PHILHARMONIC PAGE 19-1


## MODET 300-C MODEL 448 C



## INSTALLATION.

ANTENNAS. - For AM operation, the loop antenna attached to the rear of the chassis is generally the most satisfactory. However, terminals marked A and G are provided on the loop for the connection of an external antenna and ground, which may be used if desired.

For the reception of local FM stations, a folded-dipole antenna is provided in the cabinet. If reception of other than strictly local FM stations is desired, a good external FM antenna should be installed and connected with a 300 -ohm balanced line to the input terminals on the rear of the chassis next to the phonograph input jack 124. The internal dipole must be disconnected when using the external antenna, and vice-versa.

POWER CONNECTIONS. - Connect the power cord to an alternating-current supply of 105125 volts, 60 cycles. Be sure that the phono-graph-motor cord is plugged into receptacle 121, the speaker plug l23 into receptacle122, and the phonograph-pickup cord into phonograph jack 124.

CONTROLS. - The control knobs on the front panel perform the following functions. The numbers are from left to right.

1. Power switch and volume control.
2. Tone control. Clockwise rotation gives more high-frequency response.
3. Selector switch. Left position, AM radio; center, FM radio; right, phonograph.
4. Tuning control.

MODEL 448C
POWER SOURCE: 105-125 volts, 60 cycles.
POWER CONSUMPTION:
Radio, 80 watts.
Radio and Phonograph, 102 watts.

## OPERATION.

RADIO.- Start the set by turning the volume control clockwise about one-third of the way.

Set the selector switch on AM or FM as desired.

Turn the tuning control until the pointer indicates the frequency of the desired station. When the station comes in, slowly rotate the knob back and forth and determine the exact center position, where the background noise disappears or is sharply reduced, and the signal comes in clearly with the greatest volume. This is the correct tuning position, and careful adjustment is required, especially on FM , if the full rich-tone capability of the receiver is to be realized. A strong FM station may also be received, with considerable distortion, at positions slightly above and below the correct center position. This condition is quite normal.

Adjust the tone control for the most pleasing operation.

PHONOGRAPH. - Set the selector switch on the right-hand position. Operate the record changer in accordance with the accompanying instructions.


## A-M ALIGNMENT

1. TUNING CAPACITOR fully meshed. Adjust dial pointer to reference dot at the low-frequency end of the scale.
2. VOLUME CONTROL maximum clockwise.
3. TONE CONTROL maximum clockwise.
4. SELECTOR SWITCH on AM (left-hand position).
5. SIGNAL GENERATOR. - Use standard A-M Signal Generator with approximately 30 per cent modulation at 400 cycles.
6. SIGNAL-GENERATOR COUPLING.-Low side grounded to chassis. High side connected through 0.01 mf d capacitor to coupling point.
7. LOOP COUPLING.- For loop coupling, use a Standard Signal Injection Loop according to specifications. If a standard loop is not available, make a loop with 5 or 6 turns of insulated wire, close-wound on a $3^{\prime \prime}$ to $4^{\prime \prime}$ diam form. Place the loop coaxially with and at least 10 inches back of the receiver loop. Connect to the signal generator through a resistor of from 100 to 400 ohms.
8. RECEIVER OUTPUT.
(A) Use a d-c electronic voltmeter similar to the Voltohmyst, low side to chassis, high side to AVC terminal of loop.
(B) Use a rectifier-type a-c voltmeter or a standard output meter across the speaker voice coil.

|  | SIGNAL GENERATOR |  |  | RECEIVER | RECEIVER | . OUTPUT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { FREQ, } \\ & \text { KC } \end{aligned}$ | APPROX. SIGNAL LEVEL | $\begin{gathered} \text { COUPLE } \\ \text { TO } \end{gathered}$ | $\begin{gathered} \text { DIAL } \\ \text { SETTING } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { (A) AVC } \\ \text { VOLTS } \\ \text { INCREASE } \end{array}$ | $\begin{gathered} \text { (B) VOICE } \\ \text { COIL, } \\ \text { WATTS } \end{gathered}$ | ADJUST | REMARKS |
| 1. | 455 | 800 uv | $\begin{gathered} \text { Pin } 8, \\ 6 \text { SA7 } \end{gathered}$ | Near 600 | -0.6 | 2.0 | $\begin{aligned} & A-12, A-13, \\ & A-8, A-9 \end{aligned}$ | Adjust for maximum watts or AVC. Check for smooth round-top selectivity curve. |
| 2. | 1600 | $400 \mathrm{uv} / \mathrm{m}$ | Loop | $1600$ <br> (Capacitor wide open) | -0.6 | 2.0 | A-17, A-16 | Adjust for maximum output. |
| 3. | 1400 | $400 \mathrm{uv} / \mathrm{m}$ | Loop | Near 1400 | -0.6 | 2.0 | A-16 | Tune to signal and adjust A-16 for maximum output. |
| 4. | 600 | 400uv/m | Loop | Near 600 | -0.6 | 2.0 | A-18 | Rock tuning control and simultaneously adjust A-18 for maximum output. |

5. Repeat steps 2, 3, and 4 in order until no further improvement can be made.


DIAGRAM II. F-M R-F ALIGNMENT.

## F-M ALIGNMENT

Using Frequency-Modulated Signal Generator and Oscilloscope

## ALIGNMENT OF I-F STAGES

GENERAL. - When the designated F-M signal from the signal generator is applied to the I-F amplifier or ratio detector, the output at point (A) viewed on an oscilloscope with a 60-cycle linear horizontal sweep is represented by pattern A. Pattern B shows the output at point (B) with the 8 mfd capacitor 33 disconnected. Patterns more useful for alignment purposes are obtained by operating the horizontal linear sweep of the scope at twice the modulation frequency or 120 cycles per second. This gives a double trace on each pattern, one trace representing the increasingfrequency half of the modulation cycle and the other representing decreasing frequencies, patterns I and V. When properly aligned, the two traces of pattern $V$ coincide.

CENTER-FREQUENCY MARKER. - An additional requirement for proper alignment is that the signal generator must operate at the correct center frequency. The 10.7 Mc signal of the marker oscillator is used to check the center frequency. As the F-M signal sweeps its band, it produces a beat frequency with the marker
signal, which decreases as the center point is approached and increases on the other side of center. These markers are shown properly centered in patterns II and VI. Because of the amplitude rejection of the ratio detector, it is difficult to determine the center point of the markers in pattern II, but they can readily be located by temporarily shorting terminals 1 and 2 or 2 and 3 of ratio-detector transformer 113. The resulting effect is shown in patterns III and IV. It is advisable to remove the marker signal when adjusting for coincidence of patterns or straightness of crossover lines, but checks should be made with the marker to make sure that the signal generator has not drifted from the correct center frequency. Pattern VII shows the effect when the signal generator is off center. The markers may be entirely separated or partially overlap. To correct this condition, readjust the center frequency of the signal generator until the markers come together and the combined marker length is a minimum, as in pattern VIII. Then realign to give pattern V or VI.

## PROCEDURE

F-M SIGNAL GENERATOR, center frequency 10.7 $\mathrm{Mc} / \mathrm{sec}, 225 \mathrm{Kc}$ deviation, 450 Kc total sweep, at 60 cycles $/ \mathrm{sec}$. Use only enough output for satisfactory wave forms.
MARKER OSCILLATOR, $10.7 \mathrm{Mc} / \mathrm{sec}$ fixed, crystalcontrolled or accurately calibrated. Use no more output than necessary. Excessive amplitude will distort the patterns.

COUPLING OF SIGNAL GENERATOR AND MARKER OSCILLATOR. - See Diagram I. Low side to chassis. Combined output through 0.002 mfd to coupling point.

OSCILLOSCOPE. - Vertical amplifier at maximum gain. Linear horizontal sweep synchronized at 120 cycles per second by ripple voltage from pin 2 of rectifier 5Y3GT of the receiver. Do not use internal Y-signal synchronization This will result in off-center alignment.

SELECTOR SWITCH on FM (center position).
VOLUNE AND TONE CONTROLS, maximum clockwise. HOOKUP, as in Diagram I.
NOTE. Unless receiver is seriously misaligned, omit steps 1 and 2.

|  | SIGNAL GENERATOR |  | RADIO DIAL | OSCILLOSCOPE |  | ADJUST | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { CENTER } \\ & \text { FREQ. } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { COUPLING } \\ \text { POINT } \end{gathered}$ |  | VERTICAL INPUT | $\begin{gathered} \text { PATTERN } \\ \text { NO. } \end{gathered}$ |  |  |
| 1 | $\begin{gathered} 10.7 \\ \mathrm{Mc} \end{gathered}$ | Pin 4 6SH7 | Near 90 Mc . Tune off stations. | High side to point (A). Low side to chassis. | $\begin{aligned} & \text { I, II } \\ & \text { III, IV } \end{aligned}$ | $\begin{array}{r} A-14 \\ A-15 \\ \text { alter- } \\ \text { nately } \end{array}$ | Adjust for maximum amplitude, symmetry, and straightness of crossover, as in patterns I and II. <br> Verify position of centerfrequency marker as in patterns III and IV. |
| 2 | $\begin{gathered} 10.7 \\ \mathrm{Mc} \end{gathered}$ | $\operatorname{Pin}_{6 \mathrm{BE} 6} 7$ | Near 90 Mc . <br> Tune off stations. | High side to point (B). <br> Low side to chassis. | V, VI | $\begin{aligned} & A-11 \\ & A-10 \\ & A-7 \\ & A-6 \\ & A-14 \end{aligned}$ | Disconnect 8 mfd capacitor 33 from point (B). <br> Adjust for maximum amplitude, symmetry, and coincidence, as in pattern $V$, maintaining markers in center as in pattern VI. |
| 3 | $\begin{gathered} 10.7 \\ \mathrm{Mc} \end{gathered}$ | $\operatorname{Pin}_{6 B E 6} 7$ | Near 90 Mc. <br> Tune off stations. | High side to point (A). <br> Low side to chassis. | I, II | $\begin{aligned} & A-6 \\ & A-7 \\ & A-10 \\ & A-11 \\ & A-14 \\ & A-15 \end{aligned}$ | Reconnect capacitor 33 to point (B). <br> Recheck adjustments for maximum amplitude, symmetry and straightness of crossover, as in patterns I and II. Check marker positions as in patterns III, IV. |

## PHILHARMONIC RADIO CORP.

F-M ALIGNMENT (Continued)

## Alignment of R-F Section

HOOKUP, as in Diagram II.
SELECTOR SWITCH O F FM.
VOLUNE AND TONE CONTROLS, maximum clockwise.
F-M SIGNAL GENERATOR, 50 Kc deviation, 100 Kc total sweep at any rate from 60 to 400 cycles per second.

OSCILLOSCOPE. - Adjust horizontal sweep to the modulation frequency of the signal generator and lock it into step with the internal (Y-signal) synchronizing control.

TUNING. - Patterns IX thropgh XIII are wave
forms that will show on the oscilloscope as the tuning control is tuned through the F-M signal. Pattern XI represents the correct tuning position; the pattern is a pure sine wave of greater amplitude than the side patterns. Patterns IX and XIII represent the two side positions where the signal is also received, but distorted and with less amplitude. CAUTION
When aligning, do not confuse the correct position, Pattern XI, with either side position, Patterns IX and XIII. When tuned correctiy, a slight movement of the tuning control to either side will give the highly distorted double-frequency patterns $X$ and XII.



F-M ALIGNMENT. MILLER-RESISTOR METHOD
Using An Unmodulated Signal Generator and D-C Electronic Voltmeter.

GENERAL. - For this receiver, the Miller-resistor method, which takes its name from $\cdot \mathrm{Dr}$. John M. Miller, is the most satisfactory of the alignment procedures which do not require the use of an $\mathrm{F}-\mathrm{M}$ signal generator. With this method, resistance loading is applied to all the secondary circuits in the amplifier while the primary circuits are tuned to the desired center frequency. Then the primary circuits are loaded with the proper resistors while the secondary circuits are tuned.

The resistor across the primary reduces the $Q$ of the transformer sufficiently to produce a single-peak response curve so that the secondary can be tuned to frequency. Its removal does not detune the secondary circuit appreciably. A similar effect is produced when the resistor is across the secondary, permitting accurate tuning of the primary. Small half-watt carbon resistors must be used with the shortest possible leads, to avoid over-all regeneration. Solder-tack the resistor across the transformer terminals.

SELECTOR SWITCH, on F-M (center position).
VOLUNE AND TONE CONTROLS, maximum clockwise.
SIGNAL GENERATOR, unmodulated, accurately calibrated. Ranges 10 to 11 Mc and 87.5 to 108 Mc. Output adjustable from 100 to 100,000 microvolts. Connect low side to chassis, for steps 1-5.
OUTPUT INDICATOR. - D-C electronic voltmeter, preferably zero center, with input resistance of at least one megohm on low range, which should not exceed five volts full scale.
OUTPUT METER CONNECTIONS. - Probe to point (A), ratio-detector output, zero volts to chassis when correctly adjusted. Probe to point (B), F-M AVC source, reading the increase in negative voltage above the value obtained when no signal is applied. The reading with no signal is caused by the diode and amplifier-tube contact potentials, and will usually be about -0.5 to -0.7 volts.

|  | SIGNAL GENERATOR |  | RADIO DIAL. <br> TUNE OFF STATIONS | $\begin{gathered} \text { VTVM } \\ \text { TO } \\ \text { POINT } \end{gathered}$ | MILLER <br> RESISTORS |  | ADJUST | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { FREQ, } \\ & \text { Mc } \end{aligned}$ | COUPLING |  |  | OHMS | ACROSS |  |  |
| 1 | 10.7 | $\begin{aligned} & 0.002 \mathrm{mfd} \\ & \text { to pin } 4 \end{aligned}$ | Near 90 Mc | (B) | 6800 | $\begin{array}{\|c\|c\|} \hline 1 \text { and } & 3 \\ \text { of } & 113 \end{array}$ | A-14 | Adjust for maximum deflection. |
| 2 | 10.7 | 1 | " | (A) | " | " | A-15 | Adjust for zero deflection, between points of sharp polarity reversal. If approach to zero is slow with no reversal, turn A-15 in opposite direction. |
| 3 | 10.7 | $\begin{aligned} & 0.002 \text { mfd } \\ & \text { to pin } 7 \\ & 6 \text { BE6 } \end{aligned}$ | " | (B) | $\begin{aligned} & 6800 \\ & 6800 \end{aligned}$ | $\begin{array}{\|c\|} \hline 3 \text { and } 4 \\ \text { of } 111 \\ 3 \text { and } 4 \\ \text { of } 109 \end{array}$ | $\begin{aligned} & A-10 \\ & A-6 \end{aligned}$ | Adjust for maximum deflection. |
| 4 | 10.7 | " | 1 | (B) | $\begin{aligned} & 22000 \\ & 22000 \end{aligned}$ | $\begin{gathered} 1 \text { and } 2 \\ \text { of } 111 \\ 1 \text { and } 2 \\ \text { of } 109 \end{gathered}$ | $\begin{aligned} & \text { A- } 11 \\ & A-7 \end{aligned}$ | Adjust for maximum deflection. |
| 5 | 10.7 | " | " | (B) | None | -- | -- | Move input signal from 10 Mc through 11.5 Mc . Response curve should be flat-topped, symmetrical, and centered at 10.7 Mc . If not, repeat steps 1 , 2, 3, 4 carefully. |
| 6 | 108 | See <br> Remarks | $\begin{aligned} & 108 \mathrm{Mc} \\ & \text { (Capacitor } \\ & \text { open) } \end{aligned}$ | (B) | None | -- | $\begin{aligned} & \text { A-4 } \\ & \text { (A-3 } \\ & \text { tight) } \end{aligned}$ | Signal generator across F-M dipole input terminals with 100 -ohm $1 / 2$-watt carbon resistor in each side. Tighten A-3, then adjust A-4 for maximum deflection. See note 1. |
| 7 | 87.8 | " | Near 88 Mc (Capacitor closed) | (B) | -- | -- | A-5 | Adjust for maximum deflection. Repeat steps 6 and 7 until no change in adjustment is required. |
| 8 | 105 | " | Near 105 Mc | (B) | -- | -- | A-3 | Rock tuning control and adjust $\mathbf{\Delta}-3$ for maximum deflection. |
| 9 | 90 | " | Near 90 Mc | (B) | -- | -- | A-2 | Rock tuning control and adjust A-2 for maximum deflection. Repeat 8 and 9. |
| 10 | 100 | " | Near 100 Mc | (B) | -- | -- | A-1 | Rock tuning control and adjust A-1 for maximum deflection. |

NOTE 1. If two peaks are found, use position with A-4 backed out (higher frequency).

PAGE 19-8 PHILHARMONIC




Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on R. F. section (A) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trimmers to 455 K.C., using least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad. An output meter may be clipped across the voice çoil lugs.

To align broadcast R. F. trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning plates completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer, on the under side of the chassis, to 1650 K.C. With tuning capacitor fully meshed adjust the padder on the chassis deck to 535 K.C. Readjust both Signal Generator and tuning capacitor to 1550 K.C. and adjust the R. F. trimmer on the loop for maximum response.

To align the short wave band connect the Signal Generator through a 0.01 mf capacitor and a 400 ohm resistor in series (used as a dummy antenna) to the antenna connection on the loop antenna. With the tuning capacitor plates completely out of mesh, and pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (on the under side of the chassis) to 18.25 magacycles. Readjust both Signal Generator and tuning capacitor to 16 megacycles and adjust short wave antenna coil trimmer for maximum response. With tuning capacitor fully meshed, the receiver should tune to 5.75 megacycles, however no adjustment is required at this point.

For ehecking purposes five marks are engraved on the front of the dial plate. These represent, in order, the pointer position with the capacitor plates fully meshed and the pointer settings for $600 \mathrm{kc}, 8 \mathrm{mc}$, 16 mc , and 1550 kc .
Pushbuttons: To set pushbuttons remove pushbutton knobs. This will expose a set screw on the shaft of each pushbutton. Starting at one end push a pushbutton down and loosen its set screw. Set the bandswitch to the broadcast position. Hold the pushbutton down and tune the manual tuning control to the station to which the pushbutton is to be set. Still holding the pushbutton down tighten its set screw. The pushbutton may now be released and its knob replaced. It will now select the station to which it was set. The other pushbuttons may be set in a similar manner.

## REPLACEMENT PARTS LIST




CLARI-SKEMATIX
PILOT RADIO CORP.
PILOT PAGE 19-3 MODELS G-568, G-509


©John F. Rider



PAGE 19-8 PILOT

| ALIGNMENT CHART |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | RECEIVER |  | SIGNAL GENERATOR |  | DUMMYANTENNA | $\begin{aligned} & \text { ADJUSTMENTS } \\ & \text { (All maximum } \\ & \text { output) } \end{aligned}$ |
| STEP | CIRCUIT ALIGNED | BAND SWITCH | POIAL | frequency | CONNECTION |  |  |
| 1 | IF | BC | $\begin{gathered} \text { Low end } \\ \text { of dial } \end{gathered}$ | 262 Kc | Grid of I.A7GT conv. | 0.1 mfd. | \#1, 2, 3, 4 |
| 2 | BC | BC | 1400 KC | 1400 KC | Antenna Post | 200 mmfd . mica cap. | $\begin{aligned} & \text { First \#5 } \\ & \text { Then \#6 } \end{aligned}$ Then \#6 |
| 3 | BC | BC | 600 KC | 600 KC | Antenna Post | 200 mmfd . mica cap. | \#7 |
| 4 | Repeat steps 2 and 3 |  |  |  |  |  |  |
| 5 | sw | sW | 15 MC | 15 MC | Antenna Post | 400 ohm carben resistor | \#8 |
| 6 | sW | sW | Tune in generator | 12 MC | Antenna Post | 400 ohm carbon resistor | $\begin{aligned} & \text { Firs: \#9 } \\ & \text { Then \#10 } \end{aligned}$ |
| 7 | Repeat step 2, trimmer \#5 only |  |  |  |  |  |  |
| 8 | BC | BC | Tune in broadcast station near 1400 KC |  |  |  | \# 11 |



PAGE 19-2 RCA
MODELS 8B41, CHASSIS RADIO CORP. OF AMERICA RC-1069; CB42 CHASSIS RC-1069A

## Alignment Procedure

FODELS 8B43, CHASSIS RC-1069B; 8B46 CHASSIS RC-1069C

Output Meter.-Connect meter from top lug of TB5 (plate of 3S4) to ground. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Alignment Shield.-It is necessary to use a shield during oscilator alignment.
Fig. 3 shows the modifications necessary to convert the center strip portion of a case into a convenient shield to be used as a substitute for the regular case center strip during oscillator align ment.
If a substitute case is not available, a shield may be improvised using a sheet of aluminum (DO NOT USE STEEL) to approximate the shielding effect of the case on the lins tube, tuning condenser and oscillator coil.

CRITICAL LEAD DRESS

1. Dress blue, green, and black leads of second I.F. transformer as direct as possible. If excess lead exists, dress down side of socket and flat against chassis to transformer opening.
2. Dress audio screen bypass capacitor (C17), and the lead to the volume control, up and underneath the shelf supporting the output transformer.
3. Dress audio coupling capacitor (C15), directly in front of Cl7, and against the side of the lst I.F. transformer.
4. Wire in the three capacitors pyramided behind the speaker with enough space at the end of battery holder to allow holder to move when battery is replaced. Dress the ground leads of these capacitors to keep from shorting " $+A$ " to chassis ground.
5. Observe the outside foil connections on all paper capacitors, also the polarity of the electrolytic capacitor, C19.
6. Keep blue and red leads of output transformer above the mounting shelf.
7. Dress leads to gang as far as possible from all metal parts.
8. Dress neutralization bypass capacitor, C9, as near metal chassis as possible.
9. Dress bypass C5 over bottom end of V2 (1U4), tube socket.
10. Dress neutralization capacitor, C8, as near metal chassis as possible.


Alignment Sbield

*Steps 4 and 5 require a coupling loop from the signal genrator to feed a signal into the receiver loop located in the lid. This loop should be loosely coupled to the receiver loop antenna so as not to disturb the receiver loop inductance.
$\dagger$ ALIGNMENT SHIELD MUST BE USED. (See text.)


Terminal Board Wiring


Tube and Trimmer Locations

RCA PAGE 19-3
MODELS 8B42 CHASSIS RC-1069A; 8B43 CHASSIS

RADIO CORP. OF AMERICA MODELS 8B41, CHASSIS RC-1069B; 8B46 CHASSIS $R C-1069 B$
$R C-1069 C$


Replacement Parts

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { stock } \\
\& \text { No. }
\end{aligned}
\] \& description \& stock \& description \\
\hline \& \begin{tabular}{l}
CHASSIS ASSEMBLIES \\
RC 1069-8B41, RC 1069A-8B42, RC 1069B-8B43
\end{tabular} \& 73938 \& \begin{tabular}{l}
Panel-Chrome and mahogany face panel Resistor-Fixed, composition, 820 ohms \(\pm 10 \%, 1 / 2\) watt (R11) \\
Resistor-Fixed, composition, 15,000 ohms \(\pm 10 \%, 1 / 2\)
\end{tabular} \\
\hline \(\begin{array}{r}773937 \\ 7044 \\ \hline 7\end{array}\) \& Baffle-Speaker baffle and grille cloth Board-Terminal board (s contact) \& \& \(\underset{\text { Resistor- }}{\text { watixed }}\) (R2) composition, 68,000 ohms \(\pm 20 \%, 1 / 2\) \\
\hline \(\begin{array}{r}70445 \\ \hline 73947\end{array}\) \& Board-Terminal board (1 contact)
Capacitor-Variable tuning capacitor (C1, C3, C4) \& \& \(\begin{gathered}\text { watt (RS) } \\ \text { Resistor-Fixed, composition, } \\ \text { and }\end{gathered} 100,000\) ohms \(\pm 10 \%, 1 / 2\) \\
\hline \({ }^{73153}\) \&  \& \&  \\
\hline -73962

7
7 \&  \& \& ${ }_{\text {istor }}$ (9ix) (ixed, composition, 1 megohm $\pm 20 \%, 1 / 2$ watt <br>
\hline ${ }^{7} 73963$ \&  \& \& Resistor-Fixed, composition, 3.3 megohms $\pm 20 \%, 1 / 2$ <br>
\hline . 5665 \& Capacitor-Ceramic, 180 mmi . (C16) \& \&  <br>
\hline $\begin{array}{r}7 \\ \hline 73093 \\ \hline 73960\end{array}$ \& Capacitor-Coramic, 1500 mmf . (C20) \& \& Resistor-Fixed,
watt (R3, R7) <br>
\hline ${ }^{7} 7$ \& Capacitor-Tubular, $002 \mathrm{mi}$. . 200 volts (C15) \& \& Resistor-Fixed, composition, 10 megohms $\pm 20 \%$, $1 / 2$ <br>

\hline | 7 |
| ---: |
| 70606 |
|  |
| 7 | \&  \& -73944 \& Screw-\#2-56 $\times 3 / 16^{\prime \prime}$ machine screw to hold lid hinges <br>

\hline ${ }_{71928}$ \& Capacitor-Tubular, . 02 mi., 200 volts (C17) \& \& - face panel ( 2 required) <br>
\hline -70615 \&  \& -73939 \&  <br>
\hline 70425 \& Clip-Spring clip for tuning knob \& 73943 \& Screw- \#4-40 $\times 3 / 16^{\prime \prime}$ binder head screw to fasten face <br>
\hline ${ }_{70452} 7043$ \& Coil-Oscillator coil (L1, L2)
Connector-Loop connectors (1 set) com \& 70446 \&  <br>
\hline $\cdot 73948$ \&  \& \& <br>
\hline -73957 \& Fastener--Push fastenor to hold loop (2 required) for \& 70436
70423 \& Spacker-Rubber shock spacer <br>
\hline -73958 \& Fastonor-Push fastener to hold loop (2 required) for \& \& strip) <br>
\hline \& Model 8842-brown \& $\bigcirc$ \& Stud-Lid support stud (1ace pane <br>
\hline 73959 \& Fastener-Push fastener to hold loop (2 required) for
Model \& -7395 \& Stud-R.H. lid hinge mounting stud <br>
\hline 70429 \& Grommet-Rubber grommet to mount tube support shelf \& 70451 \& Support-Lid support complete with lid end mounting <br>
\hline $\cdots 73950$ \& Hinge-Lid hinge-L.H.-less \& 230 \& Support-Tube support shelf less tube sockets and trans- <br>
\hline ${ }^{7} 73951$ \& Hinge-Lid, hinge-R.H.-less mounting studs \& \& Switch-P <br>
\hline ${ }_{\text {. }}^{73} \mathbf{7 2 2 9 4}$ \& Holder-"A" battery holder \& \& Transformer-First I.F. ${ }^{\text {tran }}$ <br>
\hline ${ }_{7} \cdot 73936$ \& Knob-Calibrated tuning knob \& 70437 \& Transformer-Second I.F. transformer (T2 [C12, C13) <br>
\hline -73946 \& Knob-Volume control knob \& 70440 \& Transformer-Output transformer (T3) <br>
\hline 708 \& Lead-"B" Battery lead complete \& \& SPEAKER ASSEMblies <br>
\hline - 73924 \& Lid-Case top lid complete with lid support and hinges -less loop-Model 8B41-black \& \& <br>
\hline $\cdot 7$ \& Lid-Case top lid complete with lid support and hinges -less loop-Model 8B42-brown \& 704 \& Speaker-2" x $3^{\prime \prime}$ P.M. speaker complete with cone and voice coil MSCELIANEOUS <br>
\hline -73926 \& Lid-Case top lid complete with lid support and hinges \& \& <br>
\hline \& Loop-Antenna Moder completo with connectors-less lid \& \& Bottom-Case bottom-Model 8842-brown <br>
\hline \& -Model 8B41-black \& ${ }^{7} 7$ \& Bottom-Case bottom-Model 8B43-red <br>
\hline -73955 \& -Antenna loop complete with connectors-less lid \& \&  <br>
\hline \& -Model 8842-brown \& \& Handio-Carrying handle-Model 8B41-black <br>
\hline ${ }^{-73956}$ \& Mo-Antonna loop complote with connectors-less lid \& $\stackrel{74022}{ }$ \& Handle-Carrying handle-Model 8842 <br>
\hline \& Namepiate-"RCA" namoplate for top lid \& -739 \& Handle-Carrying handle-Model 8B43 <br>
\hline -7394 \& Nut-Speed nut to lock screw clamping speaker to face panel \& 73943 \& Screw- $\# 4-40 \times 3 / 16^{\prime \prime}$ binder head screw to hold case <br>
\hline
\end{tabular}

[^0]TODELS 8B41, CHASSIS RADIO CORP. OF AMERICA RC-1069; 8B42 CHASSIS Replacement of Component Parts RC-1069B; 8B46 CHASSIS RC-1069A
I. To remove bottom cover
a. Depress locking spring clip through hole in top of case.
b. With spring clip depressed, pull cover carefully out and up off the retaining lugs in the bottom of the case center strip.
ii. To repiace batteries:
a. Remove bottom cover.
b. Remove, either or both, the " $A$ " and " $B$ " battery as may be necessary. The " $B$ '" battery snap fasteners can best be removed by inserting a screwdriver under the snap fastener strip and prying upward.
III. To remove the case center strip:
a. Remove bottom cover.
b. Remove one screw ( $A$ ) on the inside at the handle end.
c. Tilt case center strip and lift.
IV. To replace tubes:
a. Remove bottom cover.
b. Remove "B' battery.
c. Remove case center strip.
d. Remove and replace tubes as required.
V. To remove face panel from chassis plate:
a. Remove dial knob (pull off).
b. Remove bottom cover (I), batteries (II) and case center strip (III).
c. Unsolder leads to loop connectors.
d. Remove the four Phillips head screws (B) located at three corners and end close to 2nd I.F. transformer, which hold the chassis to face panel.
e. The face panel may now be folded back into the case top lid.
VI. To remove speaker:
a. Remove face panel (see item V).
b. Unsolder voice coil leads.
c. Remove two Phillips head screws (C) on chassis plate holding speaker.
VII. To remove output transformer:
a. Remove speaker (see item VI).
b. Unsolder transformer leads.
c. Remove rivet (use bolt for replacement).
d. Unsolder mounting lug.
VIII. To remove chassis subassemblies from chạssis plate:
a. Remove tubes (see item IV).
b. Unsolder grounding strap (E) which connects tube shelf to chassis plate.
c. Unsolder two wires which connect to speaker.
d. Unsolder two wires attached to switch.
e. Unsolder leads to loop connectors.
f. Remove dial knob (pull off).
g. Remove two screws (F) holding tube shelf to chassis plate.
h. Remove nut (G) between I.F. transformers.
i. Remove screw ( $G$ ) beneath the negative terminal of " $A$ " battery holder, and also screw (G) adjacent to volume control below "A" battery holder.

IX. To remove volume control:
a. Remove chassis subassembly from chassis plate (see item VIII).
b. Unsolder the two leads to the " $A$ " battery holder.
c. Lift up the " $A$ " battery holder by removing the one screw (C) in its base. This holder has a hinge action and must be lifted up and back to remove.
d. Unsolder volume control leads.
e. Remove volume control knob (attached to shaft with set screw)
f. Remove volume control assembly by bending back four lugs.
X. To remove oscillator coil:
a. Same procedure and steps as covered in item VIII for removal of chassis subassembly plus the following.
b. Unsolder oscillator coil leads.
c. Remove coil by unsnapping spring mounting clips from angle bracket,
XI. To remove tuning condenser:
a. Remove case center strip (III).
b. Unsolder two leads and two ceramic capacitors (C2, C20) from tuning condenser.
c. Remove tuning knob (pull off).
d. Remove the two screws (H) (accessible through dial knob opening) which hold the tuning condenser to the chassis subassembly.
XII. To remove lst I-F transformer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder four leads from lst I-F transformer. 1. Blue to screen of lRS tube. 2. Green to grid of 1 U 4 tube. 3. Red to $B+$ terminal of 5 lugg terminal board TB5 4. Black to terminal board TB2.
c. Unsolder and bend mounting lugs straight on the I-F transformer can.
XIII. To remove 2nd I-F transformer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder four leads from 2nd I-F transformer.
c. Unsolder and bend mounting lugs straight on the I-F transformer can.
XIV. To remove loop assembly:
a. Remove case center strip (see item III).
b. Unsolder leads to loop connectors.
c. Remove snap fasteners holding loop in cover.
d. Carefully pry out on edge next to catch (opposite hinges).
e. When reassembling press loop assembly into top lid on the side next to the connectors to cause the plastic projections on the loop assembly to engage in the detents in the top lid.
XV. To remove switch:
a. Remove case center strip (III).
b. Remove screw (I) which holds switch to chassis plate.
c. Unsolder the two wires which connect to the switch.
d. Unsolder switch from chassis plate.
XVI. To adjust latching of top lid:
$\alpha$. The hinges are attached to the face panel with Phillips head screws (one to each hinge). The mounting holes of the hinges are sufficiently large to permit adjustment of the hinges when the mounting screws are loosened. Tighten screws after adiustment.


Chassis Disassembly

## RADIO CORP. OF AMERICA

MODELS 8BX5, 8BX54, 8BX55, CHASSIS RC-1059A


## Specifications

Frequency Range .
.540-1,600 kc
Intermediate Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 kc
Power Supply Rating
110 to 125 volts, AC 50 or 60 cycles, or DC. . . 18 watts
Batteries required.
One RCA Battery Pack VS050
Tube Complement
(1) $\mathrm{RCA}-1 \mathrm{R} 5$ $\qquad$ .Converter
(2) RCA-1T4 $\qquad$ I. F.-Amplifier (1U4 in RC-1059A)
(3) RCA—1U5 ......2nd Det. AVC. \& A.F.-Amplifier
(4) RCA—3V4 ....................................... Output
(5) RCA- 117 Z 3
.Rectifier
Current Consumption
Battery Operation. ............"A" 60 ma., "B" 10 ma.
(Average life of RCA VS050 Battery
100 hrs . intermittent service.)
Total Rect. Current (117 volt, 60 cycle) . . . . . . . . 60 ma .
Power Output (AC Operation)
Undistorted
.15 watt
Maximum ..................................... . 25 watt (Output is slightly lower on battery operation)

Loudspeaker $\qquad$ .4 in. P.M. 3.4 ohms at 400 cycles

## Cabinet Dimensions

Height. .... $91 / 2 \mathrm{in}$. Width..... 11 in. Depth..... 5 in.

## Critical Lead Dress

1. Dress output plate bypass C20 capacitor against chassis
2. Dress output plate lead to output transformer against chassis.
3. Dress audio coupling capacitor C14 (volume control to grid of 1U5) away from chassis, away from audio limiting resistor R8 and to permit adjustment of second I.F. Transformer.
4. Dress all exposed leads away from each other, and away from chassis to prevent short circuits.
5. Dress all filament and ground leads against chassis.
6. Dress filament bypass capacitor C23 and accompanying compensating resistor R15 (volume control to IT4 [or 1U4] socket) against volume control.
7. Dress power line cord away from line-battery switch mechanism.
8. Dress all capacitors and wiring away from oscillator coil.
9. Dress 4 mmf . neutralizing capacitor C 7 against A.V.C. bypass capacitor C8 (IT4 [or 1U4] filament to first I.F. trans.).

## Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Moter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Tost Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on AC operation an isolation transformer ( $117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.

NOTE: Battery or substitute must be in place for ant. alignment (step 5).

Alignment Tabulation

| Step | Conneet high side of test oscillator to- | Test oscillator output- | Turn receiver dial to- | Adjust for maximum peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Disconnect loop-remove chassis-remove bottom plate, connect a 10,000 ohm resistor from C1 stator terminal to tuning condenser frame. |  |  |  |
| 2 | Stator terminal of C1 thru 901 mf. capacitor | 455 kc | 65 | *Top and bottom <br> T2 (2nd. I-F trans.) <br> *Top and bottom T1 (1st. I-F trans.) |
| 8 | Remove the 10,000 ohm resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop. |  |  |  |
| 4 | Short wire placed near receiver (for radiated signal) | 1600 kc | 160 | tC5 (osc.) |
| 5 |  | 1100 ke | 140 | †C2 (ant.) |
| 6 |  | 600 kc | 60 | ${ }^{-L 2}$ (osc.) while rocking gang |
| 7 |  | Repeat steps 4, 5 and 6 |  |  |

## NOTES:

The magnetite cores of L2 and some T2 and T1 do not have visible adjusting screws. The cores have screw driver slots to permit adjustment (use non-metallic screwdriver).
Adjustable thru hole in side of case which is accesaible after unfastening one end of the carrying handle.

PAGE. 19-6 RCA
MODELS 8BX5, 8BX54, RADIO CORP. OF AMERICA 8BX55, CHASSIS


RCA PAGE 19-7


- John F. Rider


## MODELS 8BX5, 8BX54,

 8 BX 55
## To Remove Carrying Handle

1. Pull off the volume control knob.
2. Insert a small knife blade between one side of a spring clip and the cabinet as shown below, push upward on the slip shield to disengage the locking of the slip shield to the spring clip. Repeat this procedure on the other side of the spring clip. The slip shield may then be removed by pushing it upward thus disengaging it from the spring clip.
3. Repeat step 2 for each slip shield.
4. Remove the four screws ( 2 on each side) which hold the carrying handle to the case.
Caution: When re-assembling-make certain that the slip shield and the spring clip is assembled with their locks in the correct relation to each other.
To Remove Chassis
5. Pull off the volume control knob.
6. Close tuning condenser (dial at 55) to prevent possible damage to tuning condenser.
7. Remove dial knob by grasping both sides with the tips of the fingers of both hands and pull to the front -or-close the tuning condenser, open the back, reach in and push outward on the hub of the dial knob. NOTE: When re-assembling-press inward on the back of the tuning condenser and on the front of the knob to properly seat the hub on the shaft.
8. Remove the two slip shields on the R.H. side of the cabinet. (opposite the volume control) and unfasten the end of the carrying handle using the procedure described under, "To Remove Carrying Handle."
9. Unsolder the loop leads.
10. Remove the two screws holding the bottom edge of the speaker to the cabinet.
11. Remove the plug from the battery.
12. Remove the two screws at the top of the cabinet while supporting the chassis with one hand.
NOTE: When re-installing-replace speaker holding screws first but do not securely tighten until the two screws at the top of the cabinet have been tightened.


Cabinet Hinges
The cabinet hinges may be readily removed, they are secured to the cabinet and back by force fit. To remove back from cabinet-pull straight outward on both hinges at the same time.

Replacement Parts-1st. Production

| STOCK No. | DESCRIPTION | STOCK No. | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 73153 \\ & 71924 \\ & 73152 \end{aligned}$ | CHASSIS ASSEMBLIES RC 1059 | $\begin{aligned} & 73103 \\ & 73117 \end{aligned}$ | Shield-Tube shield for 1 U5 Socket-Tube socket |
|  | Capacitor-Ceramic, 4 mmf. (C7) <br> Capacitor-Ceramic, 56 mmf . (C4) | 73133 73129 | Switch-"Line Battery" change switch T.P.D.T. (S1) |
|  |  | 73129 73130 | Transformer-First I-F transformer (T1) Transformer-Second I-F transformer (T2) |
|  | Capacitor-Ceramic, 100 mmf . (C15) | 73130 71047 | Transformer-Second I-F transformer (12) |
| 72315 | Capacitor-Tubular, $0002 \mathrm{mfd} ., 200$ volts (C14, C18) | 73131 | Washer-Insulating washer-extruded-to mount tuning con |
| 72791 | Capacitor-Tubular, ${ }^{\text {a }}$, $005 \mathrm{mfd} ., 400$ volts (C20)Capacitor-Tubular, $01 \mathrm{mfd} ., 200$ volts (C17) |  | 3 |
| 71923 |  |  | KER ASSEM |
| 71928 | Capacitor-Tubular, ${ }^{\text {c }}$, 01 mfd ., 200 volts (C17) Capacitor-Tubular, 02 mfd (, 200 volts (C16) |  | 92577-1 |
| 72596 | Capacitor-Tubular, $05 \mathrm{mfd} ., 200$ volts (C9, C23) ${ }^{\text {c }}$ ( 205 | 71059 | Gasket-Speaker gasket (black tubing) |
| 70615 54788 | Copacitor-Tubular, 05 mfd., 400 volts (C3, C11, C22) Capacitor-Tubular, 0.1 mfd., 200 volts (C10) | 73123 | Speaker-4" PM speaker complete with cone and voice coil |
| 70617 | Capacitor-Tubular, 0.1 mfd., 400 volts (C21) Capacitor-Electrolytic, comprising 1 section of $50 \mathrm{mfd} ., 150$ |  | MISCELLANEOUS |
| 73127 | Capacitor-Electrolytic, comprising 1 section of $50 \mathrm{mfd} ., 150$ volts; 1 section of $\mathbf{3 0} \mathbf{~ m f d}$., 150 volts and 1 section of 160 mfd ., 25 volts (C19A, C19B, C19C) | $\begin{array}{r} 73134 \\ 73721 \\ \hline \end{array}$ | Back-Cabinet back-less hinges-for Model 8BX5 <br> Back-Cabinet back-blonde-less hinges-for Model 8BX54 |
| 73114 | Coil-Oscillator coil complete with core and stud (L2, L3) | 73723 | Back-Cabinet back-walnut-less hinges-for Model 8BX55 |
| 73126 | Condenser-Variable tuning condenser (C1, C2, C5, C6) | 73147 | Ball-Metal ball with groove for back cover latch mechanism |
| 73125 73128 | Control-Volume control and power switch (R7, S2) Cord-Power cord and plug (72" long) | 73137 | Block-Chassis mounting block (with groove for link)-less fiber insert (2 required)-fits on top of cabinet |
| 73128 73482 | Cord-Power cord and plug ( 72 long) | 73136 | Button-Center button for dial knob |
| 73275 | Plug-5 prong male plug for battery cable | 73142 | Button-Station selector indicator button |
| 73237 | Resistor-Wire wound, 33 ohms, 150 MA (R20) <br> Resistor-Fixed composition, 1000 ohms, $\pm 10 \%, 1 / 2$ watt (R3, R5, R15) <br> Resistor-Fixed composition, 1200 ohms, $\pm 10 \%, 1 / 2$ watt (R14) <br> Resistor-Voltage divider, 2200 ohms, 7 watt (R17) | Y1464 Y2016 Y2017 | Case-Carrying case with loop-less hinges, latch mechanism, back cover and carrying handle-for Model 8BX5 <br> Case-Carrying case-blonde-with loop-less hinges, latch mechanism, back cover and carrying handle-for Model 8BX54 <br> Case-Carrying case-walnut-with loop-less hinges, latch mech anism, back cover and carrying handle-for Model 8BX55 |
| 73132 | Resistor-Voltage divider, 2200 ohms, 7 watt (R17) Resistor-Fixed composition, 2200 ohms, $\pm 10 \%, 1 / 2$ watt (R18) | 73195 70425 | anism, back cover and carrying handle-for Model 8BX55 <br> Clip-Spring clip for slip shield (3 required) <br> Clip-Spring clip for volume control and power switch knob |
|  | Resistor-Fixed-composition, 15,000 ohms, $\pm 10 \%, 1 / 2$ waft (R16) | 73143 73724 | Handle-Carrying handle-for Model 8BX5 <br> Handle-Carrying handle-tan-for Model 8BX54 |
|  | Resistor-Fixed composition, 39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R9) | 73725 73144 | Handle-Carrying handle-light brown-for Model 8BX55 Hinge-Cabinet hinge (2 required) |
|  | Resistor-Fixed composition, 100,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R1) | 73149 73135 | Insert-Fibre insert for chassis mounting block (2 required) <br> Knob-Dial knob complete with center bufton and calibrations |
|  | Resistor-Fixed composition, 220,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R11) | 73138 73459 | Knob-Volume control and power switch knob Link-Carrying handle retaining link (2 required) |
|  | Resistor-Fixed composition, $\mathbf{4 7 0 , 0 0 0}$ ohms; $\pm \mathbf{2 0 \%}, 1 / 2 \mathrm{watt}$ (R8) | 73141 73145 | Loop-Antenna loop (LI) <br> Nut-Hex nut with groove for back cover latch mechanism |
|  | Resisfor-Fixed composifion, 1 megohm, $\pm 20 \%$, $1 / 2$ watt (R13) | 73139 | Shield-Slip shield for carrying strap-(bottom R. H. and L.H. and upper L. H.) |
|  | Resistor-Fixed composition, 3.3 megohms, $\pm 10 \%$, $1 / 2$ watt (R6) | 73140 | Shield-Slip shield for carrying strap-with hole for volume control knob shaft (upper R. H.) |
|  | Resistor-Fixed composition, 4.7 megohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R2, R4) | 73146 | Spring-Extension spring for back cover latch mechanismR. H. |
|  | Resistor-Fixed composition, 4.7 megohms, $\pm 20 \%$, $1 / 2 \mathrm{watt}$ (R12) | 73148 | Spring-Extension spring for back cover latch mechanismL. H. |
|  | Resistor-Fixed composition, 15 megohms, $\pm 20 \%, 1 / 2$ watt (R10) | $\begin{array}{r} 30900 \\ 73483 \end{array}$ | Spring-Retaining spring for dial .knob Support-Flexible drop support for back cover |

RADIO CORP. OF AMERICA MODELS 8BX5, 8BX54, 8BX55, CHASSIS RC-1059, RC-1059A

## Replacement Parts-2nd. Production



* This is the first time that this Stock No. has appeared in Service Data.


[^1]

CLARI-SKEMATIX
RCA PAGE 19-11


## CLARI-SKEMATIX


Simplified Schematic Diagram
＂Phono＂Position

 Voltages and currents measured with tuning condenser closed and
no signal input should hold within $\pm 20 \%$ with rated line voltage． Note：Plate voltage removed from 6 J 6 mixer and oscillator tube
during＂Phono＂operation． Note：Plate voltage removed from 6J6 mixer and oscillator tub
during＂Phono＂operation．

| O <br> O <br> a <br> 1 | $1 \mid 1 \stackrel{0}{1}$ |  | 989\％ | 1 | $\oplus \stackrel{\infty}{\infty}$ | 9080 | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{5}{3}$ | 허 | Oin | 909 | 1 | से | స్ㅜㅜ웅 | － |
| $\stackrel{+}{3}$ |  | no № | ＋0\％ | 1 | * | No No | －${ }_{\text {O }}^{0}$ |
| $\begin{aligned} & \dot{0} \\ & \dot{n} \\ & \dot{n} \end{aligned}$ | －No 0 | 100かm |  | 1 | $\cdots \cdots$ | $\infty \pm \infty$ | $\omega$ |
|  |  |  |  | 1 | 或定 |  | \％ 0 8 0 0 0 |
| $\sum_{0}^{8}$ | 5 | $\sum_{0}^{\infty}$ | $\stackrel{0}{2}$ | 号 | $\sum_{0}^{\infty}$ | $\begin{aligned} & \hline \mathbf{F} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | F |
| 8 | $\cdots$ | 0 | $\cdots$ | ＋ | 10 | $\bigcirc$ | ＊ |


Note：FM mixer and oscillator coils are adjustable by increasing or
decreasing the spacing between turns．The position of the coils and
location of the taps are critical（refer to＂Critical Lead Dress＂） RANGE
SWITCH Cl $^{\text {C }} 13$ 1400KC AM OSC．

Tube and Trimmer Locations



cathode currents



K＝ 1000 －ALL RESISTANCES IN OHMS
EXCEPT AS STATED

## Alignment Procedure

## CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

## Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.
When audio output is being measured the volume control should be turned to maximum.

## Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used. for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

The FM i-f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connęct the output from the weep generator, which is set to 10.7 mc ., to the mixer grid (6J6 Pin No. 5), low side to chassis. Disconnect the 2 mfd. capacitor C 33 from the Ratio Detector circuit.

Connect the high side of the oscilloscope to the junction of R25 and R26, low side to chassis. Adjust the sweep generator and oscillo; scope to obtain the response curve.

The Ratio Detector characteristic may be viewed by connecting the oscilloscope across the volume control R14. Capacitor C33 should be re-connected before checking the Ratio Detector characteristic.

## CRITICAL LEAD DRESS

1. Keep leads of C7 short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The ground lead of pin No. 2 of V2 and Vi3 should be down against chassis. Its length is critical.
4. The AVC lead from R26 to range switch should be dressed against chassis and on front apron side of the output transformer.
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L2 is cemented.
6. The lead from the high side of the loop should be dressed away from tubes.
7. Lead from pin No. 2 of V1 to terminal "A" of 1st I. F. transformer should be dressed against the chassis.
8. Connect C40 directly between the gang condenser and pin No. 1 of V 1.
9. Make all FM leads as short as possible.
10. Dress lead from pin No. 5 of $\hat{V} 2$ to terminal " $A$ " of 2nd I. F. transformer down against chassis.
11. Dress resistor R15 near chassis base
12. Dress all A.C. leads away from volume control.
13. The lead from " FM " terminal of antenna terminal board to L 1 tap should be run around the outside of the 1st I. F. transformer and away from V2
14. The taps on L1 and L2 are critical. L1 tap should be turn from the ground end. L2 tap should be $2 \frac{1}{2}$ turns from the gang con denser C8.
15. The lead from R32 to terminal No. 9 of S1 should be dressed away from the output transformer.
16. Dress C25 and C26 against the chassis with the shortest lead length possible.
17. The position of L 1 and L 2 is critical. L1 should be midway be tween V1 and the 1st I. F. transformer. The end of L2 should be approximately $\mathbf{3 / 1 6 " \prime}$ from V1.


AM Alignment
RANGE SWITCH IN BC POSITION

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | C3 in series with .01 mfd . | 455 kc. | Quiet point at low freq. end. | $\begin{aligned} & \text { AM windings. } \dagger \\ & \text { T3 bottom } \\ & \text { core (sec.). } \\ & \text { T3 top } \\ & \text { core (pri.). } \end{aligned}$ |
| 2 |  |  |  | AM windings. $\dagger$ T2 top core ( sec. ). T2 bottom core (pri.). |
| 3 | "A" terminal of terminal board at rear of chassis in series with 220 mmf . | 1400 . kc. | 1400 kc . | C13 osc. C4 ant. |
| 4 |  | 600 kc. | 600 kc . | L4 osc. <br> (Rock gang.) |
| 5 | Repeat Steps 3 and 4. |  |  |  |

$\dagger$ Use alternate loading
Alternate loading involves the use of a $47,000 \mathrm{ohm}$ resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 47,000 ohm resistor after $T 3$ and T2 have been aligned.

Oscillator frequency is above signal frequency on both AM and FM.

## FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

| Steps | Connect high <br> side of sig. <br> gen. to- | Sig. gen. <br> output | Turn radio <br> dial to- | Adjust for <br> peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Connect the d-c probe of a VoltOhmyst to the negative <br> lead of the 2 mfd. capacitor C33 and the common lead <br> to chassis. Turn gang condenser to max. capacity (fully <br> meshed). |  |  |  |


| 2 | Pin 1 of 6AU6 in series with .01 mfd . | 10.7 mc . modulated $\mathbf{3 0 \% 4 0 0}$ cycles AM (Approx. . 05 volt). |  | T4 top core for max. d-c voltage across C33. <br> T4 bottom core for min. audio output.* |
| :---: | :---: | :---: | :---: | :---: |
| 3 | FM ant. term. in serięs with a 300 ohm resistor. (Remove ant. lead from "FM" term.) | 10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment. | $\begin{gathered} \text { prax. ca- } \\ \text { pacity } \\ \text { (fully } \\ \text { meshed). } \end{gathered}$ | FM windings. $\dagger \dagger$ <br> T3 top core (sec.). T3 bottom core (pri.). |
| 4 |  |  |  | FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.). |
| 5 |  | 106 mc. | 106 mc. | L.2 osc.** C2 ant. <br> Set C2 at max. capacity while adjusting $L 2$. |
| 6 |  | 90 mc . | 90 mc . | L1 ant." (Rock gang.) |
| 7 | Repeat Steps 5 and 6 until further adjustment does not improve calibration. |  |  |  |

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align T3 and T2 by means of alternate loading as explained under AM alignment. ['se a 680 ohm resistor instead of a 47,000 ohm resistor and load the F.M windings.
** L1 and L2 are adjustable by increasing or decreasing the spacing between turns.

RC-1060A

## Circuit Description

The chassis used in these receivers have a 6 J 6 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them: A section of the AM oscillator coil is connected in series with the mixer grid input when the range switch is in AM position.

Dual I-F transformers are used, each transformer containing both AM and FM windings. The $I-F$ amplifier is V2 (6BA6).

The range switch has four functions:
(1) Selection of AM or FM ranges.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to the plate circuits of V1 (disconnected for PHONO operation).
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.
The audio voltage controlled by the volume control is amplified by V5 (6AV6) and V6 ( 6 V 6 GT ).

The rectifier V7 is type 6X5GT.

## Replacement Parts

| Stock No. | DESCRIPTION | Stock No. | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES <br> RC 1060-Models 8R71, 8R74, 8R75 RC 1060A-Models 8R72, 8R76 |  | ```Resistor-Fixed, composition, 10,000 ohms, \(\pm 10 \%\), 1/2 watt (R32) Resistor-Fixed, composition, 15,000 ohms, \(\pm 10 \%\), \(1 / 2\) watt (R13, R18) Resistor-Fixed, composition, 18,000 ohms, \(\pm 10 \%\),``` |
| $\begin{array}{r}\text {-73369 } \\ \hline 73866 \\ \hline \mathbf{3 3 1 0 1}\end{array}$ | Board-Antenna - FM - Ground ${ }^{\text {Comat }}$ |  | l watt (R5) Resistor-Fixed, composition, 22,000 |
| 33101 39042 | Capacitor-Ceramic, 22 mmf . (C42) |  | 1/2 watt (R4) |
| -73867 | Capacitor-Ceramic, 56 mmf . (C43) |  | mesis tor-Fixed |
| 33103 48125 |  |  | Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$, |
| 48125 <br> 38832 | Capacitor-Ceramic, 150 mmf m- (C7, C19) |  |  |
| 47817 39640 | Capacitor-Ceramic, 270 mmf . (C) |  | 1/2 watt (R25) |
| 39640 +73748 |  |  | Resistor-Fixed, composition; 56,000 ohms, $\pm 10 \%$, $1 / 3$ watt (R10, R31) |
| 72573 | Capacitor-Tubular, .003 mfd. , 400 v. (C28) |  | Resis tor-Fixed, composition, |
| 71553 | Capacitor-Tubular, . 005 mfd., 400 v. (C14, C16, C17, C21, C22) |  | $\begin{aligned} & 1 / 2 \text { watt (R19, R29) } \\ & \text { Resis } 1 \text { Fixer composition, } 470,000 \text { ohms, } \pm 10 \% \text {, } \end{aligned}$ |
| $\begin{aligned} & 72791 \\ & \mathbf{7 1 1 9 2 6} \end{aligned}$ | Capacitor-Tubular, $.005 \mathrm{mfd} .{ }^{2} 400$ v. (C34) <br> Capacitor-Tubular, $.005 \mathrm{mfd} ., 200$ v. (C20, C24, C27, C32) |  | $1 / 2$ watt (R20, R26, R28) <br> Resistor-Fixed, composition, 2.2 megohm, $\pm 20 \%$, $1 / 2$ watt (R3) |
| 71923 71925 |  |  | Resistor-Fixed, composition, 3.9 megohm, $\pm 10 \%$, $1 / 2$ |
| 71928 | Capacitor-Tubular, 02 mfd ., 2000 v . (C36) |  | $\underset{\text { Resistor-Fixed, }}{\text { watt }}$ (R2) ${ }^{\text {composition, }} 10$ megohm, $\pm 20 \%, 1 / 2$ |
| 72596 | Capacitor-Tubular, $05 \mathrm{mfd}$. , 200 v . (C15) |  | watt (R15) |
| \#73747 * 73372 | Capacitor-Electrolytic, $2 \mathrm{mfd} .{ }^{\text {c }} 50 \mathrm{v}$. (C33) |  | sistor-Fixed, composition, 22 megohm, $\pm 20 \%$, $1 / 2$ watt (R16) |
| *73372 | Capacitor-Electrolytic, comprising 1 section of 30 mfd., 350 volts, 1 section of 30 mfd ., 300 volts and 1 section of 20 mfd ., 25 volts (C18A, C18B, C18C) | $\begin{array}{r} \mathbf{7 3 3 7 0} \\ \text { } 73367 \\ \mathbf{3 1 3 6 4} \end{array}$ | Ring-Retaining ring for indicator pulley and shaft Shaft-Tuning knob shaft Socket-Dial lamp socket |
| *73916 | Coil-FM oscillator coil-No. 16 tinned bus wire, 7 turns per inch, $4^{3 / 4}$ turns R. H., 15/32" I. D. (L2) | +73374 +72516 | Socket-Phono input sock |
| *73918 | Coil-FM antenna coil-No. 16 tinned bus wire, 8 turns per inch, $13 / 4$ turns L. H., 15/32" I. D. (Li) Coil-Line choke coil-No. 18 gauge solid hook-up | +73606 | Socket-Tube socket, 7 prong, miniature, mica filled rubber |
|  | Coil-Line choke coil-No. 18 gauge solid hook-up wire, $1 / 32^{\prime \prime}$ plastic insulation, 10 turns (close wind), $1 / 4^{\prime \prime}$ I. D. (L5, L7) | $\begin{array}{r} 31251 \\ 72540 \\ \mathbf{7 3 3 7 7 7} \end{array}$ | Socket-Tube socket, octal <br> Spring-Drive cord spring <br> Switch-Range switch (S1, S2) |
| * 73744 | Coil-AM oscillator coil complete with adjustable core and stud (L4) | 70127 | Transformer-Power transformer, 115 volt, 60 cycle (T1) |
| * 73375 | Condenser-Variable tuning condenser (C1, C2, C3, C4, C8, C12, C13) | $\begin{array}{r}\text { \#73745 } \\ \\ \\ \hline 73363\end{array}$ | Transformer-First I. F. transformer, dual (T2) |
| $\begin{array}{r}73373 \\ \mathbf{3 8 4 0 4} \\ \hline\end{array}$ | Control-Tone control (S4) | *73743 | Transformer-Ratio detector transformer (T) |
| 38404 +72953 | Control-Volume control and power switch (R14, S3) | * 73415 | Transformer" Output transformer |
| †72953 | Cord-Drive cord (approx. 40" overall length required) | 33726 71033 | Washer- "C" washer for tuning knob shaft <br> Washer-Insulating washer-extruded-for mounting |
| $\begin{array}{r} 73365 \\ \\ 16058 \end{array}$ | Dial-Dial scale <br> Grommet-Rubber grommet for mounting R-F shelf (4 required) | 71034 | output transformer (2 required) <br> Washer-Insulating washer-flat-for mounting output transformer (2 required) |
| $\begin{array}{r} 733666 \\ 11891 \\ \text { } 113357 \end{array}$ | Indicator-Station selector indicator <br> Lamp-Dial lamp-Mazda 44 <br> Loop-Antenna loop complete |  | SPEAKER ASSEMBLIES |
| *73364 | Plate-Dial back plate complete with lamp bracket and drive cord pulleys for Models 8R71, 8R74 and 8R75 | 72201 | 92572-2 <br> Speaker-5" P.M. speaker complete with cone and voice coil |
| *73368 | Plate-Dial back plate complete with lamp bracket and drive cord pulleys for Models 8R72 and 8R76 Pulley-Station selector indicator drive pulley and |  | MISCELLANEOUS |
|  | shaft | $\begin{aligned} & \text { * } 73380 \\ & * \\ & * \end{aligned} 73381$ | Baffle-Speaker baffle board and grille cloth Bottom-Bottom cover for cabinet |
|  | watt (R7) | *Y1485 | Cabinet-Maroon plastic cabinet for Model 8R71 |
|  |  | *Y1486 | Cabinet-Ivory plastic cabinet for Model 8R72 |
|  | watt (R17, R27) <br> Resistor-Fixed, composition, 120 ohms, $\pm 10 \%, 1 / 2$ | ${ }^{*}$ Y2030 | Cabinet-Mahogany plastic cabinet for Model 8R74 Cabinet-Walnut plastic cabinet for Model 8R75 |
|  | watt (R12) | *Y2032 | Cabinet-Blonde plastic cabinet for Model 8R76. |
|  | Resistor-Fixed, composition, 330 ohms, $\pm 10 \%, 1 / 2$ watt (R21) | $\begin{aligned} & \begin{array}{r} * 73382 \\ \\ * 73384 \end{array} \end{aligned}$ | Clamp-Clamp for fastening bafile board (3 required) Decal-Control panel decal |
|  | Resistor-Fixed, composition, 680 ohms, $\pm 20 \%, 1 / 2$ watt (R9, R11) | *73378 | Knob-Control knob-maroon - for Models 8R71, 8R74 and 8R75 |
|  |  | $\begin{array}{r} 773379 \\ +73742 \end{array}$ | Knob-ContróNknob-ivory-for Model 8R72 <br> Knób-Control knob-tan-for Model 8R76 |
| 52,436 | Resistor-Wire wound, 1,500 ohms, 5 watt (R22) <br> Resistor-Fixed, composition, 3,300 ohms, $\pm 5 \%, 1 / 2$ watt (R24) | $\begin{aligned} & 72649 \\ & 72765 \\ & 14270 \end{aligned}$ | Motif-Decorative motif for cabinet <br> Nut-Speed nut to fasten motif <br> Spring-Retaining spring for knobs |

[^2]†Stock No. $\mathbf{7 2 9 5 3}$ is a reel containing 250 feet of cord.


## Specifications

## Tuning Ranges

Standard Broadcast (AMI)............. $540-1,600 \mathrm{kc}$. Frequency Modulation (Fil)............. $88-108 \mathrm{mc}$. Intermediate Frequencies. . .AM-455 kc., FM-10.7 mc. Tube Complement

| ) | 6 J 6 | Mixer and Oscillator |
| :---: | :---: | :---: |
| (2) | 6BA6. | F. Amplifier |
| (3) | 6AU6 | Driver |
| (4) | 6 AL 5 | Ratio Detector |
| (5) | 6AV6. | A. F. Amp. |
| (6) | 6V6G' | Output |
| (7) | 6AV6. | VC-Ph. Inv. |
| (8) | 6V6GT | Output |
| (9) |  | Rectifie |

Tuning Drive Ratio............... 18:1 (9 turns of knob)
Record Changer (RP-178)

Power Supply Rating. ..... 115 volts, 60 cycles, 90 watts

## Circuit Description

The chassis used in these receivers have a 6 J 6 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A sertion of the AM oscillator coil is connected in series witn the mixer grid input when the range switch is in AM position.

Dual I-F transformers are used, each transformer containing both AM and FM windings. The I-F amplifier is V2 (6BA6).
The range switch has four functions:
(1) Selection of tuning range.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to V1, V2, V3.
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.
The audio system is conventional. It consists of V5 (6AV6 a.f. amp.), V7 ( $6 \mathrm{AV6} \mathrm{ph}$. inv.), V6 and V8 ( 6 V 6 GT p. p. output).

The rectifier is V 9 ( 6 X 5 GT ).

Loudspeaker
Type 92579-2W (8V90 1st Prod.)......... 8-in. P.M Type 92569-5W (8V90 2nd Prod.)........ 12 in. P.N. Type $92569-1 \mathrm{KX}$ or $92569-5 \mathrm{~W}$ ( 8 V 91 ) .... 12 in . P.M Voice coil impedance-

| 92579-2W | 3.2 ohms at 400 cycles |
| :---: | :---: |
| 92569-1KX | 2.2 ohms at 400 cycles |
|  | 3.2 ohms at 400 cycle |

Cabinet Dimensions

|  | Height | Width | Deptl |
| :--- | ---: | ---: | ---: |
| Model 8V90 $\ldots \ldots$. | $331 / 4$ in. | $311 / 16$ in. | $163 / 8$ in. |
| Model 8V91 $\ldots \ldots$. | $343 / 8$ in. | $367 / 16$ in. | 18 in. |

Dial Lamps (2) . . . . . . . Type No. 51, 6-8 volts, 0.2 amp .
Jewel Lamp............ . Type No. 51, 6-8 volts, 0.2 amp .

## Power Output

| Maximum | 7 watts |
| :---: | :---: |
| Undistorted | 6 watts |

## Antennas:

These receivers have built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.

Under average conditions these antennas will provide satisfactory reception. However, provision is made for the use of external antennas if desired - connect as indicated below:

AM Antenna: Connect a single wire antenna to terminal "A" (used on Model 8V91 only).
FM Antenna: Remove the built-in FM antenna lead from the "FM" terminals of the terminal board. Connect the transmission line of an external FM dipole antenna to these two "FM" terminals.
Ground: Connect external ground to "G" terminal (used on Model 8 V 91 only). Under certain conditions the use of an external ground is detrimental to FM reception.


## RC-616H Alignment Procedure

## CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

## Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during F $M 1$ alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a $\cdot v \cdot \mathrm{c}$ voltage.
When audio output is being measured the volume control should be turned to maximum.

## Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v.c action.

The FM i-f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connget the output from the sweep generator, which is set to 10.7 mc ., to the mixer grid ( 6 J 6 Pin No. 5), low side to chassis. Discomect the 2 mid. capacitor C33 from the Ratio Detector circuit.

Connect the high side of the oscilloscope to the junction of R25 and R26, low side to chassis. Adjust the sweep generator and oscilloscope to olstain the response curve.

The Ratio Detector characteristic may be viewed by connecting the oscilloscope across the volume control R14. Capacitor C33 should be re connected before checking the Ratio Detector characteristic.

## CRITICAL LEAD DRESS

1. Keep leads of C7 short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The ground lead of pin No. 2 of V2 and V3 should be down against chassis. Its length is critical.
The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
4. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L2 is cemented.
5. The lead from the high side of the loop should be dressed away from tubes.
6. Lead from pin No. 2 of V1 to terminal "A" of 1st I. F. transformer should be dressed against the chassis
Connect C40 directly between the gang condenser and pin No. 1 of -V.1.
7. Make all FM leads as short as possible.
8. Dress lead from pin No. 5 of V2 to terminal "A" of 2nd I. F transformer down against chassis.
Dress resistor R15 near chassis base
9. Dress all A. C. leads, away from volume control
10. The lead from "FM" terminal of antenna terminal board to L tap should be dressed away from V2.
The taps on L1 and L2 are critical. L1 tap should be 3 turn from the ground end. L2 tap should be $2 \frac{1}{2}$ turns from the gang condenser C8.
11. Dress C25 and C26 against the chassis with the shortest lead length possible.
12. The position of L1 and L2 is critical. L1 should be miduay be tween V 1 and the 1st I. F. transformer. The end of L2 should be approximately $3 / 16^{\prime \prime}$ from V 1 .

Dial Indicator
Witi the tuning condenser fully meshed (closed) the indicator shouh be set to the reference mark on the dial hack phate.

Refer to the dial scale reproductions on page 7 .


Dial Indicator and Drive Mechanism-Model 81'90

AM Alignmént
range switch in bc position

| Steps | Connect high side of sig. gen. to- | Sig.gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | C3 in series with .01 mid . | 455 kc. | Quiet point at low freq. end. | AM windings. T3 bottom core (sec.). T3 top core (pri.). |
| 2 |  |  |  | ```AM windings. } T2 top core (sec.). T2 bottom core (pri.).``` |
| 3 | "A" terminal of terminal board at rear of chassis in series with 220 mmf . | 1400 kc . | 1400 kc . | C13 osc. C4 ant. |
| 4 |  | 600 kc . | 600 kc. | L4osc. <br> (Rock gang.) |
| 5 | Repeat Steps 3 and 4. |  |  |  |

$\dagger$ Use alternate loading.
Alternate loading involves the use of a 47,000 ohm resistor to loa:l the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 47,000 ohm resistor after Tis and T2 have been aligned.
Oscillator frequency is above signal frequency on both AM and FM.

* "A" terminal used on Model 8V91 only. Use radiated signal for Model 8V90.

FM Alignment
RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Connect the d-c probe of a VoltOhmyst to the negative lead of the 2 mfd . capacitor C 33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed). |  |  |  |
| 2 | Pin 1 of GAU6 in series with .01 mfd . | 10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt). | $\begin{gathered} \text { Max. ca- } \\ \text { pacity } \\ \text { (fully } \\ \text { meshed). } \end{gathered}$ | T4 top core for max. d-c voltage across C33. <br> T4 bottom core for min. audio output.* |
| 3 | FMant. term. in series with a 300 ohm resistor. <br> (Remove ant. lead from " $\mathrm{FM}^{\prime}$ " term.) | 10.7 mc . <br> Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment. |  | FM windings. $\dagger \dagger$ <br> T3 top core (sec.). T3 bottom core (pri.). |
| 4 |  |  |  | FM windings. $\dagger \dagger$ <br> T2 top core (sec.). T2 bottom core (pri.). |
| 5 |  | 106 mc. | 106 mc. | L2 osc.** C2 ant. <br> Set C2 at max. capacity while adjusting L.2. |
| 6 |  | 90 mc. | 90 mc . | L1 ant.** (Rockgang.) |
| 7 | Repeat Steps 5 and 6 until further adjustment does not improve calibration. |  |  |  |

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.

†t Align T3 and $T 2$ by means of alternate loading as explained under AM alignment. ('se a 680 ohm resistor instead of a 47,000 | under A.M alignment. |
| :--- |
| whe resistor and load the Fi |
| 80 winding |

** L 1 and I. 2 are adjustable by increasing or decreasing the spacing between turns

PAGE 19-18 RCA

## MODEL 8V9O, CHASSIS



CATHODE CURRENTS (MA)
SOCKET VOLTAGES
Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm \mathbf{2} 0 \%$ with rated line voltage. Tuning condenser closed-no signal input.

| Tube | Terminal |  | Voltage |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Phono | A.M. | F.M. |
| (1) 6 J 6 | Plate Grid Plate Grid | 1 6 2 5 | $\sqrt{-0.4}$ | $\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$ | 98 -6.0 110 -2.5 |
| (2) 6BA6 | Plate <br> Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | — | $\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$ | $\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$ |
| (3) 6A U6 | Plate Screen Cathode | 5 6 7 | 二 | $\begin{aligned} & 190 \\ & 145 \\ & 1.25 \end{aligned}$ | 185 141 1.21 |
| (4) 6AL5 | - | - | - | - | - |
| (5) 6AV6 | Plate <br> Grid | $\begin{aligned} & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 125 \\ -0.6 \end{array}$ | $\begin{array}{r} 85 \\ -0.6 \end{array}$ | $\begin{array}{r} 84 \\ -0.6 \end{array}$ |
| (6) 6V6GT | Plate <br> Screen <br> Cathode | $\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$ | $\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$ | $\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$ | $\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$ |
| (7) 6AV6 | Plate <br> Grid | $\begin{aligned} & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 168 \\ -0.5 \end{array}$ | $\begin{array}{r} 125 \\ -0.5 \end{array}$ | $\begin{array}{r} 125 \\ -0.5 \end{array}$ |
| (8) 6V6GT | Plate Screen Cathode | $\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$ | $\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$ | $\begin{gathered} 282 \\ 220 \\ 15.5 \end{gathered}$ | $\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$ |
| (9) 6 X 5 GT | Cathode | 8 | 313 | 300 | 299 |




John F. Rider
MODELS 8V90, CHASSIS RADIO CORP. OF AMERICA RC-618, RC-618A; 8 V 91 , CHASSIS RC-616A, RC-616H



The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.
Dial Scale - Model 8V91


## Model 8V90 2nd Production Chassis No. RC-618A

## Model 8V91 2nd Production Chassis No. RC-616H

| $\begin{array}{ll}\text { 1ST PRODUCTION } & \text { 2ND PRODUCTION } \\ \text { RC-616A and RC-618 } & \text { RC-616H and RC-618A }\end{array}$ | Replacement Parts - 8V90 - 2nd Prod. |  |
| :---: | :---: | :---: |
| Three position selector switch $\qquad$ Four position selector switch (PHONO-AM-FM) (AUX.-PHONO-AM-FM) |  | Identical to those listed for 1st Prod. EXCEPT |
| AUX. input jack is not used .............. AUX. input jack is used RC-618 only RC-618A only | Stock | DESCRIPTION |
| 8 -in. speaker ( $92579-2$ ) . . . . . . . . . . . . . . . . 12. in. speaker (92569-5) | Add: | CHASSIS ASSEMBLIES (RC-618A) |
| C37 and R46 are used .................. C37 and R46 are not used | 73659 | Capacitor-Tubular, $003 \mathrm{mfd} ., 200$ volts (C24) |
|  | 71928 $\times 74129$ | Capacitor-Tubular, 02 mid., 200 volts (C51) |
|  | Delete: | C24, C37, 51 , R46, S1, S2 |
| Replacement Parts - 8V91 - 2nd Prod | Add: | SPEAKER ASSEMBLIES |
| Identical to those listed for 1st Prod. |  | 92569-5W RL 103 B5 |
| Stock EXCEPT | Delete: | As listed for Model 8 891 |
| No. DESCRIPTION | Delete: | 92579-2W ASSEMBLIES |
| *74173 Switch—Selector switch (S1, S2) | Add: | MISCELLANEOUS |
| Delete; | *74130 | Decal-Control panel decal for mahogany finish or walnut |
| Add: 7360 Switch MISCElLANEOUS |  |  |
| *74175 Decal-Control panel decal for mahogany or walnut instruments | Delete: | 73904 and 73905 Decals. |
| ${ }^{*} 74176$ Decal-Control panel decal for blonde instruments |  | 73904 and 73905 Decals. |
| Delete: |  |  |
| 73755 and 73756 Decals |  |  |



The schematic diagrams above show the selector switch ( S 1 ) used in $\mathrm{RC}-616 \mathrm{H}$ and $\mathrm{RC}-618 \mathrm{~A}$. The connections to S 2 are identical in all chassis - note that position No. 2 (PHONO) of RC-616H and RC-618A corresponds to position No. 1 (PHONO) of RC-616A and RC-618. No connections are made through S 2 when in AUX. position.

PAGE 19-24 RCA
MODELS 8V90, CHASSIS RADIO CORP. OF AMERICA RC-618, RC-618A; 8V91, CHASSIS RC-616A, RC-616H
NOTE:
Replacement Parts-Model 8V90-First Prod.

*This is the first time that this Stock No. has appeared in Service Data.
$\dagger$ Stock No. 72953 is a reel containing 250 feet of cord.

RADIO CORP. OF AMERICA MODELS 8V90, CHASSIS
RC-618, RC-618A; 8V91,
CHASSIS RC-616A, RC-6i6H
Replacement Parts-Model 8V91—First Prod.


[^3]

8X681-(Maroon Plastic) 8X682-(Ivory Plastic)

## Specifications

## Tuning Ranges

Standard Broadcast ("A" Band)........... . 540-1600 kc
Short Wạve ("C" Band) $\qquad$ $9.4-12 \mathrm{mc}$

Intermediate Frequency
455 kc
Tube Complement
(1) RCA 12BA6........................... R. F. Amplifier
(2) RCA 12BE $6 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$........................................
(3) RCA 12BA6...................................... Amplifier
(4) RCA 12AT6 ........................................ A.V.C.

(6) RCA 35W4............................................ Rectifier

Dial Lamp
Type 47, 6.3 volts, 0.15 amp.

## Power Supply Rating

115 volts, D.C. or 50 to 60 cycles, A.C. $\qquad$ 30 watts

## Loudspeaker

Type 92572-5 $\qquad$ ce. $\qquad$ 5 in. P.M

Power Output
Undistorted
0.7 watts

Maximum 1.1 watts

## Cabinet Dimensions

Height.... 8 in. Width..... $12 \frac{3}{4} \mathrm{in}$. Depth..... 74 in .
Tuning Drive Ratio $7 \frac{1}{2}: 1$ ( $3 \frac{3}{2}$ turns of knob)

NOTE: If reception is not obtained on DC, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

## To Remove Chassis from Cabinet

Remove the four screws at the corners of the bottom cover (accessible through holes in the cabinet base). Do not remove the hex head screws which hold the base to the bottom cover. The cabinet may now be lifted off the cabinet base.

## Dial Positioning

If the speaker should be replaced, it will be necessary to readjust the speaker mounting bracket position so that the dial pan will fit against the cabinet when the chassis is re-installed in the cabinet.

## Insulating Washers

The cabinet base is insulated from the chassis bottom cover. When servicing make certain that the insulating washers are in place and properly positioned.



DETAIL OF COMPRESSION SPRING

NOTE: See page 4 regarding changes in late production pan and track assembly.


SIDE VIEW

## RADIO CORP. OF AMERICA MODELS $8 \times 681,8 \times 682$, CHASSIS RC-1061

## Alignment Procedure

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side to chassis. Keep the output low to avoid A.V.C. action.

Note--If the test oscillator is AC operated it may be necessary to use an isolation transformer ( $115 \mathrm{v} . / 115 \mathrm{v}$.) for the receiver during alignment, and the low side of the test oscillator connected to common wiring at pin No. 2 of 12AT6 socket-reverse line plug if hum is excessive.
Output Meter.-Connect meter across speaker voice. coil. Turn volume control to maximum.

Dial Pointer Adjustment.-Rotate tuning condenser to maximum capacity position (plates fully meshed). Adjust dial to position indicated in drawing.

With the dial adjusted as described above mark the dial pan assembly with a pencil to provide a tuning indicator during alignment.


| Steps | Connect the high side of the test-osc. to- | $\begin{gathered} \text { Tune } \\ \text { test-osc. } \\ \text { to- } \end{gathered}$ | Range <br> switch | Turn radio dial | Adjust for max. output |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No. 1 of 12BA6 I.F. amp. tube in series with 0.1 mfd. | 455 kc | " ${ }^{\prime \prime}$ | Quiet point 1600 kc and of dial | ```Top and bottom T2 2nd I. F. trans.``` |
| 2 | Pin No. 7 of 12BE6 converter tube in series with 0.1 mfd . |  |  |  | Top and bottom T1* 1st I. F. trans. |
| 3 | Antenna lead in series with 100 mmfd . | 1600 kc | "A" | 1600 kc | $\begin{gathered} \text { C14 } \\ \text { "A" osc. } \end{gathered}$ |
| 4 |  | 1400 kc |  | 1400 kc | $\begin{gathered} C 2 \\ \text { "A" ant. } \\ \text { C10 } \\ \text { "A" } \mathrm{R} . \end{gathered}$ |
| 5 |  | 600 kc |  | 600 kc | $\begin{gathered} \text { †L8 } \\ \text { "A"osc. } \\ \text { †LS } \\ \text { "A" R. F. } \end{gathered}$ |
| 6 | Repeat Steps 3, 4 and 5. |  |  |  |  |
| 7 | Pin No. 7 of 12 BE 6 converter in series with 0.1 mfd. capacitor | 11.8 mc | "C" | 11.8 mc | $\begin{gathered} \text { **C1 } 6 \\ . C " \text { osc. } \end{gathered}$ |
| 8 |  | 9.5 mc |  | 9.5 mc | $\begin{gathered} +1.6 \\ \text { " } C^{\prime \prime} \text { osc. } \end{gathered}$ |
| 9 | Repeat Steps 7 and 8. |  |  |  |  |
| 10 | Antenna lead in series with 50 mmfd . | 11.8 mc | "C" | 11.8 mc | $\begin{gathered} \text { \#"C3 } \\ \text { "C" ant. } \end{gathered}$ |
| 11 |  | 9.5 mc |  | 9.5 mc | $\stackrel{+\mathrm{L} 4}{c^{\prime \prime} \text { ant. }}$ |
| 12 | Repeat Steps 10 and 11. |  |  |  |  |

*Do not readjust T2.
$\dagger$ Rock gang.

* If two peaks are found use minimum capacity peak on C16 (osc.) and maximum capacity peak on C 3 (ant.).


## Lead Dress

1. Dress all heater leads down to chassis and as far as possible from all audio grid and plate wiring.
2. Dress power cord to side apron away from coupling capacitors.
3. Dress pilot lamp leads toward chassis bottom and away from audio coupling capacitor.
4. Dress all leads and components away from all coils.
5. Dress lead from range switch to phono socket against switch shield and chassis apron
6. The antenna lead should be taped up when not in use.


## Cathode Currents

|  | "A" Band | "C" Band |
| :--- | :---: | :---: |
| (1) 12BA6 | 4.1 ma | 6.9 ma |
| (2) 12BE6 | 7.3 ma | 7.2 ma |
| (3) 12BA6 | 6.7 ma | 7.4 ma |
| (4) 12AT6 | 0.2 ma | 0.2 ma |
| (5) 35 C 5 | 34.7 ma | 33.5 ma |
| (6) 35 W 4 | 52 ma | 53 ma |

Tube and Trimmer Locations

PAGE 19-28 RCA
MODELS 8X681, 8X682, RADIO CORP. OF AMERICA
GHASSIS RC-1061


## Replacement Parts


$\dagger$ Stock No. 72953 is a spool containing 250 ft . of cord.
*This is the first time this Stock No. has appeared in service data.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

## DIAL PAN AND TRACK ASSEMBLY (Late Production)

In late production the dial pan and track assembly is changed as follows:
(1) The studs (fixed and idler) are shorter $-19 / 32^{\prime \prime}$ vs. $5 / 8^{\prime \prime}$ overall length.
(2) The two half pulleys are replaced by 1 full pulley (Stock No. 73530).
(3) Spring washers are not used.

The parts are interchangeable as follows:
(1) Original stud or original pan using $5 / 8$ " studs USE SPRING WASHER - original idler stud (Stock No. 73528) is carried in stock.
(2) Short stud or new pan using $19 / 32^{\prime \prime}$ studs - OMIT SFRING WASHER-new pan (Stock No. 73484) is carried in stock.
(3) The two half pulleys may be replaced by one full pulley-both are carried in stock.

A stop is used to limit the movement of the idler stud, thus preventing the pulleys from jumping off the dial track due to rough handling during shipment. This stop may be either a speed nut and screw (A \& B) or a plate taped to the idler arm (C \& D).


PAGE 19-30 RCA

## MODELS 8X71;8X72, RADIO CORP. OF AMERICA <br> CHASSIS RC-1070





TUNING


RANGE

L.2,L 3 \& L4 AM. OSC.

Ant. and Osc. Coil Locations (Side View)


T2 RESPONSE


T1 $\xi$ T2.RESPONSE


RATIO $\underset{\text { B-9686l }}{ }$ DETECTOR RESPONSE FM Response Curves

F-POINTER POSITION - TUNING CONDENSER MAX. CAPACITY (CLOSED)


Dial Scale
The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.


Tube and Trimmer Locations (Top I'iew)


Alignment Procedure
CORRECT Alignment Procedure Output Indicators:
An RCA Votion onyst or equivalent meter is necessary for measur-
ing developed d.c yoltage during FM alignment. Connections ing developed d.c voltage during FM alignment. Connections al
speciifed in the alignment tabulation. An output meter is also necessary to indicate minimum cudio output during FM Ratio
Detector alignment. Connect the output meter across the speake: Detector alig
voice coil.
The RCA Voltohmyst can also be used as an AM alignmen
indicator, either to measure audio output or to measure avv. voll age.
Wher audio output is being measured the volume control should
Signal Generator:
For all alignment operations except as stated in the tabulation
connect the low side of the signal generator to the receiver chassis The output should be adjusted to provide accurate resonance ind cahion at al times. In output measurement is ised for AM alignmen
the output of the signal generator should be kept as low as possible the output of the sign.
to avoid $\alpha$ av. action.
CAUTION:
The chassis is connected to one side of the power supply. On a.c.
operation it is recommended that an isolation transtormer (115 operation it is recommended that an isolation
v. 115 v .) be used tor the receiver when servicing
Oscilloscopo Alignment:
 ohm resistor. Connect the high side of the oscilloscope to terminal
$C$ of $T 3$ in series with $a$ diode probe. Apply the output of the swe
 in series with .01 m. Low side of the oscilloscope
erator to chassis. This will show the response of
To check the combned response of Tl and T 2 connect the sweep
generato to the antenna terminal board--high side to No. 2 ter
minal in series with
 Osciloscope connections as previously connected.
Tho check the ratio detector response; connect the high side
the oscilloscope direct to terminal No io of si rear. low side the oscilloscope direct to terminal No. 8 of S1 rear, low side to
chassis, apply the output of the sweep generator to pin No. 1 a V3 $(12 A U E)$ in series with .01 mi. Driver plate circuit connected to hormal operation (1200 ohm resistor removed). Note: It is difiticul
to observe inarker signais in this step-center trequency and sweep to observe marker signalis in this step
width should be previously observed
Alignment Indicator:
The dial and dial
The dial and dial back plate are not attached to the chassis.
During alignment $a$ substitute frequency indication must be used We suggest attaching a paper clip to the dial drive cord so that is movement may be measured-refer to the "Dial Scale" illustration
chitcal lead dres
critical both in regard to leadd length and lead dress. Do disturb unless necessary-make careful notation before seevvic
2 The ground lead toon to disturb his wiring.
in length and must be dressed down against chassis.
3. Dress audio coupling capacitor C 23 away from output trans
4. Dress diode fitter unit away from alignment hole in T -2
5. Dress grid lead of v3 (pin No. 1 of 12AU6) against chassi
6. Dress plate lend of V 1 (pin No. 2 of 1966) agcinst chassis
7. Dress loop antenna leads so as to prevent contact with extern
8. All ground connections to chassis should be restored to the
oriqinal places of connection it disturbed.
original places of connection it disturbed.
9. Dress capacitor C13 down close to range switch so as to clear
2. Th FM
10. The FM ant. and osc. coils must be cemented to the coil suppor is recommended for this purpose. Amphenol No. 916 solvent is windings.

| FM Alignment <br> RANGE SWITCH IN FM POSITION - VOLUME CONTROL MAXIMUM |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Stops | Connect high <br> side of sig. gen. to- <br> gen. to | Sid. gon. | ${ }_{\text {Turn }} \begin{aligned} & \text { radio } \\ & \text { dial } \\ & \text { to }\end{aligned}$ |  |  |
| 1 |  chansis. Adijust sig. Gen. output to provide approxindication during alignment. indicaion during angnmen. |  |  |  | (eativo |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |
| 5 |  | 106 mc . | 106 mc . |  |  |
| - |  | 90 mc . | 90 mc . | ${ }_{\substack{\text { LRock }}}^{\text {(Rat }}$ | (tang.) |
| 7 | Repeat Steps 5 and 6 until further adjustment improve calibration |  |  |  | does not |
| * Two or more points may be found which lower the $\alpha$ put. At the correct point the minimum audio output is ap rapidly and is much lower than at any incorrect point. |  |  |  |  | didio out |
| †+ Align $\mathrm{T}_{2}$ and Tl by means of alternate loading as explained ohm resistor and load the $F M$ windings. |  |  |  |  |  |
| * L1 and 15 ara adjustable by increasing or decre spacing between turns. |  |  |  |  | ing the |



+ Use alternate loading.

 loaded with the resistor while the plate winding is peakbo. Only
one winding is loaded at any one ime. Remove the 10 ooo ohm one winding is loaded at any one time.
fesistor after $T 2$ and $T 1$ have been aligned.
Oscillator frequoncy is above signal froqu. FM.


FM Alignment



RADIO CORP. OF AMERICA
MODELS 9W101, 9W103, 9W105, CHASSIS RC-618B, RC-618C



## Introduction

All three of these instruments have the new Model RP-168A-1 record changer designed for use with the new Victor seven-inch long playing records. Model 9W105 also has a Model RP-178 record changer for use with the conventional ten- and iwelveinch records.
An auxiliary phono input jack on the back of the chassis of Models 9W101 and 9W103 (input controlled by the selector switch) is provided to permit the use of an auxiliary record player if desired.

## Antennas

These receivers have built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.
Provision is made for the use of an external antenna for FM reception if desired. To use external FM antenna-remove the builtin FM antenna lead from the " $\mathrm{FM}^{\prime}$ " terminals of the antenna terminal board Connect the transmission line of an external FM dipole antenna to these two "FM" terminals.
FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP-168 SERIES SERVICE DATA AND RP-178 SERIES SERVICE DATA.

## Specifications

## Tuning Range

Standard Broadcast (AM) $\qquad$ $540-1600 \mathrm{kc}$
Frequency Modulation (FM) $\qquad$ ............................ $\mathrm{AM}-455 \mathrm{kc}$ - 108 mc .
Tube Complement


Dial Lamps (2). $\qquad$ ..Type No. 51, 6-8 volts, 0.2 amp . Jewel Lamp $\qquad$ .Type No. 5l, 6.8 volts, 0.2 amp .
Tuning Drive Ratio $\qquad$ .18:1 (9 turns of knob)

Power Supply Rating $\qquad$ .115 volts, 60 cycles, 90 watts Loudspeaker (92569-5W)
Size and type $\qquad$
$\qquad$ Voice coil impedance 3.2 ohms at 400 cycles

Power Output
Undistorted 6 watts $\qquad$ Maximum 7 watts

Record Changer (RP-168A-1)
Used in all three models
Turntable speed $\qquad$ 45 r.p.m.


Pickup $\qquad$ Eight 7 in.-long playing

Record Changer (RP-178)
Used in Model 9W105 only
Turntable speed
Record capacity $\qquad$ Crystal (medium output)
$\qquad$
$\qquad$ Twelv................. 78 r.p.m.

Pickup $\qquad$ Height Model 9Wlol 34 in . Model 9W103 34 in . Model 9Wlo5 35 in

## Circuit Description

These instruments have a ten-tube (including rectifier) chassis which is very similar to those used in other RCA Victor radiophonograph combinations designed for AM-FM reception.

The selector switch has five functions:
(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes V1, V2 and V3.
(4) Selection of audio input applied to the volume control.
(5) Application of a.c. power to the record changer motors.

A one-tube pre-amplifier (6BF6 tube No. V10) is used with the input from the RP-168A-1 record changer.

## Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

## Aliignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure $\alpha-v-c$ voltage.
When audio output is being measured the volume control should be turned to maximum.
Signal Generator:
For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.
Oscilloscope Alignment:
The FM I-F alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1200 ohm resistor. Connect the high side of an oscilloscope to terminal C of T3 in series with $\alpha$ diode probe. Apply the output of the sweep generator ( 10.7 mc . with $\pm 250 \mathrm{kc}$. sweep) to pin No. 1 of V2 (6BA6) in series with .01 mf . Low side of the oscilloscope and sweep generator to chassis. This will show the response of T 2 .
To check the combined response of T 1 and T 2 ; connect the sweep generator to the FM antenna terminals (remove FM antenna lead) in series with 300 ohms. Note: One FM terminal is grounded-it may be necessary to reverse the sweep generator connections. Oscilloscope connections remain as connected.
To check the ratio detector response; connect the high side of the oscilloscope direct to terminal No. 9 of S1, low side to chassis. Apply the output of the sweep generator to pin No. 1 of V3 (6AU6) in series with .01 mf . Driver plate circuit connected for normal operation ( 1200 ohm resistor removed). Note: It is difficult to observe marker signals in this stepcenter frequency and sweep width should be previously observed.
Response curves illustrated on page 5.

## CRITICAL LEAD DRESS

1. Keep leads of $C 7$ short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The round lead of pin No. 2 of V2 and V3 should be down against chassis. Its length is critical.
4. The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L2 is cemented.
6. The lead from the high side of the loop should be dressed away from tubes.
7. Lead from pin No. 2 of V1 to terminal " $A$ " of lst I. F. transformer should be dressed against the chassis.
8. Connect C40 directly between the gang condenser and pin No. 1 of Vl.
9. Make all FM leads as short as possible.
10. Dress lead from pin No. 5 of V 2 to terminal " $A$ " of 2 nd I. F. transformer down against chassis.
11. Dress resisior R15 near chassis base.
12. Dress all A. C. leads away from volume control.
13. The lead from "FM" terminal of antenna terminal board to L1 tap should be dressed away from V2.
14. The taps on L1 and L2 are critical. L1 tap should be $3 / 4$ turn from the ground end. L2 tap should be $21 / 2$ turns from the gang condenser C 8 .
15. Dress C25 and C26 against the chassis with the shortest lead length possible.
16. The position of L 1 and L 2 is critical. L 1 should be midway between V1 and the lst I. F. transformer. The end of L2 should be approximately $3 / 16^{\prime \prime}$ from V1.
17. Capacitor C41 should be secured to the chassis apron with melted wax or cement.
18. FM oscillator coil L2 must be cemented to its support. Amphenol No. 912 cement is recommended for this purpose.
Dial Indicator
With the tuning condenser fully meshed (closed) the indicator should be set to the reference mark on the dial back plate.
Refer to the dial scale reproductions on page 8.
AM Alignment
range switch in bc position

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | C3 in series with .01 mid . | 455 kc. | Quiet point at low freq. end. | AM windings. $\dagger$ T3 bottom core (sec.). T3 top core (pri.). |
| 2 |  |  |  | AM windings. $\dagger$ T2 top core (sec.). T2 bottom core (pri.). |
| 3 | Short wire placed near loop for radiated signal | 1400 kc . | 1400 kc . | Cl3 osc. C4 ant. |
| 4 |  | 600 kc. | 600 kc. | L4 osc. (Rock gang.) |
| 5 |  | Repeat Steps 3 and 4. |  |  |

$\dagger$ Use alternate loading.
Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Hemove the 47,000 ohm resistor after T3 and T2 have been aligned.
Oscillator frequency is above signal frequency on both AM and FM.

FM Alignment
RANGE SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Connect the d-c probe of a VoltOhmyst to the negative lead of the 2 mfd . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed). |  |  |  |
| 2 | Pin 1 of 6AU6 in series with .01 mid . | 10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt). | Max. capacity (fully meshed). | T4 top core for max. d-c voltage across C33. <br> T4 bottom core for min . audio output. * |
| 3 | FM ant. term. in series with a 300 ohm resistor. (Remove ant. lead from " $\mathrm{FM}^{\prime \prime}$ term.) | 10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment. |  | FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.). |
| 4 |  |  |  | FM windings. $\dagger+$ T2 top core (sec.). T2 bottom core (pri.). |
| 5 |  | 106 mc. | 106 mc. | L2 osc.** C2 ant. Set C2 at max. capacity while adjusting L2. |
| 6 |  | 90 mc. | 90 mc . | $\begin{aligned} & \text { Ll ant. * } \\ & \text { (Rock gang.) } \end{aligned}$ |
| 7 | Repeat Steps 5 and 6 until further adjustment does not improve calibration. |  |  |  |

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align T3 and T2 by means of alternate loading as explainea under AM alignment. Use $\alpha 680$ ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
** L1 and L2 are adjustable by increasing or decreasing the spacing between turns.

RCA PAGE 19-37


PAGE 19-38 RCA
MODELS 9W101, 9W103, RADIO CORP. OF AMERICA 9W105, CHASSIS
RC-618B, RC-618C


RCA PAGE 19-39





The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.


RCA PAGE 19-43
RADIO CORP. OF AMERICA





MS760

Controls-Models 9W101 and 9W103

## SHIPPING SCREWS

The radio chassis of these instruments is secured to the cabinet with shipping screws (painted red) which, together with wood spacing strips, should be REMOVED at the time of installation.

The record changers are each mounted with three screws which should be LOOSENED at the time of installation.
On the RP-168A-1 record changer decorative caps cover the mounting screws, unscrew the caps for access to the screws.

REFER TO ILLUSTRATIONS ON PAGES 8 AND 9.


Top View-RP-168A-1 Record Changer

## RP-168A-1 RECORD CHANGER

Pickup Landing Adjustment "A"
The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw " $A$ " slightly clockwise. If pickup lands outside the starting grooves-turn screw " $A$ " slightly counterclockwise.
Pickup Height Adjustment " $\mathrm{B}^{\prime}$
During cycle the pickup arm must rise high enough to clear a stack of eight, records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight records-turn screw " $B$ " slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

## Record Separators

During service work the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the record separator knives to be extended when in the out of cycle position.
If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

## CARE OF SAPPHIRE

The sapphire point on the pickup is protected with a permanent metal guard. Lint may collect to clog the opening in the guard at the sapphire point and cause poor record reproduction. Occasional cleaning may be necessary; brush carefully with a small soft brush.


Speaker Connections.


Top View-RP-178 Record Changer

## Replacement Parts

| STOCK No. | DESCRIPTION |
| :---: | :---: |
|  | CHASSIS ASSEMBLIES RC 618B-9W101, 9W103 RC 618C-9W105 |
| 73893 | Board-'F.M." antenna board |
| 73889 | Capacitor-Variable tuning capacitor (C1, C2, C3, C4, C8, C12, C13) |
| 73866 | Capacitor-Ceramic, 2 mmi ( $\mathrm{C}^{\text {( }}$ ) |
| 93056 | Capacitor-Ceramic, 5 mmf . (C11) |
| 31353 | Capacitor-Ceramic, 15 mmi . (C42) |
| 39042 | Capacitor-Ceramic, 47 mmf . (C26) |
| 73867 | Capacitor-Ceramic, 56 mmf . (C43) |
| 33103 | Capacitor-Ceramic, 68 mmf . (C40) |
| 48125 | Capacitor-Ceramic, 150 mmi . (C7, C19, C38, C50, C53) |
| 39640 73748 | Capacitor-Mica, $330 \mathrm{mmf}$. (C30, C31) Capacitor-Ceramic, 1500 mmi . (C39) |
| 73473 | Capacitor-Ceramic, .005 mid . (C6, C10) |
| 73750 | Capacitor-Tubular, 002 mid., 200 volts (C36 for 9W105) |
| 73659 | Capacitor-Tubular, $003 \mathrm{mid} ., 200$ volts (C24) |
| 72573 | Capacitor-Tubular, $003 \mathrm{mfd} ., 400$ volts (C28) |
| 70646 | Capacitor-Tubular, $.0035 \mathrm{mfd} ., 1000$ v. (C34, C56) |
| 71926 | Capacitor-Tubular, . 005 mid., 200 volts (C20, C27, C32) |
| 71553 | ```Capacitor-Tubular, . }005\mathrm{ mfd., }400\mathrm{ volts (C14, C16, C17, C21, C22)``` |
| 72120 | Capacitor-Tubular, .015 mid., 200 volts (C52) |
| 71928 | Capacitor-Tubular, .02 mfd .1200 volts (C51) |
| 73638 | Capacitor-Tubular, $02 \mathrm{mid} ., 400$ volts (C55) |
| 71923 | Capacitor-Tubular, 01 mfd., 200 volts (C23, C25) |
| 73561 | Capacitor-Tubular, 01 mid., 400 volts (C58, C59) |
| 71925 | Capacitor-Tubular, 01 mid., 400 volts (C29, C41, C54) |
| 71551 | Capacitor-Tubular, 05 mfd., 200 volts (Cl5) |
| 73747 $* 74200$ | Capacitor-Electrolytic, 2 mid., 50 volts (C33) $10 \mathrm{mfd}$. |
| * 74200 | Capacitor-Electrolytic, comprising 1 section of $10 \mathrm{mfd} .$, 300 volts and 1 section of 100 mfd ., 10 volts (C57A, C57B) |
| 73372 | Capacitor-Electrolytic, comprising 1 section of 30 mid., 350 volts, 1 section of 30 mfd., 300 volts and 1 section of 20 mid., 250 volts (C18A, C18B, C18C) |
| 73918 | Coil-Antenna coil-F.M. (\#16 tinned bus wire, 8 turns per inch, $13 / 4$ turns L.H.--. 469 I. D.) (L1) |
| 73916 | Coil-Oscillator coil-F.M. (\#16 tinned bus wire, 7 turns per inch, $43 / 4$ turns R.H.--. 469 I. D.) (L2) |

(Continued on following page)

## Replacement Parts (Continued)

| $\left\lvert\, \begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}\right.$ | DESCRIPTION |
| :---: | :---: |
| $\begin{array}{r} 71942 \\ 73744 \\ 70342 \\ +72952 \\ 73690 \\ 16058 \\ 72069 \end{array}$ | Coil-rilamont ch |
|  | Coil-Oscillator coil-A.M. (L4) |
|  | Control-Volume control and power switch (R14, 83) |
|  | Cord-Drive cord (approx. 48" overall length require |
|  | Cord-Power cord |
|  | Grommot-Rubber grommot to mount R.F. sholf en |
|  | Grommel-Rubber grommot for rear mounting foet (2 |
| 73895 30868 74297 <br> * 74297 | Indicator-Station soloctor indicator |
|  | Plug-2 contact fomale plug for motor cab |
|  | Plug-4 contact fomale plug for speaker cable |
|  | Plate-Dial back plate complote with two (2) drive cord pulloys less dial <br> Resistor-Fixed, composition, 68 ohms $\pm 10 \%, 1 / 2$ watt (R7) |
|  | Resistor-Fixed, composition, 68 ,hms $10 \%$ wat (R7) Resistor-Fixed, composition, 100 ohms $\pm 10 \%$, $1 / 2$ watt (R17, R27, R36) |
|  | Resistor-Fixed, composition, 120 ohms $\pm 10 \%, 1 / 2$ watt (R12) |
|  | Resistor-Fixed, composition, 470 ohms $\pm 10 \%, 2$ watts (R21) |
|  | Resistor-Fixed, composition, 560 ohms $\pm 10 \%, 1 / 2$ watt (R35) |
|  | Resistor-Fixed, composition, 680 ohms $\pm 20 \%, 1 / 2$ watt (R9, R11) |
|  | Resistor-Fixed, composition, 1200 ohms $\pm 5 \%, 1 / 2$ watt (R23) |
| 73637 | Resistor-Wire wound, 2200 ohms, 5 watts (R22) <br> Resistor-Fixed, composition, 3300 ohms $\pm 5 \%, 1 / 2$ watt (R24) |
|  | Resistor-Fixed, composition, 5600 ohms $\pm 10 \%, 1 / 2$ watt (R47) |
|  | Resistor-Fixed, composition, 8200 ohms $\pm 10 \%, 1 / 2$ watt (R43) |
|  | Resistor-Fixed, composition, 10,000 ohms $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R32, R50) |
|  | Resistor-Fixed, composition, 15,000 ohms $\pm 10 \%$, $1 / 2$ watt (R13, R18, R30) |
|  | Resistor-Fixed, composition, 18,000 ohms $\pm 10 \%, 1 / 2$ watt (R4 for 9W101, 9W103 \& 9W105) (R33 for 9W105) |
|  | Resistor-Fixed, composition, 22,000 ohms $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R48) |
|  | Resistor-Fixed, composition, 27,000 ohms $\pm 10 \%, 1 / 2$ watt (R8, R40) |
|  | Resistor-Fixed, composition, 27,000 ohms $\pm 10 \%$, 1 watt (R5) |
|  | Resistor-Fixed, composition, 33,000 ohms $\pm 10 \%$, $1 / 2$ watt (R6) |
|  | Resistor-Fixed, composition, 39,000 ohms $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R25) |
|  | Resistor-Fixed, composition, 56,000 ohms $\pm 10 \%, 1$ watt (R10) |
|  | Resistor-Fixed, composition, 82,000 ohms $\pm 10 \%$, $1 / 2$ watt (R42) |
|  | Resistor-Fixed, composition, 100,000 ohms $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R45) |
|  | Resistor-Fixed, composition, 120,000 ohms $\pm 10 \%, 1 / 2$ watt (R46) |
|  | Resistor-Fixed, composition, 220,000 ohms $\pm 10 \%, 1 / 2$ watt (R49) |
|  | Resistor-Fixed, composition, 270,000 ohms $\pm 10 \%, 1 / 2$ watt (R19, R29) |
|  | Resistor-Fixed, composition, 330,000 ohms $\pm 10 \%, 1 / 2$ watt (R28) |
|  | Resistor-Fixed, composition, 470,000 ohms $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R20, R26, R44) |
|  | Resistor-Fixed, composition, 2.2 meg. $\pm 20 \%, 1 / 2$ watt (R3) Resistor-Fixed, composition, $3.9 \mathrm{meg} . \pm 10 \%, 1 / 2 \mathrm{watt}$ (R2) |
|  | Resistor-Fixed, composition, 10 megohms $\pm 20 \%, 1 / 2$ watt (R15, R41) |
|  | Resistor-Fixed, composition, 22 megohms $\pm 20 \%, 1 / 2$ watt (R16) |
| 7389431364 | Shaft-Tuning knob shaft |
|  | Socket-Dial or jewel lamp socket |
| 3351431251 | Socket-Phono input socket (double) |
|  | Socket-Tube socket, wafer, octal |
| 31251 73606 | Socket-Tube socket, miniature, for tubes V1, V2, V3, V4, V5, V7 |
| $\begin{aligned} & 73117 \\ & 31418 \end{aligned}$ | Socket-Tube socket, miniature, for 6BF6 tube |
|  | Spring-Drive cord spring |
| 74202 | Support-Polystyrene support for F.M. osc. coil complete with mounting bracket |
| 738891 | Switch-Tone control switch (S4) |
| *74201 ${ }^{73601}$ | Switch-Selector switch (S1, S2) |
|  | Transiormer-Power transformer, 115 volt 60 cycle (TI) |
| 7374574019 | Transformer-First 1.F. transformer-dual (T2) |
|  | Transformer-Second I.F. transformer-dual (T3) |
| 740197374333726 | Transformer-Ratio detector transformer (T) |
|  | Washer-"C" washer for tuning knob shaft |
|  | SPEAKER ASSEMBLIES |
|  | RL 103B |
| 1386773934 | Cap-Dust cap |
|  | Cone-Cone and voice coil assembly |
| 31826 | Plug-4 prong male plug for speaker |
| 73635 | Speaker-12" PM speaker complete with cone and voice coil less output transformer and plug (92569-5W) |
| $\begin{aligned} & 71145 \\ & 73636 \end{aligned}$ | Suspension-Metal cone suspension |
|  | Transformer-Output transformer (T5) |


| $\begin{aligned} & \text { STOCX } \\ & \text { No. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: |
|  | MISCELLRNEOUS |
| 72 | An |
| -74 | Bezel-Dial scalo bezel los |
| 742 | Bracket-Jowol lamp bracket for Model 9W105 |
| 715 | Bracket-Jowol lamp bracket for Models 9W101 and |
| -74263 | Button-Rosotte button (nail) for grille for Model 9W101 |
| 243 | Cable-Shielded pickup cable complote with pin plug (2 required) for Model 9W105 |
| 72583 | Cable-Shiolded pickup cable complete with pin plug for Models 9W101 and 9W103 |
| 1310 | Cap-Jowel lamp cap |
| 71892 | Catch-Bullet cat |
| 7429 | Clamp-Dial clamp (2 required) |
| X1968 | Cloth-Grille cloth |
| X1973 | Cloth-Grille cloth for Model 9W103 |
| X1953 | Cloth-Grille cloth for blonde instruments for Model 9W105 |
| X1897 | Cloth-Grille cloth for mahogany or walnut instruments for Modol 9W105 |
| 74209 | Cover-Mounting screw cover for RP168A record changer (3 required) |
| 4275 | Decal-Control panel decal for limed oak instruments for Model 9W103 |
| * 74274 | Decal-Control panel decal for mahogany or walnut instruments for Models 9W101 \& 9W103 |
| 42 | Decal-Control panel decal for blonde instruments for Model 9W105 |
| -74280 | Decal-Control panel decal for mahogany or walnut instruments for Model 9W105 |
| $71768$ $74273$ | Decal-Trade mark decal (RCA Victor) for Model 9W101 Decal-Trade mark decal (Victrola) for Models 9W101 |
|  | ad 9W103 |
| 71910 | Decal-Trade mark deckl (RCA Victor) for Modol 9W105 |
| -74203 | Decal-Trade mark decal (Victrola) for |
| -7420 | Dial-Glass dial scale for Model 9W |
| 73180 | Emblem-"RCA Victor" emblom for Model 9W103 |
| 11889 | Grommet-Rubber grommet for front apron chassis (2 required) |
| 72856 | Grommet-Rubber grommet for mounting RP178 record changer ( $\Delta$ required) |
| 72 | Hinge-Cabinet door hinge (1 set) |
| 72 | Knob-Tone control or selector switch knob-brown-for blonde or limed oak instruments |
| 71822 | Knob-Tone control or selector switch knob-maroonfor mahogany or walnut instruments |
| 72800 | Knob-Tuning or volume control knob-brown-for blonde or limed oak instruments |
| 71821 | Knob-Tuning or volume control knob-maroon-for mahogany or walnut instruments |
| 11765 | L |
| 74 | Loop-Antenna loop complete for Model 9W105 |
| 73896 | Loop-Antenna loop complete for Models 9W101 and 9W105 |
| 73 | Nut-Tee nut for mounting RP178 record changer (3 re- quired) |
| 74208 | Nut-Tee nut for mounting RP-168A-1 record changer (3 required) |
| 73771 | Pull-Door pull for record storage compartment door or radio compartment door for Model 9W105 |
| 7276 | Pull-Door pull for Model 9W103 |
| * 7423 | Pull-Door pull for Model 9W101 |
| ${ }^{7} 7$ | Pull-Record changers' drawor pull for Model SW105 |
| 30868 | Plug-2 contact female plug for motor cable |
| 3087 | Plug-2 prong male plug for moter cable |
| 7318 | Runner-Record changer merorboard runner-R.H.-for RP178 changer-Model 9 W 105 |
| 73183 | Runner-Record changer motorboard runner-L.H.-for RP178 changer-Model 9W105 |
| 4271 | Runner-Record changor motorboard RP168A-1 changer |
| -74272 | Runner-Record changer motorboard runne RP168A-1 changer |
| 73110 | Screw- \# $1 / 4-20 \times 13 / 4^{\prime \prime}$ fillister head screw for mounting RP178 record changer-Model 9W105 |
| -74278 | Screw-\#8-30 x $3 / 4^{\prime \prime \prime}$ trimit head scrow for record changers' drawer pull for Model 9W105 |
| 4424 | Screw-\#8-32 $\times 13 / 4$ " special screw for mounting RP-168A-1 record changer (3 required) |
| -74269 | Screw-\#8-32 x 3/4" trimit head screw for door pull (2 required) for Model 9W101 |
| 74113 | Screw-\#8-32 x $1^{\prime \prime}$ trimit head screw for door pull for Model 9W103 |
| -74279 | Screw-\#8-32 $x$ 7/8" trimit head scrow for door pull for record storage compartment door and radio compartment door for Model 9W105 |
| * 74421 | Spring-Conical spring for mounting RP-168A-1 reco changer-upper-R.H. side (1 required) |
| 74422 | Spring-Conical spring for mounting RP-168A-1 record changer-upper-L.H. side (2 required) |
| -74423 | Spring-Conical spring for mounting RP-168A-1 record changer-lower ( 3 required) |
| 729 | Spring-Retaining spring for knobs |
| 72936 | Stop-Door stop |
| 85 | Stop-Metal stop for motorboard runners (2 required) |
| 73182 | Track-Record changer compartment track (for RP-168A-1 record changer) (2 required) |

Stock No. 72953 is a reel containing 250 feet of cord.


- this is the first time this stock number has appeared in service data.


## RADIO CORP. OF AMERICA

 CHASSIS RC-1063A
## Alignment Procedure

CAUTION.-CLOSE TUNING CONDENSER PLATES COMPLETELY (C-C-W) BEFORE REMOVING CHASSIS FROM CABINET.
Take off both wooden strips on bottom of cabinet by removing wood screws before loosening chassis bolts.
CRitical lead dress.-

1. All heater wires should be dressed close to chassis.
2. Dress lead from switch to phono jack close to chassis and away from power cord.
3. Dress capacitor between 12SQ7 grid and terminal board away from chassis and away from other parts.
4. Dress lead from arm of volume control to terminal board against front apron and away from other leads.
5. In instrument assembly the lead from the rear section of gang to loop shall be dressed away from chassis and other wires to loop.


Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side through a .01 mf . capacitor to common "-B." Keep the output signal as low as possible to avoid a.v.c. action.

Speaker and Dial Adjustment.-If the speaker should require replacement or if the position of the speaker mounting bracket is disturbed, reposition as follows:

Mount speaker on bracket, adjust bracket so that front edge of speaker extends $3 / 4$ inch in front of chassis base and tighten bracket screws.

Mount chassis on wood base with mounting screws loose, install in cabinet and push chassis forward until speaker contacts grille and then tighten chassis mounting screw. Adjust dial back plate mounting bracket so that the plate is parallel with cabinet.

The two wood buttons at the top of the dial back plate should be adjusted to provide the best illumination of the dial and pointer.

Output Meter.-Connect meter across speaker voice coil. Turn volume control clockwise to radio maximum high position (3) for alignment.
Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer to position illustrated on front page.

| Steps | Connect the high side of test-oscillator to- | Tune test-osc. to- | $\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$ | Adjust the following for max. peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.F. grid, in series with .01 mfd . | 455 kc | Quiet point 600 kc end of dial | $\begin{aligned} & \text { L8 and L9 } \\ & \text { 2nd I.F. } \\ & \text { transformer } \end{aligned}$ |
| 2 | 1st Det. grid in series with .01 mid . |  |  | L6 and 47 <br> "1st I.F. <br> transformer |

NOTE.-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR STEPS 3, 4 AND 5

| 3 | Antenna termi- <br> nal in series <br> with 220 mmfd. | 1600 kc | 160 | C19 (ose.) |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Radiated signal | 1400 kc | Signal <br> frequency | C17 (ant.) |
| 5 | Repeat steps 3 and 4. |  |  |  |

* Do not readjust L8 or L9 when test oscillator is connected to lst Det.


1st I.F. Trans. Substitution.-The first I.F. transformer may differ from that snown in the schematic diagram. Transformers stamped $970441-1$ are as shown in the schematic. Transformers stamped 970441-5 are connected as follows: term. \#4 to plate of 12SA7 term. \#3 to B+ term. \#1 to grid of $12 \mathrm{SK7}$, term. \#2 to A.V.C. The $\mathrm{d}-\mathrm{c}$ resistance of each winding is 16 ohms. The primary capacitor C 20 is 131 mmf ., the secondary capacitor is 106 mmf .

## Electrical and Mechanical Specifications

Frequency Range ..................................................................... 540-1,600 kc
Intermediate Frequency ..................................................................... 455 kc
Tube Complement
(1) RCA Radiotron 12SA7 .......................................................... Converter
(2) RCA Radiotron 12SK7 ............................................................................................. A Amplifier
(3) RCA Radiotron 12SQ7.............................................. Ad Det., A.V.C., and A-F Amplifier
(4) RCA Radiotron 50L6GT ................................................ Power Output
(5) RCA Radiotron 35Z5GT .............................................................................. Rectifier

Pilot Lamp ......................................... Mazda No. 51, 6-8 volts, 0.2 amp. Power Output
Undistorted ...................................................................................... 1.5 watts
Maximum
Loudspeaker
Type 922258-2 $\qquad$ .'PM'" $4 \times 6$ inch elliptica] Power Supply Rating
105-125 volts, A-C, 60 cycles $\qquad$ 60 watts
IMPORTANT: Do not plug instrument into a d-c supply.
Access to dial lamp may be obtained by removing sloping panel in record changer compartment.


Phonograpl.
Type RP-178 or Type 960276-1 Record Capacity Turntable Speed Type Pickup


CHASSIS RC-615 Alignment Procedure
Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

| Steps | Connect high side of test oscillator to- | Tune test oscillator to- | Tum radio dial to- | Adjust the following for maximum peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6SK7 grid in series with .01 mfd . | 455 kc. | Broadcast Quiet Point at 550 kc . end of dial | Pri. and Sec. (2nd I-F Trans.) |
| 2 | 6SA7 grid in series with .01 mfd . |  |  | Pri. and Sec. (1st I-F Trans.) |
| 3 | Primary lead on loop in series with $\mathbf{2 0 0} \mathbf{~ m m f d}$. | 1,400 kc. | 1,400 kc. | $\begin{aligned} & \text { C4 (osc.) } \\ & \text { C2 (ant.) } \end{aligned}$ |
| 4 |  | 600 kc. | 600 kc. | 12 (osc.) <br> Rock gang |
| 5 |  | Repeat steps 3 and 4 |  |  |


Automatic Record Changer


Model 77V1

## Circuit Description

The receiver is a seven tube superheterodyne employing push-pull power unit. AVC is applied to the converter and i-f tubes. The broadcast band utilizes a standard loop antenna

## Critical Lead Dress:

1. Dress speaker cable leads down next to chassis.
2. Dress output plate capacitors next to chassis.
3. Dress plate lead of output tube away from grid of audio amplifier.
4. Dress all a-c leads away from volume control down next to chassis.
5. Dress lead from top tap of volume control to range-tone switch along front apron of chassis.
6. Dress R12 and R15 down near chassis base.


Dial Indicator and Drive Mechanism
Frequency Ranges
Standard Broadcast "A" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540-1,600 ke
Intermediate Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 kc
Tube Complement
(1) RCA-6SA7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1st Det., Oscillator

(3) RCA-6SQ7 ...................2nd Det., A.V.C. and Phase Inverter
(4) RCA-6SQ7 .............................................................. Amplifier

(7) RCA-6X5GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectifier

Power Supply Rating (including Phono Motor)
105-125 volts, 60 cycles ............................................ . 95 watts

Pilot Lamps ......................(2) Mazda No. 51, 6-8 volts, 0.2 amp .
Compartment Lamp ...............(1) Mazda No. 51, 6-8 volts, 0.2 amp.

## Loudspeaker

Electrodynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92569-1W



## Phonograph

Type ................................................... . . Automatic 960260-1
Record Capacity . . . . . . . . . . . . . . . . . . . . . . . . . Twelve 10-in., Ten 12-in
Type Pickup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 r.p.m. type Motor Power consumption ( 115 v., 60 cycles) . .............. . 30 watts

Tuning Drive Ratio ................................................... . . $16: 1$



## RADIO CORP. OF AMERICA

## Alignment Procedure

Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator.- For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action
Calibration Scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick reference during alignment.
Using Printed Dial Scale.-

1. Cut out the printed dial scale, or make a tracing of the scale.
2. With gang at full mesh the pointer should be set to the second reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.

Note.--It is not recommended that the glass dial scale in the cabinet be removed as an alignment reference. This glass dial scale is fastened to the bezel with sheet metal lugs bent over the scale to hold it in place. Removing the glass dial scale will necessitate bending the lugs, resulting in their weakening and subsequen breakage.
" C " Band Reception.-- For best reception on " C " band with an outside antenna, adjust the trimmer screw of C2O on the antenna coil. Turn screw carefully with an insulated screwdriver (RCA Stock No. 31031) while the receiver is tuned to a station in the 31 -meter band. If returning to internal antenna at any time, close the link on the center terminal and readjust " $C$ " band antenna trimmer C20 for best reception on 31 -meter band
For additional information, refer to booklet, 'RCA Victor Receiver Alignment.'

| Stops | Connect high side of test oscillator to- | Tune test oscillator to- | Turn radio dial to- | Adjust the following for maximum peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6SK7 grid in series, with .01 mfd . | 455 kc. | Broadcast Quiet Point at 550 kc . end of dial | Top and bottom T-1 <br> (2nd I-F <br> Trans.) |
| 2 | 6SA7 grid in series with .01 mfd . |  |  | Top and bottom T-2 (1st I-F <br> Trans.) |
| 3 | Yellow lead on loop in series with 200 mmfd . (link closed) | 1,400 kc. | Broadcast 1400 kc . | C24 (osc.) |
| 4 |  | 600 kc. | Broadcast 600 kc . | L4 (osc.) Rock gang |
| 5 |  | Repeat steps 3 and 4. |  |  |
| 6 | Antenna terminal in series with 47 mmfd . | 15.2 mc . | Short Wave 15.2 mc . | $\begin{gathered} \text { C23 } \\ \text { C20 } \\ \text { (osc.) } \\ \text { (ant.) } \end{gathered}$ |
| 7 |  | 9.5 mc . | Short Wave 9.5 mc . | 15 (osc.) <br> L3 (ant.) |
| 8 |  | Repeat steps 6 and 7 |  |  |
| 9 | Install and connect chassis in cabinet with link closed. Tune in a radiated signal of 1400 kc . on broadcast band and peak C32 on loop. |  |  |  |

* Use minimum capacity peak if two can be obtained. Check for selection of correct peak by tuning the receiver to approximately 14.3 mc ., where a weaker signal should be received.
Oscillator tracks 455 kc . above signal on both bands.


DIAL INDICATOR AND DRIVE MECHANISM

Critical Lead Dress:

1. Dress all A. C. leads away from volume control.
2. Dress lead from top tap of volume control to tone switch along front apron of chassis.
3. Dress R9 and R15 down near chassis base

Noie.--In order to remove the chassis from the cabinet, remove the knobs and the connecting cables, then unscrew the four slotted hex head screws from the two " L " brackets bolted to the rear of the chassis. The chassis may then be slid out toward the bottom rear of the cabinet. Do not remove the hinge screws or the two large nuts in the rear of the chassis. When replacing the chassis, make sure that the tapered pins on the front of the chassis fit into the holes on the metal runners attached to the cabinet door.


SPEAKER CONNECTIONS



The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignmeni procedure.

Replacement Parts
For Record Changer Parts refer to Service Data tor Model 960260-1

| STOCE | DESCRIPTION | $\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES (RC-606C) | $\begin{aligned} & * 70128 \\ & * 70129 \\ & * 70127 \end{aligned}$ | Transformer-First I-F' transformer (T1) <br> Transiormer-Second I-F transformer (T2) <br> Transiormer-Power transformer, 117 volts, 60 cycles (T4) |
| 71601 71606 | Board-"Ant. ground" board <br> Bracket-Dial bracket with drive cord pulley (L. H.) | 35969 | Washer-"C" washer for tuning shaft |
| 71605 | Brackel-Dial bracket with drive cord pulley (R. H.) |  | SPEAKER ASSEMBLIES |
| 71615 71924 |  |  | 92569-1W-RL103-1 |
| 71610 | Capacitor-Mica trimmer, 3 sections $8-80 \mathrm{mmi}$. (C20, C23, | 13867 | Cap-Dust cap |
| 71614 | Capacitor-Ceramic, 120 mmi . (C5, C13) | 36145 | Cone-Cone and voice coil assemb |
| 39632 | Capacitor-Silvered mica, 150 mmf . (C1, C2) | 71560 | Plug-5 prong male plug for speaker |
| 71613 70601 | Capacitor-Mica, 640 mmi . (C3) |  | coil less output transformer and plug |
| 70602 |  | 71145 | Suspension-Metal cone suspension |
| 70646 | Capacitor-Tubular, . 0035 mid., 1000 volts (C16, C17) |  |  |
| 70606 70610 | Capacitor-Tubular, .005 mid., 400 volts (C12) Capacitor-Tubular, 01 mid., 400 volts (C6, C10, C14, C31) |  | NOTE: If stamping on speaker in instrument does not |
| 70572 |  |  | with above speaker number, order replace- |
| 70611 | Capacitor-Tubular, $02 \mathrm{mfd} ., 400$ volts (C15) |  | minent, number stamped on speaker and full |
| 70615 | Capacitor-Tubular, 05 mfd., 400 volts (C7) |  | description of part required. |
| 71976 | $\begin{array}{lllllll}\text { Capacitor-Comprising } \\ \text { section } & 1 & \text { section } & 20 & \text { mfd. } & 450 & \text { volts, } \\ \text { mfd } & 350 \\ \text { volts and } & 1 & \text { section } & 20 & \text { mid. } & 25\end{array}$ volts (C30R, C30B, C30C) |  | MISCELLANEOUS |
| 71633 | Coil-"A" band oscillator coil (L4) | 71819 | Bracket--Door check mounting bracket |
| 71632 | Coil-"'C"', band antenna coil ( $\mathrm{L} 2,13$ ) | 36461 | Button-Plug button |
| 71634 71600 | Coil-"C" band oscillator coil (L5) ( ${ }^{\text {Condenser-Variable tuning condenser ( }}$ (22) | 38684 | Capacitor-Mica trimmer, 2-20 mml. (C32) |
| 70342 | Control-Volume control and power switch (R20, S4) | 7182 | Check-Radio compartment door check |
| 72953 | Cord-Drive cord (approx. 45" overall length). | X1638 | Cloth-Grille cloth for walnut instruments |
| 71609 | Drum-Drive drum ${ }^{\text {a }}$, | $\times 1639$ | Cloth-Grille cloth for mahogany instruments |
| 72069 70930 | Grommet-Rubber grommet for rear mounting feet ${ }_{\text {Gramer }}$ | 70547 | Cover-Compartment lead cover |
| 71608 | Indicator-Station selector indicator | 71769 | Decal-Control function decal for walnut or mahogany |
| 71607 | Plate-Dial back plate |  |  |
| 38832 12493 | Plug-Pin plug for loop lead | 71966 | Decal-Trade mark decal (Victrola) |
| 72602 | Pulley-Drive cord pulley mounted on dial bracket | 71817 | Diál-Glass dial scale |
|  | Resistor- 330 ohms, 1 watt (R12) | 71816 | Escutcheon-Dial scale escutcheon less dial |
|  | Resistor- 2,200 ohms, 2 watt (R23) Resistor- 8,200 ohms, $1 / 2$ watt (R14) | 11889 | Grommet-Rubber grommet to cushion chassis front apron (2. required) |
|  | Resistor-15,000 ohms, 2 watt (R2) | 72069 | Grommet-Rubber grommet for mounting loop |
|  | Resistor-18,000 ohms, 1/2 watt (R17) | 71764 | Hinge-Cabinet door hinge (2 required) |
|  | Resistor-22,000 ohms, $1 / 2$ watt (R3) ${ }^{\text {Resistor-27,000 ohms, }} 1 / 2$ watt (R4, R16, R19) | 13103 | Jowel-Pilot lamp cap |
|  | Resistor-56,000 ohms, $1 / 2$ watt (R21) | 71821 | Knob-Range switch or tone switch knob Knob-Volume control or tuning knob |
|  | Resistor-100,000 ohms, $1 / 2$ watt (R22) | 5117 | Lamp-Compartment lamp |
|  | Resistor-270,000 ohms, 1/2 watt (R6, R7, R8, R11) | 11765 | Lamp-Dial lamp |
|  | Resistor-470,000 ohms, $1 / 2$ watt (R10, R13, R18) Resistor- 2.2 megohms, $1 / 2$ watt (R1, R5) | 71813 | Loop-Antenna loop complete (L1, C32) |
|  | Resistor-10 megohms, $1 / 2$ watt (R9, R15) | 71815 | Mounting-One sot of hardware to mount record changor -consisting of four springs, two spring washors and |
| ${ }^{71604}$ | Shaft-Tuning shaft |  | two rubber washors |
| 30868 | Socket-Motor cable socket, 2 contact (female) | 72324 | Shado-Compartment lamp |
| 31364 | Socket-Pilot lamp socket | 36422 | Socket-3 contact socket (female) for loop loads |
| 31251 | Socket-Tube socket | 71818 | Spring-Door check spring |
| 31418 | Spring-Indicator cord tonsion spring | 30900 | Spring-Retaining spring for knobs |
| 71602 71603 | Switch-Range switch (S1, S2) | 71765 | Support-Cabinot lid support and hing |
| 71603 | Switch-Tone control switch (S3) | 71814 | Washer-Rubber washer for door check |

PAGE 19-54 RCA
MODEL 96×5,
CHASSIS RC-490


Replacement Parts
Insist on genuine factory-tested parts, which are readily identified and may be purchased from authorized dealers.

| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES (RC-490) | $\begin{aligned} & 13428 \\ & 14499 \\ & 12454 \end{aligned}$ | Resistor- 150 ohms, $\frac{1}{4}$ watt (R8). <br> Resistor-1,500 ohms, $\frac{1}{4}$ watt (R2) <br> Resistor-33,000 ohms, watt (R1, R4) |
| 34458 34461 |  | +12264 |  |
| 34461 | Capacitor-Electrolytic-comprising 1 section of 20 mfd . and 1 section of 12 mfd . (C10, C11). | 12285 12679 | Resistor-470,000 ohms, Resistor-2.2 megohm, watt |
| 31379 | Capacitor-Trimmer - comprising 1 section of | 13601 | Resistor-10 megohm, ${ }^{\text {a }}$ ( watt (R5) $\ldots \ldots \ldots \ldots$ |
| 12720 | 3.30 mmfd . and 1 section of $\mathbf{2 . 1 5} \mathrm{mmfd}$. <br> Capacitor-100 mmfd. (C22) | 4669 | Screw-No. 8-32 square head set screw for drum, Stock No. 32266. |
| 12488 | Capacitor-270 mmid. ( ${ }^{\text {2 }}$ 25) | 31482 | Screw-No. 8-32 square head set screw for |
| 32492 | Capacitor-530 mmfd. (C24). |  |  |
| 13895 34459 | Capacitor-5,600 mmid. (C14) | 34454 31365 | Shaft-Tuning condenser drive shaft. . . . . . . . |
| 33584 | Capacitor-.005. mfd. ( ${ }^{\text {C20) }}$ | 31365 31319 | Socket-Dial lamp socket |
| 4937 | Capacitor-. 01 mfd. (C19) | 31418 | Spring-Pointer drive cord spring.... |
| 5196 32787 |  | 31615 | Spring-Tuning condenser drive cord spring... |
| 32787 4839 |  | 34451 34453 |  |
| 34460 | Capacitor-Electrolytic-comprising 1 section of | 32534 | Transformer-Second i-f transformer |
| 31378 | Coil-Antenna 30 mil | $\begin{array}{r}34458 \\ \hline 2917\end{array}$ |  |
| 34452 | Coil-Oscillator coil | 34457 | Washer-Spring washer for shaft, Stock No. |
| 32536 | Condenser-Variable tuning condenser. . . |  | 34454 . . . . . . . . . . . . . . . . . . . . . . . . . . . |
| 32545 32634 | Control-Volume control and power switch. Cord-Indicator pointer drive cord |  | MISCELLANEOUS ASSEMBLIES |
| 32266 | Drum-Variable tuning condenser drive drum.. | 34463 | Dial-Glass dial scale. |
| 32711 | Indicator-Station selector pointer.. | 31667 | Escutcheon-Station selector escutcheon....... |
| 11765 34497 |  | 31659 | Knob-Tuning, range switch or volume control |
| 32541 | Pulley-Drive pulley pulleys assembled | 31646 |  |
| 34458 | Resistor-Ballast resistor tub |  | $31659$ |


MODELS 6IOV, RADIO CORP. OF AMERICA 610 v 2


Simplified schematic diagram of band switch
Broken lines (--) indicate circuits not in use, some of which may be grounded
(indicated by dashed ground zymbols) through range switch contacts.

qos!ns pueq fo us.a8vip эspousqos poy!idmes


CLARI-SKEMATIX

© John F. Rider

## AGE 19-60 RCA

 CLARI-SKEMATIX RC-610C; 610V2, CHASSIS RC-610


- John F. Rider

RCA PAGE 19-61

## RADIO CORP. OF AMERICA MODELS 610V1, CHASSIS RC-6IOC; 6lOV2, CHASSIS RC-610



Model 610V1


Model 610V2

## Electrical and Mechanical Specifications

frequency ranges


## Antennas

Under conditions of normal field strength and interference, the RCA victor antennas installed inside the cabinet will be effective or Frequency Modulation and Standard Broadcasts.
If reception is not satisfactory on one or both of the bands using the built-in cabinet antennas, one or two external antennas may be used. Connections are made to the antenna terminal board in the back of the cabinet. External antennas may be

erected indoors or outdoors and should be oriented in direction for requirements of best reception. RCA Television Antenna Stock No. 225 or 226 or the equivalent with 300 ohm transmission line is recommended for an FM external antenna. In this case, disconnect the two leads at the two terminals marked "FM" and attach the ends of the two lead wires from the RCA Television Antenna transmission line in their places. To replace the Standard Broadcast antenna, open the link across the terminals A-G and connect the lead-in from the antenna to terminal A. This antenna should consist of a wire 30 to 60 feet or so in length, mounted in a convenient location as high as possible. A ground connection to $G$ should not be necessary but a flexible wire to a waterpipe or other good ground may be used.

## Circuit Description

Models 610V1 and 610V2 have individual built-in antennas for FM and AM coupled to individual lst Det.-Osc: tubes (6BE6 V1 and V2). The outputs of these two tubes are connected to separate IF transformers ( Tl and T 2 ) whose secondaries are in series and connected to the IF amplifier tube (6BA6 V3). The output of 3 is connected to separate IF transformers (FM IF) is connected primaries are in series. The secondary of 13 (FM IF) is connected o the driver tube (6A U6 V4). The secondar V6) The out is connected to the (V4) second detector (6SQ7 V6). The output (T5) the driver tube (V4) is coupled TG) the GM ratio detector (T) ( 6 AL5 V5). [In 610V1 the functions of both T5 and T6 are combined (6AL5 V5). [In 61
in one unit (T5).]
The audio outputs of the AM second detector and the FM ratio detector are connected thru a section of the range switch to the volume control input.
The B+ supply ( +245 V ) to the plates and screen grids of V1 and $V 2$ is controlled thru a section of the range switch
Simple AVC is used on AM and is applied to both the IF amplifier (V3) and the AM lst detector (V2). Delayed AVC is used on FM and is applied only to the IF amplifier (V3). The used on FM and is applied only to the IF amplifier (V3). The
AVC distribution is controlled thru a section of the range switch.


DIAL INDICATOR AND DRIVE MECHANISM

PAGE 19-62 RCA

MODEI GIOVI, CHASSIS RADIO CORP.
RC-6IOC
Alignment Indicators:
An RCA VoltOhmyst or equivalent meter is necessary for meas-
uring developed d-c voltage during FM alignment. Connections
are specified in the alignment tabulation below. An output meter
is also necessary to indicate minimum audio output during FM
Ratio Detector alignment. Connect the output meter across the
speaker voice coil.
The RCA Voltohmyst can also be used as an AM alignment
indicator, either to measure audio output or to measure a-v-c
voltage.
When audio output is being measured the volume control should
be turned to maximum.

## Signal Generator:

For all alignment operations, except FM IF-RF, connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM align-
ment the output of the signal generator should be kept as low ment the output of the signal ge
as possible to avoid a-v-c action.

Calibration Scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick referenca during alignment.

## Using Printed Dial Scale.

1. Cut out the printed dial scale, or, better still, make a tracing of the scale.
2. With gang at full mesh the pointer should be set to the first reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.

Note.-It is not recommended that the glass dial scale in the cabinet be removed as a nalignment reference. This glass dial scale is fastened to the bezel with sheet metal lugs bent over the scale to hold it in place. Removing the glass dial scale will necessitate bending the lugs, resulting in their weakening and subsequent breakage.

## 610V1 (RC-610C) FM Ratio Detector Alignment

 RANGE SWITCH IN FM POSITION-VOL. CONT. MAXIMUM| Stops | Connect high side of sig. gen. to- | Signal generator output | Adjustments and indications |
| :---: | :---: | :---: | :---: |
| 1 | Connect the d-c probe of a VoltOhmyst to the negative lead of the 5 mfd . capacitor, C 20 , the common lead of the VoltOhmyst to chassis. |  |  |
| 2 | Pin 1 of driver tube 6AU6 in series with .01 mfd. | 10.7 mc. modulated 30\% 400 cycles AM (Approx. . 1 volt) | Top core T5 for $\max$ d-c across C20 (Approx. volts) <br> Bottom core T'5 for minimum cudio output |
| 3 | Repeat Step 2 until further adjustment does not improve alignment. |  |  |



## Back View

MODEL 6IOV2 CHASSIS RC-610 610V2 (RC-610) FM Ratio Detector Amgnment RANGE SWITCH in fM bosition-vol. Cont. maximum

| Steps | Connect high side of sig. gon. to- | Signal gonorator output | Adjustmonts and indications |
| :---: | :---: | :---: | :---: |
| 1 | Connect a 680 ohm resistor between pins 5 and 7 of the ratio detector tube 6AL5. Connect the d-c probe of a VoltOhmyst to the negative lead of the 5 mid. capacitcr, C20, t.ee common lead of the VoltOhmyst to chassis. |  |  |
| 2 | Pin 1 of driver tube 6AU6 in series with 01 mfd . | $\begin{gathered} 10.7 \text { mc. modu- } \\ \text { lated } 30 \% 400 \\ \text { cycles } A M \\ \text { (Approx. } \\ \text { volt) } \end{gathered}$ | Driver trans. T5, for max. d-c across C20 (Approx. 14.5 volts) |
| 3 | Disconnect the VoltOhmyst and the 680 ohm resistor from the 6AL5. Connect two 68,000 ohm resistors (within $1 \%$ of eacn other) in series across the 22,000 ohm resistor R17. Connect the common lead of the VoltOhmyst to the center point of the 68,000 ohm resistors and the d-c probe to terminal " $A$ " of the ratio detector trans. T6. Use 30 volt scale of VoltOhmyst first, reducing to lower scale as required. |  |  |
| 4 | Same as Stop 2 | Same as Step 2 | $\dagger$ T6 bottom core for zero d-c balance. <br> $\dagger$ T6 top core for min. audio output. |

5 Reconnect VoltOhmyst as in Step 1 , omitting 680 ohm resistor.

6 Repeat Step 2.
7 Remove ALL connections.
$\dagger$ Near the correct core position the zero point is approached rapidly and continued adjustment causes the indicated polarity to reverse. A slow approach to the zero point is an indication of severe detuning, and the bottom core should be turned in the opposite direction.

The zero d-c balance and the minimum $\alpha-f$ output should occur at the same point. If such is not the case, the two cores should be adjusted until both occur with no further adjustment of either core. It may be advantageous to adjust both cores simultaneously, watching the VoltOhmyst, and an output meter, hooked across the voice coil for the point at which both zero d-c and
minimum $\alpha-f$ output occur.

## FM IF-RF Alignment

(FM Ratio Detector must be aligned first.) RANGE SWITCH IN FM POSITION

| Steps | Connect sig. gen. | Sig. gen. output | Turn radio dial to- | Adjustmont for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Connect the d-c probe of a Voltohmyst to the negative lead of the 5 mfd . capacitor C20 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed). |  |  |  |
| 2 | High side to one FM ant. term. in series with .01 mid. Low side to the other FM ant. term. | 10.7 mc 30\% modulation, 400 cycles AM. Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment. | Max. capacity (fully meshed) | *Using altornate loading: T3 bottom core (sec.) T3 top core (pri.). <br> Tl bottom core (sec.) Tl top cor(pri.) |
| 3 | High side to one FM ant. term. in series with a 120 ohm resistor. Low side to the other FM ant. term in series with a 120 ohm resistor. | 106 mc | 106 mc | C54 osc. C52 ant. |
| 4 | $\begin{aligned} & \text { Same as } \\ & \text { Step } 3 . \end{aligned}$ | 90 mc | 90 mc | I3 onc. L2 ant. |
| 5 | Repeat Steps 3 and 4 until further adjustment does not improve calibration. |  |  |  |
| * Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T3 and Tl have been aligned. |  |  |  |  |



MODELS 6IOVI, CHASSIS RADIO CORP. OF AMERICA RC-610C; 610V2, CHASSIS
RC-610
Replacement Parts


## Electrical Specifications

| Tubes and Functions |  | (4) | RCA-6R7-G | Second Det., A-P Amp., and A.V.C. |
| :---: | :---: | :---: | :---: | :---: |
| (1) RCA.6K7....... | R-F Amplifer | (5) | RCA.6V6 | .... Power Output |
| (2) RCA-6A8 | tor-Oscillator |  |  | ver Output |
| (3) RCA 6 K 7 | I-F Amplifer |  | Light.... | Maxda No. 51, 7.5 volts, 0.2 ampere |
| Frequency Range.......................................................................................... 550-1,500 ke |  |  |  |  |
| Alignment Frequencies |  | Power Supply Rating |  |  |
|  | I-F Amplifier |  |  |  |
|  | c., Det., Ant. |  |  |  |
| Power Output |  | Loudspeaker |  |  |
| Undistorted. Maximum. . | $\begin{aligned} & 6 \text { watts } \\ & 8 \text { watts } \end{aligned}$ |  | Coil Imped | ...... 8-inch Electrodynamic <br> ...... 3.5 ohms at 400 cycles |
| Operating Controls |  |  | Left, Man | ing; Center, Six station push butt |

## General Description

The Nash-RCA Model AC-3689 is a six-tube, deluxe, sustom-built, superheterodyne automobile radio receiver con: sisting of three units. (1) The control unit containing the tuning mechanism and radiofrequency circuits: (2) the power unit containing the $i \cdot f$, audio, and power-supply circuits: and (3) the loudspeaker. The i-f signal output of the first-detector-oscillator tube in the control unit is fed through a shielded cable to the power unit. The capacity of the shielded cable is such as to provide the correct shunt fixed
capacity for the first i-f transformer primary, and alignment is made by magnetite cores in the if transformers.

Among the many features of this receiver are: Mechanical push button tuning for six stations; r-f amplifier stage; automatic volume control; magnetite core antenna, oscillator, and i.f transformers; ignition suppression filters in the antenna and power-supply circuits; push-pull beam power output stage; continuously variable high-frequency tone control; and an eight-inch, dust-proof electrodynamic loudspeaker.

## Manual Tuning Mechanism

The manual tuning shaft is connected by a drive cord to the condenser drive-cord drum and the dial-scale pulley (located under dial scale). The "Drive-cord Hookup" shows the cord arrangement and number of turns around shafts. A three-position spring-tension adjustment is provided on the drive-cord drum to permit adjustment of the drive cord tension. Sufficient tension should be used to ensure freedom from backlash or cord slippage without causing excessive push
button friction (spring stretched approximately $1 / 16$ inch). The dial scale may be adjusted by loosening the dial nut and turning the scale until the extreme low-frequency end mark on the scale is aligned to the pointer in the escutcheon, or exactly in the center of the dial opening, while the gang condenser is in full-mesh position. See "Adjustments of push-button mechanism" for mechanical adjustments affecting both manual and push-button tüning.

## Push-Button Tuning Mechanism

The push-button tuning mechanism is of the mechanical type wherein the movement of a push button actually turns the tuning condenser to any predetermined setting. The movement is actuated through a push arm, cam, rocker plate, and sector gear, which meshes with a scissor gear directly fastened to the tuning-condenser shaft. The scissor gear prevents backlash between the sector gear and tuning condenser. Since the sector gear is mounted directly on the rocker-plate
shaft, the position of the rocker plate will accurately determine the position of the tuning condenser.
The cams, which determine the condenser stop position for each button, are mounted on the push arms and are locked in place by the push buttons and lock shoes, which press firmly against the cams when the push buttons are tightened. The push buttons should be tightened by hand and never forced with pliers or other tools.

PAGE 19-66 RCA

## MODEL AC3689, CHASSIS RC-368

Nash


Power Unit Parts, Socket Voltages, and Trimmers


Control Unit Parts, Socket Vollages, and Trimmers

## RADIO CORP. OF AMERICA

ALIGNMENT PROCEDURE
ment of the first i.f transformer is dependent upon the capacity of the interconneating cable.

* Note 2.-The total. series capacity for steps 3 to 6 must be $60 \mathrm{mmfd} . \pm 10 \%$. This capacitor must be inserted at the antenna connector of the receiver. The lead from the test oscillator to the 60 mmfd . capacitor may be shielded if desired, but no shielding should be used between capacitor and-antenna connector.
$\dagger$ Note 3.-Install top cover of control unit, leaving tube cover off for steps 3 to 6 .
Note 4.-The negative terminal of battery connects to the " $A$ " lead and the positive terminal to receiver case.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis, and keep the output signal as low as possible to avoid a $a \cdot v \cdot c$ action.

Output Meter.-Connect the output meter across the speaker voice-coil and turn the receiver volume control and tone control to maximum (fully clockwise).
Dial Calibration.-Rotate the gang condenser to its fullmesh (maximum-capacity) position and then adjust dial scale so that the last calibration mark at the low-frequency end of dial is aligned to the pointer in the escutcheon.

Note 1.-The control unit and power unit (forming a complete receiver) must be aligned together, as proper align-

| Steps | Connect the high side of test-osc. to- | Tune testOsc. to- | Turn radio dial to- | Adjust the following for max. peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6K7 I-F grid cap in series with .01 mfd . | 280 kc | $\begin{aligned} & \text { No Signal } \\ & 550-750 \mathrm{kc} \end{aligned}$ | $\begin{gathered} \text { L10 and L11 } \\ \text { (2nd I-F Trans.) } \end{gathered}$ |
| 2 | 6A8 Det. grid cap in series with .01 mfd . | 260 kc |  | $\begin{gathered} \text { L8 and Le } \\ \text { (1st I-F Trana) } \end{gathered}$ |
| 3 $\dagger$ | *Ant. connector in series with 60 mmfd . | 600 kc | 600 kc | L7 (osc.) |
| $4 \dagger$ | * Xint: connector in series with 60 mmfd . | 1,400 kc | 1,400 kc | $\begin{aligned} & \hline \mathrm{C14} \text { (osc.) } \\ & \mathrm{C8} \text { (det.) } \\ & \mathrm{CS} \text { (ant.) } \\ & \hline \end{aligned}$ |
| $5{ }^{+}$ | * Ant. connector in series with 60 mmfd . | 600 kc | 600 kc (rock) | L7 (ose.) |
| $6 \dagger$ | *Ant. connector in series with 60 mmfd . | 1,400 kc | 1,400 kc | $\begin{aligned} & \text { C14 (oasc.) } \\ & \text { C8 (det.) } \\ & \text { C } 3 \text { (ant.) } \end{aligned}$ |

- See Note 2.
$\dagger$ See Note 3.


## Precautionary Lead Dress

1. All ground leads and leads from C35 and C41 should be as short as possible.
2. Black lead from contact 4 on six-contact socket to terminal "D" on second I-F transformer should be dressed close to chassis and near case.
3. One lug of electrolytic capacitor can must be soldered to chassis.
4. Heater lead from 6K7 I-F to 6R7G should be dressed .away from diode terminals.
5. Dress shielded lead from 3 -contact socket to terminal board along edge of case, over C35, and away from vibrator socket.
6. Green lead from gang to 6K7 R-F grid must pass through shield clamps to rear of gang and dressed to rear of 6K7 R-F tube.
7. Dress green lead from center section of gang to C14 away from 6K7 R-F grid lead and in front of C9.
8. Dress heavy rubber covered lead from connector cable


Antenna Filter
to 6A8 plate through hole between triangular chassis and case and away from oscillator coil.
9. Dress parts and leads under triangular chassis close to this chassis to prevent possibility of cutting through insulation paper.
10. Yellow lead from antenna to detector coil must be dressed over top of gang.
11. Leads to volume control must be dressed to front of control and away from "A" leads to power switch.
12. Dress all leads clear of gang rotor and push arms.

## Loudspeaker

The loudspeaker cone may be centered in the unual manner with three celluloid or paper feclers after gently cutting away the front dust cover. A riew cover should be cemented in place upon completion of the adjustment.


## Adjustments of Push-Button Mechanism

The mechanism should be so adjusted that when using either manual tuning or push-button tuning, it operates positively and without bind or backlash. The complete sequence of adjustments are outlined below, however, inspection will generally enable the particular trouble to be located and then only that adjustment and the ones which follow will be necessary without disturbing other adjustments found to be correct. Proceed as follows in the sequence given:

1. Remove dial scale. Loosen coupling set-screws, sector gear set-screws, gang condenser mounting screws, and bearing. plate screws.
2. Place escutcheon in place and check for proper centering of push buttons in escutcheon. If push buttons are not properly centered, loosen the push-button-unit nuts (underneath) and adjust position of each unit until properly centered. Tighten mounting nuts. The coupling and sector gear must be on rocker-plate shafts but not tightened.
3. Align rocker plates with each other and tighten coupling screws. The position of the set-screws should be such that they definitely clear dial when gang is out of mesh and definitely clear pulley when gang is in full mesh.
4. Rotate rocker-plate shaft to obtain normal position of bearing plate and then tighten screws holding bearing plate.
5. Rotate gang condenser to full mesh, move free (inner) scissor gear one tooth from its free position and then mesh the sector gear with the scissor gear with two end teeth of the sector gear fully meshed. See photograph. Tighten condenser mounting screws. Slide sector gear along shaft until it is correctly aligned with the scissor sear, and with top of rocker plates $1 / 16$ inch from frame tighten screws of sector gear.
6. Adjust mesh of scissor gear with sector gear by shifting gang condenser position. Adjust for minimum backlash without binding.
7. Adjust drive-cord drum on condenser shaft for correct alignment with drive cord, and so that the cord hole is at the top when gang is in full mesh.
8. Lubricate the push arms, rocker-plate shafts, and pulley shafts with light grease or heavy oil (sparingly) to provide free operation, being careful to keep lubricant off of drive cord.
9. With gang condenser fully meshed and drive cord properly installed, adjust dial scale so that the extreme lowfrequency end calibration mark is aligned to the pointer in the escutcheon, or exactly in the center of the dial opening.

## Adjusting Push Buttons for Stations

The six push buttons should be adjusted for six favorite stations after the receiver is installed and operating.

Any six standard broadcast stations may be chosen. The preferable arrangement is to adjust for stations in the order of frequency, from low to high. Proceed as follows:

1. Loosen the push buttons one-half turn.
2. Using the tuning control, accurately tune in the first station.
3. With station accurately tuned in, press the first push button fully in and then gently release so as not to jar mechanism.
4. Tighten the push button securely with fingers. Do not force with pliers.
5. Proceed in same manner to adjust the other five push buttons.


