 COMMUNICATION RECEIVER

> OPERATING ANDD SRERVIE

INTRODUCTION

The Realistic DX-75 Communications Receiver is designed to ; side both the usual "long wave" standard broadcast reception and "short wave" international broadcast reception. Therefore, it allows the listener to span the oceans and travel around the world by means of radio waves. of radio waves.

Short wave radio signals are used for long distance trans mission because of the way they are reflected back to earth by the ionosphere. Radiation from space (primarily from the sun) causes jonization of the layers of gases high above the earth. Short walve radio signals will not penetrate these ionized gases; instead, they bounce back to earth much like a stone skips across the surface of quiet water. Variations in the reflecting characteristics of the ionosphere due to sum spots, seasons, time of day, etc., produce periods when the skipping of short wave signals is especially effective. Since many of these periods occur in regular cycles the listener may develop a schedule of the best times to listen for signals from distant parts of the world.

Listed below are some of the many types of broadcasts that can be heard on the short wave bands:

Amateur Radio (Ham)
Mobile Radio - Telephone
Military
Citizens Band (CB)
Int. Short Wave (Voice of America, etc.) Standard Time Signals (WWV)

GENERAL

The Realistic DX-75 is a four band AM receiver which covers the standard broadcast frequencies in one band: 550 to 1600 KC ; and the short wave frequencies in three bands: 1.6 to $4.4 \mathrm{MC} ; 4.5$ to $11 \mathrm{MC} ; 11$ to 30 MC . Utilizing four tubes (one multipurpose tube affords five tube performance) plus rectifier, the superhetrodyne circuit is designed to operate from a 105 to 125 volt, 60 cycle power source. A power transformer eliminates the hazard of a hot chassis. Housed in a vinyl clad steel table model cabinet, the receiver features an eight inch "slide rule" type dial with continuous tuning of all four bands, plus bandspread for precise location of signals on the busy short wave bands.

Dimensions	$6-5 / 16 \times 14-1 / 4 \times 19-17 / 32$
Weight (net)	15 pounds
Frequency Range	550 to $1600 \mathrm{KC}-1.6$ to 30 MC
Sensitivity	$3.5 \mu \mathrm{v}$ at $20 \mathrm{MC}(6 \mathrm{db}$ signal-to-
	noise ratio with $30 \% \mathrm{mod})$.
Selectivity	6 db down, $\pm 4.5 \mathrm{KC} ;$
	60 db down, $\pm 25 \mathrm{KC}$
Audio Output	1.5 watts
Input Voltage	105 to 125 volts, 60 cps
Power Consumption	35 watts

INSTALLATION

Choice of a location for the receiver may be subject to several considerations. These include the arrangement of furniture in the room, the comfort and convience of the listener, and access to a good electrical ground and an outside antenna. Mary hours of listening enjoyment are available from a short wave receiver so it is recommend ed that the selection of a location for the DX-75 be be carefully made.

The antenna for standard broadcast is self-contained, however, an outside antenna is required for distance reception on the short wave bands. As a general rule an outside antenna should be as high as practical and as long as possible (up to 100 ft .) for best reception of short wave signals. The antenna should be mounted away from power lines, trees, buildings, etc., and should be attached to its supports by glass or ceramic insulators. No. 12 to 16 ga . copper covered steel wire (uninsulated) is best for both the antenna and the down lead. A lightening arrestor should be connected to the down lead for protection against storm damage. For additional information on antenna design refer to "A. R. R. L. Antenna Book" published by American Radio Relay League, or to any of the many other antenna handbooks currently available.

Connect the down lead from the antenna to the \#2 terminal on the rear of the receiver and connect the \#1 terminal to a good earth ground such as a water pipe. Plug the power cord into a standard receptacle providing 117 VAC power.

VOLUME Clockwise rotation of the Volume control knob turns on power and increases volume.

BAND SELECTOR Rotation of the Band Selector knob switches antenna and local oscillator circuits for the various tuning bands. Index numbers are located near the knob and at each end of the dial.

TUNING Rotation of the Tuning knob causes the main tuning indicator (red) to move across the dial.

BANDSPREAD Rotation of the Bandspread knob affects a fine tuning adjustment of the reception frequency. Nor mally the indicator should be adjusted to the SET position. After the approximate frequency has been tuned by use of the main tuning knob, the bandspread adjustment gradually reduces the frequency for pinpoint selection of signals.

