BUILD A GHANGE/STRATEGY ELEGTBONIGS GAWE

Builda
"Westminster Chime" Digital Glock
Checking the Sun

?for Home Propagation Forecasts

How to Protect
Power Supplies From Damage
The $35-\mathrm{mm}$ Slide Syncer AN AUDIO-VISUAL PROCRAMMER TO BUILD

TEST REPORTS: Spectro-Acoustics Stereo Equalizer Pickering

Stereo Cartridge Siltronix CB AM

Mobile Transceiver

ACB/lam Scective

 Calling Project- CODED TONE AGTNATES RECEIVER
- SILENT CHANNEL UNTIL WANTED

Experience is the best teacher. You might settle for any CB first time around Understandably. A lot of people think they're all pretty much alike. But you'll soon discover that, like everything else, there are exceptions.

Ask the pros. America's long distance truckers. These guys talk CB day in and day out. And they demand the best. That's why truckers refer to the Cobra 29 as "The Diesel Mobile.'

Listen to Cobra. You'll hear a big difference. Because the Cobra 29 gives you features which assure crystal clear reception. Like switchable noise limiting and blanking, to cut out practically all pulse and ignition interference. Add squelch control and RF gain and you've got exceptional-adjustable-receiver clarity. Even in the heaviest CB traffic You also get Delta Tuning which makes up for the other guy, because even offfrequency transmitters are pulled in. Perfectly.

Talk to Cobra. And you know you're punching through. One glance at the

29's over-sized illuminated meter tells you just how much power you're punching out and pulling in. For voice modulation the DynaMike delivers at 100%. Same way with power: The 29 transmits at maximum power levels.

Sooner or later you'll get a Cobra. And you'll get engineering and craftsmanship second to none Performance that will make your first CB seem obsolete. Reliability and durability that have set standards for the industry. Above all, you'll get power. The power to punch through loud and clear like nothing else. Because when it comes to CB radio, nothing punches through loud and clear like a Cobra.

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W Cortland St, Chicago, Ilinois 60635

IF YOUR FIRST CB ISN'T A COBRA YOUR SECOND ONE WILL BE.

If you thought a rugged, professional yet affordable computer didn't exist,

think IMSAI 8080.

Sure there are other commercial, high-quality computers that can perform like the 8080. But their prices are 5 times as high. There is a rugged, reliable, industrial computer, with high commercial-type performance. The IMSAI 8080. Fully assembled, it's $\$ 931$.
Unassembled, it's $\$ 599$. And ours is available now.

In our case, you can tell a computer by its cabinet. The IMSAI 8080 is made for commercial users. And it looks it. Inside and out! The cabinet is attractive, heavy-gauge aluminum. The heavy-duty lucite front panel has an extra 8 program controlled LED's. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches that are backed up by reliable debouncing circuits. But higher aesthetics on the outside is only the beginning. The guts of the IMSAI 8080 is where its true beauty lies.

The 8080 is optionally expandable to a substantial system with 22 card slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAI 8080 power

supply produces a true 28 amp current, enough to power a full system.

You can expand to a powerful system with 64 K of memory, plus a floppy disk controller, with its own on-board 8080 - and a DOS. A floppy disk drive, an audio tape cassette input device, a printer, plus a video terminal and a teleprinter. These peripherals will function with an 8 -level priority interrupt system. IMSAI BASIC software is available in 4 K , that you can get in PROM. And a new $\$ 1394 \mathrm{~K}$ RAM board with software

memory protect. For the ultimate in flexibility, you can design the system for low-cost multiprocessor, shared memory capability.

Find out more about the computer you thought didn't exist. Get a complete illustrated brochure describing the IMSAI 8080, options, peripherals, software, prices and specifications. Send one dollar to cover handling. Call us for the name of the IMSAI dealer nearest you.

Dealer inquiries invited.

IMS Associates, Inc. 14860 Wicks Boulevard San Leandro, CA 94577 (415) 483-2093

You've got four hundred miles of dotted white line stretched out in front of you. Arc a couple of dozen tons riding in back.

That's why you keep the automatic CB sitting at your side. No hassle, no gadget controls, just the crisp, clean Johnson sound all day long. Automatically.

Johnson's exclusive voice tailored circuitry automatically drops off unwanted frequencies to give you clear

reception. Our automatic noise limiter keeps reception clean and built-in gain control prevents "blasting" and "fading."

Johnson's unique electronic speech compression automatically selects and compresses the clearest voice frequencies to produce
uniform, high-level modulation and maximum transmit range. All automatically.

When you hit the road, go with Johnson CB. We back every Johnson with a full year parts and labor warranty and walk-in service at more than 850 locations. See a Johnson CB dealer and take off on the great American adventure.

X JOHNSON

E. F. JCHNSCN COMPANY, WASECA. MINN. 56093 In Canada: A. C. Simmonds S Sons. Ltd

FEATURE ARTICLES
PROPAGATION FORECASTS FOR RADIO COMMUNICATORS Editorial Staff 34
How to examine the sun and use other sources to determine sunspot activity.
PROTECTING YOUR POWER SUPPLYRobert C. Arp, Jr.56
Semiconductor components need protection from shorts, overloads. etc
PROFESSIONAL VS. CONSUMER TAPE Larry Zide 66
Would there be an advantage for the home recordist in using studio-type tape?
ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR NOV. THRU FEB Richard E. Wood 102
CONSTRUCTION ARTICLES
a CB/ham selective calling project Martin Meyer 41
Coded tone activates receiver with channel silent until wanted.
TIE INTO HAM REPEATERS WITH THIS LOW-COST AUTOPATCH Joe Jarrett 47
Crystal-controlled unit for initiating telephone calls.
DIGITAL ELECTRONIC "WESTMINSTER" CLOCK Alan Roehl 57
The famous Big Ben tune played on your own digital clock.
BUILD ODDS-ON-A GAME OF CHANCE AND STRATEGY David L. Heiserman 64
BUILD THE 35-MM SLIDE SYNCER Harry Lowenstein 74
A low-cost programmer for audio-visual presentations.
COLUMNS
STEREO SCENE Ralph Hodges 22Mods and Modifiers.
HOBBY SCENE Q \& A John McVeigh 32
SOLID STATE . Lou Garner 89Rara Avis.
CB SCENERay Newhall 94
40-channel Expansion and Purac II
DX LISTENING Glenn Hauser 96
Change in the Alr.
COMPUTER BITS Hal Chamberlin 106
Mass-Storage Systems.
EXPERIMENTER'S CORNER Forrest M. Mims 110
The Sillicon Solar Cell
PRODUCT TEST REPORTS
SPECTRO ACOUSTICS MODEL 210 GRAPHIC EQUALIZER 78
PICKERING MODEL XV-15/625E PHONO CARTRIDGE 79
SILTRONIX MOHAWK AM CB MOBILE TRANSCEIVER 84
SCHOBER THEATRE ORGAN 86
DEPARTMENTS
EDITORIAL Art Salsberg 4
Majority Rules - The Bitter Pill.
LETTERS 6
NEW PRODUCTS 10
NEW LITERATURE 20
ADVERTISERS INDEX 133

POPULARELECTRONICS, November 1976. Volume 10. Number 5, Pubished monthly at One Park Avenue. New York NY 10016. One year subscription rate tor US. $\$ 998$, U.S Possessions and Canada. $\$ 12.98$ all other countries, $\$ 14.98$ (cash orders only payable in US currency) Second Class postage pard at New York. NY and at additional maiting offices. Authorized as second class maliby the Post Office Department. Ottawa. Canada and for payment of postage in cash
POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Maık Registered indexed in the Reader's Guide to Periodical Literature COPYRIGHT, 1976 BY ZIFF-DAVIS PUBLISHING COMPANY ALL RIGHTS RESERVED
Zıff-Davis also publishes Boatıng. Car and Driver. Cycle. Flying. Modern Bride. Popular Photography. Skıng and Stereo Review

Editorial correspondence: POPULARELECTRONICS, 1 Park Ave.. New York, NY 10016. Editonal contributions must be accompanied by return postage and will be handied with reasonable care, however pubisher assumes no responsibility for return or satety of manuscripts, art work, of models
Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS Circulation Depi, P.O Box 2774, Boulder, CO 80323. Please allow at least eight weeks for change of address. Include your old address enclosing. If possible. an address label from a recent issue

ARTHUR P. SALSBERG Edifonal Director
LESLIE SOLOMON Techmeal Editor
JOHN R. RIGGS Monaging Editor
STEPHEN B. GRAY Senor Editor
ALEXANDER W. BURAWA Feature Editor
EDWARD I. BUXBAUM Arf Director
JOHN McVEIGH Isseriate Edifor
ANDRE DUZANT Technical Illustratom
PATRICIA GIRRIER-BROWN Productoon Editor
Coneributhy Editors HAL CHAMBERLAIN, LOU GARNER GLENN HAUSER, JULIAN HIRSCH RALPH HODGES, ART MARGOLIS FORREST MIMS, RAY NEWHALL SOL PRENSKY, WILFRED SCHERER

MAJORITY RULES-THE BITTER PILL

The attitudes of hams toward CB'ers have been changing. Many radio amateurs, for example, have also become CB'ers, recognizing the value of a two-way radio communication system that can be widely used on all highways throughout the country at most any hour. Conversely, there are CB'ers who, "tasting' two-way radio, have become radio amateurs in order to enjoy the benefits of long-distance communications, video transmissions, etc., as well as the technical camaraderie that exists in hamdom.

However, there exists a hard-core minority of hams who begrudge the easy manner in which citizens can get on the air. This attitude was underlined by letters I received from some hams in response to the favorable viewpoint expressed by our CB columnist toward "Class E" CB allocations. In an effort to defend retention of a small slice of the radio spectrum for hams-and I do not denigrate this view-virtually all the writers focused on one point: The use of the radio spectrum is a privilege that must be earned!

Well, these radio amateurs are spitting into the wind. According to this philosophy, taxicab drivers shouldn't be using two-way radios. Neither should boating enthusiasts. Obviously, personal communications via radio without requiring any technical know-how or passing of an examination is here to stay. So these hams shouldn't rest on this argument. There are certainly enough more cogent reasons that can be used in defense of retaining the present $220-\mathrm{MHz}$ spectrum allocation.

It's doubtful, though, if these arguments will be sufficient to withstand the assaults of a majority group, judging by the way high-quality TV fare is excised owing to relatively low viewer numbers. In any event, this judgement is in the hands of the FCC, which must also consider many other factors.

Hams are an elitist group by any definition. And like elitist groups everywhere, don't look kindly upon "out groups" that infringe on their territory. By maintaining high standards, however, their potential numbers-and "political" punch—are limited. Even today, most hams would prefer to maintain a Morse Code test, based on a 1975 ARRL study among its 100,000 members.

Moreover, proselytizing efforts over the years have been pathetically meager. This extends to top management of amateur radio equipment companies. As evidence, we get very little in the way of press releases on new equipment from these companies. Unlike CB manufacturers, they seem to be content to feed upon themselves by reaching people who are already hams. And that's why the great ham-gear names such as Hallicrafters and Hammarlund, among others, have gone the way of the famous great Auk.

There are some faint signs of regeneration for amateur radio in the matter of expanding their numbers. The American Radio Relay League was represented by an exhibit booth at last year's "Personal Communications" CB show, hoping to pick up some CB'ers. And the ARRL's new "Tune in the World with Ham Radio," with a workbook, cassette tape and call-area wall map for $\$ 7.00$, is a nice package for beginners.

My 12-year-old, in fact, is using the above in his quest for a Novice license. I'd like him to become a ham because it is an accomplishment he can be proud of; and it can open the door to a life-long, fruitful hobby. In view of these opportunities for personal growth, I, for one, would look upon the weakening of amateur radio as a tremendous loss. We must make sure there is always room for the good things in life and not subjugate minority groups to the point of extinction.

POPULAR ELECTRONICS
The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Laser Beam Digital Watch

Never press another button, day or night, with America's first digital watch that glows in the dark.

Announcing Sensor's new Laser 220-
the first really new innovation
in digital watch technology.

It's ingenious, it's simple and it makes every other digital watch obsolete. Scientists have perfected a digital watch with a self-contained automatic light source-a major scientific breakthrough.

SELF-CONTAINED LIGHT SOURCE

The Laser 220 uses laser beams and advanced display technology in its manufacture. A glass ampoule charged with tritium and phosphor is hermetically sealed by a laser beam. The ampoule is then placed behind the new Sensor CDR (crystal diffusion reflection) display.

The high-contrast CDR display shows the time constantly-in sunlight or normal room light. But, when the room lights dim, the self-contained tritium light source automatically compensates for the absence of light, glows brightly, and illuminates the display.

No matter when you wear your watch-day or night-just a glance will give you the correct time. There's no button to press, no special viewing angle required, and most important, you don't need two hands to read the time.

Replace the battery yourself by just opening the battery compartment with a penny. Free batteries are provided whenever you need them during the five-year warranty.

A WORRY-FREE WATCH

Solid-state watches pose their own problems. They're fragile, they must be pampered, and they require frequent service. Not the Laser 220. Here are just five common solidstate watch problems you can forget about with this advanced space-age timepiece:

1. Forget about batteries The Laser 220 is powered by a single EverReady battery that will actually last years without replace-ment-even if you keep the 220 in complete darkness. In fact, JS\&A will supply you with the few batteries you need, free of charge, during the next five years. To change the battery, you simply unscrew the battery compartment at the back with a penny and replace the battery yourself.
2. Forget about water Take a shower or go swimming. The Laser 220 is so water-resistant that it withstands depths of up to 100 feet.
3. Forget about shocks A three-foot drop onto a solid hardwood floor or a sudden jar. Sensor's solid case construction, dual-strata crystal, and cushioned quartz timing circuit make it one of the most rugged solid-state quartz watches ever produced.
4. Forget about service The Laser 220 has an unprecedented five-year parts and labor
warranty. Each watch goes through weeks of aging, testing and quality control before assembly and final inspection. Service should never be required. Even the laser-sealed light source should last more than 25 vears with normal use. But if it should require service anytime during the five year warranty period, we will pick up your Sensor, at your door, and send you a loaner watch while yours is repaired-all at our expense.
5. Forget about changing technology The Sensor Laser 220 is so far ahead of every other watch in durability and technology that the watch you buy today, will still be years ahead of all others.

THE ULTIMATE ACHIEVEMENT

Other manufacturers have devised unique ways to produce a watch you can read at a glance. The new $\$ 300$ LED Pulsar requires a snap of the wrist to turn on the display, but the Pulsar cannot be read in sunlight. The new \$400 Longine's Gemini combines both an LED and liquid crystal display. (Press a button at night for the LED display, and view it easily in sunlight with the liquid crystal display.) But you must still press a button to read the time. All these applications of existing technology still fail to produce the ultimate digital watch: one you can read under all light conditions without using two hands. Until the introduction of the Sensor.

PLENTY OF ADVANCED FUNCTIONS

Sensor's five time functions give you everything you really need in a solid-state watch. Your watch displays the hours and minutes constantly, with no button to press. But depress the function button and the month and the date appear. Depress the button again and the seconds appear. To quickly set the time, insert a ball-point pen into the recessed time-control switch on the side. It's just that easy.

Sensor's accuracy is unparalleled. All solid-state digitals use a quartz crystal. So does the Sensor. But crystals change frequency from aging and shock. And to reset them, the watch case must be opened and an airtight seal broken which may affect the performance. In the Sensor, the crystal is first aged before it is installed, and secondly, it is actually cushioned in the case to absorb tremendous shock. The quartz crystal can also be adjusted through the battery compart-

The new exclusive laser-sealed tritium and phosphor light source is a thin solid-state tube that automatically illuminates the display when the lights dim.

Would you do this with your solid-state watch? Of course not. Most solid-state watch-
 es require care and pampering but not the Sensor. You can dunk it, drop it and abuse it without fear during its unprecedented fiveyear parts and labor warranty.
ment without opening the case. In short, your watch should be accurate to within 5 seconds per month and maintain that accuracy for years without adjustment and without ever opening the watch case.

STANDING BEHIND A PRODUCT

JS\&A is America's largest single source of digital watches and other space-age products. We have selected the Sensor Laser 220 as the most advanced American-made, solid-state timepiece ever produced. And we put our company and its full resources behind that selection. JS\&A will warranty the Sensor (even the batteries) for five full years. We'll even send you a loaner watch to use while your watch is being repaired should it ever require repair. And Sensor's advanced technology guarantees that your digital watch will be years ahead of any other watch at any price.

Wear the Laser 220 for one full month. If you are not convinced that it is the most rugged, precise, dependable and the finest quality solid-state digital watch in the world, return it for a prompt and courteous refund. We're just that proud of it.

To order your Sensor, credit card buyers may simply call our toll-free number below or mail us a check in the amount indicated below plus $\$ 2.50$ for postage, insurance and handing. (Illinois residents add 5% sales tax.) We urge you, however, to act promptly and reserve your Laser 220 today.

Stainless steel w/leather strap
$\$ 129.95$
(Add \$10 for matching metal band)
Gold tone w/leather strap.
$\$ 149.95$
(Add $\$ 10$ for matching metal band)
 Northbrook, Illinois 60062 CALL TOLL-FRÉE . 800 323-6400 In Illinois call (312) 498-6900

At Empire we make a complete line of phono cartridges. Each one has slightly different perform ance characteristics which allow you to choose the cartridge most compatible to your turntable.

There are, however, certain advantages, provided by Empire's unique design, that apply to all our cartridges.

One is less wear on your records. Lnlike other magnetic cartridges, Empire's moving iron design allows the diamond stylus to
 float free of its magnets and coils, imposing much less weight on vour record's surface and insuring longer record life.

Another adrantage is the better channel separation you get with Empire cartridges. We use a small, hollow tron armature which allows for a tighter fit in its positioning among the poles. So, even the most minute movement is accurately reproduced to give you the space and depth of the original recording.

Finally, Empire uses 4 coils, 4 poles, and 3 magnets (more than any other (artridge) for better balance and hum rejection.

The end result is great listening. Audition one for yourself or write for our free brochure, "How To Get The Most Out Of Your Records". After you compare our performance specifications we think you'll agree that, for the money, you can't do better than Empire.

Empire Scientific Corp.
Garden City, New York 11530

EMPIFE

Already your system
sounds better.

The author meant to imply the equivalent of "apples and oranges" to indicate dissimilarity.

A ROUND OF CHEERS

Three cheers for "DX Programs and DX Clubs on Shortwave" in the August issue. I hope you will continue to cover the SWL/DX field in the future.-Paul E. Kotke. St. Paul. MN

FIREFIGHTER SPEAKS OUT

I enjoyed reading the informative article Lightning and the Radio Amateur" ('Amateur Radio." August 1976) but the last sentence of the second paragraph was in poor taste and a disservice to firefighters. What many people do not realize is that there are times when walls and wiring must be cut open to check for the extension of fire. It we did not do this where indicated, chances are that a "hidden" fire would burn a home or shack down after we left.-N. Nicastro. Jr., KMD1175. WDX2HHS, KNJ2AQ. Spotswood. NJ

The author meant no disservice to the dedicated force of firefighters. All he was pointing out was that it's better to protect against the possiblity of lightning-induced fire than to suffer the damage that can result without taking the proper precautions.

PICO NOT MICRO

There are two errors in "Learning Electronic Theory With Hand Calculators, Part Two." In the center of page 64, the second sentence in the paragraph that begins:
"Finally, in a series RC circuit . . ." the X, in the next sentence should be changed to Z. The second error was in converting the displayedquantity 2.78065956311 to conventional capacitance notation; the correct answer should be 27.8 pF -not $0.0278 \mu \mathrm{~F}$. -Ken Gentlle. West Palm Beach. FL.

TUNING IN PHYSICIANS RADIO

In the May 1976 "Letters" column, you turned aside an inquiry about the Physicians Radio Network. stating that it was confidential and available only to physicians. In New York. dedicated hypochondriacs can receive the net on the SCA subcarrier of WEVD-FM. But believe me, for non-pro's it wins the Emmy for the "World's Dullest Program."-Edward M. Roberts. Glen Head, NY

In my area at least. PRN is broadcast as a standard SCA subcarrier on WIOQ (102.1 MHz). An SCA subcarrier can hardly be called "confidential."-L.S. Huntsinger. Audubon. NJ

PROGRAMMABLE CALCULATORS

I was pleased with the article "Here Are

SAVE UPTO 50\% ON PARTS.

Hobbyist or protessional, there are probably a lot of circuits you build just for the fun of it. And a lot you'd like to build. but never get around to

One reason is the cost of parts. Parts you buy for one project but cant re-use . . because you haven't time to take them carefully apart Or because of heat and mechanical damage that occur when you do

Now. theres an easier way that can save you big money on parts and hours on every project. as well Proto-Board" Solderless
Breadboards
Now assembling, testing and modifying circuits is as easy as pushing in-or pulling out-a lead IC s. LED s. transistors. resistors. capacitors . virtually every kind of component . . connect and inter cornect instantly via long-life. nickelsilver contacts. No special patch

MODEL	NO. OF TIE-POINTS	14-PIN DIP CAPACITY	$\underset{\text { SUGG }}{\substack{\text { LUST. }}}$	OTHER fEATURES
P8. 6	630	6	\$1595	Kit-10-minute assembly
P8. 100	760	10	19.95	Kit - with larger capacily
PB- 101	940.	10	2995	$\begin{aligned} & 8 \text { distritution } \\ & \text { puses higher } \\ & \text { cipacily } \end{aligned}$
PB. 102	1240	12	3995	Laige canacity moderate price
PB. 103	2250	24	59.95	Even larger capacity only 2.75 pet tie point
PB. 104	3060	32	79.95	Largest capacily lowest price Det tie point
PB-203	2250	24	75.00	Bulit in 1% requ lated 5 V IA low apole power supply
PB.203A	2250	24	120.00	As above plus separate amp +15 V and -15 V internally adjust - able regulated outputs

-Manufacturers suggested lisi
Prices and specifications subject to change withour nolice
cords or jumpers needed - just lengths of ordinary \#22-30 AWG solid hookup wire.

Circuits go together as quickly as you can think them up. And par!s are re-usable. so as your "junk box builds you build more and more projects for less and less money

Before you invest in your next project invest in a CSC breadboard See your dealer or order by phone. 203-624-3103 (East Coast) or 415 421-8872 (West Coast) - major charge cards accepted You ve got nothing to lose . . and a lot to gain

CONTINENTAL SPECIALIIES CORPORATION

44 Kendall Street
Box 1942 New Haven CT 06509
203-624-3103 TWX 710-465-1227
West Coast office Box 7809 San Francisco CA 94119•415-421-8872 TWX 910-372-7992
c 1976 Continental Specialties Corbcration
the New Programmable Calculators＂in the May 1976 issue of Popular Electronics．It is the first article that I have seen in any major consumer magazine dedicated to programmables．－Philip Earnhardt，Bur－ lington．NC

FREE SCHEMATIC WOES

Popular Electronics has left it entirely up to project kit suppliers to provide free schematics and pc etching and drilling guides［when theyre too large for magazine pages］．But the May 1976 Editor－ ial states that it is not unreasonable for a supplier to drop the free patterns after a period of time．（The period mentioned was something over a year．）I agree with him．

However．this means that your major con－ struction articles have a built－in＂destruct feature．－Andrew Oldroyd．Norman．OK

Our new policy for future articles is to supply directly any artwork that is too large to appear in the magazine．We will keep such artwork on file for a number of years． thus obviating the problem of project ob－ solescence．

＂MUSIC MODULE＂PARTS SOURCES

The Top Octave Generator integrated circuit．IC4，called for in the＂Music Mod－ ules＂（June 1976）is a Mostek device that is also available from AMI．Suitable sources

149
5395
5595

$$
\begin{aligned}
& \text { Fanon Co } \\
& \text { 2nd Clas }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fanon Courier Dynascan Cobral } \\
& \text { 2nd Class FCC Encyciopedia } 602 \text { a } 445 \\
& \text { IThe Complete Shorwave Listener s Hdbk }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Complete Shor wave Listener s Hdok } 288010111 \\
& \text { CBRado Operalors Guide 2nd ed } 256013911
\end{aligned}
$$

$$
\text { Pictorial Guide to CB Radio Install Repair } 256 \mathrm{p} \quad 304 \text { II }
$$

$$
\text { Praclical CB Radio Troubleshooling \& Repair } 238 \text { p } 10 \text {, }
$$

$$
\begin{aligned}
& \text { The Complele FM } 2 \text { Way Radio Handbook } 294 \text {, } \\
& \text { Amaieur FM Conversion \& Construction Prols } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { How To Be A Ham-Including Latest FCC Rules } 192 \\
& \text { Commercial FCC IIcense Handbook } 444 \text { o } 150 \text { ॥ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Commercial FCC License Handbook } 444 \text { of } 150 \text { II } \\
& \text { The } 2 \text { Meter FM Repeater Circults Handbook } 312 \text { D }
\end{aligned}
$$

$$
\text { RTTY Handbook } 320 \mathrm{p} 230 \mathrm{H}
$$

\square The Complete Handbook of Model Railroading 350 o CTalk－Back TV Two．Way Cable Television $238 \mathrm{p} 64,1$
ПUnderstand Use Modern Sig Generators 294 p ［JNumbers Shortcuts \＆Pastimes $336 \mathrm{p} \quad 801$
U106 Easy Electr Prois Beyond Transistors 224 p 136 7 Using Modern Elect Servicing Tes！Eqp： 252 g ． 177 fl
Mathematics Unraveled－Buiding Block Approach 280 p 1 Mathematics Uniraveled．Building Biock 2 Mas
M Modern Guide to Digital Logic 294p 222 II
］VHF UHF Fire Police Ham Scanners 250 p .11411 Z］OP AMP Circuit Oesign 8 Applicalions 280 D 239 il Master Handoook ol Digital Logic Apol：cations The Electronic Musical Insirument Manual 210 p 385 Microproces sor Microprograming Handbook $294 \quad$ p $\quad 176$ il
1 Sourcebook of Electronic Drgan Circuits 168 p $\quad 101,19$ SBuld Your Own Working Robol 238 p 83 II
ICGer s Handyrook ol Siple
ICBer is Handytook of Simple Hobor Projects 168 p 114 II
 ［1 How to Repair Home Laundry Appliances 280 p 1137 LPiloting Navigation With the Pockel Calculator 392 p
CH： Momeowner s Guide lo Saving Energy
Cusiomizing Your Van $192 \rho \quad 150$ ।
Motorcycie Reparr Handboot 392 in 260
The Complete Handbook of Locks $\&$ Locksmi
Step－By－Step Guide Carburetor Tuneup Over 1 Homeowners Guide To Solar Heating \＆Cooling 196 p Do－It－Yourselter＇s Guide Home Planning Constr 238 p Step－By－Step Guide to Brake Servicing 238 p 248 II Step． By －Step Guide Chrysler Eng Maint Rpt 256 p
Subcontract Your House Bidg Remodelg 196 p $\quad 63 \mathrm{ll}$ Subcontract Your House Bidg Remodelg
Auto Electronics Simplitied $256 \mathrm{p} \quad 202$ II Cuto Electronics Simplitied 256 p 20211 The Complete Auto Electric Handbook
Concretes Masonr $392 \mathrm{D} \quad 21311$
－Home Appliance Clinic Controls Timers Wiring Ror 195 How to Repar Diesel Engines 304 p 237 ：！ ZCemral Hearing \＆Ar Cond Repant Guide 320 p
285，
Small Apoliance Repart Guide vol 2210 p
 How to Repari Smail Gasoline Engines 2888 p 124 II
 1 Modern Eiectionics Math 686 o 424 II Master Hdbik of 1001 Prac
ZImpedance 196 p .90 II
Intro to Medical Electrunics 2nd ed 320 口 126 I

Computer Programming Handbook $518 \mathrm{p} \quad 114,11$
\square

\square Microelectronics $266 p$ p 228 II
Basic 0igital Electronics 210 o Supher $252 \mathrm{p} \quad 128$ it ［］Advanced Applications tor Pocket Calculators 304 p \square Tuwer s internalional Transistor Selector 140 p 17 ． 10 －Electronic Conversions．Symbols \＆Formulas $2240 \quad 252$ ， JEFrective Trouble shooting With EVM \＆Scope 238 口 185 ， 1 Getting the Most Oul of Electronic Calculators 2040 $28: 1$ Aviation Electronics Handbook 406 p 227 il
How io Test Almost Everything Electronic 160 p 1441t
Digital Logic Electronics Handbook 308 ， 220 Digital Logic Electronics Handbook 308 p 226 10 －Minute Test Techniques For PC Servicing 2160 10－Minute fest techniques For PC Servicing 216 p 114 II
 C．Understanding \＆Using the Oscillos cope $2720 \quad 170,1$ Industrial Electronics．Principles \＆Practice 416 p isil －Oıctionary of Electronics 420 p .487 Il
 Colid State Couble Factok－Problems Solutions 3rd ed 434 p Solid State Color TV Photo Symplom Guide 224 p 169 Beginner＇s Guide to TV Reparr 176 o 50 ， 1 Troublethooting Whth the Dual－Trace Scope 224 p 252 il GTV Troubleshooret s Handbool－3rd ed 448 p over $300: 1$
 ［JLogical Color TV Troubleshooting $240 \mathrm{p} \quad 151 \mathrm{II}$ Kogical Color NV Troubleshooting 240 p 1511 Modern Radio Repar Techniques 260 o 36.1 Cl How to interpret TV Wa velorms 256 p .250 $\square \mathrm{K}$ wik－Fir TVService Manual 384 p 100 sil
DAll－In－One TV Alponment Handbook 304 o 145 ， 1 OTV Tuner Schemalic Sevicing Manual 224 o .287 II 799 Color TV Troubles \＆Solutions 2240.17811

Sis 328 328

 21 Simple Transistor Radios You Can Build 140 D $\quad 122$
Basic Electricity $\$$ Beginning Electronics $2520 \quad 1911$ Basic Electricity \＆Beginning Ele ctronics
Radio Control lor Modeis $350 \mathrm{p} \quad 417$ II Radio Control lor Modeis 350 D 417,1 MOSFET Cricuils Guidebook $196 \mathrm{o} \quad 10411$ Pratical Circuit Design tor the Experimenter 196 p 119 I Radio Astronomy for the Amateur $2520 \quad 96$ Build－11 Book ol Mimi Tesi Measurement Instr 238 RF \＆Digilal Tesi Equipment You Can Build 252 D 151 । 1 Minialure Projects For Electronic Hoboyists 168 p Practical Triac SCR Projects For The Exp 1920 D 146 il RC Modeler s Handbook of Gliders \＆Sailplanes $996 p 90$ Integrated Circuits Gurde book $195 \mathrm{p} \quad 119 \|$
Solid State Circuits Guidebook $252 \mathrm{p} \quad 227$ \｜｜ Solid－State Cricuits Guidebook 252p 227 II Model Sall Power Boating or Remote Conitol 192 p 125 Electronics For Shuttertougs $204 \mathrm{o} \quad 109$ il Practical Tes！Instruments You Can Build 204 p 15711
How to Build Solid Stale Audio Circuits 3200 190 How to Buid Solid－Stale Audio Circuits 320 p
Radio－Electronics Hobby Projects $192 \mathrm{p} \quad 214$ Handoook of IC CIreull Projects $224 \mathrm{p} \quad 136$ il Wolid State Projects tor the Experimenter 224 p 228 125 One Transistor Profects 192 p 125 ：
 Ouestions $\$$ Answers About tape Recording 264 ， 102 Aandbook ol Multichannel Recording 322 a 196 Auto Stereo Service 8 installation 252 p 245 It
．Servicing Cassette 8 Cartidge Tape Players $294 \mathrm{p} \quad 196$ Electronic Music Production $156 \mathrm{p} \quad 7911$
Experimenting With Electronic Music 180 口 103
ECassette Tape Recorders How Work Care Repar 2040
Acoustic Techniques tor Home s Studio 224 p 168 il ＇Piclorial Guide to Tape Recorder Repairs $256 \mathrm{p} \quad 320$ Il How io Reparr Musical Instrument Amplitiers 288 o 50 II Japanese Radio Record Tape Player Srocg Manual 228 g
 Each vol has complete service dala par
schematics and all other info needed Each \＆ schematics and all other into needed Each 8 DMS Each only SA 95 unless marked COLOA TV Adm Vol 196212

 Vot $2 \$ 595$ Vot $3 \$ 595$ Vol $4 \$ 595$ B\＆WIV Adm

NO FBKKOUPOMTL ENAEND

tab books．Blue Ridge Summit Pa 11214
Please send me books checked above
4 lenclose 5 ＿＿＿＿＿send posipaid
－Please invoice on 10 day FREE trial
for crystals include Crystek，International Crystal，and CTS Knight．The optional Molex connectors are available from Tracy Design Corp．and Force Electronics；alter－ natively，any standard $0.153^{\prime \prime}$ edge connec－ tor can be substituted．－Don Lancaster，

Author

GIANT SIEP FOR UN－GENIUSES

At last！An article on 7400 series TTL IC＇s that explains the basic logic，with experi－ menter circuits．We．the un－geniuses of the IC world．took a giant step，thanks to the June 1976 ＂Experimenter＇s Corner．＂We would like to learn more and be shown more experiments with TTL devices．－F． Arthur Byington，Birmingham．MI

EUROPEAN TV QUALITY

The July 1976 Editorial titled＂Who Killed TV Picture Quality？＂struck me as being rather incomplete in that it made no men－ tion of the SECAM（Sequential Couleur a Memoire）TV system used in some 20 coun－ tries nor of PAL（Phase Alternation Line） used in 22 other countries，including all of Australia．As of the end of 1974．there were 162－million NTSC．74－million SECAM，and 70－million PAL TV receivers in use worldwide．Surely，the higher color stabil－ ity of SECAM and PAL should have been mentioned．

Because of its superior color rendition and stability．SECAM 60 equipment was carried by Pioneer X for its color－TV pic－ tures of Jupiter．－J．M．Lagerwerff．Palo Alto．CA

Having been involved with color TV in England．I endorse your Editorial com－ ments about the very poor quality here in the U．S．Principally，the English system uses PAL transmission，which eliminates the＂Purple Plague．＂Drift is cancelled by integration of adjacent lines by the eye． Thus，flesh tones are always correct and no need exists to distort the receiver＇s charac－ teristics，which permits pure deep satu－ rated tones to be displayed．In addition，the quality of electron optics seems to be much better．British engineers demand pin－sharp convergence．even at the corners of the screen．

I have the Independent Broadcast Au－ thority Technical Reference Book that gives Codes of Practice for TV studio and broadcasting standards for Commercial （note that this is not BBC）television in the U．K．The standards call for very elaborate and complete specifications for every parameter of audio and video performance and include very detailed rules for asses－ sing and reporting transmission quality．I doubt such standards exist in the U．S．

It has been my impression that a well－ adjusted receiver in the U．K．gives a picture as good as a Technicolor movie．I think most Americans are completely unaware that their TV quality is lousy because no－ body has exposed them to what can be done．－R．J．Best．Miami．FL

Ournew Powerhouse receivers outpower the competition.

Lafayette's new Powerhouse receivers have the power, the features and the performance you want. And the competition only promises.
Just check our spec chart. We deliver. With no gimmicks or technical tricks.
Besides incredible specs our new Powerhouse receivers have some features you've never had on any receiver before. Stop in at any of the Lafayette stores or dealers coast to coast and hear what Dolby ${ }^{(3)}$ FM noise reduction, mike mixing and detent controls can do to give you clean, distortion-free sound.
Lafayette performance goes far beyond sound. We back you up with warranties, in-store service and people who can talk stereo in olain, simple language.

Our new line of Powerhouse receivers was built with power and backed up with consumer services to outpower the competition.

Now where does the competition stand?

Specifications	LR-9090	LR-5555	LR-3030	LR-2020	LR-1515
Power Min. RMS $20-20,000 \mathrm{~Hz}$	$90+90$	$55+55$	$30+30$	$20+20$	15+15*
Totai Harmonic Olstortion (Less Than)	0.1\%	0.5\%	0.5\%	0.6\%	0.7\%
Input Sensitivity: phono/Aux/Mike mV	2.5/150/6	2.5/150/6	3.5/150/	4.0/150/	4.0/150/
Tone	Bass/Mid/ Treble	Bass/MId/ Treble	Bass/Mid/ Treble	Bass/Treble	Bass/Treble
Speakers	A, B, C	A, B, C	A, B, 4/ch	A, B, 4/ch	A, B, 4/ch
FM Sensitivity (Stereo)	$\begin{aligned} & 21.0 \mathrm{dBf} \\ & (1.8 \mu \mathrm{~V})^{*} \end{aligned}$	$\begin{aligned} & 21.0 \mathrm{dBf} \\ & (1.8 \mu \mathrm{~V})^{* *} \end{aligned}$	$\begin{aligned} & 23.0 \mathrm{dBf} \\ & (2.0 \mu \mathrm{~V})^{* *} \end{aligned}$	$\begin{aligned} & 23.0 \mathrm{dBI} \\ & (2.0 \mu \mathrm{~V}) * \end{aligned}$	$\begin{aligned} & 25.0 \mathrm{dBf} \\ & (2.2 \mu \mathrm{~V})^{* *} \\ & \hline \end{aligned}$
Selectivity	80dB	80dB	70dB	70dB	60 dB
Capture Ratio	1.25 dB	1.25 dB	1.5 dB	1.5 dB	2.0 dB
Prico	\$599.95	\$399.95	\$299.95	\$249.95	\$199.95

*@ 40-20,000 Hz **IHF ('58) Senslfivity (Mono)

Lafayette
 There is no competition.

For more information and a free catalog please write: Lafayette Radio Electronics, Box 159, 111 Jericho Tpke., Syosset, N.Y. 11791 Copyright 1976 Lafayette Radio Electronics
gircie no. 41 on free information caro

sine/square wave generator

B\&K-PRECISION
MODEL E310B—\$158

- Sine: $20 \mathrm{~Hz}-2 \mathrm{MHz}$
- Square: $20 \mathrm{~Hz}-200 \mathrm{kHz}$
- Constant voltage output
- 56 dB attenuation in 6 steps

Both available from your authorized distributor, or write for detailed specifications

PRODUCTS OF DYNASCAN
1801 West Belle Plaine Avenue
Chicago, Illinois 60613 312/525-3990
In Canada: Atlas Electronics, Toronto

New Products
Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

ROYCE IN-DASH CB TRANSCEIVER

The Royce $1-614$ is a combination in-dash CB transceiver and AM/stereo FM radio. featuring a PLL circuit that delivers 23-channel CB operation from two crystals, a dual-conversion CB receiver sec-

tion. AM/FM lighted slide-rule tuning dial. slide-type tone and balance controls. a local/distant switch for $F M$ that is also an r-f gain switch on CB, and an LED that acts as a stereo indicator on FM and as a transmit light on CB. Other features include a $13 / 8^{\prime \prime} \times$ $3 / 8^{\prime \prime}$ S/r-f meter. pushbutton automatic noise eliminator, variable squelch control, and a universal trim plate that is said to match the decor of most cars. Size is $7^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{D} \times 2^{\prime \prime} \mathrm{H}$ $(17.8 \times 15.2 \times 5.1 \mathrm{~cm}) . \$ 269.95$.
clircle no. as on free information card

AUDIO-TECHNICA HEADPHONES

The AT-705 electret condenser headphone from Audio-Technica features permanently polarized diaphragms that need no external source of power. The headphones plug into a small adapter that matches impedance circuits and contains a speaker/headphone switch. The AT-705 has a claimed frequency response of 20 to 20.000 Hz and has open-back ear cups. $\$ 89.95$.
circle no. bg on free imformation caro

MICROCOMPUTER POWER SUPPLY

Parasitic Engineering offers a constantvoltage power-supply kit tor the Altair 8800 computer. Designed to "make the Altair almost immune to unreliable performance due to power line fluctuations," the power supply is said to deliver full output of 8 V at 12 A and $\pm 16 \mathrm{~V}$ at 2 A "even when the line
voltage is as low as 90 volts. " It is also said to provide increased isolation from line noise and over-voltage protection, with an increase of less than 2% in output when the line voltage rises to 130 volts. Heart of the kit is a ferro-resonant constant-voltage transformer, which replaces all three of the standard Altair 8800 power transformers. \$75.00. Address: Parasitic Engineering, P.O. Box 6413, Albany, CA 94706.

Lafayette super tweeter

The Lafayette Model RP-1000 "Criterion Polymer" super tweeter can be used with existing two- and three-way speaker systems. The transducer utilizes a flat polymer diaphragm with an etched voice coil. When an audio signal is applied, the diaphragm is said to be driven equally at all points on its surface. No polarizing voltage or energizer is required. It is housed in a brushed aluminum case with a stand, and can be used as a freestanding unit or can be mounted in a speaker enclosure with the stand removed. Claimed frequency response is 4 kHz to 40 kHz , power handling capacity 30 watts, and impedance 8 ohms. Measures (exluding stand) $41 / 2^{\prime \prime} \times 41^{1 / 2} \times$ $13 / 8^{\prime \prime}(11.4 \times 11.4 \times 3.5 \mathrm{~cm})$, and weighs $1.125 \mathrm{lb}(0.51 \mathrm{~kg}) . \$ 59.95$.

circie no. 88 on free information card

LENCO CASSETTE DECK

Made in Switzerland and distributed here by Uher. Lenco's first stereo cassette deck is the C-2003. with direct drive, two capstans, three heads, and Dolby equalization. All mechanical functions are solenoidoperated. and logic controls permit changing from one function to another without pressing the stop button. An illuminated panel shows all functions as selected. Automatic tape selection is provided for chrome tapes, with manual selection for three additional types. A tape-motion sen-

sor automatically stops the tape if the cassette jams. Separate record and playback heads permit off-the-tape monitoring. Frequency response is 30 to $18.000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ without Dolby, S / N is better than 60 dB with Dolby, and wow \& flutter is less than 0.10%. $\$ 695.50$.
circle mo. bg on free information card

HICKOK IN-LINE CB TESTER

Hickok's 388 in-line CB tester provides a 7-digit readout of SWR. percent modulation, and frequency. The SWR and percent modulation functions use the "dynamic ratio technique." which permits measurements without a calibrate/set adjustment regardless of power level. The 388 provides one-step connection of the coax connec-

Tired of garbled voices and CB static?
Now, you can hear better with our KC-3035 KRIKET ® mobile speaker. Better thar you believed possible.

Eecause AFS offers the first acoustically designed voice com munications spaaker. And, that means you get outstanding intelligibility across the en-ire voice range.

AFS - the only company with the "WORKING WALL" ${ }^{(3)}$ sjeaker enclosure. Cross-leminated tubular fiberboard ceadens channel noise, eliminates voice distortion by controlling rebounding sound
 waves. Brings the vcice through - clean and clear

Available at CB dealers everywhere

Speakers are our only business. They have to be better!

World Wide Headquarters
Acoustic Fiber Sound Systems, Inc. 7999 Knue Road, Suite 116 Indianapolis, IN 46250 (317) 842-0620

Learn to service Communications/CB equipment at home...with NRI'S COMPLETE COMMUNICATIONS COURSE

Learn design, installation and maintenance of commercial, amateur, or CB communications equipment.
The field of communications is bursting out all over. In Citizens Band alone, class D licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million CB'ers in the U.S. by 1979 . That means a lot of service and maintenance jobs . . . and NRI can train you at home to fill one of those openings. NRI's Complete Communications Course covers all types of two-way radio equipment (including CB), AM and FM

Transmission and Reception, Television Broadcasting, Microwave Systems, Radar Principles, Marine Electronics, Mobile Communications, and Aircraft Electronics. The course will also qualify you for a First Class Radio Telephone Commercial FCC License or you get your tuition back.

Learn on your own 400-channel digitallysynthesized VHF transceiver.

You will learn to service all types of communication equipment, with the one unit that is designed mechanically and electronically to train you for CB, Commercial and Amateur communications: a digitally-synthesized 400 -channel VHF transceiver and AC power supply. This 2 -meter unit gives you "Power-On" training. Then we help you get your FCC Amateur License with

special instruction so you can go on the air. The complete course includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own electronics Discovery Lab, Antenna Applications Lab, CMOS Frequency Counter, and an Optical Transmission System. You'll learn at home, progressing at your own speed, to your FCC license and into the communications field of your choice.

NEW CB SPECIALIST COURSE NOW OFFERED

NRI now offers a special course in CB Servicing, You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter . . . for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC licenseenabling you to test, install, and service communications equipment.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed for learning $25^{\prime \prime}$ diagonal solid state color TV and a 4-speaker SQ ${ }^{\text {m" }}$ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses provide professional tools and "Power-On" equipment along with NRI kits engineered for training. With the Master Course, for instance, you build your own $5^{\prime \prime}$ wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI's complete computer electronics course gives you real digital training.

Digital electronics is the career area of the future . . . and the best way to learn is with NRI's Complete Computer Electronics Course. NRI's programmable digital computer goes far beyond any "logic trainer" in preparing you to become a computer or digital technician. With the IC's in its new Memory Kit, you get the only home training in machine language programming . . . experience essential to trouble shooting digital computers. And the NRI programmable computer is just one of ten kits you receive, including a TVOM and NRI's exclusive electronics lab. It's the quickest and best way to learn digital logic and computer operation.

You pay less for NRI training and you get more for your money.

NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.

More than one million students have enrolled with NRI in 62 years.

Mail the insert card and discover for yourself why NRI is the recognized leader in home training. No

salesman will call. Do it today and get started on that new career.

tors between the transmitter and the antenna or dummy load. Frequency measurements are from 1 Hz to 80 MHz , with resolution to 10 Hz . Size is $81 / 2^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{D} \times$ $4^{\prime \prime} \mathrm{H}(21.6 \times 15.2 \times 10 \mathrm{~cm})$. The 388 with standard time base has a frequency accuracy of 10 ppm , at $\$ 349.00$. The 388 X . with a temperature-compensated crystal oscillator. frequency accuracy of 1 ppm and aging of less than 1 ppm per year, is $\$ 475.00$.
clecie mo. gi on free information card

TANDBERG AM/STEREO FM RECEIVER

Tandberg's TR-2055 AM/stereo FM receiver, based on the top-of-the-line TR-2075, offers most of the same features,

including the same FM tuner. The TR-2055 is rated at 55 watts per channel into 8 ohms at 20 to 20.000 Hz with less than 0.15% THD. Features include tape contour jacks, electronic tuning with varactor diodes, two phono inputs, two tape-monitor inputs with tape copy. two tuning meters, and diode switching for all sources. \$749.00.
circle no 92 on free imformation card

Many hi-fi enthusiasts bought a Crown DC-300A power amplifier because they were impressed by its performance specs, and by the quality of its "listening" performance. It was, for them, the "ultimate" amplifier.
Why not do what they did? Compare the specs for the Crown DC-300A with those of any other amplifier. Compare the clean,
pure DC-300A sound that comes from low-distortion circuitry and plenty of headroom. And especially compare the DC-300A with its smaller relatives, the Crown D-150A and D-60. Same clean, pure sound, less power, but maybe just what you need.
Use your own judgment. You could find your ultimate listening standard in Crown.

B\&K SEMICONDUCTOR TESTER

The B\&K 530 semiconductor tester features measurement of transistor cut-off frequency up to 1500 MHz in three ranges. with display on a separate meter. It permits in-circuit testing and lead identification of diodes, transistors. FET's (including power types) and SCR's. For out-of-circuit tests, transistor beta is measured in two ranges (20-200, 20-600) and Gm of FET's in two ranges (0.4-12, 4-400 milliohms); accuracy for both tests is within 10%. Other measurements include f_{1}, gate leakage and I_{tn}, of FET's, and BV, , I, , and PIV of diodes. LED displays indicate whether the transistor is good and whether it is an npn, pnp. or n- or p-channel FET. An audible tone also indicates that the transistor is good. $\$ 250.00$

CIRCLE NO 93 ON FREE INFORMATION CARD

VALOR CB PREAMP

The Valor VRSC-115 is called a "CB Receive Signal Preamp." designed to raise the strength of weak signals, or to attenuate loud ones, to a usable level. it is compatible with AM and SSB transceivers. The preamp comes with a bracket for under-dash mounting. The front panel includes a gain/attenuate control and indicator lights for power and transmit. Valor claims that weak signals can be boosted to +15 dB , and loud ones attenuated to -20 dB, on all 23 channels. $\$ 39.95$. Address Valor Enterprises. Inc., 185 West Hamilton St., Dept. 532A. West Milton. Ohio 45383.

PEARCE-SIMPSON MOBILE CB TRANSCEIVER
Pearce-Simpson's "Tiger Mark 2" mobile CB AM transceiver features "Hetrolock,." which uses three crystals for 23-channel capability. Features include a delta-tune control called "Receiv-O-Slide." 12-volt operation with positive or negative ground. automatic noise limiter, noise blanker. squelch control, tone control, r-f gain control, S / r-f power meter, transmit indicator lamp. external speaker jack. \$229.95.
circle no gs on free informaiton card

DYNACO POWER AMPLIFIER

Rated at 150 watts per channel into 8 ohms, with less than 0.25% THD. the Dynaco Stereo 300 power amplifier kit is designed

- Tind6800-SOFTWARE

WARNING - It has been determined that reading this ad may be hazardous to your health, if you own another type computer system. We will not be responsible for ulcers, heartburn, or other complications if you persist in reading this material.

