ADDITIONAL

1959
 VOLUME TV-16

Television

Servicing Information

Compiled by
M. N. BEITMAN

1959

Volume TV-16

Television

Servicing Information

Compiled by
M. N. BEITMAN

SUPREME PUBLICATIONS

RADIO DIAGRAM MANUALS

SUPREME TELEVISION MANUALS

Abstract

1959 TV Manual, TV-15 This ned giant volume of 1959 television factory data will give you everything you need to repair and adjust all present-day TV sets. The television series manuals are amazing bargains and defy competition. The 1959 volume contains circuit explanations, 192 pages of alignment facts, test patterns, response curves, waveforms, voltage charts, hints, and dozens of mammoth double-page work-bench diagrams. Large size $81 / 2 \times 11$ inches. Sturdy covers. Book binding opens flar. Amazing value. Price postpaid, only....

EARLIER TV MANUALS FOR 1958 TO 1948

RADIO DIAGRAMS FOR PREVIOUS YEARS

Speed up and simplify all radio repairs. Service radios faster, better, easier, save money and time, use these SUPREME Most-Often-Needed diagram manuals to get ahead. At the low cost (only $\$ 2$ for most volumes) you are assured of having for every job needed diagrams and other essential repair data on 4 out of 5 sets you will ever service. Clearly printed circuits, parts lists, alignment data. and helpful service hints are the facts you need. Average volume has 192 pages, large size $81 / 2 \times 11$ inches. Manual style binding.

\square 1958 Volume 18 $\$ 2.50$	1957 Volume 17 $\$ 2.50$	1956 Volume 16 $\$ 2.50$	1955 Volume 15 $\$ 2.00$	$\underset{\substack{\text { Volume } \\ \$ 2.50}}{ } 1954$	1953 Volume 13 $\$ 2.50$
1952 Volume 12 $\$ 2.50$	1951 Volume 11 $\$ 2.50$	\square 1950 Volume 10 $\$ 2.50$	1949 Volume 9 $\$ 2.50$	1948 Volume 8 $\$ 2.00$	1947 Volume 7 $\$ 2.00$
1946 Volume 6 $\$ 2.00$	1942 Volume 5 $\$ 2.00$	$\begin{gathered} \square \\ \text { Volume } \\ \$ 2.00 \end{gathered}$		$\begin{aligned} & 40 \quad \square \\ & e^{3} \\ & 0 \end{aligned}$	1926-1938 Volúme 1 $\$ 2.50$

\square INDEX for all Radio and TV Manuals
256

RADIO SERVICING COURSE

Here is your practical radio course of 22 easy-to-follow Here is your practical radio course feview fundamentals, learn new servicing tricks. Just like a $\$ 200.00$ correspondence course. Everything in radio servicing. With self-testing questions.
New edition. Price only
$\$ 250$

Simplified Radio Servicing by COMPARISON Method

Revolutionary different COMPARISON technique permits you to do expert work on all radio sets. Most repairs can be made without test equipment or with only a voltohmmeter. Many simple, point-to-point, cross-reference, circuit suggestions locate the faults instantly. Plan copyrighted. Covers every radio set - new and old models. This new servicing technique presented in handy manual form, size $81 / 2 \times 11$ inches, 92 pages. Over 1,000 practical service hints. 26 large, trouble-shooting blueprints. Charts for circuit analysis. 114 tests using a $5 c$ resistor. Developed
\$150
by M. N. Beitman. New edition. Price only
\square

How to Modernize Radios

Cash in by improving and modernizing all out of date radio sets and cabinets. Practical job-sheets with schematics and photographs make this work easy.
Size $81 / 2 \times 11$ inches. Your price only
\$1
Supreme TV manuals cover all needed service material on every popular TV set of every important manufacturer. Here is helpful, practical, factory-prepared data that will really make TV servicing and adjustment easy for you. Supreme giant TV manuals have complete circuits, aliynment facts, test patterns. response curves, service hints, recommended changes, voltage charts, waveforms, and many double-page diagram blueprints. Here is your TV service material to help vou do more expert work quicker: and priced at only 53 . Radio manuals described at left.

ADDITIONAL 1957 TV, Vol. TV-13,			
ARL	1957 TV	Manual	
$\$ 3.00$	$\underset{\substack{\text { Additional, TV-10 } \\ \$ 3.00}}{\square}$	$\begin{aligned} & \square 1955 \text { TV } \\ & \text { Early, Vol. TV-9 } \\ & \$ 3.00 \end{aligned}$	$\square_{\substack{\text { Volume TV. } \\ \$ 3.00}} 1954 \text { TV }$
$\begin{aligned} & \text { Volume TV.7 } \\ & \$ 3.00 \end{aligned}$			$\underset{\substack{\square_{\text {Volume }}^{\$ 3.00}}}{1951 \text { TV } 5}$
$\begin{aligned} & 1949 \text { TV } \\ & \text { olume. TV.3 } \\ & \$ 3.00 \end{aligned}$	$\underset{\substack{\square \\ \text { Volume } \\ \mathbf{s 3 . 0 0}}}{ } 1948$		$\begin{aligned} & -58 \mathrm{RCA} \\ & \mathrm{me}, \mathrm{sl} .50 \end{aligned}$

TELEVISION SERVICING COURSE

Let this new course teach you TV servicing. Amazing bargain. complete only $\$ 3$, full price for all lessons. Giant in size, mammoth in scope, topics just like a $\$ 200.00$ correspondence course. Lessons on picture faults, circuits, adjustments, short-cuts, C'HF, alignment hints, antenna problems, trouble-shooting, test equipment, picture $\$ 3$ analysis. Special, only

RADIO MATHEMATICS

Explains arithmetic and simple algebra in connection with units, color code, meter scales, Ohm's law, alternating currents, ohmmeter testing, wattage rating, series and paralle! connections, capacity, inductance, mixed circuits, vacuum tubes. curves, the decibel, etc., and has numerous examples. Only

25 6

Practical Radio \& Electronics Course

Here is your complete home study course of 35 lessons designed to train any beginner to be an expert in radio and electronics. Covers every topic of radio, electronics, with lessons on test equipment, FM, TV, radio, etc. Giant $81 / 2 \times 11$ inches, 3 -in-1 volume, includes all lessons, instructor's notes, test questions. New edition. Only.
$\$ 395$
ANSWER BOOK to the above course
256

CONTENTS

Admiral Corp.Chassis 16R1C,-CB, 16AR1C, 16S1C, -CB, 16AS1C 5 to 12(List of models is given on page 5)Chassis 15A2, 15B2, 15B3, Remote Controls 4G3, 4H3,Son-r Tuners S11A, S21A (models on page 13) 13 to 23Chassis 15D1B (Essential differences from 15A2) 24
Emerson Radio and Phonograph Corp.
Chassis $120451 \mathrm{HC}(\mathrm{H}), 120452 \mathrm{MC}(\mathrm{M})$, Models 1500 ,
and 1502 through 1506 25 to 30
General Electric Co.
Series M5 Chassis, for list of Models see page 31, 31 to 38
Hoffman Radio Corp.
Chassis 335 and 336, MARK 7, list of models p. 40 39 to 42
Montgomery Ward \& Co.
Model WG-4204A, Serial 85X 43 to 46Models WG-5062A, WG-5067A, WG-5072A, WG-5077A,
WG-5162A, WG-5172A 47 to 50
Motorola, Inc.
Chassis TS-430, LTS-430, QTS-430 (Models page 51) 51 to 58
Chassis TS-434, Model 14P14-1 59 to 66
Chassis TS-552,-Y, TS-553,-Y, WTS-553 67 to 78
(List of models given on page 67)
Chassis TS-551,-Y, MTS-551,-Y, VTS-551, WTS-551,-Y
For list of models see page 79. 79 to 82
Chassis TS-556,-Y, Models $21 \mathrm{~T} 64 \mathrm{~B}, \mathrm{M}, \mathrm{Y} 21 \mathrm{~T} 64 \mathrm{~B}, \mathrm{M}$ 83 to 88
Olympic Radio \& Television, Inc.
Chassis GT, GTU, GU, GUU (list of models page 89) 89 to 92
Chassis GD, GDU, GH, GHU (list of models page 93) 93 to 96
Chassis GA, GAU, GB, GBU, GF, GFU (models p. 97) 97 to 100
Packard-Bell Co.
Models 17VC1, 17VT3, 17VT4, 17VT8, 17VT9, 21VT4, Chassis V8-2 (Revised) 101 to 104

Table of Contents, Continued
Philco Corp.
Chassis 9L37, 9L37U, 9L38, 9L38U 105 to 114(For a list of models see page 105)
TV Model G-4720, 9L38A \& Audio Amplifier 115-116
Chassis 9L60 and 9L60U (list of models page 117) 117 to 122
R. C. A. VictorChassis KCS-120E,-F, Models 140P020, 140P020U,$140 \mathrm{P} 023,140 \mathrm{P} 023 \mathrm{U}, 140 \mathrm{P} 024,140 \mathrm{P} 024 \mathrm{U}$. 123 to 126
Chassis Nos. KCS-124C through KCS-124L, for
list of models see page 127 127 to 134
Chass is KCS -126A, - B (list of models on page 135) 135 to 140
Sylvania Electric Products, Inc.
Chassis 1-542-1, $-2,-3,-4,-5,-6,-7,-8$, Models 21C414,$21 \mathrm{C} 519,21 \mathrm{C} 524,21 \mathrm{C} 616,21 \mathrm{C} 621,21 \mathrm{~T} 218,21 \mathrm{~T} 305141$ to 148
Spartan Division of the Magnavox Company
Chassis 18 Series, CB and DC Schematic Diagram. 149
Trav-ler Radio Corp.Chassis 943-38, 947-28, 953-28, 975-48 150 to 152
Westinghouse Electric Corp.
Chassis V-2365-11, V-2365-12 (list of models, 153) 153 to 160Chassis V-2374-1, V-2374-2, V-2377-1, V-2377-2,(For list of models see page 161)161 to 166
Chassis V-2375-1,-2, Models H21K272 through
H21K276, and H21KU272 through H21KU276 167 to 172
Chassis V-2376-1, V-2376-2 (list of models p. 173) 173 to 178
Zenith Radio Corp.Chassis $16 \mathrm{C} 20,-\mathrm{Q}, 16 \mathrm{C} 21,-\mathrm{Q},-\mathrm{Z}, 16 \mathrm{C} 22 \mathrm{Q}, 16 \mathrm{C} 23,16 \mathrm{C} 24$,$18 \mathrm{C} 20,-\mathrm{Q}, 18 \mathrm{C} 24 \mathrm{Q}$, (list of models page 179) 179 to 190
INDEX (by make and model or chassis number) 191 and 192

This manual is made up of factory prepared service material. Editorial changes and selections were made to conform with the objectives of this manual. Our sincere thanks and appreciation is extended to every manufacturer whose products are covered by the material in this manual and who aided us in the preparation of this book.
m. n. Beitiman Chief Editor of the Engineering Staff, Supreme Publications.

CHASSIS 16R1C, 16R1CB, 16AR1C, 16S1C, 16S1CB, 16AS1C

MODEL IDENTIFICATION CHART

MODEL NUMBER	TV CHASSIS	MODEL NAME	CHASSIS SERIES	VHF TUNER	UHF TUNER	LOCATION OF TUNING CONTROLS	TONE CONTROL (S)
$\begin{aligned} & \text { T21E20E } \\ & \text { T21E20F } \end{aligned}$	$\begin{aligned} & \text { 16R1C } \\ & 16 R 1 C B \end{aligned}$	Asbury	Imperial 330	$\begin{gathered} 94 E 144-13 \\ 940151-1 \text { or }-5 \end{gathered}$		Front	Single
TA21E20E	16ARIC	Asbury	Imperial 330	94E144-30	$\begin{aligned} & \text { 94D112-5 or } \\ & \text { 94D155-3 } \end{aligned}$	Front	Single
$\begin{aligned} & \text { T21E21E } \\ & \text { T21E21F } \end{aligned}$	$\begin{aligned} & 16 R 1 C \\ & 16 R 1 C B \end{aligned}$	Asbury	Imperial 330	$\begin{gathered} 94 E 144-13 \\ 94 D 151-1 \text { or }-5 \end{gathered}$		Front	
$\begin{aligned} & \text { T21E22E } \\ & \text { T21E22F } \end{aligned}$	$\begin{aligned} & \text { 16R1C } \\ & \text { 16R1CB } \end{aligned}$	Asbury	Imperial 330	$\begin{gathered} \text { 94E144-13 } \\ 94 \mathrm{D} 151-1 \text { or }-5 \end{gathered}$		Front	
TA21E22E	16ARIC	Asbury	Imperial 330	94E144-9	$\begin{aligned} & \text { 94D112.5 or } \\ & 94 D 155.3 \end{aligned}$	Front	
T21E23E	$\begin{aligned} & \text { 16R1C } \\ & 16 R 1 C B \end{aligned}$	Asbury	Imperial 330	$\begin{aligned} & \text { 94E144-13 } \\ & 94 D 151-1 \text { or }-5 \end{aligned}$		Front	
TA21E23E	16ARIC	Asbury	Imperial 330	94E144-9	$\begin{aligned} & \text { 94D112-5 or } \\ & 94 D 155-3 \end{aligned}$	Front	
C21E1IE C21E1IF	$\begin{aligned} & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \end{aligned}$	Windsor	Imperial 330	$\begin{gathered} 94 E 144-24 \\ 940151-2 \text { or }-6 \end{gathered}$		Fronl	
CA2IE11E	16AS1C	Windsor	Imperial $\mathbf{3 3 0}$	94E144-22	$\begin{aligned} & \text { 94D112-5 or } \\ & \text { 94D155-3 } \end{aligned}$	Front	
C21E12E C21E12F	$\begin{aligned} & 1651 C \\ & 1651 C B \end{aligned}$	Windsor	Imperial 330	$\begin{gathered} 94 E 144-24 \\ 94 D 151-2 \text { or }-6 \end{gathered}$		Front	
CA2IE12E	16AS1C	Windsor	Imperial 330	94E144-22	94D112-5 or $\text { 94D } 155-3$	Front	
C21E13E C21E13F	$\begin{aligned} & 1651 C \\ & 1651 C B \end{aligned}$	Windsor	Imperial 330	$\begin{aligned} & 94 E 144-24 \\ & 940151-2 \text { or }-6 \end{aligned}$		Front	
CA21E13E	16ASIC	Windsor	Imperial 330	94E144-22	$\begin{aligned} & \text { 94D112-5 or } \\ & 94 D 155-3 \end{aligned}$	Front	
L21E22E L21E22F L21E23E L21E23F	$\begin{aligned} & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \\ & 1651 \mathrm{C} \\ & 1651 \mathrm{CB} \end{aligned}$	Princeton	Imperial 330	$\begin{gathered} 94 E 144-24 \\ 94 \mathrm{D} 151-2 \text { or }-6 \end{gathered}$		Front	Single

This group of sets is similar to chassis covered on pages 29 through 34, in TV-15, EARLY 1959 Television Servicing Information manual. The alignment information given in this previous volume is applicable. Circuit diagram of Chassis 16R1CB, 16S1CB, is printed on pages $10-11$ of this ADDITIONAL 1959 TV manual. Chassis with these numbers but without suffix letter "B" use a different, disc type VHF tuner employing a cascode RF amplifier. For a circuit diagram of this tuner (94 E 144-13, etc.) see page 32 of TV-15. Chassis 16AR1C, 16AS1C, are practically identical to types mentioned except that a combination VHF-UHF tuner is used. The material for all of these sets is printed on pages 5 through 12.

Warning: The chassis of these receivers are connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between the chassis and any grounded object. Do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes, etc.) at the same time.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 16R1C, 16AR1C, 16S1C, 16AS1C Service Information, Continued

VHF CHANNEL ADJUSTMENT FOR FOR 16RICB AND 16SICB CHASSIS

VHF Channel adjustment of each station should be checked upon installation and at every service call. If adjustment is properly made, it is possible to tune from one station to another by merely turning the Channel Selector knob.

To adjust VHF Channel Slugs, proceed as follows:

1. Turn the set on and allow 15 minutes to warm up.
2. Set VHF Channel Selector for a station; set other controls for normal picture and sound.
3. Set Fine Tuning control at center of its range by rotating it approximately half-way.
4. For table models, remove Channel Selector and Fine Tuning knobs. For console models, remove escutcheon plate above Channel Selector knob after removing mounting screw at center of plate. Note: Later console models may use snap-in plate without mounting screw. To remove snap-in plate, insert blade end of a screwdriver against left side of channel window. With slight pressure, pull left side of plate away from cabinet.
5. Insert a $1 / x^{\prime \prime}$ blade, flexible non-metallic tool (Part No. 98A30-19) through the hole adjustment to Channel Selector shaft. For each channei in operation, carefully adjust the channel slug for best picture. (Note that this is not the point at which the sound is loudest.)

Caution: Only slight rotation of the slug will be required; turning the slug out too far will cause it to fall out of coil.

AUDIO HUM

Persistent audio hum (with or without TV signal) can be caused by high resistance leakage of coupling capacitor C203 (. $001 \mathrm{mf}, 500$ volts, ceramic). Coupling capacitor C203 is connected from pin 3 of sound IF amplifier V304B to terminal of sound detector coil L201.

GEAR TOOTHED RASTER

Distortion at right side of raster, with dark vertical line having a "gear toothed" pattern may be due to a faulty horizontal lock coil, L401.

Other symptoms occurring with above trouble may be a great change in horizontal oscillator frequency when set is switched off-channel and a few seconds delay for the oscillator to lock-in when set is turned back to an operating channel.

INSTALLING UHF CHANNEL STRIPS IN VHF TUNERS 94D151-1, -2, -5 OR -6

Receivers using VHF tuners 94D151-1, -2, -5 or -6 can be easily adapted for UHF operation by insertion of a UHF channel coil strip in the vacant channel position of the tuner turret drum (between channels 13 and 2).

If more than one UHF channel can be received, additional UHF channel coil strips can be inserted in the tuner turret drum after removing unused VHF channel coil strips.

Rear View of 16RIC, 16AR1C, 1651 C and 16ASIC Chassis Showing Adjustment Locations. Note: Super Range Finder control not in chassis stamped Run 29. UHF Antenna Terminals in VHF-UHF sets only.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 16R1C, 16AR1C, 16S1C, 16AS1C, Service Information, Continued

SERVICING PRINTED WIRING

A major portion of the circuitry in these receivers is contained in two printed wiring boards. The smaller printed circuit board at side of chassis contains tubes and com. ponents in the video IF and video detector circuits. The larger printed circuit board at bottom of chassis contains tubes and components in the sound IF, sound detector, sound output, sync, AGC, video amplifier, vertical and horizontal sweep circuits.

Trouble shooting of printed circuit wiring is similar to that of conventionally wired sets.

Note: In these illustrations, components are shown schematically instead of pictorially. This illustrates what would be seen if it were possible to look through the printed circuit wiring board and actually see the various components on the board.

Sync Separator and Gated AGC Circuit Usod in 16R1, 16AR1, 1651 and 16AS1 Chassis Stamped Run 29.

Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester (General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not control shafts) and some grounded point, such as electrical conduit, water pipe, etc. If the neon lamp glows, the chassis is "hot" and the line cord plug should be reversed. Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

View of Printed Wiring Board A5780-5 used in 16R1, 16AR1, 16S1, 16AS1 Chassis. Note: Noise Gate Circuit in Chassis Stamped Run 30 or Higher. Gray Area Represents Printed Wiring; Black Symbols and Lines Represent Components and Connections on Opposite Side.

Exploded View of VHF Tuners 94D151-1 and -2 used in early 16J1, 16K1, 16R1CB and 16S1CB Chassis.

Exploded View of VHF Tuners 94D151-5 and -6 Used in Later 16J1, $16 \mathrm{KI}, 16 \mathrm{RICB}$ and 16S1CB Chassis.
 R324

View of Component Side of Printed Wiring Board A5780-5 used in 16R1C, 16AR1C, 1651 C and 16ASIC Chassis.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Service Information on Tuner of Chassis 16AS1C, Continued

VHF TUNERS 94 E144 IN I6ARIC, 94 E144-22 IN 16ASIC

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 16R1CB, 16S1CB, Schematic Diagram
(See page 5 for explanation of chassis differences)

SCHEMATIC NOTES

(11), (12)(T), (V), etc., indicate alignment points and connections.

Fixed resistor values shown in ohms $\pm 10 \%$ tolerance, $1 / 2$ watt; capacitor values shown in micromicrofarads \pm 20% tolerance unless otherwise specified.

Note: $\mathrm{K}=\mathrm{xl} 1000$, $\mathrm{MEG}=\mathrm{xl}, 000,000, \mathrm{MF}=$ microfarad.
VHF TUNER 940151-5 IN I6RICB
VHF TUNER 940151-6 IN 16SICB

- $-5^{29020} 0$
 ${ }^{19028}$

SCHEMATIC NOTES, MEASURING VOLTAGES AND WAVEFORMS.

See page 12 for Schematic Notes, Information on Observing Waveforms and Conditions For Measuring Voltages.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION ADMIRAL

Schematic for 16R1CB and 16S1CB Television Chassis Stamped Run 30.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis $16 \mathrm{R} 1 \mathrm{C}, 16 \mathrm{R} 1 \mathrm{CB}, 16 \mathrm{AR} 1 \mathrm{C}, 16 \mathrm{~S} 1 \mathrm{C}, 16 \mathrm{~S} 1 \mathrm{CB}, 16 \mathrm{AS} 1 \mathrm{C}$, Continued

VOLTAGE WARNING

The chassis of this receiver is connected directly to one side of the 117 volt, 60 cycle power line. Depending upon the position of the line cord plug in the wall outlet, the total AC line voltage may exist between the chassis and any ground object. When installing or servicing, do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes, etc.) at the same time.

Do not ground chassis or connect test equipment directly to it, unless an isolation transformer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot". Connect an electrician's neon tester (General Cement's "Ne-o-lite" or equivalent) between the receiver chassis (not control shafts) and some grounded point, such as electrical conduit, water pipe, etc. If the neon lamp glows, the chassis is "hot" and the line cord plug should be reversed. Make the same check with the neon lamp connected between ground and the ground terminal of the test equipment. If the lamp glows, reverse the line cord to the test equipment.

PICTURE TUBE HANDLING PRECAUTION

The newly developed picture tube used in these sets must be handled with much greater care because of its short, thin neck and wafer type base. ALWAYS lift picture tube by grasping firmly around face plate; NEVER LIFT TUBE BY ITS NECK. Use care when inserting socket to prevent bending pins. Before handling picture tube, remove static charge from it by shorting 2nd anode well to chassis ground with an insulated wire or screwdriver. WHEN TUBE IS REMOVED, ALWAYS PLACE IT FACE DOWN.

CONDITIONS FOR MEASURING VOLTAGES

Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt to measure voltages at these points without suitable test equipment. A VTVM with a high voltage probe may be used when measuring picture tube 2 nd anode voltage.

- Set the CHANNEL SELECTOR on an unused channel. CONTRAST and SUPER RANGE FINDER controls fully clockwise. All other controls counterclockwise. Do not disturb HORIZONTAL DRIVE or HORIZONTAL HOLD adjustments.
- Antenna disconnected and terminals shorted together.
- Line voltage: 117 volt AC.
- DC voltages measured with a VTVM between tube socket terminals and chassis, unless otherwise indicated.
- Voltages measured with tubes in socket.
- Voltages marked (*) will vary widely with control settings.

CONDITIONS FOR OBSERVING WAVEFORMS

Caution: Pulsed high voltages are present on the caps of V405 and V407, and at pin 3 of V406. DO NOT attempt to observe waveforms at these points unless suitable test equipment is used. Waveforms at these points may be taken with a capactive voltage divider probe. The waveform at pin 3 of V406 may also be taken by clipping or twisting the lead from the high side of the oscilloscope over the insulation on the lead connecting to pin 3. If the waveform is taken in this manner, its shape will be the same, but the peak-to-peak voltage will be somewhat lower, depending on the degree of coupling between oscilloscope and lead connecting to pin 3 of V406.

- Waveforms should closely resemble those shown on the schematic.
- Waveforms are taken with a transmitted signal input to the television chassis.
- Set all controls for a normal picture. After the receiver is set for a normal picture, turn the CONTRAST control fully clockwise.
- Oscilloscope sweep set at 30 cycles for vertical waveforms and at 7,875 cycles for horizontal waveforms to permit 2 cycles to be observed.
- Peak-to-peak voltages will vary slightly from those shown on the schematic, depending on the test equipment employed and chassis parts tolerance.

TUBE COMPLEMENT

V901-28N4	V303-3CB6	V401-3BU8
V902-5CG8	CR301-1N60, 1N87	V402-6CG7
V201-3DT6	or 1N295	V403-12DB5
V202-12CU5	V304-6AW8A	V404-6CG7
V301-3BZ6	V305-21CEP4A	V405-12DQ6A
V302-3BZ6	CR401-Dual Selenium	V406-19AU4GTA
		Diode 93B5-4
		V407-1B3GT

Admiral
 15A2, 15B2, and 15B3 TV CHASSIS 463 and 4H3 Remote Control Amplifier Son-r Tuners S11A and S21A

MODEL IDENTIFICATION CHART

MODEL NUMBER	TV CHASSIS	MODEL NAME	VHF TUNER	SON-R TUNER	REMOTE CONTROL AMPLIFIER	POWER TOWER ANTENNA	DIAL LIGHT
PITFI	1542	Rockwell	94E163-1	-	-	NO	NO
P17F2	15A2	Rockwell	94E163-1	-	-	YES	NO
P17F3	1542	Rockwell	94E163-1	-	-	YES	NO
PSITF12	15B2	Lexington	94E164-3	SIIA	4H3	YES	YES
PSITF13	15B2	Lexington	94E164-3	SIIA	4H3	YES	YES
PSI7F22	1583	Kent	94E164-3	S2IA	4G3	YES	YES
PS17F23	1583	Kent	94E164-3	S21A	4 G3	YES	YES

INDEXING POWER TUNING MECHANISM TO STOP ONLY ON OPERATING CHANNELS
 (Chassis 15B2 and 15B3)

1. Turn set on. On 15B3 chassis, set Son-r Off-On switch at rear of set to "OFF" position.
2. Press Push Bar tuning control (front of set) until a non-operating channel number appears in channel indicator opening at front of set.
3. Grasp Channel Preset knob (on upper left hand corner of cabinet back when set is viewed from rear), press inward and rotate clockwise until Channel Preset shaft engages the slot in the nylon indexing adjustment. Very slowly turn the knob one half turn to right (clockwise) until a stop is felt. Repeat steps 2 and 3 for each nonoperating channel.
4. If tuner skips an operating (desired) channel, remove cabinet back and place a $3 / 16^{\prime \prime}$ wide screwdriver blade into hollow slotted collar on rear of tuner shaft. Turn screwdriver until a desired channel number appears in opening at front of set.
5. Check to see that $A C$ line cord is disconnected and re-
place the cabinet back. Grasp Channel Preset knob, press inward and rotate counterclockwise until Channel Preset shaft engages the slot in the nylon indexing adjustment. Very slowly turn knob one half turn to left (counterclockwise) until a stop is felt. Repeat steps 4 and 5 for all operating (desired) channels.

Do not attempt to adjust Channel Preset knob on 15B2 chassis when TV tuner is positioned between channels 13 and 2 (dot on indicator disc appears in window on front of receiver).
6. After completing adjustments, set Son-r Off-On switch to "ON". Check operation on all channels.

PRESETTING MAXIMUM VOLUME LEVEL (Chassis 15B3)

When TV receiver is operated by Son-r hand-held unit, three settings of sound volume are obtained (low, medium and loud).

Before operating by remote control, the loudest required sound level must be preset. With Son-r Off-On switch set to "OFF" position for manual tuning, tune in a channel for
(Continued on pages 14 through 23)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

normal sound and picture. Adjust Volume control for loudest sound volume desired.
Set Son-r Off-On switch to "ON" position. By pressing OFF-ON-VOL button on the Son-r tuner, the receiver can be turned off and on and three sound levels can be selected in recurring order. Press the OFF-ON-VOL button to check the preset sound levels. Do not disturb the manual Volume control setting on the front of the set when proper maximum sound level is set.
If, when the set is operated manually, the Volume control setting is changed, it will be necessary to reset maximum volume level for remote tuning.

HORIZONTAL LOCK ADJUSTMENT

Make adjustment if picture "slips sideways" or "tears" when switching channels. Adjustment is made by rotating flexible shaft extending from rear of set. Adjust as follows:

1. Allow a few minutes for set to warm up. Tune in weakest station, set Brightness and Contrast controls for normal picture. Important: Before proceeding, be sure that AGC control has been adjusted according to instructions in this manual.
2. Reduce Contrast to minimum. Very slowly turn Horizontal Lock adjustment to the right or left until picture is in sync. Interrupt the television signal by switching to next channel. With Push Bar switch or Channel Selector knob, reselect weakest channel. Picture should remain in sync. If picture bends or loseś sync, adjust the Horizontal Lock so that picture remains in sync and bending of vertical lines does not appear at top of picture. Check adjustment on all channels; if necessary, repeat procedure.

AGC CONTROL ADJUSTMENT

Improper AGC control adjustment may result in an overloaded picture. Picture overload can be recognized by bending and/or tearing of the picture or buzz in the sound output. Also, loss of the picture or a weak washed-out picture can result from improper AGC adjustment. However, these same conditions can be caused by other troubles in the set.
If adjustment is required, it should be performed exactly as described below:

1. Turn set on and allow 15 minutes to warm up.
2. Select strongest station in the area.
3. Set Contrast control for normal picture and Brightness control to maximum (fully to right).
4. Set AGC control (at rear of chassis) to minimum fully to left.
5. If picture has disappeared when AGC control is set to left, turn AGC to right until a weak picture is obtained. Adjust Horizontal Lock (at rear of set) and Vertical Hold (at front of set) for a steady picture without bending of vertical lines at top of picture.
6. Very slowly turn AGC control to right until picture just begins to bend, tear, shift or until buzz is heard in sound. Then. slowly turn AGC control to left to a point at which overload of picture and/or buzz in sound is removed. Turn AGC control an additional 10 degrees (approx.) to left.
7. Check picture at maximum contrast on all channels. Picture should not overload and should reappear immediately after changing channels.
IMPORTANT: AGC adjustment should always be made on strongest TV station received.

Figure 3. Rear View of 15B3 Chassis Showing Adjustment Locations. Adiustment locations are the same for chassis 15B2.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION
ADMIRAL Remote Control Amplifiers 4G3 and 4H3, used with 15A2, 15B2, 15B3, Continued

Schematic for 4G3 Remote Control Amplifier Chassis.
NOTE: Chassis 4G3 used with Television Chassis 15B3.

Schematic for 4H3 Remote Control Amplifier Chassis.
NOTE: Chassis 4H3 used with Television Chassis 15B2.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Schematic for 15B3 Television Chassis Stamped Run 10.

cord plug in the wall outlet, the total AC line voltage mav exist between the chassis and any grounded object. When installing or servicing, do not touch the chassis unless adequate safety precautions are taken. Never touch the chassis and a ground (radiators, pipes. etc.) at the same time.
Do not ground chassis or connect test equipment directly to it unless an isolation translormer is used. If an isolation transformer is not available, a neon lamp can be used to determine if the chassis is "hot".

VOLTAGES AND WAVEFORMS

- Line Voltage: 117 volts AC.
- Set Channel Selector on an unused channel. Contrast control fully clockwise; all other controls counterclockwise. Do not disturb AGC and Horizontal Lock adjustments.
- Antenna disconnected and terminals shorted together.
- DC voltages measured with VTVM between tube socket terminals and chassis, unless tube socket termin.
- Voltages marked (*) will vary widely with control settings.
- Waveforms taken with transmitted signa input to television chassis
- For waveform measurement, all controls set for normal picture.
- Peak-to-peak voltages may vary slightly from those shown

Warning: Pulsed high voltages are present at caps of $V 404$ and V406, and pin 3 of V405. lise suitable test equipment at these points.

SCHEMATIC NOTES

Numbers and letters inside hexagons indicate alignment points.

Fixed resistor values shown in ohms $\pm 10 \%$ tolerance, $1 / 2$ watt; capacitor values shown in micromicrofarads $\pm 20 \%$ unless otherwise specified.
NOTE: $\mathrm{K}=\mathrm{x} 1000$. MEG $=\mathrm{x} 1,000,000$. $\mathbf{M F}=$ microfarad.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

REMOTE AMPLIFIER ADJUSTMENTS AND SERVICING

The 4H3 and 4G3 Remote Control Amplifiers are 4 tube subchassis and are mounted at the lower rear side of the television chassis.

The 4 H 3 amplifier and SllA Son-r Tuner, used with 15B2 TV, operate to turn the TV on and off. Also, they control the selection of channels.

The 4G3 amplifier and S21 A Son-r Tuner, used with 15B3 TV, control the selection of TV channels during remote operation. Also, the TV is turned on and off and three levels of sound volume can be selected.
B+ and filament voltages are supplied to the remote chassis through a twelve pin socket on the television set.
To insure uniform operation with smooth tuning for both manual and Son-r remote tuning, it is especially important to make VHF Channel Slug Adjustment, Indexing Power Tuning Mechanism and Pre-Setting Maximum Volume Level.

OPERATIONAL DESCRIPTION OF SON-R TUNER S2IA AND REMOTE CONTROL AMPLIFIER 4G3

Figure 4 shows a function diagram of the Son-r Tuner S21A and 4G3 Remote Control Amplifier.

The Son-r tuner contains two metal bars of slightly different length and mechanical resonant frequency. When a button on the Son-r tuner is pushed, a hammer strikes one of the resonator bars. The bar that is struck vibrates at a definite ultra-sonic frequency. A microphone, mounted at the front of the television set, picks up the ultra-sonic vibrations, converts them to electrical signals (damped waves) and feeds them to the amplifier. The CHANNE! and ON-OFF-VOL bars resonate at 39.285 KC and 38.285 KC respectively.

Input signals are amplified by V1A ($1 / 2$ 12AX7), V1B
($1 / 2$ 12AX7), V2 (triode section of 6AV6) and V3A (pentode section of 6U8A). Signals are then fed to a discriminator stage V4A ($2 / 36 \mathrm{BJ} 8$).

The DC output voltage, which is dependent upon input signal, is applied to the grids of the relay control tubes V3B (triode section of 6U8A) and V4B (triode section of 6BJ8).

Depending upon which button on the Son-r tuner is pressed, the discriminator output voltage will swing positive and overcome the bias on the proper relay control tube (V3B or V4B) energizing the associated relay.

Operation of OFF-ON-VOLUME relay KI actuates the ratchet on rotary switch S2 (step type volume control). This switch advances one step for each time the OFF-ONVOL button on the Son-r tuner is pressed. This switch gives the Off-On function and three steps of volume level.

When the CHANNEL button on the remote tuner is pressed, actuating the Channel Relay K2, a switch on the TV chassis allows Tuning Motor M508 to position tuner at next operating channel.

OPERATIONAL DESCRIPTION OF SON-R TUNER SIIA AND REMOTE CONTROL AMPLIFIER 4H3

The Son-r tuner contains a metal bar that resonates at 38.285 KC . Input signals are amplified by V1, V2 and V3 and fed to V4 (6AL5). When the Son-r tuner is operated, the discriminator output voltage swings positive to overcome the bias on V3B. V3B conducts and the plate circuit relay K 1 is actuated.

When the ON-OFF CHANNEL button on the remote tuner is pressed, actuating relay Kl , a switch on the TV chassis allows Tuning Motor M508 to position tuner at next operating channel. When tuner stops at position between channels 2 and 13, a cam mounted on the tuner shaft turns the TV receiver off. By operating the remote tuner again, the TV receiver turns on and the TV tuner is positioned at the lowest numbered operating channel.

Figure 4. Functional Diagram of S2IA Son-r Tuner and 4G3 Remote Control Amplifier.

Figure 5. Functional Diagram of SIIA Son-r Tuner and 4H3 Remote Control Amplifier.

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

Figure 6. Top Inside View of SIIA Son-r Tuner. Location of Retaining Springs and Resonator Bar Shown.

SERVICING SON-R TUNERS SIIA AND S2IA

The hand-held Son-r tuner is a mechanical device (no tubes, transistors, etc.). With normal handling the Son-r tuner should seldom if ever require service attention. Handle the tuner with moderate care and do not subject it to sharp impact by dropping or striking it.

If the Son-r tuner is dropped on a solid surface or given rough handling, the resonator bars may slip from their proper position. This may cause intermittent tuning or inoperation. Figures 6 and 7 show the correct mounted position of each resonator bar. IMPORTANT: Retaining springs on the tuner must fit into grooves on resonator bars.

If Son-r tuner is dropped, remove top section of the tuner and check to see that resonator bar(s) have not slipped. Retaining springs must be seated in grooves at center of bar(s).

Figure 7. Top Inside View of S21A Son-r Tuner. Location of Retaining Springs and Resonator Bars Shown.

SERVICING 4H3 AND 4G3 REMOTE CONTROL AMPLIFIERS

All tubes and relays are located at top of chassis for ease of servicing. B+ and filament voltages for remote amplifier operation are supplied by the TV chassis.
To expose components under the chassis for servicing, remove screws that hold the remote chassis to TV chassis. When servicing either remote chassis, do not allow it to come in contact with the television chassis pan. A removable shield covers the relays K1 and K2 on the remote amplifier chassis 4G3.

When the remote chassis is removed from the TV chassis, voltages can be measured on the component side of the chassis.

SERVICE HINTS

Figure 8. Simplified Diagram of AC Circuitry in Television Chassis 15B3. In Chassis 15B2, K501 is replaced by switch $\mathbf{S 5 0 5}$ and is operated by a cam gear on the tuner shaft.

POWER SWITCHING FOR TUNING MOTOR M508

As an aid to circuit tracing, refer to figure 8. Figure 8 shows relay control stage V3B and switching circuitry on TV chassis 15B3. The following explanation applies to TV chassis 15B2 also. The symbol numbers of some components involved in this explanation will change for TV chassis 15B2, but the connection and values remain constant for both chassis.

Line voltage (117 V AC) is applied to T 501 when switch S501 is turned "ON". From the secondary of T501, 6.3VAC and 24 VAC are applied to the remote chassis.

Push Bar tuning switch S504 is connected in series with a 22 megohm resistor through the 12 pin plug and socket (pins 11 and 12). On the remote chassis, this series network is connected between $B+270 \mathrm{~V}$ and pin 9 (grid) of V3B.

With S501 turned "ON", the tuning motor can be operated by actuating Push Bar switch S504 on front of set or by:

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

1. Pressing CHANNEL button on Son-r Tuner S2lA to actuate channel relay K2 on 4G3 remote chassis and operate the tuning motor on TV chassis 15B3.
2. Pressing ON-OFF CHANNEL button on Son-r Tuner SllA to actuate ON-OFF CHANNEL relay Kl on 4H3 remote chassis and operate the tuning motor on TV chassis 15B2.
When S504 is actuated, the grid of V3B is placed at a near ground potential. V3B conducts, energizing the plate circuit relay. 24 VAC , normally applied to the remote chassis, is switched by the plate circuit relay and applied to Tuning Motor M508 through pin 1 on plug and socket. M508 turns and allows contacts on S502 to close. With S502 closed, the . 01 MF capacitor charges, negative on the grid side, through contacts on $\$ 502$.

When S502 contacts open by mechanical detent action, the capacitor discharges through the 1 megohm and 2.2 megohm resistors in the grid circuit, the negative bias supply and the 470 K ohm resistor connected in series with the capacitor. When S 502 opens, the grid of V3B is driven negative and the negative bias supply (-20 V) cuts V3B off. The plate circuit relay deenergizes, stopping the tuning motor. The negative bias supply holds V3B cut off until the tuning cycle is initiated again.

When the CHANNEL button on Son-r Tuner S21A or ON-OFF CHANNEL button on Son-r Tuner SllA is operated, the output of the discriminator stage (on remote chassis) triggers V3B, starting the cycle of tuning motor action.

TV SET OPERATION WITH SON-R AMPLIFIER CHASSIS DISCONNECTED

TV chassis 15B2 or 15B3 may be operated when the 12 pin plug and socket are disconnected. By connecting one jumper wire between pins 1,10 and 11 on M506 and connecting a second jumper wire between pins 5,9 and 12 on M506, the television chassis may be operated with the Push Bar tuning switch S504.

SERVICING HORIZONTAL PHASE DETECTOR (DUAL SELENIUM DIODE CR401)

A plug.in type dual selenium diode is used as the horizontal phase detector CR401. The diodes have a common cathode. See schematic diagrams (at rear of manual) for circuit connection of CR401.

A faulty diode or poor contact between diode leads and socket can result in no raster, intermittent horizontal sync or loss of horizontal sync. To insure good contact between CR401 leads and socket, scrape all three leads to remove oxidation or corrosion.

Important: When inserting diode in socket, be sure to observe polarity indication. The beveled edge of the diode case must line up with the beveled corner on the diode socket.

Checking dual selenium diode CR401

A quick and simple check of CR401 is made by using the R X 100 and R X $1,000,000$ scales on an ohmmeter.

Remove CR401 from socket and connect negative lead of ohmmeter to center lead of CR401. With the positive probe of the ohmmeter, measure the resistance to each end lead. The resistance should be from 2,000 to 5,000 ohms in each case.

Now, connect the positive probe of the ohmmeter to the center lead on CR401. Measure the resistance to each end lead with the negative lead. On the R X 100 range, no indication will normally be seen. The resistance readings will be quite high (100 megohms or higher).

Figure 9. Simplified Diagram of Volume Level Control Circuitry on Chassis 15B3 TV and 4G3 Son-r Remote Control Amplifier.

Set the ohmmeter to $\mathrm{RX} 1,000,000$ range and make the same measurements as in the preceding paragraph. A slight deflection from the infinite resistance point on the scale should be seen. This is a check for an open diode. An open diode will give no indication on the R X $1,000,000$ scale.

THREE STEP VOLUME LEVEL CONTROL CHASSIS 15B3 AND 4G3

Figure 9 shows a simplified diagram of volume level selection during Son-r remote control tuning. To control volume level, the high side of Volume control R208 (jct. of C209 and R208) is shunted, in steps, by :

1. 22,000 ohms to give "LOW" volume level.
2. 82,000 ohms and 22,000 ohms (series connected) to give "MEDIUM" volume level.
3. R208 is unshunted to give "HIGH" volume level.

When the set is operated by Son-r remote control and the ON-OFF-VOL button on the Son-r tuner is pushed, relay K2 on 4G3 chassis causes step type switch Sl to move to the next position. When set is "ON", 1, 2 and 3 (see above) are selected in order. The set is turned "OFF" in position 4. Because of the "step-type" action of S2, the sequence of selection is repeated. IMPORTANT: Maximum necessary volume level must be preset before operating the set by Son-r.

SERVICING VIDEO DETECTOR (CR301)

In these receivers, a germanium diode (1N87 or 1N87A) is used as the video detector CR301. The detector diode is connected across the top terminals of the 2nd IF transformer T302. The detector diode is accessible for checking or replacement after removing the snap-on cover shield from the 2nd IF transformer.

Note: The germanium diode functions with excellent stability, has long life expectancy and ability to withstand severe mechanical shock without damage. However, the diode may be permanently damaged by application of high current or excessive heat to the connecting leads.

