and using NOH gates R-S and J-K thip llops, binary counters. Shifl registers and

SEVEN-OAY MONEY-BACK GUARANTEE: If YOU are nol satistied win
SEVEN-OAYMONEY-BACK GUARANTEE: If you are nol satistied
your Cambrtdge course, return it within? days for a luil retund

Understanding Digital Electronics

The contents of Design of Digital Systems include:

Book 1 Oclal, hexadecimal and binary number systrems conversion betweer numbra systems. representation of ne- galive numbers complementary sys- Book 2 OR and AND functians Iogic gates. NOT excluStve-OR. NAND. NDR and exclusive-NOR functions multiple tnpul gates truit lables. De Morgans Laws. canonical forms. iogic conven. lons. Karnaugh mapping. inree-state book ragic Book 3 Half adders and lull adders sub. cessors and anthmetic logic units (ALUs) multiplication and division systems Book 4 Flip llops. shifi regrsters. asynchronous and synchronous counters ing. Johnson and exclusive-OR feed- back counters, fandom access memories (RAMS; and read only memories (ROMs) Book 5 Structure of calculators. Keyboard encoding. decoding display data, register systems. control untt, piogram ROM address decoding. instruction sets insiruction decoding. control program siructure memory organ processing unit character repre. sentation, program storage addressing modes. inputloutput syslems. program interrupts. interrupt pricrities programming. assembiers. complers. executive \qquad

The six valumes of Design of Digital Systems cost only:

New teach-yourself courses

in the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already common place. Tomorrow. a digital display could show your automobile speed and gas consumption: you could be calling people by entering their name into telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and mus respond by answering questions on each new piece of information before pro ceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you
technojogy p.o. box 732
trends Manhasset. NY. 11030

ORDER NOW BY MAIL OR PHONE - Credit Card Orders: Call (516) 829.5858

CIRCLE NO. 58 ON FREE INFORMATION CARO

Diode

Makes a complete check in 1/60th of a second.

BY R. M. STITT

MOST EXPERIMENTERS think that using an ohmmeter is the best way to test a semiconductor diode. However, some ohmmeters supply too much current to the device, causing an "open" where one does not really exist. Other meters indicate values of forward and reverse resistance, which hopefully give an indication of the diode's condition.

In the Automatic Diode Checker described here, the diode is tested in the forward-bias condition for excessive voltage drop and then in the reverse condition for excessive leakage current. Each test is made during one half of the power-line frequency, and the results are displayed simultaneously on two LED's labeled OPEN and LEAKY. The LED marked OPEN is illuminated when there is excessive voltage drop. The other is lit when there is excessive reverse leakage. If the diode fails both tests, both LED's are on. With no diode in the clips, the OPEN indicator is on.

When a good diode is inserted in the test clips (correctly oriented), both LED's should be off. There will be no damage to either the diode being tested or the diode tester if the diode is inserted the wrong way; but both LED's will glow.

The peak reverse voltage is less than 18 volts and the peak forward current is less than 4 mA . With the values shown in Fig. 1, OPEN indicates a forward voltage drop in excess of 1.3 volts at 3 mA ; and Leaky indicates a reverse leakage current of about 0.05 mA at 16 volts.

How It Works. On one half cycle of the ac supply, the OPEN circuit is active (D1, D2, D3, R2, R3, Q1 and LED1). In this half cycle the upper ac line is positive. (D4 and D5 are reverse-biased to isolate the other part of the circuit.) Current, limited by R2, flows through D1 and the diode being tested. The voltage across the test diode is applied through D3 to the base of Q1. If this voltage exceeds 1.3 V, Q1 turns on and sinks current through LED1. indicating high forward drop.

When the ac supply reverses, the lower part of Fig. 1 is active, with D1 and $D 2$ reverse-biased to shut out the OPEN part of the circuit. Any reverse leakage current through the test diode flows through R1, creating a potential across it. This voltage is applied to the base of Q2 through R7 and D5. When this voltage exceeds about 2 volts, Q2 is energized, turning on Q3 and LED2.

Since the circuit uses a conven-

Fig. 1. The "open" circuit operates when upper ac lime is positice. "Leaky" circuit operates when this line is negatice. Both circuits test diode at line frequency.

PARTS LIST
D1 to D5-Silicon diode (IN9]4 or similar) LEDI.LED2-Red light emitting diode* ©) © 2.(Q3-Transistor (2N3904 or similar) R l-47.000-ohm, 1/4-W. 5% resistor R2.R7-4700-ohm, $1 / 4-\mathrm{W}, 5 \%$ resistor R3,R5-330-ohm, 1/4-W, 5% resistor* R4-2700-ohm, 1/4-W, 5% resistor R6- $10,000-\mathrm{ohm}, 1 / 4-\mathrm{W}, 5 \%$ resistor T1-12.6-V. $100-\mathrm{mA}$ transformer *R3 and R5 can be varied to change the brightness of the LED's.
Misc.-Diode test clips. plastic case (Harry Davis \#220 or similar). line cord. grommet, mounting hardware, etc.

Note: A complete kit of parts is available from: Atlantis. Box 126.54. Tucson, AZ 85711 . for $\$ 19.95$.
tional 12-volt transformer, no dc supply is required and all switching is performed automatically at 60 Hz .

Construction. Although circuit layout is not critical and any type of construction can be used, a unique approach was used in the author's prototype as shown in the photographs. The pc board foil pattern shown in Fig. 2 can be used to make a board which has the components mounted on one side with the other side serving as the cover for the plastic case. The component holes are drilled only half-way into the board. The only holes drilled all the way through the board are those for mounting the LED's and the diode test clips. The other components are mounted by bending and cutting their leads so that they just fit on their pads. Solder must be applied quickly and properly to insure a good mechanical hold.
Transformer T1 can be attached to the bottom of the plastic case, with plastic foam insulation between the transformer and the components on the board. Use a grommet on the hole for the line cord in the side of the case.

1

I'hotos shomes hom compomentis ares monnted on pe beerel with the
transefiarmer in the bottenen of
Here conse with fint"m insulution.

Fig. 2. I'r homid fot" be weed as cetse coner mith compornent momntin! as. shomen at left.

Identify the LED's on the front of the pc board, and draw a diode symbol between the two test clips with the anode side going to the junction of $D 1$ and R1.

Checkout. Check the pc board for correct installation of components, and then apply power to the tester. The OPEN indicator should come on. Connect a diode that you know is good between the test clips. Note that both LED's are off. Remove the diode and connect a 100,000 -ohm resistor between the test clips. Note that both LED's are on. Remove the resistor and connect two or three good diodes in series across the test clips. Only the OPEN LED should turn on.

HERE is a practical, low-cost way to build your own electronic music system. The "Music Modules" presented here are a series of snap-together blocks that let you build any instrument you want, of any desired complexity, using virtually any system architecture you can dream up. Like traditional organ circuits, the system can be equally tempered and fully polyphonic, and it generates up to 97 notes simultaneously with extreme, permanently tuned stability.

As with some synthesizers, the Music Modules give you a wide range of control over the attack, sustain, fallback, decay, snubbing, bite, and echo of a note. As an option, you can have complete control over glides, slide, and portamento effects in either single or multiple voices. The system is economical enough to permit you to make simpler things like pitch references, calliopes, computer music interfaces, composers, and sideman rhythm mates.

The basic system is composed of three modules: a top-octave generator and translator, a sawtooth divider, and a dual hex vca (voltage-controlled amplifier). You can combine as many of these modules as you want with a power supply and professional keyboard to form the heart of any instrument. What we have here, in effect, is the usually difficult-to-build and expensive repetitive circuit that is the core of any quality polyphonic system reduced to a few simple CMOS circuit blocks.

Some Basics. The top-octave generator schematic diagram is shown in Fig. 1. It starts with a 2.000-$240-\mathrm{MHz}$ crystal for single, fixed tuning. If you want to tune another instrument, do glides or vibrato, or add noise or other frequency-modulation effects, you can break the oscillator's output circuit and add a variable master pitch reference. A seven-stage binary divider follows the oscillator to reduce the octaves down the scale.

Four possible frequencies are selected from the divider by an electronic switch. These are the crystal frequency and one-half, one-quarter, and one-eighth of the crystal's frequency. The selected frequency goes to a special IC that automatically develops all the notes of the top octave. With the electronic selector switch, you can choose the top octave, which means you can use a short keyboard and only a few vca modules and still be

PARTS LIST

Top-Octave Generator \& Translator
CI. C3-27-pF mica or polystyrene capacitor
C2-0.I- μ F. So-volt Mylar capacitor
IC'I-CD4001 CMOS quad NOR gate IC

IC2-CD4024 7-stage CMOS binary divider IC
IC ? CD4016 yuad CMOS switch IC
IC4—MK5024P-AA integrated circuit
RI through R4-100,000-ohm, 1/4-walt resistor
R.:-10-megohm, 1/4-watt resistor

R6- $10.000-$ ohm. $1 / 4$-watl resistor
$\mathrm{SO} \mid$ through $\mathrm{SO} 3-10$-contact Molex No. ()9-52-3153 connector

XTAL- $2.000240-\mathrm{MHz}$ parallel-resonant crystal ($30-\mathrm{pF}$ load).
Misc.-Printed circuit board, hookup wite: solder: etc.
able to generate all the notes you need.

The pitch generator divides the $2-\mathrm{MHz}$ reference 13 different ways to generate the 13 notes of top octave C7 through C8 (2093.01 to 4186.02 Hz). These note divisions approximate the equally tempered music scale with an accuracy better than can be determined by the best musician. Thirteen different references, each one of which corresponds to a different note, are produced simultaneously: C7, C\#7, D7, D\#7, E7, F7, F\#7, G7, G\#7, A7, A\#7, B7, and, in the next octave up, C8. (For more information on musical pitch, see "Electronic Music Pitch Standards," Popular ElecTRONICS, January 1974.)

There are at least two ways to use the top-octave system. In traditional organ architecture, you provide 12 outputs simultaneously and route them to divider modules so that you have all the notes you need all the time. You can also use the translator and an external 1-of-12 selector to generate any single note under digital
command. This is ideal for computer control, pitch references, and many synthesizer applications. Only an on/off keyboard without precision resistors is needed, and the normally troublesome exponential or logarithmic conversion circuitry is built into this module, which is essentially "free" and temperature, time, and voltage stable. All you do is provide a number or digital word to get the note out.

The divider module takes three of the notes of the top octave and generates all equivalent lower-octave notes down to zero (Fig. 2). For instance, suppose one input of one divider module is fed note A7. The outputs of the module will be eight notes (A7 down to $A 0$), each one octave or $2: 1$ frequency lower in pitch. Each octave output is a square wave, which can be used directly for economy or where you want to imitate "woody" tones (clarinet or stopped organ pipe). The module also contains some resistor networks that convert the square waves into sawtooth outputs. More
precisely, it converts them into a stepped approximation of a sawtooth, but the two are identical once you start to filter them. A sawtooth or its stepped approximation contains nearly all harmonics, compared to a square wave that has only odd harmonics. You can also filter the outputs of this module to recover sine or near-sine waves for flute-like tones.

One top-octave generator and four divider modules are needed to generate all 97 notes either as square or sawtooth waves.

The dual hex vca module provides a means of turning on and off 12 notes combined as two groups of six notes each (Fig. 3). There are several ways you can use this module. Connect the decay bus to -15 V , and you obtain simple on/off control of each note without key clicks or other undesirable effects. Grounding a keying input produces a note, while leaving it floating stops the note. Connect the decay bus to +15 V , and you get a sharp attack, gradual decay, or long sustain keying characteristic. If you connect
your keying input to a source of controlled-width pulses, you gain complete control of attack, fallback, sustain, and decay of all notes simultaneously, independently and exponentially, with very little added complexity. A storage capacitor on each keying input averages out these control pulses and provides a wide range of independent control of each note.

PARTS LIST

Triple IVivider Module
Cl-0.I- $\mu \mathrm{F}, 20$-volt disc capacitor
1C'I through IC3-CD4024 7-stage CMOS hinary divider IC
The following resistors are $1 / 4$-watt, 10% :
RI through R8. R35 through R42, R69 through R76-220 ohms
R9 through R16. R43 through R50, R77 through R84-100.000 ohms
R17 through R23, R5I through R57. RX5 through R91-200,000 ohms
R24 through R29. R58 through R63, R92 through R97-390,000 ohms
R30 through R34. R64 through R68. R98 through R 102-750.000 ohms
SOl through SO3- 10 -contact Molex No_{o}. 09-52-3153 connector
Misc.-Printed circuit board; hookup wire; solder; etc.

Fig. a. The dicider module takes three of the notes of the top octare and yenerates equivalent lower-octace notes.

Fig. .3. The dual hex ict module providess for turning on and off Lenotes combined as two groups.

PARTS LIST

Dual Hex VCA

CI- $500-\mu \mathrm{F}, 3$-volt electrolytic capacitor (14 mm maximum height)
C2-0.1- $\mu \mathrm{F}$, 25-volt Mylar capacitor
C3 through C $14-1-\mu \mathrm{F}$. .35-volt highquality electrolytic capacitor with axial leads
DI through D36-IN9|4 (or similar computer-type) diode
IC I through ICI - CA 3080 transconductance amplifier IC (RCA)*
The following resistors are $1 / 4$-watt, $10 / \%$:
R1, R2-22,000 ohms
R3-220,000 ohms
R5 through R16- 10.000 ohms
R17 through R28- 3300 ohnis
R29 through R40-2.2 megohms
R41 through R.2-6 680,000 ohms

R4-1000-ohm flat-mounting pe potentiometer
$\mathrm{SO} \mid$ through $\mathrm{SO} 3-10-\mathrm{contact}$ Molex No. 09-52-3153 connector
SO4-4-contact Molex No. 09-52-3042 connector
Misc.--Printed circuit board: hookup wire: solder: etc.
${ }^{*}$ There are several different packages available for the CA3080, which fits the TO- 5 pin circle shown in the foil pattern. The CA.3080S and CA3080E fit 8-pin dual inline minidip patterns. Be sure your pe layout and IC's are compatible. All three package styles remain available from RCA.

Note-The following items are available from Southwest Technical Products Corp. 219 West Rhapsody. San Antonio. TX 78216: No. TOb printed circuit board for top octave generator for $\$ 5.50$; complete top-octave generator kit. No. TO-1 for $\$ 17.25$: No. TDh pe board for triple divider for $\$ 5.75$: complete triple divider kit. No. TD-I, for $\$ 10.50$: No. TXb dual hex vea pe board for $\$ 4.75$:
complete dual hex vea kit, No. TX-I, for \$21.50; No. TP-I regulated power sepply kit for $\$ 17.50$. A fully assembled 37 -note professional keyboard designed to AGO standards, No. AGO-37, is available fo: $\$ 65.00$ (includes $\$ 5.00$ for handling) from PAIA Electronics. P.O. Box 14395, Oklahoma City, OK 73114. Allow four weeks for delivery.

There are 12 IC's in the vca module. Each controls the gain of a single note. The outputs are normally wired so that six share a common load resistor. However, you can easily break out one or more individual vca's for such things as loudness control, quadrasonic fading, or position modulation, or to introduce tremolo or noise amplitude modulation.

You can use as many vca modules as you want in your system, adding one for each independent, polyphonic octave. Since keyboards are one of the major expenses in any electronic music system, it pays to keep the keyboard as short as reasonably possible. This also cuts down on the number of vca modules you'll need. Remember that you can still get all the notes you want by using the translator switches on the top octave module.

A 72 -note polyphonic system, using a 36 -note (three octave) keyboard, the top-octave module, four sawtooth dividers, and three vca modules, is shown in Fig. 4. A four-position switch selects which three octaves are to be played at any time. Note that this is only one possible polyphonic arrangement. You can add or eliminate as many parts as you want. In addition. there are all sorts of simpler monophonic variations. A top-octave module and part of a vca module can give you the heart of a synthesizer or a computer-controlled instrument.

Construction and Checkout. In the top-octave generator, IC1 is the crystal oscillator and buffer. It is followed by the binary divider in $1 C 2$, selector in IC3, and top-octave synthesizer /C4. This circuit should be built on a double-sided pc board, using one side of the board for the foil conductors as in Fig. 5A and the other side for a grounding shield as in Fig. 5B. Component layout and orientation are as shown in Fig. 5C.

Once it is assembled, you can test the top-octave module by connecting to it a 15 -volt power supply and jumpering pad 8 to pad 9 and pad 2 to pad 11 (foil contacts that mate with the edge connector). Note that only pads 1 and 30 are labelled in Fig. 5C. Then check for the top octave note outputs at pads 16 through 28 using an oscilloscope or audio amplifier. Bear in mind that the outputs consist of 15volt amplitude rectangular pulses that must be capacitively coupled and strongly attenuated before feeding them into an audio amplifier.

If you are using the internal oscillator, pads 8 and 9 must be jumpered. For external signals, break the jumper and route a 15 -volt CMOS-compatible signal to pad 9 . Note also that one and only one of the transpose commands must be at +15 volts at all times; the other three must be floating or grounded.

The foil-conductor etching and drilling, ground-plane, and componentsplacement guides for the divider

[^2]

Fig. B. Etching and drilling guide (d) for top-octare senerator is at left. gronnfl plane guide (B) right. compone't layout (C) below.

The highest note will be a square wave, followed by four-level and eight-level notes. Lower-frequency outputs will contain 16 levels. If one note sounds excessively loud or looks wrong on a scope, check your resistor matrix carefully for a missed solder connection or an interchanged value.

The etching and drilling and component-placement guides for the vca module are shown in Fig. 7. Note
that D1 through D12 mount with the cathode (banded) end up and the cathodes to a length of bare wire that terminates in the decay hole. Next, D13 through D36 (cathodes up) and R5 through R28 mount upright, their free ends connected together in groups of four, with D13, D25, R5, and R17 making up the first and D24,D36, R16, and R28 the last group. Then mount C3 through C14 with their negative (-)
leads up and connected to a length of bare wire that terminates in the -15 V hole. Finally, mount R29 through R40 in the usual manner, without busjoining the upright leads.

The best way to test the vca module is one stage at a time. Do this by leaving the IC pin 6 jumpers disconnected from the output buses. except for the jumper in the stage being tested. Start by connecting the dual-polarity $+15 /$ - 15 -volt power supply to the module via pads 1,2 and 3 at the edge connector. Route a single note from the divider to the $X 1$ input and monitor the output with an oscilloscope or audio amplifier. Connect the decay input to - 15 volts. Now, grounding K1 should turn on the note and floating or connecting K1 to -15 volts should turn off the note. The note should turn on and off rather abruptly without key clicks, distortion, or transients. Offset potentiometer R4 should be adjusted to eliminate any $d c$ in the output or set for the best sounding note. Then, check $K 2$ and $\times 2, K 3$ and $\times 3$, and so on down the line, finishing up with K12 and $\times 12$.

F'ig. 6. Etching and drilling guide (A) for triple dirider is at left, ground plane guider (B) right, und component layout (C) belons.

The CA3080 IC's have a highimpedance (current-sourcing and -sinking) output, unlike the other op amps. This permits you to short as many outputs as you wish to a common load resistor to automatically sum all the outputs. The amount of maximum output signal is set by load resistors R1 and R2. If you use both halves of the vca module, R2 can be omitted.

An open circuit at any X input disrupts the summing process, so be sure that all connected IC's are in fact receiving tones from the divider modules. Connecting the decay input to ground should give you a fast-attack, long-decay characteristic. If any single note sounds odd or responds differently from the rest, check the resistor/diode/capacitor matrix for shorts, incorrect values, or unsol-
dered connections. All diode bands (cathodes) go up as do the negative sides of the electrolytic capacitors.

System Interconnections. No matter what arrangement you choose for your instrument, there are some important system-level things you'll have to watch for. First, be sure to use a well-regulated power supply. While CMOS devices will operate on a wide range of low voltages, the $+15-\mathrm{V}$ supply contributes directly to the stairsteps of the note. Hum or noise or interaction on the supply spells problems.

Be sure to use twisted-pair wiring or shielded cable between the topoctave outputs and the dividers to minimize any radiation of these highlevel signals. You can put your modules on $20-\mathrm{mm}$ centers, but be sure to skip one slot between the last divider and first vca modules, and place a fairly thick grounded sheet of steel between the two. Proper shielding and lead routing can mean the difference between a solid $85-\mathrm{dB}$ or higher

Fig. i. Etching and drilling guide (A) for vca module is at left, component placement guide (B) at right. No ground plane is required.

crosstalk and playthrough level and an intolerable 60-dB level.

Shields are also required on the vca module's outputs because of the fairly high impedances involved. Outputs are located on the top of the vca module to keep them well away from the tone-generator signals. The same care you give to the high-level tone signals should also be given to the attack and decay control pulses.

Some add-on circuits that will get you started on your system are shown in Fig. 8. In A, a CA3080 is used as a combiner and master gain control. The outputs of as many vca modules as you want can be shorted together and routed to this stage, but be sure to use shielded cable. Resistor R1 can be adjusted to maintain the maximum input signal level to 100 mV peak-topeak with several notes being played simultaneously. A variable voltage ranging from +15 volts (for maximum gain) to -15 volts (for off) will control the loudness of everything in the system. You can also sum a lowfrequency sine wave or noise spectrum for tremolo, wind noise, or other

Ihofo of dirider buated shours all resistors monuted "uright amel bus-cominected to sockert puids.

amplitude-modulated effects. Capacitors C1 and C2 are optional. Installing them in the circuit yields a mellow sound; eliminating them permits the use of fancy voicing filters in the output.

A horn filter is shown in Fig. 8B. To change the center frequency, change the values of C1 and C2. but keep both capacitor values identical. To change the Q , change the values of the resistors. keeping R2 and R3 at 4Q: times the value of $R 1$. Note that $R 1$ must include the source impedance of the circuit or circuits from which you are tapping the signal.

You can simultaneously control the attack and decay of all notes with the pulse-width system shown in Fig. 8C. To do this. you rapidly switch the 10 k attack and 3.3k decay resistors in and
out of the vea channel. (A 10k resistor in the circuit at all times has an effective value of $10,000 \mathrm{ohms}$. If it is in the circuit only 10% of the time, its effective value is 100,000 ohms.)

The circuit employs a single CMOS hex inverter and a pair of drive transistors. The attack portion is a variable-duty-cycle oscillator that operates at 400 Hz . The length of time that the attack remains grounded determines the attack time as a ratio of the total time. If you end up with too much interaction between frequency and duty cycle, a high-value resistor across one of the diodes should fix things. The frequency should remain nearly the same as you change the duty cycle.

The leading edge of the attack waveform can be shortened by operating DECAY potentiometer R4 and
capacitor C2. It is then amplified and routed to the decay inputs of the vca module. Note that attack goes to the keyboard, while decay goes to the vca's. The attack time has priority over decay, so a key fully pressed charges the vca capacitor that is storing the attack and decay information. Because of the resistor values in the vca circuit, up to a 3:1 reverse attack can be accommodated at the extremes of the control settings.

A second decay circuit connected to a driver transistor that catches at some negative voltage will provide fallback. This is important for percussion voices that simulate piano and guitar effects. With fallback, the note very rapidly decays to some low value when the key is released. It then gradually dies out.

Final Comment. With the three basic music module blocks we have presented, plus a keyboard, you have the heart of a sophisticated electronic music synthesizer. You can put addons into the system and modify it to suit your needs. In fact, you can expand it until you have a highly sophisticated and flexible polyphonic instrument.

THE COMPLETE DVM

A NEW STANDARD IS BORN
High acturacy you can trust
Versatile measuring capabilities An efficient, easy to operate meter
All at an affordable price
That's the DVM38 ...The complete DVM that sets new performance stan. dards in 4 key aress.
A NEW ACCURACY STANOARO The 3\% digit, . 1% accuracy is backed by s 15 meg Ω input impedance, compared to $10 \mathrm{meg} \Omega$ input of conventional DVM's, which guarantees up to 50% graster accuracy with $1 / 3$ less circuit looding on every measurement for high accuracy you can trust.
A STANOAROIN CAPABILITIES The DVM38 is more accurate in MORE circuits with these versatile ranges: $100 \mu \mathrm{~V}$ to 2000 V DC. 1 KV AC; $.01 \Omega$ to 20 meg Ω; $0.1 / 4$ A 102 A .

HI and 10 ohres and a 50 KVDC range with actessory Hv probe.

A NEW STANDARD IN SPEED

 AND EASE OF OPERATIONLarge pushbuttans and callouts - no need to hunt and peck. Large . $4^{\prime \prime}$ L.E.D.'s with direct readout, down to V and $m V$ indicators. SINGLE STEP AUTO-RANGING for maximum resolution and efficiency. 2KV DC protection minimizes downtime.
THE AFFDROABLE STANDARD There are few. I\% DVM's less expensivethere are none as complete in this price range. plus backed by a LIFETIME guarantee agoinst lactory workmanship errors.

THE DVMBI A NEW STANDARD IN DVM's FDR SPEED. VERSATILITY AND ACCURACY.

HOW TO USE

THE HP-45 CALCULATOR

AS A STOPWATCH OR

ELAPSED-TIME INDICATOR

IF YOU own a Hewlett-Packard HP-45 calculator and would like to use it as a digital stopwatch and elapsed-time indicator the way the more expensive HP-55 programmable can, there's good news. You can use your HP-45 for these functions, even though Hewlett-Packard makes no mention of the fact in its Operator's Manual.

