Audio Alarm Backs Up Car Warning Lights Build a Digital Darkroom Timer Personal Computers for Small Businesses

Video Cassette Recorders

A RISING HOME-ENTERTAINMENT STAR

Kenwood 3-Head Cassette Deck

Tested In This Issue

Realistic Bookshelf Speakers Pioneer Car Stereo FM/AM Receiver Motorola Mobile AM/SSB CB Transceiver

FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL. It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.

Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you're having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice

But more important than that, we sell it at a price you won't have second thoughts about.

Punches through loud and clear.
Cobra Communications Products DYNASCAN CORPORATION 6460 W Cortiand St., Chicago, Illinois 60635 Write for color brochure
EXPORTERS: Empire • Plainview, N Y • CANADA: Atlas Electronics - Ontario

GB ANTENNA

Receives THRU Glass

Now from the AVANTI Research Laboratories comes a sleek, $22^{\prime \prime}$ full $1 / 2$ wave antenna, so unique that it mounts on glass, transmits through glass and receives through glass...yet requires no grounding to metal as do conventional $1 / 4$ wave antennas. No holes to drill...no clamps, clips or magnets to ever mar or scratch your car's finish! No pinched cables to run in through doors, windows or trunk. The Astro-Fantom is a hanc some, low profile antenna that provides the ultimate in convenience!

EASY INSTALLATION. The Astro-Fantom is so uncomplicated that installation takes only
five minutes and requires no tools. It bonds securely to the glass with an all weather tested 3M press-on adhesive, yet can be quickly trans-
ferred when desired. The fiberglass whip removes instantly for storage, car wash or theft protection.

ONE MOUNT SATISFIES EVERY
NEED. Astro-Fantom's unique mount attaches anywhere there's a metal framed window. Front, side, or rear of vehicle, boat and motorcycle windshields, even home installation.

CLEAREST COMMUNICATIONS. Avanti's exclusive space age co-inductive ${ }^{\text {Tu }}$ coupling box actually rejects static and interference as it establishes a highly tuned circuit to transmit and receive radio signals through the glass.

FULL 360° SIGNAL. Astro-Fantom's full $1 / 2$ wave design eliminates dead spots and directional problems found in conventional CB antennas.

AVANTI RESEARCH AND DEVELOPMENT, INC. 340 Stewart Avenue, Addison, IL 60101 IN CANADA: Lenbrook Industries,

avanti antennas

You're stuck. You're at a phone booth trying to find a phone number, and people are waiting. You feel the pressure.

To the startled eyes of those around you, you pull out your calculator, press a few buttons, and presto-the phone number appears on the display of your calculator. A dream? Absolutely not.

Space-age technology has produced the Canon Directory-a calculator that stores 20 of your most frequently called numbers in its memory and let's you recall them simply by entering the person's name or initials

The keyboard has letters as well as numbers (like the touch-tone pad on a telephone), so it's easy to enter data and use. Want to call Jim? You enter J I M, and your display shows Jim's phone number. Even when you shut your unit off, it retains your complete directory in its large memory.
Ever forget to shut your calculator off when you slipped it in your pocket? No problem with the Canon Directory. The system was built like a liquid crystal digital watch. Its display can remain on constantly without draining the two long-lasting hearing aid batteries which you get with your unit. A low battery indicator also warns you well enough in advance when it's time to change batteries.

STORE IN CONFIDENCE

If you lost your little black book with all those confidential numbers, you might get in trouble. Not so with the Directory. Without knowing the specific initials or name, you can't access the numbers.

And then there's convenience. You carry your calculator with you anyway. Why not add the convenience of a telephone directory to a full-function calculator? When it comes to calculating, the Canon is no slouch either.

There's a fully-addressable memory, square root, and an add-on discount percentage system.

EASY TO OPERATE

Just enter the name and number you want stored and press a few buttons. That's all there is to it. Changing an entry is just as easy. You can also store credit card numbers, important serial numbers, birthdays, and anniversaries. For example, enter the next birthday or important date you should remember under "DATE." This date will appear each time you enter the word "DATE." By getting in the habit of doing that each week, the Canon won't let you forget. Or have you ever been stuck at a phone booth with no pen to write your messages? With the Canon, you can enter them directly into your unit - name and number.
The Canon Directory is a new breakthrough in recent calculator technology. The largescale integrated circuit is programmable by the user-something nearly impossible just a few short months ago.

TEST IT FOR A MONTH

Order the Directory. Quickly program it with your most frequently called numbers. (You'll be amazed at how many 20 numbers seem when you sort out your personal directory.) Then use it every day. Program those important dates, your social security number, the phone numbers of your favorite restaurants, airlines, or movie theaters. Test the batteries by leaving your unit on for a week.

See how easy it makes life. Then within 30 days, decide if you want to keep it. If not, no problem. Just slip it in its handy mailer and send it back. We won't be upset, and in fact, we'll thank you for at least giving our unique product a test.

JS\&A is America's largest single souce of space-age products-a substantial company which has been in business for over a decade. Canon is the famous company that manufactures quality cameras, calculators, and other precision quality instruments.

If service is ever required, just slip your three-ounce unit in an envelope and mail it to Canon's national service-by-mail center. It's just that easy. Service should never be required since practically all components are on a single integrated circuit, but we wanted to assure you that a service program is an established part of Canon's program. The unit is $23 / 4^{\prime \prime} \times 51^{1 / 2}{ }^{\prime \prime}$ and only one centimeter thick.

To order your own Canon Directory, send $\$ 79.95$ plus $\$ 2.50$ for postage and handling to the address below (Illinois residents, please add 5\% sales tax), or call our toll-free number below. By return mail you will receive your unit, a handy wallet-style carrying case, and a oneyear limited warranty.

This year, let the sophistication of spaceage technology and your fingers do all the walking. Order your Pocket Yellow Pages at no obligation, today.

Dept.PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-7000
Call TOLL-FREE 800 323-6400
In Illinois Call (312) 498-6900
(C) JS\&A Group, Inc., 1978

Coming Next Month

- THE NEW AMPLIFIER MEASUREMENT STANDARDS
- BUILD A DISCO MIXER
- NOW YOU CAN ENJOY HI-FI TV SOUND

BUILD A LOW-COST A/D CONVERTER

- HOW TO DESIGN PC BOARDS FROM A SCHEMATIC

TEST REPORTS:

Sony Class-D Amplifier Panasonic RF-2800 5-Band Portable Receiver

Cover Art by George Kelvin

POPULAR ELECTRONICS, August 1978, Volume 14. Number 2. Published monthly at One Park Avenue, New York, NY 10016. One year subscrip-
tion rate for U.S. and Possessions, $\$ 13.00$ C Canada, $\$ 16.00$ all other countries, $\$ \$ 8.00$ (cash orders only, payable in U.S. curriency). Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class mail by the Post Office Department. Ottawa, Canada, and for payment of postage in cash.
POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.
COPYRIGHT © 1978 BY ZIIF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Zitt-Davis also publishes Boating, Car and Driver, Cycle, Flying, Popular Photography, Skiing, Stereo Review, Electronic Experimenter's Handbook. Tape Recording \& Buying Guide, Stereo Directory \& Buying Guide, and Communications Handbook.
Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jery Schneider, Rights and Permissions, Zit-Davis Publishing Co.. One Park Ave., New York. NY
10016.
Editorial correspondence: POPULAR ELECTRONICS. 1 Park Ave., New York. NY 10016 . Editorial contributions must be accompanied by return postage and will be handled with reasonable care: however, publisher assumes no responsibility for return or safety of manuscripts, art work. or models.
Form: 3579 and all subecription correspondence: POPULAR ELECTRONICS, Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weoks for change of address. Include your old address, enclosing, if possible. an address label from a recent issue.
The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Feature Articles

SOLID STATE COMPONENTS CHART

CASSETTE RECORDER TAPE COMPATIBILITY / Julian Hirsch

video cassette recorders: a rising home entertainment star! / walter h. Buchsbaum

Types and brands available, how they work, and distinguishing features.
PERSONAL COMPUTERS FOR SMALL-BUSINESS APPLICATIONS / Portia Isaacson
More and more "home" computers are being used for commercial purposes.
the versatile keypad / Clement Pepper
Describes a variety of applications using a simple keypad.

Construction Articles

BUILD A DIGITAL DARKROOM TIMER / Michael S. Robbins Precision interval timer controls an enlarger or other timed-powered device. audio alarm backs up car warning lights or meters / Gene Nelson Sounds an alarm so you won't miss your car's visual warning.

Columns

STEREO SCENE / Ralph Hodges
RFI and Other Matters.
SOLID STATE / Lou Garner
On the Light Path.
HOBBY SCENE O\&A / John Mc Veigh
EXPERIMENTER'S CORNER / Forrest M. Mims
Digital to Analog Converters. Part 2.
DX LISTENING / Glenn Hauser
Current News and Future Plans.
COMPUTER BITS / Leslie Solomon
Direct-Wire Remote Control.

Julian Hirsch Audio Reports

KENWOOD KX-1030 CASSETTE DECK
 REALISTIC OPTIMUS-10 SPEAKER SYSTEM
 PIONEER GX-5050 CAR STEREO FM/AM RECEIVER
 Electronic Product Test Reports

MOTOROLA CM-550 MOBILE AM/SSB CB TRANSCEIVER
LEADER LBO-508 DUAL-TRACE OSCILLOSCOPE

Departments

EDITORIAL / Art Salsberg
The Light Traveller.
LETTERS
NEW PRODUCTS
NEW LITERATURE
SOFTWARE SOURCES
OPERATION ASSIST
ELECTRONICS WORLD NEWS HIGHLIGHTS

JOSEPHE. MESICS
Publisher

Publisher
ARTHUR P. SALSEERO Editorial Director
LEELE SOLOMON Technical Director
JOHN R. RIOOS Managing Editor
IVAN BEROER Sentor Editor
ALEXANDER W. BURAWA Features Editor
EDWARD P. BUXBAUM Art Director
JOHN McVEIOH Assistant Technical Editor
ANDRE DUZANT Technical Illustrator
ClAUDIA TAFAFO Production Editor
RUTH POLSKY Editorial Assistant
Contributing Editors Hal Chamberlin, Lou Oarner, Olenn Hauser Jullen HIrsch, Relph Hodges, Forrest Mims Rey Newhull, Wilfred Scherer
CARMEN VELAZGUEZ Assistant to the Editor
LINDA BLUM Advertising Service Manager
KATHERINE REINHARDSEN Executive Assistant
EDOAR W. HOPPER Publishing Director
ZIFF-DAVIS PUBLISHING COMPANY Philip B. Korsant, President Furman Hebb. Executive Vice President John R Emery, Sr. Vice President. Finance Phillip T. Heffernan, Sr Vice President EdwardD Muhlfeld, Sr. Vice President Philtp Sine. Sr. Vice President. Secretary Lawrence Sporn. Sr Vice President. Circulation and Marketing Arthur W Butzow. Vice President, Production Frank Pomerantz, Vice President George Morrissey, Vice President SydneyH. Rogers, Vice President Sidney Holtz. Vice President Albert S. Traina, Vice President Paul H. Chook. Vice President Edgar W. Hopper. Vice President Robert N Bavier. Jr . Vice President Selwyn Taubman. Treasurer W. Bradford Briggs, Vice Chairman
ZIFF CORPORATION William Ziff, Chairman I. Martin Pompadur, President Hershel B Sarbin, Executive Vice President
ZIFF-DAVIS PUBLISHING COMPANY Editorial and Executive Offices One Park Avenue, New York. New York 10016 $212-725-3500$ Joseph E Mesics (725-3568) John J. Corton (725-3578) Bonnie Kaiser (725-3580)
Midwestern Office Suite 1400. 180 N Michigan Ave. Chicago. IL 60601 (312 346-2000) Midwest Representative: Harry L Vincent
Western Office 9025 Wilshire Boulevard, Beverly Hills, CA 90211 213-273-8050; BRadshaw 2-1161 Western Advertising Manager: Bud Dean
Japan: James Yagi Oji Palace Aoyama: 6-25, Minami Aoyama 6 Chome, Minato-Ku, Tokyo 407-1930/6821. 582-2851

$$
582-2851
$$

THE LIGHT TRAVELLER

A few years ago, futurists were speculating that around the year 1990 we would enjoy a fantastic new communications technique using light travelling through glass fibers. This would provide enormous load capacity, immunity to noise and moisture, and very low cost.

On the way to the 1990's, fiber optics or "light communications" arrived-two decades early! The cost factor is still too high for many applications at this time (owing to high connector cost, I understand), but industry pundits are confident that it will be significantly cheaper than other communication links in the future. They say optical transmission of data and voice will likely bury copper cables one day.

A number of experimental lightwave systems are, in fact, up and running right now. Ma Bell has such a link in Atlanta, GA, for example, with the equivalent of 672 digitized voice channels on a single glass fiber. In another area, it's said that a typical fighter plane's 450 pounds of copper wire could be replaced by only 50 pounds of fiber cable. Fiber optics are being used in automobiles, too. DuPont, for exam-

ple, has developed a photo-cybernetic system to monitor vehicle speed, eliminating less reliable mechanical linkages. Readout is by digital LED's. And just imagine what the potential clock rate of a computer would be with no impedance in interconnecting circuitry! Clearly, it's a technology whose time has come.

Japan seems to be moving appreciably faster than we are toward implementing an optical fiber information transmission system. Test operations for an interactive CATV network in Japanese households began in 1976. The goal is to provide them with two-way services that include cashless shopping, request entertainment, police and fire protection, and remote telemetering. Field trials with 300 subscribers are supposed to be in operation now.

Light communications are not as esoteric as you might suspect from the above. Edmund Scientific Co., Barrington, NJ, for instance, sells fiber-optic kits and assembled units right now. Check Lou Garner's "Solid State" column this issue, too, to see what's happening out there in the light-communication field. It's the beginning of a new, exciting electronics field that will have an enormous impact on our lives in the not-too-distant future.

Part of the electronics action is always in the future. That's why it is so invigorating! And PE will continue to prepare you for what's coming up next.

With technology so advanced, Concept so remarkable, Operation so utterly simple, Cost so incredibly low. The PET has given rise to a brand new era... The Age of the Personal Computer

HIGH SPEED PRINTER ACCESSORY

Immediate Delivery

FEATURING AN IEEE-488 BUS

THE PET has become the standard for the personal cont puter industry. Consumer and business publications have lauded its discovery. POPULAR SCIENCE and PLAYBOY have given special tribute to the "mind-boggling" PET.
IN A LEAGUE WITH IBM, HP AND WANG MINICOMPUTERS
THE PET is a minicomputer and should not be confused with garne products that hook up to household T.V.'s. What sets it apart from other computers is price. While others cost from $\$ 11,000$ to $\$ 20,000$ and more, THE PET, with similar ower, costs only $\$ 795.00$.
Features an IEEE-488 Bus -- like HP's mini and full size computers. This standard data and control channel permits direct connection to many peripherals. Over 129 pieces of compatible equipment such as counters, timers. spectrup Phillips Fides and Textronix etc arecurrently avalable MOM. 1978 , "THE PET ROM Magazıne, January 1978, writes. "THE PET comes out of the box, plugs into the wall, and is ready to use." It is equipped with a CRT video display with reverse and blink features, an alpha-numeric keyboard with complete graphics and a built-in standard cassette tape deck.
THE PET has 8 K bytes of RAM [user memory] [Tptional equipment permits expansion to 32 K . And, it has 14 K bytes of ROM [program memory].
THE PET COMMUNICATES IN BASIC.
THE EASIEST COMPUTER LANGUAGE
f THE PET wants you to press a key, it will flash, ''Press such and such". on the display. You speak back to it through ts full size 73-key keyboard.

EXTENSIVE CHARACTER

ORIENTED GRAPHICS
The unit features a 9 -inch, high resolution, 1000 character CRT. Characters are arranged 40 colurnins by 25 lines on an 8×8 matrix for superb graphics.
WHAT IS THE PET REALLY FOR?
t is the single most important teachung device for any computer related subject. It will entertain the most sophisticated data application, or the sirmplest inquiry/response assignment IN THE LAB it handies instrumentation, process monitoring, and more. A number of Fortune 500 companies have already made it an integral part of their lab and general office systern.

As a BUSINESS TOOL it wili. Maintain ledgers Keep payroal records Create P \& L's Control inventory Store and analyze sales data. Draw bar graphs issue tnvoices Hook up to on-line computer systern. AT-HOME it will. Compute state and federal tax returns. Make heat and insulation analyses. Keep Christmas lists Keep checkbook and finances up to date. A variety of games, from Blackjack to Galaxy, is currentily available

HIGH SPEED PET PRINTER

This powerful word processor prints hardcopies, invoices. computer correspondence. Faster than an IBM Selectric. THE PET Printer delivers 60 characters per second at a sustained rate $\cdot \cdot$ with upper and lower case capability Characters are one-eighth inch tall and are printed in a 7×8 dot matrix. The printer uses a standard $81 / 2^{\prime \prime}$ wide paper roll. And, it is only $\$ 599.95$.
PERIPHERAL SECOND CASSETTE
This optional component expands storage and increases flexibility. Only \$99.95
MILES OF SOFTWARE
Many programs are avallable now, including. "BASIC BASIC" which shows how to write a program. You can develop your own programs tin meet personal requirements

TECHNICAL SPECIFICATIONS

MEMORY

Random Access Memory (user memory); 8K internal expandable to 32 K bytes
Read Only Memory (operating system resident in the computer); 14 K bytes
8K-BASIC interpreter program, 4K-Operating system K-Diagnostic routine
1K-Machine language monitor
VIDEO DISPLAY UNIT
$9^{\prime \prime}$ enclosed, black \& white, high resolution CRT
1000 character display. arranged 40 columns by 25 lines
8×8 dot matrix for characters and continuous graphics
Automatic scrolling from bottom of screen
Winking cursor with full motion control
Reverse field on all characters
64 standard ASCII characters; 64 graphic characters KEYBOARD

All 64 ASCII characters available without shitt
All 64 ASCl characters available w
Calculator style numeric key pad
All 64 graphic and reverse field characters accessible from keyboard (with shift)
Screen Control: Clear and erase
Editing: Character insertion and deletion
CASSETTE STORAGE
Fast Commodore designed redundant-recording scheme assuring reliable data recovery

Cassette drive modified by Commodore for much higher reliability of recording and record retention
High noise immunity, error detection. and correction
High noise immunity, error detection
Uses standard audio cassette fapes
Uses standard aud
OPERATING SYSTEM
Supports multiple languages (BASIC resident)
Supports multiple languages (BA
Machine language accessibility
Machine language accessibility
File management in operating system
File management in operating system
Cursor control, reverse field. and graphics under simple BASIC control
Cassette file management from BASIC
True random number generation or pseudo random sequence
INPUT/OUTPUT
All other $1 / 0$ supported thr
interface for peripherals
I/O automatically managed by operating system sotware Single character I/O with GET command
Easy screen line-edit capability
Flexible I/O structure for BASIC expanston with peripheral
BASIC INTERPRETER
8K BASIC: 20% faster than most other 8K BASICS
Upward expansion from BASIC language
Strings, integers, multiple dimension arrays
Strings, integers, multiple dimensi
10 significant digits; floating point
Direct memory access: PEEK and POKE commands DIMENSIONS
$16^{\prime \prime}$ wide: $18^{1 / 2 "}$ deep; $14^{\prime \prime}$ high. Weight: 44 lbs.

GAME PROGRAMS ARE $\$ 9.95$ EACH

 Black Jack Draw Poker Galaxy Games Space Flight Target Bong. Off-The-Wall Lunar Lander. Wumpus, Rotate. Tic-Tac-Toe Osero, Reverse Spacetrek Kingdom PROGRAMS AT \$14.95EACH:Mortgage Analysis
Diet Planner and Biorhythm
Basic Basic-by Lodewyck and James
PROGRAMS AT $\$ 24.95$ EACH
Basic Investment Analysis-Ioans, annuities. return on regular and irregular sequences of payments calendar calculations

Stock Portfolio Recordkeeping and Analysiskeeps track of buys. sells, and dividends. Calculates current value rates of return
Checkbook Recordkeeping and Analysis-keeps track of checks and deposits. Analyzes expenses by date and type
PROGRAMS AT $\$ 29.95$ EACH
Basic Math Package-matrix addition, multipication determinants and inverses to 16×16, solution of simultaneous linear equations, vector and plane geometry calculations, integration by trapezoidal. Simpson's rule or Gaussian quadrature. differentiation

Basic Statistics Package-mean, median, varıance, standard deviation. skewness, kurtosis. frequency distribution. linear regression. T-tests, correlation analyses

FREE ORIENTATION PACKAGE

Your PET comes complete with two programs and an easy-o-follow instruction manual. By working through the routines you will quickh; discover how easy it is to gain command of your personal computer.
SERVICE WORLDWIDE
Because your PET is self-contaned and compact, professional factory service is never far away. If major service is required. the unit can simply be returned by UPS to an authorized Commodore PET clinuc.
To order your PET send check or money order for $\$ 795$. 00 plus \$20 00 for shupping and insurance. To order the PET Printer, add $\$ 599.95$ plus $\$ 12.00$ for shipping and in surance. The Second Cassette is $\$ 99.95$. No shipping and insurance charges are required when ordering a second cassette or programs with your PET. Credit card orders are invited to call our toll free number below. Orders will be accepted on our TELEX, No. 25-5268
Use THE PET for 30 days with no obligat on. If, for any reason. you are not satisfied, return it for a prompt and courteous reflend. ORDER DIRECT
CREDIT CARD ORDERS CALL TOLL FREE 800-323-2272
ILLINOIS RESIDENTS CALL: 312-595-0461 TELEX ORDERS: 25-5268

Order your PET, Printer Accessory. Second Cassette and Programs from Contemporary Marketing at

790 MAPLE LANE DEPT. PE-8 BENSENVILLE, IIIINOIS 60106
Contemporary

Letters

ABOUT THAT ADAPTIVE SWEEP.

You chaps are a bit backward in your article "The Spectrum Analyzer in Hi-Fi Measurements" (January 1978), in which you cover "an intriguing and unique feature of the Hew-lett-Packard 3580A Spectrum Analyzer"-its "adaptive sweep." I took out a British Patent in 1952 that covers a similar feature inasmuch as the relatively rapid frequency timebase is slowed down when a signal above a certain minimum level is present as a Y display. There is the obvious choice of simply switching between two preset scan rates or making the scan rate somewhat inversely proportional to the Y level, or perhaps rate of change of the Y level I have never found it necessary to "back up" in frequency, because if the scan rate in the passband is adequately slow. the peak response is accurate. Although there may be some distortion in the
build-up to this value, this is not usually of interest. In our spectrum analyzers, which were research tools mainly for $r-f$, I also had a bandwidth for the crystal filters that could be varied in steps in a very simple manner using a single quartz crystal. F.G. Clifford, Wynberg, S. Africa.

GOOD ITEMS FOR LIMITED READING TIME

I have just read with interest "Choosing a Mobile CB Antenna," by John J. McVeigh, and "How to Install Mobile CB Transceivers and Mobile CB Antennas," by Ivan Berger, in your April 1978 issue. They are outstanding both in detailed content and comprehensive accuracy. With limited reading time available, I have to select those publications providing the most usable information. Popular ElecTRONICS is such a publication, for which 1 thank you. -R. R. Knierim, Lima, OH.

MULTIMETER REPLACEMENTIC'S

I'm delighted with my Sabtronics 2000 Digital Multimeter kit, which you reviewed in your December 1977 issue-as I'm sure are other readers. However, here is some useful information if they run into troubles resulting from such things as using the wrong scale and "zapping" the meter. The A/D converter IC (marked 20-786) is the Motorola 14433P; the

IC segment driver (marked 20-788) is Motorola MC 14511 B ; and the Digit Drive is a 75492. The op amp in the ac converter (Z3) can be switched to a 741 if necessary. If the kit doesn't auto-zero in the 10 V ac mode, it is because of the multiplex decimal point noise from the selector switches. Sabtronics sells a small "add-on" Low Noise Decimal Point Drive kit for about $\$ 3.00$, and it definitely works. -R.B. Stillwater, Winnipeg, Manitoba, Canada.

A SIMPLER VERSION

I've found a simpler version of the pseudorandom data generator described in the January 1978 Experimenter's Corner. It eliminates the need for a second decade counter and timer and performs similar operation. Referring to Fig. 4 in the December 1977 Experimenter's Corner, you will find that connecting the DATA \mathbb{N} pins of the 7489 to the output pins of the 7490 decade counter in the same sequence (A to A, B to B, etc.) and switching WRITE ENABLE switch on for 10 clock pulses will result in the memory slots of the RAM's being loaded with the binary address. This provides an automatic form of obtaining a 0-to-9 binary at the dATA LED's, which is basically what the pseudo-random data generator does. -Allan P. Saadus, Sunnyvale, CA

FRESH FROM THE FACTORY! MOTOROLA HEP/MRO SEMICONDUCTORS, KITS AND LITERATURE DIRECT TO YOU BY MAIL

SEMICONDUCTORS

HEP and/or Standard Devices shipped directly from the factory. Here's a sampling of products and prices:
MC6802 - MPU, Clock and RAM
C6800P - Microprocessor
Unit $\$ 22.50$
C4811 - 128×8 Static RAM $\$ 5.45$
D1000T - Liquid Crystal Display with Socket ….... $\$ 18.90$
MRF245 - 80W-175MHz RF Power
Transistor $\$ 47.41$
MRF450A - $50 \mathrm{~W}-30 \mathrm{MHz}$ RF Power
Transistor $\$ 1891$
MRF455A - $60 \mathrm{~W}-30 \mathrm{MHz}$ RF Power Transistor...... $\$ 21.90$

We also have Low-Power Schottky TTL 1/C's. Linear I/C's. Zeners, Rectifiers, Power Transistors, Sma!l Signal Transistors. CMOS $/ / C$'s, etc.

KITS

Develop and Evaluate M6800 Microprocessor Systems with Motorola's MEK6800D2 Kit
Featuring: - 24-Key Keyboard

- 7 Segment Display
- Cassette Interface

All the parts necessary to complete the system and get you "on the air," except for the power supply. for only $\$ 235.00$ plus state and local taxes and include $\$ 5.00$ for shipping and handling.

Educator 11 Power Supply Kit
Featuring: - Regulated $5.0 \pm 5 \% \mathrm{Vdc}$ Output @ 1.0 Amps

- 60 Hz Real Time Clock Available (Approximately 5.1 V peak-to-peak)

The Educator II Power Supply Kit for $\$ 29.95$ plus state and local taxes and include $\$ 200$ for shipping and handling.

LITERATURE

Data Books. Handbooks, Manuals. Catalogs, Engineering Bulletins. Selector Guides. etc. One of the most complete sources in the industry is available to you through the mail. Here are some samples of the more popular books and prices:
Basıc Semiconductor Library (Vols 1. 2 \& 3)
$\$ 9.00$
CMOS Data Book (Vol 5) $\$ 2.50$ M6800 Microprocessor Applications Manual
$\$ 25.00$
M6800 Programming Reference
Manual $\$ 3.00$
MC14500B Industrial Control
Handbook
$\$ 3.00$
Understanding Micro-
processors
$\$ 2.50$
If you have some specific needs just. write to us!

Add Local and State Sales Taxes to all orders for semiconductors and literature, plus $\$ 1.00$ for postage and handling (minimum order - $\$ 10.00$). We accept Master Charge and Visa Credit Cards. Please include card number and expiration date. MOTOROLA MAIL ORDER SALES - ค. o. box 27605 - Tempe. Az. . 8522

ICD Alarm Chronograph

> Theaccuracy of the Greenwich observatory...withgreatersolit second precision thanthefinest Swiss stopwath ...plus the convenience ofa2t-hour personal alarm reminder system.

This new LCD Chronograph is truly extraordinary. It does more, and does it better, than any other watch. With a strong, bold appearance that reflects this uncommon ability. The only little things about it are its thickness and its selling price, which is a real breakthrough at $\$ 200.00$ less than you'd pay for the only other watch even close to its functions and uses.
Quartz Crystal Time... It gives you aocuracy to ± 60 seconds a year. A year! Quartz Crystal accuracy that would have been considered sensational per month in early micro• electronic watches. Accuracy which is still not available in many digitals that sell for $\$ 500$ or $\$ 1,000.00$!
Electronic Calendar...so, you always have exactly the right time on display - without pushing a buttonin hours, minutes and running seconds. Then, at the touch of a button you can replace the seconds with the date or the day of the week, with the electronic calendar adjusting automatically for the number of days in any month. And you just light up the face to see períectly when it's dim or you're in the dark.

24 Hour Alarm

You can set this alarm for any minute of any hour of the day or night. In all, 1440 positions are possible

To wake you, remind you of an appointment, phone call or meeting (or to break one up that's been going on too long). The alarm will sound at the same time each day, unless you de activate or change it. It will call you with an insistent, modulated beep, for a full minute unless you shut it off with a touch of the button sooner; and you can check to see if the alarm is set.

Is it any wonder that of all the features available in digital watches, a wrist alarm like this is the one that's most wanted? Really it's important enough to warrant your buying a new watch. And remarkable as it may seem, with this offer from Douglas Dunhill, it's like getting the alarm free!

Three Difierent Chronographs

As to the chronograph, its precision is so fine, it borders on the infinitesimal. Splitting each second into a hundred parts! Actually you have three different chronographs, or stop action modes of measuring. So you can time any event in its entirety, stopping during pauses or breaks in the action. You can time an event, like a race, from beginning to end, getting the finishing time of each participant in the race, or interim times, for the quarter, say, while timing of the event continues.

And you can time portions of a continuing event, like each lap in a relay race or segment of a complex, continuing manufacturing operation.

All this, with a few of the possible uses, is explained in detail below. Even from this brief description, though, the extraordinary sophistication of the microcomputer chip of the LCD Alarm Chronograph is apparent.

An Extraordinary Value

Right now, probably the only watch with all these features, its incredible accuracy, multiple function chronograph and wrist alarm, is the Seiko. And it regularly sells for $\$ 200.00$ more! $\$ 299.95$, even though the Seiko Chronograph is accurate to only a tenth of a second.

This extraordinary value is what convinced us, and we're one of the nation's oldest and largest mail merchandising firms, to secure the exclusive marketing rights. (After exhausting testing by our quality control experts.) We explained there was no way you would walk into a store and select a new brand from an unknown manufacturer.

How could you possibly be expected to appreciate its quality? Would you be in any position to understand and evaluate its virtually unique 3 -function chronograph? Would you believe a saies clerk who told you it was really a finer, more accurate fully electronic, solid state watch than many that sell for as much as $\$ 1,000,00$?

Wear it for 30 Days -

Without Risk or Obligation

With us, buying by mail, you not only get all the facts, enjoy significant savings made possible by eliminating normal advertising and distribution costs you can also try it for 30 days without risking one penny. We'll not only refund your money, but do so cheerfully.

You can wear the Advance LCD Chronograph Alarm for thirty days! Time to confirm the fact it won' gain or lose five seconds a month. To put the alarm to the test in your daily schedule. To satisty yourself that the chronograph is as useful as it is easy to operate. More, to compare it with any watch at any price in any store. And to send it back if the value isn't as great as we say, if it doesn't win the admiration and fascination of your friends, earn your own pleasure and deep satisfaction

Imagine, you can have one of the world's finest, most versatile watches for just $\$ 100.00$ That's complete, including shipping, handling, insurance and a handsome gift or presentation case. An exceptional bargain. Choose the chrome plated stainless stee model or gold-plated stainless steel one, each with a matching, extremety comfortable adjustable band.

Remember, your satisfaction is guaranteed. Your watch comes to you with a full ONE YEAR Limited Warranty. And you have our promise to service it to your satisfaction at any time. Remember, too, printed circuitry eliminates all moving parts and normal servicing, and will provide you with year after year atter year of trouble-free performance.

With the LCD Alarm Chronograph you'll have the precise time, absolute control over time, plus ample warning when it's time to do anything. And the pride that comes with wearing a watch that's second to none.

Send your check (lllinois residents add 5% sales tax) to Douglas Dunhill, Dept. 78-2302 4225 Frontage Road, Oak Forest, IL 60452 . Be sure to specify stainless steel or gold plate.

CREDIT CARD BUYERS

may call our toll free number 800-621-8318
(Illinois residents call 800-972-8308)
Call now for your no-risk, no obligation 30 -day trial.
circle no 50 on free information card

3 Way Chronooraph

The micro-electronic revolution has turned the chronograph from a bulky pocket watch or cumbersome wrist watch for specialists into a sleek, super sophisticated instiument that's become the preferred timepiece for doctors, pilots, motion picture photographers, sound and efficiency engineers, skiers and sportsmen, and ever-increasing number of executives and others who enjoy split second accuracy and the ability to command time to stand still

No other instrument, at any price, gives you greater precision than the $1 / 100$ th of a second aocuracy of the LCD Alarm Chronograph or greater flexibility in timing an event from a fraction of a second to one full hour. Add Time ... is the stop watch mode you'll use for everything from timing a phone call to the length of a meeting; how long your car's been at a parking meter, the time you've been running, jogging or exercising even the time it takes for a quarterback to set up and throw. Then, beca $_$se you can stop it when necessary and start counting again when the action begins again, you'll use it to prepare your speeches, time games or other events in which you want the actual accumulated times exclusive of any breaks in the action.
Split Time . . is the mode you'll use to get the time for the $1 / 4$ and $1 / 2,3 / 4$ in a race, and the individual times of each contestart across the finish line. Think of it! Stopping for split times does not stop the timing of the event itself from continuing. It's actually stopped and running at the same time, so you can use it to figure out the time of pit stop, for example, and still get the over-all running time of the race
Lap Time ... is even more ingenious. It stops to measure an event and simultaneously starts again from zero. In a relay race, for example, you stop the chronograph the instant the rumer passes the baton this gives you his time while the lap timer automatically starts counting the next runner's time. Similarly, in a football game, you can get the exact time it takes a punter to kick the ball, the time the ball's in the air, and then the time of the run back of the punt. Any event, from a rocket launch to a production process, can be split into its component parts this way. Separating the time of elements that cannot be separated in any other way!

Within minutes you'll be able to use each of these modes of operation perfectly. Within days, find innumerable uses in both business and your personal life

Dept. 78-2302
4225 Frontage Road • Oak Forest, IL 60452

New Products

Additional information on new products covered in this section is a a allable from the manufacturers. Either circle the tiem's code number on the Frec Information Card or write to the manufacturer at the address given.

Toshiba Frequency Synthesized Receiver

Toshiba's SA-7150 AM/stereo FM receiver features a power-output rating of 150 W rms/Channel into 8 ohms over 20-20,000 Hz with 0.05% maximum total harmonic distortion. Its tuner section incorporates

PLL frequency synthesis and also has six memory channels for instant selection of one of six AM or FM stations. The frequency tuned is displayed on green seven-segment LED's. The entire AM or FM broadcast bands can be scanned by using up and oown buttons, with the process automatically reversing at the band ends. FM usable sensitivity is rated as 9.8 dBf . Other features are separate transformers for the class A and class B amplifier sections, five LED signal level indicators, built-in FM Dolby circuit, narrow and wide i-f band selection, peak-reading power meters, high and low filters, $-10-\mathrm{dB}$ and $-20-\mathrm{dB}$ audio muting, dual-direction tape duplication capability, multipath monitor, and phono impedance selector. $\$ 995$.

CIRCLE NO B9 On free information card

Realistic Programmable Scanner

Radio Shack's new Realistic PRO-2001 programmable scanner offers coverage of $30-50,144-174$, and $430-512 \mathrm{MHz}$ without the use of crystals. This microprocessorcontrolled unit can scan 16 programmed channels or an entire band segment by entering its frequency limits. Frequency selection is accomplished with a front-panel keyboard, and each of the 16 channels has selectable lockout. A LED indicator lights

when a channel is being programmed, scanned, or monitored. Out-of-band or improper frequency selection is indicated by an error message. Other PRO-2001 features include switchable scan delay, a built-in 9-V battery that saves memory, and choice of manual or automatic scan with a high-speed scan rate of 15 channels/ second. Variable squelch, built-in speaker, and jacks for headphones, tape recorders, external speakers, and uhf and vhf antennas round out the PRO-2001's provisions. Operation is from $120-\mathrm{V}$ ac or $12-\mathrm{V}$ dc. Dimensions are $3.4^{\prime \prime} \times 10.2^{\prime \prime} \times 10.9^{\prime \prime}$ ($8.6 \times$ $25.9 \times 27.6 \mathrm{~cm}$). Includes mobile mounting bracket and power cables. \$399.95.
circle no 91 on fref information card

K40 Mobile CB Antenna

American Antenna's K40 is a base-loaded whip antenna with $56^{\prime \prime}$ radiating element of $17-7 \mathrm{PH}$ stainless steel. Its coil construction combines metal and plastic, and an isolation chamber is said to dampen static. The whip is adjustable over $2^{\prime \prime}$ with no cutting. A quarter-turn quick-release permits removing the antenna from its 30° rotating base. The K40 is supplied fully assembled with 18 of coaxial cable complete with connectors and trunk-lip mount. An optional universal mount permits mobile mounting in any location.

```
CIRGLE NO 92 ON fREE INFORMATION CARD
```


Vector Graphic Video Display Board

FLASHWRITER is Vector Graphic's latest computer peripheral. This video display board generates 16 lines of 64 characters using a 7×9 dot matrix and is designed to operate with a $4-\mathrm{MHz}$ clock frequency. Other capabilities are character-bycharacter generation, reverse video, reduced intensity, and block and line graph-

ics. It has its own screen-refresh memory and latched eight-bit parallel port, is S-100 compatible, and video output is available as composite video or separate video and sync. \$195 kit, \$235 assembled.
circle no 93 on free information card

Marantz Quartz-Lock Turntable

The new Marantz Model6350Q direct-drive turntable uses a PLL servo system with quartz crystal timing reference for automatic speed control. Wow and flutter is rated below $\pm 0.025 \%$ wrms, and speed deviation is said to be less than $\pm 0.003 \%$. In-

dependent speed control for 45 and $331 / 3$ rpm modes allows $\pm 3 \%$ adjustment. The statically balanced tonearm features automatic lift and shut off, antiskating, and viscous damped cue control. The turntable comes with a hinged dust cover and antiskid platter mat.

CIRCLE NO 94 ON fREE INFORMATION CARD

Record Care Work Pad

Ball Corporation's Sound Guard Record Care Work Pad is a lint-free, non-slip. washable surface for use in LP record care. The pad is nonabsorptive and its high coefficient of friction prevents record slippage during inspection, cleaning, or coating of a record with a cleaner or preservative. A receptacle area holds excess fluids. $\$ 7.99$.
circle no 95 on free information caro

Remote Coded Alarm Lock

A 12-key pad for remote "combinationlock" alarm operation has been announced by Mountain West Alarm Supply Co. The Model D14 features a fieldreplaceable, preprogrammed code key The keypad operates on 6 to 24 volts ac or dc, and draws less than 2 mA standby current, including its red and green LED status lights. The beige, high-impact ABS case measures $47 / 8 \times 31 / 2 \times 11 / 8$ in. $(12.1 \times$

Unlock the power of today's technology. The Understanding Series. ${ }^{\text {™ }}$ From Texas Instruments.

Self-paced. Easy-to-understand. Practical. Texas Instruments introduces the Understanding Series - a family of lively, down-to-earth books written for anyone who wants to learn more about today's electronic technology and its impact on our everyday lives. Ideal for individualized learning, this quick and easy approach can put understanding of these latest technological subjects to work for you!

And Texas Instruments makes it even easier with this special offer. Now you can have your choice of any two or more of these books at a reduced price. Buy all four and save $\$ 1.50$. Mail your order form today! (Available for a limited time only.)

Understanding Calculator Math

 224 pages, $\$ 3.95$All the basic information, formulas, facts and mathematical tools you need to unleash the real power of your calculator. At home. On the job. In school or college. It's packed with practical, everyday applications for fast, efficient calculator problem-solving.
Basic Electricity and DC Circuits 1026 pages, $\$ 19.95$
The knowledge you will gain from this book will enable you to predict and control the behavior of the most basic and complex DC circuits. Written in clear precise language, with numerous supportive illustrations and examples. Easy, rewarding and fun.

Understanding Solid-State Electronics

New third edition, 170 pages, $\$ 3.95$ Explains semiconductor behavior and applications, diodes and transistors, uses and trends in integrated circuits. All in a simple, programmed-learning approach that will quickly familiarize you with this broad subject.
Understanding I)igital Electronics 265 pages, $\$ 3.95$
An ordinary calculator is the springboard into the fascinating world of today's electronic devices, circuits and systems. Now you can see and easily understand how digital electronics has changed our everyday lives-and how it will affect your future.
\square LCB-3361 Understanding Solid-State Electronics
(3rd edition)
\square LCB-3311 Understanding Digital Electronics
\square LCB-3321 Understanding Calculator Math 53.95$\$ 3.95$ $\$ 3.95$ $\$ 19.95$ Add applicable sales tax (except AK, DE, HI, MT, NH, OR)

Special Offer:

$\begin{array}{lr}\text { Purchase any two books and save } & \$.50 \\ \text { Purchase any three books and save } & \$ 1.00 \\ \text { Purchase all four and save } & \$ 1.50\end{array}$

Mail your check or money order to Texas instruments, P. O. Box 3640, M/S 84, Dallas, Texas 75285. Orders in Continental United States shipped prepaid. Foreign orders: Prepaid funds in U.S. dollars only. Include shipping costs

Name
Address
City \qquad State \qquad Zip
Offer available for a limited time only. Prices effective June 1, 1978. Subject to change without notice. PE-8

Performance, beauty, quality

- three attributes that have always been the hallmarks of SAE products. SAE systems in the past have had them, this system's predecessor had them, and the new In The Black system has them and much more.

The 2900 Parametric Preamplifier offers our new flexible parametric tone control system, full dubbing and tape EQ. New phono and line circuitry results in unparalled clarity and definition with distortion of less than 0.01% THD \& IM.

The 2200 Stereo Power Amplifier with fully complementary circuitry delivers 100 Watts RMS per channel from $\mathbf{2 0 - 2 0 K}$ at less than 0.05% Total Harmonic Distortion, from 250 mW to full rated power.

The 8000 Digital FM Tuner has linear phase filters, phaselock multiplex, and of course, our famous digital readout tuning indicator system.

Combine these products together and you have a system that ensures superior performance in all areas, excellent control flexibility, and the sonic quality that is typically SAE.

Scientific Audio Electronics, Inc. P.O. Box 60271 Terminal Annex, Los Angeles, CA 90060

$8.9 \times 2.86 \mathrm{~cm}$), and is designed for surface mounting. \$53.00. Address: Mountain West Alarm Supply Co., Box 10780, Phoenix, AZ 85064.

Digital S Meter

Digi-Comm's "Signal Hunter" is an S meter with three-digit numeric display of received signal strength to one-tenth of an S unit, with signals over S9 displayed directly in dB. The Signal Hunter also displays rel-

ative r-f power output when the attached transceiver is operated in the transmit mode and features a calibration control tor matching it accurately to a CB transceiver. It requires a $12-\mathrm{V}$ dc power source. Dimensions are $1.8^{\prime \prime} \mathrm{H} \times 4.3^{\prime \prime} \mathrm{W} \times 1.5^{\prime \prime} \mathrm{D}(4.6 \times 10.8$ $x 3.8 \mathrm{~cm}$). A magnetic mount is included. Address: Digi-Comm, Ste. 110, 720 SteCatherine St. West, Montreal, Canada H3B 1B9.

