A Monostable Catalog for Experimenters Simple Computer Control Interfaces

Audio Focus:

- Digital Audio • Parametric Equalizer \& LED Spectrum Analyzer Construction Plans

In Califorria, a store owner charts sales on his Apple Compuier: On weekends though, he totes Apple home to help plan family fin ances with his wife. And for the kids to explore the new world of personal computers.

A hobbyist in Michigan starts a local Apple Computer Club, to challenge other members to computer games of skill and to trade programs.

Innovative folks everywhere have discovered that the era of the personal computer has already begun - with Apple.
Educators and students use Apple in the classroom. Businessmen trust Apple with the books. Parents are making Apple the newest family pastime. And kids of all ages are learning how much fun computers can be.

Visit your local computer store
The excitement starts in your local computer store. It's
a friendly place, owned by one of your neighbors. He'll show you exactly what you can use a personal computer for.

What to look for

Your neighborhood computer store has several different brands to show you. Chances are the salesman will recommend an Apple Computer. Apple's the one you can program yourself. So there's no limit to the things you can do. The more you use your Apple the more uses you'll discover. So it's important that Apple is the computer with more expansion capability. You can't outgrow Apple.

It's your move

Grab a piece of the future for yourself-we'll give you the address of the Apple dealer nearest you when you call our toll-free number. Then drop by and sink your teeth into an Apple. (800) 538-9696. In California,
(800) 662-9238.

Remember the \$400 Sinclair Micro TV? Here's the story on the greatest TV value ever.

That Sinclair TV shown above is small - the smallest TV in the world.
And when it was first introduced last year, it made history. So did its high price - $\$ 395$.

Our company never sold the unit for two reasons: 1) It was being promoted as a pocket TV and we felt it would not fit in most pockets and 2) We felt $\$ 395$ was too high a price for the unit regardless of its quality, size and features.
But we were wrong. Thousands of them were sold and it was selected as one of the most exciting new products of the year.

WE BOUGHT ONE

A few months ago we purchased a Sinclair TV and discovered another feature we didn't like. The unit included a 220 -volt converter for European operation. This meant that every American who bought the set had to pay extra for the converter even though very few Americans would be taking their TV to Europe.

So we came up with an idea. We went to England and purchased thousands of sets directly from the factory without the converter. We were also able to save money by eliminating the normal mark ups by importers, wholesalers and distributors.

We can now offer you the unit for only $\$ 249.95$ and if you want the 220 volt converter, your cost is only $\$ 19.95$ extra.

LESS THAN WHOLESALE

JS\&A would be offering the exact same Sinclair TV at a price less than Sinclair's actual wholesale price in the United States and we would still make enough profit to pay for the cost of this advertisement.

There is one feature we liked very much about the set. Its rechargeable batteries are built into the unit. Larger portable TV's offer $\$ 60$ optional rechargeable battery packs that must be purchased separately. Ours is built in and included in the price.
The Sinclair TV comes complete with an American AC adapter and charger, ear phones, carrying case. rechargeable batteries and a built-in antenna for both VHF and UHF. It
also comes with a cigarette lighter power converter, so you can watch all your favorite TV channels from your boat, plane, motor home or car without even using your batteries.

PHOTOGRAPHIC QUALITY

We were well aware of Sinclair's advanced electronics and quality features. But what we found particularly exciting was its picture tube. Even though the $2^{\prime \prime}$ (measured diagonally) tube is small, the TV's resolution resembles that of a clear sharp photograph. You can even read small telephone numbers when they're flashed on the screen.

The Sinclair unit is offered in this advertisement with the same accessories available in the $\$ 395$ system with the exception of the 220 -volt power converter.

The Sinclair is also convenient. You can take it on trips and entertain your children while you fly or drive. You can keep it on your desk at work and monitor the latest news or stock market reports. And you can view the soap operas as you work around the house. We even took ours to the ball game to watch those instant replays.

BIG POCKETS

But don't expect to carry it in your pocket - it won't fit unless you have big pockets. The unit measures $15 / 8^{\prime \prime} \times 4^{\prime \prime} \times 61 / 4^{\prime \prime}$ and weighs just 28 ounces which includes the built-in batteries.

The TV is serviced in the United States by Sinclair's service-by-mail facility. If service is ever required during its one-year limited warranty, just slip it in its handy mailer and send it to them for repair. Your solid-state unit should operate for years without a problem, but if it ever needs repair, it's good to know that service is an important part of our program.

For $\$ 249.95$, the Sinclair Micro TV is worth your test. Order one from JS\&A. Take it with you on a trip, bring it to your office, or carry it with you around the house. See how clear and sharp the picture is and how closely it resembles a black and white photograph. Then decide if you want to keep it. If not, no problem. Simply return your TV within 30 days for a prompt and courteous refund. We just want you to prove to yourself, the miracle of spaceage electronics before you decide

AMERICA'S LARGEST

Sinclair Radionics is one of England's largest electronics manufacturers and JS\&A is America's largest single source of space-age products-further assurance that your modest investment is well protected even though the unit is offered at such a bargain price.
To order your Sinclair Micro TV, simply send your check for $\mathbf{\$ 2 4 9 . 9 5}$ plus $\$ 3.00$ postage and handling (Illinois residents. please add 5% sales tax) to the address shown below or credit card buyers may call our toll-free number below. But please act quickly.

The Sinclair TV is an outstanding product that was priced too high. If you felt like we did and you waited, your timing is perfect. Order a Sinclair Micro TV at no obligation, today.

Dept.PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In Illinois Call (312) 564-7000
(c. JS\&A Group, Inc., 1979

WHEN THE GOING GETS TOUGH, BECKMAN'S NEW DIGITAL MULTIMETERS KEEP GOING.

Featuring new continuity function.

If you've ever been troubled by a faulty multimeteror had to use one that wasn't quite up to the tougher jobs your troubles are over. Now there's the Beckman line of digital multimeters. A new generation of $31 / 2$-digit models that combine superior reliability with highly versatile features.

Features like a unique continuity test function. With Beckman's new Insta-Ohms ${ }^{T M}$ quick continuity indicator, you no longer need an analog VOM for fast, convenient continuity checks.

There's also 10 -amp current ranges, in-circuit resistance measurement capability in all six-ohm ranges, a dedicated diode test function, and up to two years normal operation from a common 9 V battery.

The Model TECH 310 with all these features.

7 functions, 29 ranges, and $0.25 \% \mathrm{Vdc}$ accuracy is only $\$ 130$.
The Model TECH 300 with 0.5% Vdc accuracy, but without the continuity function or the 10 -amp current ranges, is just S 100 .

Whichever model you choose, you get a multimeter that won't let you down. There's exceptional overload and 6 kV transient protection, plus ruggedness to take a 6 -foot fall and to come up working.

So get the Beckman digital multimeter that performs and keeps on performing. No matter how tough the going gets. For information on the complete line and accessories, write or call your local distributor or the Advanced Electro-Products Division, Beckman Instruments, Inc., 2500 Harbor Boulevard, Fullerton, CA 92634, (714) 871-4848, ext. 3651.

About the cover:

The parametric equalizer and the spectrum analyzer are both valuable audio tools in setting up your audio system and listening area.

Cover photo by Justin Kerr

JOstiph E. MEsICE Publisher
ARTHUR P. salsegeno Editorial Director
LESLIE BOLOMON Techuical Director JOHA J. McVEIOH Technual Editor
JOHN R. RIGOS Managing Editor MAROLDA. MODOERS Senior Editor
ALEXAMDER W. DURAWA Features Editor
EDWARD I. DUXEAUM Art Director
AMDRE DUZANT Technical Illustrator
CARMEN VELATOUEZ Production Editor
BETTY LOUISE KHOWLES Editorial Asststont
Contrituting Editors Hal Chembertion, LoU Garner, Olenn Hauser Jullan Hirseh, Forrest mivns
JEFFF NEWMAM Assistant to the Editor
LINDA BLUM Advertising Service Manager
MARIE MAESTRI Executive Assistant
EDGAR W. HOPPER Publishing Director

Special Focus on Audio
A CLOSE LOOK AT DIGITAL AUDIO/ Harold A. Rodgers \& Leslie Solomon 39
Digital technology gives a new dimension to audio reproduction.
TAILOR THE SOUND OF YOUR AUDIO SYSTEM WITH THIS
STEREO PARAMETRIC EQUALIZER/ John H. Roberts 47
Low-cost. two-band unit for home or car.
BUILD A HAND-HELD LED SPECTRUM ANALYZER/ John Pfeiffer \& William Eppler 62
Real-time octave analyzer has ten bands for a number of audio uses.
Feature Articles
A MONOSTABLE CATALOG FOR EXPERIMENTERS/ Clement S. Pepper 69
Guide to characteristics and uses of IC multivibrators
WHO'S ON THOSE OTHER FREQUENCIES?/ Robert B. Grove 84
A breakdown of transmissions. by frequency. on the public service bands
three-dimensional resistor quiz/ Gary w. Seaver 88
Construction Articles
MAKE YOUR COMPUTER WORK AS A CONTROL CENTER/ Cass R. Lewart 80
Simple circuits permit a variety of external operations 82BUILD A SMART SWITCH/ Richard Fermoyle
Solid-state wall switch "remembers' to turn off switch if you forget.
Columns
STEREO SCENE/ Harold A. Rodgers 14
Giving the System a Fighting Chance 89
Missing-Pulse Detectors.
DX LISTENING/ Glenn Hauser 92
A Survey of DX Programs
COMPUTER BITS/ Hal Chamberlin 98
Digital Magnetic Recording.
SOFTWARE SOURCES/ Leslie Solomon 101
PROJECT OF THE MONTH/ Forrest M. Mims 102
Tri-State LED Demonstrator
Julian Hirsch Audio Reports
OPTONICA MODEL SA-5901 AM/FM STEREO RECEIVER 23
AIWA MODEL AD-6900 CASSETTE DECK 28
OHM I SPEAKER SYSTEM 31
Electronic Product Test Report
B\&K PRECISION MODEL DP50 DIGITAL PROBE 97
Departments
EDITORIAL/ Art Salsberg 4
Everything's Coming Up Computers.
LETTERS 6
NEW PRODUCTS 8
NEW LITERATURE 13
OPERATION ASSIST 117
ADVERTISERS INDEX 121
PERSONAL ELECTRONICS NEWS 122

[^0] BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED

ZIFF-DAVIS PUBLISHING COMPANY
Editorial and Executive Offices
(i. One Park Avenue. New York. New York 10016 212-725-3500
Joseph E. Mesics (725-3568) John J. Corton (725-3578) Bonnie B. Kaiser, Eastern Adv. Mgr. . (725-3580)

Midwestem Office
Ted Welch
Suite 1400, 180 N. Michigan Ave.
Chicago, IL 60601 (312-346-2600) 213-273-8050;
Western Representative: Norm Schindler 7050 Owensmouth Ave.. \#209 Canoga Park, CA 91303 (213-999-1414)
Japan: James Yagi, Oji Palace Aoyama; 6-25. Minami Aoyama, 6 Chome, Minato-Ku, okyo. 407-1930/6821, 582-285

ZIFF-DAVIS PUBLISHING COMPANY
Philip B. Korsant. President Furman Hebb. Executive Vice President Phillip T. Metternan, Sr. Vice President Edward D. Muhlfeld, Sr. Vice President Philip Sine, Sr. Vice President, Secretary Lawrence Sporn. Vice President. Circulation and Marketing Richard Friese, Sr. Vice President Baird Davis. Vice President, Production George Morrissey, Vice President Sydney H. Rogers, Vice President Sidney Holtz, Vice President Albert S. Traina, Vice President Paul H. Chook. Vice President Edgar W. Hopper. Vice Presidenl Robert N. Bavier, Jr., Vice President Selwyn Taubman. Treasurer
W. Bradford Briggs, Vice Chairman

ZIFF CORPORATION
William Ziff, Charman

1. Martin Pompadur. President Hershel B Sarbin. Executive Vice President

POPULAR ELECTRONICS. September 1979, Volume 16. Number 3. Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S. and Possessions, \$13.00; Canada, $\$ 16.00$; all other countries, $\$ 18.00$ (cash orders only, payable in U.S. currency). Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class mait by the Post Office Department, Ottawa, Canada. and for payment of postage in cash.
POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.
COPYRIGHT © 1979 BY ZIFF-DAVIS PUBLISHING COM PANY. ALL RIGHTS RESERVED.
Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying. Popular Photography, Skiing. Stereo Review, Elec tronic Experimenter's Handbook. Tape Recording \& Buying Guide. Stereo Directory \& Buying Guide, and Communicacons Handtook.
Material in this publication may not be reproduced in any form without permission. Requests for permisston should be directed to Jerry Schneider, Rights and Permissions, Ziff Eavis Publishing Co., One Park Ave. New York. NY 10016. Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave.. New York, NY 10016. Editorial contributions must be accompanied by relurn posibisher assumes no responsi bility for return or satety of manuscripts, art work, or mod bility for return or satety or manuscridis. art work or mod els.
Forms 3579 and all subscriplion correspondance: POP ULAR ELECTRONICS. CIrculation Dept.. P O. Box 2774. Boulder, CO 80302 Please allow at least eight weeks for change of address. Include your old address, enclosing. It possible, an address label from a recent issue

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue

Editorial

EVERYTHING'S COMING UP COMPUTERS!

News about computers and computer applications continues to engulf us. Just this morning, for example, I saw a TV news program concerning an MIT graduate student who developed a computer system to analyze the cries of babies. According to the researcher, the computer can distinguish between sounds that point to serious problems and those that are simply normal baby outpourings.

A few weeks earlier, I read a news release on a commercial computerized portrait system that's said to be the first full-color one on the market for reproducing a person's face on a T-shirt, tote bag, etc. (It's from Computer Ideas Inc, Raynham, MA.) Then I read about a nationwide information utility for personal-computer owners. With a 300-words/minute telephone interface, anyone can gain access to the system, called SOURCE (from Telecomputing Corp. of America in McLean, VA), by paying a one-time $\$ 100$ registration charge. Thereafter, the network can be used via a local phone call at $\$ 2.75 /$ hour. There are said to be more than 2,000 programs and data bases, ranging from games such as Star Trek to world and local news, business applications packages, a major subset of the New York Times Information Bank, airline schedules, and more.

At general electronics trade shows, too, I continually bump into new personal computer offerings. Recently, for instance, Texas Instruments unveiled its new TI-99/4 home computer, which comes with a 13-inch color video monitor, and uses ROM plug-in modules for program input. Ohio Scientific demonstrated its new C8P-DF, featuring an "on line" home controller that turns lights and appliances on and off, dims and brighten lamps, interfaces with a home security system, and has optional voice I/O and telephone interface systems. Commodore displayed its CBM business computer; Atari its Models 400 and 800 personal computer systems; Exidy its word processing and education systems; APF its MP1000 "Imagination Machine," which has color graphics; and Interact its Model One Benchmark, a "no-frills" version of its regular model.

Other avenues are used to reach media, too. Radio Shack, for instance, introduced its TRS-80 Model II small-business system at a press meeting. Its video monitor has a built-in floppy. And Heath's latest catalog features a new all-in-one personal computer (kit and assembled versions) that also has a built-in floppy disk.

Added to the foregoing are press releases about books on computers, software, peripherals, and a host of products that tout the word "computer" owing to the use of a microprocessor.

Viewing all this action, it's no wonder that computer specialists make up the second largest group of scientists in the United States. Given the enormous interest and projected growth in computers, it will surely be the premier science group at a near-future time.

Don't take our word forit.

"We can heartily recommend the Superboard II computer system for the beginner who wants to get into microcomputers with a minimum of cost. Moreover, this is a 'real' computer with full expandability."

Popular Electronics March, 1979
"(Their) new Challenger 1P weighs in at $\$ 349$ and provides a remarkable amount of computing for this incredible price."

Kilobaud Microcomputing February, 1979
"Over the past four years we have taken delivery on over 25 computer systems. Only two have worked totally glitch free and without adjustment as they came out of the carton: The Tektronic 4051 (at $\$ 7,000$ the most expensive computer we tested) and the Ohio Scientific Superboard II (at $\$ 279$ the least expensive) . . . The Superboard II and companion C1P deserve your serious consideration."

Creative Computing January, 1979
"The Superboard II and its fully dressed companion the Challenger 1P series incorporate all the fundamental necessities of a personal computer at a very attractive price. With the expansion capabilities provided, this series becomes a very formidable competitor in the home computer area."

Interface Age April, 1979
"The graphics available permit some really dramatic effects and are relatively simple to program... The fact that the system can be easily expanded to include a floppy means that while you are starting out with a low-cost minimal system, you don't have to throw it away when you are ready to go on to more complex computer functions. Everything is there that you need; you simply build on to what you already have. You don't have to worry about trading off existing equipment to get the system that will really do what you want it to do. At $\$ 279$, Superboard II is a tough act to follow."

Radio Electronics June, 1979
"The Superboard II is an excellent choice for the personal computer enthusiast on a budget."

555 DUTY CYCLES

I feel that Brian Walmann was slightly overenthusiastic in his criticism of 555 timer duty
cycles (June 1979). While the formula given by $T 1$ is a misprint and clearly incorrect, Signetics' $R_{B} /\left(R_{A}+2 R_{B}\right)$ formula is actually correct. Unfortunately, a misprint in Mr. Walmann's article quotes Signetics incorrectly to further confuse the issue. The point is that duty cycle can be defined by either $R_{B} /\left(R_{A}+\right.$ $\left.2 R_{B}\right)$ or $1-R_{B} /\left(R_{A}+2 R_{B}\right)$, which is equal to $\left(R_{A}+R_{B}\right) /\left(R_{A}+2 R_{B}\right)$, so that both Signetics and Mr. Walmann are correct, depending on whether you define duty cycle as the high or low state.-Barry Bodhaine, Boulder, CO.

ON UNSUNG INVENTORS

Your Editorial on individual achievements

Guess who builds this great \$19.95 Logic Probe. You. With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly thanks to our very descriptive step-by-step manual - you have a full performance logic probe. With it, the logic level in a digital circuit translates into light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the smarter tools from CSC

Complete, easy-to-follow instructions help make this a one-night project.

CONTINENTAL SPECIALTIES CORPORATION

70 Fulton Terr., New Haven. CT 06509 (203) 624-3103. TWX 710-465-1227 OTHER OFFICES San Francisco (415) 421-8872. IWX 910-372-7992 Europe CSC UKLTO. Phone Saffion-Walden 0799-21682, TLX 817477 Canada Len Finkler Lid.. Ontario

Call toll-free for details

 1-800-243-6077[^1]in electronics in the July 1979 issue was tremendously uplifting to me. When we can say that a device is the product of the genius of a certain man working today, either alone or with resources granted to him by a modern corporation, we are making a very valuable statement about the true nature of Mankind. It is right to honor these real men.-Zack T. Hinckley, Rockledge, FL.

Thank you for your round of applause in your "Unsung Electronics Inventors" Editorial. However, I would like to set the record straight in that I have never been with National Semiconductor. Upon leaving Fairchild, I helped to found Intel Corporation, where 1 have been ever since and presently hold the position of Vice Chairman.

In response to your request to learn of new developers who are unrecognized, I submit the name of Ted Hoff, who invented the first microcomputer. We feel this invention has been a major contribution to the state of the art and would like to see Dr. Hoff receive some of the recognition he deserves.-Robert N. Noyce, Intel Corp., Santa Clara, CA.

Your Editorial on unsung inventors noted the wrong company affiliation for the inventor of the 555 timer, Hans Camenzind. Signetics Corp. contracted him for this work, not Na tional Semiconductor.-Robert Frostholm, Signetics Corp., Sunnyvale, CA.

With reference to your July 1979 Editorial and the Bearcat scanner ads in the same issue, I think it is just great to be able to punch some buttons and have a radio receiver come up on frequency. Thanks to another unsung electronics inventor, James Murray (Radio Division, Naval Research Laboratory, Washinglon, DC), this is all possible. Mr. Murray invented the pushbutton frequency synthesizer in the early 1950 s , and HewlettPackard developed it to make its Model 5100 synthesizer.-L. C. Harlow, San Diego, CA.

Out of Tune

"Controlling DC Power With Pulse-Width Modulation" (June 1979). In Fig. 2, a connection between pins 2 and 6 of IC1 was omitted.
"Poor Man's Servant' (July 1979). While it appears in the schematic diagram, C2 is not mentioned in the Parts List. Also, the project will draw as much as 500 mA (with the specified relay) when it is triggered, rather than the stated 100 mA . Therefore, a good choice of power supply would be one rated at 5 volts and 1 ampere. Finally, take note that some suppliers are using the term "sound trigger" to describe the VOX module.
"Build In-Circuit Transistor Tester for \$10" (July 1979). A jumper between pin 12 of IC2 and the ground pad next to pin 9 was omitted from Fig. 2.

Low Cost Add-On Storage for Your TRS.80*. In the Size You Want.

When you're ready for add-on disk storage, we're ready for you. Ready with six mini-disk storage systems - 102K bytes to 591K bytes of additional on-line storage for your TRS-80*.

- Choose either 40-track TFD-100 ${ }^{\text {TM }}$ drives or 77 -track TFD-200 ${ }^{\text {MM }}$ drives.
-One-, two- and three-drive systems immediately available.
- Systems include Percom PATCH PAK \#1 $1^{\text {TM }}$, on disk, at no extra charge. PATCH PAK \# It $^{\text {TM }}$ de-glitches and upgrades TRSDOS* for 40- and 77-track operation.
-TFD-100 ${ }^{\text {TM }}$ drives accommodate "flippy disks." Store 205K bytes per mini-disk.
- Low prices. A single-drive TFD-100 ${ }^{\top} \mathrm{M}$ costs just \$399. Price includes PATCH PAK \# $T^{\text {TM }}$ disk.

Whether you need a single, 40track TFD-100 ${ }^{\mathrm{MM}}$ add-on or a three-drive add-on with 77 -track TFD-200 ${ }^{\text {M }}$ S , you get more data storage for less money from Percom.

Our TFD-100 ${ }^{\text {IM }}$ drive, for example, lets you store 102.4 K bytes of data on one side of a disk - compared to 80 K bytes on a TRS-80* mini-disk drive and 102.4 K bytes on the other side, too. Something you can't do with a TRS-80* drive. That's almost 205 K bytes per mini-disk.

And the TFD-200 ${ }^{\text {TM }}$ drives provide 197K bytes of on-line storage per drive

- 197K, 394K and 591 K bytes for onetwo and three-drive systems.

PATCH PAK \# $1^{\text {TM }}$, our upgrade program for your TRSDOS ${ }^{*}$, not only extends TRSDOS* to accommodate 40and 77 -track drives, it enhances TRSDOS* in other ways as well. PATCH PAK $\# 1^{\text {M }}$ is supplied with each drive system at no additional charge.

The reason you get more fo less from Percom is simple. Peripherals are not a sideline at Percom. Selling disk systems and other peripherals is our main business - the reason you get more engineering, more reliability and more back up support for less money.

In the Product Development Queue ... a printer interface for using your TRS-80 with any serial printer, and ... the Electric Crayon ${ }^{\text {th }}$ to map your computer memory onto your color TV screen - for games, animated shows, business displays, graphs, etc Coming PDQ!
-Enclosures are finished in systemcompatible "Tandy-silver" enamel.

Tw TFD-100. TFD-200. PATCH PAK and Electric Crayon are trademarks of PERCOM DATA COM PANY.
-TRS-8O and TRSOOS are trademarks of Tandy Corporation and Radio Shack which have no relationship to PERCOM OATA COMPANY

FI
 New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

KLH ComputerControlled Speaker

The KLH-1 loudspeaker from KLH Research \& Development Corp. uses an analog computer to regulate the drive to its woofer section in order to prevent overdriving the system. According to the company, this permits the dual woofers to be optimized for maximum bass output from an enclosure of limited size. The floor-standing $1.25-\mathrm{cu}$-ft (35 -liter) three-way system is said to be able to deliver a sound pressure level of 105 dB in a typical room, with a $-3-\mathrm{dB}$ point of 32 Hz and moderately high efficiency. $\$ 1000$ per pair, with Analog Bass Computer module.
CIRCLE NO. 87 ON FREE INFORMATION CARD

12-Band Portable Receiver

The Trans-Oceanic R-7000 portable receiver from Zenith covers seven shortwave bands including all frequencies from 1.8 to 30 MHz , the $A M$ and $F M$ broadcast bands, the longwave FAA aviation weather band, the aircraft communications band for air traffic control, and the public service band for amateurs, police, weather, etc. Features include SSB capability, a squelch control, an ANL/AFC switch, fine and

coarse tuning controls, wide-narrow bandwidth switch. Two built-in antennas, 12 dial scales, a signal-strength meter, a tuning meter for FM, and a $5^{\prime \prime}$ speaker whose input runs through a bass-to-treble control are also provided. The radio can operate on 8 " D " cells, a 12 -volt car battery, and 120 or 240 V ac. It measures $9.38^{\prime \prime} \times$ $14.06^{\prime \prime} \times 6.56^{\prime \prime}(238 \times 357 \times 167 \mathrm{~mm})$ and weighs $13 \mathrm{lb} 12 \mathrm{oz}(6.25 \mathrm{~kg})$ without batteries. $\$ 380$.
CIRCLE NO. 88 ON FREE INFORMATION CASD

$10-50-\mathrm{MHz}$ Frequency Counter

The FC-841 multifunction frequency counter from Soar is said to cover the range from 10 Hz to 50 MHz while maintaining a

time-base stability of 3 parts per million from $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ to $86^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$. Gate time is 100 ms , and rated sensitivity is 30 mV rms up to 30 MHz , falling to 60 mV rms at 60 MHz . Readout is via a four-digit LED display 0.3 inches high. Kilohertz and megahertz ranges are selected by a switch. Powered by four AA cells, the counter can also be fed from an ac power line or a car's cigar lighter. \$90.
CIRCLENO. 89 ON FREEINFORMATION CARD

Teac Open-Reel Tape Deck

Closed-loop, dual-capstan tape drive and $7^{\prime \prime}$ reel capability are two of the features listed for the new $X-7$ open-reel deck from Teac. The two-speed ($71 / 2$ and $33 / 4 \mathrm{ips}$) X-7 is equipped with three motors and three heads. The same machine is available as

the X-7R with six heads and bidirectional play-record. Wow and flutter is rated at 0.04% (WRMS) at $71 / 2 \mathrm{ips}$, with frequency response of 30 Hz to 28 kHz and signal-tonoise ratio of 58 dB . Price: $\$ 750$ for the $X-7, \$ 850$ for the $X-7 R$.

CIRCLE NO 91 ONFREEINFORMATION CARD

Speech Synthesizer

The Computalker CT-1A , designed to work with the Apple II microcomputer, is a completely self-contained speech synthesizer. The unit comes complete with its own chassis and power supply and contains all necessary interface circuitry as well as a 2watt audio amplifier. Accompanying the unit is an interconnect cable, an Apple controller card, a detailed manual, and a software package. Phono jacks provide connection points for external speakers, headphones, or an amplifier. To operate the Speech Synthesizer, an Apple II must have a minimum of 16 K RAM, with 32 K recommended. \$495.

CIRCIE NO. 92 ONFREE INFORMATION CARD

Ultrathin Test Probes

Telescoping test probes designed especially for microcircuitry and miniaturized components are available from Huntron Instruments, Inc. A retractable, temperedsteel electrode $23 / 4^{\prime \prime}(70 \mathrm{~mm}$) in length and $0.048^{\prime \prime}(1.2 \mathrm{~mm})$ in diameter extends from the handle of each probe, which is fitted

with a locking device to hold the electrode at the desired length. An insulating coating said to resist up to 1 kV covers each electrode down to its needle-sharp tip. Each probe comes with $5^{\prime}(1.5 \mathrm{~m})$ of PVC-coated Superflex leads fitted with standard banana plugs. All parts are said to be replaceable in case of damage.
CIRCLE NO. 93 ON FREE INFORMATION CARD

Data-Cable Line Monitor

The Model 20 Line Monitor introduced by Remark International allows rapid and convenient access to all 25 signal paths of a standard communications data cable.

3018 BATHURST ST. TORONTO, ONTARIO CANADA M6B 3B6
TELEPHONE (416) 787-2811

CORDLESS CONVENIENCE

THE REMOTE CONTROL STARTER FOR YOUR CAR AND THE WIRELESS TELEPHONES ARE JUST TWO OF OUR PRODUCTS THAT WILL HELP YOU ACHIEVE THIS.

REMOTE STARTER:
IT IS THE ULTIMATE IN MOTORING CONVE NIENCE THE TRANSMITTER IS THE SIZE OF A MATCH BOX $1.7^{\prime \prime} \times 2.5 \times 7$ THE SMALLEST IN THE WORLD. NO MORE WAITING FOR A COLD CAR TO WARM UP, OR A BOILING ONE TO COOL OFF JUST START IT FROM YOUR HOME OR OF FICE AND SIT INTO A COMFORTABLE ENVI RONMENT WHEN YOU ARE READY TO DRIVE AWAY. DONT WORRY. NO ONE ELSE CAN DO THE SAME BECALTSE IF YOLR CAR IS PUT INTO GEAR WITHOUT A KEY THE ENGINE WILLAL TOMATICALLY STOP TO PREVENT ACCIDENT OR THEFT. ORDER YOURS NOW FOR ONLY $\$ 249$ (CANADA \$299) WITH 10 DAY MONEY BACK GUARANTEE.

THE CORDLESS PHONE THE ULTIMATE IN PHONE CONVENIENCE. NO MORE SCRAMBLING FOR THE PHONE WHEN IT RINGS. YOU CAN ANSWER YOUR PHONE UP TO 700°. THIS MEANS YOU CAN EVEN GO OVER TO THE NEIGHBORS OR GO SHOPPING AROUND THE CORNER WITHOUT HAVING TO STICK TO THE PHONE WAFTING FOR AN IMPORTANT CALL. THIS UNIT IS ALSO AN IDEAL DETERRENT FOR WOULD BE THIEVES. THEY ALWAYS CALL TO CHECK IF YOU ARE AT HOME WITH OUR CORDLESS PHONE YOUR NEIGHBORS CAN ANSWER MAK PHG IT SEEM LIKE SOMEONE IS OCCUPYING YOUR HOUSE IN THE OFFICE OR PLANT NO MORE RUNNING TO THE NEAREST PHONE TO FIND OUT YOU DONTT EVEN WANT TO TALK TO THE CALLER. YOUR SECRETARY TO TALK TO THE INTERCOM BUTTON AND TELL YOU WRESS CALLING WITHOUT THE PARTY HEARING. BE CALLINE THEY ARE ON HOLD O OEARING, BENAW FOR ONLY $\$ 99$ CANADA ORDER YOURS DAY MONEY BACK GUARANTEE WITH TOUCH DIALER $\$ 249$ (CANADA $\$ 299$) TO TALLY MOBILE PHONE: USABLE THROUGHOUT NORTH AMERICA $\$ 3000$.
DEALER INQUIRIES ARE INVITED
PLEASE SEND CHECKS, MONEY ORDERS, BANKAMERICARD (VISA) OR MASTER CHARGE TO TEKNION DEPT. PE9, 1333-54th ST., BROOK
LYN, N.Y. 11219
CANADA -3018 BATHURST ST., TORONTO ON TARIO M6B 3B6
N.Y., ONT. RESIDENTS ADD SALES TAX

When connected in series with the cable, the monitor provides 25 clearly marked test points in the form of $0.025^{\prime \prime}$ square pins. Two standard data connectors, which

interface the cable and monitor, and all the pins are contained in an aluminum housing $3^{\prime \prime} \times 2.5^{\prime \prime} \times 1.5^{\prime \prime}$. Standard connector configuration is 1 male, 1 female; a 2 -male or 2-female arrangement is available at extra cost. \$32. Address: Remark International, 4 Sycamore Dr., Woodbury, NY 11797.

Satin 117S Moving-Coil Pickup

One of the latest of the Satin moving-coil cartridges introduced by Osawa is the Model 117S, distinguished by its special stylus shape. Like the earlier Model 117G,

the 1175 is designed to feed a standard phono input with no transformer or head amp required. In addition, the new cartridge is said to have a fixed-point pivot for the stylus cantilever and a special formula lubricant instead of the less accurate rubber mechanisms often used to provide damping. $\$ 225$.
CIRCLE NO 94 ON FREE INFORMATION CARD

Speech Processor Mic

The new K-40 Speech Processor microphone from American Antenna is said to monitor speech and automatically adjust its gain so as to produce up to 400% more "talk" power than standard microphones. A two-position switch changes equalization to give high-pitch transmission for cutting through traffic noise or a mellow tone for quiet areas. An electronic storage sys-

tem that automatically provides a fresh electric charge each time the trigger is released eliminates the need for a battery. An internal magnet is provided to clamp the device to any steel surface. $\$ 42.50$.
CIRCLENO. 95 ONFREE INFORMATION CARD

LCD Designer's Kit

Beckman has introduced a kit that lets users experiment with large-area liquid cr jstal displays. Contains a 0.5", 4-digit LCD

display along with a connector/bezel assembly, printed circuit board, and complete specifications and applications information. \$11.95. Address: Beckman Instruments, Inc., Display Systems Div., 2500 Harbor Blvd., Fullerton, CA 92634.

30-MHz Dual-Trace Miniscope

Non-Linear Systems' Model MS-230 miniature oscilloscope is rated at 30 MHz and offers dual-trace operation. The batteryoperated Miniscope measures 8.5"D \times $6.4^{\prime} \mathrm{W} \times 2.9^{\prime \prime} \mathrm{H}(216 \times 163 \times 74 \mathrm{~mm})$ and weighs $3.5 \mathrm{lb}(1.6 \mathrm{~kg})$, including battery. It features alternate, chopped, and separate sweep modes and internal and external triggering. There are 12 vertical-gain set-

Integrated circuits are very private devices. When something goes wrong, they just don't work. Which is tough enough when part or all of one IC goes bad. But often worse, because a single bad IC usually means a large, complex system that won't function properly.

Until now, you could spend a lot of money and time-and still only be guessing what was happening at any point in a logic system.

Logic Probe LP-1. Captures pulses as fast as 50 nanoseconds. to 10 MHz . Latching memory. Bargain-priced at only $\$ 44.95^{*}$.

CSC puts troubleshooting at your

fingertips. Now, there's a quicker, surer, less expensive way to get the information you need. CSC multi-family Logic Probes. Their LEDs light to show you at a glance the logic state at any point-and more. Catch fast pulses, even store them if you like. A flashing light signals pulse trains. And you can even approximate the duty cycle of asymmetrical waveforms.

Nothing could be simpler. No complex
settings, no sync, no wait. A switch selects the proper logic family. The probes derive their

Logic Probe LP-2. All the basic features of LP-1, with pulses as fast as 300 nanoseconds, to 1.5 MHz . Doesn't have LP-1's memory feature ... but features even lower price: $\$ 24.95^{*}$!
power from the circuit under test. High input impedance prevents circuit loading. And all you do is touch the tip to any pin, pad or path for an \longrightarrow - instant picture of circuit conditions. Laboratory quality. Economy price. High speed. High precision. Even memory. CSC Logic Probes deliver all the performance you need for design, development, debugging and servicing. Making digital work less of a chore, more of a bargain. CSC for yourself!

Call 1-800-243-6077 toll--free for details

CONTINENTAL SPECIALTIES CORPORATION

70 Fulton Terr., New Haven, CT 06509 (203) 624-3103. TWX 710-465-1227 OTHER OFFICES: San Francisco: (415) 421-8872, TWX 910-372-7992 Europe: CSC UK LTD. Phone Saffron-Walden 0799-21682, TLX 817477

Canada: Len Finkier Ltd. Ontario

[^2]

MULTI-PURPOSE TOOL KIT presents your 11 most used tools.

Professional or hobbyist, reach out your hand. Xcelite tool buddy TKX 11 has just the tool you want for tinkering, maintenance, or repair. Six different drivers - pocket clip, stubby, and regular - for slotted, Phillips, hex head screws and nuts. 10 -foot inch/metric rule. Wire stripper/cutter. $6^{\prime \prime}$ slip joint plier, long nose plier with side cutter, adjustable wrench.

Compact, durable, double-wall caddy compartmented for easy choice and storage. A buddy you'll keep by your side.

New Gift Idea! For all occasions
In stock at leading electronic distributors . . . nationwide.

Electronics Division
WELLER - WISSn - XCELITE*
PO BOX 728. APEX. NORTH CAROLINA 27502. 919/362-7511
CIRCLE NO. 17 ON FREE INFORMATION CARD
tings for each channel from 0.01 to 50 volts/division. There are also 21 time-base settings from $0.05 \mu \mathrm{~s}$ to $0.2 \mathrm{~s} /$ division. Verniers are provided for time-base and vertical-amplifier adjustment. Included are a horizontal input channel, an internal calibrator, input cables and a battery charger that permits line operation. Accessories include a 10:1 10-megohm probe and leather carrying case with shoulder strap and belt loop. \$559.00.

CIRCLENO 96 ON FREE INF ORMATIONCARD

Phase Linear Power Amp

The Model 300 Series Two power amplifier from Phase Linear is rated to deliver a minimum of 120 watts per channel at no more than 0.009% total harmonic distortion, 20 Hz to 20 kHz with both channels driven into 8 ohms. Transient inter-modulation distortion (TIM) is said to be no more than 0.005%. Although the amplifier is a class $A B$ design and therefore subject to crossover distortion, Phase Linear claims that all the spurious products from this source lie above 80 kHZ , where they are inaudible. $\$ 450$.

CIRCLE NO 97 ONFREE INFORMATION CARD

Ham Transceiver with Microprocessor

Swan Electronics's new Astro 150 Amateur Radio transceiver features microprocessor control and memory. The all-sol-id-state transceiver is claimed to be the

most advanced on today's hf SSB market. It offers more than 100,000 digitally-controlled frequencies and variable-rate scanning (VRS). With up and DOWN pushbuttons on the microphone, the transceiver can be tuned for accurate $100-\mathrm{Hz}$ steps or at a fixed scan rate. The VRS system is a supplement to conventional tuning knobs with electronic scanning. Features include: 235 watts of transmitter input power, full and semibreak-in CW, narrow-band CW filter, and expanded frequency coverage.
CIRCLE NO 98 ONFREE INFORMATION CARD

16-Bit μ computer Kit

A complete 16-bit 8086 microcomputer kit is available from Intel. It includes an 8 -digit

LED display, a 24-key hex keyboard, 8K ROM, 2K RAM, and all necessary components other than a power supply. Features of the SDK-86 include 48 parallel I/O lines, an RS232 or current loop serial 1/O structure, a selectable data transfer rate from 110 to 4800 baud, and TTL-compatible bus signals. A complete design library accompanies the kit. $\$ 780$.
CIRCLENO 99 ONFREEINFORMATION CARD

Tunable FM

Antenna Amp
Audio Marketing by Von introduces the FM Power Sleuth, a tunable FM amplifier designed to feed the antenna terminals of a tuner or receiver. It is designed mainly for fringe-area use, but is said to contribute to reception in urban and suburban installations where indoor or dipole antennas are used. Rated specifications for the device include: r - f gain $35 \mathrm{~dB}, \pm 5 \mathrm{~dB}$; noise figure 7 dB maximum; spurious reject 90 dB or better; image rejection 85 dB or better. \$150. Address: Audio Marketing by Von, 11 Royal Crest Drive, North Andover, MA 01845.

Rotating Organ "Speaker"

The new Schober Organ Model RT-151 Rotatone is an all-electronic device that provides the same kind of electronic-organ sound enhancement as rotating-baffle loudspeakers. It can be installed in most electronic organs, generally just before the power amp. Like a rotating speaker system, the Rotatone adds both vibrato (FM) and tremolo (AM) to the sound. In the fast position of the control switch, the AM and FM are at vibrato rate of about 6 Hz . Set to SLOW, amplitude and frequency variations are much more subtle. The third switch position completely bypasses the Rotatone. The device is built on a $51 / 2^{\prime \prime}$ ($140-\mathrm{mm}$) square printed-circuit board that can be mounted anywhere. The switch is housed in a shallow walnut box that can be installed under the lower keyboard. The Rotatone is available in kit form for $\$ 87.50$.
CIRCLE NO. 100 ON FREE INFORMATION CARD

New Literature

DX PROGRAM SCHEDULE

An hour-by-hour detailed schedule of DX programs throughout the week is published twice a year (such as in the July issue) in Review of International Broadcasting. Subscriptions are $\$ 12$ per year from Glenn Hauser, University Radio WUOT, Knoxville, TN 37916.

TI MICROCOMPUTER GUIDE

The CL 377A 20-page product selection guide from Texas Instruments covers the TM990 Series of 16 -bit microcomputer modules, including software, firmware, and hardware products. Descriptions contain key specifications and features of memory and 1/O expansion modules, A / D and D/A interface modules, and others. Address: Texas Instruments Incorporated, Inquiry Answering Service, P.O. Box 1443, MS-6404, Houston, TX 77001.

AUDIO-TECHNICA dIRECT-DISC CATALOG

Perhaps the most extensive single listing of very-high-fidelity records, the StandarDisc catalog, is available from Audio-Technica. It includes such labels as Gale, Umbrella, RCA, and Toshiba EMI for direct-to-disc and Telarc for a new digitally mastered album. With 17 new discs, the catalog listing has been expanded to 46 recordings. Address: AudioTechnica U.S., Inc., 33 Shiawassee Ave., Fairlawn, OH 44313.

allied electronics catalog

Allied Electronics' 1979 Engineering Manual and Purchasing Guide is filled with a wide selection of industrial-type parts, supplies, and equipment. Its 260 pages contain illustrations, dimensions, technical data and specifications, descriptive explanation, and prices. Send $\$ 1.00$ to cover postage to: Allied Electronics, Dept. C-79, 401 East 8 St., Fort Worth, TX 76102.

SHAKESPEARE MARINE ANTENNA CATALOG

Shakespeare's 1979 Fiberglass Marine Antenna Catalog contains products and electronic data, as well as background information on the company's fiberglass process. The catalog also includes do's and don't's for choosing a marine antenna. Address: The

SEPTEMBER 1979

Shakespeare Company, Electronics and Fiberglass Division, P.O. Box 246, Columbia, SC 29202.

NATIONAL SEMICONDUCTOR PERSONAL COMPUTER BROCHURE

A 24-page brochure from National Semiconductor Corporation details its range of components for personal computers. The brochure describes more than 100 components including microprocessors, memories. CRT controllers, LED displays, floppy disk interfaces, serial and parallel interfaces, sound synthesizers, analog interfaces, and printer interfaces. Address: National Semiconductor

Corp., 2900 Semiconductor Drive, Sant a Clara, CA 95051.

CSC 1979 CATALOG

Continental Specialties's 32-page catalog for 1979 highlights signal generators, test instruments, logic probes, frequency counters, solderless breadboards, IC test clips, and more. New products listed include four cases, etched and drilled printed-circuit boards, and printed worksheet pads, the last to complement CSC's Experimentor solderless breadboards. Address: Continental Specialties Corp., 70 Fulton Terr., New Haven, CT 06509.

A surprisingly low $\$ 69.95$. Surprising because you get the type of performance you've wanted but expected to pay much more for.

Quality, Performance and Accuracy

The 2010A offers you long-term accuracy with a laser-trimmed resistor network, a stable bandgap reference element, and single-chip LSI circuiry. With 31 ranges and 6 functions, you can measure AC or DC volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC current from $0.1 \mu \mathrm{~A}$ all the way to 10 A ; resistance from 0.1Ω to 20 $\mathrm{M} \Omega$. Typical DCV and Ohms accuracy is 0.1% ± 1 digit. Eas y-to read 31/2digit LED's with 9 mm numerals and automatic decimal point

Extra features for greater convenience and flexibility

- Unique X10 multiplier switch gives you convenient selection of the next higher decade. Hi-Low Power Ohms capability gives you three high-ohn ranges that supply enough voltage to turn on a semiconductor junction. You use the three low-ohm ranges for in-circuit resistance measurements.
- Wide Frequency Response: 40 Hz to 40 kHz bandwidth lets you measure audio through ultrasonic AC signals
- Touch-and-Hold Capahility (with optional probe) lets you hold readings as long as you wish so you can make measurements in hard-to-reach places without taking your eyes off the probe tip.
- And More: automatic polarity and zeroing; overrange indication; overload protection on all ranges.
This compact unit is powered by 4 " C " cells (not included) so that you can take your labquality benchtop unit anywhere with you.

Kit or Factory-Assembled

Either is a tremendous value. Complete kit only $\$ 69.95$; assemble it yourself with our easy-to-follow instructions. Or, for only $\$ 99.50$, Sabtronics will ship your 2010A factoryassembled and calibrated.
Whether you're a professional or a hobbyist (or hoth'): When quality, accuracy, and price count, you should check out the 2010A DMM for yourself. Order one today for a full 10 days to inspect it; if you're not completely satisfied. merely return it in its original condition for a prompt and courteous refund of purchase price. Call with your Master Charge or Visa number or write the address below.
2010A Kit: $\$ 69.95$ (plus $\$ 4.00$ S\&H)
2010A Assembled: $\$ 99.50$ (plus $\$ 4.00$ S\&H)
AC-115 Adaptor: $\$ 7.50$
NB-120 Nickel Cadmium Batteries: $\$ 17.00$
THP. 20 Touch and Hold Probe: $\$ 18.00$

Making Performance Affordable

13426 Fioyd Circle M/S 24 Dallas, Texas 75243 Telephone 214/783-0994

GIVING THE SYSTEM A FIGHTING CHANCE

NOT INFREQUENTLY, when visiting the homes of various friends and acquaintances, I find myself drawn into conversations about the ills that afflict their stereo systems. The opening remarks of these discussions typically run something like this: "My system just isn't sounding right anymore. I think I'll probably have to replace the. . . ." Or: "There is something very strange about this room. No matter what kind of speakers I try, the sound is muddy."

Now it may very well be that the owner of the first system has detected an ailing component or has attained such auditory sophistication that equipment that was once satisfactory is no longer so. And it is possible that the second complainer is unlucky enough to live in an acoustically disastrous environment. But in my experience this is rarely the case. Most often, the audio system is capable of sound that is presentable or even creditable-were it not called upon to struggle against impossible odds. Diagnosing the problem is very simple in most of these instances: The loudspeakers are badly positioned.

It is by now fairly common knowledge that to hear decent stereo, you will have to set up your speakers and then sit approximately halfway between them. Likewise, it seems to be generally understood that a speaker aimed at an overstuffed chair rather than toward the listening position will seem deficient in high-frequency output. Yet it is amazing how often even these simple principles are violated. Were such elementary oversights the total extent of the problem, the subject would hardly rate treatment in a column of a magazine with a technically oriented readership. But, strange as it may seem, I have seen errors only slightly more subtle made by knowledgable colleagues.

Giving Speakers the Best Possible Home. If you are intent upon getting the best performance that your stereo system can deliver, it will pay you

Stereo Scene

By Marold A. Rodgers, Senior Editor

to recognize immediately that loud-speakers-and the listening positionoptimally placed will probably contradict all the conventional wisdom of interior decorating. (Murphy's Law insists that it be thus.) Making matters even more complicated, there are no hard and fast rules for correct placement. (A noted acoustician is said to have remarked: "We can calculate the behavior of a room quite exactly-as long as it is empty. But put a single chair in that room and we are not sure what we are doing.") There are, however, some general guidelines.
Loudspeakers, as a rule are ambivalent about walls (and floors and ceilings, too, for that matter). While close proximity of a speaker to a room boundary can increase its radiation loading (and thereby its efficiency), sound waves reflected from the assisting surface can create reinforcements and cancellations at various points in the audio spectrum and cause uneven frequency response

Some manufacturers have taken this into account and designed speakers to take advantage of the loading offered by two- and three-plane corners without incurring a frequency-response penalty. Another solution, with other advantages as well, is offered by the bookshelf speaker, which (if it is truly surrounded by books and set flush with their spines) takes advantage of a single boundary, of which it is, in effect, a part

But room boundaries have another effect: they reflect sound back and forth between themselves, giving rise to modes or resonances at frequencies that depend on how far apart they are. The effect of room modes is to create peaks and dips in the frequency response of the room itself. In fact, in an ideally reflective room there would be frequencies at which no sound could propagate and other frequencies at which it would propagate for extended periods. These standing waves or room modes (different names for the same phenomenon) fall sufficiently close together at midbass frequencies and above that they cause no problems in most rooms. In the low bass, however, they can raise havoc.