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

Figure 11. Botfom View of Remote Amplifier Chassis 4G3. Component locations shown.

Figure 15. View of Wiring Side of Etched Circuit Board A7270-1. Gray Area Represents Etched Wiring; Black Symbols and Lines Represent Components and Connections on Opposite Side.

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

Figure 16. View of Components Side of Etched Circuit Board A7265-1. Location of Components Shown.

ADMIRAL Chassis 15A2, 15B2, 15B3, Service Information, Continued

Figure 17. View of Wiring Side of Etched Circuit Board A7265-1. Gray Area Represents Etched Wiring; Black Symbols and Lines Represent Components and Connections on Opposite Side.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ADMIRAL Chassis 15D1B (Essential information which differs from 15A2) Models:
PL17F31B, PL17F32B,
PL17F33B, PL17F41B,
PL17F42B, PL17F43B.

TUBE LOCATIONS

Emerson Television

 USING CHASSIS: $120451 \mathrm{HC}(\mathrm{H})$, $120452 \mathrm{MC}(\mathrm{M})$(Service material on pages 25 through 30)

TYPE	StyLe	MODEL NO.	TVCHASSIS	KINESCOPE	TUNER
VHF RECEIVERS	PORTABLE TABLE MODEL	1500	$120451 \mathrm{HC}(\mathrm{H})$	17AVP4A	471113
		1502	120451 H		
		1504	120451 HC		
	TABLE MODEL	1506	120451 H		
UHF-VHF RECEIVERS	PORTABLE	1503	120452 M		471141
	TABLE MODEL	1505	$120452 \mathrm{MC}(\mathrm{M})$		

DISASSEMBLY INSTRUCTIONS
Ta Remove Mask and Lens:

1. Remove the two screws on bottom of mask.
2. Lift bottom of mosk out and upward releasing the assembly.

Ta Remove Picture Tube:

1. Remove mask and lens assembly from front of set. (Instructions above.)
2. Disconnect two antenna leads. Remove masonite back.
3. Remove picture tube socket, ion trap, yoke bracket, and high valtage lead. (Be sure to discharge high voltage.)
4. Remove two screws on picture tube support bracket.
5. Remove picture tube from front of cabinet, guiding the yoke as the neck moves forward.

To reassemble, reverse above procedure.
To Remove Chassis from Cabinet:

1. Remove all knobs, disconnect antenna leads, and remove masonite bock.
2. Take off speaker leads, picture tube socket, ion trap, yoke bracket, and high voltage lead. (Be sure to discharge high voltage.)
3. Remove four chossis-mounting screws from bottom of cabinet.
4. Remove one screw from the VHF tuner brace on upper left of cabinet at the rear and one screw on side near knobs.
5. Pull chassis toward rear, being careful to guide and support the deflection yoke as it slides off the picture tube neck. To reassemble, reverse above procedure.

REPAIR OF COUPLATES

Whenever possible, couplates should be repaired instead of reploced. This practice could easily become a time-saving foctor.

Example No. 1: Couplate Part \#923151, Resistor R-51 open.
Clip off pin 6 from couplote. This removes R-51 from circuit. Insert a regular 47 K resistor from pin 5 of couplate to iunction of C-18 and R-78.
Example No. 2: Couplate Part \#923055.
Capacitor C-27 shorted.
Clip off pin 4 of couplate. This takes C-27 and R-50 out of circuit.
Insert regular 330 K resistor and an 82 mmfd . from pin 3 of couplate to pin 5 of couplate Part \#923151.

TUBE LOCATION DIAGRAM

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

EMERSON Chassis 120451H, -HC, -HC(H), 120452M, -MC(M), Alignment Information

 VIDEO I. F. ALIGNMENT1. Connect 3 valts bias ta AGC line. Negative terminal to junction af R13 and R15, positive terminal to chassis.
2. Connect IF morker generator ta floating shield of tuner mixer tube (See Note) and VTVM to junction L-8 and R-34.
3. Adiust C-T (tuner) for maximum capacity.
4. Adjust marker to 45.5 MC and peak T -4 for maximum. (Keep signal generator output as low as pas sible).
5. Adjust marker to 43.25 MC and peak T-3, L-2 and T-8 (tuner I.F.) for maximum. (Keep signal generator output as low as possible).
6. Connect oscilloscope through 20,000 ohm isolation resistor in place of the VTVM and connect a sweep generator to "Floating" mixer tube shield along with marker generator. Adjust output of sweep to produce about 2 volts peak to peak at oscilloscope and reduce merker signal so response curve is not distorted.
7. Adjust marker to 45.75 MC . This marker stiould appear 60% down with respect to related peak of response curve. If not $\mathbf{6 0 \%}$, adjust C.T. Limits of respanse curve are $30 \% \mathrm{tilt}$ and $\mathbf{2 0 \%}$ peak-to-valloy ratio.
NOTE: Part of the procedure calls for use of a "floating" shield over the mixer tube of the tuner. The tube shialds now used in the tuner cannot be removed from their mounts. Instead of a 'floating' shield, the following method is recommended:

Take a thin piece of copper on brass foil, $1 / 2^{\prime \prime}$ by $2^{\prime \prime}$, and paste on to a thin piece of onion skin insulation. The insulation should extend about $1 / 8^{\prime \prime}$ beyond the two long sides and one short side while the foil should extend beyond the insulation on the other short side.
The shim assembly is then slipped in lengthwise to fit between the mixer tube and its shield with the metal foil facing the tube. The short side with extended insulation is placed toward the chassis, while the side with the foil extending beyond the insulation is connected to the sweep generator. The shim may now be rotated for maximum coupling as observed on the oscilloscope.

SOUND I.F. ALIGNMENT:

1. With antenna loosely coupled to set, adiust receiver to a weak signal channel.
2. Place a VTVM (negative scale) to junction L-1 and R-1, and adiust T-9 and L-4 for moximum limiter voltage on V.T.V.M. Amount of input signal should be such that a sharp maximum reading can be obtained.
3. Connect V.T.V.M. to junction R-5 and C-4, (Negative Scale) and detune discriminator (T-1) secondary to produce a maximum negative reading. (Looking at top of chassis secondary slug is closer to you).
4. Adiust primary of $\mathrm{T}-1$ for maximum negative reading.
5. Re-adiust secondary of discriminator T - 1 towards original slug position for minimum reading on V.T.V.M. Check audio, and if distorted, repeat steps No. 1-5.

ALIGNMENT OF MIRACLE PICTURE LOCK (Horizontal O scillator and AFC)

Tune set to a known good channel and turn picture stabilizer ($\mathrm{R}-31,100 \mathrm{~K}$) located on the rear chassis apron fully clockwise (minimum resistance). Short phasing coil (L-9) by means of a jumper wire across C-32, . 01 mfd, accessible on circuit board. Rotate horizontal hold control (R-57, 500K) $2 / 3$ of its total travel in the clock wise direction. Starting with the harizontal frequency slug of T-6, (the coil mounted horizontally on board) all the way "'out" (to wards back of set), rotate "in'" until picture locks into sync. Remove short from phase coil and adjust phase coil (L-9) slug until picture holds. Adjust horizontal hold control R-57 to full clockwise position. At this point picture should fall out of horizontal sync. (4 oars slanted to the right as you are facing picture). Readiust phase coil for these 4 bars if necessary. Picture will now fall out of sync ot both sides of the $2 / 3$ point (clockwise) of the horizontal hold control.

NOTE: T-6 and L-9 must be adiusted with a hex-head adjustment tool and not a screwdriver.

ADJUSTMENT OF PICTURE STABILIZER (R-31)

For local signals, this control should be set to its extreme clock wise position (minimum resistance).
If sync improvement is required in electrically noisy areas, the picture stabilizer control (R-31) is turned in a counterclockwise direction until the best sync stability is obtained. Be sure to check all channels for sync instability, since a compromise setting of R-31 might be necessary.

ALIGNMENT POINT DIAGRAM

EMERSON Chassis 120451H, -HC,-HC(H), 120452M,-MC(M), Service Information

TUNER INFORMATION

VHF tuner 471113 is a 12 position, series filament, incremental inductance-type tuner. Switching is accomplished by means of 4 -ganged wafer sections in a removable turret with two circular rows of contacts on one side of each section. A single stationary spring contact is used for each circular row of contacts.
Ordinarily, the only adiustments required in the field are those necessary to compensate for variations in oscillator tube replacements. This can usually be accomplished with the channel \#13 oseillator adiustment. If individual channel adjustments are necessary, proceed as follows:
(Since this tuner is of the incremental inductance type, all oscillator adjustments should be made commencing with the higher channel and then proceeding to the lower channel).

1. Set channel selector to channel \#13. Set fine tuning contral to electrical center of its range.
2. Adjust Channel \#13 oscillator adjustment (See figure \#1) for best picture and sound. (Use a non-metallic serewdriver).
3. Chonnels \#2, \#4, and \#6 have slug adjustments and should always be adjusted starting with the higher channal. (See figure \#1.) It is recommended that channels \#13, \#6, \#4, and \#2 slugs, only, be adjusted in the field in that order when necessary.
4. Channels \#12 through \#7, can be adiusted when required by bending the hairpin inductances through the hale provided.
5. Channels \#3 and \#5 split-coil windings should not have to be compressed or separated ordinarily.

UHF-VHF Tuner 471141 - This tuner incorporates a 13 position, incremental inductance-type VHF tuner, plus a 70 channal UHF tuner. Seporate VHF and UHF antenna inputs are provided. A 2AF4 is used as the UHF oscillator, and a 1N82A as the UHF mixer crystal. The 13th position on the VHF funer corresponds to the UHF position and converts the VHF tuner to two additional stages of IF amplification.
Dissassembly of VHF Tuner 471113 VHF Section Tuner 471141

1. Remove one screw from edge of cover away from the shaft. This releases the cover and most servicing can be accomplished without further disassembly.
2. If further disas sembly is needed, disengage 2 retaining wire springs and 2 grounding wire springs.
3. Hold tuner so that shaft is up. In this position the ball bearing that engages the detent ring will not be lost as the turret is di sengaged.
Reverse procedure to reossemble،
Disassembly of UHF Section, UHF-VHF Tuner 471141
4. Unsolder three leads from UHF section and unplug the UHF input cable.
5. Remove the screw from the linkage bar (located beneath the crossad shafts) that locks the tuners together. The screw forces the prongs apart causing pressure contact.
6. Remove two screws from top UHF bracket.
7. To reach UHF components, straighten tabs in the front cover plate.

Reverse procedure to reassemble.

-SCHEMATIC, EMERSON TV TUNERS 471113, 471141

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

EMERSON Chassis $120451 \mathrm{H},-\mathrm{HC},-\mathrm{HC}(\mathrm{H}), 120452 \mathrm{M},-\mathrm{MC}(\mathrm{M})$, Continued

The voltage and resistance readings were taken on chassis $\mathbf{1 2 0 4 5} \mathbf{1 H C}$.
Due to component variations, voltage and resistance readings may vary
slightly from those given here. Slight variations may also be noticed if chassis is not coded as mentioned above.
The picture tube, deflection yoke and high voltage circuits were connected to take the following readings and waveshapes. If picture tube is not connected to chassis, insert test picture tube or short pins 1 and 12 in picture tube socket to complete filament circuit.

1. Antenna disconnected and antenna terminals shorted on tuner and connected to chassis (use short leads).
2. Line voliage 117 volis (Disconnect power for resistance readings).
3. 3 volt bias battery connected to A. G. C. circuit, positive ferminal to chassis, negative terminal to junction of R13 and R15, BIAS
BATTERY USED FOR VOLTAGE READINGS ONLY.
4. All controls in position for normal picture. (Varied when it directly affects reading).
5. All measurements taken with a vacuum fube voltmeter and ohmmeter
6. All readings listed in tables were taken between points shown and chassis.
7. Resistance readings are given in ohms unless otherwi se noted.
8. N.C. denotes no connection.

WAYE SHAPE ANALYSIS CHART

The wave shapes shown on the schematic were taken on chassis 120451 HC :

Slight peak-to-peak voltage differences may be noticed on chassis of later triangle codes.
The peak-to-peak voltages given may also vary slightly depending on signal strength and component variations.
To accurately observe the wave shapes, the relatively high input capacity of an oscilloscope must be reduced so as not to change the operating characteristics of the television set. Failure to da this will result in wrang wave shape readings. This is accamplished by using an Emerson low-capacity probe

1. Connect ontenna and tune receiver to channel where best reception has been obtained in the past.
2. Low end of the probe is connected to CHASSIS and the contrast
control is sot for MAXIMUM UNDISTORTED CONTRAST.
3. The 30 and 7875 C.P.S. oscilloscope sweep setting sare used so as to permit observotion of two cycles of the wave shape. NOTE: A wave shape seen on your oscilloscope may be upside down from same wave shape shown here. This will depend on the number of stages of amplification in the oscilloscope used.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

EMERSON Chassis $120451 \mathrm{H},-\mathrm{HC},-\mathrm{HC}(\mathrm{H})$, 120452M,-MC(M), Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

 EMERSON Chassis 120451H,-HC,-HC(H), 120452M,-MC(M), Continued
SERVICING OF PRINTED BOARDS

To remove defective components one of several methods may be used. A recommended method is to cut close to the body of the defective component and solder the new part to the remaining leods. Another method is to applyheat at the iunction point of the component wire lead and the printed board and lift out the component. If the wire lead is bent over, first heat and pry lead wire up. A defective component with many terminals may be removed by clipping into several parts and removing a small section at a time.
Use a low wattage (20 to 30 watts) soldering iron. Be careful not to apply excessive heat since this may cause the printed foil to loosen. Broken foil leads may be repaired by soldering a hookup wire across the break.

HORIZONTAL AND VERTICAL SWEEP PRINTED CIRCUIT BOARD (TOP VIEW) (COUPLATE VERSION)

GENERAL ELECTRIC

COVERS MODELS
17T3304
17T3305
17T3306
17T3310
17T3311
17T3315
17T3316
17T3317
17T3318
17T3320
17T3321
17T3331U
$21 T 3417$
2173418
$21 T 3419$
$21 T 3420$
$21 T 3421$
$21 T 3425$
$21 T 3429$
$21 T 3430$
$21 T 3431$
2173432
$21 T 3435$
$21 T 3436$
2IC 3439
$21 C 3440$
$21 C 3441$
$21 C 3442$
$21 C 3443$
2103445
2103446
$21 C 3450$
$21 C 3451$
2IL3455
2IL3456
$21 C 3458$
$21 C 3459$
$21 C 3460$
2103461
$21 c 3478$
$21 C 3479$
$21 C 3482$
$21 C 3483$
WITH OR
WITHOUT UHF

(Service material on pages 31 through 38)

HEIGHT AND VERTICAL LINEARITY - These controls, R204 and R208, should be adjusted simultaneously to give proper vertical size consistent with good vertical linearity. Final adjustment should be made to allow the picture to extend approximately 1/8 inch beyond the top and bottom edges of the mask.
HORIZONTAL HOLD -

1. Remove the cabinet back as described below.
2. Tune the recelver to a weak signal and adjust the controls for normal operation.
3. Short Test Point VI to the chassis with a jumper wire.
4. Connect a 1000 ohm resistor from Test Point VIII to Test Point IX (in parallel with L251.)
5. Adjust horizontal hold potentiometer, R257, until picture just "Floats" back end forth across the screen. Leave R257 set in this position.
6. Remove the 1000 ohm resistor from Test Point VIII and Test Point IX. Adjust L251 stabilizer coil so that the picture again just "Floats" across the screen. Leave L251 set in this position.
7. Remove the jumper from Test Point VI and the chassis.

FIG. 1. YOKE CLAMP

PICTURE TUBE ADJUSTMENTS

YOKE POSITION - The yoke is secured to the neck of the picture tube by a "U" shaped clamp and spring, Figure 1. To adjust the yoke for picture tilt, loosen the clamp by squeezing points C and D with long nose pliers until the eye of the spring slides over the bend in the clamp. The yoke can now be adjusted for correct plcture tilt. To secure the yoke, the pliers are used in the same manner between points A and B until the spring eye slides over the bend to its clamping position. PICTURE CENTHRING-The picture centering device is located on the rear of the yoke assembly. The centering device consists of two rings each of which may be rotated separately. Each ring has two tabs with holes punched. The holes are provided so that an insulated alignment tool may be inserted in them to provide an easy means of rotating the rings. Rotate the rings so that the tabs move towards or away from each other to center the picture on the face of the tube.
FOCUS - The proper focus potential for the tube was chosen at the time the set was manufactured. If it becomes necessary to install a new picture tube or change the focus potential, any one of
five potentials may be chosen for best focus. The five connection points for focus potential are located on the small printed board behind the vertical linearity potentiometer. The lead from R219 in the picture tube socket may be connected to the proper point for best focus as follows:

1. Connect to Pin " $B+1$ " near $R C-304$.
2. Connect to Pin " $B+3$ " behind the vertical linearity control.
3. Connect to Pin " $B+4$ " behind the vertical linearity control.
4. Connect to Pin with ground symbol near Y251A/ Y251B phase detector.
5. Connect to pin at the junction of R216, R217, and spark gap SG201.

TO REMOVE THE CHASSIS FROM THE CABINET

Remove the knobs from the shafts on the front of the cabinet. Disconnect any antenna connected to the antenna terminal board. Remove the cabinet back by taking out the screws securing the back to the cabinet, the interlock bracket, and the antenna bracket. Remove the speaker leads from the speaker (the speaker network terminal board on some models.) On some models it will be necessary to unsolder the speaker leads to remove them from the speaker. Connect one end of a lead to the chassis and touch the other end to the anode of the picture tube to discharge it. Remove the anode lead from the plcture tube by squeezing the anode clip and withdrawing it from the tube. Remove the screws from the bottom of the cabinet which hold the chassis. Remove the picture tube socket. Loosen the yoke clamp and slide the yoke back over the neck of the plicture tube. Remove the chassis from the cabinet.

TO REMOVE THE 21 INCH PICTURE TUBE

[^0]
VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

GENERAL ELECTRIC Series M5 Service Material, Continued

TO REMOVE THE 17 INCH PICTURE TUBE

Remove the chassis from the cabinet as described above. After removing the chassis, position the cabinet face down on a soft clean cloth. Loosen the two self tapping screws at the top and bottom of the picture tube sling. Disengage the sling from the four hooks and remove the picture tube.
To reassemble the picture tube, reverse the above procedure making sure that the picture tube anode button is located at that end of the cabinet farthest from the control panel.

CLEANING THE CURVED PLASTIC SAFETY WINDOW AND PICTURB TUBE FACE

Remove the chassis and picture tube assembly as previously described. The inside of the safety window and the picture tube face may now be cleaned. A solution of pure soap and water and a soft cloth is recommended for cleaning. Most other cleaning agents, sprays, detergents, or solvents are harmf'ul to the safety window and should not be applied.

VIDEO I-F SYSTEM

INIRODUCTION:
The video I-F system must be in alignment in order to align most other sections of the receiver; therefore it is treated first. A list of the frequencies of the tuned coils is given and may be used for pre - peaking these coils, but over-all sweep alignment is necessary to correctly align the I-F system.

AM PRE-PEAKING AND TRAP FREQUENCIES

L135-45.75 MC	T152-45.30 MC
L151-42.50 MC	T153-44.15 MC
T151-43.00 MC	L150-47.25 MC

General Notes:

1. Allow receiver and alignment equipment at least 20 minutes of warm-up time before proceeding.
2. Turn the volume control fully counter clockwise and the contrast control fully clockwise. Set the channel selector to Channel 9 or some other high band channel where oscillator influence is not noted as the fine tuning control is turned.
3. Short the antenna terminals together with a jumper wire.
4. Connect oscilloscope to Test Point III thru a 22,000 ohm resistor not more than 2.5 Inches away from Test Point III.
5. Connect -4 volts bias between Test Point II and the chassis with the negative side of the bias voltage on Test Point II.
6. Inject signals from a properly terminated AM signal generator or sweep generator through the network in Figure 4 to the I-F injection jack*. General Electric test equipment, if used, need not be terminated as the termination is in the attenuator.
Align the recelver to produce the response curve in Figure 2 under "Remarks".
*NOTE: The I-F injection jack is not a phono type receptacle. The connection 13 made by the end of the phono plug touching the contact inside the injection jack. The outside shell of the plug grips the injection jack firmly. Press plug firmly into place without excess pressure. See Figure 3 for plug construction.
Proceed as follows:

VIDEO I-F ALIGNMENT CHART

STEP	SIGNAL FREQUENCY	ADJUST	REMARKS
1.	47.25 MC AM	Adjust Ll50 for minimum scope deflection	Use maximum scope sensitivity and smallest possible signal for the 47.25 MC AM adjustments.
2.	38-48 MC sweep generator, scope calibrated 3 volts peak to peak for 2 inch deflection.	L135 (converter plate) for maximum deflection of the 45.75 MC marker.	Do not retouch this adjustment.
3.	SAME	L151 (lst I-F grid) for maximum deflection of the 42.5 MC marker.	
4.	SAME	L153 (V1deo Detector) for maximum deflection of the 44.15 MC marker.	
5.	SAME	T152 (2nd I-F Plate) to place 45.75 MC marker properly on the curve.	FIGURE 2. I-F RESPONSE CURVE
6.	SAME	T151 (lst I-F Plate) to place 42.5 MC Marker properly on the curve.	Repeat 5, 6 and 7 if necessary. Symmetry of the nose is 1 mportant. No
7.	SAME	L153 1f necessary to shape the nose.	portion of the nose should be out of symmetry by more than 3%.

GENERAL ELECTRIC Series M5 Alignment Information, Continued

FIG. 3 I-F INJECTION PLUG CONSTRUCTION

4.5 MC TRAP ALIGNMENT

1. Connect a -7.5 V bias between Test Point II and chassis.
2. Turn contrast control fully clockwise.
3. Connect detector network (Figure 5) to Test Point IV. Connect an AC VTVM to the network.
4. Connect oscilloscope to speaker terminals.
5. Apply an accurate 4.5 MC AM signal through . 001 MF to Test Point III.

NOTE: The top core of Tl54 has two positions showing minimum. The bottom core has two positions showing maximum. The correct position for each core is the position nearest the respective end of the coll.
6. Tune the top core of Tl54 for min1mum de flection on the VTVM.
7. Turn up volume control. Tune the bottom core of T154 for maximum deflection on the oscilloscope. 8. Retouch the top core for minimum reading on the VTVM.

FIG. 5 DETECTOR NETWORK
AUDIO I-F ALIGNMENT

1. Connect an antenna to the receiver and tune in a weak television signal. This will provide a 4.5 MC FM signal source for audio I-F alignment. Keep the volume control turned down unless the speaker is connected.
2. Connect two matched 100,000 ohm resistors in series between Pin No. 2 of V8 (6FM8) and chassis. 3. Follow instructions in Audio Alignment chart.

AUDIO ALIGNMENT CHART

STEP	CONNECT VITVM OR 20,000 OHMS/VOLTMETER	ADJUST	METER INDICATION	REMARKS
1	Between Pin No. 2 of V8 and chassis.	Bottom core T154	Adjust for maximum deflection.	Repeat steps l, 2 and 3 to assure proper adjustments. Each core has two positions. Select position for each core nearest respective end of the coil.
2		T301 primary (Top)	Adjust for maximum deflection.	
3	Between terminal 2 of $\mathrm{RC}-304$ and the center of the two 100,000 ohm resistor.	$\begin{aligned} & \text { T301 secondary } \\ & \text { (Bottom) } \end{aligned}$	Adjust for zero volts d-c output.	

FIG. 4 I-F INJECTION NETTWORK

TUBE AND ADJUSTMENT LOCATIONS

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

GENERAL ELECTRIC Series M5 Service Information, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

GENERAL ELECTRIC Series M5 Schematic Diagram (Continued)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

GENERAL ELECTRIC Series M5 Service Information, Continued

17"IF BOARO COMPONENT LOCATIONS AS VIEWED FROM CONDUCTOR SIDE

ASTERISKED ($*$) NUMBERS
UENCTE WIRE WRAP TERMINALS
MOUNTED ON COMPONENT BOARD
TO CONNECT WIRES FROM OTHER
COMPONENTS

* I. TO VHF TUNER FILAMENTS
* 2. TO R3IG VOLUME CONTROL
* 3. TO CONTRAST CONTROL TERMINAL BOARO, TERMINAL
* 4 TO R3I9 VOLUME CONTROL
*5. TO C313
*6 TO T303
* 7. FOR IESTING B+2 VOLTAGE
* B. TO VHF TUNER, AGC TERMINAL
* 9. TO R3I9 VOLUME CONTROL
* IO. TO C3I3 GROUND TERMINAL, C4OICA AND RIBO BRIGHTNESS CONTROL
* H. TO GREEN LEAD ON POWER TRANSFORMER
* 12. TO RIBO BRIGHTNESS CONTROL
* 13 TO PICTURE TUBE SOCKET-PIN 7
* 14 CONNECT TO * 16 WITH FILAMENT FUSE WIRE, 26 GUAGE
* 15. TO C4OID-
* 16. CONNECT TO * 14 WITH FILAMENT FUSE WIRE \# 26 GUAGE
TO GREEN B WHITE LEAD ON
POWER TRANFORMER
* 17 TO * 8 ON SWEEP BOARD IDON RC-ZOI)

CIRCLED (A) LETTERS
REPRESENT INTER-CONNECTING WIRES
SOLDERED INTO BOARD
(A) TO SHIELO OF (B)
(B) TO VhF TUNER-IF OUTPUT SHIELD
(C) $T O C 4 O 1 B-$
(D) TO RIT5 CONTRAST CONTROL
(E) TO RIT5 CONTRAST CONTROL
(F) TO. * 9 ON SWEEP BOARD (VIO,PIN 7)

BY SYMBAL		CAPACITORS			L151	-	C8
RESSISTORS		Cl51	-	A8	L153	-	N7
		C152	-	C9	L154	-	08
R150	B8	C153	-	B6	L155	-	08
R151	- C_{7}	C154	-	G9	L156	-	N8
R152	- D7	C155	-	A_{7}	L157	-	P7
R153	- B7	C156	-	F7	L158	-	P5
R154	- 68	C157	-	H9	L159	-	K4
R155	- 67	C158	-	10	L161	-	L1
R156	- F6	C150	-	E5	L162	-	$0{ }_{1}$
R157	- Ge	Clero	-	K_{7}	L163	-	N8
R158	- 67	C161	-	M8	T151	-	F7
R159	- A5	C162	-	07	T152	-	J8
R160	- I7	C163	-	N8	T154	-	14
R161	- J6	C164	-	02	T301	-	G2
R162	- M6	C165	-	M2			
Ri63	- 02	C167	-	05	RC NETWORKS		
R164 - A6		C168 - N6					
R165	- N1	Cl69	-	13	RC166	-	M2
R167	- P3	C170	-	M5	RC304	-	G1
R168	- P4	C172	-	L3			
R170 - P7		C174	-	F5	TUBES		
		C301	-	12			
R171	- $\quad \mathbf{R} 5$	C302	-	H2			
R172	- 05	C305	-	F 2	V3(6CF6) - E7V4 (6B26) - 48		H8
R174	- I5	0306	-	F3	V5 60866$)-$ L7		
R177	- K1	C307	-	D3	v6(60x8) - N3		
R179	- K1	C304	-	Cl	$V 7(6 A U 6)-13$		
R306	- F3	C310	-	B2	V8(6FM8) - D2		
R307	- F_{2}	C311	-	B3	V ($6 \mathrm{CU5}$) - B4		
R311	- A2	0312 - A5			DIODE		
R312	- C 2	$\begin{array}{lll} \mathrm{C} 402 \\ \mathrm{C} 404 & - & \mathrm{Kt} \\ \mathrm{~B} 3 \end{array}$					
$\begin{array}{ll}\text { R313 } & \text { - Al } \\ \text { R314 } & \text { - Cl }\end{array}$					Y151	-	NT
R315	- B3	COILS \& TRANSPORMERS					
R316	- C 4				FUSE		
R317 R318	- D4	L150 - A9			F402		P2
R320	- J 2						
TEST POINIS							
11	- Pl	III	-	P6	IV	-	L1

L_{1}

VIDEO DETECTOR BD. COMPONENT LOCATION AS VIEWED FROM COMPONENT SIDE.
PLUG INTO IF BOARD WITH COMPONENTS FACING LIS5

VIDEO DETECTOR BD. COMPONENT LOCATION AS VIEWED FROM CONDUCTOR SIDE.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

GENERAL ELECTRIC Series M5 Service Information, Continued

$21 "$ I-F BOARD COMPONENT LOCATIONS AS VIEWED FROM CONDUCTOR SIDE

CIRCLED (A) LETTERS

REPRESENT INTERCONNECTING WIRES
SOLDERED INTO BOARD.
(A) TO SHIELD OF (B)
(B) TO VHF TUNER-I-F OUTPUT TERMINAL
(C) TO C4OIBE
(D) TO RIT6, CONTRAST
(E) TO RI76, CONTRAST
© TO *9 ON SWEEP BOARD (VIO,-PIN 7)

ASTERISKED (*) NUMBERS
DENOTE WIREWRAP TERMINALS MOUNTED ON COMPONENT BOARC TO CONNECT WIRES FROM OTHER COMPONENTS.

* I. TO Vhf TUNER FILAMENTS
*2. TO R309, VOLUME CONTROL
*3. TO C313
*4. TO T302
*5. FOR TESTING $8+2$ voltage *6. TO VHF TUNER, AGC TERMINAL *7. TO TIEPOINT ON 6FM8 SHIELD *8. CONNECT TO * 10
*9. TO GREEN LEAD ON POWER TRANSFORMER *IO. CONNECT TO *8
*II. TO RI8O, BRIGHTNESS CONTROL *12. TO PIX TUBE SOCKET, PIN 7 *13. CONNECT TO * 15 WITH FILAMENT FUSE WIRE, \#26 GAUGE
* 14. TO C4OID
* 15. CONNECT TO * 13 WITH FILAMENT FUSE WIRE, \# 26 GAUGE TO GREEN a wHITE LEAD ON POWER TRANSF
* I6. TO *8 ON SWEEP BOARD (D OF RCZOI ON SWEEP BOARD

rear view 2 t control panel wiring

GENERAL ELECTRIC Series M5 Service Information, Continued

SWEEP BOARD COMPONENT LOCATIONS AS VIEWED FROM CONDUCTOR SIDE

ASTERISKED (*) NUMBERS
DENOTE WIREWRAP TERMINALS MOUNTED ON COMPONENT BOARD TO CONNECT WIRES FROM OTHER COMPONENTS.

* 1. TO R2O3, VERT HOLD CONTROL
* 2. TO T2O1 (BLUE LEAD)
* 3. TO T2O। (YELLOW LEAD)
* 4. TO C4OIC ($+135 \vee \mathrm{~B}+1$)
*5. TO T4OI (RED/BLACK LEAD).
TO AC INTERLOCK
* 6 . TO C $401 \mathrm{~B}(+275 \mathrm{VB}+3$)
* 7 TO R2O3. VERT. HOLD CONTROL (CENTER TERM.)
* 8. TO *17 ON 1-F BOARD
* 9. TO © ON I-F BOARD
* 10. TO VIG. PIN I

TO VI3, PIN 7

* 11 TO R264
* 12 TO TERM 4 OF YOKE, TO C265
* 13 TO T2OI (RED LEAD), TO TERM 3 OF YOKE
* 14 GROUND TERM. FOR FOCUS JUMPER
*15. $+275 \vee B+3$ TERM. FOR FOCUS JUMPER
* 16. TO VIG, PIN 3
* 17. TO TERM. 7 ON T251
* 18. TO TERM. 8 ON T25I

TO VIG, PIN 6

BY SYMBOL	R253 - G7	C 207 - F 4	RC NETWORKS
RESISTORS	R255 - I6	0209 - J2	
	R256 - I9	C 210 - Il	RC201 - C7
R202 - B8	R257 - Il0	$\mathrm{C} 251-\mathrm{F} 6$	DIODES
R204 - Elo	R258 - J9	$\mathrm{C} 252-\mathrm{F} 5$	
R205 - F10	R259 - I8	C 253 - F7	
R206 - D3	R260 - H9	$\mathrm{C} 254-\mathrm{E} 7$	Y251A - H5
R207 - D3	R261 - F9	C255 - F8	Y251B - H6
R208 - B10	R262 - E9	C256 - D8	
R209 - F2	R263 - F9	C257 - J7	SPARK GAP
$\mathrm{R} 210-\mathrm{B}$	R401 - C8	C 258 - K5	TEST POINTS
R211 - Di		C 259 - G10	
R212 - F3	CAPACITORS	C 263 - H1O	
R 215 - J4		COILS \& TRANSFORMERS	
$\mathrm{R216}$ - J4	$\mathrm{C2O2}-\mathrm{G} 3$		$\begin{aligned} & \text { VI }-\mathrm{G} 6 \\ & \text { VIII }-\mathrm{I} \\ & \mathrm{IV}-\mathrm{C} \end{aligned}$
R217 - I3	C203 - A6		
R218 - H2	C204 - D5 $0205-\mathrm{F}$		
R251 - G6	C205 - F3	L251 - K7	
R252 - G5	C 206 - G4		

Hut offman

SOUND IF ALIGNMENT.

Inject a $4.5 \mathrm{mc}, F M$ modulated signal, into the grid of the 6AW8A Video Amplifier at TV-2. Then connect an oscilloscope to the top of the volume control.
a. Turn slug out several turns in the take off coil (L101), interstage coil (T101) and quadrature coil (Ll02).
b. With the signal generator set to maximum output, turn the slug in the quadrature coil in past the first definite peak (as indicated on scope) and then tune for maximum output on the second peak. If generator has insufficient 4.5 mc output, rough-tune the take off coil (L101) until signal is strong enough to accurately tune the second peak to maximum.
c. Reduce signal generator output to a setting where scope sine wave scrambles, and then tune interstage coil (T101) until sine wave is proper. Repeat above until lowest generator output resulting in proper sine wave is achieved.
d. Duplicate step c. while tuning the take off coil Llol.
e. Increase signal level output over a wide range. Sine wave amplitude should remain relatively uniform over a wide range of input signal amplitude.
f. Connect a detector probe and meter (or scope) to the cathode of the picture tube. Adjust the 4.5 mc trap (L204) for minimum output. See Fig. 1 for circuit of suitable detector probe.

VIDEO IF ALIGNMENT

a. Connect a DCvoltmeter to the grid of the 6AW8A;TV-2), using an isolation network as shown in Fig. 2.
b. Apply $-3 V D C$ to the IF AGC bus at TV-5 (top of AGC bus at TV-5 (top of AGC control).
c. Connect the signal generator to the RF test point on the tuner, with a . 005 mfd capacitor in series w ith the generator.
d. Set the Contrast Control to MINIMUM, and the tuner off channel (between channels).
e. Remove yoke plug to cut high voltage.
f. Set tuner fine tuner knob full clockwise.
g. Adjust 3RD IF transformer (T203) to maximum meter deflection using an unmodulated RF signal at 44 mc . Hold meter reading around 2 volts during alignment.
h. Adjust the 2ND IF transformer (T202) to maximum at 45.4 mc .
i. Adjust the 1ST IF transformer (T201) to maximum at 43.25 mc .
j. Adjust the tuner converter plate coil (L7) in a couple of turns.
k. Adjust the IF input coil (L201) to maximum at 43 mc .

1. Adjust the tuner converter plate coil (L7) out to a maximum at 45 mc .

CHASSIS 335 and 336, MARK 7

See page 40 for list of models, diagram pages 40-41, additional material page 42 .

VIDEO IF SWEEP ALIGNMENT

a. Connect an oscilloscope to the grid of the 6AW8A (IV-2) using the same isolation network (Fig. 2) as for the voltmeter.
b. Leave - 3VDC bias on AGC bus.
c. Apply a sweep generator IF signal to test point on tuner through. 005 mfd capacitor.
d. With Contrast Control still set to full clockwise and tuner between channels, tune sweep generator to 43 mc . and set generator sweep control to 10 or 12 mc sweep.
e. Observe IF response on scope after adjusting generator sweep output to just below the overload point. Overload is indicated by a flattening of the top of the response curve.
f. Turn on MARKERS and check at 42.75 mc . and 45.75 mc These markers should fall at about the 50% point on the slopes as shown in Fig. 3. Slight readjustment of individual IF coils may be necessary to duplicate the IF response curve of Fig. 3. Do not readjust the last IF stage (T203) to compensate as this state should be exactly 44 mc .

FIG I

DETECTOR NETWORK

ISOLATION NETWORK

FIG 3 - IF ALIGNMENT CURVE

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

HOFFMAN MARK 7, CHASSIS 335,336, Schematic Diagram
Models
using
Chassis
335
B1277
K1277
M1277
P1277 W1277

Models
using
Chassis
336
B1291
K1291
M1291
SP1291
W1291
B3411
M3411
SP3411
W3411
B3421
M342.
SP3421
W3421

SCHEMATIC DIAGRAM FOR

HOFFMAN MARK 7, CHASSIS 335, 336, Schematic Diagram

HOFFMAN MARK 7 CHASSIS 335,336

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

HOFFMAN MARK 7, CHASSIS 335, 336, Service Information, Continued

CAPACITORS			SYMBOL	PART NO.	DESCRIPTION 33 mfd , 600V Tubular
SYMBOL	PART NO.	DESCRIPTION	C309	851015	. $01 \mathrm{mfd}, 500 \mathrm{~V}$ Ceramic
			C310	871625	. 1 mfd , 600V Tubular
C101	854035	2. 2 mmf Composition	C 311	866121	. 047 mfd , 200V Tubular
C102	854051	47 mmf Composition	C 312	866125	. 1 mff , 200 V Tubular
C103	851140	. $0047 \mathrm{mfd}, 500 \mathrm{~V}$ Ceramic	C 313	850105	12 mmf , 3KV Ceramic
C 104	851141	. 001 mfd , 500V Ceramic	C314	867913	. 01 mfd , 1600V Tubular
C 105	851015	. 01 mfd , 500V Ceramic	C315	866129	. 22 mfd , 200V Tubular
C 106	871221	. 047 mfd , 200V Tubular	C316	860121	. $047 \mathrm{mfd}, 200 \mathrm{~V}$ Tubular
C 107	851003	1000 mmf , 500 V Ceramic	C401	871609	. $0047 \mathrm{mfd}, 600 \mathrm{~V}$ Tubular
C108	851015	$.01 \mathrm{mfd}, 500 \mathrm{~V}$ Ceramic	C402	866121	. 047 mfd , 200 V Tubular
C 109	851140	. 0047 mfd , 500 V Ceramic	C403	851128	100 mmf Ceramic
C201	851122	470 mmf Ceramic	C404	862102	3900 mmf Mica
C202	866301	. $001 \mathrm{mfd}, 600 \mathrm{~V}$ Tubular	C405	862101	470 mmf Mica
C203	851122	470 mmf Ceramic	C406	862103	330 mmf Mica
C204	866125	. 1 mfd , 200V Tubular	C407	866301	. 00 lmfd , 600V Tubular
C205	851122	470 mmf Ceramic	C408	866325	. 1 mfd , 600V Tubular
C206	851122	470 mmf Ceramic	C409	866329	. 22 mfd , 600V Tubular
C207	851122	470 mmf Ceramic	C410	866325	. 1 mfd , 600V Tubular
C208	851122	470 mmf Ceramic	C411	866323	. $068 \mathrm{mfd}, 600 \mathrm{~V}$ Tubular
C209	851122	470 mmf Ceramic	C412	850301	390 mmf , 3KV Ceramic
C210	866301	. 00 lmfd , 600 V Tubular	C413	850301	390 mmf , 3KV Ceramic
C211	866301	. $001 \mathrm{mfd}, 600 \mathrm{~V}$ Tubular	C414	850107	39 mmf , 3KV Ceramic
C212	854043	10 mmf Composition	C501	870213	. $01 \mathrm{mmf}, 600 \mathrm{~V}$ Tubular
C213	851122	470 mmf Ceramic	C502	870225	. 1 mfd , 600V Tubular
C214	851015	. $01 \mathrm{mfd}, 500 \mathrm{~V}$ Ceramic	C503	851119	. 01 mfd , 500V Ceramic
C215	871421	. 047 mfd , 400 V Tubular	C504	851119	. 01 mfd , 500V Ceramic
C216	866129	. $47 \mathrm{mfd}, 200 \mathrm{~V}$ Tubular	C505	856909	$160 \mathrm{mfd}, 150 \mathrm{~V}$ Filter
C217	866129	. 22 mfd , 200V Tubular	C506A		100 mfd , 350 V Filter
C301	871605	. $0022 \mathrm{mfd}, 600 \mathrm{~V}$ Tubular	C506B	856906	40 mfd , 350V Filter
C302	851114	220 mmf Ceramic	C506C		40 mfd , 350 V Filter
C303	851128	100 mmf Ceramic	C507A		$80 \mathrm{mfd}, 400 \mathrm{~V}$ Filter
C304	851117	820 mmf Ceramic	C507B	857105	$40 \mathrm{mfd}, 350 \mathrm{~V}$ Filter
C305	851117	820 mmf Ceramic	C 507C	857105	$20 \mathrm{mfd}, 300 \mathrm{~V}$ Filter
C306	871609	. 0047 mfd , 600V Tubular	C507D		$20 \mathrm{mfd}, 300 \mathrm{~V}$ Filter
C307	871225	. 1 mfd , 200 V Tubular	C508	851013	. 001 mfd , 500V Ceramic

DEFLECIION YOKE ADJUSTMENT-The deflection yoke should be positioned as far forward on the neck of the tube as the bell will allow. Then, if the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Upon completion of this adjustment, tighten the clamp at the rear of the deflection yoke.
CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until proper centering is obtained. If a clamp type centering device is used, rotate the device to the left or right and turn the knob located at the top of the device until the picture is centered correctly.
ADJUSTMENT OF RANGE CONTROL - Tune the receiver to the strongest station in the area in which the receiver will be used. While observing the picture and listening to the sound, turn the control clockwise until signs of overloading (buzz in sound washed-out picture, sync instability) appear. Then turn the control a few degrees counter-clockwise from the point at which overloading occurs. (The stronger the signal input, the more counter-clockwise this setting will be.) In areas where the strongest signal does not exceed 1000 MV the setting will usually be maximum tlockwise. With the control set correctly, the AGC will
automatically adjust the bias on the R-F and I-F amplifiers so that the best possible signal to noise ratio (minimum snow) will be obtained for any signal input to the receiver.
HORIZONTAL FREQUENCY ADJUSTMENT - Turn the horizontal hold control to the extreme clockwise position. Tune in a station and adjust the horizontal frequency control until the picture is just about to tear out of sync as seen at the top of the picture.
HORIZONTAL DRIVE ADJUSTMENT-While receiving a signal from a station (with picture locked in sync) turn contrast control fully counter-clockwise, turn the brightness control up so that the picture appears washed out. Turn the horizontal drive control clockwise until white bars appear in the left center portion of the raster, then turn counter-clockwise until the white bars just disappear: This adjustment will allow the horizontal system to operate at maximum efficiency.
HEIGHT AND VERTICAL LINEARITY ADJUSTMENT Adjust the height control until the picture fills the mask vertically. Adjust the vertical linearity control until the picture is symmetrical from top to bottom. Adjust the picture centering device to align picture with the mask. Adjustment of any control will require a re-adjustment of the other control.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MONTGOMERY WARD Model WG-4204A, Serial 85X

CONTROLS TOP OF CHASSIS

Horizontal HoldR-424
Brightness R-219
Vertical Hold . R-310
Off-On Volume R-104
Contrast
R-222

CONTROLS REAR OF CHASSIS

Horizontal Centering Centering
Vertical Centering) Device
Horizontal DriveC-417
Vertical LinearityR-300
Height . R-311
Horizontal Wave FormL-403
Horizontal frequency L-402
Buzz . R-100
Range . R-316

Schematic Diagram

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms shown on the schematic diagram are as observed on a Tektronix type 524D wide band television oscilloscope with the receiver tuned to a reasonably strong signal and a normal picture. The voltages shown on each waveform are the approximate peak to peak amplitudes. The frequency accompanying each waveform indicates the repetition rate of the waveform not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, the corners of the pulses will tend to be more rounded than those shown on the schematic diagram and the amplitude of any high frequency pulse will tend to be less.

