Popular Electronics

AM Stereo - Soon On The Air? Security Systems to Protect Property Electronic Gifts to Buy and Build

Build a Computer-vs-You Chess Game

PLUS: 1978 ARTICLE INDEX

Retailers:
Notice of
display-allowance
plan is within
last three pages.

Test ϵ
In
Issuє

FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL. It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.

Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you're having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice.

But more important than that, we sell it at a price you won't have second thoughts about.

Punches through loud and clear.
Cobra Communications Products
DYNASCAN CORPORATION
6460 W Cortland St , Chicago, Illinois 60635
Write tor color brochure
EXPORTERS: Empire - Planview N Y • CANADA: Âlas Electronics - Ontario circle no. il on free information card

The JS\&A Mini Travel Alarm will fit in your briefcase, pocket or purse and is no larger than four quarters.

The new JS\&A Chess Computer plays six levels of chess and costs only $\$ 99.95$.

The Winners

These two products continue to be our best sellers. Can you figure out why?

The two products shown above are our best selling new products. The Chess Computer compares with similar computers selling for up to $\$ 400$. The JS\&A Mini Travel Alarm compares to the $\$ 100$ Seiko alarm but is smaller and less than half the price.

Is there more to these products than value? Let's take a closer look. The following are descriptions of these two new items with our conclusions at the end.

THE MINI TRAVEL ALARM

It's small. And because it's small, it fits anywhere. In your briefcase or in your pocket.

The new JS\&A Mini Travel Alarm measures only $3 / 8^{\prime \prime} \times 11_{4}{ }^{\prime \prime} \times 21 / 2^{\prime \prime}$ and has a small easel support on the back. Just set the alarm, and the electronic beep will wake you up. The clock movement is totally solid-state, and a built-in night light lets you view the time in the dark.

But the JS\&A Mini Travel Alarm does more. First, it makes a great pocket watch. The small imitation black leatherette carrying case that comes with the unit has a window so you can view the time even when the unit is in its case. Secondly, it tells accurate time - within fifteen seconds accuracy per month. And finally, it's inexpensive-only $\$ \mathbf{2 9 . 9 5}$ complete with carrying case and two readily-available hearing aid batteries. It makes a perfect gift for everyone on your gift list.

There is also a deluxe version with a built-in timer and dual time zone capability. You can now display one time while keeping the second time in memory.

The Mini Travel Alarm can be ordered by
calling our toll-free number below or sending your check for $\$ 29.95$ for the regular version or $\$ 39.95$ for the deluxe version. Please add $\$ 2.50$ postage and handling and Illinois residents add 5\% sales tax

THE JS\&A CHESS COMPUTER

It's a chess-playing robot. The new JS\&A Chess Computer is not only programmed with the rules of international chess, but it has a brain that thinks for itself.
You enter your move and the computer examines all the probabilities and makes its move. There are six levels of play-from beginner to professional-so the game increases in difficulty as you become more proficient. And you can change levels right in the middle of a game if the robot starts to beat you.

The computer is small, easy to store, and is played with your own board and chess pieces. The JS\&A Chess Computer has been programmed to handle all the international chess rules including castling, en passant, and pawn promotion. The entire unit is housed in a handsome case only $4^{\prime \prime} \times 7^{\prime \prime} \times 21 / 2^{\prime \prime}$ high, weighs 14 ounces and comes with an AC adapter.

One of the major breakthroughs has been its price. The JS\&A Chess Computer is available for only $\$ 99.95$ complete with AC adapter and complete instructions. (Add $\$ 2.50$ for postage and handling and Illinois residents please add 5% sales tax.) If you play chess, you already own half of the system - your board and chess pieces. With JS\&A's Chess Computer, you'll own the other half plus a very clever opponent.

OUR CONCLUSIONS

Why are the above two products so successful? Value would seem the most obvious reason. These products easily represent 50\% lower prices than popular brand name products. Or is it features? Each product has real advantages over the competition. Or is it simply our 30 day trial period? It's the most consumer-oriented way to use and experience a product before you buy.

Why do people buy these products from JS\&A? Value? Certainly. Features? Yes. But most importantly, we give you the assurance that if you are not satisfied with any JS\&A product, you may return it within 30 days for a prompt and courteous refund. There's no stuffy sales clerk to ask you embarrassing questions, no parking problems, and no long lines. And we'll even refund our $\$ 2.50$ postage and handling charge.
Why not join the space-age revolution with one or both of our most exciting new products. Order any one of our two winners at no obligation, today.

Dept.PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-7000
Call TOLL-FREE . . 800 323-6400 In Illinois Call (312) 564-7000
(C) JS\&A Group, Inc., 1978

Bearcat ${ }^{\circledR} 250$ Features:

- 50 Channels/5 banks Program 50 frequencies from ite frequency combinations Designate certain bank for specific types of activity, for exampie. use bank
1.10 for Police. 11.20 for Secret Service. 21.30 for Drug Enforcement Agencies. etc
-5-Band Coverage-Includes Low and High VHF bands. UHF and 2 meter plus $3 / 4$ meter amateur bands With special programming techniques. this unit can monitor additional irequencies not published in actory specification
- Self-Destruct - In case your scanner falis into enemy hands. you can electronically erase up to 64 frequencies in storage memory with only two key strokes
- Search/Store - "Hands-off" automatic search operation that locates and "remembers" active frequencies
- Search/Recall-Used in confunction with search. displays frequencles found in search/store sequence
- Communications Electronics"-quality contro approval rating ${ }^{*} 1$ Our highest quality 9
- Crystalless - Without ever buying a crystal. you can select from all local frequencies by smply pushing a ew butions
- Priority-Samples programmed pronty frequency on clicnnel 1 every 2 seconds regardless of other scanne montor a certain frequency
- Time-Brillant digital LED clock-will display hours minutes and seconds Extremely accurate.
- Count-Frequency "traffic analysis" mav be easily recorded to keep track of potentially hostle forces Automatically counts numbers of transmissions on
- Non-Volatile Memory - No batleries required to retai memory. even when scanner is unplugged MNOS
crad
- Scrambler/Tape Audio Output-Top secre: crypto graphic messages may be recerved and decoded by correctly keyworded decrypting device puen th to correctly keyworded decryping device. even if it utimzes

Small Size-The Beareat 250, small physical size lends tself to government monitoring applications When the Bearcat 250 may he easly concealed in an antach case for unattended unobrrusive surveillance

- Auxiliary-On/Off control of auxilary equipment (tape deck. alarm light. motor) when transmissions occur an activate a lape recorder by remote control when "body mike" transmission is receved
- Speed-Choice of ether 15 or 5 channels per second eed lor doser monnong of desired irequenc
- Limit-Sets the upper and Jow

Birdie-Lockout-Avoid annoying scanner lockup Birdie-Lockout-Avoid annoying scanner ockup
during search mode Scanner will skip over any programmed hirdies'

- Search Direction-Determines in which direction search goes for faster return to desired frequencles
- Direct Channel Access-Move directly to desired channel without stepping through all channels
- Automatic Squelch-Factore-set squelch
automaticany biks out unwanted nose
- Decimal Display-Shows frequency and channel
- Deluxe Keyboard-Makes frequency and feature
selection easy for simple programming
- Patented Track Tuning-Receve frequencies across the ful band without adiustment Circultry is automaticaliv aligred to each frequency montored - Selective Scan Delay-Adds a two-second delay to prevent missing transmissions when "calls" and he same trequenc
- Extended Frequency Coverage-With spectal programming techniques. the Bearcat 250 can monito
125.146 MHz and 399.420 MHz :n adduon to the normal frequencies, whtolut special modition to the
- Simple Programming-Simplv punch in on the keyboard the frequency vou wish to montor
- Space Age Circuitry-Custom integiated circuits a Bearkas iradition in scanning radios
- Rolling Zeros-This Bearcat exclusive
- FI FCC Certired UL Listed/FCC Certified-In addition to the * 1 rating from Communications Electronics," the UL and
FCC cenfication assures you of quality design and

The new Communications Electronics Bearcat ${ }^{5} 250$ is an incredible scanning radio offering the scanning protessional and the knowledgeable scanning enthusias more monitoring capabilties. more frequency versatility. than any other scanning monitor avallable today
It uses patented Bearcat integrated circuitry. so there's never a crystal to buy With pushbutton ease, up to 50 channels can be programmed in five banks of ten channels each The keyboard is easy to comprehend. simple to use. All functions are instantly displayed in bright LED numbers and letters.
All programmed frequencies and pertinent scan instructions are memorized in an electronic memory that operates even when the unt is unplugged from wali power-there is no need for batteries
Not only will the Bearcat 250 capture more scanning action. It will "remember" where and how often it heard that actoon. Now it's easy to identify which frequency is used most often it will search automatically through a selected frequency range and memorize in its search memory up to 64 active frequencies To determine what frequencies were found during the search store mode. simply push the recall button and they will be displayed one at a time. Press the enter key and any of these frequencies is entered automatically into the scan

Bearcat ${ }^{\circledR} 250$
Specifications
Frequency Reception Range Low Band VHF Band $32-50 \mathrm{MHz}$ UHF Band 420.512 MHz

Extended frequency range With specral programming technuques the Bearcat 250 will also cover the follouting VHF Band $\quad 125-146 \mathrm{MH}_{2}$ $\begin{array}{ll}U H F \text { Band } & 399.420 \mathrm{MH}_{2}\end{array}$ Scanner Dimensions
270 cm Wide $\times 7.6 \mathrm{~cm}$ High $\times 194 \mathrm{~cm}$ Deep
Scanner Weigh
i5 pounds)
Shipping Weight
318 Kilogram
Power Requirements
Note 220 Volt AC Export enodei maw
be acarlable Aprl 1979
110.130 V ac 60 Hz
12.15 V dc. 8 Watts

Audio Output
At least
Antenna
Antenna
Telescoping (supplied
Scan Rate
Sensitivity
04 microvolts for 12 AB SINAD on VHF bands UHF band slightly les Selectivity
Better than.
$-60 \mathrm{~dB} @ \pm 25 \mathrm{KHz}$
Audio Quality
The $\mathrm{BC}-250$'s audio is more noise-free and suffers less distortion than the Bearca! 210 by a margin of 10 dB or more.

Image Rejection

The Bearcot 250 relects image frequencies
hv at least 8 dB better in all bands than
the Bearcar 210

Connectors

External antenna and speaker. AC \&
DC Pouer. Auxilany control ourput. tape audio output

Accessorles

Vehicle mounting bracket and hardware AC \& DC power cords

The Communications Electronics ${ }^{2}$ Bearcat 250 even has an automabic coun function that remembers how often any or all programmed frequencies were activated by transmissions while scannung This will help you determine the value of your frequency selections. The Beorcat 250 will literally search and seize active frequencies literally search and seize active frequencies. who must monitor a specific frequency is who marity channe Channel If desired the prority channel. Channel 1 . If desired. whanel will be sampiadrammed or channel will be sampled every two second anytime the set is turned on

COMMUNICATIONS ELECTRONICS ${ }^{\text {" }}$
Box 1002, Ann Arbor, Michigan 48106 U.S.A. ght. alarm. motor, el
ONE-YEAR to assure prompt delivery

THE INCREDBLE, NEW BEARCATESO SCANMER.

The Bearcat 250 has an auxiltary output feature which an be programmed to actuate external devices such as a

ONE-YEAR LIMITED WARRANTY
With your Bearcat 250 . we will send all accessories, a complete set of simple operating instructions and a one-year limited warranty If service is ever required. ust send your recelver to one of our approved national service centers When you purchase your scanner from Communlcations Electronics, you re buying from the world's leaderin no-crystal scanners. We ve sold more synthesized scanners than any other company

NO OBLIGATION 3 I DAY TRIAL
Test our Bearcat 250 for 31 days before you dende to keep it If you do. you'll own the most sophisticated and technologically advanced scanner in the world If for any reason you are not completely satisfied. return it in new condition with all accessories in 31 days. for a courteous and prompt refund (less shipping charges)

ADVANCED YET UNCOMPLICATED
Besides all the advanced features that put the Communications Electronics" Bearcat 250 light years ahead of any other scanning radio. it has the superior engineering and "standard" leatures that have made Bearcot the greatest selling scanner in America Bearcat's patented rack tuning insures full band avery swithed antenna eliminates the nee ectroncally switched antenna eliminates the need for an additional low band antenna A detailed service manual also available for $\$ 1500$ postpaid

BUY WITH CONFIDENCE
The Communications Electronics*Bearcat 250 is an extraordinary scanning instrument. It provides virtually any scamning function that the most protessional momtor could require. The Bearcat 250 lets those who need to know. know more. To get the fastest dellvery of your super synthesized Bearcat 250 , send or phone your order directly to our Bearcot Scanner Distribution Center" Mail orders to: Communications Electronlcs. Box 1002 - Department PE12. Ann Arbor. Michigan 48106 USA Send $\$ 31900$ plus $\$ 500$ for UPS shipping or $\$ 900$ for U.P.S air shipping (Michigan residents please add 4% sajes tax) Foreign orders invited at a slightl, higher cost International customers, please read special shipping information (in our catalog) before ordering Further price discounts are avallable to quantity buyers. Suggested list price is $\$ 399.95$ but you can get 6 Bearcot 250 's © 930900 . 12 units © 29900 . 24 units @ $\$ 289.00 .48$ units @ $\$ 27900.96$ units @ $\$ 26900$ 52 uits and up 25900 Add $\$ 1500$ for each 6 52 units and $@ 259$ canners ordered for U.P.S US ground shipping. Add $\$ 195.00$ shipping charge for each 6 scanners, on internationa. shipments, or write for a pro-forma nivoice If you have a Master Charge or Visa cardyou may call and order toll free 800-521-4414 to place a credit card order. If you are outside the U.S or in Michigan dial 313-994-4444. All order lines at Communications Electronics" are staffed 24 hours
Since this Bearcat scanner is the most popular unit ordered through our Scanner Distribution Center," you must order your Bearcat 250 today at no obligation.

Autoprogramming, Scanner Distribution Center" and CE logos are trademarks of Communications Electronics
Bearcat" ${ }^{\text {is }}$ a registered Irademark of Masco Corporation of Indiana
Copylight ${ }^{\circ} 1978$ Communtcationa Electronics
master charge rot mromstatio VISA

Coming Next Month

- A GUIDE TO

PROJECTION TV RECEIVERS

- BUILD A UNIVERSAL

ELECTRONIC TIMER

- FREQUENCY CONTROL

METHODS FOR FM TUNERS/RECEIVERS

NOTE: PART 3 of THE MINI-WAVE, SCHEDULED FOR DECEMBER, WILL BE PUBLISHED IN JANUARY. WATCH FOR IT THEN!

Cover Art by George Kelvin

POPULAR ELECTRONICS, December 1978. Volume 14, Number 6. Published monthly at One Park Avenue. New York. NY 10016. One year subscription rate for U.S. and Possessions, $\$ 13.00$; Canada, $\$ 16.00$; all other countries, $\$ 18.00$ (cash orders only, payable in U.S. currency). Second Class postage paid at New York, NY and at addiltional mailing offices. Authorized as second class mail by the Post Office Department, Ottawa, Canada, and for payment of postage in cash.
POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.
COPYRIGHY O 1978 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL. RIGHTS RESERVED.
Zitt-Davis also publishes Boating. Car and Drivor, Cycle, Flying, Popular Photography, Skiing. Stereo Review, Electronic Experimenter's Hand book, Tape Recording \& Buying Guide. Stereo Di rectory \& Buying Guide, and Communications Handbook.

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider. Rights and Permissions, Zitf-Davis Publishing Co., One Park Ave., New York. NY
10016.
Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by refurn postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or satety of manuscripts, arl work. of models.

Forms 3579 and all subscription correspondence: .POPULAR ELECTRONICS Circulation Dept., P.O. Box 2774, Boulder, CO 80302 . Please allow at least eight weeks for change of address. Include your old address, enclosing. If possible, an address labe from a recent issue.

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Feature Articles

DOLBY FM BROADCASTING / Julian Hirsch
AM STEREO—SOON ON THE AIR? / Joe DeAngelo
Five proposals have been made to the FCC. One may be on the air in 1979
HOLIDAY SEASON ELECTRONIC GIFTS PE EDITORS WISH THEY'D RECEIVE SHORTWAVE BROADCASTS IN ENGLISH TO NORTH AMERICA,

NOV. 1978 to MARCH 1979 / Glenn Hauser
POPULAR ELECTRONICS INDEX, VOLUMES $13 \& 14,1978$.

Construction Articles

BUILD A COMPUTER-VS-YOU CHESS GAME / Bill Green
Microprocessor-based game has three player levels.
SECURITY FOCUS: TWO ELECTRONIC SYSTEMS
TO PROTECT YOU AND YOUR PROPERTY
AN INFRARED INTRUSION SYSTEM / Hank Olson
A PORTABLE ALARM FOR SINGLE ENTRIES / John Hollabaugh

Columns

STEREO SCENE / Ralph Hodges
So You Want to Build . . . A Speaker?
SOLID STATE / Lou Garner
Holiday Projects.
HOBBY SCENE O\&A / John McVeigh
EXPERIMENTER'S CORNER / Forrest M. Mims
The 74154 Multiplexer.
COMPUTER BITS / Leslie Solomon
Enhanced Graphics.

Julian Hirsch Audio Reports

LAFAYETTE MODEL LR-120Db AM/FM STEREO RECEIVER
DUAL MODEL C 819 CASSETTE DECK
CROWN MODEL DL2 DIGILOGIC CONTROL CENTER

Departments

EDITORIAL / Art Salsberg FCC Stomps on R-F Modulators.
LETTERS
NEW PRODUCTS
SOFTWARE SOURCES
OPERATION ASSIST
ADVERTISERS INDEX
NEWS HIGHLIGHTS IN BRIEF

Popular Electronics
JOSEPH E. MESICS
Publisher

ARTMURF. BALSERER Editorial Director
LEBLIE SOLOMOM Technical Director
JOMN R. RIOES Managing Editor
IVANETROR Senior Edttor
ALEXANDER W. EURAWA Features Editor
EDWAND I. CUXEAUM Art Director
JONN MeVEIOM Assistant Technical Editor
ANDTE DUEANT Technical Illustrator
CARMEN VELAZOUEZ Production Editor
RUTM POLEKY Editorial Assistant
Contributing Editors Mal Chamberlin, Lou Oarner, Olenn Haueer Jullen Mlrech, Ralph Modges, Forrest mime
JEFF NEWMAM Assistant to the Editor
LINDA DLUM Advertising Service Manager

KATMERINE REIMHAMDSEN
Erecutive Assistant

DOAR W. MOPPR

Publishing Director

ZIFF-DAVIS PUBLISHING COMPANY
Philip B Korsant. Presiden Furman Hebb. Executive Vice Presiden John R. Emery. Sr Vice President, Finance Phillip T Hefternan, Sr Vice President Edward 0 Muhlield, Sr Vice President Philip Sine. Sr Vice President. Secrelary Lawrence Sporn. Sr Vice President, Circulation and Marketing Arthur W. Butzow. Vice President. Production
George Morrissey. Vice President Sydney H. Rogers. Vice President Sidney Holtz, Vice President Albent S. Traina. Vice President Paul H. Chook. Vice President Edgar W. Hopper, Vice President Robert N Bavier. Jr . Vice Presiden Selwyn Taubman. Treasurer
W. Bradford Briggs. Vice Chairman

ZIFF COAPORATION

Willam Zift. Charrman

1. Martin Pompadur. President HershelB Sarbin, Executive Vice President

ZIFF-DAVIS PUBLISHING COMPANY
Editorial and Executive Offices One Park Avenue, New York. New York 10016 212-725-3500
Joseph E Mesics (725-3568) John J. Corton (725-3578) Bonnie B. Kaiser (725-3580) Midwestern Otfice Suite 1400, 180 N . Michigan Ave Chicago. IL 60601 (312-346-2600) Midwest Representative. Buzz Vincent Western Offce
9025 Wilshire Boulevard. Beverly Hills. CA 9021
213-273-8050: BRadshaw 2-1 161 Western Advertisung Manager Bud Dean
Western Representative Norm Schindier Sute 205. 20121 Ventura Biva Woodland Hills. CA 91364 (213-999-1414)
Japan James Yagi. O\| Palace Aoyama. 6-25. Minamı Aoyama, 6 Chome. Minato-Ku

Tokyo. 407-1930/6821. 582-2851

FCC STOMPS ON R-F MODULATORS

I felt it was just a matter of time before the FCC turned its attention to the widespread use of r-f modulators for equipment other than video games. It finally did, advising that it plans to notify makers of r-f modulators that sales of the devices are illega!!

The FCC is pointedly talking about adding separate r-f modulators to personal computers, though the principle could well be carried over to security systems. Most personal computers are not supplied with r-f modulators and TV antenna isolation switches, as are TV video games. A modulator and computer combined, however, are considered to be class I TV devices; separately, they do not fall into this classification. Together, then, they must be approved by the FCC

One does not require an r-f modulator to obtain video, of course, Simply use a video monitor or connect the computer directly to the video amplifier circuit of a conventional TV receiver. The former route is costlier, but you'll get the sharpest pictures. This is especially important when viewing the small characters generated by some computer systems. Home-brewing a video input jack on a TV receiver requires circuit modification. It's less expensive than buying a monitor, could be dangerous if modifying a "hot" chassis, and falls short in resolution as compared to a video monitor since its video bandpass is, at best, 4.2 MHz . Both approaches provide better video quality than using a vhf oscillator at the antenna terminals of a TV receiver.

But using an r-f modulator has its advantages: no muss, no fuss. The obvious objection is that the modulator and/or isolation switch could cause interference to other equipment, such as your neighbors' TV reception

There are a host of problems that arise as a result of the FCC's starting a drive for such Class I devices to be approved by the agency. Firstly, how does one compel present end users of r-f modulators/personal computers to submit the package to the FCC for type acceptance-especially when the four-figure evaluation charge is sometimes more than the end user paid for his entire system.

If the personal computer maker were to incorporate an r-f modulator into its equipment, the same up-front monies would have to be paid, Many of the smaller manufacturers would find this to be prohibitively high. Moreover, governmental delays in finalizing type acceptance (a not uncommon occurence, judging from video game and CB transceiver experiences with the FCC) or notification of failure might be the kiss of death to a new, promising model; maybe even to the company itself.

Interestingly, there is no prohibition on the sale of r-f modulators in kit form, according to an FCC spokesman. So though it is illegal to sell these devices separate from the video source in assembled form, one can still sell a kit version with impunity.

What continues to distress me and others is the lack of foresight on the part of the FCC. The agency has ignored this problem and similar ones for what seems interminable periods of time when it could have acted with dispatch as soon as it became evident that Class I FCC rules, among others, were being violated.

Just imagine the penalties that would be extracted if private industry operated in this manner. Ignore illegal use of one's trademark, for example, and it can be lost forever. That's why Xerox's legal staff jumps on anyone using the name generically , such as in the incorrect expression, "I'm going to Xerox this page."

I'm surprised, too, that television receiver manufacturers haven't grasped an opportunity to meet growing needs of consumers by incorporating video input jacks and audio output jacks into their better models. I suggested this to a TV manufacturer some three years ago. If the company had followed this counsel, it would have made life easier for computer and audio enthusiasts (hi-fi audio is now available on network and public broadcast channels) as well as the FCC. It would have given the manufacturer a leg up on competition, too.

 and a Fhappy neto Pear

The Age of Affordable Personal Computing Has Finally Arrived.

Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $\$ 2000$. It is more powerful than computer systems which cost over $\$ 20,000$ in the early 1970's.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific
math functions and built-in "immediate" mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to tutoring trigonometry all possible by its fast extended BASIC, graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don't have to. You don't because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it; the choice is yours.

Ohio Scientific offers you this remarkable new computer two ways.

Challenger 1P \$349
Fully packaged with power supply. Just plug in a video monitor or TV through an RF converter to be up and running.

HMALLEMGER IP

Superboard II \$279

For electronic buffs. Fully assembled and tested. Requires +5 V . at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features

- Uses the ultra powerful 6502 microprocessor

- 8K Microsoft BASIC-in-ROM

Full feature BASIC runs faster than currently available personal computers and all 8080 -based business computers.

- 4K static RAM on board expandable to 8 K
- Full 53.key keyboard with upper/lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM - Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features upper case. lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters: without overscan up to 30×30 characters.

Extras

- Avallable expander board features 24 K static RAM (additional), dual mini-floppy interface, port adapter for printer and modem and an OSI 48 line expansion interface
- Assembler/editor and extended machine code monitor available.

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.

ORDER FORM

Order direct or from your local Ohio Scientific dealer. I
I'm interested Send me information on your
Personal Computers Business Systems
Send me a Superboard II \$279 enclosed
Send me a Challenger 1P\$349 enclosed
Include 4 more K of RAM (8 K Total) $\$ 69$ more enclosed

```
Name I
```

\square

Address I

State
I
I Payment by BAC(VISA) _ MasterCharge __ Money Order I
I I
I Expires __ Interbank\#(Master Charge) ___ I
TOTALCHARGED OR ENCLOSED
All orders shipped insured UPS unless otherwise requested FOB Aurora. OH I

America's Largest Full Line Microcomputer Company 1333 S. Chillicothe Road • Aurora, Ohio 44202 (216) 562-3101

FILTER DOES THE JOB

I had been trying to eliminate a loud, highpitched alternator whine coming through my
automobile FM tape deck for over a year and a half. I tried every commercial and homebrew filter I could think of without reducing the level at all. Then I built the "Super Audio Filter" featured in your September 1978 issue, and have been listening to whine-free stereo sound ever since. John D. McCormick, Laurel, MS.

UPGRADE KEYPAD DESIGN

"The Versatile Keypad" (August 1978) was a fine article on keypads. I have a suggestion to add, however. One should consider using a 74C922 IC in the design. This chip decodes the switch matrix without diodes and features internal scanning and debouncing. It can also

Design of Digital Systems - six volumes

The products of digital electronics techno- Book 3: Half adders and full adders; sublogy will play an important role in your games are already commonplace. Now, microprocessors are generating a whole new range of products. Personal computers will be in widespread use very soon. Your TV. telephone and computer will combine to change your children's education, your iob your entire way of life.

WRITTEN BY EXPERTS
These courses were writen by experts in electronics and learning systems so that you could teach yourself he heary and appl. instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and respond by answering questions on each new piece of information before proceeding. After completing these courses you will have broadened your career prospects as wetl ing technological world around you
ing technological world around vou. professional engineer as for the amateur enthusiast. You'll learn about microprocessing as well as personal computing - not to mention all the other aspects of digitat electronics design.
advanced COUASE
OESIGN OF DIGITAL SYSTEMS
Design of Digitat Systems is written for the engineer and serious hobbyist who wants to learn more about digital electronics. Its six
large-format volumes-each $111_{4}^{\prime \prime} \times 8 \%^{\prime \prime}$ are packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra o memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of microprocessors and computers.

CONTENTS
The contents of Design of Digital Systems include
Book 1: Octal, hexadecimal and binary number systems, representation of negative numbers: complementary
Book 2: OR and AND functions; logic gates: NOT, exclusive-OR, NAND,NOR and exclusive. NOR functions; multiple input gates; truth tables; DeMorgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.

tractors; serial and parallel adders:; processor
and arithmetic togic units (ALUs), multiplication and division systems. Book 4: Flip.flops; shift registers; asynch ronous counters': ring, Johnson and exclusive OR feedback counter; random access mem ories (RAMs); read only memories (ROMs). Book 5: Structure of calculators; keyboard encoding, decoding display data; register decoding; instruction sets: instruction decod ing; control program structure.
Book 6: Central processing unit (CPU) memory organization; character represen tation; program storage: address modes: input/output systems: program interrupts; extecupt priorities; programming; assemblers time-sharing.

Digital Computer Logic \& Electronics

CONTENTS

Digital Computer Logic and Electronics is designed for the beginner. No mathmetical assumed, though you should have an aptitude for logical thought. It consists of 4 volumes each $111^{\prime \prime} \times 8 \frac{1}{4} /^{\prime \prime}$-and serves as an intro duction to the subject of digital electronics. Contents include: Binary, octal and decimal number systems: conversion between number and inverters; Boolean algebra and truth tables: DeMorgan's Laws; design of logical circuits using NOR gates; R-S and J.K flipflops: binary counters, shift registers and half-adders.

NO RISK GUARANTEE
There's absolutely no risk to you. If you're not completely satisfied with your courses,
simply return them to GFN with on 30 days. We'll send you a prompt, full refund Plus return postage.
tax deductible
In most cases. the full cost of GFN's In most cases. the full cost of G

HOW TO ORDER
To order by credie card call GFN's roll. ree number - $(800) 331 \cdot 1000$: or send your check or money order (payable to GFN Industries, Inc.) to the address below.
Prices include overseas surface mail postage. Air Mail: additional costs (10 volumes): Caribbean $\$ 10$. Europe $\$ 15$; Africa, South America $\$ 20$, Australia, Asla \$25; or write
for exact quote Wite for educational

LOW PRICES - SAVE $\$ 5$
We ship promptly from stock. There are no extras-we pay all shipping costs, we even pay your sales tax where required. And if at no obilgation today

Design of Digital Systems
$\$ 19.95$

- 6 volumes

Digital Computer Logic $\$ 14.95$ Electronics - 4 volumes $\$ 29.90$
 GFN Industries, Inc. Suite 400 - U 388 Seventh Ave New York N.Y. 10019

Call TOLL-FREE (800) 331-1000 (orders only)
latch the most recent entry from the pad onto the output lines. The 74C922 is available from many mail-order sources for less than $\$ 6.00$. A typical setup for this chip is shown in the diagram.-Philip Thompson, Princeton. NJ.

SMOKE DETECTOR SOURCES

In the September 1978 "Solid State" column, you mentioned only Motorola and Na tional as suppliers of ICs for smoke detectors. The largest two IC manufacturers are in fact Siliconix and Supertex. Also, you mentioned ionization chamber detectors but did not mention where the chambers themselves can be purchased. The Amersham Corp. is the largest supplier of radioactive products in the world and the leading supplier of both radiation sources and ionization chambers for smoke detectors.-G. W. Dunbar, Jr., Amersham Corp., Arlington Heights, IL.

HI-FI TV SOUND

The article "Now You Can Enjoy Hi-Fi Television Sound" (September 1978) presents some misconceptions regarding the development of diplexing for television audio. Work on the new diplexing system, which went into service on January 13, 1978 (prior to the Super Bowl), began at the recommendation of a joint TV industry/Bell System committee. Bell Laboratories provided the overall system engineering and Western Electric awarded the contract for the diplexer to Farinon.

Bell System and independent telephone companies installed the diplexers at TV stations. Pools of portable diplexers have been established under the management of the A. T. \& T. Long Lines Dept. to be used in the provision of part-time (occasional) service to network and non-network customers. The new method does indeed deliver high-fidelity FM sound and has resulted in substantial cost saving to A. T. \& T. Present plans call for offering the second audio channel in the near future, leaving open the option of stereophonic sound for TV.-H. J. Cohan, A. T. \& T.

ADD A ZENER DIODE

After building the "Compressor Guard" (June 1978), I encountered a problem. The red LED can draw enough current to prevent the relay from dropping out. The LEDs would change, but the relay would remain energized. I solved the problem by installing an 8.2 -volt zener diode (1N756 or similar) in series with LED1. The cathode end of the zener diode goes to the LED2/D3 relay junction, while the anode end goes to the anode terminal of LED1.-James P. Donovan, Louisville, $K Y$.

SOURCE FOR DUAL OP AMP

The address of the supplier in the U. S. A., of the TBA231 dual op amp (IC1 in my article "Listen to a New World of Sounds with Ulitrasonic Detector," July 1978) has been changed to SG-ATES Semiconductor Corp., 79 Massasoit St., Waltham, MA 02154; Tel: 617-891-3710. Note also that the Fairchild μ A739 can be used. -Brian Dance.

Recording studios are designed for perfect sound reproduction.

Your living room wasn't.
So even if you own the world's best hi fi system, you may not be hearing your music at its fullest potenrial.

Your rugs may be soaking up the highs.

Your high ceilings or blank walls can make every singer sound as if he's singing in an echo chamber.

And if your room is stuffed with overstutted furniture, even live recordings can sound lifeless.

At Pioneer, we've developed a simple, and inexpensive way to avoid redecorating with an audio consultant: the Pioneer SG9500 graphic equalizer.

In brief, the SG9500 plugs into the back of your receiver or amplifier and acts as a massive
tone control. It then divides the musi cal spectrum up into ten different trequency bands, and gives you a sepa. rate level control that lets you add or subtract up to ten decibels to each trequency:

So you can cut the exact trequencies that are rattling the windows.

Or boost the bass your bookcases are soaking up.

Or simply remix the music to compensate for your own musical tastes, or bad speaker placement.

Of course, if you're not lucky enough to be blessed with components that are all of Pioneer quality, you can also use the SG9500 to overcome deficiencies in the rest of your audio equipment. Like tape hiss in your cassette deck. Or audible rumble in your turntable.

You can hear the difference the SG9'500 can make at al most any Pioneer dealer.

Your living room may not have been built like a recording studio.

But with an SG9500, at least
it can sound like one.

(MPIONEER
 We bring it back alive.

01978 , LI.S. Pioneer Elecrronics Corp
85 Ontord Dive, Moonachie, New lersey 07084

THE FIONEER SG9500.
clrcle no 61 on free information iard

Additional information on new products covered in this section is a ailable from the manufacturers. Either circle the item's code number on the Free Information Card or write to the manufacturer at the address given.

SAE Preamp/Amps

SAE's Model 2922 amplifier (a combination of the Model 2900 preamp and the Model 2200 power amp) is rated to deliver 100 watts/channel into 8 ohms at no more

than 0.05\% THD and features a parametric equalizer for creating virtually any sonic effect. The preamp and amplifier are actually separate sections including a power supply. The only parts in common are the chassis and the power switch. Other features include tape/line equalization for tape recording flexibility, tape/line filters to protect tape recordings, a two-stage phono circuit that is said to eliminate TIM characteristics, and separate bass, treble and midrange controls for each channel. Address: Scientific Audio Electronics, Inc., 701 E. Macy St., Los Angeles, CA 90012. CIRCLE NO. 92 ON READER SERVICE CARD

Multicore Solder Sampler Kit

A kit of five types of solder, each for a particular application, is available from Multicore Solders. Packaged in feed-out metal dispenser packs, the kit includes solders for stainless steel and jewelry, plumbing,

sheet metal and general metal joining, electrical wiring, electronic assemblies and pc boards, and aluminum. The kit is intended to give the user a good idea of the purposes for which the various alloys and flux combinations were formulated. Included with each Sampler Kit is a "Solder User's Guide." \$8.95. Address: Multicore Solders, Westbury, NY 11590.
CIRCLE NO. 93 ON READER SERVICE CARD

One-Hand Keyboard

A one-handed keyboard for computers, terminals, displays, and other 128-character ASCII- or ISO-coded devices is available from NewO in both right- and lefthand models. It features snap-action

switches, key-pressed signals, and strobe pulses to signal that data is available. The small keyboard is for touch typing and data entry where a free hand is needed. The Writehander ${ }^{\text {TM }}$ keyboardcan be interfaced with any computer, terminal, printer, or other device that accepts 7 -bit code signals and provides the nominal power required. Keys are mounted on a $5^{\prime \prime}$ (12.7-cm) diameter hemisphere that conveniently accommodates the human hand. The shape and key locations have been designed so that the fingers and thumb naturally fall on the appropriate switches. There are four models: right-hand, left-hand, large (thumb to little-finger span $81 / 2^{\prime \prime}$ or more), and small. Power required is 5 volts at $52 \mathrm{~mA} \mathrm{dc}. \mathrm{Ad-}$ dress: NewO Company, 246 Walter Hays Dr., Palo Alto, CA 94303.
CIRCLE NO. 94 ON READER SERVICE CARD

Pioneer AM/FM Stereo Receiver

The Model SX-880 AM/FM stereo receiver from Pioneer is rated at 60 watts/channel into 8 ohms, over 20 to $20,000 \mathrm{~Hz}$ at no more than 0.05% total harmonic distortion.

The power amplifier section features a di-rect-coupled OCL output and two discrete power transistors in each channel. A dualgate MOSFET in the FM front end is said to provide a sensitivity of $10.3 \mathrm{dBf}(1.8 \mathrm{mi}-$ crovolts) mono. Two meters provide sig-nal-strength and center tuning indications, while two other meters indicate output power from 0.01 to 120 watts, without sensitivity switching. Other claimed ratings for the amplifier: phono frequency response, 20 to $20,000 \mathrm{~Hz} \pm 0.2 \mathrm{~dB}$; IM distortion ($50: 70 ఆ 0 \mathrm{~Hz}=4: 1$, from $A \cup X$), less than 0.03% for $30 \mathrm{~W} /$ Channel at 8 ohms; and phono input sensitivity, $2.5 \mathrm{mV} / 50,000$ ohms. The FM tuner section has a $50-\mathrm{dB}$ quieting sensitivity rating of 16.2 dBf (3.6 microvolts); capture ration of 1.0 dB ; and alternate channel selectivity of 75 dB . Dimensions are $18.875^{\prime \prime} \mathrm{W} \times 5.5^{\prime \prime} \mathrm{H} \times$ $12.625^{\prime \prime} \mathrm{D}(48 \times 14 \times 32 \mathrm{~cm})$. \$425. Address: U.S. Pioneer Electronics Corp., 85 Oxford Dr., Moonachie, NJ 07074.
CIRCLE NO. 95 ON READER SERVICE CARD

Portable Dual-Trace Oscilloscope

Ancrona Corp. has announced availability of its new Model TTM 303 dual-trace, trig-gered-sweep portable oscilloscope with three power modes. The scope has a 15MHz vertical bandwidth and can be oper-

ated from the ac line (90 to 260 volts at 48 to 440 Hz), internal NiCd battery, or external dc (11 to 30 volts) source. It features a $3^{\prime \prime}(7.7-\mathrm{cm})$ CRT, $5 \times$ magnifier, $X-Y$ operation, and compact size. Overall size is less than $1134^{\prime \prime} \times 83 / 4^{\prime \prime} \times 4^{\prime \prime}(29.8 \times 22.2 \times 10.2$ $\mathrm{cm})$ and weight is $10 \mathrm{lb}(4.5 \mathrm{~kg}) . \$ 895$. Address: Ancrona Corp., P.O. Box 2208, Culver City, CA 90230.
CIRCLE NO. 96 ON READER SERVICE CARD

PAL Firesticks CB Antennas

The latest models of the PAL Firestick top(Continued on page 10)

Measure resistance to $.01 \Omega$ at a price that has no resistance at all.

The new B\&K-PRECISION Model 2810 may well be the highest resolution $31 / 2$-digit DMM availble. It is certainly the lowest cost DMM to provide $.01 \Omega$ resolution. With ohms resolution ten times greater than most DMM's, the 2810 allows you to detect shorted windings in coils, transformers or motors.
You'll also be able to accurately check the low contact resistance of switches, relays, breaker points or connectors. Many poor solder connections or PC board imperfections can also be located.

The 2810 is a full-feature DMM providing selectable high-/ low-power ohms, auto-zeroing and 100\% overrange reading. Twenty-nine ranges provide maximum readings to 1500 volts DC, 2
amps, and 20 megohms. All ranges are fully overload protected. Typical DC accuracy is 0.5% with resolution to $100 \mu \mathrm{~V}$. And unlike many electronic voltmeters, the 2810 is RFI shielded and can be accurately used in high R-F energy fields.
B\&K-PRECISION also has a full complement of optional accessories for the 2810. Accessories include a carrying case, wire tilt stand, AC adapter/charger, high-voltage probe, direct/ isolation probe, NiCad batteries and 10amp current shunt.
At $\$ 130.00$, the 2810 is a standout value in today's DMM jungle. Don't resist the temptation...contact your local distributor for immediate delivery.

6460 West Contiand Street, Chicago. Illinois 60635 • 312/889-9087
In Canada: Atlas Electronics. Ontario
International Sales: Empire Exporters. 270 Newtown Rd., Plainview, L.I. N.Y 11803

You have your own calculator. Why not a DMM?

Finally, a digital multimeter that's yours, just like your pocket calculator, and more useful. Only $\$ 169$.

You pack only 13 ozs. in your pocket or service kit, but size is deceptive. The 8020A has more useful features than any other multimeter available-at any price! Features like 26 ranges and seven functions, including conductance. 2000 -count resolution. Hi/lo power ohms.
And it's rugged. The high-impact case protects a minimum number of component parts (47 in all), and they're all readily available from any of the worldwide Fluke service centers. Your 8020A is factory calibrated by NBS traceable equipment. And we guaran-
tee it'll live up to published specs for a full year.

The 8020 A is a true field instrument, designed with a highly readable LCD display, and inexpensive 9 V transistor battery power for continuous use up to 200 hours. Reliability, quality and value: that's Fluke tradition.

To get your hands on one, call (800) 426-0361*, toll free. We'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best value in DMMs going.

Price U.S. only.
*Alaska, Hawaii and Washington residents - please call (206) 774-2481.

The DMM for Home Electronics Experts.

loaded fiberglass antennas are available in four lengths, three color schemes, and three basic mounts. The antennas are rated by the manufacturer for frequencies from 26.900 to over 27.700 MHz with no tuning necessary, and an average SWR of 1.5:1. According to the company, a noiselimiting cover reduces static up to 50%. The antennas themselves are available in lengths of 3,4,5 and 7 feet, at prices of $\$ 14, \$ 15, \$ 16$ and $\$ 18$, respectively. Colors available are red with white tip, or red tip with black or white shaft. The mounting kit options, which range from $\$ 13.50$ to $\$ 18$ for single mounts and $\$ 25$ to $\$ 32$ for twin mounts, include a no-hole trunk-lip mount and single or twin mirror mounts with terminal lug or coax connector base terminations. Address: PAL Firestick Antenna Corp., 2614 E. Adams, Phoenix, AZ 85034.

CIRCLE NO. 97 ON READER SERVICE CARD

Wrist Static Strap

This new wrist grounding strap to eliminate static discharges that could damage MOS devices is $48^{\prime \prime}$ long, with a built-in, encapsulated 270,000 ohm or 1 megohm resistor. The wrist contact section is an adjustable bead chain, with a swivel to prevent tangling and twisting. Address: Controlled Static Co., 9846 Jersey Ave., Santa Fe Springs, CA 90670

Akai Open-Reel Tape Deck

The GX-267D open-reel tape deck from Akai has an ac-servo, direct-drive capstan motor and two reel motors. Tape speed is $33 / 4$ or $71 / 2 \mathrm{ips}$ and the deck can be oper-

ated either vertically or horizontally. Function controls are solenoid operated for record/playback in both directions. Other features include the use of GX glass and crystal ferrite heads; dual VU meters; 4digit tape counter; pause and timer-set rec-
(Continued on page 12)

Spend less. Test more.

Faster, easier and more economical digital testing. That's what CSC's Logic Probes are all about. And that's what engineers, technicians and hobbyists need, to deal with the increased use and complexity of digital circuits.

Unlike oscilloscopes, meters and other conventional test equipment, CSC probes are logic-state oriented: Just touch the probe to a circuit node and instantly read logic state, detect level transitions, check duty cycles. And store high-speed, low-rep-rate events that even fast scopes miss.

By accurately detecting the state of individual logic elements without removing ICs or cutting copper paths, CSC's circuit-powered,

multi-family Logic Probes locate over 95% of circuit problems in minutes instead of hours. And they're easy to use. Simply connect two clip leads across the power supply, touch the probe tip to a node and watch the LEDs.

LP-1 LOGIC PROBE. \$44.95*

LP-1 has a minimum detectable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transitions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All, for less than the price of a DVM.

LP- 2 LOGIC PROBE. \$24.95*

LP-2 performs the same basic functions as the LP-1, but for slower-speed circuits and
without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test

circuits up to 1.5 MHz . It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and node state analyzers.

LP-3 LOGIC PROBE. \$69.95*

Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz . Giving you the essential capabilities of a high-quality memory scope at ——about 1/100th the cost.LP-3 captures one-shot or low-rep-rate-events all-butimpossible to detect any other way. All without the weight, bulk, inconvenience and power consumption of conventional methods.

Use CSC's highly versatile logic probes for testing, debugging or servicing any type of digital circuit. They give you a lot of information about IC circuit conditions . . . and help you do more in less time. For less money.

NEED MORE INFORMATION? CALL
203-624-3103 to order, or for the name of your local distributor. Prices slightly higher outside U.S.A.
ord mute controls; and single-direction, auto, or continuous auto-reverse play. Wow and flutter are claimed to be less than $0.06 \% \mathrm{rms}$ at $71 / 2 \mathrm{ips}$, with S / N better than 56 dB , distortion less than 0.5% and frequency response 30 to $25,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$ at $71 / 2$ ips. Dimensions are: $18.5^{\prime \prime} \mathrm{H} \times$ $17.3^{\prime \prime} \mathrm{W} \times 9.8^{\prime \prime} \mathrm{D}(47 \times 44 \times 25 \mathrm{~cm})$. Weight is $45.5 \mathrm{lb}(21 \mathrm{~kg})$. Approximate price is \$800. Address: Akai America, Ltd., 2139 E. Del Amo Blvd., Box 6010, Compton, CA 90224.