4 K BASIC ${ }^{\circ}$ - 8 K BASIC ${ }^{\circ}$

* Full floating point math
* 1.0E-99 to $9.99999999 \mathrm{E}+99$ number range
* User programs may be saved and loaded
* Direct mode provided for most statements
* Will run most programs in 8 K bytes of memory (4 K Version) or 12 K bytes of memory (8 K Version)
* USER function provided to call machine language programs
* String variables and trig functions-8K BASIC only

COMMANDS

LIST
RUN
NEW
SAVE
LOAD
PATCH

LIST
RUN
NEW
SAVE

PATCH

* Direct mode statements
f $8 k$ Version only

STATEMENTS

REM	END	
DIM	GOTO*	STOP
DATA	ON. .GOTO*	GOSUB*
READ	ON. .GOSUB*	PATCH
RESTORE	IF...THEN*	RETURN
LET *	INPUT	†DES
FOR	PRINT*	†PEEK
	NEXT	†POKE

FUNCTIONS

ABS	\dagger VAL	+ SIN
INT	\dagger EXTS	$\dagger \operatorname{COS}$
RND	\dagger LENS	t TAN
SGN	\dagger LEFT\$	\dagger EXP
CHR	\dagger MIDS	\dagger LOG
USER	\dagger RIGHTS	+ SQR
TAB		

MATH OPERATORS

- (unary) Negate
* Multiplication
/ Division
+ Addition
- Subtraction
\dagger \& Exponent

RELATIONAL OPERATORS
$=$ Equal
() Not Equal
< Less Than
) Greater Than
く= Less Than or Equal
$\rangle=$ Greater Than or Equal

© Copyright 1976 by Southwest lechnical Products Corp. $4 K$ and $8 K$ BASIC Version 1.0 program material and manual may be copied for personal use only. No duplication or modification for commercial use of any kind is authorized.

| \square 4K BASIC CASSETTE | $\$ 4.95$ | \square MP- 68 Computer | |
| :---: | :---: | :---: | :---: | :---: |
| \square 8K BASIC CASSETTE | $\$ 9.95$ | Kit | $\$ 395.00$ |

NAME

Southwest Technical Products Corp. Box 32040, San Antonio, Texas 78284

He sion inark.家 a SuOK ALAR Winces ou asout ribes.

It sounds an alarm.
A built-in alarm that's set off any time-night or day - when severe weather threatens.
The alarm is triggered by a signal from your local National Weather Service transmitter.
After it sounds, a complete report on the danger and survival instructions come on.
When conditions are normal, the Storm Alarm picks up the weather station's continuous, up-to-the-minute forecasts.

Unlike ordinary weather radios, which the user must monitor, the Storm Alarm continually monitors itself. The alarm sounds full blast
? whether or not you have the volume turned up and are listening. You're warned even when sleeping. Crystal-controlled and switch-selectable. Superior reception from as far out as $40-50$ miles. Works on AC. Built-in back-up battery feature. $25^{\prime \prime}$ telescoping antenna.
$2^{1 / 4 \prime}$ " speaker. Unit only $3^{\prime \prime} \times 5^{\prime \prime} \times 1^{1 / 4^{\prime \prime}}$. With all these features, it's no wonder a leading electronics magazine called the Storm Alarm a "sensitive weather receiver, and for a relatively low price (under \$40) an excellent disaster alarm."

The increase in U.S. weather emergencies has led to the development of this unit.

Today, tornadoes, hurricanes, severe thunderstorms and marine emergencies are a constant threat to life and property.

For a free "Tornado Tips" booklet and the name of your nearest dealer, write us at 637 S. Dearborn, Chicago, Ill. 60605.
Get the Storm Alarm. It's a foul and fair Eather friend.

OnlyTechnics gives you the worid's most precise drive system all these ways.

Technics direct drive. Radio stations use it. Discos abuse it. And nou you can get it in virtually any kind of turntable you want. Because Technics puts direct drive into more kircs of turntables than anyone eise.

You 1 find it in three manuals that start at under \$200* with the SL-1500. Or for a I tile more money you can get a lot more convenience with ounewest to-ntable, the semi-automatic SL-1400. The world's first turntatle with a one-chip 321 element IC. That gets the platter to exact speed in orly $1 / 3$ of a revolution. There is also the fully automatic single disc SL-1306 And the norld's first direct-drive changer, the SL-1350.

But there's a lot more to Technics direct drive than just more kinds of turn-

Drect Drive
System tables. There's also more precision, better periormance and greater reliability.

Because in our direct-drive system the platter is an extension of the motor shaft. That means there aren't any belts, gears or idlers to produce varations in speed. And that means all our turntables have less than 0.03% wow and flutter (WRMS), (0.04% or the SL-1350).
You'll also find an electronically controlled DC motor that spins a:-
 exactly $331 / 3$ or 45 RPM. Regardless of fluctuations in AC line vo tage \mathbf{a}^{-} frequency. What's more, unlike high-speed, rumble-producing motors, our motor introduces so litile vibration into the system that any rumble remains inaudible (-70 dB DIN B).

And it doesn't matter which Technics turntable you choose. Because they all have the extras you need. Like variable pitch controls 4 built-in stroboscope. Viscous-damped cueing. Feedback-insulated legs. As well as a dust cover and integral mase.

So if you want a turntable good enough for professionals, get the turntables radio stations use and discas abuse. Technics direct drive.
*Sugsestec -etail price.

(New Literature

CIRCUIT DESIGH CATALOG

E\&L Instruments offers a new, 26-page catalog of electronic circuit design aids. The illustrated publication, describing over 180 products for experimentation with op-
erational amplifiers, integrated circuit logic and microprocessors, includes solderless breadboarding sockets, tools, component kits and a selection of instruction manuals. Address: E\&L Instruments. Inc., 61 First St., Derby, CN 06418.
specifications are provided. Also, a discussion of the variable conditions that affect antenna performance and a description of Avanti's co-inductive principle. Address: Avanti Research \& Development, Inc., 340 Stewart Ave., Addison, IL 60101.

BUZZ WORD BOOKLET

An expanded edition of "Sherry's Guide to Data Communication Buzz Words" is available from ICC. The updated, 24 -page, pocket-sized booklet first published in 1972 is designed to aid the newcomer to the data communication field. Included are definitions and terms relating to terminals and the EDP field. Address: Public Relations Dept., International Communications Corp., 8600 NW 41st St., Miami, FL 33166.

ABOUT QUADRAPHONY

Spatial High Fidelity Through SQ Quadraphonic Recording and Broadcasting," by CBS, is a 22 -page, illustrated booklet, that answers questions most often asked by hi-fi listeners about quadraphonic broadcasting, recording and home listening. Included are sections on encoding, recording, decoding and logic systems used to produce ambient and surround sound; a technical summary of stereo-to-quad synthesis; a simple conversion of a home stereo to a quadraphonic system; and an explanation of the SQ quadraphonic system's compatibility with existing stereo and mono broadcasting and playing equipment. Send a stamped, selfaddressed envelope (approx. $81 / 2^{\prime \prime} \times 4^{\prime \prime}$) to Information Services Dept., CBS Technology Center, 227 High Ridge Rd., Stamford, CN 06905.

ELECTRONICS SYMBOLS HANDBOOK

The Cleveland Institute of Electronics has available a new 22-page, pocket-sized reference titled "Electronics Symbols Handbook." Listed alphabetically and divided into 19 categories, are more than five hundred of the most frequently used symbols representing electronics components. Also featured is an electronics data guide. including conversion factors and constants, Ohm's Law formulas, resonant frequency, impedance, a decimal table and a color-code chart. Price, 50 cents. Address: Cleveland Institute of Electronics. Inc., Dept. J-103H. 1776 East 17 th St., Cleveland, OH 44114.

CIRCUIT DESIGN RELIABILITY

"Circuit Reliability is not Semiconductor Reliability" is the title of "Tech Tips 3-4," offered by Westinghouse. Using equations and charts, the 3-page pamphlet illustrates that total circuit reliability is the product of the individual reliabilities of each component, and explains how to achieve this in circuit design. Address: Semiconductor Div., Westinghouse Electric Corp., Youngwood. PA 15697.

Form follows function.

At Yamaha, it's been that way since 1387 , when we began makirg music by making the finest musical instruments in the world.

Today, the same advanced technology found in our musical instruments has made Yamaha a leader in state-of-the-art audio components.

For example, we engineered our innovative Orthodynamic HP-1 and HP-2 stereo headphones to give both the smooth, crisp highs of the best electrostatic headphones and the rich, clean bass of the best dynamic types at a surprisingly low price.

But it wasn't enough to make them the best sounding headphones ever heard. We consulted world-famous designer Mario Bellini to help us make them the most comfortable headphones ever wom. Because we knew if they were uncomfortable, you wouldn't put up with them.

That's why a soft strap distributes the featherlight weight of the HP-1 and HP-2 evenly over your head. Special foam ear pads form a supple, compliant seal. Height and angle are completely adjustable to your head.

Yamaha musical technology is also highlighted in our superlative TC-800GL and TC-800D stereo cassette decks, offering cassette convenience with performance rivaling that of some of the finest open reel decks.

To satisfy the most sophisticated recordist, both the TC-800GL and TC-800D offer incredibly low 0.06% wow-andflutter, Dolby* Noise Reduction, and Variable Pitch Control. (The 'TC-800GL can even be used for remote recording.) But, if
you don't like to do a lot of fiddling around, both models offer automatic convenience features like Auto Timer Start, Auto Stop, Auto Memory Rewind, and Auto Switching for CrO_{2} tape.

Also showing Mr. Bellini's touch, the functional wedge styling and stepped controls of these cassette decks give you easy control and visibility from any standing, sitting, or reclining position.

If you'd like a closer look at some other examples of form following function, send for our free catalog of stereo components. Or see your local Yamaha Audio Specialty Dealer. You'll get a lot more than just a demonstration.
*Dolby is a registered trademark of Dolby Laboratories, Inc.

Stereo Scene

By Ralph Hodges

MODS AND MODIFIERS

BREATHES there a serious audiophile who has not at some time attempted to modify his equipment. either to personalize it or-if courageous or foolhardy enough-to improve it in some material way? Probably not many nowadays; given the complexity of design in modern audio gear. Interestingly, there are some people who make a business of equipment modification, offering customized versions of several popular components.
For a long time I've wanted to bring some of these business-minded customizers into these pages, to find out what they're doing and why, and to look critically at some of their products. This will be the first of (I hope) several columns that will explore the intricacies of this underground and interesting marketplace.

Doubling Dyna's. Dynaco is a company that is traditionally tolerant of unauthorized modifications-an unusually enlightened viewpoint. Consequently, the hills are alive with Dyna modifications. I first became aware of Jensens Stereo Shop and Frank Van Alstine because Dynaco tipped me off.
'He listens,' said the Dyna spokesman, in tones meant to convey a certain amount of respect. And so 1 got involved with the venture.

Van Alstine's flagship product is essentially an augmentation of the Dynaco Stereo 400 power amplifier, dubbed the Double 400. A significant amount of labor goes into the modification. First, it is completely ripped apart to get at the bottom tabs of the heat-sink assembly, which are drilled to accept double the number of output transistors. Then leads from the power supply are brought out to a sidemounted socket, into which is plugged an outboard capacitor box that quadruples the capacity of the supply. A front-panel switch is installed that enables you to bypass the amplifier's front end (including the gain controls and the patented "Dynaguard" protective circuitry). A number of changes are also made in the driver boards. And finally Dyna's optional heat-sink fan is added.

This is not, as you can see, a redesign of the amplifier in any real sense. What does it buy you, other than the satisfaction of owning what is probably the biggest Leyden jar in the his-

The "Domble 4 1 (\% ${ }^{\circ}$ is. (111 athgmentation of Dymucos Stereot ion poner. (1, mplifier:

tory of consumer audio? I can say, without hesitation or fear of serious contradiction, that it buys you a better-sounding amplifier than the original, for most practical purposes. And by "most practical purposes" I mean the difficult and erratic load presented to an amplifier by many loudspeakers.
The reduced impedance of the power supply and enhanced volt/ampere-handling capability of the output stage really do seem to make a difference. This reminds me of various learned dissertations that have appeared in the press on the subject of difficult temporal shifts in the voltage/current demands placed on the amplifier during its relationship with a typical loudspeaker. But without getting into that, I would characterize the audible difference between the modified and stock amplifiers as: an appreciable difference in the bass (you must decide which is better, because I can't reliably do so); and a reduction in the subjective noise level of the stock amplifier.

Noise level? Yes, because other listeners and I hear a quietness behind and within the flow of music that the stock version seems not to possess. (There is, I assume, no significant noise-level difference between them under non-signal conditions, so this "noise" arises from the program.)
There is general agreement on this verdict among all I have talked to that have compared the two amplifiers, sol don't think we're discussing will-o'-the-wisps here. But it is also rightly pointed out that the Double 400 modification, while possibly doubling the pleasure of very critical listeners, also comes close to doubling in price.

So we have a thoroughly clear picture. Dynaco, while conceding the merits of the modification, would have entirely missed its market by incorporating it into its product. The modification is intended for a much more specialized consumership willing to pay the price. It has been established that the stock Stereo 400 is entirely fit competition for its peers in cost. It remains to be seen whether the same can be said about the modification. But I think it has a good chance.

Pre-empting the Preamp. Van Alstine's modification of the Dynaco PAT-5 preamplifier has been an ongoing process. I have been through several versions, and I understand there is a still-newer one that I haven't heard.

Inceine a microcemputer

Imagine a microcomputer with all the design savvy, ruggedness, and sophistication of the best minicomputers.
Imagine a microcomputer supported by dozens of interface, memory, and processor option boards. One that can be Interfaced to an Indefinite number of peripheral devices inciuding dual floppy discs, CRT's, Ilne printers, cassette recorders, video displays, paper tape readers, teleprinters, plotters, and custom devices.

Imagine a microcomputer supported by extensive software Including Extended BASIC, DIsk BASIC, DOS and a complete ilbrary of business, developmental, and industrial programs.

Imagine a mlcrocomputer that will do everything a mini will do, only at a fraction of the cost.
You are lmagining the Altalr ${ }^{\text {m }}$ 8800b. The Altair 8800b is here today, and it may very well be the maintrame of the 70's.

The Altalr 8800b is a second generation deslgn of the most popular microcomputer in the field, the Altalr $\mathbf{8 8 0 0}$. Bullt around the 8800A microprocessor, the Altalr 8800b is an open ended machine that is compatible with all Altair 8800 hardware and software. it can be configured to match most any system need.

MITS' plug-In compatible boards for the Altalr 8800b now Include: 4K static memory, 4K dynamic memory, 16K static memory, mult-port serial Interface, multh-port parallel Interface, audlo cassette record Interface, vectored interrupt, real time clock, PROM board, multiplexer, A/D convertor, extender card, disc controller, and ilne printer interface.

MITS' peripherals for the Altalr 8800b Include the Altalr Floppy Disc, Altalr Line Printer, teletypewriters, and the soon-to-be-announced Altalr CRT terminal.

Introductory prices for the Altalr 8800b are $\$ 840$ for a kit with complete assembly Instructions, and $\$ 1100$ for an assembled unit. Complete documentation, membershlp into the Altair Users Club, subscription to "Computer Notes;" access to the Altalr Software Library, and a copy of Charles J. Slppl's Microcomputer Dictionary are Included. BankAmericard or Master Charge accepted for mall order sales. Include $\mathbf{\$ 8}$ for postage and handiling.

Shouldn't you know more about the Altalr 8800b? Send for our free Altalr Information Package, or contact one of our many retall Altalr Computer Centers.
mits 2450 ALAMO S.E. ALBUQUERQUE, NEW MEXICO 87106 (505) 243 -7821

Redesigned front panel. Totally synchronous logic design. Same switch and LED arrangement as original Altai- 8800. New back-lit Duralith (laminated plastic and my ar, bonded to aluminum) dress pane! wit muiti-color graphics. New longer, flat toggle switches. Five new functions sto ed on front panel PROM including: DISPLAY ACCUMULATOR (cisplays contents of accumulator), LOAD ACCUMULATOR (loads contents of the 8 data switches (A7-AO) into accumulator), OUTPUT ACCUMULATOR (Outp ats contents of accumulator to I/O device addressed by the upper 8 address switches), INPUT ACSUMULATOR (inputs to the accumulator from the $1 / \mathrm{O}$ device), and SLOW (ca-ases program execution at a rate of abcut 5 cycles per second-for program debugging).

Full 18 slot motherboard.
Rugged, commercial grade Optima cabinet.

New front panel interface board Suffers all lines to and from 8800b bus.

Two, 34 conductor ribbon cable assemblies. Connects front panel board to front panel interface board. Eliminates need for complicated front panel/bus wiring.

New, heavy duty power sufply +8 volts at 18 amps, +18 volts at 2 amps, -18 volts at 2 amps . 110 volt or 220 jolt operation ($50 / 60 \mathrm{~Hz}$). Primary tapped for sither high or low line operation.

New CPU board with 808CA ricroprocessor and Intel 8224 clock generator and 8216 bus drivers. Clock pulse widths and phasing as well as frequency are crystal controlled. Compatible with all current Altair 880C software and hardware.

citcir 8800-b

[07Es

The modification has generally been a study on designing a preamplifier in reverse. Mr. Van Alstine takes out things, and then devises ways to make the preamp live with the loss. Most of the process has concentrated on the high-level section, constructed around one integrated circuit per channel. First there was a search for the "fastest" IC's available to use as possible substitutes. (I will not reveal the devices ultimately chosen because Mr. Van Alstine feels that his laborious efforts have earned him some right to exclusivity, and I agree.) Then, when the IC's were obtained, frequency-compensation components around the IC began disappearing. Output capacitors also went, together with other devices, reducing the entire output stage to only three components when the tone controls are out of the circuit. Changes were made in the $B+$ rails, and also in the supply itself. Then tantalum capacitors were brought in for selected spots and now I understand that metal-film resistors are being routinely substituted for carbons.

The modified PAT-5 has proved to be a more controversial product than the Double 400. There is not even universal agreement as to whether all the evolutions have been steps forward rather than steps backward. However, I took the sample provided to me and put it through an exceedingly demanding (though not-always-valid) test: the phase-flipped straight-wire comparison.

The straight-wire test involves comparing the sound of a preamplifier to
the sound of a simple link of cable that bypasses it, switching from one to the other. The phase-flipped test combines the outputs of the preamp and straight wire, while inverting the phase of one of them. Ideally, the two signals should cancel completely, leaving nothing. Anything that's left is, presumably, an error made by the preamp in processing the signal.

The phase-flipped test is not a valid critique of a preamp, because completely tolerable phase shifts, among other things, can legitimately occur within preamps to prevent cancellation. So you can't indict a preamplifier for its failure to pass this test. But you can do nothing but praise a preamplifier that does pass it, and the PAT-5 modification came astonishingly close.
Most of the time, everything was inaudible, including hiss generated in the pre-cancellation stages. On extremely high-level passages (the program chosen was London's new recording of Turandot, whose first scene probably contains every berserk manifestation of musical waveform you're likely to encounter) there was an occasional soft "tst" of high-frequency noise. When I find out what this "tst" is, the modified PAT-5's high-level section should serve as a useful test bed for evaluating other products. In the meantime, the unit has to be considered above reproach in the areas of frequency response and phase linearity, and I wouldn't know how to criticize it on noise and distortion.

For those interested in any of the above, Frank Van Alstine's address is

The Shreve-Rabco tonearm, an adaptation of Rabco's $S L-8 E$, is made of 22 pieces of balsa mood. Nine com terneights are procided.

Jensens Stereo Shop, 2202 River Hills Drive, Burnsville, Minn. 55337.

Armless. Tonearms are a necessary nuisance, which is probably why many of them are designed to look so pretty. Their function is to serve as a rigid and imperturbable platform for the cartridge, and we haven't yet discovered any practical alternative to them. But few of them are rigid and all of them are perturbable, whether from acoustic feedback, seismic disturbance, or gross undulations of the record surface. The only reasonable solution is to design an arm that interacts with the cartridge to create a fairly high (above 10 Hz) resonance. However, then very close attention must be paid to pivot bearings, leveling, and the distribution of mass, because these factors will now dominate the behavior of the tonearm.

For various reasons, the straight-line-tracking tonearm principle, properly executed, offers great promise. However not a great many such arms have been properly executed, and the principle itself has some intrinsic liabilities. For one thing, skating force, which straight-line arms eliminate, acts as a stabilizing/damping mechanism on rotating arms, as does the skating compensation device that engages in a constant tug-of-war with it. So a radial-tracking arm, lacking this stabilizing set of forces, must be very good in itself in order to succeed.

The Shreve-Rabco tonearm, a modification of the discontinued Rabco SL-8E, is a stab in the direction of proper execution, and an accurate one. The arm itself is fashioned out of balsa wood, (a total of twenty-two pieces, reportedly), except for a magnesium block that houses the pivot sockets and a threaded nylon rod that supports the counterweight. The contact lever for the advance mechanism has been whittled down to a slim (adjustable) wire, and the arm-lift system has been completely altered. Nine threaded counterweights are provided. You pick the one that positions the counterweight as close as possible to the pivot assembly with your preferred cartridge.

All these steps are taken in the interest of low effective mass. For the bearings, perpetually lubricated sockets of the best quality are installed to receive the original Rabco needle-cones after they have been repolished. And the bearings, as well as the arm cartridge alignment, are ad-

ine eontro of Power by Sansui.

For the aud cphile who wants the finest merched stereo amplifiers and stereo control preamplfiers, Sansui offers the answer - Is [efirition Jeries. Loor at two of these c.jstanaling components. The Sansui $3 A 3000$ is designed with penty of power to hanc e those burste of kercussion and those dynamic oortissimos that give you concert hall presence. Thə CA 3000 controts ard 'eatures are a true jov for the realive pro and aldiophile who wants to tailor the music to his awn personal pre"erences.

This extnasrdinary pai is designed for the rrost demanding tasks: recordiny stadios, sound seinforcement and audiophile home listening. The Definition Series affers the clearest, cleanest fidelity availatole anywา2re. Top of the line Salsui BA 5000. called the "Monster," is one of the most po'verfu amplifiers available tcday: 30C watts pe channel min RMS into 2. \angle and 8 cl ms from 20 to $20,000 \mathrm{~Hz}$ with ro more than $0 . \%$ THL. Eor complete information on the entire Defirifon Series yist your local Scnsui dealer soon or write directly to $\sqrt{5}$.

Perfect for: CBers, Hams, Service Techs, \& Experimenters!

- HAM, CB. \& COMMERCIAL BANDS • WIRED \& TESTED AVAILABLE • 100 HZ READOUT • 6 DIGITS - CRYSTAL TIME-BASE - 1 Hz OPTIONAL - MASTER CHG./B. AMERICARD OK • ADD $\$ 2$ SHIPPING

Hufco

Incredible counters starting at $\$ 45.95$ are also available! All counters can be factory wired and tested. Write or call today!
Box 357, Dept. 52, Provo, UT 84601 (801) 375-8566

1. Itrmbash caratao and FM DIRECTORY

Get all the newest and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEDD
 TODAY!

If you are in a hurry for your catalog please send the coupon to McIntosh For non rush service send the Reader Service Card to the magazine. circle no. 48 on free imformation caro
justed by ear. You can imagine what a laugh that idea gave me until David Shreve stopped in and demonstrated the process, which I in turn demonstrated to friends and colleagues the following night with a similar deflation of mirth. At least all these adjustments are readily accessible, so you can fiddle to your heart's content.

As to the performance of the arm, there is no question about its being superb. When properly leveled it could probably not be dislodged from the groove by an earthquake. It tracks at any force usable with any cartridge, and it is stable. The sample I have, playing a commercial pressing of a very difficult piano recording, can almost match a one-off copy of the master tape-a phenomenon entirely new to me. If you pick the proper cartridge the arm will actually filter out orangepeel (mold grain) noise, and it will make rumble a thing of the past.

But note also that the arm is in short supply, difficult to make and adjust, and difficult to ship. It is also horrendously expensive. If you happen to be in David Shreve's neighborhood (3402 N. Oakland Avenue, Milwaukee, Wis. 53211) and are prepared to write out a check in excess of $\$ 500$, be my guest. But be sure to have your spouse cradle it gently in his/her lap on the drive to your home.

Modify? You might consider modified components if you are (like me) an all-out audiophile, as well as a tinkerer. Of course there are certain hazards. For example, plugging Van Alstine's output-capacitorless preamp into the wrong power amp could create unbelievable havoc. If you acquire one of Shreve's tonearms, be prepared to follow his written instructions (which are excellent) down to the last comma, despite your own ideas.
And there are other drawbacks. At the manufacturer's discretion, the warranty for your modification can become a worthless piece of paper. and you may create ill will in him that could be troublesome when the time for routine maintenance arises. In either case, you depend on the modifier for satisfaction and abide by his stated policy.
I've mentioned here only people who, on the basis of fairly long acquaintance, l've discovered to be completely trustworthy. Certainly there are other good modifiers out there. However, considering the hazards. I would say: caution.

how 4 easy-to-use troubleshooting techniques can solve 99% of your electronic problems in record time!

Act now. Save $\$ 10.97$. Publisher's price: $\$ 12.95$. Yours for just \$1.98.

Don't spend one minute more than is necessary on any troubleshooting job!

It's not a question of being lazy. It's just a matter of knowing a sure and quick way to find the defect. And that's the way you're going to know.
Walter H . Buchsbaum, one of the most respected authorities in electronics, has been collecting surefire troubleshooting methods for many years. From experts. In all areas of electronics. Now he's put the best of them, along with his own proven techniques, into TESTEDELECTRONICS TROUBLESHOOTING METHODS.
This book is presently selling for $\$ 12.95$. But, now you can have it for fust $\$ 1.98$. YOU SAVE $\$ 10.97$!
It's our way of introducing you to the Electronics Book Service, the no-risk book club which is currently keeping over 50.000 technicians, troubleshooters and hobbyists informed of the best, more useful new books in the field of electronics.
TESTED ELECTRONICS TROUBLE SHOOTING METHODS is typical of the selections we offer members. It gives you solid, expert help on all kinds of troubleshooting problems. It shows you how to save time-money-and work

This is why we have chosen it to introduce you to the Electronics Book Service. Join now, as a trial member. and you'll receive your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS-for lust $\$ 1.98$! This is your only financial commitment of membership. For the Electronics Book Service is a risk-free book club: As a member, you buy only what you want. when you want. and always at a substantial discount!

When you receive your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS. you'll learn an easy method that reduces the bulk of electronic repair to the simple application of 4 basic troubleshooting techniques. Four minimum-time. maximum-efficiency proce dures that will solve $99^{\circ} \%$ of your electronic repair problems. And with record ease. speed and accuracy.

- THE SYMPTOM-FUNCTION TECHNIQUE will quickly isolate the defect to a particular part of the equipment. Once you isolate the trouble spot.
- THE SIGNAL-TRACING TECHNIQUE will help you find the stage-amplifier-logic gate-or whatever the cause of the trou ble.
- the voltage-resistance techni. QUE will precisely pinpoint for you the defective component
- the voltage substitution tech NIQUE will verify the trouble anc, in some types of equipment, find the solution from among the remaining possibilities.
These 4 basic techniques form the foundation for all successtul troubleshooting. You can use them singly or in combination. They work like magic for all the top-level electronics experts. And they'll work for you'
And these 4 techniques aren't the only surefire troubleshooting techniques you'll find in TESTEDELECTRONICS TROUBLESHOOTING METHODS. Buchsbaum bring you a whole battery of time-saving, work-saving methods
-methods which the nation's most success ful electronics experts are using.
For bonuses. Buchsbaum gives you additional guidelines for getting the most out of your equipment. You'll see how to test and calibrate all standard meters. Even how to get the most for your money when you select test equipment

What's more, you'li discover methods for finding and solving intermittent defects-which are usually hard to find. And for dealing with interference defects--which are often mistaken for component faılure

TESTED ELECTRONICS TROUBLESHOOT ING METHODS contains over 100 illustrations that simplify these methods and formulas the experts use You'll have the circuit and block diagrams - tables - charts - schematics and checklists that make Buchsbaum's troubleshooting techniques easy to apply.

With this battery of simplified troubleshooting techniques, you'll be able to handle all kinds of electronic repair work quicklyeasily economically. And without wasting time-doing unnecessary extra work-or going through endless trial-and-error. For these reasons, TESTED ELECTRONICS TROUBLESHOOTING METHODS is a perfect introduction to the... ELECTRONICS BOOK SERVICE.

The Electronics Book Service does a job which you don't have time to do for yourself. We carefully screen the hundreds of books on the subject, select those which are the most useful or which bring you the latest information on technical innovations and improvements of prime importance.

Your membership is an ideal way to keep in touch with the onrushing advances in electronics and its applications - to keep on top of a rapidly changing technology.

As a member, you can build a professional library of superb quality and permanent value-one which will meet your every interest and requirement, always available for you to consult for expert help in any need. And you can acquire this library as quickly or as slowly as you choose.

Remember, the Electronics Book Service has no minimum purchase requirements as do many book clubs. Once you've paid $\$ 1.98$ for TESTED ELECTRONICS TROUBLESHOOT. ING METHODS. you don't need to purchase any further selections!

Why delay? Mail the coupon below to get your copy of this $\$ 12.95$ handbook for only $\$ 1.98$-and to receive all the benefits of nembership in the Electronics Book Service on a risk-free trial basis. Fill out and mail your coupon right away

Here is the practical and efficient way in which the Electronics Book Service operates.

1. When you enroll as a member, you recerve-for only $\$ 1.98$ (plus postage and handling. with tax where applicable)-your copy of TESTED ELECTRONICS TROUBLE SHOOTING METHODS. This is the only obligation you are committed to make
2. You are under no obligation to accept any mınımum number of selections within any tıme limit. You can take as many or as few as you wish And you may resignat any time with no obligation once you have paid for your copy of TESTED ELECTRONICS TROUBLE SHOOTING METHODS
3. On selections you do accept, your membership entitles you to a discount from the publisher's list price. This discount is available to members only and provides you with substantial savings
4. Every four weeks we'll send you a free bulletin describing the current selection. If you want the selection, no action is required; it will be shipped to you automatically. If you don't want it. Just return the card enclosed with the bulletin
5. You have at least 10 days to decide whether you want the selection or not. Return the card so we receive it no later than the date specified. If you don't have 10 days to answer and receive an unwanted selection, return it at our expense
6. Each bulletin also describes a number of alternate or additional selections. also available to you at the special discount price for members.

Have a problem or question on circuitry. components. parts avalability etc? Send it to the Hobby Scene Editor POPULAR ELECTRONICS One Park Ave. New York. NY 10016 Though all letters can t be answered individually. those with wide interest will be published

By John McVeigh

ACOUSTIC FEEDBACK

Q. How do the manufacturers and the users of commercial PA and sound equipment reduce or eliminate acoustic feedback, even at high sound pressure levels (such as at rock concerts)? Can lapply the same techniques at home?

-Richard Lei. Rego Park. NY

A. In his Stereo Scene column in May 1976. Ralph Hodges discussed "The World of Sound Contracting." In that column he touched upon this particular subject and showed sámple graphs for equalized and unequalized response of a large hall. By means of a narrow-band equalizer. the sound contractor can flatten out the frequency response and squash acoustic feedback. In the home, it is usually the turntable that is most affected by acoustic feedback. And in almost every case. the oscillations are at a low frequency. The best way to lick this problem is to physically isolate the turntable base. using a commercial shock mount with built-in damping or a home brew mount constructed from thick, spongy foam rubber.

FM INTERFERENCE

Q. I have a 5-band portable radio. When I switch to Public Service Band I (30-50 MHz) or PSB II/Air (108-174 MHz), I receive FM broadcasting stations. What causes this and how can I correct it?

- Barry Sheffield, Chester. VA
A. Either the receiver has insufficient selectivity or the front end is being overloaded. You did not mention whether or not you are using the builtin whip or an external antenna. In either case. you could try putting a wave trap at the appropriate input. Use either a series LC circuit from the antenna input to ground or a parallel LC
circuit between the antenna and the input to the r-f amplifier. Adjust either L or C to resonate the circuit and null out the undesired signal. But l'd suggest making the trap switchable (use a low-capacitance switch) so that you can still use the radio on the FM broadcast band!

COMPUTER RFI

Q. I recently got a Sphere Systems computer which is causing interference to nearby television receivers. (I am temporarily operating it outside of its cabinet.) Apparently, most of the interference is coming from the CPU board. Although I constructed a box from window screening and grounded it, the RFI problem remains. Any suggestions?

> -Charles Skeldon.
> New Brighton. MN
A. The majority of information signals that are generated by a digital system are square waves. Mathematically, a square wave can be described as a summation of sine waves harmonically related in frequency. The highorder harmonics can cause RFI and TVI. The best way to combat the problem is to button up the case tightly. making sure that there are clean metal-to-metal connections. If you must use the microprocessor outside its cabinet. try using very, very fine screening. Also, use a "brute force" filter on the ac line. Finally, you might try using ferrite beads on any lead more than a few inches long.

MIXING WITH A GRID DIP

Q. Recently, I accidentally made a discovery that has led to many hours of listening enjoyment. While varying the frequency of my grid dip meter, which was placed near an FM radio tuned off-channel (about 90 MHz), I found that I could receive many different r-f transmissions. Some of those l've received are TV sound, aircraft, police, CB, 2-meter FM, telephone calls, and even WWV. I'm fascinated! But how does it do it?
-Dennis Cole. Lincoln Park. MI
A. You have created a frequency converter stage. The grid-dip meter is the local oscillator, and some nonlinear element inside the receiver is acting as a mixer. The result is an additional heterodyne process. Exactly where the heterodyning is taking place is hard to determine, because one variation on Murphys Law states that a linear circuit will often behave nonlinearly. Furthermore, just imagine how many pn junctions there are inside the radio's case, each of which can act as a diode mixer. Interestingly, you are receiving AM as well as FM transmissions. I imagine that is the result of slope detection. A variation of your technique has been used by many shortwave listeners who copy CW and SSB signals on shortwave portables lacking bfo's. By tuning a signal generator or the local oscillator of another receiver to the proper frequency, they could reinsert a "carrier" for proper detection. Happy Listening!

WINDSHIELD WIPER DELAY

Q. Do you have a circuit for a variable delay control for windshield wipers?
-Doug Swart. Plainview. NY
A. The circuit shown is a result of colaboration between myself and reader Jack Rutherford of Burlington. North Carolina. It will provide a sweep rate of from one every 5 seconds to one every

37 seconds. An SCR is used for triggering the windshield wiper motor rather than a relay to avoid mechanical bounce problems. The SCR, a HEP R1301, will handle 20 amperes of maximun forward current, sufficient for even a hefty wiper motor. The SCR should be heat-sinked. All resistors are half-watt carbon. and the $50 \mu \mathrm{~F}$ capacitor should be a tantalum type.

To SBE

TMOHoticility

is not just another word

We at SBE have built our reputation on the quality and reliability of every single product we sell. To maintain the high standards we have set for ourselves, every SBE product is thoroughly tested to insure meeting our stringent quality control before shipment.

Our insistence upon "out-of-the-box performance" is best evidenced by the fact that every CB radio, every scanner, and all land/mobile and marine transceivers are checked and re-tested before they leave our factory.

Skilled technicians with intricate test equipment insure that every product manufactured receives this double check-out before the SBE "Quality-Assurance Personalized Seal" is affixed to each box. With that seal goes our guarantee, for a full year, that the SBE product will perform up to its specifications -from the sophisticated circuitry to the smooth-functioning controls.

It is just such quality control, coupled with our advanced
 development-a small but precision-built 23-channel transceiver incorporating all the features and performance of a full-size CB.

You can count on every SBE product and accessory for dependable performance and reliability. We have built our reputation on that!

For information write: SBE, Inc., 220 Airport Blvd., Watsonville, CA 95076

PR PAGATI N F RECASTS F R

 RADI C MMUNICAT RS
How to examine the sun safely and use other sources to determine sunspot activity.

IN ADDITION to being the ultimate energy source for all earthly life, the sun plays a dominant role in the longrange propagation of radio waves. Solar radiation causes atoms in the upper atmosphere to ionize, resulting in the formation of the ionosphere, off which radio waves bounce to return to the earth and provide long-distance communications. The density and height of the ionosphere determine the wavelength and the angle of the reflected wave.
There is also a correlation between the presence of sunspots on the solar disc and the degree of ionization of the upper atmosphere. With all we know about solar activity, however, we cannot yet predict with a high degree
of accuracy ionospheric "weather" and its influence on radio.

Records of sunspot activity have been reliably kept since only about 1750; but this still enables us to develop a plot which shows the so-called sunspot cycle. The up-and-down nature of sunspot count is evident in the plot shown in Fig. 1; but note that irregularities can be detected. Observe, too, that sunspot peaks have been as low as 60 and as high as 200 . Moreover, the valleys in the graph have not always reached the zero mark, although some have remained near zero for a year or more. Thus, the 11 -year "sunspot cycle" is also an approximation since there have been longer and shorter cycles.

For more than a year now, knowledgeable people have been wondering when Cycle 20 (in the recorded history of cycles) is going to bottom out. Have we already passed the sunspot minimum? When will Cycle 21 begin to show strength? Is it already revealing itself? Will it ever? These are the questions being asked; and the answers given differ widely.

Equipment. Active hams, CB'ers, and SWL's have a keen interest in keeping up with the sun's activity. Most radio communication enthusiasts, however, don't realize that they can do so without setting up elaborate solar observatories in their

* Source of information: Edward P. Tilton. WIHDQ

Fig. 1. Smoothed sunspot number plotted from 1750 to present. Cyclic variation is apparent.

Photo (above) of entire sun disc, Jan. 30, 1968, when sunspot activity was very high. Spots have dark centers (umbra) and surrounding grey areas (penumbra). Darkening around edge is from looking through more and more of sun's atmosphere.

View (below) of sun taken with chronograph. The bright surface (photosphere) is blocked to see atmosphere next to surface. Red chromosphere is seen in the light of hydrogen-Alpha wavelength. Projections from chromosphere are prominences.

Fig. 2. Lsing ":") reflector telescopee and black box to ciea projected image of the sum.
back yards. One can keep track of what's happening on the sun even at the bottom of Smog Valley with any old "spyglass." People have used an antique mariner's glass, a surplus military target telescope, bird watchers' telescopes, a $\$ 29$ zoom-lens telescope, and the $5^{\prime \prime}(127-\mathrm{mm})$ reflector shown in Fig. 2. Whatever you use, though, be sure you don't look directly at the sun with the scope (or your naked eye) except with a filter that is safe for sun use. The various scopes mentioned above should be used for projection viewing only.

In Fig. 3, a Celestron 5 telescope is shown being used for direct viewing of the sun with the manufacturer's fullaperture solar filter in place. This filter passes only 0.01% of the light striking it to the viewer's eye, the minimum
amount of filtering considered safe. You can make you own solar filter by mounting a Wratten neutral-density filter (density No. 4, available from Eastman Kodak dealers) in a lens-cap arrangement of your own fabrication. Be absolutely certain that any such filter is tightly mounted so that it doesn't accidentally slip out of place when you're looking into the scope's eyepiece. Incidentally, the Wratten No. 4 filter is also useful with large telephoto lenses that can be attached to single-lens reflex cameras for solar photography.

With an inexpensive low-power telescope, a camera tripod equipped with a pan-tilt head, and a few viewing accessories, you'll always be ready to check the sun, even on long road trips. To use the equipment, set the scope

Fig. B. Vienting the sum directly through (efestron ; telsscope sé"ipued with
 fill-apertar solar filter:
Hat bimen shelds cyes fion" stu atid make's fïne details: (1) sun rosier to rewle (I'loofos on this page comitesi! Almertical" Radio Ralloy Léty"t. Ime.)

on the tripod and tilt it up in the general direction of the sun. Hold a white card in line with the eyepiece and adjust the orientation of the scope until the shadow it casts on the card is circular. Slow movement of the scope will then bring out a bright spot in the center of the shadow. This is the solar image. Adjusting the scope for a sharp-edged solar disc will bring the sunspots-if there are any-into near focus.

Better detail and contrast can be obtained by enlarging the shadow area. Put a card baffle measuring at least $12^{\prime \prime}$ $(30.5 \mathrm{~cm})$ square over the body of the scope to shade the projection surface from the sun's direct light. For even more clarity, project the image into a "black box" (as shown in Fig. 2). An ordinary cardboard box painted flat black will do. The viewing surface can then be good-quality white paper or any smooth surface inside the box painted flat white. Better still, put a cover on the projection box and cut a hole just large enough to permit you to look into the box and see the projected image at the bottom.

You will discover that the more ambient light you exclude from the projection area, the better will be the detail of the image and the larger the image you'll be able to use effectively. Bear in mind, however, that any gains you make must be paid for, which means that larger images will demand more precise aiming and tracking adjustments.

When you're using a telescope of more than $20 \times$, an equatorial mount and rack-and-pinion drive become very helpful. The better scopes are usually equipped with these features. and some have mounted projection devices and electric clock drives. The latter two are also available as options for those telescopes that don't include them as standard features. A moderately priced $2^{\prime \prime}$ or $3^{\prime \prime}$ refractor that's fully equipped with features and accessories makes an excellent setup for projection viewing

Interpretation of what you see is an involved process that requires a skill developed through practice and experience. Correlating what you see with observed propagation effects can develop into an absorbing side hobby. You might find it useful to make two sketches of each observation; one to show the locations and general appearances of any spots and the other an enlarged view of major spots or groups of spots.

A LOOK AT SOLAR RADIATION

Sunspots are visible evidence of solar activity, wellsprings of the kinds of radiation that affect radio communication for better or worse. The types of radiation with which we are principally concerned are ultraviolet light and atomic particle emission. As with all electromagnetic waves, UV travels at roughly $300,000 \mathrm{~km}$ (186,000 miles) per second. Thus. if we see a sudden change in the appearance of a sunspot group or detect an increase in solar radiation by electronic means, we can expect propagation changes almost immediately.

Ionization of the earth's outer atmosphere (production of the ionospheric layers that make long-distance communication possible) is a sudden effect, much like turning on a fluorescent lamp. The F layer, located some 140 to 200 miles out in space, is "turned on" by solar UV radiation and acts as the principle radio "mirror," reflecting waves back toward the earth. This ionized layer appears to build up gradually each morning and to dissipate each evening.
A sudden burst of UV radiation, such as that which accompanies the appearance of a solar flare, can change the state of the ionosphere almost immediately. (It arrives here about eight minutes after it has left the sun.) The effect of the UV flash is a rise in the maximum usable frequency (muf) which is the highest frequency that will support communication over a given signal path. Also, the received noise level will probably increase, especially if the antenna is directional and is aimed at the rising or setting sun.

Such a burst of UV radiation is accompanied by charged-particle emission. This "solar wind" moves more siowly, however, spraying out into space with what has been called the "garden-hose effect." (For a practical demonstration
of this effect, turn on the water pressure suddenly in a hose lying loose on a lawn.) The solar wind follows devious paths, which means that the effects of the particle burst may not be observed on earth for as long as one to four days after it left the surface of the sun. When the particles enter the earth's magnetic field, you'll know about it quickly, particularly if you live in the NortheasternUS or Canada. Shimmering aurorae may appear and signals in the lower portion of the hf spectrum will take on a wavery sound. This is sometimes followed by partial or complete loss of communication. Frequencies above about 25 MHz (higher in periods of generally higher solar activity) can open up for short skip. and signals may also show the typical auroral "fuzz," or distortion, resulting from multipath scattering in the aurural regions. The distortion tends to increase with increasing frequency.
In times of generally lower solar activity, such as the present, the effects of particle radiation are mostly mild. Aurorae are relatively rare and the disturbances associated with solar-flare activity are much less severe and frequent than they will be in a few years from now.

A widely overlooked fact about solar cycles is that. regardless of the current phase, there are large variations in the level of activity from time to time. It's.rare to have more than 10 consecutive days of solar stability. Even near the normal "bottom" of the cycle, solar activity and visible sunspots can increase steadily for several days, reaching peaks more characteristic of middle or even peak years. These anomalies often sneak up on professional forecasters so that even the newest amateur observer will not have to wait long to find "official" forecasts as far off the beam as local weather forecasts are at times. High-activity peaks have appeared in 1974, 1975, and 1976, supposedly the lowest three years of a dying Cycle 20.

Sources of Information. There are several information sources for propagation conditions. For example, annual and monthly forecasts are offered by many shortwave club newsletters and amateur radio magazines.

The National Bureau of Standards radio stations WWV and WWVH are another valuable source of information. These stations transmit continuously on 2.5,5,10, 15, 20. and 25 MHz . primarily for the purpose of providing accurate time and frequency standards

Propagation bulletins are given at 14 minutes past the hour on WWV and
are updated four times daily, usually at 0114, 0714, 1514, and 1914 Coordinated Universal Time. UTC is the same as GMT, which is equivalent to EST plus five hours. The following information is given: propagation quality forecast; condition of the geomagnetic field; coded forecast for the North Atlantic path; the K index: and the $2800-\mathrm{MHz}$ solar flux.

Propagation quality is given in one of nine degrees, ranging from "useless" to "excellent." Geomagnetic activity is given as "quiet," "unsettled or "disturbed." The coded forecast is a simple quantized statement of prop-
agation quality. The K index is, in efifect, a numerical statement of geomagnetic activity. It reflects an actual reading taken just before bulletin. time and is a direct indication of likely propagation quality on high-latitude paths and on frequencies where geo-magnetic field effects are critical (mostly below 15 MHz at times of low solar activity). The solar flux index is a measure of solar radiation. It correlates well with the muf (maximum usable frequency) for F-layer propagation and reasonably well with longterm sunspot number information. It s much more useful in planning radio communication than the sunspot number, because it is essentially current information. Both the K index and the solar flux are given with the expected direction of change, making them very valuable for short-term forecasting and planning when to use different frequencies.

A typical bulletin sounds like this: The radio propagation quality forecast for 1900 UTC is fair to good. The geomagnetic field is quiet. The coded forecast is Novemberfive. The K index for 1800 UTC is two, expected to remain the same. The $2800-\mathrm{MHz}$ solar flux index is 72 , expected to rise slowly." What does all this mean?

Since a steady K index of two or less means generally low geomagnetic activity, it can be assumed that there is no abnormal amount of chargedparticle emission from the sun entering the earth's magnetic field at the moment. And a low, but rising, solar flux indicates a somewhat higher F-layer muf will develop. If the bulletin is correct as to these trends, the propagation forecast will be right conditions will be above average and the muf will rise. The "November" part of the coded forecast stands for N, or "normal." and "five" means fair to good conditions.

A fast-rising K index means increased absorption of radio signal energy in the ionosphere and reduced signal levels or perhaps loss of communication entirely. The effects are generally more pronounced in the higher latitudes; hence the forecast for the North Atlantic path - a busy circuit traversing high latitudes from most of the United States. The operator will do well to get his message across as soon as possible since conditions are changing rapidly

If the K index rises above three, there will be a marked deterioration in communication. At five or six, total
loss of contact will probably result. An index of seven means that a really severe disturbance is under way, affecting all but transequatorial paths, even those at the low end of the hf range. However, it's good news for vhf enthusiasts because auroral openings are almost certain in the northern US.

Rising solar flux means increased UV (ultraviolet) radiation. The reading broadcast over WWV is derived from information taken on 2800 MHz in Ottawa, Ontario, Canada, at 1700 UTC (noon Ottawa standard time). The 1914 WWV bulletin reflects the 1700 Ottawa observation. Although the language appears to imply that the reading is updated with each bulletin change, this is rarely the case. So, if you can't copy four bulletins each day. concentrate on the one at 1914. It's the best of the lot for fresh solar flux information.

As with the K index, the trend in solar flux is important. So is the rate of change. A slow, steady rise in solar flux - say one point per day - with perhaps no rise at all on some days within a generally upward period means gradually improving conditions on all frequencies, particularly if the K index remains low and fairly constant. The muf will increase per-
geptibly with each rise in the solar flux. A week of this can mean a great deal to amateur radio operation on the 15 -meter band during the fall and winter of 1976-1977 and SWL's monitoring the 16 - and 13 -meter shortwave bands. A really marked rise can even bring the region above 27 MHz , including the Class D Citizens Band and 10 -meter amateur radio band back to life briefly as F-layer DX territory.

Beware of a fast-rising solar flux. If it rockets up at a rate of three or more points perday, there will be short-lived gain, even a spectacular improvement in muf, but communications disaster isn't far away. When the solar flux peaks out, the K index will surely rise and then up goes the ionospheric absorption of hf signals. High-latitude circuits will fade out first, and the $160-$ and 180-meter amateur and 120-, 90and $75-$ meter shortwave bands will quickly go to pot. This can be followed by deterioration and blackout of the 60-, 49-. 41-, 40-, and 31-meter bands. Even 25 and 20 meters can go under. But be sure to watch the transequatorial circuits at such times. They may become extraordinarily active somewhere along the line, at least for a brief period of time.

Summing Up. Every change in the solar flux can be related to what can be seen on the sun by direct viewing or by projection. If your eyesight and viewing equipment are good and you get frequent looks at the sun under good viewing conditions, you'll be able to keep up with the propagation guessing game about as well as the pro's do. With some experience and understanding of the factors involved in charting WWV information and matching it with sketches of the visible variations of activity on the face of the sun, you'll discover a hobby-within-a-hobby that can be pursued at many levels of sophistication.