To gain access to the clock function in the HP-45, first clear the calculator by operating the gold alternatefunction key. Then press RCL and simultaneously press CHS and the digits 7 and 8 , or 5 and 4, or 1 and 2. (It is important that these keys be pressed simultaneously.) The display format will now be

$$
\begin{array}{cccc}
\text { HR } & \text { MIN SEC } & 0.01 \text { XSEC } \\
00 & 00 & 00 & 00
\end{array}
$$

To start the clock function, press the CHS key once. Pressing CHS again will stop the count without resetting the display to zero. To reset the display to zero, simply press the CLx key.

When operating the calculator on batteries, you can save power by blanking the last two digits (hundreths-of-seconds) by operating the Eex key. The clock will continue to run without upsetting the count. You can restore the blanked digits by pressing the EEx key again.

Elapsed-Time Indicator. The clock can also be used as an elapsed-time indicator for timing and storing the elapsed times of up to nine separate events. The only constraint is that all events must start simultaneously. This function can be quite handy for measurements of physical phenomena, chemical reaction experiments, etc.

While the clock is running, depressing any 1 through 9 digit key stores the displayed time up to that point in the respective register. The clock keeps running and is not otherwise affected by this action. After stopping the clock by operating the CHS key, pressing any of the digit keys recalls the time stored in the respective register.

Note that the sto key, while the clock is running, and the RcL key, after the clock is stopped, need not be operated. The "store" and "recall" functions are automatically executed, depending on whether the clock is running or stopped. (The CLx key should again be pressed after the last readout of stored time to permit the clock to continue from the reading on the display when it is again started.)

When the clock is no longer needed, you can return the calculator to normal operation by pressing ENTER or turning off and then on the power. The latter method is preferred because it clears the contents of the registers automatically. Even so, the registers don't have to be cleared if you wish to store new elapsed-time data. Whenever new data is entered into a memory location, it automatically clears previous data.
While the clock function is in operation, the only keys that have any effect are CHS, EEX, CLx. . (decimal point), and 1 through 9. All other keys, including the basic arithmetic $(-,+, \times, \div)$ keys, are inoperative.

Accuracy. It appears that the HP-45 was built with the HP-55 in mind and, hence, uses some of the same circuitry contained in the latter. However, while the HP-55 is "trimmed" for the required oscillator accuracy, the HP-45 is not. The result is that the HP-45, although reasonably accurate. will not be "on the nose." If you determine the percentage of inaccuracy by comparing the HP-45 against a known time standard and make a note of the deviation, you can calculate precise times.

Although the absolute accuracy of the HP-45 as a timer may not be equal to that of the HP-55, the time function used during relative measurements -and particularly for storing up to nine elapse-time measurements -can be very useful indeed. At least you won't have to trade up to a more expensive calculator.

The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance.

"Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 \not \subset$ for fast first class mail service.
EICO-283 Malta Street, Brooklyn, N.Y. 11207
Leadership in creative electronics since 1945.

CIE's Warranty says a lot to you!

A lot about CIE's FCC License training programs...and a lot more about our school.

Our FCC License Warranty means just what it says. If you enroll in any CIE career course that includes FCC License preparation and successfully complete your training. . . you'll pass the Government FCC exam. We warrant that you'll succeed.

CIE can make this no-nonsense warranty because we're confident of our in-depth career training programs. You see, we have specialized exclusively in Electronics educa-tion-by-mail for more than 40 years. Just Electronics. And, the courses we offer today are the result of these years of teaching experience and proven methods of training.

Our courses of study are written in easy-to-understand language, so you can progress at your own learning pace, at home, in your spare time. And, there are never any classrooms to attend.

CIE courses challenge your thinking . . . help you develop your understanding of important electronics theories and applications . . . enable you to learn new skills and knowledge. Our courses are thorough. They have to be.

You see, we're tranning you for a career in Electronics. And, if an FCC "ticket" is part of your goal, you'll have to pass a tough licensing exam administered by the Federal Communications Commission (an agency of the U.S. Government). And you'll be prepared.

CIE is willing to warrant that you will pass! The reason is . . . we have every reason to expect that you will do exactly that. Based on a series of continuing surveys, close to 9 out of 10 CIE grads pass their FCC exams!

What's a license worth?

An FCC License can be worth a lot if you're interested in any area of Electronics involving communications. In some fields, federal law requires that you must have one. And, even in careers where a license is not required, it is

Government certification of certain electronics knowledge and skills.

What about other CIE courses?

In every CIE career course, 'you'll find the same timetested instructional techniques that have made CIE's FCC License preparation programs so successful.

Each CIE career course is built on the principle that the best way for you to learn and retain what you've learned is to explain; then to check your understanding; then to reinforce your comprehension with practical applications. In some courses, you will perform experiments and tests with your CIE Experimental Electronics Laboratory using authentic electronic components and gear. And, if you select a course that includes Color TV technology, you will not only build and keep a $25^{\prime \prime}$ diagonal Color TV which features digital circuitry . . you'll also learn how to troubleshoot your TV.

The CIE course you select (beginner, intermediate, or advanced college-level), will be a complete educational program, designed by experts to give you the best in Electronics home-study education.

Send for FREE school catalog

Discover more about the career opportunities open to people with electronics training. Learn how CIE career courses can help you build new skills and knowledge and prepare you for a meaningful, rewarding career. Whether you are just starting out in Electronics or are a collegetrained engineer in need of updating, (or anywhere in between), CIE has a course designed for you. And, more than half of CIE's career courses include FCC License preparation.
Send today for our FREE school catalog and booklet on FCC License information. For your convenience, we will try to have a representative call to assist in course selection. Mail reply card or coupon to CIE . . . or write: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114. Do it TODAY.

G.I. Bill benefits

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

[1]
 Product Test Reports

ABOUT THIS MONTH'S HI-FI REPORTS

In a field as varied as high-fidelity reproduction, it is difficult indeed to design a product, or a system, which has all the features needed to meet today's requirements, but is still flexible enough to handle anything that might come along in the future. Heath's ambitious Modulus system is the most impressive effort we have seen toward meeting these requirements. In addition, the Modulus system is a superb performer in all respects, with a unique combination of styling, flexibility, and just plain good sound.

One of the presumed benefits in the introduction of quadraphonic sound was the recreation of the concert hall enviromment in the home. With rave exceptions, this has not even been approached, let alone achieved, by existing four-channel hardware and software. Now, it appears that we may be closer to the goal with almost any stereo (or even mono) program by means of electronic time delay and reverberation techniques. The Sound Concepts SD-50 Audio Delay unit uses the "bucket-brigade" technique to restore the "liveness" that has been removed from most recorded programs - or perhaps was never there. It is, at times, startlingly effective in that role, and, to a great extent, begins to fulfill the ankept promise of quadraphony.
-Julian D. Hirsch

HEATHKIT MODEL AN-2016 "MODULUS" CONTROL CENTER
Modular sections offer 2-and 4-channel system choices.

The Heath Company's new "Modulus'" series of audio components takes a bold approach to solving the problem of obsolescence resulting from constant changes in audio technology. At least in principle, the Modulus system is capable of dealing with almost any conceivable 2- or 4-channel signal encoding system without the use of add-on accessories.

The Modulus system is built around the Model AN-2016 control center that consists of an AM/stereo FM tuner with digitally generated numeric frequency readout, a two/four channel preamplifier, and full control facilities
for a highly flexible system. (See box for details on companion power amplifiers.) In its basic form, the control center is a stereo component, although it comes standard with four preamplifier channels to accommodate external discrete 4 -channel program sources. It contains 11 plug-in circuit board assemblies that hinge up for adjustment and servicing without disturbing normal operation. Three additional spaces are provided for the optional plug-in modules: Dolby decoder for FM; full-logic, wavematching, variable-blend SQ decoder; and CD-4 demodulator. All switching functions for the optional modules are standard on the control center.

The styling of the control center is.
rather unique. The front panel has a black wrinkle finish and is accented with an aluminum surround. The side panels are covered with walnut grain vinyl. Slightly sloping front-panel sections and contoured top give the control center a decidedly modern look.
The Model AN-2016 control center measures $19^{\prime \prime} \mathrm{W} \times 141 / 2^{\prime \prime} \mathrm{D} \times 61 / 2^{\prime \prime} \mathrm{H}$ $(48.3 \times 36.8 \times 16.5 \mathrm{~cm})$ and weighs 29 $\mathrm{lb}(13.2 \mathrm{~kg})$. Available only in kit form, it retails for $\$ 599.95$. The optional modules include the Model AM-1503 SQ decoder for $\$ 49.95$; Model AN1504 FM Dolby decoder for $\$ 39.95$; and Model AD-1507 CD-4 demodulator for $\$ 79.95$.

General Description. The front panel of the control center is divided into three full-width functional areas. At the top is the display section that contains four output-level meters, the numeric frequency readout system, and separate center-tune and signal strength tuning meters.

The output level meters have logarithmic scales that cover a range of more than 30 dB , with the $0-\mathrm{dB}$ calibration marks corresponding to the 1.5 -volt rated output of the preamplifiers. The meters have fast responses that provide true peak level indications of the signal. The $31 / 2$-digit frequency display consists of $1 / 2^{\prime \prime}$ ($12.7-\mathrm{mm}$) high seven-segment red LED numerals. The tuning is conventional (not synthesized) so that the numbers displayed are derived from a frequency counter and can be considered as a substitute for a very accurate and easily interpreted dial. FM frequencies are displayed to the nearest 0.1 MHz in odd-value units that conform to the FM broadcasting channels in the U.S. On AM, the display indicates to the nearest $10-\mathrm{kHz}$ mark. When a stereo FM program is received or the system is switched to CD-4, identifying legends next to the numeric display light up when the 19or $30-\mathrm{kHz}$ carriers are detected. The tuning meters and numeric display light up only when the AM or FM tuner is used.

Below the display section is a row of 21 pushbutton switches above which are identifying legends that light up whenever a button is pressed. Also, when a button is engaged, it is internally illuminated in yellow, except for the POWER button, which glows red. Eight buttons permit selection of PHONO, CD-4, AUX, TAPE, DUB, and tape MON sources. Five additional buttons,
labelled mono, Stereo 2, stereo 4, sq, and 4 CHAN , provide for mode selection.

There are five more pushbuttons. One labelled tone flat is used to switch in and out the tone controls.

The rest are labelled LO and HI FILTER, loud (loudness compensation), FM dolby, and squelch defeat. (Pressing the FM DOLBY button simultaneously switches in the noise reduction system and changes the de-emphasis
to the required $25 \mu \mathrm{~s}$.) The final button is labelled output. It disables the preamplifier outputs to permit private headphone listening.
On the lower portion of the front panel are 10 control knobs and six $1 / 4^{\prime \prime}$

heathkit models aa- 1505 AND AA-1506 "MODULUS" POWER AMPLIFIERS

THE MODELS AA-1505 and AA-1506 basic power amplifiers flesh out the Heathkit "Modulus" system lineup. Rated at 35 and 60 watts/channel, respectively, their inputs are specifically designed for the output characteristics of the Modulus Model AN-2016 tuner/ preamplifier control center. The two amplifiers are electrically and physically identical except for power transformers, ratings of output transistors, and output power rating. They are designed to deliver their rated output power over a frequency range of 20 to $20,000 \mathrm{~Hz}$ with less than 0.1% distortion.

The Modulus power amplifiers measure $145 / 8^{\prime \prime} \mathrm{D} \times 8^{\prime \prime} \mathrm{W} \times 55 / \mathbf{g}^{\prime \prime} \mathrm{H}(37.1 \times 20.3$ $\times 14.3 \mathrm{~cm})$ and weigh $21 \mathrm{lb}(9.5 \mathrm{~kg})$. Available only in kit form, they retail for $\$ 159.95$ for the Model AA-1505 and $\$ 179.95$ for the Model AA-1506.

General Description. The only controls on the power amplifiers are a pair of individual channel level potentiometers (on the rear panel) and three pushbutton switches (on the front panel). One switch is a red pushbutton that, when pressed, turns on the power and illuminates the legend POWER. The two remaining switches permit selection between two separate pairs of speaker systems. To minimize the possibiity of accidental short circuits and incorrect phasing, the amplifiers are provided with special polarized speaker plugs.

The amplifier circuits are direct coupled throughout, except for a dc blocking capacitor at the input. Electronic
dissipation limiting circuits protect the output transistors. All circuits are assembled on two printed circuit boards that, together with the output transistor heat sinks, swing up to reveal a built-in test meter with attached clip leads. The meter is used only during initial setup to check resistance and voltage, after which it is not needed.
The amplifiers deliver their rated output power with 1.5 -volt inputs, which is the rated output level of the Model AN2016 control center. The input impedance is between 15,000 and 25,000 ohms, depending on the settings of the level controls. This relatively low impedance is easily driven from the 600 -ohm output impedance of the control center and many other fine preamps.

With the amplifier inputs shorted, the hum and noise are rated at 95 dB below full power.

Laboratory Measurements. After the standard preconditioning period of one hour at one-third power and five minutes at full power, the amplifiers were only moderately warm. The Model AA-1505 clipped at 47.5 watts/channel into 8 ohms (69 and 27 watts into 4 and 16 ohms) at 1000 Hz .

At its rated output (35 watts) or less, the amplifier's THD was less than 0.01\% at 20 Hz and 0.05% at 20.000 Hz . It measured typically between 0.005% and 0.01% over most of the audio range. At 1000 Hz , the THD was 0.005% with outputs of 1 to 30 watts and less than 0.01% from a small fraction of a watt to 40
watts. The IM distortion was 0.01% at 0.1 watt, 0.03% between 5 and 30 watts, and 0.05% at 40 watts.

An input of 0.64 volt drove the amplifier to a reference 10 -watt output, and hum and noise measured 80 dB below the output level. The frequency response was $\pm 0.1 \mathrm{~dB}$ from 5 to $30,000 \mathrm{~Hz},-1 \mathrm{~dB}$ at $150,000 \mathrm{~Hz}$, and -3 dB at $320,000 \mathrm{~Hz}$. The slew rate was 6 volts/ $\mu \mathrm{s}$.

The Model AA-1506 amplifier, rated at 60 watts/channel, clipped at 75.6 watts into 8 ohms (120 watts into 4 ohms and 45.6 watts into 16 ohms) at 1000 Hz . Its distortion characteristics were essentially the same as for the Model AA-1505 (extending the high power outputs, of course), as were its frequency response and noise level. Only 0.5 volt was needed at the input for a reference 10 -watt output, and the slew rate was 10 volts $/ \mu \mathrm{s}$.

User Comment. The only differences between the two amplifier models are in output power and price. Both are handsome amplifiers, nicely complementing the tasteful styling of the Model AN-2016 control center. They are equally fine sounding, with distortion levels so low that the finest laboratory instruments are hard pressed to measure them.
While both amplifiers are good values at their respective prices, we feel that the slight added cost of the Model AA-1506 buys a very worthwhile increase in available power. This is especially true if you plan to drive 4 -ohm speaker systems, considering that the Model AA-1506 can deliver 240 clean watts of power.

SINE-WAVE POWER OUTPUT PER CHANNEL IN WATTS

(6.35-mm) phone jacks. Four LEvEL controls permit adjustment of the individual output channels, while a separate volume control serves as the master gain control. Four bAss and treble tone controls are provided for the front and rear channels. A large TUNING knob operates the smooth tuning system for both AM and FM reception. Separate front and rear PHONE jacks permit the use of 4-channel headphones. The four IN and out dUbBing jacks located at the bottom center of the front panel are for using a stereo or 4-channel tape deck, making copies of tapes played on the system's regular tape deck (and vice versa), recording the normal program source, or listening to pre-recorded tapes.

On the rear apron of the control center are all the standard input and output jacks, vertical and horizontal outputs for a multipath indicator oscilloscope, and two switched and two unswitched ac convenience outlets. In addition, there are screw terminals for 75 - and 300 -ohm FM antennas, a phono jack for an external shielded AM loop antenna (supplied with the kit), and a Hi/LO PHONO SENSITIVITY switch. The AM loop antenna is used instead of the usual ferrite rod antenna to eliminate most of the electrical interference that can affect AM.

The circuits contained in the control center are so extensive that space does not permit a detailed description. But to give you an idea of how complex the system is, it contains 28 IC's, 134 transistors, and 55 diodes. The FM front end employs dual JFET r-f stages, and a linear-phase multipole LC filter in the i-f section provides high selectivity and stereo separation. A digital discriminator and phase-locked-loop multiplex demodulator contribute to the excellent distortion and stereo separation characteristics of the tuner. The AM section is also designed to give above-average performance. It features a dual-gate MOSFET front end and a nine-pole LC filter for i-f selectivity.

The preamplifier section uses differential amplification and is designed for low noise and distortion. The feedback-type tone controls permit adjustment at the frequency extremes with minimum effect on midrange response. The audio filters have 12-dB/octave slopes for minimum loss of program content.

Laboratory Measurements. The tuner/control center we tested came completely assembled and aligned. Looking over the supplied manuals, however, we determined that it should

be possible for anyone to obtain the specified performance without having to resort to external test instruments.

The IHF usable sensitivity of the FM tuner measured $10.8 \mathrm{dBf}(1.9 \mu \mathrm{~V})$ in mono and $16.1 \mathrm{dBf}(3.5 \mu \mathrm{~V})$ in stereo. The $50-\mathrm{dB}$ quieting sensitivity was 34 $\mathrm{dBf}(27.5 \mu \mathrm{~V})$ with 0.4% THD. The ultimate signal-to-noise ratio was 68 dB in mono, 63 dB in stereo. Distortion at 65 $\mathrm{dBf}(1000 \mu \mathrm{~V})$ was 0.35% and 0.2% in mono and stereo, respectively.

The capture ratio was 1.9 dB at a $45-\mathrm{dBf}(100 \mu \mathrm{~V})$ input. AM rejection was an excellent 71.5 dB , image rejection a very good 94 dB , and alternatechannel selectivity 80 dB . The internally set FM muting threshold was 22 $\mathrm{dBf}(7 \mu \mathrm{~V})$, while the stereo switching threshold was $11 \mathrm{dBf}(2 \mu \mathrm{~V})$. The stereo frequency response was ± 0.4 dB from 30 to $15,000 \mathrm{~Hz}$. Channel separation was 35 to 36 dB over most of the audio range, diminishing to 24 dB at $15,000 \mathrm{~Hz}$. The $19-\mathrm{kHz}$ pilot carrier leakage in the audio outputs was 63 dB below 100% modulation.

The frequency response of the AM tuner was $\pm 2 \mathrm{~dB}$ from 20 to 7000 Hz , which is considerably better than the performance of the AM tuners in most receivers we have tested, regardless of price. Whistles and the usual interstation noises were notably absent.

In the audio section of the control center, the turnover frequency of the bass control varied from about 100 to 300 Hz , while the treble response was hinged at about 3000 Hz . The loudness compensation boosted both the lows and the extreme highs (above 10,000 Hz) to a moderate extent. It could easily be adjusted to individual tastes by setting the channel level and volume controls. The $3-\mathrm{dB}$ frequencies of the filters were at 37 and 6500 Hz , beyond which their 12-dB/octave slopes could remove appreciable amounts of rumble and hiss without serious loss of program content.

With tone controls bypassed, the frequency response of the preamplifier section was $\pm 0.25 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$. It did not change appreciably when the tone controls were switched into the circuit and mechanically centered. The RIAA equalization was very accurate, changing less than 1 dB at any frequency when measured through the inductance of a phono cartridge coil.

To develop a reference 1 -volt output, a $90-\mathrm{mV}$ signal was required at the Aux inputs, while 3.7 or 1.3 mV (depending on the setting of the phono

sensitivity switch) was required at the PHONO inputs. The S / N ratio through any input was 67 to 69 dB referred to a 1 -volt output. The phono inputs overloaded at 55 and 175 mV with the HI and lo sensitivity settings. The overload level at the aux inputs was 4.4 volts, a figure not likely to be encountered in practice.

The phono sensitivity through the CD-4 inputs was about 1 mV for a 1 -volt output when the separation was optimized and using the CD-4 test record supplied with the demodulator. As is the case with most CD-4 demodulators, this one overloaded at a rather low 9 mV input. Although this would be intolerable for stereo operation, it is not a problem with CD-4 discs and cartridges. (The recorded level on most CD-4 discs is relatively low, and most CD-4 cartridges have a low output.)

The 1.5 -volt output rating of the tuner/control center's preamplifiers proved to be quite conservative, since we measured 5.9 volts into a highimpedance load and 3.15 volts into a 600 -ohm load at the clipping point. The $1000-\mathrm{Hz}$ THD and IM were between 0.01% and 0.02% at all outputs from 0.1 to 3 volts.

We performed no measurements on the FM Dolby, SQ, and CD-4 modules. We judged performance subjectively with normal program material.

User Comment. The tuner/preamplifier system proved to be exceptionally easy to operate with maximum effectiveness. Both AM and FM tuning were smooth and not critical, and there was never any doubt as to the frequency or channel to which we were listening.

The FM tuner is extremely sensitive and has the selectivity, distortion figures, and frequency response characteristics typical of today's fine-quality tuners. The FM muting was positive and noise-free. The Dolby noise reduction system performed effectively with the stations using Dolby encoding. The effect produced was a sense
of improved high-frequency response with reduced noise - a most unusual and welcome combination.

The AM tuner could legitimately be called "hi-fi" when compared with the other AM tuners we have tested. The background noise was negligible, and the frequency response was wide enough to eliminate the usual muffled quality AM reception.

The illuminated pushbutton switches and digitally generated numeric display allow you to see at a glance even from across the room - the operating mode and station being heard. We also appreciated the headphone outputs, which were able to drive both high- and low-impedance phones to a healthy level. This is not the case with most preamplifier headphone output systems. Of course, electrostatic and other voltageoperated phones must still be driven by a power amplifier.

When playing SQ discs, the decoder produced the quality of separation and total sound effect that we have come to expect from modern logic decoders. Although we made no direct comparison between the Heath system and other good SQ decoders, our impression was that it was at least as good as the others we have used.

We were especially critical in our listening to the CD-4 operation of the system because of its apparently low overload limits. Using a couple of the latest and best cartridges and making A-B comparisons with a very good accessory CD-4 demodulator, we never heard anything that could be attributed to input overloading. The rare instances of breakup distortion were all on early disc releases and were almost certainly the fault of the records.

The high-frequency response through the Heath system was strikingly superior to the demodulator we used as a comparison. It was apparently one octave greater in range and gave some of our discs an entirely different sound character. All in all, when good discs and cartridges were used, we felt that the Heath system gave the best CD-4 reproduction we have ever heard through a homeentertainment system. Our only criticism of Heath's CD-4 design is the need for separate record players (or a well-shielded external switch box) for playing stereo or matrixed 4-channel and CD-4 records. A number of recent CD-4 cartridges are also outstanding stereo reproducers. It seems a pity that these fine and very expensive car-

Get in on all the CB Action, anywhere, with this new portable 23 Channel Receiver (plus AM/FM) by Hanimex. It's a quality built, solid-state unit in a handsome. high-styled case. The convenience of a portable radiothe excitement of all the CB happeningsall in one at an amazing price. Order today for a 2-week no obligation trial.
TWO WEEK RETURN PRIVILEGE
Check. Money Order or Charge Cards Please give Account No. Bank No lif anyl. Expiration Date Signature Conn. residents only add 7% Sales Tax ORDER TOLL FREE 24 HOURS, 7 DAYS 800-243-6006 Conn. res: 1-800-882-6500 HCW CNIRCEDAN ${ }^{158}$ Silvermine Ave

CIRCLE NO. 35 ON FREE IMFORMATION CARO
tridges cannot be used for both functions in the Heath system.

It is clear that the combination of extreme flexibility and top-notch performance in a single hi-fi component is a noteworthy achievement. In our judgement, Heath comes very close to creating the ultimate obsolescencefree control center with the Model AN-2016. Perhaps because it comes so close to being the ultimate control center, we must note a few instances where it falls short of that goal. First, there is only one tape monitoring system where there should be a minimum of two. The user with two tape decks cannot connect both of them into the system with full flexibility. (The dubBING jacks are not equivalent to a regular in/out monitor connection.) Also,
some external signal-processing accessories, such as graphic equalizers, volume expanders, noise-reduction units, etc., are best connected into tape monitoring loops.

The Model AN-2016 would have been the complete 4-channel control center. However, it has no facilities for a QS decoder. Of course, if the choice of only one matrix decoder was possible, the much greater availability of SQ-encoded discs justifies Heath's choice of the full-logic, wavematching SQ decoder. But it would have been nice to have the QS VarioMatrix as well.

One final note about the kit itself. Although we did not assemble the tuner/preamp control center or the power amplifiers that make up the

Modulus system, we know from past experience that this is a major assembly project that is likely to take a considerable amount of time. Fortunately. Heath's excellent manuals and the fact that no test equipment is needed for alignment make it possible for the kit builder to obtain full performance from this highly complex system.
While the Modulus is not exactly an economical hi-fi system approach, it is a highly sophisticated, nearly state-of-the-art product whose features simply cannot be purchased factorywired from any source. The Model AN-2016 is also a strikingly handsome unit, especially when flanked by its matching power amplifiers.

CIRCLE NO, 90 ON FREE IMFORMATION CARD

SOUND CONCEPTS MODEL SD-50 DELAY UNIT

Time-delay system creates 'concert-hall'' effect in home.

The time-delay device used in home audio systems to provide reverberation has traditionally been the economical coil-spring type. Unfortunately, this type of delay device has a severely irregular frequency response and tends to obliterate the transient characteristics of the input signal. Recently, allelectronic delay techniques have become feasible with the development of suitable IC's.