Photograph of Control Unit

RCA PAGE 19-69


REPLACEMENT PARTS

| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | STOCK | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CONTROL UNIT ASSEMBLIES | $\begin{array}{r} 4858 \\ \mathbf{3 2 2 3 5} \end{array}$ | Capacitor-. 01 mfd ., 500 volts (C16). <br> Capacitor-2-sections .015 mfd ., 1,000 volts |
| $\begin{aligned} & 32307 \\ & 32876 \end{aligned}$ | Buahing-Station selector knob shaft bushing. . Cable-S-coaductor shielded speaker cable com- | 4886 |  |
|  | plete with male plug. .................... | 4839 | Capacitor-0.1 mid., 400 volts (C37) ........ |
| 32374 | Cable-6-conductor shielded volume control cable | 12484 | Capacitor- 0.25 mfd ., 300 volts (C26) |
|  | complete with male plug..... ciciol $^{\text {co. }}$. | 12741 32240 | Capacitor- 0.5 mfd.: 150 volts (C35). |
| 32300 14081 |  | 32240 |  |
| 31707 | Capacitor-85 mand. (C15) |  | C29. C30) |
| 13057 | Capacitor-68 mmid. (C12) | 32284 | Case-Complete dash power unit case |
| 30433 | Capacitor- 170 mmfd. (Ci3) | 4288 | Connector-". ${ }^{\text {a }}$ " lead male connector |
| 38368 | Capacitor-800 mamid. (C11) | 4286 | Ferrule- "A"." lead connector ferrule and buahing |
| 5148 6107 | Capecitor-.007 miad, 500 volts (C38). | 5066 30540 |  |
| 14393 | Capecitor-. 01 mid., 300 volts (C2, C5) | 30547 | Retistor-390 ohms, 2 watts (R1i) |
| 4888 | Capecitor- $06 \mathrm{~m} / \mathrm{d}$, 400 volts (C6, C9) | 30546 | Rexistor -70 ohms, t watt (R6) |
| 32308 | Cmon-Control unit case complete writh all riveted | 12287 | Recistor-1.200 ohms, $\ddagger$ watt (R10) |
|  | and welded parts. . . . . . . . . . . . . . . . . . . . . | 13204 | Resistor- $\mathbf{8 . 2 0 0}$ ohms, 2 watts (R20) |
| 51977 | Coil-Antense filter (L1) | 13477 | Resistor-27.000 ohms, 1 watt (R12) |
| 32301 32297 | Coil-Antenna coit leas shield (L2, L3) | 11282 14580 | Resistor-56,000 ohms, $1 / 10$ watt (R8) |
| 32297 31600 | Coi-Oscillator and shield (L6, L7) | 14580 13730 | Resistor-100,000 ohms, ${ }^{2}$ (watt (R6) |
| 32298 | Coadenser-3-gang variable tuning condenser | 12201 | Resistor-1.5 meg., t watt (R7) |
|  | complote mith scieeors eear, and drive cord | 5129 | Ring-Tube shield |
| 38294 | Conerol-Volume ccatroh, tone control, and | 12252 | Screw-No. $8 \times$ t-in. S.T. screw for dash power unit case. |
| 32617 | power awitch (R15, R16, S1) Cord-Dial drive cord. | 32286 | Shield-Tube shield comprising 2 -halves and 1 . ring |
| 32891 | Coupling-R.h. and i.h. tuning mechanisms coupling with screms. | 32245 | Socket-is-contact socket and mounting plate for " $A$ " lead and speaker cable. |
| 32304 | Drum-Dial drive drum. | 32244 | Socket-6-contact socket and mounting plate for |
| 32896 | Dia-Dial scale and holde |  | me control ca |
| 38290 11765 | Gear-Tuning mechanism sear sect | 31251 | Socket-Octal base tube so |
| 311768 | Memp-Dia lamp-Marda No. | ${ }_{32236}^{1241}$ | Socket-6-contact vibrator |
| 32887 | lees. puah buttons (short cam shaft) <br> Mechaniem-R.h. puah button tuning mechanism leme puah buttons (long cam shaft) | 32237 | Transiormer-Second i-f transformer (L10, L11, C19, C20, C28, C23, R8) |
| 32378 | Pin-Contact pin for spenker cable | 32243 | Tranaformer-Input tranaformer (Lio |
| 32377 | Plug-s-coatact male plug and shell for speaker and "A" lead cable. | $\begin{aligned} & 32241 \\ & 32233 \end{aligned}$ |  |
| 32375 | Plug-6-contact male plug and shell for volume coatrol cable. | 12236 | C34) <br> Vibrator-(L18) |
| 38311 38310 | Pulley-Drive cord intermediate pulley on bracket |  |  |
| 32310 | Pulley-Drive cord intermediate pulley and suide pin on bracket. |  | SPEAKER ASSEMBLIES |
| 32454 | Pulley-Drive cord pulleg on L.H.P.B. mechaniam (11/16-in. dia.). | $32315$ $38314$ | Cap-Cone center dust cap. Ceil-Spenker field coil (L1 |
| 13454 |  | 32313 | Cone-8-in. speaker cone and voice coil (Lis) |
| 12266 | Renistor- 39,000 ohme, \% watt (R2) | 32312 | Speaker-8-in. dynamia, complete. . . . . . . . . . |
| 12886 | Resigtor 56.000 ohme, watt (R4). |  |  |
| 14023 | Resiator-88.000 ohme, watt (R21) |  | MISCELLANEOUS ASSEMBLIES |
| 30340 | Retainer-Retainer for drive cord pulley. Stock | 12291 | Body-Fuse holder body (female portion only) |
|  | No. 32454, and dial Stock No. 32296.... | 38380 | Button-Station selector push button and screw |
| 32306 | Retainer-Retainer for station selector knob shaft, Stock No. 32305 | 9829 | Cable-Antenna cable approx. 36-in. long, with connector |
| 13471 | Ring-Retaining ring for antenna coil | 32438 | Capacitor-1 gnition coil capac |
| 3584 1350 | Ring-Retaining ring for r.t. coil. . . . . . . . . . | 32439 | Capacitor-Generator capacitor. |
| 14350 | Screw-No. 8 -32 $\geq 11 / 64-\mathrm{in}$. square head set | 4291 | Clip-Ammeter clip. |
| 31482 | Screw for coupling, Stock No. 32291....... | 32321 | Escutcheon-Control panel eacutcheon lees small dial eacutcheon. |
|  | serew for gear sector, Stock No. $32290 . .$. | 32322 | Escutcheon-Dial escutcheon (smail) |
| 31611 | Screw-No. 8-32 $\geq$ t-in. square head set screw for drive cord drum on condenser shaft. | 4286 | Ferrule-Center contact ferrule and bushing fpr |
| 12252 | Screw-No. $8 \times$-in. S.T. serewt for control case | 5028 | Fuse- 16 amp |
| 32305 | Shaft-Station selector | +4290 | Insulator-Fuse holder insula |
| 32303 | Shield-Antenna coil shield | 3231 R |  |
| 3623 | Shield-R.f. coil shield | 32319 | Knob-Tone control wine knob. . . . . . . . . . . . . |
| 32453 | Socket-Dial lamp socket and lead | 32323 | Lead-Ammeter "A" lead and clip, complete with |
| 32299 | Socket-Octal base tube socket |  | female section of fuse holder |
| 31615 30585 | Soring-Drive cord tension spring | 18103 | Nut-Controt unit mounting nut |
| 30585 |  | 32317 | Screw-No. 8-32 $27 / 38$-in. headless set screw for knob, Stock No. 32316. |
|  | DASH POWER UNIT ASSEMBLIES | 32324 | Screw-Speaker mounting screws, spacers, |
| 12723 | Capacitor-66 mmad. (C18). | 4284 | Soring-Tension spring for fuge holder. |
| 32239 32838 | Capacitor-110 mmfd. (C19, C20, C23) | 12448 | Stud-Dash power unit mounting atud, nut, and |
| 13818 | Capecitor-265 mmfd. (C22) | 32437 | Suppressor - Distributor suppressor ${ }^{\text {a }} 10,0000$ |
| 12536 | Capacitor-820 mmid. (C40) |  | ohms) |
| $\begin{array}{r}5107 \\ 14393 \\ \hline\end{array}$ | Capacitor-. 0025 mfd .0700 volts (C28) | 4285 13192 | Washer-Insulatine washer for |
| 14393 | Capacitor- 01 mfd., 300 volts (C84) | 13192 | Washer-Felt waher for under control knobs |

Sparkling Champaign Music, Metz Beer, Melody Beer, Red Top Beer, Imperial Beer, Hyde Park Beer, Gold Star Beer, Country Club Beer, Barbarossa Beer, Mitchell's Beer, Webster Coffee, Pepsi-Cola

## TUBE COMPLEMENT

| 1-12BE6 Oscillator and Mixer tube. | 1-12BA6 IF Amplifier tube. |
| :--- | :--- |
| 1-50B5 Power Output tube. | 1-35W4 Rectifier tube. |

1-12AT6 Second Detector and First Audio tube.

## ALIGNMENT PROCEDURE

The following equipment is necessary to properly align this chassis:

1. A signal generator which will provide an accurately calibrated signal at the frequencies listed.
2. An output meter.
3. A non-metallic screwdriver.
4. Dummy antenna: -. 1 mfd ., -10 mmf .

| GENERATOR | CONNEGTION <br> AT RADIO | DUMMY <br> ANTENNA | DIAL | TO TUNE <br> TRIMMERS | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IF 455 kc. | 12BE6 Grid | .1 mfd | HF end | IF trimmers <br> C D E F | Tune to max. |
| 535 kc. | 12BE6 Grid | 10 mmf. | LF end | Osc. trimmer B | Set limit of <br> band |
| 1400 kc. | 12BE6 Grid | 10 mmf. | 1400 kc. | Ant. trimmer A | Tune to max. |

SOCKET VOLTAGES

| TUBE | POSITION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12BE6 | Osc. and Mixer | 0 | 37.5 AC | 99 | 99 | -4.2 | 0 | 24.5 AC | 0 |
| 12BA6 | IF Amplifier | 0 | 24.5 AC | 0 | 0 | 0 | 99 | 12.5 AC | 99 |
| 12AT6 | 2nd Det.-1st Audio | 0 | 0 | 0 | 0 | 0 | 16 | 12.5 AC | 0 |
| 50B5 | Power Output | 0 | 85 AC | 91.5 | 99 | 0 | 0 | $\frac{37.5 \mathrm{AC}}{}$ | 5.9 |
| 35W4 | Rectifier | 0 | 117 AC | 112 AC | 0 | 112 AC | 0 | 85 AC | 112 |



NOTE: All DC voltages measured with a 1000 ohm per volt meter from ON-OFF switch (-B) to socket contact indicated. All AC voltages are measured switch (-B) to socket contact indicated. All AC voltages
from ON-OFF switch (-B) to socket contact indicat
All voltages are positive
Volume control full on.
Line voltage 117 volts AC.

Part No. $^{\text {No }}$ 1C2 Loop antenna assembly. 18B6 Tuning gang condenser. 12Y4 12Y8

1st I.F. transformer 456 kc . 2nd I.F. transformer 456 kc .

PARTS LIST

Part No.
15Y11
26Y3
20Y5
45B6

Description
Two section electrolytic condenser. Vol. control and switch 1 megohm Oscillator coil. $4^{\prime \prime} \mathrm{PM}$ dynamic speaker.



MODEL FM-7 RADIO KITS, INC.



ALIGNMENT PPOCEDTRE FOR MODEL FM-7
Alignment Frocedure without the Use of Instruments
The I.F. and discriminator transformers are pretracked at the factory and will require only to be peaked to compensate for the additional capacities that are introduced when the set is wired. A signal should be tuned in and each I.F. transfor $m e r$ starting from the limiter and working to the first I.F. should be aligned for maximum signal.

## R.F. Al1gnment

 frequency end ar the dial make certain that the station desired to be recelved is transmitting at the time alignment is attempted). Adjust osicilator trimer until the station to be received is tuned in at the proper dial setting. Adjust the spacing on the antenna coil for maximum response at the high-frequenoy ond of the dial. A station is then tuned in at the low-frequency end of the band and the sfacing, of the R.F. coil is then adjusted for maximum response. Spacing of the coil is accomplished with the aid of an insulated fibre tool or a small wooden wedge.Discriminator Alignment
The bottom slug of the discriminator coil should be adjusted for maximum output.

The top slug of discriminator should be adjusted for clear, undisturbed reception. This adjustment is critical and should be adjusted very slowly, until the proper point is reached. It will be noted as a clear spot between two distorted points one above and the other below resonance.

## ALIGNMENT WITH THE USE OF INSTRUMENTS

If instraments are available they should be used for proper alignment. Inserta high sonsitivity micro-ammeter in series with the limiter grid resistor at the rrounded end (R-13). Set the signal generator at 10.7 mc . Apply this signal to the grid of the limiter and adjust I.F. to the maximum meter reading. The signal generator should be applisd on the grid of sach precesding stage and the meter left in the limiter grid circuit andeach I.F. gdjusted for maximum response. Always reduce the input as the sensitivity increases. When the alignment is complated it should be rechecked by placing the signal generator on the grid of the 12BE6 and each transformer should be repeaked for maximum meter deflection. The I.Fs. are now aligned.

## The R.F. Section

Apply a 106 mc signal to the antenna terminal. Adjust oscillator trimmer for maximum response on meter. Then adjust antenna coll spacing for maximum response.


The Discriminator Alignment
Remove the metor from the limiter grid circuit and place a high-sensitivity volt meter in the order of 20,000 ohms per volt or a DC vacumm tube volt meter from R-18 to ground. Apply a 10.7 mc signal to grid of limitar tube. Adjust bottom slug on discriminator I.F. for maximum deflection. Then adjust top slug on the discriminator I.F. for zero (minimum deflection). This completes alignment of the re-

MODEL 3W10A RADIO KITS, INC.




## SERVICING NOTES

All specifications and measurements based on 117 volts, 60 cycles, and all reaings based on a 20,000 ohms per volt meter. All readings are taken with volume control (switch No. 2) in maximum clockwise pcsition. Apply the lawest signallevel from the signal generator. Outputs 50 mm into a 3.2 ohm voice coil impedance.
Approximate reading 0.4 volt.
I.F. ALIGNMENT: With signal generator, set a 455 KC , apply signal through a . I MFD cendenser dumng to R.F. grid of convertor (IR5) or the stator of RF section of the variable condenser (condenser must be fully meshed). Peak I.F. trimmers 1,2,3,4, (tcp view diagram) to give maximum reading on output meter connected across voice coil. (Note: If for any possible reason the signal does nit come thrcugh indicating the receiver is way out of alignment, apply the signal to the grid of the I.F. Amplifier (iTs) and tune signal in by trimmers $\$, 4$ of second IF. transformer. Peak for maximum and once this stage is tuned, repeat above procedure).
R.F. ALIGNMENT: With signal generator, set at 1400 KC , apply signal through a dumng antenna ( 200 mmf condenser) to the antenna loop wire. Set dial of receiver to 1400 KC and peak trimmers 5 \& 6 to give maximum reading of output meter. Then set signal generator at 600 KC and tune receiver tc 600 KC mark on dial: This setting should fall on calibrated point.


All reading in AC-DC position of power selector switch with 20,000 ohms per meter. Readings taken are referred to ground.

$\square$






The VIF-152 Frequency Converter has been designed for use with a conventional communication type receiver to extend its range to cover the 10, 6 and 2 meter amateur bands. The unit consists of an RF amplifier, a mixer, and a high frequency oscillator. The function of the unit is to convert the very high frequencies received by it to a new fixed frequency of 7 megacycles which is fed to the receiver and amplified and detected in the normal menner. This system of receiving may be described as a double heterodyne system. Its advantages are: high image rejection, since the image is 14 megacycles from the signal; and high selectivity which is provided by the selective low frequency intermediate frequency amplifier of the receiver. The auxiliary controls on the receiver, such as the beat frequency oscillator, the noise limiter, and RF and audio gain controls, function in the normal manner, as does the signal strength meter if the receiver is equipped with one. The RME-45 and RME-84 Receivers are admirably suited for use with the Vifi-152 Converter. Specifications

Power Supply: 115 volts, 50-60 cycles, single phase*
Power Consumption: 40 watts @ 115 volts
Output Frequency: $7 \mathrm{mc}(7000 \mathrm{kc})$
Frequency Range: 27.5 - 29.8 mc
49.5-54.2 mc
143.8 - 148.2 mc
*NOTE: On special order the VHF-152 may be obtained with a special power trensformer suitable for operation on 115-230 volts 25-60 cycles.

Tube Complement
Type Use Schematic Symbol

| 1. | 6AK5 | RF Amplifier | V1 |
| :--- | :--- | :--- | :--- |
| 2. 6AK5 | Mixer | V2 |  |
| 3. | 6J6 | Oscillator | V3 |
| 4. | 5Y3G | Rectifier | V4 |
| 5. | VR150 | Voltage Regulator | V5 |

## External Connections

To place the VHF-152 in operation the line cord should be plugged into a suitable power source. The standard model is designed for operation on 100-120 volt 50-60 cycle AC line only. Use of the VHF-152 on any other voltage or frequency may result in damage.

The output cable ahould be connected to the antenna terminal of the receiver. The cable has two shielded leads and a ground lead each ending in a terminal lug. On receivers which have provision for doublet operation, such as the RME-45 and the RME-84, the blue coded lead must be connected to the antenna terminal farthest from the ground terminal. This is the hot side of the converter output. The red lead, or low side, must be connected to the antenna terminal nearest to the ground terminal. The ground braid should be connected to the receiver ground. On receivers not equipped for doublet operation, the blue lead should be connected to the antenna terminal and the red and ground (shield) leads should be connected to the receiver ground. This lead is coded white. Unless the above instructions are followed, the changeover switch will not operate properly.

If an RNE DB-20 Preselector is used ahead of the receiver, the connections will be made as above except that the converter output cable connects in the same manner to the $\mathrm{DB}-20$ antenna terminals instead of to the receiver. Precautions

IMPORTANT - Attempted operation of the ViF-152 on any voltage or frequency than that for which it is designed will result in damage to the unit. The operator must be sure that the supply is correct before plugging in the converter. Antennas

On frequencies of 30 megacycles and above, the use of a resonant antenna is mandatory. For this reason the VHF-152 is provided with separate antenna connection for each frequency band. On the terminal strip on the rear apron are four sets of two terminals each. These terminals are marked "2" for the 144-148 mc band: "6" for the $50-54 \mathrm{mc}$ band, and " 10 " for the $28-29.7 \mathrm{mc}$ band. The input impedance for each band has been designed to be 300 ohms so that the owner may make use of the 300 ohm twin lead line now available. The remaining set of two terminals marked "LF" are for connecting the low frequency antenna used with the receiver. This pair of terminals is connected through to the receiver when the antenna changeover switch is turned to "OUT".

Operation and Circuit Details

## Introduction

The VHF 152 operates in conjunction with a communication type receiver tuned to approximately 7 mc . The accuracy of setting the recelver will effect the accuracy of calibration of the VHF-152 by the same amount. That is to say if the low frequency receiver is off 100 kilocycles, the calibration of the VHF-152 will also be off by 100 kilocycles. It should be noted that the operator is not bound to use the output frequency of exactly 7.0 mc . If interference is encountered he may move the receiver tuning slightly to a clear channel, realizing that the VHF-152 calibration will change by the same amount the low frequency receiver was moved. If it is necessary to move the receiver frequency so far that the calibration is affected, he may recalibrate by following instructions in Section IV. It is not recommended that the output frequency be moved more than 150 kc higher or lower than 7.0 mc because of tracking troubles that may be encountered. In the factory the I.F. is left aligned at 6950 kc .

In double heterodyne receiving systems spurious signals may be received which are harmonics of the receiver local oscillator. On the VHF-152 two such signals may be received. One signal will be heard at 29.8 mc , which is outside the $28-29.7 \mathrm{mc}$ band. Another may be heard at 52.2 mc . If it is found that this spurious signal falls on a real signal which is desired, the spurious signal may be moved by changing the receiver tiuning slightly.

## Ine Switch

The equipment is turned on by means of the line switch on the right hand side of the control panel.

## Changeover Switch

On the left side of the control panel is the changeover switch. When this switch is turned to "IN", the output of the VHF-152 is fed to the receiver input terminals. At the same time the low frequency antenna terminals are
grounded to prevent 7 mc signals from feeding through the VHF-152 to the receiver. When the changeover switch is turned to "OUT" the output of the VHF-152 is grounded and the low frequency "LF" antenna terminals are connected through the receiver. Thus by turning the changeover switch to "OUP" the receiver functions normally.

## Band Switch

In the center of the control panel is the band change switch. This switch has three positions markad: 144-148, 50-54, and 28-29.7, and is used to switch the VHF-152 to the desired range.

## RF Stage Peaking

When the VHF-152 leaves the factory, the stages are peaked to maximum sensitivity. It may be found that some antennas may reflect a reactance into the RF stage that will detune it slightly. With the antenna for a certain band connected the RF padder for that band may be peaked up by listening to a signal. Figure IV shows the location of the RF padders for each band. To get at the padders it is necessary to remove the bottom cover plate.

## IF Stage Peaking

The IF transformer on the VHF-152 is peaked at the factory at 6.95 mc . Different receivers connected to the output may change this tuning slightly. The owner should check the peaking of this transformer with the receiver connected. Peaking is accomplished by turning the screw on the top of the can. The screw should be adjusted for maximum gain as indicated by a received signal or maximum background noise if a signal is not available.
The owner may, if he has an accurate signal source available, recalibrate his converter as discussed in succeeding paragraphs. It should be born in mind that the calibration of the converter is affected by the setting of the compenion receiver. Therefore, before attempting to recalibrate the converter, the calibration of the receiver should be checked.

The VHF-152 will drift somewhat during the first three minutes after being turned on and to a much less extent during the next ten or twenty minutes. It is recomended that no attempt be made to recalibrate or align the equipment until it has reached a stable temperature.

All calibrating and alignment ahould be done with the receiver connected and the changeover switch in the "IN" position.

If the receiver has a carrier level meter such as is on the RME-45, this meter is used as a tuning indicator when peaking the circuits. If the receiver is not equipped with a meter, it will be necessary to connect an audio output meter to the receiver for a tuning indicator. When using an audio output meter, it is necessary to remove the AVC from the receiver.

## IF Coil Alignment

As pointed out. the VHF-152 is calibrated and aligned for an output frequency of 6.95 mc . The output tuning is controlled by the screw on the top of the aluminum can on the top of the chassis. The tr may be peaked with a 6.95 mc signal fed into the mixer grid or with a signal tunod in on the converter. Connection to the mixer grid is most easily made on the stator of the center section of the tuning condenser. In either case, the transformer is adjusted to maximum sensitivity as indicated by the meter on the receiver.

## Calibration

Calibration of the VHF-152 should not be attempted unless it is definitely established that the calibration is off.

Calibration is controlled by the oscillator padders. These padders are made accesible by removal of the cabinet bottom plate. Beneath this plate is a second aluminum plate in which are padder access holes. All calibrating and aligaing should be done with this cover on.

High beat is used on all bands. That is to say, the oscillator is always 7 mc (approximately) above the received signal. As in the case of all super heterodyne receivers, if sufficient input is used each signal may be received at two points differing by twice the IF frequency. With a signal being received, the padder setting that gives the highest oscillator frequency is the proper setting.

The two low frequency ranges have iron core oscillator coils. The screws for adjusting the inductance of these coils is accessible on the top of the chassis. Unless the screws have been disturbed, adjustment should never be necessary.

## RF Alignment

When the calibration is correct, the RF circuits should be aligned. Each of the R-F padders should be adjusted for marimam sensitivity as indicated by the meter on the receiver.

When using a signal generator in aligning the VHF-152 a 300 ohm resistor should be inserted between the signal generator and the antenna terminals in order that the low impedance of the signal generator will not swamp the RF circuit and cause a misalignment of this circuit. Best results will be obtained when the RF circuit is aligned with the antenna connected.

## Voltage Charts

As an aid in trouble shooting on the VHF-152, the following chart of voltages at various points in the circuit is tabulated below. Voltage readings should be made with a voltmeter of at least 2000 ohms per volt resistance. Variation of $\pm 15 \%$ may be expected. All voltages are measured from the point indicated to ground.


## Parts List

| No. | Component NO. | Component |
| :---: | :---: | :---: |
| $\overline{1.1}$ | 20 ohm 1/2 watt $\pm 20 \%$ carbon 4.1 | 2 Moter R.F. Coil |
| 1.2 | 220 ohm 1/2 watt $\pm 10 \%$ carbon 4.2 | 10 Meter R.F. Coil |
| 1.3 | 15 K ohm 1/2 watt $\pm 10 \%$ carbon 4.3 | 6 Meter R.F. Coil |
| 1.4 | 18 K ohm 2 watt $\pm 10 \%$ carbon 4.4 | 2 Meter Mixer Coil |
| 1.5 | 2200 ohm l/2 watt $\pm 5 \%$ carbon 4.5 | 10 Meter Mixer Coil |
| 1.6 | 250K 1/2 watt $\pm 10 \%$ carbon 4.6 | 6 Meter Mixer Coil |
| 1.9 | 4.7K ohm l/2 watt $\pm 10 \%$ carbon 4.7 | 2 Meter Osc. Coil |
| 1.10 | 3.5 K ohm 10 watt Brown Devil 4.8 | 10 Meter Osc. Coil |
| 1.11 | $\begin{array}{ll}18 \mathrm{~K} \text { ohm } 2 \text { watt } \pm 10 \% & 4.9 \\ & 4.10\end{array}$ | 6 Meter Osc. Coil Osc. Plate Choke $\pm 10 \%$ |
| 2.1 | 30 Mmfd - - Mica Padder | 2.5 Microhenry |
| 2.2 | 20 Mmfd. - Mica Padder 4.11 | Power Supply Filter Choke |
| 2.3 | 20 Mmfd. - Mica Padder *4.12 | 7 mc I.F. Coil |
| 2.4 | 25 Mmpd. - Ceramic $\pm 10 \% \mathrm{Neg}$. Coeff 4.13 | R.F. Ioad Inductance |
| 2.5 | Tuning Condenser, Rear Sec. (RF) 4.14 | Mixer Ieader Inductance |
| 2.6 | Tuning Condenser, Middle Sec. (Mixer)4.15 | Osc. Lead Inductance |
| 2.7 | Tuning Condenser, Front Sec. (Osc.) |  |
| 2.8 | 1000 Mmfd . $\pm 20 \% 500$ volt 5.1 | 7 mc I.F. Transformer |
| 2.9 | 1000 Mmfd . $\pm 20 \% 500$ volt 5.2 | Power Transformer |
| 2.10 | 100 Mmfd . Ceramic $\pm 10 \%$ |  |
| 2.11 | 30 Mmfd . Mica Padder VT-l | 6ak5 |
| 2.12 | 20 Mmfd. Mica Padder VT-2 | 6AK5 |
| 2.13 | 20 Mmfd. Mica Padder VT-3 | 6J6G |
| 2.14 | 15 Mmfd . Ceramic $\pm 5 \% \mathrm{VT}-4$ | 5Y3GT |
| 2.15 | 1000 Mmfd. $\pm 20 \% 500$ volt VT-5 | VR150-30 |
| 2.16 | 1000 Mmpd . $\pm 20 \% 500$ volt |  |
| 2.17 | 1000 Nmfd . $\pm 20 \% 500$ volt ${ }^{\text {a }}$ (In so | me units the coil 4.12 |
| 2.18 | 25 Mmfd . Ceramic $\pm 10 \%$ Neg. Coeff will | be fixed in inductance |
| *2.19 | 100 Mmfd . $\pm 5 \% 500$ volt and | capacitor 2.19 will be |
| 2.20 | 1000 Mmfd . $\pm 20 \% 500$ volt 100 | mfd. - adjustable. |
| 2.21 | . 01 Mfd. Paper 600 volt |  |
| 2.22 | 25 Mmfd . Ceramic $\pm 10 \% \mathrm{Neg}$. Coeff |  |
| 2.23 | 3-13 Mmfd. Ceramic Padder, Neg. Coeff |  |
| 2.24 | 3-13 Mmfd. Ceramic Padder, Neg. Coeff |  |
| 2.25 | 1000 Mmfd. $\pm 10 \% 500$ volt |  |
| 2.26 | 3.13 Mmfd. Ceramic Padder, Neg. Coeff |  |
| 2.27 | 3-13 Mmfd. Ceramic Padder, Neg. Coeff |  |
| 2.28 | 25 Mmfd. Ceramic $\pm 10 \%$ Neg. Coeff |  |
| 2.29 | 10 Mfd . Electrolytic 450 volt |  |
| 2.30 | 20 Mmfd . Ceramic $\pm 5 \% \mathrm{Neg}$. Coeff |  |
| 2.31 | 10 Mfd. Electrolytic 450 volt |  |
| 2.32 | 1.5 Mmfd. $\pm .25 \mathrm{Mmfd}$. |  |
| 3.1 | R.F. Switch Section, Ceramic |  |
| 3.2 | Mixer Switch Section, Coramic |  |
| 3.3 | Osc. Plate Switch Section, Ceramic |  |
| 3.4 | Osc. Grid Switch Section, Ceramic |  |
| 3.5 | Changeover Switch 4 pole, 2 position |  |
| 3.6 | A.C. Line Switch Single Pole Single Throw |  |
| 3.7 | Mixer Switch Section, Ceramic |  |

## TUBE COMPLEMENT

| Type | Function | Type | Function |
| :---: | :---: | :---: | :---: |
| 6AG5 | FM. RF Amplifier | 6H6 | Ratio Detector |
| 6SB7Y | FM Converter | 6SK7 | AM RF amplifier |
| 6SK7 | FM 1st I.F. Amplifier | 6SA7 | AM Converter |
| 6SK7 | $\left\{\begin{array}{l}\text { FM 2nd I.F. Amplifier } \\ \text { AM 1st I.F. Amplifier }\end{array}\right.$ | 6SQ7 6SN7 | AM Detector and 1st Audio Audio Driver and phase Inverter |
| 6SK7 | FM 3rd I.F. Amplifier | 6K6GT | Push Pull Output |
| 6U5 | Tuning Indicator | 5Y3GT | Rectifier |

## ELECTRICAL SPECIFICATIONS

117 volt 60 cycle AC. operation. Power consumption 85 watts. Built in AM Loop and folded Dipole FM antenna. FM tuning range 88 mc to 108 mc . FM dial calibration in channel numbers and Frequency in megacycles. AM tuning range 540 KC to 1620 KC .

Speaker: 12" PM or two $6^{\prime \prime} \times 9^{\prime \prime}$ oval PM Voice Coil Impedance 6 ohms. Power output 9 watts undistorted 12 watts maximum.

## ON-OFF SWITCH AND VOLUME CONTROL

Rotate the knob on the extreme right clockwise to turn receiver on. Continued rotation to the right increases volume.

## BAND SWITCH

The second knob from the left has 4 positions. Each function is marked on the instrument panel. AM extreme left, FM 2nd position from left, PH for Phono 3rd position from left and TV. for Television sound on extreme right.

## TONE CONTROL

The knob on the extreme left consists of two independently variable controls. The larger sec-
tion varies the high frequency response and the smaller controls bass.

## TUNING AND TUNING INDICATOR

The second knob from the right tunes the receiver. In selecting stations tune for maximum closing of the tuning indicator on both AM and FM. The tuning indicator does not operate on Phono or TV.

## ALIGNMIEAT

Before proceeding with alignment of set calibration point must be checked. This is the first line beyond 88 MC . Set Dial pointer to this line with tuning condenser fully meshed.

PAGE 19-2 RADIO \& TELEV


|  |  |  | RAD ESIST | \& TEL | VISION INGS | INC. hms) |  | $\begin{aligned} & \text { MOD } \\ & D-11 \\ & 1-22 \\ & 0-20,000 \end{aligned}$ | $\begin{aligned} & \mathrm{D}-100 \\ & \mathrm{~T}-90 \\ & \mathrm{~T}-22 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Tube | Pin 1 | Pin 2 | Pin 3 | Pin 4 | Pin 5 | Pin 6 | Pin 7 | Pin 8 |
| 1 | 6AG5 | 0 | 70 | 0 | 2 | 400K | 400K | 70 | - |
| 2 | 6SB7 | 0 | 0 | 400K | 400K | 20K | 0 | 0 | 0 |
| 3 | 6SK7 | 0 | 0 | 180 | 150K | 180 | 400K | 0 | 400K |
| 4 | 6SK7 | 0 | 0 | 0 | 650K | 0 | 400K | 0 | 400K |
| 5 | 6SK7 | 0 | 0 | 180 | 150K | 180 | 400K | 0 | $\begin{aligned} & \text { 400K-FM } \\ & \text { INF-AM } \end{aligned}$ |
| 6 | 6SK7 | 0 | 0 | 0 | 2.5M | 0 | 400K | 0 | $\begin{gathered} 400 \mathrm{~K}-\mathrm{AM} \\ \mathrm{INF}-\mathrm{FM} \end{gathered}$ |
| 7 | 6SA7 | 0 | 0 | $\begin{gathered} \text { 400K-AM } \\ \text { INF-FM } \end{gathered}$ | $\begin{aligned} & \text { 400K-AM } \\ & \text { INF-FM } \end{aligned}$ | 20K | 1.0 | 0 | 85K |
| 8 | 6SQ7 | 0 | 10M | 0 | 75K | 75K | 1M | 0 | 0 |
| 9 | 6H6 | 0 | 0 | 130K | 0 | 24K | - | 0 | 130K |
| 10 | 6U5 | 0 | 1.5M | 700K | 400K | 0 | 0 | - | - |
| 11 | 6SN7 | $\left\lvert\, \begin{aligned} & \text { 120K Tone Mx. } \\ & 200 \mathrm{~K} \end{aligned}\right.$ | 500K | 3.3K | 42K | 500K | 3.3K | 0 | 0 |
| 12. | 6K6GT | - | 0 | 500K | 400K | 500K | - | 0 | 410 |
| 13 | 6K6GT | - | 0 | 500K | 400K | 540K | 42K | 0 | 410 |
| 14 | 5Y3GT | - | 400K | - | 120 | - | 120 | 400K | 400K |

VOLTAGE READINGS

| Symbol | Tube | Pin 1 | Pin 2 | Pin 3 | Pin 4 | Pin 5 | Pin 6 | Pin 7 | Pin 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6AG5 | OV. | 0.7V DC | OV. | 6.3 V AC | 85V DC | 85 V DC | 0.7V DC | - |
| 2 | 6SB7Y | OV. | 6.3 V AC | 85V DC | 85 V DC | -6.0 | OV. | OV. | OV. |
| 3 | 6SK7 | OV. | 6.3 V AC | OV. | OV. | OV. | 85 V DC | OV. | 85 V DC |
| 4 | $\begin{array}{ll}\text { 6SK7 } 7 & \text { AM } \\ & \text { FM }\end{array}$ | OV. | OV. | OV. | OV. | OV. | 110 V DC | 6.3 V AC | 107 V DC |
|  |  | OV. | OV. | OV | OV | OV | 85 V DC | 6.3 V AC | 85V DC |
| 5 | 6SK7 | OV. | OV. | OV |  | OV. | 90 V DC | 6.3 V AC | 95V DC |
| 6 | 6SK7 | OV. | OV | OV | OV. | OV. | 110 V DC | 6.3 V AC | 60V DC |
| 7 | 6SA7 | OV. | OV | 120V DC | 85 V | $-12.0(\mathrm{VTVM})$ | OV. |  | OV. |
| 8 | 6SQ7 | OV. | OV. | OV. |  | OV. | 70V DC | $\begin{aligned} & 6.3 \mathrm{~V} \text { AC } \\ & \text { OV. } \end{aligned}$ | 6.3V AC |
| 9 | 6H6 | OV. | $\left\lvert\, \begin{aligned} & \mathrm{OV} . \\ & 105 \mathrm{~V} \text { DC } \end{aligned}\right.$ |  | OV. | 1.9V DC | — | $\begin{aligned} & \text { OV. } \\ & 6.3 \mathrm{~V} \text { AC } \end{aligned}$ | 15V DC |
| 10 | 6U5 | 6.3VAC |  | OV | 130V DC | OV. | OV. | - | - |
| 11 | 6SN7 | OV. | $\begin{aligned} & 94 \mathrm{~V} \text { DC } \\ & 82 \mathrm{~V} \text { DC } \end{aligned}$ | 2.0 V DC | OV. | 94 V DC | 2.0 V DC | OV. | 6.3V AC |
|  |  | OV |  | $\begin{aligned} & 1.8 \mathrm{~V} \mathrm{DC} \\ & 2.6 \mathrm{~V} \mathrm{DC} \end{aligned}$ | OV. <br> OV. | $\begin{aligned} & 82 \mathrm{~V} \text { DC } \\ & \text { 133V DC } \end{aligned}$ | 1.8 V DC | OV. <br> OV. | $\begin{aligned} & 6.3 \mathrm{~V} \mathrm{AC} \\ & 6.3 \mathrm{~V} \mathrm{AC} \end{aligned}$ |
|  |  | OV . | $\begin{aligned} & 82 \mathrm{~V} \text { DC } \\ & 135 \mathrm{~V} \text { DC } \end{aligned}$ |  |  |  | 2.6 V DC |  |  |
|  | AM | NC |  | 2.6 V D 318 V DC | OV. <br> 245V DC | OV. <br> OV. <br> OV. | $\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$ | $\operatorname{Bet.}^{6.3 \mathrm{~V}} 2 \hat{\AA}_{7}$ | $18.5 \mathrm{~V} \text { DC }$ |
| 12-13 | 6K6GT FM | NC | 2 <br> 93 | $\begin{aligned} & 305 \mathrm{~V} \text { DC } \\ & 340 \mathrm{~V} \text { DC } \end{aligned}$ | $\begin{aligned} & 207 \mathrm{~V} D C \\ & 310 \mathrm{~V} D \mathrm{C} \end{aligned}$ |  |  | Bet. $2{ }^{6.3 C^{2}} 7$ | 16.0V DC |
|  | PH | NC |  |  |  |  | NC |  | 24.5V DC |
|  | AM | NC | $\begin{gathered} \text { B.0V AC } \\ 3 \\ 9 \end{gathered}$ | $\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$ | $\begin{aligned} & 320 \mathrm{~V} \mathrm{AC} \\ & 320 \mathrm{~V} \mathrm{AC} \\ & 320 \mathrm{~V} \mathrm{AC} \end{aligned}$ | $\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$ | $\begin{aligned} & 320 \mathrm{~V} \mathrm{AC} \\ & 320 \mathrm{~V} \mathrm{AC} \\ & 320 \mathrm{~V} \mathrm{AC} \end{aligned}$ | $\begin{gathered} \left.\begin{array}{c} 5.0 \mathrm{~V} \\ \text { Bet. }{ }_{2} \mathrm{AC}_{\mathbf{Z}} \\ " \\ " \end{array}\right] \end{gathered}$ | $\begin{aligned} & 320 \mathrm{~V} \text { DC } \\ & 310 \mathrm{~V} \text { DC } \\ & 340 \mathrm{~V} \text { DC } \end{aligned}$ |
| 14 | 5Y3GT FM | NC |  |  |  |  |  |  |  |
|  | PH | NC |  |  |  |  |  |  |  |

Line at 117 Volts AC. All DC Readings taken with $\mathbf{2 0 , 0 0 0}$ Ohms per Volt Meter unless otherwise indicated. AC Readings taken of 1000
Otms per volt. Allow $\pm 10 \%$.
$\mathrm{D}-1100, \mathrm{~T}-9000, \quad$ AM ALIGNMENT INSTRUCTION SHEET
$\mathrm{T}-2200, \mathrm{~T}-2200 \mathrm{X}$

| Stops | Connect Generator | Set Generator at | Set Grang at | Adjust | To Obtain |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No. 4 6sE7 <br> R.F Tube with 05 Mid. Sorios Cond. | 455 Kc | Quiet point | 1st and 2nd I.F Pri. \& Sec. | Max. output |
| 2 | " | " | " | Wave trap | Min. output |
| 3 | " | 1500 Kc | 1500 Kc | BC OSC trimmer | Max. output |
| 4 | " | 600 Kc | 600 Kc | OSC. <br> padder | " |
| 5 | " | 1500 Kc | 1500 Kc | BC. OSC. trimmer | " |
| 6 | Uso Coupling Coll between Generator and Loop | 600 Kc | 600 Kc | Ant. Loading Coil | " |
| 7 | " | 1500 Kc | 1500 Kc | Ant. Trimmer | " |

Set Band switch to AM.
Set Tone control to maximum left.
Set Volume control to maximum right.
Place AM loop in same relative position as in cabinet.

Keep output of signal generator low to prevent AVC Action.
Use output meter across voice coil.

FM ALIGNMENTI INSTRUCTION SHEET

| Stops | Connect Generator | Set Generator at | $\begin{aligned} & \text { Sot Gang } \\ & \text { at } \end{aligned}$ | Adjuat | To Obtain |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \text { Pin No. } 8 \\ & \text { 6SB7Y } \end{aligned}$ | 10.7 MC | Hi. Freq. Stop | Ratio Det. Primary (Red Dot) | Max. output from point $R$ to Gnd. |
| 2 | " | " | " | $\begin{gathered} \text { 3rd IF } \\ \text { Pri. \& Sec. } \end{gathered}$ | " |
| 3 | " | " | " | $\begin{gathered} \text { 2nd IF } \\ \text { Pri. \& Sec. } \end{gathered}$ | " |
| 4 | " | " | " | 1st IF | " |
| 5 | " | " | " | Ratio Det. Sec. | Zero Balance on VTVM from $C$ to $A$ |
| 6 | Clip on to FM Dipole | 108 MC | 108 MC | Osc. Trimmer | Max output from point B to Gnd. |
| 7 | " | 88 MC | 88 MC | Osc Coil* | " |
| 8 | " | 103 MC | 103 MC | RF Trimmer | " |
| 9 | " | 103 MC | 103 MC | Ant. Trimmer | " |

Set Band Switch to FM
See Circuit Diagram for VTVM Connections.
For Steps 1 through 5 use .01 Mfd . condenser in

Use V.T.V.M for output Indication
*This adjustment is made by pushing turns together or pulling apart. Use insulated tool.

Series with High side of generator.

RADIO \& TELEV PAGE 19-5



PARTS LIST

| Symbol | Paxt No. | DESCRIPTION | Symbol | Part No. | DESCRIPIION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { C1A-B-C } \\ \text { D-E } \end{gathered}$ | CV106 | AM-FM Tuning Condenser | $\begin{gathered} \text { R11-40-21- } \\ 37 \end{gathered}$ | RS473B | $47 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$ |
| C2A-B-C | CT107 | 3 Section Trimmer As- | R12-13-29 | RS123B | $12 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$ |
|  |  | sembly | R14-22-23- | RS105B | $1 \mathrm{Meg} .1 / 2 \mathrm{~W} . \pm 10 \%$ |
| C3 | CT174 | FM RF Trimmer | 30-31 |  |  |
|  |  | $1-8 \mathrm{Mmfd}$. | R15 | RS682B | $6.8 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$ |
| C4 | CT174 | FM Mixer Trimmer | R16 | RS225B | 2.2 Meg. $1 / 2 \mathrm{~W} . \pm 10 \%$ |
|  |  | 1-8 Mmfd. | R24 | VC150 | 1 Meg . Volume Control and |
| C5 | CT175 | FM Oscillator Trimmer |  |  | Switch |
|  |  | 1-12 Mmfd. | R25 | RS106B | $10 \mathrm{Meg} .1 / 2 \mathrm{~W} . \pm 10 \%$ |
| C6-7-8-11- | CC144 | 1500 Mmfd . Ceramic | R26-27 | RS274B | 270K $1 / 2 \mathrm{~W} . \pm 10 \%$ |
| 12-15-17- |  | $\pm 20 \%$ | R28A-B | VC151 | Dual Tone Control |
| 19-24 |  |  | R33-42 | RS322B | $30001 / 2 \mathrm{~W} . \pm 10 \%$ |
| C9-10-13- | CC141 | 51 Mmfd . Ceramic | R34-35 | RS104B | $100 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$ |
| 32 |  | $\pm 20 \%$ | R36-38 | RS474B | 470K $1 / 2$ W. $\pm 10 \%$ |
| C16-27 | CP102 | . 01 Mfd .400 V . | R39A-B-C | RD123 | Voltage Divider and |
| C20-21-28 | CC142 | 100 Mmfd . Ceramic |  |  | Bias Res. |
| 34-35 |  | $\pm 20 \%$ | R41 | RS562 | 5.6K.1 W. $\pm 10 \%$ |
| C22 | CC145 | 200 Mmfd . Ceramic | L1 | FM221 | FM Antenna Coil |
|  |  | $\pm 20 \%$ | L2 | FM221 | FM RF Coil |
| C23 | CE101 | 2 Mfd . Electrolytic 25 V | L3 | FM222 | FM Osc. Coil |
| C26-31-43 | CP105 | . 05 Mfd .200 V . | L4 | AN183 | AM Ant. Coil |
| C29 | CC178 | 150 Mmfd . Ceramic | L5 | TR184 | AM IF Trap |
| C30-38 | CP104 | . 05 Mfd .400 V . | L6 | OS182 | AM Osc. Coil |
| 41-42 |  |  | CH1-2-3-4-5 | LC181 | Choke |
| C36-40 | CP103 | . 01 Mfd 200 V. | AL1 | AL236 | AM Loop |
| C37-39 |  | 200 Mmfd. Ceramic | L7 | IF180 | FM 1st I.F.T. |
|  |  | $\pm 20 \%$ | T1 | KT161 | FM 2nd I.F.T. |
| C44A-B-C- | CE100 | Electrolytic Cond. | T2 | KT162 | FM 3rd I.F.T. |
| D |  | 4020-20 Mfd. 450 V . | T3 | RD168 | FM Ratio Detector |
|  |  | 20 Mfd .25 V. | T4 | KT163 | AM 1st I.F.T. |
| R1. | RS68B | $681 / 2$ W. $\pm 10 \%$ | T5 | KT164 | AM 2nd I.F.T. |
| R2-4-7-10- | RS102B | 1000 1/2 W. $\pm 10 \%$ | SW1-2 | SW124 | Band Switch |
| 20 |  |  | PT1 | PT119 | Power Transformer |
| R3-17-19-32 | RS203B | 20K 1/2 W. $\pm 10 \%$ | OT1 | OT120 | Output Transformer |
| R5-8-18 | RS151B | $150 \mathrm{~K} 1 / 2 \mathrm{~W} . \pm 10 \%$ | PL1-2 | PL147 | No. 47 Pilot Light |

$\square$

©John F. Rider


$$
\substack { \text { scctit } \\
\begin{subarray}{c}{2{ \text { scctit } \\
\begin{subarray} { c } { 2 } } \end{subarray}
$$



BAND-SWITCH SHOWN AT 2ND POSITION COUNTERCLOCKWISE BAND 2
$1.5-4.2 \mathrm{Mc}$.


| 60 |
| :--- |
|  |
| MO |



© John F. Rider

ALIGNMENT PROCBDURB: Realignment of this receiver should never be necessary unless one of the oscillator, antenna, or RF coils hes been replaced, and then only the frequency band in which that coil is used will requite realignment. Lack of sensitivity, selectivity, and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, inadequate or excessively long antenna, open or grounded bias resistor, bypass condenser, etc. Under no circumstances should realignment be attempted until all other possible sources have been first throughly investigated and have been definitely proven not to be the cause. If an IF tube is replaced it is advisable to realign the IF amplifier, particularly if the re. placement tube is one of e different menufacture than the one in the seceiver. IT IS IMPERATIVE THAT AN ACCURATELY CALIBRATED OSCILLATOR BE USBD WITH SOMB TYPE OF OUTPUT MEASURING DEVICE.

## INTERMEDIATE ALIGMMENT:

1. Connect the high side of the oscillator output to the control grid of the 6D6 modulator tube. Leave the grid cap ilsconnected and connect a meg ohm resistor from the modulator grid to the chassis base. Connect the ground side of the oscillator to the recsiver ground post.
2. Set the test oscillator frequency to 465 kilocycles (this must be accurate).
3. Align the first intermediate transformer by turning one of the trimer screms accessible through the holes in the top of the coll shield up and down (increasing and decreasing capacity) until maximum reading is obtained on the output meter, after which adjust the other triminer screw of the same transformer for maximum sensitivity.
4. Adjust the other intermediate transformer in the some manner.

TO ALIGN THE VARIABLB CONDENSER: It is important when aligning the gang condensers, padder condensere, and trimer condensers to follow the procedure cerefully, otherwise the receiver will be insensitive and the dial calibration will be incorrect. The trimmer and padder condensers will be referred to by number as indicated on the diagram which shows their relative locations.

1. Connect the high output side of the test oscillator through a . 00025 Mfd. condenser to the set antenna post, and the ground to the set ground.
2. Place the band selector switch for operation on the 10 to 22 megacycle band, tune the receiver dial to EXACTLY 20 MEGACYCLES and set the test oscillator frequency to EXACTLY 20 MBGACYCLES. THEN TUNB IN THS EO MEGACYCLE SIGNAL TO MAXIXUM OUTPUT BY ADJJSTING TRIMAER NC. 13. Next, rock the gang condenier blightiy to the right and left and adjust trimers No. 15 and 17 for maximum 20 megacycle signal sensitivity. CARs凶!'ST BE TAKEN SC THAT THE FUNDAMENTAL PEAK AND NOT THE IMAGE PEAK IS USED POR ALIGNING THE RBCEIVBR AT 20 NEGACYCLES. When making trimmer No. 13 adjustment always back off the trimmer to minimum capacity and then screw down the triamer (add capacity) until the first peak, which is the fundamental and the one you are to use, is tuned in. If the trimmer is screwed down beyond the point where this first peak is recelved, the incorrect image peak will be tuned in. After completing adjustment of trimmers No. 13, 15 , and in always check to see if the proper peak has been used. To do this leave the test oscillator freouency at 20 megacycles, increase the output of the test oselliator, and tune the receiver dial to approximately is megacyclea Vary the recelver dial silghtly to the right and left of 19 megacycles and if the fundamental peak was used in ellening at 20 megacycles, the test osillator signal will be heard at approximately 19 megacycles on the set dial. If it is not possible to receive the signal at approximateiy 19 megacycles, then the fundamental peak was not used and the 20 megacyele adjustment of trimers No. 13,15 , and 17 mast be gone over and properly adjusted.
3. Leave the band selector switch for operation on the 10 to 22 megacycle band, tune the receiver to 11 megacycles on the dial, and set the test oscillator frequency to approximately 11 megacycles. Then while rocking the geng condenser slightlv to the right and left adjust inductance trimimers No. 14 and 16 for maximum sensitivity.
4. Recheck 20 megacycle adjustment of trimmers No.-13, 15 , and 17.
5. Place the band selector switch for operation on the 4 to 10 megacycle band and get the recelver dial and the test oscillator frequency to exactiy 9 megacycles. When adjusting triminer No. 10 two peaks, the fundamental and the image peak, will be noticed. CARB MUST BE TAKEN SO THAT THE PUNDAMBNTAL PBAK AND NOT THE IMAGE PEAK IS USED FOR ALIGNING THE RECEIVER AT 9 MEGACYCLES. First back off trimmer No. 10 to minimun capacity, next serew down the trimer (add capacity) until the first peak, which is the fundamental and the one you are to use, is tuned in. When the first peak hes been located adjust trimmer No. 10 TO BRING IN THB 9 MEGACYCLB SIGNAL'TO MAXIMUM OUTPUT. Next adjust trimmers No. 11 and 12 for maximam 9 megacycle sensitivity After completing adjustment of trimers No. 10, 11, and 12 always check to see if the proper peak has been used. To do this leave the test oscillator fregaency at 9 megacycles and increase the test oscillator output. Vary the receiver dial slightly to the right and left of 8 megacyelea, and if the fundamental peak of trimmer No. 10 was used in aligning at 9 megacycles the test oscillator signal will be heard at approximately 8 megacycles on the receiver dial. If it is not possible to recelve the signal, then the fundamental peak was not used and the 9 megacycle adjustment of trimmers No. 10,11 , and 12 must be gone over and proper. ly adjusted.
6. Leave the band selector sititch for operation on the 4 to 10 megacycle band and. tune the receiver and set the test oscillator frequency to approximately 4.2 megacycles. Then while rocking the gang condonser slightly to the right and left, adjust padder No. 7 for maximum sensitivity.
7. Place the band selector switcn for oparation on the l.5 to 4 megacycle band and tune the receiver dial and set the test oscillator frequency to BXACTLY 3.8 MEGACYCLES. THBN BRING IN THB 3. 8 MBGACYCLE SIGNAL TO MAXIMUM OUTPUT BY ADJUSTING TRIMMER NO. 1, after which adjust trimmers No. 2 and 3 for maximum seneitivity.
8. With the band selector switch in the same position ( 1.5 to 4 megacycle band) tune the receiver dial and set the test oscillator freouency to approximately 1.6 megacycles. Then while rocking the gang condenser slightly to the right and left adjust padder condeneer No. 8 for maximum 1.6 megacycle signal sensitivity.
9. Adjust the band selector switch for operation on the 1500 to 550 kilocyele band and tune the recelver dial and set the test oscillator freauency to EXACTLY 1400 KIEOCYCLES. THBN BRING IN THE I4OO KILOCYCLB SIGNAL TO KAXIMUM OUTPUT BY ADJUSTING TRIMEP NO. 4, AFTER WHICH ADJUST TRIMERS MO. 5 GAD 6 FOR YAXIMUM SENSITIVITY.
10. Leave the band selector switch for operation on the 1500 to 550 kilacycle band and tune the receiver dial and set the test oscillator freouency to approximately 600 kilocycles. Next, while rocking the gang condenser silghtly to the right and left adjust padder condenser No. 9 for maximum sensitivity.

PAGE 19-6 RADIO WIRE
Alignment of all bands will rarely be necessary. If a coil on any one of the bands should become defecTherever complete realignment has been made it is recommended that al of the adjustments be gone over again. Generally it will be found that improved results can be obtaineo if this is done. Assuming that all tubes and component parts of the set are okeh, then extreme inaccuracies in the dial calibration, low sensitivity and poor selectivity are indications that the alignment procedure has noto been followed. Should these conditions be apparent proceed to realign and carefully follow each step in the order given.
Liw Voltage : 12 s Volume Control: Full on Wave Band : Broadcaet

| TUBR |  | FILAMENT | PLATP | SCRESE | CATHODE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6D6 | Radio Frequency | 6.2 | 250 | 94 | 2.2 |
| 76 | Oscillator | 6.2 | 115 |  | 2.2 |
| 6D6 | Modulator | 6.2 | 250 | 94 | 4.5 |
| 6D6 | Intermediate Frequency | 6.2 | 250 | 94 | 2.2 |
| 76 | Second Detector \& AVC | 6.2 |  |  |  |
| 75 | Audia | 6.8 | 55* |  | 1 |
| 42 | Audio Driver | 6.2 | 225 |  | 16 |
| 42 | Output | 6.2 | 330 |  | 28 |
| 42 | Outpat | 6.2 | 330 |  | 28 |
| 528 | Bectifior | 4.8 |  | D Drain |  |

- Triode Plate comparative voltage only.
Read all voltages from socket to chassis with 1000 ohm per volt voltmeter. PART NOMBER



PAGE 19-8 RADIO WIRE



## ALIGNMENT PROCEDURE

No attempt should be made to realign the various circuits until all other causes have been checked, unless the condition is so obvious as to indicate that realignment is necessary.
Then proceed as follows:
Volume Control full on.
Low range A.C. meter connected across voice coil to indicate output.
Keep signal generator attenuated so as to maintain $1 / 2$ scale reading on output meter.
Make certain that dial pointer is exactly on index line (top left side of dial plate) when variable condenser is fully meshed.

REMOVE CHASSIS BOTTOM PLATE

| RECEIVER <br> DIAL AT: | SIGNAL GENERATOR | DUMMY ANTENNA | CONNECT SIGNAL GENERATOR TO: | REFER TO CHASSIS LAYOUT FOR LOCATION OF TRIMMERS |
| :---: | :---: | :---: | :---: | :---: |
| Fully. closed | Exactly <br> 456 KC | . 1 MF | Common Ground and Control Grid 1R5 top front section var. cond: | Adjust for maximum output $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$, and T 4 . |
| 2 Fully closed | Approx. 538 KC | . 1 MF | Control Grid 1T4 top rear section var. condenser | Adjust for maximum output T8 |
| 3 <br> Fully open | $\begin{aligned} & \text { Exactly } \\ & 1650 \mathrm{KC} \end{aligned}$ | . 1 MF | Control Grid 1T4 top rear section var. cond. | Adjust for maximum output T5 |
| REPEAT OPERATIONS 2 and 3. |  |  |  |  |
| 4 <br> Approx. <br> 1500 KC | Approx. 1500 KC | . $1 . \mathrm{MF}$ | Control Grid 1T4 same as No. 3 | Adjust for maximum output T6 |
| The next two operations are performed with the bottom plate on and the chassis in the cabinet - with lid closed |  |  |  |  |
| 5 <br> Approx. 1500 KC | Approx. 1500 KC | . 1 MF | Radiating Loop 20" from Receiver | Adjust T7 for maximum output |
| 6 <br> Approx. 600 KC | Approx. 600 KC |  | Radiating Loop 20" from Receiver | Adjust T8 for maximum while rocking variable condenser |




PAGE 19-12 RADIO WIRE


Turn receiver on and wait for tubes to reach operating heat. Adjust Wave Band Switch to desired Wave Band. LEFT for Short Wave; CENTER for Sfandard Broadcast; and RIGHT connects terminals for phonograph record player in the circuit. The UPPER HALF of the Dial Scale covers the Broadcast Band. The LOWER HALF covers the Short Wave Band. Turn the Vernier Tuning Knob until the desired station (see dial pointer), is heard. Adjust Volume to a satisfactory level after making certain that the station is tuned correctly. Tuning on Short Wave is more critical. Use more care lest worthwhile stations be passed over unnoticed.

A Phonograph Record Player can be attached to the terminals marked "PHONO" in rear of chassis.

One 6 Volt 250 M . A. lamp is used for dial illumination. Use similar type for replacement.
WARNING: Check power line for voltage nad frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis before inserting the receiver power line in electric outlet.




WARNING: Check power line for voltage and frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis before inserting the receiver power line in electric outlet.

These Receivers must be operated on 60 Cycles, 120 Volt current. Any other type Voltage, if used will result in damage to the receiver.

SHORT WAVE RECEPTION: An external Antenna is absolutely necessary for good reception on either of the Short Wave Bands. This antenna may consist of a short wire strung indoors or preferably a good OUTSIDE ANTENNA.

In installing an antenna to be used with a sensitive short wave receiver every precaution should be observed to keep interfering noises at a minimum. The lead-in and antenna proper should be located as far as possible from any potential source of interference, such as electric signs, elevators, trolley wires, motors, power lines, etc. The antenna should also be as remote as possible from pick up from the ignition systems of passing automobiles. For connection to the antenna, a yellow wire is brought out through the rear of the receiver. Insert the power line plug in the electric outlet and turn the "ON-OFF" switch and Volume Control knob to the right. A few seconds will be required for the tubes to reach operating temperature.

DIAL LAMP: Thse models use one 6-8 Volt, 150 M. A. Lamp. Use similar lamps when replacing or damage will result.

CAUTION: When pilot lamp burns out, replace at once.




This receiver is equipped for FM (Frequency Modulation); Television and Phonograph Units.

Located on the rear of the chassis is a two pin JACK provided for this purpose. The Band Switch must be in the left position when operating.

If receiver hums slightly reverse the Power Cord Plug.
TUBE COMPLEMENT: A tube layout chart at the rear of the receiver indicates the type of tubes employed, as well as their location on the receiver chassis. When replacing these tubes replace only with tubes having identical type numbers.

When operating the receiver in a steel re-enforced building or other shielded locations, an outside antenna is recommended. This may be connected to the terminal on the loop marked "AERIAL". A ground may also be connected to the terminal marked "GROUND".

WARNING: Check power line for voltage and frequency (cycles) to make certain they are the same as specified on label located at rear of the receiver chassis, before inşerting the power line in electric outlet.

This Receiver is equipped with a ROTATING LOOP ANTENNA. By rotating the Loop Control from left to right or vice versa, reception may be greatly improved. A correct position of the LOOP ANTENNA will result in noise-free reception.


PAGE 19-20 RADIO WIRE



PAGE 19-2 REGAL
MODEL CR-761 REGAL ELECTRONICS CORP.



FIGURE 1. KADIO IN POSITIOX


FIGLRE 2. FRONT VIEW OF RADIO INSTALLATION

## INSTALLATION

This radio is designed to operate at maximum efficiency when used with any good make auto-radio aerial. Instull the aerial before proceeding with the installation of the radio. The aerial lead and complete installation instructions are packed with each aerial. The location of the aerial will determine the length of the aerial lead required to reach the radio. The shortest possible aerial lead should be used.
RADIO INSTALLATION: Determine the best possible location for the radio along the lower edge of the instrument panel. Using the front mounting strap as a template, mark and drill two $1 / 4^{\prime \prime}$ holes in the instrument-panel flange.

Fasten the strap to the top of the radio housing with two screws; then attach the fire-wall mounting strap to the stud on the back of the radio. Hold the radio in place, and bend the fire-wall strap to fit the fire wall. Mark and center-punch the location for the mounting-bolt hole on the fire-wall, and drill a $3 / 8^{\prime \prime}$ hole. Before drilling the hole, make certain that there are no obstructions such as ignidion coil, battery, etc. on the motor side of the fire wall. Fasten the front mounting strap to the flange of the instrument panel (see figure 2), and bolt the fire-wall mounting strap securely to the fire wall (see figure 3).

CONNECTIONS: Plug the aerial lead into the connector on the radio. Place the fuse in the fuse housing on the " $A$ " lead, and connect the fuse end of the " $A$ " lead to the short lead on the back of the radio. Connect the other end of the " $A$ " lead to the ignition switch or ammeter stud.

ANTENNA COMPENSATOR: An adjustment (see figure 1), reached through a hole on the upperleft side of the radio, near the front, is used to balance the radio to the aerial. With the radio turned on and the aerial fully extended, tune in a weak signal between 1200 kc and 1400 kc on the dial. With the volume control set just high enough to make the program audible, set the trimmer adjustment to obtain maximum signal strength. A small screwdriver is required for this adjustment. Radio is now ready for operation.


FIGIRE 3. REAR VIEW OF RADIO INSTALLATION
ELIMINATION OF INTERFERENCE FROM CAR ELECTRICAL SYSTEM
Remove the coil-to-distributor high-tension lead from the distributor. Cut the lead two inches from the end. and screw the distributor resistor into the coil lead (see figure 4). Then screw the short lrugth into the resistor. and plug the cable into the distributor cap. Two noise-filter condensers are furnished. One condenser must be connected to the output terminal of the generator (never to the field terminal). and the other to the battery side of the ignition coil. The generator-condenser bracket should be fastened to the generator housing. under the screw that holds the field (see figure 5), while the coil-condenser bracket should be fastened under the coil mounting bolts. In some particularly stublorn cases of motor interference, one or more of the following procedures may be necessary:

A condenser can often be used to advantage on the electrically operated oil gauge or gas gauge. Connect the condenser lead to the terminal of the gauge, and bolt the condenser case securely to the framie or some otier grounded part of the car.

Bonding the sterering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.


FIGIRE: \&. DISTRIBITTOR RESISTOR
FIGURE 6. BONDING OF FIRE-WALL TUBES

## FIGURE 5. GENERATOR CONDENSER

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spot-solder the braid, fastening the end under a convenient screw (see figure 6).
In some cases it may be necessary to connect an additional condenser to the ammeter or to the ignition switch.
It may be necessary to use a condenser on the voltage regulator. The condenser case should be mounted under one of the voltage-regulator mounting screws, or at some other convenient location, and connected to the battery terminal of the voltage regulator.
Interference from electric clocks can be eliminated by connecting a condenser to the ammeter terminal. The case of the condenser must be securely grounded.
If tire-static interference is noted in a particular installation, static collector springs should be obtained and installed in the front wheels of the car.

REGAL PAGE 19-5
REGAL ELECTRONICS CORP.
$14 B 6$

 느ㄴㅡㅡㅡㄹ $\stackrel{+}{7}$ Ninn ज口





The Model 1500 is a 4-tube battery-operated superheterodyne farm radio receiver with two tuning ranges for reception of standard broadcast and shortwave stations. The tuning range of the broadcast frequency is 540 to 1650 kilocycles, or 560 to 182 meters. The short wave frequency is 5.8 to 18.3 in megacycles, or 16 to 49 meters, which include the following $16,19,25,31,39$ and 49 meter bands.

This radio is designed to operate from an Eveready \#758 battery pack. This unit has a 90 volt " $B$ " supply and a $11 / 2$ volt " $A$ " supply, and is connected to the receiver by means of a 6 -foot flexible battery cable and plug.

## ELECTRICAL SPECIFICATIONS

THE CIRCUIT OF 1500 is a superheterodyne employing eight tuned circuits for maximum sensitivity and selectivity, with Automatic Volume Control (AVC) and a beam power output system. The tube complement consists of (1) 3Q4 power amplifier, (1) 1S5 Detector, AVC and first audio amplifier, (1) 1 T 4 IF amplifier, and (1) 1R5 converter.

If your set does not work check your tubes. Make sure each tube is in its socket.

PAGE 19-10 REGAL
REGAL ELECTRONICS CORP.




This Model is a 5 tube, 1 Band super-heterodyne with a built in Regaloop Antenna. The tuning range of the Broadcast Band is 540 to 1650 kilocycles or 560 to 182 meters. This receiver operates on 105.125 volts, 50.60 cycles alternating current or on 105.125 volts direct current.

## Antenna

The loop Antenna in this receiver will give good reception under normal conditions. It is directional and the best position may be obtained by slowly rotating the receiver in different directions until the signal volume is at its strongest. For better results on weak signals connect a good outside Antenna. A connection is provided at the rear of the receiver for connecting an outdoor Antenna.

ELECTRICAL SPECIFICATIONS
Super-heterodyne with Beam Power out-put system. TUBES: 1-12SA7, 1-12SG7, 1-12SQ7, 1-50L6, 1-35Z5.


PAGE 19-2 REMLER
MODELS 7110, REMLER CŌMPANY LTD.



## OPERATION OF WIRE RECORDER

## TO INSTALL WIRE:

1. Remove rubber band from spool and press spool onto spindle so that the wire will reel off from the front side of the spool.
2. Hold top of spool with fingertips to prevent unwinding and draw out the celluloid leader past recording head and into channel of turntable.

While holding the leader against inner edge of the channel, rotate the turntable by hand until two complete turns of wire are in the channel. see that the wire threads into the recording head. The full length of the
leader must be pressed against the inner surface of the channel or speed
varations will result
4. The Model 7120 comes equipped with a quarter hour spool of recording wire. Standard spools of wire are available in quarter hour, half hour and one hour lengths, any of which will fit the wire recorder.

## TO SPLICE BROKEN WIRE:

1. Use several inches of the two ends of the wire and tie a common square knot. Draw knot tight and trim ends close.
TO RECORD RADIO PROGRAMS OR PHONOGRAPH RECORDS ON WIRE:
2. Turn radio selector switch to desired position.
3. Turn wire recorder selector switch at left of tuning eye to RECORD
4. The Magic Eye indicates the volume of the sound being recorded. It will normally flicker as the sound varies in intensity. Turn the recorder VOLUME control until the eye just barely closes but never overlaps. Too much level that can not be erased. If the eye is not brought to the closing point, the recorded level may be so low as to allow wire noise to be heard on the playback.
5. Turn motor switch at right hand back corner to RECORD. The small bytton next to the switch must be depressed when switching to RECORD position.
6. Whatever sound is heard from the loudspeaker is now being recorded. The radio volume and tin mation whe recording as they do not affect the program being recorded.

## TO RECORD FROM MICROPHONE:

1. Turn recorder selector to MIC.
2. Adjust VOLUME control as in para. 3 above, while speaking into microphone.
3. Turn motor switch to RECORD.
4. Speak in a normal tone of voice, holding the microphone about four inches from the lips.
5. None of the radio controls have any effect while recording from the marophone, except that the power switch must be turned $0 N$.

Before the recording can be played back, the wire must first be rewound to the start of the program. This rewinding i
times the recording and playback speed.

1. Turn the recorder selector switch to PLAYBACK.
2. Turn the radio volume control to the extreme counter clock-wise position.
3. Turn the motor switch to REWIND.
4. The radio volume control can now be adjusted until the chattering sound is at the desired volume. This sound is the program that has just been recorded running in the reverse direction. After some experience, this sound may be used to judge when the recorded program has been rewound.
5. When the wire has been rewound to the desired point, turn the motor switch to PLAY.
6. The program that has been recorded will now be heard on the radio speaker. The volume and tone may be adjusted with the radio tone and volume controls. The recorder volume control has no effect during the playback
7. To stop playback at any time, turn motor switch to OFF.
8. If wire is completely wound off of either the spool or turntable, the motor will automatically shut off. In this case, turn the motor switch to OFF, rethread the wire and press reset button to reconnect motor.
9. If a spool of wire is to be stored, REWIND entire length of wire as above and remove spool. Place a rubber band around spool to retain wire.
10. When not using the wire recorder, turn motor switch and recorder selector switch to OFF. Never turn radio power switch or recorder selector switch to OFF until motor switch is turned to OFF and turntable has stopped revolving If this procedure of first turning the motor switch to OFF position is not followed, the wire is likely to unwind from on
other spool, thus causing it to become tangled.

## ERASING RECORDED MATERIAL:

The recording may be played and replayed as often as desired without affecting the performance of the record. If it is desired to use the same spool of wire over again, simply REWIND and RECORD right over the old program. The wire will automatically be cleared of previously recorded material at the same time the new recording is being made. If it is desired to erase the program on the

1. Rewind wire to the point at which erasing is to start.
2. Turn recorder selector switch to RECORD.
3. Turn recorder volume control to extreme counter clock-wise position
4. Turn motor switch to RECORD.
5. Turn motor switch to OFF after desired amount of wire has been erased. The Models 7110 and 7120 are designed for operation on 115 volt, 60 cycle house current only.

Model 500 Radio-Phonograph is a console combination designed for operation on the $A M$ and the $F M$ broadcast bands and for record reproduction with standard 78 rpm and LP $331 / 3 \mathrm{rpm}$ records. The radio receiver is comprised of two units; a tuner for AM and FM with all controls, and a power unit containing the transformer and rectifying circuits as well as the final audio amplifying circuits. The record player will operate with intermixed 10 and 12 inch records on 78 rpm and will play the new LP, or $33 \mathrm{l} / 3 \mathrm{rpm}$ records singly using a special pickup provided. A 12 inch diameter, permanent magnet, dynamic speaker is used in a special acoustic compartment. The record changer compartment is lined with sound absorbing material to prevent undesirable acoustic resonances.

## INSTALLATION

The Model 500 is shipped with the tuner (Figure 1) and the loudspeaker installed in the cabinet. The power amplifier (Figure 2) and the record changer are shipped in individual cartons.

To install the power amplifier it is necessary only to remove the unit from its packing carton, and place it in the compartment at the left of the speaker housing, as viewed from the rear of the cabinet. Install the unit with connecting sockets outward, that is, with the power trans former on the inside. Fasten the unit to the cabinet floor with the wood screws provided.

To install the record changer remove from packing carton, pull phono drawer fully forward, and set changer on the mounting board making sure that the spring mounts on the changer fit securely in the counterbored holes provided in the mounting panel. While doing this feed the a.c. cord and the pickup cord through the mounting board, making sure that they both clear moving parts of the mechanism. Now remove the board covering the back of the phono compartment. Dress the a.c. cord and the pickup lead in the clear under the mechanism. Fasten the a.c. cord at the right of the phono drawer, viewed from the rear of the cabinet. Then feed the a.c. cord through the right hand hole (the larger one) of the back board and the pickup lead through the left hand hole, and replace phono board. Insert the pickup plug in the socket labeled "PH" at the right rear of the tuner. Insert the a.c. cord of the phono in the a.c. receptacle of the power unit, dressing the cord so that it moves freely when the phono drawer is moved out and in.

Connect the tuner to the power amplifier by means of the outlets provided. The power pack a.c. cord should be plugged into the tuner receptacle labeled "Amplifier" (Figure 3).

NOTE: Do not use the tuner receptacle labeled "Phono" for a.c. supply to the record player. As described above, use the outlet in the power amplifier as this provides better dressing of the record player a.c. cord.




## SERVICE ADJUSTMENT

## Alignment Procedure

Check position of pointer on the dial scale. When the condenser gang is completely meshed the pointer should be at the last reference mark on the low frequency end of the dial - just beyond 55. The volume control should be fully to the right. The output of the signal generator should be adjusted only high enough to obtain an output reading. Do not use a metallic blade screwdriver for adjusting the IF transformers. Use an insulated blade which will accurately fit the slot in the iron cores. Care should be taken as it is easy to damage the cores with a poorly fitting screwdriver. To align see Figures 1,3 and 4 and proceed as follows:

1. Connect the signal generator to pin \#7 (grid) of the 6BE6 through a .l mf capacitor and adjust the signal generator to 455 kc . Modulate at 400 cps . Set band switch to AM position, that is, fully to the left. Set the dial to a point of no interference from local broadcasting stations. Connect an a.c. voltmeter across the audio output (speaker) terminals, and adjust T7 and T5, both top and bottom, for maximum deflection of the output meter.
2. Connect the signal generator to pin \#2 of loop socket through a 220 mmf condenser. Adjust signal generator to 1500 kc and modulate at 400 cps. Keep band switch in AM position, that is, fully to the left. Set the tuner dial to 1500 kc and adjust ClA, ClE and ClF for maximum deflection of audio output meter.
3. Set signal generator to 600 kc , adjust tuner dial for maximum response and then tune Tl and Tll for maximum deflection of audio output meter.
4. Return signal generator to 1500 kc and repeat operation \#2.
5. Return signal generator to 600 kc and repeat operation \#3.
6. Connect signal generator to pin \#7 of the 6BE6 through a . 01 mf coupling condenser. Set generator frequency to 10.7 mc without modulation. Set the band switch one step to the right and put the dial at a point of no interference from local FM stations. Connect audio voltmeter to output of diode filter Fl on lower side of IF transformer $T 6$. Adjust $T 8, \mathrm{~T} 6$ and $T 4$ (top and bottom) for maximum output deflection.
7. Transfer output voltmeter to output of FM discriminator (across C25) and adjust $T 9$ for zero deflection. Be sure that voltmeter goes first plus and then minus (reverse voltmeter terminals) and set finally at zero.
8. Connect signal generator through a 300 ohm carbon resistor to FM antenna post and set to 104 mc modulated (FM) 400 cps . Connect audio voltmeter across output terminals. Adjust ClD, ClC, ClB and the bottom of $T 9$ for maximum deflection of audio output voltmeter. This completes the alignment.

## Dial Cord Drive

The correct method of installing the cord of the dial drive is given in Figure 6.

Voltage Readings
The voltage appearing on all sockets is given in Table I. Measurements are taken on the tuner in both AM and FM settings.


Figure 6 Dial Drive Cord Installation

## RECORD CHANGER OPERATION

The Scott Special two speed record changer (standard 78 rpm and long playing $33 \mathrm{l} / 3 \mathrm{rpm}$ ) will operate only on a lo5-125 volt 60 cycle power supply.

For reproduction of standard 78 rpm records the record changer is put in operation as follows:

1. Set control on the radio receiver to "PH" position. This is the knob directly to the left of the large tuning knob.
2. Make sure the LP tone arm is firmly in its rest bracket.
3. With the record changer selector control set at "A" (automatic) position, turn back the record stabilizing weight on the record shelf, then load 10 or 12 inch records (or a mixed stack if you desire). Loading should not exceed a $1 / 8$ inch stack of records. Now turn the record stabilizing weight over onto the top record.
4. Set the speed control to the 78 rpm position.
5. Press the "ON" button and the record changer will operate. (The changer will shut off automatically after playing the last record.)
6. Adjust the volume control on the radio receiver for the desired output level and the bass and treble controls for desired tone quality.
7. If it is desired to reject a record that is playing, press the "ON" button all the way down and release it.
8. To play records one at a time set the selector control to the "M" position; place the record on the turntable and depress the "ON" button. At the conclusion of the record the changer must be turned off manually by depressing the "OFF" button.
9. The record changer may be stopped at any time while the record is being played, by pressing the "OFF" button. The pickup arm may be picked up off the record and returned to the "OFF" position.

NOTE: At all times when the phono player is not in operation be sure that the speed control is set to the center, or neutral position.

For reproduction of LP (long playing), $33 \mathrm{l} / 3 \mathrm{rpm}$ records the record changer is put into operation as follows:

1. Remove any records that may happen to be on the turntable.
2. Remove center spindle, place LP record on turntable, center recm ord carefully on turntable and replace spindle.
3. Turn speed control to the $331 / 3$ position.
4. Set the selector control to "M" (manual) position.
5. Depress the "ON" button.
6. Remove LP tone arm from its rest bracket and carefully place it in the starting groove of the record.
7. On completion of the record carefully lift tone arm from record and place on rest bracket. Actuate "OFF" button by lifting the standard tone arm and replace, pressing down at the same time in order to operate the switch.

NOTE: When phono player is not in operation be sure that speed control is set at the center, or neutral position.

IMPORTANT: The LP record is fragile and the following precautions should be taken.

1. Handle gently to prevent scratching the soft record surface.
2. When placing pickup on record or removing pickup from record be careful not to damage record grooves by rough usage.
3. Always replace record in its envelope when not in use to prevent dust accumulations on the record surface or physical damage.
4. Keep records at normal room temperature.
5. Be sure that operating instructions are followed carefully. If, by incorrect procedure, the standard 78 rpm pickup should operate, and come to rest on an LP record, the record will be permanently damaged.
6. The LP tone arm should never be used on standard records or on a home recording. This use will seriously damage the pickup needle.
TUBE COMPLEMENTT

| Symbol | Type | Application | Symbol | Type | Application |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V1 | 6BA6 | RF Amplifier | V8 | 6AL5 | 2nd Detector, FM |
| V2 | 6BE6 | Converter AM \& FM | V9 | 6SJ7 | Audio Amplifier |
| V3 | 6 J 6 | Oscillator, | V10 | 5Y3G | Rectifier |
|  |  | Reactance Mod. | V11 | $6 \mathrm{J5}$ | Audio Amplifier |
| V4 | 6BA6 | IF Amplifier | V12 | 6SN7 | Inverter, Driver |
| V5 | 6BA6 | IF Amplifier, FM | V13 | 6L6G | Power Amplifier |
|  |  | \& 2nd Detector AM | V14 | 6L6G | Power Amplifier |
| V6 | GAU6 | 1st Iimiter, FM | V15 | 5Y3G | Rectifier |
| V7 | 6AJ 6 | 2nd Limiter, FM | V16 | 5Y3G | Rectifier |

> FUSE REPLACEMENTT

$$
\begin{aligned}
& \text { A fuse is provided in the power supply chassis for protection of the } \\
& \text { electrical circuits against overload. If the fuse blows replace it } \\
& \text { with a } 3 \text { ampere fuse. If the overload was momentary the replacement } \\
& \text { fuse will put the equipment back in working order. However, if the } \\
& \text { replacement fuse blows inmediately, Do NOT replace it with a fuse of } \\
& \text { higher rating. The receiver must be checked to find and correct the } \\
& \text { cause of the overload. }
\end{aligned}
$$

Used in conjunction with the Scott Model 6Tll Television Receiver, the high power, high quality audio and acoustic system of the Series 500 may be used in the reproduction of television sound. For this purpose

 system available for this service.

| Table I Voltage Readings |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol Desig | Tube | Description | $\underset{1}{\operatorname{Pin}}$ | $\begin{gathered} \text { Pin } \\ 2 \end{gathered}$ | $\operatorname{Pin}_{3}$ | $\underset{4}{\text { Pin }}$ | $\begin{gathered} \text { Pin } \\ 5 \end{gathered}$ | $\underset{6}{\text { Pin }}$ | $\mathrm{Pin}_{7}$ | $\underset{8}{\text { Pin }}$ |
| TUNER |  |  |  |  |  |  |  |  |  |  |
| VI | 6BA6 | RF Amp. | 0 | 0 | 0 | $6.6 a c$ | $\begin{aligned} & +172 \\ & +200 \end{aligned}$ | $\begin{array}{r} +100 \\ +103 \\ \hline \end{array}$ | $\begin{aligned} & +0.7 \\ & +0.9 \\ & \hline \end{aligned}$ | - |
| V2 | 6 BE 6 | Mixer | $\begin{aligned} & -6.8 \\ & -5.2 \end{aligned}$ | 0 | 0 | 6.6ac | $\begin{aligned} & +185 \\ & +200 \end{aligned}$ | $\begin{aligned} & +103 \\ & +118 \end{aligned}$ | $\begin{aligned} & -0.7 \\ & -0.6 \end{aligned}$ | - |
| V3 | 656 | Oscillator | $\begin{aligned} & +162 \\ & +190 \end{aligned}$ | 0 | 0 | 6.6ac | $\begin{aligned} & +0.3 \\ & +0.3 \end{aligned}$ | $\begin{aligned} & -5.8 \\ & -1.1 \end{aligned}$ | $\begin{array}{r} +2.7 \\ +4.5 \\ \hline \end{array}$ | - |
| V4 | 6BA6 | lst IF | $\left\lvert\, \begin{aligned} & -0.7 \\ & -0.1 \end{aligned}\right.$ | 0 | 0 | 6.6ac | $\begin{aligned} & +230 \\ & +240 \end{aligned}$ | $\begin{aligned} & +112 \\ & +110 \end{aligned}$ | $\begin{aligned} & +1.0 \\ & +1.1 \end{aligned}$ | - |
| V5 | 6BA6 | 2nd FF | $\left\lvert\, \begin{aligned} & -0.9 \\ & -0.2 \end{aligned}\right.$ | 0 | 0 | 6.6ac | $\begin{aligned} & -0.9 \\ & +232 \end{aligned}$ | $\begin{aligned} & -.85 \\ & +100 \end{aligned}$ | $\begin{gathered} 0 \\ +0.9 \end{gathered}$ | - |
| V6 | GAU6 | Lim. lst | $\left\lvert\, \begin{aligned} & -.36 \\ & -.36 \end{aligned}\right.$ | 0 | 0 | 6.6ac | $\begin{aligned} & +25 \\ & +25 \end{aligned}$ | $\begin{aligned} & +59 \\ & +62 \end{aligned}$ | 0 | - |
| V7 | 6AU6 | Lim. 2nd | $\begin{aligned} & -.4 \\ & -.4 \\ & \hline \end{aligned}$ | 0 | 0 | 6.6ac | $\begin{aligned} & +230 \\ & +240 \end{aligned}$ | $\begin{aligned} & +90 \\ & +95 \end{aligned}$ | 0 | - |
| v8 | 6AL5 | Discrim. | 0 | $\begin{array}{\|l\|} \hline-.50 \\ -3.5 \end{array}$ | 6.6ac | 0 | $\begin{aligned} & +.10 \\ & -.60 \end{aligned}$ | 0 | $\begin{aligned} & \hline-.60 \\ & -36 \end{aligned}$ | - |
| V9 | 6SJ7 | Audio | 0 | 6.6ac | $\begin{aligned} & +1.4 \\ & +1.6 \end{aligned}$ | 0 | $\begin{aligned} & +1.4 \\ & +1.6 \end{aligned}$ | $\begin{aligned} & +52 \\ & +60 \end{aligned}$ | 0 | $\begin{aligned} & +55 \\ & +64 \end{aligned}$ |
| V10 | 5Y3G | Rectifier | - | $\begin{aligned} & +285 \\ & +295 \end{aligned}$ | - | $\begin{aligned} & 300 a c \\ & 300 a \mathrm{c} \end{aligned}$ | - | $\begin{aligned} & 300 a \mathrm{c} \\ & 300 \mathrm{ac} \end{aligned}$ | - | $\begin{array}{r} +285 \\ +295 \\ \hline \end{array}$ |
| POWER AMPLIFIER |  |  |  |  |  |  |  |  |  |  |
| vil | 655 | Amplifier | 0 | 6.2ac | +160 | - | 0 | - | 0 | $+6.7$ |
| V12 | 6SN7 | Inv., Driver | + 54 | +215 | + 65 | + 54 | $+215$ | $+65$ | 6.2 ac | 0 |
| v13 | 6L6 | Amp. Audio | 0 | 0 | +360 | + 275 | 0 | - | 6.2ac | +21 |
| V14 | 6 L 6 | Amp. Audio | 0 | 0 | +360 | +275 | 0 | - | 6.2 ac | +21 |
| V15 | 5Y3G | Rectifier | 0 | +400 | - | 380ac | - | 380ac | - | +400 |
| V16 | 5Y3G | Rectifier | 0 | +400 | - | 380 ac | - | 380ac | - | +400 |

## Line Voltage - 117 V

Dial set at low frequency end of range.
In the tuner readings where two figures are given the top one is the AM voltage reading and the bottom figure the FM voltage reading.

| Symbol Desig. | Function | Description | Part No. |
| :---: | :---: | :---: | :---: |
| Cl | V1 AVC filter | ```Capacitor, paper, .05 MF 400 V``` | 15L3466 |
| C2 | VI cathode bypass | Capacitor, ceramic, 47 MMF 500 V | $15 \mathrm{G2830}$ |
| c3 | V1 screen bypass | Capacitor, ceramic, 5000 MMF 400 V | $15 L 3462$ |
| C4 | V1 plate filter | Capacitor, ceramic, 5000 MMF 400 V | $15 L 3462$ |
| C5 | VI plate to V3 grid coupling | Capacitor, ceramic, 15 MMF 500 V | 15 El 268 |
| C6 | V3 grid coupling FM | Capacitor, ceramic, 15 MMF 500 V | 15E1268 |
| C7 | V3 oscillator grid coupling | Capacitor, ceramic, 47 MMF 500 V | 15G2830 |
| C8 | V2 AFC plate decoupling | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C9 | V2 oscillator plate coupling | Capacitor, ceramic, 470 MMF 500 V | 15 P3938 |
| C10 | BC band oscillator plate decoupling | Capacitor, ceramic, 47 MMF 500 V | 15G2830 |
| Cll | V2 oscillator grid coupling | Capacitor, ceramic. 47 MMF 500 V | 1592830 |
| C12 | V2 oscillator cathode bypass | Capacitor, ceramic, 5000 MNF 400 V | 15L3462 |
| C13 | V2 AFC plate coupling | Capacitor, ceramic, 22 MMF 500 V | 15P3939 |
| C14 | V2 AFC grid RF bypass | Capacitor, ceramic, 100 MMF 500 V | 15E1269 |
| C15 | V2 AFC grid audio bypass | Capacitor, paper, . 1 MF 600 V | 15H2706 |
| Cl6 | RF section +B bypass | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C17 | V3 mixer screen bypas | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| Cl8 | V3 plate decoupling | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C19 | lst FM-IF coil primary tuning | Capacitor, ceramic, 33 MMF 500 V | 15 P 3940 |
| c20 | lst AM-IF coil primary tuning | Capacitor, ceramic, 130 MMF 500 V | 15P3941 |
| C21 | lst FM-IF coil secondary tuning | Capacitor, ceramic, 33 MMF 500 V | 15P3940 |
| C22 | lst AM-IF coil secondery tuning | Capacitor, ceramic, 105 MMF 500 V | 15P3942 |
| C23 | RF and mixer AVC bypass | Capacitor, paper, . 02 MF 600 V | 15E1001 |
| C24 | V4 heater bypass | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
|  | V4 screen bypass | Capacitor, ceramic, 5000 MMF 400 V | 1513462 |
| C26 | V4 plate decoupling | Capacitor, ceramic, 5000 MMF 400 V | 1513462 |

Table II Parts List By Symbol Designation

| Symbol <br> Desig. | Function | Description | Part No. |
| :---: | :---: | :---: | :---: |
| C27 | 2nd FM-IF coil primary tuning | Capacitor, ceramic, 33 MMF 500 V | 15P3940 |
| C28 | and AM-IF coil primary tuning | Capacitor, ceramic, 130 MNF 500 V | 15P3941 |
| C29 | and FM-IF coil secondary tuning | Capacitor, ceramic, 33 MMF 500 V | 15P3940 |
| C30 | 2nd AM-IF coil secondery tuning | Capacitor, ceramic, 105 MMF 500 V | 15P3942 |
| C31 | AM audio series resistor bypass | Capacitor, ceramic, 2 x 150 MMF 400 V. See FI |  |
| $\begin{array}{r} \text { C32A } \\ \text { B } \\ \text { C } \end{array}$ | v5 cathode bypass <br> V5 screen bypass <br> V5 plate decoupling | Capacitor, ceramic 3 x 5000 MMF 400 V | 15P3944 |
| C33 | 3rd FM-IF coil primary tuning | Capacitor, ceramic, 33 MMF 500 V | 15 P3940 |
| C34 | 3rd FM-IF coil secondary tuning | Capacitor, ceramic, 33 MMF 500 V | $15 P 3940$ |
| C35 | lst FW limiter grid decoupling | Capacitor, ceramic, 47 MMF 500 V | 15G2830 |
| C36 | V6 2nd FM limiter screen bypass | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C37 | V6 plate and screen decoupling | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C38 | V6 plate to V7 grid coupling | Capacitor, ceramic, 22 MMF 500 V | 15 P 3939 |
| C39 | V7 2nd FM limiter screen bypass | Capacitor, ceramic, 5000 MMF 400 V | $15 L 3462$ |
| C40 | V7 plate decoupling | Capacitor, ceramic, 5000 MMF 400 V | 15L3462 |
| C41 | FM discriminator coil primary tuning | Capacitor, ceramic, 33 MMF 500 V | 15 P3940 |
| C42 | FM discriminator coil coupling | Capacitor, ceramic, 33 MMF 500 V | 15 P3940 |
| C43 | FM discriminator coil secondary tuning | Capacitor, ceramic, 33 MMF 500 V | 15 P39 40 |
| C44 | FM discriminator output bypass | Capacitor, ceramic, 100 MMF 500 V | 15E'1269 |
| C45 | FM de-emphasis network | Capacitor, ceramic, 1500 MMF 350 V | 15L3459 |
| C46 | Bass control circuit | Capacitor, paper, 5000 maF 600 V | 15 E1002 |
| C47 | Bass control circuit | Capacitor, paper, . 02 MF 600 V | 15E1001 |
| 648 | Treble control series | Capacitor, paper, 5000 MMF 600 V | 15E1002 |
| C49 | Treble control series | Capacitor, paper, . 01 MF 400 V | 15L3474 |
| C50 | v9 lst audio plate coupling | Capacitor, paper, . 1 MF 400 V | 15E1848 |
| C51 | V9 lst audio screen bypass | Capacitor, paper, . 25 MF 200 V | 15L3469 |
| C52 | V9 lst audio cathode bypass | $\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 25 \mathrm{MF} 50 \mathrm{~V} \end{aligned}$ | 15B638 |


| Symbol Desig. | Function | Description | Part No. |
| :---: | :---: | :---: | :---: |
| C53 | V9 plate decoupling | $\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 10 \mathrm{MF} 300^{\mathrm{V}} \end{aligned}$ | 15P3945 |
| C54A | +B filter | $\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 40 \mathrm{MF} 400 \mathrm{~V} \end{aligned}$ | 15 P 3946 |
| B | +B filter | 40 MF 400 V |  |
| $\mathrm{CS5}^{\text {C }}$ | $+B$ filter <br> AC line bypass tuner | 20 MF 300 V <br> Capacitor, paper, . 01 MF | 15E1050 |
|  | chassis | 600 V , paper, . 01 | 15.1050 |
| C56 | AC line bypass audio chassis | Capacitor, paper, $2 \times .05$ MF 600 V | 15A11 |
| C57 | $+B$ filter 6L6 plate | Capacitor, paper, 4 MF 600 V | 15B481 |
| C58 | +B filter 6L6 plate | Capacitor, electrolytic, 2 30 MF 450 V | $15 A 17$ |
| C59A | $+B$ filter audio plate supply supply | ```Capacitor, electrolytic, 30 MF 450 V``` | 15 K 3010 |
| B | +B filter audio plate supply |  |  |
| C | $+B$ filter audio plate supply | 30 MF 450 V |  |
| C60 | Audio input coupling | Capacitor, paper, 600 V .05 MF | 15E1041 |
| C61 | V13 cathode bypass | $\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 25 \mathrm{MF} 25 \mathrm{~V} \end{aligned}$ | 15B795 |
| C62 | V13 plate to Vl4 grid coupling | Capacitor, paper, 05 MF 600 V | 15E1041 |
| C63 | V14 plate to Vl5 grid coupling | Capacitor, paper, . 25 NF 600 V | 15 A14 |
| C64 | Vl4 plate to Vl6 grid soupling | Capacitor, paper, . 25 MF 600 V | $15 A 14$ |
| C65 | V-15-V16 cathode bypass | $\begin{aligned} & \text { Capacitor, electrolytic, } \\ & 25 \mathrm{MF} 50 \mathrm{~V} \end{aligned}$ | 15B638 |
| C66 | Audio input coupling | Capacitor, paper, . 05 MF 400 V | 15L3466 |
| FI | AM diode filter | Filter, consists of 47 K ohm resistor bypassed with 2 <br> 150 MMF capacitors on ceramic form | $2 P 3943$ |
| II | Dial lamp | Lamp, 6-8 volts . 25 A \#44 blue bead | 49E1091 |
| I2 | Dial lamp | Lamp, 6-8 volts . 25 A \#44 blue bead | 49E1091 |
| $\begin{aligned} & \mathrm{Ll} \\ & \mathrm{~L} 2 \\ & \mathrm{L3} \\ & \mathrm{~L} 4 \end{aligned}$ | AM band antenna coil FM band antenna coil VI plate choke AM Band RF coil | ```RF coil RF coil RF choke, 3.5 uh RF coil``` | $\begin{aligned} & \text { 20P3947 } \\ & \text { 20P39448 } \\ & 17 \text { P3949 } \\ & 20 P 3950 \end{aligned}$ |

Table II Parts List By.Symbol Designation

| $\left\lvert\, \begin{aligned} & \text { Symbol } \\ & \text { Desig. } \end{aligned}\right.$ | Function | Description | Part No. |
| :---: | :---: | :---: | :---: |
| L5 | FM band RF coil | RF coil | 20P3951 |
| L6 | Oscillator + B RF choke | RF choke, 3.5 uh | 17 P 3949 |
| L7 | FM band oscillator coil | RF coil | 20P3952 |
| L8 | AM band oscillator coil | RF coil | 20 P 3953 |
| L9 | +B filter 6L6 plate | LF choke | 17B492 |
| L10 | supply | LF chok | $17 \mathrm{B492}$ |
| 10 | +B Bupply suter audio plate | LF chok | 1784 |
| I11 | FM folded dipole antenna | Antenna | 1P3954 |
| L12 | AM loop antenna | Antenna | 1P3955 |
| R1 | V1 cathode bias | Resistor, 68 ohm 10\% $\frac{1}{8}$ W | 7OE1195 |
| R2 | V1 grid return | Resistor, 1 meg 20\% $\frac{1}{2} W$ | 70A63 |
| R3 | V1 screen filter | Resistor, 22 K ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 H 2708 |
| R4 | V1 plate filter | Resistor, 1000 ohm 10\% $\frac{1}{2}$ W | 70 A47 |
| R5 | V2 oscillator plate fil- | Resistor, 2200 ohm 10\% $\frac{1}{2}$ W | 70 K 3023 |
| R6 | V2 oscillator grid series | Resistor, 6.8 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 P3956 |
| R7 | BC band oscillator coil damping | Resistor, 220 ohm 10\% $\frac{1}{2}$ W | 70צ1289 |
| R8 | V2 oscillator grid return | Resistor, 22 K ohm $10 \% \frac{1}{2} \mathrm{~W}$ | 70 H 2708 |
| R9 | V2 cathode bias | Resistor, 220 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 El 289 |
| R10 | V2 AFC plate filter | Resistor, 6800 ohm 10\% 1 W | 70 P3957 |
| R11 | V2 AFC grid series | Resistor, 220 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70E1289 |
| R12 | V2 AFC grid filter | Resistor, .1 meg 10\% $\frac{1}{2} \mathrm{~W}$ | 70A58 |
| R13 | V2 AFC grid filter | Resistor, $.47 \mathrm{meg} \mathrm{10} \mathrm{\%}$ 年 W | 70A61 |
| R14 | +B bleeder in Am position | Resistor, 5000 ohm 10\% 10 W | 7012919 |
| R15 | V3 FM grid leak | Resistor, 47 K ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70A54 |
| R16 | V3 oscillator grid return | Resistor, 22 K ohm 10\% $\frac{1}{2} \mathrm{~W}$ | $70 \mathrm{H2708}$ |
| R17 | V3 screen filter ${ }^{\text {l }}$ ( FM-IF primary + | Resistor, 10 K ohm 10\% 2 W | 70 P3958 |
| R18 R19 | $\begin{aligned} & \text { lst FM-IF primary }+B \\ & \text { filter } \\ & \text { AVC filter RF \& mixer \& } \\ & \text { lst IF amplifier } \end{aligned}$ | Resistor, $1000 \mathrm{ohm} 10 \% \frac{1}{2} \mathrm{~W}$ Resistor, $2.2 \mathrm{meg} \mathrm{20} \mathrm{\%} \frac{1}{2} \mathrm{~W}$ | 70447 70464 |
| R20 | V4 cathode bias | Resistor, 68 ohm 10\% 흘 W | 70 El 195 |
| R21 | V4 screen filter | Resistor, 33 K ohm 10\% 1 W | 70 A67 |
| R22 | V4 plate filter | Resistor, 1000 ohm 10\% $\frac{7}{2} \mathrm{~W}$ | 70 A47 |
| R23 | AM 2nd det. audio filter | Resistor, 47 K ohm See Fl |  |
| R24 | AM 2nd det. audio load | Resistor, .47 meg 10\% $\frac{1}{2} \mathrm{~W}$ | 70A61 |
| R25 | V5 cathode bias | Resistor, 68 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 El 195 |
| R26 | V5 screen filter | Resistor, 33 K ohm 10\% 1 W | 70A67 |
| R27 | V5 plate filter | Resistor, 1000 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 A 47 |
| R28 | V6 grid return | Resistor, $11 \mathrm{meg} 10 \% \frac{1}{2} \mathrm{~W}$ | 70 A58 |
| R29 | AVC filter lst FM limiter | Resistor, $2.2 \mathrm{meg} 20 \%$ 年 W | 70A64 |
| R30 | V6 plate load. | Resistor, 10 K ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 704419 |
| R31 | V6 screen bleeder | Resistor, 22 K ohm 10\% $\frac{1}{2} \mathrm{~W}$ | $70 \mathrm{H2708}$ |
| R32 | V6 screen \& plate filter | Resistor, $22 \mathrm{~K} \mathrm{ohm} \mathrm{10} \mathrm{\%} 2 \mathrm{~W}$ | 70 P3959 |
| R33 | V7 grid return | Resistor, $15 \mathrm{meg} \mathrm{10} \mathrm{\%} \frac{1}{2} \mathrm{~W}$ | 70E1214 |
| R35 | V7 screen bleeder | Resistor, 22 K ohm 10\% | $70 \mathrm{H2708}$ 70 P 3959 |
| R36 | V7 plate filter | Resistor, 1000 ohm 10\% $\frac{1}{2} \mathrm{~W}$ | 70 A47 |






PAGE 19-2 SEARS


SEARS, ROEBUCK 8\% C̣O. MODEL 6050, CHASSIS 132.825, 132.825-1, 132.825-2, 132.825-3, 132.825-4





SERVICE NOTE: The a-c hum can often be greatly reduced on these chassis by replacing Cl2 with a $0.03-\mu \mathrm{f}, 400-\mathrm{V}$ capacitor. Some times the hum can be further reduced by replacing Rl2 with a 15,000-ohm, l-watt resistor.


YODEL 6050, CHASSIS SEARS, ROEBUCK \& CO.
132.825, 132.825-1,
132.825-2, 132.825-3,
132.825-4

## SPECIFICATIONS

Power Supply -- 105-125 Volts AC-DC, 45 Watts Honing Range Broadcast Band 540-1600 Kc Power Output Speaker<br>Undistorted 8 Watts, maximum - 2.5 Watts Voice Coil Impedance 3.2 Ohms<br>CHASSIS DIFFERENCES

Nota: On a few of the 132.825 chassis, a 470 ohm resistor was placed across the heater of the $14 R 7$ tube to equalize the warm up period of the tubes. 'his is not shown on the Circuit Diagram.

$$
132.825-1
$$

Acdition of Suffix Number - I to Chassis Identification Number 132.825 covers the following changes from the 132.825 chassis.

1. Removal of the bass boost circuit to reduce hum.
2. Change in tone control circuit.
3. Circuit changes as follows: Tone control condenser Cl4, .1 mfd . 200 V was C7, $.05 \mathrm{mfd.}, \mathrm{200}$. ; $\mathbf{~ C 8}, .01 \mathrm{mfd} .400 \mathrm{~V}$ fixed tone condenser in output circuit was Cl2, . 02 mfd .400 v ; Cl3, $.005 \mathrm{mfd}, 600 \mathrm{~V}$ was $.005 \mathrm{mfd} ., 300 \mathrm{~V} ; \mathrm{R} 9,470$ ohm $1 / 4$ watt resistor added to $14 \mathrm{~K}^{7} 7$ tube socket between heater lugs; C12, . 02 mfd., 400 V was $\mathrm{C7}, .05 \mathrm{mfd} ., 200 \mathrm{v}$, on $12 \mathrm{SK7}$ screen grid to floating ground. C14, . $1 \mathrm{mfd} ., 200 \mathrm{~V}$ condenser: R8, $6800 \mathrm{ohm} 1 / 4$ watt resistor, $\mathrm{R} 9 \mathrm{l}, 000 \mathrm{ohm}$ $1 / 4$ watt resistor and R12, 10,000 ohm $1 / 4$ watt resistor deleted from cathode circuit of 12 SK 7 and $35 L 6$ tubes.
4. Revision of parts price list; schematic diagram: and parts layout.

$$
1.32 .825-2
$$

Addition of Suffix Number 2 to Chassis Identification Number 132.825 covers the
following changes from the 132.825-1 chassis.

1. RF coil N18598 is replaced by RF coil N19860.
2. The RF coil location is changed from the top of chassis to under chassis.
3. 470 ohm resistor deleted from $14 \mathrm{R7}$ tube heater circuit.
4. The schematic diagram is redrawn with rearrangement of schematic location symbols in consecutive order from left to right without duplication.
5. Rearrangement of scrematic location symbols on parts list and parts location drawings to correspond with schematic diagram.

$$
132.825-3
$$

Addition of Suffix Number - 3 to Chassis Ident-ification Number 132.825 covers the following changes from the $132.825-2$ chassis.

1. Addition of $12 S Q 7$ tube and deletion of 14 R 7 tube.
2. Addition of hum bucking circuit in out put stage (Cl2 \& Rl2) from B+ to cathode of 35 L 6 tube, to replace the hum bucking circuit used in the 12SK7 screen grid circuit. Resistor Rll, i megohm, $1 / 4$ watt; and condensers Cl3, $.05 \mathrm{mfd} ., \mathrm{C} 12.02 \mathrm{mfd}$. , and C15 .00025 mfd . deleted.
3. Resistor Rio, in the plate circuit of the first audio tube changed from 100,000 ohms to 470,000 ohms.
4. Revision of parts price list: schematic diagram and parts and tube layouts.

Note: All schematic diagrams on the instruction shefts and chassis stickers supplied with radios bearing the chassis number 132.825-3 are incorrect. They show the secondary of the second IF transformer connected to the grid of the 12SQ7 tube, and both diodes of the tube conrected to floating ground. The schematic diagram on this RL has been corrected.

$$
132.825-4
$$

Addition of Suffix Number - 4 to the Chassis Identification Number 132.825, covers the following changes from the $132.825-3$ chass is.

1. Tone control changes from plate circuit to grid circuit of output tube.
2. Resistor R13, 500,000 ohms, part \#N19967 was 20,000 ohms, N19530. Resistor Rll, 470,000 ohms 1/4 watt deleted; condenser Ci3, .002 mfd. 600V was . 1 mfd. 200V.
3. Revision of parts price list, and schematic diagram.



## IMPORTANT ALIGNENT NOTES:

1. Place set loop in the same position and at the same distance with respect to the back of the chassis as it would be whent he set is mounted in the cabinet, during alignment of the RF stage.
2. If e standard test loop is used with the Signal Generator for alignment of the receiver, the black wire will be left in the antenna clip.
3. The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the A.V.C. action of the receiver ineffective.

PAGE 19-6 SEARS


# SEARS, ROEBUCK \& CO. 

## Alignment procedure

## PRELIMIMARY

OUTPUT METER CONNECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . ACROSS LOUD SPEAKER VOICE COIL METER READ PNG FOR 1/2 WATT OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . 1.26 VOLTS CONNECTION OF GENERATOR GROUND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . FLOATING GROUND GENERATOR MODULATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APP. 30\%. 4OO CYCLES POSITION OF VOLUME CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FULLY CLOCKISE POSITION OF DIAL POINTER WITHVARIABLE CONDENSER FULLYCLOSED . . . . . .LAST LINE ON LEFT HAND SIDE OF SCALE

| POSITION OF | GEwERATOR | generator | Otmay | TRIANERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIAL POINTER | FREQUENCY | CONMECT10\% | AnTEnda | ADJUSTED | FU*CTIAM |
| 1000 kC | 455 KC | R. F. GR 1O OF $125 A 7$ | . 2 MFD | T3. T4. T5. T6 | 1.F. |
| 1500 kc | 1500 KC | STANDARD RADIATIMG LOOP | . 0002 MFD | T2. T 1 | OSC.. R. F. |
| 600 kc | 600 KC | STANDARD PADIATING LOOP | . 00020 MFD | CHECK POINT | * |

It is advisable to repeat the entire alignment procedure in the original order to insure greater accuracy.
Always keep the output from the test oscillator at its lowest possible value. As the sensitivity is increased by alignment, the generator cutput should be reduced correspondingly.

Approximately 90 microvolts per meter input using standard Hazeltine alignment loop 24 from set for 1 , 2 watt output.
*Check the sensitivity at 600 KC , if weak, adjust, antenna section plates for maximum output at 600 KC . Tracking is accomplished by adjusting plates of rotor.

Approximate stage by stage sensitivities are: R. F. Grid - $455 \mathrm{KC}-95 \mathrm{IV}$
R. F. Grid - 1000 KC - 150 UV , Antenna - $1500 \mathrm{KC}-40 \mathrm{UV}$, $600 \mathrm{KC}-60 \mathrm{UV}$


PARTSLIST

| $\begin{aligned} & \text { SCH• } \\ & \text { LOC }_{2} \end{aligned}$ | $\begin{aligned} & \text { PART } \\ & \text { NO. } \end{aligned}$ | DESCRIPT.ION |
| :---: | :---: | :---: |
|  | A62 163C | BACK COVER |
| 1. | A28147 | COIL-LOOP |
| L2 | A28160 | COIL-OSC ILLATOR |
| C1 |  | CONDENSER. . 005 MFD 400 VOLT |
| C2 |  | CONDENSER, . 05 MFD 200 VOLT |
| C3 |  | CONDENSER. . 00005 MFD MICA |
| C4 |  | CONDENSER. . 00025 MFD MICA |
| C5 |  | CONDENSER. . 002 MFD 400 VOLT |
| C6. C 7 |  | CONDENSER. . 0001 MFD MICA |
| C8 |  | CONDENSER. . 02 MFD 400 VaET. |
| C9 |  | CONDENSER, . 2 MFD 400 VOLT |
| C10 |  | CONDENSER. . 05 MFD 400 VOLT |
| C11 |  | CONDENSER. OI MFD 400 VOLT |
| Cl 2 | A2068D | CONDENSER. ELECTKOLYTIC |
|  |  | 40-40 MFD $\times 150 \mathrm{VOLT} 25 \mathrm{MFD} \times 25 \mathrm{VOLT}$ |
| C 13 |  | CONDENSER, 15 MFD 400 VOLT |
|  | A2463 | CONTROL, VULUME WITH SWITCH. <br> (S.P.S.T.). 5 MEGOHM |
|  | A5559 | CORD. LINE |
|  | A4640 | SHAFT ASSEMBLY. DIAL DRIVE |
|  | A1851 | DIAL LAMP SOCKET |
|  | A4137 | DIAL POINTER |
|  | A4574 | DIAL POINTER ORIVE CORD |

POWER SUPPLY $\therefore 105.125$ VOLTS AC.DC. 40 WATTS
POWER OUTPUT .
UNDISTORTED . 6 WATTS. MAXIMUM 1.7 WATTS


PAGE 19-8 SEARS

| MODEL 6071, CHASSIS SEARS, ROEBUCK \& CO. |
| :--- |
| $132.826,132.826-1$ |



SERVICE NOTE: The a-c hum can often be greatly reduced on this chassis by replacing C13 with a $0.03-\mu \mathrm{f}, 400-\mathrm{V}$ capacitor. Sometimes the hum can be further reduced by replacing RI3 with a $15,000-0 \mathrm{hm}$, l-watt resistor.

SEARS PAGE 19-9


SFECIFICATIONS

Power Supply -- 105-125 volts AC, 65 watts Tuning Range Broadcast Band 540-1600 Kc Power Output<br>Speaker<br>Voice Coil Impedance 3.2 Ohms<br>\section*{ALIGNMENT PROCEDURE}

## PRELIMINARY:

 Output meter reading to indicate 200 mw (Standard Output).................... . 8 Volts Dummy antenna value used in series with generator output........... See Chart Below Connection of generator output lead......................................... See Chart Below Connection of generator ground lead........................................... Ploating around
 Position of volume control...................................................... Fully Clockwise Position of tone control......................................................................... Treble rosition of dial pointer with variable fully closed............................ Horizontal


## IMPORTANT ALIGNMENT NOTES:

1. Place set loop in the same position and at the same distance with respect to the back of the chassis as it would be when the set is mounted in the cabinet, during alignment of the RF stage.
2. If a standard test loop is used with the Signal (jenerator for alignment of the receiver, the black wire will be left in the antenna clip.
3. The alignment procedure should be repeated in the original order for greatest accuracy. Always keep the output from the signal generator at its lowest possible value to make the $A$. V. C. action of the receiver ineffective.

PARTS LIST


MODELS 6106, CHASSIS SEARS, ROEBUCK \& CO. MODELS 6111, CHASSIS 101.662-2E; 6106A,
ALIGNMFNT PROCEDURL 101.662-3C; 6111A,

CHASSIS 101.662-4E

ALIGNMFNT PROCEDURI
CHASSIS $101.662=5 F$
Output Meter Connection............................................Across Loud Speaker Voice Coil Output. Meter Reading to Indicate 50 milliwatts (Standard Output)................ 2 Volts Generator Ground Lead Connection............................................................eiver Chassis Dummy Antenna Value to be in Series with Generator Output..................See Chart Below Connection of Generator Cutput Lead...............................................See Chart Below
 Position of Volume Control.................................................................................................. Position of Tone Control. Position of Pointer with Tuner Fuily ciosed................................................................... 540 Calibration Mark


The Alignment must be done in the order given.
The Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.
During alignment of the BC Band Padder and the SW Band Translator Trimmers, the Tuner
should be rocked through resonance to assure alignment.
Power Output Undistorted 3.6 Watts Maximum 6.5 Watts

Frequency Range:
Broadcast. . . . . . . . . . . . . . . . . . . . . 540-1700 кС


MODEL 6285, CHASSIS SEARS, ROEBUCK \& CO. 101.666A, 101.666-1B

## ALIGNMENT PROCFRURE




LOCATION OF PARTS
BOTTOM COVER REMOVED
$101.666-1 B$

## LOCATION OF PARTS UNDER CHASSIS 101.666-1B

|  |  | PARTS | IST |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| schesatio <br> LCCATION | $\begin{aligned} & \text { FART } \\ & \text { Nop } \end{aligned}$ | DESCRIPTICN | schematic LOCATIOM | $\begin{aligned} & \text { PARARER } \end{aligned}$ | DSSCRIPTIOX |
|  | R43842 | Bolt - $3 / 8-24 \times 3 / 4 \mathrm{Nec}$. Front Mtg. Brkt. |  |  |  |
|  | 841483 |  |  | $R 19455$ $R 52793$ | Knob - Tuning ( $101.666 \mathrm{~A}-1 \mathrm{~B}$ ) |
|  | 845265 | Bolt - Carriage - $10-24 \times 3 / 4$ Speaker $\mathrm{L}_{\text {tg. Brist. }}$ |  |  | Lamp - Diel - Mazda Type *44 |
|  | R45817 $\mathrm{R45228}$ | Bracket - Spanker Brackat - Ppenker utg. - |  | R9578AA | Iend - "A" Connector Absembly |
|  | R52800 | Braekat - Rec. Mtg. - Front L.H. (101.666A-18) |  | ${ }_{\text {R54 }}$ | İerflet - instriet instuction ( $101.666-1 \mathrm{~B}$ ) |
|  | $\mathrm{R}^{2} 2301$ | Bracket - Rec. Ytg. - Front R.E. (101.666A-1B) |  | F45282 | Nat - Wing 10-24 |
|  | R43370ג | Bracket Absembly - Rear Nits. |  | R43969 | Nat - W1ng 6-32 |
|  | 816149 | Capacitor - armezer |  | R52788 | Pointer - dial |
|  | R16150 | Capacitor - generator |  | R19426 | Pulley - Tnod |
| C15,C16,C20 | R45167 | Capacitor - Electronytic - 10 wed. 350 V., |  | R43423 | Puiley - Tood |
| $\mathrm{Cl}_{1}$ | R43793 | Capacitor - Trimar - Anterna |  |  | Push Button (101.666A-1B) Resistor -56 Ohm $-1 / 3$ Watt |
| $\mathrm{C}_{6}$ | ${ }_{84} 3694$ | Capacitor - Trimmer - (101.666A-1B) | ${ }_{84}^{\mathrm{R} 14}$ |  | Resistor - 150 Onm - 1 Watt |
| c9 | 845518 | Capacitor - Trimser - Oecillator | $\stackrel{13}{ }$ |  | Resistor - 270 Ohm - 1 \#att |
| 612,013 |  |  | 88 |  | Resistor - $2,700 \mathrm{Ohm}-1$ \% ${ }^{\text {Watt }}$ |
|  |  |  |  |  | Realstor - 3,906 Ohm - $1 / 3$ Watt |
|  |  | Capacitor -. $012 \mathrm{kfd}.{ }^{400} \mathrm{v}$. | R6 |  |  |
| 618 |  | Capacitor - . 01 zra. $100 \mathrm{~V}_{\text {\% }}$ | ${ }_{\text {RS }}$ |  | Peeslstor - 47,000 onm - $1 / 3$ Watt |
| C23, 624 |  | Capacitor -. $007 \mathrm{yspd}$.600 V . | R13 |  | Resistor - $68,0000 \mathrm{~nm}-1 / 3$ 7att |
|  |  |  |  |  | Resletor - 250,000 ohm- 113 matt |
| ${ }_{C 5}{ }^{10}$ |  |  | R1, R3, R10, R18 |  | Sesistor - ${ }^{\text {L }}$ Lezohm $-1 / 3$ mitt |
| cs |  |  | Ril ${ }^{\text {a }}$ |  | Heslator - 15 Lezohm - 1 /3 natt |
| ${ }^{\text {c22 }}$ |  | Capactitor-: 000225 yfa. Yica |  | K43407 | Rind - Kubber - Fower Supply Casa |
| ${ }_{C 25}{ }_{\text {c }}$ | R48851 | Capacitor - .000065 Mrd. Temp. Formo |  |  | Shart - Erunt Drive |
|  |  | Capacitor - .00025 urd. Dual - Micn |  | ${ }_{\text {R4 }}^{5137}{ }^{\text {a }}$ | Shnft - Renr drive |
| ${ }_{64}$ |  | Capacitor - 00005 rra. Mra |  | R43701 | Soekst - Peetifier |
|  |  | Capacitor - .0000 wra. vica |  | R17627 | Sockert - Spenke |
|  | $\mathrm{RSO}_{8971}$ | Case - Speaker (101.666A-1B) |  | R41542 | Socket - Tube - 8 Prong Oetal ( $101.806 A$ ) |
|  | ${ }_{845271}$ | C1ip - Drai Lamp Socket |  | ${ }^{\text {R4, }} 4$ | Socket - Tube - 8 Prong Lock-1n (101.660-1B) |
|  | R48820 | Coil - intenna Choke (101.666A-1B) |  | 841111 | Socket- ${ }_{\text {cor }}$ |
| ${ }_{25}$ | R90448 | Coll - Eash Cnoke ( $101.666 \mathrm{~A}-1 \mathrm{~A}$ ) |  | R61206 R43458 |  |
| Ls | R5220CH | coil - Spark Cnoko (101.666A-1B) |  | R42274 | Suprressor - Distributor |
| L1, L3, 14 | R45217 | Colle - Perm. Unit - Less Tuner (101.868A-18) | T1 | R45168 | Transformer - I.F. © ${ }^{\text {d }}$ |
| L1,13,14 | RS 2790 | coile a Tunar Absembly | T2 | R45169 | Transformer - 1.F. \#z |
| L2, $\mathrm{L3}, \mathrm{L4}$ | R61575 | Colle a Tunor Assembly (101.666-18) | T4 | R45162 | Transformer - Powe |
| R12,Ri7 | R45139 | Control - on-off - Volume \& Tone | T3 | R45166 | Tranoformer - Outpit (101. |
|  | R41471 | Cord - Dial Drive - ${ }^{\text {data }}$ | T3 | R6251n | Transformer - Output (101.668-18) |
|  | ${ }_{8}^{\text {R52827 }}$ | Brcutcheon - ( $101.6668 \mathrm{~A}-\mathrm{AB}$ ) |  | 852874 | Tabs - Station Call Letter (101.658A-18) |
|  |  | Fuge - (Type 3 A9-15 Amp - 25 V.$)$ |  | ${ }_{\text {RS2787 }}$ |  |
|  | R19418 | Inob - Tone |  |  |  |

PAGE 19-18 SEARS



Before proceeding with this adjustment the receiver should be left on for about 15 minutes to warm up.

An adjusting screw, accessibie to a screw driver through a hole in the bottom cover of the case, is provided to match the receiver to the car antenna. With the receiver adjusted for "DIAL" tuning, use the Station Selector knob to tune in a very weak station at about 1400 kilocycles, with the volume control fully on. Then turn the adjusting screw to the point affecting maximum volume.

## THE PUSH BUTTON TUNING MECHANISM:

Preselection of push button tuned stations is accomplished by settings of the iron cores in the oscillator coils and settings of the trimmer condensers across the antenna coil. The proper coils are selected by a switch which is rotated one step at a time by means of a solenoid, controlled by the tuning push button. Pushing the button also mechanically rotates the station call letter drum.

Each button can be set only to a station within a certain frequency range as fol10ws:

| STATION | FREQUENCY RANGE |  |
| :--- | :--- | :---: |
| $\# 1$ | 535 to 920 Kc |  |
| $\# 2$ | 630 to 1070 Kc |  |
| $\# 3$ | 690 to 1170 Kc |  |
| $\# 4$ | 850 to 1450 Kc |  |
| $\# 5$ | 950 to 1610 Kc |  |

To set up the mechanism, insert the call letter tabs in their proper frequency order in the call letter drum. The drum is accessible by removing the snap-in button at the top of the push button unit before mounting the unit. One of the positions is for manual tuning. When this position is reached, the manual tuning dial will become illuminated and the receiver can be tuned manually.

Stations are set up by removing the front grille of the receiver, exposing the station tuning screws. The adjusting screws are labeled. The Osc. screw must be adjusted first; then the ANT. screw. Then repeat the two adjustments.

TO SFNCHRONIZE THE MECHANISM, PUSH THE TUNING BUTTON UNTIL THE MANUAL TUNING DIAL BECOMES ILLUMINATED. REMOVE THE PUSH BUTTON CABLE FROM ITS SOCKFTT IN THE SIDE OF THE RECEIVER CASE AND THEN PUSH THE BUTTON UNTIL THE "DIAL" TAB COMES INTO VIEW. THBN REINSERT THE CABLE PLUG.

Under certain conditions the mechanism may fall out of synchronism if the button is not pushed all the way in and completely released when operating it. The user should be instructed accordingly.

| ALIGNMFNT PROCEDURR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Output Meter | Connection..................................Across Loud Speaker Voice Coil |  |  |  |  |
| Output Keter Reading to Indicate Standard Output of 1.0 Watt..................1.78 Volt | Reading to Indicate Standard Output of 1.0 Watt...................1.78 Volt |  |  |  |  |
| Connection of Signal Generator Ground Lead................................ Receiver Chassis | Plignal Generator Ground Lead.................................Receiver Chassis |  |  |  |  |
| Connection of Signal Generator Output Lead................................ See Chart Below | Signal Generator Output Lead.................................see Chart Below |  |  |  |  |
| Dummy Antenna Value to be in Series with Generator Output............... See Chart Below | Value to be in Series with Generator Output...............see Chart Below |  |  |  |  |
| Position of Volume Control............................................................Fully on | Volume Control..............................................................Fiblly on |  |  |  |  |
| Position of Tone Control...................................................................Treble |  |  |  |  |  |
|  |  |  |  | TRIMMAR |  |
| POSITION OF | GENERATOR | DUMAY | GENERATOR | ADJUSTMENTS | TRIMMER |
| TUNER | FREQUENCY | ANTHNNA | CONNECTION | IN ORDER SHOWN | FUNCTION |
| Closed | 455 KC | 0.1 ked. | Translator Grid | T2, T1 | I.F. |
| Closed | 455 KC | 0.1 Mfd. | R. F. Grid | Cl2 | I.F. Trap |
| 1610 KC | 1610 KC | . 00005 Mfd . | Ant. Connection | Cl6, C4, Cl | Osc., R.F., |
| 1610 KC | 2520 RC | . 00005 Mfd. | Antenna | C13 | Image Trap |
| 1410 EC | 1410 KC | . 00005 MPd. | Antenna | L8, L2, 11 | Osc.,R.F., |
|  |  |  |  |  | Ant. |
| 600 KC | 600 KC | . 00005 Mf . | Antenna | L7 | Osc. Padder |

## IMPORTANT ALIGNMENT NOTES

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

The Alignment Procedure should be repeated in the original order, step by step to insure greater accuracy.


LOCATION OF PARTS - BOTTOM COVER REMOVED


PARTS UNDER POWER
SUPPLY

## Power Supply:

All models available
Frequency Range:
Standard Broadcast........ 540-1600 EC

LOCATION OF PARTS - TOP COVER REMOVED SPECIFICATIONS

PAGE 19-22 SEARS
MODEL 6290,
CHASSIS 101.667-1B



## LOCATION OF PARTS - BOTTOM COVER REMOVED



LOCATION OF PARTS UNDER POWER SUPPLY


LOCATION OF PARTS - TOP COVER REMOVED

## MATCHING THE ANTENNA:

Before proceeding with this adjustment the receiver should be left on for about 15 minutes to warm up.

An adjusting screw, accessible with a screw driver through the hole in the bottom cover of the case, is provided to match the receiver to the car antenna. With the receiver adjusted for "DIAL"' tuning, use the Station Selector knob to tune in a very weak station at about 1400 kilocycles, with the volume control fully on. Then turn the adjusting screw to the point affecting maximum volume.

## ALIGNMENT PROCEDURE

## PRELIMINARY

Output Meter Connection . . . . . . . . . . . . . . . . . . . . . .Across Loud Speaker Voice Coil
Output Meter Reading to Indicate Standard Output of 1.0 Watt . . . . . . . . . . . . . .1.78 Volt
Connection of Signal Generator Ground Lead. . . . . . . . . . . . . . . . . . . Receiver Chassis

Connection of Signal Generator Output Lead . . . . . . . . . . . . . . . . . . . See Chart Below
Dummy Antenna Value to be in Series with Generator Output . . . . . . . . . See Chart Below
Position of Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fully On
Position of Tone Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treble

| POSITION OF TUNER | GENERATOR FREQUENCY | DUMMY ANTENNA | GENERATOR CONNECTION | TRIMMER ADJUSTMENTS IN ORDER SHOWN | TRIMMER FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Closed | 455 KC | 0.1 Mfd . | Translator Grid | T2, T1 | I.F. |
| Closed | 455 KC | 0.1 Mfd. | R. F. Grid | C12 | I.F. Trap |
| 1610 KC | 1610 KC | . 00005 Mfd. | Antenna | C16, C4, C1 | $\begin{aligned} & \text { Osc.,R.F., } \\ & \text { Ant. } \end{aligned}$ |
| 1610 KC | 2520 KC | . 00005 Mfd. | Antenna | C13* | Image Trap |
| 1410 KC | 1410 KC | . 00005 Mfd. | Antenna | L8, L2, L1 | $\begin{gathered} \text { Osc.,R.F., } \\ \text { Ant. } \end{gathered}$ |
| 600 KC | 600 KC | . 00005 Mfd. | Antenna | L7 | Osc. Padder |

## IMPORTANT ALIGNMENT NOTES

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.

The alignment procedure should be repeated in the original order, step by step to insure greater accuracy.

* The signal generator should be adjusted for high output and the trimmer should be adjusted for minimum response.


## THE PUSH BUTTON TUNING MECHANISM:

Preselection of push button tuned stations is accomplished by settings of the iron cores in the oscillator coils and settings of the trimmer condensers across the antenna coil. The proper coils are selected by a switch which is rotated one step at a time by means of a solenoid, controlled by the tuning push button. Pushing the button also mechanically rotates the station call letter drum.

Each button can be set to a station within a certain frequency range as follows:

| STATION |
| :---: |
| $\# 1$ |
| $\# 2$ |
| $\# 3$ |
| $\# 4$ |
| $\# 5$ |

> | FREQUENCY RANGE |
| :--- |
| 535 to 920 Kc |
| 630 to 1070 Kc |
| 690 to 1170 Kc |
| 850 to 1450 Kc |
| 950 to 1610 Kc |

To set up the mechanism, insert the call letter tabs in their proper frequency order in the call letter drum. The drum is accessible by removing the snap-in button at the top of the push button unit before mounting the unit. One of the positions is for manual tuning. When this position is reached, the manual tuning dial will become illuminated and the receiver can be tuned manually.

Stations are set up by removing the front grille of the receiver, exposing the station tuning screws. The adjusting screws are labeled. The Osc. screw must be adjusted first; then the ANT. screw. Then repeat the two adjustments.

TO SYNCHRONIZE THE MECHANISM, PUSH THE TUNING BUTTON UNTIL THE MANUAL TUNING DIAL BECOMES ILLUMINATED. REMOVE THE PUSH BUTTON CABLE FROM ITS SOCKET IN THE SIDE OF THE RECEIVER CASE AND THEN PUSH THE BUTTON UNTIL THE "DIAL" TAB COMES INTO VIEW. THEN REINSERT THE CABLE PLUG.

Under certain conditions the mechanism may fall out of synchronism if the button is not pushed all the way in and completely released when operating it. The user should be instructed accordingly.


PAGE 19-26 SEARS
MODEL 8010,
SEARS, ROEBUCK \& CO.
CHASSIS 132.840



PAGE 19-28 SEARS
MODEL 8010,
CHASSIS 132.840


ALIGNMENT PROCEDURI

## PRELIM INARY:

Output meter connection .................................................Across Speaiker Voice Coil
Output meter reading to indicate 200 MW (Standard output)....................... . 8 Volt
Generator modulation ........................................................... . 30 \% 400 Cycles

Dial pointer position with variable condenser closed ................ Last Mark on Dial

| $\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { VARIABLE } \end{aligned}$ | GENERATOR FREQUENCY | DUMMY <br> ANTENNA | GENERATOR CONNECTION (HIGII SIDE) | GENERATOR CONNECTION GND. IEAD | ADJUST TRIMMERS ORDER SHOWN | TRIMMER <br> FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Open | 455 KC | . 05 Mfd . | Mixer Grid | Fitg. Gnd. | T2-T1 | IF |
| 1400 KC | 1400 KC | 50 Mmf . | *Ant. Lead | Fltg. And. | C2B | Oscillator |
| 1400 KC | 1400 KC | BO Mmf. | *Ant. Lead | Fltg. Gnd. | C2A | Antenna |
| 600 KC | 600 KC | 50 Mmf 。 | *Ant. Lead | Fltg. Gnd. | Check Point | Antenna |

* Connect generator lead to green wire on loop antenna or a test loop may be used on the generator placed a short distance from the set loop.
**Check sensitivity at 600 . KC. If low, adjust antenna section plates of variable for maximum output at 600 KC .
The alignment procedure should be ropeated in the original order for greatest accuracy. Always koep the output from the signal generator at its lowest possible value to make the $A . V . C$. action of the receiver ineffective.

| Schomatio Location | Part | Description | parts list |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | и. т. code | Schematie Location | $\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$ | Description |
| L1 | N21297 | Antorna Loop Assombiy ${ }_{\text {cim }}$ Aasy |  |  | ${ }_{\text {N19 }}{ }_{\text {N121274 }}$ | Cord, Dial Drive Insulator, Chassis |
| See note below | N21092 | Cabinot, Less Front Trim Aasy. | ${ }_{10}$ |  | ${ }_{\text {N21204-2 }}$ | Knob, Control, volume or Tuning |
|  | ${ }_{\text {N21262 }}$ |  |  |  |  | Lamp, Dial, Mazda Mo. 47 |
|  | N21265 | clock, less knobs, cord \& metal hsrg. | B5 |  | N21278 | Learlet, Instruction |
|  | N21693 | Knob, clook, Off-Ön-Auto |  |  |  | Peinter, Dial 330,000 ohme, 1/4 w |
|  | N21694 | Knob, Clock, Alarm Set |  | ${ }_{\text {R2 }}$ |  | Resistor, 10 megohms, $1 / 4$ W |
|  | N21695 | ${ }_{\text {Knob, }}^{\text {Coil; }}$ Oliock ${ }^{\text {ascillator }}$ |  | R3 |  | Resistor, 22,000 ohms , 1/4* |
|  |  | Condenser, $005 \mathrm{mfa}, 400 \mathrm{~V}$ |  | $\mathrm{R}_{4}$ |  | Resistor, 330 Ohms, $1 / 4{ }^{\text {m }}$ |
|  | N21305 | Condenser, Variable | 180 |  |  |  |
|  |  |  |  | R R |  |  |
| ${ }_{65}$ |  | Condenser, 00005 mfd , 500 V , M1Ca |  | ${ }_{\text {R9, }}^{\text {R8, }}$, ${ }^{\text {co }}$ |  | Resis tor, 470,000 ohms, $1 / 4$ \| |
| ${ }_{6}$ |  | Condonser, $05 \mathrm{mfa}, 400 \mathrm{~V}$ |  |  |  | Roalstor, 150 ohmis, $1 / 4 \mathrm{~W}$ |
| ${ }^{c 9}$ |  | Condenser, . $002 \mathrm{mfa}, 400 \mathrm{~V}$ |  |  | N21290 | ${ }_{\text {Scale }}$ Shaft, Tuning with Pulley |
| ${ }_{\text {c8 }}$ |  |  |  |  | ${ }^{\text {N121234 }}$ | Sooket, Antenne Loop |
| C10A, 108 | N21253 | Condenser, Electrolytio, 50 -30 mfd , |  |  | N21296 |  |
| $\mathrm{CRE}_{\text {C12 }}$ |  | 150 V |  |  | N21302 |  |
|  | H21304 |  |  |  | N21424 | Tranaformer, lat I. F. |
|  | N21303 | Cord, Power, Chasas is to Clook (11") |  |  | N21425 | Transformer, 2nd 1 . |
|  | H20138-11 | cord, Power, clock ( 61 ) |  |  | N21247 | transformer, Output |


LOCATION OF PARTS UNDER CHASSIS TRDMMER
UUNCTION
I.F.
Osc.
Ant.


| POBITION |
| :---: |
| OF |
| TUNER |
| Closed |
| Fully Open |

NOTE: It is recommendod that an isolation transformer be connect
NOTE: It is recommended that an isolation transformer be connected between the radio chassis
and the line before aligning receiver on A.C.
The 1410 Kc . calibration point is a light brow
the lower edge $\alpha$ the dial background.
The Allgnment must be done in the order given.
ast accuracy.
Always koep the output from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.


## PRELIMINARY:

## ALIGNMENT PROCEDURE

| Output meter reading to indicate 0.05 Wati across voice coil . . . . . . . . . . . . . . . . . 0.4 Volt Generator ground lead connection . . . . . . . . . . . . . . . . I.F. alignment - negative "B" lead |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Generator modulation |  |  |  |  |  |
|  |  |  |  |  |  |
| Position of volume control |  |  |  |  |  |
| Position of tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treble |  |  |  |  |  |
| Position of pointer with tuner fully closed. . . . . . Last line to the left of 540 kc . calibration mark |  |  |  |  |  |
| POSITION CUNTRATOR DUM |  |  |  | TRIMMER |  |
|  |  |  | GEHERATOR | ADJUSTMENTS | TRIMMER |
| TUNER | FREQUENCY | ANTENNA | CONNECTION | (IN ORDER SHOWN) | FUNCTIO |
| losed | 455 Kc. | 0.1 mfd. | Transl. -Grid | T2 \& T1 | I.F. |
| 1600 Kc . | 1600 Kc . | 50 mmid . | Hazeltine Loop | C4 | Ose |
| 1400 Kc . | 1400 Kc . | 50 mmfd. | Hazeltine Loop | C2 | Ant. |

## IMPORTANT ALIGNMENT NOTES:

NOTE: It is recommended that an isolation transformer be connected between the radio chassis and the line before aligning receiver on A.C.

The alignment must be done in the order given.
The entire alignment procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.











$$
\begin{gathered}
\text { TRIMMGR } \\
\text { ADJUSTMMNTS } \\
\text { (IN ORDER SHOWN) }
\end{gathered}
$$









,















© John F. Rider

PAGE 19-36 SEARS
MODET 8103,
SEARS, ROEBUCK \& CO. CHASSIS 110.473


LOCATIONS OF PARTS UNDER CHASSIS


DIAL STRINGING DIAGRAM

## ALI GNMENT PROCEDURE

Output Meter Connection........................................Across Loud Speaker Voice Coil Output Meter Reading to Indicate 500 Mililiwatts.......e..........................l. 25 Volts Dummy Antenna Value to be in Series with Generator Output..............See Chart Below Connection of Generator Output Lead.............................................. See Chart Below Connection of Generator Ground Lead................................I.F. Alignment B - Bus Generator Modulation.......................................................... $30 \%$ at 400 cycles
 Position of Tone Control................................................Counter Clockwise (HI) Position of Dial Pointer with Variable Fully Closed. On Mark Below 540 KC Calibration Position of Master Control Switch.................................................... "Play Radio"

| POSITION OF | GENERATOR | DUMMY | GENERATOR | ADJUSTMENTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VABIABLE | FREQUENCY | ANTENNA | CONNECTION | (IN ORDER SHOWN) | FUNCTION |
| Closed | 455 | 0.1 Mfd . | Grid 7Q7 | TR3 TR4 TR5 TR6 | I.F. |
| 1500 KC | 1500 KC | \% | ***See Below | TR2 | Osc. |
| 1500 KC | 1500 KC | \% | \#\#*See Below | TRI | Trans. |
| 600 KC | 600 KC | \% | \% \% See Below | (Check-Point) | k Point |

\# R Run a wire from the output terminal of generator near the receiver. No connection is made between the signal generator and the receiver.

## IMPORTANT ALIGNMENT NOTES

The alignment procedure should be repeated stage by stage, in the original order for greatest accuracy. Always keep the output from the test oscillator at its lowest possible value to make the AVC action of the Receiver ineffective.

Power Output Undistorted....2.25 Watts Maximum....6 Watts


| $\begin{aligned} & \text { SGHEMATIC } \\ & \text { LOCATION } \end{aligned}$ | $\begin{gathered} \text { PART } \\ \text { NUMEER } \end{gathered}$ | DESSRIPTIOM |
| :---: | :---: | :---: |
| R27 |  | Resiator - 15,000 ohms 2 |
| R29 |  | Resistor - 150,000 ohms 1/4 \%att |
| -231 |  | Nosistor - 18 ohms, 2 Watt |
|  |  | resistor - ${ }^{\text {150,000 ohns } 1 / 4 \text { Wat }}$ |
|  | A18144 | Socket, Dial Li |
|  | A54374 | Socket, (for cable from recorder switch) |
|  | A 8101 | Socket, Microphone |
|  | A18104 | Socket, Phono |
|  | A58103 | Speaker - $10^{\prime \prime}$ (P.M.) |
|  | A54335 | Spring - dial cord |
|  | A3791 | Switch - Wafer - 6 Position |
| T3 | A3371 | Transformer - lat I.F. |
| T4 | A3535 | Transformer - 2nd I F . |
| \%5 | A1339 | Transformer - qutput |
| ${ }^{T 6}$ | A:8176 | Transformer - Rlas Oscillator |
| т8 | A1091 | Transformer - power |


| SCHELATIS LOGATI ON | $\begin{gathered} \text { PART } \\ \text { NUMSER } \end{gathered}$ | DESCRIPTITOM |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{R} 26 \\ & \mathrm{RB} \end{aligned}$ | 12486 | Control - Tone, with switch |
|  | A2485 | Control - Volume |
|  | A54373 | Cord - Dial Drive (par yard) |
|  | A5592 | Cord - Line 8 reet long |
|  | ${ }^{1} 40131$ | Disl ${ }^{\text {dsautcheon (Dlal crystal) }}$ |
|  | A34972 | Knob - - ${ }_{\text {anter }}$ |
|  | A39171 | Knob - Tone, orf -On |
|  | A39169 | Knob - Tuning |
|  | A39170 | Knoo - Volume-Control |
|  | A4026 | Lamp - Noon Light ass.y <br> Lamp - P1lot L1 int \#47 |
|  | A59398 | Leaflet - Instruction |
|  | A54372 | Lens - Neon Lifht |
| T1 | A28205 | Loop Antenna iss'y |
|  | A6510 | Microptione - Cord, Pluz \& Stand |
|  | A4146 | Pointer - Diul |
| $r 1$ |  | iesistor - 2.4 oins $1 / 2$ \%utt |
| R2 |  | desistor - l.c oins $1 / 2$ i.att |


| schematic <br> LOCATI ON | $\begin{gathered} \text { PARTR } \\ \text { NUKBER } \end{gathered}$ | DESCRIP PTI ON |
| :---: | :---: | :---: |
|  | 45594 | Cable - Reoorder Hoed |
| Cl | A1695 | Capacitor - Variable |
| c3 C4 C16 c18 |  | Capacitor - 05 mrd 200 V |
| $\mathrm{CS}^{\text {c }}$ C16 ${ }^{\text {cra }}$ |  | Capacitor - 050 mrd 400 V |
| C7 Cls |  | Capeoltor - . 002 afd 400 v or Ceramio |
| ${ }_{68} \mathrm{C24} \mathrm{C25}$ |  | Capacitor - .001 mrd 400 V |
|  |  | Capacitor - . 01 mrd 400 V |
| C11 C12 C13 Cl4 | A20 | Capaitor - Electrolytic 25 m rd 20 40 rfd 300 V 20 frd 300 V |
| ${ }^{\text {c15 }}$ |  | Capacitor - . 2 urd 200 |
| C17 |  | Capacitor - . 02 ard 400 |
| 9 |  | Capacitor - . 05 mrd 011 (metal oaee) $400 \mathrm{v}$ |
| C21 |  | Capacitor - . 015 mrd |
| C22 |  | Capacitor - . 2 urd 400 V |
| c23 |  | Capacitor - 220 mefd mios or coramio |
| C26 |  | Capacitor - . 005 mfd 400 V |
| ${ }_{7} \mathbf{7}$ |  | Capacitor - Electrolytio 10 mrd 400 |
| T7 T2 | ${ }^{2} 838688$ | Choike - Pllter. |
|  | A28184 | Coll - Oscillutor b.c. |

PAGE 19-38 SEARS
MODELS 8105, 8105A,
8106, 8106A, CHASSIS
101.833, 101.833-1A



PAGE 19-40 SEARS
MODELS 8105, 8105A, SEARS, ROEBUCK \& CO.
8106, 8106A, CHASSIS
101.833, 101.833-1A


LOCATION OF PARTS UNDER CHASSIS



NOTE 1: The $1400 \mathrm{Kc}$. \& 14 Mc . calibration point is the second light brown mark from the right-hand end on the upper edge of the dial background.

NOTE 2: The 600 ZC. calibration point is the third light brown mark from the lefthand edge of the dial background.

The Alignment must be done in the order given.
The entire Alignment Procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output from the generator at its lowest possible value to prevent the AVC receiver from interfering with accurate alignment.

During alignment of the "BC" Band Padder and the "SW" Band RoF. and Antenna Trimmers, the tuner should be rocked through resonance to assure alignment.


## PROLIMINTARY:

## ALIGNMBNT PROCHDURE

Output meter reading to indicate 0.05 watt across voice coil..................... 0.4 volt Generator ground lead connection............................... alignment-negative "B iead .............................Ant. alignment-receiver chassis
Generator modulation. ..................................................................30\%, 400 eycles

Position of tone control......................................................................................
Position of pointer with tuner fully closed.. Last line to left of 540 calibration mark in the dial scale.


## IIPPORTANT ALIGNMENT NOTES.

NOTE: Before alignment of receiver, remove the dial background. The tuner should be positioned at the frequency noted under "GENTRRATOR FREQUENCY" on the above chart. These frequencies are noted on the dial background mounting plate. "START," shall be considered the position of the tuner fully closed and "FINISH," the position of the tuner at 1725 KC .

During the alignment of the antenna and translator trimmers on the shortwave spreadbands the tuner should be rocked through resonance to assure alignment.

The alignment must be done in the order given.
The entire alignment procedure should be repeated step by step in the original order for greatest accuracy.

Always keep the output power from the generator at its lowest possible value to prevent the AVC action of the receiver from interfering with accurate alignment.

Before attempting shortwave alignment, the L5 core should be adjusted to a dimension of approximately $1-21 / 32^{\prime \prime}$ from the top of core to the top turn of the winding. This should be done with the tuner in the 1725 Kc . position.


PAGE 19-44 SEARS

## SEARS, ROEBUCK \& CO.



SCHEMATIC
LOCATION

| LOCATION | NuMBER |
| :---: | :---: |
|  | R57045 |
|  | R62558 |
|  | R57021 |
|  | R61846 |
| C23,046 |  |
| C44 |  |
| $\begin{aligned} & \mathrm{CB}, \mathrm{C} 10, \mathrm{C14}, \mathrm{C} 21, \\ & \mathrm{C} 2, \mathrm{C} 24, \mathrm{C} 35, \mathrm{C} 47 \end{aligned}$ |  |
|  |  |
| C36,C45 |  |
| C.1, ${ }^{\text {c/3 }}$ |  |
| ${ }_{\text {C32 }}{ }^{\text {c }}$, 37 |  |
|  |  |
| C20 |  |
| C6, $12, \mathrm{Cl15}$ |  |
|  |  |
|  |  |
| $\begin{aligned} & \mathrm{C} 38 \\ & \mathrm{C} 11 \end{aligned}$ |  |
| ${ }^{\text {c }}$ |  |
|  |  |
| C28 | R57080 |
| C7, ${ }^{19} 9$ | R57081 |
| C13, 17 , ${ }^{\text {cl }} 8$ | R57020 |
| C2, ${ }^{\text {c }}$, C5, 27 | R57082 |
| C33 |  |
| C40 | R61840 |
| C42 ${ }^{\text {a }}$ |  |
|  |  |
| L3 | R45074 |
| L6 | R45077 |
| L1 | R45255 |
| L9 | R57078 |
| R19 | R62577 |
|  | R17166 |
|  | R40241 |
|  | R62586 |
|  | R62559 |
|  | R62540 |
|  | R62541 |
|  | R62542 |
|  | R62543 |
|  | R20963 |
|  | R64090 |
|  | R40457 |
|  | R62557 |
|  | R18245 |
|  | R43416 |
|  | R61807 |



R63130
R63131
R 61819


PAGE 19-46 SEARS
MODELS 8270, 8270A, SEARS, ROEBUCK \& CO. CHASSIS 101.822 ,
101.822A

Power supply: SPECIFICATIONS
All Models available............................................. 117 Volts DC, 25-60 Cycle AC, 20 Watts or Catalog No. 6404 Battery Pack

Power Outurt:
Undistorted............................ . 25 Watts
Mardmum.

Frequency Range:
Broadcast.
540-1600 KC


LOCATION OF PARTS UNDER CHASSIS



| SEARS, ROEBUCK \& CO. |  |  |  | $\begin{aligned} & \text { MODELS } \\ & \text { CHASSIS } \\ & 101.8221 \end{aligned}$ | $\begin{aligned} & 0,82701 \\ & 1.822, \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output meter reading to indicate 0.05 Watt across voice coil....................................... 0.4 Volt Generator ground lead connection......................................... To B- through 0.1 mfd. capacitor Generator modulation ................................................................................. 30\%, 400 cycles |  |  |  |  |  |
| Position of volume controì ........................................................................................... Fully on Position of pointer with tuner fully closed ............................... The second line to the left of the 540 Kc . calibration mark. |  |  |  |  |  |
| $\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \text { TUNER } \\ & \hline \end{aligned}$ | GENERATOR FREQUENCY | $\begin{gathered} \text { DUMMY } \\ \text { ANTENNA } \\ \hline \end{gathered}$ | GENERATOR CONNECTION | ADJUSTMENTS <br> (IN ORDER <br> SHOWN) | FUNCTION |
| Closed | 455 Kc . | 0.1 mfd. | Trans-Grid | T2 \& T1 | I.F. |
| 1400 Kc. | 1400 Kc. | 50 mmfd . | Hazeltine Loop | C14 | Oscillator |
| 1400 Kc . | 1400 Kc . | 50 mmfd . | Hazeltine Loop | C12 | R.F. |
| 1400 Kc . | 1400 Kc. | 50 mmfd. | Hazeltine Loop | * C3 | Antenna |

## IMPORTANT ALIGNMENT NOTES:

NOTE: It is recommended that an isolation transformer be connected between the radio chassis and the line before aligning the receiver on AC.

The alignment must be done in the order given.
Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.
*Located on Loop and Case End Assembly


PARTS LIST


PAGE 19-48 SEARS




SEARS PAGE 19-51


## SPECIFICATIONS

## Power Supply

 All models available . . . . . . . . . . . 117 Volt, 50-60 Cycles AC or DC, 15 WattsFrequency Range Broadcast 540-1600 KC

## Power Output

Undistorted
. 05 Watt

Maximum 0.1 Watt

PRELIMINARY:
ALIGNMENT PROCEDURE
Output meter reading to indicate 0.05 Watt across voice coil.
Generator ground lead connection $\qquad$ .To B-through 0.1 mfd. capacitor (I.F. Alignment)

Generator modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30\%, 400 cycles
Position of volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fully on
Position of pointer with tuner fully closed . . . . . . . . . . Below the 540 kc. calibration mark

POSITION
OF
TUNER
Closed

* 1400 Kc .
* 1400 Kc .

GENERATOR
FREQUENCY
455 Kc.
1400 Kc .
1400 Kc.


ANTENNA CONNECTION
0.1 mfd. Transl.-Grid 200 mmfd. Hazeltine Loop 200 mmfd. Hazeltine Loop

ADJUSTMENTS (IN ORDER SHOWN) FUNCTION T2 \& T1 I.F. Oscillator Antenna

## IMPORTANT ALIGNMENT NOTES:

NOTE: It is recommended that an isolation transformer be connected between the radio chassis and the line before aligning the receiver on A.C.

The alignment must be done in the order given.
Always keep the output power from the generator at its lowest possible value to prevent the AVC of the receiver from interfering with accurate alignment.
*Always make these trimmer adjustments with the loop in approximately the same position, with respect to the chassis, as it is when the chassis and loop are mounted in the case.


LOCATION OF PARTS ON TOP OF CHASSIS


## CLARI-SKEMATIX



紫荷


GS8GT
DET. A.V.G.-A.F



## CLARI-SKEMATIX


FM ALIGNMENT

CAUTION: Care should be taken to align the I. F. stages at the EXACT same center frequency as the Discriminator Coil. Switching somewhat.
(2) PROCEDURE FOR ALIGNMENT OF "FM" I. F. TRANS-
(A) Connect the Voltmeter from the junction of the two 1 (B) Connect Signal Generator to Input Grid (Pin No. 1) of
(C) Set Signal Generator to EXACTLY 10.7 M. C.--if possible, mark the position where this occurs right on the ence point in checking for proper FM I. F. alignment.
(D) Adjust each of the 1st, 2nd and 3rd FM I. F. Transformmeter. KEEP OUTPUT OF SIGNAL GENERATOR SO

THAT A READING OF APPROXIMATELY 2 to 4
 justments have been correctly completed, MAKE A NOTE
OF THE READING ON THE VOLTMETER.
(F) Next, detune the signal generator to a slightly HIGHER frequency (higher than the 10.7 reference frequency), until the voltmeter reads ONE-HALF of the figure noted TOR FREQUENCY AT WHICH THIS OCCURS.
(G) Now, detune the signal generator to a LOWER frequency (lower than the 10.7 reference frequency), until the votin (E), and AGAAN NOTE THE GENERATOR FREQUENCY AT WHICH THIS OCCURS.

The difference between the two above frequencies obtained in ( $F$ )
 These two frequencies (F) and (G), should be somewhat uniformly spaced on either side of the 10.7 M . C. (C) reference frequency. A
SLIGHT DIFFERENCE IS NOT SERIOUS. Only when one is more

 peak, or extremely one-sided "half-amplitude" band width, is usually (3) by regeneration or a defective FM I. F. Transformer. (A) Voltmeter connected as it was for FM I. F. Align(A) Leave $\begin{aligned} & \text { ment. }\end{aligned}$
(B) Connect the hot Signal Generator lead through a 300, "on back of chassis, and the other lead to the post marked


Instructions for Alignment of the Frequency Modulation I. F. Transformers, Discriminator, Oscilator, R. F. and Antenna

The equipment necessary for this procedure consists of the following: D.C. Vacuum Tube Voltmeter of the Volt-Ohmyst Type. An AM A 10.7 M.C. Signal for I F. alignment. A 105 M.C. and 109 M.C. Signal-a Signal Generator that only goes up to $30 \mathrm{M} . \mathrm{C}$. but which has sufficient fourth harmonics
present in the carrier could be used for this purpose.

THE GENERATOR USED NEED NOT BE FREQUENCY MODU-
LATED. FORMERSWAYS BEFORE MAKING ANY OF THE "FM" I. F. ADJUSTId. PLETING "FM" I. F. ADJUSTMENTS.
BE SURE TO MAKE THE "FM" ADJU
(1) PROCEDURE FOR ALIGNMENT OF FM DISCRIMINATOR
(A) Connect the Voltmeter from Pin No. 5 of the 6S8GT tube
 Signal Generator lead, connect generator from Pin No. 1
of the 6AU6 Limiter tube to chassis.
Set
(D) Adjust 10.7 M. C. Discriminator Primary Trimmer for
(E) Leave Signal Generator set at $10.7 \mathrm{M} . \mathrm{C}$. and modulate
(F) Adjust 10.7 M . C. Secondary Discriminator Trimmer for IMPORTANT: The reading on the Voltmeter should be ZERO. MINIMUM AUDIO RESPONSE
(G) To check adjustment, swing Signal Generator to one side Voltmeter and NOTE FREQUENCY and VOLTAGE
 tained on Voltmeter and AGAIN NOTE VOLTAGE AND ings should be similar within 3 DB . and the two Signal Frequency readings should be a reasonably equal distance ter frequency and one side should not exceed the difference between the center frequency and the other side by more than $50 \mathrm{~K} . \mathrm{C}$.
If reliable FM

ocedure the proper
used.