The best defense against standing waves lies in the choice of room. First, the bigger the better. If the room is big enough, the modes overlap at low bass frequencies and are troublesome only at infrasonic frequencies. (Getting enough acoustic power out of your speakers might be a problem, though.) The second consideration is that, if possible, no two room dimensions should be equal. Nor should one be an exact multiple of another. A cubical listening room, in which all three sets of modes, one associated with each dimension, coincide, would be a disaster.

Since most of us have little control over the sizes and shapes of our rooms, let's look again at loudspeaker positioning and see if it can help us to tame room modes. Indeed, it can if the sound source is kept away from the room boundaries, whereby energy is transferred into the modes relatively slowly. Thus a transient, like a bass-drum pulse,
(Continued on page 20)

HICH SPEED RECENERS: FaSTER RISPOMSE MEANS more accuratit SOUND.

The new Kenwood receivers actually outperform all other receivers, as well as our competitors' separate amplifiers and tuners in transient response.

The reason is Kenwood's exclusive technical breakthrough: Hi-Speed. It allows our receivers to react more quickly to musical changes. So what comes out of your receiver matches precisely what went in.

You'll hear the difference as dramatically accurate, open sound with superior imaging and detail. Like hearing an individual singer in a vocal group.

Hi -Speed is available in four models, all DCamplified for clean bass response. Each one also has switchable wide and narrow IF bands for lowdistortion FM reception, plus dual power meters.

And each Hi -Speed receiver has unique individual features that make a real difference in the tonal quality of music. Like dual power supplies that eliminate crosstalk distortion. Or a pulse count detector that digitally reduces FM distortion by half

Distorted waveform response produced by conventional receiver.

Square
waveform response of Hi -Speed receiver.
while significantly reducing background noise. Or a built-in equalizer with ten turnover frequercies for full acoustic control.

Whichever model you choose, you'll be getting the most advanced receiver technology and performance available today. Advances far beyond the competition.

Your Kenwood dealer will be happy to demonstrate Hi -Speed, now.

HI-SPEED

Hear the future of high fidelity

For the Kenwood dealer nearest you, see your Yellow Pages, or write Kenwood, P.O. Box 6213, Carson, CA 90749 in Canada: Magnasonic Canada, Lid. CIRCLE NO. 35 ON FREE INFORIMATION CARD

Everybody's making money selling microcomputers. Somebody's going to make money servicing them.

New NRI Home Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that will handle things like payrolls, billing, inventory, and other jobs for businesses of every size...perform household functions including budgeting, environmental systems control, indexing recipes, and more. And thousands of hobbyists are already owners, experimenting and developing their own programs.

Growing Demand for Computer Technicians

This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. Department of Labor projects over a 100% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer.

Learn at Home in Your Spare Time

NRI can train you for this exciting, rewarding field. Train you at home to service not only microcomputers, but their larger brothers, too. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends, without going to classes or quitting your present job.

Assemble Your Own Microcomputer

NRI training goes far beyond theory. It includes practical experience, too. As you progress, you perform meaningful experiments building and studying electronic circuits on the NRI Discovery Lab. ${ }^{\circledR}$ You assemble test instruments that include a transistorized volt-ohm meter and a CMOS digital frequency counter... instruments you learn on, use later in your work.

And you build your own microcomputer. Each step of construction advances your knowledge, gives you deeper insights into this amazing world that's upon us.

This is the only microcomputer designed for learning. It looks, operates, and performs just like the finest of its kind...actually does more than many commercial units. But NRI engineers have designed components and planned the assembly procedure so it demonstrates important principles, gives you working experience in detecting and correcting problems. And that's what NRI training is all about.

IItIIntosh

"A Technologival Masterpiece..."

Mclintosh C 32

"More Than a Preamplifier"

McIntosh has received peerless acclaim from prominent product testing laboratories and outstanding international recognition! You can learn why the "more than a preamplifier" C 32 has been selected for these unique honors.

Send us your name and address

 and we'll send you the complete product reviews and data on all Mcintosh products, copies of the international awards; and a North American FM directory. You will understand why Mcintosh product research and development always has the appearance and technological look to the future.
Keep up to date. Send now -- -

Mcintosh Laboralory Inc.
Box 96 East Side Station
Binghamton, NY 13904

Name
Address
City \qquad State \qquad Zip

If you are in a hurry for your catalog please send the coupon to McIntosh. For non-rush service send the Reader Service Card to the magazine.
CIRCLENO. 3 O ON FREEINFORMATION CARD

STEREO SCENE continued
might actually die out before the room begins to color it. And even more sustained bass tones don't last all that long. Organ pedal points may still cause difficulties, but even these should be improved to some extent.

It would now seem that, in theory at least, we have a conflict between speakers designed for placement near room boundaries and the requirements for reducing standing waves. In practice, though, the contradiction almost never arises. The reason is that standing waves cause the most difficulty in small rooms, whose size already excludes devices such as corner horns that would excite modes most readily. Conversely, in a room large enough to welcome a corner horn, modes are already less of a problem.

If a dilemma exists, it is in the case of speakers designed to have their woofers placed at a wall/floor intersection. The designed-for location is often optimum in a reasonably large room; but where modes are a problem, better sound may be achieved by moving the speaker away from the wall. With the woofer still close to the floor, the loading situation becomes analogous to that of the bookshelf speaker. A small loss of bass, which can easily be equalized out, is the price of less prominent standing waves. Granted, you are violating the designer's intentions, but nothing is damaged by the experiment. If you dislike the result, go back to the orthodox arrangement.

And what is to be done with the ubiquitous "box with front-firing drivers"? This type is similar to the bookshelf speaker except that it is difficult to mount so that the drivers are flush with a room boundary. A reflected wave is thus allowed to perturb the frequency response. If the box is set with its back against a wall, the cancellation so induced tends to fall right in the midbass. The cancellation frequency is the one at which the distance from the driver to the wall is one-quarter wavelength. Thus, if we can increase the distance from the driver to the nearest boundary to about five feet, the cancellation will be at about 56 Hz .

There is some advantage to moving the disturbance to the lower part of the spectrum. Standing waves are beginning to roughen the response in this region anyway, and with perseverance (and some luck) the cancellation and a standing wave might be made to offset each other. To keep reinforcements and cancellations from piling up, it is very im-
portant that no speaker be located the same distance from two or more room boundaries

And don't forget about the floor! It reflects sound much the way walls do. Speaker stands can be invaluable in adjusting the distance between a woofer and the floor. Sometimes, the way to place the woofer where you want it is to invert the box. This works as long as the tweeter (and midrange) can be kept approximately at ear level.

Compromises. Clearly, what I have outlined here will be entirely impractical in circumstances where the result is a room that's made unlivable, unattractive, or both. Fortunately, concessions can be made to practicality without too much adverse influence on the sound.

The first thing to remember is that the peaks and dips caused by reflections are limited to $\pm 3 \mathrm{~dB}$-not terribly noticeable unless two or more of them coincide to cause double or triple the disturbance. Thus, if a speaker must be against or too close to a wall, try to keep it away from a second wall. Or, failing that, make the distances to the two walls unequal. In addition, although symmetrical placement of speakers generally benefits interchannel balance and stereo imaging, it is best if the symmetry is not quite exact. That way, you won't get ripples of ± 6 or $\pm 9 \mathrm{~dB}$.

You can also make use of the distribution of standing waves in your room to adjust the bass/treble balance of the speakers. It can be demonstrated without too much trouble that antinodes (points of maximum amplitude in the standing-wave pattern) occur at the room boundaries. Therefore, a listener seated near a wall is likely to experience more bass response than one seated in the center of the room. After having located your speakers, you may find it advantageous to fine tune your listening position with this in mind.

If all of this suggests that installing your components in a listening room is an arduous task requiring many hours of experimentation, you can take some comfort in the fact that the effort expended will depend mainly on how fussy you are and how determined you are to get the most for the money you have invested in your system. The rewards can certainly justify the effort expended. A word to chronic "upgraders" who restlessly trade equipment for new models: If very similar problems occur with many different types of equipment, the problem you are chasing may well be in your room. \diamond

SEE EVERY BEATOF YOURHEART.

Checking your heart rate is now as easy as grasping a glass of orange juice, thanks to the remarkable Insta-Pulse ${ }^{T M}$ heart rate monitor from Biosig, Inc.

When held in your hands, it reads your heart rate function from the tiny electrical impulses in your finger tips. Insta-Pulse works on the same principle as a hospital electrocardiograph (EKG). Yet it weighs a mere 10 ounces, measures $11^{\prime \prime} \times$ $11 / 2^{\prime \prime}$ and is fully portable. It runs for up to one full year (over 100,000 readings) on a single 9 -volt battery.

No waiting required.

Once Insta-Pulse is in your hands, its microcomputer chip begins to monitor every heart muscle contraction. And instantaneously translates that into heartbeats per minute-showing it with a bright, always changing LED display.
(Flash) 5 (beats per minute)
(Flash) (beats per minute).
(Flash) 74 (beats per
minute). . . and so on.
As long as its nickel hand grips are between your fingers, pulse data continues; put Insta-Pulse down, and it turns itself off automatically.

Waich both heartbeats and heart rate patterns.

You're free to monitor your heart rate anywhere with InstaPulse. During a workout or after one. At home, at the gym or on the track.

Instantly, you will see how the most critical organ of your body responds to exertion. And how long it takes to return to its normal at-rest rate.

This picture of your heart recovering from activity is something you can never get with conventional pulse readings.

In seconds you can also see the effects of psychological stress, overeating, alcohol, caffeine and cigarettes. You'll learn just how valuable to your heart a short nap can be. Or check the benefits of a morning's meditation. Here, too, is an excellent tool for use in biofeedback work; with practice, you can actually develop the ability to alter your heart rate-at will.

Not a toy. Not a toy's price.

The cost of Insta-Pulse through The Sharper Image is $\$ 149.00$. It's not the only heart rate monitor available to you for about that price. However, others
with their cumbersome clips and wires do not provide the accuracy of Insta-Pulse, the world's first instant heart rate monitor.

And it's shock resistant as well. Insta-Pulse contains no moving parts, is 100% solid state and its circuitry is shielded from damage by a thick, clear acrylic shell. A hand lanyard provides additional security. The battery is included.

Insta-Pulse comes with a ninetyday warranty from its manufacturer, and the Sharper Image's own guarantee of satisfaction: if you are not completely delighted with it, send it back within two weeks for a full refund.

Order an Insta-Pulse now, and watch your heart function as you never could before.

ORDER TOLL-FREE

Credit card holders may use our toll-free ordering number, below. Or send check for $\$ 149.00$ plus $\$ 2.50$ delivery. Add $\$ 8.94$ tax in California
(800) 227-3436

In California
(800) $622-0733$

DSI HAS DONE IT AGAIN QUIK-KIT II ${ }^{\circledR}$ INCLUDES PROPORTIONAL OVEN TIME BASE

BATT-AC (W-AC9)
Factory Assembled
Factory Tested
CAcciracy
ghe 5 tinch LED's
12 Resplution
Zero Élanking

Whe BuY A 5600 A: Because 95% of the assembly is completed by DSI and you are only one hour away from solving all those diffictile bench protioms, from setting the frequency of a audio signal to within:1/10 of a HZ , fo.checking the fequency of a 486 MH Z mobile radio. Whether you are servicing a VTR, troutle shooting a PLL circuit, the 5600A isthe right couiter with accuracy that will meet any FCC land mobilis, broadcas, br telecommunications requirements On the bench or in the field the 5600 A will do the job you need. The 5660 A includes a self cointained battery holder providing instant portability or we offer a 10 hour rechargeable battery pack option. Pther options indude a audio multipfer which allows you to resotve a $1: 1000$ of a HZ signal and finally a $25 \mathrm{~d} \%$ preamplifior with an adjustable attenuator making the 5600 A perfect for communications, TV servicing, industitial testing or meeting your QSO on the correct:frequency every time.

FOR INFORMATION - DEALER LOCATION - ORDERS - OEM
CALL 800-854-2049 CALIFORNIA RESIDENTS CALL 800-542-6253

Model	Price	Frequency Arnge			Sentile	$2500.50 \mathrm{MHz}$				
$5600 A-K$	\$149.95	$50 \mathrm{~Hz}-600 \mathrm{MHz}$	Proportional Oven	10 MV	10 MV	Somv	9	5 lich	115 VAC or	$3 \%^{\prime \prime} \times 9^{\prime \prime} 2^{\prime \prime} \times 9^{\prime \prime}$
5600A-W	\$179.95		. 2 PPM $10^{\circ}-40^{\circ} \mathrm{C}$						3. 214.5 VDC	
3550	99.95	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	$\begin{gathered} \text { TCXO } \\ 1 \text { PPM } 17^{\circ}-40^{\circ} \mathrm{C} \\ \hline \end{gathered}$	25MV	25 MV	75M ${ }^{\text {a }}$	8	5.jinch	$\begin{aligned} & 115 \mathrm{VAC} \text { or } \\ & 8.214 .5 \mathrm{VDC} \\ & \hline \end{aligned}$	2% " $\times 88^{\prime \prime} \times 5^{\prime \prime}$
500 HH	\$149.95	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	$\frac{\text { TCXO }}{1 \text { PPM } 17^{\circ}-40^{\circ} \mathrm{C}}$	25MV	20 MV	75 MV	8	4 4 linch	15 VAC or $3.2-14.5 \mathrm{VDC}$	$1^{\prime \prime} \times 31 / 2^{\prime \prime} \times 5 \%$

T101 Ant.
AC-9 AC Adaptor
35 ? 2
Factory Installed

3550 OWNERS You can add the 35P.2 . 22 PPM 10° to $40^{\circ} \mathrm{C}$ proportional oven to your existing 3550
$\$ 3.95$
7.95
29.95
49.95

2MEETCOM \square
OSI INSTRUMENTS, INC.
7924 Fionson Road
San Diego, California 92111
TERMS
PReass Mcd = VISA: $A E$ - Pheck - MO. COQ in US. Funds Peasse add 1 CWh 10 a maximy of of $510: 0$ to tot shippinge handing
and insurance. Orders ouliside of USA \& Candad

56CgA Kit
$\$ 149$.
5600A Wirec
179.
AC-9 AC Adaptor 7.
T600 BNC Ant. 7.
BUILT-IN OPTIONS
BA56 Rechargeable
10 -r Bat: Pack24.
AM56 Audic Multiplier
001 Hz Resclution34.
PA5́6 250dB Preamplifier

> the high-powered Optonica Model SA-5901 AM/FM stereo receiver with "Opto Lock" tuning

each dc-coupled power amplifier has its own power supply

Optonica's Model SA-5901 flexible high-performance AM/FM-stereo receiver is rated to deliver 125 watts/channel into 8 ohms between 20 and $20,000 \mathrm{~Hz}$, with THD at no more than 0.02%. Each of the receiver's dc-coupled power amplifiers has its own power supply, including separate power transformer; a third power supply operates the preamplifier and tuner sections.

An "Opto Lock" afc system that automatically disables when the tuning knob is touched and locks the receiver to the tuned signal when released is featured in the FM tuner. A $400-\mathrm{Hz}$ audio tone from a built-in oscillator (adjustable to match any FM modulation level from 20% to 80%) can be used to set the recording gain on a tape deck

This is a large, heavy receiver, with a silver colored control panel and black markings (the Model SA-5905 is
identical except that it has a black colored control panel with silver markings). Overall size is $215 / 8^{\prime \prime} \mathrm{W} \times$ $16^{\prime \prime} \mathrm{D} \times 73 / 16^{\prime} \mathrm{H}(550 \times 406 \times 183$ $\mathrm{mm})$ and weight is $46.2 \mathrm{lb}(21 \mathrm{~kg})$. Suggested retail price is $\$ 800.00$.

General Description. In spite of its considerable size, the receiver's front panel is well filled with controls. Near the long slide-rule dial are two red LEDs that indicate when an FM stereo signal is being received and when the OPTO LOCK system comes on. There are also separate tuning meters for center-channel tuning on FM only and relative signal strength on both AM and FM. The latter meter has a second scale, calibrated in FM modulation percentage, for use with a built-in "air check calibrator."

The large vOLume control has 41 lightly detented positions. The baLANCE control is center-detented and the bass, Mid, and treble tone controls each have 11 detented positions When the muting switch is pressed in, the audio gain is reduced by 20 dB .

Operating the air check calibraTOR switch replaces the tuner's audio with an internally generated $400-\mathrm{Hz}$ tone, the level of which can be set by a knob on the rear apron of the receiver and is simultaneously indicated on
the MOD\% scale of the signal-strength meter. There is a green pilot light that comes on when power is applied and changes to red when the protection circuits are actuated. There are also two meters that indicate the left- and right-channel output levels, based on 8 -ohm loads, on logarithmic scales calibrated from 0.01 to 300 watts
The sPEAKER selector switch permits control over three sets of speaker outputs, energizing them singly or in two pairs of two. Another position on the switch silences the speaker outputs for headphone listening via a front-panel PHONES jack.

Separate program and recordingoutput selectors are provided. The REC OUT switch can be set to connect the normal SOURCE program to the recording outputs, as is the case with all receivers and amplifiers. In addition, this control also has settings for Aux, TUNER, and PHONO, which connect these sources to the tape outputs, regardless of the receiver's program selection. Hence, you can record one program while listening to another. Additional switch settings permit you to cross-connect two tape decks for dubbing from one to the other.

Program selection for listening is accomplished with a knob control and two toggle switches. The control allows selection of AUX, TUNER, or PHOno input. Selection between FM and AM is made with a TUNER switch. In the PHONO setting, a different switch permits either of two identical magnet-

one program can be recorded while listening to another

ic phono cartridges to be connected to the input. Finally, a three-position TAPE MONITOR switch is provided for connecting either the SOURCE or the playback from either of two tape decks to the audio amplifiers.

On the rear apron are insulated binding posts for three sets of speaker systems and the antenna inputs, a pivoted ferrite-rod AM antenna, the vari-
ous source and tape jacks, and two accessory ac receptacles, one of which is switched.

Considerable use is made of integrated circuits in this receiver. The FM tuner's i-f amplifier employs two ICs, one of which includes the detector functions, and a PLL multiplex IC is used for stereo decoding. The audio output amplifiers of the tuner are ICs, as are the audio tone-control amplifiers, output-power meter drivers, and the rather elaborate protection circuits for the output transistors.

Laboratory Measurements. Beginning with this test, we are making a slight change in our distortion measuring procedure. Instead of measuring IM distortion, which conveys little information not included in a harmonic distortion measurement, we will measure the $1000-\mathrm{Hz}$ THD versus power output into load impedances of $2,4,8$, and 16 ohms. This will reveal the capabilities (and limitations) of an amplifier when subjected to the unusually low impedances sometimes presented by certain speaker systems. Although some amplifiers will not operate into a 2 - or even a 4 -ohm load and will shut down or blow a fuse, we will attempt to make these measurements to the fullest extent possible with each amplifier or receiver. In addition to the differences in maximum available power with different load impedances, this measurement will reveal how distortion increases at all power levels when driving very low load impedances. The tests will be made, as before, with both channels driven simultaneously, and immediately following
phono equalization was extremely accurate, within $\pm 0.25 \mathrm{~dB}$, $20-20,000 \mathrm{~Hz}$
one hour of operation at one-third power and five minutes at full power.

Using the new test procedure, the SA-5901's clipping output was 150 watts/channel into 8 ohms, for an IHF clipping headroom of 0.8 dB . It was 100 and 113 watts into 4 and 16 ohms, respectively. The reduced power available into 4 ohms indicated that the amplifier's current capability would

Noise and sensitivity curves for $F M$ section of receiver.
set an effective lower limit to its output into low-impedance loads. This was confirmed when we used 2 -ohm loads. Although the protective circuit did not kick in, maximum output at 2 ohms was about 50 watts/channel, with a softly rounded waveform instead of the hard clipping that occurred with higher load impedances.

The 8 -ohm IHF dynamic headroom was 2.36 dB , which corresponds to a short-term output of 215 watts.
The $1000-\mathrm{Hz}$ THD was very low and almost constant with power output. With 8 -ohm loads, the THD was about 0.003% from 0.1 to 125 watts output and only 0.01% at 150 watts. Distortion with 4 -ohm loads was

Performance Specifications

Specification	Rating	Measured
Continuous output power (8 ohms, $20-20,000 \mathrm{~Hz}$)	$125 \mathrm{~W} / \mathrm{ch}$ at 0.02\% THD	Confirmed
S/N (A-wtd, shorted, Ref: 1 watt	59 dB phono 79 dB high level	77.4 dB phono 79.5 dB Aux (IHF std)
Input sensitivity (for 1 watt out)	0.22 mV phono 13.4 mV high level	0.21 mV phono 14 mV high level
Phono overload $(1 \mathrm{kHz})$	350 mV	420 mV
RIAA curve deviation	$\pm 0.2 \mathrm{~dB}, 20-20000 \mathrm{~Hz}$	Confirmed
Low-cut filter	$30 \mathrm{~Hz}, 12 \mathrm{~dB} /$ octave	30 Hz , slope does not exceed $6 \mathrm{~dB} /$ oct in audio range
High-cut filter	$7000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave	Confirmed
FM Sensitivity (IHF)	$9.8 \mathrm{dBf}(1.7 \mu \mathrm{~V})$	Confirmed
THD	0.1% mono 0.3\% stereo	0.2% mono 0.22\% stereo
Image rejection	95 dB	97 dB
AM suppression	60 dB	61 dB
Selectivity	80 dB	92 dB
S/N ratio	83 dB mono 75 dB stereo	78.5 dB mono 71.5 dB stereo
Capture ratio	1.2 dB	Not measurable (due to afc)
Stereo separation $(1000 \mathrm{~Hz})$	45 dB	40.5 dB

1000-Hz THD, both channels driven, left measured.

Distortion with 8 -ohm load for three power levels.
slightly greater, measuring 0.0063% or less up to 50 watts and 0.065% at 100 watts. Into 16 ohms, distortion was approximately the 0.001% residual of our test instruments up to 10 watts output and reached 0.0045% at 100 watts. As expected, a 2 -ohm load resulted in a considerable increase in distortion, although it could hardly be called excessive. THD rose from 0.008% to 0.02% as the power increased from 0.1 to about 35 watts and reached 0.28% at 50 watts.
Distortion with 8 -ohm loads was relatively independent of frequency as well as power output. It was typically about 0.003% from 20 to 5000 Hz and increased to 0.01% at $20,000 \mathrm{~Hz}$. This occurred at all power levels from rated maximum down to one-tenth rated power, although at full power the $20-\mathrm{Hz}$ distortion also rose slightly, to 0.008%. The IHF slew factor exceeded our measurement limit of 25 .

The tone controls had a sliding bass turnover frequency and a hinged treble response. Together with the selectable turnover frequencies, the 11 settings for each control gave a nearly unlimited choice of response characteristics. The MID control had its greatest effect at about 1500 Hz , but its coverage was quite broad and at maximum or minimum settings it affected the response from 300 to 5000 Hz .

The loudness compensation boosted both low and high frequencies at low volume settings, but the amount of boost was moderate and the subjective effect was quite pleasing. The filters had gradual 6-dB/octave slopes and cut-off frequencies at about 30
and 6000 Hz . (The Low filter is rated to have a $12-\mathrm{dB}$ /octave slope, but this was not attained down to our lower measurement limit of 20 Hz .) The RIAA phono equalization was extremely accurate, within the $\pm 0.25-\mathrm{dB}$ resolution of our test equipment, from 20 to $20,000 \mathrm{~Hz}$. When the response was measured through the inductance of typical phono cartridges, the output was increased slightly but by no more than 1 dB at frequencies above 4000 Hz .

A $14-\mathrm{mV}$ signal was required at the Aux input for a reference output of 1 watt at maximum gain. PHONO sensitivity was 0.21 mV for 1 watt, and the phono preamplifier overloaded at an extremely high input of more than 400 mV . The A-weighted signal-to-noise ratio, referred to 1 watt output under standard IHF test conditions, was 79.5 dB through the $\mathrm{A} U \mathrm{x}$ and 77.4 dB through the PHONO inputs. The measured phono preamplifier input termination was 46,000 ohms in parallel with 220 pF .

In many respects, the FM tuner sec-

A veraged frequency response and crosstalk for both channels.
tion was as exceptional as the receiver's audio amplifiers. IHF usable sensitivity was $9.8 \mathrm{dBf}(1.6 \mu \mathrm{~V})$ in moro. and stereo sensitivity was set by the switching threshold at $21 \mathrm{dBf}(6 \mu \mathrm{~V})$ The $50-\mathrm{dB}$ quieting sensitivity was $13.8 \mathrm{dBf}(2.6 \mu \mathrm{~V})$ in mono, with 0.5% THD, while in stereo, it was 37 dBf (G ? $\mu \mathrm{V}$), with 0.35% THD. The FM distc. tion at a $65 \mathrm{dBf}(1000 \mu \mathrm{~V})$ input was 0.2% in mono and 0.22% in stereo, and the respective S / N readings were 78.5 and 71.5 dB .

The FM stereo frequency response was $\pm 0.7 \mathrm{~dB}$ from 30 to $15,000 \mathrm{~Hz}$, and channel separation was about 40 dB over most of that range, reducing to 35 dB at 30 Hz and 37 dB at 15,000 Hz . The $19-\mathrm{kHz}$ pilot carrier leakage into the audio was 68 dB below 100\% modulation, and the tuner hum was -67 dB . The muting and stereo thresholds were approximately the same, at $21 \mathrm{dBf}(6 \mu \mathrm{~V})$.
Capture ratio could not be measured reliably because of the non defeatable afc (except by holding the tuning knob, which was not practical during measurements). AM rejection was 61 dB at $45 \mathrm{dBf}(100 \mu \mathrm{~V})$ input, and 65 dB at 65 dBf . Image rejection was exceptional at 97 dB , and alter. nate channel selectivity of 92 dB was one of the highest figures we have measured on a receiver (the adjacent channel selectivity of 3.7 dB was much more typical of present-day receivers and tuners). The only measurement made on the AM tuner section was of its frequency response. which was restricted even by the reduced standards of AM reception. It

A UNIQUE NEW REVOLUTIONARY CONCEPT... NOW Build Your Own Printed Ciircuit Boards Instanty With Unique New Ezi eifieuit Pressurf een suve copple Design Products!

Yes, thanks to this revolutionary new E-Z CIRCUIT concept, you can now make professional quality printed circuit hoards in your own home or shop -
. . . without messy chemicals
. . . without artwork
. . . without photography
. . . without screening or etching

Unique E-Z CIRCUIT Technical Manual . . . A "Gold Mine" of Usable, "How To" Techniques, Tips And Illustrations For Building Electronic Circuits At Home!

And the new E-Z CIRCUIT Technical Manual and Catalog leads you through each and every step with large, fully illustrated instructions written in clear, simple-to-understand language that make it easy for you to produce a professional quality, printed circuit board with electrical and mechanical characteristics that simulate those of etched "production house" PC boards.
Each of its 36 pages is packed with invaluable technical "how to" information that tells you

- How to build a PC board using pressure-sensitive copper
- How to repair existing, damaged circuitry
- How to create a PC board artwork
- How to solder professionally
- How to wire wrap using E-2 CIRCUIT's NC* Drilled \& Pre-Shaped General Purpose Plug Boards, Terminal Pins \& Wire

200000000900000001
500000000600000001

The "Secret" to Building Instant PC Boards In Your Own Home or Shop!
Each E-Z CIRCUIT copper mounting configuration or connector pattern is made of super-thin, epoxy glass with a special two-phase, adhesive on one side, and a one-ounce copper pattern laminated on the other. When applied to your printed circuit board, these copper patterns work like the circuitry on a conventional etched printed circuit board. You solder the components directly to them.
There's even pressure-sensitive copper tape and donut pads for conductor traces and single terminations applica-
tions, or mounting non-standard length axial lead components.

Use Them For Repairing And Modifying Existing Circuitry Too!

Besides creating an actual professional functioning circuit board, you can use these pressure-sensitive copper component mounting configurations, tape and donut pads to repair or modify existing circuitry.

PREFER TO WIRE WRAP? You Can . . . With E-Z CIRCUIT General Purpose Boards and Hardware!
With E-Z CIRCUIT NC* drilled, preshaped general purpose PC plug boards, DIP \& SIP sockets, terminal pins, wire and accessories you can build PC boards using modern, professional wire wrapping methods. The E-Z CIRCUIT Technical Manual shows simple, step-by-step wire wrapping techniques.

Need PC Drafting Aids? ... We Have Them Too!
You can create PC boards by using quality E-Z CIRCUIT drafting aids by Bishop Graphics. E-Z CIRCUIT drafting aids meet the same stringent Printed Circuit industry specifications as the "professional" Bishop Graphics products.

[^3]

Informative New Technical Manual Shows You How... Send Coupon Below Now For Your Copy!

To get your copy of this comprehensive \& jampacked Technical Manual and Catalog full of practical "how to" information on building circuit boards, contact the store manager at your local E-Z distributor . or send only $\$ 1.00$, plus $50 ¢$ for postage and handling with the completed coupon below to:

 by (3) Bishop Graplics. Inc.

P.O. Box 5007PE

Westlake Village,
CA 91359, U.S.A.
*Automated, Numerically Controlled (NC) drilling
was flat from 20 to 1000 Hz , but dropped to -6 dB at 2200 Hz .

The modulation percentage meter for the alr check calibrator was accurate, indicating 50% when the internal $400-\mathrm{Hz}$ signal was set to equal the output from a 50% modulated FM signal. The audio power meters were acceptably accurate for their purpose, although they were calibrated at only $10-\mathrm{dB}$ intervals. At most output levels, the meters indicated within 25% to 40% of the actual power, but there was not sufficient power available to produce a 100-watt indication on the meters. Meter response was rapid, with slow decay, so that the meters tended to follow dynamic program variations quite well.

User Comment. This impressive receiver manages to stand out from a field of generally very similar competitive products. Its audio-amplifier distortion levels are low by the most exacting standards. In fact, distortion cannot even be measured except with the most sophisticated laboratory instruments. Noise levels are very low, and phono overload is perhaps the highest of any receiver we have tested. Use of three entirely separate power supplies, regardless of audible benefits (about which we have reservations), certainly indicates a "no holds barred" approach to design.

FM tuner performance ranged from

a distinctive product inside and out

 as well as in performance qualitygood to outstanding. Alternate-channel selectivity and image rejection, in particular, were far better than the norm, even for top-end receivers. Stereo channel separation was exceptionally uniform across the entire audio range. Separation was comfortably greater than that of any program source or the FM station. Unfortunately, the AM tuner sounded even more muffled than most.

It is in its operating controls and overall versatility that the SA-5901 really excels. All controls operated with an ideal tactile quality and a feeling of precision. We also appreciate the thought that went into the control layout, including designing the switches so that with all toggles up, the receiver is in a more or less "normal" or neutral operating condition. (With some fourteen switches that is not an insignificant accomplishment.)

An interesting sidelight is the use of relays to switch the speaker systems so that the front panel switch merely operates a low-level circuit. (The click
of the relays is muted to the point where one might not be aware of their presence when this switch is operated.) The separate recording and listening program selectors, though not unique to Optonica, are still rare among receivers and amplifiers. In our view this is a highly desirable feature. The AIR CHECK CALIBRATION feature is also a worthwhile convenience for anyone who makes cassette recordings from FM broadcasts, since the recording level can be preset with assurance that no program peaks will exceed the recorder's dynamic range.

The Opto Lock afc system worked well. It removed the last trace of critical tuning from the handling of the receiver. From our experience with the SA-5901, we would say that there is no way one can tune in an FM station with it and get less than the full performance of which the receiver is capable. Exactly the opposite is true of most receivers we have used; there is almost no way one can achieve the same results we obtain in the laboratory in normal use.

All in all, we found the Optonica Model SA-5901 to be one of the more interesting receivers we have used. Although most receivers in a given price range tend to be more alike than different, the SA-5901 remains a distinctive product, inside and out, as well as in performance quality.
CIRCLE NO 101 ONFREE INFORMATIONCARD

Aiwa Model AD-6900 cassette deck with variable bias

The premier feature of Aiwa's deluxe new Model AD-6900 cassette deck is a simple,
effective means for optimizing bias and recording levels for virtually any tape formulation without external instruments or technical skills. Operation of the front-loading, three-head
deck is controlled by solenoids through a sophisticated logic system. An optional remote-control accessory duplicates the functions of the frontpanel control buttons. Recorder operation can also be controlled by certain Aiwa record players to make the deck go into record mode when a disc is being played and pause when the disc stops.

The deck measures $173 / 4$ " $\mathrm{W} \times 13^{\prime \prime} \mathrm{D}$ $\times 43 / 4$ " $\mathrm{H}(451 \times 330 \times 121 \mathrm{~mm})$ and weighs $20.9 \mathrm{lb}(9.5 \mathrm{~kg})$. Optional wooden side panels and rack-mounting handles are available. Suggested retail price is $\$ 850.00$.

General Description. Most of the deck's controls are conventional, but there are a couple of departures from usual practice. For example, the rewind and fast-forward buttons are labelled REW/REview and F.FWD/CUE, respectively. Touching either button
while the tape is at normal play will move the tape rapidly (at half the usual fast speed) in the indicated direction for as long as the button is pressed. Releasing the button instantly restores normal operation. During "cueing," the tape is close enough to the playback head that a high-pitched sound is heard when a recorded section of tape passes.

For normal rewind and fast-forward operation, the stop button must be pressed first. After this, the rewind or fast forward button need be touched only momentarily to place the tape into high speed motion, with no sound heard from the outputs. If either cueing button is touched while the deck is recording, operation automatically goes to PLAY and continues in that mode when the button is released LEDs indicate the selected mode.

"peak hold" causes
 meter pointers
 to remain at highest levels

Another unconventional control is the REC MUTE/MUTING TIME COUNTER. Pressing and holding this button causes the deck to operate in the record mode, but the incoming signal is silenced and a red LED near the button blinks once per second. This facilitates timing an editing deletion while making a recording.

Standard phone jacks are provided on the front panel for microphones, headphone, and a LINE IN connection. Plugging a source into the last replaces the rear LINE IN signals with that from the front panel. This simplifies dubbing from another tape deck or high-level source, without disturbing normal system wiring.

The deck has a MEMORY rewind function that can be set to either stop the tape or to automatically put it into PLAY when the counter reaches 000 in rewind. The recorder can also be controlled by an external timer switch in its power-line circuit; a switch enables it to go into playback or record mode automatically when power is applied.

The front panel is dominated by two large illuminated meters. Each is actually two meters, with dual movements, pointers, and scales. The shorter black pointer gives conventional VU

Frequency responses at 0 and $-20 d B$ for three different tape types.
levels. The longer red pointer shows PEAK levels of as little as 10 ms duration and has a slower decay time of 1.5 seconds. The vu scale range is from -20 to +5 dB , while the PEAK range is from -50 to +10 dB . The two types of meter indications can be switched on separately. A button labelled PEAK HOLD freezes the PEAK meter pointers at their highest attained levels for at least 30 minutes.

Bias and equalization for the three basic tape types are selected separately by two small lever switches. The switches are labelled LH (normal ferric-oxide tapes). FeCr (for ferrichrome tapes), and CrO_{2} (for either CrO_{2} or high-performance ferric tapes that require high bias and 70-
microsecond playback equalization.) Since individual tape brands within each category differ somewhat in their exact bias requirements and output levels, vernier controls are provided for each setting of the bIAs switch. Concentric with each control is a screw-driver-adjust control for setting recording level for that particular type of tape to give a standard Dolby-level output from the built-in oscillator.

Other front-panel controls provide for monitoring from either the sOURCE or the TAPE playback signal and control the Dolby system. The latter contains the usual filter to prevent FM pilot carrier leakage from affecting the frequency-sensing circuits.

The tape transport of the AD-6900

Performance Specifications

Specification	Rating	Measured
Frequency response		
LH (Maxwell UD-XLI)	$25-14,000 \mathrm{~Hz}(+2 /-3 \mathrm{~dB})$	$25-19,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$
FeCr (Sony FeCr)	$25-18,000 \mathrm{~Hz}(+2 /-3 \mathrm{~dB})$	$25-20,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$
CrO_{2} (TDK SA)	$25-17,000 \mathrm{~Hz}(+2 /-3 \mathrm{~dB})$	$25-20,000 \mathrm{~Hz}+1 /-3 \mathrm{~dB}$
S/N ratio	68 dB (FeCr, Dolby)	63.5 dBLH
		$\begin{aligned} & 63.5 \mathrm{~dB} \mathrm{CrO}_{2} \\ & 62 \mathrm{~dB} \mathrm{FeCr} \end{aligned}$
Distortion	0.9\% ($\mathrm{FeCr}, 400 \mathrm{~Hz}$)	0.56\% ($\left.\mathrm{CrO}_{2}, 1 \mathrm{kHz}\right)$
		0.71\% (LH, 1 kHz)
		1.3\% (FeCr, 1 kHz)
Wow \& flutter	0.04\% (wrms)	0.04\% (wrms)
		$\pm 0.07 \%$ (CCIR)
Rewind/fast forward		
time (C-60)	65 seconds	62 seconds
Input sensitivity	Mic: 0.25 mV	0.18 mV
	Line: 75 mV	50 mV
Input impedance	Mic: 200-10,000 ohms	Not checked
	Line: over 50 kilohms	Not checked
Line output	$0.41 \mathrm{~V} / 0 \mathrm{VU}$	$0.38-0.48 \mathrm{~V} / 0 \mathrm{VU}$ (depends on tape)
Bias/erase frequency	105 kHz	

uses separate motors for driving the capstan and tape hubs, with the hub drive operating at normal tape speeds to provide the correct tape tension and winding torque. In the fast speeds, it alone moves the tape. The goal of this tape transport design was to provide the low flutter of a closed-

playback head
 minimizes

head-contour effects
loop dual-capstan drive in a lowercost mechanism. The capstan is driven by a frequency-generator-feed-back-stabilized dc motor.

Laboratory Measurements. According to Aiwa, the AD-6900 had been set at the factory for Maxell UDXL I (LH), Sony Ferrichrome (FeCr), and TDK $\mathrm{SA}\left(\mathrm{CrO}_{2}\right)$ tapes, which we used for our measurements. We also checked the record/playback frequency response with several other tapes to verify the effectiveness of the bias adjustment system.

Playback equalization was first checked with TDK AC-337 (120- $\mu \mathrm{s}$) and Teac 116SP ($70-\mu \mathrm{S}$) test tapes. The output at $120 \mu \mathrm{~s}$ (ferric EQ) varied only $+1 /-1.5 \mathrm{~dB}$ from 40 to $12,500 \mathrm{~Hz}$. The response at $70 \mu \mathrm{~s}$ (chrome EQ) was $+0.5 /-1.5 \mathrm{~dB}$ from 40 to $8,000 \mathrm{~Hz}$, but fell off to -5 dB at $10,000 \mathrm{~Hz}$.
Overall record/playback frequency response with UD-XL I was flat within $\pm 3 \mathrm{~dB}$ from 25 to $19,000 \mathrm{~Hz}$ at a -20 dB level. Response at a $0-\mathrm{dB}$ recording level was within $\pm 1.5 \mathrm{~dB}$ from 28 to 9500 Hz , which is unusually good for a cassette recorder. It fell below the $-20-\mathrm{dB}$ curve above $13,000 \mathrm{~Hz}$. Sony FeCr tape gave a similar response but with a slightly more extended high-frequency output, varying $\pm 3 \mathrm{~dB}$ from 25 to beyond $20,000 \mathrm{~Hz}$. Its $0-\mathrm{dB}$ recording level crossed the $-20-\mathrm{dB}$ curve at $15,500 \mathrm{~Hz}$. Flattest overall response was measured with TDK SA tapewithin $+1 /-3 \mathrm{~dB}$ from 25 to 20,000 Hz , also with a $15,500-\mathrm{Hz}$ intersection of the $0-\mathrm{dB}$ and $-20-\mathrm{dB}$ response curves. Almost identical results were obtained with Memorex High Bias and Maxell UD-XL II (CrO_{2}) and with

TDK AD (LH). The TDK AD had noticeably less high frequency peaking, with a $+1 /-2-\mathrm{dB}$ response from 27 to $17,000 \mathrm{~Hz}$.
The Dolby circuits tracked well at all signal levels, probably due in part to the matching of the output level of each tape to Dolby requirements. There was never more than a $2-\mathrm{dB}$ change in response at any frequency up to $16,000 \mathrm{~Hz}$ at levels from - 20 to -40 dB when the Dolby system was switched in and out. The multiplex filter cut in sharply above $16,000 \mathrm{~Hz}$, reducing the response at 19 kHz by at least 20 dB . The playback head is specially designed to minimize low-frequency-response irregularities, and our tests revealed relatively little response fluctuation due to head-contour effects.
For a $0-\mathrm{dB}$ recording level, the line inputs required a $50-\mathrm{mV}$ signal at 1000 Hz at maximum sensitivity, and the microphone inputs required 0.18 mV . The microphone preamplifier stage overloaded at 50 mV , a fairly safe figure. Playback output from a $0-\mathrm{dB}$ recorded signal was about 0.4 volt with TDK SA and Sony FeCr and 0.48 volt with UD-XL I. Third-harmonic distortion in a 0-dB playback signal was 0.56% with SA, 0.71% with UDXL I, and 1.3% with FeCr. Respective input levels required for 3% playback distortion were $+7,+7$, and +4.5 dB .

Unweighted signal-to-noise (S / N) ratios, referred to the 3% distortion levels, were not outstanding. They ranged from 42 to 39.5 dB . With A weighting, these figures improved considerably, to about 57 dB for SA and UD-XL 1 tapes and 54.7 dB for FeCr tape. With the Dolby system in use and CCIR/ARM weighting, S/N was 63.5 dB from the first two tapes and 62 dB with FeCr tape. At maximum gain through the microphone input, the noise level increased by 11.7 dB ; but at normal gain settings, the increase was much less.

Calibration of the Dolby levels on the meters was exact. When set to the vu operating mode, the meters were much more heavily damped than true VU meters, which should indicate 99% to 101% of a steady-state signal level when driven by 0.3 -second tone bursts of 1000 Hz at a $1-\mathrm{Hz}$ repetition rate. Aiwa's meters indicated about 60% of steady-state values in this test. However, the PEAK meters gave exactly the same indications for continuous and burst signals.

Flutter was measured with TDK AC-342 and Aiwa lest tapes, which gave similar results and confirmed the impressive claims made for the transport mechanism. JIS (weighted rms) flutter was 0.038% to 0.04%, and CCIR (weighted peak) flutter was $+0.07 \%$ at the beginning of the test cassette. At the end of the cassette, JIS flutter had gone up slightly to 0.045%. Tape speed was 0.1% to 0.2% slow at the beginning of these tapes and 0.4% slow at the end. On a combined record/playback flutter measurement, readings were higher, as would be expected. They were 0.07% JIS and $\pm 0.12 \%$ CCIR. In the fast speeds, the deck wound through a $\mathrm{C}-60$ cassette in 62 seconds.

User Comment. The deck operated with a smooth, positive action and freedom from "bugs" or idiosyncrasies. There was a slight "clunk" from the solenoids as they operated, but the buttons themselves required almost no activating pressure, and the control logic appeared to be as foolproof as claimed. The EJECT lever, for example, can safely be pressed while the tape is in any mode, including fast winding.

The dual meters are certainly an effective means of setting up a cassette deck for full-fidèlity recording. Using the PEAK HOLD feature, one can determine the maximum input level of the loudest passage of a program.

The tape adjustment system worked as claimed, in less time than it takes to describe it, and made frequency response essentially independent of the tape used. The small remaining response differences between tapes are mostly at frequencies beyond $10,000 \mathrm{~Hz}$ and are relatively

frequency response is essentially independent of tape type

subtle in their audible effects. Actually, the audible differences between tapes are more likely to result from differences in noise and distortion levels and in high-frequency saturation characteristics. This was demonstrated when we recorded white noise (FM hiss) and compared the source and
playback signals. With any of the tapes used, it was possible to make a nearly perfect recording of the noise at some level between - 20 and 0 dB . However, reducing the level increased the extreme high-frequency response slightly while increasing the
level reduced the highs slightly.
Our conclusion from these tests was that the AD-6900, used with any good-quality tape, can make recordings from FM radio or records without any audible difference between source and playback signals. This is
about all one can expect from any cassette deck. The flutter in particu-lar-as low as we have ever measured on a cassette deck-speaks eloquently for the construction of the AD-6900, as well as its design

CIRCLENO 102 ONFREEINFORMATIONCARD

> Omnidirectional floor-standing Ohm I speaker system

THE Ohm 1 is a four-way speaker system that employs five drivers to give nearly omnidirectional radiation in the horizontal plane. This moderately large floorstanding unit has a slightly tapered cross section. Most of its audible output is radiated by three top-mounted upward-facing drivers that cover the entire range from 100 Hz to the limit of audibility.

On the front of the system are a "subwoofer" that operates at frequencies below 100 Hz and a "supertweeter" that is identical to the one on the top and effective principally above $10,000 \mathrm{~Hz}$. The subwoofer and woofer are in separate vented enclosures, whose ducted ports open to the front of the cabinet.
Rated impedance is 4 to 8 ohms. The walnut cabinet has removable black cloth grilles on top and front.

Size is $341 / 2^{\prime \prime} \mathrm{H} \times 151 / 2^{\prime \prime}$ square ($876 \times$ $394 \times 394 \mathrm{~mm}$) at the base, tapering to $13^{\prime \prime}$ square $(330 \times 330 \mathrm{~mm})$ at the top. Weight is about $80 \mathrm{lb}(36.4 \mathrm{~kg})$. Suggested retail price is $\$ 650$.

General Description. The Ohm I drivers were specifically designed for this system and, except for the subwoofer, have magnetic fluid cooling for their voice coils. The $12^{\prime \prime}$ ($305-\mathrm{mm}$) subwoofer, whose enclosure occupies much of the cabinet volume, is vented through a $5^{\prime \prime}$ ($127-\mathrm{mm}$) diame-
means are provided to drive the subwoofer alone for biamplification
ter ducted port. The woofer, which operates from 100 to 2000 Hz , is an upward facing $8^{\prime \prime}(203-\mathrm{mm})$ cone driver, with its separate enclosure volume also vented forward through a $41 / 2^{\prime \prime}$ ($114-\mathrm{mm}$) diameter ducted port.

On the top surface, near the woofer, is a $11 / 2^{\prime \prime}(38-\mathrm{mm})$ cloth dome tweeter that radiates upward for maximum dispersion in its frequency range of 2000 to 10.000 Hz . A $1^{\prime \prime}(25.8-\mathrm{mm})$ cloth dome supertweeter near it operates above $10,000 \mathrm{~Hz}$. To help overcome the increased absorption of the very high frequencies by ceilings and room furnishings, the super-tweeter is augmented by an identical frontradiating driver.

Also, on the system's top surface are four three-position switches for separately adjusting the levels of the midbass driver, Iweeter, and each supertweeter. Each switch can reduce the level of its driver by either 3 or 6 dB. Means are provided for driving the subwoofer separately, should biamplified operation be desired.

Laboratory Measurements. The close-miked response of the two bass drivers was flat within $\pm 2.5 \mathrm{~dB}$ from 35 to 1000 Hz , but the reverberent field measurement of the middle- and high-frequency response of the system revealed an apparent discontinuity in level between 1000 and 1500 Hz . The output dropped about 5 dB at that point and then rose smoothly with increasing frequency to a maximum at about $12,000 \mathrm{~Hz}$ before it fell off slightly at higher frequencies. These measurements were made with all level switches set to 0 dB (maximum output).