One way to delay a signal through all-electronic means involves analog-to-digital (A/D) conversion, passing the digitized signal through a series of shift registers to delay it, and converting the delayed signal back to analog form. The delayed signal then is amplified and fed to the rear or side speaker systems. Another technique employs analog techniques, with a "bucket-brigade" IC serving as the delay device. The analog signal is
passed along through a series of capacitive elements at a rate determined by a clock (timing) signal. A consumer version of this approach to delaying a signal is the Model SD-50 delay unit developed by Sound Concepts, Inc.
The Model SD-50 processes stereo (and mono) signals available at the preamplifier or tape recording outputs of amplifiers and receivers. The front-channel (input) program is passed unchanged through the delay unit to the front-channel inputs of a power amplifier to drive the speakers. The delayed signals are then fed to the rear-channel amplifier for the rear speakers. For compatibility with 4-channel systems, whose rearchannel amplifiers and speaker systems can be used for the reverb signal, the delay unit also has a set of rearchannel inputs that accept the linelevel, rear-channel outputs from a 4-channel preamp or receiver.

The Model SD-50 delay unit is $12^{\prime \prime} \mathrm{W}$
$\times 71 / 2^{\prime \prime} \mathrm{D} \times 33 / 4^{\prime \prime} \mathrm{H}(30.5 \times 19.1 \times 9.5$ cm). Designed to be powered continuously from the ac line to avoid problems with start-up transients, it consumes only 3.5 watts of power. Contained on its single printed circuit assembly are some 30 IC's, which should convey some idea of the circuit complexity. Price is $\$ 600.00$.

General Description. The front panel of the delay unit has five control knobs. Calibrated from 5 to 50 , the deLay control introduces a time delay of the indicated number in milliseconds to signals available at the rearchannel outputs. These delays correspond roughly to acoustic path length differences of 5.5 to 55 feet (1.7 to 16.8 $\mathrm{m})$. The program content of the rear signal is essentially the same as the input to the delay unit, except that it is delayed and modified as explained below. The two channels are separately processed, but the setting of the deLay control applies to both channels.

Next is the reverb control, which adjusts the proportion of the output of each rear channel that is fed back to the input of the opposite channel's delay circuit. This simulates the effect of multiple reverberations in the hall. Since room surfaces vary widely in reflective properties, the REVERB control provides the means of varying the "liveness" of the total sound by cross-coupling from zero to 90% of the delayed signal. The effect is multiple echoes of successively lower amplitude.

The mode switch causes the delay unit to operate as described above
only when it is set to the stereo position. Setting it to mONO causes the front-left and front-right channels to be mixed, producing a mono signal that is passed through both delay circuits in succession. The delay time calibrations around the DELAY control are, therefore, doubled to give a range of 10 to 100 ms . Both rear outputs carry the same signal. The delay unit does not modify the program delivered to the front speakers in any way.

. $7 / s$

20 ma with rerer)

The EXt position of the MODE switch bypasses all circuits in the delay unit and passes the front and rear input signals directly to the outputs without modification. In this mode, a 4 -channel system can be operated in the normal manner.

In a real concert hall, the reflected sound has a reduced high-frequency content that is a result of the greater absorption of higher frequencies by the acoustically treated surfaces and the occupants of the hall. The rear outputs of the delay unit are, therefore, designed with a high-frequency roll-off that increases with the setting of the DELAY control. In addition, there is a rolloff switch that can be used to reduce the high-frequency response of the rear channels by nominal 3-, 6-, or $9-\mathrm{dB}$ amounts at 7000 Hz with a $6-\mathrm{dB}$ octave slope.

The final control, labelled LEVEL, is for adjusting the rear, or delayed outputs. When set to 30% of maximum, the rear-channel gain is unity (the same as the front channels). The reason for providing the LEVEL control is to allow the user to make adjust-
ments for differences in amplifier gain and speaker sensitivity. A red PEAK LED flashes whenever there are excessive input signal levels.

All input and output connectors are located on the rear apron of the delay unit, including a pair of outputs labelled 2CH MIx. These connectors make available the regular front-channel program mixed with an amount of the delayed signal set by the LEvEL control. If the combined signals are used

5011%
Tone bursts of . 500 Hz
show alelay for
.j ms. .jll ms.
and 20 ms with revert.
to drive the regular stereo speaker systems (through an amplifier), some of the benefits of the delay system can be realized without the need of a 4 -channel playback system. The effect, of course, is not as dramatic as with a 4-channel playback system.

A more subtle use of the 2 CH MIX outputs is to drive stereo headphones. which can be done directly or through an amplifier. It is possible to give stereo headphones a sense of spaciousness that is usually obtained only with the better 4 -channel headphones. The effect is completely under the listener's control. Unfortunately, the 2 CH MIX jacks are standard phono jacks; it would have been more convenient if they were standard phone jacks to accept the phone plugs normally fitted to the cords of headphones.

Laboratory Measurements. As rated, the gain through the delay unit at a LEVEL setting of 3 was 1.0 (unity). The gain was 3.5 at the maximum setting of the control. The PEAK LED began to glow as the signal input level

If you thought you could never afford a computer at home, think again. The IMSAI 8080 is built for rugged industrial performance. Yet its prices are competitive with Altair's hobbyist kit. Fully assembled, the 8080 is $\$ 931$. Unassembled, it's $\$ 599$.

The IMSAI 8080 is made for commercial users, and it looks it. Inside and out. The cabinet is attractive, heavy gauge aluminum. The heavy duty lucite front panel has an extra 8 program controlled LED's. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches are backed up by reliable debouncing circuits.

The system is optionally expandable to a substantial system with 22 slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAl 8080 power supply produces a true 20 amp current, enough to power a full system. You can expand to a powerful system with 64 K of software protectable memory plus an intelligent floppy disk controller. You can add an audio tape cassette input device. a printer plus a video terminal and a teletype. And these peripherals will function with an 8 -level priority interrupt system. BASIC software is available in $4 \mathrm{~K}, 8 \mathrm{~K}$ and 12 K .

Get a complete illustrated brochure describing the IMSAI 8080 . options, peripherals, software, prices and specifications. Send one dollar to cover handling to IMS. The IMSAI 8080. From the same technology that developed the HYPERCUBE Computer architecture and Intelligent Disk systems.

Dealer inquiries invited.

IMS Associates, Inc.
1922 Republic Avenue
San Leandro, CA 94577
(415) 483-2093
approached 5 volts. The output noise referred to 1 volt was 66 dB down unweighted and below our minimum measurement capability of -80 dB ($100 \mu \mathrm{~V}$) with IEC A weighting.

The $1000-\mathrm{Hz}$ harmonic distortion at the rear outputs was less than 0.5% for outputs of up to 1 volt. It reached 1% at 1.4 volts, after which it rapidly increased to 20% at 5 volts output. At a fixed 1 -volt level, the distortion was about 0.5% over most of the audio range, 2% at 20 Hz , and 1.4% at 20,000 Hz .

Our rear-channel frequency response measurements confirmed the data supplied in the comprehensive operator's manual. The response varies with the amount of delay used. With longer delays, there is a reduction in high-frequency response, as required for a realistic effect. At the minimum delay of 5 ms , the response was down 3 dB at 7800 Hz . Using a delay of 50 ms , the $-3-\mathrm{dB}$ frequency was 3000 Hz , while at the extreme setting of 100 ms (mono), the 3- dB down frequency was 1700 Hz . The rolloff switch reduced the output at 7000 Hz by approximately the $3-, 6$-, and $9-\mathrm{dB}$ amounts indicated on the settings for the switch.

The delay characteristics of the unit can be best appreciated by examining the tone-burst photos, which were taken with a four-cycle burst of a $500-\mathrm{Hz}$ signal. The time scale in the photos is $10 \mathrm{~ms} / \mathrm{cm}$. The upper burst in each photo is the input to the delay unit; the lower burst, the delayed output. Note that the delayed signal is not distorted in the manner that is typical of inexpensive spring-type delay units.

When reverberation is added, a series of output bursts that decay in amplitude is obtained.

User Comment. Our laboratory tests confirmed that the delay unit performed according to its published specifications, with the single exception that the maximum output available was considerably less than the rated 10 volts.
The real value of this type of hi-fi accessory can be judged only by listening tests using a broad variety of program material. When we first used the delay unit, we yielded to the temptation to use relatively large delays combined with reverberation. While this is not the way the delay system would be used for normal listening, it is a good way to convince yourself that the system is working. (A properly adjusted delay system should normally be so unobtrusive that you are not consciously aware of its presence.)
After a familiarization period, we began to use smaller delay times (20 to 30 ms) for our more critical listening tests. The enhancement of almost any stereo (or mono) program by the proper combination of delay and reverb is unmistakable and impressive. On complex orchestral music, the contribution of the delayed signals is often difficult to detect when the recording contains sufficient ambience content. However, with chamber music and vocals, the effect is more apparent. In fact, a combination of long delay and reverb can make an announcer appear to be speaking in a huge empty hall or cavern. We obtained our most impressive results
with organ music and a long 100-ms delay and reverb.

To some extent, a good quadraphonic system can give a similar subjective spatial effect only if the recording was made with this goal in mind. Few recordings are. The delay unit makes almost any stereo or mono program sound more real than 99% of the available quadraphonic programs. Also, unlike quadraphonic listening, the delay system does not alter the front speaker system imaging or place special demands on the listening environment or speaker placement. Although we used good-quality speaker systems in the rear and a fairly powerful amplifier to drive them, the low power and restricted frequency range of the delayed signal suggests that a relatively low-power amplifier and inexpensive speaker systems could be used effectively for the rear channels.

We enjoyed listening to the mixed headphone outputs, but the lack of standard phone jacks for plugging in the phones was an annoyance. We hope that, in the future, Sound Concepts will add phone jacks in parallel with the 2 CH MIX phono jack outputs.

A nearly infinite number of acoustic perspectives can be created with headphones, but the special advantage of using the delay system is its ability to reduce the unnatural left-toright separation effects of stereo programs heard through phones and the "center-of-the-head" effect with mono programs. Instead, the delay unit gives headphone listening a realistic spacious effect that is not unlike what we have heard through some of the best 4 -channel phones.

CRAIG MODEL 4104 MOBILE AM CB TRANSCEIVER

Moderately priced unit includes quick-release mounting and modern styling.

THE frequency-synthesized 23channel Model 4104 AM CB transceiver from Craig features a quick-release mounting bracket that allows it to be conveniently removed
for security or transfer to another vehicle. What sets this transceiver apart from most other mobile rigs is its rather unconventional, modernistic front-panel design. Instead of the usual edgewise S / r-f meter, there is a round, dark-faced area in the middle of the control panel that, when the transceiver is turned on, illuminates the meter face. The back-lighted channel selector gives a similar appearance.

The transceiver has a full-time automatic noise limiter (ANL), switchable noise blanker (NB), and PA operation,
all selectable by a single switch. There are also separate volume and SQUELCH Controls. Among the other transceiver features are: externalspeaker jacks, operation at full legal power, automatic modulation compression (amc), LED modulation indicator, detachable microphone with quick-connect plug, operation from a nominal 12 -volt dc (positive or negative ground) source, and dual line filtering.

The transceiver measures $81 / 4^{\prime \prime} \mathrm{D} \times$ $7^{\prime \prime} \mathrm{W} \times 25 / 8^{\prime \prime} \mathrm{H}(21 \times 17.8 \times 6.7 \mathrm{~cm})$. It retails for $\$ 169.95$.

The Receiver. The dual-conversion receiver section is conventional. It uses paired synthesizer crystals in the 37.700 - and $10.160-\mathrm{MHz}$ range to provide a $10.635-$ to- $10.595-\mathrm{MHz}$ first i-f and $455-\mathrm{kHz}$ second i-f. An r-f input amplifier precedes the two mixers. This arrangement provided a measured sensitivity of $0.55 \mu \mathrm{~V}$ for 10 dB (S $+\mathrm{N}) / \mathrm{N}$ with 30% modulation at 1000 Hz .

The receiver's selectivity is obtained with the aid of a $455-\mathrm{kHz}$ ceramic filter. which provided good adjacentchannel rejection, measuring an average of 56 dB . Primary-image (CB frequency plus two times the first i-f) rejection measured 75 dB , while i-f and other unwanted spurious-signal rejection measured 75 and 55 (minimum) $d B$, respectively.

The anl is a series-gate configuration. The noise-blanker functions between the two mixers. It employs a FET pulse amplifier and a dual-diode gate.

The three-stage audio system employs a push-pull final stage whose output measured 4 watts with 5.5% THD at the start of clipping, using a $1000-\mathrm{Hz}$ test tone and an 8 -ohm load. The overall frequency response, including the i-f passband, was down 6 dB at 300 and 3500 Hz .

The characteristics of the agc varied, with negligible agc action at 1 to $10 \mu \mathrm{~V}(20-\mathrm{dB}$ input range) on channels 1 through 16. On channels 17 through 23, the agc held the audio output to within 10 dB with a $20-\mathrm{dB}$ input variation at 1 to $10 \mu \mathrm{~V}$. Otherwise, the output change was around 8 dB for a $60-\mathrm{dB}$ input change at 10 to $10,000 \mu \mathrm{~V}$. An S9 indication was obtained with signals in the $50-$ to $-100-\mu \mathrm{V}$ range. The squelch range was nominally 0.5 to $500 \mu \mathrm{~V}$.

The Transmitter. Crystals in the $10.615-\mathrm{MHz}$ range paired with crystals in the $37.700-\mathrm{MHz}$ range in the synthesizer provide the carrier at a mixer. A buffer, driver, and power amplifier complete the r-f transmitter circuit that terminates in a 50 -ohm outputmatching and harmonic-reduction network.

Modulation is obtained from the receiver section's audio system. The modulation scheme employs a compression-type amc in which a voltage-doubled potential from the modulator is fed back to the first audio stage (used as the speech amplifier on transmit). An LED, located just below the movement in the meter's blackout

> Saving
> the best
> for last.

The chances are good that when you first bought a stereo system, it was a "package" that included a receiver, 2 speakers, and a record player with cartridge. But how much time was spent selecting the cartridge? Most probably it was just a minor element of the package. Even if it had a famous name, it probably was not a truly first-rank model.
Yet the cartridge is more important than that. It can limit the ability of the entire hi-fi chain to properly reproduce your records. It can affect how many times you will enjoy your favorite records without noise and distortion. And it can determine whether you can play and enjoy the new four-channel CD-4 records.
Consider the advantages of adding an Audio-Technica AT15Sa to your present system. You start with response from 5 to $45,000 \mathrm{~Hz}$. Ruler flat in the audio range for stereo, with extended response that assures excellent CD-4 playback if desired. Tracking is superb at all frequencies and distortion is extremely low. The sound is balanced, transparent, effortless. Stereo separation is outstanding, even at 10 kHz and higher where others fall short. Our Dual Magnet design* assures it.
And the AT15Sa has a genuine nude-mounted Shibata stylus. Which adds a host of advantages. Like longer record life. Better performance from many older, worn records. Exact tracing of high frequencies, especially at crowded inner grooves. And tracking capability-at a reasonable 1-2 grams - that outperforms and out lasts elliptical styli trying to track at less than a gram.

We're so certain that an AT15Sa will improve your present system that we'd like to challenge you. Take several of your favorite records to an Audio-Technica dealer. Have him compare the sound of your present cartridge (or any other) with the AT15Sa. Listen. We think you'll be impressed. And convinced.

[^3]
The AT15Sa. Very possibly the last phono cartridge you'll ever need.

AUDIO-TECHNICA U.S., INC., Dept. 66P, 33 Shiawassee Ave., Fairlawn, Ohlo 44313 Available in Canada from Superior Electronics, Inc.
area, blinks in step with the modulation. Transmit/receive switching is accomplished with a solid-state circuit.

Powering the transceiver from a 13.8 -volt dc source, the measured r-f carrier output was 3.75 watts. Starting at 50% modulation and without compression, a $6-\mathrm{dB}$ rise in the audio input level would normally cause the modulation to go up to 100%. With this transceiver, the amc held the modulation to just short of the 100% mark with a $16-d B$ rise above the same initial input level. This indicates a high degree of compression. Under this condition, sine-wave modulation was obtained with 6% THD at 1000 Hz . A further increase gave the transmitter a tendency to clip at 100% modulation, with distortion rising to about 20%.

With a $400-\mathrm{Hz}$ test tone, the THD was somewhat higher. Adjacent-channel splatter, with voice operation, was
down 55 to 60 dB . The audio response was nominally 225 to 6000 Hz , while the transmitter frequency tolerance was within 0.00185% on any channel.

User Comment. The transceiver's meter is calibrated in S units and relative power in watts, the accuracy of the latter depending on the SWR. The meter scales are recessed, which can make the S-unit scale, located at the top, difficult to read under some viewing conditions. The illuminated channel numbers on the selector dial are small and may be difficult to read.

Under most noise conditions, the full-time anl was less effective than the noise blanker. The noise blanker was good; however, it had the disadvantage of dropping the signal level quite a bit when 1 -to- $2-\mu \mathrm{V}$ signals were being received.

The lower-than-usual rolloff point at circle no. 81 on free information card
the low end of the frequency response curve gave to transmitted signals a more natural sound than is usually the case.

The transceiver slides in and out of its mounting bracket relatively easily. Mating connectors at the back of the transceiver and mounting bracket automatically engage and disengage when the rig is slid into and removed from the bracket. This is true only for the dc power leads; the antenna connection must still be made through its own connector. The bracket itself is designed to be mounted above or below the dashboard.

The Model 4104 CB transceiver represents honest performance for its price and features. This, plus the fact that it has a distinct modern appearance, will make it appealing to CB'ers who are looking for something "different" in CB rigs.

CONTINENTAL SPECIALTIES "DESIGN MATES"
Breadboards with power supply, meter, function generator and resistance/capacitance bridge.

WHETHER you're an avid experimenter or do circuit prototyping for a living, you'll appreciate the Design Mates from Continental Specialties Corp. The Design Mate 1 circuit designer is a solderless breadboarding system with its own built-in power supply and voltmeter. The Design Mate 2 function generator provides a source of sine, square, and triangle waves over a frequency range of 1 Hz to 100 kHz . The Design Mate 3 resistance/capacitance bridge measures resistances from 10 ohms to 10 megohms and capacitances from 10 pF to $1 \mu \mathrm{~F}$. While each can be used independently of the others, the three Design Mates together comprise a highly flexible designer/experimenter lab.
Each Design Mate is in an enclosure that measures $71 / 2^{\prime \prime} \mathrm{W} \times 63 / 4^{\prime \prime} \mathrm{D}(19.1 \times$
17.1 cm) and slopes from $31 / 4^{\prime \prime}$ to $1 \frac{1}{2} \mathbf{2}^{\prime \prime}$ (8.3 to 3.8 cm) high. All three units are designed for operation on 117-volt ac line power.

The Design Mate 1 solderless breadboard sells for $\$ 49.95$, the Design Mate 2 function generator for \$64.95, and Design Mate 3 R/C bridge for $\$ 54.95$.

General Descriptions. The heart of the Design Mate 1 breadboard is its large solderless breadboarding socket, which contains a 59×10 hole matrix. Component leads and stripped hookup wires are plugged into the holes to make electrical (and mechanical) contact during circuit setup. The matrix is arranged in two 59×5 sets, with each of the 59 columns containing five electrically common contacts to provide multiple connection points for each component lead. The column-to-column and row-to-row hole spacing is $0.1^{\prime \prime}(2.54 \mathrm{~mm})$, with $0.3^{\prime \prime}(7.62 \mathrm{~mm})$ between matrix sets to accommodate standard DIP (dual inline package) IC's. Above and below the main solderless socket are bus strips (each with 50 holes).
The internal regulated power supply delivers from 5 to 15 volts at 600 mA to the breadboarding system. The supply's ripple and noise are rated at less than 20 mV full load. Both line and load regulation are specified at less than 1%. The output of the power sup-
ply is available at a pair of color-coded binding posts (red for + , black for -). The 15 -volt full-scale dc voltmeter is accessed through another pair of binding posts with the same color coding. Needless to say, the power supply and/or meter can be used for purposes other than simple breadboarding.

The Design Mate 2 function generator is built around an 8038 function generator IC and uses a 301 op amp and five transistors to generate the sine, square, and triangle waves. The $1-\mathrm{Hz}$ to $100-\mathrm{kHz}$ signal frequencies are tuned by first setting the RANGE switch to the desired range and then fine adjusting with the continuously tunable FREQUENCY control. The only other controls are the threeposition FUNCTION switch and output signal AMPLITUDE control. The output from the function generator is available through color-coded OUTPUT binding posts on the contro! panel.

The sine-wave output has less than 2% THD; triangle-wave linearity is better than 1%; and the square-wave output rise and fall times are less than 0.5 μ s into a 600 -ohm, $2-\mathrm{pF}$ termination. Output signal amplitude is variable from 0.1 to 10 volts peak-to-peak into an open circuit. The output impedance of the function generator is 600 ohms, constant over the amplitude and frequency range. The output circuit can easily be modified for driving TTL, HTL, RTL, DTL, and CMOS logic.

The resistance and capacitance measuring accuracy of the Design Mate 3 is stated at better than 5%. A pair of HI and Lo LED's are used as a unique NULL indicator that instantly tells the user whether the resistor or capacitor under test (connected via a pair of binding posts labelled unKNOWN) has a value above or below the dial setting. The null is quite sharp to minimize ambiguities. The bridge circuit features a bootstrapped op amp whose high input impedance permits checking small capacitances without introducing loading errors.

The range switch has separate positions for resistance and capacitance. The positions are labelled in decade steps from 10 to 10 M and from 10PF to 1UF. The nULL ADJ control provides the means for producing the null condition in each range. When the null condition is obtained, the user merely checks the position to which the RANGE switch is set and reads the resistance or capacitance value directly from the NULL ADJ's calibrated scale.

User Report. We were anxious to see how well the Design Mates performed separately and as a team on our workbench. After living with these three units for several weeks, we have come to the conclusion that they do indeed make the task of breadboarding and testing a design simpler and less time consuming. In terms of frequency of use, the Design Mate 1 breadboarding system came out on top, followed closely by the Design Mate 2 function generator. Although we didn't have as much call for the Design Mate 3 R/C bridge, we found that there wasn't a better instrument for determining resistance and capacitance values and for matching components.

With a small circuit addition, spelled out in the manual that accompanied the Design Mate 2, we used the function generator as a variable-rate clock for several of our digital experiments. We have since used this unit for general-purpose audio testing and to check filters in our RTTY and slowscan ham equipment. In all cases, it did a creditable job of testing.

The Design Mates, whether used singly or as a team, are a very practical addition to any workbench. They are relatively low in cost, simple to use, and eliminate much of the clutter normally attendant upon experimenting and design work.
circle no. az on free imformation caro

The tine you save may be your own.

Used to be you'd get a clrcult Idea, lay out a pe board, print il, solder everything together
iroubleshoot, change your layout, try a new
board, and spond absolutoly too much
time breadboarding. Now A P ACE
All Circuit Evaluators let you
breadboard in a iraction
of the time. Make your
changes Immediately.
Keep full leada on your
componenta. Avoid the heat
damage posslble with repeated
soldoring and desoldering. And have
a pattern tor your board-it you need a
board-jitiing in front of you. In about as
long as It takes to sketch a schematic. cot
cooking with ACE. ACE. The All Circuil Evaluator
cooking with AcE.

CIRCLE mo. 1 ON fREE Imformation Card

(13) IItIntost caralos and FM DIRECTORY
 Get all the newest and latest information on the new McIntosh Sol-

 id State equipment in the Mcintosh catalog. In addition you will receive an FM station directory that covers all of North America.

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

Solid State

PROGRAMMABLE SCHMITT TRIGGER

THERE is never a lack of new IC's on the market. Many of the latest ones are in the microprocessor area, but there are plenty of others that are also of interest to the imaginative expermenter or hobbyist. RCA's Solid State Division (Box 3200, Somerville, NJ 08876), for example, has recently introduced a versatile programmable Schmitt trigger with memory suitable for use in a variety of control circuit applications. Depending on its accessory devices and peripheral circuitry, the new IC, designated type CA3098, can be used to activate relays, heaters, LEDs, incandescent lamps, thyristors, solenoids, and similar units. It can serve as an on/off switch for pump, fan or positioning motors and in signal reconditioning, phase or frequency modulator, and square or triangular-wave generator circuits. The CA3098 can be used, too, for timedelay operations, for level control and sensing, or to provide overvoltage, overcurrent, or over/under temperature protection. With relatively low power requirements, it can be used effectively in either battery-powered or lineoperated projects.
A monolithic silicon IC comprising more than 20 transis-
tors and a number of diodes and resistors, as shown schematically in Fig. 1A, the CA3098 can be operated with either a single (16 volts max.) or a dual (± 8 volts max.) power source. It can control currents up to 150 mA , having only microwatt power dissipation under standby conditions when the controlled current is less than 30 mA . Offered in three different package styles-an 8-lead DIP (type CA3098E), an 8-pin TO-5 case (type CA3098T), and an 8-pin TO-5 case with formed inline leads (type CA-3098S), as well as in chip form (type CA3098H)-the new device has an operating temperature range of -55 to $+125^{\circ} \mathrm{C}$, and can dissipate up to 630 mW at an ambient temperature of $55^{\circ} \mathrm{C}$ or, with a suitable heat sink, up to 1.6 W at the same temperature. When used at temperatures above $55^{\circ} \mathrm{C}$, it is derated linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ without a heat sink and at $16.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ with a heat sink. It will accept sensors ranging in value from 100 ohms to 100 megohms, offers a programmable hysteresis characteristic from 20 mV to the supply-voltage level, and has an extremely low output leakage current of $10 \mu \mathrm{~A}$ max. As a switching device, the CA3098 has a low delay time of 600 ns , with fall and rise

Fig. 1. RCA's CA. 3098 programmable Schmitt trigger: (A) intemal schematic: (B) functional diagram.

