This Information Is Provided By

CBTricks.com

Realistic TRC-205 Service Manual

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers.

Thank you for any support you can give.

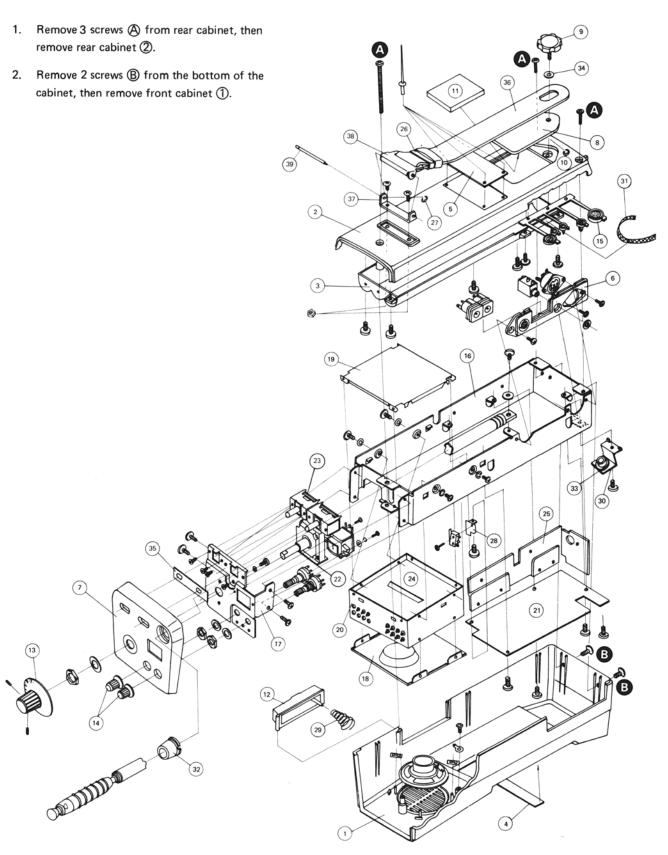
For information on how to Support CBTricks.com http://www.cbtricks.com/support/

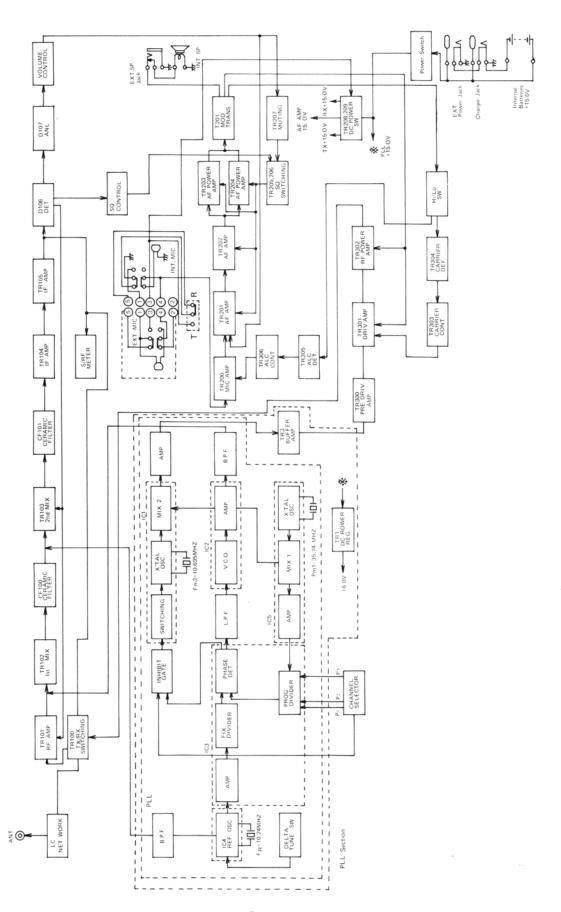
REALISTIC®

Service Man

TRC-205 CITIZENS BAND TRANSCEIVER

Catalog Number: 21-1634


CONTENTS

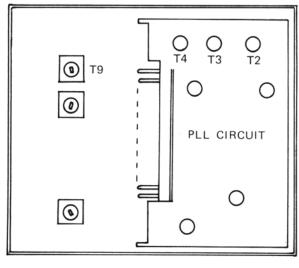

SPECIFICATIONS 1
DISASSEMBLY INSTRUCTIONS & EXPLODED VIEW 2
BLOCK DIAGRAM
ALIGNMENT 4
ALIGNMENT OF Tx CIRCUIT 4
ALIGNMENT OF Rx CIRCUIT 8
PRINCIPLES OF OPERATION OF SPECIAL CIRCUITS 10
FREQUENCY OF EACH CHANNEL
CODE LIST OF CHANNEL SELECTOR SWITCH 17
TROUBLESHOOTING
REPLACING THE PLL CIRCUIT 20
MAIN P. C. BOARD
PLL P. C. BOARD
CHANNEL SELECT SWITCH AND SWITCH P.C. BOARDS 24
WIRING
TRANSISTOR AND IC VOLTAGE CHART 27
PARTS LIST 29
SCHEMATIC DIAGRAM 37

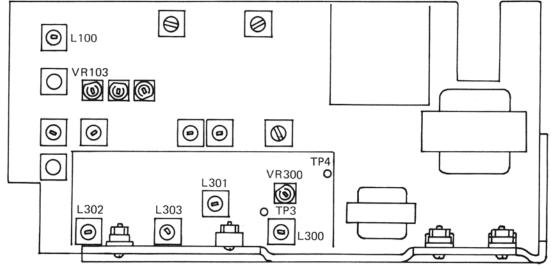
SPECIFICATIONS

RECEIVER SECTION	NOMINAL	LIMIT
Sensitivity for 10 dB (S + N) / N	0.7 μV	1.0 μV
Squelch sensitivity at threshold	0.5 μV	1.0 μV
Squelch sensitivity at tight	1000μV	$250 - 2000 \mu\text{V}$
AGC Figure of merit (input 50 mV)	80 dB	70 dB
Overall audio fidelity at 6 dB down	500 — 1900 Hz	600 — 1800 Hz
Audio output power at maximum power	3 W	2 W
Audio output power at 10% distortion	2 W	1.5 W
Spurious rejection	55 dB	50 dB
Cross modulation	55 dB	50 dB
Desensitization (± 20 kHz, 3 dB down)	55 dB	50 dB
Selectivity (± 10 kHz point)	60 dB	55 dB
Current drain at standby (squelched)	70 mA	90 mA
Current drain at maximum output	650 mA	700 mA
TRANSMITTER SECTION		
Frequency tolerance	±0.002%	±0.005%
RF output power on high position		
with 15 mV Mic. inpu	t 10 W PEP	8 - 12 W PEP
without modulation	0.1 W PEP	0.03 - 0.2 W PEP
RF output power on low position		
with 15 mV Mic. inpo	ut 3 W PEP	1.5 — 4 W PEP
Spurious attenuation	65 dB	60 dB
AMC range	40 dB	30 dB
Mic. sensitivity for 4 W PEP RF power output	ut 1 mV	2 mV
Modulation capability	90%	70%
Current drain		
with 15 mV Mic. inpu	t 750 mA	900 mA
without modulation	300 mA	400 mA

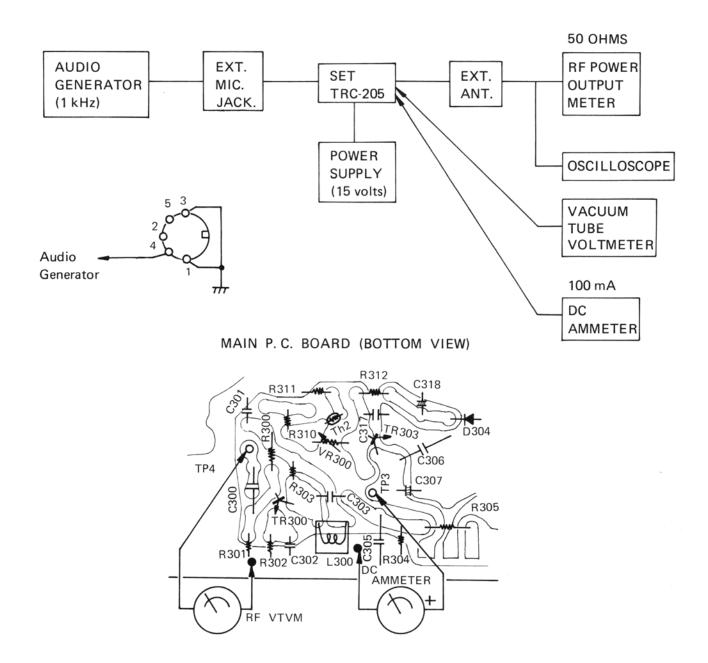
DISASSEMBLY INSTRUCTIONS & EXPLODED VIEW

ALIGNMENT OF TX CIRCUIT


PROCEDURE

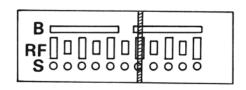

Allow test equipment and set at least 15 minutes to warm up before starting the alignment. RF output meter or 50 ohm non-inductive Dummy Load must be connected to Ext. Antenna Jack.

EQUIPMENT REQUIRED


RF Power Output Meter	. 5 Watts, 50 ohms
Audio Generator	. Sine wave, 1,000 Hz
Scope	
RF Voltmeter (VTVM)	. RF Vacuum tube voltmeter
DC Ammeter	. 100 mA Range
DC Power Supply	4514 44

ALIGNMENT POINTS

CONNECTION OF EQUIPMENT FOR TRANSMITTER ALIGNMENT


NOTE: 1. Connect DC Ammeter and RF VTVM to TP3 and TP4 on the Main P. C. Board.