CIRCLE NO. 98 ON READER SERVICE CARD

Sylvania Cables

For TV Repairs

Sylvania's "Chek-A-Board" extension cable kits enable technicians to service solid-

state TV receiver modules without removing the chassis. Designed for use with RCA and Zenith modular TV receivers, the
kits contain cables with female connectors for modules on one end and mating chassis connectors on the other end. Using the cabies, an operating module can be brought out onto the workbench for testing and repairs. The extension cables feature plated-alloy conductors on heavy-gauge fiberglass printed circuit boards and consist of stranded multilead ribbon cable. Each side of the cable is color-coded differently to assure proper orientation. The cables are 24" (61 cm) long. Address: General Telephone \& Electronics Corp., Public Affairs Dept., 1 Stamford Forum, Stamford, CT 06904.

Osawa Tonearm

The Osawa Model AC-300MKII tonearm features a single needle-point support, adjustable oil-damping system, and interchangeable plug-in arm stems to optimize performance for a wide variety of phono cartridges. The arm support system is designed to eliminate resonance effects associated with conventional gimbal, knifeedge, and ball-bearing mountings. A knob atop the arm permits the user to adjust the oil damping system to flatten out the

low-frequency resonant peak created by the stylus/tonearm combination. Elimination of the headshell concentrates the arm's mass at the base of the arm to reduce effective mass. It also permits interchanging the standard straight arm stem with a selection of S-shaped, other straight-line, and straight carbon graphite arm stems. An adjustable antiskating control, oil-damped cueing lever, and locking rest-stop are provided. $\$ 325$ for tonearm, $\$ 60$ arm stem. Address: Osawa \& Co., 521 Fifth Ave., N.Y., NY
CIRCLE NO. 99 ON READER SERVICE CARD

EICO 3-Digit Digital Multimeter

The EICO Model 272 portable digital multimeter has a claimed accuracy of 0.5% on dc volts and 1.0% on all other functions. It measures to 1000 volts dc, 600 volts ac, $1000 \mathrm{~mA}(1 \mathrm{~A}) \mathrm{dc}$ and ac, and 1 megohm resistance. Its $0.3^{\prime \prime}$ ($7.6-\mathrm{mm}$) LED numeric display flashes when an overrange condition exists and automatically displays polarity on dc. Input impedance is 10 meg ohms. The DMM is powered by four AA cells (supplied), and a testpoint for checking battery condition is built in. Dimensions are 6 "L $\times 3.75^{\prime}$ 'W $\times 3.75$ "D ($15.2 \times 9.5 \times 4.4$ $\mathrm{cm})$. \$69.95. Address: EICO Electronic Instrument Co., Inc., 108 New South Rd., Hicksville, NY 11801.
CIRCLE NO. 100 ON READER SERVICE CARD

Suburban Personal Security Alarm

The "Protektor'is the name of a solidstate, battery-powered personal security and safety alarm from Suburban Electronics Co. It is totally self-contained, can be used on doors, medicine cabinets, in vehicles, in the office, and even on luggage, camera bags, handbags, and briefcases. The Protektor can be armed simply by setting a "secret" code on two combination wheels. Then the slightest movement will trigger it to emit a piercing alarm sound. $\$ 29.95$. Address: Suburban Electronics Co., 1250 W. Dorothy Ln., Dayton, OH 45409.

> The priceless gift of learning now has a price: $\mathbf{\$ 5 9 9}$. And a name: the Radio Shack TRS-80 Microcomputer. And now, at last, your child has a chance to discover Tomorrow on Christmas morning.

"Tomorrow" is an electronic world, based on computers - and it's already here. In it your child can be a number in a machine, like a robot. Because he or she does not understand either the number or the machine. Or your child can be pleasurably elevated into this brave new world with a gift that has only become affordable in recent months.

Quotes from Fascinated Customers

The Radio Shack personal computer surely ought to be on the gift list of every concerned parent, despite that $\$ 599$ - though less than a moped - is costlier than an electric train. A father writes to tell us "this investment is one of the most significant in value to our family and to the future education of our child that we have ever seen."

A Californian, aged 12, writes to tell us that he's "too young to go to work for Radio Shack... but maybe we could work a deal where I could write some programs for you." An educator thanks us for "making possible the tapping of human in novation and creativity on an unprecedented scale.

Advice for Parents Who Care

In your lifetime the possibility of owning or giving a computer - up to now - was unthinkable A computer? That can teach? Remember? Display on its own screen? Play games? Complete with a standard typewriter keyboard? Unthinkable - up to now. But now the Tomorrow Machine is not only thinkable but practical, affordable and available at every Radio Shack store and participating dealer. The TRS-80 personal computer system? For the kids? For Christmas? Crazy? Like a fox!

Radio Shaek

A Division of Tandy Corporation Fore Worth, Texas 76102

Plain-English 232-page manual makes it easy to start programming with no computer experience.

Includes $12^{\prime \prime}$ video screen, 53-key keyboard, compact cassette recorder and 2 game cassettes.

TRS-80 is expandable and can grow in power and utility. Everyone in the family becomes involved, entertained, informed.

By Ralph Hodges

SO YOU WANT TO BUILD... A SPEAKER!?

FROM ALL indications, there are some audio enthusiasts who like to build speakers, though they are in the minority. Let's assume that you are one. What's your motive? Is it: (1) A plan to utilize that expensive table cutting saw you incautiously bought last year? (2) A wish to get more creatively involved with your high-fidelity interest? (3) A desire to assemble a real killer that will make the neighbors wish you had never been born? (4) Part of an interior decorating scheme. (5) An economy measure? (6) An irresistable compulsion to challenge the "state of the art"?
None of the above is really a bad idea; even (6) has its possibilities (rank amateurs have come up with some astonishingly good speaker systems), although they are remote. And it is certainly true that anything you create yourself that actually works is likely to give more satisfaction than a store-bought item. (My last speaker-system design, which provided several years of genuine listening pleasure, was finally sold to a composer living somewhere in the north woods. He immediately altered the crossover network and disconnected the mid-range driver-a move that, much as I loved that loudspeaker, I have to admit was an excellent idea.) But when it comes to sheer practicalities, there are certainly some factors to give one pause.

Take economy, for example. If you start from scratch, you face the problem of acquiring raw drivers and crossovernetwork components at the quantity-discount prices a mass producer can com-mand-if he doesn't actually make his own drivers and crossovers. And what about enclosures? You will pay rather more than he does for veneered particle board, but it is true that you can beat him
out if you construct your cabinets out of concrete (a time-honored and effective technique) or some other material next to impossible for him to ship. In the end, however, he has probably got you.

Then again, you can avoid starting from scratch. Loudspeaker kits are sold by Altec, Audionics, Electro-Voice, Heath, I. M. Fried, JBL, Speakerlab, and no doubt a host of others. A kit is either a set of raw drivers, a crossover network, and comprehensive instructions for building an enclosure, or all of the aforementioned plus a knocked-down enclosure that you put together and finish yourself. Of course, in either case, you
abandon the creative role of designer and become instead a loudspeaker assembler. But on the positive side, you cannot go wrong. The instructions you are given-at least in the case of the suppliers listed previously-will infallibly result in a pre-proven design with distinguished performance credentials.

Going Wrong. Carrying things beyond the kit stage takes us into the land of unpredictables. For example, say you have found some unused space around the house-a dispensable closet or simply the empty area behind the walls-that seems appropriate for a built-in speaker system. Proceeding methodically, you calculate the volume of this space, alter it if necessary, and go about selecting a woofer designed to work into such a volume. (Probably you would be thinking in terms of an air-suspension design, but a ported configuration is also a possibility.) You duly consult the woofer's manufacturer about the type and amount of damping material the space should contain (in most cases you can expect excellent cooperation from the woofer's manufacturer as far as such advice goes; some of the larger manufacturers even keep a staff on hand to answer customer questions), and you throw the whole thing together in a weekend, having chosen a midrange and/or tweeter and the necessary crossover compo-
(Continued on page 20)

PROFESSIONAL Nashville,the Center of Country Music, is Stanton Country,too!

Scanning Electron Beam Microscope photo of Stereohedron* sty/us. 2000 times magnification; brackets point out wider contact area.

The Nashville Production Co., uses Stanton exclusively throughout its two Disc Cutting Studios. Naturally, they are mostly involved with Country Music, but they also get into Pop and Rock.
John Eberle, Studio Manager, states that they use the Stanton Calibrated 681A "for cutting system calibration, including level and frequency response" . . . and they use the Calibrated 681 Triple-E in their Disc Cutting cperation
with plans to soon move up to the new Professional Calibration Standard, Stanton's 881S.
Each Stanton 681 series and 881 S cartridge, is guaranteed to meet its specifications within exacting limits, and each one boasts the most meaningful warranty . . . an individually calibrated test result is packed with each unit.
Whether your usage involves recording, broadcasting, or home entertainment, your choice should be the choice of the Professionals . . . the Stanton Calibrated Cartridge.

For further information write to: Stanton Magnetics, Terminal Drive, Plainview, N. Y. 11803

> NRI training inTV and Audio Servicing keeps up with the state of the art. Now you can learn to service video cassette and disc systems.

You build color \mathbb{N}, hi-fi, professional instruments.

Now, in addition to learning

 color 'IV and audio systems servicing, you get state-of-the-art lessons in maintaining and repairing video cassette recorders, playbacks and the amazing new video disc players, both mechanical and laser-beam types.
Learn at Home in Your Spare Time

And you learn right at home, at your own convenience, without quitting your job or going to night school. NRI "bite-size" lessons make learning easier...NRI "hands-on" training gives you practical bench experience as you progress. You not only get theory, you actually build and test electronic circuits, a complete audio system, even a color TV.

Build Color TV, 4-Channel Audio

As part of your training in NRI's Master Course in TV and Audio Servicing, you actually assemble and keep NR's exclusive,
designed-for-learning $25^{\prime \prime}$ diagonal color TV. As you build it, you introduce and correct electronic faults, study circuits to gain a better understanding of what they're for and how they interface with others.

Likewise, as part of your audio training, you construct a 4-channel stereo amplifier and tuner, complete with cabinet and speakers. You even assemble professional-grade test instruments, so you know what makes them tick, too. Then you use them in your course, keep them for actual TV and audio servicing work.

NRI Includes the Instruments You Need

You start by building a transistorized volt-ohm meter which you use for basic training in electronic theory. Then you assemble a digital CMOS frequency counter for use with lessons in analog and digital circuitry, FM principles. You also get an integrated circuit TV pattern generator, and an advanced design solid-state $5^{\prime \prime}$ trig-gered-sweep oscilloscope. Use them for learning, then use them for earning.

NRI Training Works... Choice of the Pros

More than 60 years and a million students later, NRI is still first choice in home study schools. A national survey of successful TV repairmen shows that more than half have had home study training, and among them, it's NRI 3 to 1 over any other

nents by similarly methodical means. Great? Well, maybe.
Times have changed since this form of installation was considered the last word in speaker-system sophistication. Panel resonances have been discovered, and some of them have been reported to exceed the output of the actual driver by several decibels-in a conventionally designed and executed speakersystem enclosure! A wall or a closet door is not a speaker enclosure. In most cases it is not nearly as stiff and physically inert as it needs to be for this application. I can recall one pathetic instance of a poor chap trying to make part of the crawl space under his eaves serve as an enclosure. After doing everything he could to keep the wall from "taking off" at its own particular set of resonance frequencies he finally bought a pair of already-enclosed speaker systems and built them into the crawl-space areas. Evidently he built them in too solidly because the wall still took off in much the same way. The only reasonable solution was to dig the systems out and use them free-standing in the room, just as almost everybody else does.

But this is not necessarily meant as discouragement. There would seem to be some very persuasive advantages to built-in systems of this type. However, there are also unpredictables.

Walking the Wild Side. You can't readily buy a speaker system incorporating something like Electro-Voice's 30 -inch woofer designed for the discontinued Patrician II, but according to last report you can still buy the woofer itself. This is about the heaviest artillery available for sound reproduction, and it enjoys considerable popularity in overseas markets as a subwoofer. Sometimes it is installed in the ceiling so that it can use the entire room above as an enclosure. Since most recordings do not incorporate much information below about 40 Hz (and most music doesn't, either), the capabilities of such an enormous device are not going to be realized very often, except in the reproduction of noise from record warps and faulty disc electroforming. Still, for those who make their own master tapes or listen to material of comparable quality, an almost unlimited low-frequency response has proved useful in recapturing the full sense of the reality of the original event. There are even those who say that it's very essential.

You'll wind up paying many hundreds of dollars to buy the Electro-Voice behe-
moth (or its 24-inch Hartley counterpart), enclose it, and work out a crossover network that will properly interface it with the rest of your system. It's not a bad idea if you can afford it, and if the most arresting sense of sonic reality is what you're after. But be warned that typical recorded material is going to be a limiting factor, and that anything found below 40 Hz on most records is going to be something you'd probably rather not hear anyway.

As regards other do-it-yourself monster speaker systems, it strikes me that most of them are best left undone. A discotheque in the Roppongi district of Tokyo is about as far as you can go in this direction. Internally it has been plasterformed in a cave-like shape, and embedded in virtually every available surface is a mid-range or tweeter, usually of the compression type and fitted with a flared horn. It is truly a junkyard of speakers, and it sounds like it.

If you pay over-to be on the conservative side- $\$ 300$ apiece for a pair of good loudspeakers today, and fit them with an emplifier of suitable (high) power, you are going to be able to generate sound levels you won't be able to stay in the room with, provided you don't live in a cathedral. And the sound will be-or should be-good.

State of the art? There are two ways of designing a state-of-the-art speaker system: listening or measuring. The former has generally been the better up to now, but the latter shows signs of catching up.

Some years ago a friend of mine decided to try this approach; and since he was a not-very-distant neighbor, I had an occasional chance to look in and see how he was going about it. First he bought or otherwise laid hands on just about every driver in existence-surely an investment of several thousands of dollars. Then he started testing these drivers, mostly by setting them up in various configurations and inviting people in to listen, but also by playing them to a microphone and examining the results on an oscilloscope. All of this was immensely time-consuming and requiring of the closest concentration. Occasionally, this chap could be seen carrying a battered set of LPs, most of them remarkable for their bad sound, to the home of a friend who had just acquired some exotic new speaker he hadn't had a chance to hear. (His deliberate choice of bad-sounding records is interesting in itself. A good record sounds like music,
and one tends to listen to it as music and overlook any deficiencies in the reproduced sound. But a really bad recordone that has been over-equalized and/ or grotesquely miked and mixedsounds like a parody of music. Then provided one is sufficiently familiar with the record, it is possible to be very objective about just how accurately that badness is reproduced.)

Ultimately the speaker got built, and today it is generally considered to be among the best sound-reproduction devices that any reasonable amount of money can buy. Could any of us mere mortals hope to duplicate this design feat? I think so, given enough time. My friend's engineering credentials, practical experience, and highly developed intuition for this sort of work surely speeded up the process considerably, but all he really did was listen to his speakers and listen to the opinions of others he played them for. The applied engineering that went into the project could be duplicated by anyone who read the appropriate books and technical journals with an alert mind. However, the basic engineering seems to be a great deal less than the whole story, as is eloquently demonstrated by the great horde of available speakers that do not really give much pleasure to some people but were created by first-rate engineers in first-rate laboratories.

However, this designer had something else going for him as well: a "master plan." He had an idea in mind that had been overlooked or underemphasized by other speaker designers. If you're looking for a similar plan, here are some ideas that are up for grabs.
(1) Speaker systems are not necessarily designed from the bottom up these days. Dealing with the woofer and its enclosure requirements has now become more of a science than an art, and there are numerous computers that will come up with the magic numbers in no time. Matching the low-frequency part of the system to your listening room remains the greatest impediment to optimum results.
(2) As you consider what drivers you're going to use for the midrange and tweeter portions of the system (we'll assume you're aiming for a three-way system, that being somewhat easier to control in the critical midrange area than a two-way), consider dispersion and resonance characteristics of the individual drivers. Unless you have instruments above and beyond those at the disposal of the typical home constructor, you're

66 More kids wish for Koss stereophones than any other headphone. 99 s.me

66 Nearly every letter I receive at the North Pole wishes for Koss stereophones.

May all their wishes come true! And, they can. Because they're wishing for the world's most asked for stereophones. Indeed ever since Koss invented the stereophone, Koss has led the way as the innovator and developer of the state of the art in personal and private listening. Today, that leadership continues as strong and vibrant as ever ... producing a full line of stereophones you truly have to hear to believe. 66 Fulfilling wishes is never very easy, but the superior quality and diversity of models makes any wish for Koss a

pleasure to fulfill. 9
We believe in Santa Claus. Don't you? 66 Of course, I read all the test reports, but never have I read such glowing reports as I have on the Koss Pro/4 Triple A. And when I heard them they really brought a twinkle to my eyes. 99

The world famous Pro/4 Double A was a tough act to follow but the Pro/4 Triple A's extra
large voice coil and oversized diaphragm offer an incredibly beautiful, fullbandwidth, dynamic response over the entire frequency range of 10 Hz to 22 kHz .
66 The Triple A's are so comfortable and seal out ambient noise so well that even I drift off with visions of sugar plums dancing in my head. 9 The Triple A 's special, human-engineered,
direct-contoured
Pneumalite ${ }^{\circledR}$ ear cushions create a gentle yet perfect seal for flat, low bass response to below audibility as well as sealing out ambient noise. And the unique Koss dual suspension headband makes wearing the Triple A 's as much of a pleasure as listening to them. 66 Dash away, dash away, dash away all! 9 Dash away to your audio dealer and ask for a live demonstration of the Sound of Koss. Or write, c/o Santa Claus, for our free full-color catalog. We think youll agree with Santa Claus that when it comes to Koss stereophones and loudspeakers: "hearing is believing."

Build. Rebuild. Stack. Rack. Solderless breadboarding is all so easy with A P Super-Strips.
Build a circuit almost as fast as you dream it up. Pull it apart and do another-everything's as good as new. Any solid hookup wire up to \#20 plugs right in to connect DIPs, discretes and other compon-
entry. Our Super-Strip solderless breadboards give you 840 solderless plug-in tie points-both 5 -point terminal and distribution capabilityenough capacity to build circuits with as many as nine 14 -pin DIPs. And the price is right. Nearest dealer? We'll tell you. Phone (toll-free) 800-321-9668 right now. And ask for our complete A P catalog. The Faster and Easier Book.

Box 110A• 72 Corwin Drive
Painesville, Dhio 44077
Tel. 216/354-2101
TWX: 810-425-2250
Faster and Easier is what we're all about.
going to have to rely on guesswork and manufacturer's advice here. But the essential idea is to limit each driver's operating range to frequencies no higher than an octave below the point at which a major diaphragm-breakup mode sets in, and to wavelengths no shorter than those that can be adequately dispersed by the effective radiating area of the driver's diaphragm. According to many experts, strict attention to these rules will result in a "seamless" transition between midrange and tweeter. And, of course, the father you can keep away from the problematic higher frequencies the better.

Also, naturally, you'll have to consider the driver's low-frequency limitations, essentially dictated by its excursion capabilities as translated into acoustic output. (You didn't think this business was going to be easy, did you?)
(3) The simplest possible crossover network is likely to be the best, according to many authorities, because it will keep the acoustic phase angle between drivers relatively smooth in transition. The trouble is that the simplest crossover network will give you a mere 6-dB-per-octave rolloff, which means you'll pay a price in various types of distortion unless you can keep well away from the troublesome higher frequencies mentioned above. Here it becomes necessary to make certain difficult design decisions. The best decision should, in theory, result in the best loudspeaker.

And, oh yes, don't make the mistake of believing that any two drivers of the same make and model will perform identically. They often won't.
(4) Once you have decided on which enclosure principle you're going to use for the woofer, you should be able to get adequate guidance on its construction from the manufacturer. The rest is carpentry. But two factors are critical. The first is to make the box just as stiff and inert as possible. The second is to make it virtually disappear as far as the midrange and tweeter are concerned. Many experts now agree that acoustic diffraction effects are one of the major causes of loudspeaker coloration. You can combat these by eliminating all edges, moldings, and other sharp transitions in the cabinetry, and by generally keeping the whole thing out of the radiation pattern of the higher-frequency drivers.

There are other matters to be considered as well, but their acoustic significance is not so well established. If you can master just the above you'll be off to a very good start. Good luck!

Introducing Electroscan. A quiet CB radio!

We finally built a CB so complete, there's only one popular feature it doesn't have.

Radio Hash. You know, the irritating noise you hear every time your squelch is wide open.

Because Motorola's exclusive VariCom ${ }^{\oplus}$ noise elimination system combines RF and IF gain to selectively reduce noise on the channels. It trims away radio hash for cleaner operation, especially when the squelch is wide open and you're listening really hard.

The Electroscan's microprocessor also has the convenient programmable memory which allows you to set, in the sequence you desire, any 10 channels you enjoy listening to everyday.

The Electroscan also offers a scanner
which lets you search quickly for either an available, open channel to continue your conversation.... or the nearest occupied channel to locate other CB'ers.

Besides these features, Electroscan also offers the Extender ${ }^{\circledR}$ noise blanker and fully variable noise limiter. Plus variable control/ dynamic gain microphone that adjusts mic gain over a 20 db range to make your voice sound better.

So stop in today at a Motorola ${ }^{8}$ Dealer and take a look at the Electroscan, the first CB that virtually eliminates radio hash.

(4)
 MOTOPOLA
 $C B$

Julian Hirsch Audio Report

Dolby FM Broadcasting

"The benefits of Dolby FM are rarely as dramatic as those in cassette recording . . . because the system is so compatible with existing FM practice."

IT HAS been more than five years since Dolby-B processing was first used in FM-stereo broadcasting. Unlike the case with cassette recording, where Dolby-B noise reduction has been almost universally accepted, relatively few FM stations have opted for the Dolby system, and correspondingly few stereo receivers have the built-in Dolby processors needed to realize its benefits. Although most audio hobbyists have some understanding of the purpose of Dolby-B processing in tape recording and playback, there is still widespread confusion about its role in FM broadcasting. The problem is aggravated by some genuine differences between the two situations.

In the case of tape recorders, the problem is the degradation of signal-tonoise ratio (S / N) in the recording and playback process, resulting from the hiss inherent in the tape medium itself. The Dolby-B system boosts the high frequencies during recording and attenuates them in a complementary manner during playback. The net result is an unchanged frequency response, insofar as the program itself is concerned, with a net reduction of the hiss added during the record/playback process.

The amount of boost and cut (and to some extent, the frequencies affected) are a constantly varying function of signal level. The strong signals are unmodified, and progressively larger amounts of boost and cut are introduced as the level decreases. The total effective noise reduction at high frequencies beyond about 5000 Hz is typically 10 dB in a properly adjusted Dolby-B system. (The Dolby-A system, used in professional recording, is similar in principle but operates over the entire audio range in several frequency bands.) The operating time constants, signal levels, and other circuit operat-
ing details are rigorously defined in Dolby patents and licensing agreements, so that a Dolbyized tape made on one recorder can be played back correctly on any other Dolby-equipped machine.

The FM broadcaster faces a somewhat similar, yet different, problem. Noise, of course, is introduced in the transmission/reception process, and in the fringe areas of reception the background hiss can ultimately limit the public's enjoyment of a program. Traditionally, FM broadcasters tend to modulate their transmitters at the highest possible level consistent with distortion and the creation of interference on nearby channels. Since the highest audio frequencies in a program are usually at a much lower level than the middle and low frequencies, the FM transmission is preemphasized, or boosted, at high frequencies with a $75-\mu \mathrm{s}$ time constant (a $6-\mathrm{dB}$ /octave boost above 2120 Hz).

In an FM receiver, there is a complementary $75-\mu$ s deemphasis, rolling off the response of the detected program at 6 dB /octave above 2120 Hz . The reduction in noise, compared to "flat" transmission and reception, is about 11 dB . At the time when these standards were established, there was little problem with excessive high-frequency program material. Today, the situation is different, and the amount of high-frequency energy present in the recorded program material could easily overmodulate a transmitter, causing distortion and interference.

Reducing average program levels by about 5 dB could eliminate much of this problem. However, no FM broadcaster wishes to sound weaker than his competition, and this would also reduce the overall S / N ratio by the same amount. The most common solution is

today. If you can find one that does more... buy it.

Scott's unique, gold warranty card. Individualized with your warranty, model and serial numbers, and expiration date. Scott's fully transferable, three-year parts and labor-limited

四SCOTTT.
The Name to listen to:
Makers of high quality high fidelity equipment since 1947.
CIRCLE Ho 53 OH mite information CWA

"If you're going tolearn electronics, you might as well learn it right!"

You've probably seen advertisements from other electronics schools. Maybe you think they're all the same. They're not:

CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one . . . with the specialists. . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it .

Ourstep-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\circledR}$ Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself - and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need tolearn at the ir own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day, You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, ncarly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work
. . to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

to use some form of dynamic high-frequency peak limiting to
that the combination was satisfactory. In extensive trials, most lis-
cuits on or alert the user to the presence of a Dolby transmission.
lar music are not likely to make the investment in Dolby encoding equipment, nor would their listeners appreciate such a move. Clearly, if one lives in an area not served by a Dolby station, or if one has no
interest in the programming of such a station, it would be difficult to justify a substantial additional investment for the Dolby circuitry in a receiver. Fortunately, the availability of Dolby-B integrated
circuits has made it possible to include this feature without an unreasonable cost penalty, as illustrated by the Model LR-120Db and a number of other receivers recently introduced.

audio test reports:

the finest

receiver

ever to bear

the company's name

The Model LR120Db stands at the top of Lafayette's line of AM/FM stereo receivers and is the finest receiver ever to bear the Lafayette name. It is rated in accordance with FTC regulations to deliver 120 watts/channel into 8 ohms from 20 to $20,000 \mathrm{~Hz}$ with no more than 0.09% THD. Among its many features are built-in Dolby noise-reduction FM decoding circuits, triple tone controls with selectable turnover frequencies, adjustable FM muting threshold, and mixing microphone input.

The receiver measures $21^{\prime \prime} \mathrm{W} \times$ $17^{\prime \prime} \mathrm{D} \times 7^{\prime \prime} \mathrm{H}(53.3 \times 43.2 \times 17.8 \mathrm{~cm})$ and weighs $60 \mathrm{lb}(27.3 \mathrm{~kg})$. The receiver is catalog priced at $\$ 649.99$.

General Description. Most of the upper two-thirds of the receiver's front panel is dominated by a glass window behind which are AM and FM tuning scales. Also behind the window are separate center-channel and relative-signal-strength tuning meters and two output power meters caliberated from 0.1 to 120 watts into 8 -ohm loads. The dial scales are tilted back slightly for maximum visibility.

To the left of the dial window is a vertical column of small pushbutton switches and a red FM STEREO indicator. One button is used to engage and disengage the Dolby system. The next is for blending the high frequencies to reduce noise on weak stereo signals with no loss in high-frequency response. The next button permits the receiver to be switched between the

an impressive combination of features and performance in the Lafayette Model LR-120Db AM/FM stereo receiver

automatic mono/stereo and monoonly modes. The fM mute button at the bottom must be out to obtain muting action. Near the FM MUTE button is a small rotary control that permits a wide muting threshoid range.

To the right of the dial window is another vertical column of pushbutton switches. At the top are the POWER

smooth handling

 makes it a
pleasure to operate

switch and its power-on indicator. Below the POWER switch are separate pushbuttons for switching in and out three pairs of speaker systems, only two of which can be in the circuit at any given time. The bottom button allows the sensitivity of the power meters to be increased to indicate power
levels between 0.01 and 24 watts.
Across the bottom of the panel are the main operating controls of the receiver. At the left are a mic (microphone) jack and a PULL ON/MIC LEVEL control. The control is used for varying the gain of the microphone amplifier, which is turned on by pulling out on the control's knob. The next control, the input selector, has positions for AM, FM, PHONO 1, PHONO 2, and AUX. The two PHONO positions are for magnetic phono cartridges.

Lever switches for tape monitoring from either of two tape decks are provided for controlling and cross-connecting the decks for dubbing from one deck to the other. To the right of the tape switches are the balance (detented) and volume controls.

Three lever switches control the loudness compensation and two filters. There are two switch-selectable loudness compensation modes. In

Someone you know could be counting on a Hewlett-Packard for Christmas.

What a great idea - HP calculators for Christmas.
They're so affordable, you'll want to surprise everyone. A family member: A business acquaintance. And mavbe yourself.
Especially with one of our new Series E-five calculators that cover the full range of needs from student to professional

- The HP-31E-Scientific $\$ 60^{*}$
- The HP-32E-Advanced Scientilic with Statistics. \$80*
- The HP-33E - Programmable Scientific. $\$ 100^{*}$
- The HP-37E-Business Management. \$75*
- The HP-38E-Advanced Financial with Programmability. $\$ 120^{*}$ What's more, you can choose from a large selection of accessories to go with every Hewlet-Packard. (So if someone already owns an HP . surprise them with an accessorv.) For example, a DC Adapter/Recharger that works in a boat or car as well as at home. A Reserve Power Pack that keeps spare batteries fully charged -ready to go any time. And our many Application Pacs and Solutions books that give solutions to thousands of problems - saving hours of time and trouble.
So check your Christmas list. Then circle no 21 on free information caro
see your nearest Hewlett-Packard dealer. (For the address, call toll-free 800-658-4711 except from Alaska or Hawaii. In Nevada, call 800-992-5710.)

HEWLETT PACKARD

Depl. 254 Hitwon N.E Circle Blyed. Corvallis. OR 47330
*Suggested retai! price excluding applicable Sanchand Havail.
"Displites atre photographed separately to simulate trpical appeatinece
616.81
one, only the low frequencies are boosted as the volume control is turned down; in the other, both low and high frequencies are boosted. Each filter switch has separate positions for OFF and two turnover frequencies. The selectable turnover frequencies for the Low filter are 15 and 70 Hz and 7000 and $12,000 \mathrm{~Hz}$ for the HIGH.

The bass, mid, and treble tone controls have 11 detented positions. Adjacent to the bass and TREBLE controls are lever switches for removing the controls from the circuit or changing their turnover frequencies (250 and 500 Hz bass and 2500 and 5000 Hz treble). The mute switch can be used to reduce the audio gain by either 15 or 30 dB . To the right of this switch is the large tUNING knob and two (head) pHONES jacks.

The receiver's rear apron contains the various input, speaker, and antenna connectors and slide switches that provide a choice of $2.5-, 5-$, or $10-\mathrm{mV}$ phono sensitivity and attenuate the input signal from the antenna to prevent overloading from strong local stations. Also on the rear apron are a hinged AM ferrite-rod antenna and a pair of

Averaged frequency response and crosstalk for both channels.
accessory ac outlets, one of which is switched. Finally, the output-transistor heat sinks extend about $2^{\prime \prime}(5.1 \mathrm{~cm})$ from the rear of the receiver and occupy a big portion of the rear apron.

Laboratory Measurements. Following the one-hour preconditioning period, which caused the heat sinks of the output transistors to become uncomfortably hot, the outputs clipped at 156 watts/channel at 1000 Hz into 8 ohms (an IHF clipping headroom rating of 1.13 dB). The dynamic headroom was 1.49 dB , with a maximum short-term output of 169 watts.

The $1000-\mathrm{Hz}$ distortion was un-
measurably low at very low power levels. It rose smoothly with increasing power to 0.028% at 120 watts and 0.04% at 150 watts. The IM distortion was 0.02% at 1 watt, 0.14% at 120 watts, and 0.17% at 150 watts. The THD was a maximum of 0.05% at $20,000 \mathrm{~Hz}$ at the rated output power. It was typically between 0.025% and 0.03% at low and middle frequencies. At reduced outputs, the distortion was still lower, typically measuring less than 0.02%.
Input sensitivity for a 1-watt output was 14 mV through the Aux inputs and 0.4 mV through the PHONO inputs with $5-\mathrm{mV}$ sensitivity. The A-weighted noise level was -74.2 dB and -73.5 dB , referred to 1 watt, through the Aux and Phono inputs. The phono preamplifier overloaded at a very high 400mV input at 1000 Hz and at 2.4 volts at $20,000 \mathrm{~Hz}$. The latter figure is equivalent to 250 mV at 1000 Hz , which is thus the IHF rated maximum phono input. These figures would be halved with the $2.5-\mathrm{mV}$ phono sensitivity setting and doubled with the $10-$ mV setting. The phono input resistance was 100,000 ohms, which is higher than the recommended load for

A System with SOCK!

Our special Motorola Microprocessor Evaluation Kit II Christmas "Package" includes the hardware you need to expand your D2 Kit to full system capabilities! Fully tested and assembled!

Send us your check or money order NOW! We can also bill to your Master Charge or Visa if you include the number and expiration date. Enclose total for entire package or any items desired plus applicable state and local taxes (include an additional $\$ 5.00$ for shipping and handling). Be sure to include your name and address and print clearly, making checks payable to Motorola Inc. Mall to:
Motorola Mail Order Sales P.O. Box 27605, Tempe, AZ 85282.
most cartridges, and capacitance was 175 pF

Frequency response was within $+0 /-1 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$ through the Aux inputs. The RIAA phono response was $+0.5 /-3.5 \mathrm{~dB}$ from 30 to $15,000 \mathrm{~Hz}$, with the decrease at the low-frequency end. It decreased to -5 dB at 20 Hz . The apparent high-frequency equalization changed appreciably when it was measured through the inductance of a phono cartridge, revealing a $2.5-\mathrm{dB}$ increase in output at $20,000 \mathrm{~Hz}$. Most of this change was caused by the 100,000 -ohm input resistance, since our measurement is based on the use of a standard 47,000-ohm input termination. Nevertheless one would expect a magnetic phono cartridge to sound slightly bright, since the extreme high-frequency response of most cartridges is enhanced when they are terminated in a higher-thannormal load resistance

The tone controls could provide an almost infinite variety of response curves. With the 250- and $5000-\mathrm{Hz}$ turnover frequencies, they were able to correct the system's response at frequency extremes with virtually no

Noise and sensitivity curves for FM section of receiver.
effect in the midrange. Responses of the filters were approximately as rated, with $6 \mathrm{~dB} /$ octave slopes in the bass and 12 dB /octave slopes in the treble. The unit's loudness compensation could be used with better-thanaverage effectiveness, since the audio MUTE switch could be set to permit the volume control to be operated at a reasonably high setting. This avoids the excessive heaviness that mars the sound of most loudness controls. The power meters, like most such indica-
tors, gave only approximate readings Typical errors were from 10% to 50%. except at very low outputs, where they were several hundred percent.

Performance of the FM tuner section was generally very good. Our test unit had an apparent misalignment that caused its mono distortion to be several times as high as its stereo distortion, but this was the only respect in which the tuner performance fell short of excellence.

In mono, IHF usable sensitivity was

OK MACHINE \& TOOL CORPORATION

A major advance in cabseili=, فEck olesteln The new SansulSC-5100.

If you're looking for a cassette deck that conbines the convenier ce of the traditional cassette Jeck with the tona excellence of oper reel, you רeedn't look any fıther. Bescuse the Sansui SC-5100 yives you both. And more.

Here's why. Ferformance meets the standares of tocay's most ad, ranced ccmponent systems. All musical signals are reproduced clearly and wittout distcrtion because of the wide frequer is response [20-17,000Hz. chrorn um), excelent signal-to-noise ralic (67 dB , with Doby*), and unusuall; low wow and filter (0.05%, WRN15).

The SC- 5100 is ultrc-corvenient to use. Solensid opera-ion permits controls trct easily respond to your ifightest touch. And with the el ectronicallycontro led tape transport you get automatic play and repeat. The illuminated memory counter is alsc automatic.

For added convenience the SC-5100, when used with a imer, will record off pour funer or receiver unattended. Or it will wake you gently ir the rraring with ycur fover te mus c.

The SC-5100 zffers al the featuresyou'd

expect in a superior cassette dec . Such as large VU meters, a peak evel indicator, line iriput/mic mixing capabilit, and bias and equalizc-ion controls for every tape. We ve also added so 7 sthing you didn't expect. Sansui's exclusive Tape Lexd-In **. Just buch the contral and the tape adsisnces past the leader to the first po nt suitable for esording. You need never miss or spoil the start of a recording again Direct-O-Vatic loading is anzther Sansui exclusive it ma-es loading and u-bading a snap, gives you access to the tape well iot instant insertion and easy cleaning of the heads, Ind lets you see the crection of the -ape and how mus is left.

Ncw you have it, cassette ceck convenience with oper reel performance. All for less than $\$ 600 t$. Hear the new SC-5100 at your franchisec Sansui dealer. We think you' lagree you've never heard anything like it.

Trademark 0^{-}Deby Loboraiories, Inc.
*Patent pendize
tapproximate za-ionally advertised value Actual retail =rise set of the oplion of the Individual desl|zs.
A whole new wortd of musical pleasure.
 Bies-selefeci-Eswablier
 (4)

SANSUI ELECTRONICS CORP.

Wondside. New York 11377 - Gardena, California 90247
SANSUI ELECTRIC CO., LTD., Tokyo, Jaman
Sansui SANSUI AUDIO EUPOPE S.A., Antwerp Belgium - In Canada Electronic Distritutors

Total harmonic distortion at 1 kHz and $60 / 700(0-\mathrm{Hz}$ distortion.

Harmonic distortion at three power levels.

12 dBf ; stereo sensitivity was set by the switching threshold at 15.5 dBf . The more meaningful $50-\mathrm{dB}$ quieting sensitivity was 15.5 dBf in mono and 35 dBf in stereo. The mono THD +N was 0.4% at a 65 dBf input, though it was necessary to detune the receiver considerably to get the distortion down to this level. In stereo, the distortion was a very low 0.1% with the tuning meter set to its center. The respective unweighted S / N readings were 72.5 and 70 dB .

Stereo frequency response was within $+0.6 /-0.8 \mathrm{~dB}$ from 30 to $15,000 \mathrm{~Hz}$. Even with its flat response at the high end, the pilot carrier component in the receiver's audio was suppressed to an almost unmeasurable -80 dB . And the tuner's hum was a very low -75 dB . Stereo channel separation was in the $50-$ to- $56-\mathrm{dB}$ range between 30 and 1500 Hz . It reduced to 37.5 dB at $15,000 \mathrm{~Hz}$.

The capture ratio of 1.25 dB was slightly better than the rated 1.3 dB . AM rejection was 60 dB at a $45-\mathrm{dBf}$ input and 72 dB at a $65-\mathrm{dBf}$ input (it is rated at 55 dB). The image rejection and alternate-channel selectivity, both rated at 80 dB , were respectively 75.6 and 79.4 dB . Adjacent-channel selectivity was 5.8 dB . The muting threshold was adjustable from a minimum of 26 dBf drop-out and 29 dBf turn-on levels to 44 and 49 dBf , respectively.

The AM tuner section's frequency response was very limited at both high and low frequencies, being down 6 dB at 270 and 3400 Hz .

User Comment. The Model LR120 Db offers a most impressive combination of operating features and

Performance Specifications

Specification	Rating	Measured
Audio		
Power output	$120 \mathrm{~W} / \mathrm{ch}$ into 8 ohms, $20-20,000 \mathrm{~Hz}$, less than 0.09\% THD	Confirmed
Hum and noise (A weighting)		
Phono	Over 70 dB (re 120 W)	73.5 dB (re 1 W)
Aux.	Over 90 dB	74.2 dB
Input sensitivity		
Phono	2.5, 5.0, 10 mV	Confirmed
Aux.	150 mV	
Phono overload	$\begin{aligned} & 150 \mathrm{mV} \text { at } 1000 \mathrm{~Hz} \\ & \text { with } 0.1 \% \mathrm{THD} \end{aligned}$	$\begin{aligned} & 250 \mathrm{mV}(20 \mathrm{kHz}, \\ & \text { re } 1 \mathrm{kHz}) \end{aligned}$
FM Section		
Usable sensitivity		
Mono	10.3 dBf	12.0 dBf
Stereo	17.2 dBf	15.5 dBf
$50-\mathrm{dB}$ quieting		
Mono	14.1 dBf	15.5 dBf
Stereo	36.8 dBf	35 dBf
S / N at 65 dBf		
Mono	74 dB	72.5 dB
Stereo	70 dB	70 dB
Frequency response		
Distortion at 65 dBf		
Mono	0.15\%	0.40\%
Stereo	0.30\%	0.10\%
Capture ratio at 65 dBf	1.3 dB	1.25 dB
Image response	$-80 \mathrm{~dB}$	$-75.6 \mathrm{~dB}$
AM suppression	$-55 \mathrm{~dB}$	$-72 \mathrm{~dB}$
Alt. channel selectivity	80 dB	79.4 dB
Stereo separation		
100 Hz	45 dB	56 dB
1000 Hz	48 dB	51.5 dB
6000 Hz	42 dB	42 dB
Subcarrier product ratio	60 dB	80 dB

electrical performance, especially for a receiver in its price range. Its smooth handling, excellent sound quality, and such niceties as a noiseless, thump-free muting system,

dial calibration

was exact and

tuning was

unambiguous

made the receiver a pleasure to operate. The FM-Dolby decoder worked well on the stations in our locality that
employ the Dolby system.
FM dial calibration was exact on the lower half of the band and within about 100 kHz on the upper half. The tuning was unambiguous, too, for lowest noise and distortion with the meter pointer at its center-channel position. The tone controls were certainly as versatile as anything short of a multiband equalizer. If the phono sound is too bright (as could happen with some cartridges), it might be desirable to connect a 100,000 -ohm resistor across each output of the cartridge to provide a normal 50,000 -ohm termination.

Most of our criticisms are minor. Labelling of the pushbutton controls is contrary to normal practice, for example. Whereas pressing a button in commonly produces the indicated result, the converse occurs with the FM mute button. Muting is disabled when it is pressed in. Also, the muting threshold is too high at all settings of the variable control.

These minor observations aside, we feel that the Lafayette Model LR120Db is just about the "most" receiver for the money that we have seen and tested in the current market.

GIRCLE NO 101 ON fre information cabd

convenient editing functions mark the front-loading Dual Model C 819 cassette deck

accurate recording with foolproof level meters and low flutter

The Dual Model C 819 cassette deck has many of the operating details and performance qualities of the company's higher-priced Model C939. Unlike the Model C939, however, the Model C 819 is a front-loading deck. It has a

FADE EDIT function that allows one to edit out unwanted portions of a recorded program while listening to the tape playback.

Other features in the Model C 819 cassette deck include: peak-indicating level meters that monitor the signal levels after the recording equalization; a MEMORY WIND system that stops the tape when the index counter reaches 000 in both fast forward and rewind; microphone inputs that can be mixed with the line inputs; and bias and equalization selectable for ferricoxide, chromium-dioxide, and ferrichrome tape.

The deck measures $171 / 8^{\prime \prime} \mathrm{W} \times$ $13^{1 / 4} 4^{\prime \prime} \mathrm{D} \times 57 / 8^{\prime \prime} \mathrm{H}(43.5 \times 33.7 \times 14.9$
cm) and weighs $173 / 4 \mathrm{lb}(8.1 \mathrm{~kg})$. Its suggested retail price is $\$ 430.00$.

General Description. The tape transport is located at the left of the front panel. Piano-key-type transportcontrol levers are below the cassette compartment.

Operating the EJECT key causes the viscous-damped, top-hinged cassette door to swing open slowly to provide access to the cassette tray. When the cassette door is manually closed, a window in it gives a clear view of the cassette inside the well. The other transport controls can be operated in any sequence without having to go to stop. However the tape must be motionless before the RECORD lever can be engaged.

At the right of the front panel are two level meters whose highly visible scales are calibrated from -20 to +3 dB . The fast-responding peak-indicating meters have a long decay time. Below the meters are two pairs of concentric recording-level controls for the MIC and line inputs, the two microphone jacks, and a recessed button labelled fade edit. To use the fade EDIT button, a plastic door covering it must be raised. With the deck operating in the playback mode, the user presses in and holds the button for as long as he wishes to erase the tape. The fade edir function gradually increases the erase current over a period of 3 to 5 seconds to remove the recorded program smoothly. Releasing the button allows the erase current to decrease gradually to zero over a 3-to-5-second period, giving a smooth transition to the following portion of the program.

When a microphone is plugged into only one of the input jacks, its signal

What 0.02\% THD doesn't tell you about the SE-9060, waveform fidelity will.

THE as lew as 0.02% says a lot akout ary ampl fier. But 3 zilloscope read ngs show it all. Lose at the waveforms. The oltp Jt wavefern of the SE-9060 is vintuall; a mirorinege of the inp st.