Nortronics Cassette Bulk Eraser

The QM-230 is a self-powered, hand-held bulk eraser for standard compact cassettes. Erasure is accomplished by ceram-

ic magnets within the bulk eraser, through whose field the cassette passes. Thus, no battery or ac power sources are required. The eraser is built into a contoured, Cycolac case with a wood-grain finish. $\$ 24.00$. Gircle no 96 on free information card

Anti-Static Desoldering Tool

Edsyn's Silverstat "Soldapullt" desoldering tool incorporates a conductive plastic tip and barrel housing which, when used in a static-controlled work station, allow static charges to drain off to ground through the user's hand. This feature is said to protect

sensitive FET and MOSFET semiconductor devices from damage due to static electricity discharge. The device has a fully enclosed loading shaft, high-low vacuum adjustment, and bayonet-type disassembly. circle no 97 on free information caro

Isophon Miniature Speaker System

Walter Odemer Co.'s Isophon DIA-2000 miniature speaker system measures $5^{\prime \prime} \times$ $6^{\prime \prime} \times 7.5^{\prime \prime}(12.7 \times 15.2 \times 19.1 \mathrm{~cm})$. The twoway speaker has a nominal impedance of 4 ohms. Peak power rating is 70 W while

power handling capability is 50 W . Crossover frequency is 2000 Hz at $12 \mathrm{~dB} /$ octave. The DIA-2000 is finished in a black metallic case with a two-section, snap-in foam grille.

CIRCLE NO 98 ON FREE INFORMATION CARD

Superex Base Station Microphone

The new Superex M-611 omnidirectional base station microphone features an electret element, FET preamplifier, and transistor output amplifier stage. Output gain is controlled with a slide potentiometer, and the extra large PTT paddle is lockable.

- Personal Computer Systems now including Floppy Disk Storage
- Power Supplies - Oscilloscopes - Frequency Counters - VTVM's and VOM's
- Ham Radio Gear - Digital Programmable Color TV - Hi-Fi Components
- Electronic Clocks and Weather Instruments - Self-instruction Electronics Programs
- Auto, Fishing, Marine and Aircraft Accessories - nearly 400 kits in all!

Every Heathkit product comes with a fullyillustrated, step-by-step assembly manual that tells you everything you rieed to know to make kitbuilding fun and easy. Thousands of people have discovered the satisfaction-and value - of handcrafting electronic equipment. You can build it better... let us show you how.
Send for your FREE Catalog today!
OR pick it up at the Heathkit Electronic Center (Jnits of Schlumberger Products Conporafion) nearest you, where Heathkit products are sold, displayed and serviced. Retail prices on some products may be slightly higher. See the white pages of your phone book

Power for the M-611 is provided by a selfcontained "C" cell. The interchangeable microphone stem allows use of lapel microphone and acoustic tube microphone headset plug-in modules. Frequency response of the new Superex microphone is claimed to be $250-8000 \mathrm{~Hz}$; sensitivity is rated at -45 dB . Comes with a $6^{\prime}(1.8 \mathrm{~m})$ unterminated six-conductor cable. $\$ 44.95$ CiRCLE No 99 on free informatign card

Heath Metal Locator

A new metal locator kit, the GD-1190

VARIABLE REGULATED 1 AMP

 POWER SUPPLY KIT VARIARLE FROM 410 14VShoat CIRCUIT PROOF - Shoat circuit proof - 723 IC REGULATOR - 2n3055 pass transistor - Cugrent limiting at 1 am KIT IS COMPLETE INCLUDING ORILLED \& SOLDER PLATED
FIGEGGLASS PC BOARD AND IBERGLASS PC BOARD AND ALL PARTS ILess TRANS $\frac{\text { ORMER }}{}$ TRANSFORMER 24VCT WIII provide 300 ma
1 Ampal 5 V .

Fairchild Super Digit

95\& 82, 10/58.50
SETOF 6 FND-359 WITH MULTIPLEX PC BOARD $\$ 6.95$

5821 NE 14TH AVE CIRCLE NO 36 ON FREE INFORMATION CARO

OPTOELECTRONICS, INC.

FORT LAUDERDALE, FLA. 33334 PHONE (305) 771-2050/771-2051 ORDERS TO USA \& CANADA ADD 5% FOR SHIPPING HANDLING \& INSURANCE. ALL OTHERS ADD 10° ADDITIONAL $\$ 1.00$ CHARGE FOR ORDERS UNDER S15.00-COD FEE \$1.00. FLA. RES. ADD 4\% TAX

BankAmericaro
nwown fry

'Cointracker," has been introduced by Heath Company. It features adjustable discrimination, pushbutton tuning, waterproof search coil. and the length of its collapsible shaft is adjustable. Metal detection is signaled to the user via a built-in meter and through an adjustable-volume headphone output. A battery recharging jack is also provided. Weight is $35 \mathrm{lb}(1.6 \mathrm{~kg})$ \$149.95.

Circle no 90 on free information card

120-Minute Portable Microcassette

The Olympus Pearlcorder SD2 is a twospeed (15/16 and 15/32 ips), capstan drive. modular, pocket-size cassette system providing 120 -minute recording/ playback capability with a Microcassette. Side-mounted controls include record. stop. pause, and four-way cue, review, rewind, and fast-forward. Features include automatic off, cassette eject, built-in electronic condenser microphone, and LED

battery-strength indicator. It comes with a Voice Actuator Module allowing VOX control of recording with three sensitivity positions. Optional plug-in modules offer reception of AM and FM broadcasts, as well as direct air-to-tape recording capability. Accessories include tie-clip mike, external speaker with built-in amp, and various adapters. Weight is only 12 oz . $\$ 275.95$
circle no 100 on free information card

Regency introduces the first low-price, no-crystal scanner

Our new Touch K100 will give you 10 channels to cover 15,757 frequencies: all without crystals. It's the first scanner to offer synthesized versatility at a low, low price.

Regency has really done it this time. A genuine touch entry crystalless scanner at an affordable price. Now that's what we call exciting.
Even more than exciting, it's almost a challenge. Because from now on, there's really no reason for you not to enjoy the ease, convenience and remarkable capability of crystalless scanning.

One word of caution. Don't get the idea that our low price unit is short on features.
Not on your life. Like we said, it has 10 channels to cover 15,757 frequencies on 5 bands. And it can search for active calls through a whole band at a time. We've even included extras like programmable scan delay and direct entry from search to scan.
In fact, this radio has some distinct advantages over other units. For instance, the digital display lights up whenever anything happens. That even includes telling you when a programming error is made.

No cause for embarrassment though, because the programming on the Touch K100 is a whole lot easier to do. Which makes the radio much more fun to use.
Now, the way we see it, we've left you with precious few excuses not to move up to crystalless scanning. So stop in to see your Regency retailer. And find out just how much fun you can have saving money on a lot of crystals . . . and one radio . . . The Touch K 100 .

$\underbrace{}_{2}$
 New Literature

ROYCE CB GUIDE

The "1978 Royce CB Buyer's Guide" covers the company's complete line of CB transceivers, antennas, and accessories. A highlight of the guide is a glossary section describing over 50 CB features such as large-scale integrated circuitry, phase-locked loops, channel 9 scan and TV interference suppression. Address: Royce Electronics, 1746 Levee Rd., North Kansas City, MO 64116.

NATCAM CATALOG

A new, 64-page catalog of tools, technical supplies and test instruments is now available from National Camera. With 13 categories of items, the catalog is useful to engineers, hobbyists, photographic and electronic specialists, do-it-yourselfers, and repair technicians. Address: National Camera, 2000 W. Union Ave., Dept. QRR, Englewood, CO 80110.

GE 2-WAY RADIO FM SERVICE HANDBOOK

The "Test and Troubleshooting Handbook, for 2-way radio FM service technicians is available from General Electric for $\$ 2.50$. Applicable to mobile, base station, and personal/portable equipment, the 30 -page publication stresses systematic approaches on how to run and interpret standard tests, and compare results with characteristics in the published specifications of equipment serviced. Address: General Electric Mobile Radio Dept., Box 4197, Lynchburg, VA 24502.

ARGOS PACKAGED SOUND SYSTEMS BROCHURE

Argos Sound has released a four-page brochure on its line of packaged sound systems. Included are the Sound Pak II, a system for large groups; the Voice Director II, an outdoor cordless system; the Speech Director II, a compact lectern sound system; and the Executive, a sound system said to be as portable as a briefcase. Optional accessories are included in the brochure. Address: Argos Sound, 600 S. Sycamore St., Genoa, IL 60135.

E-Z HOOK ELECTRONIC TEST aCCESSORY CATALOG

Now available from E-Z Hook is a 92-page guide describing its line of test hooks, probes, connectors, jumpers, test lead and coaxial cable assemblies, adaptors, breadboarding and harness board components. Address: E-Z Hook, Box 450. Arcadia, CA 91006.
'I'm very impressed with the way Radio Shack has translated latest technology into good looks and precision record playing in the 400."

$-x=4<-4<\subset=1 C$

Realistic ${ }^{\star}$ Direct-Drive Automatic . . . Finest Turntable We've Ever Offered

Two motors, damped cue/pause, S -shape tonearm, speed controls, $\$ 39.95$-value Realistic/Shure cartridge

The LAB-400 makes studio periormance both affordable and convenient. Its massive die-cast platter rests directly atop a 16 -pole brushless DC servomotor. The platter and motor rotate at the same speed, either $331 / 3$ or 45

RPM - no idler wheels, reduction gears or belts to alter the music that's stored in your record's grooves. The result: wow and flutter is less than 0.03% WRMS and rumble is better than -63 dB (DIN B). The fully automatic tonearm has an effective length of $811 / 16$ ", for flawless tracking down to $1 / 2$ gram. Handsome walnut vinyl veneer base with ultra-modern, slim design.

Elliptical-stylus magnetic cartridge and detachable hinged dust coversignificant "extras" that aren't extra. All for \$199.95.*

FREE! New '7S Catalog

Come in for your copy and see what's really new it electronics. Bigger than ever! 176 pages, over 100 in full color. 2000 exclusive items.

* Price may vary at individual stores and dealers

Fully Automatic Tonearm Operation

You need never touch the tonearm - just select record size and push start switch. An independent motor does the rest, cueing the arm, gently lowering it onto the record, and removing it at disc's end. With repeat mode, cue/pause, anti-skate and tracking force controls.

Two speeds with controls for $\pm 4 \%$ pitch adjustment.

Neon light with strobe disc for checking speed

Low-profile styling with precision shock mounts to stop acoustic feedback.

A DIVISION OF TANDY CORPORATION • FORT WORTH, TEXAS 76102 OVER 7COO LOCATIONS IN NINE COUNTRIES

Learn digital computer

NRI trains you on a real digital computer you actually assemble
as you learn.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer.

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program store your program and data in the memory bank. Press the start button and the computer solves your problem and
displays the result instantly.
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming

New NRI Memory Expansion Kit

The Model 832 NRI Digi:al Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of you knowledge of digital computers and programming. With the largə-scale 1 C 's you get the only home t-aining in machine language programming experience essential to troubleshooting digital computers

electronics at home.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning $25^{\prime \prime}$ diagonal solid state color TV and a 4speaker SQ ${ }^{\text {r" }}$ Quadraphonic Audio System. NRI gives you both TV

provide professional tools and "'Power-On"' equipment along with NRI kits training With the Master Course. for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI's Complete Communications Course includes your own 400-channel VHF transceiver

NRI's Complete Communications Course will train you at home for
 one of the thousands of service and maintenance jobs opening in CB; AM and FM transmission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning" 400channel VHF transceiver; electronics Discovery Lab ${ }^{\text {Tw }}$; CMOS digital frequency counter; and more. You also get your all
important FCC Radio-telephone License, or you get your money back.

CB Specialist Course

 also available

You pay less for NRI training and you get more for your money.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.
More than one million students have enrolled with NRI in 62 years. Mail the insert card and discover for yourself why NRI is the recognized leader in home training. Do it today and get started on that new career. No salesman will call.

If card is missing write:

11
6
6
NRI SCHOOLS
McGraw-Hill Continuing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

RFI AND OTHER MATTERS

INN MID-APRIL, RFI was the subject of a strongly worded memorandum from the Institute of High Fidelity to its members (principally equipment manufacturers). The IHF wanted particularly to warn against pending legislation in the Congress that would in one way or another require manufacturers of RFIprone equipment-TV, hi-fi, and all the rest-to render their products interfer-ence-proof. Almost simultaneously, word came out of Canada that the agency that erects and oversees that county's system of standards was considering much the same thing. As it happens, Canada and the U.S. have a history of strong independence on such matters. To have the two governments attacking the RFI situation almost in unison may mean something significant.

How to Love RFI. It's a certainty that many readers of this magazine are unwitting or at least involuntary producers of RFI since they generate signals that other people, trying to listen to or view other things, encounter as interference. However, I suspect that many of these RFI creators are or have been RFI sufferers as well, and hence are willing to lend an ear to the other side of the story. The other side is this.

There is no question that organized amateur radio and other groups have been most generous with time, trouble, and advice in an effort to solve the RFI problem wherever they've found it, and we of the audiophile persuasion are grateful. At the same time we are concerned that these efforts may have oversimplified the problem in the governmental if not the public eye. The nation at large seems ready to believe that RFI will go away tomorrow if the "irresponsible" manufacturers of hi-fi equipment and other consumer electronics equipment take the proper design steps; but the evidence doesn't show it.

A skilled amateur radio operator would probably have little difficulty isolating interference points-of-entry in a
neighbor's hi-fi system, and possibly even less difficulty in stopping them, with items from his parts bin. But what else has he stopped in the process? Without intending to demean the expertise of hams and other skilled amateurs in the slightest, I think it's fair to say that many pieces of high-fidelity equipment can react a bit unpredictably when "modified" to effect an RFI cure. By now it's generally known and understood that excessive capacitive loading of a typical phono cartridge plays havoc with frequency response, among other things, even though it's often a quick and successful treatment for RFI. What's less well-known and little understood is the effect of a capacitor hung on the output of a modern power amplifier, particularly when the parallel load presented by the loudspeaker system is not defined. Under the best of circumstances the capacitor will nearly take away any r-f being picked up by the speaker cables. Under the worst, it will shut down the amplifier in a burst of spontaneous oscillation.

At this point it's necessary to get a bit defensive. In an ideal world, audio equipment would behave predictably when confronted with an external filter to eliminate RFI; in fact, in an ideal world it wouldn't pick up RFI at all. But realworld hi-fi systems, engineered for "reasonable" conditions that are suddenly becoming extreme (a few years ago, who would have believed we would have to cope with several dozen radio transmitters driving past the front door every hour), are understandably caught short. This is embarrassing and exasperating, particularly for those responsible manufacturers who thought they were doing their best by the consumer.

Is congressional legislation the answer? For audio and video equipment of indifferent quality and poor shielding, it might be. But for true high-fidelity equipment in good working order it is probably a mistake. The true RFI weakness of the good gear is that it is typically strung together with mechanical connectors of
dubious efficacy, plus long lengths of cable that may be virtually naked to many types of interference-producing signals. Substitution of some of the excellent (if costly) interconnection and grounding schemes now available can bring about an astonishing immunity to RFI without involving equipment manufacturers in questionable modifications (and increased costs) to meet a situation that is still helter-skelter out in the field.

Many serious audiophiles would prefer to learn to love RFI rather than to have the equipment designs they believe in altered by governmental fiat. Surely they are entitled to this consideration. As the RFI situation heats up again (as it probably will), let's hope that all parties will try to educate rather than legislate the problem away.

How to Love TV. Few audiophiles have felt so neglected as those seeking advice on how to route TV sound through their hi-fi systems. Audio writers, myself included, are usually reluctant to offer any quidance on tapping a signal from a TV circuit point because of the appalling electroshock hazard should there be some misinterpretation of the instructions or irregularity in the design of the TV chassis. A separate au-dio-only TV tuner has long seemed the best idea for this potential market. But where have these tuners been hiding? I recall RCA's offering one some time ago, and a company called Rhodes features a TV-sound "adapter" in the classified pages of electronics magazines. But that's been it.

According to U.S. Pioneer, these potentially attractive products have been hiding from the spectre of the notoriously low fidelity of TV sound broadcasts. Reports from the television industry have spoken of indifferent miking, slipshod mixing, crude equalization to suit the frequency responses of the definitely non-hi-fi loudspeaker in the typical TV console, and the grotesque distortions introduced by the cables and other transmission used to relay the audio portions of the broadcasts to various transmission sites. Few have been able

Fig. 1. Pioneer TVX-9500 tuner for TV sound reception.

PROFESSIONAL On location: Stanton is there where TGIF (Thank God, It's Friday) is filmed.

Go to the Club called Osko's in the Los Angeles Area Revel in the sound around you, supplied to Oska's by Sound Unlimited Systems, Inc., a prime packager of Disco systems. They have supplied 90 systems to Stationary facilities and 60 to Mobile operations.

Sound Unlimited swears by Stanton's 500AL because they have used it for many years until Stanton came out with the 680 EL . Now they use this model exclusively in all of their installations, and endorse it without reservation

Whether your usage includes recording, broadcasting, archives, Disco or home entertainment, your choice should be the overwhelming choice of the Professionals in every field... Stanton Cartridges.
P.S. "Thank God It's Friday" has turned out to be a dynamite film starring Disco Star, Donna Summer.
For further information write to: Stanton Magnetics, Terminal Drive, Plainview, N. Y. 11803
© StANTON 1978
©STANTON!
to confirm or deny these reports because the equipment necessary to attempt a high-fidelity pick-up of TV audio has not been readily available.

Now Pioneer has stepped in with the TVX-9500 (Fig. 1), an attractive TV tuner that would seem to meet all the requirements for high-fidelity reception. According to Pioneer, the motivation for introducing this product was AT\&T's recent increase of the bandwidth of audio long lines and microwave links from a dismal figure of about 5000 Hz to an FM-radio-quality of $15,000 \mathrm{~Hz}$. And the motivation of AT\&T's generous bandwidth extension was the need for relay facilities that could handle the requirements of the high-speed data transmission that computers thrive on.

The Audiophile's Light Show. It's not exactly an established fact that what the music listener desperately needs is a visual level indicator. But if he does truly need one, the alternatives are constantly getting better and cheaper.

Some years ago peak-reading level indicators, often employing illuminated displays of one sort or another, began appearing on professional recording consoles. Almost at once some of the more astute recordists began hailing them as an important assist to the recording art's. The professional standby, the venerable VU meter, was as useful as ever in communications work. However, it exhibited too many weaknesses for high-dynamic-range music recording, where its teisurely attack time (0.3 second to indicate full value) could not keep up with the abrupt transients of close-miked music; recordings were thus suffering.

Simultaneously the audiophile was getting his fair share of peak-level indicators, usually in the form of one or two LED's on the front panels of tape recorders that winked at the approximate point of tape overload. Very recently we've had entire metering systems made of such LED's on a few audiophile products (not to overlook some of the

Fig. 2. Nakamichi T-100 Audio Analyzer has plasma readout.

Fig. 3. Diagram of cathode-switching scheme for the Nakamichi T-100.
conventional meters driven by peak indicating electronics, or Sony's unique light-beam galvanometer with similar electronic assistance). Such LED displays are complex to wire, however, each having its own separate leads to be contended with; and, of course, the associated circuitry must provide an individual electronic switch for each. Consequently, metering systems involving more than eight to ten LED's per channel are rare.

Now equipment manufacturersseveral of them at this time-think they have some answers: the "fluorescent" and "plasma" indication systems. These innovations have recently turned up on Pioneer, Sony and Technics cassette decks, a JVC level indicator (not quite available as this is being written), and a Nakamichi "Audio Analyzer" (Fig. 2). The last is an interesting little item also containing the facilities for making total-harmonic-distortion and speed/wow-and-flutter measurements.

The plasma indicator renders an inert gas incandescent by means of an electrical discharge through it. Construction evidently involves a gas-filled glass tube with electrodes spaced along its length. In the displays seen so far, the user beholds little vertical bars of light working their way up and down a calibrated horizontal scale, often of considerable length. The JVC indicator (Model DS-7070), for example, can show up to thirty such bars for each channel, which provides good resolution over a fairly extensive dynamic range.

The operation of the Nakamichi device, Model T-100, gives an indication of the attractive economies that can be realized with the "plasma" technique. In this manufacturer's scheme, at least, it seems that adjacent electrodes must be charged in order to achieve any incandescence. Alternately spaced electrodes can remain on all day without producing anything visible. By wiring up appropriately alternating electrodes to
three basic control busses (Fig. 3), it is possible to simplify the switching required of the associated control IC's considerably. This is because the only condition of interest is when two adjacent electrodes receive power. Alternately spaced electrodes can receive power with no consequences.

Other advantages claimed for the plasma system include virtually instantaneous response of the indicators (0.02 millisecond is specified for the JVC unit), no parallax, and a wide variety of indicator shapes possible merely by changing the shape of the electrode. Furthermore, the number of electrodes can be increased without incurring ruinous costs. Naturally, the drive circuitry can incorporate any of the features available with other metering systems. These include a choice of peak, VU, or "average" level indication, "peak hold" (by which the highest level achieved by the monitored signal is stored for later reference), and the choice of various weighting systems.
For a recent evaluation of direct-to-disc recordings in which I was a participant, the JVC DS-7070 was used extensively to determine relative dynamic ranges. There were great sighs of relief from all concerned because of the ease and repeatability of the measurements.

As for the fluorescent system, the concept is similar, but in this case the tube is evacuated. Internally there are a cathode, grid, and anode, plus phosphors on the interior wall that glow when bombarded with electrons-a rather familiar concept. l've not yet seen any specific claims made for the speed of this system, but it is probably adequate to its task.

All in all, a clear potential seems to be here for the best metering system to date, and without great agonies imposed on the pocketbook. To my knowledge this innovation is not yet to be found on the consoles and tape machines used by professionals. It may be interesting to see how they react.

Cassette Recorder Tape Compatibility

As regular readers of our product test reports know, there is a potentially serious compatibility problem between a cassette recorder and the tape used in the same problem exists with open-reel recorders. hut is very much less eritical). This is why it is so important that the recorder manufacturer specify the tapes for which his machine has been adjusted, and whyin the absence of such information-we have to measure the record/playback frequency reponse with a considerable mumher of tapes to discover which are most suitable for that machine, and which, if ans. should now be used with it.
A few cassette recorders, such as the Kenwood KX-1030 tested this month. have a convenient front-panel adjustment of recording bias. This is intended to matoh the tape's requirements more precisely than is possible with a simple two or three position BIAS switc:h falthough that switch is still required). A somewhat similar feature is found on the Aiwa AD-6800 recorder, and no doubt will appear on others
We have seen a few cassette derks whose hias adjustments, though not on the front panel. were at least accessible for screwdriver adjustment from the outside of the machine. Since such an adjustment requires external test equipment, it is of little value to the average consumer. The most practical way for a user to adjust the bias of a recorder is 10 monitor the playback from the tape as it is being recorded-in other words, a three-head recorder is imperative! The Kenwood KX-1030 has that feature, while the Aiwa AD-6800 has a third head dedicated solely 10 that purpose (in normal use, it is a conventional two-head machine).
In both units, the adjustment ter:hique consists of recording two equal-amplitude audio tomes at middle and high frequencies. The kenwood records each tone on both channels at the same time, alternating them in bursts of about one-second duration. while the Aiwa records them contimuously
and simultaneously with one tone on each channel. The adjustment is based on a small 4. hange of bias, about a nominalls correct value, having little effect on output at low and midde frequencies (400 Hz is used in both machines). but with considerable effect on playbat k response at high frequencites. In the Aiwa. the upper freguence is 8000 Hz , and in the kenwond it is 10,000 Hz. When the adjustment is made on the Aiwa recorder, the playback signals are displayed on its level meters, and the bias is varied until both meters read the same. The adjustment is common to both chamels. Kenweod provides separate adjustments for each channel, and the two output signals are displayed alternately on the meters so that the bias can be set for minimum pointer movement as the tones are automatically switched.

A different approach to the compatibility problem is taken by JVC. They hold that, because of the effect of bias changes on the output level and distortion, this is not a desirable methed of optimizing a two-head recorder latthough thes concede that it has some merit with a three-head machine). The changes in output level can affert the performance of the marhine's noise-reducing cireuits (Dolby or ANRS), for example. IVC maintains that the best way to match a machine to a tape is through an adjustment of the high-frequency recording equalization (1:Q). and that this is the only satisfactory method to use with a two-head machine. This may be a largely acodemic: consideration, since the other machines we have seen all use a three-head configuration, if only for purposes of adjustment.

Nevertheless, there can be no doubt that both rearding bias and EQ have a profound effect on the ultimate performance of any tape recorder, and most especially a cassette deck. To see why this is so, we will use as an example the manufacturers' published data for two competitive ferric oxide tapes of good quality. Both have been plotted in

Fig. 1. Tape performance comparisom is ploted here for two different tupes (A alld B)to demomistrate reffect of bias.

Fig. 1 on the same coordinates, with the solid limes representing tape "A" and the dashed lines tape " B ". The hori\%ontal axis represents relative bias furrent. in decibels, with the 0-dB level corresponding to the recommended bias for the standard DIN tape that is the basis for tape specifications throughout the world. (On the vertical axis. we note the various output conditions for the tapes.

The uppermost curves are the MOL. or maximum output level. which is the output corresponding to a playback distortion of 3% at a frequency of 315 H\%. As the curves show, when these tapes are biased to DIN level or slightly higher, they have achieved their maximum output level at low and middle frequencies. with tape "A" having perhaps one or two decibels more output than tape "B". One might think that any bias above. say. +2 dB . would result in optimum performance from either tape; but look at the distortion curves at the bottom of the graph! Both tapes achieve a minimum distortion of $-48 \mathrm{~dB}(0.4 \%)$, though at different bias currents. Tape "B" requires about 1.5 $d B$ more bias than tape " A " for its minimum distortion conditions. When so biased. its $315-\mathrm{Hz}$ output is also at maximum and, perhaps, 1 dB less than the output from tape "A".

Based on this partial information, we might conclude that tape "B" should be operated at a bias 1.5 dB higher than tape " A ". This is probably true, but it
is not the whole story. At about the: 20-dB level, look at the sensitivity curves at 315 Hz for both tapes. Thes show the playback output at that frequency froma-20-dB recording level: it can be seen that this is nearly inde. pendent of bias. with tape "A" having about 2 (AB more output than tape " B " at bias levels of 0 dB or less. and slightIy loss output than tape "B" at high bias levels. Intersecting the $315-\mathrm{Hz}$ sensitivity curves are the downward sloping $12.5-\mathrm{kH} \%$ sensitivity curves. These show clearly the large effect of bias on the 12.5 kHz playback level from a $20-\mathrm{dB}$ constant recording levof. let us assume that the recorder has been set up with tape "A" at a bias level of +1 dB . With an ideal recording head. it would still be necessary to boost the recording signal at 12.5 kHz by about 1.5 dB to give a "flat" re-
sponse (which we will define here as an equal output at $315 \mathrm{H} \%$ and 12.5 kH\%). If the machime had been set up for tape "B" at a $+2.5-d B$ bias the recording equalization boost at 12.5 kHz would have to be about 6 dis for the same "flat" response. Due to head losses, the actual boost would be greater in each case, but that need not condern us here.
Now, if that machine, set up for tape " A ". were to be rebiased for "flat" response with tape " B ". without changing the recerding EQ , the bias would have to be reduced to about +0.5 dB . At this point the $1.5-\mathrm{dB}$ recording EQ would give the desired frequency response. If. on the other hand, the machine originally adjusted for tape "B" were to be re-biased for tape "A". the bias would now be +3 dB (so that the 6 dB of high-frequency recording EQ would give a "flat" response). As a result, the distortion would be increased by fodB:

Evidently, one canmot truly optimize a cassette recorder by a bias adjustment alone. How about IVC's method of adjusting recording EQ for flattest frequency response at a fixed bias level? In theory. this would appear to be no better than the bias adjustment technique, If it actually works better. this could omly be because most tapes within a given performance category are designed to operate with very nearly the same bias. To the extent that this is su, the EQ Q adjustment should be fine. If it is not so, then we still have the possi-bility-even probability-that a tape will not be operating at its lowest distortion point even though it is delivering its "flat-test" frequency response.

In the case of the JVC method. which has been used on its KD-75 and other cassette derks, one must depend solely on hearing judgment to establish the correct recording equalization. If built-

If you're interested in learning how to fix air conditioners, service cars or install heating systems-talk to some other school. But if you're serions about electronics, come to CIE-The Electronies Specialists.

Special Projects Director Cleveland Institute of Electronics

My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool-and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas - and builds on them.

That's what happens with CIE's Auto-Programmed ${ }^{\text {® }}$ Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every daythings like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus the re's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic cquipment.

You Work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a traincd electronics instructor, backed by a team of technical spccialists. If you need specialized help, you get it fast . . . in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take and pass. . . the governmentadministered FCC License exams. In fact, in continuing surveys ncarly 4 out of 5 of our graduates who take
the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics - and it can be a valuable credential anytime.

Find out more: Mail this card for your FREE CATALDG today:

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists-CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17 th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oseilloscope sereens are simulated.

YES . . . John, I want to learn from the specialists in electronics - CIE. Send me my FREE CIE school catalog - including details about troubleshooting courses - plus my FREE package of home study information.
Print Name
Address
Apt.
City
\qquad

State Zip
Age Phone (area code)
Check box for (s.I. Bill information: Veteran \square Active Duty
Mail today:
in oscillators and metering were provided, with a third head for playback, this adjustment could be made as it is in the Aiwa and Kenwood machines. However. the JVC deck has two heads. We can say, based on our experience with all three machines, that although the metering systems of the Kenwood and Aiwa machines work very well, it is at least as easy to make the adjustment by listening to the playback of a recording of interstation FM tuner hiss, in an A-B comparison against the incoming signal, as the bias (or EQ) is varied. In the case of the JVC recorder. this requires that the noise be recorded with several settings of the EQ switch, and comparison made on playback.

There is still another pitfall in any of these tape optimization methods. The Kenwood and Aiwa approach is based on obtaining equal response at only
two frequencies, one low and one high. This does not assure that the response will be the same at all intermediate frequencies. or above the high frequencu. Figure 2 A shows a response curve from a machine which has a stightly drooping high-end response. Also. its $8000-\mathrm{Hz}$ and $400-\mathrm{Hz}$ levels have been matched. The dashed line shows another condition, with exactly the same matching at 400 and 8000 Hz , but with a slight peak at higher frequencies. (Such a peak might result from using a "hotter" tape.) The two would certainly sound very different, of course. The higher the frequency used for the upper end of the adjustment. the less likely this is to happen, but it is equally possible to have the conditions shown in Fig. 2B. No matler how it is done, the fact that two tapes give the same output at two frequencios
does not mean that thes will sound alike. This is an advantage of making the adjustment by ear. for the best subjective frequency response.

Probably the best approach to solving the compatibility problem (which we have not set seen on the market) would be to use both bias and EQ adjustments, with several high-frequency signals available and a third head-plus-meter read-out system. The bias could then be set for a maximum for other specified) value of output at 400 Hz, and the EQ could be trimmed for equal output at two or three high-test frequencies. This. after all. is what the factury ted hatian does when he sets up the machine in the first place. If the user could do the same. Without recourse to external equipment he could rectly anjoy optimum performance from his recorder. with any tape.

Audio Test Reports/

HIRSCH HOUCK LABORATORIES

Kenwood Model KX-1030 Cassette Deck

> Deck features a vernier bias adjustment, two test oscillators, and bias and equilization switches which allow a precise match to any tape formula.

Kenwood's Model $K X-1030$ is a front loading cassette deck, with a single electronically controlled de motor for its capstan and hub drives. It is a three-head machine, on which the program can be monitored directly from the tape as it is being recorded. A vernier bias adjustment on the front panel operates with two built-in test oscillators to allow the recording bias to be optimized for tape formulation.
A genuine off-the-tape monitoring system requires separate Dolby circuits for recording and playback functions so that both can be used simultaneously; the KX-1030 has this "Double Dolby" feature. It also has a "memory rewind"
that stops the tape automatically in rewind when the index counter returns to a previously set " 000 " reading, and a full mechanical disengagement and "autostop" at the end of the tape, in any operating mode. Separate front-panel switching is provided for three basic tape formulations: chrome, ferric, and ferrichrome. The bias and equalization are separately switchable (in addition to the vernier bias adjustment).

The Kenwood deck's control panel has a pale gold finish, with matching metal knobs, to match the appearance of other Kenwood components. The recorder's dimensions are about $17{ }^{\prime \prime} \mathrm{W} \times$ $61 / 2^{\prime \prime} \mathrm{H} \times 12^{3 / 3} \mathbf{4}^{\prime \mathrm{D}}(43 \times 16.7 \times 32.5 \mathrm{~cm})$, and it weighs $16.5 \mathrm{lb}(7.5 \mathrm{~kg})$. The suggested retail price is $\$ 400$.

General Description. The tape transport is located at the left side of the recorder, and the bottom-hinged cassette door has guide slots into which the cassette is loaded. The door can be removed easily for access to the heads. Most of the cassette is visible through a large window in the door. It has the usual array of mechanical "piano key" operating levers, located in a row below the cassette compartment. Unlike many cassette decks, the KX-1030 cassette door is not opened by pressing the stop key or any other control. Instead, pressing in the upper portion of the cassette door and releasing it allows the door to spring open (the word PUSH appears at its upper left corner). This is similar to the "touch latch" found on some cabinet
doors, which use no external hardware. In the KX-1030, the door cannot be opened unless the tape is at a stop.

A lever switch to the left of the door turns on the POWER to the recorder; below it is a stereo PHONE jack. Two large meters occupy the center of the panel with a red PEAK LED between them. Above the meters is the index counter and the MEMORY REWIND button, as well as a red RECORD light and a green dolby light. The recording level controls are below the meters. They consist of two concentric pairs of large knobs, one for the microphone inputs and the other for the line inputs. Slip-clutch couplings in each pair allow separate adjustment of recording levels in the two channels. To their right are lever switches for DOLBY and tape monitor functions (the latter connects the LINE outputs, in the rear of the recorder, to the source input signal or to the output of the TAPE playback amplifier). There is also a concentric pair of playback output level controls and a pair of MIC jacks for medium impedance dynamic microphones.

At the upper right of the panel are the two TAPE SELECTOR switches, providing separate bias and EQUALIZATION settings marked CHROME, NORMAL, and RESERVE (for ferrichrome tape). To the left of the BIAS switch are two small concentric knobs that vary recording bias separately for the two channels around the nominal values selected by the BIAS switch. Below them is a pushbutton switch marked osc.

To optimize recording bias for a specific tape, the machine is placed in a recording condition with the output set to maximum. The osc button is engaged, and the MONITOR switch is set to TAPE. The recorder's internal oscillators record tones of 400 Hz and $10,000 \mathrm{~Hz}$, alternately, in bursts of about one-second duration. The red rec light glows when the $10,000-\mathrm{Hz}$ tone is on, and is off when the $400-\mathrm{Hz}$ tone is being recorded. The meters display, alternately, the playback output from these signals. If bias is set correctly, they will play back at the same amplitude, and the meter readings will not change as the tones are switched. The quality of the tape (presence of dropouts, etc) may cause the higher frequency reading to fluctuate somewhat, but its average level should be the same as the $400-\mathrm{Hz}$ tone. If not, the bIAS vernier knobs are adjusted separately for each channel until the meter reading does not change as the tones are switched. If the $10,000-\mathrm{Hz}$ reading is higher than the $400-\mathrm{Hz}$ reading, the bias

Frequency response at two recording le vels using three tape formulations.
control is turned clockwise to increase the bias and reduce the high-frequency response; if it is lower, the knob is turned counter-clockwise to reduce the bias.

The "three head" configuration used in the Kenwood KX-1030 has a com-
bination record/playback head in which two electrically distinct heads, with separate and parallel gaps, are housed in a single case small enough to fit through the access hole in the edge of the cassette housing.

Product Focus

Two interesting features of the Kenwood KX-1030 contribute greatly to its usefulness as well as its performance, although neither is really exclusive to this machine. A combination record/playback head, with separate gaps in a common housing, has been used in a number of cassette recorders. It is a reasonable and economical alternative to a true threehead construction. The latter requires a miniaturized playback head to fit through an opening in the cassette that was never meant to receive a head, and is further complicated by the need to adjust the record head azimuth to match that of the playback head for every cassette used. This process is simplified by built-in oscillators and indicators in the few recorders using this system, but it is undeniably a more expensive route.

In the combination head, two separate heads are packaged in the same shielding enclosure. Their gaps are spaced as closely as possible to avoid the alignment errors due to tape skewing (a problem with the true three-head machines), although the need to provide a reasonable degree of signal isolation between them sets a limit to this. More important, the two head gaps must be precisely parallel, since any deviation from parallelism will severely limit the high-frequency response of the machine. The combination head, however, does share the most basic and important advantage of a threehead machine (other than its monitoring function), which is the ability to optimize the two gap widths for recording and playback functions. In theory, at least, this should give any properly designed
three-head recorder a wider frequency response, more headroom, and generally superior performance to a recorder with a single gap combination record and playback head.

The second feature of the $K X-1030$ is its bias adjustment system that makes it possible to match the recorder to any tape, using its built-in test and adjustment facilities. Although both bias and equalization should be adjusted for truly optimum performance, this is difficult and undesirable for a product aimed at a broad and mostly nontechnical market. Fortunately, one can achieve a first approximation of correct operation by a bias adjustment alone, given a suitable setting of the recording equalization response. Kenwood has taken the logical step of supplying two different recording signals, at middle and high frequencies, from built-in test oscillators. On the assumption that the recording equalization is correct, it is reasonable to expect that biasing a tape for equal response at both frequencies will tend to give it the flattest overall frequency response. To aid in doing that, what could be more logical than to use the recorder's own meters (since it can play back while recording) to confirm that this equality exists? Although the merits and limitations of this approach have been argued extensively, the results speak eloquently for themselves in the $K X-1030$. Unlike some of the purists among us, we would agree with Kenwood (for surely they are well aware of the limitations of their technique) that a partial cure for a problem is better than none at all.

Performance Specifications

Specification	Rating	Measured
Tape Speed Error	NA	+1.0\%
Fast Winding Time ($\mathrm{C}-60$)	80 s	72 s
Frequency Response (+3 dB)		
Normal	$35-15,000 \mathrm{~Hz}$	$36-16,500 \mathrm{~Hz}$
CrO_{2}	$35-18,000 \mathrm{~Hz}$	$35-17,000 \mathrm{~Hz}$
FeCr	$35-17,000 \mathrm{~Hz}$	$35-16,000 \mathrm{~Hz}$
Signal-to-Noise Ratio (Mfr. figures above 5 kHz)		
Normal	55 dB (Dolby off)	61 dB (A-wtd)
	65 dB (Dolby on)	67 dB (CCIR-wtd)
CrO_{2}	57 dB (Dolby off)	61 dB (A-wtd)
	67 (Dolby on)	67 dB (CCIR-wtd)
FeCr	NA	60.5 dB (A-wtd)
		67 dB (CCIR-wtd)
Harmonic Distortion	Less than 1.3% at 0 VU	0.5\% Normal
	(Norma!)	$0.7 \% \mathrm{CrO}_{2}$
	($\mathrm{NA}-\mathrm{CrO}_{2}$ and FeCr)	$1.1 \% \mathrm{FeCr}$
Wow \& Flutter	0.06\% Wrms	0.07\% Wrms
		$\pm 0.10 \%$ Wtd. Peak (DIN)
Input Sensitivity	77.5 mV Line	88 mV
(for 0 VU)	0.19 mV Mic	0.19 mV
Output Level (0 VU)	775 mV	$760-840 \mathrm{mV}$ (depending

Laboratory Measurements. The specifications of the Kenwood KX-1030 name the specific tape formulations used to establish its ratings. They are TDK SD (NORMAL), TDK SA (ChROME), and Sony Ferrichrome (reserve). We used these tapes to verify the machine's ratings except that, TDK SD having been discontinued, was replaced with a somewhat similar ferric tape, Scotch Dynarange

Because of the ease of adjusting the KX-1030 for any tape, we actually measured the record/playback frequency response with some 15 different tapes. The differences between them were minor and confirmed that the machine can be adjusted to give perfectly satisfactory results with almost any tape sold today.

The playback frequency response (NORMAL, 120- $\mu \mathrm{s}$) was measured with a TDK AC-337 test tape. It was within +1 ,
-2 dB over the $40-\mathrm{to}-12,500-\mathrm{Hz}$ range of the tape. The $70-\mu s$ response, measured with the Teac 116SP tape, was within $+1.5,-2 \mathrm{~dB}$ over the 40 to $-10,000-\mathrm{Hz}$ range of the tape. The record/playback frequency response, at a $-20-\mathrm{dB}$ recording level, was virtually identical for TDK SA and Scotch Dynarange tape. The recorder had a rather unusual configuration of low-frequency head contour response ripples, extending up to 400 Hz , but above that fre-
quency, the response was extremely flat, varying by less than 1 dB overall up to $15,000 \mathrm{~Hz}$ and beyond. At a $0-\mathrm{dB}$ recording level, the usual high-frequency tape saturation effect caused the response to drop off, so that it intersected the -20 -dB curve at about $12,500 \mathrm{~Hz}$.

To our surprise, the Sony Ferrichrome tape's response had a slight downward slope with increasing frequency above 4000 Hz , and its $0-\mathrm{dB}$ response curve showed noticeably greater saturation than the other tapes. Its overall numerical tolerances over the audio range were much the same as the others.

The Dolby-circuit tracking was outstanding. It exhibited less than 1 dB of difference between the frequency response curves made with and without the Dolby system at levels from -20 to -40 dB , up to 14,000 or $15,000 \mathrm{~Hz}$. Crosstalk between channels, measured with a TDK AC-352 tape, was -43 dB at 1000 Hz .

For a $0-\mathrm{dB}$ recording input, the required input was 88 mV (LINE) and 0.19 mV (MIC). The microphone input overloaded at a rather low 15 mV . The resulting maximum playback output was in the range of 0.76 to 0.84 volts, depending on the tape used. Distortion (third harmonic) was from 0.5% to 1.1%. (Dynarange gave the lowest distortion and Ferrichrome the highest.) The head-
room above 0 dB for a 3\% playback distortion level was between 5 and 7 dB . Noise levels are given in the table of performance data, and were consistent with the performance of today's better cassette decks. The noise increased by 4.5 dB through the microphone input, at maximum gain.

The meters read about 85% of their steady-state readings when driven with 0.3 -second tone bursts (this is somewhat slower than the VU standard, which requires a 99 to 100% reading under these conditions). The PEAK light began to glow at +5 dB , so that it is an effective indicator of the maximum safe recording level with any tape. Headphone volume was quite good, even with 200ohm phones, which cannot be driven to useful listening levels by the headphone outputs of many recorders.

The tape transport operated about 1% fast (a normal tolerance for a cassette deck). The flutter was 0.07% in a weighted rms measurement, and $\pm 0.1 \%$ in a DIN (weighted peak) measurement. The transport moved a C-60 cassette from end to end in 72 seconds.

User Comment. The Kenwood KX-1030 offers a combination of features and performance not commonly encountered in its price class. Although the three-head configuration, per se, makes little difference in the actual performance of the machine as compared to one with first-class combination record/playback heads, it does make it possible to optimize the recorder for any tape (within the limits of a bias-only adjustment). Lacking this feature, the user of a cassette recorder must use the specific tape for which his machine was set at the factory if he is to obtain the rated performance. This information is simply not available from many manufacturers, and is always subject to change without notice (or to obsolescence as new, improved tapes are developed).

