OWNER'S MANUAL

HTX-202 2-METER FM TRANSCEIVER

Please read before using this equipment

Cat. No. 19-1120

FEATURES

The Radio Shack HTX-202 Two-Meter Handheld Transceiver offers both the newlylicensed Tech and the experienced amateur some of the most advanced features ever presented in a handheld transceiver. Be sure to read this entire manual to learn about all of your transceiver's capabilities.

Note: You must have a Technician Class or higher Amateur Radio Operator's License and a call sign issued by the FCC to legally transmit using this transceiver. Transmitting without a license carries heavy penalties. Getting a license is easier than ever. See "Introduction to Amateur Radio" for more information.

True FM Modulation—provides a more natural-sounding signal, with high clarity and better performance on packet systems.

16 Frequency Memories—include one calling-frequency memory, three priorityfrequency memories, and 12 standard memories.

Individually Programmable Repeater Offsets—let you program a different repeater offset frequency for each memory, and a default repeater offset for manually-tuned frequencies.

Subaudible Tone Transmit and Decode (CTCSS)—let you transmit the subaudible tone required by some repeaters, and also let you set a subaudible tone that your transceiver must receive to open the squelch.

Touch-Tone Page—lets you set a sequence of up to five touch tones your transceiver must receive to sound an alert tone and open the squeich.

, 18-Digit DTMF Output-lets you transmit all touch tones (0-9, #, *, and A-D).

Dual-Power Transmitter—lets you select between 1-Watt and 6-Watt to preserve battery power.

Programmable Power Saver-extends battery life by setting the receiver to standby when squeiched.

Five DTMF Memory Sequences—let you store five touch-tone sequences of up to 15 digits each so that you can quickly transmit the sequences you commonly use to activate repeaters or autopatches, or other stations equipped with touch-tone page.

Multi-Function Scanning—lets you scan standard memories, priority-frequency memories, or a frequency range, and automatically resume scanning when the carrier drops, resume scanning after 10 seconds, or stop scanning when a carrier is detected.

Programmable Frequency Step-lets you set the frequency step for tuning or scanning to 5, 10, 15, 20, 25, 50, or 100 kHz.

© 1993 Tandy Corporation. All Rights Reserved. Radio Shack is a registered trademark used by Tandy Corporation

CONTENTS

Manual Conventions	5
Introduction to Amateur Radio	
Preparation	8
Power Sources	8
Operating from the Rechargeable Power Pack	8
Using Alkaline Batteries	
Operating from Vehicle Battery Power	10
Operating from AC Power	10
Backup Battery	12
Connecting the Antenna	12
Attaching the Belt Clip	13
Attaching the Hand Strap	13
Using an External Microphone	14
Using an External Speaker	14
Using the Transceiver with Packet Radio	15
Resetting the Transceiver	
Using the Light	
Basic Operation	
Setting Squelch and Volume	
Setting a Frequency	
Tuning Using Direct Entry	
Tuning Using the Tune Control	
Scanning for Active Frequencies	
Scanning for a Vacant Frequency	
Receiving Transmissions	
Transmitting	
Locking the Keypad	
Setting the Key Entry Beep	
Reversing the Offset	
Using Memory Channels	
Using the Calling-Frequency Memory	
Using the Priority-Frequency Memories	
Using the Standard Memories	
Clearing Memories	
Moving a Memory Channel to the Manual Mode	
Reviewing Programmed Options	25

Advanced Operation	26
Understanding the Configuration Menu	26
Setting the Duplex Separation Default	27
Using Subaudible Tone Squelch (CTCSS)	28
Setting the Scan Options	29
Setting the Frequency Step Rate	29
Setting the Scan Resume Condition	29
Setting the Scan Delay Duration	30
Setting the Scan Limits	30
Setting the Vacant Scan Direction	30
Using the Power-Save Feature	31
Preventing Transmissions	31
Limiting Transmission Duration	32
Setting the Priority Scan Time	32
Using Touch-Tone Features	33
Manually Sending Touch Tones	33
Storing a DTMF Memory Sequence	33
Transmitting a DTMF Memory Sequence	34
Using DTMF Squelch for Paging	34
Automatically Sending a DTMF Reply	34
Care and Maintenance	35
Error Codes	36
Specifications	37
Schematic (Digital)	39
Schematic (RF)	40
Key Index	41

MANUAL CONVENTIONS

Your transceiver's buttons each have two or more functions. The abbreviation for the function is printed on the button, above the button, to the left of the button, or below the button. For functions below or to the left of the button, the function is printed in orange. To make this manual clearer, buttons are referred to by the function being used. For example, the lower right button on the keypad is referred to in different sections as **D**, **CLR**, **VF**, and **M** \rightarrow **VFO**.

To activate certain transceiver features you must press F(function) plus another button. Such key combinations are printed with a + between the button names. For example, F + BEEP means press and hold down F while you press BEEP.

Also, this manual uses the following text conventions:

Button names are printed in small, bold, capital letters: BEEP, DTMF, and so on.

Words, symbols, and numbers that appear on the display are printed in a distinctive typeface: 146.940, M-CH, and so on.

INTRODUCTION TO AMATEUR RADIO

We designed your HTX-202 handheld transceiver to be the perfect first radio for anyone entering the exciting world of amateur radio and a great additional transceiver for experienced amateur radio operators. From almost anywhere you will find that your transceiver opens a door to the world! All you need is an Amateur Radio Operator's License, Technician Class or higher, issued by the Federal Communications Commission (FCC). If you do not have a license, you will find that it is easy to get one, and that there is much help available. Here are a few tips to help you get started.

First, go ahead and turn on your transceiver and use the receiver to tune around on the band to hear what is going on. **Do not even think of transmitting until you get your license.** That is very important. Transmitting without a license is a violation of federal law that can lead to severe penalties. Also, ham operators take the FCC rules very seriously and want nothing to do with **bootleggers** their term for people who operate without a license.

Second, find out if there is a ham radio club in your area. There are thousands of clubs across the country, so there is probably at least one in or near your own community. The people at the Radio Shack store where you bought your transceiver might be able to tell you. If not, and if you do not hear anyone talking about a local club in your area as you tune around the band with your transceiver, write to the American Radio Relay League (ARRL) for information on how to contact their local affiliate. Most clubs welcome newcomers and are glad to help you get your license.

Next, start studying for your license. Do not let the word study scare you, because most people can go from knowing absolutely nothing about amateur radio to passing the Novice and Technician written exams in less than a month. The exams test your knowledge of basic radio regulations and elementary radio theory. While Morse code is no longer required for a Technician Class license, we encourage you to learn Morse now, so that you can advance to additional operating privileges. Many clubs teach license classes (a fun and easy way to learn about amateur radio), and there are good books, cassette tapes, computer programs, and many other study aids available. Radio Shack stores sell FCC License Preparation study guides for Novice, Technician, and General Class licenses. When you are ready to take the test, you do not have to go to an imposing Federal office building in a big city to take the test, because these days the FCC has authorrized ham volunteers to give all the exams. The examiners for a Novice license test can be any two ham operators with general or higher class licenses that are at least 18 years old and are not related to you. And, the Novice exam is free. If you pass the Novice exam, you can immediately take the Technician exam. You must pay a small fee to take the Technician exam, and the test must be administered by a three-member Volunteer Examiner Team. You can get a schedule of exam opportunities in your area from the ARRL.

The Technician Class license lets you use the entire range of your HTX-202 to communicate directly with other operators, communicate through repeaters, or connect to a terminal-node controller and use packet to directly send and receive information with a computer.

We have mentioned the ARRL several times. That is because the League is the national organization that represents amateur radio in the United States. The League has more than 150,000 members; most of them are ham operators, but many are ham operators-to-be. Here is the address of ARRL headquarters.

The American Radio Relay League 225 Main Street Newington, CT 06111

The ARRL staff helped us prepare this section of the owner's manual, and they would be glad to hear from you if you need more information, or if you would like to join!

Arnateur radio is a great hobby that has enriched the lives of millions of people all over the world. We take pride in bringing to you the HTX-202 to enrich your life.

PREPARATION

POWER SOURCES

You can operate your transceiver from any of the following power sources;

- Rechargeable power pack (supplied with charger)
- Six alkaline AA batteries (using the supplied alkaline pack)
- Vehicle battery power (using an optional adapter)
- AC power (using an optional adapter)

Operating from the Rechargeable Power Pack

You can use the supplied rechargeable power pack to power your transceiver. This power pack provides 7.2 volts, and can operate your transceiver at 2.5 watts (typical power) with the LOW POWER button out. As supplied, the power pack is fully discharged. You need to fully charge the pack using the supplied charger before you operate the transceiver from the rechargeable pack. Follow these steps to charge the pack.

1. If the pack is attached to the transceiver, turn off the transceiver. Do not operate the transceiver while you charge the power pack.

Note: You can remove the power pack from the transceiver to charge it, and operate the transceiver from one of the other power sources.

- 2. Plug the supplied charger's barrel plug into the CHARGE jack on the back of the power pack.
- 3. Plug the charger into a standard AC outlet. The CHARGE indicator lights.

It takes about 10 hours to charge the power pack.

When power is low, BATT appears on the display when you press PTT.

You can buy extra power packs through your local Radio Shack store.

Note: Nickel-cadmium batteries deliver more power if you occasionally let them completely discharge. To do this, use the transceiver until **BATT** appears on the display when you press PTT. Then, fully charge the batteries. If you do not occasionally do this, the batteries can temporarily lose the ability to deliver full power. Also, to ensure a full charge, be sure the batteries are at room temperature (above 65°F) when you charge them. Cold batteries do not fully charge.

Cautions:

- To prevent permanent nickel-cadmium power loss, never charge the power pack in an area where the temperature is above about 80°F.
- Never use a charger other than the one supplied to charge the power pack. Even chargers with the same voltage and current ratings could permanently damage the transceiver or the power pack. You can order a replacement charger at your local Radio Shack store.

Using Alkaline Batteries

You can operate the transceiver from six AA batteries (not supplied) using the supplied alkaline battery holder. This battery holder supplies 9 volts and can operate your transceiver at 4 watts (typical power) with the LOW POWER button out. Follow these steps to load or replace batteries in the alkaline battery holder.

1. Hold the outer battery holder case and push down on the center of the battery holder, as shown.

2. Remove old batteries, if necessary, and install six fresh AA alkaline batteries, observing correct polarity as indicated by the markings (+ and -) in the battery holder.

3. Press the battery holder into the battery holder case.

When power is low, **BATT** appears when you press PTT.Be sure to use six fresh AA alkaline batteries. Never mix different types of batteries, and never mix old and new batteries.

Operating from Vehicle Battery Power

You can operate the transceiver from vehicle battery power using a DC power cord (Radio Shack Cat. No. 270-1533). This cord supplies 13.8 volts (typical) to your transceiver and can operate your transceiver at 6 watts (typical power) with the LOW POWER button out. Follow these steps to operate from vehicle battery power.

1. Plug the power cord's barrel plug into the transceiver's EXT DC jack.

Caution: Never plug the power cord into the rechargeable power pack's CHARGE jack. Doing so can damage the power pack and the transceiver.

Plug the power cord's cigarette-lighter plug into your vehicle's cigarette-lighter socket.

If the transceiver does not operate, remove the power cord's plug from the cigarettelighter socket and check the socket for debris. Clean the socket, if necessary, and try again.

Operating from AC Power

You can operate the transceiver from AC power using either the 1-amp 12-volt DC adapter (Cat. No. 273-1653) or our regulated 2.5-amp power supply (Cat. No. 22-120). The 2.5-amp power supply lets you operate your transceiver at 5 watts (typical power) with the LOW POWER button out and is better isolated from 60Hz noise. The 1-amp adapter connects very quickly and requires no soldering, but only operates your transceiver at about 2 watts with the LOW POWER button out.

Follow these steps to power the transceiver from the 1-amp, 12 volt DC adapter.

- 1. Connect the barrel plug with the tip set to positive.
- 2. Insert the adapter's barrel plug into the transceiver's EXT DC jack.

Caution: Never insert the adaptor's barrel plug into the rechargeable power pack's CHARGE jack. Doing so can damage the power pack and the transceiver.

3. Plug the adapter into an AC outlet.

Follow these steps to power the transceiver from the regulated 2.5-amp power supply.

Note: You need the following materials to use the regulated 2.5-amp power supply:

- Power supply (Cat. No. 22-120)
- Two-conductor 18-gauge wire (Cat. No. 278-567)
- DC power connector (Cat. No. 274-1567)
- · Soldering iron and solder
- Voltmeter or multimeter
- 1. Cut the 2-conductor wire to the length power cord you need.
- 2. Strip about 1/2-inch of insulation from each end of both conductors.
- Solder one end of the wire to the DC power connector, with the red lead connected to the center terminal, and the black lead connected to the outer casing.
- Melt a small amount of solder onto the other end of the wire. Then, connect the red lead to the power supply's + terminal and connect the black lead to the power supply's - terminal.
- Plug in the power supply and turn it on. Use the meter to confirm that you have correctly wired the power connector so that the tip is positive and the outer case is negative.
- 6. Turn off the power supply and plug the power connector into the transceiver EXT DC jack.

Caution: Never plug the power connector into the rechargeable power pack's **CHARGE** jack. Doing so can damage the power pack and the transceiver.

7. Turn on the power supply.

Backup Battery

Your transceiver uses a lithium battery to keep stored options in memory when you disconnect the transceiver from a power source. This battery should last 3 to 5 years, under normal conditions. When the transceiver frequently displays ER1, the backup battery needs to be replaced.

Note: To clear the error, reset the transceiver. See "Resetting the Transceiver."

The backup battery is not user-serviceable. Take the transceiver to your local Radio Shack store to have the battery replaced by a Radio Shack repair center.

This product contains a rechargeable nickel cadmium (Lead acid) battery. At the end of the battery's useful life, it must be recycled or disposed of properly. Contact your local, county, or state hazardous waste management authorities for information on recycling or disposal programs in your area. Some options that might be available are: Municipal curb-side collection, drop-off boxes at retailers, recycling collection centers, and mail-back programs.

CONNECTING THE ANTENNA

Your transceiver comes with a flexible antenna. You must connect an antenna to your transceiver before you transmit. The transceiver's BNC antenna connector makes it easy to connect other types of antennas. Radio Shack stores sell a 5/8-wave magnetic mount antenna for mobile operation (Cat. No. 19-210), a discone antenna (Cat. No. 20-013), and a center-loaded telescoping whip antenna (Cat. No. 20-006) that you can also use with your transceiver.

To use the supplied antenna, slip the antenna's connector over the BNC jack and twist the antenna to lock it in place.

To use an external antenna, if necessary, attach the appropriate connector adapter to the end of the antenna cable. Then, slip the connector over the BNC jack and twist the connector to lock it in place.

Warning: When installing or removing an outdoor antenna, use extreme caution. If the antenna starts to fall, let it gol it could contact overhead power lines. If the antenna touches the power line, contact with the antenna, mast, cable, or guy wires can cause electrocution and death! Call the power company to remove the antenna. Do not attempt to do so yourself.

ATTACHING THE BELT CLIP

You can attach the provided belt clip to your transceiver. Use the supplied screws as shown.

ATTACHING THE HAND STRAP

Loop the supplied hand strap's key ring through the hand strap tab, as shown.

USING AN EXTERNAL MICROPHONE

You can use an external microphone with your transceiver. When you connect an external microphone, the internal microphone does not work, but the internal PTT is not affected. If your microphone has a 3/32-inch (2.5 mm) submini plug, plug the microphone cable into the transceiver's MIC jack.

See the following two diagrams for specific microphone connections.

USING AN EXTERNAL SPEAKER

In a noisy area, an external speaker, positioned in the right place, might provide more comfortable listening. Radio Shack stores sell an extension speaker (Cat. No. 21-549) and an amplified communications extension speaker (21-541). Plug the speaker cable's 1/8-inch (3.5mm) mini plug into the transceiver's SP jack. This disconnects the internal speaker.

For the most efficient operation when you carry the transceiver on your belt, connect a combination speaker/microphone (such as Cat. No. 19-310) to your transceiver and hang the mic/speaker on your collar.

If your vehicle has a cassette player, you can easily connect your transceiver to your vehicle's audio system using a CD-to-cassette adapter (Cat. No. 12-1951) and a mono-to-stereo audio plug (Cat. No. 274-368). Simply insert the adapter in your vehicle's cassette player, connect the adapter's plug to the mono-to-stereo plug, insert the plug in the transceiver's **SP** jack, and turn on your cassette player.

USING THE TRANSCEIVER WITH PACKET RADIO

You can connect your transceiver directly to a packet radio terminal node controller. See the following diagram for a suggested connection.

RESETTING THE TRANSCEIVER

When you first use the transceiver, if the transceiver displays ER1, or if you ever want to reset the transceiver's options to the factory defaults and clear all memories, follow these steps.

Warning: This procedure clears all stored information from the transceiver.

- 1. Turn off the transceiver.
- 2. Press and hold down F+CLR. Then, turn on the transceiver.

USING THE LIGHT

Press L on the side of the transceiver to turn to the display light for about 5 seconds. To turn off the light sooner, press L again. If you want the light to stay turned on, press F + L at the same time. The light stays on until you press L or turn off the transceiver.

SETTING SQUELCH AND VOLUME

Rotate VOLUME clockwise and SQUELCH counterclockwise until you hear a hissing sound. Then, slowly rotate SQUELCH clockwise until the noise stops. Leave VOLUME set to a comfortable level.

If the transceiver picks up unwanted weak transmissions, rotate SQUELCH clockwise to decrease the transceiver's sensitivity to signals.

SELECTING A FREQUENCY

You can use any of three methods to select a frequency to communicate on.

- Direct entry
- Tune control
- Scanning for frequencies

Tuning Using Direct Entry

Your-transceiver transmits and receives on frequencies between 144.000 and 148.000 MHz. To quickly tune to a frequency, enter the frequency using the keypad.

- 1. Turn on the transceiver.
- 2. Press VF.
- 3. Use the keypad to enter the last four digits of the frequency. For example, to enter 146.940, press 6940.

Notes:

- · If you make a mistake, press CLR and repeat this step.
- The transceiver rounds the last digit down to 0 or 5.

Tuning Using the Tune Control

You can quickly tune to a nearby frequency by rotating TUNE on top of the transceiver.

- 1. Turn on the transceiver.
- 2. Press VF.
- Rotate TUNE counterclockwise to tune down or clockwise to TUNE up. The transceiver tunes up or down one frequency step per click. To change the frequency step, see "Setting the Frequency Step Rate."

Scanning for Active Frequencies

You can search for activity on a frequency by pressing and holding down \triangle SC or \forall SC for at least 1 second. The transceiver begins to scan up or down the full frequency range, and stops on active frequencies. To scan only a selected frequency range press $F + \triangle$ SC or $F + \forall$ SC. See "Setting the Scan Options" to see how to change the scanning range, the frequency step, the scan resume condition, and the scan delay time. The following are the factory presets for these options.

Frequency Step :	15KHz
Scan Resume Condition :	Resumes scanning in 10 seconds, regardless of ab-
	sence or presence of carrier.
Scan Delay :	Not activated.
Scan Limits:	144 MHz to 148 MHz

To stop scanning, press ♥SC, ▲SC, CA, PR, MR, VF, or turn off the transceiver.

Scanning for a Vacant Frequency

In some areas where the 2-meter band is being used heavily, you might have trouble quickly finding a frequency not being used. To quickly scan for a vacant frequency, press F + V - SC. The transceiver scans up or down from the current-frequency to the first unused frequency. To change the vacant scan direction, see "Setting the Vacant Scan Direction."

RECEIVING TRANSMISSIONS

To receive transmissions, turn on the transceiver, adjust the volume and squelch, and tune to a frequency.

TRANSMITTING

There are two basic types of communication you can use with this transceiver. These types are sometimes referred to as **simplex** and **duplex**. With simplex transmissions, you transmit and receive on the same frequency. With duplex transmission, you transmit on one frequency and receive on another. Duplex transmission is the communications type you use when you communicate using a repeater. You transmit to the repeater on one frequency (the input frequency), and the repeater retransmits the signal at a different frequency (the output frequency).

Caution: Do not transmit if you do not have a Technician Class or higher license issued by the FCC. Doing so is illegal.

Follow these steps to communicate using simplex communications.

- 1. Turn on the transceiver.
- 2. Select the desired frequency.
- 3. If + or is on the display, repeatedly press F++/- until neither symbol appears.
- 4. Press LOW POWER so that the button is down. In this position, your transceiver transmits at about 1 watt.
- 5. Begin communications.

If the other party advises that you need to improve your signal (QRO), press LOW **POWER** so that the button is up. In this position, your transceiver transmits at the highest power it can, depending on the power source. See "Power Sources" or "Specifications" for these power levels. Remember to switch back to low power whenever possible, to comply with the FCC rules that require you to use the minimum power necessary to maintain communications.

Follow these steps to communicate using duplex communications.

- 1. Turn on the transceiver.
- 2. Tune to the desired receive (output) frequency.
- 3. If the transmit (input) frequency is 600 kHz above the receive frequency, press F++/~ so that + apears in the display. If the transmit frequency is 600 kHz below the receive frequency, press F++/~ so that appears on the display. If the frequency separation is not 600 kHz, either set a new default frequency separation or store the frequency pair in one of the scanner's memories (See "Using Memory Channels" and "Setting the Duplex Separation").

LOCKING THE KEYPAD

To lock the transceiver's keypad so that you do not accidentally change a setting, press F + LOCK. LOCK appears on the display. This locks all front-panel buttons and the tune control. The PTT, VOLUME, and SQUELCH still operate. To release the lock, press F + LOCK again.

SETTING THE KEY ENTRY BEEP

Each time you press a key, the transceiver sounds a beep. To turn off the beep, press F + BEEP. The key beep does not sound for this or subsequent key presses. To turn on the key beep, press F + BEEP again.

REVERSING THE OFFSET

To reverse the transmit and receive frequencies when you are operating duplex, press F + REV. For example, if you are set to 146.94 with a – offset pressing F + REV makes the transceiver receive on 146.14 and transmit on 146.94.

USING MEMORY CHANNELS

Your transceiver has 16 memory channels in three groups.

- One calling-frequency memory
- Three priority-frequency memories
- 12 standard memories

Using the Calling-Frequency Memory

The calling-frequency memory provides a single memory that you can quickly jump to at any time. Follow these steps to save a frequency in the calling-frequency memory.

