## DXing TV Satellites for Entertainment \& News

 Aftermarket Add-ons for Apple ComputersTHE ELECTRONIC WORLD Guide to Home Video Movie Making


Tested in this issue

Netronics "Explorer" Microcomputer dbx 20/20 Computerized Equalizer/Analyzer Toshiba CB965 19" Tabletop Color TV Simpson 260 Model 7 Analog Multimeter

Reddy Chirra improves his vision with an Apple.

Reddy is an optical engineer who's used to working for big companies and using big mainframes.

But when he started his own consulting business, he soon learned how costly mainframe time can be. So he bought himself a 48 K Apple II Personal Computer.

And, like thousands of other engineers and scientists, quickly learned the pleasures of

cutting down on shared time and having his own tamper-proof data base. His Apple can handle formulas with up to 80 variables and test parameters on 250 different optical glasses.

He can even use BASIC, FORTRAN, Pascal and Assembly languages.

## And Apple's HI-RES graphics come in

handy for design.
Reddy looked at other microcomputers, but chose Apple for its in-depth documentation, reliability and expandability.

You can get up to 64 K RAM in an Apple II. Up to 128K RAM in our new Apple III. And there's a whole family of compatible peripherals, including an IEEE-488 bus for laboratory instrument control.

Visit your authorized Apple dealer to find out how far an Apple can go with scientific/ technical applications.

Itll change the way you see things.
The personal computer. cpple


# Introducing the TECH 360 DMM. Never has it been 

 so easy to do so much forBeckman's TECH 360 bench/ portable DMM puts unmatched capability and convenience at your fingertips.

You can select from 8 functions and 31 ranges with one turn of the single selector switch.

On or off the bench, you can accurately measure all complex waveforms with True RMS AC functions. Extend resistance measurement to $1 / 100$ ohm resolution. Read temperatures from $-20^{\circ} \mathrm{C}$ to $1265^{\circ} \mathrm{C}$. Perform continuity checks
so little.
quickly, with audible and visible indications. Measure up to 10 amps without adding special adaptors. All with $0.1 \%$ basic Vdc accuracy.

## 12,000 hour battery life

Designed for ultimate ease of operation, the TECH 360 delivers 12,000 hours continuous service (up to 4 years of normal use) from standard heavy-duty batteries. You'll never have to search for power outlets or contend with ground loop errors. The expense of rechargeable battery packs is eliminated.

The TECH 360 is available for just $\$ 289$ (U.S. only), including batteries. The companion TECH 350 (without RMS and temperature measuring capability) is priced at $\$ 229$.

For information on the complete line of Beckman DMMs and accessories, call your local distributor today. For the one nearest you call: (714) 993-8803 or write Beckman Instruments, Inc., ElectroProducts Group, 210 South Ranger Street, Brea, California 92621.

Convenient storage and multiple viewing angles are featured in the new line of Beckman bench/ portable DMMs.

# Popular Electronics 

## Feature Articles <br> Advance your career with continuing education. <br> . Using a Video Camera <br> II. Lighting <br> III. Sound Recording <br> IV. Accessories, Effects, and Post Production V. Scripting, Continuity and Acting

DXIng THOSE TV SATELLITES/PE Editorial Staff ..... 49
LEARN MORE TO EARN MORE/Lou Frenzel ..... 73
ENGLISH BROADCASTS AUDIBLE IN NORTH AMERICA/Glenn Hauser ..... 107
The Electronic World: Video 81 A GUIDE TO VIDEO MOVIE MAKING/ivan Berger ..... 56
Construction Articles ..... 33
Add a 4-digit display to locate stations quickly and accurately.
DESIGNING WITH THE 8080 MICROPROCESSOR/Randy Caristrom ..... 80
Part 2: The CPU Module
AN AUDIO LEVEL METER/Joseph M. Gorin ..... 87
REJUVENATE DEFUNCT AUTOMOBILE CLOCKS/Arthur V. Clark ..... 92
Equipment Reviewsdbx 20/20 COMPUTERIZED EQUALIZER/ANALYZER18
NETRONICS "EXPLORER" MODEL 85 COMPUTER ..... 22
TOSHIBA MODEL CB965 19" COLOR TV RECEIVER ..... 46
SIMPSON 260 MODEL 7 VOM ..... 77
Columns
ENTERTAINMENT ELECTRONICS/Ivan Berger ..... 21
The Problem of Video Camera Compatibility. COMPUTER BITS/CarI Warren ..... 25
Sweeten Your Apple
COMPUTER SOURCES/Leslie Solomon ..... 28
HOBBY SCENE/Leslie Solomon ..... 98
SOLID-STATE DEVELOPMENTS/Forrest M. Mims ..... 99The Electrostatic Discharge Problem.
EXPERIMENTER'S CORNER/Forrest M. Mims ..... 102Experimenting with High-Speed Logic.
PROJECT OF THE MONTH/Forrest M Mims ..... 118
Audible Pulse Indicator
6
Departments
EDITORIAL/Art Salsberg ..... ,
NEW PRODUCTS ..... 12
NEW LITERATURE ..... 115
OPERATION ASSIST ..... 116
ELECTRONICS LIBRARY ..... 122
PERSONAL ELECTRONICS NEWS ..... 130

COVER PHOTO BY JACK WARD COLOR SERVICE COpyright (C) 1981
COPYRIGHT 1981 BY ZIFF-DAVIS PUBLISHING COMPANY. All rights reserved. Popular Electronics (ISSN 0032-4485) October 1981, Volume 19, Number 10. Published monthly by Zift-Davis Publishing Co., at One Park Ave., New York, NY 10016. Richard P. Friese, Preaident; Selwyn Taubman, Treasurer; Bertram A. Abrama, Secretary. One year subscription rate for U.S. and Posses sions, \$15.00; Canada, \$20.00; all other countries, \$23.00 (cash orders only, payable in U.S. currency). Second Class Postage Paid at New York, N.Y. 10016 and at additional mailing offices. Authorized as second class mail by the Post Office Dept., Ottawa, Canada, and for payment of postage in cash. POPULAR ELECTRONICS including ELECTRONICS WORLD, Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature. Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Popular Photography, Skiing, Stereo Review. Electronic Experimenter's Handbook, and Tape Recording \& Buying Guide. Forms 3579 and all Subscription Correspondence: POPULAR ELECTRONICS. Circulation Dept. P.O. Box 2774. Boulder, CO 80302. Please allow at least eight weeks for change of address, enclosing, if possible, an address label from a recent iasue. Permisslona. Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to John Babcock, Rights and Permissions, Zitt-Davis Publishing Co., One Park Ave., New York, NY 10016


CIRCLE NO. 21 ON FREE INFORMATION CARD

# TWELVE STRONG HEATH/ZENITH YOUR 

## Pick a strong partner

A computer purchase is the beginning of a long term partnership between you and the people you buy from. Your ongoing need for software and accessories requires a partner who will stand by you with a growing line of products. And nowhere will you find a more complete line of hardware, software and accessories than at your Heathkit Electronic Center. Here are twelve strong reasons to make Heath/Zenith your partner.

## 1. The All-In-One Computer

The heart of the Heath/Zenith line is the stand-alone 89 Computer. It's a complete system with built-in $51 / 4$-inch floppy disk drive, professional keyboard and keypad, smart video terminal, two $\mathrm{Z80}$ microprocessors, and two RS-232C serial I/O ports. It comes with 16K RAM, expandable to 64 K .

## 2. Peripherals

These include the popular Heath/Zenith 19 Smart Video Terminal, loaded with professional features. And the 14 Line Printer, priced as low as $\$ 495$. Other printer brands are on display, including high
speed, typewriter quality printers.

## 3. Software

Word processing, includes reliable, easy-to-use Zenith Electronic Typing and powerful, full-featured WORDSTAR
Small Business Programs, feature General Ledger and Inventory Control.
HUG, Heath Users' Group, offers members a library of over 500 low-cost programs for home, work or play.

## 4. Programming Languages



For your own custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL.

## 5. Operating Systems

Three versatile systems give you the capability to perform your specific tasks.
CP/M by Digital Research makes your system compatible with thousands of popular CP/M programs.
UCSD P-System with Pascal is a complete program development and execution environment.
HDOS, Heath Disk Operating System gives you a sophisticated, flexible environment for program construction, storage and editing.

## 6. Utility Software

Expand the performance range of your computer with a broad selection of utility tools, including the best of Digital Research and the complete line of innovative Softstuff products.

## 7. Disk Systems

The 8-inch Heath/Zenith 47 Dual Disk System adds over 2 megabytes of storage to your


89 Computer. Diskettes are standard IBM 3740 format, double-sided, double-density.
The $51 / 4$-inch 87 Dual Disk System adds 200K bytes of storage to your 89. Both disk systems feature read/write protection and easy plug-in adaptability.

## 8. Self-Study Courses

Learn at your own pace with Programming Courses that teach you to write and run your own programs in Assembly, BASIC, Pascal or COBOL.
A course on Computer Concepts for Small Business gives you the understanding to evaluate the ways a computer can benefit your business.
Personal Computing is a complete introduction to the fundamentals for the novice. Every Heathkit/ Zenith course is professionally designed for easy, step-bystep learning.

All Heath/Zenith
Computer Products are available completely assembled and tested for commercial use. Or in easy-to-build, money-saving kits.

# REASONS TO MAKE COMPUTER PARTHER 

## 9. Expansion Options

Communicate with the outside world through a Threeport EIA RS-232C Serial Interface.
Expand RAM to 64 K with easy-to-install expansion chips.

## 10. Accessories



Your Heathkit Electronic Center has the latest in modems, black-and-white and color video monitors, computer furniture and a full line of supplies, accessories, books and parts.

## 11. Service

No one stands by you like Heath/Zenith. We help you get your system up and running smoothly. Service is available from trained technicians, over the phone or at one of 56 Heathkit Electronic Centers.

## 12. Value



Your money buys you more because Heath/Zenith prices are among the industry's most competitive. Make your own comparison and find out how much you can save.
Complete, integrated computer hardware and software, designed to serve you and to grow with you

- that's what to look for in a strong partner. And with Heath/Zenith you get it all under one roof.



## All at your Heathkit Electronic Center

Pick the store nearest you from the list at right. And stop in today for a demonstration of the Heath/Zenith 89 Computer System. If you can't get to a store, send $\$ 1.00$ for the latest Heathkit ${ }^{\text {T }}$ Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write to Heath Co., Dept. 010-824 Benton Harbor, MI 49022.

## Visit Your Heathkit Electronic Center*

where Heath/Zenith Products are displayed, sold and serviced.

PhoEnix, AZ
2727 W. Indian School Rd 602-279-6247
anaheim, Ca
330 E. Ball Rd
714-776-9420
CAMPBELL, CA
2350 S. Bascom Ave. 408-377-8920
EL CERRITO, CA 6000 Potrero Ave. 415-236-8870
LA MESA, CA
8363 Center Dr.
714-461-0110
LOS ANGELES, CA
2309 S. Flower St.
213-749-0261
POMONA, CA
1555 N. Orange Grove Ave.
714-623-3543
REDWOOD CITY, CA
2001 Mid dlefield Rd.
415-365-8155
SACRAMENTO, CA
1860 Fulton Ave.
916-486-1575
WOODLAND HILLS, CA
22504 Ventura Blvd.
213-883-0531
DENVER, CO
5940 W. 38th Ave.
303-422-3408
AVON, CT
395 W. Main St. (Rt. 44)
203-678-0323
HIALEAH, FL
4.705 W. 16 th Ave

305-823-2280
PLANTATION, FL
7173 W. Broward Blvd. 305-791-7300

## TAMPA, FL

4019 W. Hillsborough Ave 813-886-2541

## atlanta, ga

5285 Roswell Rd 404-252-4341

## Chicago, il

3462-66 W. Devon Ave 312-583-3920
DOWNERS GROVE, IL
224 Ogden Ave
312-852-1304
INDIANAPOLIS, IN
2112 E. 62 nd St.
317-257-4321

CLEVELAND, OH 28100 Chagrin Blvd 216-292-7553 COLUMBUS, OH 2500 Marse Rd. 614-475-7200 TOLEDO, OH 48 S. Byrne Rd 419-537-1887 WOODLAWN, OH 10133 Springfield Pike 513-771-8850 OKLAHOMA CITY, OK
2727 Northwest
Expressway 405-848-7593
FRAZER, PA 630 Lancaster Pike (Rt. 30 ) 215-647-5555
PHILADELPHIA, PA 6318 Roosevelt Blvd 215-288-0180
PITTSBURGH, PA
3482 Wm. Penn Hwy. 412-824-3564 WARWICK, RI 558 Greenwich Ave 401-738-5150
DALLAS, TX
2715 Ross Ave 214-826-4053
HOUSTON,TX
1704 W. Loop N
713-869-5263
SAN ANTONIO, TX
7111 Blanco Road 512-341-8876 MIDVALE, UT 58 East 7200 South 801-566-4626 alexand ria, va 6201 Richmond Hwy. 703-765-5515 VIRGINIA BEACH, VA 1055 Independence Blva 804-460-0997
SEATTLE, WA
505 8th Ave. N.
206-682-2172
TUKWILA, WA
15439 53rd Ave S. 206-246-5358
MILWAUKEE, WI
5215 W. Fond du Lac 414-873-8250
*Units of Veritechnology Electronics Corporation in the U.S.

Prices and specifications subject to change without notice.


## Experimenting With Electronics

It's easier than ever before to experimont with electronic circuitry, thanks to the advent of solderless breadboards and integrated circuits. It has meant no more fuss and muss in connecting and changing components.

As most readers know, "experimenting" is a highly fruitful way to learn how certain devices work. There's nothing like quickly strapping together a circuit, making some changes, and observing the end results to truly understand what makes it all tick. Furthermore, one can toy with a circuit on a solderless breadboard until it's just right before duplieating it in more permanent fashion on perf or printed-circuit board.

Such a "hands on" approach is exitomized by Forrest Hims' monthly colun, "Experimenter's Corner." As our loyal readers probably know, it's the most popular editorial section in our magazine, as evidenced by reader survey after reader survey. Running since our October 1975 issue, with Forrest's fertile mind supplying fresh material without ever faltering, it has been a boon to creative, ever-learning electronics enthusiasts. Now Forrest has written a book based on his monthly installments, titled 103 Projects for Electronics Experimenters, published by Tab Books.

For readers who missed some of his col urns or for those who wish to have them wrapped up in one package, here's a special opportunity to experiment with analog and digital ICs, converters, optoelectronics, and power supplies.
In many instances, there are end produts that result from following Forrest's experimenting suggestions. These include a microphone amplifier, touch switch, intercom, tone-burst generator, hexadecimal keyboard encoder, solidstate oscilloscope, single-digit voltmeter, light-activated relay, LED-LED transceiver, TTL supply, solar cell arrays, and more. More importantly, one learns how the circuit works and thereby knows how to roll modified versions to suit special purposes.
There are few sources available to get such hands-on experience. To a lesser extent, there are some other books, such as Integrated Circuits for Electronics Technicians by Edward Pashaow from McGraw-Hill, Inc. But they're almost as rare as auk's eggs. Also, using a more formalized approach, Heathkit/Zenith's educational courses employ experimenter packages with builtin solderless breadboard sockets, power supplies, and signal sources, taking this method of learning farther.

Judging from reader letters and our $400,000+$ sales every month, there are a lot of people out there who are not merely resigned to pushing buttons. With the dearth of electronics engineers and technicians available for gainful employment, this is a happy circumstance. Even so, there is expected to be a shortage of electronics-trained personned at least into 1985.

Interestingly, Japan produces more electronics engineers than the U.S., though its population is so much smaller. Seems that four years of high school math and three years of a natural science, as required in Japan and most European schools, are options that fewer and fewer Americans are choosing, which doesn't lay the seeds for future technical graduates. Perhaps if PE readers would pass along Forrest Miss' colurns to youngsters and work along with them, it would spark more interest in seeking a technological career such as electronics.


## HAROLD A. RODGERS

Executive Editor

## LESLIE SOLOMON

Senior Technical Editor
JOHN R. RIGGS
Managing Editor
EDWARD I. BUXBAUM
Art Director
DAVID m. wear
Features Editor
ANDRE DURANT
Technical Illustrator
CARMEN ROBLES
Production Editor
JEFF NEWMAN
Editorial Assistam
Contributing Editors Carl Warren, Stan Prentiss Glenn Mauser, Julian Kirsch, Forrest Mime

Editorial and Executive Offices
One Park Avenue
New York, New York 10016
$212725-3500$

Publisher
Joe Musics
212725-3568

New York Office
Advertising Manager
Richard Govatski (725-7460)
Richard B. Eicher (725-3578)

Midwestern Office
Suite $1400,180 \mathrm{~N}$. Michigan Ave.
Chicago, IL 60601 (312 346-2600)
Sales: Ted Welsh

Western Representative
Norman S. Schindler \& Associates. Inc
7050 Owensmouth Ave., \$209
Canoga Park. CA 91303 (213 999-1414)
Sales: Norm Schindler, Jon Marshall

Representation In Japan
James Vagi
Oji Palace Aoyama
6.25. Minami Aoyama. 6 Chore, Minato-Ku

Tokyo, Japan (407-1930/6821, 582-2851)

Ziff-Davis Publishing Company
Richard P. Fries
Albert S. Train
President
President. Consumer Magazine Division
Executive Vice President
Phillip T. Heffernan.
Senior Vice
Sidney Holtz.
Presidents
Edward D. Muhlfeld. Philip Sine
Robert Bavier. Vice Presidents
Baird Davis.
Edgar W. Hopper,
George Morrissey
Selwyn Taubman
Treasurer
Bertram A. Abrams
Secretary
Editorial correspondence: POPULAR ELECTRONICS, I Park Ave., New York, NY 10016. Editorial contributions must be accom panied by return postage and will be handed with reasonable care however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models submitted.

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

## Radio Shack's S399' TRS-80

 Color Computer is for People Who Take Their Fun SerioustyThe TRS-80 Color Computer is the affordable computer that doubles as an action-packed electronic games machine! Just attach to any color IV-or use the $\$ 399$ TRS-80 Video Receiver shown - and plug in an Instant-loading Program Pak (sold separately) to blast invaders from other galaxies, conquer dinosaurs from a prehistoric world, polish up your chess game, or maintain the family budget. Each game features vivid color graphics and action-packed sound effects. Or write your own programs in colo: BASIC - our outstanding tutorial manual makes it easy. Expand your system to include a more powerful BASIC, more memory (4K RAM is standard), joysticks, a printer. a modem, and disk or cassette storage anytime!


## Stop by your nearest Radio

Shack and let us demonstrate how fun computing can really be. Now over 6100 Radio Shack stores and dealers, 150 Computer Centers and 135 service centers nationwide. Or write for a free TRS-80 catalog: Radio Shack, Dept. 82 -A-86, 1300 One Tandy Center, Fort Worth, TX 76102.

[^0]
# Learning electronics is no picnic. <br>  <br> At any level it takes work and a few sacrifices. But with CIE, it's worth it. 

Whoever said, "The best things in life are free,' was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics at home by spending just 12 hard-working hours a week, two hours a day. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don't have to go to a classroom. The classroom comes to you.

## Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to apply the wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.
Which CIE training fits you?
Beginner? Intermediate? Advanced?
CIE home study courses are designed for ambitious people at all entry levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, FCC License and career.

## Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

## CIE specializes exclusively in electronics.

Why CIE? CIE is the largest independent home study school that specializes exclusively in electronics. Nothing else. CIE has the electronics course that's right for you.

Learning electronics is a lot more than memorizing a laundry list of
facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It's built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

## Programmed learning.

That's exactly what happens with CIE's Auto-Programmed ${ }^{\oplus}$ Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

## Experienced specialists work

 closely with you.Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to

$\square$ YES...I want to learn from the specialists in electronics - ClE. Send me my FREE CIE school catalog...including details about the Associate Degree program...plus my - FREE package of home study information.

Print Name
$\square$
Address Apt.

City

$\square$
Age Phone (area code)
Check box for G.I. Bill bulletin on Educational Benefits: $\square$ Veteran
$\square$ Active Duty
MAIL TODAY!

# New <br> PRODUCTS 

Additional information on new products covered in this section is atailable from the manufacturers. Either circle the item's code number on the Free Information Card or write to the manufacturer at the address given

## Vertical Double Zepp Antenna



The two-meter V-2 from the Hy-Gain division of Telex Communications is an extended double-zepp vertical consisting of two stacked $5 / 8$ waves decoupled inside the antenna. Said to be resistant to severe weather, and impedance-matched to the transmission line, the V-2 mounts on any mast up to $2^{\prime \prime}$ in diameter. Two sets of $1 / 4$-wave radials and a centered feedpoint are said to eliminate power loss into the sky. Operating from 138 MHz to 174 $\mathrm{MH}_{2}$, the antenna has a VSWR on the order of 1.5:1 at resonance, and a 2:1 VSWR bandwidth of at least 7 MHz . Isolation from the supporting mast is 20 dB . $\$ 49.95$.

CIRCLE NO. 85 ON FREE INFORMATION CARD

## Car Stereo Expander



A version of the Omnisonix Imager designed for car stereo systems is now available to increase the apparent size of a lis-

Tape Splicing Kit


A self-storing splicing kit from Osawa, marketed under the Nagaoka brand name, is available for editing and repairing cassette and microcassette tapes (including Philips format). The Nagaoka PC-507 has a plastic top section that contains cutting jigs for each of the three tape formats, cassette positioning sections, and recesses for screws or clamps. A lower section houses miniscissors, a razor/cutter. screwdrivers, a marking pin, tweezers, pressure pads, splicing tape sheets, leader tape, an assortment of Philips head screws, and one cassette hub. \$24.95.

CIRCLE NO. 86 ON FREE INFORMATION CARD

## Desolder Pump



The new DP-I desolder pump from OK Machine and Tool Corp. features allmetal construction and compact size for one-hand operation. Suction is said to be precisely regulated to minimize damage to delicate circuitry. Self-cleaning on each stroke, the DP-1 can be disassembled without tools for maintenance or repair. The tip is made of Teflon. $\$ 10.95$.

CIRCLE NO. 87 ON FREE INF ORMATION CARD
tening area. Model 801-A plugs directly into most car stereo systems that incorporate a separate power amplifier. For selfcontained systems, a wiring connection must be made. Designed to operate from 12 V dc , negative ground, the lmager is also adaptable to home music systems, connecting between the preamp and power amp. Specifications: input impedance, $25 \mathrm{k} \Omega$; frequency response, 10 to 20,000 $\mathrm{Hz}( \pm 0.5 \mathrm{~dB}) ;$ THD, $0.03 \%$; noise output, $-60 \mathrm{dBV} ; \mathrm{S} / \mathrm{N}, 68 \mathrm{~dB}$; power, 40
 or velcro mounted. \$149.95

CIRCLE NO. B8 ON FREE INF ORMATION CARD

Direct-Drive Turntable


The HT-500 from Hitachi features the Unitorque motor, which is said to provide constant torque as the platter rotates. The motor is brushless, slotless, and coreless; and is regulated by reference pulses from a crystal oscillator. Sensing tonearm position optically, the unit is fully automatic. The tonearm itself is a straight low-mass design. The platter is of aluminum alloy. $\mathrm{S} / \mathrm{N}$ is 78 dB , wow and flutter, $0.025 \%$ wrms. $\$ 330$.

CIRCLE NO. B9 ON FREE INFORMATION CARD

## Smartmodem

Designed to interface with an RS-232Gcompatible computer, the Hayes "Smartmodem" is a 300 -baud originate/answer modem that can be controlled using any programming language. Thirty different commands can be written into a user's program or can be entered directly from a keyboard. An internal speaker permits monitoring of connections as they are made, whether Touch-Tone or pulse. Features include automatic answering and dialing, loop-back self-testing, and LED status indicators. Data format is serial, binary, asynchronous 7 or 8 bits, and 1-or 2-stop bits with odd, even, or no parity. Dimensions are $1.5^{\prime \prime} \times 5.5^{\prime \prime} \times 9.6^{\prime \prime}$.
circle no. 91 on free information caro
(Continued on page 14)

## "Our reputation rests on digits, decimal points, and details. We wouldn't trust them to anything less than Scotch Brand Data Cartridges."



Bill Birkett, Vice President, Trade Graphics, Inc., Livonia, Michigan
The unique design of a data cartridge provides great reliability, high storage capacity and long tape life. And where could you possibly get better data cartridges than Scotch Brand, made by 3M, the people who invented the data cartridge system itself?
3 M controls every step in manufacturing. Top quality magnetic tape and precision components are part of every Scotch Data Cartridge. Over twenty-five years of service to the computer industry assure you of the utmost reliability.
Scotch Data Cartridges are available in miniature DC 100A, the standard-size DC 300A and now, an extra-length DC 300XL with $50 \%$ more storage capacity. They are compatible with most cartridge systems including Hewlett-Packard, IBM, NCR, Tektronix and TI.
To find out where you can find Scotch Data Cartridges or virtually any other data recording medium, call toll-free: 800-328-1300. (In Minnesota, call collect: 612-736-9625.) Ask for the Data Recording Products Division.

## If it's worth remembering, it's worth Scotch Data Recording Products.



## Two-Way Floor-Standing Speaker



The Sll from Speakerlab is a two-way speaker with a leaf tweeter using a samar-ium-cobalt magnet structure and $8^{\prime \prime}$ polypropylene woofer working into a vented enclosure. The Sll features an "edgeless box" in which the drivers are mounted on a raised frontboard surrounded with foam. This, it is claimed, reduces blurring of the primary wavefront by eliminating secondary radiation caused by diffraction. Crossover frequency is 3.8 kHz ; nominal impedance, 6 ohms; drivèr power (per channel), 15 min. $/ 75$ max. Dimensions are $281 / 4^{\prime \prime} \mathrm{H} \times 113 / 4^{\prime \prime} \mathrm{W} \times 103 / 4^{\prime \prime} \mathrm{D}$. Housed in oak cabinets, fully assembled units have a suggested retail price of $\$ 189$ each.

CIRCLE NO. 92 ON FREE INFORMATION CARD

## "Cone of Light'" Logic Probe



The Deco-Probe from Deco Sales is intended for use on TTL, CMOS, and microprocessors with voltages from 5 to 18 V . The circuitry is said to automatically adjust thresholds and to detect logic levels. Pulse detection is claimed for intervals down to 50 ns . The red and green LED display illuminates the point of circuit contact through a light-pipe nose piece. $\$ 19.95$, kit form; $\$ 29.95$, assembled.

## Tuneful Car Horn



The Heathkit CH-1276 Programmable Musical Car Horn permits a user to select from 16 preprogrammed tunes or program a tune of his own. It connects to any vehicle with 12 V de, negative ground. A full keyboard inside the main unit has 13 note octave, rest and hold keys; and allows for the changing of tunes as often as desired. An external control is provided for tempo adjustment. The three-button external keypad, which mounts on the steering wheel or instrument panel, lets the user select from three different tunes, either preprogrammed or original. A weatherproof 4 -ohm, 4-W speaker is included with the kit. $\$ 77.95$.

CIRCLE NO. 90 ON FREE INF ORMATION CARD

## Multifeature Phone

The Intelli-Phone from Universal Security Instruments, Inc., Model Tel-1000, will store and dial up to ten telephone numbers. When calls are placed, the receiver can be left on hook until the called party is heard over the loudspeakers. The system will redial busy numbers once a minute for up to ten minutes. A fluorescent display functions as both digital snooze alarm and call timer. A 9-V battery (not included) preserves memory up to 24 hours in the event of a power failure. $\$ 199.95$.
circle no. 94 on free inf ormation card

## Logic-Switched Preamplifier



The SAE PIOI uses circuitry that isolates the audio signal in the rear portion of the unit, well away from the front-panel controls. This shortens the signal path and is said to reduce the likelihood of signal degradation. A dedicated logic array replaces mechanical switching. A moving-coil in-
put incorporates a preamplifier and eliminates the need for an outboard head amplifier. Channel levels are adjustable in $1.5-\mathrm{dB}$ steps over a range of 94.5 dB and are displayed on a digital readout. Also featured is a video input that accepts the audio signal from a TV receiver, VCR or disc player. $\$ 650$.

CIRCLE NO. 95 ON FREE INFORMATION CARD

## Hollow-Coil CB Antenna



The MAG-20 magnetic-mount mobile CB antenna from Armstrong Industries is rated to give an SWR below 1.2:1 from 26.5000 to 28.000 MHz . A 42 -inch stain-less-steel whip is attached to a ball joint, permitting a $45^{\circ}$ tilt from all mounting angles. Copper plating is said to add I dB of gain. Power rating is 500 W continuous or 1000 W intermittent. The loading coil form and cover are made of glass-filled plastic for weather resistance. No soldering is required for installation. $\$ 50.50$ with optional shock spring.
circle no. 96 on free inf ormation card

## "Quiet" Portable Stereo



DNR (Dynamic Noise Reduction) is the major feature of Technidyne's model 140 Hip Pocket Stereo. DNR, a low-pass filter system whose cutoff frequency varies with program content, is said by the manufacturer to rid the program source of noise, as well as to prevent noise from being added by the playback equipment. In the model


## 3.7 million reasons why the ATARI Personal Computer is something to see.

The display screen used with our computers is composed of 192 horizontal lines, each containing 320 dots. Delivering color and luminosity instructions to each dot for a second requires 3.7 million cycles... a lot of work for the normal 6502 processor.

That's why the ATARI computer has equipped its 6502 with its own electronic assistant. It's called ANTIC, and it handles all the display work, leaving the 6502 free to handle the rest. What this means to you is uncompromisingly spectacular display capabilities without loss of computer power needed to carry out the demands
of your program.
That's a quality you just don't find in ordinary personal computers. And it's one of the reasons some computer experts say that ATARI computers are so far ahead of their time.

## There's more ... which is what

 you'd expect from ATARI.Language. The ATARI Personal Computer uses several programming languages to give the user maximum control of its extraordinary capabilities. PILOT, Microsoft BASIC,* and ATARI BASIC are understood and spoken by the ATARI computer. You'll also find our Assembler Editor cartridge indispensable for
 ATARI
Computers for people.

# META TECHNOLOGIES 

26111 Brush Avenue, Euclid Ohio 44132 CALL TOLL FREE 1-800-321-3552 TO ORDER IN OHIO, call (216) 289.7500 (COLLECT)

## 1001 THINGS TO <br> DO WITH YOUR PERSONAL COMPUTER by mark Sawusch

## 333 pages

$\$ 7.95$
333 pages, written in simple terms, of 'what-to-do" and 'how-to-do-it'". Suitable not only for microcomputers, but for programmable calculators as well. Includes program listings, formulas, a glossary of computer terms and more! Definitely a MUST BUY!

## A PARTIAL LIST OF APPLICATIONS

Real Estate Evaluation Astrology
Income Tax
Speed Reading
Personality Test
Statistical Analysis
Logic Circuit Analysis
Test Your Typing Speed Finances \& Investments Biorythm
Energy Efficiency Antenna Design
Letter Writing
Recipe Index/Caiculator Carpenter and Mechanic's Helper
General Purpose Clock Timer

## "OTHER MYSTERIES" VOLUME III

by Dennis Kitsz

Call now and place your order for this new book, "THE CUSTOM TRS-80TM \& OTHER MYSTERIES", from IJG, Inc. More than 300 pages, with over 60 photographs, of projects for the hardware hobbyist. Includes schematics, PC layouts, software driver code, etc. for such do-it-yourself undertakings as high resolution graphics, reverse video, real-time clock/calender, music synthesis, ROM/RAM additions and more!

THE CUSTOM TRS-80™
$\$ 29.00$
CALL FOR AVAILABILITY

## MICROPARAPHERNALIA

NEWDOS by APPARAT
NEWDOS/80 by Apparat . . . . . . . . $\$ 149.95$
NEWDOS + to
NEWDOS/80 UPGRADE . . . . . CALL
NEWDOS + with ALL UTILITIES
35-track
$\$ 69.95$
40-track
$\$ 79.95$

## BOOKS

TRS-80™ DISK
AND OTHER MYSTERIES . . $\$ 19.95$ MICROSOFT ${ }^{\text {TM }}$ BASIC DECODED $\$ 29.95$

Let your TRS-80 ${ }^{1 \mathrm{M}}$ Teach You

## ASSEMBLY <br> LANGUAGE

REMSOFT's unique package, "INTRODUCTION TO TRS-80 ASSEMBLY PROGRAMMING" includes ten 45 -minute lessons on audio cassettes. a display program for each lesson providing illustration \& reinforcement, and a text book on TRS-80 Assembly Language Programming. Includes useful routines to access keyboard, video, printer and ROM. Requires 16 K - Level II, Model I.
REMASSEM-1
$\$ 69.95$
FOR DISK SYSTEMS
$\$ 74.95$

Let Your TRS-80 ${ }^{\text {™ }}$ Teach You

## ASSEMBLY LANGUAGE DISK I/O TECHNIQUES

REMSOFT does it again! REMDISK- 1 is a concise. capsulated supplement to REMASSEM-1. Package consists of two 45 -minute lessons on audio cassettes. and display programs providing illustration and reinforcement. Provides specific track and sector $/ / 0$ techniques, and sequential and random file access methods and routines.

REMDISK-1 .
$\$ 29.95$

Let Your TRS-80 ${ }^{\text {TM }}$ Test Itself With THE FLOPPY DOCTOR \& MEMORY DIAGNOSTIC

## by THE MICRO CLINIC

A complete checkup for your Model I. THE FLOPPY DOCTOR completely checks every sector of 35 or 40 -track disk drives. Tests motor speed, head positioning. controller functions. status bits and provides complete error logging. THE MEMORY DIAGNOSTIC checks for proper write/read, refresh. executability and exclusivity of all address locations. Includes both diagnostics and complete instruction manual. SYSTEM DIAGNOSTICS . . . . . \$19.95

An improved version of the SYSTEM DIAGNOSTICS above. Designed for single or double density, $35-40-77$-, or 80 track disk drives. Includes new and modified tests. Features THE FLOPPY DOCTOR, Version 3.0 .
SYSTEM DIAGNOSTICS.V3. . $\$ 24.95$

Single Sided, Soft-Sectored $51 / 4$-inch, (for TRS-80 ${ }^{\text {TM }}$ ) Mini-floppy

# DISKETTES <br> $521^{19^{5}}$ <br> box of 10 

## PLAIN JANE ${ }^{\text {™ }}$

These are factory fresh, absolutely first quality (no seconds!) mini-floppies. They are complete with envelopes, labels and writeprotect tabs in a shrink-wrapped box.
PLAIN JANE ${ }^{\text {TM }}$ Diskettes. . . . . $\$ 21.95$
10 boxes of 10 (each box) $\$ 21.50$
PLAIN JANE ${ }^{\text {TM }}$ Gold
Introducing MTC's premium generic diskette. Single-Sided, Soft-Sectored, DOUBLE-DENSITY, $5^{1 / 4}$-inch diskettes with reinforcing HUB-RINGS. Individually $100 \%$ ERROR-FREE certified. Invest in GOLD!
PLAIN JANETM 'Puld
$\$ 25.95$
VERBATIM'S PREMIUM DISKETTES

## DATALIFE

Seven data-shielding improvements mean greater durability and longer data life. These individually, $100 \%$ error-free certified diskettes feature thicker oxide coating, longer-lasting lubricant, improved liner, superior polishing and more! Meets or exceeds IBM, Shugart, ANSI, ECMA and ISO standards.
VERBATIM DATALIFETM DISKETTES
$51 / 4$-inch (box of 10 )
MD525-01
$\$ 26.95$
10 boxes of 10
(each box)\$25.95
8 -inch FLOPPIES
Double-Density, FD34-8000
$\$ 43.95$

## 'RINGS' \& THINGS

HUB RING KIT for $5^{1 / 1 / 4}{ }^{\prime \prime}$ disks. . . . . $\$ 10.95$ HUB RING KIT for 8" disks. . . . . . . \$12.95 REFILLS ( 50 Hub Rings) . $\$ 12.95$
$\$ 5.95$ CLEANING KIT for $51 / 4{ }^{\prime \prime}$ drives $\quad \$ 24.95$ $51 / 4$-inch diskette case . . . . . . . . . . . $\$ 3.50$ 8-inch diskette case . . . . . . . . . . . . . . \$3.95
51/4-inch File Box for 50 diskettes
$\$ 24.95$
8 inch File Box for 50 diskettes
$\$ 29.95$


Products damaged in transit will be exchanged.

PRICES IN EFFECT October 1, 1981 THRU October 31, 1981.
Prices. Specifications, and Offerings subject to change without notice. 8110

WE ACCEPT

- VISA
- MASTER CHARGE
- CHECKS
- MONEY ORDERS
- COD
- Add $\$ 3.00$ for shipping \& handling
- $\$ 3.00$ EXTRA for C.O.D. - Ohio residents add $61 / 2 \%$ sates tax.
$140,14 \mathrm{~dB}$ of noise reduction is claimed Weight, with headphones and without batteries, is $121 / 6 \mathrm{oz}$. Price without FM tuner pack, \$139.95.

CIRCLE NO. 97 ON FREE INFORMATION CARD

Stereo Mikes


The D-40 from AKG is a moving-coil microphone sold in matched stereo pairs. Frequency range is $80-15,000 \mathrm{~Hz}$, rated impedance is 600 ohms, and sensitivity at $1,000 \mathrm{~Hz}$ is -55 dBV . A pair of $\mathrm{D}-40 \mathrm{~s}$, whose pickup patterns are cardioid, comes packaged in a kit with two stands and eight-foot shielded cables. $\$ 99$ a pair.

CIRCLE NO. 99 ON FREE INF ORMATION CARD

Soldering Station for Miniature Circuits


Wahl's new Model 7230 is designed for fine, heat-sensitive work. The 6 -watt iron weighs $1 / 4 \mathrm{Oz}$, and has 14 interchangeable tips from 0.04 to 0.16 inches. The tips are said to cool down quickly from $360^{\circ} \mathrm{C}$ and to resist seizure. Other features include a double-insulated ttansformer, a tip-cleaning sponge and sponge well, an indicator lamp, and an internal safety fuse. $\$ 39.95$.
CIRCLE NO. 100 ON FREE INFORMATION CARD

## The ADC Real Time Spectrum Analyzer clearly indicates what you should evaluate.

No ratter how fine tuned your ear might be, it takes the electroniz precision of our ADC Real Time Spectrum Analyzer to give you the true picture you need when adjusting your room and speakers for optimum response. And should your surroundings change, it gives you a continuous visual reference so you can check your system and eliminate new acoustical deficiencies.

With its built-in pink noise genezator (so no outside source is needed) and calibrated microphone, our full-octave SA-1 actually provides a visual presen-
-Sound Shaper is a registered traclemark
of Audio Dynamics Corporation.
tation of the changing spe:trum through a a series of $13 \varepsilon$ LED displays. The peak hold button freezes the reading so you can adjust your equalizer to the frequency response rou want.

The SA-1, when teamed with any one of our Sound Shaper ${ }^{\epsilon}$ equalizers, completes your soind picture by offering you total con-


The dbx 20/20 Computerized Equalizer/Analyzer

THE dbx $20 / 20$ is a computerized octave band equalizer and real-time spectrum analyzer, including a pink noise source (pseudo-random type) and an LED display of level VS frequency.

It can automatically equalize the frequency response of a sound system, as measured by an omni-directional microphone included with the $20 / 20$, to be flat within $\pm 1 \mathrm{~dB}$ from approximately 30 to $16,000 \mathrm{~Hz}$ in only 15 seconds (assuming that the initial response irregularities do not exceed the +14 to -15 $d B$ range of the $20 / 20$ ). The resulting equalization curve can be stored in one of its 10 memories and recalled at any time by the touch of a button. Any combination of as many as 10 stored curves can be averaged.

The EQ functions can also be performed manually with its individual octave switches, and a real-time analyzer
(RTA) mode is available for monitoring the spectral content of program material fed to the MIC or LINE input.

The dbx 20/20 measures $19^{\prime \prime} \mathrm{W} \times 1214^{\prime \prime}$ D $\times 51 / 4^{\prime \prime} \mathrm{H}$, and weighs 21 pounds. It is finished in black, and the panel is slotted for mounting in a standard EIA rack. Suggested retail price is $\$ 1,500$.

General Description. Functionally, the $\mathrm{dbx} 20 / 20$ is based on a conventional octave band equalizer whose 10 individually adjustable filters have center frequencies of $31.5,63,125$, and 500 Hz , and $1,2,4,8$, and 16 kHz . The gain in each band is unity and can be adjusted from +14 to -15 dB in steps of 1 dB .

Also within the dbx $20 / 20$ is a realtime analyzer consisting of 10 filters whose characteristics are identical to those of the equalizer sections. Since the filters are all one octave wide, they
respond equally to pink noise, which has equal energy per octave of bandwidth.

The $\mathrm{dbx} 20 / 20$ connects into the tapemonitor loop of the amplifier or receiver (or between the preamplifier and power amplifier). A button on the 20/20 panel replaces the program with a pink noise signal, and the small omnidirectional electret microphone supplied with the instrument is placed near the listening position. After the acoustical level has been adjusted to a suitable value (the sound pressure level in dB is displayed on the front panel in the RTA mode), the auto eq button is pressed.
If the display is the in the RTA mode, it "freezes" at that moment. The changes in the timbre of the pink noise signal can be heard as the computer adjusts the individual band gains to flatten out the overall response. In about 15 seconds the process is complete; the display reverts



Fig. 1. Equalization filter curves for the $d b \times 20 / 20$.
to its active form with an essentially flat line, and the overall variations in response are typically within $\pm 1 \mathrm{~dB}$ (the random nature of the noise signal causes the individual lights to bounce up and down by perhaps -2 dB , but their average is usually within the instrument's ratings)
To see the final EQ curve, press the EQ display mode button. If the original response was so irregular that the equalizer lacked the range or resolution to
flatten it, the automatic process will be repeated up to 18 times, after which it stops. To store the final EQ curve in a memory, press the ENTER MEMORY button and one of the numbered MEMORY buttons. If batteries have been installed in the $20 / 20$, the curve will be retained in that memory location until erased

The SET FLAT button provides an instantaneous comparison between the equalized and unequalized sound. If the equalization is performed with several

## OPERATING FEATURES

## Front Panel:

LED Display: A 10 -band, 30 -level display of electrical or acoustical signal levels over a $30-\mathrm{dB}$ range in $1-\mathrm{dB}$ steps, for each of the octave bands from 31.5 Hz to 16 kHz .
Manual Equalizer Controls: Ten spring return center-off toggle switches that change the gains in the individual bands by 1 dB each time they are moved up or down and cause it to continue stepping automatically while the switch is held at either timit.
PINK NOISE LEVEL: A horizontal slider for adjusting the level of the pink noise test signal supplied to the system under adjustment.
POWER: A pushbutton switch
MIC: A $1 / 4$-inch phone jack for the electret microphone fumished with the equipment. Power is also supplied to the microphone.
(Note: The following controls are mo-mentary-contact pushbuttons, most with adjacent LEDs to show when they are active.)
DISPLAY MODE: Allows either the EQ response or the RTA output to be shown on the LED display.
RTA SENSITIVITY: Shifts the input sensitivity of the RTA UP OR DOWN by 10 dB each time one of the buttons is pressed or steps it automatically while it is held in. The center scale SPL value at the microphone (in dB) is shown by numbers on the LED display. When using the LINE input, $0 \mathrm{~dB}=300 \mathrm{mV}$
RTA SOURCE: Selects either MIC or LINE input sources for the RTA

RTA MODE: Changes display to show either a running average (AVG) of the program level or (in PEAKHOLD) the highest peak levels encountered.
PINK NOISE: Replaces the LINE program source with the pink noise signal from the 20/20.
MONITOR: Selects either SOURCE or TAPE programs for listening.
AUTO EO: Initiates automatic computercontrolled equalization process.
ENTER MEMORY: Must be pressed before storing an equalization curve in one of the memories.
MEMORY 1-10: Store or recall equalization curves. Any curve is recalled by pressing its button.
HFR CURVE: Adds a fixed high-frequency rolloff to any EQ curve.
SET FLAT: Resets the EQ to center (flat) conditions.
AVERAGE: Pressing ENTER allows contents of any two or more MEMORY locations to be averaged, by then pressing COMPUTER

## Rear Panel:

LINE input and output phono jacks (to amplifier TAPE jacks)
TAPE recorder input and output jacks (replacing amplifier TAPE jacks).
PINK NOISE output phono jack (for testing tape recorders and amplifiers)
MIC input jack (same as front panel jack but preempted by it).
LINE FUSE holder ( $3_{4}$-amp AGC).
Battery Compartment. Holds two AA cells to retain memories with power disconnected.
different microphone positions, somewhat different curves will be obtained They can be averaged by pressing the Average bution, followed by the memo Ry buttons for each of the curves to be averaged. A touch of the COMPUTE button will then average the curves. The final result will be seen on the display and can be stored in any available memory position. Because many people find a tlat room curve excessively bright, the 20/20 includes the HFR CURVE button to introduce a fixed rolloff extending upward from 2 kHz
The rta can monitor the spectral con tent and level of program material. If the PEAK-HOLD button is pressed, the RTA displays only the maximum level in each band. The rta display is calibrated in dB levels from 60 to 110 at the center point; with a LINE input, the center level corresponds to a 300 -millivolt input; and when the MIC supplies the input, the center corresponds to the sound pressure level (SPL) at the microphone
The comprehensive instruction manual does not mention the equalization of stereo systems as such. Speakers in different locations will probably require different equalization curves, but there is no provision for this in the $20 / 20$. It treats both channels identically, on the basis of the signal at its microphone.

Laboratory Measurements. Filter curves of the 20/20 are shown in Fig. 1 Bandwidths are reasonably accurate, and the ranges of gain adjustment are as specified. Gain in the $0-\mathrm{dB}$ position was 1.0. Total response variation in the flat condition was 0.8 dB from 20 to 20,000 Hz . The har curve response started to roll off at 1 kHz , reaching a plateau of
-6.5 dB in the $8-$ to $17-\mathrm{kHz}$ range When we averaged several arbitrary and sometimes extreme EQ curves with the computer, the results seemed correct, although we did not verify the calcula tions mathematically
Distortion at outputs up to 3 volts was less than $0.01 \%$ and reached only $0.056 \%$ at 6 volts. (Clipping occurred at 6.8 volts.) Output noise was 300 micro volts unweighted, and was unmeasurable (less than 100 microvolts) with Aweighting. The maximum level of the pink noise output was 150 millivolts at the LINE jacks and 45 millivolts at the rear Pink NOISE jack. Crosstalk between the two channels was -76 dB at 1 kHz and -52 dB at 20 kHz

Most of our evaluation of the dbx 20/20 was done by using it to equalize various loudspeakers. About 8 pairs of speakers were tried over a period of several months. The microphone was placed at our usual listening position, about 12 to 15 feet from the speakers. It was soon a,pparent that the subjective effect of equalization was strongly dependent on the speakers we used, in the sense that the better speakers needed relatively little equalization

The most striking discovery of the tests was that while the $20 / 20$ did indeed give practically the same final response curve for any speaker after


Since introducing the industry's first dual CB antenna systems, Hustler has continuailly led the way in the development of these advanced designs.

Today, Hustler offers you the widest selection of quality dual CB systems available. Whether you're behind the wheel of the family car, RV, or a long-haul semi, a Hustler dual antenna system will give you a signal pattern unmatched in uniformity. Total electrical and mechanical reliability. Freedom from fading and blind spots when you change direction, and twice the signal capture area.

Hustler dual antenna systems feature professional-quality components: heavy chrome plated mounts, oversized "Hi-Q" resonators, superflex stainless steel radiators, dual phasing harnesses with balanced power feed, and much more...

For a consistently clear channel any way you turn, you can't surpass dual CB antenna systems by the original: Hustler - still the standard of performance.


3275 North "B" Avenue Kissimmee, Florida 32741
an Armartan compeny

#  

Fig. 2. The upper outline of the area in color is the on-axis frequency response of a loudspeaker prior to equalization; that of the gray area is after equalization by the 20/20. Broad segments of the curves differ, but the fine detail-which gives the speaker its characteristic sound-remains.
equalization, the various speakers retained their individual sonic character after equalization.

We therefore concentrated on four very different-sounding speakers: an expensive, highly regarded three-way system, a fairly expensive dipole (bidirectional) radiator system, a moderately priced conventional three-way bookshelf system, and a small two-way bookshelf system. The B\&K calibrated microphone we use for speaker measurements was mounted at the listening position, close to the dbx microphone. Speaker response was measured with the B\&K microphone, using the 18 -microsecond pulses generated by an FFT (Fast Fourier Transform) spectrum analyzer (a special program for an Apple II computer), both before an after equalization by the $20 / 20$. This was done only for the left speaker, since our microphones were on its axis and about 12 feet from it. After each speaker was equalized, the EQ curve of the $20 / 20$ was plotted with our GenRad sweeping oscillator and recorder combination, and also with the FFT a nalyzer. This was done for each of the four speakers in turn.

This test verified that each of the speakers gave essentially the same flat response at the dbx microphone. The variation was within the rated $\pm 1 \mathrm{~dB}$, except for some greater low-frequency deviations in the case of the smallest speaker, which could not be made flat down to 30 Hz . Nevertheless, after equalization, the four speakers had virtually identical (and flat) frequencyresponse characteristics as shown on the LED display of the $20 / 20$.

Once again, despite the similarity between their RTA readouts, the speakers retained much of their orignal sonic personalities. In fact, whether the equalization resulted in any net quality improvement for any of the speakers is questionable. The change was always easily audible by comparision with the SET flat condition, but was heard as a different sound quality, rather than a clear-cut improvement.

The FFT data (Fig. 2) gave a clue to what was happening. The $20 / 20$ was equalizing the total integrated sound level at the microphone, most of which was reverberant and had lost much of its high-frequency content by absorption. The axial response sensed by the $B \& K$ microphone, even at a considerable distance, contained a large proportion of direct, first-arrival sounds. Despite some
irregularities, presumably caused by room effects, the FFT curves showed the differences between the axial and fully dispersed outputs of the speakers.

The eq tended to boost the highest frequencies, compensating for room absorption and thus overcompensating the axial response. Also, because many of the major response variations of the speakers would require much narrower filters than those of the 20/20 for complete correction, they remained in the final curves. The observed effects of the EQ explained the need for the HFR curve; in every case we found it desirable to temper the excessive brightness introduced by the equalization.

User Comment. We devoted more time to evaluating the $\mathrm{dbx} 20 / 20$ than we have to almost any other component in memory. While it was obvious that this ingenious, beautifully conceived and executed product was doing exactly what it was meant to do, we were at first puzzled by the subjective effect.

Our experience in the lab suggests that the total sound quality of a speaker results from both direct-arrival sounds and reflected sounds, and that there is no present way to equalize them separately to optimum conditions. Either can be made relatively "flat" with respect to the speaker's acoustic output versus its electrical input, but then the other will not be correct. We found that, with the microphone close to the speaker, the 20/20 did a fairly good job of flattening out the axial frequency response, but this does nothing to compensate for room acoustics.

In the final analysis, the $\mathrm{dbx} 20 / 20$ is as useful for room and speaker correction as any 10 -band graphic equalizer with comparably accurate filters and adjustments. Its automatic adjustment feature means that the device will always do the best job possible under the given constralnts. Its ability to store up to 10 equalization curves and average them as desired can be a great convenience when one is trying to equalize for different speakers or rooms. And the possibility of convenient recall of EQ for specific records and tapes is another notable advantage. It must be said that while an octave-band equalizer is not the tool of choice for all occasions, as such devices go, this one stands out for versatility and accuracy.-Julian D. Hirsch

CIRCLE NO. 101 ON FREE INF ORMATION CARD

# ENTERTAINMENT ELECTRONICS 

## By Ivan Berger

## The Problem of Video Camera Compatibility

IN SHOOTING pictures with a video camera, you may encounter problems of camera/recorder compatibility. On a recent project, I had planned to use Technicolor's Model 212 video recorder and Sony's HVC- 2200 camera-the Technicolor because it's by far the lightest and most compact portable around, using nonstandard $1 / 4^{\prime \prime}$ tape cassettes, and the Sony because it's one of the most versatile yet one of the easiest-handling cameras I've ever used.
The plug connections didn't match, but Technicolor lists an adapter for precisely this purpose; so no problem, right? Wrong. The Sony cameras use a special connector that only Sony makes, and which is almost impossible to get. Technicolor had run out of Sony connectors, so 1 tried a similar adapter, from Toshiba. Alas, this didn't make the necessary connections either-the camera got power, but the recorder stayed in pause. Nor did it make the right connections to feed the playback picture to the camera's electronic finder screen.
Next I tried a JVC camera, with the same plug as the Technicolor. That one wouldn't work without a different Technicolor adapter, so 1 took a GE portable recorder that l'd just gotten for test, and tried both the Sony (with adapter) and the JVC on that. The JVC worked fine, but with the effect of the trigger reversed (I had to hold it in to stop the deck, and release it to start again). The Sony worked fine, too, but wouldn't stop the tape. (Every other press of its trigger stopped the tape for an instant, then recording resumed.) Since it had an electronic viewfinder and the JVC did not, though, I used that with the GE for most of my shots.
The comedy came to an end when a Technicolor camera arrived. Since I'd already started my test shots on the GE VHS cartridge, I tried the Technicolor camera on the GE. It worked like a charm, and the balance of the test shots were made with it.

Matching of cameras and recorders is only a problem with portables. For convenience in the field, all camera connections are made through single, multipin connectors. Table-model recorders all have RCA-jack video inputs, and either RCA or $3.5-\mathrm{mm}$ mini-phone jacks for audio. For use with these, the cameras plug into accessory adapter boxes (sometimes provided with the camera, sometimes sold at extra cost) which include a power supply, a jack to match
the camera's plug, and separate video and audio output jacks to feed to the recorder.
When it comes to single-jack camera connections, though, there are no standards. Sony, Sanyo, Toshiba and Zenith use 14-pin plugs; most of the VHS machines (and Technicolor) use 10 -pin ones. Akai's VHS deck uses a 7 -pin plug, though Akai sells an adapter for 10 -pin cameras. A few other manufacturers use 8-pin or other, nonstandard connectors.

Even when the plugs match (as in the JVC/Technicolor combination), other things may not. The camera connector must carry audio, video, and start/stop switching from camera to recorder, and camera power from recorder to camera. It may also carry video and audio from the recorder to the camera so the operator can check his last shot by replaying it through the camera's electronic finder screen. Then there are one-of-a-kind functions, like the REMOTE STOP, START, rewind, play and record facilities built into Sanyo's lastest portable camera and recorder.

Power Differences. Even simple things like start/stop switching and camera power can pose compatibility problems. Some recorders, for example, supply 12 -volt power, some 9 -volt. In some, but not all, the voltage is regulated. Start/stop switching may be normally open or normally closed, and may switch to either the 9 -volt (or 12 -volt) hot line or to ground. All told, there seem to be at least nine different camera/recorder jack setups.
Some cameras, especially the VHS ones, try to get around this to a certain extent. Many camera manuals, for example, don't state whether the tally light in the finder indicates that the recorder is off or on, because its meaning depends
on the recorder used. Such cameras usually have push-push triggers, rather than the momentary-contact type, which also means you can set the camera up on a tripod and get into the frame yourself. RCA's CC-010 and CC-011 have compatibility switches to match its trigger to most VHS recorders. Several manufacturers (Quasar and Hitachi, for example) wire different camera models in their lines in different ways.

