Popular Electronics

Preview of New Stereo/Hi-Fi Equipment

 How to Add Triggered Sweep to Oscilloscopes Microprocessor Microcourse, Part III Investigating UFO's and Other Magnelic Phenomena

4eçl Vd
H9yngsild
SyY 30 N 34

L110 Speaker System III II\|I rimips AH673 AM/Stereo FM Tuner

The Cobra 50XLR CB has it all. AM/FM Stereo. Cassette. And CB. All in one compact unit. All engineered to bring you the same loud and clear sound Cobra is famous for.

The remote mike houses the channel selector, squelch control, and channel indicator. So all you need for talking CB is right there in your hand. The cassette player features through the dial loading and four-way fader control.

Because they're only five inches deep, there's a Cobra in-dash radio to fit almost any car with little or no modification to the dash. This feature, plus the step-by-step Installation Manual and Universal

Installation Kit makes them the easiest in-dash radios to install. And our Nationwide network of Authorized Service Centers makes them the easiest to service.

There are four Cobra in-dash models to choose from including AM/FM/Stereo/8-track/CB. But no matter which you choose you can be sure of getting the best sounding radio going. The ultimate car radio.

The Cobra.

Punches through loud and clear.

Cobra Communications Products

DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635
Write for color brochure
EXPORTERS: Empire • Plainview, NY • CANADA: Atlas Electronics - Ontario FCC Approved CIRCLE NO. 8 ON FREE INFORMATION CARO

THE ULTIMATE CAR RADIO.

Telephone Answering Breakthro
 Let a new remote control answering computer free you from your next telephone call.
 The new
 Ford Code-A-Phone
 1400 answering computer.

It's a telephone answering computer. The Ford Code-A-Phone 1400 has the first largescale integration of solid-state componentry -a major change in telephone answering systems since the first mass consumer models appeared five years ago. This means more features, lower cost and greater dependability. Here are some of its exciting features:

Forget about tapes There are no tapes to buy. The Ford unit has a special polymerbased magnetic tape that will record over 25,000 phone calls without replacement. That's over five solid years of use. There are no cassette tapes to buy, wear out or replace.

Forget about microphones When you want to change or record your message, just press a red button, record your message and let go. The message (any length up to 20 seconds) will record and be immediately ready to playback since the message tape does not have to recycle. There are no separate microphones or level controls since the built-in microphone automatically adjusts to your voice.

Forget about touching it You can adjust your unit to answer on either one or four rings. When the unit is set on four rings and you reach the phone before the 1400 answers, you will not activate the unit. But let us say you're outside or indisposed. No problem. Code-A-Phone will automatically answer after four rings. This means that your unit can always be "alive" in the four-ring position so you never have to remember to set it whenever you leave your home or office.

Forget about going home Just bring your optional remote control pager with you. If you want your messages while you're on vacation or away, call your number and the coded pager will remotely signal your unit to play back all your messages.

Forget about service If you've owned a telephone answering device for more than a year, there's a good chance that it's been in for service at least once. The Code-A-Phone, however, is solid state and built with the same heavy duty components used in commercial units. It should dependably stand up to years of heavy usage. (Ford Industries is the world's largest supplier of telephone answering equipment for the Bell system.) If service is ever required, there are over 200 authorized service centers plus a service-by-mail center. There's also a toll-free "Help-Line" number to call 24 hours a day for advice or suggestions, and your unit has a limited ninety day parts and labor warranty.

The entire printed circuit-board with its integrated circuits is easily replaceable and contains the "Brains" required to control the audio amplifier and tape transport system.

PLENTY MORE FEATURES

Code-A-Phone has a monitor feature-you can listen to the caller leave his message and pick up the phone to intercept the call. If you want to skip over a message on the tape, just tap a button and it fast-advances to the start of the next call. It has a selectable erase feature that lets you erase a specific message or the entire tape if you wish.

KNOW HOW MANY CALLS

With other answering machines, you never know how many calls you receive until you play them back. With Code-A-Phone you have a call counter-a device that displays the exact number of calls you've received when you arrive home. If you now own another answering machine, you can really appreciate this convenient and exclusive feature.

Hold the small pocket-sized remote-control pager up to anv telephone in the world and you can playback all your messages.

Code-A-Phone is the first really versatile answerer that works equally well at home or in the office. It's perfect for the busy or working housewife who spends little time at home. And, if she's home and just plain busy when the phone rings, she can always call back later without offending the caller.

The executive can now leave his office, call from the field and get all his messages. An inefficient operator at a telephone answering service may offend your customers by putting them on hold. Code-A-Phone, however, takes your message quickly-without delay.

There are very few people who haven't left a message on a telephone answering machine, and callers really appreciate the convenience.

NO PHONE COMPANY TARIFFS

Code-A-Phone is equipped with an FCCregistered interconnect device so your unit is actually welcome on your phone line. The 1400 comes with a four-pronged plug so you just plug it into your phone jack. If you don't have a phone jack, just call your phone company and tell them you are purchasing an approved Code-A-Phone and that you want a four-pronged jack for your phone. They'll know exactly what you want and charge you around \$12 for the installation, depending on where you live. If you have a multi-line phone, they can install a jack to tie into any or all of the lines you wish. There are no additional monthly charges.

STANDING BEHIND A PRODUCT

JS\&A lets you use the 1400 in your home or office for one full month. Use it to screen your calls, take messages while you're gone or as a back up system when you're busy. Use the remote pager and retrieve calls while you're out. See how easy it is to change the message in seconds, and see how much it uncomplicates your life. Use it under your everyday conditions at home or at your office and then decide after one month whether or not you want to keep it. If you decide to keep it, you'll own the best. If not, return your unit for a full and prompt refund. There is no risk. Even if you already own a phone answerer, it would pay for you to see how much better the Code-A-Phone performs.

JS\&A is America's largest single source of space-age products and a substantial company -assurance that your purchase is protected.

The Code-A.Phone comes in two models: the Remote Control unit for $\$ 249.95$ called the 1400 and the same unit without the pager but with all the other features for $\$ 169.95$ called the 1200 . Simply select the unit you want and send your check for the correct amount to the address shown below. Credit card buyers may phone in their orders by calling our toll-free number below. (Illinois residents add 5\% sales tax.) There are no postage and handling charges.

By return mail, you'll receive a Code-APhone complete with all connections and instructions (extra pagers are available for remote unit) plus your ninety day limited parts and labor warranty. The unit measures $31 / 4^{\prime \prime} \times 81_{2}^{\prime \prime} \times 12^{\prime \prime}$ and weighs six pounds.
Code-A-Phone compares to units that sell for much more but do not have the simplicity and the advanced electronics. Don't be confused. Code-A-Phone is the finest telephone answerer you can buy at any price and is years ahead of all other conventional systems.

JS\&A gives you everything you could possibly expect from a telephone answering system: 1) A unit years ahead of every other unit at a very reasonable price. 2) A service network that covers the United States with repair centers and free telephone assistance. 3) The chance to buy a unit in complete confidence, knowing that you may return it without being penalized with a postage and handling charge if it's not exactly what you want. You can't lose.

Computer technology has even touched the telephone answerer. Now is the best time to get the finest system available. Order your Code-A.Phone without obligation, today.
 $\begin{array}{ll}\text { Northbrook, } 111.60062 & \text { (312) 564-9000 }\end{array}$ CALL TOLL-FREE. . . . $800323-6400$ In Illinois call (312) 498.6900
© © S\&A Group. Inc.. 1978

Thr ANALOG DELAY

INTRロDUCING... TWロ-CHANNEL ANALOG DELAY UNIT FOR AMBIENCE SYNTHESIS AND DELAY EFFECTS

FEATURES

* TWO INDEPENDENT CHANNELS
 * 3072 STAGES OF DELAY PER CHANNEL

* ADJUSTABLE INPUT AND OUTPUT LEVELS WITH INPUT OVERLOAD INDICATION
* INTERNAL OR EXTERNAL VOLT. AGE CONTROLLED DELAY TIME
* COMPANDOR IN EACH CHANNEL
* 3 MODES/CHANNEL WITH ADJUSTABLE MIX
* CONVENTIONAL REVERB OUTPUT FOR MUSIC EFFECTS

2 dimensional. Without the mixture of direct and delayed sounds that a large hall provides, almost all music reproduced in the home is lifeless. Quadraphonics has not proved to be the solution to this problem. The recent developement of bucket-brigade semiconductor technology has made it possible to offer a reasonably priced delay unit that can transform your listening room into a concert hall. Using your present stereo system, the 2AS-A, and whatever you have in the way of 2 additional speakers and 2 channels of power amplificationyou have all the parts to put together an ambience system that is capable of creating the kind of 'space' you enjoy music If you haven't heard what analog in. You don't need state-of-the-art comdelay can do for home music reproduc- ponentry to enjoy an ambience system. tion, you're missing something. Let's face The secondary power amplifiers and cover 120VAC power supply, assembly it, stereo in your living room is flat and speakers can be of very modest perfor - instructions and application notes.
mance and yet still serve to create strikingly realistic spaciousness in your listening room. If you don't have 2 extra power amp channels on hand, we offer several low cost, low power amps in kit form that would be ideal for this purpose.

Although the 2AS-A has been designed for use in music reproduction systems as an ambience synthesizer, its voltage controlled clock and mixing capabilities allow it to be configured in a number of ways for delay effects such as phasing, flaging, chorous, and vibrato. External voltage control for special effects must be user supplied.

The 2AS-A is sold in kit form only and includes the circuit boards, components, chassis $\left(11 \frac{1}{2} 2^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}\right)$.

2AS-A Analog Delay Unit $\$ 250.00$ ppd. Cont. U.S.

219 W. Rhapsody, San Antonio, Texas 78216
London: Southwest Technical Products Co., Lta. Tokyo:Southwest Technical Products Corp./Japan
\qquad

Coming Next
 Month

- SPECIAL FOCUS ON

HI-FI SPEAKER SYSTEMS

- COMPRESSOR GUARD FOR YOUR AIR CONDITIONER
- FUZZ BOX FOR ANY

ELECTRIC GUITAR TEST REPORTS:

Shure V15 Type IV
Stereo Cartridge
Fisher CR 4025 Stereo
Cassette Deck
Tram D-62 AM/SSB
Mobile CB Transceiver

Cover Art by George Kelvin

POPULAR ELECTRONICS, May 1978, Volume 13. Number 5. Published monthly at One Park Avenue, New York, NY 10016. One year subscriplion rate for U.S. and Possessions, 12.00 Cana ders only payabie in 4 currency) Second Class ders oniy, payabie in U.S. Currency). Second Class maling otfices. Authorized as second class mail by the Post Dtice Department Orrawa Canada, and tor payment of postage in cash.
for payment of postage in cash. ICS WORLD Trade Mark Registered. Indexed in ICS Reader's Guide to Periodical Literature. the Reader's Guide to Periodical Literature. ING COMPANY, ALL RIGHTS RESERVED
Ziff-Davis also publishes Boating, Car and Driv-Ziff-Davis also publishes boatung. Car and Driver, Cycie, Flying. Modern Eride,
Material in this publication may not be repro. Material in this publication may not be reproduced in any form without permission. Requests tor permission should be directed to Jerry
Schneider. Alights and Permissions, Ziff-Davis Subhneider. Rights and Permissions. Co. One Park Ave. New York, NY ${ }_{10016}$
Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by reurn postage and will be handled with reasonable care: however, publisher assumes no responsibility for retum or safety of manuscripts, ant work. or models.
Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS. Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing, if possible, an address label trom a recent issue.

The publisher has no knowledge of any proprietary rights which will be violated by the making of using of any items disclosed in this issue.

Feature Articles

 WHAT'S NEW IN HI-FI EQUIPMENT/ Ivan Berger MICROPROCESSOR MICROCOURSE / Forrest M. Mims
ENGLISH-LANGUAGE SHORTWAVE BROADCASTS

 FOR MAY THROUGH AUGUST/ Richard E. Wood
Construction Articles

MAGNETOMETERS FOR INVESTIGATING

Part 2: Some typical easy-to-build circuits.
BUILD A FAIL-SAFE TIMER/ Hal Lefkowitz
Simple circuit lets you know if a timer should fail.

Columns

STEREO SCENE / Ralph Hodges

For the Record
SOLID STATE / LOu Garner
The Light Connection.
EXPERIMENTER'S CORNER / Forrest M. Mims
The Monostable Multivibrator.
COMPUTER BITS / Hal Chamberlin
Microcomputer-Input/Output

JBL MODEL L110 BOOKSHELF SPEAKER SYSTEM PHILIPS MODEL AH673 AM/STEREO FM TUNER DYNaCO STEREO 416 POWER AMPLIFIER

HEATHKIT MODEL HW-2036 2-METER TRANSCEIVER

Departments

```
EDITORIAL / Art Salsberg
    Big Brother in Electronics.
LETTERS
NEW PRODUCTS
NEW LITERATURE
SOFTWARE SOURCES
```

LOUDSPEAKER EFFICIENCY AND AMPLIFIER POWER/ Julian Hirsch
Highlights of audio equipment at the Winter Consumer Electronics Show. Part 3: Memories, bus oriented logic, and microprocessor organization.

UFO'S AND OTHER MAGNETIC PHENOMENA/L. George Lawrence
A variety of home-built detectors to indicate magnetic disturbance.
HOW TO ADD TRIGGERED SWEEP TO AN OSCILLOSCOPE/ Richard Goodpasture
Increase the capabilities of your scope by expanding waveforms.
HOW TO DESIGN \& BUILD POWER SUPPLIES/ Joseph Carr

Julian Hirsch Audio Reports

Electronic Product Test Reports

SENCORE MODEL CB41 AUTOMATIC CB PERFORMANCE TESTER

Popular Electronics

JOSEPH E. MESICS Publisher

ZIFF CORPORATION William Zift, Chairman Martim Pompadur. President Hershel B. Sarbin. Executive Vice President

ZIFF-DAVIS PUBLISHING COMPANY

 Editorial and Execulive Offices One Park Avenue New York, New York 10016 212-725-3500 Joseph E Mesics (725-3568) John J Conton (725-3578) Midwestern OfficeThe Pallis Group. 4761 West Touhy Ave. Lincolnwood, Illinois 60646. 312 679-1100 Thomas Hockney. Michael Neri, Gerald E. Wolfe Western Office
9025 Wilshire Boulevard, Beverly Hills. CA 90211 213-273-8050; BRadsnaw 2-1161 western Advertising Manager Bud Dean 6 Chome, Minalo-Ku, Tokyo 407-1930/6821, 582-2851

Editorial

BIG BROTHER IN ELECTRONICS

George Orwell may yet earn the distinction of being one of the most prescient writers of our time. Witness the bureaucratic hands now meddling in electronics. For example, Michigan State Senator Brown introduced Bill \#499 last year, calling for a $\$ 2$ annually renewable permit for anyone whose vehicle is equipped with a CB receiver or transmitter. It provides for violators to be punished by imprisonment for not more than one year or by a fine of not more than $\$ 500$, or both.

Why this effort to single out one group for harassment, especially when the Federal Government has authorized and promoted CB Radio in vehicles? Is it viewed as an easy way to pick up more than \$1-million (as of October 1977. Michigan had 551, 560 licensed CB'ers)? Or does the Senator want the government's NEAR program (to expand the ability of CB'ers and highway police to communicate with each other) to be stillborn in his state?

Docket 21117 before the FCC represents another disturbing government proposal. It concerns a new requirement for type-acceptance of amateur-radio equipment. If adopted, it would squash ham experimentation and damage the used amateur-radio gear market. The FCC, of course, has already diminished some aspects of electronics experimenting by its stance on r-f modulators and isolation switches, prohibiting use unless certified in conjunction with the equipment to which it is being attached. And certification costs thousa. ?ds of dollars.

The Department of Justice also feels impelled to stick its hand into the electronics cookie jar. Recently, for example, I was lectured on the impropriety of PE carrying advertisements of "tie tack" or wireless microphones among other products, though ad copy mentioned only innocuous applications such as electronic babysitting. The Justice Department, however, saw some dark covert uses. If this view were to be accepted (it was not!), I suppose that butchers could be hassled about advertising meat since buyers might poison the merchandise and feed it to some unsuspecting people.
Now let's take a look at police traffic radar. I commissioned an engineer to investigate its accuracy. He discovered that there's reasonable room for error, purposeful or not. For example, a small foreign car going about 55 mph was clocked at 65 mph when a bus passed it in the opposite direction. There proved to be a host of other factors that could cause an erroneous speeding ticket to be issued on the basis of a radar reading, including questionable accuracy and the need for visual observation of speeding. (Radar is only a backup to this conclusion.) Consequently, radar detectors may well serve a useful and fair protective purpose for motorists.

In brief, electronics enthusiasts appear to be facing increased efforts by government agencies at all levels to stifle interest in these fields. And it's being done in an inexpert, costly manner.

tomorrow's computer here today . . . the bytemaster only from the Digital Group

3wirwxiz II

Digital tape based starts at $\$ 1995$ kit Delivery within BO days.
CIRCLE No. 13 on frie mFjamation caro

For details write or call today.
The Olgital group
P.O. Box 6528 Denver, co 80206 (303) 777-7133

EMPLOYING THE HANDICAPPED

Your Editorial on electronics and the handicapped in the January 1978 issue of PopuLAR ELECTRONICS brought to my attention your concern with social problems. The Electronic Industries Foundation has undertaken a joint effort with the Department of Health, Education, and Welfare that is called "A Project With Industry." Its purpose is to employ the handicapped in the electronic industries. It is now being pilot-tested in the Los Angeles and San Francisco Bay areas, with a third project planned for New England this year. -J.T. Magee, Electronic Industries Foundation, Washington, DC.

PC PATTERN TRANSFERRING

"Transfer Printed PC Patterns With No Camera or Chemicals" (February 1978) was a well-presented article. However, the process described was awarded a U.S. Patent
(3,791,905) in 1974. In 1976, we at Circolex reinvented the process using Mylar sheets with a special adhesvie backing. We did not feel disposed to promote the process because we did not have the legal right to do so. Instead, we later offered our own "Liquineg" system, which similarly copies artwork from the printed page. Unlike adhesive-backed Mylar sheets, Liquineg releases from the printed page immediately upon exposure to water. We offer dozens of printed-circuit products for the hobbyist and experimenter. -1.L. Cannon, Circolex, Box 198, Marcy, NY 13403.

TELETYPEWRITER INFO

The article, "Teletypewriter Fundamentals for Hams, SWL'ers, and Computer Hobbyists," in the October issue, was excellent in its coverage of baud rates, frequency shift and audio frequency shift keying, but neglected to mention that the majority of teletypewriter systems in hobby or ham use are Teletype Corp. model 28 or 33 series units. The model 28 differs greatly in the methods of signal generation and printing. The keyboard uses a lever system, which drives a contact arm, similar to automobile distributor points, back and forth to interrupt the dc loop. The printer relies on a signal which can be in one several forms, depending on the type and wiring. It may be driven with a neutral 0.060 A or 0.020 A signal or several types of polar sig-

Get all the newest and latest information on the new Mclntosh Solid State equipment in the Mclntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine. circle no. 29 on ree information card
nals, such as +6 volts. Printing is accomplished by the positioning of a typebox in front of a single print hammer, all controlled by the selector magnets. Typebox styles may vary in surplus equipment, so it would be wise to examine, if possible, the typebox to be sure that it is a "communication" arrangement, rather than weather, etc., which may be full of unintelligible symbols. The 33 series is a selfcontained setup, which works in a similar manner, but uses a rotating type wheel rather than a typebox. My firm will be glad to accept operation and theory inquiries and answer them in detail, provided a SASE businesssize envelope is included. We also have schematics, wiring diagrams, parts lists, exploded views, and theory and operation manuals and courses at nominal costs.-Karl M. Wahala, P.O. Box 19154, Honolulu HI 96817.

A QUESTION OF SENSITIVITY

Readers who build the "Solar Radiometer" (December 1977) may obtain very low meter readings. Presumably, this is due to variations in production lots of the specified meter movement. The article indicated a 0.3 -ohm circuit resistance, which would correspond with a 0.75 -ohm meter resistance. My readings were so low in our Arizona sunshine that I checked and discovered that my instrument had a resistance of 1.4 ohms. To use the published instrument scale, I would need a 0.93 -ohm meter resistance, which is not readily available. With 1 ohm, I get a noon reading of 45 mA at right angles to the sun. Assuming $320 \mathrm{BTU} / \mathrm{hr}$, this would correspond to 1.45 Langleys/min. -John H . Langiord, Rimrock, AZ.

POWER PHASE NOTES

A minor error in the "Computer Remote Control Project" (February 1978) requires clarification. It is stated that many residences are wired for 220 -volt, three-phase power. This is not correct. Most U.S. homes are wired with 120/240-volt, single-phase power and would require the $0.01-\mu \mathrm{F}$ capacitor as stated. If a three-phase wye system is provided, two capacitors would be required to bridge all three hot lines. In this case the phase-to-phase potential is 208 and 120 volts to ground and loads on opposite phases are being controlled. If a delta system is em ployed, the voltage on the "high leg" would be in excess of 208 volts to ground; naturally, this leg would not be used for switching purposes in this project. -Gary R. Knight, Tampa, FL.

STOPPED AT THE GATE

Is there an error in the schematic diagram of "To the Electronic Races" (December 1977)? In checking the schematic out, I discovered that IC5A and IC5B both have the same pin designations. -C.T. Anson, Shasta, CA.

The circuit shown in Fig. 1 of the article is logically correct. However, as you surmised, part of IC5 is mislabeled. The pins for IC5C should be labeled 1 and 2 for the inputs and 3 for the output of the gate.

Trex ELECTRONIC CIRCUIT OESIGN HANDBOOK

An Extraordinary Offer to introduce you to the benefits of Membership in ELECTRONICS BOOK CLUB take any

4of these unique electronics books (values to '65²) for only e each with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

841-236p. - Euild Your Ow
Working Robot (88.95)

709-294p.-Modern Guide to Digital Logic: Processors, Memories \& in. seriaces (59.95)

May we send you your choice of 4 of the se prac an unusual offer of a Trial Memberstip in Electronics Book Club?

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you through your own experience, that these very real advantages can be yours...that it is possible to keep up with the literature published in your areas of interest, and to save substantially while so doing. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 4 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation. ELECTROMICS Book CLUB. Blue Ridge Sumnit, Pa. 17214

Facts About Club Membership

- The 4 introductory books of your choice carry publishers retail prices of up to $\$ 65.80$. They are yours for only 99 each (plus postage/handling) with your Trial Membership - You will receive the Club News, describing the curren Selection Alternates and other books, every 4 weeks ($13 x$ times a year).
- If you want the Selection, do nothing, it will be sent to you automatically. If you do not wish to receive the Selection, or if you want to order one of the many Alternates offered, you simply give instructions on the reply form (and in the envelope) provided, and return it to us by the date specified. This date allows you at least 10 days in which to return the form. If, date allows you at least 10 days in which to return the form. If, because of tate mail delivery, you do not have 10 days to make
a decision and so receive an unwanted Selection, you may a decision and so receive
retum it at Club expense. - To camplete your Trial Membership, you need buy only four additional monthly selections of alternates during the next 12 months. You may cancel your Membership any time after you purchase these four books.
- Al books - including the introductory Offer - are fully returnable ater 10 days if you're not completely satisfied. - All books are offered at low Member prices, plus a small postage and handling charge.
- Continai in Lonus If you continue after this Trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Certificates plus payment of the nomi nal sum of $\$ 1.99$ mill entitle you to a valuable Book Dividend of your choice which you may choose from a list provided Members.

Heletronics book club

Blue Ridge Summit, Pa. 17214

Please open my Triall Membership in ELECTRONICS BOOK CLUB and send ma the 4 books circled below. I understand
The cost of the books ! have selected is only 996 each, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my membership at any time.

Learn digital computer

NRI is the only school to train you at home on a real digital computer.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer.

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "'logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your problem and
displays the result instantly.
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming.

New NRI Memory Expansion Kit

The Model 832 NRI Digital Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of your knowledge of digital computers and programming. With the large-scale IC's you get the only home training in machine language programming experience essential to troubleshooting digital computers.

electronics at home.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning $25^{\prime \prime}$ diagonal solid state color TV and a 4speaker SQ ${ }^{\text {™ }}$ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.
All courses are available with 'low down payment and convenient monthly payments. All courses
provide professional tools and "'Power-On' equipment along with NRI kits engineered for
 training. With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI's Complete Communications Course includes your own 400-channel VHF transceiver

NRI's Complete Communications Course will train you at home for
 one of the thousands of service and maintenance jobs opening in CB; AM and FM transmission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning" 400channel VHF transceiver; electronics Discovery Lab ${ }^{\text {Tw }} ;$ CMOS digital frequency counter; and more. You also get your all
important FCC Radio-telephone License, or you get your money back.

CB Specialist Course also available

Servicing with your own CB Transceiver, AC power supply, and multimeter. Also included are 8 reference texts and 14 coaching units to make it easy to get your Commercial Radiotelephone FCC License.

You pay less for NRI training and you get more for your money.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.

More than one million students have enrolled with NRI in 62 years.
Mail the insert card and discover for yourself why NRI is the recognized leader in home training. Do it today and get started on that new career. No salesman will call.

If card is missing write:

NRI SCHOOLS
McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Washington, D.C. 20016

 New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Free Information Card or write to the manufacturer at the address given.

Mitsubishi Digital
 FM Tuner

The DA-F20 is a frequency synthesizer, quartz-locked FM tuner with both digital readout and circular frequency dial. It fea-

tures wide/narrow i-f selection, a record-ing-level check button, and LED analogarray displays for signal strength and cen-ter-tuning. Rated specifications are 80 dB S / N in mono, 75 dB stereo; THD of 0.05% in mono, and 0.08% in stereo; and 100-dB spurious, image and i-f response ratios. Stereo separation at 1 kHz is rated as 50 dB at the wide-band i-f setting, and 45 dB at the narrow setting. $\$ 380$.

CiRCle no 91 On free information card

VideoBrain Family Computer

VideoBrain TM is said to be the first home computer that can be used to implement

high-level computer tasks even if you have no computer programming skills. This is made possible by the use of pre-programmed software cartridges. Programs currently available include Finance 1, Cash Management, Music Teacher 1, Math Tutor 1, Wordwise TM 1 and 2, and
video games Gladiator, Blackjack, Checkers, Pinball, and Video Artist. Fifty additional programs are being developed; individual program cartridges will retail for $\$ 19.95$. The self-contained computer with keyboard is built around an F-8 MPU. Incorporated into VideoBrain ${ }^{T M}$ are basic text and timekeeping programs, and video output for connection to color or B\&W TV receivers. It comes with two joy sticks, three cartridge programs, and a TV-connection cord and antenna switch. \$500.
circle no 100 on free information card

Sony Cassette Deck

The Sony TC-K7II is a front-loading, Dolby-equipped stereo cassette deck with a two-motor drive, including a dc servocontrolled capstan motor. Transport func-

tions are solenoid-operated, and controlled by light-touch pushbuttons; a remote control is optional. Features include: timer start for record or play, LED overioad indicators for $0,+4$ and +8 VU levels, separate level controls for headphone and line out, memory tape counter for start or stop, a front-panel line in jack, 3-position bias and equalization switches, and a record mute switch. Stated performance with ferrichrome tape is $60 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ without Dolby, frequency response of $30-16,000 \mathrm{~Hz} \pm 3$ dB , and 1.3% THD. Wow and flutter are rated at $0.045 \% . \$ 500$.

GIRCLE NO 93 ON FREE INFORMATION CARD

Automobile Computer

"Compucruise" is a multi-function automobile system monitor and controller with 18button keyboard and a 5-digit fluorescent display. With appropriate sensors installed

in the car, it monitors battery voltage, speed, fuel flow, distance, time and air temperatures both inside and outside the
car. (Engine temperature may be substituted for either of these.) As a fuel management system, it can indicate instantaneous and average fuel consumption, fuel used and remaining, plus distance and time to fuel exhaustion at current speeds. It can also display time of day, elapsed time, accurate road speed, and estimated time of arrival. As a cruise control, it can maintain the car at any predetermined speed. Metric and English units may be switch-selected for all functions. Address; Zemco, Inc., 1136 Saranap Ave., Suite L, Walnut Creek, CA 94595.

JVC
 Equipment Racks

The JVC "MusicTowers" are rack cabinets, available in three models. Smallest is the LK-33/MK-33, a pair of walnut-look cabinets each measuring $44.2^{\prime \prime} \mathrm{H} \times 18.2^{\prime \prime} \mathrm{W} \times$ $14.2^{\prime \prime} \mathrm{D}(112.0 \times 46.2 \times 36.0 \mathrm{~cm})$ with equipment shelves and a glass-doored

record-storage area. The LK-905 MusicTower is a black wood unit $49.5^{\prime \prime} \mathrm{H} \times$ $21.7^{\prime} \mathrm{W} \times 17.8^{\prime \prime} \mathrm{D}(127.7 \times 55.0 \times 45.2$ cm), also with a record storage compartment. The LX-3000, for EIA-standard, 19" rack-mount equipment is in three sections that resemble a studio tape recorder console. It includes a turntable well surmounting a base with a rack-mounting area about $19^{\prime \prime}(48.2 \mathrm{~cm})$ high and $21^{\prime \prime}(53.4 \mathrm{~cm})$ deep. Mounted on pillars above the turntable (with ample clearance for the turntable dustcover) is an additional rack area, about $18^{\prime \prime}(45 \mathrm{~cm})$ high $\times 14^{\prime \prime}(36 \mathrm{~cm})$ deep. The LX-3000 has overall dimensions of $63.6^{\prime \prime} \mathrm{H} \times 22.6^{\prime \prime} \mathrm{W} \times 22.3^{\prime \prime} \mathrm{D}(161.8 \times$ $57.4 \times 56.5 \mathrm{~cm}$).

[^0]
Channel Master CB Mobile Antenna

Channel Master's Model 5061 trunk-lip,

 base-loaded CB antenna employs a spring-loaded, bayonet-mount locking feature that enables it to be quickly removed when the vehicle is left unattended. The triple chrome-plated triangular cup allows
the antenna to fit onto trunk lips with only $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ clearance to window. The cup features a Neoprene gasket to protect the finish of the vehicle on which it is mounted and an internal support bridge for added strength and stability. The quicklock antenna comes with 17^{\prime} (5.2 m) of preassembled RG-58/U harness and a positive-contact miniature connector. It is weatherproofed and has a rated SWR of 1.3:1. \$28.95.
circle no. g8 on free information card

Science Workshop Tuner Subber

Said to be the first of its kind, the Varactor Tuner-Subber Model DVB-13 from

Science Workshop uses variable-capacitance diodes to provide continuous electrical, rather than mechanical, channel tuning. It has a MOSFET r-f stage and four Varactor-tuned circuits. A built-in MOS-LSI chip provides 16 video patterns for testing and aligning color circuits and convergence. Patterns include: rainbow, color bars, noise-free raster for purity and greyscale adjustments, dots, lines, and crosshatches. A modulator provides $\mathrm{r}-\mathrm{f}$ and video output signals. Featured are: 1.5 -volt p-p output at 470 ohms; r-f output adjustability from channel 2 through 4 ; crystalcontrolled master and color oscillators; dig ital matrix switching; and battery power.
$\$ 74.95$, kit; $\$ 89.95$, wired. Address: Science Workshop, Box 343, Bethpage, NY 11714

Exact Lin/Log Sweep Generator

The Model 117 is a line- or battery-operated linear/logarithmic sweep function generator from Exact Electronics Inc. It offers sine, square, triangle, ramp, and pulse outputs, with the main output variable up to 15 volts $p-p$ open circuit and 7.5 volts $p-p$ into 600 ohms. Independent auxiliary triangle, ramp, pulse, and low sine-wave outputs are available simultaneously, with an independent amplitude control on the low-sine output. Operating frequency is 2 Hz to 200 kHz in three ranges. External capacitors can be added to modify the ranges as desired. Control of frequency can be internal (via the frequency dial) or automatic sweep over a 1000:1 linear or log range. Selectable sweep ranges are $25 \mathrm{~s}, 250 \mathrm{~ms}$, and 2.5 ms , or the sweep rate can be modified by connecting an external capacitor to the ramp timing terminals.
clrcle nd. 99 on free information card
(More New Products on page 14)

As little as 1

Now, whenever you'd like to give a circuit a try, you can build it up nearly as fast as you can dream it up with Super-Strips ${ }^{\text {M, }}$, the faster, easier and less expensive solderless breadboards from A P Products. When you build your circuit on a SuperStrip, everything stays as good as new. Once you're through, you can use everything again and again. Instantly. Put a Super-Strip to work for you. Eight distribution lines handle signal and power, and 128 five-tie-point terminals can handle 9 ICs and then some. It's a whole lot easier than printing a circuit and a whole lot handier than haywire.

Part Number	Model Number	Terminal Type	Price Each
923252	SS-2	nickel-silver	$\$ 17.00$
923748	SS-1	gold-plated	$\$ 24.95$

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Book.

Electronic Golf-Swing Timer

How fast is your golf swing? It's one of the factors affecting the length of your drives. The GT100 Swingtimer monitors clubhead speed photoelectrically to $1 / 50,000$ of a second at tee level, enabling quick comparison of speed developed with different clubs and techniques. The device includes a battery-operated, swivel lantern light source and timer with a three-digit LCD readout, usable in daylight. The display also signals when light source and timer are properly aligned. Powered by a 9 -volt battery, the portable device measures about $6^{\prime \prime} \times 3^{\prime \prime} \times 2^{1 / 2 \prime \prime}(15.2 \times 7.6 \times 6.4$ $\mathrm{cm})$. $\$ 74.95$. Address: G.T. Golf Products, Box 370847, Miami, FL 33i37.

Palomar AM/SSB CB Transceiver

Palomar Electronics recently introduced the Palomar SSB-500, a 40-channel AM/ SSB mobile CB transceiver. The Palomar SSB-500 features LED numeric channel display as well as all standard operating controls, including a-f gain, squelch, clarifi-

er, switchable automatic noise limiter and noise blanker, switchable r-f gain, a LED dim/brite switch, and an S/r-f meter. LED transmit and receive indicators round out the Palomar SSB-500 front panel. The receiver section is said to feature increased protection against cross-modulation and strong adjacent channel signals.
circle no 95 on free information card

VIZ

Triggered-Sweep Scope

The VIZ WO-527A is a $15-\mathrm{MHz}$, triggeredsweep, oscilloscope with several special functions for use in TV broadcast and service work. These include a special TV line selector, for line-by-line display of video frames and TV vertical and horizontal sweep settings selectable by pushbutton.

Brand New

It's the newest, most exciting magazine in the hobby electronics market. And it covers all the fields you want to read about Personal Computers, Amateur Radio, Stereo, experimental electronics, CB \& Scanners, Short Wave Listening, Radio Control and much more.

We'll show you how to build a robot that'll work for you. We'll show you how to start your car in the cold mornings from inside the comfort of your home. We'll bring you dozens of construction projects in every issue. We'll even show you new ways to program your awn computer.

All this and more in modern electronics, the new magazine in electronics that looks really new.

Subscribe today. Special savings for new charter subscribers with the coupon below.

Other features include LED trigger-polarity indicators. Calibrated time bases from 0.5 $\mu \mathrm{s} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$, plus 10 X sweep magnification; 0.4 V peak-to-peak squarewave calibration and probe-compensation signal, and divide-by-ten trigger source function. Specifications include a horizontal bandwidth of dc to 1 MHz ; horizontal input impedance of 1 megohm, shunted for trace expansion of 30 pF ; sensitivity from $10 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ in 11 ranges; $23 \mu \mathrm{~s}$ rise time. Dimensions are $13.5^{\prime \prime} \times 7.5^{\prime \prime} \times$ $17.5^{\prime \prime}(34.3 \times 11.1 \times 44.5 \mathrm{~cm})$. Weight is $21 \mathrm{lb}(9.5 \mathrm{~kg}) . \$ 479$.

```
CIRCLE NO 96 ON FREE INFORMATION CARD
```


Yamaha Integrated Amplifier

Yamaha's model CA-610 II is a moderately priced integrated amplifier that's rated at $45 \mathrm{Wrms} /$ channel into 8 ohms at 0.05% harmonic distortion. The preamp section features a separate recording output selector, allowing the user to tape from any of the inputs-or dub directly from either deck to the other-regardless of which input is feeding the main amplifier. Bass and treble controls each have switchable turnover

frequencies, plus defeat, and the entire tone-control/filter stage can be bypassed with a MAIN/DIRECT switch. The latter reduces the gain 6 dB , and also reduces THD and IM from 0.02% at half power to 0.01%. Other features include individualchannel output meters calibrated in watts and dB , separate controls for volume and loudness-compensation level, high- and low-frequency filters, and speaker selector, plus RIAA-equalization accuracy rated at -0.3 dB , and $97 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. Dimensions are $171 / 8^{\prime \prime} \mathrm{W} \times 61 / 4^{\prime \prime} \mathrm{H} \times 133 / 16^{\prime \prime} \mathrm{D}(435 \times$ $160 \times 335 \mathrm{~mm}$).

CIRCLE NO 97 ON FREE INFORMATION CARD

How do you really use a multimeter?

Usually at your bench, in the shop, shared with others. And, if it's a Fluke multimeter, you use it with confidence.

Now you can carry that same bench precision on the job. Introducing the new Fluke 8020A DMM for only $\$ 169$.*

This rugged beauty packs more fieldvaluable features than any other DMM available, at any price. And that means field versatility when you need it most.

The 8020A has six resistance ranges, including a 20 megohm range for those special high-resistance TV components. Plus, you can measure focus dividers, pcb and capacitor leakage clear up to 10,000 megohms with the new conductance function. And conductance allows you to measure transistor beta-unique
with the 8020A.
Ever damaged your meter in the fly. back circuit? Rest easy. The 8020A is MOV-protected to 6000 V against hidden spikes and transients.

Your 8020A comes with a full-year warranty, with worldwide service backup. Regardless of what happens to it, we'll fix it inexpensively and quickly, making the 8020A a truly cost-effective investment.
Call (800) 426-0361, toll free. Give us your chargecard number for immediate delivery. Or, we'll tell you the location of the closest Fluke office or distributor. (Buy ten 8020 As for only \$1521!*)
*U.S. price only.

Command Performance: Demand the Fluke 8020A. 1807-7007

NIKKO AUDIO PRODUCTS CATALOG

Its full line of stereo receivers, separates and professional products are described in Nikko Audio's new 32-page catalog. To assist audio shoppers, a comparison chart of technical specs for receivers is included. The catalog also features a brief history of Nikko and its background in the electronics field. Address: Nikko Audio, 16270 Raymer St., Van Nuys, CA 91406.

CHERRY "PRO" KEYBOARD HANDBOOK

Now available from Cherry Electrical Products Corp., is an 8-page catalog and handbook, "Meet the PRO", describing the new "PRO" keyboard for personal and hobbyist computers. It includes instructions on how to customize the keyboard, a schematic drawing, charts, diagrams and standard and optional specifications. Address: Cherry Electrical Products Corp., Box 718, Waukegan, IL 60085

STATIC AWARENESS BOOKLET

Available from Controlled Static Company is a booklet on the nature and control of static electricity, particularly where it concerns electronic components. Since some components are more static sensitive than others, the booklet is designed particularly to alert those in the electronics industry concerned with such problems. Address: Controlled Static Company, 9846 Jersey Ave., Santa Fe Springs, CA 90670

MOTOROLA HF-SSB COMMUNICATIONS HANDBOOK

The "Triton High Frequency Single Sideband Handbook," by Modar Electronics, a subsidiary of Motorola, Inc., discusses high-frequency, single sideband marine communications. It covers SSB radios and marine radiotelephones in the $1.6-$ to-18- MHz range. Address: Motorola Literature Distribution Center, 1301 E. Algonquin Road, Schaumburg, IL 60196.

MALLORY SEMICONDUCTOR PRODUCT GUIDE

This 148-page cross-reference and product guide lists Mallory's complete line of semiconductor products. It describes the company's transistors, complementary pair transistors, zener diodes, diodes, high-voltage components, color crystals, integrated circuits, and field effect transistors. Address: P.R. Mallory \& Co. Inc., 3029 East Washington St., Indianapolis, IN 46206.

agreement!

We knew we had something special in Pickering's XSV/3000. All of our technical tests and subjective listening studies gave strong indication of its excellence ... but we were simply amazed at the unanimous praise heaped on this new product by the critics and reviewers world-wide

We have never seen such an accolade for a new product and we attribute it to the engineering innovations that made this cartridge what it is.

So, we put together a booklet which gathers all eight reviews from all over the world

Go to your nearest store or ask us to send you one. Read the reviews for information. then listen to Pickering's XSV/3000 and be convinced.

For your copy, write to Pickering \& Co., Inc., 101 Sunnyside Blvd., Plainview, N.Y. 11803. Dept.PE
© Pickering \& CO, Inc. 1978

© PICKbring

for those who can hear the clifference

Stereo Scene

By Ralph Hodges

FOR THE RECORD

THE AUDIO accessories business would seem to be going like gangbusters, although it's a little hard to understand why. Could there possibly be room in the marketplace, one wonders, for yet another variant of the Discwasher system, the Ball Corporation's Sound Guard, or the classic Watts Dust Bug? Yet still they come, some of them managing to carve out niches of distinction for themselves. For example, Recoton's handheld Clean Sound system recently won an award for design aesthetics, so if you can't be entirely sure of its effectiveness, you can at least be certain it won't offend the eye

What any of these products will do to the record remains the crux of the matter; and, as ever, the effects-particularly the long-term ones-of their continued use are exasperatingly difficult to evaluate. Along with others, I have noted that some of the spray-on dry-lubricant substances such as Sound Guard tend to cause a subtle but perceptible change in the sound. Is it for the better or the worse? | think that question couid be debated loudly and at length. But more important, does it occur because the record itself has been physically altered, perhaps as the result of accumulations of the substance filling in fine
groove detail? To a man, the manufacturers deny this, and I can only take their word for it. However, it would appear that other mechanisms could be responsible for the audible change. An alteration of the stylus-groove coefficient of friction could materially affect any pattern of resonances tending to be excited within the stylus assembly, as well as the vertical tracking angle. (A previous column discussed the audible effects of small changes in vertical tracking angle at some length.) Thus, it becomes next to impossible to determine precisely what it is you're hearing under any given set of conditions.

If we can't tell a great deal by ear, perhaps we can augment our understanding by eye; and, thanks to the scanning electron microscope of Stanton Magnetics' George Alexandrovitch, we may soon be getting our first comprehensive look at the minuscule world of the record groove in all its vicissitudes. I hope to be able to report on that work as soon as it has run its (very lengthy) course. Meantime, every few minutes there is a new accessory to raise more controversy. Here are a few of the latest.
(continued on page 22)

WAHL CLIPPER CORPORATION

ORIGINATORS OF PRACTICAL CORDLESS SOLDERING

- Sterling. Itlinois 61081 • (815) 625-6525
"Manufacturing Excellence Since' 1919"
CIRCLE NO. 51 ON FREE INFORMATION CARO

Magazines At Discount

Reg. Rate: 26 issues/\$18
Newstand Rate: 32 issues/ $/ 99.60$

You SAVE up to 50\%

Here's your chance for a real bargain bonanza on your favorite magazines. You may select as many as five of these titles at the special introductory rates shown - up to 50\% off! To order, indicate the magazines you want by inserting their code numbers in the boxes on the attached order card. Or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 2703, Boulder, Colorado 80322.

CHOOSE YOUR FAVORITES AT DISCOUNT PRICES!