When we recorded interstation FM tuner hiss at a level of about -15 dB and compared the playback to the input we could usually hear a trace of dulling at the highest frequencies. The effect was slight, to be sure, and could only be detected by a critical comparison to the original signal. We then trimmed the BIAS controls to minimize the audible difference, and found that an improvement was usually possible. In fact, this proved to be a more sensitive technique for setting the bias than using the recorder's own meters and test oscillators because we did not have to interpret the meter's fluctuating readings. That fluctuation, in
itself, however, is a clue to one of the major advantages of the Kenwood bias adjustment system. It is an ideal way to evaluate the homogeneity of a tape. All else being equal (or even somewhat unequal in respect to frequency response, etc), a tape with a steadier $10,000-\mathrm{Hz}$ output in this adjustment has fewer dropouts and is likely to make a better-sounding recording than a "flatter" tape with a more irregular output.

Of course, most people who use the $K X-1030$ will select a suitable tape and
set up the machine for it in the beginning. There will be no need for regular use of the bias adjustment feature, and the recorder can be used just like any ordinary machine (with the "plus" that one will always be able to hear the recording as it is made). In its overall listening quality, the $K X-1030$ is at least the equal of any other machine we've tested in its price class, as well as some at considerably higher prices. Its modest price for the performance it offers is made possible by the omission of a few refine-
ments, we'd judge. For example, the transport control keys are stiff, requiring appreciable operating pressure. The single-motor transport, though adequate to move the tape smoothly at $17 / 8 \mathrm{ips}$, cannot match the fast speeds provided by some 2 - or 3 -motor transports. But these shortcomings are more than made up for, we believe, by the useful and novel features of this machine. We especially like the ability to adjust bias optimally according to the tape used.

Realistic Optimus-10 Speaker System

> Two-way vented bookshelf system employs a passive radiatorformore efficient bass reproduction.

Radio Shack'sRealistic Optimus-10 "bookshelf" size speaker system features a twoway design in an efficient vented enclosure. Its $8^{\prime \prime}(20.3-\mathrm{cm})$ woofer operates with a $10^{\prime \prime}(25.4-\mathrm{cm})$ passive radiator to deliver an extended low-bass response claimed to be comparable to the response obtainable from an acousticsuspension design but at significantly higher efficiency.

The Optimus-10 measures $25^{\prime \prime} \times$ $153 / /^{\prime \prime} \times 105 / 8^{\prime \prime} \mathrm{D}(63.5 \times 39.1 \times 27 \mathrm{~cm})$ and weighs $45 \mathrm{lb}(20.5 \mathrm{~kg})$. The system is priced at $\$ 139.95$.

General Description. The effective crossover between active and passive cones in the system occurs at 60 Hz .

Therefore, the passive radiator operates principally at frequencies between 45 and 60 Hz . A small cone tweeter takes over at frequencies beyond 2500 Hz . No physical crossover network is used, since the natural rolloff characteristics of the drivers provide the necessary crossover action.

The system's nominal impedance is rated at 8 ohms and its power-handling capacity is rated at 75 watts. Although the tweeter's natural low-frequency rolloff supplies the crossover action, the driver is protected against damage from high-magnitude low-frequency signals by a series capacitor. A variable series resistor serves as a brilliance control that can be used to adjust the output of the tweeter over a $\pm 3-\mathrm{dB}$ range. The cone tweeter is driven by a $1^{\prime \prime}(25.4-\mathrm{mm})$ voice coil formed of aluminum wire.

The $8^{\prime \prime}$ woofer has a four-layer aluminum voice coil whose inductance helps to roll off its response beyond 2500 Hz . The woofer's vent is a $10^{\prime \prime}$ passive cone (instead of the usual hole or ducted port in the speaker board) whose mass and compliance have been selected to cross over its response above 60 Hz to the driven cone. The passive cone resembles a conventional $10^{\prime \prime}$ loudspeaker without a magnet or voice coil. As used in this speaker system, it is equivalent to a $9^{\prime \prime}(22.9-\mathrm{cm})$ diameter port at the end of a $41 / 2^{\prime}(1.37-m)$ duct. Since such a large duct system would obviously be impractical in a compact speaker system, the passive radiator is a much more practical means of obtaining the same acoustical effect.

A major advantage of this type of low-irequency radiator design is the high

Performance Specifications

efficiency it makes possible, as compared to conventional sealed acousticsuspension schemes. Although the driver is rated to handle up to 75 watts of program material, the manufacturer suggests that a 15 - or 25 -watt amplifier will adequately drive the system to produce good listening volume in a typical room, and amplifiers rated up to 100 watts can be used safely.

The brilliance control, together with a graphic display of its effect on the sys-
tem's response, is located behind the grille, where it is concealed from sight in normal use. The center of its range is indicated as the "flat" setting. The enclosure's black grille cloth is on a wooden frame and is held in place by plastic snap fasteners.

Connectors are located on the rear of the enclosure. They consist of a pair of screw terminals and a phono jack for easy connection to amplifiers and receivers fitted with phono-jack speaker

Tone-burst response (from left to right) 60,500 , and 5000 Hz .

Composite frequency response for two brilliance control settings.
outputs. The inside of the enclosure has a single sheet of $1 / 2^{\prime \prime}$-thick padding on its rear wall, in contrast to the typically heavier use of sound absorbent material found in most speakers.

Laboratory Measurements. With the brilliance control set to its center position, frequency response of the speaker system measured in the reverberant field of the room was smooth and generally flat, with a gradual slope beyond 7000 or 8000 Hz . The output varied by about $\pm 2 \mathrm{~dB}$ from 150 to 9000 Hz , and was down another 5 dB or so at $15,000 \mathrm{~Hz}$. The high-frequency response, measured both on-axis with the speaker and about 30° off-axis, was virtually the same in both cases, confirming the excellent dispersion characteristic of the tweeter.
The woofer's response was measured separately for the driven and passive cones, using close microphone spacing. After correcting for relative areas of both drivers, we combined their curves to form a single bass-response curve, which is equivalent to an anechoic measurement. We then joined this curve with the curve we obtained from our middle/ high-frequency response measurements. The resulting curve revealed a broad, smooth frequency response void of significant peaks and dips. The curve varied less than $\pm 3 \mathrm{~dB}$ from 30 to 8000 Hz before dropping off to -7 dB at $15,000 \mathrm{~Hz}$.
The brilliance control's maximum setting boosted output in the upper registers by as much as 3 dB and cut it by about 2 dB . Although the manual that came with the speaker system states that the brilliance control's effect is principally in the $10,000-$ to $-20,000-\mathrm{Hz}$ range, it actually controlled the output levels at frequencies starting at about 2000 Hz , as would be expected from the system's crossover frequency. With the control set at maximum, the system's overall response was $\pm 3 \mathrm{~dB}$ from 30 to $13,000 \mathrm{~Hz}$.
The system's impedance reached its minimum of about 8 ohms in the range between 100 and 300 Hz . It rose to 40 to 45 ohms at the two bass resonances of 26 and 66 Hz . Bass distortion, measured at a 1 -watt nominal input level, was less than 1% from 100 down to 40 Hz . It rose to 5% at 34 Hz and to 10% at 31 Hz . With a 10 -watt input, the distortion increased markedly, which is not unnatural, measuring 2% to 3.5% down to 40 Hz and 10% at 35 Hz .
The tone-burst response was good at POPULAR ELECTRONICS
all frequencies, and system efficiency was very high. We measured a $93-\mathrm{dB}$ SPL at a distance of 1 meter from the grille with the speaker system driven by one octave of random noise centered at 1000 Hz . This is about 3 dB better than the system's rated sensitivity. The difference is explainable by the fact that our measurement was made in a live room, while the rated sensitivity is based on the system's anechoic response.

User Comment. The speaker system sounded just as its frequency response curve suggests. Its sound is smooth and clean, although it lacks some of the "siz-
zle" that some speaker systems exhibit at the highest frequencies. We generally preferred to use it with the brilliance control fully advanced in our fairly absorbent listening room. In spite of the apparent loss of extreme high-end output, the speaker system certainly did not sound deficient in highs. Its overall sound was nicely balanced, and there was little or no midbass booming or heaviness, in spite of its very good deep-bass response.

We generally drove the speaker system(s) from medium-powered 50-to-80watt receivers, but we also operated it with a 200-watt amplifier with no prob-
lems. There is little danger of blowing out the system, since it produces a very high sound level with power inputs far below its safe limits. Hence, one's ears would balk at the sound level before the power level reached the danger point for the system.

The Optimus-10 should probably be compared to other speaker systems that carry higher "list" prices, since it is not usually discounted the way most other systems are. Accordingly, it can hold its own nicely in the $\$ 150$ to $\$ 200$ speaker system market. The Optimus-10 is, at the least, a very listenable system that's well worth auditioning.

Pioneer Model GX-5050 Car Stereo FM/AM Receiver

THE Model GX$5050 \mathrm{AM} /$ stereo FM car receiver, to which Pioneer Electronics refers as a "Supertuner," has an FM performance claimed to be the equal of a good home component tuner. In spite of its very compact size, the receiver has pushbutton tuning for five each AM and FM stations. Other features include switchable interstation FM noise muting, nonswitchable afc (automatic frequency control), automatic mono/stereo switching, and a high/low sensitivity switch for received signal conditions.

The audio amplifier section of the receiver is EIA rated at 8 watts output into 4 ohms. The tone control is concentric with the combination volume control and power on/off switch. It gives flattest response at its clockwise limit. The left-toright stereo balance control is concentric with the tuning knob.

The receiver is supplied with a frontpanel bezel that permits in-dash installation in a number of Ford and GM cars. The receiver measures $71 / s^{\prime \prime} \mathrm{D} \times 51_{4}^{\prime \prime} \mathrm{W}$ $\times 2$ " $\mathrm{H}(18 \times 13 \times 5 \mathrm{~cm})$ and weighs 3.1 AUGUST 1978
lb (1.4 kg). Its nationally advertised value is $\$ 149.95$.

General Description. As might be expected of such a compact receiver, the Model GX-5050 takes advantage of the space-saving qualities of IC's. The discrete FM front end has a FET r-f amplifier and bipolar oscillator and mixer. All AM and FM tuning is accomplished by varying inductances, where ferrite cores slide into the coil forms. There are no variable capacitors in the tuning system. The FM afc is applied through a Varactor diode.

The balance of the basic FM tuner and audio amplifier functions are performed by IC's. One IC is used for i-f gain, another for limiting and quadrature detection, two more for multiplex demodulation, and a final two for separate audio channel amplification.

Separate transistors are used for interstation noise muting and voltage regulation. (Although the receiver operates from a nominal 13.8 -volt dc supply, its allowable range is 11 to 16 volts, and all its circuits are designed to operate at a potential of roughly 9 volts. This poten-

Pioneer's in-dash automotive receiver provides high sensitivity, low distortion and excellent stereo separation.
tial can be obtained in a stable, regulated form with any rated input voltage.)

Surprisingly, the AM tuner section does not use the single IC "tuner on a chip" found in many home receivers. Instead, it employs four transistors and a number of passive components.

The AM/FM selection switch transfers the power supply bus to the selected tuner section and the diode switches that transfer the audio amplifier's inputs to the output of either tuner. It also transfers the mechanical pushbutton linkage to the coils of one tuner or the other. In spite of its very small size, the tuning assembly moves six cores as it is driven from the tuning knob.

The published specifications for the FM tuner include a $12-\mathrm{dBf}$ usable sensitivity and a $50-\mathrm{dB}$ quieting sensitivity of 14.3 dBf (1.1 and $1.4 \mu \mathrm{~V}$, respectively, into the 75 -ohm antenna input). The 63$\mathrm{dB} \mathrm{S} / \mathrm{N}$ specification is not quite what one would expect from a good home FM tuner, but it is more than adequate for the usually noisy environment of a vehicle. Other ratings include a $1.7-\mathrm{dB}$ capture ratio, $74-\mathrm{dB}$ alternate-channei selectivity (very good), $32-\mathrm{dB}$ stereo chan-

THD into 4 and 8 ohms.

Harmonic distortion at 4 ohms.
nel separation, and 0.8% and 0.95% distortion in mono and stereo. The frequency response is rated at 50 to $12,000 \mathrm{~Hz}$ at the $3-\mathrm{dB}$ down points.

Laboratory Measurements. Although we attempted to test the receiver as we would test a home receiver, some differences were unavoidable. This was particularly true in the audio section because it could be tested only through the FM tuner section and because it is rated by EIA rather than the usual IHF standards used for home hi-fi equipment.

We do not know the EIA standards for car radios offhand. The EIA standards for home-entertainment amplifiers allow power to be rated at 5% distortion at 1000 Hz and on a music power basis in which the supply voltages are maintained at their no-signal levels. This should give some indication of the fundamentally different approaches taken by the EIA and IHF.

Since we performed our measurements using IHF standards, we had no expectation of duplicating the published ratings for the receiver. Needless to say, there were many discrepancies in our test results when compared to the published specifications. We also used a fully charged 12 -volt automotive battery as our power source instead of the nominal 13.8 -volts normally found in a car's electrical system, which could account for a discrepancy of about 25% in output power measurements obtained versus the published rating.

With both channels driving 4 ohms and a mono signal applied via the antenna terminals, the output clipping power of the receiver measured 1.63 watts/

Frequency response and crosstalk.
channel. (Into 8 ohms, the clipping power was 1.02 watts/channel.) At low frequencies, the distortion rose appreciably, which caused us to elect to measure the distortion-versus-frequency characteristic at a 1 -watt output level into 4 ohms. (Through any reasonably efficient speaker, as would likely be used in a car, this power can produce a very considerable listening level.) From a maximum of 3.6% at 50 Hz , the distortion diminished to just slightly greater than 0.3% in the midrange and rose to 1% at
$15,000 \mathrm{~Hz}$. The $1000-\mathrm{Hz}$ distortion was 0.3% or less up to about 1 watt. It reached 1% at 1.8 watts into 8 ohms and 2.8% into 4 ohms. The audio frequency response could not be measured separately, because of the inaccessibility of the audio amplifier's inputs. Hence, it was included in our FM tuner response measurements.

The FM tuner section lived up to its "Supertuner" name, at least in those characteristics that are important in mobile service. The mono IHF usable sensitivity was 11 dBf , or $1.1 \mu \mathrm{~V}$. In stereo, it was set by the automatic switching threshold at $25 \mathrm{dBf}(5 \mu \mathrm{~V})$. The $50-\mathrm{dB}$ quieting sensitivity was $12 \mathrm{dBf}(1.1 \mu \mathrm{~V})$ in mono and $36 \mathrm{dBf}(18 \mu \mathrm{~V})$ in stereo. The respective distortion levels were 1.8% and 0.8%. The LOCAL/Dx switch reduced the sensitivity by 20 dB , which might be desirable when driving by a powerful FM station, to avoid overloading the tuner's front end. The FM tuner distortion (including audio distortion, but

Noise and sensitivity curve for the Model GX-5050.
at a fraction of a watt) with a $65-\mathrm{dBf}$ ($500-\mu \mathrm{V}$) input was 0.32% in mono and 0.68% in stereo. The S / N at a $65-\mathrm{dBf}$ input was about 67 dB in both modes.

The FM capture ratio was 1.37 dB . AM rejection was 63 dB at $45-\mathrm{dBf}$ (50 $\mu \mathrm{V}$) input and 57 dB at 65 dBf . Image rejection was about 50 dB . This was the only specification in which the tuner fell appreciably short of meeting its ratings; it is rated for 61 dB of image rejection. However, the alternate-channel selectivity was a very good 72.6 dB , and adjacent channel selectivity was 6.4 dB . The muting threshold was $9.7 \mathrm{dBf}(0.8 \mu \mathrm{~V})$, which was sufficient to suppress noise between stations without interfering with the reception of any station capable of giving satisfactory quality. The $19-\mathrm{kHz}$ pilot carrier leakage of -42 dB would be considered poor in a home receiver. where it could interfere with the operation of a Dolby circuit in a tuner or tape deck, but neither of these considerations apply in mobile service.
The FM frequency response, again including the audio amplifier section, with the tone control set to "flat," was down 2.5 dB at 45 and $15,000 \mathrm{~Hz}$. The stereo channel separation was excellent and very uniform. It was between 34 and 38 dB from 30 to 6000 Hz and still 29 dB at $15,000 \mathrm{~Hz}$. The AM frequency response was down 6 dB at 40 and 2200 Hz . The audio tone control rolled off above 500 Hz at a $6 \mathrm{~dB} /$ octave rate

User Comment. We operated the receiver on our bench from the storage battery, using a $30^{\prime \prime}(76.2-\mathrm{cm})$ clip-lead antenna and a pair of highly efficient, high-quality speakers. Although this could hardly be considered an ideal receiving situation, we were pleasantly surprised to find that we could receive 48 fully listenable stations, most in stereo, with excellent audio quality. We have no doubt that the receiver would perform admirably in a car installation. It is easy to tune, with just enough afc to make up for the lack of a tuning indicator but not enough to interfere with separating closely spaced signals

Although the FM dial scate is calibrated at only $4-\mathrm{MHz}$ intervals and is about $3^{\prime \prime}(7.6 \mathrm{~cm})$ long, it is usually possible to identify the major stations. The high sensitivity of the tuner complicates matters a little, since the dial is filled with signals

The receiver is a most impressive example of how much performance can be built into a very small and moderately priced package.

[^0]
Where should you start in your search for better sound?

At the beginning. With a new Audio-Technica Dual Magnet"' stereo phono cartridge.

Our ATI2XE, for instance. Tracking smoothly at 1 to $1-3 / 4$ grams, depending on your record player. Delivers smooth, peak-free response from 15 Hz to $28,0 \mathrm{C} 0 \mathrm{~Hz}$ (better than most speakers available). With a minimun 24 dB of honest stereo separation at important mid frequencies, and 18 dB minimum separation even at the standard high-frequency 10 kHz test point. At just $\$ 65$ suggested list price, it's an outstanding value in these days of inflated prices.

Audio-Technica

 cartridges have been widely-acclaimed for their great sound, and for good reason. Our unique, patented* Dual Magnet construction provides a separate magnetic systern for each stereo channel. A concept that insures excellent stereo separation, while lowering magnet mass. And the AT12XE features a tiny 0.3×0.7-mil nude-mounted elliptical diamond stylus on a thin-wall cantilever to further reduce moving mass where it counts. Each cartridge is individually assembled and tested to meet or exceed our rigid performance standards. As a result, the AT12XE is one of the great bargains of modern technclogy .. and a significant head start toward more beautiful sound. Listen carefully at your

Audio-Techniza
*U.S. Pat. Nos. $3,720,796$ and 3,761,647

THIN WALL
CANTILEVER
NUDE-MOUNTED $0.3 \times 0.7-\mathrm{MiL}$ ELLIPTICAL STYLUS =

A SS COMPETITIUE SSSTEM

YOU CAN OWN A VERSATILE
 6800 COMPUTER SYSTEM
 FOR AS LITTLE AS \$799.50!

MP-68/1 Computer Kit . $\$ 395.00$
CT-64 Terminal Kit (less monitor) $\$ 325.00$
AC-30 Cassette Interface Kit. \$ 79.50

You can add a 40 -column printer and a professional quality data terminal monitor for only $\$ 460.00$

PR-40 Printer Kit
$\$ 250.00$
MP-L Interface Kit
\$ 35.00
CT-VM Data Terminal Monitor $\$ 175.00$

You can expand to a full-scale personal computer system with dual disk drives for only $\$ 1,445.00$

MF-68 Dual Disk System Kit. $\$ 995.00$
MP-16 16K Memory (assembled) $\$ 450.00$
. . .OR buy the complete system at our special low price of \$2,595.00
YOU GET: A 20 K byte computer

- A true "stand alone" data terminal and monitor
- A 40-column dot matrix printer
- A dual drive 200 K byte disk system
- Disk BASIC with file handling

These are the same proven, reliable components used in our industrial and business systems. Why settle for the limitations of a so-called "personal computer" or hobby system?

Popular Electronics
 AUGUST 1978

A RISING

 HOMEENTERTAINMENT STAR!A detailed look at home VCR's-types and brands available, how they work, distinguishing features.

THE COMING of the home video tape recorder is being announced again, for at least the third time in 10 years. However, there is a difference this time. Consumers are actually buying the new machines. (About 200,000 recorders were said to have been sold in the U.S. during 1977, and more than twice that many are expected to be sold here this year.) What has made the difference now is that the prices for the new video cassette recorders (VCR's)which now have full color capabilityare in the reasonable price range of $\$ 1000$. The new machines are simple to load, thanks to drop-in tape cassettes.

Another difference between today's
successful systems and some of their unsuccessful predecessors is that the current crop of machines have built-in TV tuners. This eliminates the need for modifying existing TV receivers to feed programs to them. It also allows the system to tape one program while a different program is viewed. Timers, either built in or available as accessories, allow programs to be taped without human assistance. Classic movies, sporting events, and other forms of entertainment are now becoming available on prerecorded video cassettes, too.

You can also make your own "home movies" by plugging in a video camera. However, color cameras cost as much as, or more than, the recorders themselves, though camera prices are beginning to fall. And the cameras must be tied by cables to the recorders, so you lack the portability of a movie camera.

There are Differences. All the new VCR's have built-in r-f converters that feed signals to your TV receiver, usually on TV channel 3 or channel 4, whichever is unused in your area. (Channel 5-6 converters are available on special order for some models.) The cassettes all hold $1 / 2^{\prime \prime}(12.7-\mathrm{mm})$ magnetic tape, which can be played only in one direction. You do not, as with audio cassettes, flip the tape over to play the other side. But the similarity stops there.

There are three basic VCR systems on the market, all incompatible with each other. The tapes are available in three different types of cassettes. And they run at different speeds in the three VCR families (see Table opposite).

The first new-generation VCR to enter the U.S. market was the Betamax, developed by Sony and available or coming soon from Aiwa, Pioneer, Sanyo, Sears, Teac, Toshiba, and Zenith. Tapes for these VCR's are also available from Scotch and Ampex, and will be available from TDK next year. The Betamax tapes run at $4 \mathrm{~cm} / \mathrm{s}$ (1.57 ips) for one hour in the standard-play mode. Newer two-speed Betamax decks can play tapes for two hours at $2 \mathrm{~cm} / \mathrm{s}(0.79$ ips), with slightly narrower tracks. (Betamax decks operating only at the slower speed are also available now.) This means that the two-speed machines can play tapes made on the earlier, singlespeed models, but not vice-versa. Most Beta-format machines have names like "Betacord" and "Betavision," which makes them easy to identify.

The VHS system, developed and introduced by JVC, will also be marketed by Akai, GE, Hitachi, Magnavox, Curtis Mathes, MGA (Mitsubishi), Panasonic, Quasar, RCA, Sharp, and Sylvania. Tapes for these machines will be available from Fuji, 3M, and TDK. The cassette housing for the VHS tape is 30% larger than that for the Betamax. It runs for two hours at its higher $3.34-\mathrm{cm} / \mathrm{s}$ (1.3-ips) speed or for four hours at half speed.

The third competing VCR system is Quasar's Model VR-1000 "Great Time Machine" (not to be confused with Quasar's Model VH-5000, which is a VHS

$\begin{aligned} & \text { む } \\ & \text { वै } \\ & \text { ठ } \\ & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{5}{4} \\ & \frac{0}{3} \\ & 0 \\ & \frac{0}{6} \\ & \hline 1 \end{aligned}$	$\begin{array}{cc} 0 \\ 0 & 0 \\ \frac{0}{0} & \stackrel{0}{0} \\ \stackrel{0}{0} & \stackrel{0}{n} \end{array}$					$\begin{aligned} & \underset{U}{0} \\ & \text { d } \\ & \frac{0}{n} \end{aligned}$				$\begin{aligned} & \bar{W} \\ & \text { W } \\ & \frac{0}{n} \\ & E \\ & E \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { Z } \\ & \text { E } \\ & \text { O } \\ & \text { O } \\ & \text { D } \\ & \hline \end{aligned}$			\% 0 0 2
	in.	ips	cm / s	ft^{2}	m^{2}	ft/s	m / s	$\mu \mathrm{m}$	mm	mm	rpm	MHz	kHz	mm	cm^{3}	
Consumer VCR format :													688	$156 \times 96 \times 25$	374	Note 1
Betamax long-play	1/2	0.8	2.0	9.8	0.9	22.6	6.9	29.2	1.05	74.5	1800	-----	--	$156 \times 96 \times 25$	374	Note 2
VHS standard-play	$1 / 2$	1.3	3.3	16.4	1.52	19.0	5.8	58	1.0	62	1800	3.4-4.4	629	$188 \times 104 \times 25$	489	Note 3
VHS long-play	$1 / 2$	0.7	1.67	8.2	0.8	19.0	5.8	35	1.0	62	1800	3.4-4.4	629	$188 \times 104 \times 25$	489	Note 4
VR-1000 (VX-2000)	$1 / 2$	2.1	5.2	25.6	2.4	29.8	9.1	48	0.4	48	3600	3.1-4.6	688	$213 \times 146 \times 44$	1368	Note 5
Institutional \& industrial:																
V-Cord H1	1/2	2.9	7.4	36.4	3.4	25.4	7.7	60	1.0	81.3	----	3.1-4.3	688	$156 \times 108 \times 25$	421	
V-Cord (skip-frame mode)	-	1.5	3.7	18.2	1.7	...-	---	-..	1.0	81.3	---	--- --	---	$156 \times 108 \times 25$	421	
U-Matic	$3 / 4$	3.75	9.5	70.3	6.5	33.7	10.4	85	0.8	110	1800	3.8-5.4	688	$222 \times 140 \times 32$	995	
ElAJ open reel	$1 / 2$	7.5	19.1	93.6	8.7	36.4	11.1	110	1.0	115.8	3.1-4.5	767	-..-.	
Audio recorder formats:																
Compact cassette	$1 / 7$	1.88	4.8	3.5	0.33	1.88	4.8	none	0.5	none	none	none	none	$100 \times 64 \times 12$	77	
8-track cartridge	$1 / 4$	3.75	9.5	5.9	0.54	3.75	9.5	none	0.5	none	none	\cdots	...	$140 \times 100 \times 19$	266	
Elcaset	$1 / 4$	3.75	9.5	11.7	1.1	3.75	9.5	none	1.0	none	none	--- ---	---	.-. .-.	--	
71/2 pos reel	1/4	7.5	19.0	23.4	2.2	7.50	19.1	none	1.0	none	none	\cdots	\cdots-.	---	

Note 1: Video S/N: 43 dB ; Resolution (lines): $250 \mathrm{~B} \& \mathrm{~W}, 240$ color; audio response: $50-10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N} 40 \mathrm{~dB}, 3 \% \mathrm{HD}: \mathrm{Play}$ time: 30,60
Note 2: Video $S / N: 45 \mathrm{~dB}$; audio response: $50-8000 \mathrm{kHz}$; Play time: 60,120
Note 3: Video S/N: 45 dB ; Resolution (lines): $300 \mathrm{~B} \& \mathrm{~W}, 240$ color; audio response: $40-10,000 \mathrm{~Hz}, \mathrm{~S} / \mathrm{N} 43 \mathrm{~dB}$: Play time: 60,120
Note 4: Play time: 60, 120 minutes
Note 5: Play time: 60, 120 minutes
quency range down to only about 2.5 or 3 octaves.

Frequency-modulating the luminance signal makes it relatively insensitive to noise and dropouts since the constantamplitude signal fully saturates the tape. At the same time, the high-frequency luminance signal serves as an ac bias for recording the chroma signal. This still leaves the problem of recording frequencies far higher than any in the audio range. The culprit is the short wavelengths resulting from the high frequencies, as shown in Fig. 2. The tape's motion past the heads can be speeded up to lengthen any frequency's recorded wavelength to make recording easier. But as tape speed is increased, so also is tape consumption. Narrowing the head gaps (to about 0.02 mil), applying
equalization, and employing other techniques certainly help, but higher head-to-tape speeds must still be used to solve the problem.

It takes a bit of trickery to increase the tape-to-head speed while maintaining an economical reel-to-reel tape consumption. This is accomplished by having the tape heads move, too. This is done with a rotating head drum around which the tape is wrapped during record and playback, as shown in Fig. 3. This allows tape-to-head "writing" speeds of 114 to 358 ips , using tape speeds of only 0.7 to 2.1 ips !

Video is transmitted in discrete "fields". (Two fields, one with odd and
the other with even lines, interlace on the screen of the picture tube to form each complete "frame" of video information.) Since there is a natural break after every field, home video recorders usually record each field as a separate track that runs diagonally across the tape, as in Fig. 4. The drum is, therefore, angled slightly to the tape path to make the diagonal tracks. Each track is a portion of a helix; hence, this track arrangement is called "helical scan." Two other tracks are recorded by stationary heads along each edge of the tape-an audio track along the upper edge and a control track along the lower edge, which synchronizes the drum in playback so that each video head will "read" its proper track.

Audio track widths are 1.0 and 1.05 mm in the VHS and Beta formats, respectively. These tracks could probably be split in two for stereo or bi-lingual use, as is now done with the $0.8-\mathrm{mm}$ au-

Sony Betamax SL-8200.
JVC Vidstar (VHS).

Fig. 1. Video signal spectrum of typical VCR.
Luminance signal is recorded as constant-amplitude AM.
dio track of the U-Matic system. The $0.4-\mathrm{mm}$ track of the VR-1000, however, would allow less successful double tracking. (For comparison, stereo sound cassettes have $0.53-\mathrm{mm}$ tracks.) Both Betamax and VHS specify audio frequency ranges of $50-10,000 \mathrm{~Hz}$ at their higher speeds (about equivalent to audio cassette speed), with signal-to-noise ratios of 40 and 43 dB , respectively. This may prove inadequate for the full-fidelity TV sound now transmitted by networks and PBS (up to $15,000 \mathrm{~Hz}$).
Another way to conserve tape is to use very narrow tracks of about 29 to 58 micrometers (1.2 to 2.3 mils) wide. This is only about one-tenth the width of a stereo sound track on a cassette tape. Under these conditions, crosstalk can become a severe problem. One way to avoid the problem is to leave blank "guard" bands (Fig. 5A) between adjacent tracks, as is done with audio and earlier video recorders. But this wastes tape area. Hence, the Betamax and VHS systems omit the guard bands, relying on differences between adjacent tracks to reduce crosstalk. (Fig. 5B)

One such difference relies upon the "azimuth" recording method. Here, the angle between the head gap and its path along the tape is offset slightly from the usual 90°. The two heads are offset in
opposite directions; $\pm 7^{\circ}$ in Betamax and $\pm 6^{\circ}$ in VHS recorders. At the high frequencies of the luminance signal, the 14° or 12° "misalignment" between the playback head and the crosstalk signals from the neighboring tracks greatly reduces the head's pickup of those undesired signals. (In the single-head

Fig. 2. Tape head output peaks when wavelength (λ) is $2 X$ head gap width (g), drops to 0 when both are equal.

Quasar Model VR-1000, of course, this technique cannot be used. It uses guard bands instead.)

The lower frequencies and longer wavelengths of the chroma signal are less sensitive to azimuth differences. Therefore, another way of reducing crosstalk must be used. Here, the electrical phase of the recorded signal on adjacent tracks is changed so that phase cancellation can be used on playback. Phase changes are based on horizontal sweep periods so that crosstalk on adjacent scan lines will cancel out and not be visible on the screen.

But crosstalk is not the only problem caused by the narrow video tracks. There is also the problem of noise. This becomes worse in the extended-play machines, whose track width is only about half that of the "normal-play" Betamax and VHS systems. Both systems therefore incorporate nonlinear pre- and de-emphasis systems, somewhat similar in principle to Dolby noise-reduction. Extra high-frequency pre-emphasis is

Villencolor cameras. now costly, promise to drop in price.
added to the luminance signal during long-play recording. But, as in the Dolby system, this pre-emphasis is reduced when the high-frequency amplitude is already sufficient to override the noise. If the pre-emphasis were not reduced for strong high-frequency signals, the tape would be overmodulated. The playback de-emphasis circuit is also nonlinear, of course. Sony claims that this noise reduction is actually greater than the noise increase caused by the narrower track. In fact, they specify a signal-to-noise ratio 2 dB better at its slower than at its faster speed.

In playback, synchronizing the head drum with the tape so that each head scans its proper track correctly requires the special control track mentioned above. This is usually a $60-\mathrm{Hz}$ squarewave signal. During recording, pulses
derived from the $60-\mathrm{Hz}$ vertical sync pulse at the beginning of each TV field are recorded on this track. Then, during playback, this sync pulse is used to control the speed of the drum and tape transport (Fig. 6). It is also used to insure that the switchover from one head to the other occurs when it would not be visible on the screen. The head drum is controlled by a feedback servo system, usually with a manual "tracking" adjust trimmer in the servo loop to "fine tune" playback for tapes recorded on another machine or for stretched tapes. This is standard practice in video recorders, but it is important in the new home VCR's, where tracks are so narrow.

The use of narrow tracks can cause dropout problems. Dirt and minute tape imperfections that momentarily disturb tape-to-head contact cause these dropouts, which are seen as short streaks on the TV screen. Dropout-compensation circuits are used to combat this problem. A typical circuit stores each line in a delay circuit, where it can be used to substitute for the next line should a dropout occur. Up to three or four sequential lines can contain the same information before the viewer notices that something is amiss.

Threading the Tape. Since the tape inside the cassette must wrap around the head drum-just over half way in the two-head Betamax and VHS systems, and all the way in the Model VR-1000-fairly complex tape paths must be used, Most complex of these is Betamax's (Fig. 7A), a simplification of the "U-load" system used in professional U-Matic cartridge machines. Small arms in the transport pull the tape out from the cassette and wrap it around the head drum, audio and control-track heads, and several tape guides.

The VHS system's "M-load" scheme is simpler (Fig. 7B). Here, the tape is

Fig. 3. Tupe on rotating head drum allows second head to write second field as first head completes recording its field in this half-urap helical scan format.

Fig. 4. Head drum axis is tilted so that video heads write diagonal tracks. Audio and control tracks are recorded by stationary heads.

Programmers are available (Panasonic shown) that can be set to automatically select channels and times for a week's recordings.

Fig. 5. Blank bands between tracks in early video recording (A) prevented crosstalk. Today's VCR's (B), except Quasar VR-100, inclime video heads in opposite directions to eliminate blank areas.
drawn almost straight out of the cassette at two points. Then it is wrapped halfway around the head drum.

The "Alpha-wrap" system employed in Quasar's Model VR-1000 is the simplest of all (Fig. 7C). The necessarily higher speed of the single-head drum permits the drum to be smalle: for a given "writing" speed. Also, the faster tape speed requires more tape for the same running time and, thus, a larger cartridge. The small drum can easily fit inside the large cartridge. In loading, the cartridge is simply lowered over the drum. No arms are required to pull tape from the cartridge because the tape is already in its wrap position. The tape's full wrap around the head drum resembles the Greek character "alpha" (α), hence the origin of its name. The Mode! VR-1000's cartridge has another difference: its two tape hubs are arranged one above the other rather than side-byside, as in Betamax, VHS, and audio cassettes.

Tape lengths vary. For the Betamax, there are tapes that run for 30,60 , and 90 minutes at standard-play speed or 60,120 , and 180 minutes at the longplay speed. In addition, an accessory changer with a two-cassette capacity may become ravailable to effectively double these times, with a break of less than 15 seconds for the change cycle. VHS cassettes are available now in lengths running 60, 120, and (later) 180 minutes at normal speed and twice

Fig. 6. Vertical syne signal on control track controls playback motorspeed so video heads scan correct video tracks.

Here's an example (Quasa. $V R-1000$) of a video cassette recorder's control layout.

these times at slow speed. The singlespeed Model VR-1000's cartridge offers either 60 - or 120 -minute lengths.

What to Look For. The home video casserte recorders on the market at this writing offer basically similar features. But there are some differences. First is the matter of recording time and tape cost. There's very little on the air that
runs more than two hours (and 3-hour cassettes are coming for the 2 -hour machines), so longer recording time may or may not be a factor to consider. However, recording at a slower speed does lower tape cost, which almost certainly will count in your decision. Two-speed machines will also be more compatible with other video recorders than will a one-speed machine. On the other hand,
two-speed decks cost more (though the tape savings should take care of that). Decks operating only at the higher speed may have better picture quality, too, because of their wider track. (This will not be true when playing tapes made on a two-speed machine because the wider-track head will "read" some of the random noise between the narrow tracks.) When it comes to judging pic-

The most popular VCR application is automatic taping of programs you'd miss because you're away, busy, or even watching another channel. But with the addition of a video

HOW VCR FORMATS WORK

Fig. 7. Various ways of video-tape passage through
$V C R$ machine: (A) Betamax's modified " U-load;" (B) simpler
"M-load"used by VHS; (C) "Alpha-wrap"on Quasar's VR-1000.
ture quality, you may have trouble spotting differences when looking at a small screen. If you want to be sure you get the best possible picture, try to find a store that uses a large-screen TV projection unit for its VCR demonstration.

In comparing VCR prices, check whether the timer is included in the price or not-it always is on models whose timers are built-in, but external timers may or may not be included in the price. You might prefer to get a unit without a timer if one of the new "programmer" units (which change channels as well as turning the set on and off at present times) has been announced for that VCR. Such a programmer makes a 4hour recording capacity more worthwhile, too, as you can then record several programs on one tape. This can be done even if they're on different channels with time-gaps between them.

There are differences in weight and size, too-ranging from the Quasar VR-1000 ($221 / 2^{\prime \prime} \times 16-1 / 8^{\prime \prime} \times 81 / 2^{\prime \prime}, 44 \mathrm{lb}$.) to the compact JVC "VidStar" (17-7/8" x $\left.13-15 / 16^{\prime \prime} \times 5-13 / 16^{\prime \prime}, 30 \mathrm{lb}\right)$.

So, too, are there differences in tape cartridge prices and local availability. Depending on brand and tape length, a blank cartridge could cost anywhere from $\$ 13$ to $\$ 28$. Prerecorded movie prices retail from $\$ 30$ and up.

In Closing. In addition to the details given above, different manufacturers emphasize special features for their VCR's. These include audio dubbing, tape counters, a pause control, and a "dew" indicator and lockout circuit. Several VCR's, for example, contain amber lights that come on when there is excessive moisture in the area around the rotating drum. When this occurs, the drum will not rotate, in which case, the power must be left on until the moisture evaporates and the indicator extinguishes. Quasar's VR-1000 has a heater to accelerate evaporation.

Home VCR's have reaily been on the market only since 1977 in any quantity. So we can be fairly certain that advances and changes will occur as the market and product matures. For example, JVC has just introduced a varia-ble-speed VCR that features stop-frame and slow motion. Also, portable video tape recorders show promise of being marketed. And, if camera prices decrease appreciably, one can take advantage of the "home movies" capability of VCR's, which costs only 20 cents a minute vs. $\$ 3$ a minute with photo equipment.

BUILP A DICITAL DARKROOM timer

A solid-state precision interval timer to control an enlarger or other time-powered device.

Fig．1．Schematic diagram．PMOS clock chip IC1 counts 60－Hz pulses and produces seven－segment and BCD outputs．
display indicates elapsed time，and is useful when dodging or burning－in small areas of a print or when timing multiple－ chemical processes．The display is rath－ er small and not too bright，so it won＇t affect most black－and－white printing． （For film processing or work involving very sensitive paper，a deep red filter can be placed over the display．）

Two ac power sockets are mounted on the project enclosure，one for an en－ larger and the other for a safe－light．The timer employs a three－position toggle switch labelled focus／off／time．In the focus position，the enlarger＇s power socket is energized．This allows the user to install a red filter under the enlarger lens and adjust the focus without expos－ ing the photographic paper．In the time position，a panel－mounted pushbutton switch or optional footswitch resets the circuit and initiates the timing interval．In the OFF position，power is removed from the timer，the enlarger，and，at the build－ er＇s option，the safelight．

Of course，the timer can be used in many applications outside the dark－ room．As is，it can function as a delayed turn－off switch for a radio，portable tele－ vision，or a small lamp．When connected to an outboard relay or thyristor，the project can power a large television re－ ceiver，an audio system，home lighting， or even a coffee pot！

About the Circuit．A schematic dia－ gram of the timer is shown in Fig．1．The
heart of the project is $I C 1$ ，a National Semiconductor MM5309 full－function PMOS clock chip．The MM5309 has multiplexed seven－segment and binary coded decimal（BCD）outputs as well as a reset input．These features make the IC ideally suited for use in this project．

Momentarily closing RESET／START switch $S 4$ causes C4 to apply a nega－ tive－going pulse to pin 16，the RESET in－ put of IC1．Upon receipt of this pulse， the clock chip resets its counters to $00: 00: 00$ ．The ac waveform at the sec－ ondary of T1 is sampled by R26，recti－ fied and level－shifted by D18，D19，and R27．The resulting $60-\mathrm{Hz}$ pulse train is applied to pin 19，the timebase input of IC1．
The clock chip counts the pulses and produces multiplexed seven－segment （pins 6 through 12）and BCD（pins 2 through 5）outputs．The seven－segment outputs are connected via current－limit－ ing resistors R6 through R12 to the seg－ ment enable lines of DIS1，a nine－digit， calculator－type LED display．Of the nine digits in the display only three are used． Driver transistors Q1 through Q3 inter－ face the appropriate digit enable outputs of the clock chip and digit enable lines of the display．
The BCD outputs of the clock are rout－ ed to one set of inputs of a digital com－ parator comprising the four exclusive－ OR gates，a diode OR gate composed of D1 through D4 and R13，and NAND gate IC3A．The other set of comparator

PARTS LIST

（ 1 －0）（0） $5 \mu \mathrm{~F}$ dinc ceramic
C2，C4．C5．C7，Cx－0．1－$\mu \mathrm{F}$ dinc ceramic
C3－5－ 3 F ，12－volt clectrolytic
C6－（1） $111-\mu \mathrm{F}$ dise ceramic
（U－16）0 $\mu \mathrm{F}$ ，16－ヶoh electrolytic
C10－1001－$\mu \mathrm{F}$ ． 16 － 10 olt electrolytic
D）through D20－ 1 N914 signal diode
D21 through D25－INA（k）I rectitier
D）SI－9－dipit common－cathode calculator display（National Somiconductor No NSN 198 or equivalent）
ICI－MM5309N PMOS digital cloch chip－
（National Semicondactor）
1C2－SN7＋86 quad exclusive－OR gate
IC3 SN74lotriple three－input NANDgate
ICt SN7474 dual D－type flip－flop
105－SN7＋00 yuad 2－mput N＇AN D gate
IC6－1 M340T－5．05－volt regulator
11－RCA phono jack
J2．J3－Ac powersocket
K1 Spdi 12volt relay（Sizma No．78RFEL－
12DC or equsalent
Q1．Q2．Q3－2N3906 pnptransistor
Q4－2N3904 npatransistor
The following are $1 / 4$－wall． $5 \% / \%$ tolerance car－
bon－composition or film resistors：
RI—330，（M0）ohms
R2 through R5－750（）whms
R6 hrough RI2－330 ohms
RI3－680 ohms
RIA 220）ohms
R15 through R21－4700 ohms
R22－22．（H0日（6mm
R23．R24－1000 ohm：
R25－10．（K）0 ohms
R26－100．000 ohms
Rこ7－I megohm
SI，S2．S3－Thumbwheel switches with BCD butput．
St－Normally open momentary contact push－ button sulteh
S5－Spat togele swith
S6－－Spdt toggle suitch
71－18－solt． 150 －mA center－tapped trans－ former（Triad No．FIolXP or equivalent
Minc－Printed circuit board，IC sockets or Molex Soldercons．pr standoffs．suitable enclosure，hookup wire．line cord．strain re－ lief．mise harduare，solder，ets．
Note－The following are atailatle from Cali－ forniat Industrial．Box 3097 ．Torrance．CA 90．003：Complete kit less enclosure（No． DTK）．$\$ 3+95$ ：aluminum／hardwood cabi－ net（No．DTCAB），\＄12．95；etched and drilled printed circuit board（No．DTPC）． \＄7．95：9－digit display（No DTDIS），\＄1．39： Spdi I2－volt relay（No．I）TRYS）．\＄1．39： thumbuheel switches with BCD output． （No．DTS 1 ），$\$ 1.39$ each（three required）． Calitornia residents please add sales tax． Orders accompanied by check or money or－ der will be shipped postpaid within the U．S A．

Fig. 2. Full-size etching and drilling (A) and parts placement (B) guides for a suitable printed circuit board.
inputs receives the $B C D$ outputs of thumbwheel switches S1, S2 and S3. Because the BCD outputs of the clock are multiplexed, those produced by the
thumbwheel switches must be timemultiplexed in a synchronous manner.

