Popular Electronics

How to Design Power Supplies Easy-to-build LED Projects

 Microprocessor Microcourse, Part II16-PAGE CB RADIO SUPPLEMENT, INCLUDING Buyers Guide to Super CB Mobile Transceivers

6L 7n O Ofid 26098080 dWJ 969089
Sharp RT-3388 Computer-controlled Cassette Deck
In This Wharfedale E-50 High-efficiency Speaker System Issue

Introducing the mobile that can move you out of the world of the ordinary and into the world of the serious CB'er The Cobra 138XLR Single Sideband. Sidebanding puts you in your own private world. A world where there's less congestion More privacy. More time to talk

It's all possible because instead of 40 channels you get your choice of 120 channels. Both AM and SSB. And instead of 4 watts of legal power you get 12 watts of legal power. So you get almost double the range of AM
With the 138XLR Single Sideband there's less background noise and less interference. So there's cleaner, clearer reception. Because like all Cobras, the 138XLR SSB is engineered to punch through loud and clear. Even in crowded metropolitan areas

And like all Cobras it comes equipped with such standard features as an easy-to-read LED channel indicator. Switchable noise blanking and limiting An RF/signal strength meter. And Cobra'sexclusive DynaMike gain control You'll find the 138XLR SSB wherever Cobras are sold. Which is almost everywhere. Because Cobra's got a nationwide network of dealers and Authorized Service Centers offering sales, installation, service and advice. So come on in And move on up.

Punches through loud and clear.
Cobra Communications Products DYNASCAN CORPORATION
6460 W Cortland St., Chicago, Illinois 60635

Write for color brochure

EXPORTERS: Empire • Planview N Y • CANADA Atlas Electronics • Ontario
CIRCLE NO 13 ON FREE INFORMATION CARD

If you think this is merely the world's best omni-directional CB base antenna, THINK, TWICE.

STARDUSTER II. Like its famous father, outperforms any $5 / \mathrm{s}$ wave omni-directional CB antenna ever designed. Period. But that's only half the story. We also designed it to work simultaneously on 88-108 MHz FM. It receives FM broadcasts right alongside your CB rig so you get superb double duty from one great antenna. FM reception is vertically polarized for a perfect omni pattern. Tuned traps and phasing coil for excellent performance across the entire band. And in case you're wondering, you still get the STARDUSTER's fantastic CB performance.
Tremendous 5dB gain. Our original full aperture design
that punches your signal farther out on the horizon. Plus a 500 to 1 power safety factor. Installation? STARDUSTER II's so super lightweight and compact you can carry it up a ladder and still hold onto the ladder. It's made of aircraft-grade seamless aluminum tubing, weighs just $\mathbf{4 . 0}$ pounds. You can assemble and put up this rugged beauty in minutes, and it'll stay up. Resists $\mathbf{1 0 0} \mathbf{~ m p h}$ winds.

Naturally, we pack in everything you need, even the coax splitter and 300 ohm patch cable.

STARDUSTER II. A great answer to two antenna Model M-800
before you buy any other CB antenna?
the antenna specialists co.

12435 Euclid Ave., Cleveland, OH 44106 A member of the Allen Group, Inc. Export: 2200 Shames Drive, Westbury, L.I. New York 11590
Canada: A. C. Simmonds \& Sons, Ltd.

FREQOUI

3 Sas crne it again．
3rosen re pricミard ferfor－ าaาะe tarr シrs witr าew MAX－100． The mutircde，pro escioral porta－ －le＇requenc；soun－er that gives you 7o：e range，visibility eccu－acy and
 It ar ywhe e near its Icw，low price．

VAXimum perfor nence．

YAx－1C5 is zeinch to use．It gives yol Dor． H ra $\approx u s$ readings rom 20 Hz
 －ig taccur 30 ；Fast readings with $1 / 6-$ sec upca－e and $1-\mathrm{sec}$ ．sampling －ate Precise readings，c erived from a －rys－al－iontºled tine jase with ＝pFm aicurcy Hich－sensitivity －eay nge ior signals is low as 30 $7 V$ ivitt diod $=$ overkac protection ＿p zo 20J p＝aks．
nput signals over 100 MHz auto－ רatizally fest the rno：significant ＝ig t And to ndicate IC＇w－battery con －itio land estend rema nirg battery fife，tาe entiะdispley flashes at 1 Hz ．

VAXimum versatility．Wherev－ \＃r \approx－d wrerever yo～reed accurate equenz\％Eadings $\mathrm{V} \boldsymbol{\mathrm { P }} \mathrm{X}$ cando the ob Use it with clip－eac cable sup－ －liez．Miri－vh pantenna．Or low－loss B－I re tap w th UHF ccoanectors．For ©Mar FM；－E，ham，business radio Enc Z／C t－ersmitter or receiver align－ 7eרt．Mon taring acdic and RF gen－三raiors．Chezting camputer clocks

ะาป วtาer dig ta circuits．Fe jair of death scunders and fish spctte 3 ． Trcl Jləshooting ultrasonic remgte ©ว）trals For teese，and hundrec s of cit er app ications，you＇ll finc it i－dis－ かっาsaゴき。

MAXimum visibility． $\mathrm{NA} \times-100$ fミet ures a big brigh： $0.6^{\prime \prime} \mathrm{mL}$ tipiexed $\delta-{ }^{-1}$ git LED display，with leacinc－ zerc blanking．Sכ you don＇－rave tc ©q」 it or work un close．Anc MきX＇s f F－up stand is buirt－in．

MAXimum flexibility．［14Az－－0］ （ J כrates fror fcurpower soursきs for L sein a jor field．Irternal alka i－e or NiCad baiterizs． 110 or 220% wh （ 7 a ger eliminator． 12 V withaut）－ ricbile cigarette－fignter adante－＇

MAXimum value．Wi．h all ${ }^{-s}$ imp $\exists \underset{\sim}{c}$ ve specs，you＇d expect $\sqrt{14}$ ：
 cor alste with c ip－lead cab こ 3าd ap cat ons／inslruction manua Eut t－at＇s anviher nice thing about $N-A X$ ： trclegh it＇s accurate enough for kat use，t＇s well witt in the reach of $r>b$－ L رists＇a a C CB－ers＇budgets

D：aer today Call 203－E24－3103 （East Coast）Cr 415－421－8872（：Ves： C J．aミt）： 9 a．m．-5 p．m．local lime．vajor ciec t cards azcepled．Or see ycu CS～dealer．Prices slightls rigrer cutide JSA．

Specifications．

 Batetime： 1 sex．Resolation： 1 tz $A z-$ zuracy：\pm－count＋tine base emer．Inpu： In Jedance： 1 M $\Omega / 56$ pF Coup Ent：AC．Sine Weve Sensitisity： 30 mVR US 050 NHz ．It－ temal Time Base Frequency： $35795<5 \mathrm{NHz}$ jrystal osc．Setalility：± 3 ppп $\frac{\tilde{t}}{} 25^{\circ} \mathrm{C}$ ． Tamp－Stability：Better thar $0 . \bar{c} 3 \mathrm{pm} / /^{\circ} \mathrm{C}$ ， J－50 ${ }^{\circ} \mathrm{C}$ ．Max．Aying： 1 C ppraryeec Jisplav： Eight 6＂LE［＇dgits；anti－gla e w ajow．Leas－ cem blanking：cecimal poirtafreers between Sih and 7th cige when imout excefds 1 NHz Dverflow：with signals jver $33,999.999 \mathrm{~Hz}$ most significan：deft har d）d cit fashes allow ng readings n exeess of 100 MHz Display jpiate：1／6－sezond plus 1 sec．gete tirne．Low Battery ind cetor：When power surply falls Je，ww 6.6 VDC ，all digits last © 1 Hz rate． ＝tashing display extends batieryl te．Pawer： \mathfrak{j} 7．A Alkaline or MiCad cels（interen）：Exterre： 1－ 0 or 220／MCE iminat3／Chergar，Auto cina Gete lighter adaper；7．2－100－LCe：t supply： Bat．Charging 12－14hr Sire（IWD）： $1.75^{\circ}<$ $5.63^{\prime \prime} \times 7.75^{\prime \prime}(445 \times 14.50 \times 9 . \mathrm{EC} 5 \mathrm{~m}$ ）
Weight：Less thân 1.5 lt ．（ 0.38 hc, w／batleries． 4czessories Included＝Clif－lead inputcable nanual．
SCNTINENTAL BFECIALTES COPAORAIOM

70 Fulton Terrace，Eoy 1942，New Haven． $\mathbf{C}^{-} 36509$ 203－624－3103 TW؛ 70－465－1227 NEST COAST：S51～Elifornia 도．，San Frarcisco，CA 9－1－4 \＄15－421－8872 TW＊910－372－7992 3REAT BRITAIN CEC UK LID
Sru Road，North Folt tam Tradng Eatate
＝6t ram，Middlesex England．
J1－290－6782 In＇l Flex：851－831－3E63
SA A ADA：Len Fnker Lid．：Ontario
aricie no． 17 ON FREE informaticn cazid

Coming Next
 Month

- MAGNETOMETERS FOR INVESTIGATING UFO'S
- MICROPROCESSOR MICROCOURSE, PART 3
- ADDING TRIGGER SWEEP TO AN OSCILLOSCOPE

TEST REPORTS:
Dynaco Stereo 416
Power Amplifier
Philips AH-673
AM/Stereo FM Tuner
Heath HW-2036 2-meter
AM Transceiver
Sencore CB41
CB Performance Tester

Cover Art by George Kelvin

POPULAR ELECTRONICS April 1978, Volume 13. Number 4. Published monthly at One Park Avenue. New York. NY 10016 . One year subscrip tion rate for U.S. and Possessions $\$ 12.00$; Cana da. $\$ 15.00$, all other countries. $\$ 17.00$ (cash or ders only, payable in U.S. currency). Second Clas postage paid at New York, NY and at additional malling offices. Authorized as second class mail by the Post Otice Departmen. Onawa, Canada, an for payment of postage in cash

POPULAR ELECTRONICS including ELECTRON
ICS WORL.D. Trade Mark Registered indexed in
the Reader's Guide to Periodical Literature
COPYRIGHT 1978 BY ZIFF-DAVIS PUBLISH
ING COMPANY. ALL RIGHTS RESERVED
ZIff-Davis also publishes Boating, Car and Driv er, Cycle. Flying. Modern Bride. Popular Photography. Sking and Stereo Review

Material in this publication may not be repro duced in any form without permission. Requests for permission should be directed to Jerty Sctneider. Rights and Permissions, Ziff-Davis Publishing Co. One Park Ave., New York, NY 10016
Edilorial correspondence: POPULAR ELECTRONICS, I Park Ave.. New York. NY 10016. Edt torial contributions must be accompanued by return postage and will be trandled with reasonable care, however, publisher assumes no responsiblity for return or safely of manuscripts, ant work or madels.

Forms 3579 and all subscription corre spondence: POPULAR ELECTRONICS Circulation Dept. P.O. Box 2774, Boulder CO 80302 . Please allow at least eight weeks for change of address. Include your old ad dress, enclosing, if possible, an address label from a recent issue

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Feature Articles

THE POWER RACE—WHEN WILL IT END / Julian Hirsch HOW TO DESIGN \& BUILD POWER SUPPLIES/ Joseph Carr

Part 1: Basics of transformers, rectifiers, filters, regulators and protection circuits.
MICROPROCESSOR MICROCOURSE / Forrest M. Mims
Part 2: Basic digital logic.
HOW ELECTRONIC MUSIC SYNTHESIZERS WORK / John S. Simonton, Jr. Noise generators, instrument dynamics and voltage control.

Construction Articles

BUILD A COMPUTER MUSIC BOX PERIPHERAL / Martin Smaha
Low-cost, 12 -tone, 4 -octave music generator also produces test signals.
FOUR EASY-TO-BUILD LED PROJECTS / Ray Wilkins
A blinker. flasher, binary counter, or wheel of fortune.

Special Focus on CB Radio

CB TODAY \& WHERE IT'S GOING
BUYERS GUIDE TO SUPER MOBILE TRANSCEIVERS / Ivan Berger
Specifications and necessary buying information for SSB and AM rigs
ABOUT THIS MONTH'S COVER
CHOOSING A MOBILE CB ANTENNA/ John J. McVeigh
HOW TO INSTALL / Ivan Berger
Mobile CB transceivers and antennas.

Columns

STEREO SCENE / Ralph Hodges With the High Rollers in Vegas.
EXPERIMENTER'S CORNER / Forrest M. Mims
Getting Acquainted with CMOS
HOBBY SCENE O\&A / John McVeigh
DX LISTENING / Glenn Hauser
Norr-English Broadcasts to North America.
COMPUTER BITS / Leslie Solomon High-Resolution Graphics

Julian Hirsch Audio Reports

HARMAN-KARDON MODEL 730 STEREO RECEIVER
SHARP MODEL RT-3388 CASSETTE DECK
Wharfedale model eso Speaker system

Electronic Product Test Reports

SUPERSCOPE AIRCOMMAND AM CB TRANSCEIVER
HAZELTINE MODEL 1500 COMPUTER TERMINAL

Departments

EDITORIAL / Art Salsberg
114
115
LETTERS
NEW PRODUCTS
NEW LITERATURE
SOFTWARE SOURCES

TIPS \& TECHNIQUES
ELECTRONICS LIBRARY
OPERATION ASSIST
ELECTRONICS WORLD NEWS HIGHLIGHTS IN BRIEF

Popular Electronics

ZIFF CORPORATION
William Zill. Chairman Martin Pompadur. President Hershel 8 Sarbin, Executive Vice Presiden

Midwestern Ottice
The Patlis Group 4761 west Touhy Ave Lincolnwood. Illinois 60646, 312679-1100 Thomas Hockney, Michae Neri. Gerald E Wolfe Western Office 9025 Wilshire Boulevard. Beverty Hilis, CA 90211 213-273-8050. BRadshaw 2-1161 Western Advertising Manager Bud Dean Japan James Yagi
Oll Palace Aoyama 6-25 Minamı Aoyama 6 Chome. Minato-Ku, Tokyo 407-1930/6821 582-2851

Editorial

ELECTRONICS AT WINTER CES

CB radio was big at the giant Winter Consumer Electronics Show in Las Vegas. Many CB manufacturers unveiled their plans for the coming year: high-technology CB transceivers. This means that there will be a greater proportion of SSB models than before, and more models with microprocessor-based circuitry that makes possible keyboard entry functions, channel memory storage and scanning.

Furthermore, there were large exhibits of mobile underdash models, remotely controlled models, and indash models of every description. The latter included combined CB/AM/stereo FM models, many with a choice of cassette or 8-track tape players, adjustable shafts, and universal installation kits. Of particular note was the rising number of models with a channel-9 priority function.

A host of sophisticated base stations was displayed, too, extending in price to about $\$ 1000$. These included microprocessor-based types with keyboard entry; models with three large, independent meters; SSB models with a VFO for receive that include a separate digital frequency readout; a base station with a large, blue fluorescent/digital display; and so on.

CB antenna manufacturers were not content to simply lead with dressed-up versions of last year's line, either. For example, antenna specialists showed a mobile antenna with a solid-state circuit that displayed the traditional loading coil; GTE Sylvania displayed an electronic self-tuning trunk-mount antenna that's said to automatically maintain minimum VSWR; Avanti's new "Saturn" selectable vertical/horizontal base station omni floated high in the exhibit area; Shakespeare displayed its fiberglass "City Stick" for indoor use; American Antenna's exhibit showed its K-40 models mounted in a variety of locations on an actual automobile; and two manufacturers which were formerly OEM-only makers-Harada and True Temper-entered the consumer area.

Other personal communications highlights at the show included Prime Electronic's PR-1000 variable audio filter with $40-3000-\mathrm{Hz}$ Peak, Notch, Low-Pass positions; Stoner's matching-cabinet console system that adds a ham radio and an AM CB adapter to its SSB-only base station; Wilson's WR-500 rotor, with a disctype brake; and Panasonic's $49-\mathrm{MHz}$ "Walkie Talkie" entry.

Rumors were rife, too. They included development of a computer interface adapter so that CB'ers can communicate computer-to-computer over the air (there's a legality question on this, though); an FCC proposal to permit ASCII as well as Baudot; and illegal use of 27.505 MHz for Morse code practice (as if the FCC didn't have enough trouble with other violations).

In other product categories, highlights were TV receivers with dual viewing channels; a raft of high-quality auto-sound products which included power boosters and graphic equalizers for car use, scanners with microprocessors, an X / K band radar detector from Convoy that uses a parabolic antenna in a standard fog-lamp housing; no-solder BNC connectors from Cambridge; innumerable projection TV systems and VCR's; calculators with new twists such as Toshiba's LCD-display pocket notebook that stores names, addresses, and phone numbers; Cannon's mini desktop with dual displays to show memory content or calculating process figures; Casio's pocket calculator/alarm clock/timer; and Sinclair's $\$ 34.95$ programmable with a library of 290 programs. Computers and games essentially joined microprocessors at the show. This will be noted next month in our "Computer Bits."

In short, this was a most exciting show, with some 550 exhibitors who used more than $300,000 \mathrm{sq} \mathrm{ft}$ of space. (About one third of the show was devoted to hi-fi equipment, covered by Ralph Hodges in this month's Stereo Scene.) So it looks like a good year coming up!

POPULAR ELECTRONICS

Pocket CB

New integrated circuit technology and a major electronic breakthrough brings you the world's smallest citizens band transceiver.

Scientists have produced a personal communications system so small that it can easily fit in your pocket. It's called the PocketCom. and it replaces larger units that cost considerably more.

MANY PERSONAL USES

An executive can now talk with anybody in his office, his factory, or job site. The housewife can find her children at a busy shopping center. The motorist can signal for help in an emergency. The salesman, the construction foreman, the traveler, the sportsman, the hobbyist - everybody can use the PocketCom.

LONG RANGE COMMUNICATIONS

The PocketCom's range is limited only by its 100 milliwatt power and the number of metal objects between units. Its power reaches from a few blocks in the city to several miles on a lake. Its receiver is so sensitve that signals sent from stronger citizen band stations several miles away can be picked up.

VERY SIMPLE OPERATION

To use the PocketCom: simply turn it on, extend the antenna, press a button to transmit, and release it to listen. And no FCC license is required to operate it. The PocketCom has two Channels-channel 14 and an optional second channel. Plug in one of the other 22 citizen band crystals, and slide the channel selector to the second position. Crystals for the second channel cost $\$ 7.95$ and can only be ordered after receipt of your unit.

The PocketCom components are equivalent to 112 transistors whereas most comparable units contain only twelve.

A MAJOR BREAKTHROUGH

The PocketCom's small size results from a breakthrough in the solid-state device that made the pocket calculator a reality. Scientists took 112 iransistors, integrated them on a micro-silicon wafer, and produced the world's first transceiver linear integrated circuit. This major breakthrough not only reduced the size of radio components but improved their dependability and performance.

BEEP-TONE PAGING SYSTEM

You can page another PocketCom user, within close range, by simply pressing the PocketCom's call A beep tone sounds on the other unit if it has been left in the standby mode. In the standby mode, the unit is silent and can be kept on for weeks without draining the batteries.

SUPERIOR FEATURES

Just check the advanced features now possible because of this new circuit breakthrough: 1) Incoming signals are amplified several million times compared to only 100,000 times on comparable conventional systems. 2) Even with a 60 decibel difference in signal strength. the unit's automatic gain control will bring up each incoming signal to a maximum uniform level. 3) A high squelch sensitivity (0.7 microvolts) permits noiseless operation without squelching weak signals.

EXTRA LONG BATTERY LIFE

The PocketCom has a light-emitting diode low-battery indicator that tells you when your ' N ' cell batteries require replacement. The integrated circuit requires such low power that the two batteries, with average use, will last weeks without running down.

The PocketCom can be used as a pager, an intercom, a telephone or even a security device.

MULTIPLEX INTERCOM

Many businesses can use the PockerCom as a multiplex intercom. Each employee carries a unit tuned to a different channel. A citizen band base station with 23 channels is used to page each PocketCom. The results: an inexpensive and flexible multiplex intercom system for large construction sites, factories, offices, or farms

NATIONAL SERVICE

The PocketCom is manufactured exclusively for JS\&A and is the unit currently used on the hit TV show, Charlie's Angels. JS\&A is America's largest supplier of space-age productsfurther assurance that your modest investment is well protected. The PocketCom should give you years of trouble-free service. However, should service ever be required, simply slip your 5 -ounce PocketCom into its handy mailer and send it to our prompt national service-by-mail center.

The PocketCom measures approximately $3 / 4$ $\times 11 / 2^{\prime \prime} \times 512^{\prime \prime}$ and easily fits into vour shirt pocket. The unit can be used as a personal communications link for business or pleasure.

GIVE IT A REAL WORKOUT
Remember the first time you saw a pocket calculator? It probably seemed unbelievable. The PocketCom may also seem unbelievable, so we give you the opportunity to personally examine one without obligation. Order only two units on a trial basis. Then really test them. Test the range, the sensitivity, the convenience. Test them under your everyday conditions, and compare the PocketCom with larger units

After you are absolutely convinced that the PocketCom is indeed an advanced product breakthrough, order additional units, crystals, or accessories on a priority basis as one of our established customers. If, however, the PocketCom does not suit your particular requirements, then return your units within ten days after receipt for a prompt and courteous refund. You cannot lose. Here is your opportunity to test an advanced space-age product at absolutely no risk.

A COMPLETE PACKAGE

Each PocketCom comes complete with batteries, high-performance Channel 14 crystals, complete instructions, and a 90-day parts and labor warranty. Send $\$ 19.95$ per unit (or $\$ 39.90$ for two) plus $\$ 2.50$ per order for postage, insurance, and handling, (Illinois residents add 5% sales tax.) or credit card buyers may call our toll-free number. But don't delay.

Personal communications is the future of communications. Join the revolution. Order your PocketComs at no obligation today.

NEW LOW PRICE!

Credit Card Buyers Call Toll-Free $4-\underset{\substack{\text { per } \\ \text { unit }}}{\substack{2}}$
*Sold originally for $\$ 40$ per unit.

Dept. PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-9000
CALL TOLL-FREE. . . . 800 323-6400
In Illinois call (312) 498-6900
© © JS\&A Group, Inc., 1977

Letters

CHEERS FOR "EXPERIMENTER'S CORNER"

Until I read the February, March, November. and December 1977 "Experimenter's Corner," I was in the dark about the digital IC's discussed. Now, I see the light. Thanks popular Electronics and Forrest Mims. Let's have more, more. -C. Britton, Scarborough, Canada.

INTERNATIONAL LAW ON LICENSING

I take exception to the comments made by Gil Duddies in the "Letters" column in the October 1977 issue. It is international law-not the choice of the American citizen-that gives hams license to operate on the airwaves. The US is just one of the hundreds of member countries of the International Telecommunications Union (ITU) that make up the rules and regulations by which radio oper-
ations are governed. The suggestion that a technically competent person who does not demonstrate ability in Morse Code should be given a license is covered by Article 41 Section 3 Paragraph 1 of the ITU regulations: "Any person operating the apparatus of an amateur station shall have proved that he is able to send correctly by hand and to receive correctly by ear texts in Morse code signals. Administrations may, however, waive this requirement for stations making use exclusively of frequencies above 144 MHz .'
Again quoting from the ITU regulations, Article 41 Section 3 Paragraph 2: "Administrations shall take measures as they judge necessary to verify the technical qualifications of any person operating the apparatus of an amateur station.'
So according to the ITU, an applicant for an amateur license must prove technical competence and ability to send and receive code before a license can be granted. -Dr. Jerrold L. Patz, K1PKT, Wrentham, MA

LIKES SWL ARTICLES

I was very pleased to discover the SWL features in the November 1977 issue of Popular Electronics. Mr. Woods' SWL schedules are accurate and extremely useful. Mr. Hauser's article is also most interesting. It is gratifying to see the emphasis placed on the program material instead of the search for rare DX. -Arthur Crookshank, New York, NY

ELF ADDITIONS

I would like to add my name to what I am sure is a long list of satisfied subscribers who have built the "COSMAC Elf Microcomputer" (August 1976). Being an experimenter, I would like to show off my addition to the original Elf. The photos shown here are representative programs that demonstrate my 32-character oscilloscope display. The circuit I am using for this display is an adaptation of the "Scopewriter" featured in the August 1974 issue of Popular Electronics.

Photo 1 is self-explanatory. An ASCII keyboard was the input device for this line write/ edit program. Photo 2 is the word guessing game "Hangman" in progress. The secret word is "COSMAC," the player has de-

pressed " G," which is incorrect, and another letter has been added to HANGMAN. Photo 3 illustrates what I call a memory-map program. The eight bytes represent what is in memory, starting at the displayed address. This program allows inspection and correction of any part of memory. --Lynn R. Clock, Lompoc, CA.

RADAR DETECTOR ADVOCATE

I was quite distressed to read your Editorial comments in the November 1977 issue of Popular Electronics. There is one important point that you didn't mention, legally referred to as probable cause. Your home cannot be searched or your telephone tapped without a search warrant. A warrant is issued only if the police can show probable cause that a crime has been committed. When a "Smokey" is beaming his MR7 moving radar at you on the road with it on all the time and does not wait for probable cause, he technically violates your right to privacy.

As used by most states, radar is for revenue purposes. The $55-\mathrm{mph}$ law has not been effective in saving lives or resources, a fact documented by the Comptroller of the United States and various state agencies. If our police were instructed to go hard on drunk drivers who account for 40% of all fatal accidents, reckless drivers, and "junk" cars, the roads would be safer, especially with a return to previous speed limits. --Bence D. Boelcskevy, Vice President, BMW Car Club of America, Inc., Cambridge, MA

322 WAYS TO INCREASE YOUR ELECTRONICS KNOW-HOW!

SEND NO MONEY! We'll invoice you on 10-DAY FREE TRIAL. ALL BOOKS 100% GUARANTEED. You must be satisfied or return the books and we'll cancel the invoice
COMPUTERS, CALCULATORS \& mCROPROCESSORS
995
100
98
97
87
95
95
17
7
75
85
82
53
5
7
7
7

588-Basic Electronics Coursc $891-$ Practical Solr-State DC 628 -Basic Lectic

830 655 728

New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

Aiwa Stereo Cassette Deck

Aiwa has developed a mechanism that measures the reel rotation speed of the cassette and displays the remaining time for the tape. This device is incorporated into the company's Model AD-6550 stereo

cassette deck with built-in Dolby noisereduction system. The time is shown in minutes to the left of the meters. The deck's ratings include a wow and flutter of 0.05% weighted rms and a S / N ratio of 65 dB. Its specified frequency responses are: 30 to $13,000 \mathrm{~Hz}$ for LH and 30 to 15,000 Hz for CrO_{2} and FeCr tape. A bias fine adjustor is provided for $\mathrm{LH} /$ normal tape. A two-step peak-indicating LED system is designed to activate at +3 and +7 dB . Additionally, there is a memory rewind system. $\$ 450$.

CiRCLE NO 92 ON fREE Information caro

Avanti CB BaseStation Antenna

The Avanti Saturn CB base-station antenna is a coinductive system that combines four antennas that operate on two polarities in what is claimed to be the most unique antenna yet devised. The vertical radiator section is $22^{\prime}(6.7 \mathrm{~m})$ in height, giving it the desirable radiation of a 5/4wave design. While using vertical polarity, the horizontal section automatically serves as a ground plane for the radiator. The horizontal section consists of three half-wave dipoles that are electronically co-phased to

yield an omni-directional radiation pattern. The feed system is arranged so that equal power is applied to each dipole, via separate multipurpose balun coils. The method by which the power is equally divided and transferred to the dipole radiators is the heart of the Saturn's design.
ctrcle no 93 on free information card

Ballantine $80-\mathrm{MHz}$ Frequency Counter

Ballantine's Model 5720A frequency counter covers a direct-count range of 10 Hz to more than 80 MHz . It features an audio tone multiplier circuit that provides a claimed resolution of 0.01 Hz in only a 1 second measurement time. Frequency and ratio measurements are read out from an eight-digit jumbo LED display. Direct readings are in megahertz, kilohertz, or

hertz as selected by a front-panel switch. The POWER and range switches are the only controls required for operation of the counter. The instrument's 1-megohm input impedance is shunted by 25 pF of capacitance. The input is fully protected against over-voltage to 250 volts rms from 10 to 1000 Hz , decreasing to 10 volts rms beyond 10 MHz . Sensitivity over the entire range is specified at $50 \mathrm{mV} . \$ 195$.

CIRCLE NO 94 ON FREE INFORMATION CARD

Dual Direct-Drive Turntable

Dual's Model 604 semiautomatic turntable is direct-driven by a dc electronic motor whose speed is electronically regulated by a digital reference circuit. The tonearm is mounted in a four-point gyroscopic-type
gimbal suspension. Two mechanical antiresonance filters are housed in the counterbalance to attenuate acoustic feedback and parasitic resonances. The straight-line tubular tonearm offers what is claimed to be maximum rigidity with minimum mass. Other features include: mechanical sensor to locate lead-in grooves on $12^{\prime \prime}$ and $7^{\prime \prime}$ (30.5 and 17.8 cm) discs; damped cueing system; automatic tonearm return and

shutoff at end of play; 10% pitch control and illuminated strobe; and die-cast platter. Rumble is rated at greater than 70 dB and wow and flutter at less than 0.03\%. Supplied with low-profile base and dust cover. $\$ 250$.

CIRCLE NO 95 ON fREE INFORMATION CARD

Philips Portable Oscilloscope

A portable $15-\mathrm{MHz} / 2-\mathrm{mV}$ oscilloscope, designated the Model PM 3211, is available from Philips Test \& Measuring Instruments, Inc. The scope features comprehensive display and triggering facilities and a double-insulated power supply that requires no grounding to eliminate hum and spurious signals. Triggering can be in auto or level set and multi-sourced, eliminating the need to change probes. Channel B can be used as an X input to facilitate

$X-Y$ displays with calibrated attenuation of both X and Y inputs. It can also be inverted and, with the scope's ADD function, can display $A+B$. An 18-speed timebase has a vernier control for simplified phase and timing measurements. $\$ 875$, including two probes

CIRCLE NO 96 ON FREE information card

Genesis
 Speaker System

The Model 3 speaker system from Genesis Physics Corp. employs three specialized drivers, each of which is claimed to be engineered for extremely long linear excursion relative to cone size. This approach is said to provide the large power handling capability of larger-diameter drivers with the sonic superiority of small, lightweight drivers with respect to transient response, suppression of resonance distortion and

coloration, and full frequency dispersion. A passive radiator extends the system's low-frequency limits. The midrange driver is housed in an acoustically isolated enclosure, and the tweeter is damped by a vis cous magnetic ferrofluid. A specially designed crossover network is said to preserve a high degree of phase integrity. $\$ 299.50$.

CIRCLE NO 97 ON FREE INFORMATION CARD

SJE Morse Code Typewriter

S.J. Engineering's Model SMCT simulated Morse-code typewriter lets an aspiring ham radio operator learn and send Morse code simply by touching a built-in probe to selected letters and numerals. Once a
character is touched with the probe, the typewriter self-produces and completes the equivalent Morse-code output for that character. Speed is adjustable from 5 to 60 wpm. Also adjustable are the volume level and tone. The typewriter features two outputs: audio for learn/practice and reed relay for making on-the-air contacts. Power for the CMOS circuitry is from two 9 -volt batteries (not supplied). \$99.95, wired and tested; \$69.95, kit

```
GIRCLE NO 98 ON FREE INFORMATION CARO
```


Heath Electronic Cruise Control

According to the Heath Company, its new Model CS-1048 electronic cruise control

can provide increased fuel mileage and promote driving safety by reducing fatigue on long trips. The device is completely electronically controlled. Accuracy is reported to be within 2 mph of the preset speed regardless of load and other variables. A "resume" memory holds the preset speed. In addition, the cruise control is said to be capable of operation with both manual and automatic transmissions. It can also be removed from one vehicle and reinstalled in another vehicle with a minimum of changes. The device comes as-

[^0]sembled, ready for installation in vehicles having open driveshafts, as most cars do. Catalog price is $\$ 79.95$.

```
circle no go on free information caro
```


Pioneer AM/Stereo FM Receiver

The Model SX-1280 AM/sterec FM receiver from Pioneer is rated at 185 watts/channel minimum into 8 ohms from 20 to

Does the equalizer you're considering offer full ten band control with symmetrical "mirrorimage" boost and cut responses centered on ISO preferred octave bands? Does it have permanently-lubricated 60 mm metal-cased sliders with metal shafts and center click detents? Do the specs tell you what to expect at all settings . . . or only at the "flat" setting. where the critical tuned networks are bypassed? Does it employ advanced hum \mathcal{E} saturation-free "gyrator" simulated inductors on all low and mid-frequency bands? How about truly differential balanced and unbalanced inputs and outputs for use in any audio system, amateur or pro? And "fit anywhere" packaging designed for 19" rack, in-wall, inconsole or optional wood cabinet mounting? What about truly flat response (both amplitude and phase angle) at the center reference setting?
WE BELIEVE IN OUR PRODUCTS. We want you to see them . . . read our fully illustrated assembly and applications guide . . . inspect the quality of the components . . . at no risk to you! Simply use the coupon below to indicate the item(s) you want. your name and address and enclose a check or money order (no COD or bankcards) for the full amount. Upon receipt of your completed order, we'll rush your kit(s) to you, pre.paid shipping in the U.S.A.
After careful inspection of the kit(s), you may return any or all items in their original unassembled condition for a full immediate refund if you are not totally satisfied ... (no questions asked). And, if you decide to keep and build the kit(s), our normal guarantee on the specs and parts still applies . . . if your properly assembled kit(s) fail to operate as stated, we will exchange any defective parts free for the first 90 days.

 (EQ.10M Single EQ module kit (mono) less power supply \$ 65.00
) EQ.10SP Two EQ module kits (stero) plus PS. 4 power supply kit
) EQ.10QP Four EQ module kits (quad) plus PS 4 power supply kit
 () EQ. 1082 Pight EQ module kits plus two PS. 4 power supply kits
) PS. 4 Power supply kit (open frame) powers up to four modules
 () EQ.10WC Walnut veneer (genuine wood) cabinet fits EQ.10SP kit $\$ 150.00$ $\$ 275.00$ $\$ 540.00$) RA. 2 Rack mount kit
 Washington state residents add 5.4% state sales tax. Returns of unassembled kits for refund must be made winhin 10 days of receipt and returned items must be packed in original condition, using original packing materiais. Prices and trial offer valid for orders postmarked on or before July 31, 1978. Outside U.S. check reader service card for ordering information.

NAME
ADDRESS
CITY \qquad STATE
ZIP
Delta-Graph Electronics Company
P.O. Box 247 Northgate Station • Seattle, WA. 98125 • (206)525-7196 CIRCle no 19 on free information caro

$20,000 \mathrm{~Hz}$ at no more than 0.03% THD. Its power amplifier section employs a directcoupled OCL design, while separate power supplies are used for the two channels The AM/FM tuner uses a MOSFET in the $r-f$ mixing stage and a JFET in the mixing buffer stage. FM sensitivity is 9.8 dBf ; capture ratio, 1.0 dB . Two of the four meters in the receiver are used for indicating power, separately for each channel. They respond to output powers from 0.01 to 370 watts without requiring sensitivity switching. The volume control is a 32 -step attenuator type. Built-in are high and low filters, audible multipath switch, $25-\mu \mathrm{S}$ FM deemphasis switch. stereo adapter in/out terminals and switch. $\$ 900$

```
circle no gg on free information card
```


CPI AM/SSB CB Base Station

The Ultra CP-2000B "limited-edition" CB base station from Communications Power Inc., employs a modulator that is said to provide an unusually high level of modulation without exceeding FCC specifications. Spurious response is rated at -70 dB . The transmitter is said to have an infinite SWR mismatch tolerance. Specifications for the single-conversion receiver include -70 dB i-f rejection. -80 dB adjacent-channel rejection, and -85 dB intermodulation characteristics. Built in are a switchable speech

compressor, switchable anl/noise blanker, r - f gain control with automatic override, and microphone gain control. Separate r-f output power/S and SWR calibration meters are provided. An optional Model BC-2000 base-station console provides: 7 digit frequency counter; 6-digit 12/24-hour clock; FET receive preamplifier; dual antenna tuner; dual antenna switch; and -50-dB TVI filter. \$600.

[^1]
MORE base justa

Realistic ${ }^{(}$invents the base CB that's also a control center. Perfect for home, office, small warehouse or dispatcher-type operations. The push-to-talk phone-type handset is great for private listening or noisy areas. Add a remote speaker - the CB-Fone becomes a paging/PA amplifier that lets you monitor incoming CB calls simultaneously.
Emergency? Push the red priority button and you're instantly on Channel 9. Channel selection is electronic. Two buttons - count-up and count-down - replace rotary switches. Push once to change channels, hold down for rapid movement through all 40 channels. Big LED readout displays the channel number and indicates "PA" in public address mode. Flip-switches for delta-tune, blanker, handset or handset-plus-console speakers, mode selection. RF gain control. Lighted SWR and S/RF meters. On-the-air and modulation lights. AC and 12VDC versatility, positive or negative ground. U.L. listed. The CB-Fone - just 249.95* buys you a station that's something else!

A DIVISION OF TANOY CORPORATION - FORT WORTH, TEXAS 76102 OVER 6000 LOCATIONS IN NINE COUNTRIES

New Literature

TELEX CB MIKE BOOKLET

"The CB Power Mike Fact Book" explains and discusses basic points and facts regarding CB power microphones. One important feature discussed is how a CB noise-cancelling mike keeps unwanted sound out. Other basic points covered include "Why the Microphone is a Most Important Part of Your Transmitter"; "Will a Power Mike Work With My 40 Channel Radio?"; and "The Special Advantages of CB Power Mike Headsets." The booklet, with drawings and photos, may be obtained by writing to Telex Communications, Inc., 9600 Aldrich Avenue South, Minneapolis, MN 55420

JENSEN TOOL CATALOG

A new 144-page catalog of tools for electronic and mechanical assembly is offered by Jensen Tools and Alloys. It includes over 3,000 tools in categories such as micro-tools,
test equipment, soldering equipment, tweezers, screwdrivers, cutters, drafting supplies, and power tools. Another section features tool kits and cases. Address: Jensen Tools and Alloys, 1230 South Priest Drive, Tempe, AZ 85281.

SIGNAL TRANSFORMER CATALOG

"Transformers," a 16-page publication from Signal Transformer Co., Inc., combines a short-form catalog and an application guide. It presents specifications and mechanical data on the company's line of transformers. Schematics are included. Among the components featured are the conventional power transformers, filter chokes, rectifier, high-current, step-down auto, step-up or step-down power-isolation transformers and low-cost Split/TranR and Flathead ${ }^{R}$ printed-circuit board transformers. Address: Signal Transformer Co., Inc., 500 Bayview Ave, Inwood, NY 11696.

MOTOROLA TWO-WAY RADIO TEST EQUIPMENT CATALOG

Thirty-one additions to Motorola's line of twoway radio test equipment appear in the company's new catalog. Featured are the models R-1200A service monitor, $R-1010 A$ signal generator, and S-1338A FM station monitor. Other test instruments for the maintenance of FM two-way radio communications equip-

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

ment are included. Address: Motorola Literature Distribution Center, 1301 E. Algonquin Road, Schaumburg, IL 60196.

NATIONAL SEMICONDUCTOR LED CATALOG

National Semiconductor has prepared a catalog describing its line of opto-electronic products. The catalog contains photographs, outline drawings, and specifications of red, yellow and green light emitting diode (LED) lamps, multi-digit numeric displays, small cal-culator-type numeric arrays and watch display die. An application section is included on mounting techniques for numeric displays. The catalog also contains a list of National's LED segment drivers and digit drivers, with specifications and ratings. Address: National Semiconductor Corp. 2900 Semiconductor Drive, Santa Clara, CA 95051.

MALLORY GENERAL CATALOG

A new general catalog lists over 8,000 electronic components and related products made by P.R. Mallory \& Co., Inc. Information on lines of capacitors, controls, switches, semiconductors, audible signal devices, security products, and cassette recording tape is provided. Address: Mallory Distributor Products Co., Box 1284, Indianapolis, IN 46206.

OEI COMPONENT CATALOG

The 1978 catalog of Optical Electronics, Inc., contains 41 data sheets on 18 operational amplifiers, 22 fast analog function modules, and a microcomputer. A selection guide indexes op amp modules by slewing rate, by gain-bandwidth at $\times 100$, and by settling time to 0.1%. The selection guide for function modules is arranged by model number and function: logarithmic amplifiers, sample and hold, peak sense and hold, V-F-V, D-A-D, power supplies and others. Address: Optical Electronics, Inc., Box 11140, Tucson, AR 85734

AUDIO-TECHNICA MICROPHONE GUIDE

Available from Audio-Technica, "A Brief Guide to Microphones," is an instructional booklet applicable to all brands of microphones. The 15 -page publication explains microphones through 8 basic terms: dynamic, condenser, omnidirectional, unidirectional (or cardioid), proximity effect, feedback, impedance and sensitivity. Address: AudioTechnica U.S., Inc., 33 Shiawassee Ave., Fairlawn, OH 44313

INTERFERENCE INFORMATION

Interference and power-line surge damage common to audio equipment and FM receivers are described in a new flyer from Electronic Specialists. Problems such as lightning protection, ac power-line hash, and loudspeaker interference pickup are included. Cures for these problems are offered. Address: Electronic Specialists, Box 122, Natick, MA 01760

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each $11-1 / 2^{\prime \prime} \times$ 8 -1/4" are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input / output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each 11-1/2" $\times 8-1 / 4^{\prime \prime}-$ and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your automobile speed and gas consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

$\$ 14^{88}$

But if you buy both courses, the total cost is only:

SEVEN-DAY MONEY-BACK GUARANTEE: If you are not satisfied with your Cambridge course, return it within 7 days for a full refund.

To order your books, complete the order form below and send it together with your check or money order to GFN Industries, Inc., 6 Commercial Street, Hicksville, N.Y. 11801.

To: GFN INDUSTRIES, INC.

6 COMMERCIAL STREET, HICKSVILLE, NY 11801
Please send me:
\qquad Sets of Design of Digital Systems $\$ 19.88$
Sets of Digital Computer Logic \& Electronics $\$ 14.88$
__ Sets of both courses $\$ 29.90$
Sales tax (N.Y. residents)
Shipping and handling $\$ 2.50$ per set
Enclosed is check/mo (payable to GFN Industries, Inc.)

Total \$
Name
Address
City/State/Zip
Prices include overseas surface mail postage.
PE4B

WITH THE HIGH ROLLERS IN VEGAS

FOR SOME TIME, the Winter Consumer Electronics Show (WCES) has been overshadowed by its much larger summertime brother. If this past January's installment was any different, it is probably because a change of venue from frigid Chicago to the comparatively benign climate of Las Vegas piqued enthusiasm, curiosity, and deeply harbored desires for a brief vacation after a grueling Christmas. It did not seem like much of a vacation from this side of the footlights, however

The new WCES (it will return to Las Vegas next year) proved considerably enlarged in attendance and square yardage, particularly since it sprawled well beyond the official Convention Center headquarters and into a host of neighboring hotels and motels in true summer CES fashion. This raised certain tactical problems. For security reasons, the hotels refused to divulge room numbers, so that my search for some exhibitors simply had to be abandoned for lack of sufficient time or a competent wilderness guide. Next year I shall be more familiar with the territory.

As usual, the show offered no challenge to its summer counterpart in sheer numbers of new audio product introductions, but several of the debuts that did take place were provocative. A sampling follows.

Musclemen. Thanks to Pioneer's new SX-1980, receivers are now up to 270 watts per channel and very probably still climbing. Happily, the newer super receivers are not growing much in size over the largest models of yesteryear. Instead, the problems involved with cooling units of this capacity are being solved on the engineering level. Pioneer's solution is a power transistor with a new body style that makes more surface area available to contact the heat sink. Combined with an internal "chimney" that encourages efficient flowthrough of air, the transistors evidently can throw off heat rapidly enough to ob-
viate the need for forced-air cooling- an impressive achievement at a time when pundits have only half-humorously predicted that the helium-cooled receiver is just around the corner. Clearly, the su-per-power receiver is well on its way to becoming commonplace. Even Sanyo, a company heretofore associated with middle-fi equpiment and clock radios, has broken new ground with the 120 -watt-per-channel JCX2900K.
In another accelerating trend, receivers, having been threatened somewhat by the growing popularity of separates, are now in the process of becoming separates themselves. Rotel introduced a receiver with a "docking" power-amplifier section a year or so ago, and Mitsubishi applied the same concept to an integrated amplifier. At WCES, Sansui
joined in with the G22000, the top model of the G Series at 220 watts per channel. The forerunners of the G Series appeared at last June's show, and this new addition continues the interesting styling that distinguishes the line
Many of the new amplifier introductions clustered around the mid-power level, an example being the Marantz 300DC power amplifier at 150 watts per channel. The Marantz unit is also indicative of a growing concern about slew rate and transient intermodulation distortion; the manufacturer lays heavy emphasis on the efforts made to control these performance parameters. Besides being augmented by a new 500 -watt-per channel (!) stereo power amplifier (the Dual 500) and an analog time-delay/ reverberation unit (Model 6000), the Phase Linear line has been completely restyled. The restyling included circuit modifications to virtually all the existing Phase Linear models, with FET inputs being miuch in evidence

Hitachi has employed MOSFET output devices in two new power amplifiers, the HMA 7500 and HMA 9500 , with 75 and 100 watts per channel, respectively. The $\$ 500$ price of the HMA 7500 would appear to be a bargain for FET amplifiers. The company also introduced a matching preamplifier, two new three-
(Continued on page 20)

The1980 Kenwoods.

No. We're not kidding. By 1980, the kind of performance these new Kenwoods deliver will be considered commonplace. Here's a summary:

1. The KA-7100 is an integrated DC amplifier with dual power supplies delivering 60 watts per channel, minimum RMS at 8 ohms from $20-20 \mathrm{kHz}$, with no more than 0.02% total harmonic distortion. Not only is that the lowest THD of any integrated amp, the KA-7100 is the lowest priced DC integrated amp on the market. ($\$ 300$ *)
2. The KT-7500 marks the next plateau for FM tuners. For optimum reception under any condition it has two independent IF bands: the narrow band virtually eliminating interference when stations are close together, the wide band for lower distortion and maximizing stereo separation. In addition, we've developed new circuitry which eliminates the high
frequency beat distortion (that is, swishing noises) thought to be inherent in stereo FM broadcast. Even we're impressed that it costs only $\$ 275$ *

This combination of separate amp and tuner not only gives you performance unheard of in other separate components, it gives you performance that will remain elusive in receivers for quite a while. The Kenwood KA-7100 and KT-7500. Solid evidence that the breakthroughs occurred ahead of schedule, and available to you now for a truly remarkable price $\$ 575^{*}$. for the pair.
*Nationally advertised value Actual prices are established by Kenwood dealers Handles optional

25 million reasons into NRI training in CB and

The CB boom means big opportunities for qualified technicians...
 learn at home in your spare time.

There are more than 25 million CB radios out there, millions more two-way radios, walkie-talkies, and other communications apparatus in use by business and industry, government, police and fire departments. And all of this equipment demands qualified technicians to maintain and repair it. In addition to knowing what you're doing, you must have an FCC Radiotelephone License to service most of it. NRI can help you get both ... the training and the license.

Learn on your own
 2-meter, digitally synthesized
 VHF transceiver or 40-channel CB.

With NRI, you learn by doing. You use the NRI Discovery Lab ${ }^{\text {mi }}$ to build and test a whole series of typical communications circuits, even assemble

Some designed-for-learning equipment you get

your own professional transistorized volt-ohm meter and a CMOS digital frequency counter. You test various types of antennas to gain a firm understanding of broadcasting principles. And finally, you assemble your own 2-meter transceiver for experiments in troubleshooting and servicing. Then, if you want to go on the air, we'll help you get your amateur license. As an alternate choice, you may elect to receive and experiment with a 40 -channel $C B$ to get more experience in this booming area.
rmTrademark McGraw-Hill
You learn in your own home, in your spare time, at your convenience. NRI's bite-size lessons and carefully matched practical experiments combine theory and bench work to give you the most effective training for your money. No need to quit your job or take night classes, you move ahead at the pace that suits you best.

NRI guarantees your FCC license.
The law requires that technicians hold an FCC Radiotelephone License to work on broadcast equipment. NRI training in Complete Communications Electronics or our CB Radio Specialist course is carefully designed to give you the special coaching so helpful in passing FCC license exams. If you fail to pass the FCC examination for radiotelephone license after graduating, NRI will refund your tuition in full. The moneyback agreement is valid for six months after completion of your course.

Send for free catalog.

 No salesman will call.Find out all the facts about NRI's Communications or CB course Or look into other areas of opportunity like TV and audio servicing, digital computer electronics, mobile communications, and more. Mail the postagepaid card today ...there are more than 25 million good reasons why.

why you should look Communications Servicing.

Or get into TV and audio servicing

NRI can train you at home to service TV equipment and audio systems. Choose from five courses that go up to our 48 -lesson Master Color TV/Audio Course. With it you get 14 kits for practical bench training and demonstrations, including NRI's exclusive, designed-for-learning, $25^{\prime \prime}$ diagonal solid state color TV, 4-channel audio system complete with speakers, and professional instruments you build and use for learning and earning. It's proven, effective training that's helped thousands of pros already. And it's the best value offered in the field. NRI's bite-size lessons speed learning, exclusive

"Power-On" training makes it real. Send card for free catalog.

Learn computer electronics

NRI trains you at home on a real digital computer. Qualified technicians are

NRI instructor/engineers

Each NRI student is assigned his own course instructor. He's there to help you over any rough spots, explain problems, and give you the advice you need as you progress toward your future. And he knows what he's talking about, because he was more than likely involved in the design of your course or some of the NRI equipment you use. NRI instructors are practical, experienced people who really know their field and do their best to pass their knowledge on to you.

You get more

for your money from NRI.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuition, topquality professional equipment, and reliable testing instruments necessary for a successful career. You can pay hundreds of dollars more at other schools, but you can't get better training.

Free catalog, no salesman will call.