This is the time to start tracking the sun, when solar activity is generally low. Spots and groups of spots are presently well spread out. The significance of what is seen is far more easily grasped now than it will be in a few years, when the sun will likely be freckled with spots.

Editor's Note: As this article was going to press. there appeared evidence that the entire WWV propagation bulletin service might be terminated. Should this happen, ARRL has plans to air such bulletins over W1AW.

IN WIRE-WRAPPING OZ HAS THE LINE...

 HOBBY-WRAP30

We se got the pertect radio for vor wh3 zapy, taking as much as listening. Poul be akle to 10 bott with 30 man's EBR-9900. It has a 23 channel gisens ban= transceiver for tridin down the poad or when you're just zea' n around town shoot n the breeze. frid when you want music to socgie with. just fip from the 2B to tie Am-FM stereo radio and let go. This one racio can make your travels more fun than aver before, and you cort have ts hassk where to put a second ufit because it's CB and Stereo in one . . . ir-dash.

A BM-1150B 8-Track Tapə Player wi h AM-FMTSe ee Ratic
C 8~-1125 Delu ze 8-Tra k Stereo lanc Plcye w th aN fFN S ereo Radis
D CB-555 23 Cha inel Citizens Banc ${ }^{-}$ransceirer ort R R. Caiq Conirol and Nése Blanker
E CE-750 23 Chennel Cit zens Band Holise -ree T-anse ver wi h R.f. Gaiv Contal
F CE-770 23 Channei Sinzle Side Band Citzear Eand w t Noise Blanker

$<$
C F

Whether you want an all in one super radio the the CBR-9300, ε conventional citizens band, or an

Bonal> detrosonix

9S00 HALL ROAD, DOWNE; CE 90241

Tall Free Numbers: Inside Cal fo nia 800-352-25末3; Outs de Cali"orn a 800-<21-2533

Flip its switch, and the Archer electric antenna extends to its full $33^{\prime \prime}$ length and turns your CB radio on. Flip again, and it retracts into the fender and turns your radio off. Nobody will know you've got ears - it's Archer's automatic answer to CB rip-offs. A top performer that ends the bother of removing your antenna. Adjustable SWR. Center loading coil, excellent for mobile use. Quality materials and workmanship. Installation hardware and instructions included. Our "disappearing act" is another reason why a million CB'ers will choose Radio Shack's Archer brand this year. Get 21-970 and you'll have something to hide and nothing to lose. Only 59.95*.

now you don't.

LEADING THE WAY in QuAlity cb since 1960

FREEI 164 pages, fuli color, 2000 exclusive items. Come in for your copy today!

ACB/Ham Selective Calling Project CODED TONE ACTIVATES RECEIVER -SILENT CHANNEL UNTIL WANTED

THE ever-increasing activity on the radio communication channels has created an urgent need for a device tha: will alert you to orily thase
calls specifically directed at you. Ideally, the device would keep your receiver silent, turning on the audio only when a specially coded signal is re-
ceived. This is exactly what the "Call Selector" described here is designed to do.
The Call Selector eliminates the meed for you to monitor the constant "chatter" on the channel to which you are tuned while waiting for a call. The basic one-way Call Selector system consists of an encoder and a decoder (More elaporate arrangemerts are described later.) The calling party trarismits a ccded signel on a previously agreed upon channel You pat the receiving end) leave your transceiver curred on at all times, but you do not hear anything until the special signal is decoded. Then you simply establish cantect with ro fuss or bother.
The encoded signal consists of a to e whose exact frequency and dura:ion s keyed to the decoder at the reseiving end. This tone can be transmitted over any AM, single sideband (SSB), or FM transmitter, making the system usable by CB'ers, hams, and commercial radio operators. There are about 10C corrbinations of time and frequency that can be selected, erisuring a minimam of false calls even in busy traffic areas. The system is also immune to exrraneous ncises arid voices to further safeguard against false triggering

Fig. 1. The encoder uses a timer to generate a tome.

Any number of transceivers can be equipped with the system and tuned to the same frequency/time signal to communicate with each other. For example, you can equip a number of mobile transceivers with only an encoder to allow a base-station operator to listen to only those calls in which he is interested.

About the Circuit. The encoder, shown schematically in Fig. 1, consists of dual 556 timer IC4, a small dynamic loudspeaker, and supporting components. Half of IC4 is used as a monostable, or "one-shot," multivibrator, which allows the other timer to free run for a given period of time when activated by closing S3. The output of the second timer is an audio tone with a frequency between 1000
and 4000 Hz . The actual operating frequency is determined by the setting of R41. The width of the monostable multivibrator's output pulse (and thus duration of the audio tone) is controlled by R39 over a range of 1 to 4 seconds. The output of the freerunning timer is coupled by R45 and C16 to the speaker.

The encoding tone is acoustically coupled to the microphone of the transmitter with which the Call Selector is being used. This is accomplished by pressing the microphone's housing down on S3 and holding the mike's push-to-talk switch closed for the full duration of the tone. Because the encoder draws no current until S3 is closed, a 9 -volt transistor battery is suitable for the power source. However, if a two-way encode/decode sys-
tem is desired, the encoder can be mounted on the same circuit board as the decoder and power can be drawn from a common +12 volt dc or ac supply. (If an on-board encoder is used, C20 should be omitted.) The encoder's output will be the same with either power supply and will be stable over a wide temperature range.

The decoder is shown schematically in Fig. 2. The encoded signal from the receiver is coupled into the circuit through C1 and sensitivity control R1. The signal is passed through C19 and $R 3$ into the inverting (-) input of $/ C 1 B$. This operational-amplifier stage has a voltage gain of 10 and operates from a single-ended dc power supply, as do all succeeding op-amp stages. Resistors R2 and R4 set the noninverting input of $I C 1 B$ at approximately half the supply voltage.

The output of $I C 1 B$ goes to the inverting input of IC1A, which is a very selective bandpass filter whose cutoff frequency can be varied between 1000 and 4000 Hz by R8. When the receiver's audio output contains a component at the center frequency of the filter, a signal appears at the output of IC1A. This signal is coupled by C4 to D1 and D2, which can detect (rectify) it, and the rectified waveform is smoothed by R12, R13, C5, and C6 into a dc voltage. When this dc voltage is applied to Q1, the Darlington transistor conducts and cuts off Q2, at which point, C9 starts charging through R17 and the base-emitter

junction of $Q 4$. The voltage across $C 9$ drives Q3, the output of which is applied to the noninverting (+) input of $I C 2 B$ and the inverting input of $I C 2 A$ through R22 and R26, respectively.
Normally, the base of $Q 6$ is positive, and the transistor conducts. However, due to the comparator action of IC2A and $I C 2 B$, the voltage at the base of $Q 6$ will drop to zero after C9 begins to charge and then go positive as charging continues. The exact point at which the momentary drop in voltage occurs is determined by the setting of R20. Also, Q5 is always conducting except during the "window" period generated by the charging of $C 9$.
Transistors Q4 and Q5 are normally conducting as a result of current delivered to their bases through R29 and R31. Both transistors are driven into cutoff only when two conditions are simultaneously satisfied. Transistor Q5 must be cut off by the drop in the voltage at the output of window generator IC2. Transistor Q4 will be momentarily cut off when the trailing edge of the tone signal discharges C9. If these events occur simultaneously, the outputs at the collectors of Q4 and Q5 go high and trigger on SCR1, which, in turn, energizes reed relay $K 1$. closing its contacts. The SCR conducts and the relay remains energized until RESET switch S2 is closed.

The contacts of $K 1$ close only when a tone of the proper frequency and time duration is applied to the input of the decoder. Any voice or lowfrequency signal that passes through
the active filter will constantly discharge C9. This makes the system insensitive to heterodynes, voice components, and noise. For stability, the decoder circuit, except for K1 and SCR1, is powered by voltage regulator IC3. If an encoder is mounted on a decoder's circuit board, it will also receive its power from the regulated output of IC3.

Construction. The encoder and decoder can be assembled on perforated board, using sockets for the IC's, or on a single or separate printed circuit boards. The actual-size etching and drilling and components placement guides for the system are shown in Fig. 3. If you plan to build the encoder and decoder on the same board, use the larger board and install the encoder components in the shaded area of the components placement guide. (Do not forget to omit C20 in this case.) Alternatively, if you wish to have the encoder and decoder in separate boxes, use both boards, but eliminate the components in the shaded area.

Wire the board or boards as shown, starting with installation of the fixed resistors and nonpolarized capacitors. Then install the electrolytic capacitors, diodes, transistors, and IC's, paying careful attention to polarization, basing, and orientation. Finally, mount the potentiometers, reed relay, and switches. In the author's prototype, S.; was formed from No. 4 machine hardware and a $13 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}(3.5 \times 1.3 \mathrm{~cm})$ piece of
springy brass shim stock. The brass shim was formed to take advantage of its natural resilience to keep it from touching the machine screw contact. A short length of wood dowel or plastic rod can be used as the pushbutton for the switch. If you prefer, you can use a standard normally open pushbutton switch, connecting it to the pc board via short lengths of hookup wire

Mount J1, 11, 12, SPKR, and the dowel or plastic rod for S3 (or S3 itself) on the top of the box in which you house the encoder/decoder. If you are housing the encoder and decoder in separate boxes, install the 9 -volt transistor battery for the encoder off the board where it will not interfere with the board, speaker, or S3. In either case, mount the activating button of S3 close to the speaker.

The numbers of the contacts on terminal strip TS1 on the encoder/decoder components placement guide refer to the same numbered points in Fig. 1 and Fig. 2. This terminal strip provides a convenient means of connecting the system to its power supply, an external speaker, and any other warning device you might want to use, such as a Sonalert, LED, etc., when a properly coded signal is received. The decoder board will also accommodate a Sigma No. 77RE2 dpdt relay in the event the spst reed relay will not provide a sufficient number of contacts.
Aligning the System. To get the Call Selector system to operate properly, the decoder must be made to respond

to the selected frequency/duration characteristics of the encoder's output signal. To align a system consisting of separate encoder and decoder, you will need a shielded cable terminated at one end in a plug that mates with jack $J 1$ in the project. Connect the "hot" lead of the cable terminal 8 and the shield to terminal 7 of TS1. For a system in which the encoder and decoder are on the same board, simply connect a jumper between terminals 4 and 8 . This allows the system to be calibrated by direct interconnection, rather than by transmitting test tones on the air.
Connect power to the system. Set R1 in the decoder and R39 in the encoder to maximum clockwise and R8, R20, and R41 for center of rotation. Depress S3 and hold it down for the full duration of the test tone while adjusting R41 until /1 glows. This sets the encoder for the maximum 4 -second tone duration. It may be necessary to repeat this procedure several times before R41 is properly set.

DECODER PARTS LIST

CI.C6.C7.C19-0.01- $\mu \mathrm{F}$ disc capacitor C2.C3-0.0082- $\mu \mathrm{F}$. $10 \% \mathrm{Mylar}$ capacitor C4,C5-0.02- $\mu \mathrm{F}$ disc capacitor
C8-2.2- -F . 25 -volt electrolytic capacitor C9-1- $\mu \mathrm{F}, ~ 25$-volt, 5% tantalum capacitor C10-100-pF disc capacitor
C $17-220-\mu \mathrm{F}, 25$-volt electrolytic cap acitor
C $18-500-\mu \mathrm{F}, 25$-volt electrolytic capacitor
D1 through D6-IN4148 diode
D7.D8- 1 N 4002 rectifier diode
II. 12-6-volt, $100-\mathrm{mA}$ lamp and assembly (Radio Shack No. 272-1535 or similar)
ICI, IC 2-747A dual operational amplifier IC
1C3-723A voltage regulator 1 C
Kl- 12 -volt spst reed relay (or Sigma No. 77RE2 dpdt relay-see text)
Q1-2N 5306 npn Darlington transistor
Q2 through Q6-2N 5232 npn silicon transistor
RI.R20-50.000-ohm trimmer potentiometer
K8-1500-ohm trimmer potentiometer
Following resistors are $1 / 4$ watt, 5% tolerance:
R2,R9,R16-6800 ohms
R3,R12-22,000 ohms
R4,R10,R22,R23,R24,R26,R33-10,000 ohms
R 5-220.000 ohms
R6,R27-120,000 ohms
R7-68 ohms
RII- 330,000 ohms
R13.R29-470,000 ohms
R14,R28-82 ohms
R15.R31-47,000 ohms
R17-3 megohms

R18-2.2 megohms
R19.R21-12.000 ohms
R25-82,000 ohms
R30.R32-4700 ohms
R34-1000 ohms
R35-560 ohms
R36- 4.7 ohms
R37-820 ohms
R38-2200 ohms
S1-Dpdt pushbutton switch
S2-Spdt pushbutton switch
SCR1-C IO6B1 silicon controlled rectifier
TI-12-volt, $500-\mathrm{mA}$ transformer
TS1-8-contact screw-type terminal strip Misc.-Perforated or printed circuit board: suitable chassis box: hookup wire: machine hardware: solder; etc.
Note: The following items are available from Netronics Research \& Development. Rte. 6. Bethel. CT 06801. Complete kit of parts with instructions for one-way system which includes separate encoder and decoder, wood case for decoder, and plastic case with visor clip for encoder (Kit N5000), $\$ 44.95+$ \$1.50 postage: Separate encoder kit with plastic case, visor clip and instructions (Kit $\mathbf{N} 6000$). $\$ 14.95+\$ 1$ postage and handling: Combination encoder/decoder for two way system which includes all parts, instructions, a wood case and built-in heavy-duty speaker (Kit N 7000) , $\$ 49.95$ each + $\$ 1.50$ postage and handling. Also available separately: decoder pc board, $\$ 5.25$: encoder pc board. $\$ 3.95$; reed relay, $\$ 2.60$. 12 -volt transformer. \$2.75: S3 encoder switch and plunger, $\$ 1.30$. Add $\$ 1$ postage and handling for separate parts orders.

Fig. s. If you mant encoder and deroder together. "se board on opposite page airl install all components as above. For separate mits, leave off components in shaded area above and build separate encoder board shou'" below.

Once 11 comes on while S3 is depressed, 12 should blink about half way through the tone burst. Adjust R39 so that 11 turns off just after 12 blinks. Once this adjustment has been made, depress RESET switch S2.

Connect an ohmmeter between terminals 2 and 3 on TS1. The meter should indicate an open circuit. With power switch S1 off, the ohmmeter should indicate short circuit (zero ohms) with S1 on. Depress S3 for the full duration of the tone burst; 11 should turn off immediately after 12 blinks and the meter should indicate a short circuit. Depress S2; the relay's contacts will open and the meter should indicate an open circuit. If you do not obtain the proper results, repeat the alignment procedure until you do.

In Use. You can recalibrate the Call Selector system for any frequency between 1000 and 4000 Hz and for any tone duration between 1 and 4 seconds. Sensitivity control R1 can be set for any desired signal level threshold. In practice, you use the microphone to

ENCODER PARTS LIST

CII-47- FF tantalum electrolytic capacitor
C $12 . \mathrm{C} 13, \mathrm{C} 14-0.01-\mu \mathrm{F}$ disc capacitor C $15-0.012-\mu \mathrm{F} .10 \%$ Mylar capacitor
C $16-47-\mu \mathrm{F} .25$-volt electrolytic capacitor
C20-220- $\mu \mathrm{F}$. 25-volt electrolytic capacitor (see text)
D9-1N4002 rectifier diode
IC4-556 dual timer IC
J1-Miniature phone jack
R39.R41-50.000-ohm trimmer potentiometer

Following resistors are $1 / 4$ watt, 5% tolerance:
$\mathrm{K} 40-12.000$ ohms
R42-1000 ohms
R43-15.000 ohms
R44-1 megohm
$\mathrm{R} 45-10 \mathrm{ohms}$
S3-Spst switch (see text)
SPKR-8-ohm, 21/4"-diameter dynamic speaker
Misc.-Perforated or pe board: suitable chassis box (if assembled separately): machine harduare: hookup wire: solder; etc

Fig. 4. Ways to wse the system: with external specker (A): with thanseeivers speaker (B); and with the combination encoderdecoder's intermal spectiker (C).
depress S3, holding the mike's pickup element directly over the Call Selector's speaker for the entire duration of the tone burst. This keeps the activating signal modulating the carrier at a constant level because the mike will be stationary with respect to the speaker.

There are several different ways to connect the system to your transceiver, three of which are illustrated in Fig. 4. If you plan to use the decoder with an external speaker and do not want to touch the "insides" of the transceiver, follow the wiring scheme
detailed in Fig. 4A. Use a length of shielded cable to transfer the audio signal from the receiver's externalspeaker jack to the decoder's terminal strip. Terminate the cable with a plug that mates with the transceiver's jack.

You can wire the system to the transceiver's internal speaker as shown in Fig. 4B. This connection requires a slight rewiring of the transceiver's circuit. Break the connection between the audio output stage and the speaker. Rewire the circuit as shown, using shielded cable. When the relay contacts close, the
audio path to the internal speaker will be completed.

The diagram shown in Fig. 4C is for systems in which the encoder and decoder are assembled on the same board. This wiring scheme allows you to use the decoder/encoder's built-in speaker as an encoder transducer and as the transceiver's external speaker.

For all three interconnections detailed in Fig. 4, the decoder can be bypassed by placing S1 in the OFF position. The receiver's audio signal will then be applied directly to the internal or external speaker.

SPECIAL OFFER

Free Micro-Spade Element Tip
Present this coupon to your local participating Ungar electronic distributor and receive a FREE \#195 Micro-Spade Element Tip worth \$1.99 with your purchase of a \#200 QUICK-CHARGE CORDLESS SOLDERING STATION.

HURRY! Offer EXPIRES December 1, 1976.
 \section*{Fix it Quick...
 \section*{Fix it Quick... with an with an Ungar Cordless Quick-Charge Ungar Cordless Quick-Charge Soldering Iron Soldering Iron

 - Cordless portability

 - Cordless portability

 - Quick 4-hour charge

 - Quick 4-hour charge

 - Holder automatically charges

 - Holder automatically charges high performance NI-CD battery high performance NI-CD battery

 - Rigid coaxial tip rotates to

 - Rigid coaxial tip rotates to desired working position desired working position

 - Easy-touch switch, tunnel light

 - Easy-touch switch, tunnel light

 - Quick heat-up}

 - Quick heat-up}

BY JOE JARRETT

AN INCREASINGLY important part of amateur radio operation these days is the vhf/uhf repeater (automatic relay station) and its common accessory, the autopatch. A repeater is usually located on top of a high building, a tower, or a mountain and in many cases it is able to increase the usual 3 -to-10-mile range of low-power equipment to more than 100 miles.
An autopatch is an automatic telephone patch that enables repeater users to initiate and dial telephone numbers from a vehicle or hand-held transceiver without assistance from a phone operator or other amateur stations. An autopatch is legal as long as it is not used to avoid toll charges and approved interface equipment connects the repeater to the phone line.
Most repeaters operate under remote control (not legal for CB radio use) and many of them have autopatch provisions. There must be a way of remotely turning these systems on and off in case of equipment malfunction or illegal use. Also, the users of autopatch must have a way of connecting or disconnecting the telephone line to the repeater phone patch and dialing the desired number.

One of the easiest ways to accomplish these jobs is by using the Touch Tone ${ }^{k}$ approach.
The Touch Tone system uses eight different audio tones at frequencies carefully selected not to be harmonically related. The keyboard is arranged in rows (horizontal) and columns (vertical) so that, when a particular key is depressed, two tones are generated-one for the row and the other for the column. These tones are then transmitted to the remote decoding equipment that "recognizes" the tones being transmitted as one of ten digits or six special codes (*, \#, A, B, C, D). The four letters are extra keys and are not the same as those on conventional number keys. They are used in military systems and some computers.

Recently, the Mostek Corp. announced two dual-tone, multi-frequency (DTMF) generators, MK5085 and MK5086, that can be used to build a low-cost (under \$25) Touch-Tone encoder. The only difference between the two IC's is in the method of keyboard entry. In the MK5086 (used in this project), the row and column keys are switched to the positive supply when a key is operated. The

MK5085 uses a calculator-type scanning technique that allows the use of single-pole switches on the keyboard.

Circuit Operation. The complete circuit is shown in Fig. 1. The reference frequency is determined by a conventional 3.579 MHz color-TV crystal, with R5 used as the bias resistor. Operating one of the pushbuttons on the keyboard starts the osciliator. (See box for details of IC operation.)

The tone output of $I C I$ (pin 16) is coupled to modulation level potentiometer R3, whose rotor is connected through R4 and C3 to the transmitter microphone input. The circuit consisting of /C2, an audio power amplifier, is used to drive an internal loudspeaker for monitoring the tones, while R2 determines the speaker volume.

Operational amplifier IC3 is used as a $0-4$-second timer for the transmit hold-on delay. The MUTE output (pin 10) of IC1 is held to ground when no key is depressed. Thus capacitor C4 is discharged through $R 6$ to cause the non-inverting $(+)$ input of $I C 3$ to be at ground. The inverting input (-) is at a voltage level determined by the setting of hold-on time potentiometer R.7

Since the voltage at pin 5 is lower than the voltage at pin 4, the output of $I C 3$ (pin 10) is at ground so both Q1 and Q2 are turned off. These two transistors are connected in a Darlington configuration and are used to key the push-to-talk (PTT) line of the transmitter when they are turned on.

When a key is depressed, the MUTE output of IC1 is pulled up to the positive supply. Diode D1 becomes forward biased and C4 is charged (within several milliseconds) to the positive supply less the diode drop of D1. The $(+)$ input of IC3 is now at a higher voltage than the (-) input so the output of IC3 switches to the positive supply. Resistors R8 and R9 reduce the drive to the transistors. When Q1 turns on, so does Q2 and the PTT line is pulled down to the ground level. This causes the transmitter to key and transmit the tone signal.

When the key is released, the mute

Vien of the inside of the enthores prototype.
output drops, D1 becomes reverse biased, and C4 begins to discharge through R6. As this happens, the vol-
tage on the $(+)$ input of $/ C 3$ decreases until it is no longer greater than the voltage on the $(-)$ input. At this time, the output of IC3 switches to the ground level, thus turning off the two transistors and stopping the transmitter. Capacitor C4 will not discharge far enough for this to happen however as long as the keys are operated reasonably fast. Complete discharge will occur after the last key entry and depends on the setting of R7.

The value of resistor $R 4$ is the coarse adjustment of the tone level. Depending on the transmitter used, the value of $R 4$ can range from 1000 to 100,000 ohms.

Some older types of equipment may require high current for keying, or may key the positive supply instead of ground. In this case, a low-current relay can be used in the PTT line (connected to the 12 -volt supply), with the relay contacts keying the transmitter.

IC OPERATION

As shown in the block diagram of the MK5086, the row and column select keys are switched to the positive supply in the standard 2 -of- 8 format. (One key operates both the selected row and column.

The output of the crystal oscillator is divided by two counters-one for the rows and the other for the columns-and the amount of frequency division is determined by the keyboard entry switching.

()utput of D/A comierter.

Each sine-wave synthesizer is formed by a 5-bit, 32-state counter, decode ROM, and R-2R ladder network D/A converter. The output of each D / A converter
is the 26-step sine wave shown in the waveform diagram. Six steps are missing out of the possitiole 32 to give the best-fit, least-distortion sine wave.

The two waveforms (row and column) are mixed in an op amp (on chip) to produce a true dual-tone signal. This is fed to a bipolar transistor (on chip) that supplies enough current to drive a 1000 -ohm load to a typical 450 mV for the row tones and 640 mV for the column tones. (Telephone specifications require that the column tones be $21 / 2 \mathrm{~dB}$ greater in amplitude than the row tones.)

Besides the TONE output, the MK5086 has outputs called XMIT (pin 2) and MUTE (pin 10). The XMIT output is an npn bipolar transistor that is turned on and pulls to the positive supply when no keys are operated. It is an open circuit when any key is depressed. The mute output is a standard CMOS circuit that is at the negative supply (when used) and switches to the positive supply when a key is depressed.

Construction. The entire circuit can be assembled on a small pc board. An etching and drilling guide and component placement are shown in Fig. 2. Observe the polarities of diodes and polarized capacitors. Sockets for the IC's are optional. Note that IC1 is a CMOS device and must be handled with the usual precautions. The IC comes in a shorting carrier and should be kept in the carrier until time for installation. Handle it only by the

edges of the plastic package. In soldering the CMOS IC, use a clip lead between the soldering iron tip and the positive foil pattern on the board. Note also that volume control $R 2$ is mounted on the control board. If remote control is needed use an outboard potentiometer and run the connecting leads to the R2 pads on the board.

After all components are installed, connect the leads for the keyboard

and accessory cable. The latter should have four leads (PTT, microphone, ground, +12 V) and should be as long as necessary for the installation. The physical size of the keyboard will determine the finished size of the project and the case used to hold it. The 9-pin connector shown in the photograph was used to connect the project to an IC-230 transceiver.

Operation. After assembly, power up the system and determine the correct value for the combination of $R 3$ and $R 4$ to produce the required modulation level.

The dialer enables hands-off operation without annoying carrier drop between each dialed digit. The amount of hold-on time can be set by adjusting $R 7$. The speaker volume is adjusted by R2.

The dialer should produce no r - f interference. A 5 -watt rig has been keyed with its antenna resting on the dialer box with no discernable effect.

Because each section of the country has different rules regarding how to use repeaters, you must check your local repeater group for details before using the dialer.

PIONEER HAS DEVELOPED A RECEIVEREVEN THE COMPETITION WILL ADMIT IS THE BEST.

One look at the new Pioneer SX-1250, and even the most partisan engineers at Marantz, Kenwood, Sansui or any other receiver company will have to face the facts.

There isnt another stereo receiver in the world today that comes close to it. And there isnt likely to be one for some time to come.

In effect. these makers of high-performance receivers have already conceded the superiority of the SX-1250.
Just by publishing the specifications of their own top models.

As the chart shows, when our best is compared with their best theres no comparison.

To begin with. the SX-1250 is at least 28% more powerful than any other receiver ever made. Its power output is rated at 160 watts per channel minimum RMS at 8 ohms from 20 to 20.0000 Hz , with no more than 0.1% total harmonic distortion.

And, for critical listening, no amount of power is too much. You need all you can buy.

To maintain this huge power output, the SX-1250 has a power supply section unlike any other receivers, with a large toroidal-core transformer and four giant 22,000-microfarad electrolytic capacitors.

But power isn't the only area in which the SX-1250 excels. The preamplifier circuit has an unheard-of phono overload level of half a volt $(500 \mathrm{mV})$. This means that no magnetic cartridge in the world can drive the preamp to the point where it sounds strained or hard. And the equalization for the RIAA recording curve is accurate within
$\pm 0.2 \mathrm{~dB}$. A figure unsurpassed by the costliest separate preamplifiers.

Turn the tuning knob of the SX-1250, and you'll know at once that the AM/FM tuner section is also special. The tuning mechanism feels astonishingly smooth, precise and solid.

FM reception is loud and clear even on weak FM stations because the tuner combines extremely high sensitivity with highly effective rejection of spurious signals.

Of course, the Pioneer SX- 1250 carries a price tag commensurate with its position at the top. But if you seek perfection you won't mind paying the price.

If. on the other hand, youd mind, look into the new Pioneer SX-1050 or SX-950. Theyre rated at 120 and 85 watts. respectively, per channel (under the same conditions as the $S X-1250$) and their design is very similar. In the case of the SX-1050, virtually identical.

That means you dont just come to Pioneer for the world's best.

You also come to us for the next best.
For informational purposes only, the $S X-1250$ is priced under $S \varphi(0)$. The actual resale price will be set by the individual Pioneer dealer at his option.

QPPIONEER

Anyone can hear the difference.

	$\begin{aligned} & \text { PIONEFR } \\ & \text { SX-1250 } \end{aligned}$	MARANTZ	$\begin{aligned} & \text { KENWOOD } \\ & \text { KRG400 } \end{aligned}$	$\begin{gathered} \text { SANSUI } \\ \underset{9000}{ } \end{gathered}$
ROWER, MIN. RMS, A) TO 20, (KMO IVZ	160W+160W	125W+125W	120W+12IW	110w+110w
TOTAL HARMORIC DISTORTION	0.1\%	0.15\%	(1.1\%	0.2\%
PIIONO OVERLOADLEVEL	$5 \mathrm{~N}, \mathrm{ml}$	100 mV	210 mV	2101 mV
NPUT: HIONO/AUXX/ME	2/1/2	1/1/no	2/1/mixing	1/1/mixing
TAPE MUN/DUP:	2/yes	2/yes	2/ves	2/yes
TONE	Twin Tone: Bass-Pass Trehle-Trehle	Bass-MidTreble	Bass-MidTreble	Hass-MidTreble
TONEDEFEAT	Yes	Yes	Yes	Yes
SPEAKERS	A.B.C	A.B	A.B.C	A.B.C
IM SENSITIVITY (IIIF's3)	$1.5 \mu \mathrm{~V}$	$1.8 \mu \mathrm{~V}$	$1.7 \mu \mathrm{~V}$	$1.7 \mu \mathrm{~V}$
sellectiviry	83 dB	80 dB	80 dB	85 dB
:APTURERATL	1.0 dB	1.25 dB	1.3 dB	1.5 dB

PROTECTING YOUR POWER SUPPLY

> Components in modern power supplies cost too much to leave them unprotected from shorts, overloads, etc.

BY ROBERT C. ARP, JR.

THE COST of modern sophisticated power supplies is high enough to warrant as much consideration for their protection as that given to their rectification and regulation circuits. While fuses and circuit breakers have been the traditional means of protecting power supplies, they are often not fast enough to prevent solid-state devices in newer supplies from destructing due to overloads and the like. The devices most able to protect semiconductors are other semiconductors.

Here are ways to protect a power supply from the three primary causes of failure: shorted output; shorted filter capacitors; and excessive current through the load. There are two general methods of protection. The first is the control of the transformer's primary circuit. The second is the removal of base drive from a transistor in series with a load.

In either case, we will assume that the protection circuit is part of a more complex power supply. High-current power supplies are used in some examples simply to indicate that the methods of protection are not limited to low-current applications. Obviously, devices with lower current and power ratings can be used where possible.

Primary Circuit. The block diagram in Fig. 1 shows a basic method of power supply protection. Characteristic of this arrangement is the triac in series with the primary of the transformer. During normal operation, the
 voltage across primary.
trigger control allows the trigger circuit to apply a brief gate signal to the triac for every alternation of the ac line voltage. After the triac is turned on by the gate signal, it remains on for the complete half cycle until the zerocrossing point is reached at the end of the alternation.
If the trigger control inhibits the trigger circuit while the triac is conducting, the triac cuts off when the line voltage approaches zero. It remains off until another gate signal is applied. Hence, the ac input to the transformer can be removed within a half cycle of the line voltage by designing the transformer's secondary circuit to inhibit the trigger circuit when a filter-capacitor short or supply output overload occurs.

The circuit shown in Fig. 2 is one type of control technique used in the primary circuit of a power supply. Under normal conditions, the gate of triac Q1 receives a brief gate signal from the IC2 zero-voltage switch at the beginning of each line alternation while the line voltage is near zero. Resistor R1, in series with the MT2 terminal of Q1 and gate terminal of Q2, permits a continuous flow of alternating current through the gate of Q2. The primary of $T 1$, in series with Q2, receives the full ac line voltage under these conditions.

Zero-voltage switch /C2 can be used to provide pulses that are synchronized with the time of zero voltage in the ac cycle to the gate of a triac. Triac firing can be inhibited by the application of a positive (TTLcompatible) voltage to pin 1 of $/ C 2$.

The triple 3 -input NAND gate used for IC1 converts short-circuit logic-0 conditions to a logic-1 condition for inhibition of IC2. (A 5 -volt de supply was used for the IC's power and, consequently, for the inhibit signal.)

The inhibit signal appears at pin 1 of

IC2 when points A or B (at Q3) are shorted to point O (common). With /C2 inhibited, Q1 cannot provide ac to flow through the gate of Q2. When the line voltage falls to zero at the end of the alternation, during which the short occurs, Q2 will cut off and remain off. After the short condition is removed, Q1 turns on with the next gate signal from IC2 and the system returns to normal operation.
If no filter capacitors were used (as in a simple battery-charging circuit), the self-resetting action would take place within one alternation of ac line voltage. Unfortunately, the inclusion of filter capacitors in the secondary circuit causes a resetting time lag on the order of one second for each 1000 $\mu \mathrm{F}$ used. If the resetting time is of no concern, no other consideration need be given this point. If you desire quick resetting time, you can do one of two things: First, include a dpst reset switch to momentarily break the connections between points A and B and IC2. Secondly, you can omit the connection between point A and IC1 and include an isolation diode in the secondary circuit (Fig. 3); IC2 will not, however, be inhibited by a shorted filter capacitor.
The circuit in Fig. 2 will not reset if a short occurs across the output terminals while a load is connected. In such a case, the load must be removed, or a reset switch must be used as explained above.

Although Q2 will remove power from T1's primary immediately when the output terminals of the supply are shorted, a spark will occur. The amplitude of the spark can be considerably reduced by incorporating the transistor stage shown in Fig. 3.

Removing Base Drive. If a transistor is placed in series with the output terminals of a power supply, an ar-

Fig. 2. One type of control technique used in the primary circuit.
rangement commonly used in series voltage regulators, the secondary circuit can be turned off by any action that removes base drive from this transistor. This can be done by shunting the base to ground with an SCR, optical coupler, or another transistor.
A method of removing base drive with an SCR when a desired maximum flow of current is exceeded is shown in Fig. 4. By varying R_{g} and R_{s}, the transistor can be cut off at any desired level of current flowing through the output of the supply.

Under normal operating conditions, the transistor is biased on by R_{b}. The current flowing through the output develops a voltage drop across R_{4}. Because a very low amplitude gate voltage is needed to trigger on the SCR, the resistance and power rating of R_{s} can be relatively small for high-current applications. The voltage drop across R_{s} is used to provide a gate signal for the SCR that is proportional to the level of the current flowing through the load. If the resistance of R, is high enough, the level of load current at which the SCR shunts the transistor's base drive to ground can be varied by $R_{\check{2}}$. When the voltage drop across R_{\checkmark} is sufficient to trigger on the SCR, the transistor cuts off within microseconds. (A reset switch must be provided as shown to return the circuit to normal operation.)

Because of R_{1}, the transistor must NOVEMBER 1976
operate in the active region. If the resistance of R_{l}, is too low, the SCR will be required to handle a large current. Conversely, if the resistance of R_{b}, is too high, the transistor will be forced to dissipate considerable power. Usually, a value for R_{1}, must be chosen to keep the transistor's power dissipation and the current through the SCR at reasonable levels. The necessary current rating of the SCR can be determined (after R_{l}, is chosen to provide the desired transistor power dissipation) by dividing the input voltage by the value of $R_{1,}$.

Assume you're working with the following components and conditions: $\mathrm{V}_{\mathrm{in}}=34$ volts $\mathrm{dc}, \mathrm{C}=18,300 \mu \mathrm{~F}(40 \mathrm{~V})$, $R_{h}=30$ ohms (50 W), $R_{k}=1780$ ohms, $R_{\checkmark}=2.2$ ohms $(220 \mathrm{~W}), \mathrm{SCR}=2 \mathrm{~N} 682$. and $Q=$ HEP S7000. Here, the SCR will trigger on when the current reaches 10 A . You can also measure the following parameters: $\mathrm{V}_{\mathrm{CE}}=11.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BF}}=$ $1.5 \mathrm{~V} \mathrm{dc}, \mathrm{I}_{13}=350 \mathrm{~mA}$, and $\mathrm{I}_{\mathrm{sck}}=1.1 \mathrm{~A}$. And the power dissipation of the transistor can be found by using the for-
mula $P_{12} \approx V_{\text {(E1 }} I_{1}$, which would yield 115 watts.

Light-emitting diodes can be switched on and off in nanoseconds, and optical couplers with transistor detectors can switch at speeds of 2 to $5 \mu \mathrm{~s}$. It is logical, therefore, to consider a protection system based on these high-speed devices. A typical optical coupler protection circuit is shown in Fig. 5.

It is not necessary for the series transistor in Fig. 5 to dissipate large amounts of power because this transistor (Q1) can be operated in or near the saturation region. Heavy base drive is applied to Q1 through Q2 according to the formula $I_{\text {mu(1)min }}=I_{\text {('u(4) }}$ $/ \mathrm{h}_{\text {EFは, }}$, where $\mathrm{I}_{\text {Butumin }}$ is the minimum base current that assures saturation of Q1, $I_{\text {(iul }}$ is the maximum expected collector current, and $h_{\text {fralu }}$ is the minimum expected h_{EE}. Transistor Q2 is used to supply base drive for Q1 so that only Q2's relatively small base current need be shunted to ground to turn off Q1.

Fig．4．A gate signal for the $S C R$ is developed by the current through R_{s} ．

There are many variations of the cir－ cuit shown in Fig．5，but we will limit our discussion to this specific circuit configuration．It should be noted that R_{s} can have a value much lower than 1 ohm，which results in a lower wattage rating for this resistor．The optical coupler should consist of an infrared LED and a silicon transistor detector．

After assembling the circuit as shown，disconnect the anode lead of the LED from point A ．Power up the supply，and monitor $I_{\text {c（IN1 }}$ and $V_{\text {（Eはいい }}$ while decreasing R_{B} until Q1 goes into saturation．Then adjust $R_{1 \prime}$ until $Q 1$ is operating in the active region，just short of saturation．（This speeds up the cutoff action of Q1 and keeps the photodetector current low．）When ad－ justing R_{13} ，monitor $I_{13\left(42^{2}\right)}$ to make sure you don＇t exceed the current rating of the photodetector．

Connect the LED＇s anode back to point A and short the output of the supply．Adjust the $\mathrm{R}_{\text {I．EII }}$ control for an $I_{\text {（awi）}}$ short－circuit current of 15 mA ． （Actually，the short－circuit current can be set to about 1 mA ，but the adjust－ ment of $R_{\text {IE：}}$ becomes critical for cur－ rents below 15 mA ．）

With the adjustments performed as described and a 5－ohm value for R_{1} ， $I_{\text {ci（1）}}$ would be 640 mA ．Reducing R_{1} ，to 3.33 ohms would drop $I_{\text {（i，u）}}$ to 27 mA and $V_{\text {（Eav1）}}$ to 4.4 V ．This yields a $0.195-\mathrm{W} \mathrm{P}_{\text {เкは1．}}$ ．This current－limiting circuit produces an I_{1} ．versus R_{1} curve with a very steep slope，which results in very little overshoot of the desired maximum current．

With R_{13} and $R_{1 E!}$ properly adjusted， Q1 will operate in or near the satura－ tion region with a heavy base drive supplied by Q2．If the current through R_{s} exceeds the maximum for which the circuit is adjusted，determined by the resistance of R_{s}, R_{b} ，and $R_{\mid, E l}$ ，the LED will emit enough light to reduce the resistance of the photodetector． The result is that Q2＇s base drive will
be shunted to ground and the transis－ tor will be cut off．

Because this circuit is very tempera－ ture sensitive，a reset switch must be provided as shown．When power is first applied to the system，no current flows through Q2 until the reset switch is operated to momentarily discon－ nect R_{1} from ground．After a few min－ utes warm－up，the system is self－ resetting．

A Current Limiter．The self－ resetting circuit shown in Fig． 6 lacks some of the advantages of the previ－ ous circuits．Transistor Q1 is again in series with the load，while Q2 supplies sufficient base current to keep it operating in the saturation region for a significant range of loads．
In the following discussion，we will assume that a wide range of loads will be applied to the output of an unregu－ lated power supply rated at 40 am－ peres．（If the load is to be fixed，circuit
components can easily be chosen so that Q3 provides a sharp turn－off of Q1 if $I_{\text {：i，u1 }}$ increases beyond a chosen maximum．However，if the load is vari－ able，R_{c} ．must be selected so that Q1 passes the desired range of currents， with R_{B} and R_{E} chosen to provide rapid turn－off for the loads that will cause excessive current to pass through Q1．）

The graphs shown in Fig． 7 are plots of $I_{\text {（i，}}$ ，versus R_{I} for the circuit shown in Fig．6．From plot A ，it can be seen that as R_{1} is decreased（increased load），the current through Q1 in－ creases to a maximum of 14．5 A when R_{1} is 0.3 ohm．Decreasing R_{1} ．further yields a reduction in $I_{\text {c（u）}}$ instead of an increase．This $I_{(, \ldots 1)}$ decrease with in－ creasing load continues until R_{l} ，is 0.25 ohm，at which point the circuit becomes unstable．When a load of 0.25 ohm is connected to the supply＇s output，$t_{\text {r（w）}}$ momentarily goes to 12 A ， after which Q1 turns off and $\mathrm{I}_{\text {ctun }}$ re－ duces to zero．For load resistances less than 0.25 ohms，Q1 is in the cutoff region and $I_{\text {si（w）}}$ is zero．

Plot B，an expanded view of $I_{\text {（1，21 }}$ for small values of R_{1} ，shows how the Q1 collector current varies when load re－ sistance approaches zero．When R_{1} is $0.3 \mathrm{ohm}, I_{\text {ci（w）}}$ ，is at the maximum $14.5-\mathrm{A}$ value．For loads between 0.3 and 0.25 ohm，$I_{\text {cout }}$ decreases almost linearly． Load resistances of less than 0.25 ohm are a virtual short circuit at the output terminals of the supply and cause Q3 to keep Q2 at cutoff．

The operation of the circuit is quite

Fig．5．Opto－coupler contiols Q2 on basis of current in Q1．

Fig. 6. A self-resetting current limiter. with short-circuit protection.

straightforward. However, the adjustment of R_{B} and value of R_{E} that allow self-resetting are critical. Before R_{B} and R_{F} can be adjusted to the proper values, R_{C}. must be chosen to allow the desired maximum $I_{\text {Cial. }}$. To select R_{C}, disconnect point 1 of R_{B} from junction A. The minimum value of $I_{\text {BIN }}$, to keep Q1 in saturation can be estimated from the formula $I_{\text {Rmin }} \approx I_{\text {. }}$ $/ h_{\text {Fr }}$. For a maximum of 15 A for $\mathrm{I}_{\text {c(un) }}$ using a GE14 transistor $\left(h_{\text {FE }}=45\right)$ for Q1. $I_{\text {Bmm }}$ would be 0.333 A . The minimum value of $I_{B(4),}$ is found by using the $I_{\text {Bt(d1)min }}$ value for $I_{\left({ }_{(1,(2)}\right)}$. Hence, using an MJE521 transistor whose h_{FE} : is 40 for Q2, we obtain $\left.\right|_{1,(x 2) \text { min }}=0.33 /$ $40=8 \mathrm{~mA}$. Then, determining the value for R_{t} we have $R_{c}=V_{11} / l_{B(42)}=$ $15 / 0.008=1875$ ohms.

You can select a potentiometer for R_{B} by using the formulas given in " A Simple Method For Biasing Transistors"' (June 1975). Let the base voltage of Q3 be approximately $0.7 \mathrm{~V}, \mathrm{I}_{\text {:1433 }}=$ $t_{\mathrm{B}\left(\mathrm{I}_{2}\right)}=8 \mathrm{~mA}$, and $\mathrm{I}_{\mathrm{bias}} \approx 0.1 \times \mathrm{I}_{(1423)}=0.8$ mA . Assume that R_{B} consists of two resistors, $R 1$ for the portion of the pot above the wiper and $R 2$ for the lower portion. Now, $R 2=\mathrm{V}_{\text {bajes }} / I_{\text {Lidat }}=0.7 /$ $0.0008=875$ ohms. Then for Rt, consider the output of the power supply to be shorted and determine R1 from the formula $R 1=\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {base }}\right) / /_{\text {hias }}=(15-$ $0.7) / 0.0008=17,875 \mathrm{ohms}$. Adding the results obtained, we end up with a total resistance of 18,750 ohms. A

Fig. 7. In (A) load varies from 15 to 0 ohms; (B) load approaches zero.
standard 20,000-ohm potentiometer can, therefore, be used for R_{B}.

The adjustment of R_{13} is accomplished by connecting point 1 of the pot to junction A and installing a resistance decade box set to zero ohms as R_{E}. With a 15 -ohm load connected to the output of the supply, Icwel should measure 1 A . (The collector current for Q1 should be monitored during all adjustments. Also, the power supply should be shut off when installing and removing ammeters.) Start with a 0 -to1-A ammeter and adjust R_{3} until $I_{\text {Bu(3) }}$ is nearly zero. Continue in this manner, using a more sensitive ammeter, until $\mathrm{I}_{\mathrm{B}(\mathrm{d}, 3}$, is exactly zero.

Remove the ammeter from the supply and connect the base of Q3 as shown in Fig. 6. The decade box in the emitter leg of Q3 should still be set to zero. Short the supply's output terminals; $I_{\text {(., }}$, n, should drop to zero. If the current through the collector of Q1 doesn't drop to zero, $\mathrm{I}_{\mathrm{B}, 133}$, or R_{E} has not been set to zero. Remove the short from across the supply's output, leaving only the 15 -ohm load. The collector current of Q1 should remain at zero; if it doesn't and the circuit selfresets, no R_{E} is needed. (This is not likely to occur.) With no self-reset, increase R_{E} in 1-ohm steps until $I_{\text {rut }}$ goes back to 1 A . Short the output of the supply again; $I_{\text {ITu, }}$ should go to zero and the circuit should restart when the short is removed.

The higher the resistance of R_{t}, the greater will be the off current of Q1. With repeated trimming of R_{B} and R_{F}, the collector current of Q1 when the supply's output is shorted can be brought down to 5.4 mA . The circuit can be made much less dependent on the setting of R_{B}, and $R_{t:}$ can be zero, if a reset switch is used to return the circuit to normal operation after an overload. In this case, R_{13}, would be adjusted as before, and a reset switch would be operated to momentarily break the R_{13} connection to junction A. The pot could then be trimmed to yield a minimum collector current in Q1.

The capacitor shown across the input of the circuit in Fig. 6 is not part of the protection system. It is simply representative of the filter capacitor in the power supply. Under normal conditions, Q2 supplies the base current to Q1. Both Q1 and Q2 operate in the saturation region to assure that full power is delivered to the load. The A section of Table I shows the measured and calculated parameters for Q1, Q2, and Q 3 for the 15 -ohm load, $\mathrm{R}_{1 .}$.

If R_{1}, is reduced to zero (shorted output terminals), Q3 will conduct and Q1 and $Q 2$ will be driven into cutoff. The B section of Table \mid shows the parameters for the transistors when $R_{1 .}=0$.

For intermediate values of R_{1}, the transistors pass through all three regions of operations. These regions and the loads that cause the transi-

Fig. 8. Power vs load for Q1 (A) and Q2 (B).

table II-OPERATIMG REGIONS FOR DIFFERENT LOAD RESISTORS			
R_{1} (Ohms)	Region Of Operation		
	Q1	Q2	Q3
	saturation	saturation	cutoff
1.66	saturation	saturation	active
0.296	active	active	active
0.25	unstable	unstable	unstable
0	cutoff	cutoff	saturation

tions are listed in Table II. When $R_{\text {t }}$ is reduced to 1.66 ohms, enough forward bias is applied to the base of Q3 to bring it out of cutoff. As R_{t} is further reduced, $I_{\text {Br }}, 3$, increases until, finally, when R_{1} is 0.296 ohm, Q3 is shunting a large enough portion of Q2's base drive to ground to cause both $Q 2$ and Q1 to come out of saturation and begin operating in the active region. Eventually, when. R_{1} is reduced to less than 0.25 ohm, Q3 is driven into saturation and $Q 2$ and $Q 1$ go into cutoff.

Because Q1 and Q2 must operate in the active region, even for so narrow a range of loads as from 0.296 to 0.25 ohm, the voltage drop across these transistors over this range causes the power dissipation of the devices to increase tremendously while they are operating in the active region. Plots of P_{b} versus R_{l} for $Q 1$ and $Q 2$ are shown in Fig. 8. Plot A shows that, for maximum protection, $Q 1$'s P_{D}, rating should be greater than 80 watts at the desired operating temperature. Plot B shows that $Q 2$'s $P_{\text {D }}$ rating should be greater than 5 watts.

Although the P_{D}, ratings of Q1 and Q2 must be much greater than is necessary while the transistors are operating strictly at saturation, they need not handle the power dissipation that would be necessary in an unprotected series voltage regulator. For example, with a $14.5-\mathrm{A}_{\text {(io1) }}$ and a 16 volt $V_{i n}$, the P_{D}, rating of a transistor used as an unprotected series regulator would have to be 232 watts at the operating temperature under shorted conditions. This would require a very expensive transistor.

Conclusion. We have proposed only a few of the many possible ways of protecting the more expensive and fragile components found in modern power supplies. Proper utilization of the proposed circuits, individually or in combination, will produce protection systems that are relatively inexpensive and reliable.

THERE ARE digital electronic clocks with all sorts of variations-alarms, radios, calendars, etc. Now, here is one for the music lover. It plays the famous Westminster chime tune. On the quarter-hour, the first $1 / 4$ of the tune is played; on the half hour, $1 / 2$ of the tune; on three-quarters, $3 / 4$ of the tune; and the full tune on the hour. On the hour, the tune is followed by a monotone chiming of the hour. By using "surplus" parts, you can build this clock for a very low cost, though it does have 19 IC's.