PAGE 19-8 SENTINEL



ALIGNMENT PROCEDURE
For alignment procedure read tabulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third. CABINET. BE SURE THAT IT DOES NOT MOVE WHILE ALIGNING. ALIGNING, PLACE LOOP ANTENNA IN THE SAME POSITION IT WILL BE IN WHEN THE SET IS IN THE
When adjusting 1650 kilocycle oscillator trimmer, 455 K.C. R.F. trimmer and 1400 kilocycle antenna trimmer, connect test oscillator to loop external antenna and ground connections with a . 0002 Mf . capacitor in series with antenna lead.

| \% | Set receiver dial to: | test oscillator |  |  | Refor to parts layout diagram for location of trimmers mentioned below: |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Adjust test oselltator frequency to: | Use dummy antenna in series with output of test oscillator consisting of: | Attach output of test oscillator to: |  |
|  | Any point where no interfering signal is received | $\begin{aligned} & \text { Exactly } \\ & 455 \mathrm{~K} . \mathrm{c} . \end{aligned}$ | 0.2 Mfd . Condenser | High side to grid of 12SA7 tube. Low side to chassis. ('o Common Negative in 1U-313 Models.) | Adjust each of the 2nd I.F. transformer trimmer adjustment screws for maximum output, then adjust each of the 1st I.F. transformer trimmer adjustment screws for maximum output. |
| 1 | Rotate gang condenser to maximum capacity | $\begin{aligned} & \text { Fxactly } \\ & 455 \mathrm{~K} . \mathrm{c} . \end{aligned}$ | .0002 MPd . Condenser | To $\begin{array}{c}\text { loop external antenna and } \\ \text { ground connections }\end{array}$ | Adjust R. F. coil trimmer for minimum 455 K. C. signal. |
| 2 | Rotate gang condenser to mininuin capacity | $\begin{aligned} & \text { Exactly } \\ & 1650 \mathrm{~K} . \mathrm{c} . \end{aligned}$ | .0002 Mfd . Condenser | To loop external antenna and ground connections | Adiust 1650 K . C. oscillator trimmer for maximum output. |
| 3 | $\begin{aligned} & \text { Approximately } \\ & 1400 \mathrm{~K} . \mathrm{C} . \end{aligned}$ | Approx. $1400 \mathrm{~K} . \mathrm{C}$. | .0002 MPd. Condenser | To loop external antenna and ground connections | Adjust 1400 K. C. antenna trimmer for maximum output. |




```
MODELS 314E, 314I, SENTINEL RADIO CORP.
3I4W, IU-3I4E,
IU-3I4I, IU-314W
```




PARTS LIST


Part Name
Condenser
$\stackrel{\circ}{2}$试 III．
No．
11
12
13
14
14
17
18
19
22 Resistor

10045150y
 Resistor Resistor dexpods登 흘商 ※ 士～～～～～～～～～









## 

 22E2 Transformer$$
\begin{aligned}
& \text { Part No. Part Name } \\
& \text { 7E31-1 Cabinet }
\end{aligned}
$$

4IEI Cord
20E323 Cabinet Back

$$
20 E 318 \text { Dial Plate Assem. }
$$

$$
\begin{aligned}
\text { 20E253-17 Dial Cord } \\
\text { O57 }
\end{aligned}
$$

$$
\begin{array}{r}
\text { Desscription } \\
\text { Walnut Plastic. }
\end{array}
$$

$$
\begin{aligned}
& \text { Walnut Plastic } \\
& \text { Ivory Plastic .. }
\end{aligned}
$$

Black Plastic.
With Antenna Loop........
With Antenna Loop........

$$
6 \text { ff. Rubber Line Cord... }
$$

Dial Back Plate Assembly.

$$
30 \text { " of } 18 \mathrm{lb} \text {. Drive Cord. }
$$

Acetate Crystal

MISCELLANEOUS PARTS
 VOLTAGE RATING

110－120 volts $50-60$ CYCLES ALTERNATING CURRENT（AC）
40EI Pilot Lamp

THIS RADIO IS DESIGNED FOR USE ON EITHER：
（OG）LNGช\％กO LOHqIC SLTOA 0zT－0II
ب

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { Deseription } \\
\text { Calibrated Scale }
\end{array} \\
\text { Scher }
\end{array} \\
& \text { Drive Shaft Assembly } \\
& \text { Dial Indicator } \\
& \text { Tension Spring for Drive Cord...... } \\
& \text { For Walnut Cabinet..................... } \\
& \text { For Walnut Cabine } \\
& \text { For Ivory Cabinet. } \\
& \text { For Black Cabinet. } \\
& \text { Pilot Lamp Socket Assembly......... } \\
& \text { Calibrated Scale .......................... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For Werring for Dive Cord... } \\
& \text { For Ivory Cabinet......................... } \\
& \text {, }
\end{aligned}
$$


ALIGNMENT PROCEDURE
Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For IF RADIO HAS METAL PLATE ON BUTTUM OF CHASSIS BE SURE TO HAVE PLATE MOUNTED ON CHASSIS WHEN ALIGNING Before starting alignment:
(A) Check tuning dial adjustment by tuning gang condenser until olates touch maximum capacity stop (completely in mesh) at which point the . If dial indicator does not point exactly to the outside
Use an accurately calibrated test oscillator with some type of output measuring device.
WHEN ADJUSTING THE 1730 KC OSCILLATOR TRIMMER, remove chassis from
(B)
(C) WHE ADJUTING THE 1730 KC OSCILLATOR TRIMMER, remove chassis from cabinet and disconnect the loop connection wires

(D) five to ten turns of No. 20 to No. 30 size wire, wound on a $2^{\prime \prime}$ or $3^{\prime \prime}$ form; ( 2 ) connect this loop across output of test oscillator; (3) place test oscillator loop near radio loop. BE'SURE THAT NEITHER LOOP MOVES WHILE ALIGNING. TEST OSCILLATOR

| Stops | Set receiver dial to: | test oscillator |  |  | Refer to parts layout diaaram for location of trimmers mentioned below: |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Adjust test oscillator frequenev to: | Use dummy antenna in series with output of test oscillator consisting of: | Attach output of test oscillator to |  |
| 1 | Any point where no interfering signal is received | $\begin{aligned} & \text { Eractly } \\ & 455 \mathrm{~K} . \mathrm{C} . \end{aligned}$ | $\underset{\text { Condenser }}{0.2 \mathrm{Mfd}}$ | High side to grid of 1R5 tube. Low sido to chassis. | Adjust each of the 2nd I.F. transformer trimmer adjustment screws for maximum output, then adjust each of the 1st I.F. transformer trimmer adjustment screws for maximum output. |
| 2 | $\underset{\substack{\text { Rotate } \\ \text { condenser to } \\ \text { mank } \\ \text { minimum capacty }}}{\text {. }}$ | $\begin{aligned} & \text { Exactly } \\ & 1730 \mathrm{~K} . \mathrm{C.} . \end{aligned}$ | $\underset{\substack{\text { Saee } \\ \text { parazaob } \\ \text { abore }}}{\text { (C) }}$ | $\underset{\substack{\text { Daraxraph } \\ \text { above }}}{\text { S }}$ | Adjust 1730 K. C. osedllator trimmer for maximum output. |
| 3 | $\underbrace{\text { Anproximately }}$ (400 K. C. | ${ }_{\text {1400 }}^{\text {Aborox. }}$. c. | $\underset{\substack{\text { See } \\ \text { pararanah } \\ \text { abore }}}{\text { (D) }}$ | $\underset{\substack{\text { paragranh } \\ \text { above }}}{\text { (D) }}$ | Adjust 1400 K . C. antenna trimmer for maximum output. |


© John F. Rider


## MISCELLANEOUS PARTS

Part No. Part Name
20E343 Cabinet

20 E344 Cabinet,

## 20E344-2 Cabinet, less Back

7E165-4 Cabinet Back

Description

| Complete Cabt. Assembly with Handle, Baffle, Loop and Cabt. Back, Maroon.. | $\begin{aligned} & \text { 17E3-2 } \\ & \text { 20E345 } \end{aligned}$ | Plug <br> Speaker Baffle | Baffle | Assembly with Grille Cloth, Tan... |
| :---: | :---: | :---: | :---: | :---: |
| Complete Cabt. Assembly with Handle, Baffle, Loop and Cabł. Back, Tan. | $\begin{array}{r} 20 E 345-2 \\ 7 E 165-8 \end{array}$ | Speaker Baffle Cabinet Back | Baffle | Assembly with Grille Cloth, Maroor |
| Cabinet Assembly, less Back, but with Handle, Baffle and Loop, Maroon. | E253-19 | Dial Cord |  | Tan |
| Cabinet Assembly, less Back, but with Handle, Baffle and Loop, Tan. | 65E2 | Dial Spring |  | Tension Spring |
| Back for Cabinet with 65E27 Spring Hinge Maroon $\qquad$ |  |  |  | rive Shaft Assembly. |

PAGE 19-18 SENTINEL
MODELS 319PM, SENTINEL RADIO CORP. 319PT

ALIGNMENT PROCEDURE
Be sure to follow procedure carefully and in the order given-otherwise the receiver will be insensitive and the dial calibration incorrect. For alignment procedure, read tabulations from left to right. Make the adjustment marked (1) first, (2) next, (3) third. Before starting alignment:
(A) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial indicator must be exactly even with the outside edge of the first 5 in the 55 calibration number at the low frequency end of the dial scale. If dial indicator does not point exactly to the outside edge, move pointer to correct position.
(B) WHEN 1730 KC OSCILLATOR TRIMMER from the loop. Attach a 1 megohm resistor across these connections and feed output of test oscillator acress the 1 megohm resistor. (D) THE 1400 KC LOOP ANTENNA TRIMMER should be adjusted only after all other adjustments have been made and with the set mounted in the cabinet. When aligning the 1400 KC Antenna Trimmer, couple test oscillator to receiver loop by: (1) make loop consisting of
five to ten turns of No. 20 to No. 30 size wire, wound on a $2^{\prime \prime}$ or $3^{\prime \prime}$ form; (2) connect this loop across output of test oscillator; (3)


|  | Set receiver dial to: | test oscillator |  |  | Refer to parts layout diagram for location of trimmers mentioned below: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Stens |  | Adjust test oscillator freauenev to: | Use dummy antenna in series with output of test oscillator consisting of: | Attach output of test oscillator to |  |
| 1 | Any point where no interfering signal is received | $\begin{aligned} & \text { Wxactly } \\ & 455 \mathrm{~K} . \mathrm{c} \text {. } \end{aligned}$ | 0.2 Mfl . Condenser | High side to grid of 1 RJ tube. <br> Low side to chassis. | Adjust each of the 2nd I.F. transformer trimmer adjustment screws for maximum output, then adjust each of the 1st I.F. transformer trimmer adjustment screws for maximum output. |
| 2 | Rotate cane condenser to minimum capacits | $\begin{aligned} & \text { Exactly } \\ & \text { 17:30 K. ©. } \end{aligned}$ | $\underset{\substack{\text { See } \\ \text { paragraph } \\ \text { alovece }}}{\text { (C) }}$ | $\begin{gathered} \begin{array}{c} \text { See } \\ \text { paragraph } \\ \text { alove } \end{array} \\ \text { al } \end{gathered}$ | Adjust 1730 K. C. oscillatior trimmer for maximum output. |
| 3 | $\begin{aligned} & \text { Anproximately } \\ & 1400 \mathrm{~K} . \mathbf{~ C .} \end{aligned}$ | Approx. 1400 K. C. | $\begin{gathered} \text { See } \\ \text { Marazranh (D) } \\ \text { aloove } \end{gathered}$ | $\begin{gathered} \text { See } \\ \text { Barauranin (D) } \\ \text { above } \end{gathered}$ | Adjust 1400 K . C. antenna trimmer for maximum output. |




SENTINEL PAGE 19-21
SENTINEL RADIO CORP. 330-W, $1 \mathrm{U}-330-\mathrm{I}$, $I U-330-R, 1 U-330-W$

MODELS $330-I, 330-R, \quad$ SENTINEL RADIO CORP.
$330-W, 1 U-330-I$,
$1 U-330-R, 1 U-330-W$

## ALIGNMENT PROCEDURE

For alignment procedure read tabulations from left to right, and make the adjustment marked (1) first, (2) next, (3) third. Be sure to: cabinet and leave the loop attached to the chassis with the two plastic screws. Couple test oscillator. to receiver loop by: (1) make



APPROXIMATE GAIN PER STAGE USING CHANAIYST AND WITH A FIXED BIAS OF - 3 VOLT $S$


PAGE 19-2 SIGNAL
MODEL 241



NOTE: FACTORY ADUUSTMENT OF $600 \Omega$ : WITH MAXIMUM TEMPERATURE SETTING OF DIAL CONTROL IS JUST "OFF" (LEADS RED AND GREEN), WHEN $1317 \Omega$ IS CONNECTED BETWEEN LEADS BLACK AND WHITE.

PAGE 19-2 SIMMONS





Lack of sensitivity and poor tone quality may be due to any one or a combination of causes, such as weak or defective tubes or speaker, open or grounded resistors, or bypass condensers. Never attempt to realign the set until all other possible sources of trouble
have been first thoroughly investigated and definitely proved not to be the cause. It will be necessary to follow the procedure outlined below and to use recommended equipment for satisfactory results.

## BROADCAST ALIGNMENT PROCEDURE

EQUIPMENT REQUIRED: Modulated Test Oscillator that will cover the frequencies of $1455,600,1400$ and 1620 KC , also an Output Meter to connect across the primary or secondary of the output transformer.
I. F. ALIGNMENT: Put switch in the broadcast position and connect the test oscillator to the converter grid through a .05 condenser. The ground lead of the test oscillator should be connected to the buss of the receiver. Adjust the four I. F. trimmers (F. G, L and K) for maximum reading on the output meter. Always use the peak on the slug which is obtained when screw is out of the can the greatest the slug
distance.

## F. M. ALIGNMENT PROCEDURE

EQUIPMENT REQUIRED: F. M. Generator with frequencies of 90 , 98, 106, and 109 megacycles, and generator without any modulation which covers 10.7 megacycles, also a zero center microammeter, and a DC Vacuum Tube Voltmeter (An oscilloscope and variable frequency audio oscillator can be used for better results. This method of alignment is described in the last paragraph).
DISCRIMINATOR ALIGNMENT: Connect DC Vacuum Tube Voltmeter between the buss and point "XX" on circuit diagram. Point "XX" is negative potential on the vacuum tube voltmeter. Isolate point "XX" and buss connections to vacuum tube voltmeter with chokes made by wrapping approximately 20 turns of hookup wire PRELIMINARY I. F. ALIGNMENT: Connect test oscillator to the converter grid through a 250 mmf . mica condenser. Adjust slugs $\mathrm{D}, \mathrm{E}$, $H$ and $I$ to maximum output on the vacuum tube voltmeter. In making these adjustments reduce the generator input to keep the vacuum tube voltmeter at approximately 5 volts when making this adjustment. Always use the peak on the slug which is obtained when the screw is out of the can the greatest distance.

FINAL I. F. ALIGNMENT: Set the test oscillator to 109 MC without frequency modulation and connect it to converter grid. Adjust trimmer " B " for approximate maximum output on the vacuum tube voltmeter and zero center for exact centering. Adjust test oscillator to approximately 25 KC deviation, carefully adjust trimmers $\mathrm{D}, \mathrm{E}$, $\mathrm{H}, \mathrm{J}$ and M for maximum on vacuum tube voltmeter. It may be necessary to shift the frequency of the oscillator slightly to hold the zero center meter on center. In making this adjustment turn up volume control slightly to obtain an audio signal out of the speaker. If this signal is free of distortion, increase the deviation to approximately 75 KC and repeat the above alignment. If this is done carefully there will be no distortion in the speaker with this deviation. If distortion is obtained in the speaker with this deviation, it will be necessary to carefully repeat the I. F. alignment.
R. F. ALIGNMENT: Move the signal generator to the FM antenna terminals, using 150 ohm resistors between the generator terminals
R. F. ALIGNMENT: Connect the test oscillator to the antenna lead on the loop through a 100 mmf . condenser. The Loop and Chassis must occupy the same relative positions on the bench as they do in the cabinet. Care should be taken to have no iron or other metal near the loop. Do not make this set-up on a metal bench. Set the gang condenser to the maximum high frequency position and the test oscillator to 1620 KC. Adjust Trimmer " C " to the maximum output. Set test oscillator to 1400 KC and tune in signal with the gang condenser and adjust Trimmer " $A$ " to maximum response. Set test oscillator to 600 KC and tune-in signal with gang condenser. Check for damage to gang condenser or coils.
around a pencil. This is illustrated in Figure 1. Connect two 100,000 ohm resistors in series. (These resistors must match to $5 \%$.) Connect them from point "XX" to buss. Between junction of 100,000 ohm resistors and the point "YY" connect Zero Center Meter, which is also isolated by the choke described above. These connections are illustrated in Figure 1. Connect test oscillator which is adjusted to 10.7 megacycles to grid of IF Driver through a 250 mmf condenser. Adjust slug " M " to maximum on the vacuum tube voltmeter. Reduce test oscillator to keep vacuum tube voltmeter to around 5 volts. Adjust slug " $N$ " to bring zero center meter to zero point. Slug " $N$ " should never be touched after this alignment.
and each of the FM antonna terminals. Set the test oscillator to 106 megacycles and tune in signal with gang condenser to obtain approximate maximum on the vacuum tube voltmeter and zero center on the meter. Slightly bend the RF section in the gang condenser for maximum output with vacuum tube voltmeter. Set the signal generator to 98 megacycles, tune in signal with the gang condenser. Repeat the above procedure at this frequency and also at 90 megacycles. Recheck alignment at 106 megacycles.

## FINAL ALIGNMENT OF FM IF WITH OSCILLOSCOPE AND

VARIABLE AUDIO OSCILLATOR: The oscilloscope and variable audio oscillator should be connected as shown in Figure 2. Adjust the deviation to approximately 25 KC and align trimmers $\mathrm{D}, \mathrm{E}, \mathrm{H}$, $J$ and $M$ to maximum on the vacuum tube voltmeter while watching the oscilloscope for $\alpha$ straight line. It may be necessary to vary the frequency of the variable audio oscillator in order to make the line straight on the scope. Next increase deviation to approximately 75 KC and repeat procedure, adjusting for maximum or as close to maximum as it is possible to obtain without losing the straight line on the oscilloscope. After all the trimmers have been properly adjusted to a maximum and a straight line on the scope, increase the deviation from approximately 125 to 150 KC . The curves illustrated in Figure 3 should be obtained. In making the above adjustments it may be necessary to make slight variations in the RF


This receiver has a built-in "Loop" aerial for broadcast reception. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial. In or near metal buildings, iron ore deposits or steel structures, or in localities remote from broadcasting stations, reception of the Standard Broadcast Band may require an outside aerial 50 to 100 feet in length including lead-in. Connect the outside aerial to the aerial lead (Blue Wire) located at the rear of the receiver. When using the outside antenna it may be necessary to reverse the power cord plug to eliminate hum or distortion. The built-in FM aerial is a folded dipole Antenna. Although the re-
ceiver performs satisfactorily on the broadcast band, your particular location may require an outiside antenna for FM reception. The external cerial for FM receptior. must be a dipole Antenna with a 300 ohm line, which you may secure from your local Sonora Dealer. The two lead-in leads of the dipole antenna should be attached, one lead under each screw, to the terminal strip located on the cabinet back after romoving the FM antenna furnished with the receiver. For best possible reception with an outside dipole, adjust lead length on the lead-in cable on the weakest station. Cut off lead 6 inches at a time and until signal comes in stronger. If cuiting off an additional length does not increase signal, you have reached the correct lengths. It is not necessary to cut off more than $21 / 2$ feet.

SONORA PAGE 19-5


PAGE 19-6 SONORA

## BROADCAST ALIGNMENT PROCEDURE

ECUIPMENT REQUIRED: Modulated Test Oscillator that will cover the frequencies of $1455,600,1400$ and 1620 KC , also an Output Meter to connect across the primary or secondary of the output transformer.
I. F. ALIGNMENT: Put switch in the broadcast position and connect the test oscillator to the converter grid through a .05 condenser. The ground lead of the test oscillator should be connected to the buss of the receiver. Adjust the four I. F. trimmers (F. G, L and K) for maximum reading on the output meter. Always use the peak on the slug which is obtained when screw is out of the can the greatest distance.
R.F. ALIGNMENT. Connect the test oscillator to the antenna lead on the loop through a 100 mmf . condenser. For the antenna adjustment, it is necessary to connect the loop on the cabinet to the chassis or use an equivalent dummy. An equivalent dummy can be constructed by winding two turns of hookup wire on a piece of carton material to form a loop $22 \times 35$-inches. Set the gang condenser to the maximum high frequency position and the test oscillator to 1620 KC . Adjust Trimmer '" $C$ " to the maximum output. Set test oscillator to 1400. KC and tune in signal with the gang condenser and adjust Trimmer " $A$ " to maximum response. Set test oscillator to 600 KC and tune in signal with gang condenser. Check for damage to gang condenser or coils.

## F. M. ALIGNMENT PROCEDURE

EQUIPMENT REQUIRED: F. M. Generator with frequencies of 90, 98, 106, and 109 megacycles, and generator without any modulation which covers 10.7 megacycles, also a zero center microammeter, and a DC Vacuum Tube Voltmeter (An oscilloscope and variable frequency audio oscillator can be used for better results. This method of alignment is described in the last paragraph).
DISCRIMINATOR ALIGNMENT: Connect DC Vacuum Tube Voltmeter between the buss and point "XX" on circuit diagram. Point "XX" is negative potential on the vacuum tube voltmeter. Isolate point "XX" and buss connections to vacuum tube voltmeter with chokes made by wrapping approximately 20 turns of hookup wire around a pencil. This is illustrated in Figure 1. Connect two 100,000 ohm resistors in series. (These resistors must match to $5 \%$.) Connect them from point "XX" to• buss. Between junction of $100,000 \mathrm{ohm}$ resistors and the point " YY " connect Zero Center Meter, which is also isolated by the choke described above. These connections are illustrated in Figure 1. Connect test osclllator which is adjusted to 10.7 megacycles to grid of IF Driver through a 250 mmf condenser. Adjust slug " M " to maximum on the vacuum tube voltmeter. Reduce test oscillator to keep vacuum tube voltmeter to around 5 volts. Adjust slug " N " to bring zero center meter to zero point. Slug " N " should never be touched after this alignment.
PRELIMINARY I. F. ALIGNMENT: Connect test oscillator to the converter grid through a 250 mmf . mica condenser. Adjust slugs D, E, H and J to maximum output on the vacuum tube voltmeter. In making these adjustments reduce the generator input to keep the vacuum tube voltmeter at approximately 5 volts when making this adjustment. Always use the peak on the slug which is obtained when the screw is out of the can the greatest distance.

FINAL I. F. ALIGNMENT: Set the test oscillator to 109 MC without frequency modulation and connect it to converter grid. Adjust trimmer " $B$ " for approximate maximum output on the vacuum tube voltmeter and zero center for exact centering. Adjust test oscillator to approximately 25 KC deviation, carefully adjust trimmers $\mathrm{D}_{4} \mathrm{E}$, to approximately 25 KC deviation, carefully adjust trimmers D , $\mathrm{E}_{\text {, }}$
sary to shift the frequency of the oscillator slightly to hold the zero center meter on center. In making this adjustment turn up volume control slightly to obtain an audio signal out of the speaker. If this signal is free of distortion, increase the deviation to approximately 75 KC and repeat the above alignment. If this is done carefully there will be no distortion in the speaker with this deviation. If distortion is obtained in the speaker with this deviation, it will be necessary to carefully repeat the I. F. alignment.
R. F. ALIGNMENT: Move the signal generator to the FM antenna termingls, using 150 ohm resistors between the generator terminals and each of the FM antenna terminals. Set the test oscillator to 106 megacycles and tune in signal with gang condenser to obtain approximate maximum on the vacuum tube voltmeter and zero center on the meter. Slightly bend the RF section in the gang condenser for maximum output with vacuum tube voltmeter. Set the signal generator to 98 megacycles, tune in signal with the gang condenser. Repeat the above procedure at this frequency and also at 90 mega cycles. Recheck alignment at 106 megacycles.
FINAL ALIGNMENT OF FM IF WITH OSCILLOSCOPE AND VARIABLE AUDIO OSCILLATOR: The oscilloscope and variable audio oscillator should be connected as shown in Figure 2. Adjust the deviation to approximately 25 KC and align trimmers $\mathrm{D}, \mathrm{E}, \mathrm{H}$, $J$ and $M$ to maximum on the vacuum tube voltmeter while watching the oscilloscope for a straight line. It may be necessary to vary the frequency of the variable audio oscillator in order to make the line straight on the scope. Next increase deviation to approximately 75 KC and repeat procedure, adjusting for maximum or as close to maximum as it is possible to obtain without losing the straight line on the oscilloscope. After all the trimmers have been properly adjusted to a maximum and a straight line on the scope, increase the deviation from approximately 125 to 150 KC . The curves illustrated in Figure 3 should be obtained. In making the above adjustments it may be necessary to make slight variations in the RF frequency in order to hold the zero center meter at the zern nnt-.


## AERIAL SYSTEM

This receiver has a built-in "Loop" aerial for broadcast reception. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial. In or near metal buildings, iron ore deposits or steel structures, or in localities remote from broadcasting stations, reception of the Standard Broadcast Band may require an outside aerial 50 to 100 feet in length including lead-in. Connect the outside aerial to the aerial lead (Blue Wire) located at the rear of the receiver. When using the outside antenna it may be necessary to reverse the power cord plug to eliminate hum or distortion.
The built-in FM aerial is a folded dipole Antenna. Although the re-
ceiver performs satisfactorily on the broadcast band, your particular location may require an outside antenna for FM reception. The external aerial for FM reception must be a dipole Antenna with a 300 ohm line, which you may secure from your local Sonora Dealer. The two lead-in leads of the dipole antenna should be attached, one lead under each screw, to the terminal strip located on the chassis after removing the FM antenna furnished with the receiver. For best possible reception with an outside dipole, adjust lead length on the lead-in cable on the weakest station. Cut off lead 6 inches at a time and until signal comes in stronger. If cutting off an additional length does not increase signal, you have reached the correct lengths. It is not necessary to cut off more than $21 / 2$ feet.

TUNING RANGE
The receiver is designed to operate over the standard broadcast
band which extends from 535 to 1620 Kilocycles (KC) (185 to 560
Meters).
DIAL CALIBRATION. The scale is calibrated from 55 to 160 frequencies of the United States, Canada, Mexico, Cuba and many Central and South Amerioan Countries. Add a zero to figures on
the scale to obtain kilocycles.
Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, flrst thoroughly investigated and definitely proved not to be the cause. note: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY WISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRA

## ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will cover the frequencies of $455,600,1400$ primary or secondary of the output transformer. If possible, all allgnments should be made with the volume control on maximum
and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings. AVC from operating and giving false readings.
CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be allgned properly as the first step. After the I.F. transformers have been properly adjusted and peaked,
the broadcast band should be adjusted.
F. ALIGNMENT. Remove chassis from the cabinet. Care should be taken to have no iron or other metal near the loop.
Do not make this set-up on a metal bench. With the gang condenser set at minimum, adjust the test oscillator to 455 KC and connect the
output to the grid of the first detector tube (12SA7) through a 05 or.I mfd. condenser. The ground on the test oscillator should be connected
 BROADCAST BAND ALIGNMENT. Connect the test oscillator to the antenna of the set through a 100 mmfd . ( 0001 ) condenser. With the gang condenser set at minimum capacity, set the test osclllator
at 1620 KC , and adjust the oscillator (or 1620 KC trimmer) on gang condenser. Next-set the test oscillator at 1400 KC , and tune in the signal on the gang condenser. Adjust the antenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscil-
lator at 600 KC , and tune in signal on condenser to chect allgnment of coils.
 variations loop proctional so eception from weak stations can be improved by turning the set in
he proper direction. In or near metal buildings, iron ore deposits




CHASSIS DIAGRAM



## SPECIFICATIONS

Tro loops of $1 / 4^{\circ \prime}$ copper tubing $8^{\circ}$ in diameter spaced $1 / 4^{\circ \prime}$ apart with 400 ohms resistar in series. Connecting cable and resistor must be shielded.
The loop should be spaced twice the diameter of the loop from the receiver being aligned to prevent an over modulated signal and poor alignment of the receiver.



SPARTON PAGE 19

©John F. Rider

©John F. Rider
ALIGNMENT CHART

| $\begin{aligned} & \text { OPER- } \\ & \text { ATION } \end{aligned}$ | $\begin{aligned} & \text { ALIGNMENT } \\ & \text { OF } \end{aligned}$ | $\begin{gathered} \text { GENERATOR } \\ \text { CONNECTED } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { DUNMY } \\ & \text { ANT. } \end{aligned}$ | GENERATOR FREQUENCY | BAND SWITCH SETTINC | TUNING COND． SETTING | TRTMMER | BEMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | $\begin{aligned} & \text { F. M. } \\ & \text { R. } \mathrm{F} . \end{aligned}$ | Ant． | $\begin{gathered} \text { Match to } \\ 300 \\ \text { Ohms } \end{gathered}$ | 108 MC． | F．M． | 108 MC． | C19 F．M．Osc． | Max．A．V．C． $\mathrm{V}_{0}$ |
|  |  |  |  |  |  |  | C18 F．M．- R．F． | Peak Accurately |
|  |  |  |  |  |  |  | C5 F．M．Ant． | ＂ |
| 30 | Repeat operation \＃29． |  |  |  |  |  |  |  |
| 31 | Check calibration at 88 and 100 Mc ． |  |  |  |  |  |  |  |

VOLTAGE CHART
$\begin{array}{ll}\text { Line Voltage：} 117 \text { Volts AC } & \begin{array}{l}\text { Position of volume control：Full with set tuned to quiet channel．} \\ \text { Position of Band Switch：Broadcast．}\end{array}\end{array}$

Voltrge of Sockets Prongs to Ground ． | No． 7 | No． 8 |
| :--- | :--- |
| .55 | - |

 \begin{tabular}{|c|}
\hline \multirow{2}{*}{} <br>
$\vdots$ <br>
$\vdots$ <br>
\hline

 

\hline \multirow{2}{*}{} <br>
$\vdots$ <br>
$\vdots$ \& <br>
\hline \multirow{3}{*}{} <br>
\hline
\end{tabular} $3.26 .2 *$ $\cdots$ $6.2^{*}$ 0 －

 | 0 |  |
| :--- | :--- |
| 0 |  |
|  | 1 |
| 1 | 1 |
| 1 | 1 |
| 资 |  |
| N | 1 | NOTES：Voltage readings are for schematic diagram in this bulletin．Allow $15 \%$ Always use meter scale which will give greatest deflection within scale limits．All DC measurements made with 20,000 ohms per volt voltmeter．All iC $^{C}$ voltages made with rectifier type voltmeter．

No． 2 No． 3 No． 4 No． 5 No． 6 No． 7 No． 8

思
鱼

| 6BE6 | Converter |
| :--- | :--- |
| 7A7 | No． 1 I．F． |

$7 A 7$
N
6H6GT
706

$$
\text { No. } 3 \text { I.F. A }
$$

뉸 륻

|  | 0 |
| :--- | :--- |
| 75 |  |

－

## $\begin{array}{r}-1 \\ 0 \\ \hline\end{array}$

No． 1

$$
\begin{array}{|l|l|l|l|}
\hline-.15 & .55 & 6.2^{*} & 0 \\
\hline-9.0 & 0 & 6.2^{*} & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 0 & -.15 & * * \\
\hline 0 & 120 & -.20 & 0 \\
\hline
\end{array}
$$

7A7 $\quad$ No． 1 I．F．Amp．

$$
\begin{array}{|l|l|l|l|}
\hline-9.0 & 0 & 6.2^{*} & 0 \\
\hline 0 & 205 & 95 & 2.7 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 205 & 95 & 2.7 \\
\hline 0 & 205 & 05 & 27 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l}
\hline 0 & 205 & 95 & 2.7 \\
\hline & 0 & 225 & 100 \\
\hline
\end{array}
$$

$260 \%$



Det．，A．V．C．，\＆lst A．F．（A．M．） No． 2 A．F．Amp． Phase Inverter Power Amp．（2）
FUNCTION No． 3 I．F．Amp．

TUBE
5Y3GT
Ratio Det. (F.h.)

Rectifier

6VGGT

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 205 & 95 & 2.7 \\
\hline 0 & 225 & 100 & 3.2 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 120 & -.20 & 0 \\
\hline 0 & 85 & 235 & 75 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline 0 & 85 & 235 & 75 \\
\hline 6.2 * & 160 & - & - \\
\hline
\end{array}
$$

$$
\begin{array}{|l|}
\hline 235 \\
\hline 260 \% \\
\hline
\end{array}
$$

＊＊Cannot be measured with 20，000 0hms per volt voltmeter．

[^4]
## HODELS 1000, 1001, THE SPARKS-WITHINGTON CO. 1003, 1020, 1021, 1023, 12 VISUAL I. F.-F. M. ALIGNMENT DATA

## DESCRIPTION OF CIRCUIT USED:

A $646 G T$ is employed as a ratio detector. This tube is preceded by a 707 ratio detector driver and two stages of 10.7 Mc . amplification using type 7A7 tubes. All stages are coupled by transformer coupling. The transformers are of the composite type wherein both 10.7 Mc. and 456 Kc . units are constructed within one can.


Gen. \& Scope Position
1
2
3
4
$*$

Use
Align Ratio Detector - Adjust T4
Align I.F. - Adjust T3
Align I.F. - Adjust T2
Align I.F. - Adjust II
See paragraph 3(e) under equipment required.

## THEORY OF VISUAL ALIGNMENT.

One of the characteristics of a tuned circuit is the fact that when it is excited or driven by a generator such as a vacuum tube or another tumed circuit, the voltage developed across it will vary with slight changes in frequency. This voltage will be greatest when the frequency is equal to the resonant frequency of the circuit and will be less if the frequency is higher or lower than the resonant frequency.

Thus if we were to shift the frequency from high to low or low to high across the resonant frequency and make a record of the voltage across the tuned circuit, we could plot the voltage against frequency and obtain a curve which might look like Fig. 1.


This is the selectivity curve or response curve for the circuit under discussion. This type of circuit may be aligned or adjusted to resonance by simply changing either $L$ or $C$ until maximum valm tage is obtained at the resonant frequency. Now if another circuit tuned to the same resonant frequency is coupled to the simple case above, a number of things can happen. First current flowing in one circuit will induce current in the second circuit, the magnitude of this current depending on the degree or amount of coupling between the two circuits. This coupling may be in the form of mutual inductance, matual capacitance or any impedance common to the two circuits. Now if we repeat the proceedure outlined for obtaining the response curve of a single tuned circuit using the voltage developed across the secondary of the coupled circuit while driving the primary, we may get either

VISUAL I. F.-F. M. ALIGNMENT DATA
of two types of curves depending on the magnitude of the coupling, (a) in Fig. 2 is a typical curve for two circuits coupled below critical coupling and (b) is a representation of the curve for an overcoupled circuit.
(A)


Fig. 2


Overcoupled circuits producing a response curve like (b) Fig. 2 are often employed where it is important that the response curve remain approximately flat over a narrow band of frequencies near the resonant frequency. They are also frequently combined with single peaked circuits to produce a response curve like Fig. 3.

Fig. 3


The dotitsd lines indicate the curves of the individual circuits and the solid curve shows the overall response of the two or more pairs of coupled circuits. Circuits like the above or approaching them in form are desirable in an F.M. receiver where the pass band should be of the order of 200 Kc . Now from the above it is evident that simple peaking both sides of a circuit coupled below critical for maximum voltage will provide optimum alignment but if tinis proceedure is followed with an overcoupled circuit it is almost a certainty that the two circuits will not be tuned to the resonant frequency but will instead be aligned so that either one or the other is accentuated. The response curve will then look like Fig. 4 (a) or (b).
(A)

Fig. 4

(B)

Now if this overcoupled circuit is combined with a single peaked circuit (where the coupling is below critical), the misalignment becomes worse, something like Fig. 5.

Fig. 5


From the above it appears that to properly align a receiver using overcoupled IF transformers it will be necessary to take a response curve of each stage and align the circuit so that the two peaks are symmetrical, that is, approximately equal in amplitude and displaced equally from the center frequency. To do this with a CW or AM signal would be laborious and time consuming whereas the use of visual equipment makes it nearly as simple as adjusting a simple single peaked amplifier.

Visual alignment test equipment performs the operation of plotting the response curve almost exactly as described above except that instead of manually changing the generator frequency, recording the voltage and then plotting the results, these operations are performed automatically and simultaneously by a combination of electronic circuits. The operation is briefly as folloms.

In the signal generator a low AC voltage is applied to a reactanee tube modulator which shifts the oscillator frequency from low to high or from high to low at a rate determined by the frequency of the AC voltage and by an amount determined by the AC voltage. The frequency at any instant is then dependant on the AC roltage present at that instant of time. An oscilloscope is provided which may be considered a voltmeter used to read the voltage across the tuned circuit, provided a detector is used to convert the RF to a low audio frequency. This voltage is then applied to the vertical plates and results in a vertical displacement of the spot on the screen. Some of the voltage used to shift the oscillator frequency is also applied to the horizontal plates of the oscilloscope providing a means of displacing the spot horizontally. It is nov evident that since that for any given AC voltage only one frequency may be obtained and since that AC voltage will result in an exact amount of spot deflection on the scope we can read the voltage across the circuit under examination by noticing the position of the spot at this exact instant.

Now if we consider the frequency as shifting from low to high 60 times per second and remember that the spot is moving across the screen of the scope 60 times per second at exact synchronization with the change in frequency it is only necessary to apply the voltage from our circuit to the vertical plates to obtain a replica of the response curve on the face of the cathode ray tube. This curve will be repeated 60 times per second if our sweep frequency is 60 cycles. Adjustments to the circuit may now be made and the effect on the response curve noted instantaneously.

## EQUIPMENT REQUIRED.

(a) A sweep signal generator with a center frequency of 10.7 Mc . and a total sweep width of at least 400 Kc . This generator should be equipped with filters to remove all spurious oscillator frequencies and limiters should be provided to remove all amplitude modulation. There should also be a crystal oscillator to provide a marker frequency at 10.7 Mc . for accurate determination of the center frequency.
(b) An amplitude modulated signal generator tuned to 456 Kc . This generator should be either crystal controlled or means should be provided for accurate frequency calibration.
(c) An Oscilloscope with either a $3^{\prime \prime}$ or $5^{\prime \prime}$ tube equipped with both vertical and horizontal amplifiers.
(d) A power output meter with an internal impedance to match the output transformer for use in 456 Kc . alignment.
(e) A diode detector for use in connection with the oscilloscope while aligning the F.M.I.F. channel. This diode detector may be either a crystal or a two element vacuum tube such as the 6H6. A diode load resistor, coupling condenser, etc. will also be necessary.

## AIIGNMENT OF THE 456 KC. I.F.

This alignment adjustment should be made before attempting to align the 10.7 I. F. circuit because of the possible effects on the operation of the F.M. I.F.

Connect the output meter to the receiver. Connect. the signal generator output lead to the converter grid. Turn the wave band switch to BC. and the generator to 456 Kc . Using the output meter as an indicator peak the A.M. I.F. trimmers for maxinum output.

## ALIGNMENT OF THE 10.7 I.F.

Turn the wave band switch to F.M. and the generator to 10.7 Mc. Move the signal generator lead to the grid of the ratio detector driver tube and the scope to the lst audio plate. Now proceed to align the ratio detector transformer for maximum linearity and minimum noise. This operation can be faciliated by applying a small amount of amplitude modulation along with the F.M. and then adjusting the secondary trimmer for minimum noise. Please note that the adjustment of the secondary circuit, controls to a large extent, the linearity of the pattern and adjustment of the primary is responsible for the gain in the circuit. Fig. 6 will represent a linear detector curve and Fig. 7, a detector curve with noise or A.M. present.

With the generator output lead connected to the grid of the next I.F. amplifier, connect the scope through the temporary detector mentioned previously (3e) to the ratio detector driver plate. Align for maximum output and symmetry.

## VISUAL I. F.-F. M. ALIGNMENT DATA



Fig. 7

*Move the generator lead to the grid of the next I.F. tube and align the next I.F. transformer. Adjust both trimmer screws for maximum gain, meanwhile maintaining symmetry in the curve. Observe that by alternately adjusting the primary and secondary trimmer, the vertical amplitude can be increased without allowing the response curve to become greatly distorted. Move the generator lead to the grid of the converter tube and align No. I I.F. transformer following the same proceedure as above.

Fig. 8, (A), (B), (C), and (D) below represent typical response curves of an overall I.F. amplifier.

Fig. 8


Not Overcoupled Properly Aligned (Right)

(B)

Overcoupled Properly Aligned
(Right)

(C)

Overcoupled
Improperly Aligned (Wrong)

(D)

Overcoupled
Improperly Aligned
(Wrong)

With the generator lead still connected to the converter grid, connect the scope to the lst audic plate, and check the detector curve for linearity and noise. Should this appear unsatisfactory, a very slight readjustment of the detector secondary alignment may be made at this time. If, however, the adjustment required is very great the entire aligmant procedure should be repeated in that the need for adjustment is an indication of incorrect aligment in one of the other stages.

USE OF MARKER FREQUENCIES.
A crystal controlled marker frequency should be provided at 10.7 Mc . The frequency of the sweep oscillator is correct when the pip will appear in the exact center of the sweep and so in the center of the resonance curve. See Fig. 9.

Fig. 9


Note that either the sweep oscillator or the circuit alignment may be off frequency.
*This stage may or may not be included depending upon the particular model.

STEP BY STEP ALIGNMENT PROCEDURE

| OPER- <br> ATTON | $\begin{gathered} \text { ALIGNMENT } \\ \text { OF } \end{gathered}$ | GENERATOR CONNECTED TO | $\begin{aligned} & \text { DOMAYY } \\ & \text { ANT. } \end{aligned}$ | GENERATOR <br> FREQUENCY | BAND SWITCH SETTING | TUNING COND. SEITING | TRIIMER | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Set dial pointer even with left-hand stop line with condenser gang closed. |  |  |  |  |  |  |  |
| 2 | A.M.-I.F. | Pin \#7 of 6BE6 Convt. Tube | .02 MFD . Cond. | 456 KC. | BC. | Open | C33 A \& B | Peak Accurately |
|  |  |  |  |  |  |  | C26 A \& B | " 1 |
| 3 | A.M.-R.F. | BC. Ant. | * |  | BC. | 1500 KC. | C15 Osc. Tr. | " |
|  |  |  |  |  |  |  | C13 R.F. Tr. | " |
|  |  |  |  | 1500 |  |  | C2 Ant. Tr. | " " |
| 4 |  |  |  | $600 \mathrm{KC}$. |  | $600 \mathrm{KC}$. | C16 0sc. Pad. | * |
| 5 | Repeat operations 3 and 4. |  |  |  |  |  |  |  |
| 6 | Check calibrations at 600, 1000 and 1500 Kc . |  |  |  |  |  |  |  |
| 7 | SPECIAL NOTE: For complete F.M.-I.F. Visual alignment instructions please refer to pages 6, 7, 8, 9 10, and 11. |  |  |  |  |  |  |  |
| 8 | F.M.-I.F. Alignment using an A.M. Generator and Output Meter. |  |  |  |  |  |  |  |
| 9 | T4 F. M. Ratio Det. | Pin \#6 on 7AG7 Driver Tube | . 05 MFD . Cond. | 10.7 MC . | F.M. | $\begin{aligned} & \text { Open } \\ & 108 \mathrm{MC.} \end{aligned}$ | L13 Sec. | Max. Reading |
|  |  |  |  |  |  |  | L13 Pri. | " " |
| 10 | NOTE: Operation \#9 must be made with generator output as low as possible with maximum reading. on outplit meter. |  |  |  |  |  |  |  |
| 11 | T3 Plate Choke | Pin \#6 on 7AG7 \#2 I.F. Amp. | .05 MFD. Cond. | 10.7 MC. | F. M. | $\begin{aligned} & \text { Open } \\ & 108 \mathrm{MC.} . \end{aligned}$ | L12 Slug | Max. Reading |
| 12 | $\stackrel{T 2}{\text { F.M. }} \stackrel{\text { I.F. }}{ }$ | Pin \#6 on 7a7 I.F. Amp. | . 05 MFD . Cond. | 10.7 MC. | F. M. | $\begin{aligned} & \text { Open } \\ & 108 \mathrm{MiC.} . \end{aligned}$ | C32 B | Peak Accurately |
|  |  |  |  |  |  |  | C32 A | " $\quad$ " |
| 13 | NOTE: Operation \#ll \& 12 must be made with generator output as low as possible with maximum reading on output meter. |  |  |  |  |  |  |  |
| $\underline{U}_{4}$ | Connect a $15,000 \mathrm{ohm}$ resistor between pin \#6 (Grid) on 7A7 tube to ground. |  |  |  |  |  |  |  |
| 15 | $\stackrel{\mathrm{TI}}{\mathrm{~F} \cdot \mathrm{M} \cdot-\mathrm{I} . \mathrm{F} .}$ | Pin \#7 on $6 \mathrm{BE6}$ <br> Tube or C.T. on <br> L5 coil 05 MFD <br> Cond. |  | 10.7 MC . | F. M. | $\begin{aligned} & \text { Open } \\ & 108 \mathrm{MC.} \end{aligned}$ | C25 B | Peak Accurately |
|  |  |  |  | C25 A |  |  | " 1 |
| 16 | NOTE: Operation \#15 must be made with generator output as low as possible with maximum reading on output meter. |  |  |  |  |  |  |  |



NOTE:

* Use dumma antenna as described

H 4 - Rock dial while adjusting for maximum output.

©John F. Rider

SPARTON PAGE 19.17


PAGE 19-18 SPARTON
MODELS 1035, 1035A, THE SPARKS-WITHINGTON CO.
1036, 1036A, 1037
VOLTAGE CHART

| Line Voltage: 117 Volts AC |  | Position of volume control: Full with set tuned to quiet channel. Position of Band Switch: Broadcast. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | fonction | Voltage of Sockets Prongs to Ground. See Prong Nos. on schematic. |  |  |  |  |  |  |  |
| Tose |  | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 |
| 6Ba6 | R. F. Amplifier | ** | . 8 | 6.3* | 0 | 230 | 98 | . 8 | - |
| 68E6 | Converter | -1 | 0 | 6.3* | 0 | 225 | 83 | 0 | - |
| 7A7 | 1st I. F. Amplifier | 6.3* | 225 | 75 | 2.2 | 0 | ** | 2.2 | 0 |
| $7 \mathrm{AG7}$ | 2nd I. F, Amplifier (F.M.) | 6.3* | 220 | 220 | 1.8 | 0 | ** | 1.8 | 0 |
| $7 \mathrm{AC7}$ | Driver (F.M.) | 6.3* | 210 | 220 | 1.5 | 0 | ** | 1.8 | 0 |
| 786 | 2nd Det., A.V.C., \& 1st Audio | 6.3* | 95 | ** | 0 | 0 | . 5 | 0 | 0 |
| 6AL5 | Ratio Det. | . 25 | 0 | 0 | 6.3* | 0 | 0 | 0 | - |
| 785 | Pomer Amp. | 0 | 250 | 230 | 0 | 0 | ** | 14 | 6.3 |
| 5336T | Rectifier | 0 | 270 | 0 | 250* | 0 | 250* | 0 | 304 |
| NOTES: Voltage readings are for schematic diagram in this bulletin. Allow $15 \%$ for - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All DC measurements made with 20,000 ohms per volt voltmeter. All AC voltages made with rectifier type voltmeter. <br> * AC Volts. <br> ** Cannot be measured with 20,000 ohms per volt voltmeter. |  |  |  |  |  |  |  |  |  |

## VISUAL I. F.-F. M. ALIGNMENT DATA

1. DESCRIPTION OF CIRCUIT OSED

Ampifis circuit consists of a 6BE6 Converter, 7A7 1st I.F. (A.M. \& F.M.), tmo 7AG7 2nd F.M.-I.F. Amplifier and Ratio Detector Driver,
Kc. and the F.M. frequency is 10.7 Mc .

The diagram below shows the correct hook-up for generator and scope to the receiver circuit.


SPARTON PAGE 19-19

## VISUAL I. F.-F. M. ALIGNMENT DATA

2. theory of visual alignment.

One of the characteristics of a tuned circuit is the fact that when it is excited or driven by a generator such as a vacuum tube or another tumed circuit, the voltage deveioped across it will vary with slight changes in frequency. This voltage will be greatest when the frequency is equal to the resonant frequency of the circuit and will be less if the frequency is higher or lower than the resonant frequency.

Thus if we were to shift the frequency from high to low or low to high across the resonant frequency and make a record of the voltage across the tuned circuit, we could plot the voltage against frequency and obtain a curve which might look like Fig. 1.


Fig. 1


This is the selectivity curve or response curve for the circuit under discussion. This type of circuit may be digened or adjusted to resonance by simply changing either L or C until maximum voltage is obtained at the resonant frequency. Now if another circuit tuned to the same resonant frequency is coupled to the simple case above, a number of things can happen. First current flowing in one circuit will induce current in the second circuit, the magnitude of this current depending on the degree or amount of coupling between the two circuits. This coupling may be in the form of mutual inductance, mutual capacitance or any impedance common to the two circuits. Now if we repeat the proceedure outlined for obtaining the response curve of a single tuned circuit using the voltage developed across the secondary of the coupled circuit while driving the primary, we may get either of two types of curves depending on the magnitude of the coupling, (a) in Fig. 2 is a typical curve for two circuits coupled below critical coupling and (b) is a representation of the curve for an overcoupled circuit.

Fig. 2


Overcoupled circuits producing a response curve like (b) Fig. 2 are often employed where it is important that the response curve remain approximately flat over a narrow band of frequencies near the resonant frequency. They are also frequently combined with single peaked circuits to produce a response curve like Fig. 3.

Fig. 3


## VISUAL I. F.-F. M. ALIGNMENT DATA

The dotted lines indicate the curves of the individual circuits and the solid curve shows the óverall response of the two or more pairs of coupled circuits. Circuits like the above or approachIng them in form are desirable in an F.M. receiver where the pass band should be of the order of 200 Kc. Now from the above it is svident that simple peaking both sides of a circuit coupled below critical for maxdmum voltage will provide optimum alignment but if this proceedure is followed with an overcoupled circuit it is almost a certainty that the two circuits will not be tumed to the resonant frequenoy but will instead be aligned so that either one or the other is accentuated. The response curve will then look like Fig. 4 (a) or (b).
(A)

Fig. 4


Now if this overcoupled circuit is combined with a single peaked circuit (where the coupling is below critical), the misalignment becomes worse, something like Fig. 5.


From the above it appears that to properly align a receiver using overcoupled IF transformers it will be necessary to take a response curve of each stage and align the circuit so that the two peaks are symmetrical, that is, approximately equal in amplitude and displaced equally from the center frequency. To do this with a CW or AM signal would be laborious and time consuming whereas the use of visual equipment makes it nearly as simple as adjusting a simple single peaked amplifier.

Visual alignment test equipment performs the operation of plotting the response curve almost exactly as described above except that instead of manually changing the generator frequency, recording the voltage and then plotting the results, these operations are performed automatically and simultaneously by a combination of electronic circuits. The operation is briefly as follows.

In the signal generator a low AC voltage is applied to a reactance tube modulator which shifts the oscillator frequency from low to high or from high to low at a rate determined by the frequency of the AC voltage and by an amount determined by the AC voltage. The frequency at any instant is then dependent on the AC voltage present at that instant of time. An oscilloscope is provided which may be considered a voltmeter used to read the voltage across the tuned circuit, provided a detector is used to convert the RF to a low audio frequency. This voltage is then applied to the vertical plates and resuits in a vertical displacement of the spot on the screen. Some of the voltage used to shift the oscillator frequency is also applied to the horizontal plates of the oscilloscope providing a means of displacing the spot horizontally. It is now evident that since that for any given AC voltage only one frequency may be obtained and since that AC voltage will result in an exact amount of spot deflection on the scope we can read the result in sn exact amount of spot deflection on the scope we can read the voltage across the circuit under examination by noticing the position of the spot at this exact instant.

Now if we consider the frequency as shifting from low to high 60 times per second and remember that the spot is moving across the screen of the scope 60 times per second at exact synchronization with the change in frequency it is only necessary to apply the voltage from our circuit to the vertical plates to obtain a replica of the response curve on the face of the cathode ray tube. This curve will be repeated 60 times per second if our sweep frequency is 60 cycles. Adjustments to the circuit may now be made and the effect on the response curve noted instantaneously.

SPARTON PAGE 19-21
THE SPARKS-WITHINGTON CO. MODELS 1035, 1035A, 1036, 1036A, 1037, 1037A. CHASSIS 9L8

## VISUAL I. F.-F. M. ALIGNMENT DATÁA

3. EQUIPMENT REQUIRED.
(a) A sweep signal generator with a center frequency of 10.7 Mc. and a total sweep width of at least 400 Kc . This generator should be equipped writh filters to remove all spurious oscillator frequencies and limiters should be provided to remove all amplitude modulation. There should also be a crystal oscillator to provide a marker frequency at 10.7 Mc . for accurate determination of the center frequency.
(b) An amplitude modulated signal generator tuned to 456 Kc . This generator should be either crystal controlled or means should be provided 今or accurate frequency calibration.
(c) An oscilloscope with either a $3^{\prime \prime}$ or $5^{\prime \prime}$ tube equipped riti both verticnl and horizontal amplifiers.
(d) A power output meter with an internal impedance to match tine output transformer for use in 456 Kc. alignment.
(e) A diode detector for use in connection with the oscilloscone while aligning the F.M.-I.F. channel. This diode detector may be either a crystil or a tro element vacuum tube such as the GH6. A diode load resistor, coupling condenscr, etc. will also be necessary.
4. aLignaent of the 456 KC. I. F.

This alignment adjustment should be made before attempting to align the 10.7 I. F. circuit because of the possible effects on tie operation of the F.M. I.F.

Connect the output meter to the receiver. Connect the signal generator output lead to the converter grid. Turn the wave band switch to Bc . and the generator to 456 Kc . Using the output meter as an indicator peak the A.M. I.F. trimmers for maximum output.

## 5. ALIGNMENT OF THE 10.7 I.F.

Turn the wave band switch to F.M. and the generator to 10.7 Mc. Move the signal generator lead to the grid of the ratio detector driver tube and the scope to the lst audio plate. Now proceed to align the ratio detector transformer for maximum linearity and minimum noise. This operation can be faciliated by applying a small amount of amplitude modulation along with the F.M. and then adjusting the secondary trimer for minimum noise. Please note that the adjustment of the secondary circuit, controls to a large extent, the linearity of the pattern and adjustment of the primary is responsible for tie gain in the circuit. Fig. 6 will represent a linear detector curve and FIg. 7, a detector curve with noise or A.M. present.


Fig. 7


With the generator output lead connected to the grid of the next I.F. amplifier, connect the scope through the temporary detector mentioned previously (3e) to the ratio detector driver plate. Align for maximum output and symmetry.

MODELS 1035, 1035A THE SPARKS-WITHINGTON CO. 1036, 1036A, 1037, 1037A, VISUAL I. F.-F. M. ALIGNMENT DATA
*Move the generator lead to the grid of the next I.F. tube and align the next I.F. transformer. Adjust both trimmer screws for maximum gain, meanwhile maintaining symmetry in the curve. Observe that by alternately adjusting the primary and secondary trimer, the vertical amplitude can be increased without alloving the response curve to become greatly distorted. Move the generator lead to the grid of the converter tube and align No. 1 I.F. transformer following the same proceedure as above.

Fig. 8, (A), (B), (C), \& (D) below represent typical response curves of an overail I.F. amplifier.

Fig. 8

(A)

Not Overcoupled Properly Aligned (Right)

(B)

Overcoupled Properly Aligned
(Right)

(C)

Overcoupled Improperly Aligned (Wrong)

(D)

Overcoupled Improperly Aligned (Wrong)

With the generator lead still connected to the converter grid, connect the scope to the lst audio plate, and check the detector curve for linearity and noise. Should this appear unsatisfactory, a very slight readjustment of the detector secondary alignment may be made at this time. If, however, the adjustment required is very great the entire alignment procedure should be repeated in that the need for adjustment is an indication of incorrect alignment in one of the other stages.
5. JUSE OF MARKER FREQUENCIES.

A crystal controlled marker frequency should be provided at 10.7 Mc . The frequency of the sweep oscillator is correct when the pip will appear in the exact center of the sweep and so in the center of the resonance curve. See Fig. 9.
Marker Pip


Resonance Curve


Note that either the sweep oscillator or the circuit alignment may be off frequency.
*This stage may or may not be included dependinf upon the particular model.


Figure 4. Schematic Diagram
C $1-.002 \mathrm{Mfd}$., 200 V paper
C $2-.02 \mathrm{Mfd}$., 400 V paper
C $3-.02 \mathrm{Mfd}$., 400 V paper
C 4-. 00025 Mfd., mica
$\mathrm{C} 5-.02 \mathrm{Mfd} ., 200 \mathrm{~V}$ paper
$\mathrm{C} 6-.005 \mathrm{Mfd} ., 200 \mathrm{~V}$ paper
C 7 -. 00025 Mfd ., mica
C $8-.25 \mathrm{Mfd}$. (or .20 Mfd .), 200 V paper
C $9-.05 \mathrm{Mfd} ., 400 \mathrm{~V}$, molded bakelite
C10,11-Dual' 40 Mfd., 150 V (*A-25.019)
C12- 50 Mmfd ., mica
C $13--.05 \mathrm{Mfd}$., 400 V
C14-. 05 Mfd ., 200 V
C15-. $05 \mathrm{Mfd} ., 200 \mathrm{~V}$
R $1-22 \mathrm{~K}, 1 / 4 \mathrm{~W}, 20 \%$
R 2-10 meg., $1 / 4 / 2 \mathrm{~W}, 20 \%$
R 3-3.3 meg., $1 / 4 \mathrm{~W}$, $20 \%$
R 4-500K variable, audio taper, with SPST (*A-9.066) - \&uLLE)
$\begin{array}{ll}\text { R } 5-470 \mathrm{~K}, 1 / 4 \mathrm{~W}, 20 \% \\ \text { R } 6-470 \mathrm{~K} \\ \mathrm{R} & 1 / \mathrm{W}, 20 \%\end{array}$
R 6-470K, $1 / 4 \mathrm{~W}, 20 \%$
R 7— 150 ohms, $1 / 2 \mathrm{~W}, 10 \%$
R 8-10 meg., $1 / 4 \mathrm{~W}, 20 \%$
R 9- $220 \mathrm{~K}, 1 / 4 \mathrm{~W}, 20 \%$
R10-1000 ohms, 2W (or 1 W ), $20 \%$
R11- 2.2 meg., $1 / 2 \mathrm{~W}, 20 \%$
L 1—Transformer, IF input, $455 \mathrm{KC}\left({ }^{*} \mathrm{C}-2.191-1\right)$
L 2-Transformer, IF output, $455 \mathrm{KC}(* \mathrm{C}-2.191-2)$
L 3—Coil, oscillator (*B-2.192)
Antenna, loop ( ${ }^{*}$ B-5.006)
Loudspeaker, PM, 5" Trans. to match 50A5 (*B-11.037)
Pilot light, Mazda No. 51, 200 Ma .

* Mfg. Part. No.

Part No. NG-440 Rev. 1-21-47
O: DPAWING SNONS POSITION OF DPAWING SNOWS POSITION OF
DIAL DRUM WHEN COVDENSERS DREE FVLLY WESHEO.
epeons show aipection ar spreing wivoinc.

Figure 7.
Clockwise Rotation

Tube Complement:

| loctal | octal | miniature | function |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}-14 \mathrm{Q} 7$ |  | 12BE6 | Osc., Conv. |
| $\mathrm{V}_{2}-14 \mathrm{~A} 7$ |  | 12BA6 | I.F. Amp. |
| $\mathrm{V}_{3}-14 \mathrm{B6}$ |  | 12AT6 | Det., A.V.C., Amp. |
| $\mathrm{V}_{4}$-50A5 | 50L6 | 50B5 | Power Amp. |
| V5-35Y4 |  | 35W4 | Rectifier |

Loctal base tubes have a special locking arrangement which holds the tubes securely in the sockets. To remove a tube, use slightly off-side pressure towards socket rivet, thus releasing the socket lock.

This is a 5 -tube Superheterodyne radio receiver designed to operate on:

1. 105-125 volts A.C. 60 cycles.
2. ${ }^{*} 105-125$ volts D.C.

This receiver operates on the standard broadcast band, 540-1700 KC.

* Operate phonograph on A.C. only.

ALIGNMENT PROCEDURE.

| Steps | Connect output <br> of oscillator to | Tune osc. <br> to | Tune <br> radio dial to | Adjust the following <br> for max. peak output |
| :---: | :--- | :---: | :---: | :---: |
| 1 | Tuning condenser <br> stator (ant.) in <br> series with .01 mfd. | 455 | Quiet point at <br> high frequency <br> end of dial. | 1st and 2nd I.F. |
| Transformers |  |  |  |  |



1720
Full clockwise (out of mesh)

1500

Fig. 3. Tube and Trimmer Locations-4-Control


Fig. 1. Tube and Trimmer Locations-2-Control


Fig. 2. Tube and Trimmer Locations-3-Control

alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for the faulty reception.
The Signal Generator may be connected through a 0.01 mf capacitor (used as dummy antenna) to the lug on RF section (B) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trimmers to 455 kc , using least possible input from Signal Generator to avoid developing A.V.C. voltage which would make the tuning clipped directly across the voice coil lugs. m may be
 pacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter, placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal pletely out of mesh, and pointer at extreme right end of travel, adjust the oscillator trimmer (A) (on front section of tuning capacitor) to 1700 kc . Reto 1550 kc and adjust the RF trimmer (B) capacitor section) for maximum response. With tuning capacitor plates fully meshed, the receiver should tune to 532 kc ; however, no adjustment is required at are engraved on the dial plate These four fine marks order, the pointer position with.capacitor plates fully 1550 kc .
> tion.

MODEL G-516 SPIEGEL



## SERVICE DATA

Lack of sensitivity and poor tone quality may be due to any one or a combination of causes such as weak or defective tubes or speaker, open or grounded bias resistor, bypass condenser, etc. Never attempt to realign set until all other possible sources of trouble have been first thoroughly investigated and definitely proved not to be the cause.
NOTE: IT IS ABSOLUTELY NECESSARY THAT AN ACCURATELY CALIBRATED TEST OSCILLATOR WITH SOME TYPE OF OUTPUT MEASURING DEVICE BE USED WHEN ALIGNING THE RECEIVER AND THAT THE PROCEDURE BE CAREFULLY FOLLOWED, OTHERWISE THE RECEIVER WILL BE INSENSITIVE AND THE DIAL CALIBRATION WILL BE INCORRECT. THE TRIMMERS WILL BE REFERRED TO BY THEIR FUNCTION AS INDICATED ON THE PARTS DIAGRAM.

TUNING RANGE

This receiver is designed to operate over the standard broadcast band which extends from 535 to 1720 Kilocycles (KC) (174 to 560 Meters).

DIAL CALIBRATION. The scale is calibrated from 55 to 170 (Standard

Broadcast). This band covers all Standard Broadcasts frequencies of the United States, Canada, Mexico, Cuba and many Central and South American Countries. Add a zero to figures on the scale to obtain kilocycles.

## ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of $\alpha$ test oscillator that will cover the frequencies of $455,600,1400$ and 1720 KC and an output meter to be connected across the primary or secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.

CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.
I.F. ALIGNMENT. Remove the chassis and loop antenna from the cabinet and set them up on the bench so that they occupy exactly the same respective positions on the bench as they did in the cabinet. Care should be taken to have no iron or other metal near the loop. Do not make this set-up on a metal bench. With the gang
condenser set at minimum, adjust the test oscillator to 455 KC and connect the output to the grid of the first detector tube (12SA7) through a .05 or .1 mfd . condenser. The ground on the test oscillator should be connected to the ground buss, indicated on the circuit diagram. Align all three I.F. trimmers to peak or maximum reading on the output meter.

BROADCAST BAND ALIGNMENT. Connect the test oscillator to the antenna of the set through a 100 mmfd . (.0001) condenser. With the gang condenser set at minimum capacity, set the test oscillator at 1720 KC , and adjust the oscillator (or 1720 KC trimmer) on gang condenser. Next-set the test oscillator at 1400 KC , and tune in the signal on the gang condenser. Adjust the antenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC , and tune in signal on condenser to check alignment of coils.

## AERIAL SYSTEM

This receiver has a built-in "loop" cerial. Its excellent design is such as to increase pick-up from stations having wide variations in signal strength. The efficiency and selectivity of the loop provide outstanding reception without the use of an external aerial. The "loop" aerial used on this receiver is somewhat directional so reception from weak stations can be improved by turning the set in the proper direction. In or near metal buildings, iron ore deposits or steel structures or in
localities remote from broadcasting stations, reception can be improved by using an outside aerial 50 feet to 100 feet in length including lead-in. Connect the outside aerial to the aerial lead. When using the outside aerial with AC power supply it may be necessary to reverse the power cord plug in wall socket to eliminate hum or distortion.

## TUBES USED

Five tubes are used. (One tube is a rectifier.) Type numbers and locations are shown in the tube location diagram on the cabinet. If tubes are removed from their sockets for test or replacement purposes, make certain that each tube is placed in its proper socket when
replacing the tubes in the set. Failure to replace the tubes in their proper sockets may result in damage to the tube, or to the receiver, or both.
Phono-Radio with automatic record changer for alternating (A.C.) current, of 110 to 125 volts at 60 cycles.

1. The knob marked PHONO-RADIO, controls a three position switch. The extreme counter clockwise position is for radio reception. The center position is for FM reception when desired, to be used with
 phono reception. 2. The knob marked VOLUME, controls the
 and also acts as a master switch by cutting off the current supply to the record
changer.



## CAUTION

POWER SOURCES: - This receiver will operate either on 110-125 volt A.C., 50-60 cycle current or $\mathbf{1 1 0 - 1 2 5}$ volt D. C. current. Never plug this receiver into a 220 volt line.
The components in this receiver are designed for $110-125$ volt operation only. Any attempt to operate this receiver at a higher than prescribed voltage will cause serious damage.



## ALIGNMENT AND SERVICE DATA

Remove the chassis from the cabinet for alignment.
A signal generator is required, having the following frequencies: 455 KC , $1400 \mathrm{KC}, 1730 \mathrm{KC} .6 \mathrm{MC}, 16 \mathrm{MC}$, and 18.3 MC . An output meter should be con nected across the speaker.
I. F. ALIGNMENT: - Connect the generator lead through a . 1 MFD Condenser to the terminal lug on the "Antenna" section of the gang condenser. The ground lead from the generator should be connected to the gang frame. Set the generator at 455 KC . Adjust the trimmer screws in the 1 st and 2 nd I. F. cans (See Fig. 1) until a maximum reading is noted on the output meter.

The receiver volume control should be turned to maximum during the I. F. and all subsequent alignments, to keep the AVC from working and giving false readings. Keep the generator output as low as possible to prevent overloading.

BC. OR BROADCAST ALIGNMENT: - With the generator leads still connected as in I. F. Alignment, rotate the tuning condenser to complete minimum capacity. Set the generator to 1730 KC . Adjust the BC. oscillator trimmer until the signal is tuned in. Next remove the hot lead of the generator from the "Ant" section of the gang condenser. Connect this lead to the antenna lead wire that projects from the back of the loop antenna through a 200 MMFD condenser. Set the generator to 1400 KC and rotate the tuning condenser until the signal is tuned in. Adjust the BC. antenna trimmer until a maximum reading is noted on the output meter. Set the generator to 600 KC and turn the tuning control until the signal is tuned in. Rock the tuning control back and forth slowly and at the same time adjust the 600 KC pad, slowly to the right or left until a maximum reading is noted on the output meter. It is advisable to return to the 1730 KC adjustment and re-check that setting to make sure it has not changed while padding at 600 KC .
S. W. OR SHORT WAVE ALIGNMENT: - Set the generator at 18.3 MC. Turn the receiver band switch to short band position. Turn the tuning condenser to complete minimum capacity. The generator leads should be connected to the antenna lead wire that projects from the back of the loop antenna through a 400 Ohm resistor. Adjust the S . W. oscillator trimmer slowly until the 18.3 MC signal is tuned in. At this point, it will be well to make sure that the fundamental signal is turned in. Turn up the generator output and tune the receiver to approximately 17.3 MC. At this point the 18.3 MC signal will be heard again but much weaker. This is the image frequency. If the image is not heard, then turn the tuning condenser back to complete minimum and readjust the S. W. oscillator trimmer. Remember, the image must always be heard (at 2 times the I. F. frequency in KC) lower the frequency than the fundamental signal. After the oscillator has been properly set, tune the signal generator to 16 MC and rotate the tuning control until the signal is tuned in. Adjust the S.W. antenna trimmer until a maximum reading is noted on the output meter. It is advisable to rock the gang slowly while adjusting the antenna trimmer. Set the generator to 6 MC and tune the signal in on the receiver. Check the alignment at this frequency. No adjustment should be necessary as the coils have been carefully checked before leaving the factory. A fixed oscillator padding condenser is used at 6 MC .



POWER SOURCES: This receiver is designed for operation on either an external power source or on the enclosed batteries.
AC OR DC OPERATION: This receiver may be operated on 50 to 60 cycle, 110 to 125 volt AC current or 110 to 125 DC current.
CAUTION: Never plug this receiver into a 220 volt line as this will seriously damage the component parts which have been designed for 110 to 125 volt operation only.

To operate on AC or DC open the small door at the lower right hand corner in the back of the cabinet. Pull out the power cord and plug into a convenient outlet of the proper voltage and current. Follow instructions under "Controls."

To operate on the enclosed batteries, follow instructions under "Control." CONTROLS: This receiver has three control knobs which are located on the front panel of the cabinet.
STATION SELECTOR KNOB: The right hand knob is the station selector. Rotate this knob to the right or left to select your desired station. The dial scale is calibrated in kilocycles. By mentally adding a zero to the numbers on the scale, the result will be read directly in (KC) kilocycles. (i.e., 60 plus 0 equals 600 KC or 140 plus 0 equals 1400 KC ).

POWER SELECTOR SWITCH: The center knob is the power selector. It has three positions which are indicated on the front panel. The extreme left hand position is the "OFF"' position. The small dot on this knob must point to "OFF" when the receiver is not in use. The center position is "AC-DC" and is used when it is desired to operate the receiver from a power line source. The extreme right hand position is "BATT" and is used when it is desired to operate on the enclosed batteries.
AC OPERATION: When an AC power source is used, set the power selector knob to "AC-DC" after the power cord has been plugged into a convenient outlet. The receiver is now ready for operation.

DC OPERATION: If the receiver does not operate after a few seconds, reverse the power cord plug in the outlet and it will operate properly.
BATTERY OPERATION: The power cord is not used for battery operation to "BATT" and the receiver is ready for operation on the enclosed batteries.
CAUTION: When the receiver is not in use, the power selector knob must be turned to "OFF." If the knob is allowed to remain in "BATT" position,

VOLUME CONTROL: The left hand knob is the volume control. After the power selector knob has been properly set and the receiver is in operation, rotate the volume control knob to the right to increase volume or to the left
to decrease volume.

## BATTERY SUPPLIERS

The batteries for this receiver may be purchased from any reliable radio
dealer.
For proper operation of this receiver, you must use, two (2) $41 / 2$ Volt
" $A$ " batteries, and two (2) 45 Volt " $B$ " batteries.
The following is a table of manufacturers and their battery type number.

BATIERY SERVICTNG
(See Figure No. 1)

 they may break. Always grasp the plug form between the fingers, or use a flat blade to pry out the plug. Observe with care the position of the batteries and plugs when replacing. Be sure that batteries and plugs are replaced as
shown in the "Battery Location" diagram. (Figure No. 1)

## SPIEGEL

POWER SOURCES: This receiver is designed for operation on either an external power source or on the enclosed batteries.
AC OR DC OPERATION: This receiver may be operated on 50 to 60 cycle, 110 to 125 volt AC current or 110 to 125 DC current.
CAUTION: Never plug this receiver into a 220 volt line as this will seriously damage the component parts which have been designed for 110 to 125 volt operation only.

To operate on AC or DC open the small door at the right in the back of the cabinet. Pull out the power cord and plug into a convenient outlet of the proper voltage and current. Follow instructions under "Controls."

To operate on the enclosed batteries, follow instructions under "Controls."
ANTENNA: This receiver is equipped with a sensitive loop antenna and requires no external antenna wire. However, due to the directional qualities of the loop some stations may appear to be weak in reception. This condition may be remedied by rotating or changing the position of the receiver.
CONTROLS: This receiver has three control knobs which are located on the front panel of the cabinet.
STATION SELECTOR KNOB: The right hand knob is the station selector. Rotate this knob to the right or left to select your desired station. The dial scale is calibrated in kilocycles. By mentally adding a zero to the numbers on the scale, the result will be read directly in (KC) kilocycles. (i.e., 60 plus 0 equals 600 KC or 140 plus 0 equals 1400 KC ).
POWER SELECTOR SWITCH: The left hand knob is the power selector. It has three positions which are indicated on the front panel. The extreme left hand position is the "OFF" position. The small dot on this knob must point to "OFF" when the receiver is not in use. The center position is "AC-DC" and is used when it is desired to operate the receiver from a power line source. The extreme right hand position is "BATT" and is used when it is desired to operate on the enclosed batteries.
AC OPERATION: When an AC power source is used, set the power selector knob to "AC-DC" after the power cord has been plugged into a convenient outlet. The receiver is now ready for operation.

DC OPERATION: If the receiver does not operate after a few seconds, reverse the power cord plug in the outlet and it will operate properly.

ALIGNMENT AND SERVICE DATA

## (See Fig. No. 2 For Trimmer Location)

 Remove chassis from cabinet for alignment.A Signal Generator is required having the following frequencies: 455 KC , , the The volume control of the receiver should be turned to maximum during FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser through a a 1 "MFD. condenser. The ground lead from the condenser to complete minimum capacity. Set the generator to 455 KC . Adjust top and in the bottom of the can under the chassis. Adjust the cores until a maximum reading is noted on the output meter.
SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to $1650 \mathrm{KC}$. Adjust the OSC. trimmer until
the 1650 KC signal is tuned in. The gang condenser must be at complete mina mum capacity for this adjustment.
THIRD STEP: Remove the generator leads from the gang condenser and replace the chassis in the cabinet. Loosely couple the generator to the receiver lhe receiver and a conpraterer set at of woo 14 KC, increase the outside of the cabinet. With just the ANT. trimmer through the hole which is provided in the end of the
cabinet until a maximum signal is noted on the output meter. The ANT, trimmer habinet until a maximum signal is noted on the outpul meter. The ANT. trimmer
hole in the side of the cabinet is covered by a small plug button. Replace this
button after adjustment has been made as the coirs and gang condenser in this receiver have been specially handled at
the factory to insur


BATTERY OPERATION: The power cord is not used for battery operation
and may be hanked and put back in the cabinet. Set the power control knob to "BATT" and the receiver is ready for operation on the enclosed batteries. CAUTION: When the receiver is not in use, the power selector knob must
 is turned all the way off.

VOLUME CONTROL: The center knob is the volume control. After the power selector knob has been properly set and the receiver is in operation, rotate the
volume control knob to the right to increase volume or to the left to decrease volume.

## BATTERY SUPPLIERS

The batteries for this receiver may be purchased from any reliable dealer. battery. proper operation this receiver requires two " A " batteries and one " B "

The "A" batteries are size "D" flashlight cells and are made by all battery manufacturers.

The " B " battery is a $671 / 2$ volt battery and is made by the following manu-
facturers:
 figure-1
catitery location BATTERY SERVICING (See Fig. No. 1)

To replace the batteries in this receiver:
Remove the back.
Ұपяฺ!!
To replace the "A" batteries, pull the old batteries out of the container.
Replace with fresh batteries, making sure the batteries are inserted according to the diagram on the inside of the container.
 the cabinet as shown in Fig. No. 1, making sure that the connector end faces the
top of the cabinet.

After the batteries have been installed, replace the back, making sure that
the two washers in the bottom of the back fit into the slot near the bottom edge

ALIGNMENT AND SERVICE DATA
Remove chassis from cabinet for alignment.
 across the speaker.
FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser, through a . 1 MFD condenser. The ground lead from the generator must be connected to the metal
frame of the gang condenser. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1 st and 2nd I.F. transformers until a maximum reading is noted on the output meter.

## ALIGNMENT DATA

Remove the chassis from the cabinet. A Signal Generator with the following
frequencies is required: $455 \mathrm{KC}, 1400 \mathrm{KC}$ and 1720 KC .
The receiver volume control should be turned to maximum during the I.F. and
all subsequent alignments to keep the A.V.C. from working and giving false
readings. Turn the tone control to complete. left hand position. Keep the
generator output as low as possible to prevent overloading.
Connect an output meter across the voice coil of the speaker.
Connect a 20,000 ohm resistor across the loop connector terminals to r
FIPST STFP. Connect the hot lead from the generator to the "ANT." section form gang condensor the gang
 adjust the trimmers of the list and 2nd l. F. transformers until a maximum
SECOMD STEP: With the leads from the generator connected in the same manner as in l.F. alignmeht, adjust the signal generator condenser. Adjust this trimmer is located on the front section of the gang condenserould be at com-
THIRD STEP: Remove the generator leads from the chassis. Remove the 20,000 ohm resistor from the loop connector terminals. Reinstal pickup leads.
Connect the generator leads to a transmitting loop, made of a few turns of wire, and loosely couple to the receiver loop antenna which is located on control until this signal is tuned in. The "ANT." trimmer is located on the rear section of the gang condenser. Adjust this trimmer until a max-
imum signal is noted on the output meter.
No further adjustment should be necessary, unless the receiver has been damaged, as the coils and tuning condenser have been specially
the factory to insure proper alignment at the lower frequencies.
TUBE AND TRIMMER LOCATION


|  |  |
| :---: | :---: |
|  |  |
|  | 我 |

PAGE 19-16 SPIEGEL
MODELS $7541,7547, \quad$ SPIEGEL
$8714,8715,8718$



PAGE 19-18 SPIEGEL
MODELS 7541, 7547,
SPIEGEL
8714, 8715, 8718



1A7 GT-Osc. Converter IN5 GT-I. F. Amplifier

1H5 GT-AVC Det. Audio Amplifier
3Q5 GT-Power Output

This receiver has been designed to operate on a self-contained battery containing both the "B" battery ( 90 Volts) and the "A" battery ( $1 \frac{1}{2}$ Volts) such as General \#60B6L.


ALIGNMENT PROCEDURE
With an output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is .4 volts using a signal which is modulated $30 \%$ at 400 c.p.s. Follow through the procedure as outlined below for proper alignment.

Connect the signal generator to the grid cap of the IA7 GT Tube through a .l MFD. Condenser. Connect the ground lead of the generator to the chassis. Adjust the signal generator to 455 K.C. and set the variable condenser of the receiver to minimum capacity (fully opened). With the volume control full on and minimum output from the signal generator adjust the two trimmers on the first and second I.F. transformers for maximum output.

Now connect the signal generator to the antenna connection of the receiver through a .00025 condenser. Adjust the signal generator frequency to 1725 K.C. and set the variable condenser to minimum capacity (fully opened), and adjust the oscillator trimmer (ClB) for maximum output. Set signal generator to 1500 K.C. and tune receiver to signal. Adjust the antenna trimmer (C1A) on the variable condenser for maximum output.


| ALIGNMENT PROCEDURE |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STEPS | $\begin{aligned} & \hline \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { BAND } \\ & \text { SWITCH } \\ & \text { POSITION } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { FREQUENCY } \\ & \hline \end{aligned}$ | DUMMY ANTENNA | $\begin{gathered} \text { SIGNAL } \\ \text { GENERATOR } \\ \text { CONNECTIONS } \end{gathered}$ | OUTPUT INDICATOR | TRIMMER ADJUSTMENT | TRIMMER FUNCTION | REMARKS |
| 1 | Minimum capacity | AM | 455 KC 400 cycle AM | . 1 MFD | High side-Grid of AM converter tube (I2BE6) Low side-Chassis | Output Meter across voice coil | T5A, T5B T6A, T6B | AM I.F. | Adjust for maximum output |
| 2 | " | " | 1600 KC 400 cvele AM | . 00025 MFD | " | " | C2C | AM Oscillator | Adjust for maximum output |
| 3 | 1400 KC | " | $\begin{gathered} 1400 \mathrm{KC} \\ 400 \text { cycle AM } \\ \hline \end{gathered}$ | -• | High side-One ant. terminal Low side-Other ant, terminal | " | $\begin{gathered} \text { C36 } \\ \text { (on back) } \\ \hline \end{gathered}$ | AM Antenna | Adjust for maximum output |
| 4 | Any position where there is no station interference. | FM | $\qquad$ | . 1 MFD | High side—Grid of 3rd I.F. amplifier tube (12BA6). <br> Low side-Chassis | Connect V.T.V.M. to plate of Ratio detector tubenpin 2 (6AL5) | T4B | Ratio detector primary | Adjust for maximum negative voltage, about -5 volts |
| 5 | " | " | 10.7 MC 400 cycle $30 \%$ Modulation. (See note A) | " | " | Connect scope to audio take off point (across C30) | T4A | Ratio detector secondary | Adjust for a balanced pattern on scope. See Fig. 4. |
| 6 | " | " | " | ${ }^{\prime \prime}$ | High side-Grid of 2nd I.F. amplifier tube (I2BA6) Low side-Chassis | Connect scope across 100K ohím grid return resistor of 3rd I.F. (R16) | T3A, T3B | FM 3rd I.F. | Adjust for maximum gain and best pattern on scope. See Fig. 5 (See note "B" below) |
| 7 | " | " | " | " | High side—Grid of Ist I.F. amplifier tube (12BA6) Low side-Chassis | " | T2A, T2B | FM 2nd I.F. | Adjust for maximum gain and best pattern on scope. See Fig. 6. |
| 8 | " | " | " 109 | " | $\begin{gathered} \hline \text { High side-Plate of FM R.F. } \\ \text { tube, pin } 5 \text { ( } 128 A 6 \text { ) } \\ \text { Low side-Chassis } \\ \hline \end{gathered}$ | " | T1A, T2B | FM Ist I.F. | Adjust for maximum gain and best pattern on scope. See Fig. 7. |
| 9 | 109 MC | " | 109 MC <br> 400 cycle $30 \%$ <br> modulation. <br> $(22.5 \mathrm{KC}$ Deviation $)$ | 150 ohms in each lead. | High side—One ant. terminal Low side—Other ant. terminal | Connect output meter across voice coil | C2B | FM Oscillator | Adjust for maximum output (remove AVC ground) |
| 10 | 103 MC | " | 103 MC 400 cycle $30 \%$ modulation. $(22.5$ KC Deviation) | -" | " | " | C2A | FM R.F. | Adjust for maximum output |
| 11 | 100 MC | " | 100 MC 400 cycle $30 \%$ modulation. (22.5 KC Deviation) | " | " | " | LI | FM Antenna | Adjust for maximum output |




FIG. I TUBE AND TRIMMER LOCATIONS

| VOLTAGE CHART |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TUBE No. | PIN <br> 1 | $\begin{gathered} \text { PIN } \\ 2 \\ \hline \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 3 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 4 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 5 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 6 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 7 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 8 \end{gathered}$ |
| 12BE6 AM-Converter | -6 | 0 | 29ac | 17ac | 100 | 100 | 0 |  |
| $\begin{gathered} \text { 12BA6 } \\ \text { AM-I.F. Amp. } \\ \hline \end{gathered}$ | 0 | 0 | 75ac | 63ac | 100 | 100 | 1 |  |
| 12ATb | 0 | 0 | 17ac | 6ac | 0 | 0 | 30 |  |
|  | 0 | 0 | 29ac | 39ac | 100 | 95 | . |  |
| FM-Converter | 0 | 0 | bac | 18ac | 95 | 95 | 0 |  |
| $\begin{gathered} \text { 12BA6 } \\ \text { FM-Ist I.F. Amp. } \\ \hline \end{gathered}$ | 0 | 0 | 39ac | 50ac | 95 | 95 | 1 | - |
| $\begin{aligned} & \text { 12BA6 } \\ & \text { FM-2nd I.F. Amp. } \end{aligned}$ | 0 | 0 | 50ac | 63 ac | 95 | 95 | 1 |  |
| $\begin{aligned} & \text { 12BA6 } \\ & \text { FM--3rd I.F. Amp. } \\ & \hline \end{aligned}$ | 0 | 0 | 18ac | 31 ac | 95 | 95 | 1 |  |
| FM, 6AL5 | 0 | -3 | 0 | bac | -4 | 0 | 0 |  |
| 50L6GT <br> Power output | 0 | 31 ac | 85 | 95 | 0 | 30 | 80ac | 6.5 |

All voltage readings are taken from tube pin to chassis.
All measurements are made with no signal, using a 20,000
ohm per volt meter.
AC input voltage must be maintained at 117 volts for accurate readings.

AC voltages shown are at 1000 ohms per volt.
All voltages shown are approximate.

| RESISTANCE CHART |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TUBE No. | $\begin{gathered} \text { PIN } \\ 1 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 2 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ \hline \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 4 \end{gathered}$ | $\begin{gathered} \text { PIN } \\ 5 \end{gathered}$ | $\begin{gathered} \hline \text { PIN } \\ 6 \\ \hline \end{gathered}$ | $\begin{array}{cc} \hline \text { PIN PIN } \\ 7 & 8 \\ \hline \end{array}$ |
| $\begin{gathered} \text { 12BE6 } \\ A M \text {-Converter } \\ \hline \end{gathered}$ | 20K | 1 | 27 | 18 | 25K | 25K | 3 meg |
| $\begin{gathered} \text { 12BA6 } \\ \text { AM-I. F. Amp. } \\ \hline \end{gathered}$ | 2 meg. | 0 | 70 | 62 | 25K. | 25K | 70 |
|  | 10 meg. | 0 | 18 | 5 | 470K | 120K | 540K |
| $\begin{gathered} \text { 12BA6 } \\ \text { FM—R.F. Amp. } \end{gathered}$ | 1 meg. | 0 | 27 | 40 | 25K | 25K | 70 |
| $\begin{gathered} \text { 12BE6 } \\ \text { M-Monverter } \end{gathered}$ | 20K | 0 | 5 | 18 | 25K | 25K | 22K |
| $\begin{gathered} \text { 12BA6 } \\ \text { FM-Ist I.F. Amp. } \\ \hline \end{gathered}$ | 220 K | 0 | 40 | 50 | 25K | 25K | 70 |
| 12BA6 FM-2nd I.F. Amp. | 220K | 0 | 50 | 62 | 25 K | 25K | 70 |
| $\begin{array}{\|c} \text { 12BA6 } \\ \text { M- } \mathrm{Mrd} \text { I.F. Amp. } \\ \hline \end{array}$ | 100 K | 0 | 18 | 28 | 25K | 25K | 70 |
| $\begin{gathered} \text { 6AL5 } \\ \text { FM-Ratio Detector } \end{gathered}$ | 0 | 25K | 0 | 5 | 750K | 0 | 750K |
| 50L6GT Power output | 0 | 28 | 25K | 25K |  |  | 70150 |

All resistance readings are taken from tube pin to chassis.
Due to manufacturing tolerance on component parts, resistance readings may vary as much as $20 \%$.

All readings are shown in ohms unless otherwise noted.


FIG. 2 DIAL CORD STRINGING



## TUBE COMPLEMENT

The tube complement of this receiver consists of the following:
1-6SK7-R.F. Amplifier
1-6SA7-Mixer-OSC.
1-6SK7-I.F. Amplifier
1-6SQ7-Det. AVC—Audio
1—6K6-Power Óutput
1-5Y3—Rectifier

Fig. 1 Chassis, Top View


Fig. 2 Schematic Diagram

## ALIGNMENT PROCEDURE

Volume control-Maximum: all adjustments. Tone Control-Treble: Full Clockwise Rotation.
Connect ground lead of signal generator to radio chassis.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil of speaker.

| Position of Variab? | Generator Frequency | Dummy Ant. mfd. | Generator Connections | Trimmer Adiustment | Trimmer Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Capacity (Fully Opened) | 455 K.C. | . 1 | 6SA7 Grid (Stator of CIB) | T1 T2 | I. F. |
| Minimum Capacity (Fully Opened) | 1725 K.C. | . 00025 | *Ant. Terminal on Loop | ClC | Osc. |
| Tune in signal From Generator | 1500 K.C. | . 00025 | *Ant. Terminal on Loop | C1B | R. F. |
| Tune in signal From Generator | 1500 K.C. | . 00025 | *Ant. Terminal on Loop | C1A | Ant. |
| *Be sure coupling link is in correct position for external antenna operation. See Fig 3. <br> Repeat the above alianment procedure as a final check. |  |  | With an output meter connected across the voice coil of the speaker, the output meter reading for $1 / 2$ watt is 1.25 volts using a sianal which is modulated 400 c.p.s. |  |  |

POWER SUPPLY<br>This receiver is designed to operate from a power source of 117 volts A.C. 60 cycle current. If in doubt about the power rating in your location consult your local power company for this information. Never attempt to operate this radio on any current other than that specified.



## PARTS LIST

| Circult Reference | CONDENSERS |  |
| :---: | :---: | :---: |
| CIA, CIB, CIC | B19-186 | Variable condenser |
| C2 | B15-189 | 200 MMF Mica condenser (on loop) |
| C3, C4, C9, C16 | A16-152 | . 05 MFD 200 volt condenser |
| C5, C6, C10, C13 | A16-158 | . 05 MFD 400 volt condenser |
| C7, 68 | A15-175 | 50 MMF mica condenser |
| C11, C14, C15 | A16-156 | . 01 MFD 400 volt condenser |
| C12 | A15-176 | 250 MMF mica condenser |
| C17 | A16-168 | . 01 MFD 1000 volt condenser |
| C18 | A18-279 | 16 MFD 450 volt electrolytic condenser |
| C19 | A18-274 | 16 MFD 450 volt electrolytic condenser . |
| C20, 211 | A83-355 | 4.7 MMF condenser |
|  |  | RESISTORS |
| R1, R8, R10, R15 | A60-667 | 220K ohm $1 / 2$ watt resistor |
| R2, R6 | A60-686 | 150 ohm $1 / 2$ watt resistor |
| R3 | A60-692 | 27 K ohm 1 watt resistor |
| R4, R7 | A60-671 | 100K ohm $1 / 2$ watt resistor |
| R5 | A60-659 | 22K ohm $1 / 2$ watt resistor |
| R9 | A60-663 | 10 megohm $1 / 2$ waft resistor |
| R11 | A60-662 | 470K ohm $1 / 2$ watt resistor |
| R12 | A60-701 | 560 ohm 1 watt resistor |
| R13 | A60-700 | 82K ohm 1 watt resistor |
| R14 | A60-699 | 1000 ohm 2 watt resistor |
|  |  | COILS |
| 4 | C10-459 | Antenna coil |
| 12 | B10-452 | R. F. Coil |
| 13 | B10-446 | Oscillator coil |
| 11 | B10-412 | 1st I.F. transformer |
| T2 | B10-444 | 2nd I. F. transformer |
|  |  | MISCELLANEOUS |
| T3 | A80-222 | Output transformer |
| T4 | C80-223 | Power transformer |
|  | A69-169 | Switch, on-off |
|  | A26-123 | Tone control |
|  | A24-169 | Volume control |
|  | A84-41 | Dial drive shaft and pulley assembly .. |
|  | B79-359 | Speaker, 10' P. M. . . . . . . . . . |
|  | S84-234 | Loop antenna and Back assembly |
|  | C67-529 | Dial scale |
|  | A52-263 | Knob, (tuning) |
|  | A52-264 | Knob, (tone) |
|  | A52-265 | Knob, (volume) |
|  | A52-266 | Knob, (on-off) |
|  | A52-267 | Knob, (radio-phono) |
|  | B58-67 | Dial pointer |
|  | A83-537 | Retainer, dial scale |
|  | A69-180 | Switch, radlo-phono . . . . . . . . . . . . . . |
|  | 11200 | Milwaukee Automatic Record Changer . |



## TUBE COMPLEMENT

The tube complement of this receiver consisis of the following:

$$
\begin{aligned}
& \text { 1-6SK7—R.F. Amplifier } \\
& \text { 1-6SA7-Mixer-OSC. } \\
& \text { 1-6SK7-I.F. Amplifier } \\
& \text { 1-6SQ7-Det. AVC—Audio } \\
& \text { 1-6K6—Power Output } \\
& \text { 1-5Y3—Rectifier }
\end{aligned}
$$

Fig. 1 Chassis, Top View


Fig. 2 Schematic Diagram

## ALIGNMENT PROCEDURE

Volume control-Maximurn: all adjustments.
Tone Control-Treble: Full Clockwise Rotation.
Connect ground lead of signal generator to radio chassis.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil of speaker.

| Position of Variable | Generator Freauency | Dummy Ant. mfd. | Generator Connections | Trimmer Adiustment | Trimmer Function |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Capacity (Fully Opened) | 455 K.C. | . 1 | 6SA7 Grid (Stator of CIB) | T1 T2 | I. F. |
| Minimum Capacity (Fully Opened) | 1725 K.C. | . 00025 | *Ant. Terminal on Loop | ClC | Osc. |
| Tune in signal From Generator | 1500 K.C. | . 00025 | *Ant. Terminal on Loop | C1B | R. F. |
| Tune in signal From Generator | 1500 K.C. | . 00025 | $\begin{aligned} & \text { *Ant. Terminal } \\ & \text { on Loop } \\ & \hline \end{aligned}$ | C1A | Ant. |
| *Be sure coupling link is in correct position for external antenna operation. See Fig 3. <br> Repeat the above alignment procedure as a final check. |  |  | With an output meter connected across the voice coil of the speaker, the output meter reading for $1 / 2$ watt is 1.25 volts using a signal which is modulated 400 c.p.s. |  |  |

## POWER SUPPLY

This receiver is designed to operate from a power source of 117 volts A.C. 60 cycle current. If in doubt about the power rating in your location consult your local power company for this information. Never atteinpt to operate this radio on any current other than that specified.


PARTS LIST

| Circuit Reference | CONDENSERS |  |
| :---: | :---: | :---: |
|  | Part No. | Description |
| C1A, C1B, CiC | B19-186 | Variable condenser |
| C2 | B15-189 | 200 MMF Mica condenjer (on loop) |
| C3, C4, C9, C16 | A16-152 | . 05 MFD 200 volt cendenser |
| C5, C6, C10, C13 | A16-158 | . 05 MFD 400 volt condenser |
| C7, C8 | A15-175 | 50 MMF mica condenser |
| C11, C14, C15 | A16-156 | . 01 MFD 400 volt condenser |
| C12 | A15-176 | 250 MMF mica condenser |
| C17 | A16-168 | . 01 MFD 1000 volt condenser |
| C18 | A18-279 | 16 MFD 450 volt electrolytic condenser |
| C19 | A18-274 | 16 MFD 450 volt electrolytic condenser |
| C20, C2 1 | A83-355 | 4.7 MMF condenser |
|  |  | RESISTORS |
| R1, R8, R10, R15 | A60-667 | 220K ohm $1 / 2$ watt resistor |
| R2, R6 | A60-686 | 150 ohm $1 / 2$ watt resistor |
| R3 | A60-692 | 27K ohm 1 watt resistor |
| R4, R7. | A60-671 | 100K ohm $1 / 2$ watt resistor |
| R5 | A60-659 | 22K ohm $1 / 2$ wart resistor |
| R9 | A60-663 | 10 megohm $1 / 2$ watt resistor |
| R11 | A60-662 | 470K olim $1 / 2$ watî resisior |
| R12 | A60-701 | 560 ohm 1 watt resistor |
| R13 | A60-700 | 82 K ohm 1 watt resistor |
| R14 | A60-699 | 1000 ohm 2 watt resistor |
|  |  | COILS |
| 41 | C10-459 | Antenna coil |
| L2 | B10-452 | R. F. Coil . . : |
| L3 | B10-446 | Oscilíator coil |
| T1 | $810-412$ | 1 st I.F. transformer |
| T2 | B10-444 | 2nd I. F. transformer |
|  |  | MISCELLANEOUS |
| T3 | A80-222 | Output transformer |
| T4 | C80-223 | Power transformer |
|  | A69-169 | Switch, on-off |
|  | A26-123 | Tone control |
|  | A24-169 | Volume control |
|  | A84-41 | Dial drive shaft and pulley assembly |
|  | B79-359 | Speaker, 10' P. M. . . . . . . . . . |
|  | S84-248 | Loop anienna and Back assembly |
|  | C67-533 | Dial scale |
|  | A52-263 | Knob, (tuning) |
|  | A52-264 | Knob, (tone) |
|  | A52-265 | Knob, (volume) |
|  | A52-266 | Knob, (on-off) |
|  | A52-267 | Knob, (radio-phono) |
|  | A58-68 | Dial pointer |
|  | B83-471 | Retainer, dial scale |
|  | A69-180 | Switch, radio-phono |
|  | 11200 | Milwaukee Automatic Record Changer . . |



## ALIGNMENT PROCEDURE

Volume conrol—Maximum: all adjustments.
Connect ground lead of signal generator to common negative.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil of speaker.

The following equipment is necessary for proper alignment: Signal generator that will provide the test frequencies as listed, $30 \%$ modulated, 400 c.p.s.
Output meter.
Non-metallic screwdriver.
Dummy antenna-. 1 mfd .

CAUTION: This is an A.C.-D.C. receiver and if alignment is made with the receiver connected to 117 volts A.C. or D.C., it is necessary to isolate the signal generator or the receiver from the line by use of a transformer, or place a . 2 M.F.D. condenser in both test leads of the Signal Generator.

| $\begin{gathered} \text { Position } \\ \text { of } \\ \text { Variable } \end{gathered}$ | Generator Frequency |  | Dummy Ant. Mfd. | Generator Connections | Trimmer Adiustment | Trimmer Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fully open | 455 | KC | . 1 | *1R5 Grid (Stator of CIA) | T2 | Output I.F. |
| Fully open | 455 | KC | . 1 | *1R5 Grid (Stator of ClA) | T1 | Input I.F. |
| Fully open | 1600 | KC | . 1 | *1R5 Grid (Stator of C1A) | C1B | Oscillator |
| Tune in signal from generator | 1400 | KC | - | Loosely coupled to loop | C1A | Antenna |

*Connect ground lead of signal generator to common negative.

| Circuit Diagram Reference | Part No. | Description |
| :---: | :---: | :---: |
| C1A, C1B | B19-197 | Variable condenser |
| C2, C6 | A16-152 | . 05 MFD 200 volt condenser. |
| C3. | A16-189 | . 05 MFD 400 volt condenser. |
| C4 | A15-175 | 50 MMF mica condenser |
| C5, Cll | A16-153 | . 005 MFD 600 volt condenser |
| C7 | A16-157 | . 1 MFD 200 volt condenser.-. |
| C8 | A16-172 | . 05 MFD 400 volt condenser |
| C9 | A15-188 | 100 MMF mica condenser |
| C10 |  | \{ 40 MFD 150 volt electrolytic cond. \} |
| C12 | A18-290 | \{ 30 MFD 150 volt electrolytic cond. $\}$ |
| C13 |  | \{ 100 MFD 10 volt electrolytic cond. |
| C14 | A16-182 | . 002 MFD 200 volt condenser. |
| C15 \} |  |  |
| C16 | *A17-100 | $\left\{\begin{array}{l}.005 \mathrm{MFD}\end{array}\right.$ $\qquad$ See note below. |
| C17 |  | 50 MMF $\qquad$ |
| R1 | A60-671 | 100 K ohm 1/2 watt $20 \%$ resistor |
| R2 | A60-680 | 1500 ohm $1 / 2$ watt $10 \%$ resistor --.- |
| R3, R9 | A60-663 | 10 megohm $1 / 2$ watt $20 \%$ resistor |
| R4 | A60-685 | 47K ohm $1 / 2$ watt $20 \%$ resistor |
| R5 | A60-684 | 2.2 megohm $1 / 2$ watt $20 \%$ resistor |
| R6 | A60-725 | 160 ohm 5 watt $10 \%$ resistor- |
| R7 | A60-722 | 470 ohm $1 / 2$ watt $10 \%$ resistor |
| R8, ${ }^{1}$ | A24-178 | Volume control, with switch |
| R10 | A60-757 | 2000 ohm 10 watt $10 \%$ resistor. |
| R11 | A60-724 | 3300 ohm 1 watt 10\% resistor |
| R12 | A60-665 | 390 ohm $1 / 2$ watt $10 \%$ resistor --- |
| R13 | A60-756 | 1200 ohm $1 / 2$ watt $10 \%$ resistor |
| R16 |  | \{ 2.2 megohm |
| R15 | *A17-100 | $\{1$ megohm |
| R14 |  | 4.7 megohm |
| R17 | A60-668 |  |
| R18 | A60-758 | 560 ohm $1 / 2$ watt $10 \%$ resistor |
| L1 | A10-514 | Oscillator coil |
| T1, T2 | C10-475 | 1 st and 2nd I.F. transformer |
| T3 | B80-245 | Output transformer:-...- |
| S2 | A69-182 | Switch, AC-DC, Battery |
|  |  | MISCELLANEOUS PARTS |
|  | D21-108 | Cap for handle |
|  | A83-421 | Clip, I.F. transformer mounting |
|  | S84-271 | Cover assembly, front (with loop) |
|  | S84-128 | Cover assembly, rear .- |
|  | B83-442 | Handle |
|  | S84-243 | Hub and pointer assembly |
|  | C52-216 | Knob, tuning .-.-....... |
|  | B52-217 | Knab, volume |
|  | B23-156 | Line cord and plug |
|  | A83-568 | Rectifier, selenium |
|  | A71-38 | Retainer, paper tube for line cord |
|  | A68-35 | Socket, tube --.....- |
|  | B79-364 | Speaker, 4"' P.M. |
|  | A76-49 | Terminal, for " $\mathrm{B}^{\prime}$ bettery |

NOTE: C15, C16, C17, R14, R15, R16 are contained in the Ceramic Coupling Unit, Part No. A17-100.
9026C: A72T4, CHASSIS 9026D

| CABINET FREQUENCY RANGES |  |
| :---: | :---: |
| Broadcast | .540-1600 KC |
| FM | .88-108 MC |
| POWER OUTPUT |  |
| Undistorted | , |
| Maximum | 2.5 watts |

## SPEAKER

## INTERMEDIATE FREQUENCY

.5' PM Dynamic
\{ FM-10.7 MC
This receiver will operate on either 50 or 60 cycles Alternating Curre (A.C.) at 105 to 125 volts or on Direct Current (D.C.) at 105 to 125 volts. Rectified $\mathrm{B}+$ voltage is obtained by using a miniature selenium type rectifier which is noted for reliability and lona life. The built-in antenna used for AM reception is a high impedance loop that is mounted on the rear of the chassis. A $46^{\prime \prime}$ length of wire serves as a built-in FM antenna. This wire is connected to the right hand terminal of the pair of terminals labeled "External FM Antenna" and it must be uncoiled and allowed to hang down at back of receiver.
Tuning of the radio frequency circuits of the receiver is accomplished by a 5 section gang condenser. Two sections are used to tune the AM antenna and oscillator circuits, and three sections are used to tune the FM antenna, R.F., and oscillator circuits.
An R.F. amplifier stage is utilized to give maximum sensitivity and selectivity as well as high image rejection on FM reception. Although this stage is switched out of the circuit on AM reception, overall receiver sensitivity is adequate for highly satisfactory reception where station signals are of moderate strength.
Both transformer coupled I.F. stages are used for FM and one stage is used for AM. The first and second I.F. transformers have two sets of windings; one set is tuned to 455 KC for $A M$ operation and the other is tuned to 10.7 MC for FM operation: Switching of the windings, to alleviate undesired beat frequencies, is necessary only in the first I.F. transformer

STAGE GAIN MEASUREMENT PROCEDURE
REQUIRED INSTRUMENTS: The amount of amplification or "gain" of each of the stages of this receiver should be measured with an A. C. Vacuum Tube Voltmeter of the high frequency type (uniform response up to 100 MC ). A conventional "AM" type signal generator may be used but it must be capable of producing fundamental frequencies of 600 KC . and 98 MC -avoid using a generator that produces the 98 MC . signal by means of harmonics.
PROCEDURE: It is exceedingly important to adhere to the procedure outlined below since the accuracy of these measurements will be affected to a considerable extent by the failure to establish proper operating conditions.

1. Be sure that R.F., I.F. and Discriminator stages are carefully and accurately aligned by utilizing the alignment procedure given in this manual.
2. Connect Signal Generator as shown below. Note that generator connections differ for " AM " and " FM " measurements.
3. For "AM" measurements, set signal generator to 600 KC . and then carefully tune radio receiver to this signal by using an output meter to indicate peak output. If a local station interferes, set generator to a nearby frequency and re-tune the receiver.
4. For " $\mathrm{FM}^{\prime}$ " measurements, set signal generator to 98 MC . and then carefully tune radio receiver to this signal by using a $D$. $C$.

## MODELS A72T1, CHASSIS 9026A; A72T2, CHASSIS 9026B

A72T3
Walnut (Wood).
A72T4
(Plastic) Ivory (Plastic). Blonde (Wood
the 6AQ6 diode rectification circuit.
Frequency modulation detection is accomplished by an entirely new circuit that is known as the "RATIO DISCRIMINATOR." This FM detector circuit has the unusual ability to reject noise or other brief: variations in amplitude of the sianal. The relative insensitivity of the Ratio Discriminator to signal amplitude variation makes it possible to eliminate the use of a "limiter" stage that usually precedes the discriminator in other types of FM detector systems. It will therefore be noted that this receiver utilizes a normal I.F. amplifier stage instead of a low gain limiter stage preceding the FM discriminator. Audio frequency output from both AM and FM detectors is amplified through the triode section of the $6 A Q 5$. The audio power amplifier stage incorporates a 50B5 tube which is coupled to a permanent magnet dynamic speaker. A special inverse feedback arrangement is used which reduces distortion and contributes to exceptionally good tone quality.

## DIAL AND POINTER DRIVE CORD ARRANGEMENT



To string dial cord, turn the main drive drum to maximum counter-clockwise position and use following parts:

$$
\begin{aligned}
& \text { 114955-Clip on end of cord } \\
& \text { 117057-Cord (6 feet) } \\
& \text { 119087-Ring for dial cord } \\
& \text { 161384-Tension Spring }
\end{aligned}
$$

Vacuum Tube Voltmeter as an output indicator-meter must be connected between pin \#3 of 12H6 tube and B-. If a local station interferes, set generator to a nearby frequency and re-tune the receiver.
The values of stage gain which are given here were measured with a fixed bias of 1.5 volts on the control grids of all R.F. and I.F tubes which are connected to the A.V.C. circuit. Therefore, these values are not intended to indicate the full capability of a stage but they will servミ as a convenient basis for determining proper operation. In order to duplicate the fixed bias voltage, connect the negative terminal of a 1.5 volt battery to A.V.C. at terminal 7 of ihs 1st I.F. transformer and connect the positive battery lead to BR.F. and I.F. circuits are slightly de-tuned when contact is made with an instrument probe and this action, which is indicated by a change in the output meter reading, may seriously affect the gain measurement. Therefore, it is important to adjust the associated circuit trimmer for a maximum output meter reading and to set the input signal level to a convenient reference point on the gainmeasuring instrument while the probe is making contact. After removing the probe it is again necessary to adjust the trimmer so as to obtain the same output meter reading and thereby assure that the signal voltage at the specified point has not changed as a result of circuit de-tuning.

** When measuring the gan of this stage with a vacuum tube voltmeter the input signal level for minimum meter indication may cause overloading. Under those conditions the measured gain will be found to be approximately 14 X .
DIFFERENCES in tube characteristics, tolerance of parts, adjustment of tuned circuits and variations in line voltage will influence stage gain. These factors should be given due attention in event the gain of a stage varies extensively from the values shown above.

## CLARI-SKEMATIX

PAGE 19-2 STEW-WAR MODELS A72TI, CHASSIS STEWART-WARNER CORP. MODELS A72T3, CHASSIS 9026A; A72T2, CHASSIS $9026 B$ 9026C; A72T4, CHASSIS




II your signal generator has an ACCDC type power supply, insert $a .25$ MFD. condenser in series with the ground lead betore making the cornnectijns show, above.

## BROADCAST BAND - "AM" - ALIGNMENT PROCEDURE

1. Remove chassis and loop antenna from cabinet.
2. With the gang fully meshed, the dial pointer should be in the position indicated by the last mark below 55 on the dial. If it is set incorrectly, release the pointer clip on the dial cord and reposition pointer.
3. During the alignment of this receiver, it will be necessary to set the dial pointer to the following frequencies: 1500 Kc ., and 600 Kc . In order to avoid replacing the chassis in the cabinet each time a dial setting is required, it will be found more convenient to mark the required frequency points on the white dial background before starting the alignment.
4. Connect an output meter across speaker voice coil or from plate of the 50B5 tube to B-through a 0.1 Mfd . condenser (see voltage chart for convenient B - connection).
5. Connect ground lead of signal generator to B-lug.

CAUTION: If your signal generator is designed with an AC-DC type power supply, connect ground lead of signal generator to B- lug through a . 25 Mfd . condenser.
6. Set volume control to the maximum volume position and use a weak signal from the signal generator.
7. If alignment of both $A M$ and FM channels is required, it is necessary to align the AM channel first; then align the FM channel as instructed in the preceding section.


PAGE 19-8 STEW-WAR
MODELS B92CR1, $-2,-3,-4$, STEWART-WARNER CORP. $-8,-9,-10$; CHASSIS
$9043-A,-B,-C,-D,-K,-L,-M I$



MODELS B92CR1, $-2,-3,-4$, STEWART-WARNER CORP.
$-8,-9,-10$; CHASSIS
$9043-\mathrm{A},-\mathrm{B},-\mathrm{C},-\mathrm{D},-\mathrm{K},-\mathrm{L},-\mathrm{M}$
FREQUENCY MODULATION - "FM" - ALIGNMENT PROCEDURE
(USING a Vacuum tube voltmeter and am signal generator)

1. Disconnect leads from FM-AM antenna termina strip (labelled FM-FM-AM-AM) at back of chassis, also disconnect speaker leads and phone plugs. Remove chassis as well as the two speakers. (If desired, allow speakers extension leads.)
2. Stand chassis on one edge and space it approx mately same distance from loop (attached to back of cabinet) as when installed in cabinet. Reconmed the antenna terminal strip. Reconnect the two speakers.
3. With the gang condenser fully meshed, dia pointer should be in the position indicated b pointer should be in he posion idicaled it is


| $\begin{aligned} & \text { DUMMY ANT. } \\ & \text { WNTHERITSAL } \\ & \text { WITHAL } \end{aligned}$ GENERATOR | $\begin{gathered} \text { CONNECT } \\ \text { HIGH SDE OF } \\ \text { GENENAL } \\ \text { GEERATOR TO } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { SIGNAL } \\ \text { GENERATOR } \\ \text { FREQUENCY } \end{array}$ | $\begin{gathered} \text { BAND } \\ \text { SOSTICHON } \\ \text { POSII } \end{gathered}$ | $\begin{gathered} \text { Recerver } \\ \text { SETIIING } \\ \text { SER } \end{gathered}$ | TRIMMER OR SLUG NUMBER | TRIMMER DESCRIPTION | TYPE OF AdJustmen |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {condenser }}$ |  | 455 KC |  | Any point where affect the signal. | 1-2 | ${ }^{3} \mathrm{rd}$ I.F. | $\underbrace{\text { Ther }}_{\text {Adjust }}$ (for maximum moutput |
|  |  |  |  |  | 3 | 2nd 1.8 . |  |
|  |  |  |  |  | 4.5 | 1st I.F. |  |
| 1000 MMFD. Mica Condenser |  | 1500 KC | $\begin{gathered} \text { AM } \\ \begin{array}{c} \text { Broadcast } \\ \text { (Middle) } \end{array} \end{gathered}$ | 1500 kc | 6 |  | Adjust for maximum outpat. |
| 1000 MMFD . <br> Condense |  | 1500 KC |  |  | 7 | (Mroadest | Adjust for maximum outp ${ }^{\text {at }}$ |
| $\begin{aligned} & \text { 1000 MinfD. } \\ & \text { Condenser } \end{aligned}$ |  | 600 KC |  |  | 8 |  | Adjust for maximum outpat. |
| Repeat adjustment of trimmers 7 and 8 until one no longer detunes the other. |  |  |  |  |  |  |  |


set incorrectly, hold tuning shaft steady and eposition pointer.
4. Connect an output meter across speaker vcice coils, or from plate of 6V6GT tube to chassis through a 0.1 Mfd. condenser.
5. Connect ground lead of signal generator to the receiver chassis.
Set volume control at maximum volume position and use a weak signal from the sighal generator.
7. After alignment procedure is completed and chassis and loop antenna have been reinstalled in cabinet, arrange leads to loop so that they are separated from each other as much as ossible-avoid twisting, taping or extending these leads.
 neter providing proend
nator circuit trimmer.






2. Disconnect leads irom fN-AM anienna ferminal strip (labelled and phono plugs. Hemove chassis as well as the two speakers.
(If desired, allow speaker to remain in cabinet and connect to
3. With the gang condenser fully meshed. dial pointer should be

4. A Apeciitic setting of the receiver volume control is not required. volume position so that aligment signals will be cudibe even
though the output indication is obtained by a V.T volmeter
5. Dresss $F M$ to points in the discriminator circuit. as possible, par-
ticularly those in the oscillataro circuit I.F. plate and grid leads
should also be kept short and straight

| SIGNAL GENERATOR CONNECTIONS | frequency ${ }^{\wedge}$ TYPE OF MODULATIO | vacuum tube VOLTMETER CONNECTIONS | $\begin{gathered} \substack{\text { Reciver } \\ \text { dithin } \\ \text { SEETING }} \end{gathered}$ | $\begin{aligned} & \text { TRIMMER } \\ & \text { OR SLUG } \\ & \text { NUMBER } \end{aligned}$ | TRIMMER DESCRIPTION | TYPE OF ADJUSTMENT and output indication |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Connect common (or ground) ter-minal of meter to receiver chassis. D.c. probe lead of meter is henconected to pin $\# 7$ of the 6 ALS tube. |  | 10 | ${ }_{\text {Disariminator }}^{\substack{\text { Primary }}}$ | Adjust these trimmers for maximummeter reading-the output voltage will me of negative polarity. |
|  |  |  |  | 11 and 12 | 3rd IF. |  |
|  |  |  |  | 13 | 2nd |  |
|  |  |  |  | 14 and 15 | Ist IF. |  |
| ${ }_{\text {cis }}^{\text {Same }}$ above | Same |  | ${ }_{\text {as }}^{\text {Same }}$ above | 9 | ${ }_{\text {Diseriminator }}^{\text {Secondary }}$ |  |
| Recheck adjustment of trimmers $\# 9$ and 10 to be sure that both are set as accurately as possible to obtain the specified output indication on vacuumtube voltmeter. Then disconnect and remove the two 68,000 ohm resistors that were used for the vacuum tube voltmeter connection in the preceding step |  |  |  |  |  |  |
|  |  |  | 108 MC | 16 | ${ }_{\text {Oser }}^{\text {Osillator }}$ TTimmer |  |
| ${ }_{\text {Sa }}^{\text {Same }}$ above | Same as above | as Same |  | 174 and 15 | ${ }_{\substack{\text { Antena } \\ \text { Trimmer }}}^{\text {Ist 1.F. }}$ |  |
|  |  |  |  |  |  |  |

©John F. Rider

## FREQUENCY MODULATION - "FM" - ALIGNMENT PROCEDURE (USING AN OSCILLOSCOPE AND FM "SWEEP" GENERATOR)

INSTRUMENTS: Alignment of the FM circuits in this receiver can be most conveniently accomplished with an FM signal generator. When using this type generator, the output indicator must be an oscilloscope.

1. If alignment of both AM and FM channels is required it is necessary to align the AM channel first, then align the FM channel as instructed in chart below (AM alignment procedure is given on page 4).
2. Disconnect leads from FM-AM antenna terminal strip (labelled FM-FM-AM-AM) at back of chassis; also disconnect speaker leads and phono plugs. Remove chassis as well as the two speakers. (If desired, allow speakers to remain in cabinet and connect to receiver by extension leads.)
3. With the gang condenser fully meshed, dial pointer should be in the position indicated by the last
division below 55 on the dial. If it is set incorrectly, hold tuning shaft steady and reposition pointer.
4. A specific setting of the receiver volume control is not required, however, it will be found convenient to leave it in the maximum volume position so that alignment signals will be audible even though the output indication is obtained by an oscilloscope connected to points in the discriminator circuit.
5. Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit. I.F. plate and grid leads should also be kept short and straight.
6. Set band switch to the FM (extreme clockwise) position.
7. Set tone control to fully counter-clockwise position.

| $\begin{aligned} & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { CONNECTIONS } \end{aligned}$ | FREQUENCY <br> \& TYPE OF MODULATION | OSCILIOSCOPE CONNECTIONS | $\begin{aligned} & \text { RECEIVER } \\ & \text { DIAL } \\ & \text { SETTING } \end{aligned}$ | TRIMMER OR SLUG NUMBER | $\underset{\text { DESCRIPTION }}{\text { TRIMMER }}$ | TYPE OF ADJUSTMENT AND OUTPUT INDICATION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FM signal should preferably b $\pm 300 \mathrm{KC}$. |  | Any position where it does where it does not affect the signal. | 9 | Discriminator Secondary |  |
| $\underset{\text { as above }}{\text { Same }}$ | $\begin{aligned} & \text { Same } \\ & \text { as above } \end{aligned}$ | $\begin{aligned} & \text { Same } \\ & \text { as above } \end{aligned}$ | $\begin{aligned} & \text { Same } \\ & \text { as above } \end{aligned}$ | 10 | $\underset{\text { Primary }}{\text { Discriminator }}$ | Adjust these trimmers for maximum amplitude and steepness of that portion of the pattern between " $A$ " and " $C$ " (see Fig. 2). |
|  |  |  |  | 11 and 12 | 3rd I.F. |  |
|  |  |  |  | 13 | 2nd I.F. |  |
|  |  |  |  | 14 and 15. | 1st I.F. |  |

Recheck adjustments of trimmers $\# 9$ and 10 to be sure that both are set as accurately as possible to obtain correct cross-over point or symmetry of pattern.

| Generator output leads must be connected to the two "FM" antenna terminals at back of chassis. Insert a 120 Ohm resistor in series with each of the generator leads before connecting to receiver antenna terminals. | 108 MC <br> FM signal should preferably be modulated $\pm 300 \mathrm{KC}$. | Same as above | 108 MC | 16 | Oscillator Trimmer | Adjust trimmer $=16$ to obtain the symmetrical pattern shown in Fig. 2. Correct setting of trimmer $\ddagger 16$ is obtained when cross-over point in pattern is centrally located. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Same as above | Same as above | Same as above | By means of tuning control knob, set dial pointer to 108 MC. mark on dial. | $\frac{17}{\text { mid } 15}$ | Antenna <br> Trimmer <br> Ist I.F. | Adjust trimmer $\pm 17$ for maximum amplitude of pattern. <br> Recheck adjustment of these trimmers for maximum amplitude of pattern. |

Check calibration and tracking of receiver with input signals of 88 and 98 MC. If difference between dial pointer setting and 88 or 98 MC calibration mark does not exceed $\pm 0.3 \mathrm{MC}$. and antenna circuit is tracking properly, then alignment may be considered satisfactory and no further adjustment is necessary.
Where the calibration error is greater than $\pm 0.3 \mathrm{MC}$. it is advisable to make the following adjustments:

1. If pointer falls above the 88 MC. calibration point, it will be necessary to slightly spread the windings of the FM oscillator coil. Then repeat the two preceding adjustments of trimmers

16 and 17 at 108 MC. Should it be found impossible to obtain the 108 MC . signal at the proper point on the dial by adjustment of the trimmers it will then be necessary to adjust the spacing of the gang condenser plates.
2. If pointer falls below the 88 MC . calibration point, it will be necessary to push the windings together on the FM oscillator coil. Then repeat the two preceding adjustments of trimmers 16 and 17 at 108 MC. Should it be found impossible to obtain the 108 MC . signal at the proper point on the dial by adjustment of the trimmers it will then be necessary to adjust the spacing of the gang condenser plates.

PAGE 19-14 STEW-WAR

## MODELS B92CRI, -2, -3 , STEWART-WARNER CORP.

$$
\text { CHASSIS } 9043-A,-B,
$$

$$
-4,-8,-9,-10
$$

SOCKET VOLTAGES
Measured with voltmeter having sensitivity of 1000 ohms per volt except where indicated by (*). The (*) symbol designives an vacuum tube voltmeter measurement.
ALL MEASUREMENTS MADE WITH BAND SWITCH FN "FM" POSITION UNLESS OTHERWISE INDICATED
DIAL TUNED TO 88MC. FOR "FM" MEASUREMENTS
DIAL TUNED TO 540KC. FOR "AM" MEASUREMENTS VOLUME CONTROL SET TO MINIMUM WITH NO SIGNAL TONE CONTROL SET TO FULLY CLOCKWISE POSITION

GROUND ALL ANTENNA TERMINALS


REAR OF CHASSIS
NOTE A: Grounding of center stud on tube socket is necessary to reduce capacity coupling between other pins. Oscillation may result if this ground is omitted. NOTE B: This measurement should NOT be made with a conventional type voltmeter as circuit may break into oscillation due to coupling thru instrument leads; use a vacuum tube voltmeter with short leads.

DIAL AND POINTER DRIVE CORD ARRANGEMENT

To string dial cord, first slip pointer off its shaft. Then remove dial scale by taking out the six clips around edges. Dial plate may be taken off by removing the two screws which are visible and accessible at front of chassis. Now set gang condenser to fully open position and use the following parts:

114955 Clip on end of cord
117057 Cord (3 feet)
119087 Ring for dial cord
505161 Tension spring
To replace and properly position pointer see step 3 in "AM Alignment Procedure" on page 4.

SIDE VIEW
(With dial plate removed)


## SCHEMATIC




PAGE_19-4 STROMBERG-CARLSON
MODELS 1406PLA STROMBERG-CARLSON CO.



ALIGNMENT PROCEDURE

| A.M. - I.F. |  |  |  |
| :---: | :---: | :---: | :---: |
| Band \& Pointer | Signal Generator | VTVM or Scope Cornection | Adiustment and Notes |
| 1. AM low end of dial. | $455 \mathrm{Kc}$.400 cy . mod. to Pin 7 (Grid) of $\triangle B E 6$ tube through . 01 cap. | Term. 2 of Range sw and ground. | Adi. two AM-IF trans., using - 3 V DC Scale. |
| 2. | $\begin{aligned} & 455 \mathrm{Kc.} \text { swept } \\ & 15 \mathrm{Kc} \text {. } \end{aligned}$ | " | Adjust same for best double-trace curve on scope. |
| F.M. - I.F. |  |  |  |
| 1. FM low end of dial. | 10.7 Mc. 400 cy . mod. to Pin 2 (Grid) of $12 \mathrm{AT7}$ tube at RF Coil thru .01 capacitor. | " | Detune secondary of ratio det. Adj. two FM-IF trans. and pri. ratio det. trans., using -3 VDC scale. |
| 2. " | 10.7 Mc. swept 150 Kc . | " | Disconnect ground end of C-43 $\mathbf{1} 5 \mathrm{mfd}$. electrolytic under ratio defector can). Adj. as step 1 for best double-trace curve on scope. |
| 3. " | " | Terms. 2 \& 1 of Range sw. | Be sure VTVM is not grounded. Connect C-43, Adj. sec. ratio det. for 0 voltage. |
| A.M. - R.F. |  |  |  |
| 1. AM 1500 Kc . | 1500 Kc. 400 cy. mod. coupled loosely to loop leads. | Term. 2 of Range sw and ground. | Adj. two trimmers on tuning cond., using low -DC scale. |
| F.M. - R.F. |  |  |  |
| 1. $F M$ 100 mc. Align both If channe | $100 \mathrm{Mc}$.400 cy . mod. to FM Ant. Terms., thru 270 ohm resistor. if either is out of adjustment. |  | Adj. C-17 (Osc.) C-8 (RF) and C-2 (Ant.) on low -DC scale. |
| dilic s. 2nd AM-IF trans. will If FM ose. coil is rep Refer to No. 4 Vol. | diver and light pressure for slug adjust be damaged if chassis is placed on lett sid ced, adjust placement of its ground lead Current Flash for suggested instrument | ustment <br> ide. <br> for tracking at $88 \mathbf{m c}$. <br> use. |  |

STROMBERG-CARLSON PAGE 19-5
STROMBERG-CARLSON CO. MODELS 1407PFM, 1407PLM, 1409 M-2W, M2-M, M2-Y, M3A, M3M, PGM, PGW

| SPECIFICATIONS | 1407 | 1409 |
| :---: | :---: | :---: |
| Voltage Rating <br> Type Of Circuit. | 50-60 Cycle 117 V Superheterodyne | 50-60 Cycle 117 V Superheterodyne |
| $\text { Tuning Range } \int_{\text {(FM......................... }}^{\text {AM }}$ | 535 to 1630 Kc . 87 to 109 Mc. | 535 to 1630 Kc . 87 to 109 Mc . |
| Input Power Rating $\begin{aligned} & \text { Radio.... } \\ & \text { Phono. }\end{aligned}$ | 70 Watts 25 Watts | 100 Watts |
| Intermediate Frequency $\left\{\begin{array}{l}\text { AM... } \\ \text { FM.... }\end{array}\right.$ | 455 Kc . | $455 \mathrm{Kc} .$ |
| Speaker Voice Coil Impedance at 400 Cycles <br> Power Output. | 6 Ohms 3 Watts | $\begin{aligned} & 6 \text { Ohms } \\ & 11 \text { Watts } \end{aligned}$ |


| TUBE | COMPLEMENT | 1407 | 1409 |
| :---: | :---: | :---: | :---: |
| 6BA6 | IF \& RF Amplifiers. | 4 | 5 |
| $12 \mathrm{AT7}$ | FM Converter................. | 1 | 1 |
| 6BE6 | AM Converter. | 1 | 1 |
| 6AL5 | Ratio Detector | 1 | 1 |
| 6AV6 | AM Detector \& Audio Amplifier.. | 1 | 1 |
| 12AU7 | Audio Phase Inverter................. |  | 1 |
| 6V6GT | Power Output.......................... | 1 | 2 |
| 5Y3GT | Rectifier | 1 | 1 |
| 6E5 | Tuning Eye -............................. |  | 1 |
|  |  | 10 | 14 |

## IDENTIFICATION TABLES

| Model | Cabinet |
| :---: | :---: |
| 1409 M 3 A | 108112 |
| 1409 M 3 M | 108098 |
| $1409 \mathrm{M}-2 \mathrm{~W}$ | 108093 |
| 1409 | M2-Y |
| $1409 \mathrm{M2}-\mathrm{M}$ | 108091 |
| 1409 PGM | 108092 |
| 1409 | 108095 |
| 1407 PLW | 108096 |
| 1407 PFM | 108090 |
|  | 108099 |


| Description | Part No. |  |
| :--- | :--- | :--- |
| 1409 Chassis | 112036 |  |
| 1407 Chassis | 112037 |  |
| 1409 \& 1407 Speaker | 155065 |  |
| 1409 Phonograph | 148022 | (Seeburg SQ-2) |
|  | 148018 | (Seeburg S) |
|  | 148026 | (VM-402 Duo) |
|  | 148031 | (VM-402) |
| 1407-PL Phonograph | 148021 | (Seeburg SQ-1) |
|  | 148024 | (VM-400) |
| 1407-PF Phonograph | 148026 | (VM-402 Duo) |
|  | 148030 | (VM-402) |
|  | 148021 | (Seeburg SQ-1) |
|  |  |  |

## REPLACEMENT PARTS

| Resistors |  |  |  |  | 1409 | 1407 | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1409 | 1407 |  |  |  |  |  |
| Part No. | R-No. | R-No. | Description | $\begin{aligned} & 149188 \\ & 149189 \end{aligned}$ | $\begin{aligned} & 2 \\ & 14,18,22 \end{aligned}$ | 2,14,18 | $\begin{aligned} & 22,000 \text { Ohms } 1 \mathrm{~W} \\ & 39,000 \text { Ohms } 1 \mathrm{~W} \end{aligned}$ |
| 27640 | 34,35 |  | 150,000 Ohms $1 / 2 \mathrm{~W}$ | 149247 | 30 |  | 1,000 Ohms 10 W |
| 28144 | $\begin{gathered} 17,21,26, \\ 29,53 \end{gathered}$ | 17,26,29,53 | 68 Ohms $1 / 2 \mathrm{~W}$ | $\begin{aligned} & 149282 \\ & 149286 \end{aligned}$ | 54 | $\begin{aligned} & 41 \\ & 31,32 \end{aligned}$ | 4.7 Ohms 1 W 2700 Ohms 2 W |
| 28162 | 4 | 4 | 2200 Ohms $1 / 2 \mathrm{~W}$ | Capacitors |  |  |  |
| 28169 | 40 |  | 8200 Ohms 1/2 W |  |  |  |  |
| 28170 | 20 |  | 10,000 Ohms $1 / 2 \mathrm{~W}$ |  | C-No. | C-No. |  |
| 28176 | 28 | 28 | 39,000 Ohms $1 / 2 \mathrm{~W}$ | 25483 | 50 | 42 | . 1 MF 400 V Tubular . 002 MF 600 V Tubular |
| 28177 | 6 | 6 | 47,000 Ohms 1/2 W | 27760 |  | 30,37,48 | . 005 MF 600 V Tubular |
| 28178 | 43 | 34 | 56,000 Ohms $1 / 2 \mathrm{~W}$ | 46315 |  | 35 | . 003 MF 400 V Tubular |
| 28184 | 41 | 20,21,25 | 270,000 Ohms 1/2 W | 110025 | 2,8,17 | 2,8,17 | Trimmer |
| 28186 | 33 |  | 390,000 Ohms $1 / 2 \mathrm{~W}$ | 110029 | 22 | 22 | Variable Condenser |
| 28187 | 42,44,55 |  | 470,000 Ohms $1 / 2 \mathrm{~W}$ | 110031 | 27 | 27 | Trimmer 1.5-15 MMF |
| 28195 | 12 | 12 | - 2.2 Meg. $1 / 2 \mathrm{~W}$ | 110402 | 14,20 | 14,20 | 47 MMF Ceramic |
| 149020 | 45 |  | 330 Ohms 2 W | 110403 | 16 | 16 | 24 MMF Ceramic |
| 149036 |  | 30 | 150 Ohms 2 W | 110404 | 1 | 1 | 20 MMF Ceramic |
| 149055 | 8 | 8 | 12,000 Ohms 2 W | 110405 | 7 | 7 | 15 MMF Ceramic |
| 149101 | $\begin{gathered} 3,5,15,19 \\ 23,31 \end{gathered}$ | 3,5,15,19,37 | 1000 Ohms 1/2 W | $\begin{aligned} & 110419 \\ & 110438 \end{aligned}$ | $\begin{aligned} & 45 \\ & 9 \end{aligned}$ | 9 | . 005 MF 500 V Tubular 1.5 MMF Ceramic |
| 149103 | 50,51 |  | 2200 Ohms 1/2 W | $110451$ | $3,5,26,34,40$ | 3,5,26,50,51 |  |
| 149107 | 9,52* | 9,38,52 | 10,000 Ohms $1 / 2 \mathrm{~W}$ | 110453 | $24$ | $24$ | 220 MMF Ceramic |
| 149109 | 10 | 10 | 22,000 Ohms $1 / 2 \mathrm{~W}$ | 110454 |  | 40 | 330 MMF Ceramic |
| 149111 | 7 | 7 | 47,000 Ohms 1/2 W | 110455 | 39,43 |  | 470 MMF Ceramic |
| 149112 | 47 |  | 68,000 Ohms 1⁄2 W | 110456 110457 | 44 12 | 38 12 | 750 MMF Ceramic |
| 149113 | 32 38,39 | 24 | 100,000 Ohms $1 / 2 \mathrm{~W}$ | $\begin{aligned} & 110457 \\ & 110476 \end{aligned}$ | 12 56 | 12 | 1500 MMF Ceramic 100 MMF Ceramic NPO |
| 149115 | 38,39 |  | 220,000 Ohms $1 / 2 \mathrm{~W}$ |  |  |  | 100 MMF Ceramic NPO. |
| 149117 |  | 22,27 | 470,000 Ohms $1 / 2 \mathrm{~W}$ | 110478 | 31 |  | Diode Filter |
| 149119 | 1,13 | 1,13 | $1 \mathrm{Meg} .1 / 2 \mathrm{~W}$ | $\begin{aligned} & 110488 \\ & 110536 \end{aligned}$ | 37 |  | . 003 MF 500 V Tubular 2200 MMF Moulded |
| 149121 | 16,24 | 16 | 2.2 Meg. $1 / 2 \mathrm{~W}$ | 110540 | 13,19,29,30, | 13,19,31,36 | . 01 MF 400 V Moulded |
| 149123 149125 | 27,46 |  | 4.7 Meg. $1 / 2 \mathrm{~W}$ |  | 32,33,35, |  |  |
| 149125 149170 |  | 23 | $10 \mathrm{Meg} .1 / 2 \mathrm{~W}$ |  | 36,38,41, |  |  |
| 149184 | 11 | 36 11 | 270 Ohms 1 W 5600 Ohms 1 W |  | $47,53,54$, 59,60 |  |  |

REPLACEMENT PARTS—Continued


## Coils-Transformers

| 114051 | $\mathrm{~L}-8$ | $\mathrm{~L}-8$ |
| :--- | :--- | :--- |
| 114052 | $\mathrm{~L}-7$ | $\mathrm{~L}-7$ |
| 114053 | $\mathrm{~L}-1$ | $\mathrm{~L}-1$ |
| 114054 | $\mathrm{~L}-3,6$ | $\mathrm{~L}-3,6$ |
| 114329 | $\mathrm{~L}-10$ |  |
| 114337 | $\mathrm{~T}-4$ |  |
| 114363 | $\mathrm{~T}-1,3$ | $\mathrm{~T}-1,3$ |
| 114364 | $\mathrm{~T}-2$ | $\mathrm{~T}-2,4$ |
| 114365 | $\mathrm{~T}-5$ | $\mathrm{~T}-5$ |
| 114618 | $\mathrm{~L}-11,12$ |  |
| 114620 | $\mathrm{~L}-5$ | $\mathrm{~L}-5$ |
| 114621 | $\mathrm{~L}-4$ | $\mathrm{~L}-4$ |
| 114633 | $\mathrm{~L}-2$ | $\mathrm{~L}-2$ |
| 161239 |  | $\mathrm{~T}-6$ |
| 161240 | $\mathrm{~T}-6$ |  |
| 161415 |  | $\mathrm{~T}-7$ |
| 161416 | $\mathrm{~T}-7$ |  |

## Tone Dial Assembly

| 18630 | $\mathbf{x}$ | $\mathbf{x}$ | Tone Dial Lamp |
| ---: | :--- | :--- | ---: |
| 119015 | $\mathbf{x}$ | $\mathbf{x}$ | Tone Dial Plug Shell |
| 134061 | $\mathbf{x}$ | $\mathbf{x}$ | Tone Wheel |
| 138017 | $\mathbf{x}$ | $\mathbf{x}$ | Red Lens |
| 138018 | $\mathbf{x}$ | $\mathbf{x}$ | Blue Lens |
| 138019 | $\mathbf{x}$ | $\mathbf{x}$ | Inside Lens Holder |
| 138020 | $\mathbf{x}$ | $\mathbf{x}$ | Outside Lens Holder |
| 143014 | $\mathbf{x}$ | $\mathbf{x}$ | Tone Dial Plug (5 point) |
| 152058 | x | x | Tone Dial Lamp Socket |


| Miscellaneous |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 29956 \\ & 32041 \end{aligned}$ | x | x |  | Pilot Lamp Speaker Socket |
| 107010 | x | x |  | Push Button |
| 109031 | x | $x$ | Eye | Cable Assembly |
| 113030 | x | x | I.F. | Trans. Mtg. Clip |
| 118028 | x | x |  | F.M. R.F. Core |
| 122031 | x | x |  | Dial Glass |
| 124018 | x | x | Drive | Cord Assembly |
| 129019 | $x$ | x |  | Pinion Gear |
| 129022 | x | x | Core Carriage | Gear Assembly |
| i 31004 | x | $x$ | A-C | Cord Grommet |
| 131015 | x | x | Dial | Glass Grommet |
| 134059 | x | $x$ |  | Knob |
| 139028 | x | x | A.M. | . Loop Assembly |
| 142048 | x | x |  | Dial Plate |

## Cabinet Parts



STROMBERG-CARLSON CO. 1407 TUBE LOCATION AND VOLTAGE CHARTS


NOTE: Dots on IF trans. indicate the position of the color coded ALIGNMENT PROCEDURE 1407 terminals.

On IF and Radio Detector transformers, primary slugs are under chassis and secondary slugs above chassis.
Adjust AM loop trimmer after chassis is in cabinet for best reception at 1500 Kc .
Adjust dial pointer to marker at top left of dial with condenser plates fully meshed.
A.M. - I.F:

|  | Band \& Pointer | Signal Generator | VTVM or Scope Connection | Adjustment and Notes |
| :---: | :---: | :---: | :---: | :---: |
|  | AM low end of dial. | 455 Kc .400 cy . mod. to Pin 7 (Grid) of 6BE6 tube through . 01 cap. | Term. 2 of AM-FM sw and ground. | Adj. two AM-IF trans., using - 3 V DC Scale. |
| 2. | " | 455 Kc swept 15 Kc . | " | Adjust same for best double-trace curve on scope. |

F.M. - I.F.

|  | FM low end of dial. | 10.7 Mc. 400 cy . mod. to Pin 2 (Grid) of 12AT7 tube at RF Coil thru .01 capacitor. |  | Detune secondary of ratio det. Adj. two FM-IF trans. and pri. ratio det. trans., using -3 VDC scale. |
| :---: | :---: | :---: | :---: | :---: |
| 2. | " | 10.7 Mc. swept 150 Kc. | " | Disconnect ground end of C-43 (5 mfd. electrolytic under ratio detector can). Adj. as step 1 for best double-trace curve on scope. |
| 3. | " | " | Terms. 2 \& 5 of AM-FM sw. | Be sure VTVM is not grounded. Connect C-43, Adi. sec. ratio det. for 0 voltage. |
| A.M. - R.F. |  |  |  |  |
|  | $\begin{aligned} & \text { AM } \\ & 1500 \mathrm{Kc.} \end{aligned}$ | 1500 Kc. 400 cy mod. coupled loosely to loop leads. | Term. 2 of $A M-F M$ sw \& ground. | Adj. two trimmers on tuning cond., using low —DC scale. |
| F.M. - R.F. |  |  |  |  |
|  | FM <br> 100 mc . | 100 Mc. 400 cy. mod. to FM Ant. Terms., thru 270 ohm resistor. |  | Adj. C-17 (Osc.) C-8 (RF) and C-2 (Ant.) on low -DC scale. |
| Align both IF channels if either is out of adjustment. <br> Use a non-metallic screwdriver and light pressure for slug adjustment. <br> 2nd AM-IF trans. will be damaged if chassis is placed on left side. <br> If FM osc. coil is replated, adjust placement of its ground lead for tracking at 88 mc . |  |  |  |  |



NOTE: Dots on IF trans. indicate the position of the color coded ALIGNMENT PROCEDURE 1409

On IF and Ratio Detector transformers, primary slugs are under chassis and secondary slugs above chassis.
Adjust AM loop trimmer after chassis is in cabinet for best reception at 1500 Kc .
Adjust dial pointer to marker at top left of dial with condenser plates fully meshed.

| A.M. - I.F. |  |  |  |
| :---: | :---: | :---: | :---: |
| Band \& Pointer | Signal Generator | VTVM or Scope Connection | Adjustment and Notes |
| 1. $A M$ low end of dial. | 455 Kc. 400 cy. mod. to Pin 7 (Grid) of 6BE6 tube through . 01 cap. | Term. 2 of AM-FM sw and ground. | Adj. two AM-IF trans., using - 3 Y DC Scale. |
| 2. " | 455 Kc swept 15 Kc . | " | Adjust same for best double-trace curve on scope. |
| F.M. - I.F. |  |  |  |
| 1. $F M$ low end of dial. | 10.7 Mc. 400 cy . mod. to Pin 2 (Grid) of $12 A T 7$ tube at RF Coil thru .01 capacitor. |  | Detune secondary of ratio det. Adj. three FM-IF trans \& ratio det. primary using - $3 V$ DC scale. |
| 2. | 10.7 Mc swept 150 Kc. | Pin 6 (screen) of third IF tube thru .01 capacitor. | Adj. as above for best double-trace curve on scope. |
| $3 . \quad$ " | " | Term. 2 of AM-FM switch \& Term 8 of ratio det. trans. | Be sure VTVM is not grourided. Adj. sec. of ratio det. for 0 voltage. |
| A.M. - R.F. |  |  |  |
| 1. $A M$ 1500 Kc. | 1500 Kc .400 cy mod. coupled loosely to loop leads. | Term. 2 of AM-FM sw \& ground. | Adj. two trimmers on tuning cond., using low ——D scale. |
| F.M. - R.F. |  |  |  |
| 1. FM 100 mc . | 100 Mc. 400 cy. mod. to FM Ant. Terms., thru 270 ohm resistor. | , | Adj. C-17 (Osc.) C-8 (RF) and C-2 (Ant.) on low -DC scale. |
| Align both IF channels if either is out of adjustment. <br> Use a non-metallic screwdriver and light pressure for slug adjustment. <br> 2nd AM-IF trans. will be damaged if chassis is placed on left side. <br> If FM osc. coil is replaced, adjust placement of its ground lead for tracking at $\mathbf{8 8} \mathbf{~ m c}$. |  |  |  |





MODEL 255 SYMPHONY RADIO \& TELEV. CORP.



## OPERATING INSTRUCTIONS AND SERVICE NOTES

Model G-618 Temple Radio is a 6 -tube superheterodyne receiver having an RF stage for increased sensitivity and using the latest type of lowdrain electronic tubes.

Operation: The set operates on 110 to 120 volts, 50 or 60 cycles A. C. and 110 to 120 volts D. C. Power drain is approximately 30 watts.

When operated on direct current (D. C.), if no reception is obtained after approximately one minute of warm-up time, reverse the line plug in the power outlet.

Range: Model G-618 covers the broadcast band from 540 to 1620 kilocycles. Since the scale is calibrated 54 to 160 , the actual frequency of the station received is obtained by adding a zero to the dial calibration.

Controls: Only two controls are required for operation. The left-hand control puts set into operation, increases the volume with clockwise rotation, and includes the power switch. The right-hand control tunes the dial to the desired station.

Antenna: For normal reception, no outside aerial is required, as more than adequate pickup is obtained by the self-contained loop antenna.

At installations remote from the stations desired to be heard, improved results may be obtained by rotating the receiver for maximum response, as the loop antenna has a marked directional effect on weak signals. Reception can also be improved, and the directional effect reduced, by attaching a length of insulated wire approximately 15 to 25 feet long, to the antenna connection provided at the back of the cabinet. This wire may be laid on the floor along one side of the room, or concealed under the rug.

No external ground is required - such ground is automatically provided through the power lines.

Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. An output meter may be clipped directly across the voice coil lugs.

The Signal Generator may be connected through a 0.01 mf capacitor (used as dummy antenna) to the lug on RF section (B)) of tuning capacitor. Connect ground clip of generator to the common negative of the electrolytic capacitor. Align the I. F. trimmers to 455 kc , using least possible input from Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad.

To align RF trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a selfsupporting loop of about 7 or 8 inches diameter, placed about a footaway from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning capacitor plates completely out of mesh, and pointer at extreme right end of travel, adjust the oscillator trimmer (A) (on front section of tuning capacitor) to 1700 kc . Readjust both Signal Generator and tuning capacitor to 1550 kc and adjust the RF trimmer (B) (on rear section) for maximum response. With tuning capacitor plates fully meshed, the receiver should tune to 532 kc ; however, no adjustment is required at this point. For checking purposes, four fine marks are engraved on the dial plate. These represent, in order, the pointer position with capacitor plates fully meshed, and the pointer setting for 600, 1000 and 1550 kc .

MODELS G-722, TEMPLETONE RADIO MFG. CORP.

G-723


Alignment: No attempt should be made to realign this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. The Signal Generator may be connected through a 0.01 mf capacitor (used as a dummy antenna) to the lug on R. F. section (A) of tuning capacitor. Connect ground clip of generator directly to chassis. Align the I. F. trimmers to 455 K.C., using least possible input from the Signal Generator to avoid developing A.V.C. voltage which would make the tuning adjustments very broad. An output meter may be clipped across the voice coil lugs.

To align broadcast R. F. trimmers, remove the 0.01 mf capacitor and connect the Signal Generator leads to two or three turns of heavy wire, forming a self-supporting loop of about 7 or 8 inches diameter placed about a foot away from the receiver's loop antenna. Again, use the least possible input from the Signal Generator. With the tuning plates completely out of mesh and the pointer at the extreme right end of travel, adjust the broadcast oscillator trimmer, on the under side of the chassis, to 1650 K.C. With tuning capacitor fully meshed adjust the padder on the chassis deck to 535 K.C. Readjust both Signal Generator and tuning capacitor to 1550 K.C. and adjust the R. F. trimmer on the loop for maximum response.

To align the short wave band connect the Signal Generator through a 0.01 mf capacitor and a 400 ohm resistor in series (used as a dummy antenna) to the antenna connection on the loop antenna. With the tuning capacitor plates completely out of mesh, and pointer at the extreme right end of travel, adjust the short wave oscillator trimmer (on the under side of the chassis) to 18.25 magacycles. Readjust both Signal Generator and tuning capacitor to 16 megacycles and adjust short wave antenna coil trimmer for maximum response. With tuning capacitor fully meshed, the receiver should tune to 5.75 megacycles, however, no adjustment is required at this point.

For checking purposes five marks are engraved on the front of the dial plate. These represent, in order, the pointer position with the capacitor plates fully meshed and the pointer settings for $600 \mathrm{kc}, 8 \mathrm{mc}$, 16 mc , and 1550 kc .
Pushbuttons: To set pushbuttons remove pushbutton knobs. This will expose a set screw on the shaft of each pushbutton. Starting at one end push a pushbutton down and loosen its set screw. Set the bandswitch to the broadcast position. Hold the pushbutton down and tune the manual tuning control to the station to which the pushbutton is to be set. Still holding the pushbutton down tighten its set screw. The pushbutton may now be released and its knob replaced. It will now select the station to which it was set. The other pushbuttons may be set in a similar manner.

## REPLACEMEN'T PARTS LIST




## Instructions For Removing Radio From Cabinet

## Main Chassis:

To remove main chassis from the cabinet it is first necessary to remove the four control knobs by pulling them gently until they come off. Remove all plugs from the rear of the main chassis and power pack chassis. Pull the 5U4d reatifler tube out of the power pack chassis. The four screws holding the chassis may now be removed. The chassis isself may now be taken out by sliding it straight back toward the rear of the cabinet.

## Power Pack Chassis:

The power pack chassis may be removed from the cabinet by unscrewing the four large screws holding it to its support shelf. These are accessible from the under side of the cabinet.

## Record Changer:

Most adjustments may be made to the record changer without removing it from its drawer. Before aftempting to remove the record changer from the cabinet the motor plug and the phono pickup plug must first be removed from the main and power pack chassis. Loosen the cable clamps on the rear of the cabinet sufficiently to lift out cables.

Pull changer drawer forward until it hits its stop. Lift the turntable completely off. Be careful not to lose the spring and loose gear on the spindle of the record changer. Remove retaining washers from the mounting serews at the front and rear of the record changer. The mounting screws may now be removed from the bottom of record chang-r drawer and the record changer may be lifted out.

## Alignment:

No attempt should be made to realign this receiver until it has been determined that a poor tube or some loe condition is not responsible for faulty reception. The following is a list of minimum equipment necessary to realign this receiver:
-AM signal generator covering $455 \mathrm{KC}, 600 \mathrm{KC}, 1550 \mathrm{KC}, 6 \mathrm{MC}, 10.7 \mathrm{MC}$ and 18 MC
2-FM signal generator covering $10.7 \mathrm{MC}, 92 \mathrm{MC}$ and 106 MC
3-Output meter, rectifier type, approximately 0 to 2 volts RMS
4-Dummy antennas
0.01 MFD Capacitor

200 MMF Mica Capacito
400 Ohm Resistor
300 Ohm Resistor
In the following alignment procedure the high side of the signal generator is connected to the terminal indicated in the "Signal Generator Coupling"' column below. The ground side of the signal generator is connected directly to the chassis unless otherwise noted. The output meter should be connected across the voice coil of the speake for at1 measurements.

In adjusting the radio frefuency trimmers and padders it is advisable to "rock" the variable capacitor gang slightly across the sigmal being delivered by the signal generator until that particular signal has been accuratel peakel.

The location of the following trimmers, padders and terminals can be found by referring to the tube and trimmer location diagram.

- John F. Rider $\square$


operating instructions for the record changer are included in the record changer instruction sheet.

Antenna: For normal reception no outside aerial is required, as more than adequate pickup is obtained by the self-contained loop antenna. At installations remote from the desired stations, improved results may be obtained by rotating the receiver for maximum response, since the loop has marked directional effects on weak signals.

Alignment: No attempt should be made to re-align this receiver until it has been determined that a poor tube, or some local condition is not responsible for faulty reception. The signal generator may be connected through 0.01 mfd capacitor, used as a dummy antenna to the lug on the RF section of the tuning capacitor. Connect ground clip of generator to a B-point. Align the IF trimmers to 455 kilocycles using least possible input from signal generator, for maximum output as measured across voice coil or speaker. To align RF, remove 0.01 mfd capacitor and connect signal generator to two or three turns of heavy wire forming a self-supporting loop, about 7 or 8 inches in diameter placed about a foot away from the receiver's loop antenna. Again, use least possible input from the signal generator. With the variable completely open (plates out of mesh) adjust the oscillator trimmer to 1700 kilocycles, then tune the set and signal generator to 1550 kilocycles and adjust RF trimmer for maximum response.

 smoothly-operating dependable, automatic record changer. It has a built-in sensitive loop antenna, an Alnico V permanent magnet speaker; and full size octal tubes for longer life. The radio chassis and record changer are electrically float-
ing to prevent possibility of hazardous shock.
Operation: The set operates on $105-125$ volts 60 cycles AC only. Power drain is approximately 25 watts for radio and 17 watts additional for the record changer.
 ered, from 532 to 1700 kilocycles. Since the scale is calibrated from 55 to 170 , the actual frequencies are read by adding a zero to the dial calibration.

Controls: Three controls are provided for operating the set. The upper right control tunes to any desired station when pointer knob is rotated. The bottom right control incorporates the on-off switch and volume control. The extreme counter-clockwise position is the "off" position and rotating the knob clockwise turns the set on and increases the volume. The control at the left is the phono-radio switch, which tches from phonograph operation in the coun-ter-clockwise position to radio operation in the clockwise position.

Record Changer: The record changer is completely automatic and will play twelve ten-inch records or ten twelve-inch records. Complete

PAGE 19-14 TEMPLETONE



## OPERATING INSTRUCTIONS AND SERVICE NOTES

This set is a six-tube, two band, superheterodyne receiver and phonograph combination, using the latest type of low-drain electronic tubes and a smoothly operating, dependable record changer.

Operation: The set operates on 105-125 volts 60 cycles, AC. The power drain is approximately 35 watts on radio operation and 17 watts additional on phonograph operation.

Range: This set has both a broadcast and shortwave range. The complete broadcast band is covered from 532 to 1700 kilocycles. Since the broadcast dial scale is calibrated from 55 to 160 , the actual frequency of the station may be obtained by adding zero to the dial calibration. The shortwave band covers from 5.6 to 12.5 megacycles. The shortwave dial scale is calibrated directly in megacycles.

Controls Four controls are provided for the operation of the radio set. The control at the extreme left includes the on-off switch and the volume control. The extreme counter-clockwise position is "off", and rotating the knob clockwise turns the set on and increases the volume. The second control from the left is the phono-radio switch and the tone control. The positions in order, from counter-clockwise to clockwise are: radio bass; radio music; radio treble; phonograph bass and phonograph music. Tone is varied electrically by boosting bass, treble or both, and not by merely reducing the high frequency response. The third control is the bandswitch which switches from broadcast in counter-clockwise position, to shortwave in clockwise position. The last control is the tuning control which permits accurate tuning of the slide rule dial through smooth vernier action.

Record Changer: The record changer is completely automatic and will play up to 12 teninch records or 10 twelve-inch records. Complete operating instructions for the record changer are included on a separate instruction sheet. It is provided with a precious metal alloy tipped, longlife needle balanced to give high quality reproduction with the speaker, amplifier and tone arm. It will provide many hours of excellent performance with low record wear.

Antenna: For normal reception, no outside antenna is required, as more than adequate pickup is obtained from the built-in cabinet loop and the high sensitivity of the receiver. In very poor receiving locations improved results may be obtained by connecting an outside aerial to the post marked "A" on the rear of the cabinet.

Alignment: No attempt should be made to re-align this receiver until it has been determined that poor tubes or some local condition is not responsible for faulty reception. The signal generator may be connected through 0.01 mfd capacitor used as a dummy antenna, to the lug on the RF section "B" of the tuning capacitor. Connect ground clip of generator directly to chassis. An output meter may be clipped across the voice coil lug on the speaker. Align IF trimmers to 455 kilocycles, using the least possible input in the signal generator. With tuning plates completely out of mesh (pointer at the extreme right end of travel) the set in broadcast position, adjust the broadcast oscillator trimmer (A) to 1700 kilocycles. Then switch to shortwave and adjust the shortwave oscillator trimmer (D) to 12.5 megacycles. Replace the 01 mfd dummy by a 39 mmfd mica. capacitor and connect to antenna terminal "A." Tune set and signal generator to 600 kilocycles and adjust broadcast antenna coil slug for maximum output. Then re-tune set and signal generator to 1550 kilocycles and adjust RF trimmer "B" on tuning capacitor for maximum response. Repeat these adjustments until no further adjustment is required, then switch receiver to shortwave. Tune set and signal generator to 6 megacycles and adjust shortwave antenna coil slug. "E" for maximum response. Retune set and signal generator to 10.5 megacycles and tune shortwave antenna, trimmer "C" for maximum response. In these adjustments the tuning control should be rocked for best results. Repeat these adjustments until no further adjustment is needed.

For checking purposes, five marks are engraved on the dial plate. These represent, in order from left to right: the pointer position capacitor plates fully meshed and the pointer settings for 600 kc or $6 \mathrm{mc} ; 1000 \mathrm{kc}, 10.5 \mathrm{mc}$ and 1550 kc .


## Remove chassis from cabinet for alignment.

> A Signal Generator is required having the following frequencies: 455 KC , $1400 \mathrm{KC}, 1650 \mathrm{KC}$. An output meter should be connected across the speaker.


The volume control of the receiver should be turned to maximum during the I. F. and all subsequent alignment and the generator output as low as possible to prevent the A. V. C. from working and giving false readings.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the gang condenser through a . 1 MFD. condenser. The ground lead from the generator must be connected to "B" minus under the chassis. Turn the gang condenser to complete minimum capacity. Set the generator to 455 KC. Adjust the trimmers of the I. F. transformer until a maximum reading is noted on the output meter.

SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1650 KC. Adjust the OSC. trimmer until the 1650 KC signal is tuned in. The gang condenser must be at complete minimum capacity for this adjustment.

THIRD STEP: Remove the generator hot lead and connect it to the antenna hank terminal strip through a 200 MMFD. condenser. With the receiver and generator set at 1400 KC , increase the generator output. Adjust the ANT. trimmer until a maximum signal is noted on the output meter. No further adjustment should be made as the coils and gang condenser in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.


 $1400 \mathrm{KC}, 1700 \mathrm{KC}$. An output meter should be connected across the speaker.

The volume control of the receiver should be turned to maximum during possible to prevent the A. V. C. from working and giving false readings.

FIRST STEP: Connect the hot lead from the generator to the ANT. section of the tuner through a . 1 MFD, condenser. The ground lead from the generator must be connected to " $B$ " minus under the chassis. Turn the tuner to of the I. F. transformer until a maximum reading is noted on the output meter.