Get your free catalog and discover why NRI is the leader in home technical training with over a million students, over 60 years experience in helping people build new careers. Mail the card today and get started on your new future. If card has been removed, write to:

NRI SCHOOLS
McGraw Hill Center
for Continuing Education
3939 Wisconsin Avenue
Washington, D.C. 20016
head cassette decks, and a novel directdrive turntable. Sony's pulse-width modulation amplifier has now been designated the TA-N88 and is rated at 160 watts per channel. And among SAE's new introductions is a combined integrated amplifier and parametric equalizer, the Model 2922.

Loudspeakers. Helium-cooled amplifiers we may not have, but heliumcooled speakers may finally be here. A company called Plasmatronics exhibited a mid- and high-frequency driver consisting of a small quartz cell with a small square opening in its frontal surface. A continuous stream of helium is bled into the cell in the presence of a high polarizing voltage. An eery violet glow with tinges of green and yellow promptly appears; and when an audio signal is applied (from an internal vacuum-tube amplifier), what comes out is sound.

The designer, Alan Hill, is not yet able to be totally specific about the operating principle (patent considerations are involved, I imagine); but this is clearly an ionized-gas loudspeaker with an unusually wide frequency response (down to 700 Hz) and dynamic range. Speculation about the purpose of the helium continues. Some believe that it assists in high-frequency propagation (ever heard a man speaking in a helium-oxygen atmosphere?) while others suspect it is merely a coolant (the cell radiates an impressive amount of heat). In any case, a tank of the gas lasts an estimated 300 hours, after which you must return for a refill. The Plasmatronics speaker has a conventional dynamic woofer and some very impressive frequency-response and impulse-response specifications. The associated preamplifier offered by the company is highly recommended; it has a switch to halt the helium flow.

Acoustic Research has a new top-of-the-line model, the AR9, standing over 4 feet tall and equipped with dual side-firing woofers (12 inches each) placed for optimum acoustic coupling with the nearest room boundaries. It is a fourway design with what AR says is the flattest response and highest power-handling capability it has ever achieved.

Infinity's latest speaker system, the Quantum Reference Standard, is likewise a top-of-the-line model, offered on a custom-order basis at a projected price of $\$ 6500$ the pair. They make use of vertical arrays of the EMIT film-diaphragm tweeters, to which the manufacturer is now fully committed; and they have a multi-faceted cabinet that is cer-
tainly one of the largest ever introduced to the consumer market.

JBL's new products consisted of the L50, the lowest-price three-way design in the JBL catalog, while KLH launched several additions to its Baron series. In addition, ESS presented quite a few modifications to many of its existing products and unveiled a productionready version of the Transar loudspeaker with the unique Heil woofer.

And Elsewhere. Kenwood's new top-of-the-line turntable, the KD-750, follows a number of acclaimed successes in turntable design by that manufacturer, and also incorporates a 20 -pole dc motor. (Multi-element motors are becoming increasingly favored by designers of di-rect-drive systems as the fight to eliminate any trace of cogging continues.) The Harman-Kardon/Rabco ST-8 is a thoughtful redesign of the ST-7, using the same radial tracking principle but benefitting from various refinements. AR has a rather special turntable in the works as well, but in the meantime the company offers the AR77-XB, the latest evolution of its classic AR turntable.
Listeners to older $78-\mathrm{rpm}$ recordswhich in many cases were not quite 78 rpm-have long bemoaned the lack of turntables that are continuously variable in speed. They will be glad to learn that the elusive Lenco record players are now back and firmly entrenched with Neosonic Corporation of America acting as importer and distributor. The three Lenco variable-speed models operate at anything from 30 to 86 rpm , and can be bought with and without bases.
Turntables, tuners, and cassette decks are the areas in which automation and computer techniques have found their happiest consumer application so far, and this tradition continues with a new cassette deck from Sharp/ Optonica. Incorporating all of the pro-gram-search features of previous models from this manufacturer, the new machine also has a liquid-crystal display that indicates the operating function and the time of day, as determined by a 24hour quartz-crystal clock with a sevensegment digital readout. Perhaps needless to say, the clock also functions as a timer. Therefore, the deck can be set to record any program at any time and then turn itself off, all without any operator's attention.
Another interesting cassette development is the re-emergence, of the cassette changer/player. Lenco's RAC-10 machine, capable of handling up to ten
cassettes at a time, has returned to the U.S. It is not a device for everyone, but it appears to be the single survivor of a possible trend that showed promise some years ago.

Accessories is a product category that has grown from an afterthought to a major center of consumer attention, and few accessories were as popular at this show as racks-equipment-holding racks, that is. Kenwood, Sansui, Mitsubishi, and Harman-Kardon are a few of the major companies that have followed the lead of Pioneer and Nakamichi in introducing vertically tiered equipment cabinets, some with casters, that will readily accept the 19 -inch front panels of much current equipment. Whether they will accept the varying depths and heights of different manufacturers' amplifiers, preamplifiers, and tuners is still an unanswered question, as are such matters as ventilation and provision for interconnecting cables. Optonica showed a variety of other types of cabinets to house hi-fi components. They feature push-to-open glass doors for the LP record storing section.

In the meantime, record-care accessories are proliferating beyond any hope of keeping track of all of them; even tape companies like Memorex have devised extensive lines of stylus-force gauges, record-tracking dust removers, and hand-held record decontaminators. So far, none of these new products conspicuously demonstrates any new thinking about the problem of dirt on record surfaces, but neither does any of them seem ill-suited to its purpose.

Many are calling the new ADS 10 Acoustic Dimension Synthesizer the best of the available reverberation devices for the home user. It is an entirely digital processor with a frequency response (at -20 dB) of 30 to $13,000 \mathrm{~Hz}$ and a continuously variable decay time of up to 1.6 seconds. ADS has built in a 100-watt-per-channel stereo amplifier, and includes a pair of L10 speaker syslems for rear-channel use with the package. The operation of the A-to-D/D-to-A converter is still classified, but it was revealed that a special circuit is built-in to limit the reverberation enhancement afforded to mono signals when desired. Consequently, FM programs can be listened to without the announcer sounding as if he were speaking from a cathedral floor.

All of these products should be getting some attention in these pages in months to come. And from first appearances, they will deserve it.

Para-Power (Parametric Dqualiners by SAD)

SAE has long been involved in the field of tone equalization. From cur pioneering efforts in variable turn over tone controls to our more recent advancements in graphic equalizers, we have continually searched for and developed more fexible and responsive tone networks. From these efforts comes a new powerful tool in tone equalization the Parametric Equalizer. Now you have the power of precise cont=ol.
Our 2800 Dual Four-Band and 1800 Dual Two-Band Parametrics offer you controls that not only cut and boost, but also vary the bandwidh and tune the center frequency of any segment of the audio range.

With this unique flexibility, any problem can be overcome precisely: and any effect created precisely.
With either of these equalizers, you have the power to correct any listening environment or overcome any listening problems that you are faced with. Whether you need a third octave notch filter, tailored bandwidth to resurrect a vocalist, or a tailored cut to bury an overbearing bass, the control flexibility of Parametric Equalizers can fill these needs and many more. And of course, as with all SAE products, they offer the highest in sonic performance and quality of construction.

Julian Hirsch

THE POWER RACE-WHEN WILL IT END?

IT IS EASY to be carried away by the ever-increasing power ratings of today's receivers and amplifiers. Not long ago, a basic power amplifier that could deliver 100 watts/channel rated the name "super power." (Such power levels were unheard of in receivers.) Then amplifiers began to have ratings of 200 to 250 watts, and receivers crept up to $120,150,160$, and 180 watts. Last year, the leader in the receiver power race was a giant from Marantz, rated at 250 watts/channel, but a 270 -watt receiver from Pioneer now threatens its position. In basic power amplifiers, a 500-watt/channel Rotel amplifier currently leads the race, but similarly rated amplifiers from Phase Linear and possibly others are in the offing. Apparently the end of the race is not yet in sight.

The justification for this race to greater and greater power is multifaceted. Partly, it is merely because technology now makes it possible, at reasonable cost, to generate such huge power outputs. Some of today's power transistors can dissipate hundreds of watts per device, yet are priced low enough for use in consumer products. Manufacturers can hardly be blamed for attempting to convert some of this new technology into saleable hardware. And the prices of some of these products are not unreasonable in view of their performance, though some may find the size and weight excessive for their homes.

Another side to the question of "how much power" is one of need, or at least, utility. No one will claim that a power level of hundreds of watts per channel is always necessary for good reproduction. However, there are convincing arguments that prodigious power can be used to advantage under some circumstances. If it can be utilized and if it can be generated without prohibitive expense, why not have it available in our deluxe amplifiers and receivers?

One of the two questions most often posed to me is what amount of power is needed for a good hi-fi system? Even after I narrow down the scope of the question by establishing what type of speaker systems will be used in what size room, etc., the answer is still necessarily vague and unsatisfying. What it boils down to is that you need as much power as is necessary to play music as loud as you like to hear it. While this is the literal truth, it is of little help in selecting system components. Under most home conditions, reasonably high acoustic levels can be generated
with only 1 or 2 watts of amplifier power. It is, therefore, difficult for a layman, or even an experienced audiophile, to understand how a reserve of hundreds of watts can be beneficial or justifiable.
The explanation for this "need" for high power lies in two different, though related, aspects of sound. Most natural sounds, either music or speech, are nonsinusoidal. They consist of a multitude of frequencies whose combined waveform usually has a high crest factor. The maximum instantaneous peak amplitude is many times the rms value of the waveform, computed through a complete cycle of its fundamental frequency. (In contrast, the instantaneous peak value of a sine wave is only 1.41 times its rms value.) The perceived loudness of a sound is roughly related to its average or rms value, the two usually being of the same order of magnitude. Brief peaks that exceed the rms level by a factor of 10 or 100 times are not heard as being louder. The effect is familiar to everyone who has heard the greatly increased apparent loudness of TV or radio commercials, as compared to the average program levels. The peak modulation levels are unchanged (any transmitted increase would result in illegal overmodulation), but the average level of the commercial is raised by compression so that it is heard at a much higher volume.

The second factor is the intermittent nature of music and speech. Regardless of the wave shape of the sound, it is characterized by large variations in level during the program. Musical passages may be very soft, or there may be periods of complete silence, followed by periods of very high program levels. The average level, over the entire duration of the program, is normally very much less than the maximum level attained during that interval. Thus, to reproduce either music or speech in a natural manner, the amplifier must have the capability of delivering peak outputs many times the average power.
The amount of reserve "headroom" needed in an amplifier varies widely with the program material, since all recorded and broadcast programs are limited to keep their peak levels within the limits set by the transmission medium. A headroom of only 10 dB may be adequate in many cases, but for most realistic reproduction, 20 dB is preferable.
The $20-\mathrm{dB}$ headroom is a power ratio of 100 times. If the average power during a musical passage is

Test semiconductors without testing your patience.

The real value of using a semiconductor tester should be time savings. B\&K-PRECISION semiconductor testers are designed for maximum speed and reliability to save you more time than any other testers.
B\&K-PRECISION semiconductor testers are proved as highly cost effective answers to
the needs of testing discrete semiconductor devices. Recently, they were evaluated by America's best known manufacturer of expensive test instruments and the $\$ 310$ Model 530 compared favorably with a $\$ 30,000$ custom test system! B\&K-PRECISION has a model for most every application.

The B\&K-PRECISION Model 530 is one of the most versatile semiconductor testers available and can actually perform more tests on more devices than any instrument in its price class. Features include: Exclusive patented f_{τ} measurement circuit... Non-destructive breakdown voltage testing...Automatic lead and polarity identification, in- or out-of circuit... Measurement of beta and gm...Aural and visual test indications... Testing of new power FET's. CSA listed. \$310

For value, the Model 520B industrial semiconductor tester is tough to beat. Dynapeak ${ }^{(\pi)}$ circuitry with high/ low drive allows the 5208 to work in-circuit where others won't... A complete test takes about 9 seconds ...Identifies all leads of transistors and SCR's and polarity...CSA-listed version available...'Good device" indicated visually and aurally. \$175

At only $\$ 97$, the Model 510 offers Dynapeak ${ }^{\text {cN }}$ test method reliability with pocket-size portability...LED test result indicators... Tests all types of transistors, FET's and SCR's...Digital stability never needs calibration... Complete with case and leads. \$97

When applications demand analysis of the characteristic curves of semiconductor devices, the B\&KPRECISION Model 501A is the cost-effective answer
.Displays characteristic curves for all semiconductor devices on most any scope... Non-destructive breakdown voltage tests... Simulates actual operating conditions...Internal calibration source...Current limiting protects device under test. $\$ 198$

Start testing semiconductors faster now. See your local distributor for immediate delivery.

6460 W. Cortland Avenue, Chicago, IL 60635 312/889-9087
In Canada: Atlas Electronics, Ontario - International Sales: Empire Exporters, Inc., 270 Newtown Road, Plainview, L.I.. NY 11803
about 1 watt (it could range from a few milliwatts to several watts), the amplifier will be called upon to handle an occasional peak of as much as 100 watts. "Occasional" here means as infrequently as a few milliseconds out of a half hour of playing, or perhaps as often as 10% of the time, but more likely the former. If the amplifier cannot deliver those peaks, the result will be clipping, which may be audible.

Most of us manage to enjoy our music systems without undue distress from amplifier peak clipping, even with considerably less than 100 watts of power available to us. Recorded programs rarely have more than a $10-\mathrm{dB}$ peak-to-average ratio, since they are designed for playback on mass-produced record players with very limited power capabilities. Some speaker systems are so efficient that they require only a tenth as much power as others for the same volume level.
With the foregoing in mind, why do we need "su-per-power" amplifiers, and what possible justification can there be for receivers or amplifiers that can deliver hundreds of watts per channel? The answer, or part of it, lies in the logarithmic nature of human hearing. To make a program sound twice as loud, we must increase the power ten-fold. Another doubling of apparent loudness, and we require 100 times the original average power level (and as much as 100 times that level to handle the peaks).
It might appear that there is no practical solution to the power "shortage." If our hypothetical 1-watt average program, heard at a comfortable level (and requiring from 10 to 100 watts of amplifier power in reserve just to avoid peak clipping) is to be played "just a little bit louder," we can easily find ourselves running out of power, even with a $200-$ or 300 -watt amplifier. This is not as far-fetched as it may seem. I find it very easy to clip the outputs of an amplifier rated at 200 watts/channel or more, at levels far below those that exist at a discotheque or in the vicinity of a small instrumental combo when using speakers of average efficiency.

Not surprisingly, the equipment manufacturers'
answer to the clipping problem is to make more powerful amplifiers. Unfortunately, this is no answer at all, since a 500 -watt amplifier will play only a barely detectable 3 dB louder than a 250 -watt amplifier. It is also much more likely to blow out one's speaker systems if used carelessly. Speaker systems can not handle unlimited power.

The reason for public acceptance of less-than-ideal program dynamic range in home music reproduction, in my opinion, lies in the ready availability of a knob, usually labelled volume or loudness, and found on every receiver and amplifier. We turn this knob clockwise to increase the loudness. Perhaps, if we are lucky, the program reaches what we consider a natural level and is free of unpleasant sounds. Well and good, since this is what hi-fi is all about. Suppose that before this level is reached, however, we hear obvious and unpleasant distortion. Rather than try for higher levels, most people react by turning down the volume until the distortion becomes acceptable.

In turning down the volume, we have adapted the reproduced program level to the limitations of our equipment, and are willing to accept a less-thannatural listening level. In a very short time, most of us no longer find such levels unnatural, which is very fortunate, since it is manifestly impractical to generate concert hall levels in one's home unless the neighbors are distant or deaf or both.
The foregoing is why hundreds of thousands of people are very satisfied with 20 -watt receivers, thousands more find the 60 to 80 watts of a good middlepriced receiver more than satisfactory, and only a few can justify the considerable expense of the superpower variety. Personally, I appreciate having 200 watts or so on tap when needed, but recognize that the listening benefits of even an increase to 300 or more watts will often be judged too subtle for the added cost. Of course, that will not stop manufacturers from creating such amplifiers or receivers, or dedicated audiophiles from buying them. I can only say, more power to them!
\longrightarrow

HARMAN-KARDON MODEL 730 AM/STEREO FM RECEIVER

Medium-power receiver features unusual tuning meter.

Transient performance has long been an important part of HarmanKardon's design approach to its high-fidelity products. To this end, the company has espoused amplifiers with very wide-band, low phase-shift circuits, and, as in the latest crop of H-K receivers, separate power supplies for the two channels. The Model 730 AM/stereo FM receiver that heads the current H-K re-
ceiver line embodies these design aims, although its 45 -watt output power is barely moderate by present standards.

The styling of the Model 730 is distinctive, with the front panel presenting an uncluttered, utilitarian appearance. The most unusual external feature of the receiver is its tuning meter that, on FM, is actually a quieting indicator. It indicates the reverse of the usual signal-strength meter, with its pointer deflecting downscale as signal-strength increases and noise level decreases. In effect, the me-
fer indicates S / N in a qualitative, rather than a quantitative, manner. When the pointer enters a small circle at the lower limit of its travel, the receiver is fully quieted. For AM reception, the meter's pointer swings up-scale with increasing signal strength, as is usually the case with most of the conventional signalstrength meters.

Dimensions of the Model 730 are $51 / 2^{\prime \prime}$ $H \times 17^{\prime \prime} W \times 141^{\prime \prime} D(14 \times 43 \times 37$ cm). Suggested manufacturer's price for the Model 730 is $\$ 399.95$.

Inset shows FM quieting indicator also used for AM signal strength.

Product Focus

Traditionally, the tuning meters in FM tuners and receivers indicated re-ceived-signal strength and/or centerchannel tuning. Harman-Kardon has made a change from tradition by having its Model 730 stereo receiver's meter indicate relative signal quality so that, when nulled, tuning is as near perfect as possible for maximum S/N.

The signal-quality meter system employs a discrete transistor amplifier and two tuned resonant circuits. Each resonant circuit is tuned to about 100 kHz . The signal that drives this filter/ amplifier combination is derived from an amplifier stage that follows the tuner's discriminator.

The amplifier/fitter combination amplifies the noise that appears at 100 kHz at the discriminator's output. The $100-\mathrm{kHz}$ frequency was chosen to minimize the effects of audio modulation on the meter's reading. (It prevents the meter pointer wobble common to multipath meters.)

Since it is tuned to 100 kHz and "looks" only at that frequency, the metering system is quite selective and is thus able to give a pretty good indication of S/N. (If the frequency selected were more than 100 kHz , the discriminator would roll off the response.)

The system is not a true signal minus noise meter. Rather, it indicates noise itself. The circuit employs an agc system to prevent the meter from becoming crowded at one end, which linearizes the meter scale.

General Description. During the past year or so, we have seen several amplifiers and receivers with separate power supplies for the two audio channels, some of which utilized a single common power transformer and others with separate transformers. Doing this is supposed to eliminate interaction between channels that results when a common power supply impedance is used, especially at very low frequencies. The benefits of such isolation are difficult to demonstrate by objective or subjective means. Judging from the size of the power transformers and filter capacitors used in the Model 730, there is probably little difference in material cost between the Harman-Kardon approach and simply making a single, heavy duty supply with sufficient output capacitance to provide adequate isolation. Of course, with separate power supplies there is absolutely no difference in the performance of one channel whether or not the other channel is driven. The FTCmandated preconditioning period of one hour at one third power, with both chan-
nels driven, is still necessary to bring the amplifier to a fully heated condition.

Harman-Kardon's wide-band philosophy is illustrated principally in the low-frequency response of the Model 730 , which extends to 4 Hz and below. Clearly, most of the amplifier stages are direct-coupled. In a brochure furnished with the receiver, a $20-\mathrm{Hz}$ square-wave response with only a 3% tilt is displayed to emphasize the receiver's extended low-frequency response.

On the rear apron of the receiver, there are pushbutton reset circuit breakers that protect the speaker outputs and a control shaft that permits adjustment of the FM muting threshold over a wide range. The ventilating slots at the rear of the top cover run across the width of the receiver. The output transistors and their heat sinks extend from front to rear, at the center of the receiver's chassis. Thus, the ventilating holes have very little direct cooling effect. Even so, despite the relatively large size of the receiver (for its power rating), it runs notably cool at all times

Noise and sensitivity curves for $F M$ section of receiver.

WHAT THE EXPERTS CALLED THE BEST LASTYEAR WASN'TGOOD ENOUGH FOR US. "IT CANNOT BE FAULTED."

SA9500 - Stereo Review
"AS NEAR TO PERFECT AS WE'VE ENCOUNTERED."

TX9500 - Popular Electronics

"CERTAINLY ONE OF THE BEST... AT ANY PRICE."

TX9500 - Modern Hi Fi

Last year, the experts paid Pioneer's integrated amps and tuners some of the highest compliments ever.

The challenge was obvious: to build even better amps and tuners. Amps and tuners that would not only surpass anything wéd ever built before, but anything anyone ever built betore. Here's how we did it.

THE NEW PIONEER TX9500II TUNER: EVEN CLOSER TO PERFECT.

When Popular Electronics said our TX9500 tuner was "as close to perfect" as they'd encountered, they obviously hadn't encountered our TX9500II. It features technology so advanced, some of it wasn't even perfected until this year.

Our front end, for example, features three newlydeveloped field effect transistors that work to let you pull in beautiful FM reception no matter how far you live from the transmitter. And no matter how much interference there is in your neighborhood.

Where most tuners give you one band for all FM stations, the TX9500II gives you two. A wide band with a new surface acoustic wave tilter to take advantage of strong stations, and a narrow band with five ceramic filters to remove the noise and interference from weaker ones.

And where conventional multiplex circuits accidently cut out frequencies that add depth and presence to music, the multiplex circuit in the TX9500II doesn't. It features a Pioneer-developed integrated circuit that's far more accurate than anything else around. So the music begins to sound as if it's coming live from your living room, instead of from some radio station miles away.

THE NEW SA9500II AMPLIFIER:

 HOW TO GET THE MOST OUT OF THE BEST.After building one of the world's best tuners, we had no choice but to create an amplifier that could match it.

The result is the new SA95001I. An 80^{*} watt integrated amp that was designed to let you get every-
thing out of your tuner. Perfectly.
Our output stage, for example, features a new parallel push-pull circuit that reduces total harmonic distortion to less than 0.1%. Well below the threshold of human hearing.

To all but eliminate cross-talk, the SA9500II comes with a separate power transformer for each channel, instead of the usual single transformer for both.

And where some amps give you two, or three tone controls, the SA9500II gives you four. Two for regular treble and bass, and two for extended treble and bass. They're calibrated in 2 dB click stops, which means you have a virtually endless variety of ways to get the most out of your music.

Obviously, both the SA9500II and the TX950011 are very sophisticated pieces of equipment. But all of the engineering skill that went into making them has gone into every tuner and amplifier in our new series II. No matter what the price, no matter what the specifications.

And that's something you don't have to be an expert to appreciate.

SA9500II-TX9500II

POWER MIN. RMS, 20 TO $20,000 \mathrm{~Hz}$	80	SIGNAL TO NOISE RATIO	Mono 82dB Stereo 77dB
TOTAL HARMONIC DISTORTION	0.1\%	FM SENSITIVITY (IHF'58)	1.5 uV
PHONO OVERLOAD IEVEL	300 mV	SELECTIVITY	(wide) 35dB (narrow) 85dB
INPUT: PHONO/AUX/ TAPE	2/1/2	CAPTURE RATIO	(wide) 0.8 dB (narrow) 2.0dB

*Minimum RMS continuous power output at 8 ohms, from 20 to $20,000 \mathrm{~Hz}$, with no more than 0.1% total harmonic distortion.
(N) NE BRING IT BACK ALIVE.
U.S. Pioneer Electronics Corp., 85 Oxford Drive, Moonachie, New Jersey 07074 OUS PIONEER HFCTRONICS COKP 1977

TX9500II
HIGH-EFFICIENCY SCREENS
Made of specially treated sheeting

PERFORMANCE SPECIFICATIONS			
Specification	Rating	Measured	Comment
Power Output (8 ohms, $20-20,000 \mathrm{~Hz}$)	40 W (\% 0.1\%THD	$40 \mathrm{~W} .0 .05 \%$ THD	
Clipping Power $(1000 \mathrm{~Hz})$	N / A	51 W (8 ohms) $64.8 \mathrm{~W}(4 \mathrm{ohms})$ 33.6 W (16 ohms)	
Frequency Response (1-watt output)	$\begin{aligned} & 4 \mathrm{~Hz}-140 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~Hz}-220 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB} \end{aligned}$	5 Hz is lower test limit
Rise Time	$1.5 \mu \mathrm{~s}$	$1.5 \mu \mathrm{~s}$	
Slew Rate	N / A	$9 \mathrm{~V} / \mu \mathrm{s}$	
IM Distortion $(60 / 7000 \mathrm{~Hz}, 4: 1)$	$\begin{aligned} & 0.12 \% \text { (1) } 40 \mathrm{~W} \\ & 0.15 \% \text { (a) } 1 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.056 \% \text { ((} 140 \mathrm{~W} \\ & 0.065 \% \text { (a } 1 \mathrm{~W} \end{aligned}$	
Hum \& Noise (unweighted)	-60 dB re 40 W	$\begin{aligned} & -83.6 \mathrm{~dB}(\mathrm{AUX}) \\ & -81 \mathrm{~dB}(\mathrm{PHONO}) \end{aligned}$	
Input Sensitivity (for 40-watt output)	$\begin{aligned} & 150 \mathrm{mV}(\mathrm{AUX}) \\ & 2.5 \mathrm{mV}(\mathrm{PHONO}) \end{aligned}$	$\begin{aligned} & 136 \mathrm{mV}(\mathrm{AUX}) \\ & 2.2 \mathrm{mV} \text { (PHONO) } \end{aligned}$	1000 Hz
Phono Overload $(1000 \mathrm{~Hz})$	95 mV	105 mV	
RIAA Equalization Accuracy	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$30-15,000 \mathrm{~Hz}$
FM Sensitivity:			
IHF MONO	$1.9 \mu \mathrm{~V}$	$1.85 \mu \mathrm{~V}(10.6 \mathrm{dBf})$	
-50 dB MONO	$3.5 \mu \mathrm{~V}$	$2.4 \mu \mathrm{~V}(13 \mathrm{dBf})$	
- 50 dB STEREO	$35 \mu \mathrm{~V}$	$30 \mu \mathrm{~V}(35 \mathrm{dBf})$	
Ultimate S / N	70 dB	$\begin{aligned} & 68.5 \mathrm{~dB} \text { (MONO) } \\ & 68 \mathrm{~dB} \text { (STEREO) } \end{aligned}$	
Capture Ratio	2 dB	1.76 dB	
Image Rejection	80 dB	85 dB	
AM Rejection	60 dB	70 dB	
Alternate Channel Select.	80 dB	71.4 dB	
Adjacent Channel Select.	N/A	7.8 dB	
Stereo Separation $(1000 \mathrm{~Hz})$	40 dE	47 dB	
FM Distortion $(1000 \mathrm{~Hz}$)	0.2% MONO 0.3% STEREO	0.11% MONO 0.29% STEREO	$65 \mathrm{~dB}{ }^{\text {f }}$
Pilot Carrier Leakage	N / A	$-75 \mathrm{~dB}$	

laminated to a curved frame reflecting almost all its incident light back to the viewer.

```
30"1\times 40 .....................
```



```
Stands ......................
```

send for complete information
MIAMI FLOCK EQUIPMENT CO.,INC.
(Optical Division) 304 N.E. 79 th St.
Miami, Florida 33138 - 305-759-3124

User Comment. The RIAA phono equalization is not only very accurate over the defined range of 30 to 15,000 Hz (it falls off somewhat at the lowest frequencies), but it is totally unaffected by cartridge inductance. The audio distortion of the receiver was quite insignificant, and the clipping power of about 50 watts should be adequate for most
home installations, with speakers of normal efficiency
Although the tone controls have a satisfactory range and choice of turnover frequencies, the high-cut filter is essentially useless. (It virtually duplicates the response of the treble tone control near its minimum setting.) A 6-dB/octave filter with a $-3-\mathrm{dB}$ response at 3000 Hz is

SINE-WAVF POWER OUTPUT PER CHANNEL IN WATTS
Total harmonic distortion and 60/7000-Hz distortion.
really not worth the control space allotted to it on the panel. The low-frequency filter, although not ideal, is considerably better; it has a $12-\mathrm{dB}$ /octave slope and a -3 -dB frequency of 50 Hz . The loudness compensation boosts only low frequencies, to a moderate degree, yet manages to sound undesirably heavy because it affects almost the entire range below 1000 Hz .
The FM tuner section was excellent, handily meeting or surpassing almost every specification. The quieting meter proved to be a very accurate tuning indicator. Although this point is not mentioned in the instruction manual we noted that the meter's pointer fluctuated with multipath distortion and gave a steady indication on signals free of that effect. This represents the first triple function FM tuning meter we have used (center channel, as shown by a definite minimum reading; relative signal strength; multipath distortion). Its only drawback, compared to conventional meters, is that one must tune quite slowly through a station to establish the minimum reading, and then tune back to that point-again, slowly-since the me-
ter seems to respond with a lag. In contrast, a typical center-channel meter allows one to stop tuning as soon as the pointer reaches the indicated center.
Although the FM tuner had a ruler-flat frequency response to $15,000 \mathrm{~Hz}$, the $19-\mathrm{kHz}$ pilot carrier leakage was a very low -75 dB . This speaks well for the design of the multiplex filters in the tuner section. The stereo channel-separation characteristic was unusual, with a very wide separation of more than 60 dB at 30 Hz , which decreased smoothly to 24 $d B$ (still good) at $15,000 \mathrm{~Hz}$. As a whole, the tuner's FM performance was excellent. The AM tuner was as limited in its frequency response as most we have used, but was exceptionally quiet and free of the buzzes and noises that usually accompany a scan of the AM broadcast band.

In listening tests, the Model 730 did a first rate job. Like most good receivers, it sounded as good or as bad as the program material allowed. When we transmitted a high-quality signal to it through our laboratory signal generator, it left nothing to be desired. The muting circuit has a slight delay that allows the dial to

Harmonic distortion at three power levels.
be twirled from one end of the FM band to the other in perfect silence; about a second after a station is tuned in, its modulation appears. In slow tuning through a station, we heard only a faint click as the muting operated.

One of our two criticisms of the Model 730 (both relate to its FM tuner section) concerns a basic design factor and the other is certainly due to a fault in our test sample. The pointer of the tuning meter is not illuminated or even colored white for contrast against the black and dark green background of the meter scale. As a result, it can hardly be seen, except at point-blank range. On our test unit, the FM dial calibration was poor, showing the result of a misalignment. It was accurate below 94 MHz but had an error of 300 kHz at 96 MHz , and 700 kHz at 106 MHz . As a result, tuning was approximate over much of the band.
The Harman-Kardon Model 730 is convincing evidence that a mediumpriced receiver can deliver top-quality sound, combined with all the operating flexibility most people will ever need and an attractive appearance.

CIRCLE NO 101 DN fREE INFORMATION CARD

SHARP MODEL RT-3388 FRONT-LOADING CASSETTE DECK

Built-in "computer control" system and LCD display are featured.

The Sharp Model RT-3388 is a basic cassette deck of conventional design and good quality. Where it differs from other cassette decks is in its built-in "computer control" system that gives it an operating flexibility and convenience previously unavailable in a consumer deck. The cassette deck proper is a two-head, sin-gle-motor transport with a servo-con-
trolled dc motor. The front-loading mechanism provides excellent visibility of the entire cassette through its clear plastic window that makes up almost the entire cassette compartment door. The door can be removed by loosening two thumbscrews to provide complete ac* cess to the tape heads for cleaning and adjustment. The operating controls are mechanical "piano-key" levers that are solenoid assisted for certain functions.

The cassette deck measures $173 / 8^{\prime} \mathrm{W}$
$\times 127 / 8^{\prime \prime} \mathrm{D} \times 53 / 8^{\prime \prime} \mathrm{H}(44.1 \times 32.7 \times 13.7$ cm) and weighs $20 \mathrm{lb}(9.1 \mathrm{~kg})$. Its nationally advertised retail value is approximately \$350.

General Description. The deck has separately switchable bias (HIGH/LOW) and equalization ($70 / 120 \mu \mathrm{~s}$). The manual that accompanies the deck lists recommended settings for most popular tape brands and formulations. Unlike the case with most recorders, the manual

also identifies the specific tapes for which the deck was adjusted at the factory. They are Maxell UD (normal), Maxell UD-XL II (HIGH/70 $\mu \mathrm{s}$), and Sony Ferrichrome (LOW/70 $\mu \mathrm{S}$).
The recorder has built-in Dolby noise reduction, separate microphone and line inputs that can be mixed, and large illuminated level meters supplemented by a PEAK LED indicator. While this is conventional, the rest of the deck is far from conventional, as is immediately obvious.
A "computer" keyboard and display panel dominate the center of the front panel. The "computer" that controls the operation of the deck provides memory functions for stopping the tape at a preselected point, either in normal or fast speeds. It also supplies the tape index counting function usually performed by a belt-driven mechanical counter. It controls Sharp's Automatic Program Locator Device (APLD) that can be set to skip any number of separately recorded selections (up to 19 in all) on a tape, stopping and playing a preselected piece that occurs later in the tape. The APLD contains a quartz controlled digital clock that is constantly in operation. When the machine is plugged into the power line, the clock is powered whether or not the recorder is turned on. Internal batteries can power the clock for up to a year without recourse to the ac power line. The clock can turn the deck (and anything plugged into its single switched outlet) on and off at preset times with split-second accuracy and time the running of a tape in minutes and seconds. It also provides the usual index-counter function. As a timepiece, it can be set for a 12 - or a 24 -hour format and automatically provides AM and PM identification in the 12 -hour mode.

All the display functions appear on an LCD (liquid-crystal display) panel located above the keyboard. When the recorder is turned off, the display automa-
tically reverts to its clock function. Seconds are indicated by the blinking of the colon that separates the hours and minutes digits. When the deck is turned on,

SPECIFICATION	N RATING	MEASURED	REMARKS
Wow \& Flutter	0.06\% wrms	0.065\% unweighted rms	
Frequency	$30-13,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$	$25-14,200 \mathrm{~Hz} \pm 1 \mathrm{~dB}$	
Response	(normal)	UD-XLI (LOW/120 $\mu \mathrm{s}$)	
	$30-15,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$	$24-14,600 \mathrm{~Hz} \pm 1 \mathrm{~dB}$	
	(UD-XL II)	UD-XLII ($\mathrm{HIGH} / 70 \mu \mathrm{~S}$)	
	$30-16.000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$	$22-15,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$	
	(FeCr)	Sony FeCr (HIGH/120 $\mu \mathrm{s}$)	
Playback	N/A	$40-12,500 \mathrm{~Hz} \pm 2 \mathrm{~dB}$	
Response		TDK AC-337 (120 $\mu \mathrm{s}$)	
		$40-10,000 \mathrm{~Hz} \pm 0.5 \mathrm{~dB}$	
		Teac 116SP ($70 \mu \mathrm{~s}$)	
S/N Ratio	55 dB (normal)	47.4 dB UD-XL ।	3\% playback
		45.3 dB UD-XL II	distortion,
		44.7 dB Sony FeCr	unweighted
		56.0 dB UD-XL	CCIR/ARM
		58.8 dB UD-XL II	weighted
		56.0 dB Sony FeCr	
		65.6 dB UD-XLI	CCIR/ARM
		66.5 dB UD-XL II	weighted,
		64.4 dB Sony FeCr	with Dolby
Noise Increase		+6.5 dB	mic input at
			maximum gain
Sensitivity	50 mV (LINE)	54 mV	
	0.2 mV (MIC)	0.2 mV	
Output Level	775 mV at 0 dB (LINE)	Varies with tape;	Phones not
	89 dB (8-Ohm PHONES)	$700 \text { to } 800 \mathrm{mV}$	measured
Playback	N/A	. 0.45% UD-XL I	$1000-\mathrm{Hz}$ test
Distortion (0-		$0.25 \% \text { UD-XL II }$	tone
dB record level)		0.80\% Sony FeCr	
$\begin{gathered} \text { Crosstalk (} L-R \\ \text { at } 1000 \mathrm{~Hz} \text {) } \end{gathered}$	N / A	-51 dB TDK AC-352	
PEAK indicator On	N/A	+6.5dB	
Meter Ballistics	N/A	10\% overshoot	$0.3-\mathrm{s}, 1000-\mathrm{Hz}$ tone bursts
Meter Calibration	N/A	within 0.5 dB	
Fast Forward and Rewind Time	N/A	- 94 s	C-60 cassette

Note: Manual specifies Low bias and $70-\mu$ s equalization for FeCr tape. These settings yielded sharply rising high-frequency response; flattest response was obtained with HIGH bias and $120-\mu$ s equalization.

Better stereo records are the result of better playback pick-ups

Enter the New Professional Calibration Standard,Stanton's 8815

Mike Reese of the famous Mastering Lab in Los Angeles says: "While maintaining the Calibration Standard, the 881 S sels new levels for tracking and high frequency response. It's an audible improvement. We use the 881 S exclusively ior callibration and evaluation in our operation'

The recording engineer can only produce a product as good as his ability to analyze it. Such analysis is best accomplished through the use of a playback pick-up. Hence, better records are the result of better playback pick-up. Naturally, a calibrated pick-up is essential.

There is an additional dimension to Stanton's new Professional Calibration Standard cartridges. They are designed for maximum record protection. This requires a brand new tip shape, the Stereohedron*, which was developed for not only better sound characteristics but also the gentlest possible treatment of the record groove. This cartridge possesses a revolutionary new magnet made of an exotic rare earth compound which, because of its enormous power, is far smaller than ordinary magnets.

Stanton guarantees each 881S to meet the specifications within exacting limits. The most meaningful warranty possible, individual calibration test results, come packed with each unit.
Whether your usage involves recording, broadcasting or home entertainment, your choice should be the choice of the professionals . . the STANTON 881 S .

the display becomes a tape counter, although any of its other functions can be selected at that time by pressing the proper buttons. Arrows in the display indicate direction of tape motion and tape speed (the latter by blinking on and off when a fast speed is selected). A Dolby trademark symbol appears in the display when the DOLBY switch is on. Short bars above each column of keys indicate which function has been selected, and a letter M appears above a bar when specific memory data has been entered for a given function.

The computer-controlled functions of the Model RT-3388 are so diverse that most of the very comprehensive instruction manual is devoted to them, with the aid of copious illustrations and photographs. Only nine of the 36 pages in the manual deal with normal tape recording functions. In general, the desired information, whether it be an index counter reading or a time, is fed into the computer by sequential operation of the keys, followed by a touch of the s (set) key. Previously set functions, which are not incompatible with the new one, remain unchanged and in use. Thus, one can switch between index counter, seconds counter, and actual time display at will while the tape is running without miscounting or affecting the operation of the machine. When the recorder is turned on, the LCD panel is back lit for full visibility. With the power switch off, a separate switch can be used to activate only the display lights so that the clock can be used at any time.

The "computer" section is physically very similar to a hand-held calculator in its size and configuration of keyboard and display. It extends only about $1 / 2^{\prime \prime}$ $(12.7 \mathrm{~mm})$ behind the panel and cannot be seen without extensive disassembly. According to the manual, a single LSI chip supplies all computer functions.

Most of the remaining electronic circuits are on a single large circuit board that is very clearly labelled with individual circuit reference symbols for all components and the function of each section of the board (Dolby, Preamplifier, etc.). A second large board contains the power supply and control circuitry. The tape transport occupies only a small fraction of the internal space of the recorder.

User Comment. This is a most impressive product, largely because it offers so much for such a moderate price without appearing to have sacrificed any significant aspect of its performance. The tape saturation characteristics at a o-dB recording level, compared to the -20 dB response, suggest that the heads are of only ordinary efficiency, neither better nor worse than one would expect on a machine in the $\$ 250$ to $\$ 300$ price range. On the other hand, the measured wow and flutter were about as low as we have measured on any cassette recorder and are better than we would expect to find at this price.

The recorder delivered excellent sound quality, both from prerecorded tapes and from recordings we made off the air and from records. We also recorded FM tuner interstation hiss at a -10-dB level and compared the playback to the original sound. This test simultaneously checks frequency response and tape saturation effects and reveals even slight deviations from an accurate recording. With Maxell UD-XL I tape, the results were good, but not quite perfect; we could hear a slight dulling of the highest frequencies. The "chrome equivalent" Maxell UD-XL II, on the other hand, yielded perfect reproduction of the highest frequencies. In the case of ferrichrome tape, we are not certain how to judge the machine's performance. With the HIGH bias and $120-\mu \mathrm{s}$

Product Focus

The unique feature of the Sharp Model RT-3388 cassette deck is its one-chip microcomputer/liquid crystal display ($\angle C D$). Commands and numbers for the memory are activated by a 24-key matrix.

The microprocessor chip that controls the deck is a single, square 60 pin CMOS LSI device. It has a built-in clock, 54 commands, 2268 bytes of ROM, and 96 words of RAM. A crystal oscillator supplies energy for the clock, timer, and counter that indicates tape time in seconds.

The timer serves as an alarm clock and sleep-time indicator. It also permits unattended recording and can switch on and off the tape deck and a device plugged into the deck's accessory outlet. The timer features twostage operation: one for independent timer stop; the other for switching from timer start to timer stop and vice versa.

When the tape counter is set, the deck plays to the present point and automatically shuts off. Also in fast forward and rewind, the deck automatically stops at the preset point.

The tape counter keeps track of the tape passing the heads but cannot accurately register absolute values. A second counter is provided for more accurate indications.
Setting the number of a selection on the tape puts the deck into fast forward or rewind to locate the desired selection. This automatic locating device can be keyed for as many as 19 program steps ahead of or behind the desired selection.
equalization that gave flattest frequency response, we could hear a slight difference between the input and output of the recorder. Using the recommended settings of Low bias and $70-\mu$ s equalization, the results were audibly perfect, as good as with UD-XL II, in spite of the measured low-level frequency response being far from flat. Obviously, some user experimentation would be in order if FeCr tape is to be used. We also obtained completely acceptable results
with a number of comparable tapes of all kinds, using the appropriate switch settings. The tapes chosen for testing were those specified by Sharp; they gave the flattest response in our tests.

The computer functions were fascinating to use. Space does not permit a full account of what this machine can do (many pages of the manual are devoted to that), but we were continually impressed by the accuracy with which it responded upon reaching a preset point on a tape, whether in a memory mode or
on the APLD function. The latter counts the silent intervals between recorded selections to locate the desired point, so it cannot be "foolproof" in its operation (when making one's own recordings, an EDITOR switch cuts off the program while a short blank section is recorded between program segments). All in all, we found that the APLD worked correctly in the vast majority of cases, even with commercially recorded tapes. To fully utilize the capabilities of the deck, one must only study the manual carefully
and practice extensively with its controls to become familiar with it.

In sum, the Sharp Model RT-3388 is an above-average tape recorder for its price in all basic performance aspects and is unique at this time in its operating features. It is as much fun to use and to look at as it is for listening. Once you have been exposed to the comprehensive LCD panel, mechanical counter and function display indicators on other recorders appear old fashioned.

CIRCLE NO 102 ON FREE INFORMATION CARD

WHARFEDALE MODEL E50 SPEAKER SYSTEM

High-efficiency system produces crisp sound and tight bass.

Wharfedale has re-entered the U.S. hi-fi market after an absence of several years with a new line of highly efficient speaker systems. The British Company's new Model E50 speaker system resembles some of the recent products from Japan with its drivers surrounded by machined aluminum rings set against a flat black speaker board. The grille is an openmesh plastic that appears to be equally transparent to light and sound. Cutouts provide access to the two level control switches, labelled HIGH and LOW, even with the grille in place.

The Model E50 speaker system measures $32^{\prime \prime} \mathrm{H} \times 14^{\prime \prime} \mathrm{D} \times 13^{1 / 2} 2^{\prime \prime} \mathrm{W}(81.5$
$\times 36 \times 43.2 \mathrm{~cm}$) and weighs $70 \mathrm{lb}(32$ kg). Nationally advertised value is $\$ 390$.

General Description. The Model E50 (" E " stands for efficiency) is designed to deliver high acoustic levels without dynamic compression or other distortion when driven at moderate power levels. Its $10^{\prime \prime}(25.4-\mathrm{cm})$ woofer operates in a vented enclosure, the $4^{\prime \prime}$ (10.2$\mathrm{cm})$ port of which has been designed to operate as a fourth-order, maximally flat Butterworth system. At 800 Hz , there is a crossover to a $4^{\prime \prime}(10.2-\mathrm{cm})$ cone driver, while at 7000 Hz , there is another crossover to a horn-loaded compression driver that has a $1^{\prime \prime}(2.54-\mathrm{cm})$ diaphragm. The frequency response is rated at 55 to $18,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$.

The system's level controls are fiveposition switches, with their 0 (maximum) settings providing the flattest response. The frequency ranges affected by these switches do not correspond exactly to the range of any single driver. For example, the Low control, which should really be called mID, varies the output between 200 and 2000 Hz , with a maximum reduction of 5 dB . The HIGH switch produces a shelf in the response above 2000 Hz , with a maximum range of 5 dB . The system impedance is normally 8 ohms, and it has been designed to be greater than 6.8 ohms at all audible frequencies.

Laboratory Measurements. We measured the low-frequency response, up to about 300 Hz , with a closely spaced microphone. We separately recorded the response of the port and the
woofer cone and combined the two to obtain a single reading. The highs were measured in the reverberant field of the room, using a swept warble tone signal and averaging the curves obtained from the two speakers in a normal setting for stereo listening.

With due allowance for the very different measurement techniques used by Wharfedale and ourselves, it was clear that the speaker system easily met its response rating. A moderate high-frequency peak was the only part of the composite response curve that exceeded the $\pm 3-\mathrm{dB}$ limits. From 45 to 8000 Hz , the response was smooth and uniform, within $\pm 3 \mathrm{~dB}$. It rose to about +5 $d B$ at 11,000 or $12,000 \mathrm{~Hz}$. The woofer's response, from 50 to 300 Hz , was exceptionally flat, attesting to the success of the computer design employed.

The low-frequency distortion at a 1 watt input was a mere 0.5% or so down to 60 Hz . It rose to only 5% at 30 Hz . At a 10-watt drive level, the distortion was less than 2% down to 50 Hz , rising to 6.7% at 35 Hz . When the input was adjusted to maintain a 90 dB SPL at 1 meter with changes of frequency, the result was similar to the 10-watt measurement except that the distortion rose more rapidly below 50 Hz .

The level controls had approximately the specified effects. (Typical response curves as well as fairly complete system specifications are on a nameplate affixed to the rear of the cabinet.) The HIGH control began to take effect at about 1000 Hz , overlapping the Low control, which modified the response between 150 and 1500 Hz . The system

No easier, better way to learn electronics than with the HEATHKIT Self-Instruction Program!

It's true. Thousands of aspiring individuals just like you are moving ahead with the knowledge they've gained from these invaluable courses. Thousands more are updating what they already know. Start now on what could be a whole new world for you - the world of electronics. Learning has never been easier (or more thorough) than with Heathkit Self-Instruction Courses.

Famous HEATHKIT EXPERIMENTER/ TRAINER

For use with Heathkit Electronics Courses 1 through 4, this optional trainer helps you perform all the experiments that are supplied with the courses quickly and easily. Has solderless breadboarding sockets, dual variable power supply for positive and negative voltages, sine and square wave signal source, cen-ter-tapped line transformer. After you complete the course, the trainer is ideal for experimenting and breadboarding with your own circuit designs.
Kit ET-3100

Money Back Guarantee

The outstanding effectiveness of these courses is expressed in the Heathkit guarantee: If for any reason you're dissatisfied, Heath Company will refund the full purchase price of the course text material (less trainer).

Digital Trainer Kit and Course

What you should know about these courses

The courses and the optional trainers may qualify for a Federal Tax Deduction. Treasury Regulation 162-5 permits an income lax deduction for educational expenses undertaken to: (1) maintain or improve skills required in one's employment or other trade or business, or (2) meet express requirements of an employer or a law imposed as a condition to retention of employment, iob status or rate of compensation. In many instances, your employer may re-imburse you in part or in total for taking these courses.

TRIPLE BONUS! When you order promptly.

Learn electronics at your own pace - at the lowest cost.

COURSE 1: DC Electronics

The first step toward a complete understanding of a fascinating and rewarding field of endeavor. As you'd expect, Course 1 is simply and logically arranged and assumes no prior electronic knowledge. It begins at basic electron theory and goes on in detail with nothing omitted. Course 1 comes with everything you need for successful completion and, most importantly, a high degree of understanding. The only materials needed are a record player, a few basic hand tools and a VOM. Progressing at your own established pace, you learn in an unhurried environment free from pressure. Like all Heathkit courses, learning is easy with simple, step-by-step "programmed" instructions. Audio aids help emphasize the text material and an optional final exam lets you test your overall comprehension.
Essentially, Course 1 covers current, voltage, resistance, magnetism, Ohm's Law, electrical measurements, DC circuits, inductance and capacitance. In short, a complete foundation in basic electronics. Included are texts, records, and 56 electronic components for 20 different experiments. Also available is the ET-3100 Experimenter/Trainer that helps you perform projects and experiments quicker. The average completion time for Course 1 is 20 hours.
If you choose to take the optional final exam and score a grade of 70% or better, you will receive a Certificate of Completion and 2.0 Continuing Education Units (CEUs). CEUs are a nationally-recognized way of acknowledging participation in non-credit adult education.
Course EE-3101
.39 .95

COURSE 2: AC Electronics

The second of the Heathkit basic electronics courses which coupled with Course 1, forms the foundation for all the courses that follow. The same straightforward, simple format is utilized to teach you the theory of alternating current. Course 2 includes all the necessary material for best understanding and successful course completion. The only other materials required are a record player, a few basic hand tools and a VOM. Like the other Heathkit Self-Instruction Courses, AC Electronics is designed to let you progress at your own pace moving up when you're ready. Step-by-step, "programmed" instructions make it a rapid, easy process. Records reinforce the text material. An optional final exam lets you evaluate your understanding of the material.
Course 2 basically covers alternating current, AC measurements, capacitive and inductive circuits, transformers and tuned circuits. For best understanding, Course 2 requires the completion of Course 1 (or equivalent knowledge). Included are texts, records and 16 electronic components for 8 different experiments. The optional ET-3100 Experimenter/Trainer kit enables you to perform projects and experiments quicker. The average completion time for Course 2 is 15 hours.
If you choose to take the optional final exam and score a grade of 70% or better, you will receive a Certificate of Completion and 1.5 Continuing Education Units (CEUs). CEUs are a nationally-recognized way of acknowledging participation in non-credit adult education.
Course EE-3102

For advanced learning; DIGITAL TECHNIQUES

One of our most advanced courses in Digital Techniques prepares you for the world of computers and microprocessors, with particular emphasis on circuit design. Covers digital fundamentals, semiconductor devices for digital circuits, digital inteers digitar fundamentals, semiconductor circuits, Boolean algebra, flip-flops and registers, sequential logic circuits, grated circuits, Boolean algebra, flip-flops and registers, sequential ogic circuits, combinational logic circuits, digital design and digital applications. Discusses TA', ECL, CMOS, PMOS, NMOS; integrated circuits; SSI, MSI and LSI; ROM's, PLA's, microprocessors, computers and more. Assumes completion of Heathkit courses through 4 above, or equivalent knowledge. The optional digital techniques experimenter/trainer helps you perform all the experiments in the course, and when you complete the course, build and design your own circuits. Course includes text, rec4.0 Continuing Education Units and a certificate for passing final exam.