REMARK: By connecting the DC Ammeter as above, collector of TR303 is grounded and therefore Controlled Carrier Circuit does not function. Thus you can measure current under no modulation, without breaking the circuit.

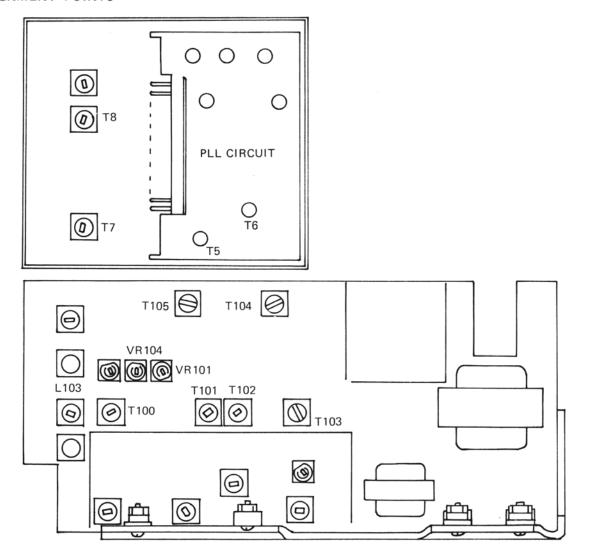
Step	Item _	Set condition	AF generator	Adjustment	Remarks
1	RF Output	CH: Channel 18 27.175 MHz HI-LO Switch: HI Push to Talk Switch: ON DC AMMETER: Connected	OFF	Т 9	TP 4: RF VTVM Adjust for max. RF output voltage
2	RF Output	Same as Step 1	OFF	T 2 T 3 T 4 T 9	TP 4: RF VTVM Adjust for max. RF output voltage
3	Remove the RF V	TVM			
4	RF Output	Same as Step 1	OFF	L300 L301 L302 L303 L100 T 9	RF Power Output Meter : Adjust for max. RF power output
5	RF Output	Same as Step 1	OFF	L301	TP 3 : DC AMMETER Adjust for min. DC current
6	Repeat Steps 4 an	d 5 until no further improveme	nt is noted.		
7	Remove the DC A	MMETER			
8	Initial Power (No Modulation)	CH: Channel 18 HI-LO Switch: HI Push to Talk Switch: ON	OFF	VR300	RF Power Output Meter: Adjust for 0.1 W RF power output
9	RF Output	Same as Step 8	ON Input: 15 mV Freq.: 1000 Hz	L303	Scope Adjust for 8 12 watts P E P (Peak Envelope Power)
10	RF-Meter	Same as Step 9	Same as Step 9	VR103	See Fig. below.

REMARK: T1, T5, T6 and VC1 of PLL unit are all factory aligned. Do not try to adjust these. If these adjustments have been tampered with, see page 9.

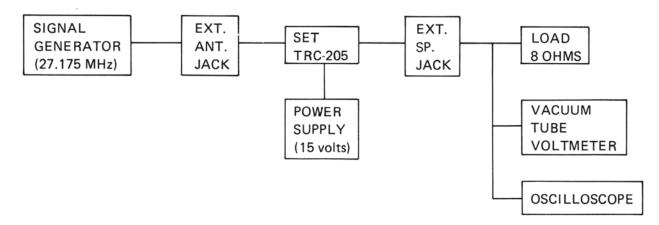
S / RF / BATT. METER

TRANSMIT Meter Pointer Setting

NOTE: 2. In Step 10, adjust VR103 to obtain the meter pointer position as illustrated above.

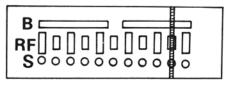

ALIGNMENT OF RX CIRCUIT

PROCEDURE


Allow test equipment and set at least 15 minutes to warm up before starting the alignment. Keep signal generator output low enough to prevent AGC overload (below 2 volts on output meter).

EQUIPMENT REQUIRED

ALIGNMENT POINTS



CONNECTION OF EQUIPMENT FOR RECEIVER ALIGNMENT

Step	Item	Set condition	Signal generator	Adjustment	Remarks
1	Sensitivity	VOLUME: Full clockwise SQUELCH: Full counter- clockwise DELTA TUNE: (0)	Ch: 18 27.175 MHz Mod.: 1000 Hz 30%	T100 T101 T102	Adjust for max. output on VTVM (Keep input from Signal Generator as low as possible and still obtain output readings)
2	Repeat Step 1	until no further improvement is no	oted.		
3	Sensitivity	Same as Step 1	Same as Step 1	T103 T104 T105	Same as Step 1
4	Repeat Step 3	until no further improvement is no	oted.		
5	Sensitivity	Same as Step 1	Same as Step 1	T 7 T 8	Adjust for max. output on VTVM
6	S-Meter	Same as Step 1	CH: 18 Input: 100µV	VR104	See illustration below
7	SQUELCH	VOLUME: Full clockwise DELTA TUNE: (0) SQUELCH: Full clockwise	CH: 18 Mod.: 1000 Hz 30% Input: 1000μV	VR101	Adjust so that output is 2V when input from SG is 1000µV

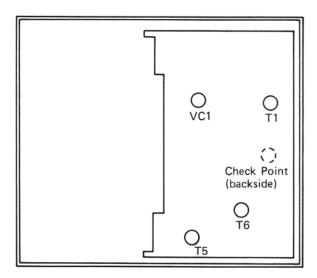
S / RF / BATT. METER

Receiver Meter Pointer Setting

NOTE: 3. L103 should not be adjusted.

NOTE : 4. For Step 6, with an RF Signal Generator input level of $100\mu V$, adjust VR104 for a Meter

pointer position as illustrated above.


If these parts have been adjusted by mistake, the following procedure can be used.

(1) T5 : Set to channel 18, Receive mode. Set DELTA TUNE Switch to "0" position and connect Frequency Counter to TP2. Adjust T5 to obtain a frequency of 10.240 MHz ± 200 Hz.

(2) T6 : In receive mode, channel 18, connect Frequency Counter to the base of TR102 (1st Mix.). Adjust T6 to obtain the frequency of 37.870 MHz ± 200 Hz.

(3) T1 : Remove PLL Unit from the set and connect +6.0V DC to 7 terminal of the Unit. Next, connect DC Voltmeter to the check point (see illustration) and adjust T1 to obtain $2.5 \sim 2.6$ V.

(4) VC1 : Set to channel 18, Transmit mode. Connect Frequency Counter to Transmitter Output. Adjust VC1 to obtain 27.175 MHz ± 200 Hz frequency.

PRINCIPLES OF OPERATION OF SPECIAL CIRCUITS

A. PLL CIRCUIT

A Digital Phase-Locked Loop (PLL) synthesizer is employed to determine and stabilize the operating frequency, using a CMOS/LSI device in combination with a VCO (voltage controlled oscillator).

To understand the operation of the PLL synthesizer, refer to Figure A and the Schematic Diagram provided.

IC 4 reference oscillator generates a 10.240 MHz crystal controlled frequency. This 10.240 MHz is applied to pin 6 (Q_{in}) of IC 3 (MSM5807). The 10.240 MHz is divided by a 1024 fixed divider in IC 3 to provide 10 kHz. Output of the fixed divider is applied to the Phase Detector.

The PLL synthesis process selected for the TRC-205 is a down-mixing configuration. If the mixing were up, a complex programmable counter would be required to achieve the desired frequency increment. Of course, mixing down requires a high-frequency reference for heterodyning, but the programmable divider can operate at low frequency: this reference frequency is obtained from X3 and IC5 to produce 35.74 MHz.

The output of Crystal Oscillator 1 (IC-5, 35.74 MHz) is mixed internally by IC-5, where it is combined with the output of VCO (IC 1). This mixed signal is amplified in IC 5 and fed into Pin F_{in} of IC 3. The signal at Pin F_{in} is applied to the Programmable Divider. The Programmable Divider provides the channel selection via 8 binary input control lines, selected by the Channel Selector Switch. The signal applied to the Programmable Divider is divided by "N" which is determined by the Channel Selector Switch. The output of Programmable Divider is coupled to the Phase Detector.

The Phase Detector compares the frequency and phase of the signal from the Programmable Divider with output of the Fixed Divider. If the two signals differ in frequency and/or phase, an error voltage is generated and applied through Low Pass Filter to the VCO, causing it to correct in the direction required for decreasing the difference. The correction continues until lock is achieved, after which the VCO will continue to follow the reference frequency. That means fr' must be equal to fr when the Phase-Locked Loop is locked. Therefore the following rule applies:

$$f_{VCO} = N \text{ fr } + \text{ Fm1}$$
 Fm1 = 35.74 MHz
$$= \frac{N}{1024} \text{ FR } + \text{ Fm1} \qquad (1)$$
FR = 10.24 MHz
Where N : positive integer

When Fm1 and FR are constant, f_{VCO} can be changed in 10 kHz steps by varying N and thus produce stable and accurate frequencies (as long as the Phase-Locked-Loop is locked).

The accuracy and stability of these PLL/VCO signals is kept as stable as a crystal oscillator. To maintain PLL locking, great care is exercised in selection of components, operating point of active devices, voltage stability, etc. When the circuit is in a locked condition a lock-detector circuit provides a low voltage to an inhibit gate; in an unlocked condition, a high voltage is delivered to the inhibit gate which is used to turn off the Transmitter. More on this later.