BFO Clockwise rotation of the BFO control turns on a Beat irequency Oscillator and increases the \% of modu lation of the IF signal by this oscillator. A CW signal, as used for single side band or code telegraphy purposes, contains no modulation and must be modulated in the receiver for proper reception (Note: settings in the lower ${ }^{\prime}$ range of this control may also improve reception of weak signals other than CW type).

ANL ON In the up position this slide switch activates the Automatic Noise Limiter circuits designed to minimize background noise, static, etc. Operation in the down position may be necessary for reception of the very weak signals since the noise limiter suppresses all lower level signals.

REC / STBY The receiver may be silenced by moving this slide switch to the STBY position without actually turning off power to the tubes. Switching back to the REC position instantly returns the receiver to normal operation without warm -up or retuning.

PHONE This jack provides a connection for headphones (50 to 1000 ohms) which automatically silences the internal speaker. The Volume control functions as usual to

BAND SPREAD DIAL CORD
(REAR VIEW)

Fig. 1 Dial Stringing Diagram

all resistor values are in ohms a l/ watt unless otherwise specified.
ALL CAPACITOR VALUES ARE IN MICROMICROFARADS UNLESS OTHERWISE SPECIFIED.

Fig. 2 Chassis Layout Diagram

Equipment required:

1. Oscilloscope with calibrated vertical scate
2. RF Signal generator capable of:
a. Operation from 455 KC to 30 MC
b. Attenuation below $l \mu v$ output
c. Modulation at 1 KC with variable modula tion percentages

IF Aligmment

1. Loosely couple a 455 KC . 50% modulated signal into the antenna terminals (Band Selector in position \#1)
2. Connect oscilloscope to speaker terminals
3. With signal generator set to lowest uscable signal level, peak all IF transformers for maximum recovered audio.

RF Alignment

1. Preliminary set up
a. Beginning with all trimmer capacitors tightly closed, open the trimmers as follows:

C3	$1 / 4$ Turn
C4	$3 / 4$ Turn
C5	$1 / 4$ Turn
C6	$7 / 8$ Turn
C11	$1 / 2$ Turn
C12	$1 / 4$ Turn
C13	$1 / 4$ Turn
C14	$\cdot 1 / 4$ Turn

b. Beginning with all slugs at top of form adjust as follows:

L2	15 Turns
L3	22 Turns
L4	15 Turns
L5	30 Turns
L6	22 Turns
L7	30 Turns
L8	15 Turns

NOTE:
These settings are approximate and are NOT final.

R1` Alignment (con't.)

2. Final Alignment

In the following procedure, a signal of the specified frequency (70% modulated) is fed into the antenna terminal. The antenna and local oscillator tuned circuits are adjusted for maximum recovered audio, always adjusting the oscillator components first.

Band	Signal Freq. and Dial Setting	Adjust for Maximum
1	600 KC 1400 KC	$\mathrm{L} 5, \mathrm{LI}$ $\mathrm{C} 11, \mathrm{C} 3$
2	1.8 MC	$\mathrm{L6}, \mathrm{~L} 2$
4.3 MC	$\mathrm{C} 12, \mathrm{C} 4$	
3	5.0 MC	$\mathrm{L} 7, \mathrm{~L} 3$
	11.0 MC	$\mathrm{C} 13, \mathrm{C} 5$
4	11.0 MC	$\mathrm{L} 8, \mathrm{~L} 4$
	30.0 MC	$\mathrm{C} 14, \mathrm{C} 6$

NOTE: The above adjustments should be made in the order shown, and should be repeated several times on cach band, until proper tracking and calibration are obtained.