Course EE-3201
.54.95
EEA-3201, Optional Cassettes 6.95
Kit ET-3200, Digital Trainer Kit
79.95

Recommended Test Equipment

You need a quality multimeter like the Heath kit $1 \mathrm{M}-5284$ to complete these courses. Tests and experiments are quicker and more precise with this solid-state VOM that measures AC and DC volts, ohms and DC current. The IM5284 is easy to build and operate even for the first time kit builder and will continue to be very useful long after you've completed your Heath courses.
Kit IM-5284
37.95

$$
\text { CIRCLE NO } 5 \text { ON RREE INFORMATION CARD }
$$

Having completed the above courses, you will be ready
to move up to our other advanced courses; Microprocessors and Computer Programming - the super technology of tomorrow.

COURSE 3: Semiconductor Devices

One of the most important of the Heathkit Self-Instruction Courses and the one that reveals the technology you must know to stay ahead. What you'll learn in this course is absolutely necessary for understanding the solid-state devices prevalent in nearly everything electronic. Course 3 covers every aspect of a fascinating subject in simple, easily-understood terms. Everything is included except a few basic hand tools, a record player and a VOM. Progressing at a self-established pace, you move through the material as you are ready. Step-by-step "programmed" instructions make it a short, easy process. Records reinforce the text material. An optional final exam is available upon request if you wish to test your overall comprehension of the course material.
Course 3 covers semiconductor fundamentals, diodes, zeners, bipolar transistor operation and characteristics, FETs, thyristors, ICs and optoelectronics. Included are texts, records and 27 electronic components for 11 different experiments. Also available is the ET-3100 Experimenter/Trainer Kit that enables you to perform projects and experiments quicker. Prerequisites for the semiconductor course are Courses 1 and 2 or equivalent knowledge. The average completion time for Course 3 is 30 hours.
If you choose to take the optional final exam and score a grade of 70% or better, you will receive a Certificate of Completion and 3.0 Continuing Education Units (CEUs). CEUs are a nationally-recognized way of acknowledging participation in non-credit adult education.
Course EE-3103
.39 .95

COURSE 4: Electronic Circuits

This course lets you utilize what you've learned in Courses 1 through 3 to understand the operation of complex electronic circuitry. It's just as easy to follow as the first three courses and also includes all the materials you need except the small hand tools, VOM and record player. Like the other courses, you work at your own pace aided by the records (or optional tapes) and may test yourself with the optional final exam.
Course 4 covers basic amplifiers, typical amplifiers, operational amplifiers, power supplies, oscillators, pulse circuits, modulation and demodulation with emphasis on integrated circuits. Included are texts, records and more than 110 electronic components for 18 different experiments. The ET-3100 Experimenter/Trainer Kit is also available as an option. Course 4 requires the completion of Courses 1 through 3 or equivalent knowledge. The average completion time for Course 4 is 40 hours.
If you choose to take the optional final exam and score a grade of 70% or better, you will receive a Certificate of Completion and 4.0 Continuing Education Units (CEUs). CEUs are a nationally-recognized way of acknowledging participation in non-credit adult education.
Course EE-3104
.49 .95

Keep learning and growing order today!

Prices are mail order net F.O.B. Benton Harbor, Michigan.
Prices and specifications subject to change without notice.

HEATH
 Schlumberger
 Order Form/Agreement
 Heath Company, Dept. 010-402
 Benton Harbor, Michigan 49022
 ED-114

Please send me items checked below and include FREE \$7.95value Soldering Iron.
\square Send one course (checked below)with the Experimenter/Trainer (ET-3100) at the special price of only $\$ 89.95$ plus $\$ 3.00$ shipping and handling.
\square DC (EE-3101)
\square Send me the ElaAC (EE-3102) \square Semiconductors (EE-3103) imenter/Trainelectronic Circuits Course (EE-3104) with the Exper$\$ 3.00$ shipping and handling.
\square Send all four of the courses above (EE-3101, 3102, 3103, 3104) with the Experimenter/Trainer at the special price of just $\$ 199.95$ plus $\$ 4.50$ shipping and handling.
In addition, please send the following courses (less trainer):
$\square D C$ (EE-3101) $\square A C$ (EE-3102) \square Semiconductors (EE-3103) for just $\$ 39.95$ plus $\$ 1.50$ shipping and handling each.
\square Electronics Circuits (EE-3104) for just $\$ 49.95$ plus $\$ 1.50$ shipping and handling.
\square Send me the Digital Technlques Course (EE-3201) with its Experimenter/Trainer (ET-3200) for only $\$ 124.95$ plus $\$ 3.00$ shipping and handling.
Also send me the IM-5284 VOM kit for just $\$ 37.95$ plus $\$ 1.50$ shipping and handling.
Michigan residents add 4% sales tax.
1 enclose \square check \square money order
\square Band or, Charge to my:

No
Exp. Date
If Master Charge, include Code No.
Signature: X (necessary to send merchandise)
NAME (please print)
ADDRESS
city
STATE

2.

Your records will sound better. Distortion is a mere 0005 at standard groove velocity. Therefore, reproduction is razor sharp with no wavering or fuzziness.

3 More cartridge for your money. We use

 4 poles, 4 coils and 3 magnets in our cartridges (more than any other brand).4.Inspection from head to toe. Every Empire cartridge, regardless of price, is fully inspected both visually and technically. Tests include frequency response, output balance, channel separation and tracking.

5.Diamond control. At Empire we cut, grind, polish and mount the diamonds to our own exacting specifications. We insure total quality of the product from start to finish by buying only the highest quality gems.

For more good reasons to buy an Empire cartridge, write for your free catalogue: EMPIRE SCIENTIFIC CORP Garden City, N.Y. 11530
wase EMPIE

Tone burst responses at frequencies (left to right) of 100,1000 , and 7000 Hz .
impedance varied considerably with frequency, with a maximum of about 40 ohms at 22 Hz and a minimum of about 6 ohms at 200 and 1500 Hz .

The tone-burst response was exceptionally good, with nearly perfect burst shapes at most frequencies. The high efficiency of Wharfedale's computerdesigned speaker system was dramatically illustrated by the Model E50's ability to deliver a 95-dB SPL at 1 meter when driven by 1 watt of random noise in the octave centered at 1000 Hz .

The simulated "live-versus-recorded" listening test confirmed that the measured smoothness and range of the system's frequency response was quite real. The chief difference between the sound of our "live" source (a reference speaker system that reproduced a specially taped program) and the sound of the Model E50 attempting to imitate it was an added brilliance in the sound of the latter. This could have been inferred from its slightly rising high-frequency response characteristic. Its effect was to add "sizzle" or "bite" to the sound of wide-range program material that contained appreciable high-frequency energy. The most accurate reproduction was with the HIGH switch at its minimum setting, but the highs were still "hot."

User Comment. The sound of the Wharfedale Model E50 might appeal more to the pop or rock music listener than to the classical enthusiast, especially since it can produce prodigious levels of very clean sound when driven by a modestly priced receiver or amplifier. It lacks the deep bass response fa-
vored by some people (although it is by no means shy of bass). However, it is outstandingly flat and true over most of the audio range.

The speaker system seemed to us to have a razor-sharp, almost clinical quality. This may be related to its notably good transient response, as confirmed by our tone-burst tests, as well as to its accentuated top-end response. As a rule, we prefer to set a speaker system's balance controls only once, upon installation. In this case, we found it desirable to readjust the HIGH level control according to the program content. With most FM broadcasts and records, we found that one or two steps of high-frequency reduction gave the best results. With programs containing exceptionally strong high-end content, such as the Sheffield direct-disc recordings played with a good moving-coil cartridge, we had to cut the speaker system's highs all the way down. (The Low switch was left at maximum.)

We found the Model E50 to be an exceptionally clean and easy-to-listen-to speaker system. Since its emphasis was principally at frequencies above 10,000 Hz , its high-frequency response was never audible as stridency or even as "presence." Instead, it gave a crispness or edge to the sound that seemed well matched to the very tight and nonboomy bass reproduction of the speaker system. The ability to operate effectively at any usable listening level from an amplifier rated at, perhaps, 20 watts output is a major advantage of this speaker system over most of its competitors.
tomorrow's computer here today . . . the bytenaster only from the Digital Group

COMPUTERS
TERMINALS PRINTERS
SOFTWARE

TAPE SYSTEMS DISK SYSTEMS GRAPHICS
PROM PROGRAMMER

MEMORY - 4K, 8K, 16K \& 32K
PROGRAMMABLE REAL TIME CLOCK CALCULATOR INTERFACE A - D CONVERTER

Write, or circle our reader reply number for a catalog describing our complete line of computer hardware and software.

NOW AVAILABLE IN BOTH KIT AND ASSEMBLED FORM.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION 219 W. RHAPSODY

SAN ANTONIO, TEXAS 78216

WHEN YOU design or build projects, particularly large-scale designs in which many transistors and/or IC's are used, most of the effort goes into creating the final circuit and the printed circuit board. All too often, the power supply is just an afterthought. This is unfortunate because even a welldesigned and assembled project may operate borderline if the power supply is not delivering the correct voltage at the required current. This problem is compounded when the supply must deliver large amounts of current, as in multi-IC digital circuits, especially microcomputers. Hence, the power supply deserves special attention, since it is often critical to the success of an electronic project.
In this first of a two-part article we will discuss power supply basics, some design concepts, etc. By the end of Part II, you should be able to design low-voltage, high-current power supplies that can perform as required for just about any project.

Transformers. The transformer is generally a voltage converter. It reduces the standard 117 -volt ac power line potential to the lower voltages required in solid-state electronics. Most discrete circuits operate with potentials in the 1.5 -to-28-volt range; linear IC systems operate in the range from ± 4.5 to \pm 18 volts; CMOS circuits require between 4 and 18 volts; and TTL requires the use of a tightly regulated 5 -volt supply line.
Because a transformer is very efficient, stepping the line potential down in the secondary winding increases the current available for any given voltage level. The primary VA (volts times amperes) rating is very nearly equal to the VA rating of the secondary. Simply stated, $E_{\text {pri }} \times I_{\text {pri }}=E_{\text {sec }} \times I_{\text {sec }}$, where $E_{\text {pri }}$ is the potential in the primary winding (117 volts ac); lpri is the primary current; $\mathrm{E}_{\text {sec }}$ is the voltage in the secondary; and $\mathrm{I}_{\text {sec }}$ is the secondary current.

Rectifier. The rectifier converts the alternating current from the transformer's secondary into pulsating direct current (dc). The simplest of rectifiers is the halfwave circuit shown in Fig. 1.

All rectifiers operate on the same principles, whether they are solid-state or vacuum-tube types. They conduct current in only one direction. When an ac sine wave is applied to the input of this circuit, current passes through the rectifier only when its anode is more positive than its cathode, as in Fig. 1A. On the other half of the ac cycle, the rectifier

BY JOSEPH CARR

PART 1

Basics of transformers, rectifiers, filters, voltage regulators
and protection circuits.

Fig. 1. Forward-biased diode (A) conducts current while reverse-biased diode (B) does not. In (C), upper trace is ac input, lower trace is pulsating dc across load.

Fig. 2. At (A) is fullwave rectifier. Ac in primary of T1 is upper trace in (B), pulsating dc is at bo'tom.

Fig. 3. A full-wave bridge rectifier. Broken lines show current flow during each half of the ac input cycle.
is reverse-biased (Fig. 1B), thus preventing the flow of current through the external load, R_{L}.

The waveforms associated with the
half-wave rectifier are shown in Fig. 1C. The top waveform is that of the ac sine wave applied to the input, while the bottom waveform shows the rectified pul-
sating dc output across R_{L}. Note that the pulsating dc output exists only when the input waveform is in its positive alternation. Because half of the input waveform is not used, the half-wave rectifier is very wasteful of electrical energy. And half-wave rectification presents difficulties in filtering the output to pure dc with no ripple component.
The half-wave rectifier has an average output potential of approximately 0.45 times the applied rms potential and its ripple amounts to 120%. To add to the problems of this design, the transformer used must have a primary VA rating 40% greater than is required if fullwave rectification were used.

A basic full-wave rectifier using a cen-ter-tapped transformer is illustrated in Fig. 2A. At any given ac peak, one end of the transformer's secondary is positive, while the other end is negative. The center tap is at a potential that is half that across the entire secondary. Therefore, if the center tap is used as the common reference, equal and opposite polarity potentials will be found at either end of the secondary with respect to the center tap.

Let us consider the case when the top of the secondary is more positive than the bottom. Current flows from the common center tap through R_{L} and for-ward-biased rectifier D1 (whose anode is more positive than its cathode) and then back to the transformer. During this period, $D 2$ is reverse-biased due to the negative potential at its anode so that no current can flow through it.

On the alternate half-cycle, D1 becomes reverse-biased and D2 conducts. Current then flows from the center tap through R_{L} and forward-biased D2 and back to the secondary of the transformer. Note that, in both cases, the current flows through the load in the same direction. This produces the "doublehumped" waveform across R_{L} shown in the lower trace of Fig. 2B. In essence, the negative-going portion of the applied ac sine wave has been "folded up" to produce the double-frequency waveform shown in the figure.

The bridge circuit shown in Fig. 3 is another type of full-wave rectifier. It employs a diode "ring" (D1 through D4) for rectification. The secondary of the transformer is not center tapped; the diode ring provides the negative (sometimes ground) reference point. The two "corners" of the bridge labelled "+" and "-" and go to the positive and negative sides of the filter capacitor.

Since the bridge rectifier circuit em-

ploys the entire secondary potential, it produces an output potential (pulsating dc) of twice that of the ordinary full-wave rectifier using the same transformer. There is one catch, however. The bridge rectifier supply delivers only half the current of the full-wave rectifier for a given primary VA rating. There are occasions when it is possible to exceed this and draw nearly the full rated current from the transformer's secondary without causing damage, but this is not dependable in all cases.
The average dc output potential in an unfiltered full-wave supply is approximately 0.9 times the applied rms potential, or about twice the voltage obtained with the half-wave rectifier. Both types of full-wave rectifiers have an output ripple component of about 48% and, thus, need filtering to produce the dc required by the electronic circuits. Also, the ripple frequency in the full-wave rectifier circuit is 120 Hz , which is twice the frequency of the line power.

Filters. The filter smoothes out the pulsating dc output from the rectifier to create the nearly pure dc required by the electronic circuitry load.

The half-wave rectifier produces one dc pulse for each ac cycle (Fig. 1C), while the full-wave supply produces two dc pulses per cycle (Fig. 2B). These waveforms illustrate the difference in ripple frequency- -60 Hz for the half-wave and $120-\mathrm{Hz}$ for the full-wave rectifiersand implies that the higher frequency of the half-wave rectifier's output is easier to filter.

The usual high-value capacitor found in power supplies is shown in Fig. 4A. In this circuit, the bridge rectifier is shown in block form, since it is most often a bridge-rectifier assembly rather than a set of four discrete rectifier diodes. Filter capacitor C1 is connected directly across the rectifier.

The value of Cl is critical to the performance of the power supply. It should be no less than $1000 \mu \mathrm{~F}$ per ampere of output current; many authorities claim that $2000 \mu \mathrm{~F}$ per ampere should be the minimum. In any event, it is good practice to use not less than $1000 \mu \mathrm{~F}$ in projects that draw 1 ampere or less current. A typical 5-volt, 4-ampere dc power supply for a small digital computer would require not less than 8000 microfarads for a good filtering.

The waveform shown in Fig. 4B illustrates how the filter capacitor reduces
the level of the pulsations in the rectified output waveform. Capacitor Cl charges up as long as the pulsating dc applied to it is rising. Once the peak potential has been reached and the rectified waveform begins to drop toward zero, the capacitor dumps its charge to fill up the spaces (shaded area in Fig. 4B) between the pulses. Obviously, the greater the charge dumped, the smoother will be the top of the output waveform from the filter. The five waveforms shown in Fig. 5 were obtained from a low-voltage, 5-ampere supply using different amounts of filter capacitance. The circuit employed was that shown in Fig. 4, using a transformer rated at 13 volts and 10 amperes.

The Fig. 5A waveform shows the unfiltered output across the load resistor. The base line represents the 0 -volt level, while the peak of the pulsating dc waveform is just short of 19 volts. The result of connecting a $150-\mu \mathrm{F}$ capacitor across the load is shown in Fig. 5B. Note that the ripple has been reduced and has taken the shape of the filtered output shown in Fig. 4B. A dc voltmeter connected across the load indicated approximately 13 volts when there was

Fig. 5. How capacitors smooth waveform. Lower trace is zero volts. (A) is full-wave dc without filter; (B) has $150-\mu F$ capacitor; (C) $2000 \mu F$; (D) $5000 \mu F$; (E) $18,000 \mu F$.

CREI brings college-level training to you with eight educational advantages, including special arrangements for engineering degrees

The best way to qualify for top positions and top pay in electronics is obviously with college-level training. The person with such training usually steps more quickly into an engineering level position and is paid considerably more than the average technician who has been on the job several years.

A regular college engineering program, however, means several years of full-time resident training-and it often means waiting several years before you can even start your career. This, of course, is difficult if you must work full time to support yourself and your family.

If your career in electronics is limited without college-level training, take a look at the advantages a CREI home study program can offer you.

1. Convenient Training

CREI brings the college to you. Through the convenience of home study, you receive exactly the same level of training you will find in any college or university offering programs in electronic engineering technology. With CREI, however, you can "go to college" whenever you have spare time at home or on the job.

2. Specialized Programs

With CREI, you enjoy the advantage of specialized training. That is, your program will include only those courses directly applicable to your career in electronics. We omit such courses as English, social studies and other subjects, which are usually required in resident schools. Therefore, with CREI, you move ahead faster to the more interesting and useful part of your training.

3. Practical Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

4. Engineering Degrees

CREI offers you a number of special arrangements for earning engineering degrees at recognized colleges and universities. You can earn college credit while you are taking your CREI program or apply later, whatever is best for your career plans.

Career Training at Home

5. Unique Laboratory

Only CREI offers you the unique Electronic Design Liaboratory Program. This complete college laboratory makes learning advanced electronics easier and it gives you extensive pratical experience in many areas of engineering, including design of electronic circuits. No other school offers this unique program. It is a better "Lab" than we have found in many colleges. And the professional equipment included in the program becomes yours to keep and use throughout your professional career

6. Wide Program Choice

CREI gives you a choice of specialization in 14 arcas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer clectronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

7. Prepared by Experts

Experts in industry and technical organizations of government develop CREI programs. Each part of your training is developed by a recognized expert in that area of electronics. That means you get the most up-to-date and practical instruction for your career.

8. Industry Recognition

That CREI training is recognized by industry and government is evident from the fact CREI provides training to advanced technical personnel in over 1,700 technical organizations. Many subsidize the training of their employees with CREI. If there is any question about the advantages of CREI training for you, ask your employer or any engineer to evaluate the outline of a CREI program for you.

Other Advantages

Of course, there are many other advantages to CREI training. For example, throughout your training, CREI's staff gives you personal instruction for each step of your program. And in many industrial areas, both in the U. S. and abroad, CREI Field Service Representatives provide a number of important personal services for your training and your carcer.

FREE Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog (if you are qualified). This fully illustrated, 80 page catalog describes in detail the programs, equipment and services of CRE1.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016

no filtering. With the $150-\mu \mathrm{F}$ capacitor installed, it indicated 16.8 volts.

Connecting a $2000-\mu \mathrm{F}$ capacitor across the load produced the Fig. 5C waveform. The ripple is substantially reduced and the average dc potential has risen to about 18 volts. The situation is even better in Fig. 5D, where the capacitance is $5000 \mu \mathrm{~F}$. The ripple has lessened to the point of almost disappearing. The dc potential has risen only an additional 0.7 volt, to 18.7 volts. In the Fig. 5E waveform, an $18,000-\mu \mathrm{F}$ capacitor is across the load, which results in less ripple but no increase in the dc output potential. Bear in mind that this is for a 4 -ampere power supply in which the formula capacitance should have been 8000 picofarads.

Voltage Regulators. Circuits that maintain their output potential constant over a wide range of load variations are termed "voltage regulators." Most computers and all TTL circuits fare better on such regulated power supplies.

Voltage regulators for low-current levels are reasonably simple. Up to 5 amperes, conventional low-cost three-terminal IC regulators can be used. The circuit of a power supply in which a threeterminal regulator is used is shown in Fig. 6A.

Several different but essentially similar families of three-terminal IC regulators exist. Probably the most familiar is the LM309 series, the LM309H being a 100-mA device in a TO-5 package and the LM309K a 1 -ampere device in a TO-3 case.

There is also the LM340 series in which the output voltage is indicated by a number suffix added to the basic series number. For example, the LM340-5 is a 5 -volt regulator, while the LM340-12 is a 12 -volt device. These devices are available with outputs up to 24 volts.

They come in two package styles-the K package for 1 -ampere and the T package for $750-\mathrm{mA}$ capacity.

The LM320 devices are essentially the same as the LM340 devices, except that they are designed for negative output voltages. Note that the pinouts for the negative regulator shown in Fig. 6B are different than for the positive regulator. Failure to observe this fact can result in catastrophic damage when the power supply is turned on.

Another well-known regulator family is the 7800 (positive) and 7900 (negative)

Fig. 7. Bottom waveform shows how a regulator "limits" peaks on rectified pulsating dc.
series. The output potential is given by the last two digits in the type number (7805 for +5 volts and 7812 for +12 volts output, for example).

As shown in Fig. 6A, all three-terminal regulators should have noise bypass capacitors (C2 and C3) across their input and output terminals. Various manufacturers specify different values for these bypass capacitors, the most common being between 0.33 and $2 \mu \mathrm{~F}$. These noise filters should be wired as close to the terminals of the regulator as possible. If you use the lower value, the capacitor should be of ceramic disc construction. If the higher value is used, select a tantalum capacitor.

Capacitor C4 is optional but desirable, especially where output current demands are very dynamic. The capacitance usually specified is on the order of $100 \mu \mathrm{~F}$ per ampere, or about a tenth of the value of the main filter capacitor. This added capacitor is not specifically used for filtering but to provide a "hedge" against output voltage droop under transient load conditions.
It is necessary to use a filter capacitor before a regulator; and Fig. 7 reveals why. The upper trace is the pulsating dc obtained from the rectifier, while the lower trace is the output of the regulator when filter capacitor $C l$ is disconnected from the circuit. The unfiltered but regulated output waveform rises in each cycle until it reaches the cutoff point of the regulator, at which point it clips. Now, examine the waveform shown in Fig. 8. Although these waveforms appear to be similar to those shown in Fig. 5, they are different. In Fig. 5, the lower trace was used to indicate the 0 -volt base line, while in Fig. 8 they illustrate the input (upper) and output (lower) of a three-terminal regulator. These traces are accoupled to the oscilloscope so that the dc component is suppressed and to permit the $5000-\mu \mathrm{F}$ ripple component to be

Fig. 8. Waveform at top is before regulator. Lower trace shows how ripple is eliminuted.
shown on a larger scale. The preregulation waveform of the upper trace was taken using a 0.2 -volt/cm sensitivity in the scope's vertical channel, while a 0.01 -volt/cm sensitivity was used for the lower trace. Even at 20 times sensitivity, no apparent ripple appears in the output waveform on the scope.

Overvoltage Protection. Unfortunately, there are occasions when "something happens" in the regulator that permits the output voltage to rise above the required level. This potentially disastrous situation can be averted with an overvoltage protection circuit like that shown in Fig. 9. This circuit is called a

Fig. 9. Crowbar overvoltage protection circuit "fires" when tovolt line exceeds breakdown voltage of zener diode.
"crowbar" because it operates by shorting the output to ground in the same manner as a conducting metal crowbar would if il were actually connected across the supply.

Normally, the supply potential (in this case +5 valts) is too low to allow zener diode D1 to conduct. Consequently, the SCR presents a high impedance that makes it "invisible" to the dc line. When the potential on the supply line exceeds 5.6 volts, D1 conducts and generates a voltage across $R 2$. This voltage is then applied, via R1, to the gate of the SCR,
which triggers on. When this occurs, the short circuit that results causes fuse F1 to blow and shut down power. Although this circuit appears to be a little crude, it is extremely effective and can prevent damage to an expensive system connected to the power supply.

If you decide to use the crowbar protection circuit shown in Fig. 9, select an SCR that can handle about twice the current normally delivered by the power supply. Also, use a conventional fastblow fuse for F1.

Some of the circuits we will discuss in

Part II employ commercially available overvoltage protection devices, such as the OV-1 shown in Fig. 6A.

Current Limiting. This feature is usually found in supplies that employ more sophisticated voltage regulator circuits than those described above. Essentially, a small-value resistor is connected in series with the output lead of the regulator and the current drawn by the load generates a small voltage drop across this resistor. This voltage is applied to a comparator/amplifier that shuts down the power supply if excess current is drawn by the load.

Coming Up. In Part II of this article, we will discuss further design criteria. We will also present four construction projects: a +8 -volt, 15 -ampere power supply for Altair (S-100) bus microcomputers; +5 -volt, 4-ampere power supply; ± 12-volt, 1 -ampere power supply; and a sophisticated 5 -volt, 10-ampere power supply with overvoltage protection and current-limiting shutdown. \diamond

IN ELECTRONIGS OB HASTHE LINE...

DIP/IC INSERTION TOOL wTH PIN STRAIGHTENER

STRAIGHTEN PINS

PICK-UP
INSERT

* MINIMUM ORDER $\$ 25.00$. SHIPPING CHARGE $\$ 1.00$, N.Y. CITY AND STATE RESIDENTS AOD TAX

OK MACHINE AND TOOL CORPORATION
3455 CONNER STREET, BRONX. NEW YORK, N. Y. 10475 U.S.A.

MicroPROCESSOR MICROCOURSE

PART 2. BASIC DIGITAL LOGIC

The Basic Logic Gates. All digital logic circuits, from the simplest counter to the most sophisticated microprocessor, are made from interconnected combinations of simple building-block circuits called logic gates. There are four basic gates, and they are designated according to their function as YES, NOT, AND, and OR circuits. Each of these basic gates has one or more inputs, a single output, and a couple of power supply terminals.

Various combinations of the binary bits 0 and 1 can be applied to the inputs of a gate by allowing a low voltage to represent logic 0 and a high voltage logic 1 . This is called positive logic. In negative logic, the definitions are reversed.

The YES gate transmits the logic state (0 or 1) at its single input directly to its output. It's often used to interface logic circuits that are otherwise electronically incompatible. For this reason it's often called a buffer.

The NOT gate inverts or complements the logic state at its single input so it's often called an inverter. The NOT function is often indicated by a bar or vinculum over the symbol for an input or output that's been inverted. Thus if A is 0 and B is 1 , then $A=\bar{B}$. (The \bar{B} is read and sometimes written "not B.")

The AND gate is a decision making circuit with two or more inputs. The output of the AND gate is logic 0 unless all the inputs (inputs A and B and $\mathrm{C} . .$.) are logic 1 .

The OR gate is also a decision making circuit with two or more inputs. Its output is logic 0 unless any or all of its inputs (input A or B or $\mathrm{C} .$.) are 1.

The operation of a gate can be de-
fined by a table that shows the combination of input bits that produces a particular output bit. Such a table is called a truth table. The truth tables and standard symbols for each of the four basic logic gates are shown in Fig. 1.

Compound Logic Circuits. Combining two or more of the basic gates into a compound logic circuit can provide some very important operating features. The two most important compound logic circuits are the AND-NOT and OR-NOT combinations. These are called the NAND and NOR gates and their symbols and truth tables are shown in Fig. 2.

As shown in Fig. 3, various combinations of NAND (or NOR) gates alone can simulate YES, NOT, and AND circuits. This is important, but the most fascinating characteristic of the NAND and NOR functions is their logic equivalence. Thanks to a rule known as DeMorgan's theorem, a positive logic NAND gate is equivalent to a negative logic NOR gate and vice versa.

You can prove this for yourself by writing the appropriate truth tables and finding that they are indeed identical. DeMorgan's theorem simplifies digital logic to the point where combinations of only NAND gates or NOR gates can implement any logic function. Figure 4, for example, shows how NAND gates alone can implement both the OR and NOR functions. Notice how NAND gates are used as inverters to change the inputs from positive to negative logic.

Complex Logic Systems. Simple and compound gates can be tied togeth-
er to implement a countless variety of logic functions. Some of the resulting logic systems contain only a handful of gates; others may use dozens or even hundreds of gates. All of these complex logic systems can be divided into two broad categories: combinational and sequential.

Combinational circuits are characterized by their fast acting operation. Exclusive of the brief time delay required for its gates to react to an incoming logic 0 or 1 (the propagation time), the output(s) of the most complex combinational circuit instantaneously reflects the pattern of 0's and 1's at its input(s).

Sequential circuits include storage or delay elements that permit the logic result of a previous input to directly influence a new input. This makes sequential circuits slower than combinational circuits. But it also makes possible important applications such as memory registers, counters, dividers, sequencers, and microprocessors.

Combinational Logic Circuits.

 The simplest combinational logic circuit is the Exclusive-OR gate. The symbol and truth table for this circuit are shown in Fig. 5.Look at the Exclusive-OR truth table for a moment. The Exclusive-OR function is just that; it gives a logic 1 output only if one or the other of its two inputs is logic 1 . Otherwise the output is 0 . This is identical to the binary addition rules with the exception of the carry output needed for $1+1$.

It's easy to generate the carry output bit needed to use the Exclusive-OR circuit as a binary adder. Look at the logic

A OUT	
0	0
1	1

\mathbf{A}	\mathbf{B}	OUT
0	0	0
0	1	0
1	0	0
1	1	1

A	OUT
0	1
1	0

A	B	OUT
0	0	0
0	1	1
1	0	1
1	1	1

Fig. 2. A NAND
 gate and a NOR gate, with their repective truth tables below.

AND

Fig. 1. The four basic logic gates: YES, NOT, AND, OR.

Fig. 3. Using NAND
gates to simulate other gates. At top, YES; middle, NOT; bottom, AND.

Fig. 4. Using NAND gates to prove NOR DeMorgan's theorem.

At top, OR; on the bottom, NOR.
circuit for an Exclusive-OR in Fig. 6. If you'll study the operation of this circuit, you'll find that the output of AND gate 1 provides the carry output we need. In the other circuit in Fig. 6, we use this carry output to form a circuit that can add any two binary bits. It's known as a half adder.

A half adder is useful, but it can only accept two input bits. To complete the binary addition rules, we need an adder circuit that will accept a carry bit as well. The circuit that accomplishes this goal is the full adder. As you can see in Fig. 7, a full adder can be made from two half adders and an OR gate.

It's possible to connect a string of adders together to form a binary adder capable of adding multiple-bit binary words. Figure 8, for instance, shows a 4bit adder that will sum two words applied to its inputs. Try adding $1101+0101$ using this adder to prove to yourself it really adds.

A binary adder forms part of a microprocessor's arithmetic-logic unit (ALU), a combinational circuit that performs addition, subtraction, and various logic operations upon two incoming words. The ALU is instructed what operations it is to perform by binary signals applied to its control inputs. We'll learn more about the ALU later in this course.

Encoders and Decoders. An encoder is a combinational network of OR gates that converts or encodes a nonbinary input into binary. For example, an octal-to-binary encoder has eight inputs (one for each octal digit) and three outputs (one for each binary bit). A logic 1 at one of the inputs produces the binary equivalent at the output

Encoders can provide other conversion operations, too. Keyboard encoders, for instance, convert individual key positions into their assigned binary words. An example is the ASCII (American Standard Code for Information Interchange) encoded keyboard, which generates the 7 -bit word 0100101 when the $\%$ key is pressed.

A decoder is a combinational circuit that converts a binary number at its inputs into a logic 1 at one or more of its outputs. In digital electronics it's often necessary to convert a binary number into some other format, and one common decoder application is the conversion of binary numbers into the format required to activate the appropriate segments in a 7 -segment decimal display.

Decoders are also used to decode binary instructions in a microprocessor,

Fig. 5. The combinational circuit at top providesan Exclusive-OR, as shown in the middle. The truth table is below.

Fig. 6. How an Exclusive-OR can be used to make a half-adder combinational circuit.

Fig. 7. Two half adders and an OR gate can be used to make a full adder circuit.

assist in the production of sequential timing signals for advanced logic circuits, and convert binary numbers into their octal, decimal, and hexadecimal counterparts. Figure 9 summarizes the operation of encoders and decoders.

Multiplexers and Demultiplex. ers. The multiplexer is the digital logic equivalent of a multiple-position rotary switch. A typical multiplexer is a combinational logic circuit that selects one of several input lines and applies any data on that line to a single output. A special set of address inputs determines which input line is selected.

One typical multiplexer has eight data inputs, three address inputs, and a single data output. When the address 101 is applied to the multiplexer, input 5 is connected to the output.

A common application for multiplexers is driving the readouts of pocket calculators to reduce the number of pin connections on the calculator's chip. The multiplexer lets all the digits in the readout share a common set of terminals. It activates each digit or one segment in all the digits in rapid succession to fool the eye into thinking the display is continually illuminated.
The demultiplexer transfers the binary data at its input onto one of two or more output lines. Like the multiplexer, an address input controls the output.
Demultiplexers are used with multiplexers to convert multiplexed data back to its original form. They can even function as decoders by applying a logic 1 to the single input and using the address inputs as data inputs. Figure 10 summarizes the operation of multiplexers and demultiplexers.

Sequential Logic Circuits. Unlike combinational logic circuits, sequential circuits have memory. Their output(s) can reflect the effect of an input that occurred seconds or even days earlier.
The simplest sequential circuit is the flip-flop. A microprocessor together with a read/write memory incorporates doz-ens-perhaps thousands-of flip-flops.
There are several different kinds of flip-flops, but all are capable of storing a single binary bit. This makes possible such applications as counters, dividers, memory registers, and others. Here are the four basic kinds of flip-flops.

The RS Flip-Flop. The simplest flipflop is made from two NAND or NOR gates with crisscrossed inputs and outputs as shown in Figure 11. This basic circuit is called a reset-set (RS) flip-flop

Fig. 9. An encoder is a combinational network that converts a nonbinary input to a binary output. A decoder does just the reverse.

Fig. 10. A multiplexer is the equivalent of a multiple-position switch. A demultiplexer converts multiplexed data back to original form.

Fig. 11. Simplest flip-flop is made from two NAND's or two NOR's with truth tables as shown.

CLOCK	\mathbf{s}	\mathbf{R}	\mathbf{a}	$\overline{\mathbf{Q}}$
0	0	1	NO CHANGE	
0	1	0	NO CHANGE	
1	0	1	1	0
1	1	0	0	1

Fig. 13. A data, or
D, flip-flop is made by adding an inverter to input of one flip-flop.

Fig. 12. A clocked RS flip-flop is a sequential circuit with truth table as shown here.

D $\mathbf{a} \overline{\mathbf{a}}$
$\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0\end{array}$
or simply a latch. Figure 11 also shows the truth tables for NAND and NOR gate versions of the RS flip-flop.

Notice that the two outputs of the RS flip-flop complement one another. When Q is logic 1 , the flip-flop is set. When Q is logic 0 , the flip-flop is reset or cleared.

Clocked RS Flip-Flop. The basic RS flip-flop is asynchronous; it responds to inputs as soon as they occur. A way to synchronize the operation of the RS flipflop with other logic circuits is to gate its inputs so they can respond only when activated by a logic 1 from a clock. A clock is a sequential circuit that produces a stream of alternating 0 's and 1 's. Fig. 12 is a clocked RS flip-flop.

The Data or D Flip-Flop. The D flipflop is a further modification of the clocked RS flip-flop. As shown in Figure 13, an inverter is added to one of the two inputs of the flip-flop and the remaining input and the inverter's input are tied together. This guarantees that the inputs to the RS section of the flip-flop will always complement one another. And it insures that the logic state of the Q output will always correspond to the logic state of the D input.

The JK Flip-Flop. The JK flip-flop is a clocked RS flip-flop with a refinement that allows a logic 1 to be simultaneously applied to both inputs. Figure 14 shows the logic circuit and truth table for this flip-flop. The JK flip-flop can easily simulate any of the other kinds of flipflops, so it's commonly used in sequential logic circuits.

The JK flip-flop can be used to make a toggle or T flip-flop. The J and K inputs are tied together and called the T input. When a logic 1 is applied to T, the flipflop changes state or toggles each time a clock pulse arrives.

Storage Registers. A string of D flipflops called a register can be used to store a binary word. A register like this can be made far more useful by adding some combinational logic to simultaneously clear all the flip-flops to 0 when a logic 1 is applied to a clear input. A load input can also be added to force the register to ignore incoming data. When the load input is logic 1 , the input data will be accepted by the register when the next clock pulse arrives.

Data storage registers like this are sometimes called buffer registers. They're used in logic circuits and in microprocessor units to temporarily hold a data word.

Shift Registers. Considerably more

Fig. 14. The JK flip-flop is a clocked RS flip-flop that allows a logic 1 to be simultaneously applied to both inputs. Shown here is a NOF gate version with truth tables for $Q=0$ and $Q=1$.

Fig. 15. This shift register made from D flip-flops accepts data a bit at a time and has a serial output as well as parallel outputs from each flip-flop.

Fig. 16. A four-bit counter made from T flip-flops that will count from 0000 to 1111 and then recycle.
versatile than the buffer register is the shift register shown in Fig. 15. This particular register accepts data a bit at a time (serial input) while making available the contents of all its flip-flops simultaneously (paraliel output). The data bits in the register are shifted right a bit at a time by clock pulses to make room for incoming bits.

Universal shift registers that can accept and output data as serial bits or parallel words as well as shift the data left or right are available. The various operations of a universal shift register are selected by applying logical 0's and 1's to an array of control inputs. Microprocessors incorporate at least one shift register to perform some of the data manipulation required to multiply and divide binary numbers.

Counters. Remember the toggle or T flip-flop we discussed earlier? The Q output of this flip-flop alternates between logic 0 and 1 for each incoming clock pulse: 0 ... 1 ... 0 .. 1 ... In other words, the Q output is logic 1 for half the incoming clock pulses. This means a single flip-flop can be used to divide an incoming stream of bits by two. The Q output of a toggle flip-flop also counts! Thus, 0
1 ... is the same as counting from 0 to 1 in binary over and over again.
Higher capacity binary counters (and dividers) can be made from a string of T flip-flops. Just connect the Q output of one flip-flop to the clock input of the next flip-flop. Figure 16, for instance, shows a 4-bit counter made from four T flip-flops. This counter will count from 0000 to 1111 and then recycle.

There are many different kinds of flipflop counters. The modulo of a counter specifies the maximum count it reaches before recycling. Modulo 10 counters are very popular because they recycle after the tenth input pulse and therefore provide a convenient way to count in decimal. They are often called BCD (binary coded decimal) counters. Their count sequence is $0000\left(0_{10}\right) \ldots 0001$ $\left(1_{10}\right) \ldots 0010 \quad\left(2_{10}\right) \ldots \ldots 1001$ $\left(9_{10}\right) \ldots 0000\left(0_{10}\right)$
Counters can have a variety of control inputs. A typical counter, for example, can count up or down. It may also have control inputs for clearing the count to all 0 's, presetting the count to any desired value, and enabling the counter to count. Finally, since counters store the accumulated count until the next clock pulse arrives, they can be considered storage registers.

Uncompromising performance. Incredible price.
 A professional 3½ digit DMM Kit for less than $\$ 70$.

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable /bench DMM which offers such uncompromising performance at the astonishingly low price of $\$ 69.95$.
Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection: automatic polarity; and automatic zeroing.
The low price of $\$ 69.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case. Now you too can have it! A professional-quality, $31 / 2$ digit Sabtronics Model 2000 DMM kit for only \$69.95. If you don't have one in your lab, use the coupon below to order NOW

BRIEF SPECIFICATIONS:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . AC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . DC current in 6 ranges: 100 nA to 2 A - AC current in 6 ranges: 100 nA to 2 A . Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges. AC frequency response: 40 Hz to 50 kHz • Display: $0.36^{\prime \prime}(9.1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega$. Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ $(203 \times 165 \times 76 \mathrm{~mm}) \cdot$ Power requirement: 4 " C " cells (not included).

GUARANTEE:

Examine the 2000 DMM kit for 10 days. If not completely satisfied, return unassembled for full refund of purchase price. (Less shipping and handling)
Use your Master Charge or Visa.
To order by phone call: (214) 783-0994

Made in U.S.A.

13426 Floyd Circle. Dallas, Texas 75243
Made in U.S.A.

Examines noise generators, instrument dynamics, and voltage control.

THE ELECTRONIC music synthesizer has changed the face of recorded music and live rock-band performances. This "instrument" can produce a myriad of unconventional, sometimes weird or eerie sounds. Yet it can also emulate the sounds of any conventiona! instrument.
There are two basic types of synthesizers: studio and performance. Modern studio synthesizers are made up of modular sections that consist of voltagecontrolied amplifiers, filters, oscillators and noise generators, modulators and other devices. These modules can be interconnected in virtually any order by plugging their inputs and outputs together with "patch" cords. The output of almost any given module can be used either as part of the tone you eventually hear, or as the control voltage for another module. It all depends on how one "patches" the elements together
Synthesizers designed for live performances do not use patch cords, as the time lost in changing patches during a performance would ruin the musical continuity. Here, the various modules are hard-wired together and the sounds are changed by a host of conveniently
located switches and potentiometers, used much as stops are on an organ. Since a player can handle only a limited number of controls efficiently, performance synthesizers can't be made as flexible as the studio type.

How It Works. A synthesizer's output waveforms and control signals can be considered as a vast kit of parts from which musicians can assemble any desired sounds. The different parameters of each note-pitch, overtone structure, attack time, duration, and decay--are, in conventional instruments, fixed within narrow limits. In the synthesizer these parameters are independently, and almost infinitely, variable

The modules that control those parameters are shown in Fig. 1. Pitch and overtones are controlled by the voltagecontrolled oscillator (vco) and by the voltage-controlled filter (vcf). The note's attack, sustain, decay and release-its "envelope" in time-are controlled by the voltage-controlled amplifier (vca), which in turn is controlled by the envelope generator. The latter is sometimes called ADSR, the initials of the
four parameters it governs-attack, delay, sustain and release. The musician's control input for these modules is usually a keyboard

Normally, pitch is governed by the voltage-controlled oscillator. As the name implies, its frequency varies with the control voltage fed to it. But the vco also has an effect on overtone structure, or timbre. Its output can, on most synthesizers, be a pure sine wave, with no overtones at all, or a ramp, triangle, pulse, or square wave (see illustrations in Fig. 2), each of which has a different mixture of overtones.

Conventional instruments have somewhat similar overtone structures. A violin note, for instance, begins as a ramp waveform, the bow grabbing the string and deflecting it until the string's tension overcomes the friction of the bow, and the string snaps back again. A saxophone reed's opening and closing makes the equivalent of a square wave.

Don't think that these waveforms fully represent the sound of the instrument. They don't. The actual sound produced depends on the instrument's resonances, which accentuate or attenuate

Fig. 2. Typical vco waveforms.

Fig. 3. Filter modifies timbre.

Individual harmonic components in the raw waveform. The sound of a saxophone may begin as a square wave, but after passing through the instrument, it appears rather like the "ringing" waveform shown in Fig. 3.

The synthesizer's voltage-controlled filter has a similar effect to that of the saxophone's bell or the violin's hollow body. Whereas the resonators of mechanical instruments are reasonably fixed, a synthesizer's equivalent module (its vcf) can be used as either a lowpass, band-pass or high-pass filter over a frequency range of many octaves, while its " Q " (curve sharpness) is adjustable, too. The vcf can also give pitch to the output of an unpitched signal source, the 'noise generator.' At first it may seem odd to include such a module in a synthesizer, since so much attention is paid to eliminating noise in electronic systems. There are many applications, though, as illustrated in the next section.

Fig. 5. The combination of a vca and ADSR.

The Noise Generator. The noise generator is used in simulating such instruments as the snare drum and the high-hat cymbal, or such natural sounds as wind, surf, explosions and thunderclaps. Using the synthesizer's other resources, it's also possible to create sounds that a real drum or real surf could never make. Let's try, for example, to invent a new musical instrument, with a voice like the wind. With enough experimentation, I'm sure that would sound much like the wind-perhaps a pipe with a plugger of some kind in it. With enough practice, we might even learn how to play it so that we were on pitch (and so that it didn't break into oscillation, which would ruin the effect). But it would take some work.

With a synthesizer, this type of task is almost ridiculously simple. First, we substitute a noise generator for the vco (Fig. 4). Then we recover pitch information from the noise (which contains all possible pitches) by passing it through the filter. To play this new instrument, we apply the keyboard's output voltage to the vcf's control input. Now, each keystroke will shift the filter's frequency range, controlling the pitch of the note.

Since the wind usually builds and dies away slowly, we'll want our instrument to have a slow attack and decay, and to sustain as long as we hold down the key. This is where the attack, delay sustain and release, or envelope generator, comes in.

Instrument Dynamics. Every instrument's note varies in amplitude over time. This variation-the instrument's "dynamics"-is one of our chief clues to which instrument we're hearing. (Note how odd most instruments sound when recordings of them are played backwards, even though pitch and overtones are the same.) In some instruments, the sound of each note builds up (attacks) quickly, and dies away (decays) slowly. In others, the attack may be slow, and the decay rapid. Some instruments' outputs begin to die away as soon as a peak is reached; others "sustain" for a time before decay begins.

Though it may not be immediately apparent, all of these characteristics are functions of the way energy is added to each instrument's mechanical system. In instruments where the energy is added all at once (whether by hitting it with a stick or strumming it with a plectrum), the note's volume will be at a peak immediately after striking; and since all of the energy goes in at once, there will be

Fig. 6. By varying its ATTACK, DECAY, SUSTAIN and RELEASE, envelope generator can produce different output waveforms.

Fig. 7. An integrator adds glissando to a voltage controlled oscillator (vco).

Fig. 8. Summation of control voltages
results in special effects like vibrato.

Fig. 9. Varying control voltages from vco or ADSR produce unusual effects.
none left over to sustain the sound-it's downhill all the way until the next note is played. This quick attack and moderate-to-slow decay is typical of instruments in the percussion family: guitar, piano,
drums, xylophone, the heads of contestants on the "Gong Show," and such.

It would be natural to assume that we similarly "strike" the oscillator somehow to simulate this type of sound. But natural as this may seem, that's not how it's done. There's an easier way.

In a synthesizer, the oscillator runs all the time. Whether we hear it or not depends on whether the voltage-controlled amplifier (the last element in our "classic" patch) is on or off. And we control the dynamic shape of the note we're building by controlling the rate at which that vea turns on or off.

What controls the vca is the envelope generator or ADSR (Fig. 5). When it receives a trigger signal (usually from the keyboard), the ADSR's control voltage rises to a peak at a rate determined by the setting of the attack control.

After reaching this peak, the control voltage begins to decrease at a rate set by the DECAY control. It doesn't fall all
the way back to ZERO, though, just to a level set by a third control, sustain, where it holds for as long as the original triggering signal is present. Only when the trigger signal goes away (usually when the key on the keyboard is released) does the control voltage fall from the sustaining voltage to zero, and then at a rate set by the RELEASE control.

By adjusting these four controlsATTACK, SUSTAIN, DECAY and RELEASEwe can cause the ADSR to generate a control voltage which, when used to determine how much signal passes through the vca, simulates the dynamics of any natural instrument (Fig. 6). It can also produce dynamics that would be difficult to produce with a mechanical instrument. An example would be combining the percussive attack of a drum with the sustaining properties of an oboe.
A synthesizer's oscillators and filters operate over an impressively wider frequency range than their mechanical counterparts, and have more modes of operation. A single electronic unit can even simulate a number of properties that might be mutually inconsistent in a mechanical device. But that's only part of the story.

Voltage Control. The real story is voltage control. A synthesizer's oscillator and filter frequencies and amplifier gain are all functions of the control voltages applied. That's more significant than it may look at first.
The keyboards used with most synthesizers are nothing but switch-selectable voltage dividers. Press a key, and a voltage that represents that key appears at the keyboard's output. Press another key and the voltage instantaneously changes to a new level. If the voltage from the keyboard is being used to set the pitch of the oscillator, the output instantly steps from the first note to the second. There will be times, though, when it will be desirable to produce a sound that doesn't instantly change from one pitch to another, but rather glides (glissandos) between notes. Because of voltage control, a simple integrator (nothing more than a register, capacitor and buffer amplifier) placed in the key-board-to-oscillator control voltage path will produce this effect by slowing down the change (Fig. 7).

Other special effects can be added easily by summing control voltages from several sources. Vibrato, for example, which is a slow-speed modulation, is realized by summing a slowly varying ($7-12 \mathrm{~Hz}$) control voltage into one of the
control voltage inputs of the vco (Fig. 8). Applying this same modulating voltage to the vca produces tremolo, a slow variation in the output amplitude.

Since the center or corner frequencies of the filters used are also functions of summed control voltages, several vastly different acoustical instruments can be simulated simply by changing the source of the control voltages that we apply to this element.

