FOR HI-FI BUFFS

OHOII TO WATCH STEREO COMPONENTS BY SSS
-HIRSCH-HOUGK LABS EXAMIIES:

SENNHEISER'S WIRELESS STEREO HEADPHONES TEAC'S PORTABLE STEREO CASSETTE DECK

FOR COMMUNICATION HOBBYISTS

-MORSE CODE ALPHANUMERIC READOUT ON TV -TESTING KENWOOD'S DIEATAL HAW TRANSGEIVER

HANDS-ON REPORT FOR EXPERIMENTERS

-THE NEW "NO CAWERA" PG BOARID KITS

VOICE COMMUNICATIONS WITH

 COMPUTERS! ...speech recognition device substitutes for keyboard

The 40-channel Cobra 29XLR. From the sleek brushed chrome face to the matte black housing, it's a beauty. But its beauty is more than skin deep. Because inside, this CB has the guts to pack a powerful punch.

The illuminated 3-in-l meter tells you exactly how much power you're pushing out. And pulling in. It also measures the system's efficiency with an SWR check. In short, this Cobra's meter lets you keep an eye on your ears.

The Digital Channel Selector shows you the channel you're on in large LED numerals that can be read clearly in any light. There's also switchable noise blanking to reject short-pulse noise other systems can't block. The built-in power of DynaMike Plus. Automatic noise limiting
and Delta Tuning for clearer reception.
And the added protection of Cobra's nationwide network of Authorized Service Centers with factory-trained technicians to help you with installation, service and advice

The Cobra 29XLR. It has 40 channels. And it has what it takes to improve communications by punching through loud and clear on every one of them. That's the beauty of it

Punches through loud and clear.

Cobra Communications Products DYNASCAN CORPORATION

 6460 W Cortand St., Chicago, Ilinois 60635 CIRCLE NO 15 ON FREE INFORMATION CARD
PUNCH AND BEAUTY

Software Design
for Microprocessors.
378 pages only $\$ 12.95 . *$

Basic Electricity and DC Circuits. 1,016 pages only \$19.95.*

Both of these new books get down to basics - present clear, readable discussions. Loaded with examples, references, graphs, tables. Also, data sheets, bibliography and appendices. You're encouraged tolearn -and apply your knowledge to practicalsituations.
Soft ware Design for Microprocessors. Helps you understand the hardware/software relationship of microprocessors. A convenient, standalone text, suitable for both firsttime users of microprocessors and the technically advanced.

Beginning chapters deal with basic terms, basic machine architecture, instructions and addressing. Successive chapters treat the process of generating software, defining required support and documentation, and designing a simple machine to program a problem. Sample problems at the conclusion allow you to apply your new knowledge.

Basic Electricity and DC Circuits. A self-teaching course designed to enable you to predict and control the behavior of most basic and complex DC circuits. Each lesson begins with a listing of objectives - what new skills and knowledge you should have upon successful completion. The text within each chapter is arranged so that you progress at your own pace, with answers to commonly asked questions presented at key points.

Examples show you how to use the principles of basic DC electricity as

Texas Instruments Learning Center.

1 Mail checks and money orders to: $\mathrm{P} 0.8 \mathrm{Box} 3640, \mathrm{M} / \mathrm{S} 84$, Dallas. Texas 75285 . Postage paid. Add state and local taxes where applicable 1
Mall company purchase orders to: P. 0 Box 5012, M/S 84 Dallas, Texas 75222. Postage and taxes will be added to your invoice.
Please send me__copies of (LCB 1891) Sotware Design for Microprecessors at $\$ 1295^{\circ}$ per copy.-copers of Basic Electricity and DC Cricuits at $\$ 19.95^{\circ}$ per copy.
they are taught. You'll analyze basic DC circuit schematics and find yourself experimenting with your own designs. Plus, a quiz included at the end of each lesson allows you to gauge your progress.

If you're a hobbyist, student, or simply interested in broadening your knowledge of electronics, these books are must additions to your library. Use the coupon below to order your copies
 today.

PE-2

MAY 1977 VOLUME 11, NUMBER 5

FEATURE ARTICLES

NEW "NO-CAMERA" PRINTED CIRCUIT BOARD METHODS A. A. Mangieri 55
How to make etching and drilling guides directly from printed matter.HOW TO MATCH HI-FI COMPONENTS66
Price tags serve as a good guide to apportioning your money.
MAY-AUGUST ENGLISH-LANGUAGE SW BROADCASTS Richard E. Wood 101
CONSTRUCTION ARTICLES
INTRODUCING SPEECHLAB-THE FIRST HOBBYIST VOCAL INTERFACE FOR A COMPUTER
Horace Enea and John Reykjalin 43
Now your computer can respond to vocal commands
BUILD A LEGAL IN-FLIGHT AIRLINE RECEIVER Cass R. Lewart61
Hear pilot-to-control conversations with low-cost Varactor-diode crystal set.
MORSE CODE AUTOMATIC READOUT ON A TV SCREEN George R. Steber 64Interface the Morse-A-Letter to a "TV Typewriter.
COLUMNS
STEREO SCENE Ralph Hodges 18
The Decontamination Squad
Lou Garner 76
VMOS-MOSFET's With Muscle
EXPERIMENTER'S CORNER Forrest M. Mims 86
Using LED's as Light Detectors.
HOBBY SCENE John J. McVeigh 88
COMPUTER BITS Hal Chamberlin 96
Debugging Aids.
CB SCENE Ray Newhall 98
Uncle Charlie Is Snowed-In.
DX LISTENING Glenn Hauser 100
JULIAN HIRSCH AUDIO REPORTS
HOW HEADPHONES ARE TESTED 26
SENNHEISER MODEL HDI 434 INFRARED HEADPHONES 32
TEAC MODEL PC-10 CASSETTE RECORDER 36
ELECTRONIC PRODUCT TEST REPORTS
KENWOOD MODEL TS-820 TRANSCEIVER 90
MURA MODEL PRX-100 "PRM" CB MICROPHONE 93
B\&K PRECISION MODEL 1471B OSCILLOSCOPE 94
DEPARTMENTS
EDITORIAL Art Salsberg 4
The CB Crossover Point 6LETTERS
NEW PRODUCTS 12
NEW LITERATURE 17
NEWS HIGHLIGHTS 40

POPULAR ELECTRONICS, May 1977, Volume 11, Number 5, Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S., $\$ 9.98$; U.S. Possessions and Canada, $\$ 12.98$; all other countries $\$ 14.98$ (cash orders only, payable in U.S. currency). Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class mail by the Post Office Department, Ottawa, Canada, and for payment of postage in cash

POPULAR ELECTRONICS including ELECTRONICS WORLD, Trade Mark Registered Indexed in the Reader's Guide to Periodical Literature.

COPYRIGHT 1977 BY ZIFF-OAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Zitt-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography, Skiing and Stereo Review

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions, Ziff-Davis Publishing Co., One Park Ave., New York, NY 10016.

Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by retum postage and will be handled with reasonable care; however, publisher assumes no responsibility for relum or safety of manuscripts, art work, or models.
Forms 3579 and all subscriplion correspondence: POPULAR ELECTRONICS. Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing, if possible, an address label from a recent issue.

Publishier
ARTHUR P. SALSBERG Edtoral Director
LESLIE SOLOMON Trechnical Editon
JOHN R. RIGGS Managing Edtor
IVAN BERGER Semor Editor
ALEXANDER W. BURAWA Features Editor
EDWARD I. BUXBAUM Int Durector
JOHN McVEIGH Ansoctate Editor
ANDRE DUZANT Tridinucal Illistrator
PATRICIA GIRRIER-BROWN Production Editor

Contributing Editors HAL CHAMBERLIN, LOU GARNER GLENN HAUSER, JULIAN HIRSCH RALPH HODGES, FORREST MIMS RAY NEWHALL, WILFRED SCHERER

Editorial

THE CB CROSSOVER POINT

I felt the pulse of the CB industry this past February at the second annual Personal Communications 2-Way Radio Show, where some 380 manufacturers exhibited their newest CB transceivers, antennas and accessories. It was strong, though beating a little slower than in the recent past. Clearly, the crossover sales point from 23-channel CB transceivers to 40-channel units had not yet been reached in February, although indications are that it will have happened by the time you read this.

A transition period is, of course, a natural state of events, especially when the old and the new are running side by side, with the former sold at spectacular discounts. What we were watching at the PC-77 trade show was "tomorrow," while "today" was having its last hurrah in the marketplace. Making my way through the exhibit hall, I became aware of a few 40 -channel misconceptions shared by some dealers and distributors-and perhaps passed on to their customers. Two of them were: 40-channel CB transceivers only produce two watts of r-f output power and they exhibit inferior modulation. Both are fallacious, of course!

Now, really, there is simply no reason why, given good design, expanding a band of frequencies a paltry 150 kHz should influence r-f power output or modulation capability. Sure, a warmed-over 23-channel design that exhibited poor automatic modulation limiting to begin with won't be able to hack it, though passing FCC type-acceptance tests. (These are actually being performed now. The "good old days" of passing tests by submitting paper results to the FCC are over, thankfully). However, we've tested enough new 40 -channel rigs to verify that they can provide as much r-f carrier output power and modulation throughout the new, expanded band as the 23's. Moreover, the new rigs are decidedly less prone to overmodulate owing to improved modulation limiters. This means fewer cases of voice distortion and, more important, less splatter to interfere with adjacent channel communication.

Interestingly, the foregoing points were emphasized by a major CB radio manufacturer at a Show press meeting. Furthermore, a spokeman analyzed the signal strength required at the receiver for a standard 10-dB signal-to-noise ratio in a typical urban environment to illuminate another advantage for 40 -channel rigs. Assuming a typical receiver sensitivity of 0.5 microvolts for $10-\mathrm{dB}(\mathrm{S}+\mathrm{N}) / \mathrm{N}$, about 14.5 microvolts of additional signal strength is required for the current 23 channels to make the standard due to interference from on-channel users; 15 microvolts more at tho receiver is needed to combat adjacent-channel interference, for a total of 30 microvolts. In contrast, the upper new channels require only a total of 1.5 microvolts to receive an intelligible communication, the manufacturer estimated.

As a consequence of the above, the communication range with the upper new channels is estimated to be four times that of the lower 23 channels (30 microvolts $/ 1.5$ microvolts $=20$ times $=26 \mathrm{~dB}$). Typical area coverage on the new channels (actually, 80% of the upper new ones, since some are still within splatter distance of the original 23) would, therefore, be enlarged about 16 times.

For CB'ers trying to get through during rush-hour traffic, the upper 17's on a 40-channel AM rig might be considered to simulate the effectiveness of single sideband on one of the less popular lower 23 channels. So, though 23-channel transceivers are tremendous bargains (and hard to resist), right now, 40 channels is the way to go to fully appreciate the utility of the citizens band.

One Call.
 Your Mallory distributor's got them all.

Take the search and wait out of your electronic parts finding.

Go straight to your Mallory distributor, by phone or in person.

Get to know the con'/enience and economy of simplified single-source buying. To
deliver exactly what you want in parts, quality, and quantity. Immediately from stock on hand, or in most cases within 24 hours from the factory.

Your Mallory distributor goes all out for his Number 1 VIP . . you. Get in touch with him soon. Mallory Distributor Products Company, a division of P. R. Mallory \& Co. Inc., Box 1284, Indianapolis, Indiana 46206. (317) 856-3731.

[^0]
ABOUT PC ARTWORK

I recently tried, for the first time, GC Electronics' new Lift-lt direct-art pc kit and have a few questions I hope you will answer. First, if I
attempled to use the Lift-lt master to directly expose positive-resist-treated pc blanks, would it work? I fear that the black ink will not have the density required to block out light. Secondly, if the Lift-It artwork would work, what are chances for Popular Electronics to print the pc etching and drilling guides as negative artwork so that one-timers like me could use commonly available negative resist without having to reverse the exposure mask? -Warren D. White, Berkeley, CA.

We have used the Lift-lt artwork directly to expose presensitized pc blanks with a high degree of success. During our experience, we have not had one instance where the ink was not dense enough to exclude light. (For detailed information about the Lift-It kit and

> About damping, bi-amping and the CrownDC-300A

Because of inertia, speaker transducers over-react to amplifier signals. This can be minimized by speaker design, but it can't be eliminated entirely. In the process, the transducers feed spurious signals back into the signal processing units.

A good amplifier is designed to control excessive transducer excursions by reducing - and absorbing the unwanted signals generated by such excursions. It's part of a process audio engineers call damping. The Crown DC-300A power amplifier, in addition to its other well-known specifications, has a damping factor of 700, which means it should easily control speaker excursions. (A rating of 400 is considered good.)

But in a standard hi-fi stereo system, the DC-300A can't do all the damping it was designed for. The sound is a little muddier than it should be.

Why? Because the speaker crossovers - with their own impedance get in the way. The amp is not directly
hooked up to the transducers.
Solution? Move the crossovers back between amp and pre-amp. Add another DC-300A and bi-amp the speakers.

The DC-300A now damps excessive transducer excursions efficiently. Which can mean crisper, cleaner sound.

Each transducer now has 155 watts of power available to drive it, and is limited only by its own characteristics. Which can mean more sound pressure.

There can also be less disiortion, since harmonics of low-frequency distortion cannot feed to high-frequency transducers through the crossover.

Are you interested in how to use all the power and performance of a Crown DC-300A amplifier? Write. We'll send you information about the Crown VFX-2A, a two-channel varia-ble-frequency crossover that makes bi-amping easy. Plus reprints of some articles that may help you decide if bi-amping is for you.

CrownVFX-2A

another direct-ant kit from Datak, see the feature article in this issue.)

As for printing our pc etching and drilling guides as negative artwork, we have anticipated you. As you can see, beginning in this issue, our pc artwork is now printed in the negative format. We have taken this step because a recent survey revealed that almost all spray-on photoresist available to the hobbyist is the negative variety (although GC Electronics does sell a positive photo-resist). By printing our pc artwork in negative format, readers can save at least one step in the board fabrication process.

CONSTANT VERSUS VARIABLE

I believe that the explanation of dual-slope analog-to-digital conversion on page 37 of the "Multimeters For Electronics" story (February 1977) is incorrect. The T_{1} to T_{2} time period is a constant-a specific number of oscillator pulses-not a variable as stated in the text. -David E. Purdy, Philadelphia, PA

You're correct. It's the T_{2} to T_{3} time that's the variable.

SIMPLE TO SIMPLER

The SCR trigger circuit for possible use in protecting CB and other electronic equipment in automobiles shown in the January 1977 CB Scene can be further simplified when applied to CB transceivers. This is particularly true in the case where the rig has a threeprong plug for the 12 -volt line and one of the prongs is not used. In my circuit (see below),

note the elimination of the relay. Wire \#3 goes to the unused prong of the plug, while the unused contact in the mating female connector goes to ground. Removal of the power cable or physical removal of the CB rig or tape recorder from the vehicle will trigger the vehicle's horn. From actual experience, I can attest that the circuit has paid for itself in value of equipment protected. -Robert B. McKinley, Jr., Tinton Falls, NJ.

AMPLIFIER DIAGRAMS SWITCHED

In my article "Classes of Audio Amplifiers" (March 1977), the diagrams for Figs. 5 and 6 have been interchanged. The captions are correct.-Len Feldman.

SILENCER PC BOARDS AVAILABLE

Although no source was given for pc boards in my article "Build a Silencer" (March 1977, p 57), they are available from me at the following address: Ronald Miles, Rte. 1, Box 190, Rustburg, VA 24588 . Price is $\$ 4.60$ per board. Virginia residents, add 4% sales tax.

Almost half of the successful TV servicemen have home study training and with them, it's NRI 2 to 1. It's a fact! Among men actually making their living repairing TV and audio equipment, more have taken training from NRI than any other home study school. More than twice as many!

A national survey*, performed by an independent research organization, showed that the pros named NRI most often as a recommended school and as the first choice by far among those who had taken home study courses from any school. Why? Perhaps NRI's 62 -year record with over a million students . . . the solid training and value built into every NRI course . . . and the designed-forlearning equipment originated by NRI provide the answer. But send for your free NRI catalog and decide for yourself.

25" Diagonal Color TV... And 4-channel Quadraphonic Stereo.

As a part of NRI's Master Course in color TV/Audio servicing, you build a $25^{\prime \prime}$ diagonal solid state color TV with console cabinet. As you build it, you perform stage-by-stage experiments designed to give you actual bench experience. And you get a Quadraphonic system with 4 speakers. NRI's instruments are a cut above the average, including a transistorized volt ohmmeter, triggered

Two Famous Educators... NRI and McGraw-Hill.

NRI is a part of McGraw-Hill, world's largest publishers of educational material. Together, they give you the kind of training that's geared for success practical know-how aimed at giving you a real shot at a better job or a business of your own. You learn at home at your convenience, with "bite-size" lessons that ease learning and speed comprehension. Kits designed to give you practical bench experience also become first-class professional instruments you'll use in your work.
sweep 5" oscilloscope, CMOS digital frequency counter and digital integrated circuit color TV pattern generator. They're top professional quality, designed to give you years of reliable service. You can pay hundreds of dollars more for a similar course and not get a nickel's worth extra in training and equipment.
*Summary of survey results upon request. courses. Lesson plans, equipment, and career opportunities are fully described. Check card for information on G.I. benefits. No obligation, no salesman will call. Mail today and see for yourself why the pros select NRI two to one!

If card is missing, write, Washington, D.C. 20016

Free Catalog... No Salesman Will Call.

Send the postage-paid card for our free color catalog showing details on all NRI electronics

FI
 New Products

Adaitional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

PRESIDENT 40-CHANNEL CB TRANSCEIVER

The "Zachary T" 40-channel CB AM basestation transceiver from President Electronics features a new automatic speech compression circuit and a PLL in the frequency synthesizing system. The compressor is designed to provide consistent high-level modulation, while the PLL circuit is said to provide

better on-frequency response than is possible with a conventional synthesizer. Selectivity is rated at -65 dB . Controls include volume, r-f and mike gain, anl (with manual override) and PA/CB switches. Also on the front panel is an $S / r-1$ meter. Back-panel jacks provide for both ac and dc power input, antenna connection, and hookup of PA and extemal speakers. The earphone and mike jacks are up front. The transceiver also features a LED numeric channel display. \$249.95.

CIMCLE MO. $\%$ ON RAEE IMFORMTIOM CARD

SANSUI HIGH-POWER STEREO RECEIVER

Sansui's high-power Model 9090DB AM/ stereo FM receiver is rated at 125 watts / channel (8 ohms) minimum rms at no more than 0.1% THD. The power amplifier is directcoupled throughout, with fully complementary parallel push-pull OCL circuitry. Twin power meters provide convenient output power monitoring. Built in is a Dolby noise reduction system that can be used for both encoding and decoding for full flexibility. The tuner section features a PLL IC multiplex demodulator

that provides improved stereo separation on FM. FM sensitivity is rated at $9.8 \mathrm{dBf}(1.7 \mu \mathrm{~V})$ and capture ratio and altemate-channel selectivity are rated at 1.5 and 85 dB , respectively. A front-panel microphone jack, with its own level control, permits mixing any selected source with the microphone signal for use in PA systems. $\$ 750$.

```
CIRCLE WO. 93 ON RREX IMFOPMMTHON CARO
```


CIBCO CB PERFORMANCE MONITOR

A constant CB performance indicator that features light-emitting diodes for easy monitoring of SWR and transmitter output power is available from CiBco Division of Southwest Factories, Inc. The Model CPi II in-line monitor employs a green LED that indicates trans-

mission output of 3.5 watts or more. A red LED comes on when reflected power excoeds a 1.8:1 SWR. (The red LED doubles as a speech modulation indicator.) Indications are produced automatically by pressing the microphone switch. In case of trouble, the red LED flashes an immediate warning. Hence, shorting or theft of the antenna is immediately evident, preventing damage to the output transistors in a CB transmitter. The monitor comes with a PL259 connector for easy installation between transceiver and antenna. \$19.95. Address: CiBco Div., Southwest Factories, Inc., 3801 Willow Springs, Oklahoma City, OK 73112.

MICRO-ACOUSTICS PHONO CARTRIDGE

The Model 282 -e stereo phono cartridge from Micro-Acoustics has a unique design that is said to enable it to track warped records 25% better than competitive cartridges. It is also said to be immune to the effects of cable ca-

pacitance and not to be tonearm sensitive. The cartridge is fitted with a 0.002×0.007 mil elliptical diamond stylus. Frequency response is rated at 5 to $20,000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$, tracking force range at 0.75 to 1.5 grams, separation at nominally 25 dB at 1000 Hz (15 dB at $10,000 \mathrm{~Hz}$), and output voltage at 3.5 $\mathrm{mV} /$ channel at $5 \mathrm{~cm} / \mathrm{s}$ peak recorded velocity. Load requirements are not critical and can
be anywhere in the range from 10,000 to 100,000 ohms. Similarly, cable capacity is not critical at 100 to 1500 pF .

AMI MICROCOMPUTER KIT

American Microsystems, Inc., is offering its S6800 $\mu \mathrm{P}$ in kit form for computer hobbyists. The top-of-the-line Model EVK 200 kit contains all necessary components for complete construction, including a preprogrammed ROM for system monitor and general software utilities. Only a power supply and suitable I/O devices are required for operation. Level-control circuity, baud-rate generation (50 to 9600 baud), and adjustability are built into the basic board. The CPU is the AMI S6800 eight-bit chip, with an instruction execution of $2 \mu \mathrm{~s}$ and memory access time of 575 ns . The system provides four available interrupt vectors and three types of DMA. A $1-\mathrm{MHz}$ clock provides a $100-\mu \mathrm{s}$ and $1-\mathrm{ms}$ timer. Also on-board are the I/O interfaces and an EPROM programmer (EPROM device included). \$495. (Also available fully assembled as Model EVK 300 for $\$ 765$.)

CIRCLE NO. \% ON PREE INFORMATION CARO

AVR LOGIC PROBE

The Catch-A-Pulse logic probe from AVR is compatible with RTL, DTL, TTL, CMOS, MOS, and with microprocessors using $3.5-\mathrm{V}$ to $15-\mathrm{V}$ power supplies. Thresholds are automatically programmed for multi-logic-family operation. The memory circuit for single or

multi-pulse detection resets automatically. LED's indicate high and low levels, open-circuit logic, and pulses. Designed for carrying in a shirt poscket, the probe has a protective cap for the top, and a removable coiled cord. \$24.95.

> CIRCLE NO. S\% ON FPEE INFOPMATION CARD

KOSS ELECTROSTATIC STEREOPHONES

The Model ESP/10 electrostatic stereo headphones made by Koss plug into an electrostatic energizer unit that can be operated on as little as 25 watts of continuous power per channel. The energizer, which accommodates two sets of headphones, has semi-

Old Fashion VABCOF

 in the

 in the

 Tradition

 Tradition}

Our 6800 computer system represents the best value available today, with no sacrifice in performance.

I would like to explain why this is true. The most basic reason is that the 6800 is a simpler, more elegant machine. The 6800 architecture is memory oriented rather than bus oriented as are the older 8008,8080 and $Z-80$ type processors. This is an important difference. It results in a computer that is far easier to program on the more basic machine language and assembly language levels. It also results in a far simplerbus structure. The 6800 uses the SS-50 bus which has only half the connections needed in the old S. 100 (IMSAI/MITS) bus system. If you don't think this makes a difference, take a look at the mother boards used in both systems-compare them. The SS-50 system has wide, low impedance 0.1 lines with good heavy, easily replaced Molex connectors. The S-100 bus, on the other hand,has a very fine hair-like lines that must be small enough to pass between pins on a 100 contact edge connector. l'll give you one guess which is the most reliable and noise free. As for cost-well any of
you who have purchased extra connectors for your S-100 machines know what kind of money this can run into. The 6800 is supplied with all mother board connectors. No extras, or options iike memory, or connectors for the mother board are needed in our 6800 system.

The 6800 is not beautiful, but "Oh Boy" is it functional. That plain black box is strong and it has an annodized finish. This is the hardest, toughest finish you can put on aluminum. Most others use paint, or other less expensive finishes. The 6800 does not have a pretty front panel with lights and multicolor switches. This is because the lights and switches are not only expensive, and unnecessary, but also a great big pain to use. We don't crank up the 6800; we use an electric starter-a monitor ROM called Mikbug. He automatically does all the loading for you without any time wasting switch flopping. So in the 6800 system you don't buy something expensive (the console) that you will probably want to stop using as soon as you can get your hands on a PROM board and a good monitor.

That's another thing. Mikbug ${ }^{(8)}$ is a standard Motorola part. It is used in many systems and supported by the Motorola software library in addition to our own extensive collection of programs. It is not an orphan like many monitor systems that are unique to the manufacturer using them and which can only run software provided by that manufacturer. Check the program articles in Byte, Interface and Kilobaud. You will find that almost all 6800 programs are written for systems using a Mikbug ${ }^{(1)}$ monitor. Guess how useful these are if you have some off-brand monitor in your computer.
The 6800 will never win any beauty prizes. It is like the Model ' T " and the DC-3 not pretty, but beautiful in function. It is simple, easy to use and maintain and does its job in the most reliable and economical way possible. What more could you want?

Mikbug ${ }^{\left({ }^{(}\right)}$is a registered trademark of Motorola Ine.

Computer System
with serial interface and 4,096 words of memory \$395.00

\square Enclosed is \$395 for my SwTPC Computer Kit	\square Send Data
\square or BAC	
NAME	
ADDRESS	
CITY STATE	$21 P$
Southwest Technical Products Corp., Box 32040, Sa	tonio, Texas 7

EICO's 30 Years Experience
Assures More Electronics Value For Your Money!

TEST INSTRUMENTS

EICO 388 COLOR BAR GENERATOR
Focket-size battery operated with LED Ind| cator MOS LSI IC provides 9 digitally con trolled stable patterns. Crystal controlled chroma and timing oscillators. Simply con nects to TV's VHF antenna terminals. Wired \$89.95
EICO 390 FUNCTION/SWEEP GENERATOR Outstanding features include: Sine, Square Triangle Waveforms; 2 Hz to 200 kHz frequency range, Linear and Log Sweep; Cal ibrated attenuator VCO for External Frequency Control: BNC Front Panel Output.

Wired \$169.95

EICOCRAFT ${ }^{\circ}$ IC KITS

EC-5000
SCA
ADAPTOR KIT
ONLY \$12.95

Convert your FM radio or receiver to pick up the official FCC-licensed background music service (SCA). IC decoder/adaptor permits hearing uninterrupted commercial-free music broadcast by many FM stations (For personal non-commercial use only)
IC PROJECT KITS NOW AVAILABLE
[C-5100 ESP Tester \$10.95
EC-5200 "Decision Maker" $\$ 9.95$
EC - 5400 Stereo Fower Amplifier $\$ 10.95$
EC-5500 Sterco Pic-Amp $\$ 9.95$
EC-5600 Electronic Lock $\$ 11.95$
E.C-5700 Universal Power Amp $\$ 8.95$

BURGLAR/FIRE ALARMS

SS-500 BURGLAR/FIRE ALARM SYSTEM Professional Security System designed for easy do-lt-yourself installation. Features EICO FC 100 Control Center with AC/DC automatic transfer to battery operation. Completo system includes Installation Handbook. Add additional sensors, bells, to suit your own needs. \$159.95 SD- 75 BATTERY OPERATED FIRE/SMOKE ALARM
Ionization-type detector gives earliest possible fire warning. Mounts directly to ceiling with ? screws. "Beeps" when battery needs replace ment. U L. listed.

CB ACCESSORIES

EICO 700 CB FREQUENCY COUNTER
Compact in-line mobile frequency counter for the serious CBer/Hobbyist. Operates automatically on transmit. 10 Hz to 30 MHz . $\$ 99.95$
EICO LR-3 "LONG RANGER" INLINE PREAMP
Bring in those distant/weak signals Boosts receiver sensitivity up to 20 db Automatic transmit/recerve switching $\mathbf{\$ 2 9 . 9 5}$
EICO CM-2 "CHANNEL MONITOR" AUTO-SWITCH
Automatically silences car radio when $C B$ call is received/transmitted
$\mathbf{\$ 2 9 . 9 5}$

HOBBY/AUTOMOTIVE

BW-300 ALPHA BRAINWAVE MONITOR
Lowest cost. battery operated professional Biofeedback System. IC Circuit design features an active filter and 5 -microvolt sensitivity Complete with stethescopic earphone. electrode headband and instructions

Kit $\$ 34.95$ Wired $\$ 59.95$
885 "TUNEMASTER" ENGINE ANALYZER Automatic all-in-one test bench for all 6 or 12 volt ignitions-conventional or transistorized. Giant $6^{\prime \prime}$ meter with 6 color coded scales. Com plete with tune-up and trouble-shooting manual Wired $\$ 59.95$

FREE EICO CATALOG

The more you know about electronics, the more you'll appreciate EICO. Every EICO prod uct is designed to provide you with the most pleasure and quality performance for you money The fact that more than 3 million EICO products are in use attests to their quality and performance
'BUILD-IT-YOURSELF" and save up to 50% with our famous electronic kits

For the latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send $50 \hat{4}$ for fast first class mail service

EICO-283 Malta Street, Brooklyn, N.Y. 11207

Leadership in creative
clectronics since 1945
peak-indicating level meters and features an automatic overload device that protects against excessive audio input levels. The LED indicator glows when the protection circuit is activated and shuts off the energizer Once the protection circuit is activated, it keeps the energizer shut off for 3 to 4 sec onds after the excessive level drops to a safe value. $\$ 300$

CIRCLE NO 97 ON PREE INFORMATION CARO

MAYCOM CB MOBILE ANTENNAS IN COLOR

Riotous Red, Lily White, Big Blue, Sand Tan, Cat Black, Down Brown, Grimly Gray, Machine Green, and Yellin' Yellow are the colors of a new line of CB "Colorwhip" mobile antennas from MayCom. The antennas and mounts can be purchased in matching or mixed colors to complement or coordinate with the vehicles on which they are installed The patented fiberglass whips come in 4 and 6^{\prime} (1.2 and 1.8 m) lengths with top-loaded, helically wound radiators, plastic sheaths, and chrome-plated brass ferrules Prices are $\$ 10.25$ and $\$ 11.25$, respectively No-drilling Model GW-7 trunk mounts are also available in color tor $\$ 13.45$.

$$
\text { CIRCLE NO } 98 \text { ON FfRE INFORMATION CARD }
$$

HEATH HIGH-BAND SCANNING RECEIVER

The Model GR-1131 high-band scanner from the Heath Company monitors any combination of eight channels in the "emergency-services" public-safety band between 146 and 174 MHz , including those from the U.S

Weather Service. The receiver scans each channel, stopping at any that is active, and resumes scanning after the transmission. A priority channel feature checks the channel in which the user is most interested every four seconds and automatically switches to it if there is activity there. Features include channel lockout buttons, lighted channel indicators, automatic/manual channel selection, and a four-pole crystal filter for good selectivity. For crowded areas, an optional eight-pole filter is available. Also featured are a built-in telescoping antenna and provision for an external antenna. Ac or 12 -volt dc operation $\$ 89.95$.
circle mo 90 on rree information caro

AMP HAND WIRE STRIPPER

AMP Special Industries Hand Wire Stripper employs front-feed stripping action to make short wires easy to strip. A built-in sensor

THE TERMNAL YOU ASKED FOR

* 16 LINES - 64 or 32 CHARACTERS PER LINE
* Scrolling on either of two pages of display
* 128 CHARACTER ASCII SET - UPPER AND lower CASE LETTERS
* PRINTS CONTROL CHARACTERS IF DESIRED
* FULL 32 CHARACTER CONTROL DECODING
* FULL 8 BIT MEMORY
* 110/220 Volt 50-60 Hz POWER SUPPLY
* COMPLETELY INDEPENDENT DESIGN-Usable with any 8 bit ASCII computer or with modem for time share applications.
* MOLDED PLASTIC COVER - MATCHING MONITOR AVAILABLE

Now you can buy it. The terminal that has all the features that people have been asking us to include. The CT-64 has all the functions that you could want in a terminal and they may be operated by either switches, or through a software program.

All cursor movements, home-up and erase, erase to end of line, erase to end of frame, read on, read off, cursor on, cursor off, screen reversal, scroll, no scroll, solid cursor, blinking cursor, page selection and a beeper to warn you of end of page; all are provided for your use in the CT-64.

You may also switch from upper case only teletype style operation to upper-lower case typewriter style operation. You can reverse the field on individual words to highlight them, or you can reverse the whole screen.

CT-64 is complete with keyboard, power supply serial interface and case. A matching 9 inch monitor with coordinated covers is also available to make a complete system.

CT-64 Terminal Kit
$\$ 325.00$

MM-1 Monitor (assembled)
$\$ 175.00$

219 W. Rhapsody
San Antonio, Texas 78216

You are right, it's just what I have been asking for.
\square Enclose is $\$ 325.00$ for the CT-64
\square Send the MM-1 monitor too. \square Send Data
\square or BAC \qquad \# \qquad
\square or MC \qquad Ex Date

> NAME

ADDRESS

CITY STATE ZIP Z___

Southwest Technical Products Corp. 219 W. Rhapsody, San Antonio, Texas 78216

measures the wire and adjusts the tool for optimum stripping action with minimum hand pressure. The tool is molded of lightweight plastic. Wire and cable up to \#12 AWG solid or stranded can be cut and stripped by the tool. Paired wires can be stripped simultaneously. \$33. Address: AMP Special Industries, Valley Forge, PA 19482.

KEYBOARD VIDEO INTERFACE

The Merlin keyboard video interface, from MiniTerm Associates, provides ASCII characters (20 lines of 40 characters), high-resolution graphics, and optional monitor and editor functions. The two boards include a DMA controller that permits displaying any part of the computer memory. Also, since the display's starting address is software-controlled, the memory segment displayed can be changed with every screen refresh. Dense graphics will display $2 k$ words of memory as 160 H by 100 V dots; sparse graphics displays

1 k as 80 H by 100 V . Versions of Merlin for Altair, Imsai, Southwest 6800 and Digital Group computers are available at $\$ 249.00$ kit plus $\$ 34.95$ for an optional on-board $2 k$ ROM for the monitor and editor functions.
circle no gs on free imformation card

POLYTRON OP AMP DESIGNER TESTER

Designed to help both the beginner and experienced user to experiment with and test circuits containing one or two op amps, the "Dual Op Amp Designer Tester" from Polytron Devices doesn't require any soldering. Components other than op amps can be plugged in. Features include solderless tie points. two 10k potentiometers, four pairs of binding posts, four IC sockets. Model 202 with $\pm 15-\mathrm{V}, 100-\mathrm{mA} \mathrm{dc}$ regulated power supply is $\$ 55$; Model 201, using $9-\mathrm{V}$ batteries, is \$33. Address: Polytron Devices, Inc., Box 398, Paterson, NJ 07524.

PIONEER AM/STEREO FM TUNER

Pioneer's Model TX-9500ll AM/stereo FM tuner has an automatic pilot-signal canceller that minimizes $19-\mathrm{kHz}$ leakage into the audio

section. Featuring both narrow- and wideband operation, it also has a SAW (surface acoustic wave) filter that minimizes adjacentchannel interference. A switch permits using the amplifier/speaker system, minus oscilloscope, to detect multipath reflections as the FM antenna is adjusted. The altemate position of this switch generates a $440-\mathrm{Hz}$ signal every 1.6 seconds (equivalent to $50 \% \mathrm{FM}$ modulation) for checking the level on a tape deck before recording off the air. Specifications include: $8.8 \mathrm{dBf}(1.5-\mu \mathrm{V})$ sensitivity in mono; $13.2 \mathrm{dBf}(2.5 \mu \mathrm{~V})$ in mono and 36.1 $\mathrm{dBf}(35 \mu \mathrm{~V})$ in stereo 50 -dB quieting sensitivity; 77 to $82 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at $65 \mathrm{dBf} ; 20$ to 15,000 $\mathrm{Hz}+0.2 /-0.5 \mathrm{~dB}$ stereo frequency response; and 0.05% to 0.07% distortion in mono at 1000 Hz . $\$ 400$.
gircle mo 100 on free information chro

4 big Watts of RF power. Aircommand delivers the maximum power legally allowable to let you belt out the big sound. 100% modulation capability. Even when you talk softly into the mike, your message cuts through loud and clear, thanks to one of the most advanced mike preamp and compressor designs in CB today. With Aircommand, you don't have to spend an extra $\$ 30$ to $\$ 40$ on a "power mike." You can't buy better modulation than Aircommand. Specially tailored frequency response.
LED 40-channel selection display. Easy-to-read, night or day. 8-LED (light emitting diode) meter display. Provides an easy-to-read display of SWR (standing wave ratio), modulation, and incoming or outgoing signal strength instantly, accurately.
Special emergency Channel 9 scan with exclusive Aircommand "beep" alert. No matter what channel you're on, a special Aircommand CB-640 circuit continuously and silently monitors Emergency Channel 9. When someone starts transmitting on Channel 9, a unique "beep" alerts you, so you can tune yourself in and give assistance. Public address capability. The versatile Aircommand CB-640 public address package lets you (1.) Talk into the CB mike and out an exterior public address speaker. (2.) Attach a tape recorder to the auxiliary jack on the

New Literature

VOLTAGE-SURGE SUPPRESSOR CROSS-REFERENCE

A new cross-reference application note, AN504A, for voltage-surge suppressors to protect power semiconductors is available. Over 175 General Electric parts numbers are listed, along with the International Rectifier replacements that are exact mechanical duplicates, including the same power-handling capability. Address: Semiconductor Division, International Rectifier, 233 Kansas St., El Segundo, Calif. 90245.

SEMICONDUCTOR TEST INSTRUMENTS

A 6-page brochure from B\&K Precision describes the company's complete line of discrete semiconductor test instruments. Products featured include the Model 530 semiconductor tester with unity-gain frequency measurement up to 1500 MHz . Technical specifications provide data on in-circuit and out-of-
circuit tests, applied test currents, indicator, calibration and limiting in-circuit shunt values Applications for each model are also discussed. Address: B\&K Precision, 6460 W Cortland Ave., Chicago, IL 60635.

GUIDE TO SOLDERING ALUMINUM

A 6-page brochure from Multicore Solders provides information on soldering aluminum Performance information including a table on the solderability of various wrought and cast aluminum alloys is presented with application and technical data, joint recommendations and soldering techniques. Technical specifications and performance of the company's Alu-Sol 45D are also discussed. Address: Multicore Solders, Westbury, NY 11590.

CB ANTENNA CATALOG

A new catalog SP-4 from Antenna incorporated describes its line of Citizens Band antennas and accessories. Specifications are provided for each base and mobile antenna with similar styles listed together for easy reference. Replacement parts and accessories are also included. The catalog, Form SP-4, is available from Antenna incorporated distributors.

VOLTAGE DROP MEASUREMENTS

"Forward Voltage Drop Measurements" is the title of Tech Tips 4-6 from Westinghouse. The 3-page article, written to assist in making accurate measurements on power diodes
and thyristors that can be used as a quality control check or matching criteria for operating devices in parallel, utilizes a simplified diagram of a test circuit and explains ways to avoid inaccurate measurements caused by pulse widths, duty cycles, peak currents, mounting and measurement techniques. Address: Semiconductor Division, Westinghouse Electric Corp., Youngwood, PA 15697.

EXACT REPLACEMENT GUIDES

Thordarson Meissner, Inc. offers two new cross-reference replacement guides for CB radios and TV sets. "TV Replacement Parts Guide" Form TVPG 9 and "CB Replacement Parts Guide" Form CBRG 2 include 127 new exact electronic replacement products recently made available by the company. Guides are available from Thordarson distributors.

WIRE-WRAPPING AND TOOL CATALOG

Catalog 36G is the new 58 -page catalog from O.K. Machine and Tool Corp. which describes its line of Wire-Wrapping tools and machines. Additions to the line, including circuit boards, closures and instrument cases, are described; an illustrated section explains the technology of Wire-Wrapping. Address: O.K. Machine and Tool Corp., 3455 Conner St., Bronx, NY 10475.

You never heard it so good!!!

CB-640 rear panel, and boom your tape out through the same external speaker. (3.) Mix your voice from the CB microphone with the program material on the tape recorder. Both voice and tape sound at the same time through the external speaker. (4.) Beam your received signal through the external speaker. Built-in standing wave ratio circuitry. Measures the efficiency of the antenna system for optimum performance. Other outstanding features include: Delta fine tuning control, digital synthesizer with phase-locked loop,
automatic noise limiting switch, noise blanking switch, squelch control, RF gain control.

Also available: Aircommand CB-140; Aircommand CB-340. All 3 units bring you state-of-art design, flawless craftsmanship and day-in, day-out reliability. Try them out now at your Superscope Aircommand dealer.

Aircommand my mave

Stereo Scene

THE DECONTAMINATION SQUAD

By Ralph Hodges

FOR THE PAST few months (whenever l've remembered to), I've been asking people how they care for their phonograph records. Their replies have been highly individualistic. On the one hand we have the manic camp, systemized to the point where they feel vaguely uncomfortable listening to a record that has not been put through an elaborate cleaning ritual, whether they can hear any noise or not. (I number myself among this group.) At the other extreme are those joyous devil-may-cares who may blow on a disc several times (quite ineffectually, no doubt) as they carry it to the turntable, but otherwise hardly give the matter a thought.

In my circle, almost everyone who takes records seriously owns some sort of cleaning appliance for them. Velvetor plush-covered pads and specially designed brushes are common (choice of pad or brush seems to depend on intui-
tive "feel" for the cleaning process), as are Dust Bugs and similar devices. These may or may not be used religiously. I have seen some Dust Bugs so begrimed that their use would probably be a hazard rather than a help to the condition of any decent record, so the benign-neglect approach is not always inappropriate.

Ask the Experts. Why, after all these years, is record hygiene still a matter of guesswork rather than science? The question would be a fascinating one if its answer weren't so obvious. Ask the pho-no-cartridge manufacturers, whose interest in properly maintained records is readily apparent: "You know, we've always been meaning to look into that. We use the Whatchamacallit, or at least there's one at every testing station, and it seems to do okay. But then again, in the absence of a suitable control sam-

ple . . ." Ask the record companies: "All our records are clean and defectfree when they leave the plant, and with reasonable care . . ." In other words, no one-or at least no one who doesn't intend to manufacture a record-cleaning device of his own-has the time to undertake the research necessary. And no wonder, because when you think about it, such a research project turns out to be fairly formidable.

A few hardy types, including some of my eminent colleagues in the press, have made yeomanly attempts to settle the issue in the laboratory. Their tests have generally taken two forms. The first is to play the dirty record, count (somehow) the number and severity of the ticks and pops presumably caused by dirt, then clean the record with the device under test, and play it again to note the improvement, if any. The trouble here is that the very process of playing a record alters its noise content. According to theory, certain dust particles will become embedded in the vinylite material by the stylus pressure-embedded too firmly for removal by any practical cleaning device. Hence the cleaning device under test faces the handicap of working with a record that has already been damaged by being played when dirty. But then, if you go on to play the record several more times, the severity of the "tick" caused by the embedded particle may abate considerably, as repeated passages of the stylus smooth the blight on the groove wall. Play the record with a different stylus and the "tick" may disappear altogether, because the stylus rides lower or higher in the groove.
Testing approach number two involves the visual inspection of the dirty and cleaned record with a high-magnification device such as a scanning electron microscope. Here the problem is that on one hand, you can't be sure that what you do see will cause noise. (Certain particles will be nudged aside or missed by the stylus.) On the other hand, what you can't see may cause noise. (An invisible residue of the cleaning agent may gum the stylus and/or raise the base noise level.) Also, there is the considerable drawback of the time involved in examining the whole rec-ord-or even a significant portion of itwith high magnification. And time is critical, because with each passing moment the record acquires a little bit of new dust.
Common to both tests are such quandaries as how do you manage to use the cleaning device consistently (most of

\title{

MAGAZINES AT DISCOUNT! You SAVE up to 50\%
 magazines. Select as many as five of these titles at the low introductory rates shown below-up to 50% off. Use attached card to order or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 2703, Boulder, Colorado 80322.