- 1. Press VF.
- 2. Tune to the frequency you want to save.
- 3. Press CA.
- 4. If the frequency is for a repeater that requires subaudible tone access or if you want to use incoming subaudible tone squelch with frequency, press F + T-SQL so that **T-SQL** appears on the display.

Note: If you turn on **T-SQL** you must correctly set both the transmit subaudible tone and the receive subaudible tone as described in steps 8 through 11.

5. Press and hold down F+M-WR for at least 1 second.

The transceiver stores the tuned frequency in the calling-frequency memory, plus the frequency separation (for duplex operation) and subaudible transmit and receive tones. For more information about subaudible tones, see "Using Subaudible Tone Squelch (CTCSS)."

- If you want to set a different transmit frequency or change the subaudible tones, press F + M-SET. The transceiver displays TF followed by the transmit frequency.
- 7. Rotate TUNE to change the transmit frequency.
- 8. To set a transmit subaudible tone frequency, press **▼SC**. The transceiver displays **TC** followed by the transmit subaudible tone frequency.
- 9. Rotate TUNE to set the transmit subaudible tone frequency.

Note: If you do not want to transmit a subaudible tone, rotate **TUNE** to set the transmit subaudible tone to **OFF**.

- 10. To set a receive subaudible tone frequency, press **▼SC**. The transceiver displays **RC** followed by the receive subaudible tone frequency.
- 11. Rotate TUNE to set the receive subaudible tone frequency.

Note: If you do not want to use incoming tone squelch, rotate **TUNE** to set the receive subaudible tone to **OFT**. Otherwise, you do not hear transmissions unless the subaudible tone is present.

12. Press **PTT** to save the settings and return to the calling-frequency memory display.

To use the calling frequency memory, press CA at any time. The transceiver immediately goes to the calling frequency and sets the transmit frequency, subaudible tones, and tone squelch to the settings you programmed. To return to the previous settings, press CA again.

Using the Priority-Frequency Memories

The transceiver has three priority-frequency memories. The transceiver can periodically scan these frequencies during manual, calling-frequency memory, or standard memory operation. Follow these steps to store a frequency in the priority-frequency memories.

- 1. Press VF and tune to the frequency you want to save.
- Press F and rotate TUNE until either P1, P2, or P3 appears to the left of the tuned frequency.

- 3. If the frequency is for a repeater that requires subaudible tone access or if you want to use incoming subaudible tone squelch with this frequency, press F + T-SQL so that **T-SQL** appears on the display.
- Press F + M WR for at least 1 second to store the tuned frequency in the selected priority-frequency memory.
- 5. To change the frequency separation or subaudible tones, press PR and rotate TUNE to select the priority-frequency memory you want to change. Then, refer to steps 6 through 12 under "Using the Calling-Frequency Memory." Each priority frequency memory can have different settings.

To set the transceiver to a priority frequency, press **PR**. Then rotate **TUNE**, press **ASC**, **VSC**, **1**, 2, or 3 to select one of the three memories.

To have the scanner check the priority-frequency memories for activity, press VF. Then, press F+P-SC for at least 1 second. The transceiver checks the priority-frequency memories every 4 seconds. To change the priority scan time, see "Setting the Priority Scan Time."

To continuously scan the three priority frequency memories, press **PR**. Then, press and hold down \blacktriangle SC or \blacktriangledown SC at least 1 second.

Note : You must store more than one priority frequency in memory to continuously scan priority-frequency memories.

Using the Standard Memories

Your transceiver has 12 standard memories into which you can store frequentlyaccessed frequencies for quick access. Follow these steps to store frequencies in standard memories.

- 1. Press VF and tune to a frequency you want to store.
- 2. Press F and rotate TUNE until the memory number to the left of the frequency display shows the standard memory you want to store into.

- 3. Press F+M-WR for at least 1 second to store the tuned frequency into the selected standard memory.
- 4. To change the frequency separation or subaudible tones, press MR and rotate TUNE to select the standard memory you want to change. Then, refer to steps 6 through 12 under "Using the Calling-Frequency Memory. "Each standard memory can have different settings.

To set the transceiver to a standard memory, press MR. Then, rotate TUNE or press \triangle SC or \forall SC to select one of the 12 memories.

To continuously scan standard memories, press **MR.** Then, press and hold down \triangle SC or \forall SC for at least 1 second.

Note: The transceiver stops scanning according to the scan options you have set. See "Setting the Scan Options" for more information.

Clearing Memories

Follow these steps to clear a memory.

1 Press PR or MR and select the memory you want to clear.

2. Press F+M-CLR to clear the settings stored in the current memory.

Note: You cannot clear Standard Memory 1 or the calling-frequency memory. You can only change the memory settings for these memories.

Moving a Memory Channel to the Manual Mode

Follow these steps to quickly move a memory channel to the manual (VF) mode.

1. Select the memory channel.

2. Press $F + M \rightarrow VFO$.

All settings for the selected memory move to the VF mode.

REVIEWING PROGRAMMED OPTIONS

Follow these steps to view the transmit frequency and the subaudible transmit and receive tone settings for a memory or the tuned VF frequency.

- 1. Press CA, PR, MR, or VF and select the memory or frequency you want to check.
- 2. If you want to check the subaudible tone settings, press F + T SQL so that **T-SQL** appears on the display.

3. Press M (located above PTT). The transceiver's squelch opens, and the display shows the transmit frequency for about 1 second, followed by the subaudible transmit tone and the subaudible receive tone.

UNDERSTANDING THE CONFIGURATION MENU

Your transceiver has a configuration menu that lets you modify operation settings. Each of the following sections explains how and when to use each configuration setting. Follow these steps to turn on the configuration menu and select options.

- 1. Press VF.
- 2. Press F+M-SET. The first menu item appears.
- 3. Press **▼SC** or **▲SC** to step down or up through the menu items. Rotate **TUNE** to change the setting for any menu item.
- 4. Press PTT to exit the configuration menu and save all settings.

The configuration menu appears in the following order:

Code	Factory Default	Explanation
oS	0.600	Duplex separation (offset)
tc	oFF	Transmit subaudible tone
rc	oFF	Receive subaudible tone
Sr	15	Frequency step
Sc	ti	Scan resume
Sd	2.0	Scan delay time
S1	144.000	Lower scan range limit
S2	148.000	Upper scan range limit
ud	dn	Vacant channel scan direction
PS	1-16	Power save duty cycle
tE	oFF	Transmit inhibit
to	oFF	Transmit time-out
Lb	4	Priority-frequency channel lookback time
Ar	oFF	Touch-tone auto-reply

See the following sections for complete information regarding these functions.

SETTING THE DUPLEX SEPARATION DEFAULT

The duplex separation default (offset) controls the offset between the transmit frequency and the receive frequency when you use the transceiver in duplex mode, as with a repeater. Typically, on the 2-meter band, repeaters receive at a frequency 600 kHz lower or higher than they retransmit (repeat) on. For example, if a repeater's input frequency is 146.340 MHz, its output frequency is 146.940 MHz. The following is a list of the most commonly used repeater pairs.

Input Frequency	Output Frequency
146.07 MHz	146.67 MHz
146.13 MHz	146.73 MHz
146.16 MHz	146.76 MHz
146.22 MHz	146.82 MHz
146.25 MHz	146.85 MHz
146.28 MHz	146.88 MHz
146.31 MHz	146.91 MHz
146.34 MHz	146.94 MHz
146.37 MHz	146.97 MHz
146.40 MHz	147.00 MHz

To operate with a repeater, you must transmit on the repeater's input frequency and receive on the repeater's output frequency. If you frequently use a repeater that does not have a 600 kHz offset, we recommend you program the repeater frequency into one of the transceiver's memories. You can override the default offset for each memory.

To change the default offset, follow the steps in "Understanding the Configuration Menu" to display the **oS** menu item, and rotate **TUNE** to change the offset. The transceiver lets you set the offset to be in the range from 0 MHz to 4 MHz in steps as set by the frequency step option.

USING SUBAUDIBLE TONE SQUELCH (CTCSS)

Some repeaters require that you transmit a subaudible tone to key-up the repeater. You can set your transceiver to transmit any of the 38 standard subaudible tones. You can also limit incoming calls by setting your transceiver to open the squelch only when someone transmits a subaudible tone you set.

To set a subaudible transmit tone, follow the steps in "Understanding Configuration Menu" to display tc. Then, rotate TUNE to select the subaudible tone. If you do not want to transmit a subaudible tone, rotate TUNE to select **OFF**.

To set a subaudible receive tone, follow the steps in "Understanding the Configuration Menu" to display **rc**. Then, rotate **TUNE** to select the subaudible tone. If you do not want to use the receive subaudible tone squelch, but are using transmit subaudible tone to activate a repeater, rotate **TUNE** to select **OFF**. Otherwise, you only hear transmissions that have the correct subaudible tone when you activate tone squelch.

To turn on the subaudible tone feature, press $\mathbf{F} + \mathbf{T} - \mathbf{SQL}$. When you transmit, the transceiver includes the subaudible tone in the signal. To receive, the incoming signal must have the correct subaudible tone. You can override the default subaudible tones for any memory.

Code	Freq.(Hz)								
xz	67.0	ZZ	91.5	3Z	123.0	5B	162.2	МЗ	218.1
XA	71.9	ZA	94.8	ЗА	127.3	6Z	167.9	M4	225.7
WA	74.4	1Z	100.0	3B	131.8	6A	173.8	M5	233.6
ХВ	77.0	1A	103.5	4Z	136.5	6B	179.9	M6	241.8
wв	79.7	1B	107.2	4A	141.3	7Z	186.2	M7	250.3
ΥZ	82.5	2E	110.9	4B	146.2	7A	192.8		
YA	85.4	2A	114.8	5Z	151.4	M1	203.5		
ΥB	88.5	2B	118.8	5A	156.7	M2	210.7		

SETTING THE SCAN OPTIONS

Several configuration menu items control how your transceiver operates when you scan frequencies or memories. The following sections describe how to set the frequency step rate, the scan resume condition, the scan delay duration, and the scan limits.

Setting the Frequency Step Rate

The frequency step rate affects the scanning mode, the **TUNE** control, and \blacktriangle SC or \checkmark SC tuning. The factory default for the frequency step is 15kHz. Each time you rotate **TUNE** one click or press or \checkmark SC or \blacktriangle SC the frequency changes by 15 kHz. When scanning, the transceiver scans up or down 15 kHz per step. To change the frequency step rate, follow the steps in "Understanding the Configuration Menu" to display the Sr menu item, and rotate **TUNE** to change the frequency step rate. You can set the step rate to 5, 10, 15, 20, 25, 50, or 100 kHz.

Setting the Scan Resume Condition

When you have set the transceiver to scan either standard memories or VF mode, the transceiver stops whenever it encounters a signal strong enough to break squelch. At the factory setting, the transceiver resumes scanning in 10 seconds, regardless of the presence of a continued signal. You can set the scan resume configuration item to one of the following.

- ti Resumes scanning in 10 seconds
- cr Resumes scanning after the carrier drops and the scan delay expires (See "Setting the Scan Delay.")
- SE Does not resume scanning

To change the scan resume condition, follow the steps in "Understanding the Configuration Menu" to display **Sc.** Then, rotate **TUNE** to select the scan resume condition.

Note: The scan resume option does not affect priority scan. Priority scan always resumes scanning after the carrier drops.

Setting the Scan Delay Duration

When you set the scan resume condition to **cr** (carrier), the transceiver resumes scanning after the carrier drops. The scan delay option lets you set the transceiver to pause before resuming, so you can hear any reply. The factory default for this option is 2 seconds.

To change the scan delay duration, follow the steps in "Understanding the Configuration Menu" to display d. Then, rotate **TUNE** to select the scan delay duration. You can set the delay to 0.5, 1, 2, or 4 seconds.

Note: The scan delay option also affects priority scan.

Setting the Scan Limits

When you press $F + \nabla SC$ or $F + \triangle SC$ the transceiver scans only those frequencies within a range you set with the scan limit options. To set the scan limits, follow the steps in "Understanding the Configuration Menu" to display S1. Use either **TUNE** or the key pad to enter one of the frequency limits. Then, press ∇SC to display S2 and enter the other frequency limit. You can enter the higher frequency as either limit.

Setting the Vacant Scan Direction

The transceiver's factory default for vacant scan is to scan down until it finds an unused frequency. To change the vacant scan direction, follow the steps in "Understanding the Configuration Menu" to display **ud**. Then, rotate **TUNE** to select either **UP** or **DN**.

USING THE POWER-SAVE FEATURE

To set the transceiver to save power press F + SAVE so that SAVE appears on the display. In the power-save mode, the transceiver turns on the receiver for about 32 milliseconds to check for any activity, and then turns off the receiver for the time you set with the power-save configuration setting. The factory default for this setting is to use only 1/16 the normal power. To change the power save setting, follow the steps in "Understanding the Configuration Menu" to display **PS**. Then, rotate **TUNE** to select the power save setting. You can set the power-save setting to 1-2, 1-4, 1-8, or 1-16 (1/2, 1/4, 1/8, or 1/16 normal power usage).

Press F + SAVE again to turn off power save. Power save temporarily turns off while scanning.

PREVENTING TRANSMISSIONS

To prevent any transmissions using the transceiver, turn on the transmit inhibit function. To turn on this function, follow the steps in "Understanding the Configuration Menu" to display tE. Then, rotate TUNE to select **ON**. To enable transmissions, set this option to **OFF**.

LIMITING TRANSMISSION DURATION

When you communicate on the 2meter band, you should keep your transmissions as brief as possible. Most repeaters have built-in timers that limit single transmissions to 3 minutes or less. You can set the transceiver to stop transmitting and sound a beep if you exceed a set time limit with a single transmission. To set a transmit limit, follow the steps in "Understanding the Configuration Menu" to display to. Then, rotate **TUNE** to select **OFT 30**, **60**, or **120** seconds.

SETTING THE PRIORITY SCAN TIME

When you turn on priority scan, the transceiver checks the programmed priority-frequency memories periodically to see if there is any activity. As factory set, the transceiver checks the priority-frequency memories every 4 seconds. To change the priority scan time, follow the steps in "Understanding the Configuration Menu" to display **Lb**. Then, rotate **TUNE** to select 4, 8 12, or 16 seconds.

L6 oFF

USING TOUCH-TONE FEATURES

Your transceiver has a built-in 16-key touch-tone encoder. You can manually send touch tones, or send the tones from one of five DTMF memories. You can also set your transceiver so that it is silent until it receives a specific sequence of touch tones.

Manually Sending Touch Tones

Some repeaters require you to enter a touch-tone code to key-up the repeater. Also, some repeaters have autopatch devices that let you make telephone calls through the repeater. To manually send the required tones, press and hold down **PTT.** Then, enter the touch-tone digits.

Notes:

- · You must press D twice to send the D digit.
- If the auto-reply feature is turned off, you can release PTT after you enter the first digit. The transceiver continues to accept and transmit the touch-tone signals until you pause at least 1 second.

Storing a DTMF Memory Sequence

You can store frequently-used touch-tone sequences in the transceiver's five DTMF memories. Each memory can hold up to 15 digits. Follow these steps to store touch-tone sequences.

- 1. Press and hold down F+DTMF for at least 1 second. The display changes to show the first DTMF memory.
- 2. Press D. Then, press a digit from 1-5 to select one of the DTMF memories.
- Enter the touch-tone sequence. If the sequence is less than 15 digits, press D, then press a digit from 1 to 5 to select a different DTMF memory or press PTT to exit the DTMF memory store mode.

Note: To enter a D, press D twice.

Transmitting a DTMF Memory Sequence

To send a DTMF memory sequence, press and hold down PTT. Then, press D followed by the DTMF memory number you want to transmit (1-5). The transceiver transmits the tones.

The transceiver has two DTMF memory sequence transmit speeds. To switch between fast and slow, press and hold down PTT. Press D. Then, press O.

Note: If the auto-reply feature is turned off, you can release **PTT** after you press **D.** Enter the DTMF memory number within 1.5 seconds.

Using DTMF Squelch for Paging

The DTMF squelch feature lets you set your transceiver to release the squelch only if it receives a specific touch-tone sequence. Follow these steps to set the touch-tone sequence.

1. Press F+D-SQL for at least 1 second.

The transceiver displays the previous sequence or — if you have never programmed a sequence.

- 2. Enter the sequence (up to five digits).
- 3. Press PTT to save the sequence.

To turn on the DTMF squelch, press F + D - SQL for less than 1 second. DTMF appears in the display.

Your transceiver remains silent until it receives the correct touch-tone sequence. Then, it beeps and returns to normal operation. To cancel **DTMF** squelch, press F+D-SQL for less than 1 second so that **DTMF** disappears from the display.

Automatically Sending a DTMF Reply

You can set your transceiver to automatically transmit the touch-tone digit (#) when you have enabled **DTMF** squelch and the transceiver receives the correct touch-tone sequence. To turn on the **DTMF** auto-reply, follow the steps in "Understanding the Configuration Menu" to display **Ar**. Then, rotate **TUNE** to select **on**.

You should also set this option to **on** if you expect an auto reply from an autopatch or another HTX-202 or other transceiver that has this feature.

Your HTX-202 2-Meter Handheld Transceiver is an example of superior design and craftsmanship. The following suggestions will help you care for your transceiver so that you can enjoy it for years.

Keep the transceiver dry. If it does get wet, wipe it dry immediately. Liquids can contain minerals that corrode the electronic circuits.

Use and store the transceiver only in normal temperature environments. Temperature extremes can shorten the life of electronic devices and distort or melt plastic parts.

Handle the transceiver gently and carefully. Dropping it can damage circuit boards and cases and can cause the transceiver to work improperly.

Keep the transceiver away from dust and dirt, which can cause premature wear of parts.

Wipe the transceiver with a dampened cloth occasionally to keep it looking new. Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the transceiver.

Modifying or tampering with your transceiver's internal components can cause a malfunction and might invalidate its warranty and void your FCC authorization to operate the transceiver. If your transceiver is not performing as it should, take it to your local Radio Shack store. Our personnel can assist you and arrange for service if needed.

ERROR CODES

Your transceiver has two error code displays. Refer to the following for an explanation of each error code.

Er1: Internal RAM Error

Er1 indicates the transceiver has detected an error in its battery-backed up option memory. This is most commonly caused by a low lithium backup battery, but can also be caused by static discharge, or a physical shock. To clear the error, reset the transceiver by turning it off, then holding down F+D while you turn it on again. This clears and reinitializes memory.

If the transceiver frequently displays the error, have the battery replaced by an authorized Radio Shack service center.

Er2: PLL Unlock Error

Er2 indicates the transceiver's PLL section has *unlocked*. Have the transceiver repaired by an authorized Radio Snack service center.

SPECIFICATIONS

GENERAL

Frequency Range	144.000-148.000 MHz
Frequency Step	
Frequency Stability	+/- 10 ppm
Antenna Impedance	50 Ohms Unbalanced
Speaker	
Microphone	condenser Mic. 1.2 Kohms
Channel Display	LCD 8 digits
Operating Temperature	14°F to 140°F (-10°C to 60°C)
Size	$\times 1^{7/_{8}}$ Inches (65 $\times 117 \times 37$ mm)
Weight	1 lbs 3 ozs (540g)
Supply Voltage:	
Alkaline Battery Pack	
Ni-Cad Battery Pack (600mAh)	
External Power Jack	7.2 to 13.8 VDC

RECEIVER

Intermediate frequency	
1st IF	21.4MHz
2nd IF	
Sensitivity:	
12dB SINAD	
12dB SINAD	
	(pd: Potential Difference)
Squelch sensitivity:	(per i elenia: ellerenee)
Threshold	0.1μV
Tight	
Spurious response attenuation	
Intermodulation attenuation	
Adjacent channel rejection (25KHz)	
Modulation acceptance Bandwith	
Hum and Noise	
Audio output power (10% THD):	
7.2V DC	0.3W
9V DC	
12V DC	1W
13.8V DC	
Audio distortion	2%
Audio response	– 6dB/oct

Current drain:	
Stand-by without power save	35mA
Stand-by power save	25mA
CTCSS Sensitivity	0.15μV
DTMF Squelch sensitivity	

TRANSMITTER

RF Power output:	
7.2V DC	2.5W
9V DC	4W
12V DC	5W
13.8V DC	6W
Low Power	1W
Maximum deviation	4.5KHz
Hum and Noise	42dB
Audio distortion	0.5%
Audio response	+ 6dB/oct
Spurious and harmonic emissions	70dB
Frequency error	± 0.0005%
Mic. Sensitivity	
CTCSS Tone deviation	
DTMF Tone deviation	3.5KHz
Current drain:	
7.2V DC	0.8A
9V DC	0.95A
12VDC	1A
13.8VDC	1. 1 A
Lower Power	0.46A

The above specifications are nominal. An individual unit's performance might vary slightly from these specifications.

SCHEMATIC DIAGRAM

KEY INDEX

	PTT+A - Transmit DTMF A. Page 33. F+LOCK - Keyboard lock. Page 19. CA - Calling Memory. Page 20.
P-SC PR B	PTT + B - Transmit DTMF B. Page 33. F + P - SC - Priority scan. Page 22. PR - Priority Memories. Page 22.
M-WR MRC	PTT+C - Transmitt DTMF C. Page 33. F+M-WR - Memory write. Pages 20-23. MR - Standard Memories. Page 23.
M→VFO VF D CLR	PTT + D - Transmit DTMF D . Follow with 1-5 to send a DTMF sequence. Pages 33 and 34. F + M → VFO - Write memory to VFO. Page 24. VF - VFO mode. Page 16. CLR - Clear partially entered frequency in VFO mode. Page 16.
T-SQL	 PTT+1 - Transmit DTMF 1. Page 33. F+T-SQL - Tone-squelch. Page 28. 1 - In Standard Memory mode, 1st digit of selecting memory 10, 11, or 12, Page 23. In VFO mode, enter a frequency. Page 16. In Priority Memory mode, select Priority Memory 1. Page 22.
D-SQL	PTT + 4 - Transmit DTMF 4. Page 33. F+D-SQL - DTMF-squelch. Page 34. 4 - In Standard Memory mode, select Memory 4. Page 23. In VFO mode, enter a frequency. See Page 16.
SAVE	PTT + 7 - Transmit DTMF 7. Page 33. F + SAVE - Power-save option. Page 31. 7 - In Standard Memory mode, select Memory 4. Page 23. In VFO mode, enter a frequency. Page 16.
¥ ▼SC	 PTT + * - Transmit DTMF *. Page 33. F + ▼SC - In VFO mode, scan down in the selected range. Page 30. ▼SC - In VFO, Priority-Memory, or Standard-Memory mode, scan down. Pages 17, 22, and 23. In memory-set mode, next menu item. Page 26.