If the voltage comes from a fixed source, the output would simulate an instrument with a fixed resonator such as a guitar or piano. However, changing the control voltage allows one to instantly change the properties of the resonator (try that with a piano). Moreover, if the control voltage comes from the same source that is supplying pitch information to the oscillators, we can simulate the properties of instruments with variable resonators, such as reed and wind instruments (Fig. 9).

Filter control voltages that vary with time can vary independently of the voltage that controls the oscillator, allowing the filter to sweep the harmonic content of the oscillator's output cyclically (a cross between tremolo and vibrato that is rare among natural instruments). Or, the control voltage can be derived from an ADSR, for a "waa-waa" effect.

Getting back to our "wind" instrument, the desired sighing quality can be easily attained by simply adjusting the envelope generator for a slow attack and decay, a high sustain level, and a slow release. Tiring of that, one need only change the settings of the ADSR to fast attack, no sustain, and moderate decay, to set up an entirely new "instrument." This one will sound like a "chromatic high hat cymbal," one that is played from a keyboard. This would not be only for rhythm, but also as a lead voice in a composition. (Try that with your pipe and plugger!) The pitch and range of the filter can be changed, too. Bring an oscillator in, and begin simulating snare drums that can be played in pitch. There's no end to the possible variations achievable with patch-cord type synthesizers.

If you have access to a synthesizer, you'll have instrumental and other sound available for recording right at your fingertips. And if you think that you don't like synthesizer sounds, perhaps you should begin listening more carefully to modern pop, jazz and rock recordings. The next time you hear what appears to be a chorus of violins, read the album's liner notes-they might not be real violins at all!

Get all the newest and latest information on the new Mcintosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEWD
 TODAY!

If you are in a hurry for your catalog please send the coupon to McIntosh.
For non rush service send the Reader Service Card to the magazine. CIRCLE NO 38 ON fREE INFORMATION CARD

Build a
 COMPUTER MUSIC BOX PERIPHERAL

UDGING from the many commercial plug-ins available, computergenerated music appears to be the "in" thing today. If you have found the singlebit method is too limited and the digital/
analog converter approach too expensive, the low-cost (less than \$30) Music Box described here may be just for you.

The Music Box has a 12-note, fouroctave range. It can be used with any
computer that has a parallel output port. And to simplity its use, no strobes or other handshake signals are required.

The Music Box circuit is not limited to making music. It can easily be pro-

C1. C2-0.01- $\mu \mathrm{F}$ Mylar capacitor
DI through D12-1N914 diode
ICI-74154 4-line to 16 -line decoder
IC2-555 timer
IC3. IC4-7473 dual JK flip-flop
1C5-740) quad NAND gate
QI-2N3906 transistor
R1 through R13-2000-ohm linear-taper po trimmer potentiometer
The following are $1 / 4$-watt, 5%-tolerance resistors:
R14-5600) ohms.
R15.R19. R20-1000 ohms
R16- 10.0×0 ohms
R17-22.(NO) ohms
R18. R21, R22, R23, R24-100,000 ohms
Misc.-IC sockets (optional): suitable prototyping berard: suitable enclosure; etc.

As bits 0 through 3 from computer change, the vco changes frequency. Other four bits (4 through 7) determine the octave of the audio output.
grammed to generate a mix of tones, up to a total of 16 , for use as test and re-mote-control signals.

Circuit Operation. The circuit (see schematic diagram) can be broken down for discussion purposes into three major subsections: note decoder/selector, voltage-controlled oscillator (vco), and octave decoder/selector.

The note decoder/selector consists of integrated circuit IC1, a 4 -line to 16 -line decoder. As the four control bits from the computer (bits 0, 1, 2, and 3) are entered into IC1, one of the 16 output lines is driven low. When the output line goes low, it allows its associated diode (D1 through D12) and series potentiometer (R1 through R12) to control the voltage and, hence, the frequency of the vco made up of IC2, Q1, and their associated components. Since only 12 tones per octave are used in music, output lines 13,14 , and 15 of IC1 (pins 15, 16, and 17) are not used. (These three lines can be used to control an external device, as we will discuss later.) When IC1's output 0 at pin 1 is low, the vco is cut off to provide a no-note condition.

Timer IC2 is configured as an oscillator, with transistor Q1 serving as a volt-age-controlled resistor that works in conjunction with frequency-determining capacitor C1. By varying the bias applied to the base of Q1, the output frequency of the vco system can be made to vary.

Resistor R18 determines the low- and R16 and R17, the high-frequency ends of the range. Capacitor $C 1$ can be

TABLEITHE WELL-TEMPERED MUSICAL SCALE

Control bit	Frequency $\mathbf{7 6 5 4 3 2 1 0}$ $(\mathbf{H z})$	Note 5th Octave
10000000	0	Off
10000001	523.25	C
0010	554.37	$\mathrm{C} \#$
0011	587.33	D
0100	622.25	$\mathrm{D} \#$
0101	659.26	E
0110	698.46	$\mathrm{E} \#$
0111	739.99	F
1000	783.99	G
1001	830.61	$\mathrm{G} \#$
1010	880.00	A
1011	932.33	A
1100	987.77	B

changed to select the desired frequency range. The output of the oscillator at pin 3 is fed to the flip-flops in IC3 and IC4 for octave generation.

The four octaves of square waves generated by IC3 and IC4 are summed with the four octave-control bits (bits 4, 5,6 , and 7) by the four AND gates in IC5. The resulting selected octaves are mixed in R21 through R24 for application to an external audio system. Any combination of four octaves can be selected simply by changing the status of bits 4 through 7 . If all octave bits are low, no tone appears at the output. Note that no status signals are required.

Since the audio output consists of square waves, it is not difficult to introduce various types of filters to create different sounds.

Construction. The entire circuit can be assembled on any prototyping board that can be connected to the parallel output port of the computer in which the Music Box is to be used. The power for the Music Box can be taken from the +5 -volt and ground lines in the computer. Alternatively, you can use an external power supply rated at 100 mA minimum. In either case, a common ground must be used between the Music Box and computer.
You can use sockets for the IC's if you wish and small board-mounted trimmer potentiometers for R1 through R13.

Calibration. Although the Music Box was designed for use with a computer, it does not require a computer for calibration. All you need is a 5 -volt dc power source and an audio system. A frequency counter will simplify calibration but is not a necessity.

Before applying power to the Music Box, set R1 through R12 to their maximum series resistance and R13 to its center of rotation. If you have a frequency counter, connect it to the TEST POINT. Otherwise, connect the output of the Music Box to an amplifier/speaker combination so that the pitch of the output signal can be compared with the sound of a known musical instrument.

Using temporary jumpers to the +5 volt (1) and ground (0) lines, set the control bits to the values given in Table I and adjust the corresponding trimmer potentiometer (R1 through R12) to obtain the indicated frequency (or the correct tone when compared with the sound from a musical instrument). If the entire range cannot be obtained, readjust R13 and perform the above procedure again.

TABLE II-TEST VALUES

Note	Number value (n)
Off	0
C	1
C\#	2
D	3
D\#	4
E	5
E\#	6
F	7
G	8
G\#	9
A	10
A\#	11
B	12
Octave	$n+m b e r$ value
5	$n+64$
4	$n+32$
3	$n+16$

Note: B_{5} is the highest note $(n=140)$
C_{2} is the lowest note $(\mathrm{n}=17)$
C_{5} is middle C
A_{4} is A_{440}

Operation and Use. Since there is no data latch, the Music Box tracks the data that appears at the parallel output port. Connect the common ground and eight data lines between the Music Box and the output port. To test the system, execute an output of the number value that corresponds to that note as given in Table II.

The software program you write will depend on the music requirements. Arrays can be used to store melody information and loops can be used to control the length of the note.

The four-octave range of the circuit can be shifted by halving the value of $C 1$ to raise the pitch one octave or it can be doubled to lower the pitch one octave.

Other Uses. The three decoded outputs from IC1 at pins 15, 16, and 17 can be used to trigger a percussive device (such as the "Cabonga" featured in the August 1977 issue of Popular ElecTRONICS) or to latch an external control device. These decoded output signals are TTL level. If music is not what you want, you can use the circuit to provide 16 preadjusted tones for use in testing or remote-control applications (see "Computer Bits," August 1977). To obtain all 16 tones, you must add diodes and potentiometers to the circuit as shown for the other outputs.

You meet the nicest people on the upper 17.

The most serious CB'ers were the first to move from 23 to 40 channels. And the upper 17 are still their uncrowded province.

President Electronics never made a CB with fewer than 40 channels. We set out fresh to meet the FCC's tough new standards with new electronics and new ideas.

That's why every President has one of the most sophisticated compression circuits in CB - to assure consistent 100\% modulation.

And why every President has power output circuits that are vastly improved over many old 23 -channel designs.

So when you move up, move up to President.

And if you want to move all the way up, move up to the Madi-son-the most base station your money can buy.

Madison not only

and 40 lower sideband channels. And it gives you the extra range and performance you get only from superb SSB, with 12 watts of peak envelope power.

And it gives you all the controls you need for complete command of everything that comes out of or goes into the radio ... And a digital clock with alarm to remind you of scheduled QSO's...

And a separate speaker for improved sound and improved convenience... And more.

We did, however, leave off the automatic ice maker.
Today, owning a 23-channel CB is like owning a mono record player-great nostalgia, but out of touch.

So get in touch with the upper 17.

There's room.

- An introduction to a special 16-page report.

EXAMINING a CB radio mobile handbook published in 1962 underscores how far this low-cost, two-way radio communications system has traveled . . . and how much the same it is today. One striking sentence published fully 16 years ago in this book (four years after the CB band was moved to 27 MHz from higher frequencies authorized in 1947) was: ". . . the Commission never envisioned the CB'er who owns one set and talks to other licensees!" That was the reason given then for the FCC's initiation of the famous five-minute conversation limit rule.

The Citizons Band Today? It's a more meaningful form of short-distance radio communications than ever for the general public. There are said to be some 25 -million CB transceivers spread around the U.S., creating a viable local network for emergency communications, informational assistance for motorists, and social conversations. And it's got a new name-the Citizens Band Radio Service, which is a subdesignation in the Personal Radio Service.
The new 17 CB channels added last year will most certainly be used more and more since the FCC banned sales of new or used 23-channel transceivers as of January 1, 1978 (excepting handheld types, which may be marketed without 40 -channel capability until August 1, 1978). Although there was an increase of 74 percent in channel availability that now stretches from 26.96 to 27.41 MHz , channel 9 remains the emergency calling channel.

A host of modified rules and decisions over the past year or two has changed the complexion of CB for the better. For example, one can get on the air legally without waiting for a station license by using Form 555-B packed with each new CB transceiver; subpart D of the FCC's Part 95 Rules and Regulations
has been broken out as a separate publication to be packaged with new transceivers; there is no charge for a CB license; new 40-channel transceivers must meet more stringent technical requirements; and, most recently, proceedings on creation of a Class E (224-225 MHz) CB band have been terminated

Other decisions aftest to CB radio's growing importance in our lives. The U.S. Coast Guard, for instance, announced it would install CB gear at Coast Guard Search and Rescue stations throughout the U.S. in time for the 1978 recreational boating season. Federal funds are now issued to states with organized CB programs, with the National Highway Traffic Safety Administration stating that the "Citizens Band offers the only existing method convenient to the public by which the motorist can enter the emergency response system from his/her vehicle." As a consequence, it will be progressively easier to reach a highway patrolman for aid as time goes on. Right now, in fact, CB radio public safety programs have been established by 94 percent of the nation's state police organization's, with CB radios already installed in 48 percent of the police vehicles in 34 states. Supporting the federally funded NEAR (National Emergency Aid Radio) program, REACT, the largest voluntary CB emergency service organization, was recently awarded a contract to develop a CB channel-9 monitor training program for public safety officers and volunteers.

The foregoing does not mean that CB radio is cleansed of all its problems. There are still violators of FCC rules, the most important being: (1) Out-of-band communications; (2) Overpowered transmitters; (3) Indecent language; (4) Communication over 150 miles away (skip); and (5) Failure to identity by callsign. Furthermore, CB-caused TV and
audio interference is still a challenge.
The CB industry itself is in the process of stabilizing. The problems it had appear to have been precipitated by the FCC's announcement in July 1976 that 40-channel CB transceivers could be sold as of January 1977. While people waited for the introduction of new 40channel models, 23-channel inventories mounted. The result was a drastic reduction in prices of 23 -channel models that proved irresistible to the public, which, in turn, caused discounted prices on 40-channel models. The upshot was that most CB manufacturers lost money during this period, while the public was getting the best values in memory. With a more mature market, you can anticipate that selling prices will edge upward.

Where is CB Coing? In the short term, more and more single-sideband and increasingly sophisticated AM CB transceivers are likely to be purchased. The reasons are multifold. For one, advanced technology presents prospective users with a better rig, both in raw performance and in convenience features: electronic digital readouts, cal-culator-type control keypads, memory, automatic channel scan, separate VFO for receive-only with a second digital channel display, improved front-end overload circuitry, superior selectivity, precision SSB tuning, remotely controlled mobiles, and so on. Secondly, many millions of CB'ers are ripe for upgrading their present equipment, having tasted the benefits of two-way radio communication. (It's also expected that many CB'ers in this group will turn to amateur radio, expanding their communication horizons while maintaining CB rigs for emergencies.)

Technological developments do not necessarily mean exhobitant cost, either. For example, National Semiconductor's single-chip frequency synthe-
sizer/programmer for CB radio use is claimed to reduce component count by as much as $60-70$ percent. Features include two-speed-slew, up/down channel selection capability, busy or clear channel scan, channel memory, LED blanking control in the event an auto clock circuit is added, channel 9 selectability, and more. ECL and I2L fransistors are fabricated on the same chip.

You can expect standardization of selective calling signals somewhere down the road for CB radio. A technical committee of the EIA is already working on this for add-on to existing models and incorporation into future ones. There will be ongoing efforts to reduce interference on TV sets, too. CB radio manufacturers have already suggested that $C B$ harmonic emissions be limited to -75 dB as compared to the present -60 dB . Further, FCC Commissioner Lee told TV manufacturers to get ready for an FCC drive to upgrade interference capabilities of TV receivers.
With tew FCC enforcement personnel, it's expected that self-regulation efforts will be pursued to minimize communication violations by CB'ers. The

FCC may well utilize the services of volunteers in a program of first-level screening and offender identification, a proposal already being considered. Also, a new series of radio Public Service Announcements has been prepared to remind CB'ers on proper usage of personal communications equipment. The on-again/off-again ATIS (automatic transmitting identification signal) proposals appear to be shelved for now.

There are many spectrum alternatives being analyzed to cover future growth of personal radio services. None seem imminent at this time, but somewhere down the road such a decision would have to be made to avoid channel congestion. Right now, though, the new 17 channels are essentially clear and clean, providing users with fartherreaching signals than they got with the older channels.

At some distant time, one may also expect a CB rig to perform as a true mobile telephone. Interestingly, International Resource Development Inc., a market research company, does indeed project a future merger between CB and the telephone, as well as skyrocketing
growth in personal radio use after a short pause. Among other prospects is the use of repeaters in sparsely populated areas to extend a CB radio's range.

It would seem appropriate, too, in future planning to carve out SSB-only channels. To take full advantage of the spectrum-saving function of SSB, even at present, would require tighter technical specifications so that both lower (most popular) and upper sidebands on one channel can be used optimally

Clearly, CB radio is no longer a fad, The over-riding reason for purchasing a CB rig, in fact, is to handle distress situations, as borne out by a recent study by the International Trade Commission. This isn't surprising since more than 40 million emergency and assistance requests are reported to be handled annually by the CB Radio Service, Equally impressive, the former Superintendent of the Missouri State Highway Patrol ádvised that lapsed time between occurrence and notification of accidents was almost halved when reported by $C B$ ra dio as compared to conventional means.

See "Editorial" for report on CB at the 1978 Consumer Electronics Show. 厄

BY IVAN BERGER Senior Editor

ANEW breed of super mobile CB transceivers has been introduced to the marketplace this year. They feature higher performance capabilities than ever before, lower interference emission and more convenience features. Each CB manufacturer's best AM/SSB and AM model is listed in the buyer's guide on the following pages.

Specifications. All of the top-of-theline SSB and AM mobiles listed in our chart cover 40 channels and virtually all manufacturers claim 100% modulation and the maximum power that the law allows: 4 watts on AM, 12 watts PEP on SSB. All háve squelch, on-off-volume knobs and external speaker jacks; nearly all (except most of the control-in-themike remote-mount models) have $S / r-f$
metering, and virtually all have digital channel displays. Because of these similarites, you won't find those features in the table. Sensitivity figures for about 90% of these rigs are $0.5 \mu \mathrm{~V}$ for 10 dB ($\mathrm{S}+\mathrm{N}$)/N on AM and $0.25 \mu \mathrm{~V}$ for SSB, and most makers rate audio power output at the 10%-distortion point. Exceptions to these specifications are noted under "Remarks."

Two specifications measure a CB rig's ability to reject unwanted signals. Adjacent Channel Rejection, as the name implies, tells how well the rig can reject signals of channels on either side of the tuned-in one. It's measured at $\pm 10 \mathrm{kHz}$, of course. The higher this number, the better. Selectivity here is the bandwidth or i-f "window" at which the receiver's response falls by 6 dB . The narrower
this frequency range, the greater the immunity to "splatter" from overmodulating stations on adjacent channels. If it's too narrow, however, voices will sound unnatural and that's not good either.

Image Rejection measures the receiver's ability to attenuate an undesired image signal generated by the converter stage. Spurious Response Rejection measures the transceiver's resistance to spurious signals created by the interaction within the tuner front end of strong external signals. The higher both figares, the better.

Most mobile sets will operate on both negative-ground cars (the most common typé) and positive-ground ones. Where the manufacturers supplied the information, we show the permissible ground polarities as either " \pm " or "-".

About This Month's Cover

AIthough the CB mobile transceiver illustrated on our front cover doesn't exist, most of its features are available in one or another of the new CB models available today. With more and more CB manufacturers limiting much of their development and manufacturing efforts to "high-end" models, it would not surprise us to find all the features in our imaginary model combined on one chassis at some future time.

Like virtually all of today's top CB transceivers, our dream model has electronic tuning and LED digital channel readout. This permitted us to include several tuning options that are currently available (though not all on the same model), plus a few practical approaches we haven't seen yet.

The UP and DOWN buttons (duplicated on the mike) let you scan manually to any desired channel, while the keyboard lets you jump to any channel directly. If you're trying to hold a conversation, but find the channel is crowded, press our dream rig's SCAN VACANT rocker switch. (It's one of the controls in the group labelled SCAN on our drawing-detailed switch designations aren't shown.) This will find and display the nearest vacant channel number. After you tell the party with whom you were modulating what channel is vacant, pressing the switch the other way, to TUNE VACANT will move
you directly to that channel. If you're looking for a conversation, the SCAN ACTIVE button will find it for you. SCAN MEMory looks for activity, too, but only among the stations you've programmed into either of the two memories: M1 for the channels you use within your normal driving area, or M2 for channels you use when driving elsewhere.
selective call facilities like our dream rig's should be available soon: one button, under the numerical keypad, programs in the selective-call number to be transmitted; the button beneath it is used to transmit that calling code. Two other keys work with the number pad to set your own call number and the channel or channels you expect to be called on. After that, any properly coded calls on any of those channels automatically take priority over the one you're using.

ON-OFF and VOLUME controls are separate, so you needn't reset the volume control whenever you turn the rig on. The VOLUME, SQUELCH and AM/SSB Selector settings can be determined by touch, for safety, and the two SSB con-trols-the sideband selector and the cla-rifier-are grouped together. squelch control setting can be determined by touch, as can that of the AM/SSB selector just below it. The CLARIFIER control is to the AM/SSB selector's left.

Grouped under qUALITY are: an ANL
switch; a two-position NOISE BLANKER (for a choice of blanking time), a whisTLE FILTER and a bROAD/NARROW i-f selector. To the left of the foregoing are RF GAIN and MIKE GAIN knobs; to the right is a TONE control. Still further right is the TALK TIMER It squawks when you've exceeded the statutory 5 -minute limit on talking time, and its surround ring blinks as you approach that limit.

The optional clock module counts down from 5 minutes whenever you press the talk switch on the mike. It also tells you the time of day, between transmissions; and has an elapsed-time mode, too. A separate hours reset button simplifies resetting when you drive from one time zone to another. An interlock button prevents accidental resets.

The meters, of course, are as large as practical. In addition to the switchselectable SWR metering, there's an alarm LED to warn you when the SWR approaches limits that could damage your transmitter-if the antenna is damaged, for example.
If our dream rig looks unusual, it's because we paid more attention to human engineering than to styling. Hence, the wide variety of controls' shapes and sizes (for easy touch identification) and the angled keypad (a more natural angle for the driver's hand with center buttons recognizable by touch.

Maximum current drawn by the rig is shown in the chart, too

Listed Features. In addition to the basic features found on virtually all CB transceivers, there are several fairly common extras noted here. (For rarer ones, see "Remarks".) The Automatic Noise Limiter (ANL) circuit clips noise pulses that ride in on the received sighal, but not noise which was part of the signal as it was transmitted. The Noise Blanker circuit momentarily squelches noise within the signal. It is more effective than ANL on AM, and quite a bit more effective on SSB. Where manufacturers have specified that their ANL or noise blanker controls are switchable, we've marked them with an " S ". Switching out the ANL will usually increase volume and decrease distortion slightly. Switching out the noise blanker should have no audible effect (save for an increase in noise.) All too often, however, this will increase the receiver's apparent
sensitivity, rather as if the squelch had been turned down a bit

Some rigs have R-F Gain controls to prevent strong-signal overload; an " S " here means a two-position switch (sometimes labelled Local/DISTANT) instead of a variable knob. Mike Gain controls assure maximum legal modulation even if you're speaking softly-on most sets, automatic level controls perform this function). Next comes a Tone control, followed by Up/Down Tuning (as in our dream rig).
Remote-mount means that the bulk of the transceiver circuitry is in a featureless, concealable box, with most or all controis on the microphone. (Some sets have a few controls or indicators on a separate speaker box.) PA switches are found on virtually all CB rigs; where the makers specified a Separate PA Speaker Output, that column is checked. A LED Dimmer brightens the channel numbers for daytime viewing and dims them at night to prevent glare.

Many sets today have various Priority Channels, allowing you to switch instantly to channel 9 for emergencies, to channel 19 for traffic advisories, or perhaps to some other channel or channels of your choice. (These are given only in the table for AM rigs.) Some will also scan the priority channels (" S " in our chart). Switching to one when there's activity. Others will, like our dream rig, scan for active channels ("Sa") or for vacant ones (" Sv "). Since this feature is rare on SSB rigs, we've used Clarifier Range for that column in the SSB ta-ble-priority and scan features, if any are also under "Remarks."

Indicators for Percent Modulation and SWR may be either meters (" M ") or LED's ("L'). Modulation meters differ from the usual "RF" meters primarily in being calibrated in percentages, rather than in arbitrary units. If LED's are used for SWR, they usually serve only to warn when SWR has become high enough to possibly damage the transmitter.

SUPER AM MOBILE TRANSCEIVERS

Symbols and abbreviations: ${ }^{\text {a }}$ AM; L=LED indicator; mameter; S=switched; "SSB; Sa=scan for active channel; Sv= scan for vacant channel; Sescan(in Priority-Channel column); "Distortion unspecified; U\&L=Upper \& Lower sideband indicator 11ghts;
*See "Remarks" for distortion level;

SUPER A H M MOBILE TRANSCEIVERS Continued

Symbols and abbreviations: ${ }^{\text {am }}$; L=LED indicator; M=meter; S=switched; ${ }^{s}$ SSB; Sa=scan for active channel; Sv= scan for vacant

*See "Remarks" for distortion level;

Choosing a Mobile CB Antenna - How to Select and Install Mobile CB Antennas.

BY JOHN J. McVEIGH, Asst Technical Editior

WHERE range is concerned, the only factor truly under the control of the CB'er is the antenna-its type and where it is installed.

Antenna Basics. All antennas employed in two-way communications perform two functions: (1) accept r-f power from the transmitter and radiate it into space, and (2) capture a portion of the radio signals passing by and present them as small voltages to be processed by the receiver. For maximum range, antennas should perform these two functions as efficiently as possible.

The elementary antenna from which most others are derived is the half-wave dipole. It is composed of two quarterwavelength conductors and is fed in the center by a transmission line. The dipole can be installed so that its conductors lie in the horizontal or vertical plane.

Although a horizontal dipole possesses some qualities desirable in CB mobile communications, such as its greater ability to reject ignition noise, it's size makes it impracticable. Only a small fraction of all the vehicles on the road could accommodate a dipcle 17.2' (5.2 m) long! The vertical dipole, shown in Fig. 1A, is a more realistic alternative.

One of the characteristics of a dipole is directivity. That is, the antenna works better in some directions than others. If it is mounted in free space, the dipole's radiation pattern is as shown in Fig. 1B. It is most effective at right angles to itself, and least effective off its ends.

To an observer in the same plane as the antenna (standing upright and looking directly at it), the antenna appears to be omnidirectional. For a given radiation angle (the angle at which the signal takes off from the antenna), the horizontal radiation pattern of the vertical.dipole
is circular-the antenna receives signals from or radiates them to all points of the compass with equal facility. In other words, it is omnidirectional. Keep in mind, however, the three-dimensional aspect of the pattern. The vertical dipole is most effective when signals strike or leave it at right angles.
The vertical dipole's omnidirectionality in the horizontal plane means that no loss in signal will occur if the mobile you're talking with up ahead makes a left or right turn or follows a curve in the

General arrangement of a vertical dipole is shown at (A); while (B) is its radiation pattern in free space

road. If horizontal dipolés were employed, each would end up in the null of the other's radiation pattern. It is true that the described patterns are those of antennas in free space, and that proximity to the earth and metallic objects distort them. But even real-life horizontal dipoles display some directionality.

Another beneficial quality of the vertical dipole is its low angle of radiation, especially when mounted near ground. If it is mounted at right angles to the earth's surface, it is most sensitive to (and best radiates) ground-wave sig-nals-those travelling parallel to the surface of the earth. In line-of-sight communications, the ground wave predominates. The vertical dipole will therefore reject skip signals to some extent, and will be most efficient for ground-wave mobile-to-mobile and mobile-to-base communications.

There are, however, some disadvantages associated with vertical antennas. Because they are omnidirectional in the horizontal plane, they will bring in stations from all points of the compassboth wanted and unwanted. On transmit, signal power will be radiated in all directions, not only toward the stations with whom you are communicating, but also areas where there are no stations.

The major disadvantage associated with the vertical half-wave dipole is its size-about 17.2 feet (5.2 m) at CB frequencies. A mobile antenna of that size would not only be physically unwieldy, but would also be highly vulnerable to damage from shocks inflicted by highway overpasses, overhanging tree branches, etc. Full-size, half-wave "coaxial" vertical antennas are commonly employed at base stations and on CB-equipped pleasure craft, but their dimensions rule out their use for mobiles.

Ground Planes provide a solution to the vertical dipole's height problem. If a quarter-wave vertical conductor is placed over a large horizontal conductive sheet, a "phantom" quarter-wave element is generated. The conductive sheet, called a ground plane, acts like a mirror and supplies the antenna element necessary to form a half-wave radiator. Ideally, the ground plane should be a perfectly conducting disc with a radius 'large as compared to the wavelength at the operating frequency:

Practicality imposes several limits on the structure and composition of the ground plane. Even at base stations, a metallic disc with a radius of only a quarter wavelength (about 8.6 feet or 2.6 m)

Choosing Mobile Antennas contiriued

would be unwieldy. Four radial wires, each one-quarter wavelength, provide a ground plane at many CB base installations. The mirror image produced by the ground plane permits the use of an antenna only a quarter wavelength high.

In mobile applications, four radial wires are impractical. Instead, the metallic vehicle body is used. Although a far from ideal ground plane, the car body will work-to an extent-and is eminently practical. However, the vehicle body must be metallic

Loading. Even though the use of a ground plane reduces the height of a vertical antenna by one half, a quarterwave whip at CB frequencies (104" or 2.6 m) is rather large. Some CB'ers install such antennas on their vehicles, but for practical reasons they can mount them only on a bumper. (That is not a very good mounting location, as will be developed later.)

When positioned over a ground plane, a vertical whip will resonate at the frequency for which its length is one-quarter wavelength. That is, its feedpoint impedance will be purely resistive. If the whip is too short to be a quarter wavelength at the operating frequency, its feedpoint impedance will contain some capacitive reactance. CB transceivers, however, operate optimally when looking into purely resistive 50 -ohm loads. By adding the right amount of inductive reactance-supplied by a loading coilto precisely cancel out the antenna's capacitive reactance, only the resistive component is left. The antenna's electrical length is such that it resonates at the operating frequency.

A loading coil, in effect, supplies the missing physical length required for resonance. For a given operating frequency, more and more inductance is required for resonance as the antenna is physically shortened Some CB mobile antennas are only $18^{\prime \prime}(45.7 \mathrm{~cm})$ longquite a reduction from 104" (2.6 m)! They require a lot of loading inductance. Most mobile whips designed for roof or trunk mounting use less loading and longer whips, keeping element length in the physically manageable 48-to-54inch (1.2-to-1.37-meter) range.

Loading is a compromise solution to the antenna height problem, not a perfect one. Two of its principal drawbacks are a reduction in antenna efficiency and a narrowing of bandwidth. The degrada-
tion of antenna efficiency is caused by the resistance of the wire which forms the coil. Some of the transceiver's r-f output will be wasted heating the coil, rather than being radiated by the antenna. For a given wire composition, more inductance means more turns of wire, hence more resistance and increased power loss. A mini-whip, requiring a large loading coil, will therefore be less efficient than a longer antenna with a smaller loading coil. Manufacturers try to keep this power loss low by using lowresistance wire in their loading coils.

Reduced bandwidth is a natural consequence of antenna loading because the introduction of inductive reactance raises the " Q " of the antenna. As the operating frequency moves away from that of resonance, the feedpoint impedance of the antenna changes, producing a mismatch between the antenna and feed line. Standing waves then appear on the line and the transceiver sees a reactive load.

Some impedance mismatch is inevitable and is tolerable up to a point. A mismatch of impedances by a factor of two (by definition, a standing wave ratio or SWR of $2: 1$) is acceptable, but greater mismatches can cause problems to the transmitter and a loss of antenna efficiency. Just how much the antenna's impedance changes with frequency determines how far above or below resonance it can be used before the mismatch becomes intolerable.

Fig. 2. Radiation pattern of vertical whip (A) is distorted when antenna sways backward (B) or forward (C).

A full-size quarter-wave whip working against a good ground plane will easily cover the 40 CB channels while maintaining an acceptable match. However, a very short miniwhip will have difficulty presenting a matched impedance over even the original 23 channels. Most midsize whips can be used on 40 channels if tuned for the best impedance match at the center of the band.

Apart from physical convenience, there are two compelling reasons for using inductively loaded, less-than-full size vertical whips in mobile CB communications. One deals with ground-plane effects, and will be considered later. The other results from the physical behavior of a large whip on a moving car. With the vehicle stationary and the antenna upright, a radiation pattern like that shown in Fig. 2A is produced.

If the whip is long and springy, onrushing air will deflect it once the car is moving, resulting in the radiation pattern shown in Fig. 2B. This pattern indicates that some of the radiated r-f will be sent up into the blue-at the expense of the ground wave, the real medium of communications! If the car hits a bump or sharply decelerates, the whip can pitch forward, again producing an undesirable radiation pattern (Fig. 2C). Of course, distortions in the pattern will also occur if the whip sways from side to side.

As the whip bounces around, the signal received by another CB'er will flutter in strength. The same effect will be experienced on receive by the operator using the tall whip. Also, the load impedance as seen by his transmitter output stage and the SWR on the line will vary. These undesirable effects can be minimized by either shortening the antenna and inductively loading it or constructing it so that it is rigid

Loading, within limits, is a good solution. Making the antenna rigid will cure the problem, but makes the antenna susceptible to damage from overhanging objects. Those manufacturers who produce stainless steel antennas use special alloys and element tapers to enhance the antenna's ability to remain upright while maintaining the flexibility necessary for absorbing shocks. Loaded fiberglass whips are more rigid than stainless steel and thus have lessflutter.

Fiberglass antennas áre also less susceptible to the buildup and discharge of static electricity, which can produce a hissing noise in the receiver. (Stainless steel whips usually have tip-mounted balls to inhibit static discharge.) The principal drawback to the use of a rigid

Fig. 3. Top-loaded antenna (A) is shown at left; center loading (B) in middle; base loading (C), right.
fiberglass whip is vulnerability to impact from overhanging objects.

A stainless steel shock spring can be inserted at the base of a long whip to make it more shock absorbent. The spring must have a braid-shorting strap fastened internally between its two ends. Otherwise, the spring will act as a coil and upset the feedpoint impedance of the antenna.

Types of Loading. An antenna designer has three choices as to the location of the loading coil-at the base, in the center, or at the top of the whip. Each has advantages and disadvantages, and we will examine them in turn.

Base loading is shown in Fig. 3C. The plastic cylinder at the base of the antenna houses the loading coil, isolating it from the detuning and corrosive effects of the environment. Base loading re-
quires the least amount of inductance for a given antenna length, so coil resistance can be kept to a minimum. Also, base loading results in a physically sturdy structure because the weighty loading coil is at the bottom of the antenna. The light weight of the whip minimizes pendulum-like oscillations. An electrical benefit is also obtained.IKeeping the coil fixed in relation to the ground plane reduces variations in feedpoint impedance as the whip flutters.

Most antennas that employ base loading are at dc ground. That is, there is a direct short from a dc point of view between the whip and the ground plane. Dc grounding is introduced to bleed off the hiss-producing static charges that accumulate on a stainless steel whip before they can discharge into the atmosphere.

The major disadvantage associated with base loading is a distortion in the distribution of voltage and current along the radiating element. Compare Fig. 4 A , the V-I distribution along a full-size vertical radiator, with Fig. 4B, the distribution along a base-loaded antenna. This distortion in voltage and current distribution means that the base-loaded antenna has a fairly low radiation resistancelower, in fact, than that exhibited by cen-ter- or top-loaded whips. Radiation resistance, a concept developed by antenna theorists, is a fictitious resistance that accounts for the power radiated by the antenna. The higher the radiation resistance, the greater the portion of the r-f delivered to the antenna that is actually radiated into space. Base loading, therefore, is less efficient than other loading techniques.

Center loading (Fig. 3B) offers improved V-I distribution along the radiator and greater radiation resistance than base loading. However, for a given whip length, more loading inductance is required. This implies greater coil losses than those experienced with base loading. There is a compensatory factor: a base loading coil is situated at the current maximum, but a center loading coil is positioned at a point where there is less current in the radiator. Heat losses are determined by the familiar relationship $P=I^{2} R$, where l is the rms current and R the dc resistance of the coil. That less current flows in a center loading coil compensates, somewhat, for the greater resistance of the larger loading coil.

Top loading (Fig. 3A) improves the V-I profile and increases the radiation resistance even more. This loading technique requires the most inductance and
thus introduces the most coil resistance. However, the top of the radiator is where the least current flows, so coil losses are not as severe as you might first think. The trade-off of some coil losses for increased radiation efficiency is more than a break-even proposition.

The real problem that center or top loading introduces is whip sway. This adversely affects the radiation pattern and causes variations in feedpoint impedance: Whip sway is more likely with center or top loading because the coil housing increases the wind resistance of the whip. Impedance variations are more severe than with base loading because the relationship between the ground plane and the loading coil is not fixed but dependent on the deflection of the whip. As mentioned earlier, whip sway can be prevented by making the antenna rigid, but again, a stiff upright radiator is more susceptible to impact damage. However, if an antenna up to about $60^{\prime \prime}(1.2 \mathrm{~m})$ is mounted on an auto roof or trunk, the likelihood of its coming in contact with overhanging objects is not too great. Vans and trucks are a different story.
Another loading technique is continuous loading. No discrete loading coil is employed. Rather, the inductance is distributed along the entire radiator. The continuously loaded antenna is formed by helically winding one quarter-wave length of wire on an insulating pole (Fig. 5). Epoxy or a fiberglass sheath is used to secure the helix in place.

Continuous loading produces better voltage and current distribution than lumped constant (discrete coil) loading. if's feedpoint impedance is also a better match for 50 -ohm coax. If a tapered pitch is employed when the helix is wound, a very good match will be obtained. The radiation resistance of a continuously loaded antenna is comparable to that of a top-loaded whip. Because of these advantages, many of the fiberglass antennas on the market (except, of course, full-size whips) employ continuous loading.

Mounting the Antenna. We have already seen that a vehicle's body falls short of fulfilling a required ground plane. This has a significant effect on the performance of a mobile whip. Recall that the ground plane is analogous to a mirror. If it has high resistance, it will act like a dirty mirror, giving a faint reflection. If it is too small, the entire image will not fit in it. If the ground plane is not symmetrical, it will act like one of those

Choosing Mobile Antennas continued

trick mirrors in an amusement park, producing a distorted reflection.

The size of the ground plane (the auto body) is fixed once you have acquired the vehicle. There is not much you can do about the resistance of the car body except to ensure that all its components are bonded together by low-resistance, metal-to-metal connections. The one ground plane characteristic you can determine, to some extent, is its symmetry. This is done by your choice of the antenna's mounting site.

The best place to mount a mobile whip is at the center point of the vehicle's body, midway between the front and back and equidistant between the two sides. This will usually be located on the roof of the vehicle. If the antenna is mounted here, it will have a polar radiation pattern like that shown in Fig. 6A. (The arrow points towards the front of the automobile.) Although this pattern is not the ideal circle, it is a fair approximation. Because a car is longer than it is wide, the antenna is more effective fore and aft than it is side to side.
Mounting the antenna on the trunk lid results in the pattern shown in Fig. 6B. The distortion introduced by shifting the antenna from its ideal mounting position is obvious. It is due to the lack of ground plane symmetry. However, the pattern is acceptible and its imperfect shape is considered by many CB'ers to be less objectionable than drilling a hole in the vehicle roof for an antenna mount.

The polar response of an antenna mounted on the left corner of the rear bumper is shown in Fig, 6C. The anten--na strongly favors the front right, and its overall performance is degraded. It is clear from these plots of field strength near the antenna that an unsymmetrical ground plane produces a polar response that is also unsymmetrical. If possible, this should be avoided.

Types of Mounts. CB'ers can choose either permanent or temporary antenna mounts. The final decision will be guided by performance, theft protection, and aesthetic considerations.

Permanent mounts include hardwaresecured roof, trunk-lid, and bumper installations. Roof mounts require a $3 / 8^{\prime \prime}$ -to-3/4" (9.5-to-19-mm) hole, but offers the best antenna performance. Trunk-lid mounts do not require drilling because they are held in place by two set screws which grip the inside edge of the trunk

Fig. 4. Voltage and current distribution along a full-size quarter-wave antenna (A) is distorted when a loading coil is introduced at base of antenna (B) and the whip length is reduced.
lid. As noted earlier, antenna performance is somewhat degraded as compared to roof mounts. Bumper mounts usually employ straps which wrap around the bumper. The new "safety bumpers," however, have a lip which allows a clamp mount to be used with no straps or chains. Bumper-mounted antennas will not perform as well as those on the trunk or roof. The same is true of mirror- and cowl-mounted whips.

These permaneent antenna mounts offer a solid connection to the ground plane, which is desirable, but they present security problems.

You can minimize calling attention to your CB gear by either removing the antenna and its mount each time you leave the car. (A quick-disconnect dévice is useful for this purpose) or by using antennas that are self-stowing. Using a multi-purpose antenna for AM and FM reception as well as for CB work is one way to do this. Such "disguise" antennas, if properly designed, look like a standard auto antenna. Electrically powered antennas that retract at the touch of a switch (some actuated by turning off the transceiver or ignition) similarly re-

Fig. 5. Continuously loaded antenna is made by winding one-quarter wavelength of wire on insulating pole.

duce the risk of loss while adding to convenience. Some of these, though, still leave a tell-tale $1 / 2^{\prime \prime}$ jutting through the opening. "Hideaway" trunk mounts, hinged to allow the antenna to be swung down into the trunk when not needed, also reduce antenna visibility.

Though these anti-theft measures reduce the chance of theft, they do degrade antenna performance somewhat. Because "disguise" antennas are mounted on a fender, and "hideaway" trunk mounts must be placed along one side of the trunk, they work against an unsymmetrical ground plane and have a skewed polar pattern.

Antennas with temporary mounts include those that clip on the raín gutter and those with magnetic mounts. There are several disadvantages associated with gutter mounts. First, gutters are not sturdy so the antenna must not have large wind resistance. This dictates the use of short whips and large loading coils, resulting in coil losses and decreased antenna efficiency. Second, rain gutters do not always have lowresistance connections to the rest of the car body (ground plane). Third, the ground plane is highly unsymmetrical.

A magnet-mounted antenna can be effective both as a radiator and an antitheft device. It can be tossed in the trunk when not needed, and placed on the trunk or roof in a few seconds. A good magnet-mount antenna meets the following requirements. It must resist being dislodged when the whip is deflected. It must not "walk" along the roof or trunk as the car body vibrates and the whip sways. The mount must display a relatively high capacitance to the car body. The last requirement is electrically important because a magnet mount, unlike the others that have been mentioned, does not offer a direct connection to the vehicle body. Although the braid of the coaxial cable is grounded at the transceiver, for best results it should also be grounded at the mount. If the magnet mount is properly designed, there will be sufficient capacitance between it and the vehicle body.

No matter what type of mount you are thinking of using, be sure that it will keep the antenna upright. For example, if you are mounting the antenna on a fastback or other angled surface, choose a mount that will permit you to compensate for the mounting angle and adjust the whip so it is upright.

Co-Phasing. If two vertical antennas are spaced one quarter wavelength or

Fig. 6. Polar radiation patterns for roof (black line), trunk (colored line), and bumper (solid color), mounted antennas. Arrow points toward the front of the vehicle.

more away from each, other, fed with properly phased feedlines, and there are no vertical conductors within a twowavelength radius, some gain and a fig-ure-eight radiation pattern (favoring fore and aft) will be obtained. CB'ers have attempted to take advantage of this by mounting twin whips on truck or camper
mirrors, car bumpers, etc. Unfortunately, it doesn't work! Except, perhaps, on some very large trucks, a whip spacing of $104^{\prime \prime}(2.6 \mathrm{~m})$ cannot be obtained. Also, there are enough intervening metallic elements within two wavelengths (72.8^{\prime} or 22.2 m) to upset the carefully phased electromagetic fields.

The two mirror- or bumper-mounted antennas together will, however, have a better polar response than one by itself (recall Fig. 6C) because of the complementary phasing between them. But one antenna mounted on the vehicle roof or trunk displays a pattern superior to that of the phased twins, and will usually give superior performance!

Antenna Materials. Choosing a given type of loading, mounting position, etc. must be guided by factors that are unique to a given situation. Therefore, we can't recommend a specific antenna type. But we should say a word about antenna materials. If you want a metalic whip, be sure that it is "17-7 PH" type stainless steel. This alloy is very strong, does not corrode, and will flex but is resistant to permanent deformation. Shock springs and similar components should be triple-chrome plated.

Finally, mounting hardware should be heavily plated to resist corrosion.

In Conclusion. A properly installed and tuned antenna is your transceiver's best friend. Therefore, take care to mount it so thatits ground plane is symmetrical. Make sure that the antenna has provisions for adjusting its length so that it can be fine tuned for the CB channels. Tune the antenna in accordance with the manufacturer's instructions and you'll ensure that it and your transceiver are giving you their maximum performance capabilities.

How to Install - Mobile CB Transceivers - Mobile CB Antennas

look first for the best and easiest places to install them. For example, be sure that there is sufficient room under your dash to accommodate the transceiver's depth before you buy it!

For a typical mobile setup, we'd recommend that the transceiver be mounted on a quick-release slide bracket beneath the center of the dash. Also, the antenna should be mounted so it can be flipped down into the trunk for concealment when necessary. That combination offers easy access to the set's controls, reasonably good signal output and reception, straightforward installation, and excellent theft protection.

The reasons for the dashboard site are obvious: hext to a combo CB /stereo unit that's built into your dash (and such equipment is difficult to install), a centered, under-dash mount is easiest for both driver and passenger to reach and is least likely to get in anyone's way.

WANT to make $\$ 25$ or more, taxfree, for about an hour's easy work? Then install that new CB mobile radio in your car yourself, and you'll save at least that much. You don't need
special knowledge or unusual tools.
You can mount a CB transceiver almost anywhere within reach of the driver's seat and mount an antenna almost anywhere outside the car. But it pays to

Slide mounts come in two parts: a stationary section that attaches to the bottom part of the dashboard, and a sliding section that holds the transceiver. Ideally, you'll find a mounting spot for the stationary section where the transceiver's controls will be easy for every driver in your family to see and reach, where the rig can be easily and securely mounted, and where there will be space to install the rig with clearance for attachment of its plugs and fasteners.

Mounting Surfaces. With a little bit of luck, you may find some screws al-
themselves around your drill bit. Even foam padding, although less of a problem, must be treated cautiously.

If you can, it's best to punch your way through a padded metal underdash. An alternative approach is to cut an " X " in the top covering where you want to make the hole, peel back the four flaps made by the cut, and carefully dig or cut out any underpadding. Then smear Vaseline on the bit to make it slippery and drill in short bursts, watching carefully so you can stop the drill at the first sign of cloth or padding wrapping itself around the bit. After installing anything

A typical 2-part slide mount tor easy removal of an under-dash CB transceiver. Note that copper finger contacts on part A (that attaches to transceiver) makes power and signal connection to part B (affixed to underside of dashboard) so that the user need not physically disconnect or connect wires to remove unit.
ready on the underside of the dash that can be used to hold the slide or the transceiver's mounting bracket (although you might have to replace those screws with slightly longer ones). If not, check the available surface to be sure it is strong enough to carry the transceiver's weight and to determine what techniques will be needed to drill through it.

Plain, painted metal is an ideal surface. It can support the radio securely and you can use short, self-tapping sheet-metal screws. With an electric drill, clean holes are easy to make. Just be sure to mark each hole with a centerpunch before you drill so the bit won't slip while you're working and scratch the paintwork-or your skin.

Metal with a padded covering requires a bit more care when drilling. Fabric coveis or wooly underpadding may wrap
on a padded surface, check and re-tighten the screws from time to time to compensate for any gradual compression of the padding.

Plastic and fiber panels are less secure mounting surfaces than metal, but sometimes they're all you have. Check behind such panels to see if there are metal structural supports that you can reach with longer bolts or screws. If not, the main problem is a tendency for the transceiver's weight to cause screw holes to enlarge until the screws pull out, CB rig and all. To prevent this, drill very carefully, with a sharp, fresh bit and gentle pressure to avoid cracking the panel. Then spread the weight over as much surface area as possible, using several, widely spaced screws and placing the largest possible washers under each nut. (Use lockwashers or Loctite to pre-
vent your mountings from vibrating loose.) if you can't get your fingers behind the panel to insert nuts and washers, use Molly screws. For screw holes near the edge of a thin panel, Tinnerman nuts can hold the mounting bolts, although larger washers will spread the load more.

If your mounting surface is an underdash, plastic parcel shelf, rest your rig atop the shelf instead of hanging it below; here, the screws only maintain the transceiver in position, rather than supporting its weight.

Before you drill the first hole, make a final position check: Have someone hold the slide and transceeiver in place and check for such often-overlooked details as cords that might get tangled in the gear-shift or pedals, side-mounted microphone plugs that poke the driver's leg, etc. Double-check behind the dash to make sure the drilk bit won't hit wires, puncture air-conditioning ducts, or hit ashtrays. Often you can move some of the obstacles out of the way before you drill. If they are not too close to the panel you're drilling, you can also protect them by slipping a drill stop (available at hardware stores) over the bit to limit the depth of its penetration, or improvise a stop with duct tape. Otherwise, you'll have to pick a new location.

Determine which half of the slide mount attaches to the car and use itnot the mounting bracket supplied with the transceiver-as your template. (The transceiver bracket then bolts to the other, sliding half of the mount.) Make sure the bolt heads don't protrude enough to prevent sliding the transceiver into place. After you have drilled the first hole, attach your bracket to the car and double check the position you've marked for the second one.

Other Mounting Spots. If your dashboard is not a suitable or convenient spot for your transceiver, you might consider mounting it on the car's transmission hump. It's best to use speaker/rigmount combinations in this situation. They're designed specifically for floor use, incorporating better speakers than those in mobile units. Moreover, since most mobile rigs have downward-facing speakers, this accessory avoids a sound-output problem. They usually disconnect easily for storage in the trunk when not in use, but they do take up some floor space.

Although the dash and the hump are the most poputar locations for a $C B$ rig, they are not the only ones. Some CB'ers
mount their sets, controls up, between front bucket seats; others mount them in their cars' center consoles. A small transceiver can even be installed in the car's open well that serves as a glove compartment. Then, too, there are temporary setups where the rig rests on the seat, lifted at the edge so as not to muffle speaker output. Power here is obtained from a lead plugged into the cigar lighter socket, while the antenna is either attached to a rain gutter or by a magnet mount in the middle of the roof.

Many new transceivers are built for concealment, with all controls in the microphone head and the rest of the circuitry in a featureless box that can be locked in the trunk or hidden elsewhere (mounted on the firewall, for example).

Extension Speakers. Most mobile sets have one or two extension speaker jacks on their rear panels. These allow the use of external speakers for better sound within the car, for PA use outside the car, or both. In rigs with two jacks, one feeds the stations you are listening to through an extension speaker in the car, while the other, when you switch the transceiver to its "PA" mode, feeds whatever you say into the mike through a speaker outside the car or under its hood. Don't use hi-fi car-stereo speakers since their frequency range is too wide for voice radio communications, which rarely exceed 3 kHz .

Slide-Out Bracket Details. Not all slide mounts are alike (although some models may show up under several brand names). Insist on a bracket that has a built-in coaxial socket and plug for the antenna, so you don't have to disconnect that separately when you slide out the transceiver. If you don't have this feature, you're sure, someday, to forget to re-attach the antenna and blow your power transistors.

The flimsy locks often found on slide mounts don't discourage thieves, who can often snap them in seconds. Even if the lock is a robust one, why invite a thief to try and rip up your car? So it's best to throw away the key and remember to remove and store your rig, perhaps in the trunk, when you leave the car unattended.