This is accomplished by connecting the common (C) switch lugs to the dis-
play driver transistors $Q 1, Q 2$, and $Q 3$. When, for example, the BCD equivalent of the first time digit is being applied to the comparator, Q1 simultaneously acti-

vates the appropriate display digit and thumbwheel switch S1. Diodes D5 through D16 are used to isolate the BCD outputs of the inactive switches from those of the thumbwheel switch activated at any given instant.

The digital comparator generates an output pulse each time the BCD output of the clock chip matches that produced by the corresponding thumbwheel switch. Because all the BCD numbers produced by both the clock chip and the thumbwheel switches are not available simultaneously (again, due to multiplexing), some means of "remembering" the coincidence pulses is required. This function is performed by a memory or latch comprising two D-type flip-flops (IC4A and IC4B), several NAND gates, and an RS flip-flop formed by two crosscoupled NAND gates (IC5C and IC5D).

The first D flip-flop is set when the most significant BCD number generated by the clock chip is the same as that generated by S1. Similarly, the second flip-flip (IC4B) is set when the BCD output of $S 2$ matches the next-most significant BCD number generated by the clock chip-only if IC4A has already been set. This is so because the Q output of IC4A is connected to the CLEAR input of IC4B, whose PRESET input is tied to +5 volts. Therefore, the Q output of

IC4B will be held low as long as that of IC4A is low.

If the least significant $B C D$ number generated by the clock chip matches the BCD output of S3 and the two D flipflops have been set, the RS flip-flop formed by IC5C and IC5D will be set. Thus, when the elapsed time in BCD form equals the three BCD numbers generated by S1, S2 and S3, the RS flipflop changes state and deprives relay driver Q4 of base current. The transistor then turns off and deenergizes the relay, removing line power from J 2 , the enlarger power socket. If the safelight power socket $(J 3)$ is connected using the " A " wiring (see schematic), power will be removed from it when the relay is energized. If $J 3$ is " B " wired, the relay will have no control over the flow of power to the socket. The safelight will remain powered no matter what position focus/OFF/TIME switch S6 is in, or whether K1 is energized or not.

The RS flip-flop is also used to control the application of the $60-\mathrm{Hz}$ timebase to the clock chip by means of a biased diode network (D18, D19, D20 and R27). When the flip-flop is reset, $60-\mathrm{Hz}$ pulses with high and low levels sufficient to drive the clock chip are applied to pin 19, the chip's timebase input. After the timing interval has elapsed, however, IC5B

Fig. 3. Assembled timer removed from its enclosure shows how the display board mounts above main board. Cube at left rear is relay.
changes state and the dc level at the cathode of D18 shifts so that the $60-\mathrm{Hz}$ pulse train can no longer trigger IC1 The clock chip no longer counts and the display is frozen at a three-digit number which matches the setting of the thumbwheel switches. The setting of S5 determines the range of the timer-either hours/minutes or minutes/seconds.
Transformer T1, diodes D22 through D25 and electrolytic capacitors C9 and C10 comprise a bipolar, full-wave power supply which produces ± 12 volts dc. The relay requires +12 volts, and the clock chip's $V_{D D}$ terminal -12 volts. A third supply voltage, +5 volts, is required by the TTL IC's. Also connected to +5 volts is the $V_{S S}$ terminal of the PMOS clock chip. This allows the chip to drive the TTL IC's directly with no need for level shifting. Voltage regulator IC6 derives the required +5 volts from the +12 -volt supply. Capacitors $C 7$ and C8 ensure the stability of the regulator IC and keep noise off the +5 -volt line.

Construction. The use of a printed circuit board will simplify project assembly. Etching and drilling and parts placement guides for a suitable board are shown in Fig. 2. All components except the power transformer, switches S4, S5 and S6, the power sockets and jack J1 mount on the circuit board. Assembly is straightforward, but here are a few hints that will save you some time.

Begin by mounting the jumpers and fixed resistors on the pc board. Save the cut-off resistor leads to mount the display. Note the position of R24 relative to that of IC5. If this IC is to be soldered directly to the board (which is not recommended) or mounted via a standard DIP socket, mount R24 on the foil side of the board. However, if the IC is installed using Molex Soldercons, R24 can be mounted on the component side. The resistor will sit in the "channel" formed by the Soldercons, which will also provide sufficient ciearance between the bottom of the IC package and the top of the pc board to accommodate the body of the resistor.

Next, install the silicon diodes, using the minimum amount of heat consistent with the formation of good solder joints. Excessive heat can destroy delicate semiconductors like diodes, transistors and IC's. Also, avoid using too much solder when making a connection. Otherwise, solder bridges between adjacent foil areas might be formed inadvertently. Semiconductors and polarized capaci-
tors must be installed with due regard to pin basing or polarity. Be sure that the diodes are installed so that their banded ends (cathodes) are positioned as shown in Fig. 2. Diodes D18 and D19 must be mounted vertically. Install D18 so that its cathode is down (banded end nearest the board) and D19 so that its cathode is up. Connect the two remaining leads together

The capacitors can now be installed, paying close attention to the polarities of C3, C9 and C10. The remaining capacitors can be installed either way as they have no polarity. Using sockets or Molex soldercons, mount the TTL IC's, but do not mount the clock chip yet. (That should be the last step of the assembly procedure.) Also, install the digit driver transistors oriented as shown in Fig. 2.

The switches and display can be connected to the pc board using Figs. 3 (photo) and 4 as guides. The layout and pinout details of the display are shown in Fig. 4. No connections are made to holes $1,2,4,5,6,14,16$ and 18 , the decimal point anode and the cathodes (digit enable lines) of the three left- and right-most digits of the display. Either straight pins or the clipped resistor leads can be used to support the display (see Fig. 3). The supporting leads or pins should first be soldered to the display pads and then, after properly positioning the display, soldered to the row of square pads on the main circuit board just above digit driver transistors Q1, Q2 and Q3. Clip off any excess lead length.

Connections between the pc board and those components not mounted on it are denoted in Figs. 2 and 3 by letters enclosed by hexagons. For example, a length of hookup wire should be connected to pad A on the board (normally open contact of K1) and the focus lug of S6 and one side of J2. The safelight outlet, J3, can be wired so that it is not powered when the enlarger is (A) on or so

FREQ OUT. FOR LESS.

Introducing CSC's new
Mini-Max. It brings down the
cost of counting up the frequency for CB-ers, hams, computer enthu siasts. audiophiles ...just about any engineer. technician or hobbyist will find it indispensable.
It s mini"-sized, too-a pocketable $3 \times 6 \times 1 / 2$ inches But when it comes to performance. Mini-Max means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz , with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 ppm $/{ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$ Completely automatically. Advanced LSI circuitry with a crystal controlled timebase provides precise frequency readings on a bright, six-digit LED display with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Nvax is versatile too You can connect it directly to the circuit under
test. or use its matching mini antenna for easy RF checking. Either way the input is protected against overload to 50 V (100 V below 1 KHz).

Mini-Max is as inexpensive to use as it is to own An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation, and you have the flexibility of a battery eliminator for AC operation. For increased versatility, there's a complete line of accessories. including standard clip-lead cable and mini antenna eliminator and carrying case are optional

CSC s new all-American made Mini-Max is everything you need for highly-accurate checking of frequencies up to 50 MHz . At a price that will Freq you out. Order today Call 203-624-3103. 9a m 5p.m. Eastern Standard Time Major credit cards accepted Or see your CSC dealer. Prices slightly higher outside U.S A.

CONTINENTAL SPECIALIIES CORPORAIION

70 Fulton Terrace, Box 1942, New Haven. CT. 06509, 203-624-3103 TWX 710-465-1227
WEST COAST. 351 California St., San Francisco, CA 94104. 415-421-8872 TWX 910-372-7992
GREAT BRITAIN. CSC UK LTD., Spur Road, North Feltham Trading Estate, Feltham, Middlesex, England. 01-890-8782 Int'। Telex, $851-881-3669$
CANADA Len Finkler Ltd: Ontario
CIRCLE NO 9 ON FREE INFORMATIOS CARD

ALTHOUGH there are no industry statistics on the percentage of personal microcomputer ($\mu \mathrm{C}$) sales that are made to businesses, computer store owners generally agree that more than 50% of their local saies are for business purposes. [Among Popular ElectronICS subscribers, a recent study revealed that primary uses are: business, 37.1%; home, 31.3%; both, 29.6%. This includes computer store and mail-order purchases. And "business" here combines commercial, industrial and engineering uses.]

Lower cost is the major reason for a business man to choose a "personaluse" $\mu \mathrm{C}$. A typical business $\mu \mathrm{C}$ system with 32 kilobytes of memory, dual floppy disks, and a hard-copy terminal can be bought for about $\$ 6000$. A similarly configured commercial $\mu \mathrm{C}$ system can cost as much as several times that price.

Differences in Price. There are several reasons why a commercial $\mu \mathrm{C}$ system (that is, business systems not sold through computer stores or by mail) costs more than a personal $\mu \mathrm{C}$ system. The major ones include small-industry pricing methods, lower sales overhead, less-stringent quality control measures, and less investment in software. Let's examine these in greater detail.

The personal $\mu \mathrm{C}$ industry was originally created around the S-100 bus. (The S-100 bus, as are other types, is a

More and more "home" computers are being used for commercial purposes. Here's why.
set of electrical, mechanical, and logical specifications for the interconnections between the various plug-in subassemblies that transmit or receive data over the bus.) At this writing, there are more than 30 companies manufacturing computers using the S-100 bus and more than 150 companies with plug-in board subassemblies compatible with the $\mathrm{S}-100$ bus. There are also some companies with S-50, IEEE and other bus systems. Since the competition centered on the S-100 bus and others is fierce, prices for personal-use computers and subassemblies are quite close to the lowest they can be set for the companies to realize a profit. Competition, therefore, tends to hold down prices for a personal-use computer, whether used at home or by the businessman.

Another reason for the price difference is the method of marketing used. A traditional commercial computer company might make several calls on a customer at the customer's location before making a sale. Following the sale, the customer will probably require assistance in using the system. These extra services cost money and raise the manufacturer's operating overhead.

A personal-use computer, in contrast, is marketed in a retail store where a salesperson's time is used much more efficiently, or by mail. Both methods of selling low-cost $\mu \mathrm{C}$'s make it possible to have a much lower markup and still realize a profit. Even such large companies as IBM have recognized the efficiency of the computer-store approach to marketing. IBM has opened several retail outlets for its small business computers, calling them "demonstration centers."

Though it is true that traditional commercial computer companies have more rigorous quality control, the experience of business users of personal-use computers has been very positive. This is supported by the fact that many computer stores offer a maintenance contract at nominal additional cost. Under the terms of the contract, the computer store agrees to repair any failure in the customer's system at the customer's location. Prices for the typical maintenance contracts are very competitive with those of the traditional commercial computer companies.

Business Hardware. A data-processing application typically requires a central-processing system, memory, du-al-disk drives, and a hard-copy printer. (A CRT terminal might also be used for data observation and manipulation.) The
central-processing system and its associated memory make up the nucleus of the system, while the disks are required for random or rapid sequential access of the data. Dual disks are necessary for reasonable copying operations capability. A hard-copy printer generates the necessary paper forms.

A typical $\mu \mathrm{C}$ configuration may use an 8080 microprocessor unit (MPU). With seven central registers, eight-bit-wide data paths, eight-bit integer arithmetic, and an instruction execution time of 2 to $9 \mu \mathrm{~s}$, the 8080 can directly address 65 K of memory. In terms of path width, instruction execution time, and memory size, the 8080 is roughly compatible to the IBM S/360 Mod 30, the workhorse computer of the 1960s. A 32 K memory is usually sufficient for most business applications. In fact, 32 K is the typical memory used in many IBM S/360 Mod 30 installations.

In personal or hobby $\mu \mathrm{C}$ systems, BA .SIC (the most commonly used high-level language) typically occupies 12 to 20K of memory, while the remainder of the memory is used for applications programs. Memory expansion to 65 K is possible if an application requires it. Memory management software to support the use of greater than 65 K of memory is not currently available. The memory speed is on the order of 500 ns access time, which is five times the speed of the S/360 Mod 30 system.

For most data processing applications, the most important decision will be the choice of a disk since the disk is approximately half the cost of the entire system. Disk performance ground rules are the same in low-cost computing as they have been in other forms of computing. Data processing applications tend to be limited by the disk, which determines the amount of data that can be accessed at one time and also determines the speed at which it can be accessed. Since the disk is largely mechanical, it will also be one of the least reliable components in the system. Another reason for caution in the selection of a disk is that, in mixed vendor systems, the system software comes from the manufacturer of the disk.

Floppy-disk sizes popularly used today are $8^{\prime \prime}(20.3 \mathrm{~cm})$ and $51 / 4^{\prime \prime}(13.3 \mathrm{~cm})$. Dual $8^{\prime \prime}$ floppy-disk drives, which store 500 to 600 K total, have a $100-400-\mathrm{ms}$ access time and 32-60K byte/second transfer rate. They cost about $\$ 3000$, including the required disk controller. Dual 51/4" floppy-disk drives in contrast, store about 150 to 630 K and have an average
access time of 780 ms . This type of system has a transfer rate of $16-60 \mathrm{~K} /$ second and it costs about $\$ 1800$, including the controller. Many personal computer makers offer these disk systems.

We can expect to see some significant increases in the amount of storage we can obtain per dollar in the near future. In fact, Motorola is already delivering its $51 / 4^{\prime \prime}$ dual-floppy disk drives that can store 630 K for about $\$ 1900$, including controller. We can also expect to see hard disks for low-cost computers.

Most computers use the standard RS-232C serial interface for terminals and printers. This is the same interface used by time-sharing terminals, minicomputer terminals, and some printers. Since any terminal or printer that uses the RS-232C interface can be used with hobby computers, a wide selection of these terminals is available.

At the low end of the printer category useful in a business environment, is an impact printer that uses roll paper at 120 characters/second and sells for about $\$ 750$. The Digital Equipment Corp. DECwriter Model LA36 terminal accepts continuous forms, prints at 30 characters/second, and costs about $\$ 1500$. The Texas Instruments Model 810 impact printer prints 150 characters/ second and costs $\$ 2100$. For word-processing applications, the Diablo terminal plots and prints at 30 characters/second and costs $\$ 3000$.

If a printer is chosen, a CRT terminal is also needed. It should be noted that the terminal and/or printer can be one of the most costly components in a computer system. And since the printer is largely mechanical, it may also be a source of maintenance problems.

Most personal computers sold to businesses are fully assembled, burned in, and tested. Such purchases are usually made through computer stores rather than mail order houses because of the convenience of having local support services. Where an owner or employee is also a computer enthusiast, a kit route may be taken, of course.

Business Software. When comparing the capability of personal-use computers to larger computers and timesharing services, the most obvious shortcoming of the personal-use computer is in the software area. There is less business/industry application available compared to that from traditional computer makers.

BASIC is the language most often used in programming personal-use
computers for small business applications. Fundamentals can be learned in a few hours. COBOL, FORTRAN, PL/I, and APL are among the most popular languages used by the traditional computer makers. They're more difficult to learn, however. The use of BASIC is growing, here too, since it is a terminaloriented language and is well-suited to time sharing.

Fortunately, many of the available BASIC's have been extended especially for business applications. These usually include formatted input/output, disk-file manipulation (including random access), decimal arithmetic, string processing, subroutine parameter passing, and chaining of programs. The cost of a BASIC interpreter is about $\$ 100$.

A few application packages are available. They include general ledger, payroll, inventory control, word processing, accounts payable, and accounts receivable. The prices of these programs vary greatly, but $\$ 1000$ to $\$ 2000$ is typical. Application software packages are available from the manufacturers in some cases. For the most part, however, they are offered by individual computer stores. Significant additional offerings can be expected soon, primarily packages for particular types of small businesses, such as medical clinics, personnel agencies, real-estate firms, lawyers, motorcycle shops, and astrologers.

If a business requires custom software for its own particular needs, the programs are usually written by the computer store or a consultant. Custom software can be very expensive, naturally. Since it is not uncommon for a consultant to charge $\$ 1000$ per week for writing programs, the cost of custom software can easily exceed the cost of the hardware

Presently, the availability of software is the primary factor limiting the use of personal computers in business applications. Many more programs are needed than just the standard business bookkeeping applications. Nearly an endless number of programs are needed to fill the requirements of specialized types of businesses. For example, a personnel agency needs an application package to maintain a file of job applicants and to search that file on command for applicants with certain job qualifications. A multiple-doctor clinic needs a program that can schedule appointments, answer inquiries, and each day print the doctors' schedules. A ready-mix concrete company needs a billing program that will take into account different mix formulas
delivered to different customers. The list goes on and on.

Programs for personal computers in business applications are and will likely continue to be written by independent consultants, computer stores, and business persons with programming ability. It's expected that there will be a growing number of companies to serve as a distribution center for these independently produced programs in much the same way that book companies publish the

Such a contract is similar to a healthcare plan: for a fixed annual fee of, say, $\$ 1000$ to $\$ 1500$ for a $\$ 10,000$ business computer system, repairs and/or replacements will be effected in a timely manner at the customer's location.

A well-tested and burned-in personal computer is very reliable. One company that has 200 business computers in the field reports that, on the average, the cost of customer service for a system over a year's time has been $\$ 90$. As a

Typical videodisplay as used in small business systems. This is usually the entry point for the system operator. It is from the data seen on the screen that the operator selects the program, or part of the program, he wishes to rum.
work of independent authors and recording companies distribute the works of many independent musicians. Here, the original author of the program will be paid a royalty on each sale, while the distribution company will market and support the software nationally.

Maintenance. While a computer enthusiast may enjoy spending many hours getting an ailing computer back to working order, a business must get its computer operational as soon as possible. Since most businesses do not have the wherewithall to perform their own computer repairs, they must look to the computer store to provide the necessary service. (As a rule, the only service a personal computer manufacturer provides is through the mail or by phone, which is a time-consuming procedure.)

The degree of service offered by computer stores varies greatly. Some stores offer repair service only in the store, charging by the hour (typically $\$ 20$ or so) or by the type of board (usually a fixed percentage of the initial cost of the board). Some stores make service calls at the customer's location.

Many computer stores sell maintenance contracts on business computers.
result, many customers dropped their maintenance contracts.

The Role of the Computer Store.

Without the computer store there would be virtually no business market for personal computers since typical businesses need help from the planning stages right on through to a maintenance contract.

Many computer enthusiasts are happy enough to master the enormous amount of information that must be assimilated before the various sections of a computer are selected. A hobbyist usually purchases one section at a time, testing the system as he builds it. Typically, there is no particular end use in mind and. therefore, no particular requirement for the size of his computer system-it just grows as his budget and new applications allow. Business, on the other hand, has a specific use or uses for the computer. Business executives want to be sure that the computer system selected will not only work, but do the required job. Thus, the computer store's first service to the business is to answer the question, "Will a personal computer do the job I want done?' If that answer is yes, the store proceeds to
configure (choose the parts of) an appropriate system. Some typical important considerations are the amount of disk storage, the size of memory, and the speed of the printer. The computer store must consider the business application very carefully in making these decisions.

The next service performed by the store is to put the computer system together. Some stores actually do the assembly from kits. If various boards are purchased assembled from manufacturers, the computer store will burn in and test the system before delivery to uncover any infant mortality problems.

Probably the most important service provided by computer stores to businesses is ongoing repair service. Businesses usually cannot do their own repairs, and service from manufacturers by mail is obviously not a satisfactory route to take.

Nearly all computer stores, certainly the older ones, originally saw their market as being only the computer hobbyist. However, when disks became available for personal computers in 1976, business applications rapidly became common. At first, computer enthusiasts started applying personal computers to business problems. Then computer stores started developing standard business software packages for less knowledgeable users with some stores starting to specialize in the business customer.

The physical appearance of some stores started to change, too. Instead of a tile floor and a repair counter in plain view, stores were remodeled to have carpeted floors and no service counter with IC's in view.

With the appearance of the disk drive on the consumer market, computer store owners and personal computer makers have been developing standard business software packages for the businessman. The most common commercial business applications for per-sonal-use computers are bookkeeping and word processing.

The bookkeeping functions include general ledger, accounts receivable, accounts payable, and payroll. Different types of small businesses can make use of the same application software.

Use of Personal Computers in Business. Word processing is useful to many different businesses, including large companies. In word processing, the computer is used with a typewriterlike terminal to edit manuscript and print form letters.

Here are some examples of how personal computers have been used successfully in the small-business world.

Savings and Loan. A savings and loan association is an excellent example of a business that has a wealth of applications ideally suited to a $\mu \mathrm{C}$. Two Dallas, Texas savings and loan associations recently installed $\mu \mathrm{C}$'s for their daily operations of taking deposits, paying interest, and making home loans. Software was developed by a consultant and a former savings and loan data processing manager.

The first of these companies to install a $\mu \mathrm{C}$ was a medium-sized operation with $\$ 100$-million in assets and about 50 employees. Most of its data-processing needs were satisfied by an on-line system provided by a service bureau. However, there were enough small applications not being performed by the service bureau to easily justify the $\mu \mathrm{C}$. In fact, the savings and loan estimates a $\$ 7000$ annual savings based on just those applications initially delivered.

The $\mu \mathrm{C}$ system uses an 8080 microprocessor with 32 K of main memory, dual $8^{\prime \prime}$ floppy disks that store 512 K , and an extended BASIC interpreter, all for a total price of about $\$ 5000$. A DECwriter LA36 was leased, with maintenance, for $\$ 86$ per month to take care of input and output requirements.

Application software was written entirely in BASIC in less than four weeks. The package comprised eight different applications that consist of about 2700 BASIC statements.

One application for the $\mu \mathrm{C}$ system is the preparation of new account letters and closed account stuffers. Form letters are stored on the disk and written on demand to a list of names and addresses entered in a different disk file. The new account letters give the company a marketing advantage as well as a dollar savings on the required twiceyearly audits.

Employees of the savings and loan, including secretaries, accountants, and tellers who use the $\mu \mathrm{C}$ system have accepted it as a working member of their team. One reason for this was the use of a "people-oriented" user interface that gently guides the user through the programs. Each program was almost completely self-instructing.

The second Dallas savings and loan company to install a $\mu \mathrm{C}$ was a mediumsize association having 35 employees. It uses an in-house IBM System/3 for most data-processing functions. Several
applications, however, were found to be more suited to the $\mu \mathrm{C}$. The system identical to the one described above, uses most of the same software and has six additional applications. Including the hardware and the software, the system cost less than $\$ 9000$.

Before the $\mu \mathrm{C}$ was installed, the association's employees spent two days to prepare 30 required reports on loans sold to the Federal Home Loan Mortgage Association. The reports are now prepared in only two hours.

A card file that used to keep track of the due date on 10,000 insurance policies was replaced by a seven-page BASIC program that performs the function of the card file and also sorts the policies by insurance agents. Fewer checks are written, fewer errors are made, and a substantial amount of money is saved.

Before the $\mu \mathrm{C}$ was installed, the payroll was done manually by the controller. Now the controller still makes up the payroll, but he has a computer to assist him. The payroll program used consists of 750 BASIC statements, can handle up to 250 employees, and maintains a pass-word-protected file of information on employees. The 800 bytes of data maintained on each employee can be displayed and modified as required.

Possibly the most interesting application is a program that selects packages of loans for resale. A buyer of a loan package can specify a wide variety of parameter ranges that must be satisfied by the loans in the package. For example, all loans in a package might be required to be between $81 / 2 \%$ and $83 / 4 \%$ and also satisfy several other conditions. In fact, any combination of 12 unique types of constraints can be applied to a given package.

Before the $\mu \mathrm{C}$ was in use, up to two days were required to select a loan package. Now the same operation can be done in only 40 minutes, giving the association a significant competitive advantage when several associations are bidding loan packages to the same buyer.

A set of ledger cards was previously used to keep track of real estate owned by the association. All transactions associated with each piece of property were recorded on the cards. Now the $\mu \mathrm{C}$ has replaced the ledger cards and provides timely, accurate reports on the status of each piece of real estate.

A tickler file for loan commitments was needed to plan cash requirements more accurately. The $\mu \mathrm{C}$ proved to be perfect for this application.

The association has calculated that its total saving due to the $\mu \mathrm{C}$ is $\$ 450$ per month. This compares favorably with the $\$ 350$ per month $\mu \mathrm{C}$ amortization cost over a three-year period.

Tour Agency. A tour agency that operates dedicated flights out of 16 U.S. airports to exotic vacation spots like the Bahamas, Jamaica, and Acapulco, recently installed a personal $\mu \mathrm{C}$ for business purposes. Bookings are accepted from travel agents from all parts of the country. Each booking involves the date and destination, hotel reservations, meal service, and other travel options. Follow-up paperwork and record keeping is extensive. Confirmations and invoices must be issued, alphabetized manifests are required by the airline, and hotel lists must be drawn up.

Seats can be sold right up to the time of departure, so there is little time for paperwork and error checking. Currently, the agency produces its manifests five days prior to tour departure and implements later changes by telephone. The agency may hold more than 20,000 individual reservations at any one time and may schedule 25 different flights during any one three-day weekend. The entire operation is controlled by five to eight clerks staffing the telephones and controlling the flight boards.

The computer setup consists of a distributed data processing network containing 10 personal $\mu \mathrm{C}$'s and one minicomputer. An IBM Series-1 minicomputer controls a database that contains information on all flights and reservations, while 10 PolyMorphic μ C's (eight 8810's and two 8813's) interface with it (using a 9600 -baud line) to provide reservation, documentation, accounting, and management information. Six of the 8810's, each with a 90 K minifloppy diskette, serve as intelligent terminals (to the Ser-ies-1) for the individual travel clerks.

Documentation is by two Texas Instruments Model 810 printers under the control of an 8810 and an 8813 with two diskettes. A second 8813 provides support to the accounting function of the agency, while an 8810 provides on-line management information to the general manager. This terminal can also provide trend analysis and other statistical anlayses of the database.

The interface between the personal computers and the IBM computer is a set of microprocessor-controlled RS232 serial ports. There was no special hardware constructed for the system.

For the individual travel clerks, the
system can call up current availability of seating, options, and flights from the database on request and display it on a formatted screen at their location. When the system is first turned on, a list of available services is automatically presented. After signing on with an individual password (used to assign responsibility, prevent unauthorized use of the system, and limit access to some stored data), the operator selects the appropriate function. A formatted screen display is then presented, using software, with a blinking cursor to indicate the entries required. Reservation details are sent to the Series-1, which updates the database and instructs its printer to automatically produce the required confirmations and invoices.

The system provides excellent backup, too. The Series-1 automatically produces a magnetic tape of transactions as they are received from the operators' terminals. If the system "crashes," the tape can be used to recreate the data from the point of failure without having to return to the backup disk produced the preceding night.

If the Series-1 goes down, each $\mu \mathrm{C}$ can conduct limited business by retaining reservation requests on its own minifloppy disk. This allows the agency to continue near-normal operation. When the Series-1 comes back on-line, rapid transfer of information from the $\mu \mathrm{C}$'s to the database can be accomplished.

The system also provides impressive growth potential. The starting six operator positions can be increased to about 18 without changing the configuration of the Series-1

The Future. Several factors will contribute to the increasing usage of personal computers for small businesses. First, the new and much lower cost threshold for the feasibility of application will open many new areas. More and more packages that include hardware, software, maintenance, and training will be developed for particular types of business applications.

Next, a misconception held by some people that personal computers are not sufficiently powerful or reliable enough for business purposes will be dispelled. As noted earlier, today's personal computer compares quite favorably and closely to the IBM S/360 Mod 30 that was the data-processing workhorse of the late 1960's. And the cost of personal computers is much lower. So we can expect a rapidly increasing use of personal computers by businesses.

Learn Electronics along with MATHEMATICS

The Grantham Electronics -With Mathematics SERIES - in five volumes, written in home-study-course style - now available by mail order...
\square Introductory Electricity With Mathematics. Size, $7 \times 10 \frac{1}{2} .288$ p $\ldots \$ 12.75$
\square Fundamental Properties of AC Circuits. Size, $7 \times 101 / 2.267$ pages $\$ 12.75$ \square Mathematics for Basic Circuit Analysis. Size, $7 \times 101 / 2.352$ pages ... $\$ 12.75$ \square Basic Electronic Devices and Circuits. Size, $7 \times 10 \frac{1}{2}$. 431 pages $\$ 14.75$ Antennas. Transmission Lines, \& Microwaves. Size, $7 \times 10 \frac{1}{2}$. 315 pages $\$ 12.75$ The books listed ahove were written by Donald J. Grantham, whose 25 years of teaching-in print and in the classroom-enable him to anticipate questions in these subjects and thus answer them in these books. 16 lessons and 16 multiple-choice tests in each book (except for the last one. which has ten lessons and ten tests); many circuit diagrams with detailed explanations: many sample problems with step-by-step solutions; many practice problems with answers given; easy-to-understand language; in-depth explanations. Order from GSE Technical Books - address below.

Prepare for Your F.C.C. LICENSE

\square Grantham's FCC License Study Guide. Size, $7 \times 101 / 2.377$ pages..... . $\$ 12.75$ This not a Q \& A book. not a correspondence course, but simply an authoritative down-to-earth presentation of what you should know to pass FCC license exams for 3 rd. 2 nd , and 1 st class radiotelephone licenses. Four information sections. 1465 FCC-type multiple-choice questions, with more than 65.000 words "explaining" the correct answers. Self-study presentation. Order from GSE address at hottom of page.

OTHER GSE BOOKS

\square Improve Your Technical Communication (How to write technical reports, manuals, proposals, articles, etc.). Size, $7 \times 101 / 2.216$ pages $\$ 4.95$
\square Geometry for Science and Technology. Size, $7 \times 101 / 2.141$ pages $\$ 5.95$
\square Modern Electronic Calculations.
Size, $7 \times 101 / 2.207$ pages $\$ 6.95$
\square Answers in the Mail (The author, a correspondence instructor in electronics, physics, and math. gives examples of questions written in by students, along with his detailed replies.) Size, 6×9.217 pages . $\$ 4.95$
TO ORDER any of the books listed above, check off the ones you want, compute the total price, add only 750 (regardless of the number of books you are ordering) for postage and hancling. and mail this ad with your name and address and payment (no C.O.D.s) to:

GSE Technical Books
 (2000 Stoner Avenue)

P.O.Box 25992, Los Angeles, CA 90025

THERE ARE an ever-increasing number and variety of low-cost decimal and hexidecimal keypads available to the electronics experimenter. To successfully use these keypads, one must observe certain criteria to be sure mutually compatible signals are available. You cannot just connect any keypad to any circuit and expect the system to operate properly. Either the keypad selected must be specifically designed for the digital circuit it is to drive, or the digital circuit must be designed to suit the specific keypad.

One major problem with keypads (and most other mechanical switches) is that they are not ideal switches. Instead of producing a single pulse when they are opened and closed, they produce a "train" of brief pulses as they mechanically settle. In ordinary switching applications, this "bouncing" is not a problem. But when switches are used with high-speed electronic counters, each pulse within a train (Fig. 1) can appear as a separate toggle signal, resulting in false counting.

Most keypads are decimal (0 to 9), while many electronic circuits require a

binary-coded-decimal (BCD) input. Hence, a decimal-to-binary decoding system to make the conversion is required. Too, many counting circuits also require a "start' or "sync" signal to "tell" them when a key has been depressed. Therefore, some kind of key-closure sensing system must be used.

How to interface these important mechanical devices with digital circuits.

Fig. 1. Pulse train resulting from switch contact bounce. Sweep time is $50 \mu \mathrm{~s} / \mathrm{div}$.
both the 8 and 2 keys must be pressed simultaneously. Similarly, a hex F (15) requires simultaneous operation of the 8 and 7 keys. If you plan to use a hex keypad, use the same AND-OR gate logic for all 16 switches and substitute the circuit shown in Fig. 4

Fig. 2. Suitch debounce circuit is formed from AND-OR gate logic.

Referring back to Fig. 3, when all keyswitches are open, their associated AND gate (IC1 through IC3) inputs are high. Hence, the outputs of the four encoding NAND gates (IC7 through IC9) are low. Closing any keyswitch except 0 forces at least one of the NAND gate inputs high.

The bounce-inhibit circuit uses a 4input NOR gate (IC10A) to trigger bounce-inhibit monostable multivibrator IC11. When any of the four NOR gate inputs go high (any key closed), the output of the NOR gate goes low and triggers the multivibrator. The multivibrator, in turn, sends a low signal to the OR gate associated with each key. This implements the debounce function. For the RC values given in Fig. 3, the debounce period is about 700 ms . For the 74121 monostable multivibrator, the timing equation is $T=0.69 R C$, with R kept at a value of less than 40,000 ohms.

The circuit remains in the debounce condition and ignores any switch bounce until the monostable multivibrator times out. When this occurs, the circuit resets back to where another key can be operated. Note in Fig. 3 that the multivibrator also produces a "sync" signal in exact time step with the input pulse. This is for use with an external counting or other enabling circuit.
The 0 key requires a different approach from that discussed. Although it has the same debounce circuit as the other keys, when the 0 key is closed, a separate input trigger, B, on the multivibrator is used.

Controlled Pulse Generator. One use for a debounced and BCD-coded keypad is as a controlled pulse generator that delivers a number of output pulses determined by the decimal number inserted via the keypad. The basic logic for this circuit is shown in Fig. 5.
Pressing any key on the keypad in the Fig. 5 circuit sends a sync pulse to an enabling latch and the BCD-coded signal to the inputs of a binary down counter. The latch signal enables the counter's preset input and a controlled-pulse generator. The pulse generator is designed so that both pulse width and pulse period can be controlled. Each time a pulse appears at the ouput, the binary down counter is decremented by one. When the counter reaches zero, it resets the latch and stops the operation.

The actual circuit, shown in Fig. 6, is straightforward. The IC1A/IC1B latch is made from conventional TTL NAND gates, with RC coupling at the inputs to

Fig. 4. Decoding logic for a hexidecimal keypad.
This circuit is an addition to that in Fig. 3.

Fig. 6. Schematic of controlled-pulse generator. $R C$ coupling allou's generation offast pulses.
allow rapid action-in fact, a complete pulse train can be generated within the width of the sync pulse. Without RC coupling, the latch would be locked for the duration of the sync time. A transient input is a must to avoid lockout. The IC3 down counter has its LOAD enable input RC coupled to the sync input. This input requires a transient input to operate.

The controlled-pulse generator (IC2) is made up of both halves of a 74123 dual monostable multivibrator. The RC timing of IC2A sets the pulse period. The Q output at pin 13 is connected to NAND gate IC1D, with the second input of this gate connected to the latch. With the latch reset, the NAND gate is locked and its output remains in the high state, regardless of what the multivibrator is doing. In reality, IC2A is not doing anything, since its A input trigger at pin 1 is also enabled by the latch.

The first cycle of the operation is initiated when the latch is set. This causes a high-to-low transition at the A input. When the multivibrator triggers, the Q output at pin 4 goes low. When the multivibrator times out, the low-to-high transition at the Q output retriggers the multivibrator. Because the transition is so fast, the multivibrator appears to be con-

Fig. 7. Scope trace (A) shows switch bounce, while (B) shows four pulses initiated by switch closure. Sweep time is $50 \mu \mathrm{~s} / \mathrm{div}$.

Fig. 8. Nine pulses generated by key switch closure ($50 \mathrm{~ms} / \mathrm{div}$): (A) key closure; (B) sync; (C) outputs of 74123; (D) output QA; (E) output QB; (F) output QC; (G) output QD; all of IC3; and (H) latch input to IC1D.
tinuously in the triggered state
The output of gate IC1D decrements the IC3 counter and triggers the second monostable multivibrator (/C2B). The timing of this circuit controls the width of the pulse.

The only limitation on the frequency and width of the keyed pulses are those determined by the multivibrators. Very long and very short pulses over almost any range can be generated once the counter is preset. The keypad plays no role in this part of the operation.

The oscilloscope waveforms for the Fig. 6 circuit are shown in Fig. 7. The upper trace shows switch contact bounce, while the lower trace shows four pulses initiated by the first switch closure. Note the immunity to switch noise and the fast response possible. The traces in Fig. 8 show the timing of those functions that will be helpful in understanding the operation of the circuit.

Combination Lock. The logic for a four-digit combination lock that can be operated only by someone who knows the code is shown in Fig. 9. This circuit can easily be expanded so that several functions can be derived from a single keypad. Appropriate interfacing must be

Fig. 9. Four-digit combination loch that works with only one selected set of input digits.

Fig. 10. Four-digit lock with combination 1365. Keyed code must match jumpered connections to operate lock.

Fig. 11. Latched output for a keypad. Display is on a 7 -segment LED readout.
added between the circuit and any external devices to be controlled. The actual circuit for the combination lock is shown in Fig. 10.

Operation of the lock begins with the reset mode. This is necessary because the reset can be initiated at any time in the event an incorrect digit is keyed. The output of a two-stage counter is decoded in the steering logic, and the BCD signals from the keypad are integrated into the counter's decoding logic so that a specific digit only can be passed through the enabling latches if both signals are coincident. It is mandatory that the four latches be set in the proper sequence (W, X, Y, Z) because any other combination will be defeated in the sequence detector.

A function table for the lock is given in Fig. 10. The 0 on the DEC \mathbb{N} line is the reset mode. The outputs of FF1 and FF2 assume a 0101 state. The FF1 and FF2 blocks are clocked flip-flops, with the clocking occurring on the trailing edge of the input pulse. The outputs of the keypad are fed to IC4, the outputs of which are selected to form the inputs to the associated NOR gates.

If the correct first digit is keyed in, line W goes to the high state, setting $/ C 5 A /$ IC5B. Both inputs to NOR gate IC7A are now low, setting the D input to FF3 (IC8A) to high.

The sync pulse from the keypad has once more clocked the counter. If the second digit is correctly keyed in, line X goes high and sets the IC5C/IC5D latch. This clocks a low to one input of (IC7B). Once again, the keypad is operated with the correct digit to cause the associated latch to operate and placing a high on the Y line. This puts a low on AUGUST 1978
the second input of $1 C 7 B$. This sets the D input of $I C 8 B$ to high.

The keypad is operated one more time with the final correct digit to set the Z line high. The Z latch clocks IC8B to change its output status. Either of the IC8B outputs can be used to interface to an external circuit.

If any of the four latches is set out of sequence, the clocking of IC8A and IC8B will be disrupted. The circuit is reset by operating the RESET switch.

Although the Fig. 10 circuit shows the use of a 1-to-10 decoder for the keypad input, a 1-of-16 decoder can be used for a hexidecimal input.

Switch Latch \& Display. One difficulty with a keypad is that it is momentary. Once a key has been released, the action ceases. The addition of a quad latch, as shown in Fig. 11, will hold the switch outputs as long as dc power is applied. The IC1 quad latch is used to drive BCD-to-7-segment decoder/driver IC2 and a common-anode 7 -segment LED display. This combination holds the last key depression and also produces a visible display of the digit depressed.

In Conclusion. In this article, we have described the major problems encountered when using mechanical switches-specifically keypad arrayswith digital circuits. We have offered some examples of how to deal with the problems and given hints on interfacing keypads with the electronic circuits. It is suggested that for further study and understanding of the material presented here you breadboard the circuits presented and do some experimenting on your own.

Your recordis will last longer. Empire car
tridges are designed to track at lower forces. This imposes less weight on the record insuring longer record life.

2.Your records will sound better. Distortion is a mere .0005 at standard groove velocity. Therefore, reproduction is razor sharp with no wavering or fuzziness.

3.More cartridge for your money. We use 4 poles, 4 coils and 3 magnets in our cartridges (more than any other brand).
Inspection from head cartridge, regardless of price, is fully inspected both visually and technically. Tests include frequency response, output balance, channel separation and tracking.

5.Diamond control. At Empire we cut, grind, polish and mount the diamonds to our own exacting specifications. We insure total quality of the product from start to finish by buying only the highest quality gems.

For more good reasons to buy an Empire cartridge, write for your free catalogue:
EMPIRE SCIENTIFIC CORP. Garden City, N.Y. 11530

CIRCLE NO is ON fREE INFORMATION CARD

NCDIOMLARM BMCKS EP CII
 WARNINGLIGIITS OR METERS

Easy-to-build circuit sounds an alarm so you won't miss your car's visual warning.

PEOPLE often fail to notice immediately when a red indicator on the dashboard of a car lights to warn that service is required. The "Audible Car Protection Alarm" described here corrects this problem by simultaneously issuing an audio signal when a dashboard warning indicator is activated. It can spell the difference between a minor and a major car repair, or even save lives.

When any one or more of the warning indicators in your vehicle lights, the audio alarm sounds an insistent beeper. Then you can check the indicators to determine what service is required.

In addition to serving as an automatic fault monitor, the alarm can also remind
you to turn off headlights and rear-window defogger. The system can easily be expanded to monitor dozens of points in a vehicle's or boat's electrical system.

About the Circuit. As shown in Fig. 1, triple three-input NAND gate $1 C 1$ serves three separate functions. Section A operates as a conventional three-input NAND gate. If one or more of its normally high A, B, and C inputs goes low, the pin-10 output of this gate also goes high.

Section B, also used as a three-input NAND gate, has a $1500-\mathrm{Hz}$ signal applied to its pin-2 input, a $1-\mathrm{Hz}$ signal applied to its pin- 1 input, and the output from section A of $I C 1$ applied to its pin- 8
input. Hence, when the output from section A goes high, the circuit oscillates at 1500 Hz and is gated on and off at approximately half-second intervals.

Section C of IC1 is configured as an inverting amplifier whose output is coupled back to its input via R1 and oscillates at a frequency determined by the values of R1 and C1.

The output of section B drives Q1, whose collector load is a conventional miniature 8 -ohm loudspeaker. The combination of C3, R2, and R3 functions as the system's $1-\mathrm{Hz}$ oscillator. Capacitor C3 charges through R2 and discharges through R3. This capacitor must be initially charged before the circuit can os-

Fig. 1 Gates IC1C, IC1B, and Q1 form a $1500-\mathrm{Hz}$ oscillator gated on and off by a $1-\mathrm{Hz}$ signal.