One way ${ }^{-}$edrics achieved this gea was with cuad FETs in the differential amplifier. They give the SE-9JSD the DZ stasility necessary for the ictest gcin ir the crucial first stage. Whie the constant zurrent load anc curron- feedback used in the voltage ampl fier seep distortion to a minim. m .

And since the $\overline{E E}-9060$ is CDC ampl fier, eact amp ifier section anc the NFE osp are diretly coupled without the us三 $=\mathrm{f} \mathrm{en} \%$ capceitori. So the SE-9C60 nct an y ras virtual'y nonexistert shase sh fI , it zl so boasts 7at frequency respons: from DC to 1CC kHz And with combletely

Input Incuelorm.

independent pcwer supplies for each. cr annel, Technics eliminated all signs of transient crosstclk distortion.

Compare syecifications. And you'll realize there's rocomparison.

POWER COUTPUT: 70 watts per channel (steres, 180 watts (monaural) minimum RMS info 8 ohms from 20 Hz fo 20 kHz with ? more than 0.02% fotal harmoric aisfortion.

POWER BA-NDWIDTH: $5 \cdot \mathrm{~Hz}-50 \mathrm{kHz}$ 。 $-3 \mathrm{~dB} . \mathrm{S} / \mathrm{N}: 120 \mathrm{~dB}$ (IHF A). RESIDUAL HUM \& NOISE: $100 \mu \mathrm{~V}$. INPUT SENSITIVITY \& IMPE[ANCE: I V/47 kilohms. INTERMODULATEN DISTORTION (60 Hz : 7 < Hz, 4:1): 0.C2\%. FREQUENCY RESPONSE: $[\cdot C-100 \mathrm{kHz},+0 \mathrm{~dB},-1 \mathrm{dE}$.

Technics SE-9060. A rare combination of audio technology. A new standard of audio excellence.

The FADE EDIT feature of the Dual Model C 819 is a convenient solution to the problem of "editing" a cassette tape electronically. As often happens when a commercial announcement or other unwanted material is recorded together with a desired program, it is customarily removed by playing the tape up to that point, and placing it into the record mode with no input signal for the duration of the unwanted material. The abrupt cessation of the recorded program, and its equally abrupt return, can introduce a jarring note into the final recording.

Dual's FADE EDIT circuit applies a current to the erase head while the machine is in its playback mode, and does so in a smooth and nonjarring manner. The bias/erase oscillator is normally turned on by mechanical switches when the machine is placed into its recording mode. (A red LED across the dc supply line to the oscillator glows when it is powered to show that a recording is in progress.) in the Model C 819, a Darlington transistor pair, in series with a diode, is connected across the mechanical switch contacts in the oscillator's dc supply circuit. Normally, the gate of the input transistor is returned to ground through a parallel combination of a $22-\mu \mathrm{F}$ capacitor and a 120,000 -ohm resistor. In this condition, the stage is nonconducting and has no effect on the operation of the deck.

When the FADE EDIT button is held in, the input gate is connected to the +24 volt power supply through a parallel combination of $4.7-\mu \mathrm{F}$ and 220,000 ohms. As
the capacitor from gate to ground charges, the transistors begin to conduct and an exponentially increasing positive supply voltage is applied to the erase os cillator. The REC LED simultaneously begins to glow faintly, and a gradual eras ure of the tape begins.

About five seconds is required for the output of the erase oscillator to reach its maximum amplitude (and the LED its full brightness). Since the tape is being played back while this is happening and the erase head precedes the record/ playback head in the tape path, one hears the program smoothly fading away. The time for total erasure depends on the kind of tape being used, but is typi cally in the range of 3 to 5 seconds.
When the FADE EDIT button is released, the transistors are fully conducting. The charge on the $22-\mu \mathrm{F}$ capacitor in the gate circuit drains off to ground through the shunting 120,000 -ohm resistor and the Darlington stage slowly shuts off. As this happens, the REC LED dims, and the original program on the tape begins to emerge from a silent background. Like the erase process, the fade-in takes a few seconds.

Although this technique still calls for careful timing of the portion of the tape to be erased, it is much smoother and more foolproof than the former method of placing the deck into its recording mode. When used carefully, it makes it possible to assemble an edited tape with a professionally smooth transition from one section to another.
can be routed to either channel, as desired. When both jacks are used, the recording is made in stereo. There are screwdriver-adjustable line-output level controls on the deck's rear apron. (The deck has a limiter that reduces the gain almost instantly when a signal peak exceeds 0 dB to prevent distortion.)

The central portion of the front panel contains the index counter, MEMORY WIND button, phone jack and its level controls (separate for each channei), and four pushbutton switches. Two of the switches are for switching in and out the Dolby noisereduction system and the recording limiter. The other buttons are for setting the bias and equalization, labelled Fe and Cr for the two most popular tape formulations. For ferrichrome tapes, both buttons must be engaged simultaneously. Green and red LEDs on the front panel indicate when the Dolby is in use and when the recording mode is selected, respectively.

Laboratory Measurements. The user's manual for the cassette deck lists a number of tapes suitable for each of the bias and equalization switch settings. Our test deck had been adjusted by United Audio (the importer) for Maxell UD-XL I for Fe, Scotch Master II for Cr, and BASF Professional III for FeCr. We used the first two and Sony Ferrichrome tapes in our tests. (We did not have BASF Professional III tape.)

The flattest overall record/playback frequency response was obtained with Maxell UD-XL I tape, which produced a variation of only $\pm 0.75 \mathrm{~dB}$ from 30 to $15,500 \mathrm{~Hz}$. The low-frequency head contour ripples were relatively small compared to those of most cassette recorders. The response of Scotch Master II tape was not quite as ruler flat, sloping down steadily from 35 to $15,000 \mathrm{~Hz}$. Still, the overall variation, relative to the $1000-\mathrm{Hz}$ level, was a very respectable $\pm 2.5 \mathrm{~dB}$ from 20 to $14,500 \mathrm{~Hz}$. The Sony FeCr yielded a flat response of $\pm 1 \mathrm{~dB}$ from 33 to $15,000 \mathrm{~Hz}$.

The tracking of the Dolby circuits was virtually perfect, measuring less than 0.5 dB of difference between the response curves made with and without the Dolby system switched in, at any frequency up to $12,000 \mathrm{~Hz}$ and at any level from -20 to -40 dB .

The $120-\mu \mathrm{s}$ playback equalization was measured with a TDK AC-337 test tape. It was within $+0.8 /-1.7 \mathrm{~dB}$ from 40 to $12,500 \mathrm{~Hz}$. The $70-\mu \mathrm{s}$ equalization (for Cr and FeCr tapes) was measured with a Teac 116SP test tape and was within $+0.5 /-1 \mathrm{~dB}$ from 40 to $10,000 \mathrm{~Hz}$.

A line input of 44 mV was needed for a $0-\mathrm{dB}$ recording level. This produced a maximum playback output level of 0.66 volt with Maxell UD-XL I,

Ihe Technics ST-9030 tuner.
 Purists would feel better ifitcost over ${ }^{\text {sl,000 }}$

To some, tuners that offer $0.0 \equiv \%$ THD, 50 dE stereo separct on, a cajture ratio of $0 . \varepsilon \mathrm{dB}$ and weveform fidelity should demand a price tag of over $\$ 1,000$. But with the ST-9D3.j this perfermance can beyours for under $\$ 450$.

T-rat's quite a teat for a -uner. But then tee ST-9030 is quite a tu per. It has two completels independent IF circu ts: A narisw band, for u tra-sharp selecti: ty. And c wide band, Fifr ultrahigh se jaration and ulira-low distortion. It eve selects the right band, depending en rezeption cond tions, automat cally.

Eth bands give you the serre extended flat frequency resporse Because, unlike conventional tuners, he ST-9030 <tilizes an electronic pilot cancel circuit that cuts the zilot signcl, without cutting any of the high end. It's ingenious. Arda Technics innovation.

The Technics ST-9030 has $二$ ne of the quiztest, most se nsitive frant ends of any thener. With a advanced linear Fres uency 8 -zanged tuning capacitor and 3 couble-łuned sircuits, flus dual gate N1OS

FETs in the 2-tige 2 F ctplifier and kalarsed mixer circuit. W/ats no-e, theres a servo tunirg circui- thet locks ints the tuned frezency, regardless of minor fluctuations. - te real t: Megl gible dr ft distar-ior and maximu 7 se eo separatizn.

Tec 7 İc $\Xi^{-}-9030$. $=$ npare specificctiors. Compare p ices Arc yzu 11 realize theres eally 0 compareen.
 (1 kHz). s/ V : 8: dE. RPE-2 18 kHz -C. 1. - © .5 dE . SELESTIVITY: Wice-25 dE. Narrow-7i] JB. CAptuat zatio: Widz-0.3d3. Narrow-20 dB. FIF laIFEE and SPURIDUS FESFONSE REJECTICNS ($38 \mathrm{~m}-\mathrm{tz}$): ICE dB AM SUPPRESSKCN (wide): $5 E$ dB. STEREC SERARATION (1 kHz): WV de- 50 d 3 . Narrow-4i) IB. CAREIER LEAK Variakle -65 dB
 RETAIL PF CE S 419 95.

Tec ר רiss 5.9330 . A rare combir atior of audio technolcgy. A new ityndard of audio exce lerce.
-Technics reconmer de \ddagger price, $\nu \mathbf{N}$ ec- $\lrcorner a l$ retail price will be $s \neq A$ by dealers.
0.79 volt with Scotch Master II, and 0.59 volt with Sony FeCr tapes. The MIC input sensitivity was 0.285 mV . The microphone preamplifier overloaded gradually instead of clipping. The second-harmonic distortion reached 3% with a microphone input of 57 mV . The limiter attacked rapidly and prevented any significant overload or distortion even when the input signal was +20 dB or greater. When the overload was removed, the gain was gradually restored to normal over a period of perhaps 30 seconds.

The $1000-\mathrm{Hz}$ playback distortion reached the 3% reference level with a recording input of +5 dB (Maxell UDXL I), +2 dB (Scotch Master II), and +3 dB (Sony FeCr). The respective $0-\mathrm{dB}$ playback distortion levels were $0.63 \%, 2.0 \%$, and 1.6%. The unweighted S / N for the three tapes was 54.5 dB (UD-XL I), 51 dB (Master II), and 53 dB (FeCr). With A weighting, these figures improved to $59,60.3$, and 58 dB . Finally, with the Dolby system in use, and with CCIR/ARM weighting, the S / N was 65.6 dB with UD-XL I, 70 dB with Master II, and 67.4 dB with FeCr . The noise increased by 10.5 dB through the microphone input at maximum gain.

The meters responded accurately to peak signal levels, indicating 100% of the steady-state value on a 0.3second tone burst and decaying relatively slowly. The meter calibrations were also highly accurate. (Many tape decks have meter errors of a decibel or more at some points, even near their maximum readings, but the C 819 meters were "on the nose.") Calibration of the Dolby level marks (at 0 dB) on the scale was accurate within 1 dB when playing standard Dolbylevel tapes. Crosstalk from right to left

Performance Specifications

Specification
Signal-to-noise, w/Dolby
Ferric oxide
Chromium dioxide
Ferrichrome
Crosstalk
Wow and flutter (wrms)
Harmonic distortion
Speed accuracy
Fast wind time (C-60)

Rating
Over 64 dB
Over 64 dB
Over 67 dB
Over 40 dB
Less than 0.05\%
Less than 0.7\%
Less than $\pm 0.6 \%$
65 s

Measured

65.6 dB (CCIR/ARM) 70 dB (CCIR/ARM) 67.4 dB (CCIR/ARM) 54.5 dB (at 1000 Hz) 0.035\% (JIS)
-
-
60 s
channel at 1000 Hz was -54.5 dB (with a TDK AC-352 test tape.)

The tape transport yielded one of the lowest flutter measurements we have yet seen on a cassette deck (and, for that matter, on most openreel decks). Using the TDK AC-342 flutter test tape, we measured the weighted peak flutter as $\pm 0.06 \%$ (CCIR). The wrms flutter (JIS) was only 0.035%. In a combined record/ playback measurement, both figures increased by a mere 0.005%. The transport moved a C60 cassette from end to end in 60 seconds in fast forward, and 65 seconds in rewind. The headphone volume, with 200 -ohm phones, was excellent.

User Comment. Many of the characteristics of the Dual Model C 819 invite the use of superlatives. In others, it ranks with some of the better cassette decks tested. We were most impressed with the C 819's low flutter and its foolproof level meters. (If the meters do not exceed 0 dB , one can be certain of a clean, undistorted, and uncompressed recording.) When we recorded FM tuner interstation hiss and compared playback to the origi-
nal, very little difference was found at the highest frequencies, where most cassette decks tend to sound "soft." There were audible differences at the low and middle frequencies, but on the whole the Model C 819 proved to be exceptionally accurate.

Usability of the MEMORY WIND feature in fast forward as well as in rewind is a convenient plus for this machine (most recorders with a similar feature can use it only during rewind). The FADE EDIT system worked perfectly, although it will probably be of interest only to a limited number of recordists. We must caution users of the Model C 819 that the FADE EDIT system functions on any cassette, even one whose recording interlock tabs have been removed.

We cannot conclude a review of the Dual Model C 819 without commenting on its unusually clean, uncluttered internal construction. Most circuits are on a single, large board on which are mounted several smaller boards. It presents a highly professional appearance when the top cover is removed, and our tests confirm that its performance fits that image.

Crown Model DL2 Digilogic Control Center can interface with 8080-based computer

To call the new Model DL2 Digilogic Control Center from Crown a stereo
preamplifier is like calling a perfect diamond a "hunk of carbon." The Model DL2 is actually a "system" that consists of the Digilogic Control Center, separate power-supply module,
and outboard phono preamplifier module. The system was designed to have the lowest possible noise and distortion. The rated A-weighted noise is -94 to -101 dB at maximum gain, referred to a 2.5 -volt output. Distortion of any order is rated at much less than 0.001% at any usable output level.

uses separate

phono-cartridge
and power-supply modules

The computer-optirized Wharfedele E's. Beautifully designed and crafted. For the sophisticated
connoisseur of scund.
Unusually efficient ($94 \mathrm{~dB} / \mathrm{N} / \mathrm{m}$), the E's are clean and easy-to-listen-to, with noteably good transiert response.

Distortion is inordinately -
and inaudibly-lcw.

"Exceptionally flat..."

Response is wide and flat (50 $18,000 \mathrm{~Hz}, \pm 3 \mathrm{~dB}$ fo the $\mathrm{E}-70$), with exceptional jass performance.
That's why audio experts acc aim the E's. Why audiophiles adore them.

The Wharfedale $\Xi-70$'s and E-50's come in matched, hand-finished, walrut-veneer pairs. Audition the

Es and our complete line of
hight-qualit, loudspeakers at your Wharie dale dealer today

We know you'l be enormously impressed.

The true novelty of the Model DL2 is in its basic design. The key operating functions are controlled by digital logic, which can be interfaced with an 8080 -based computer. The Model DL2 has a connector for this purpose and is, in fact, routinely checked with such a computer at the factory. (A computer interface module and test and operating programs are planned for the future.)

The basic control center measures $17^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 71 / 2^{\prime \prime} \mathrm{H}(43.2 \times 35.6 \times$ 19 cm), while its companion power supply is $17^{\prime \prime} \times 71 / 2^{\prime \prime} \mathrm{D} \times 31 / 2^{\prime \prime} \mathrm{H}(43.2 \times$ $19 \times 8.9 \mathrm{~cm}$). The respective weights are 20 and 9 lb (9 and 4 kg). Optional items include: $19^{\prime \prime}(48.3-\mathrm{cm})$ rackmounting hardware, wooden cabinets, and a Phono Module A that measures $65 / 8^{\prime \prime} \times 31 / 2^{\prime \prime} \times 13 / 8^{\prime \prime}(16.8 \times$ $8.9 \times 3.5 \mathrm{~cm}$) and weighs $12 \mathrm{oz}(337$ g). A similarly packaged Phono Module B for low-output moving-coil cartridges is soon to be available. Prices are $\$ 1495$ for the control center, $\$ 250$ for the power-supply module, and $\$ 250$ each for the phono modules.

General Description. The dominant visual feature of the Model DL2 is a pair of $3 / 4^{\prime \prime}$ numeric displays, between which are six pushbutton switches. The displays indicate gain separately for each channel in $0.5-\mathrm{dB}$ steps from 0.0 to 63.5 dB , while the buttons are for controlling the gain of the system. Two buttons vary the gain in both channels simultaneously and the others are for adjusting only one channel at a time in either direction. A momentary touch on a button steps the gain by 0.5 dB . Holding down the button causes the gain to change at an increasing rate to cover the full $63.5-\mathrm{dB}$ range in only 3 seconds. Near the displays are OVERLOAD indicators that are set to flash at the rat-
ed 11 -volt maximum input.
A large click-Stop LOUDNESS CONtoun control reduces the volume in $5-\mathrm{dB}$ steps as it is rotated clockwise while simultaneously boosting the low-frequency response. The loudness contours are based on International Standards Organization curves that are considered to be more accurate than Fletcher-Munson curves.

Pushbutton switches to the left of the LOUDNESS CONTOUR control are for switching into and out of the signal

noise and

distortion are below measurement levels
path either or both of two EXTERNAL PROCESSOR accessories (equalizer, noise-reduction system, or dynamicrange modifier, for which separate inputs and outputs are provided so that none of the Model DL2's tape recording and monitoring flexibility is sacrificed). A third button is for inserting the selected processor(s) into the signal path before the signal goes out to the tape decks. Similar buttons to the right of the LOUDNESS CONTOUR COntrol are for engaging and disengaging the filter and tone controls

The TONE control system consists of two groups of slide-type potentiometers, each of which has a $\pm 15-\mathrm{dB}$ range and is detented at $2-$ or $3-\mathrm{dB}$ intervals. They control the bass, midrange, and treble for the two channels independently. A three-position switch below each control permits the frequency of maximum effectiveness for the control to be shifted by one octave above and below a nominal value. The result is an extremely flexible tone-control system.

At the upper left of the control panel are the input-selector, POWER, and MUTE pushbutton switches, each with its own adjacent color status indicator. The preamplifier/control center can be turned off by touching the POWER button. Power is applied by touching any of the source-select buttons, assuming the power in the power-supply module is activated.

There are eight identical high-level program inputs. Three are labelled TAPE, three AUX, and one each PHONO and TUNER. All buttons can be relabelled as desired. Any input used for phono must be preceded with a Phono Module (which goes near the record player to minimize cable problems in sensitive low-level circuits). As a rule, touching any source-select button automatically disengages the last selection.

The remaining controls are arranged in a row across the bottom of the Model DL2's panel. At the left are the tape recorder controls, including a TAPE COPY switch that can be used to dub from any one of the three tape decks the control center can accommodate to one or both of the others or to record the selected program source on any or all three decks. Next come the TAPE 3 IN and out phone jacks that parallel connections on the Model DL2's rear apron.

Following the TAPE MONITOR jacks are two four-position controls for the cutoff frequencies of the LOW FILTER and HIGH FILTER systems, both of which have $18-\mathrm{dB} /$ octave slopes. The low filter's cutoff frequencies are at $20,30,50$, and 100 Hz , while the high filter's are at $4,7,12$, and 20 kHz .

The next three controls are a unique feature of primary interest to serious recordists, although they can also be useful in a conventional home hi-fi system. Each of these AUDIO IMAGING controls is a concentric pair of 32-position switches that permit independent adjustment of the channels. Arrows above the knobs identify the corresponding input and output circuits. The first control channels the A and B inputs to the A and B outputs. It can be used to independently control the level for each channel. The next control is similar to the first, except that it transposes the routing. The third control is similar to the first, except that it controls an entirely different set of inputs on the rear apron (X and Y) and channels them to the A and B outputs, respectively.

The Look \& Sound of SAE

What you see here is the result of twelve years of devotion to the development and production of the most revolutionary and highest quality components in the audio industry. This is not the usual selfseeking statement by a biased manufacturer - to prove it. ask anyone who knows SAE.
But, it is not only uniqueness that sets SAE products so far apart from their competitors. It is a goal that SAE established long ago - a goal which states that it is manufacturing excellence as well as design that makes a product truly great.
The following points out the realization of this goal in our product.

AMPLIFIERS

The complete line of SAE Stereo Power Amplifiers is the product of one heritage in both design and construction. The unique, fully complementary design system provides balanced amplification from input to output. This approach yields lower steady state and transient distortion as well as better overload recovery

PREAMPLIFIERS

A bold research and development program by our engineering staff has resulted in the introduction of the first integrated circuit (IC) designed specifically for audio applications. Extremely low distortion, low noise characteristics and fast overload recovery have made it ideally suited for preamp applications

PARAMETRIC EQUALIZERS

The parametric approach stands as a revolutionary advancement in equalizers for consumer products. The unique combination of controls provides for tonal modification never before thought possible.

ASSOCIATED COMPONENTS

These components complement our line of amplifiers, preamps and equalizers. They include a digital readcut FM tuner with linear phase IF filters and phase-lock multiplex; an Electronic Crossover for biamplification; an Impulse Noise Reduction System, the system that takes over where every other noise reduction system leaves off, by providing dramatic reduction of the impulse noises (clicks and pops) that occur in common playback of records; and our new Time Delay Ambience System, to recreate the live performance previously beyond reach in the home environment.

CONCLUSION

As you can see, the goal of advanced design and manufacturing excellence has created the finest audio products in the world. With constant supervision of assembly and testing, SAE products offer performance, value and consistency functional, state-of-the-art, and without question, Components for the Connoisseur.

For Complete Information Write CIRCLE NO 52 ON FAEE INFORMATON CARD

The remaining front-panel controls include two pushbutton switches for separately energizing two sets of main outputs. At the far right of the lower portion of the front panel is a pair of stereo headphone jacks that are always live, driven by a separate amplifier stage that can drive any impedance phones (not electrostatic types) to full listening levels.

The many input and output jacks, all clearly labelled, are located on the Model DL2's rear apron. Standard phono jacks are used for the inputs, but the outputs are through $1 / 4^{\prime \prime}$ phone jacks. In addition to the normal outputs, there is a pair of inverted-phase outputs for MAIN 2 and a MONO summed output for MAIN 1. A pair of buffered outputs is also provided, taken from a point just after the input selector and not affected by any controls but the Low filter. High-reliability connectors are used for connection to the Power Module and computer or a projected wireless remote control system. These connectors can also be used to slave additional Model DL2s to a "master" Model DL2 to increase the system's input-channel capabilities. When so operated, the "master" level and input controls operate the "slaves" as well.

The Power Module has a momen-tary-contact POWER pushbutton switch and a LED power indicator. It controls the power to the entire system. On its rear apron are two unswitched and seven switched accessory ac receptacles. Three of the switched receptacles are heavy-duty three-contact types. There are also multicontact connectors for powering the Model DL2 control center and a Phono Module.

The Phono Module has a pair of phono-jack inputs at one end and a pair of $1 / 4^{\prime \prime}$ phone-jack outputs at the other end. Slide switches are provided for changing the input termination from 47,000 to 100,000 ohms and removing the RIAA equalization to permit the module to be used as a microphone preamplifier. Two screwdriveradjustable controls allow the gain of the phono preamp to be varied separately for each channel.

Laboratory Measurements. All our noise and distortion measurements merely reflected the limitations of our test equipment, rather than the performance of the Model DL2. We operated the control center with

outstanding tone and

 loudness-control versatilitystandard IHF input and output terminations and gain settings. Output noise levels were well below our 100- $\mu \mathrm{V}$ minimum measurement capability, which is better than 90 dB below the 2.5 -volt rated output of the OL2.

At maximum sensitivity, the preamp required a $53-\mathrm{mV}$ input to generate a reference 0.5 -volt output, and the overload indicators came on abruptly at 11 volts. At maximum gain, Phono Module A required a $1.7-\mathrm{mV}$ input for a 0.5 -volt output. (For our measurements, the Phono Module A's gain was set to the IHF standard of 40 $d B$ at 1000 Hz .) The phono equaliza-
tion was within $\pm 0.1 \mathrm{~dB}$ of the RIAA characteristic from 30 to $15,000 \mathrm{~Hz}$ and within $\pm 0.2 \mathrm{~dB}$ from 20 to 20,000 hertz.

Measured through the inductance of a typical phono cartridge, there was no change in the phono response, although a high-inductance cartridge did produce a rise of almost 1 dB at $20,000 \mathrm{~Hz}$. The input resistance was 46,000 or 93,000 ohms, depending on the Phono Module A's switch setting. The capacitance could not be measured with our instruments.

The frequency response of the Model DL2 itself was within $\pm 0.1 \mathrm{~dB}$ from 10 to $50,000 \mathrm{~Hz}$. It was down 0.2 dB at 5 Hz and 0.5 dB at $90,000 \mathrm{~Hz}$. The filter curves were excellent, with steep slopes that were roughly 10 to 15 dB /octave in the useful portions of their ranges. The Low filter's response was down about 1 dB at 20 Hz . The $-3-\mathrm{dB}$ response frequencies of the other settings were 37, 43, and

Performance Specifications

Specification	Rating	Measured
Frequency response (10,000 ohm load)	$\pm 0.1 \mathrm{~dB} 10-50,000 \mathrm{~Hz}$	Confirmed
Hum \& noise (inputs shorted, $20-20,000 \mathrm{~Hz}$, below rated output 2.5 V) IM distortion (SMPTE)	Max. gain: 101 dB (A-wtd)	Better than
	Unity gain: 107 dB . "	90 dB down
	Less than 0.0003\%	0.002\%
	at 10 volts or less	(instrument residual)
THD (20-20,000 Hz): 2.5 V	Less than 0.0008\%	Less than 0.01\%
	Less than 0.0025\%	(instrument residual)
Maximum gain	$20 \mathrm{~dB} \pm 0.2 \mathrm{~dB}$ (100,000 ohms)	Confirmed
Output	11 V maximum	Confirmed
	2.5 V rated (50 ohm)	
Headphone output	17 V rms (1 ohm source)	-
Gain tracking	$\pm 0.2 \mathrm{~dB}$ over $63.5-\mathrm{dB}$ range	-
Audio imaging	$50-\mathrm{dB}$ range, tracking within 0.2 dB	-
Muting	5-7-s turn-on delay	
Phono Module A		
Frequency response	$\begin{aligned} & \pm 0.25 \mathrm{~dB} \text { of RIAA, } \\ & 20-20,000 \mathrm{~Hz} \end{aligned}$	$\pm 0.2 \mathrm{~dB}$
Hum \& noise (shorted) below $10-\mathrm{mV}$ input	94 dB (A-wtd)	Less than 90 dB
IMD (as MIC amp)	Less than 0.0005% at 2.5 V	-
THD	Less than 0.002% at 2.5 V	- .
Gain	Adjustable 30 to 50 dB	Confirmed
Input impedance	47,000/100,000 ohms	46,000/93,000 ohms
	less than 5 pF	Not measured
Input overload	$33-330 \mathrm{mV}$ depending on gain	
	100 mV at 40-dB gain	95 mV
Output voltage	11 V (600 ohms) into 10,000 -ohm load	-

The complete control system. as shown here. includes the control center. power-supply module and separate modules for each phono cartridge input.

140 Hz . The high filter's response was down 3 dB at $4100,4400,13,000$, and $15,000 \mathrm{~Hz}$

The tone controls were capable of producing a nearly infinite variety of response curves. We noted that the shape of the curves changed when we switched the frequencies to the X0.5 and X2 conditions. Lower frequencies appeared to have lower Q, which gave a broader response peak or dip at the extreme control settings. Of course, it is of little importance to the user, who will presumably adjust the controls to obtain a desired sound quality.

The LoUDNESS CONTOUR system had its principal compensation effect below 100 Hz . It was free of the unnatural heaviness that mars the sound of most loudness-compensation systems in current use.

User Comment. We judged the Model DL2 solely on its performance as a home hi-fi system control center, under strictly manual control of all its functions. Everything-electronic and mechanical-operated flawlessly. We feel, however, that some of the system's features are not of great import in a home music system. The gain display is intriguing, for example, but its usefulness is diluted by the fact that overall gain is also affected by the AUDIO IMAGING and LOUDNESS CONTOUR controls, whose effects do not show up on the displays
Tape recording enthusiasts will doubtlessly like the aUdIo IMAGING controls. Others might find that it's less convenient to use for channel
reversal and blending than the conventional switch controls.
The overall tape-recording facilities of the Model DL2 are second to none. Too, the filters, tone controls, and loudness compensation were outstanding. The digital gain-stepping feature is fun to use and, with practice, can be manipulated almost as easily as a standard volume-control knob.

We were puzzled to find only one power socket on the control center's rear apron for a Phono Module. Many serious audiophiles have more than one record player, and it is expected that a deluxe preamplifier such as Crown's would accept more than one phono input. Indeed, Crown points out that all eight of the Model DL2's inputs can be used for phono sources if a Phono Module is added for each. Presumably, Crown plans to have some sort of power socket accessory to permit hookup of more than one Phono Module.

We cannot resolve in our minds whether this product was meant for the home-audio or professional-audio market. It is far too costly and versatile for all but a small percentage of home users. Yet, its home-decor appearance would not be entirely in keeping with strictly professional equipment. On the other hand, whatever one's needs may be,-computer control, staggering control versatility, and the highest possible electrical performance, among them-the Model DL2 Digilogic Control Center is certainly the answer to the need.

CIRCLE NO 103 on free information caro

The best

 speaker kit isn't a kit

The best speaker kit is a system designed by Electro-Voice that allows you to choose your own level of performance; from a studio monitor to a modest bookshelt system, from a wide selection of woofers, tweeters, midrange drivers and crossovers.
Then Electro-Voice provides detailed plans on how to construct the enclosures designed specifically for the drivers you chose
Only Electro-Voice gives you all the options. But, then Electro-Voice is known for their superb quality speakers - not for kits.
To get your component speaker catalog and construction plans package, just send $\$ 1.0 \mathrm{C}$ to Electro-Voice Component Speaker Systems, 600 Cecil St., Euchanan, MI 49107.

Eve Electro.Voice

600 Cecil Street, Buchanan, Michigan 49107

\footnotetext{
Electro-Voice Component Speaker Systems, 600 Cecil St., Buchanan. MI 49107.
Please send me
E-V component speaker packages.
I have enclosed $\$ 1.00$ for each
package ordered.

The Realistic SCT-30 tells it like it is:

Why 3 heads are better than 2. Why 2 capstans are better than 1. Why double Dolby* is better than single.

3 Heads.

Two independent record and play heads eliminate the compromises of one combined r/p head, and the head assembly is integrated to eliminate azimuth error. The result: cleaner sound. The third head lets you monitor

your recording an instant after it's made, without interrupting the program. SCT-30 has 3 heads!

2 Capstans.

Dual capstans (instead of the usual 1) reduce wow and flutter to an inaudible 0.06% WRMS or less, and extend the audio frequency response. SCT-30 has dual capstans!

Double Dolby.

You know the single Dolby system cuts noise and adds dynamic range. But let's examine double Dolby. You get Dolby on hoth record and monitor so you know exactly what your tape will sound like.

You get a decoder for recording superb Dolby FM stereo. And you get simultaneous listening enjoyment of the decoded broadcast on receivers with tape monitoring. The Realistic SCT- 30 bas double Dolby! About $\$ 380$.

P.S. - Supertape ${ }^{\circledR}$ Gold.

To go with 3 heads, 2 capstans and double Dolby, you need a cassette tape that will enhance - not degrade performance. That's why we design and manufac-
ture Supertape Gold in our oun Fort Worth factory. Like SCT-30, it's a playmate you can believe in at a price you can afford.

Why Realistic ${ }^{\circledR}$?

Because Radio Shack has delivered quality audio at sensible prices since 1921, its Realistic tape and recorder line can point to over $5,000,000$ customers as living proof of these claims. Add after-sale service that isn't lip service. Add in-house engineering and manufacturing of much of the Realistic line. And add the convenience of neighborhood shopping where you get "sound talk" from a specialist. That's Realistic!

Microprocessor-based chess game features

three player levels and a unique system
of switches under board squares
to simplify data input of piece moves

By BILL GREEN

With the development of microprocessors and their dramatically reduced prices over the years, it is not surprising that the delightful and intriguing game of chess became widely available for computer play. A natural followup to chess-game software for microcomputers were dedicated-chip chess games, including "Chess Challenger," "Boris," and "CompuChess," among others. The "Computer Chess" game project presented here is a similar type of game that features some outstanding advantages: moderate cost (\$100), bat-tery-power capability for portability, and simplified computer data entry system.
(A pressure-switch system under each board square operates like a calculatortype keypad.)

The Computer Chess project is built around a Signetics 2650 microprocessor chip and 2 kilobytes of memory. The chess program is resident in a programmed ROM, and there are three selectable levels of skill.

Your moves are entered by pressing a chesspiece on a conventional playing "board" made up of 64 pressure-sensitive switches, one for each square on a conventional board. Commands, player moves, and computer moves appear in a two-digit seven-segment LED display.

It can operate on line power only or both line and battery power.

Software. The software used for the Computer Chess game is a modified form of the Claude Shannon algorithm, published in 1950 as the first practical paper on computer chess. The program is written in three sections, which include entry for command and move, move generation, and move evaluation.

In the entry mode, the playing board can be set up in a standard manner, or each piece can be entered in a special manner to play portions of games (such as mate in two moves, ends of games,
etc.). In the move-generation mode, each piece on the board is moved to all possible legal squares, while the moveevaluation mode calculates the result of each iteration through the possible moves and selects the move with the highest value for entry and display. The computer's opening moves are random.

Hardware. The complete circuit of the Computer Chess game is shown in Figs. 1 through 4. The system's 2650 central-processing-unit (CPU) IC1 performs all chess operations. Its operating program is stored in read-only memory IC2. The playing board and other variables are stored in the random-access-memory

PARTS LIST

B1 thru B4-Four 1.5 -volt C cells in series (rechargeable Ni-Cd cells optional)
Cl - 1000 -pF disc
C2-20- $\mu \mathrm{F}, 6$-volt tantalum electrolytic
DIS1, DIS2-TIL312 (TI) or similar red sev-en-segment display
IC 1-2650 central-processing-unit (Signetics)
IC2-91341 custom-programmed ROM
IC3.IC4-2112 random-access-memory
IC5,IC6-74LS373 octal-latch
IC7-74LS244 octal noninverting tristate buffer
IC8-74LS00 quad 2-input low-power Schottky gate
IC9,IC13-74LS20 dual 4-input low-power Schottky gate
IC10-74LS14 hex low-power Schottky Schmitt trigger
IC11-74LS30 8-input low-power Schottky NAND-gate
IC12-7404 hex-inverter
All resistors $1 / 4$-watt, 10% tolerance:
RI- 1000 ohms
R2,R3-47 ohms
R4- 220 ohms
R5 thru R13-10,000 ohms
SI-Normally open spst pushbutton switch

S2—Spst switch
Misc.-Suitable enclosure; printed-circuit boards; IC sockets for IC1 thru IC4; conductive elastomer; Mylar or acetate film; white contact paper; battery holder; red acrylic filter for display; 16 -conductor flat ribbon cable; insulated stranded and solid hookup wire; bare wire; machine hardware; solder: etc.
Note: The following items are available from Alpha Electronics, P.O. Box 1005, Merritt Island, FL 32952 (Tel: 305-453-3534): Complete kit, including case but not chess pieces, batteries, battery holder, IC sockets charger, and charger jack, for $\$ 100$ ($\$ 110$ after March 1, 1979) plus $\$ 4.50$ postage and handling. (Canada \$6, others \$10). Case supplied with kit includes unfinished wood frame, cut, grooved, and drilled. Keyboard legend is silk-screened with board layout and labelled with numbers and commands. Punched separator and elastomer are supplied. A'lso available separately are: Both pc boards (Part No. Chess PC) for $\$ 25$ ppd; ROM (Part No. 91341) for $\$ 50$ ppd in U.S. (add $\$ 2$ for Canada, $\$ 6$ for other foreign orders). Florida residents, add 4% tax.

Fig. 1. The programfor the CPU (IC1) is contained in ROM IC2. Program variables are stored in RAM IC3 and IC4.

Fig. 2. Data bus latches IC5 and IC6 drive DIS1 and DIS2. IC5 also provides row key scanning. IC7 reads keyboard colums.
system made up of IC3 and IC4, as shown in Fig. 1

Data on the data bus is latched by IC5 and IC6 (Fig. 2) for display on sevensegment displays DIS1 and DIS2. In addition, IC5 provides a scanned output to the keyboard rows, while $I C 7$ reads data in from the keyboard columns. Integrated circuits IC8 through IC13 shown in Figs. 3 and 4 provide decoding for the memory select and the read/write select for the RAM. A part of IC10 (Fig. 3) is used to generate the power-up reset for the CPU, and a part of IC12 (Fig. 4) generates the system's clock.

With the exception of the memory, CPU and IC12, all ICs in the Computer Chess circuit are low-power devices. Hence the average current drain of the system is about 300 mA .

Construction. The Computer Chess game's circuit is best assembled on two printed-circuit boards. The etching/drilling and components placement guides for the main pc board, which is doublesided with plated-through holes, are shown in Fig. 5. The circuit board for the keyboard is a simple single-sided one as shown in Fig. 6.

Install the eight jumpers on the blank side of the circuit board for the keyboard from end to end, as shown. Use fine bare wire to make the three inside jumpers, for a total of five solder connections per jumper. A minimum amount of solder should be used to make these connections; trim away the excess wire as close as possible to the board. Place a small piece of electrical tape over each solder connection on the foil side.

Connect and solder a $12^{\prime \prime}$ ($30.5-\mathrm{cm}$) length of 16 -conductor flat ribbon cable (or 16 lengths of insulated hookup wire) to the solder pads on the left side of the keyboard assembly. Feed each conductor to its pad via the blank side of the board.

Divide a $7^{\prime \prime} \times 7^{\prime \prime}(17.8 \times 17.8 \mathrm{~cm})$ sheet of $0.005^{\prime \prime}(0.13-\mathrm{mm})$ Mylar or acetate into a grid consisting of 64 (eight horizontal and eight vertical) equal-size squares. Cut a $1 / 2^{\prime \prime}(12.7-\mathrm{mm})$ hole in the center of each square.

Use a $7^{\prime \prime} \times 7^{\prime \prime}$ sheet of $0.025^{\prime \prime}(0.66-$ mm) conductive elastomer for the common in the keyboard assembly.

Next, lay out an 8×8 square chessboard on a $7^{\prime \prime} \times 7^{\prime \prime}$ sheet of white contact paper, making each square $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ $(19.1 \times 19.1 \mathrm{~mm})$. Starting with the lower left square, paint each alternate square with red paint. When the paint is completely dry, label each square. Starting at the upper left square and moving to the right, label the squares from 00 to 07. The next row down is labelled from 10 to 17 and so on until the last row is labelled 70 to 77 . Computer commands are labelled on the squares as follows: square $40-\mathrm{S}, \mathrm{E}$, and 1 ; square 44-F and 2; square $42-\mathrm{D}$ and 3 ; and square 43-L.

Place the Mylar separator sheet over
the board, positioning it so that the holes are centered over the foil contacts. Over this, place the elastomer and then the contact paper, the latter with square 00 at the upper left. Then cover the contact paper with a sheet of matte-finished Mylar and temporarily set the keyboard assembly aside.

On the component side of the main pc board, install suitable sockets at each IC location. Sockets are optional but highly recommended for MOS devices IC1 through IC4.
Install the resistors and capacitors in their respective locations on the board. be sure when you install $C 2$ that you observe the proper polarity.

Connect lengths of black- and redinsulated stranded hookup wire to the and + pads, respectively. Connect two $3^{\prime \prime}(7.6-\mathrm{cm})$ lengths of insulated wire to the pads for S1, located near pin 1 of IC1. Connect and solder the free ends of these wires to S1.

Insert the 16 wires from the keyboard into their respective pads on the main circuit board assembly and solder them into place.

Connect the free end of the red stranded wire to S2. Then connect another length of red stranded wire between S2 and the positive (+) end of the battery holder. If nickel-cadmium cells are used, select an appropriate charger and mount the charging connector. (The battery consists of four C -size cells in series.)

When installing ICs, observe the usual handling procedures for MOS devices (IC1, IC2, IC3, and IC4). Make certain that pin 1 of each IC is aligned with the 1 on the pc board.

Place the keyboard on a flat surface and turn on the power. An A8 should ap-
pear in the display. Then press S on square 40; an S should replace the 8 in digit 1 of the display. (Standard sevensegment displays are used for DIS1 and DIS2, so the S wiil look like a 5.) Press L on square 43; AL should now appear in the display. Now press 1,2 , or $3(40,41$, or 42 respectively) to select the level of play; the display should read A1, A2, or A3. Finally press S1 and hold it until the A in digit 2 of the display turns to an 8. Release S1. The board is now set up for playing in the normal manner.
Here's an example of what might transpire as a player and the computer develop their pieces, and it will serve as a final check of your completed project. Press the chesspiece located on square 63 (queen's pawn, white); the display should read 63. After a momentary pause, the 6 should change to an 8 . The display should thus read 83 . When this occurs, move the pawn two squares to square 43 and press down; the display should now read 43. Briefly press S1. The display should blank and then flash random characters until the computer has made its move. The computer's move is displayed with the "from" and "to" square numbers alternately flashing. You then follow the computer's decision by physically moving the selected piece on the "from" square to the "to" square, without pressing down on the chesspiece.

Note that when playing levels 2 or 3, several seconds may elapse before the display blanks after pressing and releasing S1. The random-character flashes will also continue for a greater period of time than on level 1 before the computer displays its move. Naturally, the highest level (3) takes the longest time.

After the computer has displayed its

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

Now you can learn at home the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREl's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition. it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three kanguages: BASIC. assembly and machine languages. In addition. you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding. prototype construction. circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical
 Engineering

CREI programs give you a practical engineering knowledge of electronics. That is. each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electrorics.

> Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

1 1 П CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center
 3939 Wisconsin Avenue Northwest
 Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill

CREI prosrams are approved for traithing of veterans and servicemen under the G.I. Bill.

move, press and hold S1 until an 8 appears in digit 2. This turns the upcoming board move back to you. You can then enter your new move, and continue the game as previously described.

Operation. The computer portion of the Computer Chess game has certain commands built into it. They're accessed as follows. Command " S " on
square 40 operates only after power up; it sets up the board for standard play.

Command "L" on square 43 lets you set the level of play. Pressing this square causes an " L " to appear in digit 1, as previously described. The desired level of play can then be selected by pressing the appropriate square. Level 1 on square 40 is for beginners and for one to develop a game quickly. Level 2
on square 41 is for intermediate play and may take between 10 seconds and more than a minute for the computer to come back with its move. Level 3 on square 42 is for more advanced players. Here, the computer's move may take as long as several minutes if the board is complex.
Pressing Command " E " on square 40 permits a player to enter a piece should

one wish to do so. This causes an " E " to appear in digit 1 . Once the " E " appears, you press the square on which the piece you wish to enter would be in a standard setup and then press the square on which you wish to place the piece. The selected piece is displayed in the same format as in the find-piece mode, which follows.

Command " F " on square 41 finds a piece in the event you wish to check the accuracy of a piece's earlier placement on a square. You press this square until an " F " appears in digit 1 and then press the square you wish to examine. The piece on the latter square will be identified in the display. If the piece is black, a lower-case " b " appears in digit 1 , as an example. If white, nothing will appear. (A complete list of the special symbols in the Computer Chess game is given in the Chesspiece Identification Table.)

Pressing Command " D " on square 42 enables you to delete a piece. Press this square and a lower-case "d" appears in
digit 1. Press the square for the piece you wish to delete, and the type of chesspiece and its color are displayed.
A variety of changes can also be made during play. These include changing the level of skill, deletion of a piece, entering a piece, finding a piece. To perform any of these changes once pieces have been developed, you must interrupt play and enter the command mode. There are two ways to enter this mode. If the computer's move is flashing, briefly press S1 when the "to" square number is displayed. (If the display is flashing 14 to 34 , press $S 1$ briefly when 34 appears.) If this is done properly, an A should appear in digit 2, which indicates that the computer is in the command mode. Now you can make your change, following which, you press and hold S1 until an 8 appears in the display. You can now resume play.

The second way of entering the command mode is on your own move, either when an 8 is displayed or by pressing

S1 until an 8 appears to avoid the trickier first method. Now you must make a false move from and to any two empty squares and then press S1. This will cause a lower-case " u " to appear in both digits of the display, after which the second digit will automatically change to an "A." Thus, "Au" will be shown in the display. (Each " u " is made up of segments b, f, and g in the display.) This places the computer in the command mode. Again, after making your change, press and hold S1 to obtain an 8 in the display, and resume play.

If you enter a move from an unoccupied square the display will flash "uu" after you press S1. Digit two will then display an "A." You can now use the command keys to locate, enter, or delete a piece or change the level of play. Press S1 until an 8 appears in digit two and reenter your move. If you should make a move and want to change it, press and hold S1 until an 8 appears in digit 2 and reenter your move.