Most slide-mount sets have an extra pair of contacts for extension or PA speakers. At least one has two pair, so you can use both extension and PA speakers with your transceiver, or use the same mount for a car stereo (which needs connections for two speakers).

Installing a mobile $C B$ rig is not usually a major undertaking. It can be challenging, though, when an AM/FM electric-powered antenna is replaced by a CB/AM/FM one since auto radio must be removed to make power connections.

Power Connections. Your mobile transceiver will get its power from the car's electrical system. It's easiest to make these power connections while the transceiver is in the car, but before it's actually bolted in place. You may connect it either to a circuit that is always "live" or to one which only carries power when the ignition key is turned. The owner's manual for your car should tell you which circuits are which and
may-especially if it's a foreign carinclude a circuit diagram to help you find the wires you'll need.

Running the power leads to a switchcontrolled circuit ensures against accidentally draining the battery by leaving the car with the transceiver turned on. It also prevents unauthorized use of the radio while you're out of the car. (Remembering to remove and hide the rig each time you get out would also take

This external speaker-system/CB-rig mount is positioned on top of the car's transmission hump for enhanced sound. It is removabie and can be hidden in the trunk for safety.

How To Install continued

care of these two problems.) If you want to listen or transmit with the engine off, most car's ignition switches have "accessory" positions to allow this.

The easiest place to connect the CB power leads is to one of the terminals or wires already in the dash. You can tap into an existing wire, to a terminal of the ignition switch (if that's not buried out of reach), or to a terminal on one of the other dashboard switches or controls. (If you do use a switch terminal, make sure you have the switch's "hot" side-you don't want a CB radio that only operates if the headlights are on.)

The best place to tap in is usually the car's fuse box-there's less chance of picking up interference there. Whether you get your power directly from the fuse box or from another power source under the dash, make sure the fuse involved has enough capacity to handle your transceiver plus other devices it's al-

ready powering. If not, select a circuit with some spare capacity-don't just install a larger-amperage fuse. And never connect your transceiver or other accessory to the same circuit as the headlights or other vital systems.

Which Side is Ground? Virtually all cars today have 12 -volt electrical systems, with the negative side of the circuit grounded to the car's frame. But some older ones and many trucks have posi-tive-ground systems. Most current transceivers will operate on negative-ground, 12 -volt systems, with many also capable of working on positive-ground systems. The instruction manual accompanying the CB transceiver will note which type you have. But if you don't have that information, you can use the ohmmeter function of a multimeter to determine it. Measure resistance between the transceiver's case and each of its two power

Photo at left shows a new type of 3 M connector that comes in handy for making power connections to your mobile CB rig. Below, is an Amphenol PL-250 plug to show how easily RG-58A/U antenna coax wire can be connected without soldering.

ple mount their antennas back there for a variety of reasons. One is that short, coil-loaded antennas that clamp onto the trunk lid are about the easiest to install, since no holes have to be drilled in the car's outer body. Also, an antenna mounted to the front, hinged edge of the trunk is in a fairly efficient location, especially if the car's a hatchback with its "trunk lid" hinged at roof level. Nine-foot whip antennas can only be mounted conveniently on a car's rear bumper.

Antennas serve to alert would-be thieves that there's probably CB equipment inside that is worth stealing. So more and more installations take this into account. Quick-disconnect attachments are often used for easy removal of the vertical antenna section, though this still leaves the antenna base. To completely hide an antenna, more and more CB'ers have turned to the electricpowered type or to an antenna mounting device that permits one to manually swing the antenna down into the trunk. Both are side-mounted types.

Flip-down mounts may clamp on, without drilling, or may require some small screw holes in the rain gutter that surrounds the trunk opening. Since signal radiation from a móbile antenna is greatest toward the farthest point of the car, mounting the antenna by the side of the trunk opening will send most of your transmitted power towards the car's opposite front corner. But there will still be substantial radiation in most directions, so that is not a serious problem-especially compared to the performance you get if your rig is stolen!

Whether you have a trunk mount, a bumper-mounted whip, or a flip-down, your biggest problem will be getting its lead out to the transceiver. You're most likely to run your antenna cable from the trunk toward the dash.

Getting the lead into the trunk should be easy. Bumper-mount whips may require a hole drilled in the trunk wall (remember to line it with a rubber grommet, both to protect the cable and keep rain out), although it is sometimes possible to bring the cable through a hole that now carries wire to your back-up or li-cense-plate lights. Antennas that mount on the edge of the trunk opening require only a little care to ensure that the cable wor't kink when the lid closes.

Coming from the trunk, your first obstacle will likely be the partition between the trunk and the passenger compartment. If there's a gap between the partition and the trunk's floor, or if the car is a wagon or hatchback whose seat folds

A fold-away trunk mount makes it easy to conceal a mobile CB antenna when leaving an automobile.
down, half the problem is already solved for you. You may also find a channel that carries tail-light and other wires, with enough space left to carry your antenna cable too. More often, though, you'll have to make a hole. If the partition is of metal, you'll have to drill. If it's of fiberboard or a similar substance, you may be able to punch a hole through it instead. It's probably best to drill, using gentle pressure. Again, be sure to line. the hole with a rubber grommet. Check out the area on the other side of the panel before locating the hole to be sure your drill won't chew into upholstery or encounter other problems where it comes through. If the rear seat cushion has to come out, it's generally best to do that first. (It may take two people to do this.) Most seats are held by catches, some by bolts.

Before drilling, you should also check the passenger compartment to see where it will be best to run the cable. The best route is usually along the side of the car. You can tuck it under the edges of side panels (you may have to loosen their mounting screws), run it under the sill-plates at each door (they're easy to remove, usually held by just a screw or two), or insert the cable under the edges of the carpets and floor mats. In some cases, it's more practical to lift the carpets and run the cable along the lower edge of the transmission hump and through the center console.

If you are unable to remove the rear seat cushion, you could try to snake the wire straight through the trunk, or fish it
through with a hook made from coathanger wire. If that fails, try raising the seat's front edge enough to get your hand under it. (You may want to slip a block beneath the seat's front edge.) If the seat doesn't lift up easily, check on how it's mounted; it may be bolted in place.

As you work, you should be using cable clamps or cable ties to keep the antenna lead out of the way. This is most important in the trunk where a loose cable could be snagged by luggage or other cargo, and when passing across the front of the car where it could tangle with the steering gear or pedals.

The antenna cable may not be exactly the right length, but that's no problem. If it's too long, you can cut the excess and use a new PL-259 connector. The solderless connector type for RG-58 A/U coaxial cable is best'for this purpose.

If the cable is too short, you can buy an extension. Buy one with plugs already installed and the shortest length that will do the job.

Other Antenna Sites. Because your signal's coverage increases as you raise your antenna, and because its pattern is most symmetrical when the antenna is at the center of the car, a roof mount is a most efficient choice. Unfortunately, a roof mount can be quite difficult to install. Also, most people hesitate to drill holes in an area that is so conspicuous.

For a roof antenna, you'll have to drill a hole in the roof and snake the antenna lead from there, under the car's cloth

How To Install continued

headliner, then down a window pilfar to the dash or floor level. That may be easier if you have a dome light in the center of the car's roof-take out the light and you can usually drill directly through the roof. Just be sure there will still be room to put the light back, once the antenna is installed. If you have no center light, you'll have to take the headliner down to do the job neatly-and in most cars, that's not easy.

You can also use a magnetic-base antenna. It requires no drilling and installation (the cable could be passed through the rubber gasket around the car's door opening or through a slightly opened window). Furthermore, the antenna is easily hidden in the car when you park.

Antennas that clip temporarily to the car's roof gutter are available, too, as are permanent fender-mounted or cowlmounted types. The latter include elec-tric-powered antennas, which might also combine AM and FM broadcast radio.

Fine-Tuning Your Antenna. It's not enough to just install and connect your antenna. You also have to adjust it for minimum SWR-standing wave ratio. This is the ratio between the power that comes out of your transceiver and the losi power that bounces back from the antenna line instead of going out over
the air. (It will similarly affect the strength of a received signal.)
To do this, you'll need a modestly priced SWR meter, if your CB transceiver doesn't have one built in. This will reduce some of the savings you made by doing your own installation, but is a worthwhile investment for making periodic checks on your antenna system.
The meter plugs in between the transceiver and the antenina cable. If you have added an extension to your antenna's cable, you can connect the meier between the cable and extension. Otherwise, you'll need a short stub of cable with plugs on both ends to connect the meter to your transceiver; some meters include this cable, but not all do.

You can't tune an antenna for the same SWR on every channel. The farther you go in frequency from the channel for which the antenna has been tuned, the higher the SWR will be. So, unless you do almost all your talking on a single channel, you should tune the antenna to the center of the band for the best average efficiency on all channels.

For 40-channel transceivers, this would be channel 20 or 21. Listen for a break between conversations before you press the mike "talk" button. You don't want to interfere with other CB users' conversations! Also, you may legally transmit a silent carrier only when

Measuring and adjusting for minimum SWR is an important final step to ensure optimum antenna efficiency and avoid damaging a CB transceiver.

making adjustments like this and then for not more than one minute out of every five.

Your meter will probably have a switch marked FWD on one side and REV or SWR on the other. Switch it to the forward position and press your mike's talk switch. The needle should move up the scale. Adjust the meter's calibration knob until the pointer reaches a red line or other index mark. Then flick the switch back to SWR or REV and read the pointer again. It should have dropped back to a reading somewhere between 1.1 and 1.5 or so. Now release your PTT mike switch so you can make antenna adjustments that will produce the lowest SWR reading.

Theoretically, an SWR of $1: 1$ is perfect; in practice, it will be higher, say, 1.2:1 at mid-channel and 1.5:1 to 2:1 at end channels.
To lower an antenna's SWR, you must adjust its length. This requires either lengthening or shortening the antenna. To tell which, repeat your SWR checks on a moderately low channel (around channel 10) and a fairly high one (say, channel 30). If SWR is lower on channel 10 than channel 20 , you'll have to shorten the antenna; if it's lower on channel 30 than on 20 , you'll have to lengthen it. (If it is much higher than 2:1 on any channel, stop transmitting on that channel at once and check cable connections at the transceiver and the antenna ends.)

Most of the better antennas have length adjustments, either an adjustable tip (on top- or center-loaded antennas or on some fiberglass "continuously loaded" types), or an adjustment on the coil housing (of base-loaded types). To lengthen or shorten such an antenna, simply loosen the adjustment setscrew with the Allen wrench supplied, make a small height adjustment, and lock it in place while you re-check your SWR with the meter.

Less expensive antennas and some older types may have to be trimmed to obtain a proper match. Either a hacksaw or bolt cutter will do the trick. Cut no more than $1 / 8$ inch at a time.

Eventually, your SWR will get as low as it's going to be and your next adjustment will only serve to raise it a trifle. At that point, go back one step to where you got your lowest reading. Then, for a final check, measure your SWR on both channel 1 and channel 40 . If they're not quite equal, readjust until they are.

Now, at last, you're ready to go onithe air and ask for a radio check.

There's a whole world beyond 40 channels ...and it's all in your free Heathkit Cafalog

Have you ever wanted to go beyond CB? To get away from the noise and bustle of crowded channels, to talk to someone all the way around the world? Or have you ever wanted to make a phone call right from your car?
Well, you can do all that and more... when you get your Amateur Radio License and become a "Ham.
Getting your license is easy. We offer α fast, low-cost course that'll help you get your Novice License easily - or you get your money back. And once you've got your "ticket", we've got some of the world's best
amateur radio equipment in money-saving kit form.
Send for your FREE Heathkit Catalog. Use the Reader Service number at the bottom of the page or send the special Heath Catalog request card elsewhere in this issue.

Heathkit...

amateur radio equipment thal's good enough to

four
 EASY-TO-BUILD

WITH THE prices of LED's and CMOS IC's continuing to drop, electronics experimenters should take advantage of the circumstances and build some of the many interesting projects that can be made using these devices. The four circuits described in this article are not only fun to build, they also teach the builder quite a bit about the devices and their uses.
The circuits take advantage of the fact that CMOS devices require very low power, so no power on/off switches are used. The quiescent current drawn by the CMOS chips (when the LED's are off), allows normal battery shelf life. Once the pushbutton switch on a project is operated, the circuit "does its thing," and then stops.

Blinker. As shown in Fig. 1, this circuit uses a single CMOS hex inverter to provide both timing and drive to make the two LED's blink alternately. Built with two small red LED's, the circuit makes

Fig. 1. Dual LED alternate blinker uses parallel gate output for more $L E D$ driving current.

FLASHER PARTS LIST
BI-9-voli battery
$\mathrm{Cl}-100-\mu \mathrm{F}, 10-\mathrm{V}$ electrolytic
C2- $4.7-\mu \mathrm{F}, 10-\mathrm{V}$ electrolytic
D1-1N914 diode
ICl-401] CMOS quad 2-input NAND gate
LEDI-Red light emitting diode
RI-10-megohm resistor
R2-100,000-ohm resistor
R3-470,000-ohm resistor
R4-10,000-ohm resistor
R5-3.3-megohm resistor
S1-Normally open pushbutton switch

Fig. 2. Single LED
flasher also uses
parallel gate output
for driving
the LED.
an ideal HO-gauge model railroad crossing blinker. With LED's of two different colors (in one package), it can be used to obtain other effects.
Resistors R2 and R3 and capacitor C2 determine the flash rate, while R1 and $C 1$ set the total display time. The component values shown here produce a blinking rate of two per second and an on time of about 20 seconds. To change the timing, change the values of the capacitors since decreasing the value of the resistors will increase the quiescent battery current drain.

Flasher. A simple variable-rate LED flasher is shown in Fig. 2. The voltage across C1 determines the flash rate. When the pushbutton switch is closed, capacitor C1 charges to 9 volts and the flasher blinks rapidly. As the voltage is discharged through R1, the flasher slows down until the charge on C1 reaches about 4.5 volts, at which point the oscillator stops and the LED stays off. The flash rate is set by the values of R2, R3, R4, R5, and C2. Capacitor C1 and bleeder resistor R1 create the slowdown period.

Binary Counter. A circuit that demonstrates the operation of a six-bit binary counter is shown in Fig. 3. When the

Fig. 3. Simple binary counter illustrates counting in the 1-2-4-8-16-32 mode.

BI--9-volt battery
C1-0.01- $\mu \mathrm{F}$ disc capacitor
$\mathrm{C} 2-0.022-\mu \mathrm{F}$ disc capacitor
IC 1-4011 CMOS quad 2-input NAND gate
1C2-4024 CMOS binary counter
LED1-LED6-Red light emitting diode
R1.R4-10.000-ohm resistor
R2-10-megohm resistor
R3-4.7-megohm resistor
SI-Normally open pushbutton switch
pushbutton switch is depressed, the circuit starts counting from zero (all LED's off) to 63 (all LED's lit). After reaching the full count, the circuit automatically resets to zero and shuts itself off. The six LED's come on in a binary ($1,2,4,8$, 16,32) sequence which is typical of digital counters.

two things occur simultaneously. Counter IC2 is reset to zero by the signal on pin 2, thus placing all of the IC2 outputs at their low states (0 volts). Thus, none of the LED's can glow. The second action is an enable level signal (+9 volts) at pin 13 of IC1. This action allows the oscillator (the middle two gates) to start, thus producing an input signal to the counter IC through the last gate of IC1.

The counter then counts until it is full, illuminating the LED's in the proper sequence. One count after full count is reached, pin 3 of $I C 2$ goes high. This signal is inverted by the first gate of $I C 1$, and its output goes low, thus disabling the oscillator. The circuit then remains in the "all LED's off" state until the pushbutton is depressed again. The value of C2 can be changed to increase or decrease the counting speed.

Wheel of Fortune. The circuit shown in Fig. 4 is a 10 -LED spinning wheel with audible 'clicks' as the wheel passes each point. The rotation starts fast, then gradually slows down to a random stop (with a click at each position). After the rotation ceases, the selected LED stays lit for about 10 seconds, then goes out. The cycle restarts by depressing the pushbutton switch.
The logic requires onty two IC's. Of these, IC1A, IC1B and IC1C form a vari-

Fig. 4. "Wheel of Fortune" sequentially lights one of 10
LED's and generates audible clicks.

B!-9-volt battery
$\mathrm{C} 1-0.01-\mu \mathrm{F}$ disc capacitor C2-200- $\mu \mathrm{F}, 10-V$ electrolytic $\mathrm{C} 3-1-\mu \mathrm{F}, 10-\mathrm{V}$ clectrolytic
C4-3.3- $\mu \mathrm{F} .10-\mathrm{V}$ electrolytic
DI-1N914 diode
ICI-4069 CMOS hex inverter 1C2-4017 CMOS decade counter decoder LED1-LED10-Red light emiṭting diode Q1, Q2-2N2222 transistor R1-100.000-ohm resistor R2-470.000-ohm resistor R3-3.3-megohm resistor R4, R6-10,000-ohm resistor R5-1-megohm resistor SI-Normally open puishbutton switch

Fig. 5. Modifying the Wheel of Fortune for use with conventional 6 volt lamps.

Fig. 6. Foil pattern and component installation. The four circuits are separated along the dotted lines.
Note: Pc board available from Ray Wilkins, Box 551, Hanover, NH 03755 for $\$ 4.50 \mathrm{ppd}$.

able frequency oscillator operating exactly like the oscillator in the Fig. 2 flasher circuit. Then IC2 is a combination decade counter, decoder and driver that powers 10 LED's in sequence, with the LED's arranged in a circular display. Each pulse from the oscillator advances the count by one.

The oscillator pulses are buffered by IC1D and amplified by transistor Q1 to drive a small loudspeaker. Capacitor C3 affects the speed of rotation, while C2 determines the total length of time that the display stays lit. The dc voltage APRIL 1978
across C2 is also applied to a pair of buffering inverters (IC1E and IC1F) with the output used to turn on switching transistor Q2. When this transistor is saturated, it allows the LED's to turn on. When the voltage across C2 drops, the output of inverter IC1F drops to zero, causing Q2 to cut off, thus turning off the LED's.

It is possible to substitute conventional 6 -volt, $40-\mathrm{mA}$ lamps in place of the LED's by using the circuit shown in Fig. 5. To operate these optional lamps, an extra 6 -volt battery is required.

Construction. Any type of construction can be used for any of the projects. If you want to use a printed circuit, you can use part or all of the foil pattern shown in Fig. 6. The four sections of the pattern can be separated at the dotted lines. Component layouts are also shown in Fig. 6. Install passive elements first, then the IC's. Be sure to observe the polarities of the electrolytic capacitors, diodes and IC's. Use a conventional 9 -volt battery clip and leads for the connections. The red lead is positive, and the black lead is negative.

By Forrest M. Mims

GETTING ACQUAINTED WITH CMOS

THOSE OF YOU who have built some of the digital circuits presented in this column over the past several months have probably noticed a prob lem common to all the 7400 -series TTL integrated circuits. They are power hungry. The 7489 64-bit RAM, for example typically draws 80 milliamperes. Some 7489 chips require up to 120 milliamperes. That's one-fourth of the current demand of a 6 -volt lamp in a portable sealed-beam lantern!

One way around the TTL power problem is to use low-power Schottky TTL chips. These chips typically require only twenty percent of the power of conventional TTL. Low-power Schottky devices, which aren't as easy to find and cost more than conventional TTL, are designated with an "LS", such as: 74LS89, 74LS90, etc.

Fig. 1. Basic CMOS gate.
The best solution to the TTL power problem is to use CMOS IC's instead. In case you're not familiar with CMOS, it's a logic family which uses voltage-sensitive, metal-oxide semiconductor (MOS) field effect transistors, as opposed to current-sensitive, bipolar transistors.
CMOS has an ultra-low power requirement. The CMOS 74C89, for example, is functionally almost equivalent to the TTL 7489 64-bit RAM. The CMOS version, however, typically consumes only 0.050 microampere in operation!

This power saving feature makes CMOS ideal for battery-powered devices like digital watches, pocket calculators, and spacecraft.
Why does CMOS require so little power? The answer lies in the very structure of CMOS circuitry. A basic CMOS gate (an inverter) is shown in Fig. 1. Note that a complementary (the " C " in CMOS) pair of enhancement-mode MOSFET's comprise the inverter. (Although other CMOS logic elements are more complex, they all use complementary MOSFET's and the following description captures the essential characteristics of the CMOS logic family.) An enhancement MOSFET is normally off, displaying a high resistance between drain and source. To turn it on, you must apply a sufficiently large voltage between the gate and source.

In this circuit, Q1 is a p-channel MOSFET and Q2 is an n-channel device. The two form a series circuit between $V_{D D}$ and ground. If $V_{\text {IN }}$ is low, the p-channel MOSFET is on and the n-channel MOSFET is off. Thus, Q1 exhibits a relatively low resistance between drain and source and Q2's channel resistance is very high. The output terminal is therefore effectively connected to $+V_{D D}$ and isolated from ground, and $V_{\text {OUT }}$ is high. If $V_{I N}$ is high, there is no potential difference between the gate and source of Q1, so the p-channel MOSFET is off. However, $V_{G S}$ for Q2 is high, and the nchannel device turns on. This grounds the output terminal, making $V_{\text {OUt }}$ low.

Note that in either case ($V_{\text {IN }^{\prime}}$ high or low), one MOSFET is on and the other is off. Because the two devices are connected in series, a high-impedance path exists between $+V_{D D}$ and ground for either input state. That's why CMOS requires so little supply current. In fact, the only time its current demand rises is during an input state transition ($V_{\mathbb{N}}$ going towards $+V_{D D}$ or ground). During such a transition, the devices will have channel resistances between the two ex-
tremes and more current will be drawn from the source

Among the other advantages to using CMOS are the small chip area required for each gate, the very high noise immunity, the large fan out (the number of CMOS gate inputs that can be driven by one output), a wide range of permissible power supply voltages, and low output and high input impedances. There are a few drawbacks, however. A MOSFET's gate structure is very fragile, and the extremely high input impedance makes CMOS susceptible to damage from static electricity. Also, CMOS employs both p- and n-channel MOSFET's in close proximity to each other on the same chip. This makes CMOS more costly to manufacture than conventional TTL, which employs npn transistors exclusively. Finally, the structure of CMOS results in relatively large stray capacitances, which combined with high input impedances result in relatively slow logic. The typical maximum speed for CMOS logic is 1 to 5 MHz .
In many applications, high speed isn't required and CMOS is perfectly acceptable. The other major problem with CMOS, its vulnerability to static electricity, has been dealt with by diffusing protective zener diodes at the sensitive gate structures. The diodes shunt high voltages away from the gates, preventing their destruction. However, you may not know if a particular device is diodeprotected, and external appearance will not tell you. Unless you know for a fact

Fig. 2. Astable multivibrator. that a particular CMOS device is protected, play it safe and handle it carefully.

In recent years a wide range of CMOS chips has become available at prices attractive to the experimenter from many of the advertisers in the Electronics Marketplace pages of this magazine. One common family is a pin-for-pin equivalent of the traditional TTL 7400 series. These chips even use the same num-
bers, inserting a " C " after the 74 prefix. Thus, a 74 COO is the CMOS version of the TTL 7400. Another common CMOS family is the 4000 series. Let's use a chip from each family in test circuits.

CMOS Astable Multivibrator. A good way to become better acquainted with CMOS is to build a simple astable multivibrator from a few of the inverters in a 74C04 hex inverter. One possible circuit is shown in Fig. 2. This circuit will flash its LED at ample brightness while consuming only a few milliamperes from the four series-connected 1.5 -volt alkaline AA cells. Excepting current through the LED, the circuit consumes less than half a milliampere.

The circuit's repetition rate can be varied by adjusting the setting of RI. Naturally, current demand goes up when the pulse rate is increased.

Avoid touching the pins of the 74C04 when you build the circuit. CMOS chips that do not have diode protection are almost always sold with the pins inserted in conductive plastic foam (not styrofoam) or with the pins otherwise shorted together to prevent damage from static electricity. Grasp the ends of a CMOS DIP between your forefinger and thumb, and then insert it into a solderless breadboard. Use insulated connection wires,

Fig. 3. Pin outline of the 4017. Each activated output goes high for one clock cycle then returns to the low state.
and avoid touching exposed conductors. (You'll want to take more elaborate precautions when handling expensive CMOS chips such as microprocessors.)

Incidentally, CMOS chips can be operated from a power supply delivering from 3 to 15 volts, so feel free to use a higher supply voltage.

CMOS Divide-by-10 Counter/

Decoder. The 4017 CMOS divide-by-10 counter/decoder is an exceptionally handy chip. It does the job of a 7490 TTL decade counter and a 7441 TTL 1 -
of-10 decoder. Figure 3 shows the pin outline for this versatile IC.

We can put the astable multivibrator we just built to work by using it as a source of clock pulses for the 4017 counter. Figure 4 shows one possible arrangement in which the 4017 successively flashes each of ten LED's. Only one LED series resistor is needed since only one LED is on at any given instant.

Fig. 4. Sequence generator.
Can you think of any applications for the 74C04 clock/4017 counter? If you adjust the clock so that it supplies one pulse each second, you can use the circuit as a handy darkroom timer. The circuit also makes an unusual light flasher or attention getter. Just arrange the LED's in a circle or in a random pattern and adjust for the best visual effect.

Another application for the circuit is as a sequence generator. I originally designed the circuit as a microinstruction sequencer for a homebrew digital controller made from a dozen or so TTL chips. The TTL drew so much current from my power supply that it was necessary to use CMOS for the sequencer circuitry. Since the controller was designed to operate at relatively slow operation (below 100 kHz), CMOS was the logical choice in this case

Another excellent way to learn more about CMOS is to read Don Lancaster's CMOS Cookbook (Howard W. Sams \& Co., Inc., 1977). This 414-page book is filled with useful tips, applications and design possibilities.

> Now...learn computer programming faster \& easier with HEATH'S BASIC PROGRAMMING COURSE!

This self-instruction course uses proven programmed instruction methods to teach you BASIC... the most popular and widely used higher levell programming language. With the help of this course, you'll learn all the formats, commands, statements and procedures... then go on to actually apply them with "hands on' experiments and program demonstrations on your own or any available computer. And unlike other courses or books on BASIC, we teach you problem solving as well as programming so you can apply what you learn. Self-evaluation quizzes and exams guarantee that you understand every detail and when you finish, you may take an optional examination to qualify for a Certificate of Achievement and 3.0 Continuing Education Units (CEU's), a widely recognized means of participating in non-credit adult education. MONEY-BACK GUARANTEE: If for any reason you are dissatisfied, Heath Company will refund the full purchase price of the course.

shop gottat.

When you do, you'il probably pick CIE. You canit afford to settic for
less when it comes to sonething like electronics training that conld affect your whole life.

When you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for the ir training. They pretty much knew what was available. And they picked CIE as number one.

Why you should

shop around yourself.
We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type-with serious career goals in electronics take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries -on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson takes one or two principles and helps you master them-before you start using them!

How practical is the training?

This is the next big important question. After all, your carcer will be built on what you can do-and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your"hands-on" training.

With CIE's

Experimental Electronics Laboratory. . .
shooting! You learn to trace signal flow. . locate malfunctions. . . restore perfect operating standards - just as with any sophisticated electronics equipment!

When you work with a completely Solid-State Color Bar Generatoractually a TV signal transmitter - you study up to ten different patterns on your TV screen . . . explore digi-
tal logic circuits ... observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is

Patterin simulated. apply your new skills to some real on-the-job-type troubleOH 44114.
you learn and review the basicsperform dozens of experiments. Plus, you use a 3 -in-1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHzTriggeredSweep, Solid-State Oscil-
loseope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" wave form patterns. . lock them in .. study, understand and interpret them!

When you get your Lemith 19-inch Diagonal Solid-State Color TV you
simply this:
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting carcer!

Do you prepare for your FCCLicense?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshootirg jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the govermment-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE's free sehool catalog first:

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalog plus a complete package of independent home study information!
For your convenience, we'll try to have a repre. sentative contact you to answer your questions. Mail the card or coupon or write: CIE, 1776 East 17 th St., Cleveland,

Check box for G.I. Bill information:
Veteran \square Active Duty
Mail today:

Hobby Scene / <áy

By John McVeigh

Abstract

Have a problem or question on circuitry, components, parts availability, etc? Send it to the Hobby Scene Editor, populah electronics, One Park Ave., New York, N.Y. 10016. Though all letters can't be answered individually, those with wide interest will be published.

"AC VOLTAGES"

Q. I would like to know if commercial power is 110 volts peak or working voltage.-Paul Coelho, Mill Valley, CA.

A. An alternating voltage (terms like "ac voltage," "ac current," "dc voltage," etc. are really misnomers) can be expressed in several ways. The wave-form delivered by commercial power companies is sinusoidal, similar to the waveform shown in the figure. Such a wave can be described by its peak voltage V_{P}, the highest (or lowest) voltage the waveform attains during one cycle. It can also be described by its peak-to-peak voltage V_{P-P}, which, in the case of a symmetrical waveform, is twice the peak voltage. Finally, it can be described by its "working," "effective," or root mean square (rms) voltage, which is the square root of the mean value of the square of the instantaneous voltage. Strictly speaking, it is not the average value of the voltage, which for a sine wave is zero (the positive and negative portions of the signal cancel each other out in straight averaging). In non-mathematical terms, the rms value of a signal is the voltage required

CW BANDPASS FILTER

Q. I need a sharp audio bandpass filter for CW reception. Do you have one that peaks around 800 Hz ?Dean Poeth, WB8TMD, Columbus, OH .
A. The best circuit I have on hand is the input stage of the Morse-A-Letter, the Morse decoder which appeared in the January 1977 issue. This circuit is not only an active bandpass filter, but has excellent agc characteristics as well. You could use a low-impedance earphone in place of the speaker at edge connector location A8. Of course, the digital circuitry can be omitted if you want to decode the Morse yourself!
to produce the same amount of energy (say, heat dissipated by a resistor) that a steady direct voltage would. For a "110volt" sine wave from a commercial power station, the rms voltage $V_{\text {RMS }}$ is 110 volts, the peak voltage V_{p} is $\sqrt{2} \times 110$ volts or 155.6 volts, and the peak-topeak voltage $V_{P \text { p }}$ is 311.2 volts.

HOW AN LED WORKS

Q. Why does a light emitting diode emit light, and why just one color?Lou D'Antuono, Queens, NY.
A. A LED is similar to a germanium or silicon diode in that it is composed of semiconductor material. On one side of the semiconductor junction, the material contains impurity atoms with extra electrons as compared to the majority material. These excess electrons are not bound into the crystal lattice structure, and will move with a little push. This side is called the n side. On the other or p side, impurity atoms are added that are deficient in electrons as compared to the majority atoms. Thus there are "slots" in the bounding structure called holes into which electrons can fall. The excess electrons occupy a "conduction band" and have higher average energies than the electrons in the "valence band" on the p side.

Forward biasing a pn junction pushes electrons from the n side to the p side, where they fall from the conduction band into the valence band (into holes). Any electron that falls into the valence band gives up energy in the form of heat or light. The process is shown in the figure. The wavelength of the emitted electromagnetic energy depends on the gap between the two bands. The wider the gap, the more energy is given up, and the higher the frequency (shorter wavelength) of the emitted radiation. If the gap is sufficiently wide, the radiation will be in the visible spectrum. The width of the gap depends on the material used to form the diode. That's why only one narrow group of wavelengths (color, in the case of visible light emitters) is radiated by a particular diode. Gallium Arsenide (GaAs) or Gallium Arsenide Phosphide (GaAsP) is used to form most LED's.

SUPERSCOPE AIRCOMMAND AM CB TRANSCEIVER

Features LED meter readouts, channel-9 scan and SWR indicator.

THE Superscope Aircommand 40channel mobile AM CB transceiver departs from convention, as do a few others, by indicating relative signal strength, output power, etc., with a row of LED's instead of a meter. Another special feature is channel 9 scanning with individual squelch control and an audible alarm that sounds whenever a signal appears on channel 9 .

Aside from its special features, the Aircommand has a Delta tune control with center detent; individually switched automatic noise limiter (ANL) and noise blanker (NB); detachable microphone with a headphone connection at the mike plug; bottom-facing speaker; PA mode; external-speaker jacks; auxiliary input jack for feeding output from a portable radio or tape player through the transceiver's audio section; and electronic voltage regulation. It operates from a 12-to-16-volt dc, negative- or positive-ground source.

The transceiver measures 9 1/16" D $\times 79 / 16^{\prime \prime} \mathrm{W} \times 27 / 16^{\prime \prime} \mathrm{H}(23 \times 19.2 \times$ 6.2 cm). It comes with mobile-mounting hardware and rubber feet for base station installations and carries a suggested retail price of $\$ 229.95$

Technical Details. Although a schematic diagram was not supplied with our
test transceiver, we were able to surmise the following details. The receiver employs double conversion to i-f's of 9785 and 455 kHz . A filter at the second $i-f$ provides the selectivity. The circuit lineup consists of the customary r -f amplifier, mixers, i-f amplifiers, detector, agc, squelch, audio ANL, and audio amplifier stages. (The last doubles as the modulator for the transmitter.)

The PLL system follows the usual pattern. It uses a $10,240-\mathrm{kHz}$ crystal-controlled oscillator from which the standard reference signal is derived. This oscillator is also used for the second conversion, using the difference between its frequency and that of the first $i-f$. The voltage-controlled oscillator (vco) at the first mixer operates at a frequency 9785 kHz below the CB signal to minimize the possibility of high receiver radiation above 28 MHz and to insure better image rejection.

The transmitter's carrier is derived from the vco, the signal from which is routed through the r-f amplifiers and the driver and power-output amplifiers. A multielement output network matches to 50 -ohm loads and minimizes spurious responses and harmonics that might otherwise cause TVI and other service interference. Amc is included in the transmitter to maintain high average
modulation without excessive overmodulation that could cause adjacentchannel splatter.

The rf gain and audio volume and the delta tune and sal (squelch) controls on the transceiver's front panel are arranged in concentric pairs. Although the SWR CAL control appears to be a concentric pair, it is actually a single control. The other functions are handled by lever-type switches located in the lower center of the panel. The switch at the left is for selecting between PA and $C B$ operation. The next three toggles are for switching in and out the noise blanker (NB), for Channel 9 sCan/hold/off selection, and for switching in and out the ANL. The last switch is for setting the LED display to indicate relative sWR in its up position and relative output power (PWR) in its down position and for calibrating the system in the center (CAL).

Just right of center on the front panel is a horizontal row of eight discrete red LED's. The one on the left is a power ON indicator. The next four LED's are labelled for relative power or SWR at 1.5, 3,5 , and 10. The sixth LED is labelled CAL for SWR and is additionally used with the last two LED's to indicate modulation level. Calibration labelling below the LED's is for relative signal strength starting with S4 and ending with S9 +20 dB . The lowest SWR that can be indicated is 1.5 ; if the low-end LED does not come on, it is assumed that the SWR is less than 1.5:1.

The red seven-segment numeric LED displays used for the channel indicator are located directly below the row of discrete LED's. The channel selector switch dominates the right end of the front panel.

With the channel-9 lever in the off position, normal channel selection is via the channel selector knob. With the switch in the sCAN position, channel 9 comes up only when a signal is being received on this channel, at which time a CH9 LED at the upper right of the panel comes on and a beeping tone sounds. By placing the switch in its HOLD position, channel 9 is kept open.

Laboratory Measurements. The sensitivity of the receiver measured a nominal $0.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ with 1000 Hz at 30% modulation. The agc threshold range was 0.5 to $50 \mu \mathrm{~V}$. The agc held the audio output to within. 7 dB with a $20-\mathrm{dB}$ r-f signal change at 1 to 10 $\mu \mathrm{V}$ and to 10 dB with an 80-dB change at 1 to $10,000 \mu \mathrm{~V}$. A nominal $50-\mu \mathrm{V}$ input signal registered an $S 9$ reading.

To find out how much better our cartridge sounds, play their demonstration record!

There are some very good test
and demonstration records avail-
able. Some are designed to show
off the capabilities of better-than-
average cartridges... and reveal the
weaknesses of inferior models.
We love them all.
Because the tougher the
record, the better our Dual Magnet ${ }^{\text {TM }}$
cartridges perform. Bring on the
most stringent test record you can
find. Or a demanding direct-to-disc
recording if you will. Choose the

Audio-Technica cartridge that meets your cost and performance objectives. Then listen.

Find out for yourself that when it comes to a duel between our cartridge and theirs...we're ready. Even when they choose the weapons What you'll hear is the best kind of proof that our Dual Magnet design and uncompromising craftsmanship is one of the most attractive values in high fidelity. For their records... and yours!

AUDIO-TECHNICA U.S., INC.
Dept. 48P, 33 Shiawassee Avenue, Fairlawn, Ohio 44313
In Canada: Superlor Electranics, Inc.

Adjacent-channel rejection and desensitization was 60 dB minimum. Image and i-f rejection were 75 and 80 dB , respectively. Other unwanted-signal rejection was 60 dB except in the area of 25 MHz , where the rejection was 40 dB .

The overall audio response at the -6dB points was 500 to 4000 Hz . The audio output was 5 watts with a $1000-\mathrm{Hz}$ sine-wave signal with an 8 -ohm output amplifier load. The THD at this output level was 4%. The amplifier was also capable of putting out 6 watts of power at 10% THD and could also be driven into clipping. The PA output was about 10% lower in each test.

Voltage regulation is apparently provided for the transmitter, since the carrier output power maintained a constant 3.75-watt level at any power supply potential between 12 and 16 volts. Such regulation is quite unusual. In all cases, the power gradually drifted down to 3.5 watts after a short period of operation.

With a $1000-\mathrm{Hz}$ signal at microphone input levels 16 to 25 dB greater than that required for 50% modulation, the modulation held to nominally 90% at 2% THD. Under these conditions, the adjacentchannel splatter was down 45 to 50 dB . Using a $400-\mathrm{Hz}$ tone, the THD was 8%. When we switched to a $2500-\mathrm{Hz}$ tone, the splatter was only 38 dB down but still within the FCC regulation.

During operation with maximum voice levels, the modulation slightly exceeded 100% on occasion on the negative and positive peaks. However, the splatter was down 50 to 55 dB . The overall audio response at the $-6-\mathrm{dB}$ points was 300 to 3500 Hz . The transmitter's frequency held to within -193 Hz on all channels.

User Comment. The transceiver's performance was startlingly good. Particularly noteworthy was the effectiveness of the ANL and noise blanker. Both performed excellently in our bench tests and in actual on-the-road tests in a noisy vehicle. The audio quality was unusually crisp on receive and of better-than-average quality on transmit. Moreover, the modulation was highly effective. In this respect, we observed that one must take care to avoid speaking too closely into the microphone to avoid "breathy" sounds on the receiving end.

The sophisticated channel 9 emergency scanning function, boasting independent squelch, worked beautifully. It's a most welcome feature.

Although the use of LED's to indicate operating parameters, as on this transceiver, provides only approximate val-
ues, the meihod can be of more use to the CB'er than the often supplied miniature analog meter movements. Also, the LED's add a colorful and flashy touch to the otherwise bland-looking transceiver:

About the only mincr criticism we can
make is that the black-finished transceiver's panel markings (though they are white) are difficult to see at night. In addition, the concentric rotary controls are located at the top of the panel, where they protrude far enough to obCIRCLE NO 104 ON FREE information caro
scure the labelling of the switches below them. The solution to this problem, of course, is to tilt the transceiver upward as is often done in mobile installations.

All in all, we feel this transceiver ranks among the best we have tested.

HAZELTINE MODEL 1500 COMPUTER TERMINAL

Professional terminal in kit form.

AS ACTIVITY in the home microcomputer field has matured, several "big-narre" manufacturers have introduced products for use in this new market. One such manufacturer is the Hazeltine Corporation, which is making
available its well-known Model 1500 computer terminal in semikit form at a savings over the assembled version's price.

The Model 1500 terminal features an 80 -character/line $\times 24$-line format with upper- and lower-case characters. It can be interfaced with a microcomputer via either a $20-\mathrm{mA}$ current loop or an RS-232 system.

The terminal measures $20.6^{\prime \prime} \mathrm{D} \times$ $15.5^{\prime \prime} \mathrm{W} \times 13.5^{\prime \prime} \mathrm{H}(52.1 \times 40 \times 34.3$ cm) and weighs $35 \mathrm{lb}(15.9 \mathrm{~kg})$. Contact your local store for price.

General Description. The Model 1500 is a classical high-quality terminal. lis character set is displayed in a 7×10
dot matrix. Standard and reverse video is provided for all 94 ASCII characters available. The refresh rate is 60 frames per second, noninterlaced, with the display on the built-in $12^{\prime \prime}(30.5-\mathrm{cm})$ diagonal glare-proof CRT screen. Dual intensity of any word or character is selectable, and all data is stored in an on-board 2048×8 bit RAM.

The terminal also has an on-board ROM that accepts a number of remote (computer-generated) commands.
These include cursor address, incremental cursor, read cursor address, clear screen, clear foreground, clear to end of screen, clear to end of line, home cursor, set high/low display intensity, audible alarm, backspace, keyboard lock/unlock, insert/delete line, and remote tab function.

Interfacing with either the $20-\mathrm{mA}$ cur-

A P BROUCHT YOU SOLDERLESS BREADBOARDING. NOW WEVE ADDED POWER.

htroducing POWERACE, the new line of ACE All Circuit Evaluators.

PJWER4CE-for fast, solderless circuit building and testing All models will accept a.l DIP sizes-plus TO-5's and discreles with leads to 032 diampter. POWERACE 101 has a veriatle 5-15 VDC 600 ma Power supply. POIVERACE 1C2 features a fired 5VDC 1 amp power supply and FOIVEF ACE 103 has a fixed 5VDC 750 ma power supp y, a ixec + 15VDC 250 mapower supply, and a fixed -15vDC power supply at 250 ra .

Order from your A P distributor today. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Faster and Easier is what we're all about.

—D
 AP PRODUGTS INCORPORATED

Box 110•72 Corwin Drive, Painesville OH 44077 (216) 354-2101 TWX: 810-425-2250

Hazeltine's Model

 1500 computer terminal comes in semikit form as shown here and is easily assembled.rent loop or RS-232 system provides full or half-duplex operation, with compatibility with a 103A or 202 modem. Eight baud rates between 110 and 19,200 baud are individually selectable. Also provided is a choice of odd, even, or no parity and a choice of one or two stop bits. All selections are made via a set of DIP switches located under a small liftoff panel near the keyboard.

User Comment. It is difficult to consider the Model 1500 terminal as a kit
since its major electronic elements come assembled, tested, and guaranteed by Hazeltine. All that must be done is to follow the assembly instructions given in the well-written manual as the various elements of the terminal are mounted. Then the individual elements are simply interconnected with a solderless wiring harness.

Exercising care in installing the elements and making neat interconnections, we assembled the kit in about four hours, counting from the time we
opened the carton in which the kit was shipped. At the end of this time, our terminal was up and running with our computer. The job of assembly is very simple and straightforward; it can be accomplished by anyone who has a rudimentary knowledge of electronics and mechanics. The only hand tools required are a screwdriver and pliers.

Following assembly, the first test we made was to deposit a full screen of m's and w's to test the edge-to-edge clarity of the character display because of the wide bandwidth required to keep the characters from filling in. The full screen of characters also permits checking the linearity of both the horizontal and the vertical portions of the sweep. In our test sample, these were extremely linear and in sharp focus.

When we filled the screen with upperand lower-case characters, the terminal's character generator, in conjunction with the wide bandwidth, produced an extremely clear display. All keys and key combinations that generate ASCII codes operate in a "typamatic" mode. That is, depressing any of these keys initially produces the selected character onscreen; and, if the key is held down for

more than three-quarters of a second, the character is repeated at a rate of 15 characters per second. In all cases, the terminal displays its characters in a very professional manner, including scrolling. The alphanumeric keyboard and the numeric cluster have finger-tip contoured keytops and a good "touch."

While we were using the terminal, we tried changing the baud rate without changing that of the computer we were using. We discovered that if terminal and computer are not set to the same baud rate, the terminal initiates an insistent "beeping" via its internal alarm and the CRT screen displays a line of PE (parity-error) symbols.

Using the simple instructions provided in the manual that accompanied the kit, we made several changes to a couple of our BASIC programs to permit us to use some of the special remote commands to the terminal (such as screen clear and two-level brightness). Also, using the lock/unlock commands, we managed to defeat the keyboard to prevent anyone's toying with it while a special program was running.

Examining the voluminous and very well-written assembly and operating manual, we discovered that the Model 1500 is more than just a computer terminal. The system is controlled by an 8080A microprocessor and a complete set of support IC's, has internal ROM and RAM, and video display section. With its built-in keyboard, I/O porting, and high-resolution CRT monitor, this excellent terminal can certainly give homebrewers some interesting thoughts on expanding the system.

The manual provided with the terminal kit is by far the most complete we have seen this side of military gear manuals. The maintenance sections are complete, with oscilloscope waveforms, voltage measurements, logic guides, flow charts, etc. There is virtually nothing that can go wrong with the terminal that is not covered by the manual.

If you are a serious computer enthusiast and have spent time and money upgrading your computer system, you should give some thought to moving up to a Hazeltine Model 1500 "professional" computer terminal, especially at its reasonably moderate price. The same goes for small businesses and educational institutions on the lookout for a commercial terminal at a savings in cost.

After working with the Model 1500 for several weeks, we were very favorably impressed with its performance.

CIRCLE NO 56 ON freE information card

Brand New

It's the newest, most exciting magazine in the hobby electronics market. And it covers all the fields you want to read about

Personal Computers, Amateur Radio, Stereo, experimental electronics, CB \& Scanners, Short Wave Listening, Radio Control and much more.

We'll show you how to build a robot that'll work for you. We'll show you how to start your car in the cold mornings from inside the comfort of your home. We'll bring you dozens of construction projects in every issue. We'll even show you new ways to program your own computer.

All this and more in modern electronics, the new magazine in electronics that looks really new.

Subscribe today. Special sayings for new charter subscribers with the coupon below.

Regular Sub. Price Charter Sub. Price \$8.95

Check One: | \square | My account number is: | | | | |
| ---: | :--- | :---: | :---: | :---: | :---: |
| \square Master Charge \square Bank Americard | \square | | | | |
| \square | | | | | |
| \square | | | | | |

Name
Address
City State Zip

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.

The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit- ouilding not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

NATIONAL EREmex SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

NATIONAL TECHNICAL SCHOOLS Dept. 205-048\square
4000 South Figueroa Street, Los Angeles, California 90037
Please send FREE Color Catalog and Sample Lesson
\square Color TV Servicing
\square FCC License Course
\square Electronic Communications
Electronics Technology
\square Audio Electronics Servicing\square Digital Electronics
\square MicroComputers/MicroProcessors
Name
Address
Apartment Number
\qquadAgeApartment Number
City
State Zip
DCheck if interested in G.I. Bill information

NON-ENGLISH BROADCASTS TO NORTH AMERICA

THOSE who are not initiated into the world of DX listening often assume one must be multilingual to get anything out of short-wave broadcasts. This is emphatically not the case. Yet, nearly every country that broadcasts in English to North America also broadcasts in its native language and a few use additional languages as well. They deserve your attention, and the native music can be enjoyed with no language barrier

All these stations send out free program schedules on request. If you don't hear an exact address announced on the air, simply use the station name, city and country. The stations get so much mail that little else is really necessary. Some are reticent about sending schedules in a certain language, unless you write to them in that language. Here's a survey of non-English broadcasts to North America (all times are GMT; frequencies are subject to change.)

Albania. R. Tirana's English broadcasts are so dogmatic and insulting that many SWL's prefer the incomprehensible Albanian. Try 9790, 7300 and 6200 kHz at $0000-0100$ and 0200-0230; or 11,985 and 9500 kHz at 1030-1100.

Argentina. RAE English is in three one-hour blocks, exceeded by Spanish at 0000-0300 and 0400-0600 on 9690 kHz weekdays. On weekends, all programs are in Spanish--before 2400 on $11,710 \mathrm{kHz}$, after 0000 on 9690 kHz .
Australia. Has French for the Pacific at 0000-0100 on 15,320 and 15,160 kHz . Quebec is just a bit farther in the same direction. In our summer, try again at $0500-0600$ on additional frequencies in the 16- and 19-Meter bands.
Austria. ORF has German at 2300-0100 and 0200-0330 on 6155 and 9770 kHz ; French at $0100-0130$; and German at 0400-0430 and 0500-0600 on 6015 kHz .

Belgium. BRT-4 precedes its 0015 English with a half hour of Dutch on the same frequency.
Bulgaria. R. Sofia's 0000 English is
flanked by Bulgarian at 2330-2400 and $0100-0130$ on the same frequency.

Canada. Among RCl's many French broadcasts audible in North America, these are intended for us: 0100-0127 on 5960 kHz ; 0200-0227 on 9605 and 5960 kHz ; 0330-0357 on 9535 and 5960 kHz . Listen for a DX show and mailbag on Sundays (GMT Mondays). Spanish: 0030-0057 on 9535 kHz ; 0130-0157 on 9535, 6185, and 5960 $\mathrm{kHz} ; 0230-0257$ on the same channels as 0300 English.

China. R. Peking in Chinese generally uses frequencies that at other hours are in English. Cantonese is at 0100 and 0300; Standard Chinese at 0200 and 0400.

Cuba. R. Habana Cuba's extensive Spanish schedule is designated for North, Central and South America. If you can't find this, your receiver is turned off! Also, French at 0300-0330 on 11,760 kHz.

Czechoslovakia. R. Prague's "Interprogramme" at 2300-0100 on 9630 and 6055 kHz includes Czech \& Slovak at 2300, German at 2330, and French at 0000. Regular broadcasts include Czech \& Slovak in the half hour preceding the 0100 English on most of the same channels.
Chile. The Voice of 'Free' Chile uses the same antennas and frequencies for non-English as for English: French at 0000,0130 , and 0300 and Spanish at 0100 and 0230.
Denmark. R. Denmark is stymied by a law that forbids it to broadcast in English! Danish to North America is on $15,165 \mathrm{kHz}$; most transmissions before 1805 GMT are either for Greenland or North America in general.
Dominican Republic. R. Clarin is in Spanish whenever it isn't in English. Check for a mailbag show at 2230; Sundays after 1500 GMT, hear results of the national lottery-"90 pesos!"-being shouted several times an hour.