HOW TO SAVE HUNDREDS OF DOLLARS ON PARTS. PAINLESSLY.

At CSC, we've developed a family of ingenious Design Mate ${ }^{\text {TM }}$ test

 equipment that gives you professional quality and precision at very unprofessional prices. Each unit can save you

SAVE MONEY AND TIME

WITH DESIGN MATE 1
This precision all-in-one unit combines a solderless plug-in breadboarding system with a built-in better-than-1\%-regulated variable $5-15 \mathrm{~V}$ supply and $0-15 \mathrm{~V}$ voltmeter. Gives you everything you need to design and test circuits faster than you ever could before. Saves money by eliminating lead damage and heat damage to components. Lets you re-use parts over and over again, to save even more. All for just \$49.95*

CITIZENS BAND HANDBOOK, by the editors of POPULAR ELECTRONICS, has it all all the authoritative information you need on CB two-way radios to make an intelligent buying decision for transceivers, antennas and accessories . . .
Here's a partial look at what the experts have packed into one volume:

* You'll have over 500 CB models at your fingertips, fully described with technical specifications, features, latest prices and photographs.
*: Lab test evaluations on mobile and base-station transceivers, both AM and SSB, spell out what the rigs can really do.
\therefore The latest FCC Rules and Regulations are discussed in down-to-earth language, so you truly know what you can and cannot do legally.
* Manufacturers' specifications are "decoded" so that you will be able to read a "spec sheet'" with ease.
* All about CB antennas - the true key to "talk power."
* CB language translation chart.
* How emergency CB associations can save your life!
* How phase-lock-loop digital synthesizers work.
* The latest Flash Report on upcoming CB units presented at the first all-CB-manufacturers show.

Regular price by mail for the 1976 CITIZENS BAND HANDBOOK will be $\$ 2.00$ including postage and handing charges. WE ARE RESERVING COPIES NOW AT \$1.50 FOR ALL ORDERS RECEIVED NO LATER THAN JULY 31, 1976. SAVE MONEY and enjoy the convenience of receiving your copy by mail. Complete the Pre-Publication Reservation Form at right and return it with your remittance. We'll see to it that the new Citizens Band Handbook is mailed to you when published.

Fig. 2. CA3098 time-delay circuits: (A) switches on after delay; (B) switches off after delay.

times of 50 and 500 ns , respectively, coupled with a storage time of only $4.5 \mu \mathrm{~s}$ under typical operating conditions.

Functionally, the device consists of two differential input amplifiers, a summing circuit, a flip-flop which serves as a bistable "memory" element, a driver amplifier, and a power output stage (Fig. 1B). The input signal voltage (pin 8) is compared to a prefixed higher reference voltage (HR, pin 7) by one differential amplifier and to a lower reference voltage (LR, pin 1) by the other, with the resultant output signals applied to the summer. The latter delivers a trigger signal to a flip-flop that changes state in response to each trigger command. The flip-flop, in turn, supplies a signal to the driver amplifier which controls the power output stage. The output stage serves to "sink" current from the power supply through an external load device, such as a lamp, relay, solenoid, or thyristor gate circuit. When the applied signal voltage is equal to or less than the present low

All the practical essentials of electronics engineering... right at your fingertips!

FIRST-OF-ITS-KIND VOLUME
Provides technicians and engineers with a complete guide to the fundamentals of electronics engineering.

Edited by M. Kaufman and A. Seidman 560 pages. 695 illustrations, $\$ 19.50$

This practical volume gives you instant access to details on every vital aspect of the electronics field: component selection, circuit analysis, power supplies, the characteristics and use of integrated circuits, operational amplifiers, transistors, batteries, tubes, and much more

MANY SPECIAL FEATURES

- Explains how to compute ampere turns and how to make varlous other types of magnetic clrcuit calculations - Compares the isolation transformer and the auto transformer - Analyzes important transformer cores - Explains Impedance and admittance, and phasor dlagrams - Describes ammeters, volimeters, and ohmmeters - Analyzes the classification of filters by frequency, shape of response, type of construction, and method of design - Covers operation of sinusoidal oscillators - Explains bistable, monostable, astable multivibrators - Detallis special applications of power supplies - Provides a detailed analysis of diodes, Including electron flow geometry - Compares vacuum tubes and transistors.

ALSO OF INTEREST

Three famed volumes by John Markus that give you access to more than 9,700 different electronic circuitsi Fully indexed and cross referenced, Illustrated, and with values and exact source locations, for fast, sure selection of the circuits that best meet your needs at the moment, whatever your project. Absolutely no duplication of circuits in these three volumes.

GUIDEBOOK OF ELECTRONIC CIRCUITS

 1068 pages, $\$ 24.50$
ELECTRONIC CIRCUITS MANUAL

 892 pages, $\$ 24.75$SOURCEBOOK OF ELECTRONIC CIRCUITS 888 pages, $\$ 23.50$

At your local bookstore or use coupon for

 FREE 10-DAY EXAMINATION- McGraw-Hill Book Company

1221 Avenue of the Americas, New York, N.Y. 10020

- Please send me the book(s) checked below for a free 10-day examination. In that time I will remit the price, plus local tax, postage and handling, or return the book(s) with no further obligation. I understand that if I remit in full, plus local tax, with this order, McGraw-Hill pays postage and handiling, and a 10 -day return privile ge still applies. This order subject to acceptance by McGraw-Hill.
\square Handbook for Electronics Engineering Technicians (033401-3) \$19.50 Guidebook of Electronic CIrcuits (040445-3) \$24.50 Guidebook of Electronic Circuits (040445-3) \$2 \square Sourcebook of Electronic Circuits (040443.7) \$23.50
\qquad
Name
Address

Wed like to compare our But there's no

N-CIRCUIT TRANSISTOR TESTER
IN-CIRCUIT TRANSISTOR
TROUBLESHOOTER

ELECTRO-LAB

COMPARE OUR TRAINING PROGRAMS: NTS Electronics programs are considerably different from those of other schools, and, we believe, better designed to prepare you for entry-level opportunities in the field of your choice. For example, our Master Course in Electronics Technology includes over 170 lessons; another school offers fewer than half that many in a course with the same title. Our course includes 26 kits to build an Electro-Lab, a Solid-State Digital Computer-Trainer with transistor-diode logic circuits; a $5^{\prime \prime}$ wide-band solid-state Heath Oscilloscope; a Heath FET-VOM, and slide rule. Their course offers 10 kits to build a private label VOM and 2 experimental circuit chassis.
And even though you need an oscilloscope to perform their experiments, they don't provide it. You have to buy your own. And their course does not even include a Digital

Computer-Trainer. The closest thing to our program they offer costs over $\$ 200$ more than ours. Another school's course in Electronics Technology offers even fewer lessons, and kits to build only a VOM. That's all. Think it over, and check it out, course by course, program by program. There's no comparison.
COMPARE OUR EQUIPMENT: NTS selected Heath equipment because of Heath's international reputation as a prime designer of commercial and professional electronic equipment in kit form. Cooperation between Heath and NTS assures you of highest quality components, design, function and training. What's more, Heath equipment is the kind you'll meet in the field - not limited to training only. For instance, the Heath GR 2000 25" (diagonal) Color TV included in our Color TV courses is acclaimed as ahead $\mathbf{o n}^{-}$ its time in features and engineering. And the Heath AM-FN

Multiplex/Receiver offered in our Audio course is a 30-Watts-RMS-per-channel set that's designed for true High Fidelity performance, not built for training only. As for reliability, that's another word for Heath.
The same holds true for Heath Oscilloscopes, FET-VOM, Digital Multimeter, In-Circuit Transistor Tester, Solid-State 2-Meter FM Transceiver, and much more included in over a dozen NTS courses. Check it out! There's just no comparison.
COMPARE OUR LOW TUITION: We employ no salesmen, pay no commissions. You receive all home study information by mail. All kits, lessons and experiments are fully described in our Catalog and all equipment needed for your training is included in the tuition price. Nothing extra to buy for your training with NTS. Liberal refund policy and cancellation privileges spe led out.

Make your own comparisons. Check the number of lessons, check the subjects covered and check the amount and value of training equipment you will receive for your tuition dollars. Then make your own decision. Mail card today, or write for FREE Electronics catalog if card is missing. FIND OUT!

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL SHETALS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools 4000 So. Figueroa St., Los Angeles, Calif. 90037

Mark Ten Electronic Ignitions put lightning under the hood.

It's like having a bolt of lightning under the hood of your car when you feel it burst into action. And that's not all you'll feel with one of Delta's three HOT, HOT ignition systems. You'll feel the contentment of knowing your car will start INSTANTLY no matter how hot or cold the weather, the relief of fast, safe entry onto teaming freeways with POWERFUL ACCELERATION, and the satisfaction of pocketing all that money you'll save, not only from INCREASED GAS MILEAGE, but from all the TUNE-UPS you can forget about (at least 2 out of 3). And that's just for starters. Send today for free, color brochure jam-packed with helpful facts on how Delta's Mark Ten, Mark Ten B and Mark Ten C Capacitive Discharge Electronic Ignitions can help make driving a better experience for you.

[^4]reference voltage, the output stage is in a conducting state. This state is maintained until the input voltage rises to or exceeds the high reference voltage, at which point the output state switches to a nonconducting or "open" state. The "open" condition is maintained until the input signal again drops to or below the LR level, and the output stage is switched back to a conducting state. In addition to establishing the switching points by presetting the HR and LR levels, the device's operation may be programmed for optimum performance by means of an external bias current applied to the differential amplifiers, summer, flip-flop and driver stages through pin 2, while the maximum load current can be limited by the application of a separate bias current to the output stage through pin 5.

Representative examples of the CA-3098's potential circuit applications are illustrated in Figs. 2 through 4. These can be used either for the development of a specific projects or, if preferred, simply as guides in the design of original circuits. Abstracted from RCA's 8-page data bulletin for the CA3098, File No. 896, the circuits use standard components and, in most cases, can be duplicated quite easily in the home laboratory or workshop, for neither layout nor lead dress should be overly critical. Of course, good technical practice should be followed when wiring the circuits, with care taken not to overheat semiconductor device leads, and all dc polarities carefully observed.

The circuit shown in Fig. 2A is designed to switch the load current on following a predetermined delay after power is applied. The circuit in 2B switches the load current off after a suitable delay. Although resistive output loads are shown, relays, lamps, or other devices might be used in the circuits. In both, the time delay is dependent upon the time constant of the RC input network. Large values of either R or C will provide a longer time delay. If adjustable time delays are required, several capacitor values can be provided, selected as needed by a rotary switch. A fine adjustment can be provided by using a small trimmer rheostat in series with a fixed resistor for the R component.

Typical signal conditioning circuits featuring the CA3098 are illustrated in Fig. 3. The square-wave converter (Fig. 3A) features an adjustable duty cycle, achieved through the use of variable bias levels (V1 and V2) applied to the HR and LR inputs. The one-shot delivers an output pulse of fixed amplitude and duration to its lamp load when triggered by a positive-going input pulse. The output pulse width is determined by the value of the feedback capacitor C 1 . With a $0.01-\mu \mathrm{F}$ unit, the pulse width is 15 ms , while a

ก几凡

Fig. .5. Design for a function generator.

Who learns electronics the easy, effective, low-cost way? You Do! when you study using the exclusive Heathkit Individual Learning Programs.

Complete, accurate, HONEST descriptions of over 400 electronic kits including:

- Test Instruments
- Educational Self-Study
- Stereo Hi-Fi Components
- Amateur and Shortwave Radio
- Color TV - Security Systems
- Automotive, Aircraft and Boating Aids

Use coupon today!

FREE!

Read all about them!

The new Spring ' 76 Heathkit catalog describes programs above, plus over 400 other money-saving electronic kits that are easy and fun to build! Send coupon today for your FREE copy.
Heath Company, Dept. 10-18, Benton Harbor, Michigan 49022

Heath Company
Dept. 10-18, Benton Harbor, Michigan 49022

athkit Catalog.

$300-\mathrm{ms}$ pulse is obtained with a $0.2-\mu \mathrm{F}$ capacitor. For optimum performance with the circuit values specified, the input pulse should have an amplitude of at least 2.5 volts and a duration greater than 1 ms , but less than the output circuit's "on" time. Naturally, other output loads can be used in place of the lamp shown on the diagram.

Finally, circuits featuring the use of the CA3098 in conjunction with bidirectional thyristors (triacs) are show in Fig. 4. In both examples, ac line power is supplied to the thyristor and its load, with a separate dc source provided for the CA3098 control circuit. In the basic switching circuit (Fig. 4A), a voltage divider made up of a single sensor (such as a photoresistive cell or thermistor) in series with a rheostat supplies the input control signal, while potentiometers R1 and R2 serve to preset the HR and LR levels, respectively. A modified version of the basic circuit intended specifically for maintaining the water level in a storage tank is given in Fig. 4B. Here, two thermistors, TH1 and $T H 2$, operated in self-heating modes, are used as sensors and the triac controls a pump-out motor. The thermistors are mounted in the tank on each side of the desired mean water level, with TH2 at the top. In operation, the pump-out motor is activated when the water level rises above $T H 2$ and switched off when the water level falls below thermistor TH1.

Readers' Circuits. Most experimenters probably can discover a half-dozen or more applications for the simple function generator circuit illustrated in Fig. 5. Capable of supplying linear sawtooth and square-wave signals simultaneously, it might be used, typically, in test equipment, as a tone source for a basic electronic musical instrument, or as a linear sweep generator for an oscilloscope. Submitted by reader Craig K. Sellen (48 Briarwood Road, Wayne, NJ 07470), the design offers yet another application for the ubiquitous and inexpensive 555 timer IC. The circuit has an emitter-follower (Q1) as a buffer amplifier and an adjustable constant-current source (Q2) for the timing capacitor (Cx) to insure good linearity and optimum overall performance. Intended for operation on a 12 -volt dc source, the circuit can be powered either by batteries or a well-filtered line-operated power supply.
Depending on individual preferences, the circuit can be breadboarded for experimental tests or duplicated on a perf or pc board, for neither the parts placement nor wiring arrangement should be especially critical. Aside from the active devices, IC1 (type 555), Q1 (2N3707), and Q2 (2N5086), the fixed resistors can be $1 / 4$ - or $1 / 2$-watt types, potentiometer R4 a standard linear control, bypass capacitor C1 a paper or low-voltage ceramic type, and power-supply decoupler C2 a 12-to-15-volt electrolytic

Fig. 6. Digitallunalog comereter cirenit.
capacitor. The circuit's operating frequency is determined primarily by timing capacitor $C x$, which can be a plastic film, paper or ceramic type, with values from 0.0022 to 0.22 $\mu \mathrm{F}$, depending on application requirements. According to Craig, the circuit will deliver a linear sawtooth of approximately 4 volts, p-p.
Recognizing that many of today's hobbyists are working with digital projects, reader Robert L. Schuman (R.R. \#2, Winthrop, IA 50682) has suggested the circuit given in Fig. 6 as an inexpensive solution for those requiring a simple digital-to-analog (D/A) converter. Using only two IC's, a hex inverter (/C1) and an operational amplifier (/C2), the circuit accepts digital binary input pulses and converts these to an equivalent analog signal. In operation, the actual conversion process takes place in a weighted resistive divider network (R1, R2, R3, R4, etc.) connected to the hex inverter's output terminals and which, in turn, becomes part of the op amp's inverting input feedback/bias circuit. The output resistance for each binary digit from 2° (32) to $2^{\prime \prime \prime}$ (1) is doubled in value so that the summed resistive output connected to the op amp is inversely proportional to the input binary signal, thereby insuring that the op amp's output is directly proportional to the original binary number.
Robert has specified standard components in his design, with hex inverter IC1 a type 7406 and IC2 one section of a 324 quad op amp, a type amenable to operation on a single-ended power source. For optimum performance, precision resistors (1% or better) must be used in the divider network. Op amp input bias resistors $R 5$ and $R 6$ may be standard $1 / 4$ - or $1 / 2$-watt types, while feedback/bias resistor Rf should have a value less than half that of the smallest resistor connected to the hex inverter outputs (i.e., less than 500 ohms). The D/A converter circuit can be assembled using any construction technique, for neither layout nor wiring dress should be critical.

Data Sources. If our mail is any criterion, one problem plaguing many experimenters is that of finding technical data on IC's and discrete devices acquired through surplus stores and other outlets. As a general rule, of course, the best source of data is the original manufacturer, for virtually all of them publish detailed specification sheets, data bulletins, and, often, application notes covering their products. A number of the larger firms, including Motorola, RCA, and National Semiconductor, also publish comprehensive data books covering their entire product lines which are available at modest cost. Unfortunately, not all manufacturers will honor individual requests for data. This is often true of small-to-medium-size firms catering primarily to the large OEM market, even though their products may be available through surplus outlets and local distributors. In addition, original data sheets may not be available on obsolete or discontinued devices. However, if the need for information is great enough to justify the relatively high cost, complete specification data on virtually every semiconductor device ever manufactured is available from D.A.T.A.; INC. (32 Lincoln Avenue, Orange, NJ 07050). This firm publishes a series of data books covering devices in every basic category from diodes to microcomputers. Each book is offered on an annual subscription basis and separate books are available covering discontinued devices. Prices range from, typically, $\$ 12.75$ for the book on Discontinued Thyristors to $\$ 54.50$ for the book on Optoelectronics.

Device/Product News. Fairchild Semiconductor (4001 Miranda Ave., Palo Alto, CA 94304) has announced a new 190×244-element charge-coupled device (CCD) area image sensor for use in imaging and video systems. The second member of Fairchild's family of area sensors, the new solid-state device, type CCD211, contains 46,360 sensing elements organized in an array of 190 vertical columns and 244 horizontal lines, which is equivalent to onequarter of the standard television resolution. The X-Y format of the array provides a 3:4 vertical to horizontal ratio, which is ideal for use with Super 8 movie camera lenses. Converting light focused by a camera lens into a video signal, the new CCD211 can operate at data rates up to 15 MHz , providing a picture frame rate up to 200 frames per second, in contrast to the 30 frames per second rate of broadcast TV and 18 frames per second rate of movie cameras. In addition to the image sensing elements, the device, which dissipates only 100 mW , includes $190 \mathrm{col}-$ umns of 2-phase vertical analog transport registers, a 200 -element horizontal analog transport register and a

Fi!!. i. Schematie of Dionicss pomer driver.
low-noise output amplifier. Featuring Fairchild's ionimplanted buried n-channel technology, the new CCD211 is offered in a 24 -pin DIP.

A high-voltage, high-current power driver designed for use as an interface device between low-power MOS or TTL circuits and higher-power system elements, such as relays, lamps, and actuators, is now available from Dionics, Inc. (65 Rushmore St., Westbury, NY 11590). With an 80 -volt maximum rating and the capability of controlling load currents up to 125 mA , the new device, designated type DI-445, has a power dissipation rating of 500 mW and features an adjustable logic threshold voltage. A monolithic silicon device comprising four transistors and several resistors, as shown in Fig. 7 , the DI-445 includes an isolated high-current diode for transient suppression when used to drive inductive loads. The unit is supplied in a standard 8-pin plastic miniDIP.

Featuring an aluminum chassis and offering optional two-sided wiring, a versatile new breadboard system is now available from the Vector Electronic Co., Inc. (12460 Gladstone Ave., Sylmar, CA 91342). Designed for solderless interconnections, the new system includes eight Klip-Bloks capable of accommodating a maximum of twelve 14- or 16-pin DIP's, or four 24- or 40-pin devices, such as microprocessors and calculator or memory IC's. Additional Klip-Bloks, sockets, or discrete components can be added to expand the basic system's capacity. Two versions are currently available: the Model 51X, priced at $\$ 25.50$ and featuring a 4.5 -by-8-inch glass-epoxy board,
and the Model 51X-GP, which includes an etched ground plane on the underside of the board for improved highfrequency performance, priced at $\$ 29.95$.
The Hildreth Engineering Company (P.O. Box 3, Sunnyvale, CA 94088) has added a new member to its family of op amp design instruments, the Quadri QUICK-OP, a four position unit. Featuring 38 quad solderless connectors providing 152 tie-points, the new type is available in two versions, the Model 440-741, which includes four type 741 op amps, and the Model $440-\mathrm{MD}$, which offers 8 -pin miniDIP sockets in each position, permitting the user to work with his choice of devices. Both models are priced at $\$ 39.95$ each, less batteries.

An exciting new three terminal adjustable voltage regulator IC has been announced by the National Semiconductor Corp. (2900 Semiconductor Drive, Santa Clara, CA 95051). Capable of supplying over 1.5 A output current at any output level from 1.2 to over 37 volts, the new device is supplied in standard power transistor packages which may be heat-sinked easily using conventional hardware. Functionally, the device comprises a constant current source, a 1.2 -volt band-gap reference diode, a voltage comparator, and a Darlington pass transistor. The new IC offers 0.01% / volt line regulation, 0.1% load regulation over its full range, $80-\mathrm{dB}$ ripple rejection, full overload protection, and a minimum input/output differential of 2.5 volts. Two external resistors are needed to set the output voltage. The new IC is offered in three basic versions: the LM117, rated for operation from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, the LM217, $-25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, and the LM317, $0^{\circ} \mathrm{C}$ to $124^{\circ} \mathrm{C}$. All three devices are available in both TO-3 and TO-5 packages, while the LM317 also is furnished in a TO-220 Epoxy package.

With a Greenlee Chassis Punch you can punch clean, true holes in seconds. Round, square, key or D. In 16-ga. metal, hard rubber, plastic or epoxy. Available at radio and electronics parts dealers. Write for catalog E-730. Greenlee Tool Co, Rockford, III. 61101.
GREENLEE TOOL CO

The 2700 B can bring to your system the clarity \& definition you have been looking for. Wayward sounds (booming bass, missing highs, blaring horns, or stifled solos) are all put in their place with the SAE 2700B Half-Octave Equalizer. The flexibility of 20 controls per channel only begins to tell the story. Some facts:

* 0.02\% THD \& IM
* - 100dB S/N Ratio
* Can drive any system
* FREE 5 YEAR Service Contract

PLUS, long-throw oil-damped slide pots for better accuracy, precision wound toroid inductors for low distortion \& a pink noise generator for system balance. Built with SAE quality, the 27008 is value packed with the capability and performance you need to control your system. PRICE: \$550.00 (suggested list)

Scientific Audio Electronics, Inc.
P.O. Box 60271, Terminal Annex Los Angeles, Calif. 90060
Please send me more information on the SAE 2700B Half-Octave Equalizer.
NAME
ADDRESS
CITY \qquad STATE \qquad ZIP \qquad

UNIVERSAL INTERFACE BETWEEN LOW-POWER LOGIC AND LOAD DRIVERS

BY VERN GREGORY

APROBLEM that confronts the designer of MOS logic circuits is coupling these low-power devices to heavy loads. The job need not be too complicated, however, since there is a relatively simple circuit that can be used easily. It consists primarily of a conventional junction FET (JFET).

The basic circuit is shown at (A). The p-channel JFET is a normally conducting, depletion-mode device. That is, it conducts a fixed current ($I_{1, s i s}$) with
transistor, without a current-limiting resistor, as shown at (B). Here, the interfaced voltage can be at any level within the ratings of the JFET and the bipolar transistor. The base current is selected to be about $1 / 15$ of the required load current, by choosing the proper JFET. The load current is in phase with the input to the inverter driving the JFET. Since the JFET draws no gate current, the logic element is not loaded.

zero gate voltage. When the gate voltage is increased toward positive $V_{i \cdot}$, $I_{1)}$ drops until pinch-off is reached. Then the current is zero.

The important feature is the fixed current at zero gate voltage. This means that the current is limited and can be selected to drive the base of a

Circuit (C) shows how to connect a 5 -volt logic element (inverter shown) to a load, while (D) is a way to connect PMOS logic to a load on the negative supply. Circuit (E) is the same thing for a positive supply. The circuit at (F) illustrates an op amp or comparator interface.

By Ray Newhall, KWI6010

AVOIDING CB RIPOFFS

THE THEFT of CB rigs from boats and vehicles has grown to epidemic proportions during the past year, and is becoming even more prevalent as each month goes by. There are few statistics available from official sources, but it is believed that as many as one in twenty mobile transceivers were stolen last year. Most CB marketers believe that about 80% of the estimated $10,000,000 \mathrm{CB}$ transceivers now in use are installed in mobile environments. This could mean that nearly one-half million rigs. valued at more than $\$ 25$ million on the street. were stolen from CB'ers in 1975. That's not peanuts!

The increase in CB larceny is inevitable, considering the increasing demand and the short supply. By EIA estimates. the demand for CB in 1975 resulted in 4.2 million units sold. Sales in 1976 are expected to surpass that figure by a wide margin. Manufacturers and distributors have simply been unable to keep up with the demand. So, when that guy from out-of-state promises you any rig you want at 50% of list price, within 24 hours, where do you think it will come from?

This subject was selected for discussion in this month's column after my own rig was neatly lifted from my car while it was parked in my driveway. After driving around "blind" for a few months. I recently installed a new CB
radio. However, I couldn't complete an auto intrusion alarm installation to prevent a repeat theft because I was missing a few parts. But that was no problem (1 thought), because the needed items could be easily obtained on Monday morning. But the new mobile didn't last that long! It was ripped off Sunday night, less than 36 hours after installation! Although my research has been somewhat more thorough than originally intended, I have learned a few lessons that I want to pass on to you.