MAY 1978

Needle in the hi-fi haystack

Even we were astounded at how difficult it is to find an adequate other-hrond replacement stylus for a Shure cartridge. We recently purchased 241 random styli that were not manufactured by Shure, but were being sold as replacements for our cartridges. Only ONE of these 241 styli could pass the same basic production line performance tests that ALL genuine Shure styli must pass. But don't simply accept what we say here Send for the documented test results we've compiled for you in data booklet \# AL548. Insist on a genuine Shure stylus so that your cartridge will retain its original performance capability-and at the same time protect your records.

Shure Brothers Inc. 222 Hart rey Ave., Evanston, IL 60204 In Canada: A.C. Smmonds al Sons Limiled

Manufactures of high fidelity components, microphones, sotnd systems and related circuitry.

CIRCLE NO 55 ON RREE INFORMATION CARD

STEREO SCENE

(continued from page 18)

A Shock Absorber for Tonearms.

First reports are coming in on Discwasher's new DiscTraker device (\$29), and some of the more authoritative ones are quite positive. The DiscTraker is in effect a pneumatic suspension for the tonearm, consisting of a dashpot that affixes to the cartridge holder and a soft velvet pad that contacts the record surface. The intent of the mechanism is to ward off the effects of vertical record warps (including warp wow and flutter, and generation of high-level infrasonic signals) on a compliant stylus assembly.

During a recent get-together with Douglas Sax, a principal at the Mastering Labs disc-cutting studio and president of the Sheffield Labs direct-to-disc recording project, he indicated to me, that after extensive experience, he found the device did "nothing bad" and very probably helped in many cases. Needless to say, there are few people who are quite as discerning and demanding as Sax when it comes to rec-ord-playing equipment, so his comments amount to high prasie.

Tomlinson Holman of Apt Corp. has done some original work on warp effects, which he now believes to be the major causative mechanism of audible Doppler distortion in loudspeakers. Up to now, Doppler-distortion researchers have largely confined themselves to test signals of a sort likely to be found as part of the actual recorded program on records. Few of them have really heard
anything they were inclined to complain about. Holman wonders if they ever will. But in any case, he is able to demonstrate Doppler effects with modulating signals below 15 Hz at levels typical of what you'd get from a warped record and a poorly matched arm-cartridge combination. To quote from a private communication:
"There are several reasons why infra-sonic-generated Doppler distortion is more severe than distortion arising from in-band signals intermodulating one another.
"(1) With decreasing frequency the speaker excursions become longer. This fact combines with radiation resistance to result in a flat response in the operating range of the speaker and a $12-\mathrm{dB}$-per-octave rolloff below (assuming the speaker is of the acoustic-suspension type). But, the speaker still makes long excursions at frequencies well below its acoustic cutoff; it is not the acoustic output that produces distortion but the cone excursion, and the excursions at infrasonic frequencies are long.
"(2) The ear is most sensitive to pitch fluctuation at rates between 5 and 10 Hz . This unhappy fact shows up in the weighting curves for flutter meters that are required for good subjective correlation. This means that the ear is twice as sensitive to $5-\mathrm{Hz}$ modulation as it is to $30-\mathrm{Hz}$ modulation.
"(3) The warp content is not musically related to the program material and is thus likely to be more obvious, since it occurs at unlikely-but not randomtimes.

"(4) Most of the warps are vertical more than they are horizontal, giving rise to out-of-phase signals. This means that one speaker cone is going to be coming toward you while the other is going away. In a stereo system, I think this is likely to disturb the perception of direction during the warp, causing image shifts. I cannot yet say l've heard this effect clearly, however."

Holman builds a sharp infrasonic filter into his preamplifier to nip Doppler distortion in the bud. But this is only one possible solution to the problem.
If the DiscTraker can cure a record player perturbed by serious warp effects, it should be more than worth its price. But aside from its efficacy as a "Band Aid '"," there remains the question of whether it will help, harm, or not affect at all a tonearm already well-suited to its cartridge

Incidentally, getting back to Sheffield Labs for a moment, their two latest di-rect-to-disc releases-excerpts from Prokofiev's Romeo and Juliet and Wagnerian orchestral selections (Los Angeles Philharmonic with Erich Leinsdorf conducting)-may be destined to mark some sort of milestone in modern-day symphonic recordings. The pickup was a single stereo microphone-as purist and straightforward as you can get. Furthermore, the dynamic range is shockingly uninhibited, the musicianship supremely fine (Leinsdort is reported to have said that, all told, the Wagner may be the best thing he's ever recorded), and the records seem genuinely difficult to play. After hearing the Prokofiev reproduced with stunning effect on Sax's system, I took a copy to a friend's house and listened in disbelief as his top-quality record player got into about as much trouble as a record player can get into. These records can tax any playback system in a number of ways, and if your copies turn out sounding terrible, don't say you haven't been warned.

Laying Rubber. The lowly rubber or plastic mat that supports the record on the turntable platter has come in for its share of dispute over the years. Intermittently, voices are raised to proclaim that all turntable mats should be electrically conductive so as to bring opposing charges into the closest possible proximity to any static charges on the record. (This idea has never really caught on with manufacturers, and it's next to impossible to find a conductive mat today.) Jack Rabinow, designer of the Rabco tonearms and turntables, among other

Era IV begins! The new Shure V15 Type IV phonograph cartridge is an altogether new phono cartridge system that exceeds previous performance levels by a significant degree - not merely in one parameter but in totality. The Type IV offers

- Demonstrably improved trackability across the entire audible spectrum.
- Dynamically stabilized tracking overcomes record-warp caused problems, such as fluctuating tracking force, varying tracking angle, and wow.
- Electrostatic neutralization of the record surface minimizes clicks and pops due to static discharge, elec-
trostatic attraction of the cartridge to the record, and attraction of dust to the record
- An effective dust and lint removal system.
- A Hyperelliptical stylus tip configuration dramatically reduces both harmonic and intermodulation distortion.
- Ultra-flat response - individually tested.

For complete details on this remarkable new cartridge write for the V 15 Type IV Product Brochure (ask for AL569) and read the exciting facts on the V15 IV for yourself.

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204
In Canada: A. C. Simmonds \& Sons Limited
Manufacturers of high fidelity components, microphones, sound systems, and related circuitry
distinctions, has asserted that a record not completely supported by its underlying mat becomes a microphone that feeds back into the sound system via the phono cartridge. (Rabinow suggests you lower your pickup onto a stationary record, turn up the gain, and shout at the record to find out how much trouble you're in. So far l've gotten nothing but raw vocal cords from this test, but l'll keep trying.) Similarly, for some time Thorens has molded its mat to provide strategic spaces and "channels" beneath the record to break up any mechanical resonances.

Now we have turntables that come with fluid-filled and pigskin (if you purchase it in Japan) mats, and a burgeoning crop of accessory mats as well. Faced with a situation in which I was going to have to operate a turntable not five feet from a trio of loudspeakers intended to pack quite a wallop, I acquired one of these mats, as much out of curiosity as anything else. It happened to be the DISK-SE22 (\$20), distributed by Osawa and claimed to be just the thing for adding mass (and therefore, presumably, speed stability) to the platter, and for isolating the record from any structural resonances in the platter's metal cast-

The DISK-SE22 is said to add mass to platter, isolating record from structural resonances.
ing. I had noted that the platter emitted a sustained "ping" when flicked with a fin-ger-nothing that would bother me ordinarily, but I was looking for insurance.

The mat turned out to be a substantial item, weighing more than a pound and tapered so that it was somewhat thicker at the circumference than at the middle. (According to Rabinow this is not a good idea, because it denies support to most of the record's area. The mat's accompanying literature made a virtue of this design feature, so I went ahead anyway.)

To my astonishment, I was immedi-
ately pleased with the result. To use subjective terms, a certain subtle "shudderiness" was gone from the sound, and the silences between the notes in the program material seemed more profoundly silent. A return to the mat originally supplied with the turntable seemed to point up the difference even more.
Now caution is certainly in order here before any conclusions are drawn. This simple comparison changed more factors than are immediately apparent, including (because of the mats' markedly different thicknesses) that critical vertical tracking angle. Still, under the specific circumstances existing, the mat seemed to afford an improvementsomething that is worth knowing about. I suspect that the Osawa mat is best categorized as a useful item when all is not as it should be, but by-and-large superfluous if this is not the case. It's also important to note that the mat is probably massy enough to give some turntables with low starting torque a bit of a struggle, and it could cause some platters supported by soft suspensions to tilt offlevel. However, if you suspect this item could be of benefit to you, giving it a try is recommended, especially if you can manage to borrow one.

May The SOURCE Be With You . .

THE SOURCE of your semiconductor information for the future has now been published by HEP in two new, expanded books. Not since long ago in a galaxy far away, has so much valuable enlightenment been so easily available for your specific needs:
MOTOROLA HEP DATA BOOK AND SELECTOR GUIDE
Find your device fast in the Selector Guidefrom Small-Signal Transistors to RF Power, including all popular Digital Logic families. A Source that also brings you detailed specifications of all HEP parts . . . with applications information on many devices.
MOTOROLA HEP SEMICONOUCTOR
CROSS-REFERENCE GUIIDE
More parts are cross-referenced than ever before! This Source includes well over 100,000 devices, from the most popular to the most obscure.

Both books coming soon to an authorized HEP distributor near you!!! Or to order by mail, send $\$ 2.00$ for each title desired to:

Motorola Mail Order Sales P.O. Box 27605

Tempe, Arizona 85282.

MOTOROLA Semiconductor Products Inc.

The super fidelity receiver that someone paid a million for.

A lat of money? You bet it is. But that's what it cost Sansui to develop the world's most advanced receiver. The Sansui G-9000 super tidelity DC receiver. Never before has music reproduction been so clean, brilliant and true. When you listen to a G-9000 you'll actually hear a difference. When you look at the specifications, you will understand why.

The amplifier section is DC and direct coupled to achieve a frequency response of zero Hz to 200 kHz (from main-in, - 3dB). A slew rate of $80 \mathrm{~V} / \mu \mathrm{sec} .$. achieved through the unique Sansui amplifier circuitry (patent pending), ensures ultra-fast transient response. And we've virtually eliminated distortion. THD is all the way down to 0.02% at full rated power, 160 watts per channel min. RMS, both channels driven into 8 ohms from $20-20,000 \mathrm{~Hz}$.

The FM section offers selectable IF bandwidth, for greatest selectivity in crowded signal areas and lowest distortion (0.08% sterec) under normal lis-
tening conditions. Sensitivity is $1.5 \mu \mathrm{~V}(8.7 \mathrm{dBf})$, and capture ratio is a very low 0.9 dB .

More advanced than nearly every separale amplifier and tuner availatole today, the Sansui G-9000, with simulated wordgrain cabinet, is ceitainly more convenient, especially when you look at and handle its full complement of "human engineered "controls. They are beautifully positioned, superbly smooth and outstandingly accuiate. We've even placed all the input, output and speaker terminals at the sides with rails for hiding the ccables.

Interested? Then visit your nearest Sansui dealer today. You'll be surprised to learn that cur suggested retail price is only $\$ 1,050$. And that we also offer the G-8000 pure fower DC receiver, with nearly all the advantages of the G-9000, but with slightly less power, at a suggested retail price of only $\$ 900$. Which isn't a lot when you consider that these super fidelity components are easily wath a million.

The Sansui G-9000 pure power DC receiver.

Julian Hirsch

Audio Reports

LOUDSPEAKER EFFICIENCY

AND AMPLIFIER POWER

IT IS interesting to compare the changes in loudspeaker efficiency over the past two decades or more with the corresponding trends in amplifier power ratings. These seemingly unrelated parameters are actually two sides of the same hi-fi coin; but since they are the result of totally different design efforts, that coin sometimes assumes the appearance of a quarter on one side and a dime on the other!

Efficiency, as it applies to a loudspeaker, has a precise technical meaning, but no speaker system sold for home use (to my knowledge) is actually rated for efficiency according to either EIA or any other standard method. When speaking of efficiency, we usually mean sensitivity-how loud a sound the speaker will make with a given electrical input. For convenience, however, I will continue to refer to it as efficiency.

Published speaker efficiency ratings usually state the sound pressure level, or SPL, that will be measured at a distance of one meter from the front of the speaker, in an anechoic environment, when it is driven by one watt of electrical input. Since the impedance of a speaker is complex, consisting of both resistive and reactive components, it is customary to assume that it is a pure resistance of the nominal rating (such as 8 ohms). In this case, an applied voltage of E volts would correspond to an input of $E^{2 / 8}$ watts.
There is still considerable room for variation in the test conditions, which can make it difficult to compare speakers rated by different standards. For example, if a sine-wave input signal is used, what frequency should it be? Almost any speaker varies so widely in its output, even over a narrow range of frequencies, that any sine-wave test signal would give meaningless results. Random noise is better, but it can be in the form of "white" noise (equal energy per cycle of bandwidth) or "pink" noise (equal energy per octave bandwidth). The pink-noise spectrum slopes downward with increasing frequency at a $3-\mathrm{dB}$-peroctave rate. It is thus less likely to exaggerate the high-frequency properties of a speaker than the white-noise signal, whose energy is concentrated at the higher frequencies.
However, even a wide-band pink-noise signal may
not correlate too well with the subjective loudness of the sound of a speaker. Its major weakness, as I see it, is the exaggerated contribution to the total measurement caused by any response peak in the speaker's output. It is my feeling that the mid-range output is the most important criterion in rating the loudness of a speaker, and I use an octave of random noise centered at 1000 Hz for a test signal. This is derived by passing interstation FM tuner hiss through an octave band equalizer, with the $1000-\mathrm{Hz}$ octave slider at maximum and the others at minimum. The signal is sufficiently random to avoid problems with narrowband speaker resonances, yet is limited to the most audible portion of the audio band.

In a normally "live" room, such as my test/listening room, a sound-level meter placed one meter from the front of the speaker will read higher than it would in an anechoic chamber. Nevertheless, measurements made in this way can be used for comparisons between speakers without serious error. I hold the sound-level meter on the center axis of the speaker's grille and one meter from it for this measurement. Often, there will be a considerable variation in the meter reading if it is moved to face a different portion of the grille; but in the interests of consistency, I try to stay in the center.

The range of SPL readings I have obtained on speakers tested in this way covers from less than 80 dB to as much as 98 dB . This means that one speaker required 100 times as much power as the other to produce the same sound volume in the room. Most acoustic suspension speakers fall in the 85 -to- $88-\mathrm{dB}$ range, and small ported systems are typically in the $88-\mathrm{to}-90-\mathrm{dB}$ range. The JBL L110 tested for this month's reports produced a $92-\mathrm{dB}$ SPL, indicating above-average efficiency. The Wharfedale E50 tested last month had a $95-\mathrm{dB}$ efficiency rating, requiring only half as much drive power as the JBL for the same sound level.
When the first acoustic suspension speaker appeared in 1954, a typical hi-fi amplifier delivered 10 to 20 watts, and few could exceed 30 watts. Those speakers (such as the original Acoustic Research

AR-1) would probably receive an efficiency rating in the low 80's if tested to our current standards, and it is remarkable that they were so well received at that time in view of the low amplifier powers available. (We recall that there were problems with dealer demonstrations of the AR-1, which was one of the few speaker systems of the time that could cause a $50-$ watt amplifier to clip, even at moderate levels.)

Since power outputs much in excess of 50 watts were difficult to obtain with vacuum tubes without excessive penalties in size, weight and cost, the early audiophiles managed to get along with woefully insufficient power reserves (by current standards). The appearance of solid-state amplifiers, and eventually high-power transistors, has changed that situation drastically. Now, 50 watts per channel is considered moderate power even for a receiver; 100 watts per channel is not at all unusual, and many systems are capable of well over 200 watts per channel.

Simultaneously with this change in the amplifier power picture there has been an unmistakable trend toward higher speaker efficiency. One might think of this as a boon to the audiophile beset by inflationary trends. How nice it is not to have to invest in a $\$ 500$ to $\$ 1000$ amplifier when the audio section of the most modest receiver can now create a full-volume listening situation in the home, thanks to high-efficiency speakers. Alas, this is not the way things are. With few, if any, exceptions, the high-efficiency
speakers are expensive as well as (often) large. The reasons are not difficult to appreciate-efficient drivers require large and powerful (and thus expensive) magnetic systems, and one of the other ways to achieve efficiency is to use a large cabinet volume, which requires more expensively veneered wood.
High speaker efficiency at low cost is usually obtained by restricting bandwidth (The "lo-fi" speakers in automobiles and in most compact home systems are examples.) This has the unfortunate effect of restricting the person with limited funds to a combination of a narrow-band speaker and a low-power (as well as probably "lo-fi") amplifier. His more affluent friends can, if they wish, team up a wide-band, highefficiency speaker with a super-power amplifier, whose power capabilities they will almost certainly never approach.

The advantages of a wide-range, high-efficiency speaker were brought home to me forcefully in the testing of an auto radio. Its output of a couple of watts per channel would hardly produce listenable results with typical low-efficiency speakers, but when coupled to a pair of the highly efficient Wharfedale E50's (costing almost $\$ 400$ each) this tiny radio delivered a full-volume sound, definitely of "hi-fi" caliber. It was an unlikely combination to be sure; but it did serve to illustrate the quality inherent in the radio, which would have gone unnoticed (or at least unappreciated) through a typical car-speaker installation.

JBL MODEL L110 BOOKSHELF SPEAKER SYSTEM

New' three-way. high-efficiency system with uncolored sound.

The JBL Model L110 is, to all external appearances, a standard bookshelf speak-
er system. Indeed, the system's special performance qualities are the result of an evolutionary process, rather than any radical design changes. But the end result is certainly not conventional. Roughly speaking, the Model L110 fills the spot in the JBL line that has for so many years been covered by the Model L100 (which is still available but will probably be replaced by the Model L110).

The new speaker system can perhaps best be described as a very flat, smoothsounding reproducer with above-average efficiency, and compact enough to fit on a bookshelf without precluding its ability to be placed on the floor. Though these qualities have often been ascribed to other speaker systems, they have rarely been realized with the success of the Model L110. The careful integration of three new drivers and a sophisticated crossover network enables the Model L110 to produce sound with remarkable fidelity.

The speaker system measures
$23^{1 / 2} 2^{\prime \prime} \mathrm{W} \times 141 / 4^{\prime \prime} \mathrm{H} \times 111 / 4^{\prime \prime} \mathrm{D}(60 \times 36.2$ $\times 28.6 \mathrm{~cm})$ and weighs $45 \mathrm{lb}(20.5 \mathrm{~cm})$. Its nationally advertised value is $\$ 348$.

General Description. The three-way speaker system is rated at a nominal 8ohm impedance. The low frequencies are handled by a newly designed $10^{\prime \prime}$ ($25.4-\mathrm{cm}$) diameter woofer housed in a ported enclosure. The woofer's $3^{\prime \prime}$ (7.6cm) diameter voice coil is formed of edge-wound copper ribbon.

The system crosses over at 1000 Hz to a $5^{\prime \prime}(12.7-\mathrm{cm})$ cone-type midrange driver that has a $7 / 8^{\prime \prime}(22.2-\mathrm{mm})$ voice coil. The midrange driver is housed in an acoustically isolated subchamber to prevent interactions with the woofer. Because it is much more efficient than the woofer, the midrange driver operates at a small fraction of its full capacity.

At 4000 Hz , a second crossover occurs to a $1^{\prime \prime}(2.54-\mathrm{cm})$ dome-type tweeter that has a $1^{\prime \prime}$ voice coil and is wound with aluminum to reduce mass. The

If you're interested in learning how to fix airconditioners, service cars or install heating systems - talk to some other school. But if you're serious about electronics, come to CIE-The Electronies Specialists.

Special Projects Dircetor Cleveland Institute of Electronies

My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and carcer future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool - and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You leam the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas-and builds on them.

That's what happens with CIE's Auto-Programmed ${ }^{\oplus}$ Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely . . . before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day things like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus there's a professional quality oscllloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast ... in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "ICC License School."

We don't mind. We have a fine record of preparing people to take. and pass... the governmentadministered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take
the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics - and it can be a valuable credential anytime.

Find out more: Mail this card for your FREE CATALOG today:

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists--CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

Frequency response curves for various settings of level controls.
dome is molded of two layers of phenol-ic-impregnated linen. A $1.5-\mathrm{lb}(0.68-\mathrm{kg})$ magnet contributes to the tweeter's high efficiency and power-handling ability.

JBL's literature does not describe the crossover network used in the speaker system. However, it does make it clear that this critical part employs sophisticated impedance- and phase-correcting circuits to keep the drivers operating near their theoretical abilities throughout the crossover regions. The three drivers are vertically aligned to give the sound a more uniform horizontal dispersion pattern over the full frequency range of the speaker system.

The wooden cabinet in which the drivers and crossover network are housed is finished in oiled walnut. The front panel is flat black and is normally covered by an acoustically open snap-on grille. Continuous level controls for midrange and high-frequency drivers are located on the speaker panel near their corresponding drivers.

The insulated connectors on the enclosure's rear panel are unusually effective and easy to use. A quarter turn of the terminals in the counterclockwise direction allows the bare ends of the speaker cable to be inserted. Then a quarter turn in the clockwise direction locks the connections in place.

Laboratory Measurements. We made our initial frequency-response measurements with the midrange and high-frequency controls set to their 12 o'clock positions (the starting points recommended by JBL for setting up the system in a home listening environment). We spliced the smoothed semireverberant response curve to a combined woofer/port curve made from a separate microphone at close range. With this setup, the total composite response curve was extraordinarily flat, except for a broad dip of about 5 dB between 1000 and 2000 Hz . It exhibited
none of the usual signs of midbass peaking or high-frequency irregularities. We noted, too, that the midrange level could be increased by 4 to 5 dB or cut by 5 to 10 dB in the range between 1000 and 2000 Hz by changing the 12 o'clock setting of the frequency control.
The output of the tweeter could be boosted by some 5 dB or rolled off completely, starting at about $10,000 \mathrm{~Hz}$. According to the manual that accompanied the speaker system, laboratory flat response can be achieved by setting the controls to their 3 o'clock positions.

In our more usual listening room environment, we determined that a maximum midrange setting and a 12 o'clock tweeter setting yielded the flattest overall response, which was a most impressive $\pm 2 \mathrm{~dB}$ from 36 to $15,000 \mathrm{~Hz}$!

We verified the claimed high efficiency of the system, in spite of our very different test conditions. JBL states that the system will develop an 89-dB SPL at a distance of 1 meter when driven by 1 watt of power under anechoic conditions. In a listening room, the SPL can be expected to be from 1 to 3 dB greater. Our tests revealed a 92-dB SPL at 1 meter with 1 watt of random noise in the octave centered at 1000 Hz .

The impedance of the speaker system was about 7 to 8 ohms over most of the audio range. It was 12 ohms at 4000 Hz , 40 ohms at the $55-\mathrm{Hz}$ bass resonance, and 20 ohms at 20 Hz .

The low-frequency distortion at a 1 watt drive level was less than 1% down to 60 Hz . It rose gradually to 5% at 42 Hz and to 8% at 30 Hz . When we adjusted the driving power to maintain a constant sound pressure level, equivalent to 90 dB at 1 meter, the distortion was about the same as at 1 watt down to 60 Hz . It rose slightly faster at lower frequencies, where the drive level had to be increased to maintain a constant output level. Even so, the distortion did not exceed 10% until the frequency went below 33 Hz .

The tone-burst response of the system was good at all frequencies. It revealed no signs of sustained ringing or other evidence of unwanted resonances, confirming the essential flat-

PERFORMANCE SPECIFICATIONS

Specification	Rating
Power capacity	75 W (continuous program) (amplifier ratings from 10 to 150 watts)
Nominal impedance	8 ohms
Dispersion	150 degrees at $15,000 \mathrm{~Hz}$ 90 degrees at $20,000 \mathrm{~Hz}$
Crossover frequencies	$1000 \mathrm{~Hz} ; 4000 \mathrm{~Hz}$
System sensitivity	89 dB (1 W, 1 meter)
Finish	Oiled walnut
Grille	Semi-transparent black fabric

Note: Except for the impedance and sensitivity ratings, none of the above were measured. JBL does not publish response data, since there is no standardization; and the speaker's controls allow for much variation.

Tone burst responses at: 100 Hz
ness indicated by our frequencyresponse measurements in the lab.

User Comment. When we subjected the speaker system to a simulated live-versus-recorded listening test, we encountered the usual problem of establishing a "flat" response with a system that contains user-adjustable controls.

1000 Hz . . .
With the suggested 12 o'clock control settings, the sound was not grossly different from the sound of our reference speaker system. But there were still some minor differences that prevented perfect reproduction. The nominally flat settings at approximately 30° clock came closer to yielding a flat response at our listening position.
circle no. 101 on free information card

5000 Hz .
As the correct control settings were approached, the sound of the speaker system became almost undetectable and eventually disappeared for all practical purposes. We were left with the sound of the music itself, rather than the sound of the speaker system. This reassuring subjective effect pleasantly confirmed the verdict of our tests.

PHILIPS MODEL AH673 AM/STEREO FM TUNER

Touch-operated controls are activated by finger resistance.

In spite of its relatively conventional external appearance, Philips Model AH673 is a very unconventional AM/stereo FM tuner. Its most distinctive external feature is a set of momentary-contact, touchoperated controls for those functions usually handled by pushbutton or toggle switches. There are five touch-operated switches in all, including the POWER switch.

The tuner measures $18^{\prime \prime} \mathrm{W} \times 13^{1 / 2^{\prime \prime}} \mathrm{D} \times$ $51 / 2^{\prime \prime} \mathrm{H}(45 \times 33 \times 14 \mathrm{~cm})$ and weighs $25 \mathrm{lb}(11.5 \mathrm{~kg})$. Its nationally advertised value is $\$ 499.95$.

General Description. Since the touch-operated controls are activated by the resistance of a finger shunting two closely spaced contact bars, the power must be on for any of them to operate. Hence, a separate 12 -volt power supply that is always on to permit energizing the POWER touch switch circuit is built
into the tuner. A touch on the POWER contacts turns on the main power supply to all circuits, rendering all the other controls operative

The MULTIPATH switch can be used to convert the FM center-channel tuning meter to a multipath-distortion indicator. A rather elaborate circuit that contains 10 transistors and a large number of passive components is used here to process the output of the discriminator and the output of a separate AM detector located ahead of the limiter. The resulting dc signal causes the pointer of the meter to deflect up-scale during modulation if multipath distortion is present. As with the other touch-contact switches, the MULTIPATH switch returns to its normal FM tuning state when it is touched a second time. A red LED glows above each switch as it is activated.

AM frequency response shows effect of filter at 10 kHz .

Noise and sensitivity curves for $F M$ section of receiver.

Frequency response and crosstalk averaged for both FM sections, with dashed line showing effect of Automatic Stereo Noise Canceling. Active signal level is less than $32 d B f$.

The MUTE switch operates in conjunction with a muting threshold knob control. On mute, a relay interrupts the audio path between the multiplex circuit and the audio section. Another touch switch, labelled ASNC (for Automatic Stereo Noise Cancelling), automatically blends the stereo channels at high frequencies to reduce audible noise when it becomes excessive in the received signal (such as when the signal strength drops below a certain level). However, the actual operation of the ASNC is determined by the noise in the multiplex circuits rather than by the agc or another signal-strength related function. Blending is accomplished positively, rather than gradually, through a FET switch that is gated by a Schmitt-trigger circuit.

The remaining touch control inserts the $10-\mathrm{kHz}$ whistle filter for $A M$ reception. The AM section of the tuner is in many ways the Model AH673's most extraordinary feature. It has been designed for full fidelity, with an audio bandwidth comparable to that achieved in FM reception, making a good $10-\mathrm{kHz}$ trap filter vitally important. Since a more restricted bandwidth will be necessary much of the time, the AM tuner has two i-f filters to provide NORMAL and FIDELITY response characteristics. They are selected by the same front-panel knob that also gives a choice of MONO, Auto mono/stereo, and stereo only reception in FM. Illuminated legends below the dial scales identify the mode in use.

An interesting and unique by-product of the wide-band $A M$ tuner design is the provision of center-channel meter tuning for AM as well as FM. It is very difficult to tune the AM section accurately by ear (or even with the signal-strength meter) with such a wide i-f bandwidth, and the center-channel meter is a genuine convenience. It requires a separate i-f section and a ratio detector in the AM tuner just for this function, but this sort of lavishness is apparent throughout the design of the tuner. It is obvious that certain performance goals were set and then met by whatever means were necessary.

Separate AM and FM volume controls are on the front panel. Both fixed and variable level outputs are on the rear apron, as are vertical and horizontal oscilloscope outputs for an external multipath display. The tilting and pivoting AM ferrite antenna is much larger than those used on most AM tuners and can be oriented in nearly any attitude. To meet safety requirements, a master

PERFORMANCE SPECIFICATIONS

Specification	Rated	Measured
FM usable sensitivity Mono Stereo	$\begin{aligned} & 1.6 \mu \mathrm{~V}(9.75 \mathrm{dBf}) \\ & 3.0 \mu \mathrm{~V}(14.75 \mathrm{dBf}) \end{aligned}$	$\begin{aligned} & 1.8 \mu \mathrm{~V}(10.25 \mathrm{dBf}) \\ & 2.8 \mu \mathrm{~V}(14.25 \mathrm{dBf}) \end{aligned}$
THD Mono Stereo	$\begin{aligned} & 0.09 \% \\ & 0.10 \% \end{aligned}$	$\begin{aligned} & 0.10 \% \\ & 0.11 \% \end{aligned}$
Capture ratio	1.0 dB	1.36 dB
I-f rejection	110 dB	N/A
Image rejection	110 dB	Less than 106 dB
Selectivity	83 dB	$\begin{aligned} & 88.5 \mathrm{~dB} \text { (Alt. Ch.) } \\ & 8.8 \mathrm{~dB} \text { (Adj. Ch.) } \end{aligned}$
Pilot-carrier suppression	65 dB	85 dB
Frequency response	$\begin{aligned} & 20-15,000 \mathrm{~Hz} \\ & +0.5 /-1 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 30-15,000 \mathrm{~Hz} \\ & +0 /-1 \mathrm{~dB} \end{aligned}$
Stereo separation $\begin{aligned} & 100 \mathrm{~Hz} \\ & 1 \mathrm{kHz} \\ & 10 \mathrm{kHz} \end{aligned}$	45 dB 45 dB 38 dB	$\begin{aligned} & 43.5 \mathrm{~dB} \\ & 44.5 \mathrm{~dB} \\ & 38 \mathrm{~dB} \end{aligned}$
Hum \& noise ($65 \mathrm{dBf}, 100 \%$ mod.)	70 dB (mono)	64 dB (mono) 63.5 dB (stereo)
Muting threshold	$2-20 \mu \mathrm{~V}$	$2-33 \mu \mathrm{~V}$
AM frequency response $(\pm 2 \mathrm{~dB})$ Normal Fidelity	$\begin{aligned} & 20-3000 \mathrm{~Hz} \\ & 20-10,000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 20-4300 \mathrm{~Hz} \\ & 20-12,000 \mathrm{~Hz} \end{aligned}$

power switch located on the rear of the tuner cuts off all power, including the 12 volt touch-switch power supply.

Laboratory Measurements. As the test data reveals, the Model AH673 met or surpassed virtually every one of its performance ratings, often by a wide margin. The only respect in which the FM performance fell short of meeting "super-tuner" standards was in its S / N, which was slightly degraded by a residual hum level. Even if hum were disregarded, the noise component of the tuner's output would have been about -67 $d B$, certainly a very adequate figure but one which is surpassed by some other top-ranking tuners we have tested.

In its selectivity and ability to reject interference of all kinds, the tuner was a super performer. Its distortion was comparable to the residual levels in our signal generator, and the channel separation was nearly uniform at 43 to 44 dB over most of the audible range, and still a very good 38 dB , as rated, at 10,000 Hz . The most important tuner sensitivity rating is its $50-\mathrm{dB}$ quieting sensitivity; here the tuner excelled. The ASNC blending occurred when the signal dropped below about $24 \mu \mathrm{~V}$ (33 dBf). It reduced the channel separation to only a few decibels above 1000 Hz but left enough stereo effect to distinguish the program from pure mono. In the noise reduction it afforded, it proved to be an
ideal intermediate state between full stereo and full mono, and it operated without any other side effects.

User Comment. The real forte of the Model AH673 is its AM tuner, which is the most "hi-fi" AM tuner we have ever heard. Its response was flat to 12,000 or $13,000 \mathrm{~Hz}$, which is, for all practical purposes, the equal of FM audio bandwidth. The $10-\mathrm{kHz}$ bridged-T filter was incredibly sharp. It produced more than 50 dB of attenuation at $10,000 \mathrm{~Hz}$, while attenuating the response at 9000 and $11,000 \mathrm{~Hz}$ by only 1.5 and 3 dB , respectively.

The real problem in AM reception is noise-the various buzzing sounds that are generated by a multitude of electrical appliances. No matter how good the frequency response, if it is marred by these noises it is not high fidelity. By careful placement of the tuner, we were able to get quiet backgrounds on a few stations. When walking into a room while playing one of those AM stations, there was no clue as to whether one was hearing AM or FM. You could hardly ask for better than that!

The dial calibration was accurate to within 100 kHz on FM , tuning was smooth and noncritical, and the muting was positive and noise-free. In fact, the tuning was a bit too positive. We would have preferred a little softer unmuting action, since there was a definite "click" introduced when the relay closed.

Connecting an oscilloscope to the multipath outputs in the rear of the tuner confirmed the validity of the tuner's multipath meter indications. However, the meter was not very sensitive, which made it necessary to watch it very closely to detect the movement of the pointer. It never indicated more than about 20% of full-scale, even on a fairly distorted signal (as shown on the scope). On the other hand, when the meter did not indicate anything, the signal was indeed free of multipath distortion.
In summary, the Philips Model AH673 is an exceptional tuner. Although it is not inexpensive, much of its cost is represented by the superb AM section and the advanced control features. It explodes any notions that AM is a narrowband, "lo-fi" medium (except for the noise problem, which is largely a matter of the individual installation). It should satisfy the most critical FM reception requirements, too.

CIRCLE NO 102 ON FREE INFORMATION CARD

DYNACO STEREO 416 POWER AMPLIFIER

High-power amplifier has highly effective protective system.

Dynaco's "Stereo $416^{\prime \prime}$ basic power amplifier is rated, according to FTC standards, to deliver 300,200 , or 100 watts/channel into 4,8 , or 16 ohms. The specified ratings are for a frequency range of 20 to $20,000 \mathrm{~Hz}$ at less than 0.25% THD. The amplifier features Dynaco's proprietary "Dynaguard" protective circuit. Instantaneous output power for each channel is indicated by fast-responding LED's on the front panel.

The direct-coupled amplifier has extensive built-in protective systems in addition to Dynaguard. These include an ac line circuit breaker, electronic voltampere limiting for the output transistors, separate high-temperature cutouts for each channel, two-speed cooling fan, delayed turn-on, relay cutoff when dc appears in the output signal, and speaker fuses.

The rack-mounted amplifier measures $19^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 7{ }^{\prime \prime} \mathrm{H}(48.3 \times 35.6 \times 17.8$ $\mathrm{cm})$ and weighs $53 \mathrm{lb}(24.1 \mathrm{~kg})$.

Available as an option to improve the amplifier's low-frequency transient capability is the Model C-100 Energy Storage System, which adds $100,000 \mu \mathrm{~F}$ of capacitance to the amplifier's power supply. This accessory has the same width and depth as the amplifier but is only $31 / 2^{\prime \prime}(8.9 \mathrm{~cm})$ high. The Stereo 416 is available in both kit form (\$649) and factory wired and tested (\$949).

General Description. The Stereo 416 has a surprisingly full complement of controls and indicators for a basic power amplifier. Two rows of LED's that indicate the output power separately for each channel are calibrated in $3-\mathrm{dB}$ steps from full power at 0 dB to -21 dB as well as percentages of rated power. A control is provided for increasing the sensitivity of the LED display by 6 or 12
dB and for completely switching off the display. In the most sensitive condition, the display can indicate power output levels as low as 100 mW .

Behind a plastic window on the front panel are two Dynaguard lights that come on when the selected power threshold in their respective channels has been exceeded. Also on the front panel are holders for the fuses that protect the speakers.

Separate level-adjust controls are provided for the right and left channels. Three pushbutton switches give a means for switching in and out high and Low cut filters and for completely bypassing all controls, including the Dynaguard system and level controls. With the bypass button pushed in, the only capacitance in the signal path is a single input blocking capacitor per channel.

The POWER switch is a three-position rotary affair. Its two ON positions to the left and right of the center-OFF position eliminate the need to turn the line cord plug to correct hum loops. A red power indicator glows when the amplifier is turned on, and a HI TEMP indicator comes on when the heatsink temperature exceeds $85^{\circ} \mathrm{C}$, at which time the amplifier automatically shuts off. The Dynaguard control has settings for 20 , 40,80 , and 120 watts as well as for shutting off the protective system.

The very large heatsink fins for the output transistors are cooled by a fan. Under normal conditions, the fan operates at a low speed and makes little noise. However, should the temperature of the heatsink rise beyond $55^{\circ} \mathrm{C}$, the speed of the fan automatically increases to provide additional cooling

The heavy-duty binding posts for the speaker outputs and the phono-type input jacks are located on the rear apron, just below the heatsink assembly. On the right side of the amplifier is the socket for connection of the Model C-100 En-

Product Focus

Excellent though the Dynaco Stereo 416 is as a high-fidelity power amplifier, power is not its most notable feature. The two truly unique features are the Dynaguard protective system and the optional Model C-100 Energy Storage System

Together with its undeniable sonic benefits, a high-power amplifier presents special hazards to the user. A single careless mistake, such as a poor signal or ground connection or over-enthusiastic use of the volume control can easily destroy a pair of expensive speaker systems. Any protective device that reduces the maximum power capability of an amplifier to a "sale" value is likely either to negate the advantages of high power or introduce audible distortion.
Dynaco's Dynaguard system, is a highly effective solution to this problem. Under normal conditions, it has absolutely no effect on the performance of the amplifier. When it is triggered by an excessive signal level, it rapidly attenuates the signal ahead of the input to the amplifier to limit the output to the preset value. The control action is not a sudden clipping, with its harsh distortion, but a soft clamping action that produces a rounded square wave from an excessive sine-wave input.
Obviously, this action produces distortion (though less objectionable than that resulting from hard clipping). It is easily tolerated in a hi-fi system, however, because it affects only the portion of the program waveform that exceeds the preset level. Lower-level signal components are unaffected by the Dynaguard system so that most of the program dynamics are unmodified. Only the potentially dangerous peak signal level is reduced.
The Dynaguard circuit can be set to go into action at outputs equivalent to 20 , 40,80 , or 120 watts into 8 ohms, or it can be shut off entirely. The amplifier output (each channel is monitored and controlled separately) is integrated and rectified, and the resulting dc control voltage operates the gain-reducing circuit. This is a resistive attenuator, controlled by diodes. A momentary peak, even up to the full power of the amplifier, will not trigger the Dynaguard circuit, even at its most sensitive setting. Depending on the duration of the overload, the operating response time of the circuit may be as brief as a fraction of a second or as long as several seconds, since it integrates the overload and acts only when the average power exceeds the selected threshold. An indicator flashes when the circuit is triggered and remains on for as long as the peaks are attenuated.

CONTINUOUS AND EQUIVALENT
SINE-WAVE POWER OUTPUT PER CHANNEL IN WATTS

Harmonic distortion at three power levels.
ergy Storage System accessory.
The Model C-100 has no controls. It does, however, have two indicators labelled Charge and on. The first comes on when the amplifier is first switched on. Then, about a minute later, when the capacitors are charged, a relay in the accessory energizes and the on indicator lights. The Model C-100 can be placed directly atop the Stereo 416 power amplifier without causing interference with the latter's cooling; if anything, the cooling seems to be improved due to the tunnel effect created.

Laboratory Measurements. The cooling effectiveness of the Stereo 416 heat transfer system is quite remarkable for an amplifier of its power capabilities. After the full hour of preconditioning at one-third rated power and five minutes at full power, the heatsinks were the coolest part of the amplifier. They were actually cool to the touch! The perforated metal cover over the amplifier boards and the power supply was the warmest part of the exterior surface (and only mildly warm at that). Even the front panel was warmer than the heatsinks. The cooling fan never switched to highspeed operation, during either the preconditioning or the subsequent testing.

With both channels driving 8 -ohm loads, the $1000-\mathrm{Hz}$ clipping output was 253 watts/channel. The 4 - and 16 -ohm outputs were 386 and 150 watts, respectively. The $1000-\mathrm{Hz}$ THD was 0.002% (the residual of our test equipment) at 0.1 watt, from 0.007% to 0.01% between 1 watt and 100 watts. It was 0.016% at 240 watts, just before clipping occurred. The IM distortion was 0.012% at 0.1 watt, 0.005% in the range of a few
watts, 0.015% at the rated 200 watts, and still only 0.20% at 240 watts. The distortion at power outputs between 20 and 200 watts was about 0.01% from 50 to 1000 Hz . It rose to 0.023% at 20 Hz and 0.013% at $20,000 \mathrm{~Hz}$.

For a reference output of 10 watts, an input of 0.35 volt was needed. The unweighted wide-band noise in the output was a very low 85 dB below 10 watts, or

98 dB below rated power. The frequency response was flat within $\pm 0.1 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$ and was down only 0.4 dB at the lower measurement limit of 5 Hz . The $-3-\mathrm{dB}$ frequency was 210 kHz . With the HIGH and LOW filters in use, the $-3-\mathrm{dB}$ response frequencies were 41 and $16,500 \mathrm{~Hz}$. (They are nominally 50 and $15,000 \mathrm{~Hz}$.) The filters had $6 \mathrm{~dB} /$ octave slopes.

PERFORMANCE SPECIFICATIONS

Specification Output power $(20-20,000 \mathrm{~Hz}$ $0.25 \% \text { THD) }$	Rated 200 W (8 ohms) 300 W (4 ohms) 100 W (16 ohms)	$\begin{aligned} & \text { Measured } \\ & 200 \mathrm{~W}(8 \text { ohms }) \\ & \text { Less than } 0.13 \% \text { THD } \end{aligned}$
Clipping power	235 W (8 ohms) 350 W (4 ohms) 135 W (16 ohms)	253 W (8 ohms) 386 W (4 ohms) 150 W (16 ohms)
IM Distortion	Less than 0.1\% up to $200 \mathrm{~W} / 8$ ohms	Less than 0.03\%
Frequency response	$\begin{aligned} & 8-50,000 \mathrm{~Hz} \\ & +0 /-1 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 5-50,000 \mathrm{~Hz} \\ & -0.8 \mathrm{~dB} \end{aligned}$
Hum \& noise	$-95 \mathrm{~dB}(200 \mathrm{~W})$	-98 dB (200 W)
Input sensitivity	1.6 V (200 W)	$1.6 \mathrm{~V}(200 \mathrm{~W})$
Slewing rate	$8 \mathrm{~V} / \mu \mathrm{s}$	$15 \mathrm{~V} / \mu \mathrm{s}$
Damping factor	Less than 80 $(1000 \mathrm{~Hz})$ Less than 30 $(10 \mathrm{kHz})$	N/A
Channel separation	Over 60 dB (IHF)	N/A

Dual-action trigger permits instant choice of 2 heats in all Weller's professional quality guns, the most comfortable, best-balanced units anywhere. Pre-focused light for hard-to-see work areas like TV or under-dash auto service. Premium copper tips get up to temp faster . . . pre-tinned for instant soldering. Cutting or smoothing tips also, UL-listed and factory pretested. Models for any service including solidstate. Guns alone or

TheCooperGroup

Electronics Divisio
WELLER*. WISSe. XCELITE*
PO BOX 728. APEX. NORTH CAROLINA $27502.919 / 362-7511$ Gircle no. 11 on free information card

The rated slew rate of the Stereo 416 is a rather low $8 \mathrm{~V} / \mu \mathrm{s}$ and even our measurement of $15 \mathrm{~V} / \mu \mathrm{s}$ will probably seem too low for those people who are concerned about slew-rate-induced distortions and transient intermodulation effects. Regardless of the significance of these distortions, about which there is considerable disagreement, Dynaco has made it possible to eliminate them at the source by means of the HIGH cut filter ahead of the amplifier section. The amplifier's risetime of $1 \mu \mathrm{~s}$ was consistent with its measured frequency response.