SECOND STEP: With the leads from the generator still connected in the same manner, adjust the Signal Generator to 1700 KC . Adjust the OSC. trimmer until the 1700 KC . signal is tuned in. The tuner must be at complete minimum capacity for this adjustment.

THIRD STEP: Remove the generator hot lead and connect it to the antenna hank terminal strip through a 200 MMFD . condenser. With the receiver and generator set at 1400 KC ., increase the generator output. Adjust the ANT.
trimmer until a maximum signal is noted on the output meter. No further adjustment should be made' as the coils in this receiver have been specially handled at the factory to insure proper alignment at the lower frequencies.

TUBE AND TRIMMER LOCATION


## OPERATING INSTRUCTIONS


 the cord plug in the power outlet.

CAUTION: Always predetermine voltage of power source Never try to plug this receiver into a 220 volt line, as this will cause serivus damage.


PAGE 19-4 TRAV-LER


TRAV-LER RADIO CORP.


ALIGNMENT DATA
Remove the chassis from the cabinet. A Signal Generator with the following frequencies is required: $455 \mathrm{KC}, 1400 \mathrm{KC}$ and 1720 KC .

The receiver volume control should be turned to maximum during the I.F. and all subsequent alignments to keep the A.V.C. from working and giving false readings. Turn the tone control to complete left hand position. Keep the generator output as low as possible to prevent overloading.

Connect an output meter across the voice coil of the speaker.
Connect a 20,000 ohm resistor across the loop connector terminals to 'reflect proper loop impedance.

FIRST STEP: Connect the hot lead from the generator to the "ANT." section of the gang condenser through a . 1 MFD. condenser. The ground lead must be connected to the floating ground buss under the chassis. Turn the gang condenser to complete minimum capacity. Adjust the generator to 455 KC and adjust the trimmers of the 1st and 2nd I.F. transformers until a maximum reading is noted on the output meter.

SECOND STEP: With the leads from the generator connected in the same manner as in I.F. alignment, adjust the signal generator to 1720 KC . The "O.S.C." trimmer is located on the front section of the gang condenser. Adjust this trimmer until the signal is tuned in. The gang condenser should be at complete minimum capacity for this setting.

THIRD STEP: Remove the generator leads from the chassis. Remova the 20,000 ohm resistor from the loop connector terminals. Reinstail the chassis in the cabinet, connect the loop leads, motor plug and phono pickup leads.

Connect the generator leads to a transmitting loop, made of a few turns of wire, and loosely couple to the receiver loop antenna which is 10 cated on the back end of the cabinet. Adjust the generator to 1400 KC. Rotate the tuning control until this signal is tuned in. The "ANT." trimmer is located on the rear section of the gang condenser. Adjust this trimmer until a maximum signal is noted on the output meter.

No further adjustment should be necessary, unless the receiver has been damaged, as the coils and tuning condenser have been specially handled at the factory to insure proper alignment at the lower frequencies.
tube and trimmer location

DIV. OF GENERAL MOTORS CORP.


## GENERAL:

CIRCUIT
AC - DC Superheterodyne



TUBE SOCKET VOLTAGE CHART
The tube socket voltages, as measured at the factory, are shown below. The blank spaces are provided so the service man may fill in actual voltage readings as measured with his own equipment. A normal operating radio should be used for these measurements.


Volt Meter Resistance
Line Voltage -
$\qquad$ ---...


DIAL CORD SYSTEM


## ALIGNMENT PROCEDURE:

Output Meter Connections
Signal Generator Ground
Dummy Antenna
Volume Control Position
Signal Generator Output

| Steps | Series Condenser or Dummy Antenna | Connect Signal Generator To | Adjust Signal Generator To | $\begin{gathered} \hline \text { Turn Radio } \\ \text { Dial To } \\ \hline \end{gathered}$ | Adjust Trimmers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1 Mfd. | 12SA7 Grid (Pin \#8) Ground Generator to B- (not chassis) | 456 KC | Quiet Point near H. F. end | $\begin{aligned} & \text { A-B (2nd IF Trans) } \\ & \text { C-D (1st IF Trans) } \end{aligned}$ |
| 2 | . 000200 Mfd . | Ant. lead | 1720 KC | 1720 KC | E (Osc.) |
| 3 | . 000200 Mfd . | Ant. lead | 1400 KC | 1400 KC | F (Ant.) |



PARTS LAYOUT - CHASSIS VIEW


## SERVICE PARTS LIST

| Illus. No. | Prod. <br> Part No. | Service Part No. | Service |
| :---: | :---: | :---: | :---: |
|  |  | ELECTRICAL PARTS |  |
|  | COILS |  |  |
| 1 | 1217910 | 1217910 | Antenna - Loop Assy. (Includes Illus. 11) |
| 2 | 1217905 | 1217905 | Oscillator Coil |
| 3 | 1217886 | 1217972 | 1 st I. F. |
| 4 | 1217887 | 1217973 | 2nd I. F. |
|  | CONDENSERS |  |  |
| 11 | 7236842 | E503 | 0.05 Mfd. 200V Tubular (In Illus. 1) |
| 12 | 1217917 | 1217917 | Variable Condenser <br> 12A Antenna Section <br> 12B Oscillator Section |
| 13 | 7238879 | G47 1 | 0.000470 Mfd. Molded Mica |
| 14 | 7236842 | E503 | 0.05 200V Tubular |
| 15 | 7231212 | E502 | 0.005600 V Tubular |
| 16 | 7238879 | G471 | 0.000470 Molded Mica |
| 17 | 7231212 | E502 | 0.005 Mfd . 600 V Tubular |
| 18 | 1216513 | E103 | 0.01 Mfd. 600 V Tubular |
| 19 | 7230592 | E503 | 0.05 Mifd. 600 V Tubular |
| 20 | 7238787 | E204 | 0.2 Mfd. 400V Tubular |
| 21 | 1216527 | J908 | Electrolytic Condenser |
| 21A |  |  | 40 Mfd .150 V |
| 21B |  |  | 40 Mfd .150 V . |
|  | RESISTORS |  |  |
| 31 | 1214564 | A335 | 3.3 Meg. Ohms $1 / 2$ Watt Insulated |
| 32 | 1214550 | A223 | 22,000 Ohm $1 / 2$ Watt Insulated |
| 33 | 1214564 | A335 | 3.3 Meg. 1/2Watt Insulated |
| 34 | 1215563 | A685 | 6.8 Meg. Ohms $1 / 2$ Watt Insulated |
| 35 | 1214555 | A224 | 220,000 Ohm 1/2.Watt Insulated |
| 36 | - 1213220 | A151 | 150 Ohm $1 / 2$ Watt Insulated |
| 37 | 1214559 | A474 | 470,000 Ohm 1/2 Watt Insulated |
| 38 | 1213224 | A330 | $33 \mathrm{Ohm} \mathrm{1/2Watt} \mathrm{Insulated}$ |
| 39 | 1214555 | A224 | 220,000 Ohm 1/2Watt Insulated |
| 40 | 1211037 | B102 | 1000 Ohm 1Watt Insulated |
|  | TUBE COMPLEMENT |  |  |
|  | 1213809 | 5341 | 12SA7 |
|  | 1213812 | 5348 | 12SK7 |
|  | 1213813 | 5350 | 12SQ7 |
|  | 1214366 | 5451 | 50L6GT |
|  | 1213848 | 5408 | 35Z5GT |
|  | MISCELLANEOUS ELECTRICAL PARTS |  |  |
| 51 | 1217883 |  | Control, Volume and Switch |
| 51 A |  | 8123 | Volume Control |
| 51B |  | 8201 | Switch, On-off |
|  | 1216512 | 1216512 | Cord, Power |
| 52 | 435433 | 47 | Lamp, Dial |
| 53 | 1216563 | 1216563 | Speaker, 5" P. M |
| 54 | 1217884 | 1217884 | Transformer, Output |
|  | MISCELLANEOUS MECHANICAL PARTS |  |  |
| 55 | 1217888 | 1217888 | Backplate Assy. Dial |
| 56 | 1216994 | 1212233 | Cord, 13" Dial Drive |
|  | 1217900 | 1217900 | Cabinet Assy |
|  | 1217970 | 1217970 | Dial Glass |
|  | 1217892 | 1217892 | Knob |
| 57 | 1217891 | 1217891 | Pointer, Dial |
| 58 | 1217238 | 1217238 | Pulley, Dial Drive |
| 59 | 1217839 | 1217839 | Socket, Dial Light, with Leads |
|  | 1217403 | 7236279 | Socket, Octal Tube |
| 60 | 1217323 | 1217323 | Spring, Dial Tension |



DIAL CORD DRAWING

## ALIGNMENT PROCEDURE:

Output Meter Connections Across Voice Coil

Generator Return $\qquad$ To B-

Dummy Antenna $\qquad$ In Series With Generator

Volume Control Position $\qquad$ Maximum Volume

Tone Control Position Treble

Generator Output $\qquad$ Minimum for Readable Indication

| Steps | Series Condenser or Dummy Antenna | $\begin{gathered} \text { Connect } \\ \text { Generator } \\ \text { To } \\ \hline \end{gathered}$ | Signal Generator Frequency | $\begin{gathered} \text { Tune } \\ \text { Receiver } \end{gathered}$To |  |  | Adjust in Sequence for Max. Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1 Mfd | Stator Lug RF <br> Section of Gang | 456 KC | High | Frequency | Stop | A, B, C, D |
| 2 | 0.000220 Mfd | Stator Lug RF Section of Gang | 1615 KC | High | Frequency | Stop | E |
| 3 | 0.000220 Mfd | External Antenna Connection | 1400 KC | Signal | Generator | Signal | F |

PAGE 19-6 UNITED MOTORS



UNITED MOTORS SERVICE
DIV. OF GENERAL MOTORS CORP.

 DIV. OF GENERAL MOTORS CORP.



## DIV. OF GENERAL MOTORS CORP.

GENERAL:


TUBE SOCKET VOLTAGE CHART

The tube socket voltages, as measured at the factory, are shown below. This chart provides blank spaces so the radio serviceman can enter the voltage readings as taken with his own equipment for permanent reference. A normal operating radio-record player should be used to make these measurements.


SERVICE PARTS LIST

## Illus. <br> No. <br> Production <br> Part No.

| 1217697 | 1217697 |
| :--- | :--- |
| 1216518 | 1216518 |
| 1217592 | 1217972 |
| 1217594 | 1217973 |

Part No.

217697

1217972
1217973

Description

## ELECTRICAL PARTS

COILS

> Antenna - Loop and Mounting Board
> (Includes Condenser Illus. \#11) Oscillator Coil
> 1st I. F. Assy.
> 2nd I. F. Assy. (Includes Resistor Illus. \#34)

## CONDENSERS

7236842
E503
1217391
0.05 mfd .200 V Tubular (In Illus. \#1) Variable Cond. and Pulley Package Condenser

MODEL R-1242
UNITED MOTORS SERVICE


TUBE COMPLEMENT

| 1213809 | 5341 | 12 SA7 |
| :--- | :--- | :--- |
| 1213812 | 5348 | 12 SK7 |
| 1213813 | 5350 | 12 SQ7 |
| 1214366 | 5451 | 50 L 6 GT |
| 1213848 | 5408 | 35 ZST |

MISCELLANEOUS ELECTRICAL PARTS

| 47 | 1216936 | 8156 |
| :--- | ---: | ---: |
| 47 A |  | 8201 |
| 47 B |  | 1216512 |
| 48 | 1216512 | 47 |
| 49 | 435433 | 1216563 |
| 51 | 1216588 | 1217511 |

Control, Volume and Switch Volume Control (0.5 Megohm tapped at 100 Megohms )
On-off switch
Cord, power
Lamp, dial
Speaker, 5" P. M.
Transformer, output

## MECHANICAL PARTS

| 57 | 1217323 |
| :---: | :---: |
| 58 | 1216763 |
|  | 1216905 |
| 59 | 1217501 |
|  | 1216826 |
| 60 | 1216831 |
|  | 1217839 |
|  | 7236279 |
|  | 1218218 |
|  |  |
|  |  |
| 46 | 1216574 |
|  | 1217517 |
| 50 | 1217512 |
|  | 1217513 |
| 52 | 1216974 |
| 53 | 1216695 |
| 54 | 1216696 |
|  | 1217514 |
| 61 | 1217515 |
| 62 | 1217516 |

1217323
1212233
1216905
1217501
1216826
1216831
1217839
7236279
1218218

Spring, dial tension
Cord, $9^{\prime \prime}$ Dial Drive
Crystal, dial
Dial scale and plate
Knob
Pointer, dial
Socket, dial light
Socket, octal tube
Cabinet Assy. - Includes Motor Board

## RECORD - PLAYER PARTS

| 1216574 | Pickup Arm Assy. |
| :--- | :--- |
| 1217517 | Cartridge, crystal |
| 1217512 | Motor and drive mechanism |
| 1217513 | Idler Wheel Package |
| 1216974 | Switch, SDST - Motor on-off |
| 1216695 | Switch, DPDT - Radio - Phono. |
| 1216696 | Switch, SPDT - Tone |
| 1217514 | Turn-Table |
| 1217515 | Connector, plug |
| 1217516 | Connector, socket |



| MODEL R-1243 | UNITED MO |
| :---: | :---: |
|  | DIV. OF GENER |
| GENERAL |  |
| TUBES | Six |
| SPEAKER | $5^{\prime \prime} \times 7^{\prime \prime}$ Elliptical P.M. Dynamic |
| TUNING | . Manual |
| TUNING RANGE | 535-1620 KC |
| ANTENNA | Built-in Antenna Plate and External. |
| POWER SUPPLY. | . 105-125 V. A.C. 60 |
| WER CON | Cycles. |

## ALIGNMENT PROCEDURE

Output Meter Connections . . . Across Voice Coil Generator Ground . . . . . . . . . . . . . . . . . To Chassis Dummy Antenna . . . . In Series With Generator Volume Control Position. . . . . . . . . . . . Maximum
Tone Control Position Treble


NOTE: Reset Ant. Trimmer after installing receiver in cabinet and connecting up cabinet antenna.
USE THIS ALIGNMENT PROCEDURE WHEN ALIGNING RECEIVERS WITH TUNER STAMPED $50 B 225$.

| Series Cond. or Dummy Antenna | Connection at Radio | Set Generator At | Tune Receiver To |  | Adjust Screws At | To Obtain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 00025 Mfd | Antenna | 455 KC | 1000 KC | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | 2nd IF trimmers |  |
|  |  | 455 KC | 1000 KC | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | 1 st IF trimmers | Max. |
|  |  | 1625 KC | High Freq. Stop | $\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$ | Osc \& Ant trimmers | Output |
|  |  | 1400 KC | Signal Generator | G | Ant coil, slide up or down |  |

Repeat last two steps until no improvement in output can be made. Caution-Do not change the position of the oscillator coil (H). Adjustment of Ant coil (G) is sufficient.

USE THIS ALIGNMENT PROCEDURE WHEN ALIGNING RECEIVERS WITH TUNER STAMPED 50B199.

| Series Cond. or Dummy Antenna | $\begin{gathered} \hline \text { Connection } \\ \text { at } \\ \text { Radio } \end{gathered}$ | Set <br> Generator At | Tune Receiver To |  | Adjust Screws At | To Obtain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 00025 Mfd | Antenna | 455 KC | 1000 KC | A | 2nd IF trimmers |  |
|  |  | 455 KC | 1000 KC | C | 1 st IF trimmers |  |
|  |  | 1660 KC | High Freq. Stop | E | Osc \& Ant trimmers | Max. |
|  |  | 1400 KC | Signal Generator | H | Ant coil, slide up or down | Output |
|  |  | Repeat last two steps carefully. |  |  |  |  |
|  |  | 600 KC | Signal Generator | 1 | Osc slug. Rock tuner thru signal |  |

Caution-Do not change the position of the oscillator coil (G). Adjustment of the antenna coil $(H)$ is sufficient.
DIV. OF GENERAL MOTORS CORP.


Parts Layout-Bottom view.


Parts Layout-Top view.

BOTTOM VIEW OF CHASSIS
ALL VOLTAGES ARE D.C. UNLESS OTHERWSE SPECIFIED. D.C. VOLTACES MEASUMED WTH ELECTROMC VOLTMETER DETWEEN SOCKET TERMMMLS AND CHASSHS. A.C. LIME VOLTACE 117 VOLTS.



Tube Socket Voltages


SERVICE PARTS LIST


| $\begin{gathered} * \mathrm{~L}-1, \mathrm{~L}-2, \\ \mathrm{~L}-3 \end{gathered}$ | 50B225 | 1217451 | Permeability Tuner Assembly |
| :---: | :---: | :---: | :---: |
| †L-1, L-2, | \{ 50 B 225 | 1217509 | Permeability Tuner Assembly |
| L-3 | \{22C197 |  | with Calibrated Glass Dial |
| T-1 | 50B196-6 | 1217453 | 1st I.F. Transformer |
| T-2 | 50B211-1 | 1217454 | 2nd I.F. Transformer |
| T-3 | 55B104 | 1217504 | Output Transformer |
| T-4 | 50C130-1 | 1217459 | Power Transformer |

misCellaneous electrical parts

CONDENSERS

| C-2 | CM20A102M | G102 | . 001 Mfd. 500 V. Mica |
| :---: | :---: | :---: | :---: |
| C-3 | 46AU203J | E203 | . 02 Mfd. 600 V . Tubular |
| C-4, 12, 19 | CM20A101M | G101 | . 0001 Mfd .500 V . Mica |
| $\begin{aligned} & 11,13,14, \\ & 20,21,23, \\ & 24,26 \end{aligned}$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| C-7 | CM20A681M | G681 | . 000680 Mfd. 500 V. Mica |
| C-22 | 46AY502F | E502 | . 005 Mfd .600 V . Tubular |
| C-25 | 45B113 | 1217457 | 60-20-20 Mfd. Electrolytic |
| C-29 | 46AZ202J | E202 | . 002 Mfd .600 V . Tubular |
|  |  | RESIS | ORS |


| R-1 | RC20AE103M | A103 | 10,000 Ohms $1 / 2$ Watt Insulated |
| :--- | :--- | :--- | :--- |
| R-2,13, 16 | RC20AE474M | A474 | 470,000 Ohms $1 / 2$ Watt Insulated |
| R-3,20 | RC20AE223M | A223 | 22,000 Ohms $1 / 2$ Watt Insulated |

R-4 RC40AE223M C223 22,000 Ohms 2 Watts Insulated
R-5, $9 \quad$ RC20AE683M A683 68,000 Ohms $1 / 2$ Watt Insulated
R-6, 19. RC20AE472M A472 4,700 Ohms $1 / 2$ Watt Insulated
R-7 RC20AE104M A104 100,000 Ohms $1 / 2$ Watt Insulated

| R-8 | RC20AE221M | A221 |
| :--- | :--- | :--- |
| R-10 | RC20AE105M | A105 |
| R-11 | RC20AE102M Meg-ohm $1 / 2$ Watt Insulated |  |
| Watt Insulated |  |  |
| R A102 | 1,000 Ohms $1 / 2$ Watt Insulated |  |

R15 RC20AE102M A102 - 1,000 Ohms $1 / 2$ Watt insulated

| R-15 | RC20AE685M A685 | 6.8 Meg-ohm $1 / 2$ Watt Insulated |
| :--- | :--- | :--- | :--- |
| R-18 | RC30AE681M B681 | 680 Ohms, 1 Watt Insulated |

R-21, 22 RC40AE682M C682 6,800 Ohms 2 Watts Insulated

| R-14 | 25 B620 | 1217448 | Control, Volume |
| :--- | :--- | :--- | :--- |
| R-17 | 25 B639 | 1217446 | Control, Tone and Switch |
|  |  | 44. | Lamp, Dial Light-Mazda No. 44 |
| LS-1 | 85 C067 | 1217458 | Speaker, $5^{\prime \prime} \times 7^{\prime \prime}$ Elliptical |
| PL-1 | 87 B1574 | 1217433 | Power Cord and Plug |

## UNITED MOTORS SERVICE $\quad$ MODE'LS R-1244,

## GENERAL:

TUBES-Five, Plus Rectifier.

```
SPEAKER-5" \(\times 7^{\prime \prime}\) Elliptical Permanent
``` Magnet.

TUNING—Manual.
TUNING RANGE-550-1600 KC.
POWER SUPPLY-105/125 Volts, 60 Cycle A. C.

\section*{CABINETS:}

R-1244-Walnut
R-1245-Walnut
R-1246-Mahogany


MODELS R-1245 and R-1246
TUBE SOCKET VOLTAGE CHART
The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown below. The blank spaces are provided so the service man may fill in actual voltage readings as measured with his own equipment. A normal operating radio should be used for these measurements.


Volt Meter Resistance
Ohms Per Volt
Line Voltage
Volts




\begin{tabular}{|l}
\hline MODELS R-1244; UNITED MOTORS SERVICE \\
\(R-1245, ~ R-1246\)
\end{tabular}



\section*{MODEL R-1410 \\ UNITED MOTORS SERVICE \\ DIV. OF GENERAL MOTORS CORP.}

\section*{ALIGNMENT PROCEDURE:}
\begin{tabular}{|c|c|}
\hline Output Meter Connections & Across Voice Coil \\
\hline Generator Return & To Receiver Chassis \\
\hline Dummy Antenna & ies With Generator \\
\hline Volume Control Position & Maximum Volume \\
\hline Generator Output & Readable Indication \\
\hline
\end{tabular}
(For best results align receiver in cabinet with battery in place)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Series Condenser
or
Dummy Antenna & \[
\begin{gathered}
\hline \text { Connect } \\
\text { Generator } \\
\text { To }
\end{gathered}
\] & \begin{tabular}{l}
Signal \\
Generator Frequency
\end{tabular} & Tune Receiver To & Adjust in Sequence for Max. Output \\
\hline 1 & . 000220 Mfd & Stator Lug RF* Section of Gang & 262 KC & High Frequency Stop & A, B, C, D \\
\hline 2 & . 000220 Mfd & Stator Lug RF Section of Gang & 1615 KC & High Frequency Stop & E \\
\hline 3 & . 000220 Mfd & Stator Lug of RF Section of Gang & 1400 KC & Signal Generator Signal & F \\
\hline 4 & . 000220 Mfd & Stator Lug of RF Section of Gang & 600 KC & Signal Generator Signal & G** \\
\hline 5 & None & Test Loop*** & 1400 KC & Signal Generator Signal & H \\
\hline 6 & None & Test Loop & 600 KC & Signal Generator Signal & J \\
\hline
\end{tabular}
*With loop antenna terminal lugs shorted or loop connected for Steps \(1,2,3\), and 4.
**During this adjustment rock-in gang condenser
***The signal generator may be coupled to the receiver by placing a loop electrically across the output of the signal gen. erator and physically near the receiver loop. This loop may be a loop from another radio, a home made loop of 10 or 15 turns, or other similar devices.

\section*{TUBE SOCKET VOLTAGE CHART}

The tube socket voltages, as measured at the factory and under the conditions shown on the schematic diagram, are shown below. The blank spaces are provided so the service man may fill in actual voltage readings as measured with his own equipment. A normal operating radio should be used for these measurements.

Volt Meter Resistance
\(\qquad\) DIV. OF GENERAL MOTORS CORP.


PARTS LAYOUT - CHASSIS VIEW


\section*{Illus.
No}

Production Part No.

Service
Part No.
ELECTRICAL PARTS
1
3
4
6

10
1218575
1218709
1218586
1218683
1218571
1219147
1218573
1218576
1218705
1218707

1218578

7236842
7236842
1218142
1218721

7238790
7238790
7238790
7238789
1216513
7238790
1217925
1218141
1218298
7238789
7238789
1216513
7238787

1216947

1211
12111
12169
723887
121111
7241937
1216947
1216947
7238873
1215570
1215566
1214543
1213486
1218570
1211037
7240732
Miscellaneous Electrical Pa
1218575
1218709
1218586
1218583
1218571

MECHANICAL PARTS
\begin{tabular}{ll} 
& \\
1218071 & 1218071 \\
1218565 & 1218565 \\
1218564 & 1218564 \\
7245333 & 7245333 \\
7242189 & 6040 \\
1218574 & 7242189 \\
1219148 & 1218574 \\
1216512 & 1219148 \\
& 1216512
\end{tabular}

\section*{Chassis}

218071
1218565
1218564 6040
7242189
1219148
1216512

Socket-7 Pin Miniature Tube
Socket-Shock Proof-Miniature
Drive Shaft-Tuning
"C" Washer-Drive Shaft
Drive Cord
Spring-Pointer Cord. Tension
Dial Pointer
Battery Plug and Shell


\section*{UNITED MOTORS SERVICE} DIV. OF GENERAL MOTORS CORP.


\section*{RESTRINGING DIAL CORD:}

To restring the main tuning dial cord, cut a 25 -inch length of 18 lb test dial cord and tie one end to the tension spring of the main tuning condenser drive pulley at position " A " on the diagram. Follow the letters "A" through " S ", winding the cord on the pulley and drive shaft. At position " S '; stretch the tension spring and tie the cord securely. With the tuning condenser at maximum capacity, set the pointer as shown in the diagram.

To restring the bandspread tuning dial cord, cut a 30 -inch length of 18 lb test dial cord and follow the procedure outlined above, except follow the sequence starting at position " 1 " and ending at "14". With the pulley in the position shown (maximum clockwise), attach the pointer and index it at zero on the bandspread dial scale. Next loosen the pulley set screws and adjust the pulley shaft so that the signals on the 6.9 to 22 megacycle range follow the dial calibration on the general coverage dial. Reset the set screws with the bandspread pointer set


Dial Stringing Detail. at zero.

\section*{POWER SUPPLY:}


CAUTION: This radio must be operated from a \(105-125 \mathrm{~V}\). or \(210-250 \mathrm{~V} .60\) cycle AC supply or DC supply only. The ballast tube must be correctly inserted in its socket for the line voltage used. When operating from a \(210-250 \mathrm{~V}\). supply, the ballast tube must be correctly inserted in its socket for this line voltage (" 230 V ") to avoid damaging the receiver. If you are in doubt as to the voltage and frequency (AC) rating of the power supplied to your home, consult the local power company representative before connecting the radio to the wall outlet.

\section*{BAND SWITCH CONTROL:}

The position of the band switch control determines the range of frequencies tuned by the receiver. In position 1 the receiver tunes the \(550-1600 \mathrm{KC}\) range. Note that a zero must be added to the dial reading to obtain the frequency of reception in kilocycles. In position 2 and 3 the receiver tunes the ranges \(2.2-7.0 \mathrm{MC}\) and \(7-22 \mathrm{MC}\) respectively. The frequency of reception for these bands is shown directly in megacycles on the dial scale.

\section*{UNITED MOTORS SERVICE} DIV. OF GENERAL MOTORS CORP.

ALIGNMENT:


CAUTION - Check the line ballast. It must be corretly inserted in its socket to correspond to the line voltage of the power source.

ALIGNMENT CHART:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Dummy \\
Antenna
\end{tabular} & Signal
Generator
Coupling & Signal
Generator
Frequency & Band Switch Pos. & \[
\begin{gathered}
\text { Radio } \\
\text { Dial } \\
\text { Setting }
\end{gathered}
\] & Adjust & Remarks \\
\hline 1. & . 01 mfd . cap. & To stator plates of tuning cond; mixer section & 455 kc & 1 & 1500 kc & 1,2,3, and 4. & Adjust for max. output \\
\hline 2. & Std RMA dummy & To terminals "A" and " \(G\) " of antenna terminal strip & 1500 kc 600 kc & 1
1 & 1500 kc 600 kc & \[
\begin{aligned}
& * 11,6 \\
& * 10
\end{aligned}
\] & Adjust for max. output \\
\hline 3. & Std RMA dummy & See step 2. & 22 mc & 3 & 22 mc & *8 & Set oscillator adjustment (8) with the bandspread indicator drive pulley set screw loosened and the pointer set at zero. After making the adjustment, tighten the set screw. \\
\hline & & & 20 mc & 3 & 20 mc & 5 & Adjust for max. output. \\
\hline 4. & Std RMA dummy & See step 2. & 6 mc & 2 & 6 mc & *9,7 & Adjust for max, output. \\
\hline
\end{tabular}
*Note - Calibration adjustment.
Note - Step 3 must be completed before making the adjustments shown in step 4.


Parts Layout.


POWER SUPPLY:
This radio operates from a 105-125 volt or 210-250 volt, 50/60 cycle AC supply only. If you are in doubt as to the voltage and frequency rating of the power available at the outlets, consult the local power company. CAUTION: BEFORE PLUGGING THE POWER CORD INTO THE WALL OUTLET, CHECK TO SEE THAT THE LINE VOLTAGE SWITCH (SW2) IS SET FOR THE LINE VOLTAGE AVAILABLE. Refer to Fig. 5 for the location of this switch. The power receptacle provided for a record player supplies 110 V . AC regardless of the setting of the \(110 / 220 \mathrm{~V}\). Switch on the receiver or the source to which the receiver has been connected.

\section*{ANTENNA:}

A loop antenna has been installed inside the cabinet of the receiver and for reception of local and nearby stations no other additional antenna is usually required.

BAND SELECTOR - The band selector knob has five positions which perform the following functions in the order of its rotation from left to right.

Position \(1-\) Phono - When a record player is connected to the power and pick-up receptacle on the rear apron of the receiver, the receiver will operate as a phonograph. The volume and tone controls function as they do for radio reception.

\section*{CONDITIONS AFFECTING OPERATION}

Though your radio may be functioning perfectly, there are circumstances under which prefect radio reception is not possible. These are not always subject to control by any presently known means. In general, the effect on reception is usually greatest when the radio is tuned to a weak station.

\section*{DAY AND NIGHTT RECEPTION:}

You will notice that you are able to receive several more stations during the night than during the day. This is a phenomenon due to the sun's effect on the ionosphere. It is not a peculiairty of your receiver.

\section*{FADING:}

Fading will be encountered only on distant stations. It will be recognized by a gradual diminishing of volume, sometimes to a point where the signal is no longer heard, followed by a gradual return to normal volume. This happens without any change of the controls of the radio. It is often accompanied by distortion or "garbling" of the signal. By means of the automatic volume control in your receiver this effect is reduced considerably. In severe cases it will be necessary to tune to some other station.

\section*{STATIC:}

Static, like fading, is not attributable to a defective receiver. It is caused by electrical disturbances in the atmosphere (lightning flashes will be heard as severe static) and the more sensitive the receiver the more static will be heard. It us usually most prevalent in the summer and during storm periods.

\section*{STATION INTERFERENCE:}

Because of the limited number of channels to which broadcasting stations can be assigned it has been necessary to assign more than one station to a channel. This results in interference between the stations particularly if the desired station is not powerful or if it tends to fade. The interference will take the form of whistles or growls and in some cases the interfering station will actually be louder than the desired station. There is no remedy for this other than to tune to a different station at another point on the dial.

\section*{LOCAL INTERFERENCE:}

Interference caused by electrical apparatus is known as local or "man made" static. Though somewhat similar to static it can usually be distinguished by its regularity or by some peculiar tone. It is caused by arcing or leaking of current in industrial equipment, appliances, high tension power lines, automobile ignition systems, electric razors, etc. It is usually much more prevalent in cities or industrial areas although rural power lines are a common source.

Local interference can be controlled to some extent•by proper filtering of appliances and equipment and to this end present day manufacturers of such equipment are contributing a great deal in improved designs. Power companies are also helpful and cooperative in seeking out and eliminating interference where their equipment is at fault.



\section*{UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.}

\section*{TUBES AND DIAL LAMP REPLACEMENT:}

The types of tubes required and their relative position in the receiver are shown in Fig. 5. When installing a replacement tube, insert the center guide pin into the center hole of the tube socket. Rotate the tube until the key on the guide pin drops into the notch in the socket hole. Push down until the base of the tube rests firmly on the socket. To replace dial lamps it will be necessary to remove the chassis from the cabinet. Replace lamps with 6-8 V. Mazda \#44 (Blue bead) or equivalent.

\section*{SOCKET VOLTAGES:}

The voltages shown in the voltage chart were obtained with a 20,000 ohm per volt meter when operating the receiver from a 117 -volt a-c source. All voltages are to be measured between the tube pin and chassis. Blanks are provided for your meter readings to establish an average set of readings for this receiver as measured with your test equipment. The normal power consumption for the receiver is 55 watts.

\section*{ALIGNMENT:}

All connections and adjustments necessary for alignment are accessible from the top of the chassis. The output transformer is located on the under side of the chassis, hence, the output meter connection should be made at the speaker socket. Output voice coil impedance is 3 ohms.

Make all alignment adjustments at maximum volume and refer to the alignment chart for the dial and band switch settings.

The standard RMA dummy antenna specified in the alignment chart consists of a 200 mmf condenser in series with a 20 uh r-f choke which is shunted by a 400 mmf condenser in series with a 400 -ohm carbon resistor.

CAUTION - The loop antenna must be connected during alignment.

ALIGNMENT CHART:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Dummy \\
Antenna
\end{tabular} & Signal Generator Coupling & Signal Generator Frequency & Band Switch Setting & Receiver Dial Setting & Adjust \\
\hline 1 & .01 mfd capacitor & Connect to rear section stator of tuning cap. & 455 kc & BC & 1000 kc & ABCD \\
\hline 2 & Std RMA dummy & Connect to terminals "A" and "G" of antenna terminal strip \(\mathrm{TS}_{1}\). & \begin{tabular}{l}
1500 kc \\
600 kc
\end{tabular} & BC & \[
\begin{aligned}
& 1500 \mathrm{kc} \\
& 600 \mathrm{kc}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{E}^{*} \mathbf{F} \\
& \mathbf{G}^{*}
\end{aligned}
\] \\
\hline 3 & Std RMA dummy & See step 2. & 6 mc & SW(A) & 6 mc & \(\mathbf{H}^{*} \mathbf{I}\) \\
\hline 4 & Std RMA dummy & See step 2. & 20 mc & 8W(B) & 20 mc & \(\mathbf{J}^{*} \mathbf{K}\) \\
\hline 5 & Std RMA dummy & See step 2. & \begin{tabular}{l}
11.5 mc \\
9.2 mc
\end{tabular} & SW(C) & 11.5 mc 9.2 mc & \[
\begin{aligned}
& \mathbf{L * M} \\
& \mathbf{N}^{*} \mathbf{O}
\end{aligned}
\] \\
\hline
\end{tabular}
* Note - Calibration adjustment.


Voltage Chart.


GENERAL
ING-SPEAKER-8" Round, Permanent Mag.
net.
TUNING-Manual and 5 P. B. Mechani-
- \(\forall\) SNGdWOD צGWWIEL \(\forall N N G L N V\)

TION-For Antennas Between
\(0.000052-0.000068\) Mfd.
TUNING RANGE- \(550-1600 \mathrm{KC}\).
PUSH BUTTON SETUP PROCEDURE
Pull Push Button to the left and out. Tune in
desired station manually. Push button all the way in.

\section*{ALIGNMENT PROCEDURE}

Output Meter Connections Generator Return ......-nnen
Dummy Antenna



\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Series Condenser
or
Dummy Antenna & Connect
Signal
Generator
to & Signal Generator
Frequency \(\qquad\) & Tune Receiver To & Adjust in Sequence For Max. Output \\
\hline 1 & 0.1 Mfd . & 7Q7 Grid (Pin \#6) & 260 KC & High Frequency Stop & A, B, C, D \\
\hline 2 & 0.000056 Mfd . & Antenna Connector & 1615 KC & High Frequency Stop & \({ }^{*} \mathrm{E}, \mathrm{F}, \mathrm{G}\) \\
\hline 3 & 0.000056 Mfd . & Antenna Connector & 1400 KC & Signal Generator Signal & J, K \\
\hline 4 & 0.000056 Mfd . & Antenna Connector & 1615 KC & High Frequency Stop & F, G \\
\hline 5 & 0.000056 Mfd . & Antenria Connector & 1000 KC & Signal Generator Signal & L* \\
\hline
\end{tabular}
"Before making this adjustment check mechanical setting of oscillator core "H." The rear of the core should be \(125 / 32^{\prime \prime}\). from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end
\(*\) L is the pointer adjustment screw which is on the connecting link, between the pointer assembly and the parallel guide \({ }^{*}\) bar. It should be adjusted so that the dial pointer corresponds with the 1000 KC mark on the dial. (On first "0" of "100.")

With the radio installed and the car antenna plugged in adjust the antenna trimmer " \(G\) " for maximum volume with
the radio tuned to a weak station near 1400 KC (see sticker on case).
TUBE SOCKET VOLTAGE CHART

I. F. COIL CONNECTIONS

VOLT METER RESIST. ANCE ............ OHMS PER VOLT. READ. INGS TAKEN WITH AT SPARK PLATE. VOLTAGES MEAS TERMINALS TO CHASSIS AND ARE POSITIVE UNLESS MARKED OTHER. WISE.

®
\(Z\)
0
0
0
0
0
0
0
0
3
\(Z\)
0
0
0
0
0
0
0

The tube socket voltages, as measured at the factory and under the
conditions shown on the conditions shown on the
schematic diagram on schematic diagram
Page 3 are shown.
 provided so the service tual voltage readings as tual volage reading taken with his own equiping radio should be used for these measurements.



\section*{UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{Illus. No.} & \multirow[t]{2}{*}{Production Part No.} & \begin{tabular}{l}
Service \\
Part No.
\end{tabular} & \multirow[b]{2}{*}{Description} \\
\hline & & ELECTRICAL PARTS & \\
\hline & \multicolumn{3}{|c|}{Coils} \\
\hline 1 & 7257979 & 7257979 & Antenna \\
\hline 2 & 7240251 & 7240251 & Antenna Spark Choke \\
\hline 3 & 7257979 & 7257979 & R. F. \\
\hline 4 & 7258148 & 7258148 & Oscillator \\
\hline 5 & 7238546 & 7238546 & 1st I. F. \\
\hline 6 & 7240467 & 7240467 & \\
\hline 7 & 7241701 & 7241701 & "A" Spark Choke \\
\hline & \multicolumn{3}{|c|}{Condensers} \\
\hline 11 & 7256905 & 7256905 & Antenna Trimmer \\
\hline 12 & 7236842 & E 503 & 0.05 mfd .200 V Tubular \\
\hline 13 & 7236105 & G 221 & 0.000220 mfd . Molded \\
\hline 14 & 7258221 & G 390 & 0.000039 mfd . Ceramic \\
\hline 15 & 7242454 & 7242454 & Dual Trimmer \\
\hline \[
\begin{aligned}
& 15 \mathrm{~A} \\
& 15 \mathrm{~B}
\end{aligned}
\] & & & R. F. Section \\
\hline 16 & 7258162 & 7258162 & 0.000300 mfd . Compensating \\
\hline 17 & 7238788 & E 104 & 0.1 mfd. 400 V Tubular \\
\hline 18 & 7233313 & G 470 & 0.000047 mfd . Molded \\
\hline 19 & 7236105 & G 221 & 0.000220 mfd . Molded \\
\hline 20 & 7240579 & E 204 & 0.2 mfd .400 V Tubular \\
\hline 21 & 7232956 & E 502 & 0.005 mfd .600 V Tubular \\
\hline 22 & 7238553 & 7238553 & Electrolytic \\
\hline 22A & & & 20 mfd .25 V \\
\hline 22B & & & 20 mfd .25 V \\
\hline \({ }_{23}{ }^{22 C}\) & & & 20 mfd .25 V \\
\hline 23 & 7240577 & G 121 & 0.000120 mfd . Molded \\
\hline 24 & 7240578 & 7240578 & 0.0025 mfd .400 V Tubular \\
\hline 25 & 1211232 & 1211232 & 0.025 mfd .400 V Tubular \\
\hline 26 & 7236134 & 7236134 & 0.0015 mfd .800 V Tubular \\
\hline 27 & 7236621 & E 504 & 0.5 mfd .200 V Tubular \\
\hline 28 & 7240566 & 7240566 & 0.000560 mfd . Hi-Q Mica \\
\hline 29 & 7257439 & 7257439 & 0.007 mfd .3000 V Buffer \\
\hline 30 & 7240566 & 7240566 & 0.000560 mfd . Hi-Q Mica \\
\hline 31 31A & 7240612 & 7240612 & Electrolytic \\
\hline \(31 A\)
\(31 B\) & & & 20 mfd .400 V.
20 mfd .400 V \\
\hline
\end{tabular}

\section*{Resistors}
\begin{tabular}{|c|c|c|c|}
\hline 36 & 1213217 & A 101 & 100 Ohms 1/2 W Insulated \\
\hline 37 & 1214563 & A 225 & 2.2 Megohms 1/2 W Insulated \\
\hline 38 & 7233653 & C 153 & 15,000 Ohms 2 W Insulated \\
\hline 39 & 1215563 & A 685 & 6.8 Megohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 40 & 7237595 & B 153 & 15,000 Ohms 1 W Insulated \\
\hline 41 & 1214557 & A 334 & 330,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 42 & 1214550 & A 223 & 22,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 43 & 1213282 & A 105 & 1 Megohm \(1 / 2\) W Insulated \\
\hline 44 & 1213342 & B 273 & 27,000 Ohms 1 W Insulated \\
\hline 45 & 1214553 & A 473 & 47,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 46 & 1214555 & A 224 & 220,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 47 & 1213282 & A 105 & \(1 \mathrm{Megohm} 1 / 2 \mathrm{~W}\) Insulated \\
\hline 48 & 1213224 & A 331 & 330 Ohms 1/2 W Insulated \\
\hline 49 & 1214543 & A 681 & 680 Ohms 1/2 W Insulated \\
\hline 50 & 1214545 & A 222 & 2200 Ohms 1/2 W. Insulated \\
\hline 51 & 1213844 & A 683 & 68,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \\
\hline 52 & 1214572 & C 331 & 330 Ohms 2 W Insulated \\
\hline 53 & 1216154 & B 682 & 6800 Ohms 1 W Insulated \\
\hline 54 & 1214573 & \[
\begin{cases}\text { C } & 272 \\ \text { B } & 562\end{cases}
\] & 1800 Ohms \(\left\{\begin{array}{l}\text { Replace with } 2700 \mathrm{Ohm} 2 \mathrm{~W} \text { and } \\ 5600\end{array}\right.\) \\
\hline
\end{tabular}

Tubes
1213793
1218107
7237751
7237752
\begin{tabular}{ll}
5241 & 6V6GT \\
5233 & 6SR7 \\
5229 & 6SK7 \\
5222 & \(6 S A 7\)
\end{tabular}

PAGE 19-38. UNITED MOTORS

\section*{UNITED MOTORS SERVICE}

\section*{DIV. OF GENERAL MOTORS CORP.}

SERVICE PARTS LIST
\begin{tabular}{cc}
\begin{tabular}{c} 
Illus. \\
No.
\end{tabular} & \begin{tabular}{c} 
Production \\
Part No.
\end{tabular} \\
& \\
60 & 7256847 \\
60A & \\
60 B & \\
61 & 725588 \\
62 & 7245895 \\
63 & 7256939 \\
64 & 7238525 \\
65 &
\end{tabular}

Service
Part No
Description

Miscellaneous Electrical
7256847 Control, Volume, Tone and Switch Volume Control Tone Control Switch
Lamp - Dial Light
Speaker - 8" round, PM
Transformer - Input-Output
Transformer - Power
Vibrator - Synchronous
MECHANICAL PARTS
70
71
72
73
74
7242034
7242035
1217841
7236279
7238539
\begin{tabular}{cc}
81 & 7257606 \\
82 & 7256874 \\
83 & 7258072 \\
84 & 7258203 \\
85 & 7258211 \\
86 & 7256271 \\
87 & 7255992 \\
88 & 7258468 \\
89 & 7256871 \\
90 & 7256861 \\
91 & 1219093 \\
92 & 7256102 \\
93 & 7256833 \\
94 & 7256885 \\
95 & 7257415 \\
96 & 7255991 \\
97 & 7255984 \\
98 & 1218036 \\
\(98 A\) & 1219150 \\
99 & 1218037 \\
\(99 A\) & 1219151 \\
101 & 1218038 \\
\(101 A\) & 1219152 \\
102 & 1218039 \\
\(102 A\) & 1219153 \\
103 & 1218040 \\
\(103 A\) & 1219154 \\
& 1219124 \\
& 1219125 \\
& 1219126 \\
& 1219127 \\
104 & 1219128 \\
& 7256866 \\
& \\
\hline 10
\end{tabular}
1321178
1336763
1910147
120151
1334393
1320577
1320576
1853686
1207820
1321178
6015
6015
120151
1334393
1320577
1320576
6008
6001
"A" Lead and Fuse Connector
Condenser - Generator
Condenser - Ignition Coil
Fuse - 15 amperes
Knob - Control
Knob - Dummy
Knob - Tone Control
Suppressor Adapter
Suppressor - Distributor

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

MODET 982420,
Early: Oldsmobile



\begin{tabular}{|lc}
\hline MODEL 982420, & UNITED MOTORS SERVICE \\
Late; Oldsmobile & DIV. OF GENERAL MOTORS CORP.
\end{tabular}


UNITED MOTORS SERVICE
Oldsmobile
DIV. OF GENERAL MOTORS CORP.

\section*{GENERAL}

MOUNTING—All 1949 Oldsmobile Cars.
TUBES-Six, Plus Rectifier.
SPEAKER-6"x \(9^{\prime \prime}\) Elliptical Permanent Manget.

TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSA-TION-For Antennas Between 0.000050 - 0.000070 Mfd.

TUNING RANGE-550-1600 KC.

\section*{PUSHBUTTON SET-UP}

Pull pushbutton to the left and out. Tune in desired station manually. Push button all the way in.

\section*{ALIGNMENT PROCEDURE:}

Output Meter Connections


MODEL 982421

Generator Return \(\qquad\)
\(\qquad\) Across Voice Coil

Dummy Antenna \(\qquad\) In S

Volume Control Position \(\qquad\) Maximum Volum

Tone Control Position Treble
Generator Output Minimum for Readable Indication
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Series Condenser or Dummy Antenna & Connect To & Signal Generator Frequency & Tune
Receiver
To & Adjust in Sequence For Max. Output \\
\hline 1 & 0.1 Mfd. & 7Q7 Grid (Pin \#6) & 260 KC & High Frequency Stop & A , B, C, D \\
\hline 2 & 0.1 Mfd. & 7Q7 Grid (Pin \#6) & 1615 KC & High Frequency Stop & *E \\
\hline 3 & 0.000068 Mfd . & Antenna Connector & 1615 KC & High Frequency Stop & F, G, H \\
\hline 4 & 0.000068 Mfd . & Antenna Connector & 1400 KC & Signal Generator Signal & K, L, M \\
\hline 5 & 0.000068 Mfd . & Antenna Connector & 1615 KC & High Frequency Stop & F, G, H \\
\hline 6 & 0.000068 Mfd. & Antenna Connector & 1000 KC & Signal Generator Signal & **N \\
\hline
\end{tabular}

\footnotetext{
*Before making this adjustment check the mechanical setting of the oscillator core "J." The slotted end of core should be \(121 / 32^{\prime \prime}\) from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the monting end of the coil form.) Core adjustments should be made with an insulated screwdriver and core studs should be cemented in place with glyptal or household cement after alignment.
**" N " is the pointer adjustment screw which is on the pointer connecting link (see tuner drawing) and should be adjusted so the painter reads 1000 KC . (On first " 0 " of " 100 .")
With the radio installed and the car antenna plugged in adjust the antenna trimmer " \(H\) " for maximum volume with the radio tuned to a weak station near 1400 KC . (See sticker on case.)
}


MODEL 982421, Oldsmobile

UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.


PARTS LAYOUT - TUBE VIEW
TUBE SOCKET VOLTAGE CHART

> The tube socket voltages as measured at the factory and under the conditions shown on the schematic diagram The blank shown here. provided so the serviceman may fill in the actual readings as taken with his own equipment. A normal operating radio should be used for these measurements.


ESCUTCHEON MOUNTING


TUNER


ESCUTCHEON CROSS SECTION


ESCUTCHEON MOUNTING

\section*{SPECIAL INSTRUCTIONS}

Unless special precautions are taken in removing the dial escutcheon, there is a possibility that the dial pointer tip will be broken. Therefore in removal of the escutcheon the following procedure is recommended.
1. Loosen but do not remove the two screws holding the pointer back plate (" \(X\) " in Escutcheon Mounting Drawing Above) and loosen the shellac so that the back plate is free to move.
2. Remove the escutcheon mounting screws "Y" (see Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE). If the dial backplate is free to move slightly downward the escutcheon will come off easily.
The same caution should be exercised when replacing the escutcheon.
\begin{tabular}{|lc}
\hline MODEL 982421, & UNITED MOTORS SERVICE \\
Oldsmobile & DIV. OF GENERAL MOTORS CORP.
\end{tabular}

SERVICE PARTS LIST
\begin{tabular}{rr} 
Illus. & \begin{tabular}{c} 
Production \\
No.
\end{tabular}
\end{tabular}

Service
Part No.
Description
ELECTRICAL PARTS
Coils

7258375
7258367
7240251
7258375
7258367
7258375
7258367
7258376
7258568
7257832
725693 ?
1217846
7258434

Condensers
7258160
E 402
E 503
7258213
E 103
G 680
7258372

E 503
7258445
G 122
G 100
1217848
E 103
E 103
7241198

E 502
E 104
G 222
7236134
1212278
1217848
H 602

Antenna (Sheet Metal Coil Cans)
Antenna (Die Cast Coil Cover)
Antenna Spark Choke
1st R. F. (Sheet Metal Coil Cans)
1st R. F. (Die Cast Coil Cover)
2nd R. F. (Sheet'Metal Coil Cans)
2nd R. F. (Die Cast Coil Cover)
Oscillator (Sheet Metal Coil Cans)
Oseillator (Die Cast Coil Cover)
1st I. F. Assy.
2nd I. F. Assy.
Hash Choke
"A" Spark Choke, Fuse Connector and spark plate condenser.

Antenna Trimmer.
0.004 Mfd. 600 V Tubular
0.005 Mfd. 200 V Tubular

1st R. F. Trimmer
0.01 Mfd. 400 V Tubular
0.000068 Mfd. Molded

Dual Trimmer
2nd R. F. Section
Oscillator Section
0.05 Mfd. 200 V Tubular
0.000300 Mfd. Compensating
0.001200 Mfd. Molded
0.000010 Mfd. Molded

Chassis Plate Condenser
0.01 Mfd. 400 V Tubular
0.01 Mfd .400 V Tubular

Electrolytic
20 Mfd. 25 V
20 Mfd. 400 V
20 Mfd .400 V
0.005 Mfd. 600 V Tubular
0.1 Mfd. 400 V Tubular
0.002200 Mfd. Ceramic
0.0015 Mfd. 800 V Tubular

Spark Condenser (Included in 7258434)
Chassis Plate Condenser
0.006 Mfd. 1600 V Buffer

\begin{tabular}{lll} 
& & \\
A & \\
A & 680 \\
A & 105 \\
B & 153 \\
A & 334 \\
A & 223 \\
A & 106 \\
B & 223 \\
A & 680 \\
B & 333 \\
A & 105 \\
A & 105 \\
A & 473 \\
A & 102 \\
A & 393 \\
A & 105 \\
A & 102 \\
B & 331 \\
A & 824 \\
B & 273 \\
B & 221 \\
C & 272 \\
B & 562
\end{tabular}

68 Ohms \(1 / 2\) W Insulated
1 Megohm \(1 / 2\) W Insulated
15,000 Ohms 1 W Insulated
330,00 Ohms \(1 / 2 \mathrm{~W}\) nsulated 22,000 Ohms \(1 / 2\) W Insulated
10 Megohms \(1 / 2\) W Insulated
22,000 Ohms 1 W Insulated
68 Ohms \(1 / 2\) W Insulated
33,000 Ohms 1 W Insulated
1 Megohm 1/2 W Insulated
1 Megohm \(1 / 2\) W Insulated \(47,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated
\(1,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated
39,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated
1 Megohm \(1 / 2\) W Insulated
1,000 Ohms \(1 / 2\) W Insulated
330 Ohms 1 W Insulated
820,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated
27,000 Ohms 1 W Insulated
220 Ohms 1 W Insulated
1800 Ohms \(\left\{\begin{array}{l}\text { Replace with } 2700 \text { ohms } 2 \mathrm{~W} \text { and } \\ 5600 \text { ohms } 1 \mathrm{~W} \text { in parallel }\end{array}\right.\)
©John F. Rider

\section*{UNITED MOTORS SERVICE \\ DIV. OF GENERAL MOTORS CORP.}

\section*{SERVICE PARTS LIST (Cont.)}
\begin{tabular}{|c|c|c|c|}
\hline Illus. No. & Production Part No. & Service Part No. & Description \\
\hline & \multicolumn{3}{|c|}{Tubes} \\
\hline & 1211924 & 5003 & 0Z4-Rectifier \\
\hline & 1213980 & 5298 & 7E6 \\
\hline & 1213568 & 5295 & 7C5 \\
\hline & 1213562 & 5290 & 7 A 7 \\
\hline & 1213981 & 5301 & 7Q7 \\
\hline \multicolumn{4}{|c|}{Miscellaneous Electrical} \\
\hline \({ }^{66} 66 \mathrm{~A}\) & 7256697 & 7256697 & Control-Volume, Tone, and Switch Volume Control \\
\hline . 66 A B & & & Tone Control \\
\hline 66C & & & Switch \\
\hline 67 & 187189 & 44 & Lamp-Dial Light \\
\hline 68 & 7258146 & 7258146 & Speaker-6x9 Elliptical PM \\
\hline 69 & 7256432 & 7256432 & Transformer-Input \\
\hline 70 & 7258182 & 7258182 & Transformer-Output \\
\hline 71 & 7255881 & 7255881 & Transformer-Power \\
\hline 72 & 7239124 & 8542 & Vibrator-Non-synchronous \\
\hline \multicolumn{4}{|c|}{MECHANICAL PARTS} \\
\hline \multicolumn{4}{|c|}{Chassis} \\
\hline 76 & 7256742 & 7256742 & Connector-Antenna \\
\hline 77 & 7258434 & 7253434 & Connector-"A" Lead, Fuse Holder and Spark Plate Condenser \\
\hline & 7241356 & 7241356 & Socket-Loctal Tube \\
\hline & 7236279 & 7236279 & Socket-Octal Tube \\
\hline & 7239125 & 7239125 & Socket-Vibrator \\
\hline \multicolumn{4}{|c|}{Tuner} \\
\hline \multirow[t]{2}{*}{81} & 7256688 & 7256688 & \multirow[t]{2}{*}{Backplate-Pointer Ball Bearing Pkg.} \\
\hline & 115529 & 115529 & \\
\hline 82 & 7.258492 & 7258492 & Bushing and Manual Drive Shaft \\
\hline 83 & 7258072 & 7258072 & Clutch Disc-Driven \\
\hline 8.4 & 7258366 & 7258366 & Core Guide Bar--Parallel \\
\hline 85 & 7256271 & 7256271 & Pointer Connecting Link \\
\hline 86 & 7255992 & 7255992 & Spring-Pointer Connecting Link \\
\hline 87 & 7258214 & 7258214 & Core-Powdered Iron \\
\hline 88 & 7258371 & 7258371 & Escutcheon \\
\hline 89 & 7258154 & 7258154 & Dial (Dark Numbers) \\
\hline 89A & 7258596 & 7258596 & Dial (Light Numbers) \\
\hline 90 & 7258369 & 7258369 & Backplate-Dial \\
\hline 91 & 7256495 & 7256495 & Gear and Bushing-Clutch \\
\hline 92 & 7256705 & 7256705 & Gear and Bracket-Worm \\
\hline \multirow[t]{2}{*}{93} & 7257898 & 7257898 & Pointer Assy. \\
\hline & 1219174 & 1219174 & Pointer Tip Pkg. \\
\hline 94. & 1219173 & 1219173 & Pushbutton and Slide Assy. (Chrome) \\
\hline 94, & 1219200 & 1219200 & Pushbutton and Slide Assy. (Black) \\
\hline 95 & 1217820 & 1217820 & Socket-Dial Light \\
\hline 96 & 7256488 & 7256488 & Spring-Clutch \\
\hline 97 & 7257415 & 7257415 & Spring-Core Bar Connecting Link \\
\hline \multirow[t]{15}{*}{98} & 7255984 & 7255984 & Spring-Slide Return \\
\hline & & \multicolumn{2}{|l|}{INSTALLATION PARTS} \\
\hline & 554339 & 554339 & \multirow[t]{2}{*}{Trim Plate--Instrument Panel "A" Lead, Condenser, and Fuse Connector, male} \\
\hline & 554691 & 554691 & \\
\hline & & - 6016 & \multirow[t]{2}{*}{Condenser, "A" Lead Condenser, Generator} \\
\hline & 1911095 & 6015 & \\
\hline & 1912757 & 6015 & Condenser, Ignition Coil \\
\hline & 1912900 & 1912900 & Condenser, Voltage Regulator \\
\hline & 120151 & 120151 & Fuse, 15 amperes \\
\hline & 555348 & 555348 & Hood Ground Clip \\
\hline & 7256702 & 7256702 & Knob-Control \\
\hline & 554515 & 554515 & Knob-Tone Control and Dummy \\
\hline & 7240138 & 6013 & Static Collector \\
\hline & 7257239 & 7257239 & Suppressor-Distributor \\
\hline & 414237 & 414237 & Suppressor Insulator \\
\hline
\end{tabular}

\section*{UNITED MOTORS SERVICE \\ Oldsmobile \\ DIV. OF GENERAL MOTORS CORP.}

\section*{GENERAL}

MOUNTING—All 60 and 70 Ṣeries 1948 Oldsmobile Cars.
TUBES-Five, plus rectifier.
SPEAKER - 6"x 9" Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Mechanical.
ANTENNA TRIMMER COMPENSATION - For Antennas Beween \(0.000060-0.000080 \mathrm{Mfd}\).
TUNING RANGE--550-1600 K.C.
PUSH BUTTON SETUP PROCEDURE
Puil Push Button to the left and out. Tune in desired station manually. Push button all the way in.


MODEL 982454

\section*{ALIGNMENT PROCEDURE}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & \[
\begin{aligned}
& \text { Series Condenser } \\
& \text { Dummy Antenna } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Connect \\
Signal Generator \\
to
\end{tabular} & Signal Generator Frequency & Tune Receiver To & Adjust In Sequence For Max. Output \\
\hline 1 & 0.1 Mfd. & 7Q7 Grid (Pin \#6) & 260 KC & High Frequency Stop & A B, C, D \\
\hline 2 & 0.000068 Mfd. & Antenna Connector & 1615 KC & High Frequency Stop & *E, F, G \\
\hline 3 & 0.000068 Mfd. & Antenna Connector & 600 KC & Signal Generator Signal & J, K \\
\hline 4 & 0.000068 Mfd. & Antenna Connector & 1615 KC & High Frequency Stop & F, G \\
\hline 5 & 0.000068 Mfd. & Antenna Connector & 600 KC & Signal Generator Signal & \(L^{* *}\) \\
\hline
\end{tabular}

\footnotetext{
*Before making this adjustment check mechanical setting of oscillator core "H." The rear of the core should be \(13 / 4\) " from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) Core adjustments should be made with an insulated screw driver, and core studs should be cemented in place with glyptal or household cement after alignment.
** L is the pointer adjustment screw which is on the connecting link, Illus. \#88, between the pointer assembly and the parallel guide bar. It should be adjusted so that the dial pointer corresponds with the 600 KC mark on the dial. (Between the " 6 " and the " 0 ".)
With the radio installed and the car antenna plugged in adjust the antenna trimmer " \(G\) " for maximum volume with the radio tuned to a weak station near 1400 KC (see sticker on case).
}



PARTS LAYOUT - TUBE VIEW
tUBE SOCKET VOLTAGE CHART
VOLT METER RESIST-
ANCE -. OHMS
per volt. read.
ings taken with
©GLVTd XXVdS LV
VOLTAGES MEAS.
URED FROM SOCKET
CHASSIS AND ARE
positive.


The tube socket voltages, as measured at the conditions shown on the schematic diagram

The blank spaces are provided so the service man may fill in the actual voltage readings as taken with his own equip ing radio should be used for these measurements.


\section*{SPECIAL INSTRUCTIONS}

Unless special precautions are taken in removing the dial escutcheon, there is a possibility that the dial pointer tip will be broken. Therefore in removal of the escutcheon the following procedure is recommended.
1. Loosen but do not remove the two screws holding the pointer back plate (" \(X\) " in Escutcheon Mounting Drawing Above) and loosen the shellac so that the back plate is free to move.
2. Remove the escutcheon mounting screws "Y" (see Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE). If the dial backplate is free to move slightly downward the escutcheon will come off easily.

The same caution should be exercised when replacing the escutcheon.

MODEL 982454, oldsmobile


\section*{UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.}

\section*{GENERAL}

MOUNTING
.-...All 60 and 70 Series 1948 Oldsmobiles TUBES \(\qquad\) Six, Plus Rectifier SPEAKER \(6^{\prime \prime} \times 9^{\prime \prime}\) Elliptical Permanent Magnet TUNING ..-.Manual and 5 P. B. Mechanical ANTENNA TRIMMER COMPENSA-
TION - For Antennas Between \(0.000060-0.000080 \mathrm{Mfd}\).

TUNING RANGE \(\qquad\) 550-1600 KC. "A" Lead

\section*{PUSHBUTTON SET-UP}

Pull pushbutton to the left and out. Tune in desired station manually. Push button all the way in.


MODEL 982455

\section*{ALIGNMENT PROCEDURE:}

Output Meter Connections Across Voice Coil Generator Return \(\qquad\) To Receiver Chassis Dummy Antenna \(\qquad\)
\(\qquad\) In Series With Generator Volume Control Position \(\qquad\) Maximum Volume
Tone Control Position \(\qquad\) Treble
Generator Output
\(\qquad\) Minimum for Readable Indication
\begin{tabular}{c|c|c|c|c|c}
\hline Steps & \begin{tabular}{c} 
Series Condenser \\
or Dummy Antenna
\end{tabular} & Connect To & \begin{tabular}{c} 
Signal \\
Generator \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Tune Receiver \\
To
\end{tabular} & \begin{tabular}{c} 
Adjust In \\
Sequence \\
For Max. \\
Output
\end{tabular} \\
\hline 1 & \(0.1 \mathrm{Mfd}\). & 7 Q 7 Grid (Pin. \#6) & 260 KC & High Frequency Stop & A, B, C, D \\
2 & \(0.000068 \mathrm{Mfd}\). & Antenna Connector & 1615 KC & High Frequency Stop & \(* \mathrm{E}, \mathrm{F}, \mathrm{G}\) \\
3 & \(0.000068 \mathrm{Mfd}\). & Antenna Connector & 600 KC & Signal Generator Signal & \(\mathrm{J}, \mathrm{K}\) \\
4 & \(0.000068 \mathrm{Mfd}\). & Antenna Connector & 1615 KC & High Frequency Stop & \(\mathrm{F}, \mathrm{G}\) \\
5 & \(0.000068 \mathrm{Mfd}\). & Antenna Connector & 600 KC & Signal Generator Signal & \(* * \mathrm{~L}\) \\
\hline
\end{tabular}
*Before making this adjustment check the mechanical setting of the oscillator core " H ". The slotted end of core should be \(13 / 4^{\prime \prime}\) from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form.) Core adjustments should be made with an insulated screwdriver and core studs should be cemented in place with gyptal or household cement after alignment.
\({ }^{*} \mathrm{~L}\) is the pointer adjustment screw which is on the pointer connecting link (illustration \(\# 88\), see tuner picture) and should be adjusted so the pointer reads 600 KC . (Between the " 6 " and the " 0 ".)
With the radio installed and the car antenna plugged in adjust the antenna trimmer " \(G\) " for maximum volume with the radio tuned to a weak station near 1400 KC . (See sticker on case.)

The tube socket voltages as measured at the factory and under the conditions shown on the schematic diagram The blank spaces are provided so the serviceman may fill in the actual readings as taken with his own equipment. A normal operating radio should be used for these measurements.


PAGE 19-56 UNITED MOTORS MODEL 982455, Oldsmobile
DIV. OF GENERAL MOTORS CORP.



\section*{SPECIAL INSTRUCTIONS}

Unless special precautions are taken in removing the dial eicutcheon, there is a possibility that the dial pointer ip will be broken. Therefore in removal of the escutcheon the following procedure is recommended.
1. Loosen, but do not remove, the two screws holding the pointer backplate ("X" in Escutcheon Mounting Drawing Above) and loosen the shellac so that the backplate is free to move.
2. Remove the escutcheon mounting screw "Y". (See Escutcheon Mounting).
3. Carefully lift off the escutcheon (DO NOT FORCE.) If the dial backplate is free to move slightly downward the escutcheon will clear the backplate and come off easily without breaking the pointer tip.
The same caution should be used when replacing the escutcheon.

PAGE 19-58 UNITED MOTORS
\begin{tabular}{cc} 
Illus. & Production \\
No. & Part No.
\end{tabular}
\begin{tabular}{ll}
7240251 & 7240251 \\
7257391 & 7257391 \\
7257391 & 7257391 \\
7257386 & 7257386 \\
7257832 & 7257832 \\
7256932 & 7256932 \\
7241708 & 7241708 \\
1217846 & 1217846
\end{tabular}
16
17
18
19
20
20 A
20 B
21
22
23
1217735
7257424
7230892
1

1215189
7236756
7237870
7237870
7232956
1217848
7238788
7235134
7241259
1217848
7240906
7241198
7242013
7236842
1217744
1212359
7242454

1217735
7257424
7230892
1215189
7236756
7237870
7237870
7232956
1217848
7238788
7236134
7241259
1217848
7240906
7241198
\begin{tabular}{lr}
39 & 1213217 \\
40 & 1214563 \\
41 & 7237595 \\
42 & 1214557 \\
43 & 1214550 \\
44 & 1214565 \\
45 & 7233653 \\
47 & 1213282 \\
48 & 1214553 \\
49 & 1213282 \\
50 & 1213235 \\
51 & 1213235 \\
52 & 1214561 \\
53 & 1213282 \\
54 & 1213480 \\
55 & 7233773 \\
56 & 1213342 \\
57 & 7237994 \\
58 & 1214573
\end{tabular}
1213562
1213981
1213980
1213568
1211924

TUBES
\begin{tabular}{ll}
5290 & 7A7 \\
5301 & 7 Q 7 \\
5298 & 7 E 6 \\
5295 & 7 C 5 \\
5003 & \(0 Z 4\)
\end{tabular}
7242013
E 503
G 222
G 680
7242454

G 330
7257424
E 503
G 100
E 202
E 103
E 103
E 502
1217848
E 104
7236134
7241259
1217848
H 602
7241198

RESISTORS
Service
Part No.

ELECTRICAL PARTS
COILS
257391
7257391
7257386
257832
7241708
1217846

\section*{CONDENSERS}

O2
G680
7242454

G330
57424
G100
E202
E103
E502
1217848
7236134
7241259
H602
7241198
A101

A225 2.2 Megohim \(1 / 2\) W. Insulated
B153 \(\quad 15,000\) Ohms 1 W. Insulated
A334 \(\quad 330,000\) Ohms \(1 / 2 \mathrm{~W}\). Insulated
22,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated
3.9 Megohm \(1 / 2 \mathrm{~W}\). Insulated

15,000 Ohms 2 W . Insulated
1 Niegohm 1/2 W. Insulated
\(47,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated
(Included in 2nd I. F. Assy.)
1 Megohm \(1 / 2\) W. Insulated
\(1,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated
1,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated
\(820,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated
1 Megohm \(1 / 2\) W. Insulated
39,000 Ohms \(1 / 2\) W. Insulated
330 Ohms 1 W. Insulated
27,000 Ohms 1 W . Insulated 220 Ohms 1 W. Insulated
Replace Illus. \(\{2700 \mathrm{Ohms} 2 \mathrm{~W}\). Insulated \(\}\) 58 with parallel \(\{5600 \mathrm{Ohms} 1 \mathrm{~W}\). Insulated \(\}\)

Hllus: Production No. Production
\begin{tabular}{lc}
61 & 7257526 \\
61 A & \\
61 B & \\
61 C & \\
62 & \\
63 & 725789 \\
64 & 7256432 \\
65 & 7240453 \\
66 & 7255881 \\
67 &
\end{tabular}

70
7256742
7241356
7236279
7239125

7236279
7239125
7257535
1218277
7257392
7256105
7257514
7257534
7256495
7256705
7237172
7256179
7256271
1218269

7255989
7256488
7257415
7255992
7255984
1217820
1218461

Service
Part No.
Description
MISCELLANEOUS ELECTRICAL PARTS

Control-Volume, Tone and Switch Volume Control Tone Control
amp, Dial (Mazda 44)
Speaker, \(6 \times 9\) Elliptical, Permanent Magnet
Transformer, Input
Transformer, Output
Transformer Assy., Power
Vibrator

MECHANICAL PARTS

\section*{CHASSIS}
\begin{tabular}{ll}
7256742 & Connector, Antenna \\
7241356 & Socket, Loctal Tube \\
7236279 & Socket, Octal Tube \\
7239125 & Socket, Vibrator
\end{tabular}

TUNER PARTS
\begin{tabular}{ll}
7257535 & Backplate, Pointer \\
1218277 & Bushing and Drive Shaft Assy. \\
7257392 & Core, Tuning \\
7256105 & Disc. Clutch \\
7257514 & Escutcheon Assy. \\
7257534 & Dial \\
7256495 & Gear and Bushing Assy. \\
7256705 & Gear and Bracket (Worm Gear) \\
7237172 & Grommet, Tuner Mounting \\
7256179 & Parallel Guide Bar Assy. \\
7256271 & Pointer Adjuster Assy. \\
1218269 & Pointer Tip Package \\
& \multicolumn{1}{l}{ Pointer Tip } \\
7255989 & Sprew, Nut, and Lockwasher \\
7256488 & Spring, Cam Return \\
7257415 & Spring, Clutch \\
7255992 & Spring, Connecting Link, Guide Bar \\
7255984 & Spring, Slide Return Link, Pointer \\
1217820 & Socket and Lead, Dial Light \\
1218461 & Pushbutton Insert — Chrome
\end{tabular}

INSTALLATION PARTS
7255608
1911095
1910147
1218333
120151
414237
7256702
7257427
7256692
7240138
7257239
6016
6015
6015
218333
20151
14237
256702
257427
256692
6013
257239
Condenser, "A" Lead
Condenser, Generator
Condenser, Ignition Coil
Fuseholder
Fuse, 15 Amp.
Insulator, Distributor
Knob
Knob, Dummy
Knob, Tone Control
Static Collector
Suppressor, Distributor


PARTS LAYOUT - CHASSIS VIEW
PARTS LAYOUT - TUBE VIEW


\begin{tabular}{|ll}
\hline MODEL \(984296, \quad\) UNITED MOTORS SERVICE \\
Pontiac & DIV. OF GENERAL MOTORS CORP.
\end{tabular}


\section*{Description}
\begin{tabular}{|c|}
\hline \multirow[t]{23}{*}{\begin{tabular}{l}
Antenna Trimmer 0.05 Mfd. 200 V. Tubular 0.000033 Mfd. Ceramic \\
Dual Trimmer \\
R. F. Section \\
Oscillator Section \\
0.000039 Mfd. Ceramic \\
0.000300 Mfd. Compensating \\
0.05 Mfd. 400 V. Tubular \\
0.000047 Mfd. Molded \\
. 002 Mfd. 600 V. Tubular \\
0.000330 Mfd. Molded \\
0.001 Mfd .600 V . Tubular \\
0.0015 Mfd .200 V . Tubular \\
0.01 Mfd .400 V . Tubular \\
.001 Mfd. 600 V. Tubular \\
Electrolytic \\
20 Mfd .25 V. \\
10 Mfd .400 V . \\
15 Mfd .400 V. \\
0.02 Mfd. 400 V . Tubular \\
0.005 Mfd .600 V. Tubular \\
Spark Plate \\
Chassis Plate Condenser \\
0.006 Mfd. 1600 V. Buffer
\end{tabular}} \\
\hline \end{tabular}
\begin{tabular}{|c|c|}
\hline A 271 & 270 Ohms 1/2 W. Insulated \\
\hline A 225 & 2.2 Megohms 1/2 W. Insulated \\
\hline B 103 & 10,000 Ohms 1 W . Insulated \\
\hline A 334 & 330,000 Ohms 1/2 W. Insulated \\
\hline A 223 & 22,000 Ohms 1/2 W. Insulated \\
\hline C 153 & 15,000 Ohms 2 W . Insulated \\
\hline A 685 & 6.8 Megohms \(1 / 2 \mathrm{~W}\). Insulated \\
\hline A 271 & 270 Ohms 1/2 W. Insulated \\
\hline A 105 & 1 Megohm \(1 / 2\) W. Insulated \\
\hline A 563 & 56,000 Ohms 1/2 W. Insulated \\
\hline A 184 & 180,000 Ohms 1/2 W. Insulated \\
\hline A 473 & 47,000 Ohms 1/2 W. Insulated (in 2nd I. F. Can) \\
\hline A 104 & 100,000 Ohms 1/2 W. Insulated \\
\hline A 330 & 33 Ohms 1/2 W. Insulated \\
\hline A 685 & 6.8 Megohms 1/2 W. Insulated \\
\hline A 224 & 220,000 Ohms 1/2 W. Insulated \\
\hline A 224 & 220,000 Ohms 1/2 W. Insulated \\
\hline A 105 & \(1 \mathrm{Megohm} 1 / 2 \mathrm{~W}\). Insulated \\
\hline A 272 & 2700 Ohms 1/2 W. Insulated \\
\hline A 685 & 6.8 Megohms 1/2 W. Insulated \\
\hline A 184 & 180,000 Ohms 1/2 W. Insulated \\
\hline B 331 & 330 Ohms 1 W. Insulated \\
\hline A 224 & 220,000 Ohms 1/2 W. Insulated \\
\hline A 224 & 220,000 Ohms 1/2 W. Insulated \\
\hline A 151 & 150 Ohms 1/2 W. Insulated \\
\hline A 104 & 100,000 Ohms 1/2 W. Insulated \\
\hline B 221 & 220 Ohms 1 W . Insulated \\
\hline C 272 & 1800 Ohms J Replace with 2700 Ohms 2 W. and \\
\hline B 562 & 1800 Ohms \(\left\{5600\right.\) Ohm I W. in parallel \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) \\
\hline
\end{tabular}

Coil Assy. - Tuning
Antenna
R. F.

Oscillator
Antenna Scries Choke
Antenna Spark Choke
1st I. F.
2nd I. F.
"A" Spark Choke
Hash Choke

> Antenna Trimmer
> 0.05 Mfd. 200 V. Tubular
> 0.000033 Mfd Ceramic
> al Trimmer
> Oscillator Section
> 0.000039 Mfd. Ceramic 0.000300 Mfd . Compensating 0.000047 Mfd. Molded
> .002 Mfd. 600 V. Tubular 0.000330 Mfd. Molded
> 0.0015 Mfd. 200 V. Tubular
> 0.01 Mfd. 400 V . Tubular Electrolytic
> 20 Mfd 25 V.
> 15 Mfd 400 V
> 0.02 Mfd .400 V . Tubular Spark Plate
> Chassis Plate Condenser
> 0.006 Mfd. 1600 V. Buffer

270 Ohms \(1 / 2 \mathrm{~W}\). Insulated路 330,000 Ohms \(1 / 2 \mathrm{~W}\). Insulate \(22,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated 15,000 Ohms 2 W . Insulated 6.8 Megohms \(1 / 2\) W. Insulate 1 Megohm \(1 / 2\) W. Insulated 56,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 47,000 Ohms \(1 / 2\) W. Insulated (in 2nd I. F. Can) 100,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated Ohms \(1 / 2 \mathrm{~W}\). Insulated 220,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 220,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated Megohm \(1 / 2\) W. Insulated 2700 Ohms \(1 / 2\) W. Insulated 180,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 330 Ohms 1 W. Insulated 220,000 Ohms \(1 / 1 / \mathrm{W}\). Insula 150 Ohms \(1 / 2 \mathrm{~W}\). Insulated 100,000 Ohms \(1 / 2\) W. Insulated 1800 Ohms \(\left\{\begin{array}{l}\text { Replace with } 2700 \text { Ohms } 2 \mathrm{~W} . \text { and } \\ 5600 \mathrm{Ohm} \text { I W. in parallel }\end{array}\right.\)

Service
Part No.
ELECTRICAL PARTS

\section*{Coils}
7257956

7255738
7240251
7257832
7256932
7241701
7241708

Condensers
7257959
E 503
G 330
7242454

G 390
7258162
E 503
G 470
E 202
G 331
E 102
1218499
E 103
E 102
M 908


E 203
E 502
7241259
1217848
H 602

\section*{Resistors}

1214542
1214563
1211085
1214557
1214550
7233653
1215563
1214542
1213282
1213267
1215560
1214553
1213270
1214538
1215563
121455.5

1214555
1213282
1213240
1215563
1215560
1214555
1214555
1213220
1213270
7237994
1214573
-

257956

7255738
7240251
7257832
7256932
7241708

7236842
1218348
7242454

7258221
7258162
7258125
7233313
7237954
7232957
7239188
1218499
1209309
7239188
7238830

7258124
7230767
7241259
7240906

Production
No.

E 503
G 330
7242454

G 390
7258162
E 503
G 470
E 202
G 331
E 102
218499
E 102
M 908

E 203
E 502
1217848
H 602

B 103
A 334
A 223
C 153
A 271
A 105
A 563
A 473
A 104
A 330
A 685
A 224
A 105
A 272
A 685
A 184
A
A 224
A 151
B 221
(C 272
B 562

\section*{SERVICE PARTS LIST}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Illus. \\
No.
\end{tabular} & Production Part No. & \begin{tabular}{l}
Service \\
Part No.
\end{tabular} & Description \\
\hline & \multicolumn{3}{|c|}{Tubes} \\
\hline & 1213565 & 5292 & 7B6 \\
\hline & 1213568 & 5295 & \(7 \mathrm{C5}\) \\
\hline & 1213981 & 5301 & 7Q7 \\
\hline & 1213562 & 5290 & 7A7 \\
\hline & 1211924 & 5003 & OZ4 \\
\hline & \multicolumn{3}{|c|}{Miscellaneous Electrical} \\
\hline & 7257708 & 7257708 & Control . Volume, Tone and Switch Volume Control \\
\hline 71 B & & & Tone Control \\
\hline 71 C & & & Switch \\
\hline 72 & 187189 & 44 & Lamp - Dial Light \\
\hline 73 & 7256355 & 7256355 & Speaker - \(6 \times 9\) Elliptical, Permanent Magnet \\
\hline 74 & 7255881 & 7255881 & Transformer - Power \\
\hline 75 & 7240453 & 7240453 & Transformer - Output \\
\hline 76 & 7239124 & 8542 & Vibrator - Nonsynchronous \\
\hline
\end{tabular}

MECHANICAL PARTS
Chassis
\begin{tabular}{ll}
7257746 & Socket - Antenna \\
7241356 & Socket - Loctal Tube \\
7236279 & Socket - Octal Tube \\
7239125 & Socket - Vibrator
\end{tabular}

Tuner
\begin{tabular}{ll}
7257722 & Backplate - Pointer \\
7258494 & Bushing and Manual Drive Shaft \\
7258072 & Clutch Disc - Driven \\
7258203 & Connecting Link - Core Bar \\
7258210 & Core Guide Bar - Parallel \\
7256271 & Pointer Connecting Link \\
7255992 & Spring - Pointer Connecting Link \\
7258468 & Core - Powdered Iron \\
7257717 & Escutcheon Assy. \\
7257721 & Dial \\
7257719 & Backplate - Dial \\
7257718 & Spring, Dial Retainer \\
7256495 & Gear and Bushing - Clutch \\
7257742 & Pointer Assy. \\
1219120 & Pointer Tip Pkg. \\
7256488 & Spring Clutch \\
7257415 & Spring - Core Bar Connecting Link \\
7255984 & Spring - Slide Return \\
1218884 & Socket-Dial Light \\
1218885 & Push Button and Tuner Slide \\
7257711 & Worm Gear and Bracket
\end{tabular}

\section*{INSTALLATION PARTS}
\begin{tabular}{rr}
1911948 & 6015 \\
1911095 & 6015 \\
147685 & 147685 \\
511834 & 511834 \\
511831 & 511831 \\
511833 & 511833 \\
511836 & 511836
\end{tabular}

Condenser, "A" Lead
Condenser, Generator
Fuse, 14 Amps
Knob, Control
Knob, Dummy
Knob, Tone Control
Trim Plate, Radio

\section*{UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.}

GENERAL
MOUNTING—All 1948 Pontiac Cars.
TUBES-Seven, Plus Rectifier.
SPEAKER-6 \(6^{\prime \prime} \times 9^{\prime \prime}\) Elliptical, Permanent Magnet.
TUNING-Manual and 5 P. B. Solenoid Operated.

ANTENNA TRIMMER CONPENSA.
TION - For Antennas Between 0.000060-0.000095 Mfd.

TUNING RANGE - 550-1600 KC.

\section*{PUSHBUTTON SET-UP}

Pull button off. Push set up knob all the way in and release. Turn set up knob until desired station is tuned in. Replace button.


ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|}
\hline Output Meter Conn & Across Voice Coil \\
\hline Generator Ground & Receiver Chassis \\
\hline Dummy Antenna & ies With Generator \\
\hline Volume Control Position & Maximum Volume \\
\hline Tone Control Position & Treble \\
\hline Generator Output & Readable Indication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Dummy Antenna or Series Condenser & Connect To & Signal Generator Frequency & Tune Receiver To & Adjust In Order For Max. Output \\
\hline 1 & 0.1 Mfd. & 6SA7 Grid (Pin \#8) & 260 KC & High Frequency Stop & A, B, C, D \\
\hline 2 & 0.000068 Mfd. & Antenna Connector & 1615 KC & High Frequency Stop & *F, G \\
\hline 3 & 0.000068 Mfd. & Antenna Connector & 1200 KC & Signal Generator Sig. & J, K \\
\hline 4 & 0.000068 Mfd. & Antenna Connector & 1615 KC & High Frequency Stop & F, G \\
\hline
\end{tabular}

\footnotetext{
*Before making this adjustment check setting of oscillator core " H ." This should be adjusted so that the end opposite the core stud is \(1 \frac{1}{32}\) " from the terminal board end of the coil form. (This measurement is readily made by inserting a suitable plug in the coil form.)

With radio installed and the antenna plugged in adjust trimmer " \(G\) " for maximum volume with the radio tuned to a weak station near 1400 KC .
}


UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.

MODEL 984249,
Pontiac


ESCUTCHEON CROSS SECTION


DIAL CORD DRAWING


PAGE 19-68 UNITED MOTORS
\begin{tabular}{|lc}
\hline MODEL 984249, \\
Pontiac & UNITED MOTORS SERVICE \\
DIV. OF GENERAL MOTORS CORP.
\end{tabular}


Service
Part No.

Illus.
No.
1
2
3
4
5
6
7
8
9
10
11

Production Part No.

Description
ELECTRICAL PARTS

\section*{COILS}
\begin{tabular}{ll}
7255738 & Antenna Choke \\
7257603 & Antenna \\
7257558 & R.F. Choke \\
7257603 & R.F. \\
7257605 & Oscillator \\
7257988 & 1st I. F. \\
7257594 & 2nd I. F. \\
1217846 & Hash Choke \\
7257096 & "A" Choke \\
1216431 & Solenoid \\
1214463 & Clutch
\end{tabular}

\section*{CONDENSERS}
2
2
2
2
2
2
26
2
2
29
3
3
3
3
3
3
3
3

121507
1217742
7238788
7236842
1212359
7230893
1214456
7256259
7236107
7230893
1214456
1210275
7236842
7230767
7232957
7232954
7230893
7231542
7237954
7231542
7240724
37A
37 B
37 C
38
39
1217848
1215191

12132
121455
72336
72375
724258
121455
723783
1213224
1214555
1213486
1214540
1213240
1213272
7241614
1213282
1213267
1213271
1213480
1215560
1215560
7233773
7237994
1216125

1215074
G821
E104
E503
G680
G151
1214456
G270
E203.
G151
1214456
7257567
G101
E503
E502
G331
E302
G151
E203
E202
M908

1217848
H802

\section*{RESISTORS}

A331
A334
A334
C153
B153
A334
7242581
A223
A331
A 224
A225
A471
A560
A 272
A154
A105
A823
A563
A124
A393
A184
A184
B331
B221
B153
C152

Antenna Trimmer (Included in Antenna Connector Illus. \#91) .000820 Mfd. Molded . 1 Mfd. 400 V. Tubular .05 Mfd. 200 V. Tubular . 000068 Mfd. Molded . 000150 Mfd. Molded
Trimmer - R.F.
.000027 Mfd. Ceramic .02 Mfd. 200 V. Tubular .000150 Mfd. Molded Trimmer - Oscillator . 000260 Mfd. Compensating .000100 Mfd. Molded .05 Mfd. 200 V. Tubular .005 Mfd. 600 V. Tubular .000330 Mfd. Molded .003 Mfd. 600 V. Tubular . 000150 Mfd. Molded .02 Mfd. 400 V. Tubular .002 Mfd. 600 V. Tubular .02 Mfd. 400 V. Tubular 3 Section Electrolytic 20 Mfd .25 V. 20 Mfd. 400 V. 20 Mfd. 400 V. Chassis Plate Condenser . 008 Mfd. 1600 V. Tubular

330 Ohms \(1 / 2 \mathrm{~W}\). Insulated 330,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 15,000 Ohms 2 W . Insulated 15,000 Ohms 1 W . Insulated \(330,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated (Replace With 2 20 Megohms \(1 / 2\) W. Insulated - \(\left\{\begin{array}{l}\text { A106 Resistors }\end{array}\right.\) \(22,000 \mathrm{Ohms}^{1 / 2} \mathrm{~W}\). Insulated In Series 220 Ohms \(1 / 2 \mathrm{~W}\). Insulated 330 Ohms \(1 / 2 \mathrm{~W}\). Insulated \(220,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated 2.2 Megohms \(1 / 2\) W. Insulated 470 Ohms \(1 / 2 \mathrm{~W}\). Insulated 56 Ohms \(1 / 2 \mathrm{~W}\). Insulated 2700 Ohms \(1 / 2 \mathrm{~W}\). Insulated \(150,000 \mathrm{Ohms}^{1 / 2} \mathrm{~W}\). Insulated 2.7 Megohms \(1 / 2 \mathrm{~W}\). Insulated 1 Megohm \(1 / 2\) W. Insulated \(82,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated 56,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated \(120,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\). Insulated 39,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 180,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 180,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 150,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 330 Ohms 1 W. Insulated 220 Ohms 1 W . Insulated 15,000 Ohms \(1 / 2 \mathrm{~W}\). Insulated 1500 Ohms 2 W . Insulated

PAGE 19-70 UNITED MOTORS



MODEL 984273,
Pontiac

UNITED MOTORS SERVICE
DIV. OF GENERAL MOTORS CORP.
ALIGMMENT PROCEDURE
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Series Capacitor \\
Or \\
Dummy Antenna
\end{tabular} & Connect To & \begin{tabular}{c} 
Signal \\
Generator \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Adjust \\
Screws \\
In Order
\end{tabular} \\
\hline 0.1 mfd. & Terminal X (See Parts Layout) & 257.5 KC & A, B, C, D \\
.000070 mfd. & Antenna Terminal & 1610 KC & B, F, G
\end{tabular}
Low erequency alignment not required.
Low frequency alignment not required. ( 1400 KC ) when radio is installed.
Adjust Trimmer \(G\) to match car antenna

\section*{UNITED MOTORS SERVICE DIV. OF GENERAL MOTORS CORP.}

\section*{PUSH BUTTON SET-UP}

Turn counter clockwise - tune in manually - depress loosened button - turn bution clockwise to tighten.


PAGE 19-74 UNITED MOTORS
YODEL 986146, Serial UNITED MOTORS SERVICE
B47-1001 and up; DIV. OF GENERAL MOTORS CORP.
Chevrolet




\section*{ALIGNMENT PROCEDURE:}

Output Meter Connection

\author{
Across Voice Coil
}

Signal Generator Return
To Chassis
Dummy Antenna \(\qquad\) In Series With Generator
Volume Control \(\qquad\) Maximum Volume
Tone Control \(\qquad\) Minimum for Readable Indication
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Series Condenser or Dummy Antenna & Connect To & Signal Generator Frequency & Tune Receiver To & Adjust in Sequence for Max. Output \\
\hline 1 & 0.1 Mfd. & 6SA7 Grid (Pin \#8) & 260 KC & High Freq. Stop & A, B, C, D \\
\hline 2 & 0.000068 Mfd. & Antenna Connector & 1615 KC & High Freq. Stop & *E, F, G \\
\hline 3 & 0.000058 Mfd. & Antenna Connector & 1430 KC & Signal Gen. Signal & J, K \\
\hline 4 & 0.000068 Mfd . & Antenna Connector & 1615 KC & High Freq. Stop & F, G \\
\hline 5 & 0.000068 Mfd. & Antenna Connector & 1000 KC & Signal Gen. Signal & L** \\
\hline
\end{tabular}
"Before making this adjustment check the mechanical setting of the oscillator core "H." The slotted end of the corc should be \(125 / 32^{\prime \prime}\) from the mounting end of the coil form. (This measurement is readily made by inserting a suitable plug in the mounting end of the coil form). Core adjustments are made from the mounting end of the coil form with an insulated screwdriver, and core studs should be sealed with glyptal or household cement after alignment.
"**" \(L\) " is the pointer adjustment screw on the pointer connecting link (See tuner drawing). Adjust so pointer reads 1000 KC (on the " 10 " calibration mark).
With the radio instalied and the car antenna plugged in adjust antenna trimmer " \(G\) " (See sticker on case) for maximum volume with the radio tuned to a weak station near 1400 KC .



UNITED MOTORS PAGE 19-79

Illus.
No.

7255738
7257979
7240251
7257979
7258148
7257832
7256932
1217846
1217846
7258226
7258125
1210697
1218348
7242454

7258221
7258598
1218202
7233770
1218883
1218886
7237720
7237719
7232956
7230767
7241198
1218882
1218880
1219084
7240797
1217848
7240906
1214563
7233653
7237835
1214557
7237595
1214550
1215563
1214542
1213282
1213282
1213267
1214553
1213220
1215563
1214555
1213224
1214555
1215560
1213240
1213240
1215563
1214555
1214555
1213270
1213236
1216149
1213481
7237994
1214573

Service
Part No.

ELECTRICAL PARTS

\section*{Coils}
7255738
7257979
724025 i
7257979
7258148
7257832
7256932
1217846
1217846

Condensers

7230592
7230592
1217735
7242454

1217736
7258598
7233313
7233770
1217790
7236105
7233770
7237719
7230767
7230767
7241198

1218882
1218880
1219084
7240797
1217848
7240906

Antenna Series Choke
Antenna
Antenna Spark Choke
R. F.

Oscillator
1st I. F. Assy.
2nd I. F. Assy
"A" Spark Choke
Hash Choke

Antenna Trimmer
0.05 mfd 400 V Tubular 0.05 mfd 200 V Tubular 0.000033 mfd Ceramic

Dual Trimmer
R. F. Section

Oscillator Section 0.000039 mfd Ceramic 0.000300 mfd Compensating 0.000047 mfd Ceramic 0.02 mfd 600 V Tubular 0.001 mfd 600 V Tubular 0.000220 mfd Ceramic 0.02 mfd 400 V Tubular 0.015 mfd 600 V Tubular 0.005 mfd 600 V Tubular 0.005 mfd 600 V Tubular Electrolytic
20 mfd 25 V
20 mfd 400 V
20 mfd 400 V
0.4 mfd 100 V Tubular 0.15 mfd 100 V Tubular 0.006 mfd 800 V Tubular Spark Plate and Choke Assy. Chassis Plate Condenser 0.006 mfd 1600 V Buffer

\section*{Resistors}

1214563
7233653
7237835
1214557
7237595
1214550
1215563
121454?
1213282
1213282
1213267
1214553
1213220
1215563
1214555
1213224
1214555
1215560
1213240
1213240
1215563
1214555
1214555
1213270
1213236
1216149
1213481
7237994
\{ 7242844
) 7240918
2.2 Megohms \(1 / 2 \mathrm{~W}\) Insulated 15,000 Ohms 2 W Insulated 220 Ohms 1/2 W Insulated 330,000 Ohms 1/2 W Insulated 15,000 Ohms 1 W Insulated 22,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated 6.8 Megohms \(1 / 2\) W Insulated 270 Ohms \(1 / 2\) W Insulated 1 Megohm \(1 / 2\) W Insulated 1 Megohm \(1 / 2\) W Insulated 56,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \(47,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated \(150 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated 6.8 Megohms \(1 / 2\) W Insulated 220,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \(330 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated 220,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated 180,000 Ohms 1/2 W Insulated 2700 Ohms \(1 / 2\) W Insulated 2700 Ohms \(1 / 2\) W Insulated 6.8 Megohms \(1 / 2\) W Insulated 220,000 Ohms 1/2 W Insulated 220,000 Ohms \(1 / 2 \mathrm{~W}\) Insulated \(100,000 \mathrm{Ohms} 1 / 2 \mathrm{~W}\) Insulated 1200 Ohms \(1 / 2\) W Insulated 390 Ohms 1 W Insulated 3300 Ohms \(1 / 2\) W Insulated 220 Ohms 1 W Insulated 1800 Ohms \(\left\{\begin{array}{l}\text { Replace with } 2700 \text { ohms } 2 W \\ 5600 \text { ohms } 1 \mathrm{~W} \text { in parallel }\end{array}\right.\) and
\begin{tabular}{cccc}
\begin{tabular}{c} 
Illus. \\
No.
\end{tabular} & \begin{tabular}{c} 
Production \\
Part No.
\end{tabular} & \begin{tabular}{c} 
Service \\
Part No.
\end{tabular} & Description \\
& & \multicolumn{2}{c}{ Tubes }
\end{tabular}

Miscellaneous Electrical
\begin{tabular}{rl}
7258283 & Control-Volume \\
125588 & Lamp-Dial Light \\
187189 & Lamp-Pilot Light \\
7258488 & Speaker-6x9.Elliptical PM \\
7242411 & Switch-"On-Off" \\
7258273 & Switch-Tone Control \\
7258390 & Transformer-Output \\
7255881 & Transformer-Power \\
7239124 & Vibrator-Non-synchronous
\end{tabular}

MECHANICAL PARTS
\begin{tabular}{cl}
\multicolumn{2}{c}{ Chassis } \\
7239475 & \\
1219106 & Socket-Antenna \\
7236279 & \\
7239125 & Socket-Dial Light \\
& Socket—Octal Tube \\
& Socket—Vibrator
\end{tabular}
\begin{tabular}{ll}
7258496 & Bushing and Manual Drive Shaft \\
7258072 & Clutch Disc-Driven \\
7258203 & Connecting Link-Core Bar \\
7258206 & Core Guide Bar-Parallel \\
7256271 & Pointer Connecting Link \\
7255992 & Spring-Pointer Connecting Link \\
7258463 & Core—Powdered Iron \\
1219105 & Dial Backplate Assy. \\
7258254 & Dial-Calibration \\
7258239 & Dial Retainer Spring \\
7258270 & Escutcheon \\
7258236 & Dial Glass \\
7258232 & Dial Retainer \\
7256760 & Gear and Bushing \\
7256758 & Gear and Bracket-Worm \\
7258267 & Plunger and Button-"On-Off" \\
1219138 & Plunger and Button-Tone Control \\
7258269 & Pointer Assy. \\
1219104 & Pushbutton and Slide Assy. \\
7257361 & Spring—Toggle Lever \\
7256761 & Spring-Clutch \\
7257415 & Spring—Core Bar Connecting Link \\
7255984 & Spring—Slide Return \\
7241042 & Spring—Yoke \\
7258260 & Vacuum Valve \\
7258229 & Vacuum Valve Drive Yoke
\end{tabular}

INSTALLATION PARTS
7258542
121926
7258219
7258220
147685
7258400
7258399
120380
7258237
157716
186493
7258436
7258113
7240808
7258526
7240138
7234666
\begin{tabular}{rl}
7258542 & "A" Lead and Fuse Connector \\
121926 & Bolt-1/4-20x1 \(1 / 2\) \\
7258219 & Bracket-Radio Mtg. (Firewall) \\
7258220 & Bracket-Radio Mtg. (Instrument Panel) \\
147685 & Fuse-14 amps \\
7258400 & Knob-Control \\
7258399 & Knob-Dummy \\
120380 & Lockwasher-1/4 \\
7258237 & Nut, Spanner \\
157715 & Screw- \(1 / 4-20 \times 1 / 2\) \\
186493 & Screw and Lockwasher-1/4-20x \(5 / 8\) \\
7258436 & Spacer Sleeve \\
7258113 & Suppressor-Distributor \\
7240808 & Suppressor Insulator \\
7258526 & Suppressor-Spark Plug \\
7240138 & Static Collector \\
7234666 & Washer-1/4
\end{tabular}


WARWICK MFG. CORP.


PARTS LIST


Fig. 1. Tube, Trimmer and Battery Locations

\section*{ALIGNMENT PROCEDURE}

The following alignment procedure is for use only by competent servicemen having the proper equ pment.

The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, to prevent A.V.C. action from interfering with correct alignment.

With the output meter connected across the voice coil of the speaker; the output meter reading for 50 milliwalts is .4 volts using a signal which is modulated 400 c.p.s.

Adjust all trimmers for maximum output. Repeat alignment procedure given below as a final check.

For alignment points refer to Figure No. 1.
CAUTION: This is an A.C.-D.C. receiver and if alignment is made with the receiver connected to 117 volts A.C. or D.C., it is necessary to isolate the signal generator or the receiver from the line by use of a trensformer, or place a . 2 M.F.D. condenser in both test leads of the Signal Generator.

1R5-Mixer, Oscillator 1U4-I.F. Amplifier
1S5-Detector and 1st Audio 3V4-Power output
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position of Variable & \begin{tabular}{l}
Generator \\
Frequency
\end{tabular} & Dummy Ant. Mfd. & Generator Connections & Trimmer Adjustment & \begin{tabular}{l}
Trimmer \\
Function
\end{tabular} \\
\hline Fully open & 455 KC & . 1 & *1R5 Grid (Stator of ClA) & T2 & Output I.F. \\
\hline Fully open & 455 KC & . 1 & \({ }^{*}\) 1R5 Grid (Stator of \(\mathrm{Cl} A\) ) & Tl & Input I.F. \\
\hline Fully open & 1600 KC & . 1 & *1R5 Grid (Stator of \(\mathrm{Cl} A\) ) & ClB & Oscillator \\
\hline Tune in signal from generator & 1400 KC & - & Loosely coupled to loop & C1A & Antenna \\
\hline
\end{tabular}
*Connest ground lead of signal generator to common negative.


\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline Power Supply . . . . . . . . . . 105 -125 volts 60 cycle AC only. & \multicolumn{2}{|l|}{The tubes used are as follows:} \\
\hline Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . 65 Watts & 12AT7 & FM RF Amplifier, Converter \\
\hline Frequency Range :FM.................. . . 88 to 108 MC. & 6BE6 & FM Osc, Am Osc, Converter \\
\hline Frequency Range AM. . . . . . . . . . . . . . . . 540 to 1600 KC . & 6BA6 & FM-AM, Ist I.F. Amplifier \\
\hline I.F. Frequency FM. . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 MC. & 6BA6 & FM-AM, 2nd I.F. Amplifier \\
\hline I.F. Frequency AM . . . . . . . . . . . . . . . . . . . . . . . . 455 KC . & 6AL5 & FM Detector \\
\hline Band width, FM, Ratio Detector. . . . . . . . . . . . . . . 330 KC . & 6AT6 & AM Detector, AVC, Audio \\
\hline Band width, FM, Ist I.F.. . . . . . . . . . . . . . . . . . . . . 280 KC . & 6AQ5 & Power Output \\
\hline Band width, FM, Converter. . . . . . . . . . . . . . . . . . 2220 KC. & 5 Y 3 & Power Rectifier \\
\hline Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6//4" P.M. & No. 47 & Pilot Lights (2) \\
\hline
\end{tabular}

The tubes used are as follows:
12AT7 FM RF Amplifier, Converter
6BEb FM Osc, Am Osc, Converter
6BA6 FM-AM, Ist I.F. Amplifier
6BA6 FM-AM, 2nd I.F. Amplifier
6AT6 AM Detector, AVC, Audio
6AQ5 Power Output
Power Rectifier
No. 47 Pilot Lights (2)

\section*{SERVICE NOTES}

\section*{INSTALLATION}

This receiver is shipped from the factory complete with a built-in loop antenna for standard AM broadcast reception. A power-line antenna is used for. the reception of FM stations. These antennas will be satisfactory for good reception under normal conditions. Terminals are provided at the back of the radio for connecting external AM and FM antennas, wherever this is found to be desirable as explained below.

When the receiver is to be used under difficult conditions, such as in buildings constructed mainly of steel, or those with steel lath, or, when large buildings, mountains or other objects are between the receiver and the station to be received, it may be necessary to use an external dipole antenna. Remember too, FM reception is limited as to distance and when used outside the primary service area of the transmitter, an outside antenna is very necessary.

The type of dipole to be used depends upon the signal strength of the station in that particular area, as well as conditions of reception as outlined above. There are three types of FM dipole antenna available, the single dipole, the folded dipole, and the non-directional dipole. When the stations to be received are in one general direction, a reflector may be added to either of the first two types to increase their efficiency.

\section*{GENERAL}

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

\section*{ALIGNMENT NOTES}

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available such as FM sweep generators and oscilloscopes. All R.F. and I.F. circuits have been accurately adjusted at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given

\section*{EQUIPMENT USED FOR ALIGNMENT}

Vacuum tube voltmeter.
AM Signal generator
FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna:

> .1 MFD condenser
> .00025 MFD mica condenser
> 150 ohm resistor (2)

Output meter.
ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STEPS & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETING }
\end{aligned}
\] & \[
\begin{aligned}
& \text { BAND } \\
& \text { SWITCH } \\
& \text { POSITION } \\
& \hline
\end{aligned}
\] & SIGNAL GENERATOR FREQUENCY & DUMMY
ANTENNA & SIGNAL
GENERATOR
CONNECTIONS & OUTPUT INDICATOR & TRIMMER
ADJUSTMENT & TRIMMER FUNCTION & REMARKS \\
\hline 1 & Minimum cepacity & AM & 455 KC 400 eyclo AM & . 1 MFD & High side-grid of AM convortor tube (68E6) Low sido-chassis & Output Meter ecross voice coil & \[
\begin{aligned}
& \text { TAA, T4B } \\
& \text { T2A, T2B }
\end{aligned}
\] & AM I.F. & Adivet for maxinum outpent \\
\hline 2 & . & \(\cdots\) & \[
\begin{array}{r}
1600 \mathrm{KC} \\
400 \text { cyclo AM } \\
\hline
\end{array}
\] & \(\cdots\) & " & \(\cdots\) & C4 & AM Oceillator & \(\ldots\) \\
\hline 3 & 1400 KC & " & \[
\begin{gathered}
1400 \text { KC } \\
400 \text { cyelo AM } \\
\hline
\end{gathered}
\] & . 00025 MFD & High side-One ant. ferminal Low side-Other ant. terminal & " & C43 & AM Antenna & - \\
\hline 4 & Any position where there is no station inferference. & FM & 10.7 MC unmodulated . 1 volt output. & . 1 MFD & \begin{tabular}{l}
High sido-grid of 2nd I.F. amplifier tube (68A6) \\
Low side-chossis
\end{tabular} & Connect V.T.V.M. to plate of Ratio Detector tube, pin 7 (6AL5) & T5B & Retio detector primary & Adimet for
maximum nogetive
voltage, about -5 volt voltago. obout
-5 volts \\
\hline 5 & . & " & 10.7 MC
400 cycle \(30 \%\)
Modulation.
(Soe note A) & " & - & Connoct scope to audio toke-off point (ecross C16) & T5A & Retio detector secondary & Adjust for a balanced pattorn on scope. See Fig. 2 \\
\hline 6 & \(\cdots\) & " & " & " & High side-grid of lst I.F. amplifier tube (68A6) Low side-chassis & " & \[
\begin{aligned}
& 73 A \\
& 73 B
\end{aligned}
\] & FM 2nd I.F. & Adjust for maximum gain and best pettern on seopo. Soe Fig. 2 \\
\hline 7 & * & " & : " & " & High sido-grid (pin 7) of FM
convortor tube (12AT7) Low sido-chessis & " & \[
\begin{aligned}
& \text { TiA } \\
& \text { TIB }
\end{aligned}
\] & FM lat I.F. & . \\
\hline 8 & 108.5 MC & " & 108.5 MC
400 yecle \(30 \%\)
modulotion
(22.5 KC devietion) & \[
\begin{aligned}
& 300 \text { ohms } \\
& \text { in } \\
& \text { high side }
\end{aligned}
\] & \begin{tabular}{l}
High sido-ant. torminal \\
Low side_chossis
\end{tabular} & Connect output metor across voice coil & C42 & FM oscillator & \[
\begin{aligned}
& \text { Adjust for } \\
& \text { naximum output }
\end{aligned}
\] \\
\hline \(\bullet\) & 105 MC & " & 105 MC
400 cycle \(30 \%\)
modiletion
(22.5 KC deviation) & " & .. & * & C45 & FM R.F. & \(\cdots\) \\
\hline
\end{tabular}
NOTE A: Whon aligning the FMM I.F.
circuits, koep the out put from the signal
genorator as low as possible.
FIGURE 2


John F. Rider

Part
No．
 A60－667
A33－231 A33－231
A10－515
 A10－516
 A10－518侖登 N A69－183
 \(\stackrel{\circ}{0}\) 둥《

으웅웅


WARWICK MFG. CORP.


\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Power Supply. . . . . . . . . . 105-125 volts 60 cycle AC only.} \\
\hline Power Consumption. & 65 Watts \\
\hline \multicolumn{2}{|l|}{Frequency Range F} \\
\hline Frequency Range AM. & 540 to \(1600 \mathrm{KC}\). \\
\hline I.F. Frequency FM. & 10.7 MC. \\
\hline I.F. Frequency AM & 455 KC. \\
\hline Band width, FM, Ratio Detector. & \(330 \mathrm{KC}\). \\
\hline Band width, FM, Ist I.F. & 280 \\
\hline Band width, FM, Converter & 220 KC. \\
\hline Speaker & 61/4" P. \\
\hline
\end{tabular}

Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . 65 Watts
Frequency Range FM....................... . 88 to 108 MC.
Frequency Range AM.................... . . 540 to 1600 KC.
I.F. Frequency FM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 MC.
I.F. Frequency AM . . . . . . . . . . . . . . . . . . . . . . . . . . 455 KC.

Band width, FM, Ratio Detector.................. . . . 330 KC.
Band width, FM, Ist l.F........... . . . . . . . . . . . . . 280 KC.

Speaker
61/4" P.M.

The tubes used are as follows:
12AT7 FM RF Amplifier, Converter
6BE6 FM Osc, Am Osc, Converter
6BA6 FM-AM, Ist I.F. Amplifier
6BA6 FM-AM, 2nd I.F. Amplifier
6AL5 FM Detector
6AT6 AM Detector, AVC, Audio
6AQ5 Power Output
5 Y3 Power Rectifier
No. 47 Pilot Lights (2)

\section*{SERVICE NOTES}

\section*{INSTALLATION}

This receiver is shipped from the factory complete with a built-in loop antenna for standard AM broadcast reception. A power-line antenna is used for the reception of FM stations. These antennas will be satisfactory for good reception under normal conditions. Terminals are provided at the back of the radio for connecting external AM and FM antennas, wherever this is found to be desirable as explained below.

When the receiver is to be used-under difficult conditions, such as in buildings constructed mainly of steel, or those with steel lath, or, when large buildings, mountains or other objects are between the receiver and the station to be received, it may be necessary to use an external dipole antenna. Remember too, FM reception is limited as to distance and when used outside the primary service area of the transmitter, an outside antenna is very necessary.

The type of dipole to be used depends upon the signal strength of the station in that particular area, as well as conditions of reception as outlined above. There are three types of FM dipole antenna available, the single dipole, the folded dipole, and the non-directional dipole. When the stations to be received are in one general direction, a reflector may be added to either of the first two types to increase their efficiency.

\section*{GENERAL}

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

\section*{ALIGNMENT NOTES}

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and oscilloscopes. All R.F. and I.F. circuits have been accurately adjusted at the factory and no attempt should be made tọ realign these circuits unless it is absolutely necessary.

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given

\section*{EQUIPMENT USED FOR ALIGNMENT}

Vacuum tube voltmeter.
AM Signal generator
FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna: .I MFD condenser . 00025 MFD mica condenser 150 ohm resistor (2)
Output meter.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{ALIGNMENT PROCEDURE} \\
\hline STEPS & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SETIING } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { BAND } \\
\text { SWITCH } \\
\text { POSITION }
\end{gathered}
\] & SIGNAL GENERATOR FREQUENCY & \[
\begin{aligned}
& \text { DUMMY } \\
& \text { ANTENNA } \\
& \hline
\end{aligned}
\] & SIGNAL GENERATOR CONNECTIONS & OUTPUT
INDICATOR & TRIMMER
ADJUSTMENT & TRIMMER FUNCTION & REMARKS \\
\hline 1 & Minimum capacity & AM & 455 KC 400 eycle AM & . 1 MFD & High sido-grid of AM convortor tube (6BE6) Low side-chassis & Output Metor across voice coil & \[
\begin{aligned}
& \text { T4A, T4B } \\
& \text { T2A, T2B }
\end{aligned}
\] & AM I.F. & Adjust for maximum output \\
\hline 2 & " & " & \[
\begin{gathered}
1600 \mathrm{KC} \\
400 \text { evelo AM } \\
\hline
\end{gathered}
\] & * & " & " & C44 & AM Oscillator & \(\cdots\) \\
\hline 3 & 1400 KC & " & \[
\begin{gathered}
1400 \text { KC } \\
400 \text { cyclo AM }
\end{gathered}
\] & . 00025 MFD & High sido-One ant. torminal Low side-Othor ant. torminal & " & C43 & AM Antenne & " \\
\hline 4 & Any position where there is no station interforence. & FM & \(\qquad\) & . 1 MFD & \begin{tabular}{l}
High side-grid of 2nd I.F. amplifier tube \({ }^{(6 B A 6)}\) \\
Low side_chassis
\end{tabular} & Connect V.T.V.M. to plate of Ratio Dotoctor tube, pin 7 (6AL5) & T5B & Ratio dotector primary & Adjust for maximum negative voltaga, about -5 volts \\
\hline 5 & " & " & 10.7 MC 400 eycle 30\% Modulation. (Soe note A) & " & - & Connect scope to audio take-off point (across Cl 6 ) & T5A & Ratio dotector socondary & Adjust for balancod pattorn on seope. Soe Fig. 2 \\
\hline 6 & " & " & " & " & High side-grid of Ist I.F. amplifior tube (6BA6) Low sido-chassis & " & \[
\begin{gathered}
73 A \\
\hline
\end{gathered}
\] & FM 2nd I.F. & Adjust for maximum gain and best pattorn on scope. See Fig. 2 \\
\hline 7 & " & " & \(\cdots\) & * & High side-grid (pin 7) of FM convortor tube (12AT7) Low sido-chassis & " & \[
\begin{aligned}
& \text { TIA } \\
& \hline
\end{aligned}
\] & FM Ist I.F. & " \\
\hline 8 & 108.5 MC & " & 108.5 MC
400 eccele 30\%
modulation
(22.5 KC doviation) &  & \begin{tabular}{l}
High side-ant. torminal \\
Low side-chassis
\end{tabular} & Connect output mator across voice coil & C42 & FM oscillator & Acljust for naximum output \\
\hline 9 & 105 MC & " & 105 MC
400 eycle \(30 \%\) 400 eycie 30\% (22.5 KC doviation) & " & * & " & C45 & FM R.F. & \(\cdots\) \\
\hline
\end{tabular}
NOTE A: When aligning the FM I.F.
circuits, koop the out put from the signal
genorator es low as possible.
FIGURE 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{VOLTAGE CHART} \\
\hline PIN & \[
\begin{gathered}
\mathrm{PIN} \\
2
\end{gathered}
\] & \[
\underset{3}{\text { PIN }}
\] & \[
\begin{gathered}
\text { PIN } \\
4
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
6
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
7
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
8
\end{gathered}
\] & \[
\underset{9}{\mathrm{PIN}}
\] \\
\hline \begin{tabular}{l}
6BE6 \\
FM \& AM OSC 0 AM CONV
\end{tabular} & 0 & 0 & \[
\begin{gathered}
6 \\
A C
\end{gathered}
\] & 155 & 125 & 0 & & \\
\hline 12AT7
FM RF AMP
\& CONV
\(l\) & 0 & 1.5 & 0 & 0 & 155 & 0 & 1 & \[
\begin{gathered}
6 \\
A C
\end{gathered}
\] \\
\hline \begin{tabular}{ll} 
6BA6 & \\
Ist IF & 0 \\
AM \& FM &
\end{tabular} & 0 & 0 & \[
\begin{array}{r}
6 \\
A C
\end{array}
\] & 150 & 100 & 0 & & \\
\hline \begin{tabular}{l}
6BA6 \\
2nd IF \\
AM \& FM
\end{tabular} & 0 & 0 & \[
\begin{gathered}
6 \\
A C
\end{gathered}
\] & 155 & 110 & 1 & & \\
\hline \begin{tabular}{l}
6AL5 \\
FM DETECTOR
\end{tabular} & 0 & \[
\stackrel{6}{A C}
\] & 0 & 0 & 0 & 0 & & \\
\hline \begin{tabular}{l}
6AT6 \\
AM DETECTOR, -. 5 \\
AVC, AUDIO
\end{tabular} & 0 & 0 & 6 & 0 & 0 & 60 & & \\
\hline \begin{tabular}{l}
6AQ5 \\
POWER OUTPUT 0
\end{tabular} & 7.5 & \[
\begin{array}{r}
6 \\
A C
\end{array}
\] & 0 & 215 & 170 & 0 & & \\
\hline 5Y3
POWER RECTIFIER & 235 & & \[
\begin{array}{r}
230 \\
\mathrm{AC} \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
230 \\
A C \\
\hline
\end{array}
\] & & 235 & \\
\hline
\end{tabular}

All voltage readings are taken from tube pin to chassis. All measurements are made with no signal, using a 20,000 ohm per volt meter. PHONO MOTOR
PHONO PICKUP LEADS All readings are shown in ohms unless otherwise noted. Due to manufacturing tolerance on component parts, re-
sistance readings may vary as much as \(20 \%\).


FIG. 4 DIAL CORD STRINGING
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{RESISTANCE CHART} \\
\hline & PIN & \[
\begin{gathered}
\mathrm{PIN} \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
4
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
6
\end{gathered}
\] & \[
\underset{7}{\text { PIN }}
\] & \[
\begin{gathered}
\text { PIN } \\
8
\end{gathered}
\] & PIN
9 \\
\hline \begin{tabular}{l}
6BE6 \\
FM \& AM OSC AM CONV
\end{tabular} & 22\% & 1.5 & . 5 & . 5 & 3.5M & 3.5M & 2.5M & & \\
\hline \begin{tabular}{l}
12AT7 \\
FM RF AMP \\
\& CONV
\end{tabular} & 3.3M & 500K & 250 & 0 & 0 & 3.5M & 500K & 2K & 0 \\
\hline \begin{tabular}{l}
6BA6 \\
1st IF \\
AM \& FM
\end{tabular} & 200K & 0 & 0 & 0 & 3.5M & 3.5M & 70 & & \\
\hline \[
\begin{aligned}
& \text { 6BA6 } \\
& \text { 2nd IF } \\
& \text { AM \& FM }
\end{aligned}
\] & 0 & 0 & 0 & 0 & 3.51M & 3.5M & 70 & & \\
\hline \begin{tabular}{l}
6AL5 \\
FM DETECTOR
\end{tabular} & OPEN & OPEN & 0 & 0 & 0 & 0 & 22K & & \\
\hline \begin{tabular}{l}
6AT6 \\
AM DETECTOR, AVC, AUDIO
\end{tabular} & 7M & 0 & 0 & 0 & 500K & 120K & 3.5M & & \\
\hline 6AQ5 POWER OUTPUT & 470K & 300 & 0 & 0 & 3.5M & 3.5M & 0 & & \\
\hline \begin{tabular}{l}
5 Y 3 \\
POWER RECTIFIER
\end{tabular} & & 3.5M & & 0 & & 0 & & 3.5M & \\
\hline
\end{tabular}

AC input voltage must be
maintained at 117 volts for
accurate readings.
AC voltages shown are at
1000 ohms per volt.







\(\square\)
PARTS LIST

\begin{tabular}{|c|c|c|}
\hline Schomatic Diagram Reference & \[
\begin{aligned}
& \text { Part } \\
& \text { N. }
\end{aligned}
\] & Description \\
\hline \[
\left.\begin{array}{l}
\text { CIA, CIB } \\
\text { CIC, CID }
\end{array}\right\}
\] & C19-200 & Variable Condenser \\
\hline C2 & A83-376 & 2.2 MMF, gimmick \\
\hline \[
\begin{aligned}
& \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{Cb} \\
& \mathrm{C} 23, \mathrm{C} 41
\end{aligned}
\] & A16-177 & .005 MFD ceramic \(\ldots \ldots . . . . . . . . . .\).
(Centralab NO. DAO48 or equiv.) \\
\hline \begin{tabular}{l}
C4 \\
C7, C8, C34 \\
C9, CIO, RII
\end{tabular} & \[
\begin{aligned}
& A 15-210 \\
& A 16-192 \\
& \text { A17-101 }
\end{aligned}
\] & 33 MMF ceramic, 20\%, (Erie Style "A" NI400) . \(01-400\) volts, paper tubular 100 MMF, 100 MMF , 47 K ohms (Diode filler unit, Herlec F06-001) \\
\hline \(\mathrm{ClI}_{1} \mathrm{Cl2}_{2} \mathrm{Cl}_{3}\) & A17-102 & \(3 \times .005\) MFD Herlec B34-005 .................... \\
\hline C14, C35 & A15-208 & 270 MMF ceramic, 20\%. (Erie Styie "K" or equiv.). \\
\hline C15 & A18-292 & 4 MFD-50 volt electrolytic \\
\hline \({ }^{\text {Cl6 }}\) & Al6-180 & .003-200 volts, paper tubular \\
\hline C17 & Al6-165 & . \(01-200\) volts, paper tubular \\
\hline C18 & Al6-197 & . \(05-200\) volts, paper tubular \\
\hline C19 & Al5-209 & 15 MMF ceramic, 10\%, (Erie Style "A" or equiv.) \\
\hline C20 & A15-206 & 1.5 MMF ceramic, 33\%, (Erie Style "A" or equiv.) \\
\hline C21, C 28 & A16-196 & .02-400 volts, paper tubular \\
\hline \[
\begin{aligned}
& \mathrm{C} 22, \mathrm{C} 24 \\
& \mathrm{C} 25, \mathrm{C} 31
\end{aligned}
\] & Al5-196 & 100 MMF 20\% Ceramic Condenser (Erie Style K or Equiv.) \\
\hline C26, C 27 & A16-199 & . \(005-400\) volts, paper tubular \\
\hline C29 & Al6-198 & . \(002-600\) volts, paper tubular \\
\hline \[
\begin{aligned}
& \text { C30, C32 } \\
& \text { C33, C40 }
\end{aligned}
\] & Al6-195 & . 001 MMF ceramic (Centralab NO. BC20A or equiv.) \\
\hline \[
\begin{aligned}
& \text { C36, C37 } \\
& \text { C38, C39 }
\end{aligned}
\] & Al8-291 & \begin{tabular}{l}
20-25 volts, \(40-350\) volts \\
\(30-300\) volts, \(30-300\) volts electrolytic
\end{tabular} \\
\hline C42 & A20-146 & FM oscillator trimmer \\
\hline RI & A33-231 & See LI. \\
\hline R2 & A60-759 & 4.7 K ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline R3, R4 & A60-760 & 10 K ohms, \(1 / 2 \mathrm{watt}, 10 \%\) \\
\hline R5, R6 & A60.744 & 22 K ohms, \(1 / 2 \mathrm{watt}, 10 \%\) \\
\hline R7, RIO, RI4 & A60-675 & 1 K ohms, \(1 / 2\) watt, \(20 \%\) \\
\hline R8, RI7 & A60.727 & 100 K ohms, \(1 / 2 \mathrm{watt}^{2} 20 \%\) \\
\hline R9, R13 & A60-742 & 68 ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline RII, C9, Clo & A17.10] & \begin{tabular}{l}
47 K ohms, 100 MMF, 100 MMF \\
(Diode filter unit, Herlec FOb-COI)
\end{tabular} \\
\hline \[
\left.\begin{array}{l}
\text { R12, R23 } \\
\text { R24, R28 }
\end{array}\right\}
\] & A60.731 & 470 K ohms, \(1 / 2\) watt, \(20 \%\) \\
\hline R15 & A60.723 & 270 ohms, \(1 / 2\) watt, \(20 \%\) \\
\hline R16 & A60-748 & 33 K ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline R18 & B24-181 & Volume control and switch 53 \\
\hline R19, R22 & A60-726 & 2.2 Megohms, \(1 / 2\) wott, \(20 \%\) \\
\hline R20 & A60.730 & 47 K ohms, \(1 / 2 \mathrm{watt}\), 20\% \\
\hline R21 & A60.761 & 3.3 Megohms, \(1 / 2\) watt, \(20 \%\) \\
\hline R25 & A60.714 & 2.2 K ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline R26 & A60.762 & 6.8 Megohms, \(1 / 2\) watt, \(20 \%\) \\
\hline
\end{tabular}

FIG. I SCHEMATIC DIAGRAM

\section*{SPECIFICATIONS}


Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . 65 Watts
Frequency Range FM....................... . 88 to 108 MC.
Frequency Range AM.................... 540 to 1600 KC .
I.F. Frequency FM. . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7 MC.
I.F. Frequency AM . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 KC.

Band width, FM, Ratio Detector. . . . . . . . . . . . . . . . 330 KC.
Band width, FM, Ist I.F.. ......................... . . . . 280 KC.
Band width, FM, Converter. . . . . . . . . . . . . . . . . . . . 220 KC.
Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6//4" P.M.

The tubes used are as follows:
12AT7 FM RF Amplifier, Converter
6BE6 FM Osc, Am Osc, Converter
6BA6 FM-AM, Ist I.F. Amplifier
6BA6 FM-AM, 2nd I.F. Amplifier
6AL5 FM Detector
6AT6 AM Detector, AVC, Audio
6AQ5 Power Output
5 Y3 Power Rectifier
No. 47 Pilot Lights (2)

\section*{SERVICE NOTES}

\section*{INSTALLATION}

This receiver is shipped from the factory complete with a built-in loop antenna for standard AM broadcast reception. A power-line antenna is used for the reception of FM stations. These antennas will be satisfactory for good reception under normal conditions. Terminals are provided at the back of the radio for connecting external AM and FM antennas, wherever this is found to be desirable as explained below.

When the receiver is to be used under difficult conditions, such as in buildings constructed mainly of steel, or those with steel lath, or, when large buildings, mountains or other objects are between the receiver and the station to be received, it may be necessary to use an external dipole antenna. Remember too, FM reception is limited as to distance and when used outside the primary service area of the transmitter, an outside antenna is very necessary.

The type of dipole to be used depends upon the signal strength of the station in that particular area, as well as conditions of reception as outlined above. There are three types of FM dipole antenna available, the single dipole, the folded dipole, and the non-directional dipole. When the stations to be received are in one general direction, a reflector may be added to either of the first two types to increase their efficiency.

\section*{GENERAL}

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

\section*{ALIGNMENT NOTES}

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and oscilloscopes. All R.F. and I.F. circuits have been accurately adjusted at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given on page 5.

\section*{EQUIPMENT USED FOR. ALIGNMENT}

Vacuum tube voltmeter.
AM Signal generator
FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna:
. 1 MFD condenser
. 00025 MFD mica condenser
150 ohm resistor (2)
Output meter.
ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STEPS & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SEITING }
\end{aligned}
\] & \[
\begin{aligned}
& \text { BAND } \\
& \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { GENERATOR } \\
& \text { FREQUENCY } \\
& \hline
\end{aligned}
\] & DUMMY ANTENNA & SIGNAL
GENERATOR
CONNECTIONS & OUTPUT INDICATOR & \[
\begin{gathered}
\text { TRIMMER } \\
\text { ADJUSTMENT }
\end{gathered}
\] & TRIMMER FUNCTION & REMARXS \\
\hline 1 & Minimum capacity & AM & 455 KC 400 eycle AM & . 1 MFD & \begin{tabular}{l}
High sido-grid of AM converter tube (6BE6) \\
Low side-chassis
\end{tabular} & Output Moter across voice cell & T4A, T4B T2A, \(72 B\) & AM I.F. & Adiust for maximuin extpent \\
\hline 2 & " & - 0 & \[
\begin{gathered}
1600 \text { KC } \\
400 \text { cyele AM } \\
\hline
\end{gathered}
\] & 0 & \(\cdots\) & " & C44 & AM Oscillator & \(\cdots\) \\
\hline 3 & 1400 KC & " & \[
\begin{gathered}
1400 \text { KC } \\
400 \text { cycle AM } \\
\hline
\end{gathered}
\] & . 00025 MFD & High side-One ant. terminal Low side-Other ant. terminal & \(\cdots\) & C43 & AM Antonne & \(\cdots\) \\
\hline 4 & Any position where there is no station interforence. & FM & \begin{tabular}{l} 
10.7 MC \\
unmodulated \\
I volt \\
output. \\
\hline
\end{tabular} & . 1 MFD & \begin{tabular}{l}
High side-grid of 2nd I.F. amplifier tube (6BA6) \\
Low side_chassis
\end{tabular} & Conneet V.T.V.M. to plate of Ratic Detector tube, pin 7 (6AL5) & T58 & Ratio defoctor primary & Adjust for maximum negafive voltage, about volts \\
\hline 5 & * & " & 10.7 MC
400 cyele \(30 \%\)
Modulation.
(Soe note A) & * & \(\cdots\) & Connect scope to audio take-off point (across Cl6) & TSA & Ratio detector secondary & Adjust for balanced pattorn on scope. Soe Fig. 2 \\
\hline 6 & \(\cdots\) & " & \(\cdots\) & \(\cdots\) & High side-grid of Ist I.F. amplifier tube (6BA6) Low side-chassis & * & \[
\begin{array}{r}
\text { T3A } \\
\text { T3B } \\
\hline
\end{array}
\] & FM 2nd I.F. & Adjust for maximum gain and best pattern on scope. See Fig. 2 \\
\hline 7 & * & " & \(\cdots\) & " & High sido-grid (pin 7) of FM converter tube (12AT7) Low side-chassis & \(\cdots\) & \[
\begin{aligned}
& \text { TIA } \\
& \text { TIB } \\
& \hline
\end{aligned}
\] & FM Ist I.F. & \(\cdots\) \\
\hline \(\theta\) & \(108.5^{\circ} \mathrm{MC}\) & " & 108.5 MC
400 cycle \(30 \%\)
modulation
(22.5 KC deviation) & 300 ohms in high side & \begin{tabular}{l}
High side-ant. terminal \\
Low side-chassis
\end{tabular} & Connect output meter ecross voice coil & C42 & FM oscillator & Adjust for naximum output \\
\hline 9 & 105 MC & \({ }^{\prime \prime}\) & 105 MC 400 cycle \(30 \%\) modulation (22.5 KC deviation) & " & \(\cdots\) & \(\cdots\) & C45 & FM R.F. & \(\cdots\) \\
\hline
\end{tabular}

RESISTANCE CHART

All voltages resistance readings are taken from tube pin to chassis. Due to manufacturing tolerance on component parts, re-
All readings are shown in ohms unless otherwise noted.
phono pickup leads



All voltage readings are taken from tube pin to chassis. All measurements are made with no signal, using ad 20,000 ohm per volt meter.
AC input voltage must be maintained at 117 volts for
accurate readings.
AC voltages shown are at 1000 ohms per volt.
PARTS LIST
 Oscillator coill，FM Antenna coil，FM，wound on R30， 1.5 K ohms Antenna coil，FM，
Plate choke，FM RF
RF coil， 1 MM ．．．．．．．．．．．．．．．
FM oscillator filament choke
 Tone control ON－OFF SWITCH，on volume control． Ist I．F．，FM
Ist I．F．，AM 2nd I．F．，FM ． Ratio detector，FM Output transformer Power transformor ．．．．．loop Antenna assembly，AM Dial scale，glass ． Knob，TUNING ．．． Knob，ONE O－2－s ．．． Knob，FM－AM－PH ：． Line cord and plug Pointer，slide type Retainer，dial scale Socket，pilot light Speaker，10＂P．M．． Part
No．家蓉 A \(10-516\)
A \(60-753\)员管然発 N \(\stackrel{\circ}{10}\) A33－233
A10－518


 B24－181
A10－519 A10－521 A10．520 충产 C80－246
S84．302 S882－53 ஸi A52－203 A52－237 \begin{tabular}{l} 
※ \\
\(\underset{4}{4}\) \\
\hline
\end{tabular} 23－153
A58－68

 춘
Record changer，Webster No．50－1


\section*{DESCRIPTION}

Model 11901 is a 6 tube (including rectifier) superhetrodyne radio receiver designed for operation on 50-60 cycle 105-125 volt, AC current.
The tubes used are:
\begin{tabular}{llll} 
6SK7 & R.F. Amplifier & 6SQ7 & Det, AVC, audio \\
6SA7 & Mixer, Osc. & 6K6GT & Power Output \\
6SK7 & I.F. Amplifier & 5Y3GT & Rectifier
\end{tabular}

This receiver covers the standard broadcast frequency range from 535 to 1725 kilocycles (K.C.) and the shortwave frequency range from 6 to 18.2 Megocycles (MC).


Fig. 2 Tube Positions and Alignment Points
RLIGNMENT PROCEDURE
The following alignment procedure is for use only by competent servicemen having the proper equipment.

With an output meter connected across the voice coil of the speaker, the output meter reading for \(1 / 2\) watt is 1.25 volts, using a signal which is modulated 400 C.P.S. Follow through the procedure as outlined below for proper alignment.

The alignment should be made with volume control fully on, and the output from the signal generator as low as possible, for accurate alignment.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Position } \\
\text { of } \\
\text { Variable }
\end{gathered}
\] & \[
\begin{gathered}
\text { Band } \\
\text { Switch } \\
\text { Ponition }
\end{gathered}
\] & Generator Frequency & Dummy Ant. & Generator Connections & Trimmer Adjustment & Trimmer Function \\
\hline Fully open & BC & 455 KC & . 1 MFD. & 6SA7 Grid (stator of C1B) & T1 T2 & I. F. \\
\hline Fully open & BC & 1725 KC & . 00025 MFD. & Ant. lead & ClC & BC Osc. \\
\hline Tune in signal from generator & BC & 1500 KC & . 00025 MFD. & Ant. lead & ClB & R. F. \\
\hline Tune in signal from generator & BC & 1500 KC & . 00025 MFD. & Ant. lead & ClA & BC Ant. \\
\hline Fully open & SW & 18.2 MC & 400 ohms & Ant. lead & C25 & SW Osc. \\
\hline Tune in signal from generator & SW & 16 MC & 400 ohms & Ant. lead & C24 & SW Ant. \\
\hline
\end{tabular}

GROUND lead of generator should be attached to the chassis for all adjustments
C24 and C25 are located under the chassis
For alignment points refer to Figure 2
Repeat alignment procedure as a final check

PAGE 19-20WARWICK


\section*{DESCRIPTION}

Model 12001 is a 5 tube (including rectifier) super-heterodyne radio receiver. designed for use on \(105-125\) volt A.C., 60 cycle, or 117 volt D.C. current.

The tubes are:-
l-12SA7 Oscillator, converter
1-12SK7 I.F. Amplifier
l-12SQ7 AVC, Detector, lst audio
\[
\begin{array}{ll}
\text { 1-50L6GT } & \text { Power Output } \\
\text { 1-35Z5GT } & \text { Rectifier }
\end{array}
\]

This receiver covers the standard broadcast frequency range of 535 to 1725 K.C. (560 to 174 meters), and the Short Wave frequency range of 9 to 18.2 Megacycles ( 33 to 16.5 meters).

\section*{ALIGNMENT PROCEDURE}

The following alignment procedure is for use only by competent servicemen having the proper equipment.

The alignment should be made with volume control full on and the output from the signal generator as low as possible to prevent AVC action from interfering with correct alignment.

With the output meter connected across the voice coil of the speaker, the output meter reading for 50 milliwatts is .4 volts, using a signal which is modulated 400 c.p.s.

Adjust all trimmers for maximum output. Repeat alignment procedure as a final check.


\section*{ALIGNMENT PROCEDURE-Continued}

CAUTION: This is an AC-DC receiver and when aligning the set it is necessary to isolate the signal generator or the receiver from the line by use of a transformer, or place a .2 MFD condenser in both test leads of the signal generator.
Before proceeding with actual alignment the dial pointer must be set to the proper position. With the variable condenser fully open the dial pointer should read 1725 K.C.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Ponition } \\
& \text { of } \\
& \text { Variable }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Band } \\
& \text { 8witch } \\
& \text { Position }
\end{aligned}
\] & Generator Frequency & \[
\underset{\text { Ant. }}{\text { Dummy }^{2}}
\] & Generator Connections & Trimmer Adjustment & Trimmor Function \\
\hline Fully open & B. C. & 455 KC & . 1 MFD & -12SA7 Grid (Stator of C3A) & T1-T2 & I. F. \\
\hline Fully open & B. C. & 1725 KC & . 00025 M \({ }^{\text {M }}\) & - Ant. lead & - C3B & B. C. Oscillator \\
\hline Tune in signal from generator & B. C. & 1400 KC & . 00025 MFD & - Ant. lead & \(\cdots{ }^{-} \mathrm{C} 3 \mathrm{~A}\) & B. C. Antenna \\
\hline 16 MC & S. W. & 16 MC & 400 ohms & - Ant. lead & Cl 7 & S. W. Oscillator \\
\hline 16 MC & S. W. & 16 MC & 400 ohms & - Ant. lead & C16 & \begin{tabular}{l}
S. W. \\
Antenna
\end{tabular} \\
\hline
\end{tabular}
- Connect ground lead of signal generator to "Cummon B."
* C3A, C3B, are located on variable condenser

NOTE: The above procedure must be followed in exact sequence for proper alignment.

PAGE 19-22WARWICK


\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|}
\hline Su & 117 volts AC 60 cycle & The tubes & sused are as follows: \\
\hline Power Consumption. & . . . . . . . . 95 Watts & 12BA6 & FM, R.F. Amplifier \\
\hline Frequency Range FM. & ...... 88 to 108 MC. & 12BE6 & FM, Converter \\
\hline Frequency Range AM. & 540 to 1600 KC. & 12BA6 & FM, Ist I.F. Amplifier \\
\hline I.F. frequency FM. & 10.7 MC. & I2BA6 & FM, 2nd I.F. Amplifier \\
\hline I.F. frequency AM. & . 455 KC . & 12BA6 & FM, 3rd I.F. Amplifier \\
\hline Band width, FM, Ratio detecto & \(360 \mathrm{KC}\). & 6AL5 & FM, Ratio detector \\
\hline Band width, FM, 2nd I.F. & 280 KC. & 12BE6 & AM, Converter \\
\hline Band width, FM, Ist I.F. & 240 KC. & 12BA6 & AM, I.F. Amplifier \\
\hline Band width, FM, Converter & \(180 \mathrm{KC}\). & 12AT6 & AM, Detector-AVC-Ist audio \\
\hline Tubes .. & & 50L6GT & Power output \\
\hline Rectifiers & m, 150 ma . & A83-463 & Selenium rectifier (2) \\
\hline Speaker & . 10 " P.M. & No. 47 & Pilot lights (2) \\
\hline
\end{tabular}

\section*{SERVICE NOTES}

\section*{INSTALLATION}

The loop antenna provided with the receiver will prove adequate for the reception of all AM stations under normal operating conditions. The flexible folded dipole antenna will be adequate for the reception of powerful or near-by FM stations except when the set is used in a building constructed mainly of steel or where FM reception is otherwise difficult. When the radio is used with the inside antenna as provided, it is suggested that you try placing the set in different locations in the room. FM reception especially will vary greatly according to the location of the antenna within the room.

When it is desired to receive FM stations outside of the primary service area, or if the receiver is being used under difficult conditions, the use of an outside dipole antenna is recommended. There are three types of such aerials, namely single dipole, the folded dipole, and the non-directional dipole. To increase the "pick-up" or sensitivity, a reflector may be used with either of the first two types. The proper type of antenna as well as its location are determined by the terrain and distance from the station to be received, the direction, etc. Your local service man will advise you of the proper antenna installation, for your particular area. Two terminals are provided on the back of the set for connecting the outside dipole antenna leads.

FM reception is very directional, and even when using the FM antenna furnished with the receiver, reception can sometimes be very much improved by turning the receiver in a different direction. Be careful not to place the radio close to large metal objects as this might tend to cause reflections or otherwise interfere with good reception.

CAUTION: Always disconnect the line cord before removing the back for tube replacement, etc.

\section*{GENERAL}

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.

When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

\section*{ALIGNMENT NOTES}

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and Oscilloscopes. All I.F. circuit adjustments have been sealed at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given on page 5. This receiver employs the "double peak" type of I.F. circuits, and can not be satisfactorily aligned with conventional AM equipment. Visual alignment procedures must be used.

\section*{EQUIPMENT USED FOR ALIGNMENT}

\section*{AM Signal generator}

FM Sweep generator.
Oscilloscope.
Vacuum tube voltmeter. Insulated screw driver.
Dummy antenna:
. I MFD condenser
. 00025 MFD mica condenser
150 ohm resistor (2)
Output meter.

PAGE 19-24WARWICK


FIG. I TUBE AND TRIMMER LOCATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{VOLTAGE CHART} & \multicolumn{9}{|c|}{RESISTANCE CHART} \\
\hline TUBE No. & \[
\begin{gathered}
\text { PIN } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
2
\end{gathered}
\] & \[
\underset{3}{\text { PIN }}
\] & \[
\begin{gathered}
\text { PIN } \\
4
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
6
\end{gathered}
\] & \[
\underset{7}{7 \text { PIN }}
\] & \[
\begin{gathered}
\text { PIN } \\
8
\end{gathered}
\] & TUBE No. & \[
\underset{\mathbf{I}}{\text { PIN }}
\] & \[
\underset{2}{\text { PIN }}
\] & \[
\underset{3}{\mathrm{PIN}}
\] & \[
\mathrm{PIN}_{4}
\] & \[
\begin{gathered}
\hline \text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { PIN }
\end{array}
\] \\
\hline \[
\begin{gathered}
\text { 12BE6 } \\
\text { AM-Converter } \\
\hline
\end{gathered}
\] & -6 & 0 & 29.0 & 17.0 & 100 & 100 & 0 & & \[
\begin{array}{|c}
\text { 120Eb } \\
\text { AM-Converter } \\
\hline
\end{array}
\] & 20K & I & 27 & 18 & 25K & 25K & 3 & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { AM-I.F. Amp. }
\end{gathered}
\] & 0 & 0 & 75ac & 63ac & 100 & 100 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { AM-I. F. Amp. }
\end{gathered}
\] & 2 mog. & 0 & 70 & 62 & 25K & 25K & 70 & \\
\hline \begin{tabular}{l}
12ATb \\
AM-Det.-AVC-Audio
\end{tabular} & 0 & 0 & 17ac & bac & 0 & 0 & 30 & & \begin{tabular}{l}
12AT6 \\
AM-Det.-AVC-Audio
\end{tabular} & 10 meg. & 0 & 18 & 5 & 470K & 120K & 540K & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-R.F. Amp. }
\end{gathered}
\] & 0 & 0 & 29 ac & 39.8 & 100 & 95 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-R.F. Amp. } \\
\hline
\end{gathered}
\] & 1 mag. & 0 & 27 & 40 & 25K & 25K & 70 & \\
\hline \[
\begin{gathered}
\text { 128E6 } \\
\text { FM-Converter } \\
\hline
\end{gathered}
\] & 0 & 0 & Gac & 18ac & 95 & 95 & 0 & & \[
\begin{array}{|c|}
\hline \text { 128Eb } \\
\text { FM-Convortor }
\end{array}
\] & 20K & 0 & 5 & 18 & 25K & 25K & 22K & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-1st I.F. Amp. }
\end{gathered}
\] & 0 & 0 & 39ac & 50ac & 95 & 95 & 1 & & \[
\begin{array}{|c|}
\hline \text { 12BA6 } \\
\text { FM-Ist l.F. Amp. } \\
\hline
\end{array}
\] & 220K & 0 & 40 & 50 & 25K & 25K & 70 & \\
\hline \begin{tabular}{l}
128A6 \\
FM-2nd I.F. Amp.
\end{tabular} & 0 & 0 & 50ac & \(63 . c\) & 95 & 95 & 1 & & \[
\] & 220K & 0 & 50 & 62 & 25K & 25K & 70 & \\
\hline \[
\begin{gathered}
\text { 128A6 } \\
\text { FM-3rd I.F. Amp. } \\
\hline
\end{gathered}
\] & 0 & 0 & 18 ac & 31 ac & 95 & 95 & 1 & & \[
\begin{gathered}
\text { 128A6 } \\
\text { FM- 3rd I.F. Amp. } \\
\hline
\end{gathered}
\] & 100K & 0 & 18 & 28 & 25K & 25K & 70 & \\
\hline \[
\begin{aligned}
& \text { 6AL5 } \\
& \text { FM-Retio detector }
\end{aligned}
\] & 0 & -3 & 0 & 6 ec & -4 & 0 & 0 & & \[
\begin{aligned}
& \text { 6AL5 } \\
& \text { FM-Ratio Detector }
\end{aligned}
\] & 0 & 25K̇ & 0 & 5 & 750K & 0 & 750K & \\
\hline \begin{tabular}{l}
50L6GT \\
Power output
\end{tabular} & 0 & 31.00 & 225 & 100 & 0 & 30 & & 6.5 & \begin{tabular}{l}
50L6GT \\
Power output
\end{tabular} & \[
0
\] & 28 & 25K & 25K & & & 70 & 150 \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
All voltage readings are taken from tube pin to chassis. All measurements are made with no signal, using a \(\mathbf{2 0 , 0 0 0}\) ohm per volt meter. \\
AC input voltage must be maintained at 117 volts for accurate readings.
\end{tabular}}} & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
All resistance readings are taken from tube pin to chassis. \\
Due to manufacturing tolerance on component parts, resistance readings may vary as much as \(\mathbf{2 0} \%\). \\
All readings are shown in ohms unless otherwise noted.
\end{tabular}}} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline \multicolumn{18}{|l|}{AC voliages shown are at 1000 ohms per volt.} \\
\hline
\end{tabular}


FIG. 2 DIAL CORD STRINGING
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{ALIGNMENT PROCEDURE} \\
\hline STEPS & \[
\begin{aligned}
& \text { RECEIVER } \\
& \text { DIAL } \\
& \text { SEITING } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ¿BAND } \\
& \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { GENERATOR } \\
& \text { FREQUENCY } \\
& \hline
\end{aligned}
\] & DUMMY
ANTENNA & SIGNAL
GENERATOR
CONNECTIONS & OUTPUT INDICATOR & TRIMMER
ADJUSTMENT & TRIMMER FUNCTION & REMARKS \\
\hline 1 & Minimum capacity & AM & 455 KC 400 cycle AM & . 1 MFD & High sido-Grid of AM converter tube (12BE6) Low side-Chassis & Output Moter ecross voice coil & \[
\begin{aligned}
& \text { T5A, T5B } \\
& \text { T6A, T6B }
\end{aligned}
\] & AM I.F. & Adjust for maximum output \\
\hline 2 & " & " & 400 cvelo AM & . 00025 MFD & " & " & C2C & AM Oscillator & Adjust for maximum output \\
\hline 3 & 1400 KC & " & 1400 KC 400 cycle AM & . & High sido-One ant. terminal Low sido-_Other ant. terminal & " & \[
\begin{gathered}
\text { C36 } \\
\text { (on beck) }
\end{gathered}
\] & AM Antonne & Adjust for
maximum output \\
\hline 4 & Any position where there is no station interference. & FM & 10.7 MC
unmodulated
I volt
output. & . 1 MFD & \begin{tabular}{l}
High sido-Grid of 3rd I.F. amplifier tube ( 12 BA 6 ) \\
Low side-Chassis
\end{tabular} & Connect V.T.V.M. to plate of Ratio detector tube, pin 2 (6AL5) & T4B & Ratio dofector primary & \(\qquad\) \\
\hline 5 & " & " & \[
\begin{gathered}
10.7 \mathrm{MC} \\
400 \text { cycle } 30 \% \\
\text { Modulation. } \\
\text { (Soe note A) } \\
\hline
\end{gathered}
\] & " & \(\cdots\) & Connect scope to audio take off point (across C30) & T4A & Ratio dotector secondary & Adjust for bolanced pattorn on scope. Soe Fig. 4. \\
\hline 6 & " & " & " & " & High sido-Grid of 2nd I.F. amplifior tube (12BA6) Low side-Chassis & Connect stope across l00K ohm grid return resistor of 3rd I.F. (R16) & T3A, T3B & FM 3rd I.F. & Adjust for maximum goin and best pattern on scope. See Fig. 5 (See note "B" bolow) \\
\hline 7 & " & " & " & " & High side-Grid of Ist I.F. amplifior tube (12BA6) Low side-Chassis & cribtor of 3, liF. & T2A, T2B & FM 2nd I.F. & Adjust for maximum gain and best pattorn on scope. See Fig. 6. \\
\hline 8 & " & " & " 109 MC & " & \begin{tabular}{l}
High side-Plate of FM R.F. \\
tube, pin 5 (12BA6) \\
Low side-Chassis
\end{tabular} & " & TIA, T2B & FM Ist l.F. & Adjust for maximum gain and best pattorn on scope. Soo Fig. 7. \\
\hline 9 & 109 MC & " & \[
\begin{gathered}
400 \text { cycle } 30 \% \\
\text { modulation. } \\
(22.5 \text { KC Doviation) } \\
\hline
\end{gathered}
\] & 150 ohms in each load. & High sid-One ant. terminal Low sido-Other ant. terminal & Connect output metor ecross voice coil & C2B & FM Oscillator & Adjust for maximum output (romove AVC ground) \\
\hline 10 & 103 MC & \("\) & \begin{tabular}{l}
```

103 MC <br>
400 eycle $30 \%$ modulation. (22.5 KC Deviation)

```
\end{tabular} & - & " & - & C2A & FM R.F. & Adjust for maximum output \\
\hline 11 & 100 MC & " & 100 MC 400 cycle \(30 \%\) modulation. (22.5 KC Deviation) & " & - & " & 4 & FM Antonne & Adjust formaximum output \\
\hline
\end{tabular}




\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Power Supply. . . . . . . . . . . . . . . . . . . . . 1177 volts AC-DC} \\
\hline Power Consumption. & 55 Watts \\
\hline Frequency Range FM & 88 to 108 MC . \\
\hline Frequency Range AM. & 540 to 1600 KC . \\
\hline I.F. frequency FM. & 10.7 MC . \\
\hline I.F. frequency AM. & 455 KC. \\
\hline Band width, FM, Ratio detector & 360 KC. \\
\hline Band width, FM, 2nd I.F. & 280 KC. \\
\hline Band width, FM, Ist I.F. & \(240 \mathrm{KC}\). \\
\hline Band width, FM, Converter. & \(180 \mathrm{KC}\). \\
\hline Tubes & 10 \\
\hline Rectifier & Selenium, 150 ma . \\
\hline Speaker & .6' P.M. \\
\hline
\end{tabular}

The tubes used are as follows:
I2BA6 FM, R.F. Amplifier
12BE6 FM, Converter
12BA6 FM, Ist I.F. Amplifier
12BA6 FM, 2nd I.F. Amplifier
12BA6 FM, 3rd I.F. Amplifier
6AL5 FM, Ratio detector
12BE6 AM, Converter
12BA6 AM, I.F. Amplifier
12AT6 AM, Detector-AVC-Ist audio
50L6GT Power output
A83-463 Selenium rectifier
No. 47 Pilot lights (2)

\section*{GENERAL SERVICE INFORMATION}

\section*{INSTALLATION}

This receiver is shipped from the factory complete with a flexible, folded dipole antenna. This antenna will be satisfactory for good reception under normal conditions. It should be connected to the two (2) dipole terminals on the back of the cabinet, and then extended to its full length. Since FM signals are directional, reception may be sometimes improved by rotating the extended sections of the flexible antenna in different directions.

This antenna is also used in conjunction with the AM antenna coil for standard AM broadcast reception, and therefore must be connected as described above for reception of standard broadcast stations.

When the receiver is to be used under difficult conditions, such as in buildings constructed mainly of steel, or those with steel lath, or, when large buildings, mountains or other objects are between the receiver and the station to be received, it may be necessary to use an external dipol antenna. Remember too, FM reception is limited as to distance and when used outside the primary service area of the transmitter, an outside antenna is very necessary.
The type of dipole to be used depends upon the signal strength of the station in that particular area, as well as conditions of reception as outlined above. There are three types of FM dipole antenna available, the single dipole, the folded dipole, and the non-directional dipole. When the stations to be received are in one general direction, a reflector may be added to either of the first two types to increase their efficiency.

\section*{GENERAL}

Due to the high frequencies at which FM signals are received the service man must use great care when servicing these sets. Extreme caution must be used regarding the moving of component parts in the R.F. and oscillator circuits of the receiver as those circuits can be detuned in this manner.

If it becomes necessary to replace components such as resistors and condensers they must be replaced with parts of the same size, type, voltage rating and tolerance as called for in the parts list.
When installing new parts they should be placed in the same position as the original, and the leads should be cut to the same length.

\section*{ALIGNMENT NOTES}

This receiver has been thoroughly inspected and tested at the factory, using the most modern test equipment available, such as FM sweep generators and Oscilloscopes. All I.F. circuit adjustments have been sealed at the factory and no attempt should be made to realign these circuits unless it is absolutely necessary.

CAUTION: If realignment is necessary be sure the proper test equipment is available, as listed below, before proceeding with the alignment procedure as given on page 5. This receiver employs the "double peak" type of I.F. circuits, and can not be satisfactorily aligned with conventional AM equipment. Visual alignment procedures must be used.

\section*{EQUIPMENT USED FOR ALIGNMENT}

Vacuum tube voltmeter.

\section*{AM Signal generator}

FM Sweep generator.
Oscilloscope.
Insulated screw driver.
Dummy antenna:

> .1 MFD condenser
> .00025 MFD mica condenser
> 150 ohm resistor (2)

Output meter.