PARTS LIST

(1 - $0 .($ ($)+47-\mu$ F Myar
$\mathrm{C} 2-10-\mu \mathrm{F}$. 16 -volt electrolytic
(3 -3 3- 3 F , 25-volt tantalum
Di through D. $5 \quad$ IN +148 or similar silicen diode
ICI-CD4023AE (RCA) CMOS triple three input NAND gate
I.EDI-Red light emitting diode

QI- 2N2907A or similar pnp transistor
The following resistors are 1/4-watt. 10% :
R1-100.(0)0 ohms
R2-5.1 and 2.2 megohms in series
R3-330.(M) ohms
R4.RG.R15-10k) ohms
R5-51 ohms
R7-22 ohms
R8 22(0) ohms
R9 through R14-220.(MK) ohmis
SPKR - 8-ohm. Ion-mW loudspeaker
Misc.--IA-pin DIP socher; plastic case; printed circuit or Wire Wrap hoard; splice-in connectors; hookup wire; solder: machine hardware; ete
Note: A basic AutotelTM kit consisting of all parts except DI. D2. D4. DS. LEDI, RI3. RI4. R15, is atailable for $\$ 4.95$ plus $\$ 1$ (m) shipping and insurance from James Electronics. Box 822. Belmont. CA 940 2 .

cillate. With the value shown for C3, a delay of about 15 seconds is provided before the alarm enables. This allows time for normal engine starting and the build-up of oil pressure. Consequently, during normal operation, the alarm will not sound.

To see how the circuit operates under actual in-use conditions, let us assume that the oil pressure drops. As shown in Fig. 2A, the oil-pressure sender grounds the oil-pressure lamp, which then comes on. Simultaneously, the cathode of D4 is placed at ground potential. At this point, D4 conducts through R10 and pin 11 of IC1A goes low, causing the output of this gate to go high. As long as C3 is charged, IC1A allows the $1500-\mathrm{Hz}$ oscillator to operate. When the potential across C3 reduces sufficiently, the oscillator ceases operating until C3 recharges. Therefore, the $1500-\mathrm{Hz}$ oscillator is gated on and off by the R2, R3, C3 circuit at 0.5 -second intervals. The beeping of the alarm continues until all of the circuit's A, B, or C inputs are ungrounded.

In Fig. 2B, diodes D1 through D3 are connected to the ignition, headlights, and defogger (if any) circuits so that when any of these switches is closed, the associated diode is forward biased
and conducts to apply power to the alert circuit via R7 and its associated C2 filter capacitor.

As an example of the foregoing, assume that the ignition is turned off, but either the headlights or the defogger is left on. The alarm will then receive power through the diode attached to the headlight or defogger switch, thereby sounding off and continuing to do so until the headlight or defogger switch is turned off. This is because when the engine is turned off, the oil pressure drops to close its sensor switch, thus activating the alarm. This action will also occur even if the oil-pressure lamp is burnt out, since the A input will still be grounded. The rear window defogger is also included since in many cars, this accessory will still operate when the ignition is turned off.

Construction. The simple circuit that makes up the system can be wired by any convenient means, including a printed circuit board, Wire Wrap, and point-to-point. Since there are no high frequencies with which to contend, lead dress is not critical.

The alarm can be mounted in any box that will accommodate it and the speaker. A barrier strip, mounted on the enclo-
sure, can then be used to make all power, ground, and sensor connections.

The diode coupling technique shown in Fig. 2A can be used to increase the number of sensing points to monitor other elements in a mobile system. Each NAND-gate input can handle a large number of inputs, connected in parallel.

Note in Fig. 2A how a LED parking brake set circuit can be added to the alarm circuit. The switch associated with this sensor can be a conventional microswitch mounted so that, when the parking brake is set, the switch closes. The LED can be mounted on the dashboard and suitably identified.

Installing the System. Before the alarm is installed in a vehicle, it should be tested for proper operation. Connect a 9 -volt battery between the ignition input and ground. Temporarily connect sensor input A to ground. After about 15 seconds, the alarm should begin to beep. Disconnect the sensor input from ground; the alarm should cease beeping. Repeat this procedure with sensor inputs B and C . The positive terminal of the battery can be connected with a jumper wire to the headlight and defogger inputs to test the operation of these functions.

Make all connections to the various points in the vehicle's electrical system securely and with care, preferably with splice-in connectors where possible. If you use a strip-and-wrap splice, make sure you cover each connection with vinyl electrical tape.

Dress all wires to protect them from mechanical and heat damage. Do not connect the ignition input to the ignition coil; otherwise, it may be damaged by transients from the coil. It goes to some accessory that is powered only when the ignition switch is turned on. Make sure that the headlight and defogger input power connections are made as shown in Fig. $2 B$.
After installation is complete, turn on the ignition but do not start the engine. (Set the ignition switch to the ON position only.) Since the low-oil pressure switch will be closed, after the delay period, the alarm should begin to beep. Turn on the headlights and turn off the ignition. The alarm should continue to beep and stop only when you switch off the headlights.

The alarm circuit can be used for monitoring other dc electrical systems. If failure modes are indicated by a "high" voltage, these can be diode OR'ed at input F (see Fig. 1) with the output of IC1A.

Solid State

ON THE LIGHT PATH

AFEW OF THE advantages that fiber-optic coupled communications systems offer over conventional wired systems are greater noise immunity, smaller diameter, and absence of crosstaik. As a result, subsidiaries of the enormous Bell System have installed optical systems in a number of locations for exhaustive field tests. Several major electronics manufacturers, including industry giant RCA, are now offering fiber-optic communications systems and components as standard "off-the-shelf" products. If present trends continue, then, the wave-of-the-future might well be a light wave, at least as far as communications links are concerned. What's more, the increasing interest in optical communications and the resulting improved availability of special optoelectronic components and devices has opened new and exciting areas for the serious experimenter and hobbyist.

Illustrated diagrammatically in Fig. 1, RCA's new optical communications link, Type C86003E, is designed specifically for digital data applications. With a 20 -megabit (Mbs) capability, it can be used in computer links, digital telephone, data processing and process control systems as well as in highvoltage optically-isolated systems. The system consists of two basic units-a transmitter and a receiver. These are connected to opposite ends of a suitable optical fiber cable (Dupont type PFXS120R or equivalent), which can range in length from a few meters up to one kilometer. Self-contained within a two-inch square by one-inch thick module, the transmitter requires only a signal source and a 5 -volt dc power supply. It includes a TTL buffer, a GaAIAs LED and LED modulator/driver circuits. Housed in a similar-size package, the receiver comprises a silicon pin photodiode, an amplifier, threshold detector circuitry, and a TTL buffer. Supplying digital output signals, it requires a dual $\pm 6 \mathrm{~V}$ dc power source in addition to $\mathrm{a}+6$ to +45 V dc bias supply for operation.

Although excellent for many commercial, industrial and laboratory applications, RCA's C86003E system, which is cur-
rently priced at $\$ 850$ each (exclusive of optical fiber cable), is rather on the expensive side for typical experimenter and hobbyist projects. Even where cost is not a factor, however, most experimenters prefer to assemble their own circuits and systems using individual devices. With a little imagination, a little care, a willingness to modify and adapt standard circuits, and a modicum of skill, such projects are well within the reach of the average experimenter's budget and can be assembled using readily available commercial components.

As a general rule, IR (infrared) emitting diodes or injection diode lasers are used as transmitting sources. These are more efficient than visible light LED's and can develop higher peak output levels. As a further advantage, the silicon photodiodes used as detectors are more sensitive to infrared than to visible radiation. A typical IR emitter driver circuit is illustrated in Fig. 2. Using standard devices, this circuit was abstracted from RCA's 24-page booklet Solid State IR Emitters and Injection Lasers, publication No. OPT-113C. In addition to this and other practical circuits, the publication includes outline drawings of typical devices, condensed specifications, definitions of special terms, a discussion of safety considerations, characteristic curves, and a valuable review of basic theory.

Featuring a CA3085A/B positive voltage regulator IC, the simple driver circuit given in Fig. 2(A) permits IR emitters to be driven by unregulated dc sources of from 7 to 11 volts. It provides adequate voltage regulation and limits maximum forward current to protect the emitter diode. This basic circuit may be modified for use as an optical digital data transmitter by keying the \mathbb{R} emitter on and off using a series control transistor or other switching device capable of handling currents of up to 100 mA .

Much higher radiant flux outputs may be obtained from IR emitters when they are operated in pulsed rather than dc (CW) modes. For example, the RCA SG1010A will deliver approximately 7.0 mW when driven at its maximum continu-

Receiver

Fig. 1. Block diagram of RCA's C86003E fiber-optic data link.

Fig. 2. Basic IR emitter-driver circuits: (A) direct current; (B) simple pulser.
ous forward dc rating of 100 mA . If pulsed with a peak forward current of, say, 3.5 A, however, its peak radiant flux output is better than 120 mW . Naturally, when an IR emitter is operated in a pulsed mode, the pulse width and pulse repetition rate (PRR) must be adjusted so that the average power dissipation is within the maximum limits of the device. In addition, heat sinking may be required for some applications.
A simple pulser for IR emitter diodes is shown in Fig. 2(B). Here, a CA555 timer IC serves as the pulse oscillator. The oscillator output is applied through a 250 -ohm drive amplitude
control potentiometer to the base of a 2N6180 pnp transistor which, in turn, furnishes the drive current to the IR emitter diode Coarse and fine adjustments are provided for both the pulse width and pulse repetition rate (PRR). With the component values specified, the pulse width can be adjusted from 4 μs to $250 \mu \mathrm{~s}$ while the PRR range is from 6 Hz to 3 kHz . In practice, the pulse width is adjusted first, then the PRR for optimum performance without exceeding the diode's rated power dissipation. When operated on a 15 -volt dc source, this circuit can supply pulse currents of up to 3.5 amperes.
(Continued on page 72)

(1)3 wire wrapping center (1)

DIP IC INSERTION TOOL WITH PIN STRAIGHTENER MODEL INS-1416

PRE-CUT PRE-STRIPPED WIRE

WIRE WRAPPING KIT

\$3.49*
*MINIMUM ORDER $\$ 25.00$, SHIPPING CHARGE $\$ 1.00$. N.Y. CITY AND STATE RESIDENTS ADD IAX

Advanced Electronic Career

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

Now you can learn at home the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming. and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming
 Is Easy

With CREI`s new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice of Programs

Please note, however, that C REI`s new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in mieroprocessor technology. CREI has an advanced electronics program to meet your needs

With CREI. you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab

Program

Anexclusive option available with ('REI programs in electronic engineering technology in (REIS unique Electronic Design I aboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements. hreadbowding. prototype construction. circuit operation and behavior. charateristics of electronics components and how to apply integrated circuits. Only (RFI offers this unique I at Program.

Practical
 Engineering

(REI programs give you a practical engineering know ledge of electronics. That is. each part of your traning is planned for your "use on the joh." By using your traning. you reinforce the learning proccss. And by demonstrating your increaned knowledge to your employer. you may qualify for faster career advatcement

Free Book

There isn't room here to give you all of the ficts about career opportunities in advanced electronics and how CRFI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. 56 page book describes in detail the programs, equipment and services of CRFI.

Qualifications

You may be eligible to take a CRFI college-level program in electronics if you are a high school graduate (or the trie equivalent) and have previous training or experience in electronics. Program arrangements are availatble depending upon whether you have extensive or minimum experience in electronies.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

BRE CAPITOL RADIO ENGINEERING INSTITUTE

GI Bill

CREI programs are approved for training of vereroms and servicementimeder the (;.I. Bill.

(Continued from page 67)
Offering greater output, the more complex high-performance pulser circuit illustrated in Fig. 3 uses additional CA555 devices to provide a time delay, to permit synchronization of the pulse with an external signal, and to shape and invert the drive signal waveform. With an appropriate dc source, this pulser can supply current pulses of up to 10 amperes at PRR's from 1.5 Hz to 3.7 kHz , pulse widths of from 0.2 to $1200 \mu \mathrm{~s}$, and a delay range of 2.8 to $1000 \mu \mathrm{~s}$. In operation, capacitors C1,C2 and C3 determine the PRR, delay, and pulse width ranges, respectively. With $C 1$ at $10 \mu F$, the PRR range is 1.5 to 36 Hz , for $1 \mu \mathrm{~F}, 15$ to 365 Hz , and for $0.1 \mu \mathrm{~F}$, 150 to 3.7 kHz . The time-delay range varies with C2's value as follows: $0.001 \mu \mathrm{~F}, 2.8$ to $20 \mu \mathrm{~s} ; 0.005 \mu \mathrm{~F}, 13.8$ to $100 \mu \mathrm{~s}$; $0.01 \mu \mathrm{~F}, 28$ to $200 \mu \mathrm{~s} ; 0.05 \mu \mathrm{~F}, 138$ to $1000 \mu \mathrm{~s}$. Finally, with C 3 at 1 pF , the pulse width range is 0.2 to $1.2 \mu \mathrm{~s}$, for 0.001 $\mu \mathrm{F}, 1.1$ to $12 \mu \mathrm{~s}$, for $0.01 \mu \mathrm{~F}, 11$ to $120 \mu \mathrm{~s}$, and for $0.1 \mu \mathrm{~F}$, 110 to $1200 \mu \mathrm{~s}$. Unless otherwise indicated, all resistors are half-watt types, all smaller value capacitors either high-quality ceramics or Mylar film types, and larger capacitors electrolytics, except for timing capacitor C1, which should be a tantalum type. The pulse oscillator, wave-shaping and control circuits are operated on a standard 15 -volt dc source, while an adjustable 0 to 100 volt (negative to ground) dc power supply is required for the output driver stage. The 2N6500 npn output transistor must have an adequate heat sink.

Another and different type of IR emitter driver circuit is shown in Fig. 4(A). Using a 741 type op amp in conjunction with an npn transistor power stage, this circuit was designed originally for use with RCA's unique three-element C30121 optically-coupled isolator, shown schematically in Fig. 4(B). Comprising a GaAs \mathbb{R} emitter and two coupled silicon pin photodiodes, the C30121 is supplied in a modified TO-5 package. Within the circuit configuration, one photodiode serves as an output device, the other as a feedback element and bias control. The basic design can be modified readily, however, for use as a linear IR emitter driver for fiber-optic communications systems, although the light power output and effective maximum range will be much lower than can be obtained with pulsed emitter systems. As with many other standard op-amp circuits, the design requires a dual ($\pm 12 \mathrm{~V}$) dc power supply for operation.

Where greater radiant flux power levels are needed for maximum range, higher switching speeds for maximum digital data transfer, or superior high-frequency responses for analog communication systems, injection laser diodes are preferred over conventional IR emitters as fiber optic system transmitters. Although they also are p-n junction diodes, injection lasers differ in construction from conventional LED's in that they employ an optical cavity and are designed for higher injection carrier densities. The optical cavity-essentially a short section of optical waveguide-is formed by cleaving and polishing the opposite ends of the diode junction to form partially reflecting surfaces, then sawing the adjacent sides to complete the rectangular structure.

Unfortunately, space limitations have limited our discussion to light sources, the transmitter end of fiber optic communications systems. In a future column, we'll examine photosensor and amplifier circuits suitable for use at the "other end" of the cable, that is, as receivers.

Reader's Circuit. From deep in the heart of Texas, reader Thomas Jay Hubbard (5603 Colmesneil, Pearland, TX 77581) has written to offer a capacitance measurement circuit which should be of interest to experimenters who like to assemble

Fig. 4. RCA's C30121 optically coupled isolator: (A) driver circuit; (B) lead connections.
their own test instruments. According to Tom, his design is accurate to within $\pm 10 \%$ and is capable of measuring units ranging in value from 10 pF to $10 \mu \mathrm{~F}$. Tom also indicates that his circuit, illustrated in Fig. 5, can be assembled for well under 20 dollars, exclusive of the external meter used as a null indicator.

Referring to the schematic, Tom has used the ubiquitous 555 timer, IC1, as an oscillator. Transistor Q1 provides a discharge path for range capacitor CK complementary to the IC's internal discharge circuit (pin 7) across the unknown test capacitor, Cx. The RK-CK and RF-Cx networks are connected from IC1's output terminal 3 to each side of the power source,

B1, with the voltage here applied through " L " filter R4C2 to an external zero-center meter, M, where it is compared to the source's mid-point voltage, established by voltage-divider R2R3. Shunt diodes D1 and D2 limit the maximum voltage across the meter.

The values of capacitor $C K$ and resistor RF are preselected for the desired measurement range. In operation, then, potentiometer RK is adjusted for a 50% duty cycle, as indicated by a " 0 " reading on the null meter, M. At this point, RK's value will be directly proportional to the value of the unknown test capacitor, $C x$, permitting it to be calibrated directly in the desired capacitance values.

$$
\begin{aligned}
& \text { Saye even more } \\
& \text { when you build } \\
& \text { your own ACE. }
\end{aligned}
$$

Yes, now you can save even more when you build an ACE from one of our two ACE Models kits. ACE is the better solderless breadboard from A P Products. There's just no faster or easier way of building and testing circuits and circuit ideas.

Part No.	ACE Mode! No.	Tie Points	DIP Capacity	No. Buses	No. Posts	Board Size (inches)	Price Each
923333	$200-\mathrm{K}$ (kit)	728	$8(16 \mathrm{~s})$	2	2	$4 \% \times 5 \% 16$	$\$ 18.95$
923334	$201-\mathrm{K}(\mathrm{kit})$	1032	$12(14 \mathrm{~s})$	2	2	$4 \% / 16 \times 7$	$\$ 24.95$

Order from your AP distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toli-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Book.

Neither layout nor lead dress should be overly critical, so the circuit can be duplicated using point-to-point wiring on perf board, wire-wrap, or a suitable board, at the builder's option. The fixed resistors are half-watt types, C1 a low-voltage ceramic or plastic film capacitor, and C2 a 10 - to 15 -volt electrolytic. Jacks $J 1$ through $J 4$ may be binding post or plug-in types. Standard general purpose diodes are used for D1 and D2, but the 555 timer, IC1, and type 2N2222 npn transistor, Q1, should be high-quality, low-leakage devices. The critical components are $C K, R K, R F, R 2$ and $R 3$. Of these, $C K$ should be a high-quality, low-tolerance polystyrene or Mylar plastic film capacitor, while RK consists of a 68 K fixed resistor in series with a 1-megohm potentiometer, the latter a good-quality unit with a linear taper. Resistors RF, R2 and R3 should be low tolerance ($5 \%, 2 \%$, or lower) types. Different values are used for CK and RF, depending on the measurement range needed, as specified in the table below. If a full-range instrument is preferred, the basic design may be modified by adding a multi-section, multi-position rotary switch, wired to select any of the listed values in order.

RANGE	$\boldsymbol{C x}$	$\boldsymbol{R F}$	$\boldsymbol{C K}$
A	$8 \mathrm{pF}-130 \mathrm{pF}$	820 K	100 pF
B	$80 \mathrm{pF}-1300 \mathrm{pF}$	82 K	100 pF
C	$800 \mathrm{pF}-0.013 \mu \mathrm{~F}$	82 K	1000 pF
D	$0.008 \mu \mathrm{~F}-0.13 \mathrm{~F}$	8200	1000 pF
E	$0.08 \mu \mathrm{~F}-1.3 \mu \mathrm{~F}$	8200	$0.001 \mu \mathrm{~F}$
F	$0.8 \mu \mathrm{~F}-13 \mu \mathrm{~F}$	820	$0.001 \mu \mathrm{~F}$

Fig. 5. Capacitance measurement circuit is said to be accurate to within 10%, in either direction, and will measure values from 10 picofarads to 10 microfarads.

Once the instrument's assembly and wiring have been completed and double checked for errors, shorts, opens and correct polarities, RK's scale may be calibrated by measuring known capacitors within each range. Intermediate values may be interpolated easily as needed to complete the scale. The external null meter, M, should be a high impedance VTVM or FET voltmeter with a 1.5 V range, adjusted to zero at the center of the scale.

LONGWAVE ImAGE

Q. Recently, while tuning across my shortwave receiver's longwave band, I picked up WOAI, a local radio station, at a frequency of 280 kHz . Is this some type of relay broadcast or is my receiver faulty?-Troy Hollan, Fowleston, $T X$.
A. My copy of the World Radio and TV Handbook (available from Gilfer Associates, Box 239, Park Ridge, NJ 07656 , for $\$ 11.95$ postpaid) lists WOAI as operating on 1200 kHz with a transmitter power output of 50,000 watts. The station broadcasts from San Antonio. I don't know how far that is from Fowleston, but you say it's a local.

If your receiver has an i-f of 460 kHz , then its local oscillator is running at 740 kHz . The AM broadcaster's signal is probably so strong that a portion of it is
getting past the front end and into the receiver's mixer. The signal is there heterodyning with the local oscillator to produce a frequency-shifted version of WOAI's program at 460 kHz -the $\mathrm{i}-\mathrm{f}$ frequency. The i-f stage can't distinguish this image signal from one original at 280 kHz , so it amplifies the signal and passes it to the detector. Actually, most receivers have a $455-\mathrm{kHz}$ i-f, not one at 460 kHz . If this is the case with your receiver, you are actually tuned to 290 kHz if the image is twice the i-f away at 1200 kHz . Perhaps your receiver's calibration is off somewhat on the longwave band.

Considering the strength of the image station, I don't think that you should consider your receiver "faulty." A $455-\mathrm{kHz}$ $i-f$ can result in image problems on the higher shortwave bands, where the im-

age is less than one octave away from the desired one. However, 1200 kHz is almost five octaves above the frequency to which the receiver is tuned, so the front end will attenuate the broadcastband signal to a high degree. The signal is so strong that, even after this attenuation, enough is getting to the mixer to produce the image.

You can supplement your receiver's image rejection by installing the wave trap shown in the figure at the antenna input. The inductor is a ferrite-loop antenna coil such as the Radio Shack No. 270-1430, and the capacitor a $365-\mathrm{pF}$ variable tuning capacitor. Mount the components in a metallic box. The antenna lead-in can be connected to the wave trap via a binding post. Be sure that both the wave trap enclosure and the receiver chassis are grounded to earth ground by way of a direct, lowresistance path. To attenuate the imagecausing station, simply tune the capacitor so that the circuit resonates at that frequency. (Some capacitors come equipped with knobs with frequency markings for the AM band imprinted on them, making tuning a simple task.) The same circuit can be used to alleviate the cross modulation that strong, local $A M$ stations produce in some receivers on the lower shortwave bands.

Hip Experimenter's Corner

DIGITAL TO ANALOG CONVERTERS, PART 2

LAST MONTH, we saw how an R-2R resistor ladder network can be used as a rudimentary digital-to-analog (D/A) converter. We're now going to expand it into a full-fledged D/A converter and connect the converter to a few digital IC's. First, let's look at the circuit we'll be using to provide a binary input to the D/A converter.

A Simple Binary Input Circuit. A

 BCD (binary coded decimal) counter makes a convenient input circuit for the D/A converter. If you prefer, however, you can use a 4-bit RAM (such as the 7489) or any other chip with a 4-bit output. You can assemble both the binary input circuit and D/A converter on a plastic solderless breadboard.Figure 1 shows the counter circuit along with a simple clock oscillator made from two of the inverters in a $74 \mathrm{C04}$ hex inverter. I used CMOS chips, but you can use the TTL equivalents for the specified IC's. The pin numbers are the same for both.

If you use TTL chips, be sure to use a 5 -volt power supply. If you don't have a suitable supply, use a 6 -volt battery. Insert a IN4001 diode in series with the positive power supply lead to reduce the battery voltage to about 5 volts.

You can vary the clock frequency and
count rate of the decade counter by varying the values of R1 or C1 or both. Increasing the capacitance of C1 from 0.1 to 1.0 should give enough range.

The D/A Converter. Figure 2 shows how to add an operational amplifier to the $R-2 R$ resistor ladder network we experimented with last month. After you assemble the circuit, connect the binary inputs of the ladder network to the BCD counter outputs and then connect the probe of an oscilloscope between the output of the op-amp and ground. (If you don't have access to a scope, we'll shortly show you how to observe the operation of the circuit with a voltmeter.) With the clock running, you'll see a scope trace something like the diagram shown in Fig. 3. Obviously, the scope is showing the stepped voltage ramp coming from the op amp as the counter cycles through its 0000-1001 sequence.
Notice the ramp has not sixteen (as you would have expected from a 4-bit D/A converter), but ten, voltage levels.

The reason for this, of course. is that the $74 C 90$ is a BCD and not a pure binary (0000-1111) counter. Use a binary counter and you'll get a ramp with sixteen voltage steps.

The simple circuit in Fig. 2 can be used to synthesize waveforms digitally. A capacitor across the output will smooth the stepped waveform. The sequentially counting 74 C 90 will produce only ramps, but you can program a 7489 16-by-4-bit RAM to produce more complex waveforms.

Improving the D/A Converter. It's possible to improve the performance of the basic D/A converter by adding a second op-amp. The output voltage from the first swings from negative to positive as the ramp is created by the stepped voltage. It would be convenient to be able to adjust the ramp so that its baseline is ground, or any voltage you specify. The offset adjustment available to the first 741 isn't adequate for this purpose.

The second op amp (Fig. 4) makes adjusting the baseline of the ramp easy. In operation, the BCD counter is allowed to reach a count of 0000 . The clock is then disabled to stop the count and the output of the second 741 is adjusted for any desired voltage. When the clock is reactivated, the output voltage will step through a ramp of ten voltage levels and automatically recycle as before.

You can set the 0000 count to equal 0 volt, so it's easy to use a voltmeter to

Fig. 2 How to connect an op amp to the resistor ladder D/A converter.

Fig. 1. CMOS clock and BCD counter for supplying binary inputs to D/A converter.

Fig. 3. Ramp voltage output from D/A converter in Fig. 2.

Fig. 4. Schematic of an improved D/A converter.
see the circuit in operation if you don't have access to a scope. First, insert a $10-\mu \mathrm{F}$ capacitor in parallel with C1 to slow down the clock to a few hertz. Then connect a voltmeter between pin 6 of the second 741 and ground. The needle on the meter will jump to about 3 volts and fall toward 0 volt in equally spaced increments. The cycle will then repeat.
Notice that the second 741 reverses the slope of the voltage ramp. The ramp from the first 741 goes from a low to a high voltage, while the ramp from the second 741 goes from high to low.

It's possible to reverse the slope of the ramp by inverting the binary input to the resistor ladder. The clock circuit uses only two of the inverters in the 74C04, so you have four uncommitted inverters, just enough to do the trick. Simply connect one inverter between each BCD counter output and the respective input to the resistor ladder.

Using the D/A Converter. By now, you should have a good understanding of the operation of a basic D/A converter. Let's use the circuit we've built in a practical application. Last month we noted that a D/A converter permits you to control the brightness of a lamp digitally.

Fig. 5. Driver added to converter. AUGUST 1978

Figure 5 shows how a single driver transistor can be connected to the second 741 in our D/A converter to control the brightness of a 222 lamp.

Be sure to adjust the D/A converter so that a 0000 input gives an output of 0 volt. This will ensure that the lamp receives the highest voltage for a binary input of 1001. The lamp I used with the prototype circuit displayed six distinct brightness levels for binary inputs of 0100-1001. The counts 0000, 0001, 0010, and 0011 produced too little voltage to light the lamp.

You can also use the driver transistor circuit to power a small dc motor. In this mode, the D/A converter functions as a digital-motor speed controller. When the clock is slowed to a rate of less than a few Hz , you can easily observe the speed variations as the motor slows from a relatively fast clip to a full stop.

Remember, you can supply binary inputs to the D/A converter with a 4-bit memory such as the 7489 (see "Experimenter's Corner," December 1977 and January 1978). This means you can program any sequence of analog voltages you choose.

Further Reading. In a future column we'll explore the world of analog-to-digital (A/D) converters. Meanwhile, if you've found these experiments with D/A converters interesting, you'll want to read more on the subject. For starters, see "The How's and Why's of D/A and A/D Converters" by Robert D. Pascoe in the April 1977, Popular Electronics. For more details about resistor ladder networks, see "Fundamentals and Applications of Digital Logic Circuits" by Sol Libes (Hayden Book Company, 1975, pp. 131-138).

Introductory Offer-FREE AC ADAPTOR
The first and only lab accuracy portable DMM Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/ AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5\% DC accuracy, 10 Meg ohm input impedance, low voltage drop in all current ranges and auto matically-flashing overrange indicator. Assembled \$109.95
FREE 78 EICO CATALOG
Check reader service card or send $50 ¢$ for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted
EICO-108 New South Rd.
G/CD
Hicksville, N.Y. 11801
CIRCLE NO 12 ON FREE INFORMATION CARO

IOur new Bearcat ${ }^{\circledR} 2501$

| has all the fantastic space age features of our super popular Bearcat ${ }^{\star} 210$, but now we've added: - 50 synthesized crystalless channels

- User selectable scanning speeds - Priority channel
- Digital time clock-accurate to seconds - Automatic or user controlled squelch - Search Direction-Search "up" or "down" - for quicker return to desired frequencies
- Transmission activity counter-tells you - how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a
channel without stepping through interim channels
- Non volatile memory-No batteries required to retain memory. even when scanner is unplugged
- Auxiliary-On/Off control of equipment (tape occur on programmed channels
To reserve your space-age Bearcat ${ }^{\oplus} 250$ and receive your order priority number for spring. summer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders \mid may call toll free 800-521-4414 to order. Outside order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{*} 250$ write: COMMUNICATIONS ELECTRONICS. Box 1002-Dept. 8. Ann Arbor. Michigan 48106 U.S.A.
${ }^{\circ} 1978$ Communications Electronics
$\left[\begin{array}{ll}{[8]} & \text { Product } \\ \text { Test Reports }\end{array}\right.$

MOTOROLA MODEL CM550 MOBILE AM/SSB CB TRANSCEIVER

Switchable noise blanker provides good range on $A M$ and $S S B$.

THE Motorola Model CM550 is a mobile AM/SSB 40-channel transceiver for Citizens Band communications. Full-band operation is accomplished with the aid of the usual phase-lockedloop (PLL) frequency synthesis system.

The transceiver's features include: large numeric LED channel display; $r-f$, audio, and squelch controls; S/r-f/SWR meter; clarifier control; switchable noise blanker; transmit indicator; AM/LSB/USB mode indicators; PA operation; externalspeaker jacks; detachable push-to-talk microphone with built-in preamplifier and gain control; top-facing speaker; electronic voltage regulation; operation from a nominal 13.8 -volt, negativeground dc source; and reverse-polarity protection.

The transceiver measures $9^{\prime \prime} \mathrm{D} \times 7^{\prime \prime} \mathrm{W}$ $\times 23 / 8^{\prime \prime} \mathrm{H}(22.9 \times 17.8 \times 6 \mathrm{~cm})$. Price is \$319.95.

Technical Description. A 10,695kHz i-f is employed in the receiver, with selectivity obtained with crystal and ceramic filters. Dual-gate MOSFET's in the $r-f$ amplifier and mixer stages assure good signal-handling capabilities. IC's are employed in the AM and productdetector and agc circuits, while amplified squelch is obtained with transistors.

A full-time automatic noise limiter (anl) is provided for AM, with part of the audio system using transistors and an IC that contains the power-output stage. The power-output stage is also used to modulate the transmitter in the AM mode.

A signal derived from a $10,240-\mathrm{kHz}$ crystal oscillator provides the standard reference for the PLL system. The signal at the mixer from the local heterodyning oscillator is $10,695 \mathrm{kHz}$ above the CB signal and is initiated by the voltagecontrolled oscillator (vco). The PLL system employs an IC for the various divide functions.

On transmit, the signal derived from the vco is sum-mixed with a 10,695 - or $10,700-\mathrm{kHz}$ signal, depending on the selected transmitting mode. This produces the on-channel frequency at a mixer output, which for AM goes directly to an r-f amplifier stage and then to a driver and the r-f power-amplifier stages. The driver and power-amplifier stages are col-lector-modulated.

The SSB signal is generated in an IC balanced modulator and a crystal filter. The modulator and filter are located ahead of the mixer.

Automatic modulation control (amc) is provided to prevent overmodulation on AM. An automatic level control (alc) sys-
tem provides the same thing on SSB.
The output from the power amplifier goes through a multisection network that provides correct impedance matching to 50 -ohm loads and that greatly attenuates spurious responses. This network also serves as part of the input circuit for the receiver to enhance image and other unwanted-signal responses and to minimize receiver-antenna radiation.

The antenna circuit also contains a transformer-coupled directional wattmeter for providing SWR indications. Transmit/receive transfer is conducted via a relay and diode switches.

Laboratory Measurements. No specifications were provided with our test transceiver. Hence, we had nothing against which we could compare our test results.

The sensitivity of the receiver measured better than is the usual case. It was $0.4 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ on AM at 30% modulation at 1000 Hz and 0.1 μV on SSB. The squelch threshoid range was $0.5 \mu \mathrm{~V}$ on AM and $0.2 \mu \mathrm{~V}$ on SSB up to a nominal $1000 \mu \mathrm{~V}$. The S meter registered S 1 with a $0.5-\mu \mathrm{V}$ signal and $S 9$ with a nominal $30-\mu \vee$ signal. Image and spurious- and adjacent-channel rejection were excellent at 90,80 , and 65 to 70 dB , respectively. I-f signal rejection was 63 dB , while unwanted-sideband suppression was 50 dB on LSB and 60 dB on USB at 1000 Hz .

The overall $6-\mathrm{dB}$ audio response was 400 to 2000 Hz on AM and nominally 500 to 3800 Hz on SSB. The audio output measured 2.5 watts with a sinewave input into 8 ohms at 10% THD on AM and 2% THD on SSB. With slight clipping, the output was as high as 3 watts.

Operating the transceiver from a 13.8voit dc source, the AM carrier output measured 3.9 watts. Using an audio tone of 1000 Hz , modulation was limited to 85% to 90% with a THD of 1.75% and 2.75%, respectively, with irputs of 16 and 25 dB greater than required for 50% modulation. Under these conditions, splatter was 60 dB down at 1000 Hz and 55 dB down at 2500 Hz . During dynamic operation (voice), the modulation kicked slightly beyond 100% on both the positive and the negative peaks, with the microphone gain control at its maximum setting. At that point, splatter was 55 to 60 dB down. The overall 6-dB response, not including that of the microphone preamplifier, was 500 to 4500 Hz .

On SSB, the output measured 11 watts PEP with a two-tone test signal. It
was 14 to 16 watts PEP during dynamic operation. The overall $6-\mathrm{dB}$ response was nominally 600 to 2700 Hz . Sideband suppression at 1000 Hz was a minimum of 60 dB , while carrier suppression was 55 dB on LSB and 60 dB on USB. The third-order distortion products were 30 dB below PEP.

The output frequency tolerance of the transmitter held to within $\pm 10 \mathrm{~Hz}$ of +30 Hz on any channel.

User Comment. This rig's symmetrical front-panel layout is certainly neat. We would have liked to have seen larger rotary control knobs, however, as well as easy-to-see position markers. The CLARIFIER control, though, has a detented center position, which helps when making adjustments. Also, the mode switch's detents are quite tight on our sample, which can make operation somewhat stiff with the very small control knob. The small edgewise-mounted meter's black background against its white pointer provides an easy-to-read contrast.

During operation, the use of the noise blanker effectively extended the range of the receiver on weak signals by attenuating certain noises to improve the sensitivity-versus-S/N under adverse man-made noise conditions. From the circuit diagram, it was noted that a fulltime anl is provided for AM, but in our on-the-road experience, it was not quite as effective as we have come to expect. On the other hand, switching in the noise blanker gave us excellent noise suppression. Even on SSB, the noise blanker was very effective.

As was apparent from our audio output tests, the distortion on AM was somewhat greater than on SSB. Hence, AM signals at fairly high levels may not sound as clean as SSB signals.

In on-the-road tests, this transceiver provided high-quality performance, with high sensitivity, excellent signal-handling capabilities, and fine rejection of unwanted signals. We also produced good-quality transmissions. We did note, however, that on transmit, the microphone gain had to be reduced on occasion to prevent excessive modulation, particularly on SSB. A built-in modulation indicator would have aided in setting the proper mike level, of course.

As with other new CB SSB models, the Motorola CM550 gave clear evidence that SSB performance is greatly superior to AM.

CIRCLE NO. icd ON free information card
(Test Reports continued overleat.)
 id State equipment in the Mclntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

 If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine. circle no 30 on free information card

Product Test Reports continued

LEADER ELECTRONICS MODEL LBO-508 OSCILLOSCOPE

Dual-trace, triggered-sweep 5 " scope has 20-MHz bandwidth.

DURING the past few years, a number of excellent laboratory-grade oscilloscopes have come onto the market at moderate prices. Most of them offer a host of functions and features that just a decade ago were found only in true laboratory instruments at a cost of several thousand dollars. A good example of the current crop of high-performance scopes selling for moderate prices is the Leader Electronics Model LBO-508 dual-trace, triggered-sweep scope, at a suggested selling price of $\$ 769.95$. Included with the Model LBO-508 oscilloscope is a pair of lowcapacitance probes.

The Model LBO-508 is a multifunction 5 " (12.7-cm) oscilloscope whose rated bandwidth is dc to 20 MHz . It measures about $15^{\prime \prime} \mathrm{D} \times 11^{11 / 2 " \mathrm{~W} \times 6^{\prime \prime} \mathrm{H}(37.5 \times 29}$ $\times 16 \mathrm{~cm}$) and weighs about $15.5 \mathrm{lb}(7$ kg). The scope is equipped with a carrying handle that doubles as a tilt stand.

General Description. The two vertical amplifier channels of the scope have a rated bandwidth of dc to 20 MHz in the dc mode and 2 Hz to 20 MHz in the ac mode. The input sensitivity in both cases is rated at $10 \mathrm{mV} / \mathrm{cm}$. An 11 -step attenuator, with a 1-2-5 sequence, allows the user to observe input signals with magnitudes up to $50 \mathrm{~V} / \mathrm{cm}$ at full attenuation, using the associated variablegain control. Accuracy is specified to be within 3%. Rise time is rated at 17.5 ns .

The input impedance of each vertical channel is 1 megohm shunted by 35 pF . The maxirnum safe input potential to the scope is 600 volts dc plus peak-to-peak ac. The polarity of channel 2 can be inverted as required by test conditions. The inputs to the vertical channels are BNC type connectors.

The two input channels can be used independently of each other, singly, simultaneously for a conventional dualchannel display, in an $X-Y$ vector mode, or in an algebraically add mode.

The triggered-sweep time base contains an 18 -step speed selector, with the speed positions arranged in a 1-2-5 sequence. Its range is from $0.5 \mu \mathrm{~s} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm}$, with an accuracy of 5%. A $5 \times$ magnifier allows observation of $100-\mathrm{ns} / \mathrm{cm}$ waveforms.

Both alternate and chopped modes are provided for displaying both channels simultaneously on the $8-\times-10-\mathrm{cm}$ screen of the CRT. The chopped mode is automatically selected by the scope with sweep speeds between 200 and $0.5 \mathrm{~ms} / \mathrm{cm}$, while the alternate mode is used between 200 and $0.5 \mu \mathrm{~s} / \mathrm{cm}$.

In the vector mode, the frequency response is from dc or 2 Hz to 800 kHz , depending on whether dc or ac coupling is selected. The phase difference in the two input channels is rated at less than 3% at 100 kHz .

Sweep synchronization can be switch selected to be either manual or automatic. The sync can be obtained from either an internal or an external source. Both positive and negative slopes are also selectable. A built-in TV sync clipper allows synchronization from TV-type video. Internal trigger sensitivity is from 2 Hz to 20 MHz with a $1-\mathrm{cm}$ screen signal. External sensitivity covers the same range from a $150-\mathrm{mV}$ peak-to-peak external signal. A built-in line-frequency, 0.5 -volt peak-to-peak calibration signal, whose accuracy is rated at 3%, is also available.

Test Results. We used a laboratorygrade dc voltage standard to investigate
accuracy of the two vertical channels for attenuation and control operation. Both channels checked out well within published specifications. We performed this test with both channels set to the dc mode and connecting both signal probes simultaneously to our voltage reference. This allowed us to observe the trace positions above (positive) and below (negative) the zero line.

For our frequency-response test, we injected signals from our crystal-controlled audio and low-rf signal generators. At the same time, we took careful note of the stability of the sweep trigger and linearity. The sweep remained stable at frequencies beyond 30 MHz , which is the limit of our burst tester. When we switched from positive to negative slope and back, there was no drift.

Excellent sweep linearity was noted when we used a crystal-controlled square-wave generator. The square waves from our tunnel-diode generator were displayed with neither low-frequency deficiency tilting nor excessive high-frequency response ringing. The 4MHz upper limit square wave from our generator revealed that the scope had an excellent response out to 40 MHz . At this frequency, the sync was steady and both polarities could be selected.

A sine-wave source was fed through a phase-shift network to check the vector display mode of the scope. Both vertical channels tested very close to each other in phase shift, and clear circles were produced at a number of selected frequencies during our test.

User Comment. Leader's LBO-508 oscilloscope was a very easy instrument to use. Its front panel is extremely clean, and the various controls and switches are color coded and clearly identified according to channel and function. This, plus the fact that each control and switch has plenty of room around it for easy manipulation, greatly simplified operation under most any working condition.

We used this oscilloscope for several weeks in our lab after performing initial tests to determine just how useful it really is under actual working conditions. It performed flawlessly during the whole time. In fact, we often found ourselves using it preference to our 10-year-old true laboratory scope.

Before returning the scope to its manufacturer, we ran a few quick tests to determine if any changes in calibrated performance had resulted. There were no detectable changes.

CIRCLE NO. 105 ON free information carg

DX

Listening

CURRENT NEWS AND FUTURE PLANS

ADVENTIST World Radio plans to put on a $20-\mathrm{kW}$ shortwave transmitter in Guatemala this year, probably operating on the 9 - and $11-\mathrm{MHz}$ bands. This may give us a chance to hear the AWR DX program, so far limited to Europe. The Autonomous University of Nuevo León plans to add not only an FM station in Monterrey, Mexico, but also a shortwave station on 5.97 MHz , no later than September.

Brazil still intends to close down all private shortwave stations on the bands to clear frequencies for Brasilia's big new international service, expected to begin later this year. Radio Renascenca, the Catholic station in Portugal, has purchased shortwave transmitters, expected on the air in early 1979, to reach emigrants wherever possible.

Radio RSA is considering resuming a transmission for western North America. They are heard well there at present, but at inconvenient times.

Radio Australia is rebuilding its cy-clone-damaged Darwin relay, actually on the Cox Peninsula, and also installing their transmitters for a Northern Territory domestic shortwave service. A new site in the North West Cape region is also being sought.

Voice of America plans to close down its Dixon CA and Bethany OH sites as satellite feeds to overseas relays make the shortwave feeds obsolete.

France, which has conspicuously ignored us for years, and only recently condescended to broadcast a home service relay in our mornings, has registered with the ITU six frequencies beamed to North, Central and South America for the summer season at 2300-0400 GMT: 9.505, 11.735, 11.745, $11.755,11.925,15.135 \mathrm{MHz}$. There's litthe prospect of an English program any time in this block. To lobby for this, the Radio France International Listeners Club has been formed. For details, send 26 in stamps to Matthew Brown, 3310 Picardy Ct., Mequon, WI 53092.

SSB Broadcasting Update. SwitzAUGUST 1978
erland's year-long test began May 7. In addition to the usual AM frequencies, check 17.74 MHz at 1315 GMT and 11.78 at 0145 . Then send them a reception report comparing the results. Radio Sweden's home service relay in Swedish on SSB, even though not beamed to North America, often comes in better than Radio Sweden's English programs, which are beamed to North America. The current schedule: 0500-0830 on $21.55,0930-1600$ on $21.555,1600-2000$ on $17.785,2000-2130$ on 15.19 MHz .