.

,

DTMF	 PTT + 2 - Transmit DTMF 2. Page 33. F + DTMF - Store DTMF memory sequence Page 33. 2 - In Standard Memory mode, select Memory 2. Page 23. In VFO mode, part enter frequency. Page 16. In Priority Memory mode, select Priority Memory 2. Page 22.
BEEP 5	PTT + 5 - Transmit DTMF 5. Page 33. F + BEEP - Key entry beep. Page 19. 5 - In Standard Memory mode, select Memory 5. Page 23. In VFO mode, enter a frequency. Page 16.
M-SET 8	 PTT+8 - Transmit DTMF8. Page 33. F+M-SET - In VFO mode, memory set. Page 26. In Standard Memory, Priority memory, and Calling-Frequency memory mode, change options for memory channel. Page 21. 8 - In Standard Memory mode, select Memory 8. Page 19. In VFO mode, enter a frequency. Page 18.
V-SC 0	 PTT + 0 - Transmit DTMF 0. Page 33. F+V-SC - Vacant scan. Page 18. 0 - In Standard Memory mode. 1st digit to select Memory 01. Page 23. In VFO mode, enter a frequency.Page 16.
+/-	 PTT +3 - Transmit DTMF 3. Page 33. F++I Duplex offset. Page 18. 3 - In Standard Memory mode, select Memory 3. Page 26. In VFO mode, enter a frequency. Page 16. In Priority Memory mode, select Priority Memory 3. Page 22.
REV 6	 PTT + 6 - Transmit DTMF 6. Page 33. F + REV - Reverse transmit and receive frequencies. Page 19. 6 - In Standard Memory mode, select Memory 6. Page 26. In VFO mode, enter a frequency. Page 16.
M-CLR 9	 PTT + 9 - Transmit DTMF 9. Page 33. F + M - CLR - Memory clear. Page 24. 9 - In Standard Memory mode, select Memory 9. Page 26. In VFO mode, enter a frequency. Page 16.

PTT-# - Transmit DTMF #. Page 33.

 $F + \Delta SC$ - In VFO mode, scan up selected range. Page 30. ΔSC - In VFO, Priority-Memory, or Standard-Memory mode, scan up. Pages 17, 22, and 23. In memory-set mode, previous menu item. Page 26.

F - Select the 2nd function of a key.

M - Monitor a channel without squelch. In Standard, Priority, or calling Memory mode, display memory's programmed options. Page 25.

- PTT Push-to-talk (transmit button)
- L Turn on the light for 5 seconds. Page 15.
- F+L Turn on the light until you press L again to turn it off. Page 15.

RADIO SHACK LIMITED WARRANTY

This product is warranted against defects for 1 year from date of purchase from Radio Shack company-owned stores and authorized Radio Shack franchisees and dealers. Within this period, we will repair it without charge for parts and labor. Simply **bring your Radio Shack sales slip** as proof of purchase date to any Radio Shack store. Warranty does not cover transportation costs. Nor does it cover a product subjected to misuse or accidental damage.

EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES AND ANY IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES CONTAINED HEREIN. Some states do not permit limitation or exclusion of implied warranties; therefore, the aforesaid limitation(s) or exclusion(s) may not apply to the purchaser.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

We Service What We Sell

9/94

RADIO SHACK A Division of Tandy Corporation Fort Worth, Texas 76102

936619CB Printed in Korea

Service Manual

19-1120

HTX-202

2-Meter Amateur VHF·FM Transceiver Catalog Number: 19-1120

Contents

Specifications	2
Disassembly Instructions	4
Block Diagram	7
Theory of Operation	11
Alignment Instructions	17
Troubleshooting Hints	22
Error Display	23
Wiring Diagram	24
Printed Circuit Board Views (Top and Bottom)	25
Exploded View	36
Exploded View Parts List	37
Electrical Parts List	40
Semiconductor Voltage Chart	55
Semiconductor Lead Identification	59
IC Internal Connection	63
Schematic Diagrams	69

P 1992 Tandy Corporation.
 All Rights Reserved.
 Realistic is a registered trademark used by Tandy Corporation.

SPECIFICATIONS

General

Transmitter	PLL synthesizer, Frequency Modulation
Receiver	PLL synthesizer, superheterodyne system
Communication Frequency Range	144~148MHz (5KHz step)
Operating Voltage	
Temperature and Humidity range	. $14^{\circ}F \sim 140^{\circ}F (-10^{\circ}C \sim +60^{\circ}C)$ and $10\% \sim 90\%$
Transmitter/Receiver switching	Electrical

Standard Test Conditions

Battery supply voltage	
Modulation	
Receiver output impedance	
ANT. load impedance of transmitter	
Ambient conditions:	
Temperature	63°F~91°F (17°C~33°C)
Humidity	

Receiver

Description	Nominal	Limit
Intermediate Frequency		
1st IF	21.4MHz	
2nd IF	455 KHz	
Sensitivity:		
12 dB SINAD	0.2µV	0.25µV
20 dB NQ	0.35µV	0.4µV
Squelch Sensitivity:		
Threshold	0.1µV	0.2µV
Tight	2µV	4~1µV
Spurious Response Attenuation	80dB	60dB
Intermodulation Attenuation	70dB	60dB
Adjacent Channel Rejection (25KHz)	70dB	60dB
Modulation Acceptance Bandwidth	8KHz	7.5KHz
Hum and Noise	50dB	40dB
Audio Output Power (10% THD):		
7.2V DC	0.3W	0.25W
9V DC	0.5W	0.4W
12V DC	1W	0.7W
Audio Distortion	2% *	10%
Audio Response	- 6dB/oct	+ 1/- 3dB, - 6dB/oct
Current Drain:		
Stand-by without Power Save	35mA	45mA
Stand-by Power Save	25mA	30mA
CTCSS Sensitivity	0.15µV	0.2µV
DTMF Squelch Sensitivity	0.2µV	0.25µV

Transmitter		
Description	Nominal	Limit
RF Power output:		
7.2V DC	2.2W	2W
9V DC	3.5W	3W
12V DC	6W	5W
13.8V DC	7.5W	6W
Maximum deviation	4.5KHz	5KHz
Hum and Noise	42dB	40dB
Audio distortion	0.5%	3%
Audio response	+ 6dB/oct	+1/-3dB, +6dB/oct
Spurious and Harmonics emission	70dB	60dB
Frequency error	±0.0005%	±0.001%
MIC. Sensitivity	4mVrms	10mVrms
CTCSS Tone deviation	0.7KHz	0.5~1KHz
DTMF Tone deviation	3.5KHz	3~4KHz
Current drain:		
7.2V DC	0.8A	1A
9V DC	0.95A	1.2A
12V DC	1.4A	1.55A
13.8V DC	1.55A	1.7A
Lower Power	0.46A	. 0.6A
Stability variation against antenna impedance	Satisfactory who	en dummy antenna is
	varied from 40 d	ohms to 200 ohms.

Other Items

General power requirement	6~14V DC
Dimensions without battery (W)2 9/16"(65mm) × (H)4 5/8"(117mm) × (D)1	7/16" (37mm)
Weight 1 lb	s 3 ozs (540g)

Note: Nominal specs represent the design specs. All units should be able to approximate these-some will exceed and some may drop slightly below these specs. Limit specs represent the absolute worst condition that still might be considered acceptable; in no case should a unit fail to meet limit specs.

3

DISASSEMBLY INSTRUCTIONS

1. To remove the belt clip, remove two screws(A).

2

2. To remove the battery ground plate:

A: Remove the battery pack.

B: Remove four screws (A) from the battery ground plate.

This also release the latch mechanism.

Note the position of the latch plate in the latch button. Then, remove the latch mechanism and button.

3. To access the RF board, remove five screws(A) from the back cover, and lift off the back cover. Then, pull the RF section out from the top, and lift it out of the case. Take care not to pull the ribbon trace from either assembly when you remove the RF section.

4. To access the Digital board:

- A. Remove two screws (A) from the PTT button.
- B. Then, remove five screws (B) from the shield plate.
- C. Desolder the lithium battery from the shield plate.
- D. Solder the lithium battery to ground on the RF board for testing.

5. To reassemble, reverse the above steps.

BLOCK DIAGRAM

DIAGRAM

Cat. No.: 19-1120

2

BLOCK DIAGRAM

IAGRAM

Cat. No.: 19-1120

2

THEORY OF OPERATION

The 19-1120 radios are comprised of two main populated PCBs (an RF PCB and a Control PCB). The RF PCB contains the Transmitter and Receiver circuits. The control PCB contains the Microprocessor controller and associated digital circuits and the Keypad PCB.

TRANSMITTER

The transmitter is comprised of:

- a Microphone Audio Circuit
- a Transmitter Stage and Harmonic Filter
- an automatic Power Control
- and a Frequency Synthesizer Circuit

Microphone audio circuit

The audio signals from the microphone (via CON1001, pin3) or the external microphone via Mic jack J4, flexible pin 2 are amplified, pre-emphasized, and limited by IC101 and associated components. The AF microphone signal is applied to MIC module to produce an amplified and pre-emphasized audio signal. The signal is limited by IC101C/D and applied via VR1 to a lowpass filter (IC1-1A/B). The lowpass filter rejects frequencies above 3kHz (outside the voice spectrum). The filtered signal is applied to the VCO pin 7 (within the frequency synthesizer circuit). RV1 is used to adjust voice deviation.

Transmitter stage and harmonic filter

The power amplifier contains transistors Q2 to Q4. When in transmit mode of operation diode D1 is forward biased enabling the RF signal to pass to the input buffer Q2. The buffered RF signal is further amplified by power amplifier driver transistor Q3. C3 couples Q2 to Q3. L3, C3 and C6 are configured to provide filtering with impedance matching. The output from Q3 is impedance matched by C7, C8, L6 and C11 and passed to the power amplifier Q4. Diode D3 is reverse biased inhibiting the TX signal through the receiver stage. The amplified RF signal passes through the stripline coupler and is fed to the harmonic lowpass filter comprising C17 and L10, C22, L11, C23, and then to the antenna connector (ANT).

The coupler provides a sample of the RF signal for the automatic power control.

Automatic power control

The automatic power control is modulized as the combination of Q701 to Q704 and contains the stripline coupler, diode D2 and variable resistor VR2, two comparators (Q703 and Q702) and transistors Q704 and Q701. The RF signal present in the coupler is rectified by D2, to produce a DC voltage that is passed to VR2. The DC voltage is also applied to pin 3 of Q703 via VR2. The voltage TX 5V is applied to the base of Q702 via a potential divider. Q702 and Q703 determines the RF power level by producing a difference signal. The difference signal is passed to Q701 and Q704 to produce a constant power output to the antenna connector ANT. VR2 is used to adjust the RF power level.

Frequency synthesizer circuit

With data received from the microprocessor (IC1006), the frequency synthesizer circuit controls and produces the RF carrier frequency for the transmitter during transmit and the local oscillator frequency for the receiver.

The frequency synthesizer circuit is comprised of

- a RX and TX Voltage controlled Oscillator Module
- a Loop Filter
- a PLL frequency synthesizer & prescaler chip

RX and TX voltage controlled oscillator module

A VCO module produces carrier frequencies during transmit and the local oscillator frequency during receive. The module also has a power line filter.

RX and TX power line filter

Transistor Q201 is configured as 5V (module, pin 1) power supply ripple filter.

RX VCO

The RX VCO is comprised of JFET Q204, coil L202 and varactor D202 and is configured as a Colpits oscillator. D202 produces a change in frequency with a change in DC voltage and is controlled by the phase detector signal (via module pin 6) present at the anode. The local oscillator signal at the drain of Q204 is applied to pin 4 of the module, when diode D1 is reverse biased and D6 is forward biased. L202 is used for PLL alignment.

TX VCO

The TX VCO is comprised of JFET 0.204, coil L202 and varactor D202 and trimmer capacitor TC202 and is configured as a Colpits oscillator. The AF signal at Mic Amp. module pin 6 is applied to the anode of D202 via pin 3 of the module. The control voltage from the loop filter is applied to the cathode of D202 (vid a module pin 6). The TX RF modulated signal produced at the drain of 0.204 (module, pin 4) is passed to the power amplifier and harmonic filter via the buffer amplifier (0.2), when diode D1 is forward biased and D6 is reverse biased. TC201 is used for PLL alignment.

Loop filter

Transistors Q14 and Q15 and resistors R46 to R51 and capacitors C79 to C82 form the loop filter. The phase detector from pin 13 of IC1 is filtered to remove any reference frequency harmonics and then applied to the RX and TX voltage controlled oscillator module, pin6.

PLL frequency synthesizer

The PLL frequency synthesizer contains an oscillator for the reference crystal, a reference divider, a programmable divider, a phase/frequency comparator, an out of lock detector and a prescaler.

Reference oscillator

The reference oscillator of IC1 along with a 12.8MHz crystal X1, TC1, C76, C77 produces a 12.8MHz reference signal at pin 1 & 2 of IC1.

Programmable dividers

IC1 has two dividers, a data programmable divider and a programmable reference divider.

Phase detector

The phase detector (pin13) produces negative pulses when Fv < Fr and positive pulses when Fv > Fr. When Fv = Fr and phase is the same the phase detector presents a high impedance at pin 13. The signal at pin 13 is applied to the VCO via the loop filter.

Out of lock detector

The out of lock detector produces a high logic level when Fr and Fv are in the same phase and frequency, or low logic level pulses when the loop is out of lock at pin 11 of IC1. The signals at pin 11 of IC1 are buffered by Q13 then integrated by R45 and C78. The product of the integrating circuit is fed to flexible PCB 22.

Prescaler

The internal prescaler divides the VCO frequency by 16 or 17.

RECEIVER

The Receiver uses dual-conversion superheterodyne techniques and comprised of:

an RF Amplifier

- a First Mixer and First IF Amplifier
- a Second Mixer, Second IF Amplifier and FM Detector
- a Receiver Audio circuit
- a Mute (Squelch) circuit

RF amplifier

The receiver RF amplifier contains coils T1 to T4 and MOS FET Q8. Coils T1 to T4 are T3, T4 are configured as 2-pole bandpass filter. The RF signal passes through the tuned circuit T1 and T2, RF amplifier Q8 and T3 and T4, enabling the RF signal at the operating frequency to pass to the first mixer.

First mixer and first IF amplifier

FET Q9, Q10 and crystal filter XF1 and coils T5 to T7 from the First IF amplifier. The VCO local oscillator signal, via buffer transistor Q9, is filtered by T6 and T7. Q10 produces a difference frequency of 21.4 MHz at the drain connection, from the filtered RF signal at the gate connection and the filtered VCO local oscillator signal at the source connection. The 21.4MHz difference frequency is filtered by the 2-pole crystal filter XF1. The tuned circuit T5 and associated components provide matching of the crystal filter to insure good passband response and sensitivity. The IF signal is amplified by Q12 and passed to the second mixer, second IF, and FM detector.

Second mixer, second IF, and FM detector

A single conversion FM receiver integrated chip, IC4 contains the second mixer, second IF, and FM detector functions. The second local oscillator frequency is determined by the crystal X2 connected to pin 1 of IC4. The IF signal is received at pin 16 of IC4 via R38 and coupling capacitor C60. The second IF frequency of 455 KHz is produced when the difference frequency is applied to the mixer via pin 6. The output of the second mixer via pin 3 is applied to a 455 KHz bandpass filter, CF1. The output of CF1 is passed to a high gain IF amplifier (limiter) in IC4 via pin 5. The amplified signal is coupled to the adjustable quadrature detector T8. Any detected signal is produced at pin 9 of IC4 and applied to the receiver audio circuit.

Receiver audio circuit

The receiver audio circuit is comprised of an audio and a high pass filter module and de-emphasis circuit on the RX/TX PCB.

High pass filter module

CTCSS signals from the recovered audio signal is removed by the high pass filter. The high pass filter is a 8-pole active filter that is comprised of IC501 and associated components. The de-emphasis is provided by resistor R42 and capacitor C70. The de-emphasized audio signal at CON2, connection 6 is fed to the audio amplfier on the RX/TX PCB, via the volume PCB's VR801.

Audio amplifier module

IC601 is the audio amplifier. The audio signal at CON2, pin5 is passed to IC601, pin3 via variable resistor VR801 (located on the front panel). The gain of the amplifier is set by resistor R603 and C602. The amplified audio signal at pin 5 of IC601 is applied to the internal speaker SPKR by flexible PCB (pin 5). The external speaker connection is via the connector JACK 3.

Mute (squelch) circuit

The squelch circuit switches off the audio power amplifier in the absence of RF signals. The squelch circuit is comprised of internal carrier detector, squelch control and VR802.

Internal detector circuit

The carrier signal is detected by IC4 pin 13 and regulated by C57 and R33, and then DC amplified by the internal amplifier circuit via IC4, pin 10. The amplified signal is applied to IC4 pin 12 via SQ VR802 and then is converted to Logic Level by internal comparator of IC4. The output level is buffered and reverse phased by Q12 and is applied as the busy signal to the microprocessor by flexible PCB pin 10.

MICROPROCESSOR CONTROLLER

The default of all functions in the radio is preset by the internal programmed microprocessor and any other user's options including the frequencies of Receive and Transmit are available by the microprocessor and associated interfacing circuit.

Microprocessor

The microprocessor is a high speed Hitachi HD404808 4K-byte ROM with 4-bit access. It contains the LCD Driver, I/O Controller, Voltage Comparator. When the radio turns on, the microprocessor is power-on reset by C1021 of pin 78 to operate in the preset order in the masked ROM. When the radio turns off, the data in RAM are kept stored by the backup battery with about 2μ A current from BAT1001 to pin 13.

POWER SWITCHING CIRCUIT

When the PTT switch is pressed, the enable and clock data are forwarded by the microprocessor to IC1 pin 5, 6, 7, and to IC2 pin 1, 2, 3. When IC2 receives the enable and clock data, it holds pin 2 low, causing Q1 to turn on, and holds pin 14 high, causing Q7 to turn off. It reverses this in receive mode.

CTCSS/DTMF ENCODE AND DECODE CIRCUIT

CTCSS Receive

The detected audio signal is applied to IC1003 pin 11 for being switched out to pin 12, and then applied to pin 8 to compare with OP AMP and passed to pin 3 to be applied to pin 13 through C1005 and R1005. It is further amplified and referenced by OP AMP to be passed to pin 14. Again by the same procedure it is forwarded in to pin 1 and out to pin 2 to apply to the microprocessor pin 31 for the microprocessor control.

CTCSS Transmit

The data received from the microprocessor pin 17, 18, and 19 are applied to IC1003, pin 10 via R1028, R1029, R1030, and RV1002 for being switched at IC1003. The signal received at IC1002 pin 8 via pin 12 is filtered to pass to pin 3 and then to pin 14 for being switched to transmit by flexible PCB pin 26 via pin 25.

DTMF Decoding circuit

The audio detection output supplied to the Control Board is also applied to the bandpass filter pin 5 and passed to the DTMF Decoding IC (IC1007, pin 8) through the 8th active filter. With a data received from IC1008 it is forwarded to pin 14 to apply to the microprocessor pin 31 for the microprocessor control.

DTMF Encoding circuit

When transmit DTMF is selected, the microprocessor pin 21, 22, 23, 24, and 24 send out the data which is forwarded into IC1004. The cross point switching IC (IC1003) forwards the switched data to IC1004 pin 14 to transmit the DTMF signal through flexible PCB pin 26 via RV1001, C1025 and R1038.

T

CONTROL AND INDICATOR CIRCUIT

External PTT control circuit

When the external microphone is connected at the MIC Jack on the front panel, the internal microphone is disable and converted to the external microphone by MIC AMP Jack, which is applied to VCO via C61 and also applied to the level PCB pin 1, to output to the level PCB pin 2. Then the microprocessor pin 11, being pulled as logic high via R1036, becomes logic low to enable it to operate like the internal PTT circuit.

Channel select circuit

The channel switch encodes the channel number selected into binary word. The binary word is passed through RF flexible PCB and top panel PCB to the microprocessor pin 12, 13 for microprocessor control.

Signal level indicator

The received signal is applied to IC4, pin 11 to compare with the reference level via R32 and is passed to the level PCB pin 8 for the input to the microprocessor. The microprocessor then displays the TX level.

TX level indicator

The transmitted signal is applied to the level PCB IC301 B via a direction coupler D2, RV3 and R31 to compare with the reference TX level and is passed to the level PCB pin 8 for the input to the microprocessor. The Microprocessor then enables the TX level indicated on the display.

Battery low indicator circuit

In case the battery voltage drops below 6V approximately (it may depend on the voltage of the battery or power supply), the voltage comparator is applied to the level PCB pin 4 via R308 to compare with the reference and is passed to the level PCB pin 3. The microprocessor then enables BATT LOW indicated on the display.