DC SOCKET VOLTAGES

All DC socket voltages shown on the schematic are measured with a high impedance VTVM and under zero signal conditions.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MONTGOMERY WARD Model WG-4204A, Serial 85X, Service Information, Continued

ALIGNMENT PROCEDURE

40 MC I-F ALIGNMENT - With tuner set in UHF (blank position) connect sweeper with very short leads through a 10 K mmf disc. ceramic capacitor to mixer grid. (Lead of a lOK ohm resistor which is accessible through a hole at top of tuner.) With short leads, connect crystal diode detector (Fig. 3) to plate of 1 st I-F tube. Connect $-4-5 \mathrm{~V}$ to I-F AGC line (Junction of C-201 and R-200). Connect oscilloscope to detector output. Adjust sweep output to give adequate deflection.

A. FREQUENCY
 ADJUST
 1. 47.25 Mc
 Ist Pix I-F Coil (T-200 Bottom of Coil) to center notch over 47.25 Mc marker.
 2. Converter Plate Coil L-9 (Top of Tuner) Input Grid Coil (L-201) and Input Coupling Coil (L-200) to give the response shown in figure 4.

The converter plate and input grid coils control the shape of the top. The input coupling coil controls the position of the 41.25 marker. This adjustment must be made accurately or the sound rejection will not be correct (41.25 Mc 31 to 36 db down from top of overall P.I.F. response). 45.75 Mc marker must be set exactly on peak or the position of the 44.5 Mc marker in the overall response curve will not be correct.

Fig. 3-Crystol Diode Detector
8. When the input circuit is aligned place -4.5 V bias on the I-F AGC line. (Junction of C-201 \& R-200). Remove the crystal detector and connect oscillosscope and VTVM to the 2nd pix detector load resistor R-211. Adjust sweep output to give 2.0 VDC at detector.

FREQUENCY
ADJUST

1. 42.8 Mc 1st Pix I-F Coil (T-200, Top of Coil) for maximum height of 42.8 Mc marker.
2. 41.25 Mc 2nd Pix 1-F Coil (T-201, Bottom of Coil) for minimum height of 41.25 Mc marker.
3. 45.3 Mc 2nd Pix I-F Coil (T-201, Top of Coil) for maximum height of 45.3 Mc marker.
4. 44.0 Mc 3rd Pix I-F Coil (T-202, Bottom of Coil) for maximum height of the 44.0 Mc marker.
These adjustments may be made with a single frequency generator if it is more convenient to do so.
C. After these adjustments have been made recheck the peak to peak output on the oscilloscope. If the

shape of the curve is not as shown in figure 5, it will be necessary to retouch the adjustments. A small fraction of a turn is all that is necessary if the strip is operating correctly. The position of the 44.5 Mc marker is critical (98\%). The 44.0 Mc transformer (3rd I-F) controls the symmetry of the top. The 45.3 Mc transformer (2 nd I-F) controls the height of the 45.75 Mc marker. The 42.8 Mc transformer (1 st I-F) controls the height of the 42.4 Mc marker. This adjustment will very seldom need retouching.

Fig. 5-Overall Response Curve
DO NOT RETOUCH the converter plate coil or the input grid coil. These coils MUST be adjusted correctly with the diode detector. Recheck position of 41.25 Mc and 47.25 Mc markers. Reset if necessary.

VIDEO

With 4.5 Mc unmodulated signal into grid of the video amplifier tube and VTVM on picture tube cathode, tune 4.5 Mc trap for minimum response. VTVM on 0.10 V AC scale. This adjustment can also be made while observing a picture from a station. Tune trap for least 4.5 Mc beat (grainy appearance) in picture.

AUDIO

1. Tune in a TV station and reduce signal strength at antenna terminals by use of an attenuator or similar device until a "hiss" accompanies the sound.
2. Adjust sound take-off coil (L-100), quadrature coil ($\mathrm{L}-102$) and buzz control ($\mathrm{R}-100$) for maximum undistorted sound and minimum buzz.
3. If "hiss" disappears during step 2, further reduce signal strength.

MODELS WG-5062A, WG-5067A, WG-5072A, WG-5077A, WG-5162A, WG-5172A
(Material on pages 47 through 50)

SERVICE ADJUSTMENTS

MAGNET ADJUSTMENT - The picture tube used on these receivers is of the electrostatic type, and occasionally, to bring about best focus, it is necessary to use a beam aligner. The beam aligner fits on the neck of the picture tube and appears to be an ion trap. In many cases, the beam aligner is not needed to properly focus the tube and therefore is not mounted on the tube. However, if a replacement picture tube is ever needed, it may be necessary to purchase a beam aligner to bring about satisfaciory focusing adjustment.
DEFLECTION YOKE ADJUSTMENT-The deflection yoke should be positioned as far forward on the neck of the tube as the bell will allow. Then, if the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Upon completion of this adjustment, tighten the clamp at the rear of the deflection yoke.
CENTERING ADJUSTMENT - If horizontal or vertical centering is required, adjust each ring in the centering device until proper centering is obtained. If a clamp type centering device is used, rotate the device to the left or right and turn the knob located at the top of the device until the picture is centered correctly.

CHASSIS ASSEMBLY REMOVAL

1. Remove knobs from the front of the cabinet.
2. Remove cabinet back.
3. Disconnect the antenna leads. Disconnect speaker leads on consoles only.
4. Remove speaker (table models only).
5. Remove screws holding chassis brackets to top of cabinet.
6. Remove only 4 screws (2 at each side) from the bottom side of the shelf.
7. Gently pull the chassis assembly out from the cabinet.
CAUTION - DO NOT LOOSEN OR REMOVE ANY OTHER SHELF SCREWS INSIDE CHASSIS COMPARTMENT.
8. Place entire assembly face down on a cushioned surface which should be thick enough to allow for clearance of control shaft. Disconnect the yoke plug, picture tube socket, anode lead and remove the beam aligner magnet and deflection yoke.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MONTGOMERY WARD Models WG-5062A, WG-5067A, WG-5072A, WG-5077A, WG-5162A, WG-5172A, Schematic Diagram, Continued

OSCILLOSCOPE WAVEFORM PATTERNS

The waveforms shown on the schematic diagram are as observed on a Tektronix type 524D wide band television oscilloscope with the receiver tuned to a reasonably strong signal and a normal picture. The voltages shown on each waveform are the approximate peak to peak amplitudes. The frequency accompanying each waveform indicates the repetition rate of the waveform not the sweep rate of the oscilloscope. If the waveforms are observed on the oscilloscope with a poor high frequency response, the corners of the pulses will tend to be more :ounded than those shown on the schematic diagram and the amplitude of any high frequency pulse will tend to be less.

DC SOCKET VOLTAGES

All DC socket voltages shown on the schematic are measured with a high impedance VTVM and under zero signal conditions.

SChematic is divioe ointo four sections
WITH EACH SECTION HAVING ITS OWN

UNIESS OTHERWISE SPECIFIED
ALL CARGCITANCE VALUES LESS THAN 1.O IN MF. AND ABOVE I.O IN MMF UNLESS OTHERWISE NOTED.

COIL RESISTANCE VALUES less than
1O OHM ARE NOT SHOWN
$\mathrm{n}=1000$

[^1]
VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel and then back. Normally the picture may be out of sync. Turn the control slowly clockwise. The number of diagonal bars will be grad-
ually reduced and when only 2 to 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control.
At the extreme clockwise position, the picture should be just starting to pull out of sync.

[^2]MONTGOMERY WARD, Continued
Models WG-5062A, WG-5067A, etc.

SERVICE SUGGESTIONS

BUZZ IN SOUND

1. Check buzz control setting.
2. Check sound I-F alignment.
3. V-2 defective.

BENDING OR S-ING

1. Check capacitors C-402A \& C-403A.
2. $V-12$ or $\mathrm{V}-11 \mathrm{~B}$ tubes defective. circuits.
3. Check V-8A, V-8B and V-7 tubes.

ALIGNMENT PROCEDURE

1. Connect sweep output to 2 nd I-F grid (pin \# 1-V6), oscilloscope to diode load resistor (R213). Set output of sweeper so that some output is indicated on oscilloscope. Adjust 2nd PIF transformer (T-202) primary (bottom) and secondary (top) simultaneously for maximum output and symmetry. Readjust sweeper output for 4.0V P-P on oscilloscope. Touch-up to give the waveform shown in figure 4.

Fig. 4-2nd Pix I-F Response
2. With approximately -7.0 V bias on AGC line (junction of R-212 and C-213) connect sweeper to 1 st I-F grid (Pin \#1-V4). Reduce sweeper output to compensate for additional gain of 1 st stage (4.0V. P-P on oscilloscope). Adjust 1st I-F transformer primary (top) and secondary (bottom) for maximum gain and symmetry with 45.75 mc marker. (See Figure 5.)

Fig. 5-Pix I-F Response From 1st Pix I-F Grid

3. Set channel selector to Channel 13. Connect sweeper with very short leads through a 10 Kmmf dise ceramic capacitor to mixer grid (lead of a 10 K resistor which is accessible through a hole located on front of the tuner). Readjust sweep output for 4.0V P-P, adjust 41.25 mc trap (bottom of L-200) so that notch is at marker, adjust mixer plate coil (L-9 primary) and input grid coil (top of L-200) for maximum gain and symmetry with 45.75 mc marker at 50%. (Figure 6.)
In all positions, final touch up should be made with 4.0V. P-P amplitude on oscilloscope. Once a stage has been adjusted, do not readjust with the sweeper connected to another stage. For instance, after adjusting the output stage and moving the sweeper to the 1 st grid to adjust 1st I-F transformer, do not move the slugs in the output stage, etc.
In general, the position of the 45.75 mc marker should be set with the primary and the symmetry adjusted with the secondary. An approximate setting of the input grid coil may be obtained by adjusting for maximum amplitude of the 45.75 marker. This amplifier cannot be adjusted for bandwidth. It must be adjusted for maximum gain, symmetry and position of 45.75 marker.

VIDEO

With 4.5 Mc unmodulated signal into grid of the video amplifier tube and VTVM on picture tube cathode, tune 4.5 Mc trap for minimum response. VTVM on $0-10 \mathrm{~V} A C$ scale. This adjustment can also be made while observing a picture from a station. Tune trap for least 4.5 Mc beat (grainy appearance) in picture.

AUDIO

1. Tune in a TV station and reduce signal strength at antenna terminals by use of an attenuator or similar device until a "hiss" accompanies the sound.
2. Adjust sound take-off coil (L-100) quadrature coil (L-101) and buzz control (R-102) for maximum undistorted sound and minimum buzz.
3. If "hiss" disappears during step 2, further reduce signal strength.

MOTOROLA

CHASSIS TS-430, LTS-430, QTS-430

MODEL BREAKDOWN CHART

Model	Type	TV Chassis	VHF Tuner	UHF Tuner
17T32BZ	Table	TS-430	TT-104	-
Y17T32BZZ	Table	TS-430Y	TT-104Y	VTT-89
17T33B	Table	LTS-430	LTT-104	-
17T33M	Table	LTS-430	LTT-104	-
17P5-1	Portable	TS-430	TT-104	-
Y17P5-1	Portable	TS-430Y	TT-104Y	VTT-89
17P5-2	Portable	TS-430	TT-104	-
Y17P5-2	Portable	TS-430Y	TT-104Y	VTT-89

FIGURE 1. TUBE LOCATIONS \& FILAMENT WIRIMG

DEFLECTION YOKE ADJUSTMENT

If the deflection yoke is not correctly positioned rota. tationally, the picture will be tilted. If the deflection yoke is not tight against the flare of the picture tube, the picture may be de-focused, have non-linear distortions and neck shadow.
To adjust the yoke; loosen the metal clamp, push the yoke as far forward as possible, then rotate until the picture is straight. Loosen clamp and push tight against rear of yoke; tighten metal clamp.

PICTURE CENTERING

Picture centering is accomplished magnetically by means of the centering device located on the picture tube neck. Use the following procedure:

1. Starting with the magnetic centering device arms together (for minimum field strength) and positioned in the horizontal plane.
2. Separate the arms of the centering device to center the picture vertically.
3. Adjust horizontal centering by rotating the magnetic centering device, as a unit, one way or the other. Readjust vertical centering by slightly rotating the relative position of the arms.

ADDENDA TO MODEL BREAKDOWN CHART

Model	$\begin{gathered} \text { TV } \\ \text { Chassis } \end{gathered}$	VHF Tuner	$\begin{aligned} & \text { UHF } \\ & \text { Tuner } \end{aligned}$	Antenna
17P5-2C	TS -430	TT-104	-	Monopole
Y17P5-2C	TS -430Y	TT-104Y	VTT-89	Monopole
17P5-3A	QTS-430	QCMTT-102	-	Monopole
Y 17P5-3F	TS-430Y	TT-104Y	V TT-89	Monopole
17P5-4A	QTS-430	QCMTT-102	-	Monopole
Y 17P5-4F	TS-430Y	TT-104Y	V TT-89	Monopole
17P5-5A	QTS-430	வCMTT-102	-	Monopole
Y 17P5-5F	TS-430Y	T T-104Y	VTT-89	Monopole
17T32WH	TS-430	TT-104	-	None

REAR PANEL ACCESSORIES AND CONTROLS

These models are provided with conventional antenna terminals for connection of an outside or portable-indoor antenna of any type. The 17T32 \& 17P5 models (chassis TS-430) are equipped for use with a custom-designed singlemast type antenna called the Monopole. The Monopole antenna requires a "counterpoise" which is provided by the cabinet; required connection from the antenna to the cabinet is provided by a female receptacle pre-wired into the receiver's back cover. The Monopole antenna is provided with a male plug and when the antenna is plugged into the back cover, the cabinet counterpoise is automatically connected. The conventional twin-lead from the Monopole antenna must still be connected to the conventional antenna terminals. Should the back cover be removed, make certain the ground counterpoise wire is secured to a cabinet screw when cover is replaced.

Model 17T33 is provided with a built-in" antenna. The leads for the built-in antenna protrude through the back cover, near the conventional antenna terminals. To use built-in, connect lead-in wires to antenna terminals. Do not use both an external antenna and built-in antenna.

Receivers equipped for VHF and UHF reception are pro vided with externally connected, 150 ohm resistors, between the VHF and UHF antenna terminals. Such connection allows VHF and UHF reception from a single antenna. When a single antenna is used as a combination VHF/UHF antenna, reception should be checked with the antenna connected to the VHF terminals first and then to the UHF terminals. Since the 150 ohm coupling resistors can cause a loss of signal strength, it is necessary to determine which tuner input must be fed directly from the antenna and which tuner will be least affected by the loss. Keep in mind that the 150 ohm resistor jumpers are only used when VHF and UHF reception is obtained from a single antenna. In fringe areas, and cases where individual VHF and UHF antennas are required...the resistor jumpers are removed and the appropriate antenna connected to the appropriate input terminals.
The Monopole antenna is not recommended for UHF operation and a special UHF loop antenna (TK-86) is available. However, the Monopole will often give satisfactory results as a combination $\mathrm{VHF} / \mathrm{UHF}$ antenna in certain areas. In such case, the Monopole lead-in should be tried in both the VHF and UHF position to find the group of stations that will be least affected by the loss of signal strength due to the resistors.

FUCUS ADJUSTMENT

FIGURE 2. FOCUS STRAP ILLUSTRATION

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-430, LTS-430, QTS-430, Service Information, Continued

NOISE GATE CONTROL (Local-Distance) ADJUSTMENT
This control sets the receiver for the signal strength in the area in which it is to operate. To adjust: tune in a channel that receives a satisfactory picture; turn the noise gate control clockwise until picture becomes unstable (sync or otherwise). Then turn the noise gate control counterclockwise until picture is again satisfactory. Check this setting on all available channels. If any channel is unstable, continue turning noise gate control counterclockwise until it clears up. Once set in this manner, the control should not require further adjustment unless some condition occurs that would change the signal strength to the receiver...this might include changing the receiver's position in the room, changing the antenna type or location, etc.

HORIZONTAL OSCILLATOR ADJUSTMENT

The HORIZONTAL HOLD control should have a sync range of approximately 30 degrees. If the control is too critical, adjust by the following procedure. (lt should be possible to adjust the horizontal oscillator coil with the receiver in the cabinet by using the appropriate pins of the SERVICE TEST RECEPTACLE.)

1. Set all controls for normal picture.
2. Use a piece of wire, short the pin labeled "HORIZ AFC" to ground.
3. Connect a. 1 mfd 400 volt capacitor in parallel with the HORIZONTAL OSCILLAATOR COIL (L-501). Use pins $\$ 2$ and 5 of the SERVICE TEST RECEPTACLE.
4. Adjust the HORIZONTAL HOLD control to the point where the picture almost remains stationary...as far as horizontal syac is concerned. Also, make sure that the picture is synced vertically.
5. Remove the . 1 mfd capacitor shunting the HORIZ COLL and without turning the HORIZONTAL HOLD control, adjust the HORIZ COLL slug to the center of the range in which the picture almost remains in sync horizontally. The slug of the coil is located in the upper right-hand corner of the chassis.
6. Remove the wire shorting the HORIZ AFC to ground and adjust the HORIZONTAL HOLD control so that no fold-over appears on either side of the raster.

TO REMOVE THE TS-430 (17T32 \& 17P5) CHASSIS FROM THE CABINET;

1. Remove all knobs from the side of the cabinet.
2. Unplug the tuner lead-in wires from the antenna terminals.
3. Remove the three screws from the back cover and remove the back cover by lifting up and out of the bottom retaining channel, then straight back from the cabinet.
4. Remove the two self-tapping screws exposed by beck cover removal and located at the top edge of the cabinet. These screws hold the brackets retaining the top of the chassis.
5. Remove the two screws from underneath the cabinet that hold the bottom chassis bracket.
6. Tilt chassis so that left-hand side of chassis moves as close to the left-hand side of the cabinet as possible: tilt the top of the chassis outward from the cabinet. Now, disconnect the speaker leads, the high voltage picture tube anode lead, the picture tube socket and the yoke socket.
7. The chassis can be removed from the cabinet by titing the top out first.

TO REPLACE THE TS - 430 CHASSIS

1. Insert chassis with top tilted outward from cabinet and the left-hand side inward so the tuner shaft may be inserted through opening in side of cabinet. Before proceeding further, replace speaker leads and the picture tube high voltage anode lead.
2. Continue placing chassis into cabinet with top leaning outward.
3. Replace yoke and picture tube sockets.
4. Replace two screws holding top chassis brackets.
5. Replace two screws underneath cabinet holding chassis bracket.
6. Insert back cover into bottom well of cabinet, position flexible shafts so they will extend out openings in back cover, then close cover making sure power interlock makes proper connection. Replace the three screws in back cover making sure Monopole grounding lug is placed underneath the right-hand top (as viewed from rear) screw.
7. Insert tuner leads into proper antenna terminals.
8. Check operation of receiver as well as making check to make certain the cabinet is not in any way making contact with wiring, creating a shock hazard.

TO REMOVE THE LTS -430 CHASSLS FROM THE CABINET

1. Remove all knobs from the side of the cabinet.
2. Jnplug the tuner lead-in wires from the antenna terminals.
3. Remove the back cover of the cabinet.
4. Remove the two screws exposed by back cover removal and located at the top edge of the cabinet. These screws hold the brackets retaining the top of the chassis.
5. Remove the twoscrews from underneath the cabinet that hold the bottom chassis bracket.
6. Shift chassis to required position and disconnect the speaker leads, the high voltage picture tube anode lead, the picture tube socket and the yoke socket. Remove chassis.

TO REPLACE LTS-430 CHASSIS: Use preceding instructions in reverse order.

After replacement, check operation of receiver as well as making a check to make certain the cabinet is not in any way making contact with wiring...creating a shock hazard.

TO REMOVE THE SAFETY SHIELD FOR CLEANING MODELS: 17T32 and 17P5

1. Position cabinet so the screws underneath the cabinet front (bezel) may be removed.

NOTE: Special "holt head" screws were used on some cabinets. A special tool, Motorola Part No. 66T742501, will be required toremove these screws in order to remove the safety shield.
2. Pull lower portion of cabinet front outward, away from cabinet.
3. Lift cabinet front upward until it is released from the upper edge of the cabinet.

MODEL: 17T33

1. Remove the safety shield by removing the screws located in the metal retainer strip at the top of the safety shield. Remove the metal strip and allow the top of the shield to move outward from the cabinet.
2. Grasp safety shield at right and left-hand sides and lift up and out of the bottom retainer.

PRECAUTIONS IN CLEANING PLASTIC-TYPE SAFETY SHIELD (Models: 17T32 \& 17P5)

Clean the safety shield with water, mild soap and a clean soft cloth. Dry the surface with a clean, damp chamola. Never try to clean the safety shield by hard rubbing with a dry cloth. This will only tend to scratch the surface and produces an electrostatic charge on the plastic which will attract more dust from the air.

ALIGNMENT

SERVICLNG THE IF SECTION

Before alignment of the video [F section ts attempted, it is advisable to thoroughly check the system. If alignment is started on an IF section in which a faulty component exists, successfulalignment will probably be impossible and the entire procedure will have to be repeated when the real cause of the trouble is corrected. Prellminary tests of the system should include voltage and resistance measurements, routine checks for bad soldering connections, and visual inspection of the circuits for overheated components as well as for obvious wiring defects.

VIDEO IF \& MIXER ALIGNMENT PROCEDURE

Pre-Alignment Steps

1. Maintain line voltage at 122 volts with variac.
2. Remove the deflection yoke plug to eliminate RF interference radiation.
3. Disableoscillator byshorting point "L" located aear oscillator tube $\mathrm{V}-2$ to chassis.
4. Apply the negative lead of a 6 volt bias supply to pin \#1 (IF AGC) of the SERVICE TEST RECEPTACLE and the positive lead to pin $\$ 3$ (chassis ground).
5. All coil core tuning positions, in relation to chassis, are given in the procedure chart and in the illustration of Fig.. ure 6.
6. Set channel selector on channel 13 and connect a 1500 ohm 50 watt voltagenormalizing resistor from B+t to chassis (usepins $\boldsymbol{F}_{5}(\mathrm{~B}++$) and $\# 3$ (ground) of the SERVICE TEST RECEPTACLE.
7. Short across the tuner input terminals.
8. Set the notse gate control to maximum counterclockwise position (as viewed from rear of chassis).
9. Maintain 2 to 5 volts peak-to-peak at the diode load (Det. T.P.) except when specific values are givenin the procedure chart.
10. Refer to Video LF \& Mixer Alignment Detall for component and test point locations (Figure 7).

VIDEO IF \& MIXER ALIGMMENT PROCEDURE

STEP	SWEEP GENERATOR	INDICA TOR	A DJUST	ADJUST FOR AND/OR REMARKS
1.	To 3rd LF grid test recept thrua.001 mf capacitor Set sweep approx to 44 Mc markers as required	Scope thru a 47 K ohm resistor to video det test recept	Both cores of 3rd IF coil (T-103)	Equal peaks and 45.75 Mc marker as shown in curve 1 . NOTE: Core at crystal det end can be reached by inserting tool through unobstructed slug. Tune both cores near the ends of their respective conls. See detail Fig. 6.
2.	To mixer grid thru. 001 mf capacitor. Use opening adjacent to mixer, point "M". Set sweep to approximately 44 Mc . a. Set marker to 47.25 Mc b. Set marker to 41.25 Mc c. Set marker to 39.75 Mc	Scope connection same as step l	a. Both 47.25 Mc traps (L-1018 L-105) b. 4 I .25 Mc trap (L-102A) c. 39.75 Mc trap (L-103)	NOTE: Temporary removal of bias or increased generator input may be required to see traps. a. Minimum response (tune cores at end of coils away from chassis). b. Minimum response (tune core at end of coil toward chassis). c. Minimum response (tune core at end of coil away from chassis).
3.	Generator connection same as step 2 , except set output for 3 V P-P on scope	Scope to "lst FF screen test recept" or "test point".	Mixer trans, located on tuner (T-2) lst IF grid coil (L-102B)	See curve \#2 for above responses. Tune both mixer trans ($T-2$) and grid coil (L-102B) for curve shown in curve 13 . T-2 affects the center peak and L-102B affects the two outside peaks. If a suck-out (trap effect) occurs, detune lst Fif transformer (T-101) toremove. Tune both coil cores at end of coil. away from chassis.
4.	Generator connection same as step \#2. Reset for 2-5V P-P on scope	Scope thrua 47K ohm resistor to video det test recept	lat F trans ($\mathrm{T}-101$) 2nd F trans ($\mathrm{T}-102$)	Proper 42.25 Mc marker placement (tune core at end of coil toward chassis) Proper 45. 75 Mc marker placement (tune core at end of coil toward chassis. See curve 4)
5.	Same as step 4.	Same as step 4.		If a tilt occurs, readjust the mixer trans coil ($T-2$, on tuner) and if necessary, touch up the lst \& 2nd IF trans (T-101 \& T-102) for the response shown in curve 4.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-430, LTS-430, QTS-430, Alignment Information, Continued

4.5 MC TRAP ADJUSTMENT

1. Carefully tune receiver to local atation and advance contrast control.
2. Adjust local oscillator (with fine tuning contral to bring the 4.5 Mc interference strongly into the picture.
3. ADJUST. . . sound trap ($\mathrm{L}-110$) to find the two points of adjustment at which the sound beat is just noticeable on the picture tube screen. Rotate the core toward center of the two points. Use minimum amount of inductance (core out of coil) that will result in no apparent beat interference.

SOUND ALIGNMENT
(Station Signal Method)

The sound system used in the TS-430 receiver consists of an audio IF amplifier stage, a quadrature grid detector and an output stage. Since this type of sound system is extremely sensitive, relatively small input signal voltage will cause grid current to flow in both the IF amplifier and the detector stages. Grid current through the tuned coils will load them down making the adjustment extremely broad and alignment impossible. For this reason, it is necessary to use very weak signal when aligning the driver and the detector input coils. Actually, the signal should be well down
into the noise level for proper tuning action.
Preliminary Steps

1. Tune in a strong TV station.
2. Adjust all controls for normal picture and sound.
3. Refer to Video IF \& Mixer Alignment Detail for coil and test point locstions (Figure 7).

3RD IF

IST If TRAN

47.2S TRAP

47.25 TRAP

39.75 TRAP

FIGURE 6. COIL CORE POSITIONS

FIGURE 7. VIDEO IF \& MIERR ALIGMTENT PROCEDURE
VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION
MOTOROLA Chassis TS-430, LTS-430, QTS-430, Alignment Information, Continued

STEP	STATION	INDICATOR	ADJUST

If sound is not clear at this point, repeat above procedure as necessary.
*NOTE: The signal must be weakened conaiderably either by disconnecting one side of the antenna lead, or connecting low value resistors across the antenna terminals until a pronounced hiss appears in the sound. This hiss level must be maintained for proper allgnment.
**Second core is merely to increase inductance: if misadjusted by previous service work, merely set near end of coil and proceed as stated.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-430, LTS-430, QTS-430, (B-00 version) Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-430, LTS-430, QTS-430, Service Information, Continued

TO REPLACE PICTURE TUBE
TS -430 Only (Models $17 \mathrm{~T} 32 \& 17 \mathrm{P} 5$)

1. Remove chassis from cabinet (see chassis removal instructions).
2. Remove the safety glass (see "To remove the safety glass for cleaning").
3. Loosen picture tube mounting bolts at upper right and left-hand corners of cabinet.
4. Carefully remove picture tube out front of cabinet and place on dirt-free surface.
5. Remove the centering device and deflection yoke. The deflection yoke is held in place by the yoke retainer clampremove the clamp by means of the screw.
6. Working with the new replacement picture tube, place cloth tape at same points and of approximately the same size as those on the original picture tube, then place two pieces of gummed paper on picture tube to prevent yoke from slipping about. The gummed paper, preferably gummed on both sides, is placed on opposite sides of the tube neck... at the flare.
7. Clean picture tube and safetyglass (see note on cleaning plagtic surfaces in the "To remove the safety glass for cleaning" section).
8. Replace deflection yoke and centering device.
9. Replace plcture tube into correct position in front of cabinet: tighten mounting bolts at upper right and left hand ides.
10. Insert chassis into cabinet and position so that the voltage anode lead may be comnected to the picture tube.
11. Re-connect the speaker leads and plug in the picture tube socket.
12. Secure the chassis intoposition, apply power with ser vice line cord and check receiver operation. Adjust the yoke position and centering device (see applicable sections in INS TALLATION ADJUSTMENTS).
13. After receiver has been adjusted for proper operation, replace the front and rear covers.

TO REPLACE PICTURE TUBE LTS-430 (Model 17T33)

1. Remove chassis from cabinet (see chassis removal instructions for the LTS -430 chassis).
2. Remove two bolts from underneath cabinet holding picture tube bottom bracket.
3. Remove the two nuts at upper left and right-hand corners of cabinet securing top picture tube brackets.
4. Remove complete picture tube and mounting assembly from cabinet.
5. Remove the centering device and deflection yoke. The deflection yoke is held in place by means of a wedge clamp: To remove, compress both ends of the wedge clamp spring.
6. Working with the new replacement picture tube, place cloth tape at same points and of approximately the same size as those on the original picture tube, then place two pieces of gummed paper on picture tube to prevent yoke from slipping about. The gummed paper, preferably gummed on both sides, is placed on opposite sides of the tube neck.. at the flare.
7. Replace mounting assembly, deflection yoke and center-

The 14P14 receivers are provided with conventional antenna terminals for connection of an outside or portableindoor antenna of any type. These models are equipped for usewith a custom-designed single-mast type antenna called the Magic Mast. The Magic Mast antenna requires ancounterpoise" which is provided by the cabinet; required connection from the antenna to the cabinet is provided by a femalereceptacle pre-wired into thereceiver's back cover. The Magic Mast antenna is provided with a male plug and when the antenna is plugged into the back cover, the cabinet counterpoise is automatically connected. The conventional twin-lead from the Monopole antenna must still be connected to the conventional antenna terminals. Should the back cover be removed, make certain the ground counterpoise wire is secured to a cabinet screw when cover is replaced.

AGC CONTROL (Local-Distance) A DJUSTMENT

This control sets the receiver for the signal strength in the area in which it is to operate by adjusting the average value of the AGC voltage developed. Rotating the localdistance control counterclockwise increases the AGC voltage to the receiver and will reduce the picture contrast. Rotating the local-distance control clockwise decreases the AGC voltage to the receiver and increases the picture signal. Toogreat a reduction of the AGC voltage (by clockwise rotation) can create a condition of overdrive in the video amplifier with attendant sync compression and sync instability.

VERTICAL SIZE AND LINEARITY ADJUSTMENT

Vertical Size and Lin are concentric controls located at the rear of the chassis. The inner control is Vert Size (HT) while the outer control is Vert Lin. To adjust, proceed as follows:

1. Center the picture and adjust vertical size until lower portion of picture is normal.
2. Adjust vertical linearity to normalize upper portion.
3. Readjust controls, if necessary, to obtain best balance with minimum stretch or compression of picture. NOTE: Re-setting of the Vertical Hold control may be necm essary during the adjustments.

PICTURE CENTERING

Picture centering is accomplished magnetically by means of the centering device located on the picture tube neck. Use the following procedure:

1. Starting with the magnetic centering device arms together (for minimum field strength) and positioned in the horizontal plane.
2. Separate the arms of the centering device to center the picture vertically.
3. Adjust horizontal centering by rotating the magnetic centering device, as a unit, one way or the other. Readjust vertical centering by slightly rotating the relative position of the arms.

DEFLECTION YOKE ADJUSTMENT

If the deflection yoke is not correctly positioned, the picture will be tilted. If the deflection yoke is not tight against the flare of the picture tube, the picture may be defocused, have non-linear distortions or neck shadow.

To adjust the yoke, compress the ends of the yoke wedge clamp and move clamp and rubber retainer away from deflection yoke. Position yoke as far forward as possible and rotate until picture is straight. When satisfactory, replace retainer and clamp so yoke cannot be moved in any direction.

FOCUS

Adjust the centering device as required, then position the shunting strap (located under the picture tube socket) for optimum focus.

In some cases, focus may be improved by rotating the magnetic centering device 180 degrees and repeating the entire procedure. Never position the focus strap in any manner other than that specified; other connections can cause damage to the receiver.

HORIZONTAL OSCILLATOR ADJUSTMENT

The HORIZONTAL HOLD should have a sync range of approximately 30 degrees. If the control is too critical, adjust as follows:

1. Set all controls for a normal picture.
2. Using a piece of wire, short SERVICE TEST RECEPTACLE pin 4, labeled "HORIZ AFC" to ground.
3. Connect a .1 mfd 400 volt capacitor in parallel with the HORIZONTAL OSCILLATOR COIL (L-501). Use pins \#2 and $\# 3$ of the SERVICE TEST RECEPTACLE.
4. Adjust the HORIZONTAL HOLD control to the point where the picture almost remains stationary...as far as horizontal sync is concerned. Picture must be in vertical sync during this adjustment.
5. Remove the . 1 mfd capacitor shunting the HORIZ OSC. COLL and without turning the HORIZONTAL HOLD control, adjust the HORIZ OSC. COIL slug to the center of the range in which the picture almost remains in sync horizontally. The coil adjustment slug is located just to the left of the high voltage cage (receiver viewed from rear).
6. Remove the wire shorting the HORIZ AFC to ground and adjust the HORIZONTAL HOLD control so that no fold-over appears on either side of the raster.

SAFETY SHIELD REMOVAL

1. Position cabinet so the screws underneath the cabinet front (bezel) may be removed.

NOTE: Special "holt head" screws were used on some cabinets. A special tool, Motorola Part No. 66T742501, will herequired to remove these screws in order to remove the safety shield.
2. Pull lower portion of cabinet front outward, away from cabinet.
3. Lift cabinet front upward until it is released from the upper edge of the cabinet.

CHASSIS REMOVAL

1. Remove all knobs from the side of the cabinet.
2. Unplug the tuner lead-in wires from the antenna terminals.
3. Remove the screws from the back cover and remove the back cover by lifting up and out of the bottom retaining channel, then straight back from the cabinet.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-434, Model 14P14-1, Service Information, Continued

4. Remove the two chassis retaining screws located underneath the cabinet.
5. Remove the bolt securing the top of the chassis to the cabinet handle bracket. The bolt is located between the Service Test Receptacle and the Local Distance (AGC) control.
6. Tilt chassis so that left-hand side of chassis moves as close to the left-hand side of the cabinet as possible: tilt the top of the chassis outward from the cabinet. Now, disconnect the speaker leads, the high voltage picture tube anode lead, the picture tube socket and the yoke socket.
7. The chassis can be removed from the cabinet by tilting the top out first.

CHASSIS INSTALLATION

1. lnsert chassis with top tilted outward from cabinet and the left-hand side inward so the tuner shaft may be inserted through opening in side of cabinet. Before proceeding further, replace speaker leads and the picture tube high volt. age anode lead.
2. Replace two screws underneath cabinet holding chassis bracket-and chassis retaining bolt.
3. Replace yoke and picture tube sockets.
4. Insert back cover into bottom well of cabinet, position flexible shafts so they will extend out openings in back cover, then close cover making sure power interlock makes proper connection. Replace the screws in back cover making sure Monopole grounding lug is placed underneath the left-hand top (as viewed from rear) screw.
5. Lnsert tuner leads into proper antenna terminals.
6. Check operation of receiver as well as making a check to make certain the cabinet is not in any way making contact with wiring, creating a shock hazard.
picture tube removal
7. Remove chassis from cabinet (see "Chassis Removal" instructions).
8. Remove the safety shield (see "Safety Shield Removal" instructions).
9. Loosen picture tube mounting bolts at upper right and lefthand corners of cabinet.
10. Carefully remove picture tube out front of cabinet and place on dirt-free surface.
11. Remove the centering device and deflection yoke. The deflection yoke is held in place by the yoke retainer clamp ...see "Deflection Yoke Removal" instructions .
12. Working with the new replacement picture tube, place cloth tape at same points and of approximately the same size as those on the original picture tube, then place two pieces of gummed paper on picture tube to prevent yoke from slipping about. The gummed paper, gummed preferably on both sides, is placed on opposite sides of the tube neck, at the flare.
13. Clean picture tube and safety glass.
14. Replace deflection yoke and centering device.
15. Replace picture tube into correct position in front of cabinet: tighten mounting bolts at upper right and left-hand sides.
16. Insert chassis into cabinet and position so that the voltage anode lead may be connected to the picture tube.
17. Re-connect the speaker leads, plug in the picture tube socket and deflection yoke plug.
18. Secure the chassis into position, apply power with service line cord and check receiver operation. Adjust the yoke position and centering device.

FIGURE 5. VIDEO \& SOUND IF ALIGMERT DETAIL

high voltage and picture tube handling precautions

OPERATION OF THLS RECEIVER WITH THE CHASSIS ACCESSIBLE INVOLVESA SHOCK HAZARD AND NO WORK SHOULD BE DONE BY ANYONE NOT FAMILIAR WITH THESE HAZARDS.

EXTREME CARE MUST BE USED IN HANDLING THE PICTURE TUBE, AS ROUGH HANDLING MAY CAUSE IT TO IMPLODE DUE TO ATMOSPHERIC PRESSURE. DO

NOT NICK OR SCRATCH GLASS, OR SUBJECT IT TO ANY UNDUE PRESSURE IN INS TALLATION. WHEN HANDLING, USE GOGGLES AND HEAVY GLOVES FOR PROTECTION. DISCHARGE PICTURE TUBE BY SHORTING THE ANOLE CONNECTION TO CHASSIS GROUND (NOT CABLNET OR OTHER MOUNTING PARTS). WHEN DISCHARGING... BE SURE TO USE A WELL INSULATED PIECE OF WIRE.

VIDEO \& SOUND ALIGNMENT

PRE-ALIGNMENT INSTRUCTIONS

Beforealignment of the v^{i} deo $I F$ section is attempted, it is advisable to thoroughly check the system. If alignment is started on an IF section in which a faulty component exists, successful alignment will probably be impossible and the entire procedure will have to be repeated when the real cause of the trouble is corrected. Preliminary tests of the system should include voltage and resistance measurements, routine checks for bad soldering connections, and visual inspection of the circuits for overheated components as well as for obvious wiring defects.

VIDEO IF \& MIXER ALIGNMENT

Pre-Alignment Steps

1. Maintain line voltage at 120 with variac.
2. Remove the deflection yoke plug to eliminate RF interference radiation.
3. Disable oscillator by shorting point "L" located near oscillator tube V-2, to chassis See Figure 5.
4. Apply the negative lead of a 4 volt bias supply to pin $\$$ (IF AGC) of the SERVICE TEST RECEPTACLE and the positive lead to pin $\%$ (chassis ground).
5. All coilslug tuning positions, in relation to chassis, are given in the procedure chart and in the separate detail of Figure 6.
6. Set channel selector on channel 13 and connect a 1000 ohm 40 W voltage normalizing resistor from $\mathrm{B}+$ to chassis (use pins $\# 5(\mathrm{~B}+$) and 3 (ground) of the SERVICE TEST RECEPTACLE.
7. Set the contrast control at minimum (extreme counterclockwise position).
8. Short across tuner input terminal.
9. Maintain 2 to 5 volts peak-to-peak at the diode load (Det TP) except when specific values are given in the procedure chart.
10. Refer to Video \& Sound IF Alignment Detail for component and test point locations (Figure 5).

VIDEO IF \& MIXER ALIGNMENT PROCEDURE

STEP	SWEEP GEN AND MARKER	INDICATOR	ADJUST	ADJUST FOR AND/OR REMARKS
1.	To 3rd IF grad test recept thrua. 001 mf capacitor. Set sweep approx. to 44 Mc : markers as required.	Scope thru a 47 K ohm resistor to Video Det test recept	Both slugs of 3rd LF coil (T-103)	Equal peaks and 45.75 Mc marker as shown on curve 1 . Note: Slug at crystal end can be reached by inserting tool through unobstructed slug. Tune both slugs near the ends of their respective coils. See detall for slug position
2.	To mixer T. P.thru .001 mf capacitor. (Use opening adjacent to mixer. See Figure 5). Set sweep to approx. 44 Mc a. Set marker to 47. 25 Mc b, Set marker to 41.25 Mc	Scope connection same as step ${ }^{\text {I }}$	a. 47.25 Mc trap (L-102) b. 41.25 Mc trap (L-101B)	Note: Temporary removal of bas or increased generator input may be required to see traps. a. Minimum response (tune slug at end of coll away from chassis) b. Minimum response (tuare slug at end of coil toward chassis) See curve \#2 for above responses.
3.	Generator connection same as step ${ }^{\mathbf{T}} 2$, except set output for $3 V \mathrm{P}-\mathrm{P}$ on scope	Scope to "lst screen test recept or test point." P1n \#6 of tube	a. Mixer trans, located on tuner (T-2) b. lst IF grid coil (L-101A) slug located away from chassis	Tune both T-2 \& L-101A for curve show: in curve \#3. The pri affects the center peak and the sec affects the two outside peaks. If a suck-out (trap effect) occurs, de.. tune list ${ }^{[F}$ transformer (T-101). Tune both coil slugs at end of coil away from chassis
4.	Generator connection same as step \#2. Reset for 2-5V P-P on scope	Scope thrua 47 K ohm resistor to Video Det test recept	lst IF trans ($\mathrm{T}-101$) 2nd F trans (T-102)	Proper 42.25 Mc marker placement (tune slug at end of conl toward chassis) Proper 45.75 Mc marker placement (tune slug at end of coil toward chassis). See curve \#4.
5.	Same as step \#4	Same as step 4		If a tilt occurs, readjust the mixer pri coil (T-2 on tuner) and if necessary touch-up the lst and $2 n d \boldsymbol{F}$ trans (T-101 \& T-102) for respoase shown in curve \$4.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-434, Model 14P14-1, Alignment Information, Continued

4.5 MC TRAP ADJUSTMENT

1. Carefully tune receiver to localstation andadvance contrast control.
2. Adjust local oscillator (with fine tuning control) to brang 4.5 Mc interference strongly into the picture.
3. ADJUST...sound trap (L-107) to find the two points of adjustment at which the sound beat is just noticeable on the picture tube screen. Rotate the core toward center of the two points. Use minimum amount of inductance (core out of coil) that will result in no apparent beat interference.