The output of the VCO is amplified (in IC1), processed by a Band Pass Filter and applied to the First Mixer of the Receiver circuit (TR102). Thus, output from the VCO must be either of the following:

 f_{VCO} = fc \pm f_{IF} fc : channel frequency

f_{IF}: first intermediate freq. = fm2

High side injection is used.

Therefore

$$f_{VCO} = fc + f_{IF} \qquad (2)$$

$$f_{IF} = f_{m2} = 10.695 \, \text{MHz}$$
 For $fc = 26.965 \, \text{MHz}$ (channel 1)
$$f_{VCO} = 26.965 + 10.695 = 36.66 \, \text{MHz}$$
 For $fc = 27.405 \, \text{MHz}$ (channel 40)
$$f_{VCO} = 27.405 + 10.695 = 38.10 \, \text{MHz}$$
 As for "N", from equation (1)
$$N = 192 \quad \text{(channel 1)}$$

$$N = 236 \quad \text{(channel 40)}$$

The channel selection is done by the Channel Selector Switch.

The Channel Selector Switch provides a control signal in 8 bit binary code to the Programmable Divider in IC 3. The Channel Selector Switch can provide the codes corresponding to the frequencies assigned for CB transceiver only.

Following are examples of binary code for channel selection. (For complete listing, see page 17.)

Channel frequency		26.965 (CH 1)					27.405 (CH 40)									
N	P8	P8 P7 P6 P5 P4 P3 P2 P1				P8	P7	P6	P5	P4	Р3	P2	Р1			
Binary code	1	1	0	0	0	0	0	0	1	1	1	0	1	1	0	0

To produce the transmitter frequency, Mixer II (IC 2) is used to heterodyne the signal from VCO with an injection signal from the Crystal Oscillator 2 (IC 2) which generates $f_{\parallel}F = f_{m2} = 10.695$ MHz.

$$f_{TX} = f_{VCO} - f_{IF}$$
 (3)

The output of Mixer II is fed through T3, T3 and T4 to amplifier, TR3, and then coupled to the RF stages of the transmitter.

As mentioned previously, when the PLL circuitry is unlocked, transmitter operation is stopped. The principle of operation for this is as follows:

The Phase Detector Output (LD terminal) is at low level when PLL is locked, and at high level when not locked.

L_D terminal is connected to Pin 3 of IC2 through D3 and C12. When L_D terminal level is high, the Switching Transistor in IC 2 turns the 10.695 MHz X'tal (X1) off.

Thus, transmission is inhibited. Also, in between channel positions of the Channel Selector provides a high level input to the Inhibit Gate (thus no transmission is possible between channels).

Delta Tune is performed by varying Reference Frequency 10.24 MHz within the range of \pm 1.2 \sim 1.5 kHz. The Reference Oscillator consists of IC4, X2 and D4. Note that D4 is a Variable Capacitor Diode, which changes capacitance in proportion to the variance of the voltage applied. By changing the position of Delta Tune Switch S5, the voltage applied to Pin 16 of the PLL unit changes between 3.5V and 6.8V because of R142 and R146. Through this voltage change, D4 changes capacitance and therefore the Reference Oscillator Frequency changes.

The total $\triangle F$ Variation is as follows.

$$\triangle F = \pm (\triangle F_R - \triangle f_{VCO})$$

$$= \pm (\triangle F_R - \frac{N}{1024} \triangle F_R) \qquad (4)$$

$$\triangle F = \text{Variation of Standard Frequency (Variation of 2nd Local Frequency)}$$

$$\triangle f_{VCO} = \text{Variation of VCO Frequency (Variation of 1st Local Frequency)}$$

During transmission, the voltage at Pin 16 of PLL unit is zero. So the constant voltage (about +5V DC) derived from IC2 and divided across R3 and R4 is applied to D4 and therefore the Reference Oscillator Frequency is stabilized at one frequency.

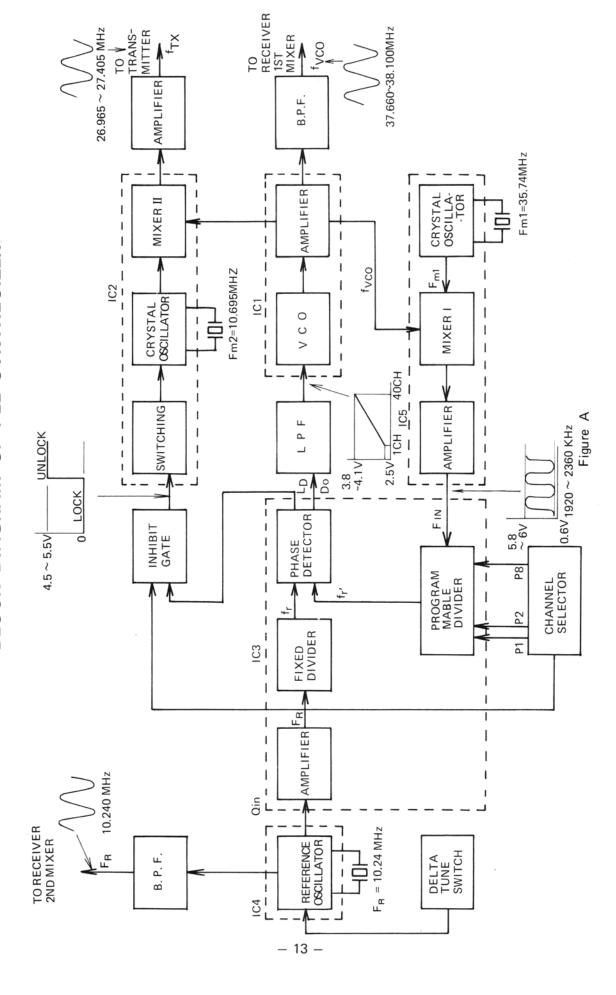
Any frequency drift with temperature can be determined as follows.

The temperature characteristics specification of the crystals is as follows.

For the reference oscillator
$$\pm 25 \text{ppm}$$

For the crystal oscillator 1 $\pm 25 \text{ppm}$ over the range from -30°C to 50°C
For the crystal oscillator 2 $\pm 25 \text{ppm}$

The worst case will be on channel 40 (27.405 MHz) where "N" is 236.

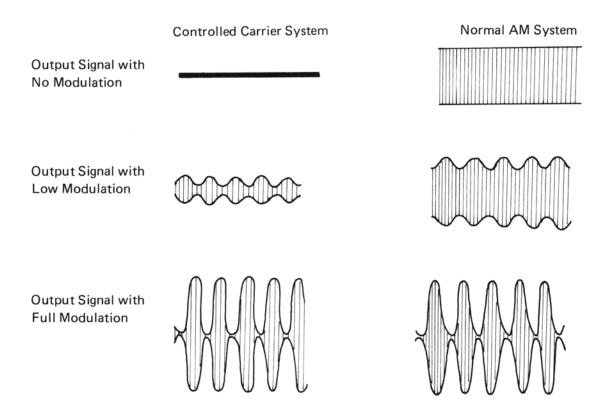

$$\triangle f_{TX}$$
 at CH 40 = $\frac{236}{1024}$ x (10.24 MHz x 2.5 x 10⁻⁵)
+ (35.74 MHz x 2.5 x 10⁻⁵)
+ (10.695 MHz x 2.5 x 10⁻⁵)
= 59.0 + 893.5 + 267.4 = 1219.9 Hz

Thus, the worst frequency tolerance is

$$\frac{1219.9 \text{ Hz}}{27.405 \text{ MHz}} = 44.5 \text{ ppm}$$

This meets FCC requirement, 50 ppm (0.005%)

BLOCK DIAGRAM OF PLL SYNTHESIZER


B. What is the Controlled Carrier System?

The TRC-205 incorporates the Controlled Carrier System. This provides two benefits: conserving battery drain and obtaining higher level of transmitted intelligence (up to 12 watts P.E.P.).

With a conventional AM system, full carrier power is always transmitted, whenever the Talk switch is "on" (this of course is very power-consuming) and when modulation occurs, the carrier is amplitude-modulated. When there is no modulation signal, the carrier does not need to be transmitted (for it carries no intelligence). Also, when modulation levels are low, the full carrier power is still transmitted — and the carrier is taking up spectrum space and causing interference. The ideal would be to do away with the carrier entirely (that's what SSB does), but with the Controlled Carrier System, we only transmit as much carrier as we need for the modulation signal that is present.

Thus, with AM systems, full carrier is always transmitted — no modulation, low modulation or full modulation — and this carrier takes power (a full 4 watts in an AM system for max. FCC output powers). With a Controlled Carrier System, hardly any carrier power is transmitted under no-modulation conditions. Then as the modulation signal increases, more carrier is generated — since the carrier level is controlled by the modulation signal.

The difference between the Controlled Carrier System and conventional AM is illustrated below:

By controlling the carrier power which is transmitted in accordance with the level of the modulation input signals, it is possible to reduce the amount of power used when transmitting (and thus prolong the life of the batteries).

The controlled carrier system adopts the same method of transmission as that of the normal AM system and so it is possible to communicate with AM stations.

In addition, with some similarities and advantages of SSB, you do not have the disadvantage of having to adjust a Clarifier.

The Controlled Carrier Circuit consists of TR304, TR303 and associated components and functions as follows: The RF final stage TR302 is modulated by swinging its collector supply voltage from the AF output of modulation transformer T201 via D301. At the same time, RF driver stage TR301 is also modulated via Hi-Lo switch S2b and D302.