The mid-bass switch affected the response between 200 and 2000 Hz , with a maximum reduction of 4 to 5 dB over much of that range. The Low TWEETER switch had very little apparent effect, but the HIGH TWEETER switch reduced the output by as much as 6 dB at most frequencies above 4500 Hz .

> Ask Yourself . . . Would You Pay ${ }^{\$ 4,000}$ For A One-Piece Projection TV When You Can Get Ours For Less Than ${ }^{\mathbf{s} 2,000}$?

- Fast computer designed F1.3-9' Fresnel lens with a $12^{\prime \prime}$ focal length.
- Walnut Finish Cabinet
- Compact and easily portable
- Twin Speaker System
- Remote available
- Quality inspected
- $50^{\prime \prime}$ Screen
- $67^{\prime \prime}$ Screen
- Screen is washable and damage resistant

OTHER MODELS PRICED FROM $\$ 995.00$ AND UP

(Limited Dealerships Available)
 Distributed by
 -TEXAS WHOLESALE ELECTRONICS

A DIVISION OF burke industries. inc
4303 Bryan Street
(214) 824-9204

NAMETTLE
COMPANY
ADDRESS
CTY
PHONE (__

CIRCLE NO. 63 ONFREE INFORMATION CARD

Composite corrected frequency response.

When we spliced our two sets of data to form a composite frequency response, the resulting curve was ± 6 dB from 24 to $20,000 \mathrm{~Hz}$. By setting the tweeter level switches to -6 dB ,

distortion

was typically 1% or less from

45 to 100 Hz

the overall response variation could be reduced to $\pm 4 \mathrm{~dB}$ over the same frequency range. System impedance reached its minimum of 3 ohms in the octave between 10,000 and 20,000 Hz , but was above 4 ohms below 5000 Hz . The maximum impedance was about 22 ohms at 52 Hz .

Despite its ported woofer and subwoofer systems, the Ohm I is relatively inefficient. With 2.83 volts of random noise in the $1000-\mathrm{Hz}$ octave applied to it, the sound pressure level (SPL) was 84 dB at a distance of 1 meter from the upper front edge of the cabinet. This is comparable to typical acoustic-suspension speaker systems. If the tweeter levels are reduced to yield a flatter response curve, the efficiency goes lower still.

Tone-burst response of the system was good. Bass distortion, measured close to the cones of the woofer and subwoofer and to their port openings, was typically about 1% or less from 45 to 100 Hz . This was true whether we drove the system at 1- or 10-watt levels. (Our figures are based on an 8 -ohm impedance, which is roughly correct for that frequency range.) At 1 watt, distortion rose to about 4% at 30 Hz and 5% at 25 Hz . At 10 watts the $30-\mathrm{Hz}$ distortion was about 6%.

User Comment. For most practical purposes, the Ohm I can be considered omnidirectional in the horizontal plane. The front firing supertweeter
contributes little to its audible sound, and the subwoofer is essentially omnidirectional. "Omni" speakers are dependent on room characteristics for their sound quality, and the level switches offer dozens of possibilities for altering system response. These factors make it especially difficult to generalize about the performance of the Ohm I, just on the basis of tests and use in a single environment.

Position in the room makes little or no difference in the sonic balance of the Ohm I. Although the system certainly delivers a full frequency range response, we usually found the sound rather dry and lacking in "warmth." At times we found it to be almost clinical in detail and often preferred to listen with the tweeter switches set to -3 or even -6 dB . At other times, and with different programs, we preferred to keep all switches at maximum. The

position in

the room

makes little

 difference in sonic balancemeasured midrange response irregularity was not readily identifiable in the sound.

Summing up, the wide-range, omnidirectional Ohm I speaker system is capable of producing a smooth, clean sound throughout typical listening rooms, especially if one is willing to devote the time and effort to adjust its levels carefully. Rugged and relatively inefficient, it requires (and can handle) large amounts of power (from an amplifier than can handle the 3 -ohm impedance of its topmost octave) if its qualities are to be fully enjoyed. On a wide variety of music, the system gave a fine sense of detail and better than adequate dynamic range.
CIRCLENO. 103 ON FREEINFORMATION CARD

Bulle it MOUREALF and SAVII Find outhou

in this big, new

 FRE
HEATHKIT CATALOG

400 easy-to-build electronic kits, like the latest in personal computing
 systems (including floppy disk storage), ham radio gear, audio components, television, power supplies, oscilloscopes, frequency counters, VTVM's, VOM's and DMM's, electronic clocks and weather instruments, auto, fishing, marine and aircraft accessories and learn-at-home electronics programs.
Heath electronic kits represent the newest advances in technology. the quality that Heath Company has
meant for over 50 years... and the best values!
Heath electronic kits are easy, fun projects... an activity the whole family can enjoy.

Cne-Bution Phone Dialer

Mail the coupon today for your copy

[^4]This coupon also redeemable at the $\mathbf{5 5}$ Heathkit Electrovic Cersers nationwide (Units of Schlumberger Products Corporation), where Heathkis products are dispiayed, sold and serviced. See your telephone directory white pages.

heath
 Schlumberger

Heath Company Dept. 010 Benion Harbor M1490:2
lease send me my FREE Heathkit Catalog. am not currently receiving your caalags.

Name_ \qquad
oly
\qquad
 - 710

Heath won'l let you fail... illustrated step-by-siep instructions guide you from anfacking the kit to final plug-in, detai ed explana: ons that tell you how your kit works from the inside out anc expert tech-ical assistance, by ma lor telephore, if you have any questions or problems.

Learn more about the satistring hobby of kitbuildi tg ...send for your free catalog todat it's :he bes way we know to see the world's la jest selection of qual ity electronic kits!

Pre-Serlet Audio

Think of it! A fully accredited college degree in electronics by studying at home.

At 18, things looked different

You remember-the most important thing was to get started working. Enough of books and classes! You wanted to make money. Maybe you had responsibilities. A family totakecare of. Any further education would just have to wait.

But then you started noticing something: the guys with diplomas were getting first crack at good jobs and promotions. You were losingout. And it hurt.

Now you know: a degree opens doors

Government, defense contractors, large companies -they want good electronics and electrical specialists. But they also want credentials. A degree. Fortunately, even if you're working it's not too late to get one.

You don't have to commute, quit your job, conform to a class schedule

The Center for Degree Studies offers Associate in Specialized Technology degrees in electronics technology and electrical engineering technology.

These are no ordinary degree studies. Using guided independent study, a concept pioneered by ICS in 1890, you work at your own place and pace. No commuting to classes, no classroom pressures. You'll be supplied with clear, fully illustrated study materials including practice problems, quizzes and exams to evaluate your progress. In the final semester you'll have two weeks of on-campustraining at a leading engineering college or university.

You'll also receive valuable instruments and equipment when required, to make your course come alive. Equipment you can keep on using on the job.

Help is just a toll-free call away

You can call CDS/ICS from anywhere in the U.S. or Canada except Alaska and Hawaii, using our special toll-free Dial-A-Question ${ }^{\text {® }}$ service.

- Electrical Motor Repair
\square Electrical Appliance Servicing
\square Electrical Contractor
\square Electrical Engineering
\square AST Degree in Electrical
Engineering
\square Electrical Fundamentals
\square Electrician
\square How to Install Electrical Wiring
\square Industrial Electrical
Technician
\square Reading ElectricalBlueprints
\square Servicing Electrical Appliances
\square Basic Electricity for Electronics
\square Color Television Theory and Troubleshooting
\square Electronics
\square Electronics Fundamentals
\square AST Degree in Electronics Technology CDS First Semester
\square Electrical Troubleshooting Techniques
\square Fundamentals of Electronics Communications
\square Stereo Receiver \& Component Troubleshooting
\square Television Servicing

Pewer. Wi:h distortion so bow it's inzurlbe. That's not surprising. It's Technics.Look at the shart. That's Technics too.

Technics

 Suprisingy good peformence that cones as no surprise.| Seereo
 Reseivers | Mir RMS Powe-Per Chanrel into 8 Cbms frcm2OHz-20-Hz | Btal-harmoric Dis:2rt on at Fetec Fower (Hap; | $\begin{gathered} \text { FN } \\ \text { Sensit } v \text { ty } \\ \text { Stereo- } \mathbf{3} \mathrm{EdE} \mathrm{P}^{*} \end{gathered}$ | Phono S/Y
 (1OmVIHFA) |
| :---: | :---: | :---: | :---: | :---: |
| S.A. 000 | 330 watts | 005\% | 36.2 dEt | 97 dB |
| Sa.800 | 125 watts | 004\% | 36.2 dEt | 95 dB |
| SA. 300 | 130 watts | 004\% | 36.2 dEf | 95 dB |
| S4.600 | ${ }^{2} 0$ watts | 004% | 37.2 eEf | 90 dB |
| 54.500 | 35 watts | 004\% | 37.2 dEf | 90 dB |

*I-F 75 standare
Of course, you expect the mexpected foom Technics, and with Acolstic Contral that's just what you get. With the lowbcost swisch and the basscontrol, yo.scan add more punch to dass instuunents. While the treble h gh-bosst switch brings our $t^{-} \epsilon$ brilliance in boti vocals and inst umentals.

Still, Acousic Comrol is just one of rany reasons to bus a Techniss receiver. Clean ard stabe amplification, even ander the most demznding dymami= conditions, is another. Especially since each Techrics receiver ras direct coupling, zonservat vely rated powe- supply capacitors, arr ent mirror loading and single - packaged marched clal trasistors.

To avoia dipping and meintain dynamic range, you'll want zo keep ar ege on what yo.r ears can hear. And with our hignly accurzte power mewers, you zan: LED's provide seak power indication witt extremely fast attack time.

Fcr outstanding peformance on $F M$. even from an overarowded bard or a merginal signal, every Techrics receiver ras Phase Locred Loop IC \leqslant, flat-group celay fite's and a frequencyresponse that's both flat and wide.

Audition any of Technics five receivers. If their big power and Lttle dis:artion don't surprise you. ateir LED meters and Acoustic Centrol will.

Cabinetrd s simu zece woodgrair.

Only 5 receivers combine big power, little distortion, LED meters and Acoustic Control. Technics makes themall.

Digital technology can offer a substantial improvement in audio reproduction. PE editors weigh its

BY HAROLD A. RODGERS Senior Editor
with LESLIE SOLOMON
Technical Director

THE TELEGRAPH embodies many of the advantages to be found in digital transmission of information. Since all telegraph information is transmitted as a series of pulses, the linearity and signal-to-noise ratio of the system need only be good enough to allow the receiver to determine the presence or absence of a pulse. As payment for these advantages, we must accept the necessity of translating messages that do not in general originate in digital form (and cannot be used that way) at the input and output of the communications channel. Bandwidth of the channel is a key factor too, for it determines how fast the information can be sent.
Application of digital pulses to the high-fidelity reproduction of music is a fairly new development, largely because it is only recently that hardware with the capability of handling in real time the prodigious amounts of digital data necessary to represent a music signal have become reasonable in price. A large part of the technological development necessary to accomplish this was won through
solving problems involved in remote telemetry from spacecraft. Probably the earliest samples of digital audio to be widely heard were the voices of Apollo astronauts as relayed back from space.

How Does It Work? Basically, a digital data-handling system must consist of at least three modules: an input section that handles analog data and translates it to digital code, a transmission channel (with or without a storage device), and an output section that reconverts the data to analog form and routes it to its destination. When dealing with sound, the original data is a continuous waveform that represents variations of air pressure as a function of time. Since it seems, at first glance, that a continuous signal can be chopped into infinitesimally fine segments, it is not clear how digital code limited to a finite number of elements might represent it.

Modern communication theory has shown that if the analog channel is band-limited to some maximum frequency, f, and sampled at a rate of 2 f sam-
ples per second or more, the original signal can be reconstructed with no loss whatever. The band limitation is severe, however, and therefore places rigorous demands on whatever filter is used to realize it. This is particularly true when, in order to minimize cost, the sampling frequency barely exceeds twice the highest audio frequency. It is rare that a digital system intended to accommodate a 20 kHz bandwidth uses a sampling rate of more than 50 kHz .

Unfortunately, if signal energy is present in significant amounts at frequencies over half the sampling rate, the result is not just a loss of information, but a serious form of distortion (called alias distortion). What happens in effect is that the signal frequency beats with the sampling frequency to form products not present in the original. If a $35-\mathrm{kHz}$ tone were allowed to interact with a $50-\mathrm{kHz}$ sampling frequency, for example, a spurious $15-\mathrm{kHz}$ tone would appear in the output. To combat this, filters used prior to sampling exhibit roll-off at extremely fast rates. Some critics complain that the

Digital Audio

phase shift resulting from such extreme slopes has audible effects, but there does not seem to be any objective evidence that strongly supports this claim.

To change our 40,000 to 50,000 analog samples to a digital signal, we will have to express each one as a number. The difficulty associated with this step is that, while values of the samples may fall anywhere between positive and negative extremes, size of the interval between two adjacent numbers in the set that must represent these values is fixed (depending on number of digits used to express the numbers). If, for example, decimal notation were employed, we would find that when using three-digit numbers the resolution between values could be no finer than one part in 10^{3} or 1000. Using binary digits (bits), as is done in practice, we find resolution limited to one part in 2^{n}, where n is the number of bits.

Thus, there is an error (quantization error) between the original signal and the output of the analog-to-digital (A/D) conversion module. Analysis of this error shows that it is equivalent to noise. Since increasing the number of bits in the numbers representing the value of the samples makes the quantization steps smaller, it seems logical that by this action the quantization error and the noise it generates can be made as small as desired. This is, in fact, the case; each additional bit increases the S / N ratio by 6 dB .

Although signal conditions that limit the effects of quantization error to an increase in noise are met most of the time, there are circumstances under which it causes distortion. For example, a
low-frequency sine wave whose amplitude is small enough to allow it to cross only a single quantization level would be converted to the digital equivalent of a square wave. This process introduces the same distortion products as does amplifier clipping, except that its confinement to low-level signals makes the effect more akin to crossover distortion. An additional penalty is exacted in the form of alias distortion when any of the false harmonics exceed one half the sampling frequency.

To offset this, a low-level signal with the correct spectral properties (white noise works very well) is added to the input audio signal to ensure that quantization error shows up as noise rather than distortion. Perceptually, the effect on the system from quantization error is now no worse than a small loss in S / N ratio.

Error Correction. While the immunity of digital information to disturbances in communication channels or storage media is high, it is not absolute. There is an appreciable likelihood that tape dropouts and interfering signals will cause digital data to be lost or altered. Since such losses can seriously degrade recovered audio, it is imperative that the system be able to cope with them.

Error-correcting codes are, of course, nothing new to communication theory, although manufacturers of digital hardware indicate that some work has been necessary to find optimum codes for this application. The more elaborate codes allow the system to identity erroneous bits and correct them. A Sony spokesman estimated that the company's professional digital system will pass no more than one uncorrectable error per 100 hours of recording. The 3M Company states flatly that no uncorrectable errors have yet turned up in any of the re-
cordings done on its machines.
Such prowess in error correction leads to the somewhat surprising result that, no matter how many generations of copies separate a particular dub from a master tape, the overwhelming probability is that the dub is just as good as the master. This turns out to be one of the most important properties of digital recording. Consumer systems, it should be pointed out, usually content themselves with error concealment, a technique in which erroneous digital words are identified and discarded, and the correct values estimated from digital words immediately before and after. This effectively hides the errors. Repeated copying will, in this case, produce cumulative errors. However, there is no reason why a consumer should expect assistance in dubbing copyrighted software. Error concealment is also applied to any uncorrectable errors that occur in professional systems.

Playback. The playback section of a digital audio signal chain is relatively straightforward. The data stream is read from the tape (or whatever storage medium is used), run through error correction (or detection) and loaded into a buffer memory. Like the A/D conversion performed in recording, the D/A conversion performed on playback is synchronized by a crystal-controlled clock. Time-base errors are thus limited to tolerances of the clock oscillators, making wow and flutter virtually a thing of the past. Since D/A converters can deliver false outputs in moving from one value to another, a sample-and-hold circuit is customarily used following this stage to prevent feedthrough of erroneous signals. An output low-pass filter normally protects outboard equipment following the digital system from the switching fre-

Alias distortion: sine wave A (top) has a higher frequency than pulse train B, the sampling waveform. Sine wave C, of
lower frequency than A, gives same series of samples and appears in output when samples are reassembled.

quantization error could be reduced by introducing more level with closer spacing.

Square comered ware B is a quantization of smooth wave A across seren equally-spaced lewls. Shaded area representing
quency and other ultrasonic components that might cause problems.

Controlling Costs. One of the major drawbacks of digital recording systems is cost. Systems using 16 -bit resolution and a $50-\mathrm{kHz}$ sampling represent just about the current limit of the state of the art-and they have price tags to match! Fortunately, the 90 -odd dB of S / N ratio typical of these systems appears to be sufficient for professional applications.
Since consumer systems can dispense with some of the headroom required of professional systems, it would seem possible to reduce the number of bits they use. The critical question is, by how much? Barry Blesser, writing in the Journal of the Audio Engineering Society, points out that reducing the number of bits from 16 to 12 can drop system costs by a factor of as much as 100 .
The simplest way to accomplish this is to simply design a system with fewer bits. The Phillips Digital Disc System, currently slated for introduction some time in 1981, will use a 14-bit code and accept as adequate the resulting $84-\mathrm{dB}$ S / N ratio. Another approach, used in the Sony PCM-1 described elsewhere in these pages and in prototype disc systems developed in Japan, is floatingpoint or nonlinear encoding.
In floating-point encoding, the A/D converter at the input contains what is
effectively a compressor that subtracts a constant from any voltages falling above a given threshold before encoding them. An extra bit appended to the digital word notifies the output D/A converter that this has been done and causes it to perform a complementary expansion on playback. The peak S / N ratio at any instant is still that which can be predicted by the bit resolution, but the dynamic range (the difference between the weakest and strongest signals the system can accept) is increased by the amount of compression/expansion.

Another technique used to minimize auditory effects of system noise is highfrequency pre-emphasis/de-emphasis. As in conventional tape recording, this trades high-frequency headroom for better noise pefformance. This could be disadvantageous in a system intended for recording live sources, but it is useful in systems biased heavily for playback use.

Miscellaneous Problems. Just as basic hardware of digital audio systems tends to be high in cost, so are ancillary items. Thus, a studio that wished to do not only its recording but its mixing and signal processing in the digital domain would require some fairly complex, specialized equipment. Mixing, for example, can no longer be performed by simple analog summation; a digital adder is required. Similarly, any change in system
gain requires that each digital word be multiplied by a constant. Furthermore, equalization requires use of digital filters, which are usually programmed in software. Offsetting these fairly formidable requirements is the fact that digital hardware tends to be generalized. The equipment necessary for one kind of signal processing will usually perform other types as well. Such flexibility may foster development of new types of signal processing.

Editing is another problem area. The trusty razor blades that served so well during the era of analog recording must now be consigned to the recycling dump in favor of electronic methods. Equipment currently available is capable of letting the engineer analyze waveforms to be joined for both amplitude and slope and pick the junction point accordingly. Splices, which in a typical multi-track environment can be made at different points in the various channels, can be audibly perfect when this technique is applied.

Standards. At the present time, despite some efforts to the contrary, competing digital systems vary considerably in format. Sampling frequencies vary between about 44 and 50 kHz , and coding schemes range from 12-bit nonlinear to 16-bit linear. Lack of cross-compatibility between these various systems could eventually cause problems. Computer

Low-frequchcy sine wave amplitude equal to plus-or-minus one least significant bit is converted to a quasi-square ware
by quantization. The effect resembles amplifier clipping and introduces gross distortion.

Digital Audio

routines have recently been developed to translate the digital code generated by one system into that of any other. Some degradation does occur in this process. but it is small enough to be acceptable provided several such conversions are not carried out in tandem.

Politics. The nature of the digital domain is such that format decisions are binding on performance. Thus, once a certain bit resolution is adopted, the S / N ratio is fixed with no possibility of im-
provement. Also, the choice of sampling rate places an absolute limitation on system bandwidth. This is in contrast to analog formats such as, for instance, the compact cassette, where successive improvements in tape and hardware have transformed a system originally designed for speech only into one that handles music with competence.

Such a state of affairs poses no conundrums when economics permit systems to be made much better than they need to be. But digital audio, on the contrary, almost demands that all reasonable compromises that might reduce costs be made. Since the effects of such compromises (and their irrevocable lim-
its on performance) could persist in the marketplace for some time, caution would suggest that they be made only after the industry has sufficient experience to know what can be profitably traded away. In that sense, digital audio looks not like the final perfection of musical recording, but like the beginning of a new era.

Prospects for the Future. As might be expected, digital audio is already beginning to affect the established recording industry. London Records has released digitally mastered discs, and it seems likely some of the other major labels will do the same before too long. As

Every digital recorder needs a high-speed, wide-band data-storage system. Professional tape machines tend to use high-speed transports operating at 30 ips or more for this purpose. To keep system cost down for consumer applications, the task can be assigned to a video tape recorder. To do this, some form of interface is necessary between the analog input signal and the video machine. The Sony PCM-1 is the first product of this type to reach the market (for about \$4000). Here's how it works.
The PCM-1 converts two channels of audio information into a digital equivalent and arranges it in an appropriate format for recording on the VTR. It also includes means to change recorded digital signals from the VTR back into two channels of analog audio that could be fed to a conventional stereo system. The signal processor fits between the stereo audio system and the VTR (in this case a video cassette Betamax).

Signal Format. The digital data is recorded on the VCR as a series of magnetic pulses
equivalent to zeros and ones. The digital audio information and error-checking elements (to be discussed later) are inserted within a conventional TV horizontal line as shown in Fig. 1.

The 94 bits are divided into 78 bits shared
by the right and feft audio information with the remaining 16 bits used for the CRC. Since a TV horizontal interval can support up to 110 bits, and there are 525 lines and 30 frames per second, it is possible for the TV signal to support up to 1.7 million bits per second. It is because of this that a VTR is used as a stor* age medium for digital audio.

Circuit Operation. As shown in Fig. 2, the

Fig. 1. Instead of video, each horizontal line contains digital information and error-correcting code.

Soundstream's Dr. Tom Stockham pointed out at the 1979 Midwest Acoustics Conference. one of the tremendous advantages that digital audio offers to an institution that must store large numbers of master tapes is that of archival permanence. Once a performance is committed to a digital master tape, there is no reason why it should deteriorate at all with the passage of time. If a copy starts to age, a functionally identical dub can be made. It would be surprising, therefore, if record companies did not eventually phase in digital storage of their existing libraries.

Specialty recording companies have been using digital mastering for some
time now, Nippon Columbia (Denon) being one of the first. The idea has since spread to the U.S., where it has been employed with apparent success by Telarc, Orinda, and Studio 80.
Generally, these discs have shown appreciably better sound quality than conventionally mastered discs. Unfortunately, the dynamic range of digital sources is so wide that making the transfer to disc without resorting to compression requires great care and, perhaps, prestidigitation as well. And some signal processing-diameter equalization and some means to prevent stylus lift due to excessive vertical (out of phase between the two channels) mod-
ulation at low frequencies-defies circumvention. For these reasons, there are many who believe that consumers will not enjoy the undiluted benefits of digital audio until digitally encoded software and the special players designed for it become widely available. (Note that while tape and discs seem to be frontrunners among the storage media vying for hegemony in the digital marketplace, other media such as magnetic cards or highly miniaturized read-only memories could win out in the long run.)
The analog establishment is just not ready to roll over and die quite yet, however. For one thing, metal-particle tape
(Contrnued on page 46)

PCM-1 has separate record and playback sections. In the record mode, the analog audio input signals are amplified and applied to the line amplifier that sets up the desired signal levels and applies high-frequency preemphasis. To avoid problems with quantizing noise, a "dither" signal, generated from white noise developed across a zener diode, is added to the audio. It is this noise that fixes the final signal-to-noise ratio and that the preemphasis is designed to minimize. An improvement of about 7 dB is realized.

The audio is now sampled at a rate of 44,056 samples per second. The sample-and-hold circuits for the two channels are timed from a crystal oscillator and both are processed by the same A/D (analog-to-digital) converter, with a high-speed analog switch alternating the samples (Fig. 2). The output of the A/D circuit is digital code corresponding to the quantized value of the samples. To keep costs down, a 12-bit A/D converter is used. However, 12-bit resolution gives a dynamic range of only 72 dB , comparable to that of the best analog tape systems. A 4:1 compression applied before A/D conversion, yields another 12 dB of dynamic range when the signal exceeds the 0.93 -volt
reference level. In the playback mode, a 1 -bit "flag" signal added to the 12 -bit word is used to trigger a complementary $1: 4$ expander. This technique produces the equivalent dynamic range of over 84 dB , similar to that of a 14-bit system, although the instantaneous S / N ratio remains at 71 dB .

In operation, the comparator squares off the analog audio, with the output of the comparator feeding a digital counter formed from a series of flip-flops timed from the system clock. The flip-flops are coupled to a D/A converter that reconverts the digital signals into analog form. The new analog signal is fed to the other input of the comparatorwhen the two input signals are equal, the conversion is complete.

The digital word at the output of the A/D converter is fed to an 8 K RAM that provides buffer storage and data interleaving. This allows for time compression required because the digital data signal cannot be recorded during the VTR sync pulses. Compression is achieved by clocking the digital data out of the memory intermittently at a faster rate than it was clocked in. All of the required clock signals, as well as the video sync signals are derived from a crystal-controlled oscillator. Next
the digital data has its CRC (error-checking) elements inserted and is passed to the video output amplifiers, where it is mixed with the necessary video/sync signals. The composite output fed to the VTR input jack is 1 -volt peak-to-peak NTSC video at 75 ohms output impedance.

In the playback mode, the amplified video signal is fed to a sync separator. The sync signals are used as a reference to allow the playback sync generator to compensate for slow drift and low-frequency time-base errors coming from the VTR. It is possible that (due to tape dropouts, for example) some of the pulses may be lost between recording and playback. Since a single false bit can drastically alter the digital word (a functional grouping of bits) of which it is a part, the system must include a check for such errors.
A special code, called CRC (cyclic redundance check) is central to the error-checking scheme. Each digital "word" (here a number representing the amplitude of a single sample of the audio signal) is divided by a standard number. The remainder from this division is appended to the digital word.
During playback, the digital word is divided
(Continued on page 46)

THIS REMARKABLE CASSETTE DECK COULD ONLY COME FROM THE NEW FISHER.

Recent developments have revolu tionized tape technology. The new Fisher CR4029 cassette deck, with an array of features you thought were still in the future, can now make recordings in your home that rival the product of professional studios Equally important, the CR4029 offers a wide range of choices that, until now, were unavailable. Some of the new cassette decks offer one or two of these technological innovationsFisher offers them all in one inte grated package

TWO SPEED OPERATION You can use the CR4029 at the stan dard $1^{7 / 8}$ ips speed and you'll have outstanding recordings. But that's just the beginning. Switch to the new high-speed $3^{3 / 4} \mathrm{ips}$ and the CR4029 delivers an incredible $30 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$ $\pm 3 \mathrm{~dB}$ frequency response (using normal tape). What's more, record ing at high speed drastically reduces wow and flutter and tape dropout. Off the-air and off-the-disc recordings will astound you, and even surprise your friends who own reel to reel recorders. (Since a C90 cassette will record a full album at $3^{3 / 4} \mathrm{ips}$, high speed recording is still economical.) But --there's more

METAL TAPE. Another of the marvelous innovations is metal tape Why has it become so important? Our chart shows why. Metal tape demonstrably improves frequency response. Combine it with the new high speed and you'll get a hard-to believe $30 \mathrm{~Hz} \cdot 25 \mathrm{kHz} \pm 3 \mathrm{~dB}$ fre quency response with virtual freedom from distortion. You'll also be able to record at higher levels. (With normal tape and standard speed, you have to record at lower levels to prevent tape saturation and consequent dis tortion.)

THREE VHT/SENDUST HEADS WITH DUAL PROCESS DOLBY. All this new technology requires new recording, playback and erase heads. So Fisher engineers came up with our new VHT heads Made of a special micro-fine, high density particle formulation, they bring out the best potential of metal tape and high speed. Because the

CR4029 is a three-head design, each head can be optimized for a specific function. There's a wide $4 \mu \mathrm{~m}$ gap VHT record head for the best possible signal-to-noise ratio. A narrow $1 \mu \mathrm{~m}$ gap VHT playback head improves frequency response. And a Sendust alloy erase head overcomes the problem of hard-to-erase metal tape. The separate record and playback heads allow you to monitor as you record $\left.a_{n}\right)$ absolute must for serious record-

VHT RECORD AND PLAYBACK HEADS

ing. And Dual Process Dolby gives you the advantage of Dolby noise reduction in both the record/play back and off-the-tape monitoring mode.

THE CR4029 HAS ALL THE OPTIONS. Why have only part of the new tape technology when you can have all of it? Using the CR4029 three head system you can use metal tape at the standard $1^{1 / a}$ ips speed, combin ing high performance with long play Or use normal tape at the new $3^{3 / 4}$ ips speed for both economy and superior performance. Or choose the ultimate metal tape at high speed $3^{3 / 4} \mathrm{ips}$, and exceed the expectations of the most critical enthusiasts

IT'S WHAT YOU'D EXPECT FROIV THE NEW FISHER. We in vented High Fidelity over 40 years ago We've never stopped moving ahead The CR4029 is a perfect example Part of the new Fisher. Where the only thing about us that's old is our tradi. tion of quality and craftsmanship See the new CR4029 at your Fisher dealer. Everything you'd want in a technologically advanced cassette deck, and at an under $\$ 500$ price

New guide lor buying high fidelity equipment Send $\$ 2.00$ with name and address for Fisher Handbook to Fisher Corpora tion. Department H. 21314 Lassen Sireet Chatsworth. California 91311
© Fisher Coro 1979

SPECIFICATIONS
Motor
Drive System
Number ol Heads HeadMaterial Wow and Flutter
${ }^{1 / 2 / i p s}$
lutter

Signal-10-Noise Ratio
(CCIR Weighted)
(Dolby Of)
(DolbyOn) 62d日
Frequency Response $1^{1 / 0}$ ps Normal Tape ($\pm 3 \mathrm{~dB}$) $\quad 30 \mathrm{~Hz} \cdot 14 \mathrm{kHz}$
CrO , Tapel $\pm 3 \mathrm{~dB}$) $\quad 30 \mathrm{~Hz} \cdot 16 \mathrm{kHz} \quad$ BiasFine Adjusimenl
Dolby is a registered irademark of Dolby Laboratories

Digital Audio $\square \square \square$

used on professional open-reel recorders offers increased dynamic range. Aided by advanced noise-reduction systems, such as Telefunken's c4d, these tapes could offer signal-to-noise ratios approaching the 90 -odd dB available from digital systems. Granted, there will still be wow and flutter and modulation noise, but smaller recording studios, lacking the budget to go digital, might well tolerate these minor disadvantages in return for the wide dynamic range.

Noise reduction may help the conventional phono disc, too. The idea of applying $d b x$ noise reduction to phono discs and playing them back through a decoder, which had little success in its first incarnation, has been reintroduced. In the transformed signal environment and
sonic marketplace that now exist, partly due to the influence of digital recording, the dbx system should have far better prospects.

One of the telltale effects that tends to betray the action of a compander like the dbx is that any noise present in the original master tape will vary in level, often quite audibly, on playback. This was often exacerbated by the fact that mastering engineers, not foreseeing such demanding use of their product, are often content with master tapes whose signal-to-noise ratios are just a little better than that of the final disc. Indeed, most of us have probably heard discs on which the hiss from the master tape is clearly audible, which means that the tape S / N ratio can actually be a little worse than that of the disc.

With a digital master tape, the situation is vastly different. Here, the noise is
usually so far below the level of the music that, even when the compander action makes it fluctuate, it remains, for practical purposes, inaudible. More to the point, the dbx system can accommodate the wide-ranging digitally reproduced signal without being backed up onto its remotest margins, as is a conventionally made disc. It would be foolhardy to predict how dbx will fare once digital disc systems are widely available to consumers, but for the foreseeable future digital mastering and compansion of analog discs seem to make a happy combination.

Whatever the long-term prospects of digital audio may be, it seems safe to say that it will materially influence the sound of reproduced music-and for the better. Its effects are already beginning to show and are certain to become greater with passing time.

the Sony PCM-1

continued
by the same number. If the remainder is the same, the check bit is stripped off and the remainder of the digital word (the actual digitized audio) passes along for further processing. If the remainder is incorrect, the word is discarded and its value ultimately interpolated from the words immediately adjoining.

After error detection, the digital data stream is fed to a 16 K random-access memory that acts as a buffer to take up any short-

term time-base errors and to re-establish the original timing. Speed variations such as wow and flutter are thereby eliminated.

The digital signal is then coupled to a D/A converter to produce the equivalent analog signal. Each digital input line is wired to an electronic switch that, when closed, allows a constant current to flow into a scaled resistor network. The output voltage is dependent on how many switches are closed at that instant. The more active bits, the more switches and the higher the output voltage. Thus, each incoming digital word produces its instantaneous analog equivalent.

Now the signal goes to the 1:4 expander that re-establishes the original dynamic

range. This is followed by an interpolation circuit that "patches" errors detected by the CRC. A high-speed electronic analog switch, loggled by the timing signal from the playback sync generator, separates the right and left channels. After passing through a lowpass filter that removes the sampling frequency and other undesirable high-frequency components, the two independent analog channels pass through line amplifiers where de-emphasis is applied. The resulting audio can then be routed to any good stereo amplifier/speaker combination.

Figure 3 compares the performance of the PCM-1 with that of a high-quality, 2-track, 38cm / s tape recorder.

Fig. 3. Performance comparisons of a professional 2-track PCM-I (D, E, and F) for (left to right) dynamic range, tape deck running at $38 \mathrm{~cm} / \mathrm{s}(A, B$, and C at top) with

Low-cost, high-performance component employs BIFET operational amplifiers, can be powered by dc or ac sources.

A^{s}S THE state of the audio art has maured, whole new families of sophisticated components generically known as signal processors have become available for use in sound systems. Anong the most popular category of signal processors is the equalizer. And the subcategory that has generated
the most excitement among serious audio entrusiasts and sound profissional's is the parametric equalizer.

As its name implies, each of the parametric aqualizer's key pareməters-its center trequency, filter bandwdith or \mathbf{Q}, and ampunt of boost or cut introducedcan be irdependently adjusted. This provides extracrdinary flexibilty, allowing the user to tailor equalizalion to the precise needs for a particuas program or room/system combinatior.

Presented here is a two-band parametric sterso equalizer with several features trat commend it to the audiophile. It has been designed so that the a and Boost/cut controls interact tc compen-
sate for the perceived change in loudness as filler bandwith increases or decreases. Furthermore, the circuil employs high-performance ElFET op amps, which combine the best 0° both junction-field-effect and bipolar-junction transistors in each amplifier. It can be powered by either the ac line or a 12 -to-30-volt dc supaly, making it equally "at home" in fixest, mobile, or portable applications. Finally, the Parametric Equalizer is relatively inexpensive-a line-powered stereo kit costs $\$ 99.60$.

A Short Gourse In Erialleption.

 Athough last month's Popular ElecTRONICS contained a comprehensive

Audio Project $\square \square \square$

article about equalization ("The Art of Equalization" by Ethan Winer), here's a brief overview of the subject. The category of signal processors known as equalizer can be broken down into three subcategories: tone control or shelving types; graphic or peaking equalizers; and parametrics. All three are capable of boosting or cutting signal levels, but differ in the manner in which they generate the boost or cut, in the shapes of the fre-quency-response curves they produce, and in the size of the band of frequencies which they affect.

Tone controls are characterized by a gradual transition between the nonboosted and fully boosted (or unattenuated and maximally attenuated) frequency bands, levelling off to a fixed amount of boost or cut. The resulting fre-quency-response curve takes on the appearance of a shelf, giving rise to the name shelving equalizer.
Graphic equalizers divide the audio spectrum into a given number of bands with individual boost/cut controls for each band. The transition between the unaffected and fully affected regions is determined by the number of bands in

Fig. 1. Simplified schematic of one channel of equalizer
shows that an inverting amplifier is interconnected with a modified state-variable active bandpass filter.
into 30, one-third-octave-wide bands. In most consumer graphic equalizers, the center frequency of each band is fixed, although some more sophisticated units (and most professional graphics) allow the user some leeway in setting the center frequencies. The family of frequencyresponse curves generated by a graphic
the graphic equalizer. An inexpensive five-band or two-octave (so called because each band is two octaves wide) has a lower filter Q and therefore more has a lower filter Q and therefore more moved from the band of interest than a sophisticated professional equalizer which breaks the audio spectrum down

MAIN PARTS LIST (TWO CHANNELS OF EQUALIZATION)

C1, C2, C3, C4, C9, C10, C15, C16, C $20-1-\mu \mathrm{F}, 25$-volt electrolytic
C5. C6, C7, C8- $1000-\mathrm{pF}$ polystyrene. 5% tolerance
C11, C12, C13, C14-8200-pF polystyrene. 5\% tolerance
C17**, C18**, C19*-0.1- $\mu \mathrm{F}$, 50 -volt disc ceramic
IC1 through IC5-TL074CN quad BIFET operational amplifier
J1, J2, J3, J4—Phono jack
The following, unless otherwise specified, are $1 / 4$-watt, 5% carbon-film fixed resistors.
R1 through R6,R13,R14,R17,R18,R21.R22. R23,R24, R37,R38,R45,R46,R49,R50, R53, R54, R55, R56, R74, R75-100.000 ohms
R7. R8, R39, R40, R63, R64, R67. R68-20.000 ohms
R9,R10,R41,R42-6800 ohms
R11,R12,R15,R16,R43,R44,R47,R48-

equalizer resembles a series of peaks and valleys. That's why some audiophiles refer to graphic equalizers as "peaking" types.

The parametric equalizer is a variation on the graphic equalizer theme. In addition to an individual boost/cut control, each band of a parametric equalizer also has center-frequency and bandwidth or filter Q controls. This means that the amount of boost or cut introduced, the center frequency of the band of equalization, and the bandwidth within which the equalization is applied (as well as the transition between the frequencies that are unaffected and those which are boosted or cut the most) are all independently variable. The parametric equalizer thus gives its user the ultimate in control over the sound recorded on tape or reproduced by his speakers.

About the Circuit. A simplified schematic of the Parametric Equalizer is shown in Fig. 1. Only one equalizer section of one channel's circuit is shown, and input buffering and output decoupling details are omitted. Similarly, power supply connections are not shown. It can be seen that the simplified schematic is that of an inverting amplifier (IC1A, R1, R2, and R3) interconnected with a modified "state variable" active band-

PERFORMANCE SPECIFICATIONS (Supplied by the Author)

Center frequency range: 40 to $18,000 \mathrm{~Hz}$ in two bands -40 to $960 \mathrm{~Hz}, 500$ to $16,000 \mathrm{~Hz}$
Frequency responee: 3 to $100,000 \mathrm{~Hz}$, $+0 \mathrm{~dB}, \mathrm{~dB}$ with all controls at their flat settings
Input impedance: 50.000 otuns
Input/output galn: 0 dB
Intermodulation distortion (SMPTE): Less than 0.007\%

Maximum output: 8 volts ms into a 10,000 -ohm load when powered by ± 15-volt supply
Waximum boost/cut: $\pm 20 \mathrm{~dB}$ at 0.16 octave bandwidth
Output Impedance: $\mathbf{1 0 0}$ ohms
Output noise: -70 dB unweighted, -89 dBm " A " weighted
Range of 0 adjustment: 0,16 to 2 oc taves ($-3-\mathrm{dB}$ bandwidth)
Total harmonic distortion plus nolse: below 0.04% from 20 to $20,000 \mathrm{~Hz}$
pass filter. Such a filter is composed of two active integrators connected in cascade (IC1C, IC1D, and associated passive components) and a differential amplifier (IC1B and associated passive components).

This circuit was chosen for use in the Parametric Equalizer because its center frequency and Q can be varied independently of each other. The filter's center frequency is selected by adjusting dual potentiometer R12. Filter bandwidth and Q are dependent upon the values of $R 4$ and R11 and the setting of potentiometer R5. For the component values employed in this project, filter bandwidth and Q can be adjusted over a range of 0.16 to 2 octaves at the $-3-\mathrm{dB}$ points. (The relationship between bandwidth at the $-3-\mathrm{dB}$ points and filter Q is given by the simple equation $B W-3 \mathrm{~dB}=1 / \mathrm{Q}$.)
To convert a state variable active bandpass filter into the desired all-pass circuit with adjustable boost and cut, a potentiometer ($R 7$) is connected between the inverting input and the output of unity-gain amplifier IC1A. The wiper of this potentiometer is connected to the input of differential amplifier IC1B. Signals appearing at the output of integrator IC1C, which are inverted with respect to those appearing at its input, are applied to the noninverting input of IC1A.

When the wiper of $R 7$ is at the $J 1$ extreme of its travel, the bandpassed signal adds to the input signal, boosting the amplitude of signals within the filter's passband. When the wiper is at the $J 2$ extreme of its travel, the bandpassed

 tenuating input signals within the passband of the active filter. Finally, when the wiper of $R 7$ is at the midpoint of its travel, the output of IC1A cancels out that portion of the input signal appearing at the wiper because the two signals are 180° out-of-phase. This means that no signals are routed to the bandpass filter, the filter generates no output, and has no effect on IC1A. The result is that inverting amplifier IC1A exhibits a flat frequency response.
There are two equalizer sections for each signal channel. (Only one section is shown in Fig. 1.) The center frequency of the low-band equalizer can be adjusted from 40 to 960 Hz , and that of the high-band equalizer from 500 to 16,000 Hz . Both the setting of the boost/cut potentiometer and the value of filter Q determine the amount of boost or cut introduced by each equalizer section. The maximum boost or cut is $\pm 20 \mathrm{~dB}$ at a filter bandwidth of 0.16 octave, and ± 12 dB at a bandwidth of 2 octaves. This interaction makes the Q control more convenient to use because parametric designs not incorporating it often require readjustment of equalizer gain after the filter Q has been changed.

The master schematic of the main Pa rametric Equalizer circuit is shown in Fig. 2. The most likely application for this project is in a stereo sound system, so the schematic describes a two-channel equalizer. All components pertaining to the right signal channel have part numbers not shown in parentheses. Those for the left channel, however, have part

Fig. 3. Schematic of power supply to use with an ac source. It is a conventional fullwave circuit giving plus and minus 15 volts to ground.

AC POWER SUPPLY PARTS LIST

$\mathrm{C} 1, \mathrm{C} 2-1000-\mu \mathrm{F}, 16$-volt electrolytic
D1 through D4-1N4001
F1-1/2-ampere fast-blow fuse
LEDI-Light-emitting diode
RI-1000-ohm, $1 / 4$-watt, 5% resistor
S 1-Spst switch
T1-20-volt, center-tapped stepdown trans-
numbers which are shown in parentheses. The rest of this discussion will refer only to the right signal channel but is equally applicable to the left.

Input signals are applied to jack J 1 , where R1 and R3 (which are effectively in parallel) provide a high-impedance load. Capacitor C1 blocks any dc level that might be accompanying the input signal. Buffering is accomplished by voltage follower IC1A which isolates the input from the rest of the circuit. Output signals from the voltage follower are then applied to two cascaded equalizer
former, secondary rating 100 mA (Signal Transformer No. ST-4-20 or equivalent) Misc.-Printed circuit board, pc standoffs, line cord, strain relief, hookup wire, solder, LED mounting collar, hardware, etc.
Note- Components C17, C18, C20, IC1, R72, R74 and R75 are mounted on the project's main printed circuit board and are included in the Main Parts List. See Fig. 1 for Parts Availability.
sections, each of which employs a TLO74CN quad BIFET operational amplifier IC.

Each section closely resembles the simplified schematic shown in Fig. 1. That employing IC3 is the high-band equalizer circuit. Its center frequency is adjustable by means of dual potentiometer R27 over a range of 500 to 16,000 Hz . Potentiometer R11 is the filter's 0 ADJUST control and potentiometer R15 (along with the Q of the filter) determine the amount of boost or cut introduced.

The second equalizer circuit (the one
(Continued on page 57)

Fig. 4. Use this circuit if a dc supply is to be employed. The IC voltage followers derive an artificial equalizer ground.

DC POWER SUPPLY PARTS LIST

C $1 . C 2-1000-\mu F, 16$-volt electrolytic F1-1/2-ampere fast-blow fuse LED1-Light-emitting diode R1—10-ohm, $1 / 4-$ W, 5% resistor R2- 1000 -ohm, $1 / 4-\mathrm{W}, 5 \%$ resistor S 1—spst switch

Misc.-Printed circuit board, pc standoffs, machine hardware, etc.
Note-Components C19, C20, IC1, R73, R74, and R75 are mounted on the project's main printed circuit board and are included in the Main Parts List. See Fig. I for Parts A vailability.

I've finally found a personal It's not surprising that professionals COIDIUTEE LesDect. get excited about the Compucolar II. It's COTCO with full color graphics display, built-in 51 K miniavailable in a personal computer.

The complete system is only $\$ 1595$.*And that price includes 8 K user RAM, RS-232C compatibilitv and random access file capabilities.

Our 8 foreground and backg-ound colors will boost your comprehension, while in=roducing jou to an exciting new dimension in BASIC programming. The vecior graphics have 16,484 ndividually-accessibe plot blocks. And the 13" diagonal measu=e screen gives ycu 32 lines of 64 ASCII charazters. You also have the flexibility that comes witt 16K Extended Disk BASIC ROM.

Compucolor II offers a number of other options and accessories, like a second cisk drive and ex วanded keyboard, as well as expandability to 32 K of user RAM. Of coarse we al so have a whole library of low-cost Sof-Disk ${ }^{\mathrm{ma}}$ programs, including an assembler and text editor.

Visit your nearest computer store for details. And while vou're there, do some compa-ison testing. With all due respect to the others. once you see it, you'll be sold on the Compucolot II.

"If you're going tolearn electronics, you might as well learn it right""

You've probably seen advertisements from other electronics schools. Maybe you think they're all the same. They're not:

CIE is the largest independent home study school in the world that specializes exclinsively in electronies.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one ... with the specialists... with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for the ir training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma show's employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it .

Ourstep-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\oplus}$ Lessions teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a 19 -inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at the ir own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the governmentadministe red exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work ... to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Miail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screcns are simulated.
$\square \frac{\text { Cleveland Institute of Electronics, Inc. }}{1776}$ 1776 East 17th Street, Cleveland, Oho 44114 Accredited Member National Home Study Council

YES . . . I want the best of everything! Send me me FREE (IE school
catalog-including details about troubleshooting course's - plus my FREE package
of home study information.

PE-97
Print Name
Address_ Apt.
City \qquad
Statc______ Zip
Age Phonc (area code)
Check box for (i.I. Bill information: \square Veteran \square Active Duty
MAIL TDDAY:

A Popular Electronics Audio Deater Profile

"Since I've been reading Popular Electronics, my knowledge of audio has, grown. And so has

 my business.""Everything's changed since we opened our doors in the mid-1960)s. And it continues to change," Sy Denby says. "Which means that to grow in this business, a dealer has to keep learning. The minute he stops, he might as well retire."
For years, one of Sy's prime sources of audio knowledge has been Popular Electronics.

"A special kind of audio expertise..."

That's the way Sy describes PE's audio coverage."The columns and articles give me an uncomplicated grasp of how certain technologies work electronically," he adds. "And they help me anticipate upcoming product developments."

"The editors know this business from both sides of the counter..."

Editors like Art Salsberg, John McVeigh, Ralph Hodges and Julian Hirsch. Men who understand the needs and interests of both dealers and buyers.

And now that Hal Rodgers is the magazine's new Senior Editor, Sy is looking forward to even greater audio coverage. "Hal's one of the best. He'll make a good magazine even better:'

Every month, Sy Denby and audio dealers throughout the country read Popular Electronics ...along with $411,0000^{*}$ audio
enthusiasts. An untapped market of electronics activists who depend on PE for published audio information. You just can't duplicate it.