IST IF GRID 41.25 TRAP

47.25 TRAP

1ST \& 2ND IF TRANS

3RD IF TRANS

FIGURE 6. COIL CORE POSITIONS

SOUND ALIGNMENT (Station Signal Method)
The sound system used in the TS-434 receiver consists of an audio IF amplifier stage, a quadrature grid detector and an output stage. Since this type of sound system is extremely sensitive, relatively small input signal voltage will cause grid current to flow in both the LF amplifier and the detector stages. Grid current through the tuned coils will load them down making the adjustment extremely broad and alignment impossible. For this reason, it is necessary to use a very weak signal when aligning the driver and the de..
tector input coils. Actually, the signal should be well down into the nowse level for proper tuning action.

Preliminary Steps

1. Tune in a strong TV station.
2. Adjust all controls for normal picture and sound.
3. Refer to Video IF \& Mixer Alignment Detail for coil and test point locations (Figure 5).

SOUND ALIGNMENT PROCEDURE

STEP	STATION	INDICATOR	ADJUST	REMARKS
1.	Strong signal	VTVM to jct of R-306 (82 K) and R-307 (560K) located on L-302 (under chass1s).	$\begin{aligned} & \text { L-302 } \\ & \text { (quad coil) } \end{aligned}$	Maximum deflection (coarse adj.). Of two possible maximum tuning points, use that giving the largest voltage reading. **
2.	''	Listening test	"	Maximum sound with minimum distortion (fine adj.).
3.	Weak signal*	"	$\begin{aligned} & \text { T-301(in- } \\ & \text { terstage) } \end{aligned}$	Maximum sound with minımum distortion (maintain hiss level).
4.	"	"	$\begin{aligned} & \mathrm{L}-301 \\ & \text { (take-off) } \end{aligned}$	Maximum sound with minimum distortion.

If sound is not clear at this point, repeat the above procedure as necessary.

* The signal must be weakened considerably either by disconnecting one side of the antenna lead, or connecting low value resistors across the antenna terminals until a pronounced hiss appears in the sound. The hiss level must be maintained for proper alignment.
**The purpose of the top pre-set core is to enable the adjustable core to make the tuning range required while reducing the physical length. If the pre-set core should be misadjusted by previous service work, merely re-set near top end of coil and tune for maximum.

CHASSIS PRODUCTION CHANGES
TS - $434 \mathrm{~A}-00$ thru A-02

Chassis Coding	Changes
A -01	TO IMPROVE VERTICAL SYNC STABILITY: R-502 (100 K) moved from ground to pin 11 of V-10 (6CN7 -Horiz Phase Det). DESIGN CHANGE: C-125 (470 mmf) removed. The plate of V-9A (3BU8) is now connected to junction of $\mathrm{C}-513(150)$ and $\mathrm{C}-514$ (.001).
A $\mathbf{- 0 2}$	TO REDUCE NOISE LEVEL: R-121 (390K) changed to 470 K .

TUNER PRODUCTION CHANGES
B thru C

Tuner Coding	Changes
TT-121B	TO MAINTAIN B+ ON RF PRI TRIMMER: A buss lead is added to RF pri wafer. See Tuiner Schematic.
TT-121C	TO MINIMIZE RESPONSE CURVE TILT ON ON
CHANNEL 5: C-2 (470) changed to . 0022 mf. This change reduces parasitic oscillation cre- ating the tilt.	

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-434, Model 14P14-1, Schematic Diagram, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Schematic Diagram
TELEVISION CHASSIS TS-434A-00

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Model 14P14-1
Service Information (Continued)

FIGURE 9. PARTS LOCATIONS

MOTOROLA

INSTALLATION \& SERVICE ADJUSTMENTS

VERTICAL SIZE AND LINEARITY ADJUSTMENT

1. Center the picture and adjust vertical size until lower portion of picture is normal.
2. Adjust vertical linearity to normalize upper portion.
3. Readjust controls, if necessary, to obtain best balance with minimum stretch or compression of picture.
NOTE: Re-setting of the Vertical Hold control may be necessary during the adjustments.

DEFLECTION YOKE ADJUSTMENT

If the deflection yoke is not correctly positioned, the picture will be tilted. If the deflection yoke is not tight against the flare of the picture tube, the picture may be defocused, have non-linear distortions or neck shadow. To adjust the yoke, loosen the yoke retainer clamp screw until the yoke is movable. Push the yoke as far forward as possible, then rotate until the picture is straight. Recheck Horizontal Size device; if satisfactory, retighten yoke retainer clamp screw.

PICTURE CENT ERING

Picturecentering is accomplished magnetically by means of the centering device located on rear of yoke cover. Use the following procedure:

1. Starting with the magnetic centering device arms together (for minimum field strength) and positioned in the horizontal plane.
2. Separate the arms of the centering device to center the picture vertically. Keeparms as close together as possible commensurate with proper centering; excessive separation may result in de-focusing.
3. Adjusthorizontal centering byrotating the magnetic centering device, as a unit, one way or the other. Readjust vertical centering by slightly rotating the relative position of the arms.

RASTER CORRECTOR MAGNETS(NOT ON ALL MODELS)

Raster corrector (pin cushion) magnets, found on each side of the deflection yoke, are used to straighten the sides of the raster. They are correctly set at the factory but, if moved in shipping, or if the yoke has been replaced, they may require readjustment. Adjust in the following manner:
I. Reduce raster size so that its sides are just visible.
2. Loosen screws holding magnet mountings.
3. Move corrector magnets forward, backward or tili until raster distortion is eliminated.
4. Re-tighten screws holding magnet mountings.

FUSE REPLACEMENT

FUSE - B+t: 1.6 amp "Slo-blo, LC" type (E-802) located on top of chassis just above vertical linearity control.

SURGE PROTECTION RESISTOR - Thermal type unit, R-801, Iocated in filament string. Rating: 200 ohms cold, 6 ohms hot.

MODEL BREAKDOWN CHART

Model	Type	TV Chassis	VHF Tuner	UHF Tuner	Remote Control
A21K106B	Console	WTS-553	TT-107	-	TR-3
A21K106M	Console	WTS-553	TT-107	-	TR-3
A21T60BG	Table	WTS -553	TT-107	-	TR-3
A21T60CH	Table	WTS-553	TT-107	-	TR-3
A21T60MG	Table	WTS-553	TT-107	-	TR-3

CHASSIS DESCRIPTION

WTS-553 SERIES

These chassis are horizontally mounted types containing 16 tubes plus a 21 CBP 4 A picture tube, dual selenium phase detector, and a germanium video detector. Features: cascode tuner, gated AGC, quadrature-grid sound detector and Tube Sentry System.

All receivers have projection-type channelselector knobs (non-concentric).

All models using the WTS-553 chassis have a motorized, automatic tuning system in conjunction with a remote control unit.

RECEIVER MODEL BREAKDOWN CHART

Model	Type	TV Chassis	VHF Tuner	UHF Tuner
Y21K107B	Console	TS-553	TT-106	-
Y 1 K 107 B	Console	TS-553Y	TT-106Y	VTT-89
Y21K107M	Console	TS-553	TT-106	Tonsole
TS-553Y	TT-106Y	VTT-89		

TS-553 - Electrically identical to the WTS-553 chassis with the exception of tuner type and the addition of tone compensating control. All these chassis have separate fine tuning and channel selector knobs. All receivers using the TS -553 chassis have manually operated tuners only.

Chassis TS-552 and TS-552Y are practically identical to TS-553, except for power supply, audio section, and type of tuner employed.

MODEL BREAKDOWN CHART

Model	Type	TV Chassis	VHF Tuner	UHF Tuner
21K104B	Console	TS-552	TT-108	-
Y21K104B	Console	TS-552Y	TT-108Y	TT-89
21K104M	Console	TS-552	TT-108	-
Y2IK104M	Console	TS-552Y	TT-108Y	TT-89
21KI04W	Console	TS-552	TT-108	-
Y21K104W	Console	TS-552Y	TT-108Y	TT-89
21K105B	Console	TS-552	TT-108	-
21K105MC	Console	TS -552	TT-108	-
21K105W	Console	TS-552	TT-108	-
21K108W	Console	TS-552	TT-108	-
21 K 109 M	Console	TS-552	TT-108	-
21K110W	Console	TS-552	TT-108	-

(Material on these models continued on pages 68 through 78)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-553,-Y, WTS-553, Service Information, Continued

FIGURE 1. TUBE LOCATION, FUSE GUIDE, FOCUS IMFORMATION \& FILAIENT WIRING

HORIZONTAL OSCILLATOR ADJUSTMENT

The HORIZONTAL HOLD should have a sync range of approximately 30 degrees. If the control is too critical, adjust as follows:

1. Set all controls for a normal picture.
2. Using a piece of wire, short SERVICE TEST RECEPTACLE S-4 pin \#4 labeled "HORIZ AFC" to ground. See Figure 2.
3. Connect a . 1 mfd 400 volt capacitor in parallel with the HORIZONTAL OSCILLATOR COIL (L-501). Use pins \#2 and \#3 of the SERVICE TEST RECEPTACLE.
4. Adjust the HORIZONTAL HOLD control to the point where the picture almost remains stationary...as far as horizontal sync is concerned. Picture must be in vertical sync during this adjustment.
5. Remove the . 1 mfd capacitor shunting the HORIZ COIL and without turning the HORIZONTAL HOLD control, adjust the HORIZ COIL slug to the center of the range in which the picture almost remains in syac horizontally. The coil adjustment slug is located just to the left of the high voltage cage (receiver viewed from rear).
6. Remove the wire shorting the HORIZ AFC to ground and adjust the HORIZONTAL HOLD control so that no fold-over appears on either side of the raster.

LOCAL TUNER OSCLLLATOR ADJUSTMENTS

The local oscillator slugs of the tuner are physically iocated at the shaft end of the tuner and positioned toward the front of the receiver allowing adjustment from the front of the cabinet without chassis removal. An insulated alignment tool of sufficient length is required to reach the oscillator slugs which are located approximately six inches behind the front panel.
Items To Be Removed (part of osc adj)
The oscillator adjustments may be reached on manually tuned models by removal of the channel selector knob and, in some cases, the circular metal insert hidden by the selector knob.

On automatic tuning models (INSTA-MATIC) it is necessary to remove the INSTA-MATIC pushbutton by clockwise rotation, then the two screws holding the switch in place. Move the switch plate to the most convenient position.

On models having channel projection lights, it may be necessary to temporarily change the projection light position to reach the slugs.

On UHF models, the plastic rocker arm may be repositioned by turning the fine tuning shaft past either endstop and then returning it so the fine tuner is at mid-range as explained in the following instructions.

Preliminary Checks (part of osc adj)
After receiver has had a few minutes of warm-up time, check all available stations and observe sound and picture: if sound and picture are not properly received within the range of the fine tuning control on manually tuned receivers, it may be necessary to adjust the local oscillator. On automatic tuning receivers, the indexed stations should be received without the necessity of changing the fine tuning control due to automatic re-centering of the control each time the station is changed. If this does not occur, the oscillator slugs should be adjusted with the fine tuner at the center of the range so reception will be correct.

TO ADJUST TUNER OSCILLATOR SLUGS

1. Remove channel selector knob. See "items to be removed" for specific disassembly.
2. Tune to the highest numbered channel that is giving trouble.
3. Set the fine tuner to mid-position. This position is correct when channel number holes $\# 2$ and $\# 13$ are open as viewed through cabinet opening. On automatic tuning recelvers this position will automatically becorrect if the tuner is switched off channel and then returned to the desired channel.

NOTES:

To eliminate false tuning, use a non-metallic tool.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-553,-Y, WTS-553, Service Information, Continued

Do not turn oscillator screw counterclockwise to the extent of disengagement from tuner. Toinsure that the screw is within the range of its threads... tighten the screw (clockwise) until it stops, then turn counterclockwise until the station appears. The maximum number of safe counterclockwise turns from the stop are:

7-turns for channels; 5-turns for channels:

13	12
6	11
5	10
4	9
3	8
2	7

4. Switch tuner to the next lower channel number available in your area. If station is not properly received, adjust appropriate oscillator slug using the outine given in step 3.
5. Repeat step \#4 for the remainder of the channels. Always adjust channels in descending order otherwise tuner will be severely misaligned.

TO REMOVE THE CHASSIS (MODELS HAVING CHANNEL WINDOW)

The chassis is mounted independently to the framework holding the picture tube, and the entire picture tube and chassis asaembly are mounted independently of the tuner and auxiliary front panel controls. The chassis uses plug and receptacles for connections to the tuner and auxiliary controls and thus may easily be separated from theae components.

1. Remove the back cover of the cabinet. If model is equipped with a "STEREO RECEPTACLE" on the back cover, it is advisable to remove the two screws holding the re-
ceptacle to the cover and leave the receptacle with the cabinet. If receiver is equipped with a Monopole antenna receptacle (metal cabinets only), there will be a counterpoise antenna connection to the cabinet. Remember this connec. tion, so it will becorrectly replaced when the back cover is replaced. Remove tuner lead-in from back cover receptacle by unplugging.
2. Remove all cables running from the control panel to the chassis, including those of the tuner. Remove the yoke plug, picture tube socket, high voltage anode lead and speaker leads. Remove the four screws holding the chassis to the horizontal metal mounting member (these screws are accessible from inside cabinet). Remove the chassis.

TO REMOVE THE VHF AND/OR UHF TUNER

To remove the VHF tuner, it is necessary to remove the complete control bracket assembly to which the tuner is mounted. Removal of the control bracket is necessitated by the projection dial disc channel indicator (mounted to the tuner channel selector shaft) on the inside of the bracket.

1. Remove all front panel knobs except the supplementary controls: brightness, vertical hold and tone controls.
2. Unplug all cables running from tunes, and control bracket from TV chassis.
3. Visually locate actuating lever mounted to control bracket. This lever is approximately one-fourth of the way down from the top of the bracket, and on the right-hand edge. This lever, when pushed upward, will retract the small supplementary contzols of the front panel (brightness and vertical hold), so that they will clear the decorative front panel. Push lever and make sure knobs retract properly. Lever will operate easier if pressure is applied to push lever towards left, as well as upward.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION MOTOROLA Chassis TS-553,-Y, WTS-553, TS-552, -Y, Alignment, Continued

4. Remove the three mounting screws of the control bracket: two at the bottom and one at the upper right-hand corner.
5. Carefully pull bottom (repeat, bottom) end of control bracket toward rear of cabinet until tone control(s) is clear of opening. When sufficiently clear, the control bracket may be moved toward the right-hand side of cabinet, so as to clear the cabinet flange retaining the top left-hand of the control bracket. The control bracket and tuner assembly may now be removed from the cabinet.
6. Remove the projection-dial-disc from channel selector shaft of tuner by removing retaining spring. Unsolder lead to dial light. Remove the four screws holding the VHF tuner to the control bracket: remove tuner.

ALIGNMENT

Beforealignment of the video $I F$ section is attempted, it is advisable to thoroughly check the system. If alignment is started on an IF section in which a faulty component exists, successful alignment will probably be impossible and the entire procedure will have to be repeated when the real cause of the trouble is corrected. Preliminary tests of the system should include voltage and resistance measurements, routine checks for bad soldering connections, and visual inspection of the circuits .

VIDEO IF \& MIXER ALIGNMENT

Pre-Alignment Steps

1. Maintain line voltage at 120 with variac.
2. Remove the deflection yoke plug to eliminate RF interference radiation.
3. Disable oscillator by shorting point "K" located near oscillator tube V-2, to chassis.
4. Apply the negative lead of a 6 volt bias supply to pin \#1 (IF AGC) of the SERVICE TEST RECEPTACLE and the positive lead to pin \#3 (chassis ground).
5. All coil slugtuning positions, in relation to chassis, are given in the procedure chart and in the separate detail of fig. 7.
6. Set channel selector on channel \#13 and connect a 1500 ohm 50W voltage normalizing resistor from $\mathrm{B}++$ to chassis (use pins \#5 ($\mathrm{B}++$) and \#3 (ground) of the SERVICE TEST RECEPTACLE.
7. Set the contrast control at minimum (maximum resistance).
8. Maintain 2 to 5 volts peak-to-peak at the diode load (Det $T P$) except when specific values are given in the procedure chart.

VIDEO IF \& MIXER ALIGNMENT PROCEDURE

STEP	SWEEP GEN AND MARKER	INDICATOR	ADJUST	ADJUST FOR AND/OR REMARKS
1.	To 3rd-LF-grid testrecept thru a. 001 mf capacitor. Set sweep approx, to 44 Mc ; markers as required.	Scope thru a 47K ohm resistor to Video Det test recept	Both slugs of 3 rd IF coil (T-103)	Equal peaks and 45.75 Mc marker as as shown on curve \#l. Note: Slug at crystal end can be reached by inserting tool through unobstructed slug. Tune both slugs near the ends of their respective coils. See detail for alug position.
2.	To mixer grid thru .001 mf capacitor. (Use opening adjacent to mixer, point "N"). Set sweep to approx 44 a. Set marker to 47.25 Mc b. Set marker to 41.25 Mc c. Set marker to $\mathbf{3 9 . 7 5}$ Mc	Scope connection same as step "1	$\begin{aligned} & \text { a. Both } 47.25 \mathrm{Mc} \\ & \text { traps }(\mathrm{L}-101 \text { \& } \mathrm{L}-104) \\ & \text { b. } 41.25 \text { trap } \\ & \text { (L-102B) } \\ & \text { c. } 39.75 \text { trap } \\ & \text { (L-103) } \end{aligned}$	Note: temporary removal of bias or increased generator input may be required to see traps. a. Minimum response (tune slugs at end of coils away from chassis). b. Minimum response (tune slugs at end of coil toward chassis). c. Minimum response (tune slugs at end of coil away from chassis). See curve \#2 for above responses
3.	Generator connection same as step \#2, except set output for 3 V P-P on scope.	Scope to "lst IF screen test recept or test point." Pin "6 of tube.	Mixer trans , located on tuner ($\mathrm{T}-2$) lst IF grid coil (L-102A) slug located away from chassis.	Tune both T-2\& L-102A for curve shown in curve \#3. The"pri"affects the center peak and the "sec"affects the two outside peaks. If a "suck-out"(trap effect) occurs, detune Ist IF transformer (T -101) to remove. Tune both cóil slugs at end of coil away from chassis
4.	Gen connection same as step \#2. Reset for 2-5V P-P on scope	Scope thru a 47K ohm resistor to Video Det test recept.	lst IF trans (T-101) 2nd IF trans (T-102)	Proper 42.25 Mc marker placement (tune slug at end of coil toward chassis) Proper 45. 75 Mc marker placement (tune slug at end of coil toward chassis). See curve \#4.
5.	Same as step \#4	Same as step \% 4	\rightarrow	If a tilt occurs, readjust the mixer pri coil (T-2 on tuner) and if necessary touch -up the 1st and 2nd IF trans ($T-101$ \& $T-102$) for response shown in curve $\# 4$.

SOUND ALIGNMENT
(Station Signal Method)
The sound system used in the WTS-553 receiver consists of an audio IF amplifier stage, a quadrature grid detector and an output stage. Since this type of sound system is extremely sensitive, relatively small input signal voltage will caluse grid current to flow in both the IF amplifier and the detector stages. Grid current through the tuned coils will load them down making the adjustment extremely broad and alignment impossible. For this reason, it is necessary to use a very weak signal when aligning the driver and the de-
tector input coils. Actually, the signal should be well down into the noise level for proper tuning action.

Preliminary Steps

1. Tune in a strong TV station.
2. Adjust all controls for normal picture and sound.
3. Refer to Video IF \& Mixer Alignment Detail for coil and test point locations (Figure 6).

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION MOTOROLA Chassis TS-553,-Y, WTS-553, TS-552, -Y, Alignment, Continued sotnd aligmyegt procedure

STEP	STATION	INDICATOR	ADJUST	REMARKS
1.	Strong signal	VTVM to jct. of R-309 (82K) and R-310 (560K) located on L-303 (under chassis).	$\begin{aligned} & \text { L. } 303 \\ & \text { (quad coil) } \end{aligned}$	Maximum deflection (coarse adj.). Of two possible maximum tuning points, use that giving the largest voltage reading. Do not change top preset core
2.	"	Listening test	11	Maximum sound with minimum distortion (fine adj.).
3.	Weak signal*	11	T-301	Maximum sound with minimum distortion (maintain hiss level).*
4.	11	"	$\begin{aligned} & \text { L-302 } \\ & \text { (take-off) } \end{aligned}$	Maximum sound with minimum distortion.

If sound is not clear at this point, repeat the above procedure as necessary.
*The signal must be weakened considerably either by disconnecting one side of the antenna lead, or connecting low value resistors across the antenna terminals until a pronounced hiss appears in the sound. The hiss level must be maintained for proper alignment.
**The purpose of the top pre-set core is to enable the adjustable core to make the tuning range required while reducing the physical length. If the pre-set core should be misadjusted by previous service work, merely re-set near top end of coil and tune for maximum.
4. 5 MC TRAP ADJUST MENT

1. Carefully tune receiver to local station and advance contrast control.
2. Adjust local oscillator (with fine tuning control) to bring 4. 5 Mc interference strongly into the picture.
3. ADJUST... sound trap (L-109) to find the two points of adjustment at which the sound beat is just noticeable on the picture tube screen. Rotate the core toward center of the two points. Use minimum amount of inductance (core out of coil) that will result in no apparent beat interference.

tpotest poimt

3RD IF

IST IF GRID 41.25 TRAP

2ND IF TRANS IST IF TRANS

47.25 TRAP 47.25 TRAP

39.75 TRAP MIXER

FIGURE 7. COIL SLUG POSItIONS FOR ALIGNMENT

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-553,-Y, WTS-553, Service Information, Continued

TO REMOVE THE PICTURE TUBE

1. Remove the back cover of the cabinet. If model is equipped with a "STEREO RECEPTACLE" on the back cover, remove the twoscrews holding the receptacle and leave receptacle with cabinet. If receiver is equipped with a Monopole antenna receptacle (metal cabinets only), notice the counterpoise antenna connection to the cabinet so it may be correctly replaced when the cover is replaced. Remove the tuner lead-in from the antenna receptacle by unplugging.
2. Unplug all cables running between the control bracket the tuner and the TV chassis. Disconnect speaker leads.
3. Remove four bolts from underneath cabnet holding picture tube and chassis framework assembly to the cabinet. Slide entire assembly out rear of cabinet.
4. Remove yoke plug, picture tube socket and high voltage anode lead. Loosen the two strap clamp screws at the left and right-hand sides of the picture tube. Remove picture tube from the framework.

TO REPLACE PICTURE TUBE

5. Place any insulating or other type tape found on the original picture tube on the replacement picture tube and insert into framework.
6. Replace leads, plugs and components in reverse order to disassembly instructions.

TO REPLACE THE PICTURE TUBE MASK

1. Remove the entire picture tube and chassis assembly (see "how to remove the picture tube").
2. Remove the entire control bracket assembly and the tuner (see "how to remove the tuner and control bracket").
3. Remove the safety glass by removing the retainer strip located at the top edge of the safety glass. The strip is secured to cabinet by screws having the heads downward. Hold glass so it does not fall out. Allow top of glass to move outward. Grasp at left and right-hand sides and lift up and out of bottom glass retaining channel.
4. Remove the circular push-on type retainers holding the plastic projections of the mask to the top and bottom rails of the cabinet (remove the retainers from the inside of the cabinet).
5. Let top of mask move outward from cabinet until it is clear, then lift up and out of the bottom channel.

SAFETY GLASS REMOVAL

1. Turn power off.
2. Remove the acrews holding metal trim or glass retainer (depending on model) at the top of the safety glass and remove the metal trim or retainer. Hold glass so it does not fall out.
3. Allow glass to move outward at the top: Grasp glass at left and right-hand sides and lift upward until glass is out of lower retainer channel. Place glass in a safe place.

When replacing glass, make sure protective channel is on glass before installation.

CAUTION: Do not attempt to change the tuner to the next lower channel by manually turning the index wheel: motor will be energized and begin automatic channel selection. When aligning the tuner, it is recommended that you change stations with the INSTA.MATIC station selector button, making as many complete revolutions as required to reach the desired channel number.

MOTOROLA Chassis WTS-553 Schematic Diagram, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Schematic Diagram

TELEVISION CHASSIS WTS-553A-00

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis WTS-553, Automatic Tuner Information, Continued

aUtomatic tuner section

MOTOR TUNER SYSTEM OPERATION

The tuner is powered by a fractional horsepower, 120 volt shaded pole AC motor, coupled through a 3200 to 24 RPM step-down gear box, utilizing nylon gears. When not energized, the driving motor is out of gear with the tuner draving mechanism. The disengagement is accomplished mechanically by a coil spring located on the rotor shaft between the armature and gear box. This spring suspends the armature partially out of the field when the motor is deenergized. When the motor is energized, the magnetic field pulls the armature into the center of the motor housing. This action actuates the gear train which drives the tuner and also the shaft and cam switches. The shaft switch has four circuits whose individual functions are: blanking of the picture, removal of sound, removal of channelwindow illumination and motor power retention. The cam switch performs the function of allowing the tuner to operate until it is actuated by cams on the index wheel, stopping the tuner at prenset channels. Once the tuner motor is energized by the front panel Insta-Matic pushbutton or remote control unit, it will continue to change channels until stopped by the indexing mechanism at the next pre.set channel.

FINE TUNING MECHANISM

The fine tuning capacitor is driven by means of a rubber drive wheel and semi-circular drive plate. When the tuner is switched from channel to channel, a corrugated detent washer forces the drive wheel away from the plate. This effectively disengages the drive wheel from the fine tuner. The fine tuner is then returned to the center range by the action of a "hair pin" spring. This system provides the greatest versatility, since it allows complete manual control of fine tuning on all channels for pur poses of interfer-ence-free pictures, while retaining the automatic fine tuning re-set feature when switching channels. The latter action is especially important in the case of remote control operation of the receiver, Of course, the tuner oscillator must be in correct alignment for satisfactory operation of the automatic fine tuner. However, with the provisions for front panel, individual channel oscillatoradjustmentscrews, the matter is somewhat simplified.

UHF CHANNEL SECTION

The UHF tuner is of the continuous tuning type and, therefore, cannot be indexed for automatic selection of stations except in cases where only one UHF station is available or desired. Once the motorized VHF tuner has been switched to the UHF position (channel l) all UHF tuning must be made manually. During UHF operation, the VHF fine tuner knob becomes the UHF tuning control. When only one UHF station is available, tuning may be semi-automatic by pre-setting the UHF tuner exactly on the station and then refraining from changing the position of the UHF tuning control. Thus, the UHF tuner will remain tuned to the selected station and when the VHF tuner is switched to the UHF position, the UHF station will automatically be received. This is quite feasible since it should be unnecessary to change the fine tuner setting during normal VHF station reception.

SERVICE NOTES

CAUTION: Line voltage (120 volts) appears throughout the intercabling as well as at pins of the male and female connectors. Do not permit power application unless all connections are complete.

When servicing "hot" chassis, always use an isolation transformer (not autoformer or other non-isolating type) in the power line.

Before returning receiver to set owner, make certain no shock hazard exists on any metal parts that can be contacted by the set owner. When making such shock hazard tests, make sure all sections of receiver are operating (motor, remote control unit, etc.).

WARNING: IF TUNER IS SWITCHED FROM CHANNEL OR ROCKED TO EXTENT OF OPENING CAM SWITCH, TUNER MOTOR WILL BEGIN OPERATION.

TV receiver cannot be supplied with line power (turned "ou") unless remotecontrol is plugged in, or a jumper wire placed across pins $\$ 7$ \& 8 of receptacle $S-3$. (Warning: Observe all "hot chassis" and "power" precautions.)

FIGURE 10. TUFER INDEX DETAIL.

TUNER INDEXING

The indexing mechanism is accessible from the rear of the receiver after removing the back cover and consists of circular disc containing numbered, screw slots for each channel. Each slot is limited to quarter -turn rotation and the position of the slot indicates indexing...slots pointing towardcenter of wheel have indexed channels; slots at right angles to wheel radius have bypassed channels.

TO INDEX... Turn set off and turn each desired channel's screw slot to point toward center of wheel-and-each undesired channel's screw slot at right angles to radius of wheel. Apply power to receiver and check reception of all indexed stations. If any station is not properly received without fine tuner adjustment, it may benecessary to touchup the local oscillator.

NOTES:

Should the condition occur in which all channel numbers have been removed from the index system, the tuner will run continuously when the INSTA-MATIC station-selectorbutton is pressed. To stop tuner motor, turn set "off" with ON-OFF pushbutton or remove the power plug, then index any one channel.

To insure proper reception on each channel, regardless of the fine tuning adjustment of the previous channel, the fine tuner is automatically re-set to its nominal (center) position each time a new channel number is selected. The tuner local oscillator is provided with individual channel adjustment screws that allow precision-setting of each channel during the initial installation... and eliminates the necessity of readjusting the fine tuning control from channel to channel.

FIGURE 11. TUSER OSCILIATOR CHAMKEL ADJUSTMEITS.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis WTS-553, Automatic Tuner Information, Continued

FIGURE 12. INTERCABLING \& PLUG DESIGIATION DETAIL.

TO REMOVE POWER FROM REMOTE CONTROL CHASSIS
The on-off button on the remote control transmitter unit removes power from the television chassis, however, this button does not remove power from theremote control chassis. Power to the remote control chassis is removed by depressing the transmitter holder switch inside the holder (back cover). It is recommended that the transmitter be returned to the transmitter holder wheneverit is not in use, in order to conserve power. In the event the transmitter is not available, place anobject of similar weight and siae into the transmitter holder or disconnect the plug and socket connection between the transmitter holder and the remote control chassis.

TO RESTORE SOUND WHEN RECEIVER IS IN MUTE PO-

 SITIONAn auxiliary sound switch is located on the back cover of the TV receiver. The purpose of this switch, which is mounted to the trensmitter holder, is to restore sound to normal in the event sound should lock in in the mute posi tion. Push switch to MANUAL position to restore sound to normal.

REMOVING TUNER-MOTOR ASSEMBLY AS A UNIT 1. Remove cabinet beck cover: note connections of wires and plugs running to the manual/mute awitch and to the switch locatedinside the remote control transmitter holster. Tuner leads must be unplugged from the receptacles on the back cover.
2. Disconnect all plugs between the remote control receiver and the TV chassis. Remove screws holding remote control receiver to cabinet (remove from underneath cabinet). Position remote receiver so that microphone cable at front of unit may be disconnected. Microphone must remain seated in control bracket due to a retainer on inside of bracket. Toremove or replace microphone, control bracket must be removed (see step 4).
3. After remote control receiver chassis is out of cabinet, remove all plugs and leads between the control panel and the TV chassis. Remove the TV chassis and the picture tube as a unit by removing the four acrews from underneath the cabinet.
4. The complete control bracket containing the tuner and all controls may now be removed as an assembly by following the instructions outlined on page 6 for "Removing the VHF and/or the UHF tuner". One additional screw must be removed at the rear of the tuner/control bracket which secures the bracket to the left-hand side of the cabinet.

MOTOR REMOVAL

Although it is impossible to remove the VHF tuner from the cabinet without removing the entire control bracket as sembly. to which the tuner is mounted due to the fact that the channel indicator dial is inaccessible on the inner side of the control bracket...it is possible toremove the motor from the rear of the tuner without the necessity of removing the tuner.

MOTOROLA

MODEL BREAKDOWN CHART

Model	Type	$\begin{gathered} \text { TV } \\ \text { Chassis } \end{gathered}$	VHF Tuner	UHF Tuner
$21 \mathrm{K97B}$	Console	WTS-551	WTT-104	
Y 21 K 97 B	Console	WTS-551Y	WTT-104Y	VTT-89
$21 \mathrm{K97M}$	Console	WTS-551	WTT-104	-
Y21K97M	Console	WTS-551Y	WTT-104Y	VTT-89
$21 \mathrm{K99B}$	Console	TS-551	VTT-104	-
Y21K99B	Console	TS-551Y	VTT-104Y	VTT-89
$21 \mathrm{K99M}$	Console	TS-551	VTT-104	-
Y21K99M	Cousole	TS-551Y	VTT-104Y	VTT-89
21T57BG	Table	TS-551	VTT-104	-
Y21T57BG	Table	TS-551Y	VTT-104Y	VTT-89
21 T 7 CH	Table	TS-551	VTT-104	-
Y21T57CH	Table	TS-551Y	VTT-104Y	VTT-89
$\begin{array}{r} 21 \mathrm{~T} 57 \mathrm{MG} \\ \mathrm{Y} 21 \mathrm{~T} 57 \mathrm{MG} \end{array}$	Table	TS-551 TS-551Y	VTT-104 VTT-104Y	-T

ADDENDA TO MODEL BREAKDOWN CHART

Model		Type	TV Chassis	VHF Tuner	UHF Tuner
$\begin{gathered} 21 \mathrm{~K} 99 \mathrm{~W} \\ \mathrm{Y} 21 \mathrm{~K} 99 \mathrm{~B} \\ \mathrm{Y} 21 \mathrm{~K} 99 \mathrm{M} \end{gathered}$		Console	TS-551	VTT-104	-
		Console	TS-551Y	VTT-104Y	VTT-89
		Console	TS-551Y	VTT-104Y	VTT-89
Y21K115BA Y21K115MA Y21K115WA		Console	WTS-551Y	WTT-104Y	VTT-89
		Console	W TS-551Y	WTT-104Y	VTT-89
		Console	WTS-551Y	WTT-104Y	VTT-89
Y21K116BA		Console	WTS-551Y	WTT-104Y	VTT-89
Y21K116MA		Console	WTS..551Y	WTT-104Y	VTT-89
Y 21 K 116 MCA		Console	WTS-551Y	WTT-104Y	VTT-89
Y21K116WA		Console	WTS-551Y	WTT-104Y	V TT-89
21T57MO		Table	TS-551	VTT-104	-
21 T 62 MA		Table	TS-551	VTT-104	-
Y 21 T 62 MA		Table	TS-551Y	VTT-104Y	VTT-89
Y21T63BA		Table	WTS-551Y	WTT-104Y	VTT-89
$\begin{aligned} & \mathrm{Y} 21 \mathrm{~T} 63 \mathrm{MA} \\ & \mathrm{Y} 21 \mathrm{~T} 63 \mathrm{WA} \end{aligned}$		Table	WTS-551Y	WTT-104Y	VTT-89
		Table	WTS-551Y	WTT-104Y	VTT-89
Model	Description				TV Chassis
$\begin{array}{r} 21 C 9 B \\ \mathrm{Y} 21 \mathrm{C} 9 \mathrm{~B} \\ 21 \mathrm{M} \\ \mathrm{Y} 21 \mathrm{C} 9 \mathrm{M} \end{array}$	Consolette, blonde oak: masonite Consolette, blonde oak: masonite Consolette, mahogany: masonite Consolette, mahogany: masonite				TS-551
					TS-551Y
					TS-551
					TS-551Y

CHASSIS TS-551 and WTS-551

A list of models using these chassis is at left. Schematic diagram is printed on pages $80-81$ and 82 . Much of the service material for these sets is the same as for TS-553 described in the preceding section beginning with page 67 . The tuner diagram on page 82 is applicable to TS-551, while Chass is WTS-551 uses WTT-104 type.

ADDENDA TO MODEL BREAKDOWN CHART

Model	Type	TVChassis	VHF Tuner	UHF Tuner
$21 \mathrm{C9BD}$	Consolette	MTS-551	CMTT-102	-
$21 \mathrm{C9MD}$	Consolette	MTS-551	CMTT-102	-
$21 \mathrm{K99BD}$	Console	MTS - 551	CMTT-102	\sim
21 K 99 MD	Console	MTS 551	CMTT-102	\sim
21 K 99 WD	Console	M'S-551	CMTT 102	-
21K115B	Console	V TS-551	VCMTT-102	-
$21 \mathrm{Kl15M}$	Console	VTS-551	VCMTT-102	-
21K115W	Console	VTS-551	VCMTT-102	-
$21 \mathrm{Kl16B}$	Console	VTS-551	VCMTT-102	-
$21 \mathrm{Kl16M}$	Console	VTS-551	VCMTT-102	-
$21 \mathrm{Kl16MC}$	Console	VTS-551	VCMTT-102	-
$21 \mathrm{Kl16W}$	Console	VTS -551	VCMTT-102	-
$21 T 57 \mathrm{BGD}$	Table	MTS-551	CMTT-102	-
21T57CHD	Table	MTS-551	CMTT-102	-
Y21T57CHD	Table	MTS-551Y	CMTT-102Y	VTT-111
21T57MGD	Table	MTS - 551	CMTT-102	-
21 T 62 M	Table	MTS-551	CMTT-102	-
21T63B	Table	VTS-551	VCMTT-102	-
21 T 63 M	Table	VTS - 551	VCMTT. 102	-
21T63W	Table	V TS - 551	VCMTT-102	-

MTS-551. . . Same as the TS-551 chassis except that the new, smaller type tuner, CMTT-102 is used.

VTS-551...Same as the WTS-55I chassis except that the new, smaller type tuner, VCMTT-102 is used.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Schematic Diagram TELEVISION CEASSIS TS \& WTS-551A-00 SERIES

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA

CHASSIS TS-556 and TS-556Y
(Material on pages 83 through 88)

PICTURE CENTERING

Picture centering is accomplished magneticaily by means of the centering device located on the picture tube neck. Use the following procedure:

1. Starting with the magnetic centering device arms to gether (for minimum field strength) and positioned in the horizontal plane, proceed as follows:
2. Separate the arms of the centering device to center the picture vertically.
3. Adjust horizontal centering by rotating the magnetic centering device, as a unit, one way or the other. Readjust vertical centering by slightly rotating the relative position of the arms.

	MODEL BREAKDOWN CHART			
Model	Type	TV Chassis	VHF Tuner	UHF Tuner
21T64B	Table	TS-556	LCMTT-102	-
Y21T64B	Table	TS-556Y	LCMTT-102Y	VTT-111
21T64M	Table	TS-556	LCMTT-102	$-\quad$
Y21T64M	Table	TS-556Y	LCMTT-102Y	VTT-111

DEFLECTION YOKE ADJUSTMENT

lf the deflection yoke is not correctly positioned, the picture will be tilted. If the deflection yoke is not tight against the flare of the picture tube, the picture may be defocused, have non-linear distortions or neck shadow.

To adjust the yoke, compress the ends of the yoke wedge clamp and move clamp and rubber retainer away from deflection yoke. Position yoke as far forward as possible and rotate until picture is straight. When satisfactory, replace retainer and clamp so yoke cannot be moved in any direction.

HORIZONTAL OSCILLATOR ADJUSTMENT

No special adjustment is needed for the horizortal oscillator coil (L-501) as the coil is used for horizortal hold lock-in purposes. Merely set for most stable horizontal sync conditions.

CHASSIS TS-556A-00 PARTS LOCATIONS (TOP)

PROTECTIVE DEVICES

CIRCUIT GUARD

The Circuit Guard is a prom tective deviceintended to prevent damage to thereceiver in event of Bt or power line overload. Its prime purpose is to act as a 1.6 amp overloading fuse. In event of an overload, the Circuit Guard will automatically turn the receiver "OFF", thereby removing any possibility of damage to the chassis.

Power may again be restored by momentarily depressing the red (Circuit Guard) button toward the chassis and then releasing button. If depressing the Circuit Guard does not restore the set to normal operation, the receiver should then be checked for shorts or other sources of trouble.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-556 and TS-556Y Alignment Information, Continued

ALIGNMENT

VIDEO IF \& SOUND ALIGNMENT
PRE-ALIGNMENT INSTRUCTIONS
Beforealignment of the video IF section is attempted, it is advisable to thoroughly check the system. If alignment is started on an $1 F$ section in which a faulty component exists, successful alıgnment will probably be impossible and the entire procedure will have to be repeated when the real cause of the trouble 15 corrected. Preliminary tests of the system should include voltage and resistance meas. urements, routine checks for bad soldering connections, and visual inspection of the circuits for overheated components as well as for obvious wiring defects.

VIDEO IF \& MIXER ALIGNMENT
Pre-Alignment Steps

1. Maintain line voltage at 120 with variac.
2. Remove the deflection yoke plug to eliminate RF interference radiation.
3. Disable oscillator by shorting point "L" located near oscillator tube V-2, to chassis, See Figure 6.
4. Apply the negative lead of a 4.5 volt bias supply to pin \#1 (IF AGC) of the SERVICE TEST RECEPTACLE and the positivelead to pin 3 (chassis ground).
5. All coil slug tuning positions, in relation to chassis, are given in the procedure chart and in the separate detail of Figure 7
6. Set channel selector on channel \#13 ard connect a 1500 ohm 50 W voltage normalizing resistor from $\mathrm{B}+$ to chassis (use pins $5(\mathrm{~B}+$) and \#3 (ground) of the SERVICE TEST RECEPTACLE.
7. Set the contrast control at minimum (extreme counterclockwise position).
8. Short across tuner input terminals.
9. Maintain 2 to 5 volts peak-to-peak at the diode load (Det TP) except when specific values are given in the procedure chart.
10. Refer to Video IF \& Sound Alignment Detail for component and test point locations (Figure 6).

VIDEO IF \& MIXER ALIGNMENT PROCEDURE

STEP	SWEEP GEN AND MARKER	LNDICATOR	ADJUST

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION
MOTOROLA Chassis TS-556 and TS-556Y Alignment Information, Continued

STEP	SWEEP GEN AND MARKER	INDICATOR	ADJUST	ADJUST FOR AND/OR REMARKS
2.	To mixer TP thru .001 mf capacitor. (Terminal adjacent to mixer. See Figure 6). Set sweep to approx. 44 Mc . a. Set marker to 47.25 Mc b. Set marker to 41.25 Mc	Scope connection same as stepll	a. 47.25 Mc trap $(\mathrm{L}-102)$ b. $41.25 \mathrm{Mc} \operatorname{trap}$ $(\mathrm{L}-101 \mathrm{~B})$	a. Minimum response (tune slug at end of coil away from chassis) b. Minimum response (tune slug at end of coil toward chassis) See curve 2 for above responses.
3.	Generator connection same as step 2 , except set output for $3 V P-P$ on scope	Scope to "lst IF screen test recept or test point." Pin 6 of tube	a. Mixer trans, located on tuner (T-2) b. lst lF grid coil (L-101A) slug located away from chassis	Tune both $T-2 \& L-101 A$ for curve shown in curve \#3, step 3 of Figure 6.. The pri affects the center peak and the sec affects the two outside peaks. If a suck-out (trap effect) occurs, detune lst IF transformer (T-101). Tune both coil slugs at end cf coil away from chassis.
4.	Gener ator connection same as step \#2. Reset for $2-5 \mathrm{~V}$ P-P on scope.	Scope thru a 47 K ohm resistor to Video Det test recept	1st IF trans (T-101) 2nd IF trans (T-102)	Proper 42. 25 Mc marker placement (tune slug at end of coil toward chassis) Proper 45. 75 Mc marker placement (tune slug at end of coil toward chassis) See curve 4 of Figure 6 .
5,	Same as step 4.	Same as step 4.		If a tilt occurs, readjust the mixer pri coil (T-2 on tuner) and if necessary touch -up the lst and 2nd IF trans (T-101 \& T-102) for response shown in curve \#4.