Collector-modulated class C amplifier presents 100% modulation when its collector supply voltage swings from zero volts up to 2 Vcc volts, and any excess modulation signal will cause over-modulation. The supply voltage swung by the audio output is also fed to the base of TR304 via Hi-Lo switch S2b and R314. The values of R313 and R314 are chosen so that TR304 is just cut-off when the negative peaks of the swinging supply voltage reach almost zero volts. So, if some peaks reach zero, positive pulses appear at the collector of TR304, these pulses are rectified and filtered by D303, D304 and C318, and applied to the base of TR303 via R312.

Consequently, the conductivity of TR303 is increased and the power gain of RF driver TR301 is increased to generate enough carrier to automatically prevent over-modulation. In other words, carrier power is always controlled to present almost 100% modulation in accordance with modulation signal level. In addition, the base of TR303 is biased by means of R310 and VR300 so as to generate an initial power level of about 0.1 Watt, without modulation.

C. Theory of AMC (Automatic Modulation Control) Circuit

Automatic Modulation Control (AMC) processes the microphone audio to prevent overmodulation, while giving the modulator proper audio drive for high modulation over a wide range of audio amplitudes. It does so over the entire $300 \sim 3000$ Hz voice frequency range with very low distortion.

The AMC circuit begins to function as soon as the Controlled Carrier circuit reaches maximum carrier level. In other words, the carrier level increases first in accordance with the modulation input level up to the max. permissible level (this will prevent the possibility of overmodulation), then the AMC circuit, TR305 and TR306, begins to function to prevent overmodulation due to further increase of modulation signals after TR303 in the Controlled Carrier circuit reaches to its full conductivity.

For detailed explanation of the Controlled Carrier circuit, refer to the previous section.

The AMC circuit operates as a controlled loop which continuously monitors the output from the modulator and controls the modulation level by the regulating the loop gain. Refer to Schematic Diagram.

The power supply line to the RF amplifiers TR301 and TR302 (which is varied by the modulation signal), is connected to the base of TR305 and one end of R322 via Hi-Lo Switch (S2b) and R315. The other end of R322 is connected to the collector of TR303 of the Controlled Carrier circuit.

The values of R315 and R322 are chosen so as to make TR305 cut-off when the Vcc is swung up to 100% Mod and its negative peaks just reach to almost zero volts when TR303 is fully driven to its maximum conductivity; i.e. at full carrier.

Thus, positive pulses will appear at the collector of TR305 when modulation signals exceed 100% modulation at full carrier.

These pulses are rectified and filtered by D300 and C322, then fed to the base of TR306 to increase its conductivity.

The attenuation of audio input signal from the microphone is thus controlled to prevent overmodulation at the attenuator composed of R203 and TR306.

FREQUENCY OF EACH CHANNEL

Ch	Frequency f _c	V.C.O. Frequency fvco	Programmable Divider Input Frequency fvco-fm1	Reference Oscillator Frequency FR	Transmitter Oscillator Frequency fm2	Local Oscillator Frequency ^f m1
1	26.965 MHz	37.660 MHz	1920 kHz	10.240 MHz	10.695 MHz	35.740 MHz
2	26.975	37.670	1930	10.240	10.695	35.740
3	26.985	37.680	1940	10.240	10.695	35.740
4	27.005	37.700	1960	10.240	10.695	35.740
5	27.015	37.710	1970	10.240	10.695	35.740
6	27.025	37.720	1980	10.240	10.695	35.740
7	27.035	37.730	1990	10.240	10.695	35.740
8	27.055	37.750	2010	10.240	10.695	35.740
9	27.065	37.760	2020	10.240	10.695	35.740
10	27.075	37.770	2030	10.240	10.695	35.740
11	27.085	37.780	2040	10.240	10.695	35.740
12	27.105	37.800	2060	10.240	10.695	35.740
13	27.115	37.810	2070	10.240	10.695	35.740
14	27.125	37.820	2080	10.240	10.695	35.740
15	27.135	37.830	2090	10.240	10.695	35.740
16	27.155	37.850	2110	10.240	10.695	35.740
17	27.165	37.860	2120	10.240	10.695	35.740
18	27.175	37.870	2130	10.240	10.695	35.740
19	27.185	37.880	2140	10.240	10.695	35.740
20	27.205	37.900	2160	10.240	10.695	35.740
21	27.215	37.910	2170	10.240	10.695	35.740
22	27.225	37.920	2180	10.240	10.695	35.740
23	27.255	37.950	2210	10.240	10.695	35.740
24	27.235	37.930	2190	10.240	10.695	35.740
25	27.245	37.940	2200	10.240	10.695	35.740
26	27.265	37.960	2220	10.240	10.695	35.740
27	27.275	37.970	2230	10.240	10.695	35.740
28	27.285	37.980	2240	10.240	10.695	35.740
29	27.295	37.990	2250	10.240	10.695	35.740
30	27.305	38.000	2260	10.240	10.695	35.740
31	27.315	38.010	2270	10.240	10.695	35.740
32	27.325	38.020	2280	10.240	10.695	35.740
33	27.335	38.030	2290	10.240	10.695	35.740
34	27.345	38.040	2300	10.240	10.695	35.740
35	27.355	38.050	2310	10.240	10.695	35.740
36	27.365	38.060	2320	10.240	10.695	35.740
37	27.375	38.070	2330	10.240	10.695	35.740
38	27.385	38.080	2340	10.240	10.695	35.740
39	27.395	38.090	2350	10.240	10.695	35.740
40	27.405	38.100	2360	10.240	10.695	35.740

CODE LIST OF CHANNEL SELECTOR SWITCH

Channel		Binary Code								
No.	P1	P2	Р3	P4	P5	P6	Y	Com.		
1								Х		
2	X						— x —	X		
3		X					x_	X		
4		4,	Х				x	Х		
5	X		X				x	X		
6		Х	X				— x —	X		
7	X	X	X				— x —	X		
8	X			X			— x —	X		
9		X		Х			— x —	X		
10	X	X		Х			— x —	Х		
11			Х	Х			x	X		
12	1	Х	Х	Х			x	Х		
13	X	X	X	Х			x	X		
14					Х		— x —	X		
15	X				Х		— x —	Х		
16	X	X			Х		— x —	X		
17			X		Х		x	X		
18	X		X		Х		— x —	X		
19	1	X	X		Х		— x —	X		
20				Х	Х		— x —	X		
21	X			X	Х		— x —	X		
22		X		X	X		— x —	Х		
23	X		X	Х	X		— x —	X		
24	X	X		Х	Х		— x —	X		
25			X	Х	X		— x —	X		
26		X	X	Х	Х		x	X		
27	X	X	X	X	X		— x —	X		
28						Х	— x —	X		
29	X					Х		X		
30		X				Х	_ x _	X		
31	X	X				Х	_ x _	X		
32			X			Х	_ x -	X		
33	X		X			Х	— x —	X		
34		X	X			Х	x	X		
35	X	X	X			Х	— x —	X		
36				X		X	— x —	X		
37	X			Х		Х	_ x _	X		
38		X		Х		Х	x	X		
39	X	X		Х		X	x	X		
40			Х	Х		Х	x	X		

X High level	P8 High level (constant)
P7 High level (constant)	Y Inhibit signal

TROUBLESHOOTING

1. RECEIVER SECTION

- (1) No noise from speaker
 - a. Check the power switch S1.
 - b. Check the speaker wiring circuit.
 - c. Check if Squelch circuit works.
 - d. Check TR203 and TR204.
 - e. Check Volume Control (VR102).
 - f. Check D109.
- (2) No reception
 - a. Check TR209 for power transfer.
 - b. Check the local injection level obtained from PLL.
 - c. 1st local injection level.........0.5V or more 2nd local injection level........0.5V or more
 - c. Check D106.
- (3) S-Meter operation is not normal.
 - a. Check D105.
 - b. Check VR104.
 - c. Check the meter change-over switch.
 - d. Check the meter.
- (4) Delta Tune is not normal.
 - a. Check S5 switch
 - b. Check the wiring of Delta Tune Circuit.
 - c. Check D115.