ALIGNMENT INSTRUCTIONS

1. Alignment Test Point and Parts Locations

2. Phase Locked Loop and CPU Section

A. Test Equipment Required

- a. Frequency Counter
- b. DC Power Supply
- c. DC Voltmeter (Input Impedance 10 ohms)
- d. RF attenuator (20dB, Impedance 50 ohms)

B. Allignment Procedure

Step	Setting	Connection	Adjust	Adjust for
1	RX VCO Voltage adjustmentFrequency : 144.200 MHzMIC : ReceiveFunction : NoneVolume : OptionalSquelch : Optional	DC Voltmeter to pin 6 of VCO (figure 1-1)	L202	1.6-1.8V DC
2	TX VCO Voltage adjustment Frequency : 144.200 MHz MIC : Transmit (unmodulation) Function : None Volume : Optional Squelch : Optional	DC Voltmeter to pin 6 of VCO (figure 1-1)	TC201	1.8-2V DC
3	Frequency adjustment Frequency : 146.000MHz MIC : Transmit (unmodulation) Function : None Volume : Optional Squelch : Optional	ANT. to frequency counter, through attenuator (figure 1-2)	TC1	1.7V DC (1.6-1.8V DC) and 1.9V DC (1.8-2V DC)

(Figure 1-1)

3. Transmitter Section

A. Test Equipment Required

- a. RF Power meter (RF SSVM)
- b. 50 ohm dummy load (non-inductive)
- c. RF Attenuator (50 ohms: non-inductive)
- d. Oscilloscope
- e. Audio Generator
- f. DC Power Supply
- g. Spectrum Analyzer
- h. Frequency Counter
- i. Coupler
- j. Modulation meter (FM)
- **B. Alignment Procedure**

Step	Setting	Connection	Adjust	Adjust for
1	AF. Modulation adjustment Frequency : 146.000MHz MIC : Transmit Function : None Volume : Optional Squelch : Optional RF Power selection : High	Connect the audio generator (Set to 1KHz) to the microphone jack. Connect the modulation meter through the RF attenuator to the ANT jack. Adjust the audio signal level to obtain 3KHz deviation. When you increase the audio signal by 20dB, the deviation should not exceed 5KHz deviation (Figure 2-1)	RV1	3.8KHz (3.5~4K)
2	CTCSS modulation adjustment Frequency : 146.000MHz MIC : Transmit Function : Tone squelch mode (CTCSS: 100Hz) Volume : Optional Squelch : Optional RF power selection: High	Connect the short plug to microphone jack. Connect modulation meter through RF attenuator. Connect RF power meter to EXT-ANT jack on the set. (Figure 2-2)	RV1002	0.7KHz (500~1KHz)
3	DTMF modulation adjustment Frequency : 146.000MHz MIC : Transmit Function : DTMF squelch mode Volume : Optional Squelch : Optional RF power selection: High	Connect the short plug to microphone jack. Connect modulation meter through RF attenuator to EXT-ANT jack on the set. Press a number botton on the set. (Figure 2-2)	RV1001	3.8KHz (3.5~4K)

4	Low power adjustment	Connect the short plug to	RV2	1W
	Frequency : 146.000MHz	microphone jack.		(0.8~1.2W
	MIC : Transmit	Connect the dummy load to		
	Function : None	EXT-ANT jack on the set	and the second	
	Volume : Optional	through RF power meter.		
	Squelch : Optional	(Figure 2-3)	12 2 39	
	RF power selection: Low			

(Figure 2-3)

4. Receiver Section

- A. Test Equipment Required
 - a. Standard Signal Generator (SSG)
 - b. AC Level meter
 - c. Distortion meter
 - d. DC Power Supply
 - e. 12dB Sinadder meter
- **B.** Alignment ProcedureA

Step	Setting	Connection	Adjust	Adjust for
1	RX sensitivity adjustment Frequency : 144MHz- 148MHz	Connect standard signal generator to EXT-ANT jack.	Т8	Maximum indication on AC level meter.
	MIC : Receive	Connect AC volt level	T7	Maximum sensitivity
	Function : None	meter, distortion meter	Т6	indication on 12dB
	Volume : Adjust for 1V	and sinadder meter	T4	sinadder meter.
	on the level meter.	across EXT speaker	Т3	In the above condition,
	Squelch : Turn fully	jack with 8 ohm dummy	T2	sensitivity is flat for
	counterclockwise SSG: Audio 1KHz Modulation 3KHz	load. (Figure 3-1).	Τ1	144 - 148MHz
2	Distortion adjustment Frequency : 146.100MHz MIC : Receive Function : None Volume : Adjust for 1V on the AC level meter Squelch : Turn to counterclockwise SSG: Audio 1KHz Modulation 3KHz	Connect standard signal generator to EXT-ANT jack. Connect AC volt level meter, distortion meter across EXT speaker jack with 8 ohm dummy load. (Figure 3-1)	Τ5	Maximum indication on distortion meter.

TROUBLESHOOTING HINTS

Symptom	Probable Cause	Remedy
Unit does not work at all	1. Defective power switch VR801 2. Defective Diode D4, D5	 Replace Replace defective component (s)
	3. Broken DC power cord	3. Replace
No output from speaker at all	 Defective external speaker jack Poor connection on microphone Connector 	1. Repair or Replace 2. Repair or Replace
	3. Measure all the voltage of sub board of audio PCB	3. Repair or Replace
	4. Defective internal speaker	4. Replace
No noise on speaker	 Measure all the voltage of audio PCB. Defective squelch circuit components. (VR802, C57, C58, R28, R29, R30, R33, R34, R36, R1022, Q11, pin 9 of IC1006) Compare with the voltage chart 	 Repair or Replace Replace defective component (s)
Squeich does not work	1. Defective squelch circuit components (VR802, C57, C58, R28, R29, R30, R33, R34, R36, R1022, Q11 pin 9 of IC1006) Compare with the voltage chart	1. Replace defective component (s)
No modulation	1. Defective microphone	1. Replace
	2. Measure all the voltage of sub board of MIC PCB	2. Replace
	3. Defective TX mute circuit components (Q5, R3 pin 8 of IC1004) compare with the voltage chart.	3. Replace defective component (s)
LCD Display does not work	1. Measure all the voltage of IC1005, D1001, X1001 (pin 77 of IC1006)	1. Replace defective component (s)
Back light does not work	1. Defective the components of LED1001, LED1002, Q1001, Q1002, Q1003.	1. Replace

ERROR DISPLAY

1. Internal RAM Error: Er1

Er1 indicates an internal RAM error. It appears when the memory backup battery is dead or when something else has caused the memory contents to become corrupt. To clear the error, turn on the unit while holding down the function button and D. This clears the memory.

If the error returns after you disconnect power, check the following components: Lithium Battery

Dual-diode RB417E (D1002) and check for cold solder joints.

2. PLL Unlock Error: Er2

Er2 indicates the PLL has unlocked. Check the following:

A. PLL alignment (from page 17).

B. Check for 5V at Q13, Q14, and VCO pin 1.

C. Confirm that X1 is oscillating. If not, check the connections to IC1, pins 1 and 2. If the connection is good, check for 5V at IC1, pin16. If 5V not present, check connections to L16 and power.

D. Confirm 5KHz signal at IC1, pin11. If not, check connections to pin 5 (DT), pin 6 (EN), and pin 7 (CK).

E. See if Q13 is in normal condition.

If the above checks do not correct the problem, replace IC1.

WIRING DIAGRAM

PRINTED CIRCUIT BOARD VIEWS

RF PCB: Top View

RF PCB: Chip Component Side View

Digital PCB: Keypad Side View (Top View)

Digital PCB: Keypad Side View (Bottom View)

High Press Filter PCB:

(Top View)

(Bottom View)

MIC PCB:

(Top View)

(Bottom View)

,

Auto Power Control PCB:

(Top View)

(Bottom View)

PTT PCB:

(Top View)

(Top View)

(Bottom View)

(Top View)

Audio PCB:

(Top View)

(Bottom View)

Level PCB:

(Top View)

VCO PCB:

(Top View)

Flexible PCB: (RF VS DIGITAL)

Flexible PCB: (PTT VS DIGITAL)

EXPLODED VIEW

EXPLODED VIEW PARTS LIST

Ref. No.	Description	RS Part No.	MFR's Part No
1	Cover Upper Lexan141 70022	a state of the	718-358
2	Lens Acryl, 60 × 17 × 2.6t, Clear		813-765
3	Pad Key, Silicon Rubber, 52.5 × 32 × 6.4, Gray	a go tha see	894-641
4	Holder LCD, SPTE 52.6 × 20.7, White		732-751
5	Zebra, LCD, YS-0.18, 52 × 2.6 × 1.9		422-390-2
6	Plate Illuminator, Acryl, 52 × 17, Clear/White Silk Screen	Call Street on	795-177
7	Sticker, Silver Paper, 70 × 52, Silver	的民族自	906-335
8	Ass'y, Digital PCB	No the state	593-160
9	Stopper, Sus, 41.6 × 18 × t0.8 Natural	所属的行政器	752-544
10	Latch, PC, 10.8 × 13 × 3, Black	ALCONT ALL S	825-755
11	Plate Guide, Sus, 57 × 24.5 × 0.8t, Natural		771-934
12	Ass'y, PTT PCB	S ASSA	593-166
13	Bushing, BsBM, D4×4.4, Sn-Plating, White	10.00	852-979
14	Pad PTT, Silicon Rubber, 57 × 14 × 7.7, Gray	and the second	894-640
15	Bushing Mic, NBR Rubber, D7 × 5, Black		850-924
16	Filter Speaker, Felt, D36.5×0.1t, Black		906-336
17	Holder Speaker, SPC, D24.5 × 48 × 0.8t, Ni-Plating, White		732-702
18	Overlay (KEY), PVC, 51 × 33.5 × 0.5t, Black	1 12 14	795-176
19	Panel Top PC, 60 × 30 × 5.7, Black		702-307
20	Washer Ground, SPTE d14.5×0.3t, Natural	A. Court	660-996
21	Holder Rubber, Silicon, D4 × 9.5, Gray	The Read	894-722
22	Label		
23	Packing (RF Power), Silicon Rubber, D10×11.5, Gray	and the later of	894-642
24	Knob-RF Power, ABS D6.6 × 11.4, Black	and the second	852-758
25	Packing Jacks, Silicon Rubber, Black	Stand States	894-643
26	Ring, Silicon Rubber, D10×0.8t, Black		894-650
27	Nut Ring, BsBM, D9.5 × 2, Brown	N HERE BAR	650-330
28	Knob-Channel, ABS D12 × 12, Black		852-757
29	Knob-Volume, ABS D11×11, Black		852-756
30	Dust Cap, Neporene Rubber, Black	C. AVARA	830-899
31	Frame, SPTE, $96 \times 55 \times 24$, Ni-Plating, White	Case 2	718-362
32	Spring Coil, Sus, D3.5×6, Natural		881-504
33	Pin Contact, BsBM, D4.9 × 10, Ni-Plating, White		860-130
34	Holder Battery Contact, ABS 21 × 8 × 5		732-751
35	"E" Ring, D1.5, Black		655-018
36	Heat Sink, Cu 41 × 12, Sn-Plating, White	and heads	761-725
37	Washer, Cu-Plate, $9.8 \times 6 \times 2.5t$, Brown		660-900
38	Ass'y, RF PCB		593-159
39	Bushing, BsBM, D4.7 × 2.6, Sn-Plating, White	And Shelling	852-994

Ref. No.	Description	RS Part No.	MFR's Part No
40	Bushing, BsBM, D4 × 3, Ni-Plating, White		853-026
41	Rubber Cap, Silicon, 11 × 4.4 × 4.3, Clear	A State of the	894-785
42	Rubber Cap, Silicon, 7.5 × 2.9 × 8.5, Clear	1.1.1.1.1.1.1.1.1	894-786
43	Rubber Holder, Silicon, 9.6 × 4.2, Clear	S. S	894-787
44	Rubber Holder, Silicon, 7 × 2.8, Clear		894-788
45	Shield Can, BsP 30 × 20 × 9, Sn-Plating, White	110923	772-010
46	Gasket, Silicon Rubber, 270mm, Black	Summer and	891-370
47	Insulator, Felt, D6×0.3, Black	Sugar Sug	906-335
48	Cover Bottom A1, 107 × 63 × 10.4, Black	A CAR SALE	718-359
49	Belt Hook, Sus 304, Black	State of the	721-821
50	Label Name, Polyester, 35 × 18, Black	1	958-944-A
51	Upper Cover (Battery), PC, 67 × 60 × 18, Black	Martin in	718-361
52	Bottom Cover (Battery), PC, 67×60×18×, Black	Star Very	718-370
53	Ass'y, Battery PCB	The Ward	593-170
54	Bracket, SPC, $20 \times 6 \times 12$, Ni-Plating, White	1 Partie	723-741
55	Spring Flat PBsP 6×9×11, Ni-Plating, White		881-529
56	Bushing, Acetal, D6 × 2, White	Marken and	853-025
57	Pin Contact, BsBM, D2 × 15, Ni-Plating, White	the we dank	860-136
58	Terminal (Input"+"), SPC, 10×5×7, Ni-Plating, White	- Carlos	752-543
59	Terminal (Input"-"), SPC, 10×5×7, Ni-Plating, White	Lite Star	752-545
60	Terminal (Output "+", "-"), SPC, 6×5, 5×5,		752-583
	Ni-Plating, White		774 005
61	Plate Tension, Sus, 57 × 26, 5 × 2.5, Natural Color		771-935
62	Overlay, PVC, 30.9×8.8×0.5t, Black		795-414
63	Housing Battery (Dry), PC, 65 × 52 × 25, Black	1995	718-360
64	Holder Battery (Dry), PC, 61 × 5 × 29, Black		732-753
65	Terminal "A", Sus, 27 × 11.5, Natural		752-547
66	Terminal "B", Sus, 27 × 11.5, Natural		752-546
67	Terminal "C", Sus, 24.5 × 13, Natural		752-548
68	Terminal "+", Sus, 27×13×11.5, Natural	1.	752-549
69	Terminal "-", Sus, 12.7 × 11.5 Natural		752-550
70	Shield Plate, CNP3, 66 × 54 × 0.15t, White	Distant.	772-009
71	Insulation Plate, Mylar, D16 × 0.3t, Clear		906-233
72	Label	No. OT	502 100
73	Ass'y, VCO PCB	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	593-168
74	Ass'y, MIC PCB		593-164
75	Ass'y Level PCB		593-162
76	Ass'y, High Pass Filter PCB		593-163
77	Ass'y, Audio PCB	Part Partie	593-161

Ref. No.	Description	RS Part No.	MFR's Part No
78	Ass'y, Auto Power Control PCB	Contrast in	593-165
79	Ass'y, Top PCB		593-167
80	Insulator Clear		906-360
81	Bushing Rubber Sponge, D14.5 × 1t, Black	Sante State	894-545
82	Strap Carrying With Ring, 200mm, Black		906-337
83	Nut, BsBM, M2, Hexagon, Brown		651-015
84	Antenna Rod, Flexible, Black		420-402-3
S1	Screw Tapping (PH), D1.8×4-2S, Ni-Plating, White		628-094
S2	Screw Tapping (PH), D2.6 × 6, Ni-Plating White		621-026
S3	Screw Machine (PH), M2 × 5, Black		612-285
S4	Screw Machine (FH), M2.6 × 7, Ni-Plating, White		611-310
S5	Screw Machine (RH), M2 × 4, Ni-Plating, White		612-286
S6	Screw Machine, M2.6×8, Ni-Plating White		661-077
S7	Screw Machine (PH), M2, 6×5, Ni-Plating, White	and the second	611-032
S8	Screw Tapping (PH), D2 × 17, Black	C Part Part In	622-205
S9	Screw Machine (BH), M3×4, Black		613-536
S10	Screw Machine (PH), M2 × 4, Ni-Plating, White	New West	612-018
S11	Screw Tapping (PH), D2×4-2S, Ni-Plating, White	A Contraction of the	622-204
S12	Screw machine (FH), M2 × 5, Black	(1) 新来的主义系统	612-230
S13	Screw Taptite (PH), D2 × 4, Ni-Plating, White	a state and	600-724
S14	Screw Taptite(RH), D2 × 5, Ni-Plating, white	a start and the	632-002
J1	Connector, Ant., BNC-RB (M3), SW1850	er ste seets	421-651-3
J2	DC Power Ext., MOJ-D15	A Sant Chan	420-709-5
J3	Miniature, Speaker, HSJ0836-01-50	Stratting - Cont	420-706-2
J4	Miniature, Mike, HSJ1102-01-510	There is a set	420-709-6
SW801	Push Lock, SPPJ422BP011, RF Power Sw	5 se mater	432-027-8
SW802	Rotary, EC09P20-04, Channel Sw		430-063-0
VR801	Variable, 20KA, Audio Volume/Switch	Contraction of the second	450-523-5
VR802	Variable, 20KB, Squelch Volume	A CALL AND A MARK	450-524-6
SPK1	Speaker, 8 ohm, 0.5W, 40mm		420-164-5
MC1	Mike, Condensor WH-063T, 6DIA	C. Marthan	420-206-0
SW401	Switch, Tact, Chip, SKHUPF 7.2 × 8.5		436-030-0
SW402	Switch, Tact, Chip, SKHUPF 7.2 × 8.5	C Martin State	436-030-0
SW403	Switch, Tact, Chip, SKHUPF 7.2×8.5	T Starting and	436-030-0
SW404	Switch, Tact, Chip, SKHUPF 7.2 × 8.5	B Charles and	436-030-0
LCD1001	LCD, LE-0802A, Display	a water the	252-092-0
LCD901	LED Lamp, KRA124, Red	A Long to and	251-007-9
BAT1001	Battery, Lithium, 3V, 3.8×15mm		420-564-3
BAT901	Battery, Ni-Cad, 7.2V 600mAh, 6VEAA		420-567-6

ELECTRICAL PARTS LIST

Ref. No.	Description	RS Part No.	MFR. Part No
	Ass'y, RF PCB		
A STATE	Capacitors		
C1	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C2	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	State States	130-185-5
C3	Ceramic, Chip, 22pF 50V, 0805, ±5%		132-223-5
C4	Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C5	Elect, 10µF 16V, 4DIAX7, ±20%		101-043-5
C6	Ceramic, Chip, 39pF 50V, 0805, ±5%		133-911-8
C7	Ceramic, Chip, 22pF 50V, 0805, ±5%		132-223-5
C8	Ceramic, Chip, 56pF 50V, 0805, ±5%		135-613-9
C9	Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C10	Elect, 10µF 16V,4DIAX7, ±20%	a statistical and	101-043-5
C11	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C12	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C13	Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C14	Elect, 10µF 16V, 4DIAX7, ±20%	A STATE	101-043-5
C15	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C16	Ceramic, Chip, 5pF 50V, 0805, ±0.25pF	S as such -	135-010-4
C17	Ceramic, Chip, 56pF 50V, 0805, ±5%		135-613-9
C18	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C19	Ceramic, Chip, 47pF 50V, 0805, ±5%		134-721-8
C20	Ceramic, Chip, 4pF 50V, 0805, ±0.25pF		134-007-7
C21	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C22	Ceramic, Chip, 56pF 50V, 0805, ±5%		135-613-9
C23	Ceramic, Chip, 33pF 50V, 0805, ±5%		133-314-9
C24	Ceramic, Chip, 0.01µF 50V, 0805, ±5%		130-172-2
C25	Tantalum, Chip, 10µF 10V, B, ±20%	d the Rest	141-046-0
C26	Elect, 220µF 10V, 6.3DIAX7, ±20%		102-288-5
C27	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C28	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C29	Ceramic, Chip, 1pF 50V, 0805, ±0.25pF		131-030-2
C30	Ceramic, Chip, 12pF 50V, 0805, ±5%		131-208-7
C31	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C32	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C33	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C34	Ceramic, Chip, 1.5pF 50V, 0805, ±0.25pF		131-559-4
C35	Ceramic, Chip, 20pF 50V, 0805, ±5%		132-012-1
C36	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C37	Ceramic, Chip, 75pF 50V, 0805, ±5%		137-504-4

Ref. No.	Description	RS Part No.	MFR. Part No
C38	Elect, 100µF 16V, 6.3DIAX7, ±20%	A San Bark	101-093-0
C39	Ceramic, Chip, 22pF 50V, 0805, ±5%	Dama seconda	132-223-5
C40	Ceramic, Chip, 0.001µF 50V, 0805, ±10%	Contraction of the	130-184-4
C41	Ceramic, Chip, 0.001µF 50V, 0805, ±5%	a state and	130-184-4
Ċ42	Ceramic, Chip, 15pF 50V, 0805, ±5%		131-511-0
C43	Ceramic, Chip, 1.5pF 50V, 0805, ±0.25pF	1 10-2 1 A	131-559-4
C44	Ceramic, Chip, 33pF 50V, 0805, ±5%		133-314-9
C45	Ceramic, Chip, 33pF 50V, 0805, ±5%	a filia a second	133-314-9
C46	Ceramic, Chip, 0.001µF 50V, 0805, ±10%	. Ale states	130-184-4
C47	Tantalum, Chip, 10µF 10V, B, ±20%	Participation of	141-046-0
C.48	Ceramic, Chip, 5pF 50V, 0805, ±0.25pF	A Star of the	135-010-4
C49	Tantalum, Chip, 10µF 10V, B, 20%	a fair and	141-046-0
C50	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C51	Ceramic, Chip, 0.01µF 50V, 0805, ±10%	a chairte a	130-172-2
C52	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C53	Ceramic, Chip, 220pF 50V, 0805, ±5%	and the state	132-220-2
C54	Ceramic, Chip, 220pF, 220pF 50V, 0805, ±5%	Same to	132-220-2
C55	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	Para and	130-185-5
C56	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C57	Ceramic, Chip, 0.1µF 50V, 1206, ±10%		130-197-5
C58	Ceramic, Chip, 0.001µF 50V, 0805, ±10%	a martine and	130-184-4
C59	Ceramic, Chip, 220pF 50V, 0805, ±5%	A STAR	132-220-2
C60	Ceramic, Chip, 0.0033µF 50V, 0805, ±10%	A LANGE TO BE	130-315-6
C61	Ceramic, Chip, 0.1µF 25V, 0805, +80% - 20%	All survey	130-185-5
C62	Ceramic, Chip, 39pF 50V, 0805, ±5%		133-911-8
C63	Ceramic, Chip, 68pF, 0805, ±5%	1 1 1 1 1 1	136-816-5
C64	Ceramic, Chip, 0.1µF 25V, 0805, +80% - 20%		130-185-5
C65	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C66	Ceramic, Chip, 0.1µF 25V, 0805,+80% - 20%	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	130-185-5
C67	Ceramic, Chip, 0.1µF 25V, 0805, +80% - 20%	and the second second	130-185-5
C68	Tantalum, Chip, 10µF 10V, B, ±20%		141-046-0
C69	Tantalum, Chip, 1µF 16V, A, ±20%		141-036-1
C70	Ceramic, Chip, 0.1µF 25V, 0805, +80% - 20%	A Start Start	130-185-5
C71	Tantalum, Chip, 10μF 10V, B, ±20%	the second second	141-046-0
C72	Elect, 100µF 16V, 6.3DIAX7, ±20%		101-093-0
C73	Ceramic, Chip, 0.1µF 25V, 0805, +80% - 205		130-185-5
C74	Tantalum, Chip, 1µF 16V, A, ±20%		141-036-1
C75	Ceramic, Chip, 0.1µF 25V, 0805, +80% – 20%		130-185-5
C76	Ceramic, Chip, 56pF 50V, 0805, ±5%		135-613-9