Popular Electronics

The sound investment for audio marketers.
Ziff-Davis Publishing Cumpany
()ne Park Avenue. New York. N.Y. 10016
*Prinury readers
1954/979 Popular Electronics

employing IC2) is the low-band unit. Dual potentiometer R59 allows adjustment of its center frequency over a range of 40 to 960 Hz . The filter's Q is adjusted by varying the selting of potentiometer R43. Signals within the filter passband can be boosled or cut by means of potentiometer R47.
Output signals from $/ C 2 D$ are coupled to output jack J3 via C15 and R69. The electrolytic capacitor blocks any dc offset appearing at the output of the operational amplifier and the resistor provides decoupling. Signals can be routed from the output jack back to the tape monitor loop of a preamplifier or receiver, if that is where drive signals were taken, or to the input of the power amplifier if drive is obtained from the preamplifier output.

Power supply details are omitted from the main schematic for simplicity's sake, but each IC's power supply pins are denoted. The Parametric Equalizer can be powered by either the ac line or a 13.8volt dc automotive electrical system. Schematic diagrams of the ac and dc supplies are shown in Figs. 3 and 4, respectively. The ac supply is a conventional full-wave circuit employing a $20-$ volt, center-tapped transformer. Diodes D1 through $D 4$ rectify the low-voltage ac into bipolar, pulsating dc which is filtered by C1 and C2. Light-emitting diode LED1 functions as a pilot light. All components except for decoupling resistors and capacitors R71, R72, C17 and C18 are mounted on a separate power supply circuit board. The output of the supply is ± 15 volts dc.
The dc supply employs voltage divider R74R75 and voltage followers IC1C and IC1D to derive an artificial equalizer ground at one-half the full voltage delivered by the electrical system powering the circuit. Note, however, that the voltage divider should be connected to the noninverting inputs of the voltage followers even if the ac supply is used to power the circuit. This is done to prevent unwanted oscillation. The outputs of the followers are left uncommitted when the ac power supply is employed.

Light-emitting diode LED1 acts as a pilot light, and electrolytic capacitors C1 and $C 2$ filter any noise present on the dc line. Note that decoupling components R73 and C19 as well as the "equalizer ground" deriving circuit are located on the main printed circuit board.

In the dc-powered equalizer, the negative supply voltage pins of the quad operational amplifier IC's are connected to the vehicle and sound system ground (shown in the schematics as "earth

Fig. 5. Actual-size etching and drilling guide for the main printed circuit board.

Fig. 6. Use this hoard for an ac power supply.

Fig. 7. If a dc supply is available, use this board.

Audio Project

ground" symbols). The artificial grounds derived by IC1C and IC1D are shown as conventional "chassis ground" symbols. Note that the grounds within the equalizer sections (for example, the noninverting inputs of the op amp integrators) are artificial grounds above vehicle and system ground.

Capacitive coupling between the input jack and the op amp input buffer and between the oulput of the high-band equalizer and output jack prevents dc offsets both internal and external to the equalizer from having a deleterious effect on the performance of the entire system. It is because of the dc offsets present in the dc-powered equalizer that the "hot" sides of the input and output jacks are returned to system ground but the signal

Fig. 9. Component placement for the ac power supply.

Fig. 10. Component placement for the dc power supply.

Fig. 8. Component placement for the main pc board for the equalizer.
Note vacant pads near upper left to make connections to power supplies.

Creative Computing can help you select the best computer and get the most out of it.

With so many new personal computers being announced and the prices coming down so rapidly, isn't the best bet to wait a year or so to buy a system?

We think not. A pundit once observed that there are three kinds of people in the world: 1) those who make things happen, 2) those who watch things happen and 3) those who wonder what happened. Today, it is those who are getting involved with microcomputers who are making things happen by learning to use computers effectively.

Furthermore, it is not likely that we will see the same dramatic price declines in future years that have already taken place. Rather, one will be able to get more capability for the same price.

The TI-99/4 has excellent color graphics and costs $\$ 1150$ including color TV moniter.

Which system is for you?

No two people have exactly the same needs. You'll have to determine what capabilities are important to you. Key variables include:

- Upper and lower case. Obviously vital if you are planning to do word processing or anything with text output.
- Graphics. Most systems have graphics but the resolution varies widely. How much do you really need?
- Color. Some systems are B\&W, some have 4 colors, others up to 256 colors. Many colors sounds nice, but do you really need 4 , or 16 , or more?
- Mass storage. The smaller systems are cassette based; larger systems offer floppy disks or even hard disks. What size data bases do you intend to use and is it important to have high-speed random access to an entire data base?
- Languages. Basic is standard but increasingly Pascal, Fortran, Cobol and special purpose languages are being offered.
- Audio, Speech, Music. Are these features important for your planned applications?
- Applications Software. Third party software is widely available for some systems, non-existent for others. Do you need this, or can you write your own?

Unbiased, in-depth evaluations.

At Creative Computing, we obtain new systems as soon as they are announced. We put them through their paces in our Software Center and also in the environment for which they are intended home, business, or school. We published the first in-depth evaluations of the Texas Instruments 99/4, Atari 800, TRS-80, Ohio Scientific Challenger, Exidy Sorcerer, Apple II disk system and Heath H-8. We intend to continue this type of coverage, not only of systems, but peripherals and software as well.

Sorting: A Key Technique

While evaluations are important, the main focus of Creative Computing magazine is computer applications of all kinds. Many of these require that data be retrieved or sorted. Unfortunately, most programming texts focus on the bubble sort (or straight insertion) and, very infrequently, another technique (usually delayed replacement) and let it go at that.

Yet, except for comparison counting, the bubble sort is the least efficient. Tutorials and articles in Creative Computing demonstrate that the Shell-Metzner and Heapsort are from 50 to 13,000 times as fast as the bubble sort! Consider a sort of 100,000 items on a DEC System 10 :

Bubble sort	7.1 days
Delayed replacement	3.8 days
Heapsort	17.3 minutes

Shell-Metzner
17.3 minutes
15.0 minutes Needless to say, on a microcomputer, a bubble sort of even 1000 items is agonizingly long.

Free Sorting and Shuffling Reprint

Because sorting and shuffling (mixing a list of items) is so vital in most programming, we are making available a 20-page reprint booklet on Sorting, Shuffling and File Structures along with our May 1979 issue which has several articles on writing user-oriented programs and making the most of available memory space. The reprint booklet and issue are free with 12-issue or longer subscriptions.

At Creative Computing, we believe that computers can be of benefit to virtually every intelligent person in the

Free reprint booklet and issue with a new subscription to Creative Computing.

Contributing editor Ted NeIson (L) is author of "Computer Lib/Dream Machines." Publisher David Ahl (R) is a pioneer in computer models, simulations and games.
country. We do not believe that the "Computer priesthood" should confuse and bully the public. As Ted Nelson stated in the Computer Lib Pledge, we do not treat any question as a dumb question, since there is no such thing. We are against computer terms or systems that are oppressive, insulting or unkind, and we are doing the best we can to improve or replace such terminology or systems. We are committed to doing all we can to further human understanding and make computers easy to understand, interactive wherever possible, and fun for the user. The complete Computer Lib Pledge is contained in our May 1979 issue which we are furnishing free to new subscribers.

Computer literacy to everyone

The Creative Computing Software Division is participating with Children's Television Workshop in an important new venture, Sesame Place. These theme parks are being designed to bring interactive computer games and simulations to young children (and their parents) and remove the mystique of computers from the youngest segment of our population. In addition, we are participating in projects with several school systems and museums to write reading comprehension and ecology simulations software. We are also involved in a major collegelevel computer literacy project.

As a subscriber to Creative Computing, you will benefit from all of these activities. Creative Computing is the Number 1 software and applications magazine. Subscribe today - 12 issues for $\$ 15$ ($\$ 9$ saving over the newsstand price). Or, beat inflation and get 36 issues for just $\$ 40$. Money back if you're not satisfied. Send payment or Visa, Master Charge or American Express number to:

Creative Computing, Attn: Peggy
P.O. Box 789-M

Morristown, NJ 07960
Save time, and call your order toll-free to: 800-631-8112
(In NJ call 201-540-0445)
creative computind
paths within each equalizer circuit are referenced to the artificial grounds. In the ac-powered equalizer, however, the bipolar dc voltages furnished by the power supply obviate the need for separate system and equalizer grounds. The two are shown connected together in the schematic of Fig. 3.

Results of tests on the prototype performed by the author at his own lab are shown in the box. You will note that all performance specifications but one are identical for both the dc and ac versions of the Parametric Equalizer. The one area in which the two differ is in the maximum voltage swing that can be generated at the output jack. The reason for this is that in the ac-powered equalizer the potential difference between the $\mathrm{V}+$ and V - supply rails is 30 volts, but the potential difference between the supply rails in the dc-powered equalizer is less than half of this value if the dc power source delivers 13.8 volts. However, even in this situation there exists substantial headroom-most (if not all!) autosound power amplifiers require far less drive than 13.8 volts peak-to-peak to develop their maximum levels of output power. Greater output voltage swings can be obtained by increasing the voltage provided by the dc source. The circuit as shown can be used with supplies from +12 to +30 volts.

Construction. The use of printed circuit assembly techniques is recommended. Full-size etching and drilling guides for the main, ac power supply, and dc power supply circuit boards are shown in Figs. 5, 6, and 7, respectively. The corresponding parts placement guides are shown in Figs. 8, 9 and 10.

Mount all components on the circuit boards as shown in the parts placement guides. Begin by installing the jumpers on the main pc board. Then install the fixed resistors and nonpolarized capacitors. Taking care to observe polarities and pin basings, mount the electrolytic capacitors and semiconductors. The use of IC sockets or Molex Soldercons will facilitate replacement of ICs should that become necessary. Interconnection between the main board and the phono jacks and potentiometers can be made using flexible hookup wire. If desired, signal paths between the board and the jacks can be made with shielded cable.

Fig. 11. Special wiring of the main pe board for use with an ac power supply.

This will not be necessary, however, if the project is housed in a grounded metallic enclosure. Special wiring of the main board for ac-powered operation is shown in Fig. 11. Wiring details for dc operation are shown in Fig. 12.

Assemble either the dc or ac power supply to fit the intended application of your Parametric Equalizer. Observe the polarities of electrolytic capacitors and diodes, including the LED pilot light. Fuse F1 mounts directly on the board and should be soidered to it using pigtail leads. The author designed the power supply boards to accommodate a special push-on/push-off power switch, but any panel-mount switch can be used.
When assembling the circuit boards, be sure to use the minimum amount of heat and solder consistent with the formation of good solder connections. Scrutinize your work after the boards have been completed, paying close attention to polarities, pin basings, power supply wiring and interconnection be-

tween the two circuit boards. Make sure that no solder bridges have been created inadvertently.

When all wiring has been completed, mount the circuit boards, jacks and controls in a shielded enclosure. A photograph of the author's ac-powered prototype is shown in Fig. 13. Route power leads out of the enclosure using a protective strain relief. Connect the power leads to a suitable source. Using shielded patch cords, route line-level signals from the tape monitor output of your preamplifier or receiver (or from the preamplifier output) to input jacks $J 1$ and J2. Similarly, patch signals from output jacks J3 and J4 back to the tape monitor loop or to the input of the power amplifier. The project is now ready for use.

Using the Parametric Equalizer.

Because this project is so flexible, there is no one "correct" way to use it. Its variable Q and center frequency allow the user to boost or attenuate a select group of frequencies. A high Q restricts the boost or cut introduced to a narrow part of the spectrum (less than one octave). A low Q causes broader changes to be introduced.

Adding some sharp boost at the very low and high ends of the audio spectrum allows the user to compensate for speaker rolloff. A broad dip inserted at the midband makes possible the simulation of a loudness contour to enhance low-level listening. The Parametric Equalizer is also adept at compensating for unwanted room resonances. A high- Q cut can reduce audio output at the resonant frequency with little effect on nearby frequencies.

The usual technique for coping with room resonances is as follows. Drive the system with a wideband audio signal

Fig. 12. Special wiring of the main pc board for use with a dc power supply. Note two jumpers on ICl at right.
and boost the bass region using the Parametric. Using a high Q selting, vary the center frequency of the low-band equalizer until you discover the room's fundamental resonant frequency. (That's the one at which the walls start shaking and the furniture moves around the floor.) Now reduce the setting of the BOOST/CUT control for more evensounding bass. The high-band equalizer can be used to brighten up a room that is too "dead" acoustically or to attenuate treble response in a room that is too "alive."
You will undoubtedly find other uses for this versatile project. Those who listen to music analytically will appreciate the ability to zero in on one particular instrumental (or human) voice. Amateur recording engineers can employ the Pa rametric to tailor the sounds of a mix. And, of course, anyone whose speakers have response irregularities will be able to smooth them out.
One word of caution-don't blindly apply large amounts of deep bass and extreme treble boost in an attempt to flatten the response of your system at the upper and lower limits of the audible spectrum. Experience has shown that

Fig. 13. Interior view of prototype using ac power supply.
room/system combinations are best equalized by first employing acoustic methods, followed by electronic equalization. For example, you should first try repositioning the loudspeakers, modifying the absorption coefficients of the room, and adjusting the speakers crossover level controls (if any)

Most often, a lack of deep bass and extreme highs is due to the limitations of dynamic drivers. Don't try to force flat response out of your speakers by cranking up the bооst/cut controls. The results of such attempts frequently include overloaded amplifiers, excessive distortion, and blown voice coils. Remem-
ber-equalization should be introduced intelligently.

In Conclusion. We have presented a stereo Parametric Equalizer project that is well suited for home, mobile, and portable applications. It provides a high level of performance and the flexibility of control inherent in the parametric design, enough flexibility for most readers. Those who require more bands of equalization per channel can reproduce two or more complete equalizers and connect them in cascade for even greater control over the sounds they record or reproduce

TUNETGLOW
Timegiow Compeny Lted. - A company exclusively devoted to electronic time "movements" Our prices are LOWEST because we specialle in time systems. Al merchandisa 100\% guarantoed.

or 8115

AREAL-TIME octave spectrum analyzer is an invaluable audio test instrument for anyone who wishes to adjust an equalizer to compensate for room or system deficiencies, evaluate and compare loudspeakers, test a hi-fi system's response, and perform other types of acoustic analyses.
Usually, such a device is very expensive. The analyzer described here, however, can be built at reasonable cost, is simple to operate, and when powered by its internal battery, can be hand-held while in use.

The instrument passes the audio output of its internal microphone capsule through 10 octave-spaced bandpass filters and displays the levels in the various bands on a 10×7 LED matrix. Decay time of the display can be short, long, or indefinite, depending on the setting of a switch. In addition, the $31-\mathrm{Hz}$ channel can be switched to read out the average level of the total audio signal, allowing the analyzer to be used as a sound-level meter.

Circuit Operation. As shown in Fig. 1, the audio input at $J 1$ is fed to a buffer in IC1A. The gain (11.8) of this stage is set by the ratio of R5 +R6 to R5. After amplification, the signal forms the common audio input to 10 two-pole bandpass filters as shown in Fig. 2. The center frequencies of the filters were chosen to match the ISO standards for 10-band octave equalizers, making the analyzer as useful as possible in consumer applications. Center frequencies are $31.25,62.5,125,250,500,1000$, $2000,4000,8000$, and $16,000 \mathrm{~Hz}$. To produce at least a $15-\mathrm{dB}$ attenuation of adjacent octave center frequencies, a Q of 3.75 was chosen. This produces a clean display while retaining the excellent selectivity for measurement accuracy. The gain of each filter is -2.86 or about 9 dB .

The bandpass output of the filter is rectified (half-wave) by a diode (Fig. 2) and averaged by $R_{F}, C_{C}, R 63, R 64$, and R65 (Fig. 3). The average network is peak-weighted with the attack characteristics determined by R_{F} and C_{C}. The specific value of the attack time constant varies between the filters according to the bandpass center frequency and the values of the audio energy present in that region. The decay time constants are selected by S2B (Fig. 3). The FAST

BY JOHN PFEIFFER and WILLIAM EPPLER

Real-time octave spectrum analyzer
features ten
bands for
performing a variety of useful audio
tests and
adjustments

\qquad

Fil| It U can do for your car, premium tape can do for your car stereo.

And there's no finer premium tape than Maxell.

Every type of Maxell tape is designed to give you the widest frequency response, the highest possible signal-to-noise ratio and virtually no distortion. All of
with pre
And to make sure our cassettes don't run out of gas somewhere down the road, we've constructed them to tolerances as much as 60% higher thar industry standards. We use the finest high-impact styrene, precision pins, polyester and screws.

Because of this, we believe Maxell makes the world's finest cassettes.

And every year, hundreds of thousands of people who own car stereos are driven to the same conclusion.

Maxe|| |||||||||||||||||

B1-.8 AA cells
C1.C16.C19.C22.C25.C28.C31.C36-1- $\mu \mathrm{F}$, $16-\mathrm{V}$ low-leakage radial-lead electrolytic
C2.C3.C5.C6.C9.C12.C14.C15-0.05- μ F. $100-\mathrm{V} 5 \%$ Mylar
C4-3.3- $\mu \mathrm{F}$, $16-\mathrm{V}$ low-leakage radial-lead electrolytic
C7.C10.C13-2.2- μ F. 16-V low-leakage, ra-dial-lead electrolytic
C8.C11-0.047- $\mu \mathrm{F}$. 100-V 5\% Mylar
C17.C20.C21-0.01- $\mu \mathrm{F}, 100-\mathrm{V} 5 \% \mathrm{Mylar}$
C18-0.0. $033-\mu \mathrm{F} .100-\mathrm{V} 5 \%$ Mylar
C23-0.0.0047- $\mu \mathrm{F}, 100-\mathrm{V} 5 \%$ Mylar
C24-0.0033- $\mu \mathrm{F}, 100-\mathrm{V} 5 \%$ Mylar
C26.C27-0.0022- $\mu \mathrm{F} .100-\mathrm{V} 5 \%$ Mylar
C29.C30.C34-0.001- $\mu \mathrm{F} .100-\mathrm{V} 5 \%$ Mylar
C32.C33-33- $\mu \mathrm{F}, 6-\mathrm{V}$ radial-lead electrolytic
C35- $33-\mu \mathrm{F}, 16-\mathrm{V}$ radial-lead electrolytic
D1 through D10-1N4148
DISPI,DISP2-5 x 7 LED matrix (IEE Type
LRT1057R) or 70 subminiature red LEDs.
IC 1.IC2.IC3-LM324 quad op amp
IC4-LM3915 LED display driver (National) IC5—CD4017AE CMOS counter
IC6,IC7,IC8-CD4016AE CMOS quad analog switch
JI-Miniature phone jack (Radio Shack \#274-296)
J2-Subminiature phone jack (Radio Shack \#274-292)
LED I-Subminiature red light emitting diode
MIC-Electret condenser microphone element (Radio Shack \#270-092).
Q1 through Q11-2N3904 or equivalent
Unless otherwise noted, the following are 1/4-W, 5\% resistors:
RI.R6.R7.R68,R83-130.000 ohms
R2— 50,000 -ohm audio-taper miniature thumbwheel potentiometer
R3.R47- 1500 ohms
R4.R16.R19.R63.R66-390.000 ohms
R5.R51-12.000 ohms
R8- 15.000 ohms
R9.R12-750,000 ohms
R10,R11, R17,R18.R23, R24.R27, R29,
R30.R34, R 35, R 39, R40, R44.R49, R54.
R59-2000 ohms
R13.R37.R45,R50,R84.R85-1000 ohms
R14,R53-68,000 ohms
R15-7500 ohms
R20-36.000 ohms
R21-3900 ohms
R22.R25-200.000 ohms
R26-18,000 ohms
R28-100,000 ohms
mode is useful for displaying the spectrum of speech, music, and other rapidly varying signals. sLow is used for measuring noise and frequency response. HOLD removes the input signal and defeats the decay network to hold any display condition for several seconds, so the user can record data, change measurement position, etc.

To save cost and space, the LED display matrix and display driver IC4 are multiplexed among the 10 bandpass filters as shown in Fig. 3. The outputs of IC5, a CMOS decade counter, are normally low and go high only at their respective decoded time slots and remain

R31-8200 ohms
R32-910 ohms
R33.R64-47.000 ohms
R36,R67,R69.R86-20,000) ohms
R38.R48.R58-75.000 ohms
R41.R46-11.000 ohms
R42.R52.R57-1200 ohms
R43-62,000 ohms
R55,R82-750 ohms
R.56.R×7.R88-13.000 ohms

R60.R62.R80-330 ohms

R6) - 160 ohmms
R65-620.00)(0) ohms
R70 through R79-180 ohms
R81-56 ohms
SI.S2-Double-pole, iriple-throw toggle switch
Mise -Suitable enclosure, hardware, hookup wire. hattery box (2) (Radio Shach 270-391), double-sided foam tape, external power source $(8-15 \mathrm{~V}$ de at 100 mA) etc
Note: The following are available from Gold

Line Inc., P O. Box 20, Redding, CT 06875 (203-938-2588): Complete Model ASA-10 kit including microphone, battery box, and custom-molded case for $\$ 139$. Also available separately: kit of parts excluding battery box, microphone, and case for $\$ 109$; set of etched and drilled circuit boards for $\$ 18$; case and microphone for \$30; pc bsards. LED displays. and LM3915 for $\$ 35$. Connecticut residents add state sales tax.
high for one full clock period. This sequentially enables the LED matrix columns through buffers Q1 through Q10.

Two transmission gates in IC8 make up the counter clock, as shown in Fig. 3. For the values given, the oscillator frequency is approximately $3000 \mathrm{~Hz}(0.33$ ms period). This frequency is not critical. Since the oscillator has active pulldown, the rise time is slow. Therefore, counter IC5 must be toggled on the falling edge of the clock. This is accomplished by connecting the normal clock input at pin 14 to high and toggling clock-enable input pin 13.

Decoded outputs from IC5 multiplex
the bandpass filter average networks to the input of the IC4 display drive through CMOS transmission gates located at the output of each filter network (Fig. 2). Since the decay network consisting of R63 through R65 is connected to any particular averaging capacitor $\left(C_{C}\right)$ for one-tenth of the time and that interval is much smaller than the time constant of $R 64 C_{C}$, the effective decay resistance is 10 times greater than the actual circuit value.
In the hold mode, the reflected input impedance of $I C 4$ is also 10 times greater, producing an almost negligible drift as a sample-and-hold circuit. By far, the
dominant factor in the hold mode is the leakage of the averaging capacitors. The decay rate in the $500-\mathrm{Hz}$ channel, for example, in the FAST mode is $0.87 /$ (R64 $\times 1 \mu \mathrm{~F}$) or about $18 \mathrm{~dB} /$ second. In the slow position, the rate is $0.87 /[(R 63$ $+R 64) \times 1 \mu \mathrm{~F}$ or about $2 \mathrm{~dB} /$ second.
Integrated circuit IC4 is designed to sense analog voltage levels at its input and provide up to 10 individual currentregulated outputs. This allows direct LED interface for a logarithmic analog display with $3-\mathrm{dB} /$ segment scaling. The IC contains its own adjustable reference and accurate 10 -step voltage divider. Because of excellent on-chip matching,

Audio Project

display nonlinearity can be held to less than 1%. A single control-pin changes the display from dot to bar-graph.

In this analyzer, the dot mode was selected to minimize current requirements and provide a pleasing display. Only

Fig. 4. Use power from internal batteries or external dc source.
seven of the available LED outputs are used, due to display matrix size. A clipping indicator LED is wired to IC4 at pin 10 to indicate an overrange condition. Resistors R70 through $R 79$ reduce power dissipation in IC4.

Average current in each LED is 4 mA , and bias voltages remain constant for any supply potential between 8 and 15 volts dc. Step size also remains fixed so that calibration and LED brightness are independent of battery condition. The power source circuit for the analyzer is shown in Fig. 4.
Although IC4 has a 3-dB/step scale factor, the voltage drop across the signal rectifier diodes (D1 through D10) varies in a roughly logarithmic fashion with signal amplitude. This modifies the relationship of display increment to input level. Bias voltages and diode current have been set to make display increments of $2.5 \mathrm{~dB} / \mathrm{step}$.

In addition to controlling power to the

unit, S1, when set to BROADBAND, changes the function of the left-most display column from $31-\mathrm{Hz}$ bandpass to peak-weighted broadband. This is useful for noise measurements and level display, but note should be taken of the $9-\mathrm{dB}$ gain of the spectrum display relative to the broadband channel.

When EXT input jack $J 1$ is not used, a calibrated microphone is automatically connected to the input buffer (Fig. 1). The microphone preamplifier has a gain of 131. Transistor Q11 increases the gain/bandwidth product of the preamp.

Photo of prototype shows how board with two display assemblies is mounted over the main board and held in piace by the 19 interconnecting wires.

(A)

Fig. 5. Typical scope traces for syne output (A) and composite signal (B).

SPECIFICATIONS

Extermal input

Impedance: 33,000 ohms
Gain to broadband display:
11.8 (21 dB) max
$0.34(-9 \mathrm{~dB}) \mathrm{min}$.
Input for clipping display:
Broadband: 150 mV min. 3.8 V max.

Spectrum: 57 mV min.
$1.4 \vee$ max.

Microphone input
Impeda, ce: 20,000 ohms
Gain: 131 (42 dB)
Display
Step increment: $2.5 \mathrm{~dB} \pm 1 / 2 \mathrm{~dB}$
Altack time/averaging window: 0.33 ms to 6.6 ms *

Decay time (500 Hz channel): Fast: $18 \mathrm{~dB} / \mathrm{s}$
Slow: $2.2 \mathrm{~dB} / \mathrm{s}$
Hold: $10 \mathrm{mV} / \mathrm{s}$

Scope Outputs
Sync impedance: CMOS
Composite impedance: High (use 10X probe)

Power Supply
Voltage. 8 to 15 V dc unregulated
Current: 80 mA max.
*Depending on center frequency

Fig. 6. Actual-size etching and drilling guide (abone)
and component lagout for the main board of the analyzer

An alternate display is provided by a scope signal as shown in Fig. 2. Connect the sync lead to the sync input of the scope and the signal lead to the scope's vertical input. The scope should be triggered on by the positive edge of the sync signal, and the sweep timebase should be adjusted for exactly 10 divisions between trigger edges. The resulting display will have a linear scale rather than the log scale of the LED display. A typical CRT display is shown in Fig. 5.

Construction. Owing to many components and high packing density, the use of printed circuit boards is essential. Etching and drilling guides and compoSEPTEMBER 1979
nent installation layouts for the main and display boards are shown in Figs. 6 and 7. respectively

Proper orientation of diodes, ICs and polarized capacitors is critical. Also, use 5% tolerance polyester capacitors in the filters to insure accurate center frequen$c y$, gain, and Q. As discussed before, proper operation of the HOLD mode depends on the use of capacitors with very low leakage in the bandpass averaging networks. The use of tantalum or lowleakage aluminum electrolytics is urged.

Since the display board is to be mounted very close to the components at the top of the main board, IC sockets cannot be used for IC4 through IC8.

Transistors Q1 through Q10 must be mounted with as little clearance as possible between the bottoms of their cases and the top of the main pc board

Potentiometer R2 should be mounted on $3 / 16^{\prime \prime}$ spacers with $2-56$ small-pattern hardware. The outer terminals of the potentiometer can be connected directly to the board with bare wire. The center lug then connects as indicated in Fig. 6 with a $2^{\prime \prime}$ insulated wire.
When assembling the display board, solder the displays directly to the board, noting proper orientation. Solder the clipping indicator LED so that it is flush with the top of the displays.

Once the two board assemblies are

Fig.7. Actual-size
foil patterns for the
double-sided
display board.
Pattern at left
is for solder side.
Above is side on
which components
are mounted.
wired, they must be interconnected. To do this, insert $1 / 2^{\prime \prime}$ long bare wires through the holes along the top of the display board and solder. Carefully align the wires with the matching holes in the main board. Solder the 19 interconnects allowing $1 / 4^{\prime \prime}$ space between the two boards

When the project is completely assembled, turn on the power and aim the microphone at a music source. Adjust the level control until a display is obtained. An immediate correlation should be apparent between the sounds you hear or produce and the visual display.

If an audio oscillator is available, connect it through J 1 to the analyzer. Every performance aspect can now be checked by setting the oscillator frequency to the various filter center frequencies and changing amplitude.

LEDs of any size or color can be wired according to the schematic. This allows creating a display of nearly any size, shape or color to fit individual requirements. This option may be particularly applicable in rack-mounting.

OPTOELECTRONIC SEMICONDUCTORS: 28-PAGE CHOOSE 8. USE GUIDE

- Describes highly diverse line of optoelectronic devices.
- Gives data on 77 different visible lightemitting diodes, alphanumeric light-emitting diode displays, infrared emitters, photo transistors. opto-isolators . . . plus mounting hardware.
- Includes electrical \& mechanical specifications plus characteristic curves.
- Provides handy cross-reference (other makes to Sprague Products).
Write for your copy
of Guide C-710 to Sprague Products
Co., 395 Marshall St., North Adams, Mass. 01247.

A MONOSTABLE CAALOG for Experimenters
 A guide to today's IC monostable multivibrators emphasizes their usefulness in practical applications

MONOSTABLE multivibrators, sometimes called "one-shots," are electronic circuits that, when triggered, deliver an output pulse of a predetermined width.

Although today's IC monostables still provide the one-shot function, their usefulness has been greatly extended. These modern devices feature multiple inputs with both positive- and negativeedge triggering, complementary outputs, retriggerability and resetability. They are also very easy to use, lower in cost, and available in conventional and low-power TTL and CMOS.

The key features of a number of popular monostables are summarized in the "Catalog." The information is sufficient to enable using the mono without recourse to a data sheet. Summaries of the 555 and 558/559 timers (which can function as a one-shot) are included separately in Figs. 3 and 5.

Triggering. All of the monos in the cat-
alog will trigger from a high-to-low or from a low-to-high transition. For triggering to actually occur on the transition, all inputs must conform to defined logic states. These states are shown in the "Input Table" for each device.

The logic tables in the manufacturers data sheets include inhibit as well as trigger conditions. Only trigger conditions are shown in the Catalog. Any other state is an inhibit.

Each line of the table defines a trigger mode for a "one-shot" output. "A" and " B " designators are used in the Input Tables. Several monos have multiple A and/or B inputs though not all manufacturers use this notation. An " A " input is defined as a high-to-low transition (shown as a down arrow), while a " B " input is defined as a low-to-high transition (shown as an up arrow). The CMOS 4098B/4528/14528 are exceptionsthe A and B transitions being reversed.

The A and B inputs have a defined logical relationship to each other, but
these are not consistent between devices. You should go by the Input Table for the mono being used. Triggering occurs at a voltage level independent of the transition time, while rise and fall times are consistent with the type of logic family.

The 74121 and the 74LS221 feature Schmitt circuitry at their B input. They trigger with a 1 -volt/s rise time, and provide 1.2 volts of noise immunity.
All of the monos shown provide complementary outputs. The Q output is normally low and goes high for the pulse duration. The not-Q output is normally high and goes low. Pulse width is identical for both outputs.
The minimum pulse widths and delay times listed are subject to some conditions. They are included to provide a generalized picture of limiting conditions. If nanosecond timing is critical to your application, consult the manufacturer's data sheet.
(Continued on page 74)

Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

electronics of the future.

systems and more...from in home study.

and every piece of equipment included
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles. Calif. 90037

NATIONAL TECHNICAL SCHOOLS Dept. 205-099 4000 South Figueroa Street, Los Ar,geles, California 90037
Please send FREE Color Catalog and Sample Lesson.
\square Color TV Servicing
B\&WTV and Radio Servicing
\square FCC License Course
\square Electronic Communications
\square Electronics Technology
\square Audio Electronics Servicing
\square Digital Electronics
\square MicroComputers/MicroProcessors
\square Name
Address
Apartment Number Age
City
State \qquad
State ... Zip
\square Check it interested in G.I. Bill information.
\square Check if interested ONLY in classroom training in Los Angeles.

Pulse Timing. A typical timing equation has the form $\mathrm{tw}=\mathrm{kRC}$ where tw is the pulse width in nanoseconds, k is a constant, R is the timing resistance in kilohms, and C is the timing capacitance in picofarads.
For example, the pulse width for the 74121 is given as $\mathrm{tw}=.693 R C$. Assume that R is 10,000 ohms, and C is 100 pF . Then the equation is $\mathrm{tw}=.693(10)(100)$ $=693 \mathrm{~ns}$ or $.693 \mu \mathrm{~s}$.

Retriggering. Some monos are retriggerable. That is, if a second trigger arrives while the output is still high from the first pulse, the output will respond to the latest trigger and remain high. The extension is for one complete cycle and a train of input triggers will result in a sustained output pulse that will have a very long duration.
Retriggering may be accomplished from either the A or B inputs, simply or intermixed. This makes for some intriguing timing possibilities.

However, there is a time restriction on retriggering some monos. As shown in the Catalog, the required delay is the number in parenthesis following "re-triggerable." Thus, the 74123 cannot be retriggered before 0.22 ns after the previous input.

Retriggering is useful when you want it, but on the other hand, what do you do if you don't want it? Suppose, for example, you are using a 74123 dual mono because you need retrigger for one circuit, but you cannot live with it in the other. In this case, connect the B input to the not-Q output and trigger with the A input (or vice versa). When the mono triggers, B is pulled low thus inhibiting further triggering until the circuit times out. Be sure, however, that the A input(s) are in the inhibit mode at the time out, or you will have an oscillator instead of a mono.

Reset. Some monos, but not all, provide for reset. This is implemented by applying a reset pulse to the CR (clear) input. The leading edge of this pulse resets the outputs to the initial state, and another trigger is required to obtain an output.

If the CR input is held in the reset state, the mono is inhibited and will not respond to an input trigger. This feature adds flexibility to the controlling logic for the mono.
R and C Limits. All monos have upper and lower limits for the range of resistance (R), while some have limits on

MONOSTABLE CATALOG-1

9600 SINGLE TTL

9601 SINGLE TTL

9602 DUAL TTL

FEATURES RETRIGGERABLE (0.3Cns) RESET ON LOW TO "CR" $t_{\mathrm{min}}=72 \mathrm{~ns}$ $t_{p d}=25 \mathrm{~ns}$
LIMITS ON R:
$5 k \leqslant R \leqslant 50 k$
$\left(0 \leqslant T^{\circ} C \leqslant 75\right)$
LIMITS ON C:
NONE

MONOSTABLE CATALOG-2

74121 SINGLE TTL

$\mathrm{t}_{\mathrm{w}}=0.693 \mathrm{RC}$
TO USE THE INTERNAL TIMING RESISTOR, CONNECT PIN 9 TO $V_{c c}$ FOR C $=0, t_{w}=30 \mathrm{~ns}$.

FEATURES
NOT RETRIGGERABLE
NOT RESETTABLE
"B" IS A SCHMITT INPUT
$t_{\text {min }}=30$ ns
$\mathrm{t}_{\mathrm{pd}}=45$ ns
$R_{\text {int }}=12 \mathrm{k} \Omega$
LIMITS ON R:
$1.4 k \leqslant R \leqslant 40 k$
$\left(0 \leqslant \mathrm{~T}^{\circ} \mathrm{C} \leqslant 70\right)$
LIMIT ON C:
$0 \leqslant C \leqslant 1000 \mu \mathrm{~F}$

INPUT TABLE				
A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	
0	X	1	1	
0	X	1	\uparrow	
X	0	1	1	
X	0	1	\uparrow	
1	1	1	1	
1	1	1	1	
1	1	1	1	

$\mathrm{t}_{\mathrm{w}}=0.32$ RC $(1+0.7 / \mathrm{R})$ TO USE THE INTERNAL TIMING RESISTOR CONNECT PIN 9 TO $V_{\text {cc }}$.

FEATURES Retriggerable (0.22 ns) RESET ON LOW TO "CR"
$\mathrm{t}_{\text {min }}=40 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{pd}}=21$ ns
LIMITS ON R:
$5 k \leqslant R \leqslant 50 k$ ($0 \leqslant \mathrm{~T}^{\circ} \mathrm{C} \leqslant 70$)
LIMITS ON C: NONE

74122 SINGLE TTL

74123 DUAL TTL

They do have limitations, though: they are slow when compared to the other monos, and pulses narrower than $10 \mu \mathrm{~s}$ are best obtained with a TTL device. Also, they're not retriggerable; and in the free-running mode, they have a dutycycle limitation.

They do, however, have a single output, can operate with a wide range of supply voltages, and can sink or source 200 mA (which can save a driver transistor).

The use of a 555 as a one-shot or free-running oscillator is shown in Fig. 3. The capacitor connected to CV (pin 5) is essential to reduce noise.

In the mono mode, calculations are based on $\mathrm{t}_{\mathrm{w}}=1.1 \mathrm{RC}$. For these timers, R is shown in ohms, C in farads and t is in seconds.

For any timing circuit, it is best to use a standard value of capacitance for C, then calculate the required resistance. It's always possible to combine different standard resistances in series, parallel or combinations, but it is difficult to locate an odd value of capacitance.

For the free-running mode, there are four defining equations:
$\mathrm{D}=R b /(R a+2 R b)=\mathrm{t} 2 / \mathrm{t} 1=$ duty cycle $\mathrm{t} 1=0.693(R a+R b) C=$ output high time $\mathrm{t} 2=0.693 R b C=$ output low time $T=0.693(R a+2 R b) C=t 1+t 2$

In the equation for D, note that if $R a$ is zero, then D becomes 0.5 . This tells you not to try to get a square-wave output as you have to tie DS (pin 7) directly to Vcc. There is no internal current-limiting resistor within the chip, so do not try this. Select D as 0.25 or 0.3 for most cases.

It's usually best to start by selecting a value of C appropriate to the frequency and duty cycle. $R b$ is then computed using the equation for $t 2$, and this is plugged into the D equation to solve for Ra. Then solve for T as a check on the values.

There are several ways to generate a square wave. The circuit shown in Fig. 3E allows a wide selection of both frequency and duty cycle from a single capacitor. This is illustrated by the composite scope traces shown in Fig. 4. In the circuil, R1 was 2200 ohms, R2 was a 10,000 -ohm potentiometer and C was a $0.01-\mu \mathrm{F}$ capacitor. The three traces represent three settings of R2. Overall frequency range was from 5 to 80 kHz . If trimmer potentiometers were used for both R1 and R2, the frequency and duty cycle could be trimmed to the exact requirements.

MONOSTABLE CATALOG-3

74LS221 DUAL LSTTL

FEATURES

NOT RETRIGGERABLE RESETS ON LDW TO "CR" t_{w} RANGE $=30$ us to 70 s $t_{\mathrm{pd}}=45 \mathrm{~ns}$
LIMITS ON R
$1.4 k \leqslant R \leqslant 100 k$
$\left(0 \leqslant T^{\circ} \mathrm{C} \leqslant 70\right.$)
LIMITS ON C
$0 \leqslant C \leqslant 1000 \mu$; SCHMITT INPUT ON "B"

74 C 221 DUAL CMDS

INPUT TABLE	FEATURES
A B	NOT RETRIGGERABLE
0 1	RESETS ON LOW TO "CR"
*	$\begin{aligned} \mathrm{I}_{\mathrm{w}}^{\mathrm{min}}=50 \mathrm{~ns}, V_{c c} & =5 \mathrm{~V} \\ =30 \mathrm{~ns}, ~ & V_{c c}=10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{w}=\mathrm{RC} \\ & \text { REFERENCE } \end{aligned}$	$\begin{aligned} \mathrm{t}_{1 \mathrm{sd}} & =250 \mathrm{~ns}, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & =120 \mathrm{~ns}, \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$
AN-138 "USING THE	LIMITS ON R:
CMOS DUAL MONO.	$10 k \leqslant R \leqslant 350 k$
MULTIVIBRATOR"	$1 \mathrm{~V}{ }_{c c}=5 \mathrm{~V}$
NATIONAL SEMICONDUCTOR	$5 k \leqslant R \leqslant 350 k$
	$\left(V_{c c}=10 \mathrm{~V}\right)$ NO LIMITS ON C

4098B/4528B/MC14528CP DUAL CMOS

POPULAR ELECTRONICS

Fig. 1. Use of a diode prevents high inverse leakage currents. through the timing capacitor.

The period is linear with respect to C. A substitution of a $0.1-\mu \mathrm{F}$ capacitor reduced the frequency by a factor of 10 while preserving the duty cycle. This circuit allows for a low-cost pulse generator with lots of flexibility.

The 558/559 Timers. These are quad timers having a range of a few microseconds to a few hours. Each of the four monos are independent, but they share a common reset. They are edgetriggered, and several sections can be coupled in tandem to produce an output several hours long.

A function diagram and important features of these timers are shown in Fig. 5.

The 558 has an open collector output (Fig. 5D) while the 559 has a Darlington follower output (Fig. 5E). In all other respects, the two are identical.

The output pulse width is the $R C$ product of the timing components. Two devices may be cross-coupled to operate in the free running mode as shown in Fig. 5C. The potentiometer connected to the $C V$ line allows adjustment of the output pulse width and duty cycle. The CV voltage range is from 0.5 V to Vcc minus 1 volt.

Applications. A simple pulse can be
created by $R C$ coupling between gates or flip-flops. Although this approach will work, it is marginal at best. For example, take a look at the circuit shown in Fig. 6 . Operation depends on the overshoot at the trailing edge. The system malfunctioned because the overshoot was marginal. Also, 750 ohms is too small a pulldown for TTL, and the circuit is susceptible to noise because there can be a volt or more of dc offset at the input.

If a 74123 dual mono had been used, as in the circuit shown in Fig. 6B, the time delay could have been achieved at

Fig. 2. A 2-volt spike on leading edge of waveform (A) is removed (B) by using a bypass capacitor from $V_{c c}$ to ground.

Fig. 3. The 555 timerfunction diagram (A), positive output with negative trigger (B), negative output for positive trigger (C), astable operation (D), and astable operation for a 50% duty cycle (E).

Fig. 4. Waveforms for various values or R2 in Fig. $3 E$. (A) is 10 kHz ; (B) is 20 kHz ; and (C) is 50 kHz .
no real increase in cost, but with greatly improved reliability. The output pulse would have defined and controlled width.

Occasions may arise when you need an oscillator having independent control of frequency and duty cycle. The 74123 (TTL) or the 74C221 (CMOS) dual monos perform this task very well using the circuit shown in Fig. 7.

If you use potentiometers for R1 and R2, you can construct a low-cost, wide-

(B)

(D)

Fig. 5. Function diagram (A) of 558/559 timer; monostable connection (B); 558 as a variable-frequency oscillator with fixed duty cycle (C); 558 open-collector output structure (D) and 559 Darlington follower output structure (E).

558/559 TIMER
FEATURES:
4.5-TO-16-VOLT SUPPLY RANGE. TIMING RANGE OF MICROSECONDS to hours. one-shot and astable OPERATION. EDGE TRIGGERED.
APPLICATIONS:
PRECISION TIMING
SEQUENTIAL TIMING
time-delar generation QUAD ONE-SHOT

(A)

Fig. 7. A dual monostable cancreate anoscillator having independently adjustable period and pulse width.

Fig. 8. A switching transistor provides relay driving power and isolates the mono from higher voltage required by the relay.
range pulse generator with lots of versatility. The capacitors may be switched to change the timing parameters.

Retriggering. This is a feature that should not be overlooked. A retriggerable mono will respond to inputs that arrive while the output is still high from the preceeding trigger. It then becomes possible to have a train of inputs that will hold the output high until the train stops.

A telephone toll restrictor was created using this effect. The problem was that there was only one signal to tell the circuit that the phone was lifted off the cradle, that the dial was being used, that dialing was completed, and that the phone was replaced on the cradle. The retriggering capability of the 74123 enabled the digits counter for the pulses from the dialer; and when the train stopped, there was a short delay, then a reset of the counter for the next digit.

Multiple Inputs. Several monos, such as the 9600,9602 and 74121 have multiple trigger inputs. These may be used as digital summing elements when you wish to form a single pulse train as a SEPTEMBER 1979
summation of triggers from several sources. Be careful here because the logic can be tricky.

Pulse Stretching. A mono can be used to stretch a brief pulse so that it can be used to drive a relay, among other applications. The basic circuit is shown in Fig. 8. The 555, 558 and 559 are well suited to this use because of their drive capabilities.

An advantage of this circuit is that the load can be powered from a higher voltage than the logic. In Fig. 8, the relay is powered from the unregulated dc supply, saving the power supply regulator. Isolating resistor R2 is important to protect Q1. If heavy load current is required, the emitter of Q1 should be returned to the power supply ground.

Summary. Because of the edge triggering features of each of the devices discussed here, many mono's can be interconnected to create complex digital waveforms that can be duplicated only with expensive commercial generators. Also, edge triggering greatly reduces the need for logic gates.

No kidding. Speakerlab's catalog took longer to write than some of our competitors have been in business. In fact, we created an industry by "building great kits so you can afford great speakers." Our catalog is an invaluable manual of speaker function and design. And, it will introduce you to the finest speaker kits made anywhere...with the strongest money-back guarantee. Find out for yourself...FREE. FREE, that is. Mail the coupon now
 Sectile, WA 98103
 The State of the Art in automatic percussion units

Phizfaramantale
chum SEI

features: ScoreEditing, Bridges, Intro's, External sync. to sequencers or foot controls, Memory save swlich and much more!

Enter scores in seconds -
No Programming Knowledge Required! High Fidelity describes the kit as "an easy project . fun to do and yields delightful results. an excellent educational tool and versatile aid to the musician who can't afford a live rhythm section."
Programmable Drum Set Kit $\$ 84.95$ Programmable Drum Set Assembled $\$ 149.95$ (plus $\$ 3$ shipping)
;-9. ELECTROMICS 1020 w. wILSHIRE BLVD. OKLA CITY, OK 73116 () Programmeble Drum Set Kit $\$ 84.95$ () Programmeble DrumSet Assembled $\$ 149.95$

ADDRESS
Ciry
 CIRCLE NO. 49 ON FREEINFORMATION CARD

Make Your Computer Work As a Control Center

Simple circuits enable small-computer

 owners to perform a variety of external operations.0NCE YOU tire of playing graphic games on your home computer, have solved all the mathematical problems you care to, and exhausted your list of favorite tunes, you may start thinking about new applications for that wonderful machine. Some of the more attractive uses for a home computer are in the controlling of appliances. In this article, we will present a few simple and proven inexpensive circuits that allow your computer to turn on the coffee pot in the morning, turn lights on and off while you are away to confuse a potential burglar, or control your slide projector and tape recorder in response to various cues.

The great advantage of using a computer to control appliances is its flexibility. No more relays driving relays, where the slightest change in the logic may require redesigning and rewiring your circuit from scratch. A simple change of a few instructions in your program can

now accomplish the same objectives relatively painlessly.

Computer Interface. The computer interacts with the outside world by means of 1/O (input/output) ports. These ports consist of a connector where specific pins can assume either a high or a low logic status. In most cases, a high corresponds to approximately +5 volts, while a low corresponds essentially to 0 voit (ground). Specific insiructions in your program (BASIC or machine language) are used to set voltages to the required values.

As a rule, computer ports can supply only a very small amount of current, usually on the order of 1 mA . Therefore, in order to control any device drawing appreciable power, it is necessary to have interface circuits that translate logic signals from computer ports into relaycontact operations, LED activation, or ac appliance and motor movements.

Because program instructions to control I/O ports differ from one computer to the next, we will not go into details of port programming. Instead, we will assume you are familiar with the programming of your particular computer and know how to set logic signals at its ports low or high.

Some computers use separate ports for input and output, while others use the same ports for both, depending on program instructions. Consult the fort operation section in the programming manual for your computer.

In general, when you interface the computer, the program will provide timing and logic for whatever you are doing. Input ports connect to sensors such as door switches, thermostats, light sensors, etc, while output ports interface to relays, LEDs and solid-state switches. The interface circuits discussed and illustrated in this article deal with computer output ports only.