How It Works. The complete circuit of the clock is shown in three parts in Figs. 1 to 3. The clock element is /C19 an MM5316 IC that drives conventional fluorescent readouts DIS1 through DIS4. This clock IC was selected because it has continuous outputs that minimize the chime circuit interface requirements. If you select a clock IC that has multiplexed outputs, additional circuits will be required. The fluorescent readouts are used because they can be driven directly by the MM5316 and they require very little operating power.

In Fig. 1, IC1 and IC2 decode the conditions of the $15,30,45$, and 00 minutes. The outputs are OR'd by part of IC4, whose output then initiates a one-shot circuit formed by C1, R12, and part of $I C 3$ (Fig. 2). The pulse from this one-shot sets a flip-flop formed by two elements of IC5, which in turn, activates the tone output through part of IC9. The one-shot pulse also resets the remainder of the chime circuits.

The Westminster chime sequence uses four different tones. Instead of having four different frequency oscillators which may be difficult to keep correctly tuned, a single tone oscillator formed by IC15 (Fig. 3) is used, with its output divided down to form the four required tones. In this way, even if the basic tone oscillator frequency were to vary, the relationship between the four Westminster tones will be maintained and a harmonious melody is ensured. The frequency division is performed by IC11 and IC12, with portions of IC13, IC14, IC15, and IC4. The output of counter IC3, pin 12 (Fig. 2), consists of narrow pulses. These are used to toggle IC9, which divides the frequency by two and produces a square-wave output. The latter is filtered by R20 and C7 and is used to drive Q1, which is the audio output stage.
The tone sequence is programmed

Digital Electronic "Westminster" Clock

BY ALAN FOEHL

The famous "Big Ben' tune
is played every hour with
portions every 15 minutes.

by a 10-stage Johnson counter formed by IC8 (Fig. 3). This counter is driven by the $1-\mathrm{Hz}$ output from /C19 so that each tone has a 1 -second duration.

Since the first half of the melody is identical to the second half, a single 10 -stage counter is adequate to program the eight tones anc two pauses

in half of the melody. Portions of $1 C 6$ and $I C 7$ are used to reset the flip-flop formed by part of IC5 after the proper operation of the sequence has been completed, thereby disabling the output tone.

On the hour, a series of tones to count the hour is provided by IC18. It is reset to 1 at one o'clock and advanced one count each hour. When an hour count is called for, the content of IC18 is transferred to IC17 which then counts down until it reaches zero. In this way, one output tone is produced for each count. The tone may be attered by chaging the values of R14-C5 in the IC15 oscillator circuit.

Construction. The prototype was constructed on perforated board having $0.1^{\prime \prime}$ hole centers, with sockets used for all IC's and "flea clips" for other components. A wiring pencil (or other means) can be used to make the various interconnections. Handle all CMOS-PMOS IC's with care to avoid static damage, although they do have internal protection. Note that, for all CMOS devices, any unused inputs must be connected to either supply voltage-not left "floating."

Operation. With the clock completely ássembled, recheck all wiring for possible errors. Then supply power

R10 through R15-100.(0)0-ohm. 1/2-W resistor
R16-270-ohm. 1/2-W resistor
R17-100-ohm, 1/2-W resistol
R18-10-megohm, 1/2-W resistor
R19.R20-2000-ohm, 1/2-W resistor
SI.S?-Single-pole normally open pushbutton switch
S3.S4-Spst switch
SPKR-8-ohm (or more) speaker
T1—20-V CT at $100-\mathrm{mA}: 6.3-\mathrm{V}$ at $50-\mathrm{mA}$ tanstormer
Mise. Perforated board. thea clips. IC sockets. suitable enclosure, mounting hardware, etc.
to the clock and check the operation of the function switches-RUN, HOLD, FAST, SLOW. The display should be cycled through a complete "day" to ensure that the proper counting takes place. Then the clock should be cycled to 1:00 PM. At this point, the chime circuit should work.

C 1 through C+ $0.001-\mu \mathrm{F}$ capacitor
C5. $6-180-\mathrm{pF}$ capacitor
C7-0.01- $\mu \mathrm{F}$ capacitor
C $x-22-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic capacitor C4- $1(6)(0)-\mu \mathrm{F}$. $25-\mathrm{V}$ electrolytic capacitor DIID2- $\mathrm{IN}+004$
D3-14-V rener diode
DISI through DIS4-Fluorescent 7 segment display (Tung-Sol DT1704-DT1705
ICI.IC2.IC4-4002 CMOS dual 4 -input NOR gatc
IC 3.1C 15-4049 CMOS hex inverter
ICSICIO.IC 14-4001 CMOS quad 2-input NOR gate
1C6.1C13-4011 CMOS yuad 2-input NAND gate
$1(7-4012$ CMOS dual 4 -impur NAND gate
ICX.IC1I.IC12-4017 CMOS decade counter/divider
IC $9.1 \mathrm{IC} 16-40 \mathrm{H}$ CMOS dual D tlip-tlop
IC 17.IC 18-4029 CMOS prescttable up/ down counter
C19-MM5316 cloch IC
11 -General-purpose silicon npn transis-
RI through R9-470.(O)(0)-ohm. $1 / 2-\mathrm{W}$ resistor

Be the "New

Professional" in electronics

CREI trains you at home for one of the most important career levels in electronicsplus offers you special arrangements for engineering

Most people think there are only twi levels of careers in electronics: the technician level and that of the degret engineer.

There is, however, a third and very im portant level. It is that of the engineering technician or practical engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.
The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.
The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.
The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.
CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct. test out and correct the circuits you design until you have an effective circuit.
This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-
totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique L.ab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics. communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80 . fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to

$$
\text { H } 1 \text { 1 } \begin{aligned}
& \text { CAPITOL } \\
& \text { RADIO } \\
& \text { ENGINEERING } \\
& \text { INSTITUTE }
\end{aligned}
$$

3939 Wisconin Aving Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

BY DAVID L. HEISERMAN

Simple, low-cost parlor game

can be challenging and interesting.

F YOU enjoy playing electronic games, grab your soldering iron and build "Odds-On," a low-cost game that combines the best elements of chance and strategy. Even though the readout is a single LED, don't get the idea that the game is easy to beat.

Odds-On uses a relatively highspeed oscillator to drive a counter and decoding system when its play button is pressed. When the button is released, the count stops. If, when it stops, the LED turns on, you win. This is the chance feature. The element of
strategy enters the game when you re allowed to select your own odds of winning. In this mode, you set a rotary switch to one of nine positions, each of which gives different odds ranging from 1:10 to a conservative 9:10.

Two or more players can compete with each other. The player who selects the longest odds, and wins, wins the game. The actual scoring technique is up to the players, but keep in mind that a more conservative player can consistently score and win, if his opponent is not just lucky.

Odds-On can be used to play a variety of games, including coin toss (odds 5:10), Russian Roulette, or any other games that call for playing against odds of 1:10 to 9:10.

How It Works. Free-running oscillator IC1 operates at a frequency of about 1000 Hz as a result of the values specified for R1. R2. and C2. When play pushbutton $\$ 2$ is depressed, the output pulses from the oscillator drive decade counter IC2, which cycles from 0 through 9 (10 different output

In the circuit, IC 1 operates at $1000 \mathrm{~Hz}, \mathrm{Sz}$ starts the play, and S .3 determines the odds.

B1-Three 1.5 -volt AA cells in series
$\mathrm{C} 1-0.01-\mu \mathrm{F}$ disc capacitor
C2-0.1- $\mu \mathrm{F}$ disc capacitor IC1-555 timer
IC 2-7490 decade counter
IC3. IC4-7400 quad two-input NAND

PARTS LIST

gate
LEDI-Any discrete light-emitting diode R1- 5600 -ohm. $1 / 4$-watt resistor R2—2200-ohm, $1 / 4$-watt resistor R3, R4- 1000 -ohm. $1 / 4$-watt resistor R5-100-ohm, $1 / 2$-watt resistor

Si-Spst Switch
S2-Normally-open spst switch
S3-Single-pole. 10 -position rotary switch Misc.-Suitable box; battery holder; perforated or pc board; hookup wire: machine hardware; solder; etc.
states). When the play button is released, the counter holds its last output state.

Since IC2 produces 10 different output states, the chances are 1 in 10 that the count will stop at any particular state. However, it is possible to use the decoding logic of IC3 and IC4 and switch S3 to weight the odds. For example, if $S 3$ is set to the $5: 10$ position, there is a $50 / 50$ chance that LED1 will be on.

Construction. Because of the simplicity of the circuit, any type of construction will suffice, but a printed circuit board of your own design or perforated board will be most convenient. Sockets for the IC's are optional. Switches S1, S2, and S3 should be mounted on the top of the box in which you house the circuit. Also mounted on the top of the box and held in place with a small rubber grommet or a bead of cement should be LED1. The three 1.5 -volt AA cells that make up $B 1$ should be mounted in a suitable holder inside the box.

Game Hints. Consider a game in which two or more players are par-
ticipating with one player being very conservative. Suppose the conservative player selects odds of 6:10. When he presses and releases the play button, he has six chances out of 10 to score a hit (LED comes on). If this happens, he scores 6 points. If the LED remains off, his score is 10 .

The next player selects his own odds, say, 2:10. If after pressing and releasing the PLAY button the LED comes on, he gets a score of 2 ; if the LED stays off, he gets a score of 10 .

From the foregoing, a player gets 10 points every time he loses and the first digit of the odds figure if he wins. The play continues until one player's score reaches 100 , at which time he loses. If there are more than two players, odds selection and play continue until all scores but one are 100 . The one player whose score doesn't reach 100 is the winner

To play "coin-flip," set the selector switch to the 5:10 position and operate the play button. At each depression and release, there is a $50 / 50$ chance that the LED will turn on and you win.

To play Russian Roulette, assume a six-shot revolver has a cartridge in
only one chamber. The play button becomes the "trigger." Set the odds selector switch to the $2: 10$ position. If at any time the LED comes on, you definitely lose.

"What do you mean, does a horse come with it?"

Would there be an advantage for the home recordist in using studio-type tape?

MAGNETIC tape manufacturers optimize the characteristics of their open-reel tapes according to the requirements of the markets they serve. Professional mastering tapes. for example, provide their best performance at a speed of 30 or 15 ips both of which are commonly used by the pro's. Consumer tapes, on the other hand are best for the commonly used $71 / 2$ and $33 / 4$ ips speeds of consumer decks
One might ask if a professional tape, used on a consumer deck, will yield superior performance when compared with a consumer tape. At least one major manufacturer says no. However. might it not be possible to adjust a consumer machine to favor the professional tape? To answer this question. we embarked on a project to examine both professional mastering and consumer tapes, after idealizing a consumer tape deck for each type of tape to be used

Bias and Equalization. We know that tape deck bias should be adjusted to suit the tape being used. What is
less well known is that the precise amount of bias used in any given tape deek is a compromise of frequency re-

Fig. 1. ()ermall response of the entire test set-np withont a tape

Fig. \therefore Maxell UD.j0 at .3/4 ips, bias ? dB beyorel peak at $10,000 \mathrm{~Hz}$
sponse versus distortion and/or noise. There is no one bias setting that will simultaneously provide both the widest absolute response and the lowest absolute distortion/noise. Bias is generally set in professional decks for lowest distortion and noise and let the frequency response fall as it may, while the bias in consumer machines is set to provide the widest frequency response.

Once the bias adjustment is made. the high-frequency equalization can be used to compensate for the record electronics so that a playback response as nearly flat as possible is obtained. All professional and many consumer tape decks, therefore, can be adjusted for high-frequency equalization. Many professional decks provide this equalization on the play side of the preamplifier. but all offer it on the record side. Playback equalization is always preset to a standard test tape. The record equalization attempts to adjust the response to match the standardized playback.

The normal manner in which bias is adjusted is to set the deck so that the tape is moving at the speed for which adjustment is to be made, with the mode set to record. An audio signal generator is then used to record a sine-wave signal and the bias is adjusted while the output of the tape is monitored. As the bias is advanced, the output of the tape increases until it reaches a point where additional bias reduces the output (particularly at the higher frequencies). This is because increased bias begins to erase very short wavelengths.

A common professional way to adjust the bias on a high-speed deck is to record a $10.000-\mathrm{Hz}$ signal and adjust the bias beyond the peak until a 1-to- $2-\mathrm{dB}$ reduction in output occurs. This yields the lowest noise and distortion and an acceptable frequency response. If the bias were to be set at peak, the response might be so good at the high end that there would not be enough equalization to bring it down, but distortion would be high and noise might suffer.

Our Test Setup. The basic tape deck we selected for making our tests was the Revox Model A-700. This deck has $15,71 / 2$, and $33 / 4 \mathrm{ips}$ speeds, covering both the consumer and the professional ranges, and provides complete bias and equalization adjustment con-

Fig. . S. Same as Fig. 2, but with bias set to peat at 10100 Hz .

Fig. 4. Sume as Fig. 2, with hij-ips speed.

Fig. i. Stame as Fig. .3, with lis-ips speed.

Fig. 6. shes Scotch 250 at 15 ips with bias 2 dB bey'shd peak.

Fig. A. Serme as Fig. 6, with speed at $33 / 4 \mathrm{ips}$.
trols for each speed and channel. Needless to say, this deck provides all the controls and speeds required for making a meaningful study of tapes.

For the tests, we used a UREI Model 200 X -Y frequency plotter with built-in automatic 20 -to-20.000-Hz sweep frequency generator. On the receive end of this instrument, the signal returns, after going through the equipment under test, and drives the X-Y plotter that operates at an exactly synchronized speed of $120,60,30$, or 15 seconds. We selected a 60 -second sweep speed and a $2-\mathrm{dB} /$ vertical inch of graph paper sensitivity.

A Ferrograph Model RTS2 Record Test Set served as an auxiliary audio signal generator, total harmonic distortion (THD) analyzer, and also as noise meter.

The tapes selected for testing included the consumer Scotch Classic and professional 250 types from 3M, the consumer Maxell UD-50, and the professional Ampex Grand Master 456. We believe these tapes to be representative examples of the tapes available on today's market

The Tests. The method of setting up for each tape was as follows: bias was adjusted and frequency-response pretests were run before plotting by sweeping between 1000 and 10,000 Hz . The recording equalization was then adjusted to bring the $10,000-\mathrm{Hz}$ response as much in line with that of the $1000-\mathrm{Hz}$ response as possible.
For the tests conducted at 15 ips , all testing was performed at 0 VU recording input, including those for noise and distortion. When we performed out tests at $33 / 4$ or $71 / 2 \mathrm{ips}$, the input was reduced to -10 VU . Distortion and noise were measured by increasing the input to 0 VU .
Our first frequency plot made on the UREEI recorder is shown in Fig. 1. This is the overall response of the entire system without a tape running. As you can see, variations between 20 and $20,000 \mathrm{~Hz}$ are negligible.
The graph in Fig. 2 is the response of the Maxell UD-50 tape at the speed of $33 / 4 \mathrm{ips}$, with the bias set 2 dB beyond peak at $10,000 \mathrm{~Hz}$. The signal-to-noise $(\mathrm{S} / \mathrm{N})$ ratio was -52 dB unweighted. (Our S/N measurements were all referenced to the $0-V U$ point on the deck's meters. Had we used the common 3% distortion point, the S/N fig. ures for this and all subsequent tapes would have been better by 7 to 8 dB .)

Fư. 8. Same as Fig. 7, with bius set to peak at 1000 Hz .

Fig. 9. Scotch Classic at 15 ips and minimum equalization.

Fig. 10. St T me as Fig. 9 with bias to peak at 1000 Hz .

Fig. 11. Scotch Classic at $33 / 4 \mathrm{ips}$, hias 2 d 1 B beyond peak at $10,000 \mathrm{~Hz}$.

Fig. 12. Same as Fig. 1I, with bias set to peak.

Fig. 73. Amper 456 at $15 \mathrm{ips}$. bias 2 dB heqond penti ut 10.000 Hz .

Note that the response of this tape is essentially flat to -2 dB at $17,000 \mathrm{~Hz}$.

When we adjusted the bias to peak at 1000 Hz , note, in Fig. 3, the slight roughness of the high end, although the actual response is still about the same. At 1.2%, the distortion was slightly greater, but the S / N remained the same at -52 dB .

Changing the speed to 15 ips produced the curve shown in Fig. 4 at $10,000 \mathrm{~Hz}$ and bias set at 2 dB beyond peak and Fig. 5 at 1000 Hz and bias set to peak. The Fig. 4 curve was obtained with minimal setting of the highfrequency equalization. The sharply rising high end is obvious, almost 5 dB at $20,000 \mathrm{~Hz}$. At this setting, the THD was 1% and the S / N was -55 dB . The bass end response of the Fig. 5 curve is typical of many tapes and is well within $\pm 1 \mathrm{~dB}$ from 22 Hz . At the high end, the response is smooth and goes well beyond $20,000 \mathrm{~Hz}$. This time, distortion was 0.75% and S / N was -55 decibels.

3M's Scotch 250 studio mastering tape, first tested at 15 ips , responded very well when the bias was set 2 dB beyond peak, as seen in Fig. 6. S/N was -58 dB and distortion measured 0.7%.
We saw no reason to alter the bias and left the setting alone.

The curve shown in Fig. 7 is for the Scotch 250 tape at the consumer speed of $33 / 4 \mathrm{ips}$. At 2 dB beyond peak, the response is 2 dB down at 15,000 Hz , while S / N was -53 dB and distortion was 1.1%. The curve in Fig. 8 is for the same tape and speed, but this time, the bias was set to peak at 1000 Hz . The high end suffers, S / N remains at -53 dB , and distortion improves to 0.9%-not a very significant gain. It can certainly be assumed that this is not a tape to use at low speeds.

The response of the consumergrade Scotch Classic tape is shown in Fig. 9. The tape speed was 15 ips and high-end equalization was at a minimum. While the S / N figure is a healthy -57 dB . distortion is an unhealthy 2.8%. Obviously, with the bias set at 2 dB beyond peak, this is not a good tape to use at the higher speed.

Setting the bias to peak at 1000 Hz and correcting the equalization provided the curve shown in Fig. 10. Note that the response has smoothed out to professional-grade full range; S / N remains at -58 dB ; and distortion has dropped to an excellent 0.7%. Classic can obviously qualify as a good professional tape.

Now, operating Scotch Classic at the consumer speed of $33 / 4 \mathrm{ips}$, as shown in Fig. 11, the response was flat to -2 dB at $20,000 \mathrm{~Hz}$. However, at 2 dB beyond peak at $10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N}$ was -53 dB and distortion was 2.5%. With the bias set to peak, the response was -2 dB at $16,000 \mathrm{~Hz}$, with distortion down to 1.1% and $\mathrm{S} / \mathrm{N}-54 \mathrm{~dB}$ (Fig. 12). These two settings clearly reveal the tradeoffs of bias versus distortion and frequency response.

The professional mastering Ampex 456 tape was very similar to the Scotch 250 tape in its bias requirements and performance characteristics. We performed our Ampex 456 tape tests with the bias set 2 dB beyond peak at $10,000 \mathrm{~Hz}$. The Fig. 13 curve was obtained at $15 \mathrm{ips} ; \mathrm{S} / \mathrm{N}$ was -57 dB and distortion was 0.8%. This is clearly a professional tape. At $33 / 4 \mathrm{ips}$, the tape's response was rough but actually only 2 dB down at $20,000 \mathrm{~Hz}$. The tape had a response of 1 dB at about $10,000 \mathrm{~Hz}$ at the minimum setting of the tape recorder's equalization adjustment. The distortion was an unimpressive 2.4% and S / N was a good but not impressive -53.5 dB . Ampex 456 is a superb studio mastering tape, but much like the Scotch 250 , it is not an idealized slow-speed tape.

Summing Up. What have our tests proved? Depending on the bias and equalization settings of the tape deck, Scotch Classic, Scotch 250, and Maxell UD-50 performed very much the same at $33 / 4 \mathrm{ips}$. We expected this of the Classic and UD-50 tapes, but seeing the performance of the 250 at this speed came as a bit of a surprise. At the high, and presumably professional, speed of 15 ips , each of the tapes tested was capable of nearly identical frequency response. distortion, and noise performance.

We feel, therefore, that part of our original contention that, at low speeds, tapes designed for that speed range are best, has been proven. But at high speeds, it would appear that the best buy is the lowest priced and most readily available tape-at least among those tested by us.

It is evident that proper performance from any tape means that the tape deck on which it is used must be properly set up for it. Bias must be set for distortion versus frequency response, but the setting must permit an acceptable normalizing of the highend response.

The $\$ 750$ alternative.

$\square 200$ Watts RMS, per channel, both channels driven into 4 or 8 Ohms from 20 Hz to 20 KHz at no more than 0.05% Total Harmonic Distortion.
$\square 0.05 \% \mathrm{IM}$ into 4 or 8 Ohms
\square (signal to noise) greater than 100 dB
Dplug-in board modules
Dforced air cooling
\square Donly 11" deep
\square weighs less than 42 lbs .
\square superb construction using only the finest materials and component parts
\square available in black rack mount (as shown) or our traditional satin gold and black
You'd have to look a long time to find a power amplifier that delivers this much value.

[^0]
Herb Laneys a tough-minded optimist. How about you?

Herb takes his future seriously. Without worrying about it. He knows his CIE training is giving him valuable skills in electronics.
Skills a lot of people will be glad to pay for. And that's good reason for all the optimism in the world. How about you?

Learning new skills isn't something you just breeze through. Especially in electronics. You've got to really want success if you're going to build your skills properly.

Herb knew that right from the start. But he also knew what rewards he could earn if he took some time and did it right. He knew that, in today's world, people who really know electronics find a lot of other people . . . even whole industries . . looking for their help.

How about you? How much do you want that thrilling feeling of success . . . of being in demand? Enough to work for it?

Why it pays to build skills and know-how.

One of the things that got Herb interested in electronics is that electronics seems to be something just about everybody needs. Almost everywhere you look these days in a business office ... a manufacturing plant . . . a department store . . . a doctor's office . . . a college . . . even your own home you'll find all kinds of electronic devices.

That spelled "opportunity" to Herb. Plus he liked the idea of having a set of skills that might lead to jobs in places as different as a TV station a hospital . . . an airport . . . a petroleum refinery.
But what Herb liked most about electronics is that it's just plain interesting. Even though it takes time and effort to learn. the subject is so fascinating it almost doesn't seem like "studying" at all!

How CIE

keeps you interested.

CIE's unique study methods do a lot to keep you interested. Since electronics starts with ideas ... with principles... CIE's Autoprogrammed "Lessons help you get
the idea - at your own most comfortable pace. They break the subject into bite-size chunks so you explore each principle, step by step, until you understand it thoroughly and completely. Then you start to use it.

How CIE helps you turn ideas into reality.

Depending on the program you choose, CIE helps you apply the principles you learn in a number of different ways.

If you're a beginner, you'll likely start with CIE's Experimental Electronics Laboratory. With this fascinating workbench lab, you actually perform over 200 experiments to help you grasp the basics! Plus you use a 3 -in- 1 precision Multimeter to learn testing, checking, and analyzing.

In some programs, you build your own 5 MHz triggered-sweep. solid-state oscilloscope - and learn how to "read" waveform patterns ... how to "lock them in" for closer study ... how to understand and interpret what they tell you.

To help you develop practical. skill-building knowledge you then receive a Zenith $19^{\prime \prime}$ diagonal

solid-state color TV featuring nine removable modules. You learn how to trace signal flow. . . how to detect and locate malfunctions... how to restore perfect operating

What to do first.

Get all the facts. Send for CIE's FREE school catalog and career information package TODAY. Check all the CIE programs - and see which one's right for you. Do it now.

Why it's important to get your FCC License.

More than half of CIE's courses prepare you for the FCC License exam. In fact, based on continuing surveys, better than 4 out of 5 CIE graduates who take the exam get their License!

That's important. For some jobs in electronics, you must have your FCC I icense. For others. employers often consider it a mark in your favor. It's governmentcertified proof of specific knowledge and skills!

Free catalog!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write. mention the name of this magazine. We'll send you a copy of CIE's FREE school catalog - plus a complete package of independent home study information! For your convenience, we'll try to have a representative call to help you with course selection. Mail the card or coupon
. or write: CIE, 1776 East 17th Street. Cleveland. Ohio 44114.
 standards.

BUILD THE

35.mm

Slide Syncer

A low-cost programmer for audio-visual presentations.

THE Slide Syncer is a programming device which enables you to record musical or talking material and a slide projector advance signal on the same tape track. It can be built using readily available, inexpensive parts, and will provide reliable and quiet performance. Incorporated into the Slide Syncer is a speaker for use with the external speaker jack on a cassette or open-reel tape recorder. The selfcontained power source consists of four "AA" cells which should last for one year with moderate use

About the Circuit. As shown in Fig 1, IC1, a 567 tone decoder phaselocked loop, is the heart of the Slide Syncer. This eight-pin DIP contains a

PARTS LIST

C1. C2-0.1- CF Mylar or disc ceramic capacitor
C3- $0.001-\mu \mathrm{F}$ disc ceramic capacitor C4-1- $\mu \mathrm{F}, 10$-volt electrolytic capacitor C $5-5-\mu \mathrm{F}, 10$-volt electrolytic capacitor C $6-10-\mu \mathrm{F}, 10$-volt electrolytic capacitor D1, D2, D3-1N4001 diode
IC $1-567$ tone decoder PLL IC
$\mathrm{J} 1-1 / 4^{\prime \prime}$ insulated phone jack
J2, J3. J4-miniature two-conductor open-circuit phone jacks.

KI-4.8-volt reed relay with SPST contacts
LED 1. LED 2 - $20-\mathrm{mA}$ light emitting diode Q|-200-volt. 6-ampere triac (Radio Shack 276-1001 or equivalent)
The following resistors are 1/4-watt, 10% tolerance components.
R1-330 ohms
R2—33,000 ohms
R3. R9-4700 ohms
R4, R7- 100 ohms
R5- 100.000 ohms
R6-220 ohms
control oscillator, phase-locked circuitry, and an output stage that can sink up to 100 mA of direct current.

It is customary to use an external tone generator to trigger the 567 . However, the output of an external oscillator would have to be very close to the response frequency of the tone decoder for proper triggering to occur. This means that high-tolerance, low-drift components would have to be used. Fortunately, the output of the internal oscillator of the 567 can be picked off at pin 5 so the tone generated can be coupled from pin 5 to the microphone input of the tape recorder. Then it will be recorded on the same track as the commentary. The frequency at pin 5 , determined by $R 3$ and $C 2$, is exactly that which is required as an input signal to trigger the phase-locked loop.

When S2, a spring-loaded SPDT pushbutton switch, is tapped, the "beep" at pin 5 is coupled onto the microphone line (the hot side of $J 3$ and J4) through C3 and the attenuating network R5R6R9. This switch also allows current to flow through the coil
of reed relay $k 1, L E D 2$, and $D 3$. When the relay contacts close, gate current is provided for triac Q1 if a low-voltage source is connected to jack J1. This triac is used to control the slide advancing mechanism in the projector, which is most often an ac-actuated circuit.

However, there is no need to have the projector set up when you are recording a program. When LED2, the PULSE indicator, is lit, the command tone is being recorded on the audio track at about 10 dB down from the commentary level. The Slide Syncer eliminates the need for a two-track recorder (one track for the commentary, the other for the advance tone). But you will find that the tone is not loud enough to be distracting.

On playback, the audio output of the recorder is taken from the external speaker jack and applied to the Slide Syncer's internal speaker and transformer $T 1$ through $J 2$, the audio input jack. Resistors $R 7$ and R8 attenuate the audio to a level that IC1 can handle. The drive signal for the phaselocked loop is coupled from the sec-
ondary of $T 1$ through R2 and C1. When the tone that was taken from pin 5 and recorded on the tape appears al pin 3, pin 8 is grounded and sinks current for the coil of K1 and LED2 through D2. Then the contacts of $K 1$ close, and Q1 turns on and activates the advance mechanism in the projector. The 567 will not sink current unless a sustained tone of the proper frequency appears at pin 3, so normal speech and music will not cause the projector to advance to the next slide.

Most inexpensive cassette recorders have better audio sections than their small speakers would lead you to believe. For this reason, the 8 -ohm speaker is includ inthe Slide Syncer circuit. It is a $4^{\prime \prime} \times 25 / 8^{\prime \prime}(10.2 \times 6.7 \mathrm{~cm})$ oval speaker, and should improve the sound quality of your audio-visual presentations.

The Slide Syncer requires +6 volts dc at about 25 mA quiescent current, which increases to 47 mA when S 2 is depressed. At these low current levels, four AA penlight cells mounted in a battery holder form an inexpensive power source.

Construction. The circuit is not too complex, so you can use perforated board or printed circuit construction techniques. Be sure to observe polarities on the electrolytic capacitors and the semiconductors. It is suggested that an IC socket or Molex Soldercons be used in mounting the 567 IC on the board. This will avoid heat damage to the chip. All LED's, jacks, and switches are mounted off the board. Use shielded cable for all audio lines.

The Slide Syncer should be mounted in an enclosure about $61 / 2^{\prime \prime} \times$
$5 \frac{1}{2} 2^{\prime \prime} \times 2^{\prime \prime}(16.5 \times 14 \times 5.1 \mathrm{~cm})$. The speaker cutout can be made with a nibbling tool. Current limiting resistor $R 1$ is mounted on the lugs of $S 1$. (The author used a DPDT slide switch wired as an SPST, with the unused contact lugs for tie points to the power leads and R1 and LED1.) Jack J1 should be insulated from the front panel if a metallic enclosure is used. Rubber or fiber washers can be used for insulation and mechanical support. A small bracket can be fashioned from a piece of scrap aluminum stock to secure the battery holder to the enclosure. Dry
transfer lettering can be used to label all jacks, LED's, and switches. Spray the lettering with clear Krylon spray after it has been transferred to the panel.
Prepare shielded jumper cables for the audio inputs and outputs (external speaker jack to J 2 , microphone jack to J4) and terminate them with plugs compatible with your cassette recorder. Connect a $1 / 4^{\prime \prime}$ phone plug to the advance control cable from your projector.

Checkout and Use. Insert all plugs into their corresponding jacks. and plug the recorder microphone into jack J3. Record a short test program on the cassette recording, pushing S2 each time you want the projector to advance to the next slide. Then turn the projector on and play back the tape. The projector should advance each time the control "beep" is heard.

The 567 tone decoder requires an input level of 100 to $500 \mu \mathrm{~V}$ for reliable operation. The Slide Syncer is designed so that normal audio levels from a small cassette recorder placed in an average-sized living room will consistently advance the projector. Resistors R8, R7, and R2 attenuate the audio to the working level of the IC. For high-volume audio-visual use say. in a classroom - R2 should be increased to a value between 68 and 82 kilohms. For low-level use, R2 can be reduced to 10.000 ohms or so. If you prefer, you can mount these three attenuating resistors on the foil side of the printed circuit board so they can be easily changed (if necessary) to prevent false triggering.

The tone output from the Slide Syncer is very low, but is sufficient to trigger the tone decoder. However, if you have a recorder with automatic gain control, the advance tone will be loud on playback. If possible, use a recorder with a manual gain control to keep the tone almost inaudible. But the Slide Syncer will work with either type of tape recorder. The advance tone, using the values given for R3 and C2, is about 2200 Hz . You can change it to any other frequency simply by using different values for these two components. You can also build two decoders sharing a common audio input and output to trigger two projectors. In that case, the two tones should be somewhat removed from each other-say, 1000 and 2200 Hz -so that each projector will advance only on its proper tone command.

FLUKE PROVES AN INEXPENSIVE, HANDHELD DMM CAN BE BUILT WITHOUT LEAVING EVERYTHING OUT.

Let's face it.

Before now, if you bought an inexpensive, handheld digital multimeter you didn't get much- they just left most everything out.

We knew that was no answer.
So we built the 8030A $31 / 2$-digit DMM. It's a small, portable, inexpensive, handheld DMM, but it performs like our benchtop units.

With one basic difference. The 8030A was designed, built and tested to a size and shape proven best for field service and laboratory technicians. There's a built-in hood that can be slipped forward to shade the readout in sunshine. It has rms capability. The best overload protection. Diode test. It weighs 2.2 pounds, and will take a beating without failing. Finally, we guarantee accuracy specifications for one year.

And it only costs $\$ 235^{*}$.

True rms.	Fluke
l-year accuracy specs.	Fluke
High voltage protection.	Fluke
Diode test.	Fluke
A full line of accessories offering of voltage,	
high current ac, high voltage dc, and	
temperature measurement probes.	Fluke

There's only one place to go for all the performance you need in a handheld DMM.

There are measurement functions in five selectable ranges for dc volts, ac volts (true rms), dc current, ac current (true rms), and resistance. DC voltage measurement is from $100 \mu \mathrm{~V}$ to 1100 V with basic accuracy of $\pm 0.1 \%$, ac measurement is from $100 \mu \mathrm{~V}$ to 750 V rms with basic accuracy of $\pm 0.5 \%$. DC and ac current is from 100 nanoamps to 1.999 amps with basic dc accuracy of $\pm 0.35 \%$ and basic ac accuracy of $\pm 1 \%$. Resistance measurement is from 100 milliohms to 2 megohms with a basic accuracy of $\pm 0.4 \%$.

We added true rms response for ac measurements. Specified accuracy is still attainable when the measured waveform is distorted.

"Fluke does the impossible again. '
There is extensive overload protection. It has been tested with transients up to 6000 V peak across the input terminals.

Options include two battery operations: a rechargeable NiCad for 8 hours operation and throw-away alkaline cells. Accessories include probes for measure-
ment of rf voltages, high current ac, high voltage dc and temperature.

80T-150 Temperature Probe Sensitivity: $\quad 1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ or $1 \mathrm{mV} / \rho \mathrm{F}$

$$
\begin{aligned}
& \text { Accuracy: } \\
& +15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \quad \pm 2^{\circ} \mathrm{C}\left(3.6^{\circ} \mathrm{F}\right)-25^{\circ} \mathrm{C} \text { to } \\
& \text { ambient: } \quad+125^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\left(5.8^{\circ} \mathrm{F}\right) \\
& -50^{\circ} \mathrm{C} \text { to }-25^{\circ} \mathrm{C} \text { and } \\
& +125^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to } 15^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C} \text { Add } 1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right) \text { to }
\end{aligned}
$$ to $50^{\circ} \mathrm{C}$ ambient: above

You can also get temperature measuring capabilities with the 8030 A .

And because the 8030A gives you so much in performance, let us remind you once more of the price.

Only \$235*.
For the first handheld DMM that's small in size, small in price, but huge in performance.
For data out today, dial our toll-free hotline, 800-426-0361.
John Fluke Mfg. Co., Inc., P.O. Box
43210, Mountlake Terrace, WA 98043
Fluke (Nederland) B. V., P.O. Box 5053, Tilburg, The Netherlands.
Phone: (013) 673-973 Telex: 52237
*U.S. price only.

[1]

 Product

 Product Test Reports

 Test Reports}

ABOUT THIS MONTH'S HI-FI REPORTS

In addition to being a very fine 10 -octave equalizer, the Spectro Aconstics Model 210 has enough front-panel suitching to permit completely flexible operation. It can be used with a tape deck or any other program source you can use with your amplifier. Part of the excellent performance of the Model 210 can be credited to its gyrator inductors, which replace the usual bulky, hum-sensitive wire-uound components.

Pickering, in its broad line of cartridges, offers units that share a common body and electrical configuration, differing only in stylus parameters and prices. The XV-15 series illustrates this philosophy. The newest member of the series, the $X V-15 / 625 E$, is third from the top of the line in tracking ability, yet has frequency response and sonic characteristics almost identical to other members of the family. However, this cartridge tracks at forces betueen 1 and 1.5 grams, making it ideal for use in highgrade antomatic record players. Our tests also show that it has aboueaverage ability to play heavily recorded discs with low distortion.
-Julian D. Hirsch

SPECTRO ACOUSTICS MODEL 210 GRAPHIC EQUALIZER

Features great versatility: ases gyrator inductors.

On the Spectro Acoustics Model 210 stereo graphic equalizer there are 10 separate octave-band controls to adjust the frequency response of each channel. The center frequencies of the octave filters are at 30,60, 120, 240, 480, 960, $1920,3840,7680$, and $15,360 \mathrm{~Hz}$. The slide-type potentiometers in each octave range provide a boost/cut range of $\pm 13 \mathrm{~dB}$ within each filter passband. The Q of the filters, which is $2.5 \pm 10 \%$, has been selected to provide maximum versatility in shaping the frequency response with a minimum of ripple.

The equalizer measures $17^{\prime \prime} \mathrm{W} \times$
$61 / 2^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{H}(43.2 \times 16.5 \times 15.2 \mathrm{~cm})$ and weighs $6 \mathrm{lb}(2.7 \mathrm{~kg})$. It is also available with a $19^{\prime \prime} \times 7^{\prime \prime}(48.3 \times 17.8 \mathrm{~cm})$ rack-mounting panel. The equalizer is finished in black with white and blue markings and control knobs. It retails for $\$ 295$, plus $\$ 40$ for an optional wood cabinet.

General Description. The equalizer employs active circuit elements called "gyrators" to simulate inductors in its filters. The elimination of actual inductors in the signal-processing circuits makes it completely immune to induced hum from external fields. Since the overall gain of the signal channels can be considerably changed when several of the equalizer potentiomet-
ers are moved from their zero positions, there is a small horizontally oriented pot under each group of filter controls to change the gain of each channel by $\pm 15 \mathrm{~dB}$ and reestablish a unity-gain condition. With all controls centered, the gain of the equalizer is unity and its response is flat to within $\pm 0.5 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$.

The operating mode of the equalizer is controlled by five pushbutton switches located at the lower center of the front panel. One button controls the power and has adjacent to it a red LED that glows when power is on.
The equalizer is normally connected into an audio system via the recording inputs and outputs, but it can also be installed between the preamplifier and power amplifier. A duplicate set of tape input and output jacks is provided on the rear apron of the equalizer so that the tape facility is not lost when the equalizer is connected to an amplifier or receiver. The tape MON pushbutton switch connects the tape recorder playback into the signal path for playing tapes or monitoring a recording while it is being made.

The EQ BYPASS pushbutton completely bypasses all of the equalizer's circuits. (The power need not be applied to the equalizer when this button is depressed.) The EQ LINE button is pressed for most normal operation of the equalizer, inserting the equalizer's circuits into the signal path and returning the equalized program to the amplifier. A most useful feature is the EQ tape button, which places the equalizer in the signal path going to the tape recorder. The program played through the amplifier can be either the unequalized input signal or the playback from the equalized recording. It is also possible to record an unequalized signal and place the equalizer in the recorder's playback line.

On the rear apron of the equalizer are all the input and output jacks, the tape recorder jacks, and a single unswitched ac accessory receptacle.
The equalizer is designed to do only one thing-modify the frequency response of a program to compensate for sound-system or listening room deficiencies. Its noise and distortion have been reduced to the point where they can barely be measured, much less heard. With all controls centered, the signal-to-noise ratio is rated at better than 90 dB below 2 volts. Since the equalizer can deliver a maximum of 10 volts rms, its total dynamic range can

POPULAR ELECTRONICS
be greater than 105 dB . The 600 -ohm output impedance makes it possible for the equalizer to drive a 10,000 -ohm load (the lowest that will be presented by any power amplifier) at full output. The input impedance of 30.000 to 50,000 ohms is compatible with any commercially made preamplifier or tape deck.

The distortion of the equalizer is specified at less than 0.05% at 1 volt output over the full $20-$ to $-20,000-\mathrm{Hz}$ audio range when the controls are set to the flat, or zero, positions. The IM distortion is rated at less than 0.0075% at any output up to 10 volts equivalent sine-wave signal with the standard 60and $7000-\mathrm{Hz}$ test signals.

Laboratory Measurements. Measuring the distortion of the equalizer taxed the capabilities of our test instruments. Up to a 1-volt output, the distortion was less than 0.005\% between 20 and $20,000 \mathrm{~Hz}$. At 2 volts output, the results were the same, except that at the high end, the distortion reached 0.01%. At a 3 -volt output, it was 0.01% to 0.018% over the entire audio range, while at 10 volts, just before clipping occurred, it was between 0.022% and 0.056%. The IM distortion reading was the residual of our Crown IM analyzer- 0.002% to 0.003%-up to 3 volts output, reaching 1% at a 10 -volt output. At the minimum measurement level of 60 mV , the IM was a negligible 0.01\%.

Resporse of the equalizer to 1000-Hz square-r木ace input.
At 120 Hz , the hum was 82 dB below 1 volt, or 88 dB below the rated 2 -volt output. The noise was not measurable, being less than the $100-\mu \mathrm{V}$ minimum indication of our meter. We could only determine that it was much better than 90 dB down, referred to a 2-volt output.

Each of the equalizer's filter controls had a range of $\pm 13 \mathrm{~dB}$, and the shape of their individual response curves conformed to the expected response with a filter Q of 2.5. With the controls centered, the response was flat to within $\pm 0.25 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$. A check with a $1000-\mathrm{Hz}$ square-wave signal revealed that the phase characteristics of the equalizer were as good as its amplitude response (controls centered). The square-wave signal output was virtually indistinguishable from the input signal.

User Comment. It is generally agreed that an octave-band equalizer
is the most practical and effective means for correcting normal hi-fi system aberrations caused by speaker system and listening-room characteristics. Fewer than 10 bands would sacrifice versatility, while more bands would make adjustment too diflicult. The center frequencies of the filters in this equalizer have been well chosen.

The equalizer comes with an instruction manual that could serve as an excellent primer on equalization techniques. It is also a model of how an instruction manual should be written. Only the omission of the equalizer's schematic diagram prevents us from giving the manual a 100% rating.

We experimented at some length with the equalizer and are convinced that it can do anything any other equalizer we have used can do and that it can do more than most of the others. The control switching is especially versatile, making it possible to equalize before or after a tape recorder, to listen to an equalized or unequalized signal (whether or not the recorded program is being equalized), or to replace the equalizer's circuits with, literally, a straight wire connection.

Our only criticism of the equalizer's design is that it has no center detents on the controls to simplify locating the flat positions. Otherwise, the equalizer represents an excellent hi-fi system accessory that is well worth its price. circle no. 80 on fres information caro

PICKERING MODEL XV-15/625E PHONO CARTRIDGE

Excellent tracking ability at moderate price.

Pickering's $\mathrm{XV}-15$ series of stereo phono cartridges includes a number of models that share a common body and coils but have different stylus NOVEMBER 1976
characteristics. The interchangeable styli are designed for use with tracking forces as high as 5 grams and as low as 0.75 gram. They are rated accord. ing to what Pickering calls "Dynamic Coupling Factor" (DCF), which is essentially a measure of tracking ability, called "Track-A-Bility" by the company.

The latest addition to the XV-15 family is the Model XV-15/625E cartridge whose 0.3×0.7-mil elliptical stylus is designed to track with a force between 0.75 and 1.5 grams, with a nominal 1 -gram rating. It is best suited for the higher-grade automatic turntables with low-friction tonearms as well as with manual players. The nominal output at $5.5 \mathrm{~cm} / \mathrm{s}$ is 4.4 mV ; recommended load is 47,000 ohms in parallel with 275 pF .

As with other Pickering cartridges, this new cartridge's stylus assembly has an integral hinged "Dustmatic" brush that rides on the record surface to remove surface dust. The brush can easily be removed if desired. When it is used, however, the indicated tracking force of the tonearm must be set 1 gram higher than the actual tracking force desired to compensate for the upward thrust of the brush.

The cartridge is supplied with snapin plastic mounts that simplify installation in several popular record-player tonearms, including models from BSR, Dual, and Garrard. With the snap-in mounts, screws are not required to fasten the cartridge to the tonearm shell. Without the mounts, the cartridge can be installed in any tonearm in the conventional manner.

The better the training穱 the better you'll

IN-CIRCUIT TRANSISTOR TESTER

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units $-5^{\prime \prime}$ solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.
Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-

tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL APPROVED FOR VETERAN TRAINING

Get facts on new 2-year extension

NATIONAL SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

NATIONAL TECHNICAL SCHOOLS4000 South Figueroa St., Los Angeles, Calif. 90037 Dept. 205.116	
Please send FREE Color Catalog and Sample Lesson. NO OBLIGATION NO SALESMAN WILL CALL.	
Color TV Servicing B \& TV and Radio Servicing Electronic Communications FCC License Course	Electronics Technology Computer Electronics Basic Electronics Audio Electronics Servicing
NAME	AGE
ADORESS	A.PT $=$
CITY	STATE
Please fill in Zip Code for fast service	
\square Check if interested in G.I. Bill information.	
\square Check if interested ONLY in classroom training in Los Angeles.	

The retail price of the Pickering Model XV-15/625E cartridge is $\$ 59.95$.

Laboratory Measurements. With the recommended load and the cartridge installed in the tonearm of a popular high-quality record player, the output signal level was about 3.5 mV at a velocity of $3.54 \mathrm{~cm} / \mathrm{s}$. The levels from the two channels differed by only 0.4 dB . The vertical tracking angle of the stylus measured 24°

The cartridge tracked our highvelocity test records, including the low-frequency Cook 60 and the midfrequency Fairchild 101 records, at its nominal 1 -gram force. The $30-\mathrm{cm} / \mathrm{s}$ $1000-\mathrm{Hz}$ tones of the Fairchild record were played with virtually no visible waveform distortion. At 1 gram, the cartridge played the 60-micron level of the German $\mathrm{Hi}-\mathrm{Fi}$ Institute record With an increase in stylus force to 1.5 grams, it played the 80 -micron level. The performance at 1 gram is typical of many good-quality and mediumpriced cartridges, while only a few of the best cartridges can cope with the $80-\mathrm{mic}$ ron level of the $300-\mathrm{Hz}$ tones on the test record. We used a 1 -gram force for all other tests

The frequency response of the cartridge, using the CBS STR 100 record, was very closely matched between the channels, sloping slightly downward at frequencies beyond 500 Hz and a small-amplitude high-frequency stylus resonance at about $18,000 \mathrm{~Hz}$. The overall frequency response was a very good $\pm 2 \mathrm{~dB}$ from 40 to $20,000 \mathrm{~Hz}$. Channel separation was somewhat better than that of most cartridges over the major portion of the audible range, measuring 25 to 30 dB up to nearly $10,000 \mathrm{~Hz}$. It was still a good 12 dB at $20,000 \mathrm{~Hz}$. The low-frequency resonance in the tonearm we used was at about 10 Hz .

We measured the tracking distortion with the aid of two Shure test records. The TTR-102 is an IM record that contains $400-$ and $4000-\mathrm{Hz}$ tones recorded in a $4: 1$ level ratio at velocities from about $7 \mathrm{~cm} / \mathrm{s}$ to $27 \mathrm{~cm} / \mathrm{s}$. The cartridge revealed a smoothly rising IM distortion characteristic over

Square-urave response using
('BS STRIIZ te'st recond.
that full range, increasing from about 1.7% at the lower velocities to 6% at the maximum level. This contrasts with the behavior of some cartridges, which may have slightly less distortion at low velocities but often mistrack and severely distort well below the maximum level on the record. There is probably little to choose from between the two types of cartridge distortion, since both have satisfactorily low levels at the velocities found on most commercial recordings, which rarely exceed about $15 \mathrm{~cm} / \mathrm{s}$.
The second test used the Shure TTR-103 record, a high-frequency tracking test involving $10,800-\mathrm{Hz}$ tone bursts at a $270-\mathrm{Hz}$ repetition rate. Failure to track the specially shaped bursts results in an increase in the $270-\mathrm{Hz}$ component of the cartridge's output. In this test, the Pickering cartridge had low distortion, measuring less than 1% up to about $20 \mathrm{~cm} / \mathrm{s}$ and a smooth rise to 3.8% at $30 \mathrm{~cm} / \mathrm{s}$.
The square-wave response, using the CBS STR112 record, revealed an almost perfectly square output
waveform, with one or two cycles of moderate-amplitude ringing at the $18,000-\mathrm{Hz}$ stylus resonance. A listening test of tracking ability, using the Shure TTR-110 "Audio Obstacle Course-Era III" record, confirmed the excellent tracking ability of the cartridge. At 1.5 grams, the cartridge handled everything on the record with ease; but at 1 gram, it mistracked on the highest level of the sibilance test and sounded strained at the highest levels of bass drums and violins.

User Comment. The cartridge sounded much as one would expect it to from its measured performance. The sound was very smooth and natural. In fact, those listeners who expect sparkle and dazzle from a cartridge will be disappointed in the Model XV-15/625E's relatively bland sound. To us, however, this is a sign that the cartridge is not significantly altering either the waveform or the frequency balanceof a record it is playing at the time.

Perhaps if one selected some especially difficult recording, it would be possible to find something the cartridge could not track. But among the various records we heard, the cartridge was always unstrained and thoroughly unflappable, even when operated at a 1 -gram tracking force Our conclusion, therefore, is that this moderately priced cartridge for today's market represents an excellent value for any purse.
cIRCLE NO. 81 DN free information card

Left and right response and crosstalk

SILTRONIX MOHAWK AM CB MOBILE TRANSCEIVER

Popularly priced. compact unit with frequenc'y synthesis.
 HE Siltronix Mohawk is a compact AM CB mobile transceiver, employing crystal frequency synthesis to provide operation on all 23 CB chan-
nels. Among its standard features are adjustable squelch, volume control with on/off switch, r-f gain control, switchable automatic noise limiter
(anl), S/r-f meter, PA operation, external-speaker jacks, full legal power, and detachable highimpedance dynamic microphone. The transceiver is designed to be operated from any nominal 12 -volt dc positiveor negative-ground mobile electrical
system. Built into its power supply are a line filter and reverse-polarity protection.
The transceiver measures $91 / 2^{\prime \prime} \mathrm{D} \times$ $61 / 2^{\prime \prime} \mathrm{W} \times 2^{7} / 16^{\prime \prime} \mathrm{H}(24.1 \times 16.5 \times 6.2 \mathrm{~cm})$. It retails for $\$ 169.95$.