HID &

Ref. No.	Description	RS Part No.	MFR. Part No
C77	Ceramic, Chip, 51pF 50V, 0805, ±5%	be brank Excel	135-103-5
C78	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C79	Ceramic, Chip, 0.01µF 50V, 0805, ±10%	in a state of the	130-172-2
C80	Tantalum, Chip, 1µF 16V, A, ±20%		141-036-1
C81	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	N CARA	130-185-5
C82	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C83	Elect, 100µF 16V, 6.3DIAX7, ±20%		101-093-0
TC1	Trimmer, 20pF (ECR-LA020E52V),+50%-0% CONNECTORS		172-019-0
CON1	Lead/Housing Ass'y, 4P, 50mm		504-808
CON2	Lead/Housing Ass'y, 6P, 50mm	a second	504-809
	COILS		Service State
LI	Inductor, Chip, 1μ H, 01, ± 20%	A STATE STATE	310-657-0
L2	Inductor, Chip, 1μ H, 01, ±20%	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	310-657-0
L3	Choke, MK-4, 2×0.4×8t:L		310-092-9
L4	Inductor, Axial, 2.2µH, 02, ±20%	C. C. Carrows	310-378-7
L5	Resistor-Choke, 1Kohm × 10t	March 1	310-213-7
L6	Spring, 3×0.65×1.5t:L	S Barbarbarbarbarbarbarbarbarbarbarbarbarba	310-224-2
L7	Inductor, Axial, 1µH, 02, ±20%		310-298-4
L8	Resistor-Choke, 1Kohm × 10t		310-218-7
L9	Spring, 3×0.65×1.5t:L	and the second second	310-224-2
LIO	Spring, 2 × 0.4 × 4.5t:L	a little start in	310-573-7
L11	Spring, 2 × 0.4 × 5.5t:L	A State In	310-574-8
L12	Choke,MK-4, 12×0.4×8t:L	PARK AN	310-092-9
L13	Inductor, Chip, 1μ H, 01, $\pm 20\%$		310-657-0
L14	Inductor, Axial, 100µH, 04, ±10%		310-221-9
L15	Not Used.		
L16	Inductor, Chip, 10µH, 01, ±10%		310-659-2
FB1	Bead Core, FC3×2	N. Fuestie and all	320-253-1
FB2	Bead Core, FC3×2	a lange said	320-253-1
FB3	Bead Core, FC3×2	The second second	320-253-1
T1	Transformer, Rx Molded, 140MHz 5.5t	a lost a sais	310-571-5
T2	Transformer, Rx Molded, 140MHz 5.5t		310-571-5
тз	Transformer, Rx Molded, 140MHz 5.5t	II SHERE	310-571-5
T4	Transformer, Rx Molded, 140MHz 5.5t		310-571-5
Т5	Transformer, Rx Mixer, 21.4MHz	- California - Sh	320-597-2
Т6	Transformer, Rx Molded, 130MHz 6.5t	a Sura Sura	310-572-6
T7	Transformer, Rx Molded, 130MHz 6.5t		310-572-6
тв	Transformer, Detector 455KHz		320-232-2

Ref. No.	Description	RS Part No.	MFR. Part No
	CRYSTALS		
X1	12.8MHz, 5PPM, Nr-2B		262-256-5
X2	21.855MHz, 30PPM, HC39/T		262-213-6
	DIODES		and a second second
D1	MMBV3401(4D), SOT-23, Pin		243-012-0
D2	1SS97, Axial, Schottky Detector		243-026-3
D3	MMBV3401(4D), SOT-23, Pin		243-012-0
D4	IN5819, Axial, Rectifier		245-024-1
D5	IN5819, Axial, Rectifier		245-024-1
D6	MMBV3401(4D), SOT-23Pin		243-012-0
	FILTERS		Level Hall
CF1	Ceramic, CFW455F, 455KHz		270-027-8
XF1	Crystal, 21M15BU, 21.4MHz		271-002-0
	IC'S		
IC1	MC145170DR2, SO-16, PLL		223-422-1
IC2	MC14094BD, SO-16, SHIFT-RESISTOR		223-233-7
IC3	LM2931AZ, TO-226AA, 5V REGULATOR	Read Street	231-024-9
IC4	MC337/DR2, SO-16, FM IF	主任公司部署	223-421-0
	JACKS	这一个的。他们的	Sec. Prove
J2	DC Power, Ext., MOJ-D15	A President S	420-709-5
J3	Miniature, Speaker, HSJ0836-01-50		420-706-2
J4	Miniature, Mike, HSJ1102-01-510	的 的复数记忆	420-709-6
	RESISTORS CARBON		
R1	Chip, 10K ohm, 1/10W, 0805, ±5%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	060-103-8
R2	Chip, 10K ohm, 1/10W, 0805, ±5%		060-103-8
R3	Chip, 10K ohm, 1/10W, 0805, ±5%	可用的分数间	060-103-8
R4	Chip, 470 ohm, 1/10W, 0805, ±5%	2 34 2 34 4	060-471-0
R5	Chip, 470 ohm, 1/10W, 0805, ±5%	理想的自己没有	060-471-0
R6	Chip, 2.2Kohm, 1/10W, 0805, ±5%		060-222-2
R7	Chip, 10K ohm, 1/10W, 0805, ±5%	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	060-103-8
R8	Chip, 10 ohm, 1/10W, 0805, ±5%	合数 化学生物的	060-100-5
R9	Chip, 100 ohm, 1/10W, 0805, ±5%	an ann an thug	060-101-6
R10	Chip, 22 ohm, 1/10W, 0805, ±5%	S. AKT ING	060-229-9
R11	Chip, 100 ohm, 1/10W, 0805, ±5%	法世际公共	060-101-6
R12	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R13	Chip, 1K ohm, 1/10W, 0805, ±5%	The second second	060-102-7
R14	Chip, 330 ohm, 1/10W, 0805, ±5%		060-331-7
R15	Chip, 3.3K ohm, 1/10W, 0805, ±5%	Contraction and	060-332-8
R16	Chip, 10 ohm, 1/10W, 0805, ±5%		060-100-5

Ref. No.	* Description	RS Part No.	MFR. Part No
R17	Chip, 330 ohm, 1/10W, 0805, ±5%		060-331-7
R18	Chip, 4.7K ohm, 1/10W, 0805, ±5%		060-472-1
R19	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R20	Chip, 470 ohm, 1/10W, 0805, ±5%		060-471-0
R21	Chip, 2.2K ohm, 1/10W, 0805, ±5%		060-222-2
R22	Chip, 10 ohm, 1/10W, 0805, ±5%		060-100-5
R23	Chip, 1.2K ohm, 1/10W, 0805, ±5%	and the second	060-122-5
R24	Chip, 3.3K ohm, 1/10W, 0805, ±5%	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	060-332-8
R25	Chip, 820 ohm, 1/10W, 0805, ±5%		060-821-3
R26	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R27	Chip, 470K ohm, 1/10W, 0805, ±5%		060-474-3
R28	Chip, 22K ohm, 1/10W, 0805, ±5%		060-223-3
R29	Chip, 470K ohm, 1/10W, 0805, ±5%		060-474-3
R30	Chip, 10K ohm, 1/10W, 0805, ±5%		060-103-8
R31	Chip, 82K ohm, 1/10W, 0805, ±5%		060-823-5
R32	Chip, 39K ohm, 1/10W, 0805, ±5%		060-393-3
R33	Chip, 33k ohm, 1/10W, 0805, ±5%	5.5.0 1 - 5.0 - F.	060-333-9
R34	Chip, 100K ohm, 1/10W, 0805, ±5%		060-104-9
R35	Chip, 270K ohm, 1/10W, 0805, ±5%		060-274-9
R36	Chip, 330K ohm, 1/10W, 0805, ±5%		060-334-0
R37	Chip, 100K ohm, 1/10W, 0805, ±5%		060-104-9
R38	Chip, 3.3K ohm, 1/10W, 0805, ±5%		060-332-6
R39	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R40	Chip, 10 ohm, 1/10W, 0805, ±5%		060-100-5
R41	Chip, 1K ohm, 1/10W, 0805, ±5%	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	060-102-7
R42	Chip, 10K ohm, 1/10W, 0805, ±5%		060-103-8
R43	Chip, 1M ohm, 1/10W, 0805, ±5%		060-105-0
R44	Chip, 1M ohm, 1/10W, 0805, ±5%		060-105-0
R45	Chip, 10K ohm, 1/10W, 0805, ±5%		060-103-8
R46	Chip, 2.2K ohm, 1/10W, 0805, ±5%		060-222-2
R47	Chip, 15K ohm, 1/10W, 0805, ±5%		060-153-3
R48	Chip, 1.2K ohm, 1/10W, 0805, ±5%		060-122-5
R49	Chip, 4.7K ohm, 1/10W, 0805, ±5%		060-472-1
R50	Chip, 1.2K ohm, 1/10W, 0805, ±5%		060-122-5
R51	Chip, 1.2K ohm, 1/10W, 0805, ±5%		060-122-5
R52	Chip, 470K ohm, 1/10W, 0805, ±5%		060-474-3
R53	Not used		060-474-3
R54	Chip, 100 ohm, 1/10W, 0805, ±5%		060-101-6
R55	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
RV1	Resistor-Semifixed, 22Kb, 6Dia	NUM NUMBER	071-223-1

Ref. No.	Description	RS Part No.	MFR. Part No
RV2	Resistor-Semifixed, 22Kb, 6Dia	A STARS	071-223-1
	TRANSISTORS/FET'S		Contraction of the
Q1	KRA110S(PK), SOT-23, PNP	and a state of the	202-092-5
02	MMBC1321(Q4), SOT-23, NPN		203-096-4
Ω3	MRF581, 317-01(MACR-X), NPN		203-055-7
Q4	SRFH1900, TO-220Ab, NPN		203-043-6
Q5	KRC110S(NK), Sot-23, NPN	S at the first	202-096-9
Ω6	KRA110S(PK), Sot-23, PNP		202-092-5
Q7	KRA110S(PK), Sot-23, PNP	C. S. Marsh	202-092-5
Q8	BF999(LB), Sot-23, N-MOSFET		213-001-3
Q9	BF999(LB), Sot-23, N-MOSFET		213-001-1
Q10	BF513(59), Sot-23, N-JFET		200-024-4
Q11	KRC110S(NK), Sot-23, NPN		202-096-9
Q12	MMBC1321(Q4), Sot-23, NPN	Classifican.	203-096-4
Q13	KTA1504S(ASG), Sot, 23, NPN	a start a	202-082-6
Q14	KTC3875S(ALG), Sot-23, NPN	The Part in	202-083-7
Q15	KTA1504S(ASG), Sot-23, NPN		202-082-6
	End of Ass'y-RF PCB		
	Ass'y, Digital PCB		
	Capacitors		
C1001	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C1002	Tantalum, Chip, 1µF 16V, A, ±20%		141-036-1
C1003	Tantalum, Chip, 10µF 10V, B, ±20%	a lite and and	141-046-0
C1004	Ceramic, Chip, 470pF 50V, 0805, ±5%	A Distance of the	134-761-4
C1005	Tantalum, Chip, 0.22µF 35V, A, ±20%	n and the	140-204-1
C1006	Not Used.		「日本」の開い
C1007	Ceramic, Chip, 0.022µF 50V, 0805, ±5%	A MERICA -	130-234-5
C1008	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C1009	Tantalum, Chip, 10μ F 10V, B, $\pm 20\%$		141-046-0
C1010	Tantalum, Chip, 10μ F 10V, B, ±20%		141-046-0
C1011	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C1012	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C1013	Not Used.		- Transmission
C1014	Ceramic, Chip, 47pF 50V, 0805, ±5%		134-721-8
C1015	Ceramic, Chip, 47pF 50V, 0805, ±5%		134-721-8
C1016	Ceramic, Chip, 20pF 50V, 0805, ±5%		130-012-2
C1017	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C1018	Ceramic, Chip, 20pF 50V, 0805, ±5%		130-012-1
C1019	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2

121-4

Ref. No.	Description	RS Part No.	MFR. Part No
C1020	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C1021	Ceramic, Chip, 0.01µF 50V, 0805, ±10%	A STREET STORE	130-172-2
C1022	Tantalum, Chip, 10µF 10V, B, ±20%		141-046-0
C1023	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C1024	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C1025	Ceramic, Chip, 0.1µF 50V, 0805, +80%-20%		130-185-5
C1026	Tantalum, Chip, 10μ F 10V, B, ±20%		141-046-0
	Connectors		References -
CON1001	Waffer, 8283-0312, 3pin, 2mm		422-275-2
	Film, flexible, 65.25 × 59.2 × 0.25		416-933-В
	Film, Flexible, 27 × 21.5 × 0.25		416-942-A
X1001	Crystal, 3.579545MHz, 50PPM, TC-38A		262-253-2
-	Diodes		
D1001	KDS193S(F3), Sot-23, Switching	123. 8 16	234-052-6
D1002	RB471E, FMD(DUAL), Schottky Rectifier		249-043-8
D1003	KDS193S(F3), Sot-23, Switching	a the second second	234-052-6
D1004	RB471E, FMD(DUAL), Schottky Rectifier		249-043-8
D1005	RB471E, FMD(DUAL), Schottky Rectifier	ACCURE 1	249-043-8
D1006	KDS193S(F3), Sot-23, Switching	ALL STORES	234-052-6
D1007	RB471E, FMD(DUAL), Schottky Rectifier		249-043-8
D1008	RB471E, FMD(DUAL), Schottky Rectifier		249-043-8
	IC'S	日本会社会	125. 16.5
IC1001	LM2931AZ, TO-226AA, 5V Regulator	and the second	231-024-9
IC1002	MF6CWM-100, SO-16L, Switched Capacitor	Alt and the	231-073-3
IC1003	MC142100DW, SO-16L, Crosspoint Switch		223-378-5
IC1004	TP5088, SO-16L, DTMF Generator	1	231-069-9
IC1005	S8054ALR-LN, SOT-89, Voltage Detector		229-446-3
IC1006	HD 404808FS, FP-808, CPU, MASK ROM		227-033-3
IC1007	MC14536DW, SO-16L, DTMF Receiver	and the states	223-419-9
IC1008	MC74HC4078D, SO-14, 8-Input Nor-/Or Gate		223-420-9
LCD1001	LCD, LE-0802A, Display		252-092-0
LED1001	LED Lamp, SLP-378H, Backlight Green	Service and	251-184-5
LED1002	LED Lamp, SLP-378H, Backlight Green	A State States	251-184-5
	Resistors, Carbon		12.18
R1001	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1002	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1003	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1004	Chip, 47K ohm, 1/10W, 0805, ±5%	C. Markana and	060-473-2
R1005	Chip, 10K ohm, 1/10W, 0805, ±5%	The second	060-103-8

Ref. No.	Description	RS Part No.	MFR. Part No
R1006	Chip, 220K ohm, 1/10W, 0805, ±5%		060-224-4
R1007	Chip, 10K ohm, 1/10W, 0805, ±5%	1	060-103-8
R1008	Chip, 220K ohm, 1/10W, 0805, ±5%		060-224-4
R1009	Chip, 10K ohm, 1/10W, 0805, ±5%	Sta wetters a	060-103-8
R1010	Chip, 15K ohm, 1/10W, 0805, ±5%		060-153-3
R1011	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1012	Chip, 33 ohm, 1/10W, 0805, ±5%	Carl Land Street	060-330-6
R1013	Chip, 100K ohm, 1/10W, 0805, ±5%		060-104-9
R1014	Chip, 100K ohm, 1/10W, 0805, ±5%	Self Contraction	060-104-9
R1015	Chip, 10K ohm, 1/10W, 0805, ±5%	Contra Stream	060-103-8
R1016	Chip, 1M ohm, 1/10W, 0805, ±5%	C. C. W. W. W. W. W.	060-105-0
R1017	Chip, 47K ohm, 1/10W, 0805, ±5%	State State State	060-473-2
R1018	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1019	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1020	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1021	Chip, 1K ohm, 1/10W, 0805, ±5%	The second	060-102-7
R1022	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1023	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1024	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1025	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1026	Chip, 1K ohm, 1/10W, 0805, ±5%	and the Real of	060-102-7
R1027	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R1028	Chip, 39K ohm, 1/10W, 0805, ±5%		060-393-3
R1029	Chip, 20K ohm, 1/10W, 0805, ±5%		060-203-5
R1030	Chip, 10K ohm, 1/10W, 0805, ±5%	TENSAL DR	060-103-8
R1031	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1032	Chip, 47K ohm, 1/10W, 0805, ±5%	and series of the se	060-473-2
R1033	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1034	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1035	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1036	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R1037	Chip, 47K ohm, 1/10W, 0835, ±5%	and the second	060-473-2
R1038	Chip, 1K ohm, 1/10W, 0805, ±5%	CHARLES AND	060-102-7
R1039	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
RV1001	Resistor-Semifixed Chip, 1KB ohm, 4mm	La State	067-102-2
RV1002	Resistor-Semifixed Chip, 47KB ohm, 4mm		067-473-7
	Transistors		
Q1001	KRA110S(PK), Sot-23, PNP		200-092-5
Q1002	KTC3875S(ALG), Sot-23, NPN		202-083-7

出现

Ref. No.	Description	RS Part No.	MFR. Part No
Q1003	KTN222S(ZB), Sot-23, NPN		202-158-2
Q1004	KRA110S(PK), Sot-23, PNP		200-092-5
Q1005	KRA110S(PK), Sot-23, PNP		200-092-5
	End of Ass'y-Digital PCB	C. Carlos and the	
	Ass'y, Audio PCB		
	Resistors, Carbon		
R601	Chip, 470K ohm, 1/10W, 0805, ±5%	La Charles	060-474-3
R602	Chip, 470K ohm, 1/10W, 0805, ±5%	C. Standard	060-474-3
R603	Chip, 100 ohm, 1/10W, 0805, ±5%	Section States and	060-101-6
R604	Chip, 22K ohm, 1/10W, 0805, ±5%	A CALLER S	060-223-3
R605	Chip, 1K ohm, 1/10W, 0805, ±5%	a shi ta sa ka	060-102-7
R606	Chip, 47K ohm, 1/10W, 0805, ±5%	A Presidential	060-473-2
R607	Chip, 10K ohm, 1/10W, 0805, ±5% Capacitors		060-103-8
C601	Ceramic, Chip, 0.047µF 50V, 0805, ±10%		130-417-4
C602	Tantalum, Chip, 10µF 10V, B, ±20%	a la consta	141-046-1
C603	Tantalum, Chip, 1μ F 16V, A, ±20%	A star the star	141-036-1
C604	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C605	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C606	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C607	Tantalum, Chip, 0.68µF 16V, A, ±20% Transistors	a particular	140-606-1
Q601	KTA1504S(ASG), Sot-23, PNP		202-082-6
Q602	KRC104S(ND), Sot-23, NPN		202-095-8
Q603	KRC104S(ND), Sot-23, NPN		202-095-8
CON601	Connector Pin, Angle, 7Pin, 2mm Pitch		422-374-8
IC601	IC, LM386-N3, Dip-8, Audio Amp.		231-008-4
	End of Ass'y-Audio PCB		
	Ass'y, Level PCB		
1 Same	Capacitors		
C301	Ceramic, Chip, 0.001µF 50V, 0805, ±10%	2	130-184-4
C302	Ceramic, Chip, 0.01µF 50V, 0805, ±5%		130-198-6
C303	Ceramic, Chip, 0.001µF 50V, 0805, ±10%		130-184-4
C304	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C305	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	a state and	130-185-5
C306	Tantalum, Chip, 1µF 16V, A, ±20%	a starter as	141-036-1
	Resistors Carbon		
R301	Chip, 39K ohm, 1/10W, 0805, ±5%		060-393-3

Ref. No.	* Description	RS Part No.	MFR. Part No
R302	Chip, 39K ohm, 1/10W, 0805, ±5%		060-393-3
R303	Chip, 39K ohm, 1/10W, 0805, ±5%	S. S. San S.	060-393-3
R304	Chip, 39K ohm, 1/10W, 0805, ±5%	Ret. Lange Str	060-393-3
R305	Chip, 100K ohm, 1/10W, 0805, ±5%	Ho Barren	060-104-9
R306	Chip, 82K ohm, 1/10W, 0805, ±5%	The State State	060-823-5
R307	Chip, 27K ohm, 1/10W, 0805, ±5%	and the second	060-273-8
R308	Chip, 56K ohm, 1/10W, 0805, ±5%		060-563-0
R309	Chip, 1M ohm, 1/10W, 0805, ±5%		060-105-0
R310	Chip, 12K ohm, 1/10W, 0805, ±5%		060-123-6
R311	Chip, 22K ohm, 1/10W, 0805, ±5%	the South States	060-223-3
R312	Chip, 2.2K ohm, 1/10W, 0805, ±5%	Call Concerns	060-222-2
R313	Chip, 39K ohm, 1/10W, 0805, ±5%		060-393-3
CON301	Connector Pin, Angle, 10Pin, 2mm Pitch	A Cartes and	422-373-7
IC301	IC, LM339M, So-14, Quad Comparator	See State Prese	228-029-5
Q301	Transistor, KRC110S(ND), NPN	Tel astrong	202-095-8
	End of Ass'y-Level PCB	The second second	
	Ass'y, High Pass Filter PCB		in the
	Capacitors		
C501	· Ceramic, Chip, 0.047µF 25V, 0805 ±5%	See Charles	130-425-1
C502	Ceramic, Chip, 0.047µF 25V, 0805, ±5%		130-425-1
C503	Ceramic, Chip, 0.047µF 25V, 0805, ±5%		130-425-1
C504	Ceramic, Chip, 0.047µF 25V, 0805, ±5%		130-425-1
C505	Ceramic, Chip, 0.047µF 25V, 0805, ±5%		130-425-1
C506	Ceramic, Chip, 0.047µF 25V, 0805, ±5%	See and the second	130-425-1
C507	Ceramic, Chip, 0.047µF 25V, 0805, ±5%	P. P. Market	130-425-1
C508	Ceramic, Chip, 0.047µF 25V, 0805, ±5%	The same set	130-425-1
C509	Ceramic, Chip, 0.01µF 50V, 0805, ±10%	TO PARTING ST	130-172-2
	Resistors Carbon	PA LUP SA	These states
R501	Chip, 2.7K ohm, 1/10W, 0805, ±5%		060-272-7
R502	Chip, 4.7K ohm, 1/10W, 0805, ±5%	and the second	060-472-1
R503	Chip, 2.2K ohm, 1/10W, 0805, ±5%	Constant Start	060-222-2
R504	Chip, 22K ohm, 1/10W, 0805, ±5%		060-223-3
R505	Chip, 3.3K ohm, 1/10W, 0805, ±5%		060-332-8
R506	Chip, 1.5K ohm, 1/10W, 0805, ±5%		060-152-2
R507	Chip, 56K ohm, 1/10W, 0805, ±5%	New Providence	060-563-0
R508	Chip, 12K ohm, 1/10W, 0805, ±5%		060-123-6
R509	Chip, 180K ohm, 1/10W, 0805, ±5%	C. C.	060-184-1
R510	Chip, 15K ohm, 1/10W, 0805, ±5%		060-153-3