Official Attitudes. I asked several local, state, and federal law enforce-
ment agencies for their ideas on how the average CB'er can protect his investment in mobile equipment. Their unanimous answer was, "We are doing what we can, but we must have the help of the CB'ers themselves to stem this growing type of larceny." Most officials doubt that there is a single, foolproof countermeasure, but they believe that if each of us would take a few simple, common-sense precautions, CB larceny would soon become too risky to practice.

Some officials pointed out that insurance companies could do more than anyone to curb the rising tide of CB thefts, simply by insisting that those caught be charged and, if convicted, punished by the courts. All too often, the officials complain, the insurers of stolen property refuse to press charges against a thief who is caught because of trial expenses. Thus, the thief is out on the streets again in a few hours, ready to steal again. An alternative suggestion is that the ir surance carriers relinquish their subrogation rights and urge owners with insurance to press charges, even though their claims have already been paid.

Fiof. 1. C:s "t taty simila. to that below to inlentif!! !/f(1)! rig "lıl "'aッ"

NOTICE TO CB REPAIRMAN

If the name and address on your repair order do not agree with those below, this set may be stolen. Please ask your local police to check the serial number through NCIC for possible theft. If it is stolen, please call collect the owner (number below) to notify him and arzange for a return.
(Owner's name, address and telephone) (Date of purchase)

I found little statistical information of value collected by these companies; but apparently, so many claims are being made that it is not profitable to insure mobile radios. As a result, many have advised that by the
time this column is published, most policies will exclude all two-way radios (including CB, amateur, and vhf transceivers) from coverage.

Chief Francis Virgulak of the Norwalk (Connecticut) Police Depart-

If you want a microcomputer with all of these standard features...

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us... and how far it can take you in your applications. That's why we'd like to send you our card-one PC board that we feel is the best-valued, most complete

microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessorbased terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

> HAL Communications Corp.
> Box 365,807 E. Green Street, Urbana, Illinois 61801 Telephone (217) 367-7373
ment, his chief Crime Prevention Officer, Lieutenant Doug Lamb, and other department heads spent several hours in research and conferences to provide material and technical assistance for this column. In that city, the incidence of Auto Break and Entry cases increased only 9.4% in 1975 , compared to the previous year. In the same period, however, the theft of tape decks increased 40.5%, and the theft of "radios" rose 425%. This police department does not differentiate between the types of radios stolen, but acknowledges that most of these were CB rigs.
Most sources I consulted indicated that, from personal experience, many (and possibly the majority) of CB thefts are not reported to the police. They could not explain why, but believed that many people feel that the police can do nothing about it, or that "illegal" (unlicensed) operators are afraid that the police will turn them in to the FCC. Lieutenant Lamb was quick to point out that the Police Department's concern was the prevention of larceny. No request to see a license is made when a theft is reported. He also said that any report of theft which includes the serial number of the stolen property will be put into the state and federal (NCIC) computers and remain on record for at least a year. Although authorities admit that the chances of a successful recovery are not great, they point out that their only hope of catching the thief is through these records. So they really depend on the cooperation of the CB'er to report all thefts.

Steps You Can Take. With the help of the police, we developed a list of "Do's and Don'ts" to reduce your chances of getting ripped off. In the long run, if followed by most CB'ers, they will make CB larceny so unprofitable that it will be reduced to a minor problem.

- When you buy a rig, deal with a reputable dealer and get a sales slip on a printed letterhead form. Be wary of any deal that offers much more than a 10% discount (based on list price), unless it's a "clearance" sale, an obviously hard-to-move unit, a sales "leader," a discount based on having a base-station antenna installed (antenna materials plus labor), or an older non-type-accepted unit.
- Save that sales slip! When you take your new rig out of the box, record the serial number on the slip. Put it in a

Fig. .. A taty like this firom your locell police and afticeed to your. vehicle wimbore san be a theft detervat.

safe place, and remember where it is Besides its usefulness in case of theft, it is a valid proof of purchase for warranty purposes

- Remove the chassis from the cabinet and paste in a label that identifies you as the owner, requesting the technician to compare your name with that on his repair slip. (Be sure not to hamper convection cooling.) If the two names do not match, request on the slip that the technician report the serial number to the police for a check against NCIC records. A sample label is shown in Fig. 1. Many service techs will cooperate, either because they are dealers hurt by the black market. or because of warranty problems. Most manufacturers insist that their authorized service stations check all serial numbers against a hot list." A more permanent ID can be engraved with a suitable stylus on the chassis itself.
- If your rig is stolen, report it immediately to your local police department. Include the serial number in your report and ask them to have it registered with NCIC .
- Consider investing a few dollars in a locking security mount, such as SHUR-LOK's, which accommodates almost any transceiver and vehicle. These mounts usually require a key to gain access to the mounting bolts. An alternative, of course, is to remove your rig whenever you leave the vehicle. There are power-disconnect brackets sold by some auto radio and tape recorder installation companies that can accommodate some CB rigs. - If you live in a high-theft area, you might choose a CB transceiver that is installed out of sight. For example, Royce has a model with a control head separate from a remotely mounted electronics package. The remote unit can be locked in your trunk.
- There is no questioning the value of an intrusion alarm installed in your vehicle. It not only protects your CB equipment, but may even save the car itself! These are available from many
sources, but you might prefer to build your own. They take many forms, varying from a simple "lock-in relay" to sophisticated time-delay devices for both trip and automatic recycling. Some CB rigs incorporate a security mounting circuit which can be connected to the intrusion alarm to trigger it when the transceiver's mounting bolts are removed. It is also possible to have an alarm trigger when the transceiver's ground return lead is disconnected, though I'm not aware of a commercially available one.
- Check with your local police department to see if they have an "Operation Identification" plan. Some offer free decals similar to the one shown in Fig. 2. These decals, identifiable with a specific police organization. can be installed on a vehicle window. They are generally more effective deterrents than alarm warning decals that identify the type of alarm installed. (Here, the manufacturer's "advertisement" might be the tip-off to a smart burglar who knows how to bypass that particular alarm!)
- Efficient antennas are essential to effective mobile communications; but they tend to be very visible. For example, a pair of 108 -inch phased whips mounted on a rear bumper practically "shouts out" the existence of a fancy rig. If you are willing to sacrifice performance, there are CB antennas that resemble the standard electricpowered auto antenna. Lowering the whip electrically into the cowling when you leave the car will hide the fact that you have a CB rig. (There are also nonelectrical whips that can be pushed into the cowl manually.)
- There are certain "booby trap" devices marketed that I believe should not be used. One is a tear-gas canister that is widely advertised. It is attached to the back of the set, and a mechanical trigger releases the gas when the transceiver is removed. Even though some cities and states may not consider installation of this device a violation of its criminal code, you are need-

A magnificent Schober Electronic Organ
What a marvelous way to put your special talents to work! With our Schober Electronic Organ Kits and your skill, you can build yourself some very special satisfaction, and a lifetime of great music!

Schober Organs are literally far superior to comparably-priced "ready-made" units. You could and miss the fun of assembling it yourself. A PC board at a time, component by component. you'll assemble your own "king of instruments." And when you're done, you'll wish there was more to do. And there is! For then, Schober will help you learn to play, even if you've never played a note before!

Schober Organ Kits range from $\$ 650$ to \$2850, and you can purchase in sections to spread costs out... or have two-year time payments. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see Schober quality.)

The ffchofen Organ Corp., Dept. PE-66

 43 West 61 st Street, New York, N.Y. 10023- Please send me Schober Organ Catalog. Enclosed please find $\$ 1.00$ for 12-inch LP
record of Schober Organ music. NAME ADDRESS

Conclusion. I believe that the growing threat of CB theft is one of the strongest possible arguments in favor of automatic transmitter identification, which is now under consideration by the FCC. I can't think of a better deterrent to putting a stolen rig on the air than the knowledge that each time the mike is keyed, the rig will transmit its very own ID number to any monitoring station within communications range. The operator will never know when someone is feeding his unit's number into a computer. But the automatic identifier concept may not be adopted.
(MICRO-ALTAIR)

A Complete Computer System for $\$ 575$ requires just a Keyboard and TV Monitor for use.

Polymorphic Systems new Poly 88 Systern is a complete expandable powerful microconiputer syslen with dozens of personal and indusifial uses Applications include smar: terminals data acquisition systems games accounting front end for larger computers - anywhere some computer processing is required The Poly-88 hardware includes our Vifeo Terminal Interface circuit Card CPU/ROM/RAM card and Backplane/Power Supply in a $4 \frac{1 / 4}{} \mathrm{~W} \times 6^{3} / 4 \mathrm{H} \times 17$ Cabinet The Video Terminal Interface displays 16 Ines of up to 64 characters of text. of a 48×128 graphics grid on a TV monitor Processor card inchudes 8080A processor. ROM RAM. and a serial or cassette option Software suppled on RuM includes Video Driver. Dehugger and Operating Kernel The wide range of $\mid M S A I / A l t a r$ circuit boards are compatible with this system For complete detarls send to

POLYMORPHIC SYSTEMS
 737 S. Kellogg. Goleta, CA 93017 |805|967-2351

 circle no. 72 dn free information caro
ISO ${ }^{9}$ TIP

оиіск Charge

Recharges in $1 / 3$ rd the time of any other cord less iron.

Complete line of accessories available:

WAHL CLIPPER CORPORATION

ORIGINATORS OF PRACTICAL CORDLESS SOLDERING
Sterling, Illinois 61081 (815) 625-6525

- Manufacluring Excellance' Stner 1919

CIRCLE ND. 61 on free imformation caro
POPULAR ELECTRONICS sociation, Box 163. Deerfield. IL 60015. 62

integrated circuit projects

by Charles Rakes
Useful, fun-to-build, and educational circuits using IC's are described in this book. Among the areas covered are operational amplifiers, TTL circuits, and tonesignalling circuits. Basic design equations and device schematics are included. Commonly available parts are used.
Published by Howard W. Sams \& Co., 4300 W. 62nd St., Indianapolis, IN 46206. 128 pages. $\$ 4.95$ soft cover.

BASIC TELEVISION: PRINCIPLES AND SERVICING

 (Fourth Edition)by Bernard Grob This is an old friend but one which has undergone extensive "facelifting" to the point where it is scarcely recognizable. Not only has there been a complete redesign of the book itself but the contents have been updated with greater emphasis on color television, solid-state circuitry, and newer, more imaginative applications of TV. Written for the electronics or TV technician, the book can be used in the classroom or by those wanting to upgrade their skills. Each chapter carries a summary, a series of test questions, and suggestions for essays.
Published by McGraw-Hill Book Company, New York, N.Y. 10020.718 pages. $\$ 13.95$ hard cover.

ERRATUM

The book "Microcomputer Design Systems and Hardware for the 8008/8080," by Donald P. Martin. was incorrectly listed in this cotumn in April 1976 as costing \$75. It is $\$ 25$. The publisher's correct address is: Martin Research. 3336 Commercial Ave., Northbrook, IL 60062.

WANTTOHOOK UP ACIRCUITQUICK?

The PB-100 is only one of our family of solderless Proto-Board family of solderless Proto-Board
breadboarding units, designed to help you assemble, test and modify circuits as fast as you can push in or pull out a lead. Preassembled sockets with durable 5-point terminals provide low-resistance interconnections you can arrange and re-arrange at will.
Resistors, capacitors, transistors. DIP's. TO-5's, LED's etc. plug in without damage to leads. And jumper connections, where required. are lengths of \#22 AWG solid wire Models from 630 to 3060 tie-point (6 to 32 14-pin DIP) capacity available. For more information, see your CSC dealer, or write for our catalog and distributor list.

Proto-Board ${ }^{\text {R }}$ 100. 760 solderless tie-points. Kit, \$19.95*

EASY DOES IT
New Haven. CT 06509 - 203-624-3103 TWX 710-465-1227 West Coast office Box 7809. San Francısco. CA 94119•415-421-8872 TWX• 910-372-7992
(©) $1976 . \mathrm{CSC}$ Canada Len Finkler Ltd, Ontario

- The Allison OPTO-ELEGTRIC System ELIMINATES the Points and Condenser, replacing them with an OPTO Electronic Trigger, using a Light-Emitting Diode and Phototransistor This System operates on a BEAM of LIGHT There is NO "Breaker-Point Wiper-Arm" to wear down Point bounce and erosion are completely eliminated thereby giving longer Timing aCCURACY than any System using "Mechanical" Breaker-Points land No Timing Fluctuation as with Magnetic Impulse Units) ACCURATE Timing gives the BEST in Engine EFFICIENCY, and that's the name of the Game for the BEST in GAS MILEAGE and ECONOMY
- The Allison's "Built-In" DWELL never needs adjustment It is PRE-SET to supply the OPTIMUM Performance at BOTH High and Low speeds The RPM capability of the "OPTO ELECTRIC" unit exceeds that of any known automotive in ternal combustion engine Positive spark intensity and duration helps eliminate "misfire" and extends the Spark-Plug life
- The Allison "OPTO-ELECTRIC" was engineered to OUT LAST the LIFE OF YOUR CAR Only the Highest Grade Solid-State Components are used UNAFFECTED by Moisture or Vibration! Easier engine starting under ANY Weather Condition Solid, DEPENDABLE PERFORMANCE
* Instatled in your Distributor in same location as Points COMPLETEINSTRUCTIONS FURNISHED. COMPLETEINSTRUCTIONS FURNISHED Necessary to Dismantle vour Dismbutorl Opto-Electric "TAIGGER UNIT". . Only

Put Professional Knowledge and a
 COLLEGE DEGREE

in your Electronics Career through HOME
STUDY

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then continues through the B.S.E.E. degree level. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write or phone (no collect calls please) and ask for BULLETIN E-76.
Grantham School of Engineering 2000 Stoner Ave., Los Angeles, CA 90025

- Telephone (213) 477-1901 -

Worldwide Career Training thru Home Study circle mo. 24 on free imformation caro

CASSETTE WINDER

Want to get to a spedific point on a cassette without putting it in the deck? Just insert a 19-cent BIC pen barrel into the hole for the motor shaft. It fits very well, and you can easily twirl the pen barrel to wind the tape.-Daniel, Eddins, Jr.

add missing segments to digital clock

The "clock on a chip" IC's are very popular, but some of the displayed figures (6 and 9)

look a bit awkward. Here's a simple way to restore the missing segments which can also be used on any seven-segment display (DVMs, counters, etc.). Semiconductors are not critical-"junk box" silicon diodes and transistors will work fine.-Alan Kong

Japanese transistor markings

While troubleshooting an audio amplifier, I came across an open transistor marked C1060. I checked several substitution guides and could not even find a listing for this number. After some research, I discovered that C1060 is actually an abbreviated

MEASURE IT ANYWHERE To 60 MHz with the FM-7.

NLS proudly announces a NEW Frequency Meter.

With Rechargeable
Batteries \& Charger Unit

Features Include:

- Portable, battery operated for measurement anywhere! 10 Hz to 60 MHz input with LED 7digit resolution. High sensitivity; $30 \mathrm{mV}-50 \mathrm{~Hz}$ to $30 \mathrm{MHz}(100 \mathrm{mV}-10 \mathrm{~Hz}$ to 60 MHz). Input overload protection. - Small, only $1.9^{\prime \prime} \mathrm{H} \times 2.7^{\prime \prime} \mathrm{W}$ $x 4^{\prime \prime}$ D. High stability internal time base. For field application, servicing or production testing.
See your local distributor!
Distributor inquiries invited.

Non-Linear Systems, Inc.
Originator of the digital voltmeter.
Box N. Del Mar. California 92014 Telephone (714) 755.1134 TWX 910-322.1132
cIRCLE NO. 37 on free information card
form of 2SC1060. Each guide listed several replacements for this type number. I then inspected several pieces of equipment using Japanese transistors and found many devices using this kind of "shorthand." A note of caution-when making any substitution, check the parameters of the device to make sure that it is in fact a suitable replacement. Substitutes are often wide-tolerance devices.-Alan W. Otto

RTL POWER FROM OLD CAR RADIOS

Transformers salvaged from the vibrator supplies in old auto radios can often be put to use in noncritical RTL or other lowvoltage supplies. However, they must be connected "backwards." When line voltage is applied across half of the secondary, an open-circuit voltage of 3.3 to 3.9 V ac will appear across the primary. Since both windings are usually center-tapped, various voltages are available through combinations of connections. The lowvoltage windings can handle 4 to 6 amps dc, so fairly hefty loads can be used with them. (If the laminations get too warm to touch, you're overdoing it.) The reduced operating frequency and applied voltage will offset each other to forestall saturation problems. Of course, the method and degree of filtering needed depends directly on the particular load.-Parke S. Barnard

Operation Assist

 equpment-a scilematic parts ust etc -another reader might be able to assist Simply send a posicara 10 Opera won Assist Popular Electaoncs , Park Ava New York NY 10016 for those who can help reacres please le spond diectly to imem They it appleciate It IOntw ihose items regaraing equipment not avallatole from normat sources are publishenLaboratory for Electronics Model 401 oscilloscope Schematic and service manual Michael Menninger, 3808 Hiawatha Blvd. Fort Wayne TX 46809

Operadio Model S-525-A plant broadcaster Need schematic and operating manual Dean Smith, 419 Collingwood Circle. Peoria. IL 61614

Advance Electronics Model 405 phase meter. Schematıc and or service manual Bene Brandt. Box 338 . Concord CA 94520.

Allen Model E319 distributor tester Need any available information David E Gold, Box 538, Los Gatos CA 95030

Rec-o-cut Rondine Jr. L-37 phonograph Need parts supplier David Tovey. U.S.P.H.S Hospital. 15th Ave.. San Francisco. CA 94118

Hallicrafters Model S-120 SW receiver Schematic and instruction manual Clayton B Burton. Jr. 1141 Maple Forest Dr. Clearwater. FL 33516

Filben Model EP300 juke box Need schematics. operating manual and parts list. Tony Colera. 676 : Mineral Dr San Diego. CA 92119.

United Scientific Labs. Model CB 7000 Contact 23 CB receiver Schematic and other technical data available William H. Pierce Box 1827. Key Largo. FL 33037

Friden Model 132 calculator Service manual needed Tom Kitz 648 Ceape Ave. Oshkosh WI 54901

Franklin Electronics Model 500 tube-type digital multimeter Schematic and or service manual Steve Sekei 708 Edward St. St Marys. OH 45885

Aycom Model 2174 A 610 frequency selective voltmeter and Bytrex HYT 140.15 variable power supply Schematics for both models needed Andy Fogt. R 1. Rushyl vania. OH 43347

International Crystal Executive Model CTZ-5B CB radio Need operating manual and source of power transtormer David A Simmons. Box 27. Convoy OH 45832

Eico Model 221 VTVM. Calıbration data and schematic Fred P Aquirre. 3509 S Margo. Tempe. AZ 85282

Hammarlund 400 Super-Pro 4 -band receiver Scnematic and/or service manual R Fabris 3626 Morrie Dr.. San Jose CA 95127
nternational Crystal Executive Model No. 750 CB transceiver Any avalable information Stephen D Rohrman OE Division. USS Blue Ridge Lcc-19. FPO. San Francisco CA 96601

Knight Model Kg 635 oscilloscope. Schematic andor construction manual Ron Molland, 58 Princess Margare Blvd Islington. Ontario, Canada M9A 2A1

National Model NC. 33 4-band receiver Schematıc and parts source RL. Kirkland. 1102 S Railroad. McKinney TX 75069

Out-Dated Switchboard of any kind needed Randall Durham, 704 Greensiake Rd.. Rossville. GA 30741

Signal Corps. BC-221-AK (125-20.000KC) frequency me ter Maintenance and operating manuals needed S.E Stokes. 26006 Crenshaw Bivd.. \#115-B. Torrance, CA 90505.

Polarad Model LSA spectrum analyzer Need schematics and operating manual M Parris. Depi of Chemistry Carleton University Ottawa 1 Canada

Brunswick Mode BR60 (No 278302) phonograph. Need hand crank handie Brunswick-Radiola Model AR-813 superneterodyne 220-550 meters Source of chassis parts and any other information avallable. Howard S Blasczyk. 2115 Westover Dr. Palatka. Fl. 32077

Atwater-Kent Mode! No. 37 radio Schematic needed Louis Hammond, 348 New Brookiyn Rd. Sicklerville, NJ 08081

BONUS—With your subscription you will be automatically enrolled as a member in America's largest home computing society entitling you to participate in group purchase plans, saving many $\mathbf{S S}$ on components, equipment, and systems, access to software program libraries and national and local meetings.
Twelve monthly issues of SCCS INTERFACE and membership in the SOUTHERN CALIFORNIA COMPUTER SOCIETY al! for only $\mathbf{\$ 1 0 . 0 0}$. Don't delayAct today.
 Enclose this coupon in an envelope with $\$ 10.00$ (check, cash or money
order) for one full year of SCCS Interface puslished monthly and membership in SCCS
Be sure to complete this card and sign with your remittance. An $\$ 8.00$ NAME

ADDRESS
\square Home \square Office

GNED
ATE

For your convenience we will accept a reader service card properly filled out (located at back interface at address listed above

SCCS INTERFACE

is a must for the electronic hobbiest then and edited expressly for this exciting and dynamic new hobby sweeping the nation. Articles that not only tell you how, but show you how.

Each issue contains projects, programs, and games such as Star Trek, Moon Lander, Las Vegas Gambling, and many, many more.

- Learn how to turn your TV set into a new dimension for home entertainment.
- Control your CB or Ham rig from your own computer.
- Invent new games and do your own research.

MICROPROCESSOR

3 -

By Forrest M. Mims

APPLICATIONS FOR THE TTL NAND GATE

BECAUSE they have so many complex applications, digital IC's may intimidate some electronics hobbyists. Impressive microphotographs of tiny silicon chips, complicated schematics, and a unique vocabulary sometimes combine to discourage both electronic novices and old hands.

This month we're going to expose the myth that digital IC's possess mysterious, even magical abilities by building several practical circuits from one of the simplest digital logic circuits, the NAND gate.
As most of you probably know, the gate is a circuit with two or more inputs and one output. A signal will appear at the output only if the appropriate combination of signals is present at the inputs.

The three basic logic gates are the AND, OR, and NOT circuits. The AND gate will provide an output signal only if an input signal is present at each of its inputs. The OR gate will provide an output signal only if an input signal is present at either or both of its inputs. whic reverses the phase of an input signal. Two compound circuits made by connecting an inverter to the output of an AND gate and OR gate are the NAND gate and NOR gate.

The logic symbols for each of the gates as well as their truth tables are shown in Fig. 1. Since a single gate usually has a couple of transistors plus a few resistors, the gate symbol
greatly simplifies circuit diagrams. The truth table is simply a list of the output signals which result from various combinations of input signals. (For more details on digital logic, gates, and truth tables, see the "Basic Digital Logic Course," Parts 1 and 2, in the October and November 1974 issues of Popular Electronics.)

So you can see just how versatile and easy to use gates can be, let's assemble three versions of one of the most important circuits in electronics, the multivibrator. We will use only two of the gates in a TTL 7400 quad NAND gate (Fig. 2). The multivibrator is a two-state circuit, and each circuit will include one or two LED's to indicate

Fig. 2. The 7400 pin layout.
which logic state the circuit is in. Incidentally, if you've gotten this far, but still have reservations about working with digital IC's, maybe this fact will turn you on: The 7400 is available for well under a nickel per gate from most of the dealers who advertise in the back of this magazine!

One-Shot. The first circuit is the monostable multivibrator shown in

A	B	OUT
0	0	0
0	1	0
1	0	0
1	1	1

A	$O U T$
0	1
1	0

Fig. 3. Sometimes called a one-shot or single-shot, this useful circuit supplies a stable and predictable output pulse each time it receives an input signal, and this operating feature gives rise to several important applications.

Have you ever pressed a single digit key on a calculator and obtained a string of identical digits? This common phenomenon is usually the result of contact bounce in the calculator keyboard. A mechanical switch does not turn a circuit on or off in one clean operation since rough contact sur-

Fig. 3. Monostable multivibrator.
faces, pressure differences, wear, humidity, and dust interfere to produce a burst of on-off pulses each time the switch is actuated. A digital circuit will respond to each of these bounceinduced pulses as separate signals.

The one-shot circuit conveniently eliminates the bounce problem by providing a single, uniform pulse each time a mechanical switch connected to it is pressed. By adjusting the oneshot's pulse width to last longer than the bounce time, the bounce effects are completely eliminated.
Another important application for the one-shot is frequency division. Since you can adjust the one-shot for a variety of pulse widths by simply changing the value of its capacitor, you can block equal intervals of pulses in a pulse train. This application has uses in frequency generation and electronic music.

Flip-Flop. The second NAND gate circuit is the bistable multivibrator or, as it is more commonly known, flipflop. The flip-flop can be switched back and forth between its two states by means of an input signal. This fea-

Fig. 1. The five gates and their truth tables.
ture makes possible numerous applications including shift registers, memories, dividers, and counters. For example, the popular TTL 7490 de-

Fig. 4. Flip-ftop circuit.
cade counter consists of four flipflops on a single chip.

You can breadboard ihe flip-flop (Fig. 4) in just a few minutes since only three external components are required. When you first apply power to the circuit, one of the LED's will glow. By using the switch to ground first one and then the other input lead, the two LED's will alternately switch on and off as the circuit "flip-flops."

The one-shot has only one stable state, and it quickly resumes that state after each time it is called upon to supply an output pulse. But the flipflop "remembers" the last input signal by keeping the appropriate LED on until the second input is activated or power is removed from the circuit. This operating principle is the basis for the memory, shift register, and counter applications for flip-flops.