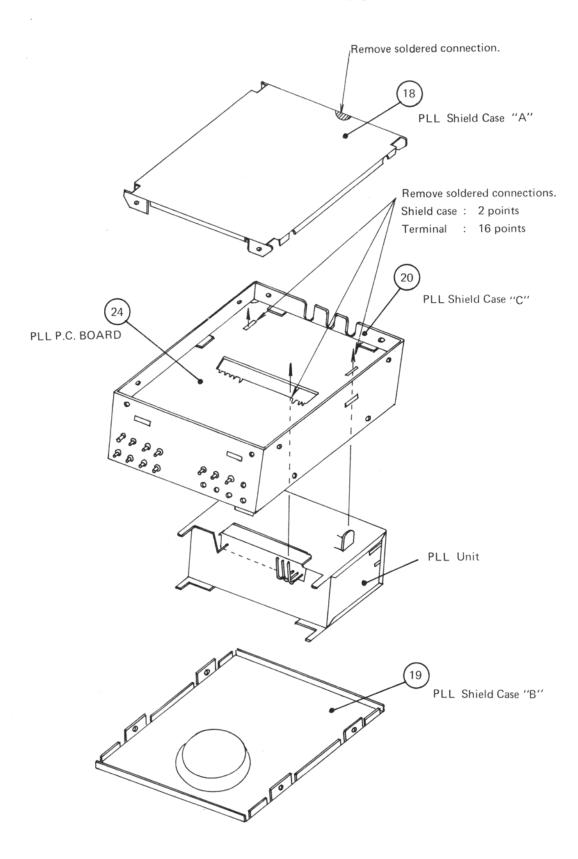
2. TRANSMITTER SECTION

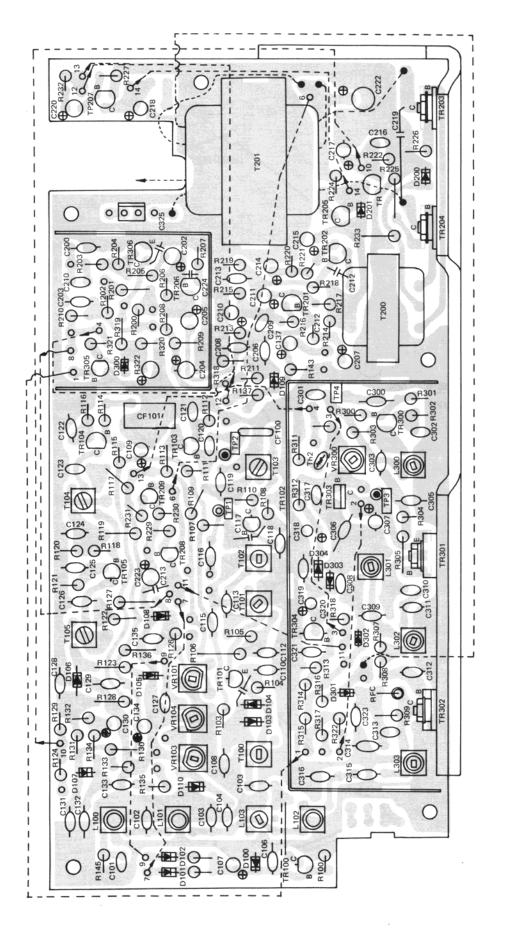
- (1) No RF output
 - a. Check "Push to Talk Switch".
 - b. Check TR208 for power transfer.
 - c. Check TR300, TR301 and TR302.
 - d. Check TR303.
 - e. Check the microphone.
 - f. Check AF circuit.
 - g. Check the output obtained from PLL.

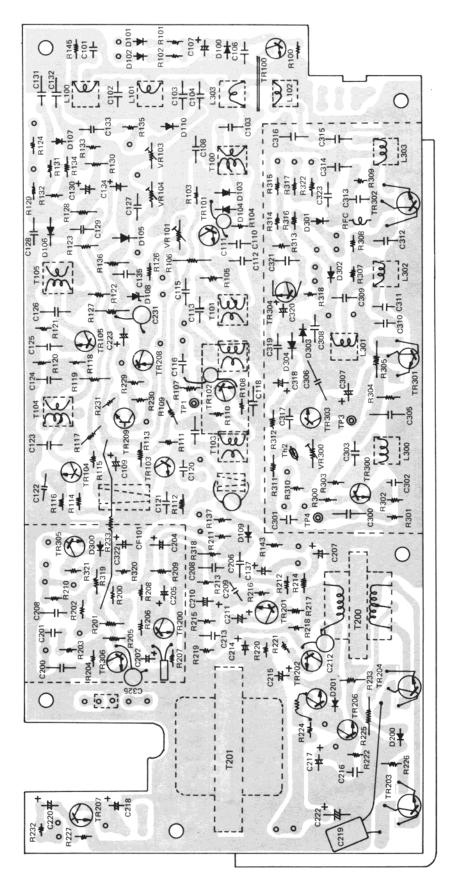
NOTE: With the Controlled Carrier system, there should be very little RF output with no modula-

To check RF output under no modulation conditions, short E & C of TR303.

- (2) RF power meter operation is not normal.
 - a. Check D110.
 - b. Check VR103.

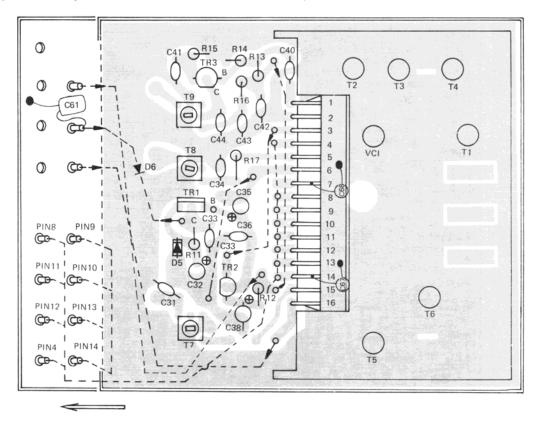

- c. Check the meter change-over switch S2.
- d. Check the meter.

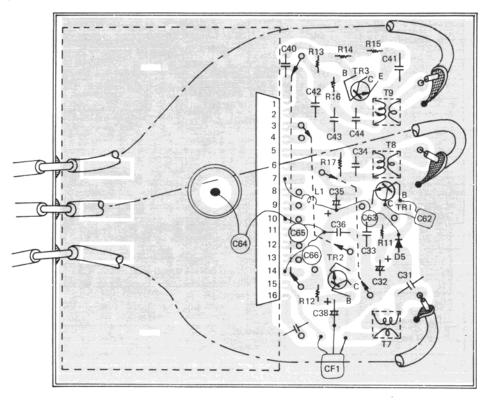

3. PLL SECTION


- (1) PLL Section operation is abnormal.
 - a. Check TR1 and D5 power circuit regulator.
 - b. Check T7.
 - c. Check T8.
 - d. Check TR2.
 - e. Check TR3 and T9.
 - f. Check the voltage at PLL Unit Pin No. 7.
 - g. Check the voltage at PLL Unit Pin No. 3.
- (2) Channel frequency is not matched to channel.
 - a. Check if the channel knob is properly mounted.
 - b. Check the channel selector and wiring.
 - c. Check the wiring between the channel selector and PLL Unit Pin No. 8 (p1) ~ Pin No. 13 (p6).

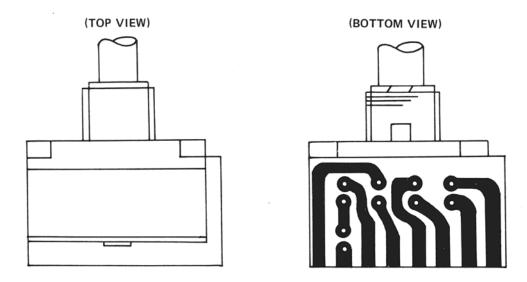
CAUTION: PLL Unit is precisely aligned at factory. Do not try to replace part(s) or align except T2, T3 and T4. When PLL Unit is defective, replace entire Unit.

REPLACING THE PLL CIRCUIT

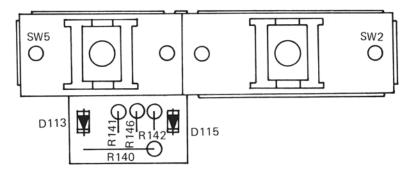




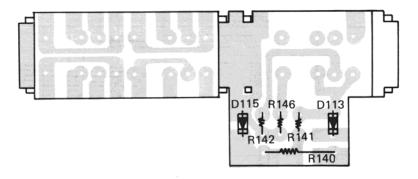
PLL P.C. BOARD


(TOP VIEW)

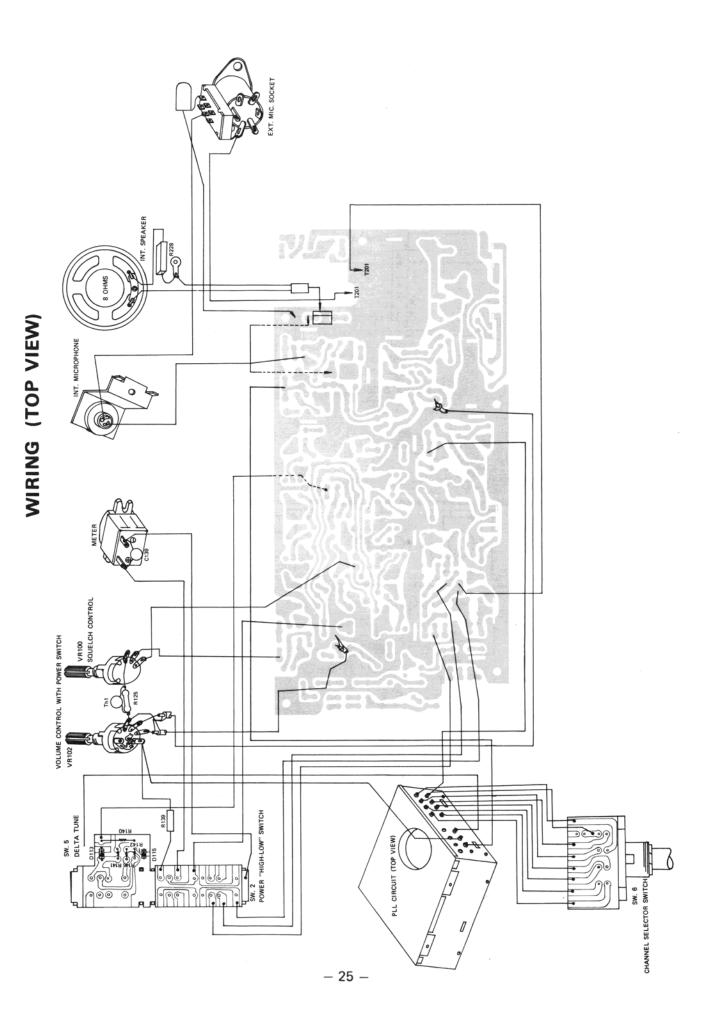
(BOTTOM VIEW)