- 14

Ref. No.	* Description	RS Part No.	MFR. Part No
R511	Chip, 680 ohm, 1/10W, 0805, ±5%	an and the second	060-681-3
R512	Chip, 10K ohm, 1/10W, 0805, ±5%	Sector and	060-103-8
R513	Chip, 10K ohm, 1/10W, 0805, ±5%	21、25、季季	060-103-8
CON501	Connector Pin, Angle, 6Pin, 2mm Pitch	S Marson and	422-371-5
IC501	IC, LM2902M, So-14, Quad Op Amp	S AR SHE IN	231-082-0
	End of Ass'y-High Pass Filter PCB	Sec. 3	
	Ass'y, Mic PCB		
PRA	Capacitors	the setting the	
C101	Ceramic, Chip, 0.0018µF 50V, 0805, ±10%	C. N. S. S.	130-A22-0
C102	Ceramic, Chip, 0.022µF 50V, 0805, ±10%	The said and	130-234-5
C103	Ceramic, Chip, 0.0038µF 50V, 0805, ±10%	Contraction of	130-329-8
C104	Ceramic, Chip, 0.0056µF 50V, 0805, ±10%	Section 1	130-513-7
C105	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	S. C. S. C. March	130-185-5
C106	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C107	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C108	Chramic, Chip, 56pF 50V, 0805, ±5%		135-613-9
C109	Ceramic, Chip, 0.022µF 50V, 0805, ±10%	1 Alexander	130-234-5
C110	Ceramic, Chip, 56pF 50V, 50V, 0805, ±5%		135-613-9
C111	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C112	Tantalum, Chip, 10µF 10V, B, ±20%	and the second	141-046-0
	Resistors Carbon	S CARLES AND	0.001-521
R101	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R102	Chip, 10K ohm, 1/10W, 0805, ±5%	C. Landard and	060-103-8
R103	Chip, 8.2K ohm, 1/10W, 0805, ±5%	and the second	060-822-4
R104	Chip, 6.8K ohm, 1/10W, 0805, ±5%	Contraction Contraction	060-682-4
R105	Chip, 15K ohm, 1/10W, 0805, ±5%		060-153-3
R106	Chip, 100K ohm, 1/10W, 0805, ±5%	a shared	060-104-9
R107	Chip, 22K ohm, 1/10W, 0805, ±5%		060-223-3
R108	Chip, 10K ohm, 1/10W, 0805, ±5%	and shares	060-103-8
R109	Chip, 33K ohm, 1/10W, 0805, ±5%	State State	060-333-9
R110	Chip, 180K ohm, 1/10W, 0805, ±5%		060-184-1
R111	Chip, 1.8K ohm, 1/10W, 0805, ±5%		060-182-9
R112	Chip, 270K ohm, 1/10W, 0805, ±5%		060-274-9
R113	Chip, 6.8K ohm, 1/10W, 0805, ±5%		060-662-A
CON101	Connector Pin, Angle, 8 Pin, 2mm Pitch	A Part in	422-372-6
IC101	IC, LM2902M, So-14, Quad Op Amp		060-103-8
	End of Ass'y-MIC PCB		

Ref. No.	Description	RS Part No.	MFR Part No
T. S. E. S.	Ass'y, Auto Power Control PCB	The American	
C701	Capacitors, Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C702	Capacitors, Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C703	Capacitors, Ceramic, Chip, 220pF 50V, 0805, ±5%		132-220-2
C704	Capacitors, Ceramic, Chip, 220pF 50V, 0805, ±5% Resistors Carbon		132-220-2
R701	Chip, 47K ohm, 1/10W, 0805, ±5%	and the second second	060-473-2
R702	Chip, 10K ohm, 1/10W, 0805, ±5%	States - States	060-103-8
R703	Chip, 1K ohm, 1/10W, 0805, ±5%		060-102-7
R704	Chip, 10K ohm, 1/10W, 0805, ±5%		231-082-0
R705	Chip, 10K ohm, 1/10W, 0805, ±5%		060-103-8
R706	Chip, 1K ohm, 1/10W, 0805, ±5%	-BARRIE CAN	060-102-7
R707	Chip, 10K ohm, 1/10W, 0805, ±5%	The second	060-103-8
R708	Chip, 1K ohm, 1/10W, 0805, ±5%	Des Deve	060-102-7
CON701	Connector Pin. Angle, 6 Pin, 2mm Pitch Transistors	and the second	422-371-5
0701	KTA1663(HO), Sot-89, PNP	Seats That	202-163-6
0702	KTC3875S(ALG), Sot-23, NPN		202-083-7
0703	KTC3875S(ALG), Sot-23, NPN		202-083-7
0704	KTC3875S(ALG), Sot-23, NPN	State State	202-083-7
	End of Ass'y-Auto Power Control PCB		A State
	Ass'y, PTT PCB		
	Capacitors		
C401	Ceramic, Chip, 0.01µF 50V, 0805, ±10%		130-172-2
C402	Ceramic, Chip, 0.1µF 25V, 0805, +80-20%		130-185-5
C403	Ceramic, Chip, 0.015µF 50V, 0805, ±5%	A State of the	130-A143
C404	Ceramic, Chip, 0.015µF 50V, 0805, ±5%		130-A14-3
C405	Ceramic, Chip, 0.015µF 50V, 0805, ±5%		130-A14-3
C406	Ceramic, Chip, 0.015µF 50V, 0805, ±5%		130-A14-3
C407	Not Used		130-328-7
C408	Ceramic, Chip, 0.0033µF 50V, 0805, ±5%		130-328-7
C409	Ceramic, Chip, 0.0022µF 50V, 0805, ±5%		130-237-8
C410	Ceramic, Chip, 0.0082µF 50V, 0805, ±5%		130-805-1
C411	Ceramic, Chip, 470pF 50V, 0805, ±5%		134-726-3
C412	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%		130-185-5
C413	Tantalum, Chip, 10μ F 10V, B, ±20% Resistors Carbon		141-046-0
R401	Chip, 2K ohm, 1/10W, 0805, ±5%	Proceedings	060-202-4

Ref. No.	Description	RS Part No.	MFR. Part No
R402	Chip, 20K ohm, 1/10W, 0805, ±5%		060-203-5
R403	Chip, 33K ohm, 1/10W, 0805, ±5%	and the second second	060-333-9
R404	Chip, 8.2K ohm, 1/10W, 0805, ±5%		060-822-4
R405	Chip, 15K ohm, 1/10W, 0805, ±5%		060-153-3
R406	Chip, 3.9K ohm, 1/10W, 0805, ±5%		060-392-2
R407	Chip, 75K ohm, 1/10W, 0805, ±5%		060-753-5
R408	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R409	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R411	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
R412	Chip, 47K ohm, 1/10W, 0805, ±5%		060-473-2
IC401	IC, LM2902M, So-14, Quad Op Amp		231-082-0
SW401	Switch, Tact, Chip, SKHUPF, 7.2×8.5		436-030-0
SW402	Switch, Tact, Chip, SKHUPF, 7.2×8.5		436-030-0
SW403	Switch, Tact, Chip, SKHUPF, 7.2 × 8.5		436-030-0
SW404	Switch, Tact, Chip, SKHUPF, 7.2 × 8.5 End of Ass'y-PTT PCB		436-030-0
	Ass'y, Top PCB		
	Resistors		1
R802	Fixed, Metalfilm, 6.6K ohm, 1/8W, ±5%	and the second second	001-682-1
VR801	Variable, 20KA, Audio Volum/Switch	and a constraint of the	450-523-5
VR802	Variable, 20KB, Squelch Volume	State State	450-524-6
	Connectors		1.5.2.5
CON801	Waffer, 8263-0412, 4 Pin, 2mm Pitch	a straight inch	422-265-3
CON802	Waffer, 8283-0612, 6 Pin, 2mm pitch	Sa and the fill	422-266-4
	Switchs	in the second second	A Cable
SW801	Push Lock, SPPJ422BP011, RF Power SW		432-027-8
SW802	Rotary, EC09P20-04, Channel SW	C 1250 100	430-063-0
	End of Ass'y-Top PCB		
	Ass'y, VCO PCB	Mar Maria	
	Capacitors		1.1.1
C201	Tantalum, Chip, 1μ F 16V, A, ±20%		141-036-1
C202	Ceramic, Chip, 33pF 50V, 0805, ±5%		133-314-9
C203	Ceramic, Chip, 0.001µF 25V, 0805, ±10%	and the startes	130-184-4
C204	Tantalum, Chip, 1µF 16V, A, ±20%		141-036-1
C205	Ceramic, Chip, 0.001µF 25V, 0805, ±10%		130-184-4
C206	Ceramic, Chip, 0.001µF 25V, 0805, ±10%	R. Contraction	130-184-4
C207	Ceramic, Chip, 15pF(N750) 50V, 0805, ±5%	To The Market	131-567-1

Ref. No.	Description	RS Part No.	MFR. Part No
C208	Ceramic, Chip, 100pF 50V, 0805, ±5%		131-027-0
C209	Ceramic, Chip, 2pF 50V, 0805, ±5%	Contraction of the	132-011-0
C210	Ceramic, Chip, 2pF 50V, 0805, ±5%	Lader State	132-011-0
C211	Trintalum, Chip, 10µF 10V, B, ±20%		141-046-0
C212	Ceramic, Chip, 0.1µF 25V, 0805, +80%-20%	and the second	130-185-5
C213	Ceramic, Chip, 0.001µF 25V, 0805, ±10%	a the set	130-184-4
TC201	Trimmer, Chip, 6pF, Blue, 3.2×4.5 Coils		176-012-3
L201	Inductor, Chip, 1µH, 01, ±20%	T.A. CAR	310-657-0
L202	Transformer Molded, Chip, 6.5t	a secondary	320-840-1
L203	Inductor, Chip, 10µH, 01, ±10%		310-659-2
L204	Inductor, Chip, 1µH, 01, ±20%	With States	310-657-0
L205	Inductor, Chip, 1µH, 01, ±20%	A STATISTICS	310-657-0
CON201	Connector Pin, Straight, 8 Pin, 2mm Pitch Diodes		422-391-3
D201	Pin, 1SS241, R/TX Switching	C. Standard	243-073-5
D202	Varicap, 1SV50, OSC	a standard	243-025-2
	Resistors Carbon	a manual and	
R201	Chip, 2.7K ohm, 1/10W, 0805, ±5%		060-272-7
R202	Chip, 2.7K ohm, 1/10W, 0805, ±5%		060-272-7
R203	Chip, 47 ohm, 1/10W, 0805, ±5%	1000	060-470-9
R204	Chip, 47 ohm, 1/10W, 0805, ±5%		060-470-9
R205	Chip, 47 ohm, 1/10W, 0805, ±5%		060-470-9
R206	Chip, 2.7K ohm, 1/10W, 0805, ±5%	New States	060-272-7
R207	Chip, 33 ohm, 1/10W, 0805, ±5% Transistor/FET		060-330-6
Q201	BC848C(1L), Sot-23, NPN	1.0	200-001-3
0202	BC858B(3K), Sot-20, PNP	1 Chinese	200-002-4
0203	KRC110S(NK), NPN	State States	202-096-9
Q204	BF513(S9), N-JFET		200-024-4
	End of Ass'y-Vco PCB		- mut
	Ass'y, Pack Ni-Cad		1
	Ass'y, Battery PCB		
D901	Diode, KDS193S(F3), Sot-23, Switching		243-052-6
LED901	LED Lamp, KRA124, Red Resistors Carbon		251-007-9
R901	Chip, 10 ohm, 1/10W, 0805, ±5%		060-100-5
R902	Chip, 4.7K ohm, 1/10W, 0805, ±5%		060-472-1

Ref. No.	, Description	RS Part No.	MFR. Part No
R903	Chip, 2.2K ohm, 1/10W, 0805, ±5% Transistors		060-222-2
0.901	KTA1504S(ASG), Sot-23, PNP	and a state was	202-082-6
Q902	KTA1663(HD), Sot-89, PNP		202-163-6
0.303	KTA1504S(ASG), Sot-23, PNP	W. W. S. W. S La	202-082-6
	End of Ass'y-Battery PCB	and the second	
BAT901	Battery, Ni-Cad, 7.2V, 600m AH, 6VEAA	a service and	420-567-6
	End of Ass'y-Pack Ni-Cad		
	Miscellaneous		
	Capacitors	and the second	
C2001	Ceramic, Chip, 470pF 50V, 0805, ±10%	S. Participation	134-726-3
C2002	Ceramic, 470pF 50V, ±10%		134-710-6
CON2001	Connector, Lead, Housing, 3P, 5mm Speaker	Section Com	504-807
SPK1	Speaker, 8 ohm, 0.5W, 40mm	All Providences	420-164-5
MIC1	Mike, Condenser, WH-063T, 6 Dia	國國國法部	420-206-0
BAT1001	Battery, Lithium, 3V, 3.8 × 15mm	at the set	420-564-3
	End of Miscellaneous		
	The second second second second		1. Stand
		的网络酒酒	
		a status	
Salar Salar			
	日本に設計した。他なの見た	Al Colorador and	
		「「「たん」の	

SEMICONDUCTOR VOLTAGE CHART

- Frequency : 146.100MHz
- Power Supply : 7.2V DC
- Unit : Volts (average)

1. Normal Function

Tra	ansisto	r						IC	1015		14		E.Z.S.		
Ref.	1	Receive	9	Transmit		Pin	15	Receive			Transmit				
No.	E	8	С	E	В	С	No.	IC1	IC2	IC3	IC4	IC1	IC2	IC3	IC4
Q1	4.95	4.95	0.00	4.93	0.32	4.79	1	2.37	0.00	6.95	4.78	2.37	0.00	6.80	0.00
Q2	0.00	0.00	0.00	2.80	2.80	2.00	2	2.43	4.70	0.00	4.18	2.42	4.70	0.00	0.00
03	0.00	0.00	0.00	0.00	0.02	6.32	3	0.00	0.00	5.00	3.93	0.00	0.00	5.00	0.00
Q4	0.00	0.00	6.93	0.00	0.00	6.40	4	2.58	4.95		4.80	2.68	4.92		0.00
Q6	4.95	4.95	0.00	4.92	0.32	4.89	5	4.70	4.95		3.83	4.70	4.92	-	0.00
07	4.95	0.32	4.85	4.93	4.93	0.00	6	4.70	4.95	-	3.82	4.70	4.92	-	0.00
012	0.10	0.80	1.73	0.00	0.00	0.00	7	0.00	4.95	-	3.82	0.00	4.92	-	0.00
013	4.95	4.85	0.00	4.92	4.83	0.00	8	0.10	0.00	-	4.10	0.10	0.00		0.00
Q14	2.57	2.57	4.95	2.90	2.90	4.92	9	0.00	4.95		2.30	0.00	4.92	-	0.00
Q15	2.57	2.57	0.00	2.90	2.90	0.00	10	0.00	4.95	-	0.63	0.00	4.92	-	0.00
JET							11	4.92	4.88	-	2.50	4.90	4.86	-	0.00
Ref.	1	Receive	9	Т	ransm	it	12	0.00	4.95	10 <u>10</u> 00	1.28	0.00	0.33	-	0.00
No.	S	G	D	S	G	D	13	2.71	4.95		0.51	2.90	0.33	-	0.00
Q 8	0.68	0.00	4.83	0.00	0.00	0.00	14	4.93	0.32	-	1.34	4.90	4.92	-	0.00
Q9	0.83	0.00	4.83	0.00	0.00	0.00	15	4.93	4.72	-	0.00	4.90	4.70		0.00
010	2.20	0.00	4.85	0.00	0.00	0.00	16	4.93	4.92	-	1.71	4.90	4.92	-	0.00

Diode

Ref.	Rec	eive	Tran	smit
No.	A	с	A	С
D1	0.00	0.40	2.80	2.00
D2	0.00	0.00	0.84	0.00
D3	7.20	6.98	7.20	6.80
D4	7.20	6.98	7.20	6.80
D5	1.13	0.37	0.00	2.00

Transistor

Ref.	U	nsquel	ch	Squelch		
No.	E	В	С	E	В	С
Q11	0.00	0.00	4.92	0.00	1.34	0.00

IC

Pin No.	Unsquelch	Squelch	
IC2 of 11	0.00	4.88	0 1

0.00

10.07

2. Tone Squelch Function

CTCSS Tone ! 100Hz, Only T-SQL ON, Squelch volume must be turned counterclockwise

: Receive (SSG: AF 100Hz, Modulation 700Hz, RF level 1000µV) Transmit (Unmodulation)

IC

MIC

Pin No.		Rec	Transmit				
	Withou	It Tone	With	Tone			
	IC1002	IC1003	IC1002	IC1003	IC1002	IC1003	
1	1.98	0.11	1.98	0.07	1.98	1.53	
2	2.00	4.70	1.96	4.70	1.96	4.70	
3	1.55	4.70	1.52	4.70	1.53	4.70	
4	1.98	4.70	1.98	4.70	1.98	4.70	
5	1.98	4.70	1.98	4.70	1.98	4.70	
6	4.89	4.70	4.89	4.70	4.98	4.70	
7	1.98	0.00	1.98	0.00	1.98	0.00	
8	0.84	0.00	0.28	0.00	0.40	0.00	
9	4.85	0.00	4.58	0.00	4.58	0.00	
10	0.00	0.98	0.00	0.98	0.00	0.76	
11	0.12	2.23	0.12	2.13	0.12	0.00	
12	0.00	2.23	0.00	2.12	0.00	0.75	
13	1.98	0.14	1.98	0.09	1.98	0.14	
14	1.98	1.58	1.98	1.52	1.98	1.53	
15	-	0.00	-	0.00	<u>+</u>	1.53	
16	1023	4.93	+ 28	4.93	105	4.93	

Transistor

Ref.	T	SOL O	FF	T-SQL ON		
No.	E	В	с	E	В	С
Q1004	4.93	4.95	0.00	4.93	0.33	4.89

3. DTMF Squelch Function

DTMF Tone : Only D-SQL ON, squelch volume must be turned counterclockwise

MIC : Receive (SSG: AF1 69Hz, AF2 1209Hz, Modulation 3.5KHz, RF level 0.25µVpd) Transmit (Press a button of number "1" continuously)

Transistor

Ref. No.			Rece	eive				Transmit								
	D	SOL O	FF	D	-SQL O	N	Ref.		Normal		With DTMF					
	E	В	с	E	В	С	No.	E	В	С	E	В	С			
Q1005	4.93	4.95	0.00	4.92	0.31	4.85	Q5	0.00	0.00	0.00	4.95	4.90	0.00			

Diode (Receive)

Def	D-SC	L OFF	D-SQL ON					
Ref. No.	Α	С	A	с				
D1006	0.23	0.00	4.00	3.54				

IC/PTT PCB (Band Pass Filter)

		Rec	eive	Sec. 1	Tra	nsmit		
Dia	D-SO	L OFF	D-SC	DL ON	Normal	With DTMP		
Pin No.	IC1007	PTT PCB	IC1007	PTT PCB	IC1004	IC1004		
1	0.08	0.000	0.00	4.85	4.93	4.93		
2	0.08	0.00	0.00	0.00	0.00	4.70		
3	0.00	0.00	4.68	2.10	4.90	4.90		
4	0.00	-	4.85	0.00	4.90	4.90		
5	0.31	2.10	4.03	2.10	0.00	0.00		
6	0.17	-	0.00	1992	0.02	2.23		
7	0.00		4.58		4.93	1.97		
8	0.00	-	0.00	-	0.08	1.95		
9	0.00		0.00		4.70	4.55		
10	0.15	+	1.00	-	4.70	4.56		
11	0.03		0.36		4.70	4.49		
12	0.24	-	2.02		4.70	4.49		
13	0.00	-	0.00	-	0.00	0.00		
14	0.24	-	4.00	-	0.00	2.04		
15	0.08	-	0.00		+	-		
16	0.20	-	0.17			-		

4. Back Light Function

2

Transistor

Ref.	Back	Light	OFF	Back Light ON						
No.	E	В	С	E	B	C				
Q1001	4.93	4.70	0.05	4.92	0.05	1.42				
Q1002	0.00	0.00	0.05	0.00	0.76	1.44				
Q1003	0.00	0.05	4.12	0.75	1.42	2.75				

Diode

	Back Li	ght OFF	Back Light ON					
Ref. No.	A	B	A	С				
D1001	5.63	4.12	4.89	2.75				
D1002	7.16	5.63	7.10	4.89				

5. Sub Board PCB

Function : Normal

Mic : Receive (Squelch)

Transmit (Unmodulation)