The moral of all this is to check very carefully before getting any portable VCR and camera not specifically recommended for use with each other, and to double-check (either by querying both manufacturers-who may not know-or by carefully reading both schematics) before plugging them together. I haven't heard of anyone actually blowing a camera or recorder through a pin mismatch, but 1 believe it could happen.

Adapters. If the camera and recorder you want don't seem to talk to one another, don't despair. Technicolor sells three adapters for its portables which should also, judging from my experience with Technicolor's camera, work on GE and some other VHS decks. The Cable Works (4228 Santa Ana St., P.O. Box M, South Gate, CA 90280) has a line of adapters to fit five camera types to four different recorders. Comprehensive Video Supply ( 148 Veterans Dr., Northvale, NJ 07647) sells 28 adapters that match any of five different recorder connectors to any of seven different camera types. Plugs and jacks from which you may be able to make up your own adapters are available from WIDL (5245 W. Diversey Chicago, Il. 60639), RMS Electronics ( 50 Antin Pl., Bronx, NY 10462), Comprehensive, and Total Video Supply ( 9060 Clairemont Mesa Blvd., San Diego, CA 92123).


# Popolar Electronics Tests The Netronics Explorer 85 Computer 



TThe Explorer/85 computer from Ne tronics Research and Development is one of a rare breed-a simple, lowcost, yet exceedingly well-designed computer that starts as a basic kit, and can easily be expanded as the builder/user requires. Through the addition of other low-cost kits, the Explorer/85 can be expanded into an excellent and useful general-purpose computing system whose final price undercuts comparable systems.
The basic one-board system called Level-A (\$129.95) contains an 8085 CPU (a "grandson" of the famous 8080) that is $100 \%$ compatible with 8080 software. It includes eight RST vector interrupts and four hardware interrupts that are automatically channeled to the monitor with a register save routine, and RAM area addresses that redirect the processor to the desired interrupt routine. The $131 / 4^{\prime \prime} \times 10^{3 / 4^{\prime \prime}}$ glass epoxy board features platedthrough holes with solder mask, and has provisions for serial I/O and another 25pin socket for a hex keypad, a cassette recorder circuit with motor control, a speaker output, a LED indicator on the 8085 serial output line, a printer interface (less drivers), and four 8 -bit plus one 6 -bit $1 / \mathrm{O}$ ports. The 8085 operates at 6.144 MHz . Other hardware includes a programmable 14-bit binary counter/
timer, 256 bytes of RAM at F800 that can be expanded to 4 K on the mother board or to 64 K via the $\mathrm{S}-100$ bus.

A very useful monitor contained in a 8355 2K ROM (located at F000) includes tape I.OAD/DUMP with label, EXAMINE/CHANGF MEMORY contents, INSERT data, provisions for a warm start (register save input) that is useful for breakpoint debugging, EXAMINE/ CHANGE registers, single-step with register display at each break point, and goto execution address. Monitor routines in the terminal version (not available in the hex keypad version) can move data blocks from one location to another, fill memory blocks with a selected value, display memory blocks, select baud-rate automatically, and control variable line length ( 1 to 255 characters/line). Also included is a channelized 1/O routine with 8 -bit parallel output for a high-speed printer, and a serial console $1 / \mathrm{O}$ so that the monitor can communicate with serial I/O ports. The monitor source listing is available. The system can be used with a conventional terminal or hex keypad. Level-A detects the baud rate of a terminal and readjusts itself accordingly.

The Level-B Expansion Kit (\$49.95) provides the signals plus buffer drivers to support up to six S-100 boards. Included in this portion are the address
decoding for on-board 4 K RAM expansion selectable in 4 K blocks, address decoding for on-board 8 K EPROM expansion selectable in 8 K blocks, address and data bus drivers, a jumper-selectable wait-state generator to allow use of slow me -ory, and two separate 5 -volt regulators to provide stability and reduce bus noise. Besides installation information, the manual for this kit also contains a description of the $S$ - 100 bus used in this computer.
The Level-C Expansion Kit (\$39.95) is mainly metalwork (card cage) that increases the number of S-100 board connectors (not supplied) to five, and also provides a trouble-shooting socket for vertically mounting an S-100 board. The metal structure mounts directly on the motherboard.
Level-D (\$49.95) provides an additional 4 K of on-board static RAM to the original 256 bytes in the basic system. It also has a power-supply regulator and decoupling, and requires the installation of Level-B. The additional memory can be located at any 4 K block from 0000 to EFFF.
Level-E (\$5.95) provides the sockets, power-supply regulation, filtering and decoupling components, and allows the use of up to 8 K of 2716 or 2516 EPROMs. Jumpers are provided to allow these sockets to be used with RAM.
(MEMR and MEMW signals are available for this purpose.) This add-on requires the installation of Level-B, as well as an external +8 volts at 700 mA , unregulated

Power for the system is provided by the AP-1 Power Supply (\$39.95) that provides +8 and -8 volts dc, and 20 volts peak-to-peak ac. The output current is 5 amperes and switches accommodate both line and load conditions.

Memory expansion is via the "Jaws" S-100 dynamic RAM board with the 16 K version at $\$ 149.95$, expandable in 16 K increments (at $\$ 50$ per 16 K ), to a full 64 K . This board takes so little power, even with 64 K installed, that heat sinks are not required for the regulators. It uses the Intel D8202 arbitrator IC to keep the chip count to a minimum.

The $8^{\prime \prime}$ CDC (Control Data Corp.) disk drive has a single-density capacity of 401,016 bytes or double-density capacity of 802,032 bytes unformatted, LSI controller, write protection, and an access time of 25 ms (one track).

The Disk Controller-1/O Board can handle up to four $8^{\prime \prime}$ drives, uses a 1771A controller, and has an IBM-compatible data separator, two serial $1 / 0$ ports with independent rates to 19,200 baud, autoboot-to-disk on system reset (allowing a full 64 K byte RAM for actual program use), and operating software in a 2716 EPROM

Software is Microsoft BASIC (\$64.95) which requires Level-B and 12 K of RAM, or the BASIC comes in ROM (\$99.95) which requires Levels B and $E$ and at least 4 K of RAM. There is a disk version at $\$ 325$ that requires Lev-el-B. 32 K of RAM, a floppy disk controller (\$199.95), and an $8^{\prime \prime}$ disk drive (\$499.95). The disk can be housed in a metal cabinet with the disk power supply (\$69.95) with the required cables at $\$ 25 . \mathrm{CP} / \mathrm{M} 2.2$ is available for $\$ 150$.
The system we built consisted of Levels A and B , the disk controller, two dou-ble-density, single-sided CDC $8^{\prime \prime}$ drives, the necessary cables, power supplies, and metal enclosures.
The system was constructed in accordance with the information in the manuals-which was just about equal to the task. A couple of phone calls to the plant were necessary to clarify a couple of points.

Since the disk controller contains the start-up (from reset) utility in ROM (and also contains the ports for the printer and terminal), we elected to use the full 64 K Jaws board ( $\$ 299.95$ ). Although Netronics has a terminal kit, we used a Heath H-19 terminal and a Teletype Model 43 printer.
Once the system was interconnected. power was turned on. We installed the CP/M diskette, hit the reset pushbutton on the front panel of the Explorer,
and the CP/M signed on immediately.
The computer enclosure houses the mother board, the S-100 bus expander, the small power supply, and a ventilating fan. Since. after many hours of use, the computer barely got warm, we disconnected the fan to quiet the tiny noise it made.

Evaluation. Since, in this configuration, the Explorer is a dedicated CP/M machine, we elected to challenge it with WordStar/MailMerge that contained a large number of files that we use at our computer club. As users of this wordprocessing software know, it really exercises the disk drives. The Explorer performed well. with typical Z-80 execution speed, and the CP/M, a disk operating system, behaved as it should.

Since, in our experience, the limiting factor in using a computer of this type in extreme environments is operator comfort, we decided to limit temperature stresses to those that would make a typical human surrender. To check hightemperature operation, we used hair dryers, one aimed into the computer housing and the other at the disk-drive housings. With the internal temperature of the housings at $105-110^{\circ} \mathrm{F}$, the system went about its business free from problems, churning out form letters and spinning both disk drives merrily. Then we positioned the Explorer and its disk


# Bearcat ${ }^{\circledR}$ 210XL Super Scanner 

Look what you get with the Bearcat $210 \times \mathrm{L}$. Excriting. new


## THELOWESTPRICED, FULL-FEATURE, BEARCAT NO-CRYSTAL SCANIER EVER.

## Bring home all the real

 excitement of scanning. and save! Bearcat 160 features a smooth. keyless keyboard for all controls including volume and squelch. Has 5band, 16 channel coverage. Priority. Selective Scan Delay. Automatic Lockout and Search. And much more. Bearcat is number one in
Electra, Electra Company Owision of Masco Corp of Inciana

Add $\$ 7.00$ per scanner for U.P.S. ground shipping in the continental U.S. Send your cashier's check or money order to our address below or order by phone if you have a Visa or Master Charge card.

854 Phoenix $\square$ Box $1002 \square$ Ann Arbor, Michigan 48106 U.S.A. Call TOLL-FREE (8OO) 521.4414 or outside U. S.A. (313) 994-4444 CIRCLE NO. 1 ON FREE INF ORMATION CARD
drives in the direct blast of an air conditioner, where the temperature was $55^{\circ} \mathrm{F}$. Once again, the system ran without a hitch. Using a variable transformer, we varied the power-line voltage between 105 and 123 volts, still causing no problems.

Like many other disk-drive manufacturers, CDC feels that too many programs have been "bombed" by the operator's pounding on keys before the drive had finished its job, so these disk drives do not have a LED indicator to show
buy what you need. While construction of the Explorer/85 is not particularly arduous, it does require some previous kit-building experience.

Looking into the computer enclosure can be quite a shock, as there seems to be almost nothing there. The large mother board contains a small handful of chips, and there are only two plug-in boards on the S-100 bus-the 64 K Jaws board and the disk controller board, as compared to a typical computer's seven boards. Such sparseness of components


Fully expanded Explorer with levels $A, B, C, D$, and $E$.
disk activity. The user is expected to wait until the cursor (or other screen action) shows up as a positive indication that disk activity has ceased. The CDC drives are a little noisier than some others but not excessively so.

The instruction manual contains all the information on constructing the basic system and a complete discussion on the use of the monitor. However, the information is sparse. The manual gives but one illustration of program development, and a schematic diagram and component-installation guide are the only illustrations.

Comments. The Explorer is an excellent, well-designed system whose performance is comparable to that of machines that cost significantly more. You can start with a low-cost basic computer kit that can be used as a trainer for learning machine language or as a device controller. Through a series of lowcost add-ons, the system can be expanded to a resident editor-assembler to work with assembly language and then to a full-blown computer (with disks) that can hold its own with most other machines on the market.

Using this approach, the builder can configure the system as he desires, without having to pay for unwanted elements. For example, in the Explorer, there is no requirement that you buy BASIC (or any other language). You
should contribute to reliability. An old engineering maxim has it: "that which you ain't got, ain't going to hurt you."

A wide variety of applications is within easy reach, as the $S-100$ bus enables plugging in of optional peripherals. For example, we used the Explorer with an S-100 high-resolution graphics board, a set of music boards, and a speech system, all of which worked quite well. The Explorer (or its disk controller) has two RS232 ports, each with an independent baud rate. This enables connections to a terminal and printer (or other RS232 device)
The Explorer system has some other appealing niceties not traditionally available. For example, CP/M is supplied with patches to operate with the CDC drive's controller so that I/O is automatic. This means that the disks can be simply plugged into an old Altair, Processor Tech, or similar computer and give turnkey operation. Also, the optional CP/M comes with a program to test any disk for quality.
Clearly, the Explorer is not an "appliance" computer. Rather, it is a computer learning machine that can expand to a powerful data-processing system. If you are an experienced kit builder and want to learn microcomputing from the ground up, the Explorer offers an economical way to do just that.

> -Leslie Solomon

CIRCLE NO. 102 ON FREE INF ORMATION CARD

# COMPUTER BITS 

Sweeten Your Apple

1F YOU have an Apple II Plus and are Lanxious to sweeten it up a bit, here are some items to consider.

## I. Hardware

From Epson, comes the MX-100 full carriage dot-matrix printer. This $\$ 945$ unit sports a print rate of 80 cps bidirectionally and can handle bit-image graphics with a density as high as 120 dots per inch on the horizontal axis. It also permits double-emphasized characters ( $8 \times 18$ matrix) and can support as many as 233 characters per line in the compressed-character mode
The standard MX-100 has a Centron-ics-style, 8 -bit parallel interface with RS-232 and IEEE-488 optional. The normal 1 K buffer is expandable to 2 K , and the print head is disposable-one of the key features of Epson printers.

To improve throughput, consider add-
ing Vista's Model 150 type-ahead buffer. This $\$ 49.95$ module is compatible with all Apple II computers and software and is attached simply by plugging
it in between the keyboard and the system. Model 150 provides a 40-character buffer for entering commands. This add-on is almost critical if you're planning to use an Apple for data input.

For developing innovative applications, think about adding a prototyping/ hobby card. This handy $\$ 24$ item from Apple is available at most Apple dealers and can be used to build up any circuit you might need.

Vista also offers the Vision 80, an $80 \times 24$ video card, for $\$ 350$. This plug-in has both upper and lower case and, when working in tandem with some of Vista's PROMware, can even produce impressive script displays. With the proper drivers, the card can be used in

The Micro Mark I card reader from True Data Corp. is a low-cost (\$900) alternative to volume data collection

concert with either a plotter or graphics printer for making hardcopy of the scriptset.

The Videx Videoterm 80x24 video board at $\$ 345$ supports inverse video, alternate character sets, and graphics symbols. Apparently, you can contact Videx and they will provide a unique character set off the shelf or, for a price, create one to your specification.
To give voice to the Apple, the Vista Vocalizer should be available soon for about $\$ 250$. It is based on National Semiconductor's DT-1050 speech processor.
I think it might be interesting to develop software that talks to youespecially if it's asking for data input And, in general, the speech area offers some unique opportunities to be inventive. All you need is the aforementioned protoboard, a set of chips either from National or TI, and time to play.
System capability can be easily extended by attaching Microsoft's Z-80 Softcard and adding memory with RAMcard. The $\$ 349$ Softcard gives CP/ M capability without losing the use of the Apple's 6502 processor. The $\$ 195$ RAMcard gives you 16 K at a fraction of the cost of other memory add-ons. This card works well with both Softcard systems and garden-variety Apples.
One very important feature of the Microsoft cards is that you have the ability to upload and download CP/M compatible software from other systems. In addition, you can use a number of the sophisticated communications packages written for CP/M.

To connect your Apple with the world, you need either a serial or parallel inter-face--preferably both. SSM's AIO serial and parallel Apple interface is a likely candidate. This $\$ 195$ Apple bus card supports switch-selectable serial rates from 110 to 4800 baud. Rates as high as 19.2K baud can be achieved by changing hardwire jumpers. This serial port is
ideal for setting up communication with a modem.
To make the board flexible, an 8 -bit parallel port is included to support a variety of printers including the Epson MX-100. To use the parallel interface, you'll have to part with another $\$ 25$ for the ROM that supports the printer of your choice.
Although you can get a communication board designed just for the Apple bus-the Hayes Microcomputer Micromodem, for example-you may want to consider either the board from SSM or the Apple serial board, and use either an acoustic-coupled modem such as that available from Tek-Com or a direct-connect modem like those from the Microperipheral Corporation or Universal Data. All of these have been discussed in this column previously. We have found that you probably should consider the Apple with the Hayes board wired in.

## II. Software

In the August column, I mentioned Personal Software's Visiterm, which gives you communication ability-if you're in a world that is compatible with Personal Software. If you're not, and still want a communication package designed to work with the SSM board, look toward Agent Computer Services. This is the software house I wrote about last year that does all that neat graphics ware for the OKI printers. It has come up with a humanized communication package called The Buffered Modem. This program, written in Apple BASIC, is priced at $\$ 85$, is delivered on a 13 sector Apple disk (conversion to 16 -sector takes about 3 minutes), and permits configuring the system to whatever you have on the bus including the Hayes board, a wide range of video display boards, and several printer interfaces.

Once I had the program ready to boot, it came up quickly and greeted me with the sign-on menu. The first chore is to
configure the package to your system, and everything in the screen display and manual directs you toward this end. You must, however, know what slots contain the various cards.

A really nice feature of Agent's software is that when you choose a menu item, the program doesn't just take off, but asks again if you're sure. The same philosophy is used on the control codes that turn various functions such as the printer on and off. You must precede that function with a control-A to signal the software that the next command is a valid control command.

A potential problem you should be aware of is that if you are using an Apple Silentype printer, you'll be unable to download files directly to the printer without losing characters. The reason is that printers like this (or software intensive cards) make use of the system's 6502 processor. As a result, the data stream gets ahead of the output and everything gets dumped. The solution is to download the file and save it on disk (the program is very clear on how to do this), then dump it to the printer.

## MORE INFORMATION

For additional information about products or services mentioned, contact the companies directly.

Agent Computer Service
RR \#3
Columbia City, IN 46725
219-625-3600
Apple Computer Inc. 10260 Bandley Dr. Cupertino, CA 95014 408-996-10 10

Edu-Ware Services Inc.
2222 Sherman Way, Suite 102
Canoga Park, CA 91303
213-346-6783
Epson America Inc. 23844 Hawthorne Blvd. Torrance, CA 90505 213-378-2220

SSM Microcomputer Products 2190 Paragon Dr.
San Jose, CA 95131
408-946-7400
True Data Corp.
17092 Pullman St.
Irvine, CA 92714
714-979-4842
Videx
897 N.W. Grant Ave.
Corvallis, OR 97330
503-758-052 1
Vista Computer Co.
1317 E. Edinger Ave.
Santa Ana, CA 92705
714-953-0523


Vista's Model 150 provides a 40 -character buffer for the Apple.

Currently, the Buffered Modem only permits the up- and downloading of text files without checking or referencing. In a later version, the ability to send packets of information, either sequential or random files, with error checking, will be available. Moreover, this updated version will be able to handle track-bytrack or sector-by-sector transfers. Since this is still in the works, you'll need to contact Agent Computer Services directly for more information.
One of the mainstays of this machine has been courseware for Computer Aided Instruction (CAI). One company that has been harvesting the fruit of this growing market is Edu-Ware. It is dedi-
cated to developing software designed to teach skills, techniques, or concepts. The program supplied us was Algebra 1 This unique program uses Apple graphics and numerous menus to guide you through the algebraic problems and solutions. Set theory is covered, and chances to check your skills are provided with the program.
To maintain interest, if not excitement, the program combines high-resolution graphics and color, and is priced at $\$ 39.95$. I found that the course was interesting in its basic design, but problematic for even the interested student The main annoyance is the slowness of the program. Moreover, to avoid at least
one notable omission, the authors could have used graphics to represent sets and demonstrate an intersection. Since Apple tells you the machine's secrets, such as the location of the disk drivers, they could have been turned on early to speed things up, and more frames could have been loaded at a time. Nonetheless, Edu-Ware's effort is laudable.

Further enhancing the Apple as a teaching machine is True Data Corporation's Micro Mark I hand-fed card reader. This unit, priced at $\$ 900$ with a serial interface, is designed to read cards for collecting data on test scores, and the like. The unit reads marks that are made with a pencil and relates them to specific spaces. The read head contains a light source and 14 phototransistors (one for each of the 12 data rows and one for reading the format marks on either edge of the card). Light reflected into the lens of a phototransistor is defined as the nosignal condition. When the reflected light level drops due to a data block (pencil mark, preprinted mark, or punched hole) the corresponding phototransistor yields a signal output
The software development is basicaily simple, requiring only the transistor signal relative to position. This information can then be translated into meaningful data. Lots of possibilities are available with this device, and it can be used with almost any system.

# SONYANNOUNCESA MICROPHONE FOR PEOPLE WHO HATE TALKING INTO MICROPHONES. 



Are you self-conscious about talking into microphones?
Then maybe you should consider using a microphone you won't be

It's small. And inconspicuous. And clips right on your tie, blouse or展 lapel. But while it may be unseen, you

It features a Sony condenser capsule that's specially designed for vocal reproduction-making it perfect for business meetings, lectures or classrooms.

For more information about the "Tie-Tac" mic, see a Sony dealer.

After all, a microphone should help your communication.

Not get in the way of it.

# COMPUTER SOURCES 

## By Leslie Solomon

 Senior Technical EditorHardware

Small Terminal. The LEX-21 features a built-in modem, full-function 59key keyboard, and an upper/lower case, 40 -column thermal printer using a $5 \times$ 7 dot matrix in an $8^{1 / 2^{\prime \prime}} \times 11^{\prime \prime} \times 23 / 4^{\prime \prime}$, 5 -pound package. Contains a 2 K -byte RAM memory for text composition, and a 1 K -byte line buffer. Baud rates are 10 or 30 characters per second. Options include a leather carrying case, acoustic cups, numeric keypad, and FCC approved access connector for direct phone connect. Address: Lexicon Corp., 8355 Executive Center Dr., Miami, FL 33166 (Tel: 305-592-4404).

Micro Winchester. The MPI Model 10, Super-Micro Winchester has 12.06 megabytes unformatted, and 10 megabytes formatted storage. Access time is 25 ms to maximum 40 ms , with track-to-track at 3 ms . The head settle time is 2 ms and the $51 / 4^{\prime \prime}$ system features micro stepping. Transfer rate is 5 megabits/s and it uses the ST506 or SA1000 interface. MTBF is claimed at 10,000 poweron hours. Error rates are soft: 1 in $10^{10}$ bits read; hard: 1 in $10^{12}$ bits read; and seek of 1 in $10^{6}$ seeks. The unit is $3.25^{\prime \prime}$ $\mathrm{H} \times 5.75^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{D}$. Address: Micro Peripherals Inc., 9754 Deering Ave., Chatsworth, CA 91311 (Tel: 213-7094202)

Atari Modem. The Microconnection is a direct connect modem for the Atari $400 / 800$ systems that replaces acousticcoupled devices. An Autodial/Autoanswer option permits dialing or responding to other computers automatically. It is Bell 103 compatible and operates in the originate or answer mode at 300 baud. A voice-grade cassette recorder can be plugged in to store online communications for later playback. A European version is also available $\$ 199.50$. Address: The Microperipheral Corp., 2643 151st Place, N.E., Redmond, WA 98052 (Tel: 206-8817544).

## S695-DX69 Kit and Downconverter

LNA $\$ 695$


Receiver Kit
Discriminator Demod


Single Conversion Preassembled

$120^{\circ}$ Preassembled

## All Microwave Components Preassembled

## The First Complete Satellite Kit

 $\$ 2895$

12' Spherical Kit
-

SS50 RAM. The 64K-byte CMOS Static RAM Board, with battery backup is designed for the SS50/C bus and is guaranteed for $2-\mathrm{MHz}$ operation with no wait states or clock stretching needed. Power requirement is less than 250 mA at 8 volts. The contents remain intact for a minimum of 21 days with a fully charged battery. The board can be hardware protected. $\$ 1088.64$. 56 K version (socketed for 64 K ) is $\$ 994.56$. Address: Gimix Inc., 1337 West 37th Pl., Chicago, IL 60609 (Tel: 312-9275510)

Real Time Clock. TCHRON is a realtime clock for the TRS-80 that has its own power supply, and provides month/ date/year, day of week, hour/minutes/ seconds, and a.m./p.m. information, using its own crystal oscillator. Time set software is included. \$99.95. Address: WEB International, Box 96, Corona Del Mar, CA 92625 (Tel: 714-494-2869)

Multi User System. The 5005 Multi Share System features a Z80-based central processor, a 5-megabyte Winchester disk, a 630 K -byte floppy disk, and a sophisticated error-correcting disk con-

troller. Up to five users can combine almost any mix of application programs. It can support two printers, one serial and one parallel. The error-correcting technology is based on the IBM approach and up to five erroneous bits in every 256 bytes transferred from disk to processor are automatically corrected, eliminating errors due to disk contamination, aging, surface defects, and all but the most severe disk damage. Software includes CP/M-2, SCOPE editor, RAID debugger, ZSM assembler, and Microsoft BASIC $80 . \$ 8995$ with single terminal. Address: Vector Graphic, Inc., 31364 Via Colinas, Westlake Village, CA 91362 (Tel: 213-991-2302).

Now Printer. The Model 739 can provide standard print, and under software control will generate characters in an $n$ $\times 9$ dot matrix for proportional spacing and $7 \times 8$ for 80 - or 132 -column lines. It can handle single sheets, roll, or fanfold paper. It permits true lower-case descenders, underlines, and high-resolution graphics. Other features include $100-\mathrm{cps}$ monospacing, $80-\mathrm{cps}$ proportional spacing, $74 \times 72$ dots $/$ inch graphics, a paper-out switch, top of
form, self test, parallel or RS-232 interface, and right justification. Parallel is $\$ 995$, RS-232 version is $\$ 1045$. Address: Centronics Data Computer Corp., 1 Wall St., Hudson, NH 03051. (Tel: 603-883-0111).

Super Paddles. The Super Paddles are made from high-precision linear potentiometers and a large ( $1 / 2^{\prime \prime}$ diameter) industrial-quality pushbutton within a $4^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ metal case that matches the Apple. A 5 -foot cable forms the interconnect. \$39.95. The Super Joy Stick provides linear control to $1 / 10$ of $1 \%$ making it suitable for high precision. $\$ 59.95$. Address: Peripherals Plus, 39 East Hanover Ave., Morris Plains, NJ 07950 (Tel: 201-540-0445).

STD Bus EPROM Card. The 7705 provides eight on-board sockets to allow up to 32 K bytes of 2732 EPROM memory. All 32 K are continuous and can be mapped to either the upper or lower half of the 64 K memory map. Responding to the STD Bus MEMEX line, it allows two banks of memory to occupy the same memory space. $\$ 99$. Address: ProLog Corp., 2411 Garden Rd., Monterey, CA 93940 (Tel: 408-372-4593).

TRS-80 Remote Control. The Plug 'n Power Controller (26-1182) connects to the cassette output of any TRS-80 Model I, Model III, or Color Computer and translates instructions from the host computer into controlling signals that are coupled via the ac power lines to Plug ' $n$ Power remote appliance and

lamp dimmer modules (sold separately). Up to 256 remote modules can be controlled, groups of 16 can be controlled together, and 16 such groups are accessible. Software is provided. The system includes a real-time clock for accurate timekeeping. $\$ 39.95$. 15 -ampere Appliance Module (61-2681) for $15-\mathrm{am}-$ pere control is $\$ 16.99$, Lamp Dimmer ( $61-2682$ ) for 300 watts is $\$ 16.99$ : Wall Switch (61-2683) for 500 watts is \$17.99: and Universal Appliance Module (61-2684) is $\$ 17.99$. At Radio Shack Stores and Computer Centers.
ss50 Interface. The Universal Interface occupies one l/O slot of the SS50 system, and allows the user to design his own custom I/O port. Space is provided for two ACIAs or one PIA chip, buffering, and any other required logic. Provi-
OCTOBER 1981

## How to get 50\% more sound without turning up the volume.

There's a whole range of sound in a live performance that you never hear from your stereo system. And it's not a question of turning up the volume.

The problem is in the records you play.
When recording engineers master a record, they electronically eliminate up to half the music. They literally compress the sound to make it "fit" on the vinyl record.

Fortunately, there's one solution to the problem: dbx Dynamic Range Expanders.

A dbx Dynamic Range Expander in your system restores most of the lost music. And it reduces annoying record surface noise by as much as 20 dB . So instead of a compressed 50 or 60 dB of dynamic range, you get a full 75 to 90 dB . The loud passages begin to thunder. The softs are truly subtle. All your music comes to life.

And you can use a dbx Dynamic Range Expander not only with your records, but also with tapes and FM broadcasts.

Visit your authorized dbx retailer for a demonstration of the 1BX, 2BX and 3BX Dynamic Range Expanders. Then select the model that's best for your system.

Because there's a lot more to music than has been reaching your ears.
dbx, Inc., 71 Chapel St., Newton, Mass. 02195 U.S.A. Tel. (617) 964-3210. Telex 92-2522. Distributed throughout Canada by BSR (Canada) Ltd., Rexdale, Ontario.



CIRCLE NO. 4 ON FREE INF ORMATION CARD

## NEW INDOOR ACTIVE ANTENNA

 Covers $300 \mathrm{KHz} \cdot 30 \mathrm{MHz}$. For SWL, BCL, VLF DXers.

MFJ-1020 NEW Indoor active antenna sits on your desk ready to listen to the world Rivals. can often exceed. reception of outside long wire. Unique Tuned Active Antenna mini mizes intermod, provides RF selectivity, reduces noise outside tuned band. Also use as preselector for externa! antenna. Covers 300 KHiz to 30 MHz in five bands. Adjustable tele scoping antenna. Controls: Tune, Band Selector. Gain, On-Off/Bypass. LED. FET. bipolar circuitry. Phono jack for external ant. $6 \times 2 \times 6$ inches. 9.12 VDC or 9 V battery for portable use 110 VAC with optıonal AC adapter. $\$ 7.95$

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping).

One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order

## CALL TOLL FREE ... BMCA77ABM

 MFJE $=$CIRCLE NO. 6 ON FREE INFORMATION CARD

## Tililill 1 nosh STEREO CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh catalog. In addition you will receive an FM station directory that covers all of North America


If you are in a hurry for your catalog please send the coupon to Mcintosh. For non rush service send the Reader Service Card to the magazine.
sions are made for two D-type connectors, and a ribbon cable header connector with up to 50 pins. The card supplies +5 volts with an on-board regulator, and all bus connections have pads. Options are available for baud rate and interrupt selection, including external clock inputs. \$14. Address: Quality Research Co., Box 7207, Spokane, WA 99207.

## Software

Apple WordStar. The WordStar word processor and MailMerge are now available for the Apple. WordStar requires the Microsoft SoftCard, 48 K bytes of RAM, and an 80 -column video board. All WordStar functions run without modifications and the Apple version is identical to that used with $\mathrm{CP} / \mathrm{M}$. Available on 13 - or 16 -sector Apple format diskette. Address: MicroPro International, 1299 Fourth St., San Rafael, CA 94901 (Tel: 415-457-8990).

Linking Loader. LYNX, an overlay linking loader for Microsoft FORTRAN, COBOL, and MACRO-80, will also work with other language translators which produce Microsoft compatible relocatable files such as BASIC compiler. It allows programs that use all available memory including that used by LYNX. Requires CP/M. \$250. Address: Westico, 25 Van Zant, Norwalk, CT 06855 (Tel: 203-853-6880).

List Management. PRISM/LMS is a data base management program designed for maintaining lists of customers, parts, subscribers, patients, employees, property listings, vendors, and other such items. It allows creation of mailing labels, envelopes, preprinted forms, Rolodex cards, personalized form letters, contracts, and other specialized forms. Selected fields can be merged into surrounding text or printed at specified locations. Will run on CP/M, MP/ M, CP/M-86, Onix and Model II TRSDOS with CBASIC as host language. \$225. Address: Micro Applications Group, 7300 Caldus Ave., Van Nuys, CA 91406 (Tel: 213-881-8076).

Apple Sofiware Catalog. The catalog covers Super-Text, word processor, Address Book, Data Plot, a series of games using hi-res graphics, the Voice that enables the Apple to speak, and a number of other utility and game programs. Hardware, including a lowercase adapter, is also covered. Address: Muse Software 330 N. Charles St., Baltimore, MD 21201 (Tel: 301-6597212).

## computers

OSI BASIC. FBASIC runs under the OSI OS-65D3 operating system and is a subset of OSI/Microsoft BASIC specially suited to systems-level programming. It produces stand-alone 6502 machine code modules. Special features include userdefinable array locations, while loops, gotos and gosubs to absolute addressess, direct access to registers, and more. It can also link compiled modules to the OSI interpreter. Requires 48 K memory. $\$ 155$. Address: Pegasus Software, Box 10014 , Honolulu, HA 96816.

Computational Utility. T/MAKER II is a CP/M-based utility that produces charts and exhibits for reports, has screen editing controls, creates complete reports, integrates text and numerical data, and can produce reports in a letter format by merging preprogrammed mailing lists, without changing disks. The user defines relationships between rows and columns (similar to Visicalc), and the program will compute established equations and place answers in their appropriate positions. Changing a number automatically recalculates corresponding rows and columns. Automatic functions include percentages, averages, logarithms, and transcendentals. \$275. Address: Lifeboat Associates, 1651 Third Ave., New York, NY 10028 (Tel: 212-860-0300)

Apple Monitor Extender. The Monitor Extender for the Apple II is a cassette-based utility that allows different display formats and ASCII text entry. It includes search, fill and move commands and a disassembler that creates a labelled ASCII file in disk or cassette memory. In addition to normal hex, memory can be displayed in ASCII or binary. The disk commands work with $3.2,3.2 .1$, or 3.3 DOS. Memory usage is $11 / 4 \mathrm{~K}$ bytes, disk buffer is 256 bytes, and the text buffer is variable. It will run on any page boundary. Address: Image Computer Products, 615 Academy Drive, Northbroook, IL 60062 (Tel: 312-564-5060)

TRS-80 Assembly Language. PDS is an assembly language development system running under TRSDOS for the Model III. It includes a relocating macro assembler, linkage editor/linking loader, string-oriented text editor, interactive editor/assembler, trace debug/monitor, disk disassembler, and several utilities that extend the power of TRSDOS. It is available on $5^{\prime \prime}$ double-density Model III diskettes. \$99. Address: Allen Ashley, 395 Sierra Madre Villa, Pasadena, CA 91107 (Tel: 213-793-5748).

Now BASIC. "Energy BASIC" is an interpreter designed for energy management systems that contains many of the usual BASIC constructs plus a number of energy unique statements such as MODE, SET, ANSW, ELAP, ORIG, PSWD, TEMP, and time. It runs under CP / M 2.2 on $8^{\prime \prime}$ diskette, or resident in two 2716 PROMs. The Users Manual is $\$ 20$. EB010 AND EB080 are \$195. Address: International Data Systems, Inc. Box 17269, Dulles International Airport, Washington, DC 20041 (Tel: 703-661-8442).

TRS-80 Word Processor. "Word" is a complete text/file merge option that enhances the Word-M2 on the Model II, Word-IV on Model I, and Word-M3 on Model III. It can merge a text file with elements of a data file or mailing list, and the same document can be printed repeatedly. Word users return diskette and $\$ 37$. The Word program with this option is \$79. Address: Micro Architect Inc., 96 Dothan St., Arlington, MA 02174. (Tel: 617-643-4713)

TRS80 Medical Office. The Medical Office System (261568) is designed for the TRS-80 Model I and Model III with printer and disk. The software can store up to 3960 (Model I) or 4200 (Model III) patient records and can record and store up to 3685 (Model I) or 7700 (Model III) transactions per month. Insurance forms can be printed on demand. It also provides space for 200 different procedures, and 200 different diagnoses. Accounts receivable can be aged to 120 days. $\$ 299$. Address: Radio Shack stores and Computer Centers.

FÖRONL̈Y \$129.95 Learn Computing From The Ground Up
Build a Computer kit that grows with you, and can expand to 64k Ram, Microsoft BaSIC, Text Editor/Assembler, Word Processor, Floppy Disks and more.

## EXPLORER/85



## pequitpaid

LEVEL D - When you reach the point in learning that requires more memory, we offer two choices: either add 4k of a memory directly on the motherboard. or ard 18 k to
64 k of memory by means of a single S 100 card our . "IAWS"

 EVEL E S299.85 plus $\$ 2$ PRI
LEVELE - An important "building block"" it activates
the Bk ROM/E PROM space on the molherboard. Now iusi plug in our Bk Microsoft BASIC or your own custom prograns.
Level E kit, $\$ 0.95$ plus 504 Pal. Microsof 8ASIC - Ins the language that allows you to
 JAWS - see above). $\mathbf{S 6 4 .} 53$ postpaid.
 We suggest ether the $4 k$ Level $D$ RAM expansion or a 16 k Sloo "IAWS"). 898.95 plus $\$ 2$ Ps! $\square$ Disk version of Microsof 8 PASC. (requires Level B.
32 k of RAM. floppy disk controller. A . floppy disk drive) 32 k of RAM. flopp
$\$ 325$ postpaid.
TEXT EDTTOR/ASSEMBLER - The edilor/assembler is a software tool (a program) designed to simplify the task
of writing programs. As your programs become longer and more complex. The assembler can save you many hours of programming time. This software includes an editor program that enters the programs you write. makes
changes. and saves the programs on cassetles The assemcher performs the clericial lask of translating symbolic code into the computer-readabte object cade. The ediort
assembler program is available either in cassette or a
RCM version. "Editor/Assembler (Cassette version. requires Leve) see abovel $\$ 50.95$ plus 52 P\& ${ }^{\circ}$ Editor/Assembler (ROM version, supplied on an S100 cand. requires Level B and 4 k RAM (min. - WP sugges
either Level D or 16 k "|AWS") $8^{8 \prime}$ FLOPPY DISK - A remarkahle "building block." Add our $8^{"}$ floppy disk when you need faster operation. more convenient program slorage, perhaps a business applicalion, and access to the Iterally thousands of programs
and program languages available today You simply plur and program anguages available today You simpty plug IBM-formalted CPMMfrograms.

Floppy Controller Card, $\mathbf{\$ 1 9 9 . 9 8}$ plus $\$ 2$ PsI.
$\$ 69.95$ plus
S3 P84.
Drive Cables (set up for two drives) $\$ 23.00$ plus
\$1.50 PIIL." 22 Disk Operating System, includes Tex
Editor/Assembler. dynamic debugger. and other features
that give your Explorer $/ \$ 5$ accerss lo thousands of existing

- That give your Explorer/ 85 access to thousand
- NEED A POWER SUPPLY? Consider our AP. 1 It can
supply all (he power you need for a fowy expanded
plorer $/ 85$ (note disk drves have their own power supply)
plorer 885 (note disk drves have thetr own power supply),
Plus the AP fits neally into the attractive Explorer sleel
cabintet (see below)

NEED A TERMINAL? We
pensive one is our He
Keypad/Display kil thal dis
- peypad/Display kit thal dis
clalculator-lype screen The
calculator-lype screen The
other chooce is our ASCI


NETRONICS Research\&DevelopmentLtd 333 Litchfield Road, New Milford, CT 06776

${ }^{\text {COM }}$ place somewhere in the United States. There was a $20 \%$ rise in violent crime during 1980, the highest in 10 years.

Luckily, we have two unique products to help keep you from becoming another crime statistic.

## 1. Portable intrusion alarm

How can you protect your home or business without spending a fortune on a perimeter security system? How about when you're sleeping in a hotel room, an easy mark for the growing population of hotel burglars?

Simply place the pocket-sized SensAlert ${ }^{\text {TM }}$ in any room, aiming the sensor toward doors or windows. As soon as an intruder enters, the movement triggers an ear-splitting 90 -decibel alarm.

Place a SensAlert in every room at home, for a fraction of the cost of a security system. Carry a SensAlert in your briefcase or pocket when you travel, for protection in hotel rooms. There's no installation and no electrical wire; SensAlert runs on durable, 1.5 volt batteries.

A free sign for your door knob is included with each order. It warns that the room is protected by SensAlert.

A special feature makes SensAlert more than a burglar alarm. It has 3 settings: soft, loud, and louder. Turn the volume to "soft" and a pleasant 6-second tone lets you know someone has come in. Place it at the entrance to your business. Or at your backyard gate while you sunbathe. You always know someone has arrived. No surprises. Nobody kept waiting.

Put SensAlert in your desk drawer at the office. It will go off if anyone opens it while you're out.

A built-in light allows you to use SensAlert as an emergency flashlight. The alarm can also be triggered manually, for a distress signal.

## 2. Plug-in theft protection

Valuable electrical equipment is at the top of a burglar's hit list. Typewriters, adding machines, TV's, stereos, tape recorders, power tools.

It only takes a few seconds to unplug and carry off a TV or typewriter. A quick, easy theft and resale. You're vulnerable at home and at the office.

Before Alertmate, ${ }^{\text {TM }}$ you had two choices: bolt appliances to furniture, or invest in a costly and complex security system.

Now, you can simply plug the Alertmate into the wall outlet, secure it with one screw, plug in the appliance, and set the number combination.

If a thief pulls out the plug, a 90 decibel alarm goes off. And keeps going. A definite theft deterrent! The only way to deactivate the alarm is to plug the appliances back in, or dial the correct number code. The alarm will also ring if the cord is cut.

A free sticker is included. It states that the equipment is protected by Alertmate, and gives you a space to write in the name of an individual who has the combination.

When you want to move equipment yourself, you simply deactivate the alarm with the combination. Protect each


4357 Chase Avenue
Los Angeles, CA 90066
© Copyright 1981 Sunshine Express

## Popular Electonics <br> OCTOBEA 1981



## Add e 4-digit display and locate stetions quickly and accurately

## BY GARY MCCLELLAN



ADIGITAL frequency disp.ay on a radio s a special nicets. If you jwn an $\mathbf{A M} /=\mathbf{M}$ or $\mathbf{F M}$-only receiver that has the od-fashioned analog dial, aere is how you can add an LED digtal display that will rake it casier to tell what frequency you're on and will also help you locate any station.
The displas indicaees AM requencies to the neerest 1 kHz and $F$ M frecuencies to the nearest .00 kFiz . Also, the project cen be used at lorg-wave Frequencies.

Besides superior resolution as comzared to a dial, the Jisplay project cffers a display update of ten readings a second, fast enough to "follow" the tuning knob. Also, it is adaptable to a wide range of receivers having different intermediate frequencies. Two simple PROMs, made out of a few diodes, program the project to suit the circuit.

Only three connections to the receiver itself are requi-ed (A M local cscillator, FM local cscillator. and ground). It is suggested that you obtain the serematic of your receiver as this will make irs-allatior much easier. In adcition, $\varepsilon$ tiny medule is installed insice the receiver for FM signal process ng. The cisplay itself is separate from the receiver to allow for convenient positioning. If desired, the display can be built inside the receiver, as it is small enough to replace most tuning dials.

The receiver used should be solids:ate and transformer-powered to prevent a shock hazard--battery sets are fine. The receiver must be an AM/ FM, or FM entertainment type-no CB transceivers or communications receivers. Finally, your receiver must be a superhet.

Circult Operation. The project is basically a specialized type of frequency counter, desigred to measure

# Everybody's making money selling microcomputers. Somebody's going to make money servicing them. 

New NRI Home-Study Course Shows You How to Make Money Servicing, Repairing, and Programming Personal and Small Business Computers



TRS-80 Model III microcomputer, 6-function LCD Beckman multimeter, and the NRI Discovery Lab with hundreds of tests and experiments.

Seems like every time you turn around, somebody comes along with a new computer for home or business use. And what's made it all possible is the amazing microprocessor, the tiny little chip that's a computer in itself.

Using this new technology, the industry is offering compact, affordable computers that handle things like payrolls, billing, inventory, and other jobs for businesses of every size...perform household functions including budgeting, environmental systems control, indexing recipes. And thousands of hobbyists are already owners, experimenting and developing their own programs.

## Growing Demand for Computer Technicians

This is only one of the growth factors influencing the increasing opportunities for qualified computer technicians. The U.S. De-


partment of Labor projects over 100\% increase in job openings for the decade through 1985. Most of them new jobs created by the expanding world of the computer.

## Learn at Home in Your Spare Time

NRI can train you for this exciting, rewarding field. Train you at home to service not only microcomputers, but word processors and data terminals, too. Train you at your convenience, with clearly written "bite-size" lessons that you do evenings or weekends, without going to classes or quitting your present job.

Your training is built around the latest model of the world's most popular computer. It's the amazing TRS-80 ${ }^{\mathrm{TM}}$ Model III, with capabilities and features to perform a host of personal and business functions. No other small computer


## Become the Complete Computer Person

You're also trained in writing and debugging both BASIC and advanced machine language programs... gain hands-on experience in the operation and application of computers to business and personal jobs. You're trained to become the fully rounded, new breed of technician who can interface with the operational, programming, and service facets of today's computers. You're ready to take your place in the new electronic age.

## Other Opportunities

NRI has been giving ambitious people new electronic skills since 1914. Today's offerings also include TV/ Audio/Video Systems servicing with training on our exclusive computerprogrammable 25 " diagonal color TV...Communications Electronics for servicing and installing microwave, broadcast, CB, radar, etc... and other

used and relied on by so many people. And it's yours to keep for personal or business use.

You get plenty of practical experience. Using the NRI Discovery Lab ${ }^{\circledR}$ that also comes as part of your course, you build and study circuits ranging from the simplest to the most advanced. You analyze and troubleshoot using the professional Beckman LCD digital multimeter you keep to use later in your work. Then you use the lab and meter to actually access the interior of your computer... build special circuits and write programs to control them. You "see" your computer at work and demonstrate its power.

## Free Catalog...Mail Card No Salesman Will Call

Send the postage-paid card for our 100-page catalog showing all courses with equipment and complete lesson plans. There's no obligation other than to yourself. See how NRI can help you grow with the most exciting and important new field of the 80 's. If card has been removed, please write to us.


NRI SCHOOLS
McGraw-Hill Continuing
Education Center
3939 Wisconsin Ave.
Washington, DC 20016
We'll give you tomorrow.


Fig. 1. The schematic for the digital display circuit, shown on these two pages, can be divided into three functional sections: AM input, time base, and programmable counter.
the receiver's local oscillators, and subtract the i-f to display the actual (not local oscillator) frequency to which the receiver is tuned. CMOS logic is used for low current drain.
The schematic, shown in Fig. 1, can be broken down into three sections; AM input, time base, and programmable counter. Each section will be described in detail.
Signals from the AM local oscillator appear at the gate of $Q 1$, a FET source follower. This stage has no gain, but simply insures that the input will have a high impedance to reduce loading of the local oscillator. The output of $Q 1$ drives $/ C 1 A$, a TTL gate wired as an amplifier, to boost the sensitivity. The output of ICIA drives
$I C I B$ and $I C I C$, which converts the local oscillator sine-wave signal into a square wave, suitable for driving digital circuitry. Gate $I C 1 D$ allows either the AM or FM signal to pass to the remainder of the counter.
The FM signal, converted to a square wave, comes from an external board and drives $Q 2$, which passes the signal on to $I C 1 D$. The output of $I C 1 D$ drives $I C 2$, a divide-by- 10 counter. This counter scales the input frequency by 10 to drive the slower counter circuit that follows. The one-count error inherent in other frequency counters is also reduced by IC2 because it is reset (via pin 7) with the remainder of the circuitry. This produces a stable display-one where the
last digit isn't constantly changing. The AM input circuit has a sensitivity of 40 mV at 2 MHz , at least four times more than required in most applications.

The time-base circuitry consists of IC4, IC5, and IC6. The $3.58-\mathrm{MHz}$ color-TV crystal generates the stable timing frequency while IC4, a CMOS time base designed for this type of application, provides the necessary oscillator for the crystal and divides its frequency down to 100 Hz . The $100-$ Hz signal drives decade counter IC5. This device has 10 decoded outputs and each output is high for 10 ms (the period of 100 Hz ). Pin 3 goes high first to reset counters IC2 and IC3 to zero. Then pin 2 goes high to force

counter IC3 to load a preset value (the i-f we want to subtract). After that, pin 7 goes high. When this signal occurs, a gate inside $I C 2$ is enabled, allowing the signal from the receiver local oscillator (via $I C l$ ) to be counted. Finally, pin 10 goes high to update the display, showing the correct frequency.

The gates of IC6 are wired as inverters, and interface the time base to the different parts of the circuit. One section, IC6C, is important in that it provides AM/FM display switching. When the $S /$ terminals are open, the FM frequency is displayed because the input to $I C 6 C$ is high due to R16. This, in turn, enables $I C 7$, a quad electronic spst switch, connect-
ing the FM diode PROM in $J l$ to the counter. Simultaneously, Q3 is turned on, causing the decimal point in the display to glow. Since the output of IC6C is low, this disables ICIC so that any signal from the AM local oscillator won't trigger the counter. When the $S l$ terminals are shorted, the project displays AM frequency. The output of IC6C is high, enabling $I C I C$ so that AM signals can get through. And finally, IC8 is enabled, connecting the AM diode PROM in $J 2$ to the counter.

Programmable counter IC3 is set to a value determined by the $J 1$ or $J 2$ plug-ins. It counts frequency from this point and displays the result on four seven-segment displays (DISI

PARTS LIST (Display Board)

C1-470-pF disc capacitor
C2,C3,C4-0.1- F , 16-V disc capacitor
C5-33-pF disc capacitor
C6-22-pF disc capacitor
$\mathrm{C} 7-22-\mu \mathrm{F}, 16-\mathrm{V}$ electrolytic
C8-100-pf disc capacitor
D1-1N4 148 diode
DIS1 through DIS4-FND-503 commoncathode LED display (Radio Shack 276 1647)

IC 1-74LSOO TTL quad NAND gate
IC2-CD45 18 decade counter
IC3-Intersil ICM7217A programmable counter
IC4-National MM5369 EST/N timebase
IC5-CD4017 decade counter
IC6-CD4001 quad NOR gate
IC7,IC8-CD4066 switch
J1,J2-16-pin IC socket
Q1-MPF 102 JFET transistor
Q1-MPSA13 Darlington transistor
R1-1-M $\mathbf{R}^{1 / 4-W, 5 \%}$ resistor
R2,R3,R6-1-k $\Omega, 1 / 4-W, 5 \%$ resistor
R4,R17-470- $\Omega,{ }^{1 / 4}-\mathrm{W}, 5 \%$ resistor
R5-15-k $\Omega,{ }^{1 / 4}-\mathrm{W}, 5 \%$ resistor
R7-10-k $\Omega, 1 / 4-\mathrm{W}, 5 \%$ resistor
R8 through R14-270- $\Omega, 1 / 4-W, 5 \%$ resis. tor
R15-10-MS2, $1_{4}-$ W, 5\% resistor
R16-2.2-k $\Omega, 1 / 4-$ W, 5\% resistor
XTAL $-3.579-\mathrm{MHz}$ crystal
Misc.-IC sockets, Molex Soldercons, wire, solder, etc.
Note: The following is available from Technico Services, Box 20 HC, Orangehurst, Fullerton, CA 92633: set of two pc boards (for display and prescaler), \#DISP-1, for \$12.00. Outside US, add $\$ 3.00$ for shipping and handiling. California residents, add sales tax.
through DIS4). Since the operation of the reset, count, and latch functions of IC3 were described in the time-base section, all that's left is the programming circuitry. This is the job of $I C 7$, IC8, J1, and J2. Transmission gates IC7 and IC8 each contain four switches, and making the four enable lines (pins $5,6,12,13$ ) high turns them on. Because of IC6C, either IC7 or IC8 will be on at a given time. For example, when $I C 7$ is on, the lines from $J l$ (FM) are connected to the output of IC3, enabling IC3 to program itself to whatever data is on $\cdot J l$. In this project, the $J I, J 2$ plug-ins use a few diodes to program the counter. Conversely, when IC8 is on, IC7 is off. Then $J 2$ is connected to the counter.
$\qquad$


## PARTS LIST

 (Prescaler)C101-5-pF disc capacitor
C102,C103,C104-0.01- $\mathrm{F}, 50-\mathrm{V}$ disc capacitor
C104, C 106-0.1- $\mu \mathrm{F}, 16-\mathrm{V}$ disc capacitor IC 101-National DS8629N VHF prescaler IC 102-7804, 5-volt regulator
R101-100- $\Omega$, $1 / 4-$ W, $5 \%$ resistor
R102-330- $\Omega, 1 / 4-W, 5 \%$ resistor
Misc. IC socket, cable, wire, solder, etc. Note: See Display Board Parts List for ordering information on pc board.

Fig. 2. The FM prescaler circuit is installed inside the receiver and connected to the FM local oscillator.


The FM prescaler board (Fig. 2) is installed inside the receiver and connected to the FM local oscillator. Otherwise, the long cables required to bring out the FM local-oscillator signal would detune the oscillator, making the FM section inoperative.

This board contains vhf prescaler ICIOI, especially designed for this type of application. It features a builtin preamplifier, and a divide-by- 100 counter. Input sensitivity is about 25 mV at 100 MHz , or about five times more gain than is required. This insures good performance with almost any FM receiver, including battery types with low-level oscillator outputs. The output of the prescaler board drives the FM input on the display board. The signal is in the $1-\mathrm{MHz}$ range, and is at TTL level. Voltage


Fig. 3. Foil pattem (top) and component layout (bottom) for the display board. Note the bare-wire jumpers which must be installed before the components.


Fig. 4. At left and below are additional jumpers of insulated wire to be installed on the display board. Use RG-174 coaxial cable to make the connections off the board.

regulator IC102 ensures that there is a low-impedance 5 -volt power source available, and keeps r-f noise off the power leads.

Construction. The foil pattern and component installation for the main board are shown in Fig. 3.

Install the sockets for all the ICs and $J I$ and $J 2$. Molex Soldercons may be used for the four LED displays. Install the jumpers as shown in Fig. 3 using bare wire as required. Make sure that these jumpers are flush against the pc board. Then install the remainder of the components. Carefully install sockets for IC7 and IC8 making sure that no shorts are made to the jumpers on the board. Then install insulated jumpers as shown in Fig. 4. Upon completion of all wiring, and after it has been checked, install the ICs. Use lengths of RG-174 coaxial cable for the connections off the board shown in Fig. 4.
The foil pattern and component in-


Fig. 5. Foil pattern and component layout for the prescaler board.
stallation for the FM prescaler board are shown in Fig. S. Use a socket for IC101. Use the shortest possible lead length when installing the capacitors on the board, and do not use Mylar capacitors in this application.

Installation. The necessary connections to the receiver are shown in Fig. 6. Figure 6A shows the circuit to use when the receiver has a single-stage converter approach; Fig. 6B shows use with a conventional local oscillator; while Fig. 6C illustrates the connections for a typical AM converter. In the FM mode, mount the prescaler as close to the FM converter/oscillator as possible to reduce detuning due to long leads.

Start the installation by removing the receiver power plug. Carefully remove the top and bottom covers to gain access to the r-f circuitry. In some cases it may be necessary to remove a shield to get at the r-f circuit. Using the schematic, locate the

antenna input connections and trace the circuitry towards the i-f section to locate the local oscillator. In many cases, this will be identified on the schematic. Note that in some sets a "converter" may be used insteadthis circuit serves as both a mixer and the local oscillator.
Once you have located the AM/FM local oscillators, or converters, use the appropriate circuit of Fig. 6 to make the connections. Start with the FM connections by referring to the diagram that is closest to your circuit. Chances are, either the converter of Fig. 6A, or the grounded-base oscillator of Fig. 6B will match your circuit. Note that in both cases, the prescaler board connects to the emitter lead of the transistors. The emitter lead is chosen because it is the lowest impedance point in the circuit and connecting elsewhere may excessively load the converter/oscillator and stop oscillation. For the AM connection, simply make the connection to the emitter of the converter transistor as
shown in Fig. IC. Capacitor C201 has been included to decouple any dc component, and reduce circuit loading to the bare minimum.

The FM prescaler board must be positioned very close (within two inches) to the FM local oscillator.