If power is switched off to clear for a new game, wait about five seconds before switching the power back on to allow the reset capacitor to discharge.

The computer will castle whenever it can do so legally if there is no better move available. It moves the rook internally but does not, however, display the move. Instead, it indicates the king's move in the display.

You can castle in two steps. To do so, when it is your turn to move, enter the command mode and delete the rook you wish to use. Then reenter the rook on its new square. Press S1 to obtain an 8 inthe display. Then move the king in the normal fashion, as your move. Bear in mind that the computer will accept an illegal move on your part but will not itself make an illegal move. If the computer places you in check, "--" will appear in the display between the "from" and "to" square displays. If you checkmate the computer, the

Fig. 7. Photo shows prototype unit diassembled. Keyboard fits in grooves over batteries. Battery charger plug is in rear panel.
display will give you the number of moves made in the game.

If you are able to promote one of your pawns, you must delete it from the board and reenter the new piece before moving it to the last rank. You can select the highest piece captured by the computer but not higher. (You cannot have more than one queen, two rooks, two knights, and two bishops on the board at any one time. If you select a captured bishop, make sure that it is the correct one for the color of the square onto which it is to be placed.)
The desired piece is entered on the square from which the pawn was deleted in the following manner. Press first the square on which the piece to which the pawn is to be promoted was located at the beginning of the game and then the square from which the pawn was deleted. (This will not affect a piece on the square first pressed when the game is resumed.) The symbol of the piece (see table of piece symbols at left) to which the pawn is to be promoted will appear in the display.

If the computer moves one of its pawns into your back rank, and its queen has been captured, it will automatically promote the pawn to a queen. If its queen has not been captured, you most promote the pawn to its (computer's) next highest available piece, in the same manner as promoting your own piece.

The Computer Chess game does not automatically perform the rarely used en passant. To perform such a pawn capture, you must enter the command mode and make the proper moves.

Final Assembly. After checking out the system, mount it in an enclosure like that shown in Fig. 7. The electronics pc assembly can be covered by a $1 / \mathrm{s}^{\prime \prime}$ (3.2mm) sheet of red acrylic plastic to allow the red seven-segment LED display to be seen. Switches S2 (power) and S1 (go) also mount on this acrylic panel. Secure the battery holder to the bottom plate under the keyboard assembly. Then drill a hole in the rear panel to accept the selected battery charger's plug, and mount its jack at this location.

Check the nickel-cadmium cells (C or sub-C size) you plan to use to determine their maximum charging rate. Just about any wall-type calculator charger capable of delivering 6 to 12 volts dc can be used. Measure the output voltage from the charger and, using the maximum charge rate for the NiCd cells, calculate the value of the required resistor. You can determine the resistor's value by dividing the measured output voltage from the charger (minus about 10% to be on the safe side) by the maximum chargerate current specified on the cells.

If you prefer to have the Computer Chess game powered from the ac line only, simply substitute a well-regulated 5-volt dc supply capable of delivering a minimum of 100 mA .

In Conclusion. The Computer Chess game is an excellent chess-learning tool for the beginner and a challenge for those who already know how to play chess but need an opponent.

AM-BROADCAST stations are about to undergo a massive change. During the summer of 1979, assuming the FCC comes to a final decision by then, many AM stations in your area will begin broadcasting in stereo.

AM stereo is not new. In 1925, WPAY (New Haven, CT) made the first wireless stereo transmissions by broadcasting from two separate AM transmitters on two different frequencies. In the mid1950s, a small number of stations expressed renewed interest in AM stereo by experimenting with AM and FM simulcasting. Historically, then, two separate receivers were needed to obtain stereo audio. With the new systems proposed to the FCC and detailed here, a single AM-stereo transmitter and a single AM-stereo receiver are needed. The transmitted AM-stereo signal is also mono-compatible.

The Contenders. There are five AMstereo system designs presently before the FCC, proposed by Belar Laboratories, Harris Corp., Kahn Communications, Magnavox, and Motorola. Each system has its own unique method for generating stereo signals.

The Belar system amplitude modulates the carrier with $L+R$ information and frequency modulates the carrier with L - R information, using $320-\mathrm{Hz}$ frequency deviation and 400- μ s preemphasis. The Harris system employs quadrature modulation with a reduced L - R component, which is equivalent to L and R modulation of two carriers separated in phase by 30°. The Khan system uses independent-sideband (ISB) modulation to force the modulated envelope to carry L and R informaton. Magnavox's system utilizes simple $L+R$ amplitude modulation with L - R phase modulation of the carrier with 57° phase deviation. Finally, Motorola's system, like the Harris system, employs quadrature modulation, but it predistorts the entire signal, not just the $L+R$ sidebands, to force the modulated envelope to carry the $\mathrm{L}+\mathrm{R}$ information.

Each of the proposed AM-stereo systems is compatible with the mono receivers currently in use. Compatibility with present-day mono envelope detectors and good stereo performance have been the major hurdle for the proponents of AM stereo. The challenge has been met with some success.

Some common features and methods appear in each of the proposed AMstereo systems. All process the audio

Five proposals for AM stereo
systems are being considered by the FCC. One may be on the air in 1979, revitalizing AM broadcasting

AM STEREO Continued

Fig. 2. Magnavox (AM/PM)

through a matrix for transmission and reception. Each system's stereo generator (similar to those used in FM) combines the two audio channels to give $L+R$ and also subtracts them to obtain $L-R$ signals. The stereo information is transmitted as $L+R$ and $L-R$ information. The AM-stereo receivers then demodulate the carrier and derive the $L+R$ and $L-R$ signals. Once again, the signals are passed through an audio matrix to obtain independent left- and right-channel signals.

Except for the Belar system, all of the proposed AM-stereo systems incorporate a low-frequency stereo-indentification tone. The frequency of the tone varies from system to system. Magnavox uses a $5-\mathrm{Hz}$ tone, while the other systems' tones are in the range of 15 to 25 Hz . The tone is placed on the $L-R$
channel signal and is designed to turn on a stereo indicator in the receiver and possibly to activate an automatic stereo/ mono switching system. The ID tone could also be used to carry low-speed digital data, such as station identifications, which could appear on a numeric display in the receiver.

To preserve audio separation, each system employs time-delay networks in the $L+R$ or/and $L-R$ paths. A finite time delay exists between the $r-f$ section and the modulator section of a standard broadcast transmitter. A delay network establishes the correct time relationship between the transmitted $L+R$ and $L-$ R signals for channel separation.

System Details. So far, we have enumerated only the similarities between the various competing AM-stereo
systems. Now let us look at the individual systems in brief detail.

Belar (AM/FM). This system uses $A M / F M$ teciniques for modulation. The $L+R$ audio component is applied to the modulator stage of the transmitter and amplitude modulates an FM carrier (Fig. 1A). This allows current mono receivers to detect $L+R$ audio and makes the Be lar system mono-compatible.

To generate the stereo part of the signal, the L-R information from an audio matrix is applied to a $400-\mu \mathrm{s}$ preemphasis network and a time-delay network that, in turn, frequency modulates the carrier. Peak deviation of the carrier is $\pm 320 \mathrm{~Hz}$. The FM carrier is then amplitude modulated.

Reception of the Belar signal is perhaps the easiest for the five systems. The i-f output of the receiver (Fig. 1B) is split into two paths. One path goes to an envelope detector that recovers $L+R$ information and the other goes to a hard limiter that strips away all AM components. The limited i-f signal then passes through a frequency discriminator that recovers $L-R$ information. The $L-R$ audio must then be deemphasized to cancel out the preemphasis applied at the transmitter. The detected $L+R$ and L - R audio components are then applied to an áudio matrix, where discrete left- and right-channel signals are obtained.

Magnavox (AM/PM). Somewhat similar to that of Belar, in this system, the L $+R$ information amplitude modulates the carrier and the $L-R$ information phase modulates the carrier (Fig. 2A). The phase variation of the carrier is held to a peak of 57°. The FM carrier is then amplitude modulated.

Reception of the AM/PM signal is illustrated in Fig. 2B. The i-f signal is split into two paths, one of which goes to an envelope detector to recover the $L+R$ information and the other goes to a limiter to eliminate AM components. A phase detector is then used to recover the L R audio. The recovered $L+R$ and $L-$ R signals are combined in an audio matrix to yield independent left- and rightchannel stereo signals.

Kahn (ISB). In this independent-sideband (ISB) modulation system, the leftchannel information appears on the lower sideband and the right-channel information appears on the upper sideband. This system predistorts the entire signal to force the envelope to carry $L+R$ signals for mono compatibility.

As shown in Fig. 3A, the left and right audio channels are applied to a matrix.

Fig. 3. Kahn (ISB)

The $L+R$ signal goes to a -45° phaseshift network and is applied to the audio inputs of a standard transmitter. The L R information passes through a $+45^{\circ}$ phase-shift network. At this point, the L $+R$ and $L-R$ signals are 90° out-ofphase with each other. The L-R component feeds a summation network and controls an agc circuit. A variable timedelay network is inserted in the output of the summation amplifier to equalize the delays between the $L-R$ and $L+R$ signal paths.
The output of an oscillator that operates at a submultiple of the standard broadcast transmitter's frequency is applied to a phase modulator. The $L-R$ audio signal from the time-delay network is then applied. The PM signal is brought up to the carrier frequency by a frequency multiplier. The PM carrier is then routed to the transmitter.
Kahn discovered that a further improvement in channel separation was possible by adding a second-harmonic phase-modulated component. Independent left and right audio signals are routed through differential phase networks with zero relative phase. The secondharmonic component is obtained from constant-amplitude frequency doublers, the outputs of which are applied to a difference network, followed by a level squarer.
The level squarer is essentially an agc
amplifier whose gain is controlled by a sample of the L - R signal. The agc amplifier supplies the proper amount of second-harmonic component to optimize separation. When the audio signals are equal and in-phase, the $L-R$ commponent is zero and correspondingly reduces the agc's gain to zero. (This would be the case with mono audio.) Wher, joth channels are present and inphase but not equal, the agc amplifier's gain is only partially reduced.

Kahn developed the ISB system with the objective that two ordinary mono AM receivers could be used to receive stereo. One receiver could be used to tune the lower sideband for the left channel and the other to tune the upper sideband for the right channel. Single AM receivers would need only be tuned on-carrier for mono $L+R$ reception.

The ISB signal can also be recovered with a single receiver. Kahn has outlined various ways in which this can be accomplished. One reception scheme incorporates independent i-f stages. Another scheme employs a single i-f section, as shown in Fig. 3B.

Kahn Communications developed one of the first AM-stereo systems. Leonard Kahn petitioned the FCC for adoption of AM stereo as early as 1959. Since then, he has field tested his AMstereo on WFBR (Baltimore, MD) and XETRA (Tijuana, Mexico).

Motorola (C-QUAM). Motorola has developed yet another technique for transmitting and receiving AM stereo. Its C-QUAM (Compatible Quadrature Modulation) system is perhaps the most convenient means for transmitting two signals on one carrier. Quadrature modulation is perhaps best known for its application to color television, where two separate color signals are transmitted on a redundant single subcarrier.

To best understand the C-QUAM system, let us first look at an AM-stereo system that uses basic quadrature modulation. (This basic discussion on quadrature modulation also applies to the Harris AM-stereo system, which uses modified quadrature modulation.)

A system for transmitting two signals in quadrature is shown in Fig. 4A. Here, two separate transmitters are fed from a single carrier oscillator, with the phase of one carrier leading the other by 90°. One AM transmitter is modulated with left- and the other with right-channel information. The respective outputs are combined and broadcast by a common antenna. The use of two independent transmitters for generation of quadrature modulation is not necessary for practical applications. At the receiver (Fig. 4B), each carrier is detected to derive the left and right audio channels.

AM-stereo quadrature modulation presents a problem in compatibility with

AM STEREO Continued
today's envelope detectors. An envelope detector is a nonlinear device that generates distortion when the quadrature signal contains a significant amount of stereo information. The signal recovered from the mono envelope detector is not the linear sum of L and R and it can also contain a significant amount of distortion (28% maximum). The C-QUAM system attempts to overcome this problem.

In the proposed C-Quam AM-stereo generator (Fig. 5A), the left and right channels are applied to the familiar audio matrix. One carrier is amplitude modulated with $L+R$ audio and another carrier is phase shifted by 90° and amplitude modulated by $L-R$ audio.

The $L+R$ and $L-R$ sidebands from the balanced modulators are combined with the carrier in a summing amplifier. The output of this amplifier is limited to remove AM components. The resultant phase-modulated carrier signal is used in place of the transmitter's crystal oscillator. The $L+R$ information from the matrix is applied to a time-delay network and then to the transmitter.

The C-QUAM system overcomes the mono envelope-detector distortion problems associated with conventional quadrature modulation. The C-QUAM system inherently generates distortion products when it amplitude modulates the PM carrier. These distortion products cancel quadrature distortion in an envelope detector if they are received in the same relative phase and amplitude relationships. This design philosophy has two shortcomings. First, it places critical phase and amplitude requirements on the receiver's i-f section. Secondly, the generated distortion products that cancel the mono envelope detector's distortion appear in the stereo receiver. These distortion terms must be

(A)

(B)

corrected, for which processing circuits are required in every C-QUAM receiver.

The C-QUAM AM-stereo signal can be received by using synchronous detectors, as shown in Fig. 5B. The receiver's i-f is applied to a carrier level modulator and an amplitude limiter. A voltagecontrolled oscillator (vco) is locked inphase with the i-f carrier. The outputs of the vco and limiter provide input signals for the phase-detector circuit. The phase detector and the necessary low-pass filter keep the vco locked in phase quadrature with the i-f carrier signal.

The vco's output is shifted 90° to provide a signal that is in-phase with the receiver's i-f signal. The phase-shifted vco signal is used with a signal from the amplitude limiter to feed the phase detector, which, in turn, drives the carrier level modulator. The carrier level modulator is simply a multiplier that converts the CQUAM i-f signal to a quadrature i-f signal. The left and right signals can be recovered by synchronous detectors. The synchronous detectors (balanced modulators) are supplied with the quadrature i-f signal and i-f carrier generated by the vco and shifted by $\pm 45^{\circ}$.

The left and right outputs of the balanced modulators can be routed to the audio amplifier. To recover the stereo identification signal, sample left and right signals are matrixed together. The matrixed L - R signal feeds a $25-\mathrm{Hz}$ tone detector. The stereo $I D$ tone then turns on a stereo indicator in the receiver and would possibly operate a stereo/ mono switch in the input to the audio amplifiers.

Harris (CPM). The Harris Compatible Phase Multiplex (CPM) system is a lin-ear-additive quadrature modulation scheme. The CPM system amplitude modulates two carrier signals separated in phase by 30°. The left-channel signal amplitude modulates a carrier that lags the transmitted resultant by 15°, and the right-channel signal modulates a carrier that leads by 15°. These two signals are linearly combined (added) to form the CPM signal. This makes Harris' the only proposed linear system.
One method of generating the CPM signal is illustrated in Fig. 6A. An audio matrix produces $L+R$ and reduced $L-$ R components. A low-level, low-frequency stereo ID tone is inserted in the L - R component in a summation amplifier. The $20-$ to $-25-\mathrm{Hz}$ tone is used only for AM stereo signaling purposes. The tone is not heard in mono receivers because it is in the L - R channel only. It will not be heard with stereo receivers because it appears out-of-phase on the

Fig. 6. Harris (CPM)

(A)

two channels and cancels out in the listening environment. Hence, little or no filtering is required in stereo receivers.

The L - R component is applied to a balanced modulator along with a $+90^{\circ}$ phase-shifted carrier. The $L+R$ information is also applied to a balanced modulator along with a normal carrier. The outputs are summed with the proper amount of carrier to produce the CPM signal. The low-level CPM signal could be transmitted as if it were followd by a linear amplifier. However, the interface requirements with current AM transmitter prohibits this.

To interface with current AM transmiters, the CPM signal is separated into envelope and phase-modulated components. An envelope detector derives $L+$ R information from the CPM signal that is applied to the audio input of the transmitter. The CPM signal is also processed through a hard limiter to remove the AM component and yields a PM carrier signal that is used in place of the crystal oscillator in the transmitter.

The reduction in gain in the $L-R$ quadrature channel is the key to providing compatibility with mono receivers and envelope detectors. When the CPM stereo signal is received on a mono receiver using an envelope detector, some distortion (typically 0.5%) results due to the presence of quadrature sidebands. If the $L-R$ quadrature component were
not reduced in transmission, the distortion would be about 11%.

Stereo receivers for the Harris CPM system will use synchronous detectors, rather than envelope detectors, to obviate any distortion in the stereo and mono modes. Such a stereo receiver is detailed in Fig. 6B, which illustrates one of the several ways to recover the CPM signal. Unlike the case for the four other receivers, the CPM receiver does not require the more costly front ends with equal amplitude and phase characteristics to receive low-distortion stereo.

The receiver's i-f signal is first applied to a synchronous detector. The detector serves two purposes. First, it works as a phase detector for the phase-locked loop made up of the loop filter and vco. The vco is locked to the $i-f$ and oscillates 90° out-of-phase with the incoming i-f signal. Secondly, the balanced modulator directly demodulates the quadrature L - R part of the signal. The vco's output signal is shifted 90° and used to demodulate the in-phase $L+R$ component of the signal. Low-pass filters remove all carrier frequency components from the output of the detectors. The $L+$ R and L - R signals are combined in a simple audio matrix to recover independent left and right channels. Amplitude equalization of the reduced $L-R$ component also occurs in the matrix.
The stereo ID tone can easily be re-

Fig. 7. Transmitted spectra of proposed AM stereo systems. Bar through spectral line indicates point that exceeds existing FCC limits for radiated sideband power.
covered. An $L-R$ sample is applied to a $20-\mathrm{to}-25-\mathrm{Hz}$ detector, which turns on a stereo indicator and can activate a stereo/mono mode switch.

Now and the Future. The five AMstereo systems described here have all been field tested. Each system has its own advantages and disadvantages. In its technical evaluation, the FCC will consider a number of performance factors. Paramount among these will be the amount of increase in occupied channel bandwidth; mono and stereo receiver distortion under skywave, selective fading, narrow bandwidth, and mistuning conditions; and stereo separation, fre-

Fig. 8. Monophonic envelope detector distortion through various i.f filters.
quency response, and noise under various receiving conditions.

Other conditions that are certain to come under the FCC's scrutiny include: amount of reduction in mono service area; system implementation into current and future AM receiver designs; and the use of a stereo pilot for indicator lights and/or stereo/mono switching.

System comparison charts and graphs are given in Figs. 7 and 8. Final
adoption and approval of an AM-stereo system based on these and other criteria could occur as early as the spring of 1979.

While the five contenders have been active in designing, testing, and promoting their systems, receiver manufacturers have not been idle. Several receiver manufacturers, including Pioneer and Sansui, have already recommended to the FCC adoption of the Harris AMstereo system because of its technical advantages. Most receiver manufacturers, however, are taking few chances and have breadboarded most of the competing systems. The major semiconductor manufacturers are also gearing up for this new market by designing single-chip AM-stereo detector ICs.

AM stereo will do more than just bring to the public a new two-channel sound medium. It will also usher in higher quality of sound than was heretofore generally available with AM, and greater realism through two-dimensional sound reproduction. The new receivers may have a virtually flat audio response out to $10,000 \mathrm{~Hz}$, compared with current AM receivers whose response is often down 20 dB at 5000 Hz .

The automotive market presents the greatest potential for AM-stereo receivers since AM signals now cover areas where FM does not penetrate.

Receiver manufacturers plan to have AM-stereo receivers on the market two to three months after final FCC approval. AM-stereo receiver marketing estimates go as high as $\$ 20$-billion to supplement the 425 -million mono $A M$ receivers already in use today.

The FCC's decision to adopt AM stereo will undoubtedly have an enormous impact on the radio-listening public. The repercussions are expected to be similar to those at the time the FCC approved color television.

Electronics IQ QUIZ

Lamp circuits A and B are electrically identical. Can you determine which lamp in circuit B corresponds with lamp number 5 in circuit A ?

The lengths of the bars $(A-E)$ represent the resistance values of a group of resistors. If resistors B and D are combined in parallel, which bar would represent the resistance of the combination?

> Which diode circuit (A-D) does not belong in this group?

Can you determine the magnitude of current G leaving the circuit junction?

Which of these resistor combinations ($A-D$) does not belong in this group?

If sketch A is the foil side of a pc board, which sketch, B or C, is the reverse, or component, side?

What reading is indicated on this kilowatt-hour meter?

Match the electronic component symbols (1-3) with their 5 θ

\section*{$\left.2 \square_{A} \prod_{B} \prod_{C} \prod_{0}\right]$

4

If the first five rows of lamps (A-D) use the binary code (a lighted lamp is
a 1) to indicate the numbers in a mathematical series, what number should row E indicate? corresponding mechanical analogies (A-C). belong in this group?

TWO ELECTRONIC SYSTEMS TO PROTECT YOU AND YOUR PROPERTY

AN INFRARED INTRUSION SYSTEM

THE INTRUSION system described here uses an invisible infraredbeam design. When aimed across a doorway, window, or other area under surveillance, it is like having an invisible trip wire attached to an alarm system. To prevent intruders from using another infrared light source in an attempt to "fool" the alarm, the system uses a $700-\mathrm{Hz}$ modulation of the invisible surveillance beam. The operating range can be as much as 50^{\prime} (15.2 m) between transmitter and receiver.

Modulated invisible light beam...a protection range up to 50 feet

Circuit Operation. The infrared transmitter shown in Fig. 1 employs a conventional 555 timer. (IC1) to control Q1, the LED driver, at a frequency of about 700 Hz . Since the waveform is adjusted to be nearly square, the average LED current is about 50 mA . (The LED is on about 0.7 ms and off about 0.7 ms .)

TRANSMITTER PARTS LIST

$\mathrm{C} 1-0.082-\mu \mathrm{F}$ disc
IC1-555 timer
LED1-Discrete infrared light-emitting diode (Monsanto MI20C or ME60 or Motorola HEP P2002)
Q1-2N3641 transistor
RI- 2400 -ohm, $10 \%, 1 / 2$-watt resistor
R2- 11,000 -ohm, $10 \%, 1 / 2$-watt resistor
Misc.-Suitable box (LMB 140 or similar); lens; brass tubing; etc.
Note: Four lenses are available for $\$ 5.00 \mathrm{ppd}$ from Hank Olson, P.O. Box 339, Menlo Park, CA 94025.

The receiver shown in Fig. 2 employs quad operational amplifier IC1, section A of which is used as a high-inputimpedance noninverting $\times 31$ voltagegain amplifier. Phototransistor Q1 is coupled through $C 1$ to the noninverting $(+)$ input of IC1A. Stage IC1B is used as an active bandpass filter whose center frequency is at 700 Hz . This filter has a voltage gain of 10 and a Q of 10 and is tunable to a degree by tuning control R7 so that its operating frequency can be matched to the frequency of the transmitted signal.

The amplified and filtered signal goes to $\times 100$ amplifier IC1C to produce additional gain. Diode detector D1 and its associated time-constant components convert the $700-\mathrm{Hz}$ ac signal to a dc voltage to drive Schmitt trigger IC1D. The trip level of IC1D can be adjusted via TRIP LEVEL control R19 between +5.5 and almost +12 volts. When the dc voltage at TP2 exceeds the voltage at TP1, the output of IC1D at pin 8 is near zero. When the dc voltage at TP2 is less than the preset voltage at TP1, IC1D's output
is almost +12 volts, at which point, Q2 conducts and energizes K1.

Since IC1 operates with a 12 -volt power supply (rather than its normally rated ± 6-volt supply), IC2 is used to generate $\mathrm{V} / 2$ (6 volts) at a low impedance. Note that the output of IC2 is always half the supply voltage, even if that voltage changes slightly. It also supplies V/2 potential at low impedance, without consuming the large amounts of current that would be the case with a resistive voltage divider.

The +5 -volt power supply for the transmitter is shown in two versions in Fig. 3. The ac-only version in A employs a simple rectifier/filter and a common three-terminal voltage regulator. The +12 -volt ac supply for the receiver is shown in Fig. 4A.

Parts B of Figs. 3 and 4 illustrate an ac plus standby battery supply that automatically switches the transmitter/ receiver from line to battery power if the power line should fail or be cut. In the switchover circuits, a simple emitter-follower regulator uses the standby battery

Fig. 1. Timer drives Q1 to turn on LED in simple transmitter.

> Photo shows author's prototype system with receiver at left. Relay contact ratings will determine type and size of alarm that can be connected. Binding posts are for standby-battery power supplies. Test-point holes are located on top of receiver.
as a voltage reference, which consumes very little current, while the main current is passed through the emitter-follower from collector to emitter. When the ac line fails, the base-emitter junction of the emitter-follower acts as a diode to conduct the required current from the battery to the circuit. In the Fig. 3B power supply for the transmitter, a 5-volt regulator is used after the emitter-follower because of the voltage/frequency sensitivity of the 555 timer. Fuse F2 and diode D1 are included in the base circuit to protect against inadvertent batterypolarity reversal.

By adding a resistor between the base and collector of the emitter-follower, a float charge can be used by the rechargeable standby battery. The battery manufacturer's charging specifications can be met by varying the voltage of the transformer and the value of the resistor between the collector and base.

Construction. The transmitter and receiver can be assembled as desired on perforated board or small printed-circuit boards of your own design. Mount LED1 in the transmitter where it can be "beamed" through a lens hole cut into the wall of the box in which the transmitter is housed. Similarly mount Q1 in the receiver's box so that its sensitive surface "looks" through a lens hole. Details for the lens system to use in both the transmitter and the receiver are shown in Fig. 5. Position a small piece of Kodak Wratten \#87 filter between the lens and the phototransistor in the receiver to exclude visible light.

Setting Up. Connect a triggered-
sweep oscilloscope or a frequency counter to pin 3 of capacitor IC1 in the transmitter. With power applied to the circuit, the measured frequency should be very close to 700 Hz . If it is not, slightly alter the value of capacitor C1 by adding a low-value capacitor either in shunt or in series with C1.

Remove the lenses from the system and aim the LED in the transmitter at the phototransistor in the receiver, spacing the two about a foot apart. Connect a high-impedance multimeter (VTVM, DMM, etc.) to TP2 in the receiver (Fig. 2) and adjust potentiometer R7 for a maximum reading on the meter. Connect the

TRANSMITTER POWER SUPPLY PARTS LIST

BP1, BP2-Five-way binding post
$\mathrm{Cl}-0.01-\mu \mathrm{F}, 1-\mathrm{kV}$ disc
$\mathrm{C} 2-2000-\mu \mathrm{F}, 15-\mathrm{V}$ electrolytic
C3-0.22- $\mu \mathrm{F}$
C4- $10-\mu \mathrm{F}, 10$-volt tantalum
D1, D2, D3-1N4002 rectifier diode
F1, F2-1-ampere fuse and holder

IC1—7805 5-volt regulator
Q1—HEP S5000 (Motorola) or D4OD2 (GE) transistor
R1—1-ohm, $10 \%, 1 / 2$-watt resistor
S1—Spst switch
S2-Dpst switch
T1-Triad No. F90X transformer.

Fig. 3. Ac-only version of power supply is shown at (A). Circuit (B) has provision for standby battery operation.

(A)

(B)

RECEIVER POWER SUPPLY PARTS LIST

BP1, BP2-Five way binding post
$\mathrm{Cl}-0.01-\mu \mathrm{F}, 1-\mathrm{kV}$ disc
$\mathrm{C} 2-1000-\mu \mathrm{F}, 25$-volt electrolytic
C3-0.22- $\mu \mathrm{F}$
C4- $10-\mu \mathrm{F}, 15$-volt tantalum
D1, D2, D3-IN4002 rectifier diode F1-1/2-ampere fuse and holder

1C1-7812 12-volt regulator
Q1—HEP S5000 (Motorola) or D4OD2 (GE) transistor
R1-1-ohm, 10%, $1 / 2$-watt resistor
Sl-Spst switch
S2-Dpst switch
T1-Triad No. F9OX transformer

Fig. 4. Ac power supply (A) and battery standby circuit (B).
meter to TP1 and adjust potentiometer R19 for a 6.2 -volt meter reading.

Insert the lenses into the transmitter
and receiver and separate the two units by about $10^{\prime}(3 \mathrm{~m})$. Aim the lensed output of the transmitter at the lensed input
of the receiver and, with the meter connected to TP2, adjust the aiming and lens extension of each unit to maximize the meter reading. Any level at TP2 that is in excess of 6.2 volts set up via R19 should cause K1 to open. You can check this by interrupting the beam with your hand and listening for the click of

Fig. 5. How to construct the lens systems for receiver and transmitter units.
the relay. This fail-safe approach is used so that an alarm will be powered if the $700-\mathrm{Hz}$ modulated infrared beam is interrupted for any reason.

The system as designed here has been used at distances up to 50^{\prime} between the transmitter and receiver with the two lenses carefully aligned. This distance should be adequate for most surveillance applications.

A PORTABLE ALARM FOR SINGLE ENTRIES

Small, battery-operated alarm is sounded by intruder's contact with doorknob.

SILENCE is a primary requirement of a successful burglary. There are many intrusion alarms on the market to break this silence. The one described here is a special-purpose device-a portable door alarm that's especially useful for apartment dwellers or persons
who travel and thus stay frequently at motels or hotels.

The alarm is designed to be hung on the inside doorknob of the entry door. It is tripped by anyone touching the knob or inserting a key. The alarm will sound off even if the would-be intruder wears
rubber gloves. Once tripped, the device cannot be disabled until its reset pushbutton is pressed.

The advantages of such an alarm are: (1) portability; (2) operation independent of the ac power line; (3) easy construction; and (4) low cost. The alarm can be

12 East Delaware Chicago, Illinois 60611 312.664.0020

CIRCLE NO 24 ON FREE INFORMATION CARO
ADVANCED. Electronic Music Productseffect devices to computer controlled modular synthesizers. Select from experimenter's kits, step-by-step product kits or fully assembled professional equipment.

1020 W. Wilshire Blyd. Ohlahoma City, OK 73116

SEND FREE CATALOG TO:

name
address
city
$-$
state \qquad zip

Fina electronics , dept. p
1020 W. WILSHIRE BLVD., OKLAHOMA CITY. OK 73116

PARTS LIST

> A 1-1.5-volt buzzer
> B1-Two 1.5 -volt cells in series
> C1-50-pF disc
> C2--6- $\mu \mathrm{F}, 15$-volt electrolytic
> D1-Any germanium diode
> L1-See text
> Q1- 2 N 5949 or similar FET
> Q2- Low-power npn germanium transistor R1- 150,000 -ohm, $1 / 4$-watt, 10% resistor

R2-10,000-ohm, $1 / 4$-watt, 10% resistor
R3- 5600 -ohm, 1/4-watt, 10% resistor
R4- 500 -ohm trimmer potentiometer
SCR1- 2 N 877 or similar 0.5 -ampere silicon controlled rectifier
S1-Spst switch
S2-Normally closed pushbutton switch
Misc.-Small plastic case; heavy bare copper wire (for hook); machine hardware; hookup wire; solder; etc.

Output of Hartley oscillator (Q1) keeps SCR1 from firing until the impedance at R1/C1 is changed by contact with hook and oscillations cease.
powered by two $1.5-\mathrm{V}$ rechargeable batteries, which in the author's experience provide about ten 24 -hour days of operation before requiring recharging.

Circuit Operation. As shown in the schematic diagram, the alarm's circuit consists of a Hartley oscillator made up of Q1, L1, R1, and C1. The output of the oscillator is generated across the secondary of $L 1$ and is rectified by $D 1$. The rectified signal is then used to forward bias Q2 so that the transistor's collectoremitter voltage is almost zero. This bias voltage is applied to the gate of SCR1, which, because the gate voltage is very close to the anode voltage, prevents the SCR from firing.

The C1/R1 junction and gate of Q1 represent a high $r-f$ impedance that can easily be changed by the contact of any $r-f-$-absorbing object, such as the human hand. The sensitivity of this reaction is controlled by R4, which is connected across the feedback winding of $L 1$.

When the r-f oscillator is loaded by contact with the "hook" (a short metallic connector to the high-impedance junction), the oscillations cease and remove the positive voltage applied to the base of Q2. When this occurs, Q2's collector goes positive. This voltage is applied to the gate of SCR1 to trigger the SCR into conduction. Current now flows through alarm A1, RESET switch S2, and SCR1. Because SCR1 is powered from a dc
source, it will continue to conduct until the RESET switch is operated to momentarily break the conduction path and turn off SCR1.

Construction. The alarm's circuit can be built on any small perforated board or a printed-circuit board of your own design. Be sure, however, to observe good r rf wiring practice, keeping lead lengths as short as possible. (Almost any AM-broadcast-band transistor-radio coil that has a low-impedance secondary winding can be used for L1.)
The small board, alarm, POWER and RESET switches, and two 1.5 -volt cells can be installed in a small plastic box. The hook can be made from a length of heavy bare copper wire, fed through a hole in the box and soldered to the R1/ C1/Q1-gate junction.

Checkout. Place the case in a position so that the wire hook is vertical and away from all metal objects. With the power turned on, touch the hook with your hand. This should cause the alarm to sound. When you press the reset switch (with your hand away from the hook), the alarm should cease sounding. Adjust potentiometer R4 for the desifed tripping sensitivity.
The alarm should be used with metal doorknobs on wooden doors. (All-metal doors may present too much of a load for the alarm's pickup.)

Over 40 new and unique electronic products in this colorful new catalog plus nearly 400 others - all in easy-to-build, money-saving kit form. Read about all the exciting gifts you can give, OR GET!

NEW! VF-2031 Hand-Held Two-Meter Transceiver. 8 -channel simplex with + or -600 kHz offsets giving you a total of 24 transmit and 8 receive channels with only 8 crystals. NEW! ID-4001 Weather Computer. The first computerized instrument to combine all these important weather instrument functions. Displays time, wind direction and magnitude, indoor/outdoor temperature, barometric pressure, even wind chill factor. Computer memory provides useful storage and recall of data.
NEW! Rack-Mount Stereo Components. A powerful and sophisticated stereo amplifier and an LED output indicator are two new products designed for stylish rack-mounting! Both offer the power, features and value Heathkit hi-fi-equipment is famous for! More to come!
NEW! Digital Readout Car Clock with Trip Timer. Versatile clock/timer shows time in hours and minutes, 24 -hour timer that reads to nearest second. Bright, easy-to-read display; low-power circuit that doesn't drain battery.
NEW! Deluxe Dual-Trace Oscilloscope. Low-priced scope features extra-bright traces, selectable triggering, 7-position variable time base, $D C$ to 5 MHz bandwidth.
NEW! Rechargeable Portable Light. Fluorescent light serves as a handy and rugged portable light for outdoor uses. Rechargeable battery power supply for years of dependable, money-saving use!

This NEW Heathkit Catalog is yours PREE
OVER 40 NEW PRODUCTS SEND FOR YOUR COPY NOW!

OR, you can redeem this coupon at your nearest Heathkit Electronic Center where Heathkit products are displayed, sold and serviced. Check the white pages of your phone book for the store nearest you. If coupon is missing, write

Solid State

By Lou Garner

HOLIDAY PROJECTS

WITHOUT question, the most precious gifts are those with a personal touch. For example, hand-crafted bookends express one's feelings much better than a mass-produced set from a department store. With this thought in mind, last December's column was devoted to simple circuits suitable for hobbyist gift projects. The reaction was surprisingly positive in the form of reader correspondence and phone calls. Such an enthusiastic response demands an encore. So for this Holiday Season, another visit to our treasure trove of useful circuits!

A relatively new device from Texas Instruments, Inc. (Box 5012, Dallas, TX 75222) offers some exciting possibilities for simple gift projects. Identified as the type TL489C Analog Level Detector, the inexpensive IC consists of five comparators and output drivers along with a reference voltage network in a single 8-pin plastic miniDIP.

Referring to the block diagram and function table given in Figs. 1A and 1B, respectively, the TL489C accepts a positive analog dc input signal at terminal A (pin 8) and switches open collector outputs Q1 through Q5 (pins 2 to 6) from high to low levels in steps with an increasing input voltage. Initially, all outputs are high (i.e., switch open). When the input voltage increases to a nominal level of 200 mV, Q1 switches to low (that is, on or conducting).

Afterwards, Q2 switches low when the input is raised to 400 $\mathrm{mV}, \mathrm{Q} 1$ remaining low. Next, Q3 switches low when the input is raised to 600 mV , and so on, until all five outputs are low with an input of 1000 mV (or 1 volt). The input level can be increased up to a maximum of 8.0 volts without damage, but there will be no further change in the outputs. If the input voltage is lowered, however, the reverse action will take place. Here, Q5 returns to a high state when the input voltage drops to approximately 800 mV . This is followed similarly by Q4, Q3, Q2, and Q1, as the input voltage is decreased to near zero. Each output can withstand up to 18 volts, sinking up to 40 mA , and is thus capable of driving LEDs, low-power incandescent lamps, sensitive relays, Sonalert alarms, and power transistors as well as all standard logic families (TTL, CMOS, etc.). The device has an (analog) input impedance of approximately 100,000 ohms, and is suitable for operation on dc sources of from 10 to 18 volts.

The TI489C is especially designed to detect and indicate analog voltage levels. It may be combined with suitable sensors or controls and, where appropriate, other circuit elements such as power transistors, op amps, logic gates, or transducers in a wide variety of industrial, scientific, consumer, and automotive applications. It also can be used in simple measuring instruments, automatic controls, timers, games, and alarms. The only real limits to its range of practical applications are the imagination and skill of the circuit designer. Among the scores of Dotential gift projects for the TL489C are such items as soil moisture indicators for amateur gardeners; temperature range
indicators; controls and alarms for tropical fish fanciers, budding chemists, chefs, or serious photographers; simple battery or continuity testers for home handypersons and mechanics; visual and audible action toys for the younger set; family games; and simple light organs for audio enthusiasts and musicians. Basic application circuits for the TL489C are shown in Figs. 2 and 3.

Depending on the source of the dc analog voltage, either of the circuits illustrated in Fig. 2 can be used as a coarse indicator of temperature, moisture, battery voltage, audio signal level, continuity (resistance), or control potentiometer position. Referring, first, to Fig. 2A, the TL489C is used to drive standard incandescent lamps. Shunt "keep alive" resistors are connected to ground from each output (Q1 to Q5) to maintain small currents through each lamp while "off," thus avoiding

B

INPUT A (NOM)	OUTPUTS				
	Q1	Q2	Q3	Q4	Q5
$<\approx 200 \mathrm{mV}$	H	H	H	H	H
$\approx 200-\approx 400 \mathrm{mV}$	L	H	H	H	H
$\approx 400-\approx 600 \mathrm{mV}$	L	L	H	H	H
$\approx 600-\approx 800 \mathrm{mV}$	L	L	L	H	H
$\approx 800-\approx 1000 \mathrm{mV}$	L	L	L	L	H
$>\approx 1000 \mathrm{mV}$	L	L	L	L	L

Fig. 1. Block diagram (A) and function table (B) of Texas Instruments' TL489C.

Fig. 2. TL489C level indicators: with incandescent lamps (A); with LEDs (B).
the high inrush currents which occur when voltages are first applied to cold lamp filaments. The resistance values required will depend on the source voltage and on the characteristics of the lamps used.

Owing to the device's high input impedance, an input bypass capacitor may be needed in some applications to prevent false operation by noise signals. As indicated, the value of the bypass may range from as little as $0.001 \mu \mathrm{~F}$ to as much as $10 \mu \mathrm{~F}$. In the second circuit, Fig. 2B, LED output indicators are used, each with a suitable series resistor to limit its maximum current to safe limits, depending on the source voltage. If desired, different types (and colors) of LEDs may be used for each output, with the corresponding series resistor value adjusted accordingly. The second circuit has another interesting feature. Note that Q1's output is returned to the analog input through a simple RC network. This arrangement causes LED $L 1$ to flash periodically when the input level at point P is below 200 mV .

Either circuit can be used as a temperature indicator by connecting an appropriate thermistor (serving as a sensor) between the analog input terminal of the input potentiometer and a positive dc source voltage. The potentiometer is then used to adjust the resulting instrument to cover the desired range within the limits established by the thermistor's characteristics. As the temperature increases above the minimum preset value, one or more lamps will be turned on.

If a soil moisture indicator is preferred-a nice gift for the amateur gardener-the analog input terminal should be connected to a spike probe, with a second probe connected to a positive dc source through a series current limiting resistor. For consistent test results, the two probes should be mounted in a rigid holder to maintain a fixed separation between them. In use, the spike probe assembly is simply pressed into the soil to be checked. One or more of the lamps will light, depending on the soil's conductivity (relative moisture content). Since soil conductivity will vary with its mineral content (dissolved salts) as well as with moisture, the potentiometer should be used to adjust the unit's overall sensitivity for local conditions.

Replace the moisture tester's fixed probe assembly with flexible lead probes and you have a dandy continuity tester for the home handyperson or weekend mechanic. If you prefer a simple battery tester as a gift, simply connect a known good cell between the analog input terminal (positive) of either circuit and ground, adjusting the potentiometer until the first lamp lights. If a standard 1.5 -volt cell is used for this calibra-
tion procedure, a 3-volt battery (if good) will light two lamps; 4.5 volts, three lamps; 6 volts, four; and, finally, 7.5 volts or more, all five. For your gift, you may prefer to replace the adjustable potentiometer with a fixed resistor voltage divider, providing extra terminals for checking batteries up to, say, 24 volts or more.

A simple, exciting and delightful toy for the younger set may be created using the same basic circuits. Assemble the circuit in a medium-size cabinet or case and provide a large control knob for the potentiometer. Add a battery power supply and spst on-off switch. Use different colored lamps in each position, replacing at least one with a Sonalert. Decorate with suitable decals or painted designs and give each item an appropriate label. One lamp, for example, might be marked ROCKET FUEL, another NUCLEAR REACTOR, another SENSORS, another RED ALERT, and so on, with, perhaps, ATtACK ALARM for the Sonalert device, master control for the potentiometer knob, and MAIN GENERATORS for the power switch. If desired, two or more circuits could be assembled in a single cabinet, with a combination of slide and rotary potentiometers for the "controls." Sparked by their own imagination, most youngsters could spend many happy hours playing "space wars" or other games with such a toy. But make sure you have an ample supply of replacement batteries!
Additional TL489C application circuits suitable for gift projects are illustrated in Fig. 3. The first, Fig. 3A, employs standard logic to develop an output control voltage for an alarm or other purposes if the analog input voltage either drops below or exceeds preestablished limits. Here, only three of the device's five outputs are used. Outputs Q1 and Q3 are low and output Q5 is high (that is, LEDs L1 and L2 are on, L3 is off) as long as the analog input voltage is at its nominal center value but below its maximum limit.

If the input voltage drops a little, but is still above its minimum value, $L 2$ may turn off, but $L 1$ will remain on and there will be no alarm signal for the on gate. Similarly, if the input voltage goes above its nominal center value, but remains below its maximum limit, both L1 and L2 will remain on and L3 off with, again, no alarm output from the OR gate. If the analog input voltage drops below its minimum limit, however, Q1 and Q3 will go high and L1 and L2 will turn off. With Q1 high, though, the OR gate's output will go high to provide the required alarm control signal. On the other hand, if the input voltage exceeds the maximum limit, Q1, Q3 and Q5 all will go low, all three LEDs will be on, and the low at Q5, applied to the OR gate input through an inverter, will cause the OR gate's

Fig. 3. Three level indicator (A) has alarm logic; control circuit (B) with selectable hysteresis.
output to go high. Again, this will develop a signal to activate the alarm.

Depending on the type of sensor used to develop the analog input voltage, this circuit can be used in burglar and fire alarm systems; in level alarms for water, fuel, or other tanks; in over/under range temperature alarms, in humidity control alarms; in hydraulic or air pressure alarms; or, for that matter, in any system requiring that an alarm or other action be initiated whenever a physical or ambient condition exceeds a predetermined value range. It may be used in such household projects as temperature alarms for hair dryers, soldering irons, photographic chemical baths, or tropical fish tanks, in humidity alarms for basements or home greenhouses, in

TapeTaih magazine
 for your
 TapeTalkiM, a truly unique publication for the first generation of computer ploneers, is a bl-monthly "'magazine" exclusively for the TRS. 80 system
 All on cassettejust load it in.
 We are dedicated to the premise that you deserve the full potentlal from your TRS-80

 TRS-80

Pease enter my subscription to TapeTalk for: $\square 1$ year-U.S. $\$ 30.00 \square 2$ years-U.S. $\$ 54.00$ \square C.O.D. \square Visa \square Master Charge Card\#
Exp. Date
Signature
Name (print)
Address
City
\qquad
Zip Code \qquad
Call TOLL FREE - 1-800-835-2246
-TRS-80 is a product of Radio Shack., div. Tandy Corp
"low-level" warning alarms for household fuel or water tanks, or even in "too dry" alarms for lawns or indoor plants, as well as in dozens of other useful gift projects.