SOUND ALIGNMENT (Station Signal Method)

The sound system used in the TS-556 receiver consists of an audio IF amplifier stage, a quadrature grid detector and an output stage. Since this type of sound system is extremely sensitive, relatively small input signal voltage will cause grid current to flow in both the $L F$ amplifier and the detector stages. Grid current through the tuned coils will load them down making the adjustment extremely broad end alignment impossible. For this reason, it is necessary to
use a very weak signal when aligning the driver and the detector input coils. Actually, the signal should be well down into the noise level for proper tuning action.

Preliminary Steps

1. Tune in a strong TV station.
2. Adjust all controls for normal picture and sound.
3. Refer to Video IF \& Mixer Alignment Detail for coil and test point locations (Figure 6).

SOUND ALIGNMENT PROCEDURE

STEP	STATION	INDICATOR	ADJUST	REMARKS
1.	Strong signal	VTVM to jct of R-306 (680 K) and C-308 (.01) located on L-302 (under chassis).	L-302 (quad coil)	Maximum deflection (coarse adj.). Of two possible maximum tuning points, use that giving the largest voltage reading. **
2.	"	Listening test	"	Maximum sound with minimum distortion (fine adj.).
3.	Weak signal*	"	$\begin{aligned} & \text { T-301 (in- } \\ & \text { terstage) } \end{aligned}$	Maximum sound with minimum distortion (maintain hiss level). **
4.	"	"	$\begin{aligned} & \mathrm{L}-30 \mathrm{I} \\ & \text { (take-off) } \end{aligned}$	Maximum sound with minimum distortion.

If sound is not clear at this point, repeat the above procedure as necessary.
*The signal must be weakened considerably either by disconnecting one side of the antenna lead, or connecting low value resistors across the antenna terminals until a pronounced hiss appears in the sound. The hiss level must be maintained for proper alignment.
**The purpose of the top pre-set core is to enable the adjustable core to make the tuning range required while reducing the physical length. If the pre-set core should be misadjusted by previous service work, merely re-set near top end of coil and tune for maximum.

4.5 MC TRAP ADJUSTMENT

1. Carefully tune receiver to local station and advance contrast control.
2. Adjust local oscillator (with fine tuning control) to bring
4.5 Mc interference strongly into the picture.
3. ADJUST...sound $\operatorname{trap}(L-108)$ to find the two points of adjustment at which the sound beat is just noticeable on the picture tube screen. Rotate the core toward center of the two points. Use minimum amount of inductance (core out of coil) that will result in no apparent beat interference.
MOTOROLA Chassis TS-556 and TS-556Y Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

MOTOROLA Chassis TS-556 and TS-556Y Service Information, Continued

SERVICING CHASSIS IN CABINET is easy, since entire bottom panel comes off by removal of nine (9) retaining screws in bottom panel. Voltages and waveforms can be taken, and all chassis components are accessible. Observe all electricalsafety precautions when working on the exposed chassis. For tuner servicing, remove entire cabinet, as explained in following steps. (See Figure 3A.)

FIGURE 3A.
CLEANING OF PICTURE TUBE SCREEN and safety glass is accomplished by removal of front bezel. Screw in upper right-hand corner of cabinet locks bezel in place: After locking screw is out and the three (3) retaining screws in bottom panel removed (or the entire bottom panel removed, if desired), pull off the front knobs; then remove the bezel by pulling bottom of bezel out from cabinet and dropping bezel downward to disengage top retainers. WARNING: When bezel is replaced during re-assembly, inside locking screw must be replaced sountrained persorrel cannot gain access to front of set. (See Figures 3A and 3B.)

DISASSEMBLY OF CABINET WRAPAROUND is continued by removing the two (2) screws at upper left-hand corner which holds tuner bracket to side panel. Speaker leads should be unplugged at this time. (See Figure 3B.)

FIGURE 3B.
CABINET WRAPAROUND REMOVAL is completed by pulling off the side knobs and unscrewing eight(8) screws: three on each side of the cabinet side panels, and two at bottom of cabinet-front-frame. (When removing screws, avoid twisting cabinet, since this will bind screws making removal difficult). The cabinet wraparound can now be slipped up and off of the complete chassis assembly. (See Figure 3C.) ASSEMBLY OF CABINET WRAPAROUND illustrates how the cabinet side-panels are held to the cabinet top-panel by five (5)screws in each insade corner channel: These screws

tighten into the outside corner channels shownin Figure 3C, which match the cabinet color. The cabinet-front-frame is secured to the corner channels by four (4) screws: two in each corner channel. (See Figure 3D.)

PICTURE TUBE REPLACEMENT

1. Remove entire cabinet wraparound, as illustrated in Figures 3A, 3B, and 3C, then disconnect and remove the deflection yoke, second anode connector, and the picture tube socket. Loosen the picture tube mounting bolts at upper right and left-hand corners of the mounting strap, and carefully remove the picture tube.
2. Working with the new replacement picture tube, place cloth tape (Motorola Part No. 11M121682), of approximately the same size, and at the same points as that on the original picture tube. Stick two pieces of gummed paper (preferably gummed on both sides), on the new picture tube neck, at the flare, to keep the yoke from slipping about,
3. Replace picture tube into correct position: Tighten mounting bolts; replace the deflection yoke, picture tube socket, and the second-anode connector. Connect the deflection yoke to the chassis receptacle.
4. Apply power with service line cord, and check receiver operation. Adjust the yoke position for proper operation, and adjust the certering device.

Before returning a serviced receiver (of any type) to the owner, the service technician must thoroughly test the unit to be certain that it is completely safe to operate without danger of electrical shock.

OLYMPIC RADIO \& TELEVISION

DEFLECTION YOKE ADJUSTMENT

If the lines of the raster are not horizontal, loosen clamp on collar of yoke and rotate the deflection yoke until the condition is corrected. If neck shadew is evident or the comers of the raster are dark, move the deflection yoke forward as far as possible and retighten the wing screw.

ADJUSTMENT OF HORIZONTAL OSCILLATOR

(1) Allow set to warm-up for two minutes.
(2) Select channel with suitable picture.
(3) Short sync to ground at junction of C24 and C25.
(4) Short the terminals of the oscillator coil L12.
(5) Vary the Horizontal Hold Control R69 until the picture is in frequency.
(6) Remove short from oscillator coil L12 and adjust coil until the picture is in frequency.
(7) Remove short from sync.

Caution: It is important that the picture be centered in the mask properly with the Horizontal Hold Control in the approximate mid-position, otherwise the set user may attempt to center the picture by means of the hold control which may then be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization. Excessive drift of the horizontal oscillator circuit may be caused by a weak or defective 6CG7 tube. Some manufacturers types of 6CG7 may perform better than others in the horizontal oscillator socket.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS
For best results height and vertical linearity adjustments should be made on a transmitted test pattern, although satisfactory results can be obtained from an active picture.

Both controls affect height AND linearity of the picture and must therefore be adjusted simultaneously. The Vertical Height Control has a tendency to affect the bottom of the picture more than the top and the Vertical Linearity Control has the opposite tendency.
Note: It is advisable that both height and width of the picture be adjusted to a size slightly larger than the mask opening, so that during periods of lowline voltage adequate picture size is maintained.

HORIZONTAL DRIVE (WIDTH) ADJUSTMENT

The horizontal drive trimmer C53 should be screwed in tight (clockwise) and then backed off (counter-clockwise) until horizontal drive bars appear. Then turn the trimmer clockwise again, until the drive bars just disappear.
Note: In some sets horizontal drive bars will not appear regardless of horizontal drive trimmer adjustment. In these sets the trimmer should be set for proper width.
Important: The horizontal oscillator frequency must be checked for proper range of horizontal control after every adjustment of the horizontal drive C53. Adjustment of C53 usually requires resetting of the horizontal frequency adjustment coil L12.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

 OLYMPIC GT,GU(VHF) \& GTU,GUU(VHF/UHF)CHASSIS

CENTERING ADJUSTMENT

The centering magnets are mounted on the back cover of the deflection yoke. (See Figure 5.) Each ring has a small tab and adjustment is accomplished by rotating these tabs. The tab which extends
horizontally will affect the vertical position of the picture and the tab which extends vertically will affect the horizontal position of the picture. The two magnetic rings have their maximum effect when they are farthest apart but, to avoid neck shadow, should never be more than 45° apart.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION OLYMPIC GT, GTU, GU, GUU Chassis Schematic Diagram, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

OLYMPIC GT, GTU, GU, GUU Chassis, Alignment Information, Continued

BUILTIN ANTENNA

The "rabbit ear" antenna is normally connected to the antenna posts and must be disconnected when attaching the outside aerial. When set is cperating with "rabbit ear" antenna, reception can sometimes be improved by rotating the antenna.

TO REMOVE CHASSIS FROM CABINET
(1) Discornect antenna from antenna terminals at rear of cabinet.
(2) Remove cabinet masonite back.
(3) Remove both leads from audio output transformer.
$(+)$ Remove two mounting bolts from underside of cabinet and one from the top of the handle.

CURVE may appear as shown in curve a on curve e

OVERCOUPLED CURVE
FIG. 7

PIX IF COIL AND TRANSFORMER ADJUSTMENT

Set the tuner to Channel 12 when not operated by a local station; if 12 is a local station, use Channel 11 or 13. Turn on power switch and proceed as follows:

Insert a 100,000 ohm $1 / 2$ watt resistor in series with the "hot lead" of the electronic voltmeter and connect it to the junction of L6 and C19. Set meter switch to the lowest negative scale. Connect the ground lead of meter to chassis.

Connect hot lead of the RF signal generator to injection point of tuner (see circuit diagram) through a 10 uuf condenser.

Adjust the following slugs for maximum output as indicated on the meter at frequencies and sequence indicated below:

Remove hot lead of RF signal generator leaving the 10 uuf condenser and the 100 K resistor in place.

Set the sweep generator to approximately 45 MC . Set the Band Width to the proper setting.

Inject output of sweep generator at the injection point on tuner through the 10 uuf condenser.

Connect crystal circuit as shown in Figure 6 to pin 9 of V6. Connect a 3 volt bias battery into position with plus side to ground and minus side to junction of R11 and C11 (this point is AGC bias voltage) for all alignment procedures. Connect the marker generator to point illustrated in Figure 6 and set it to frequencies of 43.25 MC and 45.75 MC and connect the scope as shown in Figure 6.

Curve shown on scope should be similar to response curve shown in Figure 7.
If markers do not appear as shown in Figure 7, adjust coils L301 and L4 for correct positioning of markers $\pm 10 \%$. (Set tuner to channel that gives best response curve without interference from a station.)

After completion of preceding procedure, remove crystal circuit. The sweep generator still remains at injection point with the 10 uuf condenser. Connect a scope to the 100,000 ohm resistor which was connected at L6 and C19.

Inject the following marker frequencies into the tuner by coupling the marker generator to the half shield of the mixer tube.

43.25 MC . Marker
 45.75 MC
 \qquad Picture Carrier Marker

After alignment, if the wave shape is not the same as shown in Figure 8, allowing 15% tilt, retouch coils L301, L4, T2 and T3.

SOUND DISCRIMINATOR (4.5 MC) ADJUSTMENT

Because the transmitted sound signal from a TV station is probably the most accurate available for frequency, it is recommended that a working signal be used for sound alignment. The set should be turned on, allowed to warm up for five to ten minutes and then tuned to an extremely weak signal. A vacuum tube voltmeter should be connected to pin 3 of V3A through a crystal detector probe and the meter set to the -3 -volt scale. The Video Trap L1 and Sound IF L2 should be tuned for maximum deflection of the meter (not to exceed 1 volt).
The discriminator coil L3 should be adjusted for maximum audio output, using the transmitted signal from a TV station. Use an output meter connected to the voice coil terminals, or adjust by ear since the coil slug must be set carefully to eliminate buzz. L3 must be adjusted for maximum audio output and elimination of buzz.

MODELS

Olympic

TO REMOVE CHASSIS FROM CABINET

Remove: (1) Line cord from power outlet.
(2) Antenna lead-in from terminal posts.
(3) Masonite back.
(4) Speaker plug f:om rear of chassis.
(5) Knobs from front of cabinet.
(6) Deflection yoke plug from socket.
(7) High voltage lead from picture tube.
(8) Three mounting screws from bottom and one from upper rear side of chassis.
In sliding chassis out of cabinet, be careful that it does not strike against the kinescope tube.

GD CHASSIS
TD102
CD108
CD109
CD110
KD118
KD119
KD120
KD188
PKD118
PKD119
GDU CHASSIS
TD102U
CD108U
CD109U
CD110U
KD118U
KD119U
KD120U
KD188U
PKD118U
PKD119U

GH CHASSIS CH402 KH406 KH407 GHU CHASSIS

CH402U
KH406U KH407U

ADJUSTMENT OF HORIZONTAL OSCILLATOR

(1) Allow set to warm-up for 2 minutes.
(2) Select channel with suitable picture.
(3) Short sync to ground at junction of C50 and C53.
(4) Short the terminals of the oscillator coil L16.
(5) Vary the Horizontal Hold Control R83 until the picture is in frequency.
(6) Remove short from oscillator coil L16 and adjust coil until the picture is in frequency.
(7) Remove short from C50 and C53.

HORIZONTAL DRIVE ADJUSTMENT

The Horizontal Drive Trimmer C67 should be screwed in tight (clockwise) and then backed off (counterclockwise) until horizontal drive bars appear. Then turn the trimmer clockwise again until the drive bars just disappear. Note: In some sets horizontal drive bars will not appear, regardless of horizontal drive trimmer adjustment. In these sets, the trimmer should be set for proper width.
Important: The horizontal oscillator frequency must be checked for proper range of horizontal control after every adjustment of the horizontal drive (C67).

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

OLYMPIC GD, GDU, GH, GHU Chassis, Service Information, Continued

PIX IF TRANSFORMER \& ADJACENT

 SOUND TRAP ALIGNMENTInsert a 100,000 ohm $1 / 2$ watt resistor in series with the "Hot Lead" of the electronic voltmeter and connect it to the junction of L7 and C26. Set meter switch to the lowest negative scale. Connect the ground lead of meter to chassis.
Connect an RF signal generator through a 10 uuf condenser to the injection point of the tuner. (See circuit diagram.) Before aligning, adjust slugs in coils L5 and L15 so that they are at their maximum counterclockwise position, at the top and bottom of the can, respectively.
Adjust the following coils for maximum output: L301, L15, T2, T3 and T4. Adjust L1, L5 and L23 for minimum dip, but feed in a strong enough signal so that a definite dip is indicated.
Remove the signal generator and VTVM.
Connect the sweep generator through a 10 uuf condenser to the injection point on the tuner. Set the sweep generator for IF/VF output, with IF/Video Control at approximately 45 MC and the Band Width at the proper setting.

Connect a battery in place with its positive terminal to chassis and the negative terminal to the junction of R20 and L4 (this is AGC bias).
Connect a crystal detector circuit as illustrated in Figure 6 to the plate, pin 5, of the 1st IF Amplifier V6, a 6BZ6 tube, and then connect the scope and marker generator to the points illustrated in Figure 6.
All coil slugs requiring alignment are available from the underside of the chassis, except for L5 and L23 which are on the top side.
Set the Level Control to its maximum counterclockwise (off) position.
Observe the waveshape on the scope. Inject markers of 47.25 MC (adjacent sound trap), 42.5 MC (marker) and 45.75 MC (picture carrier marker). They should appear as illustrated on waveshape shown in Figure 7. If they do not, readjust coils L301 and L15 until markers fall into approximate position. The tuner should be set to a channel which does not give interference from a station.
 \rightarrow

After disconnecting the test equipment and crystal detector circuit, connect the scope through a 100 K resistor to the junction of L7 nd C26. Inject the following markers into the set by connecting the output of the marker generator a half shield of the mixer tube on the tuner:
42.5 MC. \quad Marker
45.75 MC . - Picture carrier marker
47.25 MC Adjacent sound traps L1, L5. L23

If after alignment the waveshape does not appear as in Figure 8. within the limits of curves A and B, retouch coils T2, T3 and T4, if necessary. (Do not retouch

OLYMPIC TUNER PART NO. CL 5661

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

OLYMPIC GD, GDU, GH, GHU Chassis, Alignment Information, Continued

OVERCOUPLED CURVE
F1G. 7

STANDARD RESPONSE
FIG. 8
L301, L1, L5, L15 and L23 after they have been aligned.)

The 6DQ6 (V13) and 6CG7 (V12) tubes should be removed when aligning the set.

4.5 MC TRAP ALIGNMENT

Connect voltmeter lead to the diode crystal rectifier as shown in Figure 9. Connect diode crystal rectifier between Cathode Ray tube cathode lead (yellow wire) and chassis ground. Signal generator is connected at junction of L7 and C26. Set the contrast Picture Control at maximum and voltmeter to 3 -volt scale (negative). Remove the 6CB6 tube (V8) from socket. Use maximum output of generator at 4.5 MC . Adjust video trap L9 for minimum reading on meter.

When it is necessary to retouch this trap in the field, proper adjustment can be made by using the local station signal and turning the Fine Tuning Control to bring fine herringbone sound beat into the picture. The 4.5 MC trap (L9) should then be adjusted to minimize this beat interference.

SOUND IF AND DISCRIMINATOR (4.5 MC) ADJUSTMENT

Because the transmitted sound signal from a TV station is probably the most accurate available for frequency, it is recommended that a working signal be used for sound alignment. The set should be connected to an antenna, turned on, allowed to warm up for about five to ten minutes and then tuned for the best picture. A vacuum tube voltmeter should be connected to pin 2 of V3A through a 1 megohm isolating resistor and the meter set to the -30 -volt scale. The bottom of the 4.5 MC sound IF transformer (L10) should be tuned for maximum deflection of the meter.

The discriminator coil (L3) should be adjusted for maximum audio output, with the Buzz Control set to

mid-range, using the transmitted signal from a TV station. Use an output meter connected to the voice coil terminals, or adjust by ear since the coil slug must be set carefully to eliminate Buzz. Both the Buzz Control R6 and L3 coil must be adjusted for maximum audio output and elimination of Buzz.

TUNER ALIGNMENT

Note: Before making a complete tuner adjustment, it is essential that all the IF and sound discriminator circuits be aligned to their proper frequencies as described in the preceding paragraphs. WHEN CHANGING THE CONVERTER TUBE IT IS NECESSARY TO REALIGN THE OSCILLATOR ADJUSTMENT ON ALL CHANNELS WITH THE MIXER TUBE SHIELD IN PLACE.
This tuner has been carefully checked and aligned at the factory to give best possible performance. Do not tamper with adjustments.

The following instructions are given for your information or in the event that adjustment may be necessary after tubes or parts are changed.
A. Oscillator Alignment Check.
(1) Turn station selector to Channel 13.
(2) Connect signal generator (adjusted to correct Channel 13 oscillator frequency of 237.5 MC) to the antenna terminals.
(3) Connect oscilloscope to r-f test point through 10,000 ohms.
(4) Set the Fine Tuning Control in center of its range. Check Channel 13 for zero beat on scope.
(5) Repeat steps (1) through (4) using Channel 6 with a frequency of 103.5 MC .
B. Oscillator Alignment.

If necessary to make oscillator adjustments, perform the following steps:
(1) Align high channels for correct frequency with the Channel 13 oscillator screw. A nonmetallic screwdriver should be used.
(2) Align low channels for correct frequency with the Channel 6 oscillator screw.
(3) Alignment of Channel 13 and Channel 6 oscillators adjusts all the channels. Do not back up the screws more than eight turns from tight. At this point the electrical effect has ceased. Further back-up will cause the screws to drop out.
Note: Cover and tube shields should be on. Have rated supply voltages fed to tuner. Allow a three minute warm-up. Clockwise rotation of screws increases frequency.

Rated Voltages:	" B " supply	+140 volts
	Heater supply	6.3 volts
	Grid bias	-3.0 volts
(When necessary)	$B++$	+250 volts

ADJUSTMENT OF HORIZONTAL OSCILLATOR

(1) Allow set to warm-up for 2 minutes.
(2) Select channel with suitable picture.
(3) Short sync to ground at junction of C27 and C28.
(4) Short the terminals of the oscillator coil L16.
(5) Vary the Horizontal Hold Control R76 until the picture is in frequency.
(6) Remove short from oscillator coil L16 and adjust coil until the picture is in frequency.
(7) Remove short from C27 and C28.

Caution: It is important that the picture be centered in the mask properly with the Horizontal Hold Control approximately in the mid-pcsition; otherwise, the set user may attempt to center the picture by means of the hold control, which may then be on "edge" and impulse noise or change of camera will cause the picture to fall out of synchronization. Excessive drift of the horizontal oscillator circuit may be caused by a weak or defective 6CG7 tube. Some manufacturers types of 6CG7 may perform better than others in the horizontal oscillator socket.

VERTICAL HEIGHT AND LINEARITY ADJUSTMENT

For best results, height and vertical linearity adjustments should be made on a transmitted test pattern, although satisfactory results can be obtained from an active picture.

Both controls affect height AND linearity of the picture and must therefore be adjusted simultaneously. The Vertical Height Control has a tendency to affect the bottom of the picture more than the top and the Vertical Linearity Control has the opposite tendency.

```
GA CHASSIS TA100 CA105 KA115 PKAl15 ICA96
```

GAU CHASSIS
TA100U CA105U KA115U PKAII5U ICA96U

MODELS

GB CHASSIS TB101

GF CHASSIS CB106 CB107
KB116 PKBI 16
ICB97
GBU CHASSIS
TB101U
CB106U
CB107U
KB116U
PKB116U
ICB97U

GFU CHASSIS CF400U CF401U KF405U

HORIZONTAL DRIVE (WIDTH) ADJUSTMENT

The horizontal drive trimmer C75 should be screwed in tight (clockwise) and then backed off (counterclockwise) until horizontal drive bars appear. Then turn the trimmer clockwise again until the drive bars just disappear.
Note: In some sets horizontal drive bars will not appear regardless of trimmer adjustment. In these sets, adjust the trimmer for proper width.
Important: The horizontal oscillator frequency must be checked for proper range of horizontal control after every adjustment of the horizontal drive trimmer C75.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

OLYMPIC GA, GB, GF, GAU, GBU, GFU Chassis

TO REMOVE CHASSIS FROM CABINET

Remove: (1) Line cord from power outlet.
(2) Antenna lead-in from terminal posts.
(3) Masonite back.
(4) Speaker plug from rear of chassis.
(5) Knobs from front of cabinet.
(6) Deflection yoke plug from socket.
(7) High voltage lead from picture tube.
(8) Three mounting screws from bottom and one from upper rear side of chassis.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

OLYMPIC GA, GB, GF, GAU, GBU, GFU Chassis, Alignment Information, Continued

ALIGNMENT

Set the tuner to Channel 12 when not operated by a local station; if 12 is a local station, use Channel 11 or 13. Turn on power switch and proceed as follows:

PIX IF COIL ADJUSTMENT

Insert a 100,000 ohm $1 / 2$ watt resistor in series with the "hot lead" of the electronic voltmeter and connect it to the junction of L5 and C18. Set the meter switch to the lowest negative scale. Connect the ground lead of meter to chassis.

Connect hot lead of the RF signal generator to injection point of tuner (see circuit diagram) through a 10 uuf condenser.

Adjust the following slugs for maximum output as indicated on the meter at frequencies and sequence indicated below:

	GA, GAU	GB, GF, GBU, GFU
L301.	44.5 MC	43.5 MC
L4	44.5 MC	45.5 MC
T2.	43.5 MC	43.5 MC
T3	45.5 MC	45.5 MC

Adjust the following slugs (on the GB, GF, GBU and GFU chassis) for minimum output as indicated on the meter at frequencies and sequence indicated below:
L19
47.25 MC
L18.
47.25 MC

Remove hot lead of RF signal generator leaving the 10 uuf condenser and the 100 K resistor in place.
Set the sweep generator to approximately 45 MC . Set the Band Width to the proper setting.
Inject output of sweep generator at the injection point on tuner through the 10 uuf condenser.
Connect crystal circuit as shown in Figure 6 to pin 5 of V6. Connect a 3 volt bias battery into position with

plus side to ground and minus side to junction of R14 and L3 (this point is AGC bias voltage) for all alignment procedures. Connect the marker generator to point illustrated in Figure 6 and set it to frequencies of 43.25 MC and 45.75 MC and connect the scope as shown in Figure 6. Alignment is done from the underside of chassis.

Curve shown on scope should be similar to response curve shown in Figure 7.

If markers do not appear as shown in Figure 7, adjust coils L301 and L4 for correct positioning of markers $\pm 10 \%$. (Set tuner to channel that gives best response curve without interference from a station.)

After completion of preceding procedure, remove crystal circuit. The sweep generator still remains at injection point with the 10 uuf condenser. Connect a scope to the 100,000 ohm resistor which was connected at L5 and C18.

Inject the following marker frequencies into the tuner by coupling the marker generator to the half shield of the mixer tube.

43.25 MC	Marker
45.75 MC	Picture Carrier Marker
47.25 MC	Channel Trap Marker

47.25 MC Channel Trap Marker (GB, GF, GBU, GFU)
After alignment, if the wave shape is not the same as shown in Figure 8, allowing 15% tilt, retouch coils L301, L4, T2 and T3.

Note: It is advisable to remove the type 6DQ6 and 6CG7 tubes when aligning the set. If the curve does not appear as illustrated, because of a local station or other interference, or if multiple markers appear, remove the RF Amplifier tube from tuner.

SOUND DISCRIMINATOR (4.5 MC) ADJUSTMENT

Because the transmitted sound signal from a TV station is probably the most accurate available for frequency, it is recommended that a working signal be used for sound alignment. Turn the set on, allow a five to ten minute warm-up and then tune the set to an extremely weak signal. Connect a vacuum tube voltmeter to pin 3 of V3A through a crystal detector probe and set the meter to the - 3 -volt scale. Tune the video trap L11 and L1 for maximum deflection of the meter (not to exceed 1-volt).

Adjust the discriminator coil L2 for maximum audio output using the transmitted signal from a TV station. This is done with the Buzz Control (R4) set to midrange. An output meter connected to the voice coil terminals may be used for this adjustment, or it may be done by ear since the coil slug must be set carefully for elimination of buzz, Adjust both the Buzz Control and L2 for maximum audio output and elimination of buzz.

PACKARD BELL

Models 17VT3, 17VT4, 17VC1, 17VT8, 17VT9, \& 21VT4 CHASSIS V8-2 (REVISED)

(Service material on pages 101 through 104)

CHANGES REQUIRED FOR 21-INCH MODEL 21VT4:

The values of certain components change for the 21 -inch model. Other components are used ONLY in the 21 -inch set.

Complete list of these components:
C. 76 (. $068 \mathrm{mfd} / 1000 \mathrm{v}$) goes to $.033 \mathrm{mfd} / 1000 \mathrm{v}$ on 21VT4 23074
C-81 ($150 \mathrm{mmf} / 2500 \mathrm{v}$) goes to $56 \mathrm{mmf} / 2500 \mathrm{v}$ on 21VT4 23646
C. 85 (. $01 \mathrm{mfd} / 600 \mathrm{v}$) goes to $.022 \mathrm{mfd} / 600 \mathrm{v}$ on $21 \mathrm{VT4} 23141$

C-202 (. $022 \mathrm{mfd} / 600 \mathrm{v}$) is used only on 21VT4 R. 88 (15K, 2 watts) goes to $12 \mathrm{~K}, 2$ watt R.
R.94 (120K) goes to 82K on 21VT4 73048
R. 95 (4.7 meg) goes to 3.9 meg on 21 VT 473068

R-98 (270K) goes to 150 K on 21VT4 73051
R-99 (10K) goes to $22 \mathrm{~K} / 2^{\prime}$ watts on 21 VT 4 ; also it connects to the 260 volt line instead of the 135 volt line 73441
R-202 (1 meg) goes to 820 K on the 21 VT 4
73060
R-203 (39K) is used only on 21VT4 73044

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PACKARD BELL Models 17VC1, 17VT3, 17VT4, 17VT8, 17VT9, 21VT4, Chassis V8-2 (Revised) Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PACKARD BELL Models 17VC1, 17VT3, 17VT4, 17VT8, 17VT9, 21VT4, Chassis V8-2 (Revised) Schematic Diagram

Schematic Dlagram, V8-2 (revised)

ADJACENT-CHANNEL TRAPS:

Some sets contain three adjacent channel traps, two at the grid of the first I.F, and one at the grid of the second I-F. These are shown on the schematic, along with the trap frequencies.

These traps, if present, must be adjusted to their correct frequencies before proceeding with the alignment below.
(Alignment on page 104)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PACKARD BELL Chassis V8-2, Continued

ALIGNMENT

The PIX-LOCK control is normally almost completely counterclockwise. In fringe areas, if noise affects the sync stability, the control should be set as far clockwise as possible without pulling or tearing the picture.

PROCEDURE:

Connect VTVM to point " A ".
Lift tube shield on mixer tube in tuner (6CG8A or 6AT8). Connect signal generator between shield and ground, keeping leads shorter than $11 / 2 \mathrm{in}$. Set generator output to produce from minus $11 / 2$ to minus 2 volts of AGC bias as indicated by the VTVM. NOTE ON TUNER I-F ADJUSTMENT: S-1 must be adjusted through hole in tuner.

Step	Signal Gen Connection	Frequency Signal Gen	VTVM Connection Adjust	For	
1.	Mixer tube in tuner	45.00 mc	Point " A ' S-1	MAX	
2.	ditto	42.50 mc	ditto	S-5	MAX
3.	ditto	45.00 mc	ditto	S-7	MAX
4.	ditto	44.00 mc	ditto	S.8	MAX
5.	ditto	43.00 mc	ditto	S-9	MAX

REPEAT STEPS 1 THRU 5
6. Connect scope to point " B " thru a 22,000 ohm isolating resistor.
7. Connect capacitor, $5 \mathrm{mfd}, 50$ voits, between point " A " and ground, the negative lead going to point " A ". (Leave VTVM connected.)
8. Connect sweep generator to antenna terminal thru the impedance matching network.
9. Rotate tuner to channel 3, and set sweep generator to center frequency of channel (63 mc). With a sweep width of 8 mc , adjust generator output to develop about -2 volts of AGC bias at point " H ".
10. Adjust AGC control at rear of set so that voltages at points " H ' and " A ' are equal. Then, if necessary, readjust generator so that AGC voltage is again -2 volts.

11. Replace tube shield on mixer tube in tuner but leave signal generator connected between shield and chassis. (Reason: removal of shield alters response curve, hence signal must be injected with shield in place.)
12. Adjust generator output to provide the markers shown on the curve. Check position of markers one at a time. A slight touching.up of the I-F adjustments may be needed to make the curve correspond to the illustration.
13. The adjustments have the following effects:

S .1 moves the 45.75 mc marker up or down the curve (should be 50%).
S. 5 controis the overall band width, and with S .9 , controls the 41.25 mc position.
$\mathrm{S}-7$ controls the position of the 45.00 mc marker, which should be at a maximum of 97% response. S-8 controls tilt of bottom portion of response curve.
S-9 controls the 41.25 mc position which should be between 3% and 12% response.
IMPORTANT: The 45.00 mc marker must not exceed 97% response on channel three or picture may smear on higher channeis.

TRAP ALIGNMENT (4.5 mc)

1. Connect signal generator between point " C " and ground thru a . 001 mfd isolating capacitor.
2. Turn contrast control to maximum.
3. Connect RF probe of VTVM to point "D".
4. Set signal generator to 4.50 mc , with output at one volt or more.
5. Adjust trap, S-10, for minimum VTVM reading.

NOTE: If generator is not capable of a one vo!t output, the trap may be adjusted visually while receiving a TV signal. If no 4.5 mc beat is present in the picture, then $\mathrm{S}-10$ requires no adjustment. If a beat appears, detune signal to exaggerate the beat and then adjust S. 10 for minimum beat.

SOUND I-F AND RATIO DETECTOR ALIGNMENT:

1. Connect signal generator between point " B " and ground.
2. Connect VTVM between point " F " and ground.
3. With generator frequency at 4.50 mc , adjust $\mathrm{S} \cdot 2$ and S.3 for MAXIMUM VTVM reading.
4. Connect VTVM between "E" and "G'".
5. Adjust ratio detector secondary, S-4, for zero between positive and negative peaks.
6. Repeat steps 2 thru 5 .

Model ${ }^{\text {No }}$.	Chassis	Model No.	Chassis
G-4242M	9137.	G-4710M	9138
G-4242L	9137	G-47101	9138
UG-4242M	9L37U	UG-4710M.	9 L 38 U
UG-4242L	9L37U	UG-4710L	9L38U
G-4654M.	9137	G-4720M	9138A
G.4654W	9137	UG-4720M	9L38AU
UG 4654 M .	.9L37U	G-47201	9L38A
UG-4654W	9137 U	UG-4720L	9138 AU

PRILCC

$9 \mathrm{L37}$ and 9L37U, 9 L 38 and 9L38U CHASSIS

Schematic diagrams and certain other service information on the se sets are presented on the next ten pages. Since these chassis are similar to 9L35, - U, for the following information refer to Volume TV-15, Early 1959 TV Manual: horizontal osscillator adjustment, page 124; alignment, page 121; video IF printed wiring panel, page 123.

Figure 1. Adjustment Access Cover Removed - 9L38

DISASSEMBLY OF CRT HOUSINGCRT REMOVAL PROCEDURE

NOTE: The illustrations and procedure refer to the 9L37 the 9L38 is similar.

Access to the yoke and its associated parts is obtained by removing the small cover on the rear of the CRT shell. This cover is secured by four screws. Removal of the cover exposes the neck of the CRT and the yoke assembly thus permitting adjustment of the yoke without removal of the complete rear shell assembly. Removal of the cover also exposes the vertical and horizontal centering magnets and the horizontal linearity adjustment. In the 9 L 38 , the interlock must be jumped when the CRT rear cover is removed. The 2nd video amplifier, a 3CB6, and the focus connector are also accessible. See figure 1.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L37,-U, 9L38,-U, Service Information, Continued

To disassemble the CRT assembly, remove the small ornamental trim piece under the picture tube by removing the two small screws from the lower front. Remove the plastic trim around the CRT shell. This plastic trim is held in place with a spring at the bottom of the assembly. Remove the two screws at the bottom of the shell strap, remove the strap and the front mask. Remove the end caps on the side support arms and then remove the self-tapping screws which fasten the support arms and the rear shell to the picture tube frame. The base of the support arms, which are keyed, are inserted into sockets in the pivot assembly under the CRT. To remove the support arms, move each arm so that the arm key lines up with the slot in the socket and then pull the arm out of the socket. The picture tube is still secured by the pivot assembly to the cabinet.

Remove the two mounting screws at the bottom of the CRT which hold the rear shell, then remove the rear shell. Figure 2B shows the assembly with the rear shell removed. Now the CRT can be removed by loosening the bolts, one on either side of the picture tube front frame, near the support arm mounting brackets. In the 9L37 chassis the yoke and CRT cables plug into receptacles in the center of the chassis. The anode lead plugs into a jack at the top front of the 1G3GT socket.

The pivot or swivel assembly can also be removed by removing the single screw at the rear and then lifting the assembly off the cabinet or base.

CHASSIS REMOVAL PROCEDURE

To remove the chassis from the cabinet remove all control knobs, pull the monopole antenna part-way out so that the base section does not interfere with the chassis removal. Remove the two lower chassis mounting screws and the two screws holding the vertical support bracket. This bracket is a shipping brace and need not be replaced in the 9L37. In the 9L38, remove the top bracket to cabinet screw only. The bracket must be retained as it is part of the chassis assembly. Remove the chassis by pulling it straight back.
The front of the chassis contains two plastic seats into which are inserted two prongs or guides mounted on the cabinet and which hold the chassis in proper position. When installing the chassis in the cabinet these guides must be properly engaged by the plastic seats before the chassis can be fully inserted.

CRITICAL LEAD DRESS INFORMATION

A. To Prevent Lead Burning
(1) All leads must be dressed clear of WR1, WR2, WR3, WR4, WRS, 2 watt width divider resistor and filament thermistor.
(2) Brown filament lead from L3C to V.O.S. panel must be dressed away from 12D4 and WR5.
(3) R7, filament thermistor, must dress away from wiring panel, clear of all lugs by at least $1 / 2^{\prime \prime}$. Body of thermistor must be dressed over tuner cut-out in chassis. No leads to be run between panel and thermistor.
(4) All leads must be dressed clear of S1-3, yoke socket, or tie lugs carrying yoke or damper leads.
(5) WR3, filament dropping resistor, must dress along B5 wiring panel on tuner cut-out side at approximately 45° angle with panel. No leads to be run between WR3 and $B 5$.
B. To Prevent Pinched Leads
(1) All leads must dress between end of $E 1$ and side of chassis. No leads to be dressed under E1.
C. To Prevent Breakdown
(1) 3 KV disk condenser must be dressed at least $1 / 4^{\prime \prime}$ away from all wires, lugs, components and chassis.
D. To Prevent Corona
(1) S3 socket must be kept free of points or sharp edges due to wiring and soldering.
(2) Rotate S 3 cap to absorb any excess lead. Lead must be at least $3 / 4^{\prime \prime}$ from metal of high voltage cage.
(3) 9L38 only - Radiating fins on H.O.T. must be dressed away from transformer winding and against side of H.V. cage.
(4) All unused lugs of S3 socket must be bent down toward center of socket.

E. To Prevent Regeneration

(1) All leads connecting to the I-F panel must be as short as possible and any slack pulled from under the I-F shield.
F. To Prevent Depadding
(1) All leads must be dressed clear of the quadrature coil.
G. To Prevent Unstable Sync
(1) The white AGC lead from the tuner cable, J1, must dress under wiring panel at end of E2, between E2 and E1 and chassis, to B1-1.
H. To Reduce Vertical and Horizontal Drift
(1) The following components on the V.O.S. panel must be dressed perpendicular to the panel: N1, N2, N3, N4, N5 and C5U (C4N of 9L38).
I. Underwriters Requirements
(1) Aquadag grounding spring must dress between C.R.T. straps and must not touch either strap.
(2) The UHF tuner link cable must dress under lug on UHF tuner.
(3) The VHF pilot lamp cable must dress as follows: 9L37, on tuner side of S1 socket and along with tuner power cable, J1, around 84 panel and under dress lug mounted on rear of VHF tuner bracket; 9L38, between S1 socket and B5 panel, around B2 panel and under CL11.
J. To Prevent Lead Burning and Pick-Up
(1) VHF tuner filament lead and UHF pilot lamp leads must dress between the antenna taper line assy. and the 4 BCB R-F tube.
(2) Speaker leads must dress under dress lug mounted on right hand (facing rear of cab.) speaker mounting stud and be stapled approximately in center of bottom, side cabinet rail. These leads connect to lugs L9U and L10U in the 9L37 and to L7N and L8N in the 9L38.

CHASSIS 9137 \& $9137 U$

K. To Prevent Pickup
(1) CRT and yoke cable (less CRT cathode lead) must dress under long dress lug on left tube strap (facing rear of tube).
(2) CRT cathode lead must dress under lug on right tube strap.
(3) Fishpaper separator must be inserted in the support collar of tube assy. to keep the CRT cathode lead separated from all other leads.
(4) CRT and yoke cable (less CRT cathode lead) must dress directly back from spindle to clamp mounted on top rear cabinet rail. All slack to be pulled through clamp.
(5) CRT cathode lead must dress directly from spindle to dress lug mounted on top, side cabinet rail, to L3U. Excess lead to be hanked under the dress lug.

CHASSIS 9 L38 \& 9L38U

L. To Prevent Parasitic Oscillation
(1) Vertical output cathode lead from L3N to E3-3, must dress under V.O.S. panel between panel and chassis, through hole in chassis, under E1 to E3-3: The lead must be kept as short as possible.
M. To Prevent Component Damage
(1) X3, on 2nd video amp. assy., must be dressed down toward chassis but must be kept at least $1 / 4^{\prime \prime}$ away from chassis; to prevent damage to coil when plastic housing is assembled.
N. Underwriters Requirements
(1) VHF tuner I-F link must dress under lug mounted on top, front of VHF tuner.
(2) Tuner power cable, J1, must dress under CL13, around B3 panel on side away from R7, and between S1 socket and Bs panel.

PHILCO Chassis 9L37 Service Information, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RECEIVER SET-UP CONTROL LOCATIONS

1. Vertical Linearity-Adjust with a thin screwdriver through the hollow brightness shaft.
2. Height-Adjust with a thin screwdriver through the hollow vertical hold shaft.
3. Horizontal Hold Centering-Adjust with a thin screwdriver through the hollow horizontal hold control shaft.
4. Width-Remove back. Width control is at the side in front of Range Switch.
5. Fusible B+ resistor-Remove back. Resistor is a plug-in at left center of chassis, in front of high voltage cage.
6. Tubes-All tubes (except CRT) are accessible after removing back and partly removing chassis. IG3GT, high voltage rectifier is in cage. 9L38 only-3CB6, 2nd video Amp., is mounted with CRT; remove CRT rear access cover.

PHILCO Chassis 9L37 and 9L37U Schematic Diagram

Schematic Diagram for Chassis 9L37 and 9L37U
NOTES: All capacitor values greater than I are in MMF unless otherwise noted. All capacitor values less than 1 are in MFD unless otherwise noted. All resistors are $1 / 2$ watt, 10%, carbon unless otherwise noted. Arrow through control indicates clockwise rotation. Voltages are DC from point shown to chassis unless otherwise noted, Voltages were read using a V.T.V.M. Voltages were taken with no signal. The receiver was adjusted for a good quality picture; i.e., normal contrast, brightness, width, height, vertical lin. and sound, picture in sync, then removed signal.

* Focus voltage optional for best focus.

Coil resistances read with coil in circuit.

- Indicates a coil resistance of less than I ohm.

UHF CROSSOVER NETWORK

A UHF-VHF antenna crossover network is available for use with the 9L37U \& 9L38U chassis sets. This network should be ordered through our Accessory Division by part no. 426-3034.
This UHF-VHF crossover kit is complete with mounting hardware and installation instructions.

CAUTION: Use an isolation transformer for "on the bench" servicing as one side of the line is connected to the chassis.