DX Conventions. All the following clubs welcome interested nonmembers to their conventions; send an SASE when inquiring. Aug. 4-6, Louisville, $K Y$, Worldwide TV-FM DX Association; details from Box 202, Whiting, IN 46394. Aug. 11-13, Portland, OR, International Radio Club of America (MW only); information from Frank Aden, 1535 NW Ithaca Ave., Bend, OR 97701. Sept. 1-3, Atlanta, GA, National Radio Club (MW only); information from Karl Jeter, 2816 Frontier Trail, N.E., Atlanta, GA 30341.

DX Programs. For the very latest DX news, don't miss our two weekly reports on alternating Sunday broadcasts of Radio Canada International. Also, ClarinDX, GMT-Sundays at 0000-0030 on 11.70 MHz , includes my regular reports. George Wood is doing an extra DX program, through August only, on Radio Sweden's Thursday broadcasts. After much urging, Austrian Radio has scheduled its "SW Panorama" when North Americans can hear it-GMT Sundays at $0300-0315$ on 6.155 and 9.77 MHz . Immediately following, try for "Radio Monitors International" from Sri Lanka, at 0315-0330 on 15.425. It's repeated Mon. at 1115 on $17.85,15.12,11.835$ and Sun. at 1900 on $17.85,15.120$, 15.115, and 11.87. Also good is 0400 GMT Wed. and Sat. is Radio Budapest's "Calling DX'ers and Radio Amateurs."

Pirate Activity Rising. "From the frozen north," Voice of the Voyage(u)r

SAVE!
MONEY - TIME - FREIGHT
QUALITY STEREO EQUIPMENT AT LOWEST PRICES
YOUR REQUEST FOR QUOTATION RETURNED SAME DAY.
 FACTORY SEALED CARTONSCUARANTEED AND INSURED
f SAVE ON NAME BRANDS LIKE: $\begin{array}{ll}\text { PIONEER } & \text { SANSUI } \\ \text { KENWOOD } & \text { OYNACO } \\ \text { SHURE } & \text { SONY } \\ \text { MARANTZ } & \text { KOSS }\end{array}$
AND MORE THAN 50 OTHERS BUY THE MDDERN WAY BY MAIL - FROM

12 East Delaware Chicago, lllinois 60611 312.664.0020

CIRCLE NO 20 ON FREE INFORMATION CARO

Finally, there's an exclusive club for scanner owners in Morth America . . . a united voice dedicated to the advancement of scanning with dozens of special membership benefits!

- Feature packed quartarly newsletter with news. tech tips great feature stories and morel
- Exciting contests with super prizes!
- Memberahip in the SCAN Buyer's Co-op group buying power on items of special interest!
- Award program tor piblic safety officials you nominata!
- FCC Irequency assigment chart!
- Handsone OHficial Membership Certifieate, I.D. card, and vehicie demi!

Plus much, much nore!
All fo- only $\$ 5.00$ annual dues.
ACT NOW WHILE WERE ACCEPTING CHARTER MEMBERSHIPS AT A
SPECIAL S4.OD ANTUAL RATE
SEND CHECK OR MONEY ORDER TODAY OR WRITE FOR FREE DETAILS.
SCANNER ASSOCIATION OF NORTH AMERICA

BEST IN NEW ELECTHONICS BOOXSI

\square The Handbook of Telephones $\%$ Accessories. 432 p.. 215 il. $\$ 9.95$ \square Install Electronic in Cars. Boats. Planes, Trucks \& RV's. 364 p. $\$ 7.95$ The BASIC Cookbook. 140 p .
How to Repair Yideo Games. $\$ 4.95$
$\$ 7.95$
\square How to Repair Video Games. 270 p .. 182 il. \square Beginner's Gde.-Designngg/Building Trans. Radios. 140 p. $\$ 4.95$ 101 Practical Uses for Propane Torches. 140 p .. 98 il . Towers' International FET Selector. 140 p. How to Design/Build Electr. Instrumentation. 420 p., 210 il. $\$ 9.95$ Automotive Air Conditioning Handbook. 280. 157 il How to Repair Movie \& Slide Projectors. 304 p.. 270 il.
Closeo-CIrcuit TV Instll., Mainten., \& Repair. 304 p.. 220 \square Closea-Clrcuit TV Instll., Mainten., t Repair. 304 p ., 220 il. $\$ 8$ \square Understanding Sound. Video $\&$ Film Recording. 140 p.. 74 it. $\$ 5.95$ \square Build-It Book of Solar Heating Projects. 196 p ., 111 il. Hotbk. of Solar Flare Monitoring/Propag. Forecasting. 196 D Beginner's Guide to Microprocessors. 182 p .. 106 il. Beginner's Guide to microprocessors. Hearing Aid Handbook. 432 p..
cmos Oatabook. 280 p., 270 il.
Master OP-AMP Applications Handbook. 476 p. 320 it Master OP-AMP Applications Handbook. $476 \mathrm{p} . \mathrm{m}^{2} 320$ it. Mimproces sors: From Calculators to Computers. $196 \mathrm{p} ., 61$
Complete Hablik. of Public Address Sound Systems. 272 p Complete Hdbk. of Public Address Sound Microwave Oven Service \& Repair. 420 p.. 210 il \square IC Function Locator. 224 p Hobk of Marine Electronic/Electrical Systems. $546 \mathrm{p} ., 338 \mathrm{il} . \$ 9.95$ \square Sold State Motor Controls. 322 D.. 162 I
\square How to Completely Secure Your Home. 224 p. 162 il. How to Completeiy Secure Your Home. 224 口., 162 il. 7 Ham Radio Incentive licensing Guide. $154 \mathrm{p} . .70 \mathrm{il}$ \square Programming Microprocessors. $280 \mathrm{p} . .102$ il. \square The "Compulator" Book - Build Super Calculators/Min Hardware with Calculator Chips. 322 p. 227 il. \square Master Iransistor/IC Substitution Handbook. 518 p.. 165 il $\$ 7.95$ \square Modern Crystal Radios (Make and Use Series). 64 p.. 101 il. $\$ 2.50$ \square Home-Brew HF/NHF Antenna Handbook. 210 p., $143 \mathrm{iI} . \quad \$ 5.95$ \square CBer's Handy Manual of SSB. 80 p. 42 in. 140 p, 113 it $\$ 2.25$ \square Modern Digital Communications. $308 \mathrm{p} ., 122$ il \square Microprocessor Progr. Computer Hobbyists. 378 Illus. Dict.-Broaricast-Calv-Ielecammunications. 219 il. $\$ 8.95$ \square Linear IC Applications Handbook. $280 \mathrm{D} ., 183$ il. \square Puild-It Book of Optoelectronic Projects. 238 p.. 175 \square Photo Guide to AM/FM Stereo Repair. 288 p.. 281 il Servicing Medical \& Bioelectronic Equipment. 350 p. 165
\square How to Use AF \& RF Signal Generators. 238 p.. 162 il \square Model Railroad Electronics. 308 p., 218 il. The ABC Book of Hi -Fi/Audio Projects. 182 p ., 131 ii. Complete Hdbk. of Electrical/House Wiring. 476 p. $\quad \$.95$ $\square 88$ Practical Op Amp Circuits You Can Build. 140 p., 120 ii. $\$ 4.95$ \square How to Build Metal/Trea sure Locators. 140 p., 60 il. $\$ 3.95$ Home Audio Systems Schematic/Servicing Manuals. each 200 p $\$ 5.95 \square$ Vol. 1 Capehart. Zenith. \square Vol. 2 Channel Master. Coronado. Hitachi. \square Vol. 3 Automatic Radio. Admiral, Midland, Sharp. SEND HO MONEYI We II invoice you on 10-DAY FREE TRIAL Clio entire ad to order 100% guaranteed or your money refunded

CIRCLE NO 47 ON REE INFORMATION CARD

Get 70 pages of speaker facts in three fact-packed publicatıons

5peakerlab's Speaker Operating Manual covers everything you need to know to get the best performance out of any loudspeaker, including placement, wire gauges and allowable engths. amp overloads, room acoustics, L-Dad djustments and impedances

Our 54-page color catalog covers enclosures. designing your own speakers and river principles as well as our line of nine easy to-build speaker kıts ranging from à minuture two-wav system onlv ten inches high to a massive all-horn comer system
"How To Hook Up Your System" spends wetve pages of text and diagrams really explaining system hookup. From where to place your electronics for maximum cooling to the intricacies of installing a cartndge. from eliminating hum to proper record care

Cet all three for Just a dollar from the folks who take speakers and speaker informa tion seriously
 Here's a buck i can really use 70 pages of speaker information from the world's largest
manufacturer of speaker kits. Dept PE-M
lame $\frac{\text { address }}{\text { city }}$
maintained a regular schedule on 5.85 MHz this spring, GMT Sat. and/or Sun. between 0400 and 0500. The wildsounding announcers loved to play old, old records. Each time they broadcast a different phone number for listeners to call, and rewarded them with handmade QSL sheets. Several other pirates have been operating just above 6.20 MHz .

Cuban Clandestines, Too. Most likely using ham equipment, Radio Abdala and Radio Rebelde have both been heard around 7.08 MHz with anti-Castro speeches. Another one bearing the same name as a Cuban government network is La Voz de Cuba, heard in Argentina on 6.100 MHz.

Buzz, Buzz. It seems the FCC does not require private U.S. shortwave broadcasters to monitor their own signals on an ordinary receiver. As a result, for well over a year, WYFR has been broadcasting a "ripple," "hum," or "buzz" on many frequencies, making their signal a pain to listen to. The synthesizer problem cannot be detected on the FCC type-approved direct demodulation monitors they are required to use! Also, their old Scituate plant barely survived an ice storm in February, making them more eager to move to Florida.

HF Happiness. The rapid upswing in the sunspot count this year has led to much improved propagation above 15 MHz . More and more flea-powered harmonics can be heard on a good day in the $23-25-$ and $30-31-\mathrm{MHz}$ ranges. The $15-$ and $17-\mathrm{MHz}$ bands stay open all night between Europe and North America. The $21-\mathrm{MHz}$ band is open at very unusual times, such as from Pakistan at 0230-0245, heard in North America on 21.59 with dictation-speed English news. A few more stations are likely to venture into the $25-\mathrm{MHz}$ band, besides Israel on 25.605, Radio Liberty on 25.69 and VOA Greenville on 26.04 . During the last sunspot peak, 25 MHz provided excellent reception from the few countries using it. This time, however, we must cope with CB interference. And as in every solar activity peak, while conditions can be excellent, there are also more blackouts in store rather than the generally mediocre reception of the past few years. Various estimates place the peak of Cycle 21 in late 1979 or early 1980 at a maximum of about 150 sunspots.

CIRCLE NO 23 ON FREE INFORMATION CARD
Put Professional Knowledge and a COLLEGE DEGREE
in your Electronics Career through HOME

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E78
Grantham College of Engineering 2000 Stoner Avenue
P. O. Box 25992

Los Angeles, CA 90025
Worldwide Career Training thru Home Study
CIRCLE NO 18 ON FREE INFORMATION CARD

By Leslie Solomon

DIRECT-WIRE REMOTE CONTROL

AT VARIOUS times, Popular Electronics has introduced ideas and circuits for using a computer as a re-mote-control device. Published circuits used the ac power line as the interface between the computer and the remote electrical appliance being controlled. This approach was taken because we assumed that most users would not wish to rewire their homes to accept direct remote control

Now we find that many readers do wish to direct-wire their systems. This way, any possible signal malfunction due to power-line noise and other unwanted signals on the ac line will not affect the program being transmitted. Moreover, the "bill of materials" would be lower doing it this way. Many readers have also told us that they were either building a new house or renovating an old one, so that direct wiring could easily be included. Here is information on some direct-wire control systems to assist these readers.

Direct-Wiring Accessories. Gimix, Inc. (1337 West 37 PI., Chicago, IL 60609; Tel: 312-927-5510) has such a system and had, in fact, built a comput-er-controlled house in the Chicago area. The Gimix system is based on a Driver Relay board that can be obtained directly from the company or a local computer store. The board is designed to drive up to 31 GE RR8 power relays, each of which can handle up to 20 amperes at 250 volts ac. Since this mechanically latched relay requires a $1 / 120$-second ($8.33-\mathrm{ms}$) pulse to turn on or off, standby current is negligible.
The Relay Driver board measures a large $24^{\prime \prime} \times 5^{\prime \prime}(61 \times 12.7 \mathrm{~cm})$. Relays are mounted on a separate bracket. Both the pc board assembly and metal relay bracket can be housed in a conventional $30^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}(76.2 \times 30.5 \times$ 15.9 cm) electrical case. The only other item required is a low-current 24 -volt transformer to supply relay power

The system is driven from a conventional 20-mA current-loop serial port. Up
to four of these boards can be driven in series, and each board is assigned its own specific port number.
A board-generated relay status signal allows the processor to detect faulty relays and permits the use of manualoverride switches. Since the data rate can be up to 1200 baud, up to 120 relays can be activated in one second

The board operates in either the active or the scan mode, as specified by the computer. In the active mode, the board interprets the 8 -bit data received as a command to turn on or off a particular relay. Following a brief interval to allow the selected relay to operate, the board senses that relay's status (on or off). If the status is other than expected, the computer takes appropriate action, as determined by the program.

A command received in the scan mode has the same results, except for relay activation. This allows the mode to check relay status at any time.

If the on-board UART detects a transmission error, such as in framing, parity, or overrun, no relays are activated and no status scan occurs.

The Gimix catalog contains listings for a number of other interesting remotecontrol items. Among them is an OptoBoard, which is a general-purpose interface between 34 switches and the computer. The switches can be from a keyboard, an intrusion alarm system, firealarm devices, clocks, timers, thermostats, lighting circuits, etc. Each switch input is through an optical isolator that has a rated 1500 -volt isolation.

All switch ports are constantly scanned by an on-board circuit (no processor time required), with 0.9 ms required to scan all ports. A built-in memory buffer saves up to 64 closed-switch signals, permitting the processor to complete lengthy tasks between interruptions. The board connects to any 8 bit parallel port

Another remote-control Gimix board is its Tone Recevier Board, which converts standard DTMF (telephone) tones into binary signals. This allows the use of

conventional Touch-Tone telephones for remote control. The board also uses an 8-bit parallel port. A 16 -button re-mote-control keypad that can work at distances of up to a mile from the computer is also available.

280 Controller. Manufactured by Dynabyte (4020 Fabian, Palo Alto, CA 94303: Tel: 415-494-7817) the Z80based Basic Controller sells for $\$ 750$ assembled and tested. The Controller features a variation of BASIC, called ZIBL, which is a proprietary language specifically written for control applications. This single board divides the world into six categories: sense inputs, flag outputs, lights, relays, A / D conversions, and D / A conversions. ZIBL implements 64 channels of each in such a way that the user need know nothing about them, other than their names.

The file structure allows multiple programs to be written into RAM, and each program can be individually loaded, renamed, and run. Any program can access another program as a subroutine while still retaining its own line numbers and variables. Listing, printing, and inputting can be from either the serial or the parallel I/O channel or the built-in CRT I/O. Interaction with the controller is via the user's keyboard and video monitor that can be "plugged" into a board connector.

On-board hardware includes a 280 microprocessor that operates at 2.5 $\mathrm{MHz}, 4 \mathrm{~K}$ of RAM (expandable to 16 K), 4 K of EPROM with programmer, two RS-232 I/O ports configurable via software with one port having a $20-\mathrm{mA}$ current loop, one parallel input and one parallel output port, 300-baud cassette interface with file handling and motor control, and a keyboard-input port.

The internal video interface generates 16 lines of 64 characters and has standard video output. There are also 32 individual memory-mapped flag outputs, 32 individual memory-mapped sense inputs, and eight relays, four of which handle 0.75 amperes and four of which handle 5 amperes. Other visual outputs include eight individual memory-mapped LED's and one 8-bit light port for displaying the data.

Floppy Update. Southwest Technical Products Corp. (219 West Rhapsody, San Antonio, TX 78216; Tel: 512-344-0241) has announced availability of its Model DMAF1 dual-drive, sin-gle-density, double-sided $8^{\prime \prime}$ (20.3-cm) floppy-disk system. It sells for $\$ 2095$ as-
 fun with this amazing array of phones you can really own. Styles and colors to express your every mood. Elegant onyx, 24 K goldplate, polished wood; nostalgic 20's 'n 30's styles: contemporary acrylic ' n chrome and frankly functional. from $\$ 17.95$ to $\$ 2,500$. All government FCC approved, ready for existing jack. Answering machines dialers and telephone accessories, too. Write today for 16 page, full color catalog. FREE.

THE TELEPHONE BOOTH

One Tandy Center, Dept. AR, Fort Worth, Texas 76102 A Division of Tandy Corporation

CIRCLE NO 54 ON FREE INFORMATION CARD

sembled and tested or $\$ 2000$ in kit form. The hardware consists of an SS-50 buscompatible DMA controller that is capable of handling up to four drives, two CalComp 143M double-density rated disk drives, both enclosed in a $201 / 2^{\prime \prime} \mathrm{D} \times$ $171 / 8^{\prime \prime} \mathrm{W} \times 53 / \mathrm{g}^{\prime \prime} \mathrm{H}(52.1 \times 43.5 \times 13.7$ cm) aluminum chassis that also contains a regulated power supply, drive-motor control board, cooling fan, diskette, etc.

Software includes a DOS, 8K BASIC with disk file and string function capability. Each diskette holds approximately 600 K . Hence, with dual disks, more than one megabyte is provided.

Video News. TDL (Research Park, Blag. H, 1101 State Rd., Princeton, NJ 08540; Tel: 609-921-0321) has released its VDB at $\$ 369$ assembled and tested. Consisting of two board assemblies, one piggybacked on the other, only one $\mathrm{S}-100$ connector is used.

The VDB contains its own display buffer with two pages of 25 80-character lines. Since the display memory does not employ a memory address, the entire computer memory is left intact for user programs. In addition to the 96 up-per- and lower-case ASCll characters (with descenders), 64 unique display symbols are provided to permit graphic resolution with 160 horizontal and 75 vertical elements. The display can accept data at a 400,000-character/ second rate. The blinking cursor is addressable, and a mode register allows any combination of characters to blink, insert, or do both simultaneously.

Ohio Scientific (1333 S. Chillicothe Rd., Aurora, OH 44202; Tel: 216-562-3101) has introduced a Model 540 video display board for the company's Challenger III line. Costing \$249, this display features a 32 -row by 64 column display of the standard 64-character ASCII display font in a 5×7 dotmatrix form. Standard features include programmable 32×32 or 32×64 formatting. The board also has a keyboard port. The Model 540 also supports a graphics character generator that features lower-case and about 170 special characters for plotting and gaming.
$\mathbf{2 8 0}$ Board. The company to take up the "standard" for putting a Z80 into every S-100 bus computer is Vector Graphic Inc. (790 Hampshire Rd., Westlake Village, CA 91361; Tel: 805-497-6853) with its Z-80 CPU board that sells for $\$ 175$ in kit form or $\$ 215$ assembled. This new board offers fully blocked design with on-board wait-state AUGUST 1978

NCE/CompuMart
1250 North Main Street. Department|PEs8
Pn. Box 8610 Ann Arbor. Michigan 481 c7
select and is jumper-selectable for operation at 2 or 4 MHz . All Z80 lines are fully buffered, and the board will operate with 8080 software without modifications.

Upcoming Meetings.

July 22-23
Amateur Computing 78, Sheraton National Motor Hotel
Arlington, VA
Aug 24-27
Personal Computing 78,
Civic Center, Philadelphia, PA
Sept 15-17
2nd National Microcomputer

Expo and Conference,
Coliseum, New York, NY
Sept 29-Oct 1
International Microcomputer Expo, Dallas Convention Center, Dallas, TX
Oct 5-8
Midwest Personal Computing Expo, Expocenter, Chicago, IL
Oct 12-15
Mid-America Personal Compr Show, O'Hare Expo Center, Chicago, IL
Nov 3.5
3rd West Coast Computer Faire, Los Angeles, CA

Software

 Sources8080 Inventory Package. Inven-tory- 1 is an interactive inventory control system for S-100 bus computers. It is designed to run on Shugart Mini-Floppy drives. The program provides three-second access to any item in the inventory file. "HELP" and "EXPLAIN" commands are available to prompt the firsttime user. The system includes a set of "skeleton" programs which can be used to implement special, userdefined commands; using these "skeleton" programs. the system is claimed to make it possible to produce the software necessary to generate a special report within 5 minutes. \$99.95. Write: The Software Works, Inc., Box 4386, Mountain View, CA 94040.

1802 Cosmac Elf Music and Games. This 44 -page book includes music programming instructions and several "scores," utility subroutines, random numbers. Tic-Tac-Toe, and others. $\$ 2.50$ (Connecticut residents add 7% tax). Paul C. Moews, 39 Mansfield Apts.. Storrs. CT 06268.

6502 Assembler/Text Editor \& Relocating Loader. The Assembler/ Editor portion of this program produces relocatable object code on tape (with checksum) and can store executable code in memory during assembly. It can assemble source programs from tape or memory, and has 17 user commands (including tape control and one user-definable command) and 16 pseudoops. Labels may be up to 10 characters in length. Lines are automatically numbered, and there are 18 error codes. A manuscript feature allows the program to generate letters and other text. The Relocating Loader can reload relocatable object code at practically any location. The program resides in less than 4 K of RAM or ROM (specify hex starting addresses of 0200, 0400, 1000 or 2000), and support up to two tape decks. It is pre-configured for TIM-based systems, but information is supplied on modifying it for other systems. Hex listing and operators manual, $\$ 25$. C.W. Moser, 3239 Linda Dr., Wirston-Salem, NC 27106.

NEW YORK

Byte Shop of New York
Small Business Systems \& Software
130 East 40th Street
Corner of Lexington Avenue
New York, New York 10016
(212) 889-4204

Computer Factory
Low Prices/Home \& Office Computers
485 Lexington Avenue
New York, New York 10017
(212) $249 \cdot 1666$ or (212) PE-T- 2001

Readout Computer Stores
6 Winspear Avenue
Buffalo, New York 14214
(716) 835-7750

PENNSYLVANIA

Personal Computer Corp.
First in Pennsylvania
Frazer Mall
Lancaster Avenue and Route 352
Frazer, Pennsylvania 19355

TEXAS

Compushop
Computers for Home \& Business
13933 North Central Expressway
Dallas, Texas 75243
(214) $234-3412$

KA Electronics Sales
Computers and Components
1220 Majesty Drive
Dallas, Texas 75247
(214) 634.7870

The Computer Shop
6812 San Pedro
San Antonio, Texas 78216
(512) 828.0553

VIRGINIA

Computer Systems Store
Processor Technology \& PET
1984 Chain Bridge Road
McLean (Tysons Corner), Virginia 22101
(703) $821-8333$

The Computer Hardware Store, Inc.
818 Franklin Street
Alexandria, Virginia 22314
(703) $548 \cdot 8085$

The Computer Workshop of Northern Virginia
5240 Port Royal Road \#203
Springfield, Virginia 22151
(703) 321-9047

TTL HIGHSPEED PLASTIC DUAL-IN-LINE I.C.'s

| | | |
| ---: | :--- | :--- | :--- |
| Stock level | Part No | Price |
| 46000 | $74 H 00$ | 16 |
| 1300 | $74 H 01$ | 16 |
| 11600 | $74 H 02$ | 16 |
| 8900 | $74 H 03$ | 16 |
| 51000 | $74 H 04$ | 17 |
| 9000 | $74 H 05$ | 17 |
| 1500 | $74 H 08$ | 22 |
| 17000 | $74 H 10$ | 16 |
| 4400 | $74 H 11$ | 22 |
| 1000 | $74 H 12$ | .16 |

Slock leve	Part No	Pire
4000	74 H 15	17
12000	74 H 20	16
6000	74 H 22	16
2000	74 H 30	18
24000	74 H 40	16
3000	74 H 50	16
2000	74 H 51	17
1000	74 H 52	17
6000	74 H 53	17
1000	74 H 54	18

		Stock level Part No	Price		
Stock level Pari No	Price	1200	$74 H 76$.55	
2000	$74 H 55$	18	1000	$74 H 78$.55
3000	$74 H 60$	18	1500	$74 H 87$	2.75
2000	$74 H 61$	18	$100074 H 101$	35	
2000	$74 H 62$	18	$100074 H 102$.35	
2000	$74 H 64$	16	$100074 H 103$	50	
6000	$74 H 65$	16	$200074 H 106$	45	
1000	$74 H 71$	35	$100074 H 108$	49	
2000	$74 H 72$	31	$300074 H 113$	24	
2000	$74 H 73$	49	$200074 H 114$	24	
24000	$74 H 74$	24	$120074 H 18322$		

$\left|\begin{array}{ccc}\text { Stock level } & \text { Pari No Price } \\ 36000 & 7400 & 09 \\ 22000 & 7404 & .09 \\ 6800 & 7423 & 07 \\ 13000 & 7425 & 12 \\ 43000 & 7437 & .09 \\ 57000 & 7438 & 09 \\ 22000 & 7443 & .15 \\ 38000 & 7445 & .19 \\ 23000 & 7454 & .07 \\ 32000 & 7460 & .07 \\ 41000 & 7472 & .12\end{array}\right|$

Stock level	Part No	Price	Stock level	Part No	Price
15000	7480	19	41000	74162	34
26000	7482	.15	90000	74174	.39
56000	7491	19	21000	74175	39
45000	74150	.39	11000	74180	.34
69000	74151	.29	13000	74181	79
12000	74152	89	31000	74182	.29
90000	74153	.29	30000	74190	.34
33000	74154	.49	48000	74191	.34
2900	74155	.29	16000	74194	34
23000	74156	.19	56000	74195	29
42000	74157	.29	8000	74199	69
			33000	74283	49

NEW 1978

 CATALOGUE
Our new and expanded

 comprehensive 1978 catalogue (144 pages), listing complete descriptions, illustrations and monolithic pricing on over 10,000 items is available on request.- Subject to prior sale
- Prices valid only till September 15th, 1978 - Slandard 1978 catalogue prices on the above devices will once again take effect September 15th, 1978.

\section*{MICROPROCESSOR CHIPS
 CPU's
 Stocklevel Part No Price
 $7100 \quad 8080 \mathrm{~A} \quad 7.95$
 UV EPROM Stock level PartNo
 MOS STATIC RAM'S tock level Part No Price 135002114 4K 450NS 9.95 84600 2102LFPC 1K 350NS 1.19 (Low power)
 MOS DYNAMIC RAM's Sock level Pari No
 $7200406090604 K 300 N S ~ 3.95$ 2800416 16K 250NS 19.95 UART'S
 Stock level Parino Price
 16500 AY5.1013A 4.95
 12300 AY3-1015 5.95
 INTERFACE SUPPORT CIRCUITS
 | Stock level | Part No | Price |
| ---: | ---: | ---: |
| 8300 | 8212 | 1.98 |
| 3500 | 8214 | 4.95 |
| 25200 | 8216 | 1.98 |
| 3300 | 8224 | 2.75 |
| 2400 | 8226 | 1.98 |
| 3100 | 8228 | 4.75 |
| 1400 | 8238 | 4.75 |
| 5700 | 8251 | 5.95 |
| 1100 | 8253 | 14.95 |
| 2700 | 8255 | 5.95 |
| 1000 | 8257 | 9.95 |
| 840 | 8259 | 14.95 |
| | | |
| 4500 | 6810 | 3.95 |
| 8000 | 6820 | 4.95 |
| 9600 | 6850 | 5.95 |
| 1500 | 6852 | 5.95 | Ovar the - counter sales. 12 Mercer Rd. Natick. M
 Telephone Ordars \& Enquires (617) 879 - 0077
 IN CANADA 3 LOCATIONS Berter Centre
 5651 Forrier St. 44 Fasken Dr. Unit 25 1050 Baxior Roa Tel.(514) 735-6425 Tel.(416)675-3311 Tel:(613) 820.9471}

Dual In-line
 Sockets

- pluggable socket for ic packages Withieads

RECEPIACIE GOLDISUSEDINTHE
HIGH RELIABILITY GAS-TIGHT JOINT FOR
"GOOD AS GOLD" PERFORMANCE

- COMPACT LOWPROFILEDESIGN
- NO WICKING WHEN SOLDERED TO

PC BOARD

- flammability rating ul gav.o

BRAND NEW 1978 IC MASTER
Complete integrated circuit data selector. New 1978 edition (2200 page year Master guide to latest I.C.'s including microprocessors and consumer circuits
Free quarterly updares
\$24.95
Lowest price available

MINIMUM ORDER $\$ 10.00$ - ADD $\$ 2.00$ TO COVER POSTAGE \& HANDLING - Canadian customers add 30% for exchange and handing. All

74L SERIES TTL $74100 \quad 33 \quad 74150445 \quad 7415193$ 74L10 33 74LS10 39 74LS113 ,98 $\begin{array}{llllll}74130 & 33 & 74 L 520 & 39 & 74 L S 174 & 250 \\ 74 L 42 & 150 & 74 L S 51 & 39 & 741 S 396 & 50\end{array}$ $\begin{array}{lllllll}74142 & 1 & 50 & 74 L S 51 & 39 & 74 L S 386 & 5 \\ 74186 & 69 & 74 L S 74 & 65 & 74 S 153 & 2\end{array}$ $\begin{array}{llllll}74 L 86 & 69 & 74 L S 74 & 65 & 74 S 153 & 2 \\ 74 L S 00 & 39 & 74 L S 112 & 65 & 74 S 387 & 1\end{array}$

74H00 TTL

$74 \mathrm{M00}$. 33	74411	33	74-453
$74 \mathrm{MO1}$	33	74 H 20	33	74M55
$74 \mathrm{MO4}$	33	74 M 21	33	74M73
74405	35	74430	33	74H74

MOTOROLA

MC663P	250	MC1460	395
MC666P	160	MC1469R	250
MC670P	160	MC1489	460
MC679P	250	MC1496	165
MC725P	150	MC1510G	800
MC789P	150	MC1514	450
MC790P	150	MC1595L	6.25
MC817P	130	MCl 123 CL	360
MC836P	135	MC1741CG	120
MC844	125	MC1810P	125
MC853P	2.25	MC3004	2.25
MC876P	225	MC3007P	225
MC1004	1.25	MC 3021 L	215
MC1010	125	MC30601	265
MC1305	195	MC30621	300
MCi352P	155	MC4024P	220
MC1357	170	MC4044P	480
MC1371	185	MC14507CP	125
MC1439	265	MC14511CP	276
MC1458P	50	MC14512CP	1.70

CMOS			
4001 AE	29	4023 AE	29
4002AE	29	4024 AE	150
4007 AE	29	4025 AE	35
4010 AE	58	4028 AE	160
4011 AE	29	4029aE	2.90
4012AE	29	4030 AE	65
4015 AE	1.25	4037 AE	450
4016 AE	65	4040AE	240
4018 AE	110	4044 AE	150
4019 AE	65	4049 AE	. 75
${ }_{4}^{402029 E}$	175 150	4050AE	75

LINEAR					
54508P	49	1 M 301 H	35	LM741CH	
754518P	39	LM307H	35	LM747	90
754528P	39	(m309\%	125	(M7484	45
754538 P	39	(m311m	90	LMIAS8N	80
754548 P	39	LM318N	1.50	N5556\%	1.50
754918P	79	LM339N	185	NE5558	100
754928P	85	LMS3SIAN	65	NE 555 V	60
CA3005	; 00	LM370N	1.25	NE558	150
CA3006	350	LM380N	145	UA702	80
CA3018	1.10	LM568	2.25	UA703CH	45
CA30184	1.60	LMP11CH		UA709CH	
CA3026	1.50	[M723H	75	UA 749 CH	45
CA3046	$.35$	LM741CN N THE	45		

BBD BUCKET BRIGADE DEVICE MM3001 19.50 MN3002 11.70 MM3003 9.45
$\begin{array}{llll}\text { HALLIC:DN834 } & 1.25 & \text { DN837 } & 1.50\end{array}$ DN835 1.35 DN838(NEW)

ZENER DIODES

$1 / 2$ Walt. $\pm 10 \%$
$\$ 30$ each to 33 V
1 Watt. $\pm 10 \% \ldots . .$. . $\$ 40$ each to 33 V
Voltages 10200 V , and $\pm 5 \%$ Available
1 Megohm Potentiometer - Made by Clarostat. $1 /{ }^{\circ}$ " diam.. split, knurled shaft $1 / 2$ " long. NT544 $\$.39$ Three lor $\$ 1.00$

MINIMUM ORDER $\$ \mathbf{5 . 0 0}$ All orders add $\$ 1.50$ Postage \& Handling Canada $\$ 2.00$
N.J. Residents add 5\% Sales Tax.

ELECTROLYTIC CAPACITORS					
2.2MF50	Axplleads	s 15	30MF25	Axual Leads	18
$33 \mathrm{MF10}$	Axisl leads	. 15	47 MF 25	Radial Leads	. 19
3 3MF10	No Poilerity	15	$47 \mathrm{MF50}$	Racialleads	24
10 MF 25	Axiel londs	15	100 MF 16	Radial Lesdz	. 19
$10 \mathrm{MF5} 5$	Axalleads	16	100MF 25	Rediel Lesds	d
10MF150	Axtal leadz	. 20	500MF50	Axtal lesds	. 60
25MF35	Axual Leads	18	1000MF35	Axial Leadk	3. 65
MICROPROCESSOR					
C1702A	9.95	2708	34.95	8008	19.95
2101	5.75	C5101.3	4.50	80804	19.95
Contact us tor all your microprocessor needs.					

RECTIFIERS

	10	100
	For	For
1N4001	60	500
iN4002	.70	600
1N4003	80	700
IN4004	90	800
1N4005	100	900
IN4006	110	1000
IN4007	120	1100

UNIJUNCTIONS

$2 N 216065$
$2 N 2646$ 2N2646 45 Mu48923 50 N2647 55 MU4894 50 2N4851 .75 2N6027 55 N4852 75 2N6028 70 N4870 50 2N6028 70 N4871.50 D5E37 . 35 MU4891.50 MU10 35

HARDWARE - SOCKETS

Nyton Screws. Nuts ond Arvets 50 piece assortment $\$ 1.99$ MK 20703 Mounting Kr TO 3. TO-66 or TO 220 IC Socket
IC Socke: Wire Wiap
\qquad 14 Pin DIL 16 Pin Dil 16 Pin Dil

10 sets tor $\$.99$ 5.25 Bach $\$ 27$ esch $\$ 32$ each

Tiny Meter . Small enough to add to almost any equip. ment, this 300 uA S-meter has a removeable scale. Use it as is or in a voltmeter. as a tuning indicator, battery tester, etc. Meter face is $1 / 2^{\prime \prime} \times 3 / \mathbf{n}^{\prime \prime}$. Body over-ail is a $3 / \mathbf{c}^{\prime \prime}$ cube. Mounting centers $11 /{ }^{\prime \prime}$ ", NT579 $\$ 2.293$ for $\$ 6.00$ 12-Volt DC Relay - Rugged 12 -volt SPDT relay, with a 5 amp contact rating, housed in a tough white nylon case.

NT $565 \$ 1.79$
Pioneer 6" Speaker - $71 / 2$-watl, 3.2 -ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 $\$ 2.39$ Three for $\$ 6.00$
PC Boards - MIL grade. $1 / 16^{\prime \prime}$ glass-epoxy boards with 2ounce copper on one side.
NT521 6"x3" 5.50, NT522 6"x6" \$.90' NT523 6"x8" \$1.20
Regulated Power Supply Components Kit - Contains the components needed to build a fixed-voltage regulated supply including: $117 / 17 \mathrm{~V}-1$ ampere Transformer, Bridge Rectifier, 2000 uF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify $5,6,8,12$ or 15 volts

NT525 \$4.99
Dry Transfer Patterns for PC Boards - Includes 0.1" spaced IC pads, donuts, angles, and 3 -and 4 -connector pads. Over 225 patterns on a 2 " $\times 71 / 4$ " sheet NT520 $\$ 1.49$ 5 " Taut-Band Meter - One milliampere full scale. $3^{1 / 2} \mathbf{2}^{\prime \prime}$ scale length. Coil resistance 465 ohms. Made by Modutec for Bose. Meter scale in VUs $(-20$ to +3$)$. Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all $5 \frac{1}{3} \times 4^{\prime \prime}$. Meter face mounts in a $5 \frac{1}{2}$ " $\times 2 y^{\prime \prime}$ cutout: A beautiful meter.

NT539 $\$ 4.89$

NEW FROM NEW-TONE HIGH FIDELITY SPEAKERS

8.INCH COAXIAL

Combines a high quality $8^{\prime \prime}$ wooter and a Iweeter into a pre-phased sound reproducer Bult-in cross-over network Excellent choice for a low cost $\mathrm{HI}^{2}-\mathrm{F}_{1}$ system for autos. vans or in your home Frequency response is a smooth $80.15000 \mathrm{Hi} 8-0 \mathrm{hm}$ VC 1002 ceramic ring magnet 25 W rating

NT577 \$13.99
plus 40 cents postage

10.INCH WOOFER

The speaker for your "big sound" system Frequency response is $20-4000 \mathrm{~Hz}: 8.0 \mathrm{hm}$ alumınum VC. poweritul 2007 ceramic ring magnet and a rubberized accordion-edge suspension for excellent compliance. Handles 50 W max. Use with the NT576 for a super system

NT578 $\$ 17.99$ plus 41 cents postage

50 W DOME TWEETER

Here is the super tweeter A rugged $10 \mathrm{~cm} / 4^{\prime \prime}$; dome iweeter which handles 50 W max Frequency response is $4000-20000 \mathrm{~Hz}$ 8 -0hm VC. $80 z$. ceramic magnet Your system can have a brillance you never imagined

ALL PARTS GUARANTEED WRIIE FOR FREE CATALOG

MORE NEW ITEMS!

JUMBO LED READOUT ARRAY
By Bowmar. 5 in character common cathode. Designed for use with multiplexed clock chips
$\$ 1.95$ limited stock 4 digits in 1 pack!
MICRO-MINI TOGGLE SWITCH SPDT. By RAYTHEON.
99¢ EACH

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE
MA1008A
BRAND NEW:

ASSEMBLED! NOT A KIT!
zULU VERSION
We have a limiled number of the 24 HR Rea \#MA1008D - $\mathbf{5 9 . 9 5}$

EATURE

* FOUR Jumbo \% incm leo displays
* 12 ha heal time format - 50 OR 60 Hz OPERATION - LED BRIGhTNESS CONTROL - power fallure indicato * SLEEP SNOOZE TINERS
* DRECT LED DRIVE LLOW RF COMPARE AT UP TO TWICE OUR PRICE!

MANUFACTURER'S CLOSEOUT!

MOTOROLA 4K RAM's - 99¢

A major US computer mfg. removed these parts from PC boards, then them to full specs. Best Memory Buy in the U.S.A.! 4096×1 Bits. One of the easiest Dynamic RAM's to use. A complete memory board design using these chips is detailed in the MOTOROLA M6800 APPLICATIONS MANUAL starting on page 4 70 The 6605 is the popular 22 Pin Dip 8 FOR \$6 ${ }^{25}$
\qquad
FAIRCHILD JUMBO READOUTS 5 Inch Char High Efticiency FND-503-Common Cathode
FND-510-Common Anode FND-510-Common Anode
YOUR CHOICE 696 10 FOR $\$ 5.75$

FET SALE! 2N4304. Brand New N Channel Junction Fet BVGDO-30VIDSS-15 MA Typ 1500 UMHOS TO-18 Plastic
Case Mig by Teledyne 6 FOR \$1

MCM6605 470 Ns guaranteed:
 to the 18th power Easily divided down to any power of 2 . and even to 1 HZ New by CTS-Knight A $\$ 5$
$\$ 1.25$ each

Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected Guaranteed to meet all specifications, both electricaily and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

Linear ICs

By National Semiconductor and Motorola - first quality

8-Bit Data Bus,

16-Bit Address Bus
8080A Microprocessor. 100% prime CPU handles up to 65 K bytes memory
$276-2510$. Reg. 17.95
RAM Memory IC

Under 450 ns Access Time

2102 1K Static RAM. Low power ve
sion 16 -pin DIP Buy 8 and save
276-2501 $\quad 2.49$ Ea. or $8 / 14.95$

CMOS Logic ICs

Full-Spec Devices Direct trom
Motorola and
Motorola and
National Semichen
National Semiconductor

NEW EDITION:
Update Your Semiconductor Library Now!

REGULARLY \$1.95. Archer ${ }^{\text {t }}$ Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor - display devices, too! 46.000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations. 276-4002... With Any $\$ 5$ Parts Purchase, Only 99 e Offer good at participating Radio Shack stores and dealers

\& Slope Front. Sloping top panel - ideal for labprojects $13 / \mathrm{i}$ (23/4×7\% $1 / 47 / 6: 270-265$ $2^{7 / 16 \times 4^{9} / 1}$
$31 / 2 \times 7^{7 / 6} \times 5^{11 / 4}$

		Primarie Solder		Pow to Op sy Wiri	ted fro or PC	sfor 120VAC ard Mo	$\begin{aligned} & \text { ers } \\ & 0 \mathrm{~Hz} \\ & \text { ling } \end{aligned}$	Solar Cell
Volis	Current	Cat No.	Each	Volts	Current	Cat. No.	Each	21/4" Round Silicon
63	12 A	273-050	2.49	63 CT	3 A	273-1510	3.99	
6.3	300 mA	273-1384	1.99	12.6 CT	3 A	273-1511	4.69	High efficiency - provijes approximately 0.5 voit at 400 mA . For higher voltage or current outputs use several in series or parallel. 276-121 5.99
12	300 mA	273.1385	1.99	252 CT	2 A	273-1512	4.99	
24	300 mA	273-1386	2.49	12 cT	5 A	273-1513	8.95	
24	12 A	273-1480	2.99	18 CT	4A	273-1514	8.95	
12.6CT ! 2A		273-1505	2.89					
		- Ideal for 5V (using CT) or 12 V sotid-state regulators						

 rent foldback limiting Remotc sensing for 77-119 (PCB

			Extra Length Test Clips NEW

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

COMPUTER INTERFAGES \& PERIFERALS

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE *

- Baud rates up to 30,000 - Plugs into Apple Peripheral connector - Low-current drain • RS-232 Input and Output SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer. Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to intertace with some selectrics. Board only $-\$ 15.00$ with parts - \$4200; assembled and tested - $\$ 6200$

MODEM*

Part no. 109

- Type 103 -
ll or hal baud - Originate or Ans wer - No coils, only low cost components - TTL input and output-serial -
 and crystal mic. directly to board - Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$ with parts $\$ 27.50$

DC

POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts at $3 \mathrm{amps} ., 12,-12$, and -5 volts at 1 amp - Power required is 8 volts AC at 3 amps., and 24 volts AC CT at 1.5 amps • Board only \$12.50: with parts excluding transformers $\$ 4250$

TAPE INTERFACE *

- Play and record Kansas City Standard tapes -
Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial \bullet Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board • No coils \bullet Requires +5 volts, low power drain \bullet Board $\$ 760$, with parts $\$ 27.50$
T.V. TYPEWRITER

Part no 106

- Stand alone TVT lines, modifications for 64 char/line in cluded - Paraliel ASCII (TTL) input
Video output • on board memory Output for computer controlied cur
 Non-destructive curser - Curser inputs up down, left right, home. EOL. EOS - Scroll up down - Requires +5 volts at 15 amps and -12 volts al 30 mA - All 7400 . TTL chips - Char gen 2513 • Upper case only - Board onl

TIDMA*

Part no. 112

- Tape Interface Direct Memory Access - Recor and play programs without bootstrap loader (prom) has FSK encoder/decoder for direct con nections to low cost recorder at 1200 baud rate and direct connections for inputs and outputs to a digital recorder at any baud rate •S-100 bus com patible - Board only $\$ 35.00$, with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Pat oo tor

- Converis serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates 110 150. 300. 600, 1200 and 2400 - Low power drain +5 volts and -12 volts require

- TTL compatible - All characters contan a start bit 5 to 8 data bits. 1 or 2 stop bits. and ether odd or even parity - All connections go to a 44 pin gold plated edge connector \bullet Board only $\$ 12.00$. with parts $\$ 35.00$ with connector add $\$ 4.00$

8K STATIC

Part no. 300

Alar Uses 2102 Static memory chips • Mem ory protect - Goid contacts - Wait states - On board regulator - S-100 bus compatible - Vecto input option - TRI state buffered - Board only \$22.50; with parts $\$ 16000$

RF MODULATOR*

Part no. 107

- Converts video to AM modu lated RF, Channels 2 or 3 So powerful almost no tuning is required. On board regulated power supply makes this ex
 tremely stable. Rated highly in Doctor Dobbs' Journal. Recommended by Apple. - Power required is 12 volts AC C.T.. or +5 volts DC • Board $\$ 760$, with parts $\$ 13.50$

RS 232/TTY

 INTERFACE*Part no. 600

- Converts RS-232 to 20 mA current loop, and 20 mA current oop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL

 INTERFACEPart no 232

- Converts TTL to RS-232 and converts RS-232 to TTL - Two separate circuits

FOR ALL CUSTOMERS EXCEPT CALIF. CALL TOLL FREE 800-421-5809

\% ea.	-						
					citichey	$\substack{74 \text { LS5 } \\ \text { hex } \\ 100}$	

$5 @ \$ 20.00$ ea. $25 @ \$ 8.75 \mathrm{ea} .1100 @ \$ 8$ COMPONENTS

MICROPROCESSOR'S	
$\underset{88}{78}$	16.95 12.00
280 A	0
265000	24
${ }_{6502}$	
	18.95 29.00
88008.1	
${ }_{8080}^{803}$	${ }_{21}^{2}$
${ }_{\text {TMS }}^{808900 T L}$	27.00 75.00

FLOPPY DISC ${ }^{20.00}$ CONTROLLER
 KEYBOARO CHIPS

AV5-2376	
AV5- 1360	13.75
PROW.	