Using a dpst relay instead of digital logic, the circuit shown in Fig. 3B differs from the one just examined. It is basically an electronic limit switch, acting either to switch on or shut off an electrical, electromagnetic, or electromechanical device whenever the analog input voltage is outside the preset, (but adjustable) limits. With the arrangement shown, the circuit responds to temperature changes, switching the blower fan on when the thermistor sensor temperature reaches a given level and off when that temperature drops below a second level. For other applications, the blower fan might be replaced by a pump, heater, lamp, horn, solenoid valve, or other device, and the thermistor by a photo-resistive cell, varister, humidity detector, semiconductor pressure transducer, or other sensor, depending on the response characteristics needed.

In operation, switch S1 selects the temperature at which the blower fan is furned on, while S2 sets the temperature at which it is switched off. Initially, of course, the relay is open, the blower fan off, and all Q outputs are "high." As the thermistor temperature rises, the analog input voltage increases and Q1, Q2 and Q3 go "low" in successive order. With the switch positions shown, current can flow through the relay coil and isolation diode when Q3 goes low. The relay closes, switching the blower fan on. As the thermistor cools, Q3 will go "high," but relay current continues to flow through the second set of contacts and Q2, which is still "low," and the relay is heid closed. Only after the thermistor has cooled enough for Q2 to go "high" does the relay drop out, switching off the blower fan and re-establishing the initial conditions.

The difference between the "turn on" and "turn off" temperatures is the hysteresis of the circuit. In terms of the analog input voltage, this can be as little as 10 mV when S 1 and S2 are both set to the same " Q " output, to as much as 1000 mV (or 1.0 V) when S1 is set to Q5 and S2 to Q1. The input potentiometer determines the circuit's overall sensitivity and, therefore, the actual temperature at which initial operation occurs, regardless of the switch positions (within the limits established by the thermistor characteristics, naturally). Where other types of input sensors are used, hysteresis limits may represent two different pressures, liquid levels, humidity conditions, light intensities, line voltages, sound levels, wind speeds, weights, or other parameters rather than temperature.

Timers make excellent off-beat gifts. They are good to have in many types of games (chess, for example) and, in addition, can be used by housewives, photographers, and amateur

Fig. 4. Tuo pasy-to-make timer circuils:
(A) using five-transistor IC array;
(B) timer can be used to switch ac loads.
chefs, as well as teenagers who overuse the family telephone. Two easy-to-duplicate timer circuits are illustrated in Fig. 4. Both were abstracted from among the dozens of practical circuits described in Circuit Ideas for RCA Linear ICs, publication Number 2M1206, a 20-page, booklet issued by RCA's Solid State Division (Box 3200, Somerville, NJ 08876).

Referring, first, to Fig. 4A, all the active solid-state devices required for this simple 10 -second timer are contained in a single CA-3096 five-transistor array. Assembled in a 16-pin plastic DIP, the CA-3096 contains three npn and two pnp silicon transistors. Two of the npn transistor elements, Q1 and Q2, are interconnected to form a bistable switch while the third, Q3, serves as a driver for the lamp load. One of the pnp transistors, Q5, is diode-connected and used in the base bias network for the remaining pnp type, Q4. In operation, the $5-\mu \mathrm{F}$ capacitor is charged slowly through Q4 at a rate determined by the bias potentiometer setting until there is sufficient voltage to trip the bistable switch, Q1-Q2. At this point, Q2 is switched to a high-impedance state and a positive base bias is applied to Q3, permitting collector current to flow through the lamp load, indicating the end of the timed interval.

There is no provision in the original design for resetting this timer circuit except by switching the source power off. If this feature is needed, however, it can be added quite easily by connecting a normally open, momentary-contact, spst pushbutton switch across the timing capacitor. Depressing and releasing the switch will discharge the capacitor and restart the timing interval. Other modifications may be made for special applications, at the builder's option. If a longer or shorter timing interval is needed, for example, other values can be used for the timing capacitor; a lower value (less than $5 \mu \mathrm{~F}$) will re-

We have immediate openings for people with technical training and one or more years of experience in the maintenance and repair of electronic equipment. These positions require travel ranging from a few days to several months at a time. Duties will involve using your technical knowledge and the latest test equipment to troubleshoot, diagnose and repair a broad range of sophisticated PABX and central telephone office equipment.
We offer excellent starting salaries and company benefits. If qualified, please send complete resume including salary history to Tom Edminson, ITT Business Communica tions Division
2000 S. Wolf Rd., Des Plaines, Illinois 60018.

TППП Business Communications Division

An Equal Opportunity Employer, M/F

CIRCLE NO 60 ON FREE INFORMATION CARD

duce the timed interval, a larger value will increase it. For control applications, the lamp load could be replaced by a suitable sensitive relay or, for alarms, by a low-voltage buzzer.

Where wider range and greater versatility are needed, as in a general purpose household timer, the circuit shown in Fig. 4 B may be used. Somewhat more complex and hence more expensive to duplicate than the simpler design, this circuit features step-selectable maximum ranges of from three minutes to four hours and is capable of switching (ac) line operated loads. Here, a type CA3094A programmable power switch/ amplifier serves as the active device, supplying a gate control signal to a standard Triac. In operation, depressing spst pushbutton switch S1 charges timing capacitor C1 from the dc source through R5. The voltage across C1 (E1) is applied to the amplifier's noninverting (+) input and is compared to reference voltage (E2), applied to the inverting (-) input through an isolation diode by control R6.

As long as E1 is greater than E2, the amplifier supplies a positive gate voltage to the Triac, holding the device in a conducting or on state and permitting current flow through the load. Capacitor C1 will slowly discharge through the amplifier's input impedance at a rate determined by the amplifier's input bias. This, in turn, is established by bias control resistors R1 through R4. Once C1 has discharged to the point where E2 exceeds E1, there is no longer a positive gate voltage applied to the Triac. Consequently, this device switches off. The total time during which the Triac supplies current to the load, then, depends on E2's initial value. This, in turn, reflects R6's adjustment and the input bias established by bias resistors (R1 to R4) selected by time range selector switch S2. De-
pending on the type of Triac used, the circuit is capable of switching either 120 - or $240-\mathrm{V}$ ac loads.

RCA suggests values of 0.51 megohm for R1, 5.1 megohms for R2, 22 megohms for R3, and 44 megohms for R4 to provide maximum timing periods for each range of 3 minutes, 30 minutes, 2 hours, and 4 hours, respectively. Voltage divider resistors $R 5$ and R7 should be 2700 -ohm, $1 / 2$-watt types, gate-current limiting resistor R8 a 1500 -ohm, $1 / 2$-watt unit, and timing control R6 a standard 50,000-ohm potentiometer with a linear taper. A type T2302B Triac is recommended for controlling $120-\mathrm{V}$ ac loads; a type T2302D for $240-\mathrm{V}$ applications. The $30-\mathrm{V}$ dc source required for timer circuit operation may be obtained either from batteries or a well-filtered line-operated power supply.

On the other hand, if you're not turned on by timers and are seeking an inexpensive "stocking stuffer" gift for a friend whose interest, as yours, is electronics, you might consider giving the person one of the versatile ICs described in recent columns: perhaps the SN76477 complex sound generator described last October, an 8038 waveform generator or LH0094 multifunction converter, or TL489C analog level detector.

Should you decide on ICs as gifts, be sure to include data sheets and, if available, application notes on the device(s), together with tear sheets of any magazine articles you have featuring the units. If the device is one you've used in projects, you might also include a sketch of your favorite circuit application to add an extra personal touch to your gift.
If you don't feel that you or the recipient of your gift aresufficiently adept at building a project, see the article on page 74 for items the PE editors think would make good gifts.

Unique, New S@NIC SENTRY from Delta Blows the Horn on Vehicle Burglary and Intrusion...

...and robs would-be thieves of their most important conspirators... Opportunity, Anonymity, and Concealment. A silent vigilant sentinel, the Sonic Sentry literally blows the horn on any intrusion into the field of harmless, invisible ultrasonic protection that is cast throughout the interior of the vehicle.
Anyone who has a 12 -volt vehicle with a horn or other noisemaker, and a hard exterior surface can enjoy Sonic Sentry security. And because it's manufactured by Delta Products, you know it's backed by an established firm with an industry-wide reputation for product integrity and superior service.
Sonic Sentry is meticulously engineered to incorporate the best in ultrasonics with built-in safeguards against false alarm. In addition:

1. Installation is easy, involving only three simple wire connections.
2. There are no holes to drill for installation.
3. Sonic Sentry is keyless and includes entry/exit delay, and automatic one minute alarm timer.
4. It protects the interior of any van, camper, mobile home or trailer, as well as automobiles, trucks, etc.
5. Sonic Sentry is the only vehicle ultrasonic designed by a professional electronics company with extensive experience in the field of ultrasonics

Hobby Scene / \ll

By John McVeigh

HOW TO FIND PIV

Abstract

Q. I recently bought a batch of surplus diodes, most of them unmarked. How can I determine the PIV of each component without destroying it in the process? -John F. Eldredge, Nashville, TN.

A. The V-I characteristic of a silicon diode is shown in the diagram at A. When the diode is forward biased by a voltage equal to V_{F}, the diode turns on and conducts heavily. Under reverse bias conditions, current through the diode remains

(A)
infinitesimal-on the order of nanoam-peres-until the breakdown voltage V_{BD} is reached. At that point, the diode "avalanches" into conduction and will destroy itself unless the current through it is limited by an external factor. A silicon diode is rated by a peak inverse voltage (PIV) that specifies the reverse voltage that the diode can withstand without avalanching. Diodes intended for power rectification applications generally have a PIV rating of greater than 50 volts. Some are rated as high as 1000 volts or more. Silicon switching and signal diodes usually have smaller PIV ratings -on the order of 35 volts or so.
The PIV of a silicon diode can be determined nondestructively by using the circuit shown at B. The variable voltage source applies a controlled reverse bias across the diode. As the test button is pressed and the supply voltage is increased, the milliammeter and voltmeter should be monitored. At a certain output voltage, the voltage across the diode will no longer continue to rise and the milliammeter will begin to indicate some current through the diode. The voltage as read on the voltmeter is the $V_{B D}$ of
the diode. Use the diode under test only in an application in which it will not be subjected to this voltage. Also, leave a safety margin so that the diode will not be operating near the breakdown point.

The variable power supply shown in the schematic should have a peak output somewhat greater than the expected PIV of the diodes. In the case of power rectifiers, this can be as high as 1000 volts. If you want to test such reverse voltages, EMPLOY CAUTION! Never connect a diode to binding posts BP1 and BP2 while depressing S1. Take care when wiring the circuit.

If a variable voltage supply with an adequate range of adjustment is not available, you can use a fixed supply and a potentiometer. Connect the poten-

(B)
tiometer across the supply with the wiper to the 2.2-megohm resistor. A potentiometer with a maximum resistance of 50,000 ohms or more will be suitable. Determine the power rating of the potentiometer using the equation $P=V 2 / R$ where R is its resistance and V is the maximum output voltage of the supply. Again, take care if you are using an HV supply. Employ only a pushbutton switch or spring-loaded toggle switch (normally open) for S1 that is rated to withstand the peak output of the supply.

DETERMINING COAX LOSSES

Q. I am planning to install a master television antenna system in my home. One problem-I can't find out how to determine coaxial cable attenuation. Is there a formula to determine attenuation per 100 feet (30.5 m) of RG-59/U cable, or any other type of coax?-Charles H. Lake, Jr., Independence, MO.
A. Transmission lines can be described by so-called distributed constants: R,
the resistance of the conductors in ohms per foot or meter; L, inductance per unit length; G, the conductivity of the insulating dielectric in ohms per unit length; and C, the capacitance between the conductors in microfarads per unit length. Each type of line has its own propagation constant γ equal to: $(R+i L)$ $(G+j C)$. The propagation constant is also expressed as $\gamma=\alpha+j \beta$, where α is an attenuation factor in nepers per unit length (one neper is 0.115 decibels) and β is a phase factor in radians per unit length. We can approximate α as $1 / 2(R \sqrt{C / L}+G \sqrt{L / C})$ and β as $\omega L C$ where ω is the angular frequency in radians/ second. Thus, if we know the four distributed constants, we can determine the attenuation and phase-shift factors of the line.

However, measuring the distributed constants requires test equipment that most of us don't have. Fortunately, the results of such measurements are readily available. On page 24-41 of Reference Data for Radio Engineers (published by Howard W. Sams \& Co.) a comprehensive plot of attenuation of various types of cables in dB per 100^{\prime} is shown. A similar graph appears on page 93 of The ARRL Antenna Book (published by the American Radio Relay League). The graphs are valid for cable in good condition, cable that has not deteriorated from the effects of the environment. If you don't have either of these books, you'll probably find a copy in any engineering school's library.

Cable losses can be determined empirically in the following manner. Terminate one end of the cable with a carbon resistor whose resistance equals the characteristic impedance of cable. Then, connect a signal generator whose source impedance equals the characteristic impedance of the line to the other end. Adjust the generator so that it produces a convenient output level as measured on an oscilloscope or r-f voltmeter at the frequency of interest.

The vertical bandwidth of the oscilloscope or the response of the voltmeter must be such that the instrument is calibrated at the frequency of measurement. Also, the instrument must be coupled to the line so that it disturbs the conditions on it as little as possible.
Measure the signal voltage at the output of the signal generator and that at the matched termination. The attenuation exhibited by the transmission can then be determined using the formula:
$A(d B)=20 \log \left(V_{I N} / V_{O U T}\right)$.

[^0]\square Master Handbook of Ham Radio Circuits. 392 p.. 301 il \square Ham Radio Incentive Licensing Guide. 154 p.. 70 il. Programming Microprocessors. 280 p .102 il The "Compulator" Book - Build Super Calculators 322 p | Master Iransistor/IC Substitution Handbook 518 p., 165 II | $\$ 795$ |
| :--- | :--- | :--- | :--- | \square Home-Brew HF/VHF Antenna Handhook. 210 p. 143 is. CBer's Handy Manual of SSB. $80 \mathrm{p} . \mathrm{A} 42 \mathrm{il}$.

Beginner's Gde. Making Electronic Gadgeis. 140 p., 113 II $\$ 4.95$ Modern Oigital Communications. 308 p., 122 it.
Microprocessor Progr.-Computer Hobbyists 378 p. 219 it. 88.95 Hilus. Dict.-Broadcast/CATV/Telecommunications. 420 p. $\$ 8.95$ Linear IC Applications Handbook. 280 p.. 183 il. Build -It Book of Optoelectronic Projects. 238 p. 175 il. How to Use AF \& RF Signal Generators. 238 p . 162 il. Model Railroad Electronics. 308 p., 218 il.
The ABC Book of Hi-Fi/Audio Projects. 182 p. 131 il Complete Hdbk. of Electrical/House Wiring 476 p .197 il $\$ 6.95$ 88 Practical 0 p Amp Circuits You Can Build. 140 p.. 120 it. $\$ 4.95$ How to Build Metal/Treasure Locators. 140 p.. 60 it. $\$ 3.95$
SENO MO MONEYY We II invoice you on 10-DAY FREE TRIAL Clid entire ad to order 100% guaranteed or your money retunded TAB BOOKS ${ }^{\text {afo }} \mathrm{REDB}$

CIRCLE NO 57 DM REF MFORMATOM CARD
Use Quick-Wedge to fasten leads, wire in panelights, connect test equipment, install components

> They do all that ordinary screwdrivers do, PLUS they hold and start the screw

Screw-holding screwdrivers
Unconditionally guaranteed.
BUY A SET TODAY
See your dealer or write to:
Kedman Company, P.O. Box 25667.
Salt Lake City, Utah 84125

Corner

Experimenter's

By Forrest M. Mirris

THE 74154 DEMULTIPLEXER

AMULTIPLEXER, as you'll recall from last month's column, has a set of address inputs that selects one of several data inputs. The logic level at the selected input is then routed to the chip's single output pin. A demultiplexer,

Fig. 1. Comparing multiplexer and demultiplexer.
as you might expect, performs the opposite function. A set of address inputs selects one of several outputs. The binary status of a single input is then steered to the selected output.

Figure 1 will help you visualize the essential difference between a multiplexer (MUX) and a demultiplexer (DEMUX).

Simple 1-0f-2 Demultiplexer. Figure 2 shows a simple single-input DEMUX with two outputs and one output select (address) line. The circuit is called a 1-of-2 DEMUX since the logic state of the single input is steered to one of the two outputs at any given time according
to the status of the output select line. The output select line serves the same function as the data select input of a MUX. The logic level at the output select line is called an address because each possible output select logic state, in this case 0 and 1 , selects one and only one output.

Referring to Fig. 2, assume the data input is low (logic 0). When the address at the output select line is logic 0 , NAND gate A is selected and the logic 0 at the data input appears at the A output. The B output remains at logic 1. When the output select address is logic 1, NAND gate B is selected and the logic 0 at the data input is steered to the B output. Next, assume the data input is logic 1. The outputs of both NAND gates will be high no matter which is selected by the output select address.

Try proving this explanation for yourself by following all possible input and address combinations through the circuit. If you need help, Fig. 2 also shows the truth tables for the 1-of-2 DEMUX as well as those of the gates and inverters of which it is composed.

Using Demultiplexers as Decod-
ers. By definition, a logic decoder con-

Fig. 2. Logic diagram and truth tables for a simple 1-of-2 demultiplexer.
verts a binary input into some other number system, often octal, decimal or hexadecimal. A demultiplexer can be easily transformed into a decoder by placing its data input at the low state. This will cause the output selected by the input address to be low while all other outputs are high. If the DEMUX has four address lines and sixteen outputs, applying a sequential binary count ($0000,0001,0010 \ldots 1111$) to the address lines will cause the respective outputs to sequentially drop to logic 0 one at a time.
For a better understanding of how a DEMUX can be used as a decoder, mentally assign the data input in Fig. 2 to ground (low). Then label outputs A and B with the digits (not bits) 0 and 1 . If the outputs are connected to LEDs, the 0 digit LED will glow when the address, which has now become the binary input, is logic 0 and the 1 digit LED will glow when the binary input is logic 1 . Demultiplexers have many applications when used as decoders.

Advanced Demultiplexers. You can easily breadboard a working version

Fig. 3. Pin oulline of the 74154 demulliplexer.
of the 1-of-2 DEMUX in Fig. 2. This circuit, however, has relatively limited utility. Fortunately, a number of more versatile demultiplexers are readily available. These include the 74139, 74155 and 74156 dual 1-of-4 and the 74154 1-of-16 demultiplexers. CMOS demultiplexers are also available.

The 74154 Demultiplexer/Decoder. Figure 3 is the pin outline of the 74154 DEMUX. This chip has four address inputs and sixteen outputs. Two data inputs, G1 and G2, are provided. When both data inputs are at logic 0 , the circuit functions as a binary-to-hexadecimal, or, as it is also known, a 4 -line-to-16-line decoder. Demultiplexing is performed when one input is kept at logDECEMBER 1978 (Continued on page 87)

The world of electronics gee-wizardry

-YOURS FREE.

32-pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send 75% for first class mail.

108 New South Road Hicksville, N.Y. 11801

CIRCLE MO B6 ON FREE INORMMTION CARD

CIRCLE NO 10 ON FREE INFORMATION CARD

ADDING RAM TOA HEX KEYPAD ENCODER

The last Project of the Month described a hexadecimal keypad encoder designed around a 74150 1-of-16 multiplexer. That encoder can be used to load 4-bit nibbles onto a 4-bit microcomputer bus and to write data into a 4-bit RAM such as the 7489. The 7489 TTL chip was the subject of the December 1977 and January 1978 installments of Experimenter's Corner.

As this month's project, we will add a 7489 to the keyboard encoder. This results in a circuit with many applications, particularly if a clock and counter is included to enable the data stored in the RAM to be read out a nibble at a time at an adjustable rate. The circuit can be used as is to store hex numbers such as microprocessor instructions and data, or it can be used as a simple controller.

As a controller, the circuit can be connected to a D/A converter such as the one described in the August 1978 installment of Experimenter's Corner to generate programmable waveforms or even brief, 16note electronic tunes. The D/A converter will also permit the speed of a motor or the brightness of a lamp to be controlled.
The schematic diagram shows a RAM
plus clock and counter you can add to the keyboard encoder described last month. If you duplicated the prototype, there should be just enough space on the circuit board for the additional circuitry.

Operation of the RAM and its associated circuits is as follows. The 74173 data storage register in the keyboard encoder is connected directly to the inputs of the 7489 RAM. When S1 is in the LOAD position, the RAM deposits the nibble stored in the 74173 into the RAM location corresponding to the address selected by the 74193.

Normally, the data loading process is begun at RAM address 0000 by opening normally closed pushbutton S2. To load the first nibble into the RAM, S3 is toggled to its DEPOSIT position and then back to READY. This delivers a single, bounce-free pulse to the 74193 counter and advances the counter to the next address (0001). The nibble in the 74173 is then safely loaded in RAM Iocation 0000. Incidentally, the bounce-free operation of S3 is provided by an RS flip-flop made from one half of a 7400 quad NAND gate.

The RAM is now ready to receive a second nibble. If the same nibble is to be loaded in the second RAM slot as was in the first, S3 is toggled again. Otherwise, a new key on the hex keyboard is pressed and S3 toggled to deposit the new nibble at RAM address 0001 and increment the counter to address 0010.

This data loading process continues until all sixteen address slots in the 7489 are occupied. After the final nibble is selected, however, the DEPOSIT switch is not toggled. Rather, S1 is switched to READY. This preserves the data in address 1111 and prevents the nibble in address 0000 from being inadvertently overwritten by the data in address 1111.

When St is switched from load to READY, clock pulses from the 555 are delivered to the 74193 and the circuit auto-

matically flashes out the data stored in the RAM a nibble at a time at a rate determined by trimmer R1.

The 7404 hex inverter between the 7489 and the LEDs connected to the RAM outputs is required to invert the RAM's data back to its original form. This is so because the RAM stores the complement of data at its input. (You can eliminate the 7404 if you reverse the hex numbering sequence on the keyboard switches.)

The photograph shows the prototype hex keyboard encoder plus data storage circuit. As you can see, there's just enough room for all the components on the circuit board.

Be sure you have made no wiring errors before connecting a 5 -volt supply to the completed circuit. Then press pushbutton S2 to reset the counter. All the address LEDs should turn on to indicate 0000 .

Test the circuit by loading each RAM address with its hex counterpart (press 0 for address 0000, 1 for 0001, etc.). Remember to toggle S3 to deposit each keyboard entry except the final one. After the final entry, switch S2 from load to Ready and watch the address and RAM LED readouts. They should flash an identical 0000-1111 sequence as the counter cycles the RAM through each of its storage slots. Adjust R1 to obtain a reasonably slow clock rate if necessary.

You can manually single-step the RAM through each of its addresses by using two separate switches for S1. The switch at pin 5 of the 74193 is toggled to LOAD while the switch at pin 3 of the 7489 is left at READY. Switch S3 is then toggled to advance the RAM to successive addresses.

After the data loader is running properly, consider connecting the RAM outputs to a D/A converter and using the circuit as a controller. You will find that the data storage hex keyboard will do many things a microprocessor does but with less trouble.

You can also connect the RAM outputs to the address inputs of a 74154 decoder whose outputs are connected to LEDs, relays or tone generators. This will provide a very versatile control capability.
(Continued from page 85)
ic 0 and the other used as a data input. When the single data input is at logic 0 , the output selected by the address is at

Fig. 4. How pins of the 74154 are organized.
logic 0 and all other outputs are at logic 1. When the data input is at logic 1, all outputs, including the selected one, are logic 1.

Operation of the 74154 is more easily understood by referring to Fig. 4. This figure reveals the 74154 DEMUX to be a mirror image of the 74150 MUX which was the subject of last month's Experimenter's Corner.

A Demonstration Demultiplexer.

Figure 5 is a circuit you can make to demonstrate the operation of the 74154 as a DEMUX. The circuit has no practical applications as shown, but they can be implemented by replacing the data input and/or address switches with logic signals from other circuits.

Binary-to-Hexadecimal Decoder.
A somewhat more practical application

Fig. 6. A 74154 binary-tohexadecimal decoder.
for the 74154 is shown in Fig. 6. Both inputs of the 74154 are at logic 0 (grounded) to exploit the decoder capabilities of the chip. In operation, a 4-bit nibble at the address inputs is decoded by the 74154. One of the sixteen outputs from the 74154 then goes low while all the others stay high. The LED connected to the low output glows to indicate the de-

Fig. 5. A 74154 demultiplexer demonstrator circuit.

mitlotnoh

"A Teahnologitial Masterpiect..."

Mclniosh C 32

"Mcre Than a Preamplifier"

McIntosh has received peerless acclaim from prorinent product testirg abora:ories and outstanding international recosnition you can learn why the "more than a preanplfier" C 32 has been selected for these unizue hencrs.

Send us your narre and address and we ll send you the complete prodsct reviews and data on all Mcintosh products. copies of the international awards, and a North American FM direstory. You will understand why Mcintosh product research and deve opnent atways has the appearance and technological look to the tuture.

Keep up to date. Send now - -

McIntosh Laboratory Inc.
Box 96 East Side Station Binghamton, NY 13904

Name
Address
City \qquad State \qquad Zip

If you are in a hurry for your catalog please send the coupon to Mclntosin. For non-rush service send the Reader Service Card to the magazine

Cirale no 34 on free infjrmation camo

FREE GTHIE

CATALOG

Audio-Computers Instruments Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY SAN ANTONIO, TEXAS 78216

CIRCLE NO 55 ON RREE INFORMATION GARD
Put Professional Knowledge and a COLLEGE DEGREE
in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E-80

Grantham College of Engineering
 2000 Stoner Avenue

P. O. Box 25992

Los Angeles, CA 90025
coded number. Although the circuit is a binary-to-hexadecimal decoder, it can convert a 4-bit binary number into its counterpart in any other number system by properly labeling the output LEDs.

Digital Sequencer. Figure 7 shows a circuit which has numerous applications, a digital sequencer. In operation, the 555 clock delivers a train of pulses to the input of a 74193 4-bit counter. The counter outputs are applied to the address inputs of a 74154, and its 16 outputs are sequentially strobed from high to low.

In this circuit, the 74154 is operated as a 4 -line-to-16-line decoder, but it can
pulse every 0.05 seconds (50 milliseconds) to use the circuit as a reaction tester. Connect an spst toggle switch and a normally closed pushbutton switch in series between pin 3 of the 555 and pin 5 of the 74193. Have a friend close the toggle switch after a random interval to start the test. As soon as the first LED glows, press the pushbutton to stop the clock. The number of the lit LED indicates your reaction time.

How can you calibrate the circuit to indicate 50 milliseconds per LED? One way is to use an oscilloscope with a calibrated horizontal timebase. Alternatively, use a digital stopwatch and adjust R1

also be used as a DEMUX by disconnecting one of the two data input lines (pins 18 and 19) from ground and strobing it with a logic 0 signal when an output is desired. In either case, the outputs of the 74154 can be used to drive LEDs, relays, transistors or SCRs. They can also be connected to other logic circuits or even other DEMUX chips to provide expanded decoding capability.

If the 555 clock is calibrated to emit pulses at known intervals, the sequencer can be used as a simple clock. Applications include darkroom timing when the clock operates at 1 Hz and timing phone calls when the clock emits one pulse per minute.

Adjust the clock so that it generates a
until the first LED glows once each 0.8 seconds when the counter is running. Each LED will then indicate $1 / 16$ th of 0.8 second or 50 milliseconds.

Programmable Sequencer. The 74193 counter has a very useful pin designated CLEAR. Normally this pin is held low by connecting it to ground. If CLEAR goes high, the counter immediately resets or clears to 0000 .
This feature makes possible a programmable digital sequencer. Suppose you want to sequence through only the first ten of the sixteen outputs of the 74154. Simply connect the eleventh output to the CLEAR pin of the 74193 through an inverter. As soon as the elev-
enth output goes low, the CLEAR input of the 74193 goes high and resets the counter. The cycle then begins anew at address 0000 .

Reader Letters. I would like to thank those of you who have written expressing interest in this column. Your comments and suggestions are often taken into consideration when topics for future columns are selected. If you would like to suggest a topic for the future installment or comment upon a past one, I would appreciate hearing from you. Address your card or letter to Experimenter's Corner in care of Popular ElecTRONICS. Unfortunately the volume of correspondence received far exceeds the time available for composing replies. I will, however, attempt to provide a brief response to readers who include a stamped, self-addressed envelope.

Some readers have requested schematic diagrams for various circuits they wish to build. If the requested circuit appears to have the potential of wide reader appeal, I will consider developing it for inclusion in a future installment of Experimenter's Corner. Otherwise, time does not permit custom circuit design for individual readers.
Thanks also to the dozen or so readers who caught the major error in Figure 4 of the July 1978 Experimenter's Corner. As shown, the spdt input switches will cause a dead short across the 9 -volt battery when they are placed in the 0 position. The error can be remedied by connecting the center pole of each switch to the four input resistors. Also, the straight line plotted on the graph in Figure 5 should be a stepped function.
On a related subject, I want to reply to a letter from Allan P. Saadus that appeared in the August 1978 issue of Popular electronics. His letter described a way to simplify the pseudo-random number generator described in the January 1978 installment of this column.

While Allan's circuit will work, it is no longer a pseudo-random number generator. Instead, it is merely a sequential number generator or, in other words, a RAM used as a counter. The same function can be achieved with a clock and counter without the RAM.

Allan suggests that eliminating one of the clock plus counter circuits will reduce the parts count. As the text explained, however, the additional clock plus counter provides the very rapid sequence of numbers from which one is randomly selected each time the RAM is advanced to a new address.
DECEMBER 1978

At the beginning. With a new Audio-Technica Dual Magnet" stereo phono cartridge.

Our ATI2XE, for instance. Tracking smoothly at I to l-3/4 grams, depending on your record player. Delivers smooth, peak-free response from 15 Hz to $28,000 \mathrm{~Hz}$ (better than most speakers available). With a minimum 24 dB of honest stereo separation at importart mid frequencies, and 18 dB minimum separation even at the standard high-frequency 10 kHz test point. At just $\$ 65$ suggested list price, it's an outstanding value in these days of inflated prices.

Audio-Technica cartridges have been widely-acclaimed for their great sound, and
 for good reason. Our unique, patented* Dual Magnet construction provides a separate magnetic system for each stereo channel. A concept that insures excellent stereo separation, while lowering magnet mass. And the AT12XE features a tiny 0.3×0.7-mil nude-mounted elliptical diamond stylus on a thin-wall cantilever to further reduce moving mass where it counts. Each cartridge is individually

THIN WALL
CANTILEVER
kU.S. Pat. Nos. 3,720,796 and 3,761,647
assembled and tested to meet or exceed our rigid performance standards. As a result, the AT12XE is one of the great bargains of modern technology ... and a significant head start toward more beautiful sound. Listen carefully at your Audio-Technica dealer's today.

AUDIO-TECHNICA U.S., INC., Dept. 1 28p, 33 Shiawassee Avenue, Fairlawn, Ohio 44313 In Canada: Superior Electronics, Inc

> PLAY CHESS WITH YOUR COMPUTER!

Now you can play chess against your home computer! Microchess, a machine language program by Peter Jennings, is available for the Radio Shack TRS-80 (4K or more, Level I or II), Commodore PET (8K), and Apple II (16K). Just load it from the supplied cassette and you're ready to play. It will check your moves for legality and display the current position on a graphic chessboard. You can play White or Black, set up and play from special board positions, or even watch the computer play against itself! You can adjust the program's skill level for anything from speed chess to a long but challenging game.

To see Mlcrochess in action, ask for a demonstration at your local computer store (for the TRS-80, at your Radio Shack store). If you're a bridge player, ask to see Bridge Challenger, which you can use to practice your game even when you can't get four people together to play! Or you can order Microchess (\$19.95) or Bridge Challenger (\$14.95) direct from our address below, by check, money order, or VISA/Master Charge. Personal Software ${ }^{\text {TW }}$ offers many other exciting software packages for your computer. For a free catalog, just send a letter giving your TRS80, PET, or Apple serial number, memory size, and your primary computer application interest.

> Personal Software ${ }^{T \mathrm{mc}}$

Box 136-E, Cambridge, MA 02138 VISA/MC orders call 617-783-0694

By Leslie Solomon

ENHANCED GRAPHICS

\mathbf{N}OT TOO long ago, when video plug-in boards for computers came along, someone discovered that novel and interesting graphics could be created using non-alphanumeric control symbols that are present in some character generators. A classic example is the VDM-1 playing Target or TREK80.

There have been many other video displays since then, each using its own special control characters for graphics. Finally, along came a computer (Pet) that had a set of dedicated graphic symbols available at the user's fingertips.

So far, however, these forms of graphics have been limited to the symbols that the chip or computer manufacturer decided to include.

Recently, Exidy Inc. (969 Maude Ave., Sunnyvale, CA 94086) introduced its Sorcerer computer (\$895), which features up to 128 user-defined graphic symbols as well as 128 upper- and low-er-case ASCII characters, and 64 Petlike graphic symbols. This 64-character by 30 -line display system also uses the ubiquitous S-100 bus, and has a unique set of one-stroke BASIC commands where certain keys produce BASIC instructions (FOR, NEXT, REM, STOP, etc.) for one keystroke.
The feature of the computer that intrigued us was the user-defined graphic symbols. Such an approach allows us to use certain symbols currently not available: a tilde, an umlaut, special math and APL symbols, italics and even script! It can also be used to create certain foreign-language symbols for Arabic, Hebrew, Greek, or other languages not written in "English" symbols. We can even create strange logos, swirls, whirls or stripes for special displays. In fact, we can create any symbol we desire.

Exidy provides two approaches to the creation of special symbols. In one mode, each special character is stored in eight successive memory locations between FEOO and FFFF (where the number key symbols are stored).

To create a symbol, an 8×8 graph is used in conjunction with a pencil to dark-
en the blocks not required for that symbol. Each row of 8 blocks is coded as a hex digit with a dark space being a " 0 " and a white space a " 1 ". Each row is then ENTERED via the monitor at the desired key address. Now, when you hit that key, the symbol appears.

The second approach uses an ingenious BASIC program that, when RUN, displays an 8×8 array of boxes on the screen with the cursor in the top lefthand box. After selecting the number key in which you wish the character to appear, the cursor-positioning keys are used, with a graphics key depressed, to insert a white box at the desired location to form the wanted character. The space bar is used to erase any unwanted square. After RETURN is hit, the program then POKES around in the memory to insert the 1 's and 0 's needed to form the special symbol.

With a little practice, one can create italics, script, or any symbol desired.

Double Disk. If you use one of the small ($51 / 4^{\prime \prime}$) diskettes, then you should know that there is a relatively easy way to double the storage area of the diskette. Square-1 (614 18th Ave., Menlo Park, CA 94025; Tel: 415-325-4209) is making available its Flippy Disk kit for \$9.95. It contains a hand punch, a metal template, a pencil and a set of instructions on how to use the other side of your present diskettes. This kit will work with any diskette whose "other side" is coated and burnished (shining surface). We had occasion to try this kit with some of our diskettes and found the procedure easy to follow, and very satisfying as we wound up with double our disk space. We did have one disk that did not have the required second surface.

S-50 Parallel Interface. Available from F\&D Associates (1210 Todd Rd., New Plymouth, OH 45654), the VPI-1 Versatile Parallel Interface is a 4-port I/O board for the S-50 bus. This board can support two MC6820 PIA, two

MC6522, or one of each to give a total of 40 I/O lines, 36 of which can be input or output, and four that are input only. These lines are arranged in four groups with 8 I/O lines, one I/O handshake, and one input handshake. The lines go to selected drivers and buffers that can drive up to 300 mA at up to 80 volts. Discrete transistors, SCR's, or triac's may be used. Space is provided for clamping and transient-suppression diodes. With the 6522 you also get two programmable timers that can be used for a variety of functions. The VPI-1 can replace two SWTP MP-L boards in most applications. The bare boards are $\$ 32.50$ each plus $\$ 2.50$ shipping/handling charge. Documentation only is $\$ 5 \mathrm{pp}$. Ohio residents please add 4% sales tax.

EPROM Erasing. A couple of new ultraviolet lamp EPROM erasers are available from Spectronics Corp. (956 Brush Hollow Rd., P.O. Box 483, Westbury, NY 11590; Tel: 516-333-4840). The Model PE-14 (\$59.50) will support up to six EPROM chips at a time and will erase them in as little as 14 minutes. The UV lamp fits into a special shielded reflector and is kept at a constant distance from the EPROM's. A safety interlock prevents the unit from operating when the tray is not fully inserted. A conductive foam pad holds the chips in place. The PE-24, at $\$ 104.50$ is similar to the PE-14 but holds up to nine EPROM's and can erase them in less than 12 minutes. A 60 -minute timer is also included for automatic shutoff.

Music Boards. One of the original computer music system manufacturers, Newtech Computer Systems, Inc. (230 Clinton St., Brooklyn, NY 11201; Tel: 212-625-6220) recently announced its Plus Americana music software that works with either its S-100 bus Model-6, or its SWTP-compatible Model-68 plugin boards. These boards are available for $\$ 59.95$ (assembled and tested) at your local computer store. Supplied on an MD-1NS diskette for the North Star system or an MD-1SW disk for the SWTP system ($\$ 19.95$ each), the programs feature a dozen pre-recorded melodies, including five having two voices. The diskettes also feature Jukebox, a BASIC program that allows choice of any of the musical selections. Although the two music boards come with their own small speakers, we recommend that the audio output be fed to a conventional audio system to take advantage of the improved sound.

Stop reading abourcomputers and get your hands on one! With ELF II and our new Short Course by Tom Pittman, you can master computers in no time at all! ELF II demonstrates all 91 quickly teaches you how to use each of the 1802 's capabilities ELF II's video output lets you display an alphanumeric eadout or graphics on any TV screen or video monitor plus enjoy the latest video games, including an exciting new arget missile gun game that was specifically developed for ELF II.
But that's not all. Once you've mastered computer funda mentals, ELF II can give you POWER with add-ons that are mong the most advanced found anywhere. No wonder IEEE chapters plus hundreds of universities and major corporations have chosen the ELF 11 to introduce their students and personnel to microprocessor computing?

Learn The Sklli That May Soon Be Far

More Important Than Your Colloge Degree!
The ability to use a computer may soon he more important to your earning power than a college degree. Without a knowl edge of computers, you are always at the mercy of others when it comes to solving highly complex business, engineering, industrial and scientific problems. People who understand computers can command SNEY and to get in on the action, you must learn computers. Otherwise you'll be left behind

ELF II is The F-A-S-T Way To Learn

Computer Fundamentals!
Regardless of how minimal your computer background is now. you can learn to program a computer in almost no time at all. That's because Netronics has developed a special Short non-technical language that leads you through every one of the RCA COSMAC 1802's capabilities so you'll understand verything EI.F II can do ... and how to get ELF II to do in' All 91 commands that an 1802 can execute are explained to you, step-by-step. The text, written for Netronics by Tom Pittman, is a tremendous advance over every other programming book in print.
Keyed specifically to the ELF II, it's loaded with "hands n illustrations. When you re finished. ELF II and the 1802 will no longer hold any mysteries to you.
In fact, not only will you be able to use a personal computer creatively, you'll also be able to read magazines such as BYTE...INTERFACE AGE... POPUI.AR ELECTRONICS and PERSONAL COMPUTING and under tand the articles.
If you work with large computers, EL.F II and our short Course will help you to understand what makes them tick.

$$
\text { A Dynamite Package For Just } \$ 99.951
$$

With ELF 11, you learn to use machine language - the fundamental language of all computers. Higher level languages such

Hobsists! ENGINEERS! TECHNICIANS! STUDENTS!
Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits-the very first night—even if you've never used a computer before! leaturng RCA COSMAC misi COMPUTER sgg95
as FORTRAN and BASIC must be translated into machine
language before a computer can understand them. With EL.F language before a computer can understand them. With ELF II you build a solid foundation in computers so you'll really know what you're doing, no matter how complicated things get
Video output also makes ELF Il unique among computers selling for such a low price. Attached to your TV set, EIF II becomes a fabulous home entertainment center. It's capable of providing endless hours of fun for both adults and children of all ages! ELF II can create graphics, alphanumeric displays
and fantastic video games. and fantastic video games.
No additional hardware is required to connect ELF II to your TV', video input. If you prefer to connect ELF II to your antenna terminals instead, simply use a low cost RF modulator (to order one, see coupon below).
ELF II's 5-card expansion bus (connectors not included) allows you to expand ELF II as your needs for power grows. If you're an engineer or hobbiest, you can also use ELF II as a counter, alarm, lock, thermostat, timer or telephone dialer, or
for countless other applications.

ELF II Explodes Into A Giant!

Thanks to ongoing work by RCA and Netronics, ELF II add-ons are among the most advanced any where. Plug in the GIANT BOARD ${ }^{\text {ra }}$ and you can record and play back programs, edit and debug programs, communicate with remote devices, and make things happen in the outside world. Add Kluge Board to get ELF II to solve special problems such as operating a more complex alarm system or controlling a printing press. Add 4 K RAM board and you can write longer programs, store more information and solve more sophisticated problems Expanded, ELF II is perfect for engineering, busines industrial, scientific and personal finance applications. No other small computer anywhere near EI.F II's low price is backed by such an extensive research and development program.
The ELF-BLG ${ }^{\text {ts }}$ Monitor is an extremely recent breakthrough that lets you debug programs with lightening speed because the key to debugging is to know what's inside the registers of the microprocessor and, instead of single stepping through your program. the ELF-BUG Monitor, utilizing break points, lets you display the entire contents of the registers on your TV screen at any point in your program. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by displaying 24 bytes of RAM with full address. blinking cursor and auto scrolling. A must for serious programmers?
Netronics will soon be introducing the ELF II Color Graphics \& Music System-more breakthroughs that ELF II owners will be the first to enjoy!
Now BASIC Makes Programming ELF II Even Easjerl Like all computers, ELF II understands only 'machine But lo - the language computers Thy BASIC. It talks to ELF II in machine language fle I that you can program E1 F II with simple wordse for you so typed out on a keyburd such as PRINT RUN IN Can

Ask Now What Your Computer Can Do.
 But What Can It Do For YOU!"

Don't be trapped into buying a dinosaur simply because you can afford it and it's big. EL.F II is more useful and more fun than bigname computers that cost a lot more money With ELF II, you learn to write and run your own programs You're never reduced to being a mere keypunch operator working blindly with someone else's predeveloped software. No matter what your specialty is, owning a computer which you really know how to use is sure to make you a leader. ELF II is the fastest way there is to get into computers. Order from he coupon below!

DEALER INQUIRIES INVITED

NOW AVAILABLE FOR ELF II-
 \square Tom Pittman's Short Course On Microprocessor \& Computer Programm ing teaches you just about everything there is to know about ELF II or any RCA 1802 computer. Written in nonRechnical language, it's a learning reakthrough for engineers and laymen like. $\mathbf{\$ 5 . 0 0}$ postpaid
 \square Deluxe metal cabinet with plexiglas dust cover for ELF II, $\$ 29.95$ plus $\$ 2.50 \mathrm{p} \& \mathrm{~h}$.
 \square ELF II connects to the video input of your TV set. If you prefer to use Modulator, $\$ 8.95$ post paid.
 \square GIANT BOARD ${ }^{\prime \prime}$ kit with cassette 1/O. RS 233 -C/TTY 1/O, 8-bit P I/O. tions and a system monitor/editor tions and a sy stem $\$ 39.95$ plus $\$ 2 \mathrm{p} \& \mathrm{~h}$.
 - Kluge (Prototype) Board accepts up to 36 lC's. $\$ 17.00$ plus $\$ 1 \mathrm{p}$ \&h
 4k Static RAM kit. Addressable to any 4 k page to 64 k . $\$ 89.95$ plus $\$ 3 \mathrm{p} \& \mathrm{~h}$. \square Gold plated 86-pin connectors fone required for each plug-in board). $\mathbf{\$ 5 . 7 0}$ postpaid. postpaid.
 \square Professional ASCII Keyboard kit with 128 ASCII upper/lower case set. 96 printable characters, onboard regulator. parity, logic selection and choice of 4 handshaking signals to mate with p\&h.
 \square Deluxe metal cabinet for ASCII Keyboard, $\$ 19.95$ plus $\$ 2.50$ p \&h \square ELF II Tiny BASIC on cassette tape. Commands include SAVE. LET, IF/THEN, INPUT, PRINT, GOTO, GOSUB, RETURN, END. REM, CLEAR, I.IST, RUN. PLOT, mented and includes alphanumeric generator required to display alphanumeric characters directly on your TV screen without additional hardware. Also plays tick-tack-toe plus a drawing game that uses ELF II's hex quired. $\mathbf{\$ 1 4 . 9 5}$ postpaid
 Tom Pittman's Short Course on Tiny BASIC for ELF II, $\mathbf{\$ 5}$ posipaid
 \square Expansion Power Supply (required when adding 4 k RAM). $\mathbf{\$ 3 4 . 9 5}$ plus $\$ 2$ p\&h.
 on cassette tape allowe System Monitor contents of all registers on your TV at any point in your program alsu dis plays 24 bytes of memory with full ad dresses. blinking cursor and auto scroll ing. A must for the serious programmer! $\$ 14.95$ postpaid
 Coming Soon: A-D, D-A Converter, Gight Pen. Controller Board, Color Graphics \& Music System...and
 Call or write for wired prices!