Basic Interface. A basic output interface, an inexpensive SN75492 MOS LED-driver IC, is shown in Fig.1. Six computer output-port pins connect directly to the inputs of the device which can sink up to 200 mA on each of its six outputs. This current is sufficient to directly drive a small relay, LED, or optoisolator. All of the interface circuits given in this article employ the SN75492 as the basic building block.

If more than six ports of a computer are being used for control, more than one SN75492 IC can be used. The same port can also drive more than cne output (for example, an ac load and a LED to indicate an on condition).

LED Interface. Shown in Fig. 2 is a typical LED interface circuit. To compute the values of the dropping resistor in the external circuit, use Ohm's Law: $\mathrm{R}=$ E / I, where R is the dropping resistor's value, E is the supply voltage, and I is the current through the LED. Remember to take into account the one-diode voltage drop of the inverter in the IC and the drop across the LED.

As an example of calculating the resistor's value, assume $E=10$ volts, $I=$ 20 mA , the voltage dropped across the LED is the typical 1.5 volts, and 0.7 volt is dropped across the internal diode of the inverter. The value of the dropping resistor is $R=E / I=(10-1.5-0.7)$ $10.02=390$ ohms. To determine the resistor's power rating, use the formula P $=1^{2}$ R. Plugging in values, we obtain $P=$ $(0.02)^{2} \times 390=0.156$ watt, which means you can safely use a standard $1 / 4$ or $1 / 2$-watt resistor.

DC Relay Interface. A low-voltage relay whose coil draws less than 200 mA of current can be operated through the output of the IC. as shown in Fig. 3 . Make sure that the current demand of the relay's coil does not exceed 200 mA , and install a diode as shown to protect the IC from back-emf spikes.

The relay's contacts can be used to lurn on and off power for almost any electrical device whose demands are less than the volt-ampere (VA) or current (at the load's operating voltage) rating of the relay's contacts. For heavy

loads, the low-power relay can be used to control a power relay with heavy-duly contacts.

Tape-Recorder Interface. Turning on and off a tape recorder under computer control can be very useful for col-or-slide presentations. Other attractive applications include loading programs from a cassette deck into a computer and storing of programs on tape. The tape deck you wish to control must be equipped with a start/stop control system accessed by way of a jack-usually located near the microphone jack. To turn the tape deck on and off one can connect contacts of a relay (Fig. 3) to a plug inserted in the on/off jack on the tape recorder. If you wish to eliminate the relay, an alternate circuit shown in Fig. 4 uses a Darlington transistor and an optoisolator consisting of a cadmiumsulfide (Cds) photocell and a low-voltage lamp in a light-tight housing. Because this circuit is polarized, it may be necessary to reverse the leads to the tape deck's plug to make the circuit work.
The reason for using an optoisolator in this and the following circuit is to keep the computer and the circuit it controls electrically separate. This is to provide protection for the computer. High insulation resistance between the computer and the ac power line will safeguard lowvoltage logic circuits and, not incidentally, the human operator.

Control of AC Appliances. An alternative to a relay or simple light coupler is shown in Fig. 5. The Motorola HEP P5002 is an optoisolator that houses an infrared diode and a small triac. The low power triac, in turn, controls a larger triac, such as the HEP R1723 that switches the ac power to the load. The rating of the larger triac determines the maximum wattage that can be controlled. For example, the HEP R1723 will work with appliances consuming up to 600 watts. Pulsing the appropriate port under program control will result in partial power being delivered to the appliances, allowing the computer to dim lights and run motors at variable speeds.

In Conclusion. The foregoing are just a few possible schemes for interfacing your computer with practical appliances. After you familiarize yourself with these circuits and their capabilities, other schemes may suggest themselves. You may even devise interfaces that you will wish to keep permanently connected. \diamond

Build a Smart Switch
 by Richard Fermoyle

A solid-state wall switch that "remembers" to turn off the lights when you forget!

HAVE YOU ever gone into a darkened room "for just a minute," only to return an hour later and find the lights still burning? The "Smart Switch" presented here will correct this most common occurrence.
This useful project, which costs about $\$ 17$ to build, is a solid-state, 117 -volt ac timer switch designed to replace a conventional wall switch. Using the components specified, the Smart Switch can control loads up to 250 watts.

When a pushbutton on the Smart Switch is depressed, power will be supplied to the load (lights) connected to it for approximately one minute. At the end of that interval, power will be automatically removed. An optional bypass switch is provided to override the timer circuit and to power the load continuous-
ly. With today's high cost of energy and the need to conserve, this device is a practical and economical addition to your home.

About the Circuit. The Smart Switch is shown schematically in Fig. 1. The heart of the circuit is $/ C 2$, a 555 timer operating as a monostable multivibrator. When pushbutton switch S1 is depressed, power from the 117-volt ac line is applied to the timer circuit. Parallel resistors R3 and R4 drop approximately 95 volts of the line voltage, resulting in the application of approximately 22 volts ac to the input of modular bridge rectifier RECT1. The pulsating dc output generated by RECT1 is converted into +5 volts regulated by filter capacitor $C 7$ and IC regulator IC1.

When power is initially applied to the timer circuit, pin 3 of $I C 2$ goes high and forward-biases the infrared-emitting diode within IC3, an optically isolated triac driver. This activates the bilateral switch within IC3 which triggers triac Q1 into conduction. When the triac turns on, 117 volts ac is applied to the load and to the center contact of switch S2. If this switch is placed in position "A", as shown in the schematic, the timer circuit continues to receive line power even though pushbutton switch $S 1$ is released.

The load and the timer circuit will be powered for a period of time determined by values of components R6 and C4. For the component values shown, this interval is approximately one minute. Once IC2 has timed out, pin 3 of IC2 goes low and deactivates IC3 and triac

Fig. 1. When power is applied to the circuit by pressing S1, the output of IC2, through IC3, triggers Q1, which supplies power to the load (with S2 on "A") for a time determined by R6 and C4. With S2 on "B", power is supplied directly to the load.

PARTS LIST

CI-0.i- $\mathrm{HF}, 200$-VDC tubular (272-1053)* C2-0.01- $\mu \mathrm{F}, 200-\mathrm{VDC}$ tubular (272-1051)* C3-0.1- -F dise ceramic (272-1069)* C4-2.2- $\mu \mathrm{F}$ tantalum (272-1407)* C5-0.01- $\mu \mathrm{F}$ disc ceramic (272-1065)* C6-4.7- $\mu \mathrm{F}$ tantalum (272-1409)* C7-100- $\mu \mathrm{F}, 10$-volt electrolytic (272-1044)* に1——7805 voltage regulator (276-1770)* IC2-555 timer (276-1723)*
IC3-MOC3010 triac driver ***
Q1-6-A. 200-V Triac (276-1001)*
R1--47-ohm, 4 -watt resistor
R2-390-ohm, 1/4-watt resistor
R3, R4-12,000-ohm, 2-watt resistor R5-390-ohm, $1 / 4$-watt resistor
R6-22-megohm. $1 / 4$-watt resistor *
RECT1-1-A. 50-PIV modular bridge rectifier (276-1161)*
S1-Single-pole, normally open pushbutton switch (34-02062V)**
S2—Spdt rocker switch (99-64248V)**
Misc.-Electrical box cover plate, printed circuit board, heat sink, silicone thermal compound, barrier strip (274-657)*. IC sockets (optional), hookup wire, spacers, mounting hardware, etc

* Radio Shack Part Number
** Lafayette Part Number
*** Motorola Semiconductor component, available from Motorola Distributors

Fig. 2. Actual-size etching and drilling guide for pe board.

Fig. 3. Parts placement guide for the printed circuit board is shown at right.

* DRILL FOR NO. 6 HARDWARE

Q1. Power is thus removed from the load and the timer circuit.

Placing switch S2 in position "B" bypasses the triac and applies 117 volts ac directly to the load. This feature has directly to the load. This feature has
been incorporated into the Smart Switch so that the user can manually keep the load powered for an indefinite period of time. If the bypass feature is not desired, switch $S 2$ and capacitor $C 2$ can be eliminated. In that case, however, it will be nated. In that case, however, it will be of triac Q1 directly to the junction of S1, R3, and R4 to ensure proper operation of the timer circuit.

Construction. Most of the circuit can be mounted on a single printed circuit board. The etching and drilling and parts

Fig. 4. Photo of the back of the Smart Switch shows how pe board is mounted on a standard plastic cover plate.
should be used to interconnect the board and switches S1 and S2.

The completed pc board is then mounted using standoffs on the back side of the plastic cover plate. Be sure to use standoffs that are not too long, as the entire assembly must fit within a standard electrical wall box.

Installation. Before installing the Smart Switch, be sure to turn off the power at the fuse or circuit breaker box. Remove the existing wall switch and cover plate. Then, using the parts placement diagram shown in Figure 3 as a guide, connect the existing wall-switch wiring to the Smart Switch barrier strip. You might find that a neutral wire has not been brought into the wall-switch electrical box. If this is the case, wire the neutral terminal of the barrier strip directly to the metal wall box.

Carefully screw the assembled Smart Switch into place and you're ready to start using it. The finished product will look like the prototype shown in Fig. 5.

Fig. 5. Completed Smart Switch mounted and ready for use.

Use. If you are only going to remain in the room equipped with the Smart Switch for a short period of time, depress S1 as you enter. The lamp controlled by the project will remain on for the period determined by the values of the components in the timing circuit, resistor R6 and capacitor $C 4$. If you intend to remain in the room for an extended period of time, place switch $S 2$ in its "B" position.

A breakdown of transmissions, by frequency, on various public service bands

WITH THE large number of scanning receivers now available on the market, most hobby listeners are well acquainted with the three most common "utility" radio bands: 30 to 50 MHz (low vhf band), 150 to 174 MHz (high vhf band), and 450 to 512 MHz (uhf band). There are, however, a number of other segments of the vhf and uhf radio spectrum that are frequently very active but unknown to all but a few listeners. Occasionally, tactical militarymaneuver information can be heard, and repeaters that assist government communications links are encountered. Telemetry tone can also be heard carry-
ing digital data from a critical monitoring application to a vital receiver at some remote point.

Frequency lists published by the FCC do not always help in identifying these stations. If the frequency belongs to the federal government, it is regulated by the IRAC (Interdepartmental Radio Advisory Committee), and is subject to change without notice. Some frequency assignments are kept secret and/or are in ranges not receivable on most receivers. Occasionally, military or commercial surplus equipment can be found to monitor these obscure frequencies. However, it is better to use a vhf or uhf con-
verter ahead of your existing scanner or monitor receiver. Several excellent vhf/ uhf converters are offered by JANEL, Vanguard Labs, VHF Engineering, and Hamtronics. With the exception of the $225-\mathrm{to}-400-\mathrm{MHz}$ AM aeronautical band, all communication channels use narrowband FM almost exclusively.

In the following paragraphs, we will examine what can be found on some of these lesser-used frequency bands.

50 to 54 MHz . This is primarily the 6meter ham band. Channels between 50 and 54 MHz are shared with other services, including remote control of model

planes and boats on 53 to 53.5 MHz . Most hams operate on 50 to 51 MHz , and sometimes repeaters can be found between 52.5 and 54 MHz , with 52.525 MHz being the most popular repeater frequency

72 to 76 MHz . At first glance, this frequency range appears to be within the band occupied by TV channels 2 through 6. In fact, this $4-\mathrm{MHz}$ slot has a variety of users in the public safety and industrial group and is set apart from the TV channels. Although there is some voice communication here (such as army tactical communication), most of the uses are low-power tone signalling, such as in fire-alarm boxes and interstate highway motorist assistance boxes. Radio-controlled model planes and boats are often on 72 to 73 MHz . Listeners who live near airports are likely to hear the low-power, tone-modulated AM marker beacon on 75 MHz .

136 to 138 MHz . Just beyond the aircraft band, stations in the earth-satellite service use 136 to 138 MHz . Weather satellites such as the NOAA on 136.77, 137.14, 137.5, 136.62 MHz and Nimbus series on 136.5 MHz share this slot with communication satellites such as the Applied Technology Satellites (ATS) on $135.6,137.35$, and 137.5 MHz . Orbiting satellites share dozens of discrete frequencies in this band. Some satellites are geosynchronous (remain above a fixed spot on the earth), while others continually change position. The latter require tracking by antenna. Some data, available from NASA, enable listeners to keep up with the satellites. Most applications are for telemetry and data transmission, but some voice can be heard when satellites are used for long-distance relay, as in educational and scientific operations

138 to 144 and 148 to 150.8 MHz . These ranges are used exclusively by military agencies for a variety of nontactical applications. Among the users of these channels are base operations and maintenance crews, security, rescue, and medical services; and VIP paging. Other channels are used for tone signalling. Some government navigational satellites can be heard at 150 MHz . The "hole" at 144 to 148 MHz between these two ranges is the popular 2-meter ham band

216 to 220 MHz. Located just above TV channel 13 , the 216 -to- $220-\mathrm{MHz}$

This A P power breadboard includes a pulse detector, complete with memory.
Now that you're ready to build and test more sophisticated circuits, you've found the right breadboard.

Our Model 102 A P POWERACE, for instance, gives you a complete digital prototyping lab in one compact package.
It will detect positive or negativegoing pulses as short as 10 nano-seconds-and keep them on-tap for you in its memory. This, combined with its 3 logic indicators, gives you a built-in logic probe.

Like our other power breadboards, the 102 has 16 distribution buses of 25 tie-points per bus to jumper in groups as needed and use for voltage and ground distribution, reset lines, clock lines, shift command, etc. And 1,680 tie-point terminals for plugging in circuit components and jumper wires.
With an A P POWERACE, you will prototype any type of electronic circuit faster and easier than you ever thought possible.
Your A P dealer has the details. Where? We'll tell you. Call (toll-free) 800-321-9668. And ask for the com plete A P catalog, The Faster and Easier Book.

AP PRDDUCTS INCORPORATED
Box 110a• 72 Corwin Drive
Painesville, Dhio 44077
Tel. 216/354-2101
TWX: 810-425-2250
Faster and Easier is what we're all about.

Other Frequencies. . .
continued
band is used primarily for telemetry (data) systems and tone signalling by both government and nongovernment services. Don't expect to hear two-way voice systems unless they are on an unusual authorization.

220 to 225 MHz. This little-used portion of the spectrum was the cause of some bitter feelings a few years ago. Although it was assigned to the Amateur Radio Service, it was rarely used. As a result, an effort was made to reassign at least a portion of the band to a new Citizens radio service. The movement has been stalled temporarily and probably permanently.

Although military radiolocation is listed as a primary user of this slot, in actual practice the Amateur Radio Service is more likely to be encounterd, especially in metropolitan areas.

225 to $\mathbf{4 0 0} \mathbf{~ M H z}$. One of the largest chunks of dedicated vhf/uhf spectrum space, this $175-\mathrm{MHz}$ band is used almost exclusively by military aircraft for AM voice communications. Even the Space Shuttle will have two backup voice channels in this band, on 296.8 and 259.7 MHz , as had all the Apolio flights. Every military aircraft aloft uses this band to communicate with other aircraft in flight and with control towers. Because of the altitudes from which they transmit, aircraft can often be monitored for hundreds of miles.

400 to 406 MHz. Space telecommand (satellite control signals) and meteorological telemetry (digital weather data) signals populate this portion of the uhf spectrum. Wildlife tracking signals are also found here, such as polar bear tracking by Nimbus 6 on 401.2 MHz .

406 to 420 MHz . This band is exclusively occupied by the federal government; many agencies use it for control links to interconnect repeater sites. An example is the Department of Agriculture's Forestry nets that populate the 411- and $415-\mathrm{MHz}$ regions of this range. The Department of the Interior connects its repeaters with signals in the 411-, $412-$, and $417-\mathrm{MHz}$ portions of the band. In addition, some tone signalling and data transmission can be heard. Although it is in common use near large
metropolitan areas, remote regions are unlikely to hear much activity in this frequency range

420 to 450 MHz . This $30-\mathrm{MHz}$ portion of the spectrum is shared by the amateur radio service and military radar. A few ham repeaters, active in larger cities, operate on 420 to 450 MHz . Hams experimenting with television transmissions can be heard on 439.25 MHz ; and the Amateur Radio OSCAR satellites transmit on frequencies in the 432- and $435-\mathrm{MHz}$ ranges.

806 to 960 MHz . Many visionaries consider this newly opened segment of the radio spectrum as a vast, unspoiled territory. With the exception of a small government radiolocation service from 902 to 928 MHz , the entire $154-\mathrm{MHz}$ band is allocated to nongovernment land mobile services, with 947 to 960 MHz usable for fixed point-to-point communication.

A band plan of allocatable frequencies and services has been prepared by the FCC, and is being opened gradually for use. A number of frequency blocks are still held in reserve, pending further studies.

Services using this portion of the spectrum run the gamut and include police, business, and broadcast relays. Many use these interference-free frequencies for control links to high-powered transmitter sites.

Summing Up. Although this article may help you to identify primary uses for the frequency bands listed, the FCC and IRAC reserve the right to license station operation on virtually any frequency in the spectrum even outside of normal allocations. For this reason, it is possible in some locations to hear Bell Telephone mobile service on 406 to 407 MHz , which is normally federal-government assigned; industrial FM signals in the $351-\mathrm{MHz}$ range, which is for military aeronautical AM; or the U. S. Army on 75 MHz , usually assigned to airport marker beacons.

Users of these communication frequencies often resent the intrusion of uninvited listeners, but voice security systems are available to protect sensitive transmissions. The vast majority of listeners are law-abiding citizens who are interested in what is happening around them. Scanner monitoring can improve public understanding and awareness of local, state, and federal government responsibilities.

Nowhear this.

The extraordinaryScott Audio Analyzer.
Now, you can see exactly what you hear.
With Scott's new 830 Ž Audio Analyzer, you can evaluate and then maximize the performance of your receiver, preamp, amplifier, cassette deck, cartridge and speakers. You can even evaluate speaker placement and tape compatability

Get the best out of your sound system. See your nearest Scott dealer or write H.H. Scott, Inc.,囲SCOTT 20 Commerce Way, Woburn, MA 0180].

Makers of high quality high fidelity equipmedt since 1947
CIRCLENO. 55 ON FREE INFORMATION CARD
 Want the high performance you paid for? Choose a protessional A/S monitor antenna. 12 models, one for your exact need Let us send our catalog

the
 antenna

 specialists co.
a member of The Allen Group inc 12435 Euclid Ave Cleveland Ohio 44106 CIRCLE NC. 7 ON FREEINFORMATION CARD

BY GARY W. SEAVER

A three-dimensional resistor array such as that shown in Fig. 1 is not likely to occur often in real life-especially made up of 12 equal 100 -ohm resistors as it is here. However, complicated circuits do occur and it is handy to know how you can solve for their effective resistance by reducing them

through a succession of pi and T transformations, rearrangement of components, etc. (Or, of course, the circuit can always be built up on a breadboard and checked with an ohmmeter.) For the purposes of the quiz, however, determine the resistance analytically. The answer is printed below upside-down.

ANSWER

'suио ع'є8 јо ןејоң е и!ет -qo of pəسuns əq ueo Кәчı 'sə!

 uow山o八 e aرeys 7 pue ' r ' sıoisised asneoeg 'zinO dols!s

MISSING-PULSE DETECTORS

Missing-pulse detectors can be found in applications ranging from moderately sophisticated, break-beam intrusion detectors to adjustable-duration event timers. Figure 1 is the circuit for a simple but reliable missing-pulse detector made from a 555 timer.

The circuit, which was adapted from one given in the Signetics 555 applications note, is a modified monostable multivibrator. In operation, an input pulse applied to pin 2 triggers the one-shol. The output then goes high for a period determined by the values of timing components R1 and C1.

A 555 monostable ordinarily ignores trigger pulses that arrive during the timing period. In this circuit, however, Q1 fools the one-shot into accepting a trigger pulse during the timing cycle. Refer to the schematic and you'll see why. Normally, Q1 is off, but a trigger pulse biases it into conduction. This dis-

Fig. 1. Basic missing-pulse detectorcircuit.
charges $C 1$. Simultaneously, the trigger pulse initiates a new timing cycle.

If the interval between incoming pulses is less than the timing period, the output of the 555 will remain high. Should an

Fig. ${ }^{2}$. Missing-pulse detectortiming diagram. incoming pulse not arrive until after the previous timing cycle has ended, the output will go low until the pulse arrives. By adjusting the time constant so the timing cycle is slightly longer than the interval between incoming pulses, the circuit will re-
spond to missing pulses by switching low until a new pulse arrives. The circuit can also be adjusted to respond to a decrease in the frequency of incoming pulses.

If this explanation of how a missing pulse detector works seems complicated, the timing diagram in Figure 2 will help you understand what happens. Although the diagram illustrates a single missing pulse, a series of two or more missing pulses might also occur. Should this happen, the output will remain low until the pulse train is again received.

Simplified Missing-Pulse Detector. The circuit shown in Fig. 1 is commonly used in missing-pulse applications, but that shown in Fig. 3 is simpler. In this circuit, the reset pin is connected to the trigger input. A pull-up resistor connected to $+V_{c c}$ must be added, but the transistor across C1 (Q1 in Fig. 1) is no longer needed.

Fig. 3. Simplified circuit for a missing-pulse detector.

Break-Beam Object Detector. Figure 4 shows a simple but effective infrared, break-beam object-detection system comprising a pulsed LED transmitter optically coupled to a missing pulse detector. In operation, pulses from the transmitter are detected by phototransistor Q3, which is used to reset and trigger the one-shot before the timing cycle can be completed. Blocking the path between the transmitter LED (LED1) and Q3 will cause the receiver LED (LED2). to glow. The receiver LED will go off when the optical channel is reopened.
The sensitivity of the circuit is determined by R2 and the phototransistor. The resistance of R2 can be less than 33,000 ohms, but the receiver's sensitivity will be reduced. Sensor Q3 can be a standard silicon phototransistor, but a Darlington phototransistor will provide higher sensitivity.
Timing components R3 and C2 determine the time constant of the one-shot. A fixed resistor can be used for $R 3$ if its value is such that the timing cycle is longer than the period between transmitter pulses. The time required for the circuit to respond

Fig. 4. Schematic for a break-beam object detector.
to a missing pulse is the difference between the transmitterpulse interval and the receiver's time constant. Therefore, the circuit will appear to respond almost immediately to an obstruction placed in the optical path when the time constant is slightly longer than the pulse interval. On the other hand, the circuit will require as much as a few seconds to respond if the time constant is much longer than the pulse interval. Increasing R3, C2 or both will increase the time constant.
Long time constants make possible such specialized applications as detecting slow-moving objects or long objects moving through the optical channel at the same velocity as short objects. A long time constant also provides a degree of false-alarm immunity when the system is used as an intrusion alarm because the detector can thus be adjusted to ignore falling leaves and other transient interruptions.

The range of the system is determined by the sensitivity of the receiver and the optical power radiated by the transmitter LED. For best results, use a photodarlington for Q3 and stick to the relatively powerful transmitter circuit shown in Fig. 4. Be sure to use a GaAs:Si device for LED1. Suitable types include the Optron OP-190 or OP-195 and the G.E. 1N6264. Also, don't allow too much ambient light to strike Q3 (although some dc illumination will provide base bias and increase Q3's sensitivity).

With these components, the maximum detection range will be a few handbreadths. Adding lenses to both the transmitter and receiver will increase the operating range. Best results will be obtained with lenses having a focal length approximately equal to the diameter of the lens (which corresponds to an f number of 1). With $5-\mathrm{cm}$ diameter, $f 1$ lenses, a range of a few meters or more can be achieved.

Fig. 5. SCR output circuit.
Adding an Output Latch. The output pin of the receiver (pin 3 of the 555) switches from a low to a high state when a missing pulse occurs and, atter a timing interval, returns to its low state. In some applications, such as intrusion alarm systems, it's necessary to latch the output to a high state once a single missing pulse has been detected. Figure 5 shows one way the latching function can be achieved with the help of an SCR. This simple circuit is designed to be connected directly to pin 3 of the 555 in Figure 4.

An SCR is triggered by a positive gate voltage. Because the 555 output is normally high, Q1 is required to invert the output. Resistor R3 limits current flowing through the indicator LED. If the resistance of R3 is too low, excessive current will flow through the LED and SCR. On the other hand, if the value of R3 is too high, the current through the SCR will be less than its minimum holding current. This means the SCR will turn off and on, rather than latching on, when the 555 output changes states.

Reset switch $S 1$ is a normally closed pushbutton. If the 555 output is high (for example, when the transmitted signal is being received) and the SCR has been gated on by a previous missing pulse, pressing S1 will turn off the SCR and prepare it to latch onto the next missing pulse.

Optically-Coupled Slot Switches. Slot switches are made by mounting a LED and phototransistor so they face one another across a narrow space in a plastic fixture. Applying a forward current to the LED switches the phototransistor. An opaque object (magnetic tape, paper card, etc.) inserted in the slot blocks the beam from the LED and turns the phototransistor off.

Fig. 6. In slot switch circuit, one half of 556 is a pulse generator and the other a missing-pulse detector. Blocking the slot between the LED and the photo trausistor causes the detector to change states and energizes the light emitting diode.

Fig. 7. In this missing pulse circuit, a slot swifch is formed by using CMOS logic.

Many optoelectronics companies make various types of optical slot switches. If you can't find one, or if you don't like the prices of those you find, it's easy to improvise by mounting an infrared LED and photodarlington on a suitable jig. The gap between the two components should be a few millimeters.

Usually, a dc bias is applied to the LED in a slot switch. It's possible to achieve the same results-and at the same time save current-by pulsing the LED and connecting the phototransistor to a missing puise detector. Here are two examples.

556 Slot Switch. In the circuit shown in Fig. 6, one half of a 556 dual timer serves as the pulse generator for a LED. The remaining half is connected as a missing pulse detector.

Pulses from the transmitter continually reset and trigger the one-shot. Blocking the slot between the LED and phototransistor causes the missing pulse detector to change states and light the indicator LED.

The SCR latch in Fig. 5 can easily be added to this circuit. Also, you can experiment with $R 4$ and $C 2$ in the receiver portion of the circuit to alter its response time. For example, if the timing cycle of the receiver is 100 milliseconds longer than the period between pulses from the LED, the slot switch will ignore an interruption lasting less than 100 milliseconds.

CMOS Slot Switch. A single 4011 quad NAND gate can provide the bulk of the transmitter and receiver electronics for a pulsed break-beam slot switch based on the missing-pulse principle. Figure 7 is the schematic diagram of the slot switch.

In operation, the LED in the slot switch is pulse-modulated by the astable multivibrator formed by two of the gates in the 4011. Timing components R1 and C1 determine the pulse rate and R2 limits the peak current through the LED. Pulses from the LED are detected by the Darlington phototransistor in the slot switch and presented to one input of a NAND gate. The inverted output from the multivibrator is presented to the second input of the NAND gate. When optical pulses are received by the phototransistor, its collector goes low, causing the output of the NAND gate to go high. When the slot is obstructed, both inputs to the NAND gate go high each time the slot switch LED is pulsed. This turns the indicator LED on

Although the indicator LED appears to be glowing continuously when the slot is obstructed, it is actually flashing at the same rate at which the slot switch LED is pulsed.

BAITIERYGWRAP
 WIRE WRAPPING TOOL

 model BW-2630- POSITIVE INDEXING
- ANTI-OVERWRAPPING
- BITS AVAILABLE FOR AWG 26, 28 \& 30
- BATTERY OPERATED
- LIGHT WEIGHT

U.S:A. FOAEICN PATENTS' PENDING

The cost effective way to MEASURE CAPACITANCE

For about one-third the cost of the most popular digital capacitance meter, you can own five times more measurement capability. The new B\&K-PRECISION 820 reads all the way to 1 Farad. in ten ranges. With 0.5% accuracy, the 820 resolves to 0.1 pF for a maximum count of 9999.

The battery operated 820 stays on the job over a wide range of temperatures, making it ideal for field use. The bright LED display is easily readable under all lighting conditions.

The 820 has almost unlimited applications in engineering. production line work, QC. education and field service. For example, you can measure unmarked capacitors... Verify capacitor tolerance... Measure cable capacitance

Select and match capacitors for critical circuit applications . . Sample production components for quality assurance ... Measure capacitance of complex series-parallel capacitor networks... Set trimmer capacitors to specific capacity ... Check capacitance in switches and other components.

Available for immediate delivery at your local electronic distributor

In Canada Atlas Electronics. Ontario
Intl Sis: Empire Exp 270 Newtown Rd. Planview, LI. NY 11803 92 CIRCLE NO. 11 ON FREE INFORMATIONCARD

DX
Listening

By Glenn Hauser

A SURVEY OF DX PROGRAMS

THIRTY shortwave stations-some grudgingly, others eagerly-devote from 3 to 90 minutes of airtime a week to DX Programs. With almost 30 different approaches, the stations attempt to provide a feature for those who regard shortwave as more than just another radio band.

Here is our review of these programs. The more stars, the better the program, in our opinion. All times are GMT, but days of week are local in North America. Frequencies are in kilohertz and are for the summer, but most should continue in the fall.

Australia. (**) "Club Forum" is nominally the voice of the Radio Australia listeners club, a white elephant they so far haven't dared to slay, despite the fact that they no longer have the staff to process all those reception reports which are of little value to them. Actually. it is a quickie production glaringly deficient in preparation, by Warren Moulton, a ham radio operator who is obviously not very familiar with shortwave broadcasting. Mainly plugs for various real DX clubs' publications, occasional interviews, and a few minutes of the 15 (no more than 5) given to DX tips (which is what most listeners would rather hear more of) drawn from "DX Time" a Radio Australia Japanese program wherein DX tips are more appreciated. Keith Glover often substitutes. Fridays at 0240 on 21740 and 17795.

Austria. (****) "Shortwave Panorama" from Austrian Radio is one of the more original $D X$ programs. It rarely broadcasts tips, but it does have general news of broadcasting developments and tightly produced features on rare stations. These are complete with studio recordings of their IDs, the latter done by Jonathan Marks, a college student in England. Plagued by reception problems in North America. Try Sundays 2305 to 2320 on 12015,9770 , or 5945.

Belgium. (**) "DX Corner Belgium" from BRT sounds completely ad-libbed, as does much BRT programming. Let-
ters from listerners are read and DXtips are given, apparently without any editorial checking. But host Frans Voosen is to be thanked for keeping the show going after the departure of Ursula. It is on the second and fourth Sundays at 1635 (1735 Oct-Mar) on 21475 and 17745 , at 2245 on 15175 , and 0040 on 11715 and 15175.

Bulgaria. (**) R. Sofia's DX program has improved in recent years, revealing a new liberalism in giving schedules not only of socialist stations but nonsocialist ones. Has considerable ham-oriented material, often quoting ARRL. It has ham DX tips and was a major source of information on the ham operations of the Ra expedition and other ham news of DX interest. On Fridays at 2135 on 15135 and 11750 ; at 0435 on 11750 and repeated at the same times Sundays. On the last week of the month, a useful propagation forecast is broadcast.

Canada. (*****) RCl's "DX Digest" squeezes a lot into about 30 minutes a week. Host Ian McFarland presents talks on a variety of subjects related to radio and introduces a number of regular rotating fealures, such as a handicapped aid program report on the first Sunday of the month from Jeff White. It has the most up-to-date DX news (only two or three days old at air time) of any station. The program is presented in four editions-I and II combined Sundays at 1807 on 15260 and 17820, III and IV combined Wednesdays at 2145 on 17780, 15150, and 11940. Other Sunday broadcasts contain one edition each-I at 1915 on 15325 and at 0015 (May to October) and 0115; II at 2015 on 17875 and 15325 and at 0215; III at 0315; and IV at 0415. In the evening the freqeuncy 5960 is joined by different parallel at different hours. I provide different DX news in editions I and III; two Canadians give the DX news in editions II and IV.

Canada. (****) "The Sound of Shortwave" is a weekly conversation between Steven Freygood of CBC Halifax and

Don Harron, host of Morningside playing straight man. Freygood picks out the oddities he's heard over the past weekend on major broadcasts and puns with the Canadian angle if he can find one. Mondays about 1325 on CBC Northern Service (11720 and 9625) and on CBC Radio throughout Canada at 9:25 a.m. local time (9:55 in Newfoundiand). As a feature within a program, its time varies greatly, and at the last check before press time, it had disappeared.

Czechoslovakia. (*) Radio Prague's so-called DX program is an example of everything a DX program should not be-endless incestuous discussions of Czechoslovakia's domestic broadcasting system. On Thursdays at 0135 and 0335. However, producer Oldrich Cip (A.K.A. Peter Skala) recently met with his Western counterparts in Vienna, giving us some hope for improvements.

Ecuador. (***) HCJB's "DX Party Line" has far more time at its disposal than any other DX program- 90 minutes a Week-with three different programs each broadcast at four different times. Yet, most of this time is wasted with repeated items, irrelevant material like "Tips for Real Living", hellos, goodbyes, and thank-yous by host Clayton Howard, who speaks at about half the rate of the average person. However, this is an advantage for people whose native language is not English and for those who tape the show and can listen to it at double speed without missing a word. The show is invariably kept at the absolute-beginner level: HCJB is really on the lookout for converts to evangelical Christianity. The DX program is merely a means to this end, as HCJB candidly admits in duns to U.S. contributors. Still, the program does have some worthwhile segments, produced by Jeff White on Wednesdays. John Trautschold, who speaks at about double the speed of the average person, presents a SPEEDX report on Saturdays. Althou'gh considerable DX tips are given, they are not timely and are often out of date due to the prerecording schedule of the program and lethargic mail service. This is great potential, goint to waste. Mondays, Wednesdays, and Satưtdays at 0230 on 11915 and 9745. Can also be heard Mondays, Thursdays, and Saturdays at 2130 when it is to Europe on 21480, 17765, and 15295.

Finland. (**) R. Finland has a fortnightly "World of Radio" segment on "Sunday Best" around 1350 on 15400, when reception in North America is un-
reliable. David Mawby has been making a systematic sludy of the "communications chain"-August 12, Propagation; August 26, Reception; September 9, The Listener's Environment. Rather elementary stuff, but there may be some interesting ideas presented.

Germany East. (**)"RBI DX Club" has technical talks beyond the beginner stage, plugs for its club awards program and an ionospheric weather report. Fortnightly on Mondays, 0130 and 0300 on 9730 and at 0400 on 11890 and 11840.

Germany West. (**)Deutsche Welle has a "DX Programm" in some English broadcasts but not to North America. Instead, the German program goes bilingual 10 minutes a month on the second Saturdays at 2350 and 0350 on many unavoidable frequencies. It leans toward items from the broadcaster's point of view, sunspot counts, and some ham radio items. No attempt at DX tips. Writlen by G. G. Thiele, a ham who works at the station and has been in broadcasting since the days of Rommel.

Hungary. (**) Radio Budapest "Calling D'Xers and Radio-Amateurs" has a nice theme song. It takes up a lot of time with identically worded thank-yous after each contributor. Program content varies. They have been giving an interminable listing of DX abbreviations, a few letters at a time. Sometimes listeners' loggings are read off, in a very dull fashion, always with SINPO but without program details and without any regard as to whether they are newsworthy or even correct. The English announcers do not check with Radio Budapest's Spanish announcers on pronunciation of Latin American names, producing some awful results. Sometimes there are some ham radio DX tips. Programming is liberal enough; they don't mind mentioning WYFR, for instance. Tuesdays and Fridays at 0400; Saturdays at 0215 and 0315, on 17710, 15225 and 9835.

Israel. (**)Israel Radio's "DX Corner," squeezed in at the end of Sunday broadcasts (except for holidays when it is bumped to Monday), is the shortest DX program on the air. But Ben Dalfen usually comes up with an interesting topic that avoids duplication of other stations. There are never any DX tips. On the air at 2025 and 2255 on 17645 , among other frequencies.

Japan. (**)R. Japan has a DX news segment at the end of "Tokyo Calling," compiled by the Japan SW Club, but there is hardly ever anything but routine loggings and schedules. Announcers are difficult to understand. To break up

No commuting to class. Study at your own pace, while continuing your present job. The Grantham home-study program leads first to the A.S.E.T. and then to the B.S.E.T. degree. Our free bulletin gives complete details. Write for Bulletin E-9.
Grantham College of Engineering 2500 S. LaCienega Blvd. Los Angeles, California 90034

Learn Electronics along with MATHEMATICS

The Grantham Electronics-WithMathematics Series-in six volumes, written in home-study-course styleis now available by mail order...... (To order, check off the volumes wanted.) DIntroductory Electricity With Mathematics. Size, $7 \times 101 / 2.288$ pages.. $\$ 12.95$
\square Fundamental Properties of AC Circuits. Size, $7 \times 101 / 2.276$ pages $\$ 12.95$ \square Mathematics for Basic Circuit Analysis. Size, $7 \times 101 / 2.352$ pages $\$ 14.75$ \square Basic Electronic Devices and Circuits. Size, $7 \times 101 / 2.431$ pages....... . $\$ 16.75$ \square Basic Radio and Television Systems. Size, $7 \times 101 / 2.409$ pages $\$ 16.75$
\square Antennas, Transmission Lines, and Microwaves. Size, $7 \times 101 / 2$. 315 pages .. $\$ 14.75$ The books listed above are written in easy-tounderstand home-study style, and include many circuit diagrams with explanations, sample problems with step-by-step solutions, practice problems with answers, etc.
Prepare for Your F.C.C. License -Grantham's FCC License Study Guide. Size, $7 \times 101 / 2.377$ pages....... . $\$ 14.75$ This book, for those with some knowledge of electronics, prepares you for commercial radiotelephone license exams-3rd, 2nd, and 1st class. It includes 1465 FCC-type practice questions, with more than 65,000 words of explanation, keyed to the questions.

To Order any books listed above, check then, compute the total price, add only $85 \mathfrak{c}$ for shipping charges (regardless of number of books), and mail this ad (or order by letter) with your name, address, \& payment (no C.O.D.S) to:

GSE Technical Books (2500 S. LaCienega Blvd.) P. O. Box 35499

Los Angeles, California 90035
CIRCLE NO. 29 ONFREEINFORMATION CARD

The Who, What, Why and How of MICROPROCESSORS

From Osborne /McGraw-Hill, Inc.

An Introduction to Microcomputers

 Four books that can teach you everything you need to know about microcomputers.Volume B - The Beginner's Book If you're not familiar with computers, but would like to be. then this is the book for you. Computer logic and terminology are introduced in a language the beginner can understand. Computer software, hardware and component parts are described, and simple explanations given for how they work. Text is supplemented with creative illustations and numerous photographs. \$7.95. Quantity:
Volume 1-Basic Concepts
A must for anyone in the computer field. this best selling text explains hardware and programming concepts common to all microprocessors. $\$ 9.50$

Quantity:___
Volume 2 - Some Real Microprocessors Provides objective, commercial-free descriptions of virtually every microprocessor on the markel today. Lets you know what's available. how they work (or sometimes don't work), and how to use them. More detailed user/designer information than provided by most manufacturers.

Loose leaf. unbound \$25.00. Quantity
Binder \$ 5.00. Quantity
Volume 3-Some Real Support Devices Same objective, in-depth coverage as Volume 2. but applied to support devices that might be used in any microprocessor system: memory, data communication devices, data converters, direct memory access controllers, busses, and much more.

Loose leaf. unbound \$15.00. Quantity Binder \$5.00. Quantity:
Volume 2 and Volume 3 Updates
To cope with the rapid evolution of microprocessor products, both Volume 2 and Volume 3 have their own series of six bimonthly updates. allowing you to remain current with all parts as soon as they are really available. Update subscriptions sold separately. Volume 2 update $\$ 25.00 / \mathrm{yr}$. Quantity: Volume 3 update $\$ 25.00 / y r$. Quantity. Volume 2 and Volume 3 updates purchased together $\$ 40.00 / y r$.
Write or call for a FREE catalog and information on other books on microprocessors.

Osborne/McGraw-Hill, Inc.
630 Bancroft Way, Dept. A5 Berkeley. CA 94710「el. (415) 548-2805 TWY 910-366-7277
1 have enclosed d check or money order for
Book , Suhtotai
(Callf resedents only.
no tax on Update subscriptions)
Tax ———
In the US. $\$ 0.45$ for each book Shipping
and binder. Foreign order, $\$ 4.01$ per item.
including each Update subscriptoon (allow + weeks)
Please thip to
TOTAL
vame:
Address:
(ity:
State:
Zip: 51024
all this hard-to-digest data, some extraneous music is played every few minutes. Tune in Sundays at 1420 on 9505; 2320 on 17755; at 0025 on 17825 and 15270; at 0210 on 21640, 17825, 17725, and 15270.

Netherlands. (*****)R. Nederland's "DX Jukebox" is probably the best DX program on the air. It contains a good mix of DX reports, propagation forecasts, tapes of station IDs, answers to listeners' questions, and club news. Unfortunately, the DX news isn't as timely as it might be, due to a two-week production lead time. The "jukebox" portion of rock music is supposed to ensnare passersby into DXing, while those who don't care for it have to put up with it to get the meat of the program. R. Nederland also offers free material by mail, such as DX Information Service Catalog and various courses. Tune in Thursdays at 1450 on 21480; at 2250 on 21640 , 17810. 11740, and 11730; at 0250 on 9590 and 6165; and at 0550 on 9715 and 6165. You can hear my North American DX report on the third week and Review of International Broadcasting on the fourth week.

New Zealand. (***)"Arthur Cushen's DX World' via R. New Zealand is a 15 -minute summary of DX news and schedules and some station ID tapes. It's on the first Sunday at 1015 (Nov. to Feb. 0915) on 6105. If you can't hear that, "DX Party Line" usually reads the whole script some weeks later on no particular schedule, and a condensed version is on "DX Juke Box" on the first Thursday.

Portugal. (**) R. Portugal has a DX feature every third Friday, that is on one week, off two weeks. Don't believe the announcer's promise to be back in 2 weeks. Tune in at 0315 and 0515 on 11935 and 6025.

Romania. (**) Radio Bucharest has a DX program Monday and Friday at 0215 on 11940 and 9570 , with a hamoriented technical talk.

South Africa. (**)Gerry Wood, a free-lancer, presented "DX Corner" until late last year. He made it a really interesting program, with thought-provoking commentaries on the DX hobby and some African DX news. But the program was turned over to Radio RSA employee Pieter Martins, who spends a lot more time talking about South African domestic broadcasting, a la Czechoslovakia. Tune in Saturdays at 2135 on 15155 and 0235 on 9610 and 5980, or Mondays at 1330 on 25790, 21535, or 15220.

SAVE

15% on NORTH STAR CROMEMCO and other S-100 Systems 10\% OFF RADIO SHACK TRS-80 and accessories (full warranty)

Complete line of printers and disk systems for TRS-80

WRITE FOR FREE CATALOG

MiniMicroMart, Inc.

1618 James Street, Syracuse NY 13203 PHONE: (315) 422-6666 TWX 710541 -0431 CIRCLENO. 40 ON FREEINFORMATION CARD

Spain. (**)Spanish Foreign Radio's "CQ, CQ" ("for amateur radio hams and DXers") has improved a lot, thanks to writer Ambrosio Wang An-Po. It has interesting talks and uncommon interval signal quizzes. You get only a few token items of "DX news," which usually aren't. The English version is an often-too-literal translation from Spanish. It has a really bouncy theme. Sundays at 0050 and 0145 on 11880 and 9630.
Sri Lanka. (***) "Radio Monitors International" via SLBC has a lot put into it by producer Adrian Peterson, an evangelist based in India. Various clubs from Australia to India to the USA contribute reports, as does Ian McFarland of RCl . But hearing it in North America is the problem. You can try on Sundays from 1100 to 1130 on 11835, 15120, and 17850 , or at 1400 to 1430 on 15425 and 9720 (subject to change).
Sweden. (****)Radio Sweden's "Sweden Calling DXers" is the oldest DX program still on the air, dating from the 1940s. Liberal-minded compiler and presenter George Wood deemphasizes DX news in favor of more club news and commentary, to the detriment of the program. Still, from 50 to more than 100 people send in material each week from
all over the world, with Europe dominating, and very little of it ever gets on to this 10-minute program. Listen to other language versions for additional items or, better yet, write Radio Sweden for a free copy of the entire printed script. Tune in Tuesdays al 1415 on 21615; 2315 on 15290 and 11705; 0045 on 15290; and 0245 on 15275 and 11705.
Switzerland. (***)SRI's "Swiss Shortwave Merry-Go-Round" is a very informal conversation between "The Two Bobs" (Zanotti \& Thomann), mainly off-the-cuff answers to listeners' technical questions. Also, a "strange signal" is played and identified each time, and once a month there is a sunspot report. The presenters, who are both hams, should do a little more research before guessing at answers to questions. There is never any DX news, which is left to other programs. Tune in second and fourth Saturdays at 1320 on 21570; 1820 on 21585; 0150 on 15305, 11715, 9725 and 6135; and 0435 on 15305, 11715, and 9725
Turkey. (**)Voice of Turkey makes a valiant effort with its "DX Corner" (original title, eh?), but the station just doesn't have enough material. As a result, DX items from other stations and acknowl-

SEE YOUR DEALER TODAY DEMAND THE ORIGINAL

'Firestik'
 "THE FUEL-SEEKER"

THE \# 1 WIRE-WOUND AND MOST COPIED ANTENNA IN THE WORLD! Rugged. Shatterproal Fiberglass
A Antennas and accesories for marine. RV Iruck auto van and motorcycles etc Four Colors Silver Giay Black. Red and White Our 17th Year Serving the CB \& Communications Market SEND FOR FREE CATALOG

LIMITED OFFER - USA ONLY
Get this nine-inch 'Firestik"' Antenna Wars decal in four beautiful colors on a PAL T-shirt. See your dealer today or send $\$ 3.00$ to:

PAL 2614 East Adams Phoenix. Az 85034
Name
Street
Cily
State
Dealer \& Distributor Inquiries Invited
5-YEAR REPLAGEWENT WARRANTY CIRCLENO. 50 ON FREEINFORMATION CARD

Energy shortages tell us we have to change our driving style.

smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.

The better your ear,

 the more you need new Audio-Technica VITAL LINKS!Every wire, every connection in your stereo system is a source of trouble, a chance for losses which can keep your system from achieving its full potential.

Introducing three new Vital Link wire sets from Audio-Technica... each a positive step toward ideal performance and trouble-free operation.

Start at the cartridge with the AT609 Head Shell Wire Set. Color-coded, insulated wires with 14 strands of pure silver Litz wire, terminated in corrosion-free gold terminals. No losses, no intermittents. Easy to install. Just $\$ 6.95$ and worth every penny.

Between turntable and amplifier (or any two stereo components) use new AT610a High Conductivity Cable. A stereo pair 60" long, plus an independent ground wire with lugs. Each goldplated plug is colorcoded. Both resistance and capacitance are far below ordinary cables. Only \$9.95.

For the most critical installations use our AT620 Superconductivity Cable Set. Two individual cables, each $48^{\prime \prime}$ long. with heavily goldplated plugs. Inside the wire shield is a
 second conductive layer of poly propylene shielding. Special foam dielectric keeps capacity low, while superb conductivity is assured by using Litz-wire inner conductors with maximum surface area which reduces high frequency losses. The set lists for \$29.95.

From phonograph cartridge to loudspeaker, each audio system is a chain, no stronger than its weakest link. Connect your system with Vital Link cables from AudioTechnica. At your A-T dealer now. Or write for our complete audio accessory catalog.
edgements to listeners' reception reports must be read. Tune in Monday, Thursday, and Saturdays at 2135 on 11955 and 9515.