INSTRUCTIONS FOR CLEANING WINDOW

If the transparent window in the front of the picture tube occasionally needs cleaning, use only mild soap and water on a damp cloth. Rinse, then dry with a soft flannel cloth.
DO NOT ATTEMPT TO CLEAN WITH ABRASIVES OR CLEANING FLUIDS.
For the 9 L 38 the interconnecting cable may be cleaned the same as the window.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L37,-U, 9L38, -U, Service Information, Continued

RUN CHANGE INFORMATION

$9 L 37$ and $9 L 37 U$ Chassis

Maln Chassls
Run 1-First Production (used Run 5 of V.I.F. panel)
Run 2-Use of Run 6 V.I.F. panel to eliminate channel 8 beat
Run 3-Use of Run 2 V.O.S. panel to reduce stretch.
Y. S. (yoke socket) rotated $45^{\circ} \mathrm{CCW}$. S1 socket (damper tube) rotated $45^{\circ} \mathrm{CW}$. C6 moved from yoke socket (Y.S.) and wired across damper socket S1-3 to S1-5. Damper socket lug S1-4 must be bent toward center or inside of socket. CA moved from B3-4 and B3-7 to B3-4 and B3-1. A two lug wiring panel (B4A) was added near E3. The orange lead from J3-1 was changed from B8-8 to the new panel B4A-1. A 47,000 ohms, $1 / 2 W$ resistor, R8A was added from B4A-1 to E3-1. This places a 47,000 resistor in series with the CRT screen between the screen and 400 V boost to prevent CRT damage by arcing.
Red lead from B10-1 ($\mathrm{B}+$ focus connection) changed from B3-6 (275V) to $\mathbf{J 3 - 1}$.
A dress lug was added between B3-7 and S1. The tuner cable leads and pilot lamp lead must dress between B5 wiring panel and $S 1$ socket and under added dress lug.
Run 4-Use of Run 3 V.O.S. panel. VR-3 height control changed to 3.4 megohms, part number $33-5592-28$. To improve centering of height control.
Run 5-Use of Run 4 V.O.S. panel to prevent blocking of noise inverter stage.
Run 6-R10, 2200 ohm hor. osc. de-coupling resistor, is removed from E1-1 and E1-2. C4, . 047 ufd tuner B+ decoupling condenser, is removed from B3-1 and B3-4. B7, the three lug wiring panel is removed. An orange wire is added from E1-2 to B3-4. This makes E1-2 the decoupling filter condenser for tuner B+ and hor. osc. $\mathrm{B}+$. The following wiring points were changed with no change in circuitry. R 12 changed from $\mathrm{B} 7-2$ and $\mathrm{B} 7-3$ to $\mathrm{B} 4-4$ and B4-5. C8 changed from B7-3 and B6-8 to B4-2 and B4-5. The black lead from SW $1-3$ changes from B7-3 to B4-5.
Run 7-VR1, contrast/vol./on-off control, changed to 33-5592-42. This changes the contrast section from 2 megohms to 1 megohm and removes $\mathbf{R 2 2}$ from across the contrast control.
V.I.f. Pamel

Run 5-Green dot, first production 9L37 chassis.
Run 6-Blue Dot. Special lead dress of filament choke X9C to eliminate channel 8 beat. X9C was raised up from panel to give greater spacing between choke and copper foil; thus radiation from foil to choke was reduced.

V.O.S. Pamel

Run 3-Orange Dot. R11U, vertical osc. plate load resistor, changed in value to 2.7 megohms, 1 watt, part number 66-5274340. To improve centering of height control.
Run 4-Yellow Dot. R7U, noise inverter cathode resistor, changed in value to 3600 ohms, 5%, part number 66 2368240. To prevent blocking.

9138 and 9L38せ Chassis

Main Chassis

Run 2-A two lug wiring panel, B4A, was added next to and parallel to E5 on the chassis bottom. C5 was moved to wire from B2-9 to B4A-2. The value of C5 was changed from $250 \mathrm{mmf}, 3 \mathrm{KV}$, ceramic disk to 320 mmf , 3 KV , ceramic disk, part number $30-1246-24$. A resistor, R6A, was added from B4A-2 to S1-3. R6A is 470 ohms, 2 watts, part number $66-1476340$. To reduce horizontal ringing.
Run 3-Pilot lamp socket and cable assy. and tuner power socket and cable assy. lead lengths changed.
Two . 01 ufd tubular condensers and a 10,000 ohm resistor removed and a resistor-condenser network, N1, added in their place for retrace suppression. Part number of N1 is $30-6037-1$. N1 wires to B8-3, B8-2 and B8-1. At this time R15 changed wiring points from B4-5 and B4-6 to B4-6 to B8-2. The blue lead from J3-14 changed from B45 to B8-2. To improve wiring and to use retrace suppression network.

Run 4-R11, the 2200 ohm hor. osc. de-coupling resistor, is removed from E1-1 and E1-2. C4, . 047 ufd tuner B+ decoupling condenser, is removed from B2-2 and B2-5. An orange lead is added between E1-2 and B2-5.
Run 6-VR1, contrast/vol./on-off control changed to 33-5592-42. This changes the contrast section from 2 megohms to 1 megohm and removes $\mathbf{R 2 2}$ from across the contrast control.

PHILCO Chassis 9L38 Service Information, Continued

PHILCO Chassis 9L38 and 9L38U Schematic Diagram

Schematic Diagram for Chassis 9L38 and 9L38U, Run 3

NOTES: All capacitor values greater than I are in MMF unless otherwise noted. All capacitor values less than I are in MFD unless otherwise noted. All resistors are $1 / 2$ watt, 10%, carbon unless otherwise noted.

Arrow through control indicates clockwise rotation.
Voltages are DC from point shown to chassis unless otherwise noted. Voltages were read using a V.T.V.M. Voltages were taken with no signal.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L38 and 9L38U Schematic Diagram

The receiver was adjusted for a good quality picture; i.e., normal contrast, brightness, width, height, vertical lin, and sound, picture in sync, then removed signal.

Coil resistances read with coil in circuit.

- Indicates a coil resistance of less than I ohm.
$\left.\begin{array}{|}* \\ \dagger & \text { Run } 2 \text { change } \\ 3 & \text { change }\end{array}\right\}$ See Run Change Information.

PHILCO Chassis 9L38 Service Information, Continued

DESCRIPTION

Models G-4720 and UG-4720 are Predicta Tandem TV featuring the separate picture tube and a 4 watt audio amplifier. These models match, and are intended to be used with, model G-1606-S, high fidelity phonograph consolette, for stereophonic reproduction.

The TV portion of model G-4720 uses a type 9L38A chassis. See page 116 for description.

The audio amplifier section uses a 6AU6 as first audio, a pair of 6AQ5's as audio output and a 6X4 rectifier. The function switch has three positions: center is "Off"; CCW is the "Phono" position which turns on the amplifier only; CW is the "TV" position which turns on both the amplifier and TV, selects the TV audio and completes the circuit from the amplifier output to the remote C.R.T. socket for the extension speaker jack. The speakers used are a 6° " pm woofer and an " S " type electrostatic.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO TV MODEL G-4720, Continued

9L38A TV CHASSIS

The 9L38A TV chassis is identical to the 9L38 chassis with the following exceptions.

The on-off switch is shorted by a jumper wire, the on-off action is accomplished by the function switch on the audio amplifier chassis.

The TV volume control is present but not wired into the circuit. In place of the volume control two resistors (R24A and R25A) have been added as a fixed audio divider, see figures.

The secondary of the TV audio output transformer is wired over to the audio amplifier chassis where it is loaded by R49 and presented to the audio amplifier's volume control circuit. V.O.S. panel lugs L7N and L8N are the terminals for this two wire cable.

The remote speaker jack, provided on the C.R.T. base, is fed through the function switch and works only when the function switch is in "TV" position.

Component Layout, Audio Amplifier Section, Model G-4720

RECEIVER SET-UP CONTROL LOCATIONS

1. Vertical Linearity-Accessible from back of receiver. Left hand control mounted on deflection PW panel.
2. Height-Accessible from back of receiver, left-hand side of dual potentiometer on deflection PW panel.
3. Horizontal Hold Centering-Right-hand control of dual potentiometers on deflection PW panel, accessable from back of receiver.
4. Width-Extreme right hand potentiometer on deflection PW panel, accessable from back of receiver.
5. .7 Ampere Fuse-Remove back. Fuse located in plug-in fuse holder on left side of chassis viewing from rear.
6. Tubes-All tubes (except CRT) are accessible after removing back. 1G3GT, high-voltage rectifier, is in cage.

TUNER, CHASSIS AND CRT REMOVAL

1. Remove channel selector, fine tuning, volume and contrast control knobs and cabinet back.
2. Disconnect speaker leads. Remove volume-contrast control and pilot lamp assembly by first removing drive screw located in well below knob.
3. Remove 2 screws mounting control sub assembly to cabinet top.
4. Remove tuner and chassis mounting bolts under cabinet and disconnect antenna leads.
5. Unplug tuner (IF link and power cable), yoke, CRT socket and anode lead.
6. Remove chassis from rear.
7. Remove tuner mounting screw on side of cabinet, and remove tuner. On UHF models remove UHF tuning knob before removing tuner.
8. Remove top, front trim strip, protective window and mask. All 24" sets and the 21 " "Miss America" models have rear mounting CRT.
9. Remove 4 nuts and washers mounting CRT frame to cabinet. 10. Remove CRT assembly from front.

NOTE: CRT can be removed without chassis removal except in $21^{\prime \prime}$ "Miss America" and all 24 " sets.

HORIZONTAL OSCILLATOR ADJUSTMENT

Allow set to warm up. Tune in a picture.

1. Short out the horizontal ringing coil, T1W, by placing a jumper across CiW.
2. Set the horizontal hold control, VR2 shaft, to the center of its range.
3. Adjust the horizontal hold centering control, VR2W screw driver adjustment, to set the oscillator to the correct horizontal line frequency (to stop the picture; it will not be stable). Bring picture into sync. from high frequency side (black bars sloping up to the left).
4. Remove the shorting jumper from across C 1 W and adjust the ringing coil (TIW) core for stable picture sync. Bring picture into sync. from high frequency side.

CRITICAL LEAD-DRESS INFORMATION

To Prevent Damage to Lead Insulation

(1) All leads from L15W, L16W, L18W, L13W must be dressed down toward deflection panel, between N1W and N2W, under dress lug CL7. Lead from L15W must be dressed between L18W and VR2W, L16W and VR2W, L14W and VR2W away from $X 2 W$ and pin 6 of the damper tube.
(2) All leads from L7Y, L9Y, L4Y, L1Y, L2Y, L23Y must be dressed toward video panel, away from all tubes on panel.
(3) Leads from L10W and S3W cap to H.O.T. horizontal output transformer, must be dressed away from $5 \mathrm{U4CB}$ tube with excess dressed over end of chassis. Orient $S 3 W$ cap to dress lead away from GDQGA.
(4) All leads must be dressed away from Hot Resistors WR1, WR2, WR3, WR4, WR1Y.
(5) Leads from L19W and L6W must be dressed along edge of deflection panel around G1W between 5U4GB heat shield and edge of panel away from 6AU4 and 5U4GB.

MODEL NO.	CHASSIS	MODEL NO.	Chassis
G-4240M	9160	UG-4660SL	$9 \mathrm{L6OU}$
G-4240L	9160	G. 4662 M	9160
UG.4240M.	9L60U	G-4662P	9160
UG-4240L	$9 \mathrm{L60U}$	G-4664P	$9 \mathrm{L41}$
G-4656SM	. 9160	UG-4664P	9 LAIU
UG-4656SM	9160	G-6628M	9160
G-46585M.	9160	G-6628L	9160
G-4658SW.	9160	UG-6628M	91600
G-4658SL	9160	UG-6628L	91600
UG-4658SM	9160 U	G-6632M	9160
UG-4658SW	$9 \mathrm{L6OU}$	G-6632L	9160
UG-4658SL	9 LbOU	G-6632 W	9160
G-4660SM	9160	UG-6632-M	91600
G-4660SL	9160	UG-6632L	91600
UG-4660SM	$9 \mathrm{L6OU}$	UG-6632W	$9 \mathrm{L6OU}$

VIDEO I-F ALIGNMENT

AM ALIGNMENT

CHANNEL SELECTOR: On VHF models (T-100) set to channel 4; on UHF models (T-101) set to UHF position.
SIGNAL INJECTION: VHF models (T-100) to tuner feed-thru, L4, in mixer grid circuit. UHF models (T-101) to UHF input cable plug on tuner.
BIAS: -6.0 volts to I.F A.G.C., L6Y (on video-sound panel) and -2.5 volts to tuner A.G.C. L8Y (on video-sound panel).
RANGE SWITCH: Set to 'NORMAL'" position.
SCOPE: Connect to L3Y on video-sound panel, video second detector output.
OUTPUT LEVEL: Not to exceed 2 volts peak to peak during pole and sweep alignment. Not less than .2 volts peak to peak as null, during trap alignment, is approached.
(1) $\mathbf{4 5 . 8 5} \mathrm{MC}$ adjust tuner pole T 3 for maximum.
(2) $\mathbf{4 1 . 2 5} \mathrm{MC}$ adjust VC-3Z trap for minimum.

NOTE : Bias may be reduced as trap minimum is approached.

(4) Repeat steps two and three.
(5) $\mathbf{4 2 . 7 0} \mathrm{MC}$ adjust VC-IZ and T 2 Z for maximum.
(6) 45.0 MC adjust T 3 Z for maximum.
(7) 44.4 MC adjust T1Z for maximum.

SWEEP ALIGNMENT

CHANNEL SELECTOR : Set to channel 4.
SIGNAL INJECTION : To antenna terminals through an antenna matching network (generator to 300 ohms).
BIAS, SCOPE and OUTPUT LEVEL: Same as above under AM Alignment. RANGE SWITCH : Set to "NORMAL" position.
(1) Inject 65.75 MC AM, $\mathbf{3 0 \%}$ modulated, into antenna. Adjust fine tuning control for minimum output. Do Not Disturb fine tuning during balance of adjustments.
(2) Inject channel 4 sweep signal (69 MC with 6 MC sweep width) into antenna. If necessary, adjust the following cores to bring the curve Within limits (see curve figure 2).
(a) Adjust 67.25 MC to fall at the
(a) Adjust 67.25 MC to fall at the 50% point with tuner core T 1 .
(b) Level curve with core TiZ.
(c) Position 70.5 MC at the 50% point with core T 2 Z .

DO NOT DISTURB T3Z AND VC-1Z

4.5 MC TRAP ALIGNMENT

(1) Inject 4.5 MC AM signal into L3Y or use station signal.
(2) Connect 4.5 MC detector (see circuir figure 1) to L17Y (pin 7 of CRT).
NOTE: Preliminary padding of 4.5 MC test detector-Connect derector to an accurate source of 4.5 MC signal and pad core of transformer for maximum DC output voltage.
NOTE: When using generator, calibrate by zero beating with sound I-F developed from station signal.
(3) Connect $20,000 \mathrm{ohms} /$ voit meter, set to 2.5 voit range, to detector output.
(4) Turn contrast control fully clockwise (to maximum).
(5) Adjust 4.5 MC trap (top core of T2Y) for minimum indication.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L60, $-U$, Continued

Fig. 2. Overall R-F I-F Response Curves

Fig. 1. 4.5 mc. Detector Tube

SOUND I-F ALIGNMENT

NOTE: The sound I-F alignment is based upon a properly aligned video I-F strip.
(1) With a weak station signal (antenna disconnected) tune receiver for best possible picture. Do not readjust fine tuning control during best possible of procedure.
(2) With a atrong signal (antenna connected) adjust the quadrature coil, T3X, for maximum sound.
(3) Connect a VTVM to the audio test point, L14Y. Be sure voltmeter probe contains an isolation resistor. (If it is required to add a probe isolating renistor, use a value of 10,000 ohms or more.) Using a weak atation signal (antenna disconnected), adjust the sound take-of coil (bottom core of T2Y) and the sound interstage transformer, T4Y (both pri. and sec. cores), for a maximum. The station signal em. ployed should not be too weak for this adjustment.
(4) If any sigas of intercarrier bu2z or noise interference occur, a vary $\mathbf{s L i g h T}$ adjustment of T4Y and/or the bottom core of T2Y' may be made to minimize the noise. Neither core should be adjusted more than $1 / 4$ curn.

TERMINAL LUG IDENTIFICATION - DEFLECTION PRINTED-WIRE PANEL

L1W	Sync inpur lead from L4Y on video-tound panel.
L2W	Horizontal stabilizing coil test point.
L3W	B+ lead (Hor. Osc.) from electrolytic E1, lus 2.
L6W	Filament lead input from filament transformer.
L5W	270V B+ input from electrolytic E1, Iug 4.
L6W	Filament lead to chassis ground from 6DQ6A, pin 7.
L7WW	Lead to vertical hold control VR1.
L8W	Lead to terminal L18W from horiz. output screen grid.
L9W	Lead to hor. output trans. (B+ boost).
L10W	Lead to hor.output trans. from 6DA4GT damper cathode.
L11W	Not used.

L12W Vertical output 6DT5 cathode lead to electrolytic E2, lug 3. L13W Lead (B+ booat) to electrolytic E2, lus 2, CRT pin 6 and to LrsY terminal on video-sound panel.
L14W Lead to L23Y terminal on video-sound panel and arm of
L1sw Lead to top of brightness control VR3.
L16W Lead to top of horizontal hold control VR2.
L17W Black and white to lead vertical output trans. primary.
L18W Jumper wire connection from L8W to arm of width control
L19W B+ lead from width control VR3w to WR3 sesistor.

PHILCO Chassis 9L60, 9L60U, Service Information, Continued

TERMINAL LUG IDENTIFICATION - VIDEO I-F PRINTED-WIRE PANEL

L1Z Video detector output to video-sound panel terminal L3Y. Filament input lead from te
panel and CRT filament lead.
I-F input from tuner.

L5Z
L6Z
No. 1 position of range switch
G4Z Ground terminal for shield braid of i-f tuner cable

TERMINAL LUG IDENTIFICATION - VIDEO-SOUND PRINTED-WIRE PANEL

LIY $270 \mathrm{~B}+$ inpur to noise inverter, sync separator and video amplifier from L7Y terminal.
L2Y 140 V B+ input lead from L 3 Z rerminal on video i-f panel.
L3Y Lead from L1Z, video detector output on video i-f panel.
L4Y Sync separator outpue.
L5Y Sync separator grid lead to contrast control (agc)
L6Y Video i-f, age lead to L6Z on video i-f pancl and to No. 1 position on range switch.
L7Y 270 V B+ supply to panel.
$\begin{array}{ll}\text { L7Y } & 270 V \\ \text { L8Y } & \text { AGC lead to tuner and to }\end{array}$
L9Y Lead to C2, R1A C1 and junction of R1 and C6.
L10Y Lead to C2, RiA, C1 and No. 8 position on range switch.
L10Y Lead to audio output trans. primaty and to C8 on tone
L11Y Lead to No. 5 position on range switch.

L12Y Lead to No. 4 position on range switch and to contrast L12Y control
L13Y Lead to audio output transformer primary and electrolytic E2, lug 1 .
L14Y Sound alignment test point.
L15Y Fitament lead to L3Z on video i-f panel and to WR4, CRT filament resistor.
L16Y Video ampl. cathode lead to R5, C1 and WR2.
L17Y Video ampl. output lead to CRT cathode, pin 7.
L18Y 400 V B+ lead to panel from electrolytic E2, lug 2.
L19Y Audio output cathode lead to electrolytic E1, lug 3 and R6
L20Y Lead from audio output grid to volume control arm.
L22Y Lead to high side of volume control.
L23Y Lead to brightness control arm.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L60, 9L60U, Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

PHILCO Chassis 9L60,-U, Diagram

Chassis Layout Showing Voltage and Resistance Readings

RUN CHANGE INFORMATION

MAIN CHASSIS
Run 1Z First production.
Run 2 Video-Sound panel changed to Run 2 (red dot). To improve AGC action.
Run 3 Video-Sound panel changed to Run 3 (orange dot). To improve sound detector stability.
Run 4 Added a 47,000 ohm resistor, R14, from CRT screen to boost $\mathrm{B}+$, see schematic. To improve CRT safety factor.
Run 5 Video-Sound panel changed to Run 4 (yellow dot). To improve sound detector stability.

DEFLECTION PANEL

Run 3 (orange dot) First production. Some early production panels may have a horizontal oscillator network (N3W) of part number 30-6518-1. Use the -2 when replacement is necessary.

VIDEO-SOUND PANEL

Run 1 First production.
Run 2 (red dot) N1Y, sync. sep-noise inverter network, changed to part number $30-6517-3$. To improve AGC action.
Run 3 (orange dot) C11Y, sound detector quadrature tank condenser, changed in temperature coefficient to N330, part number 30-1263-39. To improve sound detector stability.
Run 4 (yellow dot) R14Y, sound detector cathode bias, changed from $1 / 2$ watt to 1 watt, part number 66 3104340; R13Y, sound detector B+ de-coupling, changed from 10,000 ohms, 2 watts to 6,800 ohms, 2 watts, part number 66-2685340; C11Y, quadrature tank, changed in temperature coefficient to- $\mathbf{N} 750$, part number 30-1263-44; and R22Y, quadrature coil damping resistor, 180,000 ohms, part number 66-4188340, added across the quadrature coil, $T 3 Y$.

ANTENNA INPUT IMPEDANCE 300 ohms balanced FOCUS . Electrostatic PICTURE SIZE . Approx. 108 sq. ins. on a 14WP4 Kinescope POWER INPUT . 117 Volts AC, 60~ POWER RATING
SWEEP DEFLECTION

ANTENNA INPUT

VHF Models
The KRK85A tuner unit is designed for VHF reception only with a 300 ohm antenna input provided. A rod-type VHF antenna is provided on all models. If reception from an external antenna is desired, the rod-type antenna leads should be disconnected from the terminal board and the lead-in from the external antenna should be connected to the antenna terminals.

UHF/VHF Models

The KRK86A/66H tuner combination is designed for UHF/ VHF reception with separate 300 ohm antenna inputs provided. A rod-type antenna is provided for VHF reception and a loop antenna for UHF reception on all models.

When reception from an external VHF antenna is desired, the leads of the rod-type antenna should be disconnected and the lead-in from the external antenna connected to the VHF antenna terminals.

When reception from an external UHF antenna is desired, the loop antenna leads should be disconnected and the leadin from the external UHF antenna should be connected to the UHF antenna terminals.

When a combination UHF/VHF antenna is to be used, having a single transmission line, a stub arrangement, such as shown in " A " of illustration below, or a crossover network (RCA Part \#78444) as shown in " B ", may be used to match the single transmission line to the two inputs.

CHASSIS REMOVAL AND REPLACEMENT
Take of the front safety window as outlined above. Remove the control knobs at the side of the cabinet by pulling the knobs outward off their shafts. On UHF Models remove the plastic guard behind the UHF tuning knob.

Take out the seven screws around the edge of the rear cover and the screw in rear of the cover or the power cord. Remove the rear cover, disconnecting the push-on antenna leads. Remove the screw at the top rear of the cabinet holding the cabinet to the cabinet channel.
Turn the receiver face downward on a protective cloth or pad and remove the eight screws from the bottom. Refer to illustration above. Spring the sides of the cabinet open just enough to slide the case upward off the chassis.

Reverse the above procedure to reassemble the chassis and kinescope in the cabinet.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INEORMATION

 RCA Victor Chassis Nos. KCS-120E and KCS-120F Service Material, Continued

RCA Victor Chassis Nos. KCS-120E and KCS-120F Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-120E and KCS-120F Service Material, Continued

The printed wiring, on the reverse side of the circuit assembly, is presented in "phantom" view super-imposed on the component layout. This will enable circuit tracing without removing the assembly from the chassis to see the printed wiring on the reverse side.

KINESCOPE AND SAFETY WINDOW CLEANING
The front safety window may be removed to allow for cleaning of the kinescope faceplate and the safety window if required.

To do this, remove two screws from under the front edge of the cabinet. Pull out at the bottom and lift off the kinescope mask assembly. Refer to step 1 in illustration above.

The assembly represented above is viewed from the component side of the sealed circuit.

COMPONENT LOCATION GUIDE

C203	D2	C244	. ${ }^{\text {4 }}$	R204	C2	R249	A3
C204	.E2	C245	C4	R205	C2	R250	A3
C205	D1	C246	B4	R206	B1	R251	A3
C207	D2	C247	.E3	R207	C1	R254	B4
C208	B1	C248	D3	R210	. . Bl_{1}	R254	B4
C210	.c1	C249	...F2	R211	. A1	R255	. $\mathrm{B}^{\text {c }}$
C212	B1	C250	. $F 3$	R212	A2	R256	C4
C213	B1	C251	E4	R214	B2	R257	E4
C214	B1	C252	.E4	R215	B2	R259	. A4
C215	A1	C253	. $E 4$	R216	B2	R260	A4
C216	A2	C254	E4	R217	. .c2	R261	. $F 3$
C217	A2	C255	.D2	R218	. . 82	R262	E3
C218	B2	C256	. B	R219	. .c2	R263	F3
C219	B2	C258	A3	R220	. .c2		
C220	C2	C259	D1	R221	D2	R264	E3
C221	C2			R222	. 54	R265	F3
C222	C2	CPR201	E1	R223	E2	R266	. $F 4$
C223	D2			R224	D2	R267	. 54
C224	E3	CR201	E3	R225	E2	R268	E4
C225	E3			R226	E2	R269	E4
C226	. .E2	L202	. 43	R230	. E	R270	A2
C227	F2	L203	A2	R231	. .F1	R271	B4
C228	F2	L204	A2	R232	.F2		
C229	F2	$L 205$	D2	R233	. $F 2$	R272	A2
C230	F1	L207	E3	R234	F1	R273	B4
C231	. ${ }^{2}$	L208	D2	R235	.F1	R276	A2
C232	B3	$L 209$	F1	R236	. $F 2$	R280	D1
C235	.E1	L210	.F1	R237	. D 4	R281	. $F 1$
C236	. $F 3$	L211	E4	R238	C4	R282	C3
C237	. 63	L212	B2	R242	. $E 1$		
C238	B3			R243	. $E 1$	T201	E1
C239	C4	PC201	E2	R244	C3	T202	C1
C240	B4	PC202	. Fl	R245	. 54	T203	B3
C241	. 33			R246	. 63	T204	C3
C242	A4	R202	D2	R247	. $F 3$	T205	D3
C243	A4	R203	D2	R248	B4	T206	. B^{2}

CHESSIS DESIGNATIONS

Chassis	$\begin{aligned} & \text { TUNER } \\ & \text { ASSEMBLY } \end{aligned}$	$\begin{gathered} \text { TUNER } \\ \text { Subemblies } \end{gathered}$	MODELS
KCS124C	KRK80E	KRK70D	$\begin{aligned} & \text { 21-T. } 9265 \\ & 21-T-9266 \\ & 21 \cdot T-9267 \end{aligned}$
KCS124D	KRK80F	KRK71D KRK66J	21-T-9265U 21.T-9266U 21-T-9267U
KCS124E	KRK79T	KRK72L	21-T. 9345 21-T.9346 21-T.9347
KCS124F	KRK79U	KRK73L KRK66A	21-T-9345U 21.T-9346U 21-T-9347U
KCS124H	KRK81H	KRK70D	$\begin{aligned} & 21-T .9122 \\ & 21-T .9125 \\ & 21-T .9127 \end{aligned}$
KCS124」	KRK81J	KRK71E KRK66P	21-T-9122U 21-T-9125U 21-T-9127U
KCS124K	KRK80H	KRK46AA	$\begin{aligned} & \text { 21-T-9275 } \\ & 21-T-9276 \\ & 21-T-9277 \end{aligned}$
KCS124L	KRK80J	KRK47AA KRK66J	$\begin{aligned} & 21-T-9275 U \\ & 21-T-9276 U \\ & 21-T-9277 U \end{aligned}$

FOCUS
An electrostatic focus type kinescope is employed in these receivers. The receivers operate with fixed focus, having a fixed voltage applied to the focusing electrode.

CHECK OF HORIZONTAL OSCILLATOR ADIUSTMENT

Turn the horizontal hold control to the extreme clockwise position. The picture should be out of sync, with a minimum of eight bars slanting downward to the left. Turn the control counter-clockwise slowly. The number of diagonal black bars will be gradually reduced and when only $1^{1 / 2}$ to 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional counterclockwise rotation of the control. The picture should remain in sync for approximately one quarter of a full turn of additional counter-clockwise rotation of the control. Continue counter-clockwise rotation until the picture falls out of sync. Rotation beyond fall out position should produce a minimum of 2 bars before end of rotation or a minimum of 7 bars before interrupted oscillation "motorboat" occurs
When the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Adjustment of Horizontal Oscillator" and proceed with "Centering Adjustment."

Figure 3-Yoke and Centering Magnet Adjustments television receivers - Models 21-T-9122 \& U, 21-T-9125 \& U $21-\mathrm{T}-9127 \& \mathrm{U}, 21 \mathrm{~T}-9265$ \& U $21-\mathrm{T}-9266 \& \mathrm{U}, 21 \mathrm{~T}-9267 \& \mathrm{U}$ $21-\mathrm{T}-9275$ \& U, 21-T-9276 \& U $21-\mathrm{T}-9271$ \& U, 21-T-9345 \& U $21-\mathrm{T}-9346$ \& U, 21-T-9347 \& U

CHASSIS NOS.

KCS124C, D, E, F, H, J, K \& L

(Material on pages 127 through 134)

ADIUSTMENT OF HORIZONTAL OSCILLATOR

If in the above check the receiver failed to hold sync for one-quarter of a turn of counter-clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.
The width and drive adjustments should be properiy set, as explained in the paragraph below, before adjusting the sine wave coil.

Connect a short jumper across the terminals of the sine wave coil L601 through the opening in the chassis. Also short the grid of the sync output tube, pin 2 of V501, to ground with a small screwdriver or jumper.

Adjust the horizontal hold to obtain a picture with the sides vertical (picture mory drift slowly sidewars). Remove the jumper on the sine wave coil 2601 and adjust $L 601$ to again obtain a picture with the sides straight. When the sine wave coil is properly adjusted, alternate shorting and no short should not cause a change in frequency, only a slight sidewarys shift should occur.

Remove the short on the grid of the sync output. The horizontal hold should now perform as outlined above under "CHECK OF HORIZONTAL OSCILLATOR ADJUSTMENT."

CENTERING ADJUSTMENT

Centering is accomplished by means of two levers on the back of the yoke. By alternately rotating one magnet with respect to the other, then rotating both simultaneously around the neck of the tube, proper centering of the picture can be obtained.

WIDTH AND DRIVE ADJUSTMENTS

Set the horizontal control at the "pull-in" point. Set the width coil maximum counter-clockwise and adjust horizontal drive trimmer counter-clockwise until a bright vertical line appears in the middle of the picture then clockwise until the bright line just disappears. If no line appears set the drive trimmer at maximum counter-clockwise position.

At normal brightness adjust the width coil Ll02 to obtcin $3 / 4$ " overscan at each side with normal line voltage.

Readjust the drive trimmer Cl09 as was done previously.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, -E, -F, -H, -J, -K, -L, Service Data, Continued

VHF R-F OSCILLATOR ADJUSTMENTS

On all models except 21-T-9345-6-7 \& U, adjustments for channels 2 through 12 are available through the holes on the front of the tuner. Adjustment for chamel 13 is on top of the tuner chassis. Remove the channel selector and fine tuning knobs to make adjustments. Pull knobs outward off shaff. See "A" of Figure 4. Set Fine Tuning to mechanical center of its range

Figure 4-VHF Oscillator Adjustments
Models 21-T-9345-6-7 \& U incorporate the "One-Set" fine tuning feature which requires the following procedure for oscillator adjustment.

Remove the channel selector knob by pulling the knob outward off its shaft. There are twelve gear and cam assemblies around the disc on the tuner face, one for each chamnel from 2 through 13.

Depress the tine tuning knob and set each gear with the index mark on the gear facing counter-clockwise around the
outer edge of the disc as shown in Figure 4B. With the gears in this position, the fine tuning capacitor will automatically position to its mechanical center for each channel. On some models, the channel selector must be rotated to bring each gear into view through the opening in the tuner mounting plate.
Switch to channel 13 and, if necessary, adjust the channel 13 slug on top of the tuner. Progress counter-clockwise from channel 13 downward to channel 2, adjusting the oscillator slug, if required, on each channel. Do not change the setting of the fine tuning cams during adjustment of the oscillator slugs. The proper slug for each channel will become accessible through the opening in the front disc as the channel selector is switched to the desired chomnel.

CHASSIS REMOVAL

To remove the chassis from the cabinet for repair, remove the channel selector, on/off volume, contrast and fine tuning knobs, remove the cabinet back, unplug the speaker cable. the antenna cable, the pilot lamp, the kinescope socket, and the yoke. On Models 21-T-9345-6-7 \& U remove the "on-of"" volume and contrast control knobs at the cabinet front and remove the screws holding the "on-off"/volume/contrast control mounting bracket.

Remove the knobs from the controls in the control case or at the receiver front on Models 21-T-9345-6-7 \& U and remove the screws holding the control bracket. Unplug the I-F link cable and the tuner power plug on front tuning models.

Remove the two nuts at the top of the chassis and the two screws at the bottom. Move chassis out slightly to enable the H.V. lead to be disconnected from the kinescope. Clear all wires from lances and retaining springs. Remove chassis from cabinet.
If it is necessary to remove the tuner assembly on Models 21-T-9345-6-7 \& U, remove the nuts holding the tuner mounting plate to the cabinet. The tuner and control brackets may be fastened to the chassis for framsporting.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, -E, -F, -H, -J, -K, -L, Alignment, Continued

PICTURE I-F TRANSFORMER AND TRAP ADJUSTMENTS

TEST EQUIPMENT CONNECTIONS:

BIAS SUPPLY
Apply - 6 volts to I-F AGC bus at terminal "I" of PW300. Ground positive lead to chassis.
SIGNAL GENERATOR Connect to mixer grid at strap on SIB, in series with 1500 momi. capaceitor (soe below).
VACUUM TUBE VOLTMETER.... Connect to 2nd Detector output at terminal "A" of PW400 using direct probe. Ground load connectod to chasais.

	STEP	SIGNAL GENERATOR	ADIUST	REMARES
1	Peat 3rd pix. I-F transiormer	44.5 me	T303	Peak T303, T302 \& T301 on frequency for maximum output on meter. Adjust generator output for 3 volts on meter when finally peaked.
2	Peak 2nd pix. 1-F tremsiormer	45.5 me.	T302	
3	Peak let pix. I-F transiormor	43.0 mc .	T301	
4	Adjust 47.25 mc . traps	47.25 me.	$\begin{aligned} & \text { L302 \& T2 (L65) } \\ & \text { (top core) } \end{aligned}$	Minimum output indication on meter.

Figure 9-Picture I-F Transformer and Trap Adjustments
USE $1 / 2$ WATT 5% COMPOSITION RESISTORS

Figure 6-Sound Attenuation Pad

Figure 8-Sweep Attennat or Pads

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, -E, -F, -H, -J, -K, -L, Alignment, Continued

	STEP	$\begin{aligned} & \text { SWEEP } \\ & \text { GENERATOR } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \end{aligned}$	AdIUST	REMARES
Set channel selector to channel 4.					
1	Adjust mixer plate transformer	40-50 me. (I-F)	$\begin{array}{r} 42.5 \mathrm{mc} . \\ 45.75 \mathrm{mc} . \end{array}$	$\begin{gathered} \text { T2 or } 256 \\ \text { (bottom core) } \end{gathered}$	Sweep output set for 0.5 v. P-P on scope. Adjust for max. gain and response "A" below. Max. allow. tilt 20\%.
2	Adjust I-F input	40-50 me. (I-F)	$\begin{array}{r} 42.5 \mathrm{mc} . \\ 45.75 \mathrm{mc} . \end{array}$	$\begin{gathered} 1301 \& \\ C 102 \\ \hline \end{gathered}$	
Remove 180 ohm resistor and scope from V301. Connect scope to terminal "A" of PW400 using direct probe.					
3	Retouch I-F transformers	40-50 mc. (I-F)	42.5 mc . 45.0 mc . 45.75 mc .	$\begin{aligned} & \text { T303 } \\ & \text { T302 } \\ & \text { T301 } \\ & \hline \end{aligned}$	Adjust for reasponse " B ". Use 5 v. P-P on scope.

Remove sweep from mixer grid. Couple signal generator to mixer, in series with pad shown in Figure 6. Set generator to 45.75 mc . and adjust output for exactly one and one-half ($11 / 2$) volts on the "VoltOhmyst". Remove the pad and connect generator direct to SlB. Do not change generator output in step 4.

4	Set 41.25 mc . attenuation	-	41.25 mc .	$\begin{gathered} \text { T301 } \\ \text { T303 } \end{gathered}$	Adjust for 1.2 to 1.5 volta on VIVM maintaining response " B ".
5	Connect sweep generator to antenna terminals using pad shown in Figure 8.				
	Check overall	Chans. 13 to 2	$\begin{array}{r} 42.5 \mathrm{mc} . \\ 45.0 \mathrm{mc} . \\ 45.75 \mathrm{mc} . \end{array}$	$\begin{gathered} \text { T302 } \& ~ \\ \text { T303 } \end{gathered}$	Retouch alightly to correct any overall tilt. Maintain response " ${ }^{\prime}$ ".

Figure 10-Sweep Alignment from Mixer Grid

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, $-\mathrm{E},-\mathrm{F},-\mathrm{H},-\mathrm{J},-\mathrm{K},-\mathrm{L}$, Alignment, Continued

SOUND I-F, S	JND DETECTOR AND 4.5 MC TRAP ALIGNMENT
TEST EQUIPMENT CONNECTIONS:	
${ }^{\text {BIAS SUPPPLY }}$	Apply - 10 volis to the I-F AGC bus at terminal "I" on PW300.
SIGNAL GENERATOB	Connect to terminal "A" on PW400.
VACUUM TUBE VOLTMETER	Connect to output of diode detector shown below. Set
miscellaneous	Connect test diode detect

	STEP	SIGNAL GENERATOR	ADJUST	REMARKS
Set contrast control maximum clockwise.				
1	Adjust Driver Transformer Primary and Secondary	4.5 mc .	T202 (top \& bottom)	Adjust T202 top $\&$ bottom for maximum on meter. Set generator for 1.0 to 1.5 volts when peaked. Peak cores at open end of coils.
2	Adjust Sound Take-OH Trans.	4.5 mc .	T201	Adjust T201 for maximum negative DC on meter. Set generator for 1.0 to 1.5 volts on meter.
3	Disconnect the diode test detector. Turn off signal generator and tune in strongest signal in area adjusting volume control for normal volume (approx. $1 / 4$ turn from c.c.w.). Turn core of 1203 flush with top of coil form.			
4	Adjust Sound Detector Trans.	Observing oscilloscope and listening to audio output adjust T203 clockwise to a peak. Continue clockwise to second louder peak and adjust for maximum on this peak.		
5	Adjust 4.5 mc . trap	4.5 mc . A-M Mod., 400 Cycles	L404	Adjust for minimum 400 cycle indication on oscilloscope.
Alternate Method Using Generators With F-M Modulation Provided.				
1	Same as step I above. Modulate 4.5 mc . signal with F-M 400 cycle signal with $71 / 2 \mathrm{kc}$. deviation.			
2	Same as step 2 above. Modulate 4.5 mc . signal with F-M 400 cycle signal with $71 / 2 \mathrm{kc}$. deviation.			
3	Adjust Sound Detector Trans.	$4.5 \mathrm{mc} ., 400$ cycle F-M Mod., $7^{1 / 2} \mathrm{kc}$. Dev.	T203	Adjust T203 for max. 400~ output on scope using max. amplitude peak. Set volume control for .70 v . p-p on scope when peaked. See response below.
4	Retouch Driver and Sound Take-Off. Trans. for breakout	4.5 mc., 400 cycle F-M Mod., $71 / 2 \mathrm{kc}$. Dev.	$\begin{gathered} \mathrm{T} 201 \\ \mathrm{~T} 202 \end{gathered}$	Decrease input to minimum usable signal. Retouch T201 \& T202 for symmetrical breakout. Response below.
Move the oscilloscope to terminal " D " on PW400. Use the diode probe. Set the contrast control to maximum clockwise position.				
5	Adjust 4.5 mc . trap	Same as step 5 above. Adjust for minimum 400 cycle indication on oscilloscope.		

Figure 15-Sound I-F, Sound Detector and 4.5 mc . Trap Alignment

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, -E, -F, -H, -J, -K, -L, Circuit Diagrams
TUNER UNIT-KRK79U/80J

Figure 18-KRK79T \& KRK80H VHF Tuner © KCS124K

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-124C, -D, -E, $-\mathrm{F},-\mathrm{H},-\mathrm{J},-\mathrm{K},-\mathrm{L}$, Service Data, Continued

Figure 24-PW 300 Picture I-F Circuit Layout

Figure 25-PW600 Horizontal Oscillator Circuit Layout

The assemblies represented above are viewed from the component side of the assomblios and are oriented as they will usually be viewed on the chassis.
The printed wiring, on the reverse side of the cussemblies, is presented in "phcntom" views superimposed on the component laryouts. This will enable circuit tracing without removing the assemblies from the chassis to see the printed wiring on the reverse side.

Figure 26-PW400 Video, Sync and AGC Circuit Layout

Figure 27-PW200 Sound I-F and Audio Circuit Layout

Balloonit (2) etc., shown on schematica indicate points of observation of the waveforms shown below the individual schematic.

CHASSIS DESIGNATIONS

CHASSIS	TUNERS	MODEL NOS.
KCS126A	KRK85B	$\begin{aligned} & \text { 170-P-048, 170-P-049, } \\ & \text { 170-P-060, 170-P-061, } \\ & 170-\mathrm{P}-063, \\ & 170-\mathrm{P}-064 \end{aligned}$
KCSI26B	KRK86B KRK66U	170-P-048U, 170-P-049U, 170-P-060U, 170-P-061U, 170-P-063U, 170-P-064U

CHASSIS REMOVAL

To remove the chassis from the cabinet, if necessary for repair, remove the front and rear panels of the receiver as proviously outlined. Remove the three screws holding the small control bracket to the bottom of the receiver case.
Take out the two nuts holding the top of the chassis to the top of the cabinet. Remove the two large chassis bolts under the bottom of the cabinet and remove the chassis and kinescope assembly from the cabinet rear.
(Service material on pages 135 through 140)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

RCA Victor Chassis Nos. KCS-126A and KCS-126B Service Material, Continued
PW200 SECURITY SEALED CIRCUIT ASSEMBLY

PW200 COMPONENT LOCATION GUIDE

C201	B5	C219 ... Cl	C230c5	L201 . . . C3	PC201	B4	R214	D1	R230	D1	T201	B6
C208	C 2	C220 C2	C232 ${ }^{\text {B5 }}$	L202 C5	PC202	D3	R215	C1	R231	A2	T202	C4
C209	B2	C221 D2	C234 C6	L203 D6	PC203	A5	R216		R232	A2	T203	B3
C210	B1	C224 D4	C235 A5	L204 . . . D6			R217	C 2	R233	A6	T204	D1
C212	B4	C225 C3		L205 . . . D6	R203	B4	R222	D3	R234	B6	T205	C1
C215	B2	C226 C4	CPR201 . C5	1206 A4	R209	C2	R226	D5	R235	A4	T206	D3
C216	A1	C227 C5	CPR202 . B5	L207 . . . A A	R210	C2	R227	C6	R236	. . . A6	T207	D4
C217	Cl	C228 D5	CPR203 ..C4	L208 C6	R212	. 3	R228	A4	R237,	R238,	T208	D6
C218	C1	C229 C6	CR201 . . . C6		R213	B2	R229	A3	R239	. A4	T209	A5

RCA Victor Chassis Nos. KCS-126A and KCS-126B Service Material, Continued
PWSOO SECURITY SEALED CIRCUIT ASSEMBLY

PW500 COMPONENT LOCATION GUIDE

C501	D3	C508	B3	C515	D4	CPR501	D1	PC502		R504	D3	R517	C5	R526	C5
C502	A5	C510	D5	C518	A3	CPR502	Cl	PC503	B2	R505	D3	R518	C5	R534	A4
C503	A5	C511	. 85	C519	. 44					R512	C2	R519	B5	R537	D1
C504	C3	C512	C5	C520	A3	L501	D5	R501	D2	R514	A4	R520	C3	R539	A2
C505	C1	C513	85	C521	B1			R502	C2	R515	C4	R521	C2	R541	A3
C506	C2	C514	D5	C523	C1	PC501	A2	R503	D2	R516	34	R525	B3	R542	B4

The assemblies represented above and at the lef are viewed from the component side of the circuits and are oriented as they will usually be viewed on the chassis.