Astable Multivibrator. The third NAND gate circuit is the astable multivibrator shown in Fig. 5. This circuit is a free-running multivibrator which oscillates back and forth between its two permissible states automatically. Two LED's are used to show when the circuit changes state, but they are effective only when the multivibrator operates at a frequency below about 18 Hz . The human eye does not respond to a flicker rate any faster than this.

The circuit's period of oscillation is determined by capacitors C1 and C2 and a value of about $50 \mu \mathrm{~F}$ each will give you a rate of one or two flashes per second-and an inexpensive "quick-and-dirty" dual flasher with lots of attention-getting applications.

Smaller values for C1 and C2 will give you much faster flash rates, but you won't be able to see them. Here are some flash rates I measured with a frequency counter for two capacitor sizes:

	Power Supply	Frequency
Capacitance	Sup	
$0.001 \mu \mathrm{~F}$	4.5 volts	92.4 kHz
$0.001 \mu \mathrm{~F}$	5.0 volts	165.0 kHz
0.1	$\mu \mathrm{~F}$	4.5 volts
0.1	9 F	50.0 volts
	1610.0 Hz	

As you can see, gates are not all that complicated, and they can be used to build some simple but useful circuits. By assembling and experimenting with these circuits, you'll be well on the way to understanding many of the more advanced digital construction projects which appear each month in

Popular Electronics. Remember, if it's a digital project its operation is almost entirely dependent upon the gate!
\diamond

I've narrowed down the problem. It's either a fuse or something else."

save on gas! save on tune-ups! save on maintenance!

Electronic ignition is "IN"! So says Detroit.
Update your car with either a TIGER CD or a TIGER I breakerless system.

Enjoy the benefits of better gas mileage, quicker starting, elimination of tune-ups, 50,000 miles on points and plugs, and reduced maintenance expenses.

TIGER MAX CD	$\$ 69.95$
TIGER 500 CD	59.95
TIGER SST CD	42.95
SIMPLIKIT CD	31.95
TIGER I	45.95

Postpaid U.S.A. oniy.

TrīStar Corporation

Dept. ZZ, P.O. Box 1727
Grand Junction, Colorado 81501 CIRCLE H0. 60 OM FREE IMF ORMATIOM CARD

Our volume buying power enables us to pass the savings on to you. Listen to us ... You can't go wrong.

ELECTRONICS MARKET PLACE

NON-DISPLAY CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.00$ per word (including name and address) Minımum order $\$ 30.00$ Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount; 5% for 6 months: 10% for 12 months paid in advance. READER RATE: For individuals with a personal tem to buy or sell, $\$ 120$ per word (including name and address.) No minımum! Payment must accompany copy DISPLAY CLASSIFIED: 1^{\prime} by 1 column ($21 / 4^{\prime \prime}$ wide) , $\$ 230.00 .2^{\prime \prime}$ by 1 column. $\$ 460.00 \quad 3^{\prime \prime}$ by 1 Column, $\$ 690.00$. Advertiser to supply film positives For frequency rates. please inquire
GENERAL INFORMATION: First word in all ads set in caps at no extra charge All copy subject to publisher's approval All advertısers using Post Office Boxes in their addiesses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications Ads are not acknowledged They will appear in first issue to go to press after closing date Closing Date 1st of the 2nd month preceding cover date (for example. March issue closes January ist. Send order and remittance to POPULAR ELECTRONICS. One Park Avenue, New York. New York 10016. Attention Hal Cymes

FOR SALE

FREE Bargain Catalog $1 \mathrm{C} \mathbf{s}$. LED's, readouts, fiber oplics. calculators parts \& kits. semiconductors. parts Polv Praks Box 942PE Lynnfipld Mass 01940

GOVERNMENT Supplus Receivers riansmitters Meshna. Nahant. Mass 01908

ELECTRONIC PARTS, semiconductors. kits FREE FLYER Large catalog $\$ 100$ deposit BIGELOW ELECTRONICS Bluftinn Oho 45817

ACE OF THE MONTH SPECIALS

Kynar solid silver. plated wire wrap wire 30 AWG Blue Or Yellow 1000 FT SPOOL 995 26 AWG Red or Black 1000 FT. SPOOL 10.9.

kevooard encoder
PRINTED CIRCUIT BOARD G. 10 .

PRINTED CIRCUIT BOA l 16 thick, unetched clad 1 oz. 2 sides	$\begin{aligned} & \text { D G. } 10 . \\ & \text { copper } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & 3 \times 8^{\prime \prime} \\ & 4 \times 12^{\prime} \\ & 8 \times 8^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{cc} 1 & 10 \\ .50 & 2 . \\ 1.00 & 50 \\ \hline & 9 . \end{array}$	100 19.95 90 39.95 $\mathbf{5 9 . 7 5}$
SEMICONDUCTOR	10	100	1000	10,000
!N753A	2.40	19.00		
1N9148		6.98	60.00	
IN966	2.50	19.95		
IN4448		5.60	48.00	394.45
S213709 - \|N749A	1.95	14.95	99.95	250.00
2N3640	2.50	19.95	150.00	
2N930	2.50	19.95	150.00	
MPS3704	2.00	12.50	99.95	750.00
2N3705	1.75	9.95	75.00	
MPS3904	2.94	24.95	175.00	
SN7400N	1.50	12.50	99.95	
SN74121N	4.50	39.95	250.00	
SN74165N	12.50	99.95	750.00	
SN74S251N	19.95	175.00	950.00	

6' 2 CONDUCTOR 18 GA

monnet
 \qquad

.00 Mates with Recesel TV type plug 10 For $\$ 1$ AROUGHS PAMAPLEX II 12 DIGIT with socket SLIDE SWITCH ASSORTMENT KEYBOARD ASSORTMENT

5 fo ALCULATOR \& COMPUTER 5 for $\$ 9.95$ All neve first quality DSSORTMENT
$\underset{\substack{\text { include } \\ \text { thes } \\ \text { thatu }}}{\substack{\text { and }}}$ \qquad
,
200 Prime
ELECTROL YTIC ASSORTMENT SSOS

KEME T CK06BX 104K

 $100-.34 \quad 1.49-.90 \quad 50.99-.48$

ELECTRONIC PARTS TWX 910-881-2411 5400 MITCHELLDALE B-8 HOUSTON, TEXAS 77092			$\begin{aligned} & 100 \text { for } \$ \$ 9.95 \\ & 1000 \text { for } \$ 595.00 \end{aligned}$	
		dents ang 5% sales tan Canadaand Mexiko $\$ 2.50$ overseas countries add $\$ 5.00$.		

LOWEST Prices Electronic Parts Confidential Catalog Free KNAPP. 3174 8th Ave SW. Largo, Fla 33540 RADIO TV Tubes- 36 cenis each Send for free catalog Comell 4213 University. San Diego. Calif 92105
 Science Fair Students Construction plans-Complete, including drawings. schematics. parts list with prices and sources Robot Man - Psychedelic shows Lasers Emotion/Lie Detector Touch Tone Dial - Quadraphonic Adapter Transistorized ignition Burglar Alarm Sound Meter over 60 thems Send 50 cents coin (no stamps) for complete catalog Technical Writers Group. Box 5994. University Station. Raleıh. NC 27607
METERS - Surplus, new, used, panel or portable Send for list. Hanchett. Box 5577. Riverside. CA 92507 MECHANICAL ELECTRONIC devices catalog 10 cents Greatest Values - Lowest Prices Fertiks. 5249 " D . Philadelphia. Pa 19120
SOUND SYNTHESIZER KITS -Surt $\$ 1295$. Wind $\$ 12.95$. Wind Chimes $\$ 1795$. Electronic Songbira \$6.95. Musical Accessories many more Catalog tree PAIA Electronics. Box J14359. OklanomaCity. OK 73114
BUGGED?n) New locator finds them fast Write. Clifton. 11500-L NW 7th Avenue. Miamı. Florida 33168

YOU WILL SAVE BIG MO्NEY Surplus, Clearouts Bankruptcy Inventory. Deats Catalog \$1 (redeemable) ETCOA Electronics Box 741 Montreal. H3C. 2V2 US inquiries
TELEPHONE "BUGGED ? DOn t be watergaled Counter. measures Brochure $\$ 100$. NEGEYE LABORATORIES Drawer 547. Pennsboro, W VA 26415
HEAR POLICEIFIRE DISpatchers' Catalog shows exctusive directores of contidential channels. scanners Send postage stamp Communications. Box 56.PE. Commack. NY 11725
$\overline{C D}$ IGNITIONS. VHFIUHF $\overline{\text { monitors. }}$ - crystals. CB radios Southland. Box 3591 -B Baytown. Texas 77520
SURPRISE' Buld inexpensively the most Unusual Test instruments. Futuristic Gadgets using Numerica Readouts' Catalogue Free! GBS. Box 100A. Green Bank West Virginia 24944
IELEPHONES UNLIMITED. equipment. supplies Catalog 50 cents Box 1654 E . Costa Mesa, Calit. 92626. UNSCRAMBLERS FIts any scanner or monitor easily ad susts to all scrambled frequencies Only 4" square \$29 95 fully guaranteed Dealer inquiries welcomed $P D Q$ Electronics. Box 841. North Little Rock. Arkansas 72115 SURPRISE: SURPRISE' Digital Piano Tuning Device tunes musical instruments Accurately' Perfectly' Inexpensively' Construction-Instruction-Plans Complete $\$ 12.95$ Airmailed Postpaid Moonlighting quickly repays $\$ 40$ electronics investment! GRS Box 100P. Green Bank. West Virginia 24944
$\overline{R E C O N D I T I O N E D ~ T e s t ~ E q u i p m e n t . ~ \$ o ~} 50$ for cataiog Watter's Test Equipment, 2697 Nickel. San Pablo. CA 94806
FREE glant bargain electronic catalog listing thousands of components, tubes, transistors. IC's. kits, test equipment EDLIE'S. 2700 -PD Hempstead Tpke. Levittown. N Y. 11756

POLICE, Fire monitors, scanners, crystals. CB Transceivers. New Crystal-dess scanners Discount priced Box 19224, Denver. CO 80219
TELETYPE EQUIPMENT for sale for beginners and exper ienced computer enthusiast Teletype machines. parts supplies Catalogue $\$ 100$ to ATLANTIC SALES. 3730 Nautlus Ave.. Brooklyn. NY 11224 tel (212) 372-0349

- DY - TV BUY 'EM FROM THE "BARREL" AND SAVE! 100'S OF BARRELS PURCHASED!					NEVER BEFORE! EM-N- EMIC'S $\begin{aligned} & \text { Order by cat No. } \\ & \text { and Type No. }\end{aligned}$ 7400 SERIES 	
barrel kit \#1 75 for $\$ 1.98$ \qquad Cat.No.6E2415 Untested						
		$\begin{aligned} & 50 \text { for } \\ & \$ 1.98 \end{aligned}$				
		60 for \$1.98 Cat.No. GE 2597100% good.			PARREL KIT: 226 TRANSISTORS 100 for $\$ 1.98$ \qquad	250 for $\$ 1.98$
	BARREL MBT \#3 WiTM A HOLE 50 for $\$ 1$. Cat. No. GE 2610 Cinn't manus fuct buyght harrels ir	BARREL KIT \#\# 40 for $\$ 1.98$ 100% gaod dem. Yortr Cat.No GE 2613		\qquad 1 KV Cat. No. GE 2615		
\qquad					 30 for $\$ 1.98$ Cht.No. GE 2726100%	
						$\$ 1.98$
	BARREL KIT 777 TRANSISTORS 40 for $\$ 1.987 m$ Cat.Mo.EE 2742 Unessterl.					
	10 for $\$ 1.98$ 					
						\qquad
BARREL KI 50 for $\$ 1.98$ // UNISNLIFVAHLE! TO-T2 HASPIe:SCRS in barrels... rv, GE3135 up thru 200						
			Cat. No. 613257		$\mathrm{A}_{\text {ELD, MASS. }}^{-56.00} S^{2}$	AY REE mer

4.1/2"X6.1/2" SINGLE StDED EPOXY BOARD $1 / 16^{\prime \prime}$ thick, unetched
BOARD $1 / 16^{\prime \prime}$ thick. unetened $\$ 50$ ea. VECTOR BOARD 1 SPACING

Silicon Power Rectifiers

REGULATED MODULAR POWER SUPPLIES
-15 VOC AT
 $\frac{2 \mathrm{VDC}}{2} \mathrm{AT} .54$. $\frac{2518 \mathrm{HE} \times 32 \mathrm{BiT} \text { SA }}{\text { SILLCON SOLAA }}$

VIDEO CAMERA KIT F8 MICROPROCESSOR KIT

A UNIQUE ALL SOLID STATE CAMERA KIT FEATURING A ... 100×100 BIT SELF SCANNING CHARGED COUPLED DEVICE

WE'VE GOT THE F8 MICFOPROCESSOR KIT, ONE
OF THE MOST ADVANCED MCU SYSTEMS ON THE MARKET TODAY FOR ONLY $\$ 159.00$


```
We.moply, CPU
```


EXPANOER BOARD

expontion to twill memary cspobilitr

TRANSISTOR SPECIALS	
2 N 3772 NPN Si TO-3	\$ 1.80
2N4901 PNP Si TO-3	\$ 85
2N5086 PNP SI TO-92	4/\$ 100
2N4898 PNP TO 66	\$. 60
2N404 PNP GE TO. 5	5/\$ 1.00
2N3919 NPN Si T0.3 FF	FF . . . \$ 1.50
MPSA 12 NPN Si TO-92	2 . $3 / 51.00$
2N3767 NPN SI TO. 66	\$ 70
2N2222 NPN Si TO-18	5/\$ 1.00
2N3055 NPN Si TO-3	\$. 80
2N3904 NPN Si TO-92	5/\$ 1.00
2N3906 PNP Si TO. 92	5/\$1.00
2N5296 NPN Si TO-220	0 \$ \$ 50^{5}
2N6109 PNP Si TO-220 \$. 55
2N3866 NPN Si TO-5	\$ 75
2 N 3638 NPN Si TO-5	5/5 9.00
2N6517 NPN TO. 92 Si	3/\$ 1.00
TANTULUM CAPACITORS	
22UF 35V 5/\$1.00 6.	6.8UF $35 \mathrm{~V} 3 / \$ 1.00$
47UF 35V 5/\$1.00 33	33UF 25 V \$ \$.40
.68UF 35V 5/\$1.00 30	30UF 6V 5/\$1.00
IUF 35V 5/Si.00 150	150UF 20V \$. 50
4.7UF $35 \mathrm{~V} 4 / 51.00$	
$\frac{\text { CT } 7001 \text { ALARM CLOCK CHIP } \$ 5.75}{\text { FPA 711.7 LE VEL Diode Array Optica! }}$	
Tape Readers	
NATIONAL MOS DEVICES MM1 402-3.20 MM5057-4.00	
MM1403-3.20	MM5058 4.95
MM1 404-2.50	MM5060-4.95
MM5013-7.75	MM5061-4.30
MM5016-3.50	MM5555-6.25
MM5017-4.75	MM5556-6.25
MM5055-4.00	MM5210-1.95
MM5056-4.00	MM5260-2.95
TTL IC SERIES	
74L00-. 30	7483-90
7400-. 18	7485-1.05
7401-. 18	7486-. 45
7402-. 1 B	7489-1.80
7403-. 18	7490-60
7404-. 22	7491-. 79
7405-. 22	7492-. 60
7406-. 35	7493-. 60
7407- 33	7494-. 80
7408- . 22	7495-. 85
7409-. 25	7496-. 79
7410-. 18	74107-. 34
7411-. 25	74121-. 50
7412-. 30	74123-85
7413-60	74125-. 70
7414-1.45	74126-. 90
7416-. 33	74150-1.00
7417-. 33	74151-. 90
7420-. 18	74153-. 79
7425-. 35	74154-1.40
7426-. 35	74155-1.40
3427-. 35	74157-. 75
7430-. 18	74:61-1.20
7432-. 24	74164-1.50
7437-. 35	74165-1.50
7438-. 35	74173-1.35
7440-. 18	74175-. 95
7441-. 95	74177-1.00
7442-. 70	74180-1.05
7445-. 85	74181-2.30
7446-1.00	74191-1.50
7447-. 87	74192-1.10
7448-1.00	74193-1.25
7472-. 35	74194-1.25
7473-. 40	74195-. 74
7474-. 40	74196-1.20
7475-. 60	75324-1.75
7476-40	75491-. 80
7480-. 48	75492-80
ALCOMINIATURE TOGGLE SWITCHES	
MTA 206 DPDT $\$ 1.70$	

build that electronic organ you always WANTED AT A PRICE YOU CAN AFFORD. Third edition of "Organ Builder's Guide." pictured product kit line. circults biock diagrams. design rationale using IC divider and independent generators with diode keying $\$ 3.00$ post paid. Also. tree brochure on keyboards DEVTRONIX ORGAN PRODUCTS. Dept. C. 5872 Amapola Dr. San Jose. CA 95129
JAPANESE TRANSISTORS. all transistors original factory made Free catalog West Pacific Electronics. PO. Box 25837. W Los Angeles. CA 90025

IC BONANZA

 SCANNING CHARGED COUPLED $\$ 125.00$
DEVISE
SANKEN AUDIO POWER AMPS
SANKEN AUDIO POWER AMPS Si 1010 G 10 WATTS
Si 1020 G 20 WATTS

Si 1050 俍 Si 1050 G 50 WATTS - LINEAR CIRCUITS | $\$ 13.95$ |
| :--- |
| $\$ 24.95$ | LM 309 K 5 V 1A REGULATOR $723-40+40 V V$ REGULATOR $301 / 748$. H1 Per. Op. Amp.

$320 \mathrm{~T} 5,12,15$ OR 24 V
$\$ 1$
$\$$
$\$$
$\$ 1.00$
$\$.54$
$\$.35$

NEGATIVEREG. 741 ol $741 C$ OP AMP.

709 C OPER. AMP
307 OP AMP
307 OP AMP
CA 3047 HI Pel Op Amp 340T 5, 6. 8, 12.15, 18. 24 V POS

REG. TO-220
101 OPER. AMP. HI PERFORM
LM 308 Oper. Amp. Low Pewe 556 - DUAL TIMER
537 - PRECISION 540 - 70 PR POWION OP AMP LM 3900 WER DRIVE. LM 324 - QUAD 741
5601 560 - PHASE LOCK LOO
561 PHASE LOCK LOO
565 565 - PHASE LOCK LOO
566 FUNCTION GEN.
567 -TONE DECODE LM 1310 N FM SIEREO DEMOD. 8038 IC VOLTAGE CONT. OSC $555-2 \mu \mathrm{~s}-2$ HR. TIMEH
553 QUAD
FCD FCD 810 OPTO-ISOL
1458 DUAL OP AMP LM 380 - 2W AUDIO AMP. LM 377-2W Stereo Audio Amp
LM 381 STEREO PREAMP LM 381 - STEREO PREAMP

LM 382 - DUAL AUDIO PR | LM 311 - HI PER. COMPARATOR | $\$ 125$ |
| :--- | :--- |
| LM 319 - DUaI H. Speed Comp | $\$ 1.95$ |
| LM 339 - QUAD COMPARATOR | $\$ 1.40$ |

$\frac{100}{200}$
400

 Send 25 tor our catalog fatiuring
Transistors and Fecttiers
145 Hampshire St., Cambridge, Mas

SOLID STATE SALES
 P.O. BOX 74A

WE SHIP OVER 95% OF OUR ORDERS THE DAY WE RECEIVE THEM

CB RADIO. Scanners. Antennas. The best for less. Free List. Capitol Sound. Box 3523. Des MOrnes. Iowa 50322. YOU WANT TO BUILD IT: WE WANT TO HELP WE SELL CONSTRUCTION PLANS with an Engineering Service. TELEPHONE: Answering Machines. Speakerphones, Carphones. Phonevision. Touch Button Dialers. TELEVISIONVTR. 1 . Color TV Set. PONG. $\$ 25.00$ Camera. COLOR PROJECTION TV. HOBBYIST: Electron Microscope. $\$ 75$ software programmable computer. BROADCAST Special Effects Generator. Chroma Key. Audıo Board. DA's. COURSES: Telephone Engineering $\$ 5200$. Detective Electronics $\$ 29.50$. IC Engineering $\$ 65.00$. PLUS MUCH MORE. NEW Super Hoboy Catalog PLUS year's subscription to Electronic News Letter AIR MAILED \$1.00. Don Brition Enterprises, 6200 Wilshire Blvd.. Los Angeles, Calit. 90048.
SEMICONDUCTOR AND PARTS Catalogue from the semi. conductor specialisis. J \& J Electronics. Box 1437. Winnipeg, Manitoba. Canada. U.S. Inquiries.
ELECTRONIC ignition: Pointless, Transistor, Capacitor. Vapor inductors. Auburn Sparkplugs. Information 10 cents. Anderson Engineering. Epsom. N.H. 03234.
DESCRAMBLERS: Several Protessional Models that work with all Scanners. Tone Encoders/Decoders, Scanmate. AAPP. Radar Detectors. Big Ears. Alarms. Books. Kits, parts. Catalog 25 cents: KRYSTAL KITS. Box 445 . Bentonville. Ark. 72712.

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'fl never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

CARBON FILM RESISTORS. Brand new as low as 1.7 cents. Discounts of 20%. Prompt delivery. FREE samples/specifications. COMPONENTS CENTER. Box 134P. N.Y.. N.Y 10038.
KEYBOARDS, for synthesizers. organs. Three octave, $\$ 65$. Info for intertacing with Gnome Vicro-synthesizer. Brinkwood Electronics, Box 26 , Sandy Spring. MD 20860.

CANADAS LOWEST PRICED MAIL ORDER SUPPLIER

 CANADAS Lecifiers, LEDS, TTL CMOS, Linears; Transistors. .

For camplete cotalogue, send 254 for hondling, or a
stamped, self-addressed, 9×12 ervalope to PO Bon 181 , stamped, self-oddressed, 9×12 ervelope
Station ' G ' Toronto, Ontario. M4M $3 G 7$
liometiss limind
WHOLESALE C B. Scanners. Antennas. Catalog 25 cents. Crystals Special cut. $\$ 495$. Monitor $\$ 395$. Send make. model, irequency G. Enterpises Box 461P. Clearfield. UT 84015.

COMPUTER HOBBYISTS! Bargain hunt and sell via ON_LINE. 18 issues/year - $\$ 3.75$. Free Sample. ON_LINE. 24695 Santa Cruz Hwy Los Gatos. CA 95030.

50W RMS from your CB P.A. or car stereo - No modificalions to set - Schematıcs $\$ 3.00$ ppd. Solar Electronics Enterprises. Box 778, Edmonton. Alberta, Canada T5J 2 L4. U. S. Inquiries.

UNIVERSAL TTLIDTL/CMOS IC TESTER. Tests $16 / 14$ pin ICs! Illustrated Info/Plans: $\$ 2.00$. NORTHSTAR ENGINEERING. 3617 NORTHCREDE DRIVE. CHARLESTON. WV 25302.

POLICE CODE UNSCRAMBLERS. FIts all scanners. Salisfaction Guaranteed. Jim's Two-Way. Box 275, Hot Springs. Ark. 71901.
TV CAMERAS $\$ 125$ (new): Cartrivision front panels $\$ 12$. five heads $\$ 12$. Robert Allen, 124 Lundy Lane, Palo Alto Calitornia 94306.

DELTA ELECTRONICS CO.
P.O. BOX 2, AMESBURY, MASS. 01913 Phone (617) 388.4705

ELECTRONIC TIMER

(. 5 sec to 120 sec)

A sophisticated timer used by a large camera maker for timing "Instant Pictures". Range about .5 sec to 2 min ., adjustable with variable control. Operates from $3 v$ source. Elapsed time is indicated bt a small incandescent bulb, which goes on when the timer is started, off at end of time. The bulb could be replaced by a sensitive reed relay or SCR to control other equipment. Useful for all kinds of timing, security devices, etc. $2^{\prime \prime} \times 2^{\prime \prime}$. All units tested before shipping
STOCK NO. P6312
\$1.75 each, 4/6.00

HONEYWELL HUMIDITY CONTROLLER

Made by HONEYWELL for automatic control of humidifiers or de-humidifiers. Control range 10% RH to 60% RH, sensing by 240 v AC contacts. Ideal for home lab, or greenhouse. $31 / 2 \times 21 / 4 \times 11 / 4$. STOCK NO. P6263 1 lb.
$\$ 4.95$ each, $3 / 14.00$

VERSATILE POWER TRANSFORMER

This versatile power transformer has a primary tapped for 115 V or 230 v operation, and 4 secondaries: $34 v$ CT @ 3 amps, $17 v @$ 4 amps, 11v @ 5 amps, and $6.3 \mathrm{v} @ 1.5 \mathrm{amps}$. Ideal for a +5 v , 5 amps, + and -15 v supply for general lab use or computer supply, or for a stereo amplifier. $33^{3 / 4^{\prime \prime}} \times 4 \frac{1}{2^{\prime \prime}} \times 4 \frac{1}{2^{\prime \prime}}$. Shipping weight 10 lbs . STOCK NO. P9397
\$12.95 each, 2/24.00
Send for our latest free catalog. BANKAMERICARD and MASTERCHARGE welcome: we must have ALL numbers on the card for processing. Include sufficient postage (2 lbs min): excess will be refunded. Minimum order $\$ 5$. Phone orders OK.

SAVE ELECTRIC POWER!