UK. (**)The BBC "World Radio Club" is a weekly quarter-hour tightlyproduced and superficial, as an attempt is made to squeeze too much material into the time available. (Admission to the Club is free to anyone who applies. You must be a member to participate in pennant and QSL competition.) The vast resources of the BBC Monitoring Service are barely tapped for DX news, also provided by individual DXer Noel Green. Nor is there DX news every week-it's a convenient time-filler, made up of many short, unrelated items. And the DX news is interrupted by host Peter Barsby every few seconds to make it sound like a conversation. Because of the curious station policy, producer Reg Kennedy apparently censors out any DX news about communist countries, which is a head-in-the-sand approach that is unworthy of a great world broadcaster. Henry Hatch often replies to listeners' questions in an extremely condescending tone. Scheduling could change in September. Tune in now on Sundays at 0745. Mondays at 1115. Tuesdays at 2100, or Wednesdays at 2315.

USA. To our shame, there is no DX program on an American shortwave station. However, those people who are close enough to Knoxville, TN, can hear my "Shortwave Review," most Saturdays for 5 to 20 minutes before noon eastern time on WUOT (FM) 91.9 MHz . The Review includes $D X$ news even before it is heard on RCI DX Digest, broadcast reviews, and replays of some shortwave DX programs. It is available to other stations on a noncommercial basis.

USSR. (**)R. Moscows "DX Program" proves that the Russians really do have no qualms about plagiarism. This might be called "the illegitimate son of Sweden Calling DXers," since a few weeks after an item appears in SCDX, it turns up here with no source stated. | Occasional info on Soviet broadcasting and ham radio is given. Tune in Satur days at 1135, 1535, 1835, 2135, 2335, 0135, 0335, 0435, and 0635; Tuesdays at 0835 and 1535 ; Thursdays at 1435.

USSR. (*)R. Kiev also has a DX program that is largely ham-radio oriented and inward-looking. Tune in Wednes\mid days at 0045 and 0315.

USSR. R. Tashkent has a DX program on the second Sunday at 1200, repeated the following Saturday at 1400 on 15460, 15125, 11925, and 11730. \diamond

FREE STHP

CATALOG

Audio-Computers
Instruments Kits \& Assembled

Southwest Technical Products Corporation 219 W. RHAPSODY SAN ANTONIO. TEXAS 78216

CIRCLE NO. 58 ON FREE INFORMATION CARD

Learn Camera Repair at home

Camera repair is a great field for full-time work, second income, retirement income or just a profitable hobby. Our proven system provides all essential lesson materials, tools, practice equipment, professional instruction. Includes the latest in photo electronics.
Learn at home in your spare time. Send for free school brochure. Accredited member National Home Study Council, approved for veterans training, pioneers in photo technology training since 1952.

national Camera, Inc.
Technicol Training Division
1315 south Clarkson St.. Dept. GGA Denver, CO 80210

Product Test Reports

B\&K Precision Model DP50 $50-\mathrm{MHz}$ Digital Probe

The Model DP50 from B\&K Precision has been designed for use with RTL, DTL, TTL, HTL, MOS, CMOS, and HiNIL (high-noise-immunity logic) families. Thus, it is an almost "universal" digital electronics circuit tesi instrument. The $50-\mathrm{MHz}$ probe is compact, measuring only $6^{\prime \prime} \mathrm{L} \times 11^{\prime \prime} \mathrm{W} \times 3 / 3^{\prime \prime} \mathrm{D}(15.2 \times 3.2$ $\times 1.9 \mathrm{~cm})$ and weighs just $3.5 \mathrm{oz}(98 \mathrm{~g})$. It comes with $30^{\prime \prime}$ power leads, to the ends of which are attached insulated color-coded alligator clips. Suggested retail price is $\$ 50.00$.

General Description. Three bright light-emitting diodes located near the probe's test tip indicate the conditions existing at any given point in a circuit under test. Two of these are assigned to indicating steady-state logic-0 and logic-1 states, while the third is a pulse-catcher display. Near these three LEDs is a MEM/PULSE slide switch for selecting either the memory or pulse mode of operation. In the pulse position, a detected pulse can be stretched out to 200 ms so that very fast pulses, some of which may not cause the LED to light, can be observed. Set to the MEM mode, a fast transient pulse will cause the pulse LED to come on and remain on until the logic in the probe is reset.

The probe is designed to detect pulses of less than 20 ns in width (10 ns typical). Intensity of the associated LED indicates the duty cycle of the pulse.

When the probe is operated in the pULSE mode, it can detect and stretch any pulse that crosses the threshold level, while in the MEM mode, it can detect and latch onto any threshold crossing. The logic-0 and logic-1 thresholds are 0.8 volt for TTL or $30 \% V_{D D}$ for CMOS and 2.4 volts for TTL or 70% $V_{D D}$ for CMOS, respectively.

Overload protection of ± 50 volts is provided for the input, whose impedance is rated at 2 megohms for minimum loading. The probe is designed to operate with power supplies with outputs of from 5 to 15 volts dc. Input protection on the power leads is provided up to 20 volts; reverse-polarity protection is to 50 volts.

There are only two operating controls on the probe, both slide switches. One is the MEM/PULSE switch. The other is the logic-family selector whose positions are labelled TTL and CMOS.

Test Results. The testing procedure for a simple test instrument like a digital probe is necessarily limited. In the case of the DP50 probe, we were able to
check only frequency response, sensitivity, and duty cycle.

In an overall frequency-response measurement, the probe delivered reliable performance out to at least 50 MHz . We did not attempt to determine the obsolute top-end response of the probe. We did, however, obtain reliable performance with a $60-\mathrm{MHz}$ input signal.

The PULSE and MEM modes permitted the logic probe to catch pulses of very short duration, at least down to 10 ns and 5% duty cycle. The triggering thresholds for the two logic levels were almost exactly as specified.

The light-emitting diode indicators were more than adequately bright. Even under bright lighting conditions, the lighted LEDS were easy to distinguish.

User Report. Unlike many digital probes we have used over the years, the DP50 stands out for its "human engineering." It is one of the best "hand-fitting" probes we have encountered. This, plus its surprisingly light weight, enabled us to rapidly troubleshoot a number of digital systems without suffering operator fatigue.

CIRCLENO 105 ON FREEINFORMATION CARD

By Netronics

Computer Terminal
 COMPLETE
 $\$ 149^{95}$

The Netronics ASCII/BAUDOT Computer Terminal Kit is a microprocessor-controlled, stand alone keyboard/terminal requring no computer memory or software. It allows the use of either a 64 , or 32 character by 16 line professional display format with selectable baud rate, RS232-C or 20 ma. output, full cursor control and 75 ohni composite video output.

The keyboard follows the standard typewriter configuration and generates the entire 128 character ASCII upper/lower case set with 96 printable characters. Features include onboard regulators, selectable parity, shift lock key, alpha lock jumper, a drive capability of one TTY load, and the ability to mate directly with almost any computer, including the new Explorer/85 and ELF products by Netronics.
The Computer Terminal requires no I/O mapping and ncludes 1 k of memory, character generator, 2 key rollover, processor controlled cursor control, parallel ASCII/BAUDOI to serial conversion and serial to video processing-fully crystal controlled for superb accuracy. PC boards are the highest quality glass epoxy for the ultimate in reliability and long life.

VIDEO DISPLAY SPECIFICATIONS
The heart of the Netronics Computer Terminal is the micro-processor-controlled Netronics Video Display Board (VID which allows the terminal to utilize either a parallel ASCII or BAUDOT signal source. The VID converts the parallel data to serial data which is then formatted to either RS232-C or 20 ma current loop output, which can be connected to the serial I/O on your computer or other interface. i.e., Modem

When connected to a computer, the computer must echo the character received. This data is received by the VID which processes the information, converting to data to video suitable to be displayed on a TV set (using an RF nodulator) or on a video monitor. The VID generates the cursor, horizontal and vertical sync pulses and performs the housekeeping relative to which character and where it is to be displayed on the screen Video Output: 1.5 P/P into 75 ohm (EIA RS-170) • Baud Rate 110 and 300 ASCII • Outputs: RS232-C or 20 ma. current loop - ASCII Character Set: 128 printable characters-

abcdefghi jklnnoparstuwxpe\{i)M BAUDOT Character set: $A B C D E F G H I J K L M$ NOPC RSTUVWXYZ-?: 3 §\# (1, 9014!57:2/68 Cursor Modes: Home, Backspace, Horizonal Tab, Line Feed Versical Tab, Carriage Return. Twn special cursor sequences Verfical Tab, Carriage Renurn. Twn special cursor sequences Cursor Control: Erase, End of Line, Erase of Screen, Form Feed, Delete - Monitor Operation: 50 or 60 Hz (jumper selectable.

Continental U.S.A. Credit Card Buyers Outside Connecticut CALL TOLL FREE 800-243-7428

To Order From Connecticut Or For Technical - To Order From Connecticut Or For Techni Netronics R\&D Ltd., Dept. PE-9
333 Litchfield Road, New Milford, CT 06776
333 Litchield Road, New the items checked below-
\square Netronics Stand Alone ASCII Keyboard/Computer Terminal Kit, \$149.95 plus \$3.00 postage \& handing. Deluxe Steel Cabinet for Netronics Keyboard/Terminal In Blue/Black Finish, $\mathbf{\$ 1 9 . 9 5}$ plus $\$ 2.50$ postage and handling.
\square Video Itisplay Board Kit alone (less keyboard), \$89.95 plus $\$ 3$ postage \& handling.
12" Video Monitor (10 MHz bandwidth) fully assem 12 Video Mond tested, $\$ 139.95$ plus $\$ 5$ postage and handling
\square RF Modulator 5 amp Power Supply Kit In Deluxe Steel Cabine (\pm 8VDC @ 5 amps, plus 6-8 VAC), $\$ 39.95$ plus $\$ 2$ postage \& handling.
Total Enclosed (Conn. res. add sales tax)
By\square Personal Check \square Cashiers Check/Money Orde
\square Visa \square Master Charge (Bank \#

CIRCLENO. 42 ON FREE INFORMATION CARD

By Hal Chamberlin

DIGITAL MAGNETIC RECORDING

N AN EARLIER column, many different audio data recording techniques were described. One feature all of them had in common was the overriding requirement for compensation for waveform distortion and frequency-response limitations of audio cassette recorders. The consequence is low speed (typically between 100 and 1000 bits per second) and an unsatisfactory reliability factor for serious personal or business use. Both of these problems can be overcome through the use of direct digital recording on the tape, thereby bypassing the audio circuitry.

Saturation Recording. Direct digital recording is also called saturation recording because the magnetic coating on the tape is fully saturated by the recording process. Normal audio recording uses only a small portion of the tape's "magnetic energy" to reduce harmonic distortion to acceptable levels. By magnetically saturating the tape, however, variations in tape sensitivity are masked and the higher-level playback is better able to overcome noise.

With saturation recording, referring to the waveform of the signal is no longer meaningful since everything is distorted into square waves. The basic signal element is the flux transition. As shown at (A) in the figure, the current waveform is
either fully positive for north-south magnetization of the tape or fully negative for south-north magnetization. The actual magnetic pattern recorded on the tape is shown at (B).

When playing back the illustrated pattern, one would expect the playback head's signal to closely resemble the square-wave signal recorded on the tape. Actually, the action is similar to that of an induction coil so the signal on the playback head appears as at (C). A signal is produced in the coil only when the magnetic field is changing. Thus, portions of the tape with a constant magnetic field produce no signal when they pass the playback head gap. The boundary separating opposite magnetic directions, however, will produce a pulse in the playback head when it passes. As illustrated, a transition from north to south produces a positive-going pulse, while a transition from south to north produces a negative-going pulse.

At first glance, it would seem that encoding bits into flux transitions would be simple: provide a north-south (positive playback pulse) for a one and a southnorth (negative pulse) for a zero. Further thought, however, reveals that it would be impossible to obtain two ones or two zeroes in a row since pulse polarity always alternates and, therefore, has no information value. In fact, the only infor-

mation content in the playback waveform is the relative timing of playback pulses.

Waveforms (D) and (E) in the figure show how these playback pulses are accurately detected and converted into digital pulses for use by a computer or logic circuit. Since information is encoded in the pulse timing. it is desirable to find the center of the playback pulse, which corresponds to the actual point of flux transition. High-pass filtering of the playback waveform (D) produces a double pulse that crosses zero at the exact center of the playback pulse. Accuracy of this center point is largely unaffected by the amplitude of the playback pulse. Fi.al recovery of the original recorded square wave is accomplished by passing the filtered signal through a symmetrical Schmitt trigger that converts it into a logic signal suitable for computer use.

For maximum speed and data capacity, it is desirable to be able to pack flux transitions as close together as possible. The limit is reached when they are so close together that adjacent playback pulses intertere excessively with each other. The result of such interference is called peak shift since peaks of the playback pulses shift position slightly while trying to equalize their density. The effect of peak shift is to reduce data recovery reliability because timing, which contains the information, is distorted.

Encoding Bits. The information content of the playback square wave is in the timing of transitions from 1 to 0 and from 0 to 1. There are several ways to encode bits into transition timing, but the most popular is called "double-frequency encoding." In this case, a bit cell always starts with a transition. A 1-bit is signified by the occurrence of another transition a short time later. A 0-bit consists of just the initial transition. (The data pattern shown in the figure illustrates the double-frequency encoding method.) The transitions that always occur at the beginning of the bit cell are termed clock transitions since they mark boundaries between bits. The transitions that may occur in the middle of the bit cell are termed data transitions since they contain the binary information.

The main advantage of double-frequency encoding is in the ease with which it can be generated and decoded. Decoding is simple and can be done with a one-shot circuit. The trick is to use a one-shot that will trigger whenever its input changes, unless it is already trig-

Explorer/85 Professional Computer

Starting at just $\$ 129.95$ for a Level "A" operating system. you can now build the exact computer you want. Fxplorer/85 can be your beginner's system, OEM controller, or IBM-
formatted $8^{\prime \prime}$ dlsk small busimess sysfem. . yet you're never formatted $8^{\prime \prime}$ disk small busimess system. . yet you're never forced to spend a penny for a component or feature y?
want and you can expand in small, affordable steps!

Now, for just $\$ 129.95$, you can own the first level of a fully expandable computer with professional capabilities-a com puter which features the advanced Intel 8085 cpu , thereby giving you immediate access to all software and development tools that exist for both the 8085 and its 8080A predecessor (they are 100% soffware compatible)-a computer which features onboard S-100 bus expansion-plus instant conversion to mass storage disk memory with either $5-1 / 4^{\prime \prime}$ diskettes or standard 1BM-formatted $8^{\prime \prime}$ disks.
For just $\$ 129.95$ (plus the cost of a power supply, keyboard/ terminal and RF modulator, if you don't have them already). Explorer $/ 85$ lets you begin computing on a significant level.. applying the principles discussed in leading computer magazines. . developing "state of the art" computer solutions for both the industrial and leisure environment.
Like all Netronics products, each level of Explorer/85 i engineered to professional standards. Top quality components are used throughout. You are insured. year after year, of stable, reliable service.

And Netronics lets you build the system you want-with the exact components you want. You're never forced to spend a penny for an item you already have ii.e.. a power supply. RF modulator, keyboard, etc.) in order to get a new feature or component you need.
No matter what your future computing plans may be, Level " A " is your starting poim

Level "A" Specifications

Explorer/85's Level "A" system features the advanced intel 8085 cpu , an 8355 ROM with 2 k deluxe monitor/operating system, and an $8155 \mathrm{ROM}-1 / \mathrm{O}$-all on a single motherboard with room for RAM/ROM/PROM/EPROM and S-100 expansion, plus generous prototyping space.
(Level " A " makes a perfect OFM controller for indsutrial applications and is avallable in a special Hex Version which can be programmed using the Netronics Hex Keypad/Display.)

PC Board: glass epoxy, plated through holes with solder mask - 1/0: provisions for 25 -pin (DB25) connector for terminal serial $1 / O$, which can also support a paper tape reader
provision for 24 -pin DIP socket for hex keyboard/display
cassette tape recorder input. . .cassette tape recorder output
cassette tape control output . . . speaker out put . . LED output indicator en SOD (serial output) line... printer interface (less drivers) ...total of four 8 -bit plus one 6 -bit $1 / O$ ports ${ }^{-}$ Crysial Frequency: 6.144 MHz • Control Switches; reset and user (RST 7.5) interrupt. . . additional provisions for RST 5.5 6.5 and TRAP interrupts onboard - Counter/Timer: programmable, 14-bit binary - System RAM: $\mathbf{2 5 6}$ bytes located at F800, ideal for smaller systems and for use as an isolated stack area in expanded systems... RAM expandable to 64 k via $\mathrm{S}-100$ bus or 4 K on motherboard.
Monitor ROM (ASCll Keyboard Version): 2k bytes of deluxe system monitor ROM located at FQOB leaving boved free for user RAM/ROM. Features include tape load with labeling (so that Explorer/85 can locate your specific program automatically). . tape dump with labeling. .examine/change contents of memory. . insert data (such as from a paper tape reader).. warm start (a feature which is especially helpful in debugging routines as it allows you to save the contents of the registers which might otherwise be lost along with the rest of your program when a bug causes it to self-destruct. The warm start feature helps you pinpoint the exact line in your program that contains an error)..examine and change all registers...single step with register display at each break point, a debugging/training featurm ..go to execution address. move blocks of memory from one location to another. . fil blocks of memory with a constant . . display blocks of memory .automatic baud rate selection. . . variable display line length control (1-255 characters/line)...channelized 1/O monitor
routine with 8-bit parallel output for high speed printer
Netronics ResD Ltd., Depl. PE.9
333 Litchfield Road, New Milford, CT 06676

serial console in and console out channet so that monitor can

 communicate with $1 / 0$ portMonitor ROM (Hex Version): Tape load with labeling tape dump with labeling. . examine/change contents of mem ory...insert data... warm start...examine and change all registers... single step with register display at each break point go to execution address.

Level "B" Specifications

Level " B " provides the S-100 signals plus buffers/drivers to support up to six $\mathrm{S}-100$ bus boards and includes: address decoding for onboard 4 k RAM expansion selectable in ak blocks. address decoding for onboard 8k EPROM expansion selectable in $8 k$ blocks...address and data bus drivers for onboard expansion... wait state generator (jumper selectable) onboard expansion.. Wait state generator (uumper selectable) regulators to insure maximum stability and a noise free bus
Level "C" Specifications
Level "C" expands Explorer's motherboard with a card cage allowing you to plug up to six S - 100 cards directly into the motherboard. Both cage and cards are neatly contained inside Explorer's deluxe steet cabinet. Ievel "C" includes a shee metal superstructure, a 5 -card gold plated S - 100 extension PC board which plugs into the motherboard, 12 card guides, and all hrackets and hardware needed for complete assembly. Just add required number of $\mathrm{S}-100$ connectors
In addıtion to six S-ION cards. Level "C'" will also support an optional test socket that allows you to perform tests and maintenance on both sides of any individual S - 100 card , under actual operating conditions. (You won't need Level "C"' unless you are planning to use 3 or more S-100 cards with you Explorer/85.)

Level "D" Specilications

l evel "ID" provides Ak or RAM, nower supply regulation. filtering decoupling components and sockets to expand your Explorer. 85 memory to 4 k (olus the original 256 bytes lacated in the 8155 Al .
The 2114 static RAM is organized as 1024 words by 4 -bits using N -channel Silicon-Gate MOS technology and can be located anywhere from thets to EFFF in 4 k blocks.
Level "E" Specifications
Level " E " adds sockets for 8 k of EPROM to use the popular Intel 2716 or the TI 2516 . It includes all sockets, power supply regulator, heat sink. filtering and decoupling components Sockets may also be used for soon to be available RAM IC' (allowing for up to 12 k of onboard RAM).

Order A Coordinated

Explorer/85 Applications Pak!

Experimenter's Pak (\$AVE; \$12.50)-Buy Level " $\mathrm{A}^{\text {" }}$, and Hex Keypad/Display for $\$ 199.90$ and get FREE Intel 8085 user's manual plus F RFE postage \& handling!
 buard/Computer Terminal, and Power Supply for $\$ 319.85$ and get FREFRF Modulator plus FREE Intel 8085 user's manual plus FREE postage \& handling!
Finginerring Pak (SAVE $\mathbf{~ 4 1 . 0 0)}$-Buy Levels "A," "B, Compren and "E" with Power Supply, ASC11 Keyboard Computer Terminal, and six S-100 Bus Connectors for $\$ \$ 14.75$ and get 10 •REE computer frade cassette tapes plus 1 REE 808 S user's manual plus FREE postage \& handling:
Business Pal (SAVF. S89.95)-Buy Explorer/85 Levels "A. "B," and "'C" (with cabinet). Power Supply, ASC11 Key board/Computer Terminal (with cabinet), I6k RAM, 12 "
Video Monitor, Niorth Star $5.1 / 4^{\prime \prime}$ Disk Drive (include Sideo Monitor, North Star $5-1 / 4$. Disk Drive (includes North Star BASIC) with power supply and cabinet, all for just plus FREE 8085 user's manual plus FREE postage \& handling!

CALL TOLL FREE 800-243-7428

Aser From Connecticut Or For Technica

333 Litchiteld Road, New Milfor
Please send the items checked below-
Piease send ihe items checked below-
\square Explorer/B5 level "A"• Kit (ASC1) Version), $\$ 129.95$ plus $\$ 3$ pkh. \square Explorer/85 Level "A"' Kit (Hex Version), $\mathbf{\$ 1 2 9 . 9 5}$ plus $\$ 3$ peh. tape, $\mathbf{S} 64.95$ postpaid.
tape, $\mathbf{S 6 4 . 9 5}$ postpaid.
\square 8k Microsoft BASIC in ROM Kit
(requires l.evels " B ,
$\$ 99.95$ plus $\$ 2$ pah.
\square Level " B " ($\mathrm{S}-100$) Kit. $\mathbf{\$ 2 9 . 9 5}$ plus $\$ 2$ prh.
\square Level "C" (S-100 6-card expander) Kit. $\$ 39.95$ plus $\$ 2$ p\&h.
\square Level " 1 D " (4k RAM) Kil, $\mathbf{5 6 9 . 9 5}$ plus $\$ 2$ phh.
\square Level "E." (EPROM/ROM) Kit,
$\mathbf{5 S . 9 5}$ plus soc peih
\square Deluxe Steel Cabinet for Explorer 85. Seluxe Steel Cabine
S9.95 plus $\$ 3$ pikh.
\square ASCII Keyboard/Computer Terminal Kit (features a full 128 characte set, upper \& lower case, full cursor control, 75 ohm video output convertible RS232-C or 20 ma I 0,32 or 64 char RS232-C or 20 ma. 1/O. 32 or 64 char acter by 16 line formats, and can be used with either a CRT monitor or a TV $\mathbf{\$ 1 4 9 . 9 5}$ plus $\$ 2.50$ p*h.
\square Deluxe steel Cabinet for ASCll Keyboard/Terminal. $\$ 19.95$ plus $\$ 2.50$ p\&h.
\square Power Supply Kit ($\pm 8 \mathrm{~V}$ @ 5 amps) in deluxe steel cabiner, $\$ 39.95$ plus $\$ 2$ pkh.
\square Gold Pleted S-100 Bus Connectors, 54.85 each, postpaid.
\square RI Modulator Kit (allows you to use your TV set as a monitor), $\$ 8.95$ postpaid.
16k RAM Kit IS-100 Board expands 10 (64k). $\$ 199.95$ plus $\$ 2$ pish
$\square 32 \mathrm{k}$ RAM Kii, $\mathbf{\$ 3 2 9 . 9 5}$ plus $\$ 2$ peh
48K RAM Kit, $\mathbf{S 4 5 9 . 9 5}$ plus $\$ 2$ p\&h $\square 64 k$ RAM KIt. $\mathbf{5 5 8 9 . 9 5}$ plus $\$ 2$ p\&h.

- 16k RAM Expansion Kit (to expand any of the above up to 64 k), $\$ 139.95$ plus $\$ 2$ p\&h each.
\square Intel 8085 сpu User's Manual. 57.50 post paid.
\square Sperial Computer Grude Cassert Tapes, $\$ 1,90$ Computer Grade Cassette Tapes, $\$ 1,90$ each or 3 for $\$ 5$. post paid. $\square 12^{*}$ Video Monltor (10 MHz band width), \$139.95 plus \$5 pkh.
\square North Siar Double Density Floppy Disk System (One Drive) for Explorer 85 (includes 3 drive S- 100 controller DOS. and extended BASIC with per.
sonalized disk operating system-just
plug it in and you're up and running?). $\$ 699.95$ plus $\$ 5$ pih.
\square Power Supply for North Star Disk
Drive, $\$ 39.95$ plus $\$ 2$ d
Drive, $\$ 39.95$ plus $\$ 2$ p\&h.
\square Deluxe Case for North Star Disk Drive, $\$ 39.95$ plus $\$ 2$ p\&h.
\square Experimenter's Pak (see above). $\$ 199.90$ post paid

postpaid.

\square Englneeri
$\square 514$ Englneering Pak (see above). $\$ 514.75$ post paid
\square Business Pak (see above), $\$ 1599,40$
postpaid.
Total Enclosed $\$$
(Conn. res. add sales tax) By-
\square Personal Check Personal Check \square M.O./Cashier's
\square

Signature __ Exp. Date
Print

- Auto lndexing
- Anti-Overwrap
- Modified Wrap

BW2630 Hobby Tool 3.95 \#26 Bit (Not Inct) $\quad 7.95$

Precut Wire Wrap Wire

Kynar precut wire All iengths are overall. including 1 strip on each end Colors and lengths cannot be mixed for quantity pricing All sizes listed are in stock for immediate shipmen Other lengths available Choose from colors: Hed. Blue Yellow Orange Black. White,Green and Violet One inch tubes are avallable at $50 c$ each.

REN IC Sockets

QUALITY STEREO EQUIPMENT AT LOWEST PRICES
YOUR REQUEST FOR QUOTATION RETURNED SAME DAY FACTORY SEALED CARTONSCUARANTEED AND INSURED

SAVE ON NAME BRANDS LIKE
PIONEER SANSUI DYNACO KENWOOD SONY
SHURE MARANTZ
AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312.664.0020

CIRCLE NO. 60 ON FREE INFORMATION CARD
geted. For accurate recovery of data. the one-shot's pulse width is set to $3 / 4$ of the bit-cell time. When driven by the recovered square wave, the one-shot will fire on the clock transitions. If another transition occurs while the one-shot is fired, a 1 -bit is recovered. If the one-shot times out before the next transition, then a 0-bit has been recovered

Encoding methods can be characterized by their encoding efficiency ratio. This is the ratio of the total bit-cell to the minimum spacing between flux transitions. Since the maximum density of flux transitions is limited, a higher ratio means more data storage capacity and higher speed. The encoding efficiency ratio of double-frequency encoding is $1 / 2$, which is not very good. Other methods, called "double density" encoding, exhibit ratios as high as 1.0. They are much more difficult to encode and decode. however, and are more susceptable to defects in the magnetic media.

Formats. In both cassettes and floppy disks. the record data is organized into blocks called records. On cassettes. records may be any length and, in fact, are usually entire programs. On floppy disks, however, the records are fixed in size to allow easy addressing and updating of data. A typical record size is 128 bytes, which is large enough to minimize the percentage of "overhead" yet small enough for convenient use.

On a disk, data records are called sectors. Some method of marking off sector boundaries and separating them is necessary if an individual sector is to be updated without disturbing adjacent sectors. The simplest method of doing this is called hard sectoring because holes punched into the disk itself determine the sector boundaries by means of a light and photocell arrangement. Another method uses special patterns in the data itself to mark sector boundaries and is, therefore, called soft sectoring. Since these special patterns take additional space. the overhead associated with soft sectoring is greater. In fact, a full-size floppy disk using hard sectoring can put 32 sectbrs on a track, while a soft sector disk can manage only 26 --a 23% difference.

Besides a reduction in capacity, the soft sector format is much more difficult to decode. The use of integrated circuits specifically designed to handle soft sectoring, however, effectively masks this complexity from the user. Today, most floppy-disk systems use soft sectoring in spite of the data capacity reduction.

POPULAR ELECTRONICS

By Leslie Solomon Technical Director

MBS BASIC. Written for the Fairchild F8 processors, this BASIC occupies 16 K including code, work area and text buffer. It features 9 -digit precision and a full complement of BASIC statements, functions, operators. variables and has special control characters, commands, and some planned enhancements that include file handling capability. $\$ 175$ on Fairbug format paper tape. Further information from Micro Business System, Inc., Box 8255, JFK Station, Boston, Mass. 02114 (Tel: 617-682-1854).

Disk Payroll. Written for the TRS-80, this interactive payroll system has automated file handling and an output for the TRS-80 line printer. It includes quarterly summaries.
\$59.95. Hebbler Software Services, 7142 Elliot Dr., Dallas, TX 75227.

PET BASIC Compleat. This program features 20 lessons on PET BASIC. cursor control, screen editing, and the use of graphic characters. Over 400 screenfulls of information are contained in the two cassettes. The manual is 170 pages. $\$ 39.95$ from ARESCO. Box 43. Audubon. PA 19407 (Tel: 215-631-9052).

IDSWORD. Written in North Star BASIC (version 6), and DOS (release 4.0), this word processor features: insertion, deletion and block moves of text; global searches; complete text editing; variable speed scrolling; page number and titling (top or bottom) ; reformatting data for maximum line size; control of merging and justification; processing of nonIDSWORD files: merging of up to 10 files; form letter printing with justification and text insertion from up to 20 mailing list files; and sorting and printing of mailing labels. Basic system is $\$ 125$. complete word processor is $\$ 245$ (CRT) and $\$ 220$ (printer). Add $\$ 50$ for form letter, labels and name/address file maintenance and sort modules. CW Applications, 1776 E. Jefferson St., Rockville, MD 20852 (Tel: 301-468-0455)

General Catalog. A number of programs ranging from games to financial packages for just about any computer and disc or
cassette interface is covered in a catalog from Soft-One, 315 Dominion Drive, Newport News, VA 23602.

TRS-80 Cassette. Running in any 4K. Level-II TRS-80, this cassette includes a fi nancial program with amortization, interest, etc., a biorhythm program including a perpetual calendar, a doodle program that uses TRS-80 graphics. a decision-making program, and a Mastermind program. \$12.95. Complete Computer Services, 8188 Heather Drive. Newburgh, IN 47630 (Tel: 812-853-5140).

Speech Vocabularies. An application note describing how to swap, save and restore vocabularies is now available. Written for users of the Model 20 speech recognition systems as used in Apple II and S100 systems, the approach enables recognition of multiples of 32 words, thus providing virtually unlimited vocabulary size. Heuristics, Inc., 900 San Antonio Road, Los Altos. CA 94022 (Tel: 415-948-2542)

Accounting Package. Version 1.0 of the Alpha Accounting software package includes general ledger, inventory control and payroll. Full documentation and test data is included. The package is designed for use with systems using the Alpha AM-100 CPU board. Alpha Micro, 17881 Sky Park North, Irvine. CA 92714 (Tel: 714-957-1404)

THE Mriocomituer mait

 COMPUIER RETAL STORESAdvertisement

CALIFORNIA

Omega Microcomputers
Quality Personal-Business Systems
Apple 11-Alpha Micro
3535 Torrance Boulevard
Suite 10
Torrance CA 90503
(213) 370-9456

Rainbow Computing
Complete Apple 11 Line
1073 White Oak Avenue
Granada Hills, CA 91344
(213) $360-2171$

COLORADO

Byte Shop
Complete Apple 11 Line
3464 Acoma Street
Englewood CO 80110
(303) 761-6232

FLORIDA

Computer Age. Inc
Service. Support. Protessionalism
At A Very Affordable Price
1308 North Federal Highway
Pompano Beach. FLA 33062
305) 689-3233

MICHIGAN
Computer Center
Business Systems/Personal Systems
28251 Ford Road
Garden City. M1 48135
(313) 422-2570

The Computer Mar
We will Not Be Undersold
560 W. 14 Mile Road
Clawson. MI 48017
(313) 288-0040

NEW JERSEY

Computer Mart of New Jersey
The Microcomputer People (R) 501 Route 27
Iselin. NJ 08830
(201) 283-0600

OHIO
Band-Orch. Inc
Complete Ohio Scientific Line
337 East State Street
Alliance, Ohio 44601
(216) 821-2600

PENNSYLVANIA

Personal Computer Corp
First in Pennsylvania
Frazer Mall
Lancaster Avenue and Route 352
Frazer. PA 19355
(215) 647-8453

Ripley Computers
Affordable Computers For
Business/Churches/Home/Personal
126 N Main Street
Souderton. PA 18964
(215) 723-1509

WASHINGTON

P.S.C. - Computer Systems

Business And Personal Software Systems
546 North 6th
Walia Walla WA 99362
(509) 529-9331

TRI-STATE LED DEMONSTRATOR

THE TRI-STATE LED is one of the most interesting optoelectronic components available to the experimenter. The most common version incorporates separate red and green LED chips mounted very close to one another in a clear or milky-white epoxy package. The two chips are connected as shown in Fig. 1 in what is called an inverse parallel configuration. This ensures that one of the two diodes is forward-biased regardless of the polarity of the applied voltage.

Fig. I. Schematic symbol for a tri-state LED.

The three states of a tri-state LED usually are defined as red, green and off. Actually, a total of seven optical states is avail-

Thousands of Communications Electronics customers OWN A BEARCAT ${ }^{*}$ SCANNER.
But since we've introduced the Bearcat* 250 crystalless 15,600 frequency, 50 channel synthesized scanner,
|our specifications have been improved:
Sensitivity
0.4 microvolts for 12 dB SINAD on VHF
bands. UHF band slightly less

Selectivity

Better than $-60 \mathrm{~dB} @ \pm 25 \mathrm{KHz}$
Audio Output
At least 2.0 Watts rms

Audio Quality

The BC-250 audio is more noise-free and suffers less distortion than comparable models by a margin of 10 dB or more.

Image Rejection

The BC - 250 rejects image frequencies by at least 8 dB better in all bands than comparable models. This month, we've got a special price on the Bearcat ${ }^{\star} 250$. Now, you can own this fantastic professional monitor for only $\$ 269.00$. That's a saulings of over $\mathbf{\$ 8 0 . 0 0}$.

To start Bearcatting. Master Charge and Visa card holders may call and order toll free 800-521-4414. Outside the U.S. and Michigan dial 315-994 4444 To order by mail, send $\$ 269.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Mail your orders or requests for a free | catalog completely describing all Bearcat* scanners
to: Communications Electronics. Box 1002 ,
Dept. HF1. Ann Arbor, Michigan 48106 U.S.A.
Bearcate is a registered trademark of Masco Corporation of Indiana L — - Copyright ${ }^{\circ} 1978$ Communications Electronics 102 CIRCLENO. IONFREEINFORMATIONCARD

PROJECT OF THE MONTH
 BY FORREST M. MIMS

able: off, steady, or flashing red, green, or yellow. Yellow radiation is obtained by rapidly switching the polarity of the applied voltage. The pulsed red and green radiation from the two chips visually merge. Although the color the eye perceives is not a true yellow, it is distinctly recognizable as being neither red nor green.

The schematic diagram of a circuit that has been adapted from one given in the data sheet of Monsanto's MV5491 tri-state LED is shown in Fig. 2. The circuit incorpo-

Fig. 2. Circuit used
to calculate needed resistances.
rates two series resistors to provide an optimized current to each LED to balance their brightness. The 1N914 diode (D1) bypasses $R 2$ when the green LED is selected. This compensates for the green LED's higher barrier potential so that the same forward current flows through each diode.

The formulas employed to calculate the values of R1 and R2 for specific red and green LED forward currents are: $R 1=\left(V_{A}\right.$ $-3.3) / I_{G} ; R_{T}=\left(V_{A}-1.63\right) / I_{R} ; R 2=R_{T}-$ R1; where I_{G} and I_{R} are the forward current through the green and red LEDs, respectively, and V_{A} is the applied voltage. For example, to bias both diodes at 20 mA when V_{A} is 5 volts, R1 and R2 should be 102 and 68 ohms, respectively. The MV5491 data sheet includes a table that gives resistance for R1 and R2 for a range of forward currents

Incidentally, don't be concerned if the exact resistor values the equations dictate are unavailable. Just try to obtain the closest standard value. If you're not concerned with matching brightnesses, simply insert a single 270 -ohm resistor in series with the LED when powering it from a 5 -volt supply.

Figure 3 is a simple astable multivibrator that demonstrates six of the seven states of a tri-state LED. You can assemble the entire circuit on a miniature solderless breadboard in several minutes. When the wiper of R1 is at the midpoint of its travel, the LED will alternately flash red and green. The effect is visually striking, particularly if you are used to viewing monochromatic (single-color) LEDs.

Rotating the wiper of R1 will increase or decrease the red-green flash rate. At one extreme, the red and green flashes will merge into a washed-out orange or yellow color. Both diodes are still flashing, but the flash rate is faster than the flicker response of the eye. (You can hear the flash rate as a series of clicks by connecting the input of a small audio amplifier to ground and through a 0.1 -microfarad capacitor to either pin 3 or 6 of the 7400.) At the other extreme, the LED will stop flashing and glow a steady red or green depending on the direction it is connected.

So far, we've accounted for five of the seven states. The sixth state occurs when the circuit is turned off and the LED is extinguished. The seventh state, which this circuit does not provide, is flashing yellow. It can be obtained by gating the pulse train applied to the LED with a low-frequency pulse train at the cost of somewhat increased circuit complexity

I've seen only a few commercial applications for tri-state LEDs. One is the indicator lamp on the power switch of the Realistic STA-2100 AM/FM stereo receiver. The LED glows red when the switch is pressed.

Fig. 3. Tri-state demonstration circuit
After a few seconds, it glows green as the unit begins operation.

Building and experimenting with the simple project in Fig. 3 will give you some ideas about the novel display and indicator possibilites for tri-state LEDS. (Model railroaders will find these devices to be ideally suited for use in block signals.) You can buy tri-state LEDs from some of the companies that advertise in the Electronic Market Place in this magazine. Keep in mind that you can simulate some of the functions of a tri-state LED by connecting a pair of standard red and green LEDs in inverse parallel.

At last a Full Slize Basic for 1802 systems. A complete function Basic including two dimen-
sional arrays, string variables, floating point. sional arrays, String variables, floating point,
arithmetic and 32 bit signed integer arithmetic (10 digit accuracy) with $1 / 0$ routines. Easily adaptabie on most 1802 systems. Requires 12 K RAM minimum tor Basic and user programs. Cassette version in stock now for immedate delivery. ROM versions coming soon with exchange ROM versions coming soon with exchang
privilege allowing credit for cassette version. Super Basic on Cassette
$\$ 40.00$

RCA Cosmac Super Elf Computer

Compare features before you decide to buy any other computer. There is no other computer on
the market today that has all the desirable benethe market today that has all the desirable bene-
fits of the Supar Elf for solittie money. The Super Elf is a small single board computer that does many big things. It is an excelient computer for training and for learning programming with its machine language and yet it is easily expanded with additional memory, Full Basic, ASCII Keyboards, video character generation, etc. Before you buy another smail computer, see if it includes the following features. ROM monitor: State and Mode displays Single step: Optional address displays: Power Supply Audio Amplifier and Speaker, Fully socketed for all IC's: Real cost of in warranty repairs, Full documentation
The Super Elf includes a ROM monitor for program loading, editing and execution with SINGLE STEP for pragram dobugging which is not in-
cluded in others at the same price With SINGLE Cluded in others at the same price With SINGLE
STEP you can see the microprocessor chip operating with the unique Quest address and data bus displays belore, during and after executing structions Also, CPU mode and instruction cycle are decoded and displayed on 8 LED indicators. An RCA 1861 vida graphics chip allows you to connect to your own TV with an inexpen sive video modulator to do graphics and games There is a
speaker system included for witing your own speaker system included for writing your own music or using many music programs already
written. The speaker amplifier may also be used written. The speaker amplifier may also be used
to drive relays for control purposes to dive relays for control purposes

Super Expansion Board with Casselte Interface $\$ 89.95$

This s truly an astounding value! This board has
been designed to allow you to decide how you want it optioned. The Super Expansion Board comes with 4 K of low powe: RAM fully addressable anywhere in 64 K with built-in memory protect and a cassette interlace. Provisions have been made for all other options on the same board and it fits neatly into the hardwood cabinet alongside the Super Elf. The board includes slots for up to 6K of EPROM (2708, $2758 \quad 2716$ or T 2716) and is fully socketed. EPROM can be used for the monitor and Tiny Basic or other purposes. A IK Super ROM Monitor $\$ 19.95$ is available as an on board option in 2708 EPROM which has been preprogrammed with a program loader editor and error checking multi file cassette read/write software, (relocatible cassette file) another exclusive from Quest. It includes register save and readout, block move capability and video graphics driver with blinking cursor. Break points can be used with the register save feature to isolate program bugs quickly then follow with single step The Super Monitor is written with subroutines allowing users to take advantage of
monitor functions simply by calling them up. Improvements and revisions are easily done with the monitor. If you have the Super Expansion Board and Super Monitor the monitor is up and running at the push of a button
Other on board options include Parallal Input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the input port. AS 232 and 20 ma Currem Loop for need more other device are on board and in you static RAM or video boards A Godbout 8 K RAM stanic RAM or video boards. A Godbout 8 K RaM board is avaliable for $\$ 135.00$ Also a 1 K Supe Montor version 2 with video driver for full capability display with Tiny Basic and a video intertace board. Parallel I/O Porls \$9.85, RS 232 \$4.50 TTY 20 ma I/F $\$ 1.95$, S-100 \$4.50. A 50 pin connector set with ribbon cable is available a $\$ 12.50$ for easy connection between the Super Elf and the Supar Expansion 8oard.
The Power Supply Kit for the Super Expansion Board is a 5 amp supply with multiple positive and negative voltages $\$ 29.95$. Add $\$ 4.00$ for shipping Prepunched frame $\$ 7.50$. Case $\$ 10.00$. Add $\$ 150$ for shipping.
Multi-volt Computer Power Supply
$5 \mathrm{amp} .12 \mathrm{v} .5 \mathrm{amp} .-12$ option. $\pm 5 \mathrm{v} . \pm 12 \mathrm{v}$
5 amp. $12 v .5$ amp. -12 option. $\pm 5 v . \pm 12 v$
are regulated Kit $\$ 29.95$ Kit with punched frame
$\$ 37.45$ Woodgrain case $\$ 1000$

60 Hz Crystal Time Base Kit \$4.40 Converts digital clocks from AC tine frequency to crystal time base outstanding accuracy. Kit to crystal time base Outstanding accuracy. Kit
includes. PC board, IC, crystal, resistors, ca-

24 key HEX keyboard includes 16 HEX keys plus load, reset, run. walt, Input. memory protect, monitor solect and single step Large. on board displays provide output and optional high and low address. There is a 44 pin standard connector slot for PC cards and a 50 pin connector slot for the Quest Super Expansion Board Power supply and sockets for all IC's are intion manual which now includes over 40 instruc software into including a series of 40 pgs of help get you started and a music program and graphics target game
Many schools and universities are using the Super Eff as a course of study. OEM's use it for training and research and development
Remember, other computers only offer Super Eff features at additional cost or not at all. Compare before you buy. Super EH Kit $\$ 106.95$, High address option S8.95, Low address option \$9.95. Custom Cabinat with drilled and labelled plexiglass front panel $\mathbf{\$ 2 4 . 9 5}$. Expansion Cabinet with room for 4 S- 100 boards $\$ 41.00$. NiCad Battery Memory Saver Kit \$6.95. All kits and options also come completely assembled and tested.
Questdata, a 12 page monthly software publica tion for 1802 computer users is available by subcription for $\$ 12.00$ per yea
ny Basic Cassette $\$ 10.00$, on ROM $\$ 38.00$ original Eff kit board $\$ 14.95$

S-100 Slot Expanslon. Add 3 more S-100 slots to our Super Expansion Board or use as a 4 slot -100 Mother Board Board without connectors 9.95

Coming Soon: High resotution alpha/numerics with color graphics expandable up to 256×192 esolution for less than $\$ 100$. Economical versions for other popular 1802 systems also 6 K Dynamic RAM board expandable to 32 K for ss than $\mathbf{\$ 1 5 0}$.

ELECTRONICS

Rockwell AIM 65 Computer

 6502 based single board with full ASCll keyboard and 20 column thermal printer. 20 char. al phanumeric display. ROM monitor, fully expand able $\$ 375.00$. 4 K version $\$ 450.00$. 4 K Assem-bler $\$ 8500$ K Basic Interpreter $\$ 10000$ bler $\$ 8500.8 \mathrm{~K}$ Basic Interpreter $\$ 100.00$ Power supply assy in case $\$ 60.00$. AlM 65 in

Not a Cheap Clock Kit $\$ 14.95$ includes everything except case 2. PC boards. 6-50"LED Displays. 5314 clock chip, transformer, all components and full in structions. displays. Red only. $\mathbf{\$ 2 1 . 9 5}$ Case $\$ 11.75$

Video Modular Kit
$\$ 8.95$ Convert your TV set into a high quality monitor without affecting nor

S-100 Computer Boards

8 K Static RAM Kit Godbout

16 K Static RAM Kit
24 K Static RAM Kit
32K Dynamic RAM Kit
64K Dynamic RAM Kit
$8 \mathrm{~K} / 16 \mathrm{~K}$ Eprom Kit (less PROMS)
8K/16K Eprom Kit (less PROMS)
Video Interface Kit
79 IC Update Master Manual $\$ 35.00$
Complete IC data selector. 2500 pg . master reference guide. Over 50.000 cross references. Free update service through 1979. Domestic postaģe $\$ 3.50$. 1978 IC Master closeout $\$ 19.50$. No foreign

Auto Clock Kit $\$ 17.95$
DC clock with $4.50^{\prime \prime}$ displays Uses National MA-1012 module with alarm option. Includes light dimmer. crystal tomebase PC boards. Fully light dimmer. crystar omebase P doards. Fuly
regulated. comp instructs. Add $\$ 3.95$ for beau-
tiful dark gray case. Best vałue anywhere.

FANTASTIC? YOU BET IT IS! LOOK WHAT YOU GET FOR IC MORE!