Also, the board must be securely mounted to the chassis or receiver circuit board. The ground lead of the prescaler connects to the ground on the tuning capacitor, and the signal lead is soldered directly to the emitter of the converter transistor. Your particular installation may be different, depending upon how much space you have available. Study the layout of your receiver carefully, and you will probably-find several ways to install the prescaler. One more tip if you plan to mount the prescaler on the main circuit board: use heat sparingly on any i-f transformers you use for mountings, as the plastic elements inside these transformers can melt, and change the alignment. Quickly tin the transformer case, and allow it to cool. Then sweat solder the prescaler board in place. To connect the AM cable, connect one end of C201, a $100-\mathrm{pF}$ disc capacitor, to the emitter lead of the AM converter transistor. Then cut a 3-foot length of RG-174 coax cable, and prepare both ends. Connect the shield to ground near C201, and connect the other end of the capacitor to the center conductor of the coax cable.

To finish up the receiver, route the wires and cables through a hole, such as a vent, in the rear panel, then cut the cables the same length. Prepare the ends, and install a male connector on them. Any of the low-cost Molex connectors should work fine, and the choice of connector is up to you. The receiver top and bottom covers may now be reinstalled.

If you have a power supply that can provide 9 -volts dc unregulated at 100 mA , and 6 -volts dc regulated at 50 mA , use it. Otherwise, build the simple power supply shown in Fig. 7. A few words about the parts, and construction. The 9 -volt de supply is a calculator type charger plug, al-


Fig. 7. Schematic of a simple power supply suitable for the digital display circuit.

## PARTS LIST <br> (Power Supply and Final Assembly)

[^1]Misc.-Cabinet for display board, 9-volt charger plug ( 500 mA ) (Jim-Pak DC900), DIP headers, fourteen IN4148 diodes, 4 -pin cable connector set, perf board, coax cable, wire, solder, etc.
though a separate transformer and full-wave rectifier may be used.

The display board can be installed in a cabinet, or if desired, inside the receiver. However, it is suggested that a separate metal cabinet be used. If a plastic case is used, keep it at least a foot away from the receiver. Regardless of the case you choose, mount the display board on the rear of the case using spacers and 4-40 hardware. Then drill holes in the rear, adjacent to the board for the power and signal leads. Turn to the front of the case, and cut out a rectangular hole for the displays. If desired, a commercial bezel, such as from Radio Shack may be used for a better appearance. After that, finish up the case by drilling a hole for the AM/FM switch, S1.

To connect the leads (including power) to the display board, route the cables through one of the holes in the rear of the case, then connect them to the appropriate pins of the connector. Add a third lead to carry +9 volts to switch S1. Refer to Fig. 8 for the final wiring details. Finishing touches like bundling wires and cables from the receiver using cable ties, labelling the case using press-on letters, etc., may be added to the project.

Programming. The diode-encoded PROMs for $J 1$ and $J 2$ are required. These PROMs are necessary to subtract the i-f from the display to produce the correct tuning frequency of the receiver.

If the display is powered up without the PROMs installed, only the decimal point may be lit. Turn on the
receiver, and tune in an FM station between 106 and 108 MHz . Do this carefully, as careful tuning insures maximum accuracy from the project. Set $S /$ to $F M$ and note that the display indicates between 116.0 and 118.7 indicating the local oscillator frequency. Determine the frequency of the FM station and determine the required displacement (i-f) as display frequency minus station frequency. Subtract the i-f frequency from 1000.0 (maximum display count) to determine the PROM "number."

For technical reasons, this form of addition must be used to program the display. For example, for an i-f of 10.7 MHz , the PROM number would be "989.3." Record this number. The next step is to program the PROM with the number just determined. This is done using diodes and the following BCD truth table.

| Number | $" 1 "$ | $" 2 "$ | $" 4 "$ | $" 8 "$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | X | - | - | - |
| 2 | - | X | - | - |
| 3 | X | X | - | - |
| 4 | - | - | X | - |
| 5 | X | - | X | - |
| 6 | - | X | X | - |
| 7 | X | X | X | - |
| 8 | - | - | - | X |
| 9 | X | - | - | X |
| 0 | - | - | - | - |

This table is slightly different from the traditional BCD truth table. In place of a logic 1 , an $X$ representing a diode has been used. What this means is that, if you want to display a 1 , you'll wire a diode from the BCD 1
pin to the desired digit as shown in Fig. 9A. The same holds true for any other numbers to be programmed. The table shows what diodes are required, and where they connect. In all cases, the diode banded end points toward the desired digit. Study the top view of the $J I / J 2$ pinouts as shown in Fig. 9A. Note that each function shares two adjacent pins, this makes connecting many diodes easier. Also note the digit numbers along the bottom of the sockets. These numbers correspond to the LED digits on the board, with 4 being the lefthand digit, and 1 the righthand.
Start the wiring by programming digit \#4. Using our example of 989.3 , this would be the first 9 . Referring to the table, a BCD 9 equals diodes from 1 and 8. Two diodes are connected from pins 10 ( BCD 1 ) and 16 ( BCD 8) to pin 1 of the DIP header (digit 4). At this point, check your work by plugging the header into $J l$ on the display board. With the receiver turned off, set $S l$ to FM and note a display of 900.0 Repeat the process for digit 2 (this would be the 8 of our example of 989.3). Look up 8 in the table, and connect the diode between pins 16 (BCD 8) and 3 (digit 3).
Check your work by plugging the PROM into $J I$ on the display board. You should get a display of 980.00 . Continue with digits 2 and 1 in the same manner. When you are done, try the PROM in the display board, and you should be rewarded with the PROM number you calculated. In all probability, the finished PROM will look like the one of Fig. 9B. This is the


Diagram (B) is for $F M$; $(C)$ is for $A M$ receivers.

digital display
one for 989.3 , or a $10.7-\mathrm{MHz}$ i-f. If you get confused about the programming, just build this PROM as shown It will work with most FM receivers, and be accurate within a few hundred kHz . This completes the FM PROM programming, and the project is ready for use with your FM receiver.

If your receiver has an AM band, continue with the AM PROM programming. It works exactly the same as the FM programming, and the steps are identical. The only differences are the frequencies and the PROM number. This is because of the different frequency coverage, and the $\mathrm{i}-\mathrm{f}$, which is usually 455 kHz in AM receivers
Let's go through the AM PROM programming procedure, starting with the exact i-f. For best accuracy, tune in an AM station as close to the high end of the band as you can. Also, select a fairly weak station, because the tuning is more critical, and that leads to better accuracy. Jot down the frequency displayed by the project with $S l$ set to AM. Determine the frequency the station is broadcasting on by looking it up in the newspaper, or waiting for station identification. Jot this value down, and then subtract it from the display frequency to determine the exact $\mathrm{i}-\mathrm{f}$.

Convert the i-f to PROM number by subtracting it from 10000. If, for example, your receiver has a $455-\mathrm{kHz}$ i-f, the PROM number works out to 9545. Record the calculated number.

Use the table above to connect the diodes. Start by wiring digit 4, as you did with the FM PROM. Note that the banded ends of the diodes all point toward the digits. Check your work by plugging the PROM into $J 2$ on the display board. Remember to power down the receiver for the check, otherwise the local oscillator signal will confuse you. Continue with the other digits in order. When they are all done, check the PROM by plugging it into $J 2$; you should get a display of the PROM number you calculated. If the programming confuses you, simply build the PROM shown in Fig. 9C. It is for a $455-\mathrm{kHz} \mathrm{i}-\mathrm{f}$, and accuracy will be good enough for most applications.
Only a few additional tips on the display's use are in order. Remember to set $S l$ to suit the band (AM or FM) you are listening to, otherwise you will get a display of only the PROM number. Second, the FM prescaler may cause a slight detuning of the FM section. In that case, touch up the FM oscillator trimmer to bring the receiver dial back into calibration.


The Popular Electronics Sweepstakes is open to all our readers. No purchase is required-and you'll get a great new pocket computer from Radio Shack if you're the lucky winner!
How the Sweepstakes works
Just mail the attached card or the coupon below after filling in your name and address. Be sure to indicate whether you're also subscribing to Popular Electronics at the special rates shown-you can save as much as $40 \%$.

Then, if you win, you'll receive the amazing new TRS-80 Pocket Computer from Radio Shack. This 6 -oz. marvel can be programmed in BASIC to solve problems, process lata, aid you in decision-making, sach, even entertain you. Its feaures include an easy-to-read 24character liquid crystal display, a 1424-step memory that holds multiple programs, standard typewrit-er-format alphabetic keyboard, $10-$ digit numeric accuracy, and 15 built-in arithmetic functions. Programs and data are saved in per-

## No Purchase Required

1. On an official entry form or a $3^{\prime \prime} \times 5^{\prime \prime}$ piece of paper, hand-print your name. address and zip code. Enter as often as you wish, but man each entry separately to Popular Electronics Sweepstakes, P.O. Box 2782 . Boulder, Colorado 80322 . Entries must be received no later than November 30, 1981, and the drawing will be held by December 30, 1981.
2. Winner will be selected in a random drawing from among all entries received, under the supervision of the publishers of Popular Electronics, whose decision is tinal. Only one prize will be awarded in this Sweepstakes. Winner will be notified by mail and may be required to execute affidavit of eligibility and release. Odds of winning will depend on the number of entries release. Odds of winning win depend on the number of entries
received. Ziff-Davis will arrange delivery of prizes. Taxes are the received. Zitf-Davis will arrange delivery of prizes. Taxes are the
responsibility of the winner. Any manufacturer's claims and responsibility of the winner. Any manufacturer's claims and
warranties will apply, but Ziff-Davis makes no claims or warranties with regard to any prize. Prize is not transterable. No substitution or exchange for prize.
3. Sweepstakes open to all U.S. residents except employees of Ziff-Davis Publishing Company, its affiliates, advertising and promotion agencies. Void wherever prohibited or restricted by law.
4. For the winner's name. send a stamped, self-addressed anvelope to Popular Electronics Sweepstakes, Circulation Department, Ziff-Davis Publishing Company. One Park Avenue, New York, N.Y. 10016.

manent memory for instant recall. Comes with batteries, carrying case and 116-page user's manual. In all, a $\$ 249$ retail value that could be yours for the taking!

You're sure to win with Popular Electronics!
Whether or not you win our Sweepstakes, your electronics projects are certain to be winners
when you subscribe to Popular Electronics. It's the Number One magazine in its field-filled with news about computers, audio equipment, communications and home projects.

Why not enjoy a year or more of Popular Electronics at our low introductory prices? You'll save up to $40 \%$ if you subscribe at the same time you enter our Sweepstakes!

## OFFICIAL ENTRY FORM

Mail to: Popular Electronics Sweepstakes P.O. Box 2782, Boulder, Colorado 80322YES! Enter my name in the Popular Electronics Sweepstakes and start my subscription to Popular Electronics for the term checked:
$\square$ One year only $\$ 11.97-20 \%$ off!
$\square$ Two years only $\$ 19.97-33 \%$ off!
$\square$ Three years only $\$ 26.97-40 \%$ off!
Savings based on full one-year subscription price of $\$ 15$.
$\square \mathrm{NO}$ I don't wish to subscribe now, but tell me if I've won the Popular Electronics Sweepstakes.


CHECK ONE:
$\square$ Payment $\square$ Billme enclosed. later.

Mr./Mrs./Ms.
(please print full name)
8 H 146
Address
Apt.

[^2]
## Popular Electronics Tests



## the Toshiba ModelCB965 19"Color TV Receiver

TOSHIBA'S new model CB965 is its most versatile $19^{\prime \prime}$ color receiver to date. The model features infrared remote control (detachable from the set), CCD comb filter, detail purifier, auto matic dark picture intensifier, separate vertical and horizontal resolution controls, room-light sensor, and an earphone output for private listening. Its styrene cabinet is walnut-striped with a silver-colored trim. Dimensions are $25^{\prime \prime} \mathrm{W} \times 171 / 4^{\prime \prime} \mathrm{H} \times 181 / 2^{\prime \prime} \mathrm{D}$. Suggested retail price is $\$ 600$.

The set's automatic UP/DOWN channel selector is also a signal-seeker. Thus, one push of the button and the receiver seeks the closest channel on which there is a signal. Without any programming, the scan is continued throughout all 82 u/v channels.
The remote control also has direct address, and after a two- or three-second delay will proceed to any number activated. No enter button is used, nor is it necessary to key a leading zero for a sin-gle-digit number

## General Description. For the

 TAC034 chassis, remote control consists of a remote sensor, keyboard, control board, selector, and channel display boards, and the usual hand-held unit. They are followed by a CCD comb filter and a large integrated circuit.The hand-held remote is a thin threeounce metal package having 16 feathertouch buttons, a rear hump for three LR44 power-source batteries, and a forward hump for two transistors. There is one 16 -pin chip, and a single infrared diode. The IC is pushbutton-controlled.
Remote signal sensing is executed by an infrared detector, followed by a FET and bipolar amplifier output to the remote-control board. Here we find a group of discrete semiconductors that control all on/off relay, audio, and channel-select impulses. Some outputs go directly to the main chassis, while others are routed to the microprocessor. A keyboard unit on the front panel also connects to the microprocessor, and contains volume up/DOWN. Channel up/

DOWN. POWER ON/OFF, and two patentiometer knobs for vertical and horizontal resolution.
The selector board supports an LSI 42-pin microprocessor, a pair of LED readout drivers, prescaler and phase-locked-loop ICs, an interface chip, three voltage regulators, a pulse amplifier, and a half-dozen automatic fine-tuning amplifiers.
As the set is turned on, a relay is activated on the remote board, delivering full power to the chassis. Thereafter, selected modulation pulses are detected by the microprocessor, which executes the appropriate functions, and excites the two readout driver ICs to produce green LED channel numbers. The re-mote-sensor unit amplifies the channelselect or volume signal, routing it to additional amplifiers and a tuned fre-quency-selective circuit on the remote board.

In the direct-address mode, individual broadcast frequencies are selected by their numbers. When a channel is


Fig. 1. Multiburst test shows full $4-\mathrm{MHz}$ bandpass at video detector and 3.5 MHz at cathode ray tube.


Fig 2. Chroma test shows a Irtle AM at video devector and some noise at 3.08 MHz at CRT. Veztor is good.


Fig. 3. Display in spectrum analysis shows $43 d B$ signal/noise at cathode ray tube which is considered quite good.


Fig. 4. Factory alignment is good except for placement of lower audio adjacent channel marker, which could be closer to response curve.
picked, each number is sampled for aft response by gating until sync/equalizing pulses are detected. When this occurs, aft crossover and tuner up/down action ceases, and the channel remains locked. In this way, all $82 \mathrm{u} / \mathrm{v}$ channels can be covered in a very short time without preprogramming. Prescaler and phase-locked-loop ICs compare channel frequencies by synthesis to ensure correct tuning. Thus, even if a signal is weak, channels are quickly identified and securely held.

Since Toshiba manufactures RCA's CCD comb filter, it's not surprising to see the same device in the CB965. There have been some minor changes, but the signal inputs/outputs, operating connections, and locally generated power voltages are unaltered.

Comb filtering, whether done by IC charge-coupled devices or by glass delay lines with additional active and passive components, simply amounts to a cleaner means of separating $1-3-\mathrm{MHz}$ luminance from the band-restricted 3.08 -to-$4.08-\mathrm{MHz}$ chroma. A color receiver with a $3.58-\mathrm{MHz}$ subcarrier trap in the luminance channel can only develop 3 MHz at the cathode ray tube (about 240 horizontal lines) regardless of the passband at the video detector. With comb filtering, luminance expands to about 4 MHz , and chroma, in the I color sideband, could increase by a full 1 MHz , although $Q$ sidebands would remain at their broadcast bandwidth of 500 kHz . Q sidebands produce colors ranging from yellow-green to purple, while I signals contain hues between bluish-green

## TOSHIBA MODEL. CB965 RECEIVER

 LABORATORY DATA| Parameter | Measurement |
| :---: | :---: |
| Tuner/receiver sensitivity (min. signal for snow-free picture): |  |
|  | vhf (Ch. 6): $-6 \mathrm{dBmV}(-54.8 \mathrm{dBm})$ <br> uhf (Ch. 30): -1 dBmV (49.8 dBm) |
| Voltage regulation |  |
| (line varied from 105-130 V: |  |
|  | High voltage: $27-\mathrm{kV}$ supply - $90.8 \%$ |
| Luminance bandpass at CRT: | 3.5 MHz |
| Luminance bandpass at video detector: | 4 MHz |
| Dc restoration: | 82\% |
| Agc response before white/black level changes or sync clipping ( $-6 \mathrm{dBm} V$ to |  |
| + 55 dBmV ): | 61 dB |
| S/N ratio at CRT | 43 dB |
| Horizontal overscan: | 18\% |
| Convergence: | 99\% |
| Audio bandpass (3 dB down): | 90 Hz to 8.5 KHz |
| Aux. audio output impedance: | 9 ohms |
| Power requirements <br> (signal applied, incl. remote): | 97 W |

NOTE: Instruments used in these measurements are Tektronix 7L 12 spectrum analyzer; Telequipment D66, D67A oscilloscopes: Sadeico FS-3D VUF/S meter, Winegard DX-300 amplitier: Sencore VA48 video analyzer (modified), CG169 color bar generator, PR57 power analyzer; B \& K-Precision 1248 and 1250 color bar generators, 3020 function generator; Data Precision 245, 248, 258 multimeters; Canon Fto and Tektronix C-5A cameras.
(cyan) and orange. At the moment, designers are giving new high-end sets between $3.5-\mathrm{MHz}$ (270-line) and 4 MHz (330-line) luminance response in most comb-filter-equipped receivers, but with little or no increase in chroma bandpass, which is now restricted to $\pm 500 \mathrm{kHz}$. Even so, most comb-filter receivers today can produce better composite pictures than those broadcast by many TV stations.

To compensate for lost vertical resolution due to combing, pin 12 of Toshiba's TL8500P IC is connected to a potentiometer and choke that vary the gain of the luminance amplifier output at pin 13 , via a dc voltage. The horizontal resolution control is an R-variable LC device in the emitter of a luminance picture amplifier, i.e., the usual sharpness control you've been finding in the better TV receivers for the past 10 years. Theoretically, the best horizontal display should approach 4 MHz , or 330 lines; while vertical resolution should amount to 400 lines ( 525 scan lines, less overscan and vertical blanking).

Composite video enters the 683.5 -element CCD and outboard amplifiers, which are clocked from an external frequency tripler at three times the usual $3.58-\mathrm{MHz}$ chroma subcarrier rate. Luminance information proceeds to the upper amplifier, and chroma to the inverting lower amplifier, both of which are manually gain-controlled. The CCD element delays composite video for $63.5 \mu \mathrm{~s}$, a full horizontal line. It then passes the signal to summing amplifiers. After inphase video lines have been summed (luminance with some additional delay) they are routed through the output via a lowpass filter. When $180^{\circ}$ out-of-phase lines are summed, luminance is eliminated, and only chroma may proceed. The VDO (vertical detail output) contains some chroma which cancels (combs) the luminance signal through its own lowpass filter. This is also where RCA's 4 -diode variable peaking amplifier operates to heighten vertical detail between $3 \%$ and $30 \%$-a feature that is manually accomplished by Toshiba's front-panel resolution controls.
I-f, aft, agc, and video detector are

NO. 1 IN A SERIES

## GUARDING YOUR MILITARY EXPERIENCE

## EXTRA INCOME

If you have experience in any branch of the Armed Forces, you have the chance to earn good extra income while you hold one of the most important jobs in America. In an Army National Guard unit close to home.

Take income. In the Army National Guard, the work you've put into military service can really go to work for you. For instance, if you left as an E-4 with three years experience, you can earn over S 1500 a year. As an E-5 with 6 years experience, over 51700 . And, if you have a critical skill you may also qualify for a cash bonus. To see exactly how far your rank and experience can take you, check out the chart below.

PER YEAR (Including)
Annual Training

\$1375.68
1427.34
1519.92
1630.17
1687.11
1789.80

Plus, a part-time job in the Army National Guard fits in well with your current lifestyle. Because all it takes is two days a month of your time, along with 15 days annual training. And, in the Guard, you're serving close to home, helping the people in your community and state when natural disasters or emergencies occur.

Extra income that's important to you, in a job that's important to your community. It's just one reason to Guard your military experience in the Army National Guard.

To learn about other reasons- from benefits to new skills-contact your local Guard recruiter, or call toll-free 800-638-7600.
"In Hawaii: 737-5255; Puerto Rico: 723-4450; Virgin Islands (St. Croix): 773-6438; Maryland: 728-3388; in Alaska, consuli local phone directory.

## The Guard is America at its best.



## TOSHIBA'S TINY TIM

Another Toshiba model (the CA045) for 1981-82 is a 4.5inch color portable that operates on a $12-\mathrm{V}$ battery or $120-\mathrm{V} \mathrm{ac}$. Weighing 7.5 lb , this little TV produces a remarkable picture for its size, with adequate definition and good color.

The set has a uhf/vhf slide-rule dial, with a pair of flashing red bar indicators that act as an "off channel" signal (a green bar lights up when the tuning is correct). This little fellow also has a cold chassis, audio and video inputs/outputs, and an earphone jack. Overall luminance bandwidth is listed at better than 3 MHz , even without a comb filter. A full set of controls is positioned on the side, beneath the audio/video inputs.

Video and audio external monitor signals play directly to the set's cathode ray tube, and to the 3 -inch topmounted speaker. Companion outputs
monitor demodulated r-f and audioeither from the airwaves or from another product with an r-f modulator (e.g., a computer, video disc, video cassette, etc.). A battery pack is available at extra cost.

Comments. This Toshiba isn't inexpensive ( $\$ 449.95$ ), but its design is better than average ( 51 Cs ); and the main chassis board comes nicely marked and well laid out for easy service. Power consumption on ac is less than 25 W (with input signal) and 15 W on batteries. Signal inputs into the monitor from a 600 -ohm audio generator produced a potential between 200 mV and 7 V without noticeable distortion. Inputs (sync positive) from a $75-$ ohm video generator produced 0.5 to 1.5 V potentials before raster or color bar change occurred. Overall, clean audio ranged from 120 Hz to 9 kHz .
included in a single TA7607AP integrated circuit, and sound is amplified and demodulated by a TA717AP IC; but the sync and vertical/horizontal oscillators have been combined in a 42-pin large-scale integrated circuit, along with luminance and chroma. This brings the actual chassis active device count to three ICs, 24 transistors, and one surface wave filter located between the tuners and i-fs.

A 42-pin, heat-sunk IC (TA7644AP) carries virtually the entire sync/oscillator load for the receiver, although several outboard discrete components are still required for impedance matching/ driving, and for additional amplification. Dielectric isolation in the chip must be considerable to prevent interaction of all the different signals. It's the first time we've seen anything like it, and it may become a standard for the future.

Comments. As of this writing, we can rate the CB965 model as one of the best Japan-made sets in its class. Remote and local controls are fine; picture colors are good; definition and resolution are excellent; and luminance is adequate.

Audio is above average in its class. Serviceability is good, made easier by sock-et-mounting of ICs.
Minor improvements could include softer initial turn-on volume, less touchy remote controls, and a full $4-\mathrm{MHz}$ bandpass instead of 3.5 MHz (Fig. 1). But it should be kept in mind that many broadcast stations are not delivering more than $3.5-\mathrm{MHz}$ bandpass even on exceptional programs (although a good laser disc player will exceed that bandwidth by 500 kHz ). The $18 \%$ overscan is also a bit sloppy, and the $91 \%$ voltage regulation could be improved, as could the minor CB interference apparent on Ch. 2. In Fig. 2, noise is seen at 3.08 MHz , while the vector response is relatively good. The spectrum analysis displayed in Fig. 3 shows a video S/N of 43 dB at the CRT, which is outstanding.

Other strong points include $99 \%$ convergence, good tuner/system sensitivity, a good chroma vector, and crisp alignment (Fig. 4). These help to make the CB965 a well-designed, smoothly operating receiver for all 82 standard broadcast channels.-Stan Prentiss.

Circle no. 103 on fre information caru

# DXNGTHOSE TV SATELITES 

## A practical look

at earth stations

EY PE EDITORIAL STAFF

Take a low-noise amplifier (LNA). a 10- or 12-foot metal-ernbedded or mesh-overcast concare dish, a 4-to-6 GHz receiver, down converter, and demodulator electronics, followed by a modulator for channels 2,3 , or 4 , and you have the makings of a satellite earth station. Then find a Satcom or Westar
hanging over the equator in stationary orbit, set your dish to the proper azimuth and elevation, and-bingo-in comes a wideband, true-to-life TV picture. And it's free!

Or is it? As long as the Federal Communications Commission, the state and federal courts, or Congress doesn't de-
cide to apply the "wiretap" 605 section of the 1934 Federal Communications Act to your little installation, and it's strictly for personal, nonprofit use, you may be on firm ground. That is, until Home Box Office, Ted Turner, the movie channels, Galavision, Showtime, and the other program owners decide to

scramble the transmission and rent you a decoder.

Even now the Motion Picture Association of America is complaining about its unpaid artists; and others are loudly demanding protection from legislative and enforcement branches of government. Given today's mood of laissezfaire, such action is unlikely any time soon, but earth-station sellers may eventually become purveyors of descrambling boxes and direct or indirect collecting agencies for HBO and others. Meanwhile, cries of economic anguish will issue from offended suppliers until peaceful coexistence with earth-station owners is established.

Setting Up. To pull in a picture, you first have to determine the basic anten-
na coordinates (see sidebar), then swing the dish to the approximate position for the satellite you want. When you have checked signal-to-noise ratio on both sides of center, lock your controls or frame in place, and, enjoy the viewing.

Naturally there are different channels from which to choose. For example, if each $500-\mathrm{MHz}$ band begins with zero and is divided into authorized $40-\mathrm{MHz}$ increments, there are 12 channels available with an unused $20-\mathrm{MHz}$ portion left over. If you begin again at the bottom and offset these $40-\mathrm{MHz}$ frequencies by 20 MHz , you have a second set of $40-\mathrm{MHz}$ frequencies situated above the first 12 by a difference of 20 MHz each. This is called vertical and horizontal polarity, and the process makes available a total of 24 channels for each
authorized satellite. There are 21 channels in use for the Satcom I, depending on the day of the week and time.

More Satellites Need More Spectrum Space. As the Congress and the FCC struggle with the prospect of more man-made heavenly bodies, Comsat's Satellite Television Corporation (STC) is already reserving space on the Shuttle for one operational and one spare satellite system due for launch in mid-1985. In addition, the Direct Broadcast Satellite Corp. of Bethesda, Maryland, has filed a letter of intent with the FCC to put up a DBS system that will operate as a common carrier. This means that program originators will pay premiums for this new $12-\mathrm{GHz}$ system, rather than having individual homeowners pay as



Fig. 2. Video and audio carriers through TVRO- 1 and SATCOM.


Fig. 3. Unfiltered carriers appear on either side of video reference.


Fig. 4. Wideband audio approaches specified $20-\mathrm{kHz}$ bandwidth.
with Satellite Television Corporation.
With existing spacing in the 4 -to- 6 GHz spectrum, 48 -state coverage for fixed satellites is already filled, and only 3 to 5 positions for 50 -state coverage remain available beyond the 20 ap proved late last year. In the $12-\mathrm{GHz}$ region, however, there are still unassigned spaces for the $1,000-\mathrm{MHz}$ bandspread. At the moment, here's how that spacing looks:

400 MHz between 11.7 and 12.1 GHz set aside for fixed satellites.

200 MHz between 12.1 and 12.3 GHz to be decided upon at the 1983 Region 2 conference on the Western Hemisphere.

400 MHz between 12.3 and 12.7 GHz assigned to direct broadcast satellites.

## Using a Real Earth Station

We have selected the Third Wave TVRO-1 by Microdyne to illustrate the workings of a typical satellite earth station. It is a twelve-foot antenna costing $\$ 10,000$. The fiberglass dish has zinc embedded in its concave surface, and its gain is 42 dB for signals between 3.7 and 4.2 GHz . A sensitive, low-noise receiver is enclosed in weather-proof plastic suspended at the focal point of the dish reflector. Inside the antenna support structure is an aluminum frame parallel with the dish, acting both as its main support and as a convenient reference for attaching an inclinometer used during initial positioning.

For programming the receiver to a


Perhaps by the year 2000, a large space platform could meet almost all the nation's commercial transceiver needs. As for earth stations themselves, technology is becoming better, prices are dropping, and the selection is growing; and the necessary equipment and programming are available now!
particular channel and polarity there is a hand-held unit inside the house, connected to the power line. It has thumbwheel controls, power and enter buttons, and a LED readout.

When a channel between 1 and 24 is selected, a $120-\mathrm{kHz}$ pilot carrier transmits a 16 -bit signal that strobes the
receiver several times to ensure accurate tuning. A phase-locked-loop synthesizer then selects and holds the designated channel. An even or odd bit designates the necessary polarity and adjusts the antenna via a drive motor.
All the electronics, from the $120^{\circ} \mathrm{K}$, two-stage LNA to the r-f modulator, are integrated into a single package (Fig. 1). This is to compensate for the relatively low gain ( 30 dB ) of the LNA. (Most have 50 dB .) Servicing is thereby made more difficult, because the package must be disassembled in order to get at any one component.
The output of the receiver and LNA is then coupled to a complex dual-conversion downconverter consisting of striplines, an oscillator, and a mixer and amplifier, with a wideband F-M demodulator for audio and video. Video and audio carriers of 55.25 MHz and 59.75 MHz , respectively, are then remodulated as AM video and FM audio on a common carrier, and transmitted via coax to the television receiver.
Output signals of the TVRO-1's chan-nel-2 modulator are shown in Fig. 2, with the video carrier, $3.58-\mathrm{MHz}$ color subcarrier, and audio carrier identified from left to right. From the center of "grass" (noise), proceed to the tips of the carriers, and you'll easily read the various signal-to-noise ratios. At $10 \mathrm{~dB} /$ division, for instance, the video $\mathrm{S} / \mathrm{N}$ is 48 dB . The undemodulated FM audio carrier measures out at 25 dB S/N. (This does not represent the overall $\mathrm{S} / \mathrm{N}$ of the audio section. The manufacturer claims an audio $\mathrm{S} / \mathrm{N}$ of 59 dB , measured at the demodulator output-a figure we were not able to check.)

When allowances are made for line loss, an excellent (but lossy) home twoset coupler, and a $5.72-\mathrm{dB}$ conversion from 50 to 75 ohms, the final video carrier reading on the spectrum display amounts to 52 dB down at $10 \mathrm{~dB} / \mathrm{div}$. The TV receiver actually "sees" - 46 dBm , or 2 millivolts, which is plenty for a good, crisp picture. Note also the absence of undesirable harmonics or spurs.

There are also outputs for unfiltered video as well as baseband audio. In Fig. 3 one sees unfiltered carriers of unknown origin placed at about 3.5 MHz on either side of the video reference, while in Fig. 4 audio baseband is seen at $10 \mathrm{kHz} /$ div., at a resolution of 1 kHz . Since we used an off-air test signal (from a talk show), 6-dB down wasn't the best, but at $10 \mathrm{kHz} / \mathrm{div}$., the bandwidth approaches the specified value of 20 kHz .
(See overleaf for instructions on aiming the antenna.)

## FOIL COPYGUARD WITH THE SYNC PROCESSOR KIT

- Restores vertical stability on copyguarded tapes.
- Quick hook-up between VCRs. Requires only two phono cables.
* VHS and beta compatable.
- Easy to follow step-by-step instructions.
- Kit comes complete with all parts, PC Board and detailed instructional manual.

If not completely satisfied, return kit within 14 days for a full refund.

Only \$49.95
Send check or money orderto:
P.O. BOX 2108

DOWNEY, CA 90242
CALIF, RESIDENTS ADD $6 \%$ SALES TAX. CHECKS MUST CLEAR PRIOR TO SHIPMENT. PLEASE ALLOW $2-3$ WEEKS FOR DELIVERY. ALL ORDERS ARE SHIPPED FREIGHT COLLECT FROM DOWNEY, CALIF.
warning: use of this device to DUPLICATE COPYRIGHTED MATERIAL MAY VIOLATE FEDERAL LAW.

CIRCLE NO. 58 ON FREE INFORMATION CARD

## 3 NEW VIDEO STARS!



Video Amps, Stabilizers, Audio Amps, Switchers, Enhancers, Tape Rewinders - over 200 hard-to-find items in our new catalog, PLUS great buys on
 Recorders, TV's, Cameras, etc.

## Send \$1 to:



2715 5th St. TIllamook,Or. 97141 1-800-547-8821


## Aiming the Antenna by DAVID WEBER

Since geosynchronous satellites are positioned over the equator, they appear in the southern half of the sky to an observer in the northern hemisphere. The farther north an antenna is located, the closer to the southern horizon it must be aimed. For dish sites of 5 m or less, the incoming beam is focused wide, and antenna elevation will depend primarily on latitude.

Antenna azimuth, however, will vary sharply because geoynchronous satellites are positioned over different lines of longitude. To an observer in the northern hemisphere, a particular satellite may appear to the east or west of due south. Thus, if you wish to receive signals from different satellites, you must adjust the azimuth accordingly.

A chart like that above will help you aim your antenna. You'll need to know your latitude and longitude, and the longitude of the satellite at which you're aiming (geosynchronous satellite latitude is always $0^{\circ}$ ). Of course, you'll need the acetate version of the chart, which fits over a map like the one shown. Both are obtainable from NASA Headquarters in Washington, DC; and unless all of you write in at once, they'll remain free of charge.

Remember, the chart is for rough aiming only. To fine-tune an antenna for a particular satellite, "rock" the aim back and forth around the rough setting, checking for changes in signal-to-noise ratio.

Microwave General offers a computerized antenna-pointing program for $\$ 10$. You furnish exact coordinates, and they will send you pointing angles for each of the TV-relay satellites. Write to: Microwave General, 2680 Bayshore Frontage Road, Mountain View, CA 94043.

Antenna owners anywhere on the continent of North America should be able to receive programming from each of the satellites listed below. Owners of $5-\mathrm{m}$ dishes on the East Coast and along the Gulf of Mexico may also receive some programs from the European Intelsats and Soviet Molniyas.

| Satellite | Longitude |
| :---: | :---: |
| Satcom 4 | $83^{\circ} \mathrm{W}$ (scheduled |
|  | for launch 3 Dec. 1981) |
| Comstar 3 | $87^{\circ} \mathrm{W}$ |
| Westar 3 | $91^{\circ} \mathrm{W}$ |
| Comstars 1 and 2* | $95^{\circ} \mathrm{W}$ |
| Westar 1 | $99^{\circ} \mathrm{W}$ |
| Anik 1 | $104^{\circ} \mathrm{W}$ |
| Anik 2 | $109^{\circ} \mathrm{W}$ |
| Anik 3 | $114^{\circ} \mathrm{W}$ |
| Satcom 2 | $119^{\circ} \mathrm{W}$ |
| Westar 2 | $123.5{ }^{\circ} \mathrm{W}$ |
| Comstar 4 | $127.25^{\circ} \mathrm{W}$ |
| Satcom 3 | $131^{\circ} \mathrm{W}$ (scheduled for launch 15 Oct. 1981) |
| Satcom 1 | $135^{\circ}$ |
| - Comstar 1. moved to $95^{\circ} \mathrm{W}$ Feb. 1981 Com same position, tively as one s | sly located at $128^{\circ} \mathrm{W}$, was the launch of the Comstar 4, in 1 and 2 are now located in the operating at hall-power, effec- |

## Now the stars are within your reach Movie Stars Concert Stars Sports Stars

Heathkit
Scientitic－Atlanta

Your favofie stars are coming off the satellites right now in ane of the grieatest selactions of family and adult entertainment zyer offered．Ard now there＇s a naw satelliee receiver system that puts iu alkwin yo $\lrcorner$ r reach－at a price that s within reech．

## the new Hzathkit Earth Station

i includes a 3 －metar Satellite Antemワa with a single－axis cofustable mount that lets ycu direct your antenna to receive Ignals from the entire satellite arc．It＇s a heavy－duty．commer－ Sail－quality antenna．made by Scientific－Arlanta and designed for Ong，reliable pe－formance．
$\longrightarrow$ PミCial Low－voise Amplifiar arid Down－Converter converts signals to 5 DC MHz band fer transmissicr on orcinary TV cable． The Receiver features electronically－synthesized tunirtg fcr stable，drift－free recepton，anc 24 channel selections for a broad varie：y of progremming．It even includes a special Zenith Space Command Remote Control so you san chance p－ograms without eaving your easy chai－－
Special Ea－th Founcation Kit anchors your antenna firmly ts withstand wirds of up 0100 mph ．

## Inique Site Survey Kit

埌 can trust Heath Io do it right．The f rst step in establ shing our station sthe pu－chase of a special Site Survey K：that includes everything ycu neec to determine a clear line－ol－sight o the satellites．So yo 1 know your location is correct before you buy the Station．

## Fasy－to－follow，step－by－step assembly

Gike all Heathikit products，the Satellite Earth Station inc．udes Eclearly writen manlal trat guides you every step of the way brough assembly and installation．And cuer－the－pone assistance is alivays zjailable．

For complete details and prices cn the Heathkit Eaith Station and 400 other electronic kits for rome，work or play，send today for the latest free Heathkit Calalog $\partial r$ visit your nearby Heathkit Electronic Center．：

－Heattikit Electronic Centers are units of Sertechnology Electronics Corporêtion．
Vewing of some satellite Ty channals may require the customer to obtain parmizsion from．or make pay nents＂o．tt e programming company．The customer is responsible for compliance with a I lacal．state and federal governme 7tal laws and regulations．including but not limied to construction．placement and use．For use olly in Continental U S．This dewice has no：been approved by the Federal Communicatıons Commission．It Is rct．ê ec may not be offered for sale or lease． Gold or leased until the afproval of the＝CC has been obtained
Heathkit

## VIDEO 81s

## Cameral Aection!

 A GUIDE TO



BASICALLY, a video camera is no more than a movie camera using electronic "film," and you can use it in much the same way. Thus, almost anything you know about movie-making, whether from experience or books, is useful. On the other hand, there are significant differences between the formats as well as the cameras that should be respected.

First, since a TV camera tube can be damaged by too much light, one should never point the camera directly at a concentrated light source such as a lamp or the sun. (You can point it at the sky, however.) Also, whenever you're not actually shooting, your lens should be capped, or its iris closed completely if possible. Using the lens cap offers the bonus of protecting the lens as well as the camera tube.
T HE QUESTION OF COLOR. Another significant difference is the way video and film cameras deal with light's changing colors. Sunlight is blue, cloudy light is bluer, lightbulbs are reddish, and fluorescents have a green cast. Your eye and brain correct for this in real life, but not when you're looking at a picture. Photographers compensate by using films corrected for daylight or tungsten (bulb) light, or by using filters. Some video cameras use filters, too, but most balance color via switches or controls.

If your camera has only an Indoor/Day switch and a red/blue adjustment knob, just check the switch position, and set the knob to its center click-stop. If the camera has a color-balance meter or if you have a color monitor screen for viewing the image, you can use it ta set the color fine adjustment more precisely. To use built-in color meters or automatic color-setting circuits, the camera must be aimed at a white object-color will cause imbalance.

Fluorescent light demands special

# THE ELECTRONIC WORLD 

## I. Using a Video Camera


measures, especially if your camera has only a red/blue adjustment. To tame the excess green, you might try a photographic filter (an FL-D with the camera set to daylight or an FL-B with an indoor setting) designed for that purpose. While not perfect, the results should be acceptable.

When shooting out of doors, remember that light changes color as the day progresses. Avoid shooting actions at different times of day if they are supposed to be contiguous in time-the color of the light may give you away. If you have a color meter or a monitor, recheck your color every half-hour or so (more at the beginning and end of the day), between sequences. If the color of the light has drifted, don't correct it till the action has shifted to a different time or place.

VERTIGO. Amateur movie makers make mistakes, through carelessness or misplaced enthusiasm, that can make audiences dizzy. The worst of these is forgetting to focus. Electronic, video-screen view-finders make that one rather obvious, and hence easy to avoid. Even so, some amateurs may forget to refocus when the subject moves after the shot begins, and even auto-focus cameras can be fooled when that happens.

Refocusing on a moving target isn't easy. It helps to mark the lens with spots of thick, easily removed tape (such as drafting or gaffer tape) at the near and far focus points. Then you can refocus by feel, with less chance of overshooting. If you can get someone to operate the focus control during the shot for you, so much the betterprofessionals sometimes use assistants this way.

Camera shake, too, is dizzying, so make sure your camera is as steady as possible. Use a good tripod whenever you can. For shots that require more mobility; use
shoulder-pods or shoulder-pods with bellyrest attachments (Akai just introduced one) to steady the camera. When hand-holding the camera, find a stable body position, and use any available rests such as fences, lamp-posts, and parked cars.

Do your best to keep vertical lines vertical and horizontal ones horizontal. When you can't do both at once-as you can't when shooting at an angle to your sub-ject-it's usually best to keep the vertical lines straight and let the horizontal tilt.

Flitting around by use of a zoom is a popular way to send the audience scurrying for motion-sickness pills. Zooming is marvelous where appropriate, but it doesn't go with everything. Don't zoom unless it really contributes to visual imagery. An occasional slow zoom can make a nice transition between long-shot and closeup. A fast zoom can exaggerate the rush as a rollercoaster heads downhill, or serve as a visual exclamation point by suddenly isolating a significant detail. But most often, it's best to zoom between shots, not during them.

Panning and tilting-horizontal and vertical camera movement - should be used only when there is no other choice. They are best executed with the camera on a tripod with a pan and tilt head (which includes most tripods, nowadays).

## M

AKE THE MOST OF YOUR LENS. Change a lens's focal length-which is what zooming does - and you change both its magnification and its angle of view. Increase the focal length (from 12 mm to 72 mm , for instance), and the angle of view narrows, picking up less and less of the scene, but showing it larger and larger. Decreasing the focal length makes objects within the field look smaller and smaller, but picks up more of them.

By still-photography standards, video
shots aren't very wide. The widest angle available on home-video zoom lenses is just about equal to that of a "normal" lens on a still camera. The telephoto effects possible, though, are more extensive than in still photos.

Lens settings can be used in two ways. The simpler is to shoot from any convenient spot and use the zoom to frame the shot. The more subtle and satisfying way is to use lens setting to control perspective.

Image size depends on both the camera's distance from the subject and the lens setting. As you back away, you can use a longer focal length to compensate. That keeps the image size the same, but the perspective changes. Apparent distance between objects depends on their relative distance from the camera If two people are 10 feet apart, and you're shooting five feet from the nearer one, the other one is three times as far away, and looks it-he'll look considerably smaller, too. But at a distance of 100 feet from the first, the second one is only 10 percent farther away, and both look about the same size.

Relative distance has other effects, too. If you're filling the TV frame with someone's face, don't get too close. Stand about 10 feet away and adjust focal length for proper framing. Moving in closer (which would require a wide-angle setting to avoid cropping the face) will make the subject's nose stand out like a miniature mountain.

CAMERA SHOTS AS LANGUAGE. Lens settings and angles convey messages. For example, a tight close-up head shot concentrates our attention on the subject, and drops the surroundings out of the frame. A wide-angle shot emphasizes the relationship between subject and surroundings. A high-angle shot shrinks things and peoplie; a low-angle, makes them look larger, more imposing.

## THE ELECTRONIC WORLD

## VIDEO 81:

Standard film structure is to start scenes with a long-shot, to establish everyone's relationship to the scene and each other, then cut to a medium-shot to concentrate attention, then to close-ups. "Standard" shouldn't mean invariable, though. You can change the order of these shots. (Starting with the close-up and leaving its setting a bit of a mystery until the long-shot is a popular trick.) You can omit a shot (long-shots
are rarely needed to establish two people talking in a car). And you must vary the timing of each shot according to the action on the screen.

Comic strips are full of artfully mixed long-shots, medium-shots, and close-ups; observe them carefully and you'll learn a lot about how to give a story visual flow. Also, watch and rewatch the best of the shows you've taped. Running at fast-motion speeds sometimes helps one concentrate on structure this way. But once you've learned the structure, go back and relate it to the content: don't stop at learning how a
program was put together, keep on till you think you know why.

You'll probably use more close-ups and moderate long-shots for video's small screen than you would if shooting for the movie theater's large one. And don't forget that many video lenses, today, have macro settings that let you shoot small objects large enough to fill the screen. Macrophotography, too, can wear out its welcome quickly, so don't overuse it. Also, at extreme macro settings, your subject may be so close to the lens that you can't light it properly.


A shot with a normal camera angle is shown at left above. At center, a low camera angle was used, making the subject loom large. The chin and nostrils are accented, giving an unflattering rendition of the face. At right, the shot is taken from a high angle so that the subject is compressed and the observer towers above it.


Even when the action is being staged for you, varying your shots takes extra work. The best way to do it is to start the action for the first shot, tape a little past the point where you intend to edit in the next, roll back the tape a little, start the action over for the new shot, then re-start the tape when the action reaches your edit point. The action runs smoother that way than if


# IF YOU'RE GETTING A DISTORTED VIEW OF VIDEO, 

it could be your videotape. The wrong tape can give you more than your share of problems. You don't see them at first. But after a few passes through the deck, images begin to swim into each other.

Images stay impressively true to the original, without ever showing their age.

Surrounding the tape is TDK's equally impressive super precision mechanism. It keeps "Snow" creeps into the picture. Colors fade.

What's worse, the slow speeds of super long play act like a magnifying glass on video imperfections, making them pop out even more. That's not what you were looking for when you sank all that money into your video equipment.

## THE SOLUTION IS SUPER AVILYN.

TDK Super Avilyn holds onto its brilliance, time after time. Even under the close scrutiny of the six-hour speed. Super Avilyn's big advantage begins with its microscopic particles. They're super refined. Even more refined than professional videotape particles. That gives Super Avilyn outstãding frequency response, so images stay crisp and sharp. The perfect alignment of the particles means a high signal-to-noise ratio. Thal's what keeps the color rich and natural, and keeps the snow away.

A unique TDK process packs and secures the particles on the tape surface, which is then polished to a mirror finish. Oxide particles don't shed.


## WatchYour Investments.



It is fair to say that as one living in late 20th Century America, television is one of your prime sources of entertainment and information.

We therefore build MGA/ Mitsubishi video products so that they will represent to our customers a major purchase, and be one of several constant fixtures in their lives.

So we invest in every Mitsubishi the level of care, advanced electronic ingenuity, and meticulous craftsmanship required to make your investments in Mitsubishi video products worthy ones.

The great digital advances of the electronic age have been exploited to the degree that entire subassemblies, elaborate circuitry, and moving parts have been supplanted by tiny chips.

## A SECURE INVESTMENT.

The happy result is an extraordinary standard of reliability, operating convenience, and picture fidelity, which eclipses even our own legendary traditions.

And even this high degree of proven performance is subjected to our most stringent skepticism. Every new Mitsubishi TV set, for example, comes to you slightly used. We test every set for a number of hours before shipping it out, to weed out any occasional defective component.

The portable shown features the latest computerized touch tuning and a stereo speaker/amplifier system that
gives you stereo capability. (Stereo program sources are currently available with FM simulcasts and many video discs, with stereo videotapes on the near horizon.)

## A BIG INVESTMENT.

As technology has made the inner workings of a Mitsubishi smaller it has allowed us also to make enormous improvements in big-screen projection television.

Here, electronics and optical science conspire in a superb four-foot diagonal presentation.

While others use plastic lenses, our in-line, three-gun scanning system processes the picture through three sets of five-stage precision ground optical glass lenses. The same quality glass used in fine cameras.

Along with our immense picture, the Mitsubishi projectionTV model shown delivers equally majestic sound through four stereo speakers, powered by two superlative 10 -wattamplifiers. The effect is such that you

will have the pleasing illusion of stereo even when the program source is mono.

## AN INVESTMENT <br> IN TOMORROW.

Technology now allows you not only to enjoy today's television shows, but also gives you the useful option of recording today's shows for tomorrow's enjoyment.

And Mitsubishi's state-of-the-art methodology has also resulted in, frankly, a technologically superior videocassette recorder.

Though there is good reason to believe you will become very attached to the Mitsubishi VCR, its controls happen not to be.

They're wireless.
You can run the entire remote unit from your chair. without benefit of cord. A capability shared by few otherVCRs.

Mitsubishi dispenses also with belt drives. And their attendant potential for breakdown.

Instead, each of five play functions is directly driven by micro-computer controlled motors.

Videorecorder, projection
TV, and color TV, refined to the point of excellence and beyond.

It may well be that you can't afford to own the best of everything in this world. But for a price well within the realm of reason, you can buy a Mitsubishi.

And own the best of something.

## $\therefore$ MGA / MITSUBISHI

## THE ELECTRONIC WORLD

## VIDEO 8:

your actors have to start and stop at the very instant that your tape does.

When the action isn't being staged for you, you can't use the above technique. What you can do is zoom between longshot and close-up (when you must, you must). Or use cutaways: cover up gaps in your action by cutting away from it to something else. Is the character in your mediumshot staring out the window? Then show what he sees before cutting to a close-up or long-shot. Show something silent, and you can dub in more dialogue or narration to go with that shot later.

EIXPOSURE. Most video cameras have an autoiris, which opens or closes the lens's diaphragm to keep the amount of light reaching the camera tube relatively constant even when the light on the scene changes. Many also have automatic sensitivity controls, which vary how much light the tube needs. Under normal circumstances, these will be enough to keep you out of serious trouble.

But circumstances aren't always normal. Take the common case of a backlit subject, dark against a bright background like the sky. The camera will set its exposure to the average brightness of the subject and its background. Where the background is big enough to dominate, the result will be a picture whose background is a bit too bright and whose subject so dark as to be in silhouette. The backlight switch on some cameras opens the lens a bit, to give the subject enough exposure (this washes out the background, of course, but that matters


Shot at top was taken with lens with a $35-\mathrm{mm}$ focal length. Since the pinwheels at right are closer to the camera, they are rendered much larger. Using an $180-\mathrm{mm}$ (telephoto) lens, in the lower shot, distance between pinwheels is almost negligible compared to distance to camera so the objects appear to be about the same size and sense of depth is reduced.
less). Opening a manual iris control about one stop past the exposure that the camera's auto-exposure system would set does the same thing. A manual iris control can also be closed a bit to compensate for the rarer case of a bright subject against a dark background.

If your camera has either a manual diaphragm and auto sensitivity control, or vice versa, you can also play tricks with depth of field-the depth of the in-focus zone at any distance setting. The sensitivity control varies the amount of light the tube needs or will accept. The more sensitive the setting, the more you can close down the iris and the greater the depth of field.

The sensitivity control's range isn't enough to let you vary depth of field much; but where you must either get foreground and background into focus at once or make your focus shallower to blur distracting backgrounds, that small difference may prove significant. Don't use the sensitivity control unless you have to, though. Raising the sensitivity makes the picture noisier and increases the camera tube's lagging or streaking when objects (especially bright ones) move.

If you keep the sensitivity constant, you can use a manual iris control to simulate night scenes by deliberately under-exposing. (You might also want to turn the camera's cotor control toward blue or use a filter.) Conversely, slight over-exposure gives the effect of a really bright desert or beach scene.

Many of the newer cameras have controls that automatically fade the image out to black at the end of a scene, then fade the next one back into full brightness These are usually preset-nothing pappens when you press the fade button, only when you start or stop the tape with the camera trigger. On many cameras, pushing the button at the wrong time will lead to such odd results as shots that start at full brightness, then immediately fade to black. To avoid such traps, read your camera's instructions carefully.

c


D


background washes out. (C) A fill light on the camera partially offsets strong backlight. Lens is open 3 stops wide than at (A).
(D) When lens is set at $f / 16$, depth of field is greater; and subject and background are both in focus.

# RCA SELECTAVIIION 650 NO VCR LETS YOU GET MORE OUTOF TELEVISION 

## RECORD YOUR FAVORITE SHOWS ON VIDEO TAPE.

If you don't own a video cassette recorder, you're not getting the most out of television. And no VCR lets you get more out of television than RCA's new SelectaVision 650.

Now you can watch what you want, when you want. With SelectaVision 650, you'll be able to record up to six full hours of your favorite TV shows on a single cassette.

Your recording sources are virtually unlimited. SelectaVision 650 has a new Cable-Ready Tuning System that can be set to include any of up to 35 CATV channels $-12 \mathrm{VHF}, 9$ midband and 14 super-band channels.

That's a lot of entertainment. But then, SelectaVision 650 is a lot of VCR.

It records automatically, too. A 14-day memory lets you program selections to be recorded when you're not at home. Preset it to tape as many as eight different shows. Or set it to record the same show every day.

With SelectaVision 650, prime time television is yours any time.
Simulated TV picture
For the complete line of SelectaVision VCF models and color video

## PLAY THEM BACK WITH SPECIAL EFFECTS.

Ever slow down a rocket launch? Stop a stampede of buffalo? Or run a mile in less than two minutes? SelectaVision 650 lets you do all this, and more.

A new Infra-Red Cordless Remote Unit gives you the freedom to control special effects like slow motion, stop action and fast motionfrom almost any point in a room. It also lets you advance the picture frame by frame. And freeze it whenever you choose.

That's not all. The new cordless remote also has a picture search mode that enables you to locate footage at 9 X normal speed without having the screen blank out. And a remote pause for editing out unwanted material while recording.

SelectaVision 650. When you see it at your RCA Dealer's, you'll see
 why no one gives you more VCR than RCA.


No one gives you more


# VIDEO 81: 



WHAT YOU SEE on screen depends on what your camera sees-and that depends on how the scene is lit. Lighting for video or movies is harder than for still photography, because the camera and actors may move. Since you can't move the lights in midscene without attracting attention, you must light each scene in a way that will work for everything that goes on. It also pays to rehearse at least once with the lights and camera, to make sure the lighting works for the entire scene.

OUTDOOR LIGHTING. When we think of outdoor light, we think of the sun, but bright sun is not the easiest or best outdoor light to work with. It gives too much contrast - the camera can't show details in the shadows without letting the highlights wash out, or show highlight detail without having the shadows go to an undifferentiated black.

There are two ways to check contrast. If your camera has an electronic viewfinder. use it to judge how well the scene is registering. If not, use a photographic light meter (an incident type that measures the light falling on the subject rather than the light reflected from it is best), carrying it right up to the subject to check highlight and shadow areas separately. Video's contrast range is less than that of film; try to keep a ratio of about seven f-stops (and no more than 10) between the brightest and darkest areas where you want details. You may want some areas to go black or (less often) be washed out, depending on the dramatic effects desired. However, those must be unimportant areas.
If the sun's out, the contrast will be high, but there are ways to modify it. One is to shoot against the sun, so that the side of
the subject that is facing you is the shadow. That shadow won't be deep, since it's still illuminated by the broad, bright sky. And the contrast on this shadow side will be low, because the sky is such a broad light source.

Since your camera usually sees a small, dark subject against a broad, bright background, it will be fooled into exposing for a bright subject. To correct this, use the camera's backlight control, or open up the iris about one stop more than the auto-iris control would.. Be aware, too, that the background will wash out when you do this-so either look for a dark background or one whose details are completely unimportant to you. A washed-out background usually spells "bright day" to an audience; be sure that's the effect you want to give.

Whatever you do, the sun itself must never be in the camera's field of view. That can ruin a camera tube, and is certain to cause at least temporary burn spots.
Another way to tame outdoor contrasts is to wait for a cloudy moment or a cloudy day. You'll need backlight compensation if the sky is the background-cloudy skies are brighter than they seem. Make sure the sun is not where it can pop out from behind the clouds and burn the camera tube.