Save up to 80% electrical power with this unique.
inexpensive, portable, permanent and legal method applicable tor shops, homes, factories businesses farms, sites. 100% Refund Guaranteed if not scien. tifically sound or if it employs gimmicks.
information $\$ 1.00$
CONSUMERTRONICS CO.
P.0. Box 542 E

Ala mogordo, N.M. 88310

RADIO REMOTE CONTROLS. Door Openers. Alarms etc Receivers $\$ 29.95$: Transmitters $\$ 13.95$. Chasco, 9124 Tripp. Skokie. Illinoıs 60076. ELECTRONIC IGNITIONS - Mark 10B - $\$ 3695$. Tri-Star: SST - \$28.95. 500-\$33.95. Fire-Smoke Detector $\$ 29.95$. Pace CB $133 \$ 99.95$. SBE 23 CB $\$ 72.95$ G.E.E. Sales. 12525 SE 188 PI., Renton. WA 98055
COMPUTER 8 BIT Complete (assembled) $\$ 198.00$ Details \$1 00. Refundable Nibot Enterprises. Box 2103. Escondido. CA 92025
SUPREME Television-Radio Diagram Servicing manuals discounted 50%. Intormation. Supreme Publications. 1760 Balsam. Hightand Park. Illinois 60035.

LOADS OF JUNE GOODIES - 1001% precision resis tors $/ \$ 1-100$ mica capacitors $/ \$ 1-1 / 4 \mathrm{lb}$. semiconductors $\$ 1-75 \quad 1 / 2 \mathrm{~W}$ carbon resistors/\$1-DL 707/95 cents 7400, 7402/10 cents - transistors, IC's, zeners, optoelec tronics, pots, pilot lamps, solar cells, kits, assortments WOW: Catalog 25 cents. DIAMONDBACK ENGINEERING. PO Box 194, Spring Valley, III. 61362.
YOUR CB HANDLE and sign engraved Woodgrain color 1×3' panel. \$1.75. 2/\$3. Reelway. Box 793-E. Mattoon Illinois 61938.
ALTAIR 8800 Assembled and working for sale. W/4k RAM +1 k board w/256 bytes W/BASIC and assembler. Home built cabinet and power supply. $\$ 700$ or best offer. Charles Skeidon. 5753 27th Ave.. So., Mpls.. Minn. 55417.

Etcetera ercetera

COMPUTER SYSTEM
Multiprocessor design allows $8080 / 0800 \mathrm{FB} / 6502 \mathrm{G}$
olnersto warktoge' her shasememory IKRAM I Proc
essor basic systems with ROM Power Cobinet Disploy
TYY inrertaces under $\$ 500$ Many options Electionic Tool Co.. 4736 W. El Segundo Divd Howthorne CA 90250

EDLIES barcain bonanza

 ONLY HIGHEST QUALITY PRODUCTS
(CPO17) COPPER CLAD BOARDS! Copper on one side, $1 / 16^{\prime \prime}$ thick. Ex cellent quality for either production or experimental work.
B) $4^{\prime \prime} \times 165 / \mathrm{s}^{\prime \prime} 99 \mathrm{c}$ ea. $3 / \$ 2.69$ D) $8^{\prime \prime} \times 165 /{ }^{\prime \prime}$ " $\$ 1.19$ ea. $3 / \$ 2.99$ E) $63 / 8^{\prime \prime} \times 17 / 1 / 2^{\prime \prime} \$ 1.19$ ea. $3 / \$ 2.99$ JUST ARRIVED Copper on both sides. $1 / 16^{\prime \prime}$ thick Size $12^{\prime \prime} \times 18^{\prime \prime}$ \square (CP018) $\$ 1.99$ ea. $3 / \$ 4.99$
\square (CPI34) 8 ROTARY SWITCHES Some multiple gang. $\$ 1.00$
\square (CP128) 13 minaturure elec. TROLYIIC CAPACITORS Axial \& upright, popular values
\square (CP144) TRANSISTOR REPAIR KIT
Various parts used to repair trans. istorized devices.
\square (CP336) T0-3 TRANSISTOR SOCKETS
\square (CP298) 1 WATT ZENERS $60 ¢$ Available in $5 \mathrm{~V}, 9.1 \mathrm{~V}, 12 \mathrm{~V}, 20 \mathrm{~V}$.

- (CP164) 4 ROLLS OF WIRE $\$ 1.00$ Approx 25 ft . per roll, 20.28 ga .
\square (CP140) TAPE RECORDER SPARE PARTS KIT
Parts for repairing most tape record ers: capacitors, meter, pilot lamp. ers. capacitors, meter,
jacks. and MUCH MORE.
\square (CP167) 10 MINIATURE POTENTIOMETERS
[(CP182) 2 MISC. METERS
$\$ 1.00$ Miniature
\square (CP156) 60 DISC CAPACITORS
Asst. from .0001 to 1, most $\$ 1.00 \mathrm{v}$. Z5U. NPO, N750. etc.

THIS MONTH'S SPECIALS! π

LM309K 5 v

- 555 Dimer

556 Function gen

- 567 Tone decoder

741 comp. op amp
21021024 bit RAM
$\square 8038$ volt cont osc CLOCK CHIPS WITH DATA CLOCK CH314) 6 dig clock \square (MM5314) 6 dig clock
\square CT7001 Alarm \& Date LED'S
(CP223) 10 Asst LEDs

20 asst. popular tubes, untested.
\square (CP142) 50 PRECISION
RESISTORS
All $1 \%, 1 / 2 w$ and 1 w . low and high ohmages.
(CP150) 15 HI .FI KNOBS $\quad \$ 1.00$ Every one superb! Purchased from Harmon, Kardon. Fisher, etc.
\square (CP102) CALCULATOR
KEYBOARD
Wild Rover C.1380. Can be used with CT5001. 4 function, clear, clear entry and constant. $7 \mathrm{~cm} \times 9 \mathrm{~cm}$
(CP175) 70 1/2w CARBON RESISTORS
Asst. values. Some 5%.
(CP154) 150 CUT LEAD
RESISTORS
Carbon, a 41 leads long eno $\$ 1.00$ soldering.

\square (CP149) 20 POLYSTYRENE TOP | GRADE CAPACITORS | $\$ 1.00$ |
| :--- | :--- |
| (CP132) 20 DUAL POTS | $\$ 1.00$ |

$\frac{115}{4}$24V. C.T. FILAMENT TRANSTORMER 1/2A (CP202) 99c ea 6 for $\$ 4.99$

MONEY BACK GUARANTEE

Terms: Minimum order $\$ 4.00$. Include postage. Either full payment with order or 20% deposit, balance C.0.D.

BONUS

FREE CAPACITOR KIT With Every $\$ 5$ Purchase \square WRITE FOR FREE 1976 value packed catalog
Listing thousands of compo nents, tubes, transistors, IC's, kits, test equipment.

OSCILLOSCOPES. Signal Generators and other test equipment for sale. Free information. Americ an Calibration Services. Box 8104. Athens, Georgia 30601
PROGRAMMING - Octal Calculator: $\$ 1495$. Hexadecimal Calculator $\$ 3595$ Literature free Radix Precision, Box $13861-\mathrm{PE}$. Attanta. Georgia 30324.

AL TAIR 8800 \& IMSAI 8080 Plug-ins BK Static Memory exceptionally low power fast no wait states or reOctal Encoder IC Sockets Microprocessor Coding Pads low prices ELECTRONIC CONTROL TECH NOLOGY Box 6 Union, NJ 07083
PC BOARDS $\$ 1000$ less than $5 x>{ }^{\prime \prime} 200$ noles $\$ 1500$ less than $8 \times 10 \quad 300$ holes .062 Glass Epoxy Send 2.1 or $1: 1$ artwork turn-around 5 days ARO add $\$ 5.00$ for 24 tir. Check or money order plus $\$ \uparrow .00$ for shipping KNOL ENTERPRISES PO Box 402 San Luis Obispo. CA 93401.
WHY RENT EXTENSION TELEPHONES? Save hundreds of dollars by connecting your own legaliy New FCC ruling eliminates monthly rentals Completely. Detalls $\$ 1.00$ QVTS. Box 29002-R, Queens Village NY 11429
ELECTRONIC Voltage Regulator lor your car Free intor mation. W.J. Prudhomme 1405 Richland Metairie. LA 70001

STOP C B tape deck rip-offs with Shur-Lok Cant be picked or pried Free information Piuitt Enterpises. Box 41P5. Tonopah. Nevada 890.49
T.V. GAMES LSI Chip Plays 8 exciting games with wound and score. One to four piayers flugs straight into your T.V Antenna socket Full constructional Data included Cosi including Postage 1 to 10 Chips $\$ 40$ each. 11 to 50 Chips $\$ 30$: 51 plus on application Orders with Money Order or Cash to Television Sports Lid 6 Half Moon Street. Mayfair London. England WiY 7RA

AUDIO PROGRAM CONTROL CENTER

$\$ 19.95$ PPD USA 10 inputs, 4 out-
puts. Switch TV, Short-Wave, Ham, FM to Stereo Ampli-
fier \& Recorder. POWERCOM CORPORATION Listen \& Record. Box 454 Dept 4 Troy, N. Y. USA 12181
NEW ADJUSTABLE THREE OUTPUT REGULATED POWER SUPPLY. plus 900 paits worth $\$ 90000$ list Solid state CARTRIVISION television recorder electronic unt Schematics, parts cross reference HEATHKIT television transistor substitutions Power CB radios. MICRO PROCESSORS $\$ 1795$ plus 5350 S \& . USA. Free Brochure. MADISON ELECTRONICS COMPANY INCOR-

FREE: Catalog of Audio Equipment Gieat puces on Sansur. Proneer Sony. Akta and more $G L M$ Appliances. Dept $k 82$ East Old Country Road Hicksville. New York 11801
LINEAR AMPLIFIER for C.B. Walke-Talkie Tiny Solid. State Portable Unit produces 100 Wat! PEP from Milli-watts and c an be inserted inside existing unit Build for about $\$ 20$ Send $\$ 5.00$ for plans to: J Martin Peter. PO Box 07071. Milwaukee. Wi 53207

STD. SALES CO.

 P. O. BOX 28810 DALLAS, TEXAS 75228
ALARM CLOCK KIT SIX DIGIT LED

Thousands of hobbyists have bought and built our original clock kit and were completely satisfied. But we have received many requests for an alarm clock kit with the same value and quality that you have come to expect from S.D. So, here it is!
THE KIT INCLUDES:
1 Mostek 50252 Alarm Clock Chip
6 Hewlett Packard . 30 in. common cathode readouts.
15 NPN Driver Transistors
1 Etched and Drilled P.C. Board set
1 Step Down Transformer
2 Switches for time set
2 Slide Switches for alarm set and enable
1 Filter Cap
4 IN 4002 Rectifiers
1 IN914 Diode
1 . 01 Disc Cap
15 Resistors

s16. ${ }^{50}$
 (COMPLETE KIT)

1 Speaker for alarm
1 LED lamp for PM indicator.
Why pay MORE MONEY for our competitor's clock that has LESS DIGITS that are SMALLER in size?
Please take note that we use only first run parts in our kits and include ALL the necessary parts. Not like some of our competitors who use retested readouts and chips or who may not even include switches in their kits.

60 Hz . Crystal Time Base FOR DIGITAL CLOCKS S. D. SALES EXCLUSIVE!

The kit you have been waiting for is here NOW, and at an unbelievable price! Thanks to S.D. Sales you can turn that digital clock of yours into a superbly accurate, DC operated, time piece.

KIT FEATURES:

A. 60 Hz output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS clock chips.
C. Super low power consumption (1.5 Ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of $A C$ line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small size, can be used in existing enclosures.

Kit includes crystal, divider IC, P.C. Board plus all other necessary parts and specs.

ORDERS OVER \$15 CHOOSE \$1 FREE MERCHANDISE

2102 UK RAM's - 8 FOR $\$ 12.95$
New units We bought a load on a super
deal, hence this fantastic price.
Units tested for 500 NS Speed

MOTOROLA RTE IC'S

Brand new, factory prime. Hard to find, but still used in a variety of projects. (See the RTL Cookbook by Howard W. Sams.)

SALE ON CUT LEAD SEMICONDUCTORS Leads were cut for PCB insertion. Still very useable.

N914/1N4148
N4002 1 Amp 100 PIV N4745A 16V 1 W Zener EN2222 NPN Transistor. EN 2907 PNP Transistor 2N3904 NPN Driver Xstr. N 10392 GE Preamp Xs ir

$100 / \$ 2$
$40 / \$ 1$

C103Y SCR. 800 MA . 60V.

20/\$1 ALL NEW.
\$1 UNUSED.
$1 \$ 1$ SOME ARE
$25 / \$ 1$ HOUSE
$251 \$ 1$ HO U $10 / \$ 1$

> SLIDE SWITCH ASSORTMENT Our best seller. Includes miniature and standard sizes, single and multi-Dosition units. All new. first quality, name brand switches. Try one package and you il reorder more. Special - 12 for $\$ 1$ Assonment)

DISC CAP ASSORTMENT
PC leads. At least 10 different
values. Includes 001 01, 05
plus other standard values.

60 FOR $\$ 1$
UPRIGHT ELECTROLYTIC CAPS
$47 \mathrm{mfd} 35 \mathrm{~V}-10 / \$ 168 \mathrm{mfd} 25 \mathrm{~V}-8 / \$ 1$

Brand new by Sprague. PC leads.
RESISTOR ASSORTMENT
$1 / 4 \mathrm{~W} 5 \%$ and 10%. PC leads.
A good mix of values. 200/\$2

FREE Catalog Uitrasonic Devices．LEDS．Transistors． IC＇s．Strobe Lights．UARTS．Memories．Digital Thermo－ meters．Unique Components Chaney s．Box 15431．Lake－ wood．Colo 80215

TV TECHNICIANS．SERVICEMEN．HOBBYISTS－VISta Model 740 Digital Grosshatch Generator Compact crystal divider for lowest－priced ultra－slable 5×7 crosshatch or 56 dot patterns AC powered $\$ 3195$ complete kit：$\$ 41.95$ as－ sembled Postpaid in USA．Canada．Information available tree．Photolume Corporation．Dept PE－66． 118 East 28th free．Photolume Corporation．Dept
Street．New York．New York 10016 ．

TV－GAMES，construction plans Pong series－ 5 game set \＄5．00．big 12 game set $\$ 12.00$ ．Jaws－2 and Space Race－ both games for $\$ 8.00$ ．ANTI－AIRCRAFT $1 \& 2$ both for $\$ 8.00$ ．Full description and specs－$\$ 100$ ．ADVANCED ELECTRONICS PO Box 1128．Cupertino．Calif 95014.
AUDIO POWER Amplifier assemblies 50W－\＄35．100W \＄50．Details 25 cents．Progressive Sound Engineering． 357 Richfield No．16．San Jose，Calif 95129
BURGLAR－PROOF one way slotted chromium plated steel screws，mstall with regular screwdriver price sheets． send 26 cents in stamps．Fastening Products．Box 15 ； Cheltenham，PA 19012

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios．test sets，scopes List 50 cents（com）．Books． 7218 Roanne Drive Washongton． D．C． 20021.
JEEPS．TRUCKS．Typically From $\$ 5240$ Automobiles． Boats．Motorcycles．Airplanes．Oscilloscopes．Tools． Clothing．Sports．Camping．Photographic，Electronics Equipment 200.000 Bid Bargains Nationwide Direct From Government Low as 2 cents un Dotlar！Surplus Catalog and Sales Directory $\$ 100$（refundable first order）． National Surplus Center． 240 Eastcass－PEL，Joliet．IL

60432

GOVERNMENT SURPLUS Buy in your area How．Where Send $\$ 2.00$ Surplus．30177－PE Headquarters Building． Washington．DC 20014
SURPLUS ELECTRONIC EQUIPMENT，government and manufacturers Grab Box Assortment－diverse useful new and used parts，assemblies．etc Carton packed 50 lbs $\$ 6.00$ ； $100 \mathrm{lbs} \$ 10.00$ ．FO B Lima．Send for BIG Free Cata－ 10q＇Fair Radio．Box 1105－E．Lima．Ohio 45802

WORLD＇S SMALLEST RECHARGEABLE CALCULATOR．${ }^{\text {s19．95！}}$

Does Everything Big Ones Do

Small but mighty！8－digit，4－function electronic calculator even has automatic \％key ．．．for only \＄19．95．Take it any－ where．Carry it in your pocket or purse－it＇s $2 / 3$ the size of a pack of cigarettes． This $3^{1 / 2}$－ounce dynamo features floating decimal，constant key，lead zero depres－ sion，clear entry，more！At Edmund＇s low price，the unit comes with a Ni－Cad rechargeable battery pack that can plug into any AC outlet．No need for special recharging adapters．Calculator overall is just $2 \times 31 / 2 \times 9 / 16$ with plenty of room for most fingers．Another Edmund first with advanced technology．\＄19．95
STOCK NO．1945AV．．．．．．Only

STOCK NO．1945AV．．．
ppd．

GIANT FREE

 CATALOG！

 CATALOG！}NEW 172 Pages
Over 4．500 Un－ usual Bargaıns for Hobbyists．
 JUST CHECK COUPON！ EDMUND SCIENTIFIC CO． 300 EDSCORP BUILDING Barrington，N．J． 08007 （609） 547.3488
America＇s Greatest
Science－Optics ．Hobby Mart

COMPLETE AND MAIL COUPON NOW

EDMUND SCIENTIFIC CO． 300 Edscorp Bldg．，Barrington，N．I． 08007

Charge my Master Charge
Interbank No．
Card No
Expiration Date
30－DAY MONEY－BACK GUAR
1 ANTEE．You must be satis．
fied or return any purchase
in 30 days for full refund
\square City

PLANS AND KITS

FREE CATALOGUE KITS. COMPONENTS. Audio equipment. Sinclair Kits, radio parts. Gladstone Electronics. 1736 Avenue RD. Toronto. Canada. M5M 3Y7. US Inquiries.

AMAZING ELECTRONIC PRODUCTS

ELECTRONICS kits for home or schoul project Selec: from over 50 kits Many under $\$ 5.00$ Send $\$ 1.00$ for catalog. Refundable with first order Graymark, 1751 McGaw Ave Dept 50. Irvine. CA 92714
PLANS Convert your Voltmeter into Thermometer. Step-by-Step Instructions. Includes Temperature Transducer (Thermocouple Wire). Only $\$ 3.00$ Dage Scientific Instruments. Box 1054P. Livermore. CA 94550
OVEA 1600 Bass-reflex speaker enctosure designs. Book $\$ 695$ Portco Sound. Box 06365 . Portland. Oregon 97206 EDUCATIONAL KITS Introduction to digita IC's Elec tronic games. Send stamp NBL-E. Box 1115. Richardson Texas 75080
CEers - "TRIPLE YOUR POWER using NEW 46 all-di rectional CB Antenna!!! Plans \$2. Astrobeam-3. 704 Edwards Visalia. CA 93277
NEGATIVE ion generator built at home. |nstructions/sche matics $\$ 5.00$ Golden Enterprises. Box 1282PE. Glendale Arizona 85311

BURGLAR ALARMS

BURGLAR-FIRE alarm supplies and information Free catalog. Protecto Alarm Sales. Box $357-\mathrm{G}$. Birch Run. Michigan 48415

DIALING UNIT

Use this Dialing Unit with a simple tape recorder to make telephone calls auto grammer and dialer. Use with burgar alarm, older persons living alone, etc Model 672 Dialing Unit \$29.95. Free

SIGHT E SOUND SYSTEMS
PHONE $816483-4612$

NOW Avallablet Discount. Protessional, Burglar-Fire Alarm equipment for the Do-it-Yourselfer Catalog 50 cents. Emel Electronics (new address) PE6. Box 146 Shettield. Mass 01257

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure. Pickering. Stanton. Empire Grado and ADC Send tor tree catalog. LYLE CARTRIDGES Dept P Eox 69. Kensington Station. Brooklyn. New York 11218.

WANTED

GOLD. Silver. Platinum Mercury wanted Highest prices paid by refinery Ores assayed Free circular. Mercury Terminat, Norwood. MA 02062

TUBES

RADIO \& TV. Tubes 36 cents each. Send for free Catalog Cornell. 4213 University. San Diego. Callf. 92105 TUBES receiving factory boxed low prices free price list Transleteronic. Inc, 1365 39th Street. Brooklyn. N.Y 11218A. Telephone. 212-633-2800
TUBES "Oldies". Latest Supplies. components, schematics. Catalog Free (stamp appreciated). Steinmetz. 7519PE Maplewood Hammond, Ind 46324.

TAPE AND RECORDERS

RENT 4-Track open reel tapes-free brochure. StereoParti, P.O. Box 7. Fulton. CA 95401
1930-1962 Radio Programs Reels. \$1.00 Hour! Cassettes $\$ 1.00$ Show! Mammoth Catalog \$1.25. AM Treasures Box 192PE. Babvion. N Y. 11702

Same Day Shipment Broad line of IC's and other components at low factory prices. Try us You'll like the quality and service.
\qquad

FREE-Send for your copy of our 1976 Quest Catalog.

IC Update Master Manual
Digital Clock Kit \$12.95

plete with Update service
Money Back Guaranteed

CB SPECHALS-A.F.DAIVERS-R.F. POWER OUTPUTS-FETS

TREASURE FINDERS

TREASURE FINDER locates buried gold. sitver. coins treasures. 6 powerful models. Instant financing available. Write or call for free catalog. Phone (713) 682-2728 day or night. Dealer inquiries invited Relco. Dept AA20. Box 10839. Houston. Texas 77018.

DISCOVER true treasure hunting with worid-famous deepdelecting mineral/metal detectors from White's Locate gold. silver, rings. coins artifacts and more! Sold. serviced. warehoused world wide Priced from $\$ 79.50$. Free Catalog' White's Electronics. Dept. PD6T, 1011 Pleasant Valley Rd. Sweet Home. OR 97386

RUBBER STAMPS

RUBBEA ADDRESS STAMPS Free Catalog. 45 type styles. Jackson's. Dept. K. Brownsville Rd. Mt. Vernon. III 62864. NEW Pocket Case Address STAMPER. $\$ 11.95100 .000 \mathrm{~lm}$ pressions without Re-Inking! 25 Yr . Uncondiliolal Guaranty. NO INK PAD! LEE GARLAND. Box 17056. San Dieqo. CA 92177

musical instruments

UP TO 60\% DISCOUNT Name brand instruments catalog Freeport Music. 114 N. Mahan St., W. Babylon, NY. 11704. WHOLESALE! Protessional Guitars. PA Systems. Altec Speakers. 240 W RMS Amplifiers. Free Catalog. Carvin. Escondido. Calif 92028.
OULCIMERS and other musical kits also completed in strument makers woods. Catalog 50 cents RemBranO Company, R.R.3. Newton lowa 50208

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence mustrated brochure free. Hermes. Berlin 11. Box 110660/ZD Germany

Ph.OS. MASTER'S. BACHELORS - Official nonresident College Degrees easily acquired inrough matorder Universities Complete Reveating Directory - $\$ 2$. Counseling Connection. 5495 Claremont, No BPE. Oakland. CA 94618

 Multiple buses con masily be linked for power and ground distribution diameter. clock lines, shitt command atc. Bases: gold-anodired oluminum. Tarminols: no corrosive nickel-silver. Four rubber feet included.

Popular Electronics

 $\underset{\text { annual }}{1975}$ ITEXHundreds of references to subjects, products. equipment. and technical tips that you know are in the magazine but can never find when you want them-all arranged for fast easy reference.
Prepared in cooperation with the magazine editors, leach of these handy indexes covers a full year (12 issues) and is an in dispensable companion to your magazine collection.

per copy plus $\$.25$ per order for postage and handling.
1972. 73 and 74 indexes also still available at $\$ 1.50$ each or $\$ 5.50$ for the complete set of four (1972 thru 1975).

POPUIAR ELECTRONICS INDEX
Box 2228, Falls Church, Va., 22042

CB-HAM-SWL... they come through loud and clear in the all-new 1976
COMMUNICATIONS HANDBOOK

Here's everything you want to know-need to knowabout Citizens' Band. Amateur Radio, Shortwave Listening, Police-Fire Monitoring, Marine Radio. This vital "how-to" guide will help you get greater value, greater enjoyment out of every minute you spend with your equipment. CITIZEN'S BAND-What it is, how it's used, how to get a low-cost no-test license; new. easier-to-follow rules for legal opera. tion of CB 2 way radios; guides to choosing and operating CB equipment . TWO.WAY RADIO. TELEPHONES FOR PLEASURE CRAFT-.What VHF-FM and SSB marine radio equipment offers; new FCC rules; getting a marine license ... PUBLIC SERVICE BAND-Monitor radios for listening in on police, fire, pilot communications . . . GOVERNMENT PUBLIC SERVICE BROADCASTS . . . OX'ING THE FM BAND-How to get long-distance reception of FM frequencies. . SHORTWAVE 1976-Listening to utility frequencies, including $S A C$ communications; new stations; old stations with super-power; what to expect on all the SW bands . . . HOW TO BECOME A HAM-Includes all the special communication opt ions you have as an amateur. "working' 2 meter FM. fast-scan TV, and space satellites. ONLY $\$ 1.50$! creoresereoresuoreoreorereoren Ziff-Davis Publishing Company
Consumer Service Division.
595 Broadway, New York, N.Y. 10012
PE-676
Please send the 1976 COMMUNICATIONS HANDBOOK. I'm enclosing $\$ 1.85$ ($\$ 1.50$ plus 35 c for post age and handling). Outside U.S.A. $\$ 3.00$, postpaid. Residents of Calif.. Col., Fla., III., Mich., Mo., N.Y. State, D.C. and Tex. add applicable sales tax (postage and handling charges non-taxable).
print name
address
city
state
state

REAL ESTATE

BIG SUMMER CATALOG Free Over 2.600 top values coast to coast! UNITED FARM AGENCY. 612-EP West 47th. Kansas City. MO 64112

RECORDS

RECORD RATERS WANTED' Anyone qualifies. We ship you nationally released LP's to rate. We pay postage and handling You pay nothing for LP's. All you pay is smal membership toe. Applicants accepted "first come basis." Write. EA.R.S., inc . Dept PE. Box 10245. 5521 W. Center Street, Milwaukee. Wisconsin 53210.