APARTMENT LIFE (21) You pay only $\$ 7.97$
Reg. Rate: 24 Issues for $\$ 14.97$
BOATING (01) You pay only $\$ 6.00$
Reg. Rate: 12 Issues for $\$ 10.00$
CAR \& DRIVER (02) You pay only $\$ 3.99$
Reg. Rate: 12 Issues for $\$ 7.98$
CYCLE (03) You pay only $\$ 3.99$
Reg. Rate: 12 Issues for $\$ 7.98$
FLYING (04) You pay only $\$ 7.99$
Reg. Rate: 12 Issues for $\$ 12.00$
HANDY ANDY (57) You pay only $\$ 5.88$
Reg. Rate: 10 Issues for $\$ 7.95$
PLAYBOY (34) You pay only $\$ 12.00$
Newsstand Rate: 12 Issues for $\$ 19.00$
POPULAR ELECTRONICS (06) You pay only $\$ 6.99$
Reg. Rate: 12 Issues for $\$ 9.98$
POPULAR PHOTOGRAPHY (07) You pay only $\$ 4.99$
Reg. Rate: 12 Issues for $\$ 9.98$
POPULAR SCIENCE (35) You pay only $\$ 4.50$
Newsstand Rate: 12 Issues for $\$ 9.00$
PSYCHOLOGY TODAY (08) You pay only $\$ 7.00$
Reg. Rate: 12 Issues for $\$ 12.00$
SPORTS ILLUSTRATED (38)
You pay only $\$ 9.75$ for 25 Issues
Newsstand Rate: 25 Issues for $\$ 25.00$
Basic annual rate: 52 Issues for $\$ 20.00$
STEREO REVIEW (11) You pay only $\$ 3.99$
Reg. Rate: 12 Issues for $\$ 7.98$
TENNIS (39) You pay only $\$ 4.75$
Reg. Rate: 12 Issues for $\$ 9.50$
TIME (40) You pay only $\$ 12.50$
Newsstand Rate: 25 Issues for $\$ 25.00$

them are hand operated), and how do you establish an adequate control sample of the record. It has been shown repeatedly that "identical" pressings of the same record are far from identical to the stylus and the record-playing environment. According to one theory, the vinylite material of a record takes on a molecular "set" when it is molded, so that the entire disc-or certain random sections of it-acquires a permanent static charge. If the charge distribution varies from pressing to pressing (as it logically should), you have no hope of getting identical pressings.

The Mechanism of Dirty Discs.

 The laboratory is revealing but not always authoritative about the recordcleaning question. The reported experiences of long-time record users are valuable but difficult to verify. At this point we need a working hypothesis of how records get dirty so that we can consider what ought to be done to get them clean again. Surprisingly, there is no universal consensus on the "mechanism" of dirty discs, but here is the theory to which I generally subscribe.First, there are airborne particles. These settle on the record as they settle on everything, and remain there unless disturbed. Perhaps they are attracted and held in place by some "net" static charge molded into the record. Then there is grosser debris, from the jacket liner or the turntable mat. This is highly visible and hence disturbing, but most of it is too big to penetrate the record grooves and thus is probably harmless. However, its persistent presence suggests that smaller, invisible bits lie within the grooves themselves

Next comes the record-playing process, which nicely parallels the workings of a Van de Graaff generator. The intimate contact of stylus and groove (much more intimate with the superior tracing and tracking of today's cartridges) builds up some surface voltages on the disc that are probably quite impressive. These are local charges, but they apparently cooperate with any net charges present in various ways. With your record cleaner you can drag a dust particle some inches away from its location on the record surface, only to have it break free and skip back to its precise point of origin.

When the record becomes surfacecharged it acts on dust, certain colloids, and anything else available just as an electrophorous acts on a pith ball. The charges give rise to three noise-producing mechanisms. First, they hold dust
motes in place where they can be played by the stylus and pounded into the vinyl. No casual puff of breath or swipe of record cleaner will effectively dislodge them. Second, they create noises-sometimes quite alarming ones-in themselves, by freely discharging through the phono cartridge. Cartridges and arms differ in their susceptibility to this, but in a dark room you can often see sparks generated as a record is played, accompanied by loud "bam" sounds through the speakers. In milder cases the static discharges are virtually indistinguishable from noise created by dust contamination.
Third, the colloids attracted by the charges often build up to form a tar-like coating on the grooves that interferes with tracing and ultimately gums up phono styli. The irreplaceable Percy Wilson studied the atmosphere's content of such substances and their effects on discs. Ponder his results for a few minutes and you'll begin to sense the onset of black-lung disease.

On to the Bizarre. More recently, Bruce Maier of Discwasher has documented the effects of fingerprints (always to be avoided) on records, and also raised the subject of certain fungi that subsist on vinylite and that are actually encouraged by the use of some rec-ord-cleaning solutions. I was not at all impressed by Dr. Maier's ideas until, several years ago, I visited Singapore, one of the brisker hi-fi markets of today and, being a mere ninety miles from the equator, a miasma of heat and humidity. There, in the home of a prominent audiophile, I saw my first-heaven help us!--green record. According to my host, the algae-like growth forms within a few days. He takes his records to the washroom and uses soap and water to combat it. (1 noted few other green records in Singapore, so perhaps he was doing something Dr. Maier wouldn't have approved of.)

Getting wet. Many record listeners (Singaporeans excepted) endorse a high-humidity environment as being ideal for the static problem. They place open jars of water beneath their turntables' closed dust covers, or spend a fortune on a large and quiet humidifier. I advise against this. My first reason (another will be discussed later on) is obvious: rust! Back when I could manage long vacations, I summered in a little cottage not twenty-five feet from a quiet seaside harbor. Hardly two years had passed before my tonearm (a cring-
ingly expensive model) began to show characteristic brown stain creeping out of its pivot housing. Most of the arm was aluminum, stainless steel, and/or chrome plated. Unfortunately, the pivot bearings weren't (and few are, for excellent reasons).

Some record-cleaning devices deliberately apply a moisture slick on the record surface and let the stylus plow through that. If there's anything wrong with these appliances (aside from the above) it's hard to detect. In the opinion of some, the stylus cantilever acts as a wick to draw fluid up toward the cartridge. l've never heard anyone complain about this, however. Perhaps what's most suspicious is that the "wet cleaners" tend to remove all noise, including that which is molded into the record as groove imperfections. This effect has been ascribed to surface tension, viscosity, and the fact that sound wavelengths are different in water than in air. Or perhaps it's simply a function of the fluid's lubrication. No one seems to know for sure, but a significant number of audiophiles-particularly those with overbright systems-seem to swear by wet playing.

The Author's Approach. I suspected you were interested in my own re-cord-cleaning techniques, and I thought you'd never ask. With the record rotating on the turntable, I begin with an antistatic device such as the Discwasher "Zerostat" pistol, which produces clouds of positive and negative ions when the trigger is squeezed or released. This treatment is simply to release the debris particles being held by static charges, which then can be scooped up by a velvet or plush cleaning pad. (Some claim that such a pad won't scoop unless its bristles are slanted, but my experience suggests that a curvature in the contour of the cleaner accomplishes the same thing as a slanted pile). A little moisture will help the dust particles adhere to the bristles, and I am indebted to a reader for pointing out that open-mouthed breathing on a record will lightly fog it with condensed pure water vapor. So I breathe on the record as I brush.
As the record plays I use a device similar to a Dust Bug, but with a difference. Some years ago, at the height of a very humid summer (remember the objections raised to humidity earlier), I came up against an unaccountable, steady "thththth" sound on a record I knew was intrinsically good and well cared for. What?! Could it be static, encouraged by the high humidity to dis-

IT'S WHAT YOU GET WHEN YOU RUN WITH NUMBER 1.

For 1977, Midland gives you the power to communicate. To reach out beyond your personal harizon.

In an entire new generation of Midland 40 -channel CB radios, spearheaded by the remarkable Midland 838.

cricie wo. 37 on free information card

The 838 features switchable automatic noise limiter, noise blanker and audio filter. Plus an automatic channel advance and volume control right on the mike, and a big, bright L.E.D. digital channel indicator.

But the 838 is only one of Midland's ' 77 CB line, which includes eighteen very comfortably priced basestation, mobile and portable 40-channel models.

All backed by Midland's 15 years of CB experience, Midland's warranty and
corivenient service centers, coast to coast.

No wonder we sold over 2 million Midland CB's last year, making us the world's number 1 CB brand.

Midland Power. It's what you want from a CB. II's what you get when you run with number 1.

It sounds an alarm. A built-in alarm that's set off any timenight or day - when severe weather threatens.
The alarm is triggered by a signal from your local National Weather Service transmitter. After it sounds, a report on the danger and survival instructions come on.

When conditions are normal, the Storm Alarm picks up the weather station's continuous, up-to-the-minute forecasts.
Unlike ordinary weather radios, which the user must monitor, the Storm Alarm continually monitors itself. The alarm sounds full blast whether or not you have the volume turned up and are listening. You're warned even when sleeping. Crystal-controlled and switch-selectable.
 as far out as $40-50$ miles. Works on AC. Built-in back-up battery feature. 25" telescoping antenna. $2^{1,44^{\prime \prime}}$, speaker. Unit only $3^{\prime \prime} \times 5^{\prime \prime} \times 114$.

[^1]charge through the cartridge in a rather relaxed fashion? Within ten minutes I had acquired one of the record-tracking/ cleaning devices that has conductive bristles intended to be grounded at the tonearm or preamp input. To my fascination, I found that the annoying sound disappeared within a few moments of my lowering the bristles to the record surface, and reappeared a few moments after I had raised them. Needless to say, I held onto this contraption, and it has been doing a fine job ever since. This is my idea of how to clean records; I welcome comments.

As long as this article has been, it has left out some pertinent points: the how and whys of stylus cleaning; the efficacy of the new friction-reducing record sprays; the "dust-bug" brushes that come attached to cartridges; the reason some records seem to be more staticprone than others; and the ways in which cartridge/tonearm choice and alignment can effect the annoyance factor of record noise (they can, apparently). I don't have firm responses to any of these (implied) questions, but I do have opinions, which will be forthcoming later on. In the meantime, let me give you several warnings:
(1) Don't rashly buy a record cleaner meant to be used while the record is playing if your turntable has limited torque, as many belt-drive units do. Dust-Bug-type devices are usually okay, but the ones that span an entire LP radius or which are driven off the turntable itself may make it impossible for your record player to get up to speed.
(2) Don't use the turntable's dust cover as a record cleaner. Laboratory tests have shown pretty conclusively that many dust covers provide an excellent path for acoustic feedback. Keep the cover removed or at least raised when you play a record. It is meant only to keep the turntable clean when it is not in use, and I don't know of any responsible turntable manufacturer who claims that it is otherwise.
(3) Experiment with anything meant to be applied to a record cautiously. All solvents and even distilled water are suspect with many, although they are beloved by some. When you feel you must evaluate a record-treating substance, dose one half (180 degrees) of a good record with the stuff and leave the other half untreated. At $331 / 3 \mathrm{rpm}$ you should be able to detect the transition from the one side to the other (at 45 rpm things may happen too fast). And be prepared to buy a new record just in case your experiment doesn't work.

POPULAR ELECTRONICS

HOW HEADPHONES ARE TESTED

MANY PEOPLE are aware, at least in general terms, of some of the effects that room reflections and resonances have on the perceived frequency response of a loudspeaker. For example, the bass response varies widely as one moves about the room, usually being strongest at an opposite wall or corner or close to the woofer, and weakest in the center of the room. High frequencies, on the other hand, are progressively absorbed by room furnishings as one moves away from the speaker. High-frequency level can also change greatly at different angles between the listener and the speaker.

There are ways to circumvent these problems, and even put them to good use, when measuring loudspeaker performance. Most designers, though, choose to test a speaker in an anechoic chamber (a room whose interior surfaces absorb essentially all sound impinging on them, and reflect little or nothing to a microphone placed in the chamber). In this way, the characteristics of the speaker can be determined, free from interaction with its surroundings.

In the case of headphones, the audible results are closely related to the dimensions of the wearer's ear cavity, and the manner in which the earpieces fit the pinna or external ear. These are analogous to the relationship of the room to the loudspeaker. Although anechoic measurements might be possible with headphones, they would be of little practical value since the ear affects the frequency response through the entire audio range.

It is possible to measure headphone response directly on a human head by means of probe microphones inserted into the ear cavity. This is valuable for psychoacoustic and physiological studies, but clearly is of no use to someone wishing to evaluate a headphone. It would be convenient to have a "standard ear," on which any phone could be checked. Even if such an ear were not identical to any specific human ear, it would provide a test bed on which to make comparative headphone measurements.

There are standard artifical ears-several different types, in fact. Some have been shaped to correspond roughly to the external human ear, but others merely present a flat surface to the headphone's ear cushion, with a cavity drilled in the center to expose the end of a calibrated capacitor microphone that simulates the eardrum. This is the basic configuration of the ANSI standard headphone coupler, which we use in slightly modified form for our headphone tests.

The original purpose of the standard coupler was to measure headphone response in the speech frequency range (300 to 5000 Hz). It was recognized that resonances in the coupler cavity would produce severe response changes at higher frequencies. The standard coupler has a 6-cc cavity, simulating the volume of a typical ear. The shape of this cavity is subject to slight modification to suit the particular type of headphone being tested.

Experiments made by Koss Electronics indicated that a good correlation between measured frequency response and the subjective headphone response would be achieved with a slight modification of the shape of the coupler cavity (keeping its volume at the standard 6 cc). The Koss coupler, which we use for our tests, conforms to the 1949 ANSI standard, except for the details of the cavity shape. It is a flat plate coupler into which our test microphone fits snugly. When the headphones are mounted on the coupler stand, the normal tension of the headband provides sealing around the ear cushion of the measured earpiece, equivalent to what would exist with normal wearing.

Although the Koss coupler makes it possible to measure headphone frequency response through the full audible range, it has a few intrinsic high-frequency resonances that make measurements less reliable above $10,000 \mathrm{~Hz}$. Our coupler has been calibrated by Koss, with the aid of a calibrated set of its ESP-9 electrostatic phones. This enables us to check the performance of the test set-up and also provides an absolute calibration of sound pressure level (SPL), since the output of the ESP-9 phones is known at a particular frequency and drive level.

To measure the frequency response of a headphone, it is placed on the coupler and driven from an amplifier whose input is derived from our General Radio frequency-response plotter. The microphone output goes directly to the graphic level recorder input, and the chart reads out directly in dB on the SPL scale (referred to 0.0002 dyne $/ \mathrm{cm}^{2}$). The voltage across the phone is set to a value recommended by the manufacturer (usually in the range of 1 to 3 volts) and a swept response measurement is made using a fast chart speed (25 inches per minute) and moderate pen damping (pen speed, 3 inches per second) to smooth out small variations caused by the coupler.
Distortion is measured at 1000 Hz as a function of applied voltage. The microphone output goes direct-

Sqme guys rely on their 2 -way radios more than others.

Fighting a fire takes tough men. And tough equipment. Equipment like the Motorola ${ }^{(1)} 2$-way radios carried by so many fire fighters.

Today you can own a 2 -way radio with many of the engineering principles that go into Motorola professional radios.

You can own a Motorola CB.
Features like gain control, audio compression, and noise limiting are built in, fully automatic.

So a Motorola CB is exceptionally simple to operate. Yet offers outstanding talk/listen performance.

A top-fire $3 \frac{1}{2}$-inch professionalquality speaker produces an audio fidelity that must be heard to be fully appreciated.

A power mic that doesn't require batteries, that doesn't cost extra, is standard equipment.
Mo日aro a

From the voice of experience in 2 -way radio.

Yhop gottand.

When you do, you'11 probably pick CIE. Yon can't afford to set tic for less when it comes to something like electronies training that conld affect your whole life.

When you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop a round for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should

shop around yourself.

We hope you'll shop around. Becausc, frankly, CIE isn't for cueryone.

There are other options for the hobbyist. If you're the ambitious type - with serious career goals in electronicstake a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries -on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson takes one or two principles and helps you master them - before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do-and on how
well you do it.
Here are ways some of CIE's trouble. shooting programs help you get your "hands-on" training. . .

With CIE's

Experimental Electronics Laboratory...
simply this:
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting carcer!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC Licensc exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE's free school catalog first:

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog plus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or couponor write: CIE, 1776 East 17 th St., Cleveland, OH年
\qquad

正
F
you learn and revicw the basicsperform dozens of experiments. Plus, you use a 3 -in-1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 Milz TriggeredSweep, Solid-State Oscilloseope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" waveform patterns... lock them in... study, understand and interpret them!

When you get your Zenith 19-inch Diagonal Solid-State Color TV you

OH 44114. signal flow. . . locate malfunctions. . . restore perfect operating standards-just as with any sophisticated electronics equipment!
apply your new skills to some real on-the-job-type troubleshooting! You learn to trace

 you work with a completely
Solid-State Color Solid-State Color Bar Generatoractually a TV signal transmitter - you study up to ten different patterns on your TV
screen... explore digital logic circuits . . observe the action of a crystal-controlled oscillator!
Of course, CIE offers a more advanced training program, too. But the main point is

CIE Cavamat anatue Cleveland Institute
of Electronics, Inc. 1775 East 17th Strise, Cleveland. Ohio 44114 Acciedited Momber National mame Siudy Councti

YES

 for the risht kind of carece training in electronics troubleshooting - and CIE sounds well worth tooking into. Please send me my FREE CIE school catalog-including details alout troubleshoot ing courses - plus my FREE packagc of home study information! 1'E-34Print Name
Idaricon
Apt.
cily

Check box for (G.I. Bill information: Veteran Active Duty

Mail today:

ly to a Hewlett-Packard 3580A spectrum analyzer, on which all significant harmonic amplitudes can be measured. Impedance is measured by driving the phones through a fairly high resistance and plotting the voltage across them on the chart recorder. The resistance axis of the recorder chart is calibrated against a precision standard decade resistor, substituted for the headphones.
Interpreting the frequency-response curve of a headphone measured in this way is not as easy as we would like it to be. Sometimes the response is relatively flat over most of the audio range, and this is always associated with a phone which has a smooth, natural sound. Sometimes there will be one or more huge peaks (as great as 30 dB in amplitude) in the upper midrange. Such a phone always sounds harsh and unnaturally colored. The difficulty is in the intermediate cases, which comprise the majority of
phones. Their response curves often have rather sizable peaks or holes in the range of a few kilohertz. These cannot easily be separated into true headphone response and the coupler response. Many of these phones sound excellent, virtually indistinguishable from some which test much better, while others that are seemingly not too different sound mediocre.

Thus, as with speakers, the only way to buy a headphone is to listen for yourself. With headphones, you have the advantage that the listening room is not a part of the equation, so the phones will sound the same in your home as at the dealer's showroom. Since the physical "fit" of a headphone can be as important as its sound, a personal selection is highly desirable. Test reports can be a guide to those phones that are worthy of your consideration, but response curves should never take priority over the judgment of your own ears.

SENNHEISER MODEL HDI 434 INFRARED HEADPHONES

Cordless headphones provide unfettered personal listening.

With these innovative, cordless, stereo headphones, the listener can be free at last from the tether that attached him to the headphone jack. In the past, most attempts at designing cordless hi-fi headphones failed to meet the high quality sound needs of the home listener. The various cordless approaches tried were plagued by poor sound quality, high noise levels, and inability to handle stereo program material. The new Model HDI 434 infrared stereo
phones from Sennheiser have solved most of the technical problems.
The Model HDI 434 is actually a headphone "system" that consists of rather large (but lightweight) phones and a separate infrared transmitting unit. No physical connection is needed between the phones and transmitter, nor are there antennas or other appendages on the phones themselves. The only link between the phones and the transmitter is an invisible infrared beam. The transmitter plugs into the headphone jack of any amplifier, tuner, or tape deck.
The infrared transmitter measures
$8^{\prime} \mathrm{W} \times 3.15^{\prime \prime} \mathrm{D} \times 0.7^{\prime \prime} \mathrm{H}(20.3 \times 8 \times 1.8$ cm), and the headphones weigh 13.5 oz $(420 \mathrm{~g})$ including battery. Prices: $\$ 209$ for the Model HDI 434 phones and $\$ 184$ for the SI 434 infrared transmitter.

General Description. The earcups of the headphones house magnetic open-air drivers. The earcups are designed to provide little or no isolation from external sounds. The semirigid headband has a padded adjustable inner band that rests on the user's head.

On the rear of the right earcup are a pair of slide-type controls for separately adjusting the volume levels in the two earcups. A slide-type switch allows selection of normal stereo listening, chan-nel-A mono through both earcups, or channel-B mono through both earcups. A separate switch controls power to the headphones from its own 9 -volt battery. The left earcup has no controls; it houses the battery that powers the phones. A clear plastic on the front edge of the right earcup protects an infrared sensor that picks up the invisible beam radiated by the transmitter.

Across the front panel of the transmitter is a row of 12 light-emitting diodes (LED's) that generate the invisible infrared carrier beam. A separate LED, located at the far left of the panel, is used as the power-on indicator for the line-powered transmitter. The pushbutton power switch is located at the far right of the front panel.

Vou may have noticed that fetv turr.table manufacturers call your attention to the critical role of the tonearm, in record playback. [נal is an exception.

Whatever the shape ma-e-ials, cr mechanics of a tonearm, the gozi s alwcys the same: to maintain the cartridge in the sorrec geometric relationship to the groove, and to permit the sty us to follow the cortours cf the groo:se

Why we want you

 walls freely ard accurately. Whenever to know more about the stylus canno- fcllow the groove to know more a oul cwn wer. And os we hove tonearms. And why frequeriy erinject pou theres s 0) TAS ITS siçer should cons der georetry, mass, balance resenance, bearing friction, ard the cccuracy and stability of settings for styl। sf force and anti-skating. However despite the simple fact that the shortest distance betveen two points is a strcight lire, some ze-signe-s are more concerned with appearance. Hence tia curved tonearm, whose deriations oetween pivat and stylus simply adk mass, rełuce rigid ty and increase the likelihood of resonarce.Dual angineers have always lesigned for optimum ferformence. The essential differences in approach and resu ts are indicated below. You might keep all this in mind when you are considering your next -urntable. Thances are you'll want it to be a Dual.

United Ardio Purouts,120 So. Columbus Ave. Mt. Verron N.Y. 10556
Eaclusive U.S. Dstributior Agency for Cual

Actual size of Dival tube (A) and iypicol curved toneorm (B).
For the some effective lengith, straight Duo fonsom has lower moss and rissononce, yal giealer rigidiy.

Overall frequency response of headphones and transmitter.

In operation, the transmitter is placed in a location where its beam will cover the preferred area of the listening room. Then, with the headphone worn in the usual manner, the stereo program is heard just as with conventional headphones. The big difference here is that the listening volume is set by the slide controls on the right earcup.
It is important to have a sufficient, but not excessive, modulation level driving the transmitter. This is accomplished by turning up the volume control of the audio component that drives the transmitter until the glowing LED on the latter suddenly begins to flash, and then backing off slightly until the flashing just ceases. Thereafter all volume level adjustments are made by operating the controls on the phones.

The stereo program is carried over the infrared beam on two subcarrier fre-quencies- 95 KHz for the left channel and 250 kHz for the right channel. The specifications call for a $30-\mathrm{kHz}$ deviation at 1 -volt input to the transmitter and 50 kHz deviation at the 1.5 -volt maximum allowable input. The headphones contain two FM discriminators that are tuned to the subcarrier frequencies and are capable of demodulating signals with deviations as great as 50 kHz .
The specifications for the phones call for a frequency response of 20 to 20,000 Hz (no tolerance given) with less than 1% THD at 1000 Hz (at an unspecified level) and a maximum output capability of 108 dB SPL. The S / N ratio is rated at approximately 60 dB , and estimated operating life of the standard 9 -volt battery is 100 hours.

Laboratory Measurements. We tested the acoustic performance of the phones on a modified ANSI headphone coupler in the usual manner. The transmitter was placed a few feet from the
headset and driven directly from our General Radio response plotter. Having determined that a 1 -volt drive level to the transmitter resulted in spurious "birdies" at frequencies beyond $12,000 \mathrm{~Hz}$, we reduced the drive to 0.5 volt for the response measurement.

The midrange response was very flat, varying only $\pm 1.5 \mathrm{~dB}$ from 100 to 1700 Hz . The output rose at higher frequencies and was at or above the midrange level all the way up to our measurement limit of about $16,000 \mathrm{~Hz}$. The low-frequency output, as is usually the case with open-air headphones, dropped off at a 12 dB /octave rate below 100 Hz . The midrange SPL was about 105 dB , or 111 dB at the recommended maximum operating level of 1 volt.

The overload indicator glowed at a 1.15 -volt input with frequencies of 1000 Hz or lower. Overload occurred at smaller signal voltages at high frequencies, reducing to 0.43 volt at $10,000 \mathrm{~Hz}$ and 0.32 volt at $15,000 \mathrm{~Hz}$. The distortion of the acoustic output of the headphone was less than 1% for drive levels up to about 1 volt at 1000 Hz . With the phone's volume controls set to maximum, the distortion increased abruptly above about 1.2 volts. This was apparently due in part to overdriving the headphone amplifiers, since reducing the setting of the volume controls by 10 dB resulted in a more gradual increase in distortion, to 2% at 1.8 volts and 3.4% at 3 volts. Distortion is not a problem when using the phones, since it became appreciable only when the SPL exceeded a very loud 110 dB .
The S / N was measured relative to the output at 1000 Hz with a drive level of 1.15 volts. Wtihout weighting, the S / N was 40 dB , and with CCIR weighting it was 54 dB . The stereo channel separation reduced with increasing frequency, from 40 dB at 100 Hz to 21 dB at 3000

Hz . It remained in the 18-to-21-dB range from 3000 to $15,000 \mathrm{~Hz}$. The electrical impedance of the transmitter input was 100,000 ohms up to about 1000 Hz . It decreased to between 13,000 and 25,000 ohms in the 10,000 -to-$20,000-\mathrm{Hz}$ range.

User Comment. Considered only as stereo headphones, we would rate these on a par with other Sennheiser phones we have tested. They are excellent, producing a clean, wide-range, transparent sound that could not be distinguished from conventional phones.

The listening volume was most satisfactory, and we heard no background hiss or other noise that was not in the program material. In other words, the

Editor's Note: The listening experience with these infrared phones may differ according to the environment and the placement of the transmitter. For example, using the same new Sennheiser phones in a large ($25 \mathrm{ft} \times 19 \mathrm{ft} \times 8 \mathrm{ft}$) wood-paneled listening room in the editor's home, a person standing in front of the transmitter or the headphone wearer did not change the sound quality received by the phones when the infrared transmitter was positioned near the corner of the room (a position also tried during Hirsch-Houck tests). Furthermore, in this position, headphone reception was not at all marred by noise when turning a head or even one's back so that the phone receiver's single sensor was facing away from the transmitter. Nor was there any change in sound when a cigarette lighter was flicked, a pipe lighted, or pipe smoke blown by the headphone user. Moreover, the signal-to-noise ratio did not even exhibit an apparent change when the user walked into a hallway off the listening room so that he was behind the transmitter. Turning one's head in this area, however, did cause a high level of noise to occur, as did standing under a strong spotlight.
It should be mentioned, as a footnote, that this listening room has angled ceilings emanating from four-foot-high paneled walls and rising to a flat plasterboard ceiling surface. In contrast, Hirsch-Houck's ceiling is constructed with acoustic panels. These differences evidently account for the contrary results in infrared reception. It's obvious that, in the editor's home, the environment enhanced reflections of the infrared beams. As a consequence, the performance of these infrared stereo phones was superb with no reservations whatsoever.

Ghakespeare's DoubleTruckë̛Antenna Protessonal, co-phased. And nostrong two ways withoutit.

조sk a trucker about the best antenna team for ycur CB opera tions. Fe knows the Citizens Band. Fnd he knows the performance of Shakespeare's Double Trucker Antenna. Because the men who ride fcr a living can't se:tle for arything small-time in their signal power

Those two solid fiberglass whips stand firmly upright for maximum range and clarity. Periectly co-phased through Shakespeare's exclusive Diplexer phasing harness. Pre-tested and pretuned for the 40 channel band. Delivering the kind of jerformance true Krights of the Road depend on.

Shakespeare
 The best intenagoins.
 Andeoming.

S/N of the infrared system was at least as good as that of the FM and commercial phonograph records we used for program sources.

The transmitter evidently radiates a fan-shaped pattern into the room, which does not reflect from room boundaries to any significant extent (unlike ultrasonic remote-control devices, whose output can be "bounced" off a wall to reach around a corner). This means that the phones must be in a direct line of sight with the transmitter, although distance does not seem to be a problem. (We covered 30 feet or more without difficulty.) However, if someone walks between the listener and the transmitter, the sig-
nal drops markedly or disappears altogether, delivering a burst of noise like that of an unmuted FM tuner when the signal drops out. Interestingly, a crackling sound occurred when the listener flicked a flint-type lighter, followed by noise when the lighter's flame appeared.

If one turns away from the transmitter, or even to the side so that the left ear is closest to the transmitter, however, a loss of signal is likely to occur. We found this in some ways to be restrictive, although one quickly adjusts to the minor limitation. This occurs because the receiver sensor is on the front of the right earpiece. The answer, it would seem, would be to either place a sensor on
each earpiece or mount a single one at the top of the rigid headband to prevent shadowing of the receiver as the wearer moves or turns.
Aside from the above, we were highly impressed with the concept used by these phones, as well as its execution. The system does a remarkably fine job without excessive weight or bulk. True, they are among the most expensive headphones you can buy, but they also do things that no other phones can. One simply has to experience the wonderful feeling of not being tied down to a headphone's umbilical cord to appreciate it. And, the sound is truly superb.

CIRCLE NO 101 ON FREE INFORMATION CARD

TEAC MODEL PC-10 CASSETTE RECORDER

Portable stereo recorder has performance characteristics of home component types.

The Model PC-10 portable cassette recorder is part of Teac's new "Esoteric" line. It is one of the new breed of true high-fidelity portable stereo recorders with all the features and performance quality expected of deluxe home cassette decks. It comes with a separate ac power supply for line operation and can be operated in the field from six D cells that fit within its case.

The recorder measures $111 / 2^{\prime \prime} \mathrm{W} \times$ $91 / 2^{\prime \prime} \mathrm{D} \times 31 / 2^{\prime \prime} \mathrm{H}(29.2 \times 24.1 \times 8.9 \mathrm{~cm})$ and weighs $11 \mathrm{lb}(5 \mathrm{~kg})$. Nationally advertised value is approximately $\$ 500$.

General Description. The recorder features a direct-drive dc capstan motor that is servo-controlled through a phaselocked loop (PLL). This eliminates belts and flywheels; it starts up and brings the transport to final operating speed rapidly. (There is a separate dc motor for the tape hubs.) The PLL motor drive makes the recorder's operating speed relatively
independent of supply voltage and temperature, the latter specified over a range of 32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$).

The cassette well is on what would be the top of the recorder when it is placed on a shelf or table. When the recorder is carried over a shoulder via its built-on strap, the cassette well is on the side for convenient loading and unloading. A small lever opens the cassette cover, while a firmer push on the lever ejects the cassette. Located near the cassette well is a pushbutton-resettable index counter.

The control panel is dominated by two large VU meters, whose scales are labelled with the standard Dolby level mark at the +3 indexes. Between the meters is a PEAK LEVEL LED that flashes when momentary peaks reach +6 dB . The meters and PEAK LEVEL indicator function in playback as well as in the record mode.
The transport mechanism is controlled by two slide-type levers. The upper lever has stop and play positions, and next to it is the REC button that must
be pressed before going to PLAY if a recording is to be made. The second lever has three positions. The left position is for rewind, center position for off, and right position for fast forward tape motion. Neither lever can be moved unless the other lever is in its stop (center) position. A pause button is located just below the REC button. A red indicator comes on for the record mode.

The REC level controls for the left and right channels are concentrically ganged together. The lowest quarter of their adjustment range is marked in white as a warning that input signal levels are excessive if the controls must be set so low. Otherwise, the rest of the scales are in red for the right channel and green for the left channel. A small button below the level controls can be pressed to momentarily illuminate the VU meters or pressed and twisted to lock on the illumination. A similar button connects the right-channel meter to give an indication of battery condition.
Separate BIAS and EQ (equalization) switches are provided for setting the operating conditions to suit most tape formulations. The bias levels roughly correspond to those used with low-noise fer-ric-oxide and CrO_{2} (or the chrome equivalent) tapes. The EQ characteristics conform to the standard $120-$ and $70-\mu \mathrm{s}$ curves for these tapes. (The instruction booklet that comes with the recorder lists a number of suitable tapes and recommended switch settings.) The dolby NR switch turns on and off the Dolby B noise-reduction system, and the LIMITER switch turns on and off a peak limiter that takes effect at levels over +3 dB .
The positions on the MIC ATT switch are labelled 0,15 , and $30(\mathrm{~dB})$. With this switch properly set, it is possible to record very high sound levels without

\Longrightarrow There's more to Realistic 40-channel CB than just 17 added channels...

With so many new and unproven brands on the $C B$ bandwagon, the reasons for buying Realistic are clearer than ever. Seventeen years' experience and sales of a million sets annually have shown us what it takes to be a leader

Intelligent, reliable engineering. Easy-to-find sales and service - to the tune of $\angle 800$ Radio Shacks in the USA alone. And low prices that are possible only because Radio Shack is a do-it-yourself company, from factory to warehouse to sales counter.

Take a look at our new high-performance mobile transceiver, the TRC-467. Advanced phase-lock loop circuitry generates all 40 channels with an electronic precision far beyond the limits of the multi-crystal sets

Three ceramic IF filters improve the selectivity for a whopping 80 dB of adjacent-channel rejection. An automatic noise limiter cuts pulse interference, and it's switchable for maximum clarity on stronger signals.

Illuminated signal strength/RF output meter and channel selector, LED modulation indicator - conveniences that make your CB easier and more fun to use. Wth dynamic plug-in microphone, adjustable mobile bracket ${ }_{r}$ and power cables for any vehicle with 12 VDC positive or negative ground.

Come in today and see the TRC-467. Designed, manufactured and sold only by "the" CB experts - Radio Shack. Just 119 95*

These two credit cards honored at most Radio shatks Prices may vary at individual store and dealers

Playback frequency response tests using two different types of tape.

Overall record/playback frequency responses at $0 d B$ and $-20 d B$.

Response curves showing Dolby tracking error at two levels.
overloading the microphone preamplifier stages.

Set into the right side of the recorder is a well that contains the various input and output connectors, a slide switch for selecting either the microphone or line inputs, playback output jacks, a headphone jack, and a small volume control for the built-in speaker. There is also a jack for connecting the external ac power supply to the recorder.

The published performance specifications of the recorder are similar to those for a better-quality line-operated cassette deck. The recorder can be oper-
ated continuously for approximately two hours with six fresh D cells installed.

Laboratory Measurement. We used TDK AC-331 tape with $120 \mu \mathrm{~s}$ equalization and Teac 116SP tape with 70μ s equalization during our playback frequency response tests. In both cases, the response was flat within $\pm 0.5 \mathrm{~dB}$ from 150 to $10,000 \mathrm{~Hz}$, with a maximum departure from flatness of only 1 dB at the lower frequencies (which extended, respectively, to 63 and 40 Hz with the two tapes).

Several types of tapes were used to
measure the overall record/playback frequency response. The curves obtained with Maxell's ferric-oxide UD-XL I and cobalt-treated ferric-oxide UD-XL II (designed to be used with "chrome" bias and equalization) tapes were typical of the recorder's performance with other high-quality tapes. The frequency response was a nearly straight line that sloped downward with increasing frequency. The total variation was $\pm 3 \mathrm{~dB}$ from 35 to $12,500 \mathrm{~Hz}$ using UD-XL I tape and from 35 to $15,500 \mathrm{~Hz}$ with UD-XL II tape. The principal difference between the two tapes was not in their frequency responses but in their high-frequency saturation characteristics. When the measurement was made at 0 dB instead of the usual -20 dB , the UD-XL 11 tape delivered a much better high-frequency response.
The tracking error of the Dolby circuits between the recording and playback conditions (they are supposed to be exactly balanced at all levels and frequencies) was excellent. At levels of -20 and -40 dB , there was no more than 1 dB of change in response at any frequency when using the Dolby system.
A line input of 62 mV or a microphone input of 0.22 mV was needed for a $0-\mathrm{dB}$ recording level. The latter increased to 1.6 and 8 mV when the MIC ATT switch was set to its $15-$ and $30-\mathrm{dB}$ positions, respectively. The microphone overload levels were 82, 550, and 1550 mV in the three positions of the MIC ATT switch. The playback output from a $0-\mathrm{dB}$ recording level varied somewhat with the tape used. The premium ferric-oxide tapesMaxell UD-XL II and TDK SA-gave about a 0.7 -to- 0.8 -volt output, which roughly corresponds to the rated 0.775 volt output. However, the UD-XL I tape yielded a higher output at 0.93 volt.
The playback distortion from a 0-dB recording at 1000 Hz was 0.63% with UD-XL I and 0.8% with UD-XL 11 tapes. The 3\% THD level was reached with respective recording levels of +6.5 and +5 dB . The PEAK indicator flashed at +5 dB . The recording limiter had no effect at $0-\mathrm{dB}$ or lower levels, but it made a worthwhile reduction in playback distortion when the recording levels were well off-scale on the meters. For example, at +7 dB , with UD-XL II tape, the distortion reduced from 5.3% to 2.1% with the limiter switched in. At +10 dB , the distortion was a still-tolerable 3.5%, but at 20 dB it reached an unacceptable 10%. It is clear that the presence of the limiter is not a justification for entirely ignoring recording levels.

We were pleased to note that the VU
meters were correctly named, at least with respect to their performance. Their ballistics matched the specifications for professional VU meters, with a 0.3second, $1000-\mathrm{Hz}$ tone burst occurring once per second to give exactly the same meter indication as a continuous tone of the same level.
With UD-XL I tape, the S / N referred to the 3% THD level was 56.5 dB unweighted, 60.5 dB with IEC A weighting, and 56.5 dB with CCIR/ARM weighting (the type preferred by Dolby Laboratories). With the Dolby system switched in, these figures improved to 61, 68, and 66.5 dB . With UD-XL II tape, the S / N was not quite as good, yielding readings of 55 dB unweighted, 59 dB IEC A weighted, and 56 dB CCIR weighted. The Dolby system improved these figures to $56.5,65.5$, and 66 dB . The noise level through the microphone inputs was 14.5 dB greater at full gain but much less with normal settings of the recording gain. Playing a 200-nanoweber/ meter standard Dolby level tape provided meter readings within 0.5 dB of the Dolby calibration marks on the meters.

The measured wow was the 0.01% residual of our test equipment and tapes. Unweighted rms and flutter measured 0.145% in both the playback and combined record/playback tests. These figures cannot be compared to Teac's own rating, which was based on a weighted measurement. The transport operated smoothly and reliably and moved a C60 cassette from end to end in about 84 seconds. The crosstalk between stereo channels was -45 dB at 1000 Hz , measured with a TDK AC-352 test tape. All these tests were made using an ac power supply.

User Comment. The overall performance of this recorder is squarely in the class of the better component-type cassette decks used in home hi-fi systems. In fact, with respect to distortion and noise levels, almost perfect playback equalization, and virtually ideal Dolby tracking, this recorder was superior to all but a handful of the component cassette decks we have tested.

Used in a fixed home hi-fi system, the recorder's sound quality and handling convenience left little to be desired. Our only criticism of its operation concerns the eject lever. With the recorder slung over a shoulder, it is very easy to brush against the lever and inadvertently open the cassette door. Otherwise, this fine little recorder offers the best of portable and fixed operation, albeit at a price. CIRCLE MO. 102 ON FREE INFORMATION CARD

FITS WITH ANY DECOR - YOU CAN CHOOSE ANY TYPE WOOD OR FORMICA THAT MATCHES YOUR FURNITURE FACTS

1. The special LIFESCREEN(lens and fron surface mirror supplied by Extion are the same type used by major big screen tele vision manufacturers (Sony. Muntz, etc.).
THESE PROFESSIONAL COMPONENTS THOUE PROFESS NOT BE CONFUSED WITH THE SHOULD NOT BE CONFUSED WITH TH TATIONS NOW FLOODING THE MAR KET BECAUSE OF THE POPULARITY of big screen television.
2. Kodak Ektalite screen (recommended be cause it is 16 TIMES BRIGHTER than flat matte surface and 6 TIMES BRIGHTER than most flat beaded movie screenst is the same used by mayor big screan television manufacturers The Ektalite screen is mad
of a special treated sheeting laminated to of a special treated sheeting, lammated to asperically curved shell frame. Th
Ektalite screen dramatically out-perform all other types of screens by reflecting al its incident light back to the viewer instead of absorbing it. Its parabolic shape refects extraneous lighly efficient and directionally selective television image that is exceptionally sharp and colorful.
3. Can be used with or without remote control

Can be used with or without remote contro
television becaise the control panel is faced toward you like any conventional televison.
4. This system will reproduce whatever signal it receives. We therefore do not recommend would be enlarged.
Extron LIFESCREEN* Projection System 8831 Sunset Blvd W. Hollywood, Callt 90069

BUILD THE LIFESCREEN BIG SGREEN COLOR TELEVISION

The LIFESCREEN TV mas designed for the Do-It-Yourvel' enthusiacl tho wishes lo have the enjoy ment and excitement of a professional Big Screen TV but refusec to pay the $\$ 1500$ to $\$ 4000$ and higher price
that most major manufactures charge for $t \mathrm{is} 1$, xury
 PROJECTION SYSTEM WORKS

HOW TO ORDER COMPONENTS
LIFESCREEN(${ }^{\text {L }}$ Lens and Fro

Head BYTE, the leading national publication covering the fantastic new field of personal computer applications. Today, large scale integration has made it possible for the individual to enjoy the unique benefits of a general purpose computing system. Now, an entire micro industry markets microcomputer related items, products that range from computer system kits to peripherals, software and literature on the subject. But where should you go for all the details about your personal involvement in computer technology?

Read BYTE, the Small Systems Journal devoted exclusively to microcomputer systems. Every issue a monthly compendium of lively articles by professionals. computer scientists, and serious amateurs.