When set at 20 watts, the Dynaguard circuit operated with a steady-state output of 12.5 watts, although it took several seconds for it to respond at that level. The LED power calibrations were generally within 1 dB of the actual power output that caused each indicator to glow. Its range switch accuracy was also within 1 dB . Using actual program material, we confirmed that it was not unusual for the 0-dB (200-watt) indicator to flash on program peaks when the average program level did not even operate the 20watt level of the Dynaguard. As Dynaco suggests, the 20-watt setting offers maximum protection without compromising output or dynamic range.

The effect of adding the Model C-100 to the Stereo 416 was measurable in its low-frequency performance, essentially as claimed by Dynaco. At 1000 Hz , it made no difference. When the amplifier was driven with a tone burst of one cycle on and four cycles off, the output clipped at 312 watts with or without the Model $\mathrm{C}-100$. However, a $20-\mathrm{Hz}$ tone burst with the same duty cycle clipped at 231 watts without the Model C-100 and 276 watts with it. These measurements were made with 8 -ohm loads. Dynaco points out that the advantages of the added capacitance are greater with lower load impedances, especially the 2 ohms for which the amplifier is rated. It should deliver about 450 watts to 2 ohms at the clipping point.

User Comment. As an amplifier, the Stereo 416 "sounded" no different from any other amplifier with equivalent power and distortion ratings. This is as it should be, since the sound quality is ultimately determined by factors outside the amplifier once a certain level of performance has been reached. The Stereo 416 goes beyond that level by one or more orders of magnitude.

It is in its protective features that the amplifier excels, and we use that term advisedly. Although it may seem akin to
wearing suspenders and a belt, the multiple protective systems in this amplifier pay off in security and potential long life for all parts of the music system. Anyone who has "blown up" speakers or amplifiers will appreciate the importance of this quality. We deliberately drove the amplifier to levels that turned on the 20-watt Dynaguard indicator, and the peak levels frequently exceeded 200 watts. None of our speaker systems, few of which were rated for use with 200-watt amplifiers, was damaged. But we could rarely hear any effects from the operation of the Dynaguard system. An occasional flash of the indicator does not result in audible distortion, although on bench tests we confirmed the effect it has on the waveform (as shown in the Dynaco instruction manual). Only when the Dynaguard system is driven into fulltime operation, a gross overload condition to say the least, does its sound become objectionable. If you prefer to listen at such levels, the cure is simpleset the Dynaguard system to a higher power threshold or shut it off entirely. If you do this, be sure that your speaker systems can take everything the amplifier can deliver.

We also noted that the fan could be heard only at close range (within a couple of feet) in a quiet room. In normal playing, it could not be heard at all.

We could detect no change in sound quality when using the Energy Storage System. It is difficult to imagine a home listening condition that could demand such huge reserves of very low frequency transient power that an improvement of about 1 dB would be audible and worthwhile. (It isn't even that easy to measure, being a transient phenomenon.) Perhaps, if the amplifier is used with a 2 -ohm load, this would be a useful addition (and more than one Model C-100 can be "stacked" if desired).

The amplifier we tested was a factorywired unit. Judging from the assembly manual and the $\$ 300$ price differential between the kit and wired versions, building the stereo 416 is no job for a beginner. Either way, though, this is one of the better high-power amplifiers we have seen-"better" meaning in its ruggedness, safety, and potential reliability, as well as its performance. It does not have to be "babied," and we doubt that it could be damaged in normal home service. It would be less likely to damage one's speaker systems than almost any high-power amplifier known to us. In all, this is a very fine product.

CIRCLE NO, 103 ON FREE INFORMATION CARO

SAVE UPTO 50\% ON PARTS.

Hobbyist or professional, there are probably a lot of circuits you build just for the fun of it. And a lot you'd like to build, but never get around to.

One reason is the cost of parts Parts you buy for one project, but can't re-use . . because you haven't time to take them carefully apart. Or because of heat and mechanical damage that occur when you do

Now, there's an easier way that can save you big money on parts and hours on every project, as well Proto-Board Solderless Breadboards.

Now, assembling, testing and modifying circuits is as easy as pushing in-or pulling out-a lead IC's, LED's, transistors, resistors, capacitors . . virtually every kind of component. . connect and inteconnect instantly via long-life, niskelsilver contacts. No special patch cords or jumpers needed - just
lengths of ordinary \#22-30 AWG solid hookup wire.

Circuits go together as quickly as you can think them up. And parts are re-usable. so as your "junk box" builds, you build more and more projects for less and less money.

Befare you invest in your next project, invest in a CSC bread board

Order today. Call 203-624-3103 (East Coast) or 415-421-8872 (West Coast): 9 a.m.-5 p.m. local time. Najor credit cards accepted. Or see your CSC dealer. Prices slightly higher outside USA

70 Fulton Terrace Box 1942, New Haven, CT 06509 203-624-3103 TWX 710-465-1227

- Manufacturer s. suggested list
Prices and spectications subiect to change without notice

WEST COAST: 351 Califor
mis st San Francisco eA 94104
-421-8872 TWX 910-372-7992
GREAT BRITAIN: CSE UK LTD
Snur Read, Vorth Feltham Trading Estate, Fetham, Middlesex England 01-390-8782 Int'l Telex: 851-881-3669 Len Finkler Lte; Ontario

A new component product line of over 260 items developed for the independent dealer. Guaranteed nationally advertised products. Complete JIM-PAK program includes national advertising, direct mail programs, store display racks, stock rotation plan and return policy. For dealer information, write or call JIM-PAK, 1021 Howard Avenue, San Carlos, CA 94070 (415) 592.8097.
SEE JIM-PAK AT NEWCOM '78 - MAY 2, 3 and 4, 1978 AT THE LAS VEGAS HILTON

SEE YOUR LOCAL J Jmpak DEALER TODAY...

ALABAMA	
ARIZONA	
Fountain Hills	ills \quad \& \& C Communications
Tempe	Computerworid inc.
Yuma	Yuma Electronics
CALIFORNIA	
Betflower	Earl's Hobby Shop
Berkeley	Al Lasher Electronics
Fontana	Fontana Electronics
Fullerton	Orvac Electronics inc.
Long Beach	Scout Radio Supply
Mission Viejo	io Tower Electronics Corp.
Monterey	Zackit
Oceanside	Electronic Center
Palo Alto	Zack Electranics
Pasadena	Dow Radio ine.
Sacramento	The Rado Ptace
Sacramento	Zackit
San Carlos	18 H Outer Srore
San Diego R	Radio Shack A.S.C. Mira Mesa
San Fernando	do San Fernando Electronics
San Francisco	co Zack Electronics
San Jose	Quement Electronics
San Luis Obisoo	ispo Mid-State Electronics
Santa Monica	co Mission Control
Sunnuvale	Sunnyvale Electronics
Vallejo	Zackit
Walnut Creek	* Byte Shop Computer Store
CANADA	
Alberta	The Computer Shop
Ontario	Home Computer Centre
COLORADO	
Aurora	Com Co Electronics
Steamboat Sorings	Sorings Norm's TV \& Electronics
CONNECTICUT	
Bridgenort	Bridgepart Computer
Florida	
Ft. Lauderdale	dale Computers For You
Lakeland La	Lakeland Specialty Electronics
Orlando A/tair	Altair Computer Center of Oriando
Tampa	AMF Electronics
Tampa	Microcomputer Systems
France	
Paris	Computer Boutique
GEORGIA	
Atlanta	At/anta Computer Mart
HAWAll	
Aiea	Deicoms Hawaii
Honolulu	Integrated Circuit Supply
IDAHO	
Idaho Falls	Audiotrontes
ILLINOIS	
Evanston	TriState Electronics
Evanston	Itty Bitty Machine Co.
Gravefand	Mover Electronics
Mount Prospect	Pect Tri-State Electronics

OHIO
 Dayton Reynoldsburg Steubenville
OKLAHOMA Guymon
Oklatoma City OREGON Beaverton
Coos Bay
Ontario Ontario Solem
PANAMA PANAMA
PAnama City
PENNSYLVANIA PENNSYLVANIA
Hershey
Murraysville RHODE ISLAND Cranston
Pawtucket Pawtucket
SINGAPORE
SOUTH CAROLINA
No. Charteston TENNESSEE

TENNESSEE	
Clarksville	Masstronics
Knoxville	Byte Shop
Memphis	Sere-Rose \& Soencer Electronics
Oak Ridge	Computer Denn
TEXAS	
Dallas	CompuShoo
Houston	Altair Comouter Center
Houston	CompuShoo
Houston	Interactive Computers
San Antonio	Sherman Electronics Supply
VIRGINIA	
Alexandria	Computer Hardware Store
Alexandria	Compurers Plus
Chartortesville	Latayette Electronics
Richmond	Computers-To-Go
Spring field	Computer Workshop of North Virginia
Virginia Baach	Heathkit Elecyronics Center
WASHINGTON	
Bellevie	Altair Computer Center
Longview	Progress Electronics
Pasco	Riverview Electronics
Seartie	c-Com
Seattle	Empire Electronics
Sookane	Personal Computers
WEST VIRGINIA	
Morgamown	The Computer Corner
Morgantown	Electro Distributing Co.

BY L. GEORGE LAWRENCE

Magnetometers FOR INVESTIGATING UFO's AND OTHER MAGNETIC PHENOMENA

0VER the past 30 years, thousands of UFO sightings have been reported to and investigated by government and scientific researchers. Most have been readily attributed to such things as aircraft, the planets, meteors, and luminescent swamp gas. A small but significant number of incidents remain unexplained. The possible extraterrestrial nature of UFO's therefore is still an open question.

Common to many reported UFO incidents are magnetic disturbances which affect compasses, auto speedometers, electric power meters, etc. Presented in this article are various types of sensing circuits which will detect such magnetic anomalies. The circuits are inexpensive to build and use readily available parts and materials. Their use, however, is not limited to amateur UFO investigations. These magnetometers will be of interest to anyone who wants to explore magnetic phenomena, and-students take note-make fine Science Fair projects.

All the magnetic-detection systems presented here employ audio and/or visual intrusion alarms.

Home Magnetometers. Although professionals monitor magnetic fields with such sophisticated devices as proton free-precession magnetometers,
good results can be obtained using the inexpensive home-built magnetometers described here. These devices have low power consumption and can be batterypowered for lengthy periods. Although they have less sensitivity than the proton magnetometer, which measures the precession (wobble) of protons in the presence of a magnetic field, the inertialess CRT and electro-induction magnetometers are faster by a factor of about 1,000.

Sky Magnetometer. Shown in Fig. 1 is a field-induction magnetometer designed to have its sensor mounted on the exterior of a building. Two separate detection principles are employed.
The high-speed sensor, shown schematically in Fig. 1A and photographically in Fig. 2, is of the electromagnetic induction type. The actual sensor is comprised of a 2' $(61-\mathrm{cm})$ long mu-metal (a soft iron alloy) bar that serves as a flux concentrator for the coils. The larger of the two coils (LI) is a 10,000 -ohm coil slipped over the bar and positioned at its center. Inductor L2 consists of 30 turns of No. 24 enamelled wire wound over the main coil. Coil L2 is used to induce a voltage across $L 1$ for testing.

Signals induced across L1 are amplified by emitter follower Q1 (Fig. 1B).
(Transistor Q1 is a Darlington pair with a beta of at least 12,000.)

When impulse test switch S1 is depressed, capacitor C1 discharges through potentiometer R3 and coil L2, inducing a current pulse in main sensing coil L1. Potentiometer R2 is used to adjust the sensitivity threshold. The amplified current puise is indicated on meter M1 and can be passed to a paper chart recorder via resistor $R 9$.

The current pulse at the emitter of Q1 is also passed via trigger level control R7 to the gate of SCR1. When SCR1 fires, it activates alarm A1. Because the power source is dc, A1 will remain on even after the triggering signal has passed. Normally closed RESET pushbotton switch 52 must be momentarily depressed to silence the alarm.

Operating power is obtained from a conventional line-operated, regulated 9volt dc supply. If line power should fail, relay $K 1$ automatically switches to $B 2$, a back-up battery supply.

TRIGGER ADJUST control R7 should be set to prevent the alarm from being triggered during lightning storms. Meter M1 is not critical, but it should be able to indicate the triggering threshold for the SCR, which is about 0.8 mA . A superimposed current of about $50 \mu \mathrm{~A}$, the output of L1 amplified by Q1, will trigger the

PARTS LIST FOR FIG. 1

C3-10- $\mu \mathrm{F}, 15$-volt electrolytic
I1-No. 1815 lamp (14 volts, .2 amperes, T-31/4 configuration)
J1-Four-contact male connector (Amphenol No. 91-859 or similar)
K1--12-volt, 250-ohm spdt relay
L. 1 - 10.000 -ohm, $1 / 4^{\prime \prime}$ inner-diameter reed relay coil
L2--See tex
M1-1-mA meter (Calectro No. D1-912 or similar)
P1.-Four-contact female connector to mate with J1 (Amphenol No. 91-458 or similar)
Q1-HEP S9100 Darlington transistor (Motorola)
The following are $1 / 2$-watt, 10% tolerance resistors:
RI-1. 2 megohms
R4- 330 ohms
R5- 820 ohms
R6, R9-I(0) ohms
R8-3900 ohms
R10-41-ohm, 4-watt resistor
R2-50,000-ohm linear-taper potentiometer R3-10,000-ohm linear-taper potentiometer R7-10,000-ohm linear-taper, screwdriveradjustable potentiometer
S1-Spst normally open pushbution switch
S2-Spst normally closed pushbutton switch S3-Spst switch (part of R2)
SCRI-HEP RIOOI silicon controlled rectifer (or any 20()$-\mu \mathrm{A}$ gate-current SCR)
Misc. $2^{\prime}(61-\mathrm{cm}) \times 3 / 16^{\prime \prime}(4.8-\mathrm{mm}) \mathrm{mu}-$ metai or soft iron rod; miniature test magnet; PVC plastic tuhe with plastic terminal containers; aluminum or brass hardware; suitable enclosure: wall feedthrough; cement for mounting LI: 9-voit dc line-powered supply; etc
magnetometer. Near-trigger conditions can be observed on the meter, providing a built-in test facility in addition to L2.

The instrument's construction and packaging, including the external sensor shown in Fig. 2, are not critical. The flux concentrator and coils can be protected from the elements by a length of magnetically neutral PVC plastic pipe, supported by aluminum brackets. The upper part of the sensor is enclosed in a glass or plastic container which can house another (optional) sensing coil made from an automotive ignition coil with its metal shield removed to provide full magnetic exposure.

The lower end of the pipe contains the electrical connections to the coils and is also protected by a glass or plastic enclosure. Connections between the coils and electronics console are made via shielded cables that pass through the support structure. Ground the cable shields to a true earth ground to avoid the danger of lightning strikes.

Compass Magnetometer. The second sensing system comprises a com42
pass-needle assembly anid a geared compass of the automotive or marine type and is used for detecting slow magnetic field variations.

The compass-needle assembly is shown in Fig. 3A. The primary sensor is a $6^{\prime \prime}$ ($15.2-\mathrm{cm}$) magnetic needle mounted on a low-friction agate bearing. Two equally balanced opaque paper extensions are attached to the needle.

Once the magnetic needle settles down to a stable state, optical coupler OC1 must be positioned so that one of the opaque paper extensions fits into the narrow gap of the module. This module consists of a LED and a Darlington phototransistor, the two separated by a narrow gap into which the opaque paper extension is fitted. When the paper is in the gap, the light path is interrupted. This approach affords contactless and fric-tion-free sensing of the needle's motion, and can also be used with meter pointers, cursor devices, eddy-current disks and mechanical indicators.

As shown in Fig. 3B, potentiometer R1 and current-limiting resistor R2, determine the light output of the LED in the
pickup assembly. Only a minimal amount of LED output is required.

With the LED illuminating the phototransistor, the potential between $Q 1$ pins 3 and 4 is typically about one volt. Comparator IC1 is wired so that its output is high when the light path inside OC1 is blocked, and goes low when the motion of the magnetic needle moves to allow an uninterrupted light path. Since IC1 is powered by a 5 -volt supply, its output is TTL compatible. If desired, the output from IC1 can be used to power a relay (K1). Because the voltage comparator used is limited to a $20-\mathrm{mA}$ output, the coil resistance of the relay must be at least 250 ohms.

If desired, the compass needle can be mounted vertically so that it dips up and down in the presence of a magnetic anomaly or disturbance.

CRT Detector. The inertialess cath-ode-ray tube instrument shown in Fig. 4 is an extremely sensitive, high-speed magnetometer. Professional CRT magnetometers can measure extremely weak magnetic fields. The sensitivity of

Fig. e. Sky magnetometer remote sensor (right) and electronics package (above), into which the author has also installed a compass sensor

these CRT detectors exceeds that of both nuclear and rubidium-vapor magnetometers by a factor of two to four. However, commercial CRT systems are very expensive. This forces the experimenter to fashion a home-brew CRT magnetometer such as that shown in Fig. 4. The display speed of this system is contingent only on the signaltransfer time of the electronics package.

The CRT can be obtained from an oscilloscope or similar instrument. It should be an electrostatic-not electro-magnetic-system. Because the CRT must be operated $30^{\prime}(9.1 \mathrm{~m})$ or more from its parent housing, lengthy cables are required to deliver the filament, centering, focus, and high voltages.

Attached to the glass faceplate of the CRT is light-dependent resistor LDR1 and an opaque mask with a tiny aperture cut in it. The size of the aperture should be about the same diameter as the focused spot on the CRT screen. The photocell/aperture mask assembly should be secured to the center of the CRT's faceplate in an opaque retainer cup. Do not use a permanent cement when attaching this assembly to the CRT because it may have to be moved somewhat if a phosphor burn (dark spot) developes on the screen.

The CRT must be operated without any type of shielding and should be supported by a nonmagnetic structure. Use well-insulated cables for the various CRT operating potentials. Set the brightness to produce a relatively low intensity spot, and then focus the spot. Using the horizontal and vertical centering controls, position the spot directly in the hole in the aperture mask. You can tell when the spot is properly positioned with the aid of an ohmmeter. Connect the meter across the leads of the photocell and operate the centering controls. The photocell's resistance will be very low when the spot is properly positioned.

When LDR1 is illuminated, the circuit in Fig. 4B causes K1 to close, applying power to READY lamp 11. If for any reason the CRT's beam moves away from the small aperture, K1 will momentarily deenergize and extinguish !1. This triggers an alarm circuit composed of SCR1 (whose gate is protected by D3) and audible alarm A1. Even if the beam returns to the aperture in the mask, the alarm will continue to sound until RESET switch S1 is momentarily depressed to interrupt the dc path through SCR1. Diode D2 protects transistor Q3 from voltage transients generated by K1 during switching.

Excursions of the CRT's electron
beam can easily be calibrated in terms of gauss by using a small calibrating permanent magnet of known field strength and a square-ruled paper interface or plastic grid on the CRT's screen.

With the beam intensity set low and the spot's focus adjusted, R1 can be used to control the system's sensitivity. The CRT sensor can be given some directionality by housing it in a steel container whose sky-facing side has been removed. If the CRT is mounted outdoors, use a nonmagnetic weather cover to protect the CRT and high-voltage cables from the elements.

As is the case with proton-precession and field-induction magnetometers, the inertialess CRT instrument is a total-field magnetometer, rather than an incremental field device.

Ground-Loop Sensing System.

The chopper-interrogated ground-loop approach shown in Fig. 5 can be used to augment a magnetometer setup. The inductor, typically consisting of two turns of insulated copper wire measuring from 2^{\prime} to $200^{\prime}(0.6$ to 61 m$)$ in diameter, employs a $330-\mathrm{Hz}$ chopper in which Q1 and Q2 operate as an astable multivibrator.
The chopper converts dc or low-frequency ac signals induced across the loop by an airborne magnetic agent into a serrated ac signal train. The train can then be processed by conventional audio systems. The nulling circuit consisting of B1, R2, R3, and nulling potentiometer R4 sets the quiescent state of the detector. An optional alarm circuit, shown in the dotted box, can be connected to the output of the audio amplifi-

Fig. 3. Compass magnetometer's sensor (A) is a magnetic needle whose motion is sensed optically. Circuit (B) provides a TTL-compatible output and, if desired, activates a relay.

Fig. 4. Cathode-ray tube magnetometer is very sensitive. Details of sensor are at (A); detector's circuit at (B).

PARTS LIST FOR FIG. 3

ICI-LM31I voltage-comparator integrated circuil (National)
K 1-Spdt relay with 250 -ohm or greater coil resistance
OC1-GE H13B1 optoelectronic coupler (Poly-Paks No. 92CU 2784, 2 for $\$ 1.19$)
RI- $50(k)$-ohm screwdriver-adjustable wirewound potentiometer
The following are $1 / 2$-watt, 10% tolerance resistors
R2-150 ohms
R3, R4. R5- $10.0(\mathrm{~K}) \mathrm{ohms}$
R6-I(K), KKN) ohms
R7-2200 ohms
Misc - $6^{\prime \prime}(15.2-\mathrm{cm})$ compass needle with agate bearings and support stand (No. A2-1871 for $\$ 10.50$ plus $\$ 1 .(\%)$ postage from Sargent-Welch Scientific Co., 7300 N Linder Ave.. Skokie, IL 60076); nonmagnet housing with cover; aluminum or brass hardware; two stiff paper extensions; suitable enclosure for electronics package; hookup wire, solder: etc.
er. Diode D2 provides the rectification required by the gate of SCR1. The magnitude of this gate signal is determined by the value of $R d$.

Diode D1 "despikes" chopper coil K1, and C4 maintains the frequency stability of the multivibrator. The circuit should be housed in a small, earthgrounded metal enclosure. The loop can be wound around suitably spaced wooden pegs and connected to the circuit via
claimed that electrically disabled speedometers have indicated high road speeds while the vehicle was stationary. Similarly, there have been reports that home power meters exhibit sudden bursts of high speed without any increase in energy consumption.

Shown in Fig. 6 is an instrument that can detect anomalous eddy currents. The heart of the device, shown in A, is an aluminum disk that rotates above an

Fig. 5. Ground-loop magnetic detector responds to de and low-frequency ac signals.

PARTS LIST FOR FIG. 5

B1-1.5-volt Dcell
C1-500-pF capacitor
C2. C3, C4- 0. $5-\mu \mathrm{F}, 50$-volt capacitor
C5- 1000)- $\mu \mathrm{F}$, 15 -volt electrolytic capacitor
DI-SK3016 (RCA) or similar diode
K 1-Reed switch (Hamlin No. MRMF-2-206,
$3 / 4^{\prime \prime}$ size or similar) fitted with 600 -ohm coil (COTO coil No. U-12 or similar)
L1-Induction coil (see text)
Q1. Q2—SK3004 (RCA) or similar transistor RI-200-ohm. 2-watt resistor

The following are $1 / 2$-watt. 10% resistors
R2. R3-47(0) ohms
R5- 50.000 ohms
R6. R7-8200 ohms
R8-IMOO ohms
R4-5000-ohm linear-taper potentiometer SI-Spst switch
Misc.-Metal enclosure: shielded cable: insulated wire for LI; machine hardware; external audio system; hookup wire; solder; hardware. etc
shielded cable. If the loop is installed indoors, it should be mounted against a ceiling. Alternatively, it can be mounted on the roof.

Eddy-Disk Magnetometer. According to some sources, one presently unexplained phenomenon influences the behavior of eddy-disk devices like those in automotive speedometers and domestic power meters. It has been
iron-core coil containing 15 turns of $3 / 32^{\prime \prime}(2.38-\mathrm{mm})$ wire connected to a pair of receptor stubs formed from $0.25^{\prime \prime}$ ($6.35-\mathrm{mm}$) diameter copper tubing. A small, thin iron "flag" that opposes a relatively weak permanent magnet provides a force sufficient to prevent the disk from rotating under unenergized conditions. The overall design resembles that of a standard home power meter. The permanent magnet used for the

PARTS LIST FOR FIG. 6

$\mathrm{C} 1-0.1-\mu \mathrm{F}$ capacitor
C2-10 0 ($0-\mu \mathrm{F}$. 15 -volt electrolytic
C3-500-pF ceramic capacitor
D I. D2-HEP R0050 (Motorola) or similar diode
11-No. 1815 lamp (14 volts, 0.2 amperes. T-31/4 size)
IC 1-HEP C4020P (Motorola) dual-D flip-flop
K 1 -Spdt relay with 250 -ohm or greater coil resistance
LDR1-CdS light-dependent resistor with 50,000 : 1 dark-to-light resistance ratio (Ra dio Shack No. 276-I 16 or similar)
MOI-Converted power meter eddy-disk assembly (see text)
Q1-Transistor (Motorola HEP SOO 38 or similar)
R1-20)-ohm, 5 -watt variable resistor
R2-10-megohm linear-taper screwdriveradjustable potentiometer
R3, R4-5.1-megohm, 1/2-watt resistor
R5-27-ohm, $1 / 2$-watt, 10% tolerance resistor
Misc.-lron-core (mu-metal) form; No. 10 insulated wire; copper lubing; brake magnet; opaque light tubes; protective covers; machine hardware; hookup wire; etc.

> At right is author's prototype of eddydisk magnetometer.

Fig. 6. Eddy-disk magnetometer is similar to power meter in action. Disk sensor is at (A); circuit schematic shown at (B).

brake should be positioned near the flag so that the disk is stationary under ambient conditions.

The motion of the disk is detected by optical means (see Fig. 6A). Exciter lamp 11 generates a luminous output which passes through a small aperture in the disk. Light passing through the aperture falls on LDR1 on the other side of the disk. The light path should be confined to the aperture in the disk. A small opaque tube can be used on either side of the disk to confine the light. These tubes will keep the light emitted by 11 from spilling over the edge of the disk and possibly biasing LDR1. The tubes should not contact the disk surface.

As shown in Fig. 6B, LDR1 triggers monostable multivibrator IC1A which clocks flip-flop IC1B on and off as the disk rotates. Two outputs are provided. One, at the emifter of Q1, can be changed in level to produce a TTL-compatible output for driving conventional
decade counters. The other output is via relay $K 1$, which can be used to activate a mechanical counter or an alarm.

Potentiometer R2 allows the experimenter to adjust the sensitivity of the sensing circuitry. Because of Q1's limited current-handling ability, the coil resistance of K1 must be at least 250 ohms. Control R1 provides a means for adjusting the intensity of $L 1$.

To keep out any extraneous light, a nonmagnetic, opaque cover can be mounted over the disk, L1, and the 11/ LDR1 assembly. A larger nonmagnetic (glass or plastic) dome is recommended to safeguard the package against moisture and air currents. The receptor stubs can be mounted outside the package.

In Closing. The various home magnetometers that have been presented in this article should be operated as far away as possible from any contaminating magnetic fields produced by electrical machines, permanent magnets, etc. They should also be housed in nonmagnetic structures. Armed with these detectors and scientific curiousity, you will be well equipped to investigate magnetic phenomena-whether they are produced by natural, man-made, or perhaps even extra-terrestrial causes. \diamond
 \title{
How to Add
 \title{
How to Add TRIGGERED SWEEP
 TO AN OSCILLOSCOPE
}

Increase the performance capabilities of your scope by permitting expansion of waveforms.

WORKING with an oscilloscope that uses recurrent sweep can be frustrating when it comes to getting the sync locked in-and keeping it there. The situation is particularly touchy when one is trying to observe fast pulses that have low repetition rates. A much more practical approach to the problem is to use triggered sweep, where the sweep is synchronized by the actual signal that is being observed.

If you have a scope that does not have built-in triggered sweep, there is no need to trade up to a new scope. Instead, you can adapt it for triggeredsweep observation of waveforms, using the circuit shown in the schematic. This add-on circuit can convert virtually any recurrent-sweep scope into a modern triggered-sweep instrument.

About the Circuit. Transistor Q1 and resistors R3, R4, and R5 make up a con-stant-current source for charging the sweep-range capacitor selected by switch S1B. Resistor R1 determines the voltage to which the selected capacitor is to charge. The value of R1 plus the charging current selected by S1A determine the sweep frequency. Resistor R1 also determines the triggering sensitivity; and, with the 3300 -ohm value specified, the sweep amplitude is 5 volts peak-to-peak. Omitting R1 increases the sweep to 10 volts but decreases triggering sensitivity. (The value of R1 can be changed without affecting the scope's sweep calibration.)

The unblanking pulse from pin 3 of IC1 is coupled through an isolation capacitor with a typical value of $0.01 \mu \mathrm{~F}$
at 1.5 kV to the control grid of the CRT to intensify the trace during the sweep. Adjusting the scope's brightriess control keeps beam intensity low while waiting for the next sweep.

The actual trigger signal can be taken from any point in the vertical amplifier channel where there is sufficient signal amplitude to trigger the sweep circuit.

The new triggered-sweep circuit is substituted for the existing sweep system that now drives the horizontal amplifier in your oscilloscope.

Construction. Just about any method of construction, from fabricating a printed circuit board to Wire Wrapping, can be used to assemble the circuit. Resistors R8 and R9 and capacitors C5 through C9 mount directly on switch S1

SAE has long been involved in the field of tone equalization. From our pioneering efforts in variable turn over tone controls to our more recent advancements in graphic equalizers, we have continually searched for and developed more flexible and responsive tone networks. From these efforts comes a new powerful tool in tone equalization the Parametric Equalizer. Now you have the power of precise control.
Our 2800 Dual Four-Band and 1800 Dual Two-Band Parametrics offer you controls that not only cut and boost, but also vary the bandwidth and tune the center frequency of any segment of the audio range. With this unique flexibility, any problem can be overcome precisely, and any effect created precisely.
With either of these equalizers, you have the power to correct any listening environment or overcome any listening problems that you are faced with. Whether you need a third octave notch filter, tailored bandwidth to resurrect a vocalist, or a tailored cut to bury an overbearing bass, the control flexibility of Parametric Equalizers can fill these needs and many more. And of course, as with all SAE products, they offer the highest in sonic performance and quality of construction.

For Complete Information Write:

Scientific Audio Electronics, Inc. P. 0 . Box 60271 Terminal Annex, Los Angeles, CA 90060

Constant-current source Q1 and timer IC1 combine to form a low-cost triggered sweep circuit.

PARTS LIST

C $1-0.1-\mu \mathrm{F}, 50$-volt ceramic capacitor
C2-470-pF ceramic capacitor
C3.C4- $10-\mu \mathrm{F}, 25$-volt electrolytic
C5-4.7- $\mu \mathrm{F}$. 16 -volt tantalum capacitor
C6 - $0.47-\mu \mathrm{F}, 16$-volt tantalum capacitor
C7-0.047- μ F. 50-volt polystyrene or Mylar capacitor
C8-0.00 47 - $\mu \mathrm{F}, 50$-volt polystyrene or Mylar capacitor
C9-430-pF polystyrene, Mylar, or silver mica capacitor
IC $1-555$ or 1455 timer
Q1-2N3906 or similar pnp transistor
Q2-2N4416 or similar n-channel FET

The following are $1 / 4$-walt, 10% tolerance resistors:
R1-3300 ohms
R2,R4.R9-15,000.ohms
RS.R8- 5100 ohms
R6.R7- 1500 ohms
R3-50() ()-ohm trimmer potentiometer
R10- 100.000 -ohm potentiometer
S1-2-pole. 15-position nonshorting rotary switch
Misc.-Printed circuit brard and socket (optional) for IC1; connectors (optional) for input and outputs: machine hardware; hookup wire; solder; etc.

The 15 volts required to drive the trig-gered-sweep circuit can be obtained from the power supply in the scope

Calibration and Use. Potentiometer R3 must be adjusted to provide a voltage drop of 2.35 volts across $R 5$ when $S 1$ is set to the $1-\mu \mathrm{s} / \mathrm{V}$ position and the collector of Q1 is grounded. A more accurate setting for $R 3$ can be had by using a signal whose frequency is accurately known once the sweep has been coupled to the scope.

The best place to inject the new sweep signal is via the scope's EXT HOR-

Iz input, after first determining which polarity of the sweep output produces a left-to-right deflection on the CRT. If a negative voltage produces the appropriate deflection, couple the sweep output to jumper point A. On the other hand, if your scope requires a positive voltage, connect to point B.

The TRIG input requires a negativegoing pulse of about 2.5 volts to trigger the circuit. The width of the pulse can be as short in duration as 100 ns if a greater amplitude pulse is available. Use potentiometer R10 to adjust the trigger amplitude to obtain a stable waveform.

What's New IN HI-FI EQUIPMENT

BYINANBERGER

Highlights of
audio equipment introduced
at the Winter Consumer Electronics Show.

THE Consumer Electronics Show began as an exhibition of radios, TV sets, calculators and CB equipment, with a little hi-fi thrown in for variety. By now, the hi-fi tail is almost wagging the electronic dog. Nearly a third of the exhibitors presented true high-fidelity equipment-and if you included all makers of audio gear and accessories, the figure would be nearer to half. Trends in audio tend to surface here. Ralph Hodges outlined many of them-more groundswells than tidal waves-in PE last month. But in a show this vast, no single account can catch all of them. And many models which signified no clear trend were nonetheless interesting in themselves.

Receivers. The main trend in receivers, as Ralph Hodges noted in his report on CES last month, is toward ever higher power. But there were a number of interesting receivers at more moderate power levels. Kenwood introduced three new receivers, less notable for their power levels (80,60 , and 26 watts per channel) than for internal refinements intended to deliver better performance at less cost. Examples include a currentmirror type of differential amplifier in the power stage, a more efficient heatsink on the top two models, better S / N and more headroom, and a "floating" local oscillator to resist drift caused by changes in temperature and humidity. Hitachi introduced a new Class " G " receiver, the SR-804 (\$399.95), which is rated at 50 watts per channel, but is claimed to deliver up to 100 watts of unclipped power during transient peaks, a
function of its Class G design. Its dial scale is unusually long, too, for easier tuning, and is tilted slightly upward for easier viewing from above.

Philips showed four new receivers, the first in its U.S.-built electronics line (speakers and turntables, however, are imported.) Sherwood added two new receivers to its "Certified Performance" line, a series of individually-lab-tested components delivered with notarized documents attesting to individual performance. Both new receivers also have "digital detectors" (the pulse-counting type described in Julian Hirsch's January article on "How FM Tuners Work").

New, black-color receivers caught my eye. One was a new Sonab with a conventional linear dial. (The previous model had a circular dial like an old-fashioned radio, but with an ultra-modern look due largely to the decorative placement of its cooling ribs on the top of the case.) Harmon-Kardon's 230e (\$180) was another attractive design departure: its edgewise tuning wheel is also on top of its cabinet, and there are duplicate tuning dials on the top and front of the unit for easy viewing from a variety of angles. And Optonica introduced its new SA-5205 receiver (and some other components) in both black and brushed aluminum versions.

Amplifiers. The recent trend toward receivers seems to be slowing down slightly. Despite the greater power receivers now can offer, I saw more new separate amplifiers than receivers at CES, and almost as many tuners. BGW has a new amplifier, the 250C, with a bit
more power (100 watts per channel vs 90) than its previous 250B, and with a Cannon-plug input for use with professional balanced lines. Denon amplifiers made their first appearance, including the PMA-700Z, a 70-watt/channel rms integrated amplifier, and the HA-1000 head amp for moving-coil cartridges. The PMZ-700Z (which has a built-in head amp of its own) has a Gain switch to raise or lower gain by 10 dB , as well as the usual $-20-\mathrm{dB}$ muting switch. The HA-1000 has its power supply in a separate box, and is shielded in iron, both to prevent noise pickup. A few more items attracted my attention in Denon's catalog after I got back from the show: Its POA-1001 power amplifier uses a new type of power-output transistor, which allows output of 100 W continuous power per channel with just two output transistors in push-pull instead of the many parallel transistors usually used at this power level. Even more unusual was its PCC-1000, designed to cancel phono crosstalk. It apparently operates by feeding user-controllable amounts of each signal, with phase reversed, into the opposite channel.

Hitachi, whose new MOSFET amplifiers Ralph Hodges mentioned last month, also brought out a lower-powered MOSFET amp, the HA330 integrated amplifier ($40 \mathrm{~W} / \mathrm{ch}, \$ 200$) and a matching preamplifier, the HCA 7500 , for $\$ 350$. Its most unusual feature is a pair of front-panel cartridge-load controls, one each for capacitance (100-400 pF) and resistance ($0.1-100$ kilohm). Nikko has a MOSFET amplifier, too, the Alpha III (80 watt/channel). Kenwood

What's New In Hi-Fi continued

continues its line of amplifiers having separate power supplies for each channel with the KA-6100, 50 watt/channel amplifier (\$250.) The KA-5700 (40 watt/ channel, \$190) like its new receivers (and like the KA-6100), uses currentmirror differential circuitry. And the new KA-2700, 20 watt/channel, offers such specifications as 0.08% maximum distortion and a $72-\mathrm{dB} \mathrm{S} / \mathrm{N}$ through the phono input, despite its $\$ 140$ price.

Marantz has joined the ranks of those designing amplifiers for low TIM (transient intermodulation distortion) with its new Model 300DC stereo power amplifier. As its name implies, the 300DC delivers 150 watts per channel. Dual power supplies are also featured.

Phase Linear's attractively restyled line includes a revised version of the Model 4000 Autocorrelation Preamplifier (\$650)--it no longer has the SQ decoder and "joystick" quadraphonic balance control of the original version. Its RIAA phono stage has also been redesigned to reduce $C B$ interference and hum.

Setton had a booster amplifier, the HBS 500, designed to amplify the output from a low-powered receiver or other system. Though such products are common enough in the car-stereo field, this is only the second one we've seen for the home. Designed for use with receivers or amplifiers of up to 30 watts/channel output, it produces 55 watts per channel at 0.03% distortion, with a 1 -volt input. With an input impedance of 50,000 ohms, it turns amplifiers into voltage sources, drawing minimum power from them, and hence getting a cleaner signal from them, too. (It can also work as a conventional amplifier from a preamp output.) A sensing circuit turns the unit on when it receives a signal, and turns it off after 2 minutes when there is no input signal.

Tuners. The growth of "separates" which has swelled the raniks of power amplifiers and preamps hasn't brought too many tuners in its wake, but a few new ones did make their CES debuts.

One of the more unusual ones was the Denon TU-500, whose four dials make it look more like a receiver. The tuning dial is wrapped around a drum, which allows Denon to fit slightly more than 11 inches of dial into an opening about $31 / 2$ inches wide. Flanking the tuning drum and cen-ter-tuning meter are two VU -scale level meters-one for each stereo channelwith additional scales for signal strength on one meter, and for "null balance" on the other. The latter scale is used to balance the channels of the tuner's output, and can check balance of external signals as well. The external signal input has a 6 -step attenuator switch covering a $50-\mathrm{dB}$ range. The tuner also has two i-f sections; the second one is for such auxiliary circuits as the signal meter, the multipath output terminal and the muting circuit.
Digital tuners were not as prevalent as I had been expecting. But Nikko did introduce its Gamma V digital tuner, and JVC announced availability of its T-3030, a low-profile (2 inches high) model with seven station presets and two-speed, bi-directional scanning, which had been shown as a trial balloon last summer.

JVC T-3030 digital tuner has two-speed, up/down tuning, plus 7 station presets.

Phase Linear's line has been restyled, as illustrated by its Model 4000 preamp.

Marantz's 300DC power amplifier boasts 150 watts per channel output.

Phase Linear restyled its 5000 FM tuner to match the company's other "Series Two" components. Kenwood and Sanyo also displayed new tuners, as did Wintec, a new brand.

Record Playing Equipment. Turntables are becoming more and more alike these days: the standard format is now a direct-drive or belt-drive singleplay unit with an S-shaped tonearm and interchangeable shell (usually interchangeable between brands.) Such models were shown by Marantz, Sanyo, Visonik, Optonica, Sonab, and Hitachi. One of the new Sanyo models, the TP728, did break the pattern slightly by coming complete with an Audio-Technica magnetic cartridge for just $\$ 99.95$ and with viscous cueing both up and down plus a built-in strobe, to boot. Hitachi's new HT460 featured its UniTorque drive design, which they claim delivers smoother power than other direct-drive motors. The new HT 550 featured a quartz-locked UniTorque motor.

Pioneer's three new turntables (one model each in direct-drive, servomotor belt-drive and belt-drive with synchronous motor) fit the general mold, all fol-
lowing the new trend toward extra-heavy bases to minimize acoustic feedback. But their universal headsheils were dif-ferent-made of glass fiber, rather than metal, to eliminate resonances above 75 Hz . Their counterweights had anti-resonance damping, as well.

Lux quietly showed two new turntables designed for easy tonearm interchangeability. The tonearm mounts are metal platforms sliding in metal tracks, with lever-operated camlocks to hold them firmly in place once the arm position is properly adjusted. The only difference between the models was that one of them had two such arm tracks, one in the usual position and the other behind the platter, to allow the use of two arms at the same time.

Monitor Audio's ET1000 electronic turntable, which was exhibited last summer in hopes of finding a U.S. importer, has now found one (AudioSource). To minimize hum, the stepdown transformer for its power supply is located at the plug. The ET1000 appears to have no standard controls, merely silvery legends (33,45 , ON,, OFF and right and left arrows) on a black band. These are actually touch-control sensors. The two ar-
rows are for fine-speed adjustment, a binary system whose count changes at a rate of approximately one per second as long as one stays in contact with the arrow. Available with or without arm, the turntable does come with the "Stylift," a passive device which automatically raises the tonearm when the record has finished playing.
We noted no new cartridges, except the new Ortofon FF15 XE MkII. But this CES was the first at which we saw such audiophile brands as Satin, Supex, Sonex and Grace

More intriguing were the variety of new phono accessories. Ortofon's CAP 210 is a capacitor which slips onto the output pins of Ortofon cartridges, allowing its cartridges-with a recommended load capacitance of 400 pF -to be used without frequency-response errors in systems using low-capacitance cables. It will be available at no extra cost with Ortofon's M20 cartridges, and will also be available separately for mounting on its Mark II magnetic cartridges.

Lenco offered two other interesting audio oddities: the Lencolamp is a tiny, ac-powered lamp which clips to the inside of a turntable dustcover, automati-

Kenwood KR-6030 AM/FM receiver
delivers 80 watts per channel.

Optonica's SA-5205 receiver with black cabinet option is shown.

Sherwood's "Certified-Performance" line includes the S-110CP 100-W/channel receiver.

What's New In Hi-Fi continued

cally turning on when the cover is raised, and off when it is lowered. Those who have tried cueing closely cut bands on black records with black cartridges will appreciate this. The Lencofix, which also clips to the dustcover, is a compact rack to hold the dust jacket of the record being played-insurance against its being lost. Discwasher introduced a new Discorganizer, a compact wooden rack to hold its Discwasher and fluid, Zerostat anti-static gun, SC-1 stylus cleaner, an extra headshell, and screwdrivers or other accessories, all in a neat walnut block with a transparent dust cover. Sumiko exhibited the Howland-West HFS-75 turntable set-up kit, which includes a protractor for accurate tonearm alignment and a test record. Sound Guard added a lint-free work-surface pad for record cleaning. And Transcriber introduced its own new line of recording care accessories.