Sub PCB's

	0		R	eceive			Transmit									
Pin	APC	Au	dio	HPF	Level	MIC	vco	A	PC	Audio	HPF	Level	MIC	vco		
No.	-	UnSQ.	SQ.	1 Star			1	High	Low		1.1.4			215		
1	0.00	0.00	0.00	2.24	4.93	0.00	4.95	0.00	0.00	0.00	0.00	0.17	0.00	4.92		
2	0.20	0.00	0.00	0.00	4.90	0.00	0.00	6.75	4.44	0.00	0.00	0.00	1.96	4.88		
3	6.94	0.00	0.00	4.95	0.00	0.00	0.00	6.82	6.80	0.00	4.93	4.15	1.96	0.00		
4	0.00	0.00	4.88	2.48	7.10	0.00	0.37	0.23	0.94	4.86	2.47	6.84	0.00	2.57		
5	0.00	6.36	0.00	2.47	0.00	0.00	2.58	4.79	4.79	0.00	2.47	0.00	4.89	2.90		
6	0.00	6.95	7.14	0.00	1.65	0.00	2.70	0.00	0.00	6.85	0.00	0.00	0.00	0.00		
7	-1	3.52	1.30	+	0.00	0.00	0.00		-	1.29	-	1.00	0.00	0.00		
8	0 1	-	-	-	0.00	0.00	0.00	-		-	-	0.00	0.68	-		
9	-	-	- 1	2 <u>-</u> -	4.95	-	-	-		Test and	-	4.92	-	-		
10	-			-	4.57		-	-	2	-		4.57	34	. <u> </u>		

SEMICONDUCTOR LEAD IDENTIFICATION

Base Diagram	Manufacturer's NBR	Schematic Ref NBR	A MARKET TO
41 40 25		IC1006	CPU Mask ROM
BO UNITED STATES			
9	MC145170DR2	IC1	PLL
16 ULLUNU 8	MC14094BD	IC2	Shift Registor
ĩ	MC3371DR2	IC4	IF
8	LM339M	IC301	Quad Comparator
14 Juliker	MC74HC4078D	IC1008	8 Input Nor Gate
1	LM2902	IC101, IC401, IC501	Quad OP Amp
9	MC142100DW	IC1003	Cross Point Switch
16 ULUUU 8	MC145436DW	IC1007	DTMF Receiver
B	MF6CWM-100	IC1002	Switched Capacitor
16 JULUU 7	TP5088	IC1004	DTMF Generator
5	LM386N3	IC601	Audio Amp
8 1: OUT 2: Voo 3: Vss	S8054ALR-LN (LN)	IC1005	Voltage Detector
1: OUT 2: GND 3: IN 3: IN	LM2931AZ	IC3, IC1001	5V Regulator

B: Base C: Collector D: Drain

E: Emitter G: Gate S: Source

Base Diagram	Manufactur's	NBR	Schematic Ref NBR	
No. 10 and	KTA1504S (A	ASG)	Q13,Q15,Q601,Q901,Q903	во
y.	BC858 (3	BK)	Q202	E E
	MMBC1321 (C	24)	Q2,Q12	
	KTC38755 (A	ALG)	Q14,Q702,Q703,Q704,Q1002	jc
	KTN22225 (Z	(B)	Q1003	В
C	BC848 (1	L)	Q201	
B	KRA110S (P	rK)	Q1,Q6,Q7,Q1001,Q1004, Q1005	Bower C
	KRC110S (N	IK)	Q5,Q11,Q203	вологи
	KRC104S (N	ID)	Q301,Q602,Q603	Bowy
E E	KTA1663 (H	10)	Q701,Q902	во
B C	MRF581		Q3	B c
B				, in the second se
BECC	SRFH1900		Q4	B c c
	BF513 (S	9)	Q10,Q203	G C D
Sector				s and s
G	BF999 (L	B)	Q8,Q9	G CL
				S

A: Anode B: Cathode NC: No Connection

Base Diagram	Manufactur's NBR	Schematic REF NBR	
C g	MMBV3401 (4D)	D1,D3,D6	
A	KDS193S (F3)	D901,D1001,D1003,D1006	
C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	RB471E (D3G)	D1002,D1004,D1005,D1007 D1008	
c contra	1SS241 (TY)	D201	A <u>}</u> C
C A	15V50	D202	A — ► C
C C C	15597	D2	^ } c
C DOM A	1N5819	D4,D5	∧ —•) [— c
	KLR124	D902	A —) /** C
-	SLP-378H	LED1001, LED1002	A — ₩ ²⁰⁰ C

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
com1	1	-	-	V-SC	ТХ	-	1A	-	2A	-	ЗА	-	4A	-	5A	-	6A	-	7A	-	8A	-	com1	-	-	-
com2	s1 3	LOCK	Ŧ	SAVE	BUSY	M-CH	1F	1B	2F	2B	3F	3B	4F	48	5F	5B	6F	6B	7F	7B	8F	8B	-	com2	-	-
com3	s2 5	DTMF	=	P1	BATT	INH	1G	1C	2G	2C	3G	зc	4G	4C	5G	5C	6G	6C	7G	7C	8G	8C	-	-	com3	-
com4	s3 7	9	T-SQL	P2	FUNC	CALL	1E	1D	2E	2D	3E	3D	4E	4D	5E	5D	6E	6D	7E	7D	8E	8D	-	-	•-	com4

F

IC INTERNAL CONNECTION

.

LM386-N3

LM2902M

1: OUT 2: GND 3: IN

\$

LM2931AZ

MC3371DR2

MC142100DW

MC74HC4078D

.

		OUTPU	T CODE	
IGIT	DB	D4	D2	DI
1	0	0	0	0
2	0	0	1	0
3	D	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
0	1	0	1	0
	1	0	1	1
	1	1	0	0
A	1	1	1	0
8	1	1	1	0
с.	1	1	1	1
D	0	0	0	0

4 x 4 Keyboard Matrix

.

HD404808FS

I	1	IN	UT	PIN
•	1	001	PUT	PIN
NL	MIG		OPE	N
	1.1	1.11		

PIN NO.	PIN NAME	1/0	PIN NO.	PEN NAME	1/0
1	02	1/0	41	SEGT	0
2	03	1/0	42	SEGIO	0
3	D4	1/0	43	SEGII	0
	05	1/0	44	SEG12	0
*	06	1/0	45	SEGIS	0
6	D7	1/0	46	SEG14	0
7	De	1/0	47	SEGIS	0
	09	1/0	48	SEG16	0
	910	1	49	SEG17	0
10	DIL /VCref		50	SEG10	0
11	D12 /COMPO		51	SEGIS	0
12	DIS /COMPL	1.1	\$2	SEG20	0
13	TEST		53	SEG21	
14	Ha		54	SCG22	0
15	×2	0	55	SEC23	0
16	GNO		54	SEG24	0
17	HOG /SCH	1/0	87	SEG25	0
10	801 /SI	1/0	10	SEG24	0
19	R02 /50	1./0	\$9	SEG27	0
20	ROS	1/0	60	SEG28	0
21	R10	1/0	61	\$E629	0
22	811	1/0	62	55630	0
23	R12 .	1/0	83		0
24	RIS	1/0	64	SEG32	0
25	A20	1/0	65	COMI	0
26	R21	1/0	66	COM2	0
27	#22	1/0	67	COMS	0
24	#23	1/0	68	COM4	0
29	R30	1/0	69	VI	
30 .	#31 /1 1HO	1/0	70	¥2	
31	R32 /THTO	1/0	71	V3	
32	RES /THTT	1/0	72	NUMO	
33	SEGI	0	73	NUHO	
34	SEG2	0	74	NUNG	
35	SECI	0	78	Vee	
36	8864	0	76	OSCI	1
37	-	ø	77	OSC2	0
30	SECE	0	78	RESET	1
39	SEG7	0	79	DO	1/0
40	SECO	0	80	01	1/0

SCHEMATIC DIAG

IC DIAGRAM

Cat. No.: 19-1120

Cat. No.: 19-1120

SCHEMPING DIA

Features

The Radio Shack HTX-202 Two-Meter Handheld Transceiver offers both the newly licensed Tech and the experienced amateur some of the most advanced features ever presented in a handheld transceiver.

NOTE: You must have a Technician Class or higher Amateur Radio Operator's License and a call sign issued by the FCC to legally transmit using this transceiver. Transmitting without a license carries heavy penalties. Getting a license is easier than ever.

True FM Modulation - provides a more natural-sounding signal, with high clarity and better performance with packet systems. 16 Frequency Memories - include one calling-frequency memory, three priority-frequency memories, and 12 standard memories. Individually Programmable Repeater - let you program a different repeater Offsets offset frequency for each memory, and default repeater offset for manuallytuned frequencies. Sub-audible Tone Transmit and - let you transmit the Sub-audible tone Decode (CTCSS) required by some repeaters, and also lets you set a Sub-audible tone that your transceiver must receive to open squelch. Touch-Tone Page - lets you set a sequence of up to five touch-tones your transceiver must receive to sound an alert tone to open the squelch. 16-Digit DTMF Memory Sequences - lets you transmitt all touch tones (0-9, #, *, and A-D). Dual Power Transmitter - lets you select between 1-Watt and 6-Watt to preserve battery power. Five DTMF Memory Sequences - lets you store five touch-tone sequences of up to 15 digits each so that you can quickly transmit the sequences you commonly used to activate repeaters or autopatches, or other stations equipped with touchtone page. Multi-Function Scanning - lets you scan the standard memories, priority frequency memories, or a frequency range, and automatically resume scanning when the carrier drops, resume scanning after 10 seconds, or stop scanning when carrier is detected. Programmable Frequency Step - lets you set the frequency step for tuning or scanning to 5, 10, 15, 20,

25, 50, or 100 kHz.

HTX-202

Care and Maintenance

Your HTX-202 2-Meter Handheld Transceiver is an example of superior design and craftsmanship. The following suggestions will help you care for your transceiver so that you can enjoy it for years.

Keep the transceiver dry. If it does get wet, wipe it dry immediately. Liquids can contain minerals that can corrode the electronic circuits.

Use and store the transceiver only in normal temperature environments. Temperature extremes can shorten the life of electronic devices and distort or melt plastic parts.

Handle the transceiver gently and carefully. Dropping it can damage circuit boards and cases and can cause the transceiver to work improperly.

Keep the transceiver away from dust and dirt, which can cause premature wear of parts.

Wipe the transceiver with a dampened cloth occasionally to keep it looking new. Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the transceiver.

Modifying or tampering with your transceiver's internal components can cause a malfunction and might invalidate its warranty and void your FCC authorization to operate the transceiver. If your transceiver is not performing as it should, take it to your local Radio Shack store. HTX-202

Preparation

You can operate your transceiver from any of the following sources:

Rechargeable power pack (supplied with charger)

Six alkaline AA batteries (using the supplied alkaline pack)

Vehicle battery power (using optional adapter)

OPERATING FROM THE RECHARGEABLE POWER PACK

You can use the supplied rechargeable power pack to power your transceiver. This power pack provides 7.2 volts and can operate your transceiver at 2.5 watts(typical power) with the low power button out. As supplied, the power pack is fully discharged. You need to fully charge the pack using the supplied charger before you operate the transceiver from the rechargeable pack. Follow these steps to charge the pack.

- 1. If the pack is attached to the transceiver, turn off the transceiver. Do not operate the transceiver while charging the pack.
 - NOTE: You can remove the power pack from the transceiver to charge it, and operate the transceiver from one of the other power sources.
- 2. Plug the supplied charger's barrel plug into the CHARGE jack on the back of the power pack.
- 3. Plug the charger into a standard AC outlet. The CHARGE indicator lights.

It takes about 10 hours to charge the power pack.

When power is low, BATT appears on the display when you press PTT. You

can buy extra power packs through your local Radio Shack store.

NOTES: Nickel-cadmium batteries deliver more power if you occasionally let them completely discharge. To do this, use the transceiver until BATT appears on the display when you push the PTT. Then fully charge the batteries. If you do not occasionally do this, the batteries temporarily lose the ability to deliver full power. Also, to ensure a full charge, be sure the batteries are at room temperature (above 65 degrees F) when you charge them. Cold batteries do not fully charge.

Even when the battery is fully charged, the battery power meter will not read full scale. However, it will indicate full scale when being powered from the cigarette lighter adapter.

CAUTIONS: To prevent permanent nickel-cadmium power loss, never charge the power pack in an area where the temperature is above about 80 degrees F.

> Never use a charger other than the one supplied to charge the power pack. Even chargers with the same voltage and current ratings could permanently damage the transceiver or the power pack. You can order a replacement charger at your local Radio Shack store.

USING ALKALINE BATTERIES

You can operate the transceiver from 6 AA alkaline batteries (not supplied) using the supplied alkaline battery holder. This battery holder supplies 9 volts and can operate your transceiver at 4 watts (typical power) with the low power button out. Follow these steps to load or replace batteries in the alkaline battery holder.

- 1. Hold the outer battery holder case and push down on the center of the battery holder.
- Remove old batteries, if necessary, and install six fresh AA alkaline batteries, observing the correct polarity as indicated by the markings (+ and -) in the battery holder.
- 3. Press the battery holder into the battery holder case.

When power is low, BATT appears when you press PTT. Be sure to use six fresh AA alkaline batteries. Never mix different types of batteries, and never mix old and new batteries.

OPERATING FROM VEHICLE BATTERY POWER

You can operate the transceiver from vehicle battery using a DC power cord (Radio Shack Cat. No. 270-1533). This cord supplies a 13.8 volts (typical) to your transceiver and can operate your transceiver at 6 watts (typical power) with the LOW POWER button out. Follow these steps to operate from the vehicles battery power.

- 1. Plug the power cord's barrel plug into the transceiver's EXT DC jack.
 - CAUTION: Never plug the power cord into the rechargeable power pack's CHARGE jack. Doing so can damage the power pack and the transceiver.
- Plug the power cord's cigarette-lighter plug into your vehicle's cigarette-lighter socket.

If the transceiver does not operate, remove the power cord's plug from the cigarette-lighter and check for debris. Clean the socket, if necessary, and try again.

OPERATING FROM AC POWER

You can operate the transceiver from AC power using either the 1-amp 12 volt DC adapter(Cat. No. 273-1653) or our regulated 2.5-amp power supply (Cat. No. 22-120). The 2.5-amp power supply lets you operate your transceiver at 5 watts (typical power) with the low power button out and is better isolated from 60 Hz noise. The 1-amp adapter connects very quickly and requires no soldering but only operates your transceiver at about 2 watts with the LOW POWER button out.

Follow these steps to power the transceiver from the 1-amp, 12 volt DC adapter.

1. Connect the barrel plug with the tip set to positive.

- 2. Insert the adapter's barrel plug into the transceiver's EXT DC jack.
- CAUTION: Never insert the adapter's barrel plug into the rechargeable power pack's CHARGE jack. Doing so can damage the power pack and transceiver.

3. Plug the adapter into an AC outlet.

Follow these steps to power the transceiver from the regulated 2.5 amp power supply.

NOTE: You need the following materials to use the regulated 2.5 amp power supply:

Power supply (Cat. NO. 22-120)

Two-conductor 18-gauge wire (Cat. No. 278-5670

DC power connector (Cat. No. 274-1567)

Soldering iron and solder

Volt meter or multimeter

- 1. Cut the two-conductor wire to the length power cord you need.
- 2. Strip about 1/2 inch of insulation from each end of both conductors.
- Solder one end of the wire to the DC power connector, with the red lead connected to the center terminal, and the black lead connected to the outer casing.
- 4. Melt a small amount of solder onto the other end of the wire. Then, connect the red lead to the power supply's + terminal and connect the black lead to the power supply's - terminal.
- 5. Plug in the power supply and turn it on. Use the meter to confirm you have correctly wired the power connector so that the tip is + and the case is -.
- 6. Turn off the power supply and plug the connector into the transceiver EXT DC jack.
 - CAUTION: Never plug the power connector into the rechargeable power pack's CHARGE jack. Doing so can damage the power pack and the transceiver.

7. Turn on the power supply.

BACKUP BATTERY

Your transceiver uses a lithium battery to keep stored options in memory when you disconnect the transceiver from a power source. This battery should last 3 to 5 years, under normal conditions. When the transceiver frequently displays ER1, the back up battery needs to be replaced.

NOTE: To clear the error, reset the transceiver. See "Resetting the Transceiver."

The backup battery is not user-serviceable. Take the transceiver to your local Radio Shack store to have the battery replaced by a Radio Shack repair center.

This product contains a rechargeable nickel-cadmium (lead acid) battery. At the end of the battery's useful life, it must be recycled or disposed of properly. Contact your local, county, or state hazardous waste management authorities for information on recycling or disposal programs in your area. Some options that might be available are: Municipal curb-side collection, drop-off boxes at retailers, recycling collection centers, and mail back programs.

CONNECTING THE ANTENNA

Your transceiver comes with a flexible antenna. You must connect an antenna to your transceiver before you transmit. The transceivers BNC antenna connector is easy to connect other types of antennas. Radio Shack stores sell a 5/8 wave magnetic mount antenna for mobile operation (Cat. No. 19-210), a discone antenna (Cat. No. 20-013), and a center-loaded telescoping whip antenna (Cat. No.20-006) that you can use with your transceiver.

To use the supplied antenna, slip the antenna's connector over the BNC jack and twist the antenna to lock it in place. To use an external antenna, if necessary, attach the appropriate connector adapter to the end of the antenna cable. Then, slip the connector over the BNC jack and twist the connector to lock it in place.

WARNING: When installing or removing an outdoor antenna, use extreme caution. If the antenna starts to fall, let it go! It could contact overhead power lines. If the antenna touches the power line, contact with the antenna, mast, cable, or guy wires can cause electrocution and death! Call the power company to remove the antenna. Don't attempt to do so yourself.

ATTACHING THE BELT CLIP

You can attach the provided belt clip to your transceiver. Use the supplied screws.

ATTACHING THE HAND STRAP

Loop the supplied hand strap's key ring through the hand strap tab.

USING AN EXTERNAL MICROPHONE

You can use an external microphone with your, transceiver. Then you connect an external microphone, the internal microphone does not work, but the internal PTT is not affected. If your microphone has a 3/32 inch(2.5 mm) submini plug, plug the microphone cable into the transceiver's MIC jack.

USING AN EXTERNAL SPEAKER

In a noisy area, an external speaker, positioned in the right place, might provide more comfortable listening. Radio Shack stores sell an extension speaker (Cat. No. 21-549) and an amplified communication extension speaker (Cat. No. 21-541). Plug the speaker cable's 1/8 inch(3.5 mm) mini plug into the transceiver's SP jack. This disconnects the internal speaker.

For the most efficient operation when you carry the transceiver on your belt, connect a combination speaker/microphone (such as Cat. No. 19-310) to your transceiver and hang the mic/speaker on your collar.

If your vehicle has a cassette player, you can easily connect your transceiver to your vehicle's audio system using a CD-to-cassette adapter (Cat. No. 19-1951) and a mono-to-stereo audio plug (Cat. No. 274-368). Simply insert the adapter in your vehicle's cassette player, connect the adapter's plug to the mono-to-stereo plug, insert the plug in the transceiver's SP jack, and turn on your cassette player.

USING THE TRANSCEIVER WITH PACKET RADIO

You can connect your transceiver directly to a packet radio terminal mode controller.

RESETTING THE TRANSCEIVER

When you first use the transceiver, if the transceiver displays ER1, or if you ever want to reset the transceiver's options to the factory defaults and clear all memories, follow these steps.

- WARNING: This procedure clears all the stored information from the transceiver.
- 1. Turn off the transceiver.
- 2. Press and hold down F+CLR. Then, turn on the transceiver.

USING THE LIGHT

Press L on the side of the transceiver to turn on the display light for about 5 seconds. To turn the light off sooner, press L again. The light stays on until you press L or turn off the transceiver. HTX-202

Operation

SETTING SQUELCH AND VOLUME

Rotate VOLUME clockwise and SQUELCH counterclockwise until you hear a hissing sound. Then, slowly rotate SQUELCH clockwise until the noise stops. Leave VOLUME set to a comfortable level.

If the transceiver picks up unwanted weak transmissions, rotate SQUELCH clockwise to decrease the transceiver's sensitivity to signals.

SELECTING A FREQUENCY

You can use any of three methods to select a frequency to communicate on.

Direct entry

Tune control

Scanning for frequencies

TUNING USING DIRECT ENTRY

Your transceivers transmits and receives on frequencies between 144.000 and 148.000 MHz. To quickly tune to a frequency, enter the frequency using the keypad.

- 1. Turn on the transceiver.
- 2. Press VF.
- 3. Use the keypad to enter the last four digits of the frequency. For example, to enter 146.940, press 6940.

NOTES: If you make a mistake, press CLR and repeat this step.

The transceiver rounds the last digit down to 0 or 5.

TUNING USING THE TUNE CONTROL

You can quickly tune to a nearby frequency by rotating TUNE on top of the transceiver.

- 1. Turn on the transceiver.
- 2. Press VF.
- 3. Rotate TUNE counterclockwise to tune down or clockwise to tune up. The transceiver tunes up or down one frequency step per click, see "Setting the Frequency Rate."

SCANNING FOR ACTIVE FREQUENCIES

You can scan for activity on a frequency by pressing and holding down /\SC or \/SC for at least 1 second. The transceiver begins to scan up or down the full frequency range, and stops on active frequencies. To scan only a selected frequency range press $F+/\SC$ or $F+\/SC$. See "Setting the Scan Options" to see how to change the scanning range, the frequency step, the scan resume condition, and the scan delay time. The following are the factory presets for these options.

Frequency Step:	15KHz
Scan Resume Condition:	Resumes scanning in 10 seconds, regardless of
	absence or presence of a carrier.
Scan Delay:	Not activated.
Scan limits:	144 MHz to 148 MHz

To stop scanning, press \SC , \SC , CA, PR, VF, or turn off the transceiver.

SCANNING FOR A VACANT FREQUENCY

In some areas where the 2-meter band is being used heavily, you might have trouble quickly finding a frequency not being used. To quickly scan for a vacant frequency, press F+V - SC. The transceiver scans up or down from the current frequency to the first unused frequency. To change the vacant scan direction, see "Setting the Vacant Scan Direction."

RECEIVING TRANSMISSIONS

To receive transmissions, turn on the transceiver, adjust the volume and squelch, and tune to a frequency.

TRANSMITTING

There are two basic types of communication you can use with this transceiver. These types are sometimes referred to as SIMPLEX and DUPLEX. With simplex transmissions, you transmit and receive on the same frequency. With duplex transmissions, you transmit on one frequency and receive on another. Duplex transmission is the communication type you use when you communicate using a repeater. You transmit to the repeater on one frequency (the input frequency), and the repeater retransmits the signal at a different frequency (the output frequency).

CAUTION: Do not transmit if you do not have a Technician Class or higher license issued by the FCC. Doing so is illegal.

Follow these steps to communicate using simplex communications.