Still another trick is to pick an area of open shade, where the sun doesn't shine but the scene is open to the sky. This frequently has the advantage of providing an equally well-shaded background, but it may also result in too low a contrast ratio. Covered shade (under a tree, for instance) may give an even lower contrast, making the picture look dull and flat.

But you can manipulate outdoor lighting contrasts with a little extra gear. If the contrast is too high, you can use large reflec-
tors (large, white cardboard sheets or cardboards covered with crinkled aluminum foil) to fill in the shadows with extra light. If the contrast is too low, you can sometimes use the same reflectors to add extra illumination to the highlight areas. You'll have to find some way to aim these reflectors, and to keep them aimed should the wind blow. You can use light stands, but human assistants do a better job, especially when it's windy.

You can also use screens of thin or loosely woven white fabric to soften the light from the sun, creating a degree of artificial shade. These require less aiming than reflectors, but wind will still be a problem.

INDOOR LIGHT. There are at least three basic ways to light interior scenes: the studio approach, bounce lighting, and duplicating the room's existing light set-up. (A fourth way, putting a light weight movie light atop the camera, is simple, inexpensive, and looks terrible.)

The third way sounds odd. If the room is lit, why duplicate the lighting? Unfortunately, few rooms have enough illumination for good video or movie shooting. The minimum for good quality is about 200 footcandles (enough to allow an exposure of $1 / 30$ at $\mathbf{f / 4 . 0}$ on ASA- 100 film, in case you want to check it with a light meter). If you replace the room's existing lights with brighter ones (one good way is to replace the existing light bulbs with floodlight bulbs, if the fuses will take it), you duplicate the original lighting effects, yet get enough light for good exposure. Another simulation technique is to leave the normal room lights up, but supplement them with bright lights coming from the same direction, set up outside the camera's field of view.

That may not always be enough, however. Important action may take place in portions of the room that are relatively unlit. Lights may cast distracting shadows on the walls, or there may be multiple shadows. These don't bother us when we just look at the room but they are terrible when seen through the camera's "eye."

Extra lights can cure the problem.
Washing the wall with light from a broad floodlight (preferably mounted very high, or, if that's impossible, quite low) will eliminate or soften shadows. Lights bounced from the ceiling will create an even, overall level of illumination between the pools of light cast by the main lamps.

Another alternative is to start out with bounce light, then add additional lights for accent. Plain bounce light isn't enoughthe results are dull and flat, with soft but nonetheless unattractive shadows in people's eye sockets. Use enough bounce light to ensure that there will be at least 100 foot-candles everywhere that action

Magnavox. A picture you can rely on time after time



# VIDEO 8: 

must be visible, then use other lights to create a natural look.
The studio approach ignores "realism" and illuminates for good exposure and good modeling of facial and other shapes.

The minimum requirement is a two-light setup: a main light (mounted as high as possible, so its shadows will fall below the camera's view) at 45 degrees from the camera position, and a weaker light (with about


What lighting does for your camera work: (A) With light attached to camera, the face is fine but details are minimized, giving an impression of flatness. (B) One light $45^{\circ}$ to the right of the camera gives more of a three-dimensional effect. but shadows are


C
harsh. (C) A low-intensity fill light added to the set-up in ( $B$ ) gives better illumination to the face leaving sense of depth. A single light $90^{\circ}$ to the right of the subject (D) divides the face with a harsh shadow. (E) Fill light on camera added to (D) removes shadows.

## GETTHE SAME VIDEO TRAINING THE PEOPLE ATSONYGET.

Now you can be trained by Sony even if you aren't employed by Sony.

Because we're making our vast library of training videotapes available to you. The very tapes that teach our own engineering, service and sales personnel.

The tapes cover the products and concepts of video and its related technologies. You can learn the basics of video recording. Color systems. Digital video and electronics. Television production. And more. Plus you can learn how to service specific products. As professionally as Sony does.

The tapes are produced entirely by Sony and contain up-to-the-minute information. They communicate clearly and simply. And some of
them are even programmed for interactive learning.
And learning through video can be done at your own pace, in the convenience of your home. shop or school. Reviewing is quick and easy. And the tapes are always available for reference.

Send for your catalog, which lists more than 250 titles. In your choice of $3 / 4^{\prime \prime}$ or $1 / 2^{\prime \prime}$ formats. Write Sony Video Products Company. Tape Production Services. 700 W. Artesia Boulevard. Compton. California 90220.

There's no obligation. Except the obligation you have to yourself; to find out about the best training available in one of the
country's fastest-growing. countrys fastest-growing. most lucrative fields.
one-half to one-fourth the light output) on the other side of the camera (it can also be nearer to the camera position), to fill in and soften the shadows. Additonal lights could be used to wash the background or as 'rim

$E$
lights' - high-mounted lights shining down from behind subjects' heads, to illuminate the hair and keep the subjects from merging into the background.

Even indoors, it's important that the camera not point directly at bright lights. You can include the room's lights in the picture if the actual illumination is coming from much brighter lights that the camera can't see. When the overall illumination is bright enough, the camera's iris closes down, reducing the light that reaches the camera tube from the visible lamps. Use this technique only for brief shots, though, and be sure your main lights come from the room lamps. Don't move the camera during such shots, or the lights may leave "comet-tail' streaks due to camera lag.

Two other things to watch out for indoors are glare and color casts. Shiny surfaces like windows, mirrors and glass-covered pictures (even unglazed pictures on slick paper) can reflect hot-spots or glare patches into the lens. If that happens, move the lights till the glare is reflected away from the camera position.
Color casts are another type of reflection problem. Light bouncing from walls and ceilings picks up their color. If that color isn't white, your picture will have an offcolor cast.

Color balance can cause problems, too. Daylight, after all, is blue and tungsten light is red. At least, that's how the camera sees them. While almost all cameras have switches to match either type of light (the exceptions can use light-balancing filters), sometimes that's not enough.

The classic case is the daytime interior shot. The scene is lit in tungsten orange, but daylight blue pours in the window. If the camera needn't see the scene outside, you
can shade off the window to replace the missing daylight. Another solution is to cover the window with a sheet of Rosco filter gel (available from professional movie suppliers), which converts the blue outdoor light to match the interior. Daylight-color floods are also available, as are daylight filter gels to mount over the lights. Gels can be used for special color effects too.

Fluorescent lighting can also cause trouble. Its greenish tint can be corrected by the color controls on some cameras (chiefly, those with fluorescent-light positions on their light-balance switches, or with sepa-

## III. Sound Recording

THE EASIEST WAY to record sound for your video productions is to use your camera's built-in microphone, but unfortunately, this way is not the best. The built-in microphone can pick up noises from the powerzoom and auto-focus motors, the camera operator's breath, or hands rubbing on the camera body. And it can never get closer to the subject than the camera does which is disastrous in long shots.

However, with an extension microphone plugged into your camera's mic jack, new vistas will be opened. With a low-impedance microphone on a long cable or a wireless microphone and receiver, you can get close-up sound from distant subjects. With cardioid, shotgun, or parabolic microphones, you can get reasonably close sound from the camera position and exclude noise originating behind the micro-phone-and, to a lesser extent, toward its sides. Your add-on microphone may also improve the built-in mike's frequency response; just don't expect too much from that improvement, since the VCR's frequency response is usually as limited as the mike's.

If the sounds to be picked up become complex, or if you want to mix in other sounds (voice-over narration, sound effects, or music) as you tape, you can plug in a microphone mixer, too. While it's often more convenient to plug microphones into the camera (especially if the camera has an earphone jack for monitoring), mixers usually plug into the VCR's audio input jack, which is line level.
rate red and blue controls), or with filters. But it's almost impossible to successfully mix fluorescent and other types of light in one scene. Once you've corrected for fluorescents, use them alone.

Even ordinary floodlights have pitfalls if they aren't matched. Not all floodights put out exactly the same color of light, and all run somewhat bluer than ordinary roomlight bulbs. You can match any given type of light, but a mixture of different bulb types will give you redder light in some parts of the shot than in others. You may want that effect sometimes, but probably seldom.


For drama and documentary, you usually want to keep your microphone out of the picture. You can do that with a microphone hung on a cord or boom over the action (beware of shadows) or mounted below camera level, with directional microphones outside the camera's view, or with microphones hidden in performers' clothing. But body microphones have two problems: they pick up the rustle of fabrics; and layers of cloth may muffle the pickup of performers' voices. One advantage, though, is reasonable freedom from wind noise. (For other microphone typesespecially cardioids-use windscreens religiously, whenever you're outdoors.)

When you want microphones in the shot, as in musical performance numbers or man-on-the-street interviews, technical requirements are easier to fulfill. Just be sure all visible microphones are dull and nonreflec-tive-chrome ones can create hot-spots.

If the sound accompanying the original action isn't up to snuff, it may be possible to do it over without reshooting the scene. That's what the audio dub switch on most VCRs is for. Of course it's far easier to get it right the first time than having to go back and redo things from scratch if overdubbing doesn't work.

ing outfit might be a combination of two Sony SLO-383 Editing Betamax VCRs and RM-440 Editing Controller. The SLO-383 decks have special, automatic frame servo systems to ensure clean edits, rotary erase heads to erase old information field by field, and external sync inputs. The controller has a search dial for finding editing points easily, and a memory to help you relocate those points. It also lets you preview what an edit will look like.

SIGNAL PROCESSORS. Home VCR signals aren't great to begin with (signal-tonoise ratios for example, average between 35 and 45 dB ), and dubbing only makes them worse. The problem can be minimized by using each deck's best performance speed (usually, but not always, its fastest one) at all times. You can reduce the degradation even more by dubbing through an enhancer, which can make the picture crisper and give you some color control.

Color processors and processing amps give you further color control, letting you adjust the color saturation, brightness, hue and flesh-tones.

Audio signal processors can also be used in video dubbing. Noise reduction can be used to clean up the original's output during dubbing and the final tape's sound in playback. Dolby or dbx can be used in making the final tape if you know decoders will be available for playback. Equalizers can also be used either to improve the sound or for special effects (such as narrowing the bandwidth for "telephone" response).


PeCIAL EFFECTS AND tituing. Fade-ins, fade-outs, and color control aren't the only special effects available. A special-effects generator such as Sony's HVS-2000 lets you add a number of others to your creative arsenal. It has inputs for one color signal and one black-and-white one, which you can switch between or superimpose on one another. The black-and-white image can be colored, or reversed into a negative, for titling or other purposes. Panasonic has shown a prototype of a similar device, but with its own black-and-white camera built-in.

There are many other ways to title your productions. Sets of titling letters in many forms are available from home-movie equipment dealers, and press-on letters in a wide variety of sizes and type styles can be bought in art supply stores. Using a macro range, you can shoot the title and credits as they're being typed on a typewriter. (Better get a good typist for this, as you probably don't want to shoot mistakes being erased and retyped). You can even use the "random-note" technique of cutting and pasting letters from newspaper headlines, if that suits your production.

> In copying slides to video tape, keep the equipment as far as possible from the screen to avoid distortion
forth between two locations, it's far more convenient to shoot all scenes at one location first, then move to the other and edit them into sequence later. If you haven't the facilities or time to check your shots right after making them, you'll have to edit out the unsuccessful ones. In documenting real-life action, where you have no control, editing after you shoot will almost always be necessary.

Editing video tape is not at all like editing audio tape or movie film. The latter are editted by cutting and splicing - something you should never do with video (sync loss at the joint will make the picture break up, and the splice is most likely to injure or gum up the video heads). Video editting is done by dubbing the original shots to another deck, in the desired order.

Sometimes, you may even want to "edit" a tape without changing its order or content. For example, you can permanently record onto the copy tape special effects (slow-or fast-motion, freeze-frame, frame-by-frame advance) which VCRs can only perform in playback. This ensures that you'll get the same effects, in exactly the same way, each time you play the copy.

All these editing techniques take at least two VCRs. (You might want to pool resources with a friend at editing time.) If the shots to be assembled are on two different cassettes, it may even pay to have three VCRs, dubbing alternately from each of the first two to the third one. Sometimes, you can even shoot with such a setup in mind. If you're cutting back and forth between scenes shot at two different locations, for example, you can use a different tape for each location.

The problem with using home equipment for this type of "assemble editing" is that you're liable to lose sync at each edit point. The key is to know your gear. Determine which of your two (or three) VCRs has the most glitch-free edits and whether it edits most cleanly when you enter record mode from stop, pause, or PLay (which only some decks permit). Then always record onto the cleanest deck, using its cleanest mode. And always go directly from one deck's audio and video output jacks to the other's inputs-using the output and vif antenna input degrades the signal needlessly.

In most major cities, you can rent special editing equipment. (Look in the Yellow Pages under "Recorders-Video" or "Video Recorders.'") A typical, dedicated edit-

No matter how well your videa cassette recorder has been Jerforming, it's never lived up zo its full pritential. Because antil recently, you couldn't buy High Grade viden -ape for Be-a systems.

With Mexell High Grade Beta tape, you'll finally see what your machine san do. You'll get Jetter color esolution, sharper images and clearer sound.

Tocreate High Grade, Maxell uses finer, sharper Epitexial
particles and a unique binding process. The resulting tape not only produces a better picture than ordinary video tape, it's a lot more durable. This drastically reduces video recorder head wear and lets you enjoy a better picture longer. So if you own a Beta recorder, try Maxell High Grade. You'll discover that the machine you cown is even better than the one you bought.

## VIDEO 81:

My favorite technique also requires a macro lens: put the title on a $35-\mathrm{mm}$ slide, mount the slide as close to the lens as you can focus, then focus out through the slide into the distance. By the time the camera is focused across the room, the slide will be so out of focus as to disappear.

Several companies, such as Quasar and JVC, sell "telecine" kits-special, rearprojection screen systems for use in copying movie films or slides onto video tape. The film or slide is projected on the screen, then shot with the camera. Lower-priced rear-projection screens are also available from many photo stores.

Rear-projection screens are used so that the camera and projector can both face the image head-on. With front-projection screens, the camera would either have to be directly in front of or behind the projecfor for this. If all you have is a a front-projection screen, use the longest projection lens you have, and set the camera's zoom lens to its longest settings. Then the few inches the projector and camera must be offset to clear each other's field of view will cause minimal parallax error.

# V. Scripting, Continuity and Acting 

A.NY PRODUCTION - documentary. drama, or simple how-to- -must flow, dramatically and logically, or your audience will tune out. Generating that flow may or may not require a full-fledged script, but it will require deep and careful thought prior to shooting.

Consider first the purpose of your video production: What are you trying to say? Why are you saying it? Are you trying to instruct, inform, persuade?

Don't stop at generalities. Romeo and Juliet can be considered boy-meets-girl-but-boy-meets-girl isn't Romeo and Juliet. If it's romance, which boy? Which girl? And where? If it's engine repair, which section of which engine?

Then think in terms of a beginning, a middie, and an end. Beginnings aren't as sim-
ple as they sound. Do you start with how to change an alternator or how to tell if it needs to be changed? With the boy meeting the girl, or with background on both so you'll know what attractions and con'licts there will be between them? With the chicken or the egg?

Middles sometimes grow from beginnings, sometimes from ends. In nonfiction, the middle is usually straightforward; in fiction, you may have to invent complicasions to keep the beyinning from launching you straight into the end-but those complications should grow naturally, since they're often the meat of the story.

Ends are sometimes preordained. In a how-to tape, for instance, the best end is usually a demonstration of the final result. If you've shown how to build a birdhouse, for


Save thousands of dollars! Now you can choose from three complete systems, which have the same superb electronics. Prices are: 10 ft . dish $\$ 2495$, 13 ft . dish $\$ 2595$, and our 16 ft . ( 5 m .) dish system for only $\$ \mathbf{2 6 9 5}$. Complete system has dish antenna, feed horn, polarity rotor, LNA, cables, receiver and TV modulator-everything. Why pay more? Our 16 ft . system will outperform any 10 ft . system-even those costing thousands of dollars more. Satellite TV is so much better than simple Cable TV. More selection, news, movies, sports, Vegas shows, Spanish, French, Russian, religi-
ous, plenty of family and adult entertainment. Over 20 program services on just one satellite. You get perfect color and crystal clear reception, especially with our larger dishes that connect to any TV set. And to a whole condo or apartment complex! Have your local dealer install one or do-it-yourself in a weekend.

Don't wait any longer. Our big ( $8 \times 11 \mathrm{in}$.) Handbook is loaded with details, photos, aiming data, and signal strength maps. Explains how much system you need. For the do-ityourselfer, we show where to find full schematic plans and circuit boards. Satisfaction Guaranteed.

example, show the finished house in place. preferably with birds visibly endorsing it. But even surprise endings should seem preordained - in retrospect. Let the view. er see why your ending came out as it did. even if led to expect something else. And unless you're looking for an O. Henry effect (i.e., a surprise-ending), it's frequently best to put the big surprise just before the end, and give the viewers a chance to wind down from it.

There's room here only for generalities; but the airwaves are full of specifics. The best way to learn scripting is to tape a wide variety of programs of the type you want to make, then view and review the tapes till you understand how each one's script works. See what they have in common. how they differ, and why.

That last applies even to documentaries, where you have very limited control over what you shoot. Though you can sometimes stage a shot, you usually are stuck with what's there when your camera is ready. So find out as much as possible about what will be there. Are there regularly scheduled activities, and which ones do you think you'll want to tape? Are there people you know in advance you'll want to interview? (If so, have a list of questions ready beforehand, but be prepared to follow new trails their answers open up.) What kind of lighting will there be, and can you add more of your own? Are there good places to shoot from? How many hours' worth of tape and batteries will you need? (Bring more than you think you'll need.) Will you need any special permissions to shoot? Where and how do you get them?

Whether you're working from a script or not, be prepared to seize whatever picture opportunities arise. For example, a friend of mine, taping at a hospital, got the idea of shooting from a wheelchair, to show the world from that point of view. That meant shooting some scenes twice-once from the wheelchair and once from the normal, scripted viewpoint -but the results were worth it.

In some documentary situations, it may pay to start with film and convert to videotape after the editing is completed. Movie equipment is more portable (you carry just the camera, no shoulder-pack recorder, except with double-system sound). Movie film is easier to edit with precision, and there are many special effects available on film that aren't readily available on tape. Some of these, like cross-fading, can even be done in the camera. The drawback is that most film cameras only hold about $3^{1 / 2}$ minutes of film per load, and film and processing cost nearly as much per minute as video tape does per hour.

Whenever possible, there should be at least a short rehearsal beforehand, to
make sure the action works and can be shot as planned. This will also let your cast concentrate on saying their lines with conviction, not worrying about whether they'll trip over the unfamiliar furniture or block one another from the camera's view. Don't overdo it, though-too much rehearsal loses spontaneity-and if you have an improvisational group, so much the better.

Be vigilant, against continuity errors. If you don't shoot in strict sequence, make
sure that a character who's supposed to have rushed from one scene to another hasn't mysteriously changed clothes between shots, and that any visible clocks show script time, not real time. Watch screen direction, too-if a character is traveling across the screen from right to left in one shot, he shouldn't go from left to right in the next unless you want to give the impression that he's headed back where he came from.

By Ivan Berger

# "...A thrilling experience!" experience! 

That's what Video magazine had to say about the NOVABEAM ${ }^{\circledR}$ Model One color projection video system. They also called it's $6.5^{\prime}$ diagonal-measure picture, the largest available in home television. "the sharpest, brightest picture we have ever seen?"

Itis no wonder that the best home projection system available is built by Kloss Video. Back when the big TV manufacturers were still saying it couldn't be done, electronics pioneer Henry Kloss was developing the means to nake life-size television a
 reality. He cane up with innovations like the unique NOVATRON ${ }^{\left({ }^{*}\right)}$ projection tube which make the NOVABEAM Model One, according to CBS LABS in Video Review magazine, "by far the most impressive projection TV we have ever seen."

The NOVABEAM Model One provides a viewing experience unmatched by any other conventional or projection TV set, yet at a price which Videophile Magazine called "clearly one of the biggest bargains in home video today." Visit your authorized Kloss Video dealer to find out why Videophile also said,
"See the NOVABEAM before handing over any of your hard-earned dough for another projector."

## NOVABEAM RODEL ONE FROM KLOSS VIDEO CORPORATION "The Projection Television Experts"


$\square$ For information \& name of nearest dealer, write to Kloss Video.

NOVABEAM
145 Sidney Street, Cambridge, Massachusetts 02139 617-547-6363

# THANDAFis COMPLETE PORTABLE TEST BENCH 

## LCD HAND HELD

 WULTIMETEA
## TM354 3½ Digit

- DC Volts: 1 mV to 1000 V © AC Volts 500 V AC rms 0 DC current: $1 \mu A$ to 2 A - Resistance : $1 \Omega$ to 2 Mgl - Diode Check - Basic accuracy: $\pm(0.75 \%$ of reading
+1 digit - Battery life : Typically 2000 hours


## 189

## LCD BENCH WULTIMETERS

# TM351 31/2 Digit <br> - DC and AC Volts: $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V}(750 \mathrm{~V}$ AC rms - DC and AC current : 100 na to 10A (20A for 10 secs) -Resistance : $100 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$ Diode check Basic 4000 hours <br> - DC and AC Volts: $100 \mu \mathrm{~V}$ to $1000 \mathrm{~V}(750 \mathrm{VAC}$ rms) © DC and $A C$ current: 100nA to 2 A <br> - Resistance : $1 \Omega$ to $20 \mathrm{M} \Omega$ Diode check - Basic accuracy: $\pm 10.25 \%$ of reading + 1 digit) Battery life : Typically $>3000$ hours $\$ \$ 159$ (inc. batts) 

## TM353 31⁄2 Digit

## 45 <br> 

DM350 3½ Digit;
34 ranges: $0.1 \%$ basic accuracy

DM235 31/2 Digit; 21 ranges; 0.5\% basic accuracy: $\$ 69.95$
PDM35 3½ Digit; Hand held; 16 ranges; $1 \%$ basic accuracy; $\$ 39.95$



THANDAR SATISFACTION WARRANTY:
If for any reason, whatsoever, you are not completely satisfied with your purchase, return it within 30 days of purchase date for a full refund -it's as simple as that

## TO ORDER CALL TOLL FREE: 800-526-5311 <br> We accept Master Charge or Visa

New Jersey Residents add appropriate Sales Tax. Prïces shown in U.S. currency only POSTAGE AND HANDLING up to $\$ 100$ add $\$ 3$. Over $\$ 100$ add $\$ 5$

## THANDAR ELECTRONICS INC

A
SINGLE decisizn can helo you to do a better job at wCrí, get promoted to higher paring marazerial or marketing positions, ir even get more erjoyment out of your hobby. That is the decision to purste continuing education, a name for stucies that follow completion of regular formal educatior.

A recent study iadicates thas about 6 C million pecple in the U.S. are 3 rrticipating in some kind of post-secondary education. Of these $i 4$ million are en-
pled in regular college, university or tecanical schoyl programs.But 46 millijr arelearning thr rugh other means.

Because of expid changes in tectno oEy, elextronics engineers and techniciane r st becoming technically obsolete it their anowlecge is rot current. Anc tecanieal obsolescence can make you less effective or ever ircompetent as yolr joj. Besides keeping your training carrent. continding educetion can prov.de new skilis and knowledge in sub-
jects like writing, speaking, supersision, management and markering trat are so important to carzer advanzament. It may even help you prepare for a career change Moreover the-e is ofen some hobby-related inte-est-as a rrajor part of any lobby is learning rore ato it it.

How to Gol Starsec. Eontinuing educatian can take meny forms. These include mazazines and newspapers, books, self-study pregrems, eesident

classes, home-study courses and even college degree programs. In addition, a good deal of learning comes from informal sources, such as manufacturers' literature and trade shows.

The particular strength of magazines is that they are usually published frequently, and can respond quickly to new technical developments.

Odd though it may seem, some of the most important sources of information in magazines are the ads. In electronics, some manufacturers on the leading edge of technology are particulary adroit at communicating and explaining it. And, in order to remain competitive, manufacturers are continually forced to adopt new technology. You can take advantage of this simply by reading their advertisements and obtaining their literature. Many companies supply volumes of data sheets, applications notes, catalogs, and newsletters. Most of these are free for the asking or available at a very modest price. Read the ads and write for manufacturers' literature that interests you; make liberal use of the "bingo" cards in the magazines.

Books are one of the most compact, efficient, and economical forms of education. They are an ideal complement to magazines since they provide greater length, depth, and breadth of coverage. Some electronics books may be too specialized for your local bookstores. But most electronics stores (Radio Shack, Heathkit Electronic Centers, etc.) also carry books.

An excellent and reasonably inexpensive way to get the books you want is through a book club. There are several aimed at those interested in electronics, computers and related subjects, and their regular announcements keep you informed as to what books are available. Table I lists some of them. Discounts range up to $15 \%$.

You can also benefit from self-study courses, which are short, low-cost, formal learning programs covering a specific subject. These programs are designed for self-instruction and consist of printed text, audio cassettes, and often other media. Some also include experiments with various electronic components and circuits. Usually these courses sell from $\$ 50$ to $\$ 700$ and are available from a variety of sources. For example, Heath/Zenith Educational Systems, a division of Heath Company (Benton Harbor, MI 49022), specializes in courses in electronics, computers and related topics.

One of the oldest forms of continuing education is the correspondence course. There are a number of home-study schools providing college-level training

TABLEI-BOOK CLUBS

## Electronic and Control

Engineer's Book Club McGraw-Hill Book Company
1221 Avenue of the Americas New York, NY 10020

## Electronics Book Service

Box 42
West Nyack, NY 10995
Electronics Book Club
Blue Ridge Summit, PA 17214
The Library of Computer and Information Sciences
Riverside, NJ 08370

## TABLE II-HOME STUDY SCHOOLS

Cleveland Institute of Electronics
1776 East 17th St.
Cleveland, OH 44114
International Correspondence Schools Scranton, PA 18515
National Technical Schools
4000 South Figueroa
Los Angeles, CA 90037

## NRI Schools

McGraw-Hill Continuing Education Center 3939 Wisconsin Ave., N.W.
Washington, DC 20016

## TABLE III-SCHOOLS OFFERING NONTRADITIONAL DEGREE PROGRAMS

California Western University
Santa Ana, CA
Century University
9100 Wilshire Blvd.
Beverly Hills, CA 90212
Clayton University
Box 16150
St. Louis, MO 63105
Grantham College of Engineering Box 35499
Los Angeles, CA 90035
Nova University
3301 College Ave.
Fort Lauderdale, FL 33314
University of Beverly Hills
Beverly Hills, CA
Upper lowa University
107 Campbell Ave., S.W.
Roanoke, VA 24034
for electronics technicians and engineers as well as complete career courses and shorter continuing education programs through these courses. Like self-study courses, home-study programs are designed for individual self-instruction. In contrast, though, the "student" works with a teacher through the mail. Lesson plans are sent and corrected; questions are posed and answered in this manner. Home-study courses are typically longer, more comprehensive and, of course, more expensive. Home study is a good way to review important fundamentals and gain new knowledge and skills. For additional information, contact the schools listed in Table II.

Many colleges and universities offer home study courses for college credit. You can complete up to one-half of the work toward a bachelor's degree this way. Contact the National University Continuing Education Association, Suite 360, One DuPont Circle, Washington, DC 20036, for more information on which colleges offer such programs.

Resident Seminars. There are workshops or short classroom courses that last anywhere from a day to a week. They usually concentrate on one specific topic and are often presented as a traditional classroom lecture (although some also include laboratory work). Many of these programs are conducted in the larger cities at local hotels where meeting facilities, meals and lodging are readily available. They cost from $\$ 50$ to $\$ 700$ (not including travel and lodging expenses).

Seminars are frequently conducted by manufacturers who wish to announce new components, circuits, equipment and techniques, and many of them are free. Some colleges and universities also offer resident seminars, and there are private companies specializing in various kinds of seminars. One such firm is Integrated Computer Systems (3304 Pico Blvd., Santa Monica, CA 90405) which offers courses in microprocessors, computer programming, speech synthesis and data communications. Professional organizations such as the Institute of Electrical and Electronic Engineers conduct them too.

Trade Shows and Conferences. Many people dismiss trade shows and conferences as a waste of time and money. Actually, they can be good sources of continuing education. You can learn a lot from the talks, papers, and exhibits covering the latest developments in components and equipment. You will also have an opportunity to check out the various competitive sources, exchange
ideas and information, and pick up the latest manufacturers' literature. Trade shows give you a perspective that you just can't get elsewhere. They provide a great source of knowledge, information, and talent-and many products-in one place.

College. Regular college programs leading to a bachelor's, master's, or other advanced degree are not usually regarded as continuing education. However, they can serve this purpose for some individuals who lack a degree. Determining whether or not you should work toward a college degree depends upon your own situation. Does the job you seek require a degree? Is a degree necessary or desirable for advancement? Do you need a degree to change jobs or careers?

You might want a degree simply for the additional knowledge and prestige that it brings. Often, even when you do not actually need a degree to do a job, the degree will help you get it anyway. For many supervisory or managerial positions, a degree is mandatory.

If you are working full time, your best source of a degree is a local college or university with an evening degree program. Such programs can take anywhere from 4 to 10 years to complete, depending upon your pace of study, the availability of required courses, and your work schedule.

If you already have a technical bachelor's degree, you may have considered going back for a master's. While nice to have, a master's degree may not help to ward off obsolescence or foster promotion. And some of the things you study in a master's program may already be familiar to you from your bachelor's courses. In most cases, you would do better spending your time and money on other forms of more specific continuing education.

There are a number of schools that offer college degree programs through extension work or home study. They evaluate your previous education and experience, regardless of the source, and award you college credit for it. Other institutions test you on various subjects and give you appropriate credit if you pass. Many programs will transfer credit from home-study courses, seminars, military training, or employer courses. And you can actually obtain a college degree by completing certain homestudy courses or written projects. The quality of such programs varies widely so you should investigate each school carefully before initiating a program. But your own motivation plays the major role in any success. Some of the
schools that offer nontraditional programs are listed in Table IV. A good reference book and counseling service on this subject is offered by Dr. John Bear, Drawer H, Littleriver, CA 95456.

There are two specific programs that enable you to get credit without going to college. The first is sponsored by the American Council on Education (One DuPont Circle, Washington, DC 20036). ACE evaluates many kinds of noncollegiate courses-both resident and home-study-from sources such as industry, the military, and home-study schools. If the courses are college level and of sufficient depth and value, ACE will approve them and assign an appropriate amount of college credit. Such approved courses are then listed, in a quarterly directory. If you take or have taken any of the courses listed, you may receive college credit for them. Most colleges and universities are members of ACE and will consider giving credit for ACE-approved programs. But the ACE course must be the equivalent of a similar course at the college before credit is given. The decision is strictly up to the school and each case is considered individually.

Another college credit program is CLEP (College Level Examination Program). This is a testing program designed to help individuals get college credit for knowledge they have accumulated. To get college credit you sign up with CLEP for an appropriate exam, and if you pass, CLEP notifies the college or university of your choice. Most colleges and universities participate in the CLEP program and will automatically grant you college credit if you pass the exam. For more information, write to it directly at CLEP, Box 2815 , Princeton, NJ 08540.

Accreditation. This is the process by which an independent agency investigates and evaluates the merit of a school and the quality of its programs. Accreditation indicates that the school meets certain minimum standards of quality and effectiveness. Basically, it is a guarantee that the institution is legitimate and that its courses will be of value to you. For the most part, continuing education programs are not accredited because they are offered from such a wide variety of sources. Usually, only schools are accredited. Organizations such as magazine and book publishers, seminar firms and manufacturers cannot be accredited. Therefore, when considering them, you must go by their reputation and the recommendations of others.

Home-study schools as well as colleges and universities do receive accredi-
tation. They are accredited by the Na tional Home Study Council to which you can write at 1601 18th Street N.W., Washington, DC 20009, for a list of accredited schools. The NUCEA mentioned earlier also accredits college home-study programs. The Accrediting Board for Engineering and Technology (ABET, formerly the Engineer's Council for Professional Development), an organization that accredits engineering and technology degree programs, is considering the accreditation of continuing education programs for engineers and technicians.

Recently, a new organization known as the Council for Non-Collegiate Continuing Education was formed in an attempt to approve and accredit all continuing education programs from nontraditional sources. Information and a list of its accredited organizations can be obtained by writing to it at 6 North Sixth St., Richmond, VA 23219.

The Continuing Education Unit (CEU). The CEU is a unit of measurement used by companies, institutions, and professional associations in recognizing the completion of some form of noncredit adult continuing education. One CEU is defined as ten contact hours in some kind of formal education activity. Many organizations award CEUs for self-study courses, resident seminars and other various forms of continuing education.

It is important to note that continuing education units are not college credit. The two are not related. CEUs are simply a means of recognizing, accumulating, and recording your participation in continuing education programs. For more information on the CEU, write to the Council for the Continuing Education Unit, 13000 Old Columbia Pike, Silver Spring, MD 20904.

Financing. Most individuals pay for continuing education themselves. But, there are a number of sources that will finance continuing education.

Your employer is the first source you should consider. In many cases, a company will pay for books, magazines, selfinstruction materials, and resident seminars. Often, all you have to do is convince your employer that you need a particular course, that it is job related, and that it will benefit both of you. In addition, most employers offer some kind of tuition reimbursement plan for people working on a college degree or engaging in other forms of job-related education. In such plans, you pay for your college tuition and books, and upon completing and passing the course, the

- Fully Assembled MDS Rod
- Down Converter - Factory Built Tuner
- Full Guarantee - Easy to follow Instructions - All Mounting Hardware
 ORDERS CALL TOLL FREE...
LIMITED TIME ONLY! 1-800-227-1617 Ext. 680 Callf. Residents 1-800-772-3545 Ext. 680 THE VIDEO MAGICIAN CANADA, VGBINZ (604) 682-2559


When you're testing circuitry, you need the best troubleshooter around: The A P Test Clip.

It's made with a narrow nose shape that allows for easy attachment on high density boards. Nailhead pins that keep probe hooks from sliding off ends. Open nose design that permits probe tip access to DIP leads. And a contact comb that fits between DIP leads, eliminating any possibility of shorts. All these little design differences add up to the ultra-reliable, safe, quick DIP troubleshooting you need.

You can buy A P Test Clips in 22 standard or connector-compatible models in 11 sizes. (They're also available with long, headless test lead pins for attachment to A P jumper cable assemblies.) And every one is made with highest quality engineering and industrial grade materials for long life and reliability.

A P Test Clips - the best little troubleshooters around.

## Call TOLL FREE, 800-321-9668, for the name of the distributor nearest you. (In Ohio, call collect: (216) 354-2101.)

company will reimburse you from $50 \%$ to $100 \%$. Check with your supervisor or personnel department for information.

The Veterans Administration continues to provide educational benefits for those who served in the armed forces. The VA pays up to $90 \%$ of the tuition for regular college degree programs and many home-study courses. Check with the institutions in question to verify the applicability of VA funding.

One recent study shows that over $\$ 17$ billion a year in educational funds is available from industry and govern-ment-most of it going unclaimed. And did you know that you can get a tax deduction for some kinds of continuing education? If you pay for this education yourself and it is used primarily to maintain your present job competence and skills, you may deduct the cost of such education and related expenses from your income tax. But continuing education that prepares you for an advancement or a new job is not eligible for the deduction. In any case, it is wise to check with the IRS.

What to Study. It is difficult to pinpoint which subjects you'll need, but we can make some suggestions that may be helpful. Today there is a revolution in the microprocessor and microcomputer fields, and sooner or later you can expect to encounter one of these versatile devices. For this reason, anything you learn about microprocessors, microcomputers and related topics will ultimately be helpful. Computer programming is another vital area. Programming in BASIC, FORTRAN or assembly language is a useful skill.

Keeping up-to-date on the latest components and circuits is also important. It is wise to keep your eye on new integrated circuit developments and applications. Some examples are op amps, active filters, phase-locked loops, dynamic and bubble memories, opto electronics, data conversion components such as A/ $D$ and D/A converters, and data communications devices like CODECS, modems and protocol controllers. Component advances such as CMOS, VMOS, VLSI and solid-state relays are important, as are developing technologies such as lasers, video discs, and fiber optics.

As an electronic engineer or technician you will probably find the technical courses of most value. But many nonelectronics subjects are useful, too. For example, if you plan to move into management, you'll need to learn supervisory and management techniques, and people-handling skills. All of these can be helpful in broadening your professional skills and job opportunities.

## Popular Electronics Tests



THE Simpson 260 Model 7 Volt-Ohm-Milliammeter is an analog test instrument whose basic design has not changed in many years, but whose electrical and mechanical details have certainly been improved. The Model 7M is identical to the Model 7, except that a
mirror has been added to the scale plate to eliminate parallax reading errors.
Old-timers will remember the Model 260 Series 1 through 6 that were the measurement instrument "workhorses" from the late thirties until the late seventies, when digital instruments were introduced. Yet, despite the popularity of digital instruments, the analog meter is still alive and the Model 7 proves it.

The Model 7, along with its companion instruments, fully meets the specifications of UL 1244 Safety Standard for Electrical and Electronic Measuring and Testing Equipment. (This standard spells out the physical construction and test performance requirements for protection from the likelihood of electrical shock, fire, and personal injury, and runs the gamut from internal circuit or


Send Check or Money Order to
IMS $\sqrt{\text { AI }}$ Computer Division of the Fischer-Freitas Corporation 910 81st Avenue, Bldg. 14 - Oakland, CA 94621 415/635-7615
Imsai is a trademark of the Fischer-Freitas Corporation

CIRCLE NO. 33 ON FREE INFORMATION CARD

## BE AN EXPERT IN CAR AUDIO FOR A SONG.


component failure to pc board damage and quality of the carrying handle. Copies of UL 1244 are available from the Underwriters Laboratories, Inc.)

The most obvious mechanical change in the 260 Model 7 is the use of recessed front-panel test-lead connectors, and the safety tips on the test leads to completely eliminate any chance of shock hazard to the user. A transit position on the polarity selector switch protects the meter from damage during transportation. The other change is the relocation of the fuse into the easy-to-open rear battery compartment.
The high-impact phenolic case is $51 / 2^{\prime \prime}$ $\mathrm{W} \times 7^{\prime \prime} \mathrm{H} \times 31 / 8^{\prime \prime} \mathrm{D}$, and has heavy reinforced walls for maximum durability and circuit protection. The instrument weighs three pounds. Optional accessories include a temperature probe; $5-, 10-$, and $40-\mathrm{kV}$ probes; $5-$ and $10-\mathrm{kV}$ ac probes; a low-power ohms probe; a series of test leads with various tips; a line splitter; and a series of carrying cases, including one with test-lead storage space. Suggested retail price for the basic Model 7 is $\$ 103$. With all options taken, the price is $\$ 168$.

General Description. The Series 7 is provided with eight deeply recessed testlead connectors COMMON (-), + OUTPUT. 1000 V AC/DC. $+10 \wedge+50 \mu \mathrm{~A} / 250 \mathrm{MV}$. $+\operatorname{IV}$. AND - 10A. There are three operating controls. One selects from $A C,-D C$. + DC, and OFF. which also provides the TRANSIT position. The second is a 12 position rotary selector switch which permits selection between $500 \mathrm{~V} / 1000 \mathrm{~V}$. $250 \mathrm{~V}, 50 \mathrm{~V} / \mathrm{HA}, 10 \mathrm{~V}, 2.5 \mathrm{~V} / \mathrm{V}, 500 \mathrm{MA} .100 \mathrm{MA}$. IOMA/AMPS, IMA. RXI, RXIOO, and $\mathrm{R} \times 10.000$. The last control is the ZERO ohms meter adjustment. The meter is provided with its own zero adjust screwdriver control. The taut-band meter is $41 / 2^{\prime \prime}$ wide and contains five color-coded $4.2^{\prime \prime}$ scales. Meter protection is provided by a varistor circuit.

Each color-coded, 48" test lead has molded one-piece "elbows" for connection to the meter input terminals, and slip-proof barriers at the test probe end. Each test probe is threaded to accept screw-on, fully insulated, and colorcoded alligator clips. Rubber bumpers on the underside of the meter eliminate sliding on the work surface, while the Adjust-A-View carrying handle doubles as a tilt stand.

The manufacturers specifications are shown in the Table.

Comments. The Model 260 Series 7 was checked by the Lockheed Electronics Instrumentation Measurement Laboratory (Plainfield, NJ) against standards traceable to the National Bureau


## A B00KFUL OF EXCITING PRODUCTS!

DM-13 Resistor Substitution Box Kit Resistor Kit
Tricle Regulated P.C. Board
Sherp PC-1211 Portable Computer
Sherp Printer/Cassette Interface
Sherp Cassette Interface
DM-11 Frequency Meter Module
DM-10 Low Ohm Meter Module
DM-12 8 Channel Scope Multiplexer
DM-8 Capacitance Meter. Module
DM-7 550 MHz Frequency Counter
DM-5 \& DM-5A Circuit Designers
DM-5B Power Supply Adapier
DM-6 Triple Power Supply Bargain
DM-2 Function Generator
DM-4 Pulse Generator
Proro-Board Solderless Breadpoards
LM-1, \& LM-2 Logic Monitors
The Idea Box \& Accessories
Hitachi Oscilloscopes
5001 Universal Counter Timer
Experimentor \& Q.T. Sockets \& Bus Strips
5001650 MHz Frequency Counter
2001 Function Generator
7001 Pulse Generator
4401 Frequency Standard
3001 Digital Capacitance Meter
Max 50 Handheld Frequency Counter
2 Proto-Clip ${ }^{*}$ IC Test Clips
NK=1 Wire Jumper Kit
instrument Cases \& Hardware
PB-203, PB-203AK \& PB-203A Powered Proto-Board ${ }^{\text {* }}$

## 3readboards

-P-1 \& LP-2 Logic Probes
-P-3 \& DM-9 Probes
כP-1 Logic Pulser
TC-1 \& LTC-2 Logic Analysis Test Kits
Jrobe Accessories
Hickok Mini-Multimeters
Becrman Hand Held Meters
Albia Technical Library Selections
$550 \times$ Frequency Counter Kit
$550<$, MAX 50, DM-7 Accessories, Hardware and DM Case.
-IPA-1 \& QHA-1, Special Designers zemplate offer, customer endorsements and order information.

## MANUFACTURERS SPECIFICATIONS

DC Volts
Ranges: $250 \mathrm{mV}, 1,2.5,10,50,250,500,1000$ volts
Accuracy: $\pm 2 \%$ full scale
Sensitivity: 20,000 ohms/volt
AC Voits
Ranges: 2.5, 10, 50, 250, 500, 1000 volts
Accuracy: $\pm 3 \%$ full scale
Sensitivity: 5000 ohms/volt
Freq. Response ( 3 dB ): $2.5 / 10$ volts $=100 \mathrm{kHz}$
50 volts $=60 \mathrm{kHz}$
250 volts $=20 \mathrm{kHz}$
500 volts $=6.5 \mathrm{kHz}$
Output
$0.1-\mu \mathrm{F}$ capacitor in series with all ac voltages through 250 volts.
Limited to 350 volts dc.
DC Current
Ranges: $50 \mu \mathrm{~A}, 1,10,100,500-\mathrm{mA}, 10$ amperes
Accuracy: $50 \mu \mathrm{~A}= \pm 1.5 \%$ full scale; 1 mA to $10 \mathrm{~A}= \pm 2 \%$ full scale
Voltage Drop: less than 500 mV (10-A range not fused)
AC Current:
Up to 250 A with optional Amp-Clamp Model 150
Resistance

| Ranges: | $R \times 1(2 \mathrm{k} \Omega)$ | $\mathrm{R} \times 100(200 \mathrm{k} \Omega)$ | $\mathrm{R} \times 10,000(20 \mathrm{M} \Omega)$ |
| :--- | :---: | :---: | :---: |
| Center: | $12 \Omega$ | $1.2 \mathrm{k} \Omega$ | $120 \mathrm{k} \Omega$ |
| Voltage: | 1.5 V | 1.5 V | 9 V |
| Short Circuit |  |  |  |
| $\quad$ Current: | 125 mA | 1.25 mA | $75 \mu \mathrm{~A}$ |
| Accuracy: | $\pm 25^{\circ} \mathrm{arc}$ | $\pm 2^{\circ} \mathrm{arc}$ | $\pm 2^{\circ} \mathrm{arc}$ |

Meter Scale
4.2 inches

Decibels
Range: -20 to +50 dB
Reference: $0 \mathrm{~dB}=1 \mathrm{~mW}$ across 600 ohms
Size:
$5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime} \times 3^{1 / 8^{\prime \prime}}$, weight 3 lb
Accessories
Furnished: $4^{\prime}$ test lead set with tip/alligator clip, batteries,
fuses, manual
Optional: Deluxe case, vinyl case, drop front hard case, $5-10-\mathrm{kV}$ ac probes, $5 \cdot 10-40-\mathrm{kV}$ dc probes, low power ohms probe, Amp-Clamp, line splitter.
of Standards. After the tests, the IML issued a certificate testifying that the Model 260 Series 7 met or exceeded the manufacturer's published specifications in all respects.

Having used a Model 260 for many years, we found the Series 7 to be an old friend. Like its well-known predecessors, it has the appearance of a rugged, longlived instrument. Unlike them and some "modern" digital instruments, however, the Series 7 is safe with high voltages.
In actual use, the instrument performed very well. Its analog nature makes it excellent for tuning variable circuits, since trends can be rapidly spotted and pinpointed when aligning for dips or peaks. (This is somewhat hard to do with digital instruments.) The ranges are more than sufficient for just about every bench and field use.

One special value of the Model 260
came to light in the field when the battery in our portable DMM went down. True to Murphy's Law, we did not have a spare, and the local shops were closed. By luck, we had the Model 260 in the car. Realizing that it had no electronic elements, and even if its battery went down, all we would lose was the resistance function, we grabbed the "oldfashioned" analog meter and completed the job.

Despite the presence of several digital multimeters on our bench, the Model 260 saw a lot of service at first out of curiosity, and then because it easily held its own. Reading the meter requires careful attention to the five color-coded scales, but you soon get used to it. This is one portable multimeter than can outlive the user, when given reasonable care.-Les Solomon

CIRCLE NO, 104 ON FREE INFORMATION CARD


IN Part 1 of this series, we discussed the basic features of a central processing system, using the 8080 as an example. Included were descriptions of how such features as the memory, input/output devices, and programming work. Now we will examine how to design a CPU module based on the 8080. The schematic of such a module is shown in Figs. 5 through 7.

In the design of this module, one of the objectives was to keep it as simple as possible while retaining versatility in interfacing and expansion. The module incorporates 1 K bytes (1024) of RAM and 2 K bytes of EPROM (erasable programmable read only memory) which should be ample memory for most control applications.
Most of the signals found in the CPU module are available at the Bus Interface of Fig. 7. The others, denoted by an asterisk, are for interfacing the CPU module to a Program Development board that is to be presented in Part 3 of the series. These signals will otherwise normally be of no concern and should be left open-circuited.

Circuit Description. The 8080 microprocessor, (ICl of Fig. 5) initiates and directs all operations between itself, the memory, and the I/O units. Crystal-
controlled clock generator IC3 provides two nonoverlapping clock phases ( $\phi 1$ and $\phi 2$ ) derived from the $18-\mathrm{MHz}$ crystal. The clock also generates a status strobe, STSTB, at pin 7 for use in IC2 to provide the control bus signals. Other functions of IC3 include providing a synchronized RESET signal (pin 1) to ICI in response to an external asynchronous RESIN signal (pin 2) and a synchronized READY signal (pin 4) in response to an external RDYIN signal (pin 3). The network consisting of $R I$ and $C l$ provides a power-on-reset to $I C I$ through IC3 when the module is powered up. Program execution begins immediately at memory location zero after power-up (unless the rdyin input is low, in which case the CPU remains idle after reset until it is brought high). The run status of the CPU is indicated by LEDI. Besides generating the control bus signals, $I C 2$ buffers the bidirectional data bus. The need for a separate negative power supply is obviated by IC4, which generates -5 V from the $+5-\mathrm{V}$ supply.

The microprocessor operating program is stored in EPROM IC5 of Fig. 6. Pin 8 of ICIOA is low for all addresses between hexadecimal 0000 and 07 FF , which "turns on" IC5. This corresponds to 2048 unique memory locations, which is exactly the number of bytes of memory
in IC5. The eight outputs (constituting one byte) of IC5 are logically connected to the data bus when the output enable, $\overline{\mathrm{OE}}$, on pin 20 is driven low by the control bus signal MEMR from pin 24 of IC2. When asserted, this signal is the CPU's way of notifying the system that it is ready to accept a byte of information from memory. Inputs A0 through A 10 of IC5 determine which of the 2048 internal bytes will be presented at its outputs (when enabled).

System RAM is formed by IC7 and IC8 (Fig. 6) and its operation is similar to that of EPROM IC5. The RAM does not normally contain the CPU's program since, unlike an EPROM, it is volatile in nature. That is, the RAM powers up into a random logic state, which is of no value to the CPU. However, the RAM may be used as a temporary data "scratchpad" since CPU data may be readily stored in it and retrieved later. The Stack area for the CPU will exist somewhere in the RAM.

Pin 11 of ICIOC is low for all memory read and write operations between addresses 0800 and $0 B F F$ ( 1024 unique locations), which "turns on" the RAM, containing 1024 bytes of memory. The difference in operation between the EPROM and the RAM is in the writeenable, $\overline{\mathrm{WE}}$, input at pins 10 of $I C 7$ and
(values to \$121.65)

 L.ist\$11.95

.ist\$16.95

Playing The Stock $\mathbb{E}^{*}$ Bond Markets With Your Pomsonater


1251 List $\$ 16.95$

## 7 very good reasons to try Electronics Book Club . . .

- Reduced Member Prices. Save up to $75 \%$ on books sure to increase your know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 14 times a year with dozens of up-to-the-minute titles you can pick from
- "Automatic Order". Do nothing, and the Main selection will be shipped to you automatically! But ... if you twant an Alternate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling Membership obligation, and qualify for discounts on many other volumes
- Bonus Specials. Take advantage of sales, events, and added-value promotions
- Exceptional Quality. All books are first-rate publisher's editions, filled with useful. up-to-the-minute info


## 1 ELECTRONICS BOOK CLUB Blue Ridge Summit, PA 17214

Please accept my Membership in Electronics Book Club and send the 6 volumes circled below. I understand the cost of the books selected is $\$ 2.95$ (plus shipping/handling). If not satisfied. I may return the books within ten days without obligation and have my Membership cancelled. I agree to purchase 4 or more books at reduced Club prices during the next 12 months. and may resign any time thereafter.

7147338419059551015106210661076
$\begin{array}{lllllllll}1108 & 1120 & 1132 & 1211 & 1216 & 1218 & 1222 & 1230 & 1233\end{array}$ 124512491251126512761278133713398434

Name Phone

Address
City
State
Zip
IValid for new members only. Foreignand Canada add 20\%.)


IC8. The state of this input determines the mode of operation of the RAM (read or write) when it is being accessed by the CPU (that is, when pin 11 of ICIOC is low). When the write-enable input is high, the I/O lines of IC7 and IC8 are in the output mode and operation is similar to that of the EPROM. When low, the I/O lines are in the input mode and data on the data bus is stored in the addressed memory location. Note that the control bus signal MEMW at pin 26 of IC2 drives the write-enable input of IC7 and IC8. (The assertion of MEMW tells the memory that the CPU is attempting to write data into it, from the data bus). Inputs A0 through A9 determine which of the 1024 internal memory bytes will be read from or written into. The highorder bits of the address bus, which control the selection of IC5, IC7, and IC8, are decoded by IC9 and ICIO.

Ins and Outs of the CPU Module. Now that we have the basic CPU module, how do we enable it to communicate with the outside world? Suppose we want to monitor temperatures from sensors installed in various rooms of a house. How would we go about connecting the temperature sensors to the CPU? Or, suppose we want an alarm to sound if a forced entry is detected in the

## PARTS LIST

$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3-10-\mu \mathrm{F}, 10-\mathrm{V}$ tantalum capacitor
C4.C5-2.2- $\mu \mathrm{F}, 15-\mathrm{V}$ tantalum capacitor
D1-Germanium diode (1N270 or similar)
IC1-8080A microprocessor
IC2-8228 system controller
IC3-8224 clock generator and driver
IC4-ICL7660 voltage inverter
IC5-2716 EPROM
IC6-74LS368 hex inverting tri-state bus driver
IC7.IC8-2114L 1024×4 RAM
IC9-74LS33 quad 2 -input NOR buffer IC 10-74LSOO quad 2 -input NAND
IC11,IC12-74LS244 noninverting tri-state buffer
LED1 - Red light emitting diode
P1,P2,P3-16-pin DIP socket
Q1-2N2907 or 2N3906 transistor
R1-10-k $\mathbf{R}^{1 / 4-W ~ 10 \% ~ r e s i s t o r ~}$
R2-330- $\Omega, 1 / 4-$ W, 10\% resistor
R3-20-k $\Omega, 1 / 4-W, 10 \%$ resistor
R4,R5,R6,R11-3.3- $\Omega,{ }^{1 / 4}-\mathrm{W}, 10 \%$ resistor
R7-1-k $\Omega, 1 / 4-\mathrm{W}, 10 \%$ resistor
R8,R9,R10-39-k $\Omega, 1 / 4-W, 10 \%$ resistor
XTAL $-18.000-\mathrm{MHz}$ quartz crystal (Crystek CY 19A or similar
Misc.-Sockets for ICs (must be provided for IC5), pert or pc board, 0.01- $\mu \mathrm{F}$ disc ceramic bypass capacitors distributed near ICs, $+5-\mathrm{V}, 500-\mathrm{mA}$ and $12 \mathrm{-V}, 60-$ mA power supplies, wire-wrap wire or solder, etc.
house. How is the alarm told to sound when the system detects an intruder? These are examples of the type of problem we'll be investigating-how to interface a digital computer to an analog world. We will approach it in a generalized manner so that a neophyte can design interfaces for his applications.
Once we learn how to interface external devices to the CPU module and how to program the module, applications will be limited only by the experimenter's imagination. For instance, once we have temperature sensors interfaced to the module it is a simple matter to program it to detect if the temperature is rising or falling (and how fast), to sound an alarm (or take other appropriate action) if a temperature limit has been exceeded, to record maximum and minimum temperatures with their corresponding dates and times, etc. The CPU module could easily handle this task and at the same time act as watch dog over the premises. Want to play a game with the system or have it wake you up in the morning while it's finishing brewing a fresh pot of hot coffee? It's simply a matter of connecting the appropriate peripherals (coffee pot and alarm) and their interfaces to the CPU module and plugging an EPROM with an appropriate program into the module.

To complete the hardware, let's look at how we would go about designing a parallel output interface. In the following discussion, remember $\overline{1 / O W}$ means that the CPU is "outputting" a data byte. However, this data byte is present on the data bus for only about one microsecond, too short a time for humans to even notice. One could bring the RDYIN line low during the output instruction's execution, which would prolong the time the output data byte was available. Since the CPU is stalled as long as RDYIN is held low, this would tend to make the CPU very inefficient. A better method would be to somehow "snatch" the byte from the data bus and store it externally for as long as we please, while allowing the CPU to hum along at full speed. Figure 8 shows how this can be implemented.