Tape. The biggest news, technically, was Hitachi's announcement of a forth-
coming cassette deck with a Hall-effect head. Its output is said to stay constant right down to dc (output from conventional heads rises at 6 dB per octave from dc to the head's upper frequency limit). This will be a three-head deck, of course-Hall-effect heads are suitable only for playback, not for recording. Another new Hitachi three-head deck, the D900 (\$495) has conventional heads, with separate record and playback heads in one headshell. An illuminated diagram shows the signal path through the deck, a handy aid for those unfamiliar with the intricacies of three-head recorder operation. The model features touch-button solenoid controls and a remote-control option. Yet other three-head decks, the D850(\$350) and the two-head D550(\$212), also made their debuts.

Sony made a big splash with three new front-loading decks and one portable model, the first decks to be marketed here by Sony itself. (Previous decks were sold in the U.S. by Superscope. All
use servomotors, and the decks all have timer recording facilities. The top-of-theline, two-motor TC-K710 (\$500) allowed use of an optional remote control (surprisingly, the same remote control unit as Hitachi uses, though the two machines seem to have nothing else in common). The other two decks were the TC-K4 (\$280) and TC-K3 (\$220). The new TC-158SD portable has Dolby, VU meters plus a peak-reading LED, and a switchable microphone attenuator. It is priced at $\$ 380$.

Also shown was the Sony PCM audio attachment for Betamax and other Ame-rican-standard video recorders. Dynamic range is 85 dB , which would normally indicate a data word length of approximately 14 bits, but Sony squeezes it out to only 12 . Total bit rate is more than 1.4 million bits per second, which probably includes clock and error-correction bits. Sony does mention that a drop-out compensation circuit, " 99.8% effective," was included in the system. Alas, it's still just a prototype-no price or delivery date announced yet.

Mitsubishi did, however, predict a price of "about $\$ 2000$ " and a possible late-'78 delivery date for its PCM cas-

Pioneer PL-518 direct-drive turntable is one of its three new turntable models.

Touch-sensor controls double as control markings on the Monitor turntable.

sette deck. This uses a "helical-scan, rotary head." It is, in other words, basically a video recorder, and in fact uses VHS cassettes. The specifications were more detailed than Sony's: response dc to 20 $\mathrm{kHz}, \pm 0.5 \mathrm{~dB} ; 80-\mathrm{dB}$ dynamic range; less than 0.03% distortion, and undetectable wow and flutter. The unit has a sampling frequency of 47.52 kHz and uses 13 -bit logical compression. There are two channels for PCM signals, plus a clock channel.

Uher showed two new models in Las Vegas: the CR 240 was a slick-looking stereo portable cassette recorder, a trifle larger than its CR 210, with Dolby and with separate level meters for each channel (the CR 210 had just one); the level controls for the two channels could be used independently or could be electrically ganged. However, the 240 does not have the 210's automatic reverse, or film sync provisions. The other new Uher was the CG 332, a cassette deck with Dolby noise reduction and a lower profile than most front-loading decks.

Fisher debuted its CR 4025, so far as we know the first cassette deck with wireless remote pause control, so you can edit out commercials without getting
out of your chair. Optonica had a microprocessor cassette deck, the RT-6501, with features similar to those of the Sharp RT-3388 reviewed in PE last month, but with improved performance specifications.

Denon displayed two new tape decks, the DR-350 and DR-750, both frontloading types, with the latter a tall, shallow unit ($303 \mathrm{~mm} \mathrm{H} \times 226 \mathrm{~mm}$ deep), rather than the usual format. The 350 has a front-panel bias adjust. The 750 has two motors and touch-button control. Sanyo, Kenwood and Panasonic also had new, front-loading decks, and both Harman-Kardon and Marantz offered restyled models: HK's 2000 is now all black, while Marantz's "B" series (5030B, 5025B and 5010B) have been re-dimensioned to match other Marantz components.

Some interesting new tapes made their debuts in Las Vegas. Fuji introduced its new "Beridox" FX-II cassette and the more-conventional FX-I. Originally introduced for videotape, "Beridox" is an iron oxide not existing in nature, whose properties lie between those of hematite and magnetite. Compounds like this were first hypothesized about

300 years ago, Fuji says, but were only recently made stable. The FX-I and FXII have spaces where the user can mark whether the tape has been recorded with noise reduction.

Ampex introduced its Grand Master tape line, in reel, cassette and cartridge forms. Ampex also boasts of a new ox-ide-"highly orientable ferric oxide particles (HOP)"-plus a new binder system and a conductive-carbon backcoating to improve mechanical handling while minimizing electrostatic pickup.

Sony announced a new line of cassettes, elcasets and microcassettes. Elsewhere on the microcassette front, Olympus showed a transcriber with foot-pedal start/stop and backspace. The 3M Company announced improvements in its Scotch line of Dynarange cassettes, with greater high-frequency output. New packaging--silver with a diagonal banner-identifies the tapes.

New accessories for the tape recordist were also rife. Both Rotel and Sansui showed mixers. Rotel's RZ-8 had built-in rhythm generator and solid-state reverb, Sansui's AX-7 had reverb and panpots. Audio-Technica had two new, miniature electret condenser mikes. And

Sony's PCM recording adapter works with all U.S.-standard color video recorders.

Hitachi's latest 3-head deck, Model D-900, has remote-control capability.

New Denon decks include tall, shallow Model DR-750 (left) and more conventional looking DR-350 (below).

What's New In Hi-Fi continued

Russound showed a rack-mounting version of their QT-1 control center

Speakers. As usual, there were so many new speakers that we can mention only a smattering of them. The three-piece configuration of iwo tall mid/ high-range panels plus a joint subwoofer box-already familiar from the Phase Linear Andromeda III and JBL L212has also been adopted by Petroff Labs, with its PL-1 "Positive Bipolar" system at $\$ 795$. Synergistics showed a prototype of a similar system at about $\$ 2000$. Fairly efficient (98 dB SPL tor 1 watt input at 1 meter's distance), the Synergistics model will be rated to handle up to 600 watts per channel. Subwoofers were also available separately from Petroff (the bass commode from their PL-1, at $\$ 600$), Visonik (whose Sub-1 is available for $\$ 550$ in a unique cabinet of gray, black and sitver or for $\$ 360$ in walnut), and from Miller \& Kreisel. M\&K's offerings included a series of subwoofers with dual voice coils (one coil per channel), plus a series of crossovers (includ-
ed with some subwoofer models) and "Bottom End Ramps" designed to adjust the high end to compensate for the efficiency difference between a subwoofer and various high-efficiency speakers without bi-amping.

One reason for the recent popularity of subwoofers is the presence of a number of ultracompact speakers, many of which have excellent sound but little low bass. Such names as ADS, Braun and Visonik are already familiar in this area. New entries were shown by Canton, Mesa, and Isophon. Slightly larger ($12 \times$ $71 / 2 \times 61 / 2$ inches) is the BBC-licensed Chartwell "Baby Monitor" LS3/5A, imported by Osawa.
AudioSource showed another British line-Monitor Audio-plus a new Swedish speaker, the Mirsch. The Mirsch OM 3-29 (the only one so far for which specifications are in English) has angled front panels which make the sound converge more on the listening area, plus additional upward-firing tweeters. But the unique feature is a network in each speaker which apparently combines
both channel signals (a wire connects the two speaker cabinets) out of phase, sending the difference information through side-firing speakers. The latter's output then reflects off room walls to produce "panorama" effect. The degree of panorama "reflex-sound" is adjustable by the user.

The Audionics T52 speakers use another type of electronic network, which is called "a Parametric Integration Network," to "cancel driver-cone resonance...stabilize the system impedance (reducing $I M$ distortion) and to effect acoustical matrixing." Sonab introduced a new speaker, the OA-2212 (\$840), using the "Ortho Acoustical" principle of blending direct and reflected sound. Tannoy has two new models, the Buckinham and Windsor, with coaxial design of mid and high range, plus a double woofer in the Buckingham and a single one in the Windsor. And Philips introduced a new motional feedback speaker system, the bi-amplified RH 567 . Its bass amplifier delivers 40 watts from 35 to 1000 Hz , while the treble amplifier delivers 20 watts from 400 to $20,000 \mathrm{~Hz}$.

At least three new speaker cables were introduced at CES. Miller \& Kreisel

JBL L-50 is its least expensive 3-way system.

Tilted driver arrays are shown atop Sonalo's OA-2212.

Visonik subwoofer Sub-1 matches popular small-cabinet speakers.

SAE 4100 time-delay system has versatile controls of delay times and levels.

Sansui AX-7 combines four-input mike mixer with reverb unit.
showed the M\&K Mogami cable, a coaxial design with 8 ohms impedance. Sansui had a coaxial speaker cable, too. AudioSource had a braided, flat "High Definition Speaker Cable"; and Discwasher introduced their braided "Smog-Lifters." All claim to improve the sound beyond that of conventional lamp cord.
...And the Rest. Accessories and other items that don't quite fit the basic component categories often get lost in the shuffle, especially at a show the size of CES, But I ran into a few worth noting.

Delay units, for one, are gaining in importance, as more and more audiophiles begin using them to gain from their existing stereo records the "big-room" ambience that four-channel systems originally promised. The ADS 10 Acoustic Dimension Synthesizer Ralph Hodges described last month was only one of the new introductions at the show. Audio Pulse, the first to offer digital delay for home use, showed its Model Two, using RAM IC's as storage. It's smaller and mas fewer controls than the Model One, but adds bass and treble controls and 25 -watt/channel amplifiers. Maximum delay time is 100 milliseconds, and de-
lay time is adjustable from 0.2 to 1.2 . S.A.E also showed a delay system, the Model 4100.

There are still those who prefer to get their ambience from quadraphonic equipment and recordings. (If quadraphonic FM finally arrives, their number should increase.) But there was little new four-channel equipment to be seen. One notable exception was the first production version of the Tate-System SQ decoder, a $\$ 300$ component from Audionics of Oregon. Design features include an 8 -pole matrix phase shitter which helps to yield as much as 40 dB of channel separation and active circuitry to suppress $I M$ distortion by cutting attack time. Distortion is rated at 0.1% or less, with a signal-to-noise ratio of 80 dB. The system allows for SQ matrix decoding, ambience synthesis from stereo material, and monitoring of four-channel tapes, plus a master level control. On a more modest dimensional scale, JVC showed its "Biphonic" portable radio cassette recorders, which simulate through speakers the effect of binaural recordings heard through headphones.

Audio Technology and Hitachi both showed LED amplifier-power monitors.

The Audio Technology Model 510 (\$130) has 16 LED's per channel, reading a 45dB range in $3-\mathrm{dB}$ steps. It can read in dBm (for preamp-level signals) or dBW (for amplifier outputs), with sensitivity adjustments allowing it to measure peak outputs up to 1600 watts. The display is horizontal, but a vertical-reading front panel is one of the available options. Hitachi didn't say much about its power monitor, but did have it on display; so you can probably expect to see it, but not soon.

Sansui had a whole catalog of interesting accessories: a directional FM antenna with omnidirectional AM reception; a coaxial speaker cable; new microphones and a versatile mike-stand system; and heavily-shielded, lowresistance, low-capacitance cables that are now available with gold or nickelplated contacts.

There's still one major trend we haven't covered: car sound. At this year's CES, there was substantial activity in this area. And though by no means all of these were true high-fidelity types by home-component standards, more and more of them appear to be. But that merits a story of its own.

Small speaker trend is typifled by Isophon's $71 / 2^{\prime \prime}$-high DIA2000.

Russound QT-1 4-channel patchboard now comes in black rack-mount, too.

Discwasher Discorganizer stores
record-care accessories.
Audio Technology display shows output level of power amplifiers or preamps.

MicroPROCESSOR MICROCOURSE

PART 3.
MEMORIES, BUS ORIENTED LOGIC, AND MICROPROCESSOR ORGANIZATION.

IN PRECEDING parts of this course, we learned about binary, octal, and hexadecimal number systems. We also covered basic logic gates and combinational and sequential logic circuits.

This installment will describe semiconductor memories and show how three-state logic allows a logic circuit to transfer data to one or more other circuits over a common array of conductors called a bus. It will conclude with a look at the basics of microprocessor (or MPU) organization.

Memories. A microprocessor alone is merely a collection of logic circuits on a silicon chip, and must be provided with a detailed list of instructions called a program before it can perform useful work. The program, along with input data and even output data from the microprocessor, is stored in a memory.

Memories store information as individual bits (0 's and 1's) or bit patterns (words). As we learned in Part 1, a binary word can indicate a numerical value (data), a memory address, or a computer instruction. This makes a memory device an exceptionally versatile component and an indispensable partner to the microprocessor.

Microprocessors can be used in conjunction with any kinds of memories ranging from magnetic bubbles and cores to cassette tapes and floppy disks. The two most important microprocessor memories, however, are semiconductor ROM's and RAM's.

ROM's are read-only memories, since they contain information that can only be read out, and not modified or erased. RAM's are read/write memories, and they generally store temporary data. The data they store can be easily modified or erased.

Both ROM's and RAM's are available
as integrated circuits with dozens to thousands of individual binary storage cells printed, etched, diffused, and interconnected with an aluminum metalization pattern on a silicon chip. Thanks to the ingenious use of on-chip combinational logic decoders, it's possible to access all the storage cells in even a very large memory with relatively few input lines. A simplified view of how an address decoder accomplishes this is shown in Fig. 1. As you can see, simply applying the appropriate address to the memory's address lines causes the designated bit or word to appear on the output lines.

ROM's and RAM's store data as individual bits or multiple bit words (usually 4 -bit nibbles or 8 -bit bytes). Either way, the address decoder insures a fixed and very rapid time to access any bit or word in the memory. This feature is called random access. Serial access memories, like magnetic tape and highcapacity shift registers, are slower since their contents must be searched bit-bybit to find a specified address.

ROM. The typical ROM is an array of intersecting conductors as shown in Fig. 2. A diode connecting two intersecting conductors represents a logic 1. The absence of a diode at an intersection is a logic 0 . Information is stored in a ROM when it is manufactured and is therefore permanent. The information can be read out, but new information can never be written into the ROM.

ROM's can store binary data, addresses, or instructions. They can even simulate a logic circuit. Figure 3, for example, shows a diode ROM programmed with the truth table of the Ex-clusive-OR circuit. This circuit normally requires at least four logic gates, each containing several transistors. As you
can see, the ROM version is considerably simpler.

It's easy to program a ROM to simulate virtually any combinational logic circuit, and to illustrate this, Fig. 4 shows a ROM programmed as an octal-to-binary encoder, a circuit usually designed with a network of OR gates. Designing this encoder using logic gates is both tedious and time consuming, but anyone can design a ROM encoder. All that's needed is the appropriate truth table, such as that shown below:

	Octal Input												Binary Output			
0	1	2	3	4	5	6	7	2^{2}	2^{1}	2^{0}						
1	0	0	0	0	0	0	0	0	0	0						
0	1	0	0	0	0	0	0	0	0	1						
0	0	1	0	0	0	0	0	0	1	0						
0	0	0	1	0	0	0	0	0	1	1						
0	0	0	0	1	0	0	0	1	0	0						
0	0	0	0	0	1	0	0	1	0	1						
0	0	0	0	0	0	1	0	1	1	0						
0	0	0	0	0	0	0	1		1	1						

Looking at Fig. 4, notice how the placement of the diodes in the ROM corresponds to the 1's in the output half of the truth table? The ROM is now programmed as an octal-to-binary encoder.

Using a ROM is as easy as programming it. Just activate the appropriate input line and the designated bit pattern appears on its output lines.

ROM's are available as reasonably priced standard parts programmed for such roles as encoders, decoders, and look-up tables of trigonometric and other mathematical functions. Semiconductor companies will also make custom ROM's upon request, a rather costly procedure unless thousands of identical ROM's are ordered. But how about a few one-of-a-kind custom ROM's for prototype or hobbyist applications?
The best solution here is the pro-

Fig. 1. How an address decoder simplities access to a word stored in a ROM or $R / W M$.
grammable ROM or PROM. A PROM is a ROM with diodes at all its storage locations. A truth table is loaded into the PROM by applying brief, high-current pulses to the inputs connected to the diodes that are not wanted. This vaporizes a thin layer of metalization called a fusible link that connects the diode to the PROM's conductors.

PROM's, like ROM's, cannot be erased once they are programmed (though additional fusible links can be blown). A special erasable PROM, however, is available. It's programmed electrically and erased with ultra-violet radiation beamed through a quartz window that covers the silicon chip.

Various kinds of ROM's and PROM's can store from hundreds to thousands of bits. Since ROM's with storage capacities of from $2^{8}(256)$ to $2^{16}(65,536)$ bits are the most common, ROM's (and RAM's) are often designated with a " k " factor that gives an approximation of their storage capacity- k comes from kilo and means 1,000 . Thus a 1 k memory stores $1,024\left(2^{10}\right)$ bits, and a 4 k memory stores $4,096\left(2^{12}\right)$ bits.

Some memories store data as single bits. Therefore, a 1×256-bit ROM stores 256 bits of data, and an 8×256 bit ROM stores 256 8-bit bytes.

RAM. A RAM, like a ROM, consists of an intersecting grid of conductors on a silicon chip. However flip-flops, not diodes, are placed at the intersections in the grid. Since flip flops can be made to change states, this means the data stored in a RAM can be electrically altered or erased. It also means RAM's are more complicated and therefore more expensive than ROM's.

ROM's are classified as nonvolatile memories since they store information without the presence of electrical power. RAM's are volatile. Remove the operating power from a RAM (even momentarily) and its stored information is lost since the internal flip-flop can assume either state at random.

RAM's are sometimes used to store the kind of information stored in ROM's. More frequently, however, they're used for microprocessor data and program storage, temporary data storage, and for any application that requires a quickly alterable truth table.

A simple 4-bit register can be thought of as a RAM that can store a single 4-bit word (a 1×4-bit RAM). But practical RAM's have substantially more data storage capacity. Today, RAM's capable of storing $16 \mathrm{k}(16,384)$ bits are available and $64 \mathrm{k}(65,536)$ bit RAM's will soon be

Fig. 2. A ROM is an array of intersecting conductors. When a diode connects the conductors, a logic 1 is represented.
along. Large-capacity RAM's like these can be operated in parallel to provide storage for multiple bit words.

Other Memories. Semiconductor RAM's AND ROM's are by far the most important microprocessor memories in use today. Other kinds of memories are also available, and since memories play such a vital role in the operation of a microprocessor you should at least be aware of them.
An important new semiconductor memory is the charge-coupled device (CCD). This device stores data as an electrical charge that can be moved from one memory cell to the next like a pail of water moving down a bucket brigade. The presence of a charge is logic 1 while no charge is logic 0 . Since they must be accessed serially, CCD's are slower than ROM's and RAM's. However, CCD's can store more data on a silicon chip than a similar size ROM or RAM because the elaborate address decoders needed for random access aren't used. CCD's are read/write devices.
Magnetic bubble memories provide high-capacity read/write, nonvolatile data storage. Bits are stored as the presence (1) or absence (0) of microscopic magnetic cylinders called domains in a thin film of magnetic garnet or orthoferrite. The cylinders, which resemble bubbles when viewed on end through a microscope, can be rapidly moved along a path dafined by a pattern of metalized bars, chevrons, or other shapes. The metal shapes are magnetized in different directions by a rotating magnetic field, and this causes the bubbles to move from one bar to the next.

Magnetic tape and floppy disk memories are commonly used with sophisticated microprocessor systems such as computers. There are several ways to store bits of data on magnetic tape, one of which is to encode logic 0 and 1 as two different audio frequency tones. Cassette recorders are inexpensive, readily available, and ideal for loading programs into the RAM of a micro-processor-based computer.

The floppy disk is a record-like disk of flexible plastic coated with the same magnetic substance used to make recording tape. Bits are stored as the presence or absence of magnetized spots on as many as a hundred or more concentric data tracks around the surface of the disk. The disk is spun at high speed, and a read/write head on a movable track permits access to any data track. Floppy disks provide very high capacity storage

Fig. 3. At upper right is the logic symbol for Exclusive-OR, with its truth table at left. Below is the diode ROM for the same function.
with considerably faster access times than magnetic tape. But floppy disk systems are expensive; they often cost more than the computer.

Three-State Logic. Thus far we've learned something about basic logic gates, combinational and sequential logic circuits, and memories. We're almost ready to begin using these various devices as electronic building blocks to design a microprocessor. All that remains is to introduce a new kind of logic circuit called the three-state gate.

As you will recall from Part 1, the output of all the logic gates and circuits we've covered so far is various combinations of O's and 1's. This is known as two-state logic.

A third output called the high-impedance (high-Z) state is available in threestate logic. In the high- Z state the output of a three-state gate is electronically disconnected from the gate. It's as if an onoff switch between the gate and its output line were turned off. In conventional operation, when the switch is on, 0's and 1's appear at the output.

A simple three-state buffer is shown in Fig. 5. When the control (or enable) input is logic 1, the buffer transmits the logic state (0 or 1) at its input to its output. When the control input is logic 0 , the output enters the high- Z state.

All the basic gates are available in three-state versions. And many kinds of more advanced circuits such as flipflops, counters, registers, and combinational networks are available with threestate outputs

Three-state logic makes it possible to connect the output of two or more logic circuits to a common conductor called a
bus. It's not possible to connect the outputs of two or more two-state gates to the same bus since some outputs may be logic 0 and others logic 1. Threestate logic means many gates can be connected to the same bus so long as the output of all but one of the circuits is in the high $-Z$ state.

Several three-state buffers are connected to a common bus as shown in Fig. 6. Look at this circuit for a moment. Notice how the array of control inputs (C) allows data to be guided from any of the three inputs to either or both of the outputs. This operation is similar to that of a multiplexer, and three-state logic is sometimes used to simulate a multiplexer. More importantly, the circuit allows data to travel along the bus in either direction. That's why a three-state bus is often called bidirectional.

Register-to-Register Data Trans-

fers. A typical microprocessor contains several data storage registers. Threestate logic provides an efficient way to transfer data from one of these registers to another.

Figure 7 shows three 4 -bit registers connected to a common 4-conductor bus. The output of each register is connected to the bus through a 4-bit threestate buffer. This is why both the input and output lines from a register can be connected to the same bus.

Each register in Fig. 7 has three control inputs: Read, Write, and Clock. A logic 0 at its Read input places a register's output in the high- Z state and isolates the data stored in it from the busand therefore the other registers. A logic 1 at the Read input enables the threestate buffer and places the data in the register on the bus. Note that only one register can be in the Read mode at any one time; otherwise two or more registers will conflict with one another.

Data on the bus can be written into one or more registers by applying a logic 1 to the appropriate Write inputs. When the next clock pulse arrives, the data will

Fig. 4. A ROM programmed as an octal-to-binary encoder, a circuit usually designed with OR gates.
be written into the selected register (s).
Let's try a data transfer from register A to register C in Fig. 7. First, place A's Read input at logic 1. Then place C 's Write input at logic 1 . When the next clock pulse arrives, the contents of A will be copied into C. Register A will continue to retain its data, but the data in C will be lost.

You can use this simple procedure to transfer the contents of register A, B, or C to either or both of the remaining registers. What control inputs would you place at logic 1 to transfer the data word in register C to registers A and B ?

The Concept of Control. We're almost ready to see how a microprocessor is put together. First, let's think about the control inputs to the three registers in Fig. 7.
There are nine authorized ways to transfer data among these registers: A into B; A into C; B into A; B into C; C into $A ; C$ into $B ; A$ into B and $C ; B$ into A and C; and C into A and $B . A$ convenient way to categorize these data transfer options is to list them next to the bit pattern required at each of the control inputs as shown in the box below.

Now each of the transfer possibilities is identified by its own binary control word. In a microprocessor, the control words that transfer data between registers and perform many other operations are called microinstructions.

Often it's necessary to make several transfers, one after another, between registers. For instance, one possible sequence using the circuit in Fig. 7 is A into B ; B into C ; and C into A . From the table above, the microinstructions required for these operations are:
100100
001001
010010

In a microprocessor, a sequence of microinstructions that carries out a specific series of operations like this is called a microroutine.

Microprocessors have a special control section that automatically generates the microroutines necessary to transfer data inside the microprocessor and perform many other operations as well.

The Microprocessor. The function of a conventional digital logic circuit cannot be significantly changed without extensive rewiring. The microprocessor is radically different. It can be made to perform many different functions simply by changing a sequence of binary words or instructions stored in one or more memory chips which are external to the microprocessor.

Its programmable nature makes the microprocessor essentially identical to the central processing unit of a digital computer. Add an external memory chip to store instructions and data, and a microprocessor becomes a microcomputer. Some recent microprocessors include on-chip memory for instructions and data and are called single-chip microcomputers.

Though a microprocessor can be used as part of a computer, there are numerous, less glamorous but equally important, applications ranging from traffic-light controllers and electronic scales to "smart" test instruments and pocket calculators. in many of these applications the microprocessor's program is permanently stored in a ROM. Several of these types of memories containing different programs can be used with the same microprocessor to accomplish various applications.

Microprocessor Organization. A minimal microprocessor contains a con-
trol section, a program counter that steps through the instructions and data stored in an external memory, several data and instruction registers, and an arithmetic logic unit (ALU). One way these circuits can be organized with respect to one another and to both a control and an address/data bus to form an ultra-simple microprocessor is shown in Fig. 8.

There's nothing remarkable or unusual about any of these circuits. What's important is the way they're connected to the two buses. Let's look at some of the operations performed by each of the sections in our basic microprocessor.

Control Section. The control section is the nerve center of a microprocessor. A typical microprocessor can execute perhaps fifty or more different instructions in almost any combination or sequence. (We'll look at some representative instructions later.) It's the role of the control section to fetch instructions one at a time from the ROM or RAM program memory connected to the microprocessor's address/data bus, decode and then execute them with a sequence of microinstructions; after which, it fetches the next instruction.

Program Counter. The program counter keeps track of a program that's being executed. It's simply a counter whose outputs are used as address inputs to the external memory containing the program and data being processed by the microprocessor.

The program counter and the address/data bus control how many words of external memory can be accessed by a microprocessor. Thus a 4 -bit program counter can access a 16 -word (2^{4}) memory. An 8 -bit program counter can access $256\left(2^{6}\right)$ words, and a 16-bit program counter can access 65,536 (2 ${ }^{16}$) words.

Normally the program counter sequences through a program one step at a time in ascending numerical order. Certain instructions, however, can load the program counter with a new data word which it will then use as the next external memory address. This allows the microprocessor to branch or jump to different parts of a program or loop through a specified section of program more than once.

Branching and looping can be unconditional or conditional. In the latter case, the program counter will receive a new address only if a specified condition is

Fig. 5. Simple three-state buffer can be represented by switch as shown at top. Below is its logic symbol and truth table.

Fig. 6. Three-state buffers connected to a common bus. Since data can travel either way, the bus is

called bidirectional.

Fig. 8. Organization of a basic microprocessor. The control section is the nerve center. Counter sequences through a program one step at a time. Register is for sto rage, and $A L U$ performs arithmetic or logic operations.

Fig. 7. Three 4-bit registers connected to a common 4-conductor. bus through 4-bit three-state buffer. The three control inputs are: Read, Write, and Clock.
met (for example, a negative result of a previous calculation, etc.).

Registers. A microprocessor has several registers for the temporary storage of data, addresses, and instructions. The memory address register stores the address from the program counter until it's time for the control section to fetch a new address. The instruction register stores the instruction fetched from the external memory until it's been executed and a new instruction has been fetched. Various data registers store words awaiting further processing and act as output buffers.

The accumulator register stores intermediate and final results of operations by the ALU. It may have the ability to increment (add 1 to) or decrement (subtract 1 from) a word as well as shift a word left or right a bit at a time. Often data entering and leaving a microprocessor must pass through the accumulator. Therefore it's the most important register in a microprocessor.

Arithmetic Logic Unit. The ALU 60
can perform arithmetic or logic operations on one or two data words. The accumulator is closely associated with the ALU. Typically, the accumulator supplies one of the words to be processed by the ALU. The result is then fed from the ALU's output back to the accumulator over the address/data bus.

MPU Programming. So far we've emphasized the hardware aspects of microprocessors. Hardware is important; but without software, the programs that tell a microprocessor what to do, a microprocessor is of no practical use. You might say software is to a microprocessor what recipes are to a cook.

A microprocessor has dozens of instructions in its instruction set, and it's the job of the programmer to combine some or all of them in a way that will cause the microprocessor to accomplish a given task.

One common microprocessor instruction is load the accumulator or simply LDA. This instruction loads the accumulator with the data word which follows it in the program. Incidentally, LDA
is an abbreviated form of the instruction called a mnemonic by programmers.

Other common microprocessor instructions are JMP (jump unconditionally to the specified address); JZ (jump only if a zero is loaded in a special flipflop); JP (jump only if the result of an operation is postive); CLA (clear the accumulator to 0); ADD (add contents of accumulator and data register and place sum in accumulator); MOV (move data from one specified register to another); RAL or RAR (rotate the bits in accumulator left or right); and HLT (halt the microprocessor).

Of course these instructions are only representative of those available with real microprocessors. Nevertheless, they provide an excellent illustration of the computer-like power of the microprocessor.

Next Month. We'll introduce PIP-2, a simple Programmable Instruction Processor that demonstrates many fundamentals of microprocessor operation. We'll study PIP-2's operation in detail and learn how to program it.

BY JOSEPH CARR

PART 2

Some typical, easy-to-build circuit applications.

AST MONTH, we discussed the elements of power supplies, especially the low-voltage, high-current types used in microcomputers and other large-scale digital electronic projects. This month, we will give some advice on the overall circuit design of such supplies and discuss several construction projects.

Some Basics. The transformer for the supply should have a current rating higher than that required by the electronics system it is powering. Many transformers will operate excessively hot when operated at their rated current, so a safety margin is a good investment. Also, keep in mind that, when a transformer is specified, a bridge-rectified supply can safely draw only one-half of the transformer's rated secondary current without exceeding the transformer's primary VA (volts times amperes) rating in some cases the secondary rating can be exceeded, but it is risky

A filtered power supply will produce an output that is close to the peak voltage appearing across the transformer secondary, but the transformer ratings are likely to be in terms of the rms voltage, which is defined as 0.707 E peak. The voltage that appears across the filter capacitor will be between 0.9E peak and the peak voltage, rather than the rms voltage.

You may conclude then, that the output voltage will approach 1.4 times the rms voltage rating of the transformer secondary. For a typical power supply designed for the Altair ($\mathrm{S}-100$) bus systems, a 6.3-volt transformer with a bridge rectifier will generate the "nominal 8 volts" required with this approach. Alternatively, a 12.6 -volt transformer and a conventional full-wave rectifier will also do the trick. These secondary voltages are popular in high-power transmitter filament supplies, so it is relatively easy to locate both 6.3- and 12.6 -volt transformers having high current ratings at electronics surplus dealers, hamfests, and auctions. One transformer manufacturer, Triad, makes three transformers that power-supply builders should investigate. The $\mathrm{F}-22 \mathrm{U}$ is rated at 6.3 volts at 20 amperes; the F-24U at $6.3 / 7.5$ volts at eight amperes; and the F-28U at $6.3 / 7.5$ volts at 25 amperes. The last two models offer the advantage of a tapped primary so that either 6.3 or 7.5 volts appear across the secondary, depending on which tap is used.

Do not skimp on the rectifiers. Always use individual rectifier diodes, or molded
bridges with current ratings greater than the expected requirements. If possible, a rectifier having a rating 150 to 200% higher than the current predicted should be used.

The peak inverse voltage (piv) or peak reverse voltage (prv) as it is sometimes called, is critical. The peak voltage is defined as 1.4 times the rms rating of the transformer, and this is the voltage to which the filter capacitor charges.

Once during each power-line cycle, the capacitor voltage is in series with the entire rectifier voltage, so the reverse voltage applied to the diodes is two times 1.4 rms , or 2.8 times rms. This means that the piv rating of the rectifier diode should be 2.8 times the applied rms voltage. Some designers prefer three times rms for safety

When using a 6.3-volt transformer, there are few problems since the lowest piv rating for most rectifier diodes is about 25 volts. However, consider the case when a 12.6 -, 18 -, or 24 -volt transformer is used. In the first case, a 50-volt piv diode rating is adequate; but in the second, this rating is marginal; and in the third case, it is unsatisfactory. In the latter two cases, a 100-volt piv rectifier is required.
When using regulator transistors, or three-terminal IC voltage regulators, be generous with the size of the heatsink. This is not an area in which to skimp, since getting rid of heat is essential to the long life and reliability of the circuit. Keep in mind that a shorted series-pass transistor in a power suppiy can easily destroy the circuit it is powering. Even if an associated overvoltage protection circuit works properly, it might not operate fast enough to protect certain types of semiconductors.

8-Volt, 15-Ampere Supply. The Altair bus, also calied the S-100 bus by non-Altair manufacturers, uses the concept of distributed voltage regulation. In this case, the computer mainframe power supply generates a well-filtered but
unregulated +8 volts. Each circuit board that "plugs" into the bus has its own 5volt regulator, usually of the 1-A type.

Most three-terminal regulators require an input voltage 2 to 3 volts higher than the output voltage rating. If a lower voltage is applied to the input, the voltage will drop and become unregulated.

The power dissipated by a regulator is ($\left.\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}\right)$). Thus, with an 8 -volt input, a regulator that delivers 5 volts at its full rated current of 1 ampere will dissipate 3 watts of heat. The $\mathrm{S}-100$ bus 8 -volt supply then, is proper for the +5 volts required by TTL devices. Up to +35 volts could be used as the input for such regulators, but that is unwise since it would increase the dissipation of the regulator to the danger point.

The circuit for an 8-volt, 15-ampere power supply is shown in Fig. 1. Transformer $T 1$ is rated at 6.3 volts and 25 amperes. The rectifier is a 25 -ampere bridge stack mounted on its own heatsink. The filter capacitor ($C 1$) is rated at $80,000 \mu \mathrm{~F}$ and reduces the ripple to a few millivolts. Resistor R1 across the output is required for static testing since the unloaded voltage approaches 14 volts-common with high-current, lowvoltage transformer supplies. Resistor R1 solves the problem at a cost of only 80 mA of current drain. Transformer T1, like many high-current units, comes with "solderless" terminals. These did work loose during construction so a good lesson to learn is: always solder solderless connections. This becomes imperative in high-current supplies.
Since the major expense in this (and
other) high-current power supplies is the transformer, it may pay to shop judiciously through various surplus stores that handle electronic equipment, in search of transformers in the 15-to-30ampere range.

5-Volt, 4-Ampere Regulated Sup-

ply. Most digital circuits use many TTL logic units, and therefore require a power source of 5 volts at a couple of amperes. The circuit shown in Fig. 2 can deliver well-regulated 5 volts at 4 amperes (or 5 amperes with regulator and rectifier heatsinking).

The circuit is powered from a transformer rated at $6.3 / 7.5$ volts at 8 amperes. Capacitor C1, the main filter, was selected according to the rule requiring $2000-\mu \mathrm{F}$ /output ampere. This produced a value of $8000 \mu \mathrm{~F}$. Tantalum capacitors are used for C2 and C3 to reduce the susceptibility of the voltage regulator to noise pulses on the power line. For best results, these capacitors must be mounted as close as possible to the input and output connectors of the regulator. Capacitor C4 is used to improve the transient response of the regulator under highly dynamic current changes while the digital circuit is operating (see Part 1). The value of $C 4$ is determined by the $100-\mu \mathrm{F}$ /output ampere rule, so it should be $400 \mu \mathrm{~F}$ but the next highest standard value of $500 \mu \mathrm{~F}$ is used.

The voltage regulator is a three-terminal device that can deliver 5 volts at 5 amperes. In this case, it was a Lambda type LAS-1905 (Lambda Electronics, 515 Broad Hollow Road, Melville, NY

Fig. 1. Basic 8-volt, 15-ampere de source. Note heavy wiring between elements.

PARTS LIST

$\mathrm{Cl}-80.0000-\mu \mathrm{F} .15-\mathrm{V}$ electrolytic RI - 100 -ohm, $2-\mathrm{W}$ resistor RECTI - 25-A bridge rectifier (GE GEBR-425 or similar)
T1 - 6.3-V, 25-A transformer (Triad F-28U or similar)

Fig. 2. Five-volt, 4-A dc supply with overvoltage protection. Extra transformer is for an unregulated supply whose components are not shown.

PARTS LIST

C1-8(ヶल $-\mu \mathrm{F} .25$-V electrolytic $\mathrm{C} 2-2-\mu \mathrm{F}, 25-\mathrm{V}$ tantatum capacitor $\mathrm{C} 3-1-\mu \mathrm{F}, 25-\mathrm{V}$ tantalum capacitor $\mathrm{C} 4-500-\mu \mathrm{F} .15-\mathrm{V}$ electrolytic FI - 7-A. fast-blow fuse and holder ICl-5-V,5-A regulator (Lambda LAS-1905 or similar)
OV1 - $5-\mathrm{V}$ overvoltage protector (Lambda L6-OV5 or similar)
RECT1 - 25-A bridge rectifier (GE
GEBR-425 or similar)

11746). Although the single-unit price is about $\$ 14$, this one device does save the several components that would be required to use a low-current regulator drive with a series-pass transistor. It is also much simpler to use.

As usual, provide a suitable heatsink for the voltage regulator so that it will run cool at its full rated current.

The over-voltage protection (OV1 in Fig. 2), is an SCR crowbar type (see Part 1) also manufactured by Lambda.

Fig. 3. Dual-polarity 12-volt supply includes optional overvoltage protection. Note use of barrier strips for power-supply connections.

PARTS LIST

C1.C2-2000- $\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic C3 through $\mathrm{C} 6-1-\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic C7. $\mathrm{C} 8-100-\mu \mathrm{F}, 15-\mathrm{V}$ tantalum capacitor F1.F2 - 1.5-A 3AG fuse and holder
$\mathrm{ICl}-+12-\mathrm{V}$ regulator (LM340K-12 or simi-
lar)
IC2--12.V regulator (LM320K-12 or similar)
OV1,OV2-12-V overvoltage protector (Lambda L2-OV12 or similar)
RECT1-1-A. 200-piv bridge rectitier T1-25.2-V. 2.8-A transformer (Triad F-56X or similar)

This TO-3 size protection circuit will fire the crowbar at 6.6 volts. Note that pin 1 of this circuit is left floating for proper operation in this application.

12-Volt, 1-Ampere Supply. Many circuits, including those using linear IC's (especially op amps), and S-100 boards require dual-polarity supplies at reasonable current. The circuit shown in Fig. 3 features two supplies driven from a common transformer, delivering +12 and -12 volts to ground at 1 ampere each.
The transformer is a 25 -volt centertapped unit rated (at the least) at 2 amperes. However, if you intend to operate close to the 1-ampere output, the transformer may either run hot, or not deliver the current, so a unit rated at 3 amperes is preferable.

The circuit uses a full-wave bridge stack (with a minimum rating of 1 ampere), but it is actually wired as two halfwave rectifiers since the transformer center tap is the common ground. The negative terminal of the bridge feeds the negative supply, while the positive terminal feeds the positive supply.

The filter-regulator portions of the supply are the same as those previously used, except that independent regulators are used for each side. As usual, provide heatsinks for the regulators to keep them operating cool. Note also that over-voltage protection modules (OV1 and OV2) are used. Since these modules are available in only one polarity, the negative supply protector is used "upside down," making it necessary to "float" the case above ground.

5-Volt, 10 -Ampere Supply. The circuit shown in Fig. 4 delivers regulated 5 volts at 10 amperes. The transformer delivers 6.3 volts at 20 amperes. The series-pass transistor (Q1) and the IC voltage regulator are conventional HEP types. Two versions of the $I C$ regulator are available, but only the one having the " R " suffix is suitable for this application. (The low-power version, having the "G" suffix, may work properly heatsinked). Capacitors C2, C3, and C4 should be mounted as close as possible to the appropriate pins of the IC voltage regulator.

Pin 5 of the regulator is the outputsense terminal and is used to provide means for remotely sensing the level of the output voltage. Ordinarily, this is not a requirement for low-current supplies, but at high output currents (several amperes), the voltage drop in the wiring between the power supply and load can re-

Fig. 4. Typical regulated supply for 5 Vat 10 A. Circuit includes a line over-voltage protector and current limiting regulator. Photo at top shows top of chassis. Underneath view is directly above.

CI-18.(ヶ) (0)- $\mu \mathrm{F}$, $15-\mathrm{V}$ electrolytic $\mathrm{C}, \mathrm{C} 3-0.1-\mu \mathrm{F}, 50-\mathrm{V}$ capacitor $\mathrm{C} 4-0.001-\mu \mathrm{F} .50-\mathrm{V}$ capacitor $\mathrm{C} 5-1-\mu \mathrm{F}, 25-\mathrm{V}$ tantalum capacitor FI - 2-A. 3AG fuse and holder F2 - 15-A fuse and holder IC1-MC1469R. HEP C6049R (Motorola) voltage regulator
MOVI-Metal oxide transient suppressor (GE)
OVI - 5 - V overvoltage protector (Lambda L35-OV5 or similar)

PARTS LIST

Q1 - 2N3771, (Motorola) HEP S7000
Q2 - 2N706 or similar
RI-60)-milliohm (use five 0.33 -ohm in parallel)
R2 - 100 -ohm. $1 / 2-$ W resistor
R3-1000-ohm, $1 / 2$-W resistor
R4 - 3300 -ohm, $1 / 2-\mathrm{W}$ resistor
R5 - 10.000 -ohm Irimmer potentiometer
RECT1 - $25-\mathrm{A}$ bridge rectifier (GE
GEBR-425 or similar)
T 1 -6.3-V $25-\mathrm{A}$ transformer (Triad F-28U or similar)
duce the voltage at the load below the 4.75 volts specified for proper operation of TTL devices. In one test, 18 inches of \# 12 wire dropped the 5 -volt output of the power supply to 4.5 volts at the TTL devices, resulting in erratic operation.

The remote sense line, connected to pin 5 , is connected to the same point on the TTL board as the +5 -volt line from the main power source. Thus, the IC regulator is using the actual board voltage as the reference, and can compensate the power supply for the unwanted voltage drop. This means that the actual output of the power supply is higher than the nominal 5 volts. If wiring voltage drop is not a problem in your system, simply connect the remote sense line (pin 5) to the actual output (+5 volts) of the supply. Again, overvoltage protection is provided by a crowbar circuit.

A new element can be added to this
circuit-a line over-voltage protector across the transformer primary. This particular device (called a MOV) is made by General Electric and "looks" like a pair of back-to-back zeners, having a $117-125$-volt ac voltage rating. It clips any high-voltage line transients that exceed the rated voltage. These line transients, which can reach many hundreds of volts, can be generated by local lightning storms or by inductive loads being switched somewhere on the common power line. Keep in mind that semiconductor junctions fail catastrophically when excessive voltage is applied, in many cases for only a very brief time. The use of the MOV does not guarantee that you will have complete protection, but it does give the system a chance to survive such a transient.

Another feature of the supply shown in Fig. 4 is current limiting with auto shut-
down. Pin 4 of the IC regulator (the current limiting input) is controlled by transistor Q2. The base bias of $Q 2$ is controlled by the voltage drop across the small-valued series resistor R1. (This resistor, a 60 -milliohm unit, can be fabricated from five 0.33 -ohm resistors connected in parallel.) The value of this resistor for other current-limiting levels can be calculated (approximately) from R1 $=0.6 / 1$.
At an output current of 8.5 amperes, series-pass transistor Q1 started to operate uncomfortably hot after about 20 minutes. A 50 -cfm "muffin" fan was used to blow air across the heatsink of Q1 and solved this problem. Without the fan, the case temperature of Q1 is too hot to touch after one hour of operation, but with the fan, it remains comfortably warm. The cooler operation of the voltage regulator will prolong its life.

Build a FAIL-SAFE TIMER

Easy-to-construct circuit lets you know if a timer should fail.