FIG. I TUBE AND TRIMMER LOCATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{VOLTAGE CHART} & \multicolumn{9}{|c|}{RESISTANCE CHART} \\
\hline TUBE No. & \[
\begin{gathered}
\text { PIN } \\
\text { I }
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
3
\end{gathered}
\] & \[
\mathrm{PIN}_{4}
\] & \[
\begin{gathered}
\text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
6
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
7
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
8 \\
\hline
\end{gathered}
\] & TUBE No. & \[
\begin{aligned}
& \text { PIN } \\
& . ~ I ~
\end{aligned}
\] & \[
\begin{gathered}
\text { PIN } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { PiN } \\
4
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
5
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
6
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
7
\end{gathered}
\] & \[
\begin{gathered}
\text { PIN } \\
8
\end{gathered}
\] \\
\hline 12BE6
AM-Converfer & -6 & 0 & 29ac & 17ac & 100 & 100 & 0 & & 4M- \(\quad\) 12BE6 & 20K & 1 & 27 & 18 & 25K & 25K & 3 mmg. & \\
\hline 12BA6
AM-I.F. Amp. & 0 & 0 & 75ac & 63ac & 100 & 100 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { AM-I. F. Amp. } \\
\hline
\end{gathered}
\] & 2 meg. & 0 & 70 & 62 & 25K & 25K & 70 & \\
\hline 12AT6
AM-Det.-AVC-Audio & 0 & 0 & 17ac & bac & 0 & 0 & 30 & & \[
\begin{gathered}
\text { 12AT6 } \\
\text { AM-Dot.-AVC-Audio }
\end{gathered}
\] & 10 meg . & 0 & 18 & 5 & 470K & 120K & 540K & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-R.F. Amp. }
\end{gathered}
\] & 0 & 0 & 29 ac & 39ac & 100 & 95 & 1 & & \[
\begin{array}{|c|}
\hline \text { 12BA6 } \\
\text { FM-R.F. Amp. } \\
\hline
\end{array}
\] & 1 meg. & 0 & 27 & 40 & 25K & 25K & 70 & \\
\hline 12BE6 & 0 & 0 & bac & 18 ac & 95 & 95 & 0 & & FM—_Converter & 20K & 0 & 5 & 18 & 25K & 25K & 22K & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-Ist I.F. Amp. }
\end{gathered}
\] & 0 & 0 & 39ac & 50ac & 95 & 95 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-Ist I.F. Amp. }
\end{gathered}
\] & 220K & 0 & 40 & 50 & 25K & 25K & 70 & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-2nd I.F. Amp. }
\end{gathered}
\] & 0 & 0 & 50ac & 63 ac & 95 & 95 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-2nd I.F. Amp. }
\end{gathered}
\] & 220K & 0 & 50 & 62 & 25K & 25K & 70 & \\
\hline \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM-3rd I.F. Amp. }
\end{gathered}
\] & 0 & 0 & 18 ac & 31 ac & 95 & 95 & 1 & & \[
\begin{gathered}
\text { 12BA6 } \\
\text { FM }-3 \text { rd I.F. Amp. }
\end{gathered}
\] & 100K & 0 & 18 & 28 & 25K & 25K & 70 & \\
\hline \[
\begin{aligned}
& \text { 6AL5 } \\
& \text { FM——Ratio detector } \\
& \hline
\end{aligned}
\] & 0 & -3 & 0 & bac & -4 & 0 & 0 & & GM—Ratio Defector & 0 & 25K & 0 & 5 & 750K & 0 & 750K & \\
\hline \begin{tabular}{l}
50L6GT \\
Power output
\end{tabular} & 0 & 31 ac & 85 & 95 & 0 & 30 & 80ac & 6.5 & \begin{tabular}{l}
50L6GT \\
Power output
\end{tabular} & 0 & 28 & 25K & 25K & 450K & 250K & 70 & 150 \\
\hline
\end{tabular}

All voltage readings are taken from tube pin to chassis. All measurements are made with no signal, using a \(\mathbf{2 0 , 0 0 0}\) ohm per volt meter.

AC input voltage must be maintained at 117 volts for accurate readings.

AC voltages shown are at 1000 ohms per volt.
All voltages shown are approximate.


FIG. 2 DIAL CORD STRINGING

PARTS LIST





Swi：ch，F．M－A．M．
Swi：ch，ON－OfF，
Tone Control
Ist I．F．Transtormer E．M．
 Ratio detector transformer，F．M．
2nd I．F．Fransformer，A．M．
Outpet transformer ．．．．．．．


Cover，for compansating resistors


Cabinet，Walluy

Knob，Ivory ．
Knob，Walluyt
Rotainer，dial scale，right
Retainer，dial scale，left




（Erie Style A or Equiv．） 20 V Molded Paper Condenser．
.005 MFD 600 Volt Tubu＇ar Condenser ．．
300 MMr 20\％Mica Condenser ．．．．．．．
003 MFD 200 V Molled Paper Condenser

AM Antenna Trimmer ．．．．．．．．．．．．．


.05 MFD 400 V Tubular Conden：er ．．．
.01 MFD 40 V Tubular Conde．ser ．．．


68 Ohm Resistor \(10 \% 1 / 2 \mathrm{Watt}\)
100 Ohm Resistor \(20 \% ~ 1 / 2\) Watt
皆号
\(\stackrel{\text { 筞 }}{1}\)
A60．744 \(22 \mathrm{~K} \mathrm{Ohm} \mathrm{Resistor} 10 \% 1 / 2 \mathrm{Watt}\)

© John F．Rider

PAGE 19-32WARWICK
MODEL 13915 WARWICK MFG. CORP.

Fig. 3 Schematic Diagram

\section*{INSTALLATION}

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, ammeter condenser and generator condenser. By referring to Figures 1 and 2, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car. Using the front mounting bracket as a template, mark and drill two \(5 / 8^{\prime \prime}\) holes in the instrument panel flange. Now secure the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the rear mounting strap. The mounting strap should be formed to the correct angles, as illustrated in Figure 2, so that it can then be fastened to the fire wall. After marking and centerpunching the fire wall at the correct location, drill with a \(3 / 8^{\prime \prime}\) drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the \(1 / 4\) " bolt, lock washer and nut furnished with the receiver.


Fig. 2 Side View, Showing Mounting

\section*{CONNECTING THE RADIO}

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

FINAL ADJUSTMENTS
The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 600 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 2) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

\section*{ACCESSORIES FURNISHED FOR INSTALLATION}

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression and Misc. Parts Kit, part No. S84-230, as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-138.
NOTE: For shipping, the two control knobs have been removed from the tuning and volume control shafts. To install the knobs, line up the flat side of the knob spring, (inside knob) with the flat side of the control shaft and push the knob forward until it stops.

\section*{S84-192 MOUNTING PARTS KIT}
```

1/4" Bolt
1/4"Lock Washers
1/4" Hexagon Nuts
10-32 x 5/8" Screws
2 External Tooth Lock Washers
2 Internal Tooth Lock Washers
2 10-32 Hexagon Nuts

```

\section*{S84-230 SUPPRESSION KIT \& MISC. PARTS}

1 S84-233 "A" lead assem. 1 S84-193 Suppression Kit A43-10 Fuse consisting of:
A52-256 Control knobs \(\quad 2\).5 MFD Condensers A52-256 Control knobs

1 Distributor Suppressor

\section*{ELIMINATING MOTOR NOISE}

IAPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting points. A good electrical contact at these points will aid materially in eliminating motor noise.

\section*{GENERATOR CONDENSER}

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

\section*{DISTRIBUTOR SUPPRESSOR}

Remove the coil to distributor high tension lead from the distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

\section*{AMMETER CONDENSER}

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

\section*{ELECTRICAL ACCESSORIES}

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from ground to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

\section*{HIGH AND LOW TENSION LEADS}

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These leads will very often pick up motor noise and feed it into the
receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

\section*{IGNITION COILS}

In cars where the ignition coil is located on the back side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.
Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartm:ent, it may be necessary to shield the high tension lead from the coil to the distributor.

\section*{WHEEL STATIC}

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

\section*{BONDING OF FIRE WALL TUBES}

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.
In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A \(1 / 4^{\prime \prime}\) piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

\section*{ELECTRICAL SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Power Supply . . . . . . . . . . . . . . . . . . . . . . . . 6.3 volts DC} \\
\hline \multicolumn{2}{|l|}{Current} \\
\hline Frequency Range & . 540 to 1600 KC \\
\hline I. F. Frequency & 455 KC \\
\hline Speaker & 4" P. M. \\
\hline Power Output & \begin{tabular}{l}
1.2 watts, undistorted \\
2.5 watts, maximum
\end{tabular} \\
\hline ity. & rage for 1 watt output \\
\hline Selectivity. . . 20 K & imes signal, at 1000 K \\
\hline
\end{tabular}

\section*{SERVICE NOTES}

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of \(\mathbf{2 0 , 0 0 0}\) ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

\section*{ALIGNING INSTRUCTION}

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT PROCEDURE". After realignment has been completed repeat the procedure as a final check.

The tube compliment of this receiver is as follows:
1-GSK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC-1st audio.
1-6V6GT-Power output.
1-6XSGT-Rectifier.

\section*{INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE}

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a \(1 / 2\) inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " A " terminal (inside case) is tightened very securely, otherwise the reçeiver will not operate properly.

ALIGNMENT PROCEDURE
Volume control-Maximum, all adjustments.
No signal applied to antenna.
\[
\text { Power input- } 6.3 \text { volts. }
\]
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil.
Connect ground lead of signal generator to chassis.
Repeat alignment procedure as a final check.
Dummy antennas-. 1 MFD., . 00025 MFD.
For alignment points refer to Figures 4 ad 5.
The following equipment is necessary for proper alignment:
Signal generator that will provide the test frequencies as listed. Non-metallic screwdriver.
Output meter.
Volume conrol Maximum, all adjusiment.
Power input- 6.3 volts.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Dial } \\
\text { Setting } \\
\hline
\end{gathered}
\] & Generator Frequency & \[
\begin{gathered}
\text { Dummy } \\
\text { Ant. }
\end{gathered}
\] & Generotor Connections & Trimmer
Reference & Trimmor Adjustment & Trimmer Function \\
\hline Fully Open & 455 KC & . 1 MFD. & 6SA7 Grid & T2 & Maximum & Output I.F. \\
\hline Fully Open & 455 KC & . 1 MFD. & 6SA7 Grid & T1 & Maximum & Input I.F. \\
\hline Fully Open & 455 KC & . 00025 MFD. & Ant. lead & 16 & Minimum & Wave trap \\
\hline Fully Open & 1600 KC & . 00025 MFD. & Ant. lead & C1B & Maximum & Oscillator \\
\hline Tune in signal from generator & 1400 KC & . 00025 MFD. & Ant. lead & CIA & Maximum & Antenna \\
\hline \multicolumn{7}{|l|}{} \\
\hline
\end{tabular}

WARWICK MFG. CORP.


Port
No.
B19-196
A16-187
A15-196
A15-202
A15-204
A15-176
A15-196
A16-195
A16-193
A16-192
A16-188
A16-185
A16-184
A20-145
A16-189
A18-289

A60-722
A60-752
A60-744
A60-685
A60-726
A60-753
A60-716
A60-728
A60-667
A60-731
A60-754
A60-698
A60-694
A24-17

A10.513
B10-511
A10-512
A33-229
A33-228
A10-510
A10-508
A10-509

B80-242
B80-243

All-303
A11-304
A72-29
A70-130
E48-44
A58-55
E67-525
A28-101
A52-256
A89-10
A65-37
A75-68
A75-67
A70-132
A70-133

A83-421
A83-517
A43-10
A47-112
B31-134
A31-138
S84-192
A87-38
B79-362
584-193
A34-105
A83-512

\section*{CONDENSERS}

Description
Variable Condonser
. 1 MFD. 400 Volt Condonser
100 MMFD Ceramic Condonser
20 MMFD Ceramic Condenser
50 MMFD Ceramic Condenser
250 MMFD Mica Condenser
. 005 MFD. 600 Volt Condenser
. 001 MFD. Ceramic Condenser
. 05 MFD. 600 Volt Condenser
.01 MFD. 400 Volt Condenser
. 2 MFD. 400 Volt Condenser

.5 MFD. 100 Volt Condenser
Trimmer Condenser
.05 MFD. 400 Volt Condenser
\(\left\{\begin{array}{l}20 \text { MFD } 25 \text { Volt Electrolytic Condenser } \\ 30 \text { MFD } 350 \text { Vol Electrolytic Condenser } \\ 20 \text { MFD. } 350 \text { Volt Electrolytic Condenser }\end{array}\right\}\)
RESISTORS
470 Ohm \(1 / 2\) Watt \(20 \%\) Resistor
100 Ohm \(1 / 2\) Wott \(10 \%\) Resister
22K Ohm \(1 / 2\) Waft 10\% Resistor
47 K Oh \(1 / 2\) Wett \(20 \%\) Resister
2.2 Megohm \(1 / 2\) Weft \(20 \%\) Resistor
\(220 \mathrm{Ohm} 1 / 2\) Waft \(10 \%\) Resistor
15K Ohm 1 Watt \(10 \%\) Resistor
10 Megohm \(1 / 2\) Weft \(20 \%\) Resistor
220K Ohm \(1 / 2\) Waft \(20 \%\) Resister
470K Ohm \(1 / 2\) Watt \(20 \%\) Resieter
270 Ohm 1 Watt 10\% Resistor
10K Ohm I Waft 10\% Resister
470 Ohm I Watt 10\% Resistor

COILS
Anfenne Loeding Coil
Anfenne Coil
Oscilletor Coil
Choke, "A" Line
Choke, Vibrater Hesh
I.F. Trep Coil

1st I.F. Transformer
2nd I.F. Trewheformer
TRANSFORMERS
Outpuf Transformer (Pert of Speeker)
Power Transformer
DIAL PARTS
Bracket, Dial Scele
Bracket, String Guide
Bushing, Tuming Shoft Bearing
Clip, Spring, for Tuning Sheft
Dial Crystel
Dial Pointer
Dial Scalo
Gasket for Speaker
Knob
Pilot Light, Type G.E. No. 422
Rivet, Shoulder, for String Guide Brecket
Shaft, Tuning
Shaft, for Dial Poinfer
Shaft, for Dial Poinfer _-....
Spring, for Pilot Light Socket
Spring, String Tension, Pointer Drive, and Tuning
MISCELLANEOUS
Clip, I.F. Transformer Mometian
Clip, Oxcillator Coil Mounting
Fuse, 15 Amp.
Grommet, Rubber (for Mounting Speaker and Veriable Condomeer)
Mounting Strop, Reer
Mounting Plefe, Front
Mounting Parts Kit
Receptacle, Anfonna Cable
Speaker, 4" P.M. (includes Outpent Treneformen)
Suppression Kir Assembly
Vibrefor
Wiper, Grounding, for Ceee Covers

PAGE 19-38 WARWICK
MODEL 14515
WARWICK MFG. CORP.

Fig. 3 Schematic Diagram

\section*{INSTALLATION}

This radio comes to you complete with all hardware necessary for mounting, and also with a distributor suppressor, ammeter condenser and generator condenser. By referring to Figures 1 and 2, and following the instructions outlined below, you will find that it is very simple to install.

First determine where the receiver is to be mounted by holding it with the hands in the approximate location in the car Using the front mounting bracket as a template, mark and drill two \(5 / 8^{\prime \prime}\) holes in the instrument panel flange. Now securt the mounting bracket to the radio receiver with the screws provided, and then mount the front of the radio to the instrument panel, using the bolts, lock washers and nuts provided for this purpose. The back of the radio is supported by means of the reat mounting strap. The mounting strap should be formed to the correct angles, as illustrated in Figure 2, so that it can then be fastened to the fire wall. After marking and centerpunching the fire wall at the correct location, drill with a \(3 / 8^{\prime \prime}\) drill. The mounting strap is then secured to the radio and fastened to the fire wall of the car with the \(1 / 4^{\prime \prime}\) bolt, lock washer and nut furnished with the receiver.


\section*{CONNECTING THE RADIO}

The antenna cable should be connected to the radio by inserting the jack into the socket provided on the side of the radio. Connect the battery cable to the hot side of the ammeter behind the instrument panel. The fuse should then be inserted into the cable receptor.

\section*{FINAL ADJUSTMENTS}

The input circuit has been especially designed to be used with a low capacity antenna, of the fish pole or whip type.

To adjust the antenna trimmer condenser, carefully tune the receiver to a weak station at approximately 600 kilocycles (K.C.). Remove the snap button covering the antenna trimmer (See Figure 2) and adjust the trimmer for maximum volume. A small screw driver will be needed for this purpose.

\section*{ACCESSORIES FURNISHED FOR INSTALLATION}

All of the parts that are needed for installing this receiver are furnished in the Mounting Parts Kit, part No. S84-192, and the Suppression and Misc. Parts Kit, part No. S \(_{4-230}\), as listed below. Also supplied are the rear mounting strap, part No. B31-134, and the front mounting plate, part No. A31-138.

NOTE: For shipping, the two control knobs have been removed from the tuning and volume control shafts. To install the knobs, line up the flat side of the knob spring, (inside knob) with the flat side of the control shaft and push the knob forward until it stops.

\section*{S84-192 MOUNTING PARTS KIT}
\begin{tabular}{llll}
1 & \(1 / 4^{\prime \prime}\) & Bolt & 2 \\
2 & \(1 / 4^{\prime \prime}\) & Lock Washers & \\
2 & 2 & Wasternal Tooth Lock \\
2 & \(1 / 4^{\prime \prime}\) Hexagon Nuts & Internal Tooth Lock \\
2 & \(10-32 \times 5 / 8^{\prime \prime}\) Screws & 2 & Washers \\
2 & \(10-32 \times 3 / 8^{\prime \prime}\) Screws & 1 & Washexagon Nuts \\
2
\end{tabular}

2 External Tooth Lock
Washers
Internal Tooth Lock
10-32 Hexagon Nuts
1 Washer Spacer

\section*{S84-230 SUPPRESSION KIT \& MISC. PARTS}

1 S84-233 "A" lead assem. A43-10 Fuse

A52-256 Control knobs
A81-13 Sleeve (for fuse)
1 S84-193 Suppression Kit consisting of :
2.5 MFD Condensers
1 Distributor Suppressor 20" Wire Braid

\section*{ELIMINATING MOTOR NOISE}

IMPORTANT: Special care should be taken when mounting the radio to make sure all paint, grease, rust, etc., is removed from all three mounting paints. A good electrical contact at these points will aid materially in eliminating motar naise.

\section*{GENERATOR CONDENSER}

The generator condenser must be connected to the battery terminal of the generator in all cases. If your car is equipped with a generator using an automatic regulator, make sure the condenser IS NOT fastened to the field winding terminal. If in doubt, your local car dealer can advise you as to where the car manufacturer recommends connecting it.

\section*{DISTRIBUTOR SUPPRESSOR}

Remove the coil to distributor high tension lead from the distributor. Cut the lead two inches from the end, and screw the distributor resistor on to the coil lead, then screw the short length into the resistor and plug the cable into the distributor cap.

\section*{AMMETER CONDENSER}

A . 5 MFD bypass condenser is furnished for attaching to the ammeter. This should be connected to either side of the ammeter with the ground lug fastened to a good ground nearby. In most cases the use of this condenser, the distributor suppressor, and the generator condenser, will eliminate all objectionable ignition interference.

\section*{ELECTRICAL ACCESSORIES}

In some cases, it may be found that car accessories such as electric heaters, lighters, automatic relays, or gauges, may cause interference while in operation. Proper procedure in such cases is to try another by-pass condenser from groand to the suspected accessory until the source of the interference is found. The condenser then should be permanently mounted in this location.

\section*{HIGH AND LOW TENSION LEADS}

In many cases the low tension battery leads, etc., are grouped together with the high tension wires. These leads will very often pick up moror noise and feed it into the
receiver through the battery circuit. In cases such as these it will be necessary to separate the low tension from the high tension wires and run them through another hole if they run from the engine compartment up to the instrument panel. This condition is particularly true on the V-8 Ford, as the battery and primary leads run through a special tube which also houses the high tension leads. Shield and ground these leads.

\section*{IGNITION COILS}

In cars where the ignition coil is located on the beck side of the instrument panel it is often necessary to use an additional condenser. It must be installed from the battery side of the ignition coil to the closest ground on the instrument panel.

Short leads are very important. Where coils are mounted either on the instrument panel or in the driver's compartn:ent, it may be necessary to shield the high tension lead from the coil to the distribator.

\section*{WHEEL STATIC}

Wheel Static is a form of interference caused by the rotation of the front wheels of the car, and it is, of course, only noticed when the car is in motion. If this form of interference is present it can be eliminated by installing wheel static collector springs between the inner hub cap and the spindle shaft.

\section*{BONDING OF FIRE WALL TUBES}

Bonding the steering column to the fire wall with a short braid may also be effective. Clean the paint from the steering column at the fire wall where the column enters the motor compartment, and solder on a short piece of braid. Ground the end of the braid to the fire wall.

In some cases it may be necessary to ground the tubes and rods coming through the fire wall in order to reduce the interference. Clean them with emery cloth and spotsolder the braid, fastening the end under a convenient screw. A \(1 / 4^{\prime \prime}\) piece of wire braid 20 inches long is furnished in the suppression kit assembly for this purpose.

\section*{ELECTRICAL SPECIFICATIONS}
\begin{tabular}{|c|c|}
\hline Power & 6.3 volts DC \\
\hline Current & 4.8 amp. average \\
\hline Frequency Rang & 540 to 1600 KC \\
\hline I. F. Frequency. & . 455 KC \\
\hline Speaker & .4" P. M. \\
\hline Power Output & 1.2 watts, undistorted 2.5 watts, maximum \\
\hline Sensitivity. . . & erage for 1 watt output \\
\hline Selectivity. . . 20 & times signal, at 1000 KC \\
\hline
\end{tabular}

\section*{SERVICE NOTES}

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets, no signal applied, and with a volt meter having a resistance of \(\mathbf{2 0 , 0 0 0}\) ohms per volt. These voltages are clearly shown on the voltage chart, (Fig. 4).

All voltages should be measured with an input voltage of 6.3 volts DC.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

\section*{ALIGNING INSTRUCTION}

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading "ALIGNMENT. PROCEDURE". After realignment has been completed repeat the procedure as a final check.

The tube compliment of this receiver is as follows:
1-6SK7GT-R. F. Amplifier.
1-6SA7GT-Converter.
1-6SK7GT-I.F. Amplifier.
1-6SQ7-Detector-AVC—1st audio.
1-6V6GT—Power output.
1-6X5GT-Rectifier.

\section*{INSTRUCTIONS FOR REMOVING CHASSIS FROM THE CASE}

The bottom cover (the one with the speaker louvers) can be removed to permit servicing of major components, such as tubes and vibrator, by removing the eight (8) screws holding it to the top cover. There are three (3) screws on each side, one (1) in the rear, and one (1) in the front.

CAUTION: Before attempting to remove the top cover, to service condensers, resistors, etc., the screw connecting the spark plate to the " A " terminal (inside case) must be removed. This is a round head screw, and is located on the rear of the case, close to the mounting stud bolt. It is recessed in a \(1 / 2\) inch hole in the case itself, thereby permitting contact with the spark plate.

After removing the spark plate screw, remove the two knobs by pulling forward and remove the eight (8) screws securing the cover to the chassis. Lift the chassis at the rear, at the same time moving it away from the front of the case so that the volume and tuning shafts will clear the holes in the cover.

NOTE: When reinstalling the chassis into the case, be sure the screw connecting the spark plate to the " \(\boldsymbol{A}\) " terminal (inside case) is tightened very securely, otherwise the receiver will not operate properly.


PAGE 19-42 WARWICK



CONDENSERS

Pan
No
B19-196
A16-787
A15-196 A15-202
A15-204
A15-176 A16-190
A16-195
A16-193
A16-192
A16-188
A16-185
A16-184
A20-145 A16-189
1
A18-289
A15-205

A60-722
A60.752
A60-744
A60-685
A60-726
A60-753
A60-716
A60-728
A60-728
A60-667
A60-731
A60-754
A60-698
A60-694
A24-177
A10-513
B10-511
A10-512
433-229
A33-228
A10-510
A10-508
A10-509

880-242
B80-243
A11-303
B11-328
A72-29
A70-130
B48-44
A58-55
B67-525
A28-101
A52-256
A11-329
489-10
A65-37
A65-41
A65-12
A75-70
A75-67
A70-132
A70-133
A70-142
584-233
A83-421
A83-517
A43-10
A47-112
B31-134
A31-138
584-192
A87-38
B79-362
584-193
A34-105
A83-519

Docecription
Varioble Condonser
11 MFD. 400 Voli Condenser
100 MMFD Coramic Condenser
20 MMFD Coremic Condenser
50 MMFD Coromic Condenser
250 MMFD Mica Condenser
. 005 MFD. 600 Volt Condenser
. 001 MFD. Ceramic Condenser
. 05 MFD. 600 Volt Condenser
.01 MFD. 400 Volt Condenser
.2 MFD. 400 Volt Condenser

. 5 MFD. 100 Yolt Condonser
Trimmer Condonser
.05 MFD. 400 Volt Condenser
\(\{20\) MFD 25 Volt Electrolytic Condenser
\(\left\{\begin{array}{l}30 \text { MFD } 350 \text { Volt Electrolytic Condenser } \\ 20 \text { MFD } 350 \text { Volt Electrolytic Condenser }\end{array}\right.\)


\section*{RESISTORS}
\(470 \mathrm{Ohm} \mathrm{1} / 2\) Watt \(20 \%\) Resisfor
\(100 \mathrm{Ohm} \mathrm{1/2}\) Watt \(10 \%\) Resisfor
22K Ohra \(1 / 22\) Woft \(10 \%\) Resistor
47 K Ohm \(1 / 2\) Waft \(20 \%\) Resistor
2.2 Megohm \(1 / 2\) Waft \(20 \%\) Resistor

220 Ohm \(1 / 2\) Watt 10\% Resistor
15K Ohm I Watt 10\% Resistor
10 Megohm \(1 / 2\) Watt \(20 \%\) Resistor
220K Ohm \(1 / 2\) Watt \(20 \%\) Resistor
470 K Ohm \(1 / 2\) Watt \(20 \%\) Resistor
270 Ohm I Watt \(10 \%\) Resistor
10K Ohm I Watt 10\% Resistor
470 Ohm 1 Watt 10\% Resistor

COILS
Antenne Looding Coil
Antenna Coil
Oscillator Coil
Choke, "A" Line
Choke, Vibrotor Hesh
1.F. Trap Coil

1st I.F. Transformer
2nd I.F. Transformer
TRANSFORMERS
Output Transformer (Part of Speaker, not furnished seperatoly)
Power Transformer
DIAL PARTS
Bracket, Dial Scale
Bracket, String Guide
Bushing, Tuning Shaft Bearing
Bushing, Tuning Shaft Bearing.
Clip, Spring, for Tuning Sheft.
Dial Crystel
Dial Pointer
Dial Scale
Gosket for Speaker
Kncb
Link, String Guide
Pilot Light, Type G. E. No. 422
Rivet, Shoulder, for Dial Pointer Stringing
Rivet, Shoulder, for String Guide Brke. and Link
Rivet, Shoulder, for Dial Drive Stringing
Shaft, Tuning
Shaft, for Dial Pcinter
Spring, for Pilot Light Sockef
Spring, Dial Drive String Tension
Spring, Pointer Drive String Tension.
MISCELLANEOUS
"A" Lead Assembly.
Clip, I.F. Transformer Mounting
Clip, Oscillator Coll Mounting
Fuse, 15 Amp
Grommet, Rubber (for Mounting Speaker and Variable Condenser)
Mounting Strap, Rear
Mounting Plate, Front
Mounting Ports KI
Receptecle, Antenna Coble

Suppression Kit Assembly
Vibrotor
Wipor, Grounding, for Case Covars



\section*{SHORT WAVE \\ BAND}
5.75 to 18.3 Megacycles
This band is calibrated in both megacycles and meters. The principal international short wave stations will be found in the 16,19 , 25,31 and 49 meter bands.


\section*{BROADCAST BAND}

540 to 1600 \(\longleftarrow\) Kilocycles

This band is calibrated in channel numbers. Add a zero to the dial number to get the kilocycle number.


8

\section*{ON-OFF SWITCH AND VOLUME CONTROL}

Turn radio on by turning knob to the right. A click will be heard-wait 30 seconds for tubes to heat. Continuing to turn the knob to the right will increase the volume.

\section*{TONE CONTROL AND PHONO-RADIO SWITCH}

PHONO-RADIO SWITCH-For radio reception, turn knob completely to the left. A click will be heard, if the knob was in the phono position. For phonograph reproduction, turn knob completely to the right. (See page 2 for Record Player Connections). A click will be heard, if the knob was in the radio position.

TONE CONTROL-When knob is turned to the right, a brilliant tone is obtained and when turned to the left, a deep bass effect is produced. Do aot turn knob past the stop position when adjusting the tone or the position of the Phono-Radio Switch will be changed as explained above.


\section*{BAND SWITCH}

This knob has two positions. The position to the left provides reception on the standard Broadcast Band. The position to the right switches the tuning to the Short Wave Band.
desired station is heard Then slowly rotate back and forth until signal is clearest and strongest If signal is too strong, reduce it by means of the volume control, not by using the tuning knob.

\section*{UNING KNOB}


\section*{DRIVE CORD REPLACEMENT}

The drive cord should be replaced as shown on the accompanying illustration using a new 10X66 drive cord assembly for the purpose. After the cord has been installed, stretch the tension spring and fasten the free end of the cord to it.


COIL TERMINALS


WESTERN AUTO SUPPLY CO.

\section*{ALIGNMENT PROCEDURE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Volume Control-Maximum All Adjustments.} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The following equipment is required for aligning: An All Wave Signal Generator which will provide ... accurately calibrated signal at the test frequencies as listed. \\
Output Indicating Meter-Non-Metallic Screwdriver. Dummy Anfennas-. 1 .mf., 50 mmf ., and 400 ohms.
\end{tabular}}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Connect Radio Chassis to Ground Post of Signai \\
Generator with a Short Heavy Lead. \\
Allow Chassis and Signal Generator to "Heat Up" for severa! minutes.
\end{tabular}}} & & \\
\hline & & & & & & \\
\hline \multicolumn{3}{|r|}{SIGNAL GENERATOR} & \multirow[t]{2}{*}{DUMMY ANTENNA} & \multirow[t]{2}{*}{\begin{tabular}{l}
BAND \\
SWITCH. SETTING
\end{tabular}} & & \multirow[b]{2}{*}{ADJUST TRIMMERS TO MAXIMUM} \\
\hline & EQQUENCY SETTING & CONNECTION AT RADIO & & & CONDENSER SETTING & \\
\hline I.F. & 455 KC & Grid of 6SA7 Pin 8 & . 1 mf. & B Range & Turn Rotor to Full Open & 1st I.F. (C15) \& (C16)
2nd I.F. (C20) \& (C21) \\
\hline \[
\begin{aligned}
& \text { RANGE } \\
& \text { B }
\end{aligned}
\] & 1620 KC & Antenna Lead & 50 mmf . & B Range & Turn Rotor to Full Open & Oscillator Range B (C9) \\
\hline & 1400 KC & Antenna Lead & 50 mmf . & B Range & Tune Rotor to Max. Output & Ant. Range B (C3) \\
\hline & 600 KC & Aǹtenna Lead & 50 mmf . & B Range & Tune Rotor to Max. Output & \[
\begin{aligned}
& 600 \mathrm{KC}(\mathrm{CB}) \\
& \text { See Note B }
\end{aligned}
\] \\
\hline
\end{tabular}

Repeat above steps at 1620 and 600 KC until readjusting the oscillator Range B
Trimmer (C9) causes no further improvement in output.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline RANGE
D & 18.3 MC & Antenna Lead & 400 Ohm & D Range & Turn Rotor to Full Open & Oscillator Range D (C10) \\
\hline & 16 MC & Antenna Lead & 400 Ohm & D Range & Tune Rotor to Max. Output & Ant. Range D (C2) Rock Rotor-See Note \\
\hline \[
\begin{aligned}
& \text { LOOP } \\
& \text { RANGE }
\end{aligned}
\] & \multicolumn{5}{|l|}{Reassemble chassis in cabinet.} & \\
\hline & 1400 KC & Antenna Lead & 50 mmf . & B Range & Tune Rotor to Max. Output See Note A & Ant. Range B (C3) \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

Power Consumption

\author{
n ....
}

.45 Watts (At 117 volts AC) Power Output ........................... 4 Watts Maximum
Selectivity ............ 40 KCC Broad at 1000 Harmonics
Simes Signal Power Output .......................... 4 Watts Maximum
Selectivity ............. 40 KCC Broad at 1000 Harmonics
Simes Signal Intermediate Frequency ............................. 455 KC Speaker ........................................12" PM Dynamic Tuning Frequency Range
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{B}} \\
\hline & & \\
\hline
\end{tabular}

Sensitivity (For . 05 watt output-External Antenna). B Range ..................... 9 Microvolts Average D Range ................... 20 Microvolts Average

\section*{REMOVAL OF CHASSIS FROM CABINET}

Before removing the chassis from the cabinet it will be necessary to detach the dial pointer from the dial string. To do this, spread the tabs on the pointer and pull the dial string off the pointer.

MODEJ D1835B


NOTE A-Set pointer at the 1400 KC mark on the dial scale. Attach pointer to drive cord.

NOTE B-Turn rotor back and forth. and adjust the trimmer until peak of greatest intensity is obtained.
The dial lamp socket assemblies may be disengaged from the cabinet mounting by squeezing together and pulling away from the cabinet mounting, the spring bracket to which the dial lamp socket is mounted. Take care not to bend or damage the large drive pulley on the gang condenser while doing this.
When replacing the chassis in the cabinet it will be necessary to tune in a station of a known frequency and move the dial pointer until that frequency is indicated on the dial and then attach the pointer to the dial string. Take care not to scuff or cut the dial string or bend the pointer during this operation.

\section*{REPLACEMENT PARTS LIST}

NOTICE: There is a model number label on the chassis. This label identifies
the radio as to chassis, dial and issue letter. When ordering parts or writ ing, give ALL information appearing on this label.

\section*{MISCELLANEOUS}


\section*{CAPACITORS}

\(\mathrm{C}-27\)
\(\mathrm{C}-28\)
\(\mathrm{C}-29\)
\(\mathrm{C}-30 \mathrm{~A}\)
\(\mathrm{C}-30 \mathrm{~B}\)
\(\mathrm{C}-30 \mathrm{C}\)
\(\mathrm{C}-31\)
\(\mathrm{C}-32\)
\(\mathrm{C}-33\)

D64253
D66402
D66103
\(45 \times 346\)
H66402
47467
B66503
.025 mf
.004 mf
.01 mf
40 mf
40 mf
20 mf
.004
470 mmf
.05 mf
\(\left.\begin{array}{l}400 \mathrm{~V} \\ 400 \mathrm{~V} \\ 400 \mathrm{~V} \\ 450 \mathrm{~V} \\ 450 \mathrm{~V} \\ 25 \mathrm{~V}\end{array}\right\}\)


\section*{RESISTORS}


\section*{DIAL AND DRIVE ASSEMBLY}

6X21
\(20 \times 329\)
25X1489
25X1490
26X485
19X192
25X1491
15X229
10X66
28×113
\(30 \times 517\)
\(4 \times 915\)
4X916
4X931
58 X694 Dial Glass Insert
7A200 Dial Glass
Pilot Light Socket Assembly
7A32 Pilot Light Bulb No. 51 .......


\section*{ALIGNMENT PROCEDURE}

Volume control-Maximum: all adjustments.
Tone Control-Treble: Full Clockwise Rotation.
Connect ground lead of signal generator to radio chassis.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil of speaker.

The following equipment is necessary for proper alignment
Signal generator that will provide the test frequencies as listed.
Output meter.
Non-metallic screwdriver.
Dummy antennas-. 1 mfd ., 00025 mfd .
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Position } \\
& \text { of } \\
& \text { Variable }
\end{aligned}
\] & Generator Frequency & Dummy Ant. mfd. & Generator Connections & Trimmer Adjustment & Trimmer Function \\
\hline Minimum Capacity (Fully Opened) & 455 K.C. & . 1 & 6SA7 Grid (Stator of ClB ) & Tl T2 & I. F. \\
\hline Minimum Capacity (Fully Opened) & 1725 K.C. & . 00025 & *Ant. Terminal on Loop & ClC & Osc. \\
\hline Tune in signal From Generator & 1500 K.C. & . 00025 & *Ant. Terminal on Loop & ClB & R. F. \\
\hline Tune in signal From Generator & 1500 K.C. & . 00025 & *Ant. Terminal on Loop & ClA & Ant. \\
\hline
\end{tabular}
*Be sure coupling link is in correct position for external antenna operation. See illustration below (Fig. 4).

Repeat the above alignment procedure as a final

With an output meter connected across the voice coil of the speaker, the output meter reading for \(1 / 2\) watt is 1.25 volts using a signal which is modulated 400 c.p:s. check.

\section*{ANTENNA and GROUND CONNECTIONS}


Fig. 2 Chassis. Bottom View

\section*{CONDENSERS}
\begin{tabular}{|c|c|}
\hline Circult Roforence & Part No. \\
\hline ClA, ClB, ClC & B19-186 \\
\hline C2 & B15-189 \\
\hline C3, C4, C9, Cl6 & A16-152 \\
\hline C5, C6, ClO, Cl3 & A16-158 \\
\hline C7, C8 & A15-175 \\
\hline Cl1, Cl4, Cl5 & A16-156 \\
\hline Cl 2 & A15-176 \\
\hline Cl 7 & A16-168 \\
\hline C18 & A18-279 \\
\hline C19 & A18-274 \\
\hline C20, C21 & A83-355 \\
\hline
\end{tabular}

\section*{Pait No.}

B19-186
B15-189
Al6-152
Al6-158
Als-175
A15-176
A16-168
A18-279

A83-355

A60-667
R1, R8, R10, R15
R2, R6
R3
R4, R7
R5
R9
Rll
R12
R13
R14

A80-222
C80-223
A69-169
A26-123
A24-169
A84-41
B79-359
S84-204
C67-520
Ā52-203
A52-207
A52-208
A52-209
A52-242
B58-70
A83-532
A83-533
A69-180

\section*{Description}

\section*{Variable condenser}

200 MMF Mica condenser (on loop)
. 05 MFD 200 volt condenser
. 05 MFD 400 volt condenser
50 MMF mica condenser
. 01 MFD 400 volt condenser
250 MMF mica condenser.
. 01 MFD 1000 volt condenser
16 MFD 450 volt electrolytic dondenser
16 MFD 450 volt electrolytic condenser
4.7 MMF condenser

\section*{RESISTORS}

220 K ohm \(1 / 2\) watt resistor.
150 ohm \(1 / 2\) watt resistor
27 K ohm 1 watt resistor.
100K ohm \(1 / 2\) watt resistor
22 K ohm \(1 / 2\) watt resistor
10 megohm \(1 / 2\) watt resistor
470K ohm \(1 / 2\) watt resistor.
560 ohm l watt resistor.
82 K ohm 1 watt resistor
1000 ohm 2 watt resistor

\section*{COILS}

Antenna coil
R. F. coil

Oscillator coil
lst I.F. transformer
2nd I.F. transformer

\section*{MISCELLANEOUS}

Output transformer \(\qquad\)
Power transformer
Switch, on-off
Tone control
Volume control
Dial drive shaft and pulley assembly
Speaker, 10" P. M.
Loop antenna and Back assembly
Dial scale
Knob, (tuning)
Knob, (tone)
Knob, (volume)
Knob, (on-off)
Knob, (radio-phono)
Dial pointer
Retainer, dial scale, right
Retainer, dial scale, left
Switch, radio-phono


Power Oułpuł.......... 8 watts. \(10 \%\) distortion. 10 watts maximum.


Loud Speaker...........12" electrodynamic. Voice coil
Tube and Lamp impedance 3.2 ohms, 400 cycles.
Complement..
6BA6, FM-AM R.F. stage. 12AT7, FM-AM oscillator and mixer.
6BA6, FM-AM-1st I.F.
6BA6, FM-2nd I.F.
6AL5, FM-ratio detector.
6AT6, AM detector.
A. F. AMP. and A.V.C.

6SN7, Push-Pull. Driver and phase-inverter.
5U4G, rectifier.
6V6, output.
6V6, output.
T-44 dial lamp (2 used).
Automatic changer..Oak 6666 with P-93 Cartridge.


With tuner all the way out, dimension " \(X\) " should be \(11 / 2\) inches. " \(Y\) ", should be \(1-1 / 32\) inches. " \(X\) " is from the end of the slug to edge of the coil winding. Check these dimensions before R.F. alignment is attempted of either the AM or FM Band. No slug adjustment should be necessary since the slugs are properly set at the factory.



\author{
ALIGNMENT PROCEDURE \\ Broadcast Band Section I.F. and R.F.
}

The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input values are based on an output of \(1 / 2\) watt. This may be measured by disconnecting the speaker voice coil and substituting a 3.2 -ohm resistor across the secondary winding of the output transformer. A reading of 1.3 volts AC across this resistor will be approximately equivalent to a \(1 / 2\)-watt output with the speaker con-
nected. The volume control must be set at maximum. The tone control must be set for maximum treble.
The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated \(30 \%\) with a 400 -cycle audio signal. A 400 cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus \(25 \%\) are usually permissable.

\section*{AM-I.F. ALIGNMENT}

Band Switch in AM Position. Tune Set to 1400 Kc. Dummy Antenna 1 Mfd.
\begin{tabular}{|c|c|c|c}
\hline \begin{tabular}{c} 
SIGNAL \\
GENERATOR \\
FREQUENCY
\end{tabular} & \begin{tabular}{c} 
CONNECTION \\
TO RADIO
\end{tabular} & ADJUSTMENTS TO BE MADE & ADJUST FOR \\
\hline \begin{tabular}{c}
455 Kc. Use \\
1000 \\
microvolts
\end{tabular} & \begin{tabular}{c} 
Pin No. 1 of \\
6BA6 No. 2 \\
and ground
\end{tabular} & \begin{tabular}{c} 
Primary and Secondary of T4B AM windings \\
See I. F. view
\end{tabular} & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline \begin{tabular}{c} 
455 Kc. Use \\
30 microvolts
\end{tabular} & \begin{tabular}{c} 
Pin No. 2 \\
of 12AT7 \\
and ground
\end{tabular} & \begin{tabular}{c} 
Primary and Secondary of T3B AM windings \\
See I. F. view
\end{tabular} & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline \begin{tabular}{c}
400 cycles. Use \\
28 millivolts
\end{tabular} & \begin{tabular}{c} 
Hot end of vol- \\
ume control \\
and ground
\end{tabular} & None & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline
\end{tabular}

\title{
BROADCASTBAND-R.F. ALIGNMENT \\ Check pointer so that it coincides with the right hand marker to the extreme right when iron cores are all the way out. For adjustment, see dial mechanism illustration.
}
\begin{tabular}{c|c|c|c}
\hline SIGNAL GENERATOR FREQ. & CONNECTION TO RADIO & DUMMY ANTENNA & ADJUST \\
\hline 1620 Kc. Use 3 microvolts & AM Antenna and Ground & 200 mmf. & \begin{tabular}{c} 
C59, C57, C61. \\
For maximum, \(1 / 2\) watt
\end{tabular} \\
\hline
\end{tabular}


\section*{I. F. VIEW}


DIAL ADJUSTMENT VIEW
Loosen screw " \(A\) " so that teeth of tape can be properly meshed with pinion gear to give proper pointer travel.

\section*{ALIGNMENT PROCEDURE}

FM Band Section I.F. and R.F.
A non-metallic alignment tool must be used.

IMPORTANT- No alignment of the FM section of this radio should be attempted unless you are positive that the circuits are in need of adjustment and you have the necessary equipment.
All components used in this radio
are extremely stable and the tuned circuits should require no adjustment over a long period of time.
NOTE- The following alignment is based on the use of the new Simpson vacuum tube voltmeter which has a "floating ground". In other
words, the meter, when used as a vacuum tube volt-meter, can have both the positive and negative sides connected to points above ground and still give true readings.
A standard AM signal generator is required.

FM-I.F. ALIGNMENT
Band Switch in FM Position. Dummy Antenna 1 Mfd.
\begin{tabular}{|c|c|c|c|c|}
\hline SIGNAL GENERATOR FREQUENCY & CONNECTION TO RADIO & VACUUM TUBE VOLT METER CONNECTION TO RADIO & ADJUSTMENT TO BE MADE & ADJUST FOR \\
\hline 10.7 Mc. Use about . 1 volt & Pin No. 1 of 6BA6 No. 3 and ground & Pin No. 2 of 6AL5 and ground & Primary of T5 & Resonance should be about 3 volts \\
\hline 10.7 Mc. Use about .1 volt & Pin No. 1 of 6BA6 No. 3 and ground & See note "A" & Secondary of T5 & Resonance should be about 3 volts \\
\hline 10.7 Mc. Use about 3300 microvolts & Pin No. 1 of 6BA6 No. 2 and ground & Pin No. 2 of 6AL5 and ground & Primary and Secondary of T4A 10.7 m.c. windings See I.F. view & \begin{tabular}{l}
Zero. \\
Use zero center scale See note "B"
\end{tabular} \\
\hline 10.7 Mc. Ose about 200 microvolts & Pin No. 2 of 12AT7 and ground & Pin No. 2 of 6AL5 and ground & Primary and Secondary of 10.7 m.c. windings of T3A See I.F. view & Resonance should be about 3 volts \\
\hline
\end{tabular}

NOTE "A" Connect two resistors, 100K OHMS each, from Pin No. 2 of 6AL5 to ground. These resistors must be matched within \(5 \%\). Connect as shown in dotted lines on schematic diagram. Connect vacuum tube voltmeter between the mid-

\section*{NOTES ON FM - I. F. ALIGNMENT}
point of the resistors and point zz .
NOTE "B" If T5 has been tampered with, it is possible that no crossover point will be found at first. Careful adjustment of both primary and secondary is necessary.

GENERAL: Input signals should be adjusted to give approximately 3 volts. The ratio detector is operaating at reasonable level at this point and will give the truest indication of correct alignment with the procedure specified.

FM-R.F. ALIGNMENT
Check pointer so that it coincides with the right hand marker to the extreme right when iron cores are all the way out.
For adjustment, see dial mechanism illustration.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
SIGNAL \\
GENERATOR \\
FREQUENCY
\end{tabular} & \begin{tabular}{c} 
CONNECTION \\
TO RADIO
\end{tabular} & \begin{tabular}{c} 
DUMMY \\
ANTENNA
\end{tabular} & ADJUST & \begin{tabular}{c} 
VACUUM TUBE VOLT \\
METER CONNECTION \\
TO RADIO
\end{tabular} & ADJUST TO \\
\hline \begin{tabular}{c} 
100 Mc. Use \\
about 10 \\
microvolts
\end{tabular} & \begin{tabular}{c} 
FM Antenna \\
Terminals \\
See note
\end{tabular} & 300 ohms & \begin{tabular}{c} 
C58 Osc. \\
C60 R. F. \\
C56 Ant.
\end{tabular} & \begin{tabular}{c} 
Pin No. 2 of \\
GAL5 and Ground
\end{tabular} & \begin{tabular}{c} 
Resonance \\
about 3 volts
\end{tabular} \\
\hline
\end{tabular}

NOTE: If a signal generator with the above fundamental frequency is not available, it is sometimes possible to use harmonics. Use extreme care in picking harmonics. An alternate procedure is to use a local station carrier of known frequency to align the FM Band and to use the vacuum tube volt-meter
as above for resonance indication. A weak carrier, however, will not produce 3 volts.
NOTE: Connect 300 ohms in series with hot side of generator and connect to one screw. Connect cold side of generator to other screw.

\section*{MODEL D1946 \\ WESTERN AUTO SUPPLY CO.}

\section*{ELECTRICAL SPECIFICATIONS}

Power Consumption117 volts AC 60 watts normal 85 watts phono operating

Power Output-
4.5 watts maximum
2.5 watts \(10 \%\) distortion

Speaker-8" PM dynamic

Frequency Ranges-
Broadcast 540-1600 KC
Frequency Modulation 88-108 MC

Intermediate Frequency-
AM 455 KC - FM 10.7 MC

Selectivity - AM - 45 KC broad at 1000 times signal, measured at 1000 KC
I.F. FM-200 KC broad at 2 times down
I.F. FM-950 KC broad at 200 times down

AM Sensitivity-(For . 5 watt output with external antenna)
10 microvolts average

FM Sensitivity-(For . 5 watt output) 100 microvolts average

\section*{REMOVAL OF CHASSIS FROM CABINET}

Before removing the chassis from the cabinet it will be necessary to detach the dial pointer from the dial string. To do this, spread the tabs on the pointer and pull the dial string off the pointer.

The dial lamp socket assembly may be disengaged from the cabinet mounting by squeezing together and pulling away from the cabinet mounting, the spring bracket to which the dial lamp socket is mounted. Take care not to bend or damage the large drive pulley on the gang condenser while doing this.

When replacing the chassis in the cabinet it will be necessary to tune in a station of a known frequency and move the dial pointer until that frequency is indicated on the dial and then attach the pointer to the dial string. Take care not to scuff or cut the dial string or bend the pointer during this operation.

\section*{DRIVE CORD REPLACEMENT}

Replacement of the drive cord may be accomplished as shown in the illustration. For this purpose use the new drive cord assembly listed in the Replacement Parts List. Turn the gang condenser until the plates are fully meshed. Then install the string as shown, winding three turns clockwise around the tuning shaft with the turns progressing away from the chassis. After the cord is installed, rotate the tuning shaft several times in order to take up any slack in the cord.


\section*{TUBE SOCKET VOLTAGES}

Socket voltages are shown on the Bottom Socket diagram at the tube socket terminals. All voltages are between the socket terminal and chassis ground. Plate, screen and cathode voltages were taken with a 1000 ohm-per-volt meter with a 300 volt scale used for plate and screen voltages. Audio grid voltages were read with a vacuum tube volt-meter. Conditions of measurement are:

> Line voltage .117 Volts AC
> Signal Input
> A Variation of \(\pm \mathbf{1 0 \%}\) is usually permisoible.




\section*{FM STAGES}

Allow chassis and signal generator to warm up for several minutes. The following equipment is required for aligning:

An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor- \(\mathbf{2 5 0 0} \mathbf{~ m m f ; ~} 300\) ohms and a 3300 ohm .5 watt resistor with short leads.

Zero center scale \(D C\) vacuum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{SIGNAL GENERATOR} & \multirow[b]{2}{*}{DUMMY ANTENNA} & \multirow[t]{2}{*}{BAND SWITCH SETTING} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{CONDENSER
SETTING}} & \multirow[t]{2}{*}{ADJUSTMENT FOR MAX. METER DEFLECTION} \\
\hline & FREQUENCY SETTING & CONNECTION AT RADIO & & & & & & \\
\hline \multirow[t]{4}{*}{Discriminator} & 10.7 MC & 6BA6 2nd I-F Pin 1 \& Chassis & 2500 mmf & FM & Rotor F & Fully & Open & Disc. Pri. Note A \\
\hline & 10.7 MC & Same as above & 2500 mmf & FM & Rotor F & Fully & Open & \begin{tabular}{l}
Disc. Sec. \\
Note B
\end{tabular} \\
\hline & 10.7 MC & Same as above & 2500 mmf & FM & Rotor F & Fully & Open & Disc. Pri. Note A \\
\hline & 10.7 MC & Same as above & 2500 mmf & FM & Rotor F & Fully & Open & Disc. Sec. Note B \\
\hline I-F & \[
\begin{gathered}
\hline 10.7 \mathrm{MC} \\
\text { Note E }
\end{gathered}
\] & 6BA6 1st I-F Pin 1 \& Chassis & 2500 mmf & FM & Rotor F & Fully & Open & 2nd I-F Note C \\
\hline Discriminator & 10.7 MC & 6BA6 2nd I-F Pin 1 \& Chassis & 2500 mmf & FM & Rotor F & Fully & Open & Disc. Pri. Note A \\
\hline \multirow[t]{3}{*}{I-F} & 10.7 MC & Antenna and Chassis & 2500 mmf & FM & Rotor F & Fully & Open & 1st. I-F Pri. and Sec. and Note C \\
\hline & 10.7 MC & \begin{tabular}{l}
Antenna and Chassis \\
Solder a 3300 ohm resistor across terminals 3 and 4 of 1st. I-F trans.
\end{tabular} & 2500 mmf & FM & Rotor F & Fully & Open & 1st. I-F Pri. Note C \\
\hline & 10.7 MC & Antenna and Chassis
\(\qquad\) & \[
2500 \mathrm{mmf}
\] & FM & Rotor F & Fully & Open & 1st. I-F Sec. Note C \\
\hline \multicolumn{9}{|c|}{RECHECK I-F ADJUSTMENTS IN ORDER GIVEN} \\
\hline Oscillator & \begin{tabular}{l}
108.4 \\
Note F
\end{tabular} & Disconnect built-in dipole antenna and connect generator to dipole terminals with resistor in series. & 300 ohms & FM & Rotor F & Fully & Open & Osc. C-12 \\
\hline Antenna & 104.5 & Same as above & 300 ohms & FM & Tune max. A & \[
\begin{aligned}
& \text { rotor } \\
& \text { AVC }
\end{aligned}
\] & for voltage & Ant. C-3 \\
\hline
\end{tabular}

\section*{FM ALIGNMENT NOTES}

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signal of . 1 volt must be fed into the receiver for this adjustment.
Note output voltage. on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from AVC and connect it to the audio takeoff point at the 27 K ohm resistor ( \(\mathrm{R}-11\) ) and its junction with the terminal strip. Adjust for zero voltage indication.

NOTE C-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.
NOTE D-Unsolder 3300 ohm resistor from terminals 3 and 4 of 1st I-F transformer and resolder across terminals 1 and 2.
NOTE E-2nd I-F Trimmers (AM) must be aligned before attempting to adjust 2nd I-F (FM) tuning slug.
NOTE F-Remove the 3300 ohm load resistor before attempting to check the antenna and oscillator adjustments.

\section*{REPLACEMENT PARTS LIST}

NOTICE: There is a Model Number label on the chassis. This label identifies the radio as to chassis, dial and issue letter. When ordering parts or writing, give ALL information appearing on this label.

MISCELLANEOUS
\begin{tabular}{|c|c|}
\hline 12A477 & 8' PM Speaker \\
\hline 2 A373 & Band Change Switch \\
\hline 3A303 & Molded Octal Tube Socket \\
\hline 3A304 & Phono Motor Jack \\
\hline 3 A305 & Phono Input Jack \\
\hline 3 A426 & Miniature Tube Socket \\
\hline 3A443 & Miniature Tube Socket (For AM-FM Converter Tube).... \\
\hline 10 A 691 & Knob (Tuning) \\
\hline 10 A692 & Knob (Off-On Volume) \\
\hline 10A693 & Knob (Tone) \\
\hline 104694 & Knob (AM-FM Phono) \\
\hline \(13 \times 546\) & Line Cord and Plug \\
\hline \(30 \times 547\) & Line Cord Clamp \\
\hline
\end{tabular}

\section*{CAPACITORS}
\(\left.\begin{array}{l}\mathrm{C}-1 \mathrm{~A}, \mathrm{C}-1 \mathrm{~B} \\ \mathrm{C}-1 \mathrm{C}, \mathrm{C}-1 \mathrm{D}\end{array}\right\}\)
14A204 Gang Condenser Assembly \(\qquad\)
\(\qquad\) Part of T-1 (Loop Antenna Assembly) C-2 \(\left.\begin{array}{l}\mathrm{C}-3 \\ \mathrm{C}-7\end{array}\right\}\) \(\mathrm{C}-7\)
\(\mathrm{C}-4\)
\(47 \times 521\) Part of C-1 (Gang Condenser Assembly)
\begin{tabular}{l}
\(\mathrm{C}-5\) \\
\(\mathrm{C}-11\) \\
C \\
\hline
\end{tabular}
\(C-11\)
\(C-14\)
\(C-19\) \(\left.\begin{array}{c}-14 \\ -19 \\ -20\end{array}\right\}\)
\(\mathrm{C}-2\)
\(\mathrm{C}-24\)
\(\mathrm{C}-38\)
C-
\(\left.\begin{array}{ll}\text { C-6 } \\ \text { C-8 }\end{array}\right\} \quad 47 \times 522\)
\(\left.\begin{array}{l}\mathrm{C}-15 \\ \mathrm{C}-16 \\ \mathrm{C}\end{array}\right\}\)
C-17
C-18 \(\}\) B66503
C-21 \(\}\)
C-22
C-2
C-
C-26
C-27

C-
\(\left.\begin{array}{l}\mathrm{C}-30 \mathrm{~A} \\ \mathrm{C}-30 \mathrm{~B} \\ \mathrm{C}-30 \mathrm{C}\end{array}\right\}\)
\(\left.\begin{array}{l}\text { C-30C } \\ \text { C-30D } \\ \text { C-31A }\end{array}\right\}\)
\(\left.\begin{array}{l}\mathrm{C}-31 \mathrm{~A} \\ \mathrm{C}-31 \mathrm{~B}\end{array}\right\}\)
C-3
\(\quad 47 \times\)
\(\mathrm{C}-33\)
\(\mathrm{C}-34\)
C-35
C. 36

C-37 B66402 \(\begin{array}{lllll} & .004 \mathrm{mf} & 200 \mathrm{~V} & \text { Tubular...................... }\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & Ohms & Watts & \\
\hline R-6 & B84122 & 1200 & . 5 & Carbon... .......... \\
\hline R-8 & B85473 & 47 K & . 5 & Carbon.............. \\
\hline R-9 & B85683 & 68 K & . 5 & Carbon... \\
\hline R-10 & B84102 & 1000 & . 5 & Carbon... \\
\hline R-11 & B84273 & 27 K & . 5 & Carbon... \\
\hline R-12 & \(43 \times 233\) & 3.6 & . 5 & Wire Wound.... \\
\hline R-13 R -14 \(\}\) & B84103 & 10K & . 5 & Carbon........... .-. \\
\hline \(\left.\begin{array}{l}\text { R-14 } \\ \mathrm{R}-15 \mathrm{~A}\end{array}\right\}\) & & 1000 & 6.0 & \\
\hline R-15B \(\}\) & 43X224 & 1400 & 4.0 & Wire Wound... \\
\hline R-16 & B84153 & 15 K & . 5 & Carbon.............. \\
\hline R-17 & 36X371 & . 5 meg & & Volume Control. \\
\hline R-18 & B85225 & 2.2 meg. & . 5 & Carbon............... \\
\hline R-19 & \(40 \times 284\) & 3 meg . & & Tone Control..... \\
\hline R-20 & B85106 & 10 meg . & . 5 & Carbon............ \\
\hline R-21 & B85474 & 470 K & . 5 & Carbon.. \\
\hline R-22 & & & & \\
\hline R-23 & B84271 & 270 & . 5 & Carbon. \\
\hline R-24 & B84151 & 150 & . 5 & Carbon. \\
\hline
\end{tabular}

\section*{TRANSFORMERS AND COILS}
\begin{tabular}{ll} 
& \\
\(\mathrm{L}-2\) & 35 A 1 \\
\(\mathrm{~L}-3\) & 9 A 1940 \\
\(\mathrm{~L}-4\) & 9 A 2021 \\
\(\mathrm{~T}-1\) & 9 A 1972 \\
\(\mathrm{~T}-2\) & 9 A 1956 \\
\(\mathrm{~T}-3\) & 9 A 1997 \\
\(\mathrm{~T}-4\) & 9 A 1932 \\
\(\mathrm{~T}-5\) & 9 A 1998 \\
\(\mathrm{~T}-6\) & 9 A 1999 \\
\(\mathrm{~T}-7\) & 9 A 1970 \\
\(\mathrm{~T}-8\) & 9 A 2003 \\
\(\mathrm{~T}-9\) & \(53 \times 290\) \\
\(\mathrm{~T}-10\) & 51 X 134
\end{tabular}

Insulated Choke
Parasitic Choke Assembly
Oscillator Coil Assembly (FM)
"B" Range Loop Antenna Assembly Antenna Coil Assembly
Oscillator Coil (AM)
1st I.F. Transformer (FM)
1st I.F. Transformer (AM)
2nd I.F. Transformer (AM-FM)
Discriminator Coil Assembly
Dipole Antenna Assembly
Power Transformer
Output Transformer

\section*{DIAL AND DRIVE ASSEMBLY}

15X229
6X21
\(20 \times 260\)
\(58 \times 717\)
28×113
26X507
19X192
\(10 \times 66\)
7 A215
\(7 A 32\)
25X1491
\(4 \times 915\)
\(4 \times 916\)
\(30 \times 517\)
25X1571
4X931

Pointer
Rubber Grommet \(\qquad\) ......

Condenser Cushion Stud Mtg. Gang Condenser
Dial
Drive Cord Tension Spring
Drive Shaft
"C" Washer (For drive shaft)
Drive Cord Assembly
Pilot Light Socket Assembly
No. 51 Pilot Light
Pointer Bracket
Escutcheon (Right)
Escutcheon (Left)
Dial Clamp
Idler Bracket
Escutcheon Inserts



ELECTRICAL SPECIFICATIONS
Power Supply. . 105 to 125 volts, AC, 60 -cycles Chassis only 122 watts. With phono operation 150 watts.
Frequency Range....Broadcast Band- 535 to 1620 kc . FM Band- 88 to 108 mc .
Intermediate Freq.. AM- 455 kc ; FM-10.7 mc. Selectivity. AM-48 kc. broad at 1000 times signal, measured at 1000 kc .
I.F. FM-180 kc. broad at 2 times down.
I.F. FM-320 kc. broad at 10 times down.
AM Sensitivity.........(For . 5 watt output with external antenna)- 3 microvolts average.
FM Sensitivity..........(For . 5 watt output)- 10 microvolts average.
Power Oułput.......... 8 watts. \(10 \%\) distortion. 10 watts maximum.


Loud Speaker. 12" electrodynamic. Voice coil Tube and Lamp impedance 3.2 ohms, 400 cycles. Complement..........6BA6, FM-AM R.F. stage. 12AT7, FM-AM oscillator and mixer.
6BA6, FM-AM-1st I.F.
6BA6, FM-2nd I.F.
6AL5, FM-ratio detector. 6AT6, AM detector.
A. F. AMP. and A.V.C.

6SN7, Push-Pull. Driver and phase-inverter.
5U4G, rectifier.
6V6, output.
6V6, output.
T-44 dial lamp (2 used).


Chassis - top view


NOTE: B.C. Oscillator Coil T9 and number 7 terminal of slide switch should be connected together.
NOTE: A 3.3 ohm resistor C-9B1-1069 is connected between Pin 3 of 6AL5 and the filament line ( X ) in some productions.

\title{
ALIGNMENT PROCEDURE Broadcast Band Section I.F. and R.F.
}

The alignment procedure below includes the sensitivities at the inputs of various stages. All signal input values are based on an output of \(1 / 2\) watt. This may be measured by disconnecting the speaker voice coil and substituting a 3.2 -ohm resistor across the secondary winding of the output transformer. A reading of 1.3 volts AC across this resistor will be approximately equivalent to a \(1 / 2\)-watt output with the speaker con-
nected. The volume control must be set at maximum. The tone control must be set for maximum treble.
The signal source must be an accurately calibrated signal generator capable of supplying the frequencies designated, modulated \(30 \%\) with a 400 -cycle audio signal. A 400 cycle audio signal is required for the audio measurement. Variations in sensitivities of plus or minus \(25 \%\) are usually permissable.

Band Switch in AM Position. Tune Set to 1400 Kc. Dummy Antenna . 1 Mfd.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
SIGNAL \\
GREQRATOR
\end{tabular} & \begin{tabular}{c} 
CONNECTION \\
TO RADIO
\end{tabular} & ADJUSTMENTS TO BE MADE & ADJUST FOR \\
\hline \begin{tabular}{c}
455 Kc. Use \\
1000 \\
microvolts
\end{tabular} & \begin{tabular}{c} 
Pin No. 1 of \\
6BA6 No. 2 \\
and ground
\end{tabular} & \begin{tabular}{c} 
Primary and Secondary of T4B AM windings \\
See I. F. view
\end{tabular} & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline \begin{tabular}{c}
455 Kc. Use \\
30 microvolts
\end{tabular} & \begin{tabular}{c} 
Pin No. 2 \\
of 12AT7 \\
and ground
\end{tabular} & \begin{tabular}{c} 
Primary and Secondary of T3B AM windings \\
See I. F. view
\end{tabular} & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline \begin{tabular}{c}
400 cycles. Use \\
28 millivolts
\end{tabular} & \begin{tabular}{c} 
Hot end of vol- \\
ume control \\
and ground
\end{tabular} & None & \begin{tabular}{c} 
Maximum output \\
Should be \(1 / 2\) watt.
\end{tabular} \\
\hline
\end{tabular}

BROADCASTBAND-R.F. ALIGN.MENT
Check pointer so that it coincides with the right hand marker to the extreme right when iron cores are all the way out.
For adiustment, see dial mechanism illustration.
\begin{tabular}{|c|c|c|c|}
\hline SIGNAL GENERATOR FREQ. & CONNECTION TO RADIO & DUMMY ANTENNA & ADJUST \\
\hline 1620 Kc. Use 3 microvolts & AM Antenna and Ground & 200 mmf. & \begin{tabular}{c} 
C59, C57, C61. \\
For maximum, \(1 / 2 \mathrm{watt}\)
\end{tabular} \\
\hline
\end{tabular}

I. F. VIEW



DIAL ADJUSTMENT VIEW
Loosen screw " \(A\) " so that teeth of tape can be properly meshed with pinion gear to give proper pointer travel.

\section*{TUNER ADJUSTMENT}

With tuner all the way out, dimension " X " should be \(11 / 2\) inches. " \(Y\) " should be \(1-1 / 32\) inches. " \(X\) " is from the end of the slug to edge of the coil winding. Check these dimensions before R.F. alignment is attempted of either the AM or FM Band. No slug adjustment should be necessary since the slugs are properly set at the factory.

\section*{ALIGNMENT PROCEDURE.}

FM Band Section I.F. and R.F.
A non-metallic alignment tool must be used.

IMPORTANT- No alignment of the FM section of this radio should be attempted unless you are positive that the circuits are in need of adjustment and you have the necessary equipment.
All components used in this radio
are extremely stable and the tuned circuits should require no adjustment over a long period of time.
NOTE- The following alignment is based on the use of the new Simp. son vacuum tube voltmeter which has a "floating ground". In other
words, the meter, when used as a vacuum tube volt-meter, can have both the positive and negative sides connected to points above ground and still give true readings.
A standard AM signal generator is required.

FM-I.F. ALIGNMENT
Band Switch in FM Position. Dummy Antenna 1 Mfd.
\begin{tabular}{|c|c|c|c|c|}
\hline SIGNAL GENERATOR FREQUENCY & CONNECTION TO RADIO & VACUUM TUBE VOLT METER CONNECTION TO RADIO & ADJUSTMENT TO BE MADE & ADJUST FOR \\
\hline 10.7 Mc. Use about .1 volt & Pin No. 1 of 6BA6 No. 3 and ground & Pin No. 2 of 6AL5 and ground & Primary of T5 & Resonance should be about 3 volts \\
\hline 10.7 Mc. Use about . 1 volt & Pin No. 1 of 6BA6 No. 3 and ground & See note "A" & Secondary of T5 & \begin{tabular}{l}
Zero. \\
Use zero center scale See note "B"
\end{tabular} \\
\hline 10.7 Mc. Use about 3300 microvolts & Pin No. 1 of 6BA6 No. 2 and ground & Pin No. 2 of 6AL5 and ground & Primary and Secondary of T4A 10.7 m.c. windings See I.F. view & Resonance should be about 3 volts \\
\hline 10.7 Mc. Ose about 200 microvolts & Pin No. 2 of 12AT7 and ground & Pin No. 2 of 6AL5 and ground & Primary and Secondary of 10.7 m.c. windings of T3A See I.F. view & Resonance should be about 3 volts \\
\hline
\end{tabular}

NOTE "A" Connect two resistors, 100K OHMS each, from Pin No. 2 of 6AL5 to ground. These resistors must be matched within \(5 \%\). Connect as shown in dotted lines on schematic diagram. Connect vacuum tube voltmeter between the mid-

\section*{NOTES ON FM - I. F. ALIGNMENT}
point of the resistors and point zz .
NOTE "B" If T5 has been tampered with, it is possible that no crossover point will be found at first. Careful adjustment of both primary and secondary is necessary.

GENERAL: Input signals should be adjusted to give approximately 3 volts. The ratio detector is operaating at reasonable level at this point and will give the truest indication of correct alignment with the procedure specified.

\section*{FM-R.F. ALIGNMENT Check pointer so that it coincides with the right hand marker to the extreme right when iron cores are all the way out. \\ For adjustment, see dial mechanism illustration.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SIGNAL GENERATOR FREQUENCY & \[
\begin{aligned}
& \text { CONNECTION } \\
& \text { TO RADIO }
\end{aligned}
\] & DUMMY ANTENNA & ADJUST & VACUUM TUBE VOLT METER CONNECTION TO RADIO & ADJUST TO \\
\hline 100 Mc. Use about 10 microvolts & FM Antenna Terminals See note & 300 ohms & \begin{tabular}{l}
C58 Osc. \\
C60 R. F. \\
C56 Ant.
\end{tabular} & Pin No. 2 of 6AL5 and Ground & Resonance about 3 volts \\
\hline
\end{tabular}

NOTE: If a signal generator with the above fundamental frequency is not available, it is sometimes possible to use harmonics. Use extreme care in picking harmonics. An alternate procedure is to use a local station carrier of known frequency to align the FM Band and to use the vacuum tube volt-meter
as above for resonance indication. A weak carrier, however, will not produce 3 volts.
NOTE: Connect 300 ohms in series with hot side of generator and connect to one screw. Connect cold side of generator to other screw.



\section*{ALIGNMENT PROCEDURE}

Output meter connections. \(\qquad\) Across primary output transformer

Connection of generator ground \(\qquad\) Chassis

Generator modulation \(\qquad\) App. 30\% @ 400 cycles

Position of volume control \(\qquad\) Fully Clockwise
\begin{tabular}{ccccc}
\begin{tabular}{c} 
POSITION OF \\
DIAL POINTER
\end{tabular} & \begin{tabular}{c} 
GENERATOR \\
FREQUENCY
\end{tabular} & \begin{tabular}{c} 
GENERATOR \\
CONNECTION
\end{tabular} & \begin{tabular}{c} 
TRIMMERS \\
ADJUSTED
\end{tabular} & \begin{tabular}{c} 
TRIMMER \\
FUNCTION
\end{tabular} \\
540 kc & 455 kc & 12 SA7GT & T3, T4, T5, T6 & I. F. \\
1500 kc & 1500 kc & \(* * *\) & T2, T1 & Osc., R. F.
\end{tabular}

\section*{IMPORTANT ALIGNMENT NOTES}

It is advisable to repeat the entire alignment procedure in the original order to insure greater accuracy.

Always keep the output from the test oscillator at its lowest possible value. As the sensitivity is increased by alignment, the generator output should be reduced correspondingly.
***Run a wire from the output terminal of the generator near the receiver. However, no connection is made between the signal generator and the receiver.
```

MODELD2690, WESTERN AUTO SUPPLY CO.
2nd Type

```


\section*{ALIGNMENT PROCEDURE}

Output meter connections. \(\qquad\) Across primary output transformer
Connection of generator ground \(\qquad\) Chassis

Generator modulation \(\qquad\) App. 30\% @ 400 cycles
Position of volume control. \(\qquad\) Fully Clockwise
\begin{tabular}{|c|c|c|c|c|}
\hline POSITION OF dial pointer & GENERATOR FREQUENCY & GENERATOR CONNECTION & TRIMMERS ADJUSTED & TRIMMER FUNCTION \\
\hline 540 kc & 455 kc & 14Q7 & T3, T4, T5, T6 & I. F. \\
\hline 1500 kc & 1500 kc & * * & T2, T1 & Osc., R. F. \\
\hline
\end{tabular}

\section*{IMPORTANT ALIGNMENT NOTES}

It is advisable to repeat the entire alignment procedure in the original order to insure greater accuracy.

Always keep the output from the test oscillator at its lowest possible value. As the sensitivity is increased by alignment, the generator output should be reduced correspondingly.
***Run a wire from the output terminal of the generator near the receiver. However, no connection is made between the signal generator and the receiver.


\section*{ALIGNMENT PROCEDURE}

Output meter connections \(\qquad\) Across primary output transformer Connection of gencrator ground \(\qquad\) Chassis
Generator modulation App. 30\% @ 400 cycles

Position of volume control Fully Clockwise
\begin{tabular}{|c|c|c|c|c|}
\hline POSITION OF DIAL POINTER & GENERATOR FREQUENCY & GENERATOR CONNECTION & \begin{tabular}{l}
TRIMMERS \\
ADJUSTED
\end{tabular} & TRIMMER FUNCTION \\
\hline 540 kc & 455 kc & 12SA7GT & T3, T4, T5, T6 & I. F. \\
\hline 1500 kc & 1500 kc & * * * & T2, T1 & Osc.i R. F. \\
\hline
\end{tabular}

\section*{IMPORTANT ALIGNMENT NOTES}

It is advisable to repeat the entire alignment procedure in the original order to insure greater accuracy.

Always keep the output from the test oscillator at its lowest possible value. As the sensitivity is increased by alignment, the generator output should be reduced correspondingly.
***Run a wire from the output terminal of the generator near the receiver. However, no connection is made between the signal generator and the receiver.

\title{
BROADCAST AND SHORT WAVE RADIO WITH BUIIT-IN LOOP AERIAL
}

\section*{SHORT WAVE BAND}

6 to 18 Megacycles
This band is calibrated in megacycles. The \(16,19,25,31\) and 49 meter bands, in which the principal international short wave broadcasts will be heard, are located in this band.

These bands will be found on the dial as follows:
16 Meter Band...17.7-17.9 MC 19 Meter Band...15.1-15.3 MC 25 Meter Band. . .11.7-11.9 MC 31 Meter Band... 9.5-9.7 MC 49 Meter Band... 6-6.2 MC


\section*{7 TUBE AC-DC (Including Rectifier) 2 BANDS}


\section*{CHECK YOUR LINE VOLTAGE}

Unless otherwise marked, this radio must be operated on a power supply of \(105-125\) volts AC, 50 to 60 cycles oniy, or \(105-125\) volts DC.

\section*{REPLACEMENT PARTS LIST}





\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} &  &  & \begin{tabular}{l}
quency Range. \\
rmediate Freq
\end{tabular} & \multirow[t]{5}{*}{资} \\
\hline & Tube Layout & TUBE & LEMENT & Dial Mechanism \(\qquad\) & er Supply. speaker & \\
\hline \[
\begin{aligned}
& \text { 1-12BE6 Conv } \\
& 1-12 \mathrm{BA} 6 \text { IF A } \\
& 1-12 \mathrm{AT} 6 \text { Dete }
\end{aligned}
\] & ter tube plifier tube
or-AVC-Firs & \begin{tabular}{l}
dio tube \\
- ALIGNM
\end{tabular} & \[
\begin{aligned}
& 1-50 \mathrm{~B} 51 \\
& 1-35 \mathrm{~W} 4
\end{aligned}
\] & er Output tube tifier tube & \begin{tabular}{l}
Impedance-...- \\
Output (Un \\
Output (Ma \\
g Drive Rati
\end{tabular} & \\
\hline \begin{tabular}{l}
The followin \\
1. A signal ge rately calibr \\
2. An output \(m\) \\
3. A non-meta \\
4. Dummy ant \\
* Loop trimme
\end{tabular} & equipment is n rator which wil ed signal at the er. screwdriver. na: - 1 mfd . & \begin{tabular}{l}
ary to prope rovide an ac quencies list \\
MA loop. \\
of cabinet.
\end{tabular} & \begin{tabular}{l}
ign this ch \\
NOTE: \\
Inte res clos mu cou
\end{tabular} & diate Frequency and made with the loop of 10,000 to 50,000 e 12BE6 grid circu done with the loop to position in the cabib be sub & scillator adjustm connected provide ms is substituted The loop alignm A single turn loo uted for RMA & \\
\hline GENERATOR
IF 455 kc.
1620 kc.
1400 kc. & CONNECCIION
AT RADIO
12BE6 grid
12BE6 grid
Through loop* & \begin{tabular}{l}
DUMMY \\
ANTENNA \\
.1 mfd . \\
RMA loop \\
RMA loop
\end{tabular} & \begin{tabular}{l}
DIAL \\
HF end HF end 1400 kc .
\end{tabular} & \begin{tabular}{l}
TO TUNE TRIMMERS \\
IF trimmers C D E F \\
Osc. trimmer B \\
Ant. trimmer C-2
\end{tabular} & \begin{tabular}{l}
REMARKS \\
Tune to max \\
Set limit of band \\
Tune to max
\end{tabular} & \\
\hline
\end{tabular}

\section*{SOCKET VOLTAGES}
\begin{tabular}{c|l|c|c|c|c|c|c|c}
\hline TUBE & \multicolumn{1}{|c|}{ POSITION } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
12BE6 & Converter & -5 & 0 & 24 AC & 12 AC & 88 & 88 & 0 \\
12BA6 & I.F. Amplifier & 0 & 0 & 24 AC & 35 AC & 88 & 88 & 0.7 \\
12AT6 & 2nd DET.—1st AF—AVC & 0 & 0 & 12 AC & 0 & 0 & 0 & 12 \\
50B5 & Power Output & 0 & 5 & 85 AC & 25 AC & 115 & 88 & 0 \\
\(35 W 4\) & Rectifier & 0 & 0 & 85 AC & 117 AC & 112 AC & 112 AC & 122
\end{tabular}


NOTE: All DC voltages measured with a 1000 ohm-per-volt meter from ON-OFF switch (-B) to socket contact indicated. All AC voltages are measured from ON-OFF switch (-B) to socket contact indicated. All voltages are positive DC unless otherwise marked. Volume Control full on. No signal input. Line voltage 117 volts AC.


Parts Layout-Chassis Model 7156 SERVICE PARTS LIST
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Part No. & Description & Symbol & Part No. & Description \\
\hline C-3 & BD210503 & Capacitor, Paper, \(.05 \mathrm{mfd} ., 200 \mathrm{v}\). & SW-3 & B-51576-2 & Switch, Radio-Phono \\
\hline C-9, C-12 & BD410103 & Capacitor, Paper, \(.01 \mathrm{mfd} ., 400 \mathrm{v}\). & & A-51787 & Spring, for Dial Cable \\
\hline C-5, C-11 & BD410104 & Capacitor, Paper, 0.1 mfd ., 400 v. & & A-54122 & Button, Plug \\
\hline C-14 & BD410203 & Capacitor, Paper, \(.02 \mathrm{mfd} ., 400 \mathrm{v}\). & R-5 & B-54466-2 & Control, Volume, 500,000 ohm \\
\hline C-1, C-8 & BD410503 & Capacitor, Paper, \(.05 \mathrm{mfd} ., 400 \mathrm{v}\). & T-2 & B-56718-1 & Transformer Assembly, 2nd IF \\
\hline C-13 & BD610302 & Capacitor, Paper, . \(003 \mathrm{mfd} ., 600\) v. & T-1 & B-56722-1 & Transformer Assembly, 1st IF \\
\hline C-6 & BM74A101 & Capacitor, Mica, 100 mmf . & & B-57262-6 & Cord, AC Phono. \\
\hline \(\mathrm{C}-10\)
\(\mathrm{R}-2\) & BM74A221 & Capacitor, Mica, 220 mmf . & R-10 & B-57841-1 & Control, Tone \& Switch, 500,000 ohm \\
\hline R-2 & BR16B680 & Resistor, 68 ohm Resistor, 150 ohm W. & & B-57842 & Coil Assembly, Oscillator \\
\hline R-8 & BR17B104 & Resistor, \(150 \mathrm{ohm}, 1 / 2 \mathrm{VK}\).
Resistor, \(100,000 \mathrm{ohm}, 1 / 3\) & SP-1 & C-57843 & Speaker, 5x7 PM \\
\hline R-1 & BR17B223 & Resistor, \(22,000 \mathrm{ohm}, 1 / 3 \mathrm{w}\). & & B-57857-1 & Shaft, Tuning Pointer, Dial \\
\hline R-7 & BR17B224 & Resistor, 220,000 ohm, \(1 / 3 \mathrm{w}\). & & B-57858-1 & Strip Assembly, Light Diffusing \\
\hline R-4 & BR17B335 & Resistor, 3.3 megohm, 1/3 w. & C-4 & C-57859-1 & Capacitor, Variable \\
\hline R-6 & BR17B685 & Resistor, 6.8 megohm, \(1 / 3 \mathrm{w}\). & & A-57891 & Sheet, Operating and Service \\
\hline \multirow[t]{4}{*}{R-3} & BR17E152 & Resistor, 1500 ohm, 1 w. & L-4 \& L-5 & D-57870 & Coil Assembly, Loop \\
\hline & A-2163 & Cable, Drive & & C-57872-1 & Knob \\
\hline & A-6158 & Lamp, Pilot, No. 47 Mazda, 6.3 v. & & E-57873-1 & Cabinet \\
\hline & A-6182-1 & Socket, Dial Light & & A-57878 & Clip, Gang Mounting \\
\hline \multirow[t]{4}{*}{C-7} & B-9564-1 & Cap., Electro., 40-20 mfd., 150 .v. & C-2 & B-57879-1 & Capacitor Assembly, Trimmer \\
\hline & A-51163 & Clip, Spring & & C-57862-1 & Crystal and Indicator, Dial \\
\hline & B-51427-5 & Grommet (large) & & B-58069-1 & Cord, AC Power \\
\hline & B-51427-8 & Grommet (small) & & & Cord, AC Power \\
\hline
\end{tabular}


WESTERN AUTO PAGE 19-31



\section*{SUPPLEMENTARY SERVICE DATA}

TRUETONE KODEL D2819B
Model "B" chassis differ from the model "A" chassis as follows:
PARTS LIST ADDITION:
L-4 9Al882
Choice
SCHE: AATIC DIAGRAM CHANGE:
6BE6


SUPPLEMENTARY SERVICE DATA
TRUETONE MODEL D2819C
A choke has been added to the circuit to eliminate parasitic oscillation on the FM Band.

\section*{PARTS LIST ADDITION}

Ref. \# Part \# Description
L-5 9A1967 Parasitic Choke
The circuit connection of \(\mathrm{L}-5\) is shown in the partial schematic below.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
ELECTRICAL \\
SPECIFICATIONS
\end{tabular} & AM \(455 \mathrm{KC}-\mathrm{FM} 10.7 \mathrm{MC}\) \\
\hline Power Consumption117 volts AC-35 watts & Selectivity - AM - 60 KC broad at 1000 times signal, measured at 1000 KC \\
\hline Power Output & I.F. FM-200 KC broad at 2 times \\
\hline 1.5 watts maximum & down \\
\hline . 9 watts \(10 \%\) distortion & I.F. FM- 800 KC broad at 200 times down \\
\hline Speaker-4 6 inch oval PM dynamic & AM Sensitivity-(For . 5 watt output with external antenna) \\
\hline Frequency Ranges- & 40 microvolts average \\
\hline Broadcast 540-1600 KC & FM Sensitivity-(For . 5 watt output) \\
\hline Frequency modulation 88-108 MC & 300 microvolts average \\
\hline
\end{tabular}

WESTERN AUTO SUPPLY CO. MODELS D2819D, D2819E

\section*{SUPPLRUTHTARY SERVICE DATA}

TRUETONE MODEL DR819D
Model "D" receivers differ from the model "C" receivers by the change in value of resistors R-12 and R-13 from 6800 ohms to 15,000 ohms.

The new part number and description follows
\(\mathrm{R}-12, \mathrm{R}-13\) B84153 15,000 ohms 0.5 W

\section*{SCHENATIC DIAGRAM CHANGE:}

The wires on lugs 1 and 4 of "SNITCH 1ST SEC. FRONT" view have been interchanged. This change is shown on the partial schematic below.

\section*{SUPPPLEMENTARY SERVICE DATA}

TRUETONE MODEL D2819E

\section*{SCHEMATIC DIAGRAM CHANGE}

The wires on lugs 1 and 4 of "SWITCH lat SEC. FRONT" view has been interchanged. This change is show on the partial schematic below.


© John F. Rider

\section*{ALIGNMENT PROCEDURES}

AM STAGES
Volume Control Maximum all Adjustments.
Connect Radio Chassis to Ground Post of Signal Generator with a Short Heavy Lead.
Allow Chassis and Signal Generator to "Heat Up" for Several Minutes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Allow Chassis an Minutes. & Signal Generator to "Heat Up" & for Several & Output Indicating tennas - . 1 m & Meter, Non-Metallic mf , and 50 mmf . & Screwdriver, Dummy An. \\
\hline \multicolumn{3}{|c|}{SIGNAL GENERATOR} & & GANG & \multirow[t]{2}{*}{\begin{tabular}{l}
ADJUST TUNING SLUGS (I-F ONLY) \\
TRIMMERS (OSC. \& ANT.)
\end{tabular}} \\
\hline FREQUENCY SETTING & CONNECTION AT RADIO & GROUND CONNECTION & DUMMY ANTENNA & CONDENSER SETTING & \\
\hline 455 KC & Control Grid 1st•6BA6 Pin No. 1 & Chassis Base & . 1 mf & Turn Rotor to Full Open & 2nd I.F. Pri. \& Sec. \\
\hline 455 KC & Control Grid 6BE6 Pin No. 7 1st Det. & Same as above & . 1 mf & Turn Rotor to Full Open & 1st I.F. Pri. \& Sec. \\
\hline 1620 KC & Control Grid 6BE6 Pin No. 7 & Same as above & . 1 mf & Turn Rotor to Full Open & Oscillator C-39 \\
\hline 1400 KC & \begin{tabular}{l}
External \\
Antenna Lead
\end{tabular} & Same as above & 50 mmf & \begin{tabular}{l}
Turn Dial to 1400 KC. \\
See Note A
\end{tabular} & Antenna C-35 \\
\hline
\end{tabular} NOTE A-Attach pointer to drive cord and position at 1400 KC mark on dial scale.

FM STAGES

Allow chassis and signal generator to warm up for several minutes.
The following equipment is required for aligning:
An accurately calibrated signal generator providing unmodulated signals at the test frequencies listed below.

Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor-. \(01 \mathrm{mf}, 300\) ohms and 100 K ohms.

Zero center scale DC vaccum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{SIGNAL GENERATOR} & \multirow[b]{2}{*}{DUMMY ANTENNA} & \multirow[t]{2}{*}{\begin{tabular}{l}
BAND \\
SWITCH \\
SETTING
\end{tabular}} & \multirow[b]{2}{*}{CONDENSER SETTIING} & \multirow[t]{2}{*}{ADJUSTMENT FOR MAX. METER DEFLECTION} \\
\hline \multirow[t]{5}{*}{Discriminator} & FREQUENCY SETTING & CONNECTION AT RADIO & & & & \\
\hline & 10.7 MC & 6BA6 2nd I-F Pin 1 \& Chassis & . 01 mf & FM & Rotor to Full Open & \begin{tabular}{l}
Disc. Pri. \\
Note A
\end{tabular} \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & Disc. Sec. Note B \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & \begin{tabular}{l}
Disc. Pri. \\
Note A
\end{tabular} \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & \begin{tabular}{l}
Disc. Sec. \\
Note B
\end{tabular} \\
\hline \multirow[t]{3}{*}{I-F} & 10.7 MC & \begin{tabular}{l}
6BA6 1st IF \\
Pin 1 \& Chassis
\end{tabular} & . 01 mf & FM & Same as above & 2nd I.F Pri. 2nd I-F Sec. Note C \\
\hline & \[
10.7 \mathrm{MC}
\] & Unsolder lead from Pin 7 to band switch. Insert 100K ohm resistor between Pin 7 \& Ground and feed signal into Pin 7 of 6BE6 & . 01 mf & FM & Same dis above & 1st I-F Pri. Note C \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & 1st I-F Sec. Note C \\
\hline & \multicolumn{5}{|c|}{- RECHECK I-F ADJUSTMENTS IN ORDER GIVEN} & \\
\hline \multirow[t]{2}{*}{Ant. \& Osc.} & \begin{tabular}{l}
\[
108.5
\] \\
Note D
\end{tabular} & Disconnect built-in line antenna and connect generator to dipole terminals with resistor in series. & 300 ohms & FM & Rotor to Full Open & Osc. C-38 \\
\hline & 104.5 & Same as above & 300 ohms & FM & Tune rotor for max. AVC voltage & Ant. C-37 \\
\hline
\end{tabular}

\section*{RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN}

\section*{FM ALIGNMENT NOTES}

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the A.V.C. line at the 27 K . ohm resistor ( \(\mathrm{R}-11\) ) and its junction with terminal strip. A signal of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from A.V.C. and connest it to the audio takeoff point at
the 1 megohm' resistor (R-14) and its junction with the terminal strip. Adjust for zero voltage indication.
NOTE C-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.
NOTE D-Remove the 100 K ohm load resistor and solder the lead from pin 7 of 6BE6 tube to the band switch before attempting to check the antenna and oscillator coil adjustments.


\section*{FM STAGES}

Allow chassis and signal generator to warm up for several minutes.
The following equipment is required for aligning:
An accurately calibrated signal generator providing unmodu-
lated signals at the test frequencies listed below.
Non-metallic screwdriver.
Dummy Antennas and I-F Loading Resistor-. \(01 \mathrm{mf}, 300\) ohms and 100 K ohms.

Zero center scale DC vaccum tube voltmeter having a range of approximately 3 volts.
(If a zero center scale meter is not available, a standard scale vacuum tube voltmeter may be used by reversing the meter connections for negative readings.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{SIGNAL GENERATOR} & \multirow[b]{2}{*}{DUMMY ANTENNA} & \multirow[t]{2}{*}{BAND SWITCH SETTING} & \multirow[b]{2}{*}{CONDENSER
SETTING} & \multirow[t]{2}{*}{ADJUSTMENT FOR MAX. METER DEFLECTION} \\
\hline \multirow[t]{5}{*}{Discriminator} & FREQUENCY SETTING & CONNECTION AT RADIO & & & & \\
\hline & 10.7 MC & 6BA6 2nd I-F Pin 1 \& Chassis & . 01 mf & FM & Rotor to Full Open & \begin{tabular}{l}
Disc. Pri. \\
Note A
\end{tabular} \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & Disc. Sec. Note B \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & \begin{tabular}{l}
Disc. Pri. \\
Note A
\end{tabular} \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & \begin{tabular}{l}
Disc. Sec. \\
Note B
\end{tabular} \\
\hline \multirow[t]{3}{*}{I-F} & \begin{tabular}{l}
\[
10.7 \mathrm{MC}
\] \\
Note E
\end{tabular} & \begin{tabular}{l}
6BA6 1st IF \\
Pin 1 \& Chassis
\end{tabular} & \[
.01 \mathrm{mf}
\] & FM & Same as above & 2nd I-F Note C \\
\hline & \[
10.7 \mathrm{MC}
\] & Unsolder lead from Pin 7 to band switch. Insert 100K ohm resistor between Pin 7 \& Ground and feed signal into Pin 7 of 6BE6 & . 01 mf & FM & Same as above & \begin{tabular}{l}
1st I-F Pri. \\
Note C
\end{tabular} \\
\hline & 10.7 MC & Same as above & . 01 mf & FM & Same as above & 1st I-F Sec. Note C \\
\hline & \multicolumn{6}{|c|}{RECHECK I-F ADJUSTMENTS IN ORDER GIVEN} \\
\hline \multirow[t]{2}{*}{Ant. \& Osc.} & \begin{tabular}{l}
\[
108.5
\] \\
Note D
\end{tabular} & Disconnect built-in line antenna and connect generator to dipole terminals with resistor in series. & 300 ohms & FM & Rotor to Full Open & Osc. C-38 \\
\hline & 104.5 & Same as above & 300 ohms & FM & Tune rotor for max. AVC voltage & Ant. C-37 \\
\hline
\end{tabular}

\section*{RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN}

\section*{FM ALIGNMENT NOTES}

NOTE A-The zero center scale DC vacuum tube voltmeter is to be connected between chassis ground and the A.V.C. line at the 27 K . ohm resistor ( \(\mathrm{R}-11\) ) and its junction with terminal strip. A signal of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vacuum tube voltmeter.
NOTE B-Disconnect zero center DC vacuum tube voltmeter from A.V.C. and connect it to the audio takeoff point at the 4.7 megohm resistor ( \(R\)-14) and its junction with the
terminal strip. Adjust for zero voltage indication.
NOTE C-Connect zero center DC vacuum tube voltmeter as in Note A. Adjust input to give same output on the zero center DC vacuum tube voltmeter as in Note A.
NOTE D-Remove the 100 K ohm load resistor and solder the lead from pin 7 of 6BE6 pube to the band switch before attempting to check the antenna and oscillator adjustments.
NOTE E \(\cdots\) 2nd I-F trimmers (AM) must be aligned before attempting to adjust 2nd I-F (FM) tuning slug.

\section*{REPLACEMENT PARTS LIST}

NOTICE: There is a Model Number label on the chassis. This label identifies the radio as to chassis, dial and issue letter. When ordering parts or writing, give ALL information appearing on this label.

\section*{MISCELLANEOUS}
\begin{tabular}{|c|c|}
\hline 12A478 & Speaker, 4" \(\times\) 6" PM with Output Transformer......... \\
\hline 2A374 & Band Change Switch \\
\hline 3A303 & Molded Octal Tube Socket \\
\hline 3A304 & Phono Socket - Single Pin \\
\hline 3 A 427 & Tube Socket, Miniature (For AM-FM Converter Tube).... \\
\hline 3A312 & Tube Socket, Miniature \\
\hline 32X221 & Tube Shield, Miniature \\
\hline 10A639 & Knob, Tuning \\
\hline 10A640 & Knob (Off-On-Volume) \\
\hline 10A641 & Knob (Tone) \\
\hline 10A642 & Knob (AM-FM-Phono) \\
\hline 13X546 & Line Cord and Plug \\
\hline 76X1 & Resistor-Capacitor Combination \\
\hline 55X318 & Plastic Cabinet \\
\hline
\end{tabular}

\section*{CAPACITORS}
\(\left.\begin{array}{l}\text { C-1A, C-1B } \\ \text { C-1C, C-1D }\end{array}\right\} 14\) A198 Gang Condenser Assembly
\begin{tabular}{|c|c|c|c|c|}
\hline C-6, C-41 & 47X476 & 100 mmf & & Molded \\
\hline C-3 & \(47 \times 517\) & 47 mmf & & Ceramic \\
\hline C-4 & \(47 \times 513\) & 5 mmf & & Ceramic \\
\hline C-5 & \(47 \times 512\) & 10 mmf & & Ceramic \\
\hline C-2 & 47X511 & 100 mmf & & Ceramic \\
\hline \[
\left.\begin{array}{ll}
C-9 & \\
C-12, & C-13 \\
C-19, & C-20
\end{array}\right\}
\] & \(47 \times 507\) & 5000 mmf & & Silvered Mica .......... \\
\hline C-8, C-10 & & Part of T. 7 & (1st I-F & Trans. AM) \\
\hline C.7 & D66103 & . 01 mf & 400 V & Tubular \\
\hline C-11. & & Part of T-6 & (1st I-F & Trans. FM) \\
\hline C-14, C-17 & & Part of T.9 & (2nd I-F & Trans. AM) \\
\hline C-15, C-16 & & Part of T-8 & (2nd I-F & F Trans. FM) \\
\hline C-18A, C-18B & & Part of 76X1 & 1 Resisto & -Capacitor Combination \\
\hline C-21, C-23 & & Part of T-10 & Discrim & minator Coil Assem. \\
\hline C-22 & 47X492 & 2700 mmf & & Molded \\
\hline \[
\begin{aligned}
& \mathrm{C}-24 \\
& \mathrm{C}-25
\end{aligned}
\] & \begin{tabular}{l}
\(47 \times 510\) \\
\(45 \times 361\)
\end{tabular} & \[
\begin{aligned}
& 470 \mathrm{mmf} \\
& 5 \mathrm{mf}
\end{aligned}
\] & 100 V & Silvered Mica \\
\hline \[
\left.\begin{array}{l}
\mathrm{C}-26 \mathrm{~A} \\
\mathrm{C}-26 \mathrm{~B} \\
\mathrm{C}-26 \mathrm{C}
\end{array}\right\}
\] & 45X360 & 40 mf 40 mf 20 mf & \[
\begin{array}{r}
200 \mathrm{~V} \\
150 \mathrm{~V} \\
25 \mathrm{~V}
\end{array}
\] & Dry Electrolytic .......... \\
\hline C-27 & B66503 & . 05 mf & 200 V & Tubular \\
\hline C-28 & 47X471 & 68 mm & & Molded \\
\hline C-29 & B66403 & . 04 mf & 200 V & Tubular \\
\hline C-30 & D66502 & . 005 mf & 400 V & Tubular \\
\hline C-31 & 47X468 & 220 mmf & & Ceramic \\
\hline C-32 & D66203 & . 02 mf & 400 V & Tubular \\
\hline C-33 & B66402 & . 004 mf & 200 V & Tubular \\
\hline C-34 & H66102 & . 001 mf & 800 V & Tubular \\
\hline C-35 & 17A123 & 1.5-12 mmf & & Trimmer \\
\hline \[
\left.\begin{array}{c}
\mathrm{C}-36, \mathrm{C}-37, \\
\mathrm{C}-39
\end{array}\right\}
\] & & Part of C-1 & Gang & Condenser \\
\hline C-38 & 17A247 & 3-12 mmf & & Trimmer \\
\hline C-40 & 47X508 & 500 mmf & & Ceramic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{RESISTORS} \\
\hline & & Ohms & Watt & \\
\hline R-1 & B84223 & 22 K & 0.5 & Carbon \\
\hline R-2 & B84152 & 1500 & 0.5 & Carbon \\
\hline R-3, R-6 & B84122 & 1200 & 0.5 & Carbon \\
\hline R-4 & D84822 & 8200 & 2.0 & Carbon \\
\hline R-5, R-9 & B83680 & 68 & 0.5 & Carbon \\
\hline R-7 & B85225 & 2.2 meg & 0.5 & Carbon \\
\hline R-8 & & 47 K & Part Ca & of 76X1 Resistoracitor Combination \\
\hline R-10 & B85102 & 1000 & 0.5 & Carbon \\
\hline R-11 & B84273 & 27 K & 0.5 & Carbon \\
\hline R-12, R-13 & B84682 & 6800 & 0.5 & Carbon \\
\hline R-14 & B85105 & 1 meg & 0.5 & Carbon \\
\hline R-15 & D84102 & 1000 & 2.0 & Carbon \\
\hline \[
\begin{gathered}
R-16, R-21, \\
R-23
\end{gathered}
\] & B85474 & 470 K & 0.5 & Carbon \\
\hline R-17 & B84153 & 15 K & 0.5 & Carbon \\
\hline R-18 & \(36 \times 347\) & . 5 meg & \multicolumn{2}{|l|}{Volume Control \& Switch} \\
\hline R-19 & B85106 & 10 meg & 0.5 & Carbon \\
\hline R-20 & \(40 \times 254\) & 3 meg & & Tone Control ..... \\
\hline R-24 & B8427. 1 & 270 & 0.5 & Carbon \\
\hline
\end{tabular}

\section*{TRANSFORMERS AND COILS}
\begin{tabular}{|c|c|c|}
\hline L-1 & 9 91882 & Filament Choke Assembly \\
\hline L-2 & 9 A 1940 & Parasitic Choke Assembly \\
\hline L-3 & 9A1930 & Line Choke Assembly \\
\hline T-1 & 9A1931 & " \(B\) " Range Loop Antenna Assembly.. \\
\hline T-3 & 9 91937 & Antenna Coil Assembly \\
\hline T-4 & 9A1938 & Oscillator Coil Assembly (FM) \\
\hline T-5 & 9A1929 & Oscillator Coil Assembly (AM) \\
\hline T-6 & 9 A1932 & 1st I.F. Transformer (FM) \\
\hline T-7 & 9A1934 & 1st I.F. Transformer (AM) \\
\hline T-8 & 9A1933 & 2nd I.F. Transformer (FM) \\
\hline T-9 & 9A1935 & 2nd I.F. Transformer (AM) \\
\hline T-10 & 9A1936 & Discriminator Coil Assembly \\
\hline T-11 & \(53 \times 291\) & Power Transformer \\
\hline T-12 & & Output Transformer (See Miscellaneous).... \\
\hline
\end{tabular}

\section*{DIAL AND DRIVE ASSEMBLY}
\begin{tabular}{|c|c|}
\hline 15×236 & Pointer \\
\hline \(6 \times 21\) \} & Rubber Grommet \(\quad\left\{\begin{array}{l}\text { Mtg. } \\ \text { Gang }\end{array}\right.\) \\
\hline 20x260 & Condenser Cushion Stud Condenser ...................... \\
\hline \(10 \times 68\) & Drive Cord Assembly \\
\hline 19X192 & "C" Washer \\
\hline 26X506 & Drive Shaft \\
\hline \(58 \times 698\) & Dial Scale \\
\hline \(17 \times 96\) & Dial Crystal \\
\hline 7A103 & No. 47 Pilot Light \\
\hline 7A216 & Pilot Light Socket Assembly ............................. \\
\hline 25X1573 & Dial Bracket \\
\hline 25A1044 & Diffuser and Clamp Assembly \\
\hline 28X113 & Drive Cord Tension Spring \\
\hline
\end{tabular}


\section*{REPLACEMENT PARTS LIST}

NÓTICE: There is a model number label on the chassis. This label identifies the radio as to chassis, dial and issue letter. When ordering parts or writing, give ALL information on this label.
\begin{tabular}{|c|c|}
\hline 12A478 & Speaker, 4" \(\times\) 6" PM with Output Transformer........ \\
\hline 2A374 & Band Change Switch \\
\hline 3 A303 & Molded Octal Tube Socket \\
\hline 3A305 & Phono Socket - Single Pin ....................................... \\
\hline 3 A 427 & Tube Socket, Miniature (For AM-FM Converter Tube).. \\
\hline 3 A 426 & Tube Socket, Miniature \\
\hline 10A683 & Knob, Tuning \\
\hline 10A684 & Knob (Off-On-Volume) \\
\hline 10A685 & Knob (Tone) \\
\hline 10A686 & Knob (AM-FM-Phono) \\
\hline \(13 \times 612\) & Line Cord and Plug \\
\hline 55X318 & Plastic Cabinet \\
\hline
\end{tabular}

\section*{CAPACITORS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{\(\left.\begin{array}{l}\text { C-1A, C-1B } \\ \text { C-1C, C-1D }\end{array}\right\} 14 \mathrm{~A} 204\) Gang Condenser Assembly}} \\
\hline & & & & \\
\hline C-2 & \(47 \times 511\) & 100 mmf & & Ceramic \\
\hline C-3 & \(47 \times 517\) & 47 mmf & & Ceramic \\
\hline C-4 & \(47 \times 523\) & 10 mmf & & Ceramic \\
\hline C. 5 & \(47 \times 512\) & 10 mmf & & Ceramic \\
\hline C-6 & 47X476 & 100 mmf & & Ceramic \\
\hline C-7 & D66103 & . 01 mf & 400 V & Tubular \\
\hline
\end{tabular}
\(\left.\begin{array}{l}\text { C. } 8 \\ \text { C-10 }\end{array}\right\}\) Part of T. 7 (1st I.F. Trans. AM)
C.


C-20 \(\quad\) Part of T-6 (1st I.F. Trans. FM)
\(\left.\begin{array}{l}\text { C-14 } \\ \text { C. } 17\end{array}\right\}\) Part of T-8 (2nd I.F. Trans. AM-FM)
\begin{tabular}{|c|c|c|c|}
\hline C. 16 & 47X463 & 47 mmf & Ceramic \\
\hline \[
\left.\begin{array}{l}
\text { C-18A } \\
\text { C-18B }
\end{array}\right\}
\] & 47X112 & 50-50 mmf & Dual Mica \\
\hline C-19 & 47X529 & 330 mmf & Silvered Ceramic \\
\hline
\end{tabular}

C-22 Part of T-10 (Discriminator Coil Assembly)
C-25 45X361 \(5 \mathrm{mf} \quad 100 \mathrm{~V}\) Dry Electrolytic ..........
\(\left.\begin{array}{l}\text { C-26A } \\
\text { C-26B }\end{array}\right\} \quad 45 \times 360 \begin{array}{lll}40 \mathrm{mf} \\
40 \mathrm{mf}\end{array} \quad\)\begin{tabular}{l}
200 V \\
\hline
\end{tabular}\(\quad 150 \mathrm{~V} \quad\) Dry Electrolytic ....
C-26C
C. 2

C-2
C-30 D66502 . \(005 \mathrm{mf} \quad 400 \mathrm{~V}\)
C.

C-35 * 17A256 2-24 mmf Trimmer.
\(\left.\begin{array}{l}\text { C-37 } \\ \text { C-39 }\end{array}\right\} \quad\) Part of C-1 Gang Condenser
\(\begin{array}{llll}\text { C-38 } & \text { 26A489 } & 1-8 \mathrm{mmf} & \text { Trimmer Assy.............. } \\ \text { C-40 } & 47 \times 508 & 500 \mathrm{mmf} & \text { Ceramic ................ } \\ \text { C-42 } & 47 \times 521 & 6 \mathrm{mmf} & \text { Ceramic ...................... }\end{array}\)
C. 43 47X522 12 mmf Ceramic.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{RESISTORS} \\
\hline & & Ohms & Watt & \\
\hline R-1 & B84223 & 22 K & 0.5 & Carbon \\
\hline R-2 & B84152 & 1500 & 0.5 & Carbon \\
\hline R-3, R-6 & B84122 & 1200 & 0.5 & Carbon \\
\hline R-4 & D84822 & 8200 & 2.0 & Carbon \\
\hline R-5 & B83680 & 68 & 0.5 . & Carbon \\
\hline \(\left.\begin{array}{l}\text { R-7 } \\ R-9\end{array}\right\}\) & B85225 & 2.2 meg & 0.5 & Carbon \\
\hline R-8 & B85473 & 47 K & 0.5 & Carbon \\
\hline R-10 & B84102 & 1000 & 0.5 & Carbon .................. \\
\hline R-11 & B84273 & 27 K & 0.5 & Carbon ................. \\
\hline \[
\left.\begin{array}{l}
R-12 \\
R-13 \\
R-17
\end{array}\right\}
\] & B84153 & 15 K & 0.5 & Carbon ................. \\
\hline R. 14 & B85475 & 4.7 meg. & 0.5 & Carbon \\
\hline R-15 & D84102 & 1000. & 2.0 & Carbon ................. \\
\hline R-16 & Part of & T-8 (2nd & Trans. & AM-FM) \\
\hline R-18 & \(36 \times 347\) & . 5 meg & Volu & me Control \& Switch. \\
\hline R-19 & B85106 & 10 meg & 0.5 & Carbon \\
\hline R-20 & \(40 \times 287\) & 3 meg & & Tone Control ......... \\
\hline \[
\left.\begin{array}{l}
\mathrm{R}-21 \\
\mathrm{R}-23
\end{array}\right\}
\] & B85474 & 470 K & 0.5 & Carbon \\
\hline R-22 & \(43 \times 233\) & 3.6 & 0.5 & Wire Wound ........... \\
\hline R-24 & B84271 & 270 & 0.5 & Carbon \\
\hline R-25 & B84681 & 680 & 0.5 & Carbon \\
\hline
\end{tabular}

\section*{TRANSFORMERS AND COILS}


DIAL AND DRIVE ASSEMBLY
\begin{tabular}{|c|c|}
\hline \(15 \times 236\) & Pointer \\
\hline \(6 \times 21\) & Rubber Grommet \({ }^{\text {P }}\) Mtg. \\
\hline 20×260 & Condenser Cushion Stud \(\}\) Gang ..................... \\
\hline \(10 \times 68\) & Drive Cord Assembly \\
\hline \(19 \times 192\) & "C" Washer \\
\hline 26X506 & Drive Shaft \\
\hline \(58 \times 698\) & Dial Scale \\
\hline \(17 \times 96\) & Dial Crystal \\
\hline \(7 \mathrm{Al03}\) & No. 47 Pilot Light \\
\hline 7A216 & Pilot Light Socket Assembly ............................. \\
\hline 25X1573 & Dial Bracket \\
\hline 25A1044 & Diffuser and Clamp Assembly \\
\hline 28×113 & Drive Cord Tension Spring ............................. \\
\hline
\end{tabular}
MODEL D2851 WESTERN AUTO SUPPLY CO.


On some sets a 100 M ohm resistor is in series with the high side of volume control. On some sets R 5 is eliminated.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SIGNAL GENERATOR} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TUNER } \\
& \text { SETTING }
\end{aligned}
\]} & \multirow[t]{2}{*}{ADJUST FOR MAXIMUM OUTPUT} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { INPUT FOR } \\
\text { 50 MILLIWATT } \\
\text { OUTPUT }
\end{gathered}
\]} \\
\hline Frequency & Coupling Capacitor & Connection to Radio & \[
\begin{gathered}
\text { Ground } \\
\text { Connection }
\end{gathered}
\] & & & \\
\hline 455 kc. & .1 mf . & 12BE6, Pin 7 & 12AT6, Pin 2 & Iron cores all the way out & Cores in output and input I.F. cans & 28 microvolts \\
\hline 1620 kc . & .1 mf. & 12BE6, Pin 7 & 12AT6, Pin 2 & Iron cores all the way out & Oscillator trimmer C5 & \\
\hline 535 kc . & 200 mmf & External
antenna clip & 12AT6, Pin 2 & Iron cores all the way in & Shunt osc. coil L3 & 11 microvolts \\
\hline 1620 kc . & 200 mmf & External
antenna clip & 12AT6, Pin 2 & 1620 kc . & Antenna trimmer C3* & 8 microvolts \\
\hline 1400 kc . & 200 mmf & External
antenna clip & 12AT6, Pin 2 & 1400 kc . & Adjust position of ant. core (see coil illustration view) & 8 microvolts \\
\hline 400 cycles & .1 mf . & 12AT6, Pin 1 & 12AT6, Pin 2 & & - & . 03 volts \\
\hline
\end{tabular}

Tube Complement....12BE6, converter
12BA6, ,F. amplifier.
12AT6, detector, AVC, audio am-
plifier.
50B5, output amplifier.
35W4, rectifier.
Pilot lite, 6-8 volts, T-47.

PAGE 19-44 WESTERN AUTO
MODEL D2851 WESTERN AUTO SUPPLY CO.




\section*{SPECIFICATIONS}

5 Tube Superheterodyne, including Rectifier Tube Tuning Frequency Range \(\qquad\) 540 to 1600 KC
Power Consumption \(\qquad\) 30 watts (At 117 volts AC

Power Output 1.5 watt maximum, 9 watt ( \(10 \%\) distortion) Intermediate Frequency 455 KC
Speaker 5" PM Dynamic


\section*{Replacement Parts List \\ CAPACITATORS}

MISCELLANEOUS

2A479 5" PM Speaker
 55X321 Cabinet, Plastic
\(14 \times 411\) Grille Cloth
10A297 Knob
\(13 \times 228\) Knob ..............................................................
LRe Cord and Plug Assembly TRANSFORMERS AND COILS T-1 9A1943 Loop Antenna Assembly .. T-2 9A1914 Oscillat r Coil Assembly .. T-3 X-1295 1st I-F Trans. Assembly ... T-4 X-1296 2nd I-F Trans. Assembly ... \(\begin{array}{ccc}\text { T-5 } & \text { X-507 } & \text { Output Transformer } \\ \text { O......... }\end{array}\)

\section*{TUBE COMPLEMENT}

The tube complement of this receiver consists of the following:
1-6SK7-R.F. Amplifier
1-6SA7-Mixer—OSC.
1-6SK7-I.F. Amplifier
1-6SQ7—Det. AVC—Audio
1—6K6—Power Output
1—5Y3-Rectifier


\section*{POWER SUPPLY}

This receiver is designed to operate from a power source of 117 volts A.C. 60 cycle current


Fig 1 Chassis, Top View

\section*{SERVICE NOTES}

Voltages taken from the different points of the circuit to the chassis are measured with volume control in maximum position, all tubes in their sockets and with a volt meter having a resistance of 1000 ohms per volt, using the 150 volt scale. These voltages are clearly indicated on the voltage chart. (Fig. 2).

All voltages should be measured with an A.C. line voltage of 117 volts.

To check for open by-pass condensers, shunt each condenser with another one having the same capacity and voltage rating which is known to be good until the defective unit is located.

\section*{ALIGNING INSTRUCTIONS}

Never attempt any adjustments on this receiver unless it becomes necessary to replace a coil or transformer, or the adjustments have been tampered with in the field. Always make certain that other circuit components, such as. tubes, condensers, resistors, etc., are normal before proceeding with realignment.

If realignment is necessary follow the instructions given under the heading. "ALIGNMENT PROCEDURE" on the nert page. After realignment has been completed repeat the procedure as a final check.


Fig. 3 Schematic Diagram
ALIGNMENT PROCEDURE

Volume control-Maximum: all adjustments.
Tone Control-Treble: Full Clockwise Rotation.
Connect dummy antenna in series with output lead of signal generator.
Connect output meter across voice coil of speaker.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Position } \\
& \text { of } \\
& \text { Variable }
\end{aligned}
\] & Generator Frequency & Dummy Ant. mfd. & Generator Connections & \[
\begin{gathered}
\text { Trimmor } \\
\text { Adjustment } \\
\hline
\end{gathered}
\] & Trimmor Function \\
\hline Minimum Capacity (Fully Opened) & 455 K.C. & . 1 & - High side to 6SA7 grid Low side to chassis & T1 T2 & I. F. \\
\hline Min imum Capacity (Fully Opened) & 1725 K.C. & . 00025 & High side to ant. lead Low side to ground lead & ClC & Osc. \\
\hline Tune in signal From Generator & 1500 K.C. & . 00025 & High side to ant. lead Low side to ground lead & C1B & R. F. \\
\hline Tune in signal from Generator & 1500 K.C. & . 00025 & High side to ant. lead Low side to ground lead & CIA & Ant. \\
\hline
\end{tabular}

Repeat the above alignment procedure as a final check.
With an output meter connected across the voice coil of the speaker, the output meter reading for \(1 / 2\) watt is 1.25 volts using a signal which is modulated 400 c.p.s.

PAGE 19-50 WESTERN AUTO
MODEL D2923 WESTERN AUTO SUPPLY CO.



Chassis View

\section*{LINE VOLTAGE}

If the set is to be operated from a house receptacle, the voltage, unless otherwise indicated, must be \(105-125\)-volt DC (direct current) or 105-125-volt, 50-60 cycle AC (alternating current). If you are in doubt as to the voltage of the power supply, consult your local power company.

BATTERY PACK
The battery pack used with this radio must contain a \(71 / 2\)-volt "A" battery and a 90 -volt " B " battery. Use Wizard Battery Pack No. B6460 or No. B6470.

\section*{PILOT LIGHT}

If the pilot lamp burns out, the set should not be operated on AC or DC power until a new lamp has been installed. Failure to heed this caution may result in a burned-out 35Z5GT tube.

\section*{ELECTRICAL SPECIFICATIONS}

Power Supply 105 to 125 volts DC or \(50-60\) cycle AC, 29 watts.
Battery: A-7 \(1 / 2\) volts, 50 ma . B-90 volts, 11 ma .
Frequency Range......... 530 to 1650 kc.
Intermediate Freq...... 455 kc .
Tuning
Two-gang capacitor
Antenna Built-in loop. Provisions also for external antenna and ground.
Speaker.........................-5-inch; P.M.; voice coil impedance 3.2 ohms.
Power Output \(\qquad\) 150 milliwatts undistorted. 250 milliwatts maximum.
Sensitivity \(\qquad\) 30 microvolts average for 50 milliwatt output.
Selectivity \(\qquad\) 43 kc broad at 1000 times signal at 1000 kc .


Replacement of Dial Pointer Drive Cord


\section*{ALIGNMENT PROCEDURE}
- Output meter across 3.2 -ohm output load.
- Volume control at maximum for all adjustments.
- Align for maximum output. Reduce input as needed to keep output near 0.4 volts.
\begin{tabular}{|c|c|c|c|c|c}
\hline \multicolumn{4}{|c|}{ SIGNAL GENERATOR } & SETTING & \begin{tabular}{c} 
ADJUST TRIMMERS \\
Frequency
\end{tabular} \\
\hline \begin{tabular}{c} 
Coupling \\
Capacitor
\end{tabular} & Connection to Radio & \begin{tabular}{c} 
Ground \\
Connection
\end{tabular} & TUNER & \begin{tabular}{c} 
TO MAXIMUMM OUTPUT \\
(in order shown)
\end{tabular} \\
\hline 455 kc & .1 mf & 1A7GT grid cap* & Chassis & \begin{tabular}{c} 
Rotor full open \\
(plates out of mesh)
\end{tabular} & \begin{tabular}{c} 
Input and output \\
trimmers on IF cans
\end{tabular} \\
\hline 1650 kc & .1 mf & 1A7GT grid cap* & Chassis & \begin{tabular}{c} 
Rotor full open \\
(plates out of mesh)
\end{tabular} & Oscillator trimmer C4 \\
\hline \(1400 \mathrm{kc}{ }^{\dagger}\) & 200 mmf & \begin{tabular}{c} 
External \\
antenna clip
\end{tabular} & \begin{tabular}{c} 
External \\
ground clip
\end{tabular} & 1400 kc & Antenna trimmer C3 \\
\hline
\end{tabular}
* If loop is not connected when making this adjustment, substitute a 1 -megohm resistor across the loop leads.
\(\dagger\) For this adjustment chassis should be remounted in cabinet and loop connected. Antenna trimmer can be reached through a hole in the side of the cabinet.

\section*{replacement parts list}

\section*{Ref. No. Part No. Description}

\section*{CAPACITORS}
\begin{tabular}{|c|c|c|}
\hline C1 & 1009 & \(.05 \mathrm{mf}, 200\) volts, \(25 \%\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \text { C2-A, C2-B, B-8A-10246 } \\
& \text { C3, C4 }
\end{aligned}
\]}} & \multirow[t]{4}{*}{Two-gang, including antenna and oscillator trimmers. Range of gang: \(14-452 \mathrm{mmf}\) (ant) and \(10-198 \mathrm{mmf}\) (osc)} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline C5, C12 & 1295 & \multirow[t]{2}{*}{\(100 \mathrm{mmf}, 20 \%\), mica} \\
\hline C6 & 100128 & \\
\hline C7 & 100135 & . 25 mf , 120 volts, \(25 \%\) \\
\hline C8, C13 & 100127 & . \(01 \mathrm{mf}, 120\) volts, \(25 \%\) \\
\hline C9 & & Approx. 100 mmf . Part of I.F. can. \\
\hline C10 & 100134 & . \(006 \mathrm{mf}, 120\) volts, \(25 \%\) \\
\hline C11 & 100133 & \(.1 \mathrm{mf}, 120\) volts, \(25 \%\) \\
\hline C14 & 10025 & . \(002 \mathrm{mf}, 600\) volts, \(25 \%\) \\
\hline C15 & 10013 & . \(05 \mathrm{mf}, 400\) volts, \(25 \%\) \\
\hline C16-A, - \({ }_{\text {- }}^{\text {C, }}\), & 119123 & Electrolytic; \(20 \mathrm{mf} x 50\) volts, 40 mf x 150 volts, 200 mf x 10 volts, \(40 \mathrm{mf} \times 150\) volts \\
\hline \multicolumn{3}{|r|}{RESISTORS*} \\
\hline R1 & C-9B1-27 & \multirow[t]{4}{*}{220,000 ohms, \(1 / 2\) watt, \(20 \%\) 2700 ohms, \(1 / 2\) watt, \(10 \%\) 68,000 ohms, \(1 / 2\) watt, \(10 \%\) 15 megohms, \(1 / 3\) watt, \(20 \%\)} \\
\hline R2 & C-9B1-67 & \\
\hline R3 & C-9B1-84 & \\
\hline R4 & C-9B1-302 & \\
\hline R5 & C-9B1-57 & \multirow[t]{2}{*}{\begin{tabular}{l}
390 ohms, \(1 / 2\) watt, \(10 \%\) \\
3.3 megohms, \(1 / 2\) watt, \(20 \%\)
\end{tabular}} \\
\hline R6, R10 & C-9B1-34 & \\
\hline R7, S2 & 101252 & Volume control ( 1 megohm) and on-off switch \\
\hline R8 & C-9B1-37 & 10 megohms, \(1 / 2\) watt, \(20 \%\) \\
\hline R9 & C-9B1-31 & 1 megohm, \(1 / 2\) watt, \(20 \%\) \\
\hline R11 & C-9B1-42 & 22 ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline R12 & 130343 & 545 ohms, 14 watts, \(5 \%\) \\
\hline R13 & C-9B1-66 & 2200 ohms, \(1 / 2\) watt, \(10 \%\) \\
\hline R14 & 130344 & 1975 ohms, 6 watts, \(5 \%\) \\
\hline
\end{tabular}

Ref. No. Part No. Description

\section*{COILS AND TRANSFORMERS}
\begin{tabular}{cll} 
T1 & B-13E-10184 & \begin{tabular}{l} 
Loop antenna assembly \\
T2
\end{tabular} \\
T3-13D-10239 & \begin{tabular}{l} 
Oscillator coil \\
Input I.F. coil complete in can. \\
Range of trimmers: 53-97
\end{tabular} \\
T4, C9 & 108201 & \begin{tabular}{c} 
mmf each
\end{tabular} \\
T5 & 105119 C & \begin{tabular}{c} 
Output I.F. coil complete in can. \\
Range of trimmers: 39-71
\end{tabular} \\
Output transformer
\end{tabular}

\section*{MISCELLANEOUS}
\begin{tabular}{ll} 
114241B & \begin{tabular}{l} 
Speaker, 5-inch P.M. \\
B-14A-10145
\end{tabular} \\
Battery cable assembly \\
121171 & Tube socket, octal \\
A-20F-10247 & Line-battery switch \\
107363 & Line cord and plug \\
115396 B & Tube shield \\
112922 & Dial pointer \\
B-53A-11340 & Drive cord for dial pointer \\
120197 & Spring for drive cord \\
B-6D-10244 & Dial scale \\
112925 & Diffuser \\
A-2M-7758 & Snap-in rivets (4 for diffuser, 2 \\
for dial scale) \\
107249 & Diol lamp, 6-8 volts, type T-47 \\
107362 & Socket assembly for dial lamp \\
112910 & Escutcheon for dial \\
128634 & Escutcheon for grille \\
\(128645-8\) & Knob, tuning \\
\(128647-8\) & Knob, volume
\end{tabular}

Speaker, 5-inch P.M. Battery cable assembly
Tube socket, octal
S1 A-20F-10247 107363

Line cord and plug
Tube shield
112922 Dial pointer
B-53A-11340 Drive cord for dial pointer
120197
B-6D-10244
112925
for dial scale)
Dial lamp, 6-8 volts, type T-47
07249
112910
128645-8
128647-8

Knob, tuning
Knob, volume

This receiver is designed to operate on either a Battery Pack: or any AC (Alternating Current) power supply line of 105 to 125 volts, 50 to 60 cycles; or DC (Direct Current) power supply line of 105 to 125 volts.

BATTERY
Any one of the following battery packs may be used in this portable radio: Western Auto Supply Wizard B6460 or B6470, Ensign AB50, Ensign AB49, General 60A-6F6-5, General 60B-6F6-5, Burgess F6A60, Burgess G6M60, Eveready 754, Ray-OVac AB878 or Ray-O-Vac AB994. For best results, use Western Auto Supply Wizard B6460 (Standard) or B6470 (Deluxe) battery packs for replacement.


\section*{VOLTAGE DĀTA}
1. Voltage readings circled ( \(O\) ) are for Battery Operation.
2. All readings made between Tube Socket Terminals and Pin No. 7 on the 1H5.
3. A.C. Voltages measured on \(\alpha 117\) Volt A.C. line.
4. Battery Voltages measured with \(a\) fresh battery.
5. Dial turned to low frequency end, no signal.
6. All Voltages measured with \(\alpha 1000\) ohm-per-volt meter.

REPLACEMENT PARTS

1. Be sure both set and signal generator are thor-: oughly warmed up before starting alignment.
2. Make alignment, using a battery whenever possible.
3. Disconnect Loop Antenna leads from clips on set and remove chassis from cabinet.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Step & Dummy Antenna Used in Series with Signal Generator & \begin{tabular}{l}
Connect \\
High Side Signal Generator to
\end{tabular} & Signal Generator Frequency & \[
\begin{gathered}
\text { Gang } \\
\text { Condenser } \\
\text { Setting }
\end{gathered}
\] & Trimmer
Description
and Designation & Type of Adjustment \\
\hline 1 & \begin{tabular}{l}
.00025 Mfd. \\
when using A.C. 1 Mid. when using Battery
\end{tabular} & Grid Cap la7 & 455 K.C. & Any point where it does not affect Signal & \[
\begin{aligned}
& \text { 2nd I.F. (A), (B). } \\
& \text { lst I.F. (C), (D). }
\end{aligned}
\] & Maximum Deflection. Then repeat \\
\hline 2 & \begin{tabular}{l}
00025 Mid. \\
when using A.C. . 1 Mid. when using Battery
\end{tabular} & Grid Cap 1N5 & 1620 K.C. & Rotor full open (Plates out of mesh) & Oscillator Trimmer (G) & Maximum Deflection. \\
\hline 3 & 00025 Mid. when using A.C. 1 Mid. when using Battery & Grid Cap ln5 & 1400 K.C. & Tune in Generator Signal & R.F. Slug (H) & Maximum Deflection. \\
\hline 4 & \multicolumn{6}{|c|}{Replace Set in Cabinet} \\
\hline 5 & . 00025 Mfd. & Antenna and Ground Leads* & 1400 K.C. & Tune in Generator Signal & Antenna Trimmer (F) & Maximum Deflection. \\
\hline 6 & \multicolumn{6}{|r|}{Disregard the next two steps if the set being aligned is a model with a fixed loop loading coil (L2).} \\
\hline 7 & . 00025 Mfd. & Antenna and Ground Leads & 600 K.C. & Tune in Generator Signal & Loop Loading Coil Slug (E) & \begin{tabular}{l}
Maximum \\
Deflection.
\end{tabular} \\
\hline 8 & . 00025 Mid. & Antenna and Ground Leads & 1400 K.C. & Tune in Generator Signal & \begin{tabular}{l}
Reset Antenna \\
Trimmer ( \(F\) )
\end{tabular} & Maximum Deflection. \\
\hline
\end{tabular}

Seal adjusting screw on the loop loading coil with any quick drying cement.

\section*{REPLACING R.F. TUNING SLUG}

If the R.F. Tuning Slug has to be changed, use the following procedure. Set the gang condenser to the point where the plates are fully meshed. Screw the slug adjusting screw about halfway down. Place the slug in the coil in such a position that the top of the slug is flush with the top of the Coil. Solder the slug wire to the adjusting screw. Be sure that the position of the slug does not change during the soldering and that the slug wire is straight. Proceed to re-align the set as shown in the chart.
TUBE AND TRIMMER LAYOUT


DIAL CORD STRINGING

MODEL D3635 WESTERN AUTO SUPPLY CO.


\section*{ALIGNMENT PROCEDURE}
1. Slide chassis partially out of cabinet by removing staples at each side of wood shelf and pulling entire shelf back about 2 inches Do not disturb connections to loop antenna.
2. Connect an output meter across the voice coil of the speaker or between the plate of the 3Q5GT output tube and chassis through \(\alpha\) . 1 mfd condenser.
3. Connect the ground lead of the signal generator to chassis through a .25 mfd . condenser.
4. Set the volume control in the maximum position and use a weak signal from the generatcr.
5. Set "AC-DC-BAT.-CCHARGE", Switch in "AC-DC" position.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
DUMMY ANT. \\
IN SERIES \\
WITH SIGNAL \\
GENERATOR
\end{tabular} & \begin{tabular}{c} 
CONNECT HIGH \\
SIDE OF \\
SIG. GENERATOR \\
TO
\end{tabular} & \begin{tabular}{c} 
SIGNAL \\
GENERATOR \\
FRE. \\
QUENCY
\end{tabular} & \begin{tabular}{c} 
RECEIVER \\
DIAL. \\
SETTING
\end{tabular} & \begin{tabular}{c} 
TRIMMER \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
TRIMMER \\
DESCRIPTION
\end{tabular} & TYPE OF ADJUSTMENT
\end{tabular}


INDICATOR LAMP
The flashing neon lamp on the dial face indicates condition of batteries. This lamp is included in an oscillating ( \(\mathrm{R}-\mathrm{C}\) ) circuit which is designed to oscillate at approximately 3 pulses per second when batteries are in a fully charged condition. As the battery voltage decreases with use, number of pulses per second decreases.
This lamp will only show the true condition of the batteries when the Selector Switch is in the "Battery" position. Lamp flashes more rapidly during charging or "AC-DC" operation.

When battery voltage is low (approximately 72 volts) the lamp flashes more slowly (about once per second). The set should not be operated from battery power after this point is reached and batteries should be recharged immediately. Charge for at least twice the time they were used and as soon as possible after they are run down. As batteries age it is necessary to charge for a longer period. For longest battery life, charge immediately after using.
IMPORTANT: 1. Completely dead batteries cannot be recharged.
2. When set is connected to a DC line, check for correct polarity by operating it before attempting to charge the batteries.
3. Batteries will be discharged if ON-OFF switch is left ON when power cord is not connected to wall outlet.

\section*{CHARGING CIRCUIT}

The battery charging circuit consists of a 35Z5GT rectifier and a suitable resistor voltage dividing network. This circuit provides \(\alpha\) very low charging current when the receiver is operated on AC-DC and is just enough to maintain the batteries but will not charge them. A separate charging position is provided for the regular charging operation. A charging rate of approximately \(1 / 3\) the discharge rate is used to give best results.


DIAL DRIVE CORD ARRANGEMENT

To string dial cord, set gang condenser to fully meshed position and use following parts:
114955 Clip on end of cord 117057 Cord (28 inches) 119087 Ring for dial cord 161384 Tension Spring

\section*{APPROXIMATE STAGE GAIN DATA}

Be sure R.F. and I.F. stages are accurately aligned before measuring gain. R.F. gains can be measured with \(\alpha\) "channel" type instrument containing a tuned and calibrated R.F. amplifier. A vacuum tube voltmeter may be used for audio gain measurements.
1. For all gain measurements
2. For R.F. and I.F. measurements connect negative terminal of a \(11 / 2\)-volt
battery to A.V.C. lead and positive terminal to chassis. This provides a connect signal generator as
shown. Use 600 KC . signal with 400 cycle modulation (use nearby frequency if local station interferes).
3. Be sure radio is carefully tuned to generator sigsignal for sharp tuning).
4. When using a "channel" type instrument carefully tune it for maximum output at desired frequency before making measurements.

The R.F. and I.F. stage gains shown below are less than under normal operating conditions due to the use of \(11 / 2\) volts fixed bias in order to establish a definite operating point. Therefore, these values are not intended to indicate the full capability of a stage.


Differences in tube characteristics, tolerance of parts, adjustment of tuned circuits, and variations of line voltage will influence stage gain. Accuracy of measurements is dependent upon careful tuning of receiver to generator signal and experience in using your test equipment. These factors may create considerable variation in gain measurements.

\section*{CHARGING THE BATTERY}

The specially developed electronic circuit used for charging the battery will produce best results if battery deterioration has not progressed too far. Check the battery frequently as described in the previous section. To use the built-in charger proceed as follows:
1. Plug the power cord into wall outlet.
2. Turn Selector Switch to "AC-DC" position and turn On-Off Switch to "ON" position.
3. Make sure that radio operates properly before attempting to use the charger. This is especially important when the radio power cord is connected to a D.C. (Direct Current) power supply. After you are sure the radio operates properly, turn the Selector Switch to the "CHARGE" position.
4. Allow the set to operate in this manner and charge the battery for at least twice as many hours as battery was previously used.
5. After charging is completed be sure to turn the radio On-Off Switch to the "OFF" position. If this switch is left on and the power cord is disconnected from the wall outlet, the battery will discharge.
If the receiver is equipped with individual " \(A\) " and " \(B\) " batteries instead of a single unit battery pack, the built-in charging circuits will recharge all four batteries.

THE DIAL SCALE is calibrated to cover frequencies between 540 Kc and 1600 Kc. Add a zero to dial number to obtain the frequency in kilocycles (Kc). Examples: When pointer is set to 90 , radio is tuned to 900 Kc . See your newspaper for frequencies of local stations.

The bottom compartment of the cabinet provides adequate space to accommodate a single unit battery, pack (or individual "A" and "B" batteries if desired). Any of the following single unit type battery packs may be used as a suitable power supply for this receiver.
```

WIZARD B6460
EVEREADY 754
GENERAL 60A-6F6-5
RAY-O-VAC AB-878 or AB-994
BURGESS G6BB60 or F6A60

```

Place the battery in the bottom compartment of the cabinet and wedge a piece of corrugated paperboard between the battery and the wall of the cabinet (see Fig. 1). The paperboard serves to hold the battery in a fixed position.

After the battery is installed in the cabinet it must be connected to the cable extending from the rear of the radio chassis. This cable is equipped with a special plug that will fit the receptacle in any of the single unit battery packs whose type numbers are listed above.
Where it is desired to use individual "A" and "B" batteries instead of the single unit battery pack, it will be necessary to obtain a special adapter cable (part 500746) in order to connect the separate batteries to the radio. Four batteries (two \(41 / 2\) volt " \(A\) " batteries and two 45 volt "B" batteries) would be required for this type of installation. The following batteries will satisfactorily fit in the space provided:

INSTALLATION

\begin{tabular}{l}
\begin{tabular}{c}
\(41 / 2\) Volt "A" Battery \\
(2 required)
\end{tabular} \\
\hline \begin{tabular}{l} 
Wizard B6135 \\
Ray-O-Vac P83A \\
Eveready 746 \\
Burgess G3
\end{tabular} \\
\hline 45 Volt "B" Battery \\
(2 required) \\
\hline \multicolumn{1}{c}{ Wizard B6241 } \\
Ray-O-Vac P7830 \\
Eveready 482 \\
Burgess M-30
\end{tabular}

CONNECTING RADIO TO ELECTRIC POWER SUPPLY: The rubber covered power cord and plug, which is coiled up and placed inside the cabinet when the radio is battery operated, must be connected to an electric power outlet if you wish to operate the radio from the power line. The power cord must also be connected to the electric power outlet when using the special battery charger in this receiver.
IMPORTANT: Before connecting the power cord to the electric power outlet, close the back of the cabinet. Do not handle the metal chassis or attempt to remove tubes after the power cord is connected.

When connecting the radio to the electric power outlet be sure that outlet will supply the proper current and voltage. This radio may be connected to either 50 or 60 cycle Alternating Current (A.C.) at 105 to 125 volts or Direct Current (D.C.) at 105 to 125 volts. If in doubt as to the voltage and type of current which is supplied by an electric power outlet, call local power company.

If a Direct Current power supply is used and the radio does not operate after it has been turned on for approximately one minute, reverse plug connection at wall outlet.
TUBE LOCATION

FOR BATTERY OPERATION PLUG LINE
CORD ITHSREEPTACLES SHOWN
BY DOTED OUTLINE OF PLUG.
FOR 105 -125 VOLT A C. OR OC.C. OPERATION.
REMVE THIL PLUG FROM SOCKET AND
REMOVE THIS PLUG FROM SOCKET AND
PLUG INTO ELECTRIC OUTLET.

- Output Meter across 3.2 ohm out
Adjust for Maximum Output
(in order shown)
Trimmers on I.F. Can
Oscillator Trimmer on Gang.
R.F. Trimmer on Gang
However, no connection is made between the signal generator Set pointer at second dot
from end. On dial pan
 generator to chassis
Tuner Setting
Any
et pointer at second do
om end. On dial pan . DURE
Align for
- Align for maximum output. Reduce input as
needed to keep ouput near 0.05 watts - Volume control at maximum - Connect ground post of signal generator to chassis ouput near 0.05 want SIGNAL GENERATOR Connection to Radio Dummy Antenna
Center of antenna section of Gang 0.2 mf
Frequency
455 KC
1500 KC
1500 KC and the Receiver.

\section*{TECHNICAL DATA}



\section*{CLARI-SKEMATIX}



\section*{CLARI-SKEMATIX}

PAGE 19-4 WESTINGHOUSE WESTINGHOUSE ELECTRIC CORP.



> BAND-SWITCH SHOWN AT 4TH POSITINN CLLOCKWISE. SHORT WAVE-1BAND \(5-10\) MC



8
B.C. ANT. TRIM.
CI9
S.W. 2 CONV. PAD. C9 b.c. CONV. TRIM. CIB S.W.I CONV. TRIM. 20 s.w. 2 CONV. TRIM.
21
s.W.I OSC. TRIM. CIO B.C. OSC. PAD.
CII B.C. OSC. TRIM. C 23 S.W. 2 OSC. TRIM. c22 S.W. 2 OSC. PAD.


\section*{WESTINGHOUSE ELECTRIC CORP.}

\section*{ALIGNMENT PROCEDURE bROADCAST AND SHORT WAVE bandS}

Connect an output meter across the speaker voice coil.
With the volume control set for maximum output and the signal from the generator at tenuated to avoid A.V.C. action, proceed as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to - & Signal Generator Frequency & Radio Dial Setting & Adjust \\
\hline 1. & Set selector switch to "AM" & & & \\
\hline 2. & Pin \#4 on 6SG7, 2nd I-F amplifier tube through a 0.1 mfd capacitor & 455 kc & 550 kc & 455 kc secondary and primary trimmers of 3 rd I-F for max. output. \\
\hline 3. & Pin \#4 on 6SG7, 1st I-F amplifier tube through a 0.1 mfd capacitor & 455 kc & 550 kc & 455 kc secondary and primary trimmers of 2 nd I-F for max. output. \\
\hline 4. & Pin \({ }^{1}\) on 7F8, converter tube through a 0.1 mfd capacitor & 455 kc & 550 kc & 455 kc secondary and primary trimmers of 1 st I-F for max. output. \\
\hline 5. & Converter section of gang (C27) through a 0.1 mfd capacitor & 455 kc & 550 kc & Carefully "peak" all. 455 kc I-F transformers for max. output. \\
\hline 6. & B.C. antenna terminal through a 200 mmf capacitor & 1500 kc & 1500 : kc & B.C. oscillator trimmer (Cll) for max. output. \\
\hline 7. & Radiated signal (no actual connection) & 1400 kc & 1400 kc & B.C. converter (CO) and antenna (OB) trimmers for max. output. \\
\hline 8. & B.C. antenna terminal through a 200 mmf capacitor & 600 kc & 600 kc & B.C. oscillator padder (Cl0) for max. output. Rock gang while aligning padder. \\
\hline 9. & Recheck steps 6, 7, and 8. & & & \\
\hline 10. & Set selector switch to "SW-1" & & & \\
\hline 11. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 9 mc & 9. mc & Short Wave \#l oscillator trimmer (C21)for max. output.* \\
\hline 12. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 9 mc & 9 mc & Short Wave \#l converter (C18) and antenna (C15) trimmers for max. output. Rock gang while adjusting trimmers. \\
\hline 13. & Set selector switch to "SW-2" & & & \\
\hline 14. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 18 mc & 18 mc & Short Wave \#2 oscillator trimmer (C23) for max. output.* \\
\hline
\end{tabular}

\section*{FREQUENCY RANGES:}


Short Wave 2 .......................... 12 to 20 mc .
Frequency Modulation ........... 88 to 108 mc .

\section*{TUBE COMPLEMENT:}



\section*{PUSH BUTTONS}

Push buttons 1 to 3 are designed to receive stations from 900 to 1600 kc ; push buttons 4 to 6 receive stations from 540 to 900 kc .

Refer to Fig. 3 for adjustor locations, and then proceed as follows:
1. Turn on radio and allow it to warm for fire minutes.
2. Set the selector on \(A M\), and tune in the desired station of the highest frequency ( 900 to 1600 kc ).
3. Re-set the selector to PUSH BUTTONS and depress No. 1. push button (right button viewed from the front).
4. Adjust C95 for maximum receiver output (either a station or static will be heard depending on the setting of L38). Now adjust L38 until the desired station is heard. It may be necessary to readjust C95 at intervals to maintain receiver sensitivity.
5. Make a final adjustment of L38 for correct tuning and C95 for maximum output.
6. Return the selector to \(A M\) to make certain that the push button has been set on the desired station.
7. Adjust the remaining push buttons in the same manner.