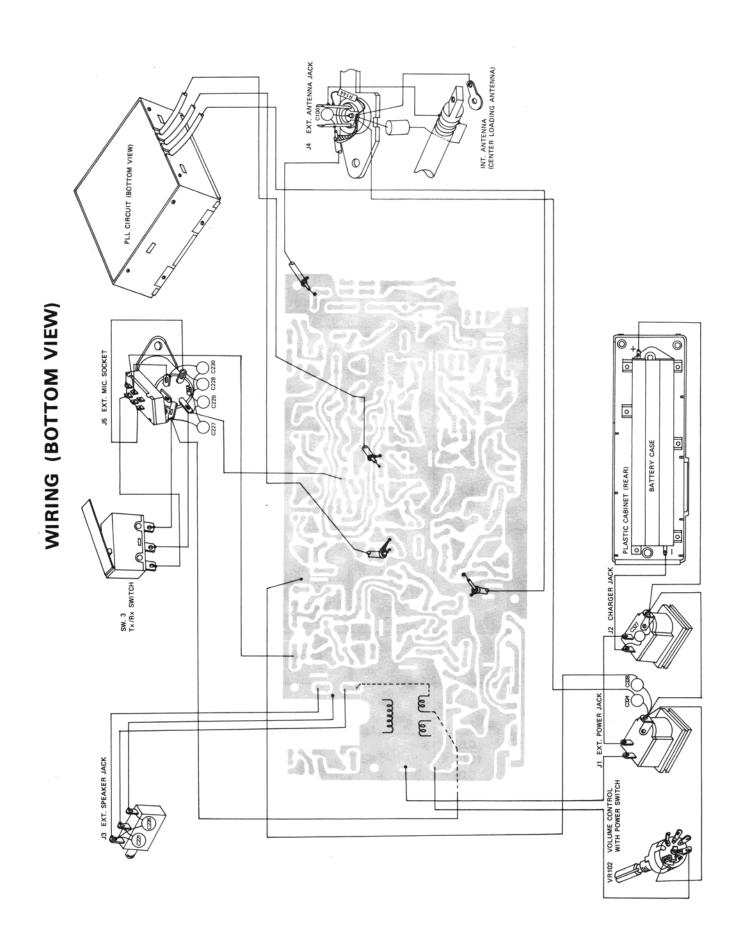


CHANNEL SELECT SWITCH AND SWITCH P.C. BOARD



Channel Select Switch P. C. B.

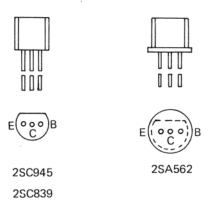

(TOP VIEW)



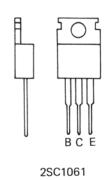
(BOTTOM VIEW)

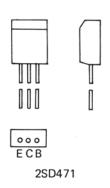
Switch P. C. B.

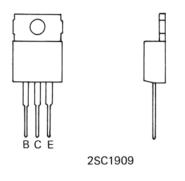
TRANSISTOR AND IC VOLTAGE CHART

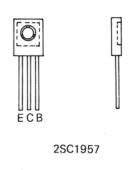

1. POWER SUPPLY VOLTAGE:

15 volts


2. CONDITION: Rx....no signal Tx....modulation: input 15mV, 1 kHz 3. MEASUREMENT BY MULTITESTER: 20 $\mathrm{K}\Omega/\mathrm{volt}$


TR No.	T	Rx	Tx	TR No.		D _V	Tx
I N 140.	-			I I INO.		Rx	1 X
TR 1	B E	6.8 6.2	6.8		B (ON)	0.69	
in i	C	15.2	6.2 14.8	TR206	B (OFF) C (ON)	0.42 0.02	
	+			(SQ)	C (OFF)	14.3	
TR 2	B C	0 6.2	6.9 6.2	(5-2)	E (ON)	0	
In Z	E	0.2	6.18		E (OFF)	0	
	В		5.5		В	0	
TR 3	C		14.5	TR207	C	0	
0	E		5.0	111207	E	0	
	В	0	0.84		В	14.5	14.0
TR100	С	0	0	TR208	С	0.023	14.8
	E	0	0		E	15.0	15.0
	В	1.13			В	14.5	0
TR101	С	8.22		TR209	С	15.0	15.0
	E	0.93			E	11.5	0
	В	1.18			В		4.1
TR102	С	10.5		TR300	С		14.8
	E	0.83			E		3.0
	В	1.12			В		-0.11
TR103	C E	6.35		TR301	С	14.5	13.5
		1.06			E		0.063
TD104	В	1.75		TD202	В	14.5	-0.35
TR104	C E	10.9 1.22		TR302	C E	14.5	13.5 0
	+					0.57	
TR105	B C	1.75 8.9		TR303	B C	0.57	0.71 0.063
111103	E	1.15		111303	E		0.003
	В		0.62		В	0.63	0.63
TR200	C		2.5	TR304	C	0.03	2.27
	E		0.37		Ε .	0	0
	В	1.53			В	0.71	
TR201	С	11.8		TR305	С	0.032	
	E	1.05			E	0	
	В	1.93			В	0	,
TR202	С	1.93		TR306	С	0	
	E	1.4			E	0	
	В	0.63			Pin 16 (+)	6.8	5.0
TR203	С	15.0			Pin 16 (0)	5.0	5.0
	E	0.028		4	Pin 16 (–) Pin 15	3.5 0	5.0
	В	0.63		B	Pin 14	6.2	
TR204	С	15.0		PLL UNIT	Pin 13	0.2	
	E	0.023		JUNIT	. ≀	channel o	ode
	B (ON)	0.02			Pin 8 Pin 7	6.2	' '
TR205	B (OFF) C (ON)	14.3 15.0			Pin 4		l condition
(SQ)	C (OFF)	15.0			Pin 3	6.18	_
	E (ON)	0					
	E (OFF)	13.5					


TRANSISTOR VIEW



2SC815 2SC1047

PARTS LIST

CAPACITORS

Ref. No.		Description		RS Part No.	Ref. No.		Desc	cription		RS Part No.
C31	33pF	±5%	Ceramic Disc.		C106	0.01μF		+80,-20%	Ceramic Disc.	
C32	33μF	16V	Electrolytic		C107	10μF	16V		Electrolytic	
C33	0.01μF	+80, -20%	Ceramic Disc.		C108	0.01μF		+80,-20%	Ceramic Disc.	
C34	22pF	±5%	Ceramic Disc.		C109	10μF	16V		Electrolytic	
C35	33μF	16V	Electrolytic		C110	0.01μF		+80,-20%	Ceramic Disc.	
C36	0.01μF		Ceramic Disc.		C111	0.01μF		+80,-20%	Ceramic Disc.	
C37	0.01μF		Ceramic Disc.		C112	0.01μF		-	Ceramic Disc.	
C38	10μF	-	Electrolytic		C113	1pF		±0.25pF	Ceramic Disc.	
C39					C114					
C40	33pF	±5%	Ceramic Disc.		C115	0.033μF		±20%	Mylar	
C41	0.01μF		Ceramic Disc.		C116	100pF		±5%	Ceramic Disc.	
C42	0.01μF		Ceramic Disc.		C117	0.01µF			Ceramic Disc.	
C43	0.01µF		Ceramic Disc.		C118	0.01μF			Ceramic Disc.	
C44	56pF	±5%	Ceramic Disc.		C119	0.01μF			Ceramic Disc.	
C45	Зорг	±3 70	Geranne Disc.		C120	15pF		±5%	Ceramic Disc.	
C46					C121	0.047μF		±20%	Mylar	
C47	0.002μF	+80 -20%	Feed Through		C122	0.047μF		±20%	Mylar	
C48	0.002μF		Feed Through		C123	0.047μF		±20%	Mylar	
C49	0.002μΓ		Feed Through		C124	0.047μF		±20%	Mylar	
C50	0.002μΓ	-	Feed Through		C125	0.047μF		±20%	Mylar	
C51	0.002μΓ		Feed Through		C126	0.047μF		±20%	Mylar	
C52	0.002μΓ		Feed Through		C127	0.047μ1 0.01μF			Ceramic Disc.	
C53	0.002μF		Feed Through		C128	0.033μF		±20%	Mylar	
C54	0.002μF		Feed Through		C129	0.033μ1 0.047μF		±20%	Mylar	
C55	0.002μΓ		Feed Through		C130	10μF	16V		Electrolytic	
C56	0.002μF		Feed Through		C131	0.01µF	101		Ceramic Disc.	
C57	0.002μ1	. 00, -20 /0	reca rinoagn		C132	0.022µF		±20%	Mylar	
C58	0.002μF	+80 _20%	Feed Through		C133	0.047μF		±20%	Mylar	
000	0.002μ1	100,-20%	r cea miroagii		C134	10μF	16V		Electrolytic	
061	0.047.5	1000/			C135	0.01μF	101		Ceramic Disc.	
C61	0.047μF		Mylar		C136	0.01μF			Ceramic Disc.	
C62	0.022μF		Mylar		C137	1	50V		Electrolytic	
C63	0.01μF	+80,-20%			C138	۱۳۰	30 V		Liectionytic	
C64	0.01μF	+80,-20%			C139	0.01μF		+80 -20%	Ceramic Disc.	
C65	0.01μF	+80,-20%			0133	υ.στμι		.00,-20%	Ceranne Disc.	
C66	0.001μF				C200	0.01μF		+80 -20%	Ceramic Disc.	
C67	0.001μF				C200	1	50V		Electrolytic	
C68	0.001μF	+80,—20%	Ceramic		C201	1	50 V	±20%	,	
0400					C202	0.033μF			Mylar Coromio Disc	
C100	47pF	±5%	Ceramic Disc.		ı	0.01μF	1014		Ceramic Disc.	
C101	56pF	±5%	Ceramic Disc.		C204	47μF			Electrolytic	
C102	250pF	±5%	Ceramic Disc.		C205		50V		Electrolytic	
C103	500pF	±5%	Ceramic Disc.		C206	0.047μF	101	±20%	Mylar	
C104	2pF		Ceramic Disc.		C207	10μF	16V		Electrolytic	
C105	33pF	±5%	Ceramic Disc.		C208	0.01μF		+80,-20%	Ceramic Disc.	