Fill in subscription coupon today, or phone your request directly - call 603/924-7217 and ask for subscription department. Read your first copy of BYTE, if it's everything you expected, honor our invoice. If it isn't, write 'CANCEL' across invoice and mail it Eack You won't be billed and the first issue is yours

Allow 4 to 6 weeks for processing

Auto Cigar Lighter Transmitter

It looks like the car's cigar lighter, since it's in the lighter slot. But the "Merc," developed by Mallard Manufacturing, Sterling, IL, is a one-ounce transmitter that, when pushed in just like a cigarette lighter, sends a coded signal that opens a garage door. The Merc (Mallard Electronic Radio Control) is said to work with any door opener on the market, and can be easily unplugged and moved to another car. Since it stays in the lighter slot, it isn't easily misplaced or, since it looks like the lighter, stolen. The Merc transmitter and companion receiver will sell for about $\$ 65$ together.

Hearing-aid TV Captions

The Federal Communications Commission has given approval to an electronic system for producing captions on TV programs for hearing-impaired viewers whose TV receivers are equipped with the proper decoding accessory. While this gives the nod to manufacturers who wish to make the accessories, it does not require stations to supply the captions. PBS (Public Broadcasting Service) has been experimenting with the system for two years, but opposition has come from the commercial networks who want more time for testing. According to estimates presented to the FCC, the equipment to produce the captions will cost each station $\$ 30,000$ to $\$ 50,000$ and encoding the programs is expected to add another $\$ 1000$ to $\$ 3400 / \mathrm{hr}$ to production costs.

"Citizens Band" Movie

"Citizens Band," a feature movie about the phenomenon of CB radio and its effect on the lives of some of the people who use it, is being filmed on locations in Marysville and Yuba City in northern California. The Fields Company production for Paramount Pictures release is to be a contemporary comedy-drama about the personal adventures of an interrelated group of characters in Everytown, U.S.A. The movie depicts various uses of CB radio, including heroic rescue operations in highway and air emergencies. All the principal performers who use CB radios in the picture were given CB equipment and operating instructions long before the start of production so that they would become accomplished CB'ers and play their roles authentically.

The "Leap Second" Year

To keep official time in step with the spinning earth, a leap second was inserted into the world's time at the end of 1976. By recommendation of the International Time Bureau in Paris, France, the leap second began on December 31, 1976, at precisely 23:59:60 Universal Coordinated Time. It ended at 00:00:00 on January 1, 1977, making the "leap second" part of 1976, not 1977. This additional second was inserted by all standard time organizations around the world, including WWV, WWVB, and WWVH in the U.S. The 1976 leap second
was the sixth since the practice began in 1972, and is required because, in comparison with atomic clocks, the earth is slowing down enough so that the extra second is needed to keep the clocks synchronized to the spin of the earth to within one second.

WWV/WWVH Cutback

On February 1, 1977, the National Bureau of Standards discontinued broadcasts on the less-used frequencies of its two time and frequency radio stations. The affected frequencies are 20 and 25 MHz at WWV (Fort Collins, Colorado) and 20 MHz at WWVH (Kauai, Hawaii). Both stations will continue to broadcast on 2.5,5,10, and 15 MHz with no change in radiated power. Radio station WWVB will continue broadcasting on 60 kHz with no changes. Broadcast equipment previously used on the discontinued frequencies will be converted to serve as back-up systems for the remaining frequencies, and will be automatically turned on if the primary transmitters or antennas fail. The NBS also announced that this partial discontinuance of service will be reviewed periodically as changes occur in radio propagation conditions, sunspot activity, etc. If conditions warrant, a resumption of service on the higher frequencies will be considered.

Video Equipment Bright Spot

Frost \& Sullivan, a market research organization, has detected many long-term bright spots in consumer electronics, including video tape systems, video discs, video games, and video projection systems. Despite stiff competition from the Japanese and Taiwan manufacturers for the TV receiver market, Frost \& Sullivan concludes that the U.S. can dominate the field of video entertainment systems because of its early start and sophisticated circuitry. The video game market, which checked in at $\$ 26$ million in 1976, is expected to climb to more than $\$ 130$ million by 1985 . There are now more than 70 companies in the field. Video tape systems will be dominated by the Japanese, with a market peaking in 1980 before giving way to video disc systems . . . if the industry agrees to standardization of software and hardware, says Frost \& Sullivan.

Marine Guidelines for CB Monitors

The Coast Guard has established guidelines to assist volunteer CB-monitoring groups in relaying boating distress information. The guidelines are required to make sure a message gets through the various relay stations unchanged. The boatman can't reach the Coast Guard directly on CB because the Coast Guard doesn't monitor CB channels, a task left to REACT teams and other CB groups. The Coast Guard needs the following information: name and description of the boat, position, nature of the assistance required, number of persons aboard, radio frequencies available, name of the owner or operator and his home port and telephone number, and the name and phone number of the original contact for confirmation and callbacks.

If you are seriously considering the purchase of a microcomputer system tor perconal or business use... or lust heginning to feel the first twinges of interest in a fascinating hobby... the Digital Group is a company you chould get acquainted with.
For many months now, we've been teverishly (and rather quetly) at work on our unique, high-quality product - a microcomputer system designed from the inside aut to be the most comprehensive, easy-to-use and adaptable system you'll find anywhere. And our reputation has been getting around last. In fact, you may have already heard a little something about us from a friend. We've found our own best salesmen are our many satisfied customera
There's a good reason Simply, the Digital Croup has a lot to offer: state-of-the-art designs, a totally complete systems philosophy, unexcelled quality, reasonable software, affordable prices and the promise that our products will not become rapidly obsolete, even in this fast-moving. high-technology field

The Advantages

Here are a fow specific adrantages of our product line

- We offer interchangeable CPUs from different manutacturers (including the new "super chip" - the Z-80 from Zilog) which are interchangeable at the CPU card level That way, your system won't become instantly obsolete with each new design breahthrough. The major portion of your investment in memory and $1 / O$ is protected
- Digital Group systems are complete and fully featured, so there's no need to purchase bits and pieces from different manufacturers. We have everything you need, but almost any other equipment can be easily supported, too, thanks to the universal nature of our systems
- Our syatems are specifically designed to be easy to use. With our combinatoon of TV', keyboard, and cassette recorder, you have a system that is quich, quat, and inexpensive. To get going merely power on, load cascette and go!

P.O. Box 6528

Denver, Colorado 80206
(303) 777-7133

Ok, l'd bike to get to know you guve better send me the whole package
Name
Addrens
City/State/Zip

- Design shortcuts have been awoided -all CГlis run at tull maximum rated apeed.
- All system components are availathe with our heautiful new custom cabmets And every new product will maintan the same unmostahable Digital Group image.

The Features

Digital Ciroup Systems-. Cluc currently being delivered: Z-80 by Zilog, 8080 A $9080 \mathrm{~A}, 6800$, h500 by MOS Technology
All are completely interchangeathe at the CP' card level Standard features with all systems

- Video-based operating system
- Video/Cassette Interface Card

512 character upper \& lower case video intertace (1024 optional)
100 character/second digitally synthesazed audio
cassette interface

- Cru Card

2K RAN1. Direct Memory Acces (I)MA)
V'ectored Interrupts (up to 128)
250 byte 1702 A bootstrap loader
All buffering. CPU dependencies, and househeepeng circultry

- Input/Output Card

Four \&-bit parallel input ports
Four s-bit parallel output ports

- Mortherboard

Prices tor standard eystems induding the above features start at $\$ 475$ for $7-80, \$ 255$ for 8080 or f800. $\$ 375$ tor f500 0 .

More

Many options, peripherals, expansion capabilaties and accessornes are already awailable. They include rapid computer-controlled cassette drives for mass storage, printers, color graphics interfaces, memory, $1 / \mathrm{O}$, monitors, prom boards, multiple power supplies, protetyping cards and others. Software pachages include BASICs, Assemblers, Disassemblers. Text Editors, games, ham radio applications, software training cassettes, system packages and more (even biorhythm).

Sounds neat - now what?

Now that you know a little about who we are and what we re doing, we need to know more about you In order tor us to get more information to you, please take a few seconds and fill in our mailong list coupon. We think you'll be pleased with what vou get back.

INTRODUCING THE FIRST HOBBYIST VOCAL INTERFACE FOR A COMPUTER!

Now your computer can respond to vocal commands by the simple addition of a $\$ \mathbf{2 5 0}$ single-board unit.

IMAGINE being able to talk to your computer anc have it respond by way of a hard-copy device or by activating some external appliance! Computer hobbyists can now enjoy this facility by building "Speechlab," a new, low-ccst (under \$250) computer peripheral. To use it, all one does is plug the single Speechlab pc board into an Altair-bus connector (used by many microcomputer manufacturers), enter a special program, and the computer does the rest.

It's a state-of-the-art approach at a moderate cost.
One section of the program allows the user to "train" the computer to accept a vocal input (via a microphone), analyze the spoken word, and create a digitized version that is stored in memory. The second part of the program allows the user to speak to the Speechlab and have the computer generate the output selected for that particular sound.

The vocabulary size of Speechlab is a
function of the speech recognition algorithm used and the amount of memory available. For the program used in this article, it is 64 bytes per spcken word.

The unique characteristics of Speechlab open many formerly closed doors. Since Speechlab will operate with any audio input (not necessarily a recognized language), a person who's vocally handicapped can operate almost any number of appliances (TV receiver, stereo system, solenoid-operated door,

Fig. 1. The mic input is amplified, filtered and applied to S1 along with raw audio, zero-crossing detection, and three reference voltages. Output of S1 is computer selected by switch S2 for digitizing.

etc.) using a repeatable sound such as a grunt. One can use Speechlab, too, as a vocal processor to add spoken commands to many computer games (such as the "Star Trek" game), or enter the world of artificial intelligence and advanced programming.

Circuit Operation. The basic block diagram of Speechlab is shown in Fig. 1. The audio input is amplified by A1 and applied to three $80-\mathrm{db} /$ decade rolloff band-pass filters F1, F2, and F3. These filters encompass the ranges of 150 to $900 \mathrm{~Hz}, 900 \mathrm{~Hz}$ to 2.2 kHz , and 2.2 kHz to 5 kHz , respectively. These ranges correspond to the frequency ranges of the first three resonances of the average human vocal tract.
Each filter is passed to a time averager (TA1, TA2, and TA3) to generate a voltage proportional to the level of the speech waveform within each band.
The amplified audio signal from $A 1$ is further amplified by A2 to generate an unfiltered waveform that can swing ± 2 volts about a rest level of 2 volts. This signal is also applied to a zero-crossing detector that generates a voltage proportional to the number of times the speech waveform crosses the 2 -volt rest level in a given period of time, thus generating a measure of the dominant frequency in the speech signal.
These five voltages-TA1, TA2, TA3, A2, and ZCD-are fed to solid-state switch S1 along with three reference voltages used for calibration and self test. A computer output command selects one of these five voltages to be passed through S^{1}.
The selected output from S1 is passed to a second solid-state switch (S2), and to a logarithmic amplifier (L1) that emphasizes the low-level signal be-
fore being passed to S2. Switch S2 can select either the direct output from S 1, or the output from L1, and pass this selected signal to a 6 -bit A / D converter where the voltage is converted to a digital value. The output of the A/D converter is fed to the computer data bus.

All operations of the Speechlab are controlled through a single I/O port (address $\mathrm{AF}_{\text {hex }}$. As shown in Fig. 2, six bits are used: bit-5 disables the 8 -to- 1 multiplexer ($\mathbf{S} 1$), and is used when switching between bands; bit- 4 controls signal generator G1 which is used either to drive the microphone so that it acts like a miniature loudspeaker for prompting during voice input, or to drive the filters and zero-crossing detector during calibration and test; bit-3 selects either linear or logarithmic scaling of the voltage applied to the A/D converter; while bit-2, bit-1, and bit-0 select one of the eight signals from S1 for A/D conversion.

The input data word contains the 6 -bit A/D output in bits 0 through 5, bit-6 is unused and is always 0 , while bit- 7 is the A/D converter status with a 1 corresponding to busy, and 0 corresponding to finished.

Speechlab is physically configured to occupy one slot in the Altair bus, and the complete schematic is shown in Fig. 3 through Fig. 7.

Construction. The two foil patterns (Speechlab uses one double-sided pc board) are shown half-size in Fig. 8. (Blow up to full size on film only.) Component layout is shown in Fig. 9.
All the components are mounted on one side of the board, with all the soldering done on the noncomponent side. Sockets are recommended for all IC's since most of them are MOS-types that
may be damaged by improper handling.
Integrated circuits IC1, IC4, IC7, IC8, IC9, IC15, and IC16 should be selected so they are capable of delivering a 4 -volt output when using a 5 -volt supply. Dual flip-flop IC14 can be from any manufacturer but Fairchild, as their truth table is somewhat different from the conventional table.
Start construction by installing the voltage regulator (IC6), all the discrete components, and the IC sockets-do not install the IC's at this time. Check the board for correct parts installation, and to make sure that there are no solder bridges between adjacent foil traces. Mount the board in an Altair bus connector, and check for the presence of 5 volts at the output of the voltage regulator and at the appropriate socket pins. Remove the board from the computer.
Install IC2 through IC5, IC10 through IC14, and IC17 through IC22. Install the board back in the Altair bus connector, and turn on the computer. Load the test

Fig. 2. Input and output port bit configuration.

Fig. 3. Amplifier $1 / 4$ IC9 takes either audio or tone from 1/4IC4 depending on computer command. IC1 circuits are used as raw audio amplifier and zero-crossing detector.

PARTS LIST

Unless otherwise noted, the following capacitors are $\mathbf{1 0 \%}$ Mylar types, and all picofarad sizes are CM05 types.
$\mathrm{C} 1, \mathrm{C} 16, \mathrm{C} 21, \mathrm{C} 43, \mathrm{C} 47, \mathrm{C} 49, \mathrm{C} 52$, C57-0.0047 $\mu \mathrm{F}$
C2, C31- 100 pF
C3, C17, C20-270 pF
C4, C7, C8, C10, C12, C19, C27, C32, C33, C34, C35, C36, C37, C44, C55, C61, C62-0.1 $\mu \mathrm{F}, 25-\mathrm{V}$ disc
C5, C14, C18, C24, C54, C60-0.01 $\mu \mathrm{F}$
C6, C42, C45, C53, C56-240 pF
C9, C40, C48-0.022 $\mu \mathrm{F}$
C11, C29-47 pF
C13-15 $\mu \mathrm{F}, 25 \mathrm{~V}$ tantalum
C15, C22, C51, C59-0.0015 $\mu \mathrm{F}$
$\mathrm{C} 23-0.0022 \mu \mathrm{~F}$
C25, C26, C28, C38-1 $\mu \mathrm{F}$
C30, C39, C46- $0.047 \mu \mathrm{~F}$
$\mathrm{C} 41-0.1 \mu \mathrm{~F}$
C50, C58- $0.001 \mu \mathrm{~F}$
D1, D3 through D6-1N4148 or 1N914 diode D2-1N746 diode
IC1, IC4, IC7, IC8, IC9, IC15, IC16LM3900 quad amp
IC2-4051 8-to-1 analog multiplex
IC3-4016 quad analog switch
IC5-LM311 comparator
IC6-78M05 5-volt regulator
IC10-4024 7-stage binary counter
IC11, IC18-74C174 D flip-flop
IC12-4050 hex buffer
IC13, IC22-4049 hex buffer inverter
IC14-4013 (see text) dual-D flip-flop
IC17-74LS30 8-input NAND gate
IC19-8097 three-state hex buffer
IC20-8093 three-state quad buffer
IC21-4001 NOR gate
MIC-Mura DX-121 dynamic microphone (part of stereo set Mura DX-242)

L1-22- μ H choke
Unless otherwise noted, the following resistors are $1 / 4-\mathrm{W}, 5 \%$
R1- 619,000 ohms, 1%
R2-1 megohm, 1%
R3-6810 ohms, 1%
R4-332,000 ohms, 1%
R5- 200,000 ohms, 1%
R6,R20,R21-30,000 ohms
R7, R100-3 megohms
R8, R9, R10, R12, R14, R16, R104-1 megohm
R11-910,000 ohms
R13-2.7 megohms
R15, R48- 10 megohms
R17,R18-20,000 ohms
R19, R22, R106- 10,000 ohms
R23- 1000 ohms
R24, R27- 1.2 megohms
R25, R34, R39-470,000 ohms
R26, R38-750,000 ohms
R28, R31-100,000 ohms
R29-110,000 ohms
R30-39,000 ohms
R32-47,000 ohms
R33, R41-68,100 ohms, 1%
R35, R96,R102-75,000 ohms
R36-3.9 megohms
R37, R46-357,000 ohms, 1\%
R40, R50, R52, R54, R56, R58, R60
R61- 10,000 ohms, 1%
R42-12,100 ohms, 1%
R43, R49-4750 ohms, 1%
R44-4320 ohms, 1%
R45, R47-681,000 ohms, 1%
R51, R53, R55, R57, R59-4990 ohms, 1\%
R62-274,000 ohms, 1%
R63-7500 ohms
R64, R66, R72, R75-160,000 ohms
R65, R71-12,000 ohms

R67, R70-300,000 ohms
R68-931,000 ohms, 1\%
R69-2 megohms
R73-620,000 ohms
R74, R76, R90, R92-62,000 ohms
R77-15,000 ohms
R78, R83, R84-147,000 ohms, 1%
R79, R80, R87-51,100 ohms, 1%
R81,R82,R89-174,000 ohms, 1%
R85-330,000 ohms
R86- 680 ohms
R88-100,000-ohm pc trimmer potentiometer
R91-270,000 ohms
R93-249,000 ohms, 1%
R94-4300 ohms
R95, R97, R103, R105-360,000 ohms
R98, R101-820,000 ohms
R99-845,000 ohms, 1%
R107-158,000 ohms, 1%
R108-4700 ohms
R109, R111, R117, R119-82,000 ohms
R110, R116-5100 ohms
R112, R115-180,000 ohms
R113-549,000 ohms, 1%
R114-1.6 megohms
R118-510,000 ohms
R120-6800 ohms
R121-2000 ohms
Misc.-Sockets (one 8-pin, thirteen 14-pin, seven $16-\mathrm{pin}$), regulator mounting hardware, tie-wrap etc.
Note 1: The following is available from Heuristics Inc., 900 N. San Antonio Rd. (Suite C-1), Los Altos CA 94022 (Tele: 415-948-2542): complete kit of all parts including pc board, sockets, microphone, hardware manual, and 200-page lab manual, SpeechBasic, and assembly language programs at $\$ 249$. (California residents please add $61 / 2 \%$ sales tax.)

Fig. 4. Three bandpass filters and their associated time averagers. They encompass three ranges corresponding to frequency ranges of the first three resonances of an average human vocal tract.
program of Table I at 100 (hex). NOTE: all program data in this article is in hex.

You must jump to your monitor routine at address 0164-0165. Load address 195 with 05 and run the program. This will input the fixed reference voltage levels to the A/D converter and check the signal paths from switch S 1 to the computer data bus.

After running this program, examine locations 200 through 20F, 300 through 30F, and 400 through 40F. Location 200 through 20F should contain $12 \pm 4,300$ through 30F should contain 24 ± 4, and 400 through 40 F should contain 36 ± 4.

Insert the remaining IC's in their sockets, load location 195 with 10, and run the test program (Table I). This test uses the signal generator (G1) to create an input for the filters, amplifiers, and zerocrossing detector, and thereby checks the remaining signal paths on the board and calibrates the microphone preamplifier. After running the program, examine locations 200 to 20 F to see if it contains 16 to 18 . If not, adjust potentiometer R88 and rerun the program until these outputs occur.

Calibration and Test Program. The test program (Table I) is a generalpurpose calibration, test, and diagnostic program for the Speechlab. It loads at location 100 and requires memory from 100 to 600 for program and data areas. Locations 163-165 should be loaded
with a jump to your monitor address so that the program will return control to your monitor after execution. If you do not have a monitor, place a halt at this location.

The program collects four 256-byte buffers of data from four of the eight pos-

Fig. 5. Command latch (IC18) can activate tone generator and switch S1 (IC2). Op amp (1/4IC4) is logarithmic amplifier.

Fig. 6. IC17 circuit selects board address and IC14 forms S2. IC10 and IC11 form 6-bit A/D converter. Digitized data is then passed to computer.

Fig. 7. Power supply circuit is conventional.
Note bypass capacitors that are actually mounted between IC power supply pins and ground.
constant numbers corresponding to the three reference voltage levels to the A/D converter on band 5,6, and 7. This is useful for checking the A/D converter operation and isolating problem areas to one side or the other of the 8-to-1 analog switch S1.

If the Test Command word is set to 10 , signal generator $G 1$ is enabled which begins to "beep" the microphone and connects the signal-generator output into the microphone preamplifier A1. The four data areas contain data from bands $0,1,2$, and 3 as when the Test Command word was 00, but the input signal comes from the signal generator rather than from the microphone. This allows calibration of the microphone preamplifier and isolates problems in one of the filter-averager chains.

Adding bit-3 to the command word will cause logarithmic rather than linear data scaling and will isolate problems to the log amplifier or either of the two analog switches comprising S2, the 2-to-1 ana\log switch.
Various combinations of bits in the Test Command word will allow quick calibration and fault isolation, and also provide a quick way to look at raw data from any input through the microphone.

Software. A simple technique for speech recognition of the digits zero through nine with a recognition rate of 90% or better, is shown in the flowchart of Fig. 10. An 8080 program for this algorithm is shown in Table II. The program starts at memory location 0100 and requires less than 4 K bytes of storage including table space.
There are two modes of operationtraining and performance. During training, speech examples of the digits are read into the microphone and the parameters of the speech input are extracted and placed in the tables. In the performance mode, an unknown utterance is presented and recognized.

To use the program, enter it into the computer starting at location 0100, and then run the program. The Teletype will respond with " T " (train) or " P " (perform). Type a "T" and the Teletype will respond with "NUMBER?" which can be between 0 and F. Type the digit you desire, and the microphone will emit a "beep" indicating that the speech window is open. When this beep occurs, vocalize the same digit you just typed in. The microphone will beep again to indicate that the speech window is now closed. The machine will then type T or
"beep" indicating that the speech win-

TABLE I
0100
$0100=$
$0100=$
0100210002
0103228001
0106210003
$0109228 F 01$
010 C 210004
010 C 210004
010 F 229101
010 F 229101
012210005
0112210005
0115229301
0115229301
$01183 A 9501$
011
011 En Cn601
$011 E$ 2ABDO1
012127
012177
0122
0123
$\begin{array}{ll}122 & 2 \mathrm{C} \\ 0123 & 228001\end{array}$
0126349501
0129 C 501
012 CDO
012 C
0
012 E 2A AFO
013177
01322 C
0136 3A9501
0139 C602
013 CDO601
$013 E 2 A 9101$
014177
014177
0142 C
0142 C
0143229101
0146 3A9501
0149 C 603
014 E
01
014 CDD601
014 E 2 A 9301
0151 77
015177
0152
2 C
0153229301
0156229301
0158 Caspoi
0159 CD701

015 C C31801
015 F

015 F 3E00
0161 DBAF
0163 C3XXXX
0163 C3XXXX
0166 F620
0166 F620
0169 W3AF
O16A E6DF
O16C EBAFF
O16E DRAF
0170 17
$017!$ DAGEO1
0174 DBAF
0176 c 9
0177 c5
0178
O178 3EOS
017A FEOO
017A FEOO
017 C CABEOL
017C CABEO1
017 C
0669
$\begin{array}{ll}017 F & 0669 \\ 0181 & 00\end{array}$
$\begin{array}{ll}0181 & 00 \\ 0182 & 00 \\ 0183 & 05\end{array}$
018200
018305
0184528101
0184 C28101
$0187 \quad 30$
0187 3D
0188 c 37 AO
018 CB CJAO
018 Cl
018 Cl
018 C
Cg
018 C
CO 00
0
018 D
018 F
0181
0192
0193 YY
0195 Y
0195 YY
01002100

$\begin{array}{lllllllllllllll}0110 & 91 & 01 & 21 & 02 & 05 & 01 & 21 & 00 & 03 & 22 & 8 F & 01 & 21 & 00 \\ 03 & 04 & 22 \\ 0120 & 01 & 95 & 01 & C D & 66 & 01 & 2 A & 8 D\end{array}$

0110	91	01	21	00	05	22	93	01	$3 A$	95	01	CD	66	01	2 A

0130 ol 77
$\begin{array}{ll}0130 & 01 \\ 0140 & 01 \\ 77\end{array}$
0150 O1 77
$\begin{array}{lll}0150 & 01 \\ 0180 & 00 \\ 017\end{array}$
016000 DB
0170
017
0180

RETDEL POP BELO
RETDEL POP B
SYSTEM EQUT OCOOOH
START ERU 100 H
LXI H,START +100 H
SNLD TEMP1
LXI H, START $+200{ }^{2}$
LXI H, START +200 H
SHLD TEMP2
LXI H, START +300 H
SHLD TEAP 3 T $\mathbf{3 0 0 H}$
SHLD TEMP3
LXI
HTSART +400 H
LXI HISTART
SHLD TEMP4
LDA COMAND
60
SHLD TEMP4
LDALL INPUS
CALL INPUT
LHLII TEMPI
MOU M, A
MOU M,
INR L
SHLD TEMP
SHLD TEMPI
LIA COMANI
ADI 1
CALL INPUT
LHLD TEMP
MOU $\mathrm{M} \cdot \mathrm{A}$
INR
INR L
SHLD TEMF2
ADI 2
call infut
LHLD YEMP3
MOU M, A
INR L
SHLD TEMP
SHLI TEMP
LDA COMAND
ADI 3
ADI 3
CALL INPuT
LHLD TEMP4
HoU M,A
SHLD TEMP4
SHLD TEMP4
JZ stof
JZ STOF
CALL DELA
JMP GO
STOP MUP GO A,O
OUT OAFH
ONFUT SYSTEA
JRI $20 H$
JMF SYSTEM
ORI
2OH
ORI 2OH
OUT OAFH
ANI ODFH
LODP OUT OAFH
IN OAF
RAL
JC
LOO
IC LODP
IN OAFH
DELAY RET OAF
$\begin{array}{ll}\text { DELAY } & \begin{array}{l}\text { RET } \\ \text { PUSH } \\ \text { MUI AOS } \\ \text { DELO }\end{array} \\ \text { CPI }\end{array}$
DELO CPI O
JZ RETDEL
DEL1 NOF
NGF
NOF
NDP
DCR
JNZ DEL 1
JNZ DELI
DCR A
JHF
DELO
TEMP1 DS 2
TEMP2 DS 2
TEMP3 DS 2
TEMP3 IS 2
TEMF4 DS 2
TEMF4 DS 2
COMAND EQU

ORG 100 H
START EQU 100 H
LXI H, START +100 H
SHLD TEMP1
LXI H, START +200 H
SHLD TEMP2
SHLD TEMP3
LXI H,START +400 H
SHLD TEMP4
LIDA COKAND
CALL INPUT
LHLII TEMFI
HOU M, A
SHLD TEMPI
LDA COMANI
ADI 1
CALL INPUT
LHLD TEMP2
MNR M : A
SHLD TEMF2
LILA COHANII
ADI 2
CALL INPUT
LHLE YEMP
INR L
SHLD TEMP
LDA COMAND
CALL INPUT
LHLD TEMP4
HOU M. A
HOU M, A
INR L
SHLD TEMP4
JZ STOP
CALL DELAY
JMP GO
MUI A,O
OUT OAFH
JMF SYSTER

ANI ODFH
IN OAFH
$\xrightarrow{\text { Ral }}{ }^{\text {JC LOBF }}$
RET
PUSH
DELO CPI O
DEL1 MUI B,69H
MUP
NOF
NDF

22	05	22	93	01	$3 A$	95	01	01	21	00	04
66	01	22									
22	$8 D$	01	$3 A$	95	01	$C 6$	01	CN	66	01	$2 A$
1											

0
今Om

"HANDS ON" EXPERIENCE WITH A TALKING COMPUTER

BY LESLIE SOLOMON, Technical Editor
While testing the Speechlab, we borrowed an Al Cybernetic Systems (Box 4691, University Park, NM 88003) Model-1000 Speech Synthesizer ($\$ 325$, assembled) to see if our microcomputer could "talk" as well as "hear." The Model 1000 is designed to fit into one slot of an Altair bus and delivers its output via an audio cable that can be plugged into any audio amplifier system. The output level is 0.6 volt $p-p$; impedance is 1000 ohms; and frequency range is 150 to 4500 Hz .

This synthesizer is phoneme-oriented. Accordingly, you can program it to say anything, as opposed to speech synthesizers that have only several words fixed in ROM. Essentially, the Model 1000 is a hardwired analog of the human vocal tract and various portions of the circuit emulate the vocal cords, the lungs, and the variable-frequency resonant acoustic cavity of the mouth, tongue, lips and teeth.

Fig. 8. Etching and drilling guides for pc board are shown half size. Guide at left is the component side. Component layout is in Fig. 9.
P again. You answer with a T, and the process is continued as long as you want. Do not exceed 16 entries with this sample program

Once you have some vocalized digits in memory, run the program again. This time, when the Teletype asks T or P, answer with a P (for perform). Now, as you
speak the digits into the microphone, the Teletype will respond by typing that digit. When used in a quiet room, with the same vocalization, this algorithm can be

All the information necessary to perform the synthesis functions are located within a ROM that is accessed by the program. Words and sentences are formed by supplying a string of ASCII characters as would be done when outputting to any port, except that these strings also use some non-alphanumeric characters (i.e., the " + " is used to form "th" as in "thaw" or "earth"). Each ASCII character represents a particular phonetic sound or phoneme. If desired, you can create a program that produces simultaneous printout and "voiceout" of the same string.
The device requires very little software to implement: less than 50 bytes of assembly language or a handful of BASIC statements. The manual accompanying the synthesizer covers speech generation in detail, how it is created, and what is involved. It also illustrates how to "mechanize" speech, with several examples shown.
Ater working with the synthesizer for a couple of weeks, we
found that we have a lot to learn about how humans create speech. After many hours of studying, experimenting, and redoing programs, we made the Model-1000 utter some recognizable sentences. It is not easy, our experience showed, even when one uses the wealth of instructions provided.

Working with a phoneme-oriented speech synthesizer is a little like learning to use a microprocessor. All the logic is there, but programming it properly is another story. Like working with a processor for the first time, one must crawl frustratingly before walking. Slowly, however, the ideas start to percolate. Our computer still talks with a rather heavy "robotic" accent, but we have hopes that someday it will "humanize."

To paraphrase Sam Johnson: "Sir, a computer talking is like a dog walking on its hind legs. It is not done well; but you are surprised to find it done at all." We have a long road ahead to the "HAL-9000," but the first step has been taken.

Fig. 9. Component layout for the Speechlab. See etching and drilling guide on previous page.

TABLE II

expected to have a recognition rate greater than 90%.

The program works as follows: the sampling subroutine is entered to obtain a sample of the amplitude every 10 milliseconds in each of the three frequency bands and to estimate the number of zero crossings during each time period. One hundred and fifty samples are collected, allowing up to 1.5 seconds of speech (between microphone "beeps"). A preset threshold is used to find the beginning and end of the word. The duration of the word can now be computed by a simple subtraction. Typically, this duration will be about 400 -milliseconds for the digits. The duration time is divided by 16 to select 16 evenly spaced parameters from the three bands and zerocrossing information.

The 64 bytes obtained (16 parameters from each of the four bands) are compared with similar parameters which were collected during the training mode. A summation (running total) of the difference between the 64 parameters of the sample and the parameters of the training "templates" is computed. The totals represent a measure of the difference between the sample and each of the previously stored templates. The tem-

Fig. 10. Flow chart of a simple program that is used to "T" (train) and "P"(perform) a vocal operation. The program is shown in Table II.

plate with the smallest difference from the sample is then selected as the answer (output).

The above algorithm, while relatively simple, illustrates many of the basic concepts of speech recognition. A manual supplied with the Speechlab kit contains descriptions of other approaches to speech recognition, along with sample programs to demonstrate the techniques of speech recognition.

HOBBY-WRAP wire-wrapping, strippine, unwrapping tiol for awg 30 (.025 square post)

MOST \% 600 RECEIVERS SOUNDASGOOD ASTHISONE.

UNFORTUNATELY

 FORTHEM, THISONESELLS FORUNDETSOChannel, win. RMS into 8 ohms, from 20to $20,000 \mathrm{~Hz}$

The average
$\$ 600$ receiver sourds as good as the rew Picneer SX-550 until ycu start listening to prices.

If $\$ 600$ is your kinc of crize, an 5 X - 650 should cualify as your kinc of receiver. Not only will it give you the kind of featues ard sound quality y u^{\prime} d expect for that k nd o : money; it'll also leave you :ith' roughly half your receiver budget unexpectedly unspe tt .

But suppose your idea of a receiver price is somewhere under \$300: The SX-E50 will sound bette- to you tharranything yos thought you could afford. Because it has more pcwer, a sider frequency range, less distorticn, and far greater versatility than most other receivers in that categorg.

It's a fact that the SX-650 provičes a continuous jewer auplt of 35 watts per
distortion. It also delivers each instrument and voise at is intended level baianced within $\pm 0.3 \mathrm{cB}$ of the RIAA curve.

The facts of its stereo separaion, selectivity ard sensitivity must really be experie $c e d$: sometimes only hearing is believing.

You'll also be imbressed by wha: you don't hear from the SX-65C. You won't hear the thousand miscelianeous acol stic devils trat live in the limbo between FM stations on lesser receivers.

On your next visit to a high fidelity dealer, listen to a Pioneer SK-650 wi:h any reasonably accurate speakers.

Youll fird either its price cr its performance amazing. Depending cn which you hear firs:.

(1)PIONEER

U.S. Piomzer Dearonics Corp 75 Offord Drise, NDonactie, New lersey 07073. The velue shown in this ad is fcr informational purposes only Actua resale priceswil ba se ty the individual Pioneer dealer xhis option.

POWER.

IMSAI Introduces the Megabyte Micro."

The Megabyte Memory

Until today. the largest memorv bou could fil and address in a single microcomputer CPU was 65 K

Now. IMSAI presents an incredihle memory system for micros 16 times more powerful than yesterdays best

Imagine. a full megabyte of power from sixteen 65 K RAM hoards

And. to control all this. the IMSAI Intelligent Memory Manager (IMM). the super control board

You can write protect blocks throughout the full megabyte. Or. map in 16 K blocks

Plus. presel 16 mapping contigurations with protect for high speed transfer or rapid change

All interrupts are fully vectored, and there's an interrupt if an attempt is made to write into protected memory.

There's even a real "time of day" clock

65K, 32K and 16K RAM Boards

Until today, the most memory you could plug into al single slot was 16 F

Now. IMSAI presents memory boards in astonishing multiples of sixteen: 65 K . 32 K and 16 K low power. dynamic RAM Boards. They can be used in anv S-l00 hus computer individually or in combination to form conventional systems up to 65 K hytes

Fvery board is last. With "hidden refresh" and no "wait state."

The Complete Megabyte Microcomputer System

The IMSAI Megabvete Micro'M is only part of the story. The full system can include dual floppy disks. terminals. plotters. printers and tape cassettes

IMSAI also offers the finest high level and peripheral software available. Paper tape and Tape Cassette I/O and super Disk Operating Systems. Plus. BASIC and Disk BASIC with more high level languages coming

Until todav, the microcomputers potential was just something you talked about.

Now. you can put it to work. Powerfully circle no 30 on free information card

GENTLFAIF I'm puwer hungry

 \square Send 3.? R RAM Buard kil 5749 Assemhled $\$ 1099$ \square Send S.: R R AM Buard k.1 \$7.99 Assembled slo99 \square Send IMK R AM Roard Kil s.449 Ancemhled \$6,74 \square Send IMM FROM Conirod Kit St99 \square Asecuthled $\$ 694$ \square Send full catake \$1 100
Check/Vo) enclused Amt. s (harge ma: \square BAC \square M/G
IF Exp Date
Sig.
\square Send name dif me nearest lalsar dealer
Name
Company
Tinc
Adetress
City
Slate/Zip

IMSAI Manufacturing Corporation 14860 Wicks Blvd.
San Leandro. CA 94577
(415) 483-2093 TWX 910-366-7287

POPULAR ELECTRONICS

NEW NO-CAMERA PRINTED CIRCUIT BOARD METHODS

How to use GC Calectro and Datak kits for making pc boards directly from printed matter.

BY A. A. MANGIERI

\mathbf{Y}OU CAN now copy pc etching and drilling guides directly from the printed page without using a camera or laying out an artwork master. Two pc kits that can accomplish this dream feat for the electronics hobbyist are now on the market. One of these kits is called "Lift-lt" from GC Electronics; the other is Datak's No. ER-4 kit.

The two direct-copy pc kits use different approaches to achieve essentially the same end. The Lift-it technique actually lifts the printed pattern from the page with a paint-on transparent film that has an affinity for the printing ink The ER-4 technique uses a no-camera photographic process to duplicate or reverse a printed image or a positive or negative transparency, depending on how the copy film is exposed. Either copy method will greatly speed up the artwork portion of a construction project in which a pc board is used

Kit Lineups. The Calectro No. J4-828

Lift-lt kit from GC contains seven chemicals in bottles and cans, three trays, and pc contact film. The chemical lineup includes the paint-on Lift-It film solution around which the kit is built, board-stripping solution, contact film developer, board developer, paint-on resist lacquer, aerosol resist sensitizer, and premixed ferric-chloride etching solution. Two of the trays supplied are aluminum and are meant for the developing processes, while the third tray is plastic and is for etching only.

The only additional items needed for making printed circuit boards with the Lift-lt kit are a yellow "safe" light, any of several light sources for exposing the contact film and board, and copper-clad board blanks. All chemicals in the kit come premixed and ready to use.

Datak's No. ER-4 kit uses a unique di-rect-photocopy process, called PosNeg. The kit contains four chemicals, a printing frame with yellow filter, artwork aids (layout film, drafting tape, and di-
rect-etch dry-transfer pc patterns), photocopy film, and two copper-clad pc blanks. The two types of film developer, film fixer, and ferric-chloride etchant are supplied in powder form (to be mixed when needed), while the board developer and photoresist come ready to use.
The only additional materials needed with the ER-4 kit are a photoflood lamp, three glass or plastic trays, and bottles for the home-mix chemicals.

With both kits, you receive complete, detailed instructions on how to use them. In both cases, materials are supplied for making both positive and negative exposure masks for use with presensitized pc blanks (single-sheet original artwork can measure up to $5^{\prime \prime}$ by $5^{\prime \prime}$).

[^2]
THE "LIFT-IT" METHOD

If you are new to pc techniques and have little or no experience in working with photographic techniques, the GC Lift-It kit may prove to be more convenient to use. There are no photo methods used in making the first film artwork.

Since using the Lift-It method destroys the original published etching and drilling guide, it pays to photocopy both sides of the magazine page on which the artwork appears so that none of the published material is lost. Cut the page from the magazine, trim the artwork to leave about $1 / 4^{\prime \prime}(6.35 \mathrm{~mm})$ excess on all sides, and tape the artwork flat on a sheet of waxed paper. Paint the Lift-It emulsion over the entire surface of the artwork and allow to dry for 15 minutes. Repeat painting on the Lift-lt emulsion and allowing it to dry until six thin, even coatings have been built up. After applying the final coating, allow the emulsion to dry for at least two hours.

When final drying is complete, soak the artwork in warm, soapy water for an hour or more. Remove the artwork from the soaking bath and carefully remove the softened paper from the Lift-It film by rubbing with the tip of your finger. Be careful to avoid tearing, stretching, or deforming the film. If particles of paper

THE "POS-NEG" METHOD

The Pos-Neg method used in the Datak ER-4 kit depends on accurate timing during the exposure of the sensitized film supplied in the kit. Using the PosNeg copy mode, you can directly copy the pc etching and drilling guide from the printed page. This results in a film positive that can be used directly to expose positive-resist-sensitized pc blanks.

To use the direct-copy Pos-Neg method, you begin by loading the contact frame (included in the kit) with the printed etching and drilling guide with the artwork facing up, followed by a narrow test strip of the sensitized film with its brown side up, and with the yellow filter on top. The whole is firmly sandwiched together between the contact frame and its top glass.

Next, you expose the test strip in blocks for 30 to 100 seconds at 10 second intervals. After developing and fixing the exposed film strip, you may find only one block satisfactory for your
prove to be stubborn, return the artwork to the soaking bath for 15 minutes to a half hour. Finally, when all particles of paper have been removed from the film, allow the latter to completely air dry, after which you can apply a coat of the LiftIt emulsion to the ink side of the film. Make this coat as thin as possible.

You can greatly reduce the time to make the first artwork if, after applying the Lift-lt emulsion, you dry it under a heat lamp or in a just-warm oven. Arrange the heating to dry the film in 3 to 5 minutes. (The wet emulsion is milky; as it dries, it becomes clear.) Using heat to speed up the drying, you can put the artwork in the soaking bath after 30 to 45 minutes of final drying. To reduce soaking time, tape the artwork, paper side up, to a clean glass plate and place both in the bath. After 10 minutes or so of soaking, cautiously rub the surface of the paper to break up any glaze. Repeatedly rub the paper gently until it begins to roll off in small bits at first and then in larger pieces. If the paper stubbornly adheres to the film, do not rub harder; allow additional soaking time and then proceed.

The prepared artwork can be used as is to expose presensitized pc blanks treated with positive photoresist, such as GC's No. 22-232 spray-on positive
resist (use only GC No. 22-225 resist developer when using this positive pho-toresist-not the No. J4-630 board developer supplied in the Lift-lt kit).

Positive to Negative. Assuming you are using negative photoresist and have a Lift-It positive, the next step is to make a negative of the Lift-It artwork. To do this, you use the contact film supplied in the kit. The procedure is simple. Working under safe-light conditions, you cut the film to size, place it glossy side up in a contact frame (such as GC's No. 22-280 frame), place over the film the Lift-It positive with ink side down, close the frame, and expose it under coolwhite fluorescent light. If you do not have a contact frame, two clean sheets of glass will do. Excellent results are obtained with a pair of 20 -watt cool-white fluorescent lamps at a distance of $4^{\prime \prime}$ (10.2 cm). Exposure time will first have to be established by exposing segments of a thin strip of the film for $1 / 2,1,2$, and 4 minutes.

Once you have established the correct exposure time and have exposed the film through the Lift-It positive, switch to safe-light conditions, remove the film from the contact frame, and place it, dull side up, on a clean sheet of glass. Flow onto the film a liberal quanti-

Typical ER-4 mask.

ty of contact-film developer. Soak a wad of cotton with the developer and rub gently, in a circular motion, over the entire dull surface of the exposed film. After a minute or two, the areas of the film that were not exposed to the exposing light will begin to dissolve and come away from the film. Continue rubbing until all scft areas of emulsion have been removed. Be as gentle as possible with your rubbing because the emulsion left behind at this point will be soft. When all unwanted emulsion has been removed, rinse the film under gently running warm water and allow to dry completely.

What you should now have is a highcontrast film negative with opaque orange areas surrounding water-clear conducfor areas. The details should be as sharp as they are in the Lift-lt positive. Carefully examine the film negative for discontinuities and other flaws. You can repair discontinuities by cutting away the appropriate portions of the film with a razor blade or sharp X-acto knife. Pits and other flaws in the emulsion can be repaired with the paint-on resist lacquer in the kit.