Ecuador. HCJB—or the evangelists
buying time on it-have the curious idea that it's worthwhile to broadcast to North America in Russian at 0130-0200 in the 19- and 25-Meter bands. Last year there was even Czech. French follows Russian at 0200-0230 on the same frequencies. Spanish comes this way at 1230-1530 on $11,910 \mathrm{kHz}$; 1630-2100 on $15,160 \mathrm{kHz} ; 2230-0500$ on 11,960 $\mathrm{kHz} ; 0100-0500$ on 6050 kHz . Japanese to Japan crosses North America on the way at $1130-1225$ on 9715 kHz .

Egypt. R. Cairo follows its English program on 9475 kHz with an hour in Arabic at 0330.

Finland. R. Finland has been ordered to cut its external broadcasts 2 hours and 45 minutes per day. Will this come out of English or Finnish? The latter was scheduled in the hour preceding the 1300 English on the same frequency (exc. Swedish Wed. 1230-1255), and again at 1500-1600 (exc. Wed. 1500-1525 Swedish).
France. Does not use English for North America or any language in our evenings. But at 1200-1710 it's a powerhouse in French on 15,440 and $17,780 \mathrm{kHz}$. When France is on summer time, this shifts to 1100-1610.

Germany, East. R. Berlin International inserts 45 minutes of German between the 0100 and 0230 English on the generally inaudible 9730 kHz . On the same frequencies as the 0330 English, German follows at 0415.
Germany, West. Almost every night, Deutsche Welle jokes about its "enormous" 20-minute English program. For true enormity, try its $230-\mathrm{min}$ ute German program, aired twice at 2200 and 0200 on many hard-to-miss frequencies from Germany, Rwanda, Malta, Canada, Antigua and Montserrat. For this, DW publishes a day-by-day, hour-by-hour schedule similar to BBC's "London Calling." DW also provides morning news in German at 1300-1320 and 1330-1350.

Greece. On the same frequencies as English, Voice of Greece is in Greek at 0000-0015, 0045-0215, 0230-0350, 1200-1215, 1230-1250, 1500-1515, 1530-1550. And in French at 0030-0045.

Hungary. R. Budapest broadcasts more Hungarian to us than English, and on the same frequencies, at $0130-0200$, 0230-0300, 0330-0400. On GMT Mon days this expands to 0130-0300 and 0330-0500.

Iran. Voice of Iran is slow to beam English our way, but there's plenty of music and Farsi after 2000 on 15,084
kHz . During the summer this is audible well into the night.

Israel. Each Israel Radio English program is accompanied by one in French on the same channels: 0515-0530, 1230-1300, 2030-2055, and 2200-2230. Hebrew news follows English on same frequencies at 2300. The Hebrew home service is relayed our way on mostly weaker SW transmit-ters-at 0400-0610 on 7465 and 5882.5 kHz ; 1740-2315 on 9355 and 12,077 kHz . At times, a channel above 15,500 kHz can also be heard.

Italy. English broadcast to Japan is longer than the one to North America! But Italian is something else: 2230-0100 on $11,905,9710,9630,9575$, and 6010 kHz . The variety of music and information on this service puts their leaden English $1 / 3$ hour to shame. It's followed by French at 0120-0140.

Japan. R. Japan has a 15-minute Japanese newscast every hour of the day at 15 past (except for half-hours at 1030, 1430 and 2330) on same frequencies as English General Service, varying with season and time of day among $15,105,9505,5990 \mathrm{kHz}$. The 0130 En glish is preceded by Japanese at 0100, and is followed by Spanish at 0230-0300.

Korea, South. R. Korea, unlike R. Pyongyang, broadcasts more Korean than English our way. At 0230, 0430, 1600 , and 2030 on 11,850 and 9640.

Libya. The People's Revolutionary Broadcasting is in Arabic only, most of the day on $15,100,11,700$, or 9500 kHz .

Netherlands. Both R. Nederland relays, in Madagascar and Bonaire, come in better here than in Holland itself. Daily Dutch from Bonaire for North America is at 0030-0120 on 6165 and 6020 kHz ; 0430-0520 on 9590 and 6165 kHz . And on Sundays only at 2130-2220 from Holland on 9715 kHz ; from Bonaire 2230-2320 on 15,320 and $15,180 \mathrm{kHz}$. Spanish: 0330-0420 on 9590 and 6165 kHz .

Norway. Check R. Norway's English schedule. The preceding hour on Sundays, and the entire 90 minutes on weekdays is in Norwegian, with some English music announcements.

Poland. R. Warsaw insists on not specifying what times are Polish and what are English to North America-but usually the Polish is at 0230-0300 and 0330-0400 on the same frequencies. Most of them are inaudible except at midsummer.

Portugal. Another country with more native language than English. Por-
tuguese is at 0100-0300 and 03300500 on the same frequencies as English.

Romania. R. Bucharest until recently had Yiddish to North America. But now, on same channels as English, it's only Romanian at 2300-2400 and 0230-0300.

Spain. RTVE employs a different and larger frequency net for Spanish than for English. A two-hour service is aired thrice, at 2300, 0100, and 0300. Prime channels are $11,945,11,775$, 9630,9360 , and 6120 kHz . Also, for seamen in the "northwest Atlantic," from 2145

Sweden. R. Sweden has Swedish at 2330, following English at 2300; at 0100 and 0200 on the same frequency as 0030 English; at 1430 on the same as 1400 English. French is at 0230 on a single frequency. Some of the Spanish broadcasts for "Latin America" are on the same beam as eastern North America: at 0000 and 0130 , it is the same as 0030 English; and at 0300, it is the same as 0230 French. This Spanish crossing on the way to Central America holds true for many other European stations.

Switzerland. Each Swiss language gets exactly the same time as English, on the same frequencies in subsequent half hours: 0245 in German, 0315 in French, 0345 in Italian; 0500 in Italian, 0530 in German, 0600 in French; 1345 in German, 1415 in French, 1445 in Italian, and Spanish at 0215.

Taiwan. VOFC has standard Chinese at 2040-2140 on the same channels as 2140 English, and surrounding the 0100 English are standard Chinese at 0000 and Cantonese at 0200-0300, on mostly same channeis.

Thailand. Has perpetually inaudible North American service in English at $0415-0515$ around $11,905 \mathrm{kHz}$, and caps this with French to North America at 0520-0550.

USSR. R. Moscow's North American service in English is only the tip of the iceberg. There are several different Russian services. SW relays of the "Mayak" second-program home service can be heard throughout the day and evening. R. Rodina (Homeland) at 2330-0030 and 0200-0300. A distinct Golos Rodiny at 0130-0200. "Allantika," for seamen in the Allantic, at 1300-1400; Pacific Ocean Radio Station at 0700-0800 and 1930-2030. R. Kiev has Ukrainian at 2200-2300 and 0330-0400. R. Vilnius is in Lithuanian at 0100-0130. Most of Yerevan's nondaily transmission at 0300-0330 is in Armenian.

Vatican. Radio follows 0100 English with French at 0115-0130, conflicting in time with Rome's other shortwave station.

If you'd just like to hear broadcasts in a certain language, the Voice of America may be the answer. Reception is best in the central states.

YOUR PERSONAL 260 PAGE BUYING GUIDE FOR TEST EQUIPMENT, SEMICONd ductors, WIRING, TOOLS, SERVICE BOOKS, KITS, CONNECTORS, RELAYS I SWITCHES, PLUS HOME AND AUTO STEREO, RADIOS, TAPE RECORDERS, TV'S. CB'S AND MUCH MORE. IT'S COLORFUL! IT'S EXCITING!DON'TDELAY......

> Why Sol Should be your Small Computer Choice.

Sol-20 Terminal Computers are complete. You don't spend an extra penny for necessary interfaces. Sol computer systems start at $\$ 1850$ in kit form.
We've done the software job. Only Processor Technology offers a fully implemented disk operating system for small computers: PTDOS. Our high level languages include Extended BASIC, FORTRAN* FOCAL. PILOT* and Assembler.
You can expand the Sol to handle business. engineering and research problems. Today's Sol can handle 65.536 bytes of memory and operate with a three megabyte on-line disk memory. S-100 bus compatibility means you can use a big group of standard peripherals.

Sol systems are conservatively rated. They won't quit on you. With over 5,000 in the field, we know the track record for reliable performance is outstanding.

We back Sol with the best documentation in the industry plus a factory support team to give you caring counsel by phone or letter. What's more, on site maintenance and service folks are located in over 50 cities throughout the U.S. and Canada.
So when you are shopping for a small computer, see your Sol dealer last.
Then you can take your Sol with you!
For more information, please address Processor Technology Corporation, Box I, 7100 Johnson Industrial Drive. Pleasanton, CA 94566. (415) 829-2600.

by Leslie Solomon

HIGH-RESOLUTION GRAPHICS

\mathbf{N}°O MATTER how many alphanumeric characters your terminal can put on the screen, there are times when those characters are no substitute for graphics. However, when you examine the field, you will find that many low-cost "graphics" displays are simply nonalphanumeric characters resident within the character generator used, or they are limited to simple bar graphs. There are boards and systems that have some graphics capability, but the graphics are generally small "blocks" rather than discrete dots, so their overall effect is somewhat coarse.

Recently we had an opportunity to try out a new graphics board, the ALT256*2 Graphic Display Interface (\$395 assembled and tested) from Matrox Electronic Systems, POB 56, Ahuntsic Stn., Montreal, Canada H3L 3N5 (Tel: 514-481-6838), and available through most computer stores. This S-100 bus board can display 256 lines with 256 individually addressed dots on each line, thus allowing for excellent resolution. Each dot can be made black, white, or, if three boards are used, any color. The system can work with as many as eight boards but in this case, direct manipulation of the color byte is required as explained in the manual. Access time is $3.4-\mu \mathrm{s}$ per dot, and the entire screen can be erased with a single instruction. The board can use external sync, and can be strapped for USA or European TV standards for noninterlaced display.

Graphics using the Matrox interface, shown at upper right.

The ALT-256*2 board contains 65k \times 1 of RAM, and individual 8 -bit registers for the X and Y coordinates and the data for each dot. Thus, it is easy to specify an individual dot anywhere on the screen, and determine whether that particular dot should be black or white (or color if you use extra boards). The screen can be erased black or white depending on the data sent to the input.
The software provided with the ALT-256*2 consists of a very detailed manual, and a pair of paper tapes. One tape contains the MTX GRAPH software that is configured as a series of callable subroutines while the second tape contains a demonstration program that uses the MTX GRAPH to create a continuous action graphics display. Total memory required is about 1 k .

Six of the seven subroutines in the MTX GRAPH package are: INITG (initializes the system to standard defaults); PAGE (erases the entire screen); CURSOR (allows positioning the cursor at point X, Y); DOT (sets the point defined by the cursor); LINE (creates a line of dots between the current cursor position and the point X, Y); and CHAR (displays an ASCII character at the current cursor position). In the latter routine, the cursor is left at the next character position. Certain control characters are then used to select color, fixed or proportional character spacing, and dot size. The last routine is called ANIMAT, which produces a pause until the start of the next vertical blanking period, and is used in animation routines.

After plugging the ALT-256*2 into our S-100 computer, we loaded both tapes, and following the manual, started the demonstration program. Because we had only one board, and a monochrome monitor, we had no experience with color operation.

Comments on Use. The demonstration is impressive. It starts with a set of large characters on screen, followed by an interesting "lace curtain" effect that

dĩ̛ínifele elbe The magazine that brings the computer home.

Put a benchtop DMM in your pocket. Only $\$ 169$.

Our new 8020A digital multimeter puts typical benchtop-type measurement capability in your pocket, your briefcase or your tool kit. And it puts true Fluke value in your hand.

At only $\$ 169$,* the 8020 A has features you won't find on any other multimeter, at any price.

Features like 26 ranges for seven functions, including conductance that measures leakage to $10,000 \mathrm{M} \Omega$. Dependable CMOS LSI single-chip innovation, custom designed for the 8020A.
It's only 13 ozs. of reliable, shockresistant measurement perfection. All guaranteed for a full year, including specs and its NBS-traceable calibra-
tion.
Benchtop performance for \$169.* And Fluke's dedication to after-sale support, with service centers located worldwide for fast, cost-effective support. A priceless combination.

Call (800) 426-0361, toll free. Give us your chargecard number and we'll put an 8020 A in your pocket. Or, we'll tell you the location of the closest Fluke office or distributor for a personal feel for the best DMM value around. Put savings in your pocket too, and buy a "Ten-Pack" of 8020 As for only $\$ 1521 *$, and get ten for the price of nine!

[^2]
Command Performance: Demand the Fluke 8020A. 1809-7002

creeps across the screen. Suitable pauses are built-into the program so that you can study the various patterns on screen. Then follows a series of fan-like displays that illustrate line-calling routines, and some small (but very clear) alphanumerics. After a few more demonstrations of the various calling routines, a little man is made to "walk" across the screen, with swinging arms, to demonstrate the animation portion.

The manual contains a considerable amount of information and includes a complete listing of both the demonstration program and the MTX GRAPH package.

We have been playing with some 8080 machine language programs to "call" the various graphics subroutines and learn how best to use the high-resolution graphics. The results have been surprisingly good. We are also writing some BASIC programs using FILL and CALL commands to access the graphics software, also with successful results. One future project is a joystick interface for some really adventurous picture creations.

If high-resolution graphics appeals to you, drop into your local computer store and take a look at this new system from Matrox

280 Things. North Star Computers, Inc., 2465 Fourth St., Berkeley, CA 94710 (Tel: 415-549-0858) has intro-

The North Star 16k RAM board for use with 8080 or $Z 80$.
duced a couple of $Z 80$ goodies. The first is a $4-\mathrm{MHz} \mathrm{Z80}$ board compatible with an S-100 bus, called the ZPB. It is available for $\$ 199$ in kit form or $\$ 259$ fully assembled. Features include auto-jump startup, vectored interrupts, operation with or without front panel, and space for 1 k of 2708 EPROM. The EPROM option is $\$ 49$ for the kit and $\$ 69$ assembled.

The other $Z 80$ device is a 16 k RAM board (S-100) for use with either 8080 or Z80 and will operate at full speed (no wait states) at 4 MHz . The RAM's are 200 ns , and on-board refresh is provided. Bank switching capability is provided
and board addressing is switch-selectable in two 8 k sections. An important feature is the availability of a parity check option. The 16 k board is $\$ 399$ in kit form, and $\$ 459$ fully assembled. The parity option is $\$ 39$ kit and $\$ 59$ assembled.

PROMing. Oliver Audio Engineering, Inc., 676 West Wilson Ave., Glendale, CA 91203 (TeI: 213-240-0080), which brought us the first low-cost paper-tape reader, now introduces its PP-2708/16 PROM programmer (\$249 as a kit, \$295 assembled and tested). The new programmer plugs directly into any 2708 or TMS-2716 socket, and the PROM to be programmed is mounted in its zero-insertion-force socket. The data is dumped over the eight lower address lines using the OAE interface. No additional power supplies are required and all timing and control sequences are au-

The OAE PP-2708/16 PROM programmer plugs into any 2708 or TMS-2716 socket.
tomatically handled by the programmer.
Because of this simplicity, only a short software routine is required. A five-foot flat ribbon cable interconnects the programmer with the PROM socket.

Bus Stop. If you have an Altair/S-100 bus system, or are planning to get one, there are a couple of new motherboards of which you should be aware. The first is from Vector Electronic Co., Inc., 12460 Gladstone Ave., Sylmar, CA 91342 (Tel: 213-365-9661). Their Model 8803 costing $\$ 29.95$ accommodates 11 plug-in boards, and can have passive or active bus termination. One slot position may be used to interface the motherboard for system expansion. Twelve tantalum capacitors are included to suppress transients on the various power supply lines. Ground and +5 -volt traces are rated at 10 amperes while the $\pm 12-$ volt busses are rated at 7 amperes.

The second S-100 bus motherboard is from Thinker-Toys, 1201 10th St., Berkeley, CA 94710 (Tel: 415-5277548) and costs $\$ 76$. Called the Wunderbuss, this new motherboard features full shielding of the signal paths, and active termination of all data lines. Signal isolation is achieved by a cross-coupled system of ground lines interlaced between signal lines. The motherboard with 10 edge connectors is available for $\$ 120$, and with 20 edge connectors the price is $\$ 154$.

PROM/RAM Board. Now available from Vector Graphic, Inc., 790 Hampshire Road, Westlake Village, CA 91361 (Tel: 805-497-6853) is a new S-100 board that occupies two independently addressable 8 k blocks, has 1 k of RAM on board, and a capacity of up to $12 k$ of 2708 EPROM's. Complete addressing flexibility is provided, and video or diskoperating system boards can be nested in the 3 k of unused space. MWRITE logic and jump-on-reset allow operation without a front panel. A 24 -command
FAIRCHILD TECHNOLOGGY KITS
ㅁ FTK 0001 0.5" Common Cathode Digit
Q FTK 0002 .05" Common Anode Digit
GFTK 00040.8 Common Cathode Digit
OFTK 00050.8 Common Cathode Digit

- FTK 0100 Clock Calendar with Radio ADplications
- FTK 0101 6-Digit Wall Clock/Calendar
-FTK 0106 Auto Clock Calendar
10\% OFF ALL TTL, Including $7400 \mathrm{\# s} \mathrm{~L}, \mathrm{~S}, \mathrm{H}$ and LS
ロE \& L SK10 Breadboard Socket
SAVE $\$ 150$
IMSAI 8080 Computer Kit
\square Motorola MEK 6800 DII Computer Kit
599.95
\square Vector Photo-resist Printed Circuit Kit

THE BOOKS THAT SHOW YOU HOW!

computer depot, inc.

3515 West 70th Street, Minneapolis, MN 55435
Phone: (642) 927.5604

PROM monitor is available to interface with most I/O boards. Price is $\$ 135$ in kit form, $\$ 175$ assembled.

Print an Apple. If you have an Apple II computer, then you should be aware that Microproducts, 1024 17th St, Hermosa Beach, CA 90265 (Tel: 213-374-1673), has introduced its PCB that interfaces the Apple II with the SWTP PR-40 Printer. The board, at $\$ 49.95$ assembled, plugs into the Apple II and comes with an interconnecting ca-
ble. A cassette with operating software is also provided. The printer prints one line at a time when the return key is depressed. The printer subroutine can also be called in a BASIC program for usual printing.

New I/O Port. Since getting stuff into and out of a computer is somewhat of a necessity, and since most hobbyists now use more than one I/O device, mul-ti-porting is becoming very important. Dajen Electronics, 7214 Springleaf Ct .,

A Microproducts board interfaces an Apple II with an SWTP PR-40.

60 HZ . XTAL TIME BASE:

Will enable

 Digital Clock Kits or Clock-Calendar Kits to opera from $12 V D C$$1 \times 2$. 1"x2"PC Board
\#ALR-1WT
WIRED \& \$19.95
TESTED
Complete kit $\mathbf{4}^{95}$ Wir \& Cal $\$ 9.95$

PLEXIGLAS CABINETS

TDOME LED LAEK

 WITH MULTIPLEX

OPTOELECTRONICS, INC.

BOX219 HOLLYWOOD, FLA. 33022 PHONE [305] 921-2056/921-4425
ORDERS TO USA \& CANADA ADD 5% FOR SHIPPING. HANDLING \& INSURANCE. ALL OTHERS ADD 10% ADDITIONAL $\$ 1.00$ CHARGE FOR ORDERS UNDER $\$ 15.00$ - COD FEE $\$ 1.00$. FLA. RES. ADD 4% TAX CIRCLE NO 46 ON FREE INFORMATION CARO

Citrus Heights, CA 95610 (Tel: 916-723-1050) has one answer in their System Central Interface (SCl) board selling for $\$ 285$ in kit form and $\$ 345$ assembled and tested. This S-100 bus board provides a serial port with RS-232 and 20/60-mA current loops; baud rates from 45 to 9600 ; three independent 8 -bit parallel ports that can be programmed bitwise for input and latched output; biphase (Tarbell) cassette port; onboard relays for control of two recorders; and three status lines to control an automatic tape deck. Also included are 256 bytes of RAM for stack and buffer storage; a 2708 programmer; space for three 2708 s; and $2 k$ system monitor program, having 18 commands. All IC's are socketed, and the board will work with $4-\mathrm{MHz}$ Z80 systems. All output connectors, cable and plugs for recorder are provided.

1802 Items. Netronics, 333 Litchfield Rd., New Milford, CT 06776 (Tel: 203-354-9375), the source for the Elf-II, has announced a 4 k RAM board for the Elf-II bus at $\$ 89.95$ plus $\$ 3$ postage/ handling. Using 2102's and requiring $500-\mathrm{mA}$ from the 5 -volt line, the memory is buffered and decoded with page selection in 4 k blocks anywhere in memory. There is an on-board regulator and three-state outputs. The board will preserve the 256 bytes of the original.

This same firm also has an Elf-II prototype board ($\$ 17$ plus $\$ 1$ postage/handling) that has room for 32 IC's in a mix of $14,16,20,22,24$, or 40 pins. Wirewrap or solder pencil connections can be used. Like the memory board, this board has gold-plated Elf-II bus connector fingers, and has provisions for a 5volt regulator.

The third item announced by Netronics is an outboard Elf-II power supply that provides ± 8 volts at 5 amperes, unregulated, and ± 16 volts at 1 ampere, also unregulated. Price is $\$ 34.95$ plus $\$ 3$ for postage and handling.

POPULAR ELECTRONICS

Basic Data Base Management
System. People's Data Base System is a BASIC program for use in a variety of applications including word-processing, accounting, software development, mailing-list
files and label-printing, schedules and lists, among others. The System will run on any BASIC with statements for DATA, DIM, GOSUB, GOTO, INPUT, LET, PRINT, READ, REM and string variable with MID\$; this includes most $8 k$ and some $5 k$ BASICS. The system is available in book form, with complete source listing and applications printout, for \$14.95. Write: Microware Div., Physical Biological Sciences Ltd., Box 47, Blacksburg, VA 24060.

8080 Software Contest. College and university students and faculty are eligible to enter a software contest announced by Intel's Insite program library. Entries must be written in Intel assembly language or PL/M and must include a source listing and test program to assure program validity, and a source paper tape or diskette. More than $\$ 28,000$ worth of microcomputer development equipment, plus numerous $\$ 100$ memberships in the Intel User's Library, will be awarded to colleges and
universities submitting the best programs by June 30, 1978. Monthly winners will receive Intel PROMPT 48 or PROMPT $80 / 85 \mathrm{mi}-$ crocomputer design aid systems. The grand prize will be an Intellec 888 Microcomputer Development Center, including 64k RAM, du-al-drive one-megabyte diskette system, CRT console, and software. Programs will be judged for their originality, documentation, creativity and applicability to microprocessors. Both individuals and teams may enter. For entry forms and details, write: Insite Library Contest, Intel Corp., Microcomputer Div., 3065 Bowers Ave., Santa Clara, CA 95051.

8080/280 Cassette Operating Sys. tem. The ZAPS Cassette Operating System includes a Z80 assembler, text editor, inmemory file system, labelled cassette tape storage system and other utilities. Runs in 14 k of inemory, including buffers and 1 k for symbol table, on most 8080 and Z 80 systems. The assembler processes the Zilog mnemon-

Advertisemen
 THE MICROCOMPUTER MART

 COMPUTER RETAIL STORES
ALABAMA

ICP Computerland
1550-D Montgomery Hwy.
Birmingham, Alabama 35226
(205) 979-0707

CALIFORNIA
Computer Emporium
17931-J Sky Park Circle Irvine, California 92714 (714) 540-8446

Computerland
6840 S. La Cienega Blvd
Inglewood, California 90302
(212) 776-8080

Inland Computer \&
Electronics House
537 North ' E ' St.
San Bernardino, California 92402
(714) 888-3690

Peoples Computer Shop
13452 Ventura Blvd.
Sherman Oaks, California 91423
(213) 789-7514

Rainbow Computing, Inc.
10723 White Oak Ave.
Granada Hills, California 91344
(213) 360-2171

GEORGIA

Datamart, Inc.
3001 North Fulton Drive, NE Atlanta, Georgia 30305 (404) 266-0336

ILLINOIS

American Microprocessors
Equipment \& Supply Corp.
At the Chicagoland Airport 20 North Milwaukee Ave Half Day, Illinois 60069 (312) 634-0076

Computerland of Arlington Heights
50 East Rand Rd
Arlington Heights, Illinois 60004
(312) 255-6488

Imperial Computer Systems, Inc.
2105 23rd Ave.
Rockford. Illinois 61101
(815) 226-8200

INDIANA

Audio Specialists
415 North Michigan St
South Bend, IN 46601
(219) 234-5001

LOUISIANA

Computer Shoppe, Inc.
3225 Danny Park
Metairie, Louisiana 70002
(504) 454-6600

MASSACHUSETTS

Computer Mart, Inc.
1097 Lexington St.
Waltham. Massachusetts 02154
(617) 899-4540

MICHIGAN

The Computer Mart
1800 West 14 Mile Rd
Royal Oak, Michigan 48073
(313) 576-0900

The General Computer Store
930 Mason
Dearborn, Michigan 48124
(313) 562-3320

The General Computer Store
1310 Michigan
East Lansing, Michigan 48823
(517) 351-3260

The General Computer Store
73 W. Long Lake Rd.

Troy. Michigan 48084
(313) 689-8321

United Microsystems Corporation
2601 S. State St.
Amn Arbor, Michigan 48104
(313) 668-6806

missouri

Gallion Data Systems, Inc
201 North 11th St.
Blue Springs, Missouri 64015
(816) 229-4976

NEBRASKA
Omaha Computer Store
4540 South 84th St
Omaha. Nebraska 68127
(402) 592-3590

NEW JERSEY

Computer Corner of New Jersey
240 Wanaque Ave.
Pompton Lakes, New Jersey 07442
(201) 835-7080

Computer Mart of New Jersey
501 Route 27
Iselin, New Jersey 08830
(201) 283-0600

S-100, Inc
7 White Place
Clark, New Jersey 07066
(201) 382-1318

NEW YORK
Atlas Electronics Corp.
1570 Third Ave
New York. New York 10028
(212) 427-4040

The Computer Corner
White Plains Mall
200 Hamilton Ave
White Plains, New York 10601
(914) WHY-DATA

PENNSYLVANIA

Personal Computer Corp.
Frazer Mall
Lancaster Ave. \& Rte 352
Malvern, Pennsylvania 19355
(215) 647-8463

TEXAS
Compushop
13933 North Central Expressway
Dallas, Texas 75243
(214) 234-3412

Interactive Computers
$76461 / 2$ Dashwood
Houston, Texas 77036
(713) 772-5257

Interactive Computers
16440 El Camino Real
Houston, Texas 77058
(713) 486-0291

The Computer Shop
6812 San Pedro
San Antonio. Texas 78216
(512) 828-0553

VIRGINIA

The Computer Hardware Store, Inc. 818 Franklin St.
Alexandria, Virginia 22314
(703) 548-8085

Computer Systems Store
1984 Chain Bridge Rd
McLean (Tysons Corner),
Virginia 22101
(703) 821-8333

WISCONSIN

Microcomp

PO Box 1221
785 S. Main St
Fond du Lac. Wisconsin 54935
(414) 922-2515

Dealers: For information about how to have your sture listed in THE MI-
CROCOMPUTER MART, please contact: POPULAR ELECTRONICS,One Park Ave. New York, New York 10016 . (212) 725-3568
ics, with a wide variety of pseudo-operands available. The system can accept numerical values in hex, octal, decimal or binary. A $90-$ page user manual includes 1/O modification instructions. On Tarbell, Digital Group or TDL cassette, $\$ 60$ from computer stores or write to Algorithmics, Box 56, Newton Upper Falls, MA 02164

High-Level Language for 6502. FCL65E, a high-level language similar to DEC's FOCAL, is available for 6502-based microcomputer systems. The 6.5 k program offers 8 -to- 9 -digit accuracy, 8-level priority interrupt handling, string variables and functions. Commands include Ask, Comment, Continue, Do, Erase, For, Go, If, Modify, On, Quit, Return, Set, Type and Write, plus several commands called by symbols. The interpreter permits editing, corrections of current line, debugging and error detection, plus functions for absolute value, integer, integer rounding, random number, I/O device functions, ASCI/decimal and decimal/ASCII conversions, terminal echo suppression, memory examine and deposit, user subroutines, string comparisons, and others. FCL65E is available for TIM- and KIM-based systems. All system-specific I/O calls are located in a zero page block for easy modifica-
tion to other 6502 systems. A complete listing is $\$ 35$, a mini-manual is $\$ 6$ and a 104 -page user's manual is $\$ 12$. Hex or binary paper tape or hex dump is available for $\$ 17$. The program is also available on KIM cassettes in Hypertape (6 X speed) format at $\$ 19$. At regular speed, KIM cassettes are $\$ 23.50$, and $3 X$ speed cassettes are $\$ 20.25$. Write: The 6502 Program Exchange, 2910 Moana Ln., Reno, NV 89509

6800 Text Editing $\&$ Processing Sys. tems. The editing system is line- and con-tent-oriented for easier assembly-language program development and document preparation. Edit directives include Append, Change, Copy, Move, Delete, Insert, Overlay, Print, and Replace-plus pointer-addressing and string searches Other commands display output-format and up to 20 tab-stop settings, and display or suppress line numbers. Renumbering is also available, as are paper-tape or cassette save, write, read and gap (null string) commands. The Text Processing System, a companion program, is used to format edited files for printing or display. Options include paging, titling, page numbering, paragraphing, spacing and right-margin justification. The 6800 Text Editing System is $\$ 23.50$; the Text Processing System (which can also
be used independently) is $\$ 32$, with both in complete manual form with source listing. KCstandard cassettes are $\$ 6.95$ each, for either program. Write: Technical System Consultants, Inc., Box 2574, W Lafayette, IN 47906.

PDP-8 Simulator for 8080. The Simul8tor permits 8080 computers to run PDP- 8 programs, which are widely and inexpensively available. (However, speed limitations may prectude the use of such programs as PDP-8 BASIC and FOCAL, and the availability of DP-8 software on paper tape rather than cassette may be intolerable to some users.) Simul8tor is available on Intel-format paper tape or Tarbell cassette for $\$ 20$. Write: The Amide Corp., Box 600. Sag Harbor. NY 11963

6800 Disassembler. Available in punched paper tape (MIKBUG format) with assembly listing, object code and instructions, this program will print an assembly listing of the object code of any program stored in memory. It operates in less than 1.8 k bytes, beginning at 0800 hex (2k decimal). \$12.95. Write: Software Exchange, 2681 Peterboro, W. Bloomfield, MI 48033.

AMERICA'S FAVORITE

 CB BASE ANTENNA is theWilson

8 Element SHOOTING STAR ${ }^{\text {m }}$

Directional, Dual Polarity, Yagi-Quad CB Base Station Antenna.
Multiplication Power: 28X That's like transmitting with 28 times your normal power.

SPECIFICATIONS
Gain: 14 dB over isotropic Front-to-Back Separation: 38 dB VSWR: 1.1 to 1 , SWR adjustable Vertical-to-Horizontal Separation: 20/25 dB Power Handling Capability: 2 kW Windload Area: $6 \mathrm{sq} . \mathrm{ft}$. Boom Length: 16 ft . Longest Element: 18 ft . Weight: 28 pounds Available at your local dealer, nationwide. Price: $\$ 159.95$

Consumer Products Division

WIREWRAP

SPECIAL ARTICLES

AUDIO

1. How The New FTC Hi-Fi Rules Affect You
2. How To Evaluate Tape Recording Specs
3. A New Standard For FM Tuner Measurements

COMPUTER

7. How To Select A Microcomputer
8. Ins \& Outs Of Computers For Beginners

COSMAC "ELF"' SERIES (Reprint \#'s 4, 5, 6, \& 17)
4. Low Cost Experimenter's Microcomputer
5. Experimenter's Microcomputer/With Hardware Improvements \& More Programming Details
6. Microcomputer/How To Expand Memory, Plus More Programs
17. Build The Pixie Graphic Display

CB RADIO

9. CB Specifications Made Easy
10. How To Choose CB Base Station Antennas

OTHER

14. How To Design Your Own Power Supplies
15. The Care \& Feeding Of NiCd Batteries
16. Build A Gas \& Fume Detector

LEARNING ELECTRONIC THEORY WITH CALCULATORS
SERIES (Reprint ${ }^{\text {'s }} \mathbf{1 1} 112$, \& 13)
11. Basic Equations and OHM's Law
12. Reactance, Time Constants And AC Calculations
13. RC Coupling, Basic Amplifier Calculations, and RLC Relationship

TEST REPORTS

AUDIO

18. ADC Accutrac 4000 Record Player
19. *Empire Model 698 Manual Turntable
20. Kenwood Model 600 Integrated Stereo Amplifier 21. *MXR Stereo Graphic Equalizer
22.*Nakamichi Model 500 Stereo Cassette Deck
21. Onkyo Model TX-4500 AM/Stereo FM Receiver
24.*Ortofon MC20 Moving Coil Phono Cartridge
22. *Pickering Model XV-15/625E Stereo Phono Cartridge
23. Pioneer Model CT-F8282 Stereo Cassette Deck
24. Radio Shack "Realistic" Model STA-2000 AM/Stereo FM Receiver
25. Rotel RX-7707 AM/Stereo FM Receiver
26. Sansui Model TU-9900 AM/Stereo FM Tuner
30.* Shure Model M24H Stereo Phono Cartridge
27. *Sony Model TA-4650 V-FET Stereo Power Amplifier
32.*Spectro Acoustics Model 210 Stereo Graphic Equalizer
33.*Stanton Model 681EEE Stereo Phono Cartridge
28. Teac Model PC-10 Portable Stereo Cassette Deck
29. *Technics Model SB-6000A Linear Phase Speaker System
30. *Thorens Model TD-126C Record Player

COMMUNICATIONS

37. * Cobra Model 29XLR 40-Ch. AM CB Mobile Transceiver
38.* Drake Model SSR-1 AM/SSB Communications Receiver
38. *Kenwood Model TS-820 Amateur Radio Transceiver
39. * Kris Model XL-50 40-Ch. AM CB Mobile Transceiver
40. *President Model 'Washington' 40-Ch.

AM/SSB CB Base Station
42. Yaesu Model FRG-7 AM/SSB Communications Receiver

TEST INSTRUMENTS

43.*B\&K-Precision Model 280 Digital Multimeter 44. *B\&K-Precision Model 1471B Dual-Trace Scope 45. *Ballantine Model 1010A Dual-Trace Scope 46.*Fluke Model 8020A Digital Multimeter
47.*Hewlett-Packard Model 280 Digital Multimeter
48. *Sencore Model DVM-32 Digital Multimeter
49. *Sencore Model TF-70 Portable Transistor Tester 50.* Triplet Model 60 Analog Multimeter
*REPRINTS MARKED WITH ASTERISK 75 $;$ ALL OTHERS \$1.00. MINIMUM ORDER \$2.00.

Popular Electronics Reprints, P.O. Box 278, Pratt Station, Brooklyn, New York 11205

Please send the reprinis listed below
$75 \notin$ Each

Reprint \#	Quan.	Reprint \#	Quan.

NUMBER OF REPRINTS ORDERED:
@ 75¢
@ $\$ 1.00$

Reprint \#	Quan.	Reprint \#	Quan.

John Simonton's time -proven design provides two envelope generators VCA, VCO \& VCF in a low cost, easy to use package.
Use alone with it's built-in ribbon controller or modify to use with guitar, electronic plano, polytonic keyboards, etc,
The perfect introduction to electronic music and best of all, the Gnome is only $\$ 48.95$ in easy to assemble kit form. Is it any wonder why we' ve sold thousands?

TUNER SUB \$19.95
Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellent performing yet very low cost sub for the technician who has to get all he can for his money a Poor Boy's Sub" for only $\$ 19.95$.
This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95$

We searched for a tuner that needed no cabinet and no controls ... one that the tech could scounge the knobs from most any old TV
It took over two years but we finally found it. The gain is excellent ... Battery drain is very low (only I8 mils). It's self blasing so there is no R.F. gain control to fiddle with ... It works equally well on tube or transistor sets ...b/w or color and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's If cable to the "Poor Boy" and view the picture... That's it no set up controls to confuse you
We compared the "Poor Boy" with other subs costing over twice the price and found it to work just as well on allthe comparison tests we made ... and often a lot easier to use ...Even though instructions aren't needed . . you get those too.
The "Poor Boy" is small enough to easily hold in one hand . . . no wires or controls dangling around. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$, and we even pay the shipping (how about that?) or we will ship COD. ($\$ 1.85 \mathrm{C} .0 . \mathrm{D}$. FEE)
Try it for 10 days ... If not completery satisfied . . . return for full refund.
ALL ORDERS SHIPPED THE SAME DAY RECEIVED!!
CALL US TOLL FREE 1-800-433-7124
TEXAS TUNER SERVICE
4210 N.E. 28TH STREET,
FORT WORTH, TEXAS 76117

CHARGE INDICATOR

A LED indicator can be added to the charging stand for your rechargeable soldering iron to indicate whether or not the charging current is actually flowing. The circuit shown here will cause a negligible change in the normal charging current if your charger is a simple halfwave rectifier (as most are). This is especially important if you have a "quick charge" iron.

The LED will glow only when the iron is in the stand and making contact with the charger's output pins. Diodes D1 through D3 must be able to handle the maximum charging current. My "quick charge" iron draws about 440 mA maximum, so 1 N4002's are suitable. A standard TIL-32 or similar LED can be used. Resistor R1 is selected to limit LED current to a safe value. My charger has a 3-volt secondary, so I used a 330ohm, $1 / 2$-watt resistor.

When the iron is in its stand, diodes D1 and D3 allow full current to flow through the iron's batteries for one half of the ac cycle. During the other half cycle. only the low LED current flows through LED1, R1, the iron and $D 2$.

Most chargers have enough room inside to accommodate the diodes and resistor. The LED should be mounted in a hole drilled in the charger housing so as to be plainly visible when the unit is operating. Also, take care to observe polarities when connecting the new components. Diode D4 (same type as D1 through D3) is needed only if the transformer's output voltage exceeds the reverse voltage rating of the LED.-K.L. Kingston, Lafayette, \mathbb{N}.

REMOVING ROSIN

While desoldering some DIP IC's, I discovered that removing the rosin from between the pins was very tedious. I tried cotton swabs, but the cotton came off the stick and left me with a bigger mess than I had started with. Happily, I discovered a solution. I took the discarded swab sticks and cut them at a 45° angle at one end. The point can be easily maneuvered between DIP pins, and the flat edge can be used for cleaning larger areas. As the end gets mangled, simply cut it off and start again. Toluene, available in most hardware stores, makes a good rosin solvent.-Rebecca S. Peutz, Olympia, WA.

RECONDITIONING NUT DRIVERS

The hex socket of an inexpensive, hand held nut driver can become worn with age, allowing slippage. But most are made with deep enough sockets to allow resurfacing. Grind down the socket past the rounded edges, but be careful not to remove so much metal that the socket becomes 100 shallow to accommodate the average hex nut.-Joseph Smolski

PANEL MOUNTING LED'S

Mounting LED's on a panel can be a problem. Although they can always be wedged into grommets, this tends to block off much of the light output. But there's another approach you can take when using the larger "dome" LED's with a shoulder molded around their bases (MV-5000 series and similar). Drop the leads through a pair of adjacent holes in a scrap of $0.1^{\prime \prime}(2.54-\mathrm{mm})$ perforated board. (Enlarge one hole slightly if necessary.) Drill out a hole on either side for mounting hardware. Then drill a hole in the panel to pass the dome but not the shoulder, and two holes for mounting hardware. Insert the LED and perf board from the rear and secure with No. 2 machine hardware. A fancier mount can be made from a discarded nylon banana jack. Remove the innards and cut off most of the bushing, leaving just enough thread to hold the nut firmly. Cement the LED in the top of the jack with leads passing through the body. If the leads are flexible, wedge a bit of cork or rubber into the bottom of the assembly to keep the leads from shorting. Don't forget to identify polarity first! Then mount the assembly onto the panel.Parke S. Barnard

Electronics Library

IC OP-AMP COOKBOOK

by Walter G. Jung
Basic op amp theory is covered in this work, as well as practical circuit applications. Over 250 circuits are presented. The book is organized into three parts: an introduction to the IC op amp with discussion of general considerations; practical circuit applications; and two appendices of manufacturers' reference material. Circuits such as audio preamps, power amps, active filters, log amplifiers, function generators, and current-differencing amplifiers for general- (709, 741, and 101) and special-purpose IC's are included.
Published by Howard W. Sams \& Co., 4300 W. 62nd St., Indianapolis, IN 46206. 592 pages. \$12.95, soft cover.

talk-back TV

by Richard Keith

In the not-too-distant future, viewers will be able to "talk back" to their TV receivers and get results. In fact, there are already a number of locations around the U.S. where cable TV is offering a host of talk-back services that range from electronic mail to meter reading. In anticipating the time when talk-back TV will be an everyday reality, this book discusses the history of the medium and details the possibilities it has to offer to the user. It reveals how talk-back TV is already providing a variety of services to the modern family and includes detailed descriptions of a number of currently operating systems. It also discusses the potential the new medium will have for intrusion on privacy.
Published by Tab Books, Blue Ridge Summit, PA 17214. 238 pages. \$9.95 hard cover: $\$ 5.95$ soft cover.

HANDBOOK OF OSCILLOSCOPE WAVEFORM ANALYSIS AND APPLICATIONS

by Miles Ritter-Sanders, Jr.
This new book introduces the reader to waveform development and the interpretation of waveform distortion. Linear and nonlinear circuit action are covered first, followed by solidstate circuit analysis and troubleshooting techniques. Later chapters discuss audio amplifier malfunctions and waveform analysis, stereo multiplex circuit tests, industrial electronics circuit action and waveforms, and basic magnetic-amplifier waveforms. Distinc-
tions between ideal and real waveforms are illustrated, and the basic waveform-number relationships are explained without the use of higher mathematics.
Published by Reston Publishing Co., Inc., P.O. Box 547. Reston, VA 22090. Hard cover. 200 pages. $\$ 15.95$

MICROPROCESSORS: FUNDAMENTALS \& APPLICATIONS

Edited by Wen C. Lin

The purpose of this book is to aid readers who are weak in computer fundamentals to gain an understanding of how microprocessors work and how they are being applied in system design and instrumentation. The 42 reprinted papers that make up the contents of this book are arranged in four parts by subject category. The first part contains introductory papers on general microprocessor information. The second part covers architecture, software, interfacing, system development aids. and testing. Part three describes some of the myriad applications of microprocessors. while part four is concerned with microprogramming techniques as a bridge between hardware and software engineering. A glossary of computer terms is included. Published by John Wiley \& Sons, Inc.. 605 Third Ave.. New York, NY 10016. 335 pages. $\$ 17.95$ hard cover: $\$ 9.95$ soft cover.

SOLID STATE DESIGN FOR THE RADIO AMATEUR

by Doug DeMaw and Wes Hayward
Solid-state design theory and applications in r-f communications circuits are presented. Transistor and diode modeling, mixer and detector characteristics, r-f and i-f amplifiers, audio circuits, broadband amplifiers, power supplies and $r-f$ matching circuits are illustrated and analyzed. There is an in-depth treatment of filter design and use, and detailed information on agc loops, receiver dynamic range, and test equipment. The book contains many previously unpublished practical circuits for power supplies, test equipment, r-f filters, transmitters, receivers and tranceivers. One chapter deals at length with portable operation
Published by the American Radio Relay League, 225 Main Street, Newington. CT 06111.256 pages ($10.3 / 4^{\prime \prime} \times 814^{\prime \prime}$). $\$ 7.00$, soft cover. in the USA and Possessions, $\$ 8.00$ elsewhere.

ELECTRONMUSIC: A COMPREHENSIVE HANDBOOK

by Robert A. DeVoe

This is a how-to book that introduces the reader to the world of electronic music. No prior knowledge of electronic music is as(Continued on page 136) QUALITY STEREO EQUIPMENT AT LOWEST PRICES. YOUR REQUEST FOR QUOTATION RETURNED SAME DAY, FACTORY SEALED CARTONSGUARANTEED AND INSURED.

\author{

SAVE ON NAME BRANDS LIKE:
 | PIONEER | SANSUY |
| :--- | :--- |
| KENWOOD | DYNACO |
| SHURE | SONY |
| MARANTZ | KOSS |

}

AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312.664-0020

CIRCLE NO 32 ON FREE INFORMATION CARD

Our new Bearcat ${ }^{\circledR} 250$

has all the fantastic space age features of our super popular Bearcat ${ }^{\text {* }} 210$, but now we've added

- 50 synthesized crystalless channels
- User selectable scanning speeds
- Priority channel
- Digital time clock-accurate to seconds
- Automatic or user controlled squelch
- Search Direction-Search "up" or "down" for quicker return to desired frequencies - Transmission activity counter-tells you how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a channel without stepping through interim channels - Non volatile memory-No batteries required to retain memory, even when scanner is unplugged
- Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
To reserve your space-age Bearcat ${ }^{*} 250$ and receive your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside the U.S. and Michigan dial 313-994-4441. To order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{*} 250$ write: COMMUNICATIONS ELECTRONICS, Box 1002-Dept. 1. Ann Arbor, Michigan 48106 U.S.A. $L-\frac{{ }^{2}}{} 1978$ Communications Electronics

舼

$\$ 2.50$
THE wulil's lahbist

 IA

Active Electronic Sales Corp. P.O. BOX 1035
framineham, massachusetis 01701
TELEPHONE OROERS 161718790077
Over The Counter Sales
12 Marcer Rd.
NATISK, MASS. 01760
(Bahint Zayres on Route 9)

Our New and Expanded Comprehensive 1978 Catalogue (144 pages) is finally available.

Please write for your complimentary copy.

Brand New 1978 IC Master

Complete integrated circuit data selector. New 1978 edition (2200 pages) is twice as big as last year. Master reference guide to the latest I.C.'s including microprocessors and consumer circuits.
Free quarterly updates.
\$24.95

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Over - the - counter sales,
12 Mercer Rd., Natick, Mass 01760
Benind Zayres on Rte. 9
Telephone Orders \& Enquires (617) 879 -0077 IN CANADA 2 LOCATIONS
5851 Ferrier St. Montreal, Quebec Tel. (514) 735 -8425

44 Fasken Dr. Unit 25
Rexdale, Ontario
Tel. (416) $675 \cdot 3311$

MINIMUM ORDER $\$ 10.00$ - ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING - Canatian customers add 30% for exchange and handling. All rederal and provincial taxes extra.
Foreign customers please remit payment on an international bank draft or international postal money order in American dollars.

SHOP YOUR NEARBY RADIO SHACK FOR QUALITY PARIS AI LOW PRICES!

Top qually devices, fully functional, carefully inspected. Guaranteed manufacturer's quality control procedures. These are not rejects, not to meet all specifications, both electrically and mechanically. All are fallouts, not seconds. In fact, there are none better on the market! made by well known American manufacturers, and all have to pass Count on Radio Shack for the finest quality electronic parts.

TTL Digital ICs

First Quality

Made by

National
Semiconductor and
Motorola

Type	Cat. No	ONLY
7400	276-1801	$35 ¢$
7402	276-1811	39¢
7406	276-1821	494
7410	276-1807	396
7413	276-1815	798
7420	276.1809	398
7427	276-1823	494
7432	276-1824	496
7441 744	$276-1804$ $276 \cdot 1805$	${ }_{998}^{998}$
7448	276-1816	99%
7451	276-1825	396
7473	276-1803	495
7474	276-1818	496
7475	276-1806	794
7476	276-1813	596
7485 7486	276-1826	1.19 496
${ }_{7490}$	276-1808	796
7492	276-1819	695
74123	276.1817	996
74145	276-1828	1.19
74150	276-1829	1.39
74154	276-1834	1.29
74192	276.1831	1.19
74193	276.1820	1.19
74194 74196	- 276 27-1832	1.19 1.29

CMOS ICs

100% guaranteed

electronically
and
mechanically

Type	Cat. No	ONLY
${ }^{74} \mathrm{C} 00$	276-2301	49\%
$74 \mathrm{C02}$	276-2302	496
$74 \mathrm{C04}$	276.2303	495
$74 \mathrm{C08}$	276-2305	496
74 C 74	276 -2310	896
${ }_{744} \mathbf{C 7 6}$	276.2312	894
$74 \mathrm{C90}$	276-2315	1.49
74 C 192	276.2321	1.69
74C193	276 -2322	1.69
4001	276-2401	496
4011	276 -2411	496
4013	276-2:13	898
4017	276-2417	1.49
4020	276-2420	1.49
4027	276-2427	${ }^{894}$
4049	276-2449	694
4050	276-2450	696
4514	$\begin{array}{r}276-2447 \\ \hline 76-2490\end{array}$	1.69 1.49

Linear ICs

By National Semiconductor and Motorola - first quality

Type	Cat No	ONLY
301 CN	276-017	496
324 N 339 N	276.1711 276.1712	1.49 1.49
386 CN	276-1731	999
${ }_{555 \mathrm{CN}}$	276-1723	798
556 CN	276-1728	1.39
566 CN	276-1724	1.69
567 CN	276-1721	1.99
${ }^{723 C N}$	276-1740	699
741 CN	276-007	496
${ }^{741 \mathrm{H}}$	276-010	496
3900 N 3909 N	- 276.1705	${ }_{996}^{996}$
$391+\mathrm{N}$	276-1706	1.99
4558 CN	276-038	796
75491	276-1701	996
75492	276-1702	994
7805	276-1770	1.29
7812	276-1771	1.29

Resistor and Capacitor Packs

Resistor and capacitor kits in handy plastic storage boxes you can use over and over again. Stock up! $1 / 2$ Watt, 10% Tolerance Resistors. 271-601
$1 / 4$ Watt, 5% Tolerance Resistors. 271-602. $1 / 4$ Watt, 5% Tolerance Resistors. 271-602,
50 WVDC Ceramic Dise Capacitors. 272-601 50WVDC Ceramic Disc Capacitors. $272-601$
35WVDC Radial Lead Capacitors. 272 -602 35WVDC Axial Lead Capacitors. 272-603

Pkg. of 350/9. 95 Pkg. of 350/9.95 Pkg. of 175/9.95 Pkg. of $35 / 9.95$

PC Board Accessories

8-piece photographic PC board processing kit - fastest: easiest way to produce perfect printed circuit projects.
276-1560
Etchant Solution. 276-1535
PC Board Assortment. 276-1573

Tantalum Capacitors
Maximum capacity in smallest size. Low ESR, highly stable electrical characteris tics and low leakage. Radial leads.