Ref. No.	D	Description		RS Part No.	Ref. No.		Description		RS Part No.
C209	0.01μF	+80,-20%	Ceramic Disc.		C322	33μF	3.15V	Tantalum	
C210	10μF 1	0V	Tantalum		C323	0.033μF	±20%	Mylar	
C211	1μF 5	0V	Electrolytic		C324	0.047µF	+80,-20%	Ceramic Disc.	
C212	220pF	±5%	Ceramic Disc.		C325	0.01μF	+80,-20%	Ceramic Disc.	
C213	0.01μF	+80,-20%	Ceramic Disc.		C326				
C214	33μF 3	.15V	Tantalum		C327	0.01μF	+80,-20%	Ceramic Disc.	
C215	10μF 1	6V	Electrolytic		C328	0.01μF	+80,-20%	Ceramic Disc.	
C216	$0.01 \mu F$	+80,-20%	Ceramic Disc.						
C217	10μF 1	6V	Electrolytic						
C218	10μF 1	6V	Electrolytic						
C219	0.47μF	±20%	Mylar						
C220	1μF 5	00V	Electrolytic						
C221	0.01μF	+80,-20%	Ceramic Disc.						
C222	470μF 1	6V	Electrolytic						
C223	1μF 5	0V	Electrolytic						
C224	0.001μF	±20%	Mylar						
C225	•		•						
C226	0.01μF	+80,-20%	Ceramic Disc.						
C227	0.001μF		Ceramic Disc.						
C228	0.01μF		Ceramic Disc.						
C229	0.01μF		Ceramic Disc.						
C230	0.01μF		Ceramic Disc.						
C231	0.01μF		Ceramic Disc.						
C232	0.047μF	±20%	Mylar						
C300	68pF	±5%	Ceramic Disc.						
C301	0.01μF	+80,-20%	Ceramic Disc.						
C302	0.01μF		Ceramic Disc.						
C303	100pF	±5%	Ceramic Disc.						
C304									
C305	220pF	±5%	Ceramic Disc.						
C306	0.01μF	±20%	Ceramic Disc.						
C307	100μF 3		Tantalum						
C308	0.01μF		Ceramic Disc.		-				
C309	56pF	±5%	Ceramic Disc.						
C310	27pF	±5%	Ceramic Disc.						
C311	150pF	±5%	Ceramic Disc.						
C312	500pF	±5%	Ceramic Disc.						
C313	12pF	±5%	Ceramic Disc.						
C314	0.01μF		Ceramic Disc.						
C315	330pF	±5%	Ceramic Disc.						
C316	500pF	±5%	Ceramic Disc.						
C317	0.01μF		Ceramic Disc.						
C318	4.7μF 5		Electrolytic						
C319	0.01μF		Ceramic Disc.						
C320	3.3µF 5		Electrolytic						
C321	0.01μF		Ceramic Disc.						
;		35, 2570							

RESISTORS

Ref. No.		Description		RS Part No.	Ref. No.	ı	Description		RS Part No.
R 1					R128	3.3KΩ	±10% ¼	Carbon Film	
R 2					R129	3.3 K Ω	±10% 1/4	Carbon Film	
R 3					R130	150K Ω	±10% 1/4	Carbon Film	
R 4					R131	$4.7\mathrm{K}\Omega$	±10% ¼	Carbon Film	
R 5					R132	3.9 K Ω	±10% ¼	Carbon Film	
R 6					R133	1.5K Ω	±10% ¼	Carbon Film	
R 7					R134	8.2ΚΩ	±10% ¼	Carbon Film	
R 8					R135	5.6K Ω	±10% ¼	Carbon Film	
R 9					R136	2.2KΩ	±10% 1/4	Carbon Film	
R10					R137	470K Ω	±10% 1/4	Carbon Film	
R11	560Ω	±10% ¼	Carbon Film		R138	100ΚΩ	±10% 1/4	Carbon Film	
R12	4.7 ΚΩ	±10% 1/4	Carbon Film		R139	120ΚΩ	±10% ¼	Composition	
R13	18ΚΩ	±10% ¼	Carbon Film		R140	3.3KΩ	±10% ¼	Carbon Film	
R14	12ΚΩ	±10% ¼	Carbon Film		R141	2.2KΩ	±10% ¼	Carbon Film	
R15	1.2ΚΩ	±10% ¼	Carbon Film		R142	5.6KΩ	±10% ¼	Carbon Film	
R16	100Ω	±10% ¼	Carbon Film		R143	470KΩ	±10% ¼	Carbon Film	
R17	1ΚΩ	±10% ¼	Carbon Film		R144	1 KΩ	±10% ½	Composition	
	1102	10/0 /4	Curbon i iiii		R145	3.3KΩ	±10% ½	Composition	
R100	22ΚΩ	±10% ¼	Carbon Film		R146	2.7KΩ	±10% ½	Carbon Film	
R100	820Ω	±10% ¼	Carbon Film		N 140	2./ 132	±10% /4	Carbon Film	
R102	22ΚΩ	±10% ¼	Carbon Film		Bann	2.7 ΚΩ	±10% ¼	Carbon Film	
	1				R200			Carbon Film	
R103	27ΚΩ	±10% ¼	Carbon Film		R201	4.7ΚΩ	±10% ¼		
R104	1ΚΩ	±10% ¼	Carbon Film		R202	2.7 ΚΩ	±10% ¼	Carbon Film	
R105	10ΚΩ	±10% ¼	Carbon Film		R203	47ΚΩ	±10% ¼	Carbon Film	
R106	3.3ΚΩ	±10% ¼	Carbon Film		R204	100ΚΩ	±10% ¼	Carbon Film	
R107	22ΚΩ	±10% ¼	Carbon Film		R205	2.2ΚΩ	±10% ¼	Carbon Film	
R108	470Ω	±10% ¼	Carbon Film		R206	220ΚΩ	±10% ¼	Carbon Film	
R109	470Ω	±10% ¼	Carbon Film		R207	470Ω	±10% ¼	Carbon Film	
R110	6.8KΩ	±10% ¼	Carbon Film		R208	4.7 ΚΩ	±10% ¼	Carbon Film	
R111	22ΚΩ	±10% 1/4	Carbon Film		R209	10ΚΩ	±10% ¼	Carbon Film	
R112	470Ω	±10% 1/4	Carbon Film		R210	4.7 KΩ	±10% ¼	Carbon Film	
R113	2.2ΚΩ	±10% 1/4	Carbon Film		R211	47 KΩ	±10% ¼	Carbon Film	
R114	1ΚΩ	±10% 1/4	Carbon Film	-	R212	33KΩ	±10% ¼	Carbon Film	
R115	2.2ΚΩ	±10% 1/4	Carbon Film		R213	4.7 ΚΩ	±10% ¼	Carbon Film	
R116	680Ω	±10% 1/4	Carbon Film		R214	· 220Ω	±10% ¼	Carbon Film	
R117	470Ω	±10% 1/4	Carbon Film		R215	2.2 ΚΩ	±10% ¼	Carbon Film	
R118	330Ω	±10% 1/4	Carbon Film		R216	68Ω	±10% ¼	Carbon Film	
R119	22ΚΩ	±10% 1/4	Carbon Film		R217	3.3KΩ	±10% ¼	Carbon Film	
R120	4.7ΚΩ	±10% 1/4	Carbon Film		R218	18ΚΩ	±10% ¼	Carbon Film	
R121	22Ω	±10% ¼	Carbon Film		R219	3.3KΩ	±10% 1/4	Carbon Film	
R122	470Ω	±10% 1/4	Carbon Film		R220	470Ω	±10% ¼	Carbon Film	
R123	1ΚΩ	±10% 1/4	Carbon Film		R221	10Ω	±10% ¼	Carbon Film	
R124	1.5ΚΩ	±10% 1/4	Carbon Film		R222	15ΚΩ	±10% 1/4	Carbon Film	
R125	10ΚΩ	±10% ¼	Composition		R223	2.2ΚΩ	±10% ¼	Carbon Film	
R126	3.3ΚΩ	±10% 1/4	Carbon Film		R224	10ΚΩ	±10% 1/4	Carbon Film	
R127	6.8ΚΩ	±10% 1/4	Carbon Film		R225	2.2Ω	±10% ½	Composition	