Although exposure time is not critical, gross underexposure will result in complete removal of the emulsion. Conversely, gross overexposure might preclude any development at all.
needs. The "good" block will have almost opaque blacks surrounded by a slight brownish haze in the "clear" areas. It is usually necessary at this point to run off another test strip, this time in 3 -second steps that span the exposure time of the "good" test block, to determine the exact required exposure time within 3 seconds.
Since the Pos-Neg technique involves both direct and indirect lighting effects, it is quite critical. An accurate enlarger timer to control the on-time of the photoflood light will prove helpful. If you do not have an enlarger timer, you can use a clock with a sweep second hand and manually control the lamp.

At all times, the presensitized film must be in intimate contact with the printed etching and drilling guide. Additionally, there can be no "print-through" in the artwork. If printing on the reverse side of the page from the etching and drilling guide is visible, back the artwork with matte black paper.
The simplest of the photo copying
procedures with the ER-4 kit is the duplication of a positive from positive or negative film transparency. Here, again, you must determine the proper exposure time. You load the contact frame with the grey side of the sensitized film up, transparency, and yellow filter on top, and expose in blocks for 20 to 90 seconds in 10second intervals. After developing and fixing the exposed film, the correct exposure time will be that represented by the block with opaque black areas surrounded by water-clear areas.

Positive to Negative. Two separate exposures of the sensitized film are required to make a positive from a film negative or vice-versa. First, you must determine a "clearing" time. To do this, you load the contact frame with the film test strip with its grey side up and place the yellow filter on top. Then, you expose the strip in blocks for 20 to 90 seconds in 10 -second intervals. After this, you develop the film in fresh developer at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ for 2 minutes, place it in
the fixer for 5 minutes, wash it under gently running water, and allow it to dry. The test strip should go from fully opaque black to fully water clear, with one or wo intermediate shades. If the first fully clear block was exposed for 60 seconds, the clearing time is 70 seconds, for example. Record the clearing time for future reference.

Now, to reverse your film transparency, you first expose the entire test strip through the yellow filter for the recorded clearing time. Then, remove the yellow filter and substitute it with the film transparency and expose again in blocks for 3 to 21 seconds at 3 -second intervals. After developing, fixing, and washing the test strip, select the block that has opaque blacks with water-clear whites. You now know the exposure times for both clearing and copying.

The ER-4 Pos-Neg system sounds more complicated than it really is. Once you gain some experience with it, it will be no more difficult to use than were other "phot 3 " methods used in the past.

FROM ARTWORK TO BOARD

With very little practice, you can easily photosensitize copper-clad pc blanks. The blanks must be flat and free of ragged edges. The best way to deal with a ragged edge is to use a fine steel file to remove copper burrs and fine emery cloth to smooth the edges. Next, thoroughly scour the copper with a steelwool soap pad until it has a burnished finish and sheds water. Rinse thoroughly and allow to air dry, either at ambient room temperature or in a just-warm oven. Do not wipe the blank dry with a towel. The blank is now ready to be sensitized with photoresist.
Go to safe lighting conditions and place the pc blank with its copper side up on a couple of thicknesses of newspaper, thoroughly shake the can of spray resist, and spray a thin, even coating of the resist over the entire copper surface. Dry the resist for an hour at room temperature or for 15 minutes in a just-warm oven. Then inspect your work under safe lighting. If the coating of resist lacquer appears to be too thin, apply a second thin, even coat and again allow to dry. Before taking on a big job, develop a "feel" for the spray technique, using a piece of scrap pc blank.

Finishing Steps. Under safe light, place the sensitized pc blank in the contact printing frame and place the exposure mask on top. Make absolutely certain that the proper side of the mask is in contact with the blank. You can now expose the blank with any of four light sources, detailed in the instructions supplied with the kits. A fluorescent lamp with two 20-watt cool-white tubes at a distance of $4^{\prime \prime}$ from the top of the contact frame is suitable. You will have to determine the proper exposure time by trial and error with sensitized scrap pc blank.

Once the blank has been exposed, go to safe lighting and immerse it in the appropriate pc board developing solution and agitate. Remove the blank from the solution promptly when the circuit pattern appears, usually in about a minute or less. At this point, the resist is no longer sensitive to light, and you can switch back to normal lighting. Flush the developed blank under gently running water and allow to air dry at room temperature for an hour or in a just-warm oven for about 20 minutes. At no time before the board is dry should you touch the resist pattern. The pattern will still be soft and easily damaged.

After drying is complete, carefully inspect the pattern for faults and use
paint-on resist lacquer or dry-transfer patterns to touch up any breaks. Then etch the blank in pc etching solution. You can speed up the etching time by preheating the etching solution by setting the bottle of solution in hot water until it becomes too hot to handle. Do not pour the etchant into a pot and heat it directly on a stove. Pour the etchant into a glass or plastic tray large enough to accommodate the pc blank. Place the blank, copper side down, in the hot etchant and agitate the bath by gently rocking it back and forth. Periodically check the progress of the etching after 20 minutes. When all unwanted areas of copper have been etched away, remove the pc board from the etchant and thoroughly rinse it under running water. Then remove the resist on the copper with pc board stripping solution.

The final step in making a profession-al-quality pc board at home is to trim the board to size and drill all componentlead and mounting holes. From initial artwork to ready-to-go etched and drilled board, the job should take between five and eight hours, depending on the size and complexity of the board. The boards you make with either of the two kits described here will be indistinguishable from boards made by a professional. 厄

WIRE WRAPPING TOOL
For AWG 30, . $025^{\prime \prime}$ ($0,63 \mathrm{~mm}$) sq. post,
"MODIFIED" wrap, positive indexing, anti-overwrapping device

OK MACHINE \& TOOL CORPORATION
3455 Conner St. Bronx, N Y 10475 / (212) $994-6600 /$ Telex 125091

If Yoưre Still Playing Games It's Because You Haven't Seen Our Software Library

This LIBRARY is a complete do it yourself kit. Knowledge of programming not required. EASY to read and USE. Written in compatible BASIC immediately executable in ANY computer with at least 4 K , NO other peripherals needed. programs contained within this Library have been thoroughly tested and executed on several systems. Included with each program is a description of the program, a list of potential users, instructions for execution and possible limitations that may arise when running it on various systems. Listed in the limitation section is the amount of memory that is required to store and execute the program.

Each program's source code is listed in full detail. These source code listings are not reduced in size but are shown full size for increased readability. Almost every program is self instructing and prompts the user with all required running data. Immediately following the source code listing for most of the programs is a sample executed run of the program.

This Library is destined to become one of the reference bibles for the small computer field, due to its versatility and uniqueness and the ease of operation of the programs it contains. These volumes are deductible as a business expense when purchased by a company. Send your remittance for prompt delivery, while supplies last. Volume discounts are available to qualified dealers.

The entire Library is 1000 pages long, chock full of program source code, instructions, conversions, memory requirements, examples and much more. ALL are written in compatible BASIC executable in 4 K MITS, SPHERE, IMS, SWTPC, PDP, etc. BASIC compilers available for

VOLUME ONE	Pert Tree Rate	Pony	,24.05
Part 1	Return 1	Sky Diver	
	Return 2	Tank	
BOOKKEEPING Bond	Schedule 1	Teach Me	
Building	Part 2	PICTURES	
Compound		A. Newrman	
Crelie	GAMES	J.F.K.	
Decision 1	Animals Four	Linus	
Depreciation	Astel	Nixon	
Efficient	Bio Cycle	Noel Noel	
Flaw	Cannons	Nude	
Installment	Checkers	Peace	
Interest	Craps	Policeman	
Investments	Dogfight	Santa's Sleigh	
Mortgage	Golf	Snoopy	
Optimize Order	Judy Line Up	Virgin	

VOLUME I \& $11-\$ 24.95$ each VOLUME III - \$39.95 each VOLUME IV - $\$ 9.95$ each

Add $\$ 1.50$ per volume for postage and handling.

N: $11 / 31 / 2$ Digit Muhtimeter frombert-pizersion

you'll want it for its features but it's the price that will sell you!

- High intensity LED display is easily read from at least 6 feet in the brightest room.
- Measures AC and DC voltage, AC and DC current and resistance.
- 0.5\% DC accuracy.
- 100% overrange (1000 scale reads to 1999).
- Automatic polarity.
- Automatic decimal point.
- Flashing overrange indication on display.
- Four voltage ranges to 1000 V
- Four current ranges to 1000 mA
- Six resistance ranges to 10 meg .
- In-circuit resistance measurements at voltage levels below conduction threshold of semiconductors.
- Overload protection on all ranges.

Complete new circuitry makes the Model 283 the most dependable and versatile $31 / 2$ digit maltimeter you can buy. The extra-bright display allows you to use it where other units would cause reading problems. The selectable "low ohms' function permits accurate measurement of semiconductor shunted resistors.

An optional, internal battery pack (BP-83, $\$ 50.00$) provides 8 hours of continuous use on one overnight charging and charges when the Model 283 is in use on $115 / 230$ VAC.
Thoughtful, convenience features like a side carrying handle, tilt stand and detachable line cord add to its usefulness.
Your B\&K-PRECISION distributor has them in stock and will be glad to demonstrate its features to you. Call him, or write for additional information.

> PAECISION DYNASCAN CORPORATION

6460 West Cortland Avenue
Chicago, Illinois 60635 - 312/889-9087
In Canada: Atlas Electronics. Ontario

BY CASS R. LEWART

UNTIL NOW, "armchair pilots" wishing to listen to airplane-to-tower communications have had to confine their activities to ground-based monitoring. But the project described hereessentially a vhf crystal set with a small audio amplifier-will allow reception of such conversations when the user is on board an airliner. It will do so without creating any hazard to the plane's navigation system. The receiver is easily built, using readily available, inexpensive parts.

About the Circuit. Unlike superheterodyne receivers, whose local oscil-
lators generate signals which can interfere with reception in the 108-to-118MHz radio-navigation band, this project can be used with complete safety. The heart of the project is a 4-transistor audio amplifier with a built-in speaker, shown schematically in Fig. 1. Power switch $S 1$ is ganged with $R 1$, the volume control. The amplifier draws current from a single 9 -volt transistor battery, B1.

A few modifications transform this amplifier module into an airline receiver, shown schematically in Fig. 2. The receiver comprises a tuned r-f circuit (L1, C1 and D1), a demodulator (D2) and the modular audio amplifier. The tuned cir-
cuit is unusual in one respect-it uses a voltage variable capacitor or Varactor as the variable capacitance. This diode, when reverse biased over a range of 0 to 9 volts, behaves like a variable capacitor of 5 to 15 pF . Because C1 is in series with D1, the effect of the fixed capacitor is neglible. The combination of L1, a small hand-wound coil, and D1 resonate to provide coverage from 118 through 135 MHz . (Construction details for $L 1$ are given on the next page.)

A short piece of insulated, stranded hookup wire serves as an antenna. The wire is terminated with a pin or banana plug ($P 1$), and is connected to the rest of

Fig. 1. Simple four-transistor audio amplifier before modification.

Fig. 2. Schematic of the amplifier with minor additional circuits needed to make airline receiver.

PARTS LIST

Al-Modular Amplifier (Radio Shack 277-1008 or equivalent)
B1 -9 -volt transistor battery
$\mathrm{Cl}-0.01-\mu \mathrm{F}, 50-\mathrm{V}$ disc ceramic capacitor
D1-5-15-pF voltage-variable capacitance diode (Motorola HEP R2501-do not substitute)
D2-1N34 germanium diode
J1-Miniature phone jack (part of A1)

J2-Pin or banana jack
L1-Five turns of No. 24 enamelled copper wire on a $3 /$-inch form, approx. 10 turns per inch
P1-Pin or banana plug
R1-Volume/tuning control (part of A1)
S1-Spst switch (ganged with R1, part of A1) Misc. Dynamic earphone (8 ohms), hookup wire, solder, etc.

Fig. 3. Unmodified (A) and modified (B) wiring to $R 1$ to convert it from volume to tuning control.

the circuit via J2, a pin or banana jack. Signals are thus applied to the tuned circuit, which is resonated by means of R1. This potentiometer, which served as the volume control in the unmodified amplifier, functions as a voltage divider to apply variable reverse bias across D1.
After the vhf signal has been boosted by the parallel LC circuit, it is demodulated by germanium diode D2 and applied to the audio amplifier. The output of the amplifier drives a dynamic earphone plugged into jack $J 1$ (the former input to the amplifier).

Construction of the receiver is greatly simplified by modifying a ready-built audio module and adding a few additional components. In the author's prototype, a Radio Shack 277-1008 amplifier was used. However, other units can be used equally well. The additional components fit in place of the module's speaker.

Stant by removing the three small Phillips screws which secure the amplifier pc board to the plastic enclosure. Then remove jack $J 1$ and unsolder the leads running to it. Raise the pc board and unsolder the leads connected to the speaker. Remove the speaker by softening the glue holding it to the plastic enclosure. Use acetone or nail-polish remover and pry the speaker away with a sharp knife. Then attach what were the speaker leads (points X and Y) to $J 1$. Polarity is not important

Refer to Fig. 3A and 3B for the following steps. Open the pc foil running from the volume control (R 1) to the amplifier input (point P) and to the input jack (point M) by scraping it off with a sharp blade. Connect the terminal previously running to point M to one side of switch S1 (point S), which is ganged with R1. Solder a wire to the wiper of R1 and connect the other end to one side of C1 and the anode of D1. Then solder a wire to the pc foil that formerly ran to the wiper of R1 (on the other side of the break in the foil), and attach the other end of the wire to the anode of $D 2$.

Next, drill a hole about 1-9/16" (3.97 cm) from the top of the enclosure on the left side (as viewed from the rear) to accommodate J 2 , the antenna input jack. Mount the jack and secure the pc board to the enclosure with the three small Phillips screws. To form L1, wind five turns of No. 24 enamelled copper wire on a $3 / 8$-inch ($9.53-\mathrm{mm}$) form, spaced about 10 turns per inch. Scrape the insulation off the ends of L1 and position the coil in the speaker cutout of the pc board. Connect D1, D2, L1, and C1 as indicated in the schematic, using J 2
for mechanical support. Be sure to observe correct polarity for the diodes or you will damage them. Solder all remaining connections.

Alignment. The best way to align the receiver is to couple it to a signal generator producing an output at 125 MHz with internal $400-\mathrm{Hz}$ modulation. Connect a small dynamic earphone to $J 1$ and set the tuning control (R1, the former volume control). Compress or expand the winding of $L 1$ for maximum audio output. If you can't get access to a signal generator with the required output, just go to your local airport. Connect a short (one foot or so) wire terminated with a suitable plug to J 2 , and listen to transmissions from the airport tower. Adjust L1 for best reception with R1 at center position.

Operation. The airline receiver is very simple to use. When you are taking a flight, try to get a seat near the window. Attach the antenna wire to the window with a small piece of masking tape, and plug the earphone into $J 1$. This will allow you to monitor the pilot's conversations without causing a commotion.

You will not usually know the exact frequencies used by a particular airplane. Airport towers generally transmit and receive below 120 MHz . Other communications can be found anywhere between 120 and 135 MHz . Between takeoff and the time when a plane reaches cruising altitude, its pilot will use several frequencies in succession, communicating with the tower, departure control, and possibly to the particular airline controller. Similarly, the pilot will use several frequencies during the descent.

Each conversation will be brief, lasting only a few seconds. Accordingly, an important characteristic of this receiver is its broad selectivity as compared to that of a superheterodyne receiver. The user can therefore leave the tuning control at its center position. The pilot's transmission will still be heard-even if the tuned circuit is not resonant exactly at the operating frequency. The receiver can be quickly retuned for optimum reception if desired. Another possibility is to continuously tune the receiver back and forth, scanning the band until you can hear the pilot's voice.

When using the receiver, you may try to explain to the stewardess what you are doing in case other passengers think you are using a radio that might foul up airline communications. Your radio is similar to a tape recorder which would be permitted on board.

WOW/FLUTTER METER

- $3 \mathrm{KHz} \pm 10 \%$ and
- $315 \mathrm{~K} \% \mathrm{i} \% \pm 10 \%$ range

At $\$ 1995$, the LAS-5500 saves up to 50%, it's a smart investment!

151 Dupont Street, Plainview, N.Y. 11803 (516) 822-9300

CIRCLE NO 34 on free information caro

Get all the newest and latest information on the new Mcintosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO -

AM TUNER AND PREAMPLIFIER
McIntosh Laboratory, Inc.
East Side Station P.O. Box 96
Binghamton, N.Y. 13904
1 Dept. PE
\mid NAME
| ADDress
$\|_{\text {CITY }}$ \qquad STATE \qquad
\qquad _ZIP ZIP

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

MORSE CODE AUTOMATIC READOUT ON ATV SCREEN

How to interface the Morse-a-Letter to a "TV Typewriter."

BY GEORGE R. STEBER, WBSLVI

ALTHOUGH the Morse-A-Letter (January 1977) deciphers Morse code signals very effectively, its usefulness is somewhat limited by its singlecharacter LED readout. At higher code speeds, the characters are displayed briefly, straining the operator's ability to copy down the entire text. However, it's easy to interface the Morse-A-Letter to a "TV typewriter." This combination, called "Morse-A-Display," will allow message display in page format-a boon to CW operators and SWL's interested in copying Morse.

Designed with this application in mind, the Morse-A-Letter contains all electronics necessary for converting dits and dahs to TTL-compatible ASCII-6 code. The required interface is simple and straightforward. All features of the original project are retained.

ASCII. Before examining the interface, let's review some basics of ASCII code. This will help us understand how the Morse-A-Letter/TV typewriter team op-
erates. ASCII is a standard 8 -bit information code used with most computers and data terminals. It may be used in the parallel (all bits present simultaneously on separate lines) or serial (one bit at a time on a single line) mode. Most systems do not use the eighth bit of the code and it is, therefore, assumed to be a logic one at all times. Some systems, however, use the eighth bit for parity or error testing. The remaining seven bits provide a total of 128 possible charac-

ters. Of these, one group of 32 is reserved for the upper case alphabet and a few punctuation marks. Another group of 32 is used for numbers, spacing and additional punctuation symbols. Rarely used punctuation marks and a lower case alphabet are assigned a third group of 32. Finally, the last 32 combinations are assigned as machine or control commands. This group does not actually get printed but is provided to handle hardware operations such as line feed (LF) or carriage return (CR). If only upper case alphanumerics are needed, only the first two groups of 32 codes are required, and only six of the eight bits of the code are used. This diminutive ASCII code is called ASCII-6 and is essentially the code produced by the Morse-ALetter. No control codes are produced by the Morse-A-Letter, however, so most "housekeeping" operations (line feed, carriage return, etc.) must be performed by the TV terminal. This does not present a real problem, since most TV terminals are programmed to handle
these operations automatically in the absence of specific commands.

Interfacing. Almost any TV terminal capable of receiving TTL-level, 7 -bit parallel ASCII code can be used with the Morse-A-Letter. Most terminals will work well with the ASCII-6 code without any changes or additions. However, some terminals require the presence of the seventh bit ($B 7$-not to be confused with edge connector location B7) to produce a question mark (?), due to the method used to check control characters. If the seventh bit is required by your terminal, don't despair! It can easily be obtained because $B 7$ is merely the complement of B6 for the 41 valid ASCII characters produced by the Morse-A-Letter. This modification requires a small amount of additional wiring on the Morse-A-Letter circuit board. Fortunately, no additional parts are needed since an unused inverter (actually one half of IC5, a 7413 dual NAND Schmitt Trigger) is already "on the board."

To generate bit 7, connect a wire from B6 of the ASCII output (edge connector location A21) to pin 13 of IC5. Also, connect a wire from pin 8 of IC5 to edge connector location A13. This becomes B7 of the ASCII code. Keep in mind that
many TV terminals will function adequately with just the ASCII-6 code, so this addition may be optional.

The TV terminal will normally require a "data ready" signal to tell it when an ASCII character is applied to its input connector. This signal is also sometimes referred to as a "keypressed strobe" or "new character" pulse. It is usually a positive going pulse that appears whenever the ASCII character is ready to be entered. The Morse-A-Letter provides this new character pulse in the form of a positive going pulse at edge connector location A14, which is generated every time a new Morse character is received.

A word of caution is in order. If your terminal does not utilize TTL levels at the ASCII input connector and/or requires a negative-going strobe pulse, an additional interface is needed.

As an example of an interface, the Table lists the wiring requirements for interfacing the Morse-A-Letter to the Southwest Technical Products CT-1024 Terminal, which has a TTL-compatible input and a positive strobe line. All that's required is connecting a suitable cable from the appropriate points on the Morse-A-Letter connector to the TV terminal connector. Note that no power supplies or additional electronics are
necessary. Most other TV terminals will interface in a similar manner.

Operation. There are no adjustments required for the Morse-A-Display other than the normal code speed adjustment. It will function in either the code practice or the reception mode. Once a signal is properly tuned in, the television display will read out the incoming characters directly on the television screen. Illegal Morse characters will be displayed as "@." Noisy signals may generate strings of "E"s or "T"s on the screen, but this is normal. Do not expect to view perfectly edited copy since word spaces are rarely sent in Morse code and the Morse-ADisplay is not designed to decode them. This is not a serious handicap, however, and with a little practice you will be able to read complete messages from the screen. To copy high-speed Morse, it might be desirable to reduce the Morse-A-Letter's C9 from 6.8 mi crofarads to 2.0 microfarads in the original circuit. This reduces noise immunity slightly, but enables copy at code speeds up to 50 WPM or more.

Remember it is illegal to pass information garnered from ship-to-shore, military, or press transmissions to third parties.

SCORE 2 WAYS WITH MARK TEN B AND...

You can add real zip to engine performance and eliminate the need for 3 out of 4 tune-ups with a Mark Ten B Capacitive Discharge Electronic Ignition. Over a million happy, satisfied users testify to the fact that the Mark Ten B really does:

- Eliminate 3 out of 4 tune-ups
- Improve gasoline mileageup to 20%
- Give dramatic increases in acceleration and general performance
- Extend spark plug life 3 to 10 times
- Give instant all weather starts. Put spark under the hood and score with real performance!

DELTA'S MOUNTAIN MAN SADDLE BAG CAN AND ACCESSORY CARRIER*

The only carrier with truly innovative engineering, Delta's Mountain Man Carrier installs without drilling a single hole. A completely unique concept, it forms the basic unit of the first modular system ever devised to carry a variety of accessories. Look at these great features:

- Versatility: use alone with one or two jerry cans, or use with other Mountain Man accessories. (Sorry, cans not included.)

7 DELTA PRODUCTS, INC.
 One Delta Way, Dept. PE, Grand Junction. Colorado 81501 (303) 242-9000

- Fits all externally mounted $14^{\prime \prime}, 15^{\prime \prime}$ and $16.5^{\prime \prime}$ tires.
- Easy installation; all you need is a wrench.
- Made of rugged 11 gauge steel for strength and durability.
Winner of PV4 Magazine's 1976 Product Of The Year Award, it will score on your 4WD, van, pickup, or mini, and it's a steal at only $\$ 39.95$ F.O.B.
have enclosed $\$ 2.00$ for my complete Mountain Man catalog (to be applied toward my first purchase)
Please rush free brochure on Mark Ten CDI Systems.
Name
Address
City
Chone
Phate_

MATCHING hi-fi components of a stereo or four-channel system means that each component must operate compatibly with each other.

For example, your loudspeakers should be efficient enough to deliver satisfactory sound levels-especially in the low bass region-when driven by the amplifier or receiver of your choice. Yet, they should have sufficient power-handling capacity to avoid damage if driven by too much power.

In another sense, compatibility also means that one component should not have substantially better performance
than another component in the system. It would be foolish, for example, to have a $\$ 300$ single-play turntable, $\$ 800$ receiver, and two speaker systems at $\$ 500$ each and then add a $\$ 19.95$ phono cartridge. The latter's electrical/ mechanical performance would be well below that of the other components in the system. As a result, one would not get the full performance capability inherent in the better components. Remember that the final reproduced audio will sound only as good as the weakest component link in the system.
One can often ignore electrical and
mechanical considerations at the onset of rounding up his choices, however, by viewing compatibility in terms of each component's price tag. Thanks to competition among manufacturers, the quality of each type of componert varies almost directly in relation to its price (although exceptions can always be found to virtually any generalization).

Most newcomers to component hi-fi (and some experienced audiophiles, too) have little or no idea of how to apportion their dollars to the various components they plan to buy.

Many audio dealers try to simplify this

Fig. 1. Apportioning dollars to a stereo receiver/turntable/ speaker system.
problem by "assembling" pre-selected components into a complete system. Such systems usually bear a single price tag and offer significant savings over the prices of the individual components added together. There are both advantages and disadvantages in choosing such a dealer-selected system. Certainly, if the dealer is knowledgeable and reputable, you are at least
assured that the components which have been put together in this way will work compatibly with each other-and the savings in making a single purchase from one source are often worthwhile. On the other hand, you may have different ideas about which components you think sound better with which other components. Consequently, your dream system may not be represented by any
of the pre-selected groupings offered by the dealer.

In addition, it is common practice for some dealers (but not all) to have loudspeaker systems "custom designed" by local manufacturers who are essentially cabinet makers rather than speaker system designers. Since such speakers are rarely advertised nationally, almost any "suggested retail price" can be assigned

Fig. 2. Percentage of dollars to be spent on components for a system including tuner and cassette deck.

to them. In such instances, the "savings" shown in the final system price tag may actually be the result of reducing these speaker prices to more realistic levels. (This practice is not universal, of course.) What we are suggesting is that each component in such systems be analyzed and evaluated for its own mer-
fast rules; these are simply rough guidelines. In the system shown, any tape equipment would be considered extra and is not included in the initial percentage breakdown.

Suppose you decided to include a cassette deck as part of your initial hi-fi investment, and that you prefer to have
quality. In Fig. 3 we have represented a typical quadraphonic system centered around a 4-channel receiver. Again, percentages are shown below for each element of the system. If we assume that you are prepared to spend $\$ 3000$ for such a system (note that it includes both an open-reel tape deck and a stereo

Fig. 3. How dollars should be apportioned for a four-channel system with open-reel and cassette decks.
its and performance-for that is the essence of shopping for components for your own high-fidelity system.

Apportioning Hi-Fi Dollars. By far the greatest number of high fidelity stereo component systems consist of an all-in-one receiver, a turntable system (either single-play or multiple-play) and a pair of loudspeaker systems. This basic layout is shown in Fig. 1. Below it is a typical cost breakdown in percentages of available dollars. As an example, if you have $\$ 500$ to spend on such a basic system, you might consider a turntable (including the phono cartridge, which is usually purchased separately) selling for approximately $\$ 125$, a $\$ 200$ receiver and two speakers for about $\$ 87.50$ each. There are, of course, no hard-and-
a separate tuner and an integrated amplifier (preamplifier-amplifier combination) instead of a receiver. Your system might then look something like that shown in Fig. 2, with the percentages spent for each component given below. Since such a system is necessarily more expensive than the simpler, 4-piece arrangement, let's start with a budget of $\$ 1000$. You might spend $\$ 150$ for a turntable and cartridge, $\$ 150$ or so for a separate FM/AM tuner, $\$ 250$ for a cassette deck with Dolby, $\$ 200$ for an integrated amplifier and perhaps $\$ 125$ for each of your two speaker systems. If the tape deck is eliminated for the moment, percentages could be reassigned as shown in the lower percentage table.

Quadraphonic systems necessarily cost more than stereo systems of equal
cassette unit) your dollars might be apportioned as follows: $\$ 600$ for the openreel deck, $\$ 300$ for the cassette deck and a similar amount for the turntable/ cartridge combination (you will need a cartridge designed to play CD-4 records this time), $\$ 750$ for the 4 -channel receiver and $\$ 262.50$ for each of the four speakers in the system. If you were to omit the tape decks and had only $\$ 2000$ to spend, the lower percentage table in Fig. 3 suggests that you might spend $\$ 800$ on the 4-channel receiver, $\$ 200$ for each of the four speakers needed, and up to $\$ 400$ for the turntable/cartridge combination.

Specs To Expect. Although specifications are certainly not the only criterion involved in making an intelligent

Print Your Heart Out.

With help from the Digital Group, naturally.

Now, that small computer system you own or have been considering for personal or business use suddenly becomes a lot more usable - with the addition of a full-size impact printer from the Digital Group. A printer designed for small computers that need big output (like yours).
With the Digital Group printer, you can print your heart out...and it won't cost an arm and a leg. The Digital Group printer is available for less than $\$ 500$. That's right- $\$ 500$.

Just look at these specifications:

- Fast-120 characters per second
- 96 characters per line
- 12 characters per inch horizontal
- 6 lines per inch
- Makes up to 4 copies simultaneously
- Character set and pitch variable under software control-double width characters, etc.
- 5×7 character matrix
- Ribbon has built-in re-inkers for a life of 10,000,000 characters
- Paper can be either a standard $81 / 2$-inch roll, fanfold or cut page
- Interfaces to 8-bit parallel ports

There are lots of capabilities and outstanding features of the Digital Group printer...and (as always) the best news is our price. Kit prices start as low as $\$ 495$ for the printer and interface card. It simply can't be beat.
Find out all the facts about the Digital Group printer now. Just fill in the coupon below or give us a call for the details. We think you'll find a place for our printer in your system \ldots and in your heart.

P.O. Box 6528

Denver, Colorado 80206
(303) 777-7133

Quick. I want to print my heart out.
Send me all the details on your full-size impact printer.

Name \qquad
Address
City/State/Zip

Be the "New

Professional" in electronics

Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however. a third and very important level. It is that of the engineering technician or practical engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.
If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.
The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.

The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.
The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.
CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program.
The professional equipment included in this program allows you to construct. test out and correct the circuits you design until you have an effective circuit.
This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-
totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and. we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics. communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80 , fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to ($+\left\{\begin{array}{l}1+\begin{array}{l}\text { CAPITOL } \\ \text { RADIO } \\ \text { ENGINEERING } \\ \text { INSTITUTE }\end{array}\end{array}\right.$

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

He has somethin' to say to all
CB'ers - old or new.

- The history and future of CB
- The hottest new CB slang from around the country
- City CB'n
- Country CB'n
- How to get the max out of your rig
- CB courtesy, safety, theft prevention and fun
- Shakin' the "CB Jeebies"
- The sunspot "crisis"
- The Trucker's Prayer
- Gettin' into The Squelch Squad

PNS- 2 ORITNAL
CB HIT SONGS!
-"On the Road"
(the story of a once-lonely trucker)

- "Get a Copy"
(with impersonations of famous people talkin' on their CB's)
Plus other original music, from country to rock. And lots more! Order yours today!
Available on LP, 8-track, or cassette.
(P) 1977 Audio Products, Inc

20969 Ventura Blvd., Woodland Hills, Calif. 91364
(C) 1977 Audio Products, Inc. All Rights Reserved

TABLEIPRICE CATEGORIES

	Low Price	Medium Price	High Price
Tuners Integrated Amplifiers	up to $\$ 150$	$\$ 150-350$	Over $\$ 350$
Receivers Turntables (Less Cartridge)	up to $\$ 200$	$\$ 200-400$	Over $\$ 400$
Cassette Decks Open-Reel Tape Decks	up to $\$ 200$	$\$ 250-500$	Over $\$ 500$
	up to $\$ 400$	$\$ 125-250$	Over $\$ 250$
	$\$ 200-400$	Over $\$ 400$	
			Over $\$ 800$

choice of a hi-fi component, they certainly have a bearing on the type of performance you can expect from each component. The specifications which apply to loudspeakers (and, for that matter, headphones) are not easily related to the kind of sound you can expect to hear. Aside from making certain that the speakers you select are efficient enough to provide adequate sound levels when matched with the electronics of your
choice, and also rugged enough to handle maximum input power available, choosing loudspeakers is a wholly subjective exercise. The specifications of other components, such as tuners, amplifiers (or receivers, which combine both tuner and amplifier sections), turntable system, and even tape decks are related to their prices. Table I categorizes low-, medium-, and high-priced electronic components, tape decks, and
turntable systems in terms of actual 1977 dollars.

With these price ranges in mind, refer to Table II for a general idea of the major specifications you can expect to find for components in each of the price categories. Only the major specifications have been listed, and they are by no means the only ones that should be considered. Remember, too, that you are likely to find that some specifications are better than others for a given product in a given price category. Your evaluation process should take these differences into account, along with your own particular needs. For example, what appears to be a superb tuner in its price class may otherwise have less-than-superb selectivity. If you live in an area where there are only a few FM stations on the dial, this may be of little significance to you, whereas greater sensitivity or 50 dB quieting may be more important. Conversely, if you live close-in to strong signals and are surrounded by a great many nearby stations, selectivity could be more important than sensitivity.

TABLE II TYPICAL SPECIFICATIONS OF SOME COMPONENTS

	LOW PRICE	MEDIUM PRICE	HIGH PRICE
TUNER (OR TUNER			
SECTION OF RECEIVER)			
IHF Sensitivity $\mu \mathrm{V}$ (dBf)	3.0 (14.7)	2.0 (11.2)	1.8 (10.3)
(mono)	or lower	or lower	or lower
50 dB quieting sensitivity			
$\mu \vee$ (dBf), mono/stereo	10(25.2)/50(39.1)	5(19.2)/40(37.2)	3(14.7)/30(34.7)
S / N (dB); mono; stereo	60/50	68/60	70/65
Selectivity (dB)	50 or more	60 or more	80 or more
Capture Ratio (dB)	3.0 or less	2.0 or less	1.3 or less
THD (\%) (1 kHz , mono/stereo)	1.0/1.5 or less	0.5/0.8 or less	0.2/0.3 or less
Stereo Separation (dB, 1 kHz)	30 or more	35 or more	40 or more
AM Suppression	40 or more	50 or more	60 or more
AMPLIFIER (OR RECEIVER AMP			
SECTION)			
Power Out/Channel			
(Continuous watts)	10-30	30-100	over 100
Rated THD (at full output) (\%)	1.0 or less	0.5 or less	0.2 or less
Rated IM Distortion (\%)	1.0 or less	0.5 or less	0.2 or less
Damping factor	10 or more	30 or more	50 or more
Phono Hum (dB below 10 mV input)	60 or more	65 or more	70 or more
Aux Hum (below rated output)	70 or more	75 or more	80 or more
TURNTABLE SYSTEMS			
Wow-and Flutter (\% Wrms)	0.15 or less	0.10 or less	0.05 or less
Rumble (dB, per Din B)	55 or more	60 or more	70 or more
CASSETTE DECKS			
Frequency Response ($\mathrm{Hz} \pm 3 \mathrm{~dB}$)	50-12,000	30-15,000	20-18,000
Wow-andFlutter (\% Wrms)	0.2 or less	0.12 or less	0.1 or less
S / N (dB, less Dolby)	45 or more	48 or more	50 or more
OPEN-REEL DECKS			
Highest Speed (ips)	$71 / 2$	7\%/2	15
Freq. Response at highest speed			
$(\mathrm{Hz} \pm 3 \mathrm{~dB})$	40-15,000	30-20,000	20-21,000
S/N	50 or more	55 or more	60 or more
Wow and Flutter	0.15 or less	0.1 or less	0.07 or less

Solid State

By Lou Garner

VMOS—MOSFETS WITH MUSCLE

GENERALLY, MOSFET's have been characterized as low-voltage, low-power, very high-impedance devices suitable for preamps, mixers, i-f amplifiers, detectors and other low-level applications. Where moderate power levels were needed, one used bipolar devices or dual-technology IC's such as the BiMOS op amp discussed in last month's column. About mid-1976, however, Siliconix, Inc. (2201 Laurelwood Road, Santa Clara, CA 95054), introduced the first member of a new family of medium-to-high-power MOSFET's. Manufactured using a unique internal structure, the new devices featured output currents measured in amperes rather than milliamps and power ratings specified in watts rather than milliwatts while retaining the advantages of more familiar de-signs-extremely high input impedances and high forward transconductances. Unfortunately, the new MOSFET's were relatively expensive and in short supply when first introduced, limiting their potential applications at the consumer level. In less than a year, however, production has expanded, new types have been announced, prices have dropped to within the reach of experimenters and hobbyists, and the devices are being stocked by a number of industrial electronics distributors.

Fig. 1. Conventional MOS (A) and VMOS (B) cross-sections.

The basic differences in construction between conventional MOSFET's and the high-power Siliconix devices are illustrated in the simplified cross-sectional views given in Fig. 1. In a conventional device, Fig. 1A, a p-type semiconductor substrate serves as the basic body for the transistor. During the manufacturing process, $\mathrm{n}+$ type source and drain areas are diffused into the p-type body. An insulating silicon dioxide layer is grown and aluminum electrodes for the source, drain and insulated gate terminals are deposited on the unit. In operation, the control channel is induced by the gate's electric field along the top surface of the substrate between the $n+r e-$ gions, with current flow horizontally from source to drain. In the Siliconix design, Fig. 1B, an $n+$ semiconductor serves as the substrate and, eventually, as the drain electrode. An nepi layer is diffused above the substrate, with a p- "body" region and an $\mathrm{n}+$ source subsequently diffused into this layer. The epi region effectively increases the device's drain-source breakdown voltage. In the next processing step, a V-shaped groove is etched through the source and "body" regions into the epi layer. An insulating silicon dioxide film is grown and the aluminum source and insulated gate electrodes are deposited on the device. In operation, the control channel is induced on both surfaces of the "body" region facing the V shaped gate, with current flow vertically from the source through the control channel and epi layer to the substrate/ drain. Since the current flow is vertically through the semiconductor rather than horizontally across a surface, the transistor is called a "Vertical MOS" or VMOS device. The improved power handling capability of VMOS designs as compared to conventional MOSFET construction is due to several factors, including its higher drain-source breakdown voltage and greater current density, the latter a result of the effectively larger control region established by the two channels created on either side of the V -shaped gate.

Currently, all members of the VMOS family are n-channel enhancement-mode field effect transistors. A total of six devices are in production, divided into two series of three transistors each, but a third high-current (10 A) series is under development and should be available in the near future. All six devices feature high input impedances, zener diode protected gates to withstand static discharges, and short switching times (typically, 4 ns), permitting their use in r-f and vhf as well as audio and dc circuits. All are resistant to thermal runaway as well as secondary breakdown and are suitable for operation at temperatures from -55° to $+150^{\circ} \mathrm{C}$. Featuring output characteristics similar to those of a pentode vacuum tube, all types have typical transconductances of better than 250 millimhos.

Intended for medium-power applications and assembled in standard TO-3 packages, types VMP1, VMP11 and VMP12
have maximum drain current ratings of 2.0 A and can dissipate up to 25.0 W at case temperatures not exceeding $25^{\circ} \mathrm{C}$, with a thermal derating factor of $5^{\circ} \mathrm{C} / \mathrm{W}$. Lower power types VMP2, VMP21 and VMP22 are assembled in TO-39 cases and have maximum drain current ratings of 1.5 A together with maximum power dissipation ratings of 4.0 W at case temperatures of $25^{\circ} \mathrm{C}$ and a thermal derating factor of $30^{\circ} \mathrm{C} / \mathrm{W}$. At ambient temperatures of $25^{\circ} \mathrm{C}$, the lower power units have a maximum free air dissipation rating of 1.0 W . Types VMP11 and VMP21 have maximum drain-source and drain-gate voltage ratings of 35.0 volts, types VMP1 and VMP2 of 60.0 V , and, finally, types VMP12 and VMP22 of 90 V .

As long as maximum ratings and correct dc polarities are observed, VMOS transistors can be used in virtually all circuits for which standard MOSFET's and bipolar types are specified. Compared to conventional MOSFET's, the VMOS units offer the advantages of higher voltage and power capabilities coupled with greater resistance to damage from static discharges. Compared to bipolar types, the VMOS transistors offer much higher input impedances, faster operation, and

Fig. 2. VMOS
application as a LED driver.
freedom from thermal runaway and secondary breakdown. Suggested VMOS transistor circuit applications are illustrated in Figs. 2 through 6. These were abstracted from the data sheets for the devices as well as from Siliconix Application Note AN76-3, a 12-page publication entitled VMOS-A Breakthrough in Power MOSFET Technology.

With its high input impedance, the VMOS transistor can interface directly with all types of logic circuits, including CMOS as well as TTL, serving as a power driver for such devices as magnetic cores, incandescent lamps, relays, solenoids and LED's. A typical multiple LED driver circuit is given in Fig. 2. Here, a 7401 TTL NAND gate serves as a signal source for the VMOS transistor which, in turn, drives a number of LED's. Suitable series current limiting resistors (R1, R2, etc.) are provided for each LED.

The dc incandescent lamp dimmer circuits given in Fig. 3 illustrate techniques for using the VMOS transistor as a control device. In the simpler and less efficient of the circuits, Fig. 3A, the transistor serves as a series element, with its drain-source resistance controlled by an adjustable gate bias. In operation, considerable power is dissipated in the transistor as the light is dimmed for the device behaves as a simple resistance.

The more efficient circuit, Fig. 3B, uses the VMOS transistor as a variable duty cycle switch which is either fully "on" or fully "off," thereby dissipating relatively little power. In operation, a pair of 34011 NAND gates serves as a pulse oscillator, with the feedback needed to start and sustain oscillation provided by a $0.001-\mu \mathrm{F}$ capacitor. The oscillator's pulse symmetry is controlled by the ratio of the 100-k fixed resistor and 250-k potentiometer, with light-dimming achieved by changing the relative width of the on and off periods. If desired, the oscillator can be strobed by the application of a suitable bias to the first NAND gate, as shown, or the two inputs may be tied together for continuous operation.

The New Programmable Clock Kit from Digital Concepts. \$29.95

nq matuals are included

SYSTEM 5000 has a thorewent tedstrur marel with tour 05 numerass thal trighten and dim automalicaliva according io ihe athitiv at all times trum almost any viewing angle
 with gentle music and waker you to music. June or soth the
 SUSTEM 5000 ran itw usfid to construct timers tor a gritery of apotications 11 is dideal tor a wiomatic brocess timers and controllers
 SVSTEM 5000 infludes 311 components speaker two ume setting
 incluster bat dedatile as ofntans $\$ 29.95$
SYSTEM 5000 Can he huil as a desk rlock. alarim rluck Calendar clack of all at these in one tull tature tinep.ece the Cuphican

 SYSTEM 5000 a an antomatiraliv control $A C$ or $D C$ accessortes

Electronic packages and mag heads for most applications
For application in:

1. Micro processing
2. Data
recording/logging/storage
3. Security/automatic warning systems
4. Test applications
5. Audio visual/education
6. Programming
7. Instrumentation
8. Telephone interconnect
9. Industrial Control
10. RS232 Data storage
11. $\mathrm{Hi}-\mathrm{Fi}$
12. Point of sale

0
Trplel A Division of the Economy Co.
4605 N. Stiles P.O. Box 25308
Oklahoma City, Oklahoma 73125 (405) 521-9000
I am interested in application no. \qquad Have Representative call Send application notes
Name Title
Company Name
Address
City

Phone Number
MAY 1977

Fig. 3. VMOS light dimmer circuits:
(A) Continuous (analog) control;
(B) Pulse-width switched type.

Fig. 4. VMOS audio circuits:
(A) Alarm; (B) Class A amplifier.

Two of many possible audio circuit applications for VMOS transistors are illustrated in Fig. 4. The first, Fig. 4A, is a simple sound source which may be used in intrusion and fire alarms or similar projects. The design features a NAND gate oscillator similar to the one used in the second lamp dimmer circuit, with the VMOS transistor serving as a power driver for a PM loudspeaker.