PROM'S

280 SUPPORT DEVICES

3889
3882

12.95
12.95
static rams

character generators

MCM6
MCM6
MCM 57
MCM65
waveform generator $\mathrm{MCL}^{8,3024}$
566
564
DYNAMIC RAMS
2160
1163
2109
2109

${ }_{2109}^{21098}$	4.00
21078-4	3.95
TMS4060	4.50
${ }_{4096} 10{ }^{4}$	4.00
${ }^{4} 1116 / 4.60$	32.00
MCM6605	5.00
USRT	
52350	10.75
UART'S	
AVS-1013A	8.25
TR1602 ${ }^{\text {a }}$	3.25
imb 402	10.80

JADE 8080A KIT
$\$ 100.00$ кіт
bahe board $\$ 30.00$

MISC. OTHER COMPONENTS

E-PROM BOARDS

Jumbitures
A. Bowmar Jumbo 5 inch LED array
B MOSTEK - 50250 - Super clock C. On board precision crystal time base E. Perfect for cars. boats. vans. etc Alar. board and all parts (less case) Alarm option - $\$ 1.50$
AC XFMR - $\$ 1.50$

$$
16.95
$$

MUSICAL HORN
One tune supplied with each kit Additional tunes - $\mathbf{3 6} .95$ each. Special tunes available. Standard tunes now available:Dixie - Eyes of Texas -- Dn Wisconsin - Yankee Doodle Anchors Away - Never on Sunday - Yellow Rose of Texas Deep in the Heart of Texas - Boomer Sooner - Bridge over River Kwal. Special Design Assembled CAR \& BOAT KIT HOME KIT Case $\$ 3.50$ \& Tested $\begin{array}{cccc}34.95 & 29.95 & & \text { Case } \$ 3.50 \\ \text { Add } \$ 10.00\end{array}$

6 DIGIT ALARM CLOCK KIT
Features: Litronix dual $1 / 2^{\prime}$ displays. Mostek 50250 super clock chip, single I.C. segment driver. SCR digit drivers. Kit includes all neEliminate the hassle AC XFMR - $\mathbf{\$ 1 . 5 0}$ Cose $\mathbf{5 3 . 5 0} \quad \$ 12.95$

TELEPHONE RELAY
Assembled \& Tested $\$ 29.95$
Automatically Starts \& Stops Tape Recorders Surreptitious Interception of telephone conversation is a violation of Federal Law and this device is not intended for such use

NEW IMPROVED UNSCRAMBLER!

 $\$ 25.00$Punched and Printed Case Pluga into earphone or external - Essity tureat spanker of any Scanner or Montior. Full instiruction included Drllied liberglass P C
One Hour Assembly

12V 1 AMP POWER SUPPLY input voltage 25 V max. output cur. RENT 1 AMP. MAX. LOAD REGULATION 50 mV . OUTPUT VOLTAGE 12 V . LINE REGULA. TION 0.01%. KIT CONTAINS ALL PARTS EXCEPT FOR LINE CORD AND TRANS. Fuli insifuction incluaded FORMER

MICROPROCESSOR

 SUPPORT CHIPS
$8212-110$ por $8214-p, 1 c$

 8255 roge perp, inter face
8820

80 | 8820 Dual Line Rec |
| :--- |
| 8330 |
| Dual Line Dr | 25313 Char Gen ,

 PROMS $\begin{array}{lr}\text { 1702A- } K-1.5 u s ~ 3.95 \text { or } & 10 / 35 . \\ 2708-8 K \text { Intel }-450 \mathrm{~ns} & 14.95 \\ 5204-4 K & 7.95 \\ 825129-1 K & 2.50 \\ 27085-8 K \text { signetics } 650 \mathrm{~ns} & 995\end{array}$

DIODES

 IN 4002 I Amp 100 PlVIN 4004 Amp 400 V

germanium diodes

IN 54A iN 270

2ENER DIODES N $7463.3 \mathrm{~V} \quad 400 \mathrm{M}$ $\begin{array}{r}7525.6 \mathrm{~V} 400 \mathrm{M} \\ \hline 19588 \mathrm{~V} 400 \mathrm{M}\end{array}$ N 525939 V 500 M N 5271100 V 500 m HOUSE \# 2ENER 4.7V 500 MW iov 1 Watt 15 V 500 MW
22 V 5 Watt

SWITCHING DIODES
The most popular digital IC's
UL914 DUAL 2 INPUT NOR 99
ONLY $\$ 4.50$

TRANSISTORS

VOLTAGE REGULATORS

7805 Pos	5V/Amp	99	7818 Pos	18 V
7806 Pos	6V IAmD	99	7824 Pos	24 V , Amp
7808 pos	8 BV IAmp	99	7905 Neg	5viamo
7812 Pos	12 V 1 Amp	99	7912 Neg	12 V A Am

723 voltage regulators
Output voltages van able trom 2 volts to 37 volts
A very versalile and pooular device - 14 PIN DIf

MOTOROLA VOLTAGE REGULATO MC1469R TO-66 9 lead package tor 3 to 30 V ou

Similar to Thermalloy 2205 G Finned with insert. $\$ / \$ 1$. TO - 5 HEATSINKS STANDARD SLIP - ON 6/\$1. HEATIINKS FOR VOLTAGE REGULATORS
Black anodized aluminum " U " shaped its TO-220 case
4 fOR $\$ 1.00$

Bowmar 4 Digit LED Readout Array Full $1 / 2^{\prime \prime}$ Litronix Jumbo Dual Digit LED Displays
4 JUMBO 50 " DIGITS ON ONE STICK WITH COLONS \& AM/PM INDICATOR
$\mathrm{DL} 722-\mathrm{CC}^{\mathrm{DL} 721.95}$ $99 c$

DL 727 - C. A UNMARKED 1702A EPROMS
3.50 Ea. or $10 / \$ 32.00$ LIMITED SUPPLY IMSAI SPECIAL.
S-100 Connector \$3.95 Ea.