0NE OF THE integrated circuits most commonly used by electronics enthusiasts is the 555 timer. A typical application for this ubiquitous chip is as an elapsed time indicator. Here, the 555 functions in the monostable mode and drives either a beeper or LED to indicate the end of a time period. Unfortunately; such a circuit usually has no way of alerting the user when the timer is not working properly. This problem is circumvented by the use of the Fail-Sate Timer. A simple project, the timer will not only notify you when the specified period has elapsed, but will also tell you at a glance if it is still "ticking."

About the Circuit. As shown in the diagram, two 555 IC timers (or a 556 dual timer) form the heart of the circuit. The first (IC1) operates in the monostable mode. When triggered by $S 2$, the one-shot output goes high and LED1 glows to indicate the timing cycle. When the timing interval is over, the output of IC1 goes low darkening the LED and grounding pin 1 of $I C 2$ and the lower plate of timing capacitor C5. The second timer is an astable multibrator whose output is capacitively coupled to a small 8 -ohm speaker. When pin 1 of the IC and the lower plate of $C 5$ are grounded, IC2 generates a $1300-\mathrm{Hz}$ tone.

One IC timer (IC2) sounds an alarm after the other has timed out.

PARTS LIST

C1-220-pF disc ceramic capacitor
C2,C4,C5-0.01- $\mu \mathrm{F}$ disc ceramic
C3- $100-\mu \mathrm{F}, 16-\mathrm{V}$ tantalum
C6- $10-\mu \mathrm{F} .16-\mathrm{V}$ electrolytic
IC1.IC2-NE555V timer (or 556 dual timer) LED1-TIL- 32 light emitting diode
The following are $1 / 4$-watt, 10% tolerance carbon composition resistors.
R1- 220 ohms

R2.R4-100,000 ohms
R3- $\mathbf{3 . 3}$ megohms
R5 - 4700 ohms
SI-Spst switch
S2-Normally open, momentary contact pushbutton switch
SPKR-8-ohm dynamic speaker
Misc.-Printed circuit or perforated board, suitable enclosure, hook-up wire, machine hardware, etc.

If for any reason the one-shot (IC1) output goes low before the timing cycle is finished, the LED will darken to alert you. Of course, you can use a LED or relay at the output of IC2 if you prefer a visual indication of elapsed time. Connect a diode in parallel with the relay coil (cathode to pin 3 of the IC, anode to ground) to protect the chip's output transistor from voltage spikes.

As mentioned earlier, the Fail Safe Timer is triggered by closing S2. This switch can be replaced with a touch switch. Simply connect a length of hookup wire to pin 2 of IC1 and another wire to ground. Remove $1 / 2^{\prime \prime}(1.3 \mathrm{~cm})$ of the insulation from the free ends of the wires, and fasten them to a flat, nonconducting surface. The wires should be spaced about $1 / 4^{\prime \prime}(6.4 \mathrm{~mm})$ apart, parallel to each other but not in electrical contact. The lightest touch of your finger across the exposed conductors will initiate the timing interval.

Uses and Modifications. The circuit as shown is used by the author as a callsign identifier alarm during his conversations via amateur radio. Of course, you can adapt the timer for many other applications.

The length of the timing period can be changed by varying the values of C3 and $R 3$ according to the equation $T=$ $1.1(R 3)(C 3)$, where T is the timing interval in seconds, $R 3$ is in ohms and $C 3$ is in farads. Note, however, that the tolerance of many electrolytic capacitors is $-50 \%,+100 \%$. Unless you use a closetolerance tantalum capacitor, you might end up with a timing interval anywhere from one half to twice the calculated duration.

The pitch of the warning tone can be raised by increasing the value of $R 4$ or C5, or both. Similarly, it can be reduced by using a smaller value of resistance or capacitance.

THE LIGHT CONNECTION

WHETHER you're a dedicated experimenter or a casual hobbyist, chances are you're always looking for something new to try-a new circuit to breadboard, perhaps, a new device to work with, or a new project to assemble. Certainly, anything new is exciting, different and challenging; but in the search for "newness" one shouldn't neglect older devices. If you haven't looked at optoelectronic couplers recently, for example, you may be in for a big surprise. Using infrared or visible light as a coupling medium, the early devices were relatively simple, comprising a LED light source and a low-voltage phototransistor or photodiode in a single package. Today, however, you can obtain off-the-shelf devices offering highvoltage transistors, high-gain Darlington pairs, and even thyristor outputs as well as conventional diodes and transistors. The expanding array of optoelectronic couplers can be used in a whole galaxy of interesting projects, with the number of potential applications limited only by the imagination, skill and knowledge of the circuit designer.

Let's look at a few of the many different circuits in which optoelectronic couplers can be used. Abstracted from device data sheets published by Motorola Semiconductor Products, Inc. (Box 20912, Phoenix, AZ 85036), these designs feature standard commercial components available through franchised local as well as mail order distributors. Intended primarily for interface applications-that is, to provide isolation between a signal or control source and another stage or load-the circuits are suitable for use in a variety of worthwhile and exciting projects, including computers, data processors, communication systems, alarms, remote controls, data transmission links, electronic musical instruments, test equipment, and electronic games. Depending on the specific ap-
plication, the individual circuits may be incorporated into complete equipment designs or used primarily as interface elements between subsystems. Generally, the circuits can be duplicated using conventional assembly and wiring techniques, for neither layout nor lead dress should be overly critical as long as good construction practice is observed.
Featuring the Motorola 4 N25 series (4 N25, 4N25A, 4N26, 4N27, and 4N28), the circuits shown in Fig. 1 represent typical applications for a low-voltage LED/phototransistor coupled pair. Supplied in 6-lead miniDIP's, each device comprises a gallium-arsenide infrared LED optically coupled to an npn silicon photo transistor. In each, the LED has a maximum V_{R} rating of 3.0 volts and a maximum continuous forward current rating of 80 mA , although it can tolerate narrow pulse peak currents of up to 3.0 A, while the phototransistor has a maximum $V_{\text {CEO }}$ rating of 30 volts and a maximum power dissipation of 150 mW (at $25^{\circ} \mathrm{C}$). All devices in the series have a typical frequency response of 300 kHz and offer a minimum isolation voltage of 7500 V .

Suitable for applications in equipment and system designs using a combination of TTL and PMOS IC's, the TTL to PMOS logic translator circuit given in Fig. 1A uses a 4 N 25 series device in conjunction with an MPS6516 pnp common-base buffer amplifier. A typical subsystem interface application is shown in Fig. 1B; here, a pair of optoelectronic couplers serve as interconnection line drivers between a computer and one of its peripheral instruments (such as a data logger), providing both line and dc isolation. Quite versatile, the basic optoelectronic coupler also can be used to drive a power amplifier or to gate an SCR, controlling the power delivered to an inductive load such as a motor or solenoid.

Fig. 1. Optoelectronic applications:
(A) Logic level translator; and
(B) Computer/peripheral interface.

10 mA

Fig. 2. Typical teletypwriter interface circuit featuring npn (A) and pnp (B) drivers.

Typical application circuits for a higher voltage optoelectronic coupler, the 4N38/4N38A, are given in Figs. 2 and 3. As the 4 N 25 series, the 4 N 38 offers a minimum isolation voltage of 7500 volts, comprises a gallium-arsenide infrared LED optically coupled to an nfn silicon phototransistor, and is supplied in a 6-lead miniDIP. The phototransistor, however, has a maximum $V_{C E O}$ rating of 80 volts, permitting the device to be used in such applications as a teletype (TTY) interface, telephone line pulser, and as a driver for high-voltage relays. Two typical TTY interface circuits are shown in Fig. 2, one featuring an MPS-A06 npn output stage (Fig. 2A), and the other an MPS-A56 pnp buffer amplifier (Fig. 2B). In both, R1 should be a 3300-ohm, 2-W resistor for 20-mA systems or an 1100-ohm, $5-\mathrm{W}$ resistor for $60-\mathrm{mA}$ systems. A telephone line pulse circuit is shown in Fig. 3, with the optoelectronic coupler driving an npn transistor shunted by a zener diode to eliminate transient spikes caused by the inductive (relay) load.

In optoelectronic couplers, higher current transfer ratios-a measure of overall sensitivity-may be achieved by replacing a simple phototransistor with a photo-sensitive Darlington pair. Typical Motorola devices featuring Darlington outputs are the 4 N 29 series ($4 \mathrm{~N} 29,4 \mathrm{~N} 29 \mathrm{~A}, 4 \mathrm{~N} 30,4 \mathrm{~N} 31,4 \mathrm{~N} 32$, 4N32A, and 4N33), the MOC8050, and the MOC8030. All of these devices employ gallium-arsenide infrared LED light sources and npn silicon photo-Darlington transistors and are supplied in 6-lead miniDIP's. The LED characteristics are similar: V_{R} rating of 3 volts, a maximum continuous forward current of 80 mA , and a maximum peak current of 3 A . The isola-
tion voltages also are comparable- 7500 volts for the 4 N 29 series and 700 volts for the MOC8050/MOC8030. The 4N29 series output transistors, however, have a maximum VCEO of 30 volts compared to 80 volts for the MOC8050/MOC8030. Representative application circuits for these devices are given in Figs. 4, 5, and 6.

In Fig. 4A, a 4N29 series photo-Darlington coupler has been combined with an MPS6515 npn transistor to form an optically coupled one shot. Feedback is provided from the transistor's collector to the photo-Darlington's base (pin 6) by a 100,000 -ohm resistor. Operation is initiated when a control voltage is applied to the LED, causing the photo-Darlington to conduct heavily and effectively shorting the external transistor's base bias to ground through capacitor C. The transistor's collector voltage rises as the device stops conducting and remains at a peak until capacitor C is charged through R, permitting base bias to be restored; the transistor starts conducting again and its collector voltage drops. Since the output pulse width depends on the time required for the capacitor to charge, its duration is determined by the RC time constant.

An optically isolated zero-voltage ac line switch circuit is shown in Fig. 4B. Here, the 4N29 series photo-Darlington coupler controls a zero-crossing detector which, in turn, switches a 2N6342 triac through a 2N3906 pnp buffer amplifier stage. Zero-voltage line switches are used for controlling heavy electrical loads, such as high-power incandescent lamps or heaters, which may appear as virtual short circuits when power is first applied. In an incandescent lamp, for ex-

Fig. 4. Photo-Darlington coupler applications:
(A) One-shot; (B) Zero-voltage switch.
ample, the filament's cold resistance is but a small fraction of its hot resistance, resulting in a large current surge if peak voltage is applied suddenly. With ordinary household lamps, this characteristic is not a serious problem, although lamps may tend to "burn out" most often when first switched on. Where high power levels are involved, however, a zero-voltage switch may be essential to avoid blown fuses, tripped circuit breakers, and fused relay or switch contacts.

Two additional optically isolated ac switch or solid-state relay circuits are provided in Fig. 5. Both use 4N29 series photo-

Darlington couplers. In the first, Fig. 5A, the optoelectronic coupler serves to trigger a 2N5060 SCR which controls a 2N6155 triac through an MDA920-2 full-wave bridge rectifier. In operation, the unloaded bridge rectifier acts as an open circuit, preventing the application of a gate voltage to the triac and thus holding this device in a nonconducting state. When loaded by the conducting SCR, however, the bridge rectifier becomes a bidirectional conductor, applying an ac gate signal which switches on the triac, thereby supplying power to the external load.

Fig. 5. Voltage controlled triac (A) and ac solid-state relay (B) circuits featuring a photo-Darlington coupler.

In the second circuit, Fig. 5B, the triac's ac gate signal is supplied on alternate half cycles through pnp and npn transistors Q1 and Q2 and isolation diodes D1 and D2, respectively. The transistors, in turn, are controlled by the optoelectronic coupler.

Figure 6 illustrates a technique for using a high-voltage photo-Darlington coupler, the MOC8050, to interface positive CMOS or TTL logic circuits to a negative-voltage actuated telephone relay. In operation, the optoelectronic coupler provides electrical isolation while, at the same time, achieving an effective change in both control voltage level and dc polarity.

Yet another optoelectronic coupler and representative circuit applications are given in Fig. 7. Motorola's MOC3010/ MOC3011 series comprises a gallium-arsenide infrared LED source and a photosensitive silicon bilateral switch, as shown in Fig. 7A. The LED is similar to the type used in the other optoelectronic couplers, having a maximum V_{R} rating of 3.0 volts and a maximum continuous forward current rating of 50 mA . Intended as a triac driver, the bilateral switch has an offstate voltage rating of 250 V and is able to supply a maximum rms current of 100 mA in its on state, although it can furnish a nonrepetitive peak surge current of 1.2 A. Supplied in a 6-lead miniDIP, the MOC3010/MOC3011 series has an isolation surge voltage rating of 7500 V and a maximum rated power dissipation of 330 mW per device at $25^{\circ} \mathrm{C}$. With a modest current handling capability, the MOC3010/MOC3011 devices may be used alone as drivers for medium-power ac loads, as in the logic-controlled lamp circuit shown in Fig. 7B.

Reader's Circuit. Submitted by Lee Wright (8531 E. Laredo Lane, Scottsdale, AZ 85253), the digital frequency-divider circuit illustrated in Fig. 8 offers an interesting advantage over more familiar designs-it delivers a symmetrical output waveform even when dividing by odd numbers such as 3,5, 7, 9 , 11, etc. Most conventional dividers deliver symmetrical outputs only when used for even division ($2,4,6$, etc). Symmetrical signal waveforms are not only desirable for optimum performance in many applications, but are an absolute necessity for some digital circuit systems. Requiring only three active CMOS devices, Lee's design can be duplicated quite easily in a single evening for breadboard tests and experiments. It may be used, typically, in such projects as electronic musical instruments, test equipment, counters, alarms, decoders, and control systems.

Referring to the schematic and timing diagrams, Figs. 8 and 9 , respectively, the frequency divider comprises an exclusiveOR circuit, IC1, a five-stage Johnson decade counter, IC2, and a type-D flip-flop, IC3. The Johnson counter is operated in its standard modulo-N configuration. In operation, each successive output, starting with Q_{0}, goes high on the rising edge of the clock input, with the preceding output going low. As Q_{N} goes high, the reset also goes high, causing counter IC2 to return to Q_{0} and to continue counting. The D flip-flop, IC3, is connected as a divide-by-2 counter, delivering a symmetrical output signal. The key capability of dividing by an odd number is achieved by the use of an exclusive-OR gate (IC1) at the counter input which serves, essentially, as a controlled inverter. When the Q output of IC3 is low, IC1 is on, permitting the input signal, $f_{I_{N}}$, to be applied to $I C 2$ unchanged. When the Q output of IC3 is high, however, IC1 effectively inverts $f_{I N}$, causing IC2 to be triggered on the negative edge of the input signal, as illustrated in the timing diagram. The net result is a symmetrical output signal equal to $f_{1 N} /(2 N-1)$. If the Q3output
of $I C 2$ is used, for example, $f_{\text {OUT }}$ is then $f_{I N} /[2(3)-1]=f_{I N} / 5$, or one-fifth the input frequency. Since the Johnson counter (/C2) has outputs up to Qg_{9}, the circuit can be used for any odd number frequency division from 1 to 17 . If greater division ratios are needed, two or more counters may be cascaded.

With neither layout nor lead dress critical, the frequencydivider circuit can be assembled on perf or a suitable pc board. However, the customary wiring precautions governing CMOS devices should be observed to avoid damaging the IC's. The specified devices are inexpensive and readily available through local as well as mail order parts distributors. IC1 is one section of a type 4070 quad exclusive-OR gate, IC2 is a type 4017 Johnson decade counter, and IC3 is one section of a type 4013 dual D flip-flop. Depending on the individual semiconductor manufacturer's specifications, dc-supply voltages may range from 3 to 18 volts. As a general rule, the higher the dc source voltage, within maximum limits, the higher the switching speeds of CMOS devices, hence the higher the signal frequencies that can be processed by the circuit. Lee writes that his design is capable of handling input frequencies up to the megahertz range with an adequate dc supply.

Device/Product News. Providing all the functions of a comprehensive FM i-f system for applications in high-fidelity, automotive and communications receivers, a new IC, the CA3189E, has been introduced by the RCA Solid State Division (Box 3200, Somerville, NJ 08876). Supplied in a 16-lead plastic DIP, the device includes a three-stage limiting amplifi-
(Continued on page 74)

Be the "New

Professional" in electronics

Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however, a third and very important level. It is that of the engineering technician or practical engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.

The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.

The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.
The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.

CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-

Career Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, teleyision (broadcast) engineering and many other areas

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Fig. 8. Frequency divider circuit from a reader provides symmetrical output waveform even when dividing by odd numbers.
er, doubly balanced quadrature FM detector, audio amplifier, afc drive circuit, tuning meter drive circuit, zero-point tuning meter output, and an agc r-f stage control circuit. Other features of the unit are a deviation mute (squelch) drive combined with a signal-to-noise mute function which, if desired, may be used to provide an "on channel" step voltage. With internal power supply regulators, the CA3189E can be operated on dc source voltages of 8.5 to 16 volts.

RCA also has introduced another series of devices of potential interest to experimenters and hobbyists-the CA810 family of 7 -watt monolithic audio amplifiers. Intended for class-B service in mobile equipment using 12 -volt dc power supplies, the units can operate on dc sources from as low as 4 to as high as 20 volts with very low harmonic and crossover

Fig. 9. Timing diagram for the frequency divider circuit in Fig. 8.
distortion. With a maximum repetitive peak output current of 2.5 A, the IC's feature an integral thermal limiting circuit which shuts down operation in case of output overload or excessive package temperature. Four versions of the CA810 are available, all furnished in special 16-lead quad-inline plastic packages with built-in wing tab heat sinks. Of these, two versions have tabs for insertion in a pc board, the other two pierced flat tabs for attaching an external heat sink. All four types have similar electrical characteristics, but two versions, identified by an " A " suffix, include overvoltage protection circuits.

Career Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.
Only CREI offers the unique Lab Program. It is a complete college Lab and. we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree

CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book

In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80 , fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications

You may be eligible to take a CREI col-lege-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to
$\begin{array}{ll}1 & 1 \\ 1 & \begin{array}{l}\text { CAPITOL } \\ \text { RADIO } \\ \text { ENGINEERING } \\ \text { INSTITUTE }\end{array}\end{array}$
McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill

CREI programs are approved for training of veterans and servicemen under the GiI. Bill.

Fig. 8. Frequency divider circuit from a reader provides symmetrical output waveform even when dividing by odd numbers.
er, doubly balanced quadrature FM detector, audio amplifier, afc drive circuit, tuning meter drive circuit, zero-point tuning meter output, and an agc r-f stage control circuit. Other features of the unit are a deviation mute (squelch) drive combined with a signal-to-noise mute function which, if desired, may be used to provide an "on channel'" step voltage. With internal power supply regulators, the CA3189E can be operated on dc source voltages of 8.5 to 16 volts.
RCA also has introduced another series of devices of potential interest to experimenters and hobbyists-the CA8́10 family of 7 -watt monolithic audio amplifiers. Intended for class-B service in mobile equipment using 12 -volt dc power supplies, the units can operate on dc sources from as low as 4 to as high as 20 volts with very low harmonic and crossover

Fig. 9. Timing diagram for the
frequency divider circuit in Fig. 8.
distortion. With a maximum repetitive peak output current of 2.5 A, the IC's feature an integral thermal limiting circuit which shuts down operation in case of output overload or excessive package temperature. Four versions of the CA810 are available, all furnished in special 16-lead quad-inline plastic packages with built-in wing tab heat sinks. Of these, two versions have tabs for insertion in a pc board, the other two pierced flat tabs for attaching an external heat sink. All four types have similar electrical characteristics, but two versions, identified by an "A" suffix, include overvoltage protection circuits.

Yesterday you could admire LIED digital tuning in short wave: Today you can afford it.

Intryducing Fanasonic's Cc nmand Series top-of-the-line RF-480J. Everytning you wan in short wave. Except th = price. Like a five-digit LED frequency display. It s so ascurate (within 1 KHz , to be exact), you can tune in a station. even before i:-s booadcasting Ard with the RF-4800's eight shorl wave bands, you can chcose any broadcast between 1.6 ard 31 MHz Thet's the full frequency ranje. That's Panasonic.

And what you see on the outside is , ust a small part of what Panesonic gives ycu inside. There's a double superhete־こdyne system for enharced reception stabilizy ard selectivity as well as image rejection. An nox-:uned RF amplifier with a 3 -ganged variable :un ng capacitor for except o 2 al sensitivity and frequancy linearity. Ladder-type ceramic filters \approx reduze Irequency interfererce And even an a teme t-immer that changes the Iron:-end cape yitance for maximum reception from m nimal broedcest signals.

To help you control all that sopi sticated
circuitry, Par asonic's $R=-\angle 800$ gives you all these sophisticated controls. -ike an all-gear-drive t.nirg control to prevent ' backlash:' Separate wide /narrow bandwidih selectors for optimun reception ever n crowded conditions Adjustasle calibration "or easy tun ig to exact frequencies. A BFO p th control. RF-gain cor trol for increased selectivity in busy signal areas An ANL switch. Even separate bass and treble controls. And if all that short wave isr't enough. Thare's more. Like SSB (single sidetand) amateur rasio. All 40 CB channels. Ship to s^{-}ore. Even Morse communiceticns. ACiDC operajon. K רd with Panasonic's 4' full-range sfeaker, the big sclnd of AM and FA will really sqund big.

The RF-48j0. If yju had a sha-: wave receiver a : good. You wouldn't still je reading. You'd je liszen ng -The ability to recenceshort wave broade aste will vary vie zitenna sise. if e ct dyy. operator's geographr. acation and oth m fetors. Yournce need an cpitor al ouss do antenna to recelve dstant shore wave broaceasts.
Panasonic.
just slightly aheed of our time.

TiP9 Corner

By Forrest M. Mims

THE MONOSTABLE MULTIVIBRATOR

M
ULTIVIBRATOR is an old-fashioned term for a circuit that vibrates or oscillates between two different output states. You're probably already familiar with one member of the multivibrator family, the bistable multivibrator or flip-flop. As you know, the flipflop has two outputs occupying complementary logic states. A single toggle pulse applied to the flip-flop will reverse the status of the two outputs. Another member of the multivibrator family is the astable or free-running multivibrator. This circuit functions like an oscillator

Fig. 1. Connections to a monostable multivibrator.
with two outputs continually and automatically occupying alternate states.

The multivibrator we'll be concerned about this month is the monostable multivibrator. As its name implies, this circuit has only one stable state. An input pulse will trigger the output into a temporary unstable state. After a fixed time interval, the output will automatically return to its stable state. This is why the mo-
nostable multivibrator is often called a "single-shot" or "one-shot."

Figure 1 will help you understand the operation of a one-shot. As you can see, the one-shot requires an external capacitor and resistor to control the width (T) of the output pulse. The output pulse width is approximately R times C ($T=R C$) when R is given in megohms and C in microfarads. Thus, a $100,000-$ ohm resistor and a 0.01 -microfarad capacitor will give an output pulse width of approximately one millisecond.

One-shots are often used in circuits that require either fixed or variable time delays. Switch debouncing is one common application. The output pulse of a one shot is adjusted to exceed the maximum bounce time of the switch contacts, providing a clean output pulse.

Although one-shots have many applications, you should think twice before using them as design shortcuts in many digital applications. The dependence on an external capacitor and resistor can make one-shots less precise than the circuit to which they're connected. That makes them unsuitable for many applications in computers, counters, etc.

A One-Shot Demonstration Cir-

 cuit. It's possible to make all three types of multivibrators from simple gates. However, there is an ample variety of integrated versions of each multivibrator available to the experimenter.Figure 2 shows how you can connect a 74121 integrated TTL one-shot to demonstrate monostable operation. You can plug the five components and assorted leads into a solderless breadboard and have the circuit running in a couple of minutes. Test the one-shot by disconnecting pin 5 from ground. (Open the normally closed switch by pushing it.) The LED will immediately turn on and continue to glow for about half a second if you use the values for R1 and C1 shown in Fig. 2. For briefer output pulses, reduce the value of either R1 or. C1 or both.

The 555 One-Shot. The 555 timer is far superior to the 74121 when long time delays are required. The 555 was originally designed as an integrated timing circuit; but because a one-shot is essentially a timer, the 555 is well suited for many monostable applications. It can produce very long time delays with a suitable timing capacitor and operates with a wide range of power supply voltages (4.5-16 volts).

Figure 3 shows the connections necessary to use the 555 as a one-shot. The timing cycle is initiated by grounding the chip's trigger input (pin 2). The output (pin 3) immediately goes to the positive supply voltage, and remains there until timing capacitor C1 charges up to two-thirds of the power supply voltage. The output then goes to ground and C1 is discharged.

A convenient feature of the 555 is the reset function. It's sometimes necessary, particularly during long time delays, to reset the circuit for another timing cycle. This is easily done by applying a negative-going pulse to the trigger (pin 2) and the reset (pin 4) inputs. This discharges C1 and prepares the chip for a new timing cycle which commences on the positive edge of the reset pulse.
Capacitor C2 is a bypass used to pre-

Fig. 2. A 74121 TTL
monostable multivibrator.

Fig. 3. A 555 in monostable mode.

Fig. 4. Astable-monostable divider.
vent external noise from upsetting the operation of the timer.

You can build the circuit shown in Fig. 3 on a solderless breadboard in a few minutes. The LED will glow when the 555 output is high and turn off when the output goes low.

One-Shot Sound Effects Genera-

tor. Figure 4 shows a simple circuit you'll want to build if you like the far-out sound effects of movies like "Star Wars." The circuit uses a dual version of the 555 timer; the 556 . One half of the 556 operates as an astable multivibrator. Its output is connected to the input of the other timer, which functions as a monostable multivibrator.
In operation, the astable feeds pulses to the one-shot at a rate determined by the values of R1 and C1. The one-shot responds by producing an output pulse for each incoming pulse

The pulse width of the one-shot's output is determined by the time constant of R3 and C3. What happens when the width of the pulses exceeds the spacing between incoming pulses? The oneshot simply ignores any trigger pulse or pulses that occur during the timing cycle. In short, the monostable acts as a frequency divider.

The audible effects of frequency division can be quite striking. By experimenting with the frequency of the astable while changing the width of the pulses from the one-shot, you'll hear some very unusual, science fiction-type sounds. Connect a capacitor substitution box (Heathkit IN-3147 or similar) in place of C3 to experiment with different one-shot time constants. For really dramatic effects, replace both $R 1$ and $R 3$ with cadmium-sulfide photocells (Radio Shack 276-116 or similar). Turn off the room lights and play the beam from a flashlight across the cells to produce the sound effects. You can experiment with the position of the cells relative to one another and hand movements in the path between the light source and the cells for best results.

Incidentally, if you have access to a dual-channel oscilloscope, you can observe what happens during frequency division. Connect one probe to pin 5 or pin 8 and the second probe to pin 9. Adjust potentiometers R1 and R3 (or vary the intensity of the light shining on photocells you've substituted for these pots) while viewing the screen. You'll find the resulting display quite fascinating, especially if you leave the speaker connected while making the adjustments.

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

SPECIFICATIONS

ELF 11 features an RCA COSMAC COS/MOS 8 -bit microprocessor ad dressable to 64 k bytes with DMA in terrups. 16 registers, ALU, 256 byte RAM. full hex keyboard, two digit hex output display, 5 siot pluge in expansion bus, stable crystal clock or uming purPoses and a double-sided plated-through display any segment of memory on a video monitor or TV screen.

Use ELF II to ... PLAY GAMES using your TV for a video display ... CREATE GRAPHICS pictures, alphanumerics. animated effects... learn how to DESIGN CIRCUITS using a

ELF II explodes into a giant when you plug the GIANT BOARD ${ }^{\text {co }}$ into ELF's expansion bus. This powerful board includes cassette 1/O, RS 232-C/TTY, 8 bit $P \quad I / O$ and system monitor/ editor...meaning your ELF 11 is now the heart of a full-size system with unlimited computing power! $\$ 39.95$ kit. $\$ 2$ p $\& h$. - 4k Static RAM addressable to any 4 k page to $64 \mathrm{k} . \$ 89.95 \mathrm{kit} . \$ 3 \mathrm{p} \$ \mathrm{~h}$. - Prototype (Kluge) Board accepts up to 32 I.C.'s of various sizes. $\$ 17.00 \mathrm{kit}$. \$ ph

- Expansion Power Supply. $\$ 34.95 \mathrm{kit}$. $\$ 2$ peh.
- Gold plated 86-pin connector. $\$ 5.70$ postpaid.
Tiny Basic
ASCIIKEYBOARD*CONTROLLER BOARD* D-A. A-D CONVERTER * CABINET

RCA COSMAC microprocessor/mini-

 computer

NETRONICS R\&D LTD.. Dept PES
333 Litchficla Road New. Milford CS Yes! I want to rim programs at controllers ete. (soon to be home and have enclosed: available as kits). Manual in$\square \$ 99.95$ plus $\$ 3$ p\&h for RCA cludes instructions for assembly. COSMAC ELF II kit. Featured testing, programming, video in POPULAR ELECTRONICS. graphics and games phus how Includes all components plus you can get ELFII Users Club
everything you need to write bulletins. Kit can be assembled and run machine language pro- in a single evening and you'll grams plus the new Pixie chip grams plus the new Pixie chip graphics on your TV screen. Degraphics on your TV screen. Designed to give engincers practice in computer programming and ELF II is also nerfect for college ELF II is also perfect for college and college-bound students (who must understand computers for any engineering. scientific or business career). Easy instructions get you started right away. even if you've never used a computer before!
As your reed for computing power grows. five card expan-
sion bus (less connectors) allows sion bus (less connectors) allows memory expansion. program debugger/monitor, cassette I / O. A
to D and D to a converters to D and D to A converters. PROM. ASCll keyboard input CIRCLE NO. 30 ON FREE INFORMATION CARD still have time to run programs. including games, video graphics. controllers. etc., before going to bed! $\square \$ 4.95$ for 1.5 amp 6.3 VAC power supply, required for ELF $11 \mathrm{kit} \square \$ 5.00$ for RCA 1802 User's Manual.
$\square 1$ want mine wired and tested with the power transformer and RCA 1802 User's Manual for $\$ 149.95$ plus $\$ 3 \mathrm{pRh}$.
Conn. res. add sales tax.
NAME

ADDRESS
CITY.
STATE \qquad and info on other kits! Dealer Inquiries Invited Dealer Inquiries Invited

F Product Test Reports

SENCORE MODEL CB41 AUTOMATIC CB PERFORMANCE TESTER

Measures output power, percent modulation, and SWR.

THE Sencore Model CB41 automatic CB performance tester conveniently checks the operation of CB transmitters. It provides measurements of r-f output power directly in watts, peak-envelope power (PEP) on SSB and AM, percent modulation for $A M$, and the standingwave ratio (SWR) presented by the transmitter load or antenna system.

Only two connections are required to install the tester in the CB system. No initial adjustments are needed, making parameter readings possible in a matter of seconds. The tester is entirely automatic. The user simply depresses one of three pushbutton switches to select the parameter he wishes to measure. The tester can accommodate up to 12 watts average power and 25 watts PEP into 50 ohms. If desired, it can remain con-
nected to the CB system to provide continuous monitoring of the signal.

The tester itself measures $81 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$ $\times 33 / 8^{\prime \prime}(21.6 \times 14 \times 8.6 \mathrm{~cm})$, while its companion sensor measures $41 / 4^{\prime \prime} \times$ $15 / 8^{\prime \prime} \times 15 / 8^{\prime \prime}(10.8 \times 4.1 \times 4.1 \mathrm{~cm})$. Na tionally advertised value is $\$ 148$

General Description. The tester does not simply employ the basic circuitry sometimes used for measuring the various functions. It contains an r - f sensing unit, IC buffer, IC integrator, IC comparator, $60-\mathrm{Hz}$ clock oscillator, peak-topeak diode detector, and transistor amplifier that drives a $100-\mu \mathrm{A}$ meter movement. Operation is from a pair of internal 9 -volt batteries.

The sensor produces reference signals from three loops that are oriented parallel with its internal transmission-line conductor. Each sensing loop is sensitive to a "travelling wave" in only one direction (forward power, reverse power, or modulation). The reference voltages derived from these loops are converted to dc and applied to the inputs of the comparator, either directly or through an integrator, as required. This circuit controls the meter's pointer, switching on and off the meter at a $60-\mathrm{Hz}$ rate.

The meter is turned on as the integrator starts to produce a ramp signal, the slope of which depends on the reference voltage applied to the integrator. This ramp voltage is compared with one of the reference voltages; when both signals are equal, the meter is shut off. The meter indication, therefore, is proportional to the reference voltage that controls the slope of the ramp and the voltage at the dc input of the comparator. The duty cycle lengthens as the reference voltages rise, with a resulting increase in the meter indications. The circuits are reset at a $60-\mathrm{Hz}$ rate by the clock oscillator.

It is specified that the r-f response of the tester for power readings is flat for 20 to 30 MHz , which makes it suitable for covering all 40 class-D CB channels. Calibrated at 3 watts, the specified accuracy of the tester is $\pm 3^{\circ}$ of arc.

For SWR tests, the system is self-calibrating; you do not have to set a calibration control as with most other SWR indicators. The forward and reverse power are compared with an accuracy of $\pm 5^{\circ}$ of arc for SWR's of $1: 1$ to $3: 1$ when used with an unbalanced nonreactive load over a power range of 1 to 15 watts.

The percent-modulation indication covers a $0-$ to- 100% range. It is self-calibrating for AM and refers the peak-topeak detected audio to average power. Accuracy is rated at $\pm 5 \%$ of full-scale with inputs of 1 to 12 watts PEP (also SSB). Initial calibration is performed with continuous-tone monitoring.

In addition to the sensing loops, the unit contains a 50 -ohm dummy load. A switch terminates the sensing section in either the dummy load or the CB antenna system. Except for SWR readings, all tests can be made into the dummy load to prevent on-the-air interference. On the other hand, the CB antenna system can be left in the circuit for continuous monitoring of the signal.

Test Results. Tests against several of our professional power meters indicated that the readings of the Model CB41 come within about 0.25 watt at 4 watts and within 0.5 watt or less at all other power levels when working into low SWR's.

Testing the SWR function, we determined that the indications obtained when working into the dummy load were fine. The dummy load's resistance measured 53.3 ohms (instead of 50 ohms), but the tester was satisfactorily calibrated against this resistance for a 1:1 SWR. Working into a true 50 -ohm load located externally, the SWR was a little less than 1.1:1. It was also slightly off with a 25 -ohm load, for an SWR of 2:1. However, the calibration was close enough to ensure indication of best antenna matching and power indications within its published specifications.

Our modulation readings were within 5% of the rated figures. R-f power and modulating power into the dummy load must be limited to an average of 12 watts (25 watts PEP on a 30 -second on/ off duty cycle). Maximum modulation indications being limited to 100% prevent the tester from registering overmodulation accurately, particularly on the nega-
tive peaks. Additionally, modulated waveforms cannot be observed for waveform distortions.

User Comment. This tester is quite handy to use. Detailed instructions are included with the tester. (The instructions are also given on a cassette tape
that is furnished with the tester.) The manual also details how the instrument can be recalibrated should this ever become necessary.

The price of the tester may appear to be a bit high for the CB operator, but it is less than would be required for the separate testers that would be needed to
perform all the tests this instrument can perform. This compact multipurpose tester is ideal for mobile installation servicing, where its cost for a virtual all-jnone test station is very modest indeed. Furthermore, its accuracy is more than adequate for this purpose.

CIrcle no. 104 On free information card

HEATHKIT MODEL HW-2036 2-METER TRANSCEIVER

VHF/FM mobile amateur transceiver features synthesized coverage.

THE Model HW-2036 is the Heath Company's latest and most sophisticated vhf FM amateur transceiver. Among its features are synthesized coverage of any $2-\mathrm{MHz}$ segment from 143.5 to 148.5 MHz in $5-\mathrm{kHz}$ increments, true FM transmitter circuitry, dual-conversion receiver with MOSFET front end, and a 10-watt minimum-output power amplifier designed to operate into an infinite VSWR without failure.
The transceiver is housed in a rugged metal cabinet that measures $97 / 8^{\prime \prime} \mathrm{D} \times$ $81 / 4^{\prime} \mathrm{W} \times 23 / 4^{\prime \prime} \mathrm{H}(24.5 \times 21 \times 7.1 \mathrm{~cm})$ and weighs $61 / 4 \mathrm{lb}(2.8 \mathrm{~kg})$. Available as options and tested here are the Model HWA-2036-3 ac power supply (housed in the same size cabinet as the transceiver) and the Model HD-1984 Micoder II microphone/Touch Tone encoder pad. Available only in kit form, the transceiver is catalog priced at $\$ 269.95$ with standard microphone or $\$ 289.95$ with the Micoder II. Separate purchase price of the Micoder II kit is $\$ 34.95$, while the optional power supply kit price is $\$ 37.95$.

General Description. Although the transceiver's circuit is fairly complex, the layout of the front panel is simple. Three lever switches with the numerals 0 through 9 are provided for setting the operating frequency in a $\mathrm{MHz} / \mathrm{kHz} \times$ $100 / \mathrm{kHz} \times 10$ format, while a separate toggle switch permits selection of either 0 or 5 kHz . In a typical setup, the switches might be set for 6.250 to obtain an operating frequency of 146.250 MHz . Note that the most significant digits, 1 and 4, are implied.

Two rotary switches provide for selection of transmitter offsets and continu-ous-tone coded squeich signals. Splits of $-600,0$ (simplex), and +600 kHz are determined by the setting of the MODE switch, which also has an AUX position for use of nonstandard offset (such as +1 or -1 MHz) when a suitable crystal is installed.

The tONE switch controls a low-frequency IC oscillator for CTCS purposes. When this switch is OFF, the tone circuit is disabled. In the A, B, or C position, the switch connects a multiturn trimmer potentiometer to the IC timer. These pots can be adjusted to produce tones from 70 to 200 Hz .

The front panel also has two potentiometers, two LED's, and a meter movement. The pots are for controlling receiver volume and squelch. An amber LED comes on when the receiver is unsquelched, while a red SYNTH LOCK LED comes on when the frequency synthesizer is not phase-locked. The meter, whose scale is numbered 0 through 5 , indicates relative signal strength or r-f output power. It is back-lighted for easy viewing in the dark.

Two phono jacks, a slide switch, and heatsinks occupy the rear panel of the transceiver. One jack is the antenna input, while the other is for an external speaker. The slide switch routes the audio output to the built-in or external speaker.

Five printed circuit board assemblies and a wiring harness make up the transceiver's circuitry. The synthesizer section receives an $833.33-\mathrm{Hz}$ reference signal from a crystal oscillator and IC dividers on the transmitter board. It also receives the voltage-controlled oscillator's (vco's) output signal. The accuracy and stability of the vco depend on the accuracy and stability of two tempera-ture-compensated, crystal-controlled oscillators. One oscillator operates at 10 MHz ; its output is divided down to produce the $833.333-\mathrm{Hz}$ reference signal,
while the other (offset) oscillator operates in the region of 20 MHz .

The vco is phase-locked to the two oscillators. The output of the offset oscillator is mixed with the output of the vco. Then a low-pass filter feeds the difference signal to a Schmitt trigger that shapes the waveform so that it is compatible with the programmable dividers. The cividers are programmed by the BCD output of the frequency selector switches. When the output of the vco corresponds to the frequency selected by the switches, the output of the divider chain is close to 833.333 Hz . A phase comparator then compares this frequency with the divided output of the reference oscillator. If the two are equal, no error voltage is developed, the frequency of the vco is unchanged, and the loop is phase-locked.

If the two compared frequencies are not equal, the comparator generates pulses that are integrated (averaged) by a loop filter into an error voltage. This voltage is applied to the vco and shifts the output of the programmable divider chain toward 833.333 Hz to bring the loop into the phase-locked condition.

If the loop becomes unlocked, the red SYNTH LOCK LED glows. Ordinarily, loop lock-up time is less than 50 ms . If the loop does not relock within 500 ms , the transmitter is disabled to prevent radiation of out-of-band signals. The inhibit circuit also disables the transmitter if the switches on the front panel are set below 4.000 or above 7.995. This feature can be defeated for operation on CAP and MARS frequencies by removing a jumper on the synthesizer circuit board.

The heart of the vco is an ECL IC that is tuned by a fixed coil, a capacitor, and a Varactor diode. In the receive mode, two more fixed capacitors are switched into the circuit to compensate for the receiver's i-f and lower the output frequency of the vco. In the transmit mode, frequency modulation is accomplished by applying the modulating signal to a second Varactor diode.

An active low-pass filter on the vco board removes any residual $833.333-\mathrm{Hz}$ (Continued on page 84)

More that's new, exciling, and unique...

NTaY Nostalgic, WhisperQuiet Cooling

Our Casablanca® Fan Kit adds just the right touch to home, porch, or patio - cuts cooling costs too! it operates for pennies a day, is finished in baked bronze enamel, and features 52 -inch simulated wood grain blades. For more charm add the optional Globe Lamp. Accessory Swag Chain Mounting Kit also available. Only \$99.95.

Nery
 The fantastic "Cointrack" Metal Locator

Designed with the "coin-shooter" in mind, this kit features discrimination so incredibly good you'll be finding "treasure" in areas where high "junk" content makes operation with other locators all but impossible! Features a search coil optimized for coin shooting, pushbutton tuning for maximum sensitiviy-effortlessly. Search head is waterproof so you'll never be out of the action! Runs on 6 AA cells (not supplied) or from an optional accessory rechargeable battery pack. Only \$149.95.

Exciting! A Timely Starter Kit for You.

Super accuracy in a highly reliable timepiece. The GC-1107 displays time in a 12 or 24 hour format and even has a snooze control for the sleepy-head! Only $\$ 27.95$.

Designed for the auto hobbyist yet perfect for the professional, the Heath CO-2600 Kit provides the features you want in a quality ignition analyzer! A big $12^{\prime \prime}$ CRT displays rock steady parade and super-impose patterns, it's switch selectable for 4,6 , or 8 cylinder use, has a dual range voltmeter, and features individual cylinder selection for carburetor balancing and cylinder analysis. Includes adaptor for GM HEI systems and works with standard, transistorized or C-D ignition systems.
Analyzer, only $\$ 399.95$. Timing Light, only $\$ 47.95$.

Unique! The Dieter's Ultimate Weapon

Easily 4 to 5 times more accurate than conventional scales, the GD-1186 Kit boasts precision electronics, displays your weight to the tenths of a pound, has 300 lb . capacity, and runs on batteries so it's totally safe to use-even after you shower!
 Only $\$ 99.95$.

Your Key To Tomorrow!

Heath self-instruction courses provide frame and foundation for your future in electronics. Learn everything from the principles of DC and AC electronics to microprocessor interfacing and programming. The texts provided use proven programmed" instruction methods along with audio records (or optional cassettes) to reinforce text material. Component parts are included with each course for "hands-on" experience using optional electronic trainers. These Heath courses let you learn electronics at your own pace and at lowest cost!

> See the latest - from fans to floppies...in the NEW FREE Heathkit Catalog! Send for it.

in your FREE Heathkit Catalog!

Complete "Total Concept" Personal Computer Systems and Systems Software: Economy, power and service backup from a single source!

Heathkit Computers and System Software are designed for complete continuity from top to bottom. The 8080A based H 8 computer is a good example. It features a front panel ROM monitor program readout, 8 -bit operation, a heavy duty power supply and a host of other user benefits. Like all Heathkit Computers, it's easily expanded. Includes BASIC, assembler, editor and debug software for only $\$ 375$.
Our most sophisticated compuier, the H11, utilizes the famous DEC LSI-11 CPU for 16-bit operation. Has a $4096 \times$ $16 \mathrm{read} / \mathrm{write}$ MOS semiconductor memory and 38 high speed data, address, control and synchronization lines. Executes and includes the powerful $400+$ PDP-11/40 instruction set. It also includes a complete software package for only $\$ 1295$.