The second, Fig. 4B, employs a single VMOS transistor as a Class A linear power amplifier in conjunction with a JFET preamp stage. Suitable for use in radio receivers, TV sets,
record players, intercoms, and low-power PA installations, the circuit can deliver 4 watts to a suitably matched loudspeaker load and has a reasonably flat frequency response from 100 Hz to 15 kHz . Overall distortion is kept to within 2% (at 3 W output) by 10 dB of inverse feedback provided by a $1-\mathrm{k}$ resistor between the output and the preamp's source electrode. A 28 -volt dc supply is required.

With their fast switching characteristics, VMOS transistors are suitable for many high-frequency projects. A typical linear vhf amplifier circuit is illustrated in Fig. 5. Designed for operation in the $144-$ to $-146-\mathrm{MHz}$ band, the design may be used in both transmitter and receiver applications. As a transmitter power amplifier, the stage has a minimum power gain of 12 dB and can deliver 5 W PEP at 146 MHz . If used as a receiver r-f preamp, the design can furnish 11 dB gain with a low noise factor of only 2.4 dB . All resistors are half-watt types and the coils are hand-wound, with T1 consisting of 8 turns of \#24

SHOP YOUR NEARBY RADII SHICK FOR QUALITY PARTS AT LOW PRICES!

Top quality devices, fully functional and carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well known American manufacturers, and all have to
pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Count on Radio Shack for the finest quality parts.

TTL Digital ICs First Quality Devices Made by National Semiconductor and Motorola

Type	Cat No	Reg	SALE
7400	276-1801	819	296
7402	276.1811	\$ 49	296
7404	$276-1802$ $276-1821$	859 $\$ 69$	296 396
7408	276-1822	§ 49	$29 ¢$
7410	276-1807	\$ 49	298
7413	276-1815	\$1 19	696
7420	276.1809	S 49	296
7427	276-1823	\$ 69	396
7432 7441	276-1824 276-1804	$\begin{array}{r}\text { ¢ } \\ \hline 1.59 \\ \hline 1\end{array}$	${ }_{896} 396$
7147	276-1805	¢199	896
7448	276-1816	\$199	${ }^{896}$
7451	276-1825	\$ 49	296
7473	276-1803	${ }^{8} 79$	396
7474	276-1818	\$ 79	396
7.475	276-1806	\$1.19	${ }^{696}$
7476	276-1813	¢ 79	496
${ }_{7485}$		S1	999
7490	276-1808	5119	699
7492	276-1819	\$1.19	69 c
74123	276-1817	\$1.69	896
74145	276-1828	\$149	119
74150	276.1829	\$179	139
74154	276-1834	\$1.79	119
74192	276-1831	\$169	999
74193	276-1820	\$1.69	99c
74194 74196	$276 \cdot 1832$ $276-1833$	\$169	119
74C and 4000 Series CMOS ICs			
74 COO	276.2301	${ }_{5} 69$	${ }^{39}$
${ }^{74} \mathrm{CO} 2$	276.2302		${ }^{396}$
74.004	276-2303	\$ 69	396 398
74.808	$276-2305$ $276-2310$	$\begin{array}{r}\$ 69 \\ \text { S1 } \\ \hline\end{array}$	398 598
	${ }^{276-2312}$	\$159	690
$74 \mathrm{C90}$	276.2315	\$2 29	99 c
74 C 192	276.2321	\$2 49	129
74 C 193	276-2322	\$2 49	29
4001	276.2401	${ }_{5}{ }_{\text {S }} 69$	3396
4011	276-2411	\$ 69	${ }^{396}$
4013	276-2413	\$1 29	${ }^{899}$
$\stackrel{4017}{4020}$	276.2417 $276 \cdot 2420$	S2 S29 S	$\begin{array}{r}199 \\ 149 \\ \hline 1\end{array}$
$\stackrel{1027}{ }$	276-2427	\$129	89 ¢
4049	276-2449	¢ 99	69 c
4050	276.2450	S 99	699
4511	276.2447	\$2.69	169
4518	276-2490	\$2.99	1.99

Linear ICs
First Qually Devices by National Semiconductor and Motorola

Type	Cat No.	Reg	SALE
301 AH	276-017	\$ 69	29 C
324 N	276-1711	\$199	1.49
339 N	276-1712	\$199	149
386 CN	276-1731	\$199	99 c
555 CN	276-1723	\$1 49	89%
556 CN	276-1728	\$299	129
566 CN	276-1724	\$2.99	129
567 CN	276-172.1	\$2.99	199
723 CN	276-1740	§ 99	59 c
723 H	276-009	\$ 99	59 c
7.12 CN	276-007	\$ 69	35 c
741 H	276-010	¢ 69	$35 ¢$
3900 N	276-1713	\$199	59 c
3909 N	276-1705	\$129	99 c
3911 N	276-1706	\$2.19	199
4250 CN	276-1732	\$1.99	1.19
4558 CN	276-038	\$ 99	696
13741 H	276-1733	\$2 59	149
75491	276-1701	\$1.49	696
75.492	276-1702	\$149	69 c

8080A Microcomputer Chip
 Direct Plug-In Replacement for intel 8080A

A CPU with a 16 -bit address bus capable of addressing uF to 65 k bytes o memory and up to 256 I/O ports. "TRI-State" data bus gives it DMA and multiprocessing capability, and all buses are TTL compatible. Handles up to 244 instruc tions of variable length. with 6 general purpose registers plus an accumu'ator 40-pin DIP. 100\% Prime. 276-2510
17.95

Item	Cat No	Reg	SALE
LRed LED LCll LED M Red LED M Crled SRed LED		$\begin{aligned} & 2.996 \\ & 2996 \\ & 2996 \\ & 29996 \\ & 29996 \end{aligned}$	$\begin{aligned} & 2 / 696 \\ & 2 / 69 \mathrm{c} \\ & \hline \end{aligned}$
Inirared Del Intrated Em	$\begin{aligned} & 276.140 \\ & 276.141 \end{aligned}$	$\begin{aligned} & 5119 \\ & 8119 \end{aligned}$	
Solat Cell FPT 100	$\begin{aligned} & 276 \cdot 115 \\ & 276 \cdot 116 \\ & 276 \cdot 130 \end{aligned}$	$\begin{aligned} & \$ 149 \\ & 5 \quad 99 \\ & 5 \quad 79 \\ & \hline \end{aligned}$	

Operates on the scan principle utilizing TTL logic. With repeat key, negative/positive going data valid strobe, latch outputs, shift and shiftlock capability. True/false ASCII outputs, 6 extra control keys. With all necessary parts, including TTL components. Does not include test jigs, optional features or case and hardware. See store sales persons for parts list. 277-117. Complete Pkg.

SPRING 1977

Heathdit products ee known world-wide for qually, performance and VALLE. And no mattar what your tmerest there's a kit thate pet righi for you. Every heathiti product comes with e thorough step-by-step sssembiy manasi that leaves nolting to chance, and all our kitw a wor't let you oul famous "Wo nor the excitInc pledgronic products yOU CAN BUIL NOITEELF nght here in inls cation

Thiy Programmable Home 24

"Heath" and "Heathku" are reglstered trademans

Our biggest and best spea components! Has a massive use with the finest stereoconse all the way down to 20 $15^{\prime \prime}$ woofer for bass rese speakers for twice the power Hz ; dual $41 / 2^{\prime \prime}$ midrange the important midde frequencies, and a handling at the important maintains dispersion and three-tweeter array stereo image throughout anance" sound levels at ALL 1348 provides "live p.

audible frequencies. Circuits

NEW! Electronic Course protessional performances-to-build, money-kit-form prices. other superb, easy-to-build, moneyPLUS nearly 400 oth'll find a complete line of digital saving producis. and weather instruments, plus offe. electronic clocke items for your car, hom une by the thou-
ful and Our learn-at-home courses are now inust way to teach sands! A really effective and low-cost wowledge, or yourself about electronics for fun, election of popular for profit. We also have a withing in electronics.
books covering almost evciting products to read about
There are many more exciting like a practical freezer
too! Home convenience items like a intercoms and a alarm, a touch-control light unique programmable doorbell. Au equipment, model airments and accessories, marine security systems and more. craft Radio Control gear, secur Radio equipment and Plus our world-famous Amants.
test and service instruments. 400 quality, fun-to-build These are among the nearly 400 quat catalog. Kits for kits described in this new Heathkit camous Heathkit every interest. All with the w-step instruction guide assembly manual - a step-by-step leaves nothing to that makes kitbuilding easy our "We won't let you chance. And all backed by the satisfaction, savings fail" promise. Find out abilding. combination of 8 crystal -controlled a 10 and $450-500 \mathrm{MHz}$ $30-50$ and $146-174 \mathrm{MHz}$ fire, ambulances, Amateur ${ }^{\prime}$ UHF band, for police, emergency vehicles, U.S. Gov't meter FM, marine, emerge. Has extra-large lighted weather stations and more. Has extrature and chanchannel indicators, priority built-in antenna for all three nel lockout buttons, built-in antenna. Built-in speakbands, provision for external ands.

er, volume and sad Deluxe Auto Timing Light

 with built-in Tachometer and Advance The fast, easy way to keep tabs on your car's engine timing and distributor advance functions Single, compact operating and better light, advance meter and tachunit houses a timing to 60° mechanical or vacuum ometer. Measures up to 4500 RPM and indicates enadvance from 1500 to 4500 Rright xenon flash tube lets gine speed to 4500 RPM. Bright xe. Inductive pickup you set timing even in day wire for easy hookup.
snaps around \#1 sparkplug w

NEW! Advanced T Service Equipment

Three new test instruments will bring advanced serv-

 Send for your FRREL copy

Fig. 6. 40-watt audio amplifier featuring a VMOS transistor output stage.
member the reflex circuit concept with a touch of nostalgia. Popular in the early to middle 50's, when good quality r-f transistors cost as much as fifty dollars each (pre-inflation dollars, at that!), the reflex citcuit permits a single device to amplify two different signals-r-f and audio-simultaneously.

In operation, r-f signals picked up and selected by tuned circuit L1-C1 are applied to Q1, serving, initially, as an r-f amplifier. An amplified signal is developed across r-f collector load L2 and coupled through C3 to a detector network consisting of $D 1, R 2, D 2$ and $r-f$ bypass C2. The resulting demodulated (audio) signal also is applied to Q1, now serving as an audio amplifier and developing an amplified signal across the audio collector load, T1's primary winding. The RFC (L2) acts virtually as a short as far as audio signals are concerned. The audio signal is next coupled through gain control R3 and dc blocking capacitor C4 to op amp IC1, which serves to drive the final power output stage, Darlington connected pair Q2-Q3. A PM loudspeaker, shunted by R9, serves as the output load. Inverse feedback is provided across the power output and driver stages through R8 to minimize distortion and optimize over-
all performance. Reflex amplifier (Q1) base bias is furnished through R1, the op amp's offset biases through R5 and R6 with, finally, the Darlington receiving its base bias directly from IC1 through current limiting resistor R7, bypassed by C6. Circuit operating power is supplied by $B 1$, controlled by $S 1$.

Except for the hand-wound loop antenna coil, L1, William has specified standard, readily available components in his design. Transistor Q1 is a general purpose pnp device similar to Radio Shack's type RS-101, IC1 is one section of an inexpensive type LM3900 quad op amp, Q2 and Q3 are hobbygrade type 2N3055 npn power transistors, and D1 and D2 are general-purpose diodes similar to types 1 N34 or 1 N60. A 2.5mH RFC is used for L2, while $T 2$ is a small $10-\mathrm{k}$ to $2-\mathrm{k}$ interstage audio transformer similar to Radio Shack's No. 273-1378. Tuning capacitor C 1 is a standard $365-\mathrm{pF}$ unit and all other capacitors are low-voltage disc ceramics except for C4, which is a 15 -volt electrolytic. The fixed resistors are all one-quarter or one-half watt types. Any standard PM loudspeaker with an 8 - or 16 -ohm voice coil may be used as the output device. The power switch, $S 1$, is a spst toggle, slide or

Fig. 7. Broadcast band receiver has reflex front end and IC op amp audio amplifier.
rotary type, with the power pack, B1, made up of six seriesconnected size " C " or " D " flashlight cells. William describes L1 as a loop antenna consisting of 16 turns of \#22 solid copper insulated hook-up wire tapped at 12 turns and closewound on a wooden frame measuring 10 in . high by 13 in . long by 3 in . wide.

Although neither layout nor lead dress should be critical when duplicating the circuit, good wiring practice should be followed, with signal carrying leads kept short and direct, heat sinks provided for the power transistors (Q2 and Q3), and all dc polarities observed. The reader suggests that the entire circuit, including the loudspeaker and power pack, can be assembled conveniently within the wooden frame supporting the loop antenna. Depending on Q1's individual characteristics, some experimentation with R1's value may be required for optimum performance. Some hobbyists also may wish to experiment with the number of turns on the loop antenna coil or with C1's value to obtain coverage of other radio bands. If desired, a multiple tapped coil and suitable selector switch can be provided for multi-band operation.

Device/Product News. Suitable for use in instruments, audio systems, controls, and similar analog applications, a new low-cost dual operational amplifier with a unity gain bandwidth over 2.5 MHz has been introduced by Motorola Semiconductor Products, Inc. (P.O. Box 20912, Phoenix, AZ 85036). Designated types MC4558/MC4558C, the new devices are offered in round metal cases as well as in ceramic and plastic 8-pin MiniDIP's. Internally compensated, the new op amps feature a typical large-signal voltage gain of 200 V / mV at $25^{\circ} \mathrm{C}$ and a CMRR of 90 dB . The two amplifiers within each package are closely matched with respect to both gain and phase, and both are protected against load short circuits.

If your requirements are for a quad rather than dual unit, you should be interested in the RC/RM4156 announced recently by Raytheon Semiconductor (350 Ellis St., Mountain View, CA 94040). Supplied in plastic or ceramic 14-pin DIP's, the op amps are short-circuit protected and feature a minimum unity gain bandwidth of 2.8 MHz .

The Fairchild Camera and Instrument Corp. (LSI Group, 464 Ellis St., Mountain View, CA 94042) is now offering a new dynamic bipolar 4096-bit random access memory (RAM) designed for operation on a single 5-V dc supply. Two versions of the new RAM are in production. Both are organized as 4096×1 bits and have a power consumption of 350 mW active, 70 mW standby, and 500 mW in page mode. The standard 93481 has a maximum access time of 120 ns with a 280-ns cycle time, and a page mode access and cycle time of 75 ns . The faster version, type 93481A, has a maximum access time of 100 ns with a $240-\mathrm{ns}$ cycle time, and a page mode access and cycle time of 65 ns . Manufactured using Fairchild's Isoplanar Integrated Injection Logic process, the new RAM's are TTL compatible and are supplied in standard 16-pin ceramic DIP's.

National Semiconductor Corp. (2900 Semiconductor Drive, Santa Clara, CA 95051) has developed a new single-chip IC containing a pair of monolithic npn transistors matched to within $50 \mu \mathrm{~V}$ of each other. Identified as type LM194, the matched pair has a noise figure so low that it is virtually immeasurable and features a minimum current gain of 500, a current-gain match of better than 2%, a CMRR of better than 120 dB , and a low drift of less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. With a maximum collector-emitter voltage rating of 40 V and a maximum power dissipation of 500 mW , the LM194 is supplied in a 6lead TO-5 style metal case.

MIND-ABSORBING PROJECTS FOR ELECTRONIC EXPERIMENTERS AND HOBBYISTS

wifleypooc	$\begin{array}{r} 1977 \\ \text { ELECTRONIC } \end{array}$
m	EXPERIMENTER'S HANDBOOK
8	Helps you get it together with a score of build-it-yourself projects.

This latest edition includes a host of exciting construction projects for audio buffs-Audio-Controlled Detailed Power Shut Off; 9 -Channel Stereo Equalizer For fun and games-FLIP, a CMOS Logic Game; Sound Effects with the 555 IC Timer, for ex-perimenter's-ESP Testing Machine; How to Make Double-Sided PC Boards; IC Digital Logic Memory Probe for computer/calculator enthusiasts-An Under $\$ 30$ Scientific Calculator; Microcomputer Primer; Bits-to-Dots Computer Video. There's a host of other projects including The Executive Digital Temper Countdowner - Versatile Nickel-Cadmium Battery Charger - Shirt-Pocket Metronome - Hall Effect Magnetometer - Low Cost Metal Locater - 3-Way Photo Flash Tripper - The 99 -cent Wonder IC -High-Value Electrolytic Capacitor Meter - Guitar Sound Intensifier - IC Photo Tachometer - R-F Transistor Tester - And more! PLUS: Microcomputer prod uct buying guide and a basic digital logic course. All with complete construction plans, parts lists and printed-circuit board patterns. Many projects are unique designs not available elsewhere. Only $\$ 1.85$!

Ziff-Davis Publishing Co.
PE-577
Consumer Service Division
595 Broadway, New York, N.Y. 10012
Please send the 1971 ELECTRONIC EXPERIMENTER'S HANDBOOK I'm enclosing $\$ 1.85$ ($\$ 1.50$ plus 35 c for postage and handling). Outside U.S.A. $\$ 3.00$, postpaid.
Residents of Calif., Col., Fla,, III., Mich., Mo., N.Y. State, D.C. and Tex. add applicable sales tax (postage and handling charges non-taxable). print name
address
city
state
zip

COMING UP IN THE JUNE

SPECIAL FOCUS ON TEST INSTRUMENTS digital ic TESTER PROJECT BUYER'S GUIDE TO SCOPES 40-MHz DIGITAL FREQUENCY COUNTER MILLIAMMETERS ON A BUDGET

POWER AND MODULATION CAPABILITY OF 40-CHANNEL CB TRANSCEIVERS

HOW TO PROGRAM CALCULATORS FOR FUN AND GAMES

BUILD A STATE-OF-THE-ART BATTERY CHARGE MONITOR

Hip gid Experimenter's Corner

By Forrest M. Mims

USING LED'S AS LIGHT DETECTORS

IGHT emitting diodes have many applications including status indication, digital readout, signal isolation, and light-beam communication. But did you know LED's can also be used as light detectors?

You can easily demonstrate the pho-

Fig. 1. Simple LED detector demonstration circuit.
tosensitivity of a LED by using the simple circuit in Fig. 1. An infrared emitting LED such as the Texas Instruments TIL32 is connected directly to the terminals of a 0-50 microampere meter. This forms a photovoltaic circuit, and when the LED is placed near a desklamp or other bright light source, the meter will indicate a photocurrent of at least 10 or 15 microamperes.
Though gallium-arsenide infrared emitting diodes make the best light detectors, visible emitters made from gallium arsenide phosphide, gallium phosphide, and other materials also work. For best results, use LED's with clear encapsulants. Remember that just as LED's emit a narrow spectrum of light,
they are sensitive to relatively narrow wavelength bands. Thus a green emitting diode will detect green light better than a red emitter; and infrared emitters will detect infrared far better than visible emitters.

LED's operated as detectors have several very practical applications. For example, an optoisolator can be made by mounting two infrared emitting diodes at either end of a short length of heat shrinkable tubing. The resulting op-

Fig. 2. LED-LED optoisolator using optical fiber coupling.
toisolator can then be used in either direction since the LED's can both emit and detect infrared.

You can also couple two epoxyencapsulated LED's with a short length of plastic or glass optical fiber. Just bore a small hole in the top of each LED, using care to avoid striking the chip or its

DVM35
POCKET PORTABLE ANALOG REPLACEMENT
3-digit, 1\% DCV
Battery or AC
Only \$134

LAB ACCURATE POCKET PORTABLE
$31 / 2$ digit, 5% DCV
Battery or AC
Only \$158

DVM32
BENCH \& FIELD MASTER
$31 / 2$ digit, $.5 \% \mathrm{DCV}$
Battery or AC
Only $\$ 198$

DVM38
"PRIME" STANDARD AT YOUR FINGERTIPS
$31 / 2$ digit, 1% DCV Auto-Ranging Only $\$ 348$

A COMPLETE LINE OF DVMs TO FILL YOUR EVERY NEED OR WANT.

You can be sure more times in more circuits, under more adverse conditions, with greater versatility, accuracy, and meter protection than any other digital multimeters on the market today; and for less money, too. 10 Day Free Trial: Try any of these famous DVMs for 10 days. If the DVMs in use don't prove exactly what we say, return them to your Sencore FLPD Distributor.

Want more information? We would like to tell you all about the Sencore DVMs by sending you a 24 -page Sencore News, a six-page brochure, and the name of your nearest Sencore Distributor today . simply write or circle reader's service number.

upper electrode wire. Then insert some clear epoxy, the fiber, and secure the fiber in place until the epoxy has cured. Figure 2 shows how two LED's are coupled together using this method.

Another possible application for a LED in the detector mode is to monitor the light intensity arriving from the sun or artificial sources at the face of a sevensegment LED display. An unused deci-mal-point LED could be used as the light detector for a circuit which could automatically control the brightness of the display.

The most intriguing application for

LED's operated as detectors lies in the field of light-beam communications. One problem with light-beam communicators designed to operate through the atmosphere is optical alignment. (The most perplexing problem, of course, is the atmosphere itself.) Conventional lightbeam communicators with separate LED transmitters and photodetector receivers must use two lens systems or complicated optics which allows both to use the same lens or lenses.

LED-LED communicators, however, need only one lens per transceiver. Then when the transmitter of one unit is aligned with the receiver of a second unit, the transmitter of the second unit is automatically aligned with the receiver of the first.

A Practical LED-LED Transceiv-

 er. The block diagram for a basic ampli-tude-modulated light beam transceiver using a single infrared LED as both a
You've seen the rest... now try the best.

Pick an ACE for Faster and Easier solderless circuit building and testing.

Send for our complete A P catalog, The Faster and Easier Book.

Solderless strips, backing board and binding posts. Everything you need to build and test your own circuit. Used to be you'd get a circuit idea, lay out a pc board, print it, solder everything together, trouble-shoot, change your layout, try a new board, and spend absolutely too much time breadboarding. Now A P ACE All Circuit Evaluators let you breadboard in a fraction of the time. Make your changes immediately. Keep full leads on your components. Avoid the heat damage possible with repeated soldering and de-soldering. A P made the first modern solderless breadboard, and we still make them best.

$\begin{aligned} & \text { Part } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { ACE } \\ & \text { Model No } \end{aligned}$	$\begin{gathered} \text { Tie } \\ \text { Points } \end{gathered}$	$\begin{gathered} \text { OIP } \\ \text { Capacity } \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { Buses. } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Posis } \end{aligned}$	$\begin{gathered} \text { Board Size } \\ \text { (inches) } \end{gathered}$	Pric Each
923333	200.K (kil)	728	8 (16:3)	2	2	4.9/1615.9/16	\$1895
923332	208 (assem.)	872	8 (16's)	8	2	4-9/16m5.9/16	28.95
923334	201-K (kil)	1032	12 (14's)	2	2	4.9/1647	24.95
923331	212 (assem.)	1224	12 (143)	8	2	4-9/16m7	34.95
923326	218 (assem.)	1760	18 (14.3)	10	2	$6-1 / 2 \times 7.1 / 8$	46.95
923325	227 (assem.)	2712	27 (14.s)	28	4	819.1/4	59.95
923324	236 (assem.)	3648	36 (14's)	36	4	10.1/4.9.1/4	79.95

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest vou call Toll-Free 800-321-9668.

A P PRODUCTS
INCORPORATED
Box 110 Painesville, OH 44077 (216) 354-2101 TWX: 810-425-2250

source and a detector is illustrated in Fig. 3. The circuit consists of a preamplifier, amplifier, LED driver and a switching network to switch the LED from the input of the preamplifier (receive mode) to the output of the driver (transmit mode). Several years ago I described a LED-LED communicator patterned upon this basic design in Popular Electronics ("Communicate Over Light Beams with the First Single-LED Transceiver," March 1974, p. 66). While this transceiver worked quite well, it used a relatively large audio amplifier module.

Figure 4 is the circuit diagram for a more up-to-date LED-LED transceiver made with an LM386 audio amplifier IC. Thanks to the LM386, the new circuit is much smaller and somewhat simpler than the original version. Also, the new circuit incorporates a simplified onetransistor modulator, a single 8 -ohm speaker which doubles as a microphone, and a 9 -volt battery.

I have assembled a working version of the circuit in Fig. 4 and installed it in a miniature bakelite cabinet measuring $3-1 / 4^{\prime \prime} \times 2-1 / 8^{\prime \prime} \times 1-1 / 8^{\prime \prime}(8.26 \times 5.4 \times$ $2.86 \mathrm{~cm})$. There isn't enough room here to include all the construction details, but here are a few assembly tips: Use a perforated board measuring $2^{\prime \prime} \times 1-15 / 16^{\prime \prime}$ $(5.08 \times 4.92 \mathrm{~cm})$ to leave room for the 9 volt battery. Remove the upper two corners of the board to make room for the cabinet's cover screws. A $2^{\prime \prime}$ speaker fits perfectly in the space between battery and the upper end of the cabinet. All the components except the LED can be installed in a circle on the circuit board around the base of the speaker. The 4 pdt switch fits between the upper two cover screw receptacles. Because of the limited space, the switch handle will have to emerge from the side of the cabinet opposite the front of the speaker.

Use a miniature phone jack to connect the LED to the circuit. Besides providing an automatic on-off switch, this will allow you to experiment with various kinds of LED's. It will also let you place the LED some distance from the circuit and simplity experimentation with different lenses.
l've used the transceiver in Fig. 4 for communications through the atmosphere and a fiber optic cable. Results with a 10-meter (32.8^{\prime}) length of glass fiber with an attenuation of a few hundred dB per kilometer were excellent. This cable should soon be available from some of the firms which specialize in experimenters' electronics components. Until then, you can try high-loss plastic fibers or stick to the atmosphere.

By John McVeigh

SUPPRESSING BLOWER HASH

Q. I built the CB converter described in the October issue and have installed it in a 1976 Plymouth Fury. However, the blower fan motor (for air conditioning, heating, and defrosting) creates so much static that it is impossible to operate it and the converter simultaneously. I do not have this problem when I use the AM/ FM radio "straight through." Can you suggest a filter that will suppress this interference?-W. B. Grandjean, Baton Rouge, LA.
A. 1 recommend the installation of $0.25-\mu \mathrm{F}$ coaxial capacitors across the terminals of each blower motor. The capacitor will act as a short circuit to the r-f hash generated by the sparking at the motor brushes, but will not affect the system from a dc point of view. The capacitors can be obtained from most auto supply houses, and can also be used to silence noisy gauges and sender units. Be sure that the case of the converter and the shield of the antenna lead-in are well grounded.

FM STATION LISTINGS

Q. I would like to obtain a listing of FM radio stations. Do you know where I could get one?-Mrs. Don Ginest, Lakin, KS.
A. As I recall, a very comprehensive list of FM broadcasters is offered by the Worldwide TV-FM DX Assoc., Box 163, Deerfield, IL 60015. Also, there's a listing in North American Radio-TV Station Guide, by Vane A. Jones, published by Howard W. Sams \& Co.

NIXIE INTERFACE

Q. How can I trigger 170-volt Nixie tubes with the 12-to-14-volt "digit enable" pulse from a 5313 clock chip? LeRoy Lee, Altus, OK.
A. I think the most inexpensive way to do this is to have the digit enable pulses turn on high-voltage npn switching transistors. These in turn would apply the
high voltage to the individual tubes. A suitable transistor is the Motorola HEP S0027. It has a collector-to-emitter breakdown voltage rating of 300 volts, maximum collector current of 500 mA , and a typical cut-off frequency of 50 MHz . However, if you go this route, be sure to include current limiting resistors at the base and collector of each transistor. Of course, some chips provide BCD outputs which can be decoded by suitable IC decoder/drivers. For example, the 7441 is specifically designed for use with Nixies.

TTL VS. CMOS

Q. The circuit for the "Westminster Chime" clock (November 1976) uses CMOS IC's. Is it possible to use TTL IC's in place of them, or a mixture of the two?-Murray Voakes, Essex, Ontario.
A. Although similar CMOS and TTL gates and sequential logic circuits perform the same functions-a CMOS 2input NAND gate is logically equivalent to a TTL 2-input NAND-there are differences in input and output impedances, drive capabilities, operating voltages, etc. The great advantage of TTL over CMOS is operating speed. However, CMOS has it all over TTL in the areas of power consumption at slow speeds and noise immunity when higher operating voltages are used. In this application, switching speeds are low enough to allow CMOS to run significantly cooler than TTL. This means that a smaller power supply can be used. In fact, CMOS is becoming so popular that several manufacturers are offering MOS devices that have the same pinouts as the 7400 TTL series. This allows one to convert from TTL to CMOS with a minimum of pc board modifications. So I really don't see going TTL or hybrid in this circuit. Surplus CMOS is inexpensive, an all-CMOS design requires no level interfacing, and power supply demands are greatly reduced. As a final note, many CMOS devices are now zener diode "clamped" and won't self-destruct when you touch them!

Logic Probe 1 is a compact, enormously versatile design, test and troubleshooting tool for all types of digital applications. By simply connecting the clip leads to the circuit's power supply, setting a switch to the proper logic family and touching the probe tip to the node under test, you get an instant picture of circuit conditions.

LP-1's unique circuitry-which combines the functions of level detector, pulse detector, pulse stretcher and memory-makes one-shot, low-rep-rate, narrow pulses-nearly impossible to see, even with a fast scope-easily detectable and visible. HI LED indicates logic " 1 ", LO LED, logic " 0 ", and all pulse transi-tions-positive and negative as narrow as 50 nanoseconds-are stretched to $1 / 3$ second and displayed on the PULSE LED.

By setting the PULSE/MEMORY switch to MEMORY, single-shot events as well as low-rep-rate events can be stored indefinitely.

While high-frequency ($5-10 \mathrm{MHz}$) signals cause the "pulse" LED to blink at a 3 Hz rate, there is an additional indication with unsymmetrical pulses: with duty cycles of less than 30%, the LO LED will light, while duty cycles over 70% will light the HI LED.

In all modes, high input impedance (100K) virtually eliminates loading problems, and impedance is constant for all states. LP-1 also features over-voltage and reverse-polarity protection. Housed in a rugged, high-impact plastic case with strain-relieved power cables, it's built to provide reliable day-in, day-out service for years to come.

CSC'S MULIT-FAMIIY LOGIC PROBE 1. AT $\$ 44.95$, IT DIGS UP A LOT OF INFORMATION WITHOUT BURYING YOUR BUDGET.

44 Kendall St, Box 1942, New Haven. CT 06509
TWX: 710-465-1227
West Coast otfice: Box 7809, San Francisco, CA 94119
TWX: 910-372-7992: Canada: Len Finkler Ltd.
Ontario; Mexico: Elpro. S.A., Mexico City, 5-23-30-04

방
 Product Test Reports

KENWOOD MODEL TS-820 TRANSCEIVER

All-band hf transceiver has operating versatility and built-in speech processor.

ALTHOUGH Kenwood's new Model TS-820 160-through - 10 - Meter SSB/CW amateur transceiver physically resembles its popular Model TS-520, the two are very different in terms of circuit design and built-in features. Also, the TS-820 can accommodate an optional digital frequency readout, whereas the TS-520 cannot. Other new features (discussed later) clearly make the new transceiver Kenwood's "top of the line."

The transceiver is housed in a rugged, gray-finished cabinet that measures $13-3 / 16^{\prime \prime} \mathrm{D} \times 131 / 8^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{H}(33.5 \times$ $33.3 \times 15.3 \mathrm{~cm}$). A versatile ($110-$ or $220-\mathrm{V}, 50-$ or $60-\mathrm{Hz}$) ac power supply is built-in, as well as a small loudspeaker. A handle on the right side of the cabinet provides a means for carrying the 35.2lb (16-kg) transceiver. The basic TS-820 transceiver is priced at $\$ 830$. The optional $D G-1$ digital frequency readout, which mounts inside the TS-820's cabinet and can be added at any time, is $\$ 170$. Other options include the CS-820-20 $500-\mathrm{Hz}$ CW crystal filter (\$45), the DS-1A dc/dc converter for mobile use (\$59), and the VFO-820 external vfo (\$139).

Ceneral Description. The transceiver circuitry is solid state, except for a 12BY7A driver and two S-2001A (a pin-for-pin 6146B equivalent) final amplifier tubes. The usual complement of transmitter and receiver tuning controls is provided. The multi-function, switchcontrolled meter indicates final amplifier
plate current or voltage, relative r-f output, alc circuit operation, compression level from the built-in r-f speech processor, and S units.

When the mOde switch is set to TUN or FSK, power input to the finals is automatically reduced so that the tubes' rated plate dissipation is not exceeded. The r- f speech processor is activated by pulling out the COMP LEVEL/PROC control. The amount of the compression (indicated on the meter) is adjusted by rotating this control.

The transmitter pi network and transceiver preselector controls are grouped together. The PLATE tuning control uses a vernier for easy adjustment. The LOAD control is concentric with a FIXCH switch that selects any one of four crystal-controlled channels in the FIX mode (crystals optional).

The center-detented IF SHIFT control is concentrically paired with the receiver incremental tuning (RIT) control, the latter activated by a pushbutton. The CW CAR level and SSB miC gain controls are also paired, as are the RF GAIN and AF gain controls. An RF ATt push-button switch inserts a $20-\mathrm{dB}$ attenuator at the receiver's antenna input to combat overload and desensitization by strong local signals.

The band switch has positions for all amateur bands between 1.8 and 29.7 MHz , as well as JJy/wwv (reception only) on the $15-\mathrm{to}-15.5-\mathrm{MHz}$ band. The 10 -Meter band is covered in four 500kHz segments. (There is also a position on the BAND switch labelled AUX, which
apparently can be used for operations outside the regular ham bands, although the manual does not mention it.)

The FUNCTION switch is normally left in the VFO position to allow the internal vio to control the transceive frequency. When set to FIX, both frequencies are controlled by internal crystal oscillators, with up to four frequencies selectable by the FIX CH switch. The VFO:R position uses the internal vfo to control the receiver's frequency, while the FIX:R position puts the receiver under crystal control and the transmitter under vfo control. When either the transmitter or the receiver is on vfo control, the FIX and RMT positions are used with the aux crystalcontrolled channels of the remote vfo to zerobeat the vfo to channel frequency.

A separate HEATER switch is provided to shut off the tube heaters when the transceiver is used for reception only. All VOX controls are mounted on the front panel for ready access. Because the VOX circuit controls the changeover relay on CW (semi-break-in) as well as SSB, it is most convenient to have the deLay control up front for easy adjustment as conditions warrant.

The large tuning knob operates two circular dial scales, one calibrated at 1 kHz intervals (numbered every 10 kHz), and the other calibrated at $50-\mathrm{kHz}$ intervals and numbered from 0 to 500 every 100 kHz . The dial index can be moved to calibrate the scale against the $25-\mathrm{kHz}$ marker oscillator or WWV. The dial setup uses Kenwood's "mono-scale" kilohertz dial system which fits the full 500kHz tuning range on a single small dial with $1-\mathrm{kHz}$ calibration intervals. The scale is rotated 10 turns for edge-toedge coverage of each band segment.

When the optional digital frequency display is installed, as it was on our test model, the fluorescent readout appears in a window above the mechanical dial scales. Above the numeric display are four LED's that indicate when the ATT (attenuator) is on and when FIX, VFO, and RIT functions are active.

A button labelled DH (display hold) permits the numeric display to be "frozen" to store a frequency for quick retuning. When the display is frozen, you can tune about using the mechanical dial. To return to the original frequency, you simply note the counter display, release the DH button, and tune until that number again appears in the display.

The single-conversion receiver has an $8830-\mathrm{kHz}$ i-f. A phase-locked-loop (PLL) circuit gives the benefits of both single and multiple conversion with few of the disadvantages of either. The local oscil-
lator consists of 11 separate band-switch-selected voltage-controlled oscillators or vco's (one for each band). These oscillators employ varactor diodes. The output of the vco is heterodyned with a crystal oscillator to produce a frequency between 3.33 and 3.83 MHz . The heterodyne oscillator also consists of 11 separate oscillators. The $3.33-\mathrm{to}-3.83-\mathrm{MHz}$ signal is then heterodyned with the output of a crystal-controlled carrier oscillator operating near 8830 kHz to generate an output between 5.0 and 5.5 MHz .

Tuning is by a conventional 5.0to $-5.5-\mathrm{MHz}$, highly stable and linear Clapp vfo. The vfo's output is compared with a down-converted vco signal by a phase comparator whose output trims the output frequency of the vco. Thus, the vco is phase locked to the 5.0-to-5.5MHz tunable oscillator to effectively transfer the linearity and stability of the latter to the $10.5-$ to- $39-\mathrm{MHz}$ local oscillator. A phase-lock sensor disables the vco if PLL action fails, preventing off-frequency operation.

There are two separate carrier oscillators. One, controlled by two switchable crystals, operates on SSB transceive and on CW receive. The other functions in the transmit FSK and CW modes, when the receive and transmit frequencies are slightly separated.

A very useful feature is the IF SHIFT, which allows the i-f passband to be moved approximately $\pm 1.7 \mathrm{kHz}$ without affecting the pitch of the received signal. The if shift electronically varies the frequency of the carrier oscillator in the PLL system. This causes the vco to move exactly as much as the carrier frequency, resulting in no net change in the relationship between the signal and oscillator frequencies. Because the filter is fixed, the signal is moved through the filter passband.

The built-in r-f speech processor provides up to 50 dB of compression. Here's how it works. The audio input signal is applied to a balanced modulator operating at 455 kHz and is then passed through a filter to remove one sideband. The remaining sideband is com-pressed-not limited-by an agc amplifier. It is further filtered to remove distortion products beyond the desired modulation passband, down-converted to audio, and finally applied to the main balanced modulator of the transmitter.

Some 10 dB of r-f negative feedback is used in the driver and output stages to reduce odd-order IM products by 6 to 10 dB. This makes the signal unusually clean and free from splatter that could

10-W avg. output with sustained "Ahhh"driving transmitter.

Average power increased to 40 W with 20 dB of compression.
interfere with QSO's on nearby frequencies. Alc is also used to prevent driving the output tubes into nonlinearity.

The transceiver has a built-in SSB receiver that is always tuned to the transmitter frequency so the operator can monitor his transmitted signal. R-f is sampled just before the driver stage, heterodyned down to audio by a product detector, and injected into the receiver's audio amplifier when the MONITOR switch is on. This is a good way to determine the effects of the r-f processor and to determine how much background noise is increased when compression is introduced.
The optional digital frequency display module counts the frequency to the nearest 10 Hz , then rounds off and displays the operating frequency to the nearest 100 Hz . Accuracy of the display is guaranteed to be $1 \mathrm{ppm} /$ month.

Transmitter Tests. On 80 Meters, a two-tone test resulted in 200 W PEP input to the final amplifiers. PEP output into a 50 -ohm dummy load was 115 to 120 W. Key-down CW input power measured 165 W , and CW output 100 to 110 W. On SSB, carrier suppression varied from 53 dB (LSB) to 58 dB (USB). The unwanted sideband was 60 dB down when a $1000-\mathrm{Hz}$ modulating signal was applied. Distortion products measured as follows: third order -32 to -34 dB referenced to the two tones, -38 to -40 dB referenced to PEP; fith order -56 dB referenced to the two tones, -62 dB
referenced to PEP. An audio input of 1 mV at 1000 Hz was sufficient to fully modulate the transmitter on the $7-\mathrm{MHz}$ band.

The r-f speech processor produced some interesting results. A sustained "Ahhh" driving the transmitter to full PEP yielded an average power output of 10 W when no compression was applied. With 20 dB of compression (as indicated on the transceiver's meter), the average power output increased to 40 W. Peak power remained at the same level with or without compression. This translates to a 6 -dB increase in "talk power," equivalent to an increase of one "ideal" S unit at the receiving end. This increase is nearly equivalent to switching in a 1000 - or $1200-W$ PEP linear.

Of course, the processor (like all processors) introduced some a-f distortion and degraded the unwanted sideband suppression. At a modulating frequency of 1000 Hz , and at 10 dB of compression, the second harmonic of the modulating frequency was 30 dB down-equivalent to 3.2% of distortion. Unwanted sideband suppression measured 50 dB . At 750 Hz , the second harmonic measured -28 dB (4\% distortion) when 10 dB of compression was introduced. The third harmonic (2250 Hz) was 20 dB down (10% distortion), and unwanted sideband suppression measured 30 dB . When a $500-\mathrm{Hz}$ tone was used to modulate the transceiver, the unwanted sideband suppression improved to -35 dB . Finally, when a $400-\mathrm{Hz}$ modulating tone was applied, the second harmonic measured -40 dB (1% distortion) at 10 dB of compression. The third harmonic was 10 dB down (32% distortion), and the unwanted sideband suppression measured 25 dB .

Alc action was very good. Flat-topping simply did not appear, even at maximum alc. Audio response measured (at the $6-\mathrm{dB}$ points) $325-2800 \mathrm{~Hz}$ (USB) and $240-2700 \mathrm{~Hz}$ (LSB). When the speech processor was used, the response was slightly altered. Maximum VOX release time was approximately one second. When the release was shortened to allow semi-break-in CW keying, no shortened first dot or dash occurred. That is the exception, rather than the rule, among today's amateur rigs!

To check the transceiver's frequency stability (rated at better than 100 Hz / hour after a one-hour warmup and less than 1000 Hz of drift in the first hour after a one-minute warmup), the transceiver was attached to a dummy load and placed in the tUNE mode at 7 MHz , yielding an r-f power output of about 15

RESULTS OF RECEIVER TESTS

Frequency (MHz)	Sensitivity ($\mu \mathrm{V}$) for 10 $d B(S+N) / N$		Image Rejection (dB)	1-f Signal Rejection (dB)	Band-to-Band Gain* (dB)
	SSB	CW			
1.8	0.1	0.05	96	100	0
3.5	0.1	0.063	92	90	-3
7	0.08	0.05	86	96	0
14	0.1	0.056	70	92	-3.5
21	0.1	0.063	66	96	-3
28	0.1	0.063	68	96	-1
					(+1 dB on
					$29.5-\mathrm{MHz}$
					segment)
*Overall gain-not affecting sensitivity-determined by comparing audio output on each band, referenced to 1.8 and 7 MHz , produced by a given input signal. Variations in band-toband gain occur below the agc threshold and have no effect above it.					

W. The frequency of this output signal was measured by coupling a frequency counter to the dummy load. After a brief stabilization period (much less than the allowable hour), the drift averaged about 96 Hz /hour for the next few hours. The final transmitter test we performed was the measurement of r - f harmonics at the antenna output jack. They were consistently 40 dB below the fundamental.

Receiver Tests. Results of our measurements of sensitivity, image rejection, i-f signal rejection, and difference in band-to-band gain appear in the Table. Note that sensitivity measurements at these very low signal levels are usually accurate to within $\pm 3 \mathrm{~dB}$. However, even within this margin, the TS-820's receiver tested extremely "hot." A $50-\mu \mathrm{V}$ signal (nominal) was required for an S 9 meter reading; a $1-\mu \mathrm{V}$ signal produced an S2.5 reading. Inserting the r-f attenuator in the input line (by means of the front panel pushbutton) dropped signal levels 20 dB . The receiver incremental tuning varied the receive frequency $\pm 3000 \mathrm{~Hz}$. Unwanted sideband rejection measured 60 dB at 1000 Hz and 50 dB at 500 Hz .