Since the 8080 is capable of handling 256 output ports, the interface must have some means of determining if it is the one to receive the data byte. The Output Port Select in Fig. 8 accomplishes this by giving a true output for one unique address out of the 256 possible I/O port addresses. This circuit may consist of an 8 -input NAND gate, an 8 bit comparator, or a decoder (1-of-8 or 1 -of-16) chip as shown in Fig. 9. The selection device used is connected to


Fig. 5. Schematic of the microprocessor, clock generator (IC3) and control signal generator (IC2).


Fig. 6. Memory circuits contain the EPROM (IC5) and RAM composed of IC7 and IC8. Control logic is in IC9 and IC10.
either the high- or low-order byte of the address bus (both of which carry the I/ $O$ port address). We will use the highorder byte in the examples.
In Fig. 9A, the NAND gate approach, inverters can be used to create the desired port address. Here the port address is E8. The 1 -of-8 decoder approach is shown in Fig. 8B. This method is particularly attractive when more than one output port is needed. A 1 -of16 decoder can be used when working with more address lines. The comparator approach, Fig. 8C, uses exclusive-NOR gates whose output goes high only when the same logic signal is applied to both inputs. By using open-collector gates as shown here, the outputs may be hardwired together (wire ANDed) so as to produce a high output only when all the gate outputs are high. Using jumpers, port addresses are easily changed.
We now know how to determine who the CPU is communicating with, but now how do we actually "store" the output data byte? It just so happens (by no coincidence) that $\overline{1 / O W}$ goes true (low) shortly after the output data has had time to stabilize on the data bus, and goes false (high) just before the data byte disappears. This translates to a low-going pulse on the order of half a microsecond in length, which is suitable for most digital IC's. By using this pulse
to clock a latch (a temporary storage register), we will have succeeded in snatching and storing this data byte.

The AND gate in Fig. 8 tells the output latch to latch the contents of the data bus (which contains the data byte) at the proper time only when the CPU is making reference (outputting) to that particular latch (output port number). The eight outputs of the latch hold the data byte, which may be used for driving LED's, a printer, or turning on the coffee pot. One of the outputs may be connected to a relay or SCR to turn on the coffee pot, another output may drive an alarm, while yet a nother may turn on an air conditioner (via a relay, or SCR of course). It is evident from these examples that one output port can control a variety of peripherals by selectively setting and clearing the appropriate control bits at the latch output. This is easily done in the computer's program, which will be discussed in Part 3.

A parallel input interface is almost identical to a parallel output interface. The only difference is the direction of flow on the data bus. During the execution of an "input" instruction a "window" of only about half a microsecond exists in which input data can be placed on the data bus. This cannot be done at any other time or conflict may occur, resulting in a system "crash."

It is therefore essential that the input data be gated onto the data bus at the proper time. Fortunately, this strict timing requirement can be easily satisfied by use of the CPU generated $\overline{\overline{/ O R}}$ signal. As the CPU executes an input instruction, it generates $\overline{\overline{/ O R}}$ to inform external logic that input data can be placed on the data bus. This signal is usually AND'ed with an "Input Port Select" signal which is then connected to the enable input of three-state buffers as shown in Fig. 10. Note the similarity to the parallel output interface (Fig. 8). During the final execution phase of an input instruction (when $\overline{T / O R}$ is active), the input data is "latched" inside the CPU (transferred to the accumulator); therefore an external latch is not required as in the output interface.

In the I/O port decoder examples of Fig. 9 , the address bus (A8-A15) in itself does not tell us whether we are referencing a memory location, an input port, or an output port. Consequently, the Port Select signal will be true whenever the high-order byte of the address bus contains E8 (E8 through EF in Fig. 9 B ), regardless of the type of reference being made. This "ambiguity" may be put to advantage because it then makes it possible to use an Output Port Select signal also as an Input Port Select signal. In other words, the Port Selects for

Fig. 7. Bus interface for the CPU module shows connections to the outside world. Signals marked with an asterisk are for interfacing the CPU module to a Program DevelopmentDebugging board to be described in Part 3.


Fig. 8 and Fig. 10 may share the same Port Select circuit. (The control bus resolves this ambiguity by specifying the type of reference the address bus is making.) If the input and output port numbers are not equal, then two separate Port Select circuits will be required. The
conrol bus signals $\overline{I / O R}$ and $\overline{1 / O W}$ differentiate the input and output operations, as may be observed by comparing Figs. 8 and 10 .

Figure 11A shows an output latch. The CPU data bus is connected to an octal latch which is clocked by the coin-
cidence of Port Select and I/O Write signals. The latch outputs can be used to drive relays, LEDs, a printer, D/A converter, etc. The latch is cleared when the CPU is reset. In the typical parallel input interface circuit shown in Fig. 11 B , data is buffered via the three-state


Fig. 8. Parallel output interface block diagram.

Fig. 9. Three ways to generate the port select signal: (A) with a NAND gate; (B) with a 1-0f-8 decoder; and (C) with a comparator.



device to allow the data to be gated onto the data bus at the proper time. The Port Select signal can be derived from any of the previously discussed Port Select circuits. The input and output
interfaces can share the same Port Select circuit if their port numbers are equal.

Note the similarity between MEMR and $\overline{I / O R}$ and also $\overline{M E M W}$ and $\overline{I / O W}$. In
fact, the only reason the CPU generates $\overline{I / O R}$ and $\overline{I / O W}$ for input and output is to islolate memory from the I/O ports (by using the 8080 input and output instructions). Since the I/O structure may be viewed as an array of 256 single-byte memory locations (and therefore read and written), there is really no reason why MEMR and MEMW cannot also be used for I/O. An I/O of this type is called memory-mapped I/O (as compared to isolated $I / O$ where the input and output instructions are exclusively used for input and output). If the full 8080 address space ( 64 K bytes) is not used by memory, then memory-mapped I/O can be implementd.
Let's assume, for example, that we will never use any memory locations above hexadecimal address 7FFF. If we gate address bus bit A15 (which goes high for all address locations above 7FFF) with the $\overline{\text { MEMR }}$ and MEMW signals (Fig. 12), we may address up to 32,768 ( $2^{15}$ ) input and 32,768 output devices! These new I/O control sig-nals- $\overline{/ O R(M M)}$ ( $\mathrm{mm}=$ memory mapped) and $\overline{1 / \mathrm{OW}(\mathrm{MM})}$ - connect in exactly the same manner as the isolated control signals $\overline{\overline{/ O R}}$ and $\overline{\overline{O W}}$. The address bus now activates memory if A15 is a logic 0 and activates $I / O$ if A 15 is a logic 1 . The I/O devices are still considered addressed ports, but instead of the accumulator being the only transfer medium, any of the 8080 registers can be used. All of the 8080 instructions that operate on memory locations can also be used in memory-mapped I/O. So by allocating an area of memory address space as I/ $O$, we can create many new $1 / O$ "instructions" in the 8080 instruction set.

Some Applications. Note that data to be input in Fig. 11B must be in digital form. However, very few things in our world are digital in nature; they usually appear in analog form (voltages, currents, temperatures, sound waves, etc.). It is therefore inevitable that more circuitry will be required to complete the input interface. Before we discuss some typical examples, let's introduce the key element to be used-the analog-to-digital (A/D) converter.
The $A / D$ converter is a versatile device widely used in computer applications. Its function is just what its name implies: to convert an analog (realworld) signal into digital form. A typical 8 -bit A/D might accept an analog input voltage between 0 and +2 volts and represent this voltage by an 8 -bit number at its output. In this case, an input voltage of +2 V would be represented by 255 (hexadecimal FF) at the output, 0 V by $0,+1 \mathrm{~V}$ by 127 (hexadecimal 7F), etc. The process of converting an analog signal to a digital number is called quanti-

Fig. 15. A speech recognition system in which A/D conversion is used in a sampling process.

zation, and a variety of devices is available to perform this operation.
Since a typical A/D converter generally operates only over a small range of input voltages, what if we want to quantize a signal that varies from -10 V to 0 $V$, and the $A / D$ can only convert voltages in the range of 0 to +2 volts? Figure 13 illustrates one possible solution. In this circuit, an input of -10 V will produce 255 (hex FF) at the A/D converter output. The process of conditioning an analog signal in order that it may be presented to an A/D in its operating range is called scaling. Note that if we built a variety of scaling circuits (to handle a wide range of input voltages) we would have the makings of a digital voltmeter. If we also converted currents and resistances into voltages within the range of the $A / D$, we might make our CPU function as a DMM, simply by connecting the $A / D$ converter output to a parallel input port and writing a suitable program.

By connecting a digital-to-analog converter (D/A) to a parallel output port, we provide many more applications of the CPU module. For example, the module can be used as a digital audio delay line (Fig. 14) by "shifting" the quantized signal through the CPU's RAM. By varying the amount of delayed signal that is recombined with the original undelayed signal (either externally or in the CPU), and by varying the delay time, the CPU can create the effects of flanging, echo, phase shifting, compression (sustain), vibrato, harmonizing, etc. The delay time is easily controlled in the CPU's program by varying the rate at which the quantized music samples are shifted through the CPU's RAM. All of the signal characteris-tics-amplitude, frequency, and
phase-can be easily manipulated once the quantized signal is in the CPU's memory. The real beauty of this approach is that all of the effects can be implemented with the same piece of hardware. Each special effect can be represented by a program routine in the CPU's EPROM memory, which is individually "called into action" via switches from an input port (or other means).

Another application of the A/D converter is in speech recognition. As shown in Fig. 15, bandpass filters are connected between a microphone and the A/D converter, a suitable speech-recognition program can be written to control various output devices (lights, locks, heaters, etc.) upon receipt of specific verbal commands. The peak detectors at the bandpass filter outputs have a sufficiently long time constant to act as "time-averagers." The dc voltage at the peak detector outputs are proportional to the amount of energy present in the speech waveform within the passband of the respective bandpass filters. By periodically sampling the peak detectors, the CPU can identify ("recognize") words and phrases in any language by way of comparison methods. The A/D converts the detector voltages into digital form for the CPU via an analog multiplexer. The output port of the CPU determines which peak detector is sampled. The six unused bits can be used to control external devices in response to verbal commands.

Let us look at one last way in which our CPU module can be put to use. Suppose we desire to build a digital thermometer using an A/D and the CPU module. How do we convert temperature to a suitable voltage? There are a wide variety of temperature transducers


C
available, the price of which seems to be proportional to the precision desired. But by taking advantage of the CPU's ability to manipulate data, we may employ a very inexpensive device as the transducer.
A very basic temperature transducer circuit is shown in Fig. 16A. The transducing element is an inexpensive thermistor that is by no means the most accurate or linear temperature transducer. But, by taking a sufficient number of calibration points (the number depending upon the linearity of the thermistor used), a high degree of accuracy can be obtained. Figure 16B illustrates the ideal output voltage/temperature transfer curve, which is a straight line. A real physical thermistor however will produce a curve that may be very irregular in shape, instead of a straight line. If calibration points are taken at regular intervals along the thermistor's curve, that is, if output voltages are measured for various known temperatures, a "calibration correction table" can be created for the thermistor. Stored in the CPU's memory, this table can be used to measure other temperatures accurately by methods of approximation. As shown in Fig. 16C, consider point $x$ between two calibration points $a$ and $b$. The unknown temperature $T x$ may be approximated by $T x=T a+\Delta T$ where $\Delta T \approx m \Delta V$, with m being the slope of the line intersecting points $a$ and $b$. Then $T x \approx T a+$ $\mathrm{m} \Delta \mathrm{V}=\mathrm{Ta}+[(\mathrm{Tb}-\mathrm{Ta}) /(\mathrm{Vb}-\mathrm{Va})]$ $\Delta V$. Assume calibration points have been taken every 0.1 V along the horizontal axis. Then $\mathrm{Vb}-\mathrm{Va}=0.1 \mathrm{~V}$. Thus, $\mathrm{Tx}=\mathrm{Ta}+[10(\mathrm{~Tb}-\mathrm{Ta})](\mathrm{Vx}$ - Va ), where the parameters $\mathrm{Ta}, \mathrm{Tb}$, and Va were determined during the calibration process. With the above formula and calibration parameters in the CPU's memory, Tx can be calculated for any $\mathrm{Vx}_{\mathrm{x}}$ from the transducer. Note that the more calibration points taken, the more accurate is the approximation.

We have now covered the important aspects of interfacing and some applications. Part 3 of this series will introduce us to programming the CPU module in its machine language. Also included will be the details of building and using the Program Development board.

## AN

AUDIOLEVEL

## USEFUL IN:

- tape recording checking broadcast modulation - balancing channels - monitoring power amplifiers

KNOWING the signal levels at which a piece of audio equipment is operating, is often necessary to avoid distortion. In tape recording, for example, the third-harmonic distortion increases quite rapidly above a certain threshold; and when tape saturation is reached, increasing input levels can cause decreasing output levels. At the same time, the recording should be made at as high a level as possible to keep the signal well above the inherent tape noise.
In power amplifiers, significant distortion is created when the output is driven beyond its maximum level. A process called "clipping" takes place, which flattens the top of the waveform. Although clipping usually is induced by low-frequency fundamental tones, the waveform contains appreciable high-frequency energy that is potentially dangerous to tweeters.

In either of these cases, a level meter would be of great help. Since
the distortion is predominantly due to the largest signals encountered (because of the rapidly rising characteristic of the distortion VS level relationship), a peak-responding characteristic is desirable in a meter. Mechanical meters, due to the inertia of the pointer, do not respond rapidly enough to track peak levels, unless they have electronic circuits that hold the peaks. An unassisted mechanical meter is termed "average-responding" because its deflection shows the average of the absolute value of the signal. If all music had similar properties, this would be acceptable; but, in fact, the peak-to-average ratio can be anything from a few dB (as in compressed radio broadcasts) to around 20 dB in some live situations.

Once the peak is captured and held, we must decide how rapidly to let it decay. If decay is rapid, the advantages are having a lot of visual motion in the display, rapid feedback in level
setting, and a good measure of how much the signal is above the noise floor at all times. If the decay is slow, we can look at it within a short time of hearing a high-level transient and still tell how close it was to maximum without having to keep our eyes glued to the meter. The meter described here can read out both short-term (rapid decay) and long-term (slow decay) peaks on the same display.

Having a dual-speed readout, the meter can also be used as a modulation analyzer for broadcast signals, especially FM multiplex. The longterm peak LED will remain constant on all stations that employ heavy limiting (which is most stations). If the long-term peak LED is always significantly lower on a given station than most of the other stations, that station is under-modulating. Looking at both channels simultaneously lets you see how well balanced they are. Observing the spacing between the long-term

and short-term peaks for different stations playing the same kind of music, and for records and tapes, lets you see the relative amount of compression being used by the stations.

Circuit Operation. Since both channels are the same, only the right channel is shown in the schematic in Fig. 1. Parts numbers for the left channel are the same but in the 100 series-that is, $R I$ in the right channel becomes RIOI in the left channel.

Switch S/ (common to both channels), selects either the speaker level signal (IOAD IN), attenuated by R15 and RI7, or the LINE in signal, applied to $J I$. Resistor R17 is selected in accordance with the Parts List. Resistor R16 prevents undesired ground loops that can produce oscillation in some amplifiers. The $H I$ side
of the load input should be connected to the "hot" output of the amplifier being used, and the $L O$ to ground.

In LINE operation, $I C I$ amplifies the input signal level and provides a low driving impedance for the following peak detectors. The line input can be obtained from the Tape Record or Tape Out terminals of an amplifier. From $S l$, the input is fed to the fast peak detectors IC2A (negative) and $I C 2 B$ (positive).

When a positive peak occurs, it is coupled via $R 4$ to $I C 2 B$. This causes the $I C 2 B$ output (pin 4) to go high, turning on $Q 1$, and rapidly charging $C 3$ until its voltage equals the input voltage to $I C 2 B$.

For negative peaks, IC $2 A$ operates Q2 to charge C3 until the output is the opposite of the applied input voltage (actually until $\mathrm{V}_{\text {out }}=-\mathrm{V}_{\text {in }} \times R 8 /$
$R 7$ ). When this signal is lower than recent peaks, C3 is discharged through $R 9$. Buffer IC2D has a gain of +1 , a high input impedance to prevent loading of $C 3$, and a low output impedance.

Op amp IC2C and its associated circuit forms a slow-release peak detector charging C5. On the positive peaks, (negative peaks have been made positive by the fast detector), $C 5$ is charged via $D 5$, while resistor R/2 provides a slow discharge path.

Before we discuss the LED drivers as shown in Fig. 2, let us take a look at the power supply shown in Fig. 3. Transformer $T l$ is a wall-socket mounted source that connects via POWER switch $S 2$ to the bridge rectifier formed by D201 through D204. Using C202 as a filter, this supply delivers about 9 volts. Diodes D205


Fig. 1. Schematic diagram of one channel of the level meter.

## PARTS LIST

C1, C 101, C5, C 105-10- $\mu \mathrm{F}, 25-\mathrm{V}$ aluminum electrolytic
C2, C102, C4, C104, C205, C206, C207, C 208 - $0.001 \cdot \mu \mathrm{~F}$ polyester film capacitor
C3, C103-1- $\mathrm{F}, 16-\mathrm{V}$ tantalum electrolytic
$\mathrm{C} 201, \mathrm{C} 211-\mathrm{O} .1-\mu \mathrm{F}$ ceramic disc capacitor
C202, C203, C204, $-220-\mu \mathrm{F}, 16-\mathrm{V}$ aluminum electrolytic
C209, C2 10-3.3- F : aluminum electrolyt. ic
D1, D101, D2, D102, D3, D 103, D4, D104, D5, D105, D209-1N4148 switching diode
D201 through D208-1N4001 rectifier
IC 1-LM358N dual op amp
IC2, IC3-RC4 136 quad op amp
IC4-CD4052 analog multiplexer
IC5, IC6-LM39 15 LED bar-graph IC
J1,J101-phono jack
LED201 through LED228-Red T. $13 / 4$ light emitting diode (high efficiency)

Q1, Q101, Q2, Q102, Q201-2N4401 or 2N2222 npn transistor
R1, R101-50-k』 potentiometer
R2, R102-33-k, , ${ }^{1 / 4}-$ W, $5 \%$ resistor
R3, R103, R202-3.3-kS, ${ }^{1 / 4}-\mathrm{W}, 5 \%$ resistor
R4, R5, R6, R104, R105, R106, R11, R111, R201, R203, R204, R205, - $68-\mathrm{k} \Omega, 1 / 4-\mathrm{W}$, 5\% resistor
R7, R107, R8, R108, R15, R115-10-ks, $1 / 8$-W, $1 \%$ resistor
R9, R109-56-k ${ }^{1 / 1 / 4-W, 5 \%}$ resistor
R10, R110-10-S, $1 / 4-$ W, 5\% resistor
R12, R112-560-k $\mathrm{R}_{1}, 1 / 4-\mathrm{W}, 5 \%$ resistor
R13, R113-4.7-MS2, $1 / 4-\mathrm{W}, 5 \%$ resistor
R14, R114, R16, R116-100-R, $1 / 4-W, 5 \%$ resistor
R17, R117-For 50 W at $8 \Omega, \mathrm{l} .27-\mathrm{k} \Omega, 1 \%$; for 100 W at $8 \Omega, 845-\Omega, 1 \%$; for 200 W at $8 \Omega, 562-\Omega, 1 \%$ resistor
R206, R207, R208-4.7-k』, $1 / 4-\mathrm{W}, 5 \%$ resistor
R209-120- $\Omega, 1 / 4-$ W, 5\% resistor
R2 10, R2 13, R2 14-560- $\Omega,{ }^{1 / 4}-W, 5 \%$ resistor
R2 11. R2 12-300- $2,{ }^{1 / 4}-$ W. $5 \%$ resistor

S1, S2-Dpdt miniature toggle switch
S3, S4-Sp3t slide switch
T1-7.2-V, 200-mA wall-plug transformer (Dormeyer PS 14206 or similar)
Misc. - Terminal blocks, mounting hardware, wire, solder, etc.
Note: Except for switches, ICs, and transformer, items in 1-100 series are for right channel, 100-200 are for left channel, 200-up are for both. The following is available from Symmetric Sound Systems, 912 Knobcone PI., Loveland, CO 80537: complete kit with cabinet with unfinished walnut end panels, Model \#PLM-2, at $\$ 75.00$. Also available from the same source; pc boards and all board-mounted parts, \#PLM-2B, at \$45.00; pc boards \#PLM-2PC, at $\$ 10$ (not available after 6/30/82). All prices include shipping on prepaid orders in U.S. Canadians, please add $\$ 5$ shipping and handling (except PLM2PC). Add $\$ 1.00$, plus shipping, for charge-card orders. Colorado residents, add 3\% sales tax.
and D206, in conjunction with C203 and C204, form a voltage doubler to generate the -8 V for the op amps.

On the ac power-line half cycles when the anode of D208 is positive, this diode is forward-biased to power the left-channel LED bank formed by LED215 through LED228. The right channel LEDs are off. On the other half cycle, the right-channel LED bank formed by LED20I through

LED214 is powered via D207, while the left channel LEDs are off. During this half cycle, transistor Q201 is turned on (via $R 202$ ) producing a high-to-low transition at its collector. This $60-\mathrm{Hz}$ pulse is applied to IC4 as shown in Fig. 2. This switching action alternates the LEDs at a rate fast enough to make both banks appear to light up at the same time. This approach allows use of the same LED
switching circuitry, saving components and money.
Since IC5 and IC6 have their associated LEDs switched at a $60-\mathrm{Hz}$ rate, the inputs to these ICs should also be switched at 60 Hz . Dual-ana$\log$ switch IC4 is a two-pole, fourposition electronic switch with the "rotors" at pins 3 and 13. The signal at pin 9 determines whether a slow or fast input is selected, while the input


Fig. 3. Schematic of a suitable power supply for the circuit.
at pin 10 determines right or left LED selection. Since pin 10 is hardwired to the collector of Q201 (switched at 60 Hz ), the internal switches of /C4 are operating at 60 Hz .

When S3 (dispiay speed), is placed in the FAST position, pin 9 of IC4 is high and selects only the "right fast" and "left fast" inputs. When S3 is at SLOW, pin 9 is placed low, and the slow inputs are selected. If $S 3$ is set to вотн, the output signal at pin 13 drives the pin-9 input via the phase shifter composed of $R 203$ through R205 and C205 through C207. This causes the circuit to oscillate, therefore in this position of $S 3$, the input to the LED drivers oscillates between fast and slow at a few kHz , while also oscillating between right and left at 60 Hz via pin 10

Switch $S 4$ determines the display type. In the bar mode, it connects pin 9 of IC5 and IC6 to the positive supply to cause the drivers to display a bar graph. When $S 4$ is in the DOt position, diode D209 and R207/R208 keep pin 9 about 0.6 volt below the positive supply, forcing IC5 and IC6 to display a single LED at a time in a moving-dot display. When $S 4$ and $S 3$ are both in the BOTH position, an interesting display results. Pin 13 of IC4 will have a square wave of a few kHz on it , and on the rising edge of this waveform, when the input to IC5 and $/ C 6$ is changing from the fast to slow peak detector, the positive pulse is coupled to pin 9 of both IC5 and IC6 via R206 and C208. This places the LED drivers in the BAR mode; and, when C208 charges, the voltage at pin 9 places the drivers in the DOT mode. The visible result is a bright dot in the position of the fast input and another for the slow input. There will be a dim bar from the left end of the display to the slow LED. A bright dot makes it easier to watch the fastdecay signal; but in a dimly lit room, only the motion is visible, not its absolute position. The dim bar of the вотн mode provides an excellent display with high readability.

Construction. Although the pc board shown in Fig. 4 simplifies construction, point-to-point wiring can be used. If you elect to go this route, keep the leads to the LEDs short.

Note that two pe boards are shown in Fig. 4, one for the control circuit, and the other for the LEDs. There is a space between the top three LEDs and the others to make the display better for distance reading when it is indicating near the peak levels.

After selecting a suitable enclosure, mount the main pc board on spacers, and the LED board as desired on the front panel. The various off-board components ( $J l, R I$, the LOAD IN connector, R15, R16, R17, and S1, power on/off switch $S 2$, and $S 3$ and S4) are mounted as desired on the front and rear panel. Drill a hole, and use a grommet to allow the power cord from wall-mounted $T l$ to enter the enclosure. Use suitable markings to identify each front-panel item.

Calibration. The LOAD in terminals are for speaker-level signals. Select RI7 and R117 in accordance with the Parts List. For example, if you are using a 50 -watt amplifier, R 17 will be $1.27 \mathrm{k} \Omega$. This will allow a peak signal as large as a sine wave that will put 50


Flg. 4. Foil pattern (top) and component layout for
the pc board, which is in two parts for control circuit and display.
watts into an 8 -ohm load to light the $0-\mathrm{dB}$ LED. In this case, the $+3-\mathrm{dB}$ LED will be the equivalent of 100 watts, and the -3 -dB LED will equal 25 watts, etc.
For power levels not in the Parts List, R17 $=5 \mathrm{k} \Omega \times(\mathrm{X} / 1-\mathrm{X})$ where $X=4.083$ volts divided by the square root of the power in watts times the impedance in ohms. Typical error from this form of calibration is $\pm 0.3$
dB , but it can be as high as $\pm 1.5 \mathrm{~dB}$
There are several ways to calibrate the input circuit. If $R I$ and $R 101$ are set to the center of their ranges, 0 dB will correspond to the peak level of a 0.775 -volt sine wave. This latter is 0 dBm into 600 ohms, or 1 mW at 600 ohms impedance. An input of 400 mV or more can be used to light the $0-\mathrm{dB}$ LED by adjustment of the calibration potentiometer.


Internal view of the author's prototype level meter.

Dolby reference level tape may be purchased from Integrex, Box 747 , Havertown, PA 19083, for $\$ 9.00$ ppd. (specify reel or cassette).

The Audio Level Meter, with its simultaneous display of short-term and long-term true peak levels, will allow you to set your record levels more accurately, for the optimum trade-off between distortion and noise. It also helps you prevent amplifier clipping and makes for a pretty visual show!

Use. To use the line-level section to help with tape recording, there are many different techniques with different accuracies and instrumentation requirements. First, the Audio Level Meter should be connected after the record level controls of your tape deck. This connection can be at an internal point, or at the output jacks. We will describe techniques that assume the latter point; note that, if you have the level adjustments that affect the outputs, the system will be calibrated only for the setting you use then, so mark that setting.

One technique is to find the signal level of a $400-\mathrm{Hz}$ tone that results in $3 \%$ total harmonic distortion and let that be the 0 dB to which you set your meter. If you only rarely exceed this peak level during recording, average distortion will be very low.

Another technique would be to play FM interstation noise into your tape deck and adjust the level control to read -6 dB on the deck's meters-if they are of the typical averageresponding type (or 0 dB if they are peak-responding). Calibrate the Audio Level Meter to 0 dB . The reason for the $6-\mathrm{dB}$ difference is that noise has a peak-to-average ratio of about twice the peak-to-average ratio of sine waves, for which average-responding meters are calibrated.

A final technique would be to play a Dolby reference-level tape and adjust your meter so that a signal recorded at a similar level causes the meter to read -3 dB . With good quality tape, optimum record level will then be a setting that allows the $0-\mathrm{dB}$ LED to light occasionally, and the +3 dB LED will indicate more than $3 \%$ distortion. With metal particle tape, the $+3-\mathrm{dB}$ light may be allowed to light occasionally, as metal tape has a little more headroom with typical musical signals (and a lot more with trebleintensive signals that are found in live music). With poorer quality tapes, try to have the $0-\mathrm{dB}$ LED light rarely. A


Auto-Cat ${ }^{\text {TM }}$ lets your computer terminal answer other terminals over the phone line automatically.

It's the deluxe way, for example, to receive a program from a friendly computer. Or take data from any of the information sources. Then store the information in your computer's memoryand have it there at your beck and call-all automatically.

Auto-Cat is a state-of-the-art originate/auto answer, all digital, crystal controlled unit with everything in one compact package. It sits right under your phone.

It's FCC approved for direct telephone line connection. You just take it home and plug it in.

Cost? Less than any other comparable modem. Under $\$ 250$.

And it's from Novation. The recognized leader in personal communications.

## Auto-Cat ${ }^{\text {by }}$

Call for details: (800) 423-5410

In California (213) 996-5060

Available at Avnet Electronics, Hamilton Electro, Hamilton Avnet, Kierulff Electronics, Byte Shops, Computerland, and your local computer store
Novation, Inc., 18664 Oxnard Street, Tarzana, California 91356

# REJUVENATE <br> AUTOMOBILE CLOCKS 

## Simple timer / driver circuit replaces troublesome switch contacts

BY ARTHUR V. CLARK

MOST automobile clocks are conventional analog types that use a mainspring, a gear train, and a balance-wheel escapement. Their one ususual feature is that the mainspring is wound by means of a solenoid. Energizing the solenoid rewinds the spring sufficiently to run the clock for 60 to 90 seconds. As the mainspring relaxes, a contact affixed to the win.' ing-mechanism shaft moves and eventually touches a stationary contact on the clock frame. This completes the circuit and starts the cycle over again.

Most often, these clocks stop working because the solenoid-energizing contacts have failed. The circuit shown here allows you to rejuvenate such a clock. It takes over the function of the failed contacts by having an IC timer and a driver transistor periodically energize the solenoid.

About the Circuit. Timer $I C /$ operates as an astable multivibrator

The period of the timer's square-wave output is determined by the time constant of the RC network formed by potentiometer $R 2$, resistors $R 3$ and R4, and tantalum capacitor Cl. The square-wave's duty cycle is determined by the ratio ( $\left.\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right) /\left(\mathrm{R}_{\mathrm{A}}\right.$ $+2 R_{B}$ ), where $R_{A}$ is the total effective resistance between pins 7 and 8 of $I C I$, and $\mathrm{R}_{\mathrm{B}}$ is the value of $R 4$

Capacitor Cl charges through Rl, $R 2, R 3$, and $R 4$ to a voltage that triggers a comparator inside $I C l$. During the charging interval, pin 3 is high and transistor $Q 1$ is cut off. When the comparator is triggered, $C l$ discharges through R4 until the voltage across it decreases to a value that triggers a second comparator in $/ \mathrm{Cl}$. During the discharge interval, pin 3 is low and base current flows in $Q 1$. While QI conducts, the clock's rewind solenoid is energized and the clock's mainspring is rewound. At the end of the discharging interval, pin 3 goes


Schematic diagram of the Car-Clock Rejuvenator. Transistor Q 1 periodically energizes the solenoid that rewinds the car clock's mainspring

## PARTS LIST

C1-33- $\mu \mathrm{F}, 25-\mathrm{V}$ tantalum capacitor $\mathrm{C} 2-0.1-\mu \mathrm{F}, 25 \cdot \mathrm{~V}$ disc ceramic capacitor C3-100- $\mu \mathrm{F}, 25-\mathrm{V}$ aluminum electrolytic D1-1N4001 rectifier
IC1-NE555V timer
K1-Car-clock rewinding solenoid
Q1-Pnp silicon power transistor (Radio Shack RS2027 or similar)
R1-200- $2,1 / 2$-W, 10\% resistor

R2-1-MS2, linear-taper potentiometer R3-150-k $2,1 / 4-\mathrm{W}, 10 \%$ resistor R4-10-k, $1 / 4-$ W, $10 \%$ resistor R5-5 10- $\Omega,{ }^{1 / 2}$-W, 10\% resistor Misc. -Pc or perf board, IC and transistor sockets, mica insulator, silicone thermal compound, heat sink (can be case of car clock)
high again, QI cuts off, and the process repeats itself. The period of the output waveform is adjusted via potentiometer $R 2$ to equal that needed to maintain proper winding of the clock's mainspring.

Resistor RI and capacitor C3 form a filter that prevents any noise voltage riding on the vehicle's positive supply line from affecting the operation of ICl. Resistor R3 prevents the timer IC from latching when the wiper of $R 2$ is set to the extremity of its travel. Such a condition could cause transistor QI to overheat. The transistor is protected from the inductive spikes that appear across the clock's rewinding solenoid (Kl) by diode DI.

Construction. The circuit can be assembled on a small pc or perforated board. If it is made compact, it will likely fit into the clock case. The original solenoid-energizing contacts can be cut off and discarded. One end of the solenoid coil should be grounded to the clock's frame, and the other end connected to the collector of $Q I$ by a suitable length of hookup wire. The clock's original battery terminal provides a convenient tie-point for this latter connection.
Sockets should be used for $I C I$ and Q1. Also, the transistor should be heat-sinked. The case of the clock can serve as the sink, but the transistor case must be electrically isolated from it. A preformed mica insulator and shoulder washers can provide the required isolation. Be sure to use silicone thermal compound to improve the bond between the transistor case, the mica insulator, and the heat sink or clock case.

Potentiometer $R 2$ can be either a pc-mount trimmer or a compact, screwdriver-adjust type. If a trimmer is used, the circuit board should be mounted in such a way that the potentiometer can be readily adjusted. If a screwdriver-adjust potentiometer is used, it can be mounted on the clock case so that the adjustment screw faces outward. In either case, the circuit and the clock should be tested on a workbench before adjustment and installation. When it has been verified that the circuit is operating correctly, $R 2$ should be adjusted so that the solenoid is energized at the rate needed to keep the clock mechanism running smoothly and accurately.
This circuit was originally designed to rejuvenate the nonreplaceable clock of a classic automobile. It is inexpensive enough, however, that it can be used to put back in working order a car clock that does not have such great intrinsic value.

HITACHI DC-15MHz
SINGLE-TRACE PORTABLE OSCILLOSCOPE AT THIS LOW, LOW PRICE

MAIL-ORDER ELECTRONIC SUPPLY HOUSE!

## 8 CHANNEL SCOPE MULTIPLEXER, DM-12

Convert your stngle channel scope into a 4 or 8 channel instrument; just connect Convert your single channel scope into a 4 ar the signals you want to view. Simple, easy, tast - can handle logic level TTL signais from OC to 3 MHz . Features separate spacing and trace amplitude co


8 TTL compatible input channe/s (1 TTL load per channei) can drive 50 Dhm scope cable
Maximum full screen amplitude 4.6 V on
Trace amplitude and spacing controls.
4 or 8 channes selector switch External 9 VDC power suppiv included (Model
MMAC-2) Size $6.25^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime \prime}$ SIze 6.2$)^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime \prime}$
BNC Output Cable Accessory (Model PSA-2 add
$\$ 14.95$ )

Completely assembled and tested! Ready

Munving mannongrni VIEW 8 CHANNELS AT ONCE! ${ }^{5} 69$

LOW COST CAPACITANCE METER MODULE, DM-8

- CRT

Olsplay area
Acceleration potential Intensity modulation

1308UB31 ( 5 -inch, found shape)
$8 \times 10$ div $(1 \mathrm{div}=9.5 \mathrm{~mm})$
Approx. 2 kV

Voritical defliection
Sens itivty and bandwidth $5 \mathrm{mV} / \mathrm{div}-5 \mathrm{~V} / \mathrm{div}=5 \%, \mathrm{DC}-15 \mathrm{MHz},-3 \mathrm{~dB}$ $\mathrm{mmV} / \mathrm{div}-1 \mathrm{~V} / \mathrm{div}=6 \% . \mathrm{DC}-5 \mathrm{MHz}$ Typ. -3 dB (Using $\times 5$ amplifie)
Dynamic range $\quad$ More than 4divat 15 MHz
Input $A$ and $\mathrm{C} \quad$ Difect 1 M Dhm , approx. 30 pF Maximum input voltage 600 Vp -p or 300 V (DC + AC peak) Display mode
$X$-Yoperation

- Horizontal deflectióń

Sweep mode
TV synchronization
Internal
rigoer sensitlvity

\section*{| Frequency | Internal | External |
| :---: | :---: | :---: |
| $20 \mathrm{~Hz}-2 \mathrm{MHz}$ | $0.5 d \mathrm{lv}$ | 200 mV |
| $2 \sim 15 \mathrm{MHz}$ | 15 div | 800 mV |}

Trigger slope
Sweep time
Sweep time
Sweep-time Max. sweep rate

- Amplitude calibrator Wavetorm
Voltage
- Power requirements
- Dimensions
- Weight
- Ambient operation
temperature


## MODEL V-151B

WITH 2 YEAR MFG. WARRANTY ${ }^{\text {onvrs }} 499^{55}$

WITH FREE DM-12 8 CHANNEL MULTIPLEXER A COMBINED VALUE AT LIST OF $\$ 639.95$ YOU SAVE $\$ 140.00$
$0.2 \mu \mathrm{~s} / \mathrm{div}-0.2 \mathrm{~s} / \mathrm{div}=5 \%, 19$ calibrated steps 10 times $(=7 \%$ )
$0.5 \mathrm{~V} \pm 3 \%$
$100 \mathrm{~V}(120 / 220 / 240 \mathrm{~V})=10 \%$
$50 / 60 \mathrm{~Hz}, 40 \mathrm{~W}$
Approx. $275(\mathrm{~W}) \times 190(\mathrm{H}) \times 400(\mathrm{D}) \mathrm{mm}$ Approx 8.5 kg

Connect this high quality low cost Capacitance Meter Module, DM 8 to your digital Volt Meter and turn it into a Digital Capacitance Meter - the Low Cost Way


Completely assembied and tested! Ready to use!

Push to read range (bution) from 1 pF to
$20,000 \mu \mathrm{~F}$
Zero calibation control
In One easy

In one easy to use, self-contained pack | age. |
| :--- |
| Battery powered, with "push to read" bat- |
| tery saver circuit | tery saver circuit 9 V batteries not in-

cluded.
REGULATED TRIPLE POWER SUPPPLY, LOW PRICED!, DM-6
A fully assembiee and tested power supply that provides a sollid, fully wired tripie power supply including lixed supplies requlated, short proot. Each supply has shot indic
metal case.
$\mathbf{s}^{\mathbf{9}} \mathbf{g}_{95}$
FREE!!
NEW 1981 FALL
Catalog
Exciting
new products!
Send today!!

albia satisfaction WARRANTY: WARRANTY: Terend a FOR FAST AND DEPENDABLE DELIVERY SERVICE


If for any reason, whatsoever, you are not completely satisfied with your purchase, return it within 30 days of purchase date for a full refund - it's as simple as that! Shipping \& Handling charges not

LOW COST HIGH FREQUENCY COUNTER


## MODEL NO. DM-7

The Albia Model DM-7, 8 Digit High Frequency Counter is easy to
uise, swith selectable time base input by a single BNC, nothing to -5 Hz to 550 MH
 Crystal $=3$ 日pm (a $\left.25^{\circ}\right)$ controlled 0
Convenient penchtop size ( $\left.7^{\prime \prime} \times 10^{\circ} \times 3^{\prime \prime}\right)$ durable attractive case
 LOW OHM METER
MODULE, DM-10


Measures resistance from 10 millionms 10200 hms . Now you tan measure resistance down to 10 millidhms with this low cost, easy chokes, printed circuit board copper paths and ground cables, Special zero balance control nulls out input cable resistance to in
sure accurate feadings Your OVM has to be set to 2 V range during operation.

Resistance range 10 mill: 0 hms to 20 Inms
Zero Calibration control
Battery powered (push 10 read
battery saver circuit). Requires
1.9 volt Batter (not included)
19 volt Battery (not included)
Size $6.25^{\circ} \times 3.75^{\circ} \times 2^{\prime \prime}$ (input ca


FREQUENCY METER MODULE " 5 Hz to 100 MHz ", DM-11


Meas ure frequencies from 5 Hz to 100 MHz on your digital voltmeter with a resolution otion $1 / 2$ digits - easy to use - perfect for field
service - ab testing - home tobyist! Connect the DM-11 to Your OVM, set the OVN to the 2VDC range, connect a signal to the any source. $H: L O$ Range $L E D$ 's insure fast accurate readings. - Frequency Range 5 Hz to 100 MHz - input Impedance 1 Meg 0 hm ( Size $6,25^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime \prime}$
$>0 \mathrm{MHz}<70 \mathrm{MV}$
External Mterral 9V DC
Model MMAC-2) BNC Input Ca
add $\$ 14.95$ )

# EOUIPMENT AMD TRAINING MO OTHER SCHOOL CAN MATCH. 

## NTS HOME TRAINING INVITES YOU TO EXPLORE MICROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EOUIPMENT YOU ASSEMBLE AND KEEP.

Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that enables you to train for this booming field by working with your own production-model microcomputer.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We
believe
that training
on production-
model equipment,
rather than home-made learning devices, makes home study more exciting and relevant. That's why you'll find such gear in most of NTS's electronics programs.

For instance, to learn Color TV Servicing you'll build and keep the 25 -inch (diagonal) NTS/HEATH digital color TV.

In Communications Electronics you'll be able to assemble and keep your own
NTS/HEATH 2-meter FM transceiver, plus test equipment.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly to acquire practical know-how.


## HOBBY SCENE

## Cry Alert

By Leslie Solomon
Senior Technical Editor
Q. I hope you can help me with a problem. I am a prospective father who is deaf. Can you provide me with a circuit that will flash a light when it senses the cry of a baby?-Pete Bigotta, Rochester, NY
A. The circuit shown will activate both an audible alert and a lamp which is plugged into ac power socket S01. The baby's cry is sensed by the crystal microphone (Radio Shack 270-095 or similar) and transduced into a voltage which is amplified by operational amplifier $I C I$. (Just about any op amp$\mu \mathrm{A} 741 \mathrm{C}$, TL074CN, etc.-will do.) The gain of the op amp is determined by the setting of the linear-taper SENSITIVITY control. Output signals from the op amp are capacitively coupled, rectified,
and filtered into a dc level. This dc voltage turns on SCRI (HEP R 1001 or similar), which in turn actuates the astable multivibrator comprising IC2.

Both relay Kl (Radio Shack 275-004 or similar) and plezoelectric buzzer $A l$ (Radio Shack 273-060) will be strobed approximately twice each second by the output of the 555 timer. The diode protects the chip's output stage from inductive spikes. Opening the Reset switch will deactivate the multivibrator.

The buzzer can be omitted, but is included as a back-up alerting device for someone with unimpaired hearing who is within earshot. Plug a 60 - or 75 -watt incandescent lamp into SO1.The entire circuit is powered by a simple line-operated supply rectifier with ratings of 1 ampere and 50 PIV.



JOIN THE PAKI

## 1981 DISCOUNT ELECTRONICS CATALOG

Send for our Free catalog and become a member of our exclusive Pak. Our members receive Poly Paks' exciting catalog several times a year. We offer: Penny Sales, Free Premiums and Low, Low Prices on a wide variety of Electronic Products such as Computer Peripherals, Integrated Circuits, Speakers, Solar Products, Rechargeable Batteries, Audio Equipment, Semiconductors, and much, much more! Take advantage of our 25 years as America's foremost supplier of discount electronics. RUSH ME YOUR FREE DISCOUNT CATALOG!

## NAME

## ADDRESS

CITY
STATE $\qquad$
$\square$

CLIP AND MAIL COUPON TODAY TO
POLY PAKS, INC. PE 10
P O. Box 942
S. Lynnfield, MA 01940
in your Electronics Career through


No commuting to class. Study at your own pace, while continuing your present job. Learn from easy-to-understand lessons, with help from your home-study instructors whenever you need it.

In the Grantham electronics program, you first earn your A.S.E.T. degree, and then your B.S.E.T. These degrees are $a c^{-}$ credited by the Accrediting Commission of the National Home Study Council.

Our free bulletin gives full details of the home-study program, the degrees awarded, and the requirements for each degree. Write for Bulletin ET-81.
Grantham College of Engineering 2500 So. LaCienega Blvd.
Los Angeles, California 90034

## VIDEO

36 Channel Up Converter for TV \& VTR Cable VHF to UHF


Model V5736 Remote Control TV Tuner Model 6301


855 Conklin St. Farmingdale, N.Y. 11735

- Master Charge
- BankAmericard
- VISA - COD
- Money Order
- Check ADD FOA SHIPPING
AMD INSURANCE

COD's extra

N.Y. State residents add appropriate sales tax Minimum order $\$ 25$ plus $\$ 4.50$ shipping and handing
_- in N.Y. State call (516) 752-0050

# SOLD-STATE DEVELOPMENTS 

By Forrest M. Mims

The Electrostatic Discharge Problem

EVERYONE has experienced the static discharge that occurs when one touches a metal object after walking across a carpet on a dry winter day. But few people are aware that high static voltages are accumulated by many common objects.

Things made from plastic are notorious generators and accumulators of very high static charges. Styrofoam cups, cigarette and candy wrappers, parts trays and some kinds of solder removal tools are all potential high-voltage generators. These, and many other plastic objects, are commonly found on or near electronic work benches. It's surprisingly easy to demonstrate the accumulation of a static charge on plastic objects. For example, rub a piece of plastic packing snow between two sheets of dry paper, and the plastic will adhere to a surface having an opposite charge. Or rub a balloon on a flannel shirt and it will stick to a ceiling.

A neon glow lamp makes a handy visual indicator of static electricity Walk across a rug while wearing leath-

Fig. 1. Data-Intersil's low-level $L C D$ panel meter is powered by a solar cell.

er-soled shoes to accumulate a charge and touch one lead of a neon lamp to a metal object while holding the other lead between a thumb and forefinger. The lamp will flash when the discharge occurs.
It's very important to isolate MOS, CMOS and other components that are vulnerable to electrostatic discharge (ESD) from objects that can generate a static charge. Ideally, all static-generating objects should be removed from the vicinity of vulnerable components. Soldering irons should be grounded (or battery powered) as should workers who handle components
In the June 1981 installment of this column, I noted that manufacturers often ship components and circuit boards that are vulnerable to ESD in antistatic polyethylene bags known as "pink poly." These special-purpose bags do not develop a high potential like ordinary polyethylene bags when rubbed or flexed.

I also mentioned a new antistatic bag made by 3 M Static Control Systems (P.O. Box 33050, 3M Center, St. Paul, MN 55101). The 3 M bag, which is more expensive than pink poly, consists of an inner layer of antistatic polyethylene and a polyester strength layer coated with a 10 -micron thick film of nickel.
Dan C. Anderson of the Richmond Division of Dixico, Inc. (Box 1129, Redlands, CA 92373) responded to this item with a thick package of literature about his firm's antistatic products. He also sent along some samples of Richmond's pink poly as well as some special-purpose RCAS (TM) 3600 antistatic bags that give both r-f and EMI shielding.
Being a long-time static electricity experimenter, I was particularly attracted to Dan's method of demonstrating the static electricity produced when transparent adhesive tape is unrolled. He says to place a neon lamp, whose leads have been spread apart, near a spool of tape. The lamp will glow as the tape is unrolled. I tried this demonstration and it worked even on a very rainy day. (For best results, dim the lights and pull the tape rapidly.)

The primary purpose of Dan's package, however, was to explain the merits of pink poly. According to Richmond's literature, its RCAS 1200 was the first pink poly. Prior to its development, the


# AMAZING DEVICES 

"H(( PHASERS )))"1
PPF-1 PHASER PAIN FICLO - This device receny oped and patented in our labs is being evaluatod by law enlorce ment agencles tor rot and crowd control It is now avallatie but soon will come under the jurisdiction of weapons and internal machine control making it unavailable to the public. The device is hand-held and looks like a BUCK ROGERS ray gun. It is hazar dous if not used with discretion
PPF-1 PLANS PLANS
$\$ 15.00$
IPG 1 INVISIBLE PAIN FIELO GENERATOR - This amazing. simple nand-held device is about the sıze of a pack of cigarettes and generates a directional field of moderate to inten sive pain in the lower part of the head up to a range of 50, De vice is simpie and economical to make IPG. 10 ASSEMBLEDE TESIED FOR AK ALL PARTS $\$ 39.50$ PG. 10 ASSEMBLED STESTEO FOR ANIMAL CONTROL $\$ 9.50$ LASERS
RUBY LASER RAY PISTOL - Produces highty intense red Deam. capable of burning A hazardous device PLANS. PARIS
SOURCES
HIGH POWEREO CARBON DIOXIDE BURNING ANO CUITING Complete pians and all parts sources $\$ 15.00$ SOLID STATE IR 12 WATIS with Duill in power supply plans $\$ 8.00$ Complete kit with collmator $\$ 74.00$ POCKET LASER pulsed. visible red plans \$7.00 Complete kit $\mathbf{\$ 3 9 . 5 0 \quad \text { Also complete plans and pants }}$ sources for RUBY. YAG. NEODYNIUM. HeNe ARGON. DYE, NIIROGEN and many more lasers
SECURITY ——— SNP- 2 SNOOPER PHONE - Dial nome or office phone while on vacation actrating sensrive mike without phone ringing Excement propeny protection and intrusion device SNP2X ALL PARTS SMP20 ASSEMBLEDAMDIESTED \$ 59.50
LONG RANGE XMIR PLANS
SEE-IN-TME-DARK PLANS
DIRECTIONAL SHOTGUN MIKE PLANS SUPER SENSITIVE PARABOLIC MIKE PLANS SOUNO \& TELEPHONE OPERAIEO TAPE RECORDER CATALOG ON PLANS KITS \& FINISHED UNITS $\$ 49.50$

Send check or money order to
SCIENTIFIC SYSTEMS, Dept. Q1. Box 718 AMHENST, M.H. 03031

CIRCLE NO. 50 ON FREE INF ORMATION CARD

## RemoveVocals

Remove the lead vocal and substitute your own voice with most stereo recordings $\frac{4 s}{10}$ ing our new, low cost vOCAL ZAPPER ${ }^{\text {IIM }}$ Great for practice, professional demos or just for fun.


## FROM

## inan Electronics, Inc. <br> 

$\square$ Rush my Vocal Zapper Kit, \$24.95 plus $\$ 3$ postage \& handling enclosedSend assembled Vocal Zapper \$39.95 plus $\$ 3$ postage $\&$ handling enclosed

Send Free Catalog
name
address
city
state $\qquad$ $2 i p$

## Visa $\square_{\text {MC }} \square$ card no

PAIA Electronics, dept IOP 1020 W. Wilshire.Okia. City. OK 73116
solid-state developments
chief antistatic wrap was Velostat (TM), a product of Custom Materials, a company since acquired by 3 M . Velostat is made by mixing finely ground carbon particles with polyethylene or a simlar resin. It is used to protect electronic components, printed circuit boards and explosives from ESD. Unlike Velstat, pink poly is transparent. The pink hue is added to distinguish the material from ordinary plastics.

According to Richmond, the development of its pink poly was stimulated by a 1964 tragedy at Cape Canaveral in which three men were killed by the accidental ignition of a solid propellant

rocket motor inside a hangar. The rocket ignited, apparently, when a static discharge generated by its polyethylene dust cover caused a spark to jump across the ignition squib.

Pink poly is made by impregnating ordinary polyethylene resin with an antistatic liquid. According to Richmond, the antistatic liquid ". . . forms a selfrenewing, noncorrosive 'sweat layer' on all its exposed surfaces by combining with the moisture found in normal air." If the old one is removed by a solvent or abrasion, a new layer of antistatic compound is eventually formed.

Apparently there is a good deal of healthy competition between 3 M , Richmond, and other companies over the relative merits of their respective antistatic products. Richmond, for instance, is quick to point out that categorical criticism of pink poly is unfair since the product is "widely and poorly imitated." They also note that their RCAS 1200 meets the requirements of military standard MIL-B-81705, Type II, "and is still the only material meeting this as determined by the government's Qualified Products List."

On the other hand, 3M observes: "No one product ... no one technology :.,. can offer full protection from static," and then boasts: "Only 3M has the products and the trained static analysts to give you total control of the static in your business.'

Rather than enter this fray myself, I urge readers who have an interest in ESD protection to contact Richmond, 3M, and other companies directly. They can provide you with considerably more information on the topic than can be squeezed into this column.

If recent reports in various technical
journals and trade magazines are a reliable indicator, protection against component damage due to ESD is becoming a matter of major concern and importance. For example, at a forum on ESD sponsored last year by Electronic Products magazine, several conferees noted that though ESD damage to components and assembled circuit boards is a serious problem, many companies don't have the technical expertise necessary to trace their rejects and failures to ESD. Some are unwilling to invest the funds necessary to equip and maintain a stat-ic-free work environment.

You can learn more about the Elec-

Fig. 2. A new
ultra-fast
operational amplifier
from Optical
Electronics, Inc.
tronic Products forum in that magazine's June 1980 issue (pp. 31-38). If you're involved in the manufacture of circuit boards or systems which use components vulnerable to ESD damage, the Department of Defense has published a detailed standard on the subject. It's designated 1686 and is entitled "Electro Static Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment." You can request a copy of the standard by writing the Navy Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

In the meantime, pay particular attention to antistatic procedures to protect vulnerable components, especially MOS and CMOS chips, from ESD. Richmond has formulated a set of antistatic rules you may wish to follow. They're called "The S-I-G-H of Relief from ESD" and here they are:

1. Surround ... the device or assembly with antistatic materials (bag, lidded box, or other shaped container) except when it is being worked on.
2. Impound ... all plain plastics and textiles, foams and cushionings from being near to the items. Replace with approved antistatic types or treat with topical antistats.
3. Ground . . . the skin of all itemhandling personnel with safely resistive wrist straps. Where this is not possible, use conductive floor mats and appropriate footwear.
4. Hound
personnel and management to see that the above rules are observed, for without breaking one of them it is virtually impossible to cause electrostatic damage.

Richmond's Dan Anderson acknowledges Fred Mykkanen of Honeywell

## SIMPLE SIMON NEW! STATE OF THE ART



VHF-UHF WIDEBAND ANTENNA AMPLIFIER


MODEL ALL- 1
50 MHZ - 900MHZ 12 DB GAIN $\pm .5 \mathrm{DB}$

Simple Simon Electronics introduces a revoIutionary new one stage hybrid IC broadband amplifier. This unit is not available anywhere else in the world. One unit serves many purposes and is available in kit or assembled form. Ideal for outdoor or indoor use. Inputoutput impedance 75 ohms. Amplifier includes separate co-ax feed power supply. Just assemble in 25 minutes. No coils, capacitors etc. to tune or adjust. ALL-1 complete kit: \$24.95. Assembled: \$34.95

## 7+11 PART KITS



## ANTENNA \& ACCESSORIES



 ALL-1 indoor-outdoor hybrid IC wideband VHF-UHF-FM Antenna wimplifier 750 HMS . Kit $\$ 24.95$. Assembled, $\mathbf{\$ 3 4 . 9 5}$

Min: Order. Amount is \$19.95, Add 10\% Shipping and Handling Over $\$ 40.00$ Add $5 \%$
Catalog, $\$ 1.00$

## MAIL ORDERS ONLY <br> SIMPLE SIMON ELECTRONIC KITS

Ca. orders mail to:
3871 S. Valley View, Suite 12
Las Vegas, Nevada 89103 Tel: (702) 322-5273

## Other orders mail to:

11850 S. Hawthorne Blvd., Hawthorne Calitornia 90250, Tel: (213) 675-3347

VISA - MASTERCHARGE ACCEPTABLE

## solid-state developments

Defense Systems for originating the " S -I-G-H of Relief" idea. Mr. Mykkanen is an authority in the ESD field.

Don't let this discussion of the importance of protecting sensitive components from ESD damage frighten you away from MOS and CMOS chips and transistors! In my opinion, CMOS is the best way to go. It's very flexible, simple to use, and consumes little power.