CAPACITORS

	ORS	
```* \JOY STICKS * * FOUR 100 K-OHMS POTS Ideal for electronic % games $3.95```		$\begin{aligned} & \$ 1.95 \\ & \$ 2300 \\ & \text { smallest } \\ & \text { alintine } \\ & \text { PC Mount } \\ & -2.4-8 \\ & -2.4-8 \end{aligned}$

## RAMS

## BRIDGE RECTIFIERS



| 10 Amp | $50 \mathrm{~V}, ?$ |
| :--- | :--- | :--- |
| 25 Amp | 50 V, |

21L02-500NS
21L02-250NS
$2114-4 K$
$1101 A-256$
$1103-1 K$
MK $4115-8 K$
745 200-256
60 Hz . Crystal Time Base for Digital Clocks $\$ 4.50$

## Buy 2 for $\$ 8$.

## watcr

comparabie 10 a digit
Super low power with all MOS clock cnips D Uses latest MOS 17 slage divider IC

Eliminales forever the problem of $A C$ line gituches
ciocks at ham tield days campers, or oven tor Dortabi Small size can be used in existing anciosures
(All prices subject to change without orior notice.) P.O. BOX 38323D DALLAS, TEXAS 75238 an Empire ind co

Money back guarantee. NO COD'S. Texas residents add $5 \%$ sales tax. Add $5 \%$ of order forpostage and handling Orders under $\$ 15.00$ add 75 cents. Foreign orders add $20 \%$ for postage For your convenience. call your Bank Americard or Master Charge orders in on our Toll Free Watts Line: 1-800-527-2304 Texas residents call collect: 1-214-271-8423

NAME
ADDRESS
CITY $\qquad$ STATE
ZIP

any.	stm.	Dececriptoon	Price	Tolal

Seas
Send
Postege
electronics
260 S. Forge St.


OUTSIDE OF JAPAN. . .
NEW-TONE ELECTRONICS Has the Largest
Inventory of Original Japanese Components
Anywhere!

PARTIAL LST - CAL U5 FOR ALL YOUR DEVICE NETDS OSANKENONPCOORIGIN											
2SA49	49	2SB492	1.00	2SC775	1.90	2SCi628	110	4008 ;	1.50	S6087A	30
2SA 101	49	2SB495	75	2SC776	2.50	2SC1669	1.25	40082	3.00	S60878	80
2SA 102	49	2S8507	140	2SC777	4.95	2SC1674	49	AN 136	2.90	Stk011	50
2SA200	49	2S8511	150	2SC778	3.50	2SC1675	49	AN214	3.35	STK015	650
2SA221	79	2SB528	140	2SC78 ${ }^{\text {¢ }}$	2.50	2SC1678	200	AN239	650	STk025	12.50
2SA234	59	2SB536	150	2SC783	2.95	2SC1679	295	AN241	2.40	STk032	1420
2SA353	69	2S8539A	470	$2 \mathrm{SC784}$	49	2SC1684	49	AN245	5.50	STK036	19.00
2SA377	+ 89	2S8541	470	2 SC 785	65	2SC1728	1 85	AN247	4.80	STK050	2450
2SA387A	69	2S8554	800	2SC788	295	2SC 1730	95	AN271	3.20	STK056	1135
2SA473	$\uparrow 25$	2S8561	60	2SC789	100	2SC 1756	2.75	AN289	7.90	STK405	920
2SA483	279	2S8627	295	2SC 790	150	2SC 1760	160	AN315	350	STK415	850
2SA484	24.4			2SC793	250	2SC1816	3.50	AN331	540	STK433	925
2SA485	195	2SC32	135	2SC 798	395	2SC1908	49	A N343	390	STK435	950
2SA489	139	2SC116	3.00	2SC799	3.25	2SC1909	3.75	AN360	250	STK437	1150
2SA495	60	2SC172	175	2SC815	55	2SC 1957	1.00	AN380	1.50	STK439	11 b0
2SA496	99	2SC206	250	$2 \mathrm{SC828}$	49	2SC1964	3.95	BA302	2.50	TA7028M	350
2SA497	144	2 SC 237	175	2 SC 829	49	2SC1969	4.70	BA511	300	TA7035M	325
2SA509	50	2SC281	50	2SC830	2.95	2SC1973	90	BA521	3.40	TA7051P	300
2SA525	195	2SC284	120	2SC838	50	2SC1974	3.50	C3001A	2.95	[A7054P	3.05
2SA537A	195	2SC287	1.25	2SC839	50	2SC1975	3.50	Cx0758	2.95	TA7055P	300
2SA539	60	2SC291	395	2SC853	90	2SC2020	4.95	Cx1000	8.50	TA7060P	140
2SA561	48	2SC325	395	2SC866	5.00	2SC2027	6.00	CX101G	8.50	TA7061P	150
254562	45	2SC367	85	2 SC 867	6.00	2SC2028	80	Cx103D	8.50	TA7062P	150
2SA564	50	2SC371	49	$2 \mathrm{SC870}$	50	2SC2029	3.40	Cx104A	8.50	TA7063P	150
2SA565	105	2SC372	49	2SC871	50	2SC2034	295	Cx121A	750	TA 7072	3.00
2 2SA566	320	2SC373	49	2SC900	50	2SC2074	250	CXI30A	7.00	TA7074	90
2 SAG06	1.69	2SC374	49	2SC922	69	2SC2075	4.00	CX148	11.70	TA 7075	75
2SA624	99	2SC375	49	2SC929	49	2SC2091	2.50	CX149A	14.00	TA7076	3.75
25A628	49	2SC380	49	2SC930	49	2SC2092	3.25	DN834	150	TA7089	290
2SA634	100	2SC381	50	2 SC 938	95	2SC2098	3.90	DN835	160	TA7102P	580
2SA636	125	2SC382	55	$2 \mathrm{SC94} 3$	100	2SC2166	3.75	DN837	150	TA7106P	325
2SA640	49	2SC384	60	2SC945	49	2SD45	4.95	DN838	170	TA7120P	150
2SA643	60	2SC385	70	2SC959	135	2SD68	90	HA 1951	3.20	TA7122	150
2SA659	49	2SC386	70	2SC960	2.95	$2 \mathrm{SO72}$	80	HA1157	4.20	TA7124	185
2SA663	475	2SC387	50	2SC984	80	2SD77	1.50	HA1158	4.20	TA7146P	3.75
2SA666	69	2SC394	49	2SC 1000	49	2SD8 1	3.95	HAlt59	5.00	TA7148	390
2SA671	1.50	$2 \mathrm{SC4O}$	50	2SC 1013	95	2SD88	4.80	HA1199	325	TA7149P	390
2SA672	70	2SC454	49	2SC 1014	95	2SD118	300	HA1202	2.20	TA7150P	375
2SA673	70	2SC458	49	2SC1017	1.20	2SD 130	120	HA 1306	490	TA7153	690
2SA678	65	2SC460	49	2SC 1018	100	2SD170	150	HA1308	450	TA7167	620
2SA679	495	2SC461	49	2SC1030	280	2SD180	250	HA1312	3.40	TA7200P	350
2SA680	4.95	2SC478	80	2 SC 1034	560	2SD187	49	HA1314	420	TA7201P	450
2SA682	¢. 49	$2 \mathrm{SC481}$	150	2SC1047	59	2SD188	270	HA 1316	3.50	TA7202	450
2SA683	60	2SC482	140	2SC1060	140	2SD201	450	HA1318	5.00	TA7203	425
2SA684	60	2SC484	260	2SC1061	1.25	2SD213	495	HA 1322	420	TA7204	370
2SA695	60	2SC485	140	2SC1079	3.95	2SD217	380	HA 1325	3.20	TA7205	360
2SA699	130	2SC486	150	2SC1080	3.95	2SD218	390	HA1339A	495	TA7207	350
2SA699A	145	2SC493	350	2SC1096	80	2SD227	48	HA1342	4.50	TA7208	350
2SA705	75	2SC494	4.50	2SC 1098	100	2SD234	85	HA1366	420	TA7209	380
2SA706	145	2SC495	85	2SC1114	4.92	2SD235	85	HA11112	890	TA7210	650
2SA	135	2SC496	85	2SC1115	300	2SD257	3.50	HA11113	6.50	TB4800	4.40
2SA7	59	2SC497	140	2SC1116	425	2SD261	100	HD3113	4.90	TBA8100S	440
2SA720	59	2SC502	1.50	2SC1116A	475	2SD287	3.70	HD3127	780	TC4081P	175
2SA721	59	2SC503	175	2SC1124	120	2SD288	1.50	LA1201	425	TC5080P	580
2SA733	49	$2 \mathrm{SC504}$	175	2SC1162	100	2 SD 313	1.05	LA 1240	330	TC5081P	360
2SA740	1.95	2SC509	75	2SC1166	48	2SD314	150	LA 1364	370	TC5082P	400
2SA745	450	2SC515	195	2SC1170日	4.95	2SD315	120	LA 1366	4.25	TC9100P	850
2SA7	575	2SC517	360	2SC1172	5.25	250318	195	LA 1369	4.25	TD3400P	155
2SA75	49	2SC535	55	2SC1173	75	2SD325	90	LA3155	225	TD3441AP	510
2SA7	330	$2 \mathrm{SC536}$	49	2SC1175	75	2 SD 330	1.50	LA3209	195	TM4312P	100
2SA	560	2 SC 537	49	2SC1209	75	2 20331	1. 50	LA3301	340	UHICOO	650
25	99	2SC538	60	2SC1219	59	2SD356	1.00	LA3310	4.20	UHIC003	650
2SA816	70	$2 \mathrm{SC553}$	90	2SC1212	165	2SO358	1.10	LA3350	3.30	UHICOO4	650
2SA839	195		195	2SC1213	59	$2 S 0360$	1.05	LA4000	750	UHIC005	6.50
		2SC608	5.95	2SC1226A	85	2SD382	1.20	LA4030	5.40	UHIC006	650
2S822	65	2SC609	5.95	2SC1237	400	2 2SD427	2.55	LA4031P	3.20	UPC 16C	50
25854	49	2SC614	395	2SC1239	350	2SD525	1.50	LA4032P	420	UPC20C	375
2S856	95	2SC619	65	2SC 1306	350	2SCF6	1.25	La4051P	320	UPC30C	375
2SB75	48	2SC620	49	2SC1307	475	2SCF8	3.50	LA4101	320	UPC4TC	280
$2 \mathrm{SB77}$	48	2SC627	295	2SC 1308	575	2SF8	3.00	LA4201	325	UPC48C	395
2SB111	59	2SC632	60	2SC 1312	49	2SK19	1.25	La4400	3.40	UPC157CA	250
2S8156	95	2SC634A	60	2SCi313	49	2Sk23A	1.00	LA4420	3.40	UPC554C	250
2S8172	60	2SC644	49	2SC1317	49	2Sk30A	75	LADOO1	320	UPC555M	220
2S8175	60	2SC645	60	2SC 1318	49	2SK33	90	LD3040	1.60	UPC 563 Hz	8.00
2S8186	49	2SC674	60	2SC 1327	49	2SK34	90	LO3120	2.40	UPC566M	1.25
2SB187	55	2SC680	260	2SC 1330	1.35	2Sk40	130	M5112	840	UPC573C	3.25
2SB202	150	2SC684	120	2SC1342	49	2Sk 55	1. 00	M5151PR	780	UPC575C	2.60
2S8227	295	2 SC693	49	2SC1344	49	3Sk22	2.20	M5152L	275	UPC576	3.25
2S8234	295	2SC696	175	2SC1347	85	3Sk22Y	2.20	M5192	480	UPC587C2	2.95
2 2S8235	795	2SC699	595	2SC1359	65	3Sk 35	2.00	M51171L	200	UPC592H2	1.40
2S8270	79	2SC708	175	2SC 1360	95	3Sk39	2.00	M51513L	510	UPC595C	295
2SB303	49	2SC710	49	2SC1362	52	3SK40	2.00	M83705	3.35	UPC596C	275
2SB324	60	2SC711	49	2SC 1364	19	3SK4 1	2.20	MN300	19.50	UPC 1001H2	350
2S8337	135	2SC712	49	2SC1377	480	3Sk45	2.20	MN3002	1170	UPC 1008C	575
2S8370	65	2SC715	69	2SC1382	95	3SK49	2.20	MN3003	945	UPC 1020H	425
2S8405	60	2SC717	50	2SC1383	50	JSP7001	75	MN3004	1795	UPC 1025H	350
$2 \mathrm{SB407}$	135	2SC730	415	2SC1384	80	MA26	28	MN 3005	7500	UPC 1026H	310
2S8415	65	2SC731	300	2SC 1402	360	MPS8000	125	MN6040	1675	UPC 1152 H	3.95
$2 \mathrm{SB4} 44$	115	2SC732	49	2SC 1403	360	MPS800 ${ }^{1}$	9. 25	MN6040A	1675	UPC1154 H	395
2S8435	135	2SC733	49	2SC1419	95	MPSU02	50			UPC 1155H	3.95
2S8440	60	2SC734	49	2SC1447	90	MPSU31	4.00	Plloia	13.50	UPC 1156H	450
2SB46 ${ }^{\text {P }}$	160	2SC735	49	2SC1448	100	MRF8004	3.00	Pllo2a	850	UPC 1380C	950
2S8463	140	2SC738	49	2SC 1449	85	SD 1074	19.95	PLl02A G	8.50	UPC78L05	140
2S8471	140	2SC756A	2.40	2SC 1475	125	SD1076	2895	SG609	480	UPD277C	450
2SB472	260	2SC763	49	2SC1507	140	4004	3.00	SG613	675	UPD857C	1550
2SB474	110	2SC773	60	2SC1509	85	4005	3.00	S6080 A	375	UPD858C	950
258481	150	$2 \mathrm{SC774}$	1.50	2SC1624	110	40080	1.25	S6080B	380	JPD861C	185

## PLANNING TO

MOVE?
Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly

Write to: P.O. Box 2774, Boulder, CO 80322 giving the following information
$\square$ Change address only $\square$ Extend my subscription ENTER NEW SUBSCRIPTION
$\square 1$
Allow 30 delivery.
$\square$ Payment enclosed (l extra BONUS issue) $\square$ Bill me later


Name_ please print
$\qquad$
city
State ——__ Zip
Additional postage on foreign orders: add $\$ 3$ a year for Canada, \$. a year for all other countries outside the U.S. and its possessions Cash only on foreign orders, payable in US currency


Sinclair $31 / 2$ Digit Multimeter Batt/AC oper 1 mV and. 1 NA resolution Resistance to 20 meg. $1 \%$ accuracy. Smali. portabie, completely assem in case 1 yr . guarantee. Best value ever! 559.95

Not a Cheap Clock Kit $\$ 14.95$ Includes everything except case, 2-PC boards. 6-. $50^{\prime \prime}$ LED Displays. 5314 clock chip. transtormer. all components and full instrucs Green and orange displays also avail. Same kit w/.80" displays. $\$ 1.95$

Digital Temperature Meter Kit Indoor and outdoor. Switches back and forth. Beautiful. $50^{\prime \prime}$ LED feadouts. Nothforth. Beautiful. 50 LED readouts. Nolhing like it available Needs no additiona parts for complete, full operation. Will
measure $-100^{\circ}$ to $+200^{\circ} \mathrm{F}$ tenths of demeasure $-100^{\circ}$ to $+200^{\circ} \mathrm{F}$. tenths of a degree,air or liquid. Very accurate. $\$ 39.95$

NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in

RCA Cosmac VIP Kit 275.00 Video computer with games and graphics.
'78 IC Update Master Manual 1978 IC Update Master Manual \$30.00 Compiete IC data selector 2175 pg . Master reference guide. Over 42.000 cross references. Free update service through 1978 Domestic postage $\$ 3.50$. Foreign $\$ 6.00$. Final 1977 Master closeout $\$ 15.00$

New Cosmac Super "ELF" RCA CMOS expandable to 64 K micro computer w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resident monitor on ROM. Pushbutton selec tion of all four CPU modes. LED indicators of current CPU mode and four CPU states Single step op. for program debug. Buith in pwr. Supply, 256 Bytes of RAM audio amp. \& spkr. Detailed assy man w/PC board \& all parts tully socketed Comp Kit $\mathbf{~} 106.95$ ain 8.95 . 8.95; Low address display option 9.95: Custom hardwood cab. drilled front panel 19.75. Nicad Battery Backup Kit w/all parts 4.95 ; Fully wired \& tested in cabinet 151.70; 1802 software club. 10 12 pg . monthly publication $\mathbf{1 2 . 0 0}$ per yr 4K Elf Expansion Board Kit with Cassette I/F
$\$ 79.95$ Avalable on board options 1 K super ROM monitor $\$ 19.95$ Parallel $/ / 0$ port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY 20 ma I/F $\$ 1.95$ S-100 Memory IFF $\$ 4.50$
Tiny Basic for ANY 1802 System Cassette $\mathbf{\$ 1 0 . 0 0}$. On ROM Monitor $\mathbf{\$ 3 8 . 0 0}$. Super Elf owners. $30 \%$ off. Object code listing or paper tape with manual $\mathbf{\$ 5 . 5 0}$ Original Cosmac "ELF" kit All parts and instructs. $\quad \$ 89.50$ Board only 14.95

Video Modulator Kit $\quad \$ 8.95$
Convert your TV set into a high quality monitor without affecting normal usage Complete kit with full instructions
P.0. Box 4430 C Santa Clara, CA 95054 For will call only: (408) 988-1640 2322 Walsh Av


ESE Model ES210 VOM digital meter. Need schematic o switches and technical manual or instruction book. C. Faul stich Apt 1314, 14130 Rosemary Lane, Lago, FL 33540.

Collins ARR-15 surplus radio receiver. Schematic diagram and alignment information. E.H. Wilkie, 2828 W. Charleston Ave.. Phoenix, AZ 85023

Russian-made shortwave receiver model VEF 202. Schematic, pictorials, ferrite antenna coil, tuning capacitor and loudspeaker. James R. Bailey, N71, W26590 White Oak Orive. Sussex. WI 53089

Lafayette model KT-200 receiver. Schematics, parts list, instructions. Dick Patten, 1072 Lanette Dr., Cincinnati, OH 45230.

Hammarlund HQ-100. Operation manual or any other information. Jeff Audet, 2049 W. 32nd, Erie, PA 16508.

Presto series 625 tape reproducer with 909 and 915 electronics. Operating manual Stanley Salek, 3001 N. Ocean Or, Hollywood. FL 33019.

Uher model 704L open-reel tape recorder. Service manual and schematic. Rick Ryan, 102 Hancock St., Cambridge, MA 02139.

Electro-Volce dual conversion model 4350 communications receiver. Schematic, operating manual, service manual. J Grant. 701 W. Harrison, Chandler, AZ 85224.

Lafayette Model \# Micro P-450 Serviceable unit or uhf frontend Alignment procedure. Conner TV Service, 709 W Craighead Rd., Charlotte, NC 28206.

Dura of Itel Model 1051 computer terminal. Schematic, operator and service manuals, component list. Peter Davies Box 4757. G.P.O., Sydney. 2001, Australia

Panoramic Model PCA-2. T-200 panadaptor. Schematic or any intormation. Operating manual. Sylvenia tube tester type 620. Schematic and operating manual. New London Instrument Co., Amplifier. Model 160. Allan Vontorcik 17301 Mapleboro. Maple Heights, OH 44137

Radiola model 690 combination radio and automatic electric phonograph. Schematics and any intormation. Brian Coombs, Box 226. West Lynn, MA 01905.

Zenith Transoceanic Royal 1000 shortwave receiver Schematic and alignment information. Harold Carvajal Apartado Aereo 20130 S. Fernando. Cati-Columbia-S.A.

Monroe Monsomatic model CSA-8 calculator. Operating manual and motor schematic. David Truran. 1582 Rose Hedge Dr., Poland. OH 44514

GPL Precision 1000 video camera driver Operatıng and service manual Richard Ulene, 8943 Entield Ave, Northridge. CA 91325

RCA model 242 radio. Schematic. Joe Huber. 1180 S Plea santree Dr., Little Rock. AK 72211

Gonset GR-212. Need alignment and schematic data. Gordon Gillette. 5248 Jepson St., Niagara Falls, Ontario. L3E. 1L2.

Philips GM 3156 oscilloscope. Schematic and service man ual. Walter Adelman, Box 6761, APO NY 09633.

Knight model 83YZ-144 oscilloscope. Need troubleshooting data such as voltages. resistances. Samuel Benveniste, 434 Briarwood PI., Highland Park, IL 60035
manual, and parts source. Bill Stottemyer Box A. Treze vant. TN 38258

Collins 51J-4, Collins 51-J. Hallicrafters $5 \times 62$ Operating manuals Carl McCormick, Rt. 5, Box 403A. Shreveport. LA 71107

Jackson Electrical Instrument, Co., model TVG2, televi sion signal generator. sweep and marker tube type. Sche matic and operating instructions. Box Grauch. 13946 Stroud St. Van Nuys. CA 91402

Textronix type 512 oscilloscope. Schematic and manua W.E. Schwartz. 2137 S. Wichita. Wichita, KS 67213.

Heathkit receiver model AR-3. Schematics and instruction manual. R.A. Sitler, 415 W. Governor Rd., Hershey. PA 17033

Jackson model 637 dynamic output tube tester. Instruction manual, schematic and calibration data. parts list. Elco 615 adaptor (for tube tester). Any available information and/or complete unit. Capehart Panamuse model 19M3. Schemat ic, parts list, alignment information and/or any available in formation. William E. Paterson, 5006 Wilshusen Ave. Shrewsbury, St. Louis. MO 63119.

Waterman oscilloscope model S-11A. Need schematic diagram of unit. R.O. Liedtke, 973 Pool Ave., Vandalia, OH 45377

Solar Exam-Eter model CF capacitor analyzer. Schematic and operating manual Manuel Gonzalez. 911 Urban, Lare do. TX 78040 .

Concord model MTC-15 closed circuit TV camera Sche matic and service information. Roland Jordan, 812 Young St., Selma, AL 36701

Elan Industries, flame detector model FD22. Need hook-up diagram. C. Vorlicek, 25181 Treadwell Ave., Euclid. OH 44117.

Regency model DR-200 HI-20 vhi monitor radio. Operation manual and schematic. John Rudick, 330 Gallivan Blvd. Dorchester, MA 02124

Knlght-KIt R100 shortwave receiver. Need oscilloscope and $r-1$ coils. G. Lenarz. 1424 165th Ave., San Leandro, CA 94578

Hewlett-Packard oscilloscope model 150A. Operation man ual. R. Maslow, 100 Richard St.. West Haven, CT 06516

Hallicrafters HT-32A amateur transmitter. Need transmitter and manual Lance Stronk. 27 Ralph Rd. Bethany, CT 06525

Dumont oscilloscope model 401B. Schematic A Reges 16 W761 White Pines. Bensenville, IL 60106.

Ballantine 320/S. 2 true-rms voltmeter. Schematic, manual John Pearsall. 225 S.W. Whitaker, Portand. OR 97201

Radio Mfg. Engineers model RME-84 AM/shortwave re ceiver Operator's manual and any other in'ormation. Dale Pomerantz. 5941 Franmar Circle. Huntington Beach. CA 92649

Triumph 830 oscilloscope. Schematic. S. Goldhor, 1014 B St , Hayward, CA 94541

Dumont oscilloscope model 164E, serial $\neq 3316$. Manua and schematics Frank Smith. 33 Westminster Ave.. Arling 1on. MA 02174.

Hycon color-bar-dot generator model 616. Operating manual and schematic. Robert Vigii, 2760 Corabel Ln., \#57, Sacramento. CA 95821.

Friden electronic calculator model 130 . Schematic, parts list. service intormation. P.J Mischkot, 2510 Turtecreek Dr Sherman. TX 75090

Dokorder 9020 V open-reel recorder. Schematic. parts source tor plug-in or remote-control unit. Ron Garrison, Box 891. Hot Springs. SD 57747.

Friden electronic calculator model 130. Manual and schematic. Lester Viles, 21255 Bon Huer St.. St. Clair, M1 48081.

Magnavox electrostatic headphone power supply, mode 1A9217. Ken Mossman \#3 1205 Bay Victoria. B.C.Canada V8T1S7.

RCA receiver made for Royał Canadian Air Force. Model GR-10. Manuals and any other information. Chris Pallen, 67 Gables Ct . Beaconsville. Ouebec. Canada. H9w-5H3.

LInear System mobile power supply for KWM-2 model cen tury 400. Robert B. Monteith WIHDB/4. 307 Sunset Blvd Melbourne Beach FL 32951

Hallicrafters modet CR-3000 stereo and shortwave receiver. Schematic. N. Sabo. Avenue Du Domaine. 67 Brussels Belgium.

RCA Superheterodyne model BT-42. Manual, schematic and voltage requirements. John Jones. 1030 Wood Eden Dr. Kingsport, TN 37660

Sony model M-5-24 solid-state TV. Schematic diagram. Ben Mario Suarez. 135-D Lopez Jaena Street, La Paz, lliolo City, Phillppines

Hallicrafters model SBT-20 SSB/CW transceiver. Manua or schematic. Raiph Irish. Box 122. Utica, MI 48087

Gonset Communicator II, 2-meter vto, vhf power amplifier mode 3063 Schematic and instruction manual Richard Dawson, 1308-F St.. The Dales. OR 97058.

McMurdo Silver signal generator model 906. Manual and schematic. H.W. Brown, K1TO. 1015 Concord Circle, Haddonfield, NJ 08033.

Knight model 83YZ-144 oscilloscope. Operating and servic ing instruction. Samuel J. Benveniste. 434 Briarwood PI., Highland Park, IL 60035.

Baylor radio model SD15-6. Schematic. Roosevelt Jones Route 4. Box 139. Huntsville, TX 77340

Zenith Radio Corp multi-band AM radio receiver. Chicago Coin "Home Run" pinball machine. Schematics and parts lists. Chuck O'Connor, Box 264. Santa Clara. CA 95052

Telequipment model SG-1 Canadian signal generator. Jackson tube tester model 648A. Manuals and schematics S. Lear, Box 566. Pomiho Capreol, Ontario, Canada

Superlor Instrument Co., model 670-A. Parts list, schemat ic and operating manual. Roy P. Swanger, 104 Valley Dr.. Bridgeport, CT


# $\square$ <br> 是 <br> ITTEGRRTED ELELTRDHILS 

540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470



## RADAR Detector

HAWKEYE RADAR DETECTOR
This all-new radar detector gives you a very
early audio/visual warning. as much as 3 miles from the radar source. Detects all X-band radar, around corners, over hills, etc. Smartly
styled unit mounts atop dashboard in a special styled unit mounts atop dashboard in a special quick release bracke1, so that it may be re
moved while auto is left unattended. 12VDC operation. comes complete with cigarette lighter adapter: just plug it in and you're ready
to go! Original price for the detector was \$79.95 ... now priced at a super low B\&AF

$5=$ SPEAKER KITS wide dispersion of the low tones. Cabinet measures $17 \times 101 / 2 \times 91 / 2^{\prime \prime}$ deep. Kit includes: 2-cabinets: $2.8^{\prime \prime}$ wooters; 2.4" dome tweeters; crossovers; grill cloth $\&$ instructions. Assembled systems deliver freq. resp of 30 to $20,000 \mathrm{~Hz}$. B
complete kit or just the cabinets!
COMPLETE KIT. Order No. 7ZU70242
Sh. Wt. 35 Lbs. ....... $\$ 49.50 /$ pair
CABINETS Only ......... $\$ 25.00 /$ pair
Sh. Wt. 25 Lbs.......


Video Monitor Mew cri ins fled Used checked-out monitors outfitted with brand
new $12^{\circ}$ CRT. Solid state monitors will display 80 new $12^{\prime \prime}$ CRT. Solid state monitors will display 80
characters $\times 16$ lines. Std. comp video signal inpt So-239 connector. 115 VAC . Qty. Ltd. Great for Sh. Wt. 40 Lbs .....8A30200 . $\$ 98.88$ each VIDEO GAME PARTS interface. Includes: 2 joystick controls: 12V @ 200ma xformer; two 7 -segment LED displays: LS and CD CMOS
chips: 555 timers; 2" 8 ohm speaker chips; 555 timers; 2" 8 ohm speaker; 3-lead 12 V regulator; large control panel \& case, \& more! Wt. 5 Lbs.
\#8GV80028 . . . . . . . . $\$ 7.88$ $\$ 7.88$
Use Vour BA-MC or AE for telep
orders. No C.O.D.'s please. Please add POSTAGE - OP or Parc. Fo
CIRCLE READER SERVICE CARD FOR

B\&F ENTERPRISES Dept. "P-8"
119 Foster Street
Peabody, MA. 01960 (617) 531-5774


Introducing Prime 4000 Series CWOS At Lowest Prices Anywhere

	7480	0.31	74181 ... 1.75	74 LS42	0.60	74LS192	0.90	74578	0.58	$74 \mathrm{C4B}$	0.96	4007	0.16	40BE 0.64	
74xx TTL	7482	0.50	$74182 \ldots 0.75$	74LS47	0.75	74LS193	3.0 .90	748112	0.58	74 C 73	0.62	4008	0.74	4089 ... 2.75	VOLUME DISCOUNT SCHEDUES
	7483	0.54	$74184 \ldots 175$	741548	0.72	74L\$194	. 085	$74 \$ 113$	0.58	74 C 74	0.48	4009	0.35	4093 . . 1.55	Merchandise Total Discoum
7400 .. S0.14	7485	0.80	74185 … 1.75	74LS51	0.25	7415195	. 0.50	745114	0.58	$74 \mathrm{C76}$	0.68	4010	0.35	4099 ... 2.10	S 0.00-S 999......net
$7401 \ldots 0.15$	7486	0.27	741888.2 .80	74LS54	0.25	7415196	. 0.80	745132	075	$74 C 83$	1.28	4011	0.16	4104* . . 2.40	510.00 S 2499 .....LESS $5 \%$
$7402 \ldots 0.15$	7489	1.75	$74190 \quad 0.95$	741555	0.25	7415197	. 0.80	745133	038	74.85	1.20	4012	0.16	4503 . . 0.98	S 25.00-S 99.99 LESS 10\%
7403 ... 0.15	7490	040	74191 . 0.95	74LS73	0.38	74LS221	- 1.05	$74 S 134$	0.38	74 C 86	0.40	4013	031	$4507 \quad \ldots 0.37$	
7404 . 0.16	7491	051	74192 ... 0.80	74LS74	0.35	74LS251	. 0.80	745135	0.49	74 C89	3.95	4014	0.73	$4510 \quad \ldots .0 .95$	5 100.00-S499.99...... LESS $15 \%$
7405 ... 0.16	7492	040	74193 ... 080	74iS76	037	74LS253	. 0.80	745138	0.77	74690	0.92	4015	0.73	4511 .... 0.93	\$ 500.00-\$999.99 . .... LESS 20\%
$7406 \ldots .024$	7493	0.40	74194 ... 0.80	74LS78	0.36	74LS257	7. 0.70	745139	1.50	$74 \mathrm{C93}$	0.92	4016	0.28	4512 .... 0.64	S1000.00and Up . . . . . . LESS 25\%
7407 ... 0.24	7494	0.60	74195 ... 0.49	744583	0.75	74LS258	- 0.70	745140	0.47	74 C95	1.04	4017	0.78	4516 …0.76	
7408 ... 0.17	7495	060	74196 . 0.73	74LS85	1.30	74LS259	1.60	745151	125	74 C 07	. 0.68	4018	078	4518 .... 0.76	STANDARD SHIPPING CHARGES
7409 .... 0.17	7496	0.60	74197 - 0.73	74LS86	0.36	74LS260	- 0.34	745153	2.10	74 C 151	-1.78	4019	0.21	$4519 . . .0 .62$	If your Merchandise Total is between.
$7410 \ldots 0.15$	7497	2.45	74198 ... 1.30	74L\$90	0.50	74LS266	- 0.26	745157	0.75	74 C 154	2.90	4020	. 083	4520*...0.68	\$ 0.00-S $4.99 \ldots . . a d d \$ 2.00$
$7411 \ldots 0.18$	74107	0.29	74199 ... 1.30	74LS92	0.50	74LS279	0.52	74S 158	1.25	74 C 157	1.78	4021	083	4527 . 148	\$ 5.00-\$24 99 ......add 51.00
$7412 \ldots 0.20$	74109	032	74251 - 1.00	741593	0.50	74LS283	0.72	745174	1.50	74C160	. 1.08	4022	083	$4528 \quad .0 .86$	\$ $2500-549.99 \ldots . . . a d d ~ \$ 0.75$
7413 . 0.25	74121	0.29	74279 . . 0.49	74L\$95	0.85	74LS290	. 0.60	745175	1.45	74C161	. 1.08	4023	0.16	4532.... 0.86	
$7414 \ldots 0.55$	74122	0.35	$74283 \quad 1.00$	7415107	0.35	7415295	0.90	74S189	2.75	74C162	. 1.08	4024	066	4539 ... 1.10	\$ $50.00-\$ 99.99$....... . add 50.50
$7416 \ldots 0.22$	74123	0.39	74290 ... 0.59	74LS109	0.35	74. 5298	0.90	745194	1.75	74C163	. 1.08	4025	0.16	4555 .... 0.67	\$100 and Up . . . . . . NO CHARGE
$7417 \ldots 0.22$	74125	0.37	74293 ... 0.57	74LS112	0.35	74LS365	0.52	745200	3.25	74C164	. 1.08	4027	0.37	4556 ... 0.88	
$7420 \ldots 0.15$	74126	0.38	$742988 . .0 .92$	74LS113	0.35	74LS366	0.52	745206	3.75	74C165	. 1.08	4028	0.73	$4582 \ldots .88$	The above charges include shipding via
$7421 . .0 .17$	74132	0.65	74365 ...0.62	74LS114	0.35	74LS367	052	745253	095	74 C 173	. 1.16	4029	0.98	$4584 \quad \ldots 0.74$	First Cluss Mail or UPS (your choice),
$7423 \ldots 0.25$	74141	0.70	74366 ... 0.62	74LS123	0.90	74LS368	0.52	745257	. 1.15	74 C 174	. 1.08	4030	0.21	4702 ... 710	and insurance on all domestic
$7425 \ldots 0.25$	74145	0.65	74367 ... 0.62	74LS125	0.46	74LS386	0.36	745258	- 1.15	74C175	. 1.04	4031	297	4703 ... 8.25	s.
7426 .... 0.22	74147	1.50	74368 ... 0.62	74LS126	0.46	74LS390	1.65	745280	2.25	74C192	. 1.30	4034*	275	4704 . 7.30	
7427 .... 0.19	74148	1.15		74 LSI 32	072	74L S393	. 1.35	745287	3.20	74C193	. 1.30	4035	0.84	4705 ... 9.25	SPECIAL SHIPPING CHARGES
7430 .... 0.15	74150	. 0.79	74LSxx TTL	74LSi33	0.34	74LS490	. 1.10	745289	3.55	74C195	. 1.10	4040	0.86	4706 ... 9.75	COD . . . . . . $\$ 1.00$ additio
$7432 \cdots 0.23$	74151	0.59		74 LSI36	0.35	74LS670	2.29	745300	. 1.60	74 C 200	. 7.50	4041	0.64	4707*... 9.25	UPS Blue . $\$ 1.00$-additional
$7437 \ldots 0.21$	74152	0.59	74LS00 S0.21	74LS138	0.70			745305	. 1.90	$74 \mathrm{C221}$	1.38	4042	0.64	4708. 14.35	
7438 .... 0.21	74153	0.60	74LSO1 . 0.27	74LS139	0.70	74Sxx	TTL	745310	. 2.85	74C901	. 0.48	4043	0.62	4710 *. 6.40	postal Insurance . .s1.00-additional
7439 . . 0.25	74154	0.95	74 LS02 0.21	74LS151	065			745312	. 1.05	74.902	. 0.48	4044	0.62	$4720 \ldots 6.95$	Solecial Delivery . . \$1.25-additional
7440 .... 0.15	74155	0.65	74LS03 . 0.21	74LS152	0.65	74500	50.35	745313	. 1.55	74C903	. 0.48	4046	1.35	4721 * 31.35	
7441 ... 0.70	74156	0.65	$741504 \ldots 0.24$	74LS153	0.66	74502	0.35	748316	. 2.80	$74 C 904$	. 0.48	4047	1.45	4723 . . . 0.93	
$7442 \ldots 0.38$	74157	0.59	74LS05 . 0.24	74LS154	1.00	74503	. 0.35	745341	. 4.10	$74 C 905$	. 6.00	4048	0.95	$4724 \ldots 1.29$	
7443 .... 0.55	74158	0.59	74LS0B . 0.23	74LS155	0.62	74504	0.36	745342	. 1.20	$74 C 906$	. 0.48	4049	033	$4725 \quad 1.29$	TERNATONA
7444 .... 0.55	74160	0.79	74LS09 . 0.23	74LS156	062	74505	0.36	745343	. 4.95	$74 C 907$	0.48	4050	0.33	$40014 \quad 0.72$	
7445 .... 055	74161	0.79	74LS10 . 0.21	74 LS 157	0.62	74508	0.38	745346	. 1.25	$74 \mathrm{C908}$	. 0.96	4051	0.89	40085 . . 1.47	COMPONENTS
7446 .... 0.62	74162	0.79	74LS11 -0.21	74 LS158	0.70	74509	0.38	745362	2.15	$74 C 909$	. 1.78	4052	0.89	40097* . 0.54	COMPONE
$7447 \ldots 0.57$	74163	0.79	74 LS12 - 0.27	74LS160	0.82	74510	0.35	745387	. 4.70	$74 C 910$	6.00	4053	0.89	40098* . 0.54	
7448 .... 0.60	74164	0.79	74 LSt 3 - 0.40	74LS161	082	74511	. 0.38			$74 C 914$	. 0.90	4060	1.40	40106 . 0.90	CORPORATION
7450 .... 0.15	74165	0.90	74LS14 $\quad 0.85$	74LS162	082	74515	0.38	74Cxx	TTL	$74 C 918$	. 1.16	4066	0.54	40160 . . 1.08	
7451 .... 0.15	74166	0.95	$74 . S 15$. 0.26	74LS163	0.82	74820	0.35			$74 C 925$	7.80	4068	0.34	40161 ... 1.08	P. O. BOX 1837
$7453 \ldots .0 .15$	74167	3.20	74LS20-0.23	74LS ${ }^{\text {d } 64}$	0.98	74522	. 0.36	74000	. 50.24	$74 C 926$	7.80	4069	0.26	$40162 \ldots 1.08$	COLUMBIA, MO 65201
7454 .... 0.15	74170	1.85	74LS2 1.0 .23	74LS168	. 0.83	74530	0.27	74002	. 0.24	$74 C 927$	7.80	4070	040	40163 . 1.08	COLUMBIA, MO 6S201
7459 .... 015	74173	1.10	74LS22 . 0.23	74LS169	0.83	74532	. 0.50	74604	. 026	$74 C 928$	7.80	4071	0.19	$40174 \ldots 1.08$	PHONE: (314) 874 -1150
7460 .... 0.15	74174	0.85	74LS26 . 0.31	74LS170	. 1.60	74540	. 0.35	74008	- 0.25			4073	0.21	lems indicated	
7470 . . 0.27	74175	0.75	74LS27 . 0.26	74LS 173	1.00	74557	0.17	74 C 10	0.24	4 xxx	CMOS	4075	0.21	by (*) were in	
$7472 \ldots . .024$	74176	0.69	74LS30 0.23	74LS174	. 0.75	74560	035	74 C 14	0.90		CMOS	4076	1.16	transit to us by the time that this	
7473 ... 0.24	74177	0.70	74LS32 . 030	74LS175	. 0.79	74564	0.38	74620	0.25	4000	50.16	4077	0.46	aid copy was	
7474 .... 024	74178	1.20	74LS37 0.31	74LS181	. 2.50	74565	0.38	$74 C 30$	. 0.24	4001	0.16	4078	0.35	being prepared.	
7475 ... 0.45	74179	1.20	74LS38 - 0.31	741 5190	. 0.90	74574	0.58	$74 C 32$	025	4002	0.16	4081	0.19	Please inquire	
$7476 \ldots 0.29$	74180	065	74 LS40 - 0.26	746S191	. 0.90	74576 .	. 0.58	$74 C 42$	. 0.94	4006	. 0.85	4085		about avail. ability.	



That already says a lo ahout you That you re fascinated by the diversity of electronics. Everything from microcomputers to audio. from construction projects to ham radio. Who knows what ared of electronics will catch your interest next? That's why you read P.E. To keep in touch with all that's new and best in the
Popular Electronics


# Electronics 

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.40$ per word. Minimum order $\$ 36.00$. EX-PAND-AD ${ }^{*}$ CLASSIFIED RATE: $\$ 3.60$ per word. Minimum order $\$ 54.00$. Frequency discount: $5 \%$ for 6 months; $10 \%$ for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.40$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column (2-1/4" wide), $\$ 280.00$. $\mathbf{2}^{\prime \prime}$ by 1 column, $\$ 560.00 .3^{\prime \prime}$ by 1 column, $\$ 840.00$. Advertiser to supply film positives. For frequency rates, please inquire. COLOR: Color avail. for all classified ad styles at earned rate plus additional $25 \%$. Color choice Publisher's option and subject to availability. Publisher reserves right to run ad in black if color not avail. on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club, Master Charge, VISA - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1 st of the 2 nd month preceding cover date (for example, March issue closes January 1 st). Send order and remittance to Classified Advertising. POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-3926.

## FOR SALE

FREE' Bargan Cataiog-I.C. 's. LED's. readouts, fiber optics. calculators parts \& kits. semiconductors, parts. Poly Paks. Box 942PE. Lynnfield. Mass 01940.

GOVERNMENT and industrial surplus receivers, transmitters snooperscopes, electronic parts. Picture Catalog 25 cents Meshna, Nahant. Mass 01908.

LOWEST Prices Electronic Parts. Confidential Catalog Free KNAPP, 4750 96th St N., St. Petersburg, FL 33708

ELECTRONIC PARTS. semiconductors, kits. FREE FLYER Large catalog $\$ 1.00$ deposit BIGELOW ELECTRONICS Blufton. Ohio 45817.

RADIO-T.V. Tubes- 36 cents each. Send for free catalog. Cornell, 4213 University. San Diego, Calif 92105.
AMATEUR SCIENTISTS. Electronics Experimenters. Science Fair Students ... Construction plans - Complete. including drawings. schematics. parts list with prices and sources. Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignitoon - Burgiar Alarm - Sound Meter . . over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technıcal Writers Group, Box 5994, University Station. Raleigh, N.C. 27607.

ROTARY SWITCH 4P11P 5/\$5: 6P11P $5 \$ 7$ 25. Dip Switch 10-SPST 10/\$15. Transformers 12.2 V CT-6A plus 8.5 V -5A $\$ 6.95 .24 \mathrm{~V}-5 \mathrm{~A} \$ 5.95 .10^{\prime} \mathrm{RG} 58 C^{\prime} \cup 12 / \$ 10$. Fertiks. 5400 Elia St., Philadelphia, PA 19120.
SOUND SYNTHESIZER KITS-Surt $\$ 14.95$, Wind $\$ 14.95$ Wind Chimes $\$ 19.95$. Musical Accessories many more Catalog free. PAIA Electronics, Box J14359, Oklahoma City. OK 73114.
HEAR POLICE FIRE Dispatchers! Catalog shows exclusive directories of "contidential" channels, scanners Send postage stamp. Communicatons. Box $56 \cdot$ PE, Commack. N.Y 11725.

UNSCRAMBLERS: Fits any scanner or monitor, easily adjusts to all scrambled frequencies. Only 4" square $\$ 29.95$. fully guaranteed. Dealer inquirles welcomed. PDO Electronics. Box 841, North Little Rock. Arkansas 72115.

POLICE/Fire scanners, large stock scanner crystals, antennas. Harvey Park Radio, Box 19224, Denver. C0 80219
bUILD AND SAVE TELEPHONES. TELEVISION, DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines. Carphones. Phonevisıon. Dalers, Color TV Converters. VTR, Games. $\$ 25$ TV Camera. Electron Microscope. Special Effects Generator, Time Base Corrector. Chroma Key. Engineering Courses in Telephone, Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter. $\$ 1.00$. Don Britton Enterprises. 6200 Wilshire Blvd. Los Angeles. Calif. 90048.
NAME BRAND Test Equipment. Up $1050 \%$ discount. Free catalog. Salen Electronics. Box 82. Skokie. Illinois 60076
SURPLUS COMPONENTS. Communication and test equipment. lllustrated catalog 25 cents. E. French, P.O Box 249, Aurora, Illinois 60505

TELEPHONES UNLIMITED, Equipment Supplies. All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112.
CARBON FILM RESISTORS $14 \mathrm{~W}, 1 / 2 \mathrm{~W}-17$ cents each FREE sample spectications. Other components. COMPO NENTS CENTER, Box 295. W. Islip. New York 11795.

TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiast Teletype machines, parts. supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES 3730 Nautilus Ave, Brooklyn, NY 11224. Tel' (212) 372-0349.
WHOLESALE C.B., Scanners, Antennas. Catalog 25 cents. Crystals Special cut. \$4.95. Monitor \$3.95. Send make, model. frequency. G. Enterprises. Box 461P. Cleartield. UT 84015.

> Wurlizer reproductions
> DEVTRONIX ORGAN PRODUCTS Dept. 5872 Amapola Dr. • San Jose, CA 95129

UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7. Box 265B, Hot Springs. Arkansas 71901. (501) 623-6027.
USED TEST EQUIPMENT - Tektronix. HF, GR, Wrıe: PTI. Box 8699, White Bear Lake. MN 55110. Phone: (612) 4292975.

WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! $\$ 1.00$. Atlantic Sales, 3730 Nautilus Ave.. Brooklyn, N.Y. 11224. Tel: (212) 372-0349.

AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton. NH 03858
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE. North American Electronics, 1468 West 25th Street. Cleveland, OH 44113.
UNSCRAMBLERS FOR any scanner. Several models avail able. Free Ilterature. Capri Electronics. 8753 T Windom. St Louis. MO 63114
RADIO SHACK Authonized Sales Center offering $10 \%$ discount off catalog prices. $\$ 25.00$ or more delivered. 1117 Con way. Mission, TX 78572
TRANSISTORS FOR CB REPAIR. IC's and diodes. TV audio repairs, 2 SC799 - $\$ 3.00,2$ SC1306 $\$ 2.95$, 2SC1307 - \$3.85, TA7205 - \$3.50, more. Free catalog and transistor. B\&D Enterprises, Box 32, Mt. Jewett, PA 16740.
UNSCRAMBLER KIT. Tunes all scramble frequencies. may be built-in most scanners. 2-3/4 $\times 2-1 / 4 \times 1 / 2 . \$ 19.95$. Factory built Code-Breaker. $\$ 29.95$. Free Cataiog: KRYSTAL KITS, Box 445. Bentonville. Ark. 72712. (501) 273-5340.
SUMMER SPECIAL! Complete CARTRIVISION TELEVISION RECORDER ELECTRONIC ASSEMBLY, (see previous issues) $\$ 11.50$ plus $\$ 3.50$ S\&H. Master Charge, BankAmencard. M.E.C. 369, Madison, Alabama 35758.
SEEKING ORIGINAL JAPANESE TRANSISTORS for CB. TV, STEREO REPAIR. Request complete list Compare 1 to 9 prices' 2SC710.45. 2SC517 3.95, 2SC799 3.60. 2SC1306 $290,2 C_{1678}^{2.25, ~ T A 7205 P ~ 2.90 . ~ B A 521 ~ 2.90, ~ S G 613 ~}$ 5.95. Fuji-Svea Enterprise, Dept. P, P.O. Box 40325. Cincinnati, OH 45240.


B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AH. 948 Prospect. Elmhurst. IL 60126.

SURPLUS ELECTRONICS	
ATTENTION HOBBYISTS - SEND FOR YOUR FREE CATALOG	
Worldwide Electronics	- Dr

## 

## DEIROIT APPROVED: NO rust or weld sediment

- Install one hour - lightweight, no bodywork
required - Complete Kit - Guaranteed life of vehicle - Meets Federal \& State standards
For FREE Caralog-TOLL FREE 800/433-2386
(In TEXAS call $817 / 756-6221$ )
PICKUP \& VAN EQUIPNENT CO. Dept. PE, P.O. Drower C. Hewitt. IX 76043

BUILD THE ARTISAN ELECTRONIC ORGAN
The 20th century successor to the classic pipe organ. Kits feature mod ular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar-th-san. Write for our free brochure AOK Manufacturing, Inc., Box 445, Kenmore, WA 98028.

SMALL
WONDER


## peakerlob ${ }^{\circ}$

Dept. PE-S.
735 N. Morthlake Way 735 N. Northlake W
Seattle. WA 98103

RECONDITIONED TEST EQUIPMENT. Catalog $\$ 1.00$ James Walter Test Equipment, 2697 Nickel, San Pablo. CA 94806.

AUTOMOTIVE PARTS AND EQUIPMENT. Nationally advertised brands at discounted prices for mechanics. Send stamped envelope for specials. Associated Distributors. 401 Augusta St., Cincinnatı. OH 45202. Dept. Z.
SMALL ECONOMICAL TEST EQUIPMENT. Decade Res 15 tance Box. Counter. Pulse Generator. Regulated Power Supplies. Scope Calibrator. and many more priced from $\$ 20.00$ to $\$ 70.00$. Free Catalog - Cincinnati Electrosystems. 469 Wards Corner Road. Loveland. Ohio 45140

TUBES: "Oldies', Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519-PE Maplewood, Hammond, Ind. 46324.
TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low, low prices. Transelectronic, Inc., 1365 39th St., Brooklyn, New York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802.
TUBES 29 cents up, also have industrials, obsoletes. 25 cents for catalog and $\$ 1$ credit certificate. Connolly, Box 1333P, Sun Valley, CA 91352.

## TAPE AND RECORDERS

8-TRACK and CASSETTE BELTS - money back guarantee. Long wearing. Free Catalog - $\$ 3$ minimum order. PRB Corp., Box 176, Whitewater, Wisconsin 53190. (800) 558-9572 except WI.
TAPE HEAD CLEANER. 8 oz. - $\$ 2.30$. Includes postage and handing. Write: "Cleaner", Box 176, Whitewater, WI 53190. 800-558-9572 except WI.
RECORDS - TAPES! Discounts to 73\%; all labels, no purchase obligations; newsletter; discount dividend certificates: $100 \%$ guarantees. Free details. Discount Music Club, 650 Main St., Dept. 5-0878. New Rochelle, New York, N.Y 10801.

SAVE $\$ \$ \$$ on blank cassettes. First line state-of-the-art quality guar anteed. No minimum. Easy ordering. Fast, free shipping. Sample C-46, $\$ 1.00$. Larksong, Box 641, Point Arena, CA 95468

PARANOID ABOUT SPECS? Prove or disprove playback performance cassette or record player with surprising new technique developed by Emory Cook. Test cassette or record, instructions $\$ 3.95$ (Connecticut residents add tax). COOK LABORATORIES, Inc., 375 Ely Avenue, Norwalk, CT 06854.

## PERSONALS

MAKE FRIENDS WORLDWIDE through international corres pondence, illustrated brochure free. Hermes-Verlag. Box 110660/Z, D-1000 Berlin 11, Germany

## INVENTIONS WANTED


f you have an idea for a new product. or a way to make an old product better. contact us, "the idea people" We'll develop your idea, introduce it to industry, negotiate for cash sale or royalty licensing. Write now without cost or obligation for free information. Fees are charged only for contracted services. So send tor your FREE "Inventor's Kit." It has important Marketing Information, a special "Invention Record Form" and a Directory of 1001 Corporations Seeking New Products.

RAYMOND LEE ORGANIZATION
230 Park Avenue North. New York. NY 10017
At no cost or obligation. please rush
my FREE "Inventor's Kit No.A-112"


YOU CAN make money from your ideas!!! FREE details. Write: Advanced Research Scientific, P.O. Box 19041-R, Detroit. MI 48219.

## INSTRUCTION

SCORE high on F.C.C. Exams . . . Over 300 questions and answers. Covers 3rd, 2nd, 1 st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests, $\$ 26.50$. R.E.I., Inc., Box 806, Sarasota, Fla. 33577.
SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 16.00$ an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE088, 531 N. Ann Arbor, Oklahorna City, Okla. 73127.

UNIVERSITY DEGREES BY MAIL! Bachelors, Mas ters, Ph.D's. Free revealing details. Counseling, Box 317-PE08, Tustin, California 92680.
FCC License Study Course prepares you to pass examina tions for 1st, 2nd, 3rd and radar. Study Guide manual gives examples, problems and solutions. Question-Answer manua provides hundreds of practice questions. $\$ 9.95$ each or both manuals $\$ 14.95$. Postpaid. Oeffinger, Box 1240, Garden Grove, Calif. 92642.

LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-2D, Olympia Washington 98507.
GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages 1465 questions with answers/discussions - covering third second, first radiotelephone examinations. $\$ 13.50$ postpaid GSE, P.O. Box 25992, Los Angeles, California 90025
INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio En gineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail. Fredericksburg, VA 22401.

1978 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! $\$ 9.95$ Moneyback Guarantee. Command Productions, Box 26348-P, San Francisco, CA 94126.

LEARN ELECTRONICS Capsule Course basic d.c. textbook plus taped instruction. Details send to: Box 4457 , Ind. Sta., St Paul. MN 55104

## GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C 20021
JEEPS - $\$ 59.30$ ! - CARS- $\$ 33.50$ ! - 200.000 ITEMS! GOVERNMENT SURPLUS - Most COMPREHENSIVE DI RECTORY AVAILABLE tells how, where to buy - YOUR AREA - \$2.00 - MONEYBACK GUARANTEE - Govern ment Information Services, Department GE-30, Box 99249 San Francisco, California 94109 (433 California).

GOVERNMENT SURPLUS. Buy in your Area. How. where Send \$2.00. Surplus, 30177-PE Headquarters Building Washington, D.C. 20014.

## BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN, Ypsilanti, Michigan 48197.

FREE CATALOGS. Repair air conditioning, refrigeration Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas Texas 75201

ELECTRONICS ASSEMBLY, Lowest wages in hemisphere skilled operators. Information: J. D. Herter, Box 33, Port-Au Prince, Haiti, W.I.

## hiehty <br> HIOHLY PAOFITABL ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required. sales handed by professionals. Postcard brings facts about this unusual opportunity. Write today! Barte-DH. Box 248. Walnut Creek, CA 94597

NEW LUXURY Car Without Cost. Free Details! Codex-7Z Box 6073 . Toledo, Ohio 43614
GET RICH!!! Secret law erases debts. Free report exposes millionaire'\$\$ secrets. Blueprints, No. EE8, 453 W .256 , NYC 10741.

MILLIONS in Mail!!! Free Secrets. $\$ 100$ weekly/kitchen table! Free brochure. American, Box 428-ZG. Pomona. Kansas 66076.

EARN $\$ 1000$ monthly stuffing envelopes! No gimmicks guaranteed!! Free details: L.O.E. Box ZD-06180, Portland OR 97206.
HOW TO MAKE $\$ 100.00$ weekly/kitchen table! Free Brochure American, Box 428 -ZD, Pomona, Kansas 66076
\$650 WEEKLY for beginners!! Free report: Mailorder Consultants MEE8, 453 W256, NYC 10471
MECHANICALLY INCLINED Individuals desiring ownership of Small Electronic Manufacturing Business - without in vestment. Write: BUSINESSES, 92-K2 Brighton 11th, Brooklyn, New York 11235

## REPAIRS AND SERVICES

SERVICEMEN - Cleaners, Lubricants, Adhesives for all electronic repairs. Write for FREE catalog. Projector-Recorder Belt Corp., Box 176, Whitewater, WI 53190. 800-558-9572 except WI
HOBBYIST give your project the professional look. PRINTED CIRCUIT boards from your sketch or artwork. Affordable prices. Rush free details. DANOCINTHS, Box 261 . Westland, MI 48185.
CATALOGS GALORE! Your name sent to over 100 mailorder advertisers. \$1. "Lists", 19-14 Pond Way, Manorville, NY 11949.

## EMPLOYMENT OPPORTUNITIES

ELECTRONICS.AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service. Box 240E. Northport, New York 11768.
SALES REPS. WANTED. KEDMAN COMPANY is expanding their sales operations, seeking more intensive national coverage on Quick-Wedge screwholding screwdrivers and Huntsman welding helmets. face shields and accessories. Some choice territories are open. If you are interested, send complete information and resumes - lines carried, territories covered, etc. to: Kedman Company, P.O. Box 25667, Sall Lake City. Utah 84125
ELECTRONICS TECHNICIANS. Min. Experience. No Degree. Start as high as $\$ 21,000$ yr. or more! Jobs throughout U.S. Free details. Write: TJM, Box 13832, Sacramento, CA 95813

## DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 1147W, San Diego, California 92112.

FREE MANUALS of 25 to 250 WAT amplifier kits. MOONLIGHTER ELECTRONICS, 117 Inverness, San Francisco. CA 94132

## TELEPHONES \& PARTS

CORDLESS TELEPHONES: Operate 300 ft . from base. Factory rechecked, schematics included for personal maintenance. Originally $\$ 399.50$ - now $\$ 179.00$. Check M.O. or Credit Card. Telephone Marketers, P.O. Box 216, Brookfield, WI 53005.

## REAL ESTATE

BIG . . . FREE . . . CATALOG! Over 2,500 top values coast to coast!! UNITED FARM AGENCY, 612-EP, West 47th, Kansas City, MO 64112.

## RUBBER STAMPS

RUBBER STAMPS FOR PC BOARDS. Free marking devices catalog. Jackson's. Brownsville Road - E-100. Mt. Vernon. IL 62864.

## MOTION PICTURE FILMS

JULY SPECIALS: S8 400' Sound feature films. "Thoroughly Modern Millie" with Mary Tyler Moore/Julie Andrews, "Machine Gun McCain" with Peter Falk, 1976 World Series (Reds/Yankees) in Eastman color/sound only $\$ 42.95$ ea + $\$ 1.50$ shipping limited offer. Save $\$ 7.00$. "Fail Safe" with Walter Matthau, "Creature with the Atom Brain" (science-fiction) + Charles Bronson in "Breakout". Super 8400 'b\&w/sound $\$ 24.95+\$ 1.25$ shipping. Save $\$ 5.00$ Walter Lantz's choice "Woody Woodpecker Fowled Falcon" or "Bats In The Belfry" S8 color sound $200^{\prime}$ reel $\$ 29.95$ ea ppd. Ali/Spinks (title changes hands) one S8 $400^{\prime}$ color sound film $\$ 49.95 \mathrm{ppd}$ or complete fight tour $400^{\prime}$ reels at $\$ 189.95+2.50$ shipping. Save $\$ 10.00$. A.J. Foyt (glorious 4 th) 1977 Indy " 500 ". Spectacular 200' $\$ 8$ color w/script $\$ 19.95+95 \nmid$ shipping. Sportite Films. Ring Classics, Columbia order forms $35 \notin$ each SPORTLITE FILMS, Elect-8/78, 20 N. Wacker, Chicago, III. 60606.

FREE CATALOG HUGE DISCOUNTS Stereos, Coax, Cassettes, MATV, Nemal Electronics, Box 402712, Miami, FL. RG $5859 \mathrm{~F} \$ 7.95 / 100 \mathrm{ft}$. Postpaid Visa. (305) 531-5017

## THE BEST CB ANTENNA

SEND FOR FREE PAL FULL LINE CATALOG AND DECAL

## PAL 'Firestik' <br> Antenna Corp. <br> 2614 EAST ADAMS - Phoenix arizona 85034



BREAKERLESS ELECTRONIC ignition: Auburn Sparkplugs, Synthetic Lubricants, Wheel Stabilizers. Information 26 cents. Anderson Engineering. Epsom. N.H. 03234.
NEW WIREWRAP BOARDS, Connectors, other goodies, send SSAE for list to: RLP, 18U Femwood Dr., Bolingbrook, IL 60439
CONVERT TV INTO 7 Foot Pictures! Projector Lens/Plans \$19.95. Mailne, P.O. Box 570, Wall Street Station, N. Y. N.Y 10005

## PHONT RECORDING amb

Record incoming and ouigoing calls autematically with this all solid state unit connected to your telephone jack and tape recorder. Tape becomes a permanent portant details of husiness and persomal calls. Easily installed. No extra montbly phone ches. FCC Appr


FULL 18" ${ }^{\prime 24}$ B\&W WALI POSTER
 Shop or schoo (know values at a glance). \$1.00. Mcintyre Enterprises Sacramento. Callif 95816

PRINTED CIRCUITRY. From copying without photography to gold plating. Catalog $\$ 1.00$ refundable. CIRCOLEX, Box 198 Marcy, NY 13403.
LOWEST PRICES. CPUs: 3001 \$14, $3002 \$ 9.3003 \$ 10$ $8035 \$ 21,8035-8 \$ 16,8080$ A Zus $\$ 7.85,8080 \mathrm{~A}-11.3 u \mathrm{~S} \$ 11$ 8080A-2 1.5us $\$ 8.95,8085$ 1.3us $\$ 18$, 8085A-2 .8us $\$ 29.95$ 8748-4 2.5us \$49.95, 8748-8 5us \$45.95, Pace 16 bit $\$ 38$ PROMs: $2716 \$ 39.95,3621-150$ ns $\$ 5.95$, 8755 eprom $\$ 65$ RAMs: 1103A .95, 2114 \$11.15, 2115-2 45ns \$6, $2116 \$ 49$, 2117-4 \$52, 2125A 45ns \$5.95, 3106A \$3.20, 5101L cmos $\$ 8,8080 / 8085$ Back up: $8155 \$ 17,8156 \$ 18,8251$ \$10, 8253 $\$ 22,8255 \$ 8,8257 \$ 15,8259 \$ 16,8275 \$ 75,8279 \$ 17,8741$ $\$ 72$; Terms: Money Order or Certified Check. Calif. Residents, add 6\% tax. BYTE ELECTRONICS, Box 8603-E, San Jose, CA 95155
SAVE $15 \%$ or more NORTHSTAR. CROMEMCO. others. MINI MICRO MART, 1618 James, Syracuse, N.Y. 13203. (315) 422-4467.


POWERFUL NEGATIVE ION GENERATOR (Kit) - $\$ 189.00$ (Fascinating details - \$1.00). Golden Enterprises, Box 1282-PE, Glendale, Arizona 85311.

## CAR STEREOS <br> NAME BRANDS AT DIRECT-TO-YOU PRICES! <br> CRAIG CLIARIO JUNSEN AND MORE

 SEE OUR CATALOG FOR BEST SELECTION -WHOLESALE PRICES!Imagine -a name brand AM/FM 8 Track in-dash stereo w/channel indicator, local-distant switch auto repeat (installation kit incl.) for only \$47. Master Charge \& Visa accepted. Satisfaction guaran teed on all merchandise
SEND $\mathbf{\$ 1 . 0 0}$ (REFUNDABLE ON FRST ORDER) WITH YOUR NAME \& ADDRESS TO: CCS DISTRIBUTORS, IMC. DEPT. 104, P.0. BOX 262 OAK FOREST, IL. 60452

## PLANS AND KITS

QUALITY KITS, over 7,000 schematics. $\$ 1$ (refundable) for illustrated catalog. Tek-Devices, Box 19154c, Honolulu, HI 96817

## AMAZING ELECTRONIC PRODUCTS <br> LSERS SUPER POWERED, RIFLE PISTOL POCKET. SEE MN DARK. PYRO.   INF ORMATION unlimiled 80x 826 Lord leftey PL • Amherst, N.H. 03031

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.


BUILD YOUR OWN COLOR ORGAN for under $\$ 10.00$ Send $\$ 1.25$ for plans. PPG, 14725 Oxnard, Van Nuys, CA 91401
LASER-SOLAR-ELECTRONIC-PLANS: WELDING-Burning Laser - $\$ 9.00$, Five Laser Plans - $\$ 8.00$, Laser Light Show - $\$ 19.00$. Incredible "Wild Ideas" Catalog - $\$ 2.00$. Solaser "PE878", Box 1015, Claremont, CA 91711
KITS. 500 MHz Frequency Counter $\$ 79.95 .650 \mathrm{MHz}$ prescaler, $\$ 17.95$. Flashing LED, $\$ 1.00$. SASE, Lectronix, Box 42. Madison Heights, M1 48071

ELECTRONIC HELP JUST A PHONE CALL AWAY. We'll help you design projects, find components, advice Low rates, first 2 minutes free. 24 hours a day, 7 days a week. BAC, VISA, MASTERCHARGE: Don Britton Enterprises. (808) 395-7458.

SECRET CB - VOLUME I or II Confidential Factual Report - Schematics, Tune Up Procedures, Switch Kits, Etc. Pre paid $\$ 12.95$ each. Send a check or money order to: Selman Enterprises, P.O. Box 8189 , Corpus Christi, TX 78412.
"FUNDAMENTALS" OF ROBOT DESIGN $\$ 10.00$. Write: Ad vanced Research Scientitic, P.O. Box 19041-R, Detroit, Michigan 48219.
TESLA COIL - 40" SPARKS! Plans $\$ 7.50$. Information 75 cents. Huntington Electronics, Box 2009-P. Huntington, Conn. 06484.

RAIN-BRAIN Moisture Sensitive switch, to control your car's wipers. For plans including schematic, parts list, construction hints, and installation tips, send $\$ 5.00$ to: Rain-Brain, 615 N . Pike, Shelbyville, Indiana 46176.

## ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steftens, Box 624k, Cranford, N.J 07016
DON'T PURCHASE alarm equipment before getting our tree value packed catalog. Sasco, 5619-C St. John, Kansas City MO 64123. (816) 483-4612.

ALARM DEVICE - generates weird, eerie, penetrating sound. Hooks up to DC and amplifier. One minute cassette $\$ 3.00$. Schematic $\$ 1.50$. Parts package $\$ 3.50$. All three $\$ 6.50$. DAY Enterprises, 148 Bennington Rd., Amherst, NY 14226.

## MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand insiruments catalog Freeport Music, 114 G, Mahan St., W. Babylon, N.Y. 11704

## HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire Grado and ADC. Send for free catalog. LYLE CARTRIDGES. Dept. P. Box 69 Kensington Station, Brooklyn. New York 11218. For Fast Service call Toll Free 800-221-0906.

## Lambda Series II by SpeakerKit, Ltd.

Wooters with butyl surrounds. Transmission lines. Open dome midrange and tweeters. Infra-woofers and ultra-
tweeters. Accurate sound at a rea sonable price. Send 25 for Series I catalog and manual
Speakerkit, Box 12PE, Menomonie, WI 54751

## MICROCOMPUTERS



## HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

## TUBES

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog Cornell, 4213 University. San Diego, Calif. 92105.

## quantitic FAMILY..

These static memory kits (one for the H8 buss, all others S. 100 compatible) deliver outstanding performance at prices even the dynamics can't match. What others consider "extras" we consider necessities, such as full buffering on all lines, reliable DMA, sockets for all ICs, gold-plated card fingers, prime ICs... and alt the other signs of quality that make up an Econoram. No matter what machine you use, we want to be your memory supplier: and we know the best way to do that is to offer a superior product at the lowest possible price.

## NEW! $16 \mathrm{~K} \times 8$ ECONORAM IV ${ }^{\text {TM KIT }}$ (\$329)

Guaranteed current consumption under 2000 mA. Manual write protect switches for 4 K blocks; use with or without phantom line. Fully static. Comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.

## NEW! $24 K \times 8$ ECONORAM VITTM KIT ( $\$ 490$ )

Our densest board is your best value in 24 K memory. Current consumption under $2500 \mathrm{~mA}_{\text {; }}$ configured as two 4 K blocks and two 8 K blocks with independent manual write protect switches for each block. Use with or without phantom lines. comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.

## BK $\times 8$ ECONORAM IITM KIT ( $\$ 135$ )

A truly cost-effective package that has drawn raves from both owners and reviewers (see the 1/78 Kilobaud for an example). If you have the space in your motherboard, there's no better way to get 24 K of memory than taking advantage of our quantity offer ( 3 kits for $\$ 375$ ). Add $\$ 20$ to single kit price for assembled/tested.

## H8 COMPATIBLE

ECONORAW VITM KIT (\$235)
$12 \mathrm{~K} \times 8$ for the H 8 , with the same feature that have made our $\mathrm{S}-100$ boards so popular. Ad ditionally, all sockets and bypass capacitors are already soldered in place so you can get right into the best part of kit building.

## TRS-80 18K CONVERSION KIT

This kit contains 8 uPD416 $1 \times 16 \mathrm{~K}$ dynamic memories and instructions on converting your 4 K ssowhere but our kit is only $\$ 190$ ! pay up to $\$ 290$ alsowhere, but our kit is only $\$ 190$


SOMETHING TO MAKE LIFE EASY: We carry AP test clips for both 14 pin and 16 pin 1Cs. Gold plated wiping action; sturdy pins for scope probes; also removes ICs from sockels without damage $\$ 4.75$ We also carry the A.C.E. 201K breadboarding kit (with 1,032 solderless plug-in tie point capacity for only $\$ \mathbf{\$ 4 . 9 5}$.

TERMS: Please allow up to $5 \%$ for shipping, excess retunded.
Add $\$ 1$ handling for orders under $\$ 10$. Cal res add tax COD OK Add $\$ 1$ handing for orders under $\$ 10$. Cal hes add tax $C O D$ OK
with street address for UPS. For VISA. Masterchargos orders call our order desk ( 24 hrs ) at ( 415 ) 562 -0636. Prices good through


## BOOKS AND MAGAZINES

FREE book prophet Elijan coming before Christ. Wonderful bible evidence. MEGIDDO Mission, Dept. 64, 481 Thurston Ro.. Rochester, N.Y. 14619.
HOW DOES THE OPERATOR KNOW your telephone number without you telling her. Ten digit, state of the art, call tracing systems and Telco operation detailed in depth. Government and C.C.I.T.T. publications tell it all. For comprehensive listing send s.a.s.e. and $\$ 2.00$ to: Tell It, Box 523 , Westbrook, CT 06498.
HAD IT WITH McINTOSH'S FREE FM LIST? Let the FM Atlas and Station Directory, help you enjoy more FM stations at home or on the go. $\$ 3.95$. FM Atlas. Adolph. MN 55701.

## WANTED

GOLD, Silver. Platinum, Mercury, Tantalum wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood. MA 02062

DOKORDER 9200 IN MINT condition. Write or call anytime (613) 376-3642. Randall Hook, RR \#1. Sydenham, Ontario, Canada.

## WANTED!CB DEALERS AND DISTRIBUTORS PAL 'Firestik' Antenna Corp.



## miscellaneous

[^1] tional, Box 8327, St. Louis, MO 63132

ADVERTISERS INDEX

## READER

SERVICE NO.
ADVERTISER
PAGE NO.
1 AP Products, Inc ..... 73
2 Active Electronic Sales Corp
2 Active Electronic Sales Corp ..... 92, 93
Audio-Technica U.S., Inc. ..... 374 B \& F Enterprises106
CREI, Capitol Radio Engineering ..... 68. 69, 70, 71Institute
55
ClevelandElectronics Inc.26, 27, 28, 29
9 Continental Specialties Corporation
Eobra, Product of Dynascan SECCND COVER
Communications Electronics77
74
10 0 Digi.Key Corporation Digital Research Corp
50 Douglas Dunhill ..... 91
9452
EICO7
13 Edlie Electronics ..... 105
Edmund Scientific 50. ..... 94
4 Electra Company ..... 81
Electronic Systems ..... 99
15 Empire Scientific Corp.
106
Fordham Radio Supply
Godbout Elecs, Bill ..... 111
18 Grantham College of Engineering ..... 82
57
GSE Technical Books
11
11
5 Heath Company
5 Heath Company
106
106
19 ..... 81
79
Illinois Audio
Illinois Audio
Interface Age ..... 79
21 International Electronics Unlip. ..... 107
94
23 J \& R Music World ..... 82
23
49
24 Jade Computer Products ..... 100, 101
25 Jameco Electronics ..... 88, 89
6 Jensen Tools and Alloys ..... 84
7 Lafayette Radio
FOURTH COVERElectronics
83McIntosh Laboratory Iric. computer systems, and if you're like $99 \%$ of our subscribers, you'll never have any reason to complain about your subscription service

We have found that when com plaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as $1002 n d$ St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

#  <br>  

## Protection for Private Data

Protecting private data in computer files is becoming a more and more serious problem both for businesses who want to keep their plans and figures from competitors, and individuals who want to keep their personal data limited to the organizations to which that data was originally given. As a result. last year the National Bureau of Standards selected an official Data Encryption Standard as a way of scrambling data so that only those with the authorized key could understand the results. IBM has already produced hardware and software for use of the new standard on its System 370 computers: DES equipment and programs for other computer systems are doubtless in the works. Unscrambling data encrypted according to the new standard requires a key of 56 binary digits. Since more than 70 quadrillion $(7 \times$ $10^{16}$ ) such keys are possible, and the key can be changed frequently, getting unauthorized access to data should be difficult.

## Electronic Voices for the Voiceless

A portable speech synthesizer called "Phonic Mirror HandiVoice" from HC Electronics, a subsidiary of American Hospital Supply Corp.. can actually talk for a vocally impaired person. The synthesizer is pre-programmed with the English alphabet. 13 morphemes (word prefixes/suffixes), 16 short phrases ("My name is . . .." 'l want . . .." and so on), 45 phonemes (speech sounds) and a selection of complete words. The

lap-board-style Model HC 110 has a vocabulary of 373 words (in addition to those which can be created with morphemes and phonemes). and a "keyboard" with 128 touch-sensitive pads. Another model. HC120, which resembles a calculator, uses 3-digit numeric coding from a 10-digit keypad and has a pre-programmed vocabulary of 893 words.

## Keeping It Clean

Radio waves are used for more than communication: Western Electric uses them to weld, heat, and clean in industrial applications. And to ensure that these operations do not interfere with normal radio and TV reception, airplane navigation equipment, public service radio and the like, they have a watchdog. Jerry Schaeffer.

His job is to develop machinery r-f emission standards and to continually monitor the level of stray r-f emissions from Western Electric's industrial machinery. Once every three years he visits each plant in his mobile laboratory to make sure they're not polluting the r-f spectrum with "radio garbage." To see Jerry operating his mobile lab you'd think he was a Smokie operating a radar trap, but he's not. He's just Western Electric's "radio garbage man" keeping the airwaves clean.

## New Antennas for Voice of America

The Voice of America's relay station at Delano, California. has a new antenna-a dipole-curtain array type. Currently operating in the $49-\mathrm{Meter}(6-\mathrm{MHz})$ and $31-$ Meter ( $9-\mathrm{MHz}$ ) bands, with a $250-\mathrm{kW}$ transmitter, the antenna is designed for operation in the 40 -meter ( 7 MHz ) band as well. The antenna, a standard Model 611 from Technology for Communications International (TCI), is rated for up to 22 dBi of gain, providing high signal levels in targeted reception areas. The antenna's wideband design will allow VOA to use it for additional frequencies, should the 1979 World Administrative Radio Conference (WARC-79) expand the current shortwave broadcast bands.

## Careers in Organ Repair

Electronic organs are becoming increasingly commonplace. More than 200,000 are now sold in this country every year, according to the National Association of Electronic Organ Manufacturers (150 East Huron. Chicago IL 60611). As a result, there is a strong demand for qualified electronic-organ service technicians. How do you learn organ repair? According to NAEOM president Byron Melcher. many technical schools offer courses on the subject, which should include electronics and computer training. Moreover, most manufacturers in the field offer two-day workshops, usually free (though you must pay your way to the workshop). A music background is not necessary, though it would obviously be helpful. An NAEOM spokesman estimates that salary or fees for a full-time career in electronic organ repair and maintenance is $\$ 14,000$ to $\$ 18,000$ today.

## New Automobile Sound System

Soon to be introduced in some new cars from the Ford Motor Company is a sound system, claimed to be fully electronic and possessing "ultra-fidelity." An AM/ stereo $F M$ radio will be combined with a quadrasonic 8 track tape player and high-compliance-cone rear speakers. Other features include: quartz-crystal tuning, memory storage and recall of favorite stations. digital display of frequencies, four tuning modes, and four audio channels. The amplifier will provide 12 watts rms per channel for the rear speakers.

## We've done the impossible again! A versatile and superior frequency counter kit for only $\mathbf{\$ 8 9 . 9 5}$



Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 you get features you once expected to pay several hundreds of dollars for. But you pay only our low, low price of $\$ 89.95$ !

Dare to Compare. This frequency counter, using LSI technology, has the performance and input characteristics you demand. Note the specifications: You will see that the frequency range is guaranteed all the way to 100 MHz ; and a high or low input impedance allows you to select for high-frequency operation. And you'll see a sensitivity that holds well over the frequency range; convenient selectable gate-time for best resolution; and selectable attenuation; and even an optional pre-scaler. Note the highly accurate time base, and its excellent ageing and temperature characteristics. And a full 8-digit LED display with floating decimal point, leading zero suppression, and overflow indicator.
You would expect to find all these features together only on a much higher-priced instrument. But Sabtronics' advanced digital technology combines with your own skill - you assemble this kit from our easy-to-follow instructions - to make it possible for you to have this fine frequency counter at a fraction of what you would otherwise expect to pay

## Free 10-day trial

Examine the 8100 Frequency Counter Kit for 10 days. If not completely satisfied, return unassembled for full refund of $\$ 89.95$ purchase price.

## Brief Specifications

- Frequency Range: 20 Hz to 100 MHz guaranteed (10 Hz to 120 MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to $70 \mathrm{MHz}(20 \mathrm{mV}$ typical); 45 mV RMS, 70 MHz to 120 MHz ( 30 mV typical) - Selectable Impedance: $1 \mathrm{M} \Omega$ at 25 pF , or $50 \Omega$ - Selectable Attenuation: X1, X10, or X100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time-base accuracy - Ageing rate: $\pm 5 \mathrm{ppm} / \mathrm{yr} \bullet$ Temperature stability: $\pm 10 \mathrm{ppm}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$ - Selectable Gate-time: $0.1 \mathrm{sec}, 1 \mathrm{sec}$., or 10 sec. - 8-digit LED display with floating D.P., overflow indication - Input: 9-15 VDC, 350 mA ( 550 mA with CP tional prescaler) - Input protection: 150 V RMS, 20 Hz to $10 \mathrm{kHz} ; 30 \mathrm{~V}$ RMS to 2 MHz ; and 3 VRMS to 100 MHz - Optional prescaler extends frequency range to 650 MHz . (Available soon)




[^0]:    circle no lo3 on free information caro

[^1]:    MPG INCREASED! Bypass Pollution Devices easily. REVERSiBL Y!! Free details - Posco GEE8, 453 W. 256. NYC 10471.

    PERSONALIZED BOUTIQUE SUNGLASSES for guys and gals. Glamorous, tinted lenses. Details free. Products Interna-