No crossover birdies were found when signals below $10,000 \mu \mathrm{~V}$ were applied to the input. Internal spurious signals measured $0.2 \mu \mathrm{~V}$ (equivalent) at 21.200 MHz and less than $0.1 \mu \mathrm{~V}$ (equivalent) at 2 and 21 MHz . Two $320-\mu \mathrm{V}$ signals (-57 dBm , or 70 dB above the SSB sensitivity) spaced 25 kHz apart created third-order M (intermodulation) products equivalent to the rated sensitivity $(0.1 \mu \mathrm{~V}$ for 10 dB $(S+N) / N)$. An undesired $32,000-\mu V$ $(-17 \mathrm{dBm})$ signal 110 dB above a $0.1-\mu \mathrm{V}$ desired signal desensitized the receiver by depressing the desired signal 1 dB . The receiver section was very
resistant to blocking (overload). No loss of output level or increase in distortion was detected when input signals of up to $100,000 \mu \mathrm{~V}$ (-7 dBm) were applied.

When the r-f input signal varied from 0.1 to $1 \mu \mathrm{~V}$ (a $20-\mathrm{dB}$ change), the audio output rose 18 dB . When the input signal was raised from $1 \mu \mathrm{~V}$ to $10 \mu \mathrm{~V}$, the agc came into play and the audio output rose only 1 dB . A $100-\mathrm{dB}$ change in r -f (from 1 to $100,000 \mu \mathrm{~V}$) caused the audio output to increase only 2 dB . Release time from an S 9 signal level to full recovery was approximately 0.75 second when the agc switch was in the fast position and 4.5 seconds in the slow mode.

Nominal overall response-which included the i-f passband and audio re-sponses-measured as follows: 400 to 2150 Hz at $-6 \mathrm{~dB}, 200$ to 3525 Hz at -60 dB (USB); 275 to 1850 Hz at -6 dB, 75 to 3300 Hz at -60 dB (LSB); 700 to 1250 Hz at $-6 \mathrm{~dB}, 335$ to 1685 Hz at $-60 \mathrm{~dB}(\mathrm{CW})$. These measurements were made below the agc threshhold. The differences between USB and LSB are easily explained by the fact that the frequency of the carrier oscillator feeding the balanced modulator is deliberately shifted for proper generation of USB and LSB signals. It is the change of the relationship between the skirts of the fixed crystal filter and this carrier oscillator that causes different overall responses in the USB and LSB modes. However, in both modes the unwanted sideband suppression was 60 dB at 1000 Hz and 50 dB at 500 Hz .

The transceiver produced 1.5 W of audio output into 8 ohms. A $1000-\mathrm{Hz}$ sine wave was used for this test, and at the start of clipping total harmonic distortion was less than 2%.

In our final receiver test, we applied a pulse train composed of 0.0005 - $\mu \mathrm{s}$-wide pulses at a $60-\mathrm{Hz}$ rate. This pulse train
(at 100 dB above $1 \mu \mathrm{~V} / \mathrm{MHz}$ bandwidth) completely obliterated a $3-\mu \mathrm{V}$ input signal. A $10-\mu \mathrm{V}$ signal was depressed by at least 10 dB due to agc capture by the noise pulses. However, when the TS-820's noise blanker was activated, normal agc action was restored and undisturbed copy of even $0.1-\mu \mathrm{V}$ signals became possible! But the blanker had no effect on low-level pulses (less than 50 dB above $1 \mu \mathrm{~V} / \mathrm{MHz}$ bandwidth).

On The Air. With few exceptions, we confined our on-the-air testing to the 7 MHz band. Operation was equally divided between SSB and CW. During the weeks we operated this transceiver, we never felt the need to use our linear.

It seemed as natural to scan the bands with the digital numeric frequency display as it was to observe the position of a dial scale against an index line. Let us assure anyone who is not ready to make the added investment in the digital display that the mechanical dial is accurate to within about 100 Hz of the digital display.

We were pleased to note that the transceiver can be tuned with its own meter, and modulated within the maximum limits defined by its alc meter scale without compromising performance. The front-panel VOX controls proved to be rock stable. On CW, the delay could be set so that the transmitter would drop out between characters below 20 wpm and between words at higher speeds. This is not really QSK (full break-in keying), but it's pretty close! Both the keying and modulation received numerous unsolicited compliments from stations contacted. Only rarely useful on SSB, the IF SHIFT proved to be valuable on CW. It let us move QRM off the skirts of the $500-\mathrm{Hz}$ filter to the point of inaudibility, without changing the pitch of the desired signal.

During our tests, an idling truck blanketed us with ignition noise at S9. Switching in the noise blanker effectively eliminated-not just reduced-the interference! This was a most impressive demonstration, which left us regretting that the blanker could not dispose of types of noise other than impulse noise.

In actual QSO's, we verified that the r-f speech processor gave a one to two S-unit improvement in signal strength. However, the processor does cause some signal distortion. Thus, the processor should be used (and is intended for use) only under conditions that warrant it. Under strong-signal conditions, all speech processors impair intelligibility to some degree. On the other
hand, when the going gets tough, a good processor like the one in this transceiver can make the difference between contact and no contact.

No sound at all could be heard from the transceiver's cooling fan. The "silent" fan's cooling effectiveness was undeniable, however. After almost two hours of either SSB or CW operation, the cabinet was cool to the touch everywhere except directly above the final tubes, where it was faintly warm.

The TS-820 is certainly a full-feature all-band ham transceiver. The only gripe we do have concerns the top-facing speaker, which managed to lose much
of its meager output in our acoustically treated ceiling. For fixed-station operation, the owner would do well to connect an external speaker to the rear-panel output jack.

In sum, the TS-820's versatility and fine performance and the obvious top craftsmanship that has been spent on its design will fill any ham with pride of ownership. If we had to pick the most attractive feature among so many admirable ones, it would be the "digital hold." With this "memory" function, we'll never again fail to return exactly to a QSO frequency after a brief listen off-channel.

CIRCLE NO 103 ON FREE INFORMATION CARD

MURA MODEL PRX-100 "PRN" CB MICROPHONE

Peak-redistribution modulation effectively increases signal power.

THE MURA PRM microphone contains a conditioning system that redistributes the asymmetrical sharp-peak portions of speech to make the signal more symmetrical. At the same time, it also holds down the peaks to allow the lower-energy components of the signal to be effectively higher in energy than would be possible with a "straight" microphone. This peak-redistribution modulation (PRM) is accomplished electronically by delaying the large sharp-peak components of the signal for minute amounts of time in relation to the lowerenergy signals before passing them on to the transmitter's modulator. The result can be an effective average modulated signal without adverse distortion.

One of the new PRM microphones for CB use is the push-to-talk Model PRX-100. It has a gain control for setting up the optimum output level for any particular CB transmitter according to the operator's voice amplitude. (The microphone cannot be used with certain CB transceivers on the market. These are
detailed by manufacturer and model on the card on which the microphone is packaged.) Operating impedance is 0 to 2500 ohms. Power for the microphone system is obtained from an internal 9volt battery. Price is $\$ 39.95$.

Test Results. We checked the Model PRX-100 with the aid of a dual-trace oscilloscope to observe simultaneously the output of the transducer cartridge and the conditioned output signal from the PRM circuit. Asymmetry at the cartridge was demonstrated with the maximum sharp-peak excursions in the positive direction. The conditioned output still produced some asymmetry, but in the opposite direction and to a lesser degree. However, the peak ratios, compared to the in-between lower-energy components, were reduced sufficiently to permit an overall higher average output level which potentially increased the average power of the modulated signal.

We also made comparisons with other microphones and with different voices. We noted that less improvement was obtained when compared to the output of the poorer-quality microphones than was the case with better units. (Lowerquality, less-expensive microphones usually exhibit their best symmetry, with lower positive/negative-peak ratios.) It should be noted that the advantages gained by using a PRM microphone apply mostly to limited-level amplifying or modulating systems in which operation is below the overload or clipping level. Systems that employ clippers or some form of automatic modulation control (amc) generally tend toward symmetry and higher average signal levels.

Ever since the invention of the recorded disc annoying "clicks" and "pops" caused by scratches, static and imperfections have consistently disturbed the listening pleasure of music lovers.
Now, SAE introduces the unique model 5000, an Impulse Noise Reduction System which eliminates those unwanted sounds with no adverse effect on the quality of the recorded material.
This breakthrough in electronic circuitry is so demonstrably effective that the SAE 5000 is destined to become an essential part of any sound system.
The SAE 5000 is compact and sleek, built to SAE's exacting standards, and ready to enhance the performance of any system, from the standard receiver/turntable combination, to the most sophisticated audiophile components.
SAE is proud to add the 5000 to their broad line of Components for the Connoisseur.

Empire's Blueprint For Better Listening

No matter what system you own, a new Empire phono cartridge is certain to improve its performance.

The advantages of
Empire are threefold.
One, your records will last Ionger. Unlike other magnetic cartridges,
Empire's moving iron design allows our diamond stylus to float free of its magnets and coils. This imposes much less weight on the record surface and insures longer record life.

Two, you get better separation. The small, hollow iron armature we use allows for a tighter fit in its positioning among the poles. So, even the most minute movement is accurately reproduced to give you the space and depth of the original recording.

Three, Empire uses 4 poles, 4 coils, and 3 magnets (more than any other cartridge) for better balance and hum rejection.

The end result is great
listening. Audition one for yourself or write for our free brochure," How To Get The Most Out Of Your Records." After you compare our performance specifications we think you'll agree that, for the money, you can't do better than Empire.

EMPFE
Already your system sounds better.
Empire Scientific Corp.
Garden City, New York 11530

The polarity and characteristics of the existing microphone, as well as the frequency response or phase shifts in the modulating system, play an important role as to whether or not any significant improvement can be obtained with the use of a PRM microphone with a given degree of maximum modulation.

We noted that the low-frequency response of the microphone was somewhat less than usual. This resulted in a slightly crisper signal for better intelligence under adverse conditions.

User Comment. In many situations, with the gain control of the microphone set at maximum, the output level can be high enough to severely overload the modulator. This can produce heavy clipping or overmodulation, the latter beyond the signal-handling capabilities
of an amc system. Although the use of the microphone can make a signal sound somewhat louder, it may possibly do so at the price of high distortion and excessive adjacent-channel splatter. Therefore, caution should be taken in setting the microphone's gain. This is best done while observing the modulated r-f waveform on an oscilloscope and setting the level control so that the signal does not cause excessive or distorted modulation.
Whether or not a change to this type of microphone will be of benefit in any particular case can be determined by listening to the CB signal under maximummodulation conditions. (The Model PRX-100 is rated to deliver up to a $4-\mathrm{dB}$ increase in average modulated power, which we confirmed.)

CIRCLE NO 104 ON FREE INFORMATION CARD

B\&K PRECISION MODEL 1471 B OSCILLOSCOPE

Has dual-trace and trigger functions desirable in testing modern circuits.

AGOOD general-purpose oscilloscope for servicing and electronics experimenting should have a linear triggered sweep with a broad selection of sweep rates and triggering sources. It should also have two independent traces to permit observation of both the input and output signals of a circuit under test. Moreover, its vertical amplifiers should have sufficient bandwidth and sensitivity to enable the user to work with high-frequency signals with very low and very high amplitudes. The vertical amplifiers should be dc coupled to permit the scope to double as a voltmeter, and both amplifiers should have identical characteristics to permit the instrument to be used for a vector display. Finally, if the scope is to be used in TV servicing, it should have provisions for frame and line sweeps to serve as a vectorscope for chroma alignment.

All of these characteristics can be found in B\&K Precision's Model 1471B dual-trace oscilloscope.

The scope measures $16^{\prime \prime} \mathrm{D} \times 9.6^{\prime \prime} \mathrm{W} \times$
$7.7^{\prime \prime} \mathrm{H}(40.4 \times 24.5 \times 19.6 \mathrm{~cm})$ and weighs $18 \mathrm{lb}(8.2 \mathrm{~kg})$. Price is $\$ 495$.

General Details. Each of the vertical amplifiers in this dual-trace solid-state oscilloscope has a bandwidth that goes from dc to at least 10 MHz , risetime of $35 \mathrm{~ns}, 3 \%$ or less overshoot and ringing with a $100-\mathrm{kHz}$ square-wave input, and 1 megohm paralleled by 22 pF input resistance. The deflection factor of the vertical amplifiers is from 0.01 volt/cm to 20 volts/cm in 11 calibrated ranges, fully variable between range settings.

Either amplifier (trace) can be selected separately, or the scope can be operated in the dual-trace (simultaneous display of both channels) mode. In the du-al-trace mode, the traces are chopped at a $200-\mathrm{kHz}$ rate at all sweep rates up to 1 $\mathrm{ms} / \mathrm{cm}$, while alternate-trace operation is automatically switched in for all faster sweep rates. Channel separation in the dual-trace mode is better than 60 dB at 1000 Hz .

The sweep circuit shared by both
channels can be automatically triggered without an input signal to the scope. The sweep range is from $1 \mu \mathrm{~s} / \mathrm{cm}$ to 0.5 s / cm, with full variability between ranges. In addition, the sweep can be magnified $5 \times$, yielding a maximum sweep speed of $0.2 \mathrm{~s} / \mathrm{cm}$. There is less than 3\% (typical) horizontal linearity distortion.
The switch-selectable sweep triggering can be either internal or external and from the channel in use. (Channel \mathbf{A} is selected in the dual-trace mode.) At almost all levels, either the positive or the negative slope of the input signal can be selected to initiate the triggering. Alternatively, the triggering can be automatic. The sweep can be triggered from 20 Hz to better than 10 MHz in the internal mode ($1-\mathrm{cm}$ deflection on the CRT's graticule) or dc to 10 MHz from an external trigger signal. A built-in sync separator is provided to permit observation with high stability of any portion of a complex TV waveform.

The horizontal amplifier can be accessed through the channel-B connector on the front panel of the scope and is selected by one position on the sweep speed control when the instrument is in the vectorscope mode. The horizontal amplifier then has a deflection factor of from $0.01 \mathrm{volt} / \mathrm{cm}$ to 20 volts $/ \mathrm{cm}$, which is the same as that of the vertical amplifier, and a frequency response from dc to 1 MHz .

Intensity modulation on the Z axis is available via a TTL-compatible connector on the rear panel of the scope. A logic low increases trace brightness, while a logic high decreases the brightness. The input resistance to the Z axis is 10,000 ohms.
The scope features a $5^{\prime \prime}(12.7-\mathrm{cm})$ flat-screen CRT. Over the face of the CRT is an $8 \times 10 \mathrm{~cm}$ blue-colored engraved graticule. The bezel that holds the graticule in place can be removed easily to allow insertion of the vector overlay needed for color TV alignment. A 1 -volt p-p square-wave source permits checking and calibration of the vertical amplifiers without having to use external sources.

User Comment. The Model 1471B oscilloscope is an excellent general-purpose instrument. Calibration was originally performed with a very accurate external voltage source. After operating the scope for six hours a day over a period of two weeks, we again calibrated the scope and found it to be still "on the head."

During our in-service tests, we deter-
mined that the scope's sync holds up under even very-low-level and relatively high-frequency signals. The trace was steady, and we experienced no trace break-up in the chop mode. The light blue color of the graticule was very easy on the eyes and permitted relatively long term waveform observation without causing optical fatigue.

All controls on the scope are clearly identified, the knobs are shaped and sized for comfortable user "feel," and the controls have positive, smooth action. The combination tilt stand/carrying
handle features a solid locking mechanism in both the carry and tilt positions.

During our tests, we used a pair of optional No. PR-31 combination 10:1/ direct probes (\$25) that proved to be excellent for general-purpose work. They feature miniature spring-loaded clip-tips that enable use in circuits where terminals are very tightly spaced.

If you need fast risetime, extended bandwidth, critical circuit timing, and accurate and stable waveform viewing, the Model 1417B is an excellent choice.

CIRCLE NO 105 ON RREE INformation CA:D

An exciting, new magazine! Personal
Computing are there's one in your immediate future. Personal computers are now being sold at about the price of home stereo systems. Experts project that 1.000,000 personal systems will be up and running by 1980 .

PERSONAL COMPUTING will serve as your guide into this exciting new technology. We'll provide you with all the up-to-date information on new computer products. computer clubs, computer stores, and impor tant personal computing events. In addition, each issue contains easy-to-follow, nontechnical articles on computer programming and computer jargon. These articles illustrate how you can use personal computers at home, school. and work.

Get your FREE issue now

Fill out the subscription form below, and we.ll send you a complimentary copy. If you don't agree that Personal Computing is everything we say it is. simply write "Cancel" on the invoice and return it to us. If you do want to subscribe. simply pay the bill. In any case, the first issue is on us!
A one year subscription to PERSONAL COMPUTING is just $\$ 8.00$

Please enter my subscription to Personal Computing I understand that the first issue is free

\square Bill me $\quad \square$	Enclosed is my check for $\$$
\square BankAmericard	
\square Master Charge \square Am Express	

\square BankAmericard \square Master Charge \square Am Express I

Credit Card \#	
Credit Card Expiration Date	\mathbf{I}

Name (print)
Address $\quad 1$
City \quad State

State Zip I
publication (6 issues per year). Rates: $\$ 8 /$ year in the United States. Mexico and Canada: $\$ 10$ surface mail and $\$ 12$ airmail. All others: $\$ 26$ airmail.
PERSONAL COMPUTING/ 167 Corey Road, Brookline, MA 02146, USA

By Hal Chamberlin

DEBUGGING AIDS

wHAT DO you use your computer's front panel for? Loading programs into memory, monitoring their execution, altering their execution with the sense switches, single-stepping the program to find errors ("bugs"), changing memory locations, and troubleshooting hardware are some examples. Last month, the role of monitor programs such as Motorola's Mikbug in performing routine computer operation tasks was described here. It should have been apparent that the use of a monitor for such functions is far more convenient than using a traditional front panel. But what about nonroutine, troubleshooting tasks such as tracing the execution of a new, untried program or locating a hardware malfunction on a new board? Many hobbyists feel that a control panel is indispensable in such situations. Let us examine how monitor software can be used to perform even these "debugging" functions more effectively than a front panel.

Breakpoints. Assume that you have just finished writing a relatively complex program of 200 instructions in machine
language and are ready to test it. First you load it into memory, hopefully using a monitor and keyboard. After loading by hand, you save the program on tape just in case it wipes itself out in memory as errant programs often do. Then using the monitor's "G" command you execute the program. Chances are it does not execute properly. In fact, it's probably not even close. At this point debugging begins, which can take considerable time without good debugging tools.

If you have an Altair, Imsai or other front-panel oriented computer you will probably single-step your way through the program in an effort to find out where it goes awry. This means simply that the computer is placed in a single-step operating mode where every operation of the "single-step" switch causes exactly one machine cycle to be executed. Generally, as each cycle is executed, you can see in the console lights the memory or input/output address referenced by the cycle and the data transferred. Additional status lights identify the type of cycle out of about a half-dozen possibilities. However there are many things that the
panel lights fail to show. For example, when executing an "add register B to register $A^{\prime \prime}$ instruction in single-step mode, you will only see the memory address of the instruction and the operation code, 200 in octal. You will not see the contents of register A , register B , or the result of the addition. Even the condition flags such as overflow are hidden from view. Obviously the panel is of limited value if you think the root of a particular bug lies in incorrect register contents or if there is an uncertainty as to what a specific instruction does. If this information is critical (as it often is), you must temporarily modify your program to store the necessary data into memory and then halt so that it may be examined.

Another often encountered difficulty is that single-stepping through a loop a dozen times to catch an error that occurs on the thirteenth iteration can take a long time. If the problem occurs on the 387 th iteration it would not even be practical to single-step. Again the program must be temporarily modified to make it halt close to the error condition. Such temporary patches are called "breakpoints."

Many monitors have commands or functions that make inserting and keeping track of breakpoints much easier. A command like " $3: 213 B$ " might insert a breakpoint at location 213 in page 3 (octal notation). What would actually happen is that the monitor would first look at the indicated address and save whatever was there. Next it would store a CALL instruction in the same location which would transfer control to a "breakpoint subroutine" in the monitor. This monitor

* TEST OF DOUBLE PRECISION SUBTRACT

$001: 000$	006	123	
$001: 002$	016	156	
$001: 004$	026	356	
$001: 006$	036	312	
$001: 010$	315	000	003
$001: 013$	311		

*
*

$003: 000$	173
$003: 001$	221
$003: 002$	137
$003: 003$	172
$003: 004$	230
$003: 005$	127
$003: 006$	311

 DSUB

MOV
A, E
C
MOV E,A
MOV A,D
SBB B
MOV D,A
RET

SUBTRACT LOWER BYTES

MOVE RESULT INTO E SUBTRACT UPPER BYTES

MOVE RESULT INTO D RETURN

| $002: 232$ | 123 | $3: 0,3: 6 \mathrm{~T}$ |
| :--- | :--- | :--- |\quad| (Command to trace between 003:000 and 003:006 |
| :--- |
| $002: 232123$ |$\frac{1: 0 \mathrm{G}}{} \quad$ (Command to start execution at 001:000

003:000 $173 \mathrm{~A}=312 \mathrm{~B}=123 \mathrm{C}=156 \mathrm{D}=356 \mathrm{E}=312 \mathrm{H}=113 \mathrm{~L}=002 \mathrm{SP}=017: 374 \mathrm{FLG}=$
003:001 $221 \quad A=130$
003:002 137 E=130
003:003 $172 \quad A=356$
003:004 230 A=203 FLG=SA
003:005 127 D=203
$002: 232123$ (next command)

Fig. 2. Monitor printout with trace. Underlined portion typed by user.
routine prints the contents of all registers and the condition flags.

Now that the breakpoint is set up, the program would be entered with the normal " G " command. When it got to the "CALL BREAKPOINT" instruction that was inserted, the registers and flags would be printed. After the printout, the monitor would be waiting for another command. When the breakpoint is no longer needed, an " E " command might erase the breakpoint and restore the instruction it saved.

A more sophisticated monitor could allow multiple breakpoints. It would automatically keep track of the instruction displaced by each breakpoint and identify the breakpoint when the registers were printed. A really good breakpoint routine might even execute the saved instruction after printing and then automatically return to the program being debugged. In this case, a breakpoint could not be placed on top of a JUMP or CALL instruction.
A breakpoint routine can also take care of the "error on the 387th loop" problem mentioned earlier. Each time the breakpoint routine is entered, a software counter is decremented. If the counter is not zero, the user program is re-entered without printing the registers. Only when the counter finally does become zero do the registers get printedthus saving a lot of time and paper. There would, of course, be a command to set the initial value of the counter.

Some microprocessors make the task of implementing a breakpoint facility in a monitor much easier. In the 8080 a normal CALL instruction is three bytes long. When placed in a breakpoint location, the three bytes that were there have to be saved. These three bytes might represent as many as three separate instructions making the "print registers and continue" function very difficult to implement. The 6800 or 6502 , on the other hand, has a one-byte BREAK instruction that seems to be custom designed for just this function.

Software Single-Step. Although breakpoint capability in a monitor greatly simplifies the debugging of machine language programs, it is not real singlestepping. A different class of monitor routines called "trace routines" allows the software equivalent of single-stepping. It is interesting to note that some microprocessors are "dynamic" and cannot be stopped to allow the usual hardware single-step function. With these, a trace routine is the only way to get a single-step operation.

Tracing is really equivalent to putting a breakpoint at every instruction in a program. Then when the program is executed, a printout of the location, instruction, and all registers would be given for each instruction executed. This would be exactly equivalent to manual single-stepping with the bonus of a written record of every aspect of the program execution. In a machine with a lot of registers, time and paper may be saved by only printing the registers that have changed since the last printout. A useful trace feature in a monitor would allow the setting of trace limits so that only the program section of interest would be traced. A fancy trace feature might even allow multiple sets of trace limits with possibly a counter to delay the printing until a specified number of traced instructions has been executed.

How are trace routines actually implemented? One simple method is to use the interrupt feature of the microprocessor itself. With this method, a simple circuit added to the computer is activated to issue an interrupt whenever an instruction is executed. This interrupt would prohibit further interrupts and cause execution of the monitor trace print subroutine. The print routine would not re-enable interrupts until just before it returns to the interrupted program, the one being traced. This prevents the trace print routine from being traced itself. The trace limit feature is implemented by having the trace print routine check if the instruction about to be print-
ed is within the trace limits. If it is not, printing is suppressed and a return to the program is executed. An example is shown in Figs. 1 and 2.

Another method involves interpreting the instructions of the traced program rather than executing them. An interpreter is a program that acts just like the microprocessor itself. It literally looks at the operation codes, addresses, and other components of the instruction and, through software, accomplishes the same result as the real microprocessor would have. The purpose of this is that the interpreter program may also store or print detailed information about the instructions it "executes", something the real microprocessor, of course, would not do. This technique requires much more complex software than breakpoints or trace using interrupts does but it has an important advantage. Since the interpreter routine simulates the machine, it can also simulate hardware features that the real machine may not have, such as memory protect. While debugging, the simulator would trap any instruction that attempts to jump outside of the protected area as well as any instruction that tries to write into protected memory.

Unfortunately the standard, readily available monitors in read-only memory generally do not have these debugging functions. If anything, a simple breakpoint facility is all that is offered. Specialized monitors, designed primarily for debugging rather than routine operations, on the other hand can probably do everything that has been discussed as well as other handy functions. These monitors are often found in the microprocessor manufacturer's development systems, such as Intel's MDS or Motorola's Exorciser (meaning to "exorcise" bugs) and are quite expensive. However the functions described are not difficult to implement and are certainly worth the effort needed to write them. Club meetings provide opportunities to exchange such software with fellow hobbyists. \diamond

By Ray Newhall, KWI6010

UNCLE CHARLIE IS SNOWED.IN

THEY tell us that even the ladies' room at Gettysberg is stacked high with mailbags. The FCC offices there process all Class D (now the "Citizens Band Radio Service") license applications and, between January 1st and 26th, had received more than 832,000 new CB license applications. However, reports are that their computer facility has been working so effectively that expected delays in processing those applications which were properly filed are only two to four weeks. To the FCC's delight, no more than 20% of applications received have included fees, which have to be returned since there is no longer a license charge.

Best estimates are that the FCC will issue more than 990,000 CB licenses in January. That represents an increase of more than 50\% above the next greatest month (March 1976). The FCC believes that more than $8,000,000$ new CB'ers will go on the air during 1977 and that the total number of licenses issued will exceed 16 million by the end of the year.

Total sales do not appear to account for the flood of license applications received. It appears that many would-be CB'ers are taking advantage of the fee amnesty and are being joined by many others who have been operating without a license. Also, different members of the same family are applying for their own licenses. FCC people tell me that, in many cases, a half dozen or so applications are arriving in the same envelope.

Why Were the Fees Dropped? As most of you know, the FCC handed CB'ers a nice Christmas present by suspending all fees, effective January 1st 1977. That sudden move was not entirely in the spirit of Christmas, however. It was prompted by a court decision ordering the FCC to suspend all fees until fee schedules are restructured, based upon the actual costs for issuance of licenses. In fact, they were ordered to refund all fees collected since January 1975, but don't hold your breath in anticipation; the

FCC's records on CB licensees do not go back that far in many cases. It is likely that fees will be reestablished again within a few months, and Congress might even pass legislation which permits the Commission to charge fees to help support the enforcement effort.

Some New Developments. When the fourth general meeting of PURAC was adjourned on January 27, it marked the halfway point in the advisory group's two-year Congressional charter. Earlier that morning the meeting was opened with an address by Al Gross, the first licensed CB'er (19W-0001). He recounted all the early efforts to get $C B$ rolling, dating back to World War II. He showed us a pocket-sized walkie-talkie which had been used by the OSS during the war. It was this tiny radio transceiver that convinced the FCC and others that there was a viable future in personal radio communications.

Based on discussions at the meeting, quick FCC action is likely on a proposal by the public safety task group that the four callsign digits, "0911", be set aside for the exclusive use of state-level public service agencies as an emergency-aid callsign. These special calls, a " K " followed by the State's two-letter abbreviation and the four digits "0911," would be issued to any State applying for licensing under the National Emergency Radio Aid (NEAR) program. For example, in Connecticut the NEAR callsign to summon emergency road assistance on channel 9 would be KCT-0911.

The advisory committee was told that the FCC's Office of Plans and Policy would soon release a radio spectrum inventory report which would study areas of the spectrum for future expansion of Personal Radio Services, including:
-A new FM band somewhere between 218 and 225 MHz .
-Future allocation of a portion of the reserved spectrum near 900 MHz .

A new band of FM frequencies at about 220 MHz ("Class E') was first pro-
posed nearly ten years ago; it now appears that it will be considered anew, but prospects are dim for its adoption. In contrast, the possibility of using 900 MHz for distant CB expansion is viewed more optimistically by the FCC. In any event, the FCC pronounced that the recently expanded $27-\mathrm{MHz}$ band ". . . won't be eliminated . . . is here to stay."

Meanwhile, how many CB'ers have considered moving up to the old Class A band around 465 MHz (now redesignated the General Mobile Radio Service)? Here you can use up to 50 watts of power and antenna heights up to 200 feet. Repeaters and automatic phone patches are permitted. It offers nearly all the features now enjoyed by the hams on the 2-Meter band. However, the equipment is several times the cost of present CB equipment.

From the "Future Needs" Task Group, Cary Hershey, a sociologist at Columbia University, made an interesting observation. In response to a question from the floor regarding the damaging effect of Smokey reports by mobile CB units, he said:

> "We have considered the 'Smokey Syndrome' in depth and weighed its negative effects against other factors relating to personal use radio. We have concluded that the sociological advantages to the American public in talking and listening, in direct communication with one another as opposed to all listening only to the media, far outweigh the opportunities offered a minority of criminals using CB to evade the law."

He continued by pointing out that the more inventive law-enforcement agencies have found that the so-called Smokey Syndrome can actually assist their enforcement efforts.
In the area of "Rules Compliance," the committees noted that rules infractions have dropped significantly. They rate the most serious violations as those involving the continued use of "linears" to exceed r-f power output limits and deliberate interference with communications. Though FCC members rate the non-use of callsigns high on their list of violations, the non-FCC members of PURAC tend to down-grade the seriousness of this violation and are examining alternate means of transmitter identification. The primary argument against the Automatic Transmitter Identification Signal (ATIS) involves the management of a data base of information on 30-million or more transmitters. This writer, who is also a data-processing consultant, believes that the FCC will eventually have

ORGANIZATION OF THE personal radio services, Part 95

Old Class Designation	New Designation	Part 95 Sub-part
Class A	General Mobile Radio Service	A
Class C	Radio Control (R/C) Service	C
Class D	Citizens Band (CB) Radio Service	D
-	All Technical Specifications	E

to bite the bullet and spend the money to do the job properly. It is an expensive operation.

The FCC is determined to make it very risky to operate overpowered rigs. The reason it is so up-tight about external power amplifiers (linears) is because laboratories operating in both the government and private sectors have now determined that more than 60% of all CB-caused TVI results directly from the use of these illegal devices. This is particularly true with the "cheapie" import varieties that are being sold illegally in the United States. They cause all sorts of havoc on frequencies outside of the CB band, and are illegal to manufacture, sell, or even to own in this country. In spite of this, someone managed to slip a packet of sales material onto the FCC reception table at the PURAC meeting! TVI complaints, mostly CB-related, have increased more than ten-fold over the past two or three years.

It has now also been determined through extensive field tests that modern TV receivers are less susceptible than was originally thought to fundamental signals. Most TVI occurs under conditions of severe front-end overloading of the receiver, whether caused by an antenna preamplifier or by an extremely powerful CB signal. In a recent field test by the FCC's Field Operations Bureau, where 32 randomly selected CB-related TVI complaints were examined in depth, 63% were the direct result of external power amplifiers used to boost the CB signal well above the legal limit.

Rules Simplification. I have just completed a review of the reorganized version of Part 95, as reported earlier in this column, and I find it a great improvement over the older versions. These should be readily available through the GPO by the time this column is published. The three classes of personaluse radio services have been renamed under the overall designation of "Personal Radio Services" as shown in the Table listing. The 27 MHz CB service (Class D) has been designated the "Citi-
zens Band (CB) Radio Service." All of Part 95 required to be read and understood by a CB operator is contained in Sub-part D. This sub-part will be available as a separate publication.
The PURAC efforts to simplify Part 95 are still not complete. Work is already underway to simplify the language as well as the structure. It is expected that this work will be completed and available to the public by late summer 1977.

Legal Problems For CB'ers. As more and more CB'ers go on the air, their legal problems appear to be growing by leaps and bounds. Throughout the country, individual communities are attempting to outlaw CB by the use of local zoning or nuisance ordinances. In Connecticut, for example, there is a statute which was enacted long before CB was authorized making it illegal to operate a radiotelephone in a moving vehicle. Taxis, amateur radio operators, business radio users and commercial radiotelephone are exempted from the law, which appears to leave only CB'ers who can and have been arrested by the State Police. However, there are State Representatives who have pledged to work for the repeal of this law during the current legislative session.

But the number of legal actions which have reached the courts, involving either CB'ers or hams, has increased ten-fold within the past ten years, and a consid-
erable amount of legal precedent is being accumulated. The Personal Communications Foundation is a new nonprofit legal organization which was formed recently for the purpose of collecting and redistributing all the legal data available on such cases. Its services are free except for the actual cost of reproducing and mailing materials to those attorneys who request it in defense of a personal radio user. If you should have a legal problem, your lawyer may contact them in Lancaster, CA 93534 (805-942-0144).

WAHL CLIPPER CORPORATION
ORIGINATORS OF PRACTICAL CORDLESS SOIDERING - Sterling. Illinois 61081 • (815) 625-6525

- Manufacturing Excellence Since 1919" CIRCLE NO 66 ON FREE INFORMATION CARD

Secret Shortwave Stations. If you scan the non-broadcast bands with a good, sensitive receiver for evidence of broadcast programming, you should discover, as we did last fall, a number of tropical-band harmonics in the 18-25 MHz range. Some of them are listed below. As the sunspot count picks up, so should harmonic reception, even up to 31 MHz . Whether you hear the stations listed depends on skip conditions, but there is likely to be less interference on weekends. F_{2} propagation peaks around noon, but sporadic E (short skip) can extend into the evening.

In regular out-of-broadcast-band tuning, you'li also find broadcast programs transmitted on SSB. Most feed the remote retransmission sites. Guyana Broadcasting Service is seldom armchair copy on 3.290 or 5.950 MHz , but when they activate 16.454 MHz , listening is easy. Radio Monte Carlo feeds Arabic programs of pop music to its MW relay on Cyprus, via 15.575 or 17.555 MHz frequently heard during the morning in North America. Chilean stations such as Radio Colo-Colo and Radio Cooperativa can be heard on 12.250, 6.6845 or 4.885 MHz at irregular hours.

MHz	Harmonic	Fundamental $(\mathbf{M H z})$	Station
24.3298	4	6.08245	R. Nacional, Peru
24.024	4	6.006	R. Reloj, Costa Rica
24.020	4	6.005	BBC, Ascension
23.850	2	11.925	Rdif. Portuguesa
23.630	2	11.815	BBC, Ascension
23.610	2	11.805	WYFR, Massachusetts
23.540	2	11.770	BBC, Ascension
19.860	4	4.965	R. Santa Fe, Colombia
19.480	2	9.740	Rdif. Portuguesa
19.328	4	4.832	R. Reloj, Costa Rica
19.210	2	9.605	Deutsche Welle, Antigua
19.100	2	9.550	R. Habana Cuba
19.050	2	9.525	R. Habana Cuba
18.5688	3	6.1896	La Voz de los Centauros,
			Colombia
18.3456	3	6.1152	La Voz del Llano, Colombia
18.315	3	6.105	La Pantera, Mexico
18.2262	3	6.0754	La Voz del Junco, Honduras
14.835	3	4.945	R. Colosal, Colombia
12.320	2	6.160	Em. Nueva Granada, Colombia

The World Station. Matching its image as the "number one" SW service in English, the BBC also publishes the best program guide, "London Calling." New subscribers to the illustrated free monthly had been turned down due to rising costs. But in April BBC began accepting subscriptions from anyone paying the new charge of $\$ 10$ per year (630 Fifth Ave., New York, NY 10020). Alternatively, you can consult our fortnightly column, Short Waves, in the Roundup section of the Sunday Denver Post.

A few late-April features we can tell you about here: Theatre of the Air, Sa-
turdays at 1830 GMT, Sundays at 0030 and 1130, presents Anouilh's "Antigone," Apr. 23/24. Radio Theatre, Sun. 1900, Thurs. 1345, Fri. 0030 has James Fairfax plays, "No Holds Barred," Apr. 17/21/22, and "Let's Play Politics," Apr. 24/28/29. Documentaries, Sun. 1709, Tues. 0030, Thurs. 1130 are "The Right Sort of Food," Apr. 17/19/21, and "The Changing Role of the Ambassador," Apr. 24/26/28. And Wed. 1430, Thurs. 0030, Fri. 2030, "One Hundred Years of Recorded Sound," Apr. 20/21/22, and "Shakespeare on Record," Apr. 27/28/29.

DX Programs. Radio Nederland is broadcasting a "Communications System Course" covering radio, TV, radar, navigation and radio astronomy, written by Jim Vastenhoud. Besides broadcasting each lesson two weeks in a row, printed lessons and illustrations are available free. You can still enroll in this course, which began April 7 on the Thursday "DX Juke Box" programs, and continues through the summer. R. Nederland is also celebrating 50 years of SWBC with a special QSL card, and yours truly is celebrating his 10th anniversary as a DX correspondent on the April 21 program. You can also hear our DX report in Spanish, the second Friday of each month on "Espacio DX-ista."

DX listeners are invited to participate in or monitor a ham net discussing all phases of DX'ing and SWL'ing, Wednesdays at 2130 GMT on 7.275 $\pm 0.005 \mathrm{MHz}$ (perhaps an hour earlier by GMT during daylight time). NCS is Charles, WB9NWF. Medium-wave DX'ers exchange tips Monday mornings at 0700 (0600 GMT, starting in May) on 3.900 MHz ; listen for Skip, KOSBV, or Ross, W9BG.

The hams also operate a well-organized "intruder watch" designed to expunge non-ham stations from their bands, and qualified SWL's are invited to help. Contact the ARRL Intruder Watch, E. H. Conklin, K6KA, 402 Oliveta PI., Box 1, La Cañada, CA 91011.

Mark Your Calendar. The International Committee of the Red Cross broadcasts only 4 hours a day, 3 days a week, 6 weeks a year, making its QSL more of a prize than others from Switzerland. Here's the schedule, via SBC on 7.210 MHz, for the rest of 1977: May 23/25/27; July 25/27/29; Sept. 26/28/30; Nov. 21/23/25, at 0600-0700, 1130-1230, 1700-1800, 2200-2300 GMT. The last, and possibly the first, have a chance of being heard in North America this time of year. Mondays are in English; Wednesdays, French/German; and Fridays, Spanish/ Arabic.

If you make a point of listening to certain stations on important dates, you may hear extended or special programming. For a starter, try 5.047 MHz on April 27, Togo's National Day. Deutsche Welle is 24 years old on May 3. Liberation Day in Czechoslovakia is May 9, and R. Prague itself marks 54 years on May 18. Cameroun stations on 4.9725 and 5.010 MHz may observe National Day on May 20. Guyana Independence Day is May 26, a good time to check
16.454 MHz. May 31 is Republic Day in South Africa. Tunisia's National Day is June 1, and June 2 is Italy's Day of the Republic. Haiti's 4VEH celebrates 27 years on the air June 2-check 9.770 and 11.834 MHz . FEBC, Philippines is

29 on June 4, while Philippine Independence Day is June 12. Republic Day in Iceland, June 17, just might bring some special transmission on 12.175 MHz . (Dates were compiled by Cees van der Zalm for the Benelux DX Club.)