My CMOS chips are inserted in aluminum foil-covered styrofoam salvaged from the grocery store's meat counter. The foam plastic is cut to fit inside ordinary plastic parts trays. While the contact between the foil and the IC leads may cause some reaction to occur, thus far none of my CMOS chips has been damaged by ESD . . . to the best of my knowledge. I have, however, zapped a few chips or individual gates by foolish or accidental circuit errors. I always touch a grounded object before handling CMOS chips and, if possible, use a battery powered soldering iron. Finally, loose chips are laid on a sheet of aluminum foil until used in a circuit or placed back in their foil-covered carrier

## A Micropower Digital Panel Meter.

Liquid-crystal displays have replaced LED displays in most digital watches and calculators. Now they are moving into new territory, and Fig. 1 shows one reason why: liquid crystal displays consume much less power than their LED counterparts. As you can see, the LCD display in Fig. 1 is being powered by a small solar cell array.

The product in Fig. 1 is a $31 / 2$-digit panel meter with 0.75 -inch figures. The circuit uses CMOS technology to achieve a total power consumption of only 17.5 milliwatts ( 3.5 milliamperes at +5 volts). This permits the meter to operate continuously for several months on a single set of 4 AA alkaline penlight cells.

The new meter is designated the DMLX3. It sells for $\$ 57.50$ in single quantities. For additional information, write its manufacturer, Datel-Intersil ( 11 Ca bot Boulevard, Mansfield, MA 02048).

An Ultra-Fast Op Amp. Most op amps are not very fast. An important exception is the Model 9918 shown in Fig. 2. This new opamp features a minimum unity-gain frequency of 200 MHz and a propagation delay of only 5 nanoseconds. The $\pm 1 \%$ settling time is 20 nanoseconds.

The Model 9918 is made by Optical Electronics, Inc. (P.O. Box 11140 , Tucson, $A Z$ 85734) and is functionally equivalent to the Teledyne-Philbrick 1435. It sells for $\$ 31.25$ in 100 unit quantities.

For what applications are ultrafast op amps suited? An important area is the amplification of video frequency signals. Fast bandwidth lightwave communications is another. Still another important application is very fast digital-to-analog conversion.


Stereo components, color TV's, computers, test instruments, electronics educational programs, amateur radio gear - things you've always wantecs, now ot low kit prices.

## Discover the fin of hit

 ould liny: It's a great way to relax in your spare time, resulting in beautiful things you'll be proud to have in your home. And it's easy. The famous Heathkit illustrated manuals make it easy for anyone to build reliable craftsman-like kits.

It costs nothing to discover the complete line of Heath electronic kits. Dont miss it. Clip and mail the coupron now.

## Heathkit

If coupon is missing, write: Health Company, Dept. 010-822 Benton Harbor, MI 49022

Send my free Heathkit Catalog now. I am not currently receiving your catało3.


# EXPERIMENTER'S CORNER 

## By Forrest M. Mims

## Experimenting with High-Speed Logic

HOW WOULD you like a flip-flop that can switch states 500-million times in a single second? Flip-flops this fast actually exist and are used in ultrafast computers, communication interfaces for computers, high-speed phase-locked loops, and high-performance controllers.

Ultrafast flip-flops are representative of a family of logic circuits characterized by nanosecond switching speeds. The family is called emitter-coupled logic or simply ECL.

I first became interested in ECL while pondering the possibility of measuring the time light takes to travel from a miniaturized laser transmitter to a nearby reflective surface and back. Dividing the elapsed time in half and multiplying the quotient by the speed of light gives the distance from the laser to the surface.

In one second, light travels $299,800,000$ meters, or $984,000,000$ feet, or 186,280 miles. Put another way, light tra.vels about one foot in one nanosecond ( $0.000000001 \mathrm{sec}-$ ond). Since I wished to measure the distance to objects a few feet, or few tens of feet, distant, na nosecond resolution would be required for successful use of the time-of-flight method.
lln a typical time-of-flight optical radar, the transmitter emits a fast-rising, very short light pulse while simultaneously enabling a high-speed counter. Reflected light from the target illuminated by the transmitted pulse is returned to a photodetector, then shaped and amplified. The resultant signal stops the counter. Half the elapsed time stored in the counter provides the time-of-flight from transmitter to target.

The fastest ECL gates change states in a nanosecond; thus $E C L$ is suitable for making the high-speed gate and counter of a time-of-flight optical radar. Though I have not yet designed a practical short-range time-of-flight system, I have experimented with a number of ECL circuits designed around a quad NOR gate. Before having a look at how they work, let's find out more about ECL.

A Typical ECL Gate. The circuit and logic symbol of a typical three-input ECL OR/NOR gate is shown in Fig. 1. Depending upon your point of view, you can think of the cir-


Fig. 1. An emitter-coupled logic (ECL) 3-input OR-NOR gate.
cuit as an OR gate with a complementary (NOR) output or a NOR gate with a complementary (OR) output.

In the instance of the OR gate, the complementary NOR output eliminates the necessity for an external inverter and avoids propagation delays that such an external inverter would add. In either case, the complementary outputs make possible a number of interesting design shortcuts which can reduce circuit complexity and gate count.'

In operation, input transistors $Q 1-Q 3$, together with $Q 4$, form a differential amplifier. The bias network composed of Q5. R5, R6, R9, D1, and D2 sets the switching threshold for the differential input amplifier.

If the base voltages at $Q 1, Q 2$ and $Q 3$ coincide with the voltage at the base of $Q 4$, then the current flow between $V_{C C}$ and $\mathrm{V}_{\text {ee }}$ will divide between the transistors. If, however, the


Fig. 2. Transfer curves of a typical
ECL gate. The difference between a high and a low is only about 0.85 volt.
voltage at input $\mathrm{A}(Q 1)$ is increased about half a volt above the reference voltage at the base of Q4, then $Q 3$ will turn on and the current flow will be diverted away from $Q 4$ and flow through Q3. The same applies to inputs $B(Q 2)$ and $C$ (Q3).

Output transistors $Q^{6}$ and $Q^{7}$ form a complementary pair that monitors each half of the differential amplifier. Should $Q 1 . Q 2$ or $Q 3$ receive an input signal of sufficient amplitude, $Q 7$ will be turned on. Otherwise, $Q 6$ is turned on. Since only one side of the differential amplifier can be on at any time, when $Q 6$ is on, $Q 7$ is off, and vice versa.

The transfer curves for a typical ECL gate are given in Fig. 2. These curves show both the switching thresholds and the high and low logic levels. Note that the difference between an EDL low ( -1.75 volts) and high ( -0.9 volt) is only 0.85 volt. This means a conventional ECL gate cannot be interfaced directly with TTL logic (where a low is less than 0.8 volt and a high is more than 2 volts). Instead, special ECL circuits called TTL translators must be used to interface ECL with TTL.

Note that the ECL logic levels in Fig. 2 are negative voltages. This is in accordance with the ECL convention in which
$\mathrm{V}_{C C}$ is at ground potential and $\mathrm{V}_{E E}$ is -5.2 volts. This convention can be reversed so that $\mathrm{V}_{\mathrm{EE}}$ is at ground potential and $\mathrm{V}_{\mathrm{CC}}$ is +5.2 volts. However, maintaining $\mathrm{V}_{\mathrm{CC}}$ at ground potential provides much better noise immunity since any $\mathrm{V}_{\mathrm{EE}}$ power supply noise becomes a common-mode signal that is cancelled by the differential input amplifier.

ECL Advantages. The principle advantage of ECL is its speed, but it offers other benefits also. One is the very desirable combination of high input impedance and low output impedance. This means a single ECL gate output can drive many ECL inputs. In other words, ECL has a large fanout capability.

Another important advantage of ECL is its ability to drive transmission lines and twisted pairs directly. This is a result of the open emitter output at an ECL gate (see Fig. 1).

Still another ECL advantage is that unused inputs need not be connected to $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$. This is because each input is connected internally to $\mathrm{V}_{\text {EE }}$ via a 50,000 -ohm resistor ( $R I-R 3$ in Fig. 1).

Finally, ECL chips have a nearly constant power-supply drain. This greatly simplifies power-supply design and reduces the possibility of noise transients on the supply lines during switching transitions.

Advantages and Drawbacks. ECL circuits have the potential of providing one-nonosecond switching times and propagations delays. Motorola, for example, makes a family of ECL chips called MECL III, having ultrafast operating speeds.

These ultrafast ECL chips require very careful design techniques to avoid uncontrolled oscillation, excessive ringing, and other problems associated with very fast pulses. Wrapped wire interconnections are not recommended, and the maximum length of an interconnection should be under one inch.
The 10,000 -series ECL made by Fairchild, Motorola, and other companies avoids some of the problems associated with


Fig. 3. The effects of an improper (left) and proper termination on a transmission line are evident in the noise on the output signal.
ultrafast ECL by purposely slowing switching times to several nanoseconds and stretching propagation delays to about two nanoseconds. These modifications allow 10,000 -series ECL to far exceed the speed of any other logic family while relaxing interconnection requirements. For example, wrapping wire can be used to interconnect 10,000 -series ECL chips so long as connections are less than eight inches in length.

Though 10,000 -series ECL is much easier to use than ultrafast MECL III, attention must still be given to interconnections. Each foot of interconnection inserts a delay of about two nanoseconds. This is approximately equivalent to the propagation delay of an ECL gate

Transmission lines such as coaxial cables and twisted pairs are ideal for interconnecting 10,000 -series ECL over dis-

latest edvance in high-performance antennas for
professional CB communications and major support for REACT *

Foymua orrs and our new Model M-710 Formula-1 shave ar identical engineering strategy sorincually retine a proven basic cresigh with one ociective. MAXIMUM POSSIBIE PERIORMANCE

- Precision-wound waterproot coil. Lifetime burnout guarantee
- Factory tuned: set-screw ultra-tine tuning
- Longer whip for more reach
- Tapered stànless steel whip minimizes range-robbing wind deflection
- Antl-static whip ball-1ip
- New quarter-turn quick disconnect lite tested over 2.500 times
- Easy to install. 17' pre assembled cable, miniature in-line connector, contourforming protective mounting gasket. hardware for both root-top or trunk-lip mounting
- 5-year limited warranty


New formula-t Magnet Mount

Now available- Model M-711 formule-1 antenna with heaviest. toughest magnet base available.
the antenna specialists co.

a member of The Allen Group inc 12435 Euclid Avenue. Cleveland. OH 44106 International Div.: 2200 Shames Dr. Westbury, L.I. New York 11590 Canada A. C. Simmonds \& Sons, Ltd.
\$ormula-1 contributes more than just performance: To encourage CB for serious highway communi cations, we re donating $\$ 100$ to REACT Inter national tor every Formula-1 purchased in 1981 Join REACT Get involved Ask your dealer.
tances of up to 1,000 feet. But if the line is not properly terminated, transmitted pulses will be distorted by considerable leading and trailing edge ringing. Since an ECL output is an uncommitted open emitter, an external resistor to $\mathrm{V}_{\mathrm{EE}}$ must be added. In a properly terminated transmission line, this resistor is inserted at the receiving end rather than the transmitting end. Figure 3 shows the effects on a transmitted pulse under both configurations.


Fig. 4. Pin layout and infernal schematic diagrams of the 10102 ECL quad NOR gate.

Experimenting with an ECL Quad NOR Gate. A good way to learn about ECL firsthand is to experiment with the 10102 quad 2 -input NOR gate. The pin outline for the DIP version of this gate is shown in Fig. 4. As in TTL gate packages, pins 8 and 16 are reserved as power-supply terminals. Pin 1 is also used as a power-supply terminal.

The pin connections to the individual gates are unlike those of any comparable CMOS or TTL gate package. Note in particular how the outputs from two gates cross over the inputs of the two adjacent gates

Finally, note that one of the 10102 gates has complementary outputs. This will give you an opportunity to experiment with this unique feature of ECL gates should you wish to go beyond the simple circuits that follow.

A 78-MHz Oscillator. A straight-forward ECL ring oscillator patterned after similar TTL versions is shown in Fig. 5. The only significant difference is the addition of the required pull-down resistors ( $R I-R 3$ ) at each ECL output.

I assembled this simple circuit on a standard solderless breadboard using short lengths of point-to-point connection wire. Power was supplied by a standard TTL power supply.
The output from this oscillator is a 1.6 -volt sine wave riding on a 2.6 -volt de level. This means that, while the circuit will easily drive an LED, compensation for the de level must be provided or the LED will be saturated.

An Ultrafast Schmitt Trigger. The Schmitt trigger is a bistable (two-state) logic circuit with a host of useful applications. Typical uses include threshold detection, signal conditioning, and sine-to-square-wave conversion. Figure 6 shows a Schmitt trigger designed after a standard two-inverter TTL version. The chief difference is that the ECL version in Fig. 6 switches on in about 10 na noseconds.


When the signal at the input of the Schmitt trigger is below the circuit's switching threshold, the output is a dc level of 3.0 volts. When the input signal exceeds the circuit's switching threshold of about 3.6 volts, a very fast rising pulse with an
amplitude of 0.85 volt is superimposed over the de output. Like the oscillator in Fig. 5, the Schmitt trigger was assembled on a standard solderless breadboard using short point-to-point connections. Figure 7 shows the response of the

Fig. 5. Schematic of a $78 \cdot \mathrm{MHz}$ ring oscillator using ECL. A pull-down resistor is required at each ECL output.


Fig. 6. A Schmitt trigger using ECL is similar to a standard two-inverter TTL version except that it switches on in about 10 ns .

## 何 <br> A Subsidiary of United Products, Inc.

Electronic Sales, Inc.
Phone (206) 682-5025 (in Wash. State) 2300 First Ave., Seattle, Washington 98121



## Sin

Suophey yrt soes






FLOPPY DISC DRIVES WOW!!!

For Phone Orders:

## TOLL FREE HOT LINE 1-800-426-0634

For Areas Outside Of Washington State (Inciuding Alaska \& Hawaii)
TERMS: All orders shipped (usually within 24 hours) / Minimum order \$10.00/U.S. Funds Only/Open account to schools and government agencies / All orders shipped U.PS. or P.O. Add $10 \%$ (postage \& handling) for orders under $\$ 100.00 /$ For orders greater than $\$ 100.00$, well pay the freight / Back ordered items shipped prepaid / Washington state residents add $5.4 \%$ sales tax / Mastercard \& Visa accepted / C.O.D.'s add $\$ 2.00$ extra.
We reserve the right to limit quantities / All items subject to prior sale / We reserve the right to substitute manufacturers.
(hp) HEWLEETY


## Texas Instrum <br> Ti-88/4 A Home Comp NEW KEYBOARDI

Retail Your Cosr
 $250.00 \quad 2595.00$

KEYBOARDI $\$ 950.00 \$ 359.95$ \begin{tabular}{lll}
TI. 59 Progimble calculator \& 295.00 \& 179.95 <br>
\hline

 TI. 58C Progrmble calculator 

PC 100 C Printer/plotter for $59 / 58$ \& 225.00 \& 149.95 <br>
\hline

 NEW1 Calculator Watch w/Alarm TI 810.11 Ti 584.11 Alarm Chron. Dual Time Zone $\begin{array}{rr}295.00 & 259.95 \\ 450.00 & 2089.95\end{array}$ $\begin{array}{rr}2450.00 & 2089.95 \\ 750.00 & 679.95\end{array}$ 

750.00 \& 679.95 <br>
\hline 950.00 \& 3295

 $\begin{array}{lr}150.00 & 129.95\end{array}$ $1300.00 \quad 1149.95$ $2050.00 \quad 1699.95$ 

325.00 \& 259.95 <br>
\hline
\end{tabular} $\begin{array}{ll}25.00 & 259.95 \\ 50.00 & 188.95\end{array}$ATARI Computer Retal your Cos

| 400 SPECIAL PRICE! 16 K | 595.00 | 339.95 |
| :--- | ---: | ---: |
|  | 54.95 |  |ATARI VIDEOTAPES

$\$ 131.95$

216 S. Oxford Ave. anple computer APPLE CDMPUTERS $118 \|$
 18K-32K-48K-64K-128K Graphics tablet
Drive Drive with controller DOS 3.3 and others 80 column cards VisiCalc and more and more We have the best prices on Apple computers in America - "CALL US!
SEIKO (USA) WATCHES -(Limited Curtent models 8 MORE! Dtfer! These models guaranteed by Seiko anywhere Your

within USA \begin{tabular}{lll}
within USA \& \& Retail Cost <br>
FJ113 Divers watch, 300 Ht S/S <br>
\hline 195.00 \& 79.95

 $\begin{array}{lllll}\text { FJ113 } & \text { Divers watch, } 300 \mathrm{ft} \text {; } \mathrm{S} / \mathrm{S} & 195.00 & 79.95 \\ \text { YH006 Ladies quartz } & \text { LCD } \\ \text { Yldtre } & 295.00 & 79.95\end{array}$ $\begin{array}{lllll}\text { YH006 Ladies quartz } L C D \text {, gldtre } & 295.00 & 79.95 \\ \text { YH002 Ladies quartz LCD, gldine } & 250.00 & 74.95\end{array}$ $\begin{array}{llll}\text { YH002 } & \text { Ladies quartz LCD, gldine } & 250.00 & 74.95 \\ \text { YH016 Ladies quartz LCD, gldine } & 225.00 & 69.95\end{array}$ $\begin{array}{lllll}\text { YH016 Ladies quartz LCD, gldine } & 225.00 & 69.95 \\ \text { YH003 Ladiaf quartz LCD, slvrtne } & 215.00 & 69.95\end{array}$ And many morecompare our prices with the nenrest Seiko dealer. CA 90 Calc/stopwch watches We will beat on moricel on Casio, 

Your <br>
Cost <br>
44.95 <br>
\hline 5.95
\end{tabular}

 W 100 Oivers stopweh 300 ft wir tes \& more $\begin{array}{lll}\text { W } 150 C \text { Oivers stopwch } 300 \text { it wit res } S / S \text { case } & 49.95 \\ W & 150 & \text { Oivers soowch } 300 \text { it }\end{array}$ \begin{tabular}{|l|l|l|}
\hline W 150 Divers stopwch 300 fi wit res all metar \& $\mathbf{5 3 . 9 5}$ <br>
\hline MATTEL IMTELLIVISION \& Retail $\$ 325.00$ <br>
\hline

 

\hline MATTEL INTELLIVISION \& Retail $\$ 325.00$ <br>
Most enimated TV <br>
\hline
\end{tabular}



MANY NEWITEMS FROM SONY- CAII AT OISCOUNTED PRICES! call for PAPER TIGER EPSON DIABLO SANYO CORVUS OHIO SCIENTIFIC \& otc., otc., stc AMDER(Leedex) Quality Monitors $100 \quad 12^{\prime \prime} \mathrm{BNW} .12 \mathrm{MHz}$ $\begin{array}{ll}100 . \mathrm{G} & 12^{\prime \prime} \text { Graen, } 12 \mathrm{MHz} \\ 300-6 & 12^{\prime \prime} \text { Graen. } 18 \mathrm{MHz}\end{array}$
 input audio Np esper 449.00339 .95 or II $13^{\prime \prime}$ Color RBG input hi res graphics, speaker

## experimenter's corner

Schmitt trigger to a triangular waveform while Fig. 8 is an expanded view of the Schmitt trigger's output showing a rise and fall time of about 10 nanoseconds at the $10 \%-90 \%$ points.

Other ECL Chips. If you would like to try some more sophisticated ECL circuit designs, a wide variety of standard ECL chips is available. The 10,000 series, for example, includes many different gate packages, flip-flops, decoders, encoders, memories, and other functions

In the past, some of the parts suppliers who advertise in this magazine have carried some ECL chips. Recently, however, I haven't noticed any ECL chips in their ads. If you have trouble locating a supplier for ECL chips, try manufacturer's rep-


Fig. 7. Response of circuit in Fig. 6 shows fast rise and fall times.


VOLTS/DN.
$A=2$
$B=$
TIME/DIV: 20 ns
Fig. 8. Expanded view of the output of Fig. 6 with 10 -ns rise and fall times.
resentatives. Most big cities have a number of such representatives who can order chips for you. They may even be in stock. Signetics, Motorola, Fairchild, and other companies make ECL chips.

Summing Up ECL. This column provides only a very elementary introduction to ECL. For more information, visit any technical library and review books on digital logic which cover ECL. Even better, get a copy of Fairchild's The ECL Handbook. Another excellent manufacturer's handbook is Motorola's MECL High-Speed Integrated Circuits. A wide range of ECL application notes is also available from the various ECL manufacturers. If you have technical questions about ECL circuit design, be sure to contact the manufacturers or their representatives directly. Because of the volume of mail this column receives, I am unable to provide custom designs.

4:00-4:15 a.m. 4:00.4:30 a.m. 4:00-5:30 a.m. 4:00.5:00 a.m. 4:15-6:00 a.m.

4:30-5:30 a.m. 4:30.5:30 a.m. 5:00-5:15 a.m. 5:00.5:15 a.m. 5:00.5:30 a.m. 5:00-6:00 a.m. 5:00.6:00 a.m. 5:00-6:00 a.m. 5:00.fade out 5:00-8:00 a.m. 5:00-11:02 a.m 5:10-12:00 a.m 5:15-5:55 a.m. 5.20-5:30 a.m. 5:28-8:00 a.m. 5:30.6:30 a.m. 6:00-6:15 a.m. 6:00.6:30 a.m. 6:00-6:30 a.m. 6:00.6:56 a.m. 6:00-7:00 a.m. 6:00-7:00 a.m. 6:00-7:30 a.m. 6:00-7:50 a.m. 6:00-8:00 a.m. 6:00-8:30 a.m.

6:00-9:00 a.m. 6:00-10:00 a.m 6:00-12:00 a.m 6:15.6:30 a.m. 6:30-6:55 a.m. 6:30.7:30 a.m. 7:00-7:15 a.m. 7:00.7:20 a.m. 7:00-7:20 a.m.

7:00-7:30 a.m. 7:00-7:30 a.m.

7:00-7:30 a.m. 7:00-7:30 a.m. 7:00-7:30 a.m. 7:00-7:30 a.m. 7:00-7:45 a.m. 7:00-7:55 a.m 7:00.8:00 a.m. 7:00-9:00 a.m.

7:20.7:50 a.m.

7:30.7:55 a.m 7:30-7:57 a.m 7:30-8:00 a.m 7:30.8:00 a.m 7:30.8:00 a.m 7:30.8:25 a.m

7:30.8:30 a.m 7:30.8:30 a.m 7:30-9:30 a.m 7:30-9:30 a.m 7:30-10:51 a.m 7:35-7:45 a.m 8:00.8:15 a.m 8:00.8:30 a.m 8:00-8:45 a.m

8:00.9:00 a.m. 8:00-10:57 a.m 8:00.11:00 a.m. 8:00.12:00 a.m.

8:30-9:00 a.m.
0900.0915 BBC
0900.0915 R. Japan ${ }^{4}$ 0900-0930 UN Radio $0900 \cdot 1030$ R. Australia 0900-1000 AFRTS, Las Angeles 0915.1100 BBC

0930-1030 R. Japan 0930.1030 V. of Germany 1000.1015 UN Radio 1000-1015 R. Japan 10001030 V. of Vietnam $1000 \cdot 1100$ R. Korea 1000.1100 All India Radıa 1000-1100 AFRTS, Los Angeles 1000 R. Australia 1000-1300 R. Moscow (via Cuba) 1000-1602 ABC, Perth 1010-1700 V. of Nigeria 1015-1055 UAE Radio, Dubai 1020-1030 V. of Guatemala 1028-1300 CBC Northern Service 1030-1130 Sri Lanka Br. Corp. 1100-1115 R.Japan 1100.1130 V. of Vietnam $1100-1130$ R. Mogadishu 11001156 R. RSA 11001200 V. of Asia, Taiwan 1100-1200 AFRTS, Los Angeles 1100-1230 TWR-Bonaire 1100-1250 R. Pyongyang $1100-1300$ R. Australia 1100-1330 BBC

| $1100-1400$ | 4VEH, Haiti |
| :--- | :--- |
| $1100-1500$ | VOA |
| $1100-1700$ | AFRTS, Los Angeles |
| $1115 \cdot 1130$ | Vatican R. |
| 11301155 | R. Nacional, Angola |
| 11301230 | R. Thailand |
| 12001215 | V. of Kampuchean People |
| $1200-1220$ | Vatican R. |
| 12001220 | R. Canada International |
|  |  |
| $1200-1230$ | Kol Israel |
| $1200-1230$ | R. Finland |
|  |  |
| $1200-1230$ | R. Norway |
| $1200-1230$ | R. Tashkent |
| $1200-1230$ | R. Japan |
| 12001230 | HCjB, Ecuador |
| $1200-1245$ | V. of Germany |
| $1200-1255$ | R. Peking |
| $1200-1300$ | V. of Turkey |
| $1200-1400$ | f. Moscow Wartd Service |
|  |  |
| $1220-1250$ | R. Ulan Bator, Mongolia |


| 1230-1255 | R. Tirana |
| :--- | :--- |
| 1230-1257 | Austrian R. |
| $1230-1300$ | R. Sweden |
| 1230-1300 | BBC (English by radio) |
| 1230-1300 | R. Bangladesh |
| 1230-1325 | R. Finland |
|  |  |
| 1230-1330 | R. Korea |
| 1230-1330 | R. Maldives |
| 1230-1430 | HCJB, Ecuador |
| $1230-1430$ | SLBC, Sri Lanka |
| $1230-1551$ | WYFR. Family Radif |
| $1235-1245$ | V. of Greece |
| $1300-1315$ | R. Japan |
| $1300-1330$ | R. Bucharest |
| $1300-1345$ | R. Berlin Internationat |
| $1300-1400$ | R. Australia |
| $1300-1557$ | R. RSA |
| $1300-1600$ | CBC Southern Service |
| $1300-1700$ | WYFR, Family Radio |
| $1300-2300$ | CBC Northern Service |
| $1315-1345$ | Swiss R, International |
| $1330-1400$ | R. Finland |

15070, 11955, 11750,9640 9510, 6195
15195, 9505
15250, 9565, 9350-SSB (Tue.Sat.)
$590,9530,6030$
$17790,17695,15070,(21660$ Sat. \&
Sun. and daily from 1030)
15235, 11840 $\dagger$
17780, 11850
15250, 11090-LSBT, 9565 (Sat.)
9505
12036, 10080
15575, 11725, 9870, 9570
17875
11805, 9700, 9590, 9530, 6030
6045, 5995
9600, 600
9610,6140
15120
21700, 21640, 21625
6180, 640 (time varies widely)
9625, 6065 (not all Eng.)
17850, 15120, 11800. (not all Eng.)
9505
12036, 10080
9585
25790, 21535
5980 (Sun. 1030-1040)
6030
11815 (Sat. \& Sun. $1100 \cdot 1330$ )
9977
9580, 17795
25650, 21710, 21660,
21550, 11775, 11750,
9740, 9510, 6195
11835, 9770
11715, 9565
15430, 15330, 11805, 9700
21485, 17840 (not Sun.)
11955, 9535 (Mon. Fri.) (irreg.)
11905, 9655
11938,9694 (vary)
21485, 17840 (not Sun.)
17820, 15440, 1 1955, 9650
(Mon.-Fri.)
25640, 21675, 21600, 17612.5
15400, 17800 tone hour later
from Sept. 27)
25730, 21730,25615 (Sun.)
$15460,11785,9750,9715,5950$
9505
26020, 15115, 11740
21600, 17875, 17765, 15410
15520
$9560 \dagger$
$1740,15150,15135,12030$,
11720,9750,9580
12070 or 11825,6383 or 4850
or 7235 t (not Sun.)
11960,9515
$21655 \dagger$
21690, 21635
21695
21670, 15285
17800, 15400 (Sun.) (one hour later from Sept. 27)
11830,9570
4754
26020, 17890, 15115, 11740
15425, 9720
21545, 17785 (Sun. only) 21455, 17830, 11730 (Man. Fri.) 9505
17850, 15250, 11940
$21540,21465,17700$ (one hour
later from Sept. 27)
11705, 9770, 6080
25790, 21535, 15220
17820, 11955 (Sun.)
A 9535 ur 11830 ( 15365 from 1500)
B.C 11720, 9625 (not all Eng.)

B $\quad 21570,21520,17850,17830$
B 21475, 15400 (one hour later
from Sept. 27)




SEE YOUR DEALER TODAY

DEMAND THE ORIGINAL
'Firestik'
The \#1 Hellically Wire-Wound and Most Copied Antenna In the World 27MHz AM/FM/SSB CB 2 METER - MARINE TELEPHONE LAND MOBILE TELEPHONE FIBERGLASS ANTENNAS AND ACCESSORIES. ANTENNA
INCREASES DISTANCE 5 TO 20 TIMES

Dealer \& Distributor Inquiries Invited SEND FOR FREE CATALOG
'Firestlk' Antenna Company
2614 East Adams/Phoenix. AZ 85034
Name
Street

State

5-YEAR REPLACEMENT WARRANTY

8:30.9:00 з.m 8:30-9:00 a.m. 8:30-9:20 a.m. 8:30.9:30 a.m 8:30-9:30 a.m. 8:30.10:00 a.m. 8:30.11:00 a.m.

8:30-11:00 a.m.
8:30 a.m. Fade 8:30 a.m. 5:00 p.nn.

8:57.11:55 a.m. 9:00.9:15 a.m. 9:00.9:30 a.m. 9:00-9:30 a.m. 9:00-9:30 a.m. 9:00-9:30 am . 9:00-10:00 a.m.

9:00-10:00 a.m. 9:00-10:00 a.m. 9:00-12:30 a.m. 9:30-10:00 a.m. 9:30.10:25 a.m. 9:30.11:00 a.m. 9:30-11:00 a.m. 9:30 a.m. -500 p.m 9:35-10:20 a.m. 10:00.10:15 a.m. 10:00-10:30 a.m. 10:00-11:00 a.m 10:00.11:00 a.m
10:00.11:00 a.m. 10:00.11:00 a.m.

10:00.12:30 a.m. 10:30.11:00 a.m. 10:30.11:00 a.m. 10:30.11:00 a.m 10:30-11:30 a.m. 10:35 10:45 a.m 10:45.11:00 a.m. 11:00.11:15 a.m. 11:00.11:15 a.m. 11:00-11:15 a.m 11:00.11:30 a.m
11:00.11:30 a.m. 11:00-12:00 a.m. 11:00.12:00 a.m.

## 1330-1400 BRT. Belgium

 1330-1400 NYAB, Bhutan 1330-1420 R. Nederland 1330-1430 V. of Turkey 1330-1430 V. of Vietnam 1330-1500 All India R. $1330-1600$ BBC| $1330-1600$ | R. Malaysia Sabah |
| :--- | :--- |
| 1330 | R. Australia |
| $1330-2200$ | R. Moscow World Service |
|  | (via Cubal |
| $1357-1655$ | V. of Philippines |
| $1400-1415$ | R. Japan |
| $1400-1430$ | R. Sweden |
| $1400-1430$ | R. Norway |
| $1400-1430$ | V. Rev. Party, N. Korea |
| 1400.1430 | R. Tashkent |
| $1400-1500$ | R. Moscow World Service |
|  |  |
| $1400-1500$ | R. Malaysia Sarawak |
| 1400.1500 | V. of Indonesia |
| 1400.1730 | R. Australia |
| 1430.1500 | KTwR, Guam |
| 1430.1525 | R. Nederland |
| 1430.1600 | HCJB, Ecuador |
| 1430.1600 | Burma Br. Ser. |
| $1430-2200$ | UN Radio |
| 1435.1520 | R. Nepal |
| 1500.1515 | R. Japan |
| 1500.1530 | V. of Asia, Taiwan |
| 1500.1600 | V. of Rev. Ethiopia |
| $1500-1600$ | V. of Nigeria |
| $1500-1600$ | BBC |
| $1500-1600$ | R. Moscow World Service |

1500.1730 BSHKJ, Jordan

1530-1600 R. Afghamistan 1530-1600 R. Yugoslavia 1530-1600 Swiss R. Internationad 1530-1630 V. of Vietnam 1535.1545 V. of Greece 1545-1600 R. Canada Internationak 1600-1615 R. Japan 1600-1615 Vatican R. 1600-1615 R. Pakistan 1600-1630 R. Norway 1600-1630 R. Portugal 1600-1700 R. Korea 1600-1700 R. Moscow World Service

11:00 a.m. 12:09 a.n. 1600-1709 BBC 11:00 а.m. 6:00 р.m. 1600.2300 VOA

11:05-11:55 a.m.
1605-1655 R. France International
11:10-11:55 a.m 11:30 a.m.

11:15-12:00 a.m. 11:45-12:00 a.m. 11:45-12:45 p.m 12:00-12:15 p.m 12:00.12:30 p.m 12:00-12:45 p.m. 12:00-1:00 p.m.

12:00-1:00 p.m. 12:00-1:00 $\rho \mathrm{mm}$.

12:00.3:00 $\rho . m$. 12:00 4:00 p.m. 12:00.5:00 p.m.

| 12:09.12.45 p.m. | 1709-1745 | B8C |
| :---: | :---: | :---: |
| 12:15.1:05 p.m. | 1715-1805 | V. of Germany |
| 12:45-3:00 p.m. | 1745-2000 | BBC |
| 12:45-5:30 $\mathrm{pm}$. . | 1745-2230 | All India R. |
| 1:00.1:15 p.m. | 1800-1815 | R. Japan |
| 1:00.1:30 p.m. | 1800.1830 | R. Canda Internstional |
| 1:00 1:30 p.m. | 1800.1830 | R. Norway |
| 1:00-2:00 p.m. | 18001900 | V. of Vietnam |
| 1:00-2:00 p.m. | 1800.1900 | R. Moscow World Service |
| 1:00.2:00 p.m. | 18001900 | WYFR, Family Radio |
| 1:00.2:00 p.m. | 1800.1900 | $V$. of Nigeria |
| 1:003:00 p.m. | 18002000 | R. Australia |
| 1:004:00 p.m. | 1800-2100 | R. Kuwait |
| 1:00-5:00 in.m. | 18002200 | AFRTS, Los Angeles |

4692 (Wed. \& Fri.)

17605

## 15125

12036, 10080
15335, 11810
B.C $25650,21710,21660,21550,21470$,

15400 (from 1430), 15070
5980. 4970

C 6060
11840 or 11860
9578 (Sun. 1555 ) (not all English)
9505
21615
25730, 21730, 17795 (Sum. 2nly)
4557.4109

15460, 11785, 9750, 9715, 5950
15150, 15135, 12030, 11900 .
$11720,9750,9580$
C $\quad 7160.4950$
15200 or 15150,11790
17795,9770, 9710
11945
21480, 15560, 11740
26020, 17890, 15115
5985, 5040
21670, 15410 (when in session)
3425 or 7105 or 9589
9505
5980 (not Sun.)
9560
11770 (varies)
17830, 15260 (Sat, Sun)
12010, 24020, 12050,
11900, 11720, 9580
D 9560
D 4775 or 6230
15300, 15240
21570.17830.15125

C 11840,10040
21455, 17830, 11730 (Mon. Fri.)
21695, (17820 Mon. Sat.), 15325
9505

## 17730

21757, 21605, 21486, 17910, 17660
25730, 25615, 17795 (Sun. only)
21530 or 21475 (not Sun.)
11830,9720
24020, 15240, 15150, 12050,
12030, 11900, 11720
21710.17830. 15260

A 26040, 21660, 21485, 17870,
( 15250 from 1900)
15445, (15410 to 2200)
B $\quad 25820,21620,21580,21515,17860$ (one hour latei trom Sept. 27)
C 21810 (one hour later from Sept. 27)
C 11940.5052.5010
(tade in time varies)
B $\quad 21700,21655,21625$
A $21695,17820,15325$
15500. 11672 †

9505
26020, 21480,17790
17695
A $15455,15425,15240,15150$.
12050, 12030. 11960, 11900
$17765,15430,15345,15330,11805$
A 21615.21465, 17845.
15440. 15365, 11830

C 11835,9770 (Sun.)
C 11856 (varies)
B $\quad 17785,15205,11760,9760$,
( 15140 from 1830)
17830, 15260 (Sat. \& Sun.)
C 21600
$\{21710$ to 1830\}, 15400, 15070, 120§5
11620
9505
17820, 15260 (Sat. \& Sun. 1900)
25730, 21655,17875 (Sun. only)
10040. 15010

A $\quad 17700,15455,15425,15240.15150$.
12050, 11960, 11900, 11700
A $21615,15440,15365,11830$
C $\quad 15120,17800$
17795
11650
$21570,17765,15430,15345,15330$

| 1:15.1:45 p.m. | 1815:1845 | Swiss R: International | c | $\begin{aligned} & 21570 \text { or } 21520,17850,17830 \text {, } \\ & 15415 \text { or } 15305 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1:15-2:15 p.m. | 1815.1915 | R. Bangladesh | 0 | 15285, 11765 (both vary) |
| 1:301:35 p.m. | 1830-1835 | UN Radio | A | $21670,18782.5$ SSB, 17740 (Mon.Fri.) |
| 1:30.1:57 p.m. | 1830.1857 | Austrian Radio | c | 15560 (Sun. from 1805) |
| 1:30.2:00 p.m. | 1830.1900 | V. of Revolution, Guinea | c | 15309 (varies) 9650 (Mon. Wed. and Fri.) (irregular) |
| 1:30 4:00 p.m. | 1830-2100 | WRno. New Orieans | A | 15175 |
| 2:00-2:30 p.m. | $1900 \cdot 1930$ | R. Japan | B | 17755 |
| 2:00-2:30 p.m. | 1900-1930 | R. Canada International | A | 21695, 17875, 15325 (Sat. \& Sun. 2000 17820, 15260 (Mon. Fri.) |
| 2:00-2:30 p.m. | 1900-1930 | R. Alghanistan | C | 15079 (varies) or 17742t, 9665 |
| 2:00-2:45 p.m. | 1900-1945 | UN Radio | A | 21670, 15300 (Mon.Fri.) |
| 2:00.3:00 p.m. | 1900.2000 | HCJB, Ecuadar | C | 26020, 21480, 17790 |
| 2:00.3:00 p.m. | 19002000 | WYFR, Family Radio | A | 21615,17845, 11830 |
| 2:00.3:00 p.m. | $1900 \cdot 2000$ | R. Nacional, Brazil | C | 17810, 15125 |
| 2:00-3:00 p.m. | $1900 \cdot 2000$ | R. Moscow Worid Service | A | 17700, 15455, 15150. 12050, 11960 |
| 2:30-3:30 p.m. | 19302030 | V. of Ifan | D | 9022 |
| 2:35.5:00 p.m. | 1935.2200 | TIFC, Costa Rica | c | 9645 (Sun.) |
| 2:45.4:15 p.m. | 1945-2115 | R. Free Grenada | c | 15104 (time varies and irregular) |
| 3:00-3:15 p.m. | 20002015 | R. Japan | B | 17755 |
| 3:00.3:30 p.m. | $2000-2030$ | R. Noway | C | 25730, 25615,21730 (Sun.) |
| 3:00-3:30 p.m. | 2000-2030 | R. Algiers | c | Some of: 25700, 25680, 21725. <br> 21635, 17745, 15365, 15307, 11810 |
| 3:00-3:30 p.m. | $2000-2030$ | R. Canada international | A | 21630, 17875, 17820, 15325 (Man. Fri.) |
| 3:00-3:30 p.m. | $2000 \cdot 2030$ | Kol Israel | C | 21675, 21495, 17685, 17645, 15582.6 |
| 3:004:00 p.m. | $2000 \cdot 2100$ | R. Mascow World Service | A | $\begin{aligned} & 17700,15425,15150,15100 \text {, } \\ & 12050,11960,7390 \end{aligned}$ |
| 3:004:00 p.m. | 2000-2100 | WYF R, Family Radio | A | 21615. 21525. 15440, 15365, 11830 |
| 3:004:15 p.m. | 20002115 | BBC | B | 21560, 15260, 15070, 11750 |
| 3:00.7:00 p.m. | 2000-2400 | R. Moscow (via Cuba) | 'C | 600 |
| 3:104:40 p.m. | 2010-2140 | R. Habana Cuba | A | 15155 or 11920 |
| 3:15-3:30 p.m. | 20152030 | Sri Lanka Br. Corp. | C | 15120, 15115, 11800 |
| 3:30-4:15 p.m. | $2030 \cdot 2115$ | Int. Christ. Radio, Malta | C | 9510 |
| 3:30-4:20 p.m. | 2030.2120 | R. Nederland | 8 | 21685, 17695, 17605, 15220,9715 |
| 3:304:30 p.m. | $2030 \cdot 2130$ | V. of Vietnam | C | 15010, 10040 |
| 3:304:30 p.m. | 2030.2130 | V. Turkey | c | 9615 or 9725 |
| 3:504:00 p.m. | 20502100 | R. Free Europe | C | 21720, 17835, 15255, 15420 or <br> 15290, 11825, 9725, 9565 (Fri.) |
| 3:50.4:40 p.m. | 2050.2140 | R. Habana Cuba |  | 17750, 11725 |
| 4:004:15 p.m. | $2100 \cdot 2115$ | R. Japan | B | 17755 |
| 4:00-4:50 p.m. | 2100.2150 | R. RSA | B | 17780, 15155, 11900, 9585 |
| 4:00-5:00 p.m. | $2100-2200$ | V. of Nigeria | C | 15120, 17800 |
| 4:00.5:00 p.m. | 2100.2200 | R. Moscow World Service | C | $\begin{aligned} & 17700,15425,15240,15100,12050 \text {, } \\ & 11960,11750,11700,9700 \end{aligned}$ |
| 4:00.5:00 p.m. | 21002200 | WYF R, Family Radio | A | 21615, 21525, 15440, 15365, 9535 |
| 4:00.6:00 p.m. | 2100-2300 | WRNO New Orleans | A | 11890 |
| 4:00.6:00 p.m. | 2100.2300 | CBC Radio | A | 17875, 15325 (Mon.Fri.) |
| 4:15-5:00 p.m. | 2115-2200 | BBC | A | 21690, 15260, 15070, 9510, 6175 |
| 4:15-5:45 p.m. | 2115-2245 | R. Cairo | C | 19610, 9805 (time may shift one hour later) |
| 4:15-7:30 p.m. | 2115-2430 | R. Free Grenada | B | 15045 (time varies) |
| 4:30-5:00 p.m. | $2130-2200$ | R. Canada International | A | 17820, 15150, 11945 (17875. <br> 15325 Sat. \& Sun.) |
| 4:30.5:00 p.m. | 2130-2200 | KGEI, San Francisco | c | 15280 |
| 4:30-5:00 p.m. | 2130-2200 | HCJB Ecuador | C | 26020, 21480, 17790t, 15305 $\dagger$ |
| 4:30.5:00 p.m. | 2130-2200 | R. Sotia | B | 15135, 11750, 11720 |
| 4:30-5:30 p.m. | $2130-2230$ | R. 8 aghdad | c | 9745 |
| 4:40.5:40 p.m. | $2140-2240$ | V. of Free China | $c$ | 17890, 15270, or 15210, 11825 |
| 4:45.5:15 p.m. | 2145.2215 | Swiss R. International | c | 21585, 21520 or 17830, 17850, 15305 |
| 4:55 p.m.-1:30 a.m. | 21550630 | R. New Zealand | $\bigcirc$ | 17860 |
| 5:00-5:15 p.m. | 2200-2215 | R. Japan | 8 | 17755, (via Portugal 15425t) |
| 5:00-5:30 p.m. | 2200-2230 | R. Argentina | 0 | 11710 (Mon. Sat.) |
| 5:00-5:30 p.m. | 2200-2230 | R. Norway | C | 17795, 15135, 15345 (Sun. only) |
| 5:00.5:30 p.m. | 2200-2230 | R. Vilnius | 8 | 17870, 17845, 15100, 12060, 11735 (one hour later from 0 ct . 11 |
| 5:00.6:00 p.m. | 2200.2300 | WYF R, Family Radio | A | 21525, 15440, 15365, 11875, 9535 |
| 5:00-6:00 p.m. | $2200-2300$ | R. Moscow | A | $\begin{aligned} & 21560,17760,17700,15425,12050, \\ & 11850,11770,11750,11720,11700, \\ & 9760,9720,9685,9665,9610 \\ & \text { (until Oct. 1) } \end{aligned}$ |
| 5:00-6:00 p.m. | 2200.2300 | $V$ of Turkey | B | 9725, 7215t |
| 5:00-6:00 p.m. | $2200 \cdot 2300$ | R. Clarin, Dom. Rep. | B | 11700 (Sat. \& Sun.; irregular) |
| 5:00.6:00 p.m. | $2200-2300$ | BBC | A | 21690, 15420, 15260, 15070, 11750 , 9590, $9510,6175,6120$ |
| 5:00-7:00 p.m. | 22002400 | CBC Southern Service | A | 9755, 5960 (Sat. 2200-2230; <br> Sun. 2200-2300) |
| 5:00.7:00 p.m. | 2200.2400 | AFRTS, Los Angeles | A | 25615, 21570, 15430, 15345, 15330 |
| 5:00.11:30 p.m. | 2200.0430 | VOA | A | $\begin{aligned} & 21460,17740,(26000-2400) . \\ & (17820.0100) \end{aligned}$ |
| 5:15.5:30 p.m. | 2215.2230 | UN Radio | A | 15240, 11830 or 11920 (Man. Fri.) |
| 5:15.5:30 p.m. | 2215.2230 | R. Yugoslavia | A | 9620 |
| 5:30-6:00 p.m. | 2230.2300 | Kol lisreel | A | 21710, 15583, 11638, 9815 |
| 5:30-6:00 p.m. | $2230 \cdot 2300$ | R. Nacional, Angola | 0 | 11955,9535 (Man. Fri.) (Irreg.) |
| 5:30-6:25 p.m. | 2230.2325 | R. Mexico | B | 15430 (Sun., time varies) |
| 5:30-6:30 p.m. | 2230-2330 | R. Sofia | B | 15330, 15110 |
| 5:45-6:30 p.m. | 2245.2330 | SODRE, Uruguay | c | 11885 (time varies) |
| $\begin{aligned} & \text { 6:00.6:30 p.m. } \\ & \text { 6:00-6:30 p.m. } \end{aligned}$ | $2300 \cdot 2330$ 2300.2330 | R. Japan | C | $\begin{aligned} & 17755 \\ & 11705,9695 \end{aligned}$ |



## Casil

converiths AND OTHF:
SMASHING A! L SALES RECORDS - OUR NEW
30 CHANNEL CABLE TV CONVERTER:

 $39^{98}$

## HOT NEW IMPORT! REMOTE CONTROL 30 CHANNEL CABLE TV CONVERTER

89"

onloft sw tch an
fine tuning contr
No. 353VA275


ETCOMKII WIRELESS
THE ULTIMATE CABLE TV CONVERTER


UNUSUAL FACTORY SURPLUS


FACTORY SURPLUS UHF TUNERS
195
Brand new production surplus
All solid state. Ideal for exper All solid slate. |deal tor exper-
Imenial work building, cable $T$
converters, etc. No. 35350.9


MINIATURE FM WIRELESS MICROPHONE


Hides in the palm of your
hhand Reception on any star
dard FM radio or iecelver. dard FM radio or
No. $353 \mathrm{VA4} 482$ 29"5
QUARTER-MILE WIRELESS MICROPHONE
 RECEIVER SYSTEM

dUMPING! NORELCO ENDLESS LOOP CASSETTES:


IN STOCK - THE MURA
CORDLESS TELEPHONE SYSTEM!


20 AMP REGULATED 12VDC POWER SUPPLY:


Etco Electronics
켜ECCTO


6:00-7:00 p.m. 6:00.7:00 p.m 6:00.7:00 p m 6:00.7:30 p.m

6:00-7:50 p.m 6:00-8:00 p.m

6:00-9:00 p.m. 6:00-12:07 p.m. 6:30-7:00 p.m. 6:30.7:00 p.m.

6:30-7:00 p.m 6:45-7:45 p.m 7:00-7:15 p.m. 7:00-7:25 p.m. 7:00.7:30 p.m. 7:00.7:30 p.m 7:00-7:30 p.m 7:00.7:30 p.m 7:00.7:45 p.m.

7:00-7:55 p.m. 7:00.8:00 p.m 7:00.8:00 p.m 7:00.8:00 p.m. 7:00.9:00 p.m. 1:00.9:00 p.m.

7:00-12:00 p.m 7:00 p.m. $-4: 00$ a.m 7:05.8:55 p.m 7:15.8:00 p.m 7:158:00 p.m. 7:30-8:00 p.m. 7:30.8:00 p.m

7:30.8:00 p.m. 7:30-9:00 p.m 7:30-9:30 p.m 7:30-9:30 p.m.

7:35-9:30 p.m. 7:55.8:35 p.m 8:00-8:15 p.m 8:00.8:15 p.m 8:00.8:20 p.m. 8:00-8:25 p.m 8:00.8:30 p.m 8:00-8:30 p.m.

8:00.8:30 p.m

8:00-8:30 p.m. 8:00-8:54 p.m

8:00-8:55 p.m. 8:00-8:55 p.m. 8:00-9:00 p.m. 8:00-9:00 p.m.

8:00.9:00 p.m. 8:00.9:00 p.m. 8:00-10:30 p.m 8:00-11:50 p.m 8:20 p.m. 12:10 a.m 8:30-8:45 p.m. 8:30.8:57 p.m 8:30.8:55 p.m. 8:30.9:15 p.m.

8:30.9:30 p.m. 8:45-9:15 p.m. 9:00.9:15 p.m. 9:00.9:25 p.m. 9:00.9:30 p.m. 9:00-9:30 p.m. 9:00.9:30 p.m.

9:00-9:30 p.m.

9:00.9:40 p.m.