SERVICES

CANADIAN CB Mail Order Service, discount prices. Send for List. L. W. Electronics. Box 42, Strathroy. Ontario, Canada. U.S. Inquiries.

INVENTIONS WANTED

INVENTORS: Manufacturers Need New Products. Free "Recommended Procedure," by a creative fee-based invention service company. Washington Inventors Service. 422-T Washington Building. Washington, D. C. 20005.

FREE PAMPHLET 'Tips on Marketing Your Invention, trom an experienced fee-based invention service company. Write United States Inventors Service Company. Dep:. T, 1435 G Street NW. Washington. D. C. 20005

HYPNOTISM

SLEEP learning Hypnotic method. 92% effective. Details free. ASR Foundation. Box 23429EG. Fort Lauderdale. Florida 33307.
FREE Hypnolism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400. Ruidoso. New Mexico 88345.
AMAZING self-hypnosis record releases fantastic mental power. Instant results! Free trial. Write: Forum (AA6). 333 North Michiqan. Chicaqo 60601.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC. Free Booklet. NILES BRYANT SCHOOL. 3631 Stockton. Dept. A. Sacramento. Calif. 95820.

EARN ELECTRONICS DEGREE by correspondence Free information bultetin. Grantham. 2000 Stoner Avenue, Los Angeles. California 90025.
INTENSIVE 5 week Course for Broadcast Engineers. F.C.C. First Class license. Radio Engineering Incorporated. 61 N . Pineapple Ave.. Sarasota. Florida 33577 and 2402 Tidewater Trail. Fredericksburg. VA 22401.
NO FCC LICENSE? Tried every way but the night way? It's time for Genn Tech. Home Study. Free Catalog. 5540 Hollywood Blva., Los Angeles. Calif. 90028.
LEARN Basic Digital Troubleshooting by correspondence. Information Free. Educational Technologies. Box 224 Reynoldsburg. Ohio 43068.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing detalls strange catalog free! Autosuggestion. Box 24-ZD. Olympia Washinaton 98507.

SCORE high on F.C.C. Exams Over 300 questions and answers. Covers 3rd. 2nd. 1st and even Radar. Third and Second Test. $\$ 14.50$; First Class Test, $\$ 15.00$. All tests. $\$ 26.50$. R.E.I.. Inc.. Box 806. Sarasota. Fla. 33577.
UNIVERSITY DEGREES BY MAIL! Bachelors. Masters. Ph.D's. Free revealing details. Counseling, Box 1162-PE6. Tustin. Calitorna 92680.
SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE066. 53i N. Ann Arbor, Oklanoma City. Okla. 73127.

LOGIC PROBE KIT US WIA CMOS ITL WII. RTL HFTL. HINIL int
 VARIABLE REGULATED POWER SUPPLY KIT Cinmmunsty vit
 FIXED REGULATED POWER SUPPLY KITS Smon (whe broel with

TRANSISTORS (NPN)

2N918 TYPE RF Amill \& Osallater to 1 GH , 3/51.00 2N3563 TYPE RF Anip \& Osc to 1 GHz (pl. 2N918) 2N3666 TYPE RF Power A lup 1.5 W @ 450 MH 2 N 3904 TYPE GP Amp \& Sw to 100 mA IFE 100 Assort. NPN GP TYPES. e.g. 2N3694. 2N3903, etc. (15) 2N 3638 TYPE (PNP) GP Amp \& Sw to 300 mA 2N 3906 TYPE (PNP) GP Amp \& Sw to 30 MHz FET's:
N.CHANNEL (LOW-NDISE)

2N4091 TYPE RF Amp \& Switch (TO 18/106)
2N4416 TYPE RF Amplifier to 450 MHz (TO-72
2N5163 T YPE Gen. Purpose Amp \& Sw (TO 106)
2N5486 T YPE RF Alll to 450 MHz (plastic 2N4416)
UEE4868 TYPE Ulura- Ludio Amplifier
TIS74 IYPE High-Speed Swith 40!!
Assort. RF \& GP FET's, e.g. 2N5163, MPF 102, etc. (8)
P.CHANNEL:
2N4360 TYPE Gen. Purpase Amp \& Sw(TO.106)

E175 TYPE Higli-Speed Switch 125: 5 (TD 106)	$3 / S 1.00$
$3 / S 1.00$	

SUPER SPECIALS:	
2 N 2222 NPN TRANSISTOR GP Amp \& Switch	6/S1.00
2N2907 PNP TRANSISTOR GP Amp \& Switch	6/51.00
2N3553 RF Power Anpu 5 W @ 150 MHz , 7 W @ 50 MHz	S1.50
MPF 102 N CHANNEL FEI RF Amp 200 MHz	3/51.00
556 DUAL 555 TIMER 1μ sec to 1 hour (0IP)	S0.90
723 VOLT. REGULATOR $3.30 \vee$ (e) $1.200 \mathrm{~mA} \mathrm{(0IP/TO.5)}$	3/51.00
2740 FET OpAmp, Like NE536 and $\mu \mathrm{A} 740$ (T0.5)	S1.95
μ A 7805 VOLTAGE REGULATOR 5 V @ 1 A (T0.220)	\$1.25
8038 WAVEFORM GENERATOR Wave w/ckts	S4.50
IN4154 DIODE $30 \mathrm{~V} / 10 \mathrm{~mA} 1 \mathrm{NS} 14$ except 30 V	25/S 1.00
BRIBRIDGE RECTIFIER 50 V PIV. 500 mA (DIP)	4/51.00
MM5314 DIGIIAL CLOCK CHIP.With Specs/Schematics	S4.95

LINEARIC's

308 Micro.Power $\mathrm{O}_{\mathrm{B}} \mathrm{Amp}_{\mathrm{ma}}$ (TD-5/MINI-DIP)
309 K Voltage Regulator 5 V (⿺1 1 A (TD-3)
324 Ouad 7410 p Amp. Compensated (DIP)
340I Volt. Reg.-1 Amip Specify 5, 6, 12.15 o 24 V -w/ckts 380 2-5 Wat Audio Amplifier 34 dB (DIP) 555 Timer $1 \mu \mathrm{~s}$ to 1 hr . NE555. LM555, etc. (MINI-DIP) 709 Popular Do Amp (Dip/to 5)
139 Dual Low.Noise Audio Preamp/Dp Amp (DIP)
1458 Dual $741 \mathrm{Op} \mathrm{A}_{\text {Inp }}$ (MINI.DIP)
741 Freq. Comp. Op Amp (DIP/TO-5/MINI-DIP)

DIODES

ZENERS \quad 4/S1.00

400mw 4/S1.00
$\begin{array}{rr}9.1,10,12,15,16,18.20,22,24,27, \text { or } 33 \mathrm{~V}(10 \%) & 1 \mathrm{Watt} 3 / \mathrm{S} 1.00 \\ \text { ING14 or } 1 \mathrm{NQ} 448 \mathrm{TYPE} \text { General Purpuse } 100 \mathrm{~V} / 10 \mathrm{~mA} & 15 / \mathrm{Si} 00\end{array}$ N914 or 1 N4 148 TYPE General Purpase $100 \mathrm{~V} / 10 \mathrm{~mA}$
05 VARACTOR 5.50 W Output @ $30.250 \mathrm{MHz}, 770 \mathrm{pF}$
7 VARACTOR 1.3 W Output @u 100500 MHz .5 .30 pF

ADVA

ELECTRONICS
BOX 4181 BT, WOODSIDE, CA 94062
Tel. (415) 851-0455
CIRCLE NO. 3 ON FREE IMFORMAIION CARO

BURGLAR/FIRE ALARM EXPERTS NEEDED for cars. homes, industry. Learn high profit systems installation at home spare time. Simple, quick, complete. Free information by mail. No salesmen. Security Systems Management School (homestudy). Dept 7373-066, Little Falls. N.J. 07424.

BROADCAST STATION: Start your own! Learn how. Details Free! "Radio Opportunities," Box 5516-AE. Walnut Creek. CA 94596
FCC LICENSE STUDY GUIDE - 377 pages. 1465 questions with answers/discussions - covering third, second. first radiotelephone examinations. $\$ 9.95$ postpaid. GSE. 2000 Stoner, Los Angeles. Cahfornia 90025.

Popular Electronics

JUNE 1976

ADVERTISERS INDEX

READER
SERVICE MO.

ADVERTISER

A P Products

0 Ace Electronics
Acoustic Fiber Soun
3 Adva Electronics
4 Allison Automotive Company
Alpha Electroncs
6 Alta) Electronics
68 Aita) Electronics
Ancrona Corp
Aries Inc
Audio Technica U.S Inc.
9 Avantı Research \& Development
65 B\& Product of Dynascan
0 Babylon Electronics
1 CDIwo
CREI Capitol Radio Eng Ineering Institute
12 Crrcuit Design, Inc
Cleveland Instilute of Electronics
Cobra. Product of Dynascan
3 Conturental Spectalties Corporation
6 Continental Speciallies Corporation
Detta Electronics Co_{0}
6 Delta Products. Inc
7 Digl- ey Corporation
Dixie Hi-Fidelity Wholesaleis
8 EICO
9 Edile Electionics
0 Edmund Scientitic Co
: Edmund Scientific Co
Electionics Technical Institute
Godbout Elecs. Bill
Grantham School of Engineerng
Greenleey Tool Co
Hal Communications
Heath Company
Hewtett-Packard
IMS Associates Inc
IMS Associates Inc
Illinois Audo
International Electronics Unimimed
James
Johnson Company. E.F
McGiaw-Hill Book Company
McIntosh Laberatory Inc
MITS
34 Motorola
NRI Schools
National Technical Schools
New Concepts
New-Tone
Non Linear Systems
OIson Electronics
PAIA Electronics. Inc
Pathcom Inc
Phase Linear Corporation
Poty Paks
Polymorphic Systems
Processor lechnology Co
5 Juest Electronics
Radio Shack
Reticom
Royce Electronics
SAE
SBE, Inc
S.D. Sales Co

Schober Organ Corp
Sencore.
Sinclarr Radionics. Inc
Solid State Sales
Sound Guard
Southern Calliorna Computer Socrety
Southwest Technical Products Corporation Sphere
42 Stanton Magnetics inc
57 Stereo Discounters
58 Technology Trends
59 Telex Communications. Inc
Ith Star Corporation
61 Wanl Cirpper Corperation
67 Wenover Associates
CLASSIFIED ADVERTISING 104.108 .109 .112 .115 .116 .118 .120 .121

AMATEUR RADIO. Complete no-textbook correspondence Code and Theory license courses. Ron Reed Electronics Institute, 12217 Santa Monica Blvd.. Los Angeles. CA 90025.

PASS FCC EXAMINATIONS! First Phone question answers. Proven results. $\$ 7.00$. guaranteed. Exams. Box 5516AE. Walnut Creek. CA 94596.

BUSINESS OPPORTUNITIES

IMADE $\$ 40.000 .00$ Year by Mallorder' Helped others make money! Free Proof. Torrey. Box $318-\mathrm{NN}$. Ypsilantı. Michigan 48197
FREE CATALOGS Repair air conditioning. refrigeration. Tools. supplies. full instructions. Doolin. 2016 Canton. Dalias. Texas 75201.
MAILORDER MILLIONAIRE helps beginners make $\$ 500$ weekly. Free report reveals secrel plan! Executive (1K6), 333 North Michigan. Chicago 60601.
PIANO TUNING LEARNED QUICKLY AT HOME! Musical knowledge unnecessary Free Information. Empire School, Box 450327, Miamı 33145.
GET RICH with Secret Law that smashes debts and brings you $\$ 500$ to $\$ 5$ Million cash. Free report' Credit $4 \mathrm{~K} 6,333$ North Michigan. Chicago 60601

HIGHLY
 phofirible ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handied by protessionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DF. Box 248, Walnut Creek, CA 94597.

FREE.SECRET BOOK "2042 UNIQUE. Proven Enterprises" Fabulous "Little Knowns" Work home' Haylings-B. Carlsbad, Calif. 92008
OPERATE your own prohtable human relations success groups. Free brochure AlM. Box 2446F. San Leandro. CA 94577.
$\$ 178$ WEEKLY. Work one hour dally Completely Guaranteed. Free FAS. Box 13703-R. San Antonio. Texas 78213 MAIL ORDER dealers wanted Earn outstanding profits 1 Free information Star Enterprise. RR No 4-PE. Van Wert. Ohio 45891
HOW TO MAKE $\$ 2.000$ WEEKLY at home using other people's money. Guaranteed. Free detaits. Richlieu Reports. Box 25277-F. Houston. Texas 77005

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUN. ITIES. Report on obs now open. Details fREE. Aviation Employment Information Service. Box 240E. Northport. New York 11768.
CALIFORNIA companies hiring Engineers and Techns. cians Current openings bulletin $\$ 3$ Dynamics. Box 1867 K. Covina. Calit 91722

DO-IT-YOURSELF

TV PROBLEMS? Send symptoms / copy schematic / self addressed-stamped envelope with $\$ 3.00$. Troubleshooter. Box 4553-PE. Downey. Calif. 90241
MOOULAR TELEPHONES now avaılable Sets and components. compatible with Western Electric concept. Cata$\log 50$ cents. Box 1654W. Costa Mesa. Calıforma 92626

BOOKS AND MAGAZINES

FREE book prophet Elifan coming betore Christ Wonderful bible evidence Megiddo Mission. Dept 64, 481 Thurston Rd. Rochester. N Y. 14619

FREE CATALOG. Aviation and Space Books. Aero Publishers. 329PE West Aviation. Fallbrook. Califorma 92028 THE AUDIO AMATEUR-A quarterly publication tor the serious audio constructor Free prospectus. The Audio Amateur. Box 1762. Pelerborough. NH 03458

CB SLANG DICTIONARY - MOsi complete CB Dictionary Handbook avallable. Hundreds of slang terms plus part 95 mandatory FCC rules Great gift Order NOW Send $\$ 5.00$ to: Communication Books, Inc.. Dept. PE. Box 10198, Milwaukee. WI 53210.
CBese SLANG DICTIONARY of 600 CB and Truckers terms. $\$ 1.25$ postpatd. Big Bear Enterprıses, 1932 East Eucalyptus, Unit P. Brea, Calif. 92621.

ARIFS brought you the first calculator kit, and the first digital clock kit . . . and now brings you three of the most innovative electronic kits ever made. The System 300 Electronic Music Synthesizer kit is the most advanced in the world today, regardless of price. The AR-781 is a space-age beauty for any decor. And the wholly solid state AR-830 does the work of a $\$ 400.00$ tape memory unit.

WARNING... if you're interested $\overrightarrow{i n}$ a music synthesizer, don't make a move until you see our catalog first. It's more like a handbook than a catalog, with hundreds of in-depth photographs and descriptions to explain electronic music principles, and to show equipment to do the job. ARIES now offers a complete complement of modules, keyboards, and cases, matched to the most rigorous professional standards. Starter systems priced as low as $\$ 395.00$.

A clear, ruby-red cylinder shows off all six digits of this modern calendar clock. Easy-to-read numbers show the hours, minutes, and seconds, as well as the month and day every ten seconds.
 Red LEED 7 -segment numerals are $0.33^{\prime \prime}$ high, in a sturdy cylinder $2-1 / 2^{\prime \prime}$ in diameter and $4-3 / 4^{\prime \prime}$ long, with finished hardwood ends. Time and calendar are controlled by 60 flz line frequency, with a 12 month movement. Separate time and calendar adjustments. Includes all the components, PC boards, housing, and instructions. Shipping weight $2 \mathrm{lbs}_{3}$ AR-781 Clock Kit ... $\$ 34.50$

Add finger-touch operation to your old-fashioned dial telephone with an ARIES AR-830 Automatic Digital Telephone Dialer. This has the same layout and con-
 venience as Ma Bell, plus other features she doesn't offer yet. For instance . . AR-830 always remembers the last number you dialed, in case the line was busy and you want to try again later. Not only that, but the Dialer's memory can store as many as ten of your favorite numbers for une-touch dialing, AR-830 uses standard dialing and muting contacts; consult local tariffs before connecting. Sh. wt. 2 lbs. AR-830 Dialer Kit

ARIES INC.

119 Foster Street
Peabody, Mass., 01960
(617) 532-0450

CIRCLE MO. B ON free imformaion caro

PRO SPORTS ACTION FILMS

SUMMER ENTERTAINMENT FILM FUN-Start or add to your collection with Sportite specials: Tunney/Gıbbons \& Tunney/Heeney on 1 Super 8 B\&W 200 reel, $\$ 6.95$ ea PPD ' 69 NBA - its greatest year' Celtics vs. Lakers - see Russel star! Super 8 B\&W. $\$ 695$ ea PPD. 74 Stanley Cup Playofts (Flyers/Bruins) Standard 8 B\&W. $\$ 695$ ea or Color. $\$ 1695$ ea PPD. can be shown on Dual 8 projector. Or buy Apollo 15. The Ride of the Rover. official NASA footage, a Columbia Pictu'e. Super 8 B\&W. $\$ 595$ ea while they last. 40 cents for new Castle catalog: 30 cents each for Columbia or Sportlite order forms (coms, stamps, no checks pls). SPORTLITE. Elect-6. Box 24-500, Speedway. Indiana 46224

MISCELLANEOUS

WINEMAKERS Fiee Iliustrated catalog yeasts, equipment. Semplex. Box 12276P, Minneapolis, Minn. 55412.

LIVE IN THE WORLD OF TOMORROW . . TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit ... for every member of the family.

A BETTER LIFE STARTS HERE

WORLD'S SMALLEST

RECHARGEABLE CALCULATOR!
Small but mighty! 8 -digit, 4 -function electronic calculator does everything big ones do-even has automatic \% key... for only $\$ 19.95$ Take it anywhere. Fits in your pocket- $2 / 3$ size of cigarette pack. $31 / 2 \mathrm{oz}$. dynamo features floating decimal, constant key, lead zero depression, more! In-
 cludes plug-in rechargeable Ni-Cad battery pack. $2 \times 31 / 2 \times 9 / 16^{\prime \prime}$ with plenty of room for most fingers. Another Edmund first with advanced technology.
Stock No. 1945AV

SUPER POWER FOR ANY AM RADIO

New antenna assist turns a tiny transistor into a tiger, has pulled in stations up to 1000° miles away' Just set beside radio (no wires, clips. grounding) and tine-tune Select-A-Tenna's dial
 to same frequency \quad "gangbusters
Great for clearing weak signals in radio dep
pressed areas, off-coast islands crowded frequency stations. Solid state -uses no electricity, batts., tubes Stock No. 72.095AV \$15.95 Ppd ULTRA SELECT-A-TENNA
No. 72,147AV (OOVER 1000 MI .)

KNOW YOUR ALPHA FROM THETA!

For greater relaxation, concentration, monitor your Alpha/Theta brainwaves w/audible or visible stgnal on Biosone II. Has 3 feedback modes outputs to monitor logic signal, filter sel, feed
sional feats. of $\$ 200$-up units. Easily operated 4 -lb. portable has total brainwave sional feats. of $\$ 200$-up units. Easily operated
monitoring capability! Req. 29 v tr. batteries.

No. $1668(91 / 2 \times 55 / 8 \times 41 / 4$)
LOW COST STARTERS' UNIT (PORTABLE)
.................................. 149.95 Ppd No. 71,809 AV ($41 / 2 \times 21 / 4 \times 41 / 4$). .$\$ 55.00$ Ppd

SEE MUSIC IN PULSATING COLOR

New 3-Channel Cotor Organ adds to music listening pleasure. lets you modulate 3 independent strings of colored larnps with intensity of your music to create an audio "light show." They flash, vary in brigntness related to musics rhythm, pitch, volume -pulsating lighting performance to
 others. the Edmund Sound To Light Control is a others. the Edmund Sound to
terrific value. Plug in, turn on!

No. 42,309AV . . (ASSEMBLEO) . $\$ 17.95$ Ppd. No. 42,309AV MBLEO).

COMPLETE \& MAIL WITH CHECK OR M.O.

 EDMUND SCIENTIFIC CO.
WOW! TR
 METAL DETECTOR: \$69.95

ELECTRONIC DIGITAL
 STOPWATCH: \$49.95

The price alone obsoletes your wind-up timer and it s $\pm 0.002 \%$ accurate! Hand-held, you start, stop, reset compact 6 -ouncer w/one hand; times design (cannot be accidentally reset), solid-state electronics! Incls neckstrap repl. batts.
No. 1671AV (5-DIGIT LED DISPLAY) SPLIT ACTION W/NICADS, RECHARGER No. 1669AV (5-DIGIT LED DISPLAY) DELUXE SPLIT ACTION BAITERY MODEL No. 1653AV(6-DIGIT NEON DISPLAY)
$\$ 149.95 \mathrm{Ppd}$

Super-sen
never-before price, w/feats. of $\$ 150$ types. Terrific selectivity- 10 -turn (not just 90°) metal/ mineral tuner! $6^{\prime \prime}$ waterproof search coil find a cent at $6^{\prime \prime}$; telescoping adjust. shaft gives 44 Perfect balance \& feather light, it incls 8 "AA" batteries. Lifetime warranty" No. 80,251AV (JUST $\mathbf{3 8 0 7 . !}$).. $\mathbf{\$ 9 . 9 5}$ Ppd STARTERS' BFO CHALLENGER I (32 OZ.) No. 80,222AV (ALUMINUM CONSTR.)
$\$ 39.95 \mathrm{Ppd}$

300 Edscorp Building, Barrington, N.J. 08007 \square PLEASE SEND GIANT ${ }^{\text {How }}$
$\mathrm{NT}^{\text {How }}$
Description (609) 547-3488 Price Each

Card Expiration Date 30-DAY MONEY-BACK guARANTEE.

 You must be satisfied or returnName
any purchase in 30 days for full Address
refund. $-\$ 15.00$ minimum City $\rightarrow-\infty=-\infty$

WKLS, Atlanta, broadcasts 100\% disc-to-air. That's why it uses Stanton's 681 series...

Top notch broadcasters who capture a large share of the listening audience, are critically aware of the necessity to achieve a superior quality of sound. Station WKLS is just such a station

As Bob Helbush, chief engineer, states: "We broadcast 100% disc-to-air except for some commercials. So, for maximum quality sound and phase stability, we use the Stanton 681 SE for on-the-air use. We consider it the ideal answer for that application. And our program director uses Stanton's 681 Triple-E for auditioning new releases before we air them".

And Don Waterman, General Manager, added: "Today, every station in the SJR Communications group . . . all eight of them, all in Major Markets ... use Stanton 681 cartridges on every turntable".

There are good reasons for this vast acceptance. Stanton's 681 Calibration Series cartridges offer improved track-
ing at all frequencies. They achieve perfectly flat frequency response to beyond 20 Kc . And the top-of-the-lire, superb 681 Triple-E has an ultra miniaturized stylus assembly with substantially less mass than previously, yet it possesses even greater durability than had been thought possible to achieve.

Each 681 Series cartridge is guaranteed to meet its specifications within exacting limits and each one boasts the most meaningful warranty. An individually calibrated test result is packed with each unit.

Whether your usage involves recording, broadcasting or home entertainment, your choice should be the choice of the professionals ...the STANTON 681. Write today for further information to Stanton Magnetics, Terminal Drive, Plainview, N.Y. 11803.

New Horizons In CB Performance

The Johnson solid-state meter.

Clearly an improvement! Brighl ruby red LED readouts let you read signal strength, transmitter power and modulation precisely . at a glance! All salid-state, it's completely reliable regcrdless of temperature, dust or humidity. Solid-state metering - exclusive in the Messenger 123 S J .

Engineer's triumph...
 Operator's dream.

Improving what is already the best is the ultimate challenge for the engineer. And the ultimate reward for the CB operator. Now you can experience the incredible interference rejection of the only dual cascaded crystal filtering system in CB plus a new fully automatic noise limiter and RF-type noise
blanker. It's a dream rig you can own! Messenger 323 -

Johnson sideband. Again!

Nearly 10 years ago we introduced the first CB sideband radio... now Johnson offers the most advanced SSB performance on-the-air! With color-keyed lights for USB/LSB/AM modes, indlividual centrols for every function, and famous Johnson quality, performance, warranty and service, Viking 352. Write for free cotalog

[^0]: Name
 Stree:
 City
 State Zip
 Wenover Associates
 P. O. Box 231/Burlington, Mass. 01803

[^1]: 9600 ALDFICH AVE SO.. MINNEAPOLIS. MN 55420 U.S.A. EUROPE: 22 rue de la Legion d Honneur 33200 St. Denis, France CANADA: Telak Electronics, Ltd. Scarborough, Ontario

[^2]: Photo shous details of inpright component monnting on wea module amel bus comenections.

[^3]: *T.M. Audio-Technica Dual Magnet cartridges protected by U.S. Patent Nos. 3,720,796 and 3,761,647.

[^4]: I want to know more about Mark Ten C Dl's. Send me complete nononsense information on how they can improve the performance of my car.

 Name
 Address
 \qquad
 PICLTMA
 P.O. Box 1147, Grand Junction, Colo. 81501 (303) 242-9000 Dept. PE