General Description. The receiver section employs dual conversion with a first i-f of $10.000,10.010,10.020$, or 10.040 MHz , obtained by heterodyning the CB signal with one of six crystais in the $16.965-$ to $-17.215-\mathrm{MHz}$ range, depending on the channel selected. The first i-f signal is then converted to a $455-\mathrm{kHz}$ i-f by beating the first i-fsignal with one of four crystal frequencies in the $9.545-$ to $-9.585-\mathrm{MHz}$ range and using the difference frequency that results
nominal $17-\mathrm{MHz}$ synthesizer crystal frequencies and one of four crystal frequencies in the 10.000-to-10.040MHz range. The transmitter mixer for this purpose is a dual-gate FET, followed by a triple-tuned bandpass circuit for minimizing spurious output responses.

An unusual setup is that there is a buffer stage preceding the r - f section. The r-f section consists of predriver, driver, and power-amplifier stages The output section for matching to a 50 -ohm load consists of a multisection network that includes a TVI trap.

Another not often found arrangement is that the driver and poweramplifier stages are operated in a grounded-collector configuration and are both emitter modulated. Automa-

The receiver's grounded-base r-f stage is diode protected. The r-f gain control is a potentiometer that functions as a variable attenuator at the antenna input. Grounded-emitter transistors are used in the remaining stages that make up the receiver. There are two mixers, followed by a ceramic filter that feeds the two i-f stages. The filter provides the i-f bandpass and selectivity. R-f selectivity for good image and other unwanted-signal rejection, while maintaining a uniform bandpass over the $C B$ range, is ensured with a double-tuned antenna-input circuit.
A voltage-doubling detector and a series-gate anl precede the audio section that consists of three stages, including a class-B output section that is also used for PA operation and modulating the transmitter. Voltagedoubling diode rectifiers provide a high degree of agc. A single diode rectifier at the i-f output provides voltmeter action for the S meter. An amplified squelch is activated by a separate voltage-doubling agc-type setup.

The transmitter frequency is obtained by using the sum of one of the NOVEMBER 1976
tic modulation control (amc) is builtin. Antenna and other switching is accomplished with a relay.

Test Results. We measured the receiver sensitivity at $0.4 \mu \mathrm{~V}$ (rated $1 \mu \mathrm{~V}$) for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ at 30% modulation and 1000 Hz . Image rejection and i-f signal rejection were 72 and 80 $d B$, respectively. Other unwanted spurious-signal rejection was a minimum of 60 dB . Adjacent-channel rejection and desensitization measured 40 to 45 dB . The overall $6-\mathrm{dB}$ audio response was 300 to 3000 Hz . Audio output power with a $1000-\mathrm{Hz}$ sine-wave test signal at the onset of clipping was 2 watts at 8% THD into 8 ohms.

The squelch threshold sensitivity range was from 0.3 to $1000 \mu \mathrm{~V}$. The agc figure of merit exhibited only a $4-d B$ audio output change with an r-f input change of 80 dB at 1 to 10,000 $\mu \mathrm{V}$. The meter registered S9 with a nominal input signal of $100 \mu \mathrm{~V}$

With the transceiver operated in the receive mode from a 13.8 -volt dc source, the current drain was 0.2 to 1.5 ampere.

355 Ways

 ToSave On Instruments, Gitizens Band, BurglarAlarms, Automotive \& Hobby Electronics!The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance.

"Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send $50 ¢$ for fast first class mail service.

EICO-283 Malta Street,

Brooklyn, N.Y. 11207
Leadership in creative electronics since 1945.

Circle no 23 on free information caro

Using the same 13.8 -volt dc source, the transmitter carrier output measured 4 watts. (This was also the power indicated on the rig's r-f output meter, which is calibrated in actual watts when working into a 1:1 SWR.)

Raising the microphone inpt level 16 dB above that required for 50% modulation held the modulation to a sine wave at 100% modulation with 12% THD at 1000 Hz . Adjacentchannel splatter under this condition was 50 dB down. The mike gain with voice operation was quite high, resulting in greater than 16 dB of compression and a tendency toward clipping and negative-peak overmodulation. Nevertheless, the splatter still held to within 50 dB down.

User Comment. The selector control is a good size and easy to manipulate. The r-f gain, volume, and squelch controls are rather small, with a barlike grip to make it easy to "feel" or see their positions. The PA/CB and ANL on/OFF switches are miniature toggles types.

The pointer of the edgewisemounted meter is readily visible. A lamp illuminates the meter on transmit to provide an indication that the transmitter is live. Although the channel selector's numerals are quite small, they are easy to read under most conditions.

When operating the transceiver, the setting of the volume control is a bit critical, requiring only a slight ad-
vance for normal output volume. The S meter was very sensitive, moving about 25% upscale with r-f input signal level of nominally $1 \mu \mathrm{~V}$. The performance of the anl was most effective in the presence of low-level signals (less than $5 \mu \mathrm{~V}$), for which it is mostly needed. In this respect, noise attenuation could be improved even more by reducing the r-f gain while still maintaining an adequate signal level for good readability. This is also a good measure for reducing normal background noise since the overall gain of the receiver is quite high

There is no volume control for PA operation. The speaker, as usual, faces down.
circle no. 82 on fre information caro

SCHOBER THEATRE ORGAN KIT

Produces trine cincma-organ somind in a compact, carred step-board design

THE OLD cinema pipe organ, sometimes called a "theatre organ," never failed to entertain and intrigue listeners. The rich, wideranging sounds and special effects produced by those instruments are still available today in some electronic organs.

The Schober Theatre Organ kit is an example of the genre-in compact form. It can give an excellent impression of the exciting tones and special effects reminiscent of the original theatre pipe organ. Moreover, it suggests the pipe organ's appearance through a curved stop board that has 48 colorful, illuminated tongue tablets-including 35 voice stops with five pitch registers and eight percussion stops. The solid-state organ's two 61-note keyboards and 25 flat, radiating pedal claviers cover eight octaves of tone. There are also four couplers, three intensity settings of vibrato, pedal balance control, manual balance control, and percussion balance control.

The Theatre Organ is available as a
series of sub-kits. Kit No. ETC-1 consists of all the electronic sections that make up the organ ($\$ 849.50$). Kit No. BTC-1 includes all the special organ parts such as keyboards, stop tablets, swell shoe, and final-assembly materials $(\$ 907.50)$. Kit No. PTC-4 includes the pedal clavier assembly made up of a 25 -note, full-length pedal/switch assembly (\$199.50). Kit No. CTT-1, priced at $\$ 529.50$, includes the organ console and bench that must be assembled from precut and preshaped pieces of walnut and walnut-veneered lumber, plus all materials needed for furniture finishing. A considerable number of options are available. Included here are the percussion group kit, and a variable echo device Schober calls the "Reverbatape" kit.

The organ measures $50^{\prime \prime} \mathrm{H} \times 44^{\prime \prime} \mathrm{W} \times$ $41^{\prime \prime} \mathrm{D}(1.3 \times 1.1 \times 1.0 \mathrm{~m})$ with pedals. It weighs approximately 225 lb (102 kg).

Kit Assembly. According to Schober, the estimated assembly time for the organ is between 200 and 300 hours, which gives some idea of the complexity of the kit. We spent slightly more than 250 hours assembling our kit. In essence, this is a two-step kit: assembly of the electronic portion and assembly and finishing of the finefurniture cabinet. One must exercise patience in accomplishing both steps.

Each of the printed circuit boards that make up the kit comes in a separate package that contains all the components to be mounted on the board with assembly instructions.

The pc boards are well made. All component locations are clearly iden-
tified on the top sides of the boards, and in many cases the foil sides too. Sockets are provided for every transistor, numbering in the hundreds. All components appear to be of the highest quality.

The circuit-board assemblies are more densely packed that in most other kits we have assembled. Even so, the boards are easy to wire. Each board has rubber feet to facilitate proper mounting and spacing. External connections to the pc board assemblies are made via tubular terminals, each clearly identified.
Because of the interlocking nature of the many circuits that make up the organ, the only elements that can actually be tested after assembly are the power supply and the 12 tonegenerator boards. (The tone generators are stand-alone audio oscillators.) After checking that the power supply is delivering the proper output, each generator board is in turn connected to it; any type of audio amplifier is used to check for the various tone outputs. At this time, each board can be tuned to the correct frequency. Although the use of a frequency counter is suggested for the tuning procedure, it is not really needed because the coil/capacitor tuning elements come pretuned from the factory. If they need adjustment, only a minimum of "touching up" is required. In our kit, the tone oscillators were pretty much "on the nose" during testing.
At first glance, the various wood pieces look as though they are impossible to assemble into the finished organ console. In reality, however, the console goes together quite easily.

Each piece of wood is supplied carefully cut to size, drilled and shaped as required. Pieces exposed to view are either solid walnut or walnut veneer.

Lots of glue and screws are used in assembling the console. This results in a very rigid, durable structure. After assembling the main body of the console, one gets a pretty good idea of what the finished organ will look like and how much it weighs. We recommend that if you decide to build this organ, you assemble it in the same location where it will be used-it is that large and heavy.

Before the keyboards, stop-tablet horseshoe, pedal assembly, and electronics are installed, the exterior of the console must be finished. This involves the use of several grades of fine sandpaper, special stain and finishing compounds, and plenty of elbow grease. Once the console is sanded and stained, the first finish coat is applied. By this time, if care was exercised on the sanding and staining process, the console will reveal its fine-furniture qualities. (Schober supplies enough material for many finish coats, but leaves the number up to the builder.)

The 12 tone-generator assemblies fit into a small wooden "card cage" enclosure inside the console. The remaining board assemblies mount in various locations inside the console, each secured in place by its rubber feet. Then the keyboards mount in place, also with the aid of rubber feet.

Interconnections between the circuit-board assemblies, keyboards, power supply, and decoupling board are accomplished with lengths of color-coded hookup wire. It would have been nice if a wiring harness had been supplied, but we can understand the practicality and economy behind the decision not to provide one. In any event, interconnecting the various elements is not a difficult task. It is merely time-consuming.

The audio output of the organ is brought to a phono connector mounted on a small bracket on the back of the console. We connected the output to the aux input of a home hi-fi system, crossed our fingers, and turned on the power. The small lamps over the voice-switch stop tablets in the horseshoe came on and illuminated the colored tabs. We then depressed a couple of tablets for each keyboard, put a foot on the swell pedal, and depressed it slightly, and touched a few keys on the keyboards.

Happily, there was the full sound of a real theatre organ filling the room. Once we knew the organ was operating properly, all we had to do was adjust the various trimmer potentiometers in accordance with the detailed instructions.
With the organ working, we put together the curved-leg bench and assembled the pedal clavier kit. The 25 -note clavier kit keyboard is meant to be played with the toe of one foot, while the other foot is operating the swell shoe pedal. It contains 25 fulllength maple struts and sharps made from unbreakable black plastic. The pedal clavier assembly slides into a slot on the bottom of the organ and is screwed into place. This completes the assembly of the basic organ.
The optional percussion group produces the sounds of a celesta, chrysoglott (organ harp), orchestral bells that can also be played with reiteration, piano, harpsichord, xylophone, and mandolin. It consists of a number of almost identical pc boards that mount inside the organ console along the rear brace. The activating switches for the percussion group mount directly below the top keyboard.
A considerable amount of wiring is required to install the optional percussion group, but the organ would really be incomplete as a theatre instrument without it. Schober suggests using a separate audio amplifier for this option, which we did.
The other option built and installed in the organ was Schober's "Reverbatape," a form of modified endlessloop tape recorder that provides a variable echo.

User Comment. Assembling the Schober Theatre Organ kit is obviously a major undertaking. Although a knowledge of electronics is not really necessary to complete the project, time and patience are. However, once completed, one has a magnificentsounding musical instrument worth thousands of dollars more than the basic kit price. Moreover, the organ is a striking piece of furniture.
Although the organ is compact for its type, it does require more space than, say, a "spinet" organ. For example, its pedals, which are pivoted front and back, jut rather far out into the room. But the benefits of easier heel-and-toe playing are worth it if you have the space.

Most importantly, the "sound" of
this Theatre Organ is very impressive especially if you use good-quality audio equipment, which inciudes speaker systems with full, powerful bass response. This is truly a theatretype organ, with the number and types of voices needed for full musical appreciation of light music of all types. (It can also be used to play organ classics, of course, but the choice of voices was not made for playing mostly "church" music.)

The organ's vibrato sound is very satisfying, with ample adjustment of the range achieved through a potentiometer that changes the frequency of a phase-shift oscillator. With this system, vibrato does not operate on the pedals, unlike most commercial types of popularly priced electronic organs. This is as it should be, since low pedal notes sound terrible with tremolo added.
The instrument's four couplers, which add stops from one manual to another and change pitch registers,

SCHOBER THEATRE ORGAN voIces

Solo (upper manual):

Tibia 16'	Oboe 8^{\prime}
Cello 16^{\prime}	Diapason 8^{\prime}
Stentorphone 16^{\prime}	Brass Trumpet 8^{\prime}
Tuba Mirabilis 16^{\prime}	Violina 4^{\prime}
Viola d'Amore 8^{\prime}	Tibia 4'
Vox Humana 8^{\prime}	Tromba Clarion 4^{\prime}
Solo String 8^{\prime}	Piccolo 2'
Clarinet 8^{\prime}	Fifteenth 2'
Tibia 8^{\prime}	Flageolet 1^{\prime}
	Fife 1^{\prime}

Accompaniment (lower manual):
Tibia 16' Diapason 8°

Dulciana $8^{\prime} \quad$ Harmonic Tuba 8^{\prime} Vox Humana 8' Harmonic Flute 4^{\prime} Tibia 8^{\prime} Octave 4' Orchestral Strings 111

Couplers:

Solo to Solo 16'
Solo to Solo 4'
Solo Unison Off
Solo to Accompaniment 8^{\prime}

Pedal:

Dulciana 16' Tuba Profunda 16 Tibia ${ }^{16}$
Diaphone 16' Brass Flute 8' Tuba 8'

Percussion Group	(optional):
Celesta	Piano
Chrysoglott	Harpsichord
Orchestra Bells	Xylophone
Orchestra Bells	Mandolin
(reit)	

If you want a microcomputer with all of these standard features...

- 8080 MPU (The one with growing software support) - 1024 Byte ROM (With maximum capacity of 4K Bytes) - 1024 Byte RAM (With maximum capacity of 2 K Bytes)
- TTY Serial I/O - EIA Serial I/O - 3 parallel I/O's - ASCII/Baudot terminal compatibility with TTY machines or video units - Monitor having load, dump, display, insert and go functions

- Complete with card connectors - Comprehensive User's Manual, plus Intel 8080 User's Manual - Completely factory assembled and tested-not a kit
- Optional accessories: Key board/video display, audio display, audio
cassette modem interface, power supply, ROM programmer and attractive cabinetry ...plus more options to follow. The HAL MCEM-8080. \$375

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us ... and how far it can take you in your applications. That's why we'd like to send you our card-one PC board that we feel is the best-valued, most complete

microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessorbased terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp. Box 365, 807 E. Green Street, Urbana, Illinois 61801 Telephone (217) 367.7373

CIRCLE MO 3B ON FREE IMFORMATIOM CARO

BREADBOARD CAPACITY YOU'LL NEVEROUTGROW.

No matter how big (or small) your circuit design and testing needs, we have the answer; CSC's QT Sockets and Bus Strips.*The expandable, interlocking solderless breadboarding system that accommodates virtually all types of components with plug-in ease. Resistors. Transistors. DIP's. LED's. You name it. All instantly connect and reconnect without damage.

On your next project, save time, save money, save effort for as little as $\$ 3.00$ ** See your CSC dealer, or write for our catalog and distributor list. CONTNENTAL SPECIALIES CORPORAIION

EASY OOES IT

44 Kendall Street. Box 1942
New Haven. СT 06509 • 203-624-3103 TWX 710-465-1227
West Coast office: Box 7809 . San Francisco, CA
94119 • 415-421-8872 TWX. 910-372-7992

C 1976, Continental Specialties Corp
-U.S. Pat. No. D235.554
-"Manufacturer's suggested list. OT-7S. Prices and specifications subject to change without notice circle no to om free information caro

We are particularly pleased with the Percussion Group option. It provides eight special effects that give the feel and substance of the old cinema pipe organs (see box). The percussive "strike" is made when the key is pressed and the voice decays even if the key is held down. Thus, any other organ stops can be used when a key is held down. Two percussion voices-mandolin and xylophonerepeat constantly, while a separate orchestra bells reiteration tab is employed to repeat bells. Each voice represents the finest percussive simulation we have heard. For an authentic Theatre Organ sound, we would not be without this option.

Another option, Schober's Reverbatape unit in kit form, is an excellent means of achieving artificial reverberation. It uses a continuous loop of tape upon which a series of time-spaced repetitions of the program being played is recorded and reproduced in succession by three playback heads. Another head erases the material, and the cycle continues. A reverb control varies the time delay for a $60-\mathrm{dB}$ decay of 0 to 6 seconds. To appreciate the effect of this reverb unit in combination with the organ, you must play an electronic organ with a spring-type reverb device. The former produces a realism that genuinely simulates a large room or hall, while the latter, although an improvement at low volume levels (it "twangs" at high volume levels) does not really fool the listener. But beware! Once you hear the Reverbatape unit, you will never again be satisfied without it.

There are other options available from Schober that we have not tried. For example, a proficient organist would probably wish to add Combination Action, an electro-pneumatic system of 10 buttons that can preset stop tablets and a cancel button to turn all present stops off. Less competent players could well add a rhythm assembly to imitate bongos, cymbals, snare drums, etc., and possibly an automatic rhythm device to provide a myriad of rhythms.

To fully appreciate the Schober Theatre Organ's potential, the audio gear used should be top notch, with at least 20 watts rms per channel power amplifiers for relatively highefficiency speaker systems. Be sure, however, that your woofers can handle sustained $32-\mathrm{Hz}$ tones without burning out.
circle mo. b3 om free mpormatiom caro

Solid State

RARA AVIS

N CASE you've forgotten your high school Latin (or didn't study it), the title of this column, loosely translated, means "rare bird." And that's exactly what we're going to discuss this month-some of the "rare birds" among semiconductor devices. Not rare in the sense of availability, for most may be obtained through the larger industrial and better-stocked mail order distributors, but in terms of familiarity among hobbyists and experimenters.
n-channel JFET's with on-chip metallization to provide the source-gate short and a nominal pinch-off of six volts. Depending on type, current ratings range from 0.22 mA to 4.23 mA .

A sampling of constant-current diode applications is given in Fig. 2. Perhaps the simplest and most obvious is the constant current power supply, Fig. 2A. Here, the prime dc power source, whether batteries or a line operated

Offered by several manufacturers, including Teledyne Crystalonics (147 Sherman St.. Cambridge, MA 02140), the constant current diode is identified by a special schematic symbol as shown in Fig. 1. It is essentially a field effect transistor (FET) with an internal connection between its source and gate electrodes. Some firms refer to the device as a "current regulator diode." Regardless of its name, however, the internal short maintains a gate-to-source voltage of zero, causing the device to act as a high-impedance, constant-current source when operated at drain voltages higher than its pinch-off rating. Typical units are types 1N5283 through 1N5314, all of which are basically
power supply, is set for a voltage greater than pinch-off (i.e., 6 volts for the types listed above). Under these conditions, the load current will remain essentially constant at the value set by the diode regardless of variations in load impedance. The device also can serve as a constantcurrent bias source for bipolar transistors, FET amplifiers, FET emitter followers, and differential amplifiers, as shown in Fig. 2B

For a change of pace, connect a pair of the devices back-to-back, add shunt back-to-back zener diodes, and you have a simple, but effective, square-wave generator or clipper, as shown in Fig. 2C. Due to the current limiting

Fig. 4. Photu-Darlington applications. No and NC relays.
action of diodes D1 and D2, this circuit provides an output waveform with a flatter top and less crossover distortion than the more conventional resistor-zener clipper. What's more, with a lower power dissipation, it's also a more efficient circuit. For optimum performance, the squarewave clipper should be driven with a signal several times larger than the zener diodes' voltage rating. Replace the zeners with a capacitor, and the circuit becomes a triangular wave shaper, as in Fig. 2D. Triangular output signals will be produced with either sine- or square-wave inputs, but the latter will provide a cleaner output waveform at zero crossover. The circuit's output amplitude is directly proportional to the diode current and the time period of a half-cycle is inversely proportional to the value of the shunt capacitor.
the LED, illuminating the photo-Darlington, the latter starts conducting. This allows the diode bridge to conduct and apply voltage through the SBS to the triac's gate, switching this device On and permitting current flow through the load. In the normally closed circuit, Fig. 4B, the action is reversed. Here, the diode bridge is between the SBS's voltage source and circuit "ground." With the photoDarlington dark and in a nonconducting state, the bridge also acts as a high impedance, allowing full drive voltage to be applied to the triac's gate through the SBS, thus holding the triac On and permitting current flow through the load. When the photo-Darlington is illuminated, however, it and, of course, the bridge shift to a low-impedance state, dropping the SBS's source voltage across the 51 k series resistor and reducing the triac's gate drive below the level

Frig. .i. Eiquiralent sehermetir (A) "ud (1in commertions (B) fior L.L.K.si.

The photo-Darlington in another of our rare birds. Comprising photosensitive and amplifier transistors in a single package, (Fig. 3), the device behaves as if it were a single, but highly sensitive, phototransistor. It is capable of detecting changes in light levels as well as the absolute presence or absence of light. Photodarlingtons can be used in virtually all types of light-controlled systems and serve as rate sensors, frictionless potentiometers, smoke detectors, thickness gauges (for translucent materials), modulated-light-beam detectors, and sound-on-film detectors.

With suitable support circuitry, photo-Darlingtons can be used in solid-state relays, choppers, intruder alarms, card and tape readers, door openers, liquid level indicators and controls, safety interlocks, vehicle light controls, and various types of test equipment. Typical units are GE types 2N5777 through 2N5780, with V_{1} e:, ratings of 25 and 40 volts and minimum $h_{\text {t }}$ (gain) specifications of 2500 and 5000 , depending on type.

Two of the photo-Darlington's many possible applications are shown in Fig. 4-normally open (A) and normally closed (B) ac line-operated solid-state relays. Both circuits employ medium-current (10 A) triacs in conjunction with silicon bilateral switches (SBS). In each, the photoDarlington is activated by a LED source to provide full line isolation.

In Fig. 4A, the photo-Darlington is connected across a diode bridge between the ac source and the SBS serving to trigger the triac. When the photodarlington is dark, it acts as a high impedance, preventing conduction through the bridge circuit and, therefore, the application of gate drive voltage through the SBS. The triac, then, remains in a nonconducting state. When a control current is applied to
needed to maintain conduction. When this happens, the triac switches to a high-impedance or Off condition, blocking load current. In either of the light-controlled ac power switching circuits, the load can be a solenoid, lamp, heater, or other device, as long as the triac's maximum ratings are observed.

Although not "rare" in the same sense as the constant current diode and photo-Darlington, the LM387 dual preamplifier probably is not as familiar to most experimenters as are such devices as the 741 op amp or 555 timer, yet

Fiol. i. Applicutions far thr L.M.ssi preatmplifier.
it can be just as useful in quite a variety of projects. Manufactured by the Signetics Corporation (811 East Arques Ave., Sunnyvale, CA 94086), the LM387 is a low-noise device comprising some thirty transistors, four zeners, and six diodes in an 8-pin mini-DIP. Half of these are used in each of the independent preamp circuits, as shown by the equivalent single-channel schematic diagram, Fig. 5A. Actual lead connections are identified in Fig. 5B. The device features an internal power supply decoupler-regulator which provides 110 dB power supply rejection and 60 dB channel separation. In addition, it offers an open-loop gain of 104 dB , a noise level of only $0.8 \mu \mathrm{~V}$, an output voltage swing within 2 V of the dc source, and unity gain bandwidth of 15 MHz . With internal short circuit protection, the unit can dissipate up to 500 mW , and can be operated on single-ended dc supplies from 9 to 40 volts. It is internally compensated for all gains above 10 , offers an input resistance of 100,000 ohms (or more), an output resistance of only 150 ohms , and a THD at 75 dB gain of only 0.1%.

Four of the LM387's many possible applications are illustrated in Fig. 6. A magnetic phono preamplifier is shown in Fig. 6A, a multi-channel audio mixer in Fig. 6B, a two-pole fast-turn-on NAB tape preamplifier in Fig. 6C, and a tape playback preamplifier in Fig. 6D. Only one channel is shown in each schematic, although both sets of input and output lead connections are identified. In addition to the suggested circuits, the LM387 can be used in the audio sections of radio transmitters and receivers, in TV sets, in intercoms, in hearing aids, in PA systems, and in many types of test instruments.

Chances are you have at least a nodding acquaintance with operational amplifiers, but how about power op amps-those with outputs specified at multiwatt rather than milliwatt levels? Such devices are offered by a number of manufacturers. Regardless of manufacturer or specific type, most of these share certain common characteristics. Most of them are hybrid rather than monolithic IC's, have comparatively limited bandwidth (though more than adequate for general audio applications), require heat sinks to realize their full output potentials, and are relatively expensive, although not overly so when compared to the cost of assembling an amplifier with comparable power output using discrete devices. The $833-21 \mathrm{C}$ is a typical unit. Manufactured by Beckman Instruments, Inc. (2500 Harbor Boulevard, Fullerton, CA 92634), the device can deliver output currents in excess of $\pm 1 \mathrm{~A}$ when operated on $\mathrm{a} \pm 12-\mathrm{V}$ dc power source. With an open-loop gain of 100 dB , a full power bandwidth of 15 kHz , and a typical input impedance of 1 megohm, the 833-21C requires only one external compensation capacitor and two currentlimiting resistors for proper operation. A hybrid device comprising a small-signal monolithic op amp and a complementary-symmetry power output stage using chip transistors, the unit is supplied in an 8-pin TO-3 package and is, therefore, no larger physically than a conventional power transistor.

Reader's Circuits. Indicating that he would welcome pen pals, one of our overseas readers, Ulf Nordquist (Frejas Väg 34, 24021 Löddeköpinge, Sweden), contributed the circuits shown in Figs. 7 and 8. Ulf has specified standard American devices in his designs, implying that these must be readily available in Europe. In Fig. 7, a 555 timer (/C1) is used as the basis for an electronic "coin flipper" featuring red (LED1) and green (LED2) visual readouts.

With a Greenlee Chassis Punch you can punch clean, true holes in seconds. Round, square, key or D. In 16-ga. metal, hard rubber, plastic or epoxy. Available at radio and electronics parts dealers. Write for catalog E-730. Greenlee Tool Co, Rockford, III. 61101.

GREENLEE TOOL CO

a subsidiary of
Ex-Cell-O Corporation
CIRCLE no. 37 on free information caro

1702A MANUAL EPROM PROGRAMMER

Features hex keypad, two digit hex address and two digit hex data display. Controls include load, clear, go! (step), key/copy, data in/ data out, and counter up/ down. Profile card includes high voltage pulse regulator,
 timing, 8 bit address and 8 bit data drivers $/$ receivers. Two $61 / 2^{\prime \prime} \times 9^{\prime \prime}$ stacked cards with spacers. Allows programming in 20 minutes - copying in 5 minutes. Requires $+5,-9$, and +80 volts.
ASSEMBLED
$\$ 299.95$
KIT .
$\$ 189.95$

NOW

The best of two worlds . . . use our 1702 EPROM programmer as a manual data/address entry programmer . . . or connect it to your processor.
IMSAI/ALTAIR computer interface (requires 3 output ports, +1 input port) and software
. . $\$ 49.95$
Briefcase unit with power supplies and interface connectors (assembled and tested only) \$599.95

ANNOUNCING

Our NEW 16 K Byte Pseudo-Static, IMSAI/ALTAIR compatible RAM. Single card slot. Uses less power than equivalent low power RAM. All memory chips socketed. Uses all prime, factory fresh ICs. High quality, two-sided, through-holeplated circuit board. Crystal controlled, totally invisible refresh system requires NO software management. Just plug it in and use like STATIC memory.
Complete kit .
$\$ 349.95$
Assembled, tested, and burned in
$\$ 549.95$
ASSOCIATED ELECTRONICS
12444 Lambert Circle • Garden Grove, CA 92641 (714) 539-0735

Whether you're rolling in a convoy or copying the mail from your home twenty, you get a four roger every time with Black Cat ${ }^{+8}$ CB accessories from Wawasee Electronics. So if you've got your ears up copy the following list of rugged accessories:

- Antenna Whip
- JB 700 Mobile Antennas
- Trunk Lid Antenna Mount
- West Coast Antenna Mount
- 3-Ft. Jumper Cable
- 20-Ft. Jumper Cable
- Co-Phase Harness
- JB 1000 Dummy Load
- JB 1000 SM Oscilloscope / RF Wattmeter / SWR Bridge
- JB 2000 SW Power Meter / SWR

For a complete listing of all Black Cat ${ }^{\circ} \mathrm{CB}$ accessories and dealers, drop us a line and we'll get right back to you.

-2cer

WAWASEE ELECTRONICS
"HOME OF BLACK CAT* PRODUCTS" Wawasee Electronics Co., Inc.
P.O. Box 36 - Syracuse, Indiana 46567 Phone: (219) 457-3191

With power on, the circuit is operated simply by touching a small metallic plate. In addition to the 555 and the two standard LED's, all that is required for assembly is four half-watt resistors, two small ceramic or plastic film capacitors, a spst switch (S1), a 9-to-15 volt battery (B1), a small touch plate (about 1 cm on each side), and, of course. wire, solder, a suitable case, and mounting hardware Component values are not overly critical and, if desired, $1-k$ resistors can be substituted for the 470 -ohm units specified for R1 and R2 to reduce battery current drain

Fig. i. Electronic coin flipper is oplerated byg twaching mertellic phate.

Ulf's second circuit, Fig. 8, is an alternate LED flasher featuring a standard 7400 quad NAND gate IC. Here, a 5 -volt dc power source is required and a large electrolytic feedback capacitor is employed to achieve a low flashing rate. According to Ulf, the value specified in Fig. 8 establishes a flashing rate of about 1 Hz . This rate may be increased by using a lower value or decreased (made slower) by using a higher value capacitor for C1.

Fig. s. Flushing rate of LEOI (cirait is determinced b! colue of larye capacito:

Device/Product News. Working with Tate Audio, Ltd. (4324 Promenade Way, Suite 311, Marina del Rey. CA 90291), the National Semiconductor Corp. (2900 Semiconductor Drive, Santa Clara, CA 95051) has developed a group of integrated circuits which will accurately separate and reproduce "quadraphonic" fourchannel audio programs from phonograph records and tape cassettes. Designed to decode SQ ${ }^{\text {TM }}$ (CBS) type programs, the Tate/National system employs three different IC's and is said to provide separation of channels in any direction approaching 40 dB from 20 Hz to 30 kHz while maintaining a signal-to-noise ratio of 70 dB and a THD of 0.05 percent.

Three"power mike"

"Power mikes?" you say, "but two of them look like headsets." And you're right! And if you're a seasconed CBer
ready to move up, take a second look at the aviation-type Telex CB-88 power-mike headset. Your CB listening is private; lets others around you visit, relax or sleep without a blaring speaker. You hear better and transmit better. Weighs less than 3 oz . Uniquely, you can wear it without the headband by attaching it to your eyeglasses (adapter included). Check out the CB-1200, especially right for high-noise environments, and the aviation-inspired Double-Header power mike. Then move up to Telex, the quality standard of the aviation communications industry, now producing the most powerful CB gift ideas around. Arid if you want to drop a loud-and-clear hint, just tear out this ad and leave it where your gift-giver will find it ... or take it to your Telex CB dealer for a gift-idea demonstration.

Built-in variable gain power amplifier.

By Ray Newhall, KWI6010

40-CHANNEL EXPANSION AND PURAC II

THE LATEST FCC rule-making decision adds 17 new AM/SSB channels to the existing 23, effective January 1, 1977. Thus, the new frequency band for Class D CB will extend from 26.965 to 27.410 MHz , a bandwidth of 445 kHz .

The FCC has decided that no manufacturer should have a headstart in placing 40-channel units on the market. Consequently, all manufacturers will have an opportunity to present 40-channel CB transceivers for type acceptance by the FCC between Sept. 10 and Nov. 1, 1976. The FCC indicates that any transceivers received during this period that are accepted will get the go-ahead for selling Jan. 1, 1977. After Nov. 1, it will be the first come. first served. However, there is a debate concerning to whom these new units can be sold. The FCC appears to mean selling to distributors, while some manufacturers feel that the date restriction should apply to consumers, not distributors or dealers. Consequently, that first batch of 40 -channel CB models may not see the light of dealers' shelves too quickly.

It will likely be many months after Jan. 1, 1977 before extended-channel rigs start crowding out 23-channel ones in dealers' showcases. Indications are that 40 -channel units will probably be in short supply until next summer. Furthermore, the new rigs (mobile) are expected to sell for about $\$ 20$ to $\$ 40$ more than the 23 -channel transceivers. That's on the basis of a suggested selling price. In the marketplace, however, prices of 23-channel rigs will undoubtedly be reduced. So you will do well to pick up some 23-channel units at bargain prices before the end of 1976.

Led by Pathcom and Hy-Gain, a growing number of CB radio manufacturers have announced that anyone buying one of their phase-locked loop (PLL) types of transceivers will be able to have it "re-manufactured" so that frequencies can be extended to 40
channels and interference radiation can meet new FCC requirements. Cost of the re-manufacturing ranges from up to 20% " of the unit's original suggested selling price to a flat $\$ 25$ or $\$ 30$, depending on the manufacturer.

Other Changes. FCC Docket 20120 made several other changes to the FCC Rules, also. For example, it will no longer refer to channels by number, specifying them, rather, by frequency only. Note that two of the new frequencies will be added between present channels 22 and 23 , while channels 26 through 40 (15 channels) will be added at $10-\mathrm{kHz}$ intervals above channel 23. However, the EIA has suggested an industry standard that will doubtlessly be adopted-to have the frequencies numbered as consecutive channels, with the new frequencies numbered 24 through 40. The two out-of-order frequencies would be channels 24 and 25 , with internal changes that won't be apparent to users.
Other revisions are as follows:

- Channel 11 has been released for general communications, leaving channel 9 the only one of the 40 channels reserved for specific use (emergency and mobile assistance). Technical specifications for typeacceptance have been tightened, requiring that harmonic radiation be suppressed at least 60 dB below the base frequency, with the stipulation that the CB operator is responsible for reducing harmonic radiation even further by the use of external low-pass filters where specific TVI complaints have been filed against him. The Docket makes it evident to the manufacturers that even more stringent standards will be imposed in the near future.
- As of January 1, 1977, all new rigs must be engraved with a permanent serial number. The Commission also urges all users to engrave their own personal identification numbers into
the equipment, as well, to reduce the saleability of stolen equipment.
- A copy of Part 95, as well as Forms 505 and $555-$ B, must be shipped with all new rigs.

The PURAC Meeting. The second general meeting of the Personal Use Advisory Committee (PURAC) was held last July at the FCC Laboratory Facility at Guilford, Maryland. The PURAC group consists of leaders of user groups, CB journalists, and companies that have a vital interest in CB. These people volunteer their time and their organizations' facilities to develop joint recommendations to guide the FCC in future rule-making for the Citizen's Radio Service.

Many of the new FCC Rules were in accordance with earlier PURAC recommendations, and much of the business of this PURAC meeting dealt with interpretations of new regulations. Some highlights follow:

Local Interference. Task coordinator, Richard E. Horner, President of E.F. Johnson Co., and his subcommittee leaders presented a dramatic picture of the interference problems being created by the proliferation of $C B$ transceivers. These problems are real, devastating and on an uncontrollable increase. The primary effects of local interference are felt on TV channels 2, 5 and 6, and also on unshielded solid-state audio equipment.

Causes of local interference are numerous. Some are caused by insufficient harmonic suppression, while others are caused by excessive spurious emmissions from CB receiver sections. However, the biggest interference problems result from insufficient filtering incorporated into commercial entertainment equipment. It is evident that interference problems must be attacked on two fronts: the technical specifications for CB equipment must be tightened considerably (even though tighter specs will result in higher prices), and TV and audio equipment manufacturers must be required to include adequate filtering and shielding in their equipment in order to exclude unwanted harmonics and spurious interference.
Information Dissemination. There are actually three subcommittees studying the problems of information, education and training. One of the least understood informational problems deals directly with interference. Both the CB public and the general
public must be made aware of the causes of interference and actions which can be taken to prevent it. TV service technicians must also be educated to recognize the various types of TVI, and know the cures for each. At least one group of TV stations has agreed to produce educational TV programming to acquaint TV viewers with the problems of TVI.

Personal Use Radio Needs. This 'blue-sky" subcommittee is charged with examining the future needs of the public for personal radio communications. It is headed-up by Ted Andros. Executive Vice President of Hy-Gain Electronics. Ted has recruited $C B$ notables such as Dave Thompson, President of SBE, to work with him on this important project. He plans to enlist the aid of psychologists, sociologists and economists to predict the future course of personal radio communications. His subcommittee may have a major effect on the future course of $C B$ radio. He asks the logical question, "Why should the general public, in this day of personal mobility, be tied to the end of a telephone line?'

Personal Observations. While at
the Guilford Laboratory, I spent some time checking out rumors regarding the extent of FCC activities. One such rumor suggested strongly that the Commission has not adhered strictly to its own type-acceptance policies. I believe that if type acceptance is to succeed, it must be stringently controlled. Because CB is a nontechnical service the CB'er must place his trust in the manufacturer's advertised specs and its compliance with typeacceptance requirements. I feel that type-acceptance testing must extend to random sampling of production models as well as pre-production prototype examination. The manufacturer must share some of the blame if type-accepted rigs fail to meet FCC performance specifications, unless it can be proved that the rig has been tampered with.

I questioned Milton Mobley, Chief Engineer at the FCC Laboratory, on this subject. He assured me that he, personally, had conducted typeacceptance tests on all submitted samples since April, 1976, and that every model receiving a typeacceptance certificate had earned it by passing all aspects of these tests. He would not comment on type-
acceptance testing procedures in effect before that date, even though the regulation has been in effect since 1974. Mr. Mobley concedes that it has not been FCC practice to retest production samples unless complaints had been filed. But he explains that testing will be automated in the near future and that production modets will be sampled at that time. We certainly hope so.

Congressmen, Please Note. We are all aware that the FCC is "taking in" about \$2,000,000 each month in new CB licensing fees. Many of us are not aware that these fees go directly into the U.S. Treasury, not to the FCC. The Commission continually blames many of its short-falls upon the lack of budgeting to cope with the $C B$ problem.

It is about time that Congress recognized the Citizen's Band as a new national force which encompasses from 5% to 10% of all Americans, and growing fast. The FCC must be budgeted to accommodate the growth of CB, and should certainly receive a lion's share of its own proceeds allocated for use to administer the Citizen's Band

Get More from Your Car with a Mark 10 System.

The best-selling CDI system of its kind in the world-now at discount prices!
Would you like more power? Better mileage? And could you stand to eliminate 3 out of 4 of those expensive tune-ups? Well, that's what the MARK 10 capacitive discharge electronic ignition system is all about. Very simply, it boosts the spark to your enginepromoting better combustion, and minimizing combustion contaminants. Spark plug life is extended, all-weather starts are insured, and you can feel an increase in acceleration and overall engine performance-no matter what kind of car you drive. Learn more about a MARK 10 CDI system for your car (and take advantage of year-end discount prices), when you write today for a catalog and price list.

\qquad

CHANGE IN THE AIR

REALLOCATION of the radio spectrum, on an international basis, is long overdue. Despite some adjustments, the frequency ranges allocated at the World Administrative Radio Conference in Atlantic City in 1947 have remained essentially the same ever since. Many of the developments in radio communications which have taken place in the last few years were not foreseen at that time.
Consider, for instance, the advent of satellite communications, which require a lot of space in the spectrum at super-high-frequencies and reduce the need for some high-frequency circuits. Other factors include the growth of CB in the USA, the prolonged trough in the sunspot cycle, and in-
formed speculation that subsequent peaks in the cycle will not attain previous levels. (The latter means there will be less need for the higher part of the hf spectrum and more need for the already overcrowded lower part.

Groundwork for the 1979 WARC conference has been underway for several years. Each administration wants to have its position solidified, in time for the multi-national negotiations, where third-world nations are expected to hold the balance of power.

To arrive at the U.S. position, the FCC has been sponsoring meetings in Washington of various interest groups. International broadcasting is but one of the subject areas of these
meetings. Representatives of FCClicensed hf broadcasters, listeners groups such as the North American Shortwave Association and the Association of North American Radio Clubs, and interested individuals have worked toward formulating U.S. policy. At this writing, some proposals have been made, but are not formally adopted. The FCC will have the final say, after several more meetings. However, it is not too soon to discuss some of the initial ideas.

Satellite communications are so superior, both in capacity and quality, to hf point-to-point links, that the latter seems destined to be used mainly as backup, and for contacting the few spots on the globe still without earth stations. This means that a very large fraction of the hf spectrum, presently allocated to international fixed public service (point to point) is no longer needed for that purpose.

International broadcasting, next to CB, suffers most from overcrowded bands. Much of this is the broadcasters' fault because they use more power and more frequencies than are necessary. It's a vicious cycle. Radio Nederland's Jim Vastenhoud pointed out at a meeting of the European DX

Council last May that there were about 600 shortwave transmitters in the world with 250 kW or more of power. And many more were being installed, especially in China and the Middle East. Yet there are at present only about 400 channels available on the hf bands, and many of these in the 21 and $25-\mathrm{MHz}$ bands are of little use during the sunspot trough.

There is no prospect that nations will voluntarily cut back their broadcasting to alleviate the present average level of three mutually interfering transmissions at once on each channel. So the solution is to expand the broadcasting bands into regions presently occupied by IFPS.

Out of Band. Band limits cannot be enforced (though one imaginative layman suggested jamming as a means of enforcement). Manystations already operate outside the allocated broadcasting bands. Some have historical precedent on their side-using frequencies that were theirs before the 1947 limits were established. Others have taken up $O O B$ (out of band) broadcasting more recently. as a strategy to escape in-band congestion.

Until this year Voice of America broadcast strictly in-band while employing more and more PTP channeis OOB. Some of the iatter are independent sideband (ISB). with different programs on each side: others are compatible single sideband (CSSB). Domestic in-band transmitters themselves are considered by the VOA to be feeders for relay. with the exception of some broadcasts to Oceania and Latin America.
Last summer, VOA decided to make use of a loophole in ITU regulations (which the U.S. adheres to though it is not forced to) allowing OOB broadcastirig, as long as no interference is caused to the primary service on a given frequency. The VOA relay in Liberia began using 12000 kHz . which is 25 kHz above the nominal limit of the $11-\mathrm{MHz}$ band. There could hardly be any PTP complaints, as the frequency was already used by Radio Moscow' This new VOA policy lessens its competitive disadvantage against Radio Moscow, which has always felt free to use any channel it pleases.

Though there is no sign that Radio Moscow is giving up OOB , a number of Soviet regional stations have begun a minor counter-trend toward in-band
broadcasting. Alma Ata on 9380 and 10.530 and Magadan on 12.240 kHz recently vacated those longestablished frequencies far OOB.
The bands have already been widened. de facto. But the proposal is to make it de jure. If this is done. all countries will feel free to use the new frequencies, not just those bold anes leading the way. Before long, the congestion would also expand. (though. we hope at a reduced level). The international Broadcasting Service Group proposes the following band expansion, to be used worldwide. (At present. one of the problems is usage of certain bands in certain regions only.)

Present kHz	Proposed kHz
$3900-4000$	$3900-4060$
none	$4450-4650$
$5950-6200$	$5740-6200$
$7100-7300$	$7300-7700$
$9500-9775$	$9400-9900$
$11700-11975$	$11500-12000$
none	$13600-14000$
$15100-15450$	$15050-15700$
$17700-17900$	$17500-13000$
$21450-21750$	$21450-21850$
$25600-26100$	no change

DVM36 \$148
$31 / 2$ digit LED display, $.5 \%$ DCV accuracy. battery or AC operated

DVM32 $\$ 198$
$31 / 2$ digit LED display, $.5 \% \mathrm{DCV}$ accuracy. battery or AC operated with automatic battery saver

$31 / 2$ digit LED display, $.1 \%$ DCV accuracy,
$A C$ operated, auto-ranging, auto-zero, king size pushbuttons

园\# BATTERY SAVING FEATURES WHEN INSTRUMENT IS NOT IN USE so you can be sure that your meter will be feady the next time you need it. Push the button on the probe on the DVM35 and DVM36 and only then do you start drawing cur rent from your battery. An automatic patented circuit does the same job for you automatically when you apply voltage to the DVM32. The DVM38 is AC operated.

E 10 DAY FREE TRIAL to be sure that Sencore digitals are all that we say they are. Simply march into your Sencore distributor and ask for a free trial or pay cash with a promise of a 10 day money back guarantee, if not 100% satisfied. Or, write Sencore, and we will see that our distributor contacts you.

[国 100% MADE RIGHT LIFETIME GUARANTEE
so you can be sure your meter was made right. If at any time you discover that a Sencore DVM was not made right, Sencore will make it right, parts and labor free of charge, for the lifetime of the product

Plus other "make sure" features such as - direct reading with no paralax error no effect from magnetic fields such as motors \& RF fields - lab accuracy with high resolution - auto-polarity auto zeroing and autoranging on the DVM38 ... and you can see why you can be sure more times, in more circuits, than with any other multimeter on the market today - and for less money tham old fashioned analog meters.

The "gif́tbook" ol is in the

and if you aren't already on our customer mailing lis
The Heathkit Christmas Catalog is off the press, and that's good news for gift-givers, kitbuilders and everyone else, too. It's brim-full of the latest electronic products in easy-to-build kit form. Everything from lamp dimmers to color TV's, nearly 400 great gift ideas. Gifts for homeowners, businessmen and people interested in electronics, sports, fishing,

electronics mail

10w's the time to send for your copy
amateur radio-gifts for anyone you can think of. And giving a Heathkit product is the way to make someone really happy this Christmas. They're interesting and fun-to-build. They give pride and satisfaction along with great performance. So send the coupon today and get your FREE copy of the Heathkit "giftbook". It will help you have a happier holiday, too.

THE NEW HEATHKIT CHRISTMAS CAIALOG

World's largest selection of easy-io-build electronic kits-stereo components, color TV, test equipment, Amateur Radio, digital clocks and weather instruments; marine, aircraft and auto accessories, nearly 400 kits in all. Plus special buys on CB radios and antennas, and many special sale and bonus offers just in time for the holidays. Send coupon for your copy today. It's

(heck (-) books you are ordering, and see below. \square GRANTHAMS F.C.C. LICENSE STUI)Y GUIDE. Includes 1475 FCC-type multiple-choice practice questions. cosering all subjects (technical and non-technical), with ansuers and discussions, for 3 rd, 2 nd, and lst class commercial radiotelephone license exams. Four information sections. 192 illustrations. $7 \times 101 / 2,377$ pages. © $1975 . \$ 9.95$ \square INTROIOUCTORY FLECTRICITY WIIH MATHFMACICS. For beginners (and for technicians who need a better understanding of "the basies"). Includes circuit diagrams, practice probIems with answers. multiple-choice examinations. Written tor self-study. 169 illustrations. $7 \times 101 / 2$. 288 pages. © 1975.
$\$ 9.95$
\square FUNIAMENTAI, PROPERIIFS OF AC CIRCUITS. Continues where Introductory Electricit! With Mathemanics (listed above) leaves off. Same format. 215 illustrations. Written for selfstudy. $7 \times 101 / 2.267$ pages. ${ }^{\varepsilon} \cdot 1976$.
$\$ 9.95$ \square MATIIEMATICS FOR BASIC CIRCUIT ANAI.YSIS. Continues where Fundamental Properties of A(C' Circuits (listed above) leaves off Same format. I04 illustrations. " 1976.
\square GEOMEIRY FOR SCIENCE ANI) IFCHNOI.OGY. Covers hasic and analytic geometry. as needed by science and technology students at the community college level. Mans illustrations. Practice prohlems with answers. Multiple-choice examinations. $7 \times 10 \%$. 141 pages. 1976 . $\$ 4.25$

Wheck the books you are ordering, complete the form below, clip ad and mail with your payment to:

GSE BOOKS

2000 Stoner Ave., Los Angeles, CA 90025
Please send the book(s) I have checked above. The price of the book(s) is \$_. and I am sending 75 c extra to eover postage and handling of my complete order. Thus. I am enclosing a total of $\$$
Name
Address
City tate __Zip PE-76

4:15-5:00 p.m. 4:30-5:00 p.m. 4:30.5:50 p.m. 5:00-5:15 p.m. 5:00-5:30 p.m. 5:00-6:15 p.m. 5:00-7:30 p.m. 5:00-10:30 p.m. 5:30-6:00 p.m.