MAY-AUGUSTE EMGLISH-LAAGUUAES SW B'CASTS by Richard E.Wood

	TO EASTERN NOATH AMERICA			
TIME-EDT	TIME-GMT	STATION	QUAL*	FREQUENCIES, MHz
6:28 a.m. 8 :00 p.m.	1028.2400	* Montreat, Canada (Northern Service)	G	$9.625,11.72$ (includes Fiench, etc.)
7:00.7:25 a.m.	1100-1125	Tirana, Albania	F	9.50, 11.865
7:00-9:00 a.m.	1100-1330	Melbourne, Australia	G	9.58
7:00-9:30 a.m.	1100.1330	London, England	G	5.99 (via Sackville), 6. 195 (via Antqua), 11.79 (via Antiqua, tentative by mudsummer) 15.07
7:00-10:00 a.m.	1100-1400	**VOA, Washingten, USA	G	5.955, 9.73
7:05-8:25 a.m.	1105-1225	Trans.World Radio, Bonare, N.A.	G	11.815
7:45-8:05 a.m.	1145-1205	**Montreal, Canada	G	9.56, 11.72
8:00-8:30 a.m.	1200-1230	Jerusalem, Israel	G	11.655, 15.10, 15.485, 17.685
8:00-8:55 a.m.	1200-1255	Peking, China	F	11.685
8:10-8:30 a.m.	1210-1230	**Santiago, Chile	F	9.566, 11.81, 15.15
8:15-8:30 a.m.	1215-1230	Athens, Greece	F	15.345, 17.83
		HCJB, Quito, Ecuador	G	11.745
8:30.9:00 a.m.	1230-1300	Stockholm, Sweden	G	15.305
8:30-10:00 a.m.	1230-1400	Trans-World Radio, Bonaire, N.A.	G	15.255 (Sat., Sun.)
8:30-11:30 a.m.	1230.1630	HCJB, Quito, Ecuador	G	11.745, 15.115
9:15.9:45 a.m.	1315.1345	Berne, Switzerland	G	15.14
9:30-10:00 a.m.	1330.1400	Helsinki, Finland	G	15.11
9:30-11:00 a.m.	1330-1500	**London, England	G	15.07
10:00-10:15 a.m.	1400.1415	**Montreal, Canada	G	15.325, 17.74
10:00-10:30 a.m.	1400-1430	Oslo, Norway	G	15.175 (Sun.)
		Stockholm, Sweden	G	15.305
10:30.11:00 a.m.	1430.1500	Helsimki, Finland	G	15.11
11:00 a.m. 12 noon	15001600	London, England	G	17.84 (via Ascension), 9.58 (via Sackvilie Sat., Sun.)
11:15-11:30 a.m.	15151530	Athens, Greece	P	11.73, 15.345, 17.83
12 noon-12:15 p.m.	1600.1615	London, England	G	9.58 (wia Sackville) 17.84 (via Ascension)
12:00 noon-12:30 p.m.	1600.1630	Osto, Norway	G	15.175 (Sun.)
12:04-12:56 p.m.	1604-1656	**Paris, France	G	$\begin{aligned} & 15.20,15.30,15.425,17.72 \text {, } \\ & 17.80,17.82,21.62 \end{aligned}$
12:15-2:30 p.m.	1615-1830	London, England	G	9.58 (via Sackville), 15.07
1:00-4:00 p.m.	$1700 \cdot 2000$	**Kuwait, Kuwait	F	9.555, 9.58, 11.845
2:00-2:30 p.m.	1800.1830	**Montreal, Canada	G	11.855, 15.325, 17.82
		**Kampala, Uganda	F	15.325 (Tues., Thur., Sat., Sun.)
2:30.3:00 p.m.	1830-1900	**Montreal, Canada	G	11.855, 15.325, 17.82
2:50.4:00 p.m.	1850.2000	**Abidjan, Ivory Coast	G	11.92 (Sun.)
3:00-3:30 p.m.	1900.1930	**Montreai, Canada	G	11.855, 15.325, 17.82
3:00-4:00 p.m.	1900-2000	**Algiers, Algeria	F	11.91, 15.42 (variable)
3:00.6:00 p.m.	1900-2200	**Jeddah, Saudi Arabia	F	11.855
3:30-4:00 p.m.	1930-2000	**Montreal, Canada	G	11.855, 15.42, 17.82
4:00-4:30 p.m.	20002030	**Montreal, Canada	G	15.29, 15.325, 17.82
		*Tehran, Iran	F	$9.022,(11.77$ atternate)
		Jerusalem, Israel	G	$9.009,9.425,9.815,11.655,15.10$
4:00-5:00 p.m.	2000-2100	Accra, Ghana	F	11.85 (irregular)
4:00.5:20 p.m.	2000-2120	** Hilversum, Holland	G	11.73 ivia Talata)
4:50.5:50 p.m.	2050-2150	**Havana, Cuba	G	11.865, 17.75
5:00-5:30 p.m.	2100-2130	*"Brazzaville, Congo	G	15.19
5:00.5:50 p.m.	21002150	* "Johannesiurg, S. Africa	F	5.98, 9.585
5:00-6:00 p.m.	2100.2200	**Brasilia, Brazil	G	15.24 (11.78, 15.245 alternate)
5:15.6:45 p.m.	2115.2245	London, England	G	9.58, 11.75
5:30-6:50 p.m.	2130.2250	Hilversum, Holland	G	9.715, 11.73 (exc. Sun.)
6:00.6:15 p.m.	2200.2215	**Belgrade, Yugoslavia	F	6.10, 7.24, 9.62
6:00-6:30 p.m.	$2200 \cdot 2230$	- "Montreal, Canada	G	11.855, 15.325
		Osio, Nuiway	F	15.175 (Sun.)
		*Caracas, Venezuela	F	15.40 (varies, Mon. Fri.)
6:00-7:15 p.m.	2200-2315	**Cairo, Egypt	G	9.805
6:00.8:30 p.m.	2200-0030	Ankara, Turkey	G	9.515, 11.88
6:30-7:00 p.m.	22302300	Jerusalem, Israel	G	$9.435,9.815,11.655,15.10,15.485$
		Moscow, U.S.S.R.	G	$\begin{aligned} & 7.105,7.15,7.355,7.40,9.655,9.685 \\ & 11.735,11.75,11.87,12.05 \end{aligned}$
6:30.7:20 p.m.	22302320	Johannesburg, S. Africa	F	5.98, 9.585, 11.90
6:45-7:00 p.m.	2245-2300	London, England	G	5.975, 7.325, 9.58, 11.75

CATCH•A•PULSE II" LOGIC PROBE

10 Nsec SPEED AT 3.5 to 15 V LEVELS aut 539.95

Compatibie with RTL. DTL. TTL CMOS MOS and Microproces sors using a 35 to 15 V power supply Thresholds automatically programmed Automatic resetting memory No adjustment required Visual indication of logic levels, using LEDs to show high, low. bad level or open circuit togic and pulses Highly sophisticated, shirt-pocket portable iprotective tip cap and removable coul cordf Eliminates need for heavy test equpment A detinite savings in time and money for engineer and technician

- 10 Nsec pulse respanse
- Open circuit detection
- Multi-family
- Replaceable tip \& cord
- High input impedance
- Pulse stretching

Send \$39.95
|Calif residents add
6\% sales tax to,
औरelectronics
Box 26205 San Dego, CA 92126, (714) 5661570

CIRCLE NO 2 ON FREE information card
SAVE GAS! SAVE onTUNE-UPS! MODERNKE and Bring Your Car 'UP.TO-DATE" with the MOST EFFICIENT Ignition ever invented!

* The "XR 700" is a COMPLETELY NEW Ignition System that replaces the inefficient Breaker Points and Condensor with a highly RELIABLE. Invisible "Infra-red" Light -8eam which CONTROLS the Latest design Soldd State POWE R MOOULE. This new "Patented" Invention produces the HIGHEST ENERGY, Longest Ouration Spark of AN Y Ignition System manufactured TOOAY'
* CUSTOMERS REPORT "THE XR. 700 MORE THAN PAYS FOR ITSELF ...and KEEPS ON SAVING MONE Y with * INCREASED "GAS-MILEAGE" up to 30\%! \& ELIMINATING COSTLY "TUNE.UPS! * IMPROVED ENGINE PERFDRMANCEI - QUICKER STARTING IN ANY WEATHER! FASTER ACCELERATION. SMOOTHER R UNNING! * PLUGS LAST UPTO 4-TIMES and LONGER!
* THE XR 700 has NO moving parts to wear out never needs adjustment' Engineered to OUT LAST Your Cas...So RELIABLE So PERFECTEO...that we give you a LIFETIME WARRANTY FREE Repair or Replacement" for as long as you OWN the Unit even if you change Cars, we will supply the necessary Paris Free, * EASY iNSTALLATION ..Completely Factory ASSEMBLEDI
* SAVEI OROERFACTORYOIRECTI Send Check or M/O, State Car Niake, Year and No of Cylinders - MASTERCHARGE or BANKAMERICARO Cardholders Order by TOLL FREE PHONE (800) 423.6525 Ext 3

11:30.11:55 p.m.	0330-0355	Tirana, Albania	G	6.20, 7.30
		Vienna, Austria	P	6.155, 9.77
11:30 p.m. 12 mdt .	0330.0400	Moscow, U.S.S.R.	G	$7.39,9.50,9.61,9.685,9.70$ (via Sotia)
11:30 p.m.-12:30 a.m.	0330-0430	London, England	G	5.975, 6.12 (via Antiqua, tent. midsummer)
11:30 p.m. 12:50 a.m.	0330-0450	Havara, Cuba	G	11.725, 11.76, 11.93
12:00 mdt.-12:15 a.m.	0400-0415	Budapest, Hungary	G	$\begin{aligned} & 6.00,7.215,9.585,9.833,11.91 \\ & \text { (Tues., Fri.) } \end{aligned}$
12:00 mdt. 12:25 a.m.	0400-0425	Bucharest, Rumania	F	5.99, 6.155, 6.19, 9.57, 9.68, 11.775, 11.94
12:00 mdt. 12:30 a.m.	0400-0430	Osio, Norway	F	9.645, 11.86 (Sun.)
12:30-1:00 a.m.	0430.0500	London, England	G	6.175 (via Antiqua)
12:50 p.m. 2:00 a.m.	0450-0600	Havana, Cuba	G	11.725, 11.93
1:00-1:15 a.m.	0500.0515	Jerusalem, Israel	G	7.412, 9.815, 11.655
1:00-1:30 a.m.	0500.0530	Lisbon, Portugal	G	$6.025,11.935$
1:00-3:00 a.m.	$0500-0700$	HCJB, Quito, Ecuador	G	6.095, 9.56
1:00.3:30 a.m.	0500-0730	Lendon, England	G	6.175, (via Antigua)
				9.51 (via Antigua, tent. by midsummer)

TO WESTERN NORTH AMERICA				
TIME-PDT	TIME-GMT	STATION	QUAL*	FREQUENCIES, MHz
4:00-4:15 a.m.	$1100 \cdot 1115$	Tokvo, Japan	P	5.99
4:00.5:25 a.m.	1100.1225	Trans-World Radio, Bonaire, N.A.	G	11.815
4:00-6:30 a.m.	1100.1330	London, England	G	5.99 (via Sackville), 6.196 (via Antigua), 11.75 (via Tebrau), 11.79 (via Antigua tent. midsummer)
4:00-7:00 a.m.	$1100 \cdot 1400$	**VOA, Washington, USA	G	5.955, 9.73
		**4VEH, Cap-Haitien, Haiti	G	9.77, 11.835
5:00.5:15 a.m.	1200.1215	Tokyo, Japan	P	5.99
5:00-5:30 a.m.	1200-1230	*Tashkent, U.S.S.R.	G	9.60, 11.925
5:10.5:30 a.m.	1210.1230	*Santiago, Chile	F	$6.195,9.566,11.81,15.15$
5:15-5:30 a.m.	1215.1230	HCJB, Quito, Ecuador	G	11.745
5:30.7:00 a.m.	$1230 \cdot 1400$	Trans-World Radio Bопаіге, N.A.	G	15.255 (Sat., Sun.)
5:30-9:30 a.m.	$1230 \cdot 1630$	HCJB, Quito. Ecuador	G	11.745, 15.115
6:00-6:15 a.m.	13001315	Tokyo, Japan	P	5.99
6:30.6:50 a.m.	1330-1350	**Santiago, Chile	F	$6.195,9.566,11.81,15.15$
6:30-8:00 a.m.	1330-1500	**Delhi, !ndia	F	11.81
7:00-7:30 a.m.	1400-1430	Takvo, Japan	G	9.505
		**Tashkent, U.S.S.R.	G	9.60, 11.925
7:00.8:20 a.m.	14001520	**Hilversum, Holiand	G	11.73 (via Talata)
7:00-9:55 a.m.	1400-1655	Manila, Philippines (VOP)	F	9.58 (Closes 1555 Sun.)
8:00.8:15 a.m.	1500-1515	Tokyo, Japan	G	9.505
8:00-9:00 a.m.	1500-1600	London, England	G	17.84 (via Ascension) also 9.58 (via Sackville Sat., Sun.)
9:00.9:15 a.m.	16001615	Tokvo, Japan	G	9.505
		Londen, England	G	9.58, 15.365 (via Sackville), 17.84 (vía Ascension)
9:04-9:56 a.m.	1604.1656	**Paris, France	G	$\begin{aligned} & 15.20,15.30,15.425,17.72, \\ & 17.80,17.82,21.62 \end{aligned}$
9:15.10.09 a.m.	1615.1809	London, England	G	$9.58,15.365$ (via Sackville)
9:42.9:51 a.m.	1642.1651	Hilversum, Holland	G	15.19, 17.775 (Mon. Fri.)
10:00-10:15 a.m.	$1700 \cdot 1715$	Tokyo, Japan	G	9.505
10:00 a.m. 1:00 p.m.	$1700-2000$	**Kuwait, Kuwair	F	$9.555,9.58,11.845$
10:09-11:00 a.m.	17091800	London, England	G	9.58, (via Sackville)
11:00-11:09 a.m.	1800-1809	London, England	G	9.58 (via Sackville), 11.815 (via Ascension)
11:00-11:15 a.m.	1800-1815	Tokyo, Japan	G	15.105
11:00-11:30	1800-1830	**Kampala, Uganda	F	15.325, (Tues., Thur., Sat., Sun.)
		Osio. Norway	F	11.895 (Sun.)
11:45 a.m. 1:00 p.m.	1845.2000	* Abidjan, Ivory Coast	G	11.92 (Sun.)
12 noon-12:15 p.m.	19001910	**Papeete, Tahiti	F	11.825, 15.17 (exc. Sun.)
12:00-12:15 p.m.	1900-1915	Tokyo, Japan	G	15.105
1:00-1:15 p.m.	2000-2015	Tokyo. Japan	G	15.105
1:00-2:20 p.m.	$2000-2120$	Hilversum, Holland	G	11.73 (via Talata)
1:30-1:50 p.m.	2030-2050	**Santrago, Chile	F	9.566, 11.81, 15.15
1:30-2:00 p.m.	2030-2100	**Kampala, Uganda	F	9.73 (Sat., Mon. Wed., Fr.)
2:00-2:15 p.m.	2100-2115	Tokyo, Japan	G	15.105
2:00-2:30 p.m.	$2100-2130$	**Brazzaville, Congo	G	15.19
2:00-3:00 p.m.	2100.2200	**Brazilia, Brazil	G	15.24 (atternates 11.78, 15.245)
2:30-3:30 p.m.	2130-2230	**Taipei, Taiwan	F	15.225
3:00.3:15 p.m.	2200.2215	Tokyo, Japan	G	15.105
3:00-3:30 p.m.	$2200-2230$	**Caracas, Venezuela	F	15.40 (varies; Mon. Fri.)
3:00.5:00 p.m.	22002400	**VOA, Washington, USA	G	17.82, 17.895, 21.61
		Montreal, Canada	F	5.96 (Mon. Fri.)
3:30-4:00 p.m.	2230.2300	Jerusalem, Israel	G	$9.435,9.815,11.655,15.10,15.485$
3:30-4:20 p.m.	2230.2320	Johannesburg, S. Atrica	F	$5.98,9.585,11.90$
3:30-5:30 p.m.	2230.0030	Moscow, U.S.S.R.	G	$9.635,9.78,12.05,15.14,15.18,15.455,17.72$
3:50-4:10 p.m.	2250.2310	**Santiage, Chile	F	$9.566,11.81,15.15$
4:00-4:30 p.m.	$2300-2330$	Tokyo, Japan	G	15.105
4:00-5:00 p.m.	2300.2400	**Pyongyang, Dem.	F	11.535, 15.63

Put Professional Knowledge and a

COLLECEDEGREE
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program hegins with basics. leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself. the degrees awarded. the requirements for each degree. and how to enroll. Write for Bulletin E-77.
Grantham College of Engineering 2000 Stoner Avenue
P. O. Box 25992

Los Angeles, CA 90025
Worldwide Career Training thru Home Study CIRCLE NO 27 ON FREE INfORMATION CARD
COMPUTER MISIG?

OUR EQUALLY TEMPERED D A CONVERTER MAKES IT EASY!
$5+$ octaves of control voltage from 6 bits of data
: hand-shaking logic.
: use with any processor.
: drives even the simplest linear oscillators \& filters.

8780 D A CONVERTER KIT $\$ 34.95$

 (plus $\$ 1.00$ postage for mail orders)

- keyboards shipped Ireight collect
details in Our free catalog

OEPT S-P
IO2O W. WILSHIRE BLVD OKLAHOMA GITV. OK 73116

This is a Speakerlab 7, a 4. element acoustic suspension speaker kit you can assemble yourself in an hour with simple tools.

It saves you up to 50% over comparable ready made systems. Read about the S 7 and other sys. tems and raw speakers we sell in a new 40 page catalog. It's a factpacked manual with chapters on acoustic theory, enclosures, choos. ing drivers and design principles.

And it's free. Just write us and ask for the most complete catalog/manual ever written on speaker building.

Our whole family helped assemble this wonderful Schober Orgen... and now we all play in!

Talk about real family fun! We all worked together, for a few hours almost every day. Almost too soon, our Schober Organ was finished. Our keen-eyed daughter sorted resistors. Mom soldered transistor sockets, although she'd never soldered anything before. And it did our hearts good to see the care with which our son - he's only 12 -installed the transistors. Me? I was the quality control inspector-they let me do the final wiring.

Our completed Schober Organ compares favorably with a "ready-made" one costing twice as much! (The five models range from $\$ 650$ to \$2850.)

Just send the coupon for the fascinating Schober color catalog (or enclose \$1 for a 12 -inch LP record that lets you hear as well as see Schober quality).

4:00-4:30 p.m.	$2300-2330$	London, England	G	6.175, 9.51 (via Sackville), 9.58 (via Ascension)	
4:30-5:00 p.m.	2330.2400	Radio Clarin,			
		S. Domingo, Dom. Rep.	G	11.70 (irregular Mon. Fri.)	
4:30.5:30 p.m.	23300030	London, England	G	6.12 (via Antigua tent. by midsummer) $6.175,9.51$ (via Sackville)	
5:00-5:15 p.m.	0000.0015	Tokyo, Japan	G	15.105	
5:00.6:00 p.m.	$0000-0100$	**VOA, Washington, USA	G	11.83, 11.895, 15.40	
5:30-6:00 p.m.	$0030-0100$	Moscow, U.S.S.R.	G	$\begin{aligned} & 9.635,9.78,12.05,15.14,15.18 \\ & 15.455,17.72 \end{aligned}$	
5:30.6:30 p.m.	$0030 \cdot 0130$	**Trans-World Radio, Bonaire, N.A.	G	11.925	
5:30-8:30 p.m.	0030.0330	London, England	G	6.12 (via Antigua, tent. by midsummer) 6.175 (via Sackville), 9.51 (via Greenville), 9.58 (via Ascension)	
5:40-8:00 p.m.	0040-0300	HCJB, Quito, Ecuador	G	9.56, 11.915	
6:00.6:15 p.m.	0100-0115	Tokyo, Japan	G	15.105	
6:00-6:30 p.m.	0100.0130	Mascow, U.S.S.R.	G	$\begin{aligned} & 9.635,9.78,12.05,15.14, \\ & 15.18,15.455 \end{aligned}$	
6:00-7:00 p.m.	0100-0200	Taipei, Taiwan	F	15.425, 17.89	
6:00-8:00 p.m.	0100.0300	Melbourne, Australia	G	15.32, 17.795	
6:00-9:00 p.m.	0100.0400	Madrid, Spain	F	6.08, (alternate 6.065), 11.88	
6:10.6.30 p.m.	0110.0130	**Santiago, Chile	F	6.195, 9.566, 11.81, 15.15	
7:00.7:30 p.m.	0200.0230	Mascow, U.S.S.R.	G	$9.635,9.78,11.86,12.05,15.14$	
7:30.8:00 p.m.	0230.0300	Stockholm, Sweden	F	9.695, 11.705	
		Moscow, U.S.S.R.	G	9.635, 9.78, 11.86, 15.14	
8:00-8:15 p.m.	0300-0315	Tokyo, Japan	G	15.105	
8:00-8:30 p.m.	0300.0330	Kiev, U.S.S.R.	G	$9.58,9.635,9.78,11.86$	
		Seoul, Rep Korea	F	11.86	
		Moscaw, U.S.S.R.	G	9.655, 12.05	
8:00.8:55 p.m.	0300.0355	Peking, China	G	7.12, 9.78 (via Tirana), 11.445, 12.055, $15.06,15.385,17.735,17.855$	
8:00.9:20 p.m.	0300.0420	**Johannesburg, S. Africa	F	5.98, 7.27	
8:00-10:00 p.m.	0300.0500	HCJB, Quito, Ecuador	G	$6.095,9.56,11.915$	
8:10.8:30 p.m.	0310.0330	*Santiago, Chile	F	6.195, 9.56, 11.81, 15.15	
8:20.9:25 p.m.	0320.0425	**TIFC, San Jose, Costa Rica	F	6.035, 9.645, (opens 0300 Sat., Sun.)	
8:22-8:28 p.m.	0322.0328	Erevan, U.S.S.R.	G	$\begin{aligned} & 9.54,9.735,11.69,15.14 \\ & \text { (Sat./Tue.Wed./Fri.) } \end{aligned}$	
8:30-9:00 p.m.	0330.0400	Mascow, U.S.S.R.	G	$\begin{aligned} & 9.54,9.58,9.635,9.735, \\ & 9.78,11.69,15.14,11.87,12.00,12.05 \text {, } \\ & 15.10,15.21 \end{aligned}$	
8:30-9:15 p.m.	0330-0415	Berlin, Ger. Dem. Rep.	F	11.89, 12.00	
8:30-9:30 p.m.	0330.0430	London, England	G	6.12 (via Antiqua tent. midsummer) 6.175 (via Sackville)	
9:00-9:15 p.m.	0400-0415	Takyo, Japan	G	15.105	
9:00.9:30 p.m.	0400-0430	Osto, Norway	F	6.18, 9.55, 9.645	
		Budapest, Hungary	F	$\begin{aligned} & 6.00,7.215,9.585,9.833,11.91 \\ & \text { (Tue., Fri.) } \end{aligned}$	
		Montreal, Canada	G	9.655, 11.765	
9:00 p.m. 12:30 a.m.	0400.0730	Moscow, U.S.S.8.	G	$\begin{aligned} & 9.54,9.58,9.635,9.71,9.78,11.69 \text {, } \\ & 11.87,12.00,12.05,15.10,15.21 \end{aligned}$	
9:30-10:00 p.m.	0430-0500	Berne, Switzerland	G	9.725, 11.715	
		Sotia, Bulgaria	F	9.70 (alternate 9.705)	
9:30-12:30 a.m.	0430-0730	London, England	G	6.175 (via Antiqua)	
10:00.10:15 p.m.	0500-0515	Jerusalem, \|srae		F	7.412, 9.B15, 11.655
		Tokyo, Japan	G	15.105	
10:00-10:30 p.m.	0500-0530	Liston, Portugal	F	6.025, 11.935 (varies)	
10:00.11.20 p.m.	0500-0620	Hilversum, Holland	G	6.165, 9.715, (via Bonaire)	
10:00.12 mdt.	0500.0700	HCJB, Quito, Ecuador	G	6.095, 9.56	
10:00 p.m.12:30 a.m.	0500.0730	London, England	G	6.175 (via Antiqua) 9.51 (via Antiqua tent. by midsummer)	
10:30-10:50 p.m.	0530.0550	Cologne, Ger. Fed. Rep.	G	5.96 (via Antiqua) 6.10 (via Malta), 6.185, 9.545	
11:00-11:15 p.m.	0600-0615	Tokyo, Japan	G	9.505	
11:00-11:30 p.m.	0600-0630	Oslo, Norway	P	6.18, 9.645 (Sun.)	
		Seoul, Korea	F	9.73	
11:00 p.m. 12 ndt .	0600.0700	Buenos Aires, Argentina	G	9.69 (Mon. Fri.)	
11:25 p.m. $1: 25$ a.m.	0625.0825	**Kuata, Lumpur, Malaysia	G	15.275	
11:30 p.m. 12:50 a.m.	0630.0750	** Hilversum, Holland	G	9.63 fvia Bonaire)	
12:00-12:15 a.m.	07000715	Tokyo, Japan	G	9.505	
1:00.1.15 a.m.	0800.0815	Tokyo, Japan	G	9.505	
1:00-2:20 a.m.	0800.0920	**Hilversum, Holland	G	9.715 (via Bonaire)	
1:00-3:00 a.m.	0800.1000	Manila, Philippines (FEBC)	F	11.92	
1:00.7:00 a.m.	0800-1400	**Port Moresby. Papia-New Guinea	G	4.89	
2:00-2:15 a.m.	0900.0915	Tokyo, Japan	G	9.505	
2:30-2:50 a.m.	0930.0950	**Santiago, Chile	G	$6.195,9.566,11.81,15.15$	
3:00.3:30 a.m.	1000.1030	Tokyo, Japan	G	5.99	
3:50-4:10 a.m.	1050-1110	**Santiago, Chile	G	6.195, 9.566, 11.81, 15.15	

[^3]
ELECTRONICS MARKET PLACE

REGULAR CLASSIFIED：COMmERCIAL RATE：For firms or individuals offering commercial producis EXPAND－AD CLASSIFIED RATE：$\$ 3.35$ per word．Minimum order $\$ 5025$ Frequency discount： 5% for 6 months： 10% for 12 months paid in advance．READER RATE：For individuals with a personal tem to buy or sell．$\$ 135$ per word No minmum！DISPLAY CLASSIFIED： $1^{\prime \prime}$ by 1 column（ $2-1 / 4^{\prime \prime}$ wide）．$\$ 260.00 .2^{\prime \prime}$ by column．\＄520．00．3＂by 1 column．$\$ 78000$ ．Advertiser to supply film positives．For frequency rates．please inquire
GENERAL INFORMATION：Payment mus：accompany copy except when ads are placed by accredited advertising agencies first word in all ads set in caps All copy subject to publisher＇s approval．All advertısers using Post Office Boxes in their addresses MUST supply publisher with permanent address and elephone number before ad can be run．Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communicatıno．Ads are not acknowledged．They will appear in first issue to go to press after closing date．Closing Date．ist of the 2nd month preceding cover date（for example．March issue closes January ist．Send order and remittance to POPULAR ELECTRONICS．One Park Avenue．New York．New York 10016．Altention Hal Cymes

FOR SALE

FREE！Bargain Catalog－I．C＇s．LED＇s．readouts．fibe ptics catculators parts \＆kits．semiconductors，parts Poly Paks．Box 942PE，Lynnfield．Mass 01940

GOVERNMENT and industrial surplus recerver ransmitters．snooperscopes，electronic parts．Picture Catalog 25 cents．Meshna．Nahant．Mass 01908 OWEST Prices Electronic Parts Contidential Catalog ree．KNAPP． 3174 8th Ave S．W．，Largo．Fla 33540 ELECTRONIC PARTS，semiconductors，kits FREE FLYER Large catalog $\$ 1.00$ deposit．BIGELOW ELECTRONICS Bluftton．Ohro 45817
RADIO－TV Tubes－ 36 cents each．Send for free catalog Cornell． 4213 University，San Diego．Calif 92105
AMATEUR SCIENTISTS．Electronics Experimenters science Fair Students．Construction plans－Complete ncluding drawings，schematics．parts list with prices and sources ．Robol Man－Psychedelic shows－Lasers－ Emotion／Lie Detector－Touch Tone Dial－Quadraphoni Adapter－Transistorized Ignition－Burglar Alarm Sound Meter ．Over 60 items Send 50 cents coin（no tamps）for complete catalog．Technical Writers Group Box 5994．University Station，Raleigh，NC 27607
METERS Surplus，new，used panel or portable Send for 1s．Hanchet！，Box 5577．Riverside．CA 92507

MECHANICAL，ELECTRONIC devices catalog 10 cents Greatest Values－Lowest Prices．Fertik＇s， 5249 ＇D Philadelphıa．Pa． 19120
SOUND SYNTHESIZER KITS－Surf \＄12．95．Wind $\$ 12.95$ Wind Chimes $\$ 17.95$ ．Electronic Songbird \＄6．95．Musica Accessories，many more Catalog free PAIA Electronics Box J14359．Oklahoma City．OK 73114
BUGGED？クク New locator finds them tast Write．Clifton 11500－L N．W．7th Avenue．Miams，Florida 33168
YOU WILL SAVE BIG MONEYI Surplus．Clearouts Bankruptcy．Inventory．Deals Catalog $\$ 1$（redeemable） ETCOA Electronics．Box 741．Montreai．H3C $2 \mathrm{~V} 2 \cup \mathrm{~S}$ Inquaries．
HEAR POLICE／FIRE Dispatchers！Calalog shows exclusive directories of＂confidentıal＂channels，scanners Send postage stamp．Communications．Box 56．PE Commack，N．Y． 11725
UNSCRAMBLERS Fits any scanner or monitor，easily ad justs to all scrambled frequencies．Only $4^{"}$ square $\$ 29.95$ fully guaranteed．Dealer inquiries welcomed $P D Q$ Electronics．Box 841．North Little Rock．Arkansas 72115 RECONDITIONED Test Equipment．$\$ 0.50$ for catalog 4806

POLICE，Fire monitors，scanners，crystals，CB Transceivers，New Crystal－less scanners．Dis count priced．Box 19224．Denver．C0 80219.

TELETYPE EQUIPMENT for sale for beginners and exper enced computer enthusiast．Teletype machines，parts， supplies Catalogue $\$ 1.00$ to ATLANTIC SALES， 3730 Nautilus Ave．，Brooklyn．NY 11224．Tel：（212）372－0349．
JAPANESE TRANSISTORS，all transistors original faciory nade．Free catalog．Wes

ELECTRONIC ignition：Capacitor－Discharge．pointless Auburn Sparkplugs．Wheel Stabilizers．Information 20 cents．Anderson Engineering．Epsom．N．H． 03234
WHOLESALE C．B．，Scanners．Antennas．Catalog 25 cents Crystals．Special cut．\＄4．95．Monitor \＄3．95．Send make model．frequency．G．Enterprises．Box 461P．Clearfield，U 84015.

COMPUTER HOBBYISTS＿classified advertising newsletter．$\$ 3.75 /$ year．Free Sample．ON＿LINE 24695 Santa Cruz Hwy．，Los Gatos，CA 95030

SURPLUS COMPONENTS．Communication and test equip ment．Illustrated catalog 25 cents．E．French．P O Box 249 Aurora．Illinots 60505

ORGAN KITS KEYBOARDS

he ultimate in design AND SOUND
Demo Record \＆Brochure $\$ 1.00$
Wurlitzer reproductions

DEVTRONIX ORGAN PRODUCTS，Dept．C卦 5872 Amapola Dr．－San Jose，CA 95129

SURPLUS＇SMART＇TERMINALS，components， serious music synthesizer kits，plans，parts，and more．Send SASE for FREE INFO Package．CFR Assoclates，POBF．Newton，N．H． 03858
CB RADIOS．monitors，crystals，CD igntions．Southland Bex 3591－B．Bay：own．Texas 77520
CB CRYSTALS over 20,000 standard and specials in stock from 6.0 MHz to 45.0 MHz ．Call or write for information package．Dealer inquiries invited Roberts Electronics Sales， 7356329 Palms High way， 29 Palms，California 92277．（714） 367 6235.

SURPRISES GALORE＇Projects，ham radio music synthe sizers etc IC＇s．pots hardware，crystals，keyboards，re sistors etc Send 13 cents stamp tor catatogue UTEP．Box sistors，etc Send 13 cents stamp for
$26231 B$ ．Sal：Lake City．Utah 84125

BUILD AND SAVE TELEPHONES．TELEVISION．DETEC TIVE．BROADCAST Electronics we sell construction plans with an Engineering Service．Speakerphones．An－ swering Machines，Carphones．Phonevision．Dialers．Color TV Converters．VTR．Games．$\$ 25$ TV Camera．Electron Microscope．Specıal Effects Generator．Tıme Base Correc or，Chroma Key Engineering Courses in Telephone，Inte grated Circuits．Detecive Electronics PLUS MUCH MORE NEW Super Hobby Catalog PLUS year＇s subscrip－ ton to Electronic News Letter．\＄1．00 Don Brition Enter prises． 6200 Wilshire Biva．Los Angeles．Calif． 90048. NAME BRAND Digital／Analog Test Equipment Discoun prices Free catalog．Saten Electronics．Box 82．Skokie．II linois 60076

TELEPHONES UNLIMITED．Equipment，Supplies， All types，Regular，Keyed，Modular．Catalog 50 cents．Box 1147E，San Diego，California 92112. CB RADIOS＿Police Scanners，Wholesale only＂Send let erhead for lowest prices anywhere Four Wheeler．10PE New Scotland．Albany N．Y 12208

THERE IS NO OTHER TELESCOPE LIKE IT！ THE NEW EDMUND 4¼＂， $1 / 4$ NEWTONIAN WIDE FIELD REFLECTOR TELESCOPE
Clear，bright，spectacular wide angle views of stars，moon，comets ．．．easy to use ．．．portable！ IN SECONDS YOU＇RE SCANNING THE ASTOUNDING UNIVERSE，able to see and Study the breath－taking cosmos as perhaps you never have before awesome vastness，unbelievable orderliness，stark silent beauty．All the fascinating heavenly mysiefies are yours to enter and explore his new reflector telescope makes it easy for everyone to spana thousand light－years to space－age enjoyment of the heavens and outdoors No complicated set up＇Just insert the eyepiece，focus，and its big $3 / 2$ field of view gives you more stars in a single view than any other type of telescope．Bright．crisp，finely resolved images to capture your interest and imagination It＇s probably the easiest to use telescope ever over your shoulder．in your lap．on a tripod．Or just rotate the spherical base on its own mount for use on a table，car hood．Take it anywhere（only 17． 10 lb Top quality optical system $41 / 4$ ， $1 / 4$ parabolic primary mirror（i／i wave． prealigned $/$ w wave diagonalonacoatedop 15 X higer without other eyepiece or and dust． 28 mm Kelner epitint Barlow）Fast focusing（25 to i first scope must an ideal second scopl A irsi scope mus
There is no other telescope like it．NO．2001 AV

EDMUND SCIENTIFIC CO．

300 Edscorp Bldg．
Barrington NJ 08007
Barrington N．J． 08
America＇s Greatest
science－Optics－Hobby Cente
（609）547－3488

COMPLETE AND MAIL COUPON NOW

\qquad Service \＆Handling Charge

For TOTAL of \qquad

POWERFUL. ADJUSTABLE REGULATED THREE OUT PUT POWER SUPPLY and 900 easily removable paris in
complete CARTRIVISION television recorder electronid assembly with documentation. Pertect to MICROPROCESSOR IC Iransistor television. CB radio applicaions $\$ 21.45$ Fiee biochure MADISON ELEC 35758. SATISFACTION GUARANTEED

WIRE-Hookup wire-wrap, ribbon cable conneciors etc Send 13 cents stamp for complete list Ram Electronics Box 336-P Brookhaven. N Y 11719 DIAGRAM MANUALS, Television-Radio. Iwelve volumes 1760 Balsam, Highland Park. IL 60035

TV PROJECTION Lens witt detailed instructions. \$15.95 Into JG Color TV. Box 63. Montgomery. N.Y 12549 CARBON FILM RESISTORS $1 / 4 \mathrm{~W}$. $1 / 2 \mathrm{~W}$ - 1.7 cents each FREE sample / specifications. Other components COM PONENTS CENTER. Box 134P. New York. NY 10038 WEATHER MAP RECORDERS (FACSIMILE) re moved from commercial service Copy latest Na tional and Local Weather information also Satel lite Photographs. Learn how! Send $\$ 1.00$. Com plete details. Atlantic Sales. 3730 Nautilus Ave nue, Brooklyn, N. Y. 11224. Tel: (212) 372.0349

V CAMERAS $\$ 125$ (new). Cartrivision video heads. $\$ 12$ Automation Systems. 124 Lundy Lane. Palo Alto, Calif 94306
MORSE KEYBOARD Software, CDP-1802. 256 Bytes, $\$ 3.00$ WA6UYV. 4956 Andrea Blvd.. Sacramento. CA 95842. 20 KEY ITEMS of Iransistor circuits. Fifty pages of inside ittle known facts. Send $\$ 595$. No COD Rebekron. 511 Coachlight Hazelwood MO 63042
MAY GOODIES $555-39$ cents $741-29$ cents, $747-49$ cents Farchild jumbo LED's red $12 \$ 1$ green $8 / \$ 1$. $2 N 3055-88$ cents Free calalog DIAMONDBACK. Box 194P, Spring

AMYONE GAN SOLDER WTH-
DO-IT-YOURSELFERS!
Cizite or hobbes A radio. TV, model thain, jeweliy. plumbing. etc. Save money- repair it yourself or a FREE Copy of "Soldering Simplified"
KESTER SOLDER / $\begin{gathered}4201 \text { Wrghtwood Ave } \\ \text { Cricago } \\ 60639\end{gathered}$
FREE CATALOG Solar Cells, Ni Cads Kirs. Calculators Diqual Warn Modules Uuasonics. Strobes LEDS. Tra

Denver Coinrade 80227
BUILD YOUR own cushion couch send $\$ 3.95$ 10: Custom BUILO YOUR own Cushion couch send $\$ 3.95$ 10: Custom
Craft. 3819 Burke Ave N. Seattle. WA 98103 for complete plans and assembly instruclions.
FREQUENCY ALLOCATION CHART $2 K n z-200 G h z$. Send

Thousands of speciais in stock. Requiars too FREE CATALOG. Phone orders: (612) 633 1318, 8:00 A.M. - 10:00 A.M. CST
FBCO-2928-14th \$t. N.W.
New Brighton, MN. 55112

EPROM $52030 \$ 6005213$ Characte Generators $\$ 600$ $63 \times \times$ Serles ROMS TTL MOS 6akBIT Memory Boards $\$ 4000$ Cartivision TV Cameras and many omer paris
Free Brochure Altear Electromos Box 60716 . Sunnyvale Calatior Ma 94088 New 60600 MH P Portable countfr
 B\&K TEST EQUIPMENT Free Calalog Free shipping Dinosaur discounts Spacetron-B. 9.48 Prospect. Elmtiurst IL 60126
RADAR DETECTOR KIT Butd a long range radar detector with over one mile range Kit comes with complete docu
mentation and drilled etched and plated PC board. Only \$4.95 Thousands sold nationally Satisfaction quaranteed Same day shipmen: J.B. Saunders Company, 3050 Valmont. Boulder Colorado 80301
RESISTORS AND CAPACITORS $1 / 4 \mathrm{w} 5 \%$ Resistors $\$ 8.95 / \mathrm{m} 100 \mathrm{~min}$ value. $1 / 2 \mathrm{w} 5 \%$ resistors $\$ 9,95 \mathrm{~m}$ Capacitor info 800-323-1554 or Rik-Tronics (312) 452-6888 DISCOUNT PRICES' Scanners CB Radios Antennas Hardware Wire Lubricaling Oll Lisi 25 cents Eastwood Products. Oriskany. NY 13424

HIGH FIDELITY
DIAMOND NEEDLES and Steren Cartridges a! Discount pires for Shure Pickering, Stanton Empire Grado and
ADC Send for free catalog LYLE CARTRIDGES Dept P Box 69 Kensingion Siaimon Braoklyn New York 11218. SAVE 50% buld your own speaker system write. McGee Radio Elentronics 1901 McGee Sireet Kansas City, Missourl 64708
MIXERS - Preamps - Speakers. Top Quality Kits Plans - Paris Send 25 cents ior catalog Audio Design \& Engineering Co. PO Box 154, Lee. Mass 01238. (413) 243-1333.
RECTILINEAR RESEARCH CORP would appreciate com ments from interested parties on the feasibility of offering our highly rated Models 5 a and 7 a fully assembled. wired and lested LESS CABINET at very substantial savings Freight prepaid within UPS zone. Detaled drawings for en closure included. Franchised or non-franchised dealers can participate. To assist in this survey, write: Kit Division/PE. Rectilinear. 107 Bruckner Boulevard. Bronx N.Y 10454. (212) 585-9400

TUBES

RADIO \& T.V. Tubes- 36 cents each Send for free Catalog. Cornell. 4213 University. San Diego. Calit. 92105 TUBES receiving factory boxed, low prices free price list Transleteronic, Inc.. 1365 39th Street Brooklyn. NY 11218A. Telephone 212.633-2800
TUBES "Oldies" Latest Supplies components sche matics Catalog Free (stamp apprectated) Steinmetz 7519 PE Maplewood. Hammond Ind 46324
RECEIVING TUBES Naitonal Brands Up 1080% discount National Audio 2500 Channing Road Cleveland Omo 44118.

TAPE AND RECORDERS

RENT 4-Track open reel tapes-free brochure Siereo Parti P.O Box 7. Fulton. CA 95401
WE WILL BEAT any price sheel in America. Fealuring TDK. MAXELL and others. Tape World Intemational. 220 Spring St.. Butler. PA 16001

BASF TAPE: We carry only BASF so our prices are the lowest! All tapes new and GUARANTEED. Enclose this ad with any order and we'll pay shipping (USA only). INTERGALACTIC ENTERPRISES, 1043 Kirts, Troy, Michigan 48084.

BLANK TAPE BONANZA. TDK 10 SA-C90 \$30 85. 10 SA. C60 $\$ 2185$ MAXELL 12 UDC- 90 \$35.31. 10 UD35-90 \$49.99. 12 UDXL C90 (I or 11) \$41 43. All prices melude shipping. (PA add 6% sales lax). Give us a try' Tape World Internalional 220 Sprina Si. Butier. PA 16001

DO-IT-YOURSELF

MODULAR TELEPHONES now available Sets and com ponents. compatible with Western Electric concept Cata $\log 50$ cents Box 1147W. San Diego. Californa 92112. NEGATIVE ion generator Construction plans \$750. Complete kit \$165.00. Golden Enterprises Box 1282PE Glen dale. Arizona 85311

E

70\% OFF LIST! 1AD2 | 70\% OFF LIST! |
| :---: |
| 1.67 GARS |
| .92 | 뜽 1 k 3

1 1 24 $\begin{array}{ll}1.64 & 1.67 \\ \text { iv2 } & 1.02 \\ 1 \times 2 \mathrm{~B} & 1.64\end{array}$教

.92
2.07
14

EDLIE BARGAIN

 BONANZAOF HIGHEST QUALITY
TUBES
BUY BRAND NEw MANUFACTURER'S
BOXED TUBES (Raythoon, Dumont, IEC
Mullard, te.) AT 70% orf LIst! BOXED TUBES (Raytheon, Dumo
Mullard, ctc.) AT 70% OFF LIST! HEREIS A BIGGEA \& BETTEA LIST THAN
WEEVER OFFERED BEFORE...AND morn ALLTUBES BRAND NEW
MANU. BOXED
70% OFF 70\% OFF
MINIMUM ORDER $\$ 10.00$
 Either full payment with order or 30% deposit, balance C.O.D. F.O.B. Levittown, M.Y.

6F6GT	4.09	617	4.35	6 L 7	4.50
6FG6	1.43	6110	2.66	6LB6	3.38
6FG7	2.40	$6 J B 6$	2.54	6LE8	2.39
6FM7	1.94	6JC6A	1.88	6LF6	3.36
6FQ7	1.28	6J06	1.94	6LF8	2.46
6GE5	1.64	6JE6GA	3.51	6LH6	3.23
6GF7	2.24	$6^{\text {JFF }} 6$	2.90	6LJ8	1.85
6GH8	1.32	$6 \mathrm{JH6}$	1.50	6LM8	2.04
6GJ7	1.25	6JH8	2.64	6LN8	1.11
6GK5	1.95	6JM6A	2.28	6LR6	3.23
6GK6	1.47	6JN6	2.13	6LT8	1.71
6GM6	1.76	6156 C	3.12	6LU8	2.01
6GM8	3.30	6 J 6	2.54	6LX8	1.11
$6 \mathrm{GS7}$	1.52	$6 J 18$	2.01	6M11	3.30
$6 \mathrm{GU7}$	1.76	${ }_{6} \mathrm{~J}^{1} 6$	2.99	6MB8	1.95
6GW8	1.47	$6 J 08$	1.86	6MD8	2.46
$6 \mathrm{GX6}$	1.46	${ }_{6}{ }^{1} 88$	1.89	6MG8	1.41
$6 \mathrm{G} \times 7$	1.92	6JW8	1.41	6SA7	3.74
$6 \mathrm{HG}^{6}$	3.33	6K6GT	1.71	6SG7	3.95
6HA5	1.61	6K7GT	2.40	6SJ7GT	2.33
$6 \mathrm{HB7}$	1.62	6 K 8	3.60	6SK7GI	2.40
6HE5	2.01	6KA8	2.04	6SL7GI	2.40
6HF5	3.96	6KD6	3.54	6SN7GT	1.59
6 HF 8	2.28	6KE8	2.66	6SQ7GT	2.42
6HQ5	2.13	6KM6	3.54	678 A	2.01
$6 \mathrm{HS5}$	3.09	6KT8	2.28	6710	2.36
6HS6	2.66	6KV6	2.81	6U8A	1.64
$6 \mathrm{HS8}$	2.00	6KZ8	1.71	6410	1.70
6 HV5	3.72	6L6GB	2.57	6 V 6	4.01
$6 \mathrm{HZ6}$	1.34	6 L 6	4.50	6V6GT	1.92
6 JGT	1.77			6×4	1.52

WRITE FOR FREE ${ }^{6 \times 4}$
VALUE PACKED CATALOG
2700-NP HEMPSTEAD TPKE., LEVITTOWN, N. Y. 11756

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.
We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "'Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

Popular Electronics
 Hundreds of references to subjects, products, and technical tips that you know are in the magazine but can never find when you want them - all arranged for fast, easy reference.
 Prepared in cooperation with the magazine editors, each of these handy indexes covers a full year of 12 issues and is an indispensable companion to your magazine collection.