HY GAIN LED CLOCK KIT*


```
-DUAL OIGIT "BUBBIE" READOUTS, HP5082 style, red dip type (s 5748 )
``` SO-metal a piastic transistors, assid sires (a 965
2-HI PWR. TRANSISTORS, Motorola type, M13201, NPN, 15W, TO-66, (\(* 2797\)) 100-GERM. GIASS DIODES, similar to 1 N34, axiad leads, untested, (a642)
30-1N914 SWITCHING DIODES, silicon, 4nS, glass, untested, (4 \(1431 \ldots .\). 4-AM/FM VARIABIE COND., 2 bands. "poly-con", 3/4" square, (\#2924). 10-CRYSTAL SOCKEIS, \(3 / 16^{\prime \prime}\) ml. holes for \(1 / 16^{\prime \prime}\) PC leads, (\(\mathbf{a} 5527\))
 PI-259 COAX PIUC, mates to 2 1-LIIE SENSITIVE UNIIUNCTION TRANSISTOR, programm
1-LASCR OPTO COUPIER, type HIC3
1-LASCR OPTO COUPLER, type H1TC3, mini dip. (\#5700)
3-LINE CORDS, 6 t. 18 gauge, 2 cond, white w/plug. (\# 3787)
 40-PIASTIC TRAANSISIORS, asst'd untested and hobby, (\(\# 2604\)) 5-6V INDICATORS, w/leads, test lamp manufacturers excess, (\(\ddagger 5893\)) 40-MET AL CAN TRANSIST ORS, ast'd types, hobby, untested, (a2t
\(15-\) UPRIGHT ELECTROS, \(100 \%\) asst'd walues and voliages, (55900) 40-SEMI-CON SUPRISE, zeners, rectifiers, transistors, etc, U-test,
100-STABISTORS, axial, for regulators \& computers,
U-test, \((\# 3140)\) 40-SQUARE PC COILS, uprights, assoried values, for PC applications, (43188 50-1 WATT ZENERS, \(3.3,8,10,12,15 \mathrm{~V}\), etc., double plug, untested
4-ROCKER SWITCHES, OPDT, solder evelet terminals,
43302). 60-IONC 1 EAD DISCS, \(\mathbf{1 0 0 \%}\) prime, marked capacitors, (55899
6-MINI TRANSFORMERS, asst'd outputs, interstage \& audio, \(1^{1 "}\) sq. (\#3295 25-DATA ENTRY KEYCAPS, 3/4" sq. \#'s \& functions, assi. colors. (\#4013)
-MERCURY TILT SWITCH, N.C. rated 24VDC . 05 A , w/leads, (\#568b) 6-POWER TAB TR1ACS, 100\% prime, 100 V , TO-220, (a 5888)
6-POWER TAB SCR's, 100\% prime, 100V. TO-220, ("5904)
 4-MOS FETS, 3N128, by Fairchild \& RCA, TO-18, some duals, (\({ }^{(1686}\)) -PHOIO ELECTRIC DARLINGTON TRANSISTORS, 2N5777, (03276) 15-NE-2 LAMPS, neon red, for 110 VAC , less resistor, \((t 1435)\)
\(20-1 \mathrm{~N} 4148\) SWITCHING DIODES, 4 nS , \(100 \mathrm{~V} \dot{Q} 10 \mathrm{~mA}, ~ a x i a l ~ 100 \%\), (\#3000) 2. 4 AMP SIIICON BRIDCE RECTIFIER, 200V, block style, (\#5928) -VARACTOR DIODES, vas. Huner capacitance, 20-50 pf. 155887 50-CRECISION RESIC CAPS, ass1'd 25-PIASTIC SCR's, incl; 200V, untested, high yield, TO-92, (\#3192) 100-MICRO ZENER \& RECT. KIT, assi'd voltages, only \(1 / 8^{\prime \prime}\) sq. U-test (14125 \(1-\) INE CORD, 811.2 cond, 16 gauge, vinyl molded plug \(\&\) grommet (\#366
-SPDT MICRO SIIDE SWITCH, onty \(3 / 7^{\prime \prime}\) cube, for PC mount, (3429) 6-SPDT MICRO SLIDE SWITCH, only \(3 / 7^{\prime \prime}\) cube. for PC mount,
10-PR -RCA PIUGS \& IACKS, for audio, speakers, etc., \((\$ 402)\). 7-2N3055 HOBBY TRANSISTORS, \(100 \%\), TO-3. (43771)
O-ZENERS, Wan volis axial leads \(100 \%\) (5370 A
-REIAYS, BABCOCK GVDC, SPST, plastic case (\(=55807\)
QUAP BRIDGE RECTIFIER, 50 volis, \(100 \%(\# 5948)\)
QUADRACS, 10 amp 200 PRV, TO- \(220100 \%(\# 5915)\)

\section*{50 ps RISETIME GENERATOR}

Model TD-50PA and Model P5A (250 ps risetime) are intended for precision measurement and testing of high-speed circuit and systems and for TDR applications. They also make ideal drive amplifiers, because they exhibit low transient aberration and excellent pulse flatness. The TD-50PA has a pretrigger (85 ns) and a normal trigger output. Both units come with their own power supply so they can be used with any oscilloscope system. The TD-50PA is priced at \(\$ 449\), the P5A at \(\$ 149\). Colby Instruments, Inc., P.O. Box 84379, VA Branch (B), Los Angeles, CA 90073. (213) 4766139.

CIRCLE NO. 12 ON FREE INFORMATION CARD

\section*{Exclusive Sheldahl FLEXSWITCH \({ }^{\otimes}\) kits}

With scissors, modify the 030 thick, non-tactile panel into water/dust resistant switching module. Kit includes design guidelines. instructions. Sheldahl membrane switching panel, flexcircuit connector, press-on nomenclature and RFQ checklist. Production quantities cost less. Pressure sensitive back.
9 key kit (\(1 \times\))
\(\$ 9.00\)
16 key kit (\(4 \times 4\)) \(\$ 10.00\)

Please send me
\(10 \mathrm{key} \mathrm{kt}(\mathrm{s})\) at \(\$ 1000\) each ot \(\$ 9.00\) kach short to grou of \(\$ 9.00\) each. crosspoint
enclose a check or money order for my FLEXSWITCH kit order Name
Company
Address
City
tate PO BOx 170 , Northfield. MN 55057

62-Key ASCII Encoder Keyboard Kit

The JE610 62-Key ASCII Encoder Keyboard Kit can be interfaced into most any com
puter system. The JE610 Kit comes com plete with an industrial grade keyboard switch assembly \((62\) keys). IC's, sockets, connector, electionic components and
double-sided printed wiring board double-sided printed wiring board.
keyboard assembly requires \(+5 \mathrm{~V} @ 150 \mathrm{~mA}\) keyboard assembly requires +5 V
and \(-12 \mathrm{~V} @ 10 \mathrm{~mA}\) for operation.

\section*{REG
JE200
G}
hardware \& instructions
\(\$ 10.00\) Min. Order-U.S. Funds Only
Calif. Residents Add \(6 \%\) Sales Tax
Calif. Residents Add 6\% Sales Tax
Postaga - Add 5\% plus \(\$ 1\) Insurance lif desired
 (415) 592 -8097

MAIL ORDER ELECTRONICS - WORLDWIDE ADVERTISED PRICES GOOD THRU SEPTEMBER

TRS-80 16K Conversion Kit
Expand your 4 K TRS-80 System to 16 K . Kit comes complete with. - 8 each UPD416-1 (16K Dynamic Rams) 250NS TRS-16K \(\$ 75.00\)

\section*{COMPUTER CASSETTES}

SUP 'R' MOD II
UHF Channel 33 TV Interface Unit Kit Wide Band \(8 / W\) or Color System - Converts IV to Video Display for home computers, CCIV camera. zler, SOL-20, IRS-80, Challenger MOD II is pretured to Channel 33 * (Unciudes coaxal cable and antenna transforme \(\$ 29.95\) Kit
Function Generator Kit
\begin{tabular}{|c|c|}
\hline & - Provides 3 basic wavetorms: Sine, triangle \& square wave 100K Hz range from 1 Hz to - OutDut amplitude irom 0 -volts to over 6 volts (peak to peak)
- Uses a 12 V supply or a \(\pm 6 \mathrm{~V}\) split supply \(\qquad\) nents and instructions. compoJE2206B \(\$ 19.95\) \\
\hline \begin{tabular}{l}
IDEAL FOR TRS 80 Plug/ack interface to any
computer syster requiny
remote controi ol cassette \\
Iunction
The cr 100 controls cassetre
The molot tunctions. montion
tape 10 cation with is intern
spe \\

\(\qquad\)
\end{tabular} & \\
\hline \begin{tabular}{l}
- 2 each 100 K po \\
- Printed Circuit \\
- Size: \(1^{\prime \prime} \times 1-3 /\)
\end{tabular} & \begin{tabular}{l}
snews \\
Micro- \\
Miniature Joystick \\
(Linear Taper) \\
aard Mount \\
\(6^{\prime \prime} \times 1.3 / 16^{\prime \prime}\)
\end{tabular} \\
\hline Micro-Miniature Jo & \$4.9 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QTY. & \multicolumn{2}{|c|}{QTY.} & \multicolumn{2}{|c|}{C MOS QTY.} & \multicolumn{2}{|c|}{QTY.} & \\
\hline 4000 & 15 & 4017 & . 75 & 4034 & 2.45 & \[
4069 / 74 \mathrm{CO4}
\] & 4.45 \\
\hline 4001 & . 20 & 4018 & 75 & 4035 & 75 & 4071 & . 25 \\
\hline 4002 & 25 & 4019 & . 35 & 4037 & 1.80 & 4081 & . 30 \\
\hline 4004 & 3.95 & 4020 & . 85 & 4040 & 75 & 4082 & 30 \\
\hline 4006 & . 95 & 4021 & 75 & 4041 & . 69 & 4507 & . 95 \\
\hline 4007 & . 25 & 4022 & 75 & 4042 & 65 & 4511 & . 95 \\
\hline 4008 & . 75 & 4023 & . 25 & 4043 & . 50 & 4512 & 1.50 \\
\hline 4009 & 35 & 4024 & . 75 & 4044 & . 65 & 4515 & 2.95 \\
\hline 4010 & . 35 & 4025 & 25 & 4046 & 1.25 & 4519 & . 85 \\
\hline 4011 & . 30 & 4026 & 1.95 & 4047 & 2.50 & 4522 & 1.10 \\
\hline 4012 & . 25 & 4027 & . 35 & 4048 & 1.25 & 4526 & . 95 \\
\hline 4013 & . 40 & 4028 & 75 & 4049 & . 65 & 4528 & 1.10 \\
\hline 4014 & . 75 & 4029 & 1.15 & 4050 & 45 & 4529 & . 95 \\
\hline 4015 & . 75 & 4030 & . 30 & 4052 & . 75 & MC14409 & 14.50 \\
\hline 4016 & . 35 & 4033 & 1.50 & 4053 & . 95 & MC14419 & 4.85 \\
\hline & & & & 4066 & . 75 & 74C151 & 2.50 \\
\hline
\end{tabular}

\section*{INTEGRATED CIRCUITS UNLIMITED}

7889 Clairemont Mesa Blvd., San Diego, California 92111 Out of State 1.800-854-2211 Cable Address:ICUSD Telex: 697-827 (714) 278-4394 California Residents 1-800-542-6239

NAME

STREET ADDRESS

CITY \(\qquad\) STATE

PHONE
Charge card \# Be visa
EXP. DATE
SPECIAL DISCOUNTS
C.O.D. ___ WILL CALL___ UPS____ POST___ NET 10th OF THE MONTH

Total Order
Deduct
ALL ORDERS SHIPPED PREPAID - NO MINIMUM - COD ORDERS ACCEPTED - ALL ORDERS SHIPPED SAME DAY
OPEN ACCOUNTS INVITED - California Residents add \(6 \%\) Sales Tax. PRICES SUBJECT TO CHANGE WITHOUT NOTICE
24 Hour Phone Service - We accept American Express / Visa / BankAmericard / Master Charge

\title{
Radio Shack - Your No. 1 Parts Place \({ }^{(\mathbb{T D})}\)
}

Why Wait for Mail Order Delivery? You'll Find Friendly Salespeople, Low Prices and New ltems Every Day at Our Store or Dealer Near You!

Low-Power Schottky ICs

- 100\% Prime
- Guaranteed Specs

Improved 5 -volt logic devices use Schottky diode technology for minimum propagation delay and high speed at minimum power
\begin{tabular}{|c|c|r|}
\hline Type & Cat. No. & ONLY \\
\hline 74LS00 & \(276-1900\) & .49 \\
74LS02 & \(276-1902\) & .59 \\
74LS04 & \(276-1904\) & .59 \\
74LSO8 & \(276-1908\) & .49 \\
74LS10 & \(276-1910\) & .59 \\
74LS13 & \(276-1911\) & .99 \\
74LS20 & \(276-1912\) & .59 \\
74LS27 & \(276-1913\) & .69 \\
74LS30 & \(276-1914\) & .59 \\
74LS32 & \(276-1915\) & .69 \\
74LS47 & \(276-1916\) & 1.29 \\
74LS51 & \(276-1917\) & .59 \\
74LS73 & \(276-1918\) & .69 \\
74LS74 & \(276-1919\) & .69 \\
74LS75 & \(276-1920\) & .99 \\
74LS76 & \(276-1921\) & .79 \\
74LS85 & \(276-1922\) & 1.29 \\
74LS90 & \(276-1923\) & .99 \\
74LS92 & \(276-1924\) & .99 \\
74LS93 & \(276-1925\) & .99 \\
74LS123 & \(276-1926\) & 1.19 \\
74LS132 & \(276-1927\) & .99 \\
74LS151 & \(276-1929\) & .99 \\
74LS157 & \(276-1930\) & 1.19 \\
74LS161 & \(276-1931\) & 1.49 \\
74LS164 & \(276-1932\) & 1.49 \\
74LS175 & \(276-1934\) & 1.19 \\
74LS192 & \(276-1935\) & 1.49 \\
74LS193 & \(276-1936\) & 1.49 \\
74LS194 & \(276-1937\) & 1.49 \\
74LS196 & \(276-1938\) & 1.59 \\
74LS367 & \(276-1835\) & 1.19 \\
74LS368 & \(276-1836\) & 1.19 \\
74LS373 & \(276-1943\) & 2.39 \\
74LS374 & \(276-1944\) & 2.39 \\
\hline
\end{tabular}

4000-Series CMOS ICs
\begin{tabular}{|c|c|c|}
\hline Type & Cat. No. & EACH \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
4001 & \(276-2401\) & .69 \\
4011 & \(276-2411\) &
\end{tabular}

4012 276-2412
4013 276-2413
\begin{tabular}{l|l|l}
4017 & \(276-2417\) & 1.69
\end{tabular}
\begin{tabular}{l|l|l}
4020 & \(276-2420\) & 1.69 \\
4021 & \(276-2421\) & 1.69
\end{tabular}
4021 276-2421 1.69
4023 276-2423
\begin{tabular}{l|l|r}
4027 & \(276-2427\) & .99 \\
4028 & \(276-2428\) & 1.29
\end{tabular}
4046 276-2446 1.6
\begin{tabular}{l|l|l}
4511 & \(276-2447\) & 1.69
\end{tabular}
\(4049 \quad 276-2449 \quad .7\)
4050 276-2450
4051
051 276-245
276-2466 1.39
\(4070 \quad 276-2470 \quad .79\)
\begin{tabular}{ll|l}
4543 & \(276-2491\) & 1.99
\end{tabular}
All from Major Semiconductor Mirs., and Prime. Specs and PIn Out Diagram Included with Each Device.

\section*{28-Range Multitester with 10-Megohm Input}

\section*{Save 33\%}

\section*{Reg. 295 \\ \(59.95 \sim \longrightarrow\)}
- Dual FET Input
- 5" Mirrored Scale
- Overload Protected
- Polarity Reverse Swltch

High-accuracy \(25 \mu \mathrm{~A}\) meter with single-knob range selector measures \(D C\) Volts: \(0-3 \cdot 1-3-10-30-100-300-1000\) at 10 Megohms. AC Volts: 0-3-30-100 300-1000 at 10 kJ per volt. DC Current: 0-100 \(\mu \mathrm{A}, 3-30-300 \mathrm{~mA}, 10 \mathrm{~A}\). Resis tance: \(\mathrm{R} \times 1, \mathrm{R} \times 10, \mathrm{Rx1000}, \mathrm{Rx10k}, \mathrm{R} \times 1 \mathrm{M}(10\) onms center scale) \(\mathrm{dB}:-20\) to +62 in 5 ranges. Accuracy: \(\pm 3 \%\) DC, \(\pm 4 \%\) AC. \(7 \times 5^{1 / 2} \times 3^{1 / 8^{\prime \prime}}\) overall. With leads, test probes, batteries 22-208

Heavy-Duty 12VDC Power Supply

Save 16\%
Reg. 59.95
\(49^{95}\)
Delivers up to 8 amps - powers high-power auto sound equipment, CBs, ham radios and other accessories at equipment, CBs. ham radios and other accessories a
home. Well filtered tor minimum hum. Circuit breaker prohome. Weil filtered tor minimum hum. tected against overload. For \(120 \mathrm{VAC}, 60 \mathrm{~Hz} .33 / 4 \times 8 \times 65 / \mathrm{s}\) :" tected against overload. For 120VAC, 60 Hz . \(3 / 4 \times 8 \times 6 \%\).
U.L. listed. \(22-125\).
 22-123

Variable 0-24VDC Power Supply
Save 25\% Reg. 39.95 \(29^{95}\)

Full 1 Amp Output
- Automatic Current Umiting

Ideat DC source for solid-state projects and servicing. Load regulation better than \(2 \%\). Ripple 25 mV at full load. Large switchable meter reads voltage or current. 3-way binding posts. U.L. listed AC operation

Sale 29.95

\section*{Low-Power Static RAM \\ }

Reg. \(\boldsymbol{1}^{89}\)
Under 450 ns Access Time

Type 2102L. 1024x1 bytes of memory in a 16 pin DIP. \(100 \%\) prime. Ideal for low-cost static memories. Single 5 V supply operation. Reliable NMOS design 276-2501

Sale 1.89

\section*{}

Featured In July Popular Electronics
LM3914N. Ideal for voltage, current and audio displays. Drives 10 LEDs with adjustable analog steps, can be expanded up to 100 steps. Single pin selects bar or dot display mode. Current regulated LED outputs. Operates from 8 to 24VDC. 276-1707

Overioad protected 1-megohm input Sensitivity 30 mV up to 30 MHz . Accuracy is 3 ppon at \(25^{\circ}\) or
less than 30 Hz at 10 MHz Win antennal deads case, instructions. 22-351 Sale 49.95

Pocket Multitester

Reg. 9.95

- 8 Ranges - Fits In Shirt Pocket
 , DC incl.). 22-027

Sale 7.89

\section*{Dual Aud
NEW! \(10^{95}\)}

\section*{10-Position BCD Switch}

Full 0-9 binary-coded outputs for logic circuits. Gold contacts are seajed lor long life. Positive detents. Fits 8 -pin DIP socket or mounts on PC board Data included. 275-1310
Three 12VDC Motors

Includes Socket
Liquid crystal display with snooze, alarm and PM indicators. Direct drive requires SVAC at only \(10 \mu \mathrm{~A}\). Perfoct for battery powered digital projects. Data included 276-1230

SAD-1024. "Bucket Brigade" device has two independent 512-stage shift registers tor echo, revert, phase shift and chorus effects. Provides continuously variable electronic time delay. NMOS design operates from single supply. With data and applications 276-1761
10.95

Permanent Magnet-Type. Delivers high torque. Up to 10,000 RPM at no load. Overall \(11 / 4^{\prime \prime} \times 1^{1 / 1 / 8^{\prime \prime}}\) dia. Shaft dia meter \(3 / 32^{. " 1} 1 / 2^{\prime \prime}\) long. Solder terminals 273-213

Come in for Your FREE Copy of Our New 176-Page 1980 Catalog!

EPROM'S
1702A-6 \$6.95
\(256 \times 8.1 .5 \mathrm{us}\)
2708
IK \(\times 8 \quad 450\) NS

MICROCOMPUTER BOARDS
NEC MICROCOMPUTER TK-80A tap wian it
 TK-80A \(\$ 299.00\)

\section*{(FOUTHS}

POTENTIOMETERS
TRIMPOT* Potentiometers

\section*{MICROPROCESSOR CHIPS CPU'S part No 8080A \(\quad 5.50\) \(8085 \quad 12.95\) 6800 7.e5 6.95 \\ INTERFACE SUPPORT CIRCUITS}

moot power standicho dimensions

P a Prinied Circult Ping (thet mounting)
w-Pinted Clicult Pinal ledge mounting

\section*{}

3006 P

3299W

Texas Instruments Low Profile Sockets

Finest Quality Socket avalable in the world Nobody can match Texas inst ruments quality - a unique combina. tion of IC. technology and multimetal expertise
Over one mitlion precies in stiock
Contacts Price Contacts Price 8 PIN \(08 \quad 22\) PIN 14 PIN 1224 PIN 16 PIN 1428 PIN
18 PIN 18

\section*{VOLTAGE REGULATORS}

7800uc Series
TO-220 Plastic) 56 Positive 1 AMP 6. 8, 12. 15, 18,24, Volts
\(\$ 0.98\)

MOS Static RAM's
Part No. Price
\(2101 \quad \$ 245 \quad \$ 2.39\)
2102LFPC \$1.49 \$1.14

© 450 NS
\(2114 \quad \$ 6.76\)

MOS Dynamic RAM's Part No. Price 4K \(4027 \quad \$ 2.95\)
\(4 \mathrm{~K}(4 \mathrm{~K} \times 1) 300 \mathrm{NS} 16 \mathrm{PIN}\)
16K 416-3 \$11.95
\(16 \mathrm{~K} / 16 \mathrm{~K} \times 11200 \mathrm{NS}\) I 6 PIN
16K 416.5 \$9.95
\(6 \mathrm{~K}(16 \mathrm{~K} \times 1)\) 300NS 16 P iN

\section*{UART's}

Part No. Price
AY5-1013A \$4.50 \$4.25
AY3-1015 \$5.50 \$5.25
1K CMOS RAM
Part No. Price
5101 \$4.95 \$4.50
450 NS (Low Power)

High Current (TO-3)

\(\begin{array}{lll}78 \mathrm{HH} 12 \mathrm{SC} & \$ 5.07 & 12 \mathrm{~V} / 5 \mathrm{~A} \\ 78 \mathrm{H} 15 \mathrm{SC}\end{array}\)
\(\begin{array}{lll}78 \mathrm{H} 15 \mathrm{SC} & \$ 507 & 15 \mathrm{~V} / 5 \mathrm{~A} \\ 78 \mathrm{~Pa} 5 \mathrm{SC} & \$ 756 & 5 \mathrm{~V} / 10 \mathrm{~A}\end{array}\)
\begin{tabular}{lll}
7aPOSSC & \(\$ 7.56\) & \(5 \mathrm{~V} / 10 \mathrm{~A}\) \\
7 aHGKC & \(\$ 5.75\) & \(5 \mathrm{~V}-2 \mathrm{VV} / 5 \mathrm{~A}\) \\
\hline 7 & Positive Adlustable
\end{tabular}
 \(\begin{array}{llll}\text { T9HGKC } & \$ 8.32 & -24 \mathrm{~V} \text { 10 } 211 \mathrm{~V} / 5 \mathrm{~A} \text { Neg3tive Adiustanle } \\ \text { SH1605 } & \$ 12.22 & 3 \mathrm{~V}-30 \mathrm{~V} / 5 \mathrm{~A} \text { Ad Ste OCwn Switching }\end{array}\) \(\begin{array}{llll}\text { SH1605 } & \$ 12.22 & 3 \mathrm{~V}-30 \mathrm{~V} / 5 \mathrm{~A} \text { Ad/ Stap Down Switching } \\ \text { SH1705 } & \$ 756 & 5 \mathrm{~V} / 54 \mathrm{Fixed} \text { Postion }\end{array}\)

\section*{P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701}

Over the - counter sales.
12 Mercer Re . Natich. Mass 01760
12 mercer Re. Norich.
Benind Zayies on Ale 9
Telephone Orders a Enquires i617/8/9 0017
in CANADA.
S6Siferaita si
MONTAEAL OUEBEC
\(\mathrm{H} 4 \mathrm{P} 2 \times \mathrm{S}\)
Tel 15141735.6425

4600 OUF F ERIN St OOWNSVIE W. ONTAAIO Tel 14161661 il1s

MINIMUMORDER \(\$ 10.00\) - ADD 32.00 TO COVER POSTAGE \& MANOLING
Foreign customers plasse remil payment on an miternational bank dratior intomational posia! money ordet in Americen dollars
BAXTER CENTAE IOSO BAXIEA AOAD otTAWA. UNTARIO K2C
3P1
16131 Tel (6131820 947) vancouver.b.C. vSR 5.J7 VSR SJ7
Tel:(604) 438-3321

FREE

\section*{DATA SHEETS!}

\section*{(D) Dettor Breadboarding Center Deetor}

MINI-/MICRO-COMPUTER PLUGBOARDS
in our efforts to keep you our cus TOMERS, UP.TO-DATE; WE ARE HAPPY TO OFFER YOU FREE DATA SHEETS FOR ALL ICS
THAT WE CARRY THESE ARE HIGH QUALITY. FULL-LENGTH REPRODUCTIONS OF ORIGINAL MANUFACTURER REQUEST, HOWEVER, THAT YOU LIMIT YOUR REQUESTS TO ONE DATA SHEET FOR EACH DOLLAR WORTH OF MERCHANDISE THAT DOLLAR WORTH OF MER
YOU PURCHASE FROM US.

PINS, TERMINALS, WRAP-POSTS
offer the complete line of all terminals that fit into \(0042^{\prime \prime}\) diameter holes, with tin and/or gold plating. For vour convenience, three different packages of each type are
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TYPE} & \multirow[b]{2}{*}{description} & \multirow[b]{2}{*}{matertal} & \multirow[b]{2}{*}{FINISH} & \multicolumn{3}{|r|}{SMALL PACK} & \multicolumn{3}{|r|}{MEDIUM PACK} & \multicolumn{3}{|r|}{LARBE PACK} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MANUAL } \\
& \text { INSERTIOW } \\
& \text { TOOL }
\end{aligned}
\]} \\
\hline & & & & \[
\begin{aligned}
& \text { Oavil } \\
& P_{\text {Pack }}
\end{aligned}
\] & CATALOG NUMBER & \[
\begin{aligned}
& \text { Prive } \\
& \text { Prock }
\end{aligned}
\] & Patyl & \[
\begin{aligned}
& \text { CATALOG } \\
& \text { NUMBER }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Price } \\
& \text { Pard }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { Ory } 1 \\
\text { Pack }
\end{array}
\] & catalog number & \[
\begin{aligned}
& \text { Priet } \\
& \text { PPack } \\
& \hline
\end{aligned}
\] & \\
\hline K24A & intord Pins & Phosphor Bronze & Nickel Gold & 50 & 22.24012 & 52.73 & 250 & 22.24014 & \$11.76 & 1000 & 22.24016 & \$37.93 & \\
\hline K24C & Inbard Pins & Phomptor Bronze & Brigha Tin & 50 & 22.24002 & 1.53 & 250 & 22.24004 & 5.54 & 1000 & 22.24006 & 17.84 & \\
\hline K26A & Inbera Pima & Phouphor Bronze & Nickel Gotd & 50 & 22.26012 & 2.62 & 250 & 22.26014 & 9.56 & 1000 & \({ }^{22.26016}\) & 30.82 & \\
\hline K26C & Inberd Pins & Prosphor Bronze & Bright Tin & 50 & 22.26002 & 0.99 & 250 & 27.26004 & 3.59 & 1000 & 22.26006 & 1156 & \\
\hline K30A & inbord Pins & Phosphor Aronze & Nickel Gord & 50 & 22-30012 & 2.56 & 250 & 22.30014 & 13.52 & 1000 & 22.30016 & 43.64 & \\
\hline K30C & inbord Pins & Phosphor Branze & Bright Tin & 50 & 22.30002 & 1.35 & 250 & 22.30004 & 5.32 & 1000 & 22.30005 & 17.19 & \\
\hline K318 & inbord Pins & Prosphior Aronze & Nickel Gold & 50 & 22-31012 & 2.06 & 250 & 22.31014 & 7.49 & 1000 & 22-31016 & 24.14 & \\
\hline K316 & Inbord 9 ins & Phosphor Bronze & \(B^{\text {rught }}\) Tin & 50 & 22.31002 & 1.11 & 250 & 22.31004 & 4.03 & 1000 & 22.31006 & 12.99 & -- \\
\hline K32 & Wrap Post " 5 " Pins & Prosphor Bronze & \({ }^{\text {Bright Tin }}\) & 100 & 22.32003 & 179 & 500 & 22.32005 & 6.68 & 1000 & \({ }^{22.32006}\) & 116 & \\
\hline K 32.2 & Wrap Post "J"Pins & Phosphor Bronze & Bright Tin & 100 & 22.32203 & 2.70 & 500 & 22.32205 & 10.14 & 1000 & 2232206 & 16.90 & \\
\hline K32.3 & Wraopost" 5 Pins & Phosphor Bronze & Bright Tin & 100 & 2232303 & 2.18 & 500 & 22-32305 & 8.17 & 1000 & 22.32306 & 13.61 & \\
\hline K38A & Intort P ins & Phosphor Bronze & Nickel Gold & 50 & 2238012 & 3.18 & 250 & \(22 \cdot 38014\) & 11.59 & 1000 & 22388016 & 37.37 & -- \\
\hline к38C & Intord \(P\) ins & Phosphor Bronze & Bright Tin & 50 & 22.38002 & 1.85 & 250 & \({ }^{22 \cdot 38004}\) & 6.74 & 1000 & 22.38006 & \({ }^{21.73}\) & \\
\hline R32 & Socket Pins & Barrlium copper & Gold & 25 & \({ }^{22} 323911\) & 5.90 & 100 & 2232913 & 2144 & 1000 & 22.32915 & \({ }^{173.56}\) & \\
\hline R41 & Socket Pins & Barylum Copoer & Gold & 50 & 22-41012 & 2.11 & 250 & 22.41014 & 10.17 & 1000 & 2241016 & 32.78 & P18 \\
\hline T42-1 & Micro-Kip Terminals & Copper Alloy & Eright Tin & 100 & 22.42103 & 1.54 & 500 & 2242105 & 6.77 & 1000 & 2242106 & 11.28 & P149 or P149A \\
\hline 544 & Bifurcated Wrap-Post & Coppar Alloy & Tintillate & 100 & 2244003 & 2.34 & 500 & 22.44005 & 8.61 & 1000 & 2244006 & 14.35 & A13 \\
\hline T44.1 & Bifurcsied Wrap-Post & Copper Alloy & Nickat Gold & 100 & 2244113 & 3.59 & 500 & 2244115 & 14.76 & 1000 & 2244116 & 24.80 & A13 \\
\hline T46 & Double Wrep Post Pins & Phosphor Bronze & Tintillate & 100 & 22.46003 & 3.58 & 500 & 2246005 & 15.63 & 1000 & 2246006 & \({ }^{26.05}\) & P133A \\
\hline T46.1 & Doubla Wrap-Post Pins & Prosphor Bronze & Nickel Gold & 100 & 2246113 & 6.60 & 500 & 2246115 & 27.82 & 1000 & 22.46116 & 46.36 & P133A \\
\hline T46-2.9 & Doubte Wrop Post Pins & Phosphor Bronze & Brigh: Tin & 100 & 2246203 & 2.62 & 500 & 22.46205 & 11.96 & 1000 & 2248206 & 19.89 & \({ }^{\text {P1338 }}\) \\
\hline T46-24.9 & Double Whao Post Pins & Phoschor Bronze & Nickel Gold & 100 & 2246213 & 4.29 & 500 & 2246215 & 20.68 & 1000 & 2246216 & 34.86 & P1338 \\
\hline ז46.3.9 & Doubie Wrao Post Pins & Phosohor Bronze & Bright Tin & 100 & 2246303 & 274 & 500 & 22.46305 & 12.54 & 1000 & 2246306 & 20.90 & P1336 \\
\hline T46-34.9 & Double Wrap-Poor Pins & Phosphor Bramze & Nickel Sold & 100 & 2246313 & 4.92 & 500 & 2246315 & 25.44 & 1000 & 2246316 & 42.40 & \({ }^{\text {P13 }} 138\) \\
\hline T46.4.9 & Double Wrap.Posi Pirs & Phosphor Bronze & Bright Ten & 100 & 2246403 & 2.64 & 500 & 22.46405 & 10.15 & 1000 & 2246406 & 16.91 & P1338 \\
\hline T46-4A.9 & Double Wrap Post Pins & Ptosphor Bronze & Nuckel Gold & 100 & 2246413 & 4.40 & 500 & 22.46415 & 20.30 & 1000 & 22.46416 & \({ }^{33.83}\) & \({ }^{\text {P1 }} 1338\) \\
\hline T46.5.9 & Double Wrao-Post Pins & Prosohor Bronze & Bright Tin & 100 & 2246503 & 3.58 & 500 & 2246505 & 17.36 & 1000 & 2246506 & 28.93 & \({ }^{\text {P1 }} 1338\) \\
\hline T46.54.9 & Double Wrap-Post Pins & Phosohor Bromze & Nicksl Gald & 100 & 2246513 & 5.97 & 500 & 2246515 & 31.16 & \({ }^{1000}\) & 22.46516 & 51.93 & \({ }^{\text {P1338 }}\) \\
\hline T46.6.9 & Double Wrap-Post Pins & Phasphor Bronze & Bright Ten & 100 & 2246603 & 354 & 500 & 2246605 & 17.13 & 1000 & \({ }^{22-46606}\) & 28.54 & \({ }^{\text {P1338 }}\) \\
\hline T4664.9 & Double Wrap.Past Pins & Phosphor Eronze & Nuckel Gold & 100 & 22.46613 & 5.69 & 500 & 2246615 & 29.89 & 1000 & \(22-46616\) & 49.81 & P1338 \\
\hline 749 & Trifuicated Kliownap Posis & Phosphor Bronza & Braht 7 m & 100 & 2249003 & 3.76 & 500 & 22.49005 & 13.14 & 1000 & 2249006 & 21.90 & P156 \\
\hline T49a & Trifucased klicmuap Posis & Phosphor Eronze & Nucket Gold & 100 & 2249013 & 7.77 & 500 & 22.49015 & 33.94 & 1000 & 22.49016 & \({ }^{56.56}\) & \({ }^{\text {P1 } 156}\) \\
\hline T49.1 & Trifurcated Kliowrap Posts & Phasphor Eronze & Bright Tin & t00 & 2249103 & 3.82 & 500 & 2249105 & 17.04 & 1000 & 22-49106 & 28.40 & \({ }^{\text {P1 } 156}\) \\
\hline T49A. 1 & Triturcated Kılpwrap Posts & Prosphor Aronze & Nickal Gold & 100 & 2249113 & 6.25 & 500 & 2249115 & 31.00 & \({ }^{1000}\) & 2249116 & 81.85 & P156 \\
\hline T50 & Feed Thru Pins & Prosphot Pranze. & Brght Tin & 100 & 22.50003 & 2.00 & 500 & 22.50005 & 7.50 & 1000 & 2250006 & 12.49 & P133B \\
\hline T68 & Bifurcated Klimurap Posts & Coobar Alloy & Tintillate & 100 & 2268003 & 2.67 & 500 & 2268805 & 9.84 & 1000 & \({ }^{2268006}\) & 16.40 & A13.1 \\
\hline T68. 1 & Bifurcated Klipurap Posts & Copost alloy & Nickel Gold & 100 & 2768013 & 4.84 & 500 & 22.68015 & 19.37 & 1000 & 2268016 & 32.27 & A13-1 \\
\hline T6EA & Bifurcated kıpurap posts & Cocper Alloy & Tintilas & 100 & 2268903 & 2.34 & 500 & 2268905 & 8.61 & 1000 & \({ }^{22} 888906\) & 14.35 & A13-1 \\
\hline t68A. 1 & Biturcated Kılpwap Posis & copper Alloy & Nickel Gold & 100 & 22 68913 & 3.99 & 500 & 2268915 & 15.58 & 1000 & 27.68916 & 25.96 & A13.1 \\
\hline \multicolumn{14}{|c|}{manual insertion tools} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type A13, CATALOG NO. 23.01130 Tyde A13.1, CATALOG NO. 23.01131}} & \$294 & \multicolumn{5}{|l|}{Type P1338, CATALOG NO 23.81332} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \$ 3.03 \\
& \$ 2.13
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Type } \rho_{156} \\
& \text { Type } 9162 .
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CATAL } \\
& \text { CATAL }
\end{aligned}
\]} & OG NO 238 & 560 & \$3.52 \\
\hline & & S4.15
58 & \multirow[t]{2}{*}{Type P149A,} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{CAtalog No. 2381491}} & & & & & OG NO 23 & 1620 & \$2.13 \\
\hline Troepl33A & Catalog no 2381331 & 52.89 & & & & & & \$261 & & & & & \\
\hline
\end{tabular}

\section*{"P" PATTERN MICRO-VECTORBORDS \({ }^{\circledR}\)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{blocks, transistors, resistor capacitor tlocks, terminals, arid a multitude of available accessory devices having tabs on \(0.1^{\prime \prime} \times 0.1^{\prime \prime}\) grids. All this without having to punch or}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{l}
\(4.50^{\circ} \times 6.50\) \\
4.50 \\
\(\times 8\) \\
\hline 80
\end{tabular}

CATALOG NO 2354445
CATALOG NO 2384445

\section*{}

5266
5327
56
\begin{tabular}{|c|c|}
\hline STANDARD SHIPPING CHARGES & SPECIAL SHIPPING CHARGES \\
\hline "tyour Merchandise Tota is berween & for following special services, please inctufe \\
\hline \$ 0.00 \$ \(4.99 a d d\). \(\$ 2.00\) & \\
\hline \$ \(5.00-\$ 24.99 a d d \$ 1.00\) & UPS Blue. S2.00 adational \\
\hline \$ \(25.00 .549 .99 . . .\). add 50.75 & Postal insurance \(\$ 100\) adititional \\
\hline ¢ \(50.00-599.99\). add 50.50 & Special Detivery . . . 51.25 additioral \\
\hline \$100.00 and UP NO Charge & \\
\hline The above charges include vour choice of & \\
\hline
\end{tabular}

FAIRCHILD RED LED LAMPS
- FLV5057 Mediumsize Clear Case REDEMITting these are not elested ott-spec units as sold by some of our competition These are factory prime first quality new units
\begin{tabular}{|c|c|c|}
\hline WE BOUGHT 2 & \multicolumn{2}{|r|}{\begin{tabular}{l}
10 FOR \({ }^{5} 1^{19}\) \\
50 FOR \({ }^{5} 4^{95}\)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{"THE COLOSSUS"} \\
\hline \multicolumn{3}{|l|}{A full . 80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to \(\$ 2.95\) each} \\
\hline from others! yo & YOUR CHOICE & \$149 \\
\hline FND 847 Common Anode & & \\
\hline FND 850 Common Cathode & & 6, \\
\hline
\end{tabular}

\section*{NATIONAL SEMICONDUCTOR \\ JUMBO CLOCK MODULE}

\section*{16K DYNAMIC RAM CHIP \\ WORKS IN TRS-80 OR APPLE II}
\(16 \mathrm{~K} \times 1\) Bits 16 Pin Package Same as Mostek \(4116-4.250 \mathrm{NS}\) access 410 NS cycle time Our best price yet for this state of the art RAM 32 K and 64 K RAM boards using this chip are readily available These are new, fully guaranteed devices by a major mfg VERY LIMITED STOCK!

\section*{"MAGAZINE SPECIAL" - 8 For \(\$ 79.50\)}

CLOCK MODULE OPTIONS Switches and pot for all options:
includes:
5 push buttons
1 toggle
110 k pot
Alarm Parts (including high impedence transducer) Much more efficient than a speaker

MOTOROLA POWER TRIAC
TO-220 CASE
15 AMP 400 PRV SPECIAL: 894 each 5 FOR \(\$ 3.95\)

\section*{G.I. FULL}

WAVE BRIDGE
4 AMP 600 PIV 3/4 In. Square With Lugs, \#LM-1 754 ea. 3 For \(\$ 2\)

\section*{FET SALE!}

2N4304 Brand New
N Channel. Junction Fet BVGDO-30V IDSS-15 MA TyP 1500 UMHOS TO- 18 Plastic Case Mig by Teledyne 6 FOR \(\$ 1\)

EXPERIMENTEA'S HEATING PLATE Large Manufacturers Surplus \(5 \% \times 10 \%\) in Made of \(3 / 8\) in tempered glass with heating element laminated on back Works off 120 VAC Protected by thermostat and two thermal fuses. Rated 120 Watts. Use for any heating applications. Perfect for heating ferric chloride to increase PC board etching efficiency healis are brand new non-submersible.

WHILE THEY LAST - \$2.99 each

\section*{Digital Research: Parts}
P.O. BOX 401247A GARLAND, TEXAS 75040 • (214) 271-2461

COMPLEMENTARY POWER TRANSISTORS SILICON NPN AND PNP. TO-220 CASE VCEO - 40 V PD - 30 WATTS FOR AUDIO POWER AMPS, ETC TIP29 - NPN TIP30-PNP YOUR CHOICE 3 FOR \(\$ 1\)

TOSHIBA POWER AUDIO AMP 5.8 Watt RMS Typical Output 50 to \(30.000 \mathrm{HZ} \pm 3 \mathrm{DB}\) For CB's tape decks. PA's etc Works off of a single supply voltage from 105 to 18 VDC . 10 Pin plastic DIP with special built in heat sink tab. Perfect for use on

COMPARE AT UP TO TWICE OUR PRICE!
MANUFACTURERS CLOSEOUT!

LED BAR GRAPH AND ANALOG METER DRIVER New from National Semi. \#LM3914. Drives 10 LED directly for making bar graphs. audio power meters, analog meters, LED oscilloscopes, etc Units can be stacked for more LED's. A super versatile and truly remarkable IC. Just out! SPECIAL PRICE: \(\$ 3.99\) includes 12 Page Spec. Sheet
TERMS: Add 50¢ postage, we pay balance, Orders under \(\$ 15\) add \(75 ¢\) handling. No C.O.D. We accept Visa, MasterCharge, and American Express cards. Tex. Res add 5\% Tax. Foreign orders (except Canada) add 20\% P \& H. 90 Day Money Back Guarantee on all items.

\section*{Operation Assist \\ If you need information on outdated or rare} equipment－a schematic，parts list，elc．－another reader might be able to assist．Simply send a posicard to Opera－ tion Assist．Popular Electronics，I Park Ave．，Now York， NY 10016．For those who can help readers，please re－ spond directly to them．They＇ll appreciate it．（Onty those trems regarding equipment not available from normal sources are published．）

Control Dete Corpe，model 5A5／5A6 computer terminal． Schermatic and operation manued needed．John Rerwick． 1701 M．Fenmore，Cemarilio，CA 93010.

Eryant Compriter Producta seriss 9000 computer mod－ vies．Need memuals，schematics or interconnection data． Paul BayM， 843 Loomis St．，Jackson，MI 49202.

Allied model AX－190 or SW－190 receiver．Need manual and echematics．M．Marmer， 2749 Symphony Wey．Dayton OH 45449.

RCA model WR－59C TV sweep penerator．Need calibration and operation mermals．Bob Brandel，Rose Huimen institute of Tectnology．Box 927．5500 Wabash．Terre Haute，in 47003.

HalMcrafters model S－72 shortwave recetver．Schematic and ary available intormation．Tim Bedgett，Route 4，Box 107B，King．NC 27021.

Prilice model 42－321 AM radio．Neod schemalic and 3 pole resistor with heatsink 33－3408－3．Mark Chambers，Box 1142，Beckley．W．VA． 25801.

Textronly type 545 oscilloscope．Need manual and sctie－ matics．Phil King． 313 Strauss Ave．，Johnstown．PA 15905.

Precialon series EV－20．VTVM multi－range test set．Need schematic．operation manual and panel meter．W．J．Arnold， 575 Main St．\＃1309．Roosevelt tsiand．NY 10044

Admiral model 1881P，serial \(\$ 15987310\) black and white

TV．Need schematic and any other information．Marth Tier 95 Church St．，Nuttey，NJ 07110.

Computer Maasurements Company model 7268 trequen cy counter／timer．Need echematic，operating instructions and any other intormation．A Gutseth，1071／2 S．Walter，Apt B．Potemy，OK 74953.

Kenwood modet KR－44SL stereo recelver．Need schematic． Charles W．Fox III， 211 Pine Ricge Ci．，Wake Forest．NC 22587.

Hemmartund model FM SOA V．H．F．transceiver．Schematic and operation manual．Pete Sabio， 104 Columbie Drive，Wis－ liamsville，NY 14221.

Telequipment model S31 oscilloscope．Manual，schematics and any available intormation．Dwight Sioan，Rt．1，Box 251. Kannapolis．NC 28081.

Alwe model TPR－3010A cassette．Need schematic．John Morgan， 3008 Ozark Rd．Challanooga，TN 37415.

Telefuriken CO．，Type VF－14 tube．Thom Roy， 2902 W．Gar－ ry．Santa Ana，CA 92704.

Supertor instrumenta Co．，moder TV－11 tube teater．Need roll chart．Raul Lugo， 1001 Garden St．，Hoboken，NJ 07030.

Tektronix model 545 oscilloscope．Operation manual and schematic．Roger Smith，Jr．， 601 Waghington Si，Holiston． MA 01746 ．

Knight model 32W stereo amplifier．Need tube layout and schematic．Raul Lugo，Box 7160．Jersey City，NJ 07307.

Electro Inatrumente model 350 osciMoscope．Need maintenance manual．Harlan Peinders，Box 373．Cornell，WI 54732.

Dage model 65A－3 TV camera．Need schematic．James M． Zacher． 15 W．Cypress，Arlington His．，IL 60005.

Preclelon Apperatue Ce．type 300 sine／square－wave generator．Need operating and tectnical manuals and sche－ matics．John J．O＇Farrell，Jr．， 2525 N．Avernon Way，C－6． Tucson，AZ 85712.

Oraham Researeh lise．model 51 coll and condenser tester．Need operations manual and schematic．Jerry Li － vesey，c／o B．C．Hydro．Shalalth，B．C．Can．VON 3CO．

Preclee Development Cerp．，model 300 osctinoscope． Need operations manual and schematic．Richard F．Roo－ geveer， 5569 Dunsburry Ct，San Jose，CA 95123.

Mernmerthnd model HO170 receiver．Need maruad and schematic．Dariel Marchesani，330－60th St．，Gutherberg．M／ 07093.

Peorlees model RL－28 lamp radio．Need schernatic．Fred Nickel， 5968 Bartram Civcle North，Jecksonville，FL 32207.

New dereey Electronice model RB50－1．5 power supply． Need echematics．G．M．Pavicek， 3017 Ardmore Dr．，Sen Diego．CA 92111

Crundig model TK 145 tape recorder．Need schematic and operation maruial．Robert A．Thompson， 2212 Windritil Ct．， Columbia，MO 65210.

Polarad model KS－57990L2 video monitor．Need eervice manual or schematic．A．Kaiser． 713 Martowe Rdi．Chery Hid．NJ 06003.

Cengrel Radio modet 583－A audio output meter and mint－ lary TSi75C／U frequency meter．Operation manuals need－ ed．J．A．Call， 1876 E． 2990 S．，Sat Lite City，UT 84108.

Preclelon modet 960－S transistor and cryatal diode tester． Schematic and operating instructions needed．Guy Edwards． 104 Hancock，San Franciaco．CA 94114.

RCA moded S4／055 VOM．Need achemalic．C．Koutalos， 275 Merkimer St．Mamitton，Ontario，Cen．Lep－2HQ

Aneleb Inetrumente Cerp．type 1100 or 1120 oscillo－ scope and type 700 plug－in．Noed manual and sciematics． J．O．Dickinson． 1408 Monmouth Cl．West，Richmond，VA 23233.