1. Turn on the transceiver.

- 2. Select the desired frequency.
- If + or is on the display, repeatedly press F & + / until neither symbol appears.
- 4. Press LOW POWER so that the button is down. In this position, your transceiver transmits at about 1 watt.
- 5. Begin communications.

If the other party advises that you need to improve your signal (QRO), press LOW POWER so that the button is up. In this position, your transceiver transmits at the highest power it can, depending on the power source. Remember to switch back to low power whenever possible, to comply with the FCC rules that require you to use the minimum power necessary to maintain communications.

Follow these steps to communicate using duplex communications.

- 1. Turn on the transceiver.
- 2. Tune to the desired receive (output) frequency.
- 3. If the transmit (input) frequency is 600 kHz ABOVE the receive frequency, press F+ +/- so that the + appears in the display. If the transmit frequency is 600 kHz BELOW the receive frequency, press F+ +/so that - appears on the display. If the frequency separation is not 600 kHz, either set a new default frequency or store the frequency pair in one of the scanner's memories (See "Using Memory Channels" and "Setting the Duplex Separation").

LOCKING THE KEYPAD

To lock the transceiver's keypad so that you do not accidently change a

setting, press F+LOCK. LOCK appears on the display. This locks all frontpanel buttons and the tune control. The PTT, VOLUME, and SQUELCH still operate. To release the lock, press F+LOCK again.

SETTING THE KEY ENTRY BEEP

Each time you press a key, the transceiver sounds a beep. To turn off the beep, press F+BEEP. The key beep does not sound this and subsequent key presses. To turn on the key beep, press F+BEEP again.

REVERSING THE OFFSET

To reverse the transmit and receive frequencies when you are operating duplex, press F+REV. For example, if you are set to 146.94 with a - offset pressing F+REV makes the transceiver receive on 146.14 and transmit on 146.94.

USING MEMORY CHANNELS

Your transceiver has 16 memory channels in three groups.

One calling-frequency memory

Three priority-frequency memories

12 standard memories

USING THE CALLING-FREQUENCY MEMORY

The calling-frequency memory provides a single memory that you can quickly jump to at any time. Follow these steps to save a frequency in the calling-frequency memory. Press VF.

Tune to the frequency you want to save.

Press CA.

If the frequency is for a repeater that requires subaudible tone access or if you want to use incoming subaudible tone squelch with frequency, press F+T-SQL so that T-SQL appears on the display.

NOTE: If you turn on T-SQL you must correctly set both the transmit subaudible tone as described in steps 8 through 11.

Press and hold down F+M-WR for at least 1 second.

The transceiver stores the tuned frequency in the calling-frequency memory, plus the frequency separation (for duplex operation) and subaudible transmit and receive tones. For more information about subaudible tones, see "Using Subaudible Tone Squelch" (CTCSS)."

If you want to set a different transmit frequency or change the subaudible tones, press F+M-SET. The transceiver displays TF followed by the transmit frequency.

Rotate TUNE to change the transmit frequency.

To set a transmit subaudible tone frequency, press \/SC. The transceiver displays TC followed by the transmit subaudible tone frequency.

Rotate TUNE to change the transmit frequency.

NOTE: If you do not want to transmit subaudible tone, rotate TUNE to

set the transmit subaudible tone to OFF.

- 10. To set a receive subaudible tone frequency, press \/SC. The transceiver displays RC followed by the receive subaudible tone frequency.
- 11. Rotate TUNE to set the receive subaudible tone frequency.
 - NOTE: If you do not want to use incoming tone squelch, rotate TUNE to set the receive subaudible tone to OFF. Otherwise, you do not hear transmissions unless the subaudible tone is present.
- 12. Press the PTT to save the settings and return to the callingfrequency memory display.

To use the calling frequency memory, press CA at any time. The transceiver immediately goes to the calling frequency and sets the transmit frequency, subaudible tones, and tone squelch to the settings you programmed. To return to the previous settings, press CA again.

USING THE PRIORITY-FREQUENCY MEMORIES

The transceiver has three priority-frequency memories. The transceiver can periodically scan these frequencies during manual, calling-frequency memory, or standard memory operation. Follow these steps to store a frequency in the priority-frequency memories.

- 1. Press press VF and tune to the frequency you want to save.
- 2. Press F and rotate TUNE until either P1, P2, or P3 appears to the left of the tuned frequency.

- 3. If the frequency is a repeater that requires subaudible tone access or if you want to use subaudible tone squelch with this frequency, press F+T-SQL so that T-SQL appears on the display.]
- 4. Press F+M-WR for at least 1 second to store the tuned frequency in the selected priority-frequency memory.
- 5. To change the frequency separation or subaudible tones, press PR and rotate TUNE to select the priority-frequency memory you want to change. Then, refer to steps 6 through 12 under "Using the Calling-Frequency Memory." Each priority frequency can have different settings.

To set the transceiver to a priority frequency, press PR. Then rotate TUNE, press $/\SC$, /SC, 1, 2, 3, to select one of the three memories.

To have the scanner check the priority-frequency memories for activity, press VF. Then, press F+P-SC for at least 1 second. The transceiver checks the priority-frequency memories every 4 seconds. To change the priority scan time, see "Setting the Priority Scan Time."

To continuously scan the three priority frequency memories, press PR. Then, press and hold down /\SC or $\/SC$ at least 1 second,

NOTE: You must store more than one priority frequency in memory to continuously scan priority-frequency memories.

USING THE STANDARD MEMORIES

Your transceiver has 12 standard memories into which you can store frequently-accessed frequencies for quick access. Follow these steps to store a frequencies in standard memories.

- 1. Press VF and tune to a frequency you want to store.
- 2. Press F and rotate TUNE until the memory number to the left of the frequency display shows the standard memory you want to store into.
- 3. Press F+M-WR for at least 1 second to store the tuned frequency into the selected standard memory.
- 4. To change the frequency separation or subaudible tones, press MR and rotate TUNE to select the standard memory you want to change. Then, refer to steps 6 through 12 under "Using the Calling-Frequency Memory." Each standard memory can have different settings.

To set the transceiver to a standard memory, press MR. Then, rotate TUNE or press /\SC or \/SC to select one of the 12 memories.

To continuously scan standard memories, press MR. Then, press and hold down /\SC or \/SC for at least 1 second.

NOTE: The transceiver stops scanning according to the scan options you have set. See "Setting the Scan Options" for more information.

CLEARING MEMORIES

Follow these steps to clear a memory.

1. Press PR or MR and select the memory you want to clear.

2. Press F+M-CLR to clear the settings stored in the current memory.

NOTE: You cannot clear Standard Memory 1 or the calling-frequency memory. You can only change the settings for these memories.

MOVING A MEMORY CHANNEL TO THE MANUAL MODE

Follow these steps to quickly move a memory channel to the manual (VF) mode.

- 1. Select the memory channel.
- 2. Press F+M-VFO.

All settings for the selected memory move to the VF mode.

REVIEWING PROGRAMMED OPTIONS

Follow these steps to view the transmit frequency and subaudible tone settings for a memory or the tuned VF frequency.

- 1. Press CA, PR, MR, or VF and select the memory or frequency you want to check.
- 2. If you want to check the subaudible tone settings, press F+T-SQl so that T-SQL appears on the display.
- 3. Press M (located above PTT). The transceiver's squelch opens, and the display shows the transmit frequency for about 1 second, followed by the subaudible transmit tone and the subaudible receive tone.

UNDERSTANDING THE CONFIGURATION MENU

Your transceiver has a configuration menu that lets you modify operation settings. Each of the following sections explain how and when to use each configuration menu and select options.

1. Press VF.

- 2. Press F+M-SET. The first menu item appears.
- 3. Press \SC or \SC to step down or up through the menu items. Rotate TUNE to change the menu settings for any menu item.

4. Press PTT to exit the configuration menu and save all settings.

The configuration appears in the following order:

CODE FACTORY DEFAULT EXPLANATION

oS	0.600	Duplex separation (offset)
tc	oFF	Transmit subaudible tone
rc	oFF	Receive subaudible tone
Sr	15	Frequency step
Sc	ti	Scan resume
Sd	2.0	Scan delay time
S1	144.000	Lower scan range limit
S2	148.000	Upper scan range limit
ud	dn	Vacant channel scan direction
PS	1-16	Power save duty cycle
tE	oFF	Transmit inhibit
to	oFF	Transmit time-out
Lb	4	Priority-frequency channel lookback time
Ar	oFF	Touch-tone auto-reply
Lb	4	Priority-frequency channel lookback time

SETTING THE DUPLEX SEPARATION DEFAULT

The duplex separation default (offset) controls the offset between the transmit frequency and the receive frequency when you use the transceiver

in duplex mode, as with a repeater. Typically, on the 2-meter band, repeaters receive at a frequency 600 kHz lower or higher than they retransmit (repeat) on. For example, if a repeater's input frequency is 146.340 MHz, its output frequency is 146.949 MHz. The following is a list of the most commonly used repeater pairs.

INPUT FI	REQUENCY	OUTPUT FI	REQUENCY
146.07	MHz	146.67	MHz
146.13	MHz	146.73	MHz
146.16	MHz	146.76	MHz
146.22	MHz	146.82	MHz
146.25	MHz	146.85	MHz
146.28	MHz	146.88	MHz
146.31	MHz	146.91	MHz
146.34	MHz	146.94	MHz
146.37	MHz	146.97	MHz
146.40	MHz	147.00	MHz

To operate with a repeater, you must transmit on the repeater's input frequency and receive on the repeater's output frequency. If you frequently use a repeater that does not have a 600 kHz offset, we recommend you program the repeater frequency into one of the transceiver's memories. You can override the default offset for each memory.

To change the default offset, follow the steps in "Understanding the Configuration Menu." to display the oS menu item, and rotate TUNE to change the offset. The transceiver lets you set the offset to be in the range from O MHz to 4 MHz in steps as set by the frequency step option.

USING SUBAUDIBLE TONE SQUELCH (CTCSS)

Some repeaters require that you transmit subaudible tone to key-up the

repeater. You can set your transceiver to transmit any of the 38 standard subaudible tones. You can also limit incoming calls by setting your transceiver to open the squelch only when someone transmits a subaudible tone you set.

To set a subaudible transmit tone, follow the steps in "Understanding Configuration Menu" to display tc. Then, rotate TUNE to select the subaudible tone. If you do not want to transmit a subaudible tone, rotate TUNE to select OFF.

To set a subaudible receive tone, follow the steps in "Understanding the Configuration Menu" to display rc. Then, rotate TUNE to select the subaudible tone. If you do not want to use the receive subaudible tone squelch, but are using transmit subaudible tone to activate a repeater, rotate tune to select OFF. Otherwise, you only hear transmissions that have the correct subaudible tone when you activate tone squelch.

To turn on the subaudible tone feature, press F+T-SQL. When you transmit, the transceiver includes the subaudible tone in the signal. To receive, the incoming signal must have the correct subaudible tone. You can override the default subaudible tones for any memory.

Code	Freq.(Hz)	Code	Freq.(Hz)	Code	Freq.(Hz)
XZ	67.0	2 A	114.8	7 Z	186.2
XA	71.9	2 B	118.8	7A	192.8
WA	74.4	3 Z	123.0	M1	203.5
XB	77.0	ЗA	127.3	M2	210.7
WB	79.7	3 B	131.8	MЗ	218.1
ΥZ	82.5	4 Z	136.5	M4	225.7
YA	85.4	4A	141.3	M5	233.6

YB	88.5	4B	146.2	M6	241.8
ΖZ	91.5	5Z	151.4	M7	250.3
ZA	94.8	5A	156.7		
1Z	100.0	5B	162.2		
1A	103.5	6Z	167.9		
1B	107.2	6A	173.8		
2 E	110.9	6B	179.9		

SETTING SCAN OPTIONS

Several configuration menu items control how your transceiver operates when you scan frequencies or memories. The following sections describe how to set the frequency step rate, the scan condition, the scan delay duration, and the scan limits.

SETTING THE FREQUENCY STEP RATE

The frequency step rate affects the scanning mode, the TUNE control, and $/\SC$ or /SC tuning. The factory default for the frequency step is 15kHz. Each time you rotate TUNE one click or /SC or /SC the frequency changes by 15 kHz. When scanning, the transceiver scans up or down 15 kHz step. To change the frequency step rate, follow the steps in "Understanding the Configuration Menu" to display the Sr menu item, and rotate TUNE to change the frequency step rate. You can set the step rate to 5, 10, 15, 25, 50, or 100 kHz.

SETTING THE SCAN RESUME CONDITION

When you have set the transceiver to receive either standard memories or VF mode, the transceiver stops whenever it encounters a signal strong enough to break squelch. At the factory setting, the transceiver resumes scanning in 10 seconds, regardless of the of the presence of a continued signal. You can set the scan resume configuration item to one of the following.

- ti Resumes scanning in 10 seconds
- cr Resumes scanning after the carrier drops and the scan delays expires (See "Setting the Scan Delay.")
- SE Does not resume scanning

To change the resume condition, follow the steps in "Understanding the Configuration Menu" to display Sc. Then, rotate TUNE to select the resume condition.

NOTE: The resume option does not affect the priority scan. Priority scan always resumes scanning after the carrier drops.

SETTING THE DELAY DURATION

When you set the scan resume condition to cr (carrier), the transceiver resumes scanning after the carrier drops. The scan delay option lets you set the transceiver to pause before resuming, so you can hear any reply. The factory default for this option is 2 seconds.

To change the scan delay duration, follow the steps in "Understanding the Configuration Menu" to display Sd. Then, rotate TUNE to select the scan delay duration. You can set the delay to 0.5, 1, 2, or 4 seconds.

NOTE: The scan delay option also affects priority scan.

SETTING THE SCAN LIMITS

When you press F+/SC or F+/SC the transceiver scans only those frequencies within a range you set with scan limit options. To set the scan limits, follow the steps in "Understanding the Configuration Menu" to display S1. Use either TUNE or the key pad to enter one of the frequency limits. Then, press //SC to display S2 and enter the other frequency limit. You can enter the higher frequency as either limit.

SETTING THE VACANT SCAN DELAY

The transceiver's factory default for vacant scan is to scan down until it finds an unused frequency. To change the vacant scan direction, follow the steps in "Understanding the Configuration Menu" to display ud. Then, rotate TUNE to select either UP or DN.

USING THE POWER SAVE FEATURE

To set the transceiver to save power press F+SAVE so that SAVE appears on the display. In the power-save mode, the transceiver turns on the receiver for about 32 milliseconds to check for any activity, and then turns off the receiver for the time you set with the power-save configuration setting. The factory default for this setting is to use only 1/16 normal power. To change the power save setting, follow the steps in "Understanding the Configuration Menu" to display PS. Then, rotate TUNE to select the power save setting. You can set the power-save setting to 1-2, 1-4, 1-8, or 1-16 (1/2, 1/4, 1/8. or 1/16 normal power usage.

Press F+SAVE again to turn off power save. Power save temporarily turns off while scanning.

PREVENTING TRANSMISSIONS

To prevent any transmissions using the transceiver, turn on the transmit inhibit function. To turn on this function, follow the steps in "Understanding the Configuration Menu" to display tE. Then, rotate TUNE to select ON. To enable transmissions, set this option to OFF.

LIMITING TRANSMISSION DURATION

When you communicate on the 2-meter band, you should keep your transmission

as brief as possible. Most repeaters have built-in timers that limit single transmissions to 3 minutes or less. You can set the transceiver to stop transmitting and sound a beep if you exceed a set time limit with a single transmission. To set a transmit limit, follow the steps in "Understanding the Configuration Menu" to display to. Then, rotate TUNE to select OFF 30, 60, or 120 seconds.

SETTING THE PRIORITY SCAN TIME

When you turn on PRIORITY scan, the transceiver checks the preprogrammed priority-frequency memories periodically to see if there is any activity. As factory set, the transceiver checks the priority-frequency memories every 4 seconds. To change the PRIORITY scan time, follow the steps in "Understanding the Configuration Menu" to display Lb. Then, rotate TUNE to select 4, 8, 12, or 16 seconds.

USING TOUCH-TONE FEATURES

Your transceiver has a built-in 16-key touch-tone encoder. You can manually send touch tones, or send tones from one of the five DTMF memories. You can also set your transceiver so that it is silent until it receives a specific sequence of touch tones.

MANUALLY SENDING TOUCH TONES

Some repeaters require you to enter a touch-tone code to key-up the repeater. Also, some repeaters have autopatch devises that let you make telephone calls through the repeater. To manually send the required tones, press and hold down PTT. Then, enter the touch-tone digits.

NOTES: You must press D twice to send the D digit.

If the auto-reply feature is turned off, you can release PTT after

you enter the first digit. The transceiver continues to accept and transmit the touch-tone signals until you pause at least 1 second.

STORING A DIMF MEMORY SEQUENCE

You can store frequently-used touch-tone sequences in the transceiver's five DTMF memories. Each memory can hold up to 15 digits. Follow these steps to store touch-tone frequencies.

- 1. Press and hold down F+DTMF for at least 1 second. The display changes to show the first DTMF memory.
- 2. Press D. Then, press a digit from 1-5 to select one of the DTMF memories.
- 3. Enter the touch-tone sequence. If the sequence is less than 15 digits, press D, then press a digit from 1 to 5 to select a different DTMF memory or press PTT to exit the DTMF memory store mode.

NOTE: To enter a D, press D twice.

TRANSMITTING A DTMF MEMORY SEQUENCE

To send a DTMF memory sequence, press and hold down PTT. Then, press D followed by the DTMF memory number you want to transmit (1-5). The transceiver transmit the tones.

The transceiver has two DTMF memory sequence transmit speeds. To switch between fast and slow, press and hold down PTT. Then, press O.

NOTE: If the auto-reply feature is turned off, you can release PTT after you press D. Enter the DTMF memory number within 1.5 seconds.

USING DTMF SEQUENCE FOR PAGING

The DTMF squelch feature lets you set your transceiver to release squelch only if it receives a specific touch-tone sequence. Follow these steps to set the touch-tone sequence.

1. Press F+D-SQL for at least 1 second.

The transceiver displays the previous sequence or - if you have never programmed a sequence.

2. Enter the sequence (up to five digits).

3. Press PTT to save the sequence.

To turn on the DTMF squelch, press F+D-SQL for less than 1 second. DTMF appears on the display.

Your transceiver remains silent until it receives the correct touch-tone sequence. Then, it beeps and returns to normal operation. To cancel DTMF squelch, press F+D-SQL for less than 1 second so that the DTMF disappears from the display.

AUTOMATICALLY SENDING A DTMF REPLY

You can set your transceiver to automatically transmit the touch-tone digit (#) when you have enabled DTMF squelch and the transceiver receives the correct touch-tone sequence. To turn on the DTMF auto-reply, follow the steps in "Understanding the Configuration Menu" to display Ar. Then, rotate TUNE to select on.

You should also set this option to on if you expect an auto reply from an auto patch or another HTX-202 or other transceiver that has this feature.

HTX-202

Troubleshooting

- Q: Unit beeps when pushing PTT.
- A: Try resetting unit by turning off the transceiver, pressing and holding down F and CLR, and then turning on the transceiver. This clears all stored information.

Hints and Tips

This radio is likely to get an ERR2 when running off a cigarette lighter. This is due to RF feedback which travels from radio to rubber duck to power cord and back to radio. The best way to fix the ERR2 is to use an external antenna.

When pressing f/3, it only comes up with a negative offset. In order to come up with a positive offset, check the offset by entering VFO mode and pressing function/8. The display reads os and a number. That number is normally 600. It will not give any offset that puts it out of the legal limits of 144-148 MHz.

This radio cannot be modified for expanded frequencies.

Error Codes

Your transceiver has two error code displays. Refer to the following for an explanation of each error code.

Er1: INTERNAL RAM ERROR

Er1 indicates the transceiver has detected an error in its battery-backed up operation memory. This is the most commonly caused by a low lithium backup battery, but can also be caused by static discharge, or a physical shock. To clear the error--

- 1. Turn off the unit.
- 2. Press FUNCTION and CLR (the D key).
- 3. While holding these keys, turn unit on.

This will reset unit and clear memories.

If the transceiver frequently displays the error, have the battery replaced by an authorized Radio Shack service center.

ER2:PLL UNLOCK ERROR

Er2 indicates the transceiver's PPL section has unlocked. Have the transceiver repaired by an authorized Radio Shack service center.

Specifications

GENERAL

Frequency Range:144.000-148.000MHz
Frequency Step:
Frequency Stability:+/- 10ppm
Antenna Impedance:
Speaker:
Microphone:Mic. 1.2 Kohms
Channel Display:LCD 8 digits
Operating Temperature:
Size:
Weight:1 lbs 3 oz. (540g)
Supply Voltage:
Alkaline Battery Pack:9V DC
Ni-Cad Battery Pack (600 mAh):
External Power Jack:
DC AdapterCat. No. 273-1653
Regulated Power SupplyCat. No. 220-0120
Vehicle Battery Power:

NOTE: This unit also has a Lithium Battery as a backup battery to keep stored options in memory. Only Radio Shack authorized repair centers can replace this battery.

RECEIVER

Intermediate frequency	
1st IF:	Z
2nd IF:	z

Sensitivity:
12dB SINAD:0.2uV
20 dB NQ:0.35uV
Squelch sensitivity;
Threshold:
Tight:
Spurious response attenuation:80dB
Inter-modulation attenuation:
Adjacent channel rejection (25KHz):
Modulation acceptance Bandwith:8KHz
Hum and Noise:
Audio output power(10% THD):
7.2V DC:
9V DC:
12V DC:
13.8V DC:
Audio distortion:
Audio response:6dB/oct
Current drain:
Stand-by without power save:
Stand-by power save:
CTCSS Sensitivity:0.15uV
DTMF Squelch sensitivity:0.2uV
TRANSMITTER

RF	Power output:
	7.2VDC:
	9VDC:
	12VDC:
	13.8VDC:
	Low Power:

Maximum deviation:
Hum and Noise:
Audio distortion:
Audio response:+6dB/oct
Spurious and harmonic emissions:
Frequency error:+-0.0005%
Mic. Sensitivity:4mVrms
CTCSS Tone deviation:0.7KHz
Current drain:
7.2V DC:
9V DC:
12V DC:
13.8:
Lower Power:

The above specifications are nominal. An individual unit's performance might vary from these specifications.