BROADCAST AND SHORT WAVE BANDS
\begin{tabular}{|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Connect Signal \\
Generator to -
\end{tabular} & Signal Generator Frequency & Radio Dial Setting & Adjust \\
\hline 15. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 18 mc & 18 mc & Short Wave \#2 converter (C20) and antenna (C17) trimmers for max. output. \\
\hline 16. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 12 mc & 12 mc & Short Wave \#2 oscillator padder (C22) to receive 12 mc signal. \\
\hline 17. & Short wave antenna terminal through a 400 ohm resistor (center terminal marked "L") & 12 mc & 12 mc & Short Wave \#2 converter (C19) and antenna (Cl6) padders for max. output. \\
\hline 18. & \multicolumn{4}{|l|}{Repeat steps 14, 15,16 and 17 until calibration and tracking is correct.} \\
\hline \multicolumn{5}{|c|}{FM BAND} \\
\hline \multicolumn{5}{|r|}{Do not align the 10.7 mc I-F circuits until all 455 kc I-F adjustments have been completed.} \\
\hline 1. & Set selector switch to "FM" & & & \\
\hline 2. & \multicolumn{4}{|l|}{Connect a vacuum tube voltmeter between point X (see Figs. 1 and 2) and ground (chassis).} \\
\hline 3. & Pin \#4 on 6SH7 limiter tube through a . 001 mfd capacitor & \[
\begin{gathered}
\text { UNMODULATED } \\
10.7 \mathrm{mc} \\
\hline
\end{gathered}
\] & 88 mc & Secondary of discriminator transformer (C94) for zero voltage. \\
\hline 4. & \multicolumn{4}{|l|}{Redconnect the vacuum tube voltmeter to pin \#3 on the 6H6 ratio detector tube.} \\
\hline 5. & Pin \#4 on 6SH7 limiter tube through a . 001 mfd capacitor & UNMODULATED
10.7 mc & 88 mc & Primary of discriminator transformer (L34) for max. voltage. \\
\hline 6. & Pin \#4 on 6SG7 2nd I-F tube through a . 001 mfd capacitor & \[
\begin{aligned}
& \text { UNMODULATED } \\
& \quad 10.7 \mathrm{mc} \\
& \hline
\end{aligned}
\] & 88 mc & 10.7 mc . pri. of 3 rd I-F trans. for max. voltage. \\
\hline 7. & Pin \#4 on 6SG7 1st I-F tube through a. 001 mfd capacitor & UNMODULATED
10.7 mc & 88 mc & 10.7 mc . pri. and sec. of 2 nd I-F trans. for max. voltage. \\
\hline 8. & Pin \#l of 7 F8 converter tube through a . 001 mfd capacitor & \[
\begin{aligned}
& \text { UNMODULATED } \\
& 10.7 \mathrm{mc}
\end{aligned}
\] & 88 mc & 10.7 mc . pri. and sec. of \(1 \mathrm{st} \mathrm{I}-\mathrm{F}\) trans. for max. voltage. \\
\hline 9. & Pin \#l of 7 F8 converter tube through a . 001 mfd capacitor & \[
\begin{aligned}
& \text { UNMODULATED } \\
& 10.7 \mathrm{mc}
\end{aligned}
\] & 88 mc & Recheck all 10.7 mc. I-F adjustments and discriminator primary (L34) adjustment. \\
\hline 10. & \multicolumn{4}{|l|}{Re-connect the vacuum tube voltmater to point \(X\).} \\
\hline 11. & Stator of FM tuning capacitor (C26) through a .001 mfd capacitor & UNMODULATED
10.7 mc & 88 mc & Secondary of discriminator tran:. (C94) for zero voltage. \\
\hline 12. & \multicolumn{4}{|l|}{Re-connect the vacuum tube voltmeter to pin \#3 on the 6H6 ratio detector.} \\
\hline 13. & FM antenna terminals through a 72 ohm resistor (low side of generator to "S" terminal) & UNMODULATED.
105 mc & 105 mc & FM oscillator trimmer (Cl4) for max. voltage. \\
\hline 14. & FM antenna terminals through a 72 ohm resistor (low side of generator to "S" terminal) & UNMODULATED
105 mc & 105 mc & FM converter (Cl3) and R-F (C12) trimmers for max. voltage. \\
\hline 15. & Re-check steps 13 and 14. & & & \\
\hline
\end{tabular}

\section*{MODEL H-169 WESTINGHOUSE ELECTRIC CORP.}
\begin{tabular}{|c|c|}
\hline No & Description \\
\hline & le \\
\hline & Be \\
\hline 24 & Bearing, ball, for speaker turntable \\
\hline V-5223 & Bearing, sleeve, for speaker turntable \(\qquad\) \\
\hline V-3507 & Bracket and Clip Assembly, for tuning eye ........... \\
\hline 4893 & Bumper, recessed, for doors \\
\hline V-5225 & Bumper, speaker turnta \\
\hline V-5189 & Button, hole plug ..... \\
\hline V-5191 & Cable and Socket, for eye tu \\
\hline V-4931 & Cable, output for preamplifier ........... \\
\hline 96 & Cable, phono input ........ \\
\hline V-4930 & Cable, power for preamplifier \(\qquad\) \\
\hline V-5115 & Capacitor, electrolytic 30-10-30 mfd 450 v: (C1, C2, © ) ........ \\
\hline V-5311 & \begin{tabular}{l}
Capacitor, electrolytic \\
2 mfd 450 v. (CA) ........
\end{tabular} \\
\hline V-4885 & Capacitor, electrolytic 4 mfd
450 v. (C5, C6, C46) \(\ldots .\). \\
\hline V-3236 & Capacitor, electrolytic cartridge, 20 mfd 25 v. (C7, C93) \\
\hline V-5159 & Capacitor, trimer, B.C. antenna ( 08 ) \\
\hline V-5208 & Capacitor, trimmer, B.C: converter (C9) \\
\hline V-5143 & \begin{tabular}{l}
Capacitor, trimmer, 2-gang \\
(C10, C11)
\end{tabular} \\
\hline V-3713-1 & \begin{tabular}{l}
Capacitor, ceramic variable, \\
F.M. (C12, C13, C14) ....
\end{tabular} \\
\hline V-5219 & Capacitor, trimmer, SWl and SW2 antenna (C15, C16, C17) \\
\hline V-5220 & Capacitor, trimmer, SWl and SW2 converter (C18, C19 C20) \\
\hline -5221 & Capacitor, trimmer, SWl and SW2 oscillator (C21, C22, C23) \\
\hline V-3296 & Capacitor, variable 3-gang (C24, C25, C26, C27, C28, C29) \\
\hline 362 & Capacitor, 1.5 maf (C3O, C31) \\
\hline 10W6102M & Capacitor, 001 mfd 600 r.
(C33, C34) \(\ldots . . . . . . . . . . . . . . . . . ~\) \\
\hline P10W6202M & \begin{tabular}{l}
Capacitor, . 002 mfd 600 v. \\
(C35)
\end{tabular} \\
\hline P10W4203A & \begin{tabular}{l}
Capacitor, 02 mfd 400 v. \\
(C36, C37, C38)
\end{tabular} \\
\hline PRP10W4103A & \[
\begin{aligned}
& \text { Capacitor, } 01 \mathrm{mfd} 400 \mathrm{v} \text {. } \\
& \quad(\mathrm{C} 39, \mathrm{C} 40, \mathrm{C} 41, \mathrm{C} 42)
\end{aligned}
\] \\
\hline 10W4503A & Capacitor, 05 mfd 400 v . (CA \\
\hline HCP10W6502A & \begin{tabular}{l}
Capacitor, 005 mfd 600 v. \\
(C44, C45)
\end{tabular} \\
\hline M30B472M & Capacitor, 4700 mmf mica (C47, C48) \\
\hline RCM30B103M & \[
\begin{aligned}
& \text { Capacitor, } 01 \text { mfd mica (C49, } \\
& \text { C50, C51, C52, C53) ..... }
\end{aligned}
\] \\
\hline FCM20B180K & Capacitor, 18 mmf mica (C54) \\
\hline RON30B292H & Capacitor, 2700 maf mica (C55, C56) \\
\hline ROM20B471M & Capacitor, 470 mmf mica (C57) \\
\hline RCM20B22 1 M & Capacitor, 220 mmf mica (C58, C59, C60, C61, C62) ..... \\
\hline & Capacitor, \(47 \mathrm{mmf} \mathrm{mica} \mathrm{(C63)}\) \\
\hline FCM20B220M & Capacitor, 22 mmf mica (CS4) \\
\hline PCM20B221K & Capacitor, 220 mmf mica (C65, \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Part No. } & \begin{array}{l}\text { Description } \\ \text { Capacitor, } 2200 \text { manf mica }\end{array} \\ \text { (C67) }\end{array}\)
RCM20C181J Capacitor, 180 maf mica (C68)
RCN30B382J Capacitor, 3800 mmf mica (C69)
R5OC26ZY102M Capacitor, 1000 mmf ceramic (C70)
R2OC26PJ470K Capacitor, 47 mmf ceramic (C71, C72)
RCP 10 W4104A Capacitor, 0.1 mfd 400 v. (C73)
R2CC36SL221M Capacitor, 220 mmf ceramic (C74)
R20C21PJ220K Capacitor; 22 mpf ceramic (C75)
R50C36ZY472M Capacitor, 4700 mmf ceramic (C76)
R50C21ZY471M Capacitor, 470 maf ceranic (C77, C78)
R50C35ZY472M Capacitor, 4700 min ceramic (C79)
fCO20B220K Capacitor, 22 maf mica (OBO)
V-4634 ..... Capacitor, dual line filter (C81, C82)
V-5064-1 ... Catch, bullet (mahogany)
V-5064-2 ... Catch, bullet (blonde) ...
V-4638 ..... Choke, filament, R-F amplifier tube (L1)
V-4886 ..... Choke, filament, converter tube (L2, L3)
V-5261 ..... Choke, FM antenna input (L4)
V-4763 ..... Clamp, dial
V-5139 ..... Coil, FM osciliator (L5)
V-5140 ..... Coil, FM converter (L6) .
V-5129 ..... Coil, BC entenna (L7)
V-5149 ..... Coil, BC converter (L8) ..
V-5127 ..... Coil, BC oscillator (LO) .
V-5140 ..... Coil, FM antenna (L10) ...
V-3313 ..... Coil, oscillator cathore (LIl)
V-5128 ..... Coil, push button converter (L12)
V-5125 ..... Coil, SWI antenna (L13, L14)
V-5147 ..... Coil, SW2 antenna (L15, L16)
V-5126 ..... Coil, SWI converter (Li7)
V-5148 ..... Coil, SW2 converter (L18)
V-5124 ..... Coil, SWI and SW2 oscillator (L19, L20)
V-3254S \(\ldots\). Connector, phono ...........
V-5130 \(\ldots\). Control, tone, dual 2.0 megohma (R1) and 1.0 megohms (R2)
V-5111 ..... Control, volume 2.0 megohms (R3) and switch (SW1)
V-4304-12 .. Cord Assembly, dial drive
V-3239 ..... Cord, power A-C
V-4966-1 ... Cord, secord changer power
V-4525-3 .. . Cushion, chassis mounting
V-5109 ..... Dial Background, rivet assembly
V-5112 ..... Dial, glass
V-5171 .... Escutcheon, push button ..
V-4902 ..... Glide, furniture
V-5060-1 ... Grille Cloth Assembly, speaker box (mahogany)
V-5060-2 ... Grille Cloth Assembly, speaker box (blonde)
V-5059-1 ... Grille Cloth, top (mahogany)
V-5074 ..... Grille Cloth, top (blonde)
V-5123 ..... Grille, metal, speaker ...
V-3345S-4 .. Grommet, variable capacitor mounting
V-5067-1 ... Hinge, center, split door (mahogany) ...............
V-5067-2 ... Hinge, center, aplit door (blonde)
V-5363-1 ... Hinge, lower left hand(mahogany)
\begin{tabular}{|c|c|}
\hline Part No. V-5170 & \begin{tabular}{l}
Description \\
Retainer, molding for V-5169
\end{tabular} \\
\hline V-5188 & Rosette, brass \\
\hline V-5173 & Screw, \#2-56, for front glass plate \\
\hline V-3429-8 & Scrếw, \#10-32 Hex Head, chassis mounting \(\qquad\) \\
\hline V-5187-1 & Screw, mounting, for front glass plate \(\qquad\) \\
\hline V-5110 & Shaft, tuning \\
\hline V-3344S-2 & Sleeve, spacer, variable capacitor mounting \\
\hline V-3353-5 & Slide Mechanism, left hand \\
\hline V-3353-6 & Slide Mechanism, right hand \\
\hline V-3393-4 & Socket, A-C power, phono \\
\hline V-5117-2 & Socket As sembly, tube (7F8) \\
\hline V-4933 & Socket, molded octal, for preamplifier \\
\hline V-4195 & Socket, molded octal tube (6L6) \\
\hline \(\mathrm{V}-3275 \mathrm{~S}\) & Socket, molded octal tube (5U4G) \\
\hline V -3246 & Socket, octal tube (wafer) \\
\hline V-5181 & Socket, pilot light, jewel \\
\hline \(V-5237\) & Socket, pilot light, phono \\
\hline V-5183 & Socket, pilot light, push buttons \\
\hline V-5180-3 & Socket, pilot light, (SW1, SW2, BC, FM) \\
\hline V-5192 & Socket, 7 contact for speaker \\
\hline V-5193 & Socket, tuning eye (plus R50) \\
\hline V-5182 & Sockets, pilot light, edge lights \\
\hline V-5354 & Spacer, Neoprene, for speaker turntable \(\qquad\) \\
\hline \(\mathrm{V}-5160\) & Speaker, 12" Electro-Dynamic \\
\hline V-5161 & Speaker, 5" \(\mathrm{x}^{7 \prime} \mathrm{P} . \mathrm{M}\). (plus C32) \\
\hline \(\mathrm{V}-3248 \mathrm{~S}\) & Spring, dial drive \\
\hline \(\mathrm{V}-3258 \mathrm{~S}\) & Spring, knob \\
\hline V-5233 & Spring, speaker turntable \\
\hline V-5065-1 & Strike, bullet catch (mahogany) \\
\hline V-5065-2 & Strike, bullet catch (blonde) \\
\hline V-5168-1 & Strip, felt, 5/16" \(\times 15^{\prime \prime}\) (mahogany) \\
\hline V-5168-2 & Strip, felt, 5/16" \(\times 15^{\prime \prime}\) (blonde) \\
\hline V-5234 & Stud, bearing, for speaker turntable \\
\hline V-3167S-1 & Stud, pulley, threaded \\
\hline V-5235 & Stud, threaded, for speaker turntable \\
\hline V-3261-3 & Switch, push button (SW10A, SW10B) \\
\hline V-5135 & Switch, selector, (SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9) ....... \\
\hline V-5152 & Tab, AM and SW1 \\
\hline V-5185 & Tab, FM and SW2 \\
\hline V-5174 & Tabs, station \\
\hline V-3482 & Teenut, for speaker box \\
\hline V-5144 & Terminal Board, ANT-GND \\
\hline V-3417 & Terminal Board, FM antenna \\
\hline V-5136 & Transformer, driver (L21, L22) \\
\hline V-5373 & Transformer, 1st I-F (C83, C84, C85, C101, C102, L23, L24, L25, L26) \\
\hline V-5374 & Transformer, 2 nd I-F (C86, C87, C88, C89, R49, L27, L28, L29, L30) \\
\hline V-5375 & ```
Transformer, 3rd I-F (C90, C91, C92,
    L31, L32, L33) ................
``` \\
\hline V-5212 & Transformer, discriminator (C93, C94, L34, L35, L36, L37) ..... \\
\hline V-5137 & Transformer; power \\
\hline V-3274S & Tube Holder \\
\hline V-3317 & Tuner, push button \\
\hline V-5222 & Turntable Assembly, for speaker box \\
\hline V-3506S-1 & Washer, chassis mounting, Neoprene \\
\hline V-3752S & Washer, felt, for knobs \\
\hline V -3267S-3 & Washer, flat, chassis mounting \\
\hline V-3267S-10 & Washer, flat, record changer mounting \\
\hline V -3215S & Washer, spring, for tuning shaft \\
\hline V-5175 & Windows, station tab \\
\hline
\end{tabular}

Part No. Description
V-5363-2 . Hinge, lower right hand (mahogany)
V-5363-3 . Hinge, lower left hand (blonde)
V-5363-4 . Hinge, lower right hand (blonde)
V-5179-i . Jewel, pilot light
V-5155-1 . Knob, band (mahogany)
V-5155-2 . Knob, band (blonde)
V-4362-4 . Knob, tone, front (mahogany)
V-4362-5 . Knob, tone, front (blonde)
V-5028-2 . Knob, tone, rear
V-5095-1 . Knob, volume and tuning (mahogany)
V-5095-2 . Knob, volume and tuning (blonde)
No. 44 ... Lamp, pilot light
No. 51 ... Lamp, pilot light
V-3283-4 . Loop Assembly
V-5169 ... Molding, bronze stri
V-5365-1. Molding, plastic, for lower doors (mahogany)
V-5365-2 . Molding, plastic, for lower doors (blonde)
V-5205 ... Nut, speed, for front glass plate
V-5236 ... Plate, anchor, \(1 \frac{1}{2 n} \times 1 \frac{1}{2}\) "
V-5158-1 . Plate Assembly, front glass (mahogany)
V-5158-2 . Plate Assembly, front glass(blonde)
V-5229 ... Plate, bottom, for speaker turntable
V-5230 ... Plate, mounting, for speaker turntable
V-5231 ... Plate, top, for speaker turntable
V-5133 ... Pointer
V-5062 ... Pull, door, lower (mahogany) ...
V-5305 ... Pull, door, lower (blonde)
V-5061 ... Pull, door, upper (mahogany) ...
V-5306 ... Pull, door, upper (blonde)
V-3166S .. Pulley, 7/16 dia.
V-5166-1 . Push button ........................... . .
V-5232 ... Race, bearing, for speaker turntable
V-5203 ... Reflector, dial
V-5134 ... Resistor, 190 ohms 4 w. (R4)
V-5340 ... Resistor, 290 ohms 2.3 w. (R5)
RC10AE102M Resistor, 1000 ohms \(1 / 4\) w. (R6)
RC20AE393K Resistor, 39K \(1 / 2 \mathrm{w}\). (R7)
RC10AE274M Resistor, 270K \(1 / 4\) w. (R8, R9, R10)
RC20AE682K Resistor, 6800 ohms \(1 / 2 \mathrm{w}\). (R1l)
RC10AE105M Resistor, 1.0 megohm \(1 / 4 \mathrm{w}\). (R12, R13, R15, R16, R17)
RCl0AE104K Resistor, \(100 \mathrm{~K} 1 / 4 \mathrm{w}\). (R14, R18, R19)
RCl0AE273K Resistor, \(27 \mathrm{~K} 1 / 4 \mathrm{w}\). (R20)
RC10AE473M Resistor, 47K \(1 / 4 \mathrm{w}\). (R21)
RC10AE222M Resistor, 2200 ohms \(1 / 4\) w. (R22)
RC10AE683M Resistor, \(68 \mathrm{~K} 1 / 4\) w. (R23)
RC10AE225M Resistor, 2.2 megohms \(1 / 4\) w. (R24, R25)
RC10AE273M Resistor, \(27 \mathrm{~K} 1 / 4\) w. (R26)
RC10AE153J Resistor, \(15 \mathrm{~K} 1 / 4 \mathrm{w}\). (R27, R28)
RC20AE330K Resistor, 33 ohms \(1 / 2 \mathrm{w}\). (R29, R30)
RCl0AE223K Resistor, \(22 \mathrm{~K} 1 / 4 \mathrm{w}\). (R31)
RC10AE680M Resistor, 68 ohms \(1 / 4\) w. (R32)
RC10AE274K Resistor, 270K 1/4 w. (R33, R34)
RC20AE333M Resistor, \(33 \mathrm{~K} 1 / 2 \mathrm{w}\). (R35)
RC10AE154K Resistor, \(150 \mathrm{~K} 1 / 4 \mathrm{w}\). (R36)
RC10AE474M Resistor, \(470 \mathrm{~K} 1 / 4 \mathrm{w}\). (R37)
RC40AE223K Resistor, 22 K 2 w. (R38)
RC30AE333K Resistor, 33K 1 w. (R39, R40)
RC20AE 103 K Resistor, 10K \(1 / 2 \mathrm{w}\). (R41)
RC10AE222K Res istor, 2200 ohms \(1 / 4\) w. (R42)
RC20AE471K Resistor, 470 ohms \(1 / 2\) w. (R43, R44)
RC40AE682K Resistor, 6800 ohms 2 w. (R45)
RC30AE332K Resistor, 3300 ohms 1 w. (R46, R47)
RC10AE221K Resistor, 220 ohrns \(1 / 2 \mathrm{w}\). (R48)



\section*{MODEL H-178 WESTINGHOUSE ELECTRIC CORP.}


\section*{CHASSIS LAYOUT}

\section*{ALIGNMENT}

Before beginning alignment, make certain that the dial pointer aligns with the dot on the extreme high-frequency end of the dial when the tuning capacitor is set for minimum capacity.

Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid A. V. C. action.
\begin{tabular}{c|c|c|c|c}
\hline Step & \begin{tabular}{c} 
Connect Signal \\
Generator to-
\end{tabular} & \begin{tabular}{c} 
Signal \\
Generator \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Radio Dial \\
Setting
\end{tabular} & Adjust \\
\hline 1 & \begin{tabular}{l} 
3E6 control grid through \\
0.1 mfd capacitor
\end{tabular} & 455 kc & 550 kc & \begin{tabular}{l} 
Secondary and Primary trimmers of 2nd \\
I-F trans. for max. output.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
1LA6 control grid through \\
0.1 mfd capacitor
\end{tabular} & 455 kc & 550 kc & \begin{tabular}{l} 
Secondary and Primary trimmers of 1st \\
I-F trans. for max. output.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Antenna terminal through \\
200 mmf capacitor
\end{tabular} & 455 kc & 550 kc & "Peak" all I-F trimmers. \\
\hline 4 & \begin{tabular}{l} 
Antenna terminal through \\
200 mmf capacitor
\end{tabular} & 1500 kc & 1500 kc & Oscillator trimmer for max. output. \\
\hline 5 & \begin{tabular}{l} 
Antenna terminal through \\
200 mmf capacitor
\end{tabular} & 1500 kc & 1500 kc & Antenna trimmer for max. output. \\
\hline
\end{tabular}

\section*{PARTS LIST FOR MODEL H-178}

When ordering parts specify model number of set in addition to part number and description of part.
\begin{tabular}{|c|c|}
\hline Part No. & Description \\
\hline V-3603 & Background; dial \\
\hline V-3593 & Baffle, speaker \\
\hline V-3594 & Battery, "A-B" \\
\hline V-3550 & Bracket, dial mounting \\
\hline V-3551 & Bracket, pulley stud assembly \\
\hline V-3600 & Bracket, speaker mounting \\
\hline V-3555 & Bracket, tuning shaft mounting .. \\
\hline V-3580 & Bracket, variable capacitor \\
\hline V-1147-1 & Cabinet \\
\hline V-5324 & Cable Assembly, battery \\
\hline V-3569 & \begin{tabular}{l}
Capacitor, variable 2 gang (C1, C2, \\
C3, C4) \(\qquad\)
\end{tabular} \\
\hline RCP10W2503A & Capacitor, 05 mfd 200 v. (C5) \\
\hline RCM20A470K & Capacitor, 47 mmf mica (C6, C7) \\
\hline RCP10W4103A & Capacitor, 01 mfd 400 v ( (C8, C9) \\
\hline RCP10W6102K & \begin{tabular}{l}
Capacitor, 001 mfd 600 v. (C10, \\
C11)
\end{tabular} \\
\hline RCM20A471K & Capacitor, 470 mmf mica (C12) .... \\
\hline RCP10W6202A & Capacitor, .002 mfd 600 v. (C13) \\
\hline RCP10W2104A & Capacitor, 0.1 mfd 200 v. (C14, C15) \\
\hline RCM20A101M & Capacitor, 100 mmf mica (C16) \\
\hline V-3581 & Capacitor, electrolytic, tubular 10 mfd 150 v. (C17) \\
\hline V-3562 & Clamp, dial \\
\hline V-3567 & Coil, antenna (L1, L2, C24) \\
\hline V-3582 & Coil, oscillator (L3, L4) \\
\hline V-3564 & Control, volume, 2 meg . (R12) with switch (SW1) \(\qquad\) \\
\hline V-4157S-66 & Cord, dial drive \\
\hline V-3596 & Decal, OFF \\
\hline V-3662 & Decal, STATIONS \\
\hline V-3660 & Decal, TONE \\
\hline V-3665 & Decal, WESTINGHOUSE \\
\hline V-3559 & Dial, glass \\
\hline
\end{tabular}

Part No.
V-3489S-1
V-3592-2
V-3268
V-3331-1
V-3331-3
V-3331-2
V-3585
V-3558
V-3166S
RC10AE224M
RC10AE105M
RC10AE563M
RC10AE225M
RC10AE101M
RC10AE106M RC10AE681K RC10AE334M
V-357.3
V-3601
V-3248S
V-3258S
V-3563
V-3574
V-3575
V-3576
V-3577
V-3578
V-3556
V-3752S
V-3267S-4
V-3237

\section*{Description}

Foot, rubber
Grille Cloth
Grommet, variable condenser
mounting

Knob, volume-switch
Knob, tone
Knob, tuning
Plug, battery cable
Pointer Assembly
Pulley, 7/16" dia.
Resistor, 220K \(1 / 4\) w. (R1)
Resistor, 1.0 meg. \(1 / 4\) w. (R2) .........
Resistor, 56K \(1 / 4 \mathrm{w}\). (R3)
Resistor, 2.2 meg. \(1 / 4 \mathrm{w}\). (R4, R5, R6, R7)
Resistor, 100 ohms \(1 / 4 \mathrm{w}\). (R8)
Resistor, 10.0 meg. \(1 / 4 \mathrm{w}\). (R9)
Resistor, 680 ohms \(1 / 4 \mathbf{w}\). (R10) ...
Resistor, 330K \(1 / 4\) W. (R11)
Socket, loktal, miniature tube
Speaker, \(51 / 4^{\prime \prime}\) P. M.
Spring, dial drive
Spring, knobs
Switch, tone (SW2)
Terminal Board, 2 lugs
Terminal Board, 5 lugs
Transformer, output (T1)
Transformer, 1st I-F (L5, L6, C18, C19)
Transformer, 2nd I-F (L7, L8, C20,
C21, C22, C23, R13)
Tuning Shaft Assembly
Washer, felt
Washer, flat, chassis mounting
Washer, cup, variable capacitor Mounting

WESTINGHOUSE PAGE 19-15
WESTINGHOUSE ELECTRIC CORP. MODRIS H-183, H-183A

ALIGNMENT
The use of an isolation transformer in the power line is recommended.
Connect an output meter across the speaker voice coil.

105 to 120 volts, \(50-60\) cycles or 105 to 120 volts, D.C.
POWER CONSUMPTION (radio section) ...... 35 watts 2.5 watts
\(.10^{\prime \prime}\) PM
OPERATING VOLTAGES (radio section only):
\(\bigcirc\)
 generator output attenuated to avoid A. V. C. action.
\begin{tabular}{l|l|c|c|c}
\hline Step & \begin{tabular}{l} 
Connect Signal \\
Generator to-
\end{tabular} & \begin{tabular}{c} 
Signal \\
Generator \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Radio \\
Dial \\
Setting
\end{tabular} & Adjust \\
\hline 1 & \begin{tabular}{l} 
Pin No. 2 of 6SF7 tube through \\
a 200 mmf capacitor
\end{tabular} & 455 kc & 540 kc & \begin{tabular}{l} 
Secondary and primary of \\
2nd I-F transformer for \\
maximum output.
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Stator of tuning capacitor (C3) \\
through a 200 mmf capacitor
\end{tabular} & 455 kc & 540 kc & \begin{tabular}{l} 
Secondary and primary of \\
1st I-F transformer for \\
maximum output.
\end{tabular} \\
\hline 3 & Recheck 1st and 2nd I-F transformers. & 1615 kc & 1615 kc & \begin{tabular}{l} 
Oscillator trimmer (C5) \\
for maximum output.
\end{tabular} \\
\hline 4 & \begin{tabular}{l} 
Antenna terminal through a \\
200 mmf capacitor
\end{tabular} & 1400 kc & 1400 kc & \begin{tabular}{l} 
Antenna trimmer (C22) for \\
maximum output.
\end{tabular} \\
\hline 5 & \begin{tabular}{l} 
Radiated signal (no actual \\
connection)
\end{tabular} & & \\
\hline
\end{tabular}
FREQUENCY RANGE ............................. 540 to 1615 kc . POWER OUTPUT:
INTERMEDIATE FREQUENCY ............................ 455 kc . TUBE COMPLEMENT:
1 6SA7 .............................................................................
1 6SF7 ..........................1st I-F Amp., Det., and AVC
..Output Rectifier
PILOT LAMP ....Westinghouse No. 6S6 120 v., . 05 amp .



CHASSIS NO. V-2133


It is recommended that the chassis be isolated from the power line
While making the following adjustments, keep the volume control set for maximum output and the signal generator attenuated to avoid AVC action.
SPECIFICATIONS 1600 kc.
455 kc.
Converter otpny 7 si pue 'गムV ••7əa Output Amp.
 \(N d / 2\)
\(\operatorname{s77BM} \varepsilon^{\circ} \cdot\)
\(\operatorname{s77BM} 8^{\circ} 0\)



\section*{FREQUENCY RANGE: \(\ldots\). .
INTERMEDIATE FREQUENCY:
TUBE COMPLEMENT: LEMENT :
\(1 \quad 12 \mathrm{BE} 6\)}

SFECI
540 to 1600 kc .
- OY SSi ....... :NOIIdWOSNOD HGMOd



PAGE 19-22 WESTINGHOUSE
MODELS H-190,
WESTINGHOUSE ELECTRIC CORP.
H-191, H-191A

\section*{ALIGNMENT \\ BROADCAST BAND}

Completely mesh the tuning capacitor plates and set the dial pointer to the end mark on the dial scale.

Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output, the tone control set for maximum treble, and the signal generator output attenuated to avoid A.V.C. action.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to - & \begin{tabular}{l}
Signal \\
Generator \\
Frequency
\end{tabular} & \[
\begin{aligned}
& \text { Radio } \\
& \text { Dial } \\
& \text { Setting }
\end{aligned}
\] & Adjust \\
\hline \multicolumn{5}{|l|}{1 Set the band switch to} \\
\hline 2 & Stator of tuning capacitor (C41) through a 0.1 mfd capacitor & 455 kc & maximum capacity & 455 kc . pri. of 3 rd I-F trans., sec. and pri. of 2nd I-F trans., and sec. and pri. of let I-F trans. for max. output \\
\hline \multicolumn{5}{|r|}{NOTE: If the l-f transformers are badly mis-aligned, it may be impossible to obtain sufficient output using the above system. In this event. it will be necessary to align each transformer separately. Start with the last l-F transformer and work forward, connecting the signalgenerator to the control grid of the tube preceding the transformer under alignment.} \\
\hline 3 & Radiated signal (no actual connection) & 1600 kc & 1600 kc & ```
AM osc. trimmer (C40) for max. out-
``` \\
\hline 4 & Radiated signal (no actual connection) & 1400 kc & \[
\begin{aligned}
& \text { tune to } \\
& \text { signal }
\end{aligned}
\] & AM ant. trimmer (C47) for max. output (rock-in adjustment) \\
\hline
\end{tabular}

FM BAND
Do not align the 10.7 mc . \(1-\mathrm{F}\) circuits until all 455 kc . \(1-F\) adjustments have been completed.
\begin{tabular}{|c|c|c|c|c|}
\hline 2 & \multicolumn{4}{|l|}{Connect two 100,000 ohm resistors (the resistances must be equal within 5 percent) between pin \#l of the 6AL5 tube and ground as shown in Fig. 4.} \\
\hline 3 & \multicolumn{4}{|l|}{Connect a V.T.V.M. between points \({ }^{\text {P }} \mathrm{X}^{\text {n }}\) and " \(\mathrm{Y}^{\prime \prime}\) (see Fig. 4).} \\
\hline 4 & Pin \#l of the 6BA6, 1st I-F amp. through a . 001 mfd mica capacitor & 10.7 mc & maximum capacity & Sec. of discriminator trans. for zero voltage (the voltage willgo positive on one side of the correct setting and negative on the other side) \\
\hline 5 & \multicolumn{4}{|l|}{Connect the V.T.V.M. between point "Z" and ground.} \\
\hline 6 & Pin \#l of the 6BA6, lat I-F amp. through a . 001 mfd mica capacitor & 10.7 mc & maximum capacity & Pri. of discriminator trans., 10.7 mc. sec. and pri. of 3rd I-F trans. and 10.7 mc . sec. and pri. of 2nd I-F trans. for max. voltage \\
\hline 7 & \multicolumn{4}{|l|}{Using the same sig. generator and V.T.V.M. connections as in Step 6, adjust the sig. generator output until the V.T.V.M. indicates 4 volts. Use this sig. generator setting to perform Step 9.} \\
\hline 8 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between points "X" and "Y".} \\
\hline 9 & Pin \#l of the 6BA6, lat I-F amp. through a . 001 mfd mica capacitor & 10.7 mc & maximum capacity & Sec. of discriminator trans. for zero voltage. The voltage will change polarity as the sec. is tuned through resonance - tune carefully for p-act zero \\
\hline 10 & \multicolumn{4}{|l|}{Remove the two 100,000 ohm resistors which were inserted in Step 2.} \\
\hline 11 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between point "Z" and ground.} \\
\hline 12 & Pin \#l of the 6BA6, lst I-F amp. through a . 001 mfd mica capacitor & 10.7 mc & maximum capacity & Recheck pri. of discriminator trans. for max. voltage \\
\hline 13 & Stator of FM tuning capacitor (C42) through a .01 mfd mica capacitor & 10.7 mc & maximum capacity & Sec. and pri. of 10.7 mc . 1st I-F trans. for max. voltage \\
\hline 14 & Ant. terminal \#2 through a 300 ohm resistor & 108 mc & 108 mc & ```
MM ose. trimmer (C46) for max.
``` \\
\hline 15 & Ant. terminal \#2 through a 300 ohm resistor & 105 mc & \[
\begin{aligned}
& \text { tune to } \\
& \text { signal }
\end{aligned}
\] & FMant. trimmer (C45) for max.
voltage (rock-in adjustment) \\
\hline
\end{tabular}
*After adjusting the oscillator trimmer at 108 mc , check dial calibration by tuning the receiver to an 88 mc . signal from the generator. If the dial pointer indicates 88 mc., no further oscillator adjustments are necessary. If the pointer is on the high frequency side of 88 mc ., slightly expand the length of the oscillator coil (L8); if the pointer is on the low frequency side of 88 mc., slightly compress the oscillator coil. Re-adjust the oscillator trimmer at 108 mc., and again check the calibration. Repeat this process until calibration is correct.
**After adjusting the antenna trimmer at 105 mc ., check tracking by tuning to a 90 mc . signal from the generator and re-adjusting the antenna trimmer for max. output. If the peak setting is the same at 90 mc . as it was at 105 mc ., no further adjustments are necessary. If the trimmer capacitance must be increased to obtain max. output at 90 mc., slightly compress the antenna coil (L5); if the capacitance must be decreased, slightly expand the coil. Re-adjust the antenna trimmer at 105 mc ., and again check the tracking. Repeat this process until tracking is correct.



NOTE : VOICE COIL DISCOMNECTED.
2. SELECTO SOMTCH SWR SWW SHOWN IN EXTAEME COUNTER CLOCKWISE POSITION OR AM GAND.
3. ALL VOLTAGES MEASURED FROM CHASSIS (OND.) USING 20,000 OHM/VOLT METER-LINE VOLTAGE IITV.A.C. VOLTAGES SHOULD BE AS SHOWN \(\pm 20\) PER CENT.

CHASSIS NO. V-2128-2



UNDER CHASSIS ADJUSTMENT


MODELS
H-202,
H-204,
H-204A


DIAL DRIVE

WESTINGHOUSE PAGE 19-25


MODELS H-202, H-204, WESTINGHOUSE ELECTRIC CORP.
H-204A, CHASSIS
v-2128-2


\section*{FREQUENCY RANGES:}

Standard Broadcast ... 540 to 1600 kc. Frequency Modulation ... 88 to 108 mc .

\section*{INTERMEDIATE FREQUENCIES:}

Amplitude Modulation ......... 455 kc .
Frequency Modulation ........ 10.7 mc .
TUBE COMPLEMENT:


PILOT LAMP: ... Westinghouse \#6S6, 120 volts,. 05 amp .

\section*{POWER OUTPUT:}
\[
\begin{aligned}
& \text { Undistorted ................ l watt } \\
& \text { Maximum ................ } 2.1 \text { watts } \\
& \text { LOUDSPEAKER: } \\
& \text { 5" P.M. }
\end{aligned}
\]

OPERATING VOLTAGE:
105 to 120 volts 50 - 60 cycles
A-C or 105 to 120 volts D-C.

POWER CONSUMPTION:
40 watts

Model \(\mathrm{H}-204 \mathrm{~A}\) is identical in external appearance with Model H-204. The similarity of these models extends also to the chassis, where the same chassis layout, adjustment points, and basic circuit exist. However, a low-impedance loop antenna is used in Model H-204, while the H-204A incorporates a high-impedance loop with a slightly different input circuit.

The service notes for Models H-202 and H-204, with the exception of the schematic diagram and a few of the items on the parts list, apply to the Model H- 204 . The necessary parts information is given below,

With the exception of items that are equivalent to those listed below, all items that apply to the Model H-204, as listed in the H-202 and H-204 service notes, apply also to the Model H-204A.

The parts listed below apply only to Model H-204A.

Part No. Description
V-6168-1 Cover Rivet Assembly, back (H-204A brown)
V-6168-2 Cover Rivet Assembly, back (H-204A ivory i.......
V-6061 Loop, antenna (H-204A)

CAUTION: One side of the power line is connected directly to the chassis in this model. Care must be exercised to avoid contacting the radio chassis and ground at the same time - SERIOUS SHOCK MAY RESULT. When making repairs or adjustments to the radio, it is recommended that the chassis be isolated from the power line by means of an isolation transformer.

\section*{ALIGNMENT}

BROADCAST BAND
Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal
\(\qquad\) & \[
\begin{array}{|c}
\hline \text { Signal } \\
\text { Generator } \\
\text { Frequency } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline \text { Radio } \\
\text { Dial } \\
\text { Setting }
\end{gathered}
\] & Adjust \\
\hline 1 & Set band switch to AM. & & & \\
\hline 2 & Pin \#l of 12BA6 (1st I-F) tube through 0.1 mfd capacitor & 455 kc & minimum capacity & Sec. and pri. of 455 kc 2nd I-F trans. for max. output \\
\hline 3 & Stator of tuning capacitor (C59) through a 0.1 mfd capacitor & 455 kc & minimum capacity & Sec. and pri. of 455 kc lat I-F lst I-F trans. for max. output \\
\hline 4 & Radiated signal (no actual connection) & 1615 kc & minimum capacity & AM osc. trimmer (C64) for max. output \\
\hline 5 & Radiated signal (no actual connection) & 1400 kc & 1400 kc & AM ant. trimmer (C58) for max. output \\
\hline
\end{tabular}

FM BAND
Do not align 10.7 mc. I-F circuits until 455 kc /-F adjustments have been completed.


H-204A
\begin{tabular}{|c|c|}
\hline Part No. & Description \\
\hline V-5608 & Background, di \\
\hline V-5528-1 & Baffle and grille cloth assembly (H-202) .... \\
\hline -5527 & Bushing, insulator, cont \\
\hline *-1153-1 & Cabinet (H-202 Ivory) \\
\hline *V-1153-2 & Cabinet ( \(\mathrm{H}-202 \mathrm{Brown}\) ) \\
\hline *V-1153-3 & Cabinet (H-204 Green) \\
\hline RCP 10M6102A & Capacitor, . 001 mfd 600 v.(Cl2) \\
\hline RCP10M6202M & \begin{tabular}{l}
Capacitor, 002 mfd 600 v . \\
(C13, C14)
\end{tabular} \\
\hline RCP 10M6 50 2A & Capacitor, . \(005 \mathrm{mfd} 600 \mathrm{v}.(\mathrm{C} 15)\) \\
\hline RCP 10M2 103 M & Capacitor, . 01 mfd 200 v. (C16) \\
\hline RCP10M2203A & Capacitor, . 02 mfd 200 v. (C17) \\
\hline RCP10M2303M & Capacitor, . 03 mfd 200 v. (C18) \\
\hline RCP10M2503A & Capacitor, 05 mfd 200 v.
\((\mathrm{C} 19, \mathrm{C} 20, \mathrm{C} 21)\). ....... \\
\hline RCP10M2104A & Capacitor, . 1 mfd 200 v. (C22) \\
\hline RCM20A101K & Capacitor, mica 100 mmf (C23, C24) \(\qquad\) \\
\hline RCM20A101M & Capacitor, mica 100 mmf (C25) \\
\hline RCM20A47 1M & Capacitor, mica 470 mmf ( C 26, \\
\hline
\end{tabular}

R2CC25HK270K Capacitor, ceramicon 27 mmf (C29)
R2CC32CF101K Capacitor, ceramicon 100 mmf (C30, C31)
R5CC20ZY471M Capacitor, ceramicon 470 mmf (C32)
R5CC21ZY471M Capacitor, ceramicon 470 mmf (C33, C34)
 200 v. (C51, C52, C53, C54, C55, C56, C57)
V-4992 .... Capacitor, trimmer ( C 58 )
V-5494 .... Capacitor, variable 2-gang AM antenna (C59) FM antenna (C60) AM oscillator (C61) FM oscillator (C62) Trimmer, FM antenna (C63) Trimmer, AM oscillator (C64) Trimmer, FM oscillator (C65)
V-5743 .... Coil, choke antenna (line) (L12, L13)
V-5545 .... Coil, oscillator FM (L14)
V-6078-1 .. Coil, oscillator AM (L15) ....
V-5546 .... Coil, R-F FM (L16) ............. .
V-5605 .... Coil, antenna loading AM (L17)
V-5517 .... Control, volume, 1 megohm (R2) and switch (SW1)
V-4304-19. Cord assembly, dial
V-5522 .... Cord, power A-C
V-5610-1 .. Cover rivet assembly, back (H-202 brown, H-204 green)
V-5523 .... Dial
V-6092-1 .. Grille (H-204 green)
V-5560-1 .. Knob, AM-FM (H-202)

Part No. Description
V-5560-2 . Knob, AM-FM (H-204)
V-5558-1 . Knob, tuning (H-202).
V-5558-2 . Knob, tuning ( \(\mathrm{H}-204\) )
V-5559-1 . Knob, volume (H-202)
V-5559-2 . Knob, volume (H-204)
No. 6S6 .. Lamp, pilot light
*V-5638 .. Loop assembly, antenna
V-6119 ... Pointer
V-6096-1 . Pulley (metal)
V-3166S .. Pulley (wood)
V -4886-1 . Reactor, R-F (L18)
V-4886-2 . Reactor, R-F (L19, L20)
V-4886-4 . Reactor, R-F (L21)
V-4886-5 . Reactor, R-F (L22, R3)
V-4886-6 . Reactor, R-F (L23, R4)
V-4886-7 . Reactor, R-F (L24, R5)
V-4886-8 . Reactor, R-F (L25, R6)
V-6070 ... Rectifier, selenium
( 100 milliamperes)
V-6067-2 . Resistor, glasohm 47 ohms (R7)
RC20AE121K Resistor, 120 ohms \(1 / 2\) w.(R8, R9)
RC20AE181K Resistor, 180 ohms \(/ 2\) w. (R10).
RC20AE 221 K Resistor, 220 ohms \(1 / 2 \mathrm{w}\). (R11).
RC20AE471K Resistor, 470 ohms \(1 / 2\) w.(R12, R13)
RC40AE102K Resistor, 1000 ohms 2 w . (R14, R33)
RC20AE102K Resistor, 1000 ohms \(/ 2\) w. (R15, R16)
RC20AE222M Resistor, 2200 ohms \(1 / 2\) w. (R17)
RC20AE103J Resistor, 10,000 ohms \(1 / 2 \mathrm{w}\). (R18, R19)
RC20AE223M Resistor, 22,000 ohms \(1 / 2\) w. (R20)
RC20AE223K Resistor, 22,000 ohms \(1 / 2\) w. (R21).
RC20AE184K Resistor, 180,000 ohms \(1 / 2 \mathrm{w}\). (R22)
RC20AE474M Resistor, 470,000 ohms \(1 / 2 \mathrm{w}\). (R23, R24, R25, R26, R27, R28)
RC20AE105M Resistor, 1 megohm \(1 / 2 \mathrm{w}\). (R29, R30)
RC20AE275M Resistor, 2.7 megohms \(1 / 2 \mathrm{w}\). (R31)
RC20AE106M Resistor, 10 megohms \(1 / 2 \mathrm{w}\). (R32)
V-5601-1. Screw, \#6-32 rosette head (H-202 brown, H-204 green)
V-5601-2 . Screw, \#6-32 rosette head ( \(\mathrm{H}-202\) ivory)
V-4292S .. Socket, miniature molded ( 7 prong)
V-5673 ... Socket, miniature wafer ( 7 prong)
V-5670 ... Socket, miniature wafer ( 7 prong)
V-6072-1 . Socket, miniature wafer(9 prong)
V-4989... Socket, pilot light
*V-5533 .. Speaker, 5 \(^{\text {n P. M. }}\)
V-3248S .. Spring, dial drive
V-7332 ... Spring, knob
V-5534 ... Switch, selector, (SW2, SW3)
V-5723 ... Transformer, 1st I-F AM (C1, C2, L1, L2)
V-5539 ... Transformer, 2nd I-F AM (C3, C4, C5, C6, R1, L3, L4) ....
V-5540 ... Transformer, 1 st and 2 nd I-F FM
1st (C7, C8, L5, L6) 2nd (C9, C10, L7, L8)
V-5538 ... Transformer, discriminator (C11, L9, L10, L11)
V-5537 ... Transformer, output
V-5606-1 . Washer, felt

When ordering parts, specify model number of set in addition to part number and description of part.


H-203


H-212

\section*{SPECIFICATIONS}

FREQUENCY RANGES:
Amplitude Modulation \(\ldots . .540\) to 1600 kc.
Frequency Modulation \(\ldots . .88\) to 108 mc.

INTERMEDIATE FREQUENCIES:

TUBE COMPLEMENT:
\begin{tabular}{|c|c|}
\hline 12AT7 & Amp. and Mixer (FM) \\
\hline 1 6BE6 & H-F Osc. ( \(A M / F M\) ) and converter ( \(A M\) ) \\
\hline 1 6BA6 & I-F Amp. \\
\hline 1 6BA6 & I-F Driver (FM) \\
\hline 1 6AL5 & Ratio Det. (FM) \\
\hline 1 6AV6 & Det. \& AVC ( AM ) and A-F Amp. \\
\hline 1 6V6GT & .. Output Amp. \\
\hline 5Y3GT & Rectifie \\
\hline
\end{tabular}

PILOT LAMPS:
2 Westinghouse No. \(47 \ldots 6.3\) v., 0.15 a. POWER OUTPUT:

Undistorted

3.5 watts

Maximum ............................. 6 watts
LOUDSPEAKER:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

OPERATING VOLTAGE:
......... 105 to 120 volts, 60 cycles A-C
POWER CONSUMPTION:


\section*{SERUICE NOTES}

For information on the V-4944-2 record changer used with Model H-203, refer to the V-4944 Automatic Record Changer Service Notes. However, when ordering replacement parts, specify the items listed below rather than the corresponding parts as listed in the V-4944 Service Notes. The following parts are for the V-4944-2 changer only.
\begin{tabular}{cll} 
Loc. & Part No. & Description \\
9 & V-7962 & Pickup Cable with Connector (28") \\
13 & \(V-7689\) & Cartridge, crystal (P-30) \\
15 & \(V-7963\) & Nut, needle retaining (for P-30 cartridge) \\
(Last item on parts list) & \(V-7964\) & Needle, phonograph (for P-30 cartridge)
\end{tabular}


\section*{ALIGNMENT}

BROADCAST BAND
Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output. the tone control set for maximum treble, and the signal generator output attenuated to avoid A, V.C. action.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Connect Signal \\
Generator to -
\end{tabular} & Signal Generator Frequency & Radio Dial Setting & Adjust \\
\hline 1 & Set the band switch to AM. & & & \\
\hline 2 & Stator of tuning capacitor (C51) through a 0.1 mfd capacitor & 455 kc. & maximum capacity & \(455 \mathrm{kc}\). pri. and sec. of lst and 2nd I-F trans. for max. output \\
\hline
\end{tabular}

NOTE: If the I-F transformers are badly mis-aligned, it may be impossible to obtain sufficient output using the above system. In this event, it vill be necessary to align each transformer separately. Start with the last I-F transformer and work forward, connecting the signal generator to the control grid of the tube preceding the transformer under alignment.
\begin{tabular}{|c|c|c|c|c}
\hline 3 & \begin{tabular}{l} 
Radiated signal (no actual connec- \\
tion)
\end{tabular} & 1600 kc & \(1600 \mathrm{kc} \cdot\) & \begin{tabular}{l} 
AM osc. trimmer (C55) for max. \\
output
\end{tabular} \\
\hline 4 \begin{tabular}{l} 
Radiated signal (no actual connec- \\
tion)
\end{tabular} & \(1400 \mathrm{kc} \cdot\) & \begin{tabular}{c} 
tune to \\
signal
\end{tabular} & \begin{tabular}{l} 
AM ant. trimmer (C57) for max. \\
output (rock-in adjustment
\end{tabular} \\
\hline
\end{tabular}

FM BAND
Do not a lign the FW circuits until all AM adjustments have been completed.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & \begin{tabular}{l}
Connect Signal \\
Generator to
\end{tabular} & Signal Generator Frequency & Radio Dial Setting & Adjust \\
\hline 1 & Set the band svitch to FM. & & & \\
\hline 2 & \multicolumn{4}{|l|}{Connect two 100,000 ohm resistors (the resistances must be equal within 5 percent) between pin \(\# 7\) of the 6AL 5 tube and ground as shown on the schematic diagran.} \\
\hline 3 & \multicolumn{4}{|l|}{Connect a V.T.V.M. between points "X"and "Y" (see schematic diagram).} \\
\hline 4 & Stator of FM osc. section (C50) on tuning capacitor through a . 0 I mfd mica capacitor & 10.7 mc . & maximum capacity & Sec. of ratio det. trans. for zero (use medium strength signal) \\
\hline 5 & \multicolumn{4}{|l|}{Connect the V.T.V.M. between point " \(\mathrm{Z}^{\prime \prime}\) and ground.} \\
\hline 6 & Same as step 4 & 10.7 mc . & maximum capacity & Pri. of ratio det. trana. and pri. and sec. of 10.7 mc . lst and 2nd I-F trans. for max. \\
\hline \multicolumn{5}{|l|}{NOTE: The pri. of the ratio det. trans. peaks in two places. Use the peak vith the siag farthest out.} \\
\hline 7 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between points "X" and "Y", and increase the signal strength 2 times.} \\
\hline 8 & Same as step 4 & 10.7 mc . & maxi \(\quad\) mu capacity & Recheck sec. of ratio det. trans. for zero voltage \\
\hline 9 & \multicolumn{4}{|l|}{Reconnect the V.T.V.M. between point " \(\mathrm{Z}^{\prime \prime}\) and ground.} \\
\hline 10 & Same as step 4 & 10.7 mc . & maximum capacity & \[
\begin{aligned}
& \text { Pri, of ratio det. trans. for } \\
& \text { maximum voltage }
\end{aligned}
\] \\
\hline 11 & \multicolumn{4}{|l|}{Remore the two 100,000 ohm resistons that were inserted in step 2 .} \\
\hline 12 & FM ant. terminal through a 300 ohm non-inductive resistor & 105 mc . & 105 mc . & FM osc. trimmer (C54) for maximum output \\
\hline 13 & Same as step 12 & 105 mc. & 105 mc . & FM ant. trimmer (C5.6) for maximum output \\
\hline
\end{tabular}

PAGE 19-32 WESTINGHOUSE

\section*{MODELS H-203, H-212, \\ WESTINGHOUSE ELECTRIC CORP.} CHASSIS V-2137

PARTS LIST FOR MODELS H-203 AND H-2I2
When ordering parts, specify model number of set in addition to part number and description of part.
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Description & V-4886-2 & ies \\
\hline V-5982-2 & Antenna Assembly, AM & & (L17, L18, L19) \\
\hline V-5986-3 & Antenna Assembly, FM dipole( \(\mathrm{H}-203\) ) & V-4886-4 & Reactor, R-F (L20) \\
\hline V-5986- & Antenna Assembly, FM dipole( H -212) & V-4886-10 & Reactor, R-F (L21, R35) \\
\hline V-6120 & Background, dial & V-4886-6 & Reactor, R-F (L22, R36) \\
\hline V-5860-3 & Cable Assembly, speaker & & Reactor, R-F (L23, R37) \\
\hline R2CC30CK020D & Capacitor, 2 mmf (C10) ........... & V-6161 & Reactor, filter choke (L24) \\
\hline R2CC30UK.020D & Capacitor, 2 mmf (Cl1) & RC10AE680K & Resistor, 688 ohms \% w . (R3, R4) \\
\hline R2CC30CK050D & Capacitor, 5 mmf (Cl2) .......... & RC10AE22 & Resistor, 220 ohms \%/w. (R5) \\
\hline R3СС30С¢270K & Capacitor, 27 mmf (Cl3) ......... & RC10AEE 20K & Resistor, 82 ohms 1/6 w. (R6) \\
\hline R3СС26CK330M & Capacitor, 33 mmf (C14, C15) .... & RC30AE27 1K & Resistor, 270 ohms 1 w . (R7) \\
\hline R3CC30SL101M & Capacitor, 100 mmf (C16) & RCIOAE102K & Resistor, 1000 ohms \({ }^{\text {m w. (R8) }}\) \\
\hline R3CC30SL101J & Capacitor, 100 mmf (C17) & RC10AE152M &  \\
\hline R5CC212Y471M & Capacitor, 470 mmf (C18, C19, C20) & RC10AE222K &  \\
\hline RCM20A101M & Capacitor, 100 mmf ( C21, \(^{\text {c }}\) ( C22) & HC30AE332X & R12) \\
\hline RCM20A151M &  & RC10AE47 2K & Resistor, 4700 ohms // wo. (R13) \\
\hline RCC \(20 A 151 J\)
RCM \(20 \wedge 471 /\) & Capacitor, 470 mmf (C26) \(\ldots\)........ & RC10AE153K & Resistor, 15,000 ohms \(1 / 4 \mathrm{w}\). (R14) \\
\hline RCM20A68 11 & Capacitor, 680 mmf (C27) ......... & RCIOAE223K & Resistor, 22,000 ohms \(/\) \% w. (R15) \\
\hline RCPIOW203A & Capacitor, . 02 mfd 200 v. (C28) .. & AE562K & Resistor, 5600 ohms 1 w. (R16) ... \\
\hline RCP 10 W2503A & Capacitor, . 05 mfd 200 v. (C29) & - & Resistor, 33,000 ohms 1 w. (R17 \\
\hline RCP 10W4103A & \begin{tabular}{l}
Capacitor, .01 mfd 400 v. (C30, \\
C31, C32)
\end{tabular} & RC10AE473M &  \\
\hline RCP10W4303A & Capacitor, 03 mfd 400 v . (C33) .. & & R20) ............................. \\
\hline RCP 1016202A & Capacitor, . 002 mfd 600 v. (C34) & RCIOAE154M & Resistor, 150,00 ohms \% W. (R21) \\
\hline RCP 10106502 A & Capacitor, \(005 \mathrm{mfd}^{\text {ma }}\) v. (C35) & RC10AE224M & Resistor,
Resistor, 15 chms \(1 / 4 \mathrm{~ms}\). (R23) \\
\hline V-5040-13 & Capacitor, molded paper . 01 mfd 200 v. (C36, C37) & \begin{tabular}{l}
RC10AE150 \\
RC10AE474M
\end{tabular} & Resistor, 470,000 ohms \(4 / \%\). (R24, \\
\hline V-5596 & Capacitor, Hi-Kaps . 005 mfd (C38, C39, C40 C41, C42, C43, C44, C45, C46, C47, C48, C49) & RC10AE10 5M & \begin{tabular}{l}
R25, R26, R27) \\
Resistor, 1.0 megohm \(/ 4 / \mathrm{w}\). (R28, R29)
\end{tabular} \\
\hline V-6137 & Capacitor, variable (C50, C51, C52, C53, C54, C55, C56, C57) & RC10AE225M & Resistor, 2.2 megohms \(1 / 4\) w. (R30, R31) \\
\hline V-6121 & Capacitor, electrolytic ........... & RC10aE33 & Resistor, 3.3 megohms \(1 / 4 \mathrm{w}\). (R32). \\
\hline & 20 mfd 400 v . (C58) & RC10AE106M & \\
\hline & 20 mfd 400 v . (C59) & RC415E12 &  \\
\hline & 10 mfd 350 v . (C60) & V-6151-2 & Rosette ( \(\mathrm{H}-203\) blond) \\
\hline & 20 mfd 25 v . (C61) & V-6126-1 & Shockmount ......... \\
\hline V-4885 & Capacitor, electrolytic 4 mfd & V-6127 & Sleeve, dial drive \\
\hline & 450 v. (C62) ................ & V-3353-3 & Slide Mechanism, L.H. (H-203) \\
\hline V-4898-1 & Catch, bullet (H-203 mahogany) .. & V-3353-4 & Slide Mechanism, R.H. (H-203) \\
\hline V-4898-2 & Catch, bullet (H-203 blond) ..... & V-6165-1 & Socket, dial light, \(5^{n}\) leads \\
\hline V-5637 & Clip, tubular ........ & V-6165-2 & Socket, dial light, \(7^{\prime \prime}\) leads \\
\hline V-6164 & Coil, AM oscillator (L13) & V-5670 & Socket, dialight, miniature wafer .... \\
\hline V-6157 & Coil, antenna loading (L12) ..... & V -5673 & Socket, miniature wafer (un- \\
\hline V-6139 & Coil, FM antenna (L15) .i. & & shielded) ................. \\
\hline V-6138 & Coil, FM oscillator (L14) & V-4195 & Socket, molded octal tube \\
\hline V-6122 & Control, volume - 0.5 megohm (R1), & V -5405 & Socket, molded power .... \\
\hline & tone - 2.0 megohms (R2) and switch & V-3246S & Socket, mo \\
\hline & (SW1) ........................... & V-5571 & Speaker, \(10^{\text {² P P.M. }}\) ( \(\mathrm{H}-203 \mathrm{O}\) ) \\
\hline V-6123 & Dial ........ & V-6251 & \\
\hline V-6155 & Fastener ............. & \[
\mathrm{V}-3248 \mathrm{~S}
\] &  \\
\hline V-5998-2 & Grille Cloth, speaker (H-203 & V-4900-1 & Strike, bullet catch ( \(\mathrm{H}-203\) \\
\hline & mahogany) ....................... & & mahogany) \\
\hline V-6148-1 & Grille Cloth, speaker (H-203 blond) & V-4900-2 & Strike, bullet catch (H-203 \\
\hline V-6246-1 & Grille Cloth Assembly ( \(\mathrm{H}-212\) ) & V-6140 & blonde) ......... \\
\hline V-5066-5 & Hinge, L.H. (H-203 mahogany) ..... & &  \\
\hline V -5066-3 & Hinge, L.H. (H-203 blond) ...... & & Rear wafer - SW2 \\
\hline V-5066-6 & Hinge, R.H. (H-203 mahogany) .... & V-6136 & Terminal Board, PHONO-ANT. \\
\hline V-5066-4 & Hinge, R.H. (H-203 blond) & & \\
\hline V-6146-2 & Knob, band (H-212 and H-203 mahogany & V-6130 & Transformer, AM 1st and 2nd I-F ( 455 kc .) (L8, L9, C6, \\
\hline V-6146-4 & Knob, band (blond) & & C7, and Ll0, Lll, C8, \\
\hline V-6147-2 & Knob, rear (tuning) & & c9) \\
\hline V-6146-1 & Knob, OFF-ON-TONE (H-212 and H-203 mahogany) & V-5798 & Transformer, audio out- \\
\hline V-6146-3 & Knob, OFF-ON-TONE (blond) & V-6142 & \\
\hline V-6147-1 & Knob, rear (volume) & & (10.7 mc.) (Ll, L2, \\
\hline No. 47 & Lamp, pilot light ............... & & \\
\hline V-6160 & Molding & V-6129 & \\
\hline V -4696 & Nameplate, Westinghouse FM & &  \\
\hline V-6154-1 & Panel, control ................... & & C3) \\
\hline V-6125 & Pointer & & \\
\hline V -6150-1 & Pull, door (H-203 mahogany) ..... & V-6128 & Transformer, ratio detect \\
\hline V -6150-2 & Pull, door ( \(\mathrm{H}-203\) blond) ........ & & \[
(L 5, L 6, L 7, C 4, C 5)
\] \\
\hline V-3166S & Pulley, 7/16 dia. ............... & & \\
\hline
\end{tabular}


MODELS H-210, H-211, WESTINGHOUSE ELECTRIC CORP. CHASSIS V-2144,
\(\mathrm{V}-2144-1\)


FIG. 1 - DIAL DRIVE


CHASSIS,\(~\) - 2144 and V-2144-1
FIG. \(2-\) TOP VIEW

\(\frac{128 A 6}{1111-7}\)


CHASSIS V-2144 and V-2144-1

FIG. 3 - BOTTOM VIEW



\title{
WESTINGHOUSE ELECTRIC CORP.MODELS H-210, H-211,
} CHASSIS V-2144, \(\mathrm{V}-214 \mathrm{H}-1\)

\section*{ALGNMENT}

It is recommended that the chassis be isolated from the power line by means of an isolation transformer.

Make certain that the dial pointer is correctly positioned on the dial cord.
While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.
\begin{tabular}{|c|c|c|c|c|}
\hline Step & Connect Signal Generator to - & \begin{tabular}{l}
Signal \\
Generator Frequency
\end{tabular} & ```
Radio
    Dial
Setting
``` & Adjust \\
\hline 1. & Stator of R-F tuning capacitor (C7) through a 0.1 mfd capacitor & 455 kc . & maximum capacity & Pri. and sec. of 1 st and 2 nd I-F transformers for max. output \\
\hline \multicolumn{5}{|r|}{NOTE: If the I-F transformers are badly mis-aligned, it may be impossible to obtain sufficient output to use the above system. In this event, it will be necessary to align each transformer separately. Start vith the last I-F transformer and work forvard, connecting the signal generator to the control grid of the tube preceding. the transformer under alignment.} \\
\hline 2. & Radiated signal (no actual connection) & 1615 kc . & minimum capacity & Osc: trimmer (C10) for max. output \\
\hline 3. & Radiated signal (no actual connection & 1400 kc . & 1400 kc . & Ant. trimmer (C8) for max. output \\
\hline
\end{tabular}

\section*{PARTS LIST FOR MODELS H-2IO AND H-2II}

When ordering parts, specify model number of set in addition to part number and description of part.
\begin{tabular}{|c|c|}
\hline Part No. & Description \\
\hline V-6188 & Background Rivet Assembly, dial \\
\hline V-1168-1 & Cabinet (H-210 Maroon) \\
\hline V-1168-2 & Cabinet (H-211 Grey) \\
\hline V-6230 & \[
\begin{aligned}
& \text { Capacitor, electrolytic .. } \\
& 50 \mathrm{mfd} 150 \mathrm{v} . \\
& 50 \mathrm{mfd} 150 \mathrm{v} . \\
& \text { (C5) }
\end{aligned}
\] \\
\hline V-6231 & \begin{tabular}{l}
Capacitor, variable 2-gang .. \\
Tuner, antenna (C7) \\
Trimmer, antenna (C8) \\
Tuner, oscillator (C9) \\
Trimmer, oscillator (C10)
\end{tabular} \\
\hline V-5618-1 & Capacitor, . 05 resonant (C11) \\
\hline RCP10W4303A & Capacitor, . 03 mfd 400 v. (C12) \\
\hline RCP10w4.103A & Capacitor, 01 mfd 400 v. (C13) \\
\hline RCP10W4503A & Capacitor, 05 mfd 400 v. (C14, C15) \\
\hline RCP10W4502A & Capacitor, . 005 mfd 400 v. (C16) \\
\hline RCM 20 A471M & Capacitor, 470 mmf ( \(\mathrm{C} 17, \mathrm{C} 18\) ) \\
\hline \[
\begin{aligned}
& \text { RCP } 10 W 4203 A \\
& \text { V- } 5426
\end{aligned}
\] & Capacitor, . 02 mfd 400 v. (C19) Clip, I-F mounting \\
\hline V-568 4 & Clip, tubular (Back cover clamp) ............................. \\
\hline V-6182 & Clip, spring (Back cover catch) \\
\hline V-5851 & Coil, oscillator (L5, L6, L7) \\
\hline V-6198-1 & \[
\begin{aligned}
& \text { Control, volume, } 500 \text { K (R1, } \\
& \text { SW1) (H-2 10) ................ }
\end{aligned}
\] \\
\hline V-6198-2 & \[
\begin{aligned}
& \text { Control, volume, } 500 \text { K (R1, SW1) } \\
& \text { (H-211) ............................. }
\end{aligned}
\] \\
\hline V-6242-1 & Cover Plate, trim (H-211) \\
\hline V.6232-1 & lt \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Part No. & Description \\
\hline V-6184-1 & Knob (H-210) \\
\hline V-6184-2 & Knob (H-211) \\
\hline \#47 & Lamp, pilot (H-211) \\
\hline V-6186 & Loop, antenna \\
\hline V-6.190 & Pointer \\
\hline RCioaElolJ & Resistor, 100 ohms \(1 / 4 \mathrm{w}\). (R3) \\
\hline RC30AE122M & Resistor, 1200 ohms 1 w. (R4) \\
\hline RC20AE121J & Resistor, 120 ohms \(1 / 2 \mathrm{w}\). (R5) \\
\hline RCIOAE474M & Resistor, 470,000 ohms \(1 / 4 \mathrm{w}\). (R6) \\
\hline RCIOAE334M & Resistor, 330,000 ohms \(1 / \mathrm{w}\). (R7) \\
\hline RCIOAE103M & \begin{tabular}{l}
Resistor, 10,000 ohms \(1 / 4 \mathrm{w}\). \\
(R8) (H-211)
\end{tabular} \\
\hline RClOAE106M & Resistor, 10 megohms 1/4w. (R9) \\
\hline RC10AE2254 & Resistor, 2.2 megohms \(1 / 4 \mathrm{~m}\). (R10) \\
\hline RCioAE 223 M & Resistor, 22,000 ohms \(1 / 4 \mathrm{w}\). (R11) \\
\hline RC20AE330M & Resistor, 33 ohms 1/2 w. (R12) \\
\hline RCIOAE224M & Resistor, 220,000 ohms \(1 / 2 \mathrm{w}\). (R13) \\
\hline RC30AE470n & \[
\begin{aligned}
& \text { Resistor, } 47 \text { ohms } 1 \text { w. (R14) } \\
& (\text { H-210) } . ., \ldots . . . . . . . . . . . . . . . . . . .
\end{aligned}
\] \\
\hline V-5673 & Socket, miniature wafer, unshielded (50C5,35W4) \\
\hline V-5852-1 & Socket, miniature wafer (12AT6, 12BA6) \\
\hline V-5852-3 & Socket, miniature wafer (12BE6) \\
\hline V-6193 & Speaker, 4" P.M. \\
\hline V-4057 & Spring, dial drive \\
\hline V-6199-2 & Transformer, lst and 2nd I-F (C1, C2, L1, L2, and C3, C4, \\
\hline & L3, L4) ............ \\
\hline V-6233-1 & Transformer, output \\
\hline
\end{tabular}




©John F. Rider

\section*{Alignment Data}

An OUTPUT METER or other indication device should be used for accuracy in making ganging adjustments. If an output meter is not available, the tuning indicator may be used as an output indicator. Resonance of the circuits will be indicated by the maximum closing of the tuning eye.

ALIGNMENT OF STANDARD BROADCAST (AM) BAND.
1. Connect signal generator to lug on-ANT. AM section of variable condenser.
2. Set volume control to near maximum.
3. Set tuning dial at 1500 K.C.
4. Set signal generator at \(456 \mathrm{~K} . \mathrm{C}\).
5. Align trimmers in the following order:
1. Secondary 2nd. I. F. ( \(C-64\) )
3. Secondary 1st. I.F. (C-62)
2. Primary 2nd. I. F. (C-63)
4. Primary 1st. I.F. (C-61)

Note: Repeat procedure to obtain greatest accuracy in the adjustment of the trimmer condensers.
6. Turn condenser gang to full maximum capacity and check position of dial pointer with reference line on the scale which is the second graduation to the left of the \(550 \mathrm{~K} . \mathrm{C}\). calibration.
7. If chassis is out of the cabinet signal generator should be connected across the loop antenna socket when adjusting AM oscillator trimmer C-5, and for an approximate adjustment of trimmer \(C-4\) and L. F. antenna iron core. Final adjustment must be made with the chassis in cabinet and with loop plugged in.

Signal generator is then connected to antenna and ground terminals on cabinet. Trimmer C-4 and antenna coil slug are adjusted for maximum indication of the tuning eye at the frequencies 11 sted below.


A loading coil, can be substituted for the loop for bench alignment but the final adjustment of trimer C-4 and L. F. antenna coil slug should be made with the chassis in cabinet. To make this loading coil, close wind 50 turns of \(\$ 24\) enamel wire on a \(3 / 4^{\prime \prime}\) 0.D. bakelite form. An antenna can be coupled to the ungrounded side of this coil through a . 0001 mfd . condenser.

SIGNAL GENERATOR
FREQUENCY
1400 к. С.
1400 K. С.
800 K. C.

DIAL SETTING

1400 K. С. 1400 K.С.
800 K. С.

TRIMTER
Osc. (c-5)
Det. (C-4)
L. F. ANT.-AM

Note: Repeat procedure to obtain greatest accuracy in the adjustment of the trimmer condensers.

\section*{ALIGNMENT OF FREQUENCY MODULATION (FM) BAND.}

An unmodulated signal generator with output at 10.7 MC and 100 MC is required for FM alignment. A vacuum tube voltmeter or a high resistance voltmeter, at least 20,000 OHMS per volt, is required to measure limiter grid voltage and discriminator output voltage.

FM alignment can be accomplished with an FM signal generator and oscilloscope. Instructions for this type of aligment are furnished by the manufacturers of FM signal generators.

\section*{I. F. SECTION}
1. Connect 10.7 MC Signal Generator across ANT. FM section, (copper plates), of tuning condenser gang.
2. Connect VIVM or high resistance voltmeter across \(\mathrm{R}-34\) with positive terminal to ground.
3. Adjust trimmers C58, C57, C56, C55, C54 and C53 in order listed for maximum voltmeter reading.

Note: Reduce output from signal generator as alignment progresses so that the 11 miter grid voltage does not exceed 5 volts.
4. With signal generator connected as above, remove voltmeter from limiter grid and connect across discriminator load resistor, R39.
5. Adjust trimmer C-59 on Disc. Transformer for maximum voltmeter reading.
O. Connect voltmeter from 6 H 6 pin \(\neq 4\) to ground.
7. Adjust trimmer C-60 on Disc. Transformer for zero reading on voltmeter.

Note: When trimmer c-60 is adjusted correctly, slight detuning will give a positive voltage reading in one direction and a negative reading in the other.

\section*{R. F. SECTION}
1. Disconnect FM antenna and connect signal generator with 150 ohm resistor in each lead to FM ANT terminals.
2. Connect voltmeter across R-34.
3. Set signal generator and radio dial pointer at 100 MC .
4. Adjust trimmer \(\mathrm{C}-3\) ( OSC FM ) to bring in signal.

Note: Two settings of this trimmer will give a response. The correct adjustment is the one for least capacity.
5. Adjust trimmer C-2 (ANT FM) for maximum voltmeter reading.



PAGE 19-2 ZENITH
MODEL 6MIT788E,
ZENITH RADIO CORP. Nash


SETTING THE AUTOMATIC TUNER
Pressing the Push-Bar at the right below the dial repeatedly
Pressing the Push-Bar at the right below the dial repeatedly
will cause the tuning mechanism to change through a cycle of six positions. Five of the automatic positions may be set. for favorite local stations while the sixth position, at which " \(M\) " appears on the indicator drum, is used for selecting stations manually.

Allow the receiver to operate for at least fifteen minutes to bring the operating temperature up to normal before making the following automatic tuning settings.
Using " \(M\) " position as a reference point, Using " \(M\) " position as a reference point, the remaining five setting. Setting these stations in sequence according to their setting. Setting these stations in sequence according to their
frequencies beginning at the lowest frequency for number 1 , and progressing through to the high frequency end of the dial for number 5 is the recommended practice to simplify the identification of each automatic tuned station.

Press station selector bar until number 1 appears in station indicator window.

Pull manual tuning knob outward to engage the automatic mechanism.

Select the station desired and tune to its frequency by turning tuning knob. Tune very carefully for clearest

Press station selector bar, pull manual tuning knob outward, and tune in station desired for No. 2 position. Use same procedure for positions No. 3, 4 and 5.

NOTE: When " \(M\) " appears in the station indicator window, the manual tuning knob must be pulled outward and rotated to select the stations manually.



PAGE 19-4 ZENITH


©John Fp Rider





The \(7 E 01\) chassis incorporates a superheterodyne circuit with two stages of IF , and one stage of RF amplification on all bands. When adjustments are made on the 7 or or any AC-DC chassis, a line isolation transformer (10 voltage, reverse the plug before handling the set. and screw into the coil forms. The slugs are slotted for a small size fiber screw driver. Do not press hard on the aligning tool or the threads in the . FM RF Alignment: The same coil slug arrangement which tunes the 100 MC FM band also tunes the 45 MC band. However, on 45 MC the band switch connects trimmer condensers in parallel and padding wires in series with the 100 MC coils. The tuning slugs are attached to threaded shafts and the slugs are varied in adjustments FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5) use sufficient signal input to get a good positive and
 The tone control is of the low impedance type in which a portion of the audio voltage is taken from the voice coil and fed back into the grid of the
first audio. The voltage is fed back out of phase. R25, 26 and C 25 determine the characteristic of the feed back voltage. A much greater varation of tone cam be had by this system. off center. This tap is the B+ connection from filter capacitor ren oflor selenium nectifier to the 3 of plate. The ower connection of the output magnetic field which is 1800 out of phase with the mangetic field produced by current flowing in whe opposite direction through the output traps former to
the in thing through

Number whe The output transformer must be replaced with an exact duplicate, Part No. 95-1035 be sure to add the speaker code letter to the transformer Part
ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillator to & Dummy Antenna & Input Signal Frequency & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 7 12BE6 Converter & . 05 Mfd . & 455 KC. Modulated & BC & 600 Kc. & \[
\begin{aligned}
& \mathrm{L}-11,12,15,16 . \\
& 19 \text { and } 20
\end{aligned}
\] & Align I. F. channel for maximum output. \\
\hline 2 & 2 turns loosely cpld. to wavemagnet & & 1600 Kc . Modulated & BC & 1600 Kc. & Cl 2 & Set oscillator to dial scale. \\
\hline 3 & 2 turns loosely cpld. cpld. to wavemagnet & & 1400 Kc . Modulated & BC & 1400 Kc. & C11 and C2 & Align det. and ant. stages. \\
\hline 4 (a) & \[
\begin{aligned}
& \text { Pin I (grid) on 12AU6 } \\
& \text { limiter. }
\end{aligned}
\] & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \hline \text { FM } \\
& 45
\end{aligned}
\] & & \[
\begin{aligned}
& \text { L21 coil slug } \\
& \text { Primary discr. }
\end{aligned}
\] & Align primary of discriminator for maximum reading. \\
\hline 5 (b) & \[
\begin{aligned}
& \text { Pin 1 (grid) on } 12 \text { AU6 } \\
& \text { limiter. }
\end{aligned}
\] & . 05 Mfd . & \[
\begin{aligned}
& 10.7 \mathrm{Mc} \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{aligned}
& \hline F M \\
& 45
\end{aligned}
\] & & \[
\begin{aligned}
& \text { L22 coil slug } \\
& \text { sec. of discr. }
\end{aligned}
\] & Adjust secondary of discriminator for zero reading. \\
\hline 6 (c) & Pin 1 (grid) on 12BA6 2nd \(1 F\). & . 05 Mfd . & 10.7 Mc. Unmodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& 45 \\
& \hline
\end{aligned}
\] & & LI7 and LI8 Prim. and Sec. of 3rd IF trans. & Align 3rd IF transformer for maximum reading. \\
\hline 7 (c) & ```
Pin 1 (grid) on 12BAl6
lst IF.
``` & . 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& 45
\end{aligned}
\] & & L13 and L14 Prim. and Sec. of 2nd IF transformer & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 7 (grid) on 12BE6 converter tube socket & . 05 mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45 \\
& \hline
\end{aligned}
\] & & L9 and LIO Prim. and Sec. of lst IF transformer & Align lst IF transformer for maximum reading. \\
\hline 9 (c) (d) & & 270 ohms & 98 Mc . Unmodulated & \[
\begin{array}{r}
\text { FM } \\
100
\end{array}
\] & 98 Mc. & L6 Osc. Coil Slug & Set Oscillator to dial scale. \\
\hline 10 (c) (d) & Antenna Post F (Re- & 270 ohms & 98 Mc . Unmodulated & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & 98 Mc. & L3 and L2 Det. and RF coil Slugs & Align det. and ant. stages to maximum reading. \\
\hline 11 (c) & move line ant.) & 270 ohms & 45 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45
\end{aligned}
\] & 45 Mc. & C17 & Set oscillator to dial scale. \\
\hline 12 (c) & & 270 ohms & 45 Mc. Unmodulated & \[
\begin{gathered}
\text { FM } \\
45
\end{gathered}
\] & 45 Mc. & C5 Det., C5 Ant. & Align detector and ant. stages for maximum reading. \\
\hline
\end{tabular}
Alignment of this chassis will in most cases be unnecessary unless an if or RF transformer is replaced or the adjustments have been tampered with.
A vacuum tube voltmeter with an isolation resistor of 2000,000 ohms in series with the hot lead will serve for fM adjustments. This lead
should be shielded.
An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all am adjustments
(a) Vacuum Tube Voltmeter Lug 6 on discriminator transformer to chassis (half discriminator load) (c) Vacuum Tube Voltmeter Lug 3 on 3rd IF transformer (Limiter Grid).
(d) Loosen Slugs by applying a hot iron to the cement.

\section*{ZENITH RADIO CORP}

REF. NO.
DESCRIPTION

46-538
46-688
46-718
54-211
57-1335
76-493
78-786
80-69
80-209
80-444
80-580
80-581
83-1504
93-475
94-371
97-284
100-97
188-30
188-102
S-13944
S-13945
S-13981
S-13982
S-13983
S-14129
S-14429
S-11157 L5 Broadcast Oscillator Coil Assembly.
S-12256 L7 A.C. Line Choke Coil Assembly
S-12259 L6 F.M. Oscillator Coil Assembly
S-13871 L3 F.M. Detector Coil Assembly
. . . . . . . . .

S-13970 Tl lst I.F. Transformer Assembly
S-13971 T2 2nd I.F. Transformer Assembly
S-13972 T3 3rd I.F. Transformer Assembly
S-13973 T4 Discriminator Transformer Assembly.
S-13974 L4 Broadcast Detector Coil Assembly.
S-13997 L8 Filament Choke Coil Assembly.
S-14126 L23 R.F. Choke Coil Assembly.
S-14192 L2 F.M. Antenna Coil Assembly.
93-125 *6 Internal Shakeproof Lockwasher *1206.
93-126 \#8 Internal Shakeproof Lockwasher *1208
93-665 Fibré Washer

93-889 Insulating Washer.
94-334 Speaker Mtg. Bushing
94-485 Fibre Bushing.
94-598 R.F. Plate Mtg. Bushing.
95-1035 Output Transformer
97-293 Insulating Stud (Chassis Mtg. Stud) ( \(\dot{4}\) used)
102-466 Dial Calibration Label
110-130 Grille Cloth
112-28J *10 x 3/4" Oval Binding Hd. Self Tapping Screw Type Z - Stat. Bronze
114-26 \#8 x \(1 / 4^{n}\) Hex Hd. Self Tapping Screw - Type \(Z^{-}\)- Cad
114-48 *6-32 x 1/4" Hex Acorn Hd. M.S., Steel N.P. (9 used)
114-78 \#8 x 5/16" Hex Hd. Slotted Self Tapping Screw (Wavemagnet Mtg.)
114-92 \#6 x 1-1/8" Hex Hd. Slotted Self Tapping Screw Type Z - Cad.
114-157 \#6 x \(1 / 2^{\prime \prime}\) Hex Hd. Self Tapping Screw - Stan-Tap. Ca
114-218 *10 x 7/8" Slotted Washer Hd. Self Tapping Screw (Chassis Mtg.)
114-291 *8-32 x 7/16" Hex Hd, Slotted M. Screw - Steel, N.P
114-292 *6 x 5/8" Hex Hd. Slotted Self Tapping Screw StanTap. - Cad.
125-17 Rubber Grommet (4 used) (49-608
125-62 Rubber Grommet (Used on R.F. Plate) (4 used)
126-554 Miniature Tube Shield.
139-69 Speaker Baffle
149-39 Iron Core (Used on ali \(\dot{\mathrm{I}} . \dot{\mathrm{F}}\). and Discriminator Trans \(f\)
149-64 Tuning Core
188-34 Retaining Ring
202-506 F.M. Instruction Book.
202-553 Instruction Book
212-3 Selenium Rectifier (or 212-4).
S- 13977 Wavemagnet Assenbly - Type 29D
S-14128 Cabinet Back, A.C. Plug and Cord Àssembly ( \({ }^{(7 \mathrm{H} 820}\) )
S-14168 Bandswitch and Terminal Strip Assembly
S- 14358 Wavemagnet Cable Assembly.


PART NO. REF. NO
DESCRIPTION

CONDENSERS
\begin{tabular}{|c|c|c|c|}
\hline 22-162 & C31 & 100 Mmfd . (or 22-1669) & 500 \\
\hline 22-365 & C20 & 100 Mmfd . (or 22-1701) & . 500 V . \\
\hline '22-829 & C10 & . 05 Mfd . & 200 V . \\
\hline 22-830 & C22 & . 02 Mfd . & . 600 V . \\
\hline 22-1017 & C30 & . 05 Mfd . & . 400 V . \\
\hline 22-1138 & C23 & 500 Mmfd . (or 22-1703) & .500 V . \\
\hline 22-1220 & Cl5 & . 002 Mfd & -605 V. \\
\hline 22-1367 & Cl4 & 50 Mmfd . & . 500 V . \\
\hline 22-1385 & C19 & . 01 Mfd. & . 200 V. \\
\hline 22-1418 & C25 & . 1 Mfd & 200 V . \\
\hline 22-1506 & C6 & 22 Mmfd . (Ceramic) & . 500 V . \\
\hline 22-1507 & C18 & 25 Mmfd . (Ceramic) & 500 V . \\
\hline
\end{tabular}

22-1661 C26, C27 Dry Electrolytic 80-40-40 Mfd. 150 V. X 40 C28, C29 Mfd. - 25 V
\[
\begin{array}{ll}
22-1669 \\
22-1676 & \text { C4 }
\end{array} .001 \mathrm{Mfd} \text {. (Ceramic). . . . . . . . } 500 \mathrm{~V} \text {. }
\]
22-1676 C4
\[
\begin{aligned}
& 22-1677 \mathrm{Cl} \\
& 22-1683 \mathrm{Cl}
\end{aligned}
\]

22-1683 C21
22-1685 C5
22-1686 Cl7 22-1688 C8
22-1689 C13
22-1691 Cl6 22-1702 C24 22-1705 C2 22-1706 C7

63-1202 R22
63-1450 R21
63-1452 R23 63-1582 R26 63-1584 R20

\section*{63-1737, R1} 63-1747 R27 63-1772 R2 63-1779 R3 63-1765 R19 63-1786 R7 63-1799 R25 63-1806 Rl4 \(\quad 3300\) Ohm (Insulated) 63-1810 R15 3900 Ohm (Insulated) 63-1871 R29 5600 Ohm (Insulated) 63-1824 R13 8200 Ohm (Insulated) 63-1841 R8 22M Ohm (Insulated) 63-1856 Rll 47M Ohm (Insulated) 63-1870 R10 100M Ohm (Insulated) 63-1876 R16 150M Ohm (Insulated) 63-1884 R4 220M Ohm (Insulated) 63-1898 Rl2 470M Ohm (Insulated) 63-1926 R6 2.2 Megohm (Insulated)

12-1070 Wavemagnet Mounting Bracket.

14-848 Model 820W - Plastic Cabinet (7H820W)
14-1020 Model 820 - Bakelite Cabinet (7H820)
19-139 Cabinet Back Retainina Clip (4 used)
49-608 71/n P. M. Speaker 208-608 and Voice Coil
54-30 *8-32 x 5/16" \(\times 7 / 64^{n}\) Hex Nut - Steel N.P. ( 6 used)
54-139 *3/8-32 x 9/16 \({ }^{\mathrm{x}}\) Palnut - Type 9N-Steel-Cad. (2 used
54-226 Speed Nut - Tinnerman *C518B-014-27 (3 used)
57-1269 I.F. Transformer Terminal Plate.
58-168 Two Prong Plug
73-30 *6-32 x 1/4". Hex Hd. Set Screw - Cuppoint (2 used)
78-782 Socket - Miniature Tube ( 7 Contact) ( 2 used)
78-788 Socket - Miniature Tube (9 Contact)
78-794 Socket - Miniature Tube ( 7 Contact) (3 used)
78-795 Socket - Miniature Tube (7 Contact).
83-1063 Threaded Insert (used on all I.F. Transformers).
83-1064 Threaded Insert (used on all I.F. and Discriminator Transf ormers)
83-1090 Insulating Strip (58-168).
83-1479 Insulating Strip
83-1480 Insulating Strip
83-1503 Tone Arm Insulating Strip.
85-417 Band Switch (use S-14168).
.93-2 . \(016 \times .134 \times 1 / 4^{\text {" }}\) Brass Washer.
93-94 Bakelite Shoulder Washer


\section*{Lincoln}

\section*{Lincoln Receiver Installation}

1-Remove the cardboard cover from the speaker hole in the center of the instrument panel. Do not discard the nuts. Remove the bezel from the instrument panel by loosening the nuts on the underside.

2-Remove the protective cover from the speaker. Install the speaker on the rear of the grille so the cable is toward the left. Use the nuts that held the instrument panel hole cover in place.
3-Hang the hook bolts " \(A\) " in the holes provided for them in the dash so that the hooks are turned away from the receiver.

4-Place the receiver in position and slip the threaded end of the hook bolts through the upper hanger brackets.
5-Apply lock washers " \(B\) " and wing ruts " \(C\) " to the hook bolts and tighten them sufficiently to hold the receiver in place while installing the lower support brackets "D." Fasten the tapped end of the brackets to the instrument panel, using spacer washers " \(F\)," lock washers " \(B\) ", and oval head screws " \(E\)." Fasten the other end of the bracket to the lower angle bracket of the receiver. Tighten all screws and nuts so that the receiver is held firmly in place (Fig. 2).
6 - Connect the " \(A\) " lead to the battery terminal of the circuit breaker on the firewall. (Fig. 3.)
7 -Connect the speaker cable and the antenna lead-in cable to the receiver and turn the power on.
8-Place the escutcheon plate, fumished with the receiver, over the tuning and volume control shafts and fasten it in place with the two \(8 / 32^{\prime \prime}\) flat head screws furnished in the installation kit.

9-Fit tuning and volume control knobs to their respective shafts.
NOTE: Tuning control knob is fastened to the shaft with \(\alpha\) set screw. Shaft has \(\alpha\) milled recess for the screw.

\section*{Lincoln Continental Receiver Installation}

The Continental Radio installation is similar to the Lincoln installation with the exception of the speaker.
To install the Continental speaker, remove the speaker grille which is held in place by four nuts on the back of the instrument panel. Place the speaker in position through the front of instrument panel so the cable is to the left. Fasten securely with the four No. 10/32 machine screws and lock washers. Replace the grille and proceed with the installation of the receiver as instructed under Lincoln Receiver installation. Note position of bracket D in fiqure 2 A .

\section*{Foot Control Switch Installation}

1-Remove the floor mat around the clutch and brake pedals.
2-Drill a hole in each of the three extrusions in the floor, between the clutch and brake pedals, with a No. 27 drill. (Fig. 3.)
3-Fasten the foot control switch in place with the sheet metal screws furnished. Dress the cable so that the plug can be inserted into the foot switch cable receptacle at the left side of the receiver as shown in figure 2.

4-Cut a hole in the floor mat for the foot switch button. anstall the foot switch eyelet (furnished in the installation kit) in the hole. Replace the floor mat. A piece of \(11 / \mathrm{s}^{\prime \prime}\) pipe that has been sharpened on the inside of one end may be used to cut the hole.

ANTENNA. The new Lincoln antenna is especially designed to work satisfactorily with this receiver. The installation instructions are included with the antenna.


IMPORTANT: 1200 K.C. ANTENNA ADJUSTMENT. After the receiver has operated for approximately 15 minutes, tune in a weak station near 1200 Kc . Adjust the antenna trimmer (Cl, Fig. 2) for maximum signal.



Pressing the station selector touch-bar six times will cause the tuning mechanism to change through a cycle of six positions. Five of the Adjust-O-Matic positions may be set for favorite local stations. A red dot will appear in the tuning scale background when the Adjust-O-Matic is in the sixth position. This position may be used tor selecting stations manually.
Using the manual (DIAL) position as a reference point, the remaining five positions may be adjusted in succession to any desired dial settings. Setting the stations in sequence according to their frequencies, beginning at the low frequency and progressing through to the high frequency end of the dial, is the recommended practice for simplifying the identification of each Adjust-O-Matic station.

Turn the receiver on and allow it to operate for at least fifteen minutes to bring the temperature up to normal before making the following Adjust-O-Matic settings.
1-Press station selector touch-bar (Figs. 1A and 1B) until red dot appears in dial scale background. Press the touch-bar once more to advance Adjust-O-Matic mechanism to No. 1 position.
2-Puil manual tuning knob outward to engage the Adjust-O-Matic mechanism.

3-Select the station desired and tune to its frequency by turning the tuning knob. Tune very carefully for clearest reception.
CAUTION: DO NOT ATTEMPT TO FORCE THE KNOB IN. The knob will automatically return to the "IN" position when the station selector touch bar or the foot switch is operated.
4-Press station selector bar, pull tuning knob outward, and tune in station desired for No. 2 position. Use same procedure for positions No. 3, 4 and 5. Note: When the red dot appears in the tuning scale background, the manual tuning knob must be pulled outward and rotated to select the stations manually.

\section*{Interference Elimination}

IMPORTANT: Use the utmost care in the following operations to insure freedom from interference. Be sure that clean contacts are made when connecting condensers in the car. If necessary, clean away paint or dirt with emery paper to make good ground. Tighten all bolts and nuts securely.
1. Mount the voltage regulator condenser No. 22-1192 and the ground strap No. S-9343 on "ground" terminal of the voltage regulator. (Fig. 4.) Connect the lead of the condenser to the ARM. terminal of the voltage regulator. Connect the end of the ground strap to the lower, left hand voltage regulator mounting screw. (Fig. 4.)
2. Mount condenser No. 22-1111 under the lower right hand voltage regulator mounting bolt, and connect the lead to the BATT. terminal of the voltase regulator. (Fig. 4).
3. Install the water temperature gauge condenser No. 221113 with its separate bracket (which fastens under one of. the cylinder head nuts.) (Fig. 5.)
4. Install the condenser No. 22-1113 on the oil gauge unit. (Fig. 6.)
5. Install the motor h o o d grounding spring. (Fig. 7.)


PAGE 19-16 ZENITH MODELS 8H832, 8H861, CHASSIS 8E20

tUBE, TRIMMER LOCATION AND DIAL CABLE DRAWING

\(\begin{array}{ll}n & 0 \\ 4 & 0\end{array}\) 6uTu
tone
conv
ze fib ntional. \(F\) transfor
- 0 に 0 た






 are fed back




\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect
oscillator to & \[
\begin{gathered}
\text { Dummy } \\
\text { Antenna }
\end{gathered}
\] & Input signal Frequency & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 7 6BE6 Converter & 05 Mfd . & 455 KC. Modulated & вC & 600 Kc . & \[
\text { L-11. 12. 15, } 16 .
\]
\[
19 \text { and } 20 .
\] & Align I. F. channel for maximum output \\
\hline 2 & \multirow[t]{2}{*}{2 turns loosely cpld. to wavemagnet.} & & \[
\begin{aligned}
& 1600 \mathrm{Kc} . \\
& \text { Modulated }
\end{aligned}
\] & BC & 1600 Kc . & C12 & Set oscillator to dial scale \\
\hline 3 & & & 1400 Kc . & вC & 1400 Kc . & C11 and C2 & Align det and ant stages \\
\hline & \multirow[t]{4}{*}{Pin 1 (arid) on 6AU6 Limiter} & & Modulated & \({ }_{\text {FM }}\) & 1400 Kc . & L21 coil slug & Align primary of discriminator \\
\hline 4 (a) & & . 05 mfd & Unmodulated & 45 & & Primary discr. & for maximum reading. \\
\hline & & & 10.7 Mc & FM & & L22 coil slug & Adjust secondary of discriminat- \\
\hline 5 (b) & & . 05 mfd . & Unmodulated & 45 & & sec. of discr. & or for zero reading. \\
\hline 6 (c) & Pin 1 (grid) on 6AU6
2nd IF. & 05 mfd & 10.7 Mc . Gimodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& 45
\end{aligned}
\] & & L17 and L18 Prim. and Sec. of 3rd If trans. & Align 3rd IF transformer for maximum reading. \\
\hline 7 (c) & \begin{tabular}{l}
1st IF. \\
Pin 1 (grid) on 6BA6
\end{tabular} & 05 mfd & 10.7 Mc Unmodulated & \[
\begin{gathered}
\mathrm{FM} \\
45
\end{gathered}
\] & & L13 and L14 Prim. and Sec . of 2 nd If transformer & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 7 (grid) on 6EE6 converter tube & 05 Mfd . & 10.7 Mc . Unmodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& 45 \\
& \hline
\end{aligned}
\] & & L9 and L10 Prim and Sec. of 1 st IF transformer & Align lst If transformer for maximum reading \\
\hline 9 (c) (d) & \multirow[t]{5}{*}{FM Antenna Post (Remove line ant.)} & 270 ohms & 98 Mc . Unmodulated & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & 98 Mc . & L7 Osc. Coill Slug & Set Oscillator to dial scale. \\
\hline & & & 98 Mc . & \({ }^{\text {FM }}\) & & 14 and L3 Det. & Align det. and ant. stages to \\
\hline 10 (c) (d) & & 270 ohms & Unmodulated & 100 & 98 Mc . & and RF coil Slugs & maximum reading. \\
\hline 11 (c) & & 270 ohms & 45 Mc . & \({ }_{45}\) & 45 Mc . & C17 & Set oscillator to dial scale \\
\hline 12 (c) & & 270 ohms & 45 Mc . Unmodulated & \[
\begin{aligned}
& \mathrm{FM} \\
& \hline 5 \mathrm{Na}
\end{aligned}
\] & 45 mc . & C7 Det.. C7 Ant. & Align detector and ant. stages for maximum reading. \\
\hline
\end{tabular}

\footnotetext{
should be shielded.
An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.
}

\section*{}

S-11157
S-12256
S- 12259
S-13800
S-13871
S-13970
S-1397
S-13972
S-13973
S-1397
S-1412
S-141
PL-1

\(\underset{y}{\mathrm{y}}\) (Shorit)

COILS AND CHOKES
Broadcast Oscillator Coill Assembly
A. C. Line Choke Coil Assembly A. C. Line Choke Coil Assembly
F. M. Oscillator Coil Assembly
Tone Choke Assembly.


 roadcast De tector Coil Asse

\section*{O5 MFD. . . . CONDENSERS}

\[
\begin{aligned}
& 05 \mathrm{MPFD} \text { MFD. } \\
& 02 \mathrm{MFD} \\
& 005 \mathrm{MFD} \\
& 250 \mathrm{MMFD} .
\end{aligned}
\]
\[
\text { or } 2 \dot{2}-1670
\]
(Craz-ict

\[
\begin{aligned}
& \text { (Ċeraimic) } \\
& :\left(\begin{array}{c}
\text { Ceramic) }
\end{array}\right.
\end{aligned}
\]

RESISTORS
\begin{tabular}{|c|c|}
\hline 63-957 & R4 \\
\hline \(63-1369\)
\(63-1566\) & \({ }_{\text {R22 }}^{\text {R28 }}\) \\
\hline \(63-1588\) & R30 \\
\hline -63-1589 & \({ }_{\text {R33 }}{ }_{\text {R37 }}\) \\
\hline 63-1737 & \({ }^{\text {R2 }}\) \\
\hline - \({ }_{\text {63-1768 }}^{63-1771}\) & \({ }_{\text {R }}^{\text {R34 }}\) \\
\hline 63-1772 & R7 \\
\hline \(63-1778\) & \({ }_{\text {R10 }}\) \\
\hline
\end{tabular}

\[
\begin{aligned}
& .500 \mathrm{v} \\
& .500 \mathrm{v}
\end{aligned}
\]

RESISTORS--Continued
\begin{tabular}{|c|c|c|}
\hline 63-1810 & R22 & 3900 Ohm \\
\hline 63-1813 & R31 & 4700 Ohm \\
\hline 63-1824 & R20 & 8200 Ohm \\
\hline 63-1841 & R16 & \(22 \mathrm{~K} \mathrm{Ohm}\). \\
\hline 63-1842 & R8 & \(22 \mathrm{~K} \mathrm{Ohm}\). \\
\hline 63-1848 & R23 & \(33 \mathrm{~K} \mathrm{Ohm}\). \\
\hline 63-1856 & R19 & \(47 \mathrm{~K} \mathrm{Ohm}\). \\
\hline 63-1869 & R13 & 100 K Ohm \\
\hline 63-1870 & R18 & 100 K Ohm \\
\hline 63-1876 & R25 & 150 K Ohm \\
\hline 63-1883 & R26 & 220 K Ohm \\
\hline 63-1884 & R9 & 220 K Ohm \\
\hline 63-1897 & R28 & 470 K Ohm \\
\hline 63-1912 & R3 & 1 Megohm \\
\hline 63-1918 & R35 & 1.5 Megohm \\
\hline 63-1926 & R1.1 & 2.2 Megohm \\
\hline 63-1961 & R24 & 15 Megohm \\
\hline
\end{tabular}
(Insulated)


\section*{MISCELLANEOUS}

2-134
11-104
46-697
46-718 49-641

54-30
54-31
54-139
54-226
54-262
57-1353
57-1386
70-83
72-58
78-250
78-782
78-788
78-793
78-794
85-424
93-125
93-127
93-392
93-719
95-1062
95-1096
112-56
112-142
114-43
114-128
114-159
114-270
114-292
125-62
166-46
192-115
196-109
202-506 202-610
S-14647
S-14648

57-1351
57-1352
76-444
80-595
S-13800
S-14255
S-14260
S-14261
S-14273
S-14274
S-14275
S-14276
S-14277
S-14278
S-14310
S-14311

SP-1

Cabinet Back
Line Cord \& Piug \((7 \mathrm{ft}\).
Volume \& Tuning Contrci Knob ( 2 used)
Bandswitch Knob.
51/4" P. M. Speaker (2 used)
208-641 Cone \& Voice Coil.
\#8-32 x \(5 \% 6^{\pi}\) Hex Nut - Steel - N.P. (4 used).
\#10-32 x \(3 / 8^{\prime \prime} \times 1 / 8^{\prime \prime}\) Hex Nut (4 used on 95-1.062)
\#3/8-32 x 9/16" Palnut-Cads (used on 63-1588).
Speed Nut (3 used)
Speed Nut
Diffusing Piate.
Dial Escutcheon.

*2 \(x^{3 / 8 " ~ P h i l l i p s ~ F l a t ~ H d . ~ W o o d ~ S c r e w ~(~} 6\) used) (Escutcheon Mtg.).
Electrolytic Capacitor Socket.
Miniature Tube Socket (2 used)
Miniature Tube Socket ( 9 Contact)
Octal Tube Socket (2 used)
Miniature Tube Socket ( 3 used) \(\left(7{ }^{\circ}\right.\) Contact)
Bandswitch
\#6 Int. Lockwasher
\#10 Int. Lockwasher \((\dot{4}\) used on \(95-1062)\).
\(3 / 32^{n} \times 33 / 64^{\prime \prime} \times 1\) Brown Felt Washer
. \(031 \times 3 / 16^{n} \times 7 / 16^{n}\) Steel Washer.
Pwr. Transformer
Output Transformer
* \(6 \times 1 / 4\) " Hex. Hd. Seif Tapping Screw
\# \(8-32 \times 1-1 / 8^{\prime \prime}\) Swedqed Hd. M.S. (4 used)
\#10-32 x 3/8" Hex. Washer Hd. M.S.-Steel- \(\mathrm{N} . \dot{\mathrm{P}}\)
*10 x 1-1/16" Hex. Washer Hd. Self Tapping Screw (4.used).
(Chassis Mtg.)
\#6 \(6^{\prime} / 4^{\prime \prime}\) Hex. Hd. Seif Tapping Screw-Type A - Cad. Pi.
*8 x \(1 / 2^{\prime \prime}\) Hex. Hd. Slotted Self Tapping Screw.
*6 x 5/8" Hex. Hd. Slotted Self Tapping Screw.
Rubber Grommet (4 used)
Rubber Bumper ( 4 used) (Rubbei Feet)
Dial Glass
Dial Dust Gasket
F. M. Instruction Book

Instruction Book
Wavemagnet Assembiy Type \(29 \dot{E}\)
Wavemagnet and Back Assembly

\section*{RADIORGAN PARTS}

Radiorgan Escutcheon (L.H.).
Radiorgan Escutcheon (R.H.).
Radiorgan Knob Retaining Shaft (2 Used)
Radiorgan Mounting Spring (2 Used)
Tone Choke Assembly.
Radiorgan Mounting Bracket Assembiy ( \(\dot{2}\) Used)
Radiorgan Strip and Contact Assembly (R.H.).
Radiorgan Strip and Contact Assembly (L.H.).
Radiorgan Knob and Eyelet Assembly (Lo-Bass)
Radiorgan Knob and Eyelet Assembly (Bass)
Radiorgan Knob and Eyelet Assembly (Voice)
Radiorgan Knob and Eyelet Assembly (Treble)
Radiorgan Knob and Eyelet Assembly (Alto)
Radiorgan Knob and Eyelet Assembly (Normai).
Radiorgan Escutcheon and Knob Assembly (L. H. j) (Lo-Bass. Bass. Voice)
Radiorgan Escutcheon and Knob Assembly (R.H.) (Treble. Alto. Normal).

to the service man:
The 9E2l chassis incorporates a superheterodyne circuit with two stages of IF, and one stage of RF amplification on all bands. and fed back out of phase into the grid of the first audio. The characteristic of the feedback voltage is determined by the setting of the and R14. The amplified output is taken from the screen grid and fed back through R12 and C20 into the volume control of the 6BA6 through C21 AM Alignment: The alignment of this chassis on the standard broadcast band is conventional. The alignment slugs in the If transformers
are threaded and screw into the coil forms. The slugs are slotted for a small size fiber screm driver. Do not press hard on the aligning 1 FM RF threads in the coil forms will strip and ad ustment will be impossible. switch connects trimmer condensers in parallel and padding wires in series with the 100 MC coils. The tuning slugs are attached to threaded shafts and the slugs are varied in the field of the coils by turning the shafts clockwise or counter-clockwise. After adjustment the shafts when \(\operatorname{FM}\) IF Alignment: The same type of tuning slugs for aligning the AM IF Amplifier are used, for the FM IF's. Observe the same precautions FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 5 ) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjust-
ment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing closely when the meter starts to go to NOTE: The out of transformer must be replaced with an exact duplicate. Part No.95-1063. Be sure to add the speaker code let ter to the
. tranformer Part Number when ordering replacements.


PAGE 19－24 ZENITH
MODELS 9H881，9H882R，ZENITH RADIO CORP． 9H885，9H888R
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PAARTER & \(\xrightarrow{\text { REFFer }}\) & dESCRIPTION & PARTS LIST & MUABTER &  & DESCRIPTIOW \\
\hline & & DIAL ASSEMBLY & & 63.1856
\(63-1869\) & \[
\begin{gathered}
\mathrm{R} 19 \\
1718
\end{gathered}
\] &  \\
\hline 12－1434 & & Diad Light Mounting Pracket． & &  & \({ }_{\text {R25 }}^{\text {R25 }}\) &  \\
\hline \multirow[t]{2}{*}{} & &  & &  & \({ }_{\text {R126 }}\) &  \\
\hline & & Tuning Control Shaft & &  & \({ }_{127}^{17}\) &  \\
\hline \multirow[t]{2}{*}{} & & \({ }^{\text {Dial }}\) Cord Tial Consion Sppring & &  & \({ }_{\text {R35 }}^{\text {R3 }}\) &  \\
\hline & & Tuner Arm Tranion spring & & \({ }_{63-1926}\) & R11 &  \\
\hline － & & Toner Arm Stop Soring． & & 63－1961 & & 15 Megohm（Insulated）．．．． \(1 / 2 \mathrm{w}\) ． \\
\hline － & & （iar Light Bulb－Madad 44. & & & & miscellaneous \\
\hline \multirow[t]{2}{*}{S14254
S14256} & &  & & 11－106 & & \\
\hline & & Pointer Pulley Assembly \({ }_{\text {cose }}\) & & 54－226 & &  \\
\hline \multirow[t]{3}{*}{\begin{tabular}{c}
\(\substack{\mathrm{S} 142688 \\
\mathrm{~S} \\
\mathrm{~S} 142270}\) \\
\hline
\end{tabular}} & & & & \({ }_{78.709}\) & &  \\
\hline & & Dial Cord \＆Eyelet Assembly（ （hort）． & & － 78.7888 & & Socket－Miniature Tube（ 2 used） \\
\hline & & \({ }_{\text {Dial }}^{(26-396)}\) Sorle and Striu Assenbly & & 788－791 & & （ \\
\hline \multirow[t]{2}{*}{S14429} & & Tuner Arm Assembly & & 788－794 & &  \\
\hline & & COILS AND CHOKES & & \({ }_{855}^{85-422}\) & \({ }_{\text {S }}^{\text {S }}\) & Phono－Radio Switch itch \\
\hline \multirow[t]{8}{*}{} & & Broadeast Oscillator Coil Assenbly & & －\({ }_{\text {94－295 }}^{85}\) & & Band Switch， \\
\hline & \({ }_{17}^{124}\) & A．C．Line Choke Coil & & ¢95－598 & & P．F．F．Plate Mounting Bushing（4 used） \\
\hline & \({ }_{\text {L23 }}^{12}\) & Phono orcillator Cill Assembly & & 955－1063 & TS &  \\
\hline & \({ }^{4}\) & F．M．Detector Coil \({ }^{\text {che }}\) & & & &  \\
\hline & \(\mathrm{T}_{12}\) & 2nd I．F．Trans orner Assembly & & 1255－62 & &  \\
\hline & \({ }_{\text {T4 }}\) &  & &  & & Miniature Tube Shield（Paper） \\
\hline & \({ }_{\text {L6 }}\) &  & & 149－64 & & Tuning Core and Spring（ \(3^{\circ}\) used）： \\
\hline & & F．M．Antenna Coil Assembly & & & \multicolumn{2}{|r|}{radiorgan escutcheon parts} \\
\hline \multirow[b]{2}{*}{\({ }^{22-171}\)} & & CONDENSERS & & 57－1351 & & Aadiorgan Escutcheon（L．H．） \\
\hline & \({ }_{\text {c26 }}\) & OSsymp． & & 年 \(76-444\) & &  \\
\hline  & \({ }^{\text {c15 }}\) &  & & & &  \\
\hline \multirow[t]{2}{*}{隹边2－829} & \({ }_{\text {ce }}^{4}\) &  & & 114－159 & & \({ }_{* 6 \times 121 / 4}\) Hex．Had．Self Taping Screw \\
\hline & \({ }_{\text {c }}\) &  & & 14255 & & Radiorgan Mount ing Bracket Àssembiy \\
\hline \(\underset{\substack{22-1041 \\ 22-1136}}{ }\) & \({ }_{\text {cki }}^{\text {c }}\) &  & & S14260 & & Radiorsagn Strip and Contact Assembly \\
\hline \[
\begin{aligned}
& 22-1-120 \\
& 222-1256
\end{aligned}
\] & \({ }^{\text {C28 }}\) &  & & \({ }_{514261}\) & & Radiorgan Striv and Contact Assembly \\
\hline  & \({ }^{\text {c19 }}\) & ．01MPD．．eramic ．．．．．．． 2000 v ． & & S14274 & & Radiotiorgan Knob and Exyelet Assembly \\
\hline cele & \({ }_{\text {c }}\) &  & & S14273 & & Radioss）（Ran Knob and Eyelet Assembly \\
\hline \multirow[t]{2}{*}{} & \({ }^{\text {c8 }}\) &  & & & & huatioram knob and Eyelet Assembly \\
\hline & C29 &  & & S14275 & & Radiorgan Knob and Eyelet Assembly \\
\hline \multirow[t]{2}{*}{} & \({ }_{\text {c }}^{\text {c }}\)（39 &  & & 142 & & Radioragan Knob and Eyelet Assembly \\
\hline & \({ }_{\text {c3 }}\) &  & & S14277 & & Radiorgan Knob and Ėyelet Assembly \\
\hline \multirow[t]{2}{*}{} & \({ }_{\text {Cl }}\) & Three Gang Variable & & S14278 & & Radiorgan Knob end Ėyelèt Assembly \\
\hline & C17 &  & & S14310 & &  \\
\hline  & \({ }_{\text {cil }}\) &  & & S14311 & & Natiole \\
\hline \(\underset{\substack{22-1691 \\ 22-1705}}{22}\) & cis & S5MrD．（Sirlver on Ceramic）．Soiv： & & & & （e） \\
\hline & \({ }_{\text {clo }}\) &  & & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{MODEL 9H88I CABINET PARTS}} \\
\hline \[
\begin{gathered}
22-1717 \\
22-1718 \\
22.10
\end{gathered}
\] & \({ }_{\text {c27 }}\) &  & & & & \\
\hline 22－1719 & C33， & Two Section Electroiytic is－40 W\％DV & & 5－82 & & Plug Cara and Insulator（used on \\
\hline 22－1720 & \({ }_{\text {C37 }}^{\text {C35 }}\) C36 &  & & 19－123 & & Record Changer Mounting ci \\
\hline 22－1754 & &  & & & & Shaft Bear ing Dis \\
\hline & & RES ISTORS & & & & Record Chmger Fra \\
\hline & & & & \({ }^{400} 40\) & & Cabinet tinge（c） \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
63-1065 \\
63921059 \\
63-1595
\end{gathered}
\]} & \({ }_{\text {che }}^{\text {R4 }}\) &  & & ¢ 46.648 & & Door Pull（2 used）\({ }^{\text {Doind }}\) Voium and Tuning Control \\
\hline & \({ }_{\text {R36 }}^{\text {R28 }}\) &  & & & &  \\
\hline \multirow[t]{2}{*}{} & \({ }_{\text {R21 }}\) &  & & \({ }_{46-726}^{46-78}\) & & Band Switch Knob
Phono Switch Knob \\
\hline & п37． \(\mathrm{R}^{\text {¢38 }}\) & Two eotion Candohm 1000 ohn & & & &  \\
\hline & п33 &  & & － \(57-1336\) & & Dial Escutcheon． \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(63-1768\) \\
63 \\
63 \\
63 \\
\hline
\end{tabular}} & \({ }_{\text {R34 }}\) &  & &  & & \({ }^{\text {Seven Prong Plug }}\) \\
\hline & R5 &  & & & & Screw－Steel Brass Plate（Esc．Mtg） \\
\hline  & \({ }^{\text {R32 }}\) & 6880 ohm（Insuluated）：：．．． \(1 / 2 \mathrm{w}\) & & 78－798 & & Seven Conta \\
\hline \multirow[t]{2}{*}{} & \({ }_{\text {H12 }}\) &  & & \(80-463\) & & Recored Changer Mount ting Spr ing \\
\hline & \({ }^{\text {R22 }}\) &  & & & & \\
\hline  & \({ }_{\text {R20 }}^{\text {R23 }}\) &  & & \(93-392\) & & \({ }^{3 / 32} \times 33 / 64^{\prime \prime}\) Brown Felt Washer \\
\hline  & \({ }_{816}^{814}\) &  & & ¢9 & &  \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 63-1894 \\
& 63-1848 \\
& 63-1848
\end{aligned}
\]} & \({ }_{\text {R28 }}^{\text {R23 }}\) &  & & 112－682 & & \\
\hline & & \({ }_{33 \mathrm{M}}\) ohm（Insulated）：．．．．． \(1 / 2 \mathrm{w}\) ． & & 112－682 & &  \\
\hline
\end{tabular}




\section*{CLARI-SKEMATIX \\ Registered Trademark}

PAGE 19-28 ZENITH
MODELS 9H881, 9H882R, ZENITH RADIO CORP.
CHASSIS 9E21 9H885, 9H888R


BAND-SWITCH SHOWN AT \(3^{\text {RD }}\) POSITION
F.M BAND

©John F. Rider

©John F. Rider

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & Connect Oscillator to & Dummy Antenna & Input Signal Frequency & Band & Set Dial To & Adj. Trimmers & Purpose \\
\hline 1 & Pin 7 6BE6 Converter & . 05 Mfd . & \begin{tabular}{l}
455 Kc . \\
Modulated
\end{tabular} & BC & 600 Kc. & \begin{tabular}{l}
L-10. 11. 14, 15 \\
16. 18 and 19.
\end{tabular} & Align I. F. channel for maximum output. \\
\hline 2 & \multirow[t]{2}{*}{2 turns loosely cpld. to wavemagnet.} & & 1600 Kc Modulated & BC & 1600 Kc. & C 4 & Set oscillator to dial scale. \\
\hline 3 & & & 1400 Kc . Modulated & BC & 1400 Kc . & C3 and C2 & Align det, and ant. stages. \\
\hline 4 (a) & \multirow[t]{2}{*}{Pin 1 (arid) on 6AU6 Limiter} & . 05 Mfd . & \[
\begin{aligned}
& 10.7 \mathrm{Mc} \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \text { L20 coil slug } \\
& \text { Primary discr. }
\end{aligned}
\] & Align primary of discriminator for maximum reading. \\
\hline 5 (b) & & . 05 Mfd . & \[
\begin{aligned}
& 10.7 \mathrm{Mc} \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & & L21 coil slug sec . of discr. & Adjust secondary of discriminaor for zero reading. \\
\hline 6 (c) & Pin 1 (grid) on 6AU6 2nd IF. & . 05 Mfd . & \[
\begin{aligned}
& 10.7 \mathrm{Mc} \\
& \text { Unmodulated } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & & L16 and L17 Prim. and Sec. of 3rd IF trans. & Align 3rd IF transformer for maximum reading. \\
\hline 7 (c) & Pin 1 (grid) on 6BA6 lst IF. & . 05 Mfd . & \[
\begin{aligned}
& \text { 10.7 Mc } \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & & L. 12 and L13 Priti. and Sec. of 2nd IF trans former & Align 2nd IF transformer for maximum reading. \\
\hline 8 (c) & Pin 7 (grid) on 6BE6 converter tube & . 05 Mfd . & \[
\begin{aligned}
& 10.7 \mathrm{Mc} \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{array}{r}
F M \\
100 \\
\hline
\end{array}
\] & & L8 and L9 Prim. and Sec. of lst IF transformer & Align lst IF transformer for maximum reading. \\
\hline 9 (c) (d) & \multirow[t]{2}{*}{FM Antenna Post (Remove line ant.)} & 270 ohms & 98 Mc. Unmodulated & \[
\begin{array}{r}
F M \\
100 \\
\hline
\end{array}
\] & 98 Mc. & L6 Osc. Coil Slug & Set Oscillator to dial scale. \\
\hline 10 (c) (a) & & 270 ohms & 98 Mc. Unmodulated & \[
\begin{array}{r}
\text { FM } \\
100 \\
\hline
\end{array}
\] & 98 Mc. & L4 and L3 Det. and RF coil Slugs & Align det. and ant. stages to maximum reading. \\
\hline
\end{tabular}

-


\section*{CLARI-SKEMATIX}

PAGE 19-38 ZENITH



© John F. Rider


The 11 C 21 chassis incorporate a superheterodyne circuit with two stages

 formers are threaded and screw into the coil forms. The slugs are slot ted for a small size fiber screw driver. Do not press hard on the aligning tool (fiber screv driver) or the threads in the coil forms will strip and adjustment will be impossible.
FM RF Alignaent: The same coil slug arrangement wich tunes the 100 MC Fil band also tunes the 45 MC band. However, on 45 MC the band switch connects trimmer condensers in parallel and padding vires in series with the 100 MC coils. The tuning slugs are attached to threaded shafts and the slugs are clockwise. After adjustments the shafts must be secured with a drop of speaker cement.

FM IF Alignment: The same type of tuning slugs for aligning the AM IF Amplifier are used for the FM I.F. s. Observe the same precautions when making adjustments. The second 8.3 Mc IF stage is overcoupled. Overcoupling gives a wide band pass with good sensitivity. When an overcoupled stage is aligned vith an unmodulated signal. the stage must be loaded. A 300 ohm carbon resistor soldered across the secondary of the second IF transformer provides a satisfactory load for this circuit. The resistor leads, must be kept shart to reduce the distributed capacity of the circuit.

When aligning a loaded stage, it will be found that considerable signal
 RESISTOR MUST BE REMOVED AFTER ALIGNMENT.

 increased or the signal fed into the preceding stage.

FM Discriminator Alignment: When the secondary of the discriminator is aligned (operation 9) use sufficient signal input to get a good positive and negative indication before setting the slug for zero reading. A center zero indicating meter is recommended for this adjustment, but is not absolutely necessary. Reversing the leads of a non-zero center meter, or observing
closely when this meter starts to go to the left (negative) of zero will give the same results.
ALIGNMENT PROCEDURE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation & \[
\begin{gathered}
\text { Connect } \\
\text { Oscillator to }
\end{gathered}
\] & Dummy Antenna & Input Signal Frequency & Band & \[
\begin{aligned}
& \text { Set Dial } \\
& \text { To }
\end{aligned}
\] & Adj. Trimmers & Parpose \\
\hline 1 & Pin 8 on Converter Tube 6SB7 socket & . 05 Mfd . & 455 Kc . Modulated & BC & 600 Kc. & \[
\begin{aligned}
& \text { L15.16.19.20.23 } \\
& \text { and } 24
\end{aligned}
\] & Align I.F. channel for maximum output \\
\hline 2 & Pin 1 on R.F. tube 6AGS socket & . 05 Mfd . & 455 Kc . Modulated & Aut. & Press any button on Auto. & Cl 0 & \[
\begin{aligned}
& \text { Adjust wavetrap to } \\
& \text { minimum }
\end{aligned}
\] \\
\hline 3 & 2 Turns loosely coupled to wavemag. & & 1600 Kc . Modulated & BC & 1600 Kc. & C17 & Set oscillator to dial scale \\
\hline 4 & 2 Turns loosely coupled to wavemag. & & 1400 Kc . Modulated & BC & 1400 Kc. & Cl5 \& C4 & Align det. and ant. stages. \\
\hline 5 & Antenna Post (Renove line ant.) & \[
\begin{aligned}
& 400 \\
& \text { ohms } \\
& \hline
\end{aligned}
\] & 11.7 Mc. Modulated & ST & 11.7 Mc . & C16 & Set oscillator to dial scale \\
\hline 6 & Antenna Post (Remove line ant.) & \[
\begin{aligned}
& 400 \\
& \text { 4hms }
\end{aligned}
\] & 11.7 Mc . Modulated & ST & 11.7 Mc. & C9 & Align ant stage \\
\hline 7 & Antenna Post (Re nove line ant.) & \[
\begin{aligned}
& 400 \mathrm{~ms} \\
& \hline \text { ohms }
\end{aligned}
\] & 9.7 Mc . Modulated & SW & 9.7 Mc. & C8 & Align ant. stage Repeat Oper. 6 for maximum output \\
\hline 8 (a) & Pin 4 grid on 6SH7 limiter socket & . 05 Mfd . & \[
\begin{aligned}
& 8.3 \text { Mc. } \\
& \text { Unmodulated }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{FM} \\
& \hline \mathrm{FM} \\
& \hline
\end{aligned}
\] & & L25 coil slug primary disc. & Align primary of discriminator for maxinum reading \\
\hline 9 (b) & Pin 4 grid on 6SH7 limiter socket & . 05 Mfd . & 8.3 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45 \\
& \hline
\end{aligned}
\] & & L26 coil slug sec. of discr. & Adjust secondary of discr. for zero reading \\
\hline 10 (c) & Pin 6 (grid) on 7w7 2nd IF tube socket & . 05 Mfd . & 8.3 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45
\end{aligned}
\] & & L21 \& L22 prim. \(\&\) sec. of 3rd IF trans former & Align 3rd IF transformer for maxinum reading \\
\hline \[
11 \begin{aligned}
& (c) \\
& (d)
\end{aligned}
\] & Pin 4 (grid) on 6SG7 lst IF tube socket & . 05 Mfd . & 8.3 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45
\end{aligned}
\] & & L17 \& L18 prim. \& sec. of 2nd IF trans former & Align 2nd IF transformer for maximum reading \\
\hline \[
\begin{aligned}
& 12 \text { (c) } \\
& \text { (d) } \\
& \hline
\end{aligned}
\] & Pin 8 (grid) on 6SB7 converter tube socket & 05 Mfd . & 8.3 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45 \\
& \hline
\end{aligned}
\] & & L13 \& Ll4 prim. \(\&\) sec. of lst IF transformer & Align lst IF transformer for maxinum reading \\
\hline 13 (c) & Antenna Post (Remove line ant.) & \[
\begin{aligned}
& \frac{0}{270} \\
& \text { ohms }
\end{aligned}
\] & 98 Mc . Unmodulated & \[
\begin{aligned}
& \frac{4}{F M} \\
& 100
\end{aligned}
\] & 98 Mc . & \[
\begin{aligned}
& \text { L10 Osc. coil } \\
& \text { Sluq }
\end{aligned}
\] & Set oscillator to dial scale \\
\hline 14 (c) & Antenna Post (Re move line ant.) & \[
\begin{aligned}
& 270 \\
& \text { ohms }
\end{aligned}
\] & 98 Mc . Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 100
\end{aligned}
\] & 98 Mc . & \(L 5\) and 13 Det. and RF coil slugs & Align det. and Ant. stage to maximum reading \\
\hline 15 (c) & Antenna Post (Remove line ant.) & \[
\begin{aligned}
& 270 \\
& \text { ohms }
\end{aligned}
\] & 45 Mc. Unmodulated & \[
\begin{aligned}
& \hline \text { FM } \\
& 45 \\
& \hline
\end{aligned}
\] & 45 Mc . & C22 & \[
\begin{aligned}
& \text { Set oscillator to } \\
& \text { dial scale }
\end{aligned}
\] \\
\hline 16 (c) & Antenna Post (Remove line ant.) & \[
\begin{aligned}
& 270 \\
& \text { ohms }
\end{aligned}
\] & 45 Mc. Unmodulated & \[
\begin{aligned}
& \text { FM } \\
& 45
\end{aligned}
\] & 45 Mc . & C14 and C6 & Align detector and ant. stages for maxinum reading \\
\hline
\end{tabular}

\footnotetext{
MPORTANT: Alignment of this chassis will in most cases be unnecessary unless an If or RF transformer is replaced or the adjustments
ave ben correct alignment can only be made if the following procedure is followed.
This lead must be shielded with an isolation resistor of 200,000 ohms in series with the hot lead will serve for fM adjustents.

This lead must be shielded
An ordinary AC output
adjustments.

The signal generator output should be kept just high enough to get an indicatign on the meter.
(a) Vacuum Tube Voltmeter pin 5 on discriminator transformer to chassis (half discriminator load.)
(b) Vacuum Tube Voltmeter pin 7 on discriminator transformer to chassis (full discriminator load.)
(c) Vacupm Tube Voltmeter 6SH7 limiter grid (pin 4 to chassis).
(d) 300 ohm \(1 / 2\) matt carbon resistor soldered across the secondary Lis (pin 2 and 3 of 2nd IF trans.). The leads to the resistor
met be as short me possible and the resistor removed before operation 13 is started.
The Vagal generator output should be kept just high enough to get an indicatign on the meter.
(a) Vacuum Tube Voltmeter pin 5 on discriminator transformer to chassis (half discriminator load.)
(b) Vacumm Tube Voltmeter pin 7 on discriminator transformer to chassis (full discriminator load.)
(c) Vacupm Tube Voltmeter 6SH7 limiter grid (pin 4 to chassis).
(d) 300 ohm \(1 / 2\) watt carbon resistor soldered across the secondary Lis (pin 2 and 3 of 2nd IF trans.). The leads to the resistor
(a) Vacuum Tube Voltmeter pin 5 on discriminator transformer to chassis (half discriminator load.)
(b) Vacuum Tube Voltmeter pin 7 on discriminator transformer to chassis (full discriminator load.)
(c) Vacuym Tube Voltmeter 6SH7 limiter grid (pin 4 to chassis).
(d) 300 ohm \(1 / 2\) matt carbon resistor soldered across the secondary Lis (pin 2 and 3 of 2nd IF trans.). The leads to the resistor
met be as short me possible and the resistor removed before operation 13 is started.
adjustments.
}

PARTS LIST

PART NO. REF. NO.
DESCRIPTION
DIAL ASSEMBLY

\subsection*{59.159 59.159
76.417
76.419 6. 418 \\ 78.586 \\ 80.85 80.402
80.445 \\ \begin{tabular}{l}
80.446 \\
\hline 100.36
\end{tabular} \\ 100.36
188.32 \\ 188.32
s .11330 \\ S. 11330
S .12242 \\ S. 12243 \\ S. 12245 \\ S. 12266 \\ S. 12294 \\ S. 12296}

AND CHOKES
\begin{tabular}{|c|c|}
\hline S. 11344 & 12 \\
\hline \multicolumn{2}{|l|}{S. 11591} \\
\hline S. 12249 & 11 \\
\hline S. 12250 & T2 \\
\hline S. 12251 & T3 \\
\hline S. 12252 & T4 \\
\hline S. 12256 & L27 \\
\hline S. 12281 & L8 \\
\hline S. 12282 & L4 \\
\hline S. 12291 & L7 \\
\hline S. 12292 & L11 \\
\hline S. 12293 & L9 \\
\hline S. 12301 & L3 \\
\hline S. 12302 & L5 \\
\hline S. 12303 & L 10 \\
\hline S. 12529 & \\
\hline
\end{tabular}

Oscillator Coupler Coil
Assem. (b.C. and automatic)
WAVEMAGNE T LOADING COIL
ASSEM. (USED ON S. 12356)
Ist I.F. Transformer Assembly
IST I.F. TrANSFORMER ASSEMBLY 2ND I.F. TRANSFORMER ASSEMBLY 3RD I.F. TRANSFORMER ASSEM
DI SCRIMINATOR TRANSFORMER discriminat.
Assemply.
 wavetrap coil assembly. Wavetrap coil Assembly. S. W. ANTENNA COIL ASSEMbly. S. W. Detector Coil assembly S. broadcast Detector Coil
Assembly.
F.m. antenna coil assembiy. :
F.M. DETECTOR COIL ASSEMBLY
F.m. Oscillator Coil Assembly

CONDENSERS
\begin{tabular}{|c|c|c|c|}
\hline 22. 162 & C24 & 100 mmpd . & . 600 v . \\
\hline 22.171 & C28 & . 05 MFD & . 600 V . \\
\hline 22.188 & & . 02 Mfd & 400 v . \\
\hline 22.196 & C12 & .01 MFD & . 600 V . \\
\hline 22-242 & C36 & 750 MmFD . & 500 V . \\
\hline 22. 289 & C33 & 50 MmFD & 600 \\
\hline 22.319 & C34 & . 005 MFD . & . 200 \\
\hline 22.365 & C27 & 100 MmFD . & . 600 V . \\
\hline 22.448 & C30 & . 004 MFD . & . 600 \\
\hline 22.829 & C23 & .05 MFD & . 200 \\
\hline 22.830 & C25 & . 02 MFD & . 600 V . \\
\hline 22.912 & & . 002 MFD. & . 600 V . \\
\hline 22.1041 & C38 & . 005 MFD . & . 600 \\
\hline 22.1126 & C32 & . 01 Mfd & . 400 \\
\hline 22.1127 & C31 & .02 MFD & . 400 \\
\hline 22.1135 & C35 & . 005 MFD. & . 600 \\
\hline 22.1138 & C26 & 500 MmFD . & . 600 \\
\hline 22.1169 & C19 & . 001 MFD. & 600 \\
\hline 22.1257 & & . 005 MFD . & 1000 \\
\hline 22. 1362 & C29 & . 004 MFD. & 600 \\
\hline 22. 1363 & C1 & Three gang Variable & \\
\hline 22-1367 & C18 & 50 mmfd . (Ceramic). & . 500 V . \\
\hline 22. 1386 & & . 02 MfD & 200 \\
\hline 22.1431 & & . 001 MFD. & 600 \\
\hline 22.1493 & C6 & Trimmer (F.M. Ant.) & \\
\hline 22.1494 & C14 & Trimmer (F.M. Det.) & \\
\hline 22. 1.497 & C.8.9. 10 & Trimmer (S.w. Antenna Wave Trap & and \\
\hline 22.1502 & C16 & trimmer (S.W. Osc.) & \\
\hline 22.1503 & C7 & 150 MmFD . . . - & 000 V. \\
\hline 22.1504 & C3 & 10 mmpd . (Ceramic). & 500 \\
\hline 22.1505 & C13 & \(17 \mathrm{mmfo} .(\) (Ceramic). & 500 V . \\
\hline 22.1506 & C5 & 22 mmpd . (Ceramic). & 500 \\
\hline 22.1507 & C2 & 25 mmfo. (Ceramic). & 500 \\
\hline 22.1508 & C11 & 35 mmfd . (Ceramic). & 500 \\
\hline 22-1509 & C20 & 52 mmad. (CERAMIC) & 500 \\
\hline 22.1514 & C22 & Trimmer (F.M. Osc.) & \\
\hline \multicolumn{4}{|c|}{RESISTORS} \\
\hline 63.260 & R18 & 100 О Онm. & . 1/4 W. \\
\hline 63.296 & R16 & 2209 Онм. & 1/4 w. \\
\hline 63.380 & R17 & 100м Онм. & W. \\
\hline 63.441 & & 1 Megohm. & . 1/4 W. \\
\hline 63.503 & R23 & 19m Оhm (insulated) & 1/4 \\
\hline
\end{tabular}

PART NO. REF. NO.
\begin{tabular}{|c|c|c|c|}
\hline 63.510 & R7 & 18M Ohm (Insulated) & 2 \\
\hline 63.579 & R8 & 220 OHm . & . 1/4 \\
\hline 63.585 & R26 & 2200 Онм. & . 1/4 \\
\hline 63.586 & R25 & 3300 Онм. & 1/4 \\
\hline 63.592 & R13 & 33M Ohm & .1/4 \\
\hline 63.593 & R5 & 47M OHM & . 1/4 \\
\hline 63.595 & R20 & 100M Онм. & . 1/4 \\
\hline 63.600 & R10 & 2.2 Me gorm. & .1/4 \\
\hline 63.605 & R9 & 1 M Онм. & . 1/2 \\
\hline 63.607 & R1 & 15 M Ohm & . 1/2 \\
\hline 63.620 & & 33 Онм. & .1/4 \\
\hline 63.626 & & 120 Онм & . 1/4 \\
\hline 63.651 & R22 & 82M OHm & . 1/4 \\
\hline 63.712 & R6 & 33M Ohm (Insulated) & . 1/4 \\
\hline 63.715 & R2 & 100M Оhm. (Insulated) & . 1/4 \\
\hline 63.752 & & 1800 Оhm (Insulated) & . 1/4 \\
\hline 63.803 & R15 & 2200 Онм. & . 1/2 \\
\hline 63.1166 & R3 & З3m ОНm & . 1/2 \\
\hline 63.960 & R11 & 68 M Онm & .1/2 \\
\hline 63.976 & R19 & 15 Megohm & 1/4 \\
\hline 63. 1349 & R21 & Volume Control and SwITCH. & \\
\hline 63. 1446 & R 12 & 1200 Онм. & . 1/2 W. \\
\hline 63.1447 & R14 & 120 Онм & 1/2 \\
\hline 63.1448 & R4 & 5600 ОНм. & 1/2 \\
\hline
\end{tabular}

\section*{AUDIO POWER SUPPLY}
\begin{tabular}{|c|c|c|}
\hline 22. 1128 & C2 & . 02 Mfd . . . . . . . . 600 \\
\hline 22.1134 & C1 & . 002 MFD. . . . . . . 1000 V \\
\hline 22.1515 & C3. C 4 & \begin{tabular}{l}
Two Section Electrolytic \\
15 MFD. - 30 MFD. . . . 450 V
\end{tabular} \\
\hline 58.149 & P 1 & moulded Plug . 7 Prong (Power Cable) \\
\hline 63.577 & R5 & 100 Онm . . . . . . . . \(1 / 4 \mathrm{~W}\). \\
\hline 63.648 & R2 & 47M Онм . . . . . . . . \(1 / 4\) \\
\hline 63.776 & & 330 M OHM. (Insulated). . \(1 / 4\) \\
\hline 63.797 & & 2200 Онм. . . . . . . . 1/2 \\
\hline 63.1551 & & Candohm Resistor. \\
\hline 63. 1848 & R8 & 33M OHm . . . . . . . .1/2 \\
\hline 63. 1880 & & 180m Оhm (Insulated). . \(1 / 2\) \\
\hline 63.1883 & & 220M Ohm (Insulated). . 1/2 \\
\hline 78.274 & & \begin{tabular}{l}
SOCKET - ELECTROLYTIC \\
CAPACITOR (2 USED).
\end{tabular} \\
\hline 78.611 & & Socket - Octal tube (6 use \\
\hline 78.644 & P.L.I. & Socket - Single Contact \\
\hline 78.732 & SO1 & Socket - Speaker Plug \\
\hline 95.956 & T1 & Power Transformer \\
\hline 95.957 & LI & Filter Choke. \\
\hline S. 13489 & & Internal Cable Assembly \\
\hline S. 13490 & & External Cable Assembly \\
\hline
\end{tabular}

AUTOMATIC TUNING UNIT
automatic tuning Unit Mtg. BrKt.
automatic túing Unititrimmer Automatic Tuning Unit Trimmer AUTTMATIC TUNING UNIT TRIMMER
AUTOMATIC TUNING UNIT TRIMMER Automatic TUNING Unit Trimmer
480 MmFD. SILVER MICA
Automatic Tuning Unit Trimmer AUTOMATIC TUNING UNIT
AUTOMATIC TUNING UNIT
automatic Tuning Unit \(\dot{\text { Switich }}\).
Adjusting Screw and Core (4 USED).
AdJusting Screw and \(\dot{\text { Corer }}\) (I used) tuning coil (rest Automatic tuning Coil (red)
automatic tuning Coil (Grefn) automatic Tuning Coil
automatic tuning Coil AUTOMATIC T
(Yellow) túning coil (Blue).
Automatic tuning Coil ( Wh ite) Automatic Tuning Unit Complete.

\section*{AUTOMATIC ESCUTCHEON PARTS}
automatic 'Station Selector KNOB ( 5 USED)
Phono REJECT KNO
PLATIC PLASTIC EsCutcheon PLOMATIC Kno
automatic Knob Retaining SHAFT.
RUBBER STRIP
TRIM STRIP
automatic Bracket and í iatch
Automatic tuning knob and ESCUTCHEON ASSEMBLY

PARTS LIST-Continued
PART NO. REF. NO. radiorgan escutcheon parts 57-1294. 76.342 83. 1112 S. 9606 S. 12397 S. 13472 S. 13475 S. 13476 S. 13667
S. 13668
S. 13669
S. 13670
11.87
27.87 C2 1 58 . 133
S. 12360
S. 12361












PAGE 19-12 MISC.
MODEL 5 tube,
AC-DC





Top view of chassis showing tubes and parts

- John F. Rider

Alignment: No attempt should be made to band from 540 to 1620 kilocycles. Since the scale realign this receiver until it has been determined is calibrated 54 to 160 , the actual frequency of that a poor tube, or some local condition is not the station received is obtained by adding a zero responsible for faulty reception. An output meter to the dial calibration. may be clipped directly across the voice coil lugs. To align RF trimmers remove the 0.01 mf Signal Generator and tuning capacitor to 1550
The Signal Generator may be connected or two or three turns of heavy wire, forming a tion) for maximum response.. With tuning ca-
through a 0.01 mf capacitor (used as dummy an- self-supporting loop of about 7 or 8 inches dia- pacitor plates fully meshed, the reand through a 0.01 mf capacitor (used as dummy an- self-supporting loop of about 7 or 8 inches dia- pacitor plates fully meshed, the receiver should capacitor Connect ground clip of generator meter, placed about a foot away from the re- tune to 532 kc; however, no adjustment is rerectly to chassis. Align the I. F. trimmers to 455 ceiver's loop antenna. Again, use the least possi- quired at this point. For checking purposes, four kc, using least possible input from Signal Gener- tuning capacitor plates completely out of mesh, represent, in engraved on the dial plate. These ator to avoid developing A.V.C. voltage which and pointer at extreme right end of travel, ad-capacitor plates fully meshed, and the pointer settings for 600,1000 and 1550 kc .



PAGE 19-20 MISC.



Late series have \(C\) removed from ceramic condenser block, paper condenser of same paper value used.
MODEL 8-16 U.S. TELEVISION MFG. CORP.


\section*{Bendix Par 80}

This model appears on pages 18-1 through 18-5 of Rider's Volume XVIII On late production model PAR 80 re ceivers, a rubber grommet has been added over the battery switch lead at the metal shield to prevent eventual wear and short ing of the lead. If servicing of this receiver indicates excessive wear of the battery switch lead, a small standard grommet of suitable size may be added at point where the lead enters the switch shield.

Bendix 110, 110W, 111, 111W, 112. 114, and 115

These models appear on pages 18-6 through \(18-8\) of Rider's Volume XVIII. On recent models of this series a circuit change has been made which adds a coupling plate, stock number AC0C00, between the first audio tube, 12 SQ 7 , and the output tube, 50L6, in lieu of the following components used on earlier receivers:
Plate-load resistor, R5, stock no. RC1H54; grid resistor, R7, stock no. RC1H58; Plate r-f bypass capacitor, C8 stock CP4T20.

These parts are eliminated when coupling plate, stock no. AC 0 C 00 is used, although installation is otherwise interchangeable. To use the coupling plate may cause a slight increase in the plate voltage of the 12SQ7 tube, but no adverse effect is made on the receiver. The resistance measured from the grid of the 50L6 tube to common B- is approximately 450 K while the resistance measured from the plate of the 12SQ7 tube to common B- will give a reading which increases approximately 10 megohms in magnitude, caused by the charging of the filter capacitors since the receivers have no d-c return to ground.

\section*{Bendix 626}

This model appears on pages 16-1 through 16-s of Rider's Volume XVI. Either of two coils may be found in this model. In some, an r-f coil making use of a small capacitor ( \(3.3 \mu \mu \mathrm{f}\) ) between the start of the secondary winding and the finish of the primary winding is used while in others an r-f coil with an added tertiary winding is used in lieu of the capacitor. These coils, when properly, used are interchangeable, and in the future only r-f coils with the tertiary winding will be provided as replacements.
If, in the receiver to be repaired, the coil requiring the \(3.3-\mu \mu \mathrm{f}\) capacitor is replaced with the other type, eliminate the \(3.3-\mu \mu \mathrm{f}\) capacitor from the circuit.

\section*{Bendix 646A}

This model appears on pages \(15-5\) and \(15-6\) of Rider's Volume \(X V\). The change involves a revision in the replacement parts list as follows:
In the cabinet components section of the parts list on page 15-6, substitute the stock number HZ0S04 for the existing stock number HZOL01 which is incorrect. The nomenclature and identification of the component, part is correct as listed.

\section*{Crosley 9-101}

This model appears on pages 18-1 through \(18-3\) of Rider's Volume XVIII. Recently it was discovered that in some areas, the oscillator coil (Part No. 142975) developed trouble due to corrosive tape. To avoid possible complaints in the field, it is recommended that the coil be replaced with a new coil (Part No. 145105)

\section*{Bendix 847B}

This model appears on pages 17-7 through 17-14 of Rider's Volume XVII. The replacement parts list on page 17-19 should be revised as follows:

The r-f oscillator chassis assembly bearing the stock number AR0B00 is no longer stocked as a complete replacement assem bly. This chassis can be repaired satisfac torily in the field and the necessary component parts may be obtained as separate stock items. when desired.

\section*{Crosley 9-201, 9-202M, 9-203B}

These models appear on pages 18-14 through 18-19 of Rider's Volume XVIII. The part number of item 83 (volume con trol) was shown on page \(18-19\) as \(39368-14\) This number should be 39368 -18. To use the No. 39368-18 control on these models, it will be necessary also to use a No. 39-370-2 plug-in type knurled shaft.

\section*{Farnsworth GK-111, GK-112, GK-114,} GK-115

These models are the same as model GK-100, appearing on pages \(1 \stackrel{n}{i}-3\) through 17-1\% of Rider's l'olume XVII, except that they employ the P56MP record changer instead of the P56.
The P56MP record changer is a reluctance type pickup and, therefore, additional amplification in the phono circuit is necessary. A 6SJ7 tube has been added to the phono circuit, as shown in the accompanying diagram


The circuit of the 6SSJ7 tube that was added so that a reluctance pickup could be used in Farnsworth Models GK-111,-112, 114,-115.

The following parts should be added to the parts list:
Part No. Description
78057 Volume control, 3 megohms
94204 Power transformer
94239 Output transformer
13772 Speaker
38696 Loop antenna for GK-111, GK-112
38859 Loop antenna for GK-114
26032 Loop antenna trimmer, GK-114
22169 Pickup cable
22170 Output cable
22171 Power adapter cable
25431 Capacitor, electrolytic, \(20 \mu \mathrm{f}, 450\) v, \(25 \mu \mathrm{f}, 25 \mathrm{v}\)
25432 Capacitor. \(0.001 \mu \mathrm{f}, 200 \mathrm{v}\)
25433 Capacitor, \(0.25 \mu \mathrm{f}, 600 \mathrm{v}\)
H-273 Cabinet for GK-114
H-291 Cabinet for GK-111 Mah.
H-292-1 Cabinet for GK-112 C
H-2922 Cabinet for GK-112 Bl.

\section*{Federal 1027, 1035}

Basically, these models are the same both in chassis and cabinet as model 1025 which appears on pages 16-1 through 16-4 of Rider's Volume XVI. However, differences exist in the exterior cabinet finish and color of these models.

\section*{Federal 1034}

This model is essentially the same as model 1024 which appears on pages 16-1 through 16-4 of Rider's Vol̈ume XVI. The only modification has been in the cabinet.

\section*{rada 711, 740}

These models appear on pages \(17-15,17\) 20, and 17-24 of Rider's Volume XVII. The socket layout on page 17-15 applies only to model 740. The socket layout for model 711 is shown herewith. The schemaiic and parts list refer to both models.


Socket layout for the Fada model 711.

\section*{Firestone R3157A}

This model is the same as Model S74272 appearing on pages 12-19,20, 12-21, 12-6, and C.S. 12-4 and C.S. 12-5 of Rider's Volume XII.

\section*{General Electric P4}

This model appears on \(R C D . C H\). Pages 17-5 through 17-9 of Rider's Volume XVII. The sound of a metallic click and audible thump through the receiver speaker is usually traced to the operation of the velocity trip mechanism. This is caused by too much tension of the Clutch Ten. sion Spring (reference 29 in Fig. 3 on \(R C D . C H\). Page 17-7) binding the velocity trip lever. Adjustment may be made, re ducing spring tension to prevent binding and still maintain normal operation.
In earlier production, a limited quantity of record changers employed a flat spring type clip fitted over the pickup arm pivot shaft. The clip was brought to bear upon the clutch tension spring, compressing the spring to the proper friction upon the velocity trip lever as was necessary for proper changer operation. To provide a more positive adjustment, later produc tions use a Clutch Spring Tension Collar in lieu of the original clip, which makes a more convenient, accurate, and more permanent adjustment.
If extreme difficulty is experienced in proper adjustment of the earlier production changers, the spring clip may be replaced with the collar, Cat. No. RMX-080. A detailed view of the later version of record adjustment is shown in Fig. 6 on RCD. CH. 17-8.

\section*{GE 250}

This model appears on pages \(15-\mathrm{si} 2\) through 15-96 of Rider's Volume XV. The switch that is supplied under the number RSW-009 is of a different construction than the original flat-wafer switch. The accompanying figure shows the numbers which correspond to those in the schematic diagram.


Construction of the wafer switch replacement for the General Electric 250

\section*{GE 41, 42, 43}

These models appear on pages 17-1,2 through 17-15 of Rider's Volume XVII. The following changes should be made. Add Cat. No. REF-003, line fuse F201, 3AG, 5 amp ., 250 volts, to the parts list and add this to the schematic diagram of the Special Power Unit on page 17-3. The fuse should be placed in series with the power transformer primary and the power cord. Besides the addition of a fuse, the safety will be further increased by placing a sheet of asbestos underneath the power unit to cover the ventilation slots. Thus, even in the case of overload, the hot tar of the over-heated transformer is prevented from dropping on the floor.
Add Cat. No. RSV-001, Switch-power ON-OFF switch to the parts list. Replacement is readily made by merely bending the mounting taps.

To adjust for minimum hum levei, turn the volume control until the audio output is zero and vary resistor R201 (which is parallel to the filaments and center-tapped to the chassis, forming an effective hum balancing circuit).
General Electric 41, 42, 43, 44, 45
These models appear on pages 17-1,2 through 17-15 of Rider's Volume XVII. A sliding type switch has been added in series with R67 ( 8200 ohms) connecting the resistor to the phonograph pickup input jack, J3. This switch is on the receiver chassis back apron with its respective label indicating High Fidelity and Normal, the open and closed positions, respectively. In the replacement parts list under Cat No. RSS-003, add the item: High FidelityNormal switch.

\section*{General Electric 50}

This model will be found on pages \(16-1\) through 15-4 of Rider's Volume XV. This change covers a correction to the original parts list in the model 50 where Cat. No. RHS-001 was changed to RMX-006 for a tuning assembly and spacer.
A further correction is necessary in the item description since only the tuning shaft and drive pulley (assembled) is supplied under RMX-006. The spacer is the tuning shaft bearing, and is catalogued as a separate item under RHJ-001. The original parts listing of the drive pulley under this number has been deleted.

\section*{GE 140}

This model appears on pages 17-21 through 17-23 of Rider's Volume XVII. The following changes should be made in the parts list: From Cat. No. RAD-027 remove the statement "(with loop connecting strips only)." Change Cat. No. RCC075 to read RCC-080. Delete Cat. Nos. RDK-098, RHC-008, and RMX-103. Add the following parts.
RDK-106 Knob-door catch knob
RCE-002 Strap-loop contact strap
RHE-002 Eyelets--spacer eyelets for escutcheon screws RHS-016
RHE-003 Eyelet-used for loop contact strap
RHR-002 Rivets-door hinge rivets (power cord access)
RHS-015 Screw-self tapping (used for cabinet door cover)
RHS.016 Screw-Phillips, flat-head, mounts bottom of escutcheon
The following procedure is recommended for repairing broken antenna loop connect ing straps.

The broken straps should be cut back flush with the inside edge of the notch on the loop. The flexible wire is then used to make connections from the loop to the inside of the receiver. Consult the accompanying diagrams for loop connecting details and wire specifications. Carefully lift the section of the loop to allow connecting the specified pieces of wire and solder


\section*{2 REQUIRED PER SET}

Above, the loop connecting details of the General Electric Model 140. The wire details for the antenna loop connections are shown in the lower figure.
wires to remainder of loose straps. Remove the fibre strap guide which originally insulated the loop straps within the cabinet. Remove original wire leads and pieces of loop strap connected inside the cabinet to the chassis terminal strip and pin 6 of the 1R5 oscillator-converter tube socket. Solder the new leads from the antenna loop directly to the terminal board and tube socket. Make certain that the inside of the loop is connected to pin 6 of the 1R5 tube socket. The following procedure is recommended to replace a speaker in this model.
l-Unsolder leads on speaker, using small tip iron.
2-Unsolder \(90-\mu \mathrm{f}\) capacitor (C14) at terminal strip.
3-Without unsoldering, remove dual 40 \(\mu \mathrm{f}\) capacitor ( C 20 ) from mounting clip.
4 -Using long screwdriver (8 inches or longer) loosen screws holding speaker to chassis.
5-Remove nuts holding speaker to front panel.
6 -Lift up left end of resistor mounting plate and then lift out speaker.
If the antenna straps which interconnect the antenna in the receiver cover with the radio chassis circuit break, the following replacement procedure is recommended:
1-Bend up insulating material covering set end of antenna strips by inserting the tip of a long-nose pliers and twisting gently so as not to tear material.
2-Unsolder wires from loop strips in receiver.
3-Remove screws holding door cover.
4-Lift loop at point midway between hinges to expose strip rivets and unsolder loop from loop strips.

5-Remove rivet or rivets as needed, taking care not to damage loop or loop back.
6-Replace broken straps by new members, Cat. No. RCE-002, and rivet it in place with eyelets, Cat. No. RHE-003. In order to replace the rectifier disc assembly, SR, proceed as follows:
1-Reqmove two mounting screws from the power switch, S1 (door switch).
2-Dress power switch away from mounting plate, providing more access to underside of top chassis deck.
3-Unsolder leads to rectifier disc assembly.
4-Push aside components underneath rectifier assembly mounting screw until screw can be loosened.
General Electric 210, 211, 212
These models appear on pages 18-21 through 18.25 of Rider's Volume XVIII. Change the third column (Signal Input Point) of the alignment charts on page 18 23 to read: 12BE6 grid (pin 7 of V2) See note 7.

The parts list on page 18.25 should be changed as follows: Change catalogue number UOP-557 to UOP-558 for Speaker \(51 / 4\)-inch PM. Add the reference symbol R32 to Cat. No. URD-141-Resistor-6.8 meg., 1/2w., carbon.
The following changes have been made in the schematic diagram on page 18-21. Where capacitor C38 is shown terminating at ground on this schematic, later model receivers have this ground connection removed and the capacitor is terminated at the junction of the antenna input and capacitor C14. Capacitor C36 should be added and connected from the junction point of R29, pilot lamp I1, and pin 4 of V7 to ground. Resistor R32, which has been added to replacement parts list above, is connected from the junction of R8 and C4 (AVC filter) to the cathode, pin 2, of output tube V6.
This resistor, R32, has been added to increase the converter stage gain when operating in the A-M position because of a change in performance characteristics relative to grid cut-off of the 12 BE 6 tube.

\section*{General Electric 230 Kaiser-Frazer}

This model appears on pages 18-96 through 18-28 of Rider's Volume XVIII. The change involves a substitution of catalog numbers in the replacement parts list as follows:

Cat. No. URE-035 and URF-055 are catalogued for carbon-type resistors. These numbers are to be replaced for numbers specifying wirewound resistors, RRW-037 becoming the Cat. No. for R13 and RRW: 036 the number for R18.

\section*{General Electric 502}

This model appears on pages \(17-4\) through 17-8 and pages 17-39,40 through 17-47 of Rider's Volume XVII. The changes involve a schematic correcton and a correction in the value of a component in the replacement parts list.
The schematic diagram which shows an open circuit in the screen grids of the 6V6 tubes, V10 and V11, should be corrected to show the screen grids connected to the 260 -volt B-plus line.
In the listing of Cat. No. RCW-1028, the capacitor value was mistakenly given as \(22-\mu \mu \mathrm{f}\). The capacitors listed are actually \(100-\mu \mu \mathrm{f}\) and RCW-1028 should be changed to read \(100-\mu \mu \mathrm{f}\).

\section*{Hallicrafters SX-42}

This model appears on pages 17.6 through 17-13 of Rider's Volume XVII. The following service hints apply to the S-Meter operation.
SYMPTOM NO. 1:
Meter fails to zero on AM.
ANALYSIS:
Assuming that all connections and other circuits, including AVC, are normal...
1) The line voltage is low, or
2) The first RF tube is weak

SYMPTOM NO. 2 :
Zero adjustment appears too critical. Does not hold.
ANALYSIS:
The leads to the outside terminals of the "Zero Set" potentiometer should be disconnected, reversed, and reconnected. SYMPTOM NO. 3:
Meter fails to zero on FM
ANALYSIS:
1) Adjust meter indicator mechanically with zero set on the meter.
2) Replace 7A4 tube
3) Replace R-68 with lower resistance if indicator remains on right side of FM zero
4) Replace R-68 with higher resistance if indicator remains on left side of FM zero

\section*{REMARKS:}

The internal resistance of the meters is not specified, and depends on the supplier. The resistance ranges from 12 to 50 ohms.
The meter has a range of 5 ma . on a linear scale. The FM zero is arbitrarily calibrated at 1.4 ma .
An arbitrary figure of \(60 \mathrm{~m} . \mathrm{v}\). to the antenna terminal was used for S-9 on the 20 meter band. Each S-unit represents 6 db variation.
\(60 \mathrm{~m} . \mathrm{v}\). to the antenna terminal of the receiver represents roughly a field strength of \(15 \mathrm{~m} . \mathrm{v}\). per meter.

\section*{Hoffman C504, C514}

These models are the same as model B504 appearing on pages \(1 \%-1\) and pages 17 3,4 through 17.\% of Rider's Volume XVII, except for the following. Push-pull parallel 6 K 6 tubes are used in the output instead of push-pull 6V6 tubes. See Fig. 1.


Fig. 1. Changes in the output stages of the Moffman Models C504 and C514

A resistance-capacitance filter ( \(\mathrm{R}^{\prime}-111\) and C110) has been inserted in the B-plus line feeding the phase inverter stage in order to reduce the inherent hum level of the receiver to a satisfactory level. See Fig. 1.

An "entertainment panel" has been wired into the tuner chassis to provide microphone input, a speaker on-off switch, a pillow speaker plug, and an auxilliary phono input to be used either for television sound or wire recorder input. See Fig. 2.

On the recorder amplifier, the screendropping resistor (R11) has been changed from 0.1 megohm to 2.2 megohms and the cathode resistor (R2) changed from 2200


Fig. 2. Changes made to accomodate the "entertainment panel" of the Hoffman C50\%.
ohms to 4700 ohms. This change allows the screen current of the 6SJ7 to be self-regulating to eliminate variations in gain between yarious 6SJ7 tubes.

Several changes were made in the late production. A 270,000 -ohm resistor was added across the phono input jack of the radio chassis. This resistor was on the record changer ( \(960260-2\) ) in the early production (Serial Nos. B-1001 to B-6000 and B-28,500 to B-30,000)
The location of the resistor may be checked by measuring the shunt resistance across the phono input jack of the radio chassis and across the phono output cable of the changer mechanism.

\section*{Hofman C502 and C512. Chassis 113}

These models are the same as Model B502, Chassis 113, appearing on pages 17-1 to 17-6 of Rider's Volume XVII, except for the following changes. Four 6K6-GT tubes are used in push-pull parallel in the output stage instead of the 6V6 tubes in push-pull.
An "entertainment panel" has been wired into the tuner chassis to provide microphone input, a speaker off-on switch, a pillow speaker plug, and an auxiliary phono input to be used either for television sound or wire recorder input. See Fig. 1.
A resistance-capacity filter R111 and C110, has been inserted in the B-plus line of the phase inverter stage in order to reduce the inherent hum level of the receiver, as shown in Fig. 2.


Fig. 2. The resistance-capacity filter in the Hoffman models C502 and C512.

The following changes should be made in the parts list:
\begin{tabular}{lll} 
Symbol & Description & Hoff. No. \\
C60 & \(0.005 \mu f, 600 \mathrm{~V}\), &
\end{tabular}

\section*{R16, R20, R50 \(100,000 \mathrm{ohms} \pm 20 \%\),} \(1 / 2\) watt

4102

R21, R48
47,000 ohms, \(\pm 20 \%\), \(11 / 2\) watt
10 megohms, \(\pm 20 \%\), \(1 / 2\) watt
.22 megohm, \(\pm 20 \%\), \(1 / 2\) watt
R27, R46
\(1 / 2\) watt
R47, R51
0.47 megohm \(+20 \%\) \(1 / 2\) watt

4500
\(10 \mu \mathrm{f}, 450 \mathrm{~V}\),
electrolytic
10,000 ohms, \(\pm 20 \%\), \(1 / 2\) watt
\(\qquad\)

\section*{Majestic 5AK781}

This model is the same as model 5AK731 found on pages \(17-3\) and \(17-4\) of Rider's Volume XVII, except for the following changes in the parts list.
Part No. Description
S.1441 Dial cord assembly

S-1448 Output transformer
21-29 Aero record changer
115-49-1 Cabinet, (Aero cut out)
Blonde, walnut, or mahogany
122-47 Escutcheon plate, metal
428-62 Knobs, tuning and volume
128-80 Knob, phono - radio
101-485 . Screw, mounting chassis
106-124 Washer, mounting chassis

\section*{Majestic 7BK758}

This model is the same as Model 7JK777R appearing on pages 17-5 and 17-6 of Rider's Volume XVII, except for the dial scale. The dial scale used is part no. 117-78.

\section*{Majestic 12FM782, Chassis 12C20E}

This model is the same as Model 12FM778, Chassis 12B26E, appearing on pages 17-27, 28 to 17-ss of Rider's Volume XVII, except that it does not have pushbuttons and indicator lights for "Records and "F.M."

The following additions should be made to the parts list:
Part\# Description
115-45-2 Cabinet-console combination
21-32 Changer, oak
22-43 Speaker, 12" including output transformer
20-27 A-m loop antenna (less cover)
122-20 Escutcheon glass (large)
122-44 Dial grill
128-37 Knob (vol-tuning-tone)
128-85 Knob (band switch)
128-46 Spring insert for above knob

\section*{Midwest 98}

This model is the same as model RM-s, aplearing ön petges \(1 \mathrm{~s}-1\) Ihrough 1s-3 of Rider's Volume XIIII, except that two pilot lamps have been added. Fach \#46 pilot lamp is in series with a 10 -ohm resistor, and each sorics combination is in parallel with the other. One end of the parifllel combination is connacted to the 6.3 rolt filament line and 'tle other and is grounded.

\section*{Noblitt-Sparks 182TFM, Chassis RE-237}

This model appears in Rider's Volume IT'II, pagt's 1"̈-9,10 through 1\%-15. At the start of production, the glass oscillator trimmer " 14 " was mounted to the bracket on the variable capacitor with a brass nut and had a locking nut to hold tension on the adjusting serew. When this locking nut was tightened down enough to prevent it from working loose , while adjusting the trimmer, the tension on the screw was too great for production alignment. To correct this trouble, the locking nut was tightened down to give the proper tension and then soldered to the bracket to prevent it from working loose. This was a difficult solder operation, and the trimmer screw would still work loose after being run in and out a few times, duc to a cutting action between the lock nut and the threads on the screw. To correct this trouble, the locking nut was removed and the bracket revised to use a piece of No. 14 music wire to apply tension to the adjusting screw. (See Fig. 1.) The trimmer is much more stable with the new arrangement


Fig. 1, left, shows the music wire sprin! applied to the adjusting screw.
Fig. 2, right, shows the music wire spring.
On some trimmers, the threads for the mounting nut did not go down far enough to allow the nut to tighten down against the bracket. A No. 12 lockwasher has been added under the mounting nut to assure a good tight contact between the trimmer and the bracket. If a set is found where the capacity of the oscillator trimmer changes or the trimmer is noisy, the following procedure is recommended:

See that the trimmer mounting to the bracket is tight. Since the trimmer glass is almost sure to broak if an attempt is made to tighten the mounting nut after the opposite end of the trimmer has been soldered in place, it is suggested that the trimmer be soldered to the back side of the bracket before attempting to tighten the nut (use care in soldering, apply heat from soldering iron to the bracket to prevent breaking trimmer glass).

Remove the locking nut and replace it with the music wire spring, part number A21902, Fig. 3, by soldering the two metal lugs, part number A21889. Fig. 2 on the present bracket, as shown in Fig. 1.


Fig. 3. T'wo lugs of this type are used as shown in Fig. 1 above.

AM-IF Alignment
Two peaks may be obtained with the 455 i-f slugs; one with the slug tuned almost all the way in and another with tho slug tuned almost all the way out. When such is the case, the peak with the slug tuned out should be used.

\section*{Noisy F-M Reception}

If the set is noisy on f.m., check the six ground leads from the variable capacilor to the chassis to make sure none of them are broken. One broken ground lead will not only make the set noisy, but can also effect the alignment of the set.

\section*{('eramic ('apacitors}

Care must be taken in placement of ceramic capacitors to prevent shorts which would oceur if any part of the capacitor touched other metal parts.

FADING . . . If fading occurs, check the shielded audio leads. One lead should be connected from the center lug of the volume control to the audio coupling capacitor on the stand-off insulator. The other lead should be connected from the right-hand terminal of the control to the band-change switch. If these two leads are reversed, the AVC will be ineffective. ANTENNA . . . On some of the first sets produced, the primary and secondary windings of the antenna-coupling transformers T1, were shorted together, causing
the antenna terminals on the back of the set to be grounded to the chassis. This should be carefully checked before connecting an external antenna to the set, because one position of the a-c plug in the outlet will place 110 volts between the antenna and any grounded object. This would be a shock hazard, and if the antenna became grounded the r-f choke in the a-c leads in the set would burn out.

OSCILLATION \(\qquad\) If oscillation is encountered, try dressing the yellow filament leads, in the i-f section of the receiver, down against the chassis and away from the tube sockets. Also, see that all grounded leads on the variable capacitor are soldered and not broken.
Some cases of regeneration in the FM i-f circuit have been encountered. This can be detected by a high discriminator voltage, and also a high ave voltage with no signal input. Replacing the \(0.005-\mu \mathrm{f} 2 \mathrm{nd}\) i-f cathode-bypass capacitor, C32, with a \(0.002-\mu \mathrm{f} 350\)-volt ceramic capacitor will correct this in most cases.

22-OHM RESISTOR BURNS . . . Some receivers have a \(1 / 4\)-watt 22 -ohm fusing resistor in the B-plus circuit. If this resistor burns, replace it with a 1-watt resistor. CAUTION

First check the B-plus current to see that it does not exceed approximately 100 milliamperes. If the current is greater than this value, some other trouble exists in the receiver and this must be corrected in order to prevent damage to other parts in the receiver.

FLOATING R-F UNIT . . . On some sets the complete r-f assembly is mounted on rubber to prevent microphonics. When servicing these sets, be sure that the ground leads between the r-f assembly and the chassis are securely soldered.

INSULATING CONTROL SHAFTS Some sets have been found with the flat metal washer under the insulating fibre washer on the tone control, volume control and band switch. This would be a shock hazard if a knob was left off the shaft and should be corrected by removing the metal washer and placing it on top of the fibre washer.

The
following changes should be made on the schematic diagram:
1. A B- connection was added between R10 and L15.
2. A 220 -ohm resistor, R15, has been added across the antenna terminals.
3. Antenna coil L4 has been relocated. In the original schematic it was in series with C1, and the series combination was shunted by C1A. The modification consists of placing C 1 and \(\mathrm{C1A}\) in shunt with each other, and placing LA in series with this shunt combination and the top connection of L1, the point which is connected to the AM terminal of the selector switch.
The following changes should be made in the parts list:
1. R5 should be C20060-221 resistor, 220 ohms, \(1 / 4\) watt
2. P.S. - A21709 parasitic suppressor should be added
3. C10 should be C20204-500 capacitor, \(0.00005-\mu \mathrm{f} ., 500 \mathrm{~V}\), ceramic
4. R8, 22 -ohm fusing resistor should be - 1 watt, C20103-220
5. A19328-4 grommet, rubber, Mtg., RF Assy.
6. A19138-3 eyelet spacer, Mtg., RF Assy.

\section*{Montgomery Ward 64WG-1050B, 1050D. 74WG-1050D}

These models are the same as Model 64WंG-1050A on pages \(15-75\) to \(15-77\) of Rider's Volume XV, except for the following changes. The \(0.1-\mu \mathrm{f}\) capacitor \(\mathrm{C}-11\), is connected between pin 1 of the 1R5 oscillator-detector tube and the common negative circuit instead of the chassis ground.

In the D models, a 1000 -ohm resistor, R-13, is connected between pin 7 of the 354 output tube and the common negative circuit. The following should be added to the parts list.
Ref. Part Description
No. No.
R-13 B84102 100 ohms, 0.05 watt, carbon Montgomery Ward 64WG-1050C

This model is the same as Model 64WG-1050A on pages \(15 \cdot 75\) to \(15-77\) of Rider's Volume \(X V\), except for the following changes. The 1500 -ohm resistor R-3 is now connected from the center tap of the filament of the \(3 S 4\) output tube to the common negative circuit, lug 4 on the changeover switch, instead of to the pcsitive filament lead (pin 7) of the 1S5 oscillator-detector tube, lug 9 of the changeover switch.

A 100 -ohm resistor \(\mathrm{R}-12\) has been connected between R-11 and the selenium rectifier.
Ref. Part Description
No. No.
R-12 D84101 100 ohms, 2.0 watt, carbon

\section*{RCA QB55X Chassis RC-563-K}

This model appears on pages \(17-9\) through 17-11 of Rider's Volume XVII. In some chassis two \(2000-\mu \mu \mathrm{f}\) capacitors in parallel are used in place of the specified \(3900-\mu \mu \mathrm{f}\) capacitor C 7 .

\section*{RCA QB55, QB55X}

Model QB55, chassis RC-563A, appears on pages 15-27 through 15-29 of Rider's Volume XV. Model QB55X, chassis RC. 563 K , appears on pages 17-9 through 17. 11 of Rider's Volume XVII. A viscoloid. damper has. been added to the stator plates of the oscillator section of the tuning capacitor to reduce microphonics on short wave reception.

Some of these sets have dial back plates without the score marks which may be used as a reference during alignmeni The glass dial scale may be removed from the cabinet and used us a reference during alignment, or the check points indicated in the accompanying diagram may be used.

\section*{RCA Q109 (RC-602), Q109x (RC-602A)}

The following voltage-current table should be added to the service data appearing in Rider's Manual Volume 18, pages RCA 18-9 through 18.10.

Socket Voltages - Cathode Currents
Local-Phono-Distant Switch in Distant Position.
\begin{tabular}{lccccc} 
rube & \begin{tabular}{c} 
Plate \\
Volts
\end{tabular} & \begin{tabular}{c} 
Screen \\
Volts
\end{tabular} & \begin{tabular}{c} 
Cathode \\
Volts
\end{tabular} & \begin{tabular}{c} 
Cathode \\
Current
\end{tabular} \\
1 & 6SG7 & 137 & 112 & 0 & 13.1 ma \\
2 & 6SA7 & 260 & 103 & 0 & 12.2 \\
3 & 6SK7 & 235 & 103 & 1.3 & 13.3 \\
4 & 6SQ7 & \(86^{*}\) & \(\ldots \ldots\). & 0 & 0.4 \\
5 & 6F6G & 257 & 260 & 19.2 & 23.5 \\
6 & 6F6G & 257 & 260 & 19.2 & 23.5 \\
7 & 6AT6 & \(90^{*}\) & \(\ldots .\). & 0 & 0.7 \\
8 & 6U5 & 260 & \(21^{*}\) & 0 & 2.1 \\
9 & 5Y3G & \(\ldots . .\). & \(\ldots .\). & 355. & 90.0
\end{tabular}
*Measured with Chanalyst or Voltohmyst
In LOCAL position the cathode circuit of the 6SG7, the RF amplifier, is opened ("A" Band only) and the voltages are correspondingly higher due to the absence of cathode current in this tube.
The stock number of the speaker cone should be changed to read:
No. 70972 Cone - Cone and voice coil assembly

\section*{RCA Q10, Q10A, Q10A2, Q10-2,}

\section*{Q10-3, Q110}

This material appears in Rider's Wanual Volume 15, pages 15-5 through 15-7. In the event that regeneration develops in the receiver, it may be due to a resonant condition due to electrolytic capacitor C21 being parallel with capacitor C11 \((0.1-\mu \mathrm{f})\). Three methods have been used at the factory to correct this condition. These are:
(1) C11 may be \(0.05-\mu \mathrm{f}\) instead of \(0.1-\mu \mathrm{f}\)
(2) An additional \(0.1-\mu \mathrm{f}\) capacitor may be added in parallel with C11
(3) The RED and GREEN leads of the electrolytic capacitor ( C 21 and C 22 ) may be interchanged In some chassis, R1 may be 2.0 megohms instead of 2.2 megohms.

\section*{RCA 8V7, 67V1, 67AVI, 710V2}

Model 8 V 7 appears on pages 18-15 through 18-16 of Rider's Volume XVIII. Models 67V1, 67AV1 appear on pages 16. 35 through 16-39 of Rider's Volume XVI. Model 710 V 2 appears on pages 18-55 through 18-60 of Rider's Volume XVIII. An alternate Speaker (stamped \(92569-1 \mathrm{~K}\) ) has been used as a substitute for the listed speaker (or speakers) in these models.
Add the following to the parts list: Under
"Speaker Assemblies" add the following: 92569-1K.
70574 Cone-Cone and voice coil awsembly. 31539 Plug-5 prong male plug for speáker. 37899 Trinsformer-Output transformer.
Replace complete speaker with Stock No. 71961 ( \(92569-1 \mathrm{~W}\) ).

("heck pomes to be used when aligning the RCA morlel.s QB55 and QB55S

\section*{RCA 66X11, 66X12, 66X13}

These models appear on pages 17-29 through 17-80 of Rider's Volume XVII. Some oscillator coils which were specified for the first production ( \(\mathrm{RC}-1046 \mathrm{~A}, \mathrm{RC}\) 1046, RC-1046B) of these models have been used on the second production (RC1046C, RC-1046D, RC-1046E).
Some oscillator coils and associated coupling capacitors (C19) which were specified for the second production have been used on the first production.

If replacement is necessary - use the specified parts - the range of inductance adjustment may be insufficient if used otherwise.

\section*{RCA QU-62}

This model appears on pages 17.13,14 through 17-20 of Rider's Volume XVII. In some instruments the speakers listed following have been used as alternates for the speakers listed in the parts list. Speaker Assemblies \(92520-1 \mathrm{~K}\)
70574 Cone-cone and voice coil assem-
5118 Plug-3 prong male plug for speaker
70686 Speaker-12" PM speaker complete with cone and voice coil less plug
(Used as alternate for PM speaker stamped \(92469-4 \mathrm{~W})\)
Speaker Assemblies 92516-2K
70574 Cone-cone and voice coil assembly
Plug- 3 contact female plug for speaker
31539 Plug - 5 prong male plug for speaker
70573 Speaker-12" EM speaker complete with cone and voice coil less output transformer and plugs
70688 Transformer-output transformer (T4)
(Used as alternate for EM speaker stamped \(92566-3 \mathrm{~W}\) )
The alternate speakers will not fit on the mounting bolts used with the original speakers. If a replacement which differs from the original equipinent speaker be-1 comes necessary, it is suggested that the mounting bolts be cut off and the replacement speaker mounted using rubber grommets. spacerer, and wood screws.
The top view of this model is shown on page 17-18 of Rider's. Volume XVII. The tuning capacitor has six sectionsC1 and C2 Ant, C14 and C15 R.F., and C 11 and C31 Osc. The tube and trimmer location view shows only \(\mathrm{C} 1, \mathrm{C} 14\) and C31, which are used on the " \(A\) " and "B" bands only.
The following change should be made in the parts list on page 17-20. Replace Stock No. 31970 spring with Stock No. 31418 spring-Drive or indicator cord spring.
The instrument label used on some instruments is incorrect in showing tube locations. The r-f shelf assembly should be turned \(90^{\circ}\) clockwise. The correct tube locations are illustrated in the accompanying diagram.


The correct tube locations for the RCA Model QU. 62.

\section*{HCA QU-61}

This was published in Rider's Manual Volume 15, page 15-65. The following pertains to the power-supply ratings for this receiver.
Only one power-supply rating (Symbol Rating D) is applicable to QU-61. As manufactured it may be operated on 100 to 260 volts, \(50-60\) cycles. A universal type of transformer having five voltage ranges is used. The desired range may be selected by the proper positioning of a link beneath a cover on the top of the power transformer as follows:
\[
\begin{array}{ll}
110 \text { position } & 100 \text { to } 115 \text { volts } \\
125 & \text { position } \\
150 \text { position } & 115 \\
2155 & 135 \\
210 \\
\text { position volts } & 165 \\
240 \text { volts } \\
200 \text { position } & 230 \text { to } 260 \text { volts }
\end{array}
\]

The receiver is shipped with this link in the 240 -volt position.
CAUTION . . . Remove the power cord from the line receptacle before changing the position of the link.
The record changer is made for opera tion on a 60 -cycle power supply but may be converted to 50 -cycle operation by the addition of a conversion spring to the motor shaft.
Change in Replacement Parts:
Stock No. 34183 Transformer
Delete "For Specification Ratings \(A\) and \(C^{\prime \prime}\)
Add "For Specification Rating "D" Stock No. 39786 Transformer
(No phonograph motors are avail able to permit operation of this instrument on 25 -cycle current. However, this transformer may be used for operation on 105 to 125 volts, \(50-60\) cycles.)

\section*{RCA 8X521, 8X522}

These models appear on payes is-43 lhrough 19-44 of Rider's Volume XVIII. On late production sets, slotted holes are provided in the tuming capacitor mounting bracket, and washers (maximum of five required) are used on the tuning capacitor shaft (between dial knob and capacitor) to permit adjustment of the dial. If the cabinet or tuning calacitor should be replaced. it may be necessary to adjust the mounting of the tuning capacitor or change the number of washers to prevent rubbing of the dial on the cabinet.
Theo following changes should be made in the parts list:
Dclete: 70601 Capacitor - tubular, 0.002 \(\mu \mathrm{i}\) (C9)
Add: 74063 Capacitor - ceramic 200 \(\mu \mu \mathrm{f}\) (C9)
74183 Washer - vellutex washer for dial knob clearance

\section*{RCA 54BJ}

This model appears on pages 16-28 through 16-30 of Rider's Volume XVI. The following addition should be made to the parts list.
70708 Lead-battery leąd assembly

\section*{RCA Radiola 61-10 (RC-1023A and RC-1023C)}

This material appears in Rider's Man. ual Volume 15, pages 15-3s, 15-61, and 15-52. In some of the 1023A chassis, two \(10-\mu \mu \mathrm{f}\) capacitors are used in parallel in place of the specified \(22-\mu \mu \mathrm{f}\) capacitor, C-15.
In the case of the 1023 C chassis, service data given for the 1023 A chassis will ap. ply in toto.

\section*{RCA 711V2}

This model appears on pages 17-44 to 17-65 of Rider's Volume XVII. Interference has been noted on the broadcast band in certain localities. This interference appears in the background of certain stations or between stations, and generally takes the form of code or amateur voice. An abnormal quantity of whistles when tuning across the band is also present. Connecting an exterrnal antenna to the set merely makes the condition worse.
A production change has been made to overcome this condition. Receivers having this change may be identified by the letter \(L\) following the serial number on the radio chassis. The antenna coil L3 has been removed and a different loop antenna installed. These changes may be made as follows.
1. Remove radio chassis.

2 Refer to illustration and remove the red lead connected from the loop loading coil L3 to terminal 8 of S4.
3. Unsolder the blue lead from loop loading coil L3 and connect this lead to terminal 8 of S4. L3 may be left in the chassis without leads connected to it.
4. Remove the loop cable from loop and from the terminal board on the rear of the cabinet.
5. Remove the lug from the end of the yellow loop lead and solder this lead to terminal 5 on the antenna terminal board on the radio chassis.
6. Re-install the radio chassis.
7. Clip off pin 5 on chassis end of the five-conductor flexible antenna cable and file the remainder of the pin smoth with surface of plug.
8. Plug the five-conductor cable into the antenna terminal board on chassis (see sketch). Note that with one pin removed, the plug can be moved one pin to the right and plugged in, making incorrect contact.
9. Carefully pull the yellow lead down ward along the five-conductor cable far enough to permit taping it to the plug portion of this cable to prevent
the yellow lead from breaking at the soldered joint at terminal 5 when flexed by opening of the radio door.
10 Connect the red and black loop leads to the rear terminals 4 and 5 respectively from which they were originally removed. Close link from 4 to 5 if an external antenna is not used. If an external antenna is used, it may be connected as described on page 17. 54 of Rider's Volume XVII.
11 Remove the screw from terminal 6 in the antenna board on rear of cabinet to avoid improper connection in the future.
12 Remove the old loop and install the new loop in its place.
13. Plug the loop cable into the new loop.
14. Peak the loop trimmer on a weak station around 1400 kc .
15. If a test oscillator is available, the low-frequency oscillator core (L12) adjustment should be made while rocking the gang through 600 kc , to obtain maximum output. Repeak loop trimmer again at 1400 kc .
16. Grounding one of the the f-m antenna terminals (connect terminal 1 to 5) on the board on the rear of the cabinet may prove advantageous to reduce excess signals if an external \(\mathrm{f}-\mathrm{m}\) antenna is used.
NOTE: The new loop referred to above may be identified by a green paint dot on one metal mounting bracket. Also, the large coil has 20 turns of wire with only a few turns, or no turns, visible through the holes near the edge of the loop frame. The original loop contains 13 turns, all of which are visible through the holes near the edge.

The leads which are not shown in the accompanying diagrams need no change.
verete 71863 cable from the parts list and add the following.
73250 Cable-five-conductor molded antenna lead in cable
71614 Capacitor-120 \(\mu \mu \mathrm{f}\), ceramic - in shunt with the loop primary
73480 Loop-antenna loop complete. For receivers without loop loading coil.


NEW LOOP
719 SERIES LOOP AND LOADING COIL WIRING CHANGE
(BROKEN LINES INDICATE ORIGINAL WIRING REMOVED)

\footnotetext{
Necessary connections for the new loop for the RCA model 711V2
}

\section*{RCA 66BX, Chassis RC-1040B}

This model is; the same as model 66BX, Chassis RC-1040 appearing on pages \(16-87\) and 15-88 of Rider's Volume XV, except for the following changes:
Chassis RC-1040B uses a 3V4 cutput tube and a selenium rectifier. Resistor R3 and capacitor C8 in the converter stage are omitted.
Resistor R17 in the power supply has been changed in -value to 2650 ohms. Resistor R20 ( 2700 ohms) replaces resistor R18 im the power-supply circuit. A 33 -ohm resistor (R31) has been added between the selenium rectifier and the "hot" side of capaciter C33. Capacitor C33 is now grounded. See Fig. 1.


Fig. 1. Power supply of the RCA Chassis RC-1040B.
If the volume control needs replacement, the following steps should be followed. Eee Figs. 2 and 3.
1. Remove the \(3 \sqrt{ } 4\) power output tube.
2. Remove the three screws holding the power cord bracket assembly. (Do not damage insulating washers.)
3. Remove the screw holding the switch assembly and remove the switch.
4. Remove the dial cord from the pulley.
5. Remove the screw holding the volume control bracket assembly.
6. Loosen the screw which maintains prossure on the expansion assembly.
7. Remove the drum.
8. Remove the expansion assembly from the volume control shaft.
9. Remove the nut nolding the volume control to the bracket.
The following changes should be made in the parts list. Delete the following:


Stock No. Description
38875 Resistor- 1800 ohms, 1 watt (R18)
71038 Resistor - ballast resistor, 2300 ohms, 6 watt (R17)
30649 Resistor - 2.2 megohms, \(1 / 4\) watt (R3)
70392 Cord - power cord
31709 Capacitor - ceramic \(6.8-\mu \mu \mathrm{f}\) (C7)
Add the following parts to the parts list.
Stock No. Description
39043 Capacitor-Ceramic, 6.8- \(\mu \mu\) (C7)
70022 Cord - power cord
72283 Grommet - rubber grommet to mount tuning capacitor (4 required)
72543 Rectifier - selenium rectifier
71290 Resistor-33 ohms, 1 watt (R21)
30930 Resistor - 1800 ohms, \(1 / 4\) watt (R6, R15)
72760 Resistor - ballast resistor, 2650 ohms, 7 watt (R17)
14421 Resistor-2700 ohms, 1 watt (R20)
72541 Socket - tube socket - miniature - 7 prong bottom mounted with shield
72980 Side - case side - 1.h. with decorative ribs at. top, bottom. and both sides.
72979 Side - case side - r.h. (loop side) less capacitor assembly with decorative ribs at top, bottom, and both sides.
RCA Radiola 62-1 (RC-1017A)
This appeared in Rider's Manual Volume 16, pages RCA 16-33 and 16-34. A \(270,000-\) ohm resistor, R12, is connected across the phono input between the center contact of the phono jack: One lead of the resistor joins the contact which goes to switch S1 and the other lead joins the jack at the point where C 4 is connected to it.

\section*{RCA 65U-1}

Rider's Volume 15, pages RCA 15-85 and \(15-8 \mathrm{~S}\) list models 65 U and 65 AU . These are the same as model 65U-1. The difference is found in the cabinets. The U and AU models have a rounded top at the front and the U-1 has a beveled top in front.

\section*{RCA 67V1, Chassis RC-606C}

This model appears on pages 16-35 through 16-39 of Rider's Volume XVI. Resistor R18 which was originally 470,000 ohms, appears in some chassis as 330,000 ohms and in some chassis as 220,000 ohms.

\section*{RCA 67V1, 67AV1}

These models appear on pages 16 -95 to 16-99 of Rider's Volume XVI. In late production models, resistor R18 connected from the phono jack to ground has been changed from \(120,000 \mathrm{ohms}\) to 330,000 chms.

\section*{RCA 75X11, 75X12 (RC-1050)}

The following changes have been made in the wiring. The circuit appears in Rider's Manual Volume 18 pages \(R C A\) 18-49 and 18-60.
Capacitor C18 is now connected between pin \#3 and pin \#8 of the \(35 Z 5\) GT rectifier. The service data indicates that it is. connected between pin \#3 of the above rectifier tube and the junction of R17 and C19.
Add to the parts list the following; un der the heading of Chassis Assemblies: 39632 Capacitor-Mica \(150-\mu \mu \mathrm{f}\) (C13)


Fig. 2, above. Parts layout of RCA chassis RC-1040B. Fig. 3 , left. Volume control dissassembly.

\section*{RCA 75X11; 75X12 (RC-1050A)}

These models are the same as models 75 X 11 and 75 S 12 , chassis \(\mathrm{RC}-1050\), appearing in Rider's Volume 18 on pages RCA 18-4 and 18-50 except for differences in the i-f trinsformors. Here are the listing of the i-f transformer part numbers for the two different chassis.
Chassis RC-1050 uses:
1st IF trans. stamped 922246-7, stock No. 71558
2nd IF ,truns. stamped 940351-2, Stock No. 71631
Chassis RC-1050A uses:
1st IF trans. stamped 922246-11, Stock No. 70128
2nd IF trans. stamped 922246-12, Stock No. 70129
Conncetions to the i-f mansformers are identical for both chansis. Capacitors C8 and C9 of the 2nd i-f transformer stamped \(922246-12\) ( RC - 1050 A ) : are \(122-\mu \mu \mathrm{f}\) each; the windings of this transformer have a d-e resistance of 13 ohme each

\section*{RCA 76ZX12}

This receiver is in Rider's Manual Volume 18, pages \(R C A\) 18-51, 18-52. The following corrections are made in the parts lists. Under the miscellaneous heading

Delete No, 36886 Knob and
Add No. 70414 Knob-control knob ivory for \(76 \mathrm{ZX1} 2\)

\section*{Sears 6686, Chassis 101.851}

This model appears on page \(17-1\) of Rider's Volume XVII. It has been found that the dial cord slips on some of these models. To help correct this condition, it will be necessary to replace the present dial cord with a longer dial cord to change the pointer hookup. The new cord should be cut about 40 inches long and should measure \(163 / 4\) inches folded after assembly to the dial string tension spring. See the accompanying diagram for correct hookup.


Dial cord hookup for Sears chassis 101.831

Dial slippage may be due to a tight ganged tuning capacitor. If light lubrication does not correct the condition, the thrust adjusting screw on the rear of the tuning gang may be backed off very slightly and securely locked in the new adjustment. Use great care to avoid excessive loosening as the rotor and stator plates may short. The set may require realignment after this adjustment.
```

                                    If frequency shift
    ```
occurs, the following change is recommended to correct the condition:
1. Remove the screw and mica and bend up the leaf of the capacitor shunted across the a-m oscillator trimmer capacitor, C23.
2. Replace this part with a \(15-\mu \mu \mathrm{f} \pm\) \(10 \%\) ceramic capacitor.
3. Realign the \(\mathrm{a}-\mathrm{m}\) band of the radio receiver.
This change is being incorporated in production and will be effective on all sets shipped after September 30, 1948.