Electronic Countere，inc．model 5101 pulse generator． Need schematic and operations manual．Ruseel Steele． 838 Gayle St．，Papillion，NE 68046．

SPECIAL
ummer Sele
Part of preparing for the Fall is making room for a bunch of new products，so we＇re clearing out some of our inventory at re－ duced prices．Limited quantities on all items．

\section*{} 16K MEMORY EXPANSION CHIP SET \(\$ 87.20\)
\(\mathbf{2 0 \%}\) off one of our all－time best sellers．For Radio Shack－60，Exidy Sorcerer，Apple computers． 250 ns access time，low power parts，OIP shunts included， 1 year limited warranty，and easy－to－ follow instructions that make memory expansion a snap．

\section*{ \\ MIMA1003 CLOCK \({ }^{\text {HIIN}}\)} MODULE \＄1050 \＄13．20
\(20 \%\) off our very best clock module．Internal crystal timebase，iluorescent readouts that don＇t wash out，simple assembly（just add 2 timeset switches and +12 V DC），much more．Pertect for car，mobile use（documentation included）．Match－ ing cise with mounting hardware 8 optical fitter odd \(\$ 5.95\) ．
ロロロロロロロロロロロロロロロロロロロロロロロ茴 WE BREAK THE 1c／BYTE BARRIER！！
We＇re oflering low power 21L02 1K static memory chips，guaranteed to run with any 2 MHz system，at the very low price of \(1059.90 .\). ．that＇s under it per byte！Stock up now，we can＇t predict how much longer we＇ll have the last of these prime parts available for sale．
 LOW POWER－FULLY STATIC COMPUTER MEMORY PRICES S－100 32K \＄529， 24K \＄398，16K \＄269！
Econoram unkits are now at their lowest prices ever．Unkits come with all sockets and by pass caps pre－soldered in place，making comple－ tion a simple one－evening project．Now those on a budget can enjoy CompuPro／Econoram quality． same 1 year warranty and great specs as our regu． lar boards．All boards except Econoram VI run with 4 MHz systems．
Econorams are also available assembled and tested，or qualified under our high－reliability Cer－ tilled System Component（CSC）program（200 hour burn－in，immediate replacement in event of failure within 1 year of invoice date）．Refer to chart for pricing．

8K \(\times 8\) Econoram IIA \(16 \mathrm{~K} \times\) \＆Econoram IV \(12 \mathrm{~K} \times\) \＆Econoram V \(16 \mathrm{~K} \times\) \＆Econoram VIIA． 16 24K X 8 Econoram VIIA－24 16K \(\times\) E Econoram IX 32K \(\times 8\) Econoram IX \(32 \mathrm{~K} \times 8\) Econoram \(X\) \(32 \mathrm{~K} \times 8\) Econoram \(X 1\) BAN
16K
24 K
32 K
1
BANK SELECT（for Alpha Micro Syetems，Marinchip，etc．）
16K X 8 Econorsm XII－16＊＊
S－100 \begin{tabular}{llllll}
\(16 K\) \\
24K \(X 8\) Econorsm \(\times 11-16^{* *}\) & S－100 & \(\$ 329\) & \(\$ 419\) & \(\$ 519\) \\
\hline
\end{tabular} \(32 \mathrm{~K} \times 8\) Econoram XIII＊\(\quad \mathrm{S}-100 \quad \$ 559\)
\[
\begin{aligned}
& \text {-Econoram is a trademark of Godbout Electronice } \\
& \text { Econoram } \mathrm{XIII} 16 \text { and } 24 \text { have } 2 \text { independent banks addressable }
\end{aligned}
\] on 16K boundarios：Econoram
dressable on 16K bound aries．
TERMS：Cal．res aco tax．Allow \(5 \%\) 3hipping，excess relunded；orders under \(\$ 15\) add \(\$ 1\) handling．VISA．Mastercharge＇call 24 nr ， desk at（415）562－0836．COD OK with street address for UPS

FREE FLYER：Whather you＇re a computer user，electronic musicia experimenter，or mad ecientist，we have barpaina for you．．．and they＇re of Hsted in our fyer（including hots of epecials that are too pro－ vocative to put in femily magazinea such as this）Send us your name

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, \(\$ 2.50\) per word. Minimum order \(\$ 37.50\). EX-PAND-AD* CLASSIFIED RATE: \(\$ 3.75\) per word. Minimum order \(\$ 56.25\). Frequency discount: \(5 \%\) for 6 months; \(10 \%\) tor 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, \(\$ 1.50\) per word. No minimum! DISPLAY CLASSIFIED: \(1^{\prime \prime}\) by 1 column (\(2-1 / 4^{\prime \prime}\) wide), \(\$ 300.2^{\prime \prime}\) by 1 column, \(\$ 600.00\). \(3^{\prime \prime}\) by 1 column, \(\$ 900.00\). Advertiser to supply film positives. For frequency rates, please inquire. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club, Master Charge, VISA (supply expiration date) - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Linda Lemberg at (212) 725-3924.

\section*{FOR SALE}

FREE! Bargain Catalog-I.C.'s. LED's, readouts, fiber optics, calculators parts \& kits, semiconductors, parts. Poly Paks, Box 942PE, Lynntield, Mass. 01940
GOVERNMENT and industrial surplus receivers, transmitters, snooperscopes, electronic parts, Picture Catalog 25 cents. Meshna, Nahant. Mass. 01908.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 475096 th St N., St. Petersburg, FL 33708.

ELECTRONIC PARTS, semiconductors. kits. FREE FLYER. Large catalog \(\$ 1.00\) deposit. BIGELOW ELECTRONICS, Bluftion, Ohio 45817.
RADIO-T.V. Tubes- 36 cents each. Send for free catalog Cornell, 4213 University. San Diego, Calif. 92105
AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students... Construction plans - Complete, including drawings, schematics, parts list with prices and sources . . . Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm - Sound Meter . . . over 60 items. Send \(\$ 1.00\) (no stamps) for complete catalog. Technical Writers Group, Box 5994. University Station, Raleigh, N.C. 27650.
SOUND SYNTHESIZER KITS-Surf \(\$ 14.95\), Wind \(\$ 14.95\), Wind Chimes \(\$ 19.95\). Musical Accessories, many more. Catalog free. PAIA Electronics. Box J14359. Oklahoma City, OK 73114
TELETYPE EQUIPMENT. Copy Military. Press, Weather, Amateur, Commercial Transmissions. Catalog \(\$ 1.00\). WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \(\$ 1.00\). Allantic Sales. 3730 Nautilus Ave., Brooklyn, NY 11224. Phone: (212) 372-0349.
WHOLESALE C.B., Scanners, Antennas. Catalog 25 cents. Crystals: Special cut, \(\$ 4.95\), Monitor \(\$ 3.95\). Send make, model, frequency. G. Enterprises, Box 461P. Clearfield, UT 84015.

BUILD AND SAVE TELEPHONES, TELEVISION. DETECTIVE. BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphones, Phonevision. Dialers. Color TV Converters, VTR, Games, \(\$ 25\) TV Camera. Electron Microscope. Special Effects Generator. Time Base Corrector, Chroma Key. Engineering Courses in Telephone. Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, \(\$ 100\). Don Britton Enterprises, 6200 Wilshire Blvd., Los Angeles, Calif. 90048.
NAME BRAND Test Equipment. Up to \(50 \%\) discount. Free catalog. Salen Electronics. Box 82, Skokie, Illinois 60077.
NAME BRAND TEST EOUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Elec tronics, 1468 West 25th Street. Cleveland. OH 44113.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics. 8753T Windom. St Louis, MO 63114.
UNSCRAMBLER KIT. Tunes all scramble frequencies, may be built-in most scanners, \(2-3 / 4 \times 2-1 / 4 \times 1 / 2 . \$ 19.95\). Factory built Code-Breaker. \(\$ 29.95\). Free Catalog: KRYSTAL KITS. Box 445, Bentonville. Ark. 72712. (501) 273-5340.
B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AZ. 948 Prospect, Elmhurst, IL 60126.
POLICE/FIRE SCANNERS, crystals, antennas, CBs. Radar Detectors. HPR, Box 19224, Denver, CO 80219.
CB RADIOS, VHF-UHF Scanners. Crystal, Antennas, Radar Detectors. Wholesale. Southland. Box 3591. Baytown. TX 77520

\section*{SpeakerGuts.}

The absolute latest in advanced speaker techno logy. Wave Aperature' Drivers, the Patented Nestrovic Woofer Systern, raw
 speaker components selected for
their excellence. Horns, crossovers. subwooters, woofers, midranges, horn and dome tweeters. Over 30 in all. Build your own speaker system and well provide top quality speakers and design information. Send for FREE 48 page color cotalog from the largest. most experienced speaker kit manufacturer in the world. \(D O N^{\prime} T D E L A Y\). Write today'

\section*{مeankrlaé \\ Dept. APE, 735 N. Northlake Way
Seattle, Washington 98103}

UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7, Box 26.5B. Hot Springs, Arkansas 71901. (501) 623-6027.
MONTHLY PICTURE FLYER. Quality Surplus Electronic parts. Low Prices. Star-Tronics. Box 683. McMinnville, OR 97128.

PRINTED CIRCUIT supplies, chemicals, tools, artwork, plating solutions. Major credit cards. Catalog \(\$ 1.00\), refundable. CIRCOLEX, Box 198, Marcy, NY 13403.
RECONDITIONED TEST EQUIPMENT \(\$ 1.00\) for catalog. WALTER'S TEST EQUIPMENT. 2697 Nickel, San Pablo. CA 94806, (415) 758-1050.
NEGATIVE ION GENERATORS AND ACCESSORIES (Kits). Fascinating details- \(\$ 1.00\). Golden Enterprises. Box 1282-PE, Glendale, Arizona 85311

TRANSISTORS, IC's, RF-Power. for communications, TV, audio repairs, 2SC756A - \$2.00, 2SC1307-\$2.15, 2N6084\(\$ 14.50\). STK439-\$8.75. Many more. Free catalog. B\&D Enterprizes, Box 32. Mt. Jewett, PA 16740. (814) 837-6820.
PRINTED CIRCUIT BOARDS, your atwork, \(45 ¢ \mathrm{sq}\). in. single sided, \(60 \not \subset\) sq. in. double sided. Mail your order now, or send for free details. Digitronics, P.O. Box 2494, Toledo, OH 43606.
LOW COST ELECTRONIC PARTS!!! Send for FREE flyer. ALL ELECTRONICS CORP., 905 S. Vermont Ave., Dept. F. Los Angeles. CA 90006.
\(\overline{D B-100-A D J A C E N T ~ C H A N N E L ~ F I L T E R-m o s t ~ i n c r e d i b l e ~}\) filter ever offered to civilian market. Replaces any 455 K.C.I.F. filter to increase selectivity up to 100 DB's. Works on any receiver, transceiver, etc., using . 455 K.C.I.F. Free fact sheet, or send \(\$ 29.95\). SSB Publications, Box 960, Hyannis, MA 02601
ELECTRICAL: testers, books, toois. supplies. Do It Yourself, professional. Free 108 page catalog. Bluftion Products. Dept. A, Box 87. Bluftion, OH 45817.

ELECTRONIC TEST EQUIPMENT. Free catalog. E. French, PO Box 249, Aurora, IL 60507
CARBON FILM RESISTORS \(1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}-1.7\) cents each. Free sample/specifications. Other components. COMPONENTS CENTER, Box 295, W. Islip. New York 11795.
AUDIO NOISE REDUCTION KIT - 318 SILENCER for tapes, records, FM. Free brochure. LOGICAL SYSTEMS, 3314 'H' St., Vancouver, Washington 98663 ,
LATEST AND BEST in electronic components, books and supplies. Write for big free catalogue. TRI-TEK, 7808 N 27 Ave., Phoenix, AZ 85021.
BARGAINS GALORE! Monthly swap sheet tor radio collec tors, hams, experimenters, etc. Send long SASE for sample. Electronics Trader, Box 2377. Argus, CA 93562.
SWL'S: Tune in on the exciting world of Radioteletype and Morse transmissions of international news bulletıns. weather ships, and foreign embassy tratfic. Code Translator Video Display unit hooks directly to your shortwave receiver \(\$ 495\). Video monitor \(\$ 199\), or use your T with RF modulator \(\$ 30\) Instruction manuai, drawings \$5. ODS, Box 2346. Gaithersburg, Maryland 20760.
SELLING RIDER'S MANUALS, Sams Phototacts. Supreme Publications, individual Service Diagrams. Beitman. Box 46 , Highland Park, IL 60035.
FREE SAMPLE of optical tiber if you send for our catalog of fiber optıc and electronic supplies. FIBERTRONICS, Box 322 . Primos, PA 19018.
PRICE BREAKTHROUGH! NEGATIVE ION GENERATORS "The Incredible Fresh Air Machine", Car or Indoor model No-risk home trial. Free details: Aircon, POB 2312PE, Evansville, \(\mathfrak{N} 47711\)
AMAZING No-Touch Light Switch. A wave of your hand activates lights, lamps. radio, appliances etc. Free brochure. DMD Scientific. Box 6251-F, Flint, M1 48508
SAVE 30\% AND MORE-on microcomputer products from all the finest manufacturers. Write and ask for our "Spring Clearance Special." Computer Enterprises, P.O Box 71, Fayette ance Special."
ville, NY 13066.

TREMENDOUS BUYS In New And Gov't Surplus Equipment Dial Telephone 'SUPER BUY'

FREE CATALOG shaw: Big savings on

Surplis Center Box 82209 -PE Lincoln, Ne. 68501

NEW ELECTRONIC PARTS. Continuously stocked. Stamp brings catalog. Daytapro Electronics, 3029 N . Wilshire Ln, Arlington Hts., IL 60004.
FREE! CATALOG - SPECIAL GIFTS WITH ALL ORDERS. U.S.A. lowest prices, brand new electronic parts, TV games from \(\$ 13.95\), and more at bargain prices. What A Buy Unbelievable. Mail-A-Rama, Box A-85, 525 Bergen Ave., Jersey City, NJ 07034
USED AMATEUR RADIO EQUIPMENT FOR SALE Nationwide list \(\$ 2.50\). Amateurs Exchange, Box 374-PE, Visalia, CA 93279.

\section*{PLANS AND KITS}

\section*{AMAZING ELECTRONIC PRODUCTS}

ELECTRONICS KITS: For information, send self addressed stamped envelope. GI Kits, Box 2329, Garland, TX 75041.

BUILD DIGITAL DIAL for AM Broadcast Receivers. Simple-Inexpensive-Accurate. Information/Schematic/Layout \$3.95. W.M. Whitley, 5603 Lemonwood, Austin, Texas 78731 CONVERT GASOLINE CARS TO ELECTRIC. Plans \(\$ 15.00\) catalog \$1.00. Convertacar, Box 1357. Plano. TX 75074.

JACOB'S LADDER - sparks climbing brightly in horror movie backgrounds. Complete plans \(\$ 2.50\). Trip Engineering, Box 234, East Cambridge. Massachusetts 02141.
VHF LOOP ANTENNA and base mounted preamp. Plans \(\$ 3.00\). Also kit available. TEC-PAK, P.O. Box 159. Glenshaw PA 15116.
HIFI STEREO AMPLIFIER. Construct your own. complete pc mounts and instructions. Info \(\$ 1.00\). Otel, 9626 Golf Terrace Des Plaines, IL 60016.
PROJECTION TV . . . Convert your TV to project 7 Foot pic ture. Results equal to \(\$ 2.500\) projector. Total cost less than \(\$ 20.00\). PLANS \& LENS \(\$ 16.00\). Illustrated info. FREE: Mac recoma, Washington Crossing. PA 18977.

\section*{TELEPHONES \& PARTS}
telephones unlimited, equipment supples. all TyPES, ReGULAR, kEYED, MODULAR. FREE CATALOG. Call now toil free. (800) 824-7888. In California (800) 852-7777. Alaska-Hawaii (800) 824-7919. Ask for operator 738.

\section*{ALARMS} QUALITY BURGLAR-FIRE ALARM EOUIPMENT at discount
prices. Free Catalog! Steffens, Box 624 K , Cranford, N.J. 07016

PROFESSIONAL Quality Alarm systems for your home. For free catalogue, write: EAC, Electronics Department, Box 7881 , Colorado Springs, CO 80933.

\section*{HIGH FIDELITY}

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering. Stanton. Empire, Grado and ADC Send for free catalog. LYLE CARTRIDGES, Dept. P, Box 69 Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

LOWEST PRICES on stereo components. BOSE, SAE, DBX and more. Dynamic Sound, Box 168(B), Starkville, MS 39759. (601) 323-0750. 1 PM - 9 PM.

\section*{WANTED}

GOLD. Silver, Platinum, Mercury, Tantalum wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal. Norwood, MA 02062.
WANTED: Transistor radios, Wholesale. CB, HAM, AM. Doug Lane, 195 Locust Hill Dr.. Rochester, NY 14618

\section*{GOVERNMENT SURPLUS}

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive. Washington, D.C. 20021.

JEEPS-\$59.30!! - CARS- \(\$ 33.50!!\) - 200.000 ITEMS!! GOVERNMENT SURPLUS - Most COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy - YOUR AREA - \(\$ 2.00\) - MONEYBACK GUARANTEE - Government Information Services, Department GE-85, Box 99249, San Francisco. California 94109.
GOVERNMENT SURPLUS. Buy your Area. How, where. Send \$2.00. SURPLUS HEADQUARTERS BUILDING, Box 30177-PE, Washington, D.C. 20014.
"GOVERNMENT SURPLUS DIRECTORY" Buy 500,000 items (including Jeeps) . . . Iow as \(2 \nless\) on dollar! Most complete information available - \(\$ 2.00\) (guaranteed). Surplus Disposal. Box \(19107-\mathrm{HI}\), Washington. DC 20036.

\section*{TUBES}

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105.
TUBES: "Ofdies", Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz. 7519-PE Maplewood, Hammond, Ind. 46324.
TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV. Radio and audio parts list. Transleteronic. Inc., 1365 39th St., Brooklyn, New York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802.

RADIO AND TV TUBES 1938 to \(1978 \$ 1.00\) ea. PRELLER TV. Augusta, AR 72006. (501) 347-2281.

\section*{PERSONALS}

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated trochure free. Hermes-Verlag. Box \(110660 / Z\), D-1000 Berlin 11, W. Germany.
MAILORDER SUCCESS! Interested? Free exposé. TWP-V. Box 6226, Toledo, Ohio 43614.

\section*{INSTRUCTION}

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE09, Tustin, California 92680.
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion. Box 24-ZD. Olympia, Washington 98507.
INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave.. Sarasota, FL 33577
1979 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! \(\$ 9.95\) Unconditional Moneyback Guarantee. Command Productions, Box 26348-P, San Francisco, CA 94126.

RADIO BROADCASTING: Become D.J. engineer. Start your own station - investment/experience unnecessary! Receive free equipment, records. Free details. Broadcasting. Box 130-A9, Paradise. CA 95969.
FCC LICENSE over 1200 questions, answers, discussions. illustrations. 3rd, 2nd, 1st, phone, radar, broadcast, endorsements. \$14.95. SPECIFIC SKILLS INTERNATIONALE Inc., P.O. Box 1233. Cocoa, Florida 32922. Mastercharge/VISA.

UNIVERSITY DEGREES BY MAIL!!! Bachelor's, Master's. Doctorates. Free Information. Careers, Department Education, Box 10068, Washington. DC 20018.
LOANS - Former bank executive explains how to obtain loans from banks, other lenders. \(\$ 3.00\). Businessman's supplement \(\$ 2.00\). Sylvan Press, P.O. Box 18212, San Jose, CA 95158.

COLLEGE DEGREES BY MAIL! No classes. Fast. Economical. Accredited. FREE Revealing details. Success, Box 12500-R9, Columbus, Ohio 43212.
LEARN ELECTRONIC ORGAN SERVICING at home. Com pietely revised course covers latest models including digital. LSI's, synthesizers, etc. NILES BRYANT SCHOOL. PO Box 2015, Sacramento, CA 95820.

TV-OSCILLOSCOPE CONVERTER externally adapts TVinto audio frequency oscilloscope. Info. \(\$ 1.00\), Plans \(\$ 7.50\), with P.C. \(\$ 15.00\), complete kit \(\$ 60.00\). Evoluctionics, Box \(855-\) K. San Rafael, CA 94902.
PRINTED CIRCUIT Boards from sketch or artwork. Kit projects. Free details. DANOCINTHS Inc., Box 261, Westland, MI 48185.

TOP QUALITY IMPORTED KITS, IC's, foreign transistors Free catalog. International Electronics, Box 567 . Williamsville, NY 14221.
TELETYPEWRITER USERS: Unique solid state time delay relay. Reduces energy and maintenance costs. Information 504. Plans \(\$ 5.00\), with P.C. \(\$ 10.00\). KEITH RYAN, Box 3103-P. Ottawa, CANADA, KIP 6H7. U.S. Inquiries.
ELECTRONIC "GAS" DETECTOR PLANS including IC amplifier. Detects carbon monoxide, propane, natural gas, smoke etc. Ideal for Home. Vans, Autos, RV's. Boat Bilges or for controlling Vent Fans, Garage Door Openers etc. \(\$ 2.75\) JR Industries, 5834-A Swancreek, Toledo, OH 43614.

EARN HIGH SCHOOL DIPLOMA, spare time Collegerecognized. Credits given for previous courses, job experience. Low tultion. Exams repeated tree. Individual counseling. State registered. Cambridge Academy. Dept. PE-2, 409 E. Osceola. Stuart, Fiorida 33494. Toll-tree 1-800-327-8103

\section*{FOR INVENTORS}

PATENT AND DEVELOP Your invention. Registered Patent Agent and Licensed Professional Engineer, Send tor FREE PATENT INFORMATION every inventor should have. Pichard L. Miller, P.E., 3612 Woolworth Building, New York, NY 10007. (212) 267-5252.

\section*{INVENTIONS WANTED}
free consultation - no idea too small Dectosure proteciton Caph or royation liom manutecturers seeking American Inventors Corp.

59 Interstate Dr. Dept PE
West Springtield, MA 01089 (413) 737-5376 a Foce Bosed service Company

MR. INVENTOR: America's toremost development firm offers a complete service. For tree details, write: Charles S. Prince Co., Inc., Empire State Building. Suite 3308-E, N.Y.C. 10001 EASY MONEY!! Sell your ideas! Free information. Mandrells, Dept. PE99, Glendive. MT 59330.

\section*{business opportunities}

I MADE \(\$ 40,000.00\) Year by Mailorder! Helped others make money! Torrey, Box 318-NN. Ypsilanti, Michigan 48197.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instuctions. Ooolin. 2016 Canton. Dallas, Texas 75201.
NEW LUXURY CAR WITHOUT COST! Free Report. CodexZZ, Box 6073. Toledo. Ohio 43614. (419) 865-5657
MECHANICALLY INCLINED individuals desiring ownership of SmaH Electronics Manufacturing Business - without investment. Write: BUSINESSES, 92-K2 Brighton 1 th. Brooklyn, New York 11235.
MILLIONS in Mail!!! Free Secrets. Transworld-17. Box 6226. Toledo, OH 43614.

\section*{MECHAMICALLY INCLIWED IWDIYIDUALS}

Assemble electronic devices in your home. investment, knowledge, or experience not necessary. Get started in spare time. Above average profits. \(\$ 300-\$ 600 / W k\) possible. Sales handled by others. Write for free details.

\section*{ELECTRONIC DEVELOPMENT LAB Drawer 1560 PE, Pinellas Park, FL 33565.}
\(\mathbf{\$ 1 2 0 0 . 0 0 ~ M O N T H L Y ~ C o r r e c t i n g ~ P u p i l s ' ~ L e s s o n s ! ! ! ~ S t a n t ~ I m ~}\) mediately. Free Report. Send self-addressed stamped envelope. Home, Box 98201 -SJXR, San Diego, CA 92109.

EARN EXTRA MONEY - Homeworkers Needed Stuffing Envelopes! Free Details. Write: Jadeway, Box 186-ZD, Gaines, MI 48436.

ERASE DEBTS with little-known law-create wealth!! Details FREE-Blueprints. No. EE9, Box 900, Bronx. NY 10471.
GET RICH SLOWLY! How to operate your own profitable service business. Years of intormation and experience condensed in one easy-to-understand guide. \(\$ 9.95\). ESI, 4500 East Speedway 33. Tucson. Arizona 85712.
WIN AT FOOTBALL! We beat the pointspread an incredible \(70 \%\) last 11 years! CBS-TV called us No. 1 football prediction newstetter! Guaranteed winner! Free: game by game record last 4 years. Winners Sports, 5711-S 14th Ave., Brooklyn, NY 11219.

EARN \(\$ 1000\) STUFFING 1000 ENVELOPES! Money back guaranteed. Details \$1.00. D. Fraser, 208 S. 4th. DeSoto, MO 63020.

BORROW \(\$ 25.000\) "OVERNIGHT." Any purpose. Keep indet initely! Free Report! Success Research. Box 29263 GI , Indianapolis, Indiana 46229.
SPARE TIME fortune in Vinyl Repair. Huge demand creates exceptional profits. Two small \(\$ 20\) jobs earn you \(\$ 1,000\) a month. We supply everything. Details free. VIP, 2012 Montrose. Chicago, IL 61618.
YOUR OWN COMPUTER BUSINESS. Free information. Datasearch, Dept. F, 4954 William Arnold Rd., Memphis, TN 38117.

HOMEWORKERS! Circular Mailers Wanted. Send self addressed stamped envelope. Garrison, 94114 Pupupuhi, Waipahu, HI 96797.

TELEVISION AND STEREO REPAIR SHOP in Wyoming Boom town for sale, largest of three repair shops. Call: (307) 682-1841.
\(\$ 200\) WEEKLY mailing circulars. No gimmicks. Free details Charpost, 51 Greenieat Lane. Cheektowaga, NY 14225.
BIG MONEY! Interested? Free disclosure. Febre-V, Box 6073. Toledo. Ohio 43614. (419) 865-5657.

\section*{POSITIONS OPEN}

NONBROADCAST TELEVISION TECHNICIAN. University of Illinois seeking maintenance technician for small tormat television equipment. Stanting \(\$ 13,270\), raises to \(\$ 17.035\) over two years. plus annual increases. Two years electronics study, two years electronic maintenance required. Contact: Don Swit, Personnel Services. University of III., Champaign. IL 61820. (217) 333-3109. Affirmative Action. Equal Opportunity Employer

\section*{EMPLOYMENT OPPORTUNTTIES}

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Emphoyment Information Service, Box 240E. Northport, New York 11768.
ELECTRONIC FIELD SERVICE - Nationwide positions Employer pays tees (312) 398-5535. Field Service Search, PO Box 544, Arlington Hts., IL 60004

\section*{DO-IT-YOURSELF}

AUDIO/ANALOG/SYNTHESIS. Plans. parts, kits, eic. for the most exciting sound projects ever. Get on our mailing list, send \(25 \&\) to: CFR Associates Inc., Newton, N.H. 03858.
SAVE MONEY! Build your own computer. Rush \(\$ 3.95\) tor plans. Sitna Enterprises PE860, 1960 S.W. 70 Ave., Plantaion, Fiorida 33317.

\section*{REAL ESTATE}

BIG . . . FREE ... FALL CATALOG! Over 2,600 top values coast to coast!! UNITED FARM AGENCY, 612-EP. West 471h, Kansas City. MO 64112

\section*{MICROCOMPUTERS}

TRS-80 MICRO COMPUTERS by Radio Shack \({ }^{*}\) at \(15 \%\) discount! Also have software for business systems. Micro Management Systems. Cairo. GA 31728. (912) 377-7120.
SPACEWAR tor Level II TRS-80. Real-time action game for two players, with spaceships, torpedoes moving in adjustable orbits about the sun. The best Spacewar available, it has a 30 -day unconditional guarantee. For cassette send \(\$ 15.00\) to PODOSOFT, 9 Smith St., Wellesley, MA 02181.

\section*{RUBBER STAMPS}

RUBBER STAMPS. BUSINESS CARDS. Many new products. Catalog Jackson's. E-100. Brownsville Rd., Mt. Vernon, III. 62864

\section*{MAGNETS}

MAGNETS. All types. Specials-20 disc, or 10 bar, or 2 stick or 8 assorted magnets. \(\$ 1.00\). Magnets, Box 192.H. Randallstown, Maryland 21133.

\section*{BOOKS AND MAGAZINES}

FREE book prophet Elijah coming betore Christ. Wonderfu bible evidence. MEGIDDO Mission, Dept. 64, 481 Thursion Rd., Rochester, N.Y. 14619.

\section*{BASIC ELECTRICITY AND DC CIRCUITS}

1026 pages, \(\$ 1995\) Order \#LCW8161. Check or money order: Texas Instruments. P. O. Box 3640 .
M/S84 M/S84 Dept. PE979, Dallas. Texas 75285. Add sales tax where applicable

\section*{TExas Instruments}

EXPERIMENTER'S DIRECTORY. Best buys, parts, test equip. microcomputers, phones, tech. into., more. Descriptive source listing. \(\$ 1.95+30 \nless\) postage. K.M.H., 5102 Inverness, Baytown, TX 77521.

POPULAR ELECTRONICS INDEXES For 1977 now available. Prepared in cooperation with the Editors of "P/E," this index contains hundreds of references to product tests. construction projects, circuin tips and theory and is an essential companion to your magazine collection. 1977 Edition, \(\$ 1.50\) per copy. All editions from 1972 onward still available at the same price. Add \(\$.25\) per order for postage and handling. \(\$.50\) per copy, foreign orders. INDEX, 6195 Deer Path. Manassas. Va. 22110.
CB TECHNICIANS - now available - SSB Engineering Practice Manual. Most comprehensive book on how to modity and expand any CB radio tor maximum performance and range. Includes the newest PLL radios. Free fact sheet or send \(\$ 14.95\). SSB Publications. Box 960 . Hyannis. MA 02601.
BACK ISSUE MAGAZINES. Free list. Send stamped envelope. Everybody's Bookshop. Dept. ZD, 317 West 6th, Los Angeles. CA 90014
SAVE MONEY. Order Technical Data Books by Mail. Send \(\$ 1.00\) tor catalog to: World of Books. P.O. Box 14565, Fon Worth. Texas 76117

\section*{HYPNOTISM}

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400. Ruidoso. New Mexico 88345.

\section*{MOTION PICTURE/VIDEO FILMS}

SUMMER SALE OF OUTER SPACE SCIENCE FICTION S-8 Vivid Color/Sound Films - 200' reels; box office hits \#1"Jaws," Robert Shaw \& Richard Dreytus strike fear \& terror in your heart. "Buck Rogers" (Giil Gerard). sci-fis - most tamous time traveler. "Superman" (Chris Reeve) space age opticals, astronaut hero. For Sale @ \$28.95 ea*; all 3 only \(\$ 83.90\) delivered. Altred Hitchcock's "Psycho". Anthony Perkins, Janet Leigh film preserves shower scene, detective's murder \& final shocking revelation. \(400^{\prime}\) S-8 B/W/Sound, \(\$ 39.90\) ea* Add Super Bowl XIII (Denver/Dallas '78) \& ' 77 World Series (Reggie! Reggie! Reggie!) + '78 NHL Stanley Cup (Canadiens/Bruins), ea \(400^{\prime}\) Eastman Color mag sound film, \(\$ 54.90\) ea*. "Add \(85 \%\) per film for 200 ' reels: \(\$ 1.50\) per film for 400 'sound teatures. III. res. add \(5 \%\) tax. New Columbia catalog (incl sports, cartoons. features \(+\mathrm{S}-8 \mathrm{HDk}\)) \(\$ 1.25\). Exciting Universal 64 -pg glossy catalog (incl sci fi, Woody WC Fields, fights) \(\$ 1.25\). Columbia, Sportite, Ring Classics, Universal order forms, \(40 ¢\) ea. Any Questions? Call (312) 236-8955. SPORTLITE FILMS, Elec1-9/79. Box 24-500 Speedway. IN 46224.

VIDEO MOVIES: all ratings: Beta, VHS. Bought, Sold, Rent ed. VCR's, Blank tapes, Supplies: Cat. \(\$ 1.00\) (deductible) (201) 572-1222. Devoe, P.O. Box 593, Edison. NJ 08817

\section*{MISCELLANEOUS}

MPG INCREASED! Bypass Pollution Devices easily. REVERSIBLY!! Free details - Posco GEE9, 453 W. 256, NYC 10471

NEW CAR FREE YEARLY! Workable secret method - free intormation: Supercar, Box 28101-N. St. Louis. MO 63119.

GASOLINE MILEAGE INCREASED DRAMATICALLY! Sim plified retuning methods. Details FREE! Techneering, Box 12191 PE, Nortolk. VA 23502.
FREE PROMOTIONAL ALBUMS, concert tickets. stereos, etc. Information: Barry Publications, 477 82nd Street, Brooklyn, NY 11209.
SAVE TO \(90 \%\) WEEKLY on groceries!! Guaranteed!! Intorma tion Rush self-addressed stamped envelope plus 258! Mar tens Ent., 1046 Greenwood C1., Rm 7PE, Oshkosh, W 54901.

\section*{1979 Electronic Experimenter's Handbook}

ELECTAONLC

\section*{visumix}

This latestion includes a Micro computer Buying Section in addition to a host of exciting construction projects with complete construction plans, parts lists, and printed circuit board patterns. PLUS-A Com puter Buying Directory with product specifications, latest prices, and photos. Only \$2.50!
Order from ELECTRONIC EXPERIMENTER'S HAND B00K, Dept. 01052, P.0. Box 278, Pratt Station, Brookiyn, NY 11205 . Enclose \(\$ 3^{\circ}\) (\(\$ 2.50\) plus postage and handling). Outside U.S.A. \$3.
-Residents of CA, CO, DC, FL, IL, MI, MO, NY STATE and VT add applicable sales tax

\title{
Popular Electronics
}

ADVERTISERS INDEX

\section*{READER}

SERVICE NO．
ADVERTISER
PAGE NO

AP Products，Inc．
Active Electronics Sales Corp
.85
American Antenna
． 113
Ancrona Corp
Antenna Specialists Co
Apple Computer
Audio－Technica U．S．，Inc．．．．．．．．．．．．．．．．．．． 96
10 B \＆F Enterprises
B \＆K Precision，Dynascan corp．． 107
Beckman instruments，Inc．
.92
. .2
Chaney Electronics
Cleveland Institute of
Electronics，Inc．
\(.52,53,54,55\)
12 Colby Instruments，inc．
1 Communications Electronics 13 compucolor
5 Consumers Company
16 Continental Specialties corp． 17 Cooper Group．The
65 Creative Computing Magazine
18 Creative Computing Magazine
19 Delta Products，inc．
20 Digi－Key Corp．C．
Digital Research Corp
21 DSI Instruments，Inc．

22
Edmund Scientific Co．
E．\(Z\) Circuit Book Club
Fisher Corporation
25 Fordham Radio Supply
26 Formula International
27 General Engines Co．
28 Goabout Electronics，Bill
29 Grantham College of Engineering
117

5 Heath Co．
30 International Correspondence School
\(34,35,36,37\) 34 Illinois Audio
31 Integrated Circuits
Intional Components Corp．．． 114
\(33 \mathrm{~J} \& R\) Music Worid
34 Jameco Electronics
JS \＆A National Sales Group
108,109

35 Kenwood
36 Koss Corporation
Cover 3
37 Maxell Corp of America
8 Mclntosh Laboratory，Inc
Microcomputer Mart
39 Microprom
40 Mini Micro Märt
41 National Camera Supply National Technical
42 Netronics R \＆D Lid．
43 Netronics \(R\) \＆\(D\) Lid
Netronics R
\(70,71,72,73\)

45 Ohio Scientific Instrument
47 Or Machine \＆Tool C
.5
.91

48 Paccom
97
Page Digital Electronics
49 PAIA Electronics，Inc．
5 Percom
52 Poly Paks
53 Quest Electronics

\section*{Radio Shack}

112
Sabtronics International，Inc．
54 Schober Organ Corp．，The
55 Scott，Inc．，H．H．
Sharper Image．The
Sheldahl
56 Solarex 57 Solid State Sales
58 Southwest Technical Products Corp． Speakerlab，Inc
59 Sprague Products Co
60 Stereo Corp．of America
61 Technics by Panasonic
62 Teknion 63 Texas Wholesale Éectronics

T．V．Game Special Reject＂Video olympiad＂TV
game units．Play 3 exciting
coll game units．Play 3 exciting
color TV games，with on－ screen digital scoring and rea． listic sound effects．You re－ \(\begin{array}{cc}\text { pair and save ！} \\ \text { c23872 } \\ & \$ 8.95\end{array}\)
Electronic Warning Flasher Kit This battery operated device
continuousiy emits bursts of continuoushy emits bursts of
intense light．Great for bicycl ists，skiers，boaters \＆campers．
Comes with all parts，quality PC Comes with all parts，quality PC
board and easy－to understand in－

structions．Uses high－output xenon
flash tube which flashes 2 times per flash tube which fiashes 2 times
second when batteries are fresh．

\section*{Strobe Kit}

Complete variable
rate strobe light
rate strobe light
kit．Contains all parts，line cord PC board and in \begin{tabular}{l}
structions． \\
C23071 \\
\hline
\end{tabular}
\begin{tabular}{l}
6KV \\
Trigger \\
corl． \\
\begin{tabular}{l}
To fire \\
xenon \\
flash \\
tubes． \\
c23474
\end{tabular} \\
\hline
\end{tabular}

BEAT HIGH

\section*{ELECTRIFY YOUR BIKE！}

PEDALPOWER exciting new bike drive tames tough hills．Be indepen－ dent．Shop when you want．Fits all Bikes，Adult Trikes．Installs in min－ utes．Thousands sold．Recharges overnite．Travels 100 miles for a dime．

MONEY BACK GUIARANTEE
Call toll free 800－257－7955＊ Or scind today for

FREE ILIUSTRATED
PEDALPOWER BOOKLET
Plus free information on complete
line of Electric Cars，Electric Bikes and Trikes．

\section*{General Engines Co．} 5485 Mantua Blvd．
\[
\text { Sewell, NJ. } 08080
\]

In NJ．，Alaska or HI Call Collect．（609）＋68．02־O
CIRCLE NO． 27 ON FREEINFORMATION CARD

\section*{NEW MARWIII \\ \(\left\{\begin{array}{c}\text { Steps Celer } \\ \text { LED YU }\end{array}\right.\)}
sereo level indicator play panel！！This Mark III LED level indicator is a new design PC board with an arc－shape 4 colors LED display change color from red，yellow，green and the peak output indicated by rose red）．The power range is very large，from -30 dB to +5 dB The Mark 111 indicator is applicable to 1 wart－ 200 watts amplifier operating voltage is \(3 V-9 V\) at max 400 MA ．The circuit uses 10 LEDs plifier fust ho is very easy to connect to the am． IN KIT FORM \(\$ 18.50\)

COMPLETED UNIT－NOT A KIT！ OCL pre amp．\＆power stereo amp．With bass，middle，treble 3 －way tone control Fully assembled and tested，ready to work Total harmonic distortion less than \(0.5 \%\) at full power．Output maximum is 60 watts per channel at \(8 \Omega\) ．Power supply is 24 36 V AC or DC．Complete unit

Assembled \(\$ 49.50 \mathrm{ea}\) ．
Power transformer
S 8.50 ea

100 W CLASS A POWER AMP KIT
Dynamic Bias Class＂\(A\)＂Circuit design makes this unir unique in its class．Crystal clear， 100 watts power outpu will satisfy the most picky fans．A perfect combination with the TA－ 1020 low T．I．M．stereo pre－amp．Specifice vions：Output power：100W RMS into \(8.0 \mathrm{hm} / 125 \mathrm{~W}\) RMS into 4 －ohm＇Frequency response： \(10 \mathrm{~Hz}-100 \mathrm{KHz}\)＇T．H．D． less than \(0.008 \%{ }^{\circ} \mathrm{S} / \mathrm{N}\) ratio：better than 80 dB ＂Input sen sitivity：IV max． \(\pm 40 \mathrm{~V}\) e 5 mmp ．
TA－1000 KIT \(\$ 51.95\)
Power transformer

\(\$ 15.00\) each
LOW TIM DC STEREO PRE－AMP KJT TA－10－20
Incorporates brand－naw D．C．design that gives a frequency osponse from \(0 \mathrm{~Hz}-100 \mathrm{KHz} \pm 0.5 \mathrm{~dB}\) ！Added features lik tone defest and loudnass control lat you tanor your own plies pass than \(005 \%\)＂T．I．M．lexs than \(.005 \%\)＊Frequency re pons：\(D C\) to \(100 \mathrm{KHz}+0.5 \mathrm{~dB}{ }^{*} \mathrm{RIAA}^{2} \mathrm{deviation:} \pm 0.2 \mathrm{~dB}\) \({ }^{4} \mathrm{~S} / \mathrm{N}\) ratio：batter than 70 dB －Sensitivity：Phono 2 MV \(47 \mathrm{~K} / \mathrm{Aux} .100 \mathrm{MV} 100 \mathrm{~K} \cdot\) Output level： \(1.3 \mathrm{~V} * \mathrm{Max}\) output \(+10 \mathrm{~dB} @ 50 \mathrm{~Hz} /\) treble +10 dB 50Hz／treble
\(+10 \mathrm{~dB} 9 \mathrm{~Hz}=\) Power supply：\(\pm 24\) D．C．＠O．5A Kit comes with regulated power supply，all you need is a 48 V C．T．trans former e O．5A

ONLY \(\$ 44.50\)
X＇former \(\$ 4.50\)
WE SELL ALL KINDS OF
ELECTRONIC PARTS \＆KITS
PLEASE SEND \(\$ 2.00\)
FOR DETAIL CATALOGUE
YOU MAY FIND OUR 2－PAGE AD IN EVERY ISSUE OF RADIO ELECTRONICS
RETAIL STORE OPEN TO PUBLIC MONDAY THRU SATURDAY 10 a．m．-7 p．m

\section*{FORMULA INTERNATIONAL INC．}

12503 CRENSHAW BOULEVARD HAWTHORNE，CA 90250
（213）679－5162 or（213）973－1921
All items subject to prior sale．
Prices subject to change without notice．
CIRCLE NO． 26 ON FREEINFORMATION CARD

\section*{}

\section*{WORELD \({ }^{6}\)}

\section*{Personal Electronics News}

A digital audio disc system has been demonstrated by North American Philips Corp. The Compact Disc is \(4 \frac{3^{\prime \prime}}{\prime \prime}(114 \mathrm{~mm})\) in diameter, \(0.04^{\prime \prime}(1.1 \mathrm{~mm})\) thick, and can store up to 60 minutes of audio with 20 to \(20,000 \mathrm{~Hz}\) bandwidth, less than \(0.05 \%\) distortion, and \(S / N\) of better than 85 dB . It is recorded on one side only and is made of polyvinyl chloride coated with a thin

metallic layer that holds a helical track of pits acting as carriers of the digital information. A transparent plastic layer protects the metal. The audio is encoded via a 14-bit linear system, with a sample rate of 44.3 kHz . The player reads the disc by means of a solid-state laser whose light is scattered by the pit as the disc rotates. Tentatively scheduled for introduction late in 1981, the Compact Disc is expected to be competitive in price with standard LPs. Target price for the player is about as much as a mid-priced turntable.

FM broadcast channels of reduced bandwidth, proposed in a petition to the FCC by the
; National Telecommunications Information Administration, are strongly opposed by the Institute of High Fidelity. The NTIA claims that an increase in the number of FM channels is in the public interest and sees the reduction in bandwidth as a means of accomplishing this end. In answer to NTIA's petition, the IHF contends that reducing \(F M\) bandwidth to 150 or 100 kHz from 200 kHz would cause a return to "the type of performance that FM tuners and recievers had in the 1950 s and 1960 s." The institute noted further that if adopted, the proposal would have an adverse effect on millions who own FM receiving equipment, pointing out that owners of frequencysynthesized tuners might not even be able to tune to the new channels.

A new energy-saving product, said to reduce home heat loss by as much as \(24 \%\), has been developed by a 17-year-old with the help of a Perkin-Elmer 1100 computer terminal he won at the 1978 Personal Computing show. Nicholas Naumovich, Jr., a senior at Lake Highlands High School in Dallas, TX, won second prize with a computer system he developed to perform energy studies on how efficiently a home is insulated. He used his data as a basis for inventing Thermo-Brite, a material that reduces air infiltration and reflects heat away from a home to keep cooling costs down during summer months. The product is an aluminized film that is designed to cover the exterior of a house. Heating and cooling cost reduction are claimed to be high as \(\$ 800\) annually.

A new Amateur Radio hobbyist class operation has been requested by the Washington State CB Radio Association. In a petition filed with the FCC, the Association stated that the new designation--using SSB transmissions between 27.41 and 28.00 MHz --is necessary because of overcrowding and interference in the \(C B\) Radio Service and increase in operations on unauthorized frequencies.

Free software programs are being offered to 8080 Etc. members who have a commications modem. More than 85 types of business, medical, accounting, research, and hobby programs are listed. Acoustic couplers or the IDS card for the S-100 bus is recommended, and transmission rate must be 300 baud. For information about 8080 Etc. membership, dial (209) 638-6392 and type "Hello-w101, 8080-Etc." Annual membership is \(\$ 25\). Send SASE for free list of program titles (include type of system and specific components) to: Membership, The 8080 Etc., P.O. Box 894, Fresno, CA 93714 .

Keep a cool head with a new electronic device announced by Majima Co. Ltd. of Tokyo. The new "Stop Sleep" device is designed to cool a driver's head to prevent dozing while behind the wheel. It uses a patented thermoelectronic element and plugs into the vehicle's cigar-lighter socket.

\title{
The Sound of Koss will spoil you for anything else.
}

Once you've experienced the life-like intensity of the Sound of Koss, you'll be spoiled for anything else. Because with Koss stereophones, your favorite recordings take on an incredible new dimension of clarity and realism that's unlike anything you've ever heard before.

KOSS
PR()/4 TRIPLEA

The Pro/4 Triple A's extra large voice coil and oversized diaphragm deliver a smooth frequency response over the entire bandwidth of sound. Highs are brilliant, crisp and clean. And the bass pulsates with a rich, deep vibrance.

The Triple A's directcontour Pneumalite earcushions provide a gentle, yet perfect seal that increases bass response to below audibility. And

stereophone that has it all: a patented energizer that features an automatic overload protector, semipeak reading VU meters. and an outlet for an additional set of stereophones. Each a final touch of perfection for the ultimate Sound of Koss.

\section*{K ()SS CM 530}

Write us c/o Virginia Lamm, for our free fullcolor catalog on the Sound of Koss. And when you visit your audio dealer for a live demonstration of Koss stereophones, take an extra moment to hear the perfect pair. The computer maximized Koss CM 530 bookshelf speakers. Whether you place them horizontally or vertically on your bookshelf, the Koss CM 530's deliver perfect mirror image sound. And whether it's loudspeakers or stereo phones, once you've experienced the Sound of Koss you'll be spoiled for anything else.

The ultimate Sound of Koss is the electrostatic ESP/10. It's specifically designed for those who want the most precise reproduction of stereophone sound. What you hear with the ESP/10 is
near-zero distortion over all ten audible ortaves. And what you experience is the most accurate excursion into sound that has ever been achieved.

The Koss ESP/ 10 is indeed the electrostatic

CLIPS ANYWHERE WITHOUTA CLIP!

Molded four-pole internal magnet clamps instantly to any steel surface. Steering column, metal dash, roof top. or the side of your CB radio. No groping for your mounting clip.

\section*{PROCESSES} COMPUTER CIRCUIT!

It's its own computer-it automatically monitors your speech and adjusts it in micro-second increments pumping so much db gain into your speech that you get \(400 \%\) more power than a standard

A microphone so sensitive it will select your voice and process your speech no matter how close or far you are from the microphone

\section*{.}
\[
\begin{aligned}
& 2 \text { INCHES OR } 2 \\
& \text { FEET! } \\
& \text { SOUND SENSITIVE }
\end{aligned}
\]份
 TWO MICs WITH ONE SWITCH!
Switch up for a highpitched transmission for cutting congested city traffic. Switch down for a mellow base in open. uncluttered rural areas.

\section*{4 NOISE \\ CANCELLING}

Pull the Processor directly to your mouth and speak directly into the mic. The Processor adjusts to your voice-and blanks out all the cab noise while you're speaking. Automatically.
fresh charge WITH NO BATTERIES!

Patented electronic storage system recharges while you listen to the radio. It provides a fresh electrical charge every time you squeeze the trigger. You never replace batteries

\section*{\(\$ 42.50\)}

American Antenna Elgin. 1160120
*suggested retail.
CIRCLE NO. 4 ON FREE INFORMATION CARD```

[^0]: POPULAR ELECTRONICS (ISSN 0032-4485) Published monthly by Zitt-Davis Publishing Company, at One Park Avenue, New York, NY 10016. Philp B Korsant, President. Selwyn Taubman. Treasurer; Philip Sine. Secretary One year subscription, U.S and Possessions, $\$ 13.00$; Canada, $\$ 16.00$; all other countries. $\$ 18.00$, cash orders only, payable in U.S. currency COPYRIIGHT *

[^1]: Suggested US resale Avaılable al selected local distributors
 Pilces specitications subject to change without notice
 © Copyright 1979 Continental Specialties Corporation

[^2]: *Suggested U.S. resale. Available at selected local distributors. Prices, specifications subject tochange without notice. © Copyright 1979 Continental Specialties Corporation

[^3]: You build a finished "professional quality" PC board instantly . . . without messy chemicals, artwork, screening etching or photography. Amazing new E-Z Circuit Technical Manual telis you how! Send Coupon Today!

[^4]: if caupon is missing, write.
 Heath Company, Dept. 010-570, Benton Harbor, MI $49 \mathbf{C O}_{2}$