The printed wiring, on the reverse side of the circuits, is presented in "phantom" views superimposed on the component layouts. This will enable circuit tracing without removing the assemblies from the chassis to see the printed wiring on the reverse side.

RCA Victor Chassis Nos. KCS-126A and KCS-126B Service Material, Continued

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

SCHEMATIC DIAGRAM KCS126A \& KCS126B

RCA Victor Chassis Nos. KCS-126A and KCS-126B Schematic Diagram, for circuits of tuners used and service notes see page 138, adjacent at left.

RCA Victor Chassis Nos. KCS-126A and KCS-126B Service Material, Continued

DEFLECTION YOKE ADJUSTMENT

If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. The yoke clamp must be loosened to allow the yoke to be rotated. Make sure the yoke assembly is pushed forward against the kinescope bell.

CENTERING ADJUSTMENT

The electrostatic focus kinescope is provided with special centering magnets. These magnets are in the form of two discs mounted on the back of the deflection yoke. When the magnets are rotated so that the levers are together, maximum centering effect is produced. To shift the picture, rotate one of the magnets with respect to the other. To shift the picture in a desired direction rotate both magnets simultaneously in the same direction on the neck of the kinescope. By alternately rotating one magnet with respect to the other, then rotating both simultaneously around the neck of the tube, proper centering of the picture can be obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS

Adjust the height control located on PC500 (remove rear panel) until the picture overscans approximately $5 / 8$ " at both top and bottom with normal line voltage of 117 V . Adjust vertical linearity (located on PC500), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Recheck centering of the picture within the mask.

WIDTH ADJUSTMENT

The width adjustment is located on the chassis rear. The rear panel must be removed to perform this adjustment.
The width of the picture should be adjusted to fill the mask with a line voltage of 105 V . With normal voltage of 117 V , the picture should overscan the tube at each side by approximately $3 / 4$ inch. The adjustment should be made with the Brightness control set at normal operating position.

ANTENNA INPUT

VHF Models
The KRK85B tuner unit is designed for VHF reception only with a 300 ohm antenna input provided. A rod-type VHF antenna is provided on all models.

The antenna rods are connected when the straps on the VHF terminal board are connected between the outer and inner terminals.

If reception from an external antenna is desired, the rodtype antenna is disconnected by loosening the screws on the terminal board and swinging the straps back away from the inner terminals. The external antenna should then be connected to the inner terminals on the terminal board. Tighten the screws on the outer terminals to prevent the straps from shorting to the inner terminals. Push the rods all the way down when using the external antenna.

UHF /VHF Models
The KRK86B/66U tuner combination is designed for UHF/ VHF reception with separate 300 ohm antenna inputs provided. A rod-type antenna is provided for VHF reception and a loop antenna for UHF reception on all models.

When reception from an external VHF antenna is desired, the rod-type antenna should be disconnected and the leadin from the external antenna connected to the VHF antenna terminals, as explained above for VHF Models.

When reception from an external UHF antenna is desired, the loop antenna should be disconnected and the lead-in from the external UHF antenna should be connected to the UHF antenna terminals.
When a combination UHF/VHF antenna is to be used, having a single transmission line, a stub arrangement, such as is shown in A of the illustration above or a crossover network (RCA Part \#78444) as shown in B of the illustration, mary be used to match the single transmission line to the two inputs.

high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTER-PROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

CHASSIS REMOYAL

1. Disconnect $A C$ power cord and antenna connections. Remove interlock cover.
2. Remove screvecurint vertical hold knob asembly to cabinet.
3. Remove clips efcuring rear chasis feet to support rail.
4. Comprest ides of fine tune coupling to disengage it from giots in orm on tuner. See Figure 3.

5 Disconnect speaker leade at speaker, high voltage anode lead, picture tube socket and ON/OFF plus. NOTE: To oparate chasis with thit plut removed, - jumper must b used. Ae Figure E on the following page.
6. Remove deflection yoke retainint spring.
7. Remove chasais and deflection yoke from cabinet, Nort: Secondary control shafta and VHF channel elector shaft will disentage when chasila ie removed.
A. To replace chasis, reverse the bove procedure, engeging eecondary. con trols by presing ends of thafteasemblies over control thafte
GLASS and mask removal

1. Remove escutcheon end knobe outlined under Enob Removel Procedure
2. Remove two ecrewa eccuring ratchet bracket to light ghield. Remove bracket.
, Loonen set screw mecuring wheel and dial enambly to maft. Remove asembly and fine tune knob.
3. While apporting glasa, remove screwa (2) eecuring slata clampa to cabinet
4. Pulf ilasy and mask out alighty at top and then up Remove irimetripa before cleanine ilas.
5. To replace tiasand mask, reverae the precedingeteps, Note thet trim strips must be fluah to cabinet with bevel facing front. Make certain top edze of escutcheon fita into iroove in escutcheon trim.
picture tube remoyal
6. Remove chassis an outlined under "Chasiat Removal".
7. Lay cabinet face down, supported no not to dametmobsor cabinet front.
8. Remove hold down bracket screv located top center of picture tube, Unhook both lower hold down atrap bracketa from lota in light ahield and remove strapa. Seefigure 4
9. USING GOGGLES AND GLOVES, reach under face of tube and lift fram cabinet do not grasp nect of picture tube at any time.
10. To ingtall pleture tube, reverae the preceding atepa. Exerciae care not to scrath face of picture tube.

MOOELS 2IC415, 21 IT220

DESCRIPTIOM: Models $21 C 415$ and 21 T220 incorporating the $1-542-3,-4$ chasis ere imilar to Madels 21c524 and 21T218 respectively.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

SYLVANIA Chassis
$1-542-1,-2,-3,-4,-5,-6,-7,-8$, (Continued)

UAF DIAL STRIMGIMG

RACKE! AMD BRACKET ASSEMBLY

TUMER SHAFTS ASSEMBLY
MODELS 2IT2IB, 2iC524

TUMER SMAFTS ASSEMBLY WODELS 2IT214, 2IC414

VIDEO IF, SOUMD IF AMD H. SMC TRAP ALIGMMEMT PROCEDURES

1. Connect an isolation transtarme

Use high scope gain end keep sweep generntar output : lowest uibble watue, check. et intervals for possible smeed gencrator overload ine by temporarily waryins signal input level ind noting eny chance (excludingemplitude) in response curve shape
3. Keep marker genertior coupline : cminamum to evoid distortson o responze curve.
4. For optiana receiver .ilignment powes line voltege should be main ctined atil7 volte.
5. Receiver and les: equipaent hould wifm up for epproximeleiy is min wes before mifnment.

STEP	alignment setup notes	TEST EOUIPMENT HOOKlp	ADJUST
1.	Set VhF turier to m free chan. nel. Connect -5 volts DC source (-) term to ;unction of R203 (100K) and R2O4 (100K) and (+) term. to chassis. Detune tuner converter place coil by turning core fuliy counterclockuise.	SWEEP GENERATOR - through . 0047 Mfd QC blocking cepacitor to pin 1 of l201. Set en. erator to 43.5 With 10 MC sweep. SIGNAL GENERATOR - loosely coupled as aramer to aveep generator lead. OSCILLOSCOPE - connected to function of R219and L20s. theough a 3ix resigtor. 4. 25 MC FIGURE 1	-. Adjurt sweep eencistor out. put to produce reaponse curve of 3V. peak to peak. b. Adjust T200 (top oore) for minimum 41.25 MC merker emplitude. C. Adjuzt 1202 for menimum responze 1 t 4.0 MC . d. Adgunt T201 for meximum response : 45.3 MC e. Adjust T200 (bottom core) for maximum reiponie et 42.7 ic. f. Repeat itepz C to \mathbf{E} until 45.75 MC marker is 4 t 60 s and 42.6 enticr 1% \# 80 . Adiust 1202 to remove tilt. Adiust T20: to position 45.75 maticer. Ad,uet T200 (botiom core) to posttion 4.6 MC marker. (See fil. 1).
2	Same ax siep 1. NOTE: Tunct IF output lead way be disconnected at ief. winal 2 on board to increase resprase curve height for thin step. Connect ifter adjustint traps.	SWEEP GEneRATOK - through. . 0047 wfd DC blockine c.pacitor to VHF IF cable .t chasi: tie point (No. 1). Signal generator - Smme an step 1. OSCILDOSCOFE - Same ar aiep l.	Adivet L200 and L201 (: op core for minitum 47.25 MC matier mplitude. For optimum resulta, repest step 1.
3.	Leave - 5 volt ACC voltate con. nected at in tiep 1 . Set Vhf tuner to migh bend vif channel which causes minmum distortion of response curve :s fine tuning contral is rotated.	SEEEP GENERATOR - © JiE shield on mizer tube (V16). SIGNAL GENERATOR - Eame a. step 1 . OSCILLOSCOPE - Ame as ztep 1.	Adjust tuner converter plate. and L201 to aive responae ahom belom. For optimum resulta, repest ztept 1 a but do not detune tuner.

STEP	alignment setup notes	test equipment hoomup	ADJUSt
1.	Set contrast control to maximum and brightnes: control to manimum. Connect -30 voles DC source (-) term. to junction of R203 (100K) \& R204 (100K) and (+) term. 'to chasiti. Connect - 4.5 me neries tuned circuit between yellow cathode lead of picture tube and eround.	VTVM - Ground or "common" land to junction of two attehed 100k resistors connected in seties ectosi R106 (27K). DC probe through 100R resistor to terminal 1 of de-empherin plate (PP100). Leolate VTVM from iround. signal generator - connected io function of R219 and L205. Set simal generitor to 4.5 wC preferably crystal calibrated or controlled.	For maximum nes resdine: Tioo (Top core) T100 (Bottoncore) T202 (Botton core) T202 (TOP core) Note: Uae peak reaulting in greatest separation of cores.
2.	Same as etep 1.	VtVm - RF prode connected -cross coil of series tuned 4.5 wC circuit. Signal generator . same as -tep 1.	For minimuy reading: T202 (Bottoncore) UBint loweat ifenal ene erator output level, repent -tep 1 except T202 (botton core).
3.	Some at atep 1.	Same at itep 1.	For eroreading: T100 (Tap core) Set VTVM to zero reading usine loweot meter acale. At cor. rect efteing for T100 (top core), alight turn of core will tive readint either up or down the scale.

alternate 4.5MC TRAP ALIGNMENT
Connect a good antenna to the receiver and properly tune an atrong station. Adjust (T202 bot tom core) for manamum 4.5 MC interterence in the picture. This interference takes tho botom core for manimumare interlerence in the picture. This interfer

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

SYLVANIA Chassis $1-542-1,-2,-3,-4,-5,-6,-7,-8$, Continued

alternate ppiol

PP 100
ALTERNATE PPIOO
ALTERNATE PPIOO is
ELECTRICALLY SAME AS
PPIOO EKEEPT FOR THE
MOUNTINE POSITION AS
SHOWN.
Hin

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Sylvania TV Chassis 1-542-1, -2, -3, -4, -5, -6, -7, -8

othermise specified:
Voltase coasured to chasis who sylvania polyeetor (VTVA).
3. Yoltage readings in brackets taken with no itgnal input: channel atector set Antenna terminals shorted together and grounded to chassis.

- ith strong signal ingrackets taken to strong local itation developing (junction of R-203 (R-205)
Brightness controlsist to minimus. Voltage values shown re average due to normal production tolerances.

special voltage measurement

(1)
 with rivm high roltage prove at line
voltage of dily. under conditions of normal signal. Mo orightnesa and correct scan size.

- High peak voltago of short durotion
ment.

USE pomer lime isolation transformer mhen		
SERYICIMg the chassis.		
picture tube high volitag anode lead may		
SERYICIMG THE CHASSIS. DO MOT OPERATE THE		
receiver mith the high yoltage coyer remoyed.		
use safety goggles ano oloves mem hamdLiMg the picture tube.		

SUBJECT: COI REYISIOMS (Serial NO. 542101-, 542201-.542301-,542401-,
DESCRIPTIOM: Revisions have been made followa. Seefigure 5 .

1. R216, 1 K , Watt resistor is changed to R216-1, 470 Ohm, y watt resistor. (Co-ordinates D-6).
2. R215, 470 Ohm, Hatt resistor is changed to R215-1, 2, 2K, H Watt resistor. (Co-ordinates $D-6$).
3. R214, 39 K resigtor is removed. (Co-ordinates D-S).
4. C302, . 047 mfd . paper capacitor is changed to C302-1, . O1 mfd. peper cepecitor. (Co-ordinatesf-5).
5. The line which formerly connected R214 to R218 and L205 is now disconnected and C302-I is now connected to the junction of R216-1 and R2I5-t as ahown in Figure 5

CAUTION: WHEN SERVICING CHASSIS OUT CAUTION:
OF CABINET, DO NOT OPERATE RECEIVER WITH SPEAKER LEADS DISCONNECTED.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Sylvania TV Chassis 1-542-1, -2, -3, -4, -5, -6, -7, -8

HODELS 2IT2I4, 2ICHI4 knob removal

1. Channel Selector, Fine Tuning and On off.
A. On UHF models, remove UHF fine tuning knob and thaft assembly by pulling straight out.
B. Remove channel selector, fine tunine and on/off knobs by pul. ling itraight out. Make certain that fiber washer is replaced in well of fine tune knob when reinstalline knobs.
Volume and Contrast. See Figure A.
A. Remove plastic coupling from control end of cable assembly by -pplying heat from soldering iron toplaztic erimp. APPLY ONLY ENOUGH HEAT TO LOOSEN PLASTIC COUPLING FROM CABLE ASSEMBLY To PERMIT REUSE OF coupling. Remove tubine.
B. Remove retaining clip located behind mask, which secures knob and cable usembly to cabinet. Then remove knob and cable as. cembly through cabinet front. c. To replece knob and cable asembly, reverse the preceding steps. Exercise cire when epplying hest to secure plastic coupling to cable asembly. APPLY ONLY ENOUGH HEAT TO CRIMP plastic around cable assembly.
lems remoyal
2. Remove nameplate located at bottom center of mask.
3. Remove screwz (2) eecuring lens retaining clamp.
4. Remove lens by puiting out sifigtly et the bottom and then down.
5. To replace, reverse the preceding steps. Exercise care so not to scratch lens surface. To clean tens, use soft, innt free cloth, water and a mild liquid detergent.

chassis removal

1. Diaconnect $A C$ power cord and antenna connectiona. Remove interlock cover.
2. Remove screm aecuring vertical hold knob assembly to cabinet.
3. Compress ides of fine tune coupling to disentige it from slot: in arm on tunar. See Figure B .
4. Disconnect apeaker leads at apeaker, high voltage lend and picture tube socket.
5. Remove On/Off brightness knob. Remove hex nut securing On/off brightness control to cabinet.
6. Remove two acreme locking chasais feet ind diaenzege feet from slots by slidine chasis to rear and up.
7. Remove deflection yoke retaining sprine.
8. Remove chasia and deflection yoke from cebinet. NOTE: Secondary control ohafte will disencage from controle when chasisis removed.
9. To replece chasisis, reverse the bove procedure, engagine secondery controla by inserting control shafta into plaztic couplinge.

PICTURE TUBE REmoval

1. Remove chassiz as outlined under "Chasia Removal" procedure.
2. Ley cabinet face down, oupported on the corners ONLY, oo not
picture tube removal icont'di to damage or scratch the lens.
3. Loosen picture tube gtrap tightening screw. Remove screws (2) pecuring hold down sirapi at (2) pasper ecrap over neck of picture tube and stowin botiom of tube and stowin bo
cabinet. See Figure c.
4. using goggles and gloves, reach under face of tube and lift from Cabinet. DD NOT GRASP NECK OF
PICTURE TUBE AT ANY TIME.
5. To install picture tube, reverse the preceding steps. Exercise care not to acratch face of picture tube.

MOOELS 21T218, $21 C 524$ KMO8 REMOVAL

1. Channel Selector
A. Remove channel gelector knob by pulling etraight out.
2, Brightness, Contrast, Volume A. Disconnect AC power cord and Bemove backcover.
B. Remove channel selector knob. C. Remove escutcheon by removing one (1) screw behind channel selector knob and one (1) screw inside right hand top corner of cabinet
D. Remove knobs by pulling atraight out. See Figure D.

LEMS REMOYAL

1. Remove lena cjamp cover located et bottom center of mask.
2. Remove acrews (2) securing lens retaining clamp.
3. Remove Jene by pulling out slightyy ithe bottom and then down.
4. To replace, reverse the preceding teps. Exercief cautionso an not to ecratch lena surface. To clean lens, use moft, lint free cloth, water and mild liquid detergent.

Chassis removal

1. Disconnect AC power cord and antenna connectiona. Remove interlock cover.
2. Remove ecrev securint vertical hold knob asembly to cabinet.
3. Compress sidea of fine tune coupling to dizengage it from slotgin armon tuner. See Figure B .
4. Disconnect speaker lesdat apeaker, high volinge lead. picture tube aocket and on/off plus. NOTE: Io operate chasain Wth this plut removed, jumper muat be uaed. See Figure E.
5. Remove two screws locking chasiat feet and digengaze feet from alota by bliding chasaia to rear and up.
6. Remove deflection yoke retaining epring.
7. Remove chasaig and deflection yoke from cabinet. NOTE: Secondary control shefta will disengage from controla when chasaiz is removed.
8. To replace chasis, reverse the bove procedure, eneming secondary controls by pressint ends of shaftamembly over control See Figure D.

PICture tuag remoyal
Same as. Modele 21T214 and 21c414.

FIGURE A

FIGURE C

FIGURE D

figure e

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

19ALAGT

1250

TRAV-LER RADIO CORP. Chassis Nos. 943-38, 947-28, 953-28, 975-48 Schematic Diagram, Additional Information on page 152.

TRAV-LER Chassis Nos. 943-38, 947-28, 953-28, 975-48, Continued

Westinghouse

MODEL, CHASSIS AND TUNER INFORMATION

Models	Chassis	Bands Covered		Tuners
H-17C287 - tutone H-17C288 - mahogany H-17C289 - walnut H-17C290 - limed oak H-17C291 - fruitwood				Tuner Tubes
H-17CU287 - tutone H-17CU288 - mahogany H-17CU289 - walnut H-17CU290 - limed oak H-17CU291 - fruitwood	V-2365-11	VHF	VHF470V057H01 \& H02 or $470 V 059 H 02$	V12-2CY5 V13-5AT8

ADJUSTMENTS

deflection yoke

Loosening the deflection yoke clamp allows back-andforward and rotary movement of the deflection yoke with respect to the CRT. The deflection yoke should be as far forward as possible (touching the bell of the CRT). Rotation of the deflection yoke is used to level the raster with respect to the mask.

CENTERING

The two centering rings are located at the rear of the deflection yoke. The centering rings are provided with adjustment tabs. Centering the raster in the mask is accomplished by rotating the centering rings individually or together, as necessary.

HEIGHT AND VERTICAL LINEARITY

The HEIGHT control and V. LIN control are located at the rear of the receiver. The HEIGHT control is used to adjust the vertical size of the picture. The V. LIN control is used to remove vertically cramped or elongated areas from the picture. Altemate adjustment of these controls is necessary to obtain a picture of the proper height which has good vertical linearity throughout.

HORIZONTAL RINGING COIL

The horizontal ringing coil (L402) should be adjusted as follows:

1. Short out the ringing coil with a jumper wire.
2. Set the HORIZ hold control to the center of its range. Do not change this setting during the steps that follow.
3. Connect a VTVM to point (F) of to pin 7 of V 2 (HMV). The VTVM is used to measure the DC voltage between this point and $\mathrm{B}-$.
4. With the receiver tuned to a station of normal signal strength, adjust C 417 for +.5 volts DC on the meter.
5. Remove the jumper connected across the ringing coil.
6. Adjust horizontal ringing coil L402 for +.5 volts $D C$ on the meter. Check the adjustment by switching to another channel and back again. The receiver should pull into horizontal synchronization on all channels.

QUIETING

The QUIETING control is located at the rear of the receiver. This control determines the AM rejection characteristics of the sound system. It is adjusted as part of the procedure given under SOUND ALIGNMENT and will not ordinarily require further adjustment. In very weak signal areas, however, a reduction in noise or hiss in the sound may be obtained by slightly readjusting this control.

OSCILLATOR ADJUSTMENT

Oscillator adjustments nay be necessary after replacement of the mixer-oscillator tube because of different tube inter-electrode capacitance.

The oscillator coils for channels 13 and 12 are in series and are tuned by a single slug. The same arrangement is used in the pairing of oscillator coils for channels 11 and 10 , 9 and 8,6 and 5 , and 4 and 3. Channels 7 and 2 have individual oscillator coils, each with an adjustable slug.

By tuming the channel selector to the channel to be adjusted the proper oscillator slug for adjustment of that channel will appear in the oscillator adjustment hole. This adjustment hole, located on the front of the tuner (Figure 15), is shaped so that the proper adjustment slug is available for each setting of the channel selector.

Oscillator adjustments can be made without removing the chassis from the cabinet. Remove only the channel selector and fine tuning knobs. Make adjustments with a non-metallic screwdriver. Be suret the screwdriver fits the slot properly to avoid damaging the coil or coil form.

Using an air signal, make the oscillator adjustment as follows:

1. Allow five minutes for receiver warm-up.
2. Set channel selector on channel to be adjusted.
3. Set the fine tuning control at the center of its range. This point must be estimated because of the 360 degree continuous fine tuning.
4. Adjust oscillator slug for best picture.

RF TRAP ADJUSTMENT

The RF trap, Ll-Cl, is normally factory set at 44 MC $\pm .5 \mathrm{MC}$. The trap may be adjusted to attenuate any interfering signal between 40 MC and 46 MC .

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2365-11, V-2365-12, Service Material, Continued
WARNING -- PROTECTION OF PERSONNEL AND EQUIPMENT

1. Always use an isolation transformer between the power source and the receiver line input when servicing. 2. Discharge the high voltage lead to B-before working near high voltage.
2. When handling the cathode ray fube (CRT):
a) Complefely discharge the CRT capacifance by means of a jumper between the high voltage covity and B-. b) Use protective shatferproof goggles and heavy gloves.

Figure 4. Tap view of chassis. Tube location, heater string, and adjustments.

KEY TO BOTTOM VIEW OF PC BOARD

1. Shielded lead to tuner IF output
2. Brown wire to pin 7 of 12D4
3. Green wire to pin 2 of CRT
4. Brown wire to tuner (filament VHF/UHF receivers only)
5. Brown wire to tuner (filament VHF receivers only)
6. Blue wire to PICTURE control R219
7. Brown wire to pin 11 of CRT
8. Yellow wire to T300 secondary
9. Green wire to arm of PICTURE control R219
10. White wire to pin 6 of CRT (B+, 115V)
11. Gray wire to lug 3 of $\mathrm{T} 400(\mathrm{~B}++, 425 \mathrm{~V})$
12. Red wire to pin 10 of CRT
13. Red/white wire to C410A (B+, 135V)
14. Yellow wire to lug 2 of T400
15. Green shielded lead to arm of VOLUME control R 105
16. Orange wire to C412A (B+, 115V)
17. Black wire, filament return to ground
18. Black wire to pin 1 of CRT
19. Blue wire to T300 primary.
20. White wire to tuner AGC.
21. Orange/white wire to junction R402 and C411A (B+, 105 V).
22. Blue shielded lead to top of VOLUME control R105.
23. Shield of green coax to lug 12 of TV-Phono switch.
24. Center conductor of green coax to lug 11 of TV-Phono switch.
25. Brown wire to lug 3 of TV-Phono switch.
26. Black wite to Phono base.
27. Blue wire to TONE control R108.
28. Yellow wire to C109.
29. Yellow wire to lug 2 of TV-Phono switch.
30. Red/yellow wire to lug 5 of TV-Phono switch.

WESTINGHOUSE

Chassis V-2365-11, V-2365-12, Service Material, Continued

Figure 7 - Chassis removed from cobinet, front view.

ALIGNMENT

IF ALIGNMENT

EQUIPMENT:

1. Sweep generator - Output frequencies of 40 MC through 60 MC . Output voltage level should be adjustable.
2. CW or marker generator -- Output frequencies of 4.5 MC , $41.25 \mathrm{MC}, 43.1 \mathrm{MC}, 42.5 \mathrm{MC}, 47.25 \mathrm{MC}$, and 215.75 MC . Generator should be accurate and stable; crystal calibration preferred. Output voltage level should be adjustable.
3. Oscilloscope - Hickock 640 or equivalent
4. VTVM - RCA Voltohmys! or equivalent.
5. Bias supply - A negative 3 volt bias.
6. Alignment tool - The alignment tool shown in Figure 8 should be used to adjust all slugs having a hexagonal bore.

PART NUMBER V-8623
Figure 8. Alignment tool; $099{ }^{\prime \prime}$ across flcts.
 OUTPUT IMPEDANCE

Figure 10. RF generator cable.

TERMINATION OF EQUIPMENT:

1. Generators - Except where otherwise noted, all signal generating equipment should be terminated as shown in Figure 10
2. Oscilloscope and VTVM - Use direct probe terminated with decoupling network shown in Figure 11.

Figure 9. Impedance matching network.

Figure 11. Decoupling network.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION WESTINGHOUSE IF Alignment for Chassis V-2365-11, V-2365-12 (Continued)

Step	Generator	Freq. (MC)	Generator Connection Point	Indicator and Connection Point

1.					a) Connect a -3 volt bias to test point (A). b) Short out the receiver antenna terminals with a short jumper wire. c) L2 (tuner). Turn slug fully counterclockwise (all way out) to detune tuner output.
2.	Sweep	43.9	Connect sweep generator output to control grid (pin 1) of 3rd IF Amp.	Scope. Connect to test point (B) . Calibrate for 2 V PP .	T203. Bottom slug for maximum output at 43.9 MC ; top slug to check that response will "rock" about 43.9 MC . If necessary, readjust bottom slug slightly until top slug will "rock" response about 43.9 MC . Finally, adjust top slug for flatest response.
3.					a) Remove generator connection from control grid (pin 1) of 3rd IF Amp. b) Remove scope connection from test point (B).
4.	CW	43.1	Connect CW generator output to test point (D).	VTVM. Connect to test point (B) . Use range suitable for measuring -1.5 V .	T202. Adjust for maximum negative voltage.
5.	CW	47.25	CW. Leave connected as in step 4.	VTVM. Leave connected as in step 4.	L200. Adjust for minimum negative voltage.
6.	CW	45.2	CW. Leave conniected as in step 4.	VTVM. Leave connected as in step 4.	T201. Adjust for maximum negative voltage.
7.					a) Remove generator connection from test point (D) b) Remove VTVM connection from test point (B).
8.	Sweep	44	Connect sweep generator output to test point (D)	Scope. Connect to test point (B) . Calibrate for 2V PP.	Response curve should be as shown in Figure 13. Slight readjustment of T201 and T202 should be used, if necessary, to obtain the proper IF response curve.
9.					a) Remove generator connection from test point (D). b) Remove scope connection from test point (B).
10.	CW	41.25	Connect CW gene rator to Mixer grid point on cuner. (See Figure 15)	VTVM. Connect to test point (B). Use range suitable for measuring -1.5 V .	T200. Top slug for minimum negative voltage. Increase generator output or reduce IF bias if necessary.
11.					a) Remove jumper wire shorting out antenna terminals. b) Set receiver channel selector to Ch. 13.
12.	Sweep	215.75	Connect sweep generator to antenna terminals through impedance matching network shown in Figure9.	VTVM. Leave connected as in step 10.	Fine tuning. Adjust for lowest point in trap dip.
13.					a) Remove VTVM connection from test point (B).
14.	Sweep	$\begin{aligned} & \text { Ch. } 13 \\ & (210- \\ & 216) \end{aligned}$	Connect sweep generator to antenna terminals through impedance matching network shown in Figure 9 .	Scope. Connect to test point (B) . Calibrate for 2V PP.	a) L2 (tuner). Adjust for maximum output. b) T200. Bettom slug to check that response will "rock" about Ch. 13 center frequency (213 MC). If necessary, readjust $L 2$ slightly until bottom slug of T200 will "rock" response about 213 MC . Finally, adjust bottom slug of T200 for overall response curve Figure 12 .
15.					a) Remove generator connection from antenna terminals. b) Remove scope connection from test point (B).
16.	CW	4.5	Connect CW generator to test point (B) .	VTVM. Connect to point (C), low side to $B-$.	L203. Adjust for minimum positive voltage.

WESTINGHOUSE Alignment
Chassis V-2365-11, V-2365-12
(Continued)

Figure 13. Video IF response curve.

Figure 12. Overall response. SOUND ALIGNMENT

The sound section may be aligned using either a locally generated signal or an air signal.

4.5 MC DETECTOR PROBE

Construct probe from quadrature coil assembly (part no. 230 V 007 H 02) and 1 N 64 (part no. V-10916-3) or equivalent crystal diode. The crystal diode should have a back resistance of at least 500 K ohms as measured by VTVM.

The probe should be adjusted for maximum response at 4.5 MC as follows:

1. Connect probe input lead, in series with a 2 mmf capacitor, to control grid (pin 2) of 3BN6 on properly operating receiver.
2. Tune quadrature coil slug for maximum indication on VTVM.
The use of this probe in the AIR SIGNAL ALIGNMENT procedure will insure exact tuning of the sound section. This is possible because the probe does not significantly load or detune the receiver circuits.

PROCEDURE:

1. Connect detector probe (Figure 14) to control grid (pin 2) of 3BN6. Use VTVM range suitable for measuring small negative voltages.
2. Tune receiver to strongest of available channels.
3. Set the QUIETING control R100 to mid-range.
4. Using a low VOLUME control setting, adjust quadrature coil L101 for maximum speaker volume.
5. Reduce signal strength at the antenna. This may be done with an attenuator pad or by loose coupling.
6. Adjust coil L 100 for maximum negative voltage on VTVM.
7. Reduce VOLUME control setting and further reduce signal strength at the antenna until $\mathbf{- 1}$ volt is measured on the VTVM.
8. Adjust quadrature coil L 101 for maximum speaker volume.
9. Rotate fine tuning control away from "best picture" setting until a -1.5 volt VTVM measurement is obrained. If the -1.5 volt measurement cannot be obtained using the fine tuning, then adjust the tuner oscillator to obtain -1.5 volt.
10. Adjust the QUIETING control for minimum intercarrier noise (buzz).
11. If, in step 9, the tuner oscillator was adjusted, this oscillator should now be returned to its original adjustment condition.

Figure 14. 4.5 MC detector probe.

LOCALLY GENERATED SIGNAL

ALIGNMENT EQUIPMENT:

1. FM generotor - Output frequency of 4.5 MC with approx- VHF ANT. imately $\pm 7.5 \mathrm{KC}$ deviation.
2. AM generotor - Output frequency of 4.5 MC , modulated approximately 30%.
3. VTVM or oscilloscope - Use with high impedance probe. Connect across VOLUME control as AC voltage indicator.

PROCEDURE:

1. Connect VTVM or scope across VOLUME control.
2. Set QUIETING control R 100 to mid-range.
3. Apply strong 4.5 MC FM signal to test point (B)
4. Adjust quadrature coil L-101 for maximum output.
5. Using lowest signal level that will produce an indication, adjust coil L100 for maximum output.
6. Apply medium strong 4.5 MC AM signal to test point (B)
7. Adjust QUIETING control for minimum AM output.
8. Repeat steps 3 through 7 .

AIR SIGNAL ALIGNMENT EQUIPMENT:

1. VTVM - Use with special 4.5 MC detector probe.
2. Detector probe, 4.5 MC - This probe may be easily constructed from a quadrature coil assembly and a crystal diode. See Figure 14 for construction details.

1959 TELEVISION SERVICING INFORMATION

CHASSIS REMOVAL

1. Remove the erternal antenna leads, back cover, antenna terminal boards, control knobs, speaker leads and nut on speaker-holding clamp.
2. Disconnect the following: AC plug to phono (Amp-Lok); blue phono coaxial lead to terminal board under phono; black wire to terminal board under phono.
3. Remove six screws from the bottom of the cabinet (four $1 / 4^{\prime \prime}$ screws and two $5 / 16^{\prime \prime}$ screws).
4. Remove three screws located inside the cabinet (two above the CRT and one at the side of the chassis).

SECTIOM SOUNPIEAND AUDIO
nOTES
de volitage measured with vivm from ponts moicated to b- ant. termmals shorte 0.
2. PEAK TO PEAK WAVE FORMS WERE TAKEN WITH CONTRAST CONT. SET FOR A 25 VOLT PEAK TO PAAK SIISNAL AT THK CRT CATHODE, ALL OTHER
3. ALL CAPACITANCE VALUES LESS THAN I ARE IN MEFD AND VAL UES GREATER THAN
4. mindicates voltages taken with picture adjusted for normal raster.
5. tV phono switch actuated by pigture control. (r2ig)
6. TV PHONO SWITCH SHOWN N TV POSITION.

A MONAURAL CARTRIDGE IS NORMALLY SUPPLIEDi THE STEREO CARTRIDGE WILL BE FIELD INSTALLATION
6 ON CHAS515 v2365-11-12 USE ITCFPA CRT A ON CHASSHS V2365-13-14 USE ITAYPAA CRT
$9 \mathrm{C} 228: 15 \mathrm{MMF}$ WITH $470 \mathrm{VO57HOZ}$ \& $470 \mathrm{VOSBHO2}$ TUNERS

Schematic diagram; chassis V-2365-11 and V-2365-12

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2365-11, V-2365-12, Schematic Diagram

WESTINGHOUSE Chassis V-2365-11, V-2365-12,•Service Material, Continued

Bottom view of PC board showing top components as schematic symbols.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Westinghouse

Models	Chassis	Tuners Used	Tuner Tubes
$\begin{aligned} & \text { HT- } 3500 \\ & \text { HT- } 3501 \\ & \text { HT- } 3502 \end{aligned}$	V-2377-1	$470 \mathrm{~V} 057 \mathrm{H02}$	RF Amp: 2CYs Osc-Mix: SAT8
		VHF: $\begin{gathered}\text { or } \\ 470 \mathrm{~V} 059 \mathrm{H} 02\end{gathered}$	$\begin{aligned} & \text { RF Amp: } \\ & \text { OsN4A } \\ & \text { Osc-Mix: } \\ & \text { SCG8 } \end{aligned}$
$\begin{aligned} & \text { HT- } 3500 \mathrm{U} \\ & \text { HT- } 3501 \mathrm{U} \\ & \text { HT- } 3502 \mathrm{U} \end{aligned}$	V-2377-2		$\begin{array}{ll} \text { RF Amp: } & \text { 2BN4A } \\ \text { Osc-Mix: } & \text { SCG8 } \\ \hline \end{array}$
			Osc: 2AF4A Xtal: $1 N 82 A$

WARNING -- PROTECTION OF PERSONNEL AND EQUIPMENT

1. Always use an isolation transformer between the power source ond the receiver line input when servicing.
2. Discharge the high voltage lead to B-before working near high voltage.
3. When handling the cathode ray fube (CRT):
a) Complefely discharge the CRT capocifance by means of a jumper between the high volfage cavity and B-. b) Use profective shafferproof goggles and heavy gloves.
4. After receiver repair, check resistonce befween the B- side of the receiver line input and the chassis cold rail (line cord disconnected). A resistance of less than 300,000 ohms indicates a short circuif (or leakage) to mefal parts which are accessible. Remove the cause of leakage before the set is released.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

Figure 2. Top view of chassis showing tube locations, heater string, and adiustments.

SOUND ALIGNMENT

EQUIPMENT: VTVM

PROCEDURE:

1. Select the strongest station available (preferably with test pattern and test tone) and adjust the FINE TUNING for best seception. Adjust the VOLUME control so that the station sound is audible.
2. Adjust the quad coil (L101) fof maximum sound from the speaker.
3. Use a jumper wire to short the control grid of the 3rd IF amplifier to B -.
4. Connect the VTVM to TP (S) .
S. Adjust interstage transformer T100 for maximum negative voltage on the VTVM.
5. Remove the jumper wire used to short the control grid of the 3rd IF amplifier.
6. Disconnect the antenna input and place it close to the antenna terminals so that the signal is loosely coupled to the receiver and the picture is barely visible. \AA pronounced noisiness (hiss) should accompany the sound.
7. Adjust 4.5 MC trap L203 for maximum negative voltage on VTVM.
8. Adjust the limiter input coil (L100) for maximum negative voltage on the VTVM. If the VTVM,indicates a broad response while making this adjustment, the receiver input signal is too strong. When the signal coupling described in step 7 is at the necessary low point, no limiting takes place and the VTVM will indicate a sharp response to the limiter input coil adjustment.

IF ALIGNMENT

EQUIPMENT

1. Sweep Generator with a 10 MC ride sweep at center frequencies from 10 MC to 90 MC and 170 MC to 216 MC .
2. CW (Marker) Genenator which accurately produces the IF and RF frequencies from 4.5 MC to 216 MC .
3. Oscilloscope with good low frequency response characteristics.
4. VTVM.
5. Bias Supplies of -4 volts and -2.5 volts.
6. Standard Alignment Tool with a 3/32" hexagonal tip.

TERMINATION AND ADJUSTMENT OF EQUIPMENT

These instructions on termination and adjustment of equipment will apply throughout the IF Alignment procedure.

All rest equipment cables and leads should be as short and direct as possible.
Oscilloscope and VTVM - Use a low-capacitance direct probe terminated with the decoupling network shown in Figure 10. Keep the oscilloscope calibrated for 2 volts peak to peak (P-P). Use a VTVM range suitable for measuring -1.5 volts.
Generators - Except where otherwise noted, all signal generating equipment should be terminated as shown in Figure 9. Connect the signal cable ground near the ground of the stage where the signal is injected.
Adjust the CW generator output so that: (1) When the VTVM is being used its reading remains near the -1 volt point. (2) When the oscilloscope is being used the marker frequencies do not distort the response curve.

Figure 9. Generator cable termination.
IF ALIGNMENT

TYPICAL RESPONSE CURVE Ist. I.F. AMP. GRID TO VIDEO DETECTOR

Figure ll. Video IF response curve.

TYPICAL RESPONSE CURVE MIXER GRID TO VIDEO DETECTOR

Figure 12. Overall response curve.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Schematic Diagram Chassis V-2374-1,-2
SECTIONI =TUNCIE:ANDAUDIS
motes:

1. DC VOLTAGES MEASURED FROM E-. NO APPLIED Jignal USING A VTVM
2. all peak to peak waveforms and de voltage (i*) taken with all COWTROLS SET FOR NORMAL PICTURE
3. all cabicitance values less thani are in mfo and values greater than i ARE W MMFD, WHIE ALL RESISTORS ARE I/2 WATT UNLESS OTHERWISE SPECIFIED

* uSED With tuners 470vos9hoz and 470VOSOHOz.
* Later production

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Schematic Diagram Chassis V-2374-1, V-2374-2

CENTERINC

The centering rings, located at the rear of the deflecticn yoke, should be rotated to center the raster.

HEIGHT AND VERTICAL LINEARITY

The HEIGHT and VERT. LIN. controls, located at the rear of the receiver, should be adjusted alternately to obtain a picture of proper beight which bas good-vertical linearity throughout

DEFLECTION YOKE

The deflection yoke should be as far for ward as possible (touching the bell of the CRT). Rotation of the deflection yoke is used to level the raster.

HORIZONTAL RINGING COIL

The ringing coil (L401) should be adjusted as follows:

1. Short out the ringing coil with a jumper wire
2. Set the horizobtal hold control to the center of its range.

Do not change this setting during the steps that follow.
3. Connect a VTVM to TP F for measuring the DC voltage between TP F and B-.
4. With the receiver tuned to a statict of normal signal strength, adjust C409 for 0 volts DC the meter.
5. Remove the jumper from the ringing coi..
6. Adjust the ringing coil for 0 volts DC on the meter. Check the adjustment by switching to another channel and back again. The receiver should pull into horizontal sync on all channels.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2374-1, V-2374-2, Service Material, Continued

Bottom view of PC board showing top components as shematic symbols.

The leads identified by number in the above figure connect to the following points:

1. T101 primary
2. Junction Cl12A and R110
3. Tuner B+ point
4. T101 primary
5. Chassis rail
6. Tuner IF output point
7. Tuner "Heater In" point
8. Pin 2 of CRT
9. Low side of BRIGHTNESS control
10. Lo B+, 120V
11. Pin 6 of CRT
12. Arm of BRIGHTNESS control
13. Pin 11 of CRT
14. Pin 10 of CRT
15. Pin 12 of CRT
16. Tuner "Heater Our" point
17. Low side of VERTICAL hold control
18. T300 primary
19. T300 primary
20. Pin 7 of $\sqrt{ } 3$
21. Arm of HORIZONTAL hold control
22. Pin 1 of CRT
23. B-
24. Pin 5 of V2
25. Lo B+, 120 V
26. Lug 3 of T400
27. $\mathrm{Hi} \mathrm{B}+140 \mathrm{~V}$
28. High side of VOLUME control
29. Arm of VOLUME control
30. High side of CONTRAST control
31. Arm of CONTRAST control
32. T300 secondary
33. High side of VERTICAL hold control 34. B-
(A) AGC for IF
(B) Video detector
(C) CRT cathode
(D) 1st IF input
(F) Horiz. MV
(S) FM detector
(T) AGC for tuner

TEST POINTS
VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

V-2375-1: VHF ONLY
V-2375-2: VHF/UHF
MODEL AND CHASSIS CHART

Models	Chassis	Tuners Used	Tuner Tubes
H21K272			RF Amp: 3CYS
H21K273		$470 \mathrm{~V} 057 \mathrm{H02}$	Osc-Mix: SAT8
H21K274	V-2375-1	VHF: or	
H21K275		$470 \mathrm{~V} 059 \mathrm{H02}$	RF Amp: 2BN4/2BN4A
H21K276			Osc-Mix: SCG8
H21KU272			RF Amp: 2BN4/2BN4A
H21KU273		VHF: 470 V 060 H 02	Osc-Mix: SCG8
H21KU274	V-2375-2		
H21KU275		UHF: 472V034H01	Osc: 2AF4A
H21KU276			Xtal: 1N82A

Figure 2. Top view of chassis showing tube locations, heater string, and adiustments.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2375-1, V-2375-2, Service Material, Continued
TUBE COMPLEMENT AND RESISTANCE MEASUREMENTS

	Tube Type	Tube Function	Resistance Measurements								
			Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9
V1 ${ }^{-}$	12AX4	Damper	-	NC	Inf	-	21	-	40	42	-
V2	12DQ6A	Horiz Out	-	40	NC	17.5K*	470K	-	38	0	*
V3	12DT 5	Vert Out	1K*	NC	$\begin{array}{\|l\|} \hline 1.2 \mathrm{M}^{\prime} \\ \text { to } 1.7 \mathrm{M} \\ \hline \end{array}$	15	13	$\begin{array}{l\|} \hline 1.2 \mathrm{M}^{*} \\ \text { to } 1.7 \mathrm{M} \end{array}$	220	NC	1.3K*
V4	3CS6/3B Y 6	Sync Sop	60K*	0	12.5	13.5	17.0K*	12K*	2.4M	-	-
V5	3DT6	FM Det	3.5	820	11.5	12.5	Inf	54K*	560K	-	*
V6	5CL8A	FM Lim \& Vert Disch	$\begin{array}{\|l\|} \hline 670 \mathrm{~K} \\ \text { to } 2.6 \mathrm{~K} \\ \hline \end{array}$	Inf	0	11.5	10.5	42K *	18K	0	470K
V7	6AU8	Video Out \& Keyed AGC	46K	45K	670K	10.5	8.5	10	$\begin{array}{\|l\|} \hline 500 \text { on } \\ (R \times 100) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22 K^{*} \\ \text { to } 58 \mathrm{~K} \end{array}$	5.4K*
V8	5AQ5	Audio Out	$\begin{aligned} & 0 \text { to } \\ & 500 \mathrm{~K} \end{aligned}$	330	7.5	8.5	1.6K*	1.1K*	$\begin{aligned} & \hline 0 \text { to } \\ & 500 \mathrm{~K} \end{aligned}$	-	.
V9	3CB6/3DK6	3rd IF Amp	0	150	7	7.5	2.4K*	2.4K*	0	-	-
V10	3BZ6	2nd IF Amp	110K	27	6	7	2.4K*	2.4K*	0	-	-
V11	3BZ6	1st IF Amp	110K	47	4.8	5.6	2.4K*	2.4K*	0	-	-
V12	2CY5	RF Amp	2M	0	3.6	4.8	1.8K*	16K*	0	-	*
V13	5AT8	Osc-Mix	18K	6.8K*	0	3	3.6	5K*	3.4K*	0	100K
V15	21CBP4B	CRT	1.5	150K	-	-	-	1.8K*	PIN 10 Inf	$\begin{array}{\|l\|} \hline \text { PIN } 11 \text { 180K } \\ \text { to } 230 K * \end{array}$	$\begin{aligned} & \text { PIN } 12 \\ & 3 \\ & \hline \end{aligned}$
V16	6CG7	Horiz MV	56K	$\begin{array}{\|l\|} \hline 180 \mathrm{~K} \\ \text { to } 240 \mathrm{~K} \\ \hline \end{array}$	1K	1.5	0	48K*	2.2M	1K	0
V17	1B3GT	HV Rect		-	-	- IN	FINITE	-		-	\longrightarrow

Resistances from tube pin to B-(except*) in ohms unless otherwise noted. Controls set for normal picture.
*Resistances from tube pin to junction X401 \& L400.