TUBES

V1	6CL8A	C31
V2	12BA6	C32
V3	12AV6	C33
V4	6AQ5A	C 34
		C 35
	CAPACITORS	C 36
		C 37
C1	$40-20-10-40 \mu \mathrm{f} / 350 \mathrm{~V}-350 \mathrm{~V}-350 \mathrm{~V}-150 \mathrm{~V}$	C 38
	Electrolytic	C 39
	C40	

$01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic
2-25pf Ceramic Trimmer
4-40pf Ceramic Trimmer

4-40pf Ceramic Trimmer
4-40pf Ceramic Trimmer
$220 \mathrm{pf} \pm 10 \%$ NPO 500 V Ceramic
Main Tuning 301-338-1
Bandspread
301-338-2
1.0pf $\pm 10 \% 500 \mathrm{~V}$ Composition

7-100pf Ceramic Trimmer
4-40pf Ceramic Trimmer
4-40pf Ceramic Trimmer
4-40pf Ceramic Trimmer
.005uf GMV Z5U 500V Ceramic
$82 \mathrm{pl} \pm 10 \%$ N750 600 V Ceramic
. 01 $\mu \mathrm{f}$ GMV Z5U 500V Ceramic
$560 \mathrm{pf} \pm 5$ 畏 125 V Polystyrene
$1800 \mathrm{pf} \pm 5 \% 125 \mathrm{~V}$ Polystyrene
$3900 \mathrm{pf} \pm 5 \% 125 \mathrm{~V}$ Polystyrene
R 16
. $01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic
$.01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic
$.01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic
SEE T3
SEE T3
$.01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic R22
$30 \mathrm{pf} \pm 5 \%$ NPO 500 V CeramicR23

SEE T 4R24

CAPACITORS (CONT.)

$220 \mathrm{pf} \pm 20 \%$ Z.5F 500 V Ceramic
$001 \mu \mathrm{f} \pm 20 \%$ Z Z U 500 V Ceramic NOT USED
$.001 \mu \mathrm{f} \pm 20 \% \mathrm{Z} 5 \mathrm{U} 500 \mathrm{~V}$ Ceramic
NOT USED
$.01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic
. 005 GMV ZSU 500V Ceramic
. 005 GMV Z5U 500V Ceramic
40 $4 \mathrm{f} / 250 \mathrm{~V}$ Electrolytic
$.01 \mu \mathrm{f}$ GMV Z5U 500V Ceramic

RESISTORS

2M Variable
300-268-18
1.5K Variable

101-734-6
$100 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$47 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$3.3 \mathrm{M} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$1 \mathrm{M} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$100 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$4.7 \mathrm{~K} \pm 10 \% \mathrm{l} / 2 \mathrm{~W}$ Carbon
$470 \Omega \pm 10 \%$ 1/2W Carbon
$270 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$2.2 \mathrm{M} \pm 10_{\pi}^{\sigma} 1 / 2 \mathrm{~W}$ Carbon
$47 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$470 \mathrm{~K} \pm 10 \% / 1 / 2 \mathrm{~W}$ Carbon
$10 \mathrm{M} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$270 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$470 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$470 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$ Caibon
$18 \Omega \pm 10 \% 1 / 2 W$ Carbon
$250 \Omega \pm 10 \% 5 \mathrm{~W}$ W.W.
$1 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$4.7 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$1 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$4.7 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon
$100 \mathrm{~K} \pm 10 \% 1 / 2 \mathrm{~W}$ Carbon

ITEM NO.	DESCRIPTION	PART NO.	ITEM NO.	DESCRIPTION	PART NO.
	TRANSFORMERS			MISCELLANEOUS	
T1	Power Transformer	500-685	M1	Dial Light	\#1813
T2	Output Transformer	301-335	M2	Dial Light	\#1813
T3	IF 455KC	1655-6	CR1	Diode 400PIV 500 MA .	ED-3004
T4	IF 455 KC	1655-6	CR2	Diode 400 PIV 500 MA .	ED-3004
			J1	Phone Jack	J6-2
	COILS		SPK 1	Speaker	14826
				Cabinet	600-173-3
L1	RF Band \#1	301-340		Panel (Front)	500-787
L2	RF Band \#2	301-341		Panel (Back)	500-629-2
L3	RF Band \#3	301-342		Knob (Bandspread-Tuning)	27002-1
L4	RF Band \#4	301-343		Knob (Band-Volume)	27002P-1
L5	Osc. Band \#1	301-344		Knob (BFO)	26600P-1
L6	Osc. Band \#2	301-345		Dial Glass	301-336
L7	Osc. Band \#3	301-346		Feet	100-435-11
L8	Osc. Band \#4	301-347			

SWITCHES

Power Switch
300-268-18
(On Volume Control)
ANL (On - Off)
SS-32
STBY-REC
SS-32
BFO Switch
(On BFO Control)
Band Switch
301-339

MISCELLANEOUS