Heathkit Peripheral Devices follow the same total concept philosophy. Our H9 12" CRT ASCII Video Terminal has all standard serial interfaces, auto scrolling, erase mode, long and short form and plot mode displays and ASCII 67key keyboard for just $\$ 530$. If you need hard capy, the LA36 DEC Writer II is perfect. Fully compatible with the H8 and H 11 , this incredible terminal has a 7×7 dot matrix print head, selectable 10, 15 and 30 CPS print speeds, half or full duplex operation and much more for a low $\$ 1495$. Our low cost mass storage peripheral is the H10 Paper Tape Reader/Punch. Precise ratchet/ solenoid drive, 50 CPS max read rate, 10 CPS max punch rate and the features of similar units that cost far more than $\$ 350$.

HEATHKIT CATALOG!
SEND FOR YOUR COPY
TODAY-OR VISIT
YOUR HEATHKIT ELECTRONIC CENTER!

Send the coupon or visit the Heathkit Electronic Center nearest you today!

Units of Schlumberger Products Corporation. Retail prices on some products may be slightly higher.

ARIZONA - Phoenix, 2727 W. Indian School Rd. (602) 279-6247.

CALIFORNIA - Anaheim, 330 E. Bail Rd. (714) 776-9420; El Cerrito, 6000 Potrero Ave. (415) 236-8870; Los Angeles, 2309 S. Flower St. (213) 749-0261; Pomona, 1555 Orange Grove Ave. N. (714) 623-3543; Redwood City, 2001 Middlefield Rd. (415) 365-8155; Sacramento, 1860 Fulton Ave. (916) 486-1575; San Dlego (La Mesa), 8363 Center Dr. (714) 461-0110; San Jose (Campbell), 2350 S. Bascom Ave. (408) 377-8920; Woodland H1lls, 22504 Ventura Blvd. (213) 883-0531.

COLORADO - Denver, 5940 W. 38th Ave. (303) 422-3408. CONNECTICUT - Hartford (Avon), 395 W. Main St. (Rte. 44) (203) 678-0323.
FLORIDA - Miami (Hialeah), 4705 W. 16 th Ave. (305) 823-2280; Tampa, 4019 West Hillsborough Ave. (813) 386-2541.

GEORCIA - Atlanta, 5285 Roswell Rd. (404) 252-4341. ILLINOIS - Chica90, 3462-66 W. Devon Ave. (312) 583-3920; Chicago (Downers Grove), 224 Ogden Ave. (312) 852-1304. INDIANA - Indianapolis, 2112 E. 62nd St. (317) 257-4321. KANSAS - Kansas City (Mission), 5960 Lamar Ave. (913) 362-4486.

KENTUCKY - Louisville, 12401 Shelbyville Rd.
(50) 245-7811.

LOUISIANA - New Orteans (Kenner), 1900 Veterans Memorial Hwy. (504) 722-6321.
MARYLAND - Baltimore, 1713 E. Joppa Rd. (301) 661-4446; Rockville, 5542 Nicholson Lane (301) 881-5420. MASSACHUSETTS - Boston (Peabody), 242 Andover St. (617) 531-9330; Boston (Wellesley), 165 Worcester Ave. (Rte. 9 just west of Rt. 128) (617) 237-1510.
MICHIGAN - Detroit, 18645 W . Eight Mile Rd. (313) 535-6480; E. Detroit, 18149 E. Eight Mile Rd. (313) 772-0416. MINNESOTA - Minneapolis (Hopkins), 101 Shady Oak Rd. (612) 938-6371.

MISSOURI - St. Louis (Bridgeton), 3794 McKelvey Rd. (314) 291-1850.

NEBRASKA - Omaha, 9207 Maple St. (402) 391-2071
NEW JERSEY - Fair Lawn, 35-07 Broadway (Rte. 4) (201) 791-6935; Ocean, 1013 State Hwy. 35 (201) 775-1231. NEW YORK - Buffalo (Amherst), 3476 Sheridan Dr. (716) 835-3090; Jericho, Long Island, 15 Jericho Turnpike (716) 835-3090; Jericho, Long island, 15 Jericho Turnpike
(516) 334-8181; Rochester, 937 Jefferson Rd. (716) 244-5470; (516) 334-8181; Rochester, 937 Jefferson Rd. (716)
White Plains (North White Plains), 7 Reservoir Rd. White Plains (N
(914) 761-7690.
OHIO - Cincinnati (Woodlawn), 10133 Springfield Pike (513) 771-8850; Cleveland, 5444 Pearl Rd. (216) 886-2590; Columbus, 2500 Morse Rd. (614) 475-7200; Toledo, 48 S. Byrne Rd. (419) 537-1887.
PENNSYLVANIA - Philadelphia, 6318 Roosevelt Blvd. (215) 288-0180; Frazer (Chester Co.), 630 Lancaster Pike (215) 288-0180; Frazer (Chester Co.), 630 Lancaster Pike
(Rt. 30) (215) $647-5555$; Pittsburgh, 3482 Wm. Penn Hwy. (Rt. 30) (215) 647
(412) $824-3564$.
RHODE ISLAND - Providence (Warwick), 558 Greenwich Ave. (401) 738-5150.
TEXAS - Dallas, 2715 Ross Ave. (214) 826-4053; Houston, 3705 Westheimer (713) 623-2090.
VIRGINIA - Alexandris, 6201 Richmond Hwy. (703) 765-5515; Nortolk (Virginia Beach), 1055 Independence Blvd. (804) 480-0997.
WASHINGTON - Seattle, 2221 Third Ave. (206) 682-2172.
WISCONSIN - Milwaukee, 5215 W . Fond du Lac (414) 873-8250.

Mail Coupon Today
or bring it in person to any of the 50 Heathkit Electronic Centers (Units of Schlumberger Products Corporation) listed at right, where Heathkit products are displayed, sold, and serviced. (Retail prices on some products may be slightly higher.) Prices quoted above are mail order net F.O.B. Benton Harbor, Michigan. Prices and specifications subject to change without notice.
Heath Company, Dept. 010-410

Heath Company, Dept. 010-410
Benton Harbor, Mi. 49022
Please send me my FREE catalog. I am not on your mailing list.

Name
Address

GX-347
zip \qquad
component from the error signal before it is applied to the first Varactor diode. A 5 -volt regulator supplies only the ECL oscillator and active filter, isolating them from the rest of the transceiver.

Transmitter and Receiver. Signals from the antenna pass through a dou-ble-tuned circuit to a MOSFET r-f amplifier in the receiver section. The output of the amplifier circuit is also doubletuned. The amplified signal is then passed to a MOSFET first mixer. A tripler on the synthesizer board multiplies the output frequency of the vco and its output is further multiplied by a doubler on the receiver board. Hence, the sixth harmonic of the vco's output frequency is applied to the MOSFET mixer.

The $10.7-\mathrm{MHz}$ i-f signal from the mixer goes to an eight-pole crystal filter. It is then amplified by an op-amp IC i-f stage and mixed with the output of a crystalcontrolled oscillator to produce a 455kHz second $\mathrm{i}-\mathrm{f}$ signal. A tuned FET then boosts the level of the $455-\mathrm{kHz} \mathrm{i}-\mathrm{f}$ signal.

Modulation is recovered from the i-f signal by an IC limiter/quadrature detector. It is then passed through a deemphasis network and finally boosted by an audio IC amplifier to drive the speaker.

On transmit, audio from the microphone is fed through a preemphasis network to two cascaded op-amp stages, the second of which saturates at relatively low speech levels. This limits the possible deviation for a given setting of the DEVIATION control at the output of the second op amp. This results in symmetrical clipping of the audio peaks and produces harmonic distortion that is attenuated prior to modulation by a postlimiter RC rolloff network.

The subaudible tones required to access some repeaters are generated by a 555 timer IC operated in the astable mode. Its operating frequency is determined by one of three multiturn trimmer pots. Because the output of the 555 is a square wave, an RC rolloff network is used to shunt unwanted harmonics to ground. Audio signals from the op-amp stages and IC timer are mixed and routed to the vco board where they frequency modulate the output signal of the vco.

A double-tuned circuit couples the output of the vco to a tripler, whose dou-ble-tuned output network passes signals to a frequency doubler. A driver amplifies the output of the doubler to the level required to drive the power amplifier.
Also on the transmitter board are the hash filter to suppress alternator whine and ignition noise on the positive supply
line, an 11-volt regulator, and silicon diode to protect the transceiver from reversed supply polarity.

R-f from the transmitter board is coupled to the power amplifier by a toroidal transformer. An LC impedance matching network passes the output of the transmitter to the driver transistor. Two other LC networks provide interstage coupling between the driver and final amplifier and impedance matching between the collector of the class-C final amplifier and the 50 -ohm antenna output. A low-pass filter is inserted between the impedance-matching network and the antenna change-over relay. A diode rectifies a portion of the r-f output to provide relative power indication on the meter.
The optional ac power supply is designed to operate from 117 - or 240 -volt ac lines at the builder's option. It has a full-wave bridge rectifier, smoothing capacitor, and a regulator IC. This IC has an internal reference zener diode. The IC samples the power supply's output voltage, compares it to the reference, and makes corrections to keep the output voltage fixed. The power supply's regulated dc output is adjustable from 12.5 to 14.5 volts. Output current is rated at 2.7 amperes at 13.8 volts dc with a 40% duty cycle.

The combination microphone and Touch Tone encoder pad Micoder II is powered by an internal 9 -volt battery (not supplied). A crystal-controlled IC oscillator and dividing network generates autopatch tones. When a button on the tone pad is pressed, the tone oscillator is activated and a monitor LED comes on. The output of the tone-generator IC is attenuated by a LEVEL control and is then applied to the transmitter modulator via the microphone line. The microphone comprises an electret element and FET preamplifier. A resistor couples signals to the mike line and isolates the tone encoder's output stage.

About the Kit. Heath's excellent assembly manuals simplified kit building. We assembled the Micoder II and power supply first in about six hours. The power supply is well laid out and presented no assembly problems. The Micoder II, on the other hand, is densely packed and requires a bit of care in parts placement. Both kits operated perfectly the first time they were powered.

The transceiver is a fairly complex kit to assemble. One begins assembly by soldering connectors to many of the conductors in the wiring harness and
mounting the switches and controls on the front panel and chassis. Once the initial assembly and wiring are done, most of the mechanical work is finished.

The vco, receiver, synthesizer, transmitter, and power-amplifier boards are wired and mounted on the chassis in this order. Although some are crowded, wiring is fairly simple, thanks to the silk screening on the boards and the detailed instructions. After each board is installed, it is interconnected with the others by pusining the wiring harness connectors onto pins on the board.

During assembly, we took note of the great lengths to which Heath has gone to minimize unwanted signal coupling. Ferrite beads, r-f chokes, bypass and feedthrough capacitors are used profusely. The chassis has been designed to provide maximum shielding, and the vco is mounted in a small metal box that is then soldered shut.
Another thing we noted during assembly is that a medium-power ($371 / 2$ to 50 watts) soldering iron was required to properly solder connections on the dou-ble-sided, plated-through-hole pc boards with extensive ground planning.
After assembly we performed initial tests. Heath suggests two alignment methods, one with and the other without test instruments. We decided to have the rig aligned by our local Heathkit service center, a service performed free of charge for properly assembled transceivers. (Few hams will have all the test gear required for full instrument alignment.)

Test Results. We performed our laboratory measurements with the transceiver powered by its optional accessory ac power supply, with the output voltage set to 13.8 volts dc. Our tests were made on the $145.6-$ to $-147.8-\mathrm{MHz}$ segment of the 2-Meter band. (The transceiver was aligned for a center frequency of 146.6 MHz .)

We noted that loop lock could be established up to 147.85 and to well below 145 MHz . The measured output power of the transmitter was 12 watts into a 50 ohm dummy load over most of the band segment. It fell to 10 watts, the rated output, near the $\pm 1-\mathrm{MHz}$ points.

The frequency deviation was within $\pm 5 \mathrm{kHz}$ at the existing setting of the control and it was adjustable up to ± 7.5 kHz . Deviation produced by the CTCS tones measured slightly more than ± 1 kHz , and the Micoder II tones caused ± 3 to $\pm 5 \mathrm{kHz}$ deviation. Transmitter preemphasis conformed closely to the
$+6-\mathrm{dB} /$ octave characteristic specified by Heath. The difference in signal level between the rig's microphone input and the output of the mike preamp was 0 dB at $300 \mathrm{~Hz},+6 \mathrm{~dB}$ at $600 \mathrm{~Hz},+12 \mathrm{~dB}$ at 1100 Hz , and +18 dB at 2400 Hz .

The measured sensitivity of the receiver was $0.5 \mu \mathrm{~V}$ for 15 dB of quieting and a $0.25-\mu \mathrm{V}$ squelch threshold. A $10-\mu \mathrm{V}$ input signal was required for a full-scale pointer deflection on the meter. Image rejection measured 48 dB , spurious signal rejection more than 50 dB , and i-f rejection 78 dB . Internal "tweets" were found at 146.000 and 147.000 MHz , with equivalent signal strengths, for 15 dB of quieting, of 1.5 and $0.5 \mu \mathrm{~V}$, respectively. All others had equivalent signal strengths of less than $0.25 \mu \mathrm{~V}$, the squelch threshold.

Selectivity measured -6 dB at ± 7.5 kHz and -60 dB at $\pm 15 \mathrm{kHz}$, exactly as specified. The receiver provided 1.3 watts of audio output power at 0.8% THD into 8 ohms and 1000 Hz . At an output of 2.0 watts, positive-peak clipping occurred and THD increased to 10%. The deemphasis of the receiver measured 0 dB at $300 \mathrm{~Hz},-6 \mathrm{~dB}$ at 900 $\mathrm{Hz},-12 \mathrm{~dB}$ at 1650 Hz , and -18 dB at 3000 Hz . This measurement was made across an 8 -ohm load connected to the external speaker jack.

User Comment. We have used the transceiver and its accessories over a period of several months and in both fixed and mobile installations. Their performance to date has been very satisfactory and reliable.

The receiver is both sensitive and selective. It has enough audio output power to be heard even in the noisy environment of a convertible car. The speaker cone, which is larger than those usually found in mobile transceivers, produces a well-balanced sound. Almost every QSO brings us compliments about the transmitter's audio quality and "punch."

The r-f output power is sufficient to key every open repeater in the New York metropolitan area. We confirmed this with a $5 / 8$-wave whip antenna while driving around the city

The synthesizer is very stable and always accurate. Loop lock-up time is very short. On cold winter days, the inhibit circuitry never disabled the transmitter for nonlock when the mike's PTT switch was keyed, even though the transceiver had spent hours in the trunk. The autopatch and CTCS tone encoders have also proved very stable. The final's immunity from the effects of an infinite

VSWR was verified, albeit accidentally!
We find three minor faults with this transceiver. The first is with the frequency selection switches. Although the white-on-black numerals are of high contrast in moderate lighting, they cannot be interpreted in a car at night. (We solved this problem by mounting a 12volt map light below the dashboard where the transceiver is installed.)

Instead of the phono jack used for the antenna input connector, we would feel more secure with a BNC or SO-239 con-
nector. Finally, we prefer a front-panel microphone connector instead of the permanently wired-in scheme employed by Heath.

Despite these minor faults, we find the HW-2036 to be a rugged rig with many attractive features. A moderate price belies operating flexibility and high level of performance. It's a fine choice for any ham who wants multiple-channel coverage on 2 Meters without the restrictions and expense of a crystal pack.

$$
\text { GIRCLE NO } 105 \text { ON FREE INfORMATION CARD }
$$

MICROCOMPUTER INPUT/OUTPUT

By Hal Chamberlin

FROM THE point of view of user convenience, the input and output devices and how they are interfaced to a microcomputer are the most important part of the system. The best processor in the world with a full 64 K of memory would still be difficult to use if the only 1/O devices were a hexadecimal keyboard and a 6-digit display. Many people would not consider a system complete unless it had a full alphanumeric keyboard, CRT display, printer, and floppy disk although most live with less.
At the actual programming level, the words "input" and "output" simply refer to the hardware and programming technique used to get data from the outside world into the accumulator or memory, and from memory or the accumulator to the outside world respectively. Usually the I/O device-be it a keyboard, printer, or display-makes a conversion between data in TTL logic-level form and data in physical form such as a key depression or print hammer strike. The //O interface makes a conversion between this data in logic level form and the needs of the microprocessor bus itself. Usually the I/O interface logic connects directly into the computer while the $1 / O$ device is physically placed at any convenient location at the end of a cable connected to the interface.

Direct And Memory-Mapped $\mathbf{1 / 0}$. Any practical microcomputer system can have a number of I/O interfaces. More complex interfaces may have several subsystems, each with its own interface register. Accordingly, a method must be found to address the desired interface register when an I/O operation is performed. A common method used on earlier computers involved specialized input/output instructions. Typically, the instructions were READ, WRITE, CONTROL and TEST. In addition to the operation code, there was an address field of 4 to 8 bits in these instructions. This address field allowed from 16 to 256 different interface registers to be addressed. The

READ instruction would read a data word from the addressed interface register into the accumulator of the computer while WRITE would do the opposite. CONTROL specified an operation to be performed with the data and TEST was used to determine if the addressed interface subsystem was still busy completing the

Fig. 1. Address recognizer.
previous operation. TEST usually functioned by skipping the next instruction if the subsystem was free.
Many microcomputers also have specialized I/O instructions although usually only READ and WRITE are provided. CONTROL is accomplished by writing a code into a control register while status testing is performed by reading a status register and looking at the status bits with normal machine instructions. Frequently any I/O register, regardless of its function, is called a port.

The 8080 for example has only an in and an out instruction. An 8-bit field in the instruction allows up to 256 interface registers to be addressed. This sounds like a lot until you realize that a complex interface such as a floppy-disk controller might use 8 interface registers. Nevertheless, 256 is almost always ample.

About half of the available microcomputers do not use specialized I/O in-
structions. Instead, each port register is interfaced to the system bus as if it were a memory location. This is called memo-ry-mapped I/O because each I/O interface register corresponds to a memory address. There are several advantages to this method. One is that some operation codes are.freed for what may be more useful instructions. Another is that any of the machine's memory reference instructions may be used for manipulating I/O registers, not just load and store. For BASIC language users, the typical PEEK and POKE functions, which are normally used for reading and writing memory, can now be used to operate any I/O device from a BASIC program,
The system bus is somewhat simplified because I/O read and I/O write control signals are no longer needed. Finally, as many I/O addresses as desired may be provided. Typically from 256 to 4096 addresses are set aside from the 65,536 possible memory addresses for I/O functions. Note that processors that normally utilize specialized I/O instructions can also use memory-mapped I/O with its attendant advantages.
Although with memory-mapped I/O each interface register appears as a memory location to the programmer, they often do not act as memory locations. To simplify the circuitry, many of the registers may be read-only or writeonly. An input register from a keyboard, for example, is usually read-only since it does not make much sense to write data to a keyboard. Control and status registers are often write-only and read-only respectively. However if a program needs to know what was last written to a control register, it can save that information somewhere else in regular memory.

I/O Interfacing With Logic. Generally, a bus interface consists of two parts, the address recognizer, and the output latches or input buffers depending on whether it is an output or an input interface.

The typical address recognizer shown in Fig. 1 is basically one multi-input (16) AND gate and can be used on a memo-

Fig. 2. Simple output port.

Fig. 3. Simple input port.
ry-mapped I/O system such as a KIM 6502. When the proper address pattern is present, and clock phase-2 is high (signifying a valid address), the gate output becomes high. Usually the Read/ Write line is also factored in to distinguish between read-only and write-only registers that might be sharing the same address. If several interface registers are on the same board, most of the address bits may be AND'ed together once and factored into several smaller gates, or a decoder, to reduce the number of IC packages required.

An output register is interfaced as shown in Fig. 2. The clock input is triggered at the end of clock phase-2 after the data bus has stabilized.

An input interface is shown in Fig. 3. Data from some source such as a keyboard, or other TTL register, is gated onto the system data bus through the 3state buffers whenever the interface is addressed during a read cycle. A read/ write interface register may be made by connecting an output register to an input interface.

Often in process control and other applications, it is necessary to read and write individual bits that may correspond to separate solenoids, valves, switches, etc. This may be accomplished with ordinary 8 -bit input and output ports and the machine's AND, OR, and SHIFT instructions. A simpler way from both software and hardware standpoints however is to use multiplexer and addressable latch elements as shown in Fig. 4A.

Again using the 6502 processor as an example, 16 individually addressable input bits may be interfaced with one IC in addition to the usual address decoder. Note that each bit has its own address and that when read, the bit will appear in position 7 where it may be easily tested. In fact with the 6502, the bit can be tested directly by executing an ASL ADDR where ADDR is the address of the input bit to be tested. This "shift memory" instruction causes the addressed bit to be copied into the carry flag without disturb-
ing the accumulator or other registers. Following this, a conditional branch may be executed. The circuit may be easily expanded to more inputs, each still individually addressable. A large number of inputs may be scanned by using the indexed addressing form of the ASL instruction.

Shown in Fig. 4B, is a one-IC circuit (in addition to the address decoder) for implementing 8 independently controilable output bits. The key to its operation is a relatively inexpensive addressable latch IC-the 9334. The device essentially operates like an 8 -bit write-only memory in which the status of each cell is available at a package pin. A particular bit may be controlled by storing the accumulator into the desired bit address with bit-0 of the accumulator set to the desired state. Because of the choice of bit-0 for the data connection, there are easier ways to manipulate the addressed bit. For example, the instruction ASL ADDR will set the addressed bit to zero because bits shifted in on a left shift are zeroes. Similarly, ASR ADDR will set it to one because the data bus will float to ones (a 10,000-ohm resistor from DATA 1 to +5 volts will insure this) during the read prior to shifting. Clearly, memory mapped $1 / \mathrm{O}$ interfacing is very powerful on a processor like the 6502.

I/O Interface Chips. Another popular method of parallel I/O interfacing, particularly in very small systems, is the use of specialized I/O interface IC's.

Fig. 4. Individual bit
input and output.

Sixteen I/O lines in two groups of eight are provided with the other pins used for connection to the system data bus, addressing, and other functions.

A unique feature of the device is that the function, either input or output, of each of the $16 \mathrm{I} / \mathrm{O}$ lines is programmable. Two "data direction registers", one for each group of eight I/O lines, may be written into using program instructions to determine whether a line is an output or an input. If a direction bit is a zero, then the corresponding $/ / O$ line is an input, otherwise it is an output. Usually these direction bits are set at power-up by the monitor, but some interface designs may make them do double duty by switching between input and output.

A convenient feature of the chip is that all registers are read/write. In a memo-ry-mapped I/O system, this allows operations such as incrementing, decrementing, or shifting of output registers directly without loading them into the accumulator. Additional circuitry on the chip handles the generation and acknowledgement of interrupts without the need for external circuitry. Newer versions of parallel I/O chips even have a built-in interval timer.

John Simonton's time -proven design provides two envelope generators VCA, VCO \& VCF in a low cost, easy to use package.

Use alone with it' s built-in ribbon controller or modify to use with guitar, electronic piano, polytonic keyboards, etc.

The perfect introduction to electronic music and best of all, the Gnome is only $\$ 48.95$ in easy to assemble kit form. Is it any wonder why we' ve sold thousands?

Software Sources

8080 Cassette Operating System.
COS, an adaptation of the CP/M disc operating system, is intended for use on microcomputers with Micro Designs' digital cassette systems. The systems maintain a file directory and permit directory listout, file erasure, save,
output and renaming-plus file open, close, search, delete, read, write and create. Write: Micro Designs, Inc., 499 Embarcadero, Oakland, CA 94606

6800 Basic Printer Routine. Designed to load over SWTPC 8K BASIC Ver. 2, this interrupt-driven printer routine buffers output in a 132 -character FIFO buffer, and sends it to the printer under interrupt control. This adds less than $1 / 2 k$ to the $8 k$ BASIC's memory requirement, and is said to increase speeds of any BASIC programs using the printer by up to 50%. It is available with source listing in Motorola-format paper tape ($\$ 8.50$), and KC cassette ($\$ 8.50$). Write: Applied Microcomputer Systems, Box 68, Silver Lake, NH 03875.

New BASIC for CP/M. CBASIC, a commercial business language upward-compatible from BASIC-E, is available for diskette systems using the CP/M Disc Operating System. CBASIC includes a number of businessoriented facilities not found in BASIC-E, in-
cluding decimal computations with 14-digit precision, data formatting with the PRINT USING statement, LPRINTER and CONSOLE statements, new file-handling capabilities, and others. CBASIC is available on diskette for $\$ 90$. The CBASIC manual is $\$ 15$, and both diskette and manual are available together for \$100. Write: Digital Research, Box 579, Pacific Grove, CA 93950.

6800 Disassembler. This $3 k$ program disassembles 6800 machine-code programs, to produce readable listings with labels, opcode mnemonics and operands. It generates source tapes which may be loaded by the SWTPC Co-Res Editor/Assembler, and can define any number of FCC F FCB, and/or program areas in the target program. Output is directable to the control terminal or to a separate printer. The M68 Disassembler is available on Kansas-City-standard cassette for $\$ 19.95$, and on Smoke-Signal Broadcasting BFD-68 format diskette for $\$ 24.95$. Write: Shifting Sands Microcomputer Products Corp., Box 441, Fairborn, OH 45324.

THE MICROCOMPUTER MART COMPUTER RETAIL STORES
alabama
ICP Computerland 1550-D Montgomery Hwy. Birmingham, Alabama 35226 (205) 979-0707

CALIFORNIA
Computer Emporium
17931-J Sky Park Circle Irvine, California 92714 (714) 540-8446

Computerland
6840 S La Cienega BIvd Inglewood. California 90302
(212) 776-8080

Inland Computer \&
Electronics House
537 North 'E' St.
San Bernardino. California 92402
(714) 888-3690

Peoples Computer Shop
13452 Ventura Blvd.
Sherman Oaks, California 91423
(213) 789-7514

Rainhow Computing, Inc.
10723 White Oak Ave
Granada Hills, California 91344
(213) 360-2171

GEORGIA
Datamart, Inc.
3001 North Fulton Drive, NE
Atlanta, Georgia 30305
(404) 266-0336

ILLINOIS
American Microprocessors
Equipment \& Supply Corp. At the Chicagoland Airport 20 North Milwaukee Ave. Half Day, Illinois 60069 (312) 634-0076

Computerland of Arlington Heights
50 East Rand Rd
Arlington Heights, Illinois 60004
(312) 255-6488

Imperial Computer Systems, Inc.

2105 23rd Ave.
Rockford, Illinois 61101
(815) 226-8200

INDIANA

Audio Specialists
415 North Michigan St.
South Bend, IN 46601
(219) 234-5001

LOUISIANA
Computer Shoppe, Inc.
3225 Danny Park
Metairie, Louisiana 70002
(504) 454-6600

MASSACHUSETTS
Computer Mart, Inc.
1097 Lexington St.
Waltham, Massachusetts 02154
(617) 899-4540

MICHIGAN
The Computer Mart
1800 West 14 Mile Rd.
Royal Oak, Michigan 48073
(313) 576-0900

The General Computer Store 930 Mason
Dearborn, Michigan 48124
(313) 562-3320

The General Computer Store
1310 Michigan
East Lansing, Michigan 48823
(517) 351-3260

The General Computer Store
73 W Long Lake Rd.

Troy, Michigan 48084
(313) 689-8321

United Microsystems Corporation
2601 S. State St.
Ann Arbor, Michigan 48104
(313) 668-6806

MISSOURI
Gallion Data Systems, Inc.
201 North 11th St.
Blue Springs, Missouri 64015
(816) 229-4976

NEBRASKA

Omaha Computer Store
4540 South 84 th St.
Omaha. Nebraska 68127
(402) 592-3590

NEW JERSEY
Computer Corner of New Jersey
240 Wanaque Ave
Pompton Lakes, New Jersey 07442
(201) 835-7080

Computer Mart of New Jersey
501 Route 27
Iselin, New Jersey 08830
(201) 283-0600

S-100, Inc.
7 White Place
Clark, New Jersey 07066
(201) 382-1318

NEW YORK

Atlas Electronics Corp.
1570 Third Ave.
New York, New York 10028
(212) 427-4040

The Computer Corner
White Plains Mall
200 Hamilton Ave.
White Plains New York 10601
(914) WHY-DATA

PENNSYLVANIA
Personal Computer Corp.
Frazer Mall
Lancaster Ave. \& Rite. 352
Malvern, Pennsylvania 19355
(215) 647-8463

TEXAS
Compushop
13933 North Central Expressway
Dallas, Texas 75243
(214) 234-3412

Interactive Computers
$76461 / 2$ Dashwood
Houston, Texas 77036
(713) 772-5257

Interactive Computers
16440 El Camino Real
Houston, Texas 77058
(713) 486-0291

The Computer Shop
6812 San Pedro
San Antonio, Texas 78216
(512) 828-0553

VIRGINIA

The Computer Hardware Store, Inc. 818 Franklin St.
Alexandria, Virginia 22314
(703) 548-8085

Computer Systems Store
1984 Chain Bridge Rd
McLean (Tysons Corner),
Virginia 22101
(703) 821-8333

WISCONSIN

Microcomp
PO Box 1221
785 S. Main St.
Fond du Lac, Wisconsin 54935
(414) 922-2515

Dealers: For information about how to have your store listed in THE MICROCOMPUTER MART, please contact: POPULAR ELECTRONICS, One Park Ave. New York, New York 10016 . (212) 725-3568.

PURAC ACTS

By Gary Garcia

FIRST fruits of the labors of PURAC (the Personal Use Radio Advisory Committee) were seen at the Committee's fifth meeting, held on December 7 in Gettysburg. Reports and recommendations of five of PURAC's 10 Task Areas were presented by their respective Task Coordinators, followed by discussion (and sometimes amendment) to each. PURAC members then voted to adopt four of the five reports (and accompanying amendments) and forward them to the FCC. Here are some highlights of the recommendations.

Operator Training. The responsibility of this Task Area is to develop recommendations of syllabus, methods, and training programs for CB operators. Task Coordinator David Garner reported to PURAC members that his group's investigation revealed existing CB operator training programs often contain large amounts of outdated informa-tion-a result of poor coordination between the FCC and training program administrators. Additionally, the report noted that the emphasis placed on certain facets of CB by existing courses varied widely. It was suggested that, to overcome these problems, the FCC develop a standardized CB operator training program with provision for systematic updating of the material covered. The proposed two-hour course would consist of six lessons:

- Introduction to CB
- Equipment Installation and Safety
- Operation of CB Equipment
- Fundamentals of Transceivers
- Fundamentals of Antennas
- Accessory Items and Test Equipment

Optional advanced lessons would be offered covering Interference and Noise, and Optimizing the CB System. Oddly, the last mentioned (optional!) lesson includes information on emergency communications, traveler's information, and helping fellow CB'ers. In this writer's opinion, these are the most important aspects of CB and should be made part of the standard course-not optional.

The proposed course is a thorough one; each lesson goes into a good amount of detail. For example, the Fundamentals of Antennas lesson includes a discussion of the value of a good antenna system, offers a brief explanation of frequency and wavelength, gives advice on selecting the location and polarization of antennas for best results, explains grounding, etc.
Another interesting feature of this course is its intended audience: young people attending high schools, colleges, and technical schools. In fact, it is suggested that educational credits be given to those who complete the course. The members of this Task Area believe young people to be more receptive to
such training, while it would be difficult to entice adults to take the course because they have neither the time nor the inclination to do so. To reach the adult CB population, it was recommended that one CB channel be used as a public information channel.

Dissemination of Information.

 How can the public obtain the latest FCC CB-related information most efficiently? This is what the Dissemination of Information Task Area must determine, and a number of recommendations in this area were presented to the Committee by Task Coordinator Gerald Reese. Among them was the recommendation that the FCC assign press relations functions to a member of the Commission who is a CB information specialist. Another proposal called for the development of distribution systems which are conducive to efficient distribution of information. For example, one interesting proposal called for the establishment of a CB newsletter by the FCC. All the latest Rules decisions, licensing statistics, PURAC actions, FCC personnel changes, etc., would be covered in the newsletter.

Mr. Reese also pointed out there is more than one government agency distributing information concerning CB to the public, and that the need existed for coordination of efforts in this area. The Task Area recommended that the FCC cooperate with the Department of Transportation, the Law Enforcement Assistance Administration, and the Commerce Department in the distribution of CB-related information to the public.

Public Safety Uses of Personal

 Radio. Three proposals were presented by Task Coordinator Nathan Maryn, the first concerning the use of CB transceivers as the only communications facility aboard small boats. The problem here is that the Coast Guard requires the installation of vhf/FM Marine communications facilities on larger vessels, but no such requirement exists for boats smaller than a certain size. So smallboat owners have been using CB transceivers as an economical alternative to vhf/FM equipment. Recently, the U.S. Coast Guard agreed to monitor CB channel 9, so the 1978 boating season will be the first during which the CG officially monitors the CB channels for ma-rine distress communications. But make no mistake about it, vhf/FM and 2182 kHz are still the prime radio communications links to the Coast Guard, and they recommend that serious boaters use these services. In fact, this PURAC Task Area recommended that the FCC follow the Coast Guard policy of supporting the use of the vhf/FM service for emergency purposes, and discourage the use of CB in this application. CB Radio, however, is fine for idle chatter, whereas vht/FM cannot be legally used in this manner.

To make it easier for CB'ers to contact state law enforcement agencies, this Task Group supports the use of special callsigns by these state agencies. They consist of the letter K, followed by the two-letter postal abbreviation of the state's name, and then by 0911, the nationally recognized emergency number. Some states have already adopted this idea, among them being Colorado (KCO0911), Illinois, Iowa, Maryland, Michigan, Missouri, New York, South Carolina, West Virginia, and the District of Columbia.

The last recommendation of Mr. Maryn's group was that the FCC develop and implement an enforcement policy

"POOR BOY" TUNER SUB onv $\$ 19.95$

Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellent performing yet very low cost sub for the technician who has to get all he can for his money . . a "Poor Boy's Sub" for only $\$ 19.95$.
This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95$... We searched for a tuner that needed no cabinet and no controls ... one that the tech could scounge the knobs from most any old TV
It took over two years but we finally found it. The gain is excellent... Battery drain is very low (only 18 mils). It's self biasing so there is no R.F. gain control to fiddle with . . It works equally well on tube or transistor sets ... b/w or color. and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's If cable to the "Poor Boy" and view the picture. . That's it . . no set up controts to confuse you.
We compared the "Poor Boy" with other subs costing over twice the price and found it to work just as well on allthe comparison tests we made . . . and often a lot easier to use ... Even though instructions aren't needed ... you get those too.
The "Poor Boy" is small enough to easily hold in one hand ... no wires or controis dangling around. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$. and we even pay the shipping (how about that?) or we will ship COD. ($\$ 1.85$ C.O.D. Fee)

Try it for 10 days . . If not completely satisfied ... return for full refund.
Call us toll free 1-800-433-7124.

all orders shipped the same day received!

TEXAS TUNER SERVICE

4210 N.E. 28TH STREET, FORT WORTH, TEXAS 76117

specifically aimed at channel 9 , the emergency and motorist assistance channel. Noting that it is much easier to establish and maintain communication on channel 9 than on other channels, the Task Area recommended that the FCC take special measures to keep channel 9 and adjacent frequencies free of illegal interference. The need for an effective emergency channel is evident, and this is a worthwhile proposal.

User Rule Compliance. Task Coordinator Stuart Lipoff presented a recommendation calling for the use of automatic transmitter identifier systems (ATIS). This proposal has been discussed here before (January 1978 PopULAR ELECTRONics). This was the only recommendation defeated; ATIS was shot down by a vote of 35 to 9 .

Local Interference. Task Coordinator Stuart Meyer presented his Task Area's interim report containing a number of observations, but no recommendations. An interesting description of a CB-related TVI problem was related to PURAC members. Apparently, a halfdozen CB'ers were causing the television receivers of their neighbors to experience TVI. All concerned lived in a housing complex, and after much battling, the landlord finally prohibited the use of CB transceivers on his property. A filter manufacturer heard about the case and offered to donate filters to all parties involved in the hope of clearing up the problem once and for all. Lowpass filters were installed on all CB transceivers in the housing complex as well as on all affected television sets. TVI ceased, except for that caused by a single CB'er operating a few hundred feet from the complex who was reputed to be using excessive illegal power in conjunction with twin four-element yagi beam antennas atop a tower!

The final report and recommendations of this Task Area will not be completed until the next meeting of PURAC, at which time they will be formally considered for adoption.

Two more meetings of PURAC are scheduled before its statutory life expires. One will be held February 22-23 in Washington, DC , and the other is set for April 19-20 in Philadelphia. So by the time you read this, PURAC may formally adopt all recommendations it intends to make to the FCC. It will be interesting to see how the FCC responds to these recommendations and what effects, if any, they have on the CB Radio Service.

TIME.EDT	TIME.GMT	STATION	QUAL*	FREQUENCIES, MHz
6:28 a.m. $8: 00 \mathrm{p} . \mathrm{m}$.	1028-2400	- Montreal, Canada (Northern Service)	G	$9.625,11.72$ lincludes French, etc.!
7:00.7:25 a.m.	1100-1125	Tirana, Albania	F	9.50, 11.985
7:00-9:00 a.m.	1100.1300	Melbourne, Australia	G	9.58
7:00-9:30 a.m.	1100.1330	London, England	G	5.99 (via Sackville) 6.195, 11.775 (both via Antigua), 15.07
7:00-10:00 a.m.	1100-1400	*VVA, Washington, USA	G	$5.955,6.185,9.565,9.73$
8:00.8:45 a.m.	1200.1245	- Berlin, Ger. Dem. Rep.	F	17.88, 21.54
8:00.8:30 a m.	1200-1230	Jerusalem, Israel	G	$11.655,15.405,15.415,17.815,21.50$
8:00-8:55 a.m.	1200-1255	Peking, China	F	11.685
8:05-8:35 a.m.	1205.1235	Trans-World Radio. Bonaire, N.A.	G	11.815
8:15.8:30 a.m.	1215.1230	Athens, Greece HCJB, Quito, Ecuador	$\begin{aligned} & \mathrm{F} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & 11.73,15.345,17.83 \\ & 11.745 \end{aligned}$
8:30-9:00 a.m.	1230-1300	Stockholm, Sweden	G	17.79
8:30-10:30 a.m.	1230-1430	Trans-World Radio, Bonaire, N.A.	G	15.255 (Sat., Sun.)
8:30 a.m. 12.30 p.m.	1230-1630	HCJB, Quito, Ecuador	G	11.745,15.115
9:00.9:30 a.m.	1300-1330	Helsinki, Finland	G	15.105 (Sun. to 1455)
9:15-9:45 a.m.	1315.1345	Berne, Switzerland	G	15.14
10:00-10:30 a.m.	1400.1430	Osio, Norway	G	15.175 (Sun.)
		Stockholm, Sweden	G	17.79
10:00-10:45 a.m.	$1400 \cdot 1445$	**Berlin Ger. Dem. Rep.	F	17.88, 2.154
11:00 a.m. 12 noon	1500.1600	London, England	G	9.58 (via Sackville, Sat., Sun.)
11:45 a.m. 12 noon	1545-1600	*Montreal, Canada	F	15.325, 17.82
12 noon-12:30 p.m.	1600.1630	Oslo, Norway	F	17.80 (Sun.)
12 noon-1:09 p.m.	1600-1709	London, England	G	9.58 (via Sackville; Sat., Sun. to 1745)
12:05.12:55 p.m.	1605.1655	*-Paris, France	G	11.705, 11.845, 15.155, 15.20, 15.30 15.315, 17.72
1:00.4:00 p.m.	1700-2000	* *Kuwait, Kuwait	G	12.085
2:00.2:30 p.m.	1800-1830	- Montreal, Canada	F	15.26, 17.82
		Oslo, Norway	F	15.175 (Sun.)
2:00-3:30 p.m.	1800.1930	* Lagos, Nigeria	F	11.77. 15.12 (variable)
3:00.4:00 p.m.	1900-2000	* Jiddah, Saudi Arabia	F	11.855
3:30-4:00 p.m.	1930.2000	* 'Abidjan, Ivory Coast	F	11.92
4:00.4:30 p.m.	2000-2030	**Montreal, Canada **Tehran, Iran	F	$11.865,11.945,15.325,17.82$ 9.022 (time variable)
		Jerusalem, Israel	G	$9.815,11.655,11.96,15.105$
4:00-5:15 p.m.	2000.2115	London, England	G	5.96 (via Ascension), 6.195 (via Antigua), 11.75, 15.26
4:10 4:50 p.m.	2010.2050	**Havana, Cuba	G	11.865, 17.885
4:30-5:20 p.m.	$2030 \cdot 2120$	* Hilversum, Holland	G	11.73, 15.22 (both via Talata), 17.81, 21.54 (both via Bonaire)
4:30-5:30 p.m.	2030-2130	- Hanoi, Vietnam	F	10.04
4:50-5:20 p.m.	2050-2120	**Havana, Cuba	G	$11.865,17.75,17.885$
5:00.5:50 p.m.	2100.2150	*Johannesburg, S. Africa	F	$5.98,9.585,11.90$
5:15-6:45 p.m.	2115-2245	London, England	G	5.96 (via Ascension). 9.58, 11.75, 15.26
5:30-6:00 p.m.	2130.2200	**Montreal. Canada *R. Clarin. Santo Domingo, D.R	F	$11.945,15.15,15.325,17.82$ 11.70 (time variable)
5:30.6:20 p.m.	2130.2220	Hilversum, Holland	G	$9.715,11.73$ (exc. Sun.)
5:30-6:30 p.m.	2130.2230	**Baghdad. Iraq	G	9.745
5:30-7:00 p.m.	2130.2300	Ankara, Turkey	G	9.515
6:00.6:15 p.m.	2200.2215	**Montevideo, Uruguay	P	$9.515,11.885$ (time variable)
		**Belgrade, Yugoslavia	F	$6.10,7.24,9.62$
6.00-6:30 p.m.	2200-2230	Osio, Norway	G	11.87, 17.795 (Sun.)
6:00-8:00 p.m.	2200.2400	Montreal, Canada	G	5.96 (exc. Sat., Sun.)
6:30.7:00 p.m.	2230.2300	Mascow, U.S.S.R.	G	$\begin{aligned} & 9.60,9.665,9.685 \\ & 9.72,11.75,11.85,11.96 \end{aligned}$
		Jerusaiem, Istael	G	$\begin{aligned} & 9.435,9.815,11.655,11.96 \\ & \text { 15.105, 15.485 } \end{aligned}$
6:30.7:20 p.m.	2230-2320	Johannesbury, S. Atrica	F	$5.98,9.585,11.80,11.90$
6:45.7:00 p.m.	2245.2300	London, England	G	$5.975,7.325,9.58,11.75,15.26$
7:00.7:30 p.m.	2300.2330	London, England	G	5.975, 6.175, (via Sackville) 7.325, 9.51 (via Sackuille), 9.58 (via Ascension), 11.75, 15.26
		Stockholm, Sweden Vilnius, U.S.S.R.	$\begin{aligned} & G \\ & G \end{aligned}$	$\begin{aligned} & 6.12,9.695,11.705 \\ & 9.61,9.72,11.77,11.79 \end{aligned}$
7:00.7:55 p.m.	2300.2355	- Buenos Aires, Argentina	G	11.71 (exc. Sat., Sun.)
7:00.8:00 p.m.	2300-2400	Moscow, U.S.S.R.	G	9.60. 9.655, 9.685. $11.75,11.87 .11 .96$

Measure resistance to 01Ω

at a price that has no resistance at all.