Cat. No	$\mu \mathrm{F}$	Each	Cat. No.	$\mu \mathrm{F}$	Each
272-1401	0.1	394	272-1407	2.2	45c
272-1402	0.22	394	272-1408	3.3	456
272-1403	0.33	394	272-1409	4.7	496
272-1404	0.47	394	272-1410	6.8	496
272-1405	0.68	39¢	272-1411	100	494
272-1406	1.0	394			

Build an LED Digital Clock

12-HR LED Clock Module. Just add a transformer and switches for a complete clock with $0.5^{\prime \prime}$ LED display, 277-1001
Transiormer for above. 120vAC 60 Hz 273-1520
SPST Miniature Pushbution Swith 275-1547
SPST Miniature Pushbutton Switch. 275-154
Display Case. $1^{13 / 16 \times 3^{7 / 6} \times 4^{7 / 16^{\prime \prime}} .270-285}$
3.95

Computer Chips

The CPU and Memory IC's you need for building your own personal computer

2102 Static RAM. 1024-word by one bit read/write memory. Under 600 nS access time 8080A Microprocessor. An 8-bit Na
tional Semiconductor chip in a 40 -pin DIP. 100% Prime. 276-2510

276-2501

Power Supply Parts

6-Amp Fu
276-1180
50V 3-Amp Power Rectiler 1.99 276-1141 $3300 \mu \mathrm{~F}$ at 35V. 272-1021
$5000 \mu \mathrm{~F}$ at 35 V 272-1022
. Pkg. 2/694

Silicon Solar Cells

Produce Power from Light!
$2 \mathrm{~cm} \times 4 \mathrm{~cm}$. 0.5 V at 100 mA . $276-120$ $2 \mathrm{~cm} \times 2 \mathrm{~cm} .0 .5 \mathrm{~V}$ at 60 mA . 276-128

Clock Chips

50252. 12-hour clock, 24-hour alarm chip. With full specifications. 276-1751
10.95

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

DISCOUNTS WHEN COMPARI

 I.C.S RESISTORS • TRANSISTORS © CAPACITORS © DIODESCLOCK MODULES OPTOELECTRONICS BREAD BOADING \& TES
DATA BOOKS HEAT SINKS WIRE TOOLS AND MORE WESING DEVICES DRAFTING SUPPLIES
 MICROPROCESSORS

92		
92		
POWER TRANSISTORS IS P P PAA SEM.		
Memory		
voltage	. 901	
LIN APPPIC. BK. VOL 1.4322 P . NAT	90188	
LIN APPLIC BK VOL 2.246 F		
SCIMP MICRO APP. HANDBK. NAT SEMI		
special function data be, nat semj	90238	
eics analog manual, 3 3/P	90318	35.95

MORE THAN 20,000 DIFFERENT COMPONENTS

7400	.18	7442	1.08	74107	.49
7401	.21	7448	1.15	74121	.55
7402	.21	7450	.26	74122	.49
7404	.21	7451	.27	74123	1.05
7405	.24	7453	.27	74125	.60
7407	.45	7454	.41	74126	.81
7408	.25	7460	.22	74132	3.00
7409	.25	7472	.39	74141	1.15
7410	.20	7473	.45	74150	1.10
7411	.30	7474	.45	74151	1.25
7413	.85	7475	.80	74153	1.35
7416	.43	7482	1.75	74154	1.54
7417	.43	7483	1.15	74157	1.30
7420	.21	7485	1.12	74161	1.45
7422	1.50	7486	.45	74164	1.65
7425	.43	7489	2.49	74165	1.65
7427	.37	7490	.69	74166	1.70
7428	.35	7491	1.20	74174	1.95
7430	.26	7492	.82	74175	1.95
7432	.31	7493	.82	74180	1.05
7437	.47	7494	.91	74181	3.55
7438	.40	7495	.91	74199	1.50
7440	.21	7496	.91	74195	1.00
7441	.10	74100	1.25	74197	1.00

74L SERIES TTL $\begin{array}{lrrrrr}74 \mathrm{~L} 00 & .33 & 74 \mathrm{LS} 04 & .45 & 74 \mathrm{LS} 113 & .98 \\ 74 \mathrm{~L} 10 & .33 & 74 \mathrm{LS} 10 & .39 & 74 \mathrm{LS} 138 & 1.89 \\ 74 \mathrm{~L} 30 & .33 & 74 \mathrm{LS} 20 & .39 & 74 \mathrm{LS} 174 & 2.50 \\ 74 \mathrm{L42} & 1.50 & 74 \mathrm{LS} 51.39 & 74 \mathrm{SS} 386 & 5.50 \\ 74 \mathrm{~L} 86 & .69 & 74 \mathrm{LS} 54.65 & 74 S 153 & 2.25 \\ 74 \mathrm{~S} 00 & 39 & 74 \mathrm{~S} 112.65 & 74 S 387 & 1.95\end{array}$

$\begin{array}{lllll}74 \mathrm{H} 00 & .33 & 74 \mathrm{H11} & .33 & 74 \mathrm{H} 53\end{array}$

$\begin{array}{lllll}74 \mathrm{HOO} & .33 & 74 \mathrm{H11} & .33 & 74 \mathrm{H} 53\end{array}$
$\begin{array}{lllll}74 \mathrm{HO1} & .33 & 74 \mathrm{H} 20 & .33 & 74 \mathrm{H} 55 \\ 74 \mathrm{H} 04 & \mathbf{3 3} & 74 \mathrm{H} 21 & \mathbf{3 3} & 74 \mathrm{H} 73\end{array}$
$\begin{array}{llllll}74 H 05 & .35 & 74 H 30 & .33 & 74 H 73 \\ 74474\end{array}$
74 H 10 .

LINEAR

 49.39 .49 LM 301 H
.39 LM 307 H .35
3

1.25 | LM 247 |
| :--- |
| LM 78 H | M1458N N5556V NE5558

NE555V NE5556 UA702
UA703CH
UA709CH $\begin{aligned} 2.25 & \text { UA703CH } \\ .60 & \text { UA709CH } \\ .75 & \text { UA74CH }\end{aligned}$ OVE
BBD BUCKET BRIGADE DEVICE MM3001 19.50 MN3002 11.70 MM3003 9.45
HALLIC:DN834 1.25 DN837 1.50 DN835 1.35 DN838(NEW) ZENER DIODES
$1 / 2$ Watt, $\pm 10 \%$ $\$.30$ each to 33 V $1 \mathrm{Watt}, \pm 10 \%$ $\$.40$ each to 33 V
Voltages to 200 V , and $\pm 5 \%$ Available
1 Megohm Potentiometer - Made by Clarostat. 7_{8} " diam., split, knurled shaft $1 / 2$ " long. NT544 $\$.39$ Three for $\$ 1.00$

Canada $\$ 1.50$
N.J. Residents add 5\% sales tox

ELECTROLYTIC CAPACITORS $\begin{array}{lllll}\text { 2.2MF50 } & \text { Axial Leads } & .15 & \text { 30MF25 } & \text { Axial Leads } \\ \text { 3.3MF10 } & \text { Axial Leads } & 15 & \text { 47MF25 } & \text { Radial Leads } \\ \text { 3.3MF10 } & \text { No Polarity } & .15 & \text { 47MF50 } & \text { Radial Leads } \\ \text { 10MF25 } & \text { Axial Leads } & .15 & \text { 100MF16 } & \text { Radial Leads } \\ \text { 10MF50 } & \text { Axial Leads } & .16 & \text { 100MF25 } & \text { Radial Leads } \\ \text { 10MF150 } & \text { Axial Leads } & .20 & 500 \mathrm{MF50} & \text { Axiat Leads } \\ \text { 25MF35 } & \text { Axial Leads } & .18 & \text { 1000MF35 } & \text { Axial Leads }\end{array}$ MICROPROCESSOR $_{9750}$
C1702A
2101
61701
2102

NEW FROM NEWTONE

Regulated Power Supply Components Kit - Contains the components needed to build a fixed-voltage regulated supply including: 117/17V-1 ampere Transformer, Bridge Rectifier, 2000 UF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify $5,6,8,12$ or 15 volts.

NT525 \$4.99
Pioneer 6" Speaker - $71 / 2$-watt, 3.2 -ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 $\$ 239$ Three for $\$ 6.00$ PC Boards - MIL grade, $1 / 11^{\prime \prime}$ glass-epoxy boards with 2 ounce copper on one side.
NT521 6"x3" \$.50, NT522 6"x6" \$.90' NT523 6"x8" \$1.20 Dry Transier Patterns for PC Boards - Includes 0.1" spaced IC pads, donuts, angles, and 3 -and 4 -connector pads. Over 225 patterns on a $2^{\prime \prime} \times 71^{\prime \prime} 4^{\prime \prime}$ sheet. NT520 $\$ 1.49$ 3PDT - 24 Voit DC Relay - Potter \& Bromfield KUP14D15. Each contact can handle 10 amperes at voltages to 240 Vac . Coil resistance is 450 ohms. A super buy! Limited quantities. NT508 \$.99
5" Taunt-Band Meter-One milliampere full scale, $31 / 2^{\prime \prime}$ ", scale length. Coil resistance 465 ohms. Made by Modutec for Bose. Meter scale in VUs $(-20$ to +30$)$. Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all $5 \frac{1}{g^{\prime \prime}} \times 4^{\prime \prime}$. Meter face mounts in a $51 /{ }_{8}{ }^{\prime \prime} \times 2^{3} /{ }_{8}^{\prime \prime}$ cutout: A beautiful meter. NT539 $\$ 4.89$ Aluminum Knob - Solid machined aluminum knob with fluted sides made for Bose. Black front-face insert, black pointer line. Fits flat $1 / 4^{\prime \prime}$ shaft, does not require set screws. .8 high, 7 diam. Easily worth $\$ 1.50$ NT540 $\$.822$ for $\$ 1.50$

RECTIFIERS UNIJUNCTIONS

	10	100
	For	For
1N4001	.60	5.00
1N4002	.70	6.00
1N4003	.80	7.00
1N4004	.90	8.00
1N4005	1.00	9.00
1N4006	1.10	10.00
1N4007	1.20	11.00

HARDWARE - SOCKETS
Nylon Screws, Nuts and Rivets - 50 piece assortment $\$ 1$ Nylon Screws, Nuts and R
MK 20 TO-3 Mounting Kit NT. 505 Mica and bushin
TO-3, TO 66 or TO IC Socket IC Socket
Wire Wrap Wire Wrap

BOSE SPEAKERS

Bose has discontinued their original 301 System. New-Tone purchased the speakers remaining in inventory when the 301 was discontinued, and is offering them at prices that seem impossible. The speakers have been tested with the Bose "Tone Standard" as a reference and have been subjected to the Bose power-handling test which includes both fixed and sweep-frequency testing. 8 -Inch Woofer (Bose Part No. 102606) has a freeair resonant frequency of $25-35 \mathrm{~Hz}$., and has a 1.5 ", 8.5 -ounce magnet. The upper tested-frequency is 4000 Hz .
3-Inch Tweeter (Bose Part No. 107376) has a free-air resonant frequency of $1200-1500 \mathrm{~Hz}$., and has an upper tested-frequency of 16.5 kHz . Supplies are limited. We urge you to take advantage of these prices and stock up for your future needs.
Sorry, we have no information about the Bose enclosures or the crossover networks, nor do we have more specs. Bose says these data are proprietary information.

```
8' Woofer NT541 \$10.95
3" Tweeter NT542 \$ 3.95
```

POPULAR JEDEC TYPES

1 N
1 N

1N60
1N270
1N270
iN914
iN4148
iS1555
2N173
2N338A
${ }_{2}^{2 N 338 A}$
2N404
2N443
2N508A
2N706
$2 N 706$
$2 N 718$
2N718
2N718
2N918
2N918
2N930
2N956
N1305

.90

N3394

3
3

JADE VIDEO INTERFACE KIT FEATURES
S-100 Bus Compatible
$\$ 89.95$
32 or 64 Characters per line 16 lines
Graphics (128×48 matrix)
Parallel \& Compositive video
On board low-power memory
Powerful software included for
cursor, home, EOL, Scroll Graphics/
Character, etc.
Upper case lower case \& Greek
Black-on-white \& white-on-black

MOTHER BOARD

13 SLOT MOTHER BOARD w/front panel slot

* S-100 DESIGN

FULL GROUND PLANE on one side
RC NETWORK TERMINATION ON EVERY LINE EXCEPT PWR \& GRD kluge area
STRONG $1 / 8^{\prime \prime}$ THICK DOUBLE SIDED BOARD
BARE BOARD \$35.00
KIT \$85.00
PERSCI DISK DRIVE FOR S-100 Info 2000 S- 100 DISK SYSTEM IMP COMPLETE Info 2000 S-100 DISK SYSTEM (includes dual drive, power supply, case, intelligent controller, adapter, cables, and disk monitor on EPROM)
$\$ 2,650.00$
COMPLETE TDL SOFTWARE
PKG. FOR DISK
$\$ 195.00$

REAL TIME CLOCK FOR S-100 BUS BARE BOARD $\$ 30.00$ KIT $\$ 124.95$

SOROC IO 120 TERMIIMAL

a capable low
COST. APPROACH TO remote video display terminals

JADE PARALLEL/SERIAL INTERFACE KIT

S. 100

2 Serial
Sintial Interfaces with RS232
interfaces or 1 Kansas City cassette
interface. interface
Serial int
Serial interfaces are crystal controlled.
Selectable baud rates Selectable baud rates.
Cassente works
Cassette works up to 1200 baud.
1

EDGE CONNECTORS

S-100 Altair Spacing $\$ 4.45$
S-100 Imsai Spacing $\$ 4.45$
THE PROM SETTER
write and read EPROM
1702A-2708-2716
5204-6834

- Plurs Direcily into your ALTAIR/IMSAI Computer - Includes Main Module Board and Exiernal EPROM Striket Inil
- The EPROM Sorket Unit is connected to the Computer through a 25 Pin Connector
- Prngramming is accomplished by the Computer - lusi Read in the Program to be Wrilten on the F.PROM inin your Processor and let the Computer do the rest
- Use Sucket Init to Read EPROM's Contents into your Computer
- Snfinare included
- No Finarnat Power Supplies Your Computer does
- Dusbifes as in Eighi Bit Parallel I/O
- Manual included Jelivery Less thont 90 davs

THE PROM SETTER KIT ASSEMBLED
$\$ 210.00 \quad \$ 375.00$
1 parallel port.
$\$ 97500$ Assembled
Price Includes

- Block Mode
- Lower Case
- 24 Line Option - and shipping charge is on us.

250ns. 450ns.
 KIT BARE BOARD $\$ 25.00$ ADAPT YOUR MOTOROLA 6800 SYSTEM TO OUR S. 100 BK RAM BOARD. KIT PRICE $\$ 12.95$

BK STATIC RAM BOARD

assemaleo mitsted
250ns. 450ns.

* wil moor with no front panet
* fult oocumention
* fully buffered
* SIOO DESIGN
* adeouarely bypassed
* LOW POWER SChOTTKY SUPPORT ICS

S-100 сомантае JADE $\mathbf{Z 8 0}$
-with PROVISIONS for
ONBOARD 2708 and POWER ON JUMP
 bare board $\$ 35.00$ JADE 8080A KIT $\$ 100.00$ кіт bare board $\$ 35.00$

TU-

VIDEO INTERFACE
You will want to know about the TV-1 Video to Televisior Interface Kit.
No need to buy a separate Video Monitor if you already own a TV set. Just connect the TV- 1 between your system video output and the TV set antenna terminals - that's all there is to it - to convert your TV set to a Video
Monitor, and at a much lower cost! PRICE \$8.95

Computer Products LAWNDALEST CALIFORNIA 90260 12131679.3313

RETAIL STORE HOURS M-F 9-7 SAT. 9-5
Discounts available at OEM quantities. Add $\$ 1.25$
for shipping. California residents add 6% sales tox.

EDMUND SCIENTIFIC

ENVIRONMENTS

- Strange, beautiful records that can help you think
Scientifically designed to help you study. read, meditate, romance or eliminate unwanted noise, these long-playing $331 / 3 \mathrm{rpm}$ reacords provide a unique tranquil experience. Each provides one hour of naturally occuring sounds that range from soothing surf to thunderstorm
A) Seashore/Aviary-surf on one side, melodic birds on other. No. 72,156 AV
B) Thunderstorm/Rain in Forest-beautifully realistic rainfall. No. 72,157AV

> FLYWHEEL GENERATOR FLASHLIGHT

Never needs batteries, uses a flywheel generator to keep light bright. Each squeeze of handle gives 2 sec . flash of light. Continuous squeezing keeps light shining. Only $6-0 z$

ROOKE'S RADIOMETER powered by sunlight

Fascinating solar rotor spins at 3,000 RPM. First surface silvering on $1 / 2$ dome makes hemispherical mirror $5 \times 3^{\prime}$

No. 60,529AV
$\$ 5.75$

Free Catalog

KNOW YOUR ALPHA FROM THETA!

For greater relaxation \& concentration, monitor your Alpha/Theta brainwaves with audio or visual signals on Biosone II. Features of $\$ 200$ up units. 3 feedback modes! 4-lb.

No. 1668AV
$91 / 2 \times 5 \frac{5}{8} \times 41 / 4^{\prime \prime}$
$\$ 149.95$

> Send for your FREE 164 page Edmund Scientific Catalog with over 4000 bargains

Antenna assist has pulled in station 1,000 miles off! No wires, clips, grounding. Solid state. No batteries, tubes, plugs
No 72.0 OS av $\quad \$ 19.95$ ULTRA SELECT-A-TENNA $\mathbf{\$ 2 4 . 9 5} \mathrm{Ppd}$

SAVE 40\% -
DELUXE AM/FM WALL RADIO
Great surplus buy saves you 40\% on brand new AM/FM Deluxe Wall Radio w/ handsome silver/ black control panel. Mount anywhere den, kit chen, bedroom, office, workshop. Self-cont Philco-Ford radio chassis ($141 / 4 \times 313 / 16 \times 3^{1 / 2} 2^{\prime \prime}$) w/11 transistors, vol. control. AM/FM hi sensitivity tuner, AFC, $2^{3 / 4}$ dia. speaker, $71 / 2$ 110 V AC cord. Orig. cost $\$ 30$ ea in 3000 quant. for nat'I motel chain. Buy several now. No. 72,275AV (READY
$\$ 17.50_{\text {pod }}$

ORDEA FREE CATALOG HEAE

No. 71,809AV (FOR BEGINNERS)
$\$ 59.95$ ppd

EDMUND SCIENTIFIC CO
EDMUND SCIENTIFIC CO.
Dept. AV08, Edscorp BIdg Barrington, New Jersey 08007
Send GIANT 164 Page Catalog packed with unusual bargains.

Name

City

Address

State
(Please Print)

```
S_ [Please Print)
```

ddress
$\square \quad 2 i p$

Dept. AV07. Edscorp Bldg.
Barrington, N.J. 08007

[^3]Name
Address
City

State

POLY PAKS IS THE NEW WORLD'S ‘CENT-ER' FOR DOUBLING YOUR MONEY
 THIS NEW LIST OF "ONE-CENTERS" HELPS FIGHT INFLATION!

POLY PAKS BICGEST 1 C MVEANAY SAME!

TTL'S, BUY ONE AT SALE PRICE, GET 2ND FOR

Honest Abe

(Penny Sale!

POP-AMPS AT "CENT-CIBLE" PRICES

 Buy ONE At Sale Price, Get 2ND For Only 1 C More - Order By Type No.| | | | | | | | Type | h | 2 for |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type
 LM300 | Each | 2 for | L | $\begin{aligned} & \text { Type } \\ & \text { LM370N-H } \end{aligned}$ | Each | $2 \text { for }$ | Thm741V | 30 | |
| LM301H. | 45 | 46 | | Lm374 | 1.79 | so | - LM1304 | 0 | 79 99 |
| LM308v-r | 79 | 80 | - | Lm376V | 29 | . 30 | LMi312 | 2.00 | 1.99 |
| Lмз309к | 1.29 | 1.30 | $1]$ | LM377N | 2.25 | 2.26 | Lmi414V | 80 | |
| LM311 | 79 | 80 | \square | LM38in | 1.69 | 1.70 | -LM1458V | 70 | 69 |
| M3 | 1.29 | 1.30 | \square | IMs31H | 1.49 | 1.50 | LMiboon | 1.00 | |
| LM320H-5, 12. 15 | 1.29 | 1.30 | | LM532H.N | . 29 | 30 | LM3028H | 66 | 5 |
| LM320k | 1.29 | 1.30 | \square | LM5 | 5 | 76 | LM390 | O | 49 |
| LM3201-6, 5 | 1.29 | 1.30 | \square | LM558V | 79 | 80 | LM3909 | 76 | . 75 |
| LM322N | 1.19 | 1.20 | - | LM561N | 1.00 | 1.01 | Lm4195 | 1.96 | 1.95 |
| LM324N | 1.75 | 1.76 | T | LM565N | 99 | 1.00 | LM4250 | 1.20 | 1. 19 |
| LM339N | 1.09 | 1.10 | | LM703H | 49 | . 50 | - LM75451 | 40 | 39 |
| - Lм340к-5, 6, 8, | | | \square | $L \mathrm{M} 704 \mathrm{H}$ | 29 | 30 | LM75453 | 40 | 39 |
| 12,15, 18 , | 1.29 | 1.30 | - | LM709N- | 25 | . 26 | LM75491 | 80 | |
| LM340r.5, 6, 8, | | | D | LM710N | 39 | 40 | - LM75492 | 80 | |
| | 2.29 | 1.30 .60 | | LM733N | 79 | 80 | LM75494 | 60 | |

PENNY SALE PRICES LISTED ARE GOOD TILL MAY 15,1978
Mail your order in E save many dollars!

ALARMCLOCKKH1P, MNS316. 4d|g'ts (4E1759)
ALARMCLOCKKH1P, MNS316. 4d|g'ts (4E1759)
PANCAKE PHOTOCELLS, 600 to 15R ohms (4E 2939),
PANCAKE PHOTOCELLS, 600 to 15R ohms (4E 2939),
M\&-PNEEDGE CONNEECTRR,156" spacln\&(4E3963)
M\&-PNEEDGE CONNEECTRR,156" spacln\&(4E3963)
READOUTS!
READOUTS!

NANN READOUT, bubble, red, com anode (\#4E 1503)
FAD-10 ELOCK READOUT, $122^{\prime \prime}$ com cathode (HAE2082)
B-DIGIT READOUT, Ied, com cothod, red (\#4E5 190)
SIPEAKEIRS:

BIICTEAFPIGNEN:

COWOENSOR MIKES, senstive, SOO ohma $1^{14 V}(=4 E 3178)$ RELAYS! SPDT 12V BLOCK RELAY 5A contacts (\ddagger 4E 4032 \square SPOT 12V SENSITIVE, 2000 ohm coll ($\mathbf{1}$ 4E 3044A)

AMPLIFIERS:

TRANSFURBIERS:

2 SWITCMES ON A DIP

IC SOCKETS:

2-Amp Epoxy
BRIDGE RECTIFIERS:
PENNY SALE! BUY ONE
2ND FOR ONLY 1 C MORE

WRITE FOR
POLY PAKS
CATALOG
FEATURING

BEST BARGAINS

BE PHONED

CIRCLE NO 37 ON free information card

64K FOR \$995.00

At last! The popular Expandoram is available in a 16 k multiple version. Similar to our 32 k Expandoram, the new Super Expandoram is offered in 16k, 32k; 48k and 64k. Low power devices mean the very lowest power consumption. Allow $3-4$ weeks for delivery.

$$
\begin{array}{ll}
16 K-\$ 281.00 & 48 K-\$ 757.00 \\
32 K-\$ 519.00 & 64 K-\$ 995.00
\end{array}
$$

Z-80 CPU BOARD KIT — $\$ 139$.
CHECK THE AOVANCED FEATURES OF OUR $Z-80$ soltware capability operation lrom a single 5VDC power supply. always stops on an M1 stale true sync generated on card (a ceal plus feature ${ }^{\text {}}$), dynamic refresh and NMI avalable etither 2 MHZ or AMHZ operation quality double sided plated inrougn beard. paris plus sockets priced

6 DIGIT ALARM CLOCK KIT

Features: Litronix dual $1 / 2$ displays. Mostek 50250 super clock chip. single I.C. segment driver. SCR digit drivers Kit includes all ne cessary parts (except case). Xfmr optional Eliminate the hassle
AC XFMA - $\$ 1.50$ Case $\$ 3.50 \quad \$ 12.95$
Bowmar 4 Digit LED Readoul Array Full $1 / 2$ "' Litronix Jumbo Dual Digit LED Displays
4 JUMBO 50° DIGITS ON ONE STICK! WITH COLONS \& AM/PM INDICATOA
$\mathrm{DL}_{\mathrm{D} 722-\mathrm{CC}}{ }^{\$ 3.95} \mathrm{DL} 728-\mathrm{C} . \mathrm{C}$.
DL 7218 CA DL727.C.A
129

RAMS

2100-500N5	81150
$2^{\prime}, 022^{250 N S}$	81595
2114-4K	8,5400
1103-1k	35
4115.8x	15.45

$\star \star \star$ SUPER FLOPPY SPECIAL $\star \star \star$ S. D. SALES,' VERSAFLOPPY S. 100 CONTROLLER BOARD PLUS SHUGART SA 400 FLOPPY DISK DRIVE INCLUDING CABLE FOR ONLY $\$ 479.00$

EXPANDABLE EPROM BOARD 16 K or 32 K EPROM $\$ 49.95$ w/out EPROM Allows you to use either 2708's for 16 K of Eprom or 2716's for 32K of Eprom. KIT FEATURES:

1. All address lines \& data lines buffered
2. Quality plated through P.C. Board, in cluding solder mask and silk screen.
3. Selectable wait states.
4. On board regulation provided 5. All sockets provided w/board

WE CAN SUPPLY 450ns 2708's AT \$11.95 WHEN PURCHASED WITH BOARD

NEW FROM S.D
"VERSAFLOPPY" ${ }^{\text {Tn }}$ KIT
THE VERSATILE FLOPPY DISK CONTROLLER ONLY \$149.00

Fertures 18 M 3740 Sort Sectored Compatible S .100 日NS Com.

 C.has ic Coppliter w, The new vortoiloppy" from s.D. Compurer products provides

FD 1771B-1 CHIP ALONE $\$ 39.95$

MICROPROCESSOR CHIPS

8212 - 170 port 8214 - P.I.C. 8216 - Non invert Bus 8224 - Clock Gen. 8226 - invert Bus PIO for $2-80$
CTC for $2-80$ 8228 Sys Controlle ${ }^{8228}$ Sys. Controller 8255 prog. prep. interface 8820 Dual Line Recr 8830 Dual Line Dr 2513 Char Gen. 8838 Quad Bus. Recur. 74 SS $138 \mathrm{~N}-1 / 8$ decoder 8197-Hex Tri-State Bu
$1488 / 1489$ RS232 TR 148028 Uart TR 1863 Uart
FD 17718 . 1 CMOS
Dise Cap Assort nent
P.C. Lead Diodes

1N4148 1N 914
MICA Trim2-1A. 100 PN A Trimmer
PC402 Miniature
1.5-20 P.C. P.C. Mount . 4/\$1.00

Resistor Special 22 ohm Carbon Comp.
Resistor Assortment $1 / 4$ w $5 \% / \$ 1.00$ $\begin{array}{rr}10 \% \text { PC leads } & 20 \% / \$ 1.50\end{array}$
TERISK ITEMS ON EACH $\$ 15$ ORDER

CMOS			
4001	19	4029	99
4002	19	4042	69
4011	19	4047	1.50
4013	32	4049	35
4016	32	4069	23
4017	95	4071	19
4020	97	4076	97
4022	97	14518	1.10
4024	75	14528	85
4027	39	14529	85

CALL IN YOUR BANKAMERICARD (VISA) OR MASTER CHARGE OR DER IN ON OUR CONTINENTAL TOLL FREE WATTS LINE:
1-800-527-3460

214/271-0022

DEALER INQUIRIES INVITEDI

NO COD's. TEXAS RESIDENTS ADD 5\% SALES TAX ADD 5\% OF ORDER FOR POSTAGE \& HANDLING OR DERS UNDER $\$ 10$ ADD 75 C HAND ING FOREIGN ORDERS EUNOS ONLY!

留 Ratol Hut

VARIABLE POWER SUPPLY KIT NO. 1 ONLY

 \begin{tabular}{ccccccc}
7400 TTL DIGITAL CIRCUITS

\hline

\hline 74LSOO LOW POW
\end{tabular} 74H SERIES TTL

$\begin{aligned} & 74000 \\ & 740025 \\ & 74 \sim 20 \end{aligned}$.188	$\begin{aligned} & 74429 \\ & \hline 74 H 50 \end{aligned}$.29		¢	${ }_{\substack{7447 \\ 7173}}$	${ }_{89} 9$
CMOS							
	19 19 19 18 19 19 39 39 29 38 78 78 78 32				$\begin{aligned} & .00 \\ & .69 \\ & .60 \\ & .60 \\ & .90 \\ & .90 \\ & .35 \\ & .39 \\ & .19 \\ & \hline 189 \end{aligned}$		

VOLTAGE REGULATORS

[^4]
LEARN MicroCo

- Easy to use.
- Teaches basic concepts of microprocessor technology.
- Easily enter and display your instructions through convenient Hex keyboard and LED readouts.
- Plays music over 3 octave range using your instructions for pitch and length of notes.
- Built-in audio amplifier with volume and tempo controls and speaker.
- Can perform control tasks over 24 hour period using built-in real time clock.
- Combine your instructions with input signals from any of 3 input sensors supplied with unit.
- Enjoy simulating various sounds, playing games and much more . . .
dealer inouiries inviteo

74Cxx SERIES PRICES REDUCED UP TO 72 PERCENT

Thanks 10 a
possible prices
possible prices, this month we have reduced our prices on every device in the 74 Cxx Series

74 S 25
74 S 25
74 S 28
74 S 28
74 S 28
74 S 300
74 S 30
74 S 3
$74 \mathrm{S3}$
74 S 3
$74 \mathrm{S3}$
74 S 3
74 S 3
74 S 3
74 S 3
74 S 362
74 S 38

74 C
74 C
74 C 0
74 C 0
74 C 0
74 C 0
74 C 1
74 C 1
74 C 2
74 C 3
74 C 3
74 C 4
74 C 4
74 C 73
74 C 7
74 C 7
74 C 83
74 C 8
74 C 8
74 C 8
74 C 90
74 C 93
74 C 9
74 C 7
74 C 1

OUTSIDE OF JAPAN. . . NEW-TONEELECTRONICS Has the Largest Inventory of Original Japanese Components Anywhere!								-SONY RIKYU-TOSHIBA• -NEC•HITACHI•MITSUMI• -SHINDENGEN•MITSUBISHI• -FUJITSU PFUJI-TEN•JRC• -SANYOPR-OHMOUNIDEN- -PANASONIC ${ }^{-C Y B E R N E T \bullet}$ -SANKENONPCOORIGIN.			
2SA49						2SC1628		40081			
								40082			
2SA 102		2SB507	1.40	2 SC 777	4.95	2SC 1674	49	AN 136	2.90	STKO1	50
2 SA 200	49	2SB511	1.50	$2 \mathrm{SC778}$	350	2SC1675	49	AN214	3.35	STK015	50
2SA221		2SB528	1.40	2SC781	250	2SC1678	2.00	AN239	650	STK025	12.50
2 SA 234	59	2 SB536	150	2SC783	295	2SC1679	2.95	AN24	2.40	STK032	14.20
2SA353	69	$2 \mathrm{SB539A}$	4.70	2SC78	49	2 SC 1684	49	AN245	550	STK036	19.00
SA377	1.89	2SB541	470	2SC78	65	2SC1728	85	AN247	4.80	STK050	24.50
2SA387	. 69	2SB554	8.00	2SC78	295	2SC173	95	AN271	3.20	STK056	11.35
2 SA473	125	2SB56	60	2SC789	1.00	2SC1756	2.75	AN289	7.90	STK405	,
2SA483	2.	2SB627		2SC790	1.50	2 SC 1760	1.60	AN315	3.50	STK415	. 50
2SA484	2.44			$2 \mathrm{SC793}$	2.50	2SC1816	3.50	AN331	5.40	STK433	9.25
$2 \mathrm{SA485}$	1.95	2 SC 32	135	2SC798	3.95	${ }_{2} \mathrm{SSCl}^{2} 908$	49	AN343	390	STK435	50
2SA48	39	2 SC 1	3.00	2SC79	3.25	2SC190	375	AN360	2.50	STK437	11.50
2SA495	60	$2 \mathrm{SCC}_{172}$	1.75	2SC81	55	2SC 1957	1.00	AN380	750	STK439	11.60
2SA496	99	2SC206	2.50	$2 \mathrm{SC828}$	49	2SC196	3.95	BA302	2.50	TA7028M	50
$2 \mathrm{SA49} 7$	1.44	2 SC 237	1.75	$2 \mathrm{SC829}$	49	2 SC 196	4.70	BA511	3.00	TA7045M	25
2SA509	50	2 SC 281	50	$2 \mathrm{SC830}$	2.95	2SC197	90	BA521	3.40	TA7051P	3.00
2SA525	95	$2 \mathrm{SC284}$	1.20	$2 \mathrm{SC838}$	5	2SC1974	3.50	C3001A	2.95	TA7054	3.05
2 2SA537	1.95	$2 \mathrm{SC287}$	1.25	2SC839	50	2SC1975	3.50	cx075	2.95	TA7055P	3.00
2SA539	60	$2 \mathrm{SC}_{29}$	3.95	$2 \mathrm{SC853}$	90	2 SC 2020	4.95	Cx1000	8.50	TA 7060P	40
2SA56	48	2SC32	3.95	$2 \mathrm{SC866}$	500	2 SC 2027	600	Cx101G	8.50	TA7061P	1.50
2SA56	45	$2 \mathrm{2SC3}^{2}$	85	$2 \mathrm{SC86}$	600	2 SC 2028	80	Cx103D	8.50	TA 7062 P	
2SA564	50	2SC371 2 SC 372	49	$2 \mathrm{SC870}$	50	2SC202	3.40	Cx104A	8.50	TA 7063 P	1.50
565	1.05 3 1	${ }_{2 S C 373}$	49	${ }_{2 S C 8}$		2 SC 203	2.95	- $\times 12$	7.50	TA7072	3.00
2SAEO	1.69	$2 \mathrm{SC374}$	49	2SC922	69	2 SC 20	4	CX148	11.70	TA7074	90
62	99	2SC375	49	2SC929	49	2SC209	2.50	CX149	1400	TA7076	75
2SA628	49	2 SC 380	49	2SC930	49	2SC209	3.25	DN834	1.50	TA7089	2.90
2SA634	00	$2 \mathrm{SC381}$	50	2SC938	95	2SC209	39	DN83	1.60	TA7102	580
${ }_{2}$ SA636	1.25	$2 \mathrm{SC382}$	55	2SC943	. 00	2SC21	3.75	DN83	1.50	TA7106	25
2SA640	49	2SC38	60	$2 \mathrm{SC94}$	49	2SD45	4.95	DN83	1.70	TAP120	150
2SA64	. 60	2SC38	70	2SC959	35	2SD6	90	HA1151	3.20	TA7122	
2SA65	49	2 SC 38	70	$2 \mathrm{SC960}$	95	$2 \mathrm{2SD7}$	8	HA115	4.20	TA7124	1.85
	475	2SC38	50	2SC984	80	$2 \mathrm{SD77}$	1.50	HA115	4.20	TA 1146	375
2SA66	69	$2{ }^{2 S C 394}$	49	2 SC 1000	49	2SD81	395	HA115	500	TA714	3.90
2SA67	50	${ }^{2 \mathrm{SC}} 403$	50	2 SC 1013	95	2SD88	4.80	HA1199	3.25	TA714	3.90
A6	70	2SC454	49	2 SC 101	95	2SD11	3.00	Ha 1202	2.20	TA7150	3.75
${ }^{2}$	70	$2 \mathrm{2SC45}^{2}$	49	2SC101	1.20	2SD 130	120	HA 1306	4.90	TA7153	6.90
2	. 65	2SC46	49	2SC1018	1.00	2SD 170	1.50	HA 13	4.50	TA71	6.20
2SA6	4.95	2SC461	49	2SC1030	2.80	2SD 180	2.50	HA 1312	340	TA7200	3.50
2 L	4.95	$2 \mathrm{SC478}$	50	$22^{\text {SC }} 1034$	560	2SD18	49	HA1314	420	TA720	
	1.49	${ }^{2 S C 48}$	50	${ }_{2} \mathrm{SC}^{\text {S }} 104$	59	2SD18	2.70	HA1316	350	IA7202	4.50
2SA683	60	$2 \mathrm{SCC4}^{2}$	1.40	2SC1060	1.40	2SD201	4.50	HA1318	5.00	TA7203	4.25
2SA684	60	$2{ }^{2} \mathrm{SC484}$	2.60	2SC106	1.25	2SD213	495	HA 132	4.20	TA7204	370
	60	$2 \mathrm{SC48}$	140	2SC1079	3.95	2SD21	3.80	HA 13	3.20	TA7205	60
	130	$2 \mathrm{2SC48}^{\text {a }}$		2SC1080	3.95	2SD218	390	HA1339	495	TA7207	350
2SA699	1.45	$2 \mathrm{2SC49}^{2}$	3.50	2SC109	80	2SD227	48	HA 1342	450	TA7208	3.50
2 SA 705	. 75	$2 \mathrm{SC}^{2} 9$	4.50	2SC1098	1.00	2SD234	A	HA136	4.20	TA7209	3.80
	1.45	$2 \mathrm{SC4}$	85	2SC1114	4.92	2SD235	. 85	HA111	8.90	TA7210	6.50
	, 5	$2 \mathrm{SC4}$	85	$2 \mathrm{SC}_{11}$	3.00	2SD2	350	HA11113	650	TBA800	4.40
2 S	59	$2 \mathrm{SC49}$	1.40	2SC1116	4.25	2 SD 261	100	HD3113	¢	TBA810D	
-	59	2SC50	1.50	${ }^{2 S C} 1116$	75	2 SD287	3.70	HD3127	780	TC4081P	1.75
2 S	59	$2 \mathrm{SC50}$	1.75	${ }^{2 S C 1124}$	120	2 SD 288	1.50	LA 1201	4.25	TC5080	580
	49	2 SC 50	1.75	2SC1162	100	$2 \mathrm{SD313}$	1.05	LA 1240	3.30	TC5081	3.60
	1.95	2SC5	5	2SC1166	48	2SD314	1.50	LA 136	3.70	TC5082P	
2 S	4.50	2SC5	195	2SC1170	4.95	2SD315	1.20	LA 1366	425	TC9100P	
	575	C5	3.60	2SC1172	25	2SD318		LA1369	4.2	TD3400P	. 5
	49	2SC5		$2 \mathrm{SC}_{1} 17$	75	2 SD 325	90	LA3155	22	tD3441AP	5.10
	3.30	$2 \mathrm{2SC536}$	49	${ }_{2} \mathrm{SC}_{2} 1175$	75	2 SD330	1.50	LA3201	195	TM4312P	
	5.60	2 SC 5	49	2 SC 120	75	2SD331	1.50	LA3301	3.40	UH1COO1	
	99	2 SC 5	60	2SC 1211	59	2SD35	100	LA3310	4.20	UH1C003	
		S563		2SC1212	1.65	2SD3	1.10	La3350	3.30	UH1C004	6.50
	195	C580	195	2SC1213	. 59	2SD3	1.05	LA4000	7.50	UH 1 CO	6.50
		C608	5.95	S1226		2SD3	20	LA4030	5.40	UH200	
		2SC69	5.95	${ }_{2} \mathrm{SC}_{1} 123$	4.5	2 SD 4	2.55	La4031P	3.20	UPC16C	2.
		$2 \mathrm{SC61}$	3.95	2SC1239	350	2 SD525	1.50	LA4032P	420	UPC20C	3.75
	95	2SC619	65	2SC 1306	3.50	2SCF6	1.25	LA4051P	3.20	UPC30C	75
	48	$2 \mathrm{SC62}$		2 SC 130	4.75	2 SCF	3.50	La4101	320	UPC41C	2.80
2 SB	48	$2 \mathrm{SC627}$	2.95	2SC1308	5.75	2SF8	3.00	LA4201	25	UPC48C	2.8
	. 59	$2 \mathrm{SC632}$	6	2SC 131	49	2SK19	1.25	La4400	3.40	UPC 157CA	
2	90	$2 \mathrm{SC634}$	60	2SC1313	49	${ }^{2} \mathrm{Sk} 23$	1.00	LA4420	340	UPC554C	250
2SB 1	60	2SC644	49	$2 \mathrm{SC}_{131}$		2SK30A	15	LAD001	3.20	UPC555	2.20
2 S	60	2 2S645	60	2SC 1318	49	2SK33	90	LD3040	1.60	UPC563H2	8.00
2S	49	$2 \mathrm{SC674}$	60	2SC1327	49	2SK34	90	LD3120	2.40	UPC566H	125
2SB187		2 2C680	2.60	${ }^{2 S C} 1330$	35	${ }^{2 S k 40}$	1.30	M5112	8.40	UPC573C	3.25
2 S	150	$2 \mathrm{SC684}$	1.20	${ }^{2 S C} 1342$	49	2SK55	1.00	M515iPR	780	UPC575C	2.60
2SB22	2.95	$2 \mathrm{SC693}$	49	2 SC 1344		3SK22	2.20	M5152L	2.75	UPC576	3.25
2	2.95	2SC696	1.75	$2 \mathrm{SC}_{1347}$	85	3SK22Y	2.20	M5192	4.80	UPC587C2	2.95
2SB	7.95	2SC699	5.95	2SC1359	65	3SK35	2.00	M51711	2.00	UPC592H2	1.40
2SB270	9	2SC708	1.75	2SC1360	95	3Sk39	2.00	M51513L	5.10	UPC595C	2.95
2 S	49	2SC710	49	${ }^{2 S C 1362}$	52	3SK40	2.00	MB3705	3.35	UPC596C	2.75
2 SB	60	2SC711	49	2SC 1364	1.10	3SK41	2.20	M N3001	19.50	UPC 1001 H 2	2 350
2S	1.35	2 SC 712	49	2SC1377	4.80	3SK45	2.20	M 3002	1170	UPC1008C	
2 S	65	2 SC 715	69	2SC1382	95	3SK49	220	M N 3003	9.45	UPC 1020H	
$2 \mathrm{SB405}$. 35	717	50	2SC 383	50	JSP700	75	M N 3004	17.95	UPC1025H	350
	1.35	$2 \mathrm{SC730}$	415	2SC1384	80	MA26	28	M N3005	75.00	UPC 1026 H	
$\begin{aligned} & \text { 2SB4 } 15 \\ & 2 S B 434 \end{aligned}$	65 1.15	${ }_{2 S C 731}^{2 S}$	3.00	$2 \mathrm{2SC}_{2} 1402$	3.60	MPS8000	1.25	40	16.75	UPC152H	395
	1.35	${ }^{2 S C} 733$	49	${ }_{2}^{2 S C} 1403$	60 95	MPSEU00		A	16.75	UPC1154	395
2 SB440	. 6	2SC734	49	2 SC 1447	90	MPSU31	4.00			UPC 1156	
	1.60	2 SC 735	49	2SC1448	100	MRF8004	3.00	PLLO2A	8.50	UPC 1380 C	
$2 \mathrm{SB463}$	1.40	$2 \mathrm{SC738}$		2SC1449	85	SD 1074	19.95	PLL02A	8.50	UPC78L05	
$2 \mathrm{SB471}$	1.40	2SC756A	2.40	2SC1475	1.25	SD1076	28.95	SG609	4.80	UPD277C	450
2s	2.60		49	2SC 1507	1.40	4004	3.00	SG613	6.75	UPD857C	15.50
$2 S 84$ 2	1.10	$\begin{aligned} & 2 S C 773 \\ & 2 S C 774 \end{aligned}$	60	2 SC 1509 2 SC 1624	85	${ }^{4005}$	3.00	S6080a	3.75	D858C	9.50
2SB481	1.50	74	. 50	C1624	1.10	80	125	080B	3.80	JPD861C	8.50
MINIMUM ORDER 55.00 All orders add \$1.00 Postage and Handling Canada $\$ 1.50$ N.J. Residents add S° o sales tax											
DEALERS: Write on letterhead for confidential price list. 24 HOUR SHIPMINT ON ALL DEVICSS IN STOCK. ALL PARTS GUARANTELD - COD ORDERS WELCOME											

OUTSIDE OF JAPAN. . .
NEW-TONE ELECTRONICS Has the Largest
Inventory of Original Japanese Components Anywhere!
PARTIAL LIST

2SA49

2SA 101
2SA 102 2SA 102
2SA 200 2SA221 2SA353 2SA 377 2SA473 2SA483
2SA484 2SA489
2SA495 2SA496 2SA497 2SA509 2SA525
2SA539 2SA561 2SA564 2SA565
2SA566 2SAG06 2SA624 2SA634 2SA636 2SA640 2SA659 2SA666 2SA671
2SA672 2SA673 2SA679 2SA680 2SA682 2SA683
2SA684 2SA695 2SA699 2SA699A
2SA705 2SA706 2SA715 2SA720 2SA733 2SA740 2SA774 2SA750 2SA756 2SA777 2SAB39 2SB22 2SB854
$2 S B 56$
2 2SB75
2SB 11
2SB156
2SB 172 2SB175 2SB186 2SB202 2SB234 2SB235 2SB303 2SB337 2SB405 2SB407 2SB434 2SB435 2SB440 2SB461 2SB463 2SB472 2SB48

-SONY DRIKYU-TOSHIBA--SHINDENGENOMITSUBISHIO - FUJITSU F FUJ-TEN•JRC• santodr-ohmounideno -SANKEN•NPC $-O R I G I N \bullet$ 40081 AN 136 | AN214 | 3.90 |
| :--- | :--- |
| AN 239 | 6.50 |

OPERATION ASSIST
(Continued from page 116)
Dumont oscilloscope, type 767. Service manual and horizontal time-base plug in. Larry Watson, Rt. 1. Box 180, Gadsden, AL 35901

Telrad Frequency Standard Model 18A. Manufactured by Fred E. Garner Co., Chicago. Circuitry needed. A.H. Ellis. 19 McClure Avenue. Brentford, Ontario, Can. N3R $4 L 7$.

RCA TV model 8-PT-7030. Schematic and service data. P.J. Hughes. 1337 Weber Dr., Cleanwater, FL 33516.

Standard Kolisman uht converter model B, senal \#59277. Schematic Lynnie Gregory, Rt 11, Box 211, Statesville, NC 28677.

Hickok model 610A TV.FM alignment generator. Tracy LaVere. Box 589 Garden Grove, CA 92642.

Hallicrafters model S-53A shortwave receiver. Schematic. R.C. Hartman. 2208 Bayberry St., Virginia Beach, VA 23451

Conar Model 220 tube tester Tube chart needed. Bob Swanberg. Box 96. Chelsea, Mi 48118.

Tektronix model 511-AD oscilloscope. Manual and schematic. J.O Dickinson. 1408 Monmouth Court West, Richmond, VA 23233.

Technics model RS- 1030 US reel-to-reel tape deck. Service manual or schematic. Wallace Bonham. Box 94 Cape Girardeau, MO 63701.

Ross Electronics Corp cassette tape recorder, model \#8282, serial \#11404. Parts and schematic diagrams. A.T Most, 4 Lanningan Drive, Lawrenceville. NJ 08648

Webster WT-2 walkie-talkie. Need PTT switch or source of supply. Lamar Schwalke, P.O. Box 799. Florissant, MO 63033.

Hallicrafters Model S-36A. Operation manual or any available information. Chris Colson, 60 Deemaven Place. Pleasant Hill, CA 94523

Westinghouse model WR 226 3-band receiver. Schematic or senvice manual. Arthur Crough. RD 2, Bloody Pond Road, Lake George. NY 12845

Hallicrafters model S-20-R "Sky Champion" receiver. All available information. J Creasy, 824 Perry Highway, Apt. 15. Pittsburgh. PA 15229.

Roberts model 770X tape recorder. Service manual andior schematic. Robent Fisher. 6536-141h St., Rio Linda. CA 95673.

Bell \& Howell (DeVries Institute) Model 34 oscilloscope Schemalic and transformer voltage outputs or cross reference for replacement. Glenn T. Ozalan, 2220 NW Aspen Portland. OR 97210

Western Electric 25C amplifier Specifications, schematic and parts tist W.Q. Cochran, 910 Townshipline, Chalfont, PA 18914.

Burroughs model C3100 electronic calculator. Schematic and repair information needed C. Kline, 16 Old Farm Road Barrington, IL 60010

Allied Radio, Knight Star Roamer. Schematic and alignment procedure. M.F. Mattern. 1111 Warburton, Santa Clara, CA 95050.

Meisner phono disk recorder model \#9-1065. The Langevin Company phono disk recorder, type 14A. Owners/ operation manual and schematic for both units. D. Testa, Box 9064, Newark, NJ 07104.

Graymark model 506B two-band receiver. Schematic and manual. Henry M Cantor. 21 Friendly Court, Babylon. NY 11702

Hazeltine Neutrodyne receiver. Schematic or any available information. LeRoy Sampson. RR1, Radcliffe, IA 50230.

Superior instruments tube tester model TV-11. Operating instructions. James Lewis, Box 6211. Tulsa. OK 74106.

Symphonic model TPS-5050, mini-TV. Need source of 3inch picture tubes. Nicolas Dominquez, Ave. Pte., Tecamachaico No 16. Mexico City. Mexico ZPIO.

Sears Model 9169 television receiver. Technical manual needed. W.A. Greenwood. 48 Third St, Leominster. MA 01453
troubleshooting information, parts list. Walter Mesko, Box 210. Lake George, NY 12845.