2300-2400 4VEH, Haiti 2300-2400 WYFR, Family Radio $2300-2400$ R. Mexico $2300-2430$ B8C
2300.2450 R. Pvongyang
$2300-0100$ R. Moscow
$2300-0200$ WRNQ, New Orleans 2300.0507 CBC Northern Service 2330-2400 HGJB, Ecuador 2330.2400 R, Kiev
2330.2400 V. of Vietnam
2345.2445 R Japan

0000-0015 R. Japan
0000.0025 R. Tirana
$0000-0030$ R. Mexico
0000-0030 R. Canada international
0000-0030 Kol Israel
0000.0030 R. Norway 0000-0045 R. Berlin Internationat

0000-0055 R. Peking
0000-0100 WYFR, Family Radio
$0000-0100$ R. Sofia
0000.0100 AFRTS, Los Angeles
$0000-0200$ R. Luxembourg
0000-0200 VOA
$0000-0500$ R. Moscow (via Cuba) $0000-0900$ UN Radio
0005-0155 Spanish Foreign R. $0015-0100$ BRT, Belgium 0015-0100 SOORE, Uruguay 0030-0100 R. Prague $0030-0100$ R. Budapest

0030-0100 La Cruz del Sur, Bolivia 0030-0200 HCJB. Ecuador $0030-0230$ SL8C, Sri Lanka 0030.0230 88C

0035 -0230 HCJ8. Ecuador 0055-0135 TWR 8onaire 0100-0115 R. Japan $0100-0115$ Vatican R 0100.0120 RAI, Italy 0100.0125 Kol Israel 0100.0130 R. Argentina 0:00-0130 La Voz de la Mosuuitia, Honduras $0100-0730$ R. 8udupest
$0100-0130$ R. Canada Internationa:
0100.0154 V. of Germany
$0100-0155$ R. Prague
0100.0155 R. Peking
0100.0200 V. of Free China
0100.0200 R. Moscow
0100.0200 AFRTS, Los Angeles 0100.0200 WYFR, Family Radio 0100.0330 R. Australia 0100.0450 R. Habana Cuba 0120-0510 R. Belize
$0130-0145 \mathrm{~V}$. of Greece
0130.0157 Austrian Radio

0130-0155 R. Tirana
0130.0215 R. Berlin International
0130.0230 R. Japan 0145.0215 Swiss R. International 0200-0215 R. Japan $0200-0225 \mathrm{Kol}$ Israel 0200.0230 R. Canadia International 0200.0230 R. Norway 0200.0230 R. Kiev

0200-0230 R. Budapest

0200-0240 R. Polonia

B $\quad 11835,9770$
A $21525,15365,9535$
B 15430 (Thurs.; time varies)
A $15420,15260,15070$
11910, 9600. 9590,9410 .
$7325,6175,6120,5975$
9977
A $21560,17760,17700,15425,12050$ $11770,11750,11720,11710,11700$, 9760, $9720,9685,(9665$ to 2400)

B $\quad 17870,17845,15100,12060,11735$,
9800 (one hour later from Oct. 1)
C 12036, 10080
C $\quad 17825,15430$
17755
B 9750,7065
C $17765,15430,11770$ (Sat.)
9755,5960
15583, 11638,9815
C 17840,15345,11870(Mon. only)
11975,9730, 9560
(one hour later from Sept. 27)
B $\quad 17855,17680,15520,15120$
A $15365,9715,5985$
B $\quad 15330,15110$
A $25615,21570,15430,15330,11790$
C 6090 (Time varies)
A 17860 and/or $17730,15205,11740$,
$9650,6130,5995,1580$
A 9600,600
A 6055 (when in session)
B 11880,9630
C 15365,15175
C 11885 (time varies)
C 6055
B $\quad 17710,15220,11910,9835,9585$
(Wed and Fri) (one hour later
from Sept. 27)
D 4875 (Mon. only)
A 15155
C $\quad 15425$
A $15260,15070,11835,11750,9410$,
7325.6175, 6120, 5975

B $17875,15360,9745$
B 11755
17755
B $\quad 11845,9605,6015$
B 11800,9575
A $15583,11638,9815$
11710 (not Mon.)
4910
B $\quad 17710,15220,11910,9835,9585$ 6025 (not Mon.) (one hour later from Sept. 27)
A $17820,9755,5960$
A $15105,11865,9590,9565,9545$, 6145, 6085, 6040
$11990,9740,9540,7345,5930$
B $17855,17680,15520,15120$
C $\quad 17890,15345,11825$
A $21560,17760,17700,15425,12050$ 11770, 11750, 11720, 11710, 9760, ( 9700 from 0130), 9685, 9610, 7150
A $25615,21570,15430,15330,11790$
B $\quad 15365,9715,5985$
B 21740,17795
B $\quad 11930,11725$
C 3285,834
B $\quad 11730,9655,9515$ (not Sun.)
B $\quad 9770.5945$
B 9750,7120
C $11975,9730.9560$ (one hour later from Sept 27)
C $\quad 21640.17825,17725,15235$
A $15305,11715,9725,6135$
C 17755
A 15583, 11638,98:5
A $11940,9755,5960$
B $\quad 11895,11870,9590$, (Mon. only)
B $\quad 17870,15100,12060,11735,9800$ (one hour later from Oct. 1)
B $17710,15220,11910,9835,9585$ 6025 (one hour later from Sept. 27)
B $\quad 15120,11815,9525,7270,7145$. 6135,6095 (iength varies)

| 3：008．501p．m． | $0200 \cdot 0250$ | 8．954 |
| :---: | :---: | :---: |
| 9．ang 35 fm | 0200－0255 | 7．Buchanisi |
| 9 909－56 e．m， | 0200－0255 | \＃．Rekiry |
| $900-70.80 .0 . \mathrm{m}$ | 0200.0300 | 日．©exional，Breal |
| $3.00 \cdot 10.00 \Rightarrow \mathrm{~m}$ | 0200．0300 | WY／E，Findily Ratig |
| $9.00-10.00 \mathrm{am}$ | 0200．0300 | H．Msseow |
| 9．00．10．30 p．m． | 0200－0330 | A．Cara |
| $380.1500 . \mathrm{me}$ | 0200．0400 | W0a |
| 9：80 11．30 $\mathrm{p} . \mathrm{mm}$ ， | 0200.0430 | AFBTS，Lut Angriet |
|  | 0200.0700 | WRNU，New Oneas |
| 9.703 .65 omm | 0230.0245 | R．Pakista： |
| $9.309 .457 . \mathrm{m}$ ． | 0230－0245 | Un Ratio |
| 9：309．55＞．m． | 0230－0255 | 7． T Irano |
| 9：30 10：67 p．m． | 0230.0300 | 7．Lebsaum |
| 9：70 18：00； p ．m． | 0230－0300 | A．Fiecrane |
| 9．30．t6－60 pm， | 0230.0300 | A．Smadem |
| 9．30．10：15 p．m． | 02300315 | R．Serin Interationa |
| 9：30．10：25 p．jn． | 0230．0325 | R．Nederiand |
| 9：30－10：30 pm | 0230－0330 | h．Korea |
| 9：30－10：30 p．m． | 0230.0330 | 橸C |
| 9：30－12： Cu ¢ p．m． | 0230－0500 | HCJB，Ecuador |
| 9：51－9：58 p．m． | 0351.0358 | V ．of Yerevan |
| 10：00－10：15 p．m． | 0300．0315 | R．Japan |
| 10：00－10：15 p．m． | 0300－0315 | R．Budapest |
| 10：00．10：25 p．m． | 0300．0325 | R．Polonia |
| 10：00．10：30 p．m． | 0300－0330 | 月．Canadat Internationat |
| 10：00－10：30 p．m． | 0300－0330 | R．Portugal |
| 10：00－10：30 p．m． | 0300．0330 | R．Australia |
| 10：00－10：50 p．m． | 0300－0350 | V．of Free China |
| 10：00－10：55 p．m． | 0300．0355 | R．Prague |
| 10：00．10：55 p．m． | 0300－0355 | R．Peking |
| 10：00．11：00 p．m． | 0300－0400 | A．Moscow World Service |
| 10：00－11：00 p．m． | 0300－0400 | TIFC Costa Rica |
| 10：00－11：00 p．m． | 0300．0400 | R．Moscow |
| 10：00－11：00＇p．m． | 0300－0400 | R．Baghdad |
| 10：00－11：15 p．m． | 0300－0415 | R．Uganda |
| 10：00－11：26 p．m． | 0300.0426 | R．RSA |
| 10：00－11：30 p．m． | 0300－0430 | R．Cultural，Guaternala |
| 10：00－12：00 p．m． | 03000500 | HRVC，Honduras |
| 10：00－12：00 p．m． | 0300－0500 | WYF R，Family Radio |
| 10：30－12：00 p．m． | 0300.0500 | AWR Guatemala |
| 10：00 p．m．2：30 a．m． | 0300．0730 | VOA |
| 10：25 p．m．fade | 0325. | R．One，Zimbabwe |
| 10：38－10：55 p．m． | 0330.0355 | R．Tirana |
| 10：30－11：23 p．m． | 0330－0423 | U．A．E．Radio，Dubai |
| 10：30－10：57 p．m． | 0330－0357 | Austrian Radia |
| 10：30－11：00 p．m． | 0330－0400 | R．Australia |
| 10：30－17：45 p．m． | 0330－0445 | 88. |
| 10：30 p．m． $1: 00 \mathrm{a.m}$ ． | 03300600 | R．Habana Cuba |
| 10：40－10：47 p 媏． | 0340.0347 | V．of Greece |
| 10：50－11：10 p．m． | 0350.0410 | RAI，italy |
| 11：00．11：15 p．m．r | 0400－0415 | R．Japan |
| 11：00．11：30 pm． | 0400－0430 | A．Bucharest |
| 11：00－11：30 p．m． | 0400－0430 | R．Canada international |
| 11：00－11：30 p．m． | 0400．0430 | R．Norway |
| 11：00．11：30 p．sm． | 0400－0430 | R．Mozambique |
| 11：00－11：55 p．m． | 0400－0455 | R．Peking |
| 11：00－12：00 p．m． | 0400－0500 | R．Sotia |
| 11：00－12：00 p．m． | 0400－0500 | R．Australia |
|  |  | ， |
| 11：00－12：00 p．m． | 0400－0500 | R．Maseow World Service |
| 11：00 p．m． $1: 00 \mathrm{a} . \mathrm{m}$ ． | 0400－0600 | TWR．8onaire |
| 11：00 p．m．－2：00 a．m． | 0400．0700 | R．Masco ${ }^{\circ}$ |
| 11：05－11：50 p．m． | 0405－0450 | FEBA，Seychalles |
| 11：30－11：57 p．m | 0430－0457 | Austrian R． |
| ＊11：30－12：00 p．m． | 0430－0500 | Swiss R．International |
| 11：30 p．m．1：00 a．m． | － 0430.0600 | AFRTS，Los Angeles |
| 11：45－12：00 p．m ${ }^{\text {m }}$ | 0445－0500 | Vatican Radio |
| 11：45 p．m．12：45 a．m． 11：55 p．m．1：00 a．m． | $\begin{aligned} & 0445-0545 \\ & 0455 \cdot 0600 \end{aligned}$ | BBC <br> V．of Nigeria |

15380，11940，11840， 11725 9570， 5990
B $\mathbf{7 7 8 5 5}, 17680,15520,15120$
17830， 15290
11740， 9715
A $17760,17700,15425,15405,12050$ ，
11770，17750，11720，11710，9760． 9720，9700，9685，9610，7150

## 120010， 9475

A 17860 ，and／or 17730 ，
15205，9650，5995， 1580
A 21570，17765，11790，6030
6155
C $21590,17835,21755$
A $\quad \$ 240,6035,15685 . S S 8$
Thesg．SSB（Tue．Sat．）
B 3750.7120
C $\quad 17715 \dagger$（time varies）
B $\quad \mathbf{1 7 5 5}, 15400$（one hour later from
Sept．27）
B 11705，9695
B $\quad 11975,11890,11840,9560$
（one hour later from Sept．27）
A 9590,6165
C 15575,11810
A $\quad 11750,9510,9410,7325$ ，
6175，6120，5975
A 15360,9745
C $17870,17845,15100$
（one hour earlier until 0ct．1）
C 17755
B $\quad 17710,15220,11910,9835,9585$
6025 （Wed．\＆Fri．；Mon．0330）
（one hour later from Sept．27）
B $15120,11815,9525,7270,7145$ ， 6135,6095 （length varies） A $11940,11845,9755,9535,5960$ B 11925,6155
C $\quad 15260$（Fri．）
C 17890 or $17830,15345,15270,11825$
B $11990,9740,9540,7345,5930$
B $\quad 17680,15520,15120$
A 11920，11720，9665（North American
Service from Oct．1）
C 9645,5055 ，（Mon． 0235 0435）
A $17760,17700,15405$
15180，12050． 9580
C 21585，15400， 11935 ，
B 15325 （irregular）
11900，9585，7270， 5980
3300 （Mon．0030－－）
4820
9715，9675，5985
5980
A 15240，9670，6040，6035，5995
3396 （exc．Sun．）
7300， 6200
B 15320,17775 （Iength varies）
C 9770,5945
B $21680,17890,17870$ ，
17795， 17725
A $15070,9410,6175,5975$
A 11760,11725
B 11730，9650，9515（nat Sun．）
C $\quad 17795,15330$
C 17755
C $15380,11940,11725,9570,5990$
A $11845,9755,9535,5960$
c 15135,9590 （Mon．only）
C 4855,3265
B $17680,15520,15120$
C $11750 \dagger$
B $\quad 21680,21650,21525,17890$ ，
17870，17795，17755， 17725.
15320，15240， 15160
A $\quad 75505,11920,11720,9665$
A 9700
A（15405 to 0600），12050，（11870 and 11750 from 0500），11710， 9580
C $\quad 11810 \mathrm{t}$
B 12015
B 17715,9725
A $17765,17790,15330,9755,6030$
C 6210 ar 6190 （one hour later from Sept．27）
A $15070,9510,9410,6175,5975$
C 7255

## Bean

## ELECTRICIAN



## －CONSTRUCTION • MAINTENANCE <br> －CONTRACTOR

## Train at home in spare time

No previous experience needed．Experts show you what to do，how to do it．．．guide you step by Step．Even hefore voure rady to go after a full－time joh as an electrician．you could he mahing extra money doine odd joh：for friends and neighbors．．．and saving morey on your own electrical work．I earn to specify and install wiring． operate and control motors and generators．use and madint in transformers and storaze batterien
You＇ll karn how to use electrical instruments． hou to find short circuits．overloads and open wares You＇ll be ready to take almost any electrician liecosing examination．Because opportunites vary from tome to time and from one part of the country to another．we encourage you to check on the joh

## market in vour atea

## ELECTRICIANS average more than $\$ 11.00$ AN HOUR！

Bon 1 coant on getiong int a unon or earming umon wages as won uv vou gradulte hot these figurte from the if Dept of Labor Occupatonal Outherh Handbeok show that
 Horker

 increase faster than the average for all secupation through the mud 14811 ．
NO NEED TO QUIT YOUR JOB OR REGULAR SCHOOL
Evervhing is explaned in eas 1 i underatand language with plenty of dratumg．dagrams and photers．And you learil at wher oun patce at home in pare time No lume nisted traveling toclaw Comultantsare avolone as your teephone Voch irge＇［＇se cur will tree It how home－studs hotine as
won mbuenrall


Here are just a few of the subjects covered in your course
Principies of Lighting，Heating，Alr Conditioning Conductors and Conduli－Electrical Wiring Lighting Control－Transformers and Storage Eat teries－Generators and Motors－Electrical Esti mating．．．Plus much，much more

You receive everything you need to get you off to a fast start！
 smee thei ICS Center，Scranton，PA． 18515
Rush free facts that tell how I can train at I home in spare time to be ari electrician．
｜Name
AGE
｜ADDRESS
LCITY／STATE／ZIP


TWO WAREHOUSE LOCATIONS TO ENSURE FAST DELIVERY!


1-800-556-7586
12 Meeting Street
Cumberland, RI 02864
1-401-722-1027
WEST COAST
1-800-235-3581
3353 Old Conejo Road
Newbury Park, CA 91320
1-805-499-3678
CA. 1-800-322-1873
MEGA SALES CO

12:00. $12: 15 \mathrm{am}$. 12:00-12:15 a.m. 12:00-12:54 a.m. 12:00-1:00 a.m.

12:00-1:00 a.m. 12:00-1:00 a.m. 12:00-2:00 a.m. 12:00-3:00 a.m. 2:00-3:00 a.m. 12:00.5:00 a.m. 12:10-12:45 a.m. 12:30-12:40 p.m. 12:30-1:00 a.m. 12:30-fade
12:30-1:25 a.m. 12:30-1:30 a.m. 12:35-1:30 a.m. 12:45-1:30 a.m.

12:45-2:30 a.m.
1:00-1:15 a.m. 1:00-1:30 a.m. 1:00-1:30 a.m. 1:00.1:30 a.m.

1:00-2:00 a.m. 1:00.2:30 a.m. 1:00-2:00 a.m. 1:00-3:00 a.m. 1:00-4:00 a.m.

1:15-1:30 a.m.
1:25-3:00 a.m.
1:25-3:55 a.m. 1:30.2:00 a.m. 1:30-2:00 a.m. 1:30-2:30 a.m. 1:30-3:00 a.m. 1:40-7:25 a.m. 1:45-2:00 a.m.

| 1:45-2:00 a.m. | 0645.0700 | UN Radio |
| :---: | :---: | :---: |
| 1:57-4:55 a.m. | 0657-0955 | V. of Philippines |
| 2:00-2:15 a.m. | 0700.0715 | R. Japan |
| 2:00-2:20 a.m. | 0700.0720 | R. Nederitand |
| 2:00-2:30 a.m. | 0700-0730 | Swiss Radio Int. |
| 2:00-3:00 a.m. | 0700.0800 | Xandir Malta |
| 2:00-3:00 a.m. | 0700-0800 | ELWA, Liberia |
| 2:00-3:00 a.m. | 0700-0800 | V. of Vietnam |
| 2:00-4:00 a.m. | 0700.0900 | R. Australia |
| 2:00.5:30 a.m. | 0700-1030 | HCJB, Ecuador |
| 2:07-2:15 a.m. | 0707-0715 | UN Radio |
| 2:30.3:25 a.m. | 0730-0825 | R. Nederland |
| 2:30-4:00 a.m. | 0730-0900 | BBC |
| 2:30.6:30 a.m. | 0730-1130 | Solomon Isl. Broadcasting |
| 2:30-9:00 a.m. | 0730-1400 | NBC, Papua New Guinea |
| 2:30-9:02 a.m. | 0730-1402 | ABC Melbourne |
| 2:37-2:45 a.m. | 0737-0745 | UN Radio |
| 2:454:30 a.m. | 0745-0930 | KTWR, Guam |
| 2:55 a.m.fade | 0755 | Action Radio, Guyana |
| 2:55.3:05 a.m. | 0755-0805 | V. of Guatemala |
| 3:00-3:15 a.m. | 0800-0815 | R. Jıpan |
| 3:00-3:30 a.m. | 0800-0830 | R. Norway |
| 3:00.315 a.m. | 0800.0815 | UN Radio |
| 3:30-3:45 a.m. | 0830-0845 | R. Vanuatu |
| 3:30-4:25 a.m. | 0830-0925 | R. Nedertand |
| 3:30-5:00 a.m. | 0830-1000 | FEBC, Philippines |
| 24 Hours | 24 Hours | CFRX, Toronto |

21710, 21600, 11655, 11637
15325
11905, 9650, 9545, 6100, 5960
21680, 17890, 17870,
17725, 15240, 15160
9705, 9675, 5985
17880, 12010, 11735, 9530
11915, 9745, 6095
15345
4770 (nat all Eng.)
550 and/or 720
21700, 17810, 17775
5010
9575, 6155
3366, 4915
9715,6165
11880, 9630
15575, 11810, 9870
17700, 15100 tone hour fater
from Sept. 27)
15070, 11955, 11860, 9640,
9510, $9410,7150,6175$
15325
17875, 15275, 11905, 11765, 9700
15135 (Моп. only)
21680, 21525, 17870, 17795,
17755, 17725, 15240, 15160
11790,9755,6030
16433-SSB (not all English)
11835, 15225
15120, 17800
11760 or 9695 or $5045 \dagger$
(not all English)
17860, 15265, 11960, 11825, 11775,
9760, $9590,7155,6140,6045$ (Mon-Fri)
9495 (Sun. to 1000)
15295, 12350, 9750
21680, 17870, 17725, 15240, 15115
9675, 7270
21535. 17780, 15220

9525
15485, 11945
17860, 15265, 11960, 11825,
$11775,9760,9590,7155,6140$,
6045 (Mon-Fri)
15120, 11735 (Tue.Sat.)
9578 (not all English)
15325, (15235t via Portugal)
25650, 21480, 17605, 11720, 9895
21520, 15305,9560,9535
9670 (Sat.) (irreguiar)
11830
7512, 9840,6383
21680, 17725, 15115, 11740, 9570
11900, 9745, 6130
15120, 11735 (Tues. to Sat.)
9770, 9715
15070, 11955, 9640,9510
9545 or 5020 (not all Eng.)
4890, 3925 (not all Eng.)
9680
17815, 15195 15120, 11735
(Tue.Sat.)
11840
5950
6180,640 (time varies)
9505
17795, 11850 (Sun.)
17860, 15235, 15125, 11735
(Tues. to Sat.)
7260,3945
9715
11890 or 11765
6070

## Explanatory Notes.

1. Times in first column are EST/CDT. For ADT add 2 hours; EDT add 1 hour; MDT, subtract 1 hour, MST/PDT, subtract 2 hours. Days of week are in GMT.
2. Quality.A-strong signal and very reliable reception. B-regular reception. C-occasional reception under favorable conditions. D-rarely audible. These ratings are for locations in the central USA. European and African stations are in general, more reliably received in eastern North America. Asian and Pacific stations are more reliably received in western North America. North American stations are received well except in areas too close to the transmitter site.
3. The information in this listing is correct to press time. However, frequencies and schedules are constantly changing. Listen to "DX Digest" on R. Canada International for late changes, Saturday at 2130; Sunday at 1930; GMT Mondays at 0100 and 0400.
4. R.-Radio; V.-Voice
$\dagger=$ frequent changes

# new ITEEATURE 

## Oscilloscope Probe Guide

Greenpar Connectors has a new guide to nine different oscilloscope probe kits that are said to fit any scope on the market. Featured are four fixed-attenuation models with bandwidths from 15 to 250 MHz , two switched-attenuation models ( 100 to 250 MHz ), a demodulator model ( 100 kHz to 500 MHz ), and two detector models ( 100 kHz to 600 MHz ). Complete specifications are given on attenuation, bandwidth, cable length, capacitance, rise time, working voltage, dc offset, etc. Special optional accessories are also described. Address: Greenpar Connectors, 14128 Lemoli Ave., Hawthorne, CA 90250.

## CBASIC Software Support

"CBASIC: The Key to Business Software Development" is the title of a brochure which describes the computer language and its features such as 14 -digit decimal arithmetic, random and sequential disk accessing, complete string processing facilities, and enhanced source code maintenance. Also covered are service and support capabilities. CBASIC is available on all microcomputers running under $\mathrm{CP} / \mathrm{M}, \mathrm{MP} / \mathrm{M}, \mathrm{CP} / \mathrm{NET}$ CP/M-86, TRSDOS, and UNIX. Address: Compiler Systems, Inc., 37 N . Auburn Ave., Box 145, Sierra Madre, CA 91024.

## VHF /UHF / Oscar Ham Catalog

A 40-page catalog covers all types of equipment for the vhf/uhf/Oscar ham enthusiast and two-way shops. Featured are a new 5 -channel, 10 -watt vhf FM transceiver, COR and CWID modules for repeater builders, and new accessories such as r-f-tight enclosures for repeaters and power supplies. New ranges of transmitting and receiving converters have been added, as well as a series of receiving converters to extend frequency coverage. The Cushcraft and Larsen lines of antennas are also included. Address: Hamtronics, Inc., 65F Moul Rd., Hilton, NY 14468. For foreign mailing, add $\$ 2.00$ or 5 IRCs.

## Wiring Products Catalog

Catalog E-CC6 contains, in 24 pages, an update of the Panduit line of wiring products. Included are: cable ties, clamps, and markers; wire mounting devices; harness board accessories; cable tie installation tools; plastic wiring duct; spiral wrapping; terminals; and installation tools. Address: Panduit Corp., 17301 Ridgeland Ave., Tinley Park, IL 60477.

## 3M Products Brochure

Nearly 150 products from 3 M , grouped by major segments of the communications industry, are described in a new brochure. Products ranging from abrasives to videotape recorders are catalogued for the voice, video and data communications market: original equipment manufacturing; cable and splicing systems; data processing materials; and transmission, storage, and retrieval systems. Address: Dept. 1599/3M, Box 4039, St. Paul, MN 55133.

## Metal-Film Resistors

A new brochure from Stackpole describes its complete metal-film resistor line, including new low-value units from 1 to 9.9 ohms. Bulletin 82/89-103 details physical and environmental performance specifications for precision, commercial, and general-purpose resistor's ranging in values from 1 ohm to 5 megohms and $1 / 8$ watt to 2 watts. Address: Stackpole Components Co., Box 24466, Raleigh, NC 27620.

## Line-Power Conditioner

Eight products intended to reduce "electrical pollution" coming through power lines to solid-state electronic equipment are described in a 20 -page catalog from SGL Waber Electric. The products, containing varistors, are said to reduce or eliminate power surges, transient spikes, RFI, EMI and electromagnetic pulses. The equipment varies from simple wall plug-in units to console or rackmounted units. Address: SGL Waber Electric, 300 Harvard Ave., Westville, NJ 08093

## Humidity Instrumentation Catalog

A new 16-page short-form catalog covers General Eastern's line of humidity instruments for measurement of dew points, relative humidity, parts-per-million, grains per pound, and dry-wet bulb. Systems provide digital displays, $B C D$, alarms, and linear voltage and current outputs. Accessories listed include sampling systems, calibration kits, aspirators, pressure bosses, ambient temperature probes, etc. Address: General Eastern Instruments Corp., 50 Hunt St., Watertown, MA 02172.

## Soldering Products

A new manual (Form 325) contains detailed photographs and descriptions of the Edsyn line of soldering equipment including portable and vacuum-powered desoldering tools, tool holders, specialpurpose hand tools, professional kits, etc. Address: Edsyn Inc., 15958 Arminta St., Van Nuys, CA 91406.

## Digital Switch Guide

A six-page product guide lists ten basic types of thumbwheel digital switches. Brochure No. 1-0074D contains dimension and performance specifications for more than 60 units of various configurations. Address: The Digitran Co., 855 S. Arroyo Pkwy., Pasadena, CA 91105.

## ${ }^{\text {THE }}$ Anything Board ${ }^{\text {™ }}$

## Dedicate it, then seperate it!

Does anything you want it to!
Now. anything you can dream b.p. Netronics cat help you realize-inexpensively and easily with the Anything Board (it's the first and only microprocessor you can dedicate. then separate from the Programming Beard so it runs by itself). All this-for only $\$ 59.95$ so it's inexpenswe, and easy to work with. too. because Netronics helps youcvery step of the way, with the programming, with the hardware


Programmer Board shown with cabinet and expansion boards. You can program the Anything Board by I. plugging into an ELF If microcomputer or 2. plugging into our programmer board with its special and sophisticated debugging and testing components. The growth is limitless. You can add inputs and outputs. A to D/D to A boards, color graphics. PROTO boards. Electric Mouth Talking Eoards. expand the memory Got something in mind.' II can be anything . . . a robot, burglar alarm. telephone dater. industrial machine controller, . . home heating/cooling system . ANYTHING! With your imagna uon and skills. backed up by Netronics' know-how and help you can make the Anything Board do anything you wanu it to do. There are expansion boards-even cabinets to house your Anything project. Give it a professional finished look! The Anything Board . . . only from Netronics. Only $\$ 59.95$
As your needs for programmirg grow. you can add system monitors. cassette 1/O. an assembler-text editor disassembler. videoterminals. EPROM burner. full basic and more. All plug into the Anything Board expansion Bus.
Specticatons Anytheng Board
Specificatums Anything Boand
1802 mucroprocessor. IK RAM. 8
1802 mucroprocessor. IK RAM. 8 Bin input por, 8 BIT oupput pon, interupt
DMA and processor llag inpuls, address decoders, prousions for 2716 EPROM puwer un and manual resel. crystal clock. pewwe supply regulator and provision for battery tack up
 indwation. mernors protect. wall. load. reset ard in put suitches plus a stegle step
nowde which allows you to step through tour program one machine cycte al a 1 me

Continental U.S.A. Credit Card Buyers Outside Connecticut

## CALL TOLL FREE 800-243-7428

To Order From Connecticut or For Technical Assistance. Evc. Call (203) 354-9375
NETRONICS R\&D LTD. ${ }^{\text {ofex }}$ ot
333 Litchfield Road, New Milford, CT 06776
Please send the items checked belon:
$\square$ ANYTHING BOARD
$\square$ Programming Board .............................. \$79.95
Plus $\$ 2.00$ each item for postage, handling and insurance
( $\$ 4.00$ Canada)
Connecticut Residents add sales rax
T Total Enclosed S
$\square$ Personal Check $\square$ Cashier"s Check/Money Order $\square$ Visa $\square$ Master Charge (Bank No.
Acct. No.
Master Charge (Bank N
Signature
Exp. Date
Print
Name
Address
City
State
State

## OPERATION ASSIT

If you need information on outdated or rare equipment-a schematic. parts list etc-another reader might be able to assist Simply send a postcard to OperaIION ASSISI. POPULAR ELECTRONICS 1 Park Ave New York. NY 10016 for those who can help readers. please re spond directly io them Ther Il appreciate if IUnly those tems regarding equipment not avallable from normal sources are published

## Shelf Conscious?

Now you can organize your copies of P(N)LAr E CCtr(MiCS
Now your magazines can be a handsome addition to your decor, well organized, and easy to find, thanks to these durable library-quality cases or binders. They're made of luxury-look leatherette over high quality binders board. And both styles are custom-designed for this or any magazine you save, with size, color, and imprint selected by the publisher. FREE transfer foil included for marking dates and volumes.

## Magazine binders


hold a year's issues on individual snap-in rods. combining them into one volume. $\$ 7.95$ each; 3 for $\$ 22.50 ; 6$ for $\$ 42.95$. Mixed titles OK for quantity prices.

## Open-back cases

store your issues for individual reference. $\$ 6.95$ each; 3 for $\$ 19.75$.
6 for $\$ 37.50$. Mixed titles OK for quantity prices.


CHARGE ORDERS ONLY for your convenience PHONE 24 HRS. TOLL FREE 800-431-2731. NY State only 800-942-1940.

Popular Electronics, P.O. Box 5120 ,
Philadelphia, PA 19141
Please send: $\square$ Cases $\square$ Binders
TITLE
QUANT.
Popular Electronics:
(Other):


■ ENCLOSED IS $\$$ $\qquad$ *Add $\$ 1.00$ per order for postage $E$ handling. Outside USA add $\$ 2.50$ per unit ordered. Send U.S. funds only.

```
CHARGE (Min. $10): }\square\mathrm{ VISA
```

] American Express $\sqsubset$ Master Charge

Card \#
Exp. Date
Signature
Print Name
Address
City/State/Zip
*Residents of PA add applicable sales tax.

Communicatlons Power Inc., CP300 CB radio. Need sche matic. Vemon C. Gagnon. Box 162, Clallam Bay. WA 98326

Sonar Aristocrat 95 radiotelephone. Need schematic and service manual. Don Galloway, 109 Luther Dr.. Lakehurst, NJ 08733

Conar instruments Model 600 color TV. Need schematic and construction manual. George Gimarelli, 8048 S.E. Main, Portland. OR 97215

Akal Model $\times 2000$ SD tape recorder. Need schematic and manual. Tom Poleet, 159 Boylston St., Jamaica Plain, MA 02130

Geminl computer game. Schematic diagram or any informa tion available. Phil Plimmer, Box 701, Alpine, TX 79830

Ford Models 69MF. 76MF, 86MF, 95MF pushbuttons. Wan to buy complete unit. D. Smith, Box 113, Trenton M 48183.

Milltary receivers BC 348 Q and BC 348R. Need schematics and modificatons. Akal CR81D 8-track recorder. Need schematic. David Vardy, 24781 Upland Hill Dr., Nevi, MI 48050.

RCA Model CR88A recelver and Nems Clarke Model 1302 vhi receiver and REU200, REU 100 uhf conventers. Need schematics and service manuals. Barry Bakos, RR2 Coumland, Ontario, Canada NOJIEO.

Hallicrafter Model 5R 10A radio. Need schematic. OpthCal Ill calculator. Need IC chip \#MCS521.0024273. Fred Cerne 2809 So. Austin Blvd., Cicero, IL 60650.

Lloyd's Electronics Int'l., Model JJ-6152. Series 280A radio. Need schematic Martin Pientkervic, 204 River Road, Vulcan. MI 49892.

Motorola Model 52BiU ac/dc battery portable radio. Need schematic and service data. Don F. Lehman, 378 Fairway Drive, Columbus, OH 43214

Knlght Model KG-686 generator. Need owners manual and schematic. John Schneider, 150 †W. Jean Circle. Lincoln, NB 68522.

Canadian Marconl Co., Model 208 receiver. Need technical manual or schematic John Allan, USCG Station, Chatham MA 02633

Metz Model 309 mult-band radio. Need schematic and tech nical manual. Valvo vacumm tubes. Need information on current source. John Sinsabaugh, Box 3, FPO Seattle, WA 98767.

Broan Model 372 home intercom AM/FM radio and phono graph system. Need service manual, operating instructions and schematic Robert Hatchett. Box 193. Aurora, in 47001.


Gold Model Tl-8000 CB station power supply. Need American replacement numbers for Japenese $V / R$ transistors TA78012P and B595. Also need schematic and parts list. E.V. Schwartz, 4277 Motor Ave., Culver City, CA

Farneworth U.S. Army Signal Corp BC-242N receiver. Need any information available. Richard Picott, Box 86, South Berwick, ME 03908.

Kenwood Model TK-666 receiver. Need tuning dial glass. Damon Collins, 1221 William St., Key West, FL 33040.

Metro Electronica metrodyne single dial radio. Need schematic or any information available. H.A. Flatjurd, 719 Gateway St., Cedar Rapids, IA 52402.

RCA WP-703A de power supply. Need schematic diagram. Richard Slover. 2700 Waverly St., \#4. Knoxville. TN 37-21.

Dumont type 201-A oscillograph. Need operation manual and schematic. Robert L. Kitzberger, 7668 Saratoga Rd., Cleveland, OH 44130

Motorola MH-70 communications receiver. Need schematic and parts list. Yehuda Habot, 6 Rashy. Petach. Ticva 49463 Israel.

Seco Model 520-A antenna tester. Need wiring diagram. R.J Seyler, 312-186 Edinburgh Rd., Guelph, Ontario N1G 2H9.

Webcor Model ER2 101-1 recorder, Serial \#757666. Need operation and service manuals. Roy V. Kelly, Box 165, Sheridan. OR 97378.

Hallicrafters Model S. 107 receiver. Need alignment data. Don Wagner, 308 Parkdale Avenue, East Aurora, NY 14052.

Digltal Systems Model DSC-2 microprocessor. Need operations and maintenance manuals. N.C. Helmkay, Box 446, Milliken. Ontario LOH1kO, Canada.

Frtden Model FIO programatic flexowriter, Monroe EPIC 3000 calculator and Tektronix Model 519 oscilloscope. Need wiring diagram, schematics and operations manuals. Arnold R. Allen, 423 So. Highland, Ada, OK 74820.

Bendlx Radio Corp., Type RA. $1 B$ radio receiver. Need schematic and alignment data. Andy Anderson, 2250 Cable Avenue, Beaumont, TX 77703

Ploneer Model SX-700T receiver. Need schematic Van S Vangor, Box 346C. Island Falls, ME 04747.

Advance Electronice Ltd., Model OS 1000 dual trace oscilloscope. Need schematic and service manual. K Heinonen, Rte. 4, Box 238, Foley MN 56329.

Californla Instrument Corp., Model 500 oscilloscope. Need theory and calibrating instructions. William G. Hendricks, 616 W. Lincoln Rd., Stockton, CA 95207.

Eico Model ST4O integrated amplifier. Need tube diagram. schematic and owner's manual. Tim Bovard, 282 W. Dayton St.. Gatesburg, IL 61401.

EMS Model S440 power amplifier. Need schematic. Peter Martin, Box 312, Greenhurst, NY 14742.

Admiral Model 12P206 TV. Need schematic. Tektronlx Type 551 dual beam oscilloscope. Need schematic and operating manual. F. Maytield. Rt. 3. Box 185. Brighton. TN 58011.

Sears Model 570-74 to8-0330. Serial 315-20815 AM/FM stereo receiver. Need service and operation manuals. Alvin R. Manlick. Box 431. Waupun, WI 53963.

Lavole Labs OS-62B/USM military surplus oscilloscope Need schematic and manual. Peter Cole, Box 1120 . Altona, Manitoba, Canada RO60BO.

Echophone Model EC-1B receiver. Need schematic. Howard Webb, 1616 E. Bantam Rd., Tucson, AZ 85706.

Lafayette clock radio, stock \#17-01135W. Need schematic diagram and service information. Scott Forgues, 37 Bay St., Faimaven, MA 02719.
U.S. Navy Type CME-50063 preselector and Sencore 43AT color bar generator. Schematics, service information and manuals needed. Warren Ready. 136 Pine Circle. Cairo. GA 31728.

Dumont Model 322-A oscillograph. Need replacement parts. Jim Pfeiffer, 6232 Tony Ave., Woodland Hills, CA 91367.

HalHcrafters S27 receiver. Need schematic and any information available. J.M. Vetter, 3657 Tantalus Dr., Honolulu, HI 96822.

## Now with added words! *

 ELECTRIC MOUTH
for \$100, EIf II, Apple TRS-80, Level II

From $\mathbf{\$ 9 9 . 9 5}$ kin
Now - teach your computer to talk, increasing interaction between you and your machine.
That's right the ELECTRIC MOITTH actually lets your computer talk! Installed and on-line in fust minules, it's ready for spoken-language use in office, buss-
ness. Industrial and commercial applicatons. and in games. special projects. ness. Industrial and commercial applications, and in games, special proiects.
RRD. education. security devices - there's no end to the ELECTRJC MOITH's usefulness Look at these features.

- Supplied with 143 letters/words/phonemes/numbers. capable of producing hundreds of words and phrases.
- Expand able on-bxard up to thousands of words and phrases with adduxomal
speech ROMs (see new speech ROM desarihe speech ROMs (see new speech ROM described below).
- Four models. that plug directly into Sioo. Apple. Elf II and TRS-80 Level II Computers. Gel ELECTRIC MOUTH to talk with ether Rasic or mad - eass to use. gomplete instrucluons with examples included).
- Ineludes on-biard audio amplifier and speak
- speakers
- Installs in uust munutes

Principle of Operation: The ELECTRIC MOUTH stores the digutal equivalunts of words in ROMs When words. phrased and phonemes arp desired. they simply are called for by your program and then synthesized into speerih. The
ELECTRIC MOUTH system requires none of your valuable memory space exoepi for a few addresses if used in memory mapped mode In most cases, output ports (user selectible) are used

additional vocabulary now avallable (vox if


Repgistered Trademarks
Continenial U.SA. Credit Card Buyers Outside Connecticut

## TO ORDER

Call Toll Free: 800-243-7428
To Order From Connecticut, or For Technical Assistance, call (203) 354-9375

NETRONICS R\&D LTD.
333 Lilchifeid Road, New Millord, CT 06776 Dept PE
Please send the items checked below:


## WE TAKE YOU BY

THE HAND!
You'll learn all about computers: how to build, program, service, even play TV games-without knowing the first thing about it!


## The New ELF II "Beginners" Package

Your own expandable micro-computer kit, 5 diagnostic analyzers plus circuit, programming, diagnostic manuals, even games you can play on TV. All only $\$ 139.95$.
Fien if you don't know bits from bytes. now it's easy and inexpensive to build your own micro-computer. learn how it works. program it, service it-even play games with it on you TV: It's here in the New ELF II *Beginners" Package. only from Netronics. Only $\$ 139.95$. Hele's the package: I. you own micro computer, the famous ELF II (featuring the RCA 1802 CMOS microprocessor) in ktt form with step-by-step instructions on how Io build it. Diagnostic Analysers including 2. your own Logic Probe. 3. Pulse Catcher. 4. 8 bit Tes Registor. 5. Logic Analyzer. 6. Gate.Arrays. 7. Non-Technical Manuals on how to use analyzers, how to get into the guts of the computer, what makes it tick. how to service it. 8. Sample Programs that teach you machine language programming plus how to correct or "debug" any programming mistakes. 9. TV games you can play. If your TV set has no video input. an optional converter (RF Modulator) is available. Then. once you've got this "Beginners" Package under your beth. keep on expanding your ELF II with additiors like the Typewriter Key Board. added RAM. Full Basic interpreter. Electric Mouth Talking Board. Color/Music. A/D D/A Boards for Robot Controls and much. much more. We'll take you by the hand with the New ELF II "Beginners" Package. Only $\$ 139.95$ Mail or phone in your order today and begin.
Spec ficaums FLF II -Begunners' Pakkage
The computc features an RCA CMOS 18028
The compuler features an RC A CMOS 18028 bur rucroppocessor addressable to
th K hyles with DMA. inierrupa. 18 Registers. ALL. 25h byte RAM expendable 10



 analysers aid in understanding and lrouble shootrigy your ELF II, as wall as other

Continental U.S.A. Credit Card BuversOutside Connecticu
CALL TOLL FREE 800-243-7428
To Order From Connecticutor For Technical Assistance. Etc.
Call (203) 354-9375
NETRONICS R\&D LTD. ${ }^{\text {prop }}$ R $: 10$
333 Litchfield Road, New Milford, CT 06776 Please send the items checked below:
$\square$ ELF II "Beginners" Kit
. $\$ 139.95$
$\square$ RF Modulator
. $\$ 8.95$
Plus $\$ 3.00$ for postage, handling and insurance ( $\$ 6.00 \mathrm{Canada}$ )
Connecticut Residents add sales $1 a x$
Total Enclosed \$
$\square$ Personal Check Cashier's Check/Money Order $\square$ Visa $\square$ Master Charge (Bank No.
Acct. No. $\qquad$ Exp. Date
Prinl
Name
Address
City
State $\square$

## Here's why we're Number One.

When it comes to logic probes, more people buy Global Specialties. Because no one can match us for value. Our four logically-priced probes-including our remarkable new 150 MHz ECL-deliver more speed, accuracy, flexibility and reliability than others costing considerably more! So why compromise? Discover for yourself why we're the number-one logical choice!

Standard LP-1, \$50.00*; with memory - captures pulses to 50 nsec ,

10 MHz , guaranteed.
Economy LP-2, $\$ 32.00^{*}$, to 50 nsec, 1.5 MHz .

High-speed LP-3, \$77.00*, with memory, guaranteed to 10 nsec ( 6 nsec , typical), 50 MHz !
New ECL LP-4, $\$ 150.00^{*}$, the new industry standard-with memory, guaranteed to 4 nsec ( 2 nsec , typical), 150 MHz ! OTHER OFFICES SAn FIancisco (415) 648-0611 TWX 910-372-7992 Europe Phone Safticn-Walden $0799-21682$ TLX $8174 \% 7$
Canada Len Finkler LId Downsv ew Ontario
Call toll-free for details 1-800-243-6077

During business hours

[^3]CIRCLE NO. 27 ON FREE INF ORMATION CARD

# PROUECT OF THE MONTH 

## Audible Pulse Indicator

By Forrest M. Mims

HOW MANY times have you wondered if the clock section of a circuit was functioning properly? Finding out can sometimes be a difficult job, particularly if you don't have access to an oscilloscope.

An excellent way to detect pulses when a scope isn't available is to use a logic probe. But, as with a scope, you must keep an eye on the test instrument to determine whether or not pulses are present.

Shown here is a circuit that provides both visual and audible indication of the presence of pulses. The circuit is designed around three timers, two of which are integrated onto a single chip.

Timers 1 and 2 are monostable multivibrators, each having a timing period of about $1 / 3$ of a second. The pulse source is connected to the trigger input of Timer 1 through attenuator R1. If a pulse occurs, Timer l's timing cycle is begun. Subsequent pulses which occur during the timing are ignored.

Ordinarily, after its timing cycle is complete, Timer I would be retriggered by the next incoming pulse. This is acceptable for slow-repetition rate signals. If the time between pulses is very brief, however, it would not always be possible to visually or audibly recognize the presence of pulses since one stretched pulse would be immediately followed by another. In other words, a train of closely spaced pulses would appear continous to the relatively slow eye or ear.

Timer 2 solves this problem by disabling Timer 1 by means of QI for about $1 / 3$ second immediately after
each of Timer l's timing cycles. Timer 1 , therefore, responds to an incoming train of fast pulses by switching on and off at $1 / 3$-second intervals.
Indicator $L E D I$ provides a visual response to the presence of incoming pulses. It stays on during Timer l's timing cycle.

An astable audio-frequency oscillator provides the circuit's audible output. When Timer 1 has not been triggered, its output is low. Since Timer l's output is connected to Timer 3's reset input through $R 8$. Timer 3 is disabled when no pulse is present at Timer l's input. When a pulse occurs, Timer 1 is triggered, which, in turn, enables the audio oscillator formed by Timer 3. Note that Timer 3, like Timer 1 , is disabled for $1 / 3$ second following the completion of Timer l's timing cycle. Therefore, a very fast train of pulses is indicated by a slow series of tones spaced $1 / 3$ second apart.
This circuit may need modification for some applications. For example, a high input impedance section can be added to prevent the circuit from loading down the clock being checked. Similarly, an input amplifier can be added to beef up weak pulses. The circuit can even be added to existing circuits so that it becomes an integral audible/visual pulse indicator.

In its present form, the circuit responds to pulses having an amplitude of from a few volts to $\mathrm{V}_{\mathrm{CC}}$. Though I used a 556 and a 555 for the three timers, you can use three 555's or a pair of 556 's. If you choose the latter approach, you'll have an extra timer section for use in possible circuit modifications.


# 16K 

ALL MERCHANDISE 100\% GUARANTEED!
LS SERIES


| 6800 |  |
| :---: | ---: |
| 6800 | 6.95 |
| 6802 | 11.95 |
| 6809 | 3795 |
| 6810 | 4.60 |
| 6820 | 4.95 |
| 6821 | 4.95 |
| 6828 | 9.95 |
| 6834 | 16.95 |
| 6840 | 14.95 |
| 6843 | 4295 |
| 6844 | 44.95 |
| 6845 | 29.95 |
| 6847 | 15.95 |
| 6850 | 4.75 |
| 6852 | 5.75 |
| 6860 | 10.95 |
| 6862 | 11.95 |
| 6871 | 25.95 |
| 6875 | 6.95 |
| 6880 | 295 |


| MPU'S |  |
| :--- | :--- |
| 8035 | 16.95 |
| 8039 | 19.95 |
| $8080 A$ | 3.95 |
| 8085 | 12.95 |
| 8086 | 99.95 |
| 8088 | 39.95 |
| 8155 | 1195 |
| 8156 | 1195 |
| 8885 | 29.95 |
| 8885.2 | 39.95 |
| 8741 | 39.95 |
| 8748 | 6995 |
| 8755 | 49.95 |






7400 SERIES TTL 74S00 SERIES SHOTTK 74C00 SERIES

CMOS
4000 SERIES CMOS
4500 SERIES CMOS
$82 S$ SERIES PROMS
CALL US FOR PRICIN:

EPROMS


| EPROMS |  |
| :--- | :--- |
| $256 \times 8$ | $(1 \mathrm{us})$ |
| $1024 \times 8$ | $(450 \mathrm{~ns})$ |
| $1024 \times 8$ | $(450 \mathrm{~ns})(5 \mathrm{v})$ |
| $2048 \times 8$ | $(450 \mathrm{~ns})(5 \mathrm{v})$ |
| $2048 \times 8$ | $(450 \mathrm{~ns})(5 \mathrm{v})$ |
| $2048 \times 8$ | $(350 \mathrm{~ns})(5 \mathrm{v})$ |
| $2048 \times 8$ | $(450 \mathrm{~ns})$ |
| $4096 \times 8$ | $(450 \mathrm{~ns})(5 \mathrm{v})$ |
| $4096 \times 8$ | $(450 \mathrm{~ns})(5 \mathrm{v})$ |
| STATIC RAMS |  |

2101
2102.1
$21 \mathrm{LO}-19$
2191
2119
$\begin{array}{lr}2112 & 2\end{array}$

|  | R |  | 100pcs |
| :---: | :---: | :---: | :---: |
| $256 \times 4$ | (450ns) | 1.95 | 185 |
| $1024 \times 1$ | (450ns) | 89 | 85 |
| $1024 \times 1$ | (450ns)(LP) | 1.29 | 115 |
| $256 \times 4$ | (450ns) | 2.99 | 2.49 |
| $256 \times 4$ | (450ns) | 2.99 | 2.79 |
| $1024 \times 4$ | (450ns) | 8/17.95 | 2.10 |
| $1024 \times 4$ | (200ns) ${ }^{\text {LP }}$ ) | 8/22.95 | 2.45 |
| $1024 \times 4$ | (300ns) (LP) | 8/21.95 | 2.45 |
| $1024 \times 4$ | (450ns) ${ }^{\text {(LP) }}$ | 8/1895 | 2.25 |
| $4096 \times 1$ | (450ns) | 3.49 | 325 |
| $4096 \times 1$ | (300ns) | 3.99 | 375 |
| $2048 \times 8$ | (200ns) | CALL |  |
| $2048 \times 8$ | (200ns) | CALL |  |
| DYNAMIC RAMS |  |  |  |
| $4096 \times 1$ |  |  | 100 pcs 200 |
| $4096 \times 1$ | (250ns) | 2.50 | 200 |
| $16.384 \times 1$ | (150ns) | 8/19.95 | 2.35 |
| $16.384 \times 1$ | (200ns) | 8/17.50 | 1.95 |
| $16.384 \times 1$ | (300ns) | 8/16.95 | 185 |
| $65.536 \times 1$ | (200ns) | CALL |  |
| LP=LOW POWER |  |  |  |

JDR MICRODEVICES, INC;
$\int \mathrm{Se}^{\mathrm{N}}$ JDR MICRODEVICE
800-538-5000 800-662-6233, com.)

TERMS For shpang moluch 52.00 to UPS Ginnad $\$ 3.00$ to
 the right tolimit quentites and supetuute menuthetures. Pricer subject to change without notice. Send SAse for complete list.



# ELECTRONICS LIBRARY 

## 101 Easy Test Instrument Projects

by Robert M. Brown \& Tom Kneitel Most of the test instruments described in this book can be built in one evening for less than five dollars. A parts list is provided at the beginning of each project along with schematics and some basic construction instructions. Among the projects are: an impedance checker, line voltage booster, sound-level meter, audio oscillator, diode r-f probe, and transistor checker.
Published by TAB Books Inc., Blue Ridge Summit, PA 17214. Soft cover. 210 pages. $\$ 7.95$

## BASIC Computer Programs <br> in Science and Engineering

by Jules H. Gilder
This is a collection of 114 ready-to-run BASIC programs. Written for the hobbyist or the engineer, programs cover statistical operations (standard deviations, curve fitting, and interpolation) and design applications (mostly circuits). Each program is presented in flow-chart form and includes a sample as it would appear on the computer. Written for an Apple II micro, the author states they can be used for almost any personal computer with no or little modification.
Published by Hayden Book Co., Rochelle Park, NJ. Soft cover. 256 pages. $\$ 8.95$

## Microcomputers for External Control Devices

by James A. Gupton, Jr.
This book deals with two distinct topics, although there is no official division. The first part is about microcomputers in general; i.e., terminology, an overview of digital circuits, D/A converters, etc. The second is the substance of the book. It covers the various possibilities for using microprocessors to control devices in the home and in business; e.g., ac and dc motors, vacuum pumps, TV monitor displays, etc.
Published by dilithium Press, 30 NW 23rd Place, Portland, OR 97210. Soft cover. 279 pages. $\$ 13.95$.

## How to Buy and Install <br> Your Hi-Fi Stereo System

by Derek Cameron
Here is a hands-on guide for the do-ityourselfer, not the professional technician. It is directed at the consumer who simply wants to buy and install the best audio system within a specific price range. Among the subjects covered are: principles of acoustics, installation procedures, available system options, interconnections of commercial audio equipment, antenna installation, and checks and tests.
Published by Reston Publishing Co., Inc., Reston, VA. Soft cover. 88 pages. $\$ 4.95$.
 P. O. Box 4430C
Santa Clara. CA 95054 Will calls: 2322 Walsh Ave. (408) 988-1640 TWX 910-338-2139

INTEGRATED CIRCUITS


Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices

## Modem Kit $\$ 60.00$

State of the art, orig., answer. No tuning necessary. 103 compatible 300 baud. Inexpensive acoustic coupler plans included. Bd. Only $\$ 17.00$. Article in June Radio Electronics
280 Microcomputer
16 bit $1 / 0,2 \mathrm{MHz}$ clock. 2 K RAM, ROM Bread board space. Excellent for control. Bare Board $\$ 28.50$. Full Kit $\$ 99.00$. Monitor $\$ 20.00$. Power
Supply Kit $\$ 35.00$. Tiny Basic $\$ 30.00$

Video Modulator Kit
Convert TV set into a high quality $\quad \$ 9.95$ Convert TV set into a high quality monitor w/o affecting usage. Comp kit whull instruc.
Multi-volt Computer Power Supply $8 \mathrm{v} 5 \mathrm{amp}, 18 \mathrm{v} .5 \mathrm{amp} .5 \mathrm{v} 1.5 \mathrm{amp} .5 \mathrm{v}$ $5 \mathrm{amp} 12 \mathrm{v} .5 \mathrm{amp}-12 \mathrm{v}$ option. $\pm 5 \mathrm{v},=12 \mathrm{v}$ are regulated Basic Kit $\$ 29.95$. Kit with chassis and all hardware $\$ 43.95$. Add $\$ 4.00$ shipping. Kit of hardware $\$ 14.00$. Woodgrain case $\$ 10.00$. $\$ 1.50$ shipping.

## RCA Cosmac 1802 Super Elf Computer Kit \$106.95

The Quest Super Elf is the right choice for the person who has a need to learn more about computers, from an understanding of the hardware and how it goes together to beginning programming with machine language on up through basic.

## Tremendous Value

The Super Elf is a tremendous value as it combines video, digital displays, LED displays, and music, all on a single board for $\$ 106.95$. Its unique ability for single step debugging, display of state and mode of the computer and display of addressing as an inexpensive option gives it an "easy to use " capability not available anywhere at the price.

## Inexpensive Expansion

The Super Elf expansion capability is virtually unlimited and you can do it inexpensively one step at a time. Expansion includes cassette interface additiona memory, color video, Basic. ASCII keyboard, printer, floppy, S-100 bus, RS232 etc.

## Strong Soltware Support

The Super Elf comes complete with power supply and detailed 127 page instruction manual which includes over 40 pages of

60 Hz Crystal Time Base Kit $\$ 4.40$ Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy
Rockwell AIM 65 Computer
4 K version $\$ 450.00$

software, including a series of lessons to help get you started and a music program and graphics target game. Many schools and universities are using the Super Elf as a course of study. OEM's use it for training and R\&D. A monthly newsletter, Questdata is devoted exclusively to software for the Super Elf and there are many software books available at low cost You can do a tremendous amount with the software available and there is more coming every day Of course you can do your own programming which is fun and very rewarding.
Free 14 Page Brochure
Send or call for a free brochure on all details and pricing of the Super Eif and its expansion. We will get it right out to you!

EIf II Adapter Kit \$24.95
Plugs into Eff II providing Super Elf 44 and 50 pin plus $\mathrm{S}-100$ bus expansion. (With Super Expansion). High and low address displays, state and mode LED's optional $\$ 18.00$.

# Radio Shack is America's Parts Place No Minimum Order! No Waiting! Low Prices! 

Save! Low-Power $\underset{\text { As }}{\text { Low }}$
Schottky ICs 59C
Faster Than TTL • With Pin-Out \& Specs

| Description | Type | Cat | No. | Reg |
| :--- | :--- | :--- | ---: | ---: | Sale $\mid$ (

Archer Project Boxes
${ }_{1}$ For the "Pro" Look
NEW!
795

## NEw! $3^{95}$

(A Distinctive coloring, end-panels of ABS plastic, slots and standoffs for PC boards. Includes screws, selt-sticking feet. $21 / 4 \times 5 \times 5 \frac{1}{4}$ in
$270-218 . .$. . . . . . . . . . . . . . . . . . . . 7.95
[B. Portable case has compartment for batteries, too $11 / 8 \times 35 / 8 \times 5 \frac{3 / 4}{}$. With hardware. 270-219.
Microwave Transistor

## NEW!

MRF-901. Small-signal UHF/microwave amp useable to beyond 2 GHz . Gain: 10 dB . noise 2.0 dB (typical at 1.0 GHz ). With full specs. 276-2044

NEW Solar Cells-Harness The Power of the Sun
 Solar cells convert light directly into electricity. Use them to power electronic projects, redios, calculators, and small DC motors, or to charge batteries. Connect in series for more voltage, and in parallel for more current. Typical voltage. 0.42 V . Prime quality-ideally suited for solar panels.

| Fig. | Size | Max. Current <br> (Short Circuit) | Cat. <br> No. | Each |
| :---: | :---: | :---: | :---: | :---: |
| $\square$ | $2.5 \times 5 \mathrm{~cm}$ | 0.2 A | $276-124$ | 3.95 |
| $\square$ | $5 \times 5 \mathrm{~cm}$ | 0.5 A | $276-125$ | 5.95 |
| $\square$ | $5 \times 10 \mathrm{~cm}$ | 1.0 A | $276-126$ | 9.95 |
| $\square$ | 4 in. dia. | 2.0 A | $276-127$ | 16.95 |

Low-Leakage Electronics

DIN-Type 5-Pin Inline Socket


## NEW! 149

Accepts male DIN-type plugs with three or five pins. Extend audio, video. computer connections. Solder terminals 274-006
.1 .49
TIL414 Infrared Phototransistor

NEW! 89
Suitabe for 1 R switching links, data links, wireless remote control. NPN $50-\mathrm{mW}$ dissipation. 276-145 ....89 ${ }^{c}$

SPST Toggle Switch With LED Indicator


Phase-Locked Loops

## NEW!

$\underset{A s}{\text { Low }} 159$
LM1800. FM stereo decoder, 40 dB channel separation. 16-Pin DIP. 276-1719 2.49 565. For SCA and RTTY decoders, modems, frequency synthesizers. TTL, CMOS compatible. 14-Pin DIP 276-1720
. 1.59

Receiver ICs

(AA MC1330. Fully-balanced multiplier de tector with excellent linearity. Replaces original equipment in many solid-state TV sets. With specs. 8 -pin DIP 276-1757
[B] MC1350. Universal if amp with AGC. At-home in both radio and TV receiver C cuits. Usable in DC to beyond 60 MHz .
AGC range is -60 dB min. With specs. 8 -pin DIP. 276-1758
.2.19
C MC1358/CA3065. Gireatly simplifies home-brew receiver projects! Also popular replacement IC in many TV sets. If amp. limiter. FM detector and audio driver in 14

Battery Holder


NEW!
129
Holds ten "AA" batteries. Perrect for making a nickel cadmium pack. Series wiring, snap terminals, less batteries. 270-395 1.29


Automatic spring return to the centeraff position. For experimental projects, more. Six amps @125VAC
275-637.