- $31 / 2$ digit bright LED display
- $100 \mu \mathrm{~V}, .01 \Omega$ resolution
- 0.5\% accuracy typical
- Autozeroing
- Completely overload protected on all 29 ranges
- RFI shielded for use in RF fields
- 100% overrange reading
- Selectable high-/low-power ohms
- Full range of optional accessories available

At $\$ 119.95$, the 2810 is a "best. buy" among DMM's currently available. Its 10 ohms range allows you to check the low contact resistance of switches, relays, breaker points or connectors. Poor solder connections can also be spotted. Place your order now... contact your local distributor for immediate delivery.

PRECISION DYNASCAN CORPORATION

6460 West Cortland Avenue Chicago, Illinois 60635 - 312/889-9087

In Canada: Atlas Electronics, Ontario Intl. Sis: Empire Exp, 270 Newtown Rd Plainview, LI, NY 11803

QUALITY STEREO EQUIPMENT AT LOWEST PRICES

YOUR REQUEST FOR QUOTA TION RETURNED SAME DAY FACTORY SEALED CARTONSCUARANTEED AND INSURED

d

SAVE ON NAME BRANDS LIKE

PIONEER	SANSUI
KENWOOD	DYNACO
SHURE	SONY
MARANTZ	KOSS

AND MORE THAN 50 OTHERS bUY THE MODERN WAY BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312-664-0020

		-. R. Clarin, Santa Domingo, D.R.	G	11.70 (time variable)
7:00-8:50 p.m.	2300.0050	Pyongyang, P.D.R. Korea	F	9.977.11.535
7:15.7:30 p.m.	2315.2330	*'Santiago, Chile	F	15.13, 15.15, 17.80 (all variable)
7:30.7:55 p.m.	23302355	Helsinki, Finland	F	11.755
7:30.8:30 p.m.	2330.0030	London, England	G	5.975, 6.175 (via Sackville), 7.325, 9.51 (via Sackvilte), 9.58. (via Ascernsion), 11.75 (from 0000)
7:45-8:45 p.m.	2345.0045	Tokyo, Japan	F	15.27, 15.30.
8:00.8:25 p.m.	0000-0025	Tirana, Albania	G	7.065, 9.75
8:00.8:30 p.m.	0000-0030	Dslo, Norway	F	11.86 (Sun.)
8:00-8:55 p.m.	0000-0055	Pekiny, China	F	15.06, 17.68, 17.86
8:00.9:00 p.m.	0000-0100	Sofia, Bulgaria	G	9.705
8:00-10:00 p.m.	0000.0200	\cdots - VOA, Washington, USA	G	$6.13,9.64,11.74,15.205$
		*-Luxembourg, Luxembourg	F	6.09
8:00. p.m. 1:06 a.m.	0000.0506	" Muntreal, Canada (Narthern Service)	F	6.195, 9.625 (includes French, elc.)
8:15.8:30 p.m.	0015-0030	Athens, Greece	F	9.76, 11.73
8:15.9:00 p.m.	0015-0100	Brussels, Belgium	G	9.73
8:309:00 p.m.	0030.0100	London, England	G	5.975, 6.175, (via Sackville). 7.325, 9.51 (via Greenville). 9.58 (via Ascension), 11.75
		Stockholm, Sweden	F	11.905
		Kiev, U.S.S.R.	G	7.15, 7.205, 7.40, 9.61, 9.72, 11.72
		Moscow, U.S.S.R.	G	$\begin{aligned} & 9.53 .9 .60,9.655,9.685 \\ & 11.85,11.87,11.96 \end{aligned}$
8:30-9:30 p.m.	0030-0130	- - Trans-World Radio, Bonaire, N.A.	G	11.925
8:40 p.m. 1 1:00 a.m.	0040.0500	HCJB, Quito, Ecluador	G	9.56, 11.915
8:45-9:00 p.m.	0045-0100	Prague, Czechoslovakia	F	9.505
9:00.9:15 p.m.	0100.0115	*"Montevideo, Uruguay	P	$9.515,11.855$ (time variable)
		Vatican, City	G	$5.995,9.605,11.80$
9:00.9:20 p.m.	01000120	Rome, Italy	G	9.575, 11.91
9:00.9:30 p.m.	0100.0130	Montreal, Canada	G	9.535
		Moscow, U.S.S.R	G	$\begin{aligned} & 9.53,9.60,9.655,9.685 \\ & 11.85,11.87,11.96 \end{aligned}$
9:00-9:45 p.m.	0100-0145	Berlin, Ger. Dem. Rep.	P	9.73
9:00.9:55 p.m.	01000155	Prague, Czechoslovakia	G	$5.93,7.345,9.54,9.63,11.99$
		Peking, China	G	7.12, 9.78 (both via Albania) 15.06, 15.52, 17.68
9:00-11:00 p.m.	0100-0300	Melbourne, Australia	G	15.32, 17.795
9:00-10:30 p.m.	0100.0230	London, England	G	$5.975,6.12,6.175$ (both via Sackville). $7.325,9.51$ (via Greenville), 9.58 (via Ascension), 11.75
9:00.11:30 p.m.	0100-0330	Havana, Cuba	G	11.725, 11.93
9:00 p.m. 12 mdt .	0100-0400	Madrid, Spain	G	6.065, 11.88
9:10-9:30 p.m.	0110-0130	*"Santiago, Chile	G	$9.566,11.705,15.13,15.15$ (variable)
9:30-9:50 p.m.	0130.0150	Cologne, Ger. Fed. Rep.	G	6.04, (via Antigua), 6.075, 6.085, 6.10 (via Malta), 9.545 (via Montserrat) 9.565 (via Germany and Malta), 9.605, 11.865 (via Malta)
9:30.9:55 p.m.	0130.0155	Tirana, Albania	G	6.20, 7.30
		Vienna, Austria	P	6. 155, 9.77
9:30-10:00 p.m.	0130.0200	Moscow, U.S.S.R.	G	$9.53,9.60,9.665,9.685,9.70$, (via Sotia), 11.85, 11.87, 11.96
9:30.10:25 p.m.	0130.0225	Bucharest, Romania	F	5.99, 6.19, 9.57. 9.69, 11.735, 11.94
9:45-10:15 p.m.	0145.0215	Berne, Switzerland	G	$6.135 .9 .70,9.725,11.715$
10:00-10:25 p.m.	0200.0225	Budapesi. Hungary	G	$6.08,6.115,9.585,11.91$ 15.225, 17.71 (exc. Mon.)
10:00-10:30 p.m.	0200.0230	Montreal, Canada	G	6.185, 9.535
		Osio, Norway	F	6.18 (Sun.)
		Warsaw, Polarid	G	$\begin{aligned} & 6.09,6.135,7.27,9.525 \\ & 11.815,15.12 \end{aligned}$
10:00-10:55 p.m.	0200-0255	Peking, China	P	12.055, 15.06, 15.435, 37.68
10:00-11:00 p.m.	0200-0300	Moscow, U.S.S.R.	G	$9.53,9.60,9.665,9.685,9.70$, (via Sotia), 11.85, 11.87, 11.96
10:00.11:30 p.m.	0200-0330	Cairo, Egypt	G	6.23, 9.475
10:10-10:30 p.m.	0210.0230	* Santiago, Chile	G	$9.566,11.705,15.13$
10:30-10:45 p.m.	0230-0245	" 'Montevideo, Uruguay	F	$9.515,11.885$, (time variable)
10:30-10:55 p.m.	0230.0255	Tirana, Albania	G	$6.20,7.30$
10:30-11:00 p.m.	0230-0300	Stockholm, Sweden	F	9.505, 11.85
		Beirut, Lebanon	F	9.68 or 11.755
10:30-11:15 p.m.	0230-0315	Berlin, Ger. Dem. Rep.	P	9.73
10:30-11:20 p.m.	02300320	Hilversum, Holland	G	6.165, 9.59 (both via Bonaire)
10:30-11:30 p.m.	0230-0330	London, England	G	5.975, 6.175, (via Sackville). 7.325, 9.51 (via Greenville).
				9.58 (via Ascension)
11:00-11:25 p.m.	0300-0325	Budapest, Hungary	G	$\begin{aligned} & 6.08,6.105,9.585,11.91 \\ & 15.225,17.71 \end{aligned}$

11:00.11:30 p.m.	0300.0330	Montreal, Canada	G	5.96,6.185,9.535,9.605
		Warsaw, Poland	G	6.095, 6.135, 7.27, 9.525 ,
				11.815, 15.12
		Lisbon, Poriugal	G	6.025, 11.935
		Kiev, U.S.S.R.	G	7.205, 7.40, 9.61, 9.72, 11.79
11:00-11:55 p.m.	0300-0355	Peking, China	G	7.12, 9.78 (both via Albania)
		Prague, Czechoslovakia	G	$5.93,7.345,9.54,9.63,11.99$
11:00 p.m. 12 mdt .	0300.0400	Buenos Aires, Argentina	F	9.69 (exc. Sat., Sun.)
		Baghdad. Iraq	G	11.905
11:10-11:30 p.m.	0310.0330	- ${ }^{\text {Santiago, Chile }}$	G	9.566, 11.705, 15.13
11:30-11:55 p.m.	0330.0355	Tirana, Albania	G	6.20, 7.30
		Vienna, Austria	P	6.155, 9.77
11:30 p.m. $12: 30$ a.m.	0330-0430	London, England	G	5.975, 6.175 (via Antrigua)
11:30 p.m.-12:50 a.m.	0330.0450	Havana, Cuba	G	11.725, 11.76,11.93
12 mdt 12:30 a.m.	0400-0430	Montreal, Canada	G	5.96, 9.535
		Budapest, Hungary	G	$\begin{aligned} & \text { 6.00, 6.105, } 9.585,11.91 \text {, } \\ & \text { 15.225, 17.71 (Tues., Fri.) } \end{aligned}$
		Bucharest, Romania	F	5.99, 9.57, 9.69, 11.735, 11.94
12:30-1:00 a.m.	0430.0500	London, England	G	6.175 (via Antigua)
12:50.2:00 a.m.	0450-0600	Havana, Cuba	G	11.725, 11.76
1:00-1:15 a.m.	0500-0515	Jerusalem, Israel	G	$\begin{aligned} & 7.412,9.835,11.655,11.96 \text {, } \\ & 15.105,15.415 \end{aligned}$
1:00.2:30 a.m.	0500.0630	London, England	G	6.175, 9.51 (both via Antigua)
1:00.3:00 a.m.	0500-0700	HCJB, Quito, Ecuador	G	6.095, 9.56
1:55.3:40 a.m.	0555-0740	* 'Lagos, Nigeria	F	7.275
2:30.3:30 3.m.	0630-0730	London, England	G	6.175 (via Antigua)

Put Professional Knowledge and a COLLEGE DEGREE

in your Electronics Career through

 HOME STUDY
Earn Your DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.
The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E78.

Grantham College of Engineering
 2000 Stoner Avenue

P. O. Box 25992

Los Angeles, CA 90025
Worldwide Career Training thru Home Study GIRGLE NO II ON FREE INFORMATION CARD

Our new Bearcat ${ }^{\circledR}$ 250|

has all the fantastic space age features of our super popular Bearcat ${ }^{\circ} 210$, but now we ve added

- 50 synthesized crystalless channels
- User seiectable scanning speeds

1- Priority channel

- Digital time clock-accurate to seconds
- Automatic or user controlled squelch
- Search Direction-Search "up" or "down"
- for quicker return to desired frequencies
- Transmission activity counter-tells you
how busy each frequency has been
- Search \& Store-Will find and "remember" - up to 64 active frequencies for later recall - Direct channel select-Advance directly to a 1. channel without stepping through interim channels - Non volatile memory-No batteries required to retain memory, even when scanner is unplugged - Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
| To reserve your space-age Bearcat ${ }^{\circ} 250$ and recelve your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly | higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside | the U.S. and Michigan dial 313-994-4441. To $\left\lvert\, \begin{aligned} & \text { order by mail or for a free catalog completely } \\ & \text { describing the fantastic crystalless Bearcat } \\ & 250\end{aligned}\right.$ describing the fantastic crystalless Bearcat 250 1002-Dept. 3, Ann Arbor, Michigan 48106 U.S.A.

Because love is a very private matter....

Contraceptives through the privacy of the mail.

Birth control is a personal. private matter That is why Popu. lation Planning offers a broad line of contraceptives by mail, including the most modern contraceptive foams for women who believe men should share the responsibility of birth control we offer 38 famous-brand male contraceptives at very attractive prices including Iroan, SLIMS ${ }^{\text {tM }}$ and the exclusive TEXTURE PLUS ${ }^{\text {MM }}$, textured for maxımum stımulation

Send just $\$ 5$ for a sampler of 22 condoms of $\$ 8$ for PPA's samplet of 38 condoms. Everything is mailed in a plain attractrve package You must be absolutely satisfied or your money will be refunded in full.

OVER 500,000 SATISFIED CUSTOMERS

Population Planning Associates, Dept. PE8-A
403 Jones Ferry Road, P.O. Box 400
Carrboro, NC 27510

Please send me

$\square \$ 5$ Condom Sampler (6 difterent brands) $\square \$ 8$ Deluxe Sampler (9 difterent brands)
I enclose payment in tull under your money-back guarantee Name
Address
City \quad State \quad Zip
CIRCLE NO 53 ON FREE INFORMATION CARD

Bugbooks E Bugworks.

 In E\&L's Complete Bugworks Cat alog, you'll find everything you need to master the world of electronics. And to start, check out the Bugbooks. 23 Volumes of the most comprehensive \& authoritative tutorials in electronics today, from basic circuit design to advanced Microcomputer experiments.
 They're all in the works-the Complete Bugworks.

Send for your free copy today.
eal instruments, inc.

MORE THAN 20,000 DIFFERENT COMPONENTS

	7400 TTL			
7400	.18	7442	1.08	74107
7401	.21	7448	1.15	74121
7402	.21	7450	.26	74122
7404	.21	7451	.27	74123
7405	.24	7433	.27	74125
7407	.45	7454	.41	74126
7408	.25	7460	.22	74132
7409	.25	7472	.39	74141
7410	.20	7473	.45	74150
7411	.30	7474	.45	74151
7413	.85	7475	.80	74153
7416	.43	7482	1.75	74154
7417	.43	7483	1.15	74157
7420	.21	7485	1.12	74161
7422	1.50	7486	.45	74164
7425	.43	7489	2.49	74165
7427	.37	7490	.69	74166
7428	.35	7491	1.20	74174
7430	.26	7492	.82	74175
7432	.31	7493	.82	74180
7437	.47	7494	.91	74181
7438	.40	7495	.91	74191
7440	.21	7496	.91	74195
7441	1.10	74100	1.25	74197

74L SERIES TTL

MOTOROLA

MC663P	2.50	MC1460	3.95
MC666P	1.60	MC1469R	2.50
MC670P	1.60	MC1489	4.60
MC679P	2.50	MC1496	1.65
MC725P	1.50	MC1510G	8.00
MC789P	1.50	MC1514L	4.50
MC790P	1.50	MC1595L	6.25
MC817P	1.30	$\mathrm{MC1723CL}$	3.60
MC836P	1.35	MC1741CG	1.20
MC844	1.25	MC1810P	1.25
MC853P	2.25	MC3004L	2.25
MC876P	2.25	MC3007P	2.25
MC1004L	1.25	MC3021L	2.15
MC1010L	1.25	MC3060L	2.65
MC1305	1.95	MC3062L	3.00
MC1352P	1.55	MC4024P	2.20
MC1357	1.70	MC4044P	4.80
MC1371	1.85	MC14507CP	1.25
MC1439	2.65	MC14511CP	2.76
MC1458P	. 50	MC14512CP	1.70
	CMOS		
4001 AE	. 29	4023AE	29
4002AE	. 29	4024AE	1.50
4007AE	. 29	4025AE	. 35
4010AE	. 58	4028AE	1.60
4011AE	. 29	4029AE	2.90
4012AE		4030AE	. 65
4015 AE	1.25	4037AE	4.50
4016AE	. 65	4040AE	2.40
4018AE	1.10	4044AE	1.50
4019AE	. 65	4049AE	. 75
4020AE	1.75	4050AE	. 75
4021 AE	1.50	4050AE	. 7

NEW FROM NEWTONE
Regulated Power Supply Components Kit • Contains the components needed to build a fixed-voltage regulated supply including: $117 / 17 \mathrm{~V}$ - 1 ampere Transformer, Bridge Rectifier, 2000 uF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify $5,6,8,12$ or 15 volts.

NT525 \$4.99
Pioneer 6" Speaker - $71 / 2$-watt, 3.2 -ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 $\$ 2.39$ Three for $\$ 6.00$ PC Boards - MIL grade, $1 / 18$ " glass-epoxy boards with 2 ounce copper on one side.
NT521 6"x3" \$.50, NT522 6"x6" \$.90' NT523 6"x8" $\$ 1.20$
Dry Transfer Patterns for PC Boards •Includes 0.1" spaced IC pads, donuts, angles, and 3 -and 4 -connector pads. Over 225 patterns on a $2^{\prime \prime} \times 71 / 4$ " sheet. NT520 $\$ 1.49$ 3PDT - 24 Vold DC Relay - Potter \& Bromfield KU14D57 Each contact can handle 10 amperes at voltages to 240 Vac Coil resistance is 450 ohms. A super buy! Limited quantities

NT508 \$.99
$5^{\prime \prime}$ Taut-Band Meter - One milliampere full scale, $31 / 2$ ", scale length. Coil resistance 465 ohms. Made by Modutec for Bose. Meter scale in VUs $(-20$ to +3). Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all $5 \frac{1}{8}$ " $\times 4^{\prime \prime}$. Meter face mounts in a $5^{1 / 3 "} \times 2 \frac{3}{8}$ " cutout: A beautiful meter

NT539 \$4.89 Aluminum Knob. Solid machined aluminum knob with fluted sides made for Bose. Black front-face insert, black pointer line. Fits flat $1 / 4$ " shaft, does not require set screws. .8 high, 7 diam. Easily worth $\$ 1.50$ NT540 $\$.822$ for $\$ 1.50$

We have been informed by the Bose Corporation that the original BOSE $301^{\text {TM }}$ speaker system has not been discontinued as we stated in our previous ad. The BOSE 301 is available through Bose dealers.
We still have a small quantity of speakers originally made for Bose. These speakers have been tested with the Bose "Tone Standard" as a reference and subjected to the Bose power-handling test which includes both fixed and sweep-frequency testing.
8 -Inch Woofer (Bose Part No. 102606) has a freeair resonant frequency of $25-35 \mathrm{~Hz}$., and has a $1.5^{\prime \prime}, 8.5$-ounce magnet. The upper tested-frequency is 4000 Hz .
3-Inch Tweeter (Bose Part No. 107376) has a free-air resonant frequency of $1200-1500 \mathrm{~Hz}$., and has an upper tested-frequency of 16.5 kHz . Supplies are limited. We urge you to take advantage of these prices and stock up for your future needs.
Sorry, we have no information about the Bose enclosures or the crossover networks, nor do we have more specs. Bose says these data are proprietary information.

\(\begin{array}{lll}8" Woofer \& NT541 \& \$ 10.95
3" Tweeter \& NT542 \& \$ 3.95\end{array}\)

POPULAR JEDEC TYPES

$\sqrt{65}$

Active Electric sadescirr.

 meroctectiselvesINTRODUCTORY PACKAGE With any order valued at $\$ 30.00$ or more
Post marked prior to July 31, 1978
You receive AT NO EXTRA CHARGE

- A 1978 ACTIVE ELECTRONICS Catalogue

Your choice of any of the following packages

PACKAGENO. 1

UNB0400 Unitrode Semiconductor Data Book. 500 pages on rectifiers, fullwave bridges, transient voltage suppressors zeners, programmable unijunction transistors, etc
LCC4162 TTL Supplement. The most recent TTL functions are included in this supplement to the 2nd edition of the TTL Data Book

RAB0606 Raytheon Selection Guide. A full line condensed quick reference source on line condensed quick refe

LCC4151 T.I. Linear and Intertace Circuits Data Book. 688 pages. Complete specifications on the 75 series of MOS interface peripheral driver, memory sense amplifiers, display interface circuits etc

Value $\$ 16.90$

PACKAGENO. 2

FSB0104 Falrchild Blpolar Memory Data Book. Bipolar memories, ECL static dynamic memories and macrologic. FSB0105 Macrologic Bipolar Microprocessor Data Book. Microprogramming for implementing as many system functions as possible in one centralized logic block
FSB0112 Fairchild Hybrid. Custom and standard product as well as reliability and design considerations

GSB0100 Zener, Transistor and Transzorb Catalogue. Discrete devices and pertinent data and complete device characterization. FSB0103 Fairchild Power Data Book. Basic parameter and data information as well as information on technology, safe operating area, reliability etc.

Value \$14.35

PACKAGE NO. 3

ADVANCED MICRO DEVICES
AMB0203 8080A/9080A MOS Micropro cessor Hand Book. Detailed description of the 8080 A and associated CPU components.
AMB0205 MOSILSI Data Book. Static RAM's dynarmic 4K RAM's, 2K EROM, shift registers FIFO memories and complete microprocessor and support circuits.
AMB0206 Linear and Interface Data Book. Comparators, data conversion products Line drivers/receivers, MOS memory and microprocessor interface, Op Amps, Voltage Regulators etc

Value \$17.85

PACKAGE NO. 4

LCC4041 T.I. Power Semiconductor Data Book. 816 pages germanium and silicon power transistors, SCR's, Triacs, darlingtons siticon power high voltage and low voltage ypes etc
SIB0303 Siliconix High Speed Analog Switches. Complete specifications, characteristics and applications of the DG300 series.
SIB0304 Siliconix FET Data Book. Complete data on selecting the right FET for your application, characteristics and PC board layout

SIB0305 VMOS Power FET's. Technical information, application and design aids. characteristics and device / application selection for thls latest in technology

Value $\$ 16.30$

PACKAGENO 5

SIB0300 Analog Switches and their Applications. Introduction to FET Analog Switches and the way the switch control or driver circuit affect performance.
LCC4280 T.I. Peripheral Driver Data Book Total information and typical application of complete peripheral drivers and interface LCC4290 T.I. Line Driver and Line Receiver Data Book. Complete data on line circuits and application information.

GIM0100 General Instrument Micro electronics. Complete specifications and data on calculator, clock and T.V. game chips, microprocessors, industrial devices static RAM's, EAROM's and ROM's.

Value \$19.30

A Active
EElectronic SalesCorp.
P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Over - the - counter sales,
12 Mercer Rd., Natick, Mass 01760
Behind Zayres on Rte. 9
Telephone Orders \& Enquires (617) 879-0077
n CANADA 2 LOCATIONS
5651 Ferrier St. 44 Fasken Dr. Unit 25
Montreal, Quebec
Tel. (514) 735-6425

Rexdale, Ontario

MINIMUM ORDER $\$ 10.00 \cdot$ ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING - Canadian customers add 30% for exchange and handling. All federal and provincial taxes extra.
Foreign customers please remit payment on an international bank dratt or international postal money order in American dollars.

FOR ALL CUSTOMERS EXCEPT CALIF
CALL TOLL FREE 800-421-5809

THE PROM SETTER write end READ PROM
1702A-2708-2716 5204-6834

- In Lustre Man io Module Bard and External Eprom
-The Erna Soche Unit is connected to the Com

 - Sorimurtro noricted

- N.monul insulated
$\begin{array}{cc}\text { THE PROM SETTER } \\ \text { KIT } \\ \text { ASSEMBLED } \\ \$ 210.00 & \$ 375.00\end{array}$

JADE PARALLEL/SERIAL INTERFACE KIT
\$124.95 KIT
2 Serial Interfaces with RS 232
interfaces or 1 Kansas City cassette interface.
Serial interfaces are crystal controlled. Selectable baud rates.
Cassette works up to 1200 baud
1 parallel port

JADE VIDEO INTERFACE KIT FEATURES S-100 Bus Compatible \$89.95 32 or 64 Characters per line 16 lines
Graphics (128×48 matrix) Parallel \& Compositive video On board low-power memory
Powerful software included for cursor, home, EOL, Scroll Graphics/ Character, etc.
Upper case lower case \& Greek
Upper-case
Black-on-white \& white-on-black

MOTHER BOARD
13 SLOT MOTHER BOARD w/front
S-100 DESIGN
Full ground plane on one side RC NETWORK TERMINATION ON EVERY LINE EXCEPT PW \& GRD kluge area

- STRONG $1 / 8$ " THICK DOUBLE SIDED BOARD

BARE BOARD $\$ 35.00$

PERSCI DISK DRIVE FOR S-100
COMPLETE
Info 2000 S- 100 DISK SYSTEM
(includes dual drive, power supply, case, intelligent controller, adapter, cables, and disk monitor on EPROM) $\$ 2,650.00$
COMPLETE TIL SOFTWARE
PKG. FOR DISK
$\$ 195.00$


```
BK STATIC RAM BOARD
assembled and tested
```


250ns. $\$ 189.95$ 450ns.

```
* WILl WORK WITh NO FRONT PANEL
* Full documentation
* fully buffered
* SION DESIGN
* adequately bypassed
* LOW POWER SCHOTTKY SUPPORT IC S
```

250ns. KIT
450ns.
\$169.95
\$129.95 BARE BOARD \$25.00

ADAPT YOUR MOTOROLA 8800 SYSTEM TO OUR S. 100 BK RAM BOARD. KIT PRICE \$12.95

S-100

jade Z80
-with PROVISIONS for
KIT ONBOARD 2708 and POWER ON JUMP

JADE 8080A KIT $\$ 100.00$ кіт bare board $\$ 35.00$

VIDEO INTERFACE You will want to know about the TV-1 Video to Television interface Kit
No need to buy a separate Video Monitor if you already own a TV set. Just connect the TV- 1 between your system video output and is to it - to convert your TV set to a Video is to it - to convert your TV set cost $\mathrm{Monitor} ,\mathrm{and} \mathrm{at} \mathrm{a} \mathrm{much} \mathrm{lower} \mathrm{cost!}$
Monitor, and at a much lower cost! PRICE $\$ 8.95$

Computer Products
5351 WEST 144 in STREET
AWNDALE. CALIFORNIA 90260 (213) 679.3313

RETAIL STORE HOURS M.F 9-7 SAT 9-5
Discounts available at OEM quantifies Add \$1.25
for shipping. California residents add 6% sales tax

Whato Hut

TELEPHONE RELAY

Assembled \& Tested \$29.95
Automatically Starts \& Stops Tape Recorders Surreptitious interception of telephone conversation is a violation of Federal Law and this device is not Intended for such use.

Jumbo LED Car Clock Kit
FEATURES
A. Bowmar
B. MOSTEK -50250 - LED array.
C. On board precision crystal time base
E. Perfect for cars, boats, varmat.
E. Perfect for cars, boats, vans, etc.
F. PC board and ail part's (less case)

Alarmoption - $\$ 1.50$
AC XFMR - $\$ 1.50$

6 DIGIT ALARM CLOCK KIT

Features: Litronix dual $1 / 2^{\prime \prime}$ displays, Mostek 50250 super clock chip, single I.C segmen driver, SCR digit drivers. Kit includes all ne cessary parts (except case) Ximr optional Eliminate the hassle.
AC XFMR - $\mathbf{5 1 . 5 0}$ Case 53.50

MUSICAL HORN One tune supplied with each Kit. Additional tunes - $\$ 6.95$

each. Special tunes available. Standard tunes now available Dixie - Eyes of Texas -- On Wisconsin - Yankee Doodle Dandy - Notre Dame - Pink Panther - Aggle War Song Anchors Away - Never on Sunday - Yellow Rose of Texas Deep in the Heart of Texas - Boomer Sooner - Bridge over CAR \& BOAT KIT HOME KIT $\left.\begin{array}{l}\text { Special Design Assembled } \\ \text { Case } \$ 3.50 \\ \text { \& Tested }\end{array}\right]$ | CAR \& BOAT KIT | HOME KIT | | |
| :---: | :---: | :---: | :---: |
| 34.95 | 29.95 | Case $\$ 3.50$ | $\begin{array}{c}\text { \& Tested } \\ \text { Add } \$ 10.00\end{array}$ |

7400 TTL DIGITAL CIRCUITS

709	LINEARS	MICROPROCESSOR SUPPORT CHIPS	
${ }^{7} 710$		- 8212 - 110 Porr	3.50
${ }_{749} 7$.95
${ }_{\text {LM }}^{1301}$	Ooreationt Amititer 30	(ectiock Gen.	${ }_{4}^{4.95}$
im 308	Oeerationa Amplit tor ${ }^{\text {SV }}$	${ }^{\text {a }}$	14.95
LM M 3910			14.95
LM311			+10.95
$i_{\text {im }}^{324}$	Votase Comoratios	8255 Prog. perp, interface 8820 Dual Line Pecr	75
LM337			5
LM300	Oill	${ }^{23133}$ char Gen.	O0
LM			
$\stackrel{\sim}{N E 555}$	Sual		
NES657	Ton	R2863 ${ }^{\text {art }}$	3.95 8.56

NEW IMPROVED UNSCRAMBLER! $\$ 25.00$
Punched and Printed Case
6.95

MUSICAL HORN			
One tune supplied with each kit. Additional tunes - $\mathbf{\$ 6 . 9 5}$ each. Special tunes available. Standard tunes now available -			
Dixie - Eyes of Texas -- On Wisconsin - Yankee Doodle			
Dandy - Notre Dame - Pink Panther - Aggie War Song -			
Deep in the Heart of Texas - Boomer Sooner - Bridge over			
River Kwai.		Special Design	
34.95	29.		

12V 1 AMP POWER SUPPLY
INPUT VOLTAGE 25 V MAX. OUTPUT CUR. RENT 1 AMP. MAX. LOAD REGULATION 50 mV . OUTPUT VOLTAGE 12 V . LINE REGULATION 0.01% KIT CONTAINS ALL PARTS EXCEPT FOR LINE CORD AND TRANS. FORMER.

ONLY $\$ 4.50$

74LSOO LOW POWER SCHOTTKY | 7442 | 47 |
| :--- | :--- |
| 7443 | 59 |
| 7444 | 59 |
| 7447 | 68 |
| 7448 | .71 |
| 7450 | 13 |
| 7451 | 13 |
| 7453 | 13 |
| 7460 | 19 |
| 7470 | 27 |
| 7472 | 25 |
| 7473 | 29 |
| 7474 | 29 |
| 7475 | 49 |
| 7476 | .31 |
| 7480 | 31 |
| 7481 | 55 |
| 7482 | .57 |
| 7483 | 57 |
| 7485 | |
| 7489 | .89 |

	$\begin{aligned} & 21 \\ & 20 \\ & 28 \end{aligned}$		${ }_{26}^{26}$		
	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	${ }_{\text {74, }}^{74555}$	35	74	
	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$				
		${ }_{7}$		${ }_{74}$	
	45	${ }_{\substack{7 \\ 74.45856}}$			
	28	${ }_{7}^{74.59592}$		${ }_{7}{ }_{4} / 4$	
	$\begin{array}{r} 204 \\ .28 \\ .28 \end{array}$				
	$\begin{aligned} & .28 \\ & .28 \\ & .28 \end{aligned}$	${ }_{7415}$			
	${ }_{65}^{26}$	${ }_{\substack{3 \\ 4 \\ 4.515133}}$	${ }_{35}^{79}$	${ }^{4} 4$	

SOCKETS

CLOCK \& COUNTER

CRYSTALS

DIODES

IN 4002 : Amp 100 PIV			
IN $400 / \$ 1$			
IN 4004 Amp 400 V			
IN Amp 1000 V			
$15 / \$ 1$			
GERMANIUM .DIODES			

ITY 501 Qua Seg ${ }^{\text {d }}$	35	nave 1003
ITT 503 Ouac Seg. Dr		We nausamis
ITT 506 Mex Digit $\mathrm{D}^{\text {r }}$	48	
	4	
$1{ }^{17} 5110$ Oua Seg D.	5	${ }_{100}$

FAIRCHILD RTL's
$58 / 81$
$10 / \$ 1$

ZENER DIODES | | ZENER DIO | | | |
| :---: | :---: | :---: | :---: | :---: |
| IN | 746 | $3.3 V$ | 400 M | |
| IN | 752 | 5.6 V | 400 M | |
| IN | 1958 | $8.2 V$ | 400 M | |
| IN | 5259 | $39 V$ | 500 M | | $\begin{array}{lll}\text { IN } 5259 & 39 \mathrm{~V} & 500 \mathrm{M} \\ \text { IN } 5271 & 100 \mathrm{~V} & 500 \mathrm{M}\end{array}$ iN 5280 180V 500 M

HOUSE \# ZENER
4.7V 500 MW
9. V 500 MW 10 V 1 Watt
15 V 500 MW $15 V 500 \mathrm{MW}$
22 V 5 Watt

SWITCHING DIODES
The most popular digital IC's ever Produced. Very hard to find! $\begin{array}{llr}\text { UL914 } & \text { DUAL } 2 \text { INPUT NOR } & .99 \\ \text { UL923 } & \text { JK FLIPFLOP } & \$ 1.19\end{array}$

Easity turad
Deilles iuction included

MICROPROCESSOR SUPPORT CHIPS

Bowmar 4 Digit LED Readout Array Full $1 / 2^{\prime \prime}$ Litronix Jumbo Dual Digit LED Displays
4 JUMBO . 50° " DIGITS ON ONE STICK WITH COLONS \& AMIPM INDICATOR DL 722-C.C. $\$ 3.95$ DL 728-C.C $\begin{array}{cc}7218 \mathrm{C} . \mathrm{A} & \text { DL } 727-\mathrm{C} \\ 99 \mathrm{C} & \$ 1.29\end{array}$

- UNMARKED 1702A EPROMS
3.50 Ea . or $10 / \$ 32.00$ LIMITED SUPPLY IMSAI SPECIAL.
S-100 Connector \$3.95 Ea.
 FOUR 100 K -OHMS POTS
Ideal for electronic

MICRO-DIP \$1.95 New-Series 2300 Coded BCD Dual-In-Line Switch! PC Mount 2300 02G BCD 1-2-4-8 2300 12G BCD 1-2-4-8 Compliment

GE	RAMS	
RECTIFIERS	$21102-500$ $21102-250$	
1--200v 6,31		
	$745200-26$	3.95
60 Hz . Crystal Time Base for Digital Clocks		
Buy 2 for \$8.		
Cismall sie can oe usee in ex		

Radio Shack: No. 1 Parts Place Buy Off-the-Shefi! Low Prices! Huge Selection!

Top-quality devices, fully functional, carefully inspected. Guaranteed to turer's quality control procedures. These are not rejects, not fallouts, not meet all specifications, both electrically and mechanically. All are made seconds. In fact, there are none better on the market! Always count on by well-known American manufacturers, and all have to pass manufac- Rado Shack for the finest quallty electronic parts.

\section*{Linear ICs
 By National Semiconductor and Motorola - first quallty
 Computer Chips
 Prime Devices
 8080A Microprocessor. 8-bit, NMOS. 276-2510 Reg. 17.95 276-2501
 | Type | Cat. No. | ONLY |
| :---: | :---: | :---: |
| 301 CN | 276-017 | 494 |
| 324 N 339 N | 2786.1711 | 1.49 |
| ${ }^{3395}$ | 276.1712 | 1,49 |
| 386 CN | 276.1731 | 996 |
| 555 CN | ${ }^{276.1723}$ | 796 |
| 556 CN | ${ }^{276-1728}$ | 1.39 |
| 566 CN | ${ }^{276-1724}$ | 1.69 |
| 567 CN | 276-1721 | 1.99 |
| ${ }_{741 \mathrm{CN}}^{723 \mathrm{CN}}$ | | 696 |
| 741 M | 276-010 | 498 |
| 3900 N | 276-1713 | 996 |
| 3909 N | 270-1705 | 996 |
| 3911 N | ${ }^{276-1706}$ | 1.99 |
| 4558 CN | 276-038 | 796 |
| 75491 75492 | - 276 -1701 ${ }^{276} 1702$ | 996 |
| 75492 7805 | 276.1702 2761770 | ${ }_{1}^{1.29}$ |
| 7812 | 276-1771 | 1.29 |
| 7815 | 27-1772 | 1.29 |

REGULARLY \$1.95. Archer ${ }^{\text {® }}$ Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor - display devices, too! 46,000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations. 276-4002 ... With Any \$5 Parts Purchase, Only 99 c Ofter good at participating Radio Shack stores and dealers

Trim Multi-Purpose Cabinets

© Compact. Makes even your small projects look professional.
5\%x9x4/is: 270-281
Low-Profile. Slim-design - only $57 / 3 \times 113 / 6 \times 31 / 2$ 270-282. Reg. 14.95

으 DIP Swlich. For changing preset
D DIP Swlich. For changing preset
logic states. 275-1301........ 1.99
(t) Right-Angle 16-Pin Socket (t) Right-Angle 16-PIn Socket
 Tit Right-Angle 16-PIn Socket 1.49

Archer ${ }^{\text {® }}$ Project-Boards - Predrilled PCB's

HEW

5V, 3-Amp Power Supply. Metened output current. foldback limiting. Remole sensing, 277-119 (PCB less parts)
7.95

Just add switches and install! 12-hour readout $0.3^{\prime \prime}$ diglts, ± 0.5 sec./day accuracy. 12 vDC.
$277-1003$. Reg. $24.95 \ldots$. Sate 19.95

Sale 19.95
Mike

Elements Bridge Rectifiers

Elements
(1)

SALE
SALE . 200 hz response. -65 270-093 1.69 M1-Z Crystal. $50-8000 \mathrm{~Hz}$ re-

SALE
SALE
SALE
SALE 1
SALE
nended Parts and Cases
Time Base

Shown Bult with Recommended Parts and Cases

\square . IMTEGRRTED ELEETRDCILS
 5100 El Camino Real, Los Altos, CA 94022. (415) 969-7827

QUALITY SERVICE Best parts at low prices - Immediate service

WE ARE A NEW COMPANY DEDICATED
TO THE SERVICE OF THE HOBBYIST, EXPERIMENTER, STUDENT \& INVENTER

We offer-

Full line of IC's from the largest manufacturers Sockets, tools, wires and other accessories Calculators and digital watches

THIS MONTH'S SPECIAL

$$
21 \text { L02 - \$1.50 each, } 10 \text { up }
$$

$$
\text { TI-59 Program Calculator - } \$ 225.00
$$

This is not subject to 10% discount below
Introductory Offer-
Order from us at your price and save 10\% more. Here's how-
List all the IC's you need. Price them from any ad in this magazine. Total them and discount 10%. Add 5% shipping charges. Write for free catalog

Minimum order $\$ 5.00$ US currency. Check or money order only Add 5\% to cover shipping and handling charges. Calif. residents add 6% sales tax. Santa Clara Co. residents add 6.5% sales tax

SPEAKER KITS THE "ODDBALL'

HIGH CURRENT TRANSFORMERS
ull Size 3 way system for superior sound repro duction. Includes $4^{\prime \prime}$ tweeters, $8^{\prime \prime}$ middilers, $10^{\prime \prime}$ woofers, x-overs, damping, hardware, grillcloth 8 ,
cabinets. Build the complete pair for $\$ 88.88$! cabinets. Build the complete pair for $\$ 88.88$!
Cabinets measure $26 \% \times 141 / 2 \times 111 / 2^{\prime \prime}$. Oty. Ltd. Cabinets measure $26 / \% \times 141 / 2 \times 11 / \%^{\prime \prime}$. Oty. Ltd Order No. 8230094....... $\$ 88.88 / \mathrm{Pr}$

Beautiful Bnarcis

OUR BEST SELLER:

ECONORAM II ${ }^{\text {TM }}$

SUPER MEMORY FOR A SUPER MACHINE: H8 COMPATIBLE ECONORAM VI ${ }^{\text {m }}$

Users of the S-100 buss have found out why our memories are their best value. . . now H8 owners can find out too. This $12 K \times 8 \mathrm{kit}$ offers the same
basic features as our ECONORAM series. static basic fealures as our ECONORAM series... static
design, configuration as two blocks (one 8 K and one design. configuration as two blocks (one 8 K and one 4 K), switch selected protect. sockets for all ICs. full buffering on address and data lines ... plus the required hardware and edge connector to mate mechanically with the H8. As a bonus, all sockets and bypass capacitors are pre-soldered to the circuit board so you can start right in on the fun part of building this
high quality memory
Kit form: $\$ 235.00$

WE ALSO SPEAK DYNAMIC:

 ECONORAM III ${ }^{\text {rm }}$that you want a dynamic memory, might as well get one that works right. Econoram IIt is inexpensive, completely
assembled and tested, and ready to plug into your S .100 machine. Low power. O wait states with $8080 \cdot \mathrm{CP}(1$. con figured as two 4 K blocks, fully socketed.