Exidy Sorcerer
\$895

CREATIVE COMPUTING magazine is Number 1 in hardware, software and system evaluations. In-depth, thorough evaluations give you the facts before you buy. Creative Computing was the first to review these now popular systems: Radio Shack TRS-80, Exidy Sorcerer, VideoBrain, Heath H-8, Bally Basic, OSI Challenger, and many others. More important, we also review peripherals and software from independents as well as manufacturers.

Heathkit H-8

Which of these computers is for you?
 SOL-20
 Bally Arcade
 \$399

Ohio Scientific C2-4P \$598 \$599

And what are you going to do with it?

CREATIVE COMPUTING has long been Number 1 in applications and software for micros, minis, and timesharing systems for homes, schools and small businesses. Loads of applications every issue: text editing, graphics, communications, artificial intelligence, simulations, data base and file systems, music synthesis, analog control. Complete programs with sample runs. Programming techniques: sort algorithms, file structures, shuffling, etc. Coverage of electronic and video games and other related consumer electronics products, too.

Just getting started? Then turn to our technology tutorials, learning activities, short programs, and problem solving pages. No-nonsense book reviews, too. Even some fiction and foolishness.

Subscriptions: 1 year $\$ 15,3$ years $\$ 40$. Foreign, add $\$ 9 /$ year surface postage, $\$ 26 /$ year air. Order and
payment to: Creative Computing, Attn: Pamela, P.O. Box 789-M, Morristown, NJ 07960. Visa and Master Charge acceptable by mail or phone; call 800-631-8112 9 am to 5 pm EST (in NJ call 201-540-0445).

CREATIVE COMPUTING also publishes books, games, art prints, and T-shirts for the computer enthusiast. The most popular book of computer games in the world, Basic Computer Games is a Creative Computing book only $\$ 8.50$ postpaid.

And now, Creative Computing also produces and markets software for personal computers on tape cassette and floppy disk.
If your dealer does not carry the full line of Creative Computing products, write "catalog" on your order and we'd be happy to send you one free.

creative corepatirg

Soft ${ }^{\text {ware }}$ Sources

8080 Timesharing System. TEMPOS (Timed Environment Multi-Partitioned Operating System) is a newly upgraded timesharing system for 8080 -based computers. The system permits the simultaneous execution of several different jobs or processes at once, including simultaneous batch and interactive use, and foreground/background processing. The package includes: OPUS/ TWO, a high-level language with features of BASIC, FORTRAN and ALGOL; TEXTED, a character-oriented text editor for use with OPUS/TWO, assembly language, or ASCII text; and utilities for assembly, file handling, file listing and a linking loader. Basic hardware requirements are an 8080 processor, 48k of RAM addressed from location 0 , vectored interrupts, a real-time clock, and at least one "system console" I/O terminal. Driver software is supplied for MITS and iCOM floppy-disc drives, for MITS and IMSAI 1/O boards, and for MITS and IMSAI vectored interrupt/real-time clocks. Support documentation provides for insertion of drivers or other hardware. TEMPOS is available on either MITS (hard-sectored) or iCOM (IBM 3740type) diskette, for $\$ 787$. A User's Manual is \$20. Administrative Systems Inc., 222 Milwaukee, Suite 102, Denver, CO 80206.

6502 DOS Software. KVOS is a miniature operating system for use with 6502 systems using the TIM monitor ROM, with the S.D. Sales 'Versafloppy" or the CGRS Floppy 1/O; it can be used with CGRS S-100/6502 systems or with other 6502 systems via the CGRS S-100 adapter card. Two versions are available: KVOS1T, which adds file-name disk commands to the TIM monitor, is available as one 2708 ROM and a diskette, at $\$ 40$. KVOS2T, with the addition of a disassembler and dynamic program tracing, is supplied on two 2708s plus diskette, at $\$ 65$. CGRS Microtech, Box 368, Southampton, PA 18966.

280 APL Interpreter APL is now available for $Z 80$ based systems using Digital Group or CP/M operating systems. The APL/ Z80 interpreter includes nearly all primitive APL functions and operators. Primitives not present can be implemented as defined APL functions, according to the system's developer. Purchasers must sign and return an end user software license and nondisclosure agreement permitting use on one computer system only. $\$ 300$. Vanguard Systems Corp., 6812 San Pedro, San Antonio, rX 78216

Circle no 42 on free information caro

CALIFORNIA

Rainbow Computing
"Complete Apple II Line"
Granada Hills. CA 91344
(213) 360.2171

COLORADO
Amptec, Inc.
Send For Catalogue-10\% Off
5975 North Broadway
Denver, CO 80216
(303) 571.0833

Byte Shop
Complete Apple II Line
3664 South Acomo Street
Englewood, CO 80110
(303) 761 -6232

ILLINOIS
American Microprocessors
Equipment and Supply Corp.
At The Chicagoland Airport
20 North Milwaukee Avenue
Half Day, IL 60069
(312) 634-0076

American Microprocessors
Equipment And Supply Corp.
6934 North University
Peoria, IL 61614
(309) 692-5852

Lillipute Computer Mart, Inc.
Complete Microcomputers and Peripherals
4446 Oakton Street
Skokie, IL 60076
(312) 674-1383

MARYLAND
Computers Unlimited, Inc.
Tomorrow's Technology Today
907 York Road
Towson, MD 21204
(301) 321.1553

MICHIGAN

The Computer Mart
We Will Not Be Undersold
1800 West 14 Mile Road
Royal Oak, MI 48073
(313) 576-0900

United Microsystems Corp.
The Professional Computer Store
2601 South State Street
Ann Arbor, MI 48104
(313) 668-6806

NEW JERSEY

Computer Mart Of New Jersey
The Microcomputer People ${ }^{\text {TM }}$
501 Route 27
Iselin, NJ 08830
(201) 283.0600

NEW YORK
Byte Shop Of Long Island
The Affordable Computer Store

2721 Hempstead Turnpike

2 Blocks East Of Wantagh Parkway
Levittown, NY 11756
(516) 731.8116

Byte Shop Of New York
The Affordable Computer Store
130 East 40th Street
New York, NY 10016
(212) 889-4204

Computer Mart Of New York
First In The East
118 Madison Avenue
(30th Street Entrance)
New York, NY 10016
(212) 686-7923

OHIO
Digital Design
Cincinnati's First Computer Store
7694 Camargo Road, Madeira
Cincinnati, OH 45243
(513) 561.6733

Ohio Microcomputer Specialists, Inc.
MSAI Personal and Business Systems
1265 Grandview Avenue
Columbus, OH 43212
(614) 488-1849

OKLAHOMA

Microlithics, Inc.
Medical Systems-Differential Diagnosis
2918 North MacArthur Boulevard
Oklahoma City, OK 73127
(405) 947-5646

PENNSYLVANIA

Personal Computer Corp.
First In Pennsylvania
Frazer Mall
Lancaster Avenue and Route 352
Frazer, PA 19355
(215) 647-8463

SOUTH CAROLINA

Byte Shop \#32
The Affordable Computer Store
1920 Blossom Street
Columbia, SC 29205
(803) 771-7824

VIRGINIA

The Computer Hardware Store
Alpha-Micro, Apple II, S-100
818 Franklin Street
Alexandria, VA 22314
(703) 584-8085

CANADA
TJB Microsystems, Ltd.
Your Commodore Pet Headquarters
10991-124th Street
Edmonton, Alberta, Canada
T5M OH9
(403) 455-5298

Dealers: For information about how to have your store listed in THE MICROCOMPUTER MART. please contact: POPULAR ELECTRONICS, One Park Ave., New York, N.Y. 10016 • (212) 725-3568

Popular Electronics
Remm series

Many important articles covering a variety of interests in the broad field of electronics are pubished in POPULAR ELECTRONICS. Reprints of selected articles and test reports are now available in the event that you missed some you would like to have for reference or study purposes-or for projects you wish to build. Reprints are only $\$ 1$ each; 75ℓ for those marked with asterisk
$\$ 1.50$ for those noted. Minimum order is $\$ 3$.

- Denotes new reprints available for the first time! SPECIAL ARTICLES

AUDIO

40854 How The New FTC Hi-Fi Rules Affect You
40855 How To Evaluate Tape Recording Specs
40856 A New Standard For FM Tuner Measurements
40964 Build The Hi-F/TV Audio Minder

- 41097 Upgrading Your Old Stereo FM Tuner System \& Expanders
-41098 Build An Audio Compander
41099 How FM Tuners Work, Part
-41100- How FM Tuners Work. Part II

COMPUTER

40860 How To Select A Microcomputer
40861 Ins \& Outs Of Computers For Beginners
40966 Introducing Speechlab - The First Hobbyist Vocal Interface For A Computer- $\$ 1.50$
COSMAC "ELF" SERIES
40857 Low Cost Experimenter's Microcomputer
40858 Experimenter's Microcomputer/With Hardware improvements \& More Programming Details
40859 Microcomputer/ How To Expand Memory. Plus More Programs
40870 Build The Pixie Graphic Display
-41101 Expanding Elf II
COMMUNICATIONS
40862 CB Specifications Made Easy
40863. How To Choose CB Base Station Antennas 40965 Build Morse-A-Letter - $\mathbf{\$ 1 . 5 0}$
-41102 Choosing A Mobile CB Antenna

OTHER

40867 How To Design Your Own Power Supplies 40868 The Care \& Feeding Of NiCd Batteries 40869 Build A Gas \& Fume Detector
40963• Six CMOS Circuits For Expermenters
40967 Programming Calculators For Fun and Games-\$1.50
40968* Zap New Life Into Dead NiCd Batteries
41103 How To Design TLL Digital Systems

- 41104 Build An Autoranging Digital Capacitance Meter LEARNING ELECTRONIC THEORY WITH CALCULATORS SERIES
40864 Basic Equations and OHM's Law
40865 Reactance, Time Constants And AC Caiculations
40866 RC Coupling. Basic Amplifier Calculations, and RLC Relationship
*REPRINTS ARE $\$ 1$ EACH; 754 FOR THOSE MARKED WITH ASTERISK; $\$ 1.50$ FOR THOSE NOTED MINIMUM ORDER $\$ 3.00$

POPULAR ELECTRONICS REPRINTS, Dept. C1 28 P. O. Box 278, Pratt Station

Brooklyn, New York 11205
Please send the reprints listed below:

Reprint \#	Quan.	Reprint \#	Quan.

NUMBER OF REPRINTS ORDERED:
@754 @\$1.00 @\$ 1.50

TOTAL ENCLOSED $\$$
(MINIMUM ORDER $\$ 3.00$)

Print Name
Address

State
Residents of CA, CO. DC, FL, IL, MI, MO, NY STATE
Residents of CA, CO. DC, FL, M, MU'side U.S.A add $\$ 2.00$ per order.

Shortwave Broadcasts in English to North America November 1978 to March 1979

$\begin{aligned} & \text { TIWE }{ }^{1} \\ & \text { EST } \end{aligned}$	TIME UTC/GNT	STATION	QUAL. ${ }^{2}$	FREQUENCIES, kHz^{3}
4:00-4:15 a.m.	0900-0915	BBC	A	11955, 9640, 9510, 7150, 6195
4:00-4:15 a.m.	0900.0915	R. Japan ${ }^{4}$	B	9505
4:00-5:00 a.m.	0800-1000	R. Australia	C	9670,9540
4:00-6:00 a.m.	0900-1100	R. Oman	D	11890
5:00-5:05 a.m.	1000-1005	UN Radio	A	9565, 5955 (Tue-Sat)
5:00-5:30 a.m.	1000.1030	R. Japan	B	9505
5:00-5:30 a.m.	1000-1030	V. of Vietnam	C	12035, 10040
5:00-6:00 a.m.	1000-1100	KGEI, San Francisco	A	5980 (frequent changes)
5:00-sunrise	$1000-$	R. Australia	B	5995
5:30-6:30 a.m.	1030-1130	Sri Lanka Br. Corp.	C	17850, 15120, 11835 (not all Eng.)
5:55-6:55 a.m.	1055-1155	R. Thailand	C	11905,9655
6:00-6:15 a.m.	1100-1115	R. Japan	B	9505
6:00-6:56 a.m.	1100.1156	R. RSA	C	21535, 25790
6:00-7:35 a.m.	1100-1235	TWR-Bonaire	A	11815 (Sat, Sun-1220)
6:00-7:50 a.m.	1100-1250	R. Prongyang	C	11535, 9977
6:00-8:00 a.m.	1100-1300	R. Australia	A	9580
6:00-8:30 a.m.	1100-1330	BBC	A.B	11775, 6195, 5990
6:00-9:00 a.m.	1100-1400	4VEH, Haiti	B	11835,9770
6:00-9:00 a.m.	1100-1400	VOA	A	$\begin{aligned} & 9730,9565 \text { (to 1430), 5955, } \\ & 6185 \text { (to 1430) } \end{aligned}$
6:30-9:00 a.m.	1130-1400	CBC Northern Service	B	9625, 6065 (not all Eng.)
7:00-7:15 a.m.	1200-1215	R. Japan	8	9505
7:00-7:30 a.m.	1200-1230	Israel Radio	C	$\begin{aligned} & 25605,21495,17685,15530,15405, \\ & 11655 \end{aligned}$
7:00.7:30 a.m.	1200-1230	R. Tashkent	C	9600, 9540, 6025, 5975
7:00.7:45 a.m.	1200-1245	V. of Germany	B	21600, 17765, 15410
7:00-7:45 a.m.	1200.1245	R. Berlin International	C	21540, 15320, 15125
7:00-7:55 a.m.	1200-1255	R. Peking	C	11685
7:00-9:00 a.m.	1200.1400	AFRTS-Washington	A	15430, 15330, 9700, 6095
7:00-11:30 a.m.	1200-1630	HCJB, Ecuador	A	15115, 11745
7:15-7:30 a.m.	1215-1230	V. of Greece	B	17830, 15345, 11730
7:20.7:50 a.m.	1220-1250	R. Ulan Bator, Mongolia	D	12070, 6383 (not Sun)
7:30-7:55 a.m.	1230-1255	Austrian R.	C	17725 (frequent changes)
7:30.8:00 a.m.	1230-1300	R. Bangladesh	D	21683, 15520 (both vary)
7:30-8:00 a.m.	1230-1300	R. Sweden	C	21700
$\begin{aligned} & \text { 7:30-8:20 a.m. } \\ & \text { (Sat) } \end{aligned}$	1230-1320	TWR-Bonaire	A	15255
$\begin{aligned} & \text { 7:30-9:20 a.m. } \\ & \text { (Sun) } \end{aligned}$	1230-1420	"	"	"
8:00-8:15 a.m.	1300-1315	R. Japan	B	9505
8:00.8:30 a.m.	1300-1330	R. Finland	C	15210
8:00-10:50 a.m.	1300-1550	R. RSA	B	25790, 21535, 15220, 11900
8:00-11:00 a.m.	$1300 \cdot 1600$	HCJB, Ecuador	B	17890
8:15-8:45 a.m.	1315-1345	Swiss R. International	C	$\begin{aligned} & 21630,21545-S S B, 21520,15350 \text {, } \\ & 17790 \end{aligned}$
8:30-9:30 a.m.	1330-1430	R. Finland	c	15105 (Sun. only)
8:30-10:00 a.m.	1330-1500	All India R .	c	15335, 11810
8:30.11:00 a.m.	1330-1600	BBC	B.C	$\begin{aligned} & 21710,17705,15400 \text { (from 1430), } \\ & 15070 \end{aligned}$
9:00-9:30 a.m.	1400-1430	R. Japan	B	9505
9:00-9:30 a.m.	1400-1430	R. Sweden	B	21505
9:00-9:30 a.m.	1400-1430	R. Norway	B	17840, 15175 (Sun only)
9:00-9:30 a.m.	1400-1430	V. Rev. Party, N. Korea	D	4557,4120
9:00-9:30 a.m.	1400-1430	R. Afghanistan	0	4775
9:00-9:30 a.m.	1400-1430	R. Tashkent	C	9600, 9540, 6025, 5975
9:00-9:45 a.m.	1400-1445	R. Berlin International	B	21540, 15125
9:00-10:00 a.m.	1400-1500	V. of Indonesia	C	11789
9:00-10:00 a.m.	1400.1500	R. Veritas (Phillippines)	C	11810
9:00 a.m.7:00 p.m.	1400-2400	CBC Northern Service	B-C	11720, 9625 (not all Eng.)
9:30-10:00 a.m.	1430-1500	R. Finland	B	15210
9:30 a.m. 5 :00 p.m.	1430-2200	UN Radio	A	21670, 15410 (also French; when in session)
10:00-10:15 a.m.	1500-1515	R. Japan	0	9505
10:00-11:00 a.m.	1500-1600	V. of Rev. Ethiopia	0	9615 (frequent changes)
10:00-11:00 a.m.	1500-1600	BBC	8	17840, 11775 (Sat, Sun)
10:15-10:30 a.m.	1515-1530	V of Greece	B	17830, 15345, 11730
10:30-11:00 a.m.	1530-1600	Swiss R. International	B	21570°
10:30-11:30 a.m.	1530-1630	V. of Vietnam	C	12035, 10040
10:45-11:00 a.m.	1545-1600	R. Cānada International	A	17820, 15325 (Mon-Fri only)
11:00-11:15 a.m.	1600-1615	R. Japan	C	9505
11:00-11:15 a.m.	1600-1615	R. Pakistan	C	17830, 15520, 11672
11:00-11:30 a.m.	1600-1630	A. Kores	C	9740, 9640, 7150

11:00-11:30 a.m.	1600-1630	R. Norway
11:00-12:00 a.m.	1600-1700	VOA
11:00 a.m.-12:09 p.m	1600-1709	BBC
-11:30 a.m.	. 1630	R. Singapore
11:45-12:00 a.m.	1645-1700	R. Canada International
12:00-12:15 p.m.	1700-1715	R. Japan
12:00-1:00 p.m.	1700-1800	HCJB, Ecuador
12:00-2:00 p.m.	1700-1900	VOA
12:05-12:55 p.m.	1705.1755	R. France International
12:45-3:00 p.m.	1745-2000	BBC
1:00-1:15 p.m.	1800-1815	R. Japan
1:00-1:30 p.m.	1800-1830	R. Canada International
1:00-1:30 p.m.	1800-1830	R. Norway
1:00-1:30 p.m.	1800-1830	R. Korea
1:00-2:00 p.m.	1800-1900	R. Algiers
1:00-2:30 p.m.	1800-1930	V. of Nigeria
1:00-3:00 p.m.	1800-2000	AFRTS-Washington
1:00-4:00 p.m.	1800-2100	R. Kuwait
1:15-1:45 p.m.	1815-1845	Swiss R. International
1:15-2:00 p.m.	1815.1900	V. of Revolution, Guinea
1:30-1:35 p.m.	1830-1835	UN Radio
1:45-2:45 p.m.	1845-1945	Sri Lanka Br. Corp.
1:45-3:00 p.m.	1845-2000	R. lvory Coast
2:00-2:10 p.m.	$1900 \cdot 1910$	R. Tahiti
2:00-2:15 p.m.	1900-1915	R. Japan
2:00-2:30 p.m.	1900-1930	R. Canada International
2:00-2:30 p.m.	1900.1930	R. Afghanistan
2:00-3:00 p.m.	1900-2000	B.S.K. Saudi Arabia
2:00-3:30 p.m.	1900-2030	HCJB, Ecuador
2:00-5:00 p.m.	1900-2200	VOA
2:30-3:00 p.m.	1930-2000	V. of Iran
3:00-3:15 p.m.	$2000-2015$	R. Japan
3:00-3:30 p.m.	2000-2030	R. Korea
3:00-3:30 p.m.	2000-2030	R. Canada International
3:00-3:30 p.m.	2000.2030	Israel R .
3:00-6:00 p.m.	2000-2300	AFRTS-Washington
3:00-4:15 p.m.	2000-2115	BBC
3:10-4:50 p.m.	2010.2150	R. Habana Cuba
3:30-4:20 p.m.	2030-2120	R. Nederland
3:30-4:30 p.m.	2030-2130	V. of Vietnam
3:50-4:40 p.m.	2050-2140	R. Habana Cuba
4:00-4:15 p.m.	$2100-2115$	R. Japan
4:00-4:50 p.m.	2100.2150	R. RSA
4:15-5:00 p.m.	2115-2200	BBC
4:30-5:00 p.m.	2130.2200	R. Canada International
4:30-5:00 p.m.	2130-2200	KGEI San Francisco
4:30-5:00 p.m.	$2130-2200$	R. Sofia
4:30-5:30 p.m.	2130-2230	R. Baghdad
4:30-6:00 p.m.	2130-2300	V. of Turkey
4:40-5:40 p.m.	2140-2240	V. of Frue China
5:00-5:15 p.m.	2200-2215	R. Yugoslavia
5:00-5:15 p.m.	2200-2215	R. Japan
5:00-5:30 p.m.	2200-2230	R. Nacional, Venezuela
5:00-5:30 p.m.	$2200 \cdot 2230$	R. Norway
5:00-5:30 p.m.	2200-2230	V. of Chile
5:00-5:45 p.m.	2200.2245	BBC
5:00-7:00 p.m.	2200-2400	VDA
5:30-6:00 p.m.	2230-2300	Israel R .
5:45-6:00 p.m.	2245-2300	BBC
5:45-6:00 p.m.	2245-2300	UN Radio
6:00-6:30 p.m.	2300-2330	BBC
6:00-6:30 p.m.	2300-2330	R. Japan
6:00-6:30 p.m.	2300-2330	R. Sweden
6:00-6:30 p.m.	2300-2330	R. Vilnius
6:00-6:50 p.m.	2300-2350	Rdif. Argentina
6:00.7:00 p.m.	2300-2400	AFRTS-Washington
6:00-7:50 p.m.	2300-2450	R. Pyongyang
6:00-8:00 p.m.	2300-0100	R. Moscow
6:00-8:00 p.m.	2300-0100	CBC Southern Service
6:30-7:00 p.m.	2330.2400	V. of Chile
6:30-7:00 p.m.	2330.2400	R. Finland
6:30.7:30 p.m.	2330.2430	BBC

11:45-12:00 a.m 12:00-12:15 p.m. 12:00-1:00 p.m. 12:00-2:00 p.m.

12:45-3:00 p.m. 1:00-1:15 p.m. 1:00-1:30 p.m. 1:00-1:30 p.m. 1:00-1:30 p.m. .00-2:30 pm 1:00-3:00 p.m. 1:00-4:00 p.m. 1:15-1:45 p.m. :15-2:00 p.m. 1:45-2:45 p.m. :45-3:00 p.m. 2:00-2:15 p.m.

 2:00-2:30 p.m. 2:00-3:00 p.m. :00-3:30 p.m. 2:30-3:00 p.m. 3:00-3:15 p.m. 3:00-3:30 p.m. 3:00-3:30 p.m. :00-3:30 p.m. 3:00-6:00 p.m. 3:104:50 p.m. 10-4:50 p.m. 3:30-4:20 p.m. 3:30-4:30 p.m. 3:50-4:40 p.m. 4:00-4:15 p.m. 4:00-4:50 p.m. .00 p.m. :30-5:00 p.m. 4:30-5:00 p.m. 4:30-5:00 p.m 4:30-6:00 p.m. 4:40-5:40 p.m. $5.005: 15 \mathrm{p} . \mathrm{m}$. 5:00-5:15 p.m. 5:00-5:30 p.m. 5:00-5:30 p.m. 5:00-5:30 p.m 5:00-7:00 p.m 5:30-6:00 p.m. 5:45-6:00 p.m. 6:00-6:30 p.m.6:00-6:30 p.m. 6:00-6:30 p.m. 6:00-6:30 p.m 6.00-6:50 p.m. 6:00.7:00 p.m. 6:00.7:50 p.m. 6:00-8:00 p.m.

6:00-8:00 p.m. 6:30-7:00 p.m. 6:30.7:30 p.m. 1745-2000 BBC

1800-1830 R. Norway
1800-1830 R. Korea 1800-1930 V. of Nigeria 1800-2000 AFRTS-Washington 800-2100 R. Kuwait 1815.1900 1830-1835 UN Radio 1845-2000 R. Ivory Coast 1900.1910 R. Tahiti 1900-1915 R. Japan
1900-1930 R. Afghanistan
00-2000 B.S.K. Saudi Arab
1900-2200 VOA
1930-2000 V. of Iran
2000-2030 A Kore
2000-2030 R. Canada International
2000.2030 Israel R
2000-2115 BBC
2010.2150 R. Habana Cuba
2030.2130 V of Vietram
2050-2140 R. Habana Cuba
$2100-2115$ R. Japan
215.220 A.
2130.2200 R. Canada International
R. Sofia
$2130-2300$ V. of Turkey
2140-2240 V. of Free China
2200-2215 R. Yugoslavia
2200-2215 R. Japan
$2200-2230$ R. Norway
$2200-2230$ V. of Chite
2200-2400 VDA
2230-2300 Israel R.
2245-2300 UN Radio

17720, 15425, 15140, 12050, 7440, 7205, 7195, 7130, 7115, 7105.
6125, 5940

A 5960 (Mon.-Fri.)
B 15175,15140
C 11800,9565
A $15260,11910,9590,9580,7325$,
6175, 6120, 5975
17715, 15175 (Sun only)
26040, 21485, 17870, 17710
17840, 11775 (Sat, Sun-1745)
11940 (fade-in time varies)
17820, 15325
9505
21480, 17745, 15295
26040, 21590, 21485,
17870, 17785, 17710
15425, 15360, 15300, 15210
15400, 12095 (11820 from 8200)
9505
17760, 15260
11895 (Sun oniy)
9720
9510
15120, 11770
17765, 15430, 15330, 11805, 11790
12085
15305
15310 (varies) (Sun only)
21670, 19505SSB, 15410 (Mon.Fri)
17850, 15120, 15115, 11870
11920
15170, 11825 (exc Sun)
15105
17820, 15325, 11905
17760, 15260
11770 or 11820 (frequent changes)
11855
21480, 17770, 15295
21590, 21485, 17870, 17785, 17710
9022
15105
11860
17820, 15325, 11945, 11905
11655, 9815
17765, 15430, 15330, 11790
17840, 15260, 6175
17855
21640, 17810, 11740, 11730
15012, 12035, 10040
17750, 9770
15105
17780, 15155, 11900
15260, 6175
17820, 15325, 15150, 11945
15280
11850, 11750
9745
9665, 9515, 7270, 7170
17890, 15345
9620
17755
15400 (irregular)
9645, 9590 (Sun anly)
15140
15260, 11910, 9590, 6195, 6175,
5975
26095, 21610, 21460, 17895, 17820
11655, 9815, 9435, 7412.5
15260, 11910, 9590, 9410, 7325,
6195, 6175, 5975
15240, 11955 (Mon-Fri)
15260, 11910, 9590, 9580, 9410,
7325, 6195, 6175, 5975

7755

11705,9695
7400, 7360, 7215
1710 (Mon.Fri)
1535, 9977

125, 5940

$18 \times$ SW; FM; MW; LW; SSB and CW plus 6 FM pre-select buttons. 24 hour LCD clock. Digital readout on all wave bands. High sensitivity; excellent selectivity; plus many other outstanding features.
${ }^{5} 995^{00}$
plus shipping
(List ${ }^{5} 1235^{\circ 0}$)
Also in stock:
Sony: CRF-330K CRF-320, ICF-5900W ICF-6700W - Panasonic RF-2200, RF-2800. RF-4800 - Grundig 2100 - Barlow Wadley XCR-30. World Radio TV Handbook - World DX Guide

For FREE catalog send self-addressed, stamped business-size envelope. Outside USA send 3 I.R.C's.

RADIOS INTERNATIONAL
P. O. Box 6053 PE. 12

Richardson, TX 75080

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'tl never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middetown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletowr, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.
So. please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or eise copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

Popular Electronics

R

TEST INSTRUMENTS
40928 B\&K Prec sion Model 280 Digita Mutimeter 40929. B\& K-Precision Model 147 1B Dual- Trace Scope 40930 Balantine Model 1010A Dual-Trace Scope 40931^{-}Fiuke Model 8020A Digital Multimeter 40932. Hew ett-Packard Model 280 Digital Multimeter 40933. Sencore Mode DVM 32 Digital Multimetel 40934- Sencore Mode TF 70 Porlab e Transistor Teste 40935. Trip el Model 60 Analoa Multimeter

- 41115 B\&K Precision Model 1820 Universal Frequency Counter
- REPRINTS ARE $\$ 1$ EACH: $75 \&$ FOR THOSE MARKED WITH ASTERISK: MINIMUM ORDER $\$ 300$

POPULAR ELECTRONICS REPRINTS, Dept. C 1280 P. O. Box 278, Pratt Stalion

Brooklyn, New York 11205
Please send the reprints listed below

Reprint \#	Quan	Reprint \#	Quan.

NUMEER OF REPRINTS ORDERED
@ $75 ¢$ - @ $\$ 100$
TOTAL ENCLOSED \$
(MINIMUM ORDER $\$ 300$)
Print Name
Address
City
${ }^{+}$Residents of CA, CO, DC, FL, IL, MI, MO NY STATE and $V T$ add applicable saies tax Outside U S A add $\$ 2.00$ per order

6:45-7:45 p.m. 7:00-7:15 p.m. 7:00.7:25 p.m. 7:00.7:30 p.m. 7:00-7:55 p.m. 7:00-8:00 p.m. 7:00-8:00 p.m. 7:00-9:00 p.m. 7:00-9:00 p.m. 7:00-9:00 p.m. 7:00 p.m.-1:06 a.m. 7:15-7:30 p.m. 7:15-8:00 p.m. 7:30-7:50 p.m. 7:30-8:00 p.m. 7:30-8:00 p.m. 7:30-8:00 p.m.

7:30-10:30 p.m.
7:30-12:00 p.m. 7:35-8:35 p.m. 8:00-8:15 p.m 8:00-8:15 p.m. 8:00-8:20 p.m. 8:00-8:30 p.m. 8:00-8:30 p.m. 8:00-8:45 p.m. 8:00-8:55 p.m. 8:00-8:55 p.m. 8:00-9:00 p.m. 8:00-9:00 p.m. 8:00-10:00 p.m.

8:00-10:30 p.m. 8:00-10:30 p.m. 8:00-12:00 p.m. 8:30-8:50 p.m.

8:30-8:55 p.m. 8:30-8:55 p.m.
8:30-9:25 p.m.
8:30-9:30 p.m.
8:45-9:15 p.m.
9:00-9:15 p.m.
9:00-9:30 p.m.
9:00-9:30 p.m.
9:00-9:30 p.m.
9:00-9:30 p.m.
9:00-9:50 p.m.
9:00-9:55 p.m. 9:00-10:30 p.m. 9:00-10:30 p.m. 9:15-9:30 p.m. 9:30-9:45 p.m. 9:30-9:55 p.m. 9:30-10:00 p.m. 9:30-10:00 p.m. 9:30-10:00 p.m. 9:30-10:15 p.m. 9:30-10:25 p.m. 10:00-10:15 p.m. 10:00-10:15 p.m. 10:00-10:30 p.m. 10:00-10:30 p.m. 10:00-10:30 p.m.

10:00-10:30 p.m.
10:00-10:30 p.m.
10:00-10:55 p.m. 10:00-10:55 p.m. 10:00-11:00 p.m. 10:00-11:00 p.m.

$2345-2445$	R. Japan
$0000-0015$	R. Japan
$0000-0025$	R. Tirana
$0000-0030$	R. Norway
$0000-0055$	R. Peking
$0000-0100$	R. Sofia
$0000-0100$	AFRTS.Washington
$0000-0200$	VOA
$0000-0200$	Spanish Foreign R.
$0000-0200$	R. Luxembourg
$0000-0606$	CBC Northern Service
$0015-0030$	V. of Greece
$0015-0100$	BRT, Belgium
$0030-0050$	SODRE, Uruguay
$0030-0100$	R. Sweden
$0030-0100$	R. Prague
$0030-0100$	R. Kiev

0030-0330 BBC

$0030-0500$	HCJB, Ecuador
$0035-0135$	TWR-Bonaire
$0100-0115$	R. Japan
$0100-0115$	Vatican R.
$0100-0120$	RAI, Italy
$0100-0130$	R. Canada International
$0100-0130$	V. of Chile
$0100-0145$	R. Berlin International
$0100-0155$	R. Prague
$0100-0155$	R. Peking
$0100-0200$	V. of Free China
$0100-0200$	AFRTS-Washington
$0100-0300$	R. Moscow

0100-0330 R. Habana Cuba 0100-0330 R. Australia $0100-0500$ WYFR, Family Radio 0130-0150 V. of Germany

0130-0155 Austrian Radio
0130-0155 R. Tirana
0130-0225 R. Bucharest
$0130-0230$ R. Japan
0145-0215 Swiss R. International
0200-0215 R. Japan
0200-0230 R. Canada International
0200-0230 R. Norway
0200-0230 R. Budapest
$0200-0230$ R. Warsaw

0200-0250 : R. RSA
0200-0255 R. Peking
0200-0330 R. Cairo
0200-0330 AFRTS-Washington
0215-0230 V. of Greece
0230-0245 R. Pakistan
0230-0255 R..Tirana
0230-0300 R. Lebanon
0230-0300 R. Sweden
0230-0300 V. of Chile
0230-0315 R. Berlin International
0230.0325 R. Nederland

0300-0315 R. Japan
0300.0315 Austrian Radio

0300-0330 R. Canada International
0300-0330 R. Portugal
$0300-0330$ R. Budapest
0300-0330 R. Warsaw
0300-0330 R. Kiev
0300-0355 R. Prague
$0300-0355$ R. Peking
$0300-0400$ RAE, Argentina
0300-0400 R. Baghdad

17825, 15270
17755
9750, 7065
9590, 6015 (Mon only)
17680, 15520, 15060
9705
17765, 15330, 11790, 6030
15205, 11740, 9650, 6130
11880,9630
6090
9625, 6195 (not all Eng.)
11955, 11730, 9760
6080
11885, 9515 (time varies)
11905
9630, 6055
17870, 15180, 12000, 7150,
6020, 5980
A 15260, 11750, 9580, 9410, 7325,
6175, 6120, 5975
11915, 9560
B 11925
17755
11845, 9605,6015
11810,9575
11940, 9535
11890, 11765
9730
11990, 9630, 9540, 7345, 5930
15060, 11945, 9940
17890, 15425, 15345
A $17765,15330,11790,6155,6030$
15425, 15100, 12050, 9700, 9635 ,
7440, 7205, 7195, 7115, 7105,
6125,5940
11930
17795, 21740
5985
11865,9605, 9565,9545,6100,
6085, 6075, 6040
9770,6155
B . 7120,6200
C $11940,11840,11705,9690,9570$,
6155, 5990
21640, 17825, 17725, 15195
11780-SSB, 11715, 9725, 9660,
6135
17755
11845,9535
9645, 9590, 6005 (Mon only)
15225, 11910, 9833, 9585, 6000,
6080 (not Mon)
$C=15120,11815,9525,7270,7145$,
6135, 6095
11900, 9610, 9585, 5980
15060, 12055,9940
9475, 6230
15330, 11805, 11790, 6155, 6030
11730, 9760,9610
21590, 17830
7120, 6200
11925 (frequent changes)
11705, 9695
11890. 11765

9730
9590.6165

17755
9770, 6155 (Sun only)
11845, 9755, 9535, 5960
11935, 6025 (Mon -0320)
$15225,11910,9833,9585$,
6080, 6000
C $15120,11815,9525,7270,7145$, 6135, 6095
B $11860,9780,9580,7400$,
7245,6020,5980
11990, 9630, 9540, 7345, 5930
15060, 12055, 11650, 9460
9690 (Tue-Sat)
C 11935

10:00-11:00 p.m.	0300.0400	UBC, Uganda	B	15325
10:00-11:00 p.m.	0300-0400	R. Mascow	B	$\begin{aligned} & 7440,7205,7195,7115 \\ & 7105,6125,5940 \end{aligned}$
10:00-11:26 p.m.	0300-0426	R. RSA	B	11900, 9585, 7270, 5980, 4990
10:25.10:30 p.m.	0325-0330	V. of Armenia	B	15180, 12000, 9735 (Sun., Wed, Thu, Sat)
10:30-10:55 p.m.	0330-0355	R. Tirana	B	7300, 6200
10:30-10:55 p.m.	0330-0355	Austrian Radio	C	9770,6155
10:30-11:00 p.m.	0330-0400	R. Australia	B	17795
10:30-11:15 p.m.	0330-0415	R. Berlin International	B	11970, 11890, 11840
10:30-11:45 p.m.	0330-0445	BBC	A	$\begin{aligned} & 9410,6175,6120(t 00430), \\ & 5975 \end{aligned}$
10:30-11:50 p.m.	0330-0450	R. Habana Cuba	A	11930, 11725
10:30-12:00 p.m.	0330.0500	AF RTS-Washington	A	11805, 11790, 9700, 6155, 6030
10:30 p.m. 1:00 a.m.	$0330-0600$	R. Habana Cuba	A	11760
10:30 p.m.-2:30 a.m.	0330-0730	R. Moscow	B	$9735,9665,9635,9610$, 9580, 7260, 6150, 5905
11:00-11:15 p.m.	0400.0415	R. Japan	B	15105
11:00.11:15 p.m.	0400-0415	R. Budapest	B	15225, 11910, 9833, 9585, 6000 6080 (Wed \& Sat)
11:00-11:30 p.m.	0400-0430	R. Bucharest	C	$\begin{aligned} & 11940,11840,11705,9690,9570 \\ & 6155,5990 \end{aligned}$
11:00-11:30 p.m.	$0400 \cdot 0430$	V. of Chile	B	11765
11:00-11:30 p.m.	0400-0430	R. Canada International	A	9535, 5960
11:00-11:30 p.m.	0400-0430	R. Norway	B	9550,6015 (Man only)
11:00-11:55 p.m.	0400-0455	R. Peking	B	15060, 12055, 11650, 9460
11:00-12:00 p.m.	0400-0500	R. Austratia	B	17795, 15320
11:30-11:55 p.m.	0430-0455	Austrian R.	C	6015
11:30-12:00 p.m.	0430-0500	Swiss R. International	B	9725,6045
11:30-12:00 p.m.	0430-0500	R. Sofia	B	9530
11:45 p.m.12:45 a.m.	0445-0545	BBC	A	9510,6175, 5975 (11860 from 0500)
12:00-12:15 a.m.	0500-0515	Israel R.	B	11655, 9833
12:00-12:15 a.m.	0500-0515	R. Japan	B	15105
12:00-12:30 a.m.	$0500-0530$	R. Portugal	B	11935, 6025 (Mon -0520)
12:00-1:00 a.m.	0500-0600	AFRTS, Washington	A	11805, 9700, 9685, 6155,6030
12:00-1:00 a.m.	0500-0600	R. Australia	C	21680, 17890, 17870, 17725, 15240
12:00-2:00 a.m.	0500-0700	HCJB, Ecuador	B	6095, 9560, 11915
12:15-1:15 a.m.	0515-0615	Spanish Foreign R.	B	11880,9630
12:30-12:50 a.m.	0530-0550	V. of Germany	A	11905, 11785, 9545, 6185, 6100, 5960
12:30-1:00 a.m.	0530-0600	V. of Chile	B	11765
12:30-1:25 a.m.	0530-0625	R. Nedefland	A	9715,6165
12:45-1:00 a.m.	0545-0600	UN Radio	A	9620,6055 (Tue.Sat)
12:45-2:30 a.m.	0545 -0730	BBC	B	11955, 11860, 9640, 9510,7150
12:55-3:35 a.m.	0555-0835	V. of Nigeria	B	15120, 11770, 7255
1:001:15 a.m.	0600-0615	R. Japan	B	15105
1:001:30 a.m.	0600.0630	R. Nonway	B	9645 (Man only)
1:00.2:00 a.m.	0600.0700	RAE, Argentina	C	11755, 9690, 6120 (Tue Sat oniy)
1:00-2:00 a.m.	0600-0700	AFRTS-Washington	A	$\begin{aligned} & 11805,9700,9685,6155, \\ & 6095,6030 \end{aligned}$
1:00-2:00 a.m.	0600-0700	R. RSA	C	17780, 15220
1:00-4:15 a.m.	0600-0915	R. Australia	B	15320
1:15-1:30 a.m.	0615.0630	R. Canada International	B	$\begin{aligned} & 11825,11735,9730,9655, \\ & 6140 \text { (Mon-Fri) } \end{aligned}$
1:25-3:55 a.m.	0625-0855	V. of Malaysia	C	15295, 12350, 9750
1:30-2:00 a.m.	0630-0700	R. Korea	C	9640
1:30-3:00 a.m.	0630-0800	R. Habana Cuba	A	9525
1:45-2:00 a.m.	0645-0700	R. Canada International	B	$\begin{aligned} & 11825,11735,9730,9655 \\ & 6140 \text { (Mon-Fri) } \end{aligned}$
2:00-2:15 a.m.	0700-0715	R. Japan	B	15105
2:00-4:00 a.m.	0700.0900	R. Australia	B	11740,9570
2:00-7:00 a.m.	0700-1200	AFRTS-Washington	A	9700, 9685, 6155, 6095, 6030
2:07-2:15 a.m.	0707.0715	UN Radio	A	6135, 6055 (Tue-Sat)
2:30-2:45 a.m.	0730-0745	UN Radio	A	6135, 6055 (Tue-Sat)
2:30-3:25 a.m.	0730.0825	R. Nederland	B	9770, 9715
2:30-4:00 a.m.	0730-0900	BBC	B	11955,9640, 9510,7150
3:00-3:15 a.m.	0800.0815	R. Japan	B	9505
3:30-4:25 a.m.	0830-0925	R. Nederland	B	9715

Explanatory Notes.

1. Times in first column are EST. For AST, add 1 hour. CST, subtract 1 hour. MST, subtract 2 hours. PST, subtract 3 hours. Days of week are in GMT
2. Quality. A-strong signal and very reliable reception. B-regular reception. C - occasional reception under favorable conditions. D-rarely audible. These ratings are for locations in the central USA. European and African stations are in general, more reliably received in eastern North America. Asian and Pacitic stations are more reliably received in western North America. North American stations are received well except in areas too close to the transmitter site.
3. The information in this listing is correct to press time. However, frequencies and schedules are constantly changing. Listen to "DX Digest" at 1800, 1900 to Europe, 2000, 0100, 0200, 0300, 0400 on Sunday and 1900 Wednesday to Africa on R. Canada International for late changes.
4. R.-Radio; V.-Voice

YOU'RE reaning PDPULAR HECTRONLCS.

That atready says a lot about you. That youre fascinated by the diversity of electronies. Everything from microcomputers toandio. from constraction projects to ham radio. Who knows what area of electronics will catch four interest next? That's why you read P.E. To keep in touch with all that sew and best in the mans worlds of comsumter cleotronics.

Popular Electronics

Workis largest-setling electronics masazine

Operation Assist

equipment-a scnematic pdits fist etc - anothe eader might be able to assist Simply send a posicard to Operation Assist Populaz Electronics ifaim ave New Yorm Ny 10016 Fni those who can hem redders please re. spond dreatw to them Thev "apprearde it TOntr 'mose rems egardme equpment no dvallabie from normal sources are pubusted

Concertone 727 tape recorder. Schematic or voltage chart. Clarence Lundy, Space 6. 1251 E. Lugonia Ave., Redlands, CA 92373.

Telequipment type D43 oscilloscope. Serial \#72182. Aiwa TP-1001 tape recorder Any available information. C. Bloch. Sprınghıll Farm, Hillsdale, NY 12529.

Mercury model 201 tube type tester. Tube chart and schematic. Ken Layton, 1941/1/2 E. State, Apt. BC. Olympia, WA 98506.

Atwater Kent model E radio Schematic and owner's manual Mike Bodner, 4073 Millstream Dr., Murrysville, PA 15668.

Pianola SR-850 AM-FM stereo auto radio. Schematic and any informaton. E.E. Lebert, Rt. 4, Box 70, Walla Walla. WA 99362.

Crownscriber model CDM-10 cassette tape recorder dictat ing machıne. Schematic and parts source. Gar Miller. 114 Bradwell Rd, Barrington, IL 60010

Knight transistor stereo amplifier mode! KG-870. Schematc. George Martin, 45-57 167 St., Flushing, NY 11358.