\section*{Secrs 6230A, Ch. 101.802-1}

This model is the same as model 6230 , ch. 101.802, which appears on pages 15-15 through 15-18 of Rider's Volume XV, except for the following change.
A phono jack has been added to the circuit. This phono jack is connected to the control grid (pin 6) of the 1LB4 output tube. Physically, the jack is located on the top of the chassis in the rear left corner near transformer T3.
Searg Roebuck 6362. 6363, 6364. Chassis 101.581

These models appear on pages 11-64, 11-80, and 11-82 of Rider's Volume XI. If frequency shift in the \(\mathrm{a}-\mathrm{m}\) band occurs, the following should be done. Remove the screw and mica and bend up the leaf of the capacitor shunted across the a-m oscillator trimmer capacitor C23. Replace this part with a \(15-\mu \mu \mathrm{f}, 10 \%\) ceramic capacitor. Then realign the \(a-m\) band as outlined on page 11-82 of Rider's Volume \(X I\). This change is being incorporated in the present production of these models.

\section*{Secrs Roebuck 7054, 8052, 8053}

Models 8052 and 8053 are similar to Model 7054, but include the change shown on page 3 of the September issue of Successful Servicing. Model 7054 appears on pages 16-1 through 16-3 of Rider's. Volume XVI. It has been found that some of the failures of the \(35 Y 4\) rectifier tube in these models can be prevented by adding a shunt resistor of 270 ohms across pins number 1 and 4 of the 35 Y 4 tube. This change was not made in production, so it is suggested that it be made in service when this type of failure is encountered.

\section*{Sears 7230, Ch. 101.802A}

Basically, this model is the same as model 6230. ch. 101.802, which appears on pages 15-15 through 15-18 of Rider's Vol. ume XV: However, it differs in the following respects.
A phono jack has been mounted on the top of the chassis in the left rear corner near transformer T3. This jack is connected to the grid (pin 6) of the 1LB4. out put tube.

Also, the dial cord and pointer arrangement has been changed to the hookup shown in the accompanying diagram.


Dial corl arrangement for the Sears Mod rl 7230

The battery supply used with this model is Cat. No. 6306 Battery Pack.
Sparks Withington \(1005,6,7,8\)
These models appear in Rider's Manual Volume XVIII, pages 18-3 through 18-10. The signal generator frequency in operation 9 in the alignment chart on page \(18-5\) should be changed to read 10.7 megacycles.

\section*{Seats 7100, Ch. 101.8II-I}

Model 7100, Ch. 101.811, appeears on pages 16-1, 16-4, 16-5, and 16-8 of Rider's Volume XVI. A change has been made in the circuit as follows:

A tone-control network consisting of resistor R16 and capacitor C24 has been connected from the plate (pin 2) to the cathode (pin 7) of the 7C8 tube. In order to accommodate this added circuit, some rearrangement has been made in the position of parts on the bottom of the chassis.

\section*{Stromberg-Carlson 1204}

This 1949 model is similar to the previously manufactured Model 1204, appearing on pages 15-. through 18-6 of Rider's Volume XVIII. The following changes provide complete servicing information:

Remove C-4 and R-5 and ground the cathode of the r-f amplifier ( \(\operatorname{Pin} 7\) ).
Remove C-29 and R-20 and ground the cathode of the 1st i-f amplifier (Pin 7). Remove C-37 and R-22 and ground the cathode of the 2 nd i-f amplifier (Pin 7).

Short out L-18 and R-7 in the screen of the r -f amplifier ( \(\operatorname{Pin} 6\) ).

Change R-9 from 680 ohms to 2200 ohms with an \(r\)-f choke wound on the resistor and connected in parallel with it.

Remove C-30 and short out R-34 in the screen of the 1 st i-f amplifier ( \(\operatorname{Pin} 6\) ).
Remove C-38 and short out R-24 in the screen of the 2 nd i-f amplifier ( \(\operatorname{Pin} 6\) ).
Add a. \(0.1-\mu \mathrm{f}\) capacitor from Pin 8 to ground and from pin 3 to ground on the \(12 \mathrm{H} 6 \mathrm{f}-\mathrm{m}\) detector.
Add a \(10-\mathrm{megohm}, 1 \frac{1}{2}\)-watt resistor from the grid (Pin 7) of the converter to the ave string.
Add a 220,000 -ohm, \(1 / 2\)-watt resistor from terminal 5 to terminal 7 of 1st i-f trans former.
Disconnect Pin 5 of 2nd i-f transformer from ground and insert a \(0.01-\mu \mathrm{f}\) capacitor from Pin 5 to ground. Connect Pin 5 to the are string through a 100,000 -ohm, \(1 / 2\) watt resistor.

Change the converter, 1st i-f amplifier. and 2nd i-f amplifier B-plus line to feed from the low side of the filter choke.

\section*{Stromberg-Carlson 1210, 1408}

The information for Model 1210 appears on pages 17-1 through 17-7 of .Rider's Volume XVII. The 1408 is the same except that it is being manufactured in two cabinet styles, the blonde 1408 M6A. (108119) and the mahogany 1408 PLM. (10811), both equipped with the VM-800 record changer and the 1210 radio chassis.
Now that the low-frequency f-m band is practically non-existent, these two models can be modified to give greater sensitivity on the high-frequency f-m band at the sacrifice of the low-frequency f-m sensitivity. This is done by changing the built-in \(\mathrm{f}-\mathrm{m}\) dipole on the back of the cabinet. Use the following procedure:
Remove the original dipole attached to the rear of the cabinet.
Cut a piece of 300 -ohm transmission line to 57 inches in length. This will be the new dipole.
Short the two parallel leads together at each lend of this transmission line and solder.

At the center of one of the wires in the 300 -olm line, break the lead and connect another piece of 300 -ohm line long enough to reach from the top of the cabinet to the dipole antenna terminals on the 1210 chassis. Solder the connection.

Attach the 57 -inch length of line to the cabinet, dressing it so that it is kept away from the a-m loop and so that the center of the dipole is at the center of the cabis net at the top.
Connect the other end of the lead-in to. the \(\mathrm{f}-\mathrm{m}\) antenna terminals of the 1210 chạssis.

\section*{Siromberg-Carison 1400, 1400 Special}

These models are the same as Model 1200, appearing on pages \(18-1\) through \(18-3\) of Rider's Volume XVIII, except for the following changes. Omit R-9 (220 ohms) and connect the screen grid of the converter (12BA6, Pin 6) to the screen grid i-f amplifier (12BE6, Pin 6).
Omit C-2 \((.05 \mu \mathrm{f})\). Omit the dial lamp. Omit R-14 ( 120 ohms 2 watt) and jumper. the former terminals of the resistor to make the heater string continuous.
The difference between these models is that Model 1400 has a dial with the numbers on the curved lens while Model 1400 Special has a dial with numbers on the flat glass plate behind the curved lans

\section*{Teletone 149, 157}

These models are the same as model 135 which appears on page Misc. 16-11 of Rider's Volume XVI.

\section*{United Motors R-705}

Add to the material on this model appearing in Rider's Volume \(X \cdot 11\), pages 17-1 through 17-6 (the Electro-Tuner in Volume XVIII, pages \(18-6\) and 18- \(\boldsymbol{\gamma}\) ), the Seryice Part \#7256226, Fuse Block.

Ignition interference on an R-705 recently installed in a new convertible Studetaker Commander has been suppressed through the following procedure.

To eliminate chassis pickup:
Sand edges of the case and cover the chassis unit and install additional cinch clips to insure a tight cover to case fit. Bond motor to firewall with part \#6022 Braid. Bond heater cortrol wire sheath to firewall at entrance point of firewall. Use one-inch braid. Soldering the braid to control wire sheath is not recommended. A mechanical connection is more desirable since there is less danger of soldering the control wire and sheath together.

To eliminate antenna pickup:
Bond antenna base to instrument panel using as; short a length of braid as possible. Install a choke coil in antenna circuit. This may be accomplished by wiring choke part \#1214382 into the chassis at the antenna connector or using part \#555382 adapter. This latter part is available only through the Oldsmobile Lansing Parts Department Stores "A", Lansing, Michigan.

\section*{Westinghouse H-124}

This model is the same as Model H-125 which appears on pages 15-8 through 15-10 of Rider's Volume XV, except that the side panels of the H-124 cabinet are a darker shade of green. The following items have been added to the parts list:

\section*{Part No. \\ V-3459-3 Cover, right hand}

\section*{Westinghouse H-186, H-187}

This model appears on pages 18-26 through 18-s0 of Rider's Volume XVIII. The \(0.1-\mu \mathrm{f}\) resonant-type capacitor (C33) is not used on late production chassis. This capacitor is shown connected between the B-plus line and ground in the schematic diagram on page 18-26.

\section*{Westinghouse H-164, H-166, H-166A, H-167}

These models appear on pages 18-12 through 18-19 of Rider's Volume XVIII. The changes are as follows:

The notes under Figs. 1 and 4 should be revised to read: "All V-2119 chassis have 1st and 2nd i-f transformer adjustments as shown by the dotted line." The dotted-line adjusting points apply to current production chassis as well as to early models. The adjusting points shown in Fig. 3 apply to the V-2119-1 chassis which was also used in the above models.
Early models of the V-2119 chassis used a V-3295 power transformer which required a voltage-dropping resistor (R50) between the rectifier tube and the filter input to provide the correct voltage at the input to the filter. The V-2119-1 chassis and late models of the V-2119, chassis use a different power transformer (stock numbered V. 4761) and the voltage-dropping resistor, R50, is no longer required.

Capacitor C76, which is shown connected between the B-plus line and ground in the schematic diagram on page \(18-13\), is not being used on late production chassis.
The items listed below are incorrectly listed in the replacement parts list. They should be changed to read as follows:
RC30AE332K Resistor, 3,300 ohms, 1 w. (R31)
V-4886-1 Choke, filament (L2, L3 ) Westinghouse H-165
This model appears on pages 17-12 through 17-14 of Rider's Volume XVII. The switch for this model was listed as a complete assembly including a wafer section (SW1) and an a-c switch section (SW2). In cases where the a-c switch is defective, but the remainder of the switch is not damaged, repairs can most easily be made by replacing the a-c section only. For this reason, the a-c section of the switch assembly is listed below as an addition to the parts list.
Part No.
V-4803-1
Switch, a-c (SW2) and
mounting plate
Westinghouse H-185 and H-195
These models appear on pages 18-23. through 18-25 of Rider's Volume XVIII. The changes are as follows:
The value of R3 on the schematic diagram should read 220 ohms instead of 220 K ohms as shown.

The 220 K resistor, R7, which was previously connected between the common negative line and the chassis, is not being used in late production chassis. Also in later production chassis, the value of R9 was changed from 3,300 ohms to 1,800 ohms.
In later production receivers, an adjustment hole was provided in the right side of the model H-185 cabinet. It is recommended that the r-f trimmer (C6) be adjusted with the chassis in the cabinet and the rear cover closed. The plug that fits this hole is listed below.
The following items should be added to the parts lists:
RC20AE182K Resistor, 1,800 ohms, \(1 / 2\) w. (R9)

V-1157.4
V-4836-6
V-4836-5 Plug, button (H-185
(H-185 grey)
Plug, button (H-185 grey cabinet) maroon cabinet)

Westinghouse H-153, H-155, H-156, H-171, H-171A, H-171C, H-184

Thes:" models are electrically the same as Model H-122, appearing on pages 15-5 throuth 15-\% of Rider's Volume \(X V\). The rabinets differ from that of Model H-122.

The parts list should be changéd to include the following:
Item Part No. Descrip.ion
31 V'3360. Loop, antenna (H-171 Mah., 31 V-436t H-171A, H-171C, H-184) Loop, antenna (H-153, H-171 Blonde and Limed Oak)
\(\begin{array}{ll}V+373 & \text { Loop, antenna (H-156) } \\ V-1079 & \text { Reieptacle (H-153, H-171) }\end{array}\)
\(\begin{array}{ll}V-1079 & \text { Reeeptacle (H-153, H-171) } \\ \text { Socker, molded power (H-171 }\end{array}\)
Socker, molded power (H-171,
H-17IC)
H-171C)
65 V-3393-1 \(\begin{aligned} & \text { Sockê, receiver, a-c power } \\ & (\mathbf{H}-153)\end{aligned}\)
V-3412 Background, dial (H-153, H-171
H-171A, H-171C, H-184)
\(\mathrm{V}-4376\) Background, dial (H-156)
Y-4891 Baffle and grill cloth assembly ( \(\mathrm{H}-155\) )
V-3677 Baffle, cardboard (H-156)
V-3532 Bar, flat, rezord changer mounting (H-153, H-171, H-171C)
V-3489S-1 Bumper (cabinet foot for H-153, \(\mathrm{H}-155, \mathrm{H}-156\) )
\(\mathrm{V}^{\prime}\) 6021-1 Bumper, \(5 / 8^{\prime \prime}\) dia., self-adhering ( \(\mathrm{H}-184\) )
V-6021-2 Bumper, \(12^{\prime \prime} \times 2^{\prime \prime}\), self-adhering V - \(5725 \quad \begin{aligned} & \text { Bumper, bottom cover mounting } \\ & \text { Burer }\end{aligned}\) Y-1125-1 Cabinet (radio seetion - H-153,
V-1126 H-171 Blonde and Limed Oak)
V-1128 Cabinet (H-155)
V-1158-1 Cabinet, less radio section

\section*{(H-184)}
and Limed (Oak)
H-171A, H-171C)
-32195-1 Cord; dial drive (spool)
V-5047 Cover, back ( H -171 Blonde and
V-5287 Limer bask
\(\begin{array}{ll}\text { V. } 5287 & \text { Cover, back (H-171 Mahogany) }\end{array}\)

V-3663 Decal, radio-phono (H-155, H-
V-3662 Decal, stations (H-155, H-156)
V-3660 Decal, tone (H-155, H-156)
\(V-3661\) De:al, volume (H-155, H-156)
V -3665 Decal, Westinghouse (H-155: H-156)
V - 3647 Dial (H-155)
\(\mathrm{V}-43+4 \quad\) Dial (H-156)
V-7009-1 Door, front (H-171 Limed Oak)
V-7009-2 Door, front (H-171 Blonde)
V-7011 Door, front (H-171 Mah., H-1714, H-171C)
V-3829 Felt Strip, \(1 / 4^{\prime \prime} \times 1 / 16^{\prime \prime} \times 83 / 8^{\prime \prime}\) (H-153, H-171, H-171A, H-171C, H-184)
\(\mathrm{V}-4902\) Glide, furniture ( \(\mathrm{H}-171, \mathrm{H}-171 \mathrm{~A}\), V-4228 Grille Cloth (H-156)
V-3345-5. Grommet, variable capacitor
V-4973 Hinge, door ( H -171 Blonde and
V-5355-1 Limed Oak) \({ }_{\text {Hinge, door (H-171 Mah., }}\)
V-3510 H-171A, H-171C) Hince, H-171 Mah., H-171A,
V-4321 \(\quad \begin{aligned} & \text { H-171C } \\ & \text { Hinge, lid (H-153, H-171 Blonde }\end{aligned}\) Hinge, lid (H-153,
V-5836 Knob, door (H-171A, H-17.1C)
V-4362-2 Knob, radio-phono (H-153, H-171 Knob, radio-phono (H-153, H-17
Blonde and Limed Oal.
V-4371-2 Knob, radio-phono (H-156)
V-4361 Knob, tuning and tone (H-153,
V.s697-3 Knob, tuning and tone (H-156)
\(\begin{array}{lll}\text { V-9697-3 } & \text { Knob, tuning and tone (H-156) } \\ \text { V-4362-1 } & \text { Knob, volume (H-153, } & \text { H-171 }\end{array}\) Blonde and Limed Oak)
V-1371-1 Knob, volume (H-156)
V-3333S-2 Medallion (H-153, H-155, H-171 Blonde and Limed Oak)
V-389+ Nameplate, Westinghouse (H-153. H-171, H-171A, H-171C)
V-6024-1 Plate, hinge (H-184)
\(\mathrm{V}-4365\) Pointer, (H-153, II-1र| Blonde V-4384 Pointer ( \(\mathrm{H}-156\) )
V-3836-1 Pointer assembly, including pointer, mount and slide ( \(\mathrm{H}-17 \mathrm{l}\) Mah., H-171A, H-171C, H-184) Pointer assembly, including pointer, mount and slide (H-155)
\begin{tabular}{|c|c|}
\hline V-3370. & Pointer slide assembly, including pointer mount and pointer slide (H-153, H-171 Blonde and Limed Oak) \\
\hline V-3166S & Pulley, 7/16" dia. \\
\hline V-4379 & Rail assembly, poin \\
\hline RC20AE334M & Resistor, \(330 \mathrm{~K} 1 / 2 \mathrm{w}\).(part of record changer) \\
\hline V-3322 & Shaft, tuning \\
\hline V-3530 & \begin{tabular}{l}
Spacer, felt, \(1 / 16^{\prime \prime} \times 3 / 8^{\prime \prime} \times 1^{\prime \prime}\) \\
(H-171A, H-171C)
\end{tabular} \\
\hline V-4323 & Spacer, felt, \(1 / 1^{\prime \prime \prime} \times 3 /^{\prime \prime} \times 1^{\prime \prime}\) (H-153, H-171 Blonde and Limed Oak) \\
\hline V-5057 & Strike, bullet catch ( \(\mathbf{H}-171\) Blonde and Limed Oak) \\
\hline V-5290 & \[
\begin{aligned}
& \text { Strike, bullet catch (H-171 } \\
& \text { Mah., H-171A, H-171C) }
\end{aligned}
\] \\
\hline V-4324 & \[
\begin{aligned}
& \text { Support, lid (H-153, H-171 } \\
& \text { Blonde and Limed Oak) }
\end{aligned}
\] \\
\hline V-5291 & Support, lid (H-171 Mah., H-171A, H-171C) \\
\hline V-3752S & Washer, felt, for small knobs (H-171 Mah., H-171A, H-171C, H-184) \\
\hline V-4366 & Washer, felt, for small knobs (H-153, H-171 Blonde and Limed Oak) \\
\hline V-3668S & Wacher, felt, for knobs (H-155) \\
\hline V-5277-1 & Washer, felt, for knobs (H-156) \\
\hline V-5762 & Washer, fibre, phono mounting (H-171A, H-184) \\
\hline V-3267S-4 & Washer, flat, chassis mounting
Washer, spring \\
\hline V-3215s & Washer, spring ( \(\mathrm{H}-153\) \\
\hline 356 & Window, dial (H-153, H-171, H-171A, H-171C, H-184) \\
\hline
\end{tabular}

\section*{Wilcox-Gay 8 J 10}

This model appears on payes \(1 \mathrm{~S}-1\) and 15-2 of Rider's Volume XIIII. Sevemal changes have been made in late production receivers. For recoivers with serial numbers 14,940 and up, the grid of the 6P336 tube is grounded when the function switch is set in the "RECORD MIKE" nosition. This holps eliminate high-frequency noise disturbances when recording from the microphone. On receivers with serial numbers 14,939 and below, the yellow wire connected to pin \#2 on the 6B36 socket should be moved to pin \#7.

The output transformer (81-2106) on all receivers with seisal numbers 25,001 and up, has been replaced by a tapped primary transformer (81-2109-1) with a neon limiter lamp (45-2023) connected across the yellow and red primary leads, as shown in Fig. 1.


Fig. 1. New output trans:ormer and limiter. circuit of the Wilcox-Gay SJ1o.

This supersedes the previous limiting circuit using two neon lamps across the secondary leads of the output transformer.

The single neon lamp limits the amount of voltage to the crystal so that the crystal will not be damaged by the applica. ion of excessively strong signals.
Several cases have been reported where the coupling capacitor C13 has shorted due to excessive peak voltages. The shorting of this capacitor places the d-c plate roltage directly across the crystal recordplayback head, resulting in "burned-out" or cracked crystals.


Fig. 2. To eliminate crystal failure, these changes should be made.

To eliminate crystal failure from this source, on all chassis having the double neon bulb limiter panel and the 400 volt coupling capacitor, the capacitor should be changed to one having a 600 -volt rating and the dual limiter panel should be connected directly across the primary of the output transformer. See Fig. 2. Every set with the dual limiter that is returned for service should have this change made. Failure of C 13 is eliminated on late nodels by using the tapped-primary transsormer described, previously.
Wilcox-Gay 6B10, 6B2O, 6B30, 6B40, and 6B42
These models are the same as Model 6B10, Late, on page \(15-4\) of Rider's Volume \(X V\), except for the following changes. a \(0.00005-\mu \mathrm{f}\) capacitor (C34) has been connected across R38.
A 6E5 tube has been substituted for the 6U5; the socket connections are the same. A 6SJ7GT tube has been substituted for the \(6 J 7 \mathrm{GT}\) formerly used. The socket connections for the 6SJ7GT are:
\[
\begin{array}{ll}
1 \text { No connection } & 5 \text { Cathode } \\
\text { 2 Heater } & 6 \text { Screen Grid } \\
\text { 3 Suppressor Grid } & 7 \text { Heater } \\
\text { 4 Grid } & 8 \text { Plate }
\end{array}
\]

Tie points are utilized for voltage measurements, see the accompanying voltage chart.

Zenith S 13200
This model is the same as Model S. 11468 on RCD. CH. Pages \(15-1\) through \(15-8\) of Rider's Volume XV, except that the Model S 13200 has a Cobra tone arm and a muting switch.

\section*{Zenith 6R886, Chassis 6E02}

This model appears on payes 17-16 and 17-17 of Rider's Folume XVII. In some cases when microphonics are encountered, replacing the 6C'4 tube mounted at the top of the chassis alleviates this condition. The 6C4 tube is easily accessible after the screen in the record changer compartment is removed.

\section*{Zenith 7R887, Chassis 7E22}

This model appears on pages 18-94,94 through 18-36 of Rider's Volume XVIII: When replacing defective or burned out tubes in this receiver, care must be taken that the 6SK7 i-f amplifier tube be replaced only with another 6SK7. Use of a 6 SK 7 GT or G tube will result in extreme oscillation which can be controlled only by the use of the 6SK7 metal tube.

TYPICAL VOLTAGE CHART
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline TUBE & \multicolumn{9}{|c|}{ VOLTAGE TO GROUNDD PIN ND. } \\
\cline { 2 - 10 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \hline \(6 A B\) & 0 & 13 & 240 & 80 & -10 & 156 & 13 & 2.6 \\
\hline \(6 S K 7\) & 0 & 13 & 3.3 & & 3.3 & 80 & 13 & 240 \\
\hline \(6 S N 7\) & 0 & 232 & 6.5 & 0 & 55 & 1.6 & 13 & 13 \\
\hline \(65 Q 7\) & 0 & 0 & 1.5 & 0 & 0 & 68 & 13 & 13 \\
\hline \(6 V 6\) & 0 & 13 & 225 & 240 & 0 & 240 & 13 & 13 \\
\hline \(6 S J 7\) & 0 & 13 & 0 & 0 & 0 & 3.3 & 13 & 80 \\
\hline \(5 Y 3\) & 0 & 280 & & \(275 A C\) & & \(275 A C\) & & 280 \\
\hline \(6 E 5\) & 13 & 6 & 0 & 240 & 1 & 13 & & \\
\hline
\end{tabular}

\section*{MEASURED WITH 1000 OHMS PER VOLT METER. SCALES USED-3-30-150-300}

ALL PLUNGERS IN RELEASED POSITION.
Typical voltage chart for the Wilcox-Gay \(6 \mathrm{~B} 10,6 \mathrm{~B} 20,6 \mathrm{~B} 30,6 \mathrm{~B} 40\), and 6B42.

\title{
SETTING UP CHANGER FOR OPERATION
}

\section*{Section 2}

\section*{UNPACKING}

Before operating the record changer, the following procedure should be followed:

Remove all packing material and pieces of tape from changer compartment.
Remove locking screw from back side of changer compartment.
Remove the cardboard spacers between turntable and cabinet shelf.

Remove shipping bolts from floating panel.
See that changer and mounting panel float upon the spring mountings.

See that gears and cam tracks are lubricated (can be checked by observation while in cabinet).

See that levers have not been displaced during transit.

Check needle and pıokup for damage.
Run changer by hand through cycle to discover any binding.

See that the changer is level.

\section*{CHECKING THE CHANGER}

Check the needle landing with full stack of records, intermixed. This is done by loading the spindle shelf with 10 records, both \(10^{\prime \prime}\) and \(12^{\prime \prime}\) and press-
ing the control button to reject a record and put the changer into operation. The stabilizer arms must be moved into the recess in the spindle to prevent interference in loading the records. Allow the first record to play through and trip, observing the needle landing on several \(10^{\prime \prime}\) and \(12^{\prime \prime}\) records, then trip records up to and including nine. Allow the ninth record to play through and feed number ten automatically, observe needle landing, automatic trip and automatic shut-off.

Check electrical operation by turning radio program switch to phono position and playing a record. The noise eliminator should be checked in each position by listening to reproduction. As a rule, old worn records should be played while the switch is in the No. 1 position. Position 2 is for normal records, while No. 3 gives wide-range reproduction from the new high-fidelity recordings.

\section*{DEFECTIVE RECORDS}

This record changer is adjusted to operate with standard records. Records that are undersized, too thick, or with deformed center holes, cannot be expected to operate properly on this or any other changer. Trip grooves that are not standard may result in erratic tripping. Records should be examined for faults before making adjustments to the changer.

\title{
DESCRIPTION AND OPERATION OF THE CHANGER
}

\section*{Section 3}

\section*{RECORD LOADING}

The record spindle shelf is to be loaded to a maximum of 12 ten inch, 10 twelve inch, or to the red line on the spindle with both sizes, intermixed. The stabilizer arms must be moved into the recess of the spindle to prevent interference in loading the records.

The tone arm set-down is always in \(10^{\prime \prime}\) position unless a \(12^{\prime \prime}\) record has just been dropped from the spindle shelf. In dropping to the turntable, the \(12^{\prime \prime}\) record strikes the intercepter lever \# 58698 , contacting the tone arm swing lever \#58698, imparting movement to the tone arm lift lever \# 58694 and causing the tone arm to be set down to \(12^{\prime \prime}\) position.

\section*{RECORD CHANGING}

After the changer is loaded with records, the control button is pressed to start the record change cycle. Rotation of the main cam will actuate the compression lever causing the compression rod to depress the inner-spindle assembly. The four-prong
spring support (spindle shelf) has receded into the outer spindle and the rubber sleeve on the spindle, being compressed, has expanded, and therefore holds all but the bottom record which descends to the turntable. Then the tone arm return lever moves the tone arm into position to be lowered to the record by following the cam track. The tone arm moves across the record until the selection is finished and the trip mechanism functions. Finally, the tone arm is lifted and carried over the record until clear of the record stack and the next record is released, completing one change cycle. In this manner all the records in the stack are played.

\section*{AUTOMATIC STOP}

The weight of the records on the spindle allows the record lift lever to follow the contour of the main cam. When the last selection is played, a spring lifts the record lift lever into position to move the automatic stop pawl inward. The main cam carries the stop pawl into engagement with the switch lever, thus stopping the changer.

\section*{SPRING MOUNTING}

The changer is solidly mounted on a panel which is floated upon spring mountings. These spring mountings eliminate rumble or feedback'and insulate the changer from any cabinet vibration occasioned by the sound waves emanating from the speaker. This vibration, if transmitted through the tone arm to the pickup, would be amplified in the audio system of the radio and passed into the speaker again. The spring mountings also cushion the changer from sudden jars or shocks.

To remove the changer from the cabinet, remove four acorn nuts located on the corners of the mounting panel and lift panel out of cabinet. In some cases it is necessary to remove the cabinet drawer before removing the mounting panel.

On the underside of changer loosen screw next to spindle (paragrajph B, section 7), and turn lock so that turntagble may be removed from changer. Remove three screws and lift changer out of mounting panel.

\section*{CYCLE OF OPERATION}

\section*{Section 4}

\section*{STUDYING THE CYCLE}

The record change cycle consists of the sequence of motions required to move the pickup into position on a record, play the record, remove the pickup and place a record into position. Since movements of various parts are being performed simultaneously, it is impossible to follow all of the actions at one time. A suggested method is to select one certain cycle of operation. For example the raising of the tone arm, moving it over the record and the replacement on the record may be studied while running the changer slowly by hand. After the motions associated with the tone arm are understood, another portion of the changer may be observed.

\section*{TRIP ASSEMBLY}

Motion of the tone arm is transmitted through the tone arm crank to the tone arm lever and pin assembly \#15194 which is secured to the tone arm support tube with lever \# 58695. When the needle enters the trip grooves of a record, the increased velocity of movement impels the tone arm lever against the starting reset lever \#58853. The starting reset lever then engages the starting pawl on the turntable hub.

\section*{THE CHANGE CYCLE}

The turntable is driven through an idler pulley by the electric motor, the turntable being free on the spindle. A gear on the turntable hub meshes with the main cam gear. Several teeth are left off the main cam to stop it in playing position. After a selection has been played, the trip mechanism moves the starting reset lever, which is part of the main cam assembly \#13672, forward at the right speed and correct distance to permit it to mesh properly with the starting pawl on the turntable hub. As the main cam rotates, the tone arm lift lever \(\# 58694\) lifts the \(\$ 589\) main cam disengages from the turntable gear return lever moves the tone arm over the record. because several teeth are left off the main cam gear. The compression lever \# 57240 will actuate the com- The tone arm is in position on the record and free pression rod \#55424, which will in turn depress the to follow the playing groove. This phase of cycle inner-spindle assembly \#11379. During this cycle is called the playing position.

FIGURE B
The change cycle has just begun. The tone arm lift lever has raised the tone arm from the record and the tone arm return lever has started to move the tone arm away from the turntable. The compression lever assembly has started to pull the compression rod, thus beginning to recede the spindle shelf into the outer spindle and expanding the rubber sleeve on the spindle.


FIGURE C

The tone arm has moved outward, clear of the turntable, and the spindle shelf has fully receded into the outer spindle, dropping the bottom record to the turntable. The rest of the record stack is held by the expanded rubber sleeve. The spindle shelf has started to return to its former position.

\section*{CHANGER LUBRICATION}

\section*{Section 5}

The record changer should be lubricated and cleaned periodically or when a major part or assembly is replaced. Dirt, old oil, or grease may be removed with carbon tetrachloride or other similar cleaning fluid.

Use only a good grade of electric motor oil.
Care should be exercised to prevent an excess of oil being used on any part and that no oil gets on the velocity trip assembly, motor pulley, idler pulley or turntable rim. There is a self-lubricating type bearing in the turntable with an oil reservoir which may be filled through the four holes in the turntable hub.

Once a year a thin coat of light grease of the vaseline type may be applied to all surfaces of the main cam that contact lift levers and record lift lever roller. Also grease all working parts on the main cam and oil other moving parts (see figures D \& E) except those that rely upon friction, i.e., contact surfaces being dry.

\section*{PRECAUTIONS}

With mechanical devices, much information pertinent to lubrication can be obtained by observation. Obviously, it will be seen that certain parts of rotating or sliding machinery must be lubricated,


FIGURE D
```

MODEL P71,
FARNSWORTH TELEV. \& RADIO CORP.
Capehart

```
but that gther parts depend upon contact surfaces being dry and free from foreign substances, such as grease, so that proper friction exists. Where lubrication is indicated, it should be applied judiciously, avoiding any excess lubricant that may be transferred or thrown to some part designed for dry operation.

Inspect parts not requiring lubrication to make certain they are clean. Always be sure to use the type of oil or grease recommended for lubricating specified items.


FIGURE E

\section*{PARTS IDENTIFICATION}

\author{
Section 6
}


FIGURE 1—Top View

FIGURE 1
Part No. Description

55343 - Reject Plunger.
57259 - Noise Eliminator Knob.

58698 - Tone Arm Interceptor Lever.
58862 - Tone Arm Tube only.
59472 - Plastic Pickup Housing only.


FIGURE 2-Top View with Turntable Removed

FIGURE 2
Part No. Description
15196 - Automatic Stop. Switch Assy.
44064 - Phono Motor.
55328 - Tone Arm Adjusting Stud.
55336 - Mounting Bolt For Main Cam.
55337. - Motor Mounting Spacer.

58702 - Bearing Support Washer.
62173 - Rubber Motor Mounting Grommets.
2085-215 - Motor Mounting Bolt (\#6-32 x 5/8")

RCD. CH. FARNSWORTH PAGE 19-5


MODEL P71,. FARNSWORTH TELEV. ' \& RADIO CORP. Capehart


\section*{FIGURE 8}

Part No. Description
15220 - Main Cam and Pin Assy.
37335 - Washer (\#4 x 3/8" o.d).
37337 - Mitg. Screw for Levers (H.M.S \#4-36 \(\left.x 1 / 4^{\prime \prime}\right)\).
55397 - Trip Adjustment Screw.
57248 - Main Cam Switch.
58706 - Starting Lever.
58707 - Reject Lever.
58708 - Tone Arm Hold Out Lever.
58709 - Hold Out Locking Lever.
58853 - Starting Reset Lever.
58854 - Starting Lever Spring.
64452• - Cam Switch Spring.
64466 - Spring for Hold Out Lever.
64467 - Trip Spring.
2006-011 - \# 2-56 x 7/16" Fil. M.M.S.

FIGURE 10
Part No. Description
36857 - 1/4-28 Hex. Nut (To Mount Main Cam)
37338 - Shim Washer.
37339 - Flat Washer ( \(1 / 4^{\prime \prime}\) i.d. x \(5 / 8^{\prime \prime}\) o.d. x \(1 / 16^{\prime \prime}\) thick).
55335 - Cam Spacer (Inside Main Cam Hub).
55336 - Mtg. Bolt for Main Cam.
2019-007 - 1/4" S.P. Int. Lockwasher.
Inspect parts not requiring lubrication to make certain they are clean. Always be sure to use the type of oil or grease recommended for lubricating specified items.


FIGURE 10-Cam Mounting Assembly
FIGURE 9—Circuit Diagrams

\section*{PARTS REPLACEMENT}

\section*{Section 7}

\section*{A. \(\cdot\) REASSEMBLING PARTS}

When repairs are being made, a careful check should be made of all moving parts in order to make sure that no binding occurs. Check all moving parts for binding before springs are connected.

All levers which operate on shoulder studs should be assembled with the burred side of the retaining washer away from the lever to prevent the washer from binding on the lever.

\section*{B. TO REMOVE AND REPLACE TURNTABLE}

Remove the changer from the cabinet, and from the bottom side of the main frame (near the spindle) loosen the screw which holds the turntable down, so that it is clear of the pinion gear. The turntable may then be raised from the top side of the changer. Care must be taken not to damage the cork washers next to the bearing.

When replacing the turntable, see that the cork washer 60597, then the bearing race 58716, bearing retainer 13816, and another bearing race and cork washer are installed in this sequence (see Figure 1). Align these parts with the center spindle. When pushing the turntable over the spring assembly, push firmly but cautiously, avoiding too much pressure which may damage the springs. When the turntable is in place, move hold-down into groove in turntable hub and tighten screw.

\section*{C. TO REMOVE IDLER PULLEY}

After the turntable has been removed, the idler pulley can be removed by slipping off the small hairpin cotter on the end of the idler pulley shaft.

When replacing the pulley a single drop of oil should be used on the pulley shaft.

\section*{CAUTION:}

Do not allow oil to get on either the idler pulley or the turntable rim.

\section*{D. TO REMOVE AND REPLACE SPINDLE ASSEMBLY}

Remove nuts from bottom of compression rod. Lift compression lever 57240 out of position. Remove \(E\) washers and record lift bracket 58700. Pull spindle assembly out from top side. Do not attempt to repair assemblies but replace with new parts. To reassemble, push assembly inside of outer spindle from the top. Put record lift bracket in place and install E washers. Swing compression, lever into position and install flat spring 58789, nuts 37344 and 2015-002 and No. 3 lockwasher. Tighten nuts on compression lever until rubber sleeve on spindle reaches \(.330^{\prime \prime}\) to \(.337^{\prime \prime}\) diameter when fully compressed. Use Glyptal to secure lock nuts.
E. TO REMOVE AND INSTALL MAIN CAM ASSEMBLY (Fig. 1)
Remove turntable (paragraph B). Remove nuts from bottom of spindle and turn compression lever back to clear cam. Disconnect spring from tone arm lift lever 58694. Remove nut 36857 from under side of cam and withdraw bolt 55336 from top side of changer. Slide cam out carefully so as not to bend any levers on baseplate side. Adjust screw 55397 so that tension on starting reset lever 58853 is 6 to 8 grams. Use Glyptal on bottom side of screw. To reinstall the cam replace cam shim 37338, slide bolt through from top side of changer and slide cam into place being sure that spacing shim

37338 is not lost. Cam should have insert spacer 55335. Use flat washer 37339, lockwasher 2019-007 and hex nut 36857. Reinstall tone arm lift lever 58694 and attach spring 64431. Swing compression lever into place and install flat spring, two nute and lockwasher. Secure these nuts with Glyptal after spindle assembly has been adjusted. Reassemble turntable (paragraph B.)

\section*{F. TO REMOVE AND INSTALL TONE SWITCH \& BRACKET ASS'Y 13825}

Disconnect pickup lead wires from socket 80030. Remove two screws which hold bracket to baseplate. Lift bracket from assembly.

To reinstall, insert tone switch coupling 64464 between rejects plunger 55420 and switch 90243. Replace screws 2000-157 and lock washers 2019-004. Resolder pickup wires to socket; the black wire should be connected to the center terminal.

\section*{G. TO REMOVE AND REPLACE TONE KNOB \& PLUNGER ASSEMBLY 09353}

Remove Tone Switch and bracket assembly 13825 (paragraph F). Lift plunger assembly out from top side. Unscrew reject knob 59486 while holding shaft 55420 rigid. Remove spring 64474 and knob 57262 by lifting over top of shaft. To reassemble, place knob 57262 on shaft. Drop spring into knob and screw reject knob onto shaft. Push assembly in from top side of changer so that pointer is on markings on baseplate. Reinstall tone switch and bracket assembly (paragraph F).

\section*{H. SHIPPING CHANGER}

The changer is solidly mounted on a mounting board. The mounting board is mounted upon freefloating springs.

When shipping the changer, a hold-down bolt should always be used on each side of the changer mounting board to hold the changer securely in the cabinet. A cardboard spacer \(1 / 8\) " thick should be placed adjacent to the shipping bolts between the mounting board and the cabinet. The tone arm may be held securely to the outer edge of the turntable by arranging a cardboard strip to fit over the spindle and hold the tone arm down.

\section*{I. INSERTING PHONO PLUG}

The phono input plug must be inserted into the phono socket as far as possible to avoid "grid hum".

\section*{OPERATIONAL ADJUSTMENTS}

\section*{Section 8}

\section*{J. TONE ARM HEIGHT ADJUSTMENT}

Load a \(10^{\prime \prime}\) record on the spindle and turn the turntable by hand through cycle until the tone arm is at its highest point. From bottom side of changer, loosen hex nut 2015-007 and aḍjust screw 37511
to tone arm height desired. Tighten locknut on lift lever.
To remove lift lever 58694, release spring 54431 and withdraw lever from slot. To reinstall, insert pin 55325 in lift lever. Insert lift lever in slot and connect spring.

\section*{K. NEEDLE LANDING ADJUSTMENT}

Place a \(10^{\prime \prime}\) record on spindle and press reject button. Changer should continue in cycle until coming into playing position. Observe whether or not the needle lands in starting groove (about \(3 / 32^{\prime \prime}\) from outside edge of record). If needle lands too close to outer edge of record, turn top tone arm adjusting screw 55328 with coin in direction indicated on baseplate. If needle landing was too far from outer edge of record, turn adjusting screw in opposite direction. Hold top of spindle down and press reject button to check needle landing.
\(12^{\prime \prime}\) needle landing will usually not require adjustment. If required, it should be made only after \(10^{\prime \prime}\) adjustment has been corrected. For erratic needle landing, check the wire leads to see that they do not bind or interfer with the tone arm.

\section*{L. VELOCITY TRIP ADJUSTMENT}

Break the seal on the adjustment screw 55397 which is located in hole in bottom of cam near spindle. Turn to the left to tighten until the tone arm will trip on the record. To check adjustment lever 58706 on cam should contact both lugs on turntable hub when tone arm is in last playing grooves of record before tripping. Seal screw thread with Glyptal to prevent screw from coming out of adjustment.

\section*{M. RECORD FEED}
1. DOES NOT DROP RECORDS
a. See that stabilizer arms are not down under the record stack.
b. Check vertical clearance in spindle. Should be approx. \(1 / 64^{\prime \prime}\).
c. Check the records to see that the label is not extended into the center hole.
2. DROPS MORE THAN ONE RECORD
a. Check center hole of record for being
- chipped or oversized. (This changer will not chip or break records).
b. If \(12^{\prime \prime}\) record hangs on interceptor lever 58698, check slot in changer head for burrs. This lever should move freely with a slight drag on the side of the slot.
3. CHANGER DOES NOT START
a. If changer does not start immediately, press reject button a second time.
N. REPRODUCTION
1. No response.
a. Audio system. Check with radio reception.
b. Pickup leads shorted.
c. Pickup cartridge dead. Try new cartridge.
2. Distorted tone.
a. Worn needle.
b. "WOWS" or variance in speed.
(1) Oil on idler pulley and turntable rim.
c. Warped records.
d. Defective pickup cartridge.
1. Use of badly chipped records or records with breaks.
2. Dropping tone arm on record.
3. Thumping noise.
a. Groove in idler pulley worn by motor drive pulley. Result of idler pulley being held stationary with motor running.
1. Sand idler pulley smooth or replace pulley.
4. "Grid Hum".
a. Insert phono input plug into phono socket as far as possible.
b. Check electrical ground connection of phono socket.
5. Mechanical Hum.

Check alignment of turntable motor armature.
b. Check if phono plug and line cord are in their respective sockets.
c. If further trouble, turn turntable several revolutions to be sure that changer was not shut off during cycle. Press reject button to start.

\section*{4. CHANGER SHUT-OFF}

Changer should shut off after last record is played. Spindle should have approx. 3/32" vertical motion when no records are on spindle. One 10" record should be sufficient weight to depress spindle so that changer will not shut off. If changer does not shut off or if it shuts off before last record is played; see that spindle is not sticking. It should have a free vertical motion. Also check stop pawl for binding.

PARTS
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Dèscription & Part No. & Description \\
\hline 57262 & Noise Eliminator Selector knob & 13816 & Ball Bearing \& Retainer (for turntable) \\
\hline 07593 & Record Lift Lever Bracket Assy. & 13819 & Idler Pulley ................. \\
\hline 07594 & Turntable Assembly & 13825 & Tone Switch \& Brkt. Assy. Complete... \\
\hline 07651 & Record Lift Lever Assy. & 15193 & Tone Arm Swing Lever Assy. \\
\hline 09271 & Mtg. Spring Assy. for 21P-4, 24P-4, & 15194 & Tone Arm Lever \& Pin Assy. \\
\hline & 26P-4, 29P-4 and 30P-4 & 15195 & Compression Lever Assy. \\
\hline 0.9362 & Mtg. Spring Assy. (used on late 31P-4 & 15196 & Automatic Stop Switch Assy. \\
\hline & and all other not previously listed). & 15197 & Tone Arm Crank \& Pin Assy \\
\hline 09365 & Mtg. Spring Assy. (used on early 31P-4 & 15220 & Main Cam (casting only) \\
\hline 11377 & Tone Arm Support Tube \& Brkt. Assy... & 15237 & Idler Brkt. and Stud Assy. (on phono \\
\hline 11378 & Magnetic Pickup and Housing Assy. Complete & 25112 & motor) 01 mfd. 200 volit Condenser .......................................... \\
\hline 11379 & Inner Spindle Assy. & 25276 & . 02 mfd .200 volt Condenser \\
\hline 11437 & Phono Motor Assy. & 36857 & 1/4-28 Hex Nut (to mount main cam \\
\hline 11463 & Pickup Lead Assy. & 36882 & H. P. Cotter \\
\hline 13674 & Upper Spindle Assy. & 37066 & Acorn Palnut \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Part No. } \\
37155
\end{gathered}
\]} & Spade Lug (for tone arm 1 & Part No.
\[
58698
\] & \multirow[t]{3}{*}{\begin{tabular}{l}
Description \\
Tone Arm Interceptor lever \(\qquad\) Turntable Hold Down Brkt. Bearing Support Washer (Under Turntable Bearing) \(\qquad\)
\end{tabular}} \\
\hline & spring) & \[
\begin{aligned}
& 58698 \\
& 58701
\end{aligned}
\] & \\
\hline 37332 & \#6 Special Flat Washer (to mount reject lever Assy.) & & \\
\hline 37333 & " E " Washer (for tone arm adjusting & 58706 & \\
\hline & & 58707 & Reject lever (on main cam \\
\hline 37334 & \#10-32 x 7/8" H. H. Bolt (to mount outer spindle) & 58708
58709 & Tone Arm Hold Out Lev \\
\hline 37335 & \#4 x 3/8" o.d. washer (for mounting & 58716 & Bearing Race Washer (for \\
\hline \multirow[t]{3}{*}{37337} & levers on main cam) ......................... & 58789 & Compression Spring \\
\hline & \#4-36 x 11/4" bdg. H.M.S. (mtg. screws for levers on main cam-reject, tone & 58851 & Tone Switch Bracke \\
\hline & arm hold out) .............................. & 58852 & \\
\hline 37338 & Shim Washer (to mount Main Cam) & 58854 & \\
\hline \multirow[t]{2}{*}{37339} & Flat Washer \(1 / 4\) " i.d. \(\times 5 / 8^{\prime \prime}\), o.d. \(\times 1 / 16\) & 58862 & Tone Arm Tube Only (Chrome \\
\hline & thick To Mount Main Cam) ................. & 58971 & Ventilator Fan for phono motor \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 37340 \\
& 37341
\end{aligned}
\]} & Brass Washer (to Mount Motor) ......... & 59486 & Reject Button for P-71 \\
\hline & \#8-32 x 7/8" Hex Head. Bolt (for tone arm crank assy.) & 60597 & Cork Washer for Turntable Bearing (for turntable) \\
\hline 37343 & \#3 x 5/16" o.d. flat washer (on bottom & 62152 & Rubber Sleeve for Record Spi \\
\hline \multirow[t]{2}{*}{37344} & \#3-48 Special Hex Nut (Spindle Heig & 173 & Rubber Motor Mtg. Grommets \\
\hline & Adj. nut) & 64429 & Reset Spr \\
\hline 37390 & "E" Washer (small) for record spindle & 64430 & Reject Spring \\
\hline \multirow[t]{2}{*}{37421} & "E" Washer (to mount idler pulley, & 64433 & Spring For Tone \\
\hline & idler pulley Brkt. and Ventilator Fan) & 64433 & Spring For Tone A \\
\hline 51 & \# & 64437 & Tone Arm Counterb \\
\hline 37512 & "E" Washer (large) for record spindle & 64452 & Cam switch spring \\
\hline \multirow[t]{2}{*}{37646} & Mounting Bolt (for mtg. changer to & 64 & Switch Release Spring \\
\hline & mtg. board) (two required) & 64465 & Tone Switch Coupling Link \\
\hline \multirow[t]{2}{*}{54308} & Thrust Washer for Idler Pulley and & 644 & Spring for Tone Arm Hold Out Lever Trip Spring \\
\hline & Idler pulley Brkt. ............................... & & Spring For Id \\
\hline 54309 & Thrust Washer for Motor Ventilator & \[
64474
\] & Spring For Reject \\
\hline & Lan .l. & 64476 & Lead-in Spring \\
\hline 55328 & Tone Arm Set Down Adjustment Stud & 71238 & Magnetic Pickup (Le \\
\hline 55329 & Pin For Tone Arm Interceptor Lever.... & 77240 & 3300 ohm 1/2 watt resistor \\
\hline 55332 & Pin For Compression Lever & 77426 & 15 K ohm \(1 / 2\) watt resistor \\
\hline 55333 & Pin For Record Lift Lever & 80030 & Phono Output Jack \\
\hline 55334 & Outer Spindle & 80150 & 4 Prong Motor Plug (male) \\
\hline 55335 & Cam Spacer (inside Main Cam Hub)..... & 80327 & 2 Prong Molded Pickup Socket \\
\hline 55336 & Mounting Bolt for Main Cam & 90243 & Tone Selector Switch \\
\hline 55337 & Motor Mtg. Spacer & 92256 & Felt Washer For Turntable Bearing \\
\hline 55339 & Tone Arm Hinge Pin & 92335 & Felt Washer For Motor Ventilator Fan \\
\hline 55341 & Tone Arm Lift Rod & 2003-155 & \#6-32 \(\times 1 / 4 \times\) F H.M.S. (to mount tone \\
\hline \multirow[t]{2}{*}{55345} & Sleeve Support Washer For Recor & & arm adjusting le \\
\hline & Spindle & 2006-011 & x 7/16 Fil. H.M.S. (to mount cam \\
\hline 55395 & Hinge Pin for Reject & & switch) \\
\hline 55396 & Mounting Pin For Starting Lever & 2015-001 & \#2-56 Std. Hex nut (to \\
\hline 55397 & Trip Adjustment Screw & & switch) \\
\hline 55416 & Mounting Bolt (One required to mount changer to mounting board) & 2015-002 & \#3-48 Std. Hex nut (lock nut for spindle height adj) \\
\hline 55420 & Manual Reject Plunger Rod & 2015-007 & \#10-32 Std. Hex \\
\hline 57248 & Main Cam Switch & 2017-004 & \#8 i.d. \(x 3 / 8\) " o.d. flat washer (for tone \\
\hline 57254 & Tone arm end housing & & arm crank assy.) \\
\hline 58863 & Retainer Spring for Pickup & 2019-007 & 1/4". S.P. Int. Lockwasher (to mount \\
\hline 58692 & Interceptor Reset Lever & & main cam) ......... \\
\hline 58693 & Switch \& Reject Lever & 2085-205 & \#6-32 x 1/4" Truss H.M.S. (for mtg. \\
\hline 58694
58697 & Tone Arm Lift Lever & & reject lever) \\
\hline 58697 & Tone arm adjustment lever & 2085-215 & Motor Mtg. Bolt \#6-32 x 5/8" \\
\hline
\end{tabular}

\section*{SPECIFICATIONS}

Power Consumption at 117 volts
18 watts Type of Pickup.
Variable Reluctance
Voltage Rating 105 to 125 volts at 60 cycles Type of Needle \(\qquad\) Permanent Osmium Point MOUNTING HARDWARE FOR P-71 RECORD CHANGER
\begin{tabular}{ll}
09271 & Mtg. spring assy. for 21P-4, 24P-4, 26P-4, 29P-4 and 30P-4 \\
09362 & Mtg. spring assy. (used on late 31P-4 and all other not previously listed) \\
09365 & Mtg. spring assy. (used on early 31P-4) \\
37066 & Acorn palnut (four required) \\
37646 & Mounting bolt (for mtg. changer to mtg. board) two required \\
55416 & Mounting bolt (for mtg. changer to mtg. board) one required \\
\hline
\end{tabular}

\section*{ELECTRICALCIRCUIT}

Most service men working on Capehart instruments have had considerable experience with radio and phono radio combinations and can handle both. However, some service men have asked for an explanation of the electrical-mechanical trip system of the \(16-E\), so a schematic diagram of the changer circuit as used on the 400 M is given on page 5 .

In the 400 M series when the Phono Button on the tuner is pushed, the "Off-On" Relay is actuated as is the "Selector Motor" Relay. These relays are located in the tuner. The "Off-On" Relay holds itself closed until the "Off" button is pushed, this operates the "locking" Relay which opens the "Off-On" Relay Coil Circuit. In the 100 series, the "Off-On" Switch is mechanically operated and is ganged with the volume control shaft.

In the 400 M the "Off-On" Relay is used to turn on the power for the entire instrument; except for the 18 V transformer in the tuner chassis, which is always connected to the 117 Volt line, so the relays can be operated at will. One set of the "Off-On" relay contacts is used to keep its coil energized until the "Off" button is pressed, at which time the holding circuit is opened and the relay restored to normal. Another set of contacts is used for the 6.3 Volts for the heaters and pilot lights in the tuner. Another set of contacts completes the 117 volt supply for the Amplifiers. Phono Motor (if phono is selected) and the "Reject" Relay (located in the Junction Box). In the \(100^{\circ}\) series instruments, the AC phono switch is ganged with the program switch. When the program switch is turned to phono position, 117 VAC is supplied to the phono motor and reject relay (located in cabinet junction box). Due to the fact that the contacts of this Relay are closed until the coil is energized, the 117 volts are applied to the clutch Solenoid in the Record Changer. This causes the Record Changer to go through its cycle, unless the Automatic Switch is in "Off" position, before playing a record, thus the tubes are given time to reach operating temperature.

In the 400 M models, the "Selector Motor" relay controls the Phono-Radio indicator lights as well as the Dial Scale lights, the "Phono" Relay (in the Junction Box), the Selector Motor and "Mutes" the signal when the program service is changed by \(\alpha\) push button.

In the Record Changer the Clutch Solenoid is energized by the Phono Button (the program switch phono position on all \(100 \mathrm{~K} . \&\) M. series), the Reject Button, or the Automatic Trip Switch.

When the Reject Button is pressed, the Clutch Solenoid is energized by the "Remote Reject" Relay (in the Junction Box).

When the needle enters the trip or change groove in the record, the motion of the Tone Arm actuates the Automatic Trip Switch which energizes the Clutch Solenoid.

Whenever the Clutch Solenoid is energized, the changer goes into cycle. As soon as the cycle is started, the solenoid circuit is opened by breaking the top and center contacts of the motor solenoid switch. If the instrument is turned off during the cycle the changer continues to complete the cycle due to the center and bottom contacts of the Motor Solenoid switch by passing the motor switch contacts of the Phono Relay and Off-On Relay.

The Automatic Trip Switch, located under the Turntable, is actuated by the movement of the Stop Trip Lever being transferred by the Tone Arm. On the underside of the tumtable there is a fibre pin which moves the Stop Trip Lever back. During each revolution of the turntable, the fibre pin hits the lever, thus resetting the stop trip lever until the needle enters the change groove; this causes the Clutch Solenoid to be energized by closing the Automatic Trip Switch. The automatic "Off-On" switch is used to open the Clutch Solenoid circuit, in the eveni it is desirable to use the instrument manually.




\section*{MECHANICALOPERATION}

The best approach to a knowledge of the 16-E changer is to accept it on the basis that it is really "Four Changers in One". A study of each of the four fundamentals will enable a quick analysis of trouble.

The first operation, (Manual), is accomplished by placing the Automatic Switch in the "Off" position, thus opening the Clutch Solenoid circuit so the changer mechanism is not connected to the Drive Shaft at the end of a record.

The second operation, (Repeat), is accomplished by throwing the Automatic Switch to "On" position and the Selector Lever to the "Repeat" Position. Then, at the completion of a record, the Automatic Trip Switch actuates the Clutch Solenoid, thus connecting the changer mechanism to the motor. The steps that follow are:
1. Pickup Arm is elevated.
2. Pickup Arm is swung clear of the Record Tray.
3. The Record Magazine tilts but does not discharge a record.
4. The Record Magazine starts to return, as does the Pickup Arm.
5. While the Record Magazine is completing its return the Pickup Arm engages the Stop Arm, the needle is lowered to the record, and the cycle is complete.
6. No record is released from the record magazine during the repeat cycle since the record release lever has been pulled away from the Main Cam by the Selector Lever.

During the change cycle the Pickup is shortcircuited by a muting switch.

The third operation, (Plày one side).
1. Pickup Arm is elevated.
2. Pickup Arm swings clear of Record Tray.
3. Record Tray lifts to deliver record to Magazine.
4. As record in Record Tray strikes Record Support Pins, another record is discharged from the Magazine.
5. After record is expelled from the Magazine, the Record Tray returns part way and pauses.
6. Magazine tilts, and waits to deliver record to Record Tray, which starts down again.
7. Record Tray again pauses to allow record to settle over Spindle.
8. Magazine returns to normal position as does Record Tray.
9. Pickup Arm swings in and engages Stop Arm. This positions pickup over record and then needle is lowered to record.

The fourth operation, (Play both sides).
1. Pickup Arm is elevated and swings clear of the Record Tray.
2. The Record Reverse Arm and Guide swing
around in front of the magazine.
3. The Record Tray places the record against the Reversing Arm and starts back to normal position, pausing midway.
4. The Magazine tilts to slide the reversed record onto the Record Tray, pauses in its return until the record touches the front of the Tray, and then returns to normal position.
5. The record settles over the spindle.
6. The Tray returns to normal position.
7. Pickup Arm swings against Stop Arm.

8 rt Needle is lowered on record.

\section*{STEP BY STEP DESCRIPTION}

REPEAT CYCLE. At the completion of the record the needle enters the change groove, swinging the Pickup Arm, thus closing the Automatic Trip Switch, and energizing the Clutch Solenoid. Energizing of the Clutch Solenoid engages the two clutch sections, starting the change cycle. At the time the Clutch sections are engaged, the Clutch Solenoid Circuit is opened by breaking top and center contacts of the motor solenoid switch. Cycle is completed even though main switch is turned off since the center and bottom contacts of the Motor Solenoid Switch by-passes the motor contacts of the phono-motor relay and main on-off Relay causing the motor to run until cycle is completed.

The Pickup elevation is accomplished by the Pickup Lift Cam raising the Pickup Lift Shaft. As soon as the Pickup is fully elevated, the Pickup Arm is swung clear of the record by the Pickup Swing Cam rotating the Pickup Arm Swing Lever. Due to the fact that the mechanism is in cycle, the Magazine is tilted by the Main Cam operating the Magazine Slide Arm. Just after the Magazine starts to return to the normal position, the Pickup Arm starts to lower and swing into playing position. When moving in, the Pickup Arm Lever Hook engages with the Pickup Arm Stop Lever. With \(12^{\prime \prime}\) records the Rubber Roller at the end of the Stop Lever touches the edge of the record and stops the inward motion of the Pickup Arm. On 10 inch records this is done by an adjustable machine screw striking a stop which is as part of the baseplate casting. The Pickup Arm is, swung against the Stop Lever by the Pickup Arm Friction Cam. The Pickup Arm Stop Lever swings back out of the way after the needle has touched the record, but before the full weight of the pickup is on the needle.

\section*{ONE SIDE CYCLE}

To play one side of the record, the Selector Lever is moved to the One Side position (middle). This engages the Clutch to allow the Record Tray to be lifted by the Main Cam through the Record Tray Cam Follower. When this Clutch en-

\section*{FARNSWORTH TELEV. \& RADIO CORP.}

MODEL 16-E, Capehart
gages, the Record Separator Hook Arm and Roller Assembly swings over the periphery of the Main Cam.

After playing the record, the needle enters the change groove, thereby closing the Automatic Trip Switch and energizes the Clutch Solenoid. This action engages the Driving Clutch, and the change cycle starts with the Pickup Arm being elevated and swung clear of the Record Tray, which lifts the record off the Turntable and delivers it to the Magazine. Just before the tray with the record reaches the point where the record touches the sloping face of the Record Support Pins, a record is ejected from the Magazine by the Record Separator. When the changer is in cycle, the Main Cam revolves: on its periphery is a raised portion that lifts the Record Separator Hook Arm and Roller Assembly, drawing the Record Separator Hook down, thereby raising the Record Separator and three records. One record is lifted to the shoulder of the Lower Record Support Assembly and the Hook which is part of the Record Separator, and located on the center line of the Lower Record Support Assembly, engages the two bottom records of the stack and lifts them slightly. This assists in the discharge of the record from the Magazine by forcing the second and third record back against the first record, thereby helping to push it off the separator knife into the record well. The record drops to the Rubber Bumpers in the well while the Hecord Tray is delivering a record to the Magazine. The tray starts downward and its curved tailpiece lifts the record as the Magazine starts to tilt. The Record Tray pauses midway on its downward trip until the Magazine moves to the highest horizontal point, thus allowing the record to slide out; the Magazine then remains stationary until the record slides against the front of the Record Tray which has resumed its downward movement, only pausing to allow the Magazine to lower the center hole of the record over the Spindle. The Record Tray returns to normal position as does the Magazine, the Pickup Arm swings in and is lowered, as in the repeat cycle, and the Clutch is disengaged by the Clutch Throwout Cam striking the Clutch Throwout Lever.

\section*{EOTH SIDES CYCLE}

To play Both Sides, the Record Reverse Cam Shaft Lever moves the Record Reverse Cam so that it engages with the Record Reverse Cam Pin in the Reverse Cam Shaft. In the other positions, the Reverse Cam floats on the Cam Shaft and does not rotate with the Shaft. The Record Reverse Arm and Roller rides over the face of the reverse cam and operates the reverse arm assembly thru an adjustable drive rod.

After the Pickup is elevated, the Record Reverse Arm and Guide Assembly swings around in front of the Magazine. When it gets to the reversing position and the Tone Arm is clear of the Record Tray, the Tray raises. As the Tray raises, the record slides back against the Rear Rubber Bumpers, and the Tray compresses the spring arms of the Record Reversing Guide. The record hits the slanting face of the Support Pins while the Tray continues up, and the record slides up these faces to the top surface of the Support Pins. When the Record Tray starts to retum, the spring tension of the Record Guide pushes the bottom edge of the record off the support pins and as the record Tray pauses midway to the normal or playing position, the Magazine tilts, causing the record to slide down the Record Guide. The Magazine reaches its furthest excursion and returns part way, where it pauses, and the Record Tray continues downward to nearly the normal position. About the time the record hits the front of the Tray, the Magazine returns to the normal position after the record has dropped over the Spindle. The Record Tray then returns to normal, and the Pickup Arm is returned as in the repeat and one side conditions.

If one carefully watches the Magazine in the Both Sides Position, it will be noted the travel of the Magazine is shorter in the "Reversing" cycle than in the change cycle. On the side of the Main Cam, away from the rear of the instrument, there are two cam tracks. On the Magazine Slide Arm there are two rollers on a rocker arm, and when the Repeat, Play One Side and the change cycle of play Both Sides are in use, the outer cam track is engaged. On one side of the Record Reverse Cam is a pin which shifts the arm and moves the rocker so the inner cam track is used to change the Magazine travel. On the arm is another pin, which is struck by the Magazine Slide Arm Cam, changing the roller in use, also the cam track. Due to the fact that the Reverse Cam Shaft runs half as fast as the Main Shaft, the above action occurs every two cycles. The Record Reverse Cam, making only one-half turn per cycle, raises the Reverse Arm and Roller every other cycle, and in raising it, the Reversing Arm and Guide are swung around in front of the Magazine. When the Reversing Arm and Guide swing in front of the Magazine, the Record Separator Hook Arm and Roller are swung away from the Main Cam to prevent discharge of a record from the Magazine in the. "Reversing" cycle.

Due to the impossibility of covering the action of each part in the changer in the brief description above, it is essential that every service man spend considerable time observing the action of each part of the changer under each of the four conditions outlined above.

\title{
MOTOR DRIVE \\ GEAR REDUCTION - DRIVE SHAFT ALIGNMENT
}

A silent and smooth operating drive motor and gear reduction unit, properly coupled to the record changer, is of utmost importance for perfect reproduction of records. Unless these parts are all functioning properly, there is a possibility that waver or wows may be noticed in the sound reproduction from records. It is also possible that an objectionable hum or rumble may be discernible during low passages in records or the change cycle. If such conditions are apparent, we suggest a careful check and adjustment in accordance with the procedures which follow.

After freeing the record changer by removing the four hold down bolts used in shipment, make certain that the record changer is floating freely on its rubber mounting supports, and that it does not touch the record changer mounting shelf at any point. There should be a feeling of entirely free floating motion when the changer is shaken slightly. If such is the case, it is a good indication of full free floating action. By making sure that the record changer is "Free floating" the possibility of acoustic feed-back, hum, or rumble is eliminated.

Because of the importance for positioning the record changer into a free floating position, it is always advisable to check the alignment of the record changer drive shaft with respect to the gear reduction unit and between this unit and the drive motor. Unless the correct relationship is maintained, excessive hum or rumble may be present as well as the possibility of uneven turntable speed causing waver or wows in the record reproduction.

If the above conditions are apparent with record changer in free floating position, shift the gear reduction unit and motor assembly slightly until a position is found where the difficulty is eliminated or negligible. It may be necessary to enlarge mounting holes in the motor and gear unit assembly mounting board.

NOTE: Drive motors and gear reduction units are "run-in" and aligned on the mounting board at the factory, and will seldom, if ever, require adjustment in the field unless they have been tampered with, or in the event the motor has shifted due to rough handling in transit. If hum or rumble persists after trying previous suggestions, loosen the motor and shift slightly locking it in place when minimum hum position is located.

\section*{SAFETY CLUTCH—PURPOSE AND ADJUSTMENT}

The purpose of this feature is to uncouple the record changer from the gear reduction unit in the event a faulty record or improper operation of the machine causes the record changer to jam during some portion of the change cycle.

Essentially this device consists of two metal discs with a leather washer between. The driving power is transmitted from the lower to the upper disc through the leather washer because of the pressure developed by the nut, part 368-2, controlling the pressure of the spring, part 3938. Pressure of the spring determines the amount of back pressure, and by its adjustment, it may be set so as to cause the clutch to slip if more than normal drive tension or load develops somewhere in the record changer during its change cycle, thereby acting as a "safety" feature.

The proper method of checking the adjustment of the safety clutch follows. With the record changer in cycle and the record magazine fully loaded, apply a slight downward pressure on the bottom of the record magazine, while the magazine is tilting backward. When such pressure is applied, it should cause the safety clutch to slip and the turntable should stop revolving. In the event the action of the safety clutch is not as described, loosen nut, part 368-2, thereby releasing pressure on spring, 3938, this will permit safety clutch to unload sooner. After this adjustment is made, the changer should be put through a number of cycles to make certain that the clutch does not slip at any point in the normal change cycle as this would cause the changer to stall.

The action of this safety clutch shouid always be checked when the instrument is permanently set up in the customer's home since it acts as a safety device to prevent record breakage or damage to changer in the event of \(\alpha\) jam because of reasons previously mentioned. CAUTION: The leather clutch facing should be kept free from oil or grease.

NOTE: The Safety Clutch is locked together by use of a "C" washer in the end of the shaft. If unable to make proper adjustment after clutch has been slipping, remove clutch assembly and examine to determine if washer is out of position. If the washer is lost and none is at hand, the end of the shaft may be drilled and a small cotter key used to hold assembly together.

\section*{GEAR REDUCTION UNIT}

At least once a year the gear reduction unit should be checked to make certain it contains the proper amount of oil. It should contain one-half ounce, No. 10 S.A.E. oil. Stock No. 1315-1.

\section*{LUBRICATION}

At least every six months a few drops of oil should be applied to the drive motor oil cups. See illustration. For this purpose, use the special electrical motor oil which is carried by most all oil companies for electric fans, sewing machine motor, etc.


MOTOR DRIVE PARTS LIST
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Description & 13-151 & 410M Friction Drive Assembly \\
\hline 21156 & Motor, 60 cycle & 13-195 & Motor Coupling \& Set Screw \\
\hline 21157 & Motor, 50 cycle & 15-45 & Gear Box, Cover, Pinion \& Bearing \\
\hline 35107 & Gear Box Worm Gear & & Assembly \\
\hline 3938 & Spring, Safety Clutch & 36-136 & No. 10 Plain Washer \\
\hline 4067 & Bearing & 36-141 & 6/32 x 1/4" R. H. M. S. \\
\hline 50126 & Leather Disc & 36-258 & Spacers \\
\hline 50170 & 406M Drive Facing (Leather) & 36-501 & "C" Washers for Friction Drive \\
\hline 50225 & Gear Box Cover Gasket & 36-550 & No. \(10 / 32 \times 3 / 4 /{ }^{\prime \prime}\) Slotted H. H. M. S. \\
\hline 5466 & 406M Upper Friction Drive Disc & 36-551 & Lag Screw \\
\hline 6019 & \(1 / 4^{\prime \prime}\) Allen Wrench & 41-89 & "C" Washer Pkg. 12 \\
\hline 6179 & 5 Prong Motor Plug & 54-38 & Reduction Unit Shim \\
\hline 66105 & Flexible Coupling & 56-419 & 410M Shaft for Friction Drive \\
\hline 66399 & Gear Box 60 cycle & 56-415 & 411M Shaft for Friction Drive \\
\hline 66435 & Gear Box 50 cycle & 56-417 & 412M Shaft for Friction Drive \\
\hline 99-26-13 & 10/24 x 3/8" H. H. M. S. & 56-418 & 406M Shaft \\
\hline 99-28-13 & \(1 / 4 \times 20 \times 1 / 4\) " Allen Set Screw & 57-18 & Lower Friction Drive Disc (all models) \\
\hline 99-34-7 & 406M Cotter Pin & 60-144 & Fibre Washer \\
\hline 99-42-13 & \(1 / 4\) " Steel Ball & 62-46 & Motor Grommet \\
\hline 99-42-14 & 1/8" Pipe Plug & 67-88 & Mtg. Board \\
\hline 13-148 & 411M Friction Drive Assembly & 368-2 & 406M \(3 / 8 \times 32{ }^{\prime \prime}\) Hex Nut \\
\hline 13-150 & 412M Friction Drive Assembly & 1315-1 & Reduct. Unit Oil S.A.E. 10, 1/2 oz. \\
\hline 13-141 & 406M Friction Drive Assembly & 3611-4 & No. 10 S. P. Lock Washer \\
\hline 99-28-13 & Flexible Coupling Set Screw & 3643-1 & No. 10/32 Tee Nut \\
\hline
\end{tabular}

\section*{ELECTRIC PLAY CONTROL ADJUSTMENTS AND MAINTENANCE M Series}


FIGURE D. M SERIES PLAY CONTROL

PARTS LIST

Stock
No.
13-368
13-396
22-126
31-213
56-1099
56-1100 Steel Ball Bearing
59-142 Knob
59-143 Housing
62-75 Rubber Grommet
64-311 Dog Spring
90-125 Light Switch
90-132 Acro Switch
90-133 Relay (Complete)
90-134 Master Switch
92-140 Back Cushion
621-2 Rubber Grommet
61163 Light Bulb
1. The following parts comprise a complete play control installation. Play control with cables, plug and switch, compartment light, mounting bracket, two bracket mounting screws, two switch mounting bolts, and four wood screws. Check packing material so no parts are overlooked.
2. The mounting bracket should be installed on the record changer first, see illustration.
3. The bracket is mounted on the boss which supports the clutch fork shaft and the reverse cam shaft, on the side of the boss away from the main cam, so the clutch fork shaft sets in the cutout. Pass the two screws that fit the tapped holes in the switch bracket through the old play control bracket holes when mounting the bracket.
4. Remove the plug button from the partition between radio and changer, put the six prong plug, the switch and the cables through the holes in the partition. Fasten the play control on the partition by means of the wood screws being careful not to crack the plastic case by drawing
the screws too tight or driving the screws in crooked. Also be sure the record tray clears the play control housing before driving any screws.
5. Fasten the switch to the bracket by means of the two bolts. See illustration. This puts the switch in such a position that the throwout cam can actuate the switch. Of course, the switch goes on the bracket with the leads at the bottom and pointing toward the left (when looking in the back of the cabinet), this brings the spring finger in line with the throwout cam.
6. Remove play control shorting plug (six prong) from junction box and plug in cable from. play control. Set play control at any number except zero (off) and run changer through several cycles. If the switch is too close to the throwout cam, the relay in the play control will buzz; if not close enough, the action will be erratic. Be sure the, bolts holding the switch and the screws holding the bracket are properly tightened.

\title{
MECHANICAL PLAY CONTROL MODELS PRIOR TO M SERIES
}

\section*{TO ADJUST THE PLAY CONTROL}

When setting a play control, the counter should reset at Zero just as the needle touches the record. That is, the play control cam, on the record changer main shaft, should be from \(1 / 4^{\prime \prime}\) to \(1 / 2^{\prime \prime}\). beyond the plunger after the main clutch has disengaged. The control cable is put in the hole in the plunger and the set screw tightened, then the cable housing should be held in place by the set screw-do not set the screw tight. Turn the bar knob pointer back and forth over the play control dial, if the pointer catches or binds, slip the cable housing away from the bracket slightly, until the pointer runs free, then run the changer through a cycle to see that the play control resets properly, then tighten the screw.

When adjusting the play control, which is in the record compartment, after removing the wood screws which mount the control to the shelf. remove the clips holding the 110 -volt leads to the switch. Then remove the pointer and the two round head machine screws from the back. The stop spring of the stop spring and ball assembly, No. 66324, should be tangent to the gear and the ball should be in the space between the last and the next to the last tooth, before the blank space in the gear tooth. With the ball in this position, the set screw in the collar at the rear of the unit should be firmly against the stop pin. To make this adjustment, loosen the set screw, while holding the gear, move the collar, then tighten
the set screw. In this position, the switch pin, No. 48202, should hold the switch open and permit the switch to close when the gear is advanced one tooth. The stop bracket, No. 4450, for the resetting dog, should allow the dog to advance only one tooth at a time, if it picks up more than one tooth, move the stop toward the dog until it advances only one tooth at a time.

The resetting dog, No. 3839, should not ride on the gear tooth, as this will prevent turning the pointer toward one hundred. Shift the stud, No. 4354, until the dog clears the tooth, then check the alignment of the plunger tube and the cable housing stud, for if the cable is bent here, the play control may fail to function.

When replacing the pointer, No. 6062, turn the shaft to the position, where the switch is open, then turn the shaft ONE notch or stop toward the one hundred, at this point, set the indicator on ZERO and set up the set screw, checking to see that the pointer does not ride on the dial at any point.

If trouble is experienced examine the cable for kinks or rust spots, in any case do not substitute music wire as it does not have the proper hardness and probably will not be the correct diameter, if it is too large, it will bind; if too small, it will kink.

Powdered graphite blown in cable or mixed with light oil and run in cable will improve operation.

\section*{MECHANICAL PLAY CONTROL}


FIGURE E. 16-E MECHANICAL PLĀY CONTROL
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Description & Part No. & Description \\
\hline 27123 & Switch Assembly & 5663 & Control Cable \\
\hline 2852 & Switch Arm "Straight" & 6062 & Bar Knob-Pointer \\
\hline 30142 & Play Control Dial & 63116 & Plunger Tube Assembly \\
\hline 35101 & Gear & 5654 & Plunger Tube Assembly, " K " only \\
\hline 3866 & Play Control Split Cam, Long & 6546 & Complete Play Control Bracket for \\
\hline 3867 & Play Control Split Cam, Short & & Field Assembly \\
\hline 3936 & Spring, Dog & 66324 & Stop Spring and Ball Assembly \\
\hline 64-32 & Spring, Dog, "K" only & 66325 & Bracket Assembly for 16E Chassis, \\
\hline 39219 & Plunger Return Spring & & "K" only \\
\hline 64-31 & Plunger Return Spring, "K" only & 66326 & Dog Plunger Assembly \\
\hline 4458 & Dog, Stop Bracket & 13-79 & Dog Plunger Assembly, "K" only \\
\hline 48202 & Switch Pin & 99-20-31 & \(10-32 \times 3 / 8^{\prime \prime}\) R. H. M. Screw \\
\hline 54103 & Play Control Housing & 99-26-13 & 10-24 \(\times 3 / 8^{\prime \prime}\) Hex Head \\
\hline 5662 & Cable Housing & 99-33-4 & No. 10 Special Shakeproof Washer \\
\hline
\end{tabular}

\section*{QUESTIONS AND ANSWERS}

To assist the service men, who have not had the advantage of factory training nor experience servicing the Capehart 16E Record Changer, we have prepared this section, which covers the more common complaints reported by users, dealer's service departments, our salesmen and field engineers.

Of course, there are many factors responsible for the troubles encountered. Below we are listing some of them.
1. Customers-Failure to properly load or operate the instrument. Friends who drop in and think they know all about everything. Owner not having been properly instructed or their general inability nor desire to learn.
2. Records-Variations from standards, rough edges, thickness, warped, etc.
3. Adjustments-Not proper due to:
A. Improper operation of instrument.
B. Misuse and neglect.
C. Wear, due to lack of oil and grease.
D. Improper inter-relation of parts due to adjustments of one section without complete follow through on other related parts.
Below are listed some of the more common complaints, along with some of the possible causes, and reference to the service notes where adjustments may be fourid. These are not complete as it is impossible to cover every case but we believe they will help the service man over the rough spots.
1. Waver and Wow, poor tone. May be caused by any one or all of the following: Refer motor drive-Gear Reduction Unit-Drive Shaft Alignment section.
A. Loose set screws in motor to turntable shaft and couplings.
B. Loose rivets in flexible couplings.
C. Leather coupling oil soaked and/or soft.
D. Improper alignment of gear reduction shaft with turntable shaft. Must be within \(1 / 4\) inch. Remove top universal and use shaft for aligning.
E. Lack and grade of oil in gear reduction unit.
F. Defective crystal pickup.
2. Needle drops off edge of record or fails to feed in at times.
A. Instrument not level. Check and level at base plate near tone arm-not cabinet.
B. Pickup brush gone, worn or improperly adjusted. Must extend \(1 / 32\) inch below standard length needle and no other length needle should be used.
C. Pickup arm stop lever and/or stop lever hook improperly adjusted. Refer Fig. 9A and \(13 A\).
D. Improper adjustment of Tone Arm feed in cam. Refer Fig. 8.
Clearance between cam and tone arm lift level should be about \(1 / 32\) inch when changer is in play position.
E. Tension too great on pickup stop lever spring. Refer Part No. 3984.
F. Pickup stop lever rubber roller worn or out of round. See Part No. 5044.
G. Rough edges on \(12^{\prime \prime}\) records causing pickup and tone arm to jerk and jump as rubber roller on stop lever comes in contact with record.
3. Failure to trip properly. (Too soon or too late).
A. Not sufficient tension or too much tension on trip lever friction joint.
B. Movable trip switch arm bearing stuck. This occurs near salt water and in humid climates.
C. Check for dirt and corrosion between trip lever arm and base plate at friction contact mounting. Clean and apply drop of light oil.
D. Check complete adjustment.
4. Excessive amount of tick at end of record.
A. Tension too great on trip arm lever friction. Back off adjusting screw, clean and oil between base plate and lever at point of mounting.
B. Place piece of rubber tubing or tape on end of trip lever where contact is made with tone arm trip bracket.
5. Excessive record wear.
A. Worn needles.
B. Friction on trip switch lever too great causing wear near end of record.
C. Improper adjustment and alignment of True Tangent Tone Arm. Pickup should be in straight alignment with tone arm

\section*{QUESTIONS AND ANSWERS-Cont.}
when needle is \(11 / 2\) inches irom center spindle of turntable shaft.
D. Tone arm binding in mounting or resting on tone arm feed in cam due to improper adjustment of cam. Refer Fig. 8.
6. Clutch disengages before completion of cycle.
A. Insufficient tension on Solenoid wedge spring. Refer Fig. 12B.
B. Solenoid Torsion spring in wrong hole for action desired.
C. Improper adjustment motor solenoid switch-Excessive upward tension on clutch lever. Refer Fig. 10.
D. Clearance between drive and driven sections of clutch. Refer Fig. 7.
E. Excessive upward tension from muting switch on clutch lever.
F. Improper adjustment of Clutch Throwout lever. Clutch only partly engaging. Refer Fig. 10.
G. Any binding of clutch action causing clutch to not completely engage or disengage.
7. Changer continues to cycle without playing record.
A. Improper adjustment of clutch throwout lever. Spring part No. 3990, holding clutch throwout-lever too high-misses clutch throwout cam.
B. Solenoid Torsion spring in top hole instead of center or bottom. Refer Fig. 10.
C. If buzzing sound is heard at end of cycle look for reject button stuck, trip switch contacts stuck or reject relay contacts closed (should be open during phonograph operation).

\section*{8. Record breakage.}
A. Clean with oil soaked cloth all polished surfaces on magazine and record tray with which records come in contact.
B. Check adjustment of magazine, especially back stop. Refer "B" Fig. 3.
C. Improper adjustment of vertical bumper guide. Refer Fig. 2.
D. Note-If record break is half moon shape record has stuck on slide rails and came out late. If crack from edge toward center hole, magazine is adjusted too far forward. If chipped on edges, including \(V\) shape breaks, damage is caused in turn over position and requires complete cleaning of record tray near lower rubber bumpers and cleaning of reverse arm upright polished surfaces. Also polish and check adjustment record support pins. Refer Fig. 2.

\section*{9. Noise when \(12^{\prime \prime}\) records drop.}
A. Record caught between record reverse arm and record tray prohibiting return of reverse arm.
B. Record reverse arm jammed or out of position with reverse arm crank. Refer Fig. G.
C. Excessive records in magazine-not more than 18.
D. Bent reverse arm and roller. Refer Fig. 4.

10: Records fail to unload from magazine occasionally.
A. Insufficient records. Should be 6 or more. Six to fifteen records for best operation.
B. Warped records and/or chips on edges.
C. Improper adjustment of record separa-tor-adjusted too low. Refer Fig. 2.

\title{
MECHANICAL ADJUSTMENTS 16-E RECORD CHANGER
}

Due to the fact that certain critical shortages have developed in the metals used in the 16-E Record Changer, we are listing in the parts lists the standard parts, which have been used in the past, as well as those parts consisting of the newer metals. Beginning with the Serial Number 20,000, a new base of cast iron was incorporated. A new magazine is now being used, as well as a zinc record tray. With the new tray, because of its extra weight, \(\alpha\) counterbalance spring and the necessary fittings are required, these fittings are shown on page 35. \(A\) list of these parts is included in the parts price list and these parts are marked with an *.

In making all adjustments of the assemblies on the top of the record changer the turntable is the datum point.

Before attempting any adjustments the service man should learn to disengage clutch while changer is in cycle by placing thumb of left hand on top of clutch fork and forefinger under fork. Lift with finger to disengage clutch and press with thumb to engage clutch. This makes it possible to stop changer in any desired position while motor is running.

ADJUSTMENTS
1. TO LOCATE AND ADJUST THE RECORD TRAY (6687) (Fig. F).
If it becomes necessary to replace a record tray, the first tooth of the driver quadrant (6257) (Fig. F) should mesh with the second tooth of the driven quadrant of the record tray (3515) (Fig. F). This is to permit proper adjustment of the tray height, which adjustment is covered below.

An easy way to locate tray and match with gears is to place selector lever in repeat position. This releases quadrant gear (6257) (Fig. F). Then place selector lever in one side position and lift quadrant until it snaps in male and female clutch position. The tray may then simply be placed around turntable and pins inserted. Place selector lever again in repeat position and lift tray for


FIGURE F. RECORD TRAY GEARS
examination. Teeth should then be properly meshed. Changer should be in play position when this adjustment is made.

After the gears are properly meshed, the record tray should be adjusted sidewise until the turntable is uniformly spaced within the tray at the time when the record tray is raised until the front end of the \(10^{\prime \prime}\) felts are level with the turntable felt. After the tray has been properly positioned sidewise, tighten the two Allen set screws holding the record tray pivot pins, then check to see that no side play exists.

\section*{TO ADJUST THE RECORD TRAY ELEVATION:}

With the record control lever (6231) (Fig. 9B) in the "One Side" position, run the record changer thru a cycle until the large hole in the main cam is exactly half way past the upper edge of the record tray cam follower as shown at " \(A\) " in Fig. 5. In this position the front points of the 10 inch felts in the record tray should be level with the turntable felt ( \(\alpha\) straight edge should be used). If the level is not the same, loosen the nut on the back of the eccentric screw (3237) (Fig. 5). Adjust this screw until the felts are the same heights, then while holding the screw to prevent its turning, tighten the nut.

Unless this adjustment is carefully made, the record center hole will miss the spindle, for if the tray is too low the records will slide over the \(10^{\prime \prime}\) stop in the tray, while if the tray is too high they will land with the spindle hole behind the spindle.
2. TO LOCATE AND ADJUST THE RECORD MAGAZINE (6686) (Fig. 1).
Before attempting any adjustment of the record magazine, make certain that the center of the right hand magazine pivot pin (34132) (Fig. 2) is exactly \(83 / 8^{\prime \prime}\) above the base plate. This is shown in Fig. 2. This height is very critical and may be the cause of records not being properly delivered to the record tray. If this height is found to be incorrect, it can be adjusted by striking the buckhorn with a rubber hammer. Strike the underside if the height is less thon \(83 / 8^{\prime \prime}\). If more, strike the upper side of the buckhom.

MECHANICAL ADJUSTMENTS-Cont.

\section*{TO POSITION RECORD MAGAZINE:}

The record magazine may be moved sideways by loosening the two set screws located underneath the magazine pivot pins in the magazine support assembly (Buckhorn) (6684) (Fig. 1). The correct position of the record magazine is determined by the position of the pin in the Record Reverse Crank with respect to the slot in the Record Reverse Fork. The illustration Fig. G, below, shows this clearly.. After this position has been reached, the magazine should be securely fastened by the Allen set screws which are located in the Magazine Support Assembly.

Swing the Record Reverse Arm around in front of the magazine to determine if the Record Guide strikes either of the Record Support Pins (34138) (Fig. 12A). It the guide strikes either of the support pins, it will be necessary to bend the interfering pin so that clearance is secured.

Next move the Record Selector Arm to the Repeat Position. This disengages the Record Repeat Sliding Clutch and permits lifting the Record Tray. After placing a \(10^{\prime \prime}\) record on the turntable and slowly raising the tray by hand, the record should hit the pins simultaneously about halfway between top and bottom of the angle surface of the pins. If it does not, it will be necessary to bend the pins until the record does. This adjustment is predicated upon the fact that the rear record bumpers are in good shape (not unequally worn). If an adjustment of the pins is made, see that clearance is maintained between the Support Pins and the Record Reversing Arm and Guide, as well as the holes in the Record Tray.

If the magazine has been replaced or moved, the Magazine Stop Screw, "B" Fig. 5, may need readjustment. The correct adjustment is made when the changer is in the playing position. The


FIGURE G. REVERSE PINION CRANK AND PIN ASSEMBLY
record separator must be engaged by hook-and should just touch the vertical portion of it. In this position the record reverse arm should rest against the stop tubing, and the record reverse crank should be in the fork of the record reverse arm as shown in the accompanying illustration. This view is shown with reverse arm in Reverse Position and looking down.

If it is necessary to shift the magazine, the final check should be to determine that the Record Separator Hook (4323) (Fig. 2) does not bind in the slot at the end of the Record Separator Arm, (6445) (Fig. 1). The adjustment of this separator arm is covered in part 5 of this section.

\section*{3. MAGAZINE LINK ADJUSTING SCREWS ("A")} (Fig. 2).
The Record Magazine should always return snugly against the Magazine Stop Screw ("B") (Fig. 5). If it does not, it is necessary to place selector lever in repeat position and loosen the two adjusting screws on the magazine actuating link to a sliding tension, and run the changer thru its cycle until the magazine attains the position shown in Fig. 2. Stop the cycle either by disengaging the turntable clutch, or by disconnecting the A. C. line cord. Press downward on the lower part of the magazine thus lengthening the Magazine Link Assembly. Now resume the cycle, and when the magazine touches the Magazine Stop Screw, the Magazine Link will adjust itself, after which the adjusting screws on the link assembly should be tightened securely.

\section*{4. TO ADJUST AND POSITION THE RECORD REVERSE GUIDE (6444) (Fig. 1).}

When a \(12^{\prime \prime}\) record is placed in the Magazine, the Record Reverse Guide should be parallel to this record at the time when the guide is swung from its normal resting position to a position in front of the magazine, snugly against the rubber bumper as shown in Fig. 2. This is known as the Reversing Position.

If the guide is parallel with the \(12^{\prime \prime}\) record, it should return and rest against the rubber bumper on the Magazine Support Assembly, in such a position as is shown in Fig. 1. If the Eccentric Cam (3825) (Fig. 11) is properly adjusted, the guide will rest against the rubber bumper; however, if the Record Reverse Guide does not properly return, loosen the screw holding the Eccentric Cam and rotate the Cam slightly until the correct position is secured.

If the Reverse Guide does not return to the rubber bumper, check the position of the Crank Pin in the Record Reverse Fork (under Magazine Adjustments and Fig. "B").

If the Eccentric Cam is turned too far, the Reverse Guide will not swing around far enough to rest easily on the rubber bumper (5043) (Fig. 1) while in the playing position.

MECHANICAL ADJUSTMENTS-Cont.

With the Record Selector Lever in the Both Sides position, run the changer thru a cycle until the point is reached where the Record Reverse Guide swings in front of the magazine. In this position the Crank Pin should touch the side of the Record Reverse Fork, that is, toward the magazine without binding. To adjust the position of the Crank Pin, while the Record Reverse Guide is in the reversing position, loosen the lock nut marked "D" Fig. 11. Next, remove the shoulder screw that holds the Reverse Assembly Link Rod to the gear quadrant, (3550) (Fig. 11) and adjust the length of the Link Rod by turning the end which has just been disconnected. Atter correctly positioning the Crank Pin tighten the lock nut.
5. TO ADJUST RECORD SEPARATOR (Figs. \(1 \& 2)\).
With a \(10^{\prime \prime}\) record in the magazine, the upper edge of the Record Separator (6445) (Fig. 1) should be flush with the top of the Lower Support. To adjust the position of the Record Separator, move the Record Separator Stop to the position desired by loosening the two screws holding this stop. This stop (4520) is shown clearly in Fig. 2 and is located at the bottom of the right hand side of the magazine. The Record Separator Hook should then be adjusted.
6. TO ADJUST THE RECORD SEPARATOR HOOK (4323) (Fig. 2).
As the Record Separator Hook should enter the slot in the end of the Record Separator without binding, it will be necessary to readjust the Record Separator Hook in the event it has been necessary to adjust the Separator Stop. To adjust the Hook, loosen Nut (99-12-3) (Fig. 2) and turn the Hook, which is threaded, until it enters the slot in the Record Separator freely.

NOTE: IF IT IS EVER NECESSARY TO READJUST THE HOOK, BE SURE TO CHECK THE HEIGHT OF MAGAZINE PIVOT PIN (SEC. 2).

Be sure the screw marked " \(E\) ". in Fig. 11 is screwed all the way in and locked with the nut. This prevents the Separator Hook from ejecting a record from the magazine during the Reverse Cycle, allowing the record to be caught under the returning magazine, due to its inability to reach the turntable while another record is being reversed.

\section*{7. TO ADJUST TONE ARM HEIGHT}

When an unwarped \(12^{\prime \prime}\) record is placed on the tumtable, the outer edges of this record should coincide with the center of the rubber roller at the end of the Stop Lever (64197) (Fig. 9A). Run
the changer through a cycle until the Tone Arm Lever Hook just touches the Stop Lever. The correct tone arm height is secured when the center of the Tone Arm Hook is the same height as the top of the Stop Lever. To effect this adjustment, lift the tone arm by hand, thus making accessible two Allen set screws, normally covered by the Tone Arm Base. After adjustment, and before finally tightening these set screws, check the clearance between the Pickup Head and the Record Tray. This should be \(5 / 8^{\prime \prime}\) while the tray is in the process of raising or lowering with the Pickup Arm swung back by the swing cam, i. e., during either the One Side or Both Sides cycle. The tone arm lever hook should clear through the slot in the stop lever when changer is in play position.

\section*{8. TO ADJUST THE PICKUP ELEVATION}

After the Pickup Arm Lever Hook has moved the Stop Lever in to the needle landing position, the Hook moves down the Stop Lever. In its downward journey, it pauses momentarily before the Hook, and then enters the Slot in the Stop Lever, thus permitting the Stop Lever to swing to its normal position. If the record changer is stopped at this point in its cycle, it will be found that the ball at the end of the pickup arm lift shaft is at the point marked " \(F\) " on the Lift Cam (6449) (Fig. 8).

With the needle, which is to be used in the Pickup, and the Lift Shaft at " \(F\) ", lift the Pickup and allow the needle to drop off the edge of the Record. The needle point should extend below the playing surface a distance equal to half the thickness of the record.

To make this adjustment, turn screw 99-22-29 (Fig. 13A) until the correct position of the needle is reached. Be sure to retighten the lock nut.

THIS ADJUSTMENT IS IMPOŔTANT, DUE TO THE VARIOUS LENGTHS OF DIFFERENT bRANDS OF NEEDLES. UNLESS THIS ADJUSTMENT IS CHECKED, IT MAY CAUSE THE NEEDLE TO FALL OfF THE RECORD BEFORE ENTERING THE PLAYING GROOVES.

\section*{9. TO ADJUST PICKUP FEED-IN}

An examination of the Pickup Friction Cam will disclose the fact that there is a flat leather portion that applies friction to hold the Pickup Arm Lever Hook against the Stop Lever until the weight of the pickup is transferred to the needle. 'This friction should be applied long enough to prevent the needle falling off the record, but if maintained too long, the needle may skip across the first few playing grooves, and thus miss playing the first portion of the record.

Before adjusting tone arm feed-in cam, be
MODEL 16-E, FARNSWORTH TELEV. \& RADIO CORP.
Capehart

MECHANICAL ADJUSTMENTS-Cont.
sure no end play exists in main shaft, otherwise position will vary as main shaft shifts position.

In the earlier model changers this Friction Cam is held on the shaft by a taper pin as well as two Allen set screws. However, later models employed the Allen screws only. If it is necessary to advance or retard this Friction Cam, do not tighten BOTH screws until the proper position is secured, as the set screws have cup points, and after being set up tightly, leave an imprint in the shaft and thus have a tendency to "pull back" into the old position. On instruments where the set screws have been tightened; it might be well to remove the main shaft, and smooth out the old screw marks before attempting to reset this cam. Rotating the cam in the direction of its normal rotation relieves the pressure on the pickup arm earlier.

\section*{10. TO ADJUST THE MAGNETIC PICKUP}

Remove the Pickup Cover and check the location of the Stylus with respect to the Pole Pieces (569) (Fig. 6). This stylus should be centrally located in respect to these poles. To adjust the stylus the spool assembly may be shifted, after the set screws (99-28-3) have beep loosened. When tightening the set screws, exercise care not to crack the bakelite bobbin. When checking the pickup, carefully examine the rubbers as they harden and split. Due to age, the majority of complaints are traceable to this fact. It should not be necessary to caution against steel chips getting into the assembly.

\section*{11. TO ADJUST NEEDLE LANDING}

The \(12^{\prime \prime}\) landing should be adjusted first. In Figs. 5 and 13A the Stop Lever Hook (5658) is shown. In the normal or playing position its flat face is parallel with the bottom of the slot in the Stop Lever, and when engaged with the Stop Lever, the adjacent faces of the Stop Lever and the Lever Hook are parallel. The Lever Hook is adjusted by loosening the Bristol Set Screw No. 99-28-31 (Fig. \(6 \& 13 A\) ) located in the bottom of the Center Bolt, which is the pivot for the Pickup Head Bracket. The Lever Hook should be adjusted to allow the needle to land \(3 / 32^{\prime \prime}\) from the edge of a 12" record. Be sure the Bristol set screw is retightened. Next, place a \(10^{\prime \prime}\) record on the turntable and adjust screw 99-18-20, which is located in the Stop Lever (Fig. 9A) until the needle lands \(3 / 32^{\prime \prime}\) from the edge of the \(10^{\prime \prime}\) record.

CAUTION-The Lever Hook should not bind when going through the slot in the stop lever.

\section*{12. TO ADJUST CLUTCH THROWOUT LEVER \& CAM (6460) (Fig. 10).}

The Clutch Throwout Lever \& Cam is \(\alpha \mathrm{d}\) -
justed by loosening the shoulder screw holding the cam to the lever, and adjusting the cam until it just clears the point of the Cluich Throwout' Cam which is located on the main shaft. This adjustment must be made with the changer in the playing position, i. e., when the Pickup Arm Lift Shaft is in its lowest position, as shown in Fig. 8. Unless sufficient clearance is secured, the changer may jam; excess clearance will cause the changer to cycle without playing records.

The wire spring (3990) (Fig. 10) must lift the cam far enough to clear the Clutch Throwout Cam, otherwise the changer will jam; if it holds the cam too high the changer will continue to cycle.

\section*{13. TO ADJUST SOLENOID WEDGE SPRING (39132) (Fig. 12B).}

The Wedge Spring is located on one of the three spacers used to mount the solenoid plate and is directly over the solenoid coil. Its purpose is to prevent clutch bounce or chatter when the clutch engages. It may be bent to proper tension by means of a long screwdriver. If the clutch disengages before a change cycle is completed, it is advisable to increase the tension of this spring.

\section*{14. TO ADJUST REVERSE CAM SHIFT LEVER (5326) (Fig. 3).}

When the Record Selector Lever (Fig. 9B) is moved to the "Both Sides" position, the Record Control Rod Pin (34145) (Fig. 9B) moves the Record Control Shaft, which in turn moves the Reverse Cam Shift Lever. This causes the Reverse Cam (6325) (Fig. 4) to engage with the Reverse Cam Pin (34144) (Fig. 4). The Shift Lever should be positioned on the Control Shaft so that the Reverse Cam is free of the Reverse Cam Pin in the "Repeat" and "One Side" cycles, but is firmly, engaged in the "Both Sides" cycles. Under no circumstances should the Shift Lever be positioned so as to bind the Reverse Cam.

\section*{15. TO ADJUST RECORD REPEAT LOCK LEVER (5334) (Fig. 3).}

This lever is to prevent accidental shifting of the Record Selector Lever during the change cycle. In the playing position, the tip of this lever should clear the Clutch to Solenoid Lever by \(3 / 16\) " while moving under it. In the "Repeat" cycle, this lever is on the side of the Clutch Solenoid Lever away from the Main Cam. In the other two cycles it encloses the Clutch Solenoid Lever.

\section*{16. TO ADJUST REVERSE CAM LOCK LEVER (5339) (Fig. 3).}

This lever serves the same purpose as the Record Repeat Lock Lever and should clear the Clutch Solenoid Lever by \(1 / 16^{\prime \prime}\) while moving
under it in the playing position. During the "Both Sides" cycle, it is on the side of the Clutch Solenoid Lever, towards the Main Cam, and in the other two cycles it encloses the Clutch Solenoid Lever.
17. TO ADJUST RECORD REPEAT CLUTCH LEVER (5332) (Fig. 3).
The Sliding Clutch permits disengagement of the Record Tray Driving Quadrant during the "Repeat" Cycle, when the same record is used. The Clutch Lever should allow the clutch to engage firmly in the "One Side" and "Both Sides" cycles, but be entirely disengaged in the Repeat Cycle. The Clutch Lever is secured to its shaft by means of an Allen Set Screw.

\section*{18. TO LOCATE MAIN CAM SHAFT}

Both end bushings of the Main Cam Shaft are movable, and are used to position the Main Cam Shaft. To position this shaft, loosen the H. H. Cap Screws (99-26-9) (Fig. 11) holding the bushings, then move the shaft until the ball in the end of the Tone Arm Lift Rod is exactly centered on the Lift Cam as shown in Fig. 8. When tightening the Cap Screws, be careful not to crush the Durex Bushings or crack the split bearings located near the turntable shaft.

\section*{19. TO ADJUST AUTOMATIC TRIP SWITCH (2792) (Fig. 9B)}

This switch is located underneath the turntable and is actuated by the motion of the Tone Arm being transmitted to the Trip Arms thru their associated Friction Joint.

To adjust this switch, remove the long trip arm from the Switch Cover and the two F. H. M. S. holding this cover. There should be \(1 / 32^{\prime \prime}\) clearance between the switch points. Replace the turntable on its spindle, and move the tone arm toward the turntable spindle so that the trip quadrant moves the trip arm about \(1 / 4^{\prime \prime}\), then turn the turntable one complete revolution. This rotation is for the purpose of having the Fibre Trip Pin, at the bottom of the turntable, reset the Trip Arm. Remove the turntable, and check the position of the trip arm in respect to the movable contact arm which should be equidistant from both bakelite insulators. In order to position the trip arm. loosen both screws holding the switch and adjust it until there is approximately \(1 / 32^{\prime \prime}\) clearance between each bakelite insulator and the trip arm. Recheck this position before replacing the cover. When replacing the trip arm through the slot in the cover, be sure that it is between the bakelite insulators, otherwise it may make contact with one side of the A. C. line and cause a fuse to blow.

A single strand of wire is soldiered from one side of the A. C. line to the movable arm of the switch for the purpose of preventing chattering, which may occur if the current flows only through the bearings to the arm.

\section*{20. TO ADJUST SOLENOID MOTOR SWITCH (Fig. 10).}

The Solenoid Motor Switch is located underneath the cast cover (5226) (Fig. 3) and is used to disconnect the Solenoid Coil during the change cycle and to shunt the phono relay contacts in order to keep the motor running until the change cycle is completed, even though the instrument is turned off. This switch is actuated by the Clutch to Solenoid Lever.

The cover (5226) is secured by \(a\) bolt at one end, and a screw at the other. When the clutch is disengaged, the upper contacts should make good electrical contact, and there should be approximately \(3 / 32^{\prime \prime}\) clearance between the bottom contacts. When the clutch engages, the upper contacts should remain closed until the bottom contacts close, after which they should open. When the clutch is fully engaged, the bottom contacts should be closed, and there should be approximately \(3 / 32^{\prime \prime}\) clearance between the upper contacts. To adjust the switch, loosen the screw (or screws) holding the bakelite insulator to the solenoid plate.

\section*{21. TO ADJUST AUTOMATIC TRIP SWITCH FRICTION JOINT}

This friction joint is located underneath the record tray, and is used to transmit the motion of the tone arm to the Automatic Trip Switch by means of the two Trip Arms.

Place the Selector Lever (9B) in the Repeat position and raise the record tray. A flat spring, which can be adjusted by a screw, holds the two trip arms together against a cork washer. The tension of the flat spring determines the friction between the two trip arms. If the tension is too great, the changer will cycle before completing a record, and if not great enough, the changer may: not trip at the completion of a record.

On some instruments a "Thump" may be heard through the speakers during each revolution at the time when the Turntable Fibre Pin strikes the Trip Arm. This motion is transmitted to the needle point, and may be reduced or eliminated by proper adjustment of the Friction Joint. In some stubborn cases it may be necessary to place a small piece of surgical rubber tubing over, or to wrap several layers of cellophane tape around the Trip Quadrant where it touches the Trip Arm, which will effectively kill the thump.

\section*{MECHANICAL ADJUSTMENTS-Cont.}

\section*{22. TO ADJUST VERTICAL BUMPER GUIDE (6693) (Fig. 1).}

This Guide, located behind the Lower Support Assembly, is used to guide the record when it drops to the rubber bumpers and also when the record is being raised by the rear of the record tray (elevating hook). The guide should be just far enough back from the lower record support to allow a \(12^{\prime \prime}\) record to drop freely upon the rubber bumpers, and the lower points of this guide should be far enough forward to tilt a \(12^{\prime \prime}\) record sufficiently to go freely behind the two points of the upper record support. If the lower points of the guide do not extend forward enough, there is danger of the record bouncing against the points of the upper record support and being chipped. When adjusting the Vertical Bumper Guide, make certain that the elevating hook (rear portion of the record tray) has clearance, otherwise the record tray will not return to its correct position.

\section*{23. TO ADJUST CLUTCH CLEARANCE.}

In order to insure proper disengagement of the Driven Clutch (6326) (Fig. 7) and the Driving Clutch 3630 , the clearance should be \(.020^{\prime \prime}\) when the changer is in the playing position. This clearance is obtained by loosening screw marked " \(G\) " Fig. 10 and moving the Clutch Fork. Be sure screw " \(G\) " is tightened after correct clearance is obtained.

\section*{24. OILING INSTRUCTIONS.}

Due to careful design and precision workmanship the Capehart 16-E Record Changer requires a minimum of oiling or mechanical adjustment.

Some 16-E.Record Changers produced in the past have had all cams. gears and sliding surfaces coated with graphite grease. These coated surfaces should be greased with white vaseline, which will replace the oil that has been used up during operation.

An occasional LIGHT coat of vaseline should be applied to all faces of the magazine at the points where the records come in sliding contact during the cycle, apply vaseline then wipe off with the fingers.

A good grade of light machine oil should be used on the sliding clutches (except motor slip clutch) reverse cam shaft, and eccentric shoulder screws.

DO NOT OIL DUREX BUSHINGS. DO NOT USE AN EXCESS OF LUBRICANT.

Later production changers used Lubriplate instead of Graphite.

On these, all surfaces of the main cam, the reverse cam, and the tone arm lift cam that come
into contact with rollers should be coated with a film of Lubriplate. Lubriplate can be purchased at aimost any elecirical supply or hardware store.

The drive motor should have its oil cup filled every six months.

The Gear Reduction unit used with the Emerson motor should be checked to make certain it contains the proper amount of No. 10 S.A.E. oil. (Amount required-1/2 oz.).

In the Gear Box of the Bodine Motor, the grease should be replaced each year. This grease may be \(75 \%\) Vaseline and \(25 \%\) S.A.E. 40 Motor Oil.

\section*{25. TO REPLACE RECORD REVERSE CAM.}

There are two methods used in removing a broken Record Reverse Cam, the first being to remove the Turntable Drive Shaft, the second, to drop the Main Cam Shaft.

To remove the Turntable Drive Shaft see Fig. 7.
1. Mark the Drive and Driven Gears in order that they can be again meshed in the same position. (This should be done regardless of which ever method is used).
2. Remove turntable shaft.
3. Knock out the taper pin from the Driven Gear (on Reverse Cam Shaft) also the Reverse Cam Pin.
4. Move the Reverse Cam Shaft away from the Main Cam until the Reverse Cam drops off the shaft.
5. When replacing the Reverse Cam, make certain that the Reverse Cam Shift Lever is properly engaged in the slot in the Reverse Cam, before pinning the Driven Gear to the Shaft. Remember this is a taper pin and only goes in one way. Consequently, the shaft has to be properly aligned or the pin will not enter. Next replace the Reverse Cam Pin. Replace the Turntable Drive Shaft and check. If the Reverse Cam Shaft is only partly withdrawn, the gears will remain properly meshed.
6. Check in order to determine that the Reverse Arm and Roller Assembly does not ride on the Reverse Cam; about \(1 / 16^{\prime \prime}\) clearance should be maintained. The shaft of the Reverse Arm may be shifted by loosening the set screw that holds the end of the shaft nearest the Main Cam.

\section*{TO REMOVE THE MAIN SHAFT}

Put the instrument in playing position. Remove the Eccentric Shoulder Screw holding the Magazine Slide Arm, and the screw holding the recoil slide arm. Loosen the single H. H. Cap Screw
holding the front Durex Bushing; remove this Bushing, and the bearing cap that holds the rear Durex bushing. Work the shaft backwards out of the front bearing hole.

Knock the taper pin out of the Driven Gear, and remove the collar from the front end of the Reverse Cam Shaft. Move this shaft toward the rear until the Reverse Cam drops off the Shaft. Replace with a new cam, put gear on shaft, push shaft through Durex bushing and replace collar. Replace taper pin in gear.

Replace the Main Shaft and put Durex bushing on front end, after which mesh the driver and driven gears in accordance with the guide marks previously made. If the gears are properly meshed, the Reverse Cam will slide under the Reverse Arm and Roller Assembly without binding at the time the selector arm is moved into the "Both Sides" position. Rotate the Reverse Cam \(180^{\circ}\) with the fingers, and again move the Selector Arm to the "Both Sides" position. It should go in without binding. Replace the rear bushing and bearing cap. Replace the Magazine and Record Tray Slide Arms, and adjust the Record Tray height.

\section*{26. TO REMOVE RECORD CHANGER FROM CABINET}

As the new series (beginning at 20,000 ) are equipped with cast iron bases, heavier magazines, and record trays, exceptional care must be exercised when removing a changer to prevent marring the cabinet.

After disconnecting the pickup and shorting leads, the play control cable and the drive shaft, remove the middle screw of the three holding the upper record support, and the shoulder screw 3239 (Fig. 1). Removal of the shoulder screw permits the magazine to be swung parallel with the base. Next, swing the Record Reverse Arm around in front of the magazine by raising the Record Reverse Arm Lock until the Reverse Arm is in front of the magazine. Then, release the Lock which will hold the Record Reverse Arm in place.

Lift the changer up and tilt it to clear the shelf, then remove it through the back of the cabinet.

As it is possible to mar the cabinet; the shelf, the top, and side of the cabinet, should be protected in some manner while removing and installing the changer.

\section*{27. ALIGNMENT OF TRUE TANGENT PICKUP}

When properly aligned, the pickup head and the tone arm for a straight line when the needle is \(11 / 2^{\prime \prime}\) from the center of the turntable drive shaft. To adjust, loosen the nut (43160) (Fig. 14A) and turn the steering rod (43148) until the correct adjustment is secured. After adjusting, determine that there is still \(5 / 8^{\prime \prime}\) clearance between the Record Tray and the Pickup Head.

NEVER USE STEERING ARM TO ADJUST NEEDLE LANDING.




FIGURE 2



FIGURE 3
PARTS LIST
\begin{tabular}{ll} 
Part No. & \multicolumn{1}{c}{ Description } \\
1173 & Condenser 1 Mfd.-400 Volt \\
3243 & Repeat Lever Shoulder Screw \\
3539 & Worm Gear \\
3819 & Record Repeat Throwout Cam \\
3976 & Record Separator Hook Lever Spring \\
3977 & Magazine Slide Arm Spring \\
3978 & Record Repeat Clutch Spring \\
4018 & Main Shaft Bushing Durex \\
4020 & Record Magazine Bushing Durex \\
4022 & Record Tray Shaft Bushing \\
4238 & \(7 / 16^{\prime \prime}\) Collar for Taper Pin
\end{tabular}

1173 Condenser 1 Mfd.-400 Volt
3243 Repeat Lever Shoulder Screw 3539 Worm Gear
3819 Record Repeat Throwout Cam
3976 Record Separator Hook Lever Spring
Side Arm Spring
4018 Main Shaft Bushing Durex
4020 Record Magazine Bushing Durex
4023 Record Tray Shaft Bushing

Part No.
5080
50117
5226
5323
5326
5332
5334
5339
6257 Record Tray Gear \& Sliding Clutch
6713 Solenoid Assembly


FIGURE 4

Part No.
2722
3979
3984
3995
4663
5040

5046 Tone Arm Stop Lever Sleeve, Rubber
5333 Main Clutch Fork Lever
5333 Main Clutch Fork Lever
Assembly

\section*{Description}

Toggle Switch
Pickup Arm Brake Spring
Tone Arm Stop Lever Spring
Reverse Ârm Spring
Record Repeat Throwout Lever
Pickup Arm Brake Facing. Cork

PARTS LIST

Description
Part No.
Solenoid Lever Shaft \& Collar Assy. 3239 5/16" Collar for Taper Pin Record Reverse Cam Shaft Gear \& Collar Assembly
Record Reverse Cam \& Pin 34144 Record Reverse Cam Pin Reverse Cam Arm \& Roller Assembly Pickup Arm Friction Cam Assembly 5041

Pickup Arm Friction Cam Facing, Leather

MODEL 16-E, FARNSWORTH TELEV. \& RADIO CORP. Capehart


FIGURE 5
PARTS LIST

Part No.
3237 . Shoulder Screw, Record Tray Adjusting
34147 Record Tray Slide Pin
3977 Magazine Slide Arm Spring
4020 Record Magazine Bushing
6178 Chassis Plug--5 Prong Male
66254 Steering Arm Assembly-See Fig. 13A

RCD. CH. FARNSWORTH PAGE 19-35


FIGURE 6 PICKUP, CRYSTAL AND MAGNETIC

\section*{PARTS FOR CRYSTAL PICKUP}

Part No.
2331 Crystal Cartridge
3361 Needle Screw
4312 Bushing
50173 Tone Arm Bụshing
5484 Pickup Arm Bracket
5658 Pickup Lever Hook
5784 Pickup Back Crystal
5785
6723
68285
99-18-6 6-32 \(\times 1 / 4^{\prime \prime}\) R. H. M. S.
99-22-29 6-32 \(\times 3 / 8\); B. H. M. S.
99-22-35 6-32 \(\times 1 / 4^{\prime \prime}\) Mch. Screw Oval
Hd. Nickel
99-28-21 6-32 x \(1 / 8^{\prime \prime}\) Headless Set Screw
99-28-31 6-32 x 3/16" Bristol Set Screw
368-1 Adjusting Screw Nut

PARTS FOR MAGNETIC PICKUP
Part No. Description
3323 Screw, Pickup Hole Piece
3356 Screw, Pickup Pole
46213 Magnet Holder
5033
5058
5059
5060
5139
569
5610
5765
5768
61212
6711
6723.

68285
99-11-1
99-18-21
99-28-3 \(\quad 6-32 \times 1 / 4^{\prime \prime}\) Headless Set Screw
99-28-21 6-32 \(\times 1 / 8^{\prime \prime}\) Headless Set Screw


FIGURE 7-TURNTABLE DRIVE SHAFT

PARTS LIST FIGURE 7
Part No. Description
3626 Ball Bearing
3627 Ball Bearing
3630 Turntable Shaft Clutch
4019 Turntable Shaft Bushing, Durex
4210 Thrust Washer
4320 Turntable Drive Shaft Cap
4331 Bearing Retainer Plug
5038 Turntable Drive Shaft Cap Tubing
6326 Worm \& Bushing Assembly
66111 Turntable Shaft Collar \& Screw 4244 Turntable Shaft Collar 3319 Turntable Shaft Collar Screw
6719 Turntable Shaft Assembly
99-38-2 No. 2 Woodruff Key

\section*{TURNTABLE DRIVE SHAFT}

When it becomes necessary to remove the turntable drive shaft. it is necessary to remove the upper flexible coupling and the Turntable Collar No. 66111. After the collar is removed, the shaft may be raised until the Woodruff Key (99-38-2) is exposed. Grasp the upper end of the key in a pair of pliers and roll the key out of the driven clutch. After the key is removed, the shaft may be lifted out of the changer. If the Clutch is disassembled, be sure the thrust washer (4210) is not lost.


FIGURE 8. TONE ARM LIFT CAM AND LIFT ROD
PARTS LIST
Part No.
Description
3316 10-24 Screw
3979 Pickup Arm Brake Spring
3980 Pickup Arm Lift Spring
5040 Pickup Arm Brake Facing
5423 Pickup Arm Brake
6232 Pickup Swing Lever \& Collar Assy.
6449 Pickup Arm Lift Cam \& Hub Assy.

RCD. CH. PAGE 19-38 FARNSWORTH



FIGURE 10 SOLENOID CLUTCH LEVER AND MOTOR SOLENOID SWITCH
PARTS LIST

\section*{Part No.}

Description
6178 Chassis Plug
09-117 Solenoid-Motor Switch
6713 Solenoid Assembly
3986 Solenoid Lever Torsion Spring
66106 Main Clutch Fork \& Lever Assembly \(3244 \quad\) Clutch Throwout Lever Throwout Screw
5333 Main Clutch Fork Lever
6455 Solenoid to Clutch Lever 62-20 . Lever BumperRubber
6697 Clutch Throwout Lever \& Cam Assembly 3317 Clutch Throwout Cam Screw


FIGURE 11 BOTTOM VIEW 16-E CHANGER

\section*{PARTS LIST}

Part No.
Description
2734 Pickup Shorting Switch
3238 Magazine Slide Arm Shoulder Screw
3240 Shoulder Screw, Reverse Segment
3241 Reverse Segment Link Shoulder Screw
34140 Reverse Segment Pin, Long
34141 Reverse Segment Pin, Short
3550 Record Reverse Pinion Segment
3825 Reverse Segment Stop Cam
3981 Record Reverse Cam Control Spring
5331 Record Repeat Throwout Hook Lever 6230 Reverse Pinion \& Crank Assembly
6226 Separator Hook \& Arm Assembly
6682 Main Shaft Assembly
99-26-9 \(\quad 1 / 4-20 \times 1 / 8^{\prime \prime}\) H. H. Cap Screw
Record Support Pins set \(19^{\circ}\) angle so as to match angle of record.
1. Record being released.
2. Next Record in line.
3. Second and Third Records being forced against first record, pushing first off record knifé.


FIGURE 12A LOCATION RECORD SUPPORT PINS


FIGURE 12AA LOCATION RECORD SUPPORT PINS


FIGURE 12B SOLENOID TORSION AND WEDGE SPRINGS


FIGURE 12C RECORD SEPARATOR AND RECORDS EDGE VIEW

HIODEL 16-E, FARNSWORTH TELEV. \& RADIO CORP. Capehart


FIGURE 14-ADDITIONAL PARTS REQUIRED FOR ZINC TRAY

If it is necessary to replace the aluminum tray used on changers having a serial number below 20,000, it is necessary to add the above parts. which are necessary due to the additional weight of the zinc tray which is now available.

The bell crank which is used to swing the magazine must have \(\alpha 1 / 4-20\) hole tapped in the location shown; \(1 / 4^{\prime \prime}\) from one edge and \(5 / 16^{\prime \prime}\) from the other edge. A No. 7 drill is used for the hole, and a plug tap should be used for threading the hole.

When assembling the screw (36-801), nut (99-14-1) and spacer (56-1104), \(1 / 16^{\prime \prime}\) space should be left between the spacer and screw head to allow free motion of the tray spring (64-309).

Assemble spring bracket (56-1085) under the nut holding the tray slide arm roller, as shown in the illustration above. The spring should be used in the middle hole of the bracket.

At the point marked " X " in the illustration there is a guide mark and a semi-circular spot has been milled in the cam track. It is necessary that this track be bent so the semi-circular spot is flush with the remainder of the cam wall. This can be done best by means of an iron block and heavy hammer. Hit the block with the hammer until the track is straight. This is necessary to prevent the spring holding the tray lift shaft so the sliding clutch cannot be properly engaged when changing from Repeat to One or Both Sides.

\section*{GENERAL PARTS LIST}
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Description & Part No. & Description \\
\hline 565 & Clutch Throwout Cam & 99-18-6 & No. 6-32 \(\times 1 / 4 / 1\) R. H. M. S. \\
\hline 569 & Pole Piece & 99-18-21 & No. \(6-32 \times 3 / 8^{\prime \prime \prime}\) R. H. M. S. \\
\hline 5610 & Stylus & 99-20-4 & No. \(1024 \times 3 /{ }^{\prime \prime \prime}\) R. H. M. S. \\
\hline 5615 & Record Reverse Guide Fork Only & 99-20-31 & No. \(1032 \times 3 / 8^{\prime \prime}\) R. H. M. S. \\
\hline 5658 & Pickup Lever Hook & 99-22-29 & Screw-Pickup Stop \\
\hline 5662 & Cable Housing & 99-22-35 & No. 6-35 \(\times 1 / 4^{\prime \prime}\) M. S. O. H. Nickel \\
\hline 5663 & Control Cable & 99-26-9 & No. \(3 / 4-20 \times 11 / 8^{\prime \prime}\) H. H. Cap Screw \\
\hline 5745 & Complete Turntable Assembly & 99-26-13 & No. \(10 / 24 \times 3 / 8^{\prime \prime}\) H. H. M. S. \\
\hline 5768 & Pickup Back & 99-28-3 & No. 6-32 \(\times 1 / 4^{\prime \prime}\) Headless Set Screw \\
\hline 5769 & Tone Arm Assembly Less Pickup & 99-28-13 & \(1 / 4 \times 201 / 4^{\prime \prime}\) Allen Set Screw \\
\hline 5784 & Pickup Back-Crystal & 99-28-21 & No. \(6-32 \times 1 / 8^{\prime \prime}\) Headless Set Screw \\
\hline 5785 & Cover-Crystal & 99-28-31 & No. 6-32 \(\times 3 / 16^{\prime \prime}\) Bristol Set Screw \\
\hline 6018 & Record Control Lever Knob & 99-33-4 & No. 10 Special Shakeproof Washer \\
\hline 6019 & \(1 / 4\) " Allen Wrench & 99-34-7 & Cotter Pin \\
\hline 6062 & Bar Knob-Painter & 99-35-5 & \(00 \times 1 / 2^{\prime \prime}\) Taper Pin \\
\hline 6178 & Chassis Plug-5 prong male & 99-38-2 & No. 2 Woodrufi Key \\
\hline 6179 & 5 prong Motor Plug & 99-41-11 & \(1 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}\) Eyelet \\
\hline 61163 & Light Bulb & 99-42-13 & \(1 / 4^{\prime \prime}\) Steel Ball \\
\hline 61212 & Pickup Magnet & 99-42-14 & \(1 / 8^{\prime \prime}\) Pipe Plug \\
\hline 6223 & Record Reverse Arm Shaft \& Collar Assembly & \[
\begin{aligned}
& 13-79 \\
& 13-81
\end{aligned}
\] & Dog Plunger Assembly-"K" only Bracket Assembly for 16E Chassis- \\
\hline 6224 & Solenoid Lever Shaft \& Collar Assembly & & "K" only \\
\hline 6226 & Separator Hook \& Arm Assembly & 13-141 & 406M Friction Drive Assembly \\
\hline 6228 & Record Reversing Arm \& Fork & 13-148 & 411M Friction Drive Assembly \\
\hline 6230 & Reverse Pinion \& Crank Assembly & 13-150 & 412M Friction Drive Assembly \\
\hline - 6231 & Record Control Lever \& Stad Assembly & 13-151 & 410M Friction Drive Assembly \\
\hline 6232 & Pickup Swing Lever \& Collar Assembly & 13-195 & Flexible Coupling \& Set Screw \\
\hline 6233 & Record Reverse Cam Shaft Gear \& Collar Assembly & 13-368 & Play Control Cabinet \& Cabinet Assy., Complete \\
\hline 6257 & Record Tray Gear \& Sliding Clutch & 13-396 & Ratchet Assembly \\
\hline 6325 & Record Reverse Cam \& Pin & 15-45 & Gear Box, Cover, Pinion \& Bearing \\
\hline 6326 & Worm \& Bushing Assembly & & Assembly \\
\hline 63116 & Plunger Tube Assembly & 22-126 & Cable and Plug Assembly \\
\hline 6444 & Record Reverse Guide Assembly & 31-213 & Dial Scale \\
\hline 6445 & Record Separator \& Hub Assembly & 36-136 & No. 10 Plain Washer \\
\hline 6449 & Pickup Arm Lift Cam \& Hub Assembly & 36-141 & 6/32 \(\times 1 / 4^{\prime \prime}\) R. H. M. S. \\
\hline 6450 & Reverse Cam Arm \& Roller Assembly & 36-258 & Spacers \\
\hline 6455 & Solenoid to Clutch Lever & 36-501 & "C" Washer for Friction Drive \\
\hline 6460 & Clutch Throwout Lever \& Spring Assembly & \[
36-550
\] & No. \(10 / 32 \times 3 / 4^{\prime \prime}\) Slotted H. H. M. S. \\
\hline 64197 & Pickup Arm Stop Lever Assembly & 41-89 & \({ }^{\prime \prime} \mathrm{C}^{\prime \prime}{ }^{\prime \prime}\) W Washer-Package 12 \\
\hline 6510 & Automatic Trip Lever-Long & 54-38 & Reduction Unit Shim \\
\hline 6682 & Main Shaft Assembly & 56-415 & 411M Shaft for Friction Drive \\
\hline 6684 & Record Magazine Support Assembly & 56-416 & Shaft for Friction Drive 111 \& 112 \\
\hline 6685 & Lower Record Support Assembly & 56-417 & 412M Shaft for Friction Drive \\
\hline 6686 & Complete Record Magazine Assembly & 56-418 & 406M Shaft \\
\hline 6687 & Complete Record Tray \& Gear Assembly & 561085 & *Spring Bracket \\
\hline & \begin{tabular}{l}
Assembly \\
Pickup Arm Friction Cam Assembly
\end{tabular} & 56-1099 & Shaft \\
\hline 6693 & Pickup Arm Friction Cam Assembly
Record Bumper Guide Assembly & 56-1100
\(56-1104\) & \({ }_{\text {-Spring Spacer }}^{\text {Steel Ball }}\) \\
\hline 6697 & Clutch Throwout Lever \& Cam Assembly & 57-18
\[
59-142
\] & Lower Friction Drive Disc \\
\hline 66105 & Flexible Coupling-Set Screw & 59-143 & Housing, M Play Control \\
\hline & No. 99-28-13 & 60-144 & Fibre Washer \\
\hline 66106 & Main Clutch Fork \& Lever Assembly & 62-26 & Rubber Record Bumper-Left \\
\hline 66107 & Stop Lever Collar Assembly & 62-27 & Rubber Record Bumper, Right \\
\hline 66111 & Turntable Shaft Collar and Screw & 62-46 & Motor Grommet \\
\hline 66254
66324 & Ball Crank \& Steering Rod Assembly & 62-75 & Rubber Grommet \\
\hline 66325 & Stop Spring and Ball Assembly Bracket Assembly for 16-E Chassis & 64-31 & Plunger Return Spring, "K" only \\
\hline 66326 & Bracket Assembly for 16-E Chassis & 64-32 & *Record Tray Spring only \\
\hline 66389 & Motor Coupling and Set Screw (New No. 13-195) & 64-311 & \begin{tabular}{l}
Yy Spring \\
Dog Spring \\
Mounting Board
\end{tabular} \\
\hline 66399 & Gear Box, 60 cycle & 90-125 & Light Switch \\
\hline 66435 & Gear Box, 50 cycle & 90-132 & Acro Switch \\
\hline 6711 & Spool Assembly & 90-133 & Relay (Complete) \\
\hline 6713 & Solenoid Assembly & 90-134 & Master Switch \\
\hline 6719 & Turntable Shaft Assembly & 92-140 & Back Cushion \\
\hline 6723 & Brush Assembly & 368-1 & Adjusting Screw Net \\
\hline 68285 & Pickup Lead Assembly & 368-2 & 406M \(3 / 8 \times 32\) " Hex Nut \\
\hline 99-11-1 & No. 6-32 Hex Nut & 621-2 & Rubber Grommet \\
\hline 99-11-6 & No. 6-32 Hex Nut
No. 8-32 Hex Nut for 4323 & 1315-1 & Reduction Unit Oil S.A.E. 10, 1/2 oz. \\
\hline 99-14-1 & *No. \({ }^{\text {No. }} 1 / 4-20\) Hex Nut \({ }^{\text {a }}\) & 3611-4 & No. 10 S. P. Lockwasher
No. \(10 / 32\) Tee Nut \\
\hline
\end{tabular}

\title{
GENERAL PARTS LIST
}
\begin{tabular}{|c|c|c|c|}
\hline Part No. & Description & Part No. & Description \\
\hline 1173 & Condenser, 1 mfd --400 volt & 4020 & Magazine Bushings, Dure \\
\hline 21156 & Moior, 60 cycie & 4021 & Fecord Tray Bushing, Durex \\
\hline 21157 & Motor, 50 cycle & 4024 & Stop Lever Roller Bushing (Metal) \\
\hline 2331 & Crystal Cartridge & 4067 & Bearing, Gear Box \\
\hline 2333 & Complete Crystal Pickup Assembly & 4210 & Thrust Washer, Worm Shaft \\
\hline 2722 & Toggle Switch & 4238 & 7/16" Collar for Taper Pin \\
\hline 2734 & Pickup Shorting Switch & 42129 & Spacer, Pickup \\
\hline 2792 & Record Trip Switch Assembly & 4312 & Bushing, Tone Arm Pivot \\
\hline 27123 & Switch Assembly & 4320 & Turntable Drive Shaft Cap \\
\hline 2852 & Switch Arm-Straight & 4321 & Record Reverse Fork \\
\hline 2853 & Switch Arm-Bent & 4322 & Record Separator Hook Post \\
\hline 3046 & Selector Lever Escutcheon & 4323 & Record Separator Hook \\
\hline 3059 & Automatic Switch Escutcheon & 4331 & Bearing Retainer Plug \\
\hline 30142 & Play Control Dial & 43147 & Pickup Center Bolts \\
\hline 3237 & Shoulder Screw, Record Tray Adjusting & 43159 & 1/4-28 Cap Nut \\
\hline 3238 & Magazine Slide Arm Shoulder Arm & 4431 & Auto Stop Trip Quadrant Bracket \\
\hline 3239 & Magazine Link & 4458 & Dog, Stop Bracket \\
\hline 3240 & Shoulder Screw, Reverse Segment & 4520 & Record Separator Stop \\
\hline 3241 & Reverse Segment, Link Shoulder Screw & 4533 & Automatic Trip Lever Short \\
\hline 3242 & Shoulder Screw & 4659 & Record Reversing Arm Lock \\
\hline 3243 & Repeat Lever Shoulder Screw & 4663 & Record Repeat Throwout Lever \\
\hline 3244 & Clutch Throwout Lever (Throwout Screw) & \[
\begin{aligned}
& 4664 \\
& 46213
\end{aligned}
\] & Record Reversing Arm Lock Stop Magnet Holder \\
\hline 3316. & No. 10-24 Screw & 4719 & Magazine Link, Upper \\
\hline 3317 & Clutch Throwout Cam Screw & 4720 & Magazine Link, Lower \\
\hline 3318 & Pivot Set Screw Pole & 48202 & Switch Pin, Play Control \\
\hline 3323 & Screw Pickup Hole Piece & 4911 & Turntable Felt \\
\hline 3356 & Screw, Pickup Needle & 4912 & Record Tray Felt 12" Record \\
\hline 3361 & Needle Screw & 4913 & Record Tray Felt, 10" Record \\
\hline 34130 & Stop Lever Roller Pin & 4915 & Magazine Felt-Face \\
\hline 34132 & Magazine Pivot Pin & 4916 & Felt, Lower Record Support \\
\hline 34133 & Record Tray Pivot Pin & 4917 & Bumper Guide Felt \\
\hline 34134 & Reverse Guide Stop Pin & 4923 & Magazine Felt-Side \\
\hline 34138 & Record Support Pin & 4925 & Felt, Outer Record Way \\
\hline 34140 & Reverse Segment Pin, Long & 5013 & Turntable Drive Facing, Heavy \\
\hline 34141 & Reverse Segment Pin, Short & 5014 & Turntable Drive Facing, Medium \\
\hline 34145 & Record Control Rod Pin & 5015 & Turntable Drive Facing, Light \\
\hline 34147 & Record Tray Slide Pin & 5033 & Rubber Insulating Bushing, Tone Arm \\
\hline 34157 & Pin for 3982 Spring & 5036 & Record Tray Bumper, Rubber, Front \\
\hline 34176 & Turntable Trip Pin, Fibre & 5037 & Record Tray Bumper, Rubber, Rear \\
\hline 3539 & Worm Gear & 5038 & Turntable Drive Shaft Cap Tubing \\
\hline 3550 & Record Reverse Pinion Segment & 5040 & Pickup Arm Brake Facing, Cork \\
\hline 35101 & Gear & 5041 & Pickup Arm Friction Cam Facing, \\
\hline 35107 & Gear Box Worm Gear & & Leather \\
\hline 3626 & Ball Bearing & 5042 & Reverse Arm Bumper, Rubber \\
\hline 3627 & Ball Bearing & 5043 & Reverse Guide Pin Tubing \\
\hline 3630 & Turntable Shift Clutch & 5044 & Stop Lever, Roller Tubing, Rubber \\
\hline 3653 & Ball Bearing & 5046 & Tone Arm Stop Lever Sleeve, Rubber \\
\hline 3819 & Record Repeat Throwout Cam & 5051 & Automatic Trip Lever Washer \\
\hline 3825 & Reverse Segment Stop Cam & 5058 & Rubber Bumper \\
\hline 3866 & Play Control Split Cam, Long & 5059 & Rubber Bearing (2) \\
\hline 3867 & Play Control, Split Cam Short & 5060 & Dust Rubber \\
\hline 3936 & Spring, Dog & 5080 & Porcelain Bushing and Nut \\
\hline 3938 & Spring, Safety Clutch & 50117 & Frame Pad, Rubber \\
\hline 3976 & Record Separator Hook Lever Spring & 50126 & Leather Disc \\
\hline 3977 & Magazine Slide Arm Spring & 50170 & Clutch Drive Facing (Leather) \\
\hline 3978 & Record Repeat Clutch Spring & 50173 & Tone Arm Bushing \\
\hline 3979 & Pickup Arm Brake Spring & 50225 & Gear Box Cover Gasket \\
\hline 3980 & Pickup Arm Lift Spring & 5139 & Terminal Block \\
\hline 3981 & Record Reverse Cam Control Spring & 5226 & Solenoid Plate Cover \\
\hline 3982 & Record Separator Spring & 5323 & Magazine Slide Arm Lever \\
\hline 3983 & Record Separator Hook Spring & 5326 & Record Reverse Cam Shift Lever \\
\hline 3984 & Tone Arm Stop Lever Torsion Spring & 5330 & Record Reverse Arm \\
\hline 3986 & Solenoid Lever Torsion Spring & 5331 & Record Repeat Throwout Hook Lever \\
\hline 3988 & Automatic Trip Lever Spring & 5332 & Record Repeat Clutch Lever \\
\hline 3990 & Clutch Throwout Spring & 5333 & Main Clutch Fork Lever \\
\hline 3995 & Reverse Arm Spring & 5334 & Record Repeat Lock Lever \\
\hline 39115 & Trip Switch Spring & 5339 & Reverse Cam Lock Lever \\
\hline 39130 & Record Reverse Guide Spring & 5423 & Pickup Arm Brake \\
\hline 39210 & Spring for Ball Crank & 5466 & Upper Friction Drive Disc \\
\hline 39219 & Plunger Return Spring & 5484 & Pickup Arm Bracket \\
\hline 4018 & Main Shaft Bushing, Durex & 54103 & Play Control Housing \\
\hline 4019 & Turntable Shaft Bushing, Durex & 5517 & Upper Record Support \\
\hline
\end{tabular}


Diagram 1

\section*{OPERATING INSTRUCTIONS}

The "GARRARD"
Record Changer will play any number of records up to eight \(10^{\prime \prime}\) and \(12^{\prime \prime}\) mixed in any order.