5082-2835. Schottky barrier diodes. Use with UHF and Microwave mixers. Maximum capacitance: 1 pF .
276-1124

## Three DC Motors



Great for use in models, robots, solar projects or even as a low-power generator. 1/2-6VDC. 273-208 ...Pkg. of $3 / 1.49$


MICROCOMPUTER MART RATE: $1^{\prime \prime} \times 1$ Column ( $1-58^{\prime \prime}$ ) $\$ 1751-12^{\prime \prime} \times 1$ Column (1-5 8") $\$ 265002^{\prime \prime} \times 1$ Column (1-5 8") \$350.00 GENERAL INFORMA. TION: Frequency rates available. Payment must accompany copy except credit card-Am Ex. Diners. MC. VISA (supply Expiration date)-or accredited ad agency insertions. Orders are not acknowledged. They will appear in next available ıssue after receipt Closing date: 1 st of the 2nd month preceding couer date (for example. Aprit issue closes February 1st). Send order and remittance to MicroComputerMart. POPULAR ELECTRONICS. One Park Avenue. New York. NY 10016 Direct inquiries to (212) $725-3485$

## CALIFORNIA

The Original ByteShop
1415 W. El Camino Real Mountain View, CA 94040 (415) 969-5464

| $1$ | 1 |
| :---: | :---: |
|  | $=$ |
| Gut The Canolog Dola Product 9460 | Our Low Pricer Maintenance Telstar |
| El Monte | CA 91731 |
| (213) 350.4194 | (714) 994.4180 |

## OHIO SCIENTIFIC

 MICRO.COMPUTERSA.A. Office

Equipment Company 2140 American Avenue Hayward, CA 94545
(415) 782-6110


## BARGAINHUNTERSI <br> Buy sell or trade all types of computer equipment and sottware (pre-owned and new) among 20000 readers nationwide in the BIG $111: 14$ ) nages of comnuter smaper Subscription $\$ 10$ yp/12 issues Money bach guarantee P0 Box F-130 Tillusville FL 32780 (305) 2693211 MC \& VISA only 1-800-327-9920

MASSACHUSETTS


NEW HAMPSHIRE


Floppy Disk Services Inc. C.N. 5212

Princeton. N.J. 08540
Siemens disk drives for your radio shack. S. 100 or other microcontracted OEM. bes prices in the country. Complete systenns and large invento'y of spare pants. Direct replacement drives for Heath Computers DUAL 8 INCH HEATH SYSTEM NOW AVAILABLE! MOJ II dives at half store prices'

```
8A-4P Mon-F'I - Mastercard Visa
Phone orders - 609-771-0374
```

PENNSYLVANIA

| RADIO SHACK TRS-80" Computers Buy Drect From Pan American Electronics, wn. |
| :---: |
| Discounls - Free Shipping TOLL FREE ORDER NUMBER -8001531-7466. |
| Depl. 67-1117 Conway Avenue Mission. Texas 78572 <br> Texas \& Principle No. 512.581-2765 Telex Number 767339 |
|  |
|  |

## NEW YORK

## THE NEC

PERSONAL COMPUTER
The End of the Compromise We Have It
SYNAPSE VIDEO
PO BOX 962 / NY. NY 10009 (212) 860-5776


ILLINOIS

BEST PRICES AVAILABLE APPLE PRODUCTS
48K Apple $\$ 1.690$ Plus $\$ 20$ Sh pping Call tor best deals on Altos THE COMPUTER ROOM
2218 Plainfies Rd... Joliet. IL 60435 For intormation call (815) 725-0396 Certilued check for immediate shipment Personal checks delayed for bank clearance Add $\$ 2200$ for mapor credit (MCNISNAmer. Express) Mo CO.D.

## MICROFILM EDITIONS

 AVAILABLECopies of POPULAR ELEC*RONICS Magazıne are available on microfilm from Xerox University Microfilms Ann Arbor Michigan Microfiche from Bell \& Howell Micre Photo Division Wooster Ohio

NEW JERSEY

MODEL II

s602 DISCOUNT Off List
64K 1 DAIVE 3297.00

[^4]
## TRS-80 ${ }^{\circ}$ DISCOUNT

 BUY DIRECTWe carry the full line of TRS. 80 Computers. All other software, furniture, and accessories at discount from catalog price. We stock most items to assure you fast delivery and save you money.

WRITE FOR A FREE CATALOG
1-800-841-0860 Toll free Order Entry MICEO MANAGEMENT SYSTEMS, INC.

## dept. no. 12

downtown plaza shopping center
CAIRO GEORGIA J1728.
GA. 8 EXPORT PHONE NO. (912) 377.7120

MODEL III

26.1061 4K I......... $\$ 609.00$ 26.1062 16K III. ........ 849.00

26-1066 48K III
2 Drives, RS232. . . . . . 2077.00

# Electronics Cla $s$ ied 

 CLASSIFIED RATES: Per Word. 15 Word Minimum. COMMERCIAL: $\$ 3.50$. EXPAND-AD ": \$5.25. DISPLAY: $1^{\prime \prime} \times 2^{1 / 4 \prime}, \$ 425.00 .2^{\prime \prime} \times 2^{1 / 4} 4^{\prime \prime}, \$ 850.00 .3^{\prime \prime} \times 2 \frac{1 / 4}{}$ $\$ 1.275 .00$. GENERAL INFORMATION: Frequency rates and prepayment discounts avalable. Payment must accompany order except credit card - Am. Ex.. Diners, MC. VISA (include exp. date) - or accredited ad agency insertions. Copy subject to publisher's approval: must be typewritten or printed. First word set in caps. Advertisers using P.O. Boxes MUST supply permanent address and telephone number. Orders not acknowledged. They will appear in next available issue after receipt. Closing date: 1 st of the 2nd month preceding cover date (e.g. Mar. issue closes Jan. 1). Send order \& remittance to: Classified Advertising. Popular Electronics Magazine. 1 Park Avenue. New York. NY 10016. Direct inquiries to Rose Lynch. (212) 725-7686.
## FOR SALE

FREE DISCOUNT ELECTRONICS CATALOG. Over $\overline{4^{1} / 2 \mathrm{mil}}$ IIon satisfied customers. Low. low prices on I.C. s. LED readouts. computer peripherals. audio components. solar products and much. much more Poly Paks. Box 942 PEC. Lynnfield. Mass. 01940.
GOVERNMENT and industrial surplus receivers. transmitters. snooperscopes, electronic parts. Picture Catalog 25 cents. Meshna. Nahant. Mass. 01908.
ELECTRONIC PARTS. semiconductors. kils. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS. Bluftton. Ohio 45817.
RADIO-T.V. Tubes - 49 cents each. Send for free catalog. Cornell. 4213 University. San Diego. Calif. 92105.
SAVE UP TO $50^{\circ} \circ$ on name brand test equipment. Free cata$\log$ and price list. Salen Electronics. Box 82. Skokie. IL 60077. TELETYPE EOUIPMENT: Copy Milltary. Press. Weather. Amateur. Commercial Transmissions. Catalog $\$ 1.00$. WEATHER-MAP RECORDERS: Copy Satellite Pholographs. National-Local Weather Maps. Learn How' \$1.00. Atlantic Sales. 3730 Nautilus Ave., Brooklyn. NY 11224. Phone: (212) Sales. 373
372.0349.
SOUND SYNTHESIZER KITS - Surf $\$ 19.95$. Wind $\$ 19.95$. Wind Chimes \$24.95. Musical Accessories. many more. Catalog free. PAIA Electronics. Box J14359. Oklahoma City. OK $73 \uparrow 14$.
BUILD AND SAVE. TV EARTH STATION. DETECTIVE ELECTRONICS. TV De-Scramblers. Video Recorders. Color Cameras. advanced Telephone Projects. BROADCAST Electronics. 50 page color catalog of unusual electronic projects AIR MAILED $\$ 3.00$ : with 3 hour audio cassette dramatization of our catalog $\$ 5.00$. Don Britton Enterprises. PO Drawer G. Waikıkı. Hawalı 96815.
UNSCRAMBLERS FOR any scanner. Several models available. Free Iterature. Capri Electronics. 8753 T Windom. St. Louls. MO 63114.
UNSCRAMBLERS. seven models available to decode police. ambulance. and fire coded transmissions. Other scanner devices. Tone encoders decoders. Telephone accessones. etc. Free Catalog. KRVSTAL KITS. Box 445. Bentonville, AR 72712. (501) 273-5340.

POLICE FIRE SCANNERS. crystals. antennas. CBs. Radar Detectors. HPR. Box 19224. Denver. CO 80219
PRINTED CIRCUIT supplies chemicals, tools. atwork. plat. ing solutions. Major credit cards. Catalog $\$ 2.00$. refundable. CIRCOLEX. Box 198. Marcy. NY 13403.
RECONDITIONED TEST EQUIPMENT $\$ 1.00$ for catalog WALTER'S TEST EQUIPMENT. 2697 Nickel. San Pablo. CA 94806. (415) 758-1050.

NEW ELECTRONIC PARTS. Continuously stocked. Stamp brings catalog. Daylapro Electronics. 3029 N. Wishire Ln.. Arlington Hts.. IL 60004.
ELECTRONIC CATALOG. Over 4.500 tems. Parts. \& components. Everything needed by the hobbyist or technician. $\$ 2.00$ (U.S. funds) $\$ 4.00$ Foreign Postage \& handing. refundable with first \$15.00 order. T \& M Electronics. 472 East Main St.. Patchogue. NY 11772. (516) 289-2520.
SPEAKERS SAVE $50^{\circ}$. Bull your own speaker system Write: McGee Radıo Electronics. 1901 McGee Street. Kansas City. Missouri 64108.
$\overline{\text { PRINTED CIRCUIT BOARDS }}$ your artwork. Quick delivery. Reasonable. Atlas Circuits. Box 892. Lincolnton. NC 28092. (704) 735-3943.

CABLE TV DESCRAMBLERS AND CONVERTERS. Plans and parts. Build or buy. For information send $\$ 2.00$. C\&D Company. P.O. Box 21. Jenison. MI 49428.

[^5]

CHEMICALS. Apparatus. Project Books. Wide Selection. Catalog send $\$ 1.00$ to Pioneer Corp.. 14a Hughey Street. Nashua. NH 03060.
TEST EQUIPMENT. new and used Catalog $\$ 1.00$ PTI. Box 8756: White Bear Lake. MN 55110.
QUALITY AUDIO COMPONENTS. Multi-Track Equipment. Programmable Calculators. Accessories. Competitive Pricing' Prompt Delivery' Knowledgeable staft' Service Facinty' Credit Cards accepted. FREE cataiog. SOUND IDEAS. Dept. SR. PO Box 340. Cary. N.C. 27511 1-800-334-2483 (N.C. 919. 467-84621
UNSCRAMBLE CODED MESSAGES from police. fire and medical channels. Also telephone recording adaptor. Same day service. Satisfaction guaranteed. Don Nobles Electronics. Inc. Rt. 7. Box 610-A. Hot Springs. AR 71901. (501) 623-6027.
SUBSCRIPTION TELEVIION EDUCATION MANUAL! Two scrambling decoding systems. theory. circuits. Decoder dealers listed. \$14.95. Microwave Television Manual: $\$ 16.25$. Kits available. Information package: \$2.00. ABEX. P.0. Box 26601-P6. San Francisco. CA 94126.
POLICE SCANNERS WHOLESALE PRICES. VISA MC Phone orders accepted. (415) 573-1624. Free catalog. Scanners Untimited. 1199A Laurel Street. San Carlos. CA 94070. LOWEST PRICES ELECTRONIC PARTS contidential catalog tree KNAPP. 475096 th St. N. St Petersburg. FL 33708.

## ริaf



MICROWAVE TV downconverter, prebuilt $\$ 140.00$ Spectly output channe| Complete system. $\$ 29495$ Free information. TEM MICROWAVE. 22518 97th Ave No.. Corcoran. MN 55374 612-498-8014
PICTURE TUBE REBUILDING equipment new and used. ATOLL TELEVISION. 6425 Irving Park. Chicago. Illinois 60634.

DECODE Morse and RTTY signals off the air with our MORSE-A-WORD or RTTY READER. MORSE-AKEYER keyboard also available. Quality kits or factory wired. Call or write for details. MICROCRAFT. Box 513PE. Thensville. WI 53092. (414) 241-8144.


ROBOT KITS. PARTS. MATERIALS BOOKS. Send $\$ 3$ for subscription to catalog and newsletter. ROBOT MART. 19 West 34th St.. New York. NY 10001.
SATELLITE TELEVISIÓN ... HOWARD/COLEMAN boards to build your own receiver. For more information write . . ROBERT COLEMAN. Rt. 3. Box 58APE. Travelers Rest. S.C. 29690.
RF MODULATORS' Special versions for SATELLITE TELEVISION. COMPUTERS. CCTV. Also Monitors. Cameras. Kits. FREE catalog. Phone (402) $987-3771$. Dealers weicomed ATV RESEARCH. 13 -P Broadway. Dakota City. NE 68731
SPEAKERS in any room. No wiring. Up to 100 watts. For information send $\$ 3.95$ to D to R Enterprises. 323 N. Brockway. Palatine. IL 60067.
SUBSCRIPTION TV DECODER KIT \$39.00. Includes parts. manual. and etched board. Manual only $\$ 4.60$. MICROWAVE TV DOWNCONVERTER KIT \$169.00. Assembled $\$ 22000$. Catatog \$2.00. J\&W Electronics. P.O. Box 61. Cumberland. RI 02864.
AUDIO FREQUENCY GENERATOR. Digtal readout. 15 Hz 50 KHZ . No range switching. Vernier. Sine wave. T.T.L. square Detaled plans $\$ 7.50$. W O Digital readout $\$ 3.50$. P.C.B.s and parts available. SCHROEDER ELECTRONICS. P.O Box 171. Rolla. MO 65401.
-RF POWER TRANSISTOR - TUBE CATALOG FREE. MRF453 MRF455A SK1451 - \$14.00: MRF454 SRF2072 MRF2769 - \$17.00: MRF245 MRF247 - 527.00 : 2N4048. $\$ 6.20$. Exclusive Repair Center for PALOMAR PRIDE, etc, Westcom. 1320 Grand. San Marcos. CA 92069. (714) 744 0728.
$\overline{\text { DIGITAL REVERB September }} \overline{80 \text { Issue }}$ PE. PCB $\$ 18$. Critical IC s $\$ 23$ Memory set $\$ 50$. SASE for reprint Videoart. Box 10327. Stanford. CA 94305.

MICROWAVE DOWNCONVERTERS BUILT-IN Preamphighest gain Downconverter board. plans - $\$ 15.00$ Power Supply Board. Plans - \$5.00 Antenna Cookbook - \$5.00. All three for S20.00. MICRO ENGINEERING. P O. Box 17231. Minneapolis. MN 55417.
INEXPENSIVE CABLE TV Descramblers-ConvertersMicrowave Antennas! Exclusive catalog $\$ 2.00$ : ACM. Box 3431. Walnut Creek, CA 94598.
BIORHYTHMS 60 day chart shows good and bad days. Send birthday $\$ 5$. Wright. Box 17045 . Kansas City. MO 64132.

SATELLITE EARTH STATION - Bulld your own antenna for less than $\$ 200.00$ with materials you can buy local. Complete instructions plus material list. Any handyman can do it. Send today $\$ 7.95$ to: YOUNG SATELLITE SYSTEM. P.O. Box 79089P. Fort Worth. TX 76179
NEW! Computerized anti-theft device for autos \& RV's. Easily installed. Details-send stamp. Professıonal Mal Service. Box 178. Old Bridge. NJ 08857.

CABLE TV DESCRAMBLERS. CONVERTERS. AMPLIFIERS and COUPLERS. Microwave, satellite and security TV systems. Catalog $\$ 2.00$. G and G Electronic Supplies. P.O. Box 188 , Sidman. PA. 15955.
FLEAS. ANTS. ROACHES. MICE - eliminate these and other insects with a new electronic ultra sound device. Resuits guaranteed. Only $\$ 109.95$. Send check mo B \& N Distributing Co.. 9041 Alondra. Belfflower. CA. 90706.
INTEGRATED CIRCUITS Compare our prices with anyone s. We have no minimum purchase. Buy only what you need. We also give quantity discounts so buy more for less. Send for free copy of our price listings. Chips Galore. P.O. Box 20362. Kansas City. Mo. 64195.
famous tix Circuit board solder. Melting Point $275^{\circ}$ F.. $\$ 9.50$ Prepaid. TIX Flux and Ant.-Flux. $\$ 2.50$ ea.. Prepaid. Allied Mig. Corp.. Box 1398E. Bozeman. MT. 59715. (406) 586-6630.

PANASONIC VIDEO RECORDER PV $4500 \$ 1099.00 .6 \mathrm{hrs}$. tape $\$ 13.99$. Kenwood SWL Receiver R1000 $\$ 379.00$ Yaesu FRG7 $\$ 255.00$ FRG $7700 \$ 469.00$ Many more specials. Phone. write ROSS DISTRIBUTING Preston. ID 83263 (208) 852-0830.


SCRAMBLED T.V. DECODER CIRCUIT DESIGNS. Parts. Supplers, Theory. Technical Advice. \$10.00 Money Order Only. Quest, Box 1722. Costa Mesa. CA 92627.
CIRCUIT BOARDS. Do your own. Easy plans with etchants. $\$ 10.00$ Money order only. Quest. Box 1722. Costa Mesa. CA 92627.

POLICE SCANNERS WHOLESALE PRICES. VISA. MC Phone orders accepted. (415) 573-1624. Free catalog. Scanners Unlimited. 1199A Laurel Street. San Carlos. CA 94070.
ATARI SPACE INVADERS OWNERS' Shoot Rapid Fire Easy instruction. Instant safe application. $\$ 3.98$ : Concepts. PERF-1. Box 522. Brooklyn. NY 11215.
HEWLETT - PACKARD 608 C SIGNAL GENERATOR $10-480$ $\mathrm{Mhz} \$ 250.00$. Electronic test equipment catalog 25 c . EF Electronics. PO Box 249. Aurora. II. 60507.
PAY-TV DECCDERS. PARTS. plans, kits and factory bull units are available. Complete information and price lists $\$ 2.00$ refundable on first order. Lee s Electronics. PO Box 253. Taylor. MI 48180.
ARMY FIELD RADIOS: G.I. mannstays from Korea to Nam. PRC-10 Backpack Radio. 38.54 MHz FM. with accessories. $\$ 52.50$. RT- 70 portable vehicular Radio, $47-58 \mathrm{MHz}$ FM, with Handset: $\$ 37.50$ apiece. $\$ 67.50$ pair. Schematic and battery information included. Add $\$ 7.50$ shipping. Baytronics. Dept. PE. Box 591. Sandusky. OH 44870.
DETERMINE THE LOOK-ANGLE for your TVRO installation. Easy instructions! Send $\$ 3.00$ to Satel•N.FO. PO Box 92. Harbor City. CA. 90710.
PCB 15 c sq-in FREE DRILLING. SATISFACTION GUARĀNTEED. Internatıonal Enterprise. 6452 Hazel Circie. Simı Valley. CA. 93063.
TV DECODERS: ON TV and HBO Buld 2 complete boxes. 4 steps. all instructions included. Eliminate monthly payments. Send $\$ 5.95$ and $\$ 1.00$ shipping to: M. Kier. PO Box 3186. Los Angeles. Calf. 90051.
MICROWAVE RECEIVER SYSTEM - Write: "Dealers Wanted". Dept. PE. POB 440668. Aurora. Colo. 80044. (303) 620-9736.

ATTENTION SOLAR ENTHUSIASTS!! Supplers directory of all materials needed to make photo-voltaic cells. Send $\$ 5.00$ cash or check: Secon Company. 1225 Raymond. Glendale. CA. 91201.
12 VOLT LAMPS SCREW into STANDARD SOCKETS' Battery supplies emergency or alternative energy lighting. Send $\$ 9.95$ for three. get free article on windpower Generators' Windpower. 110 Sanborn. Big Rapıds. Mich. 49307.
MICROWAVE TV ANTENNA Receives relayed satellite TV al home - \$225.00. PO Box 7057. Norfolk. VA. 23509.

ANY PAY TV SYSTEM can be broken easily and inexpen sively. Order advanced code breaking methods for design engineers Technicians: $\$ 12.95$ GAM Engineering. 1232 Tall madge. Brinfield. Ohio 44240
POWERTEC OEM SERIES MODEL 2F $15-28$ regulator D.C power supply output $12-15$ Volts 28 amps $\$ 300$ Texas instru ment calculator Model TI-58C New. $\$ 100$. VHF TV FM preamplifier. Model AB-300 RP-300 30 db gain can be used with 75 OHM or 300 OHM. $\$ 100$ Call (206) $291-3777$


Better than Cable TV-Over 200 TV and radio services. Why waste money? Learn the whale story and build a video system the family can enjoy. No commercials, FREE movies, sports and Vegas shows - worldwide, crystal clear reception connects to any TV set. Big ( $8 \times 11 \mathrm{in}$.) book loaded with details, photos, kits -
TELLS EVERYTHING! Satisfaction Guaranteed.
Send $\$ 8.95$ TODAY! Add $\$ 2.00$ tor 1 st class (air mail) or call our 24 hour C.O.D. rush order line (305) 862-5068.

## GLOBAL ELECTRONICS,

P.O. Box 219-K, Maitland, Florida 32751

Resistors ${ }^{1}$ WW, ${ }^{1}$ W ${ }^{\circ}{ }^{\circ}$ OC.F. 3cea $1^{\circ}$ oMetalfilms. IX Sockets. LED s Diodes. Details from. JR INDUSTRIES. 5834-A Swancreek. Toledo. Ohio 43614
SATELLITE PARABOLIC ANTENNA KIT $\$ 650$ Sample Assembly Twelve 30 sections. SATRONICS COMMUNICATIONS. Box 2924. Station A. Champaign. IL 61820 (217) 398-2873
TELEPHONE AND EQUIPMENT CATALOG - $\$ 2$ Refundable. Telcom. 815 East Third. Dept E. Beardstown. IL 62618. FREE CATALOG OF ELECTRONIC DESIGNS Radio. Audio. Telephone. Self Detense. Peter Schmit Enterprises \#143. Box 07071. Milwaukee. WI 53207
TRS-80 TALKING CALCULATOR makes 16 K TRS-80 talk out cassette port Send \$21 95 for cassette to BOICE. 1504 E. 2nd. Pueblo. CO 81001

AEROSPACE WIRING AND INSULATION KIT. Includes TefIon. Fiberglass. Heatshrink. for projects-repars $\$ 2.68$ FLEX SYSTEMS. Box 128. Harleysville. PA 19438.
PRINTED CIRCUIT BOARDS quick. Also Artwork Supplies. Free Samples. Information CIRCUIT WORKS. 1118 7thPE Neptune. NJ 07753.
FREE KIT CATALOG contans test equipment Phone 415 447-3433. DAGE SCIENTIFIC INSTRUMENTS. Box 1054 P Livermore. CA 94550
PAY-TV UNSCRAMBLER plans $\$ 1295$, board $\$ 14.95$ $\$ 150$ postage SASE for information. Demex. Box $2704(211)$. Huntington Beach. CA 92647.
SATELLITE TELEVISION INFORMATION - Buld or buy vour own Earth Station U.S $\$ 400$ Satellite Teievision. RD 3. Oxford. NY 13830.

VIDEOCASSETTE storage cases Flastic. Int-free wash able. VHS. Beta. black or white. Protect your investment' \$2 each or 10 for $\$ 12$. Monzon-Dittmer Engineering. P.O. Box 4431X. Stockton. CA 95204.
AIM your SATELLITE TELEVISION ANTENNA ACCURATELY using azimuth and elevation data computed for your location ANYWHERE WORLDWIDE. Chart shows which of 44 satellites are within your reception area. You will also receive our 7 page booklet showing future launches, frequencies, formats, antenna feed line data. list of satellite IV suppliers, $\$ 10.00$. COMPUSAT. 643 South Route 83. Elmhurst, IL 60126.

## COMPUTER EQUIPMENT

SURPLUS COMPUTER PERIPHERALS. Selectric 10 typewriter bargains world s largest selection. Send 25 c for bargan-packed flyer. CFR. Box 144. Newlon. NH 03858.
WANTED - Sell your unwanted computer through us. Big savings for buyers in pre-owned equipment. Buyers/sellers - Send SASE or 256 for details. Autocomp. Box 246, Glenham. NY 12527
SAVE 90\% Buld Your own Minicomputer Free Details. Diga tek. 2723 West Butler Dr.. Sute 20C. Phoenix AZ 85021
USED COMPUTER TERMINALS. Printers. Modems. Surplus Electronic parts Catalog $\$ 1.00$. RONDURE COMPANY. THE COMPUTER ROOM. 2522 Buiter St . Dallas, TX 75235 (214) 630-4621.
COMPUTER DISPLAY C.R.T.S rebuit. also television. surveillance. monitor. arcade and special purpose tubes. S.G.T Co. 437 South Illinois Street. Indianapolis. IN 46225. (317) 631-4786.
EPROM PROGRAMMING Reasonable rates quality work FREE Details. ADTRONICS. 663 Branch Drive. Port Orange Fl. 32019.
COMMODORE COMPUTERS. Disk drives. printers. Call for low prices on latest models. 802-658-6908.

## AMATEUR RADIO

RADIO AMATEUR CALLBOOKS Drectories of Radio Ama teurs around the world. Write for FREE catalog. Radio Ama teur Callbook. Dept. PE. 925 Sherwood Dr.. Lake Bluff. IL 60044
PLAY YOUR TAPES. records. T.V. an any F.M. radio in your house - wireless - simple hook-up. Satisfaction guaranteed \$24.95. Port-o-Sound Co. Box 279A. Howard Beach. NY 11414.

## C.B. EQUIPMENT

GET MORE CB CHANNELS AND RANGEI Frequency Ex panders boosters. speech processors. how-to-books. plans modifications. Catalog \$2. CB CITY, Box 31500PE. Phoentx AZ 85046
SKYROVER ROTARY BEAM ANTENNA Don 1 buy another beam until you investigate Skyrover. Pelican Co. Box 647.P. Hobe Sound. FL. 33455.

## CABLE TV

500 PHILIPS 32 CHANNEL CABLE TV converters and VCR programmers. $\$ 17,800$ prepard to your door. Sample $\$ 48$. Birnbom. 3655 Ridgewood. Sute 103. Montreai. Canada H3V 184 (phone 514-739-0514). (U.S. inquires)

## PLANS AND KITS

PRINTED CIRCUIT Boards from sketch or artwork. Kit pro jects. Free detals. DANOCINTHS nc.. Dept PE. Box 261 Westland. M1 48185.
LASERS HANDBOOK with burning. cutting. Ruby Reds. CO s complete plans. books. and parts. Send $\$ 4.00$ to: Famco. Dept PE. Box 1902. Rochester. NH 03867
GIANT SCREEN TV projection system converts any television into 7 -foot picture. Lens \& instructions $\$ 14.95$. (Dealers welcome). Bell Video, 4616 Belair Rd.. Baltmore. MD 21206.

ROBOTIC CATALOG-MOTORS. gears, hardware electronics, \$3.00. Newsletter. \$8.00/yr. MOUDY ELECTRONICS, R.D.2. Box 427-P. Hollidaysburg, PA 16648.

## BUILD AN ORCHESTRA

## THE OUEREI WAY

## Preview the world's most advanced Do-It-Yourself Organs, Pianos, Syn-

 thesizers, Amps, etc. Send $\$ 6.00$ for our famous "Sight \& Sound" pack. WERSI Electronics, Inc., Dept. M2 P.O. Box 5318, 1720 Hempstead Rd., Lancaster, PA 17601.PROFESSIONAL GIANT SCREEN PROJECTION TV Don t be fooled by cheap imitations. Buitd the best'. . . Simple Construction! ...FREE information! ... POLI-VISION. 168 E Dunmore St.. Throop. PA. 18512.
UNIQUE TV DECODER plugs between UHF and VHF tuners on tube or sold-state sets. Plans \$3.95: DECODER ANTEN. NA receives multı-polarized signals. Plans \$3.95: Antenna Kit \$19.95. Helico, P.O. Box 304. Bridgewater. MA 02324
$\overline{\text { GRANT CLOCK KIT Plans } \$ 2.50 \text {. Microprocessor Trainer }}$ Plans \$5.00. Complete List of Kits and Products FREE. Paccom, 3928 148th N.E., Redmond. WA 98052.

PLANS - Monophonic Organ Synthesizer \$9.50. Kıts available upon request. For information. SASE Mad 13. P.O. Box 6742. Concord. Californa 94524

TESLA COIL RESONANT TRANSFORMERS. 50.000 V 5.000 .000 volts. $520 \mathrm{~W}-3.000$ kilowatts. Arcs -100 . Illustrated Construction manual includes: 5 Powerful coll plans (Tube. Sparkgap). 25 high-voltage high-frequency experiments. electrical theory designing procedures. part suppliers. PLUS Nikola Tesla's Historical 100.000.000 volt standing wave magnifying transmitter. Ball Lightning Production . . Manua! $\$ 15.00$. Information color photo $\$ 2,00$. B\& L Scientific. 215 W . First St.. Sulte $105-47 \mathrm{G}$. Tustın. CA 92680
PROJECTION TV . . Convert your TV to project 7 Foot pic. ture . . . Results equal to $\$ 2.500$ projector .. . Total cosi less than $\$ 20.00$. PLANS \& LENS $\$ 16.00$. Hlustrated information FREE. Macrocomcb. Washington Crossing. Pennsylvania 18977. Creditcard orders 24 hours. 215-736-3979.

FM STEREO TRANSMITTER KIT. Range up to ${ }^{1} 3$ mile. broadcast quality. 30 dB separatıon. 300 mv input sensitivity. Tunes 88-108 Mhz. highly stable. 50 out Requires --15 V . Complete kit 89.95. (2†3) 506-0415. Free info. STELLATRON. 4942 Whitsett-205. N. Hollywood. CA 91607
PROFESSIONAL LIMITER-COMPRESSOR-EXPANDER KITS. Pro specs and features. balanced input. adjustable threshold. slope ( $1: 1$ to 100:1) attack and release. Models from $\$ 79$ and up. Rack mounting avallable. Free Imio. STELLATRON. 4942. Whitsett-205 N. Holiywood. CA 91607.
CABLE TV DECODER. Super Design. Easy to build. Plan S8.00. Omicron Laboratory. Box 11034. Knoxville. TN. 37919. GADGETSI Gadgets gatore' Lasers \& more. Catalog \$1.65. Information Plus. Box 1735. Bloomtietd. N.J. 07003.
$\$ 25.000 .000$ DOLLARS FOUND using metal detectors. Build your own and Save $75 \%$. Free Details. Digatek Corp. Suite C2. 2723 West Butler Drive. Phoenix. AZ. 85021 .
$\overline{C B}$ - SOLVE IGNITION. ALTERNATOR. Etc. Interference inexpensively. Detals $\$ 3.00$. LL Enterprizes. 65 Dellbrook CT. O'Fallon. MO. 63366.
PHONICS AUDIO KITS. Siraightforward design. audiophile specifications and inexpensive! Catalog. \$1.00 Phonics. Box 55311. Indianapolis. IN. 46205.

SUBSCRIPTION TELEVIIION SYSTEMS: SINEWAVE DECODER: 2300 MHZ MICROWAVE DOWNCON. VERTER. Best systems available: no internal connections to TV! Plans $\$ 10.00$ each: both $\$ 15.00$ PARTS. KITS AVAILABLE: MCNIISA accepted on parts purchases. Send SASE for parts pricing and more information on these and other unique plans. COLLINS ELECTRONICS. Box 6424. San Bernardino, CA 92412.
free catalog 99 cent kits Parts. Bargans Gaiore' ALL KIT. 434 west 4 th St.. West Islip. New York 11795.

## TUBES

RADIO \& T.V. Tubes - 49 cents each. Send tor free Cataiog Cornell. 4213 University. San Diego Calif. 92105.
TUBES: Oldıes", Latest, Supplies. components. schematics Catalog Free (stamp appreciated). Stermetz. 7519-PE Ma plewood. Hammond. Ind. 46324
TUBES-RECEIVING. Industrial and Semiconductors Factory Boxed. Free price sheet inciuding TV. Radio and audio parts list. Transleteronic. Inc.. 1365 39th St.. Brooklyn. New York 11218. Telephone (212) 633-2800 Toll free-800-221-5802.

HUGE INVENTORY' Thousands of types. Wholesale prices FREE CATALOG' ETCO Electronics. DEPT. 290. Platts. burgh. NY 12901

## ALARMS

BURGLAR. FIRE. CAR' Finest equipment' Save' Free Catalog. AAS. 186A Oxmoor Road. Bham. AL 35209.

## HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure. Pickering. Stanton. Empire. Grado. Audio Technica. Osawa. Satın and ADC. Send for free catalog. LYLE CARTRIDGES. Dept P. Box 69. Kensington Station. Brooklyn. New York 11218. Toll Free 800-221-0906 9AM 8PM except Sunday.

## WANTED

GOLD. Silver. Platinum. Mercufy. Tantalum wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal. Norwood. MA 02062

## GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios. test sets. scopes. List $\$ 100$ (cash). Books. 7218 Roanne Drive. Washington. D.C. 2002
JEEPS - $\$ 58.0011$--CARS - $\$ 35.001-700.000$ ITEMS! GOVERNMENT SURPLUS" - Most COMPREHENSIVE DIRECTORY AVAILABLE tells how. where to buy" - YOUR AREA - $\$ 3$ - MONEYBACK GUARANTEE" - Surplus Information Services. Department GE-18. Box 99249. San Francisco. Calitornia 94109.
BUY DIRECT FROM GOVERNMENT' 500.000 items uncluding Jeeps). . . fow as 2c on dollar' Directory - $\$ 200$ Disposal. Box 19107-HJ. Washıngton. DC 20036


## PERSONALS

MAKE FRIENDS WORLDWIDE through internationat corre spondence. llustrated brochure free. Hermes.Verlag. Box 110660 Z. D-1000 Berlin 11. W. Germany.
CORRESPONDENCE FOR FRIENDSHIP IN PHILIPPINES MALAYSIA. Free information. AACC-\{PE). Box 1542. Canoga Park. Callf. 91304.
PENFRIENDS - ENGLAND - USA. through correspon dence. Send age. interests. Free reply Harmony. Box 89PE Brooklyn. New York. 11235

## INSTRUCTION

UNIVERSITY DEGREES BY MAIL! Bachelors. Masters, Ph.D.'s. Free revealing details. Counseling, Box 317-PE10. Tustin. California 92680.
LEARN WHILE ASLEEPI HYPNOTIZE' Astonishing details. strange catalog free' Autosuggestion. Box $24-\mathrm{ZD}$. Olympia. Washengton 98507
LEARN ELECTRONIC ORGAN SERVICING at home Com pletely revised course covers latest models including digital. LSI s. synthesizers. etc. NILES BRYANT SCHOOL. PO Box 20153. Sacramento. CA 95820.

## Government Surplus ELECTRONICS <br> LOW AS 2 e ON DOLLAR! mplutiers 52 30!! Two Way Radios $35.40!$ Thou LOW AS 2 \& ON DOLLAR! Amplifiers $\$ 230!$ Two. Way Radios $\$ 5.40!$ Thou sands of items! Most comprehensive Buyer's Guide available, tells how, where to buy Start receiving FREE catalogs, for all Govt Surplus Sales in your area! Plus-Wholesaie Discount Source Guide. $\$ 9.95$ ppd. Moneyback Guarantee <br>  <br> $\bar{M} \overline{\text { EDICAL ELECTRONICS TECHNOLOGY }} \overline{\text { TEMe study }}$. Troubleshoot medical instruments. WTI. PO Box 124. Pine dale. CA 93650. <br> COLLEGE DEGREES BY SPECIAL EVALUATION OI EXIST ING Credentials \& Job Experience. Fast. Inexpensive. (614) 863-1791. Guidance. Box 13151.A10. Coiumbus. Ohio 43213 43 . Guidance. Box 13151.A10. Coiumbus. Ohio

YOU CAN NOW EARN A Bachelor. Master. or Doctoral Degree without leaving home. Courses are under facully guidance. Kensington University. (P.O. Box $2036-\mathrm{M}) .512$ E. Wilson. Glendale. CA 91209.
COLLEGE DEGREES - COURSES - AND DIPLOMAS by mall Learn how to get an accredited College degree without leaving home. Inquire. Educom Service, 10315-PE. Woodley Ave.. \# $\dagger 11$. Granada Hills. CA 91344.
COLLEGE DEGREES BY MAIL'… Bachelors. Masters. PhD s . . . Free Revealing Facts ${ }^{1}$. . Marc-PE10. Box 45886. Tulsa. OK 74145.
RADIO BROADCASTER's Training Program. \$29.95. Detalls 25c. Centaur Communicatıons. 2509 N. Campbell Ave., No. 218-E. Tucson. AZ 85719.

## FOR INVENTORS

PATENT AND DEVELOP your invention. Registered Patent Agent and Licensed Professional Engineer. Send for FREE PATENT INFORMATION every inventor should have. Richard L. Miller. P E.. 3612-E Woolworth Building. New York. NY 10007. (212) 267-5252.

MANUFACTURER SEEKING Patented. Unpatented inventions. Generous royalties. Advantek international. 1100 17th NW. Washington. DC 20036.
INVENTORS Patent your invention. Free intial consultation. We are registered by the U.S. Government. VICTOR J. EVANS \& CO.. 4637 Eastern Ave.. N.E.. Washington. DC 20018. Since 1898.

## INVENTIONS WANTED

## FREE CONSULTATION nO IDEA TDO Small

oisclosure registration Potential cash of royalites from manufacturers seeknaz new

## AMERICAN INVENTORS CORP. <br> 59 Interstate Dr. Dept PE <br> West Springfield. MA 01089 (413) $737-5376$

ELECTRONICS Manufacturer seeking new devices or circuits for production. Shoal Engineering. P.O. Box 868. Clemmons. N.C. 27012.

## BUSINESS OPPORTUNITIES

FREE CATALOGS. Repair air conditioning. refrigeration. Tools. supplies. full instructions. Dootin. 2016 Canton. Dallas Texas 75201
MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES. $92-\mathrm{K} 10$ Brighton 11 th Brooklyn. New York 11235.
ERASE DEBTS with liftle-known law-create wealth" Details FREE - Blueprints. No. EE10. LaGrangeville. NY 12540. BORROW $\$ 25.000$ OVERNIGHT"Any purpose. Keep in defintely' Free Report' Success Research. Box 29070-GJ. in dianapolis. IN 46229.
FREE BOOK 2042 Unique Proven Enterprises." Fabulous unknowns, second inflation income. Haylings-M. Carlsbad. CA 92008.
ATTENTION - T.V. MEN related fields' HI-PROFIT LUCRA TIVE. YOU can reburld CRT s for $\$ 3$ to $\$ 10$ when you own ou patented equipment Lakeside. 4071 EIston. Chicago. IL 60618. (312) 583-6565.

MAILORDER OPPORTUNITY' Start proftable home business without experience or capital. Write for free book. case histories. plus complete detalls. No oíligation. Mall Order As sociates. Dept 542. Montvale. NJ 07645
BORROW $\$ 30.000$ without interest ${ }^{\prime}$ All eligible. Repay any time. Free detals. Infohouse. Box 1004. PE 10. New York. NY 10003
WANT YOUR OWN RADIO STATION? Investment/experience unnecessary. Free information. "Broadcasting". Box 130-Al0, Paradise, CA 95969
SPARE TIME FORTUNE in Vinyl Repar. Huge demand creates exceptional profits. We supply everything. Details free VIP. 2012 Montrose. Chicago. IL 60618.

## MECHANICALLY IMCLINEDINDIVIDUALS

Assemble electronic devices in your home Knowledge, or experience not necessary. Get start ed in spare time. Turn your spare or full time into cash. No investment - Write for free details

ELECTRONIC DEVELOPNENT LAB Box 1560PE, Pinellas Park. FL 33565
\$700 PER MONTH EARNINGS possible filling out income ta torms at home or tax office during tax season. We show you now Simple, quickly learned. Details mailed free No sales men. Hurry. Big demand Federated Tax. 2012 Montrose Chicago. IL 60618
PROJECTION TV ... Make $\$ 200.00+$ per evening assembling Projectors . . . Easy . . . Results equal to $\$ 2.500$ projec tors . . . Your total cost less than $\$ 15.00$ - PLANS. LENS \& Dealers Information $\$ 14.00$. . . Illustrated information FREE

Macrocomcbe. Washington Crossing. Pennsylvanıa 18977. Creditcard orders 24 hours 215-736-2880

GUARANTEED INCOME WORKING FROM HOME' Immediate opportunities' SASE: W-Concepts. PE-1. Box 522. Brook lyn. NY 11215
MAKE MONEY WITH YOUR MINI! Earn hundreds with your minicomputer. locally. For booklet. send S.A.S.E. \& $\$ 3.00$ to Douglas Vos. 1145 Alexander. Grand Rapids. MI 49507
IMPORTANT INFORMATION FOR ENGINEERS and techniclans seeking career advancement or relocation. AVI. Box 264-PO. Buffalo, NY 14215
OWN YOUR OWN BUSINESS. SPARE TIME AT HOME Rubber Stamp industry needs small manufacturers. We fur nish all equipment and know-how' Pariculars free! Write: Bill. Room RC- 376 -KL. 1512 Jarvis. Chicago. IL 60625
BUMPER STICKER PRINTING DEVICE. Cheap. SImple Porlable. Free detals: Bumper. POB 22791 (PE). Tampa. FL 33622.

## RUBBER STAMPS

RUBBER STAMPS. BUSINESS CARDS. Many new products. Catalog. Jackson's. E-100. Brownsuille Rd.. Mt. Vernon III. 62864.

## BOOKS AND MAGAZINES

LOTTERIES make some people millionares. so can micro computers. New publication shows how. \$5.00. NEO PUB LISHING. P.O. Box 1368. L.I.C.. NY 11101.
BUYING Satellite Television Earth Station? you need LEE ELECTRONICS SATELLITE EARTH STATION REFER ENCE MANUAL AND BUYERS GUIDE. Send $\$ 18.95$ plus $\$ 2.00$ handling to LEE. Box 4127. Shawnee Mission. Kansas 66204.

CALCULATOR POWER' Write NOW for free cataiogue of cal culator related books. Educalc. 27963A Cabot Road. So Laguna. CA 92677.

HAM-AD-FEST. WA40SR s ELECTRONIC Buy. Sell. Trade 12 issues. $\$ 3.00 .24$ issues. $\$ 5.00$. Dept. PE. Box 973. Mobile. Ala. 36601
PUBLISH YOUR BOOK Join our successlul authors. Public ity advertising. beautiful books. All subjects invited. Send for lact-tilled booklet and tree manuscript report. Carlton Press. Dept PEJ 84 Fifth Ave. New York 10011

## EMPLOYMENT OPPORTUNITIES

ELECTRONICS AVIONICS EMPLOYMENT OPPORTUNI TIES. Repart on jobs now open Detalls FREE. Aviation Employment Information Service. Box 240E. Northport. New York 11768
JOBS OVERSEAS - Big money last. $\$ 20.000$ to $\$ 50.000$ plus per year. Call 716-842-6200. ext. 1740

## REPAIRS \& SERVICES

HAVING PROBLEMS WITH YOUR DESIGN? We specialize in providing you with professional technical assistance-by mall' Send $\$ 2.00$ for detalls. Omnitek. Box 50546 . Tucson. AR 85745.

## REAL ESTATE

BIG. FREE FALL CATALOG' Over 2.800 top values coas to coast ${ }^{\prime}$ UNITED FARM AGENCY. 612-EP West 47th. Kan sas Clity. MO 64112

## HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Steep Learning Catalog Drawer H400. Ruidoso. New Mexico 88345

## MISCELLANEOUS

MPG INCREASED' Bypass Pollution Devices easily RE VERSIBLY!! Free details - Posco GEE 10. LaGrangeville. NY 12540.

AUTOMOBILE RE-TUNING For maximized economy Details free ${ }^{1}$ Techneering. Box 12191DD. Norfolk. VA 23502

## Popular Electronics <br> ADVERTISERS INDEX

| RS no. | ADVERTISER PAGE no. |
| :---: | :---: |
| 2 | Albia Electronics ............................79,93 |
|  | Albia Electronics .......................... 48 pg p. |
|  | insert between p. 78 \& 79 |
| 8 | All Electronics Corp. ........................... 99 |
| 9 | Antenna Specialists ........................... 103 |
| 10 | AP Products ...................................... 76 |
| 11 | Apple Computer .......................Cover 2, 1 |
| 64 | Atari ................................................ 15 |
| 12 | Audio-Technica ................................. 116 |
| 13 | Bach Co. ........................................ 109 |
| 15 | Beckman Instruments Inc, EPG ................ 2 |
| 16 | BSR (USA) Ltd. .................................. 17 |
|  | Classified Advertising..................... 126-129 Cleveland institute of Electronics, Inc. <br> 8-11 |
| 1 | Communications Electronics.................. 24 |
| 17 | Components Express ......................... 106 |
| 18 | Computique ....................................... 44 |
| 14 | DBX ................................................ 29 |
| 20 | Digi-Key Corp. .................................. 124 |
| 21 | Discwasher..............................Cover 4,3 |
| 22 | Downlink ............................................ 28 |
| 23 | Electronic Specialists......................... 109 |
| 24 | ETCO ............................................ 110 |
| 25 | Firestik ........................................... 108 |
|  | Fordham Radio ................................... 98 |
| 2770 | Global Specialties ............................. 118 |
|  | Global TV Electronics .......................... 70 |
|  | Grantham College of Engineering ........... 98 |
| 28 | Hardside............................................ 44 |
| 29, 37 | Heath Co.................. 4, 5, 53, 54, 55, 101 |
| 30 | Hewlett-Packard ....................... 3rd Cover |
| 31 | Hustler.............................................. 20 |
| 32 | Illinois Audio ..................................... 108 |
| 33 | Imsai ................................................ 78 | RS no. ADVERTISER PAGE no


| RS no. | ADVERTISER PAGE no. |
| :---: | :---: |
| 34 | Jameco Electronics ..................... 120,121 |
| 35 | JDR Microdevices .............................. 119 |
| 36 | J\&R Music World ............................... 107 |
| 38 | Kloss................................................ 71 |
| 39 | Magnavox......................................... 65 |
| 48 | Maxell .............................................. 69 |
| 6 | MFJ Enterprises ................................. 30 |
|  | Micro Ace........................................ 104 |
| 5 | Mcintosh Laboratory, Inc...................... 30 |
|  | MICROCOMPUTER MART ................... 125 |
| 41 | Micro Management Systems ................ 125 |
| 42 | Mitsubishi Electric Sales ..................80, 61 |
|  | National Education Corp...................... 111 |
| 43 | National Guard, Army ........................... 48 |
|  | Natl.' Technical Schools ..................94-97 |
| 68 | Neta Technologies .............................. 16 |
|  | Netronics, R \& Ltd............. 31, 115, 117 |
| 3 | Novation ............................................ 91 |
|  | NRI Schools ..................................34-37 |
| 45 | Olympic Sales ................................. 106 |
|  | Omega Sales Corp. .......................... 112 |
| 46 | PAIA Electronics ............................... 100 |
| 4,47 | Poly Paks ....................................98, 30 |
| 65 | Quest Electronics ............................. 122 |
|  | Radio Shack.................................7, 123 |
| 71 |  |
| 49 | Sams Books..................................... 78 |
| 50 | Scientific Systems ............................. 100 |
| 51 | Showtime Video Ventures ..................... 52 |
|  | Simple Simon Kits ............................. 101 |
| 60, 61 | Sony................................. 23, 25, 27, 66 |
| 62, 63 | Sunshine Express ............................... 32 |
| 7 | Tab Books ......................................... 81 |
| 54 | TDK ................................................. 59 |
|  | Thandar ........................................... 72 |
| 56 | 3-M ................................................. 13 |
| 57 | United Products ................................ 105 |
| 69 | Video Magician................................... 76 |
| 58 | Video Technica................................... 52 |
|  | Video Wholesalers.............................. 45 |
|  | Winegard ........................................... 70 |

CHESTTER THE CHIP! The "PET" IC! Complete story why he joined the circuits. Care. feeding instructions too. Lots of laughs. Only $\$ 1.99$ while supply lasts. Maudko . 524 Montana. Have. MT 59501.

## MUSICAL INSTRUMENTS

MUSICAL INSTRUMENTS HOT LINE' Incredib'e prices Amps. PA gear. All instruments Huge selection. Sam Ash established 1924 800-645-3518 NYS: (212) 347-7757

## MOTION PICTURE VIDEO

VIDEOTAPES . 8 MM 16MM MOVIES. TWO 72 page cata logs $\$ 100$. Both $\$ 150$ Reelimages Box 137-PE. Monroe Connecticut 06468

## RECORDS \& TAPES

RECORDS - TAPES' Discounts to $73^{\circ}$. All labels: no pur chase obligations: newsletter: discount dividend certificates $100^{\circ}$ c quarantees Free details. Discount Music Club. 650 Main St. Dept 5-1081. New Rochelle. NY 10801

DISCOUNT VIDEO TAPES. Movies. accessories. Iowest prices. Free price lisi VTR. Box 234. Herald. CA. 95638

OLD RADIO PROGRAMS on tape catalog - \$2. Relundable with order. PAST TIMES. P O Box-S•108. South Attleboro. MA 02703

## DO-IT-YOURSELF

PRINTED CIRCUIT Boards with running water! Technological breakthrough. Pyecise reproduction Ideal for beginners. Free info. COVAL. Dept. PE 10 2706 Kirby. Champaign IL 61820
WELDING ALUMINUM? It's easy with the LUMIWELD Pro cess Designed for Do-lt-Yourselfers Joins Alumnum to Copper. No special skills or expensive equipment, Money back guarantee. For details: Send S.A.S.E. Dept PE. ALU MISMITHS Inc.. P.O.B. 517. DeLand. FL 32720 Featured in Pop Sci. March. 1980


If you've missed any of the previously published issues of Popular Electronics Magazine a wide selection is still available. Copies may be ordered for issues published during the past 12 months. In the event a particular sssue ordered is out of print your payment will be returned promptly
Order by mailing $\$ 3.00$ per copy (postage \& handling included) to Popular Electronics, P.O. Box 278, Pratt Station, Brooklyn, N.Y.
(Outside U.S.A. copies are $\$ 4.00$ each.)
Please be sure to enclose payment and identify the specific issues you wish to receive


#### Abstract

DEREGULATION OF VITS (vertical interval test signals) is strongly supported by the National Association of Broadcasters. Commenting on a Federal Communications Commission proposal to eliminate VITS requirements for remotely controlled television operations, the NAB noted that "with the advent of new video technologies, such as closed captioning for the hearing impaired, teletext, videotext ... the vertical interval has become a very valuable spectrum resource." In addition, the association said that it had endorsed ABC's 1977 proposal to modify VITS requirements and congratulated the commission for a proposal that goes beyond the original request.


EXIT SIGNS THAT TALK are being produced by Exit-Us of Easton, Conn. Built around microprocessors programmed to detect emergency conditions, the signs deliver appropriate "spoken" messages according to a preplanned system of priorities. For example, a "fire ... exit this way" message takes priority over a "power failure" message, and a "danger . . . this exit unsafe" message would take priority over both. Speech synthesis techniques are used to produce the messages, but the audio portion of the signs can also be connected into a public address systern.


> SOLAR POWER FOR SAILING VESSELS is available from AEG-Telefunken Corp., Systems Technology Division (Rte. 22-Orr Drive, Somerville, N.J. 08876). Capable of providing electric power for recreational sailing boats even when the auxiliary engine and generator are seldom used, the system consists of solar generator modules (designed to withstand the effects of salt water), a charge regulator, and mounting hardware. The modules are rated to charge a 12 -volt battery, and the smallest one delivers a maximum of 10 watts in full sunlight. For larger energy demands, several of the modules can be connected in parallel.

> "THE BOOK" FROM ATARI, a guide to servicing and operating the company"s coin-operated video games, is now available. Pegged at a U.S. price of $\$ 39.00$, the book can be ordered from Atari's authorized distributors or the customer service department. In addition to an eightpage glossary of electronic terms, the 186 -page illustrated guide contains information on general troubleshooting, display monitor repair, and printed-circuit components.

THREE-DIMENSIONAL TV is being transmitted experimentally by Visions and Multivisions, the HBO affiliate in Alaska. Existing three-dimensional films are transferred to video tape using a process developed by 3D Video Corp. of North Hollywood, CA. Viewers watching on a color set and wearing special glasses (distributed in the Anchorage area by Carrs-Pay Less Stores) will see a three-dimensional picture. The initial transmission, which took place early last summer, was expected to reach more than 12,000 households. Home Box Office is reportedly observing this experiment carefully, with an eye to expanding the service if there is sufficient viewer demand.

VIDEO IN-FLIGHT "MAGAZINES" are featured on selected wide-body flights of American Airlines. In an arrangement that started early last summer with CBS News, American will offer two 30-minute news magazines, "Eye on Science" with Charles Kuralt and "Magazine of the Air" with Douglas Edwards. The former will focus on health, technology, and the world of nature, while the latter will include feature stories concerning people and events that are rarely in the headlines.

COLLEGE INFORMATION BY COMPUTER is now a reality, as The College Board, an association of over 2,500 secondary schools, colleges, and educational associations, is providing service via the CompuServe Information Service. With access to a personal computer and terminal (plus a modem and telephone line), one can receive information on choosing a college, availability of financial assistance, and preparation for the Scholastic Aptitude Test. Cost of the service is $\$ 5$ per hour weekdays. Weekday daytime access is also possible.

# Meet HP Series 80: Hewlett-Packard's newone-on-one computing systems for professionals. 



Together, You can Analyze Technical Problems and Evaluate Solutions. Rapidly and Accurately.

HP Series 80 personal computing systems provide the technical solutions you require. Quickly! Easily! Inexpensively! Analysis techniques that were formerly difficult and often impossible become part of your everyday work routine. You can evaluate functional behavior, select variable alternatives. perform cost analysis ...and more . . . all with greater accuracy and using more variables than you thought possible.

Series 80, VisiCalc ${ }^{\text {™ }}$ PLUS
And You
HP's VisiCalc PLUS is a major new software tool. It's an electronic worksheet that instantly recalculates results as you change the variables. You ask the what-if questions and immediately see their effects on your solution. No programming is necessary ... you can become proficient with VisiCalc PLUS in a few hours ... and then watch your horizons broaden. VisiCalc PLUS features many powerful functions including statistical analysis tools and the entire HP Series 80 BASIC math set. Plus graphics! Create professional presentations with curve fitting plots, stacked or clustered bar graphs, exploded pie charts and line graphs, all in up to four colors, on paper or transparencies.

## ONLY FROM

HEWLETT-PACKARD
HP Series 80 personal computing systems are part of a forty-year tradition of electronic products built to uncompromising standards of excellence. Additionally. HP Series 80 products are serviced by HP technicians and on-site service contracts are now available. We urge you to judge for yourself with a hands-on. one-on-one demonstration at your HP dealer. For locations, call TOLL-FREE 800-547-3400, Dept. 254B. except Alaska/Hawaii. In Oregon call 758-1010. Or write Hewlett-Packard, Corvallis. Oregon 97330, Dept. 254B.

## IN LESS THAN 30 SECONDS...



## CLEAN RECORDS,



## CLEAR SOUND.



Safe record care is easy with the D4 ${ }_{\text {,m }}$ System. In less than 30 seconds, you can remove harmful microdust and other debris that can cause permanent damage to your favorite recordings. Studies prove it.

But if scientific studies mean nothing to you, let the sound prove that D4 works. It's dirt free and static free sound ... clearly better sound.

The Discwasher D4 Record Care System. It's worth the little time it takes . . . and it doesn't take long to discover it works.


[^0]:    ${ }^{*}$ Retail prices may vary at individual stores and dealers. Some Eems require special order.

[^1]:    C201-100-pF disc capacitor
    C202-470- $\mathrm{F}, 16$ - electolytic C203-0.1- $\mu \mathrm{F}$ disc capacitor IC201-7806 voltage regulator ( $6 \mathrm{~V}, 1 \mathrm{~A}$ ) S1-Dpdt miniature toggle switch

[^2]:    City
    -
    ____State__._Zip
    Offer valid only in the U.S. Please allow 30 to 60 days for delivery of first issue if you subscribe.

[^3]:    Suggested U S resale Prices specilicaians subject to change without notice - Copyright 1981 Global Specialties Corporation

[^4]:    No Tores on Out of Spale Shipments

[^5]:    SCRAMBLED TELEVISION - Encoding Decoding. New publication. Complete theory. circuits. \$9.95. Workshop. Box 393PEL. Bethpage. NY 11714.