5:30-6:20 p.m. 5:50-6:10 p.m. 2250-2310 6:00-6:30 p.m.

2250-2310
2300-2330
1000-1100 $1100 \cdot 1125$ $1100 \cdot 1230$ 1100-1300 $1100 \cdot 1400$
1105-1225
1115-1215 $1130 \cdot 1400$

1200-1230
1200-1255 1210-1230 1215-1230 1215-1630 1230.1330 1230.1400
6) 1300-1330 8:15-8:45 a.m. $\quad 1315 \cdot 1345$ 8:30 a.m. $3: 00 \mathrm{p} . \mathrm{m}$. 8:30-9:00 a.m. 1330.2000 1330.1400 1400-1430

9:00 a.m.7:00 p.m. 1400-2400 10:00-11:15 a.m. $1500-1615$ 10:15-10:30 a.m. 1515-1530 11:00-11:30 a.m. 1600-1630 11:00 a.m. 12:09 p.m. 1600-1709 12 noon-3:00 p.m. 1700-2000 12:04-12:56 p.m. 1704-1756
1:00-1:57 p.m. 1:45-3:00 p.m. 2:00-3:00 p.m. 2:00.5:00 p.m. 2:45-5:30 p.m. 3:00-3:30 p.m.

3:00-4:00 p.m. 3:00-4:15 p.m. 3:00-4:20 p.m. 3:45-4:15 p.m. 3:50-4:50 p.m. 4:00-4:45 p.m. 4:00-4:50 p.m. 4:00-5:00 p.m. 2115.2200 2130-2200 2130-2250 2200-2215 2200-2230 $2200 \cdot 2315$ 2200-0030 2200-0330 2230-2300
$2230-2320$

Tirana, Albania

 Melbourne, Australia${ }^{* *}$ VOA, Washington, USATrans-World Radio, Bonaire, N.A.
Montreal, Canada
**Montreal, Canada (Northern Service) Jerusalem, Israel Peking, China ${ }^{* *}$ *antiago, Chile Athens, Greece HCJB, Quinto, Ecuador Londen, England Trans-World Radio, Bonaire, N.A.
**Bucharest, Rumania
Bene, Switzerland
**London, England
Helsinki, Finland
Oslo, Norway
Stockholm, Sweden
**Montreal, Canada
(Northern Serv̂ice)
London, England
Athens, Greece
Osto, Norway
London, England"
**Kuwait, Kuwait
**Paris, France

G
G
G
G
G
G
G
G
F
G
G
F
G
G
F
F
F
F
F
G
F
G
F
F
G
F
G
G
G
G
G
G
F
F
G
F
G
G
G
G

[^1]QUAL* FREQUENCIES, MHz

6:30.7:00 p.m.	2330-2400	Moscow, U.S.S.R.	G	4.86, 5.94, 6.02, 6.02, 6.045, 7.105, $7.115,7.157 .205,7.235,7.355,9.635$, 9.79, 9.80, 12.05, 15.14, 15.18, 15.45, 17.72
6:45-7:00 p.m.	2345.2400	**Voice of Drg. of American States, Washington, USA	G	$6.13,9.64,11.74$
6:45.7:45 p.m.	23450045	Tokyo, Japan	F	11.705, 15.30
7:00.7:25 p.m.	0000-0025	Tirana, Albania	G	7.065, 9.75
7:00.7:30 p.m.	0000-0030	Dslo, Nonway Moscow, U.S.S.R	$\begin{aligned} & \mathrm{F} \\ & \mathrm{G} \end{aligned}$	```6.18,9.55 (Sun.) 4.86, 5.94, 6.045, 7.105, 7.115,7.15, 7.165, 7.205, 7.355.9.80, 12.05, 15.14, 15.18, 15.45, 17.12```
7:00-7:55 p.m.	0000-0055	Sofia, Bulgaria Peking, China	F	$\begin{aligned} & 9.70 \\ & 9.94,11.675,11.945 \end{aligned}$
1:00.9:00 p.m.	0000-0200	**Luxembourg	F	6.09
7:00.8:00 p.m.	0000-0100	**VOA, Washington, USA	G	6.19, 9.67, 11.83, 11.895
7:00 p.m.12:06 a.m.	0000-0606	**Montreal, Canada (Northern Service)	F	5.96, 9.625 (includes French, etc.)
7:15.7:30 $0 . \mathrm{m}$.	0015-0030	Athens, Greece	F	9.76
7:15-7:45 p.m.	00150045	Brussels, Belgium	F	9.73
7:30-7:55 p.m.	$0030 \cdot 0055$	Prague, Czechoslovakia	F	6.055, 9.74
7:30.8:00 p.m.	$0030-0100$	Stockholm, Sweden Kiev, U.S.S.R.	F	$\begin{aligned} & 6.035 \\ & 6.02,7.15,7.205,7.26,9.78,12.05 \\ & 15.14,15.18,15.455 \end{aligned}$
		Vilnius. U.S.S.R.	G	5.94, 7.355 (Sat., Sun.)
1:40 p.m. 12 mdt .	0040-0500	HCJB, Quito, Ecuador	G	6.095, 9.56. 11.915
8:00-8:15 p.m.	$0100 \cdot 0115$	Vatican City	G	$5.995,6.015,9.605$
8:00.8:20 p.m.	0100-0120	Rome, Italy	G	6.01, 9.575
8:00.8:30 p.m.	0100-0130	Moscow, U.S.S.R.	G	$4.86,5.94,6.02,6.045,6.175,7.105$, $7.115,7.15,7.205,7.355,9.635,9.78$, $9.79,9.80,12.05,15.14,15.45$
8:00.8:45 p.m.	0100-0145	Berlin, Ger. Dem. Rep.	F	9.73
8:00-8:55 p.m.	0100-0155	Peking, China	G	7.12, 9.78 (via Tirana), 9.94, 11.945. 12055
8:00.8:57 p.m.	$0100 \cdot 0157$	Montreal, Canada	G	6.085,9.65
		Prague, Czechosiovakia	G	$5.93,7.345,9.54,9.63,11.99$
8:00-10:00 p.m.	01000300	Melbourne, Alstralia	P	15.32, 17.795
8:00.10:30 p.m.	0100-0330	Havana, Cuba	G	11.725, 11.93
8:00-11:00 p.m.	$0100-0400$	Madrid, Spain	G	6.065, 11.88 (Mon.Sat.)
8:10.8:30 p.m.	$0110 \cdot 0130$	**Santiago, Chile	F	$9.566,11.81,15.15$
8:30-8:50 p.m.	0130.0150	Cologne, Ger. Fed. Rep.	G	6.04, 6.075, 6.10 (via Maita), 9.565, $9.69,9.745,11.865$ (via Malta)
8:30-8:55 p.m.	0130.0155	Tirana, Albania	G	6.20,7.30
		Vienna, Austria	P	6.155, 9.77
8:30-9:00 p.m.	01300200	Moscow, U.S.S.R.	G	$\begin{aligned} & 4.86,5.94,6.02,6.045,7.105,7.115 \\ & 7.15,7.205,7.355,9.635,9.78,9.79 \\ & 9.80,11.86,12.05,15.14 \end{aligned}$
8:30.9:25 p.m.	0130.0225	Bucharest, Rumania	F	$5.99,9.57,9.68,11.775,11.94$
8:45.9:15 p .m.	0145-0215	Berne, Switzerland	G	$5.965,6.135,9.725,11.715$
9:00-9:30 p.m.	0200-0230	Budapest. Hungary	G	$\begin{aligned} & \text { 6.00. } 7.215 .9 .585,9.833,11.91 \\ & \text { (Exc. Sun.) } \end{aligned}$
		Oslo, Norway	F	6.18 (Sun.)
		Warsaw, Poland	P	$\begin{aligned} & 6.095,6.135,7.27,9.675,11.815 \\ & 11.84,15.12 \end{aligned}$
9:00-9:55 p.m.	$0200 \cdot 0255$	Peking, China	F	7.06, 9.94, 12.055
9:00.10:00 p.m.	0200-0300	Moscow, U.S.S.R.	G	4.86, 5.94, 6.02.6.045, 7.105, 7.115, $7.205,7.26,7.355,9.635,9.78,9.79$, 9.80, 11.86, 12.05, 15.14
9:00.10:20 p.m.	0200-0320	Hilversum, Holland	G	6.165 (via Bonaire)
9:00.10:30 p.m.	0200-0330	Cairo. Egypt	G	9.475
9:10.9:30 p.m.	0210-0230	**Santiago, Chile	F	$9.566,11.81 .15 .15$
9:15-9:30 p.m.	02150230	Athens, Greece	F	9.76
9:30-9:55 p.m.	0230.0255	Tirana, Albania	G	6.20 .7 .30
9:30.10:00 p.m.	0230-0300	Libson, Portugal	G	$6.025,11.935$
10:00-10:30 p.m.	0300-0330	Helsinki, Finland	F	6.12
		Budapest, Hungary	G	$6.00,7.215,9.585,9.833,11.91$
		Kiev. U.S.S.R.	G	$\begin{aligned} & 5.98,6.02,7.245,7.26,7.40,9.58 \\ & 9.78,11.86 \end{aligned}$
10:00-10:35 p.m.	0300-0335	Warsaw, Poland	P	$\begin{aligned} & 6.095,6.135,7.27,9.675,11.815 \text {, } \\ & 11.84,15.12 \end{aligned}$
10:00-10:55 p.m.	0300.0355	Peking, China	G	7.12, 9.78 (via Tirana)
10:00.11:00 p.m.	0300-0400	Buenos Aires, Argentina	G	9.69 (Mon.Fri.)
		Prague, Czechoslovakia	G	$5.93,7.345,9.54,9.63,11.99$
		Moscow, U.S.S.R.	G	4.86, 5.94, 6.045, 7.115, 7.205, 7.355, 9.70, (via Sofia)

Our 23 rd year of service to the World's finest crafismen and fechnicians.

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available now here else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.
 Circie no 50 on fref information card

512 MHZ PRESCALER

Enthances
Your FM-7

With Rechargeable
Batteries \& Charger Unit

Features Include:

- Fxtends the range of the NLS FM-7 Frequency Meter-and almost any 50 MHz frequency meter - to the upper VHF and ITHF frequency bands. - 30 mV sensitivity. - Accurate to one part per million. - Rugged, portable and battery poweres. - Small size: $1.9^{\prime \prime} 11 \times 2.7^{\prime \prime} \mathrm{W} \times 4.0^{\prime \prime} \mathrm{D}$. - Interiace cable and input cable with probe included.

See your local distributor!
instributor inquiries invited.
Non-Linear Systems, Inc.
Orignator of the dygtal yoltmeier.
Telephone (714) 755 1:34 TW 910322.1132
circlif ho 52 on fre information caro

A Logical Solution to your Digital Logic Problems!

$10 \cdot 30 \cdot 10 \cdot 55 \mathrm{pm}$

10:30-11:30 p.m. 10:30-11:50 p.m. 11:00-11:15 p.m.

11:00-11:25 p.m. 0400.0425

11:00-11:30 p.m. 0400-0430

11:00 p.m. 12 mdt.

11:00 p.m.-1:00 a.m. 0400-0600 11:30 p.m. 12 mdt. 0430.0500 11:50 p.m. 1:00 a.m. 0450-0600 12 mdt. $12: 15 \mathrm{a} . \mathrm{m} . \quad 0500.0515$ $12 \mathrm{mdt} .1: 00 \mathrm{a} . \mathrm{m}$. 0500-0600 12 mdt.-2:00 a.m. 0500.0700 1:45•3:35 a.m.

- Pulse stretching - 60 Nsec pulse response - Replaceable tip and cord

Compatible with RTL. OTL. IIL. CMOS. MOS. and Micro processors using a 3.5 V to 15 V power supply Thresholds automatically programmed for multi logic tamily opera Iton Automatic resetting memory for single or multi pulse detection No adjustment required Visual indication of logic levels. USing LEOS to show high low. bad level or open circuit logic and pulses Highly sophisticated. shirt pockel portable (protective cap over tip and removable colled cord) Eliminates need for heavy test equipment A definte plus in time and money for engineer and technician

circie no 2 on frif information caro

**Johannesburg, S. Africa
"*Santiago, Chile
Tirana, Albania
Vienna, Austria
London, England
Havana, Cuba
Budapest, Hungary
Bucharest, Rumania
Oslo, Norway
Sofia. Bulgaria
Moscow, U.S.S.R.
' Montreal, Canada
""London, England
Havana, Cuba
Jerusalem, Israel
"'London, England
HCJB, Quito, Ecuador
""Lagos, Nigeria

- 5

\square

TO WESTERN NORTH AMERICA

TIMEPST	TIME-GMT	STATION	OUAL*	FREQUENCIES, MHZ
3:00-3:15 a.m.	1100-1115	Tokyo. Japan	G	5.99
3:00-4:25 a.m.	1100-1225	Trans-World Radio, Bonaire, N.A.	G	11.815
3:00-5:30 a.m.	1100-1330	London, England	G	5.99 (via Sackville), 11.75 (via Tebrau)
3:00.6:00 a.m.	1100-1400	**VOA. Washington, USA	G	5.955.9.73
4:00-4:15 a.m.	1200-1215	Tokyo, Japan	P	5.99
4:00-4:30 a.m.	1200-1230	**Tashkent, U.S.S.R.	F	9.60, 11.925
4:10-4:30 a.m.	1210-1230	**Santiago, Chile	F	9.566, 11.81, 15.15
4:15.8:30 a.m.	1215-1630	HCJB. Quinto, Ecuador	G	11.745, 15.115
4:30-6:00 a.m.	1230-1400	Trans-World Radio. Bonaire, N.A.	G	15.255 (Sat., Sun.)
5:00-5:15 a.m.	1300.1315	Tokyo. Japan	F	5.99
5:30-7:00 a.m.	1330-1500	**Oelhi, India	F	11.81, 15.335
5:30-8:15 a.m.	1330.1615	**London, England	F	9.74, 11.75, 15.31 (via Tebrau)
6:00-6:30 a.m.	1400.1430	Tokyo. Japan	G	5.99
		**Tashkent, U.S.S.R.	F	9.60, 11.925
6:00-7:20 a.m.	$1400 \cdot 1520$	**Hilversum, Holland	G	11.73 (via Talata)
6:00-8:55 a.m.	1400-1655	Manila, Philippines	F	9.58 (closes 1555 Sun.)
7:00.7:15 a.m.	$1500 \cdot 1515$	Tokyo, Japan	G	5.99
7:00-8:15 a.m.	1500.1615	London, England	G	17.84 (via Ascension)
8:00.8:15 a.m.	1600.1615	Tokyo, Japan	G	5.99
8:00-8:30 a.m.	1600-1630	Dslo, Norway	F	11.895 (Sun.)
8:00-9:09 a.m.	1600.1709	London, England	G	9.58. 15.365 (via Sackville, opens 1500 Sat.)
8:42-8:51 a.m.	1642-1651	Hilversum, Holland	G	11.82, 15.19 (via Bonaire, Mon.-Fri.)
9:00-9:15 a.m.	1700-1715	Tokyo, Japan	F	5.99
10:00-10:15 a.m.	1800.1815	Tokyo, Japan	F	5.99
10:30-11:30 a.m.	1830-1930	Taipei, Taiwan	F	9.51, 11.86, 15.37
10:30 a.m. 12 noon	1830-2000	**London, England	F	11.82 (via Ascension)
11:00-11:07 a.m.	1900-1907	**Paperté, Tahiti	F	11.825, 15.17 (exc. Sun.)
11:00-11:15 a.m.	1900-1915	Tokyo, Japan	G	9.505
12 noon-12:15 p.m.	2000-2015	Tokyo, Japan	G	9.505
12 noon-1:20 p.m.	2000-2120	**Hilversum, Holland	G	11.73 (via Talata)
1:00-1:15 p.m.	2100-2115	Tokyo, Japan	F	9.505
1:15-3:00 p.m.	2115.2300	London, England	G	9.58 (via Ascension)
2:00-2:15 p.m.	2200-2215	Tokyo, Japan	G	15.105
2:00-4:00 p.m.	2200-2400	**VOA, Washington, USA	G	17.82, 17.895, 21.61
2:30-3:00 p.m.	2230-2300	Jerusalem, Israel	F	5.90, 7.395, 7.412, 9.435
2:30-3:20 p.m.	2230-2320	Johannesburg, S. Africa	G	$5.98,9.585,11.80,11.90$
2:50-3:10 p.m.	2250-2310	**Santiago, Chile	F	9.566, 11.81, 15.15
3:00-3:30 p.m.	2300-2330	Tokyo, Japan	G	15.105
3:00-4:30 p.m.	2300-0030	Londan, England	G	6.175, 9.51 (via Sack ville), 9.58 (via Ascension)
3:00-5:00 p.m.	2300-0100	Montreal, Canada	F	6.04
3:45-4:00 p.m.	2345-2400	**Vaice of Org. of American States, Washington, USA	G	6.13, 9.64, 11.74
4:00-4:15 p.m.	0000-0015	Tokyo, Japan	G	15.105
4:00-5:00 p.m.	0000-0100	**VOA, Washington, USA	G	11.83, 11.895, 15.40

4:30.5.30 p.m.	0030-0130	**Trans-World Radio, Bonaire, N.A.	G	11.925
4:30-7:30 p.m.	0030.0330	London, England	G	6.175 (via Sackville)
				9.51 (via Greenville)
				9.58 (via Ascension)
4:40-9:00 p.m.	0040-0500	HCJB, Quito, Ecuador	G	$\begin{aligned} & 6.095,9.56,11.915 \\ & \text { (includes some Eskimo) } \end{aligned}$
5:00-5:15 p.m.	$0100 \cdot 0115$	Tokyo, Japan	G	15.105
5:00-7:00 p.m.	0100.0300	Melbourne, Australia	G	15.32, 17.795
5:00-8:00 p.m.	$0100 \cdot 0400$	Madrid, Spain	F	6.065, 11.88 (Mon.Sat.)
5:10-5:30 p.m.	0110.0130	**Santiago, Chile	F	9.566, 11.81, 15.15
5:30.6:30 p.m.	0130.0230	Tokyo, Japan	G	$15.195,15.42,17.725,17.825$
6:00-6:15 p.m.	0200-0215	Tokyo, Japan	G	15.105
6:00-7:50 p.m.	0200.0350	Taipei, Taiwan	G	11.825, 15.345, 17.89
6:10.6:30 p.m.	$0210 \cdot 0230$	**Santiago, Chile	G	9.566, 11.81, 15.15
6:30-7:00 p.m.	0230.0300	Stockholm, Sweden	F	6.045, 9.695
7:00-7:15 p.m.	0300.0315	Tokyo, Japan	G	15.105
7:00-7:30 p.m.	0300-0330	Kiev, U.S.S.R.	G	$\begin{aligned} & 5.98,6.02,7.245,7.26,7.40,9.58, \\ & 9.78,11.86 \end{aligned}$
7:00.7:55 p.m.	0300.0355	Peking, China	G	$\begin{aligned} & \text { 7.12, } 9.78 \text { (via Tirana), } 9.46,9.94 \text {, } \\ & 11.65,12.055 \end{aligned}$
7:00.8:25 p.m.	0300-0425	**Johannesturg, S. Africa	G	3.995, 5.98, 7.27, 9.585
7:10.7:30 p.m.	0310.0330	**Santiago, Chile	G	9.566, 11.81, 15.15
7:20.8:25 p.m.	0320-0425	**TIFC, San Jose, Costa Rica	F	6.035, 9.645 (opens 0300 Sat., Sun.)
7:22-7:28 p.m.	0322-0328	Erevan, U.S.S.R.	G	$\begin{aligned} & \text { 11.69, 11.96, 15.13, 15.18, } 15.455 \\ & \text { (Sat., Tue., Wed., Fri.) } \end{aligned}$
7:30-8:00 p.m.	0330-0400	Moscow, U.S.S.R.	G	$\begin{aligned} & 5.905,6.02,7.26,9.54,9.58,9.61 \text {, } \\ & 9.635,9.735,9.78,11.69 \end{aligned}$
7:30-8:15 p.m.	0330-0415	Berlin, Ger. Dem. Rep.	P	5.955, 6.08, 9.56, 9.73
7:30-8:30 p.m.	0330-0430	London, England	G	6.175 (via Sackville)
				9.58 (via Ascension)
8:00-8:15 p.m.	0400.0415	Tokyo, Japan	G	9.505
8:00.8:30 p.m.	0400.0430	Sotia, Bulgaria	P	9.70
		Budapest, Hungary	P	$\begin{aligned} & 6.00,7.215,9.585,9.833,11.91 \text {, } \\ & \text { (Tues., Fri.) } \end{aligned}$
		Seoul, Rep. Korea	F	9.64, 11.86
8:00-8:55 p.m.	0400-0455	Peking, China	G	$9.46,9.94,11.65,12.055$
8:00.9:00 p.m.	0400-0500	Moscow, U.S.S.R.	G	$\begin{aligned} & 5.905,6.02,7.175,7.26,9.54,9.58 \\ & 9.61,9.635,9.735,11.69 \end{aligned}$
8:00.10:00 p.m.	0400-0600	Montreal, Canada	G	$6.135,9.655$
8:30-9:00 p.m.	0430.0500	Vienna, Austria	P	6.015
		Berne, Switzerland	F	$6.045,9.725$
8:30-11:30 p.m.	0430-0730	London, England	G	6.175 (via Montserrat)
9:00-9:15 p.m.	0500-0515	Jerusalem, Israel	F	5.90, 7.395, 7.412
		Tokyo, Japan	G	9.505
9:00-9:30 p.m.	0500-0530	Lisbon, Portugal	P	$6.025,11.935$
9:00-10:20 p.m.	0500.0620	Hilversum, Holland	G	6.165, 9.175 (via Bonaire)
9:00-9:30 p.m.	0500-0530	Moscow, U.S.S.R.	G	$\begin{aligned} & 5.905,6.02,7.11,7.26,9.52,9.54, \\ & 9.58,9.61,9.635,9.735 \end{aligned}$
9:00-11:00 p.m.	0500-0700	HCJB, Quito, Ecuador	G	6.095, 9.56
		**London, England	G	6.005, 7.27, 9.60 (via Ascension)
9:30-9:50 p.m.	0530-0550	Cologne, Ger. Fed. Rep.	G	6.10 (via Malta), 6.185, 9.545
9:30-10:00 p.m.	0530-0600	Moscow, U.S.S.R.	G	$\begin{aligned} & 5.905,6.02,7.11,7.175,7.22,7.26, \\ & 7.30,9.52,9.54,9.58,9.635,9.735 \end{aligned}$
10:00-10:15 p.m.	0600-0615	Tokyo, Japan	G	9.505
10:00-10:30 p.m.	0600.0630	Osio, Norway	P	9.645 (Sun.)
		Moscow, U.S.S.R.	G	$5.905,6.02,7.11,7.15,7.175,7.22$, $7.26,9.52,9.54,9.58,9.635,9.735$
10:00.11:00 p.m.	0600-0700	Buenos Aires, Argentina	G	9.69 (Mon-Fri.)
10:30-11:30 p.m.	0630-0730	Moscow, U.S.S.R.	G	$\begin{aligned} & 6.02,7.11,7.15,7.175,7.22,7.26 \\ & 7.30,9.54,9.58,9.635,9.735 \end{aligned}$
10:30 p.m. 12:30 a.m.	.0630-0830	Havana, Cuba	G	9.525
10:30 p.m. 12:55 a.m.	0630-0855	Kuala Lumpur, Malaysia	G	7.22, 11.90, 15.275
11:00.11:15 p.m.	$0700 \cdot 0715$	Tokyo, Japan	G	9.505
11:00-11:30 p.m.	0700.0730	**London, England	G	6.005, 9.60 (via Ascension)
11:30 p.m. 12:15 a.m.	. 0730.0815	**London, England	G	$9.60,11.86,15.40$ (via Ascension)
11:30 p.m. 2:30 a.m.	$0730 \cdot 1030$	**Wellington, New Zealand	G	6.105
$12 \mathrm{mdt} .12: 15 \mathrm{a} . \mathrm{m}$.	0800.0815	Tokyo, Japan	G	9.505
1:00-1:15 a.m.	0900-0915	Tokyo, Japan	G	9.505
2:00-2:30 a.m.	1000-1030	Seoul, Rep. Korea	F	$9.635,11.86$
		Tokyo, Japan	G	5.99
2:00-3:00 a.m.	1000-1100	Pyongyang, Oem. Rep.	G	$9.42,11.535$
		Korea		

[^2]

By Hal Chamberlin

MASS-STORAGE SYSTEMS

MANY interesting and useful applications of hobbyist computers require a program-controlled mass-storage device. Although a simple audio-cassette interface can be used, there are other more automatic, practical storage systems.

Applications Needing Mass

 Storage. Home accounting is a computer application that is often mentioned as needing a mass storage. One would expect a double-entry bookkeeping method to be used here, with all incomes and expenditures divided into a number of accounts according to the nature of the transaction. Once a week, or as needed, new transactions would be added to the appropriate accounts. Ideally, a verbal description of each transaction would be retained with the account record as well as the amount and date. Monthly, or as required, the system could be instructed to compute and print a personal financial statement. Also, if the accounts were set up properly, preparing a tax return could be a relatively simple task. The amount of mass storage needed, however, can become substantial. Assuming a moderately detailed system of 30 accounts and an average of 25 transactions per account per year, yields a total of 2250 transactions to save for the 3-year record-holding period required by the IRS. Allowing 30 bytes for a description, 4 bytes for a date and 4 bytes for an amount, gives a total of 85 k bytes required for the application.Learning games are an exciting application that benefit from mass storage. A learning approach to implementing complex game-playing programs such as checkers is often easier and can give better results than a direct approach. Such a program, when first run, would only be cognizant of the game rules. As it plays human opponents, files of data concerning fatal mistakes made by the program and
winning tactics employed by the opponent would be accumulated. Eventually the program would acquire a skill level just below that of the best opponent and would not suffer from "stupid" mistakes. Additionally, intermediate data files at various skill levels may be retained. Such files may get rather large. They are also subject to frequent change as the program learns. High-speed access to the data is helpful in keeping the game moving along.
Text editing for letters, reports, and other documents is another mass-storage-oriented application. The editing process may involve frequent changes, insertions, and deletions of blocks of text in the document. Also, it may be desirable to move a block of text from one portion of a document to another. The amount of storage needed varies with the type of document. A thesis may require 300 k bytes, an article 30 k and a letter 3 k . Large insertions in the middle of a document may cause problems with certain types of mass storage.

Mass-Storage Terminology. Over the years, many terms have been developed to describe mass-storage systems. Perhaps most fundamental is the on-line storage capacity of a system. On-line storage capacity is the amount of data that can be accessed automatically by the program without requiring human intervention to change tapes, etc.

On all mass-storage systems, data is organized into blocks called records. When a data transfer between the storage system and the computer is performed, an entire record must be transferred. Some systems utilize a fixed record size, which means that all records are of the same length. Most tape systems, however, allow a variable record size, which means that a record may be as short as one byte or as long as desired. Note that the use of
short records may reduce the storage capacity substantially due to gaps between records.

The transfer rate of a system is a measure of how fast data can be read from, or written into, the storage media. Often this is qualified further by specifying a "burst" transfer rate and an "average" transfer rate. The burst rate is the actual speed during reading or writing. The average rate is measured for a long transfer of several thousand bytes. It is usually less than the burst rate because of the gaps between blocks of data or time spent searching for the next block of data.
In a sequential access storage system, all of the data is stored as one long string of records. The access mechanism (usually a magnetic head) can be located at any point in the string. In the simplest systems, only two operations are allowed; rewind (place the head at the beginning of the string); and read forward, starting at the current head position. Writing of new data is always done at the end of the string. More sophisticated sequential-access systems may allow reading backward and high-speed search in both directions. Some may even allow records in the middle of the string to be updated.

Data records in a random-access storage system are organized in a rectangular array consisting of a number of rows and columns. A particular record is read or written simply by giving its row and column numbers. The storage device goes directly to the requested location, usually without any searching. Individual records may be rewritten at will. Random-access storage systems almost always utilize fixed record lengths.

Tape Mass-Storage Systems. Tape, particularly in cassettes, is a popular, inexpensive mass-storage medium. The on-line storage capacity of a C60 cassette, for example, ranges from 50k bytes using the Computer Users Tape System or CUTS (see '"Computer Bits,'" March, 1976) audio format (also known as Kansas City format) to approximately 600 k bytes using the Digital Group's "group coded recording' digital format. Transfer rates range from about 25 bytes per second for standard audio to over 1000 bytes per second for highperformance digital recording. Most tape systems for hobbyist use allow variable-length records with perhaps a maximum allowable length.

The EGG plugs into any stereo amp to create soothing, flowing environmental sound textures - and through headphones it's incredible. The chords and notes EXIST in your mind, they pan and swell and phase their way through your psyche in unpredictable patterns never repeating The combination of LSI organ technology with synthesizer-type processing and digital randomizing/control elements make the EGG an altogether intriguiging package from either technological or metaphysical viewpoints.
Kit includes: Circuit board, parts and step-by-step instructions.
CHORD EGG Kit $\$ 24.95$ postpaid
*Encephalo Gratification Generator

; ${ }^{19}$ - FREE CATALOG -

; A 4 ELECTRONICS DEPT. 11-P 1020 W. WILSHIRE BLVD.
OKLAHOMA CITY, OK 73116
Circle no 55 on free imformailon caro

Our whole family helped assemble this wonderful Schober Organ... and now we all play it!
Talk about real family fun! We all worked together, for a few hours almost every day. Almost too soon, our Schober Organ was finished. Our keen-eyed daughter sorted resistors. Mom soldered transistor sockets, although shed never soldered anything before. And it did our hearts good to see the care with which our son -he's only 12 -installed the transistors. Me? I was the quality control inspector- they let me do the final wiring. Our completed Schober Organ compares favorably with a ready-made one costing twice as much! (The five models range from $\$ 650$ to $\$ 2850$.)

Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a 12 -inch LPrecord that lets you hear as well as see Schober quality)

 The Tfeholeof Organ Corp., Dept. PE-68 43 West 61st Street, New York. N.Y. 10023 \square Please send me Schober Organ Catalog \square Enclosed please find $\$ 1.00$ for 12 -inch L.P. record of Schober Organ music.
NAME

ĀDDRESS
$\overline{C l}$

NOVEMBER
NOVEMBER 1976

Magnetic tape is inherently a sequential-access storage medium. Here, data records are strung out along the length of the tape with enough blank space between records to allow for starting and stopping the tape. Finding a desired record on the tape and reading it into the computer's memory is a fundamental operation. If the record's location is not known, about the best that can be done is to rewind the tape and start reading until the needed record is reached and read. This, of course, can take several minutes even on a highperformance digital cassette system One possibility for speeding up is to maintain an "index record" at the beginning of the tape that contains the location of all of the other records on the tape. The program would keep the index in memory while that particular tape is loaded on the drive. Then, on a simple system, at least a decision between reading forward and rewinding and starting over can be made. On a system with read-backward capability. the average search time may be shortened further by reading backward when appropriate, rather than rewinding. A system with high-speed search allows records to be counted at two to ten times the normal tape speed in either direction. When the required number of records has been skipped, normal read speed is resumed and the desired record is read. Using the high-speed search feature allows average random-access times of less than 30 seconds on a 600 k byte tape with one currently available cassette system

All three applications described earlier required data records to be updated (read, modified, and rewritten) frequently. With a simple tape system the only possible method of updating is to make a copy of the "old" tape onto a "new" tape, changing the records to be updated during the copying. Besides requiring two tape drives, the process can be quite slow if individual, random updates are required, as in the game application. Some sophisticated systems will allow records to be updated in the middle of the tape provided the updated record length is the same as the original. One possibility, if records are expected to grow as in the accounting application, is to start with a long record padded with zeroes and then gradually replace the zeroes with new data as updates take place. Large insertions and deletions such as in the text-editing

The POLY 88 Microcomputer System

The POLY 88 Microcomputer System brings to the user, in one compact package, the capability of developing programs and hardware as well as enjoying the interaction with computers.

The POLY 88 System uses a video monitor for display, a keyboard for input and cassette tape for storage. The system will also connect to a hard-copy terminal. Poly 88 hardware consists of an 8080 based CPU circuit card with onboard memory and I/O, video display circuit card with keyboard input port and graphics capability, and mini-cards that connect to the CPU board via ribbon cable for cassette or serial interface.
The Firmware Monitor is integral to the POLY 88 System. This 1024 byte program in ROM allows the user to display data on a TV screen, enter data into memory using a keyboard, read and dump data to the cassette interface in Kansas City format, and single step through a program while displaying the contents of each of the 8080's intermal registers.
Prices: Basic kit including chassis, CPU and video cards - $\$ 595, \$ 795$ assembled. Cassette option - $\$ 90$ kit and $\$ 125$ assembled. 8K of RAM - $\$ 300$ in kit form or $\$ 385$ assembled.
Dealers: This system will sell itself.
All prices and specifications subject to change without notice. Prices are USA only. California residents add 6% sales tax. Prepaid orders shipped postpaid. BankAmericard and Master Charge accepted.

PolyMorphic Systems

737 S. Kellogg Avenue, Goleta, Ca. 93017 (805) 967-2351

Does your computer talk to you?

The intelligence of your 8080 system is only as great as its capacity to communicate. Processor Technology's VDM-1 will function as a highly cogent link to that intelligence. This ultra-high speed output device plugs into your Altair or IMSAI to provide fast, versatile human interface. It generates 16 lines of display: 64 characters each, both upper and lower case. 1024 bytes of random access memory are on the card. The VDM- 1 scrolls upwards or downwards, up to a top speed of 2000 lines per minute! Any combination of cursors (up to 1024) car, be displayed as black-on-white or vice versa-perfect for video games. The VDM-1 will work with any standard video monitor, or your own TV set can be easily modified. The module comes with free terminal mode software, for teletype replacement when used with BASIC or assembiers.

Our detailed VDM-1 Owner's Manual is available for $\$ 4$, refundable with purchase of the VDM-1.
Kit Price: (eff. 7/1/76): \$199
(premium grade, low profile IC sockets included).

application are still best handled by the update/copy technique when using a tape mass-storage system.

Disk Mass-Storage Systems. A disk-based mass-storage system has several very desirable characteristics. On-line storage capacity ranges from about 300k bytes for a floppy-disk system to over 200 M bytes for some high-performance commercial systems. The range on transfer rates is considerably less, being from 32 k bytes per second for the floppy to about 1.5 M bytes per second for large hard-surfaced disk systems.

Although most disk mass-storage systems are very expensive, floppy disk systems are reasonable and are becoming much more numerous among hobbyist users. The components to build a floppy-disk system cost about $\$ 600$ while complete kits list for around $\$ 1500$. The disk itself is housed in a flexible plastic envelope measuring eight inches square and one-sixteeth-inch thick and costs seven to ten dollars each. Each disk holds over 300 k bytes and can be inserted into or removed from the disk drive in a couple of seconds

Unlike tape, mass-storage disks are random-access devices. The circular disk surface is divided into a number of concentric tracks. Each track is further subdivided into a number of sectors. This is equivalent to the rectangular array of records mentioned earlier. Each sector contains one data record which is fixed in size. To access a particular record, the magnetic head is first positioned to the correct track by moving it radially in or out. This is called seeking. Then the system waits for the proper sector to rotate under the head for reading. The amount of time necessary to do these operations varies but is relatively unaffected by where the data is on the disk. All disk systems allow individual sectors to be updated.

A floppy disk may have, for example, 77 tracks and 32 sectors on each track for a total of 2464 possible data records. Each record has 128 useful data bytes. Moving the head from one track to another takes about 10 milliseconds per track moved. At 360 rpm it takes 166 milliseconds for the disk to rotate one revolution. Thus the longest required time to find and read a record will be just under a second. The average time is less than half that figure. Since a search of the whole disk would take considerably longer
than this, some kind of index is always maintained so that the exact track and sector numbers of the desired data are known.

A floppy-disk mass-storage system is nearly ideal for all three example applications. The accounting system, for example, can be set up so that each transaction would be stored on one sector. Thus three years of financial records may fit on one $\$ 7$ floppy disk. In the game program, many random data accesses and updates can be performed in the time allowed for the computer to make its move. Even the

Hot soldering irons can be murder on delicate electronic components such as IC's. That's why the DIGIDESIGNER will become your bugs' best friend. It's a solderless breadboarding instrument that can save you time and burned out parts.
DIGI-DESIGNER comes complete with clock, dual pulsers, logic monitors, voltage switches, built-in 5 volt supply, binding posts for external power, input/output BNC's, and more. Everything you'll need for fast, efficient circuit design. Use the coupon below to order your kit today. U.S. price - $\$ 70.00$

Department 217 S 12 East Delaware Chicago, Illinois 60611 312-664-0020

large insertions ana aeletions required in the text-editing application are readily handled. With such quick random access to records, the inserted text may be stored in any unused positions on the disk. Deleted records are simply marked as unused and will later be overwritten. Sorting of records using a single disk drive is not only possible but is relatively easy. With a tape system, at least three drives and a number of update/copy operations are required to do sorting.

Error Handling. Unfortunately it is a fact of life that magnetic recording media can have defects and can be damaged by improper handling. The result of a defect is that data recorded over it is subject to error. Since alteration of even a single bit can be disasterous (such as a difference between $\$ 1081$ and $\$ 9081$ in the accounting application), methods must be employed to detect the presence of these errors and to allow recovery from them.

Errors can be detected in a number of ways. The most common employs a checksum byte at the end of a record. A checksum is simply the sum of all of the data bytes in the record with overflows ignored. If the sum of the data read back is the same as the checksum byte for the data written, then the data is assumed to have been read accurately.

To prevent writing over a bad spot on the media, the data is typically read back and compared immediately after it is written. If an error is detected, then the record is erased and rewritten further on or in another sector.

More Hobbyist Clubs

Canada

Amateur Microprocessor Club of Kitchener-Waterloo, \% Reading Rm. Eng. II. Dept. Electrical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

TRACE, Toronto Region Association of Computer Enthusiasts, Box 545, Streetville, Ontario, Canada L5M 2C1.

Connecticut

Southern New England Computer Society, 267 Willow St., New Haven, CT 06511.

Florida

Space Coast Microcomputer Club \% Ray O. Lockwood, 1825 Canal Ct., Merritt Island, FL 32952.
(305) 452-2159.

Our most expensive AM mobile...

. . . featuring

 phase-lock loop circuitry (PLL) and LED digital readout. For complete specifications write . . .

 Experimenter's Corner

By Forrest M. Mims

THE SILICON SOLAR CELL

YOU CAN now buy silicon solar cells for less than a nickel per milliwatt of output power. This is still too costly to make high-power solar panels economically feasible in most (especially experimenters') applications. But it is low enough to allow many of us to assemble small solar panels for charging nickel-cadmium batteries.

This month. we'll take a look at the design factors and construction procedures involved in fabricating small solar batteries. But first. let's review how solar cells work and examine some of the reasons for their high cost.

Solar Cell Theory. The construction of a typical silicon solar cell is shown in Fig. 1. It is essentially a pn

Fig. 1. Make-up of a cell.
semiconductor junction diode. and depends on the photoelectric effect for its operation. When the cell is in darkness, no current flows through it. The barrier potential of the junction keeps the charges from crossing from one side to the other. But when photons (light particles) strike the silicon, electron-hole pairs are created resulting in an output voltage. If the output terminals of the cell are connected to a load, a current will flow. The cell voltage is relatively independent of the light level, and is usually from 0.45 to 0.55 volt. Output current, however, is directly related to the intensity of the light striking the cell's surface.

The theoretical maximum conversion efficiency (the ratio of cell power output to light power input) of a "per-
fect'" silicon solar cell is 20 to 25 percent. No such cell exists, but some laboratory cells have demonstrated an efficiency of nearly 20 percent. Commercially available cells range in efficiency from 8-10 percent for older devices to 10-15 percent for the superior grade of cells developed over the past few years.

How They Are Made. Silicon is the second most abundant element on earth, and, at $\$ 600$ per ton. bulk metallurgical grade silicon is actually rather cheap. But silicon solar cell efficiency is directly related to the purity of the silicon used to make the cell, and ultra-pure silicon costs 100 times more than metallurgical grade material.

Materials cost is only part of the picture. The major reason for the expense of silicon solar cells are these five production steps:

- Growth of boules of silicon from molten silicon.
- Slicing of the boules into thin wafers.
- Smoothing the surface of the wafers by chemical etching or mechanical polishing.
- Formation of a pn junction by heating the wafers in a furnace in the presence of appropriate dopants.
- Affixing metal electrodes to the front and back surface of the cell.
Actually, these five steps are only the minimum required to produce a working solar cell. More efficient cells can be produced by additional etching of the front surface, formation of better electrodes, oxidizing the front surface to reduce reflection losses, and careful attention to junction formation.

Considering the materials cost and complex procedure, the high cost of silicon solar cells is certainly justified. Fortunately, improved production techniques promise to lower solar cell prices considerably in years to come.

Building Practical Solar Cell
 Arrays. Figure 2 shows how a silicon

solar battery is connected to a nickelcadmium storage cell. The five solar cells in the battery produce a total of about 2.75 volts open circuit in bright sunlight, and perhaps 1.5 volts when loaded down by the NiCd cell. Blocking diode D1 keeps the cell from discharging through the solar battery during hours of darkness. If the NiCd cell is disconnected from the circuit during darkness. D1 and one of the five solar cells can be omitted from the circuit. (The fifth solar cell compensates for the forward voltage drop across the diode.)

Designing practical chargers requires a knowledge of the charging requirements of the storage cells and

Fig. 2. Simple charging circuit.
the maximum current output of the solar battery. The maximum charging rate for most NiCd cells is 10 percent of the cell's capacity in milliamperehours ($\mathrm{mA}-\mathrm{h}$). Therefore the maximum charging rate for a $500-\mathrm{mA}-\mathrm{h}$ cell is 50 mA . A higher charge rate can damage or destroy the cell. Most cells require 12-14 hours at the maximum charge rate to achieve full capacity. But fastcharge units which can be charged to full capacity in only about 4 hours have recently become available. They are charged at 30 percent of the $\mathrm{mA}-\mathrm{h}$ rating (for example. 150 mA for a 500-mA-h battery).
With these facts in mind, here are some useful guidelines to follow when designing your own solar battery charger:

- Use 3-4 solar cells in series for each series connected NiCd cell (e.g. 2 cells in series require $6-8$ solar cells in series).
- Add one solar cell if a blocking diode is used.
- When assembling the array, temporarily wire the solar cells together and connect them to the batteries through a milliammeter as shown in Fig. 3. The current level should not
exceed the maximum allowable for the NiCd cells when the solar battery is in bright sunlight. If the current level is too high. remove one or more solar cells until the current falls to a safe level. If the current is too low. add cells as required

Remember that you can achieve any combination of voltage and current from a solar battery by employing appropriate series and parallel connections of solar cells.

Practical Chargers. I recently built two solar-cell chargers for NiCd batteries to take with me on a bicycle trip in the mountains of New Mexico

One charger had 9 seriesconnected $2-\mathrm{cm}$ square solar cells connected to two series-connected NiCd cells. The other consisted of 18 series-connected cells connected to 4 NiCd batteries. You can make similar chargers yourself.
in making the chargers. it is convenient to solder (carefully) the cells together in groups of three. Use a lowpower soldering pencil and tinned. stranded hookup wire. Next, use small squares of masking tape to temporarily secure the strips of cells face down on a Plexiglas panel. Then apply GE RTV-108 or a similar clear silicone cement between the rows of cells. Smooth the cement across the backs

Fig. 3. Using a milliammeter
of those cells not secured with masking tape.

Allow the adhesive to cure for 12 hours. Then carefully solder the strips of cells to one another to make the desired total. Attach output leads and a 1 N914 blocking diode to the battery. Next, spread adhesive across the backs of all the cells (masking tape removed) and place a sheet of clear vinyl over the adhesive. Secure the vinyl in place for 24 hours with tape.
These simple assembly methods will permit you to produce a reliable NiCd solar-battery charger quickly and easily. Both of the panels I built provide 5 to 15 mA of charging current on overcast days.

AMERICA's \#1 VALUE LEADER GTELE colirahillou of hatich

CALL (800) 223-5661

 TI CALCULATOR SPECIALS| SR 52. | 215.00 |
| :---: | :---: |
| PC 100 Printer | 214.00 |
| SR 56. | 89.00 |
| TI 5050M. | 94.00 |
| TI 2550 ll . | 29.50 |
| SR 51. | 62.50 |

HP CALCULATOR SPECIALS
HP 25............................. 125.00
HP 25C.......................... 179.00
HP 27............................ 177.00
HP 22............................ 139.00
HP 65............................ 645.00
SONY BETAMAXCALL OR WRITE
CB SPECIALS-23 CH. MOBILE
Panasonic RJ 3200.......... 138.00
Midland 884 Headset..... 127.95
Pace 145....................... 157.00
Pace 144....................... 124.95
Pace 2300..................... 152.95
call or write to us for dis. COUNTPRICES ON ALL PHOTOGRAPHIC, AUDIO,TV,CB, CALCU. LATOR EQUPTMENT TOLLFREE Add 2.95 for shipping and insurance RETAIL STORE $67 \mathrm{~W}, 47 \mathrm{th}$ ST. NYC. 10036 N.Y. TEL. (212) $260-4410$ MAIL ORDER DIV. 36 E. 19 th ST NYC. 10003 N.Y.
circle mo 32 on fre ingormation card
TI 30, 40, 51-11 CALL OR WRITE

audio discounting started in NEW YORK \& NOW WITH THE END OF fair-trade we are sure that no one can beat dur prices:

- we discount over 60 major brands
- over 10 Years of reliable service in the mail order fielo.
- LARGEST Inventory/Lowest prices! WE GET THE BEST DEALS FROM THE manufacturens: you get the best DEAL FROM US. DON'T DELAY!!!
WAIIE US NOW FOR LOWEST PECE CUOTE WRITE OR CALL FREE STEREO

SHOP BY PHONE! (212) 253-8888 N Y TIME 9-5 MON. THRU SAT. PRICE CATALOG. Mastercharge Eankamencicard Brooklyn. New York 11210

Ctrcle mo. 70 on free imformetion card

TERMINAL STRIPS

Part No.	Model No.	Terminals	Tie Points	Price each
923273	217 L	34	5	$\$ 4.75$
923291	154 R	54	4	$\$ 6.00$
923269	234 L	68	5	$\$ 850$
923265	248 L	96	5	$\$ 10.00$
923289	264 R	128	4	$\$ 10.00$
923261	264 L	128	5	$\$ 12.50$

DISTRIBUTION STRIPS

DISTRIBUTION STRIPS
Part No. Model No. Terminals Tie Points Price each 923285 $206 R$ 12 4 $\$ 200$ 923281 $209 R$ 18 4 $\$ 2.25$ 923277 $212 R$ 24 4 $\$ 250$ 923293 $606 R$ 36 4 $\$ 3.50$

Ohio and California residents add sales tax. All orders subject to acceptance at factory

Send for our new A P catalog. The Faster and Easier Book. Dealer inquiries invited.

For the name of the
A P Products dealer near you, call our toll-free number: 800-321-9668

A P Terminal Strips and Distribution Strips give you full-performance solderless breadboards in ten comfortably priced building-block sizes. Electronic components plug right into the spring-clip terminals behind each hole. Hookup wire jumpers between terminals complete your circuit. Terminal Strips are groups of 4-tie-point or 5 -tie-point terminals. Distribution Strips are interconnected groups of 4 -tie-point terminals. They're both faster and easier to use.

Faster and easier is what we're all about.

AP PRODUCTS INCORPORATED
Box 110-H Painesville, Ohio 44077 (216) 354-2101 TWX: 810-425-2250

ELECTRONICS MARKET PLACE

NON-DISPLAY CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.25$ per word (including name and address). Minimum order $\$ 33.75$. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 5 months; 10% for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell. $\$ 1.35$ per word (including name and address.) No minimum! Payment must accompany copy DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column (2-1/4"wide), \$260.00. 2" by 1 column. $\$ 520.00 .3$ " by 1 column. $\$ 780.00$. Advertiser to supply film positives. For frequency rates, please inquire
GENERAL INFORMATION: First word in all ads set in caps at no extra charge. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: ist of the 2 nd month preceding cover date (for example. March issue ctoses January ist. Send order and remittance to POPULAR ELECTRONICS. One Park Avenue, New York. New York 10016. Attention: Hal Cymes

FOR SALE

FREE' Bargain Catalog ' C s. LED's, readouls fiber optics. Calculators parts \& kits, semiconductors, parts.
Poly Paks. Box 942 PE . Lynnfieid N.ass. 01940 . MECHANICAL ELECTRONIC devices catalog 10 cents Grealesı Values - Lon
Philadelplia Pa 19120 SOUND SYNTHESIZER KITS Surt \$12 95. Wind \$1? 95 Wind Chimes \$17.95. Electronic Songtird \$6 95. Musica Accessories many more Catalog free PAIA Electronics
Box $J 14359$ Okianoma Box J14359. Oklahoma City OK 73114.

12 or 24 HOUR LED CLOCK

12 VOLT AC or dC POWERED FOR FIXED OR MOBILE OPERATION.

230754

KIT OR ASSEMBled

MODEL 2001
battery back-up FOR POWER FAILURE OR TRANSPORTING FROM HOUSE TO CAR, ETC.