1976 Edition

 $\$ 1^{50}$each plus 25 cents per copy for postage and handling (50 cents for foreign orders).
Back index editions also still available from 1972 onwards. When ordering, mention magazine title and specify volume years desired. Please be sure to include correct postage - avoid having your order returned.

POPULAR ELECTRONICS INDEX
Box 2228, Falls Church, Va., 22042

JUMBO LED CAR CLOCK

\$16.95

KIT

Alarm Option - $\$ 1.50$ AC XFMR - $\$ 1.50$

THE HOTTEST SELLING KIT WE EVER PRODUCED!
You requested it! Our first D.C. operated clock kit. Professionally engineered from scratch. Not a makeshift kluge as sold by others. Features:
A. Bowmar Jumbo -. 5 inch LED array.
B. MOSTEK - 50250 - Super Clock Chip.
C. On board precision crystal time base.
D. 12 or 24 Hr . Real Time Format.
E. Perfect for cars, boats, vans, etc.
F. P.C. Board and all parts (less case) included.

THIS MONTH'S SPECIALS

AMD - 8080A	$\$ 14.95$
Z-80 CPU	49.95
$82 S 1291 K$ PROM	2.50

60 HZ CRYSTAL TIME BASE S.D. SALES EXCLUSIVE!
 KIT FEATURES:
 $\$ 5.95$

A. 60 HZ output with accuracy comp arable to a digital watch.
B. Directly interfaces with all MOS Clock Chips.
C. Super low power consumption (1.5 ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of $A C$ line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham filed days.
G. Small size; can be used in existing enclosures.

Kit includes Crystal, Divider IC, PC Board, Plus all necessary parts and specs.

1702A 2K EPROM

We tell it like it is. We coula have sala these were factory new, but here is the straight scoop. We bought a load of new computer gear that contained carefully removed the in sockets. We their quality, and are offering them on one neck of are offering them first served. Satisfaction guaranteedi U.V. Eraseable. $\$ 6.95$ ea. $4 / \$ 25$

UP YOUR COMPUTER!
 21L02-11K LOW POWER 500 NS

STATIC RAM Time is of the essencel And so is power. Not only are our RAM's faster than a speeding bulle: but they are now very low power We are pleased to offer prime new 21 LO2 low power and super fast RAM's. Allows you to STRETCH your power supply farther and at the
same time keep the wat lignt oft.
S.D.SALES EXCLUSIVE
$\$ 12.95$ MOS 6 DIGIT UP-DOWN COUNTER $\$ 12.95$ 40 PIN DIP. Everything you ever wanted in a counter chip. Features: Direct LE 0 segrment drive, single power supply (12 separate preloadable compare eqsister wretoadable counter. put, $B C D$ and seven segment outputs, internal scan oscilla tor, CMOS compatible, leading zero blanking. 1 MHZ . count input frequency. Very limited quantity! WITH DATA SHEET

7400-19c	7411-29c	7451-19c	7490-65c	74153-75c
$74 \mathrm{LSOO-49C}$	$7413-50 c$	7453-19c	74L590-95c	74154-1.00
7402-19c	7416-69c	7473-39c	7492-75c	74157-75c
74LS02-49C	$7420-19 \mathrm{c}$	7474-35c	7493-69c	74161-95c
7404-19c	7430-19c	74LS74-59C	7495-75c	74164.1 .10
74L04-29C	7432-34c	7475-69c	7496-89c	741651.10
74504-44c	7437-39c	7476-35c	74121-38c	74174-95c
74LS04-49C	7438-39c	7480-49c	$74123.65 c$	74181-2.50
7406-29c	7440-19c	7483-95c	74132-1.70	74191-1.25
7408-19c	7447-85c	7485-95c	$745138-1.95$	74192.1.25
7410-19c	7448-85c	7486-45c	$74141-75 \mathrm{c}$	74193-1.00
TTL INTEGR	RATEDCIR	UITS		74195-69c

$\begin{gathered} \text { P.C. LEAD } \\ \text { DIODES } \\ \text { 1N4148/1N914 } \\ 100 / \$ 2.00 \\ 1 N 40021 \mathrm{~A} \\ 100 \mathrm{PIV} 40 / \$ 1 . \end{gathered}$	HEAVY DUTY Full Wave Bridge 25 AMP 50 BIV \$1.25	DISC CAP ASSORTMENT PC leads. At least 10 different values. Incluges .001. .01, . 05 . plus other stan. dara value. $60 / \$ 1.00$
C\&K MINI TOGGLE SWITCH No. 7101. S.P.D.T. Panel mount or P.C. mount. 79 c 3 for $\$ 2$.		

SIX DIGIT LED ALARM CLOCK KIT
We made a fantastic kit even better. Redesigned to take advantage of the latest advances in l.C. Clock technology. Features Litronix Dual $1 / 2$ inch displays, Mostek 50250 super clock chip, Single I.C. segment driver, SCR ditit drivers Greatly simplif Ied construction. More reliable and easier to build. Kit includes all necessary parts (except case). P.C.B. or XFMR optional ALL NEW DESIGN! P.C. Board-3.00 AC XFMR - $\$ 1.50$ KIT $\$ 9.95$

$\begin{aligned} & \text { Motorola SCR } \\ & \text { 2N444. } 8 \text { AMP } 400 \text { PIV. } \\ & \text { P.C. Leads } \end{aligned}$	COMPUTER POWER SUPPLY A very fortunate purchase. One of the best industrial quality REG. ULATED supplies we have seen. High performance, small size. Input is 120 VAC 60 HZ . Has the following regulated outputs: $-5 V D C @ 800 M A ;-15 V D C$ @ 1.25 AMP; $-25 V D C$ @ 180 MA . Sold at a fraction of original cost. Do yourself a favor and order NOW. We expect a quick sellout.		
FAIRCHILD - TBA 641 4W. Audio power Amp. Just out! In special heat sink			
DIP. One super audio IC.		NEXT MONTH: S.D. will have music for your ears. Watch our ads.	
FND-359-Led Readout FND Common Cathode. Hign effeciency. Has FND: 70 PINOUT.		For your Imsai or Al CPU Kit - $\$ 149$.	80 Computer: ow Power Ram Kit - \$89.95
OUR CATALOG is chocked full of rare parts bargains, deals, RAM or CPU kits, plus much more. Yours FREE!	Terms: Money back guarantee. No COD. Texas residents add 5\% sales tax. Add 5\% of order for postage \& handling. Orders under $\$ 10$. add 75 c . Foreign orders: US funds only!	Call your Bankamericard or Master Charge order in on our continental United States toll free Watts:	Special Thanks to: Dennis, Fred, Abe, Bill, Sam, Hal, Tom, Alex, John, Ely, and Larry
FREE! PRICES SHOWN SUBJECT TO CHANGE WITHOUT NOTICE.		$\begin{gathered} 1-800-527-3460 \\ \text { Texas Residents Call Sollect: } \\ 214 / 271-0022 \end{gathered}$	$\begin{aligned} & \text { S.D. SALES CO. } \\ & \text { P.O. BOX } 28810 \\ & \text { Dallas. Texas } 75228 \end{aligned}$

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including iransistor. Experimental kı-troubleshooling. Accredited NHSC. Free Booklet NILES BRYANT SCHOOL 3631 Stockton Dept. A Sacramento. Cahit 95820
SELF-STUDY CB RADIO REPAIR COURSE THERE'S MONEY TO BE MADE REPAIRING CB RADIOS This easy to-learn course can prepare you fof a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time For more information write CB RADIO REPAIR
COURSE Depl PE057. 531 N Ann Arbor. Oklanoma City Okla 73127
LEARN WHILE ASLEEPI HYPNOTIZE AstonIshing delails Strange catalog tree' Allosuggestion Box 21-2D Olympia Washing:on 98507
university degrees by mail, Bachelors, Masters, Ph.D's ... Free revealing details. Counseling, Box 317 PE5, Justin, California 92680

INTENSIVE 5 week course for Broadcast Engineers FCC First class license. Sludent rooms at the school Radio Engineering tinc. 61 N Pineapple Ave.. Sarasota. FL 33577 and 2402 Tidewater Trail. Fredericksburg. VA 22401
PRACTICAL Electronic Training. FCC license. Free home study catalog Genn Tech. 5540 Hollywood Blva Los Angeles CA 90028 Or Ra-Tel Elechronics. P.O. Box 167 -p. Toronto. Ont.. Canada US Inquiries
LEARN BASIC Digital Troublesthooting by corres. pondence Course includes text and demonsuration mod ules. Educalional Technologies. Box 224. Reynoldsburg Ohio 43068
CBERS - Be a Ham We ll teach you' Life Membership $\$ 400$. Amencan Radio Council. Box 1171 K . Gasland Texas 75040 .
HIGHLY EFFECTIVE Degree Program in Electronics En gineening Advance rapidly' Our 31st Year Free literalure Cooks Insilute. Box 20345. Jackson Miss 39209
BURGLAR/FIRE EXPERTS NEEDED for cars, nomes. dustry Learm high profil systems installation at home spare time Simple quick complete Free information by mall No Salestnen Securty Systems Management School (home study. Dept 7373-057 Litle Falls N J 07424

GET YOUR COMMERCIAL FCC LICense. New exams by author of successful published workbooks of FCC Practice Tests 500 Questions Second Class. \$11.95: 200 First Class. \$7.95, 100 Radar. $\$ 4.95$: posipard. Save. all three \$19.95. Complete mathemalical solutions. Free counselling ervice Victor Veley. PO Box 14. La Verne Calif. 91750 GRANTHAM'S FCC LICENSE STUOY GUIDE - 377 pages 465 questions with answers/discussions - covering third cono. hirst radotelephone examinations. \$13.45 pos

BROADCAST STATION? Operate your own FM Cable Carmer Current rom home school church or as money making business Free delails "Broadcasting", Box 5516 AE Walnut Creek. CA 9.1596
GO FIAST CLASS! Complete FCC examination questions diagrams - answers plus "topical study" guide \$8 95 EGW Publicalions. Box 5516-AE Walnut Creek. CA 94596 SCORE high on FC.C Exams... Over 300 questions and answers Covers 3rd. 2nd. 1st and even Radar. Third and Second Test. \$14.50. Firsl Class Tesi. \$1500. All tesis $\$ 26.50$ R E.I.. Inc Box 806. Sarasota. Fla 33577

PERSONALS

MAKE FRIENDS WORLDWIDE iniough internaliona correspondence Illustrated brochure free Hermes-Verlag Box 110660/Z. D-1000 Berlin 11. Germany WARTS Vergo ${ }^{\text {P }}$ Cream is painless sate easy gentle Buy Vergo at better pharmacies
inventions wanted

INVENTORS Manulaciurers Need New Pioducts. Free Recommended Procedure by a crealive fee-based

MAGNETS

MAGNETS. All types. Specials-20 disc. or 10 bar, or 2 stick or 8 assorted magnets $\$ 1.00$. Magnets. Box 192-H Ran dallstown. Maryland 21133

WANTED

GOLD. Silver, Platinum. Mercury wanted Highest prices paid by refinery. Ores assayed Free circular. Mercury Terminal. Norwood. MA 02062

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUN ITIES. Report on jobs now open. Details FREE. Aviation Employment intormation Service. Box 240 E . Northport. New York 11768.
OVERSEAS JOBS - NOW HIRING! High Pay! All Occupations. Transportation. Computerized Reports - $\$ 2.00$. TRANSWORLD. International Airport. Box $90802-\mathrm{N}$, Los Angeles. Calif 90009.

HYPNOTISM

SLEEP learning Hypnotic method 92°. effective De:ails tree ASR Foundation. Box 23429EG. Fort Lauderdate. Florida 33307
FREE Hypnotism Self-Hypnosis. Sleep Learning Catalog Drawer H400. Ruidoso. New Mexico 88345. AMAZING self-hypnosis record releases fantastic mental power. Instant results! Free trial. Write Forum (AA5). 333 North Michıgan. Chicago 60601

TREASURE FINDERS

TREASURE may lie beneath your feet! Discover gold silver. coins. rings. artifacts and more with world-famous. deeper-detecting White's metal detectors. From $\$ 59.95$ Dealers worid-wide. Free Itterature' White's Electronics. Dept. PD7-C. 1011 Pleasant Valley Rd. Sweet Home. OR 97386.

REAL ESTATE

BIG. NEW FREE SUMMER 1977 CATALOG! Over 2.600 top values coast to coast UNITED FARM AGENCY. 612-EP. West 47th. Kansas City. MO 64112.

RUBBER STAMPS

RÜBBER STA-MPS. BUSINESS CARDS. Many new products Catalog Jackson's. Depl. K. Brownsvitle Rd.. Mt. vernon. III 62864.

GOVERNMENT SURPLUS

MANUALS for Govi Surplus radios. test sets. scopes List 50 cents (cotn). Books. 7218 Roanne Drive. Washington. D.C. 20021

GOVERNMENT SURPLUS Buy in your Area How. where Send $\$ 2.00$. Surplus. 30177-PE Headquarters Building. Washington. DC 20014
JEEPS, TRUCKS. Typically from $\$ 52.40 \ldots$ Automobiles Boats. Motorcycles. Airplanes. Oscilloscopes. Tools. Clothing, Sports. Camping, Photographic. Electronics Equipment … 200.000 Bid Bargains Nationwide Direct from Government ... Low as 2 cents on Dollar! Surplus Catalog and Sates Directory $\$ 1.00$ (refundable). National Surplus Center. 240 Eastcass-PEL. Joliet. Illinois 60432.

MUSICAL INSTRUMENTS

036 CIRCLE NO. 26 ON FREE INFORMATION CARD

BQLDET ELECTROMCS

A special buy on a nigh quality ultiasonic transducer allows us to offer
this kit al a super orice - but hurry, cuantities are limited' You can
buid titusion alarms, motion detector, temote controls, echo ranging buld intusion alarms. motion detectors, remote controls, echo ranging or liquid level measurement equipment. We supply the basic transmitter and recesver electronics including a drilled and plated PC baard. The units
work at 23 KHZ with a range of 20 ft and can be postioned work at 23 KHZ with a ranqe of 20 ft and can be Dostioned odposite
each other or side by sude and toounced off a solid surface The output ORDER US-01

AUTOMATIC TIME-OUT CIRCUIT for ultra $\$ 19.95$
sonic or mechanical switeh alarms. Provides a
five second entry delay. Sounds alarm for one minute, then re arms itself. Requires 6-15VDC
\qquad
MK-03 AIRCRAFT CLOCK/TIMER KIT 24 hour real time and up to 24 hrs . elapsed time are available independently on the same set of 6 $\cdot 4^{n}$ LED readouts. Clock has presettable alarm. THeer has reset, hold and count functions. Size $4214 \mathrm{X} 2 \frac{1}{2} \mathrm{H}$ H X $13 / 8 \mathrm{MW}$. Allows mounting in standard instrument case. Because of the many opt cans
and mounting variations the kit is sold less case \& switches. The unit has noise and over voltage protection. For 9 to 14 VDC .

MINI GRANDFATHER CLOCK KIT
Would you give over one hundred dollars for a completely ELECTRONTC GRANDFATHER CLOCK KIT?? Well, what if it had large the LED readouts...
 super SNTHESTLED OSCILLATCR with frequency Holume (like sustain adjust and it cmin for we pave you all the we gave fouality plated poards; and told you set of qua p plated boards; and told you Then how about for $\$ 39.95$? Now that's a DEAL
BUILD A COMPLETE CDI IGNITION KIT AT A FRACTION OF THE COST OF OTHER UNITS. A special buy allows us to sell the complete kit at this low price! Up to 40.000 volts from your present ignition without changing the coil. Simpl connections.

Special toroid transformer
Drilled and Plated board
Complete instructions
All resistors and caps
All semiconductors
All semiconductors

(Does not include heatsink or case.) For 12 V negative ground

CERMS: NO COD's * Send check or M.O. * Add 5\% postag

 Tx. res. add 5\% tax * Foreign add 10\% (20\% airmail) * vailable * Accepting phone orders on Master Chg \& BAC

CB everything else you want to know in the . . . 1977
COMMUNICATIONS HANDBOOK

Here's everything you want to know-need to know -about Citizens Band Radio. Amateur Radio. Short wave Listening, Police Fire Monitoring, Marine Radio Features, specifications, latest prices and photos of equipment on the market are at your fingertips in the Handbook's directory buying sections. CITIZENS BAND -The new modified FCC rules, how to get started (no test, no fee), how it's used, buying tips, the 40 channel transceivers PUBLIC SERVICE BANDMonitor radios for listening in on police, fire, mobile telephone, arline conversations and weather reports AMAFEUR RADIO-How to get started, license privileges and study tips, slow-scan TV, satellite communications new Novice rules MARINE RADIOIELEPHONE-Rules and regulations for pleas WAVE 1977 Gatel fin WAVE 1977 -Latest happenings in the SW field, in ternational stations to listen to. SW clubs, utility broadcast listening without knowing Morse Code. IN ALL A ONE-STOP BUYING GUIDE FOR ALL CON SUMER COMMUNICATION RADIOS AND TRANS CEIVERS! Only \$1.95!
onerebneoreprenteruorerapresueruon
COMMUNICAIIONS HANDBOOK, PE-577 Consumer Service Division,
595 Broadway, New York, N.Y. 10012.
Please send the 1977 Communacations Handbook. I'm enclosing $\$ 2.50$ ($\$ 1.95$ plus 55 c for postage and handling). Outside U.S.A. $\$ 3.00$, postpaid Residents of CA, CO. FL IL. MI, MO, NY STATE, DC and IX add applicable sales tax, Postage and handing charges non taxable.

Print name
Address
City
State
Zip

AMAZING ELECTRONIC PRODUCTS

lasers super powered. rifle. pistol, pockel see in dark pyr

 CHEMICAL UITRASONTCO CB AERO MUTO AND MECH DEVICES HUNORED MORE ALL NEH PLUS INEO UNLTO PARTS SERVICE

INF ORMATION unfimiled

FREE KIT Catalog contains Test and Experimen ter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

MOFSE A-LETTEH KIT Decude's stisplays Morse code
except chassis intlilte? S10995 Elched Irilled PC Doard $\$ 1795$ SELEG CIRCUITS 141 Lonsuale Road Columbus.
TAPE-SLIDE sym:hmmzel hap-ifscolvt multiprojector prograniner plars $\$ 550$ Fite ididiog Millers 1896 Digital Circums Timers Clucks combinamon lork DIGital Circuns fmers Cheks combinalon
meters. testers Now and divanced Stamp for calalug GeeBee. Box 1661 Downey. Calif 90240

(TWERSI KITS

 Rrgans, \quad ianos, Strings Rhythms, PA Systems 104-page catalog \$2 WERSI electronics, In Dept.A2, Box 5318, Loncaster PA 17601

pocket Colorbar generator ki: 16 patlerns $\$ 4995$ Plans $\$ 495$ Woukshop Bux 293 PA Bethpage

FIVE OCTAVE Touch Seishivu Electumic PIANO Cumponems $\$ 2.45$ dimaliluS A Canada Clet Protucis.
\qquad
\qquad
RAM Piese: Memory Svsiem Wilie hu brs nure to Ao
Manafaciurng lric: PO Bux 45 Kenmo WA 98028
AMPLIFIER KITS' 35 watic uини; 05 。THD $\$ 15$
Benchmark. 2149 Siurir Si durkmey CA 9.470 .5
TESLA COIL 40 SPARKS' Platis $\$ 750$ infumation 75 Comn 06484
250MHZ PRESCALER tor 25 MHz munters Protected 50 Onm mpu \$1995 Fiee herature. MLG Enterpises PO Bo $\times 788$. Laconia. NH 03246

CATALOGS

$\overline{F R E E!}$ Consimer Service Division Catalog, Includes a wide varrety of products associated with the special interests of readers of Ziff-Davis magazines - PSYCHOLOGY today. popular photografhy. stereo review. POPULAR ELECTRONICS BOATING, FLYING, CAR \& DRIVER, CYCLE, SKIING. Send for YOUR tree catalog to day. Consumer Service Div.: 595 Broadway. Dept. CL. N.Y NY 10012.

Radio Hut

Money back guarantee. NO COD'S. Texas residents add 5% sales tax. Add 5% of order for postage and handling. Orders under $\$ 15.00$ add 75 cents. Foreign orders add 10% for postage.
For your convenience, call your BankAmericard or Master Charge orders in on our Toll Free Watts Line: 1-800-527-2304. Texas residents call collect: 1-214-271-8423.
P. O. Box 64783P Dallas, Texas 75206

PLASMA DISPLAY KIT
Kit Includes: 12 digit display . $4^{\prime \prime}$ Character Power supply for display above Complete specs for hookup.

Line cord Not Included.
ONLY \$3.95

UNSCRAMBLER KIT

for all Scanners

- Tunes easily
- Full instructions included
- Easy to install
- $31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1 \frac{1}{2^{\prime \prime}}$

ONLY \$14.95

CLOCK KIT

Kit includes • LT701 clock module

- Power Supply
- Punched case
- 12 or 24 hour opetation

Complete except for line cord
LT701E 12 hour clock
LT701G 24 hour clock
ONLY \$14.95

	C M O S SALE		
CD4000	.16	CD4040	1.00
CD4001	.16	CD4041	.69
CD4002	.16	CD4042	.59
CD4007	.16	CD4043	.60
CD4009	.45	CD4044	.59
CD4010	.45	CD4047	.59
CD4011	.16	CD4049	.35
CD4012	.16	CD4050	.35
CD4013	.29	CD4051	.90
CD4014	.75	CD4053	.90
CD4015	.75	CD4056	1.00
CD4016	.29	CD4058	.90
CD4017	.80	CD4060	1.00
CD4018	.80	CD4066	.69
CD4019	.39	CD4069	.30
CD4021	.90	CD4071	.16
CD4022	.90	CD4076	.99
CD4024	.70	CD4077	.39
CD4025	.19	CD4102	.68
CD4027	.39	CD4116	.39
CD4028	.75	CD4507	.40
CD4029	.99	CD4512	.50
CD4030	.16	CD4516	.85
CD4034	2.30	CD4518	.85
CD4035	.99	CD4520	.85

Memorex computer boards with IC's, diodes, transistor, etc.

5 Boards containing 100-200 IC's

ONLY \$4.25

	BRIDGE RECTIFIERS		
1 Amp	50 V	.85	
6 Ampp	50 V	1.10	
10 Amp	50 V	1.25	
25 Amp	50 V	1.39	

TRANSISTORS - DIODES

WATERGATE SPECIAL

Telephone Relay automatically starts and stops tape recorder. No batteries required. Kit complete with drilled P.C. Board,
Parts and Case
ONLY \$9.95
TI CALCULATOR CHIPS
TMS103 w/specs.
TMS107 w/specs. . 99

HARDWARE

New, includes $2.56,4-40,6-32$ and 8.32 screws and nuts. A very usable selection. $1 / 2$ pound $\$ 1.50$
1 pound $\$ 2.60$

PROJECT CASES

SMALL $\$ 1.50$ MEDIUM $\$ 2.00$ LARGE $\$ 2.75$
D.2-1/2" D.2" D.2-1/2"
W.4-3/4" W.4.7/8" W.7'
H. 1.7/8" H. 3.1/2" H. 4"

All cases have a sloped front, white with black wrinkle finish.

LOW POWER SHOTTY

74LS00	. 25	74LS74	. 49
74LS02	. 25	74LS90	. 85
74LS04	. 30	74LS132	. 90
74LS08	. 25	74LS138	. 89
74LS10	. 25	74LS139	. 89
74LS11	. 32	74LS155	. 90
74LS20	. 31	74LS157	1.00
74LS21	. 33	74LS162	1.39
74LS22	. 33	74LS163	1.39
74LS27	. 30	74LS175	1.09
74LS30	. 31	74LS193	1.09
74LS32	. 33	74LS258	1.09
74LS37	. 40	74LS367	. 70
74LS38	. 35	74LS368	. 70

ORDER BY PHONE. Charge your order to BankAmericard or Master Charge.
Use our Toll Free Watts 1-800-527-2304

READOUTS
FND70 $4^{\prime \prime} \mathrm{C} . \mathrm{C}$.
FND800 $.8^{\prime \prime}$ C.C.
$\begin{array}{r}.59 \\ \hline .69\end{array}$
TI 6 digit array C.C.
MAN 8 . 3" CA Yellow
3/1.00
.89

POSITIVE VOLTAGE REGULATORS
LM340-5 LM340-15
LM3406 LM340-18
LM340.8 LM340-24
LM340-12
To-220 case. Your Choice
.75 Each
NEGATIVE REGULATORS
7905
7915
7912
To-220 case. Your Choice . 75 Each
FINNED HEATSINK for above regulators
2-3/4" High 2.1/2" Wide
1"Depth ONLY 39 Each
HEATSINK with pass transistor to increase regulator to 5 amps.

ONLY 99 Each

BATTERY CLIPS

Standard 9 V battery clip with $41 / 2^{\prime \prime}$
tinned leads.
25/\$1.00

LINEARS

LM309K
LM380 (8 Pin)
LM380 (14 Pin)
LM3900
LM710
LM711
LM723
LM748
NE555
NE556
NE565
NE566
NE567
1458
RCA 3043
75491
75492

.95 .75 1.00 .30 .25 .25 .40 .25 .35 .95 .95 .95 1.10 .49 .75 .25 .25

60 Hz Crystal Time Base Kit - Kit enables a MOS clock circuit to operate from a DC power source. Ideal for car, camper, van, boat, etc.
60 Hz output with an accuracy of .005\% (typ.) Low power consumption 2.5 ma (typ.). Small size will fit most any enclosure. Single MOS IC oscillator/divider chip 5-15 volts DC operation

ONLY \$4.95
2 for $\$ 9.00$
RESISTORS
Over 50,000,000 in stock
330 ohm 1/8W 20K ohm 1/4W 470 ohm $1 / 4 \mathrm{~W} 22 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 680 ohm 1/2W 27 K ohm 1/4W 1 K ohm $1 / 4 \mathrm{~W}$ 33K ohm $1 / 4 \mathrm{~W}$ 1.2 K ohm $1 / 4 \mathrm{~W} 39 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 2.2 K ohm $1 / 4 \mathrm{~W} 43 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 3.3 K ohm $1 / 4 \mathrm{~W} 47 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 4.7 K ohm $1 / 4 \mathrm{~W} 82 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 6.8 K ohm $1 / 4 \mathrm{~W} 100 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 10 K ohm $1 / 4 \mathrm{~W} 150 \mathrm{~K}$ ohm $1 / 4 \mathrm{~W}$ 220K ohm 1/4W All resistors are PC lead, but are not pull offs. 100 min . order for each value. No Mix.

100/.99 Cents

RADIO HUT GUARANTEE

If you are not satisfied with any of our products NO MATTER WHAT THE REASON we offer you a full money back guarantee if the product or products are returned within 14 days after you receive them.

For faster service USE ZIP CODE on all mail

BURGLAR ALARMS

DIALING UNIT automalically calls police. $\$ 29.95$ Free security equipment catalog S\&S Systems. 5619-C St John Kansas Cily MO 64123 (816) 483-4612.

Burejcr o Sunelze Fire Alaran Geatelog
 - Billions of dollars lost annually due to lack of protective warning alarms.
 FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.
 Box 82209 Dept. PE Lincoln, Ne. 68501

hOME ENTERTAINMENT FILMS

HOW ARE YOU FIXED FOR 16MM SOUND FILMS? Special Even!! Operation Tall Ships. 16 mm color sound. special $\$ 57.95$ (you save $\$ 2$ + shippingl, limited offer. Byron
Nelson Golf. $1 / 4 \mathrm{hr} 16 \mathrm{~mm}$ B 8 W snd film. $\$ 25$ ea! While they last (+ \$2 ea shipping). W.C Fields. If I Had A Million. Abbott \& Costello. Midget Car Maniacs, $\$ 37.95$ ea (+\$1 shipping - you save about \$2.). Home Movie Col-
lectors - Stock Car 500 . 200 Stand. 8 color. $\$ 1495$ ea lectors - Stock Car 500 . 200 Stand. 8 color, $\$ 1495$ ea
ppd: Foreman/Frazier - Murder In Venezuela, $\$ 15.95$ ea ppd. 200° Stand 8 color. NFL Football Follies or the Moore Maxim fight. St 8 B\&W. $\$ 7.95$ ea ($+\$ 0.75$ shipColumbia catatog. $\$ 100$ refundable with order: Castle catalog $\$ 0.50$ incl order form: Sportlite forms $\$ 0.35$ (coins. stamps. pls). SPORTLITE, Elect-5. 20 N. Wacker, Chicago IL 60606

BOOKS AND MAGAZINES

FREE book prophet Elijah coming betore Christ. Wonderful bible evidence Megiddo Mission. Dept 64. 481 Thurston Rd.. Rochester. N.Y. 14619
BACK ISSUE MAGAZINES 1890 to 1976 Free list Send stamped envelope to Everybody s Bookshell. Dept PE 317 West 6th. Los Angeles CA 90014

BUSINESS OPPORTUNITIES

I MADE $\$ 40.00000$ Year by Maılorder! Melped others make money' Free Proof. Torrey. Box 318-NN. Ypsilant Michigan 48197
FREE CATALOGS Repair air conditioning. retrigeration Tools. supplies. fuil instructions Doolin. 2016 Canton. Dallas. Texas 75201
MAILORDER MILLIONAIRE nelps beginners make $\$ 500$ weekly Free report reveals secret plan' Executive (1K5). 333 North Michigan. Chicaqo 60601

нкенцу
 ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DR, Box 248, Walnut Creek. CA 94597

FREE SECRET BOOK " 2042 UNIQUE. Proven Enterprises Fabuious "Little Knowns". Work home' Haylings-B. Carlsbad. Calif 92008.
HOW TO MAKE $\$ 2.000$ WEEKLY at home using other peo ple's money. Guaranteed Free Details. Richlieu. Box 25357. Dept F5. Houston 77005

MAKE BIG MONEY in spare ume selling Tubes. Antennas Speakers. Test Epuipment. Lite Bulbs. Hi-Fi. etc. No invest ment Free information Allied Sales. Pimento. IN 47866 18121 495-6555

LIFETIME OPPORTUNITY for mechanically/electronically inclined individuals. Operate Successful Manufacturing Business. Mark. 92-K Brighton 111h. Brooklyn. New York 11235.

NEW LUXURY Car Without Cost. Free Details! Codex-ZZ. Box 6073. Toledo. Ohio 43614.
STUFF ENVELOPES $\$ 250$ + Thousand. supplies. Enclose stamped. addressed envelope. Enterprises. Route One. Box 263-E5, Pauls Valley. OK 73075

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog yeasis. equipment. Semplex. Box 12276P. Minneapolis, Minn. 55412.
POPULAR ELECTRONICS INDEXES For 1976 now avaıable. Prepared in cooperation with the Editors of "P/E." this index contains hundreds of references to product tests. construction propects. circuit tips and theory and is an essentual companion to your magazine collection. 1976 Edmon. $\$ 1.50$ per copy. All editions from 1972 onward still available at the same price. Add $\$.25$ per order for postage and handing. $\$.50$ per copy. foreign orders. INDEX. 30x 2228. Falls Chureh. Va 22042

Popular Electronics

MAY 1977
ADVERTISERS INDEX

```
A P Products, Inc
AVR Electronics
Acoustic Fiber Sound Systems, Inc ....................
Active Electronic Sales Corp ................... }12
Advanced Microcomputer Products 106
Allison Automotive Company ........................ . . . . . . 
Ancrona Corp Company
Audio P
B&K Product of Dynascan
Buliet Electronics
Byte Publications
```

CREI Capitol Radio Engineering
Institute
Cleveland Institute of
Electronics, Inc
28, 29, 30, 31
Cobra, Product of DynascanSECOND COVER
Contınental Specialties Corporation 89
Crown.
Delta Products, Inc
Digi-Key Corporation
Digital Concepts
Digital Group. The
Digital Group. The.
EICO
Edlie Electronics
Edmund Scientific C
Electronic Book Club
Electronics Unlimited
Eltron
Empire Scientific
Extron LIFESCREEN Projection System
Godbout Elecs., Bill
Grantham College of Engineering
Handic U.S.A. Inc
Heath Company
$80,81,82,8$
IMSAI Manufacturing Corporation 54
Illinois Audio 102
International Electronics Unlimited 116
James Electronics110. 111
Leader Instrument Corp 63
Mcintosh Laboratory Inc 63
Mallory \& Co.. Inc., P.R. 523
Midland International
23
Midland International ... 23
Motorola.........
$8,9,10,11$
NRI Schools 8, 9, 10,1
National Camera 102
New-Tone Electronics 117
OK Machine \& Tool Corporation 58
Olson Electronics .. 116
Optoelectronics
PAIA Electronics
Pace CB
............. 103
Pace CB FOURTH COVER
Pearce-Simpson, Inc 2
Personal Computing Magazine 95
Pickering \& Co...................................
Poly Paks 109
Quest Electronics 123
Radio Hut.
Radio Shack
Radio Shack
S A E
S. D. Sales Co
S. Sales Co.. 113
Schober Organ Corp. The 104
Scientific Research 59
Sencore 86
Shakespeare Company 35
So Id State Sales.. 120
Southwest Technical Products Corporation 13
Southwest Technical Products Corporation 15
Speakerlab. Inc 104
16. 17

U.S. Pioneer Electronics
United Audio Products, Inc 33
Wahl Clipper Corporation 99
Weatheralert, Inc 24
LASSIFIED ADVERTISING
$105,106,112,114,116,118,120.122$

Not a Cheap Clock Kit \$17.45 Includes everythrsg except case 2 -PC boards. 6- $50^{\prime \prime}$ LED Disp ays. 5314 clock chip, transformer, ail components and | $\begin{array}{l}\text { full instructions. Same clock kit with } 80^{\prime \prime} \\ \text { displays. } \\ \$ 22.75\end{array}$ |
| :--- |

Digital Temperature Meter Kit Indoor and outdoor. Automatically switches back and tortin Beauliful 50
$L E D$ readouts. Nothing like it available Needs no additional parts for complete, Needs no additional parts for complete,
tull operation. Will measure -100° to full operation. Will measure -100° to
$+200^{\circ} \mathrm{F}$ air or liquid. Very accurate.

8080A Microcomputer Kit

8080A CPU, Crystal Clock, I/O Buffers RAM and PROM. D/A-A/D converter PROM Programmer Memory expandable Complete documentation incl assembly instruct. programming etc $\$ 195.00$

1977 IC Update Master
Manual Brand new Complete inte grated circuit data selector from all manu facturers. 1264 page master ref. guide to the latest IC's including microprocessors and consumer circuits. 17,000 cross references for easier sourcing of hard to get parts. $\mathbf{5 3 0 . 0 0}$ with tree update service thru 1977. Domestic postage add $\$ 2.00$ Foreign $\$ 6.00$

Frequency Counter Kit

Covers audio. ultras onic and low amateur band 10 Hz to 2.5 MHz typ. Dual channe high sensitivity ± 25 milivolts. Crystal controlled clock Can be prescaled for higher trequency, 6-50" digits. Full in-
structons Less power supply. $\$ 40.00$

Stopwatch Kit \$26.95

Full six digit battery operated. 2-5 volts $3.2768 \mathrm{MHz}_{2}$ crystal accuracy. Times to 59 minutes 59 seconds $991 / 100 \mathrm{hrs}$ Times standard, split and taylor. 7205 chip. all components minus case Full instruct

COSMAC 'ELF'

RCA CMOS Microcomputer
CDP1802 CD $\$ 29.50$ Users Manual $\$ 7.50$ Complete kit of parts to build the "ELF" Including CDP1802 and users manual as listed in August 76 Pop. Elect. minus power supply and board. $\$ 92.00$

VOLUME SPECIALS

60 Hz Crystal Time Base Kit $\$ 4.75$ Converts digital clocks from $A C$ line frequency to crystal time base Outstanding accuracy. Kit includes
PC board. MM5369, crystal, resistors. capacitors and trimmer

Clock Modules

Compiete alarm clocks ready to hook up Compiete alarm clocks ready to hook up with transtormer and switches.
pact with $.50^{\prime \prime}$ and 84^{4} digits. MA 1002 A . C or $E .50^{\circ}$ $102 \mathrm{P3}$ Transtormer MA1010A. C or E 84 102P2 Transformer Special transtormer and six $\$ 2.25$ Special transtormer and six switcnes when
purchased with module

Stopwatch/Timer Kit \$55.00 4 Digit. 7 function programmable stopwatchAımer Two PC boards. components and case Crystal controlled this kit is excellent for rally and events as well as navigational. photography and for appliance control.

Auto Clock Kit \$15.95

DC clock with $4-50^{\prime \prime}$ displays. Uses Na tional MA1012 module with alarm option Crystal time base PC boards and full instructions. Add $\$ 3.95$ for a beautiful dark gray case ready to install. This is the best value avalable anywhere

AMAZING \& HARD-TO-FIND SCIENCE BUYS ALTERNATE ENERGY SPACE AGE HOBBIES

Remarkably clearer reception ol ball games far off, your old hometown, up to 3000 mi . away "subject to local cond " deluxe Ultrasensitive indoor directional AM Antenna for hi-fi, tuner in puts.
No. 72,263AV ...(37 $4 \times 9^{\left.1 / 16 \times 11^{\prime}\right) \ldots} \$ 117.50$ Ppd.
SAVE 50\%! 8×20 MONOCULAR

Top quality Spy Scope. a $\$ 30$ value, now $\$ 14.95$! Special purchase saves you $50 \% 100 \%$ coated optics: 393 ft . field of pocket purse, glove box No.1568AV .. \$14.95 Ppd.

WALL radio surplus Philco-Ford radio chas-
sis ($\left.141 / 4 \times 13^{13 / 16 \times 3} 1 / 2^{\prime \prime}\right)$ mounts anywhere. 11 transist., AM/FM hi-sens. tuner, AFC. $2^{3 / 3} 4^{\prime \prime}$ dia. speaker. Orig. cost $\$ 30$ ea. in 3,000 quant. Retail over $\$ 40$. No. 72,275AV (NEW! READY TO PLAY!) \$19.95 Ppd SAVE $\$ 6$ MORE! BUY 3 OR MORE @ \$17.95 Ppd. NASA-CHOSEN FOR APOLLO/SOYUZ

The Astronauts used this super 20×60 binocular (modified) to view Earth! Big 60 mm objective lenses: $173-\mathrm{ff}$. field of view at 1060 yds. Relative brightness. 9.0 Fully coated optics. more!
No. 1556AV($91 / 4 \times 81 / 2^{\prime \prime} ; 47.5$ oz) $\$ 99.95$ Ppd.
SOLAR ENERGY CUBE

Demonstration of sunlight converting to kinetic energy! Clear plastic cube in sun with its 3 silicon solar cells powers motor produces $1.5 v$ DC, 825 ma . No. 42,287AV ($4 \times 4 \times 4^{\prime \prime}$) $\ldots \ldots \$ 23.95$ Ppd. LOW COST PORT. INFRA-RED EYE
 self-cont. scope (90' nite vision) has 6032 IR converter tube triplet eyepiece. $1.6 \times$ Not avail to Cal. res. except spec. au th'd.
No. 1683AV (6,12v DC)\$299.95 Ppd. No. 1685AV (SUPER 2.5X BINOC.) $\$ 329.95$ Ppd. PRO ELECTRONIC SOUND CATCHER
Parabolic mike w/ 183/4" transparent reflecting shield \& 2
I. C.s in amplifier magnifies signals $100 \times$ perer magnities mikes. Catch sounds never bef. heard; highest signal to noise ratio poss. $51 / 21$

$$
\text { No. } 1649 \text { AV (REQ. } 29 \text { V BATT.) } \$ 299.00 \text { Ppd. }
$$ 15% EFFICIENT SOLAR CELL!

 Largest, most powerful ever for
terrestrial use, to build solar panels where max power pe unt area is req. Output up to 12w per sq. ft . Produces 8 A @ .45 v ; 38w output. 2" $\times 2^{\prime \prime}$ sq No. 42,514AV. $\$ 39.95$ Ppd. MEASURE WIND SPEED ANYWHERE Hold handy (16 oz.!) low cost
Anemometer into the wind, Anemometer into the wind, quickly read wind speed on its big dial-from 5 to 70 mph . Acc to $\pm 3 \%$ of full scale (2.1 mph), no batts, adjustments, recalibration req.! (71/2" HIGH) No. 42,428AV.. $\$ 19.95$ Ppd.
QUALITY DETECTOR UNDER \$40

Our fully transistorized BFO unit ρ Powerfute a quarter at 18 ". amplifier circuit. Comp. to others priced 50% more! Aluminum, just 2 lb .
0,222 AV \$39.95 Ppd.
EDMUND
300 Edsc
(609) 547-3488

Two sources of perfection in stereo sound.

Match one to your equipment

"The right Pickering Cartridge for your equipment is the best Cartridge money can buy."

We've been saying that for years; and tens of thousands of consumers have profited by applying this principle in assembling their playback systems

If you have a fine manual turntable, the XSV/3000 is a perfect choice

If you have a high quality automatic turntable, then installing an $\mathrm{XV}-15 / 625 \mathrm{E}$ in its tone arm is a perfect choice

The summary advice of Stereo's Lab Test, in an unusual dual product review, we think brilliantly states our position: "The XV-15/625E offers performance per dollar; the XSV/3000, the higher absolute performance level." That makes both of these cartridges best buys!

FREE!

Pickering's new XSV/3000 is a remarkable development. It possesses our trademarked Stereohedron Stylus Tip. designed to assure the least record wear and the longest stylus life achievable in these times with a stereo cartridge. Its frequency response is extraordinarily smooth and flat; its channel separation is exceptional; its transient response affords superb definition. It represents a whole new concept of excellence in stereo cartridges

Read the whole evaluation report. Send for your tree copy of the Stereo "Lab Test" reprint; write to Pickering \& Co., Inc. 101 Sunnyside Blvd., Plainview, N.Y. 11803. Department PE-5 PICKERING \& CO. INC., COPYRIGHT 1977

That bad language on your CB may not be bad language.

It may be bad CB.

Every CBer knows who the enemy is. Static
And while nobody yet has come up with a way to kill it, Pace has hurt it. A lot
Because every Pace CB has a minimum of six noise suppressors built into it. Some as many as nine!
So, while there's still no such thing as noise-free CB, a Pace comes as close to it as you're going to get.

Pace. We're very bluenosed about bad language So we're doing everything
we can to clean up the
CB airwaves.
pace cB BY PATHCOM INC., HARBOR CITY, CA 90710

When you've got a Pace

 40-channel CB, you've got the world by the ears.PACE 40 CHANNEL MODEL \#8015

[^0]: Capacitors : Controls • Fastening Jevices • Resistors • Security Products • Semiconductors • Solderless Terminals • Switches

[^1]: shipping and handling Sit available in Cimada.

[^2]: Note: The two methods are described separately on the following two pages. Methods of transferring from artwork to pc board are given on the final page of this article.

[^3]: *Receptıon quality, East Coast (West Coast) locatıon: G good. F fair, P poor

 * Not intended lor Noith America, hut recervable satistactorily

 Days refer to local date in target area