Ref. No.	[Description		RS Part No.	Ref. No.	Description	RS Part No.
R226	2.2Ω	±10% ½	Composition				
R227	47 K Ω	±10% ¼	Carbon Film				
R228	10Ω	±10% 3	Wire Wound				
R229	$2.2 \mathrm{K}\Omega$	±10% ¼	Carbon Film				
R230	$4.7\mathrm{K}\Omega$	±10% ¼	Carbon Film				
R231	150 Ω	±10% ¼	Carbon Film				
R232	10K Ω	±10% ¼	Carbon Film				
R233	100K Ω	±10% ¼	Composition				
R234	100Ω	±10% 1/4	Composition				
R300	18K Ω	±10% ¼	Carbon Film				
R301	12K Ω	±10% ¼	Carbon Film				
R202	270Ω	±10% 1/4	Carbon Film				
R303	$3.3 \mathrm{K}\Omega$	±10% 1/4	Carbon Film				
R304	220Ω	±10% 1/4	Carbon Film				
R305	2.2Ω	±10% 1/4	Composition				
R306							
R307	33Ω	±10% 1/4	Carbon Film				
R308	2.2Ω	±10% ¼	Composition				
R309	$1.5\mathrm{K}\Omega$	±10% ½	Composition				
R310	10K Ω	±10% ¼	Carbon Film				
R311	$2.7 \mathrm{K}\Omega$	±10% ¼	Carbon Film				
R312	$4.7\mathrm{K}\Omega$	±10%	Carbon Film				
R313	$3.9 \mathrm{K}\Omega$	±10% ¼	Carbon Film				
R314	33 K Ω	±10% 1/4	Carbon Film				
R315	15K Ω	±10% 1/4	Carbon Film				
R316	150 Ω	±5% 1	Metal Film				
R317	$27 \mathrm{K}\Omega$	±10% 1/4	Carbon Film				
R318	$1.5\mathrm{K}\Omega$	±10% ¼	Carbon Film				
R319	10K Ω	±10% 1/4	Carbon Film				
R320	$27\mathrm{K}\Omega$	±10% 1/4	Carbon Film				
R321	$3.9\mathrm{K}\Omega$	±10% ¼	Carbon Film				
R322	$2.7\mathrm{K}\Omega$	±10% ¼	Carbon Film			•	

Ref. No.	Description	RS Part No.	MFR. Part No.
FILTERS			
CF 1 CF100 CF101	SFE 10.24MA or 10.7MF-C SFE 10.7MJ or CFM 107F 12 CFW455HT or CF455A	C-0867 C-0868	
DIODES			
D 5	RD6.8EB F14B	DX-1043 DX-0721	
D100 D101 D102 D103 D104 D105 D106 D107 D108 D109 D110 D111 D1111	1S2473, 1S1588 or 1SS53 1S2473, 1S1588 or 1SS53 1S2473, 1S1588 or 1SS53 1N60, 1K60A or SD46 1N60, 1K60A or SD46 1S2473, 1S1588 or 1SS53 1N60, 1K60A or SD46 1N60, 1K60A or SD46 RD5.6EB 1S2473, 1S1588 or 1SS53 1S2473, 1S1588 or 1SS53	DX-0299 DX-0299 DX-0161 DX-0161 DX-0161 DX-0161 DX-0161 DX-1043 DX-0299 DX-0299	
D114 D115	RD7.5EB	DV 0511	
D200 D201	VD1123 (VARISTOR) 1S2473, 1S1588 or 1SS53	DX-0514 DX-0299	
D300 D301 D302 D303 D304	1S2473, 1S1588 or 1SS53 F14B, F14C or V06C 1S2473, 1S1588 or 1SS53 1S2473, 1S1588 or 1SS53 1S2473, 1S1588 or 1SS53	DX-0299 DX-0721 DX-0299 DX-0299	
JACKS A	AND SOCKET		
J 1 J 2 J 3 J 4 J 5 J 6	Ext. Power Jack Changer Jack Ext. Speaker Jack Ext. Antenna Jack Ext. Mic. Socket Int. Speaker Connector (Socket)	J-0924 J-0922 J-0923 J-6532 J-0925	EC-317-1-4 EC-317-1-4 JJ-J009 CS163-1-2 5045-02A
COILS			
L 1 L100 L101	RF Choke Coil RF Coil RF Coil	CA-3874 CA-3870	CH-H104SB L-R486SA L-R491SA

Ref. No.	Description	on	RS Part No.	MFR. Part No.
L102	RF Coil		CA-3871	L-R490SA
L103	RF Coil		CA-3085	T-T036SA
L300	RF Coil			L-R376SA
L301	RF Coil			L-R376SA
L302	RF Coil		CA-3872	L-R375SA
L303	RF Coil		CA-3873	L-R376SA
RFC	RF Choke Coil		CB-2210	LR151SB
SWITCHES	<u> </u> <u>S</u>			
S 2	Power "HIGH-LOW" Switch	ı	S-5049	SLE74302A
S 3	Tx/Rx Switch		S-6053	AH2524
S 5	Delta Tune Switch		S-5050	SLE62302A
S 6	Channel Selector Switch		S-1295	STF-40A
TRANSFO	RMERS			
T 7	RF Transformer 10	0.240 MHz	CA-3869	T-T060SA
T 8	RF Transformer 38	8 MHz	CA-3714	T-T052SA
T 9	RF Transformer 2	7 MHz	CA-3086	T-T037SA
T100	RF Transformer 2	7 MHz	CA-3867	T-T048SC
T101	RF Transformer 2	7 MHz	CA-3868	T-T049SC
T102		7 MHz		T-T049SC
T103	IF Transformer 10	0.695 MHz	CA-7832	T-M056SA
T104	IF Transformer 45	55 kHz	CA-7356	T-M054SA
T105	IF Transformer 45	55 kHz	CA-7357	T-M055SB
T200	Audio Driver Transformer		TN-0122	T-A091SC
T201	Audio Power Transformer		TD-0168	T-D040SD
THERMIS	TORS			
TH 1	D33A		T-1202	
TH 2	D33A		T-1202	
TRANSIS	TORS	1		ı
TR 1	2SD471 (K)			
TR 2	2SC945 (R, P or Q) or 2	SC828 (P, Q or R)		
TR 3	2SC839 (E or F) or 2SC8			
TR100	2SC839 (E or F) or 2SC8	329 (B or C)		
TR101	2SC1047 (C) or 2SC1394	,,		
TR102	2SC1047 (C) or 2SC1394			
TR103	2SC839 (E or F) or 2SC8	329 (B or C)		
TR104	2SC839 (E or F) or 2SC8			
TR105	2SC839 (E or F) or 2SC8			

Ref. No.	Description	RS Part No.	MFR. Part No.
TR200	2SC945 (R, P or Q) or 2SC828 (P, Q or R)	•	
TR201	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
TR202	2SC945 (Q) or 2SC828 (Q)		
TR203	2SC1061 (B)		
TR204	2SC1061 (B)		
TR205	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
TR206	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
TR207	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
TR208	2SA562		
TR209	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
TR300	2SC815 or 2SC1906		
TR301	2SC1957, 2SC1846, 2SC781 or 2SC1760		
TR302	2SC1909, 2SC1974 or 2SC1816		
TR303	2SD471 (K)		
TR304	2SC945 (Q) or 2SC828 (Q)		
TR305	2SC945 (Q) or 2SC828 (Q)		
TR306	2SC945 (R, P or Q) or 2SC828 (P, Q or R)		
VARIABL	E RESISTORS		
VP102	Variable Resistor 10KΩA VOLUME	P-1846	
VR102	with S1 (POWER)		
VR100	Variable Resistor 10KΩ-C SQUELCH	P-0817	
SEMI VAI	RIABLE RESISTORS		
VR101	Semi Variable 2 KΩ-B	P-6473	
VR103	Semi Variable 50 KΩ-B	P-6480	
VR104	Semi Variable 10 KΩ-B	P-6474	
VR300	Semi Variable 50 KΩ-B	P-6480	
OTHER E	LECTRICAL PARTS	I	
	Int. Speaker 32 ohm	S-4729	P-50-1732C
	Int. Mic.	M-1089	WM-034Z
	Meter (S/RF/Batt.)	M-0243	M-A116SA
	Int. Antenna (Center Loading Antenna)	CA-0292	AR-0003
	Int. Speaker Connector (Receptacle)		Z-A038SA
	PLL Unit Ass'y	X-7626	TCH-A32F

Ref. No.	Description	RS Part No.	MFR. Part No.
MISCELLA	ANEOUS (Refer to Disassembly Instruction & Explo	oded View)	
1	Plastic Cabinet (Front)		XCI-1P001
2	Plastic Cabinet (Rear)	Z-3865	XCI-2P002
3	Battery Case		XCI-3P004
4	Front Name Plate		XCI-4P025
5	Rear Name Plate		XCI-4P015
6	Jack Plate		XCI-3P006
7	Control Panel	Z-3864	XCI-2P003
8	Battery Cover		XCI-3P005
9	Screw for Battery Cover		
10	E Ring for Battery Cover		
11	Cushion		XCI-4P032
12	Push to Talk Switch Button		XCI-3P008
13	Channel Select Knob	K-2815	XCI-4P009
14	Control Knob (VOLUME and SQUELCH)	K-2816	XCI-4P010
15	Cap for Jack	HB-7195	XCI-3P007
16	Chassis		XCI-2P011
17	Sub-panel	Z-3866	XCI-3P012
18	PLL Shield Case "A"		XCI-4P020
19	PLL Shield Case "B"		XCI-4P021
20	PLL Shield Case "C"		XCI-3P019
21	Main P. C. Board		XCI-3P105
22	Channel Select Switch P. C. Board		XCI-4P120
23	Switch P. C. Board		XCI-4P113
24	PLL P. C. Board		XCI-4P106
25	Heat Sink		XCI-3P022
26 27	Hand Strap Ring E Ring for Hand Strap		XCI-4P013
28	Bracket for Tx/Rx Switch		VCI 40022
29	Spring for Push to Talk Switch		XCI-4P023 XCI-4P028
30	Bracket for Int. Microphone		XCI-4P028 XCI-4P024
31	Ribbon		701-41-024
32	Antenna Rubber Ring	A-4407	XBN-4P015
33	Rubber Bushing	HB-7205	G48-No. 7148
34	Plastic Washer	115 7200	4.2ϕ
35	Proof Dust Net		XCI-4P041
36	Hand Strap		XCI-3P030
37	Hand Strap Mounting Bracket		XCI-4P016
38	Hand Strap Bracket		XCI-4P017
39	Metal Bar (Hand Strap)		XCI-4P018