ALIGNMENT

SOUND ALIGNMENT

EQUIPMENT: VTVM

PROCEDURE:

1. Select the strongest station available (preferably with test pattern and test tone) and adjust the FINE TUNING for best reception. Adjust the VOLUME control so that the station sound is audible,
2. Adjust the quad coil (L101) for maximum sound from the speaker.
3. Use a jumper wire to short the control grid of the 3rd IF amplifier to $\mathrm{B}-$.
4. Connect the VTVM to TP (S).
5. Adjust interstage transformer T100 for maximum negative voltage on the VTVM.
6. Remove the jumper wire used to short the control grid of the 3rd IF amplifier.
7. Disconnect the antenna input and place it close to the antenna terminals so that the signal is loosely coupled to the receiver and the picture is barely visible. A pronounced noisiness (hiss) should accompany the sound.
8. Adjust 4.5 MC trap L204 for maximum negative voltage on VTVM.
9. Adjust the limiter input coil (L100) for maximum negative voltage on the VTVM. If the VTVM indicates a broad response while making this adjustment, the receiver input signal is too strong. When the signal coupling described in step 7 is at the necessary low point, no limiting takes place and the VTVM will indicate a sharp response to the limiter input coil adjustment.

EQUIPMENT

1. Sweep Generator with a 10 MC wide sweep at center frequencies from 10 MC to 90 MC and 170 MC to 216 MC .
2. CW (Marker) Generator which accurately produces the IF and RF frequencies from 4.5 MC to 216 MC .
3. Oscilloscope with good low frequency response characteristics.
4. VTVM.
5. Bias Supplies of -4 volts and -2.5 volts.
6. Standard Alignment $T o o l$ with a $3 / 32^{\prime \prime}$.hexagonal tip.

TERMINATION AND ADJUSTMENT OF EQUIPMENT

These instructions on termination and adjustment of equipment will apply throughout the IF Alignment procedure.

IF ALIGNMENT

All test equipment cables and leads should be as short and direct as possible.
Oscilloscope and VTVM - Use a low-capacitance direct probe terminated with the decoupling network shown in Figure 11. Keep the oscilloscope calibrated for 2 volts peak to peak (P-P). Use a VTVM range suitable for measuring -1.5 volts.
Generators - Except. where otherwise noted, all signal generating equipment should be terminated as shown in Figure 10. Connect the signal cable ground near the ground of the stage where the signal is injected. Adjust the CW generat or output so that: (1) When the VTVM is being used its reading remains near the -1 volt point. (2) When the oscilloscope is being used the marker frequencies do not distort the response curve.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE (Continued)
Chassis V-2375-1, V-2375-2

Figure 9. Impedance motching network.

Figure 10. Generatar cable termination.

Figure 11. Decoupling network.

IF ALIGNMENT
Test Equipment And Connections
Adjustment

1. Connect a -4 V bias to TP (A) and a -2.5 V bias \quad Z200: Detune top and bottom slugs. to TP T.
2. Connect $C W$ gen. (45.25 MC) to TP (D). Connect T201: Adj. for max. neg. voltage. VTVM to TP (B).
3. Same equipment and connections as step 2. Adj. gen. to 39.75 MC ; then to 41.8 MC .

L201: Adj. for min. neg. voltage at 39.75 MC .
4. Remove gen. and VTVM connections.
5. Connect sweep gen. (43 MC center) to TP (D).

T202: Adj. bottom slug for max. peak at 44 MC. Loosely couple CW gen. (44 MC) to sweep gen. output cable. Connect scope to TP (B).
6. Same equipment and connections as step 5 . Adj. CW gen. for 44.75 MC .

T202: Adj. top slug until the high frequency peak falls at 44.75 MC . Retouch bottom slug to obtain a symmetrical double-peaked response, as shown in Figure 12.
7. Leave scope connected as in step 6. Connect sweep gen. (43 MC center) to "TEST INPUT" on tuner (see tuner picture). Loosely couple CW gen. (41.25 MC) to sweep gen. output cable.
8. Same equipment and connections as step 7. Adj. CW gen. first to 44 MC for adjustments, then to 45.75 MC to check that the Pix Carrier is at the 50% point on the curve.
9. Same equipment and connections as step 8. Adj. CW gen. to 47.25 MC .
10. Remove CW gen. connections. Leave scope connected as in step 9. Connect sweep gen. to antenna terminals through impedance matching network shown in Figure 9.

L200: Detune in clockwise direction.
L200: Adi. to place trap at 41.25 MC .
Mixer Output coil: Adj. for max. amplitude of response curve at 44 MC . Z200: Adj. bottom slug (in conjunction with Mixer Output coil) to obrain a symmetrical response curve which "rocks" about 44 MC . 45.75 MC marker should be at the $50 \%(6 \mathrm{DB})$ point on the curve. See Figure 13.
Z200: Adj. top slug to place rap at 47.25 MC .

Ch. Selector: Check the overall response of each channel. These curves should be similar to Figure 13. If the alignment procedure has been followed closely, any major variations from the idealized response can be attributed to the RF portion of the tuner.

TYPICAL RESPONSE CURVE Ist. I.F. AMP GRID TO VIDEO DETECTOR

TYPICAL RESPONSE CURVE MIXER GRID TO VIDEO DETECTOR,

Figure 12. Video IF response curve.
Figure 13. Overall response curve.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2375-1, V-2375-2, Schematic Diagram

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2375-1, V-2375-2, Schematic Diagram

WESTINGHOUSE Chassis V-2375-1, V-2375-2, Service Material, Continued

Bottom viow of PC board showing top components as schematic symbols.

The leads identified by letters and numbers in the above figure connect to the following points:

1. Tlol primary
2. C407B (Audio B+, 245 V)
3. Tlol primary
4. Tuner IF outpur point
5. Arm of BRIGHTNESS control
6. Pin 3 of V11
7. Pin 11 of CRT
8. Tuner B+ point
9. Tuner "Heater Out" point
10. Pin 10 of CRT
11. Pin 12 of CRT
12. Jumper to (27
13. C401A (Lo B+, 130V)
14. Pin 2 of CRT
15. Pin 6 of CRT
16. T300 secondary
17. High side of V
18. T300 primary
19. Low side of VERTICAL hold control
20. C41GA
21. Pin 1 of CRT
22. Arm of HORIZONTAL hold control 23. R405
23. Pin 5 of V2
24. Junction R402 and C401A
25. C406A (Hi B+, 280V)
26. Jumper to (12)
27. C425 (B+ +600 V)
28. C215A
29. Arm of CONTRAST control
30. High side of BRIGHTNESS control
31. Tuner AGC point
32. Lug 1 of T400
33. Lug 2 of T400
34. Lug " T " of T400
35. High side of CONTRAST control
36. High side of VULUME control
37. Arm of VOLLME control
38. C111B
39. AGC overload jumper
40. T300 primary
(A) AGC for IF
(B) Video detector
(C) CRT cathode
(D) 1st IF input
(F) Horiz MV
(S) FM detector
(T) AGC for tuner

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION
MODEL AND CHASSIS CHART

Westinghousé

CHASSIS V-2376-1, V-2376-2

Models	Chassis	Tuners Used	Tuner Tubes
H21T300 H21K308	V-2376-1	VHF:$470 \mathrm{~V} 019 \mathrm{H} 03, \mathrm{H} 04, \mathrm{H} 05$	RF Amp: 2BN4
H21T301 H21K309			Osc-Mix: SCG8
$\begin{aligned} & \text { H21T302 } \\ & \text { H21K305 } \\ & \text { H21K } 306 \end{aligned}$			Crystal: 1N87G
		or	RF Amp: 2CY5
		470V043H03	Osc-Mix: 5AT8
H21K313			Crystal: 1N64G
H21TU302		VHF:	RF Amp: 2CY5
H21KU305		$470 \mathrm{VO21H03}, \mathrm{H05}$	Osc-Mix: 5AT8
H21KU306	V-23762		Crystal: 1N64G
H21KU308	V-23762	UHF:	Osc: 2AF4A
H21KU309		472V024H01, H 03	Crystal: 1N82A
H21KU310			

(Material on pages 173
through 178)

Figure 2 -- Top view of chossis showing tube locotions, heater string and adiustments.

TUBE COMPLEMENT AND RESISTANCE MEASUREMENTS

Tube Type		Tube Function	Resistance Measurements									
		Pin 1	Pin 2	Pin 3	Pin 4	P in 5	Pin 6	Pin 7	Pin 8	Pin 9		
V1	12D4		Damper	-	NC	4 M *	-	23*	-	17	20	-
V2	12DQ6A	Horiz Out	-	20	20*	$14 \mathrm{~K} *$	500 K	-	22	0	$\begin{gathered} \text { Cap } \\ 3.8 M^{*} \end{gathered}$	
V3	12DT5	Vert Out	29K	NC	1.4M	17	14	1.3 M	47	NC	600**	
V4	3CS6/3BY6	Sync Sep	58 K	0	- 13	14	34K ${ }^{\text {a }}$	13K*	2.2M	-	-	
V5	3BN6	FM Det	0-600	0	12	13	20K*	6.5	4.8M*	-	-	
V6	6AU8	Video Out \& FM Lim	0	100K	$38 \mathrm{~K}{ }^{*}$	11	12	10	$\begin{aligned} & 600 \text { on } \\ & (\mathrm{R} \times 100) \end{aligned}$	13.5K*	6K*	
V7	SAN8	$\underset{\text { AGC }}{\text { Vert Disch \& Keyed }}$	4. $5 \mathrm{M}^{*}$	1.5M	0	11	9.5	720K	${ }^{2} 0^{\circ}$	25K*	10K*	
V8	6AQSA	Audio Out	0-500K	330	9	7.5	1.5K*	900**	0-500K	-	-	
V9	3DK6/3CB6	3rd IF Amp	0	150	6.7	7.5	2K*	$2 \mathrm{~K}^{*}$	0	-	-	
V10	3BZ6	2nd IF Amp	125K	27	6	6.8	$2 \mathrm{~K}^{\text {* }}$	$2 \mathrm{~K}^{*}$	0	-	-	
V11	3BZ6	1st IF Amp	125K	47	5	6	$2 \mathrm{~K}^{\circ}$	2K*	0	-	-	
V12	SAT8	Osc-Mix	10K	$4 \mathrm{~K}^{*}$	0	5	4	2.5K*	$2 \mathrm{~K}^{*}$	0	110K	
V13	2 CY 5	RF Amp	2M	0	3.5	4	$3 \mathrm{~K}^{\circ}$	20K*	0	-	-	
V14	2AF4A	UHF Osc	NC	6K	3	4	0	6K	NC	-	-	
V15	21CEP4	CRT	1.4	150K	$4.4 \mathrm{M}^{*}$	1.6K*	-	NC	200K*	3	-	
V16	6CG7	Horiz MV	$68 \mathrm{~K}{ }^{*}$	$\begin{aligned} & 180 \mathrm{~K} \\ & \text { to } 240 \mathrm{~K} \end{aligned}$	1K	1.4	0	50K*	2.6M	1K	0	
V17	1B3GT	HV Rect	NC	INF	NC	-	NC	-	INF	INF	$\begin{aligned} & \text { Cap } \\ & 3.8 \mathrm{M}^{*} \end{aligned}$	

[^3]
VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2376-1, V-2376-2, Alignment Information (Continued)

ALIGNMENT

SOUND ALIGNMENT

ALIGNMENT WITH SIGNAL GENERATORS

Equipment: FM generator having output frequency of 4.5 MC with approximately $\pm 7.5 \mathrm{KC}$ deviation.
AM generator having output frequency of 4.5 MC modulated approximately 30%.
Indicator (VTVM or oscilloscope) with high impedance input.

Procedure:

1. Connect VTVM or scope across VOLUME control. Set QUIETING control to mid-range.
2. Apply strong 4.5 MC FM signal to TP B). Adjust quad coil L. 101 for maximum output.
3. Using lowest signal level that will produce an indication, adjust L 100 and T100 for maximum output.
4. Repeat steps 2 and 3.
5. Apply strong 4.5 MC AM signal to TP (B). Adjust QUIETING control for minimum AM output.

ALIGNMENT WITH AIR SIGNAL

Procedure:

1. Tune receiver to strongest of available channels. Set QUIETING control to mid-range. Adjust quad coil L101 for peak volume. If two peaks are noted, use the one with the slug further counterclockwise. If two peaks occur within a narrow range of adjustment, the QUIETING control is not set correctly -- or the received signal is too weak.
2. Reduce the signal strength at the antenna (use attenuator or loose coupling) allowing noise to be heard. Adjust L100 and T100 for peak sound. If two peaks are noted, use the one with the slug further counterclockwise.

IF ALIGNMENT

EQUIPMENT

1. Sweep Generotor with a 10 MC wide sweep at center frequencies from 10 MC to 90 MC and 170 MC to 216 MC .
2. CW (Morker) Generator which accurately produces the IF and RF frequencies from 4.5 MC to 216 MC .
3. Oscilloscope with good low frequency response characteristics.
4. VTVM
5. Bios Supplies of -4 volts and -2.5 volts.
6. Stondord Alignment Tool with a $3 / 32^{\prime \prime}$ hexagonal tip.

TERMINATION AND ADJUSTMENT OF EQUIPMENT

These instructions on termination and adjustment of equipment will apply throughout the IF Alignment procedure. All test equipment cables and leads should be as short and direct as possible.

Figure 11 - Impedance matching network.

Figure 13 - Decoupling network.

Oscilloscape and VTVM - Use a low-capacitance direct probe terminated with the decoupling network shown in Figure 13. Keep the oscilloscope calibrated for 2 volts peak to peak (P-P). Use a VTVM range suitable for measuring -1.5 volts (except in step 2).
Generators - Except where otherwise noted, all signal generating equipment should be terminated as shown in Figure 12. Connect the signal cable ground near the ground of the stage where the signal is injected. Adjust the CW generator output so that: (1) When the VTVM is being used its reading remains near the -1 volt point (except in step 2). (2) When the oscilloscope is being used the marker frequencies do not distort the response curve.

Figure 12 - Generator cable termination.

hole to fit tube pin snugly

Figure 14 - Mixer coupling gimmick.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2376-1, V-2376-2, Alignment Information, Continued
IF ALIGNMENT

TYPICAL RESPONSE CURVE MIXER GRID TO VIDEO DETECTOR

Figure 15 - Video IF response curve.

Ist. I.F. AMP. GRID TO VIDEO DETECTOR
Figure 16 - Overall response curve.

Heater string test setup.

TO OHMMETER
PROBES

TESTING SERIES HEATERS

Use the extra probe to ground a point in the center of the heater string (A). No reading on the meter (infinity) indicates an open between point A and the high end of the string. If the meter shows contunity, the open is between point A and ground. Continue to split the defective half of the string and repeat the procedure. An open heater will be quickly located.

REMOVAL OF AUDIO TUBE V8 (6AQ5A)

The pilot lamp (upper-right corner of chassis, Figure 2) is in parallel with the filament of V8. Both the lamp and the tube should be in place before the receiver is turned on.

NOTE: Removal of V8 while the receiver is on will force excessive current thru the pilot lamp, causing it to burn out.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2376-1, V-2376-2, Schematic Diagram

SYNC
In areas where the received signal is weak or there is noise interference, maximum picture stability will be obtained by adjusting the SYNC control as follows. With the receiver tuned to the weak signal, adjust the HORIZONTAL and VERTICAL hold controls for best stability. Turn the SYNC control toward the position marked NOISY AREA - just far enough to obrain maximum sync stability. Check the adjustment by switching to other channels. Picture should remain stable on all channels.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2376-1, V-2376-2, Schematic Diagram

HORIZONTAL RINGING COIL

The ringing coil (L401) should be adjusted as follows: 1. Short out the ringing coil with a jumper wire. Use TP (G) $\&$ H.
2. Set the HORIZONTAL hold control to the center of its range. Do not change this setting during the steps that follow.
3. Connect a VTVM to TP F for measuring the DC voltage berween TP (F) and B-.
4. With the receiver tuned to a station of normal signal strength, adjust C 420 for 0 volts DC on the meter.
5. Remove the jumper from the ringing coil.
6. Adjust the ringing coil for 0 volts $D C$ on the meter. Check the adjustment by switching to a nother channel and back again. The receiver should pull into horizontal sync on all channels.

KEY TO FIGURE ON PAGE 178
Leads identified by letters and numbers connect to the following:

1. T101 primary
2. C408B (Audio B+, 240V)
3. T101 primary
4. Pin 4 of CRT
5. Arm of BRIGHTNESS control
6. Tuner heater "in"
7. Tuner IF output point
8. Pin 7 of CRT
9. Pin 3 of CRT
10. Pin 2 of CRT
11. Tuner $\mathrm{B}+$ point
12. T300 secondary
13. Arm of VERTICAL hold control
14. High side of VERTICAL hold control
15. Pin 7 of V2
16. Pin 1 of CRT
17. T300 primary
18. C309B
19. C418A
20. High side of HORIZONTAL hold control
21. Tl01 secondary
22. Two-lug speaker terminal strip
23. SW100A
24. Pin 5 of V2
25. C302A
26. R402
27. F400
28. C425
29. High side of BRIGHTNESS control
30. High side of VOLUME control
31. Tuner AGC point
32. C424
33. High side of CONTRAST control
34. Low side of CONTRAST control
35. Pilot light (twisted pair)
36. C111
37. Arm of VOLUME control
38. High side of TONE control
(A) AGC for IF
(B) Video detector
(C) CRT cathode
(D) lst IF input
(F) Horiz. MV
(G) Ringing coil
(H) Rin
(T) AGC for tuner

TEST POINTS

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

WESTINGHOUSE Chassis V-2376-1, V-2376-2, Service Material, Continued

Bottom view of PC boord showing location of top components in solid outlines. Tube pin numbering is for bottom of socket.

TELEVISION RECEIVERS

CHASSIS 16C20-16C20Q-16C21-16C21Z-16C21Q-16C22Q-16C23-16C24-18C20-18C20Q-18C24Q

MODEL	CHASSIS	TUNER
C1415L	16C20	Bandswitch
C14168	16C20	Bandswitch
C1417L	16C20	Bandswitch
C1715L	16C20	Bandswitch
C1716C	16C20	Bandswitch
C1717J	16C20	Target Turret
Cl719P	16C20	Target Turret
C1720C	16 C 20	Target Turret
C2001L	16C20Q	Target Turret
C2221R \& Y	16C21	Bandswitch
B2221RZ \& YZ	16C21Z	Bandswitch
C2223E,R,Y	16C21	Target Turret
B2223EZ, RZ, Y Z	16C21Z	Target Turret
C225E,R,W	16C21	Target Turret
C2245E,R,W	16C21	Target Turret
B2245EZ 1,RZI, WZ 1	16C21Z	Target Turret
C2246E, R , W	16C21	Jarget Turret
Q 247E,R,W	16C21	Target Turret
C2249H,R,W	16C21	Target Turret
C2254E, H, R, W	16C21	Target Turret
C2282E,R,W	16C23/5B26	Target Turret
C2284H \& R	16C21/5B28	Target Turret
C2330E \& R	18C20	Bull's Eye Turret
C2358E, R, W	18 C 20	Bull's Eye Turret
C2359E \& W	18C20	Bull's Eye Turret
C2360M \& R	18C20	Bull's Eye Turret
C2673E,R,W	16 C 24	Target Turret
C3000E \& R	16C22Q	Target Turret
C3001E,R,W	16C21Q	Target Turret
C3004E,R,W	16C22Q	Target Turret
C3006E,R,W	16C21Q	Target Turret
C3007E,R,W	16C21Q	Target Turret
C3008R	16C21Q	Target Turret
C3009E,W,Y	16C21Q	Target Turret
C3010E, H,R	18C20Q	Bull's Eye Turret
C301IE, W, Y	18C20Q	Bull's Eye Turtet
C3012H \& R	18C20Q	Bull's Eye Turret
C3013H	18C20Q	Bull's Eye Turret
C3014H \& R	18C20Q	Bull's Eye Turret
C4007E \& R	18C24Q	Bull's Eye Turret
C4012H \& R	18C24Q	Bull's Eye Turret

ADJUSTMENTS

BANDSWITCH TUNER OSCILLATOR ADJUSTMENTS

To adjust the oscillator adjustment screws set the fine tuning control to a position where the index hole in the drive cam is directly over the small hole just below the channel 13 adjustment screw (see Fig. 1). Without further adjustment of the fine tuning control, insert a 68-24 alignment tool into the tuner and adjust each operating channel to resonance starting with the highest channel and following each lower channel in sequence. Be certain not to move the fine tuning shaft when switching channels. It will be noted that turning the oscillator screw to one side of resonance results in a faded, washedout picture with the spacings between the wedge lines "fogged" and turning in the opposite direction causes the spaces between the lines to clear up, however, going beyond this point will cause the picture to take on a "wormy" appearance from sound getting into the picture. Correct adjustment is obtained by adjusting for a "wormy" picture and then back down the adjustment screw slightly until the picture clears up.

TARGET TUNER

OSCILLATOR ADJUSTMENTS

1. Turn the fine tuning control to the approximate position shown in Fig. 2.
2. Without further adjustment of the control, insert a 68-29 alignment wrench (designed to prevent turning the adjustment screw too far into the core where it could disengage from its track) through the hole provided in the front of the tuner and adjust each operating channel to resonance. It will be noted that turning the adjustment screw to one side of resonance results in a faded, washed-out picture with the spacings between the wedge lines "fogged" and turning the screw in the opposite direction causes the spaces to clear up, however, going beyond this point will cause the picture to take on a "wormy" appearance from sound getting into the picture. Correct adjustment is obtained by adjusting for a "wormy" picture and then back down the adjustment screw slightly, until the picture clears up.

Suffix " Q " following the chassis number identifies a receiver equipped with Zenith's Space Command remote control. Suffix " U '" is added to the chassis and model number if the receiver is factory equipped with a UHF continuous tuner.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ZENITH Chassis $16 \mathrm{C} 20,-\mathrm{Q}, 16 \mathrm{C} 21,-\mathrm{Q},-\mathrm{Z}, 16 \mathrm{C} 22 \mathrm{Q}, 16 \mathrm{C} 23,16 \mathrm{C} 24,18 \mathrm{C} 20,-\mathrm{Q}, 18 \mathrm{C} 24 \mathrm{Q}$

IN "U" MODELS ONLY IN UH.F
POSITON ADJUST IF INPUT
CORE THRU THIS HOLE
B)TTOM COVER REMOVABLE TO
INSERT U.H.F STRIP

MANUAL CHANNEL SELECTOR SHAFT
$21^{\prime \prime} 0^{4}$ MODEL ONLY $\frac{2 \mid " ~ " Q " M O D E L O N L Y}{}$
 NEUTRALZING
TRIMMER Co \cdots

> FINE TUNING KNOB

AND CHANNEL INDIGATOR | SHAFT AND KNOB FOR 21 " |
| :--- |
| $Q^{\prime \prime}$ MODEL SHOWN ABOVE |

 ON U.H.F. CONTINUOUSUNER (ORANGE)
CHANNEL SELECTOR SHAFT
(SHOWN IN CHANNEL 6 POSITION BEFORE ADJUSTING THE OSCILLATOR
SCREWS, SET THE FINE TUNING CONTROL

 FINE TUNING STOP 1.F CHANNEL ("U" MODELS) OCCURS
BETWEEN CHANNEL ANO CHANNEL 13
V. H F ANTENNA TERMINALS IST. I.F. TUNEABLE COIL ("U'MODEL)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ZENITH Chassis $16 \mathrm{C} 20,-\mathrm{Q}, 16 \mathrm{C} 21,-\mathrm{Q},-\mathrm{Z}, 16 \mathrm{C} 22 \mathrm{Q}, 16 \mathrm{C} 23,16 \mathrm{C} 24,18 \mathrm{C} 20,-\mathrm{Q}, 18 \mathrm{C} 24 \mathrm{Q}$

BULLS EYE TUNER ADJUSTMENTS

To adjust the receiver for bull's eye tuning, set the fine tuning control to its approximate centerposition. Without further adjustment of this control insert a 68-31 alignment wrench through the hole provided at the rear of the tuner and adjust each operating channel to resonance. It will be noted that turning the adjustment screw to one side of resonance results in a faded, washed-out picture with the spacings between the wedge lines "fogged" and turning the screw in the opposite direction causes the spaces between the lines to clear up, however, going beyond this point will cause the picture to take on a "wormy" appearance from sound getting into the picture. Correct adjustment is obtained by adjusting for a "wormy" picture and then back down the adjustment screw slightly until the picture clears up.

AGC ADJUSTMENT

Tune in a strong TV signal and slowly turn the delay control until a point is reached where the picture distorts and buzz is heard in the sound. The control should then be backed down from this position and set at a point comfortably below the level of intercarrier buzz, picture distortion and improper sync. This setting will correspond to approximately 3 V . peak to peak output from the video detector.

CAUTION: Misadjustment of the AGC control can result in a washed-out picture, distorted picture, buzz in the sound or complete loss of picture and sound.

FRINGE LOCK ADJUSTMENT

The fringe lock adjustment is made to obtain best possible synchronization under weak and noisy signal conditions. To adjust, first check the AGC adjustment and proceed as follows:

1. Turn the fringe lock control fully clockwise and then back it off approximately $1 / 4$ turn. Adjust the vertical and horizontal hold controls and check operation of the receiver to see that it syncs normally when the turret is switched from channel to channel.
2. If the picture jitters or shows evidence of delay, tearing, split phase, etc., back down the fringe lock control further, a few degrees at a time, each time readjusting the hold controls and switching from channel to channel until normal sync action is obtained. It will be found that under normal signal conditions, the correct adjustment will be near the counterclockwise position of the control.
3. In fringe and noisy areas, the best adjustment will be found at or near the maximum clockwise position of the control; however, do not automatically turn the fringe lock fully clockwise in fringe areas. Follow the procedure outlined. In areas where
both local and fringe signals are received, a compromise setting should be made for best overall performance.

AFC ADJUSTMENT

The horizontal hold control is equipped with a stop which limits knob rotation to approximately 270 degrees. To adjust the AFC, remove the knob and turn the shaft to a position where it is virtually impossible to disrupt horizontal synchronization when switching from channel to channel. After adjustment, install the knob with its pointer centered between the stops.

WIDTH ADJUSTMENT

To obtain proper width, slide and turn the metal sleeve along the neck of the picture tube. A setting will be found which results in proper width and linearity.

Fig. 4 IF-RF Alignment Fixtures

SOUND ALIGNMENT

Proper alignment of the 4.5 Mc intercarrier sound channel can only be made if the signal to the receiver antenna terminals is reduced to a level below the limiting point of the 6BN6 Gated Beam Detector. This level can be easily identified by the "hiss" which then accompanies the sound. Various methods may be used to reduce the signal level; however, a step attenuator is recommended for most satisfactory results.

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ZENITH Chassis $16 \mathrm{C} 20,-\mathrm{Q}, 16 \mathrm{C} 21,-\mathrm{Q},-\mathrm{Z}, 16 \mathrm{C} 22 \mathrm{Q}, 16 \mathrm{C} 23,16 \mathrm{C} 24,18 \mathrm{C} 20,-\mathrm{Q}, 18 \mathrm{C} 24 \mathrm{Q}$

I. F. FILTER BOX
V.h.F. ANTENNA TERMINALS

CONVERTER PLATE TUNING

SHAFT AND KNOB FOR थI" "Q" MODEL SHOWN ABOVE
FINE TUNING CORD DRIVE

Fig. 3 Tube and Trimmer Layout, Bull's Eye Tuner

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

ZENITH Chassis $16 \mathrm{C} 20,-\mathrm{Q}, 16 \mathrm{C} 21,-\mathrm{Q},-\mathrm{Z}, 16 \mathrm{C} 22 \mathrm{Q}, 16 \mathrm{C} 23,16 \mathrm{C} 24,18 \mathrm{C} 20,-\mathrm{Q}, 18 \mathrm{C} 24 \mathrm{Q}$

1. Connect the step attenuator between the antenna and the receiver antenna terminals.
2. Tune in a tone modulated TV signal. Adjust the step attenuator until the signal is reduced to a level where a "hiss" is heard in the sound.
3. Adjust the sound take-off coil (top and bottom cores), intercarrier transformer, quadrature coil and buzz control for the best quality sound and mirimum buzz. It must be remembered that any of these adjustments may cause the "hiss" to disappear and further reduction of the signal will be necessary to prevent the "hiss" from disappearing during alignment.

VIDEO IF ALIGNMENT

1. Slowly turn the channel selector until the tuner rotor is made to rest between two channels. This will prevent an erroneous response.
2. Connect an oscilloscope through a 10,000 ohm isolation resistor to terminal "C" (detector). Connect the ground lead to chassis.
3. Feed the sweep generator through the special terminating network shown in Fig. 4 to point " G " (Pin 1 of the 3 rd IF). Adjust generator to obtain a response similar to Fig . 5 with a detector output of 3 volts peak to peak. Do not exceed this level during any of the adjustments.
4. Set the marker generator to 45.75 Mc and alternately adjust the top and bottom cores of the 4th IF for maximum gain and symmetry with the 45.75 Mc marker positioned as shown in Fig. 5. The 39.75 Mc

marker can fall within $\pm 0.5 \mathrm{Mc}$ of the specified frequency. If the correct response cannot be obtained, check the position of the cores to see that they are not butted but are entering their respective windings from the opposite ends of the coils.
5. Connect the sweep generator to terminal "A" (mixer grid, see Fig. 1, 2 or 3 , depending on tuner). Connect terminal " F " to chassis and connect a jumper between terminal " E " and the junction of the 56 (68 in 16C20) and 1500 ohm resistors in the cathode of the 1 st IF. Adjust sweep to obtain a response similar to Fig. 8. Switch oscilloscope to 10 X gain to "blow up" the traps.

Fig. 6 Expanded View of Traps
6. Refer to Fig. 6 and 7 and adjust the 39.75 Mc 41.25 Mc, and the two 47.25 Mc traps for minimum marker amplitude. (16 C 20 chassis has one 47.25 Mc trap.) It can be seen that high oscilloscope gain must be used to "run" the response off the screen in order to view a "blow up" of the traps.
7. Disconnect the jumper between "E" and the 56 and 1500 ohm cathode resistors. Connect this jumper between "E" and chassis. Adjust sweep generator for 3 volts peak to peak output. Alternately adjust the 2 nd , 3rd, 1 st IF and the converter plate coil until an overall response similar to Fig. 8 (Fig. 9 for 16 C 20) is obtained. It will be found that the 2nd IF affects the low side (42.75 Mc) and the 3rd IF the high side of the response. If the receiver is equipped with a target tuner, adjust the IF trap L1 for minimum response at 45.5 Mc . After alignment remove all jumpers and check operation.

Fig. 5 4th IF Response

Fig. 7 Further Expansion of Fig. 6 for Detail View of the $39 \mathrm{J5}$ and 47.25 Mc Traps.

Fig. 8 Overall IF Response Fig. 9 Overall IF Response 16C20 Chassis Only

Schematic Diagram S-45834 Space Command Control Chassis

CENTERING ADJUSTMENT

The centering assembly is built into the yoke housing. This assembly is made of two magnetic rings which can be rotated by means of tabs. Centering is accomplished by gradually rotating the tabs with respect to each other, then rotating both tabs simultaneously until the picture is centered.

CORRECTOR MAGNET ADJUSTMENT

Two corrector magnets are used to obtain straight, sharply focused sweep lines across the face of the picture tube. The magnets are mounted on the deflection coil mounting brackets and can be moved in and out or up and down by bending the flexible arms which support them. Adjustment has been made at the factory and should not require readjustment
unless accidentally bent out of position. If this occurs, proceed as follows:

1. With the vertical and horizontal size controls, reduce the size of the picture to a point where the four corners and sides of the picture are visible. (In some receivers it may not be possible to reduce the picture size sufficiently to see all the sides and in this case it may be necessary to shift the picture with the centering control to view one side at a time.)
2. Bend the corrector magnet arms until the corners become right angles and the top of the raster is parallel with the bottom and the left side is parallel with the right side. After adjustment, the picture should be restored to normal size.

NOTE: Misadjustment of the corrector magnets may cause pincushioning, barreling, keystoning, poor linearity, etc.

INDEX

Admiral Corp.	
4G3	13
4H3	13
SIIA	13
15A2	13
15B2	13
15B3	13
15D1B	24
16 RIC	5
16AS1C	5
16R1C,CB	5
16S1C	5
16SICB	5
P17Fl	13
P17F2	13
P17F3	13
PL17F31B	24
PL17F32B	24
PLI7F33B	24
PL17F41B	24
PL17F42B	24
PLI7F43B	24
PS17F12	13
PSI7F13	13
PS17F22	13
PSI7F23	13
C21E11E,F	5
C21E12E,F	5
C21E13E,F	5
CA2IEIIE	5
CA21E12E	5
CA21E13E	5
L21E22E, F	5
L21E23E,F	5
S21A	13
T21E20E,F	5
T21E21E, F	5
T21E22E,F	5
T21E23E	5
TA21E20E	5
TA21E22E	5
TA21E23E	5

Emers on Radio	
1500	25
1502	25
1503	25
1504	25
1505	25
1506	25
120451H	25
120451HC	25
120452 M	25
120452 MC	25
General	
Electri	
M5 Series	31
17 T 3304	31
17 T 3305	31
1773306	31
17 T 3310	31
17 T 3311	31
1713315	31
17 T 3316	31
17 T 3317	31
17 T 3318	31
1713320	31
17 T 3321	31
17T33310	31
$21 C 3439$	31
2103440	31
2103441	31
2103442	31
21.3443	31
21 C3445	31
$21 \mathrm{C3446}$	31
2103450	31
21.3451	31
2103458	31
21.3459	31
2103460	3
C3461	

GE, Continued	
2103478	31
2103479	31
2103482	31
2103483	31
21L3455	31
2153456	31
21T3417	31
21 T3418	31
21 T3419	31
21 T3420	31
2173421	31
2173425	31
21T3429	31
2173430	31.
21T3431	31
21 T3432	31
21T3435	31
21T3436	31
Hoffman Radio	
MARK 7	39
335	39
336	39
B1277	39
K1277	39
M1277	39
P1277	39
W1277	39
B1291	39
K1291	39
M291	39
SP1291	39
W1291	39
B3411	39
M3411	39
SP3411	39
W3411	39
B3421	39
M3421	39
SP3421	39
W3421	39

Montgomery	
Ward \& CO	
Serial 85X	43
WG-4204A	43
WG-5062A	47
WG-5067A	47
WG-5072A	47
WG-5077A	47
WG-5162A	47
WG-5172A	47
Motorola	
14P14-1	59
17P5-1 thru	
17P5-5A	51
17 T 32 BZ	51
17 T 32 WH	51
17133B, M	51
Y17P5-1 thru	
Y77P5-5F	51
Y 7 T32BZ	51
21C9+	79
21K97B, M	79
21K99B, +	79
21K104B,4	67
21K104W	67
21K105+	67
21K107B, M	67
21 K1 07M	67
21K108W	67
21k109M	67
21Kılow	67
21K115+	79
21K116+	79
21T57++	79
21 T64B, M	83
A21K106B, M	67
A21T60++	67
Y21C9 +	79
Y21K97+	79
Y21K99+	79

Motorola, Cont.	
Y21K104+	67
Y21K107B, M	67
Y21K115++	79
Y21K116++	79
Y21T57++	79
Y21T62+	79
Y21T63+	79
Y21T64B, M	83
LTS-430	51
QTS-430	51
TS -430	51
TS-434	59
MTS-551, -Y	79
TS-551,-Y	79
VTS-551	79
WTS-551	79
WTS-551Y	79
TS-552	67
TS-552Y	67
TS-553	67
TS-553Y	67
WTS-553	67
TS-556,-Y	83
Olympic Radio	
GA	97
GAU	97
GB	97
GBU	97
GD	93
GDJ	93
GF	97
GFU	97
GH	93
GHU	93
GT	89
GTU	89
GU	89
GUO	89
14TT91, ${ }^{\text {d }}$	89
14TT92,0	8

(Index continued on page 192)

VOLUME TV-16, ADDITIONAL 1959 TELEVISION SERVICING INFORMATION

INDEX Continued

Olympic, Cont.	
17TU93,0	89
17T094,0	89
17T098,0	89
ICA96, ${ }^{\text {d }}$	97
ICA97,	97
TA100, 0	97
TB101, ${ }^{\text {d }}$	97
TDI02,0	93
CA105, 0	97
CB106,0	97
CB107, ${ }^{\text {d }}$	97
CDI08,0	93
CDI09, 0	93
CDIIO,0	93
PKA115, 0	97
PKBll6, U	97
KD118, ${ }^{\text {d }}$	93
PKDI18, ${ }^{\text {d }}$	93
KD119, ${ }^{\text {d }}$	93
PKD119, ${ }^{\text {d }}$	93
KD120, ${ }^{\text {d }}$	93
CF400, 0	97
CF401, 0	97
CH402, O	93
KF405	97
KF4050	97
KH406, ర	93
KH407, ${ }^{\text {d }}$	93
Packard-Bell	
V8-2	101
17 VCl	101
17VT3	101
17 VT 4	101
$17 \mathrm{VT8}$	101
$17 \mathrm{VT9}$	101
21VT4	101
Philco Corp.	
9 L 37	105
9 L 370	105
9 L 38	105
9L38A	115
9L38U	105
9 L 60	117
9L600	117
G4240L, M	117
OG4240L,M	117
G4242L, M	105

Westinghouse+		Zenith Radio	
H21K312	173	16C20,-Q	179
H21K313	173	16C21,-2	179
H21K0270	161	$16 \mathrm{C212}$	179
H21K0271	161	$16 \mathrm{C22Q}$	179
H21KU272	167	16623	179
H21KU273	167	16C24	179
H21K0274	167	18c20,	179
H21KU275	167	18C24Q	179
H21 KU276	167	C1415L	179
H21K0305	173	Cl416B	179
H21KU306	173	C1417L	179
H21KU308	173	C1715L	179
H21K0309	173	C1716C	179
H21K0310	173	C1717J	179
H21T262	161	C1719P	179
H21T263	161	C1720C	179
H21T264	161	C2001L	179
H21T265	161	B2221RZ, +	179
H21T266	161	C2221R, ${ }^{\text {P }}$	179
H21T267	161	B2223++	179
H21 T268	161	C2223E, +	179
H21T269	161	C2225E,	179
H21T270	161	B2245+	179
H21T271	161	C2245E, +	179
H21T300	173	C2246E, +	179
H21T301	173	C2247E, +	179
H21T302	173	C2249H, +	179
H21TU262	161	C2254E, +	179
H21TU263	161	C2282E, +	179
H21TU264	161	C2284H,R	179
H21 TU265	161	C2330E,R	179
H21 TU266	161	C2358E, +	179
H21 TU267	161	C2359E, W	179
H21TU268	161	C2360M,R	179
H21TU269	161	C2673E, +	179
H21 TU302	173	C3000E,R	179
V-2365-11	153	C3001E, +	179
V-2365-12	153	C3004E, +	179
V-2374-1	161	C3006E, +	179
V-2374-2	161	C3007E, +	179
V-2375-1	167	C3008R	179
V-2375-2	167	C3009E, +	179
V-2376-1	173	C3010E, +	179
V-2376-2	173	C3011E, +	179
V-2377-1	161	C3012H,R	179
V-2377-2	161	C3013H	179
HT-3500, 0	161	C3014H,R	179
HT-3501, U	161	C4007E,R	179
HT-3502, ס	161	C4012H,R	179

Supreme Publications are Available at All Leading Parts Jobbers

[^0]: The chassis must be removed from the cabinet as previously described before the picture tube can be removed.

 After removing the chassis remove four screws which go through the bottom of the cabinet into the tube strap brackets. Remove the top left hand nut holding the tube bracket to the top front of the cabinet. Hold the neck of the tube in the left hand and remove the top right hand nut. Carefully remove the tube from the cabinet.

 To replace the picture tube, lay the tube face down on a clean cloth so that the tube face does not become scratched. Loosen the nut on the spade bolt securing the picture tube in the tube strap. Remove tube strap from the tube. Place the strap on the new tube so that when facing the back of the tube the anode button is to the right with the tube strap ears at the top. Position the tape between the tube strap and the picture tube. Tighten the nut on the spade bolt to secure the strap to the tube. Replace the tube assembly in the cabinet and observe if the tube aligns properly with the mask. If it does not, remove the tube from the cabinet and reposition the strap as necessary to effect proper alignment of the picture tube with the mask. Re-assemble picture tube into the cabinet by reversing the disassembly procedure.

[^1]: NOIE-In UHF receivers ine filament voltages in the tuner and above the fun

[^2]: "the heater string will be alightly greaper because of the filament voltages of the tuner tubee

[^3]: Resistances from tube pin to B - (except ") in ohms unless otherwise noted. Controls set for normal picture.
 -Resistances from tube pin to junction of L400 \& C405A.