Approx. Size:
1% "H×4"W×412"D

ACCURATE TIME WITH ADJUSTABLE

XTAL TIME BASE

GOVERNMENT Surplus Receivers. Transmiters Snooperscopes. Radios. Parts. Picture Catalog 25 cents. Meshna. Nahant Mass 01908.
LOWEST Prices Electronic Parts Conidential Catalog Free. KNAPP. 3174 8th Ave S.W. Largo. Fla 33540. ELECTRONIC PARTS semiconductors kis FREE FLYER Large calalog $\$ 100$ deposil BIGELOW ELECTRONICS. Bluftion Ohio 4581 ?
RADIO - TV Tubes- 36 cenis each Send for tree calalog Cornell. 4213 Universily. San Diego Calit 92105.
AMATEUR SCIENTISTS Electronics Experimenters, Science Fair Sludenis Construction plans-Complete. including drawings schematics. paris lis! with prices and sources., Robol Man - Psychedelic shows - Lasers Emotion/Le Detector - Touch Tone Dial - Quadraphonic Adapter - Transisiorized ignition - Burglar Alarm Sound Meter over 60 items. Send 50 cents coin (no stamps) for complete catalog Technical Writers Group. Box 5994. University S:ation. Raleigh. N.C 27607.
METERS-Surplus, new used. panel or portable Send for list Hanchelt. Box 5577. Riverside CA 92507.

visulex P. O. Box 4204P Mountain View, CA 94040:
BUGGED?ク? New lacator finds them 'ast. Write. Clifton. 11500-L N.W 7th Avenue. Mlami. Florida 33168
YOU WILL SAVE BIG MONEY! Surplus. Clearouts, Bankruptcy. Inventory Deals. Catalog $\$ 1$ (redeemable). ETCOA Electronics. Box 741. Montreal H3C 2V2 US Inquiries
HEAR POLICE/FIRE Dispatchers! Catalog shows exclusive directories of "contidential" channels. scanners. Send postage stamp Communications Box 56-PE, Commack N.Y 11725
SURPRISE! Build inexpensively. the most Unusual Test Instruments. Fuburistic Gadgets using Numerical Readouts! Catalogue Free' GBS Box 100A. Green Bank West Virginia 24944
TELEPHONES UNLIMITED equipment. supplies. Catalog 50 cents. Box 1654 E. Cosia Mesa. Calif. 92626.
UNSCRAMBLERS Fits any scanner or monitor, easily adjusts to all scrambled frequencies Only 4" square $\$ 29.95$. fully guaranteed Dealer inquiries welcomed. $P D Q$ Electronics. Box 841. North Little Rock. Arkansas 72115 RECONDITIONED Test Equipment. $\$ 0.50$ for catalog. Walter's Test Equipment. 2697 Nickel. San Pablo. CA 94806

the ultimate in design AND SOUND FREE LITERATURE
Wurilizer reproduction
DEVTRONIX ORGAN PRODUCTS, Dept. C
粬 5872 Amapola Dr. © San Jose, CA 95129
DESCRAMBLERS Several Professional Models that work with all Scanners Tone Encoders/Decoders. Scanmate. AAPP. Radar Delectors Big Ears. Alarms. Books Kits parts. Catalog 25 cents: KRYSTAL KITS. Box 445 . Bentonville, Ark 72712
CARBON FILM RESISTORS. Brand new as low as 1.7 cents. Discoun's of 20%. Prompt delivery FREE samples/specifications COMPONENTS CENTER. Box 134P. N Y. N.Y 10038.
JAPANESE TRANSISTORS, all transistors original tactory made Free catalog West Pacific Electronics. P.O. Box 3879, Torrance. CA 90510.

solus stare TECHNOLOGY KIT

- FOR THE EXPERIMENTER WITH TASTE FOR "STATE OF THE ART" PRODUCTS - COMPLETE SPECIFICATIONS ARE PRINTED ON THE BACK OF EACH TECHNOLOGY KIT

TECHNOLOGY BY
FAIRCHILD
4001 MIRANDA AVENUE PAIO ALTO.CA 94304
CARD FRONT

DIGITS			
FTK0001	0.5" High Common Cathode Digit	\$1.00	FTK0040
FTK0002	$0.5^{\prime \prime}$ High Common Anode Digit	1.00	FTK0041
FTK0003	.357" High Common Cathode Digit	75	FTK0042
FTK0004	0.8" High Common Cathode Digit	2.00	
FTK0005	0.8" High Common Anode Digit	2.00	
	0.8" HIGH DISPLAY ARRAYS		FTK0051
FTK0010	12 Hour, 3122 Digit Clock Display	7.00	
FTK0011	24 Hour, 4 Digit Clock Display	8.00	TK0400
LED LAMPS FTK0400			
FTK0020	10 Red LED Lamps	1.00	FTK0401
FTK0021	5 Mixed Colored LED Lamps	1.00	
FTK0022	10 LED Mounting Clips	1.00	FTK0402
FTK0023	5 Three Piece LED Mounting Adapters	1.00	
PHOTO TRANSISTORS FTK0403			
FTK0030	5 Flat Lens Photo Transistors	1.00	FTK0405
FTK0031	5 Round Lens Photo Transistors	1.00	
FTK0032	3 Flat Lens Photo Darlingtons	1.00	
FTK0033	3 Round Lens Photo Darlingtons	1.00	FTK0106

FTK0106

CARD FRONT

PHOTO ARRAYS

9-Element Tape Reader Array 16.00 12-Element Card Reader Array 24.00 Reflective Opto Coupler 4.00

COUPLERS

3 General Purpose Opto Couplers $\quad 1.00$
Darlington Opto Coupler $\quad 1.00$
MOS CLOCK CIRCUITS
Digital Clock/Calendar Circuit

Digital Clock/Calendar with BCD 7.00 Outputs (FCM7002)
Direct Drive Digital Clock Circuit $\quad 5.00$ with AC Output (FCM3817A) Direct Drive Digital Clock Circuit with DC Output (FCM3817D)
Direct Drive Digital Clock/Calendar
Circuit (FCM7015)
KITS
40.00

- THESE PRODUCTS ARE PACKAGED FOR OUTSTANDING WALL DISPLAY APPEARANCE

- DEALER'S AND WHOLESALER'S INOUIRIES INVITED-PRICE LIST AVAILABLE.

- BUY WITH PRIDE THE PRODUCTS BLILT BY THE INDUSTRY'S LEADER - FAIRCHILD

Satisfaction Guaranteed. \$5.00 Min. Order. U.S. Funds. California Residents - Add 6\% Sales Tax Send a 24c Stamp (postage) for a FREE 1977 Catalog.

1021 HOWARD STREET SAN CARLOS, CA 94070
PHONE ORDERS - (415) 592-8097

$$
{ }_{c \cdot, 10 s} 6^{88}
$$

Til				
SOLID STATE SPECIALS (ALL PRIME MERCHANDISE)				
Typo	EOI*		Price	
IN-4003	E229	Pkg of 10	.69/Pkg	
$1 \mathrm{~N}-207$	E228	Pxg. 0110	:69/Pkg	
TTL.7440E	E226		17 en	
GE.C1038			29 ea	10/250
ML-741CS	E296	OP Amp Mini Dip	49 ea	
ML-747CP	E214	Dual 741	. 59 еа	
LM. 565	E213	Phase Lockedtoop	129 ea	3/380
LM-309k	E215	5 V . A . Aegurior	.99ea	
TL.7447	E217	Universal diver	69 е๐	
2SB473	E237	HEP 642/G60 P8. ECQ-131	. 88 en	

Send for free cataiog satisfaction guarantead Min. Order $\$ 3.00$. Allow For Postage III. Residents Add 5\% Sales Tax

Prices good thru January 1, 1977 or while stocks last. Notice: Some items may be of limited quantities and suaject to prior sale.

ELECTRONIC DISTRIBUTORS, INC.

DEPT. PE $1-4900$ ELSTON CHICAGO. ILL. 60630

Tel: 312 283-4800

Same day shipment. First line parts only Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.
INTEGRATED CIRCUITS

Digital Alarm/Clock Kits

6-. 50 LED Displays
Battery operated, beautiful stainless finish, quartz crystal accuracy. Excellent for mounting on wall of any boat,
camper, etc. One year guarantee.
RVC-4
digital clock kit (no alarm)
RVC-6A digilal clock kit with alarm and radio or
$\$ 36.95$ tape player hookup
54.95

R/F SWITCH Only Not a Cheap - Instant selection $\$ 9.95$ between any two video. audio or R/F signals. - Over 300,000 in use - 90 db isolation@300 MHz. - VSWR 1.1 75 Ohms - F Connectors.

- F Connectors.

60 Hz Crystal Time Base Kit $\$ 5.95$ Convents digital clocks from AC ine freauency to crysta time Sase. Oustanding accurac
kit includes PC board MM5369. crystal, resistors, capacitors and trimmer

IC UPDATE MASTER MANUAL Complete IC data from
all Manulacturers. 14.000 all Manuiacturers. 14.000 cross references $\$ 30.00$ with update service Limited quantities avalable. Domestic Postage, add

Calculator Module \$2.95 includes everything on a miniboard. Need to a keyboard case and transtormer for complete 9 -digit calculato

COSMAC 'ELF'

 Low cost expandable microcomputer. CDP1802 $\$ 2950$ All other parts including COSMAC user manual available at reasonable cost. $\begin{array}{ll}\text { CDP1821SCD } & \$ 33.00 \\ \text { CDP1822SCD } & \$ 3900\end{array}$ $\$ 3900$ CDP1852CFREE: Send for your copy of our 1976
QUEST CATALOG. Include . 13 F stamp.
circle no 61 on free imformation card

POLICE. Fire monitors scanners, crystals. CB Transceivers. New Crystal-less scamners. Discount priced Box 19224, Denver, CO 80219.
TELETYPE EQUIPMENT for sale for beginners and exper ienced computer enthusiast. Teletype machines, parts supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave., Brooklyn, NY 11224 . Tel: (212) 372-0349.

IC BONANZA

- Data Sheer included on these irems

> Dala Cassettes, Used Good Condition

K Static RAM
Eraseable PROM 2 K
Nationa: OVM Chip
Slide Rule Calculator Chip
Alarm Clock Chip
Neg. Regulator
5 Voit Regulator
5 Voll Pos Reg. (TO-220)
12 Volt Pos. Reg. (TO-220)
15 Volt Pos. Reg. (TO-220
(HP-7730) 7 Seg Display
7 Segs. Display
Monsanto Opto Switch
. 2 Red
2 Yellow
2 Green
2 Red-Right Angle
12 Red
12 Yellow
7 Roll Carton

DELTA

ELECTRONICS
CO.
P.O. BOX 2, AMESBURY, MASS. 01913

GRIGSBY DRY
REED RELAYS
Type G821 A SPST-14 pin 24 vdc 2150 ohms., shielded
diode. Internal clamp diodes for protection of drivers by suppressing EMF. There is data available. STOCK NO. $1003 \mathrm{P} \quad \$ 1.75 \quad 2 / 3.00$
(2x) BC. ROTARY SWITCHES 0.05 ohm max. Operation temp $-65^{\circ} \mathrm{C}$ $0.05 \mathrm{hm}^{\circ} \mathrm{C}$
to $-150^{\circ} \mathrm{C}$
STOCK NO
1004 P Knob adjust 52.00 4/7.00 ${ }_{1}^{2}$ Pole ${ }^{-5}$ gosition. Screw adjust 50 / 3.00 Single pole-10 position

P.000.04
CRYSTAL
4.000,000 MHz CR-18A/U. Crystal can is $.75 \times .75$. The pin mounting is standard. CRYSTAL HOLDER STOCK NO. 9169 P $2 / 7.00$

SEND FOR FREE CATALOG
Minimum order $\$ 5.00$, data sheets 25 cents each Include 5% of order for postage and handling.

BONANZA ELECTRONICS
P. O. Box 24767

Dallas, Texas 7522
LOW cost digital/analog test equipment. Exceptional values. Free catalog. Salen Electronics, Box 82. Skokie, Illinois 60076.
DON'T LET VOLTAGE TRANSIENTS ZAP YOUR HI-FI Solid state equipment protector plugs into outlet protects any transistorized equipment. $\$ 6.95$ Kopp Electronics, 1650 William St.. Buffalo, N.Y. 14206. Free Brochure.
WHOLESALE C.B., Scanners. Antennas. Catalog 25 cents. Crystals: Special cut, $\$ 4.95$, Monitor $\$ 3.95$. Send make, model, frequency G Enterprises. Box 461P. Clearfield. UT 84015.

AA ALKALINE BATTERIES Great for the hobbiests and alike. All batteries tested. STOCK NO. 5448 P
-

SOLAR CELLS

The suns' energy converted into fun 46 V 500 mA . This item usually STOCK NO. $1001 \mathrm{P} \quad \$ 8.95 \quad 3 / 24.00$

Send for latest free catalog. Minimum order $\$ 5$, phone orders welcome: (617) 388-4705. Include sufficient postage; excess refunded. BankAmeriCard \& Mastercharge welcome, ALL numbers needed for processing. Min. charge \$15.

S. D. SALES Co.

4K LOW POWER RAM BOARD KIT

Imsai and Altair 8080 plug in compatible. Uses low power static 21L02-1 500 ns . RAM's, which are included. Fully buffered, drastically reduced power consumption, on board regulated, all sockets and parts included. Premium quality plated thru PC Board.

\$89.95

\$1,000,000 CALCULATOR PURCHASE!

8 Digit LED

"METRIC MASTER"
\$19.95
"RAPID MAN - 12 " $\$ 29.95$

We bought the entire stock of a major manufacturer. New, guaranteed units. Five functions PLUS complete Metric Conversion functions. Rechargeable batteries. Small, hand held size. With AC charger. 12 Digit - Desk Top Style. Sturdy design. With memory and four complete functions. Big, bright display.

LIVE IN THE WORLD OF TOMORROW ...TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit... for every member of the family.

A BETTER LIFE STARTS MERE

CAN'T SLEEP, RELAX? TRY THIS!

Electronic sound conditioner simulates 4 kinds of soothing sounds of ocean surf and rain "White sound" helps mask unwanted noise. adds restful. intriguing background sound Program the solid-state unit to your own need 2 surf, 2 rain; or "white sound", proven by medical tests to have analgesic effects. Great for meditation, restlessness, sleeplessness psychology.
(A).No. 71,997AV.. (71/2, 7, 31/2) $110 \mathrm{VAC} \ldots$. (B)-AS ABOVE, BUT "WHITE SOUND" ONLY

SUPER POWER FOR ANY AM RADIO

Newantenna assist turns a tiry transistorinto a figer has pulled in stations up to 1000 miles away' Just set beside radio (no wires clips. grounding) and tine-turne Select. A Tenna's dial
 to same trequency "gangbusters" Great for clearing weak signals in radio denressed areas, off coast islands crowded freauency stations Solid state -uses no electricity, batts. tubes Stock No. 72.095AV

No 72.147AV (-OVER 1000 MI .)

NASA-CHOSEN FOR APOLLO/SOYUZ

157 ml . Out in space. the Astronauts used this super 20, 60 binocular (modified) to view Earth!
Our biggest. most powerful for distance. Far-off objects come in big, clear \& sharp to the edge through big 60 mm objective lenses: 173 - ft . field of view at 1000 yds . Relative brightness. 9.0 . Fully coated optics: 20 X spcl design eye lenses. Coated BK-7 Porro prism Extra long All-American style with fold-down rubber eyecups Includes case \& straps
No. 1556 AV . . $\left(91 / 4 \times 81 /{ }^{\prime \prime} ; 47.5 \mathrm{oz}\right.$. $)$
$\$ 99.95 \mathrm{Ppd}$
No. 1559 AV . . . $(41 / 2 \times 61 / 4 \div 19 \mathrm{oz}$. $)$ $\$ 29.95 \mathrm{Ppd}$
 COMPLETE \& MAIL WITH CHECK OR M.O. EDMUND SCIENTIFIC CO.

300 Edscorp Building, Barrington, N.J. 08007

41/4" ASTRONOMICAL TELESCOPE

See moon craters. rings of Saturn. double stars Features fine $f / 10$ murro $1 / 10$ wave with a scatter plate interferometer) to insure performance to theoretical limit of resolu tion. Equatorial mount: rack \& pinion tocusing; aluminum tube, $6 \times$ tinder, 25 mm F.L. 45 X Ketliner achromatic eyepiece \& Barlow lens to double and triple power to No. 25 a
No. 85,260AV (SHPG. WT. 42 LB.)
No. 85.261AV (CLOCK DR.; 45 LB)

AN ULTRA-MINIATURE AM RADIO!
It's about the size of a small matchbox-and your ear will light up when you hear it Pulls in stations with amazing volume and clarity (number de pends on locale), yet you can wear it on your key sports, music wherever you go- listen to the game as youet or purse! Get news Just insert the earplug incl) and your directional AM mini marve plays! Runs ab 100 hrs. on 2 hearing aid baits (incl). A super gift!
No. 1976AV... (LESS THAN $11 / 402$!)
. $\$ 14.95 \mathrm{Ppd}$

SEE MUSIC IN PULSATING COLOR
New 3-Channel Color Organ adds to music listening pleasure, lets you modulate 3 independent strings of colored lamps with intensity of your music to create an audio "light show." They flash. pitch, volume-pulsating fighting performance to music! Fully assembled \& priced half that of others, the Edmund Sound Tonce turn on!
No. 42.309AV . . . (ASSEMBLED)
$\$ 17.95 \mathrm{Ppd}$.
No. 42.336AV... (UNASSEMBLEO)
$\$ 13.95 \mathrm{Ppd}$.

LOW COST PORT. INFRA-RED EYE

For infra-red crime detection surveillance, se curity system alignment. i.R. detection. laser checking, nite wild life study, any work rea. I. R detection \& conversion to visible spectrum. Selfcont. scope incls I.R. light source (90 nite visionl). 6032I.R. converter tube, 1/3 5 obj. lens, adjust. triplet eyepiece auto lighter adapter. 1.6 X focuses 10 to inf.; 6 . 12v DC. Not avatt to CA res exc authd pers/scl., educ
No. $1683 A V$ (11 Y $141 / 4$. 3)...
BINOCULAR STYLE: AS ABOVE, BUT $2.5 X$
No. 1685 AV . . (SUPER BRIGHI I.R.EYE)
$\$ 329.95$ Ppd

QUALITY DETECTOR UNDER $\$ 40$
New Edmund-developed, fully transistorized BFO unit capable of locating quarter at $18^{\prime \prime}$ powerful 6 -trans. oscillator-amplifier circuit Easily compares to others priced 50% higher Aluminum pole and housing-not plastic! 6 waterproof search coll (Faraday shielded to elim. outside interference); long 50 -hr. battery ightweight (2 lbs.). Great buy
Stock No. 80,222 AV 1 -knob on-oft tune control. Perfect balance
$\$ 39.95 \mathrm{Ppd}$.

$\$ 1.95$
ECONOMIZE WITH

SOLるケ Enes g

Chisos A＂sold att＂is now back：POLY PAKS is in the SOLAR
ENERGY business．We were first in many fields ind ENERGY business．We．were first in many fields und
once again we have SHONE：them allt These bue onergy chips were used by the National Aeronautical
Space Agenes Space Agency（NASA）for SPACE \＆TELEPHONIG
COMMI NCATION SATELITES Fored to linload due

1謂数 $\left.\begin{array}{ll|l|l}3 & 1 & 1 \\ H\end{array}\right]$ KII

－Double
sided Outputs－standard board plus strobe
 $\$ 69.95$
WIRED

0

$\$ 888$

4105

Keyboand

-7 LED＂test feature Modes

FAIRCHILD，NATIONAL VOLTAGE REGULATOR PANIC YOUR
CHOICE －T－AMPRATING
－TO－22OORTO．
－POSITIVE OR NE $\begin{array}{lll}3 \text { for } & \text { Cat．No．} 11 E 3449 \text { Positive Voltage，} \\ \mathbf{2 . 7 5} & \text { Cat．No．} & 11 \mathrm{E} 3450 \text { Negative Voltage＊}\end{array}$

FREE
IC or FET's WITH $\$ 5$ \& $\$ 10$ ORDERS. DATA SHEETS WITH MANY ITEMS.

O100ES
ZEMERS ZEMERS
RECTIFIERS
I

mas		21781		2m4121	1/31	$\mathrm{CrSH}^{\text {a }}$	${ }_{510}$	[mas	1 is
	6/81	21811	3/51		$3 / 81$	Cras ${ }^{\circ}$	8500		35
$1 \mathrm{man3} 1$		2 W1513	98	2 m 4124	5/31	cmsi st	stem	Lmuat is	15
1 mens	$1 / 1$	2m131		2ma74	5/81	1104	4/31	Lm3ati 28	
1710		2m130	18	2ma24	css	E181	1/31	Lm3	
11139		2 m 1833	18	2marse	4/31	[182	3/51	(m3)	150
19514*	15/31	210279	24	2 L 4214	5/31	[175	3/31	Lulte	29
1mbez 10		2102722	1	$2 \mathrm{ma302}$	597	mp		Me55	
		21222	5/31			析	3s1	Mess	5050
113354	$4 / 31$	217234	$5 / 31$	$2 \mathrm{ma318}$	31	urfil2	${ }^{4 / 51}$	(1)	
113360	31	2 m 2		2malem	231	uss	1/31	1 m	
	121	242809		2 masal	${ }^{51}$	SE140	+1	(tur2	1
1 mac	12/51	2m7Ms	24	2ma392	5190	SE1002	$4 / 31$	เmız3	/31
inceos	12/51	2m204\%		7 M 416	2751	SE2001	4/31	เm/319	
1 m 8004	12/51	742807*	$5 / 31$	2m416a	${ }^{50} 10$	527002	4/31	(tm) 41	31
174005	1051	${ }^{2123535}$	\$150,	2mas		SEsel		LM34	4/31
1mues	$18 / 51$	$2{ }^{13353}$	6/31	$2 \mathrm{mat5} 1$		SEcme		Lm74	
1 Ma00?	H0/51	210358	4/31	2 mats	2/31	3650]	500	Lmiscm	
		$2 \mathrm{mus5}$	d/31	2 mas		Tish36		mac.	
imerise.	29	$2 \mathrm{mss4}$		2 malal	52.50	TISs		$\mathrm{maCS}^{\text {ch }}$	100
Tmate 10	$2 / 31$	233014	${ }^{6} 181$	2 m 410 C	31	digitat ic'			${ }^{16}$
1mast	23	${ }^{263639 a}$	5/81	2 mm	1/31			- 1 M1	13
1massa	15/8	2 mblal	5/51	2 mson 1	4/31			Lm145890	3/31
1 man 2			$5 / 51$	$2{ }^{2 m s a t y ~}$	4/31			LM2111m	
194538 105231	3/31		5131	2 LSLzO	6/31			$\times \mathrm{AR2}$	53
1652311			4/81			sm>			
105236		$\begin{aligned} & 2 m 394 \\ & 2 \text { musent } \end{aligned}$	4/81			Sthas 1 m			${ }_{4}{ }^{25}$
			31	${ }^{27513 s}$		S5/4	34		
varacto		2133691		2 L 51	8580	SNT		casoss	3
517210		219365		2 ms	251	Sn sh 1790 m			ss
		2131221	5080		$1 / 31$				
DS 14.4 miz	35	231122		2MS30	2/31	LINIEARIC's		RCASATK.	250
F14	\$	213123	4.	${ }^{2 m 5391}$	5158	(4)16		RCS ${ }^{\text {a }}$	
		21036		$2 \mathrm{msal3}$	190	miolam		acalistic.	35
mvali		2 m 3803	/31	2 msen	3/31	cmiotm	${ }^{21}$	Lumese	\%
Mv1629 ${ }^{\text {co }}$		${ }^{213306}$		$2 \mathrm{mss44}$	5030	Impanm	13	RCasse	55
		273911	\$508	2\%S44	1/31	(13004	13	WSS	
mvisct 18		210922	500	MS536	$2 / 31$	(M) ${ }^{\text {ch }}$	0	Mssb	
mvint		2 m	3.28	$2 \mathrm{mS543}$	${ }^{1} 00$	(m 3278 K	13	-Ajousuc	25
mv2201 10		2mass	115	2mbse4	2.48	(M370k 12	13	103a dipe	15

| | | |
| :--- | :--- | :--- | :--- |

ADVA

BOX 4181 ED WOODSIDE Tel. (415) 851.0455

PLANS_Video Pong ...52.00. Laser . . .52.00. Projection TV... $\$ 2.00$. Catalog 50 cents. Technologic. Box 5262 . Orchard Lake. Michigan 48033
POL'CE CODE UNSCRAMBLERS. Fits all scanners. Satis faction Guaranteed. Jim's Two-Way, Box 275. Hot Springs Akk. 71901.
NEW ADJUSTABLE THREE OUTPUT REGULATED POWER SUPPLY, plus 900 parts worth $\$ 400.00$ list. Solid state CARTRIVISION television recorder electronic unit Schematics. parts cross reference. HEATHKIT television transistor substitutions. Power CB radios. MICRO. PROCESSORS. $\$ 17.95$ plus $\$ 3.50$ S\&H, USA. Free Brochure. Master Charge. BankAmericard. Satistaction guaranteed. MADISON ELECTRONICS COMPANY, IN CORPORATED, Box 369, D55. Madison. Alabama 35758.

TANK! MUTIOK OEE YOU CAN PLAY WITH OUR NEW INCREDBLE HAND HELDELECTRONIC GAME SPECIAL INTRODUC TORY
PRICE ONLY: $\$ 805$ SATISFAC TION GUARANTEED INTERFAB, 27963 CABOT RD

YOU WANT TO BUILD IT: WE WANT TO HELP. WE SELL CONSTRUCTION PLANS with an Engineering Service. TELEPHONE: Answering Machines. Speakerphones. Car phones, Phonevision, Touch Button Dialers. TELEVISIONVTR i" Color TV Set, PONG, $\$ 25.00$ Camera, COLOR PROJECTION TV. FBBYIST. Electron Microscope, $\$ 75$ software programmable computer. BROADCAST Specia Elfects Generator, Chroma Key. Audio Board. DA's COURSES: Telephone Engineering $\$ 52.00$. Detective Electronics $\$ 29.50$. IC Enginbering $\$ 65.00$, PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's sub scription to Electronic News Letter AIR MAILED $\$ 100$. Don Brition Enterprises. 6200 Wilshire Bivd, Los Angeles. Calit. 90048.
SEMICONDUCTOR AND PARTS Catalogse, $\$ 1.00$ refundable, from the semiconductor specialists. J \& J Electronics. Box 1437P. Winnipeg. Manitoba. Canada. U.S. Inquiries.
ELECTRONIC ignition Capacitor-Discharge, pointless. Auburn Sparkplugs Wheel Stabilizers. Information 20 cents. Anderson Engineerıng. Epsom. N.H. 03234.
COMPUTER HOBBYISTS! Bargain hunt and sell via ON_LINE. 18 issues/year - $\$ 375$. Free Sample. ON_LINE 24695 Santa Cruz Hwy.. Los Gatos. CA 95030.

MOBILE IGNITION SHIELDING for Hams. CBers. Free literature. Estes Engıneering. 930 Marıne Drive. Por Angeles. Wash. 98362
SURPLUS 'SMART' TERMINALS. components, serious music synthesizer kits, plans, parts. and more. Send SASE for FREE INFO Package. CFR Associates. POBF. Newton N.H. 03858.

CANADA'S electronics bargain centre. Free Catalogue North American and offshore inquiries welcomed. CAN MOS, Box 1690. Peterborough. Canada K9J 7S4.
FREE CATALOG. Calculators $\$ 4.95$ each. Ultrasonic De vices. Digital Thermometers. Strobe Light Kits. Memories Photographic Electronic Flash Units. Rechargeable Bat teries, LEDS, Transistors, IC's. Piezoelectric Crystals. Toroidal Cores. Unique Components. Chaney's. Box 27038. Denver. Celo.. 80227.

CB RADIOS, monitors, crystals. CD ignitions. Southland Box 3591-B. Baytown, Texas 77520 .
FERRIC CHLORIDE ETCHANT. 1/2 galion $\$ 5.50$. Gatlon \$9.50. Postpaid. CIRCOLEX. Box 198. Marcy, N.Y. 13403 DESIGNER MOTOR SET includes $1 / 40,1 / 70,1 / 150,1 / 250$. 1/500 horsepower. 3000 RPM. 115 VAC. $\$ 27$ postpaid CIRCOLEX. Box 198, Marcy, N.Y. 13403.

IS HERE!!!
 The Memory: Concentration! Timing Game

 Send $\$ 100$ frefundeble weth ordert for\qquad visulex P.O. Box 4204P Mountan View, CA 94040

HOMEBREW computer hobbyisis. There is something better than a teletype! IBM Selectric system with 30cps paper tape reader and 18 cps punch. Used. from $\$ 475.00$. Send S.A.S.E. for models and prices to. Abbott \& Lind Inc 1909 N.E. Union Ave., Portland. Oregon 97212.
TESTED construction plans/troubleshooting services CB modulation indicator - \$2.00. super fuzz for gutar $\$ 3.00$ many more. $\$ 1.00$ brings catalogelectronics data sheet. SOLIDTRONICS, Box 218. RD No. 1, Geneva, New York 14456.
B\&K TEST EOUIPMENT. 15% discount. Free shipping Free catalog. Spacetron. Box 84H. Broadview. IL 60153. ELECTRONICS parts. equipment. Send SASE for large list. GROSAR, 4234 Tyler Street, Minneapolis. Minnesota 55421.

WIRE-WRAPPING Wire, bulk or cut and stripped as low as $\$ 10.20$ per 1000! Catalog Free. Electro Products, P.O. Box 78033. Seattle, WA 98108.

A brand new solid-state Technology Kit

from EAIRCHILD

All the parts and instructions you need to build a 5 -function digital clock for your car. Check these outstanding features:

Shows hour and minutes /seconds, month

 and day on command) with quartzcrystal accuracy.High LED drive current for easy viewing even in bright sunlight; phototransistor provides night-time dimming.
2 mA quiescent current for min. battery drain. Compact - mounts within 3 -inch dia. circle. Kit includes all circuit boards, components and complete instructions for assembly. - Only three connections to vehicle required. AVAILABLE NOW - $\$ 40.00$ COMPLETE

$\underset{\substack{\text { MAIL } \\ \text { ORDER A A }}}{ }$

P.O. BOX 2208P . CULVER CITY, CA 90230 Also available over-the-counter at ANCRONA ELECTRONIC STORES - Culver City, CA - 11080 Jefferson Blvd. \square Santa Ana, CA - 1300 E. Edinger Ave. - Tucson, AZ - 4518 E. Broadway \square Portland, OR - 1125 N.E. 82nd Ave. ■ Atlanta, GA 3330 Piedmont Rd., N.E. ■ Vancouver, B.C.Conti Electronics, 5656 Fraser St. CIRCLE no bo on free imformation caro

ANYONE CAN SOLDER WITH-
 DO-IT-YOURSELFERS!
 MESTER
 Let Kester solder aid you in your home repairs or hobbies A radio. TV, model train, jewelry, plumbing, etc. Save money - repair it yourself. Send selt-addressed stamped envelope to Ke for a FREE Copy of "Soldering Simplified".
 KESTER SOLDER / $\begin{gathered}4201 \text { Wrightwood Ave } \\ \text { Chicago, III. } 60639\end{gathered}$

SPECIAL THIS MONTH. IC's Mostek 4008P RAM, Intersil P2401 S.R., $\$ 1.95$ ea. postpaid. Write for free surplus electronics flyer. R. W. Electronics. 3203 North Western Avenue. Chicago. Illinois 60618.

ELECTRONIC COMPONENTS INVENTORY FOR SALE. IC's, capacitors. minature speakers, and more. Write or call for info: Emergency Medical Systems, 1104 Commonweath Ave., Boston. MA 02215. (617) 232-3444
CB CRYSTALS over 20.000 standard and specials in stock from 6.0 MHz to 45.0 MHz . Call or write for information package. Dealer inquiries invited. Roberts Electronics Sales. 7356329 Palms Highway, 29 Palms. Caltfornia 92277. (714) 367-6235.

ELECTRONIC INSTRUMENTS, Test Equipment and Parts sold surplus. Catalog 50 cents, refund with order. MCl , Dept. EE, 420 Park Ave., Perth Amboy. N.J. 08861. HOBBYIST - Kits, Components. LED's. Resistors 5 cenis. Logic probe kit $\$ 5.95$. Stamp for Ilyer. C.C.E., P.O. Box 5. San Ramon, CA 94583.
HELICOPTER. Test your manual dexterity when you operate this truly unique toy. Construction plans include electronics schematics, mechanical and structural lay-outs. Send $\$ 10.00$ to: GRAF-TECH, 20844 Douglas Cres. Langley, B.C., Canada V3A 4C2. U.S. Inquiries.
130 PAGE detailed catalogue of European Electronic Parts many not otherwise available, send $\$ 1$ redeemable to: W. A. Components, 65 Granby Street. Toronto. Ontario. Canada M5B 1M8. U.S. Inquiries welcomed.

World's Lowest IC Prices

circle no. 29 on free information card
IMSAI \& ALTAIR OWNERS! All IMSAI 8080 Computer
Boards Completely PHug.
Compatible With Altair 8800 Interchangeable MPU, Memory and I/O Boards. Full IMSAI 8080/Altair 8800 Bus Compatibility. No Hardware Modifications Required. Just Plug In!

\#	Description	Kıt	Assenl. bled
MPU A	8080 microprocessor board	\$190	\$350
RAM-4A-4	4 K static RAM board	139	279
PROM 4-4	4 K bytes EPROM board	399	579
EXT	Extender Board	39	49
PIC-8	Priority int/clk board	125	238
P10 4-1	One-port parallel l/O board	93	140
PIO 4-4	Fout-part parallel l/O board	156	299
SIO 2-1	One-port serial I/O board	125	235
SIO 2.2	Two-port serial I/O board	156	299
UCRI-1	Cassette recorder 1/O board	59	99

Basic computer includes front panel/control board, 28 amp power supply, MPU board, 6-slo expander board with 2 edge connectors, cabinet, assembler software and complete documentation

$$
\$ 599 \text { kit. } \$ 931 \text { Assembled. }
$$

COMPLETE DOCUMENTATION

Ant Introduc

Vol 1811.
IMSAI 8080 User's Mariual
INTEL 8080 Assembly Language Manual
$\$ 10.00$
NTEL 8080 Asse $\quad 1200$ NTEL 8080 User's Manual
The T.I. TTL Handbook............
Supplement to T.I. TTL Handbook
My Computer Likes Me When I Speak
in BASIC
BASIC-PLUS Language Manual
8080 Programming for Logic Design Pinout Handbook, 54, 7400 Series (Computer Games)

SEND \$1 FOR NEW IMSAI 8080 ILLUSTRATED 16-PAGE CATALOGTODAY!
TERMS: Check, money order. BankAmericard, Master Charge (include all embossed data on card) 25% non refundable deposit on C.O.D. 25% cancellation charge on alt orders. California restdents add 6% sales tax.
Prices, terms and specifications subject to change without notice.

IMSAI

IMS Associates, Inc. 14860 Wicks Blvd. San Leandro, CA 94577 Phone: (415) 483-2093 TWX: 910-366-7287

Poly Pak'f exclusive tan sox

 \#O9-PHOTO ELECTRIC CELLS $\square 10$ CIOA-SLDE VOL CONTROLS M, 51

 \#112-MICRO MINILEDS_($\$ 1.98$
 H119-PRECISION RESISTORS $\square 100 \%$
Cat.No. 11 E 3205.100% REDS \#121-MINI MAGNETS $-\$ 1.88$ ${ }^{C a t . N o .11 E 3168}+126$ Cat.No.11E3226.100 FLECTROOS
$\$ 127$-AX14L ELETROS
\#128-MINIDIP IC'S

Cot.No.11E3245,untested \#130-CRYSTALS \qquad | Cat.No.11E325s,mixed |
| :--- |
| $133-C$ MOSTROS $\square 30$ for |

 \#140-LAMPS. IMDICATOR E141-10 WATT tyENERS
Cat.Na. 11 E329日, 1144-RCA PHONO PLUGS
Cat.No.11E $3293,100 \%$ Rood
\qquad
H258-MAGNIFIED MAN-3s
Y159-MODULAR SWITCHES
7160 -LM 309 KCV. REG

\qquad 163-MINI TRIMPOTS $172-2$ | $\begin{array}{l}\# 184 \\ \text { Cat. No. }\end{array}$ |
| :--- |

NEW 60/600MHZ PORTABLE COUNTER

LEARN Design Techniques. Electronics Design News letter. Digital, linear construction projects design thenry and procedures Annual Subscription $\$ 6.00$. sample copy $\$ 1.00$. Valley West, Box 2119-B. Sunnyvale. CA 94087.

HOME VIDEO RECORDER ONLY $\$ 325 .^{\circ 0}$ - FULL COLOR
New Cartrivision Recorder Top Condition Parts. Service Tape. Programs Record Your Favorite TV Shows Perfect Family Christmas Gitt MEDIA ASSOC., 1470AN 4 th St Dept P San Jose CA 95112 (408) 294 -5450

Quality Electronic Components
Accelerated Discaunt Schedule Saves You Even Morel

BISHOP GRAPHICS Printed Circult Drating

DATA BOOKS			
Tht IC's 592 pages	54.00	Interface IC's 464 pages.	54.00
tinear IC's 957 pages	. 55.00	Volt. Regs. 128 pages	\$3.00
CmOS IC's 256 pages.	\$3.00	Linear Appl. 1,432 pages.	54.00
Transistors 288 pages	\$3.00	tinear Appl. 2, 246 pages.	53.00
Memory IC's 592 pages	\$3.00	Audio, 196 pages	\$3.00

RESISTOR ASSORTMENT $100 / \$ 150$. ma orl'y $5 \% 1 / 8,1 / 4$. $1 / 2$ watt. No Doubles! New. Uncut F. Horvath. 299 Schuyle Avenue. Kearny. New Jersey 07032

A P PRODUCTS ACE'S
 208... $\$ 28.95$ 218... $\$ 46.95 \quad 236 \ldots \$ 79.95$

DIGI-KEY CORPORATION
P.O. Box 677
 Automatic Display of Time \& Date. 6 - Digit (hrs-min. sec), 55 Hıgh. Segment Planar Gas Discharge Dis piay. ' $28 / 30 / 31$ Day Calendar • 24 vals) - 12 or 24 Hr . Operation (Switch Selected) - $115 \mathrm{VAC} / 220 \mathrm{VAC}$ $50 \mathrm{HZ} / 60 \mathrm{HZ}$ (Specify) - Power Failure Indication. PM Indicaion (for 12 Ht Operation) - Low Profile Black Acrylic Plastic Case with Simu ated Rosewood Fully Assembied. Tested \& Guaranteed $\$ 4995$ Ppd In Continental USA CA Res add 6% Sales Tax.
Punzalan-ang electronics, 7 Brooks PI.. Pacifica. CA 94044
CALCULATOR Information leading to increased versatility of your four banger. Send $\$ 1.00$ to R M. W.. Box 60006 . Sunnyvale. California 94088
SALE OF GROUND FAULT INTERRUPTER MODULES Mfgrs. closeout on Selecled Models. Operates your circuit breaker. While supply lasts Kabo Electronics, 123 Bacon Street. Natick, Mass 01760

MICROCOMPUTER $\$ 100$ Uses surplus components Key board. 1K RAM, power supply, LED readouts information \$1. NBL-E Box 1115. Richardson. Texas 75080
LOGIKLAB 151-MULTIFUNGTION DIGITAL TEST IN STRUMENT Combines regulated 5 VDC. \dagger A power supply with wide range square wave pulse and one-shot generator A basic tool for all experimenters at a low $\$ 79.50$ Write for specifications Integral Electronics Corporation. Box 286. Commack. NY 11725
NEW! 500 MHz FREQUENCY COUNTER 8 -digit built-in TCXO $\pm 2 \mathrm{ppm}(\pm .0002 \%)$. Complete kit $\$ 249.95$. Instruction manual alone $\$ 3.00$. Davis Electronics. Dept. C. 636 Sheridan Drive. Tonawanda. NY 14150 (716) 874-5848.

HOBEYSPECIALS

You Test 'Em Save Big Monc

POWER PAK 100 asst (includes Case 503, 1066, 10220

$\begin{array}{lll} & & \\ \text { transistor/ } & \text { T0202) } \\ 100 \text { asst (includes Case I05, I039, 1018, } & \$ 1.99\end{array}$
C. Pak $\quad 100$ asst. (includes 14 \& 16 pin) $\$ 3.50$

RESISTOR PAK 100 asst. (as sorted values)
MOS FET $\quad 10$ asst (many top nos. Case T072) $\quad \$ 0.99$
SCR PAK $\quad 100$ asst. (similar to Cl 103 Series) Case T092. $\$ 4.00$ VR:10-100V, L:400MA. IGT: 200MA
Over 100 Bargains for Hobbyisis. Schools, industry

$\begin{array}{lrr}\text { NEW.TONE ELECTRONICS } & \text { S5.00 Minimum Order } \\ \text { PO BOX } 1738 A \\ \text { (201) } 748-6171 & \text { All Orders Add } \$ 1.00 \text { postage } \\ \text { Bloomfield, NJ } 07003 & \text { N. . Residents add } 5 \% \text { sales tax }\end{array}$

PLANS AND KITS

FANTASTIC - Solderless breadboard kit with all parts for fascinating experiments with Flasher/Oscillator/Siren chip $\$ 1295$ less battery. Catalog 50 cents (refundable). Satis faction Guaranteed Ego. Box 1331-pa. Thousand Oaks California 91360.
FREE KIT Catalog contains Tes: and Experimenter's Equipment Dage Scientific Instruments. Box 1054P, Livermore, CA 94550.
"CBers!" "TREMENDOUS POWER INCREASE" using NEW higher 46' all-directional CB Antenna!! Plan $\$ 2$. (2/\$3). Astrobeam-3. 704 Edwards. Visalia. CA 93277.

ELECTRONIC GAMES buill at home. Five unique plans Instructions \$5.00. Golden Enterprises, Box 1282PE. Glen dale, Arizona 85311.
TREASURE FINDER KIT and Manual $\$ 22.95$ Five transistor circuitry. Manuat only $\$ 3.00$. Shipping $\$ 2.00$. Triangle Electronics. Box 377 . Merrick, New York 11566
ARIES SYNTHESIZER KIT. 80 per cent built Completed parts guaranteed Retail price $\$ 1900$. Will sell for $\$ 1200$ Details: Joseph Tardo. 817 Elmeer Ave.. Metairie, LA 70005 .
COLOR BAR GENERATOR, crystal controlled single digital IC operation, 16 patterns. Build for less than $\$ 40$. Complete, detailed plans $\$ 350$. ARS SYSTEMS. POB 61922P, Sunnyvale, CA 94088 ,
TESLA COIL - 40' SPARKS! Plans \$7.50. Information 75 cents Huntington Electronics. Box 2009-P, Huntington. Conn 06484.

BURGLAR ALARMS

DIALING Unit automatically calls police Immediate delivery $\$ 29.95$. Free literature. S\&S Systems. 5619.C St John. Kansas City. MO 64123 (816) 483-4612.

HIGH FIDELITY

MANUALS for Govi Surplus radios, test sets, scopes. List 50 cents (coin). Books. 7218 Roanne Drive. Washington. D.C. 20021.

JEEPS, TRUCKS. Typically From $\$ 5240$... Automobiles, Boats. Motorcycles, Airplanes, Oscilloscopes, Tools. Clothing. Sports, Camping. Photographic, Electronics Clothing. Sports, Camping, Photographic, Electronics
Equipment ... 200.000 Bid Bargains Nationwide Direct From Government. Low as 2 cents on Dollar! Surplus Catalog and Sales Directory $\$ 1.00$ (refundable first order). National Surplus Center, 240 Eastcass-PEL, Johet, IL 60432.

GOVERNMENT SURPLUS. Buy in your area. How, where Send $\$ 2.00$ Surplus. 30177-PE Headquarters Building. Washington. D.C. 20014
SURPLUS ELECTRONIC EQUIPMENT, government and manufacturers' Grab Box Assortment-diverse, useful new and used paris, assemblies, etc. Carton packed 50 lbs , \$6.00: 100 lbs 1000 FO.B. Lima. Send for BIG Free Catalog! Fair Radio, Box 1105-E, Lima, Ohıo 45802

wANTED

 Terminal, Norwood, MA 02062.
TAPE AND RECORDERS

 Parti, P.O. Box 7. Fulton, CA 95401

- RAYTHEON © AMI - RCA INTERSIL - RCA © INTERASIL

ADVANCED MICROCOMPUTER PRODUCTS - TI © FSC • NSC• GI I C MARKETPLACE

MICROPROCESSORS		GENERAL INSTRUMENTS	PERIPHERAL CIRCUITS 75450 thru 453 \$ 49	QUAD/DUALS/SPECIALS
AMD 8080A	524.95			
AMD 2901	31.00	AY5.1013A Uart . 55.25	1488.1 .45	RC1458 CN 89
AMI 6800 . .	- 24.95	AY51203 Clockchip - $\quad 9.95$	1489A : 1.45	RC 1556 CN
GI CP 1600	- 59.95	AY5.2376 Keyboard encoder . 15.00	7489LS138: 1.50	RC3403AD 2.30
		RO3.2513 Character Generator 10.95	$8420 \mathrm{~N} \times 138$	RC4131 CN 9
6800 SUPPORT DEVICES		Also available organ circuits, telephone, timers, radio, TV, TV games, calculator and printing calculator chips.	$8830 \mathrm{~N}: 1.95$	$\begin{array}{ll}\text { RC4136 D } & 1.90 \\ \end{array}$
S6860 Modem	\$15.95		$8830 \mathrm{~N}: 1.95$	RC4558 CN $\quad .99$
S6820 PIA	11.00		8832 - 1.95	RC4151 CN 6.50
S6810 1 RAM	5.25		$8 \mathrm{8T26B}: \quad 2.95$	XR 2556CP 2.95
S6850 ACIA	9.95		9601 PC : $\quad 9.95$	$\times \mathrm{R} 2240 \mathrm{CP}$
S2350 USRT	7.95	MEMORY DEPARTMENT	$9602 P \mathrm{C}$: 1.25	XR 1310P $\times R \mathrm{Pr} 2206 \mathrm{CP}$ 2.95
S1883 UART	5.00		9614 PC : 1.95	$\begin{array}{ll}\text { XR 2206CP } & 3.95 \\ \times R ~ 2207 C P & 375\end{array}$
S6834. 1 EPROM	22.95	2102APC (500ns.) \$ 1.70	9615 PC - 1.95	$\times \mathrm{R} 2207 \mathrm{CP} \quad 3.75$
S6800 Prog. Manual	15.00	21L02APC (500ns) 189	9616 PC : 4.25	XR 1800 $\quad 2.95$
S6800 Hardware Manual	15.00	2112 PC . . . 3.90	9617 PC : 4.25	XR 567CP 1.95
8080 SUPPORT PRODUCTS			9620PC : 3.50	
8212 I/O Port.	S 3.75	OM8599 P3101 $\begin{aligned} & 475 \\ & 325\end{aligned}$	9621 PC . 3.50	SENSE AMPS
8224 Clock.	5.00	4402 (4k Static) $\quad 12.95$	75107 N . 2.25	7520 N
8216 Driver	4.95		75108 N : 2.25	75234N 20.10
8226 Driver	5.95	AMD9130 \% 13.95	75109 N . 2.05	DH3725CN 2.50
8228 Controller	8.90	AMD9140 : 13.95	$75110 \mathrm{~N} \cdot 2.05$	CLOCK DRIVERS
9551 Prog. Interface	19.95	AMD9140 . . . ${ }^{\text {a }}$	$75207 \mathrm{~N} \cdot 2.05$	MH0026CN 4.50
9555 Prog. Interface	19.95		75208 N - 2.05	

7400 TTL

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P. Box 69, Kensington Station, Brooklyn, New York 11218.

GOLD. Silver, Platinum. Mercury wanted. Highest prices paid by refinery. Ores assayed Free circular Mercury

RENT 4-Track open reel tapes free brochure. Stereo-
1930-1962 Radıo Programs Reels, $\$ 1.00$ Hour! Cassettes. \$1.00 Show! Mammoth Catalog. \$1 25. AM Treasures, Box 192PE. Babylon. N.Y. 11702.
RECORDS_TAPESI Discounts to 73% : all labels; no purchase obligations newsletter; discount dividend certiftcates: 100% guarantees. Free details. Discount Music Club. 650 Main St., Dept 5-1176, New Rochelle, New York N.Y 10801.

RECORDS

RECORD RATERS WANTED! Anyone qualifies. We ship you nationally released LP's to rate. We pay postage and handling. You pay nothing for LP's. All you pay is small membership fee. Applicants accepted "first come basis. Write: E.A.R.S., Inc., Dept PE, Box 10245. 5521 W. Center Street. Milwaukee. Wisconsin 53210 .