Hallicrafters model S-38B shortwave receiver. Schematic and any available information. Ray Genest, 3175 Boul. Neilson. App. 3 Ste-Foy, Quebec 10, Can. G1W 2V7.

Morse color TV Model 7000 . Service manual and parts list. J.C. Morall, 1000 Cottage Pl., Baldwin, NY 11510.

Webster-Chicago Model 80 wire recorder. Schematics and parts list. Owner's manual Mike Carey. Box 361. Highway 20. Madison, AL 35758.

Philco radio model 37-116. Graybar radio model 320, need chassis for both. Philco radio model \#95, need cabinet. John Yeprad, Box 1457, Studio City, CA 91504.

Benson-Lehner Corp. digitizer "Pigmi" model Need guide books and schmatics W.E. Kelsey, Otter Pond Rd. New London, NH 03257.

Zenith Radio, model 770, chassis \#10022C4. Schematic and parts list. Ervin Thorson, RR5, Box 84 B, Martinsville, IN 45151.

Edin Co., Inc. Electrocardiograph model 8023 serial \#4526. Schematic or any source of information. Russell H. Miller. Jr. 3609 A N. Front St., Harrisburg, PA 17110.

Fatterson model PR-15 communications receiver. Schematics and service manual. E.W. Clede, 6811 Spring Forest. San Antonio. TX 78249.

Grundig TK 46 tape recorder. Owner's manual and schematic. A. Haddad, 125 Jameson Ave., \#508, Toronto, On tario, M6K 2×3 Can.

National HRO-60 General Coverage Communications Receiver. Operation manual R. Dennis Gibbs. 9214 Venetian Way. Richmond, VA 23229.

RCA regulated power supply model WP-33P. Schematic and service information. Roger A. Leone, 136 Della Circle. Valle Jo, CA 94590

Satellite S20B. Schematic and operation manual. Michael Unger, 183 S. Detroit St., Los Angeles. CA 90036.

Calbest Electronics. slereoplex model 6040 stereo receiv er. Schematic and owner's manual. R.S. Dabe. 13400 Els worth St. \#39. Edgemont, CA 92508.

US Army R-5 receiver SN 20. Any information George W Anderson. 5317 Valonia SI. Fair Oaks. CA 95628.

ACA model 6033 superheterodyne AM and shortwave receiver. Schematic or any available information. James Bias, Rt. 3. Box 175. Ridgeland. SC 29936.

Precision apparatus model \#612 tube tester. Up-to-date roll. Ron Stanford, 8428 San Antonio Ave., South Gate. CA 30280.

Allied Radio Knight kit capacitor checker, kit \#680. Superior Instrument Company mullimeter model \#670-A. Jackson Dynamic tube tester model 715. Manuals and schemat"cs. W. L. Simpson. 370 Beagle Lane. Redding. CA 96001.

Hickok model 610A Universal Television FM alignment signal generator. Operation manual and schematic. Thomas E Phillips. 404 E. Main St., West Newton, PA 15089.

RCA test oscillator WR-67A. Manual, schematic. W. Beale. Rt 1, Box 262A. Mechanicsville, MD 20659

Omnitec model 701 acoustic coupler Schematic. Ivan Berger. 215 W. 78 th St.. New York. NY 10024.

Precision Apparatus signal generator model E-200-C. Operating manual and schematics. Dan Williams, RD1, Stuyvesant, NY 12173.

Mitchell Industries, vhf navigator aircraft radio. Manuals, schematic. Dick Mayrand, 7 Maplewood, Rochester. NH 03867.

Weston vhf sweep generator model 984 . Operating manual and schematic. Ron Patton, Country Ests Pk-9B, Pratt, KS 67124.

Webcor 2712-1 tape recorder. Schematic and service data Alfred E Jordan. 897 E Vine St., Salt Lake City, UT 84107.

Cathode-Ray oscillograph. Parts list and manual. Arthur Thompson, 26441204 SE. Kent. WA 98031

Triadex Muse electronic music computer. Schematic and service manual. Robert Stek, 19 Maytield Rd., Regina, Saskatchewan, Can.

CIRCLE NO SB ON FAEE Information capo

ABOUT YOUR SUBSCRIPTION

Your subscription to POPULAR ELECTRONICS is maintained on one of the world's most modern, efficient computer systems. and if you're like 99% of our subscribers, you'll never have any reason to complain abuut your subscription service.

We have found that when complaints do arise. the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown. Arizona," and you were to renew it as "Bill Jones. Cedar Lane, Middletown. Arizona," our computer would think that two separate subscriptions were involved. and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St . is not the same as 1002 nd St .
So. please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

Philco "circuit master" VTVM. Need schematic, instruction and service manual. M Carty, 2617 Wendell. Detroit, M1 48209.

General Radio. super MC-9, CB radio Owner's manual. schematic or any available information. Nolly O. Byrd. 802 Spanish Ave., Pasagoula, MS 39567

Flexowriter Model 2201-A Schematics. any other information such as programming and interfacing. Jim Cooper, 651 Forest Ave.. Paramus. NJ 07652.

National NC- 120 manual or schemalic. Adrian Hands, 7000 Whetstone. Alexandria. VA 22306

Wurlitzer Juke Box mode 1700 F. Service manual. Clift Nadiger, 8073 Wonderlund Blvd., Redding, CA 96001.

Omnitec Model 800. portable terminal. Schematic. Stephen Karon. 601 Light St., Baltimore, MD 21230.

Kydo Electronics. Mypet 405 FM Iransceiver Operation manual and schematics Bill Cross, 3561 Milburn Ave., Baldwin, NY 11510.

RCA Model WO-33A oscilloscope. Operator's manual and schematic needed. Franklin B Kovarik, 526 California Ave.. E. Alton, IL 62024.

Hickok Model PS-503 power supply Need owner's manual and/or schematic. S. Anderson 2020 N. 32 St. \#112, Phoenix. AZ 85008

RCA AR-88 receiver. Power transformer needed Harold Donaldson. 8850 Phoenix Ave., Fair Oaks, CA.

Same day shipment. First line parts only. Factory tested Guaranteed money back. Quality IC's and other components at factory prices.

2996 Scott Blvd.

New Cosmac Super "ELF" RCA CMOS expandable microcomputer w/HEX keypad input and video output for graphics. just turn on and start loading your program using the resident monitor on ROM Pushbutton selection ol all four CPU modes LED indicators of current CPU mode and four CPU states Singte CPU mode and four CPU states. Singte step op. for program debug Buitt in pwr. supply 256 Bytes of RAM, audio amp. \& spkr. Detailed assy. man. w/PC board \& all parts fully socketed Comp. Kit
$\$ 106.95$ High address display ontion $\$ 106.95$ High address display option 8.95: Low address display option 9.95 Custom hardwood cab: drilled front panel 19.75 Nicad Battery Backup Kit wall parts 4.95 Fully wired and tested in cabinet 151.701802 sottware xchng club, write for info.
4K Elf Expansion Board Kit with Cassette I/F $\quad \$ 79.95$ Availabte on board options: 1 k super RDM monitor $\$ 19.95$ Parallel $1 / 0$ port $\$ 7.95$ RS232 IFF $\$ 3.50$ TY 20 ma I/F $\$ 1.95$ S-100 Memory I/F \$5.30
Tiny Basic for ANY 1802 System Kansas City Standard Cassette $\$ 10.00$ On ROM Monitor $\$ 38.00$ Super Elf owners take 30% Original Cosmac 'ELF'’ kit All parts and instructs. Board only S89.50

Video Modulator Kit $\quad \$ 9.95$ Convert your TV set into a high quality convert you wout affecting normal usage monitor without affecting normal usage Complete kit with full instructions.

60 Hz Crystal Time Base Kit $\$ 4.75$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy Kit includes
PC board. MM5369, crystal resistors capacitors and trimmer.

Clock Calendar Kit $\$ 23.95$ CT7015 direct drive chip displays date and time on $6^{\text {b }}$ LEDS with AM-PM ind cator. Alarm/doze feature includes buzzer. Complete with all parts. power supply and instructions, less case
2.5 MHz Frequency Counter Kit Complete kit less case $\$ 37.50$ 30 MHz Frequency Counter
Kit Complete kit less casa $\$ 47.75$
Prescaler Kit to $350 \mathrm{MHz} \quad \$ 19.95$

Stopwatch Kit $\$ 26.95$

 Full six digit battery operated. $2-5$ volts. 32768 MHz crystal accuracy Times to $59 \mathrm{~min} . .59 \mathrm{sec}, 991 / 100 \mathrm{sec}$. Times std split and Taylor. 7205 chip, all components minus case Full insiruc.Auto Clock Kit
$\$ 15.95$ DC clock with $4.50^{\prime \prime}$ displays. Uses National MA-1012 module with alarm option. includes light dimmer. crystal timebase PC boaros. Fully requlated. comp. instructs. Add $\$ 3.95$ for beautifui dark gray case. Best value anywhere.

Sinclair 31/2 Digit Multimeter Batt. oper. 1 mV and 1 NA resolution. Resistance to $20 \mathrm{meg} .1 \%$ accuracy. Small portabie, completely assem, in case. 1 yr

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC boards. 6- $50^{\prime \prime}$ LED Displays. 5314 clock chip, transtormer, all components and fut instructions. Same clock kit with . 80

Digital Temperature Meter Kit Indoor and outdoor. Automatically
switches back and forth. Beauliful $50^{\prime \prime}$ Switches back and forth, Beaulitul
LED readouts. Nothing like it available. Needs no additional parts for complete. full operation. Will measure 1000° to $200^{\circ} \mathrm{F}$. air or liquid Very accurate

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in

RCA Cosmac VIP Kit 275.00

78 IC Update Master Manua 1978 IC Update Master Manual $\$ 30.00$ Complete IC data selector $2 \uparrow 75 \mathrm{pg}$. Master reference guide Over 42.000 cross references. Free update service through 1978. Domestic postage $\$ 3.50$. Foreign $\$ 6.00$. Final 1977 Master closeout $\$ 15.00$ Benldimericerd and wasier Citrge acoepted. Shipping charges will be added on charge cards.

GIRCLE No 52 on free information card

PLANNING TO
MOVE?
Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly

Write to: P.O. Box 2774, Boulder. CO 80322 giving the following information:
\square Change address only \square Extend my subscription ENTER NEW SUBSCRIPTION
$\square 1$ year $\$ 12.00$
\square Payment enclosed Allow 30-60 days for delivery.
(1 extra BONUS issue
\square Bill me later

City
State
Zip
Additional postage on foreign orders. add $\$ 3$ a year for Canada, $\$ 5$ a year for all other countries outside the U.S. and its possessions. Cash only on foreign orders, payable in $U S$. currency.

ELECTRONICS LIBRARY

(Continued from page 115)
sumed, and due care is taken in presenting the basics of sound. The operating characteristics of EM "hardware," especially the synthesizer and tape recorder, are thoroughly explored. The functions of each component of a synthesizer (oscillator, sample and hold, etc.) and of a tape recorder (record, playback and erase heads, VU meters, etc.) are explained in readily understandable language. A textbook-like format is used, with suggested exercises given at the end of each chapter. But the book is not written in a dry, pedantic manner-it is hand lettered and illustrated in an entertaining and highly readable manner. It is equally suited for use in the classroom or on an individual basis in the home. Sound and Acoustics, Tape Recorder Husbandry, Creative Tape Work, Synthesizer Husbandry, Scoring, and Putting it All Together are the major areas covered. An appendix contains a glossary of technical terms, score sheets, and many sample synthesizer patches.
Published by Electronic Music Laboratories, Box H, Vernon, CT 06066. 168 pages ($81 / 2^{\prime \prime} \times$ 17"). $\$ 6.95$ ($\$ 5.50$ each for three or more) soft cover.

OPERATIONAL AMPLIFIERS AND LINEAR INTEGRATED CIRCUITS

by R.F. Coughlin \& F.F. Driscoll

This book demonstrates the ease of using op amps and other linear IC's in a variety of ap plications involving instrumentation, signal generation and control. The basic op amp used throughout the book is the popular 741 which forgives most mistakes in wiring, ignores long-lead capacitance, and is rugged in operation. All circuits detailed in the text have been classroom and laboratory tested and have been selected to illustrate the tremendous range of applications where IC's can provide inexpensive solutions to practical problems
Published by Prentice-Hall. Inc.. Englewood Cliffs. NJ 07632. Hard cover. 312 pages $\$ 15.95$.

THE COMPLETE HANDBOOK OF VIDEOCASSETTE RECORDERS

by Harry Kybett

Videocassettes are very much in the news lately, with the rapid emergence of several competitive home VCR systems. This handbook gives a thorough and detailed exposition of how VCR's work, and how to connect. use, and maintain them. Directed primarily at the professional user, the book discusses in detail the U-Matic system, which dominates the professional VCR field, and only mentions one of the current home systems, the Sony Betamax. But, the information given is basic enough to be applicable to all current and proposed VCR systems
Published by Tab Books, Blue Ridge Summit. PA 17214. 280 pages. $\$ 9.95$ hard cover. $\$ 5.95$ soft cover

POPULAR ELECTRONICS

AUTO FM CONUERTER WITH WEaTHER BATD

OISOO 40-CHAMIEL CB MONTIOA COHUERTER		
	$\mathrm{CBP}^{\text {512 }}$	
PushBuTTO		
	849	- Mount
AU-58	$0{ }^{\substack{\text { peg } \\ \text { pog }}}$	- Voume

[^5]Please
}

Popular Electronics

ADVERTISERS INDEX
READER
SERVICE NO \qquad ADVERTISER
PAGE NO.
A P Products Incorporated
Active Electronic Sales Corp
.93

Ancrona Corp
 Anixter-Mark

THIRD COVERAntenna Specialists Co
Audio Technica U.S., IncAudio Technica
Avanti Research \&
Development Corp FOURTH COVER
B\&F Enterprises 138
B\&K Precision. Dynascan
Corporation
23
Burstein-Applebee 59
CREI, Capitol Radio EngineeringInstitute$44,45,46,47$
Chaney Electronics 133
Cleveland Institute
Electronics, Inc $86,87,88,89$
Cobra, Product of Dynascan SECOND COVERCommunications Electronics115
105
Computer Depot, inc 105
Contemporary Marketing 2
Cowan Publishing 95
Delta-Graph Electronics Co 10
Diamondback Electronics Co 138
Digi-Key Corporation 120
.39
Digital Group. The
116
24 EICO 116
Edmund Scientific Co 124
25 Empire Scientific Co
26 Energy Electronics 38
132
Fluke 104
GFN Industries, Inc 13
Godbout Elecs., Bill 133
Grantham Coltege of Engineering
$34,35,36,37$ Heath Company $107,108,109$
Heath Company
Heath Company 85, 106, 107,108, 109 85, 106, 107,108, 109
Heath Company
Heath Company 137
32 115
Interface Age 103
133
JS\&A
122, 123
122, 123
36 Jade Computer Pro 128, 129
Kenwood 15
38 McIntosh Laboratory Inc 28
Microcomputer Mart
$16,17,18,19$
NRI Schools
96. 97, 98, 99
96. 97, 98, 99
National Technical Schools
National Technical Schools $\begin{array}{r}12 \\ \hline\end{array}$
New-Tone ElectronicsNew-Tone ElectronicsNon-Linear Systems121
134
OK Machine \& Tool Corporation 49
.137
Olson Electronic

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.40$ per word. Minimum order $\$ 36.00$. EX-PAND-AD ${ }^{*}$ CLASSIFIED RATE: $\$ 3.60$ per word. Minimum order $\$ 54.00$. Frequency discount; 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.40$ per word, No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($2-1 / 4$ " wide), $\$ 280.00 .2^{\prime \prime}$ by 1 column, $\$ 560.00 .3^{\prime \prime}$ by 1 column. $\$ 840.00$. Advertiser to supply film positives. For frequency rates, please inquire
GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS. One Park Avenue, New York, New York 10016, Attention: Hal Cymes

FOR SALE

FREE! Bargain Catalog-I.C.'s. LED's. readouts, fiber optics. calculators parts \& kits, semiconductors. parts. Poly Paks, Box 942PE, Lynnfield, Mass. 01940.
GOVERNMENT and industrial surplus receivers, transmit. ters, snooperscopes, electronic parts. Picture Catalog 25 cents. Meshna, Nahant, Mass 01908.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP. 3174 8th Ave. S.W.. Largo, Fla 33540. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS, Blufton. Ohio 45817.
RADIO-T. V. Tubes- 36 cents each. Send for free catalog Cornell, 4213 University, San Diego, Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students...Construction plans-Complete including drawings. schematics, parts list with prices and sources. . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm Sound Meter... Over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994, University Station. Raleigh. N.C. 27607 METERS-Surplus, new, used, panel or portable. Send for list. Hanchett. Box 5577, Riverside. CA 92507.
ROTARY SWITCH 4P11P 5/\$5; 6P11P 5/\$7.25. Dip Switch to-SPST 10/\$15. Transformers 12.2 V CT-6A plus $8.5 \mathrm{~V}-5 \mathrm{~A}$ $\$ 6.95$. $24 \mathrm{~V}-5 \mathrm{~A} \$ 5.95$. 10' RG58C $\mathrm{U} 12 / \$ 10$. Fertiks. 5249 " D Philadelphia, PA 19120.
SOUND SYNTHESIZER KITS——urt $\$ 12.95$, Wind $\$ 12.95$ Wind Chımes $\$ 17.95$, Musical Accessories, many more Catalog free. PAlA Electronics. Box J14359. Oklahoma City, OK 73114.
HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels, scanners. Send postage stamp. Communications, Box $56-\mathrm{PE}$, Commack. N.Y. 11725
UNSCRAMBLERS: Fits any scanner or monitor, easily ad justs to all scrambled frequencies. Only 4" square $\$ 29.95$. fully guaranteed. Dealer inquiries welcomed. PDO Electronics. Box 841, North Little Rock, Arkansas 72115.
UNREAL CATALOGS. Surplus. Factory Liquidations. Bank ruptcy Inventories. Deals. Thousands of items at Bargain Surplus Prices. Rush \$1. Etcoa Electronics, 521 5th Ave NYC. NY 10017
POLICE/Fire scanners, large stock scanner crys tals, antennas. Harvey Park Radio, Box 19224, Denver, CO 80219.
TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiast. Teletype machines. parts. supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave.. Brooklyn. NY 11224. Tel: (212) 372-0349. WHOLESALE C.B.. Scanners. Antennas, Catalog 25 cents. Crystals: Special cut. $\$ 4.95$. Monitor $\$ 3.95$. Send make. model, frequency. G. Enterprises, Box 461P. Clearfield, UT 84015.

TELEPHONES UNLIMITED, Equipment, Supplies, All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112.

BUILD AND SAVE. TELEPHONES. TELEVISION, DETEC. TIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones. Answering Machines, Carphones, Phonevision. Dialers. Color TV Converters. VTR, Games. $\$ 25$ TV Camera. Electron Microscope. Special Effects Generator. Time Base Corrector. Chroma Key. Engineering Courses in Telephone. Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, $\$ 1.00$. Don Britton Enterprises, 6200 Wilshire Blvd., Los Angeles. Calif. 90048 NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics. Box 82. Skokie, Illinois 60076.
Build The Artisan Electronic Organ.... The 20th century successor to the classic pipe organ. Kits feature modular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar.ti.san. Write for our free brochure. AOK Manufacturing, Inc. P.O. Box 445, Kenmore, WA 98028.

USED TEST EQUIPMENT - Tektronix. HP. GR. Write: PTI. Box 8699. White Bear Lake. MN 55110. Phone (612) 429-2975.
WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349.
AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton, NH 03858.

SURPLUS ELECTRONICS ATTENTION HOBBYISTS - SEND FOR YOUR FREE CATALOG

Great buys in tape drives, keyboards, power supplies, and transformers We also have heat sinks, steel cabinets, $1 / 0$ terminals, video dis plays, printers, and equipment cases And of course components, fans, wire, and cable Write
now to
10 Flagstone Drive Worldwide Electronics Hudson, NH 03051
$\overline{C B}$ RADIOS, monitors, crystals, $C D$ ignitions. Southland Box 3591 -B, Baytown. Texas 77520 .
TRANSISTORS FOR CB REPAIR, IC's and diodes. TV audio repairs. 2SC799 - \$3.00, 2SC1306 $\$ 2.95,2$ SC1307 - $\$ 3.85$, TA7205- $\$ 3.50$, more. Free catalog and transistor. B\&D Enterpr. izes, Box 32, Mt. Jewett, PA 16740.
NEW PERIODIC TABLE OF ELEMENTS. Atomic physics breakthrough now reveals precise atomic models of each element. Striking wall chart, $\$ 3.00$. Circlon. 29500 Green river Gorge. Enumclaw. WA 98022.
UNSCRAMBLER KIT: Tunes all scramble frequencies, may be built-in most scanners, 2-3/4 $\times 2-1 / 4 \times 1 / 2$. $\$ 19.95$. Factory built Code-Breaker. $\$ 29.95$. Free Catalog: KRYSTAL KITS, Box 445, Bentonville, Ark. 72712. (501) 273-5340.

SURPLUS COMPONENTS, Communication and test equipment. Illustrated catalog 25 cents. E. French, P.O. Box 249 Aurora. Illinois 60505.
MAKE YOUR PLANS COME TRUE by using electronic kit of Touch Switch, Patrol Car Siren. Sound Switch. Singing Bird. Each Kit $\$ 5.00 \mathrm{ppd}$. QMC, P.O. Box 4816, Irvine, Calıfornia 92716.

CARBON FILM RESISTORS $1 / 4 \mathrm{~W}$. $1 / 2 \mathrm{~W}-1.7$ cents each. FREE sample / specifications. Other components. COMPONENTS CENTER, Box 295, W. Islip. New York 11795. UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7, Box 265B, Hot Springs, Arkansas 71901. (501) 623.6027.

Car air loniser refreshes your air continuously. Get rid of smog, cigarette smoke, stale aır.

Get your own mobilion unit for only $\$ 44.95$ plus postage from: THE AMCOR GROUP LTD. P.O.Box 978, EDISON NEW JERSEY 08817

HIGH FIDELITY COMPONENTS. All top brands, distributor's prices. No-risk buying. No deposit. 48 -hour delivery anywhere in Continental U.S. C.O.D. or charge card. Call: (301) 488-9600 daily till 9:00 P.M., Saturday till 4:00 P.M. or send $\$ 1.00$ for brochure buying lips, plus $\$ 2.00$ merchandise certificate, INTERNATIONAL HI-FI DISTRIBUTORS. Moravia Center Industrial Park, Balto. MD 21206.
AMAZINGLY Low component prices! Ask for tree flyer Write: EEP. 11 Revere Place, Tappan, NY 10983.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics. 8753T Windom, St. Louis, MO 63114.
FREE BARGAIN CATALOG, IC's, Semiconductors, Crystals. Send Stamp. Astral, P.0.B. 707 pes, Linden, N.J. 07036.
IC LSI wafers-3. fully processed. Many creative uses \$5.00. ESSAR, Box 326, Hicksville, N.Y. 11802.
GAME CHIP SETS. Pong. Handball. Hockey, MM57100, MM53103. LM $1889 \$ 5.10$ sets $\$ 4.50$ each. 100 sets $\$ 4$ each. Complete game board, tested and working, $\$ 12.3 .58 \mathrm{MHZ}$ Color Crystal $\$.50 .7490$ s $\$.25$. RAMS 256X1 Intersil 5503 $\$.35$. Summit Calculators, includes six AA Nicad cells, as is, most need only recharging, $\$ 4 . \$.50$ postage on all orders. Don Allen, 7148 South 2985 East. Salt Lake City, Utah 84121.

COUNTER, H.P. 524D 100MHZ like new. Baird. Rt. 5. Box 495, Berea, KY 40403.
REGENCY Touch $\$ 249.95$. Bearcat $210 \$ 249.95$ (707) 544-4388. McDonald, Box 7492(P). Santa Rosa. CA 95401 30 WATT MOBILE STEREO AMP - Runs from 12VDC. Described P.E. Feb., 1976. Drilled Circuit Board, \$4.50. Copy P.E. article $\$ 1.00$. EBCO, 67 Forest View, Northford. CT 06472.

IC's - 100 assorted 7400 series - All Marked, $\$ 12.50$ ppd Send stamp for bargain list. Gull Electronics, 12690 Rte. 30 N. Huntingdon, PA 15642

	Triple Output Regulated DC Supply - compact DC supply ideal for Wodel 477.3 supplies 5 y anires. $\mathrm{ma}+12 \mathrm{~V}$ at 100 ma and -5 V at 200 ma regulated outputs, input 110 V 60 Hz , the unit is enclosed in a compact steel case and complete with $A C$ line cord with fuse. F. O. Box 1792. North Brunswick. NJ. 08902.

$\overline{\text { PET owners need information?! Send SASE for details. TIS, }}$ Box 921, Los Alamos, NM 87544.
$\overline{N A M E ~ B R A N D ~ T E S T ~ E Q U I P M E N T ~ a t ~ d i s c o u n t ~ p r i c e s . ~} 72$ page catalogue free. Write: Dept. PE, North American Elec tronics, 1468 West 25th Street, Cleveland. OH 44113.
BREAKERLESS ELECTRONIC ignition: Auburn Sparkplugs. Synthetic Lubricants, Wheel Stabitizers. Information 26 cents. Anderson Engineering, Epsom, N.H. 03234. CB ANTENNA CONSTRUCTION MANUAL: Build 16 DB Gain Beams plus Quads, Verticals, Ground Planes using common hardware. East assembly highest performance Complete \$4.00. Tenna-Farm, 1117 Dewitt Tr.. Linden. N.J. 07036.

MAKE PC BOARDS. Step-by-step "how to" manual with build-it-yourself equipment plans, charts, and illustrations. For Polyez and Film-Chemical processes. $\$ 4.98$ plus 50 cents P\&H. Century American Instruments, Dept. 412. Box 1014, Placentia, CA 92670.
SURPLUS and Used Regency and Bearcat Scanners from $\$ 25.00$. Crystals $\$ 3.95$. Free Catalog. Action Surplus, 295 North Snelling, St. Paul, Minnesota 55104.
GIANT BARGAIN ELECTRONIC CATALOG listing thousands of components, tubes, transistors. IC's, kits, test equipment. Edlie's. 2700-1PA Hempstead Turnpike, Levittown. N.Y. 11756 . Price $\$ 1.00$ refundable with first order.
SCANNERS, BEARCAT 210 or Regency Touch $\$ 239.95$, Two.Way Radios, Videotape Recorders. Free Catalog. Guilderland Communications, Box 591, Guilderland, N.Y. 12084.
new adjustable. three output. regulated, POWER SUPPLY, plus 900 parts worth over $\$ 400.00$ in complete CARTRIVISION television electronic assembly. Documentation included. Perfect for MICROPROCESSOR and rall electronic applications. $\$ 17.95$ plus $\$ 3.50 \mathrm{~S} \mathrm{\& H}$. Master Charge. BankAmericard. Free brochure. MADISON ELEC. TRONICS, 369. Madison Alabama 35758. SATISFACTION GUARANTEED.
ADVENT VIDEOBEAM PROJECTION TELEVISION. 5. 6. \& 7 foot screen, shipped anywhere. Amboy Television Center, 317 Hall Avenue, Perth Amboy, New Jersey 08861.
COMPUTER PARTS FALL-OUT - Sockets Guides - Power Supplies - Core Memory Planes. Send $\$ 1.00$ for a catalog. Refund first order. J\&E Electronics, P.O. Box 4504, Fort Worth, Texas 76106.
B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AD, 948 Prospect, Elmhurst. IL 60126.

MULLEN COMPUTER BOARDS KITS: Extender Board with Logic Probe ($\$ 35$) simplifies servicing. Relay/0pto-isolator Control Board (\$117) interfaces to relays, triacs, etc. S-100 compatible. For details visit your computer store or write: Box 6214-A. Hayward, CA 94545.

PLANS AND KITS

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

MIXERS-Preamps-Speakers, Top Quality Kits-Plans-Parts. Send 25 cents for catalog. Audio Design \& Engineering Co., P.O. Box 154 , Lee, Mass. 01238. (413) 243-1333.
FIVE LASER PLANS - $\$ 8.00$; Welding-Burning Laser plans - $\$ 9.00$. Catalog $\$ 2.00$. Solaser, PE 478, Box 1005, Claremont, California 91711.

QUALITY KITS. over 7.000 schematics. $\$ 1$ (refundable) for illustrated catalog. Tek-Devices, Box 19154c, Honolutu, HI 96817.

ROBOT PLANS That Work! $\$ 5.00$. American Robots, Dept. E,, P.O. Box 1304. Tulsa, OK 74101
CB/HAM-OMNIPOLARIZED BASE ANTENNAS. Modulation boosting VOX-COMPRESSOR. Portable / mobile / memory, 300 MHz FREQUENCY COUNTER, Complete plans $\$ 3.00$ each, $\$ 7.50$ /all. MANY OTHERS! Catalog - PANAXIS, Box 5516-A4, Walnut Creek. CA 94596

TUBES

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105. TUBES: "Oldies", Latest. Supplies, components. schematics. Catalog Free (stamp appreciated). Steinmetz, 7519PE Maplewood, Hammond, Ind. 46324
FREE BARGAIN CATALOG, Industrial, Ham, Receiving Tubes. Send Stamp. Astral, P.0.B. 707 pet. Linden. N.J. 07036.

TUBES Send 10 cents for large conclusive list. Low Prices T.J Specialties, Box 43, Bradley Beach, New Jersey 07720. (201) 774-8429.

TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low, low prices. Transleteronic, Inc.. 1365 39th St., Brooklyn, New York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802.
1,000 TYPES including obsoletes. Popular types up to 85% off list, pullouts from 29 cents. Free catalog and $\$ 1,00 \mathrm{cer}$ tificate Connolly, POB 1333P. Sun Valley, Calif. 91352.

ALARMS

QUALITY BURGLAR/FIRE ALARM equipment at discount prices. Catalog 50 cents. Steffens, Box 624C, Cranford. N.J. 07016.

DON'T PURCHASE alarm equipment before getting our free value packed catalog. Sasco, 5619-C St. John. Kansas City, MO 64123. (816) 483-4612.

WANTED

GOLD. Silver. Platinum. Mercury wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal. Norwood, MA 02062.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton. Empire, Grado and ADC. Send for free catalog LYLE CARTRIDGES, Deot. P. Box 69. Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.

SCORE high on F.C.C. Exams... Over 300 questions and answers. Covers 3rd. 2nd, 1st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests. $\$ 26.50$. R.E.I. Inc., Box 806. Sarasota, Fla. 33577.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE04, Tustin, California 92680. SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE048. 531 N, Ann Arbor. Oklahoma City. Okla. 73127.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion. Box 24-ZD. Olympia, Washington 98507.
GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages. 1465 questions with answers/discussions - covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid GSE, P.O. Box 25992, Los Angeles, California 90025. INTENSIVE 5 week course for Broadcast Engineers. FCC Firs! Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail, Fredericksburg. VA 22401.
1978 "TESTS - ANSWERS'" for FCC First Class License. Plus - "Self-Study Ability Test." Proven! \$9.95. Moneyback Guarantee. Command Productions, Box 26348-P, San Francisco, CA 94126.
BROADCAST STATION: Start your own. Any type! Home, school, church, business operation. Get free equipment, records. Details free. "Broadcasting", Box 5516.A4, Walnut Creek, CA 94596. MATHEMATICS. Electronics, satisfaction guaranteed. Indiana Home Study, Dept. PE. Box 1189, Panama City, FL 32401.

PASS YOUR FCC EXAMS. New tests by noted Author and Teacher. 500 Questions Second Class, $\$ 11.95 ; 200$ First Class, $\$ 7.95$; 100 Radar, $\$ 4.95$; Postpaid. Save, all three. $\$ 19.95$. Complete Mathematical Solutions. Free Counselling Service. Victor Veley, P.O. Box 14, La Verne Calif 91750
ELECTRONICS PROGRAM. Used in industry. Transistors to Micro Processors. FCC preparation. Troubleshooting Many experiments. Reasonable. A.L.I. Schools 6501 NW 14 St., Plantation, FL 33313

TAPE AND RECORDERS

8-TRACK and CASSETTE BELTS - money back guarantee. Long wearing. Free Catalog - $\$ 3$ minimum order. PRB Corp.. Box 176. Whitewater, Wisconsin 53190. (80Q) 558-9572 except WI.
TAPE HEAD CLEANER. $8 \mathrm{oz} .-\$ 2.30$ Includes postage and handling. Write: "Cleaner", Box 176, Whitewater, WI 53190
RECORDS - TAPES! Discounts to 73% : all labels: no pur chase obligations: newsletter; discount dividend certificates; 100\% guarantees. Free details. Discount Music Club. 650 Main St.. Dept 5-0478. New Rochelle, New York, N.Y. 10801

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books. 7218 Roanne Drive, Washington. D.C. 20021.

GOVERNMENT SURPLUS Buy in your Area. How, where Send \$2.00. Surplus, 30177-PE Headquarters Building. Washington. D.C. 20014.
JEEPS - $\$ 59.30$! - Cars - $\$ 33.50!$ - 200.000 ITEMS! GOVERNMENT SURPLUS - MOst COMPREHENSIVE DIRECTORY AVAILABLE tells how. where to buy - YOUR AREA - $\$ 2.00$ - MONEYBACK GUARANTEE - Government Information Services. Department GE-13. Box 99249. Saา Francisco. CA 94109 (433 California)

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes-Verlag Box 110660 R. D. 1000 Bertin 11. Germany

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS Many new prod ucts. Catalog. Jackson's. Dept. K. Brownsville Rd.. Mt. Ver non, III. 62864

BOOKS AND MAGAZINES

FREE book prophet Elijan coming betore Christ Wonderfu bible evidence. Megiddo Mission. Dept. 64. 481 Thurston Rid.. Rochester. N. Y 14619
POPULAR ELECTRONICS INDEXES For 1976 now available. Prepared in cooperation with the Editors of "P/E, this index contains hundreds of references to product tests, construction projects. circuit tips and theory and is an essential companion to your magazine collection. 1976 Edition. $\$ 1.50$ per copy. All editions from 1972 onward still available at the same price Add $\$.25$ per order for postage and handling. $\$.50$ per copy foreign orders. INDEX. Box 2228. Falls Church. Va. 22042

REPAIRS AND SERVICES

SERVICEMEN - Cleaners. Lubricants. Adhesives for all electronic repairs. Write for FREE catalog. Projector-Re corder Belt Corp.. Box 176. Whitewater, WI 53190 800-558-9572 except Wi.
PRINTING. Rubber Stamps, Low Prices. Fast Service. Free Catalog. Magestro's Printing, North Ave., New Brighton. PA 15066

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service. Box 240E, Northport. New York 11768
RADIO-TV Jobs..Stations hiring nationwide! Free details Job Leads." 1680 -FA Vine. Hollywood. CA 90028.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% eftective. Details ree ASR Foundation, Box 23429EG. Fort Lauderdale. tree. ASR Fo
Florida 33307.
FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso. New Mexico 88345.
AMAZING self-hypnosis record releases fantastic mental power. Instant results! Free trial. Write: Forum (AA4). 333 North Michigan. Chicago 60601

INVENTIONS WANTED

FREE PAMPHLET: "Tips on Marketing Your Invention from an experienced fee-based invention service company Write, United States Inventors Service Company. Dept. T 1435 G Street NW. Washington DC 20005.
IDEAS. INVENTIONS. New Products needed by innovative manufacturers. Marketing assistance available to individuals. tinkerers universities companies with feasible concepts. Write for Kit-PE, 12th Floor. Arrot1 Building. Pitts. buroh. PA 15222.

BUSINESS OPPORTUNITIES

MADE $\$ 40.000 .00$ Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN. Ypsilanti, Michigan 48197.
FREE CATALOGS. Repair air conditioning refrigeration Tools. supplies. full instructions. Doolin. 2016 Canton. Dallas. Texas 75201
MAILORDER MILLIONAIRE helps beginners make $\$ 500$ weekly. Free report reveals secret plan! Executive (1K4), 333 North Michigan. Chicago 60601
GET RICH with Secret Law that smashes debts and brings you $\$ 500$ to $\$ 5$ Miflion cash. Free report! Credit $4 \mathrm{~K} 4,333$ North Michigan. Chicago 60601.

ньанг
 proftable ELECTRONIC FACTORY

Investment unnecessary. knowledge not required

 sales handled by protessionals. Postcard brings facts about this unusual opportunity. Write today Barta-DD, Box 248. Walnut Creek, CA 94597.NEW LUXURY Car Without Cost Free Details! Codex-ZZ. Box 6073. Toledo. Onio 43614.
GET RICH!!! Secret law erases debts. Free report exposes millionaire $\$ \$$ secrets. Blueprints. No. EE4, 453 W. 256. NYC 10471.
MECHANICALLY INCLINED Individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write BUSINESSES, 92-K2 Brighton $11^{\text {th }}$ Brooklyn. New York 11235
M:LLIONS in Mail!! Free Secrets. Transworld-17. Box 6226. Toledo, OH 43614.
RECEIVE MONEYMAKING OFFERS GALORE! Your name listed nationally $\$ 1.00$. Zodiac. P.O. Box 12310.PE, East Cleveland, Ohio 44112.
STUFF ENVELOPES. $\$ 25.00$ hundred Immediate earnings. Send addressed, stamped envelope to: M\&D Company Box 172. Winchester. OR 97495.
RECEIVE MONEYMAKING OFFERS GALORE! Your name listed nationally $\$ 1.00$. Zodiac, P.O. Box 12310-PE. East Cleveland, Ohio 44112.
$\$ 650$ WEEKLY for beginners!! Free report: Mailorder Consuttants MEE4, 453 W256. NYC 10471
$\$ 3000.00$ MONTHLY. Start immediately. Stuff envelopes at home. information, send self-addressed stamped envelope Village. Box 508-HGD. West Covina. CA 91706

EARN IMMEDIATELY STUFFING ENVELOPES. $\$ 300.00$ thousand possible. Free supplies Serid self-addressed stamped envelope. Salamon Industries-PE6. 6059 W. 55th St.. Chicago. IL 60638.
SELL BOOKS BY MAIL - 400% Profit. Be your own boss. Free Details. JB Enterprises. Box 595 (PE). Stn. Q. Toronto Canada M4T 2N4. U.S. Inquiries.

HOME ENTERTAINMENT FILMS

SAVE MONEY on World Famous Universal 8 Sound Firms: Sweet Charity; Great Waldo Pepper: Thoroughly Modern Millie: Airport, Jesus Christ Superstar - each 400 S-8 color sound in new plastic storage box. $\$ 43.95$ ea (add $\$ 1$, per film shipping). Silent. New! 400 B\& W The Best of Abbott \& Costello (Pt. I \& Pt. il). $\$ 29.95$ ea ($+\$ 0.80$ ea for ship.). All 200° S. 8 Color Sound - Star Wars Frank Sinatra in The Detective: The Poseidon Adventure - $\$ 27.95$ ea (mail order price). Penny Pinchers: Apollo XV. The Ride of the Rover: Tunney/Gibbons: TunneyAleeney - S-8 B\&W. $\$ 5.95$ ea delivered Current Columbia Pictures catalog (soon to be a collector's item). \$1.00: New Universal 64-pg 4-color catalog. $\$ 1.00$: Sportite and Universal film lists, $\$ 0.35$ ea SPORTLITE FILMS. Elect-478. Box 24-500. Speedway. Indiana 46224.

DO-IT-YOURSELF

MODULAR TELEPHONES now available Sets and com ponents compatible with Western Electric concept. Catalog 50 cents. Box 1147 W. San Diego. California 92112. TAPE-SLIDE SYNCHRONIZER. lap-dissolve multiprojector audiovisual plans $\$ 8.50$. Free Catalog. Millers. 1896 Maywood. South Euclid. OH 44121.

REAL ESTATE

BIG FREE CATALOG! Over 2.500 top values coast to coast! UNITED FARM AGENCY, 612-EP, West 47th. Kansas City. MO 64112.

MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments cataiog Freeport Music. 114 G. Mahan St., W. Babylon. N.Y. 11704

miscellaneous

MPG INCREASED Bypass Pollution Devices easily. REVERSIBLY!! Free details-Posco GEE4, 453 W. 256. NYC 10471.

1978 Electronic Experimenter's Handhook

This latest edition includes a Rob byist and Microcomputer Section! it also features a host of exciting construction projects with complete construction plans, parts lists and printed circuit board patterns. PLUS - A complete Home Computer Buying Directory with product specifi cations. latest prices, and photos. Only \$1.95!
Order your copy from ELECTRONIC EXPERIMENTER'S HANDBOOK, P.O. Box 278. Pratt Station. Brooklyn, New York 11205 . Enclose $\$ 2.50^{*}$ ($\$ 1.95$ plus 55 d postage and handling). Outside U.S.A. $\$ 3$. *Residents of CA, CO, FL, LL, M1, MO, NY STATE, DC and TX add applicable sales tax (Postage and handling charges non-taxable).

> 1978 STEREO DIRECTORY \& BUYING GUIDE

All the latest information on stereo and quadraphonic systems and components for your home. A complete guide to more than 2000 products in all than with complete specifi. - with complete specifi. prices. PLUS bonus feature articles. A must for anyone concerned with good sound.

Order from Stereo directory, p.O. Box 278. Pratt Station, Brooklyn, New York 11205. Enclose $\$ 3.00^{*}$ ($\$ 2.50$ plus $50{ }^{\circ}$ for postage and handling) *Residents of CA, CO, FL. IL, MI, MO, NY STATE, DC and TX add applicable sales tax. '(Postage and handling charges non-taxable.)

mL_ECHMRONTICS WTOIRTEID News Highlights in Brief

Creating Signature Profiles

The use of a person's signature as a means of identification may be furthered by the development at Sandia Laboratories of a special pen and tablet which sense three supposedly unique characteristics of a person's signature. In the pen are two piezoelectric himorph bender elements, bonded along adjacent quadrants of a slightly flexible aluminum shaft. As a signature is written. one of these transducers generates a horizontal acceleration signal while the other detects vertical acceleration. A third set of signals is generated by pressuresensitive transducers in the writing tablet. The three out put signals, which have peak amplitudes on the order of one volt on each axis and require no biasing current or external power supply, can be processed by a computer and compared with a file record retrieved from the computer's memory. The signature verification system is expected to be useful in banks. department stores. and other institutions where personnel identification is required.

Ham Radio and Storm Spotting

The National Weather Service, which already has more than 200 weather stations and 51 storm detection radars linked by an extensive radio network, has also turned to Amateur Radio Service operators to fill some of the gaps in the reporting nets. Hams are already functioning efficiently as severe storm spotters and communicators for the NWS in the Tulsa. Ohla.. and Dallas-Fort Worth and Waco. Texas areas. Cooperation with hams in other tornado-prone areas of the U.S. is heing developed. Interested amateurs in a particular area are contacted by the local Weather Service official and the spotting and communications needs are explained. Frequencies to be used (usually in the 2-meter band) are determined. and the system activation procedure is established. Persons interested in cooperating should request copies of the publication "Amateur Radio and the National Weather Service" to: Headquarters. Southern Region, National Weather Service, Rm. IOE09. Federal Office Bldg. . Fort Worth. TX 76102.

FCC CB Slide Show

The Federal Communications Commission has produced a 10 -minute cartoon slide-and-sound show about Citizens Band rules. The title is " $10-4$ Uncle Charlie." and it was developed to explain, in an entertaining format. the importance of the rules to the thousands of new operators who go on the air every month. The program includes 72 slides, a 10 -minute audio tape cassette, a script and a question-and-answer sheet. Clubs, schools. and others interested in CB can purchase the show package for $\$ 15$ (checks payable to the National Archives Trust Fund) from: National Audiovisual, Center General Services Administration. Order Section. Washington. DC 20409.

Record Awards for Good Sound

Record awards are based primarily on musical con-tent-only secondarily on sound. The new Audio Excellence Record Awards. sponsered by Audio-Technica, are based primarily on sound. Winner in the rock/pop division was Stevie Wonder"s "Songs in the Key of Life" (Tamla 13-340C2). In the classical division, the winner was "Caruso-A Legendary Performer" (RCA CRM1-1749). What garnered this sound-oriented award for a record based on masters more than 50 years old was a computer process that eliminated much of the original discs' surface noise and the resonances of the recording horns, giving Caruso's voice a more modern recorded quality. Among the factors for which the records were cited were: cleanliness of sound, instrumental and vocal balance, emphasis. dynamic range. frequency response. low noise. and stereo separation as well as dispersion.

Electronic Blackboard Transmits Data

The Bell System has developed a new blackboard. which. with the proper electronic equipment, can be used to transmit handwriting over phone lines for display on video monitors at distant locations. Used with a portable conference telephone equipped with microphones and a loudspeaker, the electronic blackboard can bring an instructor's entire presentation across the campus. The board consists of a rigid back layer and a front layer that is a thin sheet of black Mylar stretched tightly over the frame. The inner surfaces of both layers are electrically conductive and act as $\mathrm{X}-\mathrm{Y}$ lines. Pressing the board with a piece of chalk registers a point at the intersection of the two axes. When the chalk is moved, a memory unit retains the dots so they blend logether to form a line on the remote monitor. To erase. a device, normally resting on the control unit, is lifted so that the dot-by-dot process is reversed and the image is erased wherever pressure is applied.

Electronics in the Postal Service

If the U.S. Postal Service is to serve the public adequately and be competitive with other communications systems in the country, it is going to have to start using more electronic techniques. Such was the advice of a recent study by a Commission on Postal Service in its report to the Congress and the President. For example. the commission noted that it is now technologically possible, though not yet economically feasible, to transmit more than 50 percent of the entire volume of mail by electronic means. This is partially due to the fact that about 80 percent of first-class mail today is business-related-invoices, bills, payments, etc. The Electronic Funds Transfer systems are expected to handle 1.9 billion pieces of mail by 1980 and 6.56 billion by 1985 according to a study made by Arthur D. Little. Inc. Similarly, the Treasury Department is expanding its system of direct deposit of payments in many categories.

The new SUPERSTAR Antenna

the Athe ofevirw

CB Antenna Adaptor.
Used for upgrading to a higher performance antenna, fits any 5/8"-24 thread mount, accepts any $3 / 8{ }^{\prime \prime}-24$ antenna including the "Heliwhip." No new mount or cable is needed with this adaptor. Model HWA-1.

Quick-On Connec

Chrome plated connector for rapid removal of "Heliwhip." Simply twist for removal. Fits all antennas and mounts with $3 / 8{ }^{\prime \prime}-24$ thread, including the "Heliwhip." Model QOC.

Heavy Duty Truck Mirror Mount
Heavy duty aluminum mount with gripping teeth in both pieces, bites through paint for good ground connection. Chrome plated ferrule with $3 / 8$ " -24 thread. Clamps up to $13 / 6^{\prime \prime}$ pipe. Model HWM-12.

Mark V Base Station Antenna
The Mark V is a full 20 ft . tall. It is extremely sturdy and designed for heavy-duty commercial use. Lowest VSWR over the greatest bandwidth. Supplied with universal mast mounting kit - mounts on any pipe with O.D. from $1^{\prime \prime}$ to

Top loaded CB antenna with CLASS!
Anixter-Mark's new standard of excellence. Combines sturdy heliwhip fiberglass construction with a heavy brass chrome plated mast. Height 54". Tuning Range 26.9-27.5 MHz, Model AAC-11-4.

THE BROAD STICK is the first totally new concept in top loaded CB antenna design, In 1957 Anixter-Mark originated the industry standard - the Heliwhip ${ }^{\text {im }}$. Now, a new industry standard - THE BROAD STICK. Designed for maximum power output and input, THE BROAD STICK has been tested up to 700 watts and provides constant VSWR across 40 channels ... high operating efficiency because it's wound with 32^{\prime} ($7 / 8$ wave-length) of heavy gauge wire . . . separate loading and matching coils and much, much more! THE BROAD STICK. It's all new from ANIXTER-MARK and it's a beaut!

It's Broad!
Constant VSWR Across 40 Channels

0 6.5

"THE GREAT GRIPPER" gives you a totally designed package including:
\star Super powerful ceramic magnets

* New antenna design to complement the mount
* A full 18 feet of cable

Fiberglass and top loaded, THE GREAT GRIPPER antenna looks sleek and slim in black and chrome. And it's a 40 channel antenna - with an average VSWR of 1.4:1 over all 40 channels. Model MAR-11-S3.

NAME	
COMPANY	PHONE
ADDRESS	STATE
CITY ZIP	

AVANTI ASTRO PLANE CB Base Antennas give you patented performance!

[^0]: - QUIET. . . 90 d B below 1 volt input. 20 to 20 K . set flat or fully boosted - UNDISTORTED ... Below 0.1\%THD $\&$ $0.05 \% 1 \mathrm{M}$ at any EQ setting . . . below 0.05% THD and $0.0075 \% \mathrm{M}$ set flat.

[^1]: CIRCLE NO 100 ON FREE INFORMATION CARD

[^2]: * U.S. price only.

[^3]: 30 DAY GUARANTEE
 You must be completely satis fied with any Edmund item or full retund.

[^4]: All prices subject to change
 DALLAS, TEXAS 75238

[^5]: | ulator delivers signals from video games |
 | :--- | :--- | :--- |
 | or microprocessors to the antenna term. |
 | or |or microprocesssors to the antenna term.

 inals of your TV set. W/data, not a kit!With 12 ft . cord for your ingut. 2 Lbs .$82480015 / \$ 12.88$ ea. $\$ 69.88$ for 6ALSO: Power Supply Kit, no case, for
 above interface, $\# 82 \cup 80021$POWER SUPPLY KIT
 5 to 24 VDC C AmAn easy to build kit, includes everythingyou'll need, except the case. 115 V 60 Hzin, 5 to $24 \mathrm{VDC} ; 5 \mathrm{~A}$. regulated output.Incl. filter cap's, IC, xistors \& all parts.
 Sh. Wt. 12 Lbs . 6 M 160301 . $\$ 14.8 \mathrm{l}$
 B\&F ENTERPRISESDept. P-4
 119 Foster Street
 Peabody, MA. 01960
 FREE JUMBO CATALOG!
 Circle Reader Service Card

 $$
 (617) 531-5774
 $$

 's please.
 Please