ANNOUNCING
. . THE 16 K ECONORAM IV
\qquad sneak preview. The price? Under $\$ 400$. The performance? All impressively tow powes consumption and a couple of other tricks we have up our sleeve. II you ve been waiting for a 16 K board

ACTIVE TERMINATOR BOARD

\qquad minimizes the ringing, crosstalk, overshoot. scrambled lines. But even II you don't have a Godbout motherboard. you can trick your computer into thinking you do by machine. and galn the benefits of active circuitry

DEALER NOTE

Spreading the thank the ever growing number of dealers who are spreading the Econoram word to their customers ... you will be happy to know that we have doubled the capacity of our
Compukit Compukit ${ }^{\text {'/ }}$ division in order 10 continue handiling the massive
response. We're glad you like what we're doing. and we're go-
\qquad
\qquad nians add tax. COD orders accepled with street address for UPS.
VISA. Mastercharge orders call our 24 hour order desk
(4i5) 562.0636 . Prices good through cover month of magazine FREE FLVER: \qquad

ABOUT YOUR SUBSCRIPTION

 Electronics is maintained on one of the world＇s most modern，efficient computer systems，and if you＇re like 99% of our subscribers，you＇fl never have any reason to complain about your subscription service．We have found that when com－ plaints do arise，the majority of them occur because people have written their names or addresses differently at different times．For example，if your subscription were listed under ＂William Jones，Cedar Lane，Mid－ dletown，Arizona，＂and you were to renew it as Bill Jones，Cedar Lane， Middletown，Arizona，＂our computer would think that two separate sub－ scriptions were involved，and it would start sending you two copies of Popular Electronics each month． Other examples of combinations of names that would confuse the com－ puter would include：John Henry Smith and Henry Smith；and Mrs． Joseph Jones and Mary Jones．Minor differences in addresses can also lead to difficulties．For example，to
the computer， 100 second St．is not the same as 100 2nd St．

So，please，when you write us about your subscription，be sure to enclose the mailing label from the cover of the magazine－－or else copy your name and address exactly as they appear on the mailing label． This will greatly reduce any chance of error，and we will be able to ser－ vice your request much more quickly

74Cxx SERIES PRICES REDUCED UP TO 72 PERCENT

possible prices．this month we have reduced our prices on every device in the 74 Cxx Series，

\begin{abstract}
74 xx TTL 7400
7401
74.122 7403 … 7405
7405 $7408 \ldots$
，
$\underset{\sim}{-}$

式認認
品号号号

 －		

AUTO FM CONVERTER WITH WEATHER BAND

Volume Controls, PXg. of 12 Assorted. VC-274	
Capacitors, Low Voluge Elect. 50 PC . CD-407	9
Terminal Strips, Solder Type, 40 Assorted. XM-501	c
Resistors, 100 Assorted Carton. RR-077	*
$2^{\prime \prime}$ PM Speaker, \&-100hm. 2 for 1.00. SS-295	c
Cassette Tape, Pxg of 3-30 Minute. TA-879	*
8 -Track Tape, 40 Minute. TA-907	
Earphones, 80 mm , Less Cord Pxg of 4. PH-405	\%
Singer 12 Digit MOS Calculator Chip With Data XM-635	
UHFVaractor Tuner With Data Sheet. XM-676	9
Ceramic Capacitors, Pkg of 100. CC-211	00
RED LED. 2 Volt 10mA. Pkg of 5. Pl-233	59
LCD 31/2 Oigit Display. XM-371	9
709 Hight Gain DP AMP RE-131	*
Deluxe Stereo Headphones. PH-460	99
Cassette Laplel Mike, 3.5 mm Plug. MM-174	0
$3^{\prime \prime}$ Recording Tape, Pkg of 5 (125' to 300'). TA-928	56
Slidemount For Auto Stereo or CB. AU-149	39
6 to 12 Volt DC Converter. 6 V . Acc. On 12V. Batt. AU-297	
650 RPM Motor, $51 / 2{ }^{\prime \prime}$ Shaft, 120V AC. M0-265	. 00
9.6VDC Motor, 4 Step Shaft M0-365	
4000 RPM 117 V . AC/DC Motor. M0-395	29
18 RPM Geared Motor, 120VAC. MD-409	59
IV Tuner Motor, 14 RPM. 120VAC. M0-392	
3'Fan and 120VAC Motor. M0-416	2.49
$31 / 22^{\prime \prime}$ Digit L.C Display. XM. 371	
Sperry 9 Digit Display, 180VDC XM 643	
$20 \mathrm{Key} \mathrm{Calculator} \mathrm{Keyboard}. \mathrm{Xm-339}$	
TI Desk Calculator Keyboard. XM-523	0
Assorted Knobs, Kit of 25. KM-030	69
3" 7 Seg. L.E.D. Comm. Anode. Green XM-34	139
. ${ }^{\prime \prime} 7$ Seg. L.E.D. Comm. Anode. Red. XM-370	139
.3"7 7 Sed. L.E.D Comm. Anode. Yellow. XM. 342	39
100 MFD . Elect Capacitor, 50 VDC. CC-216	4
12K Ohm Globar Resistor. RS-241	
Mini Poly-Styrene Caps. 500 pf @ 125V Pkg of 5 CC-234	
Mini Poly-Styrene Caps. 1000 pf. ©125V Pkg. 5. CC-235	59
12 Digit Calculator IC Chip, Data Incl. XM- 330	
2 "Waterproof Speaker, 80 hms . SP-471	1.49
80-40-20 MFD@150V. Elect. Cap CC-144	*
100-150 MFD@150-50V Elect. Cap. CC-213	,
3VDC Buzzer, 11/2" Diameter Xm-756	594
Wire Terminal Lug. 50 Pcs. Solderless. XM-735	
OFFER G000 ONLY IN THE CONTINENTAL	

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

INTEGRATED CIRCUITS

Sinclair 3½ Digit Multimeter Batt. oper. 1 mV and 1 NA resolution. Resistance to $20 \mathrm{meg} .1 \%$ accuracy Small, portable, completely assem. in case. 1 yr ,
guarantee. Best value ever!
$\$ 59.95$

Nol a Cheap Clock Kit $\$ 14.95$ Includes everything except case. 2-PC boards. 6-.50" LED Displays. 5314 clock chip, transformer, all components and full instrucs. Green and orange displays also
avail. Same kit w 1.80° displays. $\$ 21.95$
Digital Temperature Meter Kit ndoor and outdoor. Automaticaliy
switches back and forth. Beautiful. $50^{\prime \prime}$ LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure -100° to $+200^{\circ} \mathrm{F}$, air or llquid. Very accurate. Complete instructions. $\quad \$ 39.95$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up, all in one kit wifull parts \& instruc. $\quad \$ 7.25$

RCA Cosmac VIP Kit 249.00 Video computer with games and graphics.
'78 IC Update Master Manual 1978 IC Update Master Manual $\$ 30.00$ Complete IC data selector 2175 pg . Master reference guide. Over 42,000 cross reterences. Free update service through 1978. Domestic postage $\$ 3.50$. Foreign 1978. Domestic costage $\$ 1.50$. Final 1977 Master closeout $\$ 15.00$

New Cosmac Super "ELF"

RCA CMOS expandable microcomputer R/HEX keypad input and video output for W/HEX keypad inpur and video output for
graphics. Just turn on and start loading graphics. Just turn on and start loading your program using the resident monitor on ROM. Pushbutton selection of all four CPU modes. LED indIcators of current CPU mode and four CPU states. Single step op. for program debug. Buitt in pwr. supply, 256 Bytes of RAM, audio amp. \& spkr. Detailed assy. man. w/PC board \& all parts fully socketed. Comp. Kit \$106.95 High address display option 8.95; Low address display option 9.95 ; Custom hardwood cab; drilled tront panei 19.75 Nicad Battery Backup Kit w/all parts 4.95 fully wired and tested in cabinet $151.70 \quad 1802$ software xchng club; write for info
4K Elf Expansion Board Kit with Cassette I/F $\$ 79.95$ Available on board options: 1 K super ROM monitor $\$ 19.95$ Parallel t/0 port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY $20 \mathrm{mal/F} \$ 1.95$ S. 100 Memory I/F $\$ 5.30$

Tiny Basic for ANY 1802 System Kansas City Standard Cassette $\$ 10.00$ On ROM Monitor $\$ 38.00$ Super Elf owners take 30% of Driginal Cosmac "ELF" kit All parts and instructs. $\quad \$ 88.50$ Board only

Video Modulator Kit $\$ 9.95$
Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with full instructions.
P.O. Box 4430C Santa Clara, CA 95054 For will call only: (408) 988-1640 2996 Scott Blvd.

Popular Electronics

ADVERTISERS INDEX

READER

SERVICE NO

ADVERTISER PAGE NO.

A P Products Incorporated 13
Ancrona Corp 104
4 B\&F Enterprises 109
B\&K Precision Dynascan Corporation 91
57 Byte 77
CREI Capitol Radio Engineering Institute $70,71,72,73$
Chaney Electronics 109
Cleveland Institute ofElectronics, Inc$28,29,30,31$
Cobra, Product of
Dynascan SECOND COVER
Communications Electronics 93
Corporation 39
11 Cooper Group, The 38
12 Digi-Key Corporation 105
Digital Group, The
94
E\&L Instruments, Inc 92
Edmund Scientific Co 98
16 Electronics Book Club 16
Kit $\$ 4.75$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kli includes: PC board, MM5369, crystal, resistors.
capacitors and trimmer.-
Clock Calendar Kit $\$ 23.95$CI7015 direct dilve chip displays dateand time on $6^{\prime \prime}$ LEDS with AM-PM indi-cator. Alarm/doze teature includes buz-zer. Complete with all parts, power supplyand instructions, less case.
2.5 MHz Frequency Counter Kit Complete kit less case $\mathbf{\$ 3 7 . 5 0}$ 30 MHz Frequency Counter
Kit Complete kit less case $\$ 47.75$ $\begin{array}{ll} & \$ 4.75 \\ \text { Prescaler Kit to } 0 & 350 \mathrm{MHz} \\ & \$ 19.95\end{array}$

Stopwatch Kit
 $\$ 26.95$

Full six digit battery operated. $2-5$ volts. 3.2768 MHz crystal accuracy. Times to 59 min ., 59 sec ., $991 / 100 \mathrm{sec}$. Times std. 59 min., $59 \mathrm{sec}, 991,00 \mathrm{sec}$. Times sto..
split and Taylor. 7205 chip , all compoSplit and Taylor. 7205 chip, all compo-
nents minus case. Full instruc. Molded nents minus case. Full instruc. Molded
plastic case with bezel.
$\$ 5.00$

Auto Clock Kit $\quad \$ 15.95$ DC clock with $4-.50^{\prime \prime}$ displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated, comp. instructs. Add $\$ 3.95$ for beautiful dark gray case. Best value anywhere.

TERMS: $\$ 5.00$ min. order U.S. Funds. Calif residents add 6% tax. FREE: Send for your copy of our NEW 1978 BankAmericard and Master Charge accepted.

QUEST CATALOG. Include 24 e stamp. Shipping charges will be added on charge cards.

CIRCLE NO AI ON free information caro

PLANNING TO

Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.

Write to: P.O. Box 2774, Boulder, CO 80322 giving the following information:

\square Change address only \square Extend my subscription

ENTER NEW SUBSCRIPTION

$\square 1$ year $\$ 12.00$
Payment enclosed
(1 extra BONUS issue)
Additional postage on foreign orders: add $\$ 3$ a year for Canada, $\$ 5$ delivery.

Bill me later

Godbout Elecs., Bill 109
Grantham College of Engineering 93
Heath Company 80, 81, 82, 83
21 IE Integrated Electronics 109
56 IMSAI Manufacturing Corporation

THIRD COVER
22 Illinois Audio 92

24 JS\&A 1
25 Jade Computer Products 103
26 James Electronics 96
28 Kedman Company 89
29 McIntosh Laboratory Inc 6
Micro Computer Mart …........ 88
$52 \begin{aligned} & \text { Modern Electronics } \\ & \text { Motorola Semiconductor }\end{aligned}$
Products Inc
NRI Schools 8, 9, 10, 11
30 Netronics R\&D Lid 14
31 New-Tone Electronics 95
32 New-Tone Electronics 111
33 OK Machine \& Tool Corporation . . 15
34 Olson Electronics 111
35 Oploelectronics 85
36 PAIA Electronics, Inc 87
37 Page Digital Electronics 69
38 Panasonic 75
39 Pickering \& Co 171
40 Poly Paks 53 Population Planning Associates . 104
41 Quest Electronics 112
42 Radio Hut 106
Radio Shack 107, 116
43 Radiola Company, The 18
44 Sabtronics International,
Inc. Fansui Electronics FOURTH COVER
45 Sansui Electronics Corp 25
46 Scientific Audio Electronics, Inc. . 48
55 Shure Brothers Inc
47 Shure Brothers Inc 23
48 Solid State Sales 110
$49 \begin{gathered}\text { Southwest Technical Products } \\ \text { Corporation } 2\end{gathered}$
50 Texas Tuner Service 90
51 Wahl Clipper Corporation 18
CLASSIFIED ADVERTISING 113, 114, 115

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services. $\$ 2.40$ per word. Minimum order $\$ 36.00$. EX PAND-AD ${ }^{\text {© }}$ CLASSIFIED RATE: $\$ 3.60$ per word. Minimum order $\$ 54.00$. Frequency discount; 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.40$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 col. ($2-1 / 4^{\prime \prime}$ wide), $\$ 280.00$. $2^{\prime \prime}$ by 1 col. $\$ 560.00 .3^{\prime \prime}$ by 1 col., $\$ 840.00$. Advertiser to supply film positives. For frequency rates, please inquire. COLOR: Color avail for all classified ad styles at earned rate plus additional 25%. Color choice Publisher's option \& subject to availability. Publisher reserves right to run ad in black if color not available on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed

FOR SALE

FREE! Bargain Catalog-I.C.s. LED's. readouts, fiber op tics. calculators parts \& kits, semiconductors, parts. Poly Paks, Box 942PE, Lynnfield. Mass. 01940.
GOVERNMENT and industrial surplus receivers, transmit ters, snooperscopes, electronic parts, Picture Catalog 25 cents. Meshna, Nahant, Mass. 01908.
LOWEST Prices. Electronic Parts. Confidential Catalog Free. KNAPP, 475096 th St. N., St. Petersburg. FL 33708.
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS Bluftion, Ohio 45817
RADIO-T.V. Tubes- 36 cents each. Send for tree catalog. Cornell, 4213 University. San Diego, Calit. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students...Construction plans-Complete, including drawings, schematics, parts list with prices and sources... Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm Sound Meter ...over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994, University Station, Raleigh, N.C. 27607.
METERS_Surplus, new, used, panel or portable. Send for list. Hanchett. Box 5577, Riverside, CA 92507.
TEKTRONICS RM35A \$395, 585AR \$495, 1A1 \$395, 1A5 \$395. Boonton Q260A \$295, RX250A \$695. 202F \$195 HP650A $\$ 125$, Resistor networks list $12 / \$ 10$. Ferlik's, 5400 Ella, PhiladeIphia. PA 19120.
SOUND SYNTHESIZER KITS-Surf $\$ 12.95$, Wind $\$ 12.95$ Wind Chimes $\$ 17.95$. Musical Accessories, many more Catalog tree. PAIA Electronics. Box J14359, Oklahoma City, OK 73114.
HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels. scanners Send postage stamp. Communications, Box $56-\mathrm{PE}$, Commack, N.Y. 11725.
UNSCRAMBLERS: Fits any scanner or monitor easily ad justs to all scrambled frequencies. Only 4 " square $\$ 29.95$, fully guaranteed. Dealer inquiries welcomed. PDQ Electronics, Box 841. North Little Rock. Arkansas 72115. UNREAL CATALOGS. Surplus. Factory Liquidations. Bank ruptcy inventories. Deals. Thousands of items at Bargain Surplus Prices. Rush \$1. Etcoa Electronics. 521 5th Ave. NYC, NY 10017.
POLICE/Fire scanners, large stock scanner crystals, antennas. Harvey Park Radio, Box 19224, Denver, CO 80219.
TELETYPE EOUIPMENT for sale for beginners and experienced computer enthusiast. Teletype machines, parts. supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES. 3730 Nautilus Ave.. Brooklyn. NY 11224. Tel: (212) 372-0349. WHOLESALE C.B., Scanners, Antennas, Catalog 25 cents. Crystals: Speclal cut. $\$ 4.95$, Monitor $\$ 3.95$. Send make. model, frequency. G. Enterprises. Box 461P, Cleartield, UT 84015.

BUILD AND SAVE. TELEPHONES, TELEVISION. DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphones, Phonevision, Dialers, Color TV Converters, VTR, Games, $\$ 25$ TV Camera, Electron Microscope, Special Effects Generator. Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, \$1.00. Don Britton Enterprises, 6200 Wilshire Blva., Los Angeles, Calif. 90048. NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics, Box 82, Skokie. Illinois 60076. ELECTRONIC PROJECTS using micro-processor and/or TTL technology. Send $\$ 1.00$ for new catalog. CompuGadgets, 117 Ferson Avenue, lowa City, IA 52240.
LOG:C PROBE, Experimenters, Professionals, TTL Level Detection, MOS-CMOS. Assembled, tested, $\$ 15.95$ postage pald. Philectronix Co., Box 831 Dept X. Los Alamos, New Mexico 87544.

ORGAN KITS KEYBOARDS

THE ULTIMATE IN DESIGN AND SOUND Demo Record \& Brochure $\$ 1.00$ DEVTRONIX ORGAN PRODUCTS, Dept. C 5872 Amapola Dr. • San Jose, CA 95129
SURPLUS COMPONENTS, Communication and test equipment. Illustrated catalog 25 cents. E. French. P.O. Box 249. Aurora, Illinois 60505.
CB RADIOS, monitors, crystals, $C D$ ignitions. Southland Box 3591-B, Baytown. Texas 77520 .
TELEPHONES UNLIMITED, Equipment, Supplies, All types, Regular, Keyed, Modutar. Catalog 50 cents. Box 1147E, San Diego, California 92112. CARBON FILM RESISTORS $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}-1.7$ cents each. FREE sample / specifications. Other components. COMPONENTS CENTER, Box 295, W. Islip. New York 11795.
UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7, Box 265B, Hot Springs, Arkansas 71901. (501) 623.6027.

NEGATIVE ION GENERATORS. Breathe Better Air through magic of science. (Fascinating details $\$ 1.00$). Golden Enterprises, Box 1282-PE, Glendale, AZ 85311 . (Dealers Wanted).
USED TEST EQUIPMENT - Tektronix. HP GR Write: PTI. Box 8699. White Bear Lake, MN 55110 . Phone: (612) 429-2975.
WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales, 3730 Nautilus Ave Brooklyn, N.Y. 11224. Tel: (212) 372.0349.
AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F. Newton, NH 03858.
Build The Artisan Electronic Organ.
The 20th century successor to the classic pipe organ. Kits feature modular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar•ti-san. Write for our free brochure. AOK Manufacturing, Inc. P.O. Box 445, Kenmore, WA 98028.

GIANT BARGAIN ELECTRONIC CATALOG listing thou sands of components, tubes, transistors, IC's, kits, tes equipment. Edlie's, 2700.1PA Hempstead Turnpike, Levittown. N.Y. 11756. Price $\$ 1.00$ refundable with first order.
SCANNERS, BEARCAT 210 or Regency Touch $\$ 239.95$, Two Way Radios, Videotape Recorders. Free Catalog. Guilderland Communications, Box 591, Guilderland, N.Y. 12084.

TRANSISTORS FOR CB REPAIR, IC's and diodes. TV audio repairs. 2SC799 - \$3.00, 2SC1306$\$ 2.95,2$ SC1307 - $\$ 3.85$, TA7205- $\$ 3.50$, more. Free catalog and transistor. B\&D Enterprizes, Box 32, Mt. Jewett, PA 16740.
NEW PERIODIC TABLE OF ELEMENTS. Atomic physics breakthrough now reveals precise atomic models of each element. Striking wall chart, $\$ 3.00$. Circlon, 29500 Greenriver Gorge. Enumclaw, WA 98022.
UNSCRAMBLER KIT: Tunes all scramble frequencies, may be built-in most scanners, $2-3 / 4 \times 2-1 / 4 \times 1 / 2 . \$ 19.95$. Factory built Code-Breaker. $\$ 29.95$ Free Catalog: KRYSTAL KiTS. Box 445, Bentonville, Ark. 72712. (501) 273-5340.
RADIO SHACK MERCHANDISE 10% Ofl catalog prices. $\$ 25.00$ or more delivered. A.S.C., 2224 N . 10 th St., MCAllen TX 78501
1702A PROMs programmed to your specifications. $\$ 25.00$. Copies $\$ 10.00$. Key Telemetering Products, 2829 Lewis Lane. Owensboro, KY 42301. (502) 683-9871
CB ANTENNA CONSTRUCTION MANUAL: Build 16 DB Gain Beams plus Quads, Verticals, Ground Planes using common hardware. Easy assembly/highest performance Complete $\$ 4.00$. Tenna-Farm, 1117 Dewlt Tr.. Linden, N.J. 07036.

ELECTRONIC SURPLUS FREE CATALOGS ETCO ELECTRONICS, Dept EB North Country Shopping Center Rt. 9N, Plattsburgh, N.Y. 12901

PET owners need information?! Send SASE for details. TIS Box 921, Los Alamos, NM 87544.
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Electronics, 1468 West 25th Street. Cleveland, OH 44113.
AMAZINGLY Low component prices! Ask for free flyer Write: EEP. 11 Revere Place, Tappan, NY 10983.
PRINTED CIRCUIT SUPPLIES. Chemicals, tools, artwork. plating. Send two stamps. CIRCOLEX. Box 198, Marcy, N. Y 13403.

VIDEO CASSETTE RECORDERS RCA Selectavision. List $\$ 1000$. Now Only $\$ 850.00$ plus $\$ 10.00$ shipping. Hodapp TV Sales. 322 Main St.. St. Clair, Minn. 56080 .

ANYONE CAN SOLDER WITH-

DO-IT-YOURSELFERS!

Let Kester solder aid you in your home repairs

 or hobbies. A radio, TV, model train, jewelry plumbing, etc. Save money - repair it yourself Send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering SimplifiedKESTER SOLDER / $\begin{gathered}4201 \text { Wrightwood Ave } \\ \text { Chicago, } 11.60639\end{gathered}$

FREE CATALOG New \& Surplus Electronics
 Leds, TTL \& CMOS. Swithes Ribbon Cable. eie CHICAGOLAND -our slore open daily at $1000 \mathrm{~A} M$ Auth Distributor tor DATAK (Photo Eich Supplies), CONTINENTAL SPEC (Broadboarding Devices). VECTOR (Rerl Board). OK MACHINE \& TOOL (Wrie Wrap. pring Supplien)
 R.W.ELECTRONICS. INC
 3203 N. Western Ave Chicago, IL 60618 Chicago, IL 60

UNSCRAMBLERS FOR any scanner. Several models avail able. Free literature. Capri Electronics, 8753T Windom St. Louis, MO 63114.
IC LSI wafers-3', fully processed. Many creative uses \$5.00. ESSAR, Box 326. Hicksville, N. Y. 11802.
30 WATT MOBILE STEREO AMP. Described P.E. Feb. 1976. Drilled Circuit Board, $\$ 4.50$. EBCO, 67 Forest View Northford, CT 06472.

THEFT PROOF your TV, Stereo equipment with Rosco Electronic Lock, patented. Order - send $\$ 19.95$ to Rosco, 909 S. Memorial, Tulsa, OK 74112.

SYLVAANIA 4 hour video recorder, $\$ 850$. Largest stock Ham equipment in intermountain area. Ross Dist. Co., Preston, Idaho 83263. For personal service call (208) 852-0830. Es tablished 1957
MULLEN COMPUTER BOARDS KITS: Extender Board with Logic Probe ($\$ 35$) simplifies servicing. Relay/Opto-isolator Control Board (\$117) interfaces to relays, triacs, etc. S-100 compatible. For details visit your computer store or write: Box 6214-A Hayward, CA 94545.
B\&K Test Equipment. Free catalog. Free Shipping. Dino saur discounts. Spacetron-AE, 948 Prospect, Elmhurst, IL 60126.

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS - SEND FOR YOUR FREE CATALOG
Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets $1 / O$ terminals, video dis plays, printers, and equipment cases And of $\begin{array}{ll}\text { course components, fans, wire, and cable. Write } \\ \text { now to } & 10 \text { Flagstone Drive }\end{array}$ Worldwide Electronics Hudson, NH 03051

NEW ADJUSTABLE, three output, regulated, POWER SUPPLY, plus 900 parts worth over $\$ 400.00$ in complete CARTRIVISION television electronic assembly. Documentation included. Perfect for MICROPROCESSOR and all electronic applications. $\$ 17.95$ plus $\$ 3.50$ S\&H. Master Charge. BankAmericard. Free brochure. MADISON ELECTRONICS. 369 Madison, Alabama 35758. SATISFACTION GUARANTEED.
REGENCY TOUCH \$249.95. Bearcat 210 \$249.95. (707) 544-4388. McDonald, Box 7492(P), Santa Rosa, CA 95401. MAKE PC BOARDS. Step-by-step "how to" manual with build-it-yourself equipment plans. charts and illustrations. For Polyez and Film-Chemical processes. $\$ 4.98$ plus 50 cents P\&H. Century American Instruments, Dept. 512, Box 1014, Placentia. CA 92670.
SYNTHESIZER CIRCUIT MODULES. Build exciting electronic music projects - from percussion controllers to complete professional synthesizers. Complete data sheets $\$ 2.00$. EML, P.O. Box H-1, Vernon, CT 06066
TRANSISTORS FOR CB REPAIR, IC's and Diodes. TV audio repairs. 2SC799. \$3.00; 2SC1306, \$2.95; 2SC1307. \$3.85; TA7205. \$3.50; PLLO2A, \$7.50: more. Free Caialog and Transistor. B\&D Enterprizes. Box 32. Mt. Jewett. PA 16740.

TEXTRONIX 465 with option 7 and 1106 power supply. Hewlett Packard $5300 \mathrm{~A} / 5300 \mathrm{~B}$ with option 001/ and 5310 Lampkin 107C Service Monitor. Ali equipment never been used. Write: Alan Murray. Box 2680 . Juneau. Alaska 99803. CANADA'S BEST PRICES. IC's. Semiconductors. Electronics parts, etc...1st quality only. Free Catalog, C.M Electronique. C.P 95 Longueuil, Quebec. Canada J4K 4×8. U.S. Inquiries.

COMPUTER PARTS FALL.OUT - Sockets Guides - Power Supplies - Core Memory Planes. Send $\$ 1.00$ for a catalog. Refund first order. J\&E Electronics, P.O. Box 4504, Fort Worth, Texas 76106.

DETROIT APPROVED: No nst or weld sediment - Install one nour-ligntweignt, no bodywork required - Complete Kit - Guaranteed life of vehicle - Meets Federal \& State standards For FREE Catalog-TOLL FREE 800/433-2386
(in TEXAS call COLLECT 817/756-6221)
PICKUP \& VAN EQUIPMENT CO. Dept.PE, P.O. Drawer C. Hewift, TX 76643

PLANS AND KITS

BUILD YOUR OWN COLOR ORGAN for under $\$ 10.00$. Send $\$ 1.25$ for plans. PPG. 14725 Oxnard. Van Nuys. CA 91401.

AMAZING ELECTRONIC PRODUCTS
 LASERS SUPER POWERED RIFL, IISIOL, nOEKT, SEE IM DARK. PYRO more - all new plus info unlto parts seryice INFORMATION unlimited
 CATALOG $\$ 1$
 Box 626 Lord Jettery PZ - Amherst, N.H 03031

FREE KIT Catalog contains Test and Experimen ter's Equipment. Dage Scientific Instruments, Box 1054P Livermore, CA 94550.

FIVE LASER PLANS - $\$ 8.00$; Welding-Burning Laser plans - $\$ 9.00$. Catalog $\$ 2.00$. Solaser, PE 578, Box 1005, Claremont, California 91711.

QUALITY KITS, over 7,000 schematics, $\$ 1$ (refundable) for illustrated catalog. Tek-Devices, Box 19154c, Honolulu, HI 96817.

ROBOT PLANS That Work! \$5.00. American Robots, Dept E., P.O. Box 1304, Tulsa, OK 74101 ,

CB/HAM-OMNIPOLARIZED BASE ANTENNAS. Modulation boosting VOX-COMPRESSOR. Portable / mobile / memory, 300 MHz FREQUENCY COUNTER. Complete plans $\$ 3.00$ each. $\mathbf{\$ 7 . 5 0}$ / all. MANY OTHERS! Catalog - PANAXIS, Box 5516-A5, walnut Creek, CA 94596.
TESLA COIL - 40" SPARKS! Plans $\$ 7.50$. Iniormation 75 cents. Huntington Electronics, Box 2009-P, Huntington. Conn. 06484.

HIGH FIDELITY

DIAMOND NEEDLES and-Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for tree catalog. LYLE CARTRIDGES, Dept. P. Box 69, Kensington Station, Brooklyn. New York 11218. Fo Fast Service call Toll Free 800-221-0906.

Speakerkit, Box 12PE, Menomonie, WI 5475

BUILD STEREO SPEAKERS WITH JUST GLUE AND STAPLES.

Save up to 50\% of the cost of ready-bult speakers by assembling Speakerlab kits. We've done the design, carpentry and stallation of the speaker drivers. Most stallation of the speaker drivers. Most assemble a kit. Illustrated, easy-to-follow instructions theck you each step of the way. (And If you still can't check you each step of the way. (And lf you still cant return frelght.)
When you're through, you have a high quality, multielement stereo speaker with a resonance-free-enclosure, fiberglass damplng, a crossover with level controls, and drivers that are some of the best In the industry.
Send for our free 52 -page catalog. It's practically a manual on speaker building.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffens. Box 624K, Cranford, N.J. 07016.

DON'T PURCHASE alarm equipment before getting our free value packed catalog. Sasco. 5619-C St. John, Kansas City. MO 64123. (816) 483-4612.

WANTED

GOLD, Silver, Platinum, Mercury wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal. Norwood, MA 02062

TELEPHONES \& PARTS

Abstract

YOUR TELEPHONE STORE. Free mailorder catalog of phones, cords, plugs, jacks, much more. Fiemco. 20272 37th Ave., N.E.. Seattle. WA 98155. CORDLESS TELEPHONES: Operate 300 ft , from base. Factory rechecked, schematics included for personal maintenance. Originally $\$ 399.00$ - now $\$ 179,00$. Check M,O, or Credit Card. Telephone Marketers, P.O. Box 216. Brookfield, WI 53005.

\section*{TUBES}

RADIO \& T.V. Tubes-36 cents each. Send for free Catalog, Cornell, 4213 University, San Diego, Catif. 92105. TUBES: "Oldies", Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519PE Maplewood, Hammond, Ind. 46324.
FREE BARGAIN CATALOG, Industrial, Ham, Receiving Tubes. Send Stamp. Astral, P.O.B. 707 pet, Linden, N.J. 07036.
TUBES Send 10 cents for large conclusive list. Low Prices, T.J Specialties, Box 43, Bradley Beach. New Jersey 07720. (201) 774-8429.

TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low, low prices. Transleteronic, Inc., 136539 th St., Brooklyn. New York 11218. Telephone: (212) 633-2800, Toll free: 800-221-5802.
1,000 TYPES including obsoletes. Popular types up to 85% off list, puliouts from 29 cents. Free catalog and $\$ 1,00 \mathrm{cer}$ tificate. Connoily, POB 1333P, Sun Valley, Calif. 91352.

TAPE AND RECORDERS

8-TRACK and CASSETTE BELTS - money back guarantee, Long wearing. Free Catalog - $\$ 3$ minimum order. PRB Corp., Box 176, Whitewater, Wisconsin 53190. (800) 558-9572 except WI.

TAPE HEAD CLEANER. $8 \mathrm{oz} .-\$ 2.30$. Includes postage and handling. Write: "Cleaner", Box 176, Whitewater, WI 53190.

RECORDS - TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certificates; 100% guarantees. Free details. Discount Music Club, 650 Main St., Dept 5-0578. New Rochelle. New York N.Y. 10801

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand instruments catalog Freeport Music, 114 G. Mahan St., W. Babylon, N.Y. 11704

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. Lis 50 cents (coin). Books, 7218 Roanne Drive, Washington D.C. 20021

GOVERNMENT SURPLUS. Buy in your Area. How, where Send $\$ 2.00$. Surplus, 30177-PE Headquarters Building, Washington. D.C. 20014
GOV'T SURPLUS-buy direct from gov't. Complete info plus application form \$2.00. Info-Capsule A-1, P.O. Box 151, Shelocta, PA 15774
JEEPS - \$59.30! - Cars - \$33.50! - 200,000 ITEMS! GOVERNMENT SURPLUS - Most COMPREHENSIVE DI RECTORY AVAILABLE tells how, where to buy - YOUR AREA - $\$ 2.00$ - MONEYBACK GUARANTEE - Government Information Services, Department GE-17. Box 99249 San Francisco, CA 94109 (433 California)

MAGNETS

MAGNETS. All types. Specials-20 disc, or 10 bar, or 2 stick or 8 assorted magnets. $\$ 1.00$. Magnets. Box 192-H, Randallstown. Maryland 21133.

INVENTIONS WANTED

 RFcorninoMn.mparionn FiMABCenof Cilzit FOR "wventive IT FIRst" may BE younst

If you have an idea for a new product, or a way to make an old product better, contact us, "the idea people "We'll develop your idea, introduce it to industry. negotiate for cash sale or royalty licensing. Write now without cost or obligation for free information. Fees are charged only for contracted services. So send for your FREE "Inventor's Kit." It has important Marketing Information, a special "Invention Record Form" and a Directory of 1001 Corporations Seeking New Products.

230 Park Avenue North. New York. NY 10017
At no cost or obligation. please rush
my FREE "fnventor's Kit No. A-112 "

Addres

none No

FREE PAMPHLET: "Tips on Marketing Your Invention from an experienced fee-based invention service company. Write: United States Inventors Service Company. Dept. T 1435 G Street NW, Washington DC 20005.
IDEAS, INVENTIONS, New Products needed by innovative manufacturers. Marketing assistance available to individuals, tinkerers, universities, companies with feasible concepts. Write for Kit-PE. 12th Floor, Arrott Building. Pittsburgh, PA 15222.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A Sacramento, Calif 95820.

SCORE high on F.C.C. Exams. . . Over 300 questions and answers. Covers 3 rd. 2nd, 1 st and even Radar. Third and Second Test, \$14.50; First Class Test, \$15.00. All tests, \$26.50. R.E.I., Inc., Box 806, Sarasota, Fla. 33577.
UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE05, Tustin, California 92680.
SELF-STUDY CB RADIO REPAIR COURSE. There's MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can orepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE058, 531 N. Ann Arbor. Oklahoma City, Okla. 73127.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details. strange catalog free! Autosuggestion, Box 24-2D. Olympia, Washington 98507
MAY 1978

GAANTHAV'S FCO LICENSE STUDY GUIDE - 377 pages. 4fgctasslicns with answerskiscussions - ecweritig third second, first radiotelephone examinalions. \$12 45 postpaid. GSE, P.O. Box 25992, Los Angeles, Caliturnia 90025 INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail. Fredericksburg, VA 22401
1978 "TESTS • ANSWERS" for FCC First Class License. Plus - "Self-Study Ability Test." Proven! \$9.95. Moneyback Guarantee. Command Productions, Box 26348-P. San Francisco, CA 94126. BROADCAST STATION: Start your own. Any type! Home, school, church, business operation. Get free equipment, records. Details free. "Broadcasting", Box 5516-A5, Walnut Creek, CA 94596
PASS FCC EXAMS. New tests by noted Author and Teacher. 500 Questions Second Class, $\$ 11.95$; 200 First Class. \$7.95; 100 Radar. $\$ 4.95$; Postpaid. Save $\$ 6$, combined $\$ 19.95$. Complete Mathematical Solutions. Free Counselling Service. Victor Veley, P.O. Box 14, La Verne, Calif. 91750
ELECTRONICS PROGRAM. Used in industry. Transistors to Micro Processors. FCC preparation. Troubleshooting Many experiments. Reasonable. A.L.I. Schools, 6501 NW 14 St. Plantation FL 33313
MATHEMATICS. Electronics. Advanced Mathematics. Engineering Mathematics. Indiana Home Study, Dept. PE, Box 1189, Panama City, FL 32401.
WIN AN ELECTRONIC WORKSHOP! Plus instant prizes in RTT Sweepstakes. New accelerated Radio TV course. Radio Television Training, P.O. Box 279, P-58, Syracuse. N.Y. 13206.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment information Service. Box 240E, Northport, New York 11768

BUSINESS OPPORTUNITIES

MADE \$40,000.00 Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN. Ypsilanti, Michigan 48197.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton. Dallas, Texas 75201.
MAILORDER MILLIONAIRE helps beginners make $\$ 500$ weekly. Free report reveals secret plan! Executive (1K5). 333 North Michigan, Chicago 60601.
GET RICH with Secret Law that smashes debts and brings you $\$ 500$ to $\$ 5$ Million cash. Free report! Credit 4K5, 333 North Michigan, Chicago 6060 .

hichiy
 PROFITABL
 ONE-MAN ELECTRONIC FACTORY

investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DE, Box 248, Walnut Creek, CA 94597.

NEW LUXURY Car Without Cost. Free Details! Codex-2Z. Box 6073. Toledo. Ohio 43614.
GET RICH!!! Secret law erases debts. Free report exposes millionaire $\$ \$$ secrets. Blueprints. No. EE5, 453 W .256, NYC 10471.
MECHANICALLY INCLINED Individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES. 92-K2 Brighton 11th. Brooklyn. New York 11235
MILLIONS in Mail!! Free Secrets. Transworld-17, Box 6226, Toledo, OH 43614
$\$ 650$ WEEKLY for beginners!! Free report: Mailorder Consultants MEE5, 453 W256, NYC 10471.
EARN $\$ 1000$ monthly stuffing envelopes. Free Supplies! Guaranteed!! Write: L.O.E., Box 06180-EP. Portland, OR 97206.
$\$ 500$ WEEKLY POSSIBLE!! Guaranteed Homeworker Program! Rush Sase. Global Mail, Rollins College, Box 1783, Winter Park, FL 32789

HOW TO MAKE $\$ 100$ weekly/kitchen table! Free brochure American. Box 428-ZD, Pomona, Kansas 66076.
\$3,000 MONTHLY, fabulous mailing profits, daily earnings Free report. Modern, Box 222E. Upland, CA 91786
CB DEALERS-write un letterhead for best wholesale prices. Dixie CB Distributors, Rt. No. 3, Box 547. Prairieville, LA 70769. Phone: (504) 622-2571

PART-TIME CA Deaters wanted MeElectronics, Box 1385(P). Rohnert Park. CA 04926 .
MAKE $\$ 1,000$'s immediately with only small investment. Full details, \$1. MARVEL, Box 661, Newton, MA 02162.

MOTION PICTURE FILMS

LOOK WHAT $\$ 5.00$ WILL BUY FROM SPORTLITE FILMSI Inventory clearance includes: '68, $70,71,{ }^{\prime} 72$, \& ${ }^{7} 73$ Super Bowl films - each a separate 200° Stand 8 color or BN ti He. '70, $72,{ }^{\prime} 73$ All Star Games. '70, 71 (Clemente), 72 World Series - each 200^{\prime} either Stand 8 color or BW. $\$ 5.00$ Each PPD - shipped in order received. Indicate films in order of preference - will ship subject to stock. Formerly sold for $\$ 8.95$ to $\$ 19.95$ ea. Three Stooges Super 8 silent Choice of Studio Stoops; Malice in the Palace: Hold That Lion; Grips, Grunts \& Groans - Super 8 BN 200° reels $\$ 6.95$ ea PPD (reg. $\$ 8.95$). Limited Offer. Three Stooges 400^{\prime} extra long BN Super 8 sound Columbia Films - just out Three Missing Links; or Bird in the Head - \$34.95 ea PPD - save $\$ 5.80$ reel. Abbott \& Costello Super 8 Universal Snd 400°. A\&C Meet the Keystone Cops. $\$ 33.95$ ea PPD (save $\$ 6.80$). Baseball Classic. A\&C Who 's on First, Super 8 Snd 100° Special. $\$ 14.95$ ea PPD. Current Columbia Pictures catalog. $\$ 0.95$; Universal $64-\mathrm{pg} 4$-color catalog. \$0.85; Sportlite \& Universal film lists, \$0.35 ea. SPORTLITE FILMS. Elect-5/78. Box 24-500, Speedway, IN 46224

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric concept. Cata$\log 50$ cents. Box 1147W. San Diego, Calitornia 92112.
REMOTE CHANNEL CHANGER for GRD 2000 TV using flashlight. Easily assembled, inexpensive. Detailed Plans \$7.50. TVRC. Box 1534. Staten Island, N.Y. 10314.

REAL ESTATE

BIG. . . FREE . . CATALOG! Over 2.500 top values coast to coast! UNITED FARM AGENCY, 612-EP. West 47th, Kansas City. MO 64112.

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Many new products. Catalog, Jackson's, Dept. K, Brownsville Rd., Mt. Vernon. III. 62864.

BOOKS AND MAGAZINES

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. Megiddo Mission. Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619.
HEATHKIT COMPUTER NEWSLETTER. Independent. Twelve issues: $\$ 6.70$. Free sample. Buss. 325 Pennsylvania SE. Washington. D.C. 20003.

REPAIRS AND SERVICES

SERVICEMEN - Cleaners. Lubricants. Adhesives for all electronic repairs. Write for FREE catalog. Projector-Recorder Belt Corp. Box 176. Whitewater. WI 53190 800-558-9572 except WI.
PRINTING, Rubber Stamps, Low Prices, Fast Service. Free Catalog. Magestro's Printing, North Ave., New Brighton, PA 15066.

PRINTED CIRCUIT boards from sketch or artwork. Free de-
tails. DANOCINTHS, Box 261, Westland, M1 48185.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective. Details free. ASR Foundation, Box 23429 EG , Fort Lauderdale, Florida 33307.
FREE Hypnotism. Self-Hyonosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.
AMAZING self-hyonosis record releases fantastic mental power. Instant results! Free trial. Write: Forum (AA5), 333 North Michigan, Chicago 60601.

MISCELLANEOUS

MAKE FRIENDS WORLDWIDE through international correspondence. illustrated brochure free. Hermes-Verlag Box 110660/Z, D-1000 Berlin 11, Germany.

Radio Shack's personal computer system? This ad just might make you a believer.

You can't beat the 4 K system at \$599

TRS-80 "Breakthru"

- TRS-80 microcomputer
- $12^{\prime \prime}$ video display
- Professional keyboard
- Power supply
- Cassette tape recorder
- 4K RAM, Level-I BASIC
- 232-page manual
- 2 game cassettes
... or the step-up
16K system at \$899
... or the fast 4K/printer system at \$1198
... or the Level-II 16K/printer/disk system at \$2385

TRS-80 "Professional" - Above, except includes 16K RAM, disk drive, expansion interface, and Level-II BASIC

So how are you gonna beat the system that does this much for this little? No way!

...The amazing new 32K/Level-II/2-disk/ line printer system at \$3874

TRS-80 "Business"

- Above, except includes 32 K RAM, line printer, and two disk drives Write Radio Shack, Division of Tandy Corporation, Dept. C-007, 1400 One Tandy Center, Fort Worth, Texas 76102. Ask for Catalog TRS-80.
Radio fhackig

Price/Performance no one else has put together.

IMSAI Introduces the PCS-80/30 Integrated Video Computer

3 mHz microcomputer 3 K ROM monitor 2K RAM8 expansion slots 14 mHz integrated intelligent CRT (24×80)Intelligent KeyboardParallel interface2 serial interfaces Graphic and edit CRT functions28 amp power supply All for \$1499* assembled and tested.

Software:

ASSEMBLER, DOS, TTY and ACR BASIC, Commercial/Scientific BASIC, FORTRAN IV and more.

Memory Options:

$4,16,32$ and 64 K RAM memory boards. CIRCLE NO. S6 ON FAEE INFORMATION CARL

Peripherals:

Printers, floppies-mix and match; standard, mini and high performance double density floppy disks on the same system (an industry first), $1 / 2^{\prime \prime}$ magnetic tape drive CRT and TV monitors.

Send today for your copy of the 250 -page IMSAI PCS-80/30 User Manual. Price $\$ 5.00$. The cost of the manual may be applied towards your purchase of a PCS80/30 Integrated Video Computer. Use the coupon provided.

Gentlemen:
Send me the IMSAI PCS-80/30 User Manual, price $\$ 5.00$. I understand that the $\$ 5.00$ may be applied towards the parchase of a PCS $80 ; 30$ Video computer System.

Check/Money Order enclosed. Amt. S Charge my \square BAC \square M/C

* \qquad
\qquad
Sitg. \ldots

Name
Address
City
State/Zip
IMSAI lA86C Wicks Blyd. Sa Lenndro, CA 94577

The Standard of Excellence in Microcomputer Systems IMSAI Manufacturing Corporation 14860 Wicks Bivd. San Leandro, CA 94577 (415) 483-2093 TWX 910-366 7287
-U.S. domestic price mly. PCS-80/30 kit available. Other PCS-80 kits start at 5 m99. Prices and specifications subject to change without noilce.

Uncompromising performance. Incredible price.
 A professional 3122 digit DMM Kit for less than $\$ 70$.

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable/bench DMM which offers such uncompromising performance at the astonishingly low price of $\$ 69.95$.
Uncompromising performance you'd expect only from a speclalist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing.
The low price of $\$ 69.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality, $31 / 2$ digit Sabtronics Model 2000 DMM kit for only \$69.95. If you don't have one in your lab, use the coupon below to order NOW.

BRIEF SPECIFICATIONS:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . AC voits in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . DC current in 6 ranges: 100 nA to 2 A - AC current in 6 ranges: 100 nA to 2 A . Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz • Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED - Input impedance: $10 \mathrm{M} \Omega \cdot$ Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ $(203 \times 165 \times 76 \mathrm{~mm})$ - Power requirement: 4 " C " cells (not included).

GUARANTEE:

Examine the 2000 DMM kit for 10 days. If not completely satisfied, return unassembled for full refund of purchase price. (Less shipping and handling)
Use your Master Charge or Visa.
To order by phone call: (214) 783-0994

13426 Floyd Circle •Dallas, Texas 75243

Made In U.S.A.

[^0]: GIRCLE NO 94 ON free information Card