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at nome all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC. Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept A. Sacramento. Calif. 95820 .
EARN ELECTRONICS DEGREE by correspondence. Free information bulletin. Grantham, 2000 Stoner Avenue, Los Angeles. Calitornia 90025.
FREE Educational Electronics Catalog. Home study courses. Write to Edukits Workshop. Depariment 718D. Hewlett, N.Y. 11557
FCC License New course material new tow prices. Free home study catalog. Genn Tech, 5540 Hollywood Blvd. Hollywood. CA 90028.
SCORE high on F.C.C. Exams...Over 300 questions and answers. Covers 3rd. 2nd. 1st and even Radar. Third and Second Test. $\$ 14.50$; First Class Test. $\$ 15.00$. All tests. $\$ 2650$ R.E.I. Inc. Box 806. Sarasota. Fla. 33577.
UNIVERSITY DEGREES BY MAIL: Bachelors. Masters, Ph.D's. Free revealing details. Counseling. Box 317-PE11. Tustin. California 92680.
SELF-STUDY CB RADIO REPAIR COURSE THERE'S MONEY TO BE MADE REPAIRING CB RADIOS This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE1196, 531 N. Ann Arbor, Oklahoma City, Oxla 73127.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free' Autosuggestion, Box 24-ZD, Olympia. Washington 98507
GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages, 1465 questions with answers/discussions - covering third, second, first radiotelephone examinations. $\$ 10.70$ postpaid, GSE, 2000 Stoner, Los Angeles, California 90025.

ELECTRONICS (including FCC). Computer Science, Mathematics. Accounting Learn more through ITI's effective correspondence courses. Free information: Intermountain Technical Institute, Box 258. Jerome, Idaho 83338

INTENSIVE 5 week course for Broadcast Engineers FCC First Class ticense. Student rooms at the school Radio Engineering inc. 61 N Pineapple Ave., Sarasota. FL 33577 and 2402 Tidewater Trail. Fredericksburg. VA 2240
RADIO BROADCASTING Become DJ! Gel free tapes records - equipment Start own station! Learn How "Radio!", Box 5516-AK, Walnut Creek. CA 94596 fCC EXAMINATIONS, 532 First. Second. Third Questions Answers. Proven "topical" study method $\$ 7.00$. "Exams" Box 5516-AK. Wainut Creek. CA 94596 LEARN Electronics-Mathematics. Individualized correspondence lessons. Trial $\$ 2.00$ Vinthet Insitute. Box 9447P. Berkeley. CA 94709

TUBES

RADIO \& TV Tubes - 36 cents each. Send for free Catalog Cornell. 4213 University San Diego. Calif 92105. TUBES receiving. tactory boxed. low prices. free price list Transleteronic. Inc.. 1365 39th Street. Brooklyn. NY 11218A. Telephone 212-633-2800.
TUBES: "Oldies". Latest Supplies, components. sche matics Cataiog Free (stamp appreciated). Steinmetz. 7519 PE Maplewood. Hammond. Ind. 46324.

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand instruments catalog Freeport Music. 114 G Mahan St.. W. Babylon. N Y. 11704 30% to 60% DISCOUNT! Any model Guitar. Amp. Drums Free Catalog! Warehouse. PE-6, Box 11449. Ft. Worth Texas 76109.

BUSINESS OPPORTUNITIES

MADE $\$ 40.000 .00$ Year by Mailorder! Helped others make money! Free Proot Torrey. Box $318-\mathrm{NN}$ Ypsilanti Michigan 48197.
FREE CATALOGS Repair air conditioning, refrigeration Tools, supplies. full instructions Dootin. 2016 Canton Dallas, Texas 75201
MAILORDER MILLIONAIRE helps beginners make $\$ 500$ weekty. Free report reveals secret plan! Executive (1K11) 333 North Michigan. Chicago 60601

BULLET ELETEORICS

GET AICH with Secret Law that smashes debts and brings you $\$ 500$ to $\$ 5$ Milion cash. Free report! Credit $4 K 11,333$ North Michigan. Chicago 60601

phighl ELECTRONIC FACTORY

Investment unnecessary, knowledge not required sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today Barta-DK, Box 248, Walnut Creek. CA 94597

FREE SECRET BOOK " 2042 UNIQUE, Proven Enterprises Fabulous "Little Knowns" Work home! Haylings-B Carls bad. Calif 92008
HOW TO MAKE $\$ 2.000$ WEEKLY at home using other people's money Guaranteed. Free Details Richlieu Box 25277. Dept F11. Houston 77005.

STUFF ENVELOPES $\$ 250$ per thousand free supplies rush stamped. addressed envelope to M / N Enterprises Route 1. Box 263E11. Pauls Valley OK 73075

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPP\&RTUN ITIES Report on jobs now open Details FREE. Aviation Employment Information Service. Box 240 E Northport New York 11768

TREASURE FINDERS

TREASURE FINDER locates buried gold silver coins treasures. 6 powerful models. Instan! financing available. Write or call for free catalog. Phone (713) 682-2723 day or night. Relco. Dept. AA20. Box 10839, Houston. Texas DISCOVER true treasure hunting with worid-famous deep detecting mineralmetal detectors from White's! Locate gold. silver, rings. coins artfacts and more! Sold serviced, warehoused world wide. Priced from $\$ 79.50$. Free Catalog! White's Electronics. Dept. PD6Y, 1011 Pleasant Valley Rd. Sweet Home, OR 97386

BOOKS AND MAGAZINES

FREE book prophet Elijan coming betore Christ. Wonderfu bible evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd.. Rocnester. N.Y. 14619.
POPULAR ELECTRONICS INDEXES For 1975 now avai able. Prepared in cooperation with the Editors of "P/E this index contains hundreds of references to product tests. construction projects. circuit tips and theory and is an essential companion to your magazine collection 1975 Edition. $\$ 1.50$ per copy 1972. 1973 and 1974 editions $\$ 1.50$ each, or $\$ 5.50$ tor the set of four (1972 thru 1975). Add $\$.25$ per order for postage and handling. INDEX Box 2228 . Falls Church. Va 22042
FREE CATALOG. Aviation and Space Books Aero Pub lishers, 329PE West Aviation. Fallbrook California 92028. THE AUDIO AMATEUR-A quarterly publication for the serious audio constructor. Free prospectus. The Audio Amateur. Box 176Z. Peterborough. N.H. 03458
CRIMEFIGHTERS! SHOPLIFTING I LOCKPICKING! DEBUGGING! All 3 books for only $\$ 5.00$. Don-Q. 54B-PE Seattle. Washington 98111

EDLIES BARGAIN bonanza ONLY HIGHEST QUALITY PRODUCTS

(HP017) COPPER CLAD BOARDS!
Copper on one side, $1 / 16^{\prime \prime}$ thich. Ex cellent quality for either production or expermental work.
$63 / 8^{\prime \prime} \times 171 / 2^{\prime \prime} \quad \$ 1.19$ ea. $3 / \$ 2.99$
Copper on both sides $1 / 16^{\prime \prime}$ thick Size $12^{\prime \prime} \times 18^{\prime}$
(HP018)
$\$ 1.99$ ea. $3 / \$ 4.99$
(HP134) 8 ROTARY SWITCHES
Some multiple gang. $\quad \$ 1.00$
(HP128) 13 MINIATURE ELEC. trolytic capacitors
$\$ 1.00$
Axial \& upright, popular values.
(HP144) TRANSISTOR
REPAIR KIT
Various parts used to repair $\$ 1.19$ istorized devices.
(HP336) T0.3 TRANSISTOR
SOCKETS
9 V. BUZZER
FOR ALARMS
99 c ea. 6 for $\$ 5$

(HP164) 4 ROLLS OF WIRE $\$ 1.00$ Appiox 25 ft . per roll, 20.28 ga .
(HP140) TAPE RECORDER SPARE PARTS KIT
Parts for repairing most tape secord ers: capacitors, meter pilot lamp. jacks. and MUCH MORE
(HP167) 10 mimiature POTENTIOMETERS
$\$ 1.00$
(HP182) 2 MISC. METERS $\$ 1.00$ Miniature.
(HP156) 60 DISC CAPACITORS
$\$ 1.00$
Asst. from 0001 to 1. most 600 v . Z5U, NPO N750, etc.

SURPLUS TUBES
All guaranteed for
1 full year.
ANY 3 FOR $\$ 1.49$
Acquired from U.S. Defense depots or removed from equipment (new and used). These are laboratory tested and guaranteed for one full year: Most are of such standard makes as RCA, GE, etc.

3A3	6AQ7	6CG7	678
3BN6	6AT6	6 CM 7	6 W4
30G4	6AU6	60E4	8SN7
3KT6	6AV6	6DR7	10EW7
304	6AX4	60W4	12AE7
354	6AX5	6 688	12AL5
4BC5	6AY3	6EM7	12AU7
4BN6	6BA6	6657	12AV6
4BU8	6BG6	6GH8	12 BH 7
5 V 6	6818	6×6	18FW6
6AF4	6BQ6	6 K 11	2516
6AG5	6826	6L86	35EH5
6AL5	6C86	6SN7	36AM3

FLAT WIRE RIBBON

CABLE
Useful for IC connection
4 Conductor 25 ft
$\$ 1.00$
(HP155) TUBE BONANZA! $\$ 1.00$ 20 asst. popular tubes, untested. (HP142) 50 PRECISION RESISTORS
All 1%, lizw and Iw. low and high ohmages.

(HP150) POWER TRANSFORMER

Primary 117 volts. Sec. 1-11.1 volts. Sec. 217.7 volts: Sec. 315.9 volts: Sec. 427.7 volts. Each winding approx. 750 mils . Size $2 / \mathrm{s}^{\prime \prime} \mathrm{H} x$
$2^{\prime \prime} \mathrm{D} \times 31 / \mathrm{g}^{\prime}$ mounting centers. $\$ 1.95$
(HP175) 70 1/2w CARBON
RESISTORS
$\$ 1.00$
Asst. values Some 5\% (HP154) 150 CUT LEAD RESISTORS
Carbon, all leads long enough for soldering.
(HP149) 20 POLYSTYRENE TOP
GRADE CAPACITORS
$\$ 1.00$ \square (HP132) 20 DUAL POTS $\quad \$ 1.00$

111
 24V. C.T. FILAMENT TRANSFORMER $1 / 2 A$. WITH 150V. TAP.
 \square (HP202) 990 ea 6 for $\$ 4.99$
 MONEY BACK GUARANTEE

Terms: Minimum order $\$ 5.00$. Include postage. Either full payment with order or 20% deposit, balance C.0.D.

BONUS
FREE CAPACITOR KIT With Every $\$ 5$ Purchase

WRIU PACKED CATALOG

 VALUE PACKED CATALOG Listing thousands of components, tubes, transistors, IC's, kits, test equipment.DC REGULATED SUPPLIES - \$200. OPERATIONAL AM. PLIFIERS - $\$ 2.00$. Design, build, use and troubleshoot through understanding. An engineer authors. Technical Publications Department, Jaquish Enterprises. Box 875. Troy. NY 12181.
BACK ISSUE MAGAZINES. 1890 to 1976. Free list Send stamped envelope to Everybody's Bookshelt, Dept. PE. 317 West 6 th . Los Angeles. CA 90014.
MICROCOMPUTER Hobbyists - Dictionary of Microcomputer Terminology. Hundreds of definitions. For beginners and experienced \$200 Own Products. Box 16116. Irvine, CA 92713
SOFTWARE BREAKTHROUGH - Basic Software Library over 500 pages Business. Recreational. Engineering, etc programs - plus Basic reference. Christmas special \$39.95 (\$2 handling) or send \$1 for information. Soffware. Box 2096. Ashland VA 23005

FREE! Consumer Service Division Catalog. includes a wide variety of products associated with the special interests of eaders of Ziff-Davis magazınes - PSYCHOLOGY TODAY POPULAR PHOTOGRAPHY. STEREO REVEW POPULAR ELECTRONICS, BOATING. FLYING CAR \& DRIVER. CY CLE. SKIING Send for YOUR free catalog today. Consume Service Div. 595 Broadway. Dept CL. NY. NY 10012

THIS MONTH'S SPECIALS!

			with 3 stare outpu		
$\square 7400$	$\begin{array}{ll}18 \mathrm{c} & \square \\ 7446\end{array}$	$80 ¢$	Plug in reolaceme 200 \& SN74S200		
-7402	184 ${ }^{184447}$		\$3 395 ea		
$\square 7403$	23407473	$49{ }^{\circ}$	2N5449 50V 800 ma		
$\square 7404$	23s $\quad 7474$	496	6/81.00 100 for 9.95		
$\square 7405$	$230 \square 7475$	$85{ }^{\circ}$			
$\square 7406$	$230 \square 747$	539	HEAT SHRINKABL		
$\square 7410$	$230 \sim 7490$	799	TUBING Asst. 2.95		
$\square 7411$	$27 \mathrm{C} \square 7492$	79¢			
$\square 7413$	$40 ¢ \square 7493$	694	25 6" LENGTHS		
$\square 7420$	$230 \square 7495$	794	various sizes \& colors.		
7430	230 ${ }^{3} 74121$	575	IIPIt		T8
- 7440	30 c $\$ 1.12$ \square 74122	579 674	边		$\frac{30}{20}$
LINEARS			\%		\%om
LM309	(5 v la. reg.	\$1.15			
555 Tim		750	2080	2,0	, 010
556 Du	al 555	\$1.00	\%	20	\% 10
$\square 567$ To	ne decoder	\$1.95		2.4	$\frac{2087}{1 / 0}$
$\square 741 \mathrm{com}$	mp. op amp	399			\%n
2513 C	har. gen.	\$5.95	1.6230	\%	${ }^{600}$
CLOCK CH	olt cont osc HIPS WITH DATA	\$4.25	DISCRET	E L	EDS
\square (MM53	14) 6 dig clock	\$4.95			
\square CT7001	Alarm \& Date	\$5.95			
LED'S					

REAL ESTATE

BIG...FREE . CATALOG! 256 pages! Over 2.600 top values coast to coast! UNITED FARM AGENCY, 612-EP. West 47th. Kansas City. MO 64112.

MAGNETS

MAGNETS. All types. Specials-20 disc or 10 bar, or 2 stick or 8 assorted magnets. $\$ 1.00$. Magnets. Box 192-H Randallstown. Maryland 21133.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes-Verlag correspondence. Ilustrated brochure free.
Box $110660 / Z$. D-1000 Berlin 11. Germany.
100 for $\$ 13.95 \quad \begin{array}{ll}125^{\prime \prime} \text { dia. } & \begin{array}{l}\text { informition, fully reconditioned. cal } \\ \text { ibrated, and quaranceed }\end{array} \text { \$47 } 50\end{array}$

KEYBOARD ASSORTMENT

 CALCULATOR A COMPUTER 5 for $\$ 9.95$
ELECTRONIC NOISE" - $\$ 495$ book provides introduc fion to electronic noise theory; includes low noise preamplifier schematics! Details - free catalog - LHC. Box 453 . Littleton. MA 01460
(HP203) RESD RELAYS Price 79. Prices are subject to change without Prices
notice

Standard Dial DESK PHONE

Factory reconditioned. Comes with base, dial \& coil. Less bell. Styles may vary. Wt. 8 Ibs.

1000 Ohms/Volt
Multimeter/Tester Thes TE-184 NEAB4
Color-coded scales, AC and DC Volts: 0-10-250-1000. DC Current: $0-100 \mathrm{~mA} .2^{3 / 1} \times 3^{1 / 2} \times 1^{11}$. Styles may vary. Wt. 3 lbs.

Police Converter Kit
Model EC-2900. Use KB-380 AM radio \& tune in the 152-174 MHz band for police, etc. 2 lbs .

 Tip reaches temperature to 250°. Is $91^{1 / 4^{\prime \prime}}$ long. 117 VAC. $1 / 4 \mathrm{lb}$. Reg. $\$ 3.29$

Olson "X-Air" 2.Way Speaker System

5 " woofer. $55-18.000 \mathrm{~Hz} .10$ watts. 8 ohms. Walnut vinyl finish. $71 / 4$

	REG	SALE
RA-383	17.00	11.99
XM-367	1.49	.59
XM-543	3.00	1.29
AM-529	16.00	11.00
XM-533	2.00	.99
SW.717	4.00	1.79
XM-481	2.29	1.39
PL-234	1.19	.60
PL-235	1.19	.60
PL-236	1.19	.60
PL-237	1.19	.60
PL-238	1.19	.60
PL-249	1.19	.60
PL-274	1.19	.60
XM-414	2.00	1.29
TR-511	1.60	1.19
OI-055	.70	.59
OI-056	1.20	.79
OI-051	1.69	.69
TR-430	1.19	.59
OI-054	1.49	.59
TR-147	3.79	1.29
TR-512	.90	.59
TR-429	1.00	.49
TR-440	1.29	.59
RE-131	1.49	.69
XM-393	6.59	3.99
WW-575	1.89	.99
WR-281	.89	.69
SW-543	2.69	1.79
SW-842	5.79	3.79
SW-417	1.19	.79
SW-646	2.69	1.69
SW-839	1.79	.79
SW-840	2.00	.89
SW-632	2.69	.79
SW-808	1.20	.79

PARTS \& COMPONENTS
8 Track Tape Oech Chassis
4 Digit Mechanical Counter
5 Digit Mechanical Counter
2 watt Solid-State Phono Amp.
5 Digit 117 volt AC Counter
12 Hour Timer, 117 V. AC
6 Oigit 117 V. AC Counter
L.E.O. Pkg. of 5 Small Red 2V. 5 MA
L.E.0. Pkg. of 5 Large Green 2 V. 5 MA
L.E.O. Pkg. of 5 Small Green 2 V. 5 MA
L.E.0. Pkg. of 5 Large Yellow 2V. 5 MA
L.E.0. Pkg. of 5 Small Yellow 2 V . 5 MA
L.E.D. Pkg. of 5 Large Orange 2 V. 5 MA
L.E.O. Pkg. of 5 Large Clear 2 V. 5 MA

7 Seg. L.E.D. Readout. 3"Com. K Reel LM-309K 5 V. IC Regulator TO-3
3 Amp. 50 PIV Diodes Pkg. of 2
3 Amp. 400 PIV Diodes Pkg. of 2
1 Amp. 200 PIV 50 Piece Kit
P Channel FET 2N5460
18 Amp. 200 PIV Diode IN3493R
Medium Power Transistor 258474
Cadmium Photo Cells. 500 Ohm. Pkg. 2
N Channel FET 2N3819
40 Watt NPN Transistor, Pkg. of 4
709 IC Hi-Gain OP-Amp
PC Board Kit - Make Your 0wn
PC Wire Kit, 150 Ft .
Magnet Wire, 28 Ga. 375 Ft.
4POT Plug-In Relay, 117 V. AC Coil
16 Step Relay, 1100 hm Coil, 4500 hm Reset
SPOT 5A. Plug.In Relay 117 V. AC
OPST Power Relay 25 A. Cont. 117 V. Coil
Heavy Outy Solenoid, 117 V. AC
Miniature Solenoid, $1 / z^{\prime \prime}$ Trav. 117 V. AC
Reed Switch with Mag. Pkg. 10
SPOT Key Switch 3A. Contacts

OLSON ELECTRONICS, 250 S . FORGE ST DEPT IR. AKRON, OHIO 44327

NAME

ADDRESS
CITY \qquad STATE

ZIP \qquad

- SEND OLSON CATALOG
- FREE PA CATALOG
- SHIP THE FOLLOWING

HOW MANY	STOCK NUMBER	DESCRIPTION	PRICE EACH	TOTAL

ENCLOSE POSTAGE AND SALES TAX

$\times 9 \frac{1}{4} \times 41 / 2^{\prime \prime} .4 \mathrm{lbs}$.

TELEDYNE Deluxe
Stereo Amplifier

'Phase Power' 4-Channel Synthesizer. Large VU Meters. 2036 K Hz . Response. $181 / 4 \times 4^{3 / 4} \times$ 11/4". 117 VAC. 15 Ibs.

Cassette Tape

Quality blank Cassette tapes $===$ from Olson. $1 / 2 \mathrm{lb}$.
 TA-929, Pkg. of $3.90 \mathrm{~min} \ldots 1.29$ Rembrant
Personal Security
xM-482
$S H \begin{array}{ll}\text { Reg. } \\ \text { S4 }\end{array}$

- Compact Size

Pushbutton for piercing, policelike siren. Solid state. w/case. 1 lb . XM-483, Heavy Duty, Reg. $\$ 9$. . . 55 XM-484, Professional, Reg. $\$ 11$ \$8

Features push-to-talk switch. Max sen. -42 dB. Case, mtg. clip $\&$ batt. incl. Styles may vary. Wt. 2 lbs.

PARTS \& COMPONENTS		REG.	SALE
1/4 RPM Timing Motor, 117 V. AC	M0-277	. 49	30
1 RPM Timing Motor, 117 V. AC	M0-289	. 49	30
8 RPM Reversible Motor, 117 V. AC	M0-393	2.50	99
Tubular Capacitor Kit, 100 Pcs.	CC. 229	2.00	1.29
Ceramic Capacitor Kit, 100 Pcs.	CC-211	1.49	1.19
100 Ceramic Capacitors, values clearly marked	CC-210	1.29	80
50 Asst. Electrolytic Capacitors, Axial/Radial	CD-407	5.00	2.00
100 Asstd. Carbon Resistors, $1 / 4-1 / 2 \cdot 1$ Watt Sizes	RR-077	1.79	1.00
5 Asstd. SCR's, 15 V . and Up, $100 \mathrm{MA} \mathrm{to} \mathrm{1.6} \mathrm{AMP}$	TR-298	1.79	1.00
500 mw Zener Diodes, 4.3-6.3-9.1-12 \& 15 Volts	01.052	1.00	50
3 Unijunction Transistors, $40 \mathrm{~V} .375 \mathrm{MW} .40 \mathrm{~N} / \mathrm{S}$	TR-441	1.29	50
L.E.O. Pkg. of 5 Red, 2 Volt - 5 Ma	PL-233	1.19	60
Ulitra-Mini L.E.0. Pkg. of 5 Red, 2 V. 5 MA	PL-289	1.29	70
II Calculator Key Board, 20 Keys	XM-523	5.00	1.60
$31 / 2$ Digit Liquid Crystal Display	XM-371	10.00	3.00
Oarlington Amp. Transistor Kit, 6 Transistors	TR-507	2.00	1.50
Photo Transistor, 5 Pieces - Epoxy Type	TR-502	1.00	. 60
6 Amp. Full Wave Bridge Rectifier 50 PIV	D1-057	1.20	. 80
6 Amp. Full Wave Bridge Rectifier 400 PIV	01-058	1.90	1.00
PNP Transistor Assortment Pkg. of 10	TR-445	1.00	60
NPN Transistor Assortment Pkg. of 10	TR-446	1.00	60
7-Segment L.E.D. Display . 3 ln . Green	XM. 341	2.69	1.00
7.Segment L.E.O. Display 3 ln . Red	XM-370	2.00	1.00
7-Segment L.E.O. Display 3 In. Yellow	XM-342	2.49	1.00
Micro Type Switch Kit. 7 As sorted	SW-430	1.89	1.49
Knob Kit. 25 Pcs. Assorted	KN-030	1.00	. 69
Hobby Motor Kit, 3-6 V. OC, Pkg. 5	M0-333	59	49

TOOLS - SPECIAL AND PRACTICAL

Wire Wrap Tool, 30 Ga Wire on . 025 Post
IC Insertion Extraction Tool
IC Plug-in Test Adapter
12 Volt OC Soldering Iron, Pencil Tip
Tuner/Contact Cleaner, 6 0z. Can
Oymo Label Maker. Uses $3 / 6$ In. Tape
Oouble Face Foam Tape $3 / 4 \times 52$ In.

TL-845	2.60	2.00
TL-846	1.25	1.00
TE-396	2.60	2.00
TL-793	$\mathbf{4 . 0 0}$	3.00
TL-459	1.49	.80
TL-752	1.89	.90
TA.903	1.00	.80
TA. 907	.69	.50
TA-608	2.99	2.00
HF-160	3.00	1.30

COROING TAPE ANO ACCESSORIES
8 Track 40 Min. Blank
10 in. Reel 3600 Ft. 1 Mil Mylar Tape TA-608 $2.99 \quad 2.00$

8 Track Head Demagnetizer, 12 Volt DC

INSTALLATION

CB-AUTO STEREO
SECURITY ALL OLSON
STORES COAST-TO-COAST

> FREE
> PA CATALOG

The BIGGEST "BRIGHTEST" BESTEST
6 Digit LED Alarm Clock \& Elapsed Timer Kit available at this value anywhere
$\$ 17.95$ Complete

- 6.Farrchild $50^{\prime \prime}$ LED Displays
- 0.60 Min Elapsed Jimer
- 5375AB Nat. Clock Chip
- 12 Hr 60 cycle oper
" "Freeze" Feature on any Mode
- AC or DC oper
- 24 Hr Alarm w/snooze
- Field Tested over 6 months

The kit contains PC Boards. Xformer, and EVERY Part Required for the Clock and all options except Cabinet or Crystal Time Base for D C. Oper If desired, see below

AC/DC - ALARM Clock Kit - 12/24 Hr. $\begin{array}{ccc}\begin{array}{c}\text { quantities } \\ \text { of } 1.5\end{array} & \$ 6.50 & \begin{array}{c}\text { quantities of } \\ \mathbf{6 8 ~ u p}\end{array}\end{array}$

- Your choice of Display Colors - Red. Green. Blue. Amber
- Displays Hrs \& Min. Switch to Min \& Secs on Command
- AM/PM indication
- Field Tested for 6 months

The kit will include a 5316 National Clock Chip. 4 Flourescent Display tubes, all electronic components, switches, controis \& complete instructions. specs. etc for clock and all optional Features Other parts required or il desired are as follows

- PC Board. Drilled \& Silk Screened for Clock \& all options
- Xformer (for AC oper) - $\$ 100$ App (SCR output) timer kit - $\$ 2.00$
- Speaker Alarm Kit - $\$ 2.00 \quad$ Count Down (turn off) timer kit - $\$ 2.00$

HOBB-Y-TRONIX, INC.

Box 511, Edison, N.J. 08817
Orders must include Check. No COD's. Add $\$ 1.00$ handling for orders under $\$ 2500 \mathrm{~N} . \mathrm{J}$. residents - add 5\% tax

FREE INFORMAIION CARO

Let us know 8 weeks in advance so that y won't miss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print
new address in space provided. Also include new address in space provided. Also label whenever you write concerning your subscription. It helps us serve you promptly.
Write to: P.O. Box 2772, Boulder, CO 80323, giving the following information:
\square Change address only \square Extend my subscription ENTER NEW SUBSCRIPTION

NEW ADDRESS HERE 0190

2102 L . Acou (GODBOUS $\$ 1.95$ TERMS: Add 50¢ handling to orders under $\$ 10$. Cal res add tax. No COD, to place $\begin{array}{ll}450 \text { ns guaranteed, } & \$ 10 \text {. Cal res add tax. No COD, to place } \\ \text { full temp range. } & \text { BankAmericard or Mastercharge orders }\end{array}$ SPECIALS
 9601 prec. 74 H 40 fast $7440, \ldots 3 / \$ 1.00$ $7 / \$ 1.00$ MMS262 2 K dynamic RAM... $\$ 1.25$ FPQ3725 Quad PNP transistor array, type 2 N 3725, in DIP FoUR quad arrays

 Musicians: Build a um phaser offers extremely low distortion and noise. With contour, speed, and level controls.
Includes PC board, sockets for ICs, regulator
for stable for stable operation, pots, all components, and data. Less connectors, case, two 9 V batteries
Postpaid in USA. See our £lyer for other kits Resistor Asst. No 1 is back: Still S3.95

TO220 HEAT SNKS 4/\$1

 mix of values. ALSO AVAILABLE:$12:$ over 300 half-watt resistor
formed for PC insertion $\$ 1.95$
SEND FOR FREE FLYER\&
CIRCIE ho 35 On free information caro

For fasier service	USE	ZIP
CODE	and	
all		

POWER-TRANSISTORS HICH-VOLT. TV. TYPE

SIIICON Gefieral LINEAR IC's

Silicon General's complete line of linear IC's is now easily available to you from Ancrona.
These original parts have been manufactured and tested by Silicon General to meet.rigid industrial and military quality standards. Nearly all are directly interchangeable with National, Fairchild, T.I., RCA, Signetics and other manufacturers' devices. Of course, all of Silicon

General's proprietary devices are available, including the new SG 1524/3524 Regulating Pulse Width Modulator, the IC that has made switching regulator design both practical and economical. Order these premium quality IC's by phone or mail from our Los Angeles office, or

				1-24 25up 100up REGULATING PULSE WIDTH MODULATORS				$\begin{aligned} & \text { SG3502N } \\ & \text { POSI } \end{aligned}$	$\begin{aligned} & 1-24 \\ & 5.90 \end{aligned}$	$\begin{aligned} & 25 \mathrm{up} 100 \mathrm{up} \\ & 4.70 \quad 3.90 \\ & \text { T POWER } \end{aligned}$					
				SPO											
	1.24	25 up	100 up					SG1524J	20.00	15.55	13.50	SG109T	12.50	10.00	8.00
SG100T	7.00	5.55	4.65	SG2524 J	16.45	12.85	10.75	SG109K	13.50	11.00	9.00				
SG200T	6.00	4.80	4.00	SG3524J	10.15	8.10	6.75	SG209T	10.75	8.55	7.20				
SG300T	2.70	2.15	1.80	\%	AL TR	KING	H	SG209K	12.75	10.20	8.55				
SG300N	2.30	1.85	1.52	SG1501AT	10.15	8.10	6.75	SG309T	1.80	1.40	1.10				
SG105T	7.00	5.55	4.68	SG1501AJ	11.65	9.30	7.75	SG309K	2.25	1.90	1.50				
SG205T	6.00	4.80	3.20	SG2501AT	8.65	6.90	5.75	SG123K	49.20	39.00	32.45				
SG205N	4.20	2.15	1.75	SG2501AJ	10.15	8.10	6.75	SG223K	25.00	19.55	16.55				
SG305T	1.45	1.15	. 96	SG3501AT	5.95	4.75	3.95	SG323K	9.00	7.20	6.00				
SG305AT	2.00	1.60	1.33	SG3501AJ	7.45	5.95	4.95	SG7805T	11.50	9.75	7.50				
SG305N	1.45	1.15	. 96	SG3501AN	5.90	4.70	3.90	SG7805CT	1.80	1.40	1.10				
SG305M	1.20	. 95	. 80	SG1568T	6.40	5.50	4.45	SG7805K	13.00	10.50	8.50				
SG723T	3.15	2.55	2.10	SG1568J	6.70	5.30	4.55	SG7805CK	2.25	1.90	1.50				
SG723J	5.25	4.15	3.48	SG1468T	2.90	2.35	1.90	SG7806T	11.50	9.75	7.50				
SG723CJ	2.50	1.97	1.65	SG1468N	2.90	2.35	1.90	SG7806CT	1.80	1.40	1.10				
SG723CT	1.25	. 98	. 83	SG1468J	3.50	2.90	2.35	SG7806K	13.00	10.50	8.50				
SG723CN	1.08	. 90	. 75	SG4501	2.95	2.35	1.95	SG7806CK	2.25	1.90	1.50				
NEGA	VE AD	USTABL		SG4501N	2.95	2.35	1.95	SG7808T	11.50	9.75	7.50				
SG104T	12.00	9.50	8.00	SG4501 J	4.45	3.55	2.95	SG7808CT	1.80	1.40	1.10				
SG204T	9.85	7.70	6.55	\boldsymbol{r}	JJUSTA	E		SG7808K	13.00	10.50	8.50				
SG304T	3.25	2.58	2.15	DUA	L TRA	KING		SG7808CK	2.25	1.90	1.50				
SG1511T	4.05	3.00	2.65	SG1502J	11.65	9.30	7.75	SG7812T	11.50	9.75	7.50				
SG1511J	6.50	4.95	3.90	SG2502J	10.15	8.10	6.75	SG7812CT	1.80	1.40	1.10				
SG3511T	3.85	2.75	2.35	SG2502N	8.65	6.90	5.75	SG7812K	13.00	10.50	8.50				
SG3511J	5.95	4.00	3.40	SG3502J	7.45	5.95	4.95	SG7812CK	2.25	1.90	1.50				

Popular Flectronics

NOVEMBER 1976
ADVERTISERS INDEX

RE
SERV
1
2
3
31
6
7
8
80
9
10
11
15
12
13
16

READER	
SERVICENO. ADVERTISER	

```
A P Products Incorporated
A V R Electronics ...
Ace Electronics Parts ---------------------}12
Acoustic Fiber Sound Systems, Inc. ---.----- 11
Adva Electronics
Advanced Microcomputer Products
Altaj Electronics
Ancrona Corp.
Ancrona Corp.
Aries, Inc.
Associated Electronics
Avanti Research & Development, Inc.
B & K Precision products of Dynasca
Boman Industries
Browning Laboratories, Inc
Bullet Electronics
Burstein-Applebee
```

CREI Capitol Radio Engineering
Institute
Cleveland Institute of Electronics $70,71,72,73$
Cobra Product of Dynascan SECOND COVER
Delta Electronics Co.
Delta Products, Inc.
Digi-Key Corporation
Dixie Hi-Fidelity Wholesalers
3 EICO
Edlie Electronics, Inc.
Edmund Scientific Co.
Edmund Scientific Co.
Electronic Book Club
Electronic Distributors, Inc.
Eltron
Empire Scientific Corp.
47th Street Photo
Fluke
Godbout Electronics, Bill
Grantham School of Engineering
Greenlee tool Co.
Hal Communications Corp.
Hal Communications Corp.
Handic USA Inc.
Handic USA Inc
Heath Company

Hobb-y-tronix
Hufco -------
IMS Associates, Inc.
IMS Associate
IIlinois Audio
30
1,121
Illinois Audios, Inc. -----------1, 121
Illinois Audio - 109
International Electronics Unlimited - - - 125
JS\&A National Sales Group
James
James
126, 127
Johnson Co., E. F.
Lafayette Radio Electronics ---------- -- -- 9
McIntosh Laboratory, Inc.
MIIS
Non-Linear Systems
OK Machine \& Tool Corporation
Olson Electronics

54 55 55

Optoelectronics Inc
PAIA Electronics

Poly Paks
Poly Paks
PolyMorphic Systems
PolyMorphic
Processor Technology co
-----------------107 11
SAE
SBE, Inc,
S.D. Sases Co.

Schober Organ Corp., The

Solid State Sales ----1.-1
Stereo Corp of America
Stereo Corp. of America
Technics by Panasonic
Telex Communications, Inc
x Communicatıons, Inc.

Ungar
United Audio Products, Inc.
United Audio Products, Inc.
Vernitron Corporation
Wawasee Electronics
Weatheralert
Yamatia International Corporation
CLASSIFIED ADVERTISING
$112,114,120,122,124,125,128,133$

HOME ENTERTAINMENT FILMS

$\overline{\text { START A NEW HOBBY . . COLLECT SUPER } 8 \text { MAGNETIC }}$ SOUND FILMS. Runs the gamut from "Where Jesus Walked" (Biblical Judea and Galilee) to "Bye-Bye Birdie" with Ann-Margaret and Dick Van Dyck; "Queen Boxer" (Judy Lee-Karate) - each 400 Super 8 Color Magnetıc (Judy Lee-Karate) - each 400 Super 8 Color Magnetic
Sound - only $\$ 46.95$ PPD (limited offer - you save $\$ 3.75$ each). "Member of the Wedding". (Ethe Waters); "Christmas Carol" (Alistair Sims), "Dirigible" (A Frank Capra Feature) - each 400° B\&W Magnetıc Sound Film, $\$ 36.95$ (save $\$ 3.75$ each). Or, make selection from Columbia Pictures or Castle catalogs. $\$ 0.50$ each: or Sportite order form, \$0.25 (coins, stamps, no checks, pls). SPORTorder form, $\$ 0.25$ (coins, stamps, no checks, pls)
LITE, Elect-11. Box $24-500$. Speedway, IN 46224.

INVENTIONS WANTED

INVENTORS; Manufacturers Need New Products. Free "Recommended Procedure," by a creative fee-based invention service company. Washington Inventors Service, 422-T Washington Building, Washington. D. C. 20005.

RUBBER STAMPS

RUBBER ADDRESS STAMPS. Free Catalog. 45 type styles. Jackson's. Dept. K. Brownsville Rd., Mt. Vernon, 111.62864.

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Weslern Electric concept, Cata$\log 50$ cents, Box 1654W, Costa Mesa, California 92626.

HYPNOTISM

SLEEP learming. Hypnotic method. 92% effective. Details tree. ASR Foundation, Box 23429EG, Fort Lauderdale,
Florida 33307 .
FREE Hypnotism. Self-Hypnosis. Sleep Learn ng Catalog! Drawer H400, Ruidoso, New Mexico 88345.
AMAZING self-hypnosis record releases iantastic mental power. Instant results! Free trial. Write: Forum (AA11), 333 North Michigan, Chicago 60601.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog yeasts, equipment Semplex, Box 12276P, Minneapolis, Minn, 55412.

Friect cemweremer DIVISION CATALOG

Includes a wide variety of products associated with the special interests of readers of Ziff-Davis maga zines-Psychology Today, Popular Photography, Stereo Review, Popular Electronics, Boating, Flying, Car and Driver, Cycle, Skiing.

Send for your free catalog today. Consumer Service Div., 595 Broadway, N.Y. N.Y. 10012

ARIES brought you the first calculator kit, and the first digital clock kit . . . and now brings you thrce of the most innovative electronic kits ever made. The System 300 Electronic Music Synthesizer kit is the most advanced in the world today, regardless of price. The AR-781 is a space-age beauty for any decor. And the wholly solid state AR-830 does the work of a $\$ 400.00$ tape memory unit.

WARNING . . . it you're interested in a music synthesizer, don't make a move until you see our catalog first. It's more like a handbook than a catalog, with hundreds of in-depth photographs and descriptions to explain electronic music principles, and to show equipment to do the job. ARIES now offers a complete complement of modules, keyboards, and cases, matched to the most rigorous professional standards. Starter systems priced as low as \$395.00.

A clear, ruby-red cylinder shows off all six digits of this modern calendar clock. Easy-to-read numbers show the hours, minutes, and seconds, as well as the month
 and day every ten secondsRed LED 7 -segment numerals are $0.33^{\prime \prime}$ high, in a sturdy cylinder 2-1/2" in diameter and 4-3/4" long, with finished hardwood ends. Time and calendar are controlled by 60 Hz line frequency, with a 12^{-} month movement. Separate time and calendar adjustments. Includes all the components, PC boards, housing, and instructions. Shipping weight $2 \mathrm{lbs}_{\text {, }}$ AR-781 Clock Kit
$\$ 34.50$
Add finger-touch operation to your old-fashioned dial telephone with an ARIES AR-830 Automatic Digital Telephone Dialer. This has the same layout and con-
 venience as Ma Bell, plus other features she doesn't offer yet. For instance . . AR-830 always remembers the last number you dialed, in case the line was busy and you want to try again later. Not only that, but the Dialer's memory can store as many as ten of your favorite numbers for une-touch dialing. AR-830 uses standard dialing and muting contacts; consult local tariffs before connecting. Sh. wt. 2 lbs . AR-830 Dialer Kit .

ARIES INC.
119 Foster Street
Peabody, Mass., 01960
(617) $532 \cdot 0450$

Circle no 9 on free imformation caro

[^3]INDEX, Box 2228, Falls Church, Va., 22042

LIVE IN THE WORLD OF TOMORROW ... TODAY!

And our free 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit... for every member of the tamily.

A BETTER LIFE STARTS MERE

WORLD'S SMALLEST
RECHARGEABLE CALCULATOR!
Small but mighty! 8 -digit. 4 -function electronic calculator does everything big ones do even has automatic \% key. . for only $\$ 19.95$ Take it anywhere Fits in your pocket-2/s size of cigarette pack. $31 / 2$ oz dynamo features floating decimal. constant key, lead zero depression. more! In
 cludes plug-in rechargeable Ni-Cad battery pack. $2 \times 3^{1 / 2} x^{9 / 16}$ " with plenty of room for most fingers. Another Edmund first with advanced technology
Stock No. 1945AV

SAVE 50\%!

8 X 20 MONOCULAR

Fantastic bargain! Top quality Spy Scope, a $\$ 30$ value. now offered at $\$ 14.95$! Our special pur.
 chase saves you 50% and you get 100% coated
optics: 393 ft . field of view. Only 2 oz -stores optics: 393 rt . field of view. Only 2 oz --stores in pocket, purse. glove compartment. Fits in your palm-peer into hard.to see places without letting subject know you're spying Great for birders and race fans incls. neck strap. leathetette $31_{2}=11 / 2=2$ case. Beautiful brushed metal finish.
Buy iwo -one for a gift! Buy two -one for a gift!

KNOW YOUR
 ALPHA FROM THETA!

For greater relaxation. concentration. montor your Alpha Theta brainwaves w dudible or visible signal on Biosone II. Has 3 teedback modes, out puts to monitor logic signal. filter sel feedback.

broad sensitivity control; other professional feats. of $\$ 200$-up units. Easily operated 4 lb . portable has total branwave monitoring capability! 29 ver . batteries.
No. $1668\left(9^{1 / 2} \cdot 5^{5} \cdot-4 \frac{1}{6}\right)$
\$149.95 Ppd.
LOW COST STARTERS' UNIT (PORTABLE)
No. $71,809 \mathrm{AV}\left(4^{1 / 2} \cdot 23 / 4 \cdot 4^{1 / 4}\right)$.
$\$ 55.00 \mathrm{Pp}$.

FUEL MISER RECLAIMS HEAT
Save your 40° o wasted heat to warm a basement. garage or rec room at no extra cost' Instead of going "up the chimney" it goes where you want it Remove part of furnace exhaust pipe. slip Heat Exchanger in. At 125 fan autonat forces clean arr through unit which heats to over 200 F., can be ducted to 20 ft from unit 110 AC Insi
No. 19, 194AV (5/8" DIA.) Shpg. 17 lb. . $\$ 121.00$ FOB
No. 19, 195AV ($6^{\circ} \mathrm{DIA}$) Shpg. 17 lb $\$ 121.00 \mathrm{FOB}$
No. 19, 198AV (7" DIA.) Shpg. 17 lb

GREAT FOR CHRISTMAS GIFTS

NEW! THE UNIQUE EDMUND

41/4" NEWTONIAN RICHEST FIELD REFLECTOR TELESCOPE

Clearest. brightest. most spectacular wide angle views of moon, stars, comets, galaxies ever - and porpable' See heavenly wonders! Sets up in seconds (precollimated. ready to use). Pop the eyepiece in, focus - and 2 ing! $3^{1} 2$ field of view gives you more stars in a single view than any ot her type scope! Bright. crisp. Cinely resolved images. For sky gazing and earth gazing! Take it anywhere (only 17 10 lb .). easily use it over your shoulder. (has adjustable carrying strap). in your lap. on a tripod; rotate the spherical base on its own mount for use on a table. car hood fop quality optical system teaturs $4,4,4$ parabolic primary mirror ($1 / 3$ wave. 17 Fift - it's even bright red!
. $\$ 129.95$ Ppd.
Spcl. Introductory Price! Goes to $\$ 149.95$ Oec. 25,1976

WORLD'S SMALLEST
HI-FI ($65 / 8 \times 41 / 2 \times 6^{\prime \prime}$)
Now. the gorgeous sound of true hi-fi w/a receive \& sep. 8-ohm speaker $\left(6^{5 / 6} \times 11 \times 6^{\prime \prime}\right)$ small enough. den. kitchen. office. shop! Great for doctors. den list s. Its wide-range rich sound compares favorably to any sfereo at its price, but it s not it's a monophonic FM radio into which you can plug a cassette. etc (record. play back)! Hi-fi system has Baxandall type controls (ab. 12 dB boost or cut © $100 \mathrm{~Hz} \& 10 \mathrm{KHz}$). BeaL.iful!
No. 72,262AV ... (120V AC)
$\$ 127.50 \mathrm{Ppd}$

18 HOURS' WEATHER

 AT A GLANCEGlance at our Weather Wizard and know what to expect for the next $8-18 \mathrm{hrs}$. Be up to $80-85 \%$ accurate (better than most pro"s)! Based on gram WW for your location once, then forecasting is automatic. Roofmounted windvane sends pulses to indoor control unit programmed w/75 yps. data; inter. prets on 3 panel lights (Unsettled; Fair: Change). Who needs TV! Incls vane. support. 60 ft . of cable, $5 \times 4 \frac{1}{2} \times 3 \frac{1}{2}$ control unit, instruc.
No. $72,200 \mathrm{AV}$ ($110 \mathrm{~V}, 60 \mathrm{CYCLES}$)
. $\$ 99.95$ Ppd.

HANDY VERSATILE METAL DETECTOR

Not only ideal for searching out treasure. metal or mineral (its pitch tells you which), this hand held (802 : $12 y$ long) high quality 2 oscillator BFO bloodhound at locat ing hidden pipes, other metal at home or work. Self-contained 6 oval search coil and compact size let you get where ordinary detectors won"t. has extension hande it may make you rich. can save lives (concealed weapons lette bombs) and work

No. 72.255AV (9V BATT. NOT INCL)
\$39.95 Ppd.

164 PAGES • MORE THAN 4500 UNUSUALL
 COMPLETE \& MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO
300 Edscorp Building, Barrington, N.J. 08007 You must be satisfied or retur any purchase in 30 days for fult

Name

Address
City

What's rare earth doing in Pickering's new

OA-7's? Making the greatest sound in the slenderest headphones...That's What!

The new Dual CS721 is the ultimate expression of the princ fles that determine the performance σ^{-}tonearmis ard drive systers．Its straight－line， tupalar terearm puots ho－izentally and verrically within a true，icur－point gimbal，thus naintaining dy namic balance in cll planes．

Another Dual innovation－Vert cal Tcnearm Control－zortributes，in yet arother way to fine tracking performanze．is vernier height zd ustment ove

The new Dual CS721 represents everything coriceser ineim

 an 8 mm range para lels thefonearm to the rezord with any
cartricge．T selim－ Dual has learned ot somitide spocefs ontenise needed if 810 there are seven tonearn sきttings overhang ta cueing height and cescent speed－all serving $t=0$－timize t^{-}－acking performanze iv th cny cartridge．

The direct－drive system of the CS721 is of comparable presis on．－hz elec－ t－onically－canirallec，DC，brushiess rrotor is the smoothest ard quietest ever mace．A major sontribution to this end result is an exclusive Dual feat ure：two stacked col layers，each consisting cf eight Eoreless bifila＝enzund coils，that cver ap to achieve $=$ gapless rotatinc mognミ－iz field．This el m nates tre suc－ cessive maznetic pulses typical of all other motor designs．

Although the CS721 is Dual＇s most expers ve model，it is hardly the most expensive turntable ava lable today When you make cor patisons as we believe yau should，vou may well consider the C5721 considerably underpriced．

Uniled Audio Products

12C So．Eolunbus Ave．，At Yernor，N．Y． 10553
三xel ssiso L．S．Disribution $\&$ gency．For Dual ？

Stra ght－line fusular tohearm provides maximum forsional rigidity and Ipuest effective mass．Wita the same effect we tonearm leng th cnd tangential trasking error，any other st ape nust either sacrifice $\begin{aligned} \text { gidity } \text { or increase mass．}\end{aligned}$

The Eual CS：21．jingleplay direct－ driveturntabe with f 1 y auto matic startond stcp． plus continuous repsat．Featores incluce：10\％elec－ tronic pitch contral， illum rated strobes，dynam ical ybalanced 12 plat－er，apti－ ska－irg sepa－ate y calitrated lo^{-} con cal，ellip－iccland＇long－contact＇ styl ．－ess then $£ 200$ ，neluding base ard cover． Dual E5704．Sirri ar，exzept seni－automatic Mechanical senser locates lead－in grocve of $12^{\prime \prime}$ and $7^{\prime \prime}$ recards；to eorm lifts and mator shuts off at enc of p ar．Less than $\$ 3^{\circ} G$ ．．r cluding base and cover．

Countertalarce corta ns two mechanical filters wned to absc－b ene－gy in res znance－ freajencyranges of tonecrm cartridge system and chassis to avoid tezelback．

[^4]
[^0]: Scientific Audio Electronics, Inc. PE11/76 P.O. Box 60271 . Terminal Annex

 Los Angeles, California 90060
 Please send me the reasons (including available literature) why the SAE 2400 Professional Amplifier is the " $\$ 750$ Alternative.

 NAME
 ADDRESS
 CITY \qquad STATE ZIP CIRCLE NO 62 ON FREE INFORMATIOM CARO

[^1]: **Buenos Aires, Argentina Montreal, Canada

[^2]: *Reception quality, East Coast (West Coast) location: G-good, F-fair, P-poor
 ** Not intended for North America, but receivable satistactorily.
 Days refer to local date in target area.

[^3]: POPULAR ELEC-
 Pypular Electronics TRONICS INDEX for
 1975 now available. Prepared in cooperation with the Editors of "P/E," this index contains hundreds of references to product INIEX 1975 tests, construction projects, circuit tips and theory and is an essential companion to your magazine collection. 1975 Edition, $\$ 1.50$ per copy. 1972, 73 , and 74 editions also still available at $\$ 1.50$ each, or $\$ 5.50$ for the set of four (1972, thru 1975). Add $\$.25$ per order for postage and handiing.

[^4]: Cther Dual terntables：Fully automztic，sincte－play／wulti－plas： 1225 ，less than $\$ 140$ ；1226，less trar 5170 ；