National Electronics HRO 500 receiver. Need mainte nance manual and schematics. A Giroux. 555-66-8776 HHT, 2d ACR APO. NY 09093

COSMAC VIP, the completely assembled, ready-tooperate RCA Video Interface Processor, opens up a whole new world of computer excitement. New challenges in graphics, games and control functions. Yet it's just \$249.00.
Easy to buy. And easy to program, thanks to its unique, easy-to-use interpretive language. You get a complete how-to book including programs for 20 games: fun, challenging, and ready to load and record on your cassette.

Simple but powerful.

Built around an RCA COSMAC microprocessor, the VIP is a complete computer system that can grow with you. It has 2K of RAM, expandable on-board to 4 K . Plus a ROM monitor, audio tone output to a
pouilt-in speaker, power upply, and 8-bit input and output ports for control of relays, sensors, or other peripherals.
Soon RCA will offer options for color graphics and 256 tone sound generation. An optional auxiliary keyboard will open up an exciting world of two-player games.

Take the first step now.

Check your local computer store or electronics distributor for the VIP. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.
*Suggested retail price. Does not Include video monitor or cassette recorder.

The fun way into computers.

Tektronix oscilloscope model 545 with type CA plug in Calıbratıon manual. Bill Heronemus, 138 Franklin Ave.. Lewes, DE 19958.

Supreme Instruments model 599 tube tester. Schematic and manual. William Groskurth, Box 1244, Terminal A. Toronto, Ontarıo, Canada, M5W 1G7.

Hallicrafters $S 40 B$ recelver. Operation manual and schematic. Stanley V. Ryba. 2954 Trimble Paducah, KY 42001.

Action Labs CB transceiver type TCV-271-3. Schematic or any avaitable information. Danny Degraft, 20 Birch St., Everetl, MA 02149.

Knight KG-690 signal Iracer. Schematic, operating manual. Richard Roggeveen, 5569 Dunsburry Ct., San Jose. CA 95123.

Bumont Labs type 322A oscilioscope. Schematic. Dennis Smith, 19502 Bowers Dr. Topanga. CA 90290.

Sylvania type 132 oscilloscope. Operation and service manual. Jerry Eckard, 2412 129th Ave.. Southeast, Bellevue. WA 98005.

Source Industries, Inc. electrograph 201 dual channe strip chart recorder. Schematıc and instruction manual. P. Kalcich. Box 244, El Dorado, AK 71730.

Precision E-200 signal generator. Manual and schematic. Bill Hocutt. 926 S. Shades Crest Rd., Bessemer. AL 35020

Kenwood model 1100. Schematic and user's manual. Greg Wright 3318 Emerald Isle Dr., Glendale. CA 91206.

Sanborn Electronic Switch model 179-100. Schemat ics. parts list, service manual. Michael Amies. Depl D\&EA, 214 Van Rensselaer Hall. Ithaca. NY 14853.

Knight r-f signal generator. Schematic and construction manual with parts list. David Kisner, 601 E. 12th. Hays, KS 67601.

Zenith model $4 \mathrm{K035}$ foour-tube radı. Schematic and operator's manual. Daniel Bevine, 506 South 8th St. Galesville, WI 54630 .

Triumph model 830 osciltoscope. Schematıcs or any information. R. Rockwell. 2 Forest Rd., Burlington, MA 01803.

Knight kit model KG 988A stereo receiver. Schematic and parts list. Ken Bryant. 97 Williamsburg Dr, Monroe, CT 06468.

Heathkit oscilloscope model OL-1. Schematic, Robert Dole, Route 1. Alemna, KS 67622

Non-Linear Systems X -2 digital mullimeter. Circuit board needed. Joaquin Araujo, Box 384. San Antonio. TX 78292.

Allied Knight model KG-50. Schematic needed. Joseph Szomolyai, 15418 Collins. Romulus. MI 48174.

Signal Corp. tube tester 1-77-B with adapter TTA-2B. Need updated tube charts. J. Stiles, 1420 Sunset Dr., Fairborn, OH 45324.

Crosly model 1318 (T 316). Schematic needed. Jerry Unger. RR 1. Box 537. Buchanan. M1 49107.

National high frequency receiver type NC-200. Owners operation manual, schematic, parts list and any other information. George Patchan. 3338 Slade Ct.. Falls Church, VA 22042.

Cubic Corp. model V-45 voltmeter Operating instructions repar manual and schematic. Henry Heintz, 15939 Norborne, Rediord, MI 48239.

Allied Radio Knight amateur transmitter model T-60. Operation and assembly manual. John Ross, Oakledge Rd. Brunswick. ME 04011.

Tennelec monitor, memoryscan model MS-I. Schematic and alignment procedure. Thomas R. Cannon, 7 Wistar St. . Claymont. DE 19703.

Heathkit HW-202t 2-meter transceiver. Schematic diagram and parts list. Mark Canavan. 163 Thoms Cr.. New Market. Ontarı, Canada. L3Y-1C9.

Hallicrafters SX 110 receiver. Schematic and manual. Gary Lutes, Box 94, Beattyville. KY 41311

Paco model S-55 oscilloscope. Need power transformer \#P18-183. George Chamberlin. 2139 Penna Ave., East Liverpool. OH 43920
Clough-Brengle model 105 oscilloscope. Manual and sche matic. Edna Farkas, 651 Sanford Ave.. Akron, OH 44305.

INDEX
 VOLUMES 13 AND 14 JANUARY TO DECEMBER 1978

COMMUNICATIONS

Amateur Code Exams, Secrets of the New (Helms) \qquad	
Broadcasts (SW) in English to North America Sept.Oct. 1978 (Hauser) \qquad	
CB Antenna, Choosing a Mobile (McVeigh)	
CB Today and Where it's Going Apr 63	
CB Transceivers and Antennas, How to Install Mobile (Berger)	
English-Language Shortwave Broadcasts for Mar. \& Apr. (Wood)	
English-Language Shortwave Broadcasts for May through Aug. (Wood) May 91	
Loop Antenna Extends AM Radio Reception, Low-Cost (Kohl)	
Oscar: Communications Satellites for Everyone (Helms) \qquad	
ersonal Microwave Communications Syste The Mini-Wave, Part 1 (Cooper \& Richey)	

FEATURES AND TUTORIALS

Oct
Amplitier Measurement. A New IHF
AM Stereo-Soon on the Air? (DeAngelo) Dec. 59
udio "Click" and "Pop" Suppressers Comparing (Hirsch)
Broadcasts (SW) in English to North Ame Sept.-Oct. 1978 (Hauser)
Cartridge Loading and Preamplifier Interaction (Hirsch) \qquad
Cassette Recorder Tape Compatibility (Hirsch)
Cassette Tape Formats, the New Micro/Mini (Berger) \qquad
CB Antenna, Choosing a Mobile (McVeigh) Apr. 69
CB Today and Where li's Going Apr. 63
CB Transceivers and Antennas, How to Install Mobile (Berger)
CB Transceivers, Buyers Guide to Super Mobile (Berger)
Circuits for Worst-Case Performance. Oesigning (Cheairs)
Computers for Small-Business Applications, Personal (Isaacson)
Corona" 256 -Color Peripheral (Lowenson. Marsh, \& Spann)
ata Processing Quiz (Bain)
DC-Coupled Speakers, Protection for (Cogswell)
Digital Logic Probes, Clips \& Pulsars. A Basic Guide to (Hallmark)
diskettes. How to Care for (Solom
aby
lectronic Games, 1978 (J
Electronic Music Synthesizers Work, How (Simonton) \qquad Apr. 56
Electronics IQ Quiz/Balin
Elf Microcomputer. How to Upgrade a Basic (McCormick)
English-Language Shortwave Broadcasts for Mar. \& Apr. (Wood) \qquad Mar. 100
English-Language Shortwave Broadcasts for May through Aug. (Wood) May 91
"Explorer" 8085-Based Microcomputer. The (Meyer) \qquad Nov. 87
Fidelity-or Believability (Hirsch) Mar. 26
Hi-Fi Equpment, What's New In (Berger)
Hi-Fi Sound in Any Auto. How to Get (Sutheim) July 44
Hi-Fi Television Sound, Now You Can Enjoy (Marks) .. Sept. 72
Holiday Season Electronic Gifts PE Editors Wish Theyd Receive \qquad
How FM Tuners Work! Part 2 (Hirsch
Interface Panel and End Test-Lead Clutter. Use an (Shaw) Sept. 80
Keypad, The Versatile (Pepper) Aug. 58

Capacitance Meter, Build an Autoranging Digital (Dage)
Digital Logic Probes, Clips \& Pulsars.
A Basic Guide to (Hallmark) Nov. 53
Dot/Bar Generator, A Low-Cost (Penny) Sept. 78
Intertace Panel and End Test-Lead Clutter.
Use an (Shaw)
Measure the Resistance of Hot Elements. How to (Sydnor) ...
Oscilloscope, How to Add Triggered Sweep to an
(Goodpasture) ...
Power Supplies. How to Design and Build.
Part 1 (Carr) ... Apr. 41
Out of Tune Correction
.. July 6
Power Supplies. How to Design and Build,
Part 2 (Carr) ... May 61
SWR Tester, Build a Low-Cost (Lewart) June 46

ANSWERS ELECTRONICS IQ QUIZ

(On page 65)

1. Answer: A. The bulbs correspond as follows: 1-C, 2-B, 3-E, 4-F, 5-A, 6-D.
2. Answer: A. The combined resistance of resistances in parallel is always less than the smallest one in the group.
3. Answer: C. All of the diodes are re-verse-biased except C which is for-ward-biased.
4. Answer: 7 A . The sum of the currents entering a junction must equal the sum of the currents leaving it. With 25 amperes flowing toward the center and 18 A flowing away, current G must be 7 A .
5. Answer: D. All of the resistor combinations have an equivalent resistance of 12 ohms except D.
6. Answer: C. Drawing C is upside down. Drawing B is reversed and rightside up, but one of the holes has been moved.
7. Answer: 5864. A kilowatt-hour meter is read from left to right
8. Answer: 1-B, 2-C, 3-A.
9. Answer: C. All of the components have the names of animals except C. A: crocodile clip; B: pigtails; C: banana plug; D: rabbit ears.
10. Answer: 24. $A=6$, add $3 ; B=9$, add 4; $C=13, \operatorname{add} 5 ; D=18, \operatorname{add} 6 ; E=24$.

TTL LON POWER SCHOTTKY PLASTIC DUAL－IN－UNE I．C．

Part No．	Price	Part No．Price	
74LS00	15	74LS47	9
74.501	15	74LS48	89
74LS02	15	74LS49	89
74LS03	15	74LS51	19
74 LSO 4	19	74LS54	19
$74 \mathrm{LS05}$	19	74LS55	19
74LS08	19	74LS63	1.50
74LS09	19	74LS73	29
74LS 10	15	74LS74	35
74LS 11	19	74LS75	49
74LS 12	19	74LS76	39
74LS 13	35	74LS78	39
74 LS 14	59	74LS83	79
74LS15	19	74LS85	99
74LS20	15	74LS86	35
74LS21	19	74LS90	59
74LS22	19	74LS91	99
74LS26	25	74LS92	59
74LS27	21	74LS93	49
74LS28	21	74LS95	70
74LS30	15	74LS96	99
74 LS32	25	74LS 107	39
74LS33	27	74LS 109	32
74 LS37	23	74 LS 112	32
74LS38	23	74LS 113	39
74LS40	19	74 LS 114	39
74LS42	54	74 LS 122	50

 Part No Price Part No Price Part No Price

む	
む ํ 几	

Dual In－line
Sockets• $\begin{gathered}\text { pluggable socket for ic packages } \\ \text { with } \\ \text { SLAOS }\end{gathered}$ Finest Quality ：MiGM RELLABLITY GAASTIGHt Jin Sockets Available Anywhere
－nompact low profile design
PC BOARD
FLAMMABILITY RATING UI 94OV．

Stock level	Contacts	Price
14000	8 PIN	11
345000	14 PIN	． 13
156000	16 PIN	． 15
33000	18 PIN	． 19
18000	22 PIN	． 27
84000	24 PIN	． 28
25000	28 PIN	． 36
46000	40 PIN	48

All new major manufacturer prod uction material offered．
Largest variety of device types available anywhere．

LINEAR I．C．＇S

LM324N	． 49	Quad Op Amp
LM339N	49	Quad Comparator
	． 29	Timer
LM723CN	． 34	Voltage Regulator
LM723CH	． 39	Voltage Regulator
LM74CH	． 37	Op Amp
LM741CN 8	． 24	Op Amp
LM 1458 N． 8	． 39	Dual Op Amp

GENERAL
INSTRUMENT
1 Amp Rectifiers（Epoxy）

1．5 AMP Single Phase Stock leve：Part No．Price Stock level Partive Rectifiers

Z80－CPU Z80A－CPU Z80－PIO 280A．PIO z80－CTC Z80A．CTC Z80－DMA
4.95 Z80－S $10 / 0 \quad 59.00$ 24.95 Z80A－SIO／O 68.00 7.95 icommon TX \＆RXclocks $7.95 \begin{aligned} & \text { common } T x \\ & 11.95 \\ & \text { with OTRBi }\end{aligned}$
7.95
11.95 11.95 Z80A－SIO／1 68.00 $46.00 \quad \begin{gathered}\text {（separate } \\ \text { without } \\ \text { R }\end{gathered}$

Quad Op Amp
Timer
Dual Timer
Voltage Regulator
Op Amp
Dual Op Amp
\qquad ator

MOS Static RAM＇S

Stock level	Part No．	Price
41400	$\mathbf{2 1 1 4}$	$\mathbf{7 . 5 0}$
	$4 \times(1 k \times 4) 450 \mathrm{Ns}$	
59500	$\mathbf{2 1 0 2 L F P C}$	$\mathbf{1 . 1 9}$

 \square

MOS Dynamic RAM＇S

Stock level	art No．	Price
2111	4 K 4060	．95
27550	16K 416．3	11.95
1865	16K 41	

8650	16K 416．5 300NS	8.95
	UART＇s	
Stock level	PartNo．	

29000 AY5－1013A 4.95

9200 AY3－1015 5.95
IKCMOS RAM

Stock level	Part No． 5400	Price
	5101	4.95

MICROPROCESSOR

 CHIPSStock level Partno
Price
21600 8080A $\$ 955.50$
$2700 \quad 6800 \quad 8.957 .95$
INTERFACE
SUPPORTCIRCUITS

Stock level	Part No	Price
1250	8212	1.98
1800	8214	$\mathbf{3 5} 3.95$
11200	8216	1.98
1700	8224	2.75
2800	8226	1.98
1500	8228	$\mathbf{4 . 7 5}$
1000	8238	$\mathbf{4 . 7 5}$
4900	8251	$\mathbf{5 9 5 4} 4.95$
500	8253	14.95
5200	8255	5.95
1100	8257	9.95
300	8259	14.95
1500	6810	$\mathbf{3 . 9 5 3 . 5 0}$
1700	6820	$\mathbf{4 . 9 5} 3.95$
1400	6821	$\mathbf{4 0 3} 3.95$
2800	6850	$\mathbf{5 . 9 5} 4.95$
700	6852	$\mathbf{5 . 9 5} 4.95$

P．O．BOX 1035 FRAMINGHAM，MASSACHUSETTS 01701

Over－the counter sales．
12 Mercer Rd．Natick，Mass 01760
Eehind Zayres on Rte． 9
Telephone Orders \＆Enquires（617）879－0077
IN CANADA 3 LOCATIONS

SES1 FEREMERST． H4P 245
Tel： 514 ） 725

\＆BOO DUFFERIN ST． Downsv
MBH SSO MuH：SS9
Tel
（416） $661-1115 ~$

MINIMUM ORDER $\$ 10.00$－ADD $\$ 2.00$ TO
COVER POSTAGE \＆HANDLING－Canadian
customers add 30% for exchange and handling．All edera and provincial taxes exira．
Foreign customers please remit payment on an
international bank dratt or international postat international bank draft or international postar money order in American dollars．

Redio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

Linear ICs

By National Semiconductor and Motorola - first quality

Type	Cat. No.	ONLY
301 CN	276-017	496
324 N	276 -1711	1.49
339 N	$276-1712$	1.49
386 CN	276-173	996
555 CN	${ }^{276-1723}$	799
556 CN	276-1728	1.39 169
${ }_{567 \mathrm{CN}}^{566 \mathrm{~N}}$	- ${ }_{\text {276-1724 }}^{276-1724}$	1.69 1.99
${ }_{723}{ }^{\text {cN }}$	276-1740	699
741 CN	276-007	498
741 H	276-010	496
3900 N	276-1713	99:
3909 N	276-1705	99%
${ }_{75491}^{4558 \mathrm{CN}}$	276.038 276.1701	${ }_{996}$
75492	276-1702	$99 ¢$
7805	276-1770	1.29
$\begin{array}{r}7812 \\ 7815 \\ \hline\end{array}$	- $\begin{aligned} & 276-1771 \\ & 276-1772\end{aligned}$	1.29 1.29

Computer Chip

8-Bit Data Bus,
16-Bit Address Bus
8080A Microprocessor. 100\% prime CPU handles up to 65 K bytes memory. 276-2510.
RAM Memory IC

Prompr
 Under 450 ns Access Time
 21021 K Static RAM. Low power ver sion. 16-pin DIP. Buy 8 and save 276 2501
 TTL and CMOS Logic ICs

Full-Spec Devices

Direct trom
Motorola and
National Semiconductor

Low-Cost Power Transformers

- Primaries Designed to Operate from $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ - Solder Lugs for Easy Wiring or PC Board Mounting

Volts	Current	Cat. No	Each	Volts	Current	Cat. No.	Each
6.3	1.2A	273-050	2.49	6.3 CT	3A	273-1510	3.99
6.3	300 mA	273-1384	1.99	12.6 CT	3A	273-1511	4.69
12	300 mA	273-1385	1.99	25.2 CT	2A	273-1512	4.99
24	300 mA	273-1386	2.49	12	5 A	273-1513	8.95
24	1.2A	273-1480	2.99	18 CT	4 A	273-1514	8.95
12.6 CT	1.2A	273-1505	2.89	$18 \mathrm{CT} \cdot$	2 A	273-1515	4.99

Hand-Held 6-Digit Frequency Counter
 A high quality "pocket" counter with 3 accuracy of 3 ppm at $25^{\circ} \mathrm{C}$ or less than 30 Hz at 10 MHz Overioad-prolected
$1-\mathrm{meg}$ input. Sensitivity 30 mv up to 30 MHz . Lead-zero blanking. Just $3 \times 4 \mathrm{t} / \mathrm{z}^{\prime \prime}$. With mini-rod antenna, leads, case, in-
structions Requires 9 V alkaline battery. 22-35199.95

NEW

IC Breadboard Sockets

Modular boards snap together and feature standard $0.3^{\prime \prime}$ center. $A C$ cepts 22 through 30 -gauge solid hookup wire
(A 550 connections in 2 bus strips of 40 tie points each with 47 rows of 5 connected tie points. 2 V8x6" 276-174
国 270 connections in 2 bus strips of 40 tie points each with 23 rows 9 5 connected tie points 21 ex $35 /{ }^{\prime \prime} 276-175$. 5 © Mini-Socket. 22 rows of 5 tie points each. plus 2 bus strips with 10 connections each. $21 / 8 \times 11^{7 / 1} \quad 276-176$

Ideal for 5 V (using CT) or 12 V solid-state regulators

Radio Shack Reference Books

NEW 3-Amp 4PDT
 Relay

With Clear Protective

Switch up to four different circuits. Contacts rated 3 amps at 125 VAC 12VDC coil, 160 ohms resistance. Solder terminals Just $13 / 8 \times 1 / 8 \times 13 / 16$ 275-214
4.99

Paddle Switches	Lighted DPDT Pushbutton	8-Rocker DIP Switch	Epoxy-Glass Plug-In
$\sqrt{\square} N E W$	Switch NEW		PC Boards
Rated 6 Amps at 125 VAC	Push-on/push-off witch rated 4A		For 22 -pin connectors. $4^{1 / 2} \times 4$:
unts in $34^{\prime \prime}$ round hoie-no		Designed tor easy change of	Stion
Neest do cout squere opening	Mosilion Mounts		Digital 276 -156 $\quad 4.44$
		${ }_{\text {moun }}^{\text {mounts on PC board }}$	

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

POLY PAKS

: 3 AMP

RECTIFIERS

MOTOR SPEED

"BASIC

KIT

IN4000 EPOXY RECTIFIERS

BLOCK

FANS
$\$ 9.95$
$\$ 9.95$

	SALE		
- 3×1400	${ }^{\text {SALE }}$	- SN3492	38
	.12 .14		43 48 18
-	12	- ${ }^{\text {SN7 }} \mathbf{}$	${ }_{38}$
-	14		12 12
- 3 M 7408	12	- sw74100	${ }^{12}$
- SN7409	. 20	- 5N17407	. 25
	. 18	- sN74123	29 48 18
SN743	. 28	- SNM1144	. 28
- $\operatorname{sN7420}$	12	- SN 71123	${ }_{39}$
-	. 12		
- ${ }^{\text {SNT426 }}$. 12	- SNT4145	59
- ${ }^{\text {SN7 }}$ (437	. 12	- ${ }_{\text {SNTH153 }}$	ss ss
- SN7433	12	SN1415s	-
- $\mathrm{SN7} 741$	49	- ${ }^{\text {SNN4156 }}$. 28
	. 28	- SN74188	*
SN7446	${ }_{6} 6$	- SN74163	${ }_{68}$
	. 65	- 5M14184	${ }^{39}$
- $\mathrm{SN7451}$. 12		,
- ${ }_{\text {SN7463 }}$	12		0
- sm7453	12	- sw7ils	880
-	. 12		. 39
- SN746s	. 12	SN74100	${ }_{39}$
- ${ }^{\text {SN77472 }}$. 12	- SN/4102	${ }_{78}^{20}$
- Sm743	. 28		98
- ${ }^{\text {SN7475 }}$. 38		${ }_{69} 8$
	. 315		89 80 18
- SN7402	${ }^{12}$	- SM74197	18
- ${ }^{\text {SN7443 }}$. 68		78
- SN74083	25		. 59
- SN74483			2.48
SN14880 SN		- SNT^{14298}	${ }^{29}$

BRIDGE RECTIFIERS

DISCOUNT ALLEYWE'RE PUTTING "GREENBACKS'" IN YOUR POCKET!

BARGAIN PRICED ONE-LINE SPECIALS

 DIGITAL CAPACITANCE METER KIT

MICROPROCOSSORS!
MEMORIES! SUPPORT:

: ㅁ toon

cian
s
$-3 A$
$-T_{o p}$
$m a d$
MINI TOGGLE SWITCHES
SALEI
$T_{\text {op }}$ USA
makerst

$$
\begin{aligned}
& \text { : iyp }
\end{aligned}
$$

3 M, 8 DIGIT
 8 DIGIT

FREQUENCY COUNTER $\$ 77$: Moro toouros tor tro momery SPECIFICATIONS:

ACcunacr: 1 PPM
LEAD EEMO ELANKing

 DISCOUNTS DUT FOREET OUR DISCOUNTS WHEN COMPARING PRICES 101 FREE

I

-

\square
MN., AK., HI. RESIDENTS

\squarecre I.C.'S • RESISTORS - TRANSISTORS • CAPACITORS • DIODES • I.C. SOCKETS \& PINS • SWITCHES CLOCK MODULES - OPTOELECTRONICS - BREADBOADING A TESTING DEVICES - DRAFTING SUPPLIES DATABOOKS - HEAT SINKS - WIRE - TOOLS ... AND MORE ... WRITE FOR FREE CATALOG

INTEAKATD Clkculis

8 COMPUTER INTERFACES \& PERIPHERALS

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

APPLE II SERIAL I/O INTERFACE

Part no. 2
Baud rate is continuously adjustable from0 to 30,000 - Plugs into any peripteral connector - Low current drain. RS232 input and output - On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even - Jumper selectable address SOFTWARE - Input and Output routine from monitor or BASIC to teletype or other serial printer - Program for using an Apple 11 for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only $-\$ 1500$, with parts - $\$ 42.00$; assembled and tested - $\$ 62.00$.

MODEM ${ }^{*}$

Part no. 109

- Type 103 - Full or half duplex - Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTL input and output-serial • Connect 8 ohm speaker
 and crystal mic. directly to board - Uses XR FSK demodulator - Requires +5 volts \bullet Board $\$ 7.60$ with parts $\$ 27.50$

DC POWER SUPPLY*

Part no. 6085

- Board supplies a regulated +5 volts
at 3 amps., $+12,-12$, and -5 volts at
1 amp. Power required is 8 volts AC
at 3 amps., and 24 volts $A C C T$. at 1.5
amps. Board only $\$ 12.50$, with
parts excluding transformers $\$ 42.50$

TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial - Output of board connects to mic. in of recorder - Earphone of
 recorder connects to input on board - No coils \bullet Requires +5 volts, low power drain - Board \$7.60; with parts $\$ 27.50$

T.V. TYPEWRITER

Part no. 106

- Stand alone TVT - 32 char/line. 16 lines, modifications for 64 char/line included - Parallel ASCII (TTL) input • Video output - 1K on board memory Output for computer controlled cur-
 ser - Auto scroll -Non-destructive curser - Curser inputs: up. down, left, right, home, EOL, EOS - Scroll up, down - Requires +5 volts at 1.5 amps . and -12 volts at $30 \mathrm{~mA} \cdot \mathrm{All} 7400$, TTL chips - Char gen. 2513 - Upper case only • Board only $\$ 39.00$; with parts $\$ 14500$

Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate - S-100 bus compatible - Board only \$35.00: with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Part no 101

- Converts serial to parallel and parallel to serial - Low cost on board baud rate generator - Baud rates: 110 . 150, 300, 600, 1200, and 2400 - Low power drain +5
 - TTL compatible - All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits. and either odd or even parity - All connections go to a 44 pin gold plated edge connec tor - Board only $\$ 12.00$ with parts $\$ 3500$ with connector add $\$ 3.00$

8K STATIC

Part no. 300

- 8 K Altair bus memory •

Uses 2102 Static memory chips - Memory protect - Gold contacts - Wait states - On board regulator $-\mathrm{S}-100$ bus compatible \bullet Vector input option - TRI state buffered - Board only $\$ 27.50$, with parts $\$ 160.00$

RF MODULATOR*

Part no. 107

- Converts video to AM modu lated RF. Channels 2 or 3 . So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very
 highly in Doctor Dobbs' Journal. Recommended by Apple. - Power required is 12 volts AC C. T., or +5 volts DC - Board $\$ 7.60$, with parts $\$ 13.50$

RS 232/TTY* INTERFACE

Part no 600

- Converts RS-232 to 20 mA current loop. and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 4.50$, with parts $\$ 7.00$

RS 232/TTL* INTERFACE

Part no. 232

- Converts TTL to RS-232. and converts RS-232 to
 - Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$ with connector add $\$ 2.00$

ELECTRONIC SYSTEMS

Dept. PE, P.O. Box 21638, San Jose, CA. USA 95151
To Order:
Mention part number and description. For parts kits add "A" to part number In USA, shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature Shipping charges added to C.O.D orders California residents add 6.5% for lax. Outside USA add 10\% for air mail postage, no C O.D. S. Checks and money orders must be payable in US dollars. Parts kits include sockets ior all Cs components, and circuit board. Documentation is included with all products. All items are in stock, and will be shipped the day order is recelved via first class mail. Prices are in US dolla
24 Hour Order Line: (408) 226-4064
quest Cosmac Super Elf Computer $\$ 106.95$

Compare features before you decide to buy any
other computer There is no other computer on the market today that has all the desirable bene fits of the Super Elf for so little money. The Supe Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet it is easily expanded Keyboards video memory. Tiny basic. Ascil Keyboards, video character generation, etc. The Super Elf inciudes a ROM monitor for program loading, editing and execut on with SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE operating with the unique Quest address and data bus displays before, during and atter executing instructions. Also, CPU mode and instruction cycle are shown on several LED indica tor lamps.
An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music or using many music programs alread to drive reiays for control purposes. A 24 key HEX keyboard includes 16 HEX keys
plus load, reset, run, input, memory protect,
Super Expansion Board with This is truly an astounding value! this board has been desgned to allow you to decide how you want it optioned The Super Expansion Board comes with 4 K of low power RAM fully address able anywhere in 64 K with built-in memory pro tect and a cassette interface. Provisions have board and it fits neatly into the hardwood cabinet alongside the Super EIf. The board includes slots for up to 6K of EPROM (2708, 2758, 2716 or TI 2716) and is fully socketed ($\$ 12.00$ value) EPROM can be used for the monitor and Tiny Basic or other purposes
A IK Super ROM Monitor $\mathbf{\$ 1 9 . 9 5}$ is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader editor and error checking multi file cassette read/write sottware. (relocatible cassette file) another exclusive from Quest. it includes register save and readout, video graphics driver with blinking cursor and block move c,apability The Super Monttor is written with subroutines allowing users to take advantage of monitor functions
memory select, monitor select and single step Large, on board displays provide output and op tional high and low address. There is a 44 pin connector for the Quest Super Expansion Board Power supply and sockets (or all IC' Boar cluded in the price plus a detaled 90 page instruc tion manual.

Many schools and universities are using the Super Elf as a course of study. OEM's use it for training and research and development
Remember, other computers only offer Super E features at additional cost or not at all. Compar before you buy. Super Elf Kit S106 95, High address option $\$ 8.95$, Low address option $\$ 9.95$. Custom Hardwoud Cabinet with drille and labelled front panel \$24.95. NiCad Batter Backup Kit \$4.95. All kits and options also come completely assembled and tested.
Questdata. a 12 page monthly sotware publica tion for 1802 computer users is available by sub scription for \$1200 per yea

Tiny Basic for ANY 1802 System Cassette $\$ 10.00$. On ROM Monitor $\$ 38.00$ Super Elf owners. 30% off. Object code listing or paper tape with manual $\$ 5.50$.
Original ELF Kit Board \$14.95.

Cassette Interface $\$ 89.95$

simply by calling them up Improvements and evisions are easily done with the monitor If you have the Super Expansion Board and Super Monitor the monitor is up and running at the push of a button
Other on board options include Parallel Input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. RS 232 and 20 ma Current Loop fo teietype or other device are on board and if you need more memory there are two $\mathrm{S}-100$ slots for static RAM or video boards. A Godbout 8K RAM board is available for $\$ 12795$ Parallell/0 Ports $\$ 9.85$, RS $232 \$ 4.50$, TTY $20 \mathrm{ma} \mathrm{I} / \mathrm{F} \$ 1.95$ S-100 \$4.50. A 50 pin connector set with ribbon able is available at $\$ 12.50$ for easy connection between the Super Elf and the Super Expansion Board.
The Power Supply for the Super Expansion Board s a 5 amp supply with $+8 v \pm 18 v+12 v-5 v$ Regulated votages are $+5 v \&+12 v \$ 29.95$ Deluxe version includes the case at $\$ 39.95$.

Auto Clock Kit $\$ 15.95$ OC clock with 4-.50" displays. Uses Natıonal MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Futly regulated, comp. instructs. Add $\$ 3.95$ for beautiful dark gray case. Best value anywhere	Digital Temperature Meter Kit indoor and outdoor. Switches back and forth Beautiful. 50" LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure -100° to $+200^{\circ}$. tenths of a degree. air or liquid.
RCA Cosmac VIP Kit 229.00 Video computer with games and graphics	 Very accurate. Beautiful hardwood case w/bezel $\$ 11.75$
Not a Cheap Clock Kit \$14.95 Includes everything except case 2-PC boards 6-50 LED Displays. 5314 clock chip. transformer, all components and full instrucs. Green and orange displays also avail. Same kit w/.80" displays. Red only $\$ 21.95$	NiCad Battery Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in one kit w/full parts and instructions. $\$ 7.25$ PROM Eraser Ulitraviolet, assembled $\$ 49.95$
60 Hz Crystal Time Base Kit $\$ 4.40$ Coriverts digital clocks from AC line frequency to crystal time base. Outstanding accuracy Kit includes: PC buard, MM5369, crystal, resistors. capacitors and trimmer.	Clock Calendar Kit $\quad \$ 23.95$ CT7015 direct drive chip displays date and time on $6^{\prime \prime}$ LEDS with AM-PM indicator Alarm/doze feature inciudes buzzer. Complete with all parts. power supply and instructions. less case.

> Same day shipment. First line Guar only. Factory tested Guaranteed money back. Qual ity IC's and other components at factory prices

INTEGRATEO CIRCUITS

 $\substack{\text { suitchese } \\ \text { M/modu } \\ \text { MA } 1003 \text { caI }}$

 3000 per fype
350 perere peck
5 per
5
 100 per type
KEY
atantos 56 key AsCli keyo
Fuly assembley 53 key AScliled keyboard kit
Fully assembley 6500 Enc 562.50
72.50
5500
ure 14.95 teos
Red Tor
Sruen
jumbo
dit EDS
Red Tovig
Sien Oran
jumbo Red
 COntimental specialties in siock

 computer botaro kits
 1 K EPROM
10 Board kil

 -

\qquad Grabbel Kit
transformers

Sinclair 31/2 Digit Multimeter tance to 20 meg : accuracy completely assem. in case. 1 yr guarantee. Best

Video Modulator Kit $\$ 8.95$ Converty your TV set into a high quality montior without affecting normal usage. Complete kit
2.5 MHz Frequency Counter Kit 30 MHz Frequency Counter Kit Complete kit less case

1978 IC Update Master Manual

 1978 IC Update Master Manual $\$ 30.00$. Com plete IC data selector. $2 \dagger 75 \mathrm{pg}$ Master refer ence guide. Over 42.000 cross references Free update service through 1978 DomesticStopwatch Kit

- $\$ 26.95$

32768 MHz bristal operated $2-5$ volts. 3.2768 MHz crystal accuracy. Times to 59
min. $59 \mathrm{sec} 991 / 100$ sec min.. 59 sec., $991 / 100 \mathrm{sec}$. Times std., split
and Taylor. 7205 chip all components minus

D Connectors RS232
${ }^{25}{ }^{25} \mathrm{P}_{\text {I }}$ Sub miniatures
 $\begin{array}{llll}\text { Cover } & 1.95 & \text { DE9S } & 1.95 \\ & 150 & \text { DA15P } 210\end{array}$ S-100 Computer Boards 8K Static Ram kit 16K Static RAM Kit 24k Static RAM Kit 32K Dynamic RAM Kit 64K Dynamic RAM Kıt $8 \mathrm{~K} / 16 \mathrm{~K}$ Eprom Kit (less Proms) Video Interiace Kit

KIM-1 MICROCOMPUTER Fully Assembled \& Tested NEW LOW PRICE $\$ 179.00$

Ballantine Model 1010A Dual Channel/X-Y Scope
ofessional oscilloscop

High quality, easy to maintain, and easy to use. Ideal for production, design laboratories, field service and schools. FREQUENCY: OC to 15 MHz each channe 24 ns rise time. SENSITIV/TY: $2 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}-\mathrm{Con}-1$.
tinuousiy varible gain. TIME BASE: $100 \mathrm{~ns} / \mathrm{cm}$ to $4.25 \mathrm{~s} / \mathrm{cm}$ × 100 Magnifier- Trigger bevond 20MHz.
PORTAB/L/TY: Only 7 Kg (15 pounds).
DISPLAY: $8 \times 10 \mathrm{~cm}$ CRT with 3600 volts. $\$ 695.00$

The Instructor 50

 Includes every thing you needs to
write, run and debug machine-
language programs-housed in
 MODEL 303 DUAL TRACE PORTABLE OSCILLOSCOPE

15 MHz
T Theo
N icad.
30V. - Safery Recharging
Supolies - High Relibility
Supplies - High Reliability
MOOEL 303 Complate wifoles and Ni-cad Bar. $\$ 895.00$

AM2901
C8080A
P8080A
C8080A
P8080A
C8085A
C8085A
P8085A
D8212
D8212
P8212
O8216
P8216
D

AM8224

D8226
P8226
D8228
D8228
AM8228
D8238
AMB238PC
C8251
C8251
P8255
C8255

PHONE ORDERS
Call 213-641-4064

VIM-1
THECOMPLET $1 \begin{aligned} & \text { MICROCOMPLE } \\ & \text { SYSTEM }\end{aligned}$ SY atures KIM-1
-28 Double

FIRST QUALITY ELECTRONIC COMPONENTS

 \qquad

The FLUKE 8020A Over 100.000 will be sold in 1978

HYBRID AUDIO $\begin{array}{ll}\text { SI-1010G (10W output) } & \$ 6.90 \\ \text { SI-1020G (20W output) } & \$ 13.95\end{array}$ $\begin{array}{ll}\text { A.SI-8 (Socket for above) } & \$ 13.95 \\ \text { SI.1030G (30W output) } & \$ 19.00\end{array}$ SI.1030G (30W output)
A-SI-10 (Socket for above)
$\$ 19.00$
$\$ 27.80$
.95
.50

Soft-Touch TONE DIALER

- Comes in Six coiors - 8lack. Tan, Green, White. Red and Yellow
ORDER YOURS TODAY P/N $2005-c o l o r r$

JUMBO LED READOUT ARRAY

By Bowmar. 5 in. character common cathode. Designed for use with multi\$1.95 Por use with multi-
plexed clock chips
4 digits in 1 pack COMPUTER PARTS

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

ASSEMBLED! NOT A KIT!
2ULU vERSION!
We nave a limited number of the 24 HR Real
PERFECT FOR USE
lime version of this module in stock
\#MA 1008D - $\$ 9.95$

features

- FOUR JUMBO // INCH LED DISPlays 12 HR REAL TIME FORMAT
24 HR ALARM SIGNAL OUTP 24 HR ALARM SIGNAL OUTPU
50 OR 60 Hz OPERATION LED BRIGHTNESS CONTROL POWER FALLURE INDICATO SLEEP \& SNOOZE TIMERS
DIRECT LED DRIVE LLOW RF COMPARE AT UP TO TWICE OUR PRICE!
MANUFACTURER'S CLOSEOUT!

Z-80	-	$\$ 19.95$
$Z-80 A$	-	$\$ 24.95$
$8080 A$	-	$\$ 6.95$
8212	-	$\$ 2.25$

Z-80
Z-80A
8080A
8212

16K DYNAMIC RAM CHIP

16K X 1 Bits. 16 Pin Package. Same as Mostek 4116-4.250 NS access 410 NS cycle time Oui best price yet for this state of the art RAM 32 K and 64 K RAM boards using this chip are readily available. These are new. fully guaranteed devices by a major mig VERY LIMITED STOCK!

$$
\$ 14^{95} \text { each }
$$

FAIRCHILD JUMBO READOUTS FND-503-Common Cathode FND-503-Common Cathode
FND-50-Common Anode YOUR CHOICE 694 10 FOR $\$ 5.75$
FET SALE! 2N4304. Brand New
Channel, Junction F BVGDO-30V IDSS-15 MA Typ 1500 UMHOS TO-18 Plastic Case Mig. by Teledyne. 6 FOR $\$ 1$

8 FOR ${ }^{\text {s }} 89.95$
$75 c$ ea. $\quad 4 / \$ 2.50$

Full Wave Bridge 4 Amp 200 PIV 69Cea. 10/5.75

COMPUTER CAPACITOR
By Ge 36.000 MFD 15 WVDC Small Size $4 \% \times 1 \%$ Inches. SUPER DEAL $\$ 2.95$ Each 3 FOR \$8

SALE!

1N4148 DIODES High speed switching diodes. Silicon. Same as 1 N914. Brand New. Full Leads. Prime! 100 FOR $\mathbf{\$ 2} 1000$ FOR $\mathbf{\$ 1 7 . 5 0}$

Digital Research Corporation
P. O. BOX 401247 A GARLAND, TEXAS $75040 \bullet(214)$ 271-2461

RECTIFIER SALE! 1N4006 Prime New by ITT AMP. 800 PIV 15 FOR \$1

RCA MICRO-POWER OP AMP.

*CA3078T Metal Can Most OPAMPS require - 15V to operate But the CA3078 is designed to operate from- 75 V to - 6 V "I Perfect for battery use Standby power as low as 700 NW ,
High Gain 92 DB typical Open Loop Gain Requires only one capacitor for compensation about \$2 each
$75 C$
3 FOR \$2

[^1]

T-THE ECONORAM they're static, they work.

FAMILY OF MEMORIES they're cost-ettective.
 8K ECONORAM II: Use with any S-100 machine. Dual block configuration. Kit \$135, 3 kits

 $\$ 375$, assembled/tested $\$ 155$.12K ECONORAM VI: Brings Econoram quality to the Heath H8 buss. Unkit \$235, SPECIAL -2 unkits $\$ 399$, assm/tested $\$ 270$.
16 K ECONORAM IV: Use with any $\mathrm{S}-100$ machine. Under 2000 mA current guaranteed. Unkit \$279, assm/tested \$314, CSC qualified \$414.
24K ECONORAM VII: Our top of the line for the S-100 buss. Under 2500 mA current guaranteed. Unkit \$445, assm/tested \$485, CSC qualified $\$ 605$.
ALL OF THE ABOVE ARE AVAILABLE FROM STOCK. Coming soon: 32K boards for the $\mathrm{S}-100$ buss, the Intel/National $80 / 10$ and $80 / 20$ machines, and the Digital Group ... plus and availability, or better yet, visit your local computer store as they should have information by the time this appears in print.

PRIME TTL \& CMOS AT LOWEST PRICES

 $\begin{array}{lll}4086 & 0.64 \\ 4089 & \ldots & 2.75\end{array}$

CIRCLE NO 26 ON FREE ANFORMATION CARD

New Tone Electronics
 Quality components at fair prices

HIGH FIDELITY SPEAKERS

8.INCH COAXIAL

Combines a high quality $8^{\prime \prime}$ woofer and a weeter into a pre-phased sound reporducer Built-in cross-over network Excellent choice for a low cost Hi Fi system for autos, vans, or in your home Frequency response is a smooth $80-15000 \mathrm{~Hz}$. 8 -ahm VC, 10 oz. ceramic ring magnet. 25 W rating.

HT577 \$13.99 plus 40 cents postage

10.INCH WOOFER

The speaker for your "big sound" system. Frequency response is $20-4000 \mathrm{~Hz}$, 8 -ohm aluminum VC; powerful 20 oz ceramic ring magnet and a rubberized accordion-edge suspension for excellent compliance. Handles 50W max Use with the NT576 for a super system

NT578 \$17.99 plus 40 cents postage

50W DOME TWEETER

Here is the super tweeter A rugged $10 \mathrm{~cm}\left|4^{\prime \prime}\right|$ dome iweeter which handles 50 W max. Frequency response is $4000-20000 \mathrm{~Hz}$. 8 - ohm VC, 8 -0z. ceramic magnet. Your system can
have a brilliance you never imagined
HT576 \$6.99

Resistors Standard values, $\pm 5 \%$, first quality. Packed 5 of one value
 Y/W 5 for $\$.25 \quad 1 / 2 W 5$ for $\$.30$

Capacitor Special 3600 mF , 40Vdc Sprague "Powerlytic" \$ $\mathbf{1 . 8 9}$
Relay SPDT, 12Vdc -5A contacts NT565 \$1.79
Sound Activated Switch Complete, ready io use. Built-in microphone's output
triggers a Triac which acts as a switch. Measures only $1^{\prime \prime} \times 3^{\prime \prime}$. Requires $3-6 \mathrm{Vdc}$.
NT527 \$1.29
And, the largest inventory of domestic and Jepanese transistors and ICs in the United States.
ALL PARTS GUARANTEED
WRITE FOR FREE CATALOG
Minimum Order \$5. Add \$1.50 Postage and Handling.
Canada add $\$ 2.00$. N.J. Residents add 5% Sales Tax.

Digital Auto Security System 3-Way Protection For Your Entire Car or Van

- Proximity Triggered Theft Protection - for valuables, CB or Ham equipment.
- Voltage Triggered Entry Protection - for doors and trunk.
- Mechanically Triggered Entry Protection - for under-hood parts.
- Activated by Personal 4 - Digit Code.
- Uses Your Auto Horn As An Alarm, Or Add A Siren.

Forget about anything you may have heard about other anti-theft systems. The OCULAR 2^{\circledR}, total security system, adds a new dimension to automobile security - Proximity Detaction. Even if the would-be thief could enter your car without triggering the voltage sensing circuit (not likely) - just approaching the protected area will sould your alarm instantly. He does not have to touch anything! Attention is the one thing the "rip-off" artist doesn't want.
And, there's more protection. Raising the hood sounds the alarm. Any change in voltage (dome or trunk light on, starting the car) sounds the alarm. If the cable connecting the units in the passenger compartment is cut, the OCULAR 2 turns itself on and sounds the alarm.
Your personal 4.digit code activates and deactivates the whole system. Just enter your code through the attractive push.button "Code Lok" keyboard when you leave your car and the system is activated. When you return, there's enough time to enter your code to deactivate the system before the alarm sounds.
Installation is easy and requires only simple hand toals. Complete with all hardware, instructions and your personal code. For 12 volt, negative-ground electrical systems only.
Sorry, but at this price, we must limit each order to only two systems per customer.
per customer.
Was $\$ 49995$, now Ocular $2 \$ 19.95$

PLANNING TO

MOVE?
Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly. Write to: PO. Box 2774, Boulder, CO 80322 giving the following information: \square Change address only \square Extend my subscription ENTER NEW SUBSCRIPTION
\square year $\$ 13.00$
(1 extra BONUS issue) Allow $30-60$ days for \square Bill me later

F AFFIX OLD LABEL I 1 you have no label handy, print OLD address here.
Name_please print
\qquad
\qquad NEW ADDRESS HERE 0228

Name __ please print
Address _ Apt

City

Slate postage on toreipn orders: add $\$ 3$ a year for Canada. $\$ 5$ Additional postage on toreign orders: add $\begin{aligned} & \text { a year for all other countries outside the U.S and its possessions. }\end{aligned}$ Cash only on foreign orders. payable in U.S currency.

COMPACT TRUMPET

Gallium Phosphide LED's low 59c

RECORDER MIKE b 149

 Most Portable Cassette Recorders

Complete satisfaction guardnteed. Shipment to uS did Canada grepaid unless indicated otherwise. Other countries add los-excess refunded. Orders shipped in 3 working days from receipt. Minimum order $\$ 10.00$ California residents add sales tax. Hinimum col or charge order $\$ 15.00$		
INTERNATIONAL ELECTRONICS UNLIMITED village square. p.o. dox ats, Carmiti valley, CA 9304 USA TELEPHONE © ASP. 3171		
CIRCLE NO 27 ON PAEE INFDRMATION CARD		
DRIECT FROM JAPAN'S DIBGEST ELECTROWIBS SUPPLIER		

믈 InTEGRATED ELECTRDTIES

540 Weddell Drive, \#4, Sunnyvale, CA 94086 (408)734-8470

CMOS		$74 c 08$	$.65$	7427	. 35	74161	1.00	8973	2.95	8334	4.0
4000	15	74 Cl 4	1.75	7430	.15 .30	74163	1.30	8974	2.95	8553	6.50
4001	. 20	74.20	26	7437	4	74.164	1.35	8976	2.95	8556	3.25
4007	20	$74 \mathrm{C30}$	26	7440	. 18	74165	1.20	75107	1.25	8599	3.25
4007	. 20	$74 \mathrm{C32}$	30	1442	1.00	74173	1.70	75450	1.00		
4010	. 36	$74{ }^{142}$	140	7445	70	74175	\$. 05	75452	80	LINE	AR
4011	20	74 C48	2.75	1446	. 70	74177	90	75453	80	301 N	. 35
4012	20	74.73	1.25	7448	. 70	74182	95	75491	1.25	307 N	. 35
4013	. 35	74.74	75	7450	25	74191	1.20	75492	1.40	308 H	1.00
4014	. 80	74 C86	\$. 0	7451	. 25	74192	1.45	75494	1.50	309 K	1.25
4015	30	74 C90	1.10	7453	. 25	74193	1.35			309 H	1.00
4016	. 35	74 Cg 3	1.25	7454	-35	74195	1.00	Perip	heral	318 H	. 50
4017	92	$74 \mathrm{Cl} 5^{1}$	2.75	7460	22	74196	1.10	8212	3.50	$320 \mathrm{H}-5$. 88
4018	. 92	74 Cl 54	3.00	7472	. 40	74197	1.10	8214	8.50	320 T .5	1.25
4019	20	74 Cl 157	2.10	7473	. 40	74199	2.25	8216	3.75	3201-12	1.25
4020	1.00	74 Cl 160	1.40	7474	40	74367	2.85	8224	4.75	324 N	1.75
4022	83	74 Cl 162	1.70	7475	55			8278	9.90	340 T .5	1.25
4023	21	$74 C 164$	1.75	7476	. 45	Interf	ace	8251	11.50	340 T 12	1.25
4024	. 75	74 Cl 65	1.75	7483	1.05	0025	3.50	8255	10.50	$340 \mathrm{~T} \cdot 15$	1.25
4025	20	$74{ }^{74174}$	1.50	7485	1.10	0026	1.75	2513	9.50	3407.24	1.25
4027	34	74.902	. 85	7486	. 43	8640	1.25	2516	9.50	3877	1.25
4028	. 79	74.8904	. 85	7489	2.00	8649	2.75	1013	6.50	388 N	1.15
4029	1.00	74 C905	3.00	7492	. 75	8806	3.00			${ }_{5}^{555 N}$. 35
4030	. 20	$74 C 914$	1.95	7493	. 65	8819	\$. 25	8000	TTL	556 N	. 85
4035	. 95	TTL		7495	78	8820	5.00	8720	3.25	558 N	2.80
4040	1.00			7496	85	8830	4.90	8 T97	1.75	561 N	5.00
4041	1.00	7400	16	74121	35	8833	2.45	8092	. 95	566 N	1.70
4042	. 70	7401	17	74122	49	8835	2.45	8094	60	567 N	1.65
4044	. 60	7403	. 17	74123	. 65	8836	1.25	8095	180	709N	30
4049	. 35	7404	. 19	74126	65	8837	2.45	8096	90	741 H	. 25
4051	1.10	7406	. 40	74132	1.25	8838	2.45	8098	-90	3035	2.40
4066	. 70	7407	40	74141	1.15	8859	1.50	8121	2.25	3401	1.25
4068	. 40	7409	25	74145	1.10	8865	1.50	8136	3.25		
4069	. 40	7410	18	741481.	1.20	8866	1.50	8220	3.25	74LSxx*	
4075	20	7413	. 78	74150	. 90	4867	1.85	8231	2.25		
4082	. 23	1414	. 68	74153	1.10	8869	1.75	8242	1.75	74LS00	23
74000	. 25	7417	. 38	74154	1.25	8879	2.25	8250	1.75	throug	
74002	. 45	7420	. 18	74155	. 75	8880	2.75	8260	2.25		
34 COM	. 32	7421	35	24157	1.00	8884	2.45	8281	1.00	14L5670	3.9

- For more 74LSxx, refer 10 our ad in the June issue of this magazine.

SPECIAL DISCOUNT
OEM EDUCATORS AND SCHOOLS
For a low quote, send a list of your needs and, if possible, desired prices. No quantity is too small.

Electronics
 C lassified

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.50$ per word. Minimum order $\$ 37.50$. EX-PAND-AD CLASSIFIED RATE: $\$ 3.75$ per word. Minimum order $\$ 56.25$. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.50$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 column ($2-1 / 4^{\prime \prime}$ wide). $\$ 30$. $2^{\prime \prime}$ by 1 column, $\$ 600.00$. $3^{\prime \prime}$ by 1 column, $\$ 900.00$. Advertiser to supply film positives. For trequency rates, please inquire. COLOR: Color avail. for all classified ad styles at earned rate plus additional 25%. Color choice Publisher's option and subject to availability. Publisher reserves right to run ad in black if color not avail. on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club, Master Charge, VISA - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1 st of the 2 nd month preceding cover date (for example, March issue closes January 1 st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-3926.

FOR SALE

FREE! Bargain Catalog-I.C.'s. LED's, readouts, fiber optics, calculators parts \& kits, semiconductors, parts. Poly Paks Box 942PE, Lynnfield, Mass. 01940.
GOVERNMENT and industrial surplus receivers, transmitters, snooperscopes, electronic parts, Picture Catalog 25 cents. Meshna, Nahant, Mass. 01908
LOWEST Prices Electronic Parts. Confidential Catalog Free KNAPP, 475096 th St N., St. Petersburg, FL 33708
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS Bluftion. Ohio 45817.
RADIO-T.V. Tubes- 36 cents each. Send for free catalog Cornell, 4213 University, San Diego, Calif. 92105.
AMATEUR SCIENTISTS. Electronics Experimenters, Science Fair Students . . Construction plans - Complete, in cluding drawings, schematics, parts list with prices and sources . . . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm - Sound Meter. . . over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, Uni versity Station, Ralergh, N.C. 27607.
ROTARY SWITCH 4P11P 5/\$5; 6P11P 5/\$7.25. Dip Switch 10-SPST 10/\$15. Transtormers 12.2 V CT-6A plus $8.5 \mathrm{~V}-5 \mathrm{~A}$ \$6.95. 24V-5A \$5.95. 10^{\prime} RG58C/U 12/\$10. Fertiks, 5400 Ella St., Philadelphia, PA 19120.

SOUND SYNTHESIZER KITS-Surf \$14.95. Wind $\$ 14.95$ Wind Chimes $\$ 19.95$, Musical Accessories, many more. Catalog free. PAIA Electronics, Box J14359. Oklahoma City, OK 73114.
HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels, scanners. Send post age stamp. Communications, Box 56-PE, Commack, N.Y 11725.

UNSCRAMBLERS: Fits any scanner or monitor, easily ad justs to all scrambled frequencies. Only $4^{\prime \prime}$ square $\$ 29.95$ fully guaranteed. Dealer inquiries welcomed. PDQ Elec tronics, Box 841, North Little Rock, Arkansas 72115.

TELETYPE EQUIPMENT for sale for beginners and exper ienced computer enthusiast. Teletype machines, parts supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave., Brooklyn, NY 11224. Tel: (212) 372-0349.

WHOLESALE C.B., Scanners, Antennas, Catalog 25 cents. Crystals: Special cut, $\$ 4.95$, Monitor $\$ 3.95$. Send make, model, frequency. G. Enterprises, Box 461P, Cleartield, UT 84015.

BUILD AND SAVE TELEPHONES, TELEVISION, DETEC TIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphones, Phonevision, Dialers, Color TV Converters, VTR, Games, $\$ 25$ TV Camera, Electron Microscope. Special Effects Generator, Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits, Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, $\$ 1.00$. Don Britton Enterprises, 6200 Wilshire Blvd. Los Angeles, Calif. 90048

WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! $\$ 1.00$. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349

NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Electronics, 1468 West 25th Street, Cleveland, OH 44113.

NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics, Box 82, Skokie, Illinois 60076. SURPLUS COMPONENTS, Communication and test equipment. Illustrated catalog 25 cents. E. French. P.O. Box 249, Aurora, Illinois 60505

TELEPHONES UNLIMITED, Equipment Supplies. All types, Regular, Keyed. Modular, Catalog 50 cents. Box 1147E, San Diego. California 92112.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics, 8753T Windom, St Louis, MO 63114.
RADIO SHACK Authorized Sales Center offering 10% dis count on products including TRS-80. 1117 Conway, Mission TX 78572
UNSCRAMBLER KIT. Tunes all scramble frequencies, may be built-in most scanners, $2-3 / 4 \times 2 \cdot 1 / 4 \times 1 / 2 . \$ 19.95$. Factory built Code-Breaker. \$29.95. Free Catalog: KRYSTAL KITS Box 445, Bentonville, Ark. 72712. (501) 273-5340.

ELECTRONIC SURPLUS FREE CATALOGS ETCO ELECTRONICS, Dopt EB North Country Shopping Center At, oN. Plattsburgh, N.Y. 12901

B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AM, 948 Prospect, Elmhurst, IL 60126

SURPLUS ELECTRONICS	
ATTENTION HOBBYISTS - SEND FOR YOUR FREE CATALOG	
Great buys in tape drives, keyboards, power	
supplies, and transformers. We also have heat sinks steel cabinets 10 terminals video dis	
plays, printers, and equipment cases And of	
course components. fans, wire, and cable. Write	
now to	
Worldwide Electronics	Nashua. NH. 0306

SPEAKER INFORMATION KIT

Get 70 pages of speaker facts. specs, construction tips plus info on our raw speakers, crossovers and a line of 9 quality hi-fi speaker system kits. We'll send you our fullcolor catalog: plus How to Hook UP Your System, an exhaustive step-by-step treatise on hi-fi system installation; and our Speaker Operating Manual chock full of facts on how to get
he most from any speaker system, for Free. Even if you don't buy from us we want you to have the tacts. That's how we got to be the That ' larges manutac world's largest manutac turer of speaker kits.

Send to

Speakerlab. Dept. PE-Y
735 N. Northlake Seattle. WA 98103

BUILD THE ARTISAN ELECTRONIC ORGAN . . . The 20th century successor to the classic pipe organ. Kits feature mod ular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar-ti-san. Write for our free brochure AOK Manufacturing, Inc., Box 445. Kenmore, WA 98028.

PLASTIC BAGS. All sizes. Buy in small quantities. Free Catalog. SAKet, 6151-D Colbath, Van Nuys, Ca 91401.

THE BEST CB ANTENNA

SEND FOR FREE PAL FULL LINE CATALOG AND DECAL

2614 EAST ADAMS • PHOENIX. ARIZONA 85034
PRINTED CIRCUITRY. Complete supplies. Failproof instructions. Major credit cards. Catalog $\$ 1.00$ refundable CIRCOLEX, Box 198, Marcy, NY 13403
POLICE/FIRE SCANNERS, crystals, antennas, CBs, Radar Detectors. HPR, Box 19224, Denver, C0 80219.

1802 EXTENDED MONITOR. Relocatable, K.C. tape routines, 18 powertul subroutines, requires 1 K memory. K.C. tape $\$ 20.00$, paper tape $\$ 18.00, \mathrm{w} /$ manual and listing. Information sase. Benchmark Computer Systems, 17 Hanover Place, Hicksville, L.I., N.Y 11801.
TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTI. Box 8699, White Bear Lake, MN 55110 . Price $\$ 1.00$ refundable with first order.
CB RADIOS, VHF-UHF Scanners, Crystal, Antennas, Radar Detectors. Wholesale. Southland. Box 3591, Baytown, TX 77520.

\qquad $\%$

± 15 volts
$5,-12$ volts
These PC mounted power aupplies are fusl ine thing tor op amp projecis where a dual yoltage power supoly is requlred. Line and load requiation normally less than 30 mu. Input 1 t5 VAG. Fully repalrable
Jim Turner
10305 Nawport
EI Paso, IX 79824

PRINTED CIRCUIT boards from sketch or artwork. Attordable prices, free details. DANOCINTHS INC., Box 261, Westland, MI 48185.
NEW, ADJUSTABLE, THREE OUTPUT, REGULATED POWER SUPPLY plus 900 parts worth over $\$ 400.00$ in complete CARTRIVISION television electronic assembly Documentation included Perfect for MICROPROCESSOR and all electronic applications. $\$ 16.45$ plus $\$ 4.50 \mathrm{~S} \& \mathrm{H}$. Master Charge, VISA. Free brochure. Madison Electronics, 369, Madison, Alabama 35758. SATISFACTION GUARANTEED 205-837-6658, Res.

3 DIGIT LED VOLTMETER KIT $\$ 19.50$ complete, s.a.s.e. brings specifications, schematic. ALPHASUPERKIT, Box 21105, Woodhaven, New York 11421.

FREE ELECTRICITY! FREE HEAT! 24 Plans. Collection, storage, sun-wind energy. $\$ 1.95$ complete guaranteed! Solar, Concord, MI 49237

BARGAINS GALORE! Buy-sell-trade classifieds in "Electronics Trader" only 104 word! Send $\$ 2.00$ for next four issues. Box 1333, Sun Valley, CA 91352.
CARTRIVISION CTI-I Color VTR'S have two with OEM service manual and extra's package $\$ 450.00$ Complete Jim Hansen, 1055 Leffingwell N.E., Grand Rapids, MI 49506. (616) 949-5932.

TRANSISTORS FOR C-B Repair, IC's and diodes TV audio repairs 2SC756A - \$2.40, 2SC1306-\$2.95, 2SC1307\$3.85. PLLOZAG - $\$ 7.50$, AN239 - $\$ 5.50$, STK439 \$8.95. Many more. FREE Catalog and transistor. B\&D Enterprizes, Box 32, Mt. Jewett, PA 16740.

UNSCRAMBLE CODED MESSAGES!

ELECTRONICS EQUIPMENT HOTLINE is a classified advertising newsletter for professional, industriat, and surplus electronic equipment. Subscriptions $\$ 6 / y e a r$, ads 50 e word. P.O Box 4768, Dept. PE, Panorama City, CA 91412
CB VISOR MIRROR - Dual Purpose ten-code reference \$4.25. Box 9088, Stockton, CA 95207
FREE MINT US Stamp Price List. Fast, Quahity Arizona Stamp, 4668Cl Speedway, Tucson, AZ 85712.
TI-59. TI-58, SR-52. w/wo PC 100A 20 Psychic programs Demonstrations, Research. Pleasure. Fully documented. $\$ 5.00$ ppd. Dickey. 7056 Styers Ferry, Clemmons, N.C 27012.

YOUR DIGITAL MULTIMETER can read resistance values in the milliohm range. Send $\$ 2.95$ to G. Peterson. RD1, Box 8G, Slate Hill, N.Y. 10973 for schematic and instructions.
METAL FILM RESISTORS, RN55, $1 \%, 70$ values, $12 ¢$ each Gold plated phono connectors available. Send SASE for in formation. Component Systems, 5556 Personality Court. Indianapolis, Indiana 46227 .
CIRCUIT BOARDS from camera-ready artwork. Free details. Quantity discounis. CM Circuits, 22 Maple Ave., Lackawanna NY 14218
CHESS, 4-PLAYER RULES, $\$ 2.00$. Party fun Gift for everyone Easily learned. challenging. Shipped immediately. Diel, 1154-A Galahad, Casselberry, F| 32707.
FREE CATALOG, unbelievable savings, antennas, stereos. ham, cable RG58U RG59U \$5.95/100', RG8U Foam \$16.95/100' \$2/100' Postage. BankAmericard. Nemal Electronics, Box 2712, Miami, FL 33140.
"YOUR CIGARETTE LIGHTER" can protect your car from thieves. Plans $\$ 3.00$, Unit $\$ 12.95,1$ year guarantee. KEK Enterprises, 38 Pilgrim Dr., Clifton, N.J. 07013.

PLANS AND KITS

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.
TV-OSCILLOSCOPE externally adapts TV into audio frequency oscilloscope. Into. $\$ 1.00$, Plans $\$ 5.00$, with P.C. $\$ 12.00$. Evolutionics, Box 855-B, San Rafael, CA 94902.
TAPE - SLIDE Synchronizer, multuprojector, lap-dissolve plans, $\$ 5.50$. Audiovisual group, $\$ 8.50$. Millers. 1896 Maywood, S. Euclid, OH 44121.
AMAZING ELECTRONIC PRODUCTS

 Chemical ultrasomic. cb. AERO auto ano mich oevices. hunoreos
more. all new plus info unito paris service INFORMATION unfimited
CATALOG $31 \quad$ Dept. EB. Box 716 Amherst, NH 03031
 YOUR OWN
SYMPHONY
OF SOUND!
It's fun and easy-takes just minutes a day! Complete kits for organs, pianos, strings, rhythms, amplifiers, synthesizers. Also factory assembled. 104-page factory assem
catalog $\$ 2.00$

© 1 WER5I

Wersi Electronics, inc. Dept. 2D, 1720 Hempstead Road Lancaster, PA 17601

CB/HAM HIGH GAIN ANTENNAS. Modulation boosting VOX-COMPRESSOR. Portable 300 MHz COUNTER with memory! Plans $\$ 3.00$ ea. $\$ 7.50 /$ all. Many others, catalog with order, PANAXIS, Box 130-A12. Paradise, CA 95969.
MODIFY YOUR P.L.L. or Crystal Synthesis C.B. for extra channels, linear and antenna tips. Send $\$ 12.95$ for instruction book. Action Protection Systems, RD1, Box 6003, Milford, PA 18337.
LIGHT TRIGGERED: I.C. Relay Driver 6 V.D.C. adjustable threshold, all assembled only $\$ 3.00$ \#302AT. SONIC SWITCH: Turns on lamps, motors, etc. Completely assembled. Solid State Super Buy only $\$ 3.00$ \#210AT. 3 TRANSISTOR Audio Pre-Amp for mike, phono, tape etc. Hi-Q input, $8-45 \mathrm{~V}$ output, 9 V.D.C. Assembled with schematic $\$ 4.00$ \#AT032. ABT Systems, P.O.B. 173, Schererville, Ind. 46375.

UNUSUAL SCIENTIFIC CREATIONS. Catalog $\$ 1.00$. Robotics-Ultra-high powered lasers - high voltage equipment - chemicals - etc.I!! Advanced Research Scientific, P.O. Box. 19041. Detrot, Michigan 48219.

TELEPHONES \& PARTS

CORDLESS TELEPHONES: Operate 300 ft from base. Factory rechecked, schematics included for personal maintenance. Originally $\$ 399.50$ - now $\$ 149.95$. Check. M.O. or Credit Card. Telephone Marketers, P.O. Box 216, Brookfield, WI 53005.

TELEPHONES, Answering Devices, Cords. Jacks. Catalog $\$ 1.00$ Refundable. TEL-TEST, P.O. Box 278, Butler, OH 44822.

OMAK PHONE CENTER. All types of telephones - keyed, modular and decorator. Catalog $\$ 1.00$ (refundable). Box 38 , Beardstown, IL 62618.

FREE TELEPHONE SUPPLY CATALOG. Most standard style telephones, cords, plugs, jacks, accessories; including modular. FLEMCO, 20272 37th Ave. N.E. Seattle, WA 98155.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffens, Box 624K, Cranford, N.J. 07016.

Burglar • Fire • Smoke Alarm Catalog

- Billions of dollars lost annually due to lack of protective warning alarms.
FREE CATALOG Shows you how to protect your home, business
 and person. Wholesale prices. Do-it-yourself. Free engineering service.

SONAR BREAKTHROUGH

Convert your Polaroid SX-70 Sonar camera to

 picture-taking burglar alarm at low cost. Use also for automatic photography and remote control shots. Detailed plans and instructions, $\$ 10.00$.
Bev-Mor Industries

Box 1232. Reseda, CA 91335.

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand instruments catalog Freeport Music, 114 G, Mahan St., W. Babylon, N. Y. 11704

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartidges at Discoun prices for Shure, Pickering, Stanton, Empire, Grado and ADC Send for free catalog LYLE CARTRIDGES, Dept. P. Box 69 Kensington Station, Erooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

Lambda Series II by Speakerkit, Ltd.

Woofers with butyl surrounds. Trans-
mission lines. Open dome midrange mission lines. Open dome midrange and tweeters. Infra-woofers and ultraweenable price. Send $25 \&$ for Series II catalog and manual.

Speakerkit, Bor 12PE, Menomonie, WI 54751

WANTED

GOLD, Silver, Platinum, Mercury, Tantalum wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

WANTED!CB DEALERS AND DISTRIBUTORS PAL Antenna Corp.

[^2]
TUBES

TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low, low prices. Transelectronic, Inc., 1365 39th St., Brooklyn, New York 11218. Telephone: (212) 633-2800. Tol free: 800-221-5802.

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog Cornell, 4213 University, San Diego, Calif. 92105
TUBES: "Oldies", Latest. Supplies, components, schematics Catalog Free (stamp appreciated). Steinmetz, 7519-PE Maplewood, Hammond, Ind. 46324.
TUBES 294 up, no minimum order necessary. Also have obsoletes. Free list. Conelco, Box 1333, Sun Valley, CA 91352

TAPE AND RECORDERS

RECORDS - TAPES! Discounts to 73\%; all labels, no purchase obligations; newsletter; discount dividend certificates; 100% guarantees. Free details. Discount Music Club 650 Main St., Dept. 5-1278, New Rochelle, N.Y. 10801.

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C 20021.

JEEPS-\$59.30! - CARS- $\$ 33.50$! - 200,000 ITEMS! GOVERNMENT SURPLUS - Most COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy - YOUR AREA - $\$ 2.00$ - MONEYBACK GUARANTEE - Government Information Services, Department GE-40, Box 99249 San Francisco, California 94109 (433 California)
GOVERNMENT SURPLUS. Buy in your Area. How, where. Send \$2.00. Surplus, 30177-PE Headquarters Building Washinglon, D.C. 20014.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes-Verlag. Box 110660/Z, D-1000 Berlin 11, Germany.

INSTRUCTION

SCORE high on F.C.C. Exams ... Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $\$ 14.50$; First Class Test, $\$ 15.00$. All tests, $\$ 26.50$. R.E.I., Inc., Box 806, Sarasota, Fla. 33577.

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE012, Tustin, California 92680.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-ZD, Olympia, Washinglon 98507.
GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages, 1465 questions with answers/discussions - covering third, second, first radiotelephone examinations. $\$ 13.50$ postpaid. GSE, P.O. Box 25992, Los Angeles, Calitornia 90025.
INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the schoot. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail, Fredericksburg. VA 22401.
1979 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! $\$ 9.95$ Unconditional Moneyback Guarantee. Command Productions, Box 26348-P. San Francisco, CA 94126.

BROADCAST STATION: Start your own. Home, school, church, business operation. Get free equipment, records. Details free. "Broadcasting", Box 130A12, Paradise, CA 95969.
LEARN ELECTRONIC DRAFTING: PCB design. Complete course $\$ 10.00$. VANDERLAAN, $6102-2$ Turnabout Lane, Coumbia MD 21044
PASS FCC 1st, 2nd, 3rd and Radar License Examinations using course prepared by noted author-teacher. Workbook has example problems with complete solutions. QuestionAnswer Manual provides hundreds of practice questions. $\$ 9.95$ each or both Manuals $\$ 14.95$ Postpaid. Includes Counselling. Oettinger, Box 1240, Garden Grove, CA 92642.
UNIQUE CB repair course requires no electronic knowledge or expensive equipment. Guaranteed results. CB City-P, 6241 Glade, Suite L-303, Woodland Hills, CA 91367

INVENTIONS WANTED

"THE INVENTOR'S CATALOG" $\$ 1.00$ Computer Evaluations - Patentability - marketing - taxes - etc.!!! Advanced Research, P.O. Box 19041, Detroit, Michigan 48219

DEAS, INVENTIONS, New Products needed by innovative manufacturers. Marketing assistance available to individuals, inkerers, universities, companies with teasible concepts. Write for Kit-PE, IMI, 701 Smithfield, Pittsburgh, PA 15222.

BUSINESS OPPORTUNITIES

MADE \$40,000.00 Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN, Ypsilanti, Michıgan 48197.

FREE CATALOGS. Repair air conditioning, refrigeration Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201

ELECTRONIC FACTORY

Investment unnecessary, knowledge not required sales handled by professionals. Posicard brings facts about this unusual opportunity. Write today! Barta-DL, Box 248, Walnut Creek, CA 94597.

NEW LUXURY Car Without Cost. Free Details! Codex-ZZ Box 6073. Toledo, Ohio 43614
GET RICH!!! Secret law erases debts. Free report exposes millionaire'\$\$ secrets. Blueprints, No. EE12, 453 W. 256, NYC 10741
\$650 WEEKLY for beginners!! Free report: Mailorder Consultants MEE12, 453 W256, NYC 10471.
MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES, 92-K2 Brighton 11 th, Brooklyn, New York 11235.

MILLIONS in Mail!!! Free Secrets. Transworld-17, Box 6226, Toledo, OH 43614

1000\% RETURN EASY in the television rental business. Free details. Carank-AL, Box 7696, Naples, FL 33941.
\$500.00 WEEKLY POSSIBLE mailing circulars! Free information. Wayne, Box 644, Ottawa, Kansas 66067.
ESTABLISH YOUR OWN Profitable Mail Order Business! Everything supplied. Michael-W, 46 Tanager Rd., Monroe, N.Y. 10950.

EARN $\$ 1500$ Monthly - Easy Home Income Mailing Circulars! Free details: Mailhouse, Box 2D-68403, Portland, OR 97268.

Beer Lovers.

Make the Finest Premium Beers at Home. Great Fun! Great Taste! Great Savings! First time. Every Time, Duane's Unique Home Brewery. Complete details. Free. Duane Imports Ltd., Dept. PE2, 508 Canal St., N.Y., N.Y. 10013

CB MAILING LIST. Proven buyers. CB City-P, 6241 Glade, Suite L-303, Woodland Hills, CA 91367.

- WITIID -

Assemble electronic devices in your home. Get started in spare time. Experience, Knowledge or Investment Not Necessary. Expect big profits: Investment Not Necessary. Exite for free literature
$\$ 300-\$ 600 / \mathrm{Wk}$. Possible. Win telling how

$$
\begin{aligned}
& \text { ELECTRONC DEVELOPNENT LAB } \\
& \text { Box 1535PS, Pinellas Park, FL } 33565
\end{aligned}
$$

EARN $\$ 1,000$ MONTHLY sparetime, homework, "Guaranteed." Free details, Write: UNICORN, ZD12,1140 Chelton, Colorado Springs, CO 80910.
\$3000 MONTHLY. Start immediately. Stuff envelopes at home information, send self-addressed stamped envelope. Village, Box 508-ZDI, West Covina, CA 91706.

YOUR OWN manufacturing business FREE. We supply all equipment and know how. Free details. Write: Mason, Room MC-376-HP, 1512 Jarvis, Chicago, IL 60626.

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 1147 W , San Diego, California 92112.
AUDIO/ANALOG/SYNTHESIS. Plans, parts, kits, etc. for the most exciting sound projects ever. Get on our mailing list send $25 \not \subset$ to: CFR Associates Inc., Newton, N.H. 03858.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768.

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Many new products. Catalog. Jackson's, Dept. K, Brownsville Rd., Mt. Ver non, III. 62864

REAL ESTATE

BIG . . FREE . . CATALOG! Over 2,500 top values coast to coast!! UNITED FARM AGENCY, 612-EP, West 47th, Kansas City, MO 64112.

BOOKS AND MAGAZINES

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. MEGIDDO Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619.
HOW DOES THE OPERATOR KNOW your telephone number without you telling her? Ten digit, state of the art, call tracing systems and Telco operation detailed in depth. Government and C.C.I.T.T. publications tell it all. For comprehensive listing send s.a.s.e. and $\$ 2.00$: Tell It, Box 523, Westbrook, CT 06498.
INTERFERENCE HANDBOOKS! TELEVISION INTERFERENCE: 27 specific problems discussed in detail. Traps, attenuators, charts and relerence data. \$5.95. AUDIO REC TIFICATION: Dealing with RFI in AM-FM-PHONO-AUDIO equipment. Trouble-shooting charts, filters. \$5.95. P.O. Box 13862, Savannah, GA 31406.

HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

MOVIE FILMS

WHOLE MOVIES AT HALF PRICE. Three terrific classic comedies starring Laurel and Hardy, W.C. Fields or Buster Keaton on sale now. Outstanding values. Uproarious fun. Send $\$ 1.00$ tor information and sixty-eight page Film Catalog listing comedies, westerns, dramas, horror and others. (Or send $\$ 100$ for Video Catalog with more than 140 tities.) Write Blackhawk Films, Dept. 4728 Davenport, Iowa 52808.
CHRISTMAS SALE - S-8 Snd Color \& B/W Universal \& Columbia 400' Features: Bye Bye Birdie (Ann-Margaret): Thoroughly Modern Millie (Julie Andrews); Machine Gun McCain (Peter Faik); Bryan's Song (Winner of 5 Emmy's): Centurians (George C. Scott); Anderson Tapes (Sean Connery) all in S-8 Eastman Color. Indicate in order of preference $\$ 44.95$ ea Post-paid. B/W - Mr. Smith Goes To Town: Re quiem for a Heavyweight (Anthony Quinn); On the Waterfront (Marlon Brando); Breakout (Charles Bronson), \$39.95 ea (Marlon Brando); Breakout (Charles Bronson),
Postpaid. Operation Tall Ships; The Detective (Frank Sinatra); Poseidon Adventure (Gene Hackman) - special, \$29.95 ea $+\$ 1.00$ shipping - all 200' S-8 Color Snd. Invisible Man (Claude Rains): Frenzy (Alfred Hitchcock) - 200 S-8 B/W Snd, $\$ 19.95$ ea $+\$ 1.00$ shipping. Universal $64-\mathrm{pg}$ catalog $\$ 1.00$ ($\$ 2.00$ foreign): Sportite; Ring Classics; Universal: Columbia order form, \$0.35. SPORTLITE FILMS, Elect-12/78. 20 N. Wacker Dr., Chicago, IL 60606.

MISCELLANEOUS

MPG INCREASED! Bypass Pollution Devices easily. REVERSIBLY!! Free details - Posco GEE12, 453 W. 256, NYC 10471.

ESPERANTO: Boon to travelers, penpals, collectors. Learn more about this fascinating international language - broaden your horizons! \$1 for full information to: ELNA, Box 1129, El Cerrito, CA 94530.

Retail Display Plan

All magazine retailers in the United States and Canada interested in earning an allowance for the display and sale of publications of the Ziff-Davis Publishing Company are invited to write for details. Sales Manager, Select Magazines, 229 Park Avenue South, New York, New York 10003.

Popular Electronics

READER
SERVICE NO. ADVERTISER PAGE NO

Active Electronic Sales Corp. 101 Ado Electronics Industrial Co. L'td. Ancrona Corp.
AP Products Incorporated
Audio-Technica U.S., Inc.
B \& F Enterprises

Chaney Electronics
Cleveland Institute of Electronics Inc.

1 Communications Electronic
Consumers Company
Continental Specialties Corporation … 85
Creative Computing Magazine 92
CREI, Capitol Radio Engineering Institute

52, 53, 54, 55

55 Southwest Technical Products Corp Speakerlab, Inc.

3 Tape Talk
Electro-Voice, Inc.

49 Sabtronics International, Inc
50 Sabtronics International, Inc.
3 Scientific Audio Electronics, Inc.
Scott, Inc., H. H.
Digi-Key Corporation 82
Digital Research Corp. 113
Edmund Scientific 121
Electronic Systems

$$
\begin{array}{r}
85 \\
110 \\
47
\end{array}
$$

Fluke 10Fordham Radio Supply
GFN Industries, Inc. 6

$$
\begin{aligned}
& \text { Godbout Elecs., Bill } \\
& \text { Grantham Coliege of Engineering } 88 \\
& 88
\end{aligned}
$$

Heath Company $71,72,7$
HEP ewlett-Packard 34Hobby W33
.121
E Integrated Electronics 117Integrated CircuitsInternational Components CorpInternational Electronics Unlimited108
81
J \& R Music World 64
02,103JS \& A National Sales GroupKedman CompanyKoss Corporation84
21
Lafayette RadioFOURTH COVERElectronics
Micro Computer Mart87New-Tone ElectronicsNew-Tone ElectronicsOhio Scientific InstrumentOK Machine \& Tool Corporation35PAL "Firestik" Antenna Corp.Percom Data Company, Inc.
Poly Paks

1 Sansu Electronics Corp.Illinois AudioMotorolaNetronics R \& DNRI SchoolsOlson ElectronicsPage Digital ElectronicsPAIA Electronics, Inc.Personal Software
... 107
Prince Corp. THIRD COVERt Electronics$13,48,104$
Radios Inter Technics by Panasonic Technics by Panasonic

THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials

THE NEW ELENCO $\mathbf{3 ½}$ DIGIT SOLID STATE MULTIMETER

The ultimate in performance: measures resistance to .01 ohms, voltage to 100 micro-volts, current to one micro-amp. Assembled and tested, with 2-Year warranty. Lists at \$99.95, HOBBY WORLD PRICE ONLY \$74.95!

16K MEMORY ADD-ON FOR APPLE OR TRS-80

HOBBY WORLD PRICE IS ONLY $\mathbf{\$ 9 8 . 0 0}$ (specify when ordering)
WAHL ISO-TIP CORDLESS SOLDERING IRON
Includes ni-cad batteries and wall plug transformer.
Lists at \$19.95, BUT HOBBY WORLD HAS IT FOR \$14.95!

SEND ME A FREE CATALOG!

Name
Adoress

Hobby Worla 19355 Business Center Dr *6 Northridge CA 91324

TELEPHONE ORDERS Inside Cal 2138869200 Outside Cal 8004235387

FInECHEMRONICS

Computer Aids Disc Mastering

According to CBS Records, its New DISComputerTM record mastering system promises louder, longer-playing records. The device uses a computer to pre-read tape being mastered 0.167 second before the cutter, and to signal the lathe to adjust the excursion of the cutting stylus to accomodate as much audible sound as possible. By allowing the lathe to anticipate signals to come, it is said to add up to 5 minutes of music per side to LP's and to increase recorded levels by as much as 2 to 5 dB . The computer, which is programmed for use with Scolly or Neumann lathes, also uses its memory to compare the preview-head signal to previously cut grooves. This allows DISComputerTM to take into account such subtleties as the average level on the disc, and to prevent groove echo by "remembering" never to closely space loud and quiet grooves. A company spokesman says 10 percent of all CBS Records produced in 1978 were mastered using the $\$ 250,000$ DISComputer ${ }^{\text {TM }}$.

Talking Clock

The TCE-124 "Talking Clock" from Omnicron Electronics, Putnam, CT, automatically delivers 12 - or 24hour time announcements in "a distinctive male voice," in English, German, or Arabic. Designed to be used with voice- or device-activated recorders, the TCE-124 automatically inserts its announcements on the tape at the completion of each message or data recording. The voice is generated by solid-state electronics, and there are no tapes or discs to wear. Other features of the clock include a LED display and monitor speaker, MSI/ LSI circuitry, one watt, 8 -ohm audio output and compact size.

Pendant Saves Lives

Microlert Systems, Burbank, CA, has developed a new wireless communicating device for emergency medical attention called "Microlert." The matchbook-size, du-al-contact pendant is actually a 1 -ounce transmitter. It will signal its receiver (located up to 300 ft away) to make telephone calls, giving the type and location of the emergency. When the dual-contacts are squeezed, a radio signal sets off the alarm. The system can make five or more preprogrammed, pretaped telephone calls. Although "Microlert" was developed for medical emergency purposes, it is suitable for use in a home or business to signal a robbery or any other emergency.

Acupuncture with Laser Beam

Acupuncture (a fairly ancient art) and lasers (rather new) are combined in the new "akupLas" therapy unit from Germany's Messerschmitt-Bolkow-Blohm. The helium-neon laser's beam has a wavelength of 632 nm , to which the skin is fairly transparent. This allows the $1-\mathrm{mm}$ diameter, $2-\mathrm{mW}$ beam to penetrate to a depth of 3 to 10 mm , depending on the type of skin. A fiber-optic tube guides the beam from the laser to the therapist's hand-piece, which can be placed directly to the skin.

VTR Interference Problems

If you have recently bought a video tape recorder and are using it with a TV receiver that is more than, say, a year old, you may be having VTR interference problems. This is generally experienced as a 1 -inch to $11 / 2$ inch, 45° bending at the top of the screen. While television manufacturers say that modifications have been made to the design of their receivers in recent months to avoid such interference, some are being compelled to modify older sets to accommodate a VTR. It has been explained that the difficulty stems from anti-flutter circuits built into older TV receivers to filter the maximum amount of external interference. As a result, the circuits do not lock on to the TV signal quickly. With a VTR, however, immediate locking in of the signal is required. Some compromise in the anti-flutter circuitry is thus required for video tape machines.

ASCII for Ham RTTY

In a move to allow Ham radio operators to operate more sophisticated amateur communications rigs, the FCC has proposed to allow them to use ASCII code for radio teletype transmissions. In the past, only Morse and fiveunit Baudot codes have been permitted in amateur radio operation. The move would allow Hams to use a variety of computer terminals for transmissions.

More Efficient Solar Cell

A prototype solar cell which converts a record 28.5% of sunlight to electricity has been developed by Varian Associates, Inc., under a Department of Energy contract administered by Sandia Laboratories. The highest efficiency previously reported was 23% for an AlGaAs cell. The new system uses two different solar cells-an AlGaAs cell and a silicon one-to absorb a wider range of solar wavelengths. A special filter reflects low-energy, long-wavelength rays to the silicon cell while permitting higher-energy, shorter-wavelength rays to pass through to the AlGaAs cell. In the prototype, various optical losses reduce the overall system efficiency to about 25%, but it is hoped that this can be raised to 30% by stacking the cells and eliminating the filter.

Computer Chess in Canada

The classic struggle between man and machine was continued over the chess board at the 100th anniversary of the Canadian National Exhibition in Toronto last September. The occasion was the UNCOMMAN (UNiversal COMputer MAN) Chess Event, sponsored by WINTARIO and Control Data Corp., under the auspices of the Ontario Chess Association. The public was able to try its skill against Commodore's Pet personal computers, programmed to play chess at eight different levels of expertise. During the event, a match was played between International Master David Levy and CHESS 4.7, a computer program developed by David Slate and Peter Atkins of Northwestern U. The program was run on Control Data's CYBER 176, in Minneapolis, and connected by phone lines to a terminal in Toronto.

The Prince On - Board - Computer. You've réáa -about digital compúters being available soon from Detroit. Now the first universal driveroperated automotive computer is available! It's a revolutionary electronic brain that's unquestionadly going to be the ULTIMATE OPTION for '79.

What it will do for you. The Prince On-Board Computer provides more than two dozen different kinds of information at the :ouch of a button.

The On-Board Computer measures only $10.5^{\prime \prime} \times 2.8^{\prime \prime} \times 1.7^{\prime \prime}$ and nounts easily in any vehicle.

Data such as vehicle locction (10/20 to CB'ers). Miles-to-go on a rip. Estimated time of arrival. Miles per gallon and
cost-perscile. Plus five merrories :od store mleage points with unicue audio alarm reminciers - and more!
Test drive one today. Your new car dealer can arrange fer a test ride in a Prince Or-Board Zom-puter-equipped car today. Or ypu can centact your local ARA distributor* for more inforrration. And if you're not in the market fo: a '79 right now, the POBC can be installed or your present car, van or truak.

Prince"'on-טogra"computer

clearly defined.
The revolutionary new Heil Driver in Lafayette's of notes. speakers have laboriously "pushed" the sound
out. This can result in a blurring and clipping speakers have laboriously "pushed" the sound

$$
\text { Criterion Series } 3000 \text { loudspeakers "shoots" }
$$

$$
\begin{aligned}
& \text { There's no blurring or cilp- } \\
& \text { ping. Every note is crisp and }
\end{aligned}
$$

 great, it fights against its of notes get clipped time (deceleration). But the mass of the driver is so

 Ever since "talking machines" first started talk-
ing, speakers have produced sound by pushing
the sound waves out of the speaker with a dia-
phragm. Sometimes reterred to as a "driver." Or
"pile driver."
This system has definite disadvantages.
To reproduce sound faithfully, the driver has to Id delivers a deep, solid bass and high efficiency.
THE CRITERION $\mathbf{3 0 0 2}$ is a small tower design
which couples the 10 in. woofer acoustically to a
10 in. passive radiator. It delivers a deeper, tighter
bass.
THE CRITERION $\mathbf{3 0 0 3}$ is a larger tower cesign
featuring a 12 in. heavy duty wooter coupled
acoustically to a 12 in. passive radiator. It has an
even fuller, deeper bass and greater power It delivers a deep, solid bass and high efficiency.
THE CRITERION $\mathbf{3 0 0 2}$ is a small tower design
which couples the 10 in. woofer acoustically to a
10 in. passive radiator. It delivers a deeper, tighter
bass.
THE CRITERION $\mathbf{3 0 0 3}$ is a larger tower cesign
featuring a 12 in. heavy duty woofer coupled
acoustically to a 12 in. passive radiator. It has an It delivers a deep, solid bass and high efficiency.
THE CRITERION $\mathbf{3 0 0 2}$ is a small tower design
which couples the 10 in. woofer acoustically to a
10 in. passive radiator. It delivers a deeper, tighter
bass.
THE CRITERION $\mathbf{3 0 0 3}$ is a larger tower cesign
featuring a 12 in. heavy duty woofer coupled
acoustically to a 12 in. passive radiator. It has an In a word. "Heil-lelujah!"
 full color. Features our complete line, every
 off of the initial "attack." Every note is clear. clipping of notes. No ragged top ends. No rounding the speed of its own motion! There is no blurring or

 moving part. Rather than "pusn" the air out, it

 eat, it fights against its own immense inertia. So $-$ \square
'łno punos ə4t
1.1

[^0]: Have a problem or question on circuitry, components, parts avalability, etc? Send it to the Hobby Scene Editor, popular electronics, One Park Ave., New York, N.Y. 10016 Though all letters can't be answered individually, those with wide interest will be published

[^1]: TERMS: Add $30 c$ postage, we pay balance. Orders under $\$ 15$ add $75 \mathbb{C}$ handling. No C.O.D. We accept Visa. Mastercharge, and American Express cards. Tex. Res. add 5% Tax. Foreign orders (except Canada) add 20\% P \& H. 90 Day Money Back Guarantee on all items.

[^2]: 2614 EAST ADAMS • Phoenix. ARIZONA 85034