To operate, proceed in the following order:-
1. If a permanent needle is not used insert a needlethe type that will play 10 or more records-in the pick-up; lift the Pick-up Arm to do this.
2. Place the record spindle in position, the sloping part leaning towards the record platform, raise overarm, and place any number up to eight records on the record spindle, their lower edge resting on the record platform, then lower overarm.
3. Move the left-hand knob to "Start." The motor will start and the Changer operate.
When the last record has been played, the Changer will automatically stop.
To remove records, raise overarm and withdraw the record spindle.
To reject a record, move the left-hand knob to the reject position.
The Changer can be stopped by moving the lefthand knob to the "Stop" position.
If the Changer is switched off while a record is playing, that record will be automatically rejected, and the next record commence when switching on again.
If desired a \(10^{\prime \prime}\) record may be repeated any number of times by placing the record on the turntable, raising the overarm and switching on with no records on the record spindle. When it is desired to stop the record, lower the overarm, and the Changer will automatically switch off at the end of the record.

This cannot be done with \(12^{\prime \prime}\) records as the pick-up arm will automatically come to the \(10^{\prime \prime}\) position when there are no records on the platform.

Should the Record Changer be stopped with the pick-up arm not on its rest, the pick-up should not be handled, but the left-hand knob moved to "Start," the pick-up will then return to its rest.

When the Changer is fitted with a High Fidelity Pick-up of any type, extra care should be taken to avoid accidental damage to the pick-up, and attention should be given to the following points:-

The Changer should not be switched off either by the switch on the Changer, the switch on the set, or the house switch during its changing cycle, as this may lead to the pick-up being lowered on to the turntable covering when the Changer is next used.

If it is suspected that the Changer has been switched off in the wrong position, place a \(12^{\prime \prime}\) record on the Turntable before switching on.

Do not use badly warped records, they may not drop and the pick-up will lower on the Turntable covering, also badly warped records will give trouble by slipping during playing. Care should be taken in storing records to prevent contact with dirt and dust which sets up abrasive action and causes rapid wear.

\section*{NEEDLES.}

It is emphasized that if for any reason the needle, whether of the permanent or semi-permanent type, is taken out of the pick-up head after it has played even only a part of a record, it should be discarded and not used again, as a small flat is worn on the side of the needle tip which rests on the record and as the needle cannot be put back into the pick-up without turning it slightly the flat will not rest on the record in its original position, and will form a cutting edge to tear up the record groove.

\section*{INSTALLATION}

\section*{DIMENSIONS.}

The cabinet space required for fitting is \(15 \frac{1}{2} \mathrm{in}\). long by \(13 \frac{1}{4} \mathrm{in}\). with \(5 \frac{1}{2} \mathrm{in}\). clearance above and \(4 \frac{1}{2} \mathrm{in}\). clearance below unit plate.

\section*{FITTING TO CABINET.}
(i) The "GARRARD" Automatic Record Changer is supplied with Spring Suspension to prevent acoustic feedback occurring between the loud speaker and the pick-up. Ample clearance should be left between the edges of the unit plate and the cabinet to allow the Record Changer to float freely. Diagram 2 illustrates the assembly of the spring suspension.
In cases where there is no possibility of acoustic feed-back occurring such as where the loud speaker is in a separate cabinet, the spring suspension is not necessary and the Changer can be screwed down to the motor board with four of the wood screws supplied for the spring suspension.

Two additional holes will be found in the unit plate, these are for transit fixing screws which should be used to fix the Changer rigid to the cabinet during transit, and removed on final installation. These are only necessary when using the spring suspension.
(ii) If desired, a template for cutting the motor board when fitting the Record Changer into the cabinet may be obtained on application to The Garrard Eng. \& Mfg. Co. Ltd. After installation see that the Changer is level by placing a spirit level on a
record on the turntable. If not level, adjust by means of the spring suspension fixing nuts. Finally, the nuts and threads of the spring suspension fixing screws should be coated with a locking paint such as shellac varnish to prevent the nuts working loose due to vibration.

\section*{SPEED SETTING.}

Due to the wide voltage range of the motors it may be necessary on some power supplies when installing the unit to make a slight re-adjustment of the speed Indicator Lever so that the speed of the Turntable corresponds with that shown on the Indicator scale.
To set the speed on alternating current power supply of 50 or 60 cycles use the "GARRARD" Stroboscopic Speed Indicator enclosed with each Record Changer. To set speed on direct current power supply or supplies having frequencies other than those covered by the stroboscope, the turntable should be checked with a watch. Set speed so that turntable revolves at 78 r.p.m., remove the turntable and carefully loosen the screw holding the indicator lever to the vertical brake shaft, move the indicator lever to the centre position on the indicator plate and tighten up the screw (diagram 3). On some models the screw is not accessible from the top of the unit. In this case lift the changer from the cabinet and adjust the screw from underneath the unit plate. The speed should now be correct.

One side of the stroboscopic speed indicator is designed for use in adjusting speed on a 50 cycle, and the other side a 60 cycle power supply.

VOLTAGE.
The "GARRARD" Model R.C. 65 Record Changer is made in two types:-
R.C.65/D. 16 Dual Voltage \(\cdot\) Range \(100 / 130\) and 200/250 volts \(40 / 60\) cycles.
R.C.65/U.16 Universal Voltage Range 100/130 and 200/250 volts D.C. and A.C. 25/60 cycles.
On installation, the links in the terminal block should be set to the correct position to correspond with the voltage of the power supply, as shown in diagrams 4 to 7.

A red terminal block cover is fitted to the Universal type (R.C. 65/U.16).

A brown terminal block cover is fitted to the A.C. type (R.C. 65/D.16).
The motor should be earthed by connecting a lead from the earthing tag, located under one of the motor end cover screws and a good earth connection.

When adapting an A.C./D.C. (Universal) Radio Receiver, Amplifier or one using a D.C. Power Pack for the reproduction of gramophone records, a pick-up transformer or condensers in series with the pick-up leads should be fitted, otherwise the pick-up circuit becomes alive. Also, the leads from the radio set or amplifier to the pick-up should be as short as possible to prevent picking up mains hum.

\section*{CONNECT BOTH BARS THUS FOR 200/250 VOLTS.}


Diagram 4
CONNECT BOTH BARS THUS FOR \(200 / 250\) VOLTS.


Diagram 6.

Link Connections, RC 65 D 16

\section*{- F}

CONNECT BARS THUS FOR 100/130 VOLTS.


Diagram 5.
CONNECT BOTH EARS THUS FOR 100/130 VOL.TS.


Diagram 7.

\section*{MOTORS.}

The R.C. 65/D. 16 is fitted with a governor controlled Induction Motor for use on A.C. only. The stator coils are connected in series on the high voltage range and in parallel on the low voltage range.

The R.C. 65/U. 16 is fitted with a governor controiled series wound universal motor for use on A.C. or D.C., and in this case the windings are connected in series with a voltage dropping resistance, a portion of which is shorted out when the motor is used on the low voltage range. A condenser is connected across a section of the resistance to keep the motor torque constant over the frequency range when on A.C.

\section*{OILING.}

Due to the oil retaining bearings, the motor only requires oiling at intervals depending upon the length of time the Record Changer is used. Lift off the Turntable and the oil holes (diagram 1) are accessable. A few drops of "GARRARD" or thin lubricating oil are sufficient.

Wavy or watery reproduction of the record is often due to dry gevernor pads. These should be lubricated by saturating the felt pads with a thin oil. Occasionally the governor will rattle badly and the reproduction will be distorted. This is caused by the surface of the governor spindle, on which the governor sleeve slides as the balls fly outwards, becoming dry, and it should be lubricated with a thick oil.

Thick oil should on no account be used for the motor bearings.

\section*{STARTING FAILURES.}

If the motor fails to start when the control knob is turned to the Start position, first check the power supply and ascertain that the current is reaching the motor terminals. Give the turntable a turn by hand to help it round, in case, when the Record Changer was last used, the motor was switched off during the changing cycle, in which case it is possible for the motor to be unable to start under the full load of the Record Changing Mechanism.

Disconnect the mains supply and examine the terminal block to see that the leads and nuts are tight, also examine the switch contacts, clean and adjust if necessary. If a thick oil has been used to lubricate the motor bearings, the motor will appear weak, and pos-
sibly not start. It will be necessary to dismantle the motor, and clean away all traces of the thick oil, it is, thercfore, essential to lubricate the motor bearings with a good quality thin machine oil.
In the case of the U. 16 Motor periodical examination of the carbon brushes should be made. If they are allowed to become dirty or worn, brush noises will occur, and occasionally the motor may run unsteadily or stop. The brushes can be cleaned by lightly scraping the contact surface with a penknife. The brushes should be a perfectly free sliding fit in the brush tubes. It is essential the brushes should be replaced in the same holder and in the same way round as originally found.

New brushes are \(\frac{9}{16 \prime \prime}\) long under the Springs. When worn down to \(\frac{3^{\prime \prime}}{3 \prime}\), they should be replaced. To remove the brushes unscrew the brush caps and the brushes can be withdrawn. If the copper Commutator upon which the brushes rest has become corroded, dirty or greasy, it should be cleaned with a rag damped with petrol or lighter fuel. When finally replacing the brushes always ensure that the brush caps are screwed up tight. Should the motor get too hot first see that the voltage changeover links are set correctly to correspond with the voltage of the power supply. To check the motor windings insert a milliameter in either motor lead. The maximum current should not exceed:-
R.C. 65/D. 16
High Range
Low Range 50 cycles
Low Range 60 cycles
0.11 amp . 0.22 amp . 0.24 amp .
R.C. 65/U. 16
High Range A.C.
Low Range A.C.
High Range D.C.
0.15 amp .
0.14 amp .
0.16 amp .
0.19 amp .

If readings in excess of the above figures are obtained, the motor units or coils should be returned to our Service Department for examination.
If the motor has to be removed from the Record Changer, disconnect the switch leads from the switch and remove the clips holding the leads, then remove the motor fixing screws and the motor can be withdrawn. When withdrawing the motor note carefully how the divided speed control lever parts in two, so that it may be correctly re-assembled when the motor is replaced.

Now refit this screw in an adjacent hole according to the adjustment required. Moving the screw to a hole nearer the platform lengthens the link and increases the inward movement of the platform. By moving the screw in the opposite direction the link is shortened and the outward movement of the platform increased. The permissible adjustment is one hole in either side of existing position of the screw.

\section*{RECORDS FAILING TO DROP.}

If the records fail to drop correctly, the angle of the record spindle should be checked from the template printed at the end of this manual and corrected it necessary, using great care in doing this as the thin neck of the spindle is very easily broken if unduly bent. If the spindle is correct slide off the name plate on the record platform cover and examine the record pushing pawl (diagram 8). It will be noted that the lower rear tail of this pawl engages a stop at the back of the platform as the platform moves back when a \(10^{\prime \prime \prime}\) record is to be played. When a \(12^{\prime \prime}\) record holds the pawl down the lower tip passes over the stop. When the platform is in the playing position, that is, when the changing cycle has finished and the needle is playing the record there should be a gap of approximately \(\frac{1}{8}^{\prime \prime}\) between the rear of the pushing pawl and the front of the stop. If this gap is incorrect, the stop can be
adjusted by releasing its two fixing screws and moving it backwards or forwards as necessary, finally retightening the screws.

\section*{OVERARM.}

Note that when a batch of records is on the record spindle and the overarm is lowered thereon, only the pad nearest to the platform should rest on the records. There should be a gap of approximately \(\frac{1^{\prime \prime}}{}{ }^{\prime \prime}\) between the other pad and the surface of the top record. This side of the overarm only comes into action when the last record is a \(10^{\prime \prime}\). It then prevents the record tipping as the platform moves back leaving the record balanced on the record spindle.

\section*{RECORD SPINDLE.}

Should an intermittent squeak develop it is probably due to the anti-slip sleeve on the spindle having become dry and may be cured by putting a spot of thin oil between the sleeve and the spindle.

\section*{TEMPLATE FOR R.C. 65 RECORD SPINDLE.}

Should the record spindle be accidentally bent out of position through being dropped or other reasons, the record dropping will be affected. If trouble is experienced with erratic record dropping, lay the record spindle on template and check that it conforms to the shape thereof.

\section*{PICK-UP DROPPINC POSITION.}

The pick-up arm has been finely adjusted so that the needle comes on to 10 in . records in a \(9 \frac{5}{8} \mathrm{in}\). diameter circle and 12 in . records in a \(11 \frac{5}{8}\) in. diameter circle. These positions were arrived at after checking a very wide selection of records of various makes.
There may be a few records where the record track starts further away from the centre, (i.e., nearer the edge), and in these exceptional cases the needle may alight on the record a few grooves from the start. If the pick-up dropping position were set for these exceptional discs it would not be suitable for average records.

Should the dropping position of the pick-up require adjustment the pick-up adjusting screw - accessible through a hole in the unit plate (diagram 1)-should be turned with the Changer in its start position; that is, with the pick-up arm on its rest.
The pick-up adjusting screw should be turned either to the right or left, according to requirements. A quarter of a turn in either direction will give you the maximum adjustment. After adjustment, switch on, check the dropping position and re-adjust if necessary.

\section*{PICK-UP HEIGHT.}

The Pick-up should lift sufficiently high for a long needle to just clear the surface of the eighth record on the turntable when the pick-up returns to its rest. If it is necessary to adjust the amount of lift look for the "Adjustment for pick-up lift" shown on diagram 3.
When viewing from back of the Record Changer, this adjustment is immediately underneath the pick-up arm pivot spindle and appears as two similar screw heads. The left-hand head is the locking screw and the right-hand head is the eccentric adjustment screw. To adjust this, first operate the changer and stop when the pick-up arm is moving back across the record to its rest. Loosen the two nuts on the back of the screws, then turn the eccentric adjustment screw as necessary to give the correct height. One half a turn of this screw will give the maximum amount of adjustment. After making the necessary correction, re-tighten the nuts on the back of the screws.

\section*{AUTO-TRIP MECHANISM.}

The satisfactory operation of the Record Changer depends upon the operation of the auto trip. Occasional adjustment of the auto trip friction spring may, therefore be necessary.

If, at the end of a record, the auto trip does not operate-that is, the pick-up remains at the end of a record-first see that the record has a run-off groove in its centre (as only records with run-off grooves can be played automatically on Record Changers). If the record is in order in this respect see that the trip lever is clear of the unit plate, since any added friction here will prevent it moving in towards the striker. If it is quite free, increase the tension of the friction spring by turning the auto trip friction adjustment screw (see diagram 1) in a counter-clockwise direction; about half a turn is all that should be necessary. This screw is accessible on removing the turntable. Should the changer operate before the end of a record, or a bumping or tapping noise be audible, first examine the trip lever rubber and if it is worn, give it half a turn to present a new surface to the striker. If badly worn, renew. If trip lever rubber is in good condition, reduce the tension of the friction spring by giving the auto trip friction adjusting screw (see diagram 1) half a turn in a clockwise direction.

\section*{RECORD PLATFORM ADJUSTMENT.}

When despatched from our Works the record platform is set to accomodate records of average dimensions. Occasionally, however, records may be found outside the normal limits; if necessary, therefore, the platform may be adjusted to take them.

To control the platform movement are two adjustable links, each fitted with two screws. One link, with its pivot at the bottom of the platform lever, controls the platform tilt, whilst the other controls the distance the platform pushes inward (see diagram 8).
It is this latter link which may be adjusted to accept records differing from the normal in diameter. To do this, loosen the screw further away from the platform and remove the other screw.



Diagram 9.

\section*{ADJUSTMENT TO PICK-UP}
" GARRARD " Magnetic types of pick-up are interchangeable with the Crystal type or vice-versa without alteration to the pick-up arm on these Record Changers, provided the pick-up is fitted in a "GARRARD" Head.

All "GARRARD" pick-up heads are of the plug-in type, connections being made by two plugs and sockets at the back of pick-up head.

To remove the pick-up head, unscrew the pick-up fixing screw, withdraw the pick-up, easing the pickup lead under the arm, and remove the two plug connections from back of pick-up.

If reproduction ceases, or becomes distorted when fitted with a "GARRARD" standard magnetic pickup, first make sure that the amplifier is in order. Should this be found satisfactory, a slight adjustment to the pick-up may be necessary or the damping rubber may need renewing.

To examine the pick-up proceed as follows: Unscrew the two screws to be found underneath the head, (do not touch the two screws located on each side of the needle), and remove the pick-up unit from the head, then, viewing the front of the pick-up examine the armature to see that it is in the centre of the gap between the pole pieces.

If it is touching one of the pole pieces it must be re-centred. To do this, loosen the two screws holding the adjusting plate, sliding the latter until the armature is in the centre, then retighten the screws.

If the armature will not retain its centre position, it will be necessary to renew the damping rubber. This can be done by removing the adjusting plate, replacing the rubber and re-assembling the plate.

Adjust the plate until the armature is centred before tightening the screws.

The top damping rubber tends to perish in time. It should, therefore, be replaced whenever it appears that the needle stiffness has increased, otherwise excessive record wear may occur.

Distortion may be caused by dirt or foreign matter in the gap between the pole pieces. To remedy, remove the adjusting plate and damping rubber and clean gap.

The pick-up coil winding can be checked for continuity with an ohmmeter.

If a Crystal or High Fidelity Pick-up is suspect, the pick-up head should be returned for examination. A continuity test cannot be carried out on Crystal pick-ups with an ohmmeter.

Crystal Cartridges or High Fidelity Pick-ups must not be opened or the manufacturers will disclaim all responsibility.

\section*{SPARE PARTS LIST FOR R.C. 65}
\begin{tabular}{|c|c|}
\hline NAME OF PART & NUMBER \\
\hline Record Spindle & A. 45380 A \\
\hline Turntable & A. 45390 \\
\hline Turntable Cover & A. 45395 \\
\hline Main Spindle with Fibre Gear & A. 45348 \\
\hline Pick-up Arm & B. \(47654^{\circ}\) \\
\hline Overarm Bracket & B. 47597 \\
\hline Pick-up Connector Assembly & A. 475.92 \\
\hline Pick-up Lead D. 16 & A. 47786 \\
\hline Pick-up Lead U. 16 & A. 47787 \\
\hline Platform Bracket & B. 47438 \\
\hline Platform & A. 45150 \\
\hline Governor Spring D. 16 & A. 41520 \\
\hline Governor Spring U. 16 & A. 41572 \\
\hline Motor Stator Coils D. 16 & A. 47750 \\
\hline
\end{tabular}

\section*{NAME OF PART}

Mọtor Field Coils U. 16 ... ... A. 47775
Change Over Block Cover D. 16 Brown B. 45473
Change Over Block Cover U. 16 Red ... A. 46806
Motor Resistance complete U. 16 ... A. 47778
Spring Trip Lever ... ... ... A. 41602
Auto Trip Friction Spring ... ... A. 41513
Auto Trip Lever Rubber Bush ... A. 47247
Switch Contact Spring ... ... A. 41597
Pick-up Top Damping Rubber ... A. 45303
Rotor Spindle with Rotor ... ... A. 45337
Screw securing Pick-up Head ... A. 40241
Carbon Brush and Spring U. 16 ... A. 46319
Brush Cap U. 16 ... ... ... A. 46409


\section*{OPERATING INSTRUCTIONS}

The "GARRARD" Model R.C. 70 Automatic Record Changer will play any number of records up to ten \(10^{\prime \prime}\) records or ten \(12^{\prime \prime}\), not mixed.

To operate the Record Changer proceed in the following order:-
1. If a permanent needle is not used, lift the pick-up head and insert a needle of the type that will play ten or more records. On some models the pick-up head will turn to facilitate needle changing.
2. Place the record spindle in position, the sloping part leaning toward the record platform. Set the record selector knob to \(10^{\prime \prime}\) or \(12^{\prime \prime}\) according to the size of the records it is desired to play, raise the record clip and place any number up to ten records on the record spindle, their lower edge resting on the record platform, then lower the record clip.
3. Move the front left-hand knob to "Start." The motor will commence to run and the changer operate. When the last record has played, the changer will automatically switch off. To remove the records, raise the record clip and withdraw the record spindle.
To reject a record, move the left-hand knob to the "Reject" position.
The changer can be switched off by moving the lefthand knob to the "Stop" position. If this is done while a record is playing, that record will be automatically rejected and the next record commenced when switching on again.

If desired, one record may be repeated any number of times by placing the record on the turntable, setting the Selector Knob to the size of the record, and switching on with no records on the record spindle and the record clip raised.

When it is desired to stop the record, lower the Record Clip and the changer will automatically switch off at the end of the record.

\section*{NOTE.}

Should the record changer be stopped with the Pick-up Arm not on its rest, the pick-up should not be handled but the left-hand knob moved to "Start." The Pick-up Arm will then return to its rest.
When the Changer is fitted with a High Fidelity Pick-up of any type, extra care should be taken to avoid accidental damage to the Pick-up and attention should be given to the following points:-

The Changer should not be switched off, either by the switch on the changer, the switch on the set, or the house switch during its changing cycle as this may lead to the pick-up being lowered on the turntable felt when the changer is next used. If it is suspected that the changer has been switched off in the wrong position, place a \(12^{\prime \prime}\) record on the turntable before switching on.

Do not use badly warped records, they may not drop and the pick-up would lower on the turntable felt, also badly warped records will give trouble by slipping during playing.

Care should be taken in storing records to prevent contact with dirt and dust which sets up abrasive action and causes rapid wear.

\section*{MAINTENANCE.}

The motor and intermediate wheel bearings being the oil retaining type will rarely need lubricating. When the need for oil is apparent a few drops of fine machine oil is all that is necessary.
The rubber rim on the intermediate wheel must be kept free of oil.

\section*{INSTALLATION}

\section*{DIMENSIONS.}

The Cabinet space required for fitting is \(15 \frac{1}{2}\) ins. long by 13 ins. wide with \(5 \frac{1}{2}\) ins clearance above and \(2 \frac{1}{2}\) ins. clearance below the plate.
loudspeaker and pick-up. Ample clearance should be left betweeen the edges of the unit plate and the cabinet to allow the Record. Changer to float freely. Diagram 2 illustrates the assembly of the spring suspension.


Diagram 2.
In cases where there is no possibility of acoustic feed back occurring, such as where the loud speaker is in a separate cabinet, the spring suspension is not necessary and the changer can be screwed down to the motor board with four of the wood screws supplied for the spring suspension.

Two additional holes will be found in the unit plate; these are for transit fixing screws which should be used to fix the changer rigid to the cabinet during transit and removed on final installation. These are only necessary when using the spring suspension.

If desired, a template for cutting the motor board when fitting the record changer into a cabinet may be obtained on application to The Garrard Engineering \& Manufacturing Co. Ltd.
After installation see that the Changer is level by placing a spirit level on a record on the turntable. If not level, adiust by means of the spring suspension fixing nuts. Finally, the nuts and threads of the spring suspension fixing screws should be coated with a locking paint such as shellac varnish to prevent the nuts working loose due to vibration.


\section*{SERVICE ADJUSTMENTS}

\section*{SPEED.}

No adjustment for speed is provided on this model, there being no governor, and the motor being of the constant speeed induction type, maintains the turntable at 78 r.p.m.

It is essential that the driving surface of the small brass pulley on the motor spindle, the rubber tyred pulley and the drum of the turntable, be kept absolutely free from all oil or grease. If the speed should become slow or varying, this is the first point that should be checked, and the pulley drum and Intermediate wheel should be cleaned with a rag and a few spots of petrol or lighter fuel.

\section*{MOTORS.}

If the motor fails to start when the control knob is turned to "start," first check the power supply and ascertain if current is reaching the motor terminals.
Next disconnect the mains supply and examine the terminal block and see that the leads and screws are tight, also examine the switch contacts accessible underneath, clean and adjust if necessary.

If a thick oil has been used to lubricate the motor bearings the motor will appear weak or will not start. It will be necessary to dismantle the motor and clean away all traces of the thick oil. It is, therefore, essential to lubricate the motor bearings with a good quality thin oil.

Should the motor get too hot, see that the voltage change over links are set correctly to correspond with the voltage of the power supply. If correct, check the motor windings by inserting an A.C. milli-ammeter in either motor lead. The maximum current consumption should not exceed 100/130 volts, 50 cycles, 0.26 amp., \(200 / 250\) volts, 50 cycles, 0.13 amp .
If readings in excess of the above figures are obtained, the motor unit should be returned for examination.
To remove the motor, first make sure the electricity supply is disronnected, then remove the insulated olate on the underside of the terminal block, underneath the plate will be disclosed the nuts on the screws securing the terminal block to the unit plate-these should be unscrewed and the screws lifted out. The terminal block will then be free from the unit plate and only attached to the motor leads.

Next, while supporting the motor underneath, unscrew the nuts on the three suspension screws, which secure the motor to the unit plate. Before drawing the motor away from the unit plate, make a careful note of the sequence of steel and rubber washers on each suspension screw in order to reassemble correctly when refitting the motor. This is important as the height of the motor in relation to the intermediate wheel is critical.

\section*{PICK-UP DROPPING POSITION.}

The Pick-up Arm has been finely adjusted so that the needle comes on to 10 in . records in a \(9 \frac{5}{8} \mathrm{in}\). diameter circle and 12 in . records in a \(11 \frac{5}{8} \mathrm{in}\). diameter circle. These positions were arrived at after checking a very wide selection of records of various makes.
There may be a few records where the record track starts further away from the centre (i.e., nearer the edge), and in these exceptional cases the needle may alight on the record a few grooves from the start of the record. If the pick-up dropping position were set for these exceptional records it would not be suitable for average records.

Should the dropping position of the pick-up require adjustment, the pick-up adiusting screw - accessible through a hole in the unit plate, see Diagram 1, should be turned with the changer in its start position, that is. with the pick-up arm on its rest.

The pick-up adjusting screw should be turned either to the right or left, according to reauirements. A quarter of a turn in cither direction will give you the maximum adiustment. After adjustment, switch on, check the dropping position and re-adjust if necessary.

\section*{PICK-UP HEICHT.}

It desired the pisk-un height can be adjusted by loosening the nut securing the "Eccentric adjustment for pick-up height," Diagram 5, and adjust the ercentric pivot with screwdriver in slot at back. Finally retighten locking nut.

\section*{CAUTION.}

When making any adjustments to the Pick-up Arm, it should NEVER on any account be forced into position. If the turntable is turned by hand it should NOT be turned backwards.
If the pick-up does not run into the record grooves after alighting on the record edge, see that the record changer is level by placing a spirit level on a record on the turntable. Also make sure that the flexible wire leading to the pick-up is not twisted or held in such a manner as to prevent the free movement of the pick-up arm; also see that the associated levers are free.

\section*{AUTO TRIP MECHANISM.}

The auto trip mechanism is set to operate when the needle reaches a \(1 \frac{13}{16} \mathrm{in}\). radius, or if it oscillates in an eccentric groove.

Occasionally records having a smaller or larger radius at the end of the playing grooves, are encountered. If it is desired to adjust the mechanism to take these exceptional records, the screw visible through hole in unit plate (Diagram 1) should be adjusted.
To make the trip operate earlier for larger radius records loosen the screw, and holding the pick-up arm steady, move the screw a shade towards the turntable. To make the trip operate later for small radius records, move the screw away from the turntable.
After each adjustment check with record, and readjust if necessary. Finally retighten the screw.
It is emphasised that this screw should be moved a barely visible amount at each adjustment.

\section*{RECORD PLATFORM ADJUSTMENT.}

When despatched from our Works the record platform is set to accommodate records of average dimensions. Occasionally, however, records may be found outside the normal limits; if necessary, therefore, the platform may be adjusted to take them.

To set the platform, the nut locking the "Eccentric adjustment" for Platform, Diagram 5, should be loosened, and with the mechanism set for 12 inch records, the pick-up arm in the playing position, and the largest 12 inch record available loaded on the platform, turn the "Eccentric Adjustment" until there is a gap of not more than \(\frac{1}{3}\) " between the edge of the record and the front edge of the platform pawl. Finally retighten the locking nut.
If the changer fails to drop either \(10^{\prime \prime}\) or \(12^{\prime \prime}\) records, the above adjustment should be carried out.

\section*{AUTO STOP.}

When the last record on the platform drops on to the turntable, it allows the record clip to fall and this unlocks the auto stop which should switch off the motor at the end of the record. If y when the last record has been played and the record clip has fallen the mechanism does not automatically stop, the following procedure should be carried out.
1. Compare the underside of the record changer with diagram in the Service Manual and find the "Swing Lever" and the "Knock-off Lever." Note that in the upper edge of the knock-off lever there is a step. With the record clip lowered and the needle removed from the pick-up head, start the changer with a hand on the turntable, slow it down to the slowest possible speed at which the mechanism will operate. Move the control lever to the "Reject" position. The swing lever should now move outwards until it engages the step on the knock-off lever and should remain engaged until the record changer switches off. If the, swing lever does not engage the step but passes over it, proceed as at (a) to correct. If the swing lever engages in the step, set as at (b) following.
(a) Load two records on the platform spindle in the usual way. Lower the record clip and start the changer The first record will now drop on to the turntable leaving one remaining on the platform. Again, with the hand operating as a brake to slow down the turntable, move the control lever to the "Reject" position. The tip of the step on the knock-off lever should now clear the surface of the swing lever in its outward movement by \(1 / 64^{\prime \prime}\). If this dimension is incorrect, stop the changer when the swing lever is directly over the step in the knock-off lever. The knock-off lever is dividea into two parts which are held together by a screw
and a rivet. Loosen the screw to adjust the height of the lever until the \(1 / 64^{\prime \prime}\) clearance is obtained, then retighten the screw. Finally re-check the changer with the record clip lowered to ensure that the swing lever engages the step. Should the auto stop still fail to operate, set as at (b) below.
(b) Loosen the screws at D (Diagram 5) and bring the two parts of the lever together in order to shorten slightly the effective length and retighten the screws. Check and repeat the adjustment if necessary until changer operates correctly.

PICK-UP.
"GARRARD" Magnetic types of pick-ups are interchangeable with the Crystal type or vice-versa without alteration to the pick-up arm on these Record Changers, provided the pick-up is fitted in a "GARRARD" head.
All "GARRARD" pick-up heads are of the plug-in type, connections being made by two plugs and sockets at the back of the pick-up head.
To remove the pick-up head, unscrew the pick-up fixing screw, withdraw the pick-up, easing the pick-up lead under the arm, and remove the two plug connections from back of pick-up.

If reproduction ceases, or becomes distorted when fitted with a "GARRARD" standard magnetic pick-up, first make sure that the amplifier is in order. Should this be found satisfactory, a slight adjustment to the pick-up may be necessary or the damping rubber may need renewing.

To examine the pick-up proceed as follows:-
Unscrew the two screws located underneath the Base Plate of the Pick-up Head, when the plate carrying the pick-up unit can be removed from the cover. Be careful not to loosen or disturb the two screws located one each side of the needle holder on the inclined portion of the base plate, otherwise the adiustment of the pole pieces will be upset. By viewing the pick-up unit from the front, examine the armature to see that it is in the centre of the gap between the pole pieces.

If 'it is touching one of the pole pieces, it must be re-centred.
To do this, loosen the two screws holding the adjusting plate, sliding the latter until the armature is in the centre, then tighten the screws.


If the armature will not retain its centre position, it will be necessary to renew the damping rubber. This can be done by removing the adjusting plate, replacing the rubber and re-assembling of the plate.
Adjust the plate until the armature is centred before tightening the screws.
The top damping rubber tends to perish in time. It should, therefore, be replaced whenever it appears that the needle stiffness has increased, otherwise excessive record wear may occur.
The pick-up coil winding can be checked for continuity with an ohmmeter.
If a Crystal or High Fidelity pick-up is suspect, the pick-up head should be returned for examination. A continuity test cannot be carried out on Crystal pick-ups with an ohmmeter.
Crystal Cartridges or High Fidelity Pick-ups must not. be opened or the manufacturers will disclaim all responsibility.

\section*{TEMPLATE FOR RC 70 RECORD SPINDLE.}

Should the record spindle be accidentally bent out of position through being dropped or other reasons, the record dropping will be affected. If trouble is experienced with erratic record dropping, lay the record spindle on the template and check that it conforms to the shape thereof.

SPARE PARTS LIST FOR RC 70
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Part. & & & & Ref. No. & Name of Part. & & & & Ref. No. \\
\hline Record Spindle & ... & ... & \(\ldots\) & A. 47408 & Pulley ( 50 cycles) & \(\ldots\) & ... & & A. 47216 \\
\hline Turntable & & & & B. 46744 & Pulley ( 60 cycles) & & \(\ldots\) & & A. 47226 \\
\hline Turntable Cover & & ... & & A. 45395 & Cover for Change & Over Block & ... & & B. 45473 \\
\hline Main Spindle Unit & & ... & & A. 46509 & Screw for Cover & & \(\ldots\) & & A. 40045 \\
\hline Pick-up Arm & & & & B. 47654 & P.U. Needle Screw & & ... & & A. 40048 \\
\hline Record Clip & \(\ldots\) & \(\ldots\) & & A. 46582 & Trip Pawl ... & \(\ldots\) & ... & & A. 47273 \\
\hline Pick-up Spindle Unit & & \(\ldots\) & & A. 46584 & Spring for Trip P & awl & & & A. 41602 \\
\hline Pick-up Lead & & \(\ldots\) & & A. 47786 & Switch Contact Sp & pring & & & A. 41597 \\
\hline Platform Housing & \(\ldots\) & \(\ldots\) & & A. 46572 & Pick-up Top Dam & ping Rubber & ... & & A. 45303 \\
\hline Platform & & & & B. 46564 & Rotor Spindle with & h Rotor & & & A. 47168 \\
\hline Inter Wheel Unit & \(\ldots\) & & & A. 46529 & & & & & \\
\hline
\end{tabular}


\section*{GENERAL}

This record changer is designed to operate from a power supply of \(105-125\) volts a-c, 60 cps . It will automatically play twelve 10 -inch records or ten 12 -inch records at a single loading.

\section*{MANUAL OPERATION}
1. Turn selector arm knobs so that the blades will, permit a record to slip down the spindle onto the turntable.
2. Move the control knob to the MANUAL position.
3. Gently place tone arm on the first groove of record and when finished playing return the tone arm to its rest position.
4. Stop turntable rotation by moving switch plate knob to the OFF position.

\section*{AUTOMATIC OPERATION}
1. Lift and rotate the selector knobs and position them for 10 -inch or 12 -inch records, as desired. The arrow should point directly at the spindle.
2. Place up to either twelve 10 -inch or ten 12 -inch records on selector arms. Do not intermix 10 - and 12 -inch records.
3. Move control knob on switch plate to REJECT position and release it. The changer will now play the entire stack and repeat the last record.
4. To shut off the record changer before or after all records are played, move control knob to OFF and lift the tone arm and move out to the rest position
5. If you wish to reject a record before it has finished playing, move the control knob to REJECT and release it. The changer will reject the record and then continue to play the remainder of the stack.
6. To unload records, turn the control knob to OFF. Remove any remaining records on the selector arms. Lift and turn selector arm knob until arm clears records, then remove records from turntable.

\section*{OPERATION PRECAUTIONS}
1. Use only unwarped records for automatic operation. For warped, odd-size or home-recorded records, play as for manual operation.
2. Never use force to start or stop the motor or any part of the record changing mechanism.
3. D.o not store the records on the record post or on the turntable as they may warp, especially if the temperature is high.
4. Do not allow oil or grease to come in contact with the drive wheels or any rubber part.

\section*{LUBRICATION}

Use light grease (Lubriplate or equivalent) on the following:
1. Cam surfaces
2. Gear teeth.

Use light machine oil on the following:
1. All shafts
2. Turntable spindle.

Do not lubricate:
1. Clutch engagement lever (6).
2. Idler wheel rim.
3. Turntable rim.

\section*{PICK-UP}

A special General Electric magnetic pick-up is used with this changer which will give superior results from the standpoint of high fidelity, low surface noise, and negligible record wear. This pick-up is not replaceable with a crystal pick-up as the ratio of output levels of the two types is at least 70 to 1 , the pick-up supplied having an extremely low output.

The pick-up is supplied with a semi-permanent type stylus. Dust and foreign matter should be removed with a soft brush.

Make sure the stylus arm is centered between stops. The clearance should be maintained on both sides at 9 to 11 mils.

\section*{CYCLE OF OPERATION}

NOTE-All reference numbers used in this explanation are shown on an illustration.

\section*{initiating the crcle:}

Pushing the control button (50) from OFF to REJECT positions turns the power \(O N\) and starts the changer into automatic operation. This movement transferred to the control slide (1) causes the power switch (2) to be actuated by its arm which rides in the eccentric groove (A) in the control slide. Simultaneously, the control slide (1) moves the reject slide (4) towards the center of the record changer, which moves the trip lever (5) sufficiently to disengage it from the clutch engagement lever (6). This clutch engagement lever (6) and trip lever (5) are mounted on the drive gear (8). When the control knob is released, it returns from REJECT to AUTO position.

\section*{crcling:}

The release of the clutch engagement lever (6) caused the lug (D) on the rotating pinion gear (7) to strike the extended portion of the clutch engagement lever (6) so as to push the drive gear (8) sufficiently so that its teeth enmesh with the pinion gear (7). (The open section of the drive gear (8) permits the pinion gear to rotate freely, except during the change cycle.) The rotation of the drive gear (8) results in the following cam actions:
1. The vertical cam (E) moves the tone arm lift pin (9), thus raising the tone arm.
2. The cam (J) actuates the drive link (10) that induces a quarter turn by which the selector arms (42) release a record. 3. Surface (H) on the locked tone arm lever (11) resets the trip by latching the clutch engagement lever (6) to the trip lever (5)
4. Cam surface (G) moves the tone arm latch lever (21) so as to unlatch the tone arm lever (11) at the point of latching. Thereafter the stud ( K ) on the tone arm lever (11) follows the receding cam (F).


Top View of Record Changer


Bottom View of Record Changer
5. Spring pressure from the tone arm locator (12) moves the tone arm lever (11) and tone arm toward the record. Selector arm settings determine the point at which the tone arm locator (12) stops at the surface on the reset slide (13).
6. Stud (K) is contacted by the retard lever (14) holding it in position during the time of the lowering of the needle on the record
7. Tone arm lift pin (9) follows the vertical cam (E) on the drive gear (8) and lowers the tone arm to the record. After the needle has touched the record, the booster spring (15) exerts a slight pressure, causing the needle to enter the starting groove of the record.
8. As the needle starts in the groove, drive gear (8) completes its rotation and is locked in open-tooth position by the drive gear stop lever (16) in the detent in the cam (G).

\section*{TRIP ACTION:}

When the record has finished playing, the needle enters a center spiral groove of the record. This starts a new change cycle by either of two actions releasing the clutch engagement lever (6).
1. Minimum diameter cut-off occurs when the trip shoe (17) strikes the trip lever (5).
2. Eccentric groove cut-off occurs when the tone arm is moved away from the spindle (43). The sawtooth edge of the


Drive Gear Assembly
trip plate (fastened to tone arm lever, 11) engages and moves the trip dog, causing the trip lever (5) to function.

\section*{MANUAL OPERATION:}

With the control knob in the MAN position, the control slide (1) causes four conditions to exist.
1. The motor switch (2) is turned ON.
2. The end of the control slide (1) acting through the manual latch lock (38) partially disengages the tone arm latch lever (21) from its locked position. It now serves as a detent for the tone arm while in rest position and prevents its movement due to accidental bumping.
3. The manual lockout (20) on the control slide prevents the tone arm locator (12) from moving inward, thereby permitting free movement of the tone arm by hand.
4. The reject slide (4) is in position so that the clutch engagement lever (6) is held, preventing tripping.

\section*{SERVICE ADJUSTMENTS}

\section*{A. SELECTOR ARM AND BLADE (4I) (42):}

The leading edge of the blades (41) must be smoothly rounded and well polished. The blades (41) must be very free in their mounting so that they will return to normal position by their own weight. The selector arms (42) must be parallel with each other, and must be synchronized so that a record will drop evenly onto the turntable.
If the blades need adjustment, place a 10 -inch record of average thickness (. 074 in .) on the selector arms and manually rotate the turntable clockwise until the selector blade contacts the record. The blade must rise after it first contacts the edge of the record. This rising action results whenever pressure is applied to the leading edge of the selector blade (41). The blade may be adjusted by bending, very slightly, to correct position (use pliers with tape-lined jaws). The height to which blades are set must be less than the minimum record thickness, otherwise the blade will attempt to change two records at a time, due to the cam action which always operates in an up direction. When necessary, make the same adjustment on the 12 -inch selector blades, using a 12 -inch record (approx. . 090 in. thick).

\section*{B. INCORRECT LOCATOR SPRING TENSION (33):}

Insufficient tension in the locator spring (33) will produce erratic or incorrect tone arm landing since the locator (12) will not seat in the fixed 10 -inch or 12 -inch indexing position. It will also result in jerky action of the tone arm (42), since the tone arm lever (11) will not accurately follow the cam surface of the drive gear (8).


Botfom View of Record Changer Less Drive Gear

Excessive tension in the locator spring (33) will result in a stiff, heavily loaded "feel" as the tone arm is moved into rest position. It may also produce a stiff action of the control slide (1) and cause increased wear of the moving parts.

\section*{C. TONE ARM HEIGHT:}

The height to which the tone arm (42) rises is correct when there is an approximate \(\frac{1}{16}\)-inch clearance between it and the bottom of a 10 -inch record on the selector arms (42). This clearance is regulated by the tone arm adjusting screw (23), see Figure 5.

The down position of the tone arm is fixed by lug ( R ) on the tone arm hinge assembly. The correct height is that which will allow the bottom edge of the tone arm and cartridge to clear the turntable surface by approximately \(\frac{1}{16}\) inch. This adjustment may be corrected by a slight bend of the lug (R).

\section*{D. TONE ARM POSITIONING:}

If the tone arm landing is not corrected by adjustment \(\mathbf{B}\), the following procedure may be used: Set the control knob (50) in the OFF position with power plug out and place a 10 -inch record on the turntable. Set the selector arms (10inch) so the arrows point directly at the spindle. Loosen the Allen socket cap screw (22) just enough to allow the tone arm lever (11) to still hold its position. Line up the tone arm's outer edge evenly with the panel edge. This gives the tone arm an approximate setting. Push the control knob to REJECT and release it. Rotate the turntable clockwise and
observe where the needle first touches the record. This should be about one-eighth inch from the edge. Variations should be corrected by slipping the tone arm lever (11) in the correct direction. Caution-Before tightening the Allen screw, make certain that there is enough vertical clearance in the tone arm shaft to avoid binding while the tone arm swings.

\section*{E. STYLUS PRESSURE:}

The stylus pressure on the record is controlled by the counter-balance spring (24) in back of the tone arm. The pressure is variable through the counter-balance adjusting slide (25). The needle pressure should be \(1-11 / 2\) ozs.

\section*{F. TRIP SHOE (17):}

The trip shoe (17) located on tone arm lever (11) is movable and loosening its holding screw permits it to be adjusted as required. This adjustment is correct when the needle is \(17 / 8\) inches from the record center and the trip shoe pushes the trip lever (5) which releases the clutch engagement lever (6).

\section*{G. TURNTABLE REMOVAL:}

The turntable should be removed by lifting carefully, tapping spindle lightly if necessary. This will expose top spindle bearing. When. replacing turntable, the slot in hub must seat properiy over the spindle pin. (Rotate 180 deg for best fit.) Push idler wheel in while lowering, so rubber rim will not be damaged by turntable edge.


\begin{tabular}{l} 
SYMPTOMS \\
\hline RECORD SELECTION \\
1. Record jams, prevents changer from working. \\
2. Record drops from one side only. \\
3. Records drop more than one at a time. \\
TONEARM MOVEMENT \\
1. Needle lands incorrectly. \\
2. Needle fails to feed in after landing. \\
3. Needle lands properly on record but slides in on record. \\
4. Tone arm hits bottom record on selector arms during \\
TRIPPING-CYCLING
\end{tabular}
1. Changer fails to trip.
2. Changer repeats tripping.

\section*{MOTOR}
1. Change is sluggish or motor overheats.
2. Motor rumble or "wow" heard in record reproduction.
1. (a) Check adjustment A.
(b) Odd-sized, warped, or damaged records. Play in "MAN" position.
2. (a) Check center hole in records-probably too large.
(b) Check adjustment A.
3. (a) Check adjustment A.
1. (a) Check adjustment B.
(b) Tone arm retard lever (14) binds; check spring.
(c) Check adjustment D.
2. (a) Check booster spring (15)-probably too weak.
3. (a) Check for broken stylus in pick-up.
(b) Booster spring (15) too strong.
(c) Check adjustment C.
4. (a) Check adjustment \(\mathbf{C}\).
1. (a) Check adjustment \(F\).
(b) Tight tone arm lead wire.
(c) Clutch engagement lever (6) not unlatching. Clean, do not lubricate.
(d) Trip lever (5) binding at pivot point and failing to unlatch engagement lever (6).
2. (a) Clutch engagement lever (6) fails to latch. Examine trip lever (5) for bind or weak trip lever spring (29).
(b) Control knob binding in REJECT position. Check control slide (1) or its associated assembly.
(c) Failure of stop lever (16) to properly detent drive gear.
1. (a) Check lubrication-oil old or gummy.
(b) Incorrect line voltage.
(c) Defective motor winding.
(d) Check binding of moving parts.
2. (a) Worn rubber rim on drive wheel.
(b) Shipping bolts not removed from motor board.
(c) Check for binding of spindle. Oil sparingly if necessary.

\section*{REPLACEMENT PARTS LIST}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Cat. No. & Symbol & Description & Cat. No. & Symbol & Description \\
\hline RAC-017 & & COVER-Switch co & RMP-007 & & PIN-Stop lever pivot pin \\
\hline & & SELECTOR ARM AND BLADE ASSEMBLY & RMS-057 & 24
47 & SPRING-Counter-balance spring SPRING-Drive link apring \\
\hline RAX-010 & & LADE-10-in. selector blade and arm assembly & RMS-059 & 46 & SPRING-Manual lockout spring (outer) \\
\hline & & No. 2 & RMS-060 & 45 & SPRING-Manual lockout spring (inner) \\
\hline RBH-005 & & MOTOR-Phonomotor, 60 cycle & RMS-061 & 32 & SPRING-12-in. reset lever spring \\
\hline RDE-023 & & ESCUTCHEON-Control escutcheon & RMS-062 & 33 & SPRING-Tone arm locator and latch spring \\
\hline RDX-029 & & KNOB-Selector arm knob assembly & RMS-063 & 15 & SPRING-Tone arm booster spring \\
\hline RDX-030 & 50 & KNOB-Control knob assembly & RMS-064 & 31 & SPRING-12-in. reset slide spring \\
\hline RHM-029 & & BUMPER-Trip dog bumper (rubber) & RMS-065 & 48 & SPRING-Stop lever spring \\
\hline RHM-030 & & BUMPER-Trip lever bumper (rubber) & RMS-066 & 44 & SPRING-Trip dog apring \\
\hline RHS-001 & 22 & SCREW-Allen socket cap screw & RMS-067 & 29 & SPRING-Trip lever spring \\
\hline RHS-002 & 23 & SCREW-Tone arm adjuating screw & RMS-068 & 26 & SPRING-Retard lever spring \\
\hline RHX-006 & 34 & HINGE-Tone arm hinge assembly & RMS-071 & 37 & SPRING-Ider wheel apring \\
\hline RHX-007 & & BUMPER-Retard lever bumper (rubber) & RMT-007 & 49 & TURNTABLE-Turntable assembly \\
\hline RMC-015 & & HUB-Tone arm locator hub & RMU-017 & 40 & SHAFT-Selector shaft assembly \\
\hline RMG-002 & 7 & GEAR-Pinion gear & RMU-019 & 40 & SHAFT-D-in. reset rod \\
\hline RML-001 & 6 & LEVER-Clutch engagement lever & RMW-024 & 36 & WHEEL-Idler wheel \\
\hline RML-002 & 21 & LEVER-Tone arm latch lever & RMX-060 & 10 & LINK-Drive link assembly \\
\hline RML-003 & 3 & LINK-Connecting link & RMX-061 & & ASSEMBLY-Power switch plate assembly \\
\hline RML-004 & 14 & LEVER-Tone arm retard lever & RMX-062 & & LEVER-Reset lever assembly \\
\hline RML-005 & 38 & LOCK-Manual latch lock & RMX-063 & 12 & LOCATOR-Tone arm locator assembly \\
\hline RMM-018 & 4 & SLIDE-Reject slide & RMX-064 & & CRANK-Drive crank assembly \\
\hline RMM-019 & 13 & SLIDE- \(12-\mathrm{in}\). reset slide & RMX-065 & 20 & LOCKOUT-Manual lockout assembly \\
\hline RMM-020 & 17 & SHOE-Trip shoe & RMX-066 & 11 & LEVER-Tone arm lever assembly \\
\hline RMM-021 & 25 & SLIDE-Counter-balance adjuating slide & RMX-067 & 16 & LEVER-Drive gear stop lever assembly \\
\hline RMM-022 & 30 & SHAFT-Tone arm shaft & RMX-068 & & ASSEMBLY-Spindle and housing assembly \\
\hline RMO-002 & 41 & BLADE-Selector blade and arm assembly & RMX-069 & & LEVER-Trip lever assembly \\
\hline RMO-003 & 2
9 & SWITCH-Power awitch & RMX-070 & 43 & SPINDLE-Turntable spindie assembly \\
\hline
\end{tabular}

All Series 700 Record Changers are of the single post, fully automatic drop type, featuring single button control and.eccentric spindle cam record selection. The series 700R Record Changer has the record support platform in the left rear corner. Series 700F has the record support platform in the left front corner.

\section*{OPERATION}

Starting - when the switch Button (58-73096) is moved to the "ON" position, power is connected to the Motor (56-73555) causing the Turntable Assy. (66A74682) to rotate, and automatic cycling, which is required to drop the first record, is accomplished by pulling the Switch Plate (10-74368) in the direction indicated by the arrow. When automatic cycling is started the Manual Trip Lever (55-73102) is advanced until it contacts the Cam Trip Lever (55A74833) mounted on the Main Cam (43-73159) which moved sufficiently to permit the spring loaded Pinion Actuating Lever (55A74813) to function, which, in turn, lifts the floating brass Pinion Assy. (28A73704) directly beneath the spindle so that a projection on this floating Brass Pinion is caused to engage a finger on the adjustable collar (65-73595) fastened to the Turntable Hub.

The combination of the foregoing causes the turntable to become connected with the Main Cam which through its single revolution performs all of the required change cycle functions. It is to be noted that, except during the change cycle, the motor power is used only to revolve the Turntable.

Cycling - As the Main Cam rotates, the spring loaded lever which actuates the Floating Pinion is automatically depressed and thus reset for the next change cycle.

At the end of the change cycle the Motor power is disconnected from the change mechanism when the Plastic Washer mounted on the Floating Brass Pinion drops into a depression on the top edge of the rim of the Main Cam. This position, called home position of the Main Cam, is retained by a Leaf Spring (33-72963) detented in the cam hub.

Record Selection - Record Selection is accomplished during one complete revolution of the Eccentric Cam Assy (43A72960) at the top of the lower section of the spindle. This portion of the change cycle is accomplished when the extended section of teeth of the Main Cam engages and rotates the Spindle Cam Pinion (28-73084). The home, or in line position of the Record Selection Eccentric Cam is retained by a Leaf Spring (33-73135) which detents into a slot in the underside of the Spindle Cam Pinion. Successive record drops are accomplished by a repetition of this action.

Pickup Arm Movement - The movement of the Tone Arm Assy. (69A73087) during cycle is controlled entirely by the surface and grooving of the Main Cam. These movements are picked up by the Sweep Lever Assy. (55A73045). After a record has been played or when it is rejected, the Trip mechanism causes the Main Cam to rotate which, in turn, lifts the Tone Arm off the records sweeping it clear to permit a record to drop and returning it to the edge of the record. The Tone Arm Support mechanism is so designed to permit the Tone Arm to be handled during any part of the change cycle without damage to the mechanism. This is accomplished by two spring loaded Mating Cams (43-73069) (43-73113) which disengage when any restraint prevents it from following the motions of the Sweep Lever. The Tone Arm is also vertically spring loaded allowing it to be lifted upward to an almost vertical position to permit ready changing of needles or cartridge.

Automatic Trip - This trip is so designed that it will start the automatic cycling mechanism when the Tone Arm moves toward the Spindle at a rate of speed greater than \(1 / 8^{\prime \prime}\) per revolution of the Turntable. This Trip, therefore, is practically universal as it will operate on any center leading groove or center eccentric circle groove records conformin \(g\) to RMA specifications. However, the Trip does not become operative except within a distance of approximately \(3^{\prime \prime}\) from the Spindle. Thus, manual resetting of the Tone Arm is possible at distances greater than \(3^{\prime \prime}\) from the Spindle.

The Velocity Trip is composed of three major elements: The Trip Lever Assy (55A73042), the "V" Lever (55-72966) and the Crescent Lever (55-73066). The Trip Lever and "V" Lever work together through a Friction Clutch (10-72953), the tension for which is maintained by a Coil Spring (33-73334) which is one of the elements in the assembly of these two parts. As the Tone Arm moves toward the spindle center, the sickle shaped section of the Sweep Lever comes into contact with one leg of the "V" lever causing the tip of the Trip Lever to move toward the center of the Turntable by energy transmitted through the Friction Clutch. This movement continues until the tip of the Trip Lever is in the range of the Finger of the adjustable Collar mounted on the Turntable \(H\) ub. Once this position is attained and so long as the movement of the needle toward the Spindle is less than \(1 / 8^{\prime \prime}\) per revolution the tip of the Trip Lever will be retarded from further movement by being pushed away once during each revolution of the Turntable. This retarding movement means that the Friction Clutch slips a corresponding amount. When the needle moves into a fast spiral or an eccentric center groove of the record, the tip of the Trip Lever will move so rapidly toward the center of the Spindle it will allow the tip of the Crescent Lever to slide off the flat surface of the Cam Trip Lever and engage itself behind the Lever. In the next revolution of the Turntable the finger on the adjustable Collar will force the Trip Lever outward causing the Crescent Lever to move the Cam Trip Lever far enough to unlatch the Floating Pinion Actuating Lever, thus setting up the change cycle as previously described.
\(10^{\prime \prime}\) and \(12^{\prime \prime}\) Operation - The \(10^{\prime \prime}\) and \(12^{\prime \prime}\) indexing is determined by the main cam by allowing the sweep lever pin to enter either the 10" or \(12^{\prime \prime}\) indexing track. This switching is controlled by means of a Frog (12-73060) which is moved from one side to another by the Frog Actuating Lever Assy. (55A73886 Rear) or (55A74605 Front) extending from the Record Support Assy. (62A73129 Rear) or 62A74720 Front). This lever shunts the sweep lever pin into the indexing track dependent upon whether the record support is pushed toward or away from the spindle for \(10^{\prime \prime}\) or \(12^{11}\) records.

\section*{ADJUSTMENTS}

Tone Arm Index - The tone arm should be indexed at the start of every record approximately \(1 / 8^{\prime \prime}\) from the edge for both the 10" and 12". If the needle index is too far in or out, this this may be corrected by loosening one of the two set screws found in the lower cam located in the bottom of the tone arm approximately \(\frac{1}{2}\) " above the top of the motorboard, and advancing the other set screw sufficiently to bring about proper indexing. The proper setting having been obtained, both screws should be locked tightly. This action is accomplished by means of the two screws contacting a flat on the vertical shaft at an angle that will cause the shaft to turn with any movement of either screw.

Adjustment of Record Support - When the record is centralized with the lower part of the spindle, the record support platform in both \(10^{\prime \prime}\) and \(12^{\prime \prime}\) position should clear the edge of the record by approximately .015" (1/64). To move this setting for the 12 " record, it is necessary to advance or retract the set screw nearest the spindle on the upper part of the support beneath the motorboard. The screw farthest away from the spindle will adjust the 12 " position in a similar manner.

Spindle Alignment - If the spindle eccentric cam is not lined up perfectly with the lower part of the spindle while out of cycle, the main cam should be moved to its home position as determined by its detent spring and the spindle pinion gear should also be moved to its home position as determined by its detent spring. Loosen the set screws in the hub of the spindle pinion gear and line up the eccentric with the spindle, then tighten set screws.

The spindle cap should be positioned so that the slide is pointing towards the center of the record support. This may be positioned by loosening the screws on the square retaining bar found in the lower bracket. There should be approximately .005 total vertical play in the spindle assembly after both adjustments to prevent binding.

Main Cam Frog Movement - When the record support is in the 12" position, the phosphor bronze spring that actuates the 10" or 12" selector Frog pin should be high enough to clear the frog pin. When the record support is in the lo" position this spring should cause an interference with the frog pin enough to move it into position to shunt the sweep lever pin into the 10" indexing track. This spring is slit for the purpose of easy adjustment. If this spring does not move the frog enough, it should be rebent to do this. It should be remembered that the frog is so constructed that as the sweep lever pin goes past it, it will automatically reset the frog in the \(12^{\prime \prime}\) position, and to play a \(10^{\prime \prime}\) record this pin must be reset by the spring everytime.

Removing Turntable - To remove the turntable for any reason, remove the small horseshoe-like spring found around the spindle near the turntable top. Then make sure that the trip lever is moved far enough away from the turntable center to allow it to clear the extremities of the bakelite washer of the floating pinion. The turnablemay then be removed by lifting up. In replacing the turntable care should be taken to see that the idler tire is properly positioned within the I.D. of the turntable and that the trip lever is also out of the way so that it will not be bent by the bakelite pinion gear washer.

Adjustment of Tone Arm Height - If tone arm needle does not clear a stack of records, loosen the set screw securing the vertical tone arm shaft underneath the motorboard and raise the shaft up. In some extreme cases the zinc sweep lever itself may be bent. If the needle is set too high to play the first record, retract the set screw found on the top of the motorboard directly behind the tone arm.

\section*{DIFFICULTIES}

Failure to Feed Record - This could be caused by the spindle eccentric cam not lining up with the lower spindle sleeve at the end of its cycle. First determine whether the detent spring is in the pinion depression. If this is so, and it is still out of alignment, loosen the screw and adjust as previously explained under SPINDLE ALIGNMENT. Secondly, check the position of the record support as previously explained. Check the record thickness for a maximum of \(.10^{\prime \prime}\) at center hole (RMA maximum thickness).

Drops two or more Records at Once. - Check thickness of record at center hole. Record should be not less than .070" at this point. If the records are within this RMA minimum, check the spindle slide. It should be flush to \(020^{\prime \prime}\) below the bottom of the spindle cap. If it is too low file it off, if it is too high remove the pin in the cap and file the slot to get the proper dimension. This pin is held in the cap by a light knurl fit and can be easily replaced. Be careful not to bend the spindle rod during this process.

If two records still drop, check the record support setting (see above). \(N\) ote: Proper record diamenter for all settings of the record support should be:
\[
\begin{aligned}
9-7 / 8^{\prime \prime} & \pm 1 / 32 \text { for the } 10^{\prime \prime} \text { record } \\
11-7 / 8^{\prime \prime} & \pm 1 / 32 \text { for the } 12^{\prime \prime} \text { record (RMA STANDARDS) }
\end{aligned}
\]

Continuous Trip - This is caused by the floating pinion not dropping far enough away from the projection of the collar on the turntable hub. Make sure the main cam is in home position and that the floating pinion falls in the depression of the cam edge and remains there until the record is completed. Rotate the turntable to make sure that the collar clears it by approximately 1/32. Reject the changer and check to insure approximately \(3 / 64\) or better engagement with the collar finger. Check the manual trip lever to make sure it clears the cam trip lever.

No Tripping - If the changer wont trip manually, check the manual trip lever to make sure it moves the cam trip lever enough to unlatch the pinion actuating lever. This action should occur before the switch plate reaches its maximum aliowable rotation.

No Automatic Trip - Check the pickup lead to make sure it is not binding the tone arm movement, particularly as the needle approaches the spindle. Check the \(V\) lever to make sure it rotates freely and the clutch has movement. Put the cam in home position and make sure the crescent trip lever is free and contacts the flat side of the cam trip lever. Move the V lever and make sure the clutch imparts enough force to the trip lever to allow the crescent lever to move along the flat and drop behind the trip lever. There should be no friction or binds in any of these mechanisms. Non-tripping can be caused by any binds or by too tight or light a spring load on the crescent. This spring load is adjustable by anchoring the crescent lever spring in any one of three holes.
\(\square\)




\section*{GENERAL INFORMATION}

RECORD CHANGER RC-30-A. Record Changer RC-30-A is a single-post changer designed to play automatically, 10 ten-1nch or 8 twelve-1nch records, not intermixed. The "motor" and "reject" switches required to operate this changer are part of the radio receiver. Pushing the "R" button will energize an electro-magnet and start the changing cycle. However, from then on, at the end of each record, the cycle is started mechanically and the trip coil is no longer required.

That method of rejecting records is the essential difference between the \(R C-30\) and the \(R C-30-A\) changers. The \(R C-30\) used an electrical solenoid coil each time a record was dropped.

The top appearance of the two changers is identical, but the \(\mathrm{RC}-30-\mathrm{A}\) can easily be identified on the under side by the position of the rejecting co11. The coil is near the gear arm on the RC-30, but it is close to the outer edge of the mounting plate on the RC-30-A.

RECORD CHANGER RC-34. Same as RC-30-A except all painted parts are red mahogany (instead of green). and rubber shock mounts are used in place of spring cushions for mounting changer in radio cabinet.

RECORD CHANGER RC-35. Same as RC-30-A except all painted parts are red mahogany instead of green.

\section*{IMPORTANT POINTS TO REMEMBER WHEN SERVICING RECORD CHANGERS}

WARNING: Do not lift the record changer by record post or record support platform. Always lift the changer by 1 ts base only.

IMPORTANT: Final adjustments on record changer are to be made with the changer horizontal and supported by its 4 corners. AVOID DISTORTING THE BASE WHEN MAKING FINAL ADJUSTMENTS.

\section*{CHECK THE RECORD FIRST}

Before attempting to service or adjust the record changer, check the records ifst to make sure they are not causing the trouble. This instrument will hande most of the 10 or 12 inch records available on the market, but it is not guaranteed to handle all of them. Records must be in good mechanical condition and should not be chipped,
particularly around the center hole. Do not try to play automatically, records that are too thick, too thin, or that are oversized or undersized, in regard to the diameter of record or center hole. Do not mix 10 and 12 inch records on the changer.

Warped records can slip on the turntable and introduce "WOWS". Such records may be flattened by placing between the two pleces of flat plate glass and then heating in the sun or oven. Do not overheat. Allow record to cool for several hours before removing glass.
old records, made before the days of automatic record changers, may not change automatically, due to the difference in thickness, or to lack of the proper groove at the inish. Most of the old records, however, may be played one at a time.

\section*{RECORD CHANGER OPERATION}
(Throughout the following instructions, refer to Figure 1).

\section*{WHICH RECORDS CAN BE PLAYED}

As many as 10 ten-1nch or 8 twe lve-inch records may be placed on the record changer which will play them all in sequence, repeating the last record until the instrument is turned nOFFn. Do not overload the instrument by attempting to stack more records on it at one time.

This record changer will accommodate most 10 and 12 inch records now avallable on the market, but is not guaranteed to handle all of them. Records must be in good condition, as no record changer will operate properly with chipped or warped
records. Records in which the center hole is worn or chipped should not be played automatically on this changer.

Occasionally, a new record may ift tightly over the center spindle due to the label attached to the record not being properly centered. This condition may be readily remedied by reaming out the center hole with a hexagonal lead pencil.

When operating this automatic record changer, play only the size record for which the adjustment on the record support plate indicates. Do not in-ter-mix 10 and 12 inch records.

\section*{MODEIS RC-30-A, RC-34, RC-35}

\section*{TO LOAD RECORDS}
1. Adjust the Record Support Plate

The turning of the record support plate automatically adjusts the changer for either ten or twelve-inch records. For playing ten-inch records the numeral (10) wlll be nearest the record post.
2. Adjust the Record Clamp

This clamp is mounted on the record support plate, and serves to steady the stack of records. Flid it away from the turntable.
3. Turn the record post cap so it is out of ine with the record post.
4. Load the Records

Place the records over the record post so they rest on the record support plate and on the small ledge formed by the record release eccentric orfset
in the spindle. Records may be loaded and played one at a time, or as many as 10 ten-inch or 8 twelve inch rec ords may be loaded at one time. Do not try to play a larger quantity.
5. Readjust the Record Holding Clamp

Flip the record holding clamp back over the record support so it rests on the rim of the top record and holds the stack of records steady.

\section*{TO PLAY RECORDS AUTOMATICALLY}
1. Turn radio "ON" and set the PHONO-RADIO selector control to PHONO position.

\section*{MOTOROLA INC.}
2. Push the "M" button in. The button will lock in and the turntable will now revolve.
3. Momentarily push the "R" button. The ilirst record of the stack will drop to the turntable and be played. After all records have been played in turn, the instrument will repeat the last record until it is turned off. Pushing in the "M" button will now stod the turntable. The "R" button may be pushed In to reject a record before it has been completely played.

NOTE: Never touch the pickup arm when the instrument is in a changing cycle. Should you move it out of adjustment, stop the changer and gently move the pickup arm from side to side until you hear it "snap" back into position.

\section*{TO UNLOAD RECORDS}
1. Allow the instrument to go through its complete cycle and start to play the last record over.
2. As soon as this occurs, push the "Mn button to stod turntable. (Alternate pushes start and stop the motor).
3. Lift the pickup arm off the record and place it on its resting post.
4. Turn the record post cap so it is in line with the record post.
5. Lift the records off.

\section*{HOW TO REPLACE NEEDLE}

This record player is equipped with a permanent point long-ife needle that is good for several thousand plays unless damaged by mishandilng. To replace phonograph needle, loosen the small knurled nut that holds the needle in place. The nut is accessible from the bottom of pickup arm.

Use a pair of long nose pliers or tweezers to avoid damaging the crystal cartridge. Recommended replacement needle is Motorola Part No. 47K471596.

CAUTION: Standard type needles will not work.


\section*{THEORY OF OPERATION}

\section*{HOH: Numbers in parenthes is ( ) refer to parts shown in Figures 2, 3, 4, \(5 \& 6\).}

The turntable is rim driven. Power is transmitted to it from the motor shaft by means of a rubber-tired drive wheel (84). The record post (48) does not revolve; it is fixed to the record changer base.

The heart of the record changer is the cam wheel (11). On it are cast all the cams, extrusions, etc., required to perform all the operations during the changing cycle. See Figure 2.


FIGURE 2. CAM WHEEL

The only mechanism that operates during the playing of a record, is the motor and turntable. The changing mechanism is disengaged until the change cycle starts.

The change cycle starts when the phono pickup needle comes within 1-7/8" of the record post. This causes screw (55) on trip arm (82) to actuate trip link (97) which trips the trigger by moving the latch arm (96) and allowing the small trip arm (105) to slip from its notch. Now spring (103) through bell crank lever (94) moves the drive arm (22) so that drive pulley (23) comes in contact with the inside rim of the revolving turntable, starting the change cycle.

With the same motion of the bell crank lever, its roller (94A) leaves the detent notch (11F) in the rim of the cam wheel and the cam wheel revolves. The roller (94A) now rides on the rim (11G) of the cam wheel and in this manner, holds the drive pulley (23) firmly against the turntable. The pressure with which the drive pulley bears against the turntable is adjusted by means of eccentric stud (34B).

As the cam wheel revolves, the pickup lift rod (54) rides up the inclined section (11B), lifting the pickup arm off the record. After the pickup arm is elevated, continued rotation of the cam wheel swings the pickup arm outward. The lateral movement of the arm is controlled by the selector stud (82A) which rides in a specially shaped groove (11C) in the cam wheel.

The gear arm roller (25A), riding in the specially shaped groove (11D) located on the bottiom of the cam wheel, controls the dropping of records. Movement of the gear arm (25) causes the eccentric (24) to turn through 1800. When the eccentric (24) is in line with cap (12), it picks up a record and when it rotates back into line with the record post (48), the record is dropped onto the turntable.

Continued rotation of the cam wheel swings the pickup arm (by action of the selector stud (82A)
riding in groove 11C) back over the pirst groove in the record and the arm is gently lowered onto the record when the inclined section (11B) reaches the pickup lift rod (54).

As the cam wheel approaches the full 360 degree point of its rotation, the trigger reset extrusion (11H) pushes against the trigger reset roller (105A) of the small trip arm, causing the trigger to be "cocked" ready for the next cycle, and in the same motion applies spring tension through the torsion spring (103) to the bell crank lever (109) so that when the cam wheel detent notch (11F) reaches the bell crank lever roller (94A), the roller falls into it pulling the cycle drive pulley (23) away from the turntable rim and the cam wheel stops, ending the cycle.

After the drive pulley is pulled away from the turntable, its motion is arrested immediately by a brake (See Figure 3) to prevent re-cycling.

RCD. CH. PAGE 19-4 MOTOROLA
MODELS RC-30A, RC-34, MOTOROLA INC. RC-35


FIGURE 3. PARTS LOCATION - TOP VIEW


RCD. CH. MOTOROLA PAGE 19-5


Turning the record support plate (46), to accommodate the size record being used, automatically sets the mechanism so the needle set-down Doint will be correct for the size records being Dlayed. Selector lever ( \(82 B\) ) is moved by the stud on selector plate ( 69 ), changing the angle between trid arm (82C) and selector lever (82B).

An external momentary contact (REJECT) switch is used to manually start the change cycle or to reject a record before it has been completely

\section*{USE OF}

To operate this record changer independently of the radio receiver, it will be necessary to obtain or construct a test cord. Figure 8 shows the hookup and parts required.

A ready-made cord can be obtained irom Motorola

FIGURE 7. RC-30-A WIRING DIAGRAM

played. Pushing the "R" button will energize the trip coll (106) and will move the latch arm (96), allowing the changer to cycle as previously described.

A special clutch device, built into the base of the pickup arm, prevents damage to the mechanism should the arm be accidentally touched while the instrument is in cycle. Should the arm be accidentally moved out of adjustment, stod the changer and move the arm from side to side until you hear it snad back into position.

\section*{TEST CORD}
-Order Part No. 1X471448 - List \$2.70. It will only be necessary to attach a wall outlet plug to the red and gray leads to prepare this cord for use. The black lead is not used and can be cut off. (This cord is the same as used on some 1947 Motorola home sets).

\section*{ADJUSTMENTS}

HOF: Reference numbers in parenthes is refer to Pigures 3, 4, \(5 \& 6\).

\section*{ECCENTRIC STUD ADJUSTMENT}

This adjustment is one of the most important for dependable cycling of the record changer. It must be followed closely, as too tight an adjustment will cause slow cycling and undue motor wear, or the changer may keep cycling continuously; a loose adjustment may prevent changer from cycling at all.
1. Set changer in cycle and stod turntable when Dickup arm comes back to within one inch of right of turntable (almost the set-down position.)
2. Loosen eccentric stud (94B) completely, so drive pulley (23) moves completely free of the turntable.
'3. Rotate turntable by hand (counterclockwise) \(90^{\circ}\) i(1/4 turn) and back (clockNise). Pickup arm should !not move.
4. With a screwdriver, turn eccentric stud until Dickup arm begins to move when rotating turntable by hand clockwise. Do not hold screwdriver on ecsentric stud while checking adjustment.
5. When pickup arm moves down with the clockwise rotation of turntable without slipping, but not up with. counterciockwise rotation, the critical position of the adjustment has been reached.
6. Then tighten the eccentric just far enough to pick up the Dickup arm when rotating the turntable counterclockwise and setting is complete.
7. To check for too tight adjustment, complete cycle of changer with motor operating. Complete change cycle should not take more than 7 sec onds; if it takes longer, eccentric stud should be read jus ted.

\section*{RECORD SUPPORT PLATFORM ADJUSTMENT}

It is important that all points on the "lip" of the record support platform be equi-d istant from the center point of the spindle. This will assure that all points of the record will leave the platform at the same time. If the record support is too far out of allgnment, the record would actually hang on the point nearest the spindle and fail to drop properly from the record post.
1. Turn the spindle cap (12) so it is in line with record post (48). Turn record support platiorm (46) to the \(10^{\prime \prime}\) position, making sure it is turned so that the selector spring (74) falls into the detent notch.
2. Place a standard \(10^{\prime \prime}\) record on the record spinidie and hold it in line with the record support platform (46) and eccentric (24).
3. If parts are adjusted and allgned correctly, the record should clear the lip of the record support platform equally at all points and the gap between record and record support platform should be just large enough to let the record clear the platform.
NOTE: The 10" record used should have a diameter of \(9-7 / 8^{\prime \prime} \pm 1 / 64^{\prime \prime}\) 。
4. If one point of the record support platform (46) is nearer the record than the other, the position of the platform may be adjus ted after loosening the two Allen head screws (50) located directly under record support platform (46). (Use a \(\ddagger 6\) Allen head driver -Motorola Part No. 66X10704).
6. Spacing between the record post (48) and record support platform (46) can be varled by loosening the two screws (65) located underneath record support post (49). Correct spacing is indicated as in Step 3 above.

NOTE: A "standard gauge" (Motorola Part Number 66A75278) can be used in place of a record when adjusting the platform.
6. TEST: After tightening the setscrews, test the adjustment by running a ten-inch record through a complete cycle and check the point where the needle falls. If the needle misses the record by one inch, the record support platform (46) is 180 degrees out. of.line with the detent plate (69) and should be turned one-half turn without turning the detent plate.

NEEDLE SET-DOWN POINT
1. Turn the record support to the twelve-inch position.
2. Place a standard twelve-inch record on the turntable.
3. Start the changer and allow it to go through its cycle.
4. Note the point at which the needle contacts the record. It should contact the record in the middle of the area between the first groove and the edge of the record.
5. If the needle doesn't come down at the proper point, cycle the changer and stop it just as the pickup arm is coming down on the-record.
6. Place a full stack (eight) of twelve-inch records on the turntable.

IMPORTANT: It is imperative to make this adjustment while the selector stud (82A) is still riding in the groove of the cam wheel (11). If the record player is stopped just before the needle contacts the top record of a full stack of records, the selector stud (82A) will still be in the cam wheel groove and the pickup arm will not be free, to move annoyingly about while the adjustment is being made. This is the reas on for using a full stack of records on the turntable. If excessive pickup arm side play is noted at this point, check selector stud guide spring (75) on cam wheel. Excessive play between the selector stud (82A) and cam wheel groove will prevent needle from coming down at exactly the same spot on the record each time.
7. Loosen the adjustment lockscrew (68) and then move the pickup arm until phono needle is positioned correctly over the middle of the area between the edge and the first groove in the record.
8. After adjustment, tighten the adjustment lockscrew.
9. Check the adjustment by putting the changer through its cycle.
10. If necessary, repeat above steps.
11. Check adjustment, using a 10 inch record. If necessary, make minor compromise adjustments so needle wlll come down properly on both ten and twe lve-1nch records.

\section*{TRIP ADJUSTMENT}

This adjustment must be made after the needle set-down point has been adjusted.
1. Draw a 3-3/4" diameter circle on a plece of paper, punch out a \(1 / 4^{\prime \prime}\) diameter hole in exact center of the circle and slip the paper over the record post.
2. Turn the support platform to 12 inch record position.
3. Cycle the changer once; at end of cycle, pickup arm will rest along side turntable. Do not turn off changer.
4. Grasp the pickup arm and slowly move it towards the record post. As the pickup needle crosses the circle line, a click should be heard, indicating start of change cycle.
5. If change cycle start does not occur as needle crosses circle line, adjust screw (55) on trip arm (82) till cycle starts at correct point. Turn adJustment screw (55) clockwise if change cycle starts after needle crosses circle line, and counterclockwise if change cycle starts too soon.

\section*{RECORD DROP MECHANISM}

Cycle the record changer once. At the end of the change cycle, stop the changer and carefullj observe the position of the eccentric (24) with respect to record post (48). They should line ur perfectly. If not, re-adjust as described below:
1. Put the record changer in cycle and slowly revolve the turntable by hand until the gear arm roller (25A) is resting on the raised section (11E) of the record drop groove on the cam wheel. The raised section of the groove is very small and resembles what is often taken for "flash" on castings. It serves to narrow down the groove at this point and in this manner, insures closer alignment of the eccentric (24) and record post (48).
2. Loosen the slab head setscrew (61) in the spindle gear (26). The eccentric (24) will now turn freely.
3. Turn the eccentric (24) so it is in perfect alignment with the record post (48).
4. Tighten slab head setscrew (61) in spindle gear (26). WARNING: DO NOT USE EXCESSIVE PRESSURE WHEN TIGHTENING SLAB HEAD SETSCREW. EXCESSIVE PRESSURE MAY DENT THE ECCENTRIC TUBE AND CAUSE BINDING.

\section*{VERTICAL ADJUSTMENT OF PICK-UP ARM}

The pickup lift rod (54) controls the vertical movement of the pickup arm. If this adjustment is not correct, the needle may not rest properly on the first record, the needle may not clear a full stack of records, or the pickup arm may rub against the bottom record on the support post.

RCD. CH. PAGE 19-8 MOTOROLA

\section*{MODELS RC-30A, RC-34, RC-35}
1. After the changer has completed its cycle and pickup arm is resting in playing position, stop the changer. The pickup lift rod (54) will now be resting on the bottom of the inclined section (11B) of the cam wheel (11) and the pickup arm will be at its lowest point of vertical travel.
2. The pickup now should be resting by the side of the turntable and the needle should be exactly level with the top of the turntable. If it isn't, lift the pickup arm straight up, exposing the pickup lift rod (54). With long nose pliers, bend the pickup lift rod (along its flat portion) in the required direction till the pickup needle point is exactly level w.1th the top of the turntable.

\section*{LUBRICATION}

Factory lubrication should be sufficient for a long period of service. However, if the record changer is subjected to severe operation conditions, it is best to clean and re-lubricate all moving parts.

Use Univis P-48 oil (Motorola Part Number 11M2340) on the ecceritric and tube assembly (24) and Stay-Put grease (Motorola Part No. 11M476047) on all other moving parts. Use grease and oil sparingly; do not overlubricate.
CAUTION: Do not allow grease or cil to come in contact with any rubber parts. The motor spindle and inside rim of turntable must be perfectly clean of grease. If grease gets on any of these surfaces, it should be removed immediately with carbon-tetrachlor ide.
FORMATION

\section*{MECHANISM IS SLOW IN STARTING OR MOTOR HEATS UP}
1. Check lubrication.
2. Dirt in bearings. Wash dirt out with carbon tetrachlor ide or similar solvent and re-lubricate. Use Univis \(\mathrm{P}-48\) oil in the phono motor and turntable bearings and Stay-Put grease on all other bearings and moving parts.
3. Check line voltage and frequency.
4. Motor damaged. Replace motor.
6. Room temperature abnormalily low.
6. Eccentric stud adjustment (94B) set at maximum throw, causing cycle drive wheel to drag on turntable rim. Correct by setting eccentric stud per instructions under ECCENTRIC STUD ADJUSTMENT.
7. Slow motor. Replace motor.
8. Grease on rubber rim idler wheel and/or inner rim of turntable. Clean off with carbon tetrachloride.

\section*{MOTOR FAILS TO RUN}
1. Check to see that power is being supplied to motor.
2. Trouble in motor winding. If easily seen, repair; otherwise, replace.
3. Damaged or frozen bearings. Replace motor.
4. Gumned 011 or fore ign material between armature and pole-piece. Clean out.

\section*{SQUEAKS OR OTHER NOISES DURING PLAYING OF RECORDS}
1. Check lubrication (if squeaks are heard, they will usually be found to come from the records not from mechanism.)
2. Compare the squeaks with and without a load of records. If squeak disappears when records are removed, then noise is obviously from records. Correct by rubbing a little wax on the record posit.

CHANGER IS NOISY WHEN IN CYCLE
1. Check lubrication.
2. See if any part has become loose or bent and is rubbing against a moving part.
3. Check center post eccentric tube (24) lubrication.

\section*{"WOW" IN RECORD REPRODUCTION}
1. Record is warped or otherwise defective, or the instrument is not being operated at normal room temperature (700F). See CHECK THE RECORD FIRST.
2. May be caused by slippage due to grease on 1dier wheel or ins ide rim of turntable.

PICK-UP ARM TRIPS OUT OF GROOVES
1. Record changer not level.
2. Pickup arm shaft (71) binding in bearing.
(A) Ream out the hole.
(B) Sometimes the trip arm (82). may be too close to the base, causing a bind. To remedy, loosen its two setscrews (59) and space slightly.
3. Selector lever (82B) may be bent out of shape and binding against detent plate (69). Straighten.
4. Selector lever (82B) slot or retaining rivet on detent plate (69) may be undersize. or oversize, respectively, effectively causing a binding feeling on the pickup arm. Correct by spreading slot in selector lever (82B).
5. Needle defective. Replace.

\section*{ChANGER KEEPS CYCLING}
1. Eccentric stud adjustment (94B) set too tight. Correct per instructions found under ECCENTRIC STUD ADJUSTMENT.
2. Defective reject switch on radio. Repair or replace.
3. Bell crank arm (94) or drive arm (22) binding on their shafts.


RECORD WILL NOT DROP WHILE CYCLINO
1. Eccentric (24) out of line with record post (48). Correct as shown in ADJUSTMENT OF RECORD DROP rechanism.
2. Setscrew (61) loose on spindle gear. Tighten after readjusting.
3. Record platform (46) not set correctly. See RECORD SUPPORT PLATFORM ADJUSTMENT.
CHANGER WILL NOT CYCLE
1. Open trip coil (108). Replace.
2. De fective wiring.
3. Bind ing drive arm (22), bell crank arm (94) or cam wheel. (11) on shafts. Replace parts or remove burrs.
4. Eccentric adjustment stud (94B) set at minimum throw. Cycling drive wheel (23) is not against inner rim of turntable. Correct by setting up as shown under ECCENTRIC STUD ADJUSTMENT.
5. Record finish groove may be too far from center. Trip switch will not be actuated until needle comes within 1-7/8" of record post. Use standard records.

FIGURE 9. RC-34 SHOCK MOUNT ASSEMBLY

FIGURE 10. HOW TO REMOVE RECORD CHANGER RC-34 fROM RECORD CHANGER SHELF

RCD. CH. PAGE 19-10 MOTOROLA
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\mathrm{NO}_{1}^{\mathrm{NO}}
\] & PART NO.
\[
45 K 470538
\] & Arm, pickup: arm oniy; painted green & \[
\begin{aligned}
& \text { REF. } \\
& \text { NO. }
\end{aligned}
\] & PART NO. & DESCRIPTION \\
\hline & & \[
(\mathrm{RC}-30-\mathrm{A}) \quad . . .
\] & 60 & 353376 & Screw: \(\ddagger 6 \times 1 / 4 \mathrm{PKZ}\) slotted hex nead sheet \\
\hline & 45K482820 & Arm, plckup: arm only; painted red mahogany ( \(\mathrm{PC}-34 \& \mathrm{RC}-35\) ) & 61 & 357109 & metal screw; cadmium plated ............. Screw: 6-32 \(\times 5 / 16\) slab head setscrew; \\
\hline 2 & \(1 \times 470570\) & Arm, Dickup: complete; includes crystal cartridge, needle, connecting lead and shaft assembly; arm painted green (RC-30- & 62 & 357342 & cadmium plated (trip coil) Screw: 6-32 \(\times 5 / 8\) slotted binderhead machine screw; cadmium plated \\
\hline & 1X484298 & Arm, pickup: complete; includes crystal cartridge, needle, connecting lead and shaft assembly; arm painted red mahogany ( \(\mathrm{RC}-34 \& R C-35\) & 63
64 & 357374
352291 & Screw: \(0-32 \times 5 / 16\) slotted hex head machine screw; cadmium plated Screw: 8-32 x \(5 / 16\) slot ted hex head machine screw; antique copper finisho.. \\
\hline 4 & 1 4 478181 & Bracket, adjustment: includes screw and nut \(\qquad\) & 65 & 358177 & Screw: \(\ddagger 8 \times 3 / 8\) PKZ slotted hex head sheet metal screw; cadmium plated ... \\
\hline 5 & \(7 \mathrm{B471467}\) & Bracket, pickup arm \& guide & 68 & 352957 & Screw: 8-32 \(1 / 2\) slotted hex head \\
\hline 6 & \(7 \mathrm{B470266}\) & Bracket, spindle & & & machine screw; cadmium plated \\
\hline 7 & 35A470831 & Bumper, rubber & 87 & 352678 & Screw: \(\ddagger 8 \times 5 / 8\) plain locking hex head \\
\hline 8 & 43 K 4780 & Bushing: . 250 x .171 x .187 & & & \(t\) metal scr \\
\hline \(\theta\) & 43A478167 & Bushing, shaft pickup & 68 & 38476110 & Screw: 8-32 x 3/4 Phillips round head \\
\hline 10 & 43 K 71249 & Bushing, spacer & & & machine screw; cadmium plate \\
\hline 11 & 1 X 471999 & Cam Wheel \& Spring Assembly .............. & 69 & \(1 \mathrm{X470480}\) & Selector Shaft \& Plate Assembly ....... \\
\hline 12 & 1B470509 & Cap \& Spindle Assembly & 70 & 47B470269 & Shaft, cam .............. \\
\hline 13 & 59A4.71595 & Cartridige, crystal: needle included & 71 & 47A471471 & Shaft, Dickup \\
\hline 14 & 42 K 13135 & Clamp, cable: \(1 / 2^{\prime \prime}\) & 73 & 41A471469 & Spring, compression \\
\hline 15 & 42A75809 & Clip, cartridge retainer & 74 & 41A71635 & Spring, selector \\
\hline 16 & 42 A 76484 & Clip, drive wheel retainer & 75 & 41A471995 & Spring, selector stud guide ............. \\
\hline 17 & 42A72314 & Clid, retainer: 7/8"; blued & 76 & 41A471681 & Spring, tension coil \\
\hline 19 & 9 A 72670 & Contact, pin terminal & 77 & 41A14244 & Spring, tension coil: \(1 / 8 \times 23 / 32\) \\
\hline 21 & 35A72628 & Cushion, pickup arm: 3/8' \(\times 1 / 2^{\prime \prime}\) sponge & 78 & 41A470592 & Spring, tension coil: \(1 / 4 \mathrm{~N} \times 1^{\prime \prime}\). \\
\hline & & & 79 & 46A470257 & Stud, gear arm ............................. \\
\hline 22 & 1X470584 & Drive Arm Assembly: complete with bearing & 82 & 1X470539 & Trip Arm \& Selector Lever Assembly . \\
\hline 23 & 1 X 71795 & and 1dler gear .............................. & 83 & \(59 C 470590\) & Turntable, phono: includes o1l1te bearing; green ( \(\mathrm{RC}-30-\mathrm{A}\) ) \\
\hline 24 & 18470524 & Eccentric \& Tube Assembly & & 59 K 482840 & Turntable, phono: includes oflite bear- \\
\hline 25 & \(1 \mathrm{X470593}\) & Gear Arm \& Bushing Assembly & & & inz; brown (RC-34 \& RC-35).............. \\
\hline 26 & 44B71634 & Gear, spind le & 84 & & Tire, phono motor idler puliey .......... \\
\hline 30 & 1X470532 & Lead, pickup connecting & 85 & 4A21941 & Washer, "C" \\
\hline 38 & \(4 \mathrm{S7657}\) & Lockwasher: \(\ddagger 8\) external; cadmium pla- & 86 & 4A470946 & Washer, cam shaf \\
\hline & & & 87 & 49A470230 & Wheel, spindle stop \& pi \\
\hline 34 & 457671 & Lockwasher: \$8 split; cadmium & 88 & 4S7623 & Washer: \(3 / 8 \times 11 / 64 \times .038\) thick; antique \\
\hline 35 & 29 R 5239 & Lug, soldering: \$8, long tab ............ & & & copper finish \\
\hline 36 & 59K470458 & Motor, phono: 105-120V, 60C; complete with rubber tired idier pulley & 89 & 457597 & Washer: 7/16 x.171 x.033 thick; cadmium plated \(\qquad\) \\
\hline 37 & 47 K 471596 & Needle, phono: long-life ................. & 91 & 4S1765 & Washer: \(1 / 2 \times .147 \times 1 / 64\) thick; cadmium. \\
\hline 39 & 251375 & Nut: 8-32 x 11/32 hex; cadmium plated... & & & plated ..................................... \\
\hline 40 & 2S7004 & Nut: 3/8-32 x 9/16 hex; cadmium plated.. & 92 & \(4 \mathrm{K76609}\) & Washer: 9/16 x . \(315 \times .010\) thick brass. \\
\hline 41 & 35A74664 & Pad, cartridge (large): rubber .......... & 93 & 4 A21491 & Washer: \(9 / 16 \times .315 \times .020\) thick; brass. \\
\hline 42 & 35A74665 & Pad, cartridge (small) .................... & 94 & 1 X 481432 & Bell Crank Lever Assembly \\
\hline 44 & 47A74666 & Pin, cartridge locating: rubbe & 95 & 1A481442 & Bracket \& Bushing; coil mounting ........ \\
\hline 45 & 47A71685 & Pin, dickup arm support & 96 & 1 X 481447 & Latch Arm \& Bushing Assembly \\
\hline 46 & 1X470535 & Plate \& Clamp Assembly; painted green & 97 & 45A74582 & Link, trip ...... \\
\hline & & \begin{tabular}{l}
(RC-Z0-A) ........................................ \\
Plate \& Clamp Assembly: painted red
\end{tabular} & 98 & 4S7695 & Lockwasher: \(\$ 5\) internal; cadmium plated \\
\hline & & mahogany ( \(\mathrm{RC}-34\) \& \(\mathrm{RC}-35\) ) ................. & 99 & 29R3004 & Lug, soldering: \(\ddagger 6\), be \\
\hline 47 & 46 K 470827 & Post, pickup resting: green plastic ( \(\mathrm{RC}-30-\mathrm{A}\) ) \(\qquad\) & 100 & 5S7716 & Rivet: . \(122 \times 5 / 32\) steel; antique copper (soldering lug) \\
\hline & \(46 \mathrm{K4} 82816\) & Post, pickup resting: red mahogany plastic ( \(\mathrm{RC}-34 \& R C-35\) ) & 101 & 3S2689 & Screw: \(4 \times 5 / 16\); PKZ Phillips binderhead; antique copper \\
\hline 48 & 478470276 & Post, record \& bushing .................... & 102 & 41A76681 & Spring, ratchet .......................... \\
\hline 49 & 46B470931 & Post, record support: painted green & 103 & 41A71676 & Spring, torsion \\
\hline & & (RC-30-A) ........................... & 104 & 46 A71610 & Stud, shoulder (latch arm) ............. \\
\hline & 46 K 482817 & Post, rec ord support: painted red mahogany
\[
(R C-34 \& R C-35)
\] & 105 & \[
\begin{aligned}
& \text { 1X78787 } \\
& \text { 24B481418 }
\end{aligned}
\] & \begin{tabular}{l}
Trid arm, small \(\qquad\) \\
Trip coll \& core
\end{tabular} \\
\hline 49A & 284470534 & Plug, 4 pin .................................. & 107 & 4K24125 & Washer, "Cn (latch arm) \\
\hline 50 & 9A470260 & Receptacle, phono output ................. & 108 & 357109 & Setscrew: 6-32 x 5/16 slab head, cup \\
\hline 51 & 5 S 2834 & Rivet: . \(062 \times 9 / 64\) brass; nickel plated. & & & point machine screw \\
\hline 52 & 5S2824 & Rivet: . \(122 \times 5 / 32\) steel; burnished brass finish & 109 & 1X481431 & Bell. Crank Lever \& Arm Assembly: includes \(94,103 \& 105\) \(\qquad\) \\
\hline 53 & 5K21337 & Rivet, shoulder: . 130 x . 230 ............ & 110 & 35A481870 & Mount, shock rubber ......... \\
\hline 54 & 47A471481 & Rod, pickup lift ............................ & 111 & 24484296 & Nut, shock mount tapered tee ............. \\
\hline 55 & 3S2697 & Screw: \(\# 2 \times 5 / 8 \mathrm{PKZ}\) plain hex head sheet metal screw; cadmium plated .............. & 112 & 35488108 & Screw: \(10-32 \times 1-3 / 8\) Phillips flathead machine screw; antique copper finish .. \\
\hline 59 & 359700 & Setscrew: 6-32 \(\times 3 / 16\) Allen head; cadmium plated \(\qquad\) & \[
113
\] & \[
\begin{aligned}
& \text { 43A484295 } \\
& 4 \mathrm{~S} 8214
\end{aligned}
\] & \begin{tabular}{l}
Sleeve, shock mount: rolled ............... \\
Washer: 7/8 x . 203 x .067; cad. pl
\end{tabular} \\
\hline
\end{tabular}

\section*{DESCRIPTION OF OPERATING CYCLE}

Power for the motor is applied through the on-of switch. The turntable is rim-driven by a rubber-tired idler wheel mounted between the motor shaft and the turntable rim.
The turntable hub is a combined shaft and gear (figure 1). This small hub gear engages a large cam gear (figure 2) when the retractable segment of the cam gear is brought into position by the action of the trip mechanism; the cam gear, in turn, operates the changer mechanism.

The tone arm is operated by two link assemblies attached to actuator levers (figure 3) which are in contact with the cam surface of the cam gear.

The record-shelf push-off mechanism is connected, through a series of bars (figure 4), to a push-off actuator; the mechanism is operated when a roller on the cam gear comes in contact with the actuator.
The trip mechanism is operated by a trip finger, riding over a ratchet screw (figure 5), which starts the change cycle when the needle is traveling in the eccentric finish groove of the record. The trip mechanism is locked in a disengaged position when the control button is in the manual position.


TP-4182
Figure 2-CAM GEAR, SHOWING RETRACTABLE SEGMENT


TP-4101
figure 3-LINK ASSEMBLIES AND ACTUATOR LEVERS


Figure 1-TURNTABLE AND HUB GEAR


Figure 4—RECORD-SHELF AND PUSH-OFF ASSEMBLIES


Figure 5-TRIP FINGER AND RATCHET SCREW

\section*{PHILCO RADIO-PHONOGRAPH}

The following tests are given for quickly localizing trouble in either the radio or phonograph section of the radio-phonograph combination. Be sure to make each test, in the order given, before removing either the radio chassis or the record changer from the cabinet. If the trouble is found to be in the audio amplifier, refer to the radio service manual for the particular model under test. If the trouble is in some part of the record changer, refer to this record-changer manual.

\section*{Audio-Amplifier Test}

The audio amplifier is common to both the radio and the phonograph sections of the combinations using the M-8 changer.
Tune in a station, and note the volume and tone quality. If the performance is abnormal, refer to the radio service manual for the particular model under test, and correct the trouble.

\section*{Pickup Test}

Play a familiar record on the phonograph, and again note the volume and tone quality.

\section*{NOTE}

It is advisable to carry a familiar record as a part of the service test equipment.

If distortion is noted when playing the record, first try a new needle. If the distortion continues, a faulty crystal pickup is indicated.

\section*{TROUBLE-SHOOTING PROCEDURE}

\section*{Changer-Mechanism Test}

The following series of record-changer operating tests is given for quickly locating any troubles that may be encountered. Each test should be performed with several records before making any adjustments.

Set the record shelf to the \(10^{\prime \prime}\) position and place the tone arm on the rest post (figure 6). Place a \(10^{\prime \prime}\) record over the spindle and onto the record shelf.

Push the control button to REJ (reject), and observe the record-dropping action. The record should fall smoothly, the edge leaving the lips of the record shelf after the center has started to fall.


Figure 6-CHANGER, RECORD SHELF IN 10 \({ }^{\prime \prime}\) POSITION


TP-4105
Figure 7—CHANGER, RECORD SHELF IN 12" POSITION

The tone arm should rise from the rest post, and the needle should come down on the record, starting about \(1 / 8^{\prime \prime}\) from the outer edge.

Play the record through and observe the tripping action; the trip mechanism should operate within the first two or three revolutions after the needle has entered the eccentric finish groove.

Remove the record from the turntable and set the record shelf to the \(12^{\prime \prime}\) position (figure 7). Place a \(12^{\prime \prime}\) record over the spindle and onto the record shelf. Push the control button to REJ., and observe the rec-ord-dropping action. The record should leave the lips of the record shelf after the center has started to fall. Refer to - - - - the record-shelf adjustment, if needed. The tone arm should rise from the rest post,
and the needle should come down on the record, starting about \(1 / 8^{\prime \prime}\) from the outer edge.

Play the record through and observe the tripping action. Trip adjustments are given on page 10.

Observe whether the lower edge of the tone arm, during a change cycle, clears the top of the hook on the tone-arm rest post by a minimum of \(1 / 8^{\prime \prime}\). Take the tone arm off the rest post, and place the pickup over the changer base plate; the needle point should clear the base plate by at least \(1 / 16^{\prime \prime}\), and should be no higher than the turntable top.

\section*{Turntable and Motor Test NOTE}

Before making this test, warm up the motor by allowing it to run for at least ten minutes.

Set the control button to MAN. (manual), load the turntable with ten \(12^{\prime \prime}\) records, and place the tone arm on the top record.

Place a stroboscope disc, such as Philco Part No. 45-2900, on the record, and illuminate the disc with a lamp (preferably a neon bulb) operated on \(60-\) cycle a.c. The dots in the row calibrated for 78 r.p.m. should appear to remain stationary, or drift very slowly, but smoothly, backward or forward.

If the turntable speed is steady, but is appreciably below 78 r.p.m., refer to the lubrication data on the turntable upper bearing, motor bearings, and motor idler plate, given under CLEANING AND LUBRICATION, - - - if the lubrication appears to be adequate, the motor is probably defective.

Unsteady drift of the dots on the stroboscope disc indicates uneven turntable speed, the cause of wows; see UNEVEN TURNTABLE SPEED (WOWS),

\section*{CLEANING AND LUBRICATION}

The M-8 record changer, like any other mechanism, requires lubrication after long periods of use. Whenever a major part or assembly is to be replaced, the changer should be cleaned and lubricated. Carbon tetrachloride or other similar cleaning fluids may be used to remove old gease, oil, and dirt. Apply lubricants sparingly. All lubrication points are shown in figures 8 and 9. It may be necessary to remove some parts and assemblies in order to lubricate their bear-ings-for example, the actuator and cam gear must be removed to lubricate the actuator stud and the camgear spindle.

\section*{PARTS NOT TO BE LUBRICATED}

The following parts should not be lubricated at any time: Trip receiver; trip finger; ratchet screw on trip plate; selector.

\section*{PARTS TO BE GREASED}

The following parts are to be lubricated with a grease having the consistency of vaseline:

Record-Shelf Assembly (point A of figure 9) Four protruding dimples.

\section*{Bridge Assembly and Slider Control Bar (point B of figure 8)}

Three dimples and four upturned ears.

\section*{Cam Gear (point C of figure 8)}

Cam-gear teeth, cam surfaces, and cam-gear spindle.

\section*{Main Assembly (points D, figures 8, 9, and 13)}

Trip-plate ear where contact is made with gear segment.

\section*{Actuator stud.}

All parts with ears sliding on changer base plate.
Index-lever surface which slides on base plate.
Push-off-actuator dimples which slide on baseplate.

Turntable shaft (upper bearing).
Tone-arm shaft.
MODEL M-8 PHILCO CORP.


TP-4107
Figure 8-BOTTOM VIEW OF CHANGER, SHOWING LUBRICATION POINTS

\section*{PARTS TO BE OILED}

The following parts are to be lubricated with S.A.E. 20 oil:

\section*{Tone Arm (point E of figure 9)}

Tone-arm pivot pin where pin rides in elongated hole of tone arm-apply one drop with a pointed rod.

\section*{Motor (points F, figures 8 and 9)}

Motor idler plate-one or two drops in each dimple.

Motor bearings.

Trip-Plate Bushings (point G of figure 8)

Cam-Gear Roller (point H of figure 8)

\section*{CAUTION}

Do not get any oil or grease on the motor shaft or the idler-wheel tire. Should this occur, remove the oil or grease immediately with carbon tetrachloride.

Figure 9-TOP VIEW OF CHANGER, SHOWING LUBRICATION POINTS

\section*{ADJUSTMENTS}

10" Index Adjustment
Set a \(10^{\prime \prime}\) record on the turntable; push the control button to REJ., and rotate the turntable \(41 / 2\) turns by hand. The tone arm should then be approximately \(1 / 2^{\prime \prime}\) above the record.

Loosen the clamp screw the trip arm (figure 10). dexing will ordinarily be satisfactory after the \(10^{\prime \prime}\) Hold the tone arm (steady) \(1 / 8^{\prime \prime}\), in from the edge of adjustment is made; if not, bend the selector, 56 the record, and set the trip arm so that the trip-arm 4618FA3, slightly to the right or left as required for stop is in contact with the selector hinge. See fig- proper indexing of the needle on the record, as shown ure 10.
in figure 11.


Figure 10-10" INDEXING ADJUSTMENT
Figure 11-12" INDEXING AND TRIP-RECEIVER ADJUSTMENTS



TP-4000
Figure 12-TONE-ARM HEIGHT ADIUSTMENT

Tone-Arm Height and Lift Adjustments
With the changer out of cycle (change cycle completed; tone arm lowered), and the tone arm off the rest post, the needle point should clear the changer base plate by at least \(1 / 1 \mathrm{e}^{\prime \prime}\), and should not be higher than the turntable top. See figure 12. To adjust the height, shape the top ear of the tone-arm swivel, shown in figure 12 (bending the ear downward raises the tone arm).

To adjust the lift, take the tone arm off the rest post, push the control button to REJ., and rotate the turntable (approximately \(11 / 2\) turns) by hand until the tone arm comes against the rest post. See figure 13; the lower edge of the tone arm should clear the top of the protruding hook on the rest post by not less than \(1 / 8^{\prime \prime}\), and not more than \(1 / 4^{\prime \prime}\). Adjust by shaping the lower ear of the tone-arm swivel (bending the ear downward raises the tone arm).

Tone-Arm Vertical and Horizontal Timing Adjustments

Before making these adjustments, make the tone-arm height and lift adjustments given above.
For the vertical adjustment, start with the changer out of cycle, push the control button to REJ., and rotate the turntable, by hand, three-quarters of a revolution; this setting can be obtained more accurately by making a mark on the turntable to coincide with some starting point. At the three-quarter-revolution point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the lift actuator lever; this is the lower actuator lever, shown in figure 14. Adjust the wire loop of the short link (link, cord, and spring assembly), attached to the tone-arm lift pin, by squeezing or opening the loop until the tone-arm lift pin makes contact with the lower ear of the tone-arm swivel (figure 13).
Figure 13-TONE-ARM LIFT ADJUSTMENT



Figure 14-TONE-ARM VERTICAL TIMING ADJUSTMENT

For the horizontal adjustment, rotate the turntable another three-quarter revolution from the point at which the vertical adjustment was made. At this point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the horizontal-return actuator lever; this is the upper actuator lever, shown in figure 15. Adjust the wire loop of the long link and spring assembly, attached to the trip arm, by squeezing or opening the loop until the tone arm makes contact with the rubber bumper on the tonearm rest post.

\section*{Trip-Finger and Trip-Receiver Adjustments}

For the trip-finger adjustment, move the tone arm toward the spindle. Adjust the screw on the tripreceiver plate (figure 16) so that the trip finger, when riding over the ratchet screw on the trip plate, assumes an angle of \(25^{\circ}\) to \(30^{\circ}\) with respect to the screw. Do not bend the trip finger to obtain the correct angle.

For the trip-receiver adjustment, place the tone arm on a record with the needle resting in the eccentric finish groove. The vertical center line of the trip finger should coincide with the center line of the ratchet screw. To adjust the centering of the trip finger over the ratchet screw, loosen screw B slightly, and screw A completely (see figure 11). Rotate the trip receiver about screw \(B\), as a center, to obtain the correct adjustment (see figure 16). Tighten the screws.

Approximately \(1 / 8^{\prime \prime}\) of the trip-arm stop should engage the selector (see figure 11). To adjust the engagement of the trip-arm stop, loosen screw A slightly, and screw B completely (see figure 11). Rotate the trip receiver about screw A, as a center, to obtain the correct adjustment. Tighten the screws.

The above adjustments will affect each other slightly; therefore, it may be necessary to repeat each adjustment until both are correct.

After making the above adjustments, it will be necessary to correct the index adjustments.


Figure 15-TONE-ARM HORIZONTAL TIMING ADJUSTMENT

\section*{Record-Shelf Adjustment}

Place the shelf in the \(10^{\prime \prime}\) position, and the changer out of cycle. Place the Philco record-shelf gauge, 45-1470 (also used for M-4), over the spindle and onto the record shelf, as shown in figure 17. Loosen the two hex-head screws which hold the record-shelf assembly to the changer base plate (figure 18). Move the record-shelf assembly away from the record spindle until the large curved part of the gauge drops even with the record-shelf lips, as shown in figure 17. Now push the record shelf and gauge lightly against the spindle, taking out all play toward the spindle; keep the lips of the record shelf in even
contact with the edge of the gauge. Tighten the two hex-head screws.

\section*{Push-Off Adjustment}

Push the control button to REJ., and rotate the turntable \(21 / 2\) revolutions, by hand; at this point, the push-off actuator is in its most forward position, in contact with the roller on the cam gear (see figure 19). Loosen the push-off-bar locking screw, shown in figure 18. Squeeze the push-off-bar ears toward each other to the point where the slider blade on the record shelf extends \(1 / 32^{\prime \prime}\) beyond the lips of the shelf. Tighten the hex-head locking screw.


Figure 16-TRIP-FINGER ADJUSTMENT

Figure 17-SPECIAL GAUGE, SHOWN IN CORRECT POSITION ON RECORD SHELF AND SPINDLE


TP-4121

Uneven Turntable Speed (Wows)
Uneven turntable speed (wows) may be caused by the following:

Dirt under and around the turntable or idlerwheel assembly. Remove the turntable and clean out the dirt. Be careful to lift the turntable straight up. When replacing the turntable, be sure the idler is behind the turntable rim before the turntable is fully lowered (the spindle may be used to hold the idler back).

Flat or worn spots, or grease, on the rubber tire of the idler wheel.

Defective turntable shaft or bearing assembly.
Replace the defective parts as directed under REPLACEMENT OF PARTS AND ASSEMBLIES.

Lack of lubrication on idler-wheel assembly. Follow the directions under CLEANING AND LUBRICATION


Figure 18-PUSH-OFF-LEVER ADJUSTMENT
Figure 19—_PUSH-OFF ACTUATOR AGAINST CAM ROLLER


\section*{REPLACEMENT OF PARTS AND ASSEMBLIES}

The following procedures are recommended for correct replacement of parts and assemblies. The part should be replaced by reversing the order of removal, and adjusted according to the directions given in the ADJUS'TMENTS section of this manual.
When any part is to be removed, the control button should be in the AUT. (automatic) position, and the changer should be out of cycle.

\section*{1. Needle}

There are two types of needle chucks, depending upon the type of pickup cartridge in the tone arm. One type of chuck has a setscrew, for vertical needie insertion; the other has a knurled nut, for horizontal needle insertion.
To remove needle from tone arm, loosen setscrew or knurled nut in front of crystal cartridge, and pull needle out.

\section*{2. Crystal-Pickup Cartridge}

At the present time, the pickup cartridge may be either of two types, one identified by vertical needle insertion, and the other by horizontal needle insertion. The cartridge type may be identified by the part number stamped on the bottom of the cartridge. Since the loading circuit in the radio differs for each type of pickup, the two cartridges are not interchangeable.
a. Bring tone arm toward center of turntable.
b. Remove the two screws, nuts, lock washers, and spacers which hold cartridge to tone arm.
c. Drop cartridge below tone arm sufficiently to allow removal of the two clips from cartridge, as shown in figure 20 . If pickup leads are shielded, unsolder shield.

NOTE
When mounting cartridge, be sure to insert long spacer in side toward spindle. For cartridge \(35-2643\), use mounting spacers \(56-4601\) and \(56-4601-1\); for cartridge \(35-\) 2671-1, use mounting spacers 56-4601-2 and 56-4601-3.

\section*{3. Motor}
a. Push control button to MAN. position.
b. Remove spindle. Remove turntable by pulling straight out.
c. Remove switch cover, and unsolder motor lead from switch contact.
d. Loosen screw of clamp which holds wire against base plate, and pull wire through clamp.
e. Unsolder second motor lead from power plug or disconnect at splice from chassis power lead, whichever is used.
f. Remove ground lead from lug on motor.
g. Remove the three screws, washers, and bushings from motor frame (figure 21), and lift motor out.

Figure 20-TONE ARM (35-2663), CRYSTAL CARTRIDGE (35-2643) REMOVED


Figure 21-MOTOR, SWITCH, AND MOUNTING HARDWARE

\section*{4. Tone-Arm Assembly}
a. Unsolder tone-arm lead wires from terminal panel on underside of changer base plate.
b. Remove pull cord from spring and short link, 56-4607FA3.
c. Loosen clamp screw which holds trip arm to tone-arm shaft, 76-2983 (figure 22). Lift out tone arm and shaft.

\section*{5. Bridge Assembly}
a. Remove the two hex-head screws from bridge plate.
b. Remove link rod, 56-4589FA3, from slider control bar. Complete assembly of bridge is shown in figure 23.

\section*{6. Trip Plate}
a. Remove bridge assembly, 76-2978, as directed in paragraph 5.
b. , Slide trip plate, 76-2990, off cam-gear spindle.

\section*{7. Cam-Gear Assembly}
a. Remove bridge assembly and trip plate, as directed in paragraphs 5 and 6.
b. Remove ball-bearing assembly, 76-2991 (figure 16), by pulling it off.
c. Remove large hairpin, 1W42706FA1, from camgear spindle, and slide washer off.
d. Slide cam gear off spindle. Figure 24 shows cam-gear assembly.

\section*{8. Tone-Arm Actuator Levers}
a. Remove large hairpin, 1W42706FA1, from actuator stud.
b. Slide lower actuator lever from stud, and remove short link, 56-4607FA3.
c. Remove upper actuator lever from stud, and disengage long link, 56-4606FA3. Figure 24 shows actuator-lever assembly.

\section*{9. Push-Off Actuator}
a. Remove two motor-mounting screws, and loosen the third one; swing motor to one side.
b. Remove tone-arm actuator levers, 76-2987, as directed in paragraph 8.

PHILCO CORP.


TP-4132
Figure 22-TONE ARM AND TRIP ARM, REMOVED
c. Press push-off rod, 56-4595FA3, and push-off hanger bar, \(56-4596 \mathrm{FA} 3\), together, and pull downward, releasing the entire assembly.

Figure 24-CAM GEAR, PUSH-OFF ACTUATOR AND


Figure 23—BRIDGE ASSEMBLY TP-4180
d. Slide push-off actuator, \(56-4588 \mathrm{FA} 3\), over, to align upturned ears with cutout in base plate. Slide actuator off stud.

\section*{NOTE}

After removing the push-off actuator and push-off-bar assembly, the slider blade on the record shelf may slide out of the assembly. When reassembling, this blade should be inserted in the record-shelf assembly with the elongated hole toward the \(12^{\prime \prime}\) position of the record shelf. The push-off assembly is shown in figure 25.



Figure 25-PUSH-OFF ASSEMBLY TP-4183



RRETAINER SPRING
- \(56-4628 \mathrm{FA} 38\) SPRING RING RECORD-SHELF HOLDING SCREWS 8-32 \(\times 3 / 8\)



Figure 28 -SELECTOR AND SELECTOR-HINGE ASSEMBLY
TP-4123
11. Control-Button Assembly
a. Remove flat spring, 56-4778FA38, by sliding it laterally through underside of button (figures 10 and 18).
b. Remove the two hex-head screws and drop bridge assembly, 76-2978 (shown in figure 10).
c. Disengage control link, 56-4589FA3, from underside of control button. Lift out control button.
12. Trip-Arm Assembly
a. Loosen clamp screw on trip arm, 76-3065 (figure 27 ).
b. Raise tone arm and shaft sufficiently to clear trip arm. Remove trip arm.

NOTE
When assembling, maintain \(1 / 32^{\prime \prime}\) vertical play (clearance between trip arm and base plate) in tone-arm shaft.

Figure 29—BOTTOM VIEW OF CHANGER, WITH PARTS IDENTIFICATION


\section*{13. Trip-Receiver Assembly}

Remove the three screws, washers, and nuts from trip arm (figure 27).

Remove trip receiver.

\section*{14. Selector Assembly}

Remove cam gear as directed in paragraph 7. Remove feeler spring from attachment point on motor board. Tilt selector assembly, and remove from base plate.

\section*{NOTE}

When assembling selector assembly, be sure to maintain \(.005^{\prime \prime}\) clearance between selector hinge, \(56-4617 \mathrm{FA} 3\), and washer, 2W53954. For correct assembly refer to figures 28 and 11.


Figure 30_CHANGER WIRING DIAGRAM

\section*{REPLACEMENT PARTS LIST}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
SERVICE \\
PART NO.
\end{tabular} & DESCRIPTION & \[
\begin{array}{|l|l}
\text { SERVICE } \\
\text { PART NO. }
\end{array}
\] & DESCRIPTION & \begin{tabular}{l}
SERVICE \\
PART NO.
\end{tabular} & DESCRIPTION \\
\hline 35-1332 & Motor & 56-4593 & Plate, fulcrum & 56-4630FA38 & Spring, shelf \\
\hline \multirow[t]{2}{*}{35-2643} & \multirow[t]{2}{*}{Crystal - pickup cartridge (vertical needle insertion)} & 56-4594FA37 & Plate, push-off slide & 56-4631 & Tone-arm lift pin \\
\hline & & 56-4595FA3 & Rod, push-off & 56-4670FA38 & Spring, feeler \\
\hline \multirow[t]{2}{*}{35-266} & \multirow[t]{2}{*}{Tone-arm assembly (for cartridge 35-2643)} & 56-4596FA3 & Hanger, push-off & 56-4774F & Push-off bar, rear \\
\hline & & 56-4597FA3 & Bar, push-off & 56-4778FA38 & Spring, control-butt \\
\hline \multirow[t]{2}{*}{35-2663-2} & \multirow[t]{2}{*}{Tone-arm assembly (for cartridge 35-2671-1)} & 56-4599FA3 & Slider, safety & 56-4926 & Spacer, motor mtg. \\
\hline & & 56-4600FA38 & Spring, return & 76-1794-1 & Plug (M-8 console) \\
\hline 35-2669 & Needle (for pickup cartridge 35-2643) & 56-4601 & \[
\begin{gathered}
\text { Spacer, } 7 / 32^{\prime \prime} \text { (for cartridge } \\
35-2643 \text { ) }
\end{gathered}
\] & \(76-2172\)
\(76-2374\) & Cable, motor assembly
Idler wheel (for motor \\
\hline 35-2670 & Needle (for pickup cartridge 35-2671-1) & 56-4601-1 & \[
\begin{gathered}
\text { Spacer, } 9 / 922^{\prime \prime} \text { ( for cartridge } \\
35-2643 \text { ) }
\end{gathered}
\] & 76.2978 & \begin{tabular}{l}
\[
35-1332)
\] \\
Bridge assembly
\end{tabular} \\
\hline 35-2671-1 & Crystal-pickup cartridge (horizontal needle insertion) & 56-4601-2 & Spacer, \(3 / \mathbf{s}^{\prime \prime}\) (for cartridge 35-2671-1) & 76-2982 & Pull-cord assembly, tone arm \\
\hline 35-2672 & Tone-arm & 56-4601-3 & Spacer, \(7 / 16^{\prime \prime}\) ( for cartridge 35-2671-1) & 76-2983 & Shaft-and-swivel assembly \\
\hline 35-3066 & Turntable assembly & 603FA38 & Spring, tone- & 76-298 & Push-off cover assembly \\
\hline \multirow[t]{2}{*}{41-3704} & \multirow[t]{2}{*}{Cable assembly, shielded, tone arm (M-8 console)} & 56-4604FE15 & Spring, & 76-2987 & levers, tone-arm actuator \\
\hline & & & & 76-2988 & Base-plate assembly \\
\hline 42-1750-3 & Switch & 56-4607FA3 & nk, short & 76-2989 & Cam-gear assembly \\
\hline 54-4460 & Bumper & 56-4608FA38 & Spring, link & 76-2990 & rip plate \\
\hline 54-4479 & Button, control & 56.4612 & Finger, trip & & Ball-bearing assembly \\
\hline 54-4491 & Grommet, motor mtg & 56-4613FA38 & Spring, stop & 76-35 & Idler wheel (for motor \\
\hline 56-1880 & Cover, switch & 56-461 & Stop, trip-arm & & 35-1339) \\
\hline 56-2027 & Plug & 56-4615 & Trip receiver & 76-3557 & Idler wheel (for motor .35-1341) \\
\hline 56-2071-2 & Cover, plug, motor-assembly cable (M-8 console) & 56-4616FE15 & Feeler
Hinge, selector & 1W36521 & Escutcheon pin \\
\hline 56-4585FA3 & Lever, index & 56-4618FA & Selector & 1W42706FA1
1W52627 & Hairpin Cam-gear \\
\hline 56-4587FA8 & Spind & 56-4627FA3 & Spring, retainer & 1W57117 & Clip, tubular \\
\hline 56-4588FA3 & Actuator, push-off & 56-4628FA38 & Spring ring & 2W53954 & Washer, selector \\
\hline 56-4589FA3 & Link, control & 56-4629 & Saddle, push-off & 12W45655 & Terminal strip \\
\hline
\end{tabular}


Figure 1-TURNTABLE AND HUB GEAR


TP-4182
Figure 2—CAM GEAR, SHOWING RETRACTABLE SEGMENT


Figure 3-LINK ASSEMBLIES AND ACTUATOR LEVERS


Figure 4—RECORD-SHELF AND PUSH-OFF ASSEMBLIES

\section*{DESCRIPTION OF OPERATING CYCLE}

Power for the motor is applied through the on-off switch. The turntable is rim-driven by a rubber-tired idler wheel mounted between the motor shaft and the turntable rim.
The turntable hub is a combined shaft and gear (figure 1). This small hub gear engages a large cam gear (figure 2) when the retractable segment of the cam gear is brought into position by the action of the trip mechanism; the cam gear, in turn, operates the changer mechanism.
The tone arm is operated by two link assemblies PHILCO RADIO-PHONOGRAPH
The following tests are given for quickly localizing trouble in either the radio or phonograph section of the radio-phonograph combination. Be sure to make each test, in the order given, before removing either the radio chassis or the record changer from the cabinet. If the trouble is found to be in the audio amplifier, refer to the radio service manual for the particular model under test. If the trouble is in some part of the record changer, refer to this record-changer manual.

\section*{Audio-Amplifier Test}

The audio amplifier is common to both the radio and the phonograph sections of the combinations using the M-9 changer.

Tune in a station, and note the volume and tone quality. If the performance is abnormal, refer to the radio service manual for the particular model under test, and correct the trouble.

\section*{Pickup Test}

Play a familiar record on the phonograph, and again note the volume and tone quality.
attached to actuator levers (figure 3) which are in contact with the cam surface of the cam gear.

The record-shelf push-off mechanism is connected, through a series of bars (figure 4), to a push-off actuator; the mechanism is operated when a roller on the cam gear comes in contact with the actuator.

The trip mechanism is operated by a trip finger, riding over a ratchet screw (figure 5), which starts the change cycle when the needle is traveling in the eccentric finish groove of the record. The trip mechanism is locked in a disengaged position when the control button is in the manual position.

\section*{TROUBLE-SHOOTING PROCEDURE} NOTE
It is advisable to carry a familiar record as a part of the service test equipment.

If distortion is noted when playing the record, first try a new needle. If the distortion continues, a faulty crystal pickup is indicated.

\section*{Changer-Mechanism Test}

The following series of record-changer operating tests is given for quickly locating any troubles that may be encountered. Each test should be performed with several records before making any adjustments.

Set the record shelf to the \(10^{\prime \prime}\) position and place the tone arm on the rest post. Place a \(10^{\prime \prime}\) record over the spindle and onto the record shelf.

Push the control button to REJ. (reject), and observe the record-dropping action. The record should fall smoothly, the edge leaving the lips of the record shelf after the center has started to fall.


Figure 5-TRIP FINGER AND RATCHET SCREW

The tone arm shuuld rise from the rest post, and the needle should come down on the record, starting about \(1 / 8^{\prime \prime}\) from the outer edge.

Play the record through and observe the tripping action; the trip mechanism should operate within the first two or three revolutions after the needle has entered the eccentric finish groove.

Remove the record from the turntable and turn the record shelf to the \(12^{\prime \prime}\) position. Place a \(12^{\prime \prime}\) record over the spindle and onto the record shelf. Push the control button to REJ., and observe the recorddropping action: The record should leave the lips of the record shelf after the center has started to fall. Refer to page 11 for the record-shelf adjustment, if needed. The tone arm should rise from the rest post, and the needle should come down on the record, starting about \(1 / 8^{\prime \prime}\) from the outer edge.

Play the record through and observe the tripping action.

Observe whether the lower edge of the tone arm, during a change cycle, clears the top of the hook on the tone-arm rest post by a minimum of \(1 / s^{\prime \prime}\). Take the tone arm off the rest post, and place the pickup over the changer base plate; the needle point should clear the base plate by at least \(1 / 16^{\prime \prime}\), and should be no
higher than the turntable top.

\section*{Turntable and Motor Test}

\section*{NOTE}

Before making this test, warm up the motor by allowing it to run for at least ten minutes.

Set the control button to MAN. (manual), load the turntable with ten \(12^{\prime \prime}\) records, and place the tone arm on the top record.
Place a stroboscope disc, such as Philco Part No. 45-2900, on the record, and illuminate the disc with a lamp (preferably a neon bulb) operated on 60 cycle a.c. The dots in the row calibrated for 78 r.p.m. should appear to remain stationary, or drift very slowly, but smoothly, backward or forward.
If the turntable speed is steady, but is appreciably below 78 r.p.m., refer to the lubrication data on the turntable upper bearing, motor bearings, and motor idler plate, given under CLEANING AND LUBRICATION, \(-\ldots\) - if the lubrication appears to be adequate, the motor is probably defective.
Unsteady drift of the dots on the stroboscope disc indicates uneven turntable speed, the cause of wows; see UNEVEN TURNTABLE SPEED (WOWS).

\section*{CLEANING AND LUBRICATION}

The M-9 record changer, like any other mechanism, requires lubrication after long periods of use. Whenever a major part or assembly is to be replaced, the changer should be cleaned and lubricated. Carbon tetrachloride or other similar cleaning fluids may be used to remove old grease, oil, and dirt. Apply lubricants sparingly. All lubrication points are shown in figures 6 and 7. It may be necessary to remove some parts and assemblies in order to lubricate their bear-ings-for example, the actuator and cam gear must be removed to lubricate the actuator stud and the camgear spindie.

\section*{PARTS NOT TO BE LUBRICATED}

The following parts should not be lubricated at any time: Trip receiver; trip finger; ratchet screw on trip plate; selector.

PARTS TO BE GREASED
The following parts are to be lubricated with a grease having the consistency of vaseline:

\section*{Record-Shelf Assembly (point A of figure 7)}

Four protruding dimples.

\section*{Bridge Assembly and Slider Control Bar (point B} of figure 6)

Three dimples and four upturned ears.

\section*{Cam Gear (point C of figure 6)}

Cam-gear teeth, cam surfaces, and cam-gear spindle.

\section*{Main Assembly (points D, figures 6, 7, and 11 )}

Trip-plate ear where contact is made with gear segment.

Actuator stud.
All parts with ears sliding on changer base plate.
Index-lever surface which slides on base plate.
Push-off-actuator dimples which slide on base plate.

Turntable shaft (upper bearing).
Tone-arm shaft.


Figure 6-BOTTOM VIEW OF CHANGER, SHOWING LUBRICATION POINTS

\section*{PARTS TO BE OILED}

The following parts are to be lubricated with S.A.E. 20 oil:

\section*{Tone Arm (point E of figure 7)}

Tone-arm pivot pin where pin rides in elongated hole of tone arm-apply one drop with a pointed rod.
Motor (points F, figures 6 and 7)
Motor idler plate-one or two drops in each dimple.

Motor bearings.

Trip-Plate Bushings (point G of figure 6)
Cam-Gear Roller (point H of figure 6)

\section*{CAUTION}

Do not get any oil or grease on the motor shaft or the idler-wheel tire. Should this occur, remove the oil or grease immediately with carbon tetrachloride.


Figure 7-TOP VIEW OF CHANGER, SHOWING LUBRICATION POINTS

\section*{ADJUSTMENTS}

\section*{10" Index Adjustment}

Set a \(10^{\prime \prime}\) record on the turntable; push the control button to REJ., and rotate the turntable \(41 / 2\) turns by hand. The tone arm should then be approximately \(1 / 2^{\prime \prime}\) above the record.

Loosen the clamp screw on the trip arm (figure 8). Hold the tone arm (steady) \(1 / 8^{\prime \prime}\) in from the edge of the record, and set the trip arm so that the trip-arm stop is in contact with the selector hinge. See figure 8.

Tighten the clamp screw, leaving \(1 / 32^{\prime \prime}\) vertical play, or clearance, between the trip arm and the base plate.

\section*{12' Index Adjustment}

Make the \(10^{\prime \prime}\) index adjustment first. The \(12^{\prime \prime}\) indexing will ordinarily be satisfactory after the \(10^{\prime \prime}\) adjustment is made; if not, bend the selector, 56 4618 FA 3 , slightly to the right or left as required for proper indexing of the needle on the record, as shown in figure 9.


\section*{PHILCO CORP.}


Tone-Arm Height and Lift Adjustments
With the changer out of cycle (change cycle completed; tone arm lowered), and the tone arm off the rest post, the needle point should clear the changer base plate by at least \(1 / 1 / 6^{\prime \prime}\), and should not be higher than the turntable top. See figure 10. To adjust the height, shape the top ear of the tone-arm swivel, shown in figure 10 (bending the ear downward raises the tone arm).

To adjust the lift, take the tone arm off the rest post, push the control button to REJ., and rotate the turntable (approximately \(11 / 2\) turns) by hand until the tone arm comes against the rest post. See figure 11; the lower edge of the tone arm should clear the top of the protruding hook on the rest post by not less than \(1 / 8^{\prime \prime}\), and not more than \(1 / 4^{\prime \prime}\). Adjust by shaping the lower ear of the tone-arm swivel (bending the ear downward raises the tone arm).

TP-4000

\section*{Tone-Arm Vertical and Horizontal Timing Adjustments \\ NOTE}

Before making these adjustments, make the tone-arm height and lift adjustments given above.
For the vertical adjustment, start with the changer out of cycle, push the control button to REJ., and rotate the turntable, by hand, three-quarters of a revolution; this setting can be obtained more accurately by making a mark on the turntable to coincide with some starting point. At the three-quarter-revolution point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the lift actuator lever; this is the lower actuator lever, shown in figure 12. Adjust the wire loop of the short link (link, cord, and spring assembly), attached to the tone-arm lift pin, by squeezing or opening the loop until the tone-arm lift pin makes contact with the lower ear of the tone-arm swivel (figure 11). TP-4102


For the horizontal adjustment, rotate the turntable another three-quarter revolution from the point at which the vertical adjustment was made. At this point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the horizontal-return actuator lever; this is the upper actuator lever, shown in figure 13. Adjust the wire loop of the long link and spring assembly, attached to the trip arm, by squeezing or opening the loop until the tone arm makes contact with the rubber bumper on the tonearm rest post.

\section*{Trip-Finger and Trip-Receiver Adjustments}

For the trip-finger adjustment, move the tone arm toward the spindle. Adjust the screw on the tripreceiver plate (figure 14) so that the trip finger, when riding over the ratchet screw on the trip plate, assumes an angle of \(25^{\circ}\) to \(30^{\circ}\) with respect to the screw. Do not bend the trip finger to obtain the correct angle.

For the trip-receiver adjustment, place the tone arm on a record with the needle resting in the eccentric finish groove. The vertical center line of the trip finger should coincide with the center line of the ratchet screw. To adjust the centering of the trip finger over the ratchet screw, loosen screw B slightlv. and screw A completely (see figure 9). Rotate the trip receiver about screw B, as a center, to obtain the correct adjustment (see figure 14). Tighten the screws.

Approximately \(1 / 8^{\prime \prime}\) of the trip-arm stop should engage the selector (see figure 9). To adjust the engagement of the trip-arm stop, loosen screw A slightly, and screw B completely (see figure 9). Rotate the trip receiver about screw \(A\), as a center, to obtain the correct adjustment. Tighten the screws.

The above adjustments will affect each other slightly; therefore, it may be necessary to repeat each adjustment until both are correct.

After making the above adjustments, it will be necessary to correct the index adjustments.

Figure 13—TONE-ARM HORIZONTAL TIMING ADJUSTMENT
TP-4129

\section*{Record-Shelf Adjustment}

Place the shelf in the \(10^{\prime \prime}\) position, and the changer out of cycle. Place the Philco record-shelf gauge, 45-1470 (also used for M-4), over the spindle and onto the record shelf, as shown in figure 15. Loosen the two hex-head screws which hold the record-shelf assembly to the changer base plate (figure 16). Move the record-shelf assembly away from the record spindle until the large curved part of the gauge drops even with the record-shelf lips, as shown in figure 15. Now push the record shelf and gauge lightly against the spindle, taking out all play toward the spindle; keep the lips of the record shelf in even
contact with the edge of the gauge. Tighten the two hex-head screws.

\section*{Push-Off Adjustment}

Push the control button to REJ., and rotate the turntable \(21 / 2\) revolutions, by hand; at this point, the push-off actuator is in its most forward position, in contact with the roller on the cam gear (see figure 17). Loosen the push-off-bar locking screw, shown in figure 16. Squeeze the push-off-bar ears toward each other to the point where the slider blade on the record shelf extends \(1 / 32^{\prime \prime}\) beyond the lips of the shelf. Tighten the hex-head locking screw.


Figure 14—TRIP-FINGER ADJUSTMENT

Figure 15-SPECIAL GAUGE, SHOWN IN CORRECT POSITION ON RECORD SHELF AND SPINDLE


Uneven Turntable Speed (Wows)
Uneven turntable speed (wows) may be caused by the following:

Dirt under and around the turntable or idlerwheel assembly. Remove the turntable (see Spindle and Turntable) - - - - and clean out the dirt. Be careful to lift the turntable straight up. When replacing the turntable, be sure the idler is behind the turntable rim before the turntable is fully lowered.

Flat or worn spots, or grease, on the rubber tire of the idler wheel.

Defective turntable shaft or bearing assembly.
Replace the defective parts as directed under REPLACEMENT OF PARTS AND ASSEMBLIES.

Lack of lubrication on idler-wheel assembly. Follow the directions under CLEANING AND LUBRICATION.

Figure 16—PUSH-OFF-LEVER ADJUSTMENT
Figure 17-PUSH-OFF ACTUATOR AGAINST CAM ROLLER

(C) John F. Rider

\section*{REPLACEMENT OF PARTS AND ASSEMBLIES}

The following procedures are recommended for correct replacement of parts and assemblies. The part should be replaced by reversing the order of removal, and adjusted according to the directions given in the ADJUSTMENTS section of this manual.

When any part is to be removed, the control button should be in the AUT'. (automatic) position, and the changer should be out of cycle.

\section*{1. Needle}

To remove the needle, loosen knurled nut from under front end of crystal cartridge, and slide needle out horizontally.

When replacing needle, tighten thumb nut and add a dab of cement in thumb-nut hole to prevent nut from loosening due to vibration.

\section*{2. Crystal Pickup Cartridge}
a. Bring tone arm toward center of turntable.
b. Remove the two screws, nuts, lock washers, and spacers which hold cartridge to tone arm.
c. Drop cartridge below tone arm sufficiently to allow removal of the two clips from cartridge, as shown in figure 18. If pickup leads are shielded, unsolder shield.

\section*{NOTE}

When mounting cartridge, be sure to insert long spacer in side toward spindle.

\section*{2A. Spindle and Turntable}
a. Unhook both ends of spindle spring from "V" mounting bracket (figure 14).
b. Uncoil spring wire through spindle hole.
c. Pull out spindle.
d. Remove turntable by pulling straight up.

\section*{3. Motor}
a. Push control button to MAN. position.
b. Remove spindle and turntable, as directed in paragraph 2A.
c. Remove switch cover, and unsolder motor lead from switch contact.
d. Loosen screw of clamp which holds wire against base plate, and pull wire through clamp.
e. Unsolder second motor lead from power plug or disconnect at splice from chassis power lead, whichever is used.
f. Remove ground lead from lug on motor.
g. Remove the three screws, washers, and bushings from motor frame (figure 19), and lift motor out.

Figure 18-TONE ARM (35-2663-2), CRYSTAL CARTRIDGE REMOVED



Figure 19-MOTOR, SWITCH, AND MOUNTING HARDWARE

\section*{4. Tone-Arm Assembly}
a. Unsolder tone-arm lead wires from terminal panel on underside of changer base plate.
b. Remove pull cord from spring and short link, \(56-4607 \mathrm{FA} 3\).
c. Loosen clamp screw which holds trip arm to tone-arm shaft, 76-2983 (figure 20). Lift out tone arm and shaft.

\section*{5. Bridge Assembly}
a. Remove spindle spring; then remove the two hex-head screws from bridge plate.
b. Remove link rod, 56-4589FA3, from slider control bar. Complete assembly of bridge is shown in figure 21.

\section*{6. Trip Plate}
a. Remove bridge assembly, 76-2978, as directed in paragraph 5.
b. Slide trip plate, 76-2990, off cam-gear spindle.
7. Cam-Gear Assembly
a. Remove bridge assembly and trip plate, as directed in paragraphs 5 and 6.
b. Remove ball-bearing assembly, 76-2991 (figure 16), by pulling it off.
c. Remove "E" washer, 1W60980FE5.
d. Slide cam gear off spindle. Figure 22 shows cam-gear assembly.

\section*{8. Tone-Arm Actuator Levers}
a. Remove "E" washer, 1W60980FE5.
b. Slide lower actuator lever from stud, and remove short link, 56-4607FA3.
c. Remove upper actuator lever from stud, and disengage long link, 56-4606FA3. Figure 22 shows actuator-lever assembly.

\section*{9. Push-Off Actuator}
a. Remove two motor-mounting screws, and loosen the third one; swing motor to one side.
b. Remove tone-arm actuator levers, 76-2987, as directed in paragraph 8.

c. Press push-off rod, \(56-4595\) FA3, and push-off hanger bar, \(56-4596 \mathrm{FA} 3\), together, and pull downward, releasing the entire assembly.

d. Slide push-off actuator, \(56-4588 \mathrm{FA} 3\), over, to align upturned ears with cutout in base plate. Slide actuator off stud.
NOTE After removing the push-off actuator and push-off-bar assembly, the slider blade on the record shelf may slide out of the assembly. When reassembling, this blade should be inserted in the record-shelf assembly with the elongated hole toward the \(12^{\prime \prime}\) position of the record shelf. The push-off assembly is shown in figure 23.




Figure 26-SELECTOR AND SELECTOR-HINGE ASSEMBLY
Figure 27-BOTTOM VIEW OF CHANGER, WITH PARTS IDENTIFICATION


TP6539

\section*{11. Control-Button Assembly}
a. Remove flat spring, 56 -4778FA38, by sliding it laterally through underside of button (figures 8 and 16).
b. Remove the two hex-head screws and drop bridge assembly, \(76-2978\) (shown in figure 8).
c. Disengage control link, \(56-4589 \mathrm{FA} 3\), from underside of control button. Lift out control button.

\section*{12. Trip-Arm Assembly}
a. Loosen clamp screw on trip arm, 76-420 (figure 25).
b. Raise tone arm and shaft sufficiently to clear trip arm. Remove trip arm.

\section*{NOTE}

When assembling, maintain \(1 / 32^{\prime \prime}\) vertical play (clearance between trip arm and base plate) in tone-arm shaft.

\section*{13. Trip-Receiver Assembly}

Remove the three screws, washers, and nuts from trip arm (figure 25).
Remove trip receiver.

\section*{14. Selector Assembly}

Remove cam gear as directed in paragraph 7. Remove feeler spring from attachment point on motor board. Tilt selector assembly, and remove from base plate.

NOTE
When assembling selector assembly, be sure to maintain \(.005^{\prime \prime}\) clearance between selector hinge, 56-4617FA3, and washer, 2W53954. For correct assembly refer to figures 26 and 9.


Figure 28-CHANGER WIRING DIAGRAM REPLACEMENT PARTS LIST
\begin{tabular}{|ll|ll||}
\begin{tabular}{l} 
SERVICE \\
PART NO.
\end{tabular} & \multicolumn{1}{c|}{ DESCRIPTION }
\end{tabular}\(\quad\)\begin{tabular}{l} 
SERVICE \\
PART NO.
\end{tabular}


Figure 1. Philco Record Changer and Record Player Combination, Model M-9C

\section*{INTRODUCION}

The Philco Automatic Record Changer and Record Player Model M-9C, figure 1, which is used in several 1949 Philco radio-phonograph combinations, incorporates the use of
two tone arms. One tone arm is used in conjunction with the record-changer mechanism, which plays ten \(12^{\prime \prime}\) records or twelve \(10^{\prime \prime}\) records automatically at the standard speed of 78 r.p.m. The other tone arm is used manually, to play the new Columbia Long Playing Records at a speed of \(33-1 / 3\) r.p.m.; the record player shuts off automatically at the end of the Long Playing Record.

\section*{DESCRIPTION OF OPERATING CYCLES}

Power is applied to the motor through an off-on switch and a mercury switch which is controlled by the position of the record-player tone arm. The two switches are connected in series.

A control is mounted on each side of the recordshelf assembly. The REJ.-AUT.-MAN. control controls the record-changer section of the combination. The STD. PLAY-LONG PLAY control has two functions. When it is pushed to LONG PLAY, a link underneath the base plate pulls a selector lever mounted on the base plate. The selector lever is connected to a shift lever which is part of the motor. On this shift lever is mounted a pulley which is connected
by a belt to the motor shaft, as shown in figure 2. When the control is in LONG PLAY position, this pulley, which is larger in diameter than the motor shaft, engages and drives the idler wheel, which in turn drives the turntable at the slow speed of 33-1/3 r.p.m. When the control is at STD. PLAY, the larger pulley is retracted and the motor shaft engages the idler wheel, to provide a turntable speed of 78 r.p.m. By action of the STD. PLAY-LONG PLAY control, the double-pole, single-throw switch, mounted on the base plate under the turntable, is actuated. To this switch are connected the output leads of the two tone arms. When the control is at LONG PLAY position,


Figure 2. Motor, Showing Pulley, Bolt, and Shift Lever


Figure 3. Cam Gear, Showing Retractable Segment
the switch cuts out the output from the record-changer tone arm and closes the circuit for the record-player tone arm. When the control is at STD. PLAY, the reverse action takes place.
The record-changer change cycle takes place when the turntable hub gear, which is part of the turntable shaft, engages the cam gear through a retractable segment mounted on the cam gear; see figure 3. This retractable segment is brought into position by the action of the trip mechanism. The cam then operates the changer mechanism.

The record-changer tone arm is operated by two link assemblies (figure 4) attached to actuator levers,


Figure 4. Link Assemblies and Actuator Levers


Figure 5. Record-Sheif and Push-Off Assemblies
which are in contact with the cam surface of the cam gear. The record-shelf push-off mechanism is connected through a series of bars, to a push-off actuator (figure 5). The mechanism is operated when a roller, mounted on the cam gear, comes in contact with the actuator. The trip mechanism is operated by a trip finger riding over a ratchet screw (figure 6), which starts the change cycle when the needle is traveling in the eccentric finish groove of the record. The trip mechanism is locked in a disengaged position when the REJ.-AUT.-MAN. control is in the MAN. position.


Figure 6. Trip Finger and Ratchet Screw


Figure 7. Trip Assembly, Showing Trip Finger Riding Over Ratchet Plate


Figure 8. Mercury Switch, Shown in ON Position


Figure 9. Mercury Switch, Shown in OFF Position

The record-player section contains a separate tone arm. Attached to this tone arm is a reset and trip-arm assembly, which has a protruding leg and trip finger (figure 7). When the tone arm of the record player is resting on the rest post, the leg on the reset trip arm contacts an ear of the bracket-clip assembly (mounted on the switch bracket), and this tips the mercury switch mounted on it to the ON position, (figure 8). The motor circuit is now controlled only by the on-off switch.
-When the record-player tone-ainu needle is traveling in the eccentric finish groove of the record, the trip finger, which is mounted on the reset trip arm, rides over a ratchet on the ratchet latch plate. The ratchet latch plate is mounted on the switch assembly (figure 7), and trips the latch, causing the bracketclip assembly to drop and tip the mercury switch to the OFF position (figure 9). This opens the motor circuit and stops the turntable.

A pull cord and link assembly is attached to the record-player tone arm, and is connected to a linkactuator lever. This permits the tone arm to be lifted and set on its rest post if the record changer is put into a change cycle. The pull-cord assembly, Part No. 76-2982-1, and the link-actuator lever, Part No. 76-4193, are shown in figure 9.

\title{
RECORD-CHANGER TESTING AND TROUBLE-SHOOTING PROCEDURE
}

\section*{Pickup Test}

Play a familiar record on the phonograph and note the volume and tone quality.

\section*{NOTE}

It is advisable to carry a familiar record as a part of the service test equipment.
If distortion is noted, try a new needle. If the distortion persists, a faulty crystal pickup is indicated; refer to page 12.

\section*{Changer-Mechanism Test}

The following series of record-changer operating tests is given for quickly locating any trouble that may be éncountered. Each test should be performed with several records before making any adjustments.

Set the record shelf to the \(10^{\prime \prime}\) position and place the tone arm on the rest post. Place a \(10^{\prime \prime}\) record over the spindle and onto the record shelf. Push the STD. PLAY-LONG PLAY control to STD. PLAY.

Push the REJ.-AUT.-MAN. control to REJ. and observe the record-dropping action. The record should fall smoothly, with the edge of the record leaving the lips of the record shelf after the center has started to fall. Adjustment of the record shelf is given on page 9.

The tone arm should rise from the rest post, and the needle should come down on the record, about \(1 / 8^{\prime \prime}\) from the outer edge. The index adjustment is given on page 7.

Play the record through and observe the tripping action; the trip mechanism should operate within the first two or three revolutions after the needle has entered the eccentric finish groove. Trip adjustments are given on page 9.

Remove the record from the turntable and set the record shelf to the \(12^{\prime \prime}\) position. Place a \(12^{\prime \prime}\) record over the spindle and onto the record shelf. Push the

REJ.-AUT.-MAN. control to REJ., and observe the record-dropping action. The edge of the record should leave the lips of the record shelf after the center has started to fall. (Refer to page 9 for the record-shelf adjustment, if needed.) The tone arm should rise from the rest post and the needle should come down on the record, about \(1 / 8^{\prime \prime}\) from the outer edge. If the index adjustment is required, refer to page 7.

Observe whether the lower edge of the tone arm, during a change cycle, clears the top of the hook on the tone-arm rest post by a minimum of \(1 / \mathrm{s}^{\prime \prime}\). Take the tone arm off the rest post, and place the pickup over the changer base plate; the needle point should clear the base plate by at least \(1 / 16^{\prime \prime}\), and should be no higher than the turntable top. Lift and height adjustments are given on page 7 .

\section*{Turntable and Motor Test}

\section*{NOTE}

Before making this test, warm up the motor by allowing it to run for at least ten minutes.

Set the REJ.-AUT.-MAN. control to MAN., and set the STD. PLAY-LONG PLAY control to STD. PLAY. Load the turntable with ten \(12^{\prime \prime}\) records, and place the tone arm on the top record.
Place a stroboscope disc, such as Philco Part No. 45-1614, on the record, and illuminate the disc with a lamp ( preferably a neon bulb) operated on 60 -cycle a.c. The dots in the row calibrated for 78 r.p.m. should appear to remain stationary, or to drift very slowly, but smoothly, backward or forward.

If the turntable speed is steady, but is appreciably below 78 r.p.m., refer to the lubrication date on the turntable upper bearing, and check the idler wheel, idler spring, wiring, etc.

Unsteady drift of the dots on the stroboscope disc indicates uneven turntable speed, which is the cause of wows; see UNEVEN TURNTABLE SPEED (WOWS), page 11 .

\section*{RECORD-CHANGER CLEANING AND LUBRICATION}

The Model M-9C record changer, like any other mechanism, requires lubrication after long periods of use. Whenever a major part or an assembly is to be replaced, the changer should be cleaned and lubricated. Carbon tetrachloride or other similar cleaning fluids may be used to remove old grease, oil, and dirt. Apply lubricants sparingly.

All lubrication points are shown in figures 10 and 11. It may be necessary to remove some parts and as-
semblies in order to lubricate their bearings-for example, the actuator and cam gear must be removed to lubricate the actuator stud and the cam-gear spindle.

\section*{PARTS NOT TO BE LUBRICATED}

The following parts should not be lubricated at any time: Trip receiver, trip finger, ratchet screw on trip plate, selector, and all parts of the record-player section.


Figure 10. Top View, Showing Lubrication Points

\section*{PARTS TO BE GREASED}

The folluwing parts are to be lubricated with a grease having the consistency of vaseline:
Record-Shelf Assembly (Point A of Figure 10)
Four protruding dimples.

\section*{Bridge Assembly and Slider Control Bar (Point B of Figure 11)}

Three dimples and four upturned ears.
Cam Gear (Point C of Figure 11)
Cam-gear teeth, cam surfaces, and cam-gear spindle.
Main Assembly (Points C of Figures 10 and 11)
Trip-plate ear where contact is made with gear segment.
Actuator stud.
All parts with ears sliding on changer base plate. Index-lever surface which slides on base plate. Push-off-actuator dimples which slide on base plate.

Turntable shaft (upper bearing).
Tone-arm shaft.

\section*{PARTS TO BE OILED}

The following parts are to be lubricated with S.A.E. 20 oil:
Tone Arm (Point D of Figure 10)
Tone-arm pivot pin where pin rides in elongated hole of tone arm-apply one drop with a pointed rod.
Trip-Plate Bushings (Point E of Figure 11)
Spindle (Point E of Figure 11)
Cam-Gear Roller (Point E of Figure 11)
CAUTION
Do not get any oil or grease on the motor shaft or the idler-wheel tire. Should this occur, remove the oil or grease immediately with carbon tetrachloride.


Figure 11. Bottom View, Showing Lubrication Points

\section*{RECORD-CHANGER ADJUSTMENTS}

\section*{10" Index Adjustment}

Place a \(10^{\prime \prime}\) record on the turntable, push the REJ. -AUT.-MAN. control to REJ., and rotate the turntable \(41 / 2\) turns by hand. The tone arm should then be approximately \(1 / 2^{\prime \prime}\) above the record.

Loosen the clamp screw on the trip arm (figure 12). Hold the tone arm (steady) \(1 / 8^{\prime \prime}\) in from the edge of the record, and set the trip arm so that the triparm stop is in contact with the selector hinge (Part No. 56-4617FA3). See figure 13.

Tighten the clamp screw, leaving \(1 / 32^{\prime \prime}\) vertical play, or clearance, between the trip arm and the base plate.

\section*{12" Index Adjustment}

Make the \(10^{\prime \prime}\) index adjustment first. The \(12^{\prime \prime}\) indexing will ordinarily be satisfactory after the \(10^{\prime \prime}\)
adjustment is made; if not, bend the selector, Part No. \(56-4618 \mathrm{FE} 15\), slightly to the right or left as required for proper indexing of the needle on the record, as shown in figure 14.

\section*{Tone-Arm Height and Lift Adjustments}

With the changer out of cycle (change cycle completed; tone arm lowered), and the tone arm off the rest post, the needle point should clear the changer base plate by at least \(1 / 16^{\prime \prime}\), and should not be higher than the turntable top. To adjust the height, shape the top ear of the tone-arm swivel, shown in figure 15 (bending the ear downward raises the tone arm).

To adjust the lift, take the tone arm off the rest post, push the REJ.-AUT.-MAN. control to REJ., and rotate the turntable approximately \(11 / 2\) turns by


Figure 12. Loop Adjustments and Trip-Arm Clamp Screw


Figure 13. 10" Indexing Adjustment


Figure 14. 12" Indexing Adjustment, Showing Trip Stop Arm in Contact with Outside Selector
hand until the tone arm comes against the rest post. The lower edge of the tone arm should clear the top of the protruding hook on the rest post by not less than \(1 / 8^{\prime \prime}\), and not more than \(1 / 4^{\prime \prime}\). Adjust by shaping the lower ear of the tone-arm swivel, shown in figure 16 (bending the ear downward raises the tone arm).

\section*{Tone-Arm Vertical and Horizontal Timing Adjustments}

\section*{NOTE}

Before making these adjustments, make the tone-arm height and lift adjustments given above.

For the vertical adjustment, start with the changer out of cycle. Push the REJ.-AUT.-MAN. control to REJ., and rotate the turntable, by hand, threequarters of a revolution; this setting can be obtained more accurately by making a mark on the turntable to coincide with some starting point. At the three-quarter-revolution point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the lift actuator lever, Part No. 76-4193; this is the lower actuator lever, shown in figure 17. Adjust the wire loop of the short link, cord, and spring assembly (figure 12), attached to the tone-arm lift pin, by squeezing or opening the loop until the tone-arm lift pin makes contact with the lower ear of the tone-arm swivel.

For the horizontal adjustment, rotate the turntable another three-quarters revolution from the point at which the vertical adjustment was made. At this point, the leading edge of the cam surface is approximately \(1 / 4^{\prime \prime}\) from the end of the horizontal-return actuator lever; this is the upper actuator lever, Part No. 76 2987, shown in figure 18. Adjust the wire loop of the long link and spring assembly (figure 12), attached
to the trip arm, by squeezing or opening the loop until the tone arm makes contact with the rubber bumper on the tone-arm rest post.

\section*{Trip-Finger and Trip-Receiver Adjustments}

For the trip-finger adjustment, move the tone arm toward the spindle. Adjust the screw on the tripreceiver plate (figure 19) so that the trip finger, when riding over the ratchet screw on the trip plate, assumes an angle of \(25^{\circ}\) to \(30^{\circ}\) with respect to the screw.

For the trip-receiver adjustment, place the tone arm on a record with the needle in the eccentric finish groove. The vertical center line of the trip finger should coincide with the center line of the ratchet screw. To adjust the centering of the trip finger over the ratchet screw, loosen screw B slightly, and screw A completely; see figure 19. Rotate the trip receiver about screw B, as a center. Tighten the screws when the trip finger is centered.

Approximately \(1 / 8^{\prime \prime}\) of the trip-arm stop should engage the selector; see figure 19. To adjust the engagement of the trip-arm stop, loosen screw A slightly, and screw \(B\) completely. Rotate the trip receiver about screw A, as a center, to obtain the correct adjustment. Tighten the screws.

The above adjustments will affect each other slightly; therefore, it may be necessary to repeat each adjustment until both are correct. After making the above adjustments, it will be necessary to correct the index adjustments.

\section*{Record-Shelf Adjustment}

Place the shelf in the \(10^{\prime \prime}\) position, and the changer out of cycle. Place the Philco record-shelf gauge, Part No. 45-1470 (also used for M-4), over the spindle and


Figure 15. Tone-Arm Height Adjustment
onto the record shelf, as shown in figure 20. Loosen the two hex-head screws which hold the record-shelf assembly to the changer base plate. Move the recordshelf assembly away from the record spindle until the large curved part of the gauge drops even with the record-shelf lips, as shown in figure 20. Now push the record shelf and gauge lightly against the spindle, taking out all play toward the spindle; keep the lips of the record shelf in even contact with the edge of the gauge. Tighten the two hex-head screws.

\section*{Push-Off Adjustment}

Push the REJ.-AUT.-MAN. control to REJ., and rotate the turntable \(21 / 2\) revolutions, by hand; at this point, the push-off actuator, Part No. 56-4588FA3, is in its most forward position, in contact with the roller on the cam gear; see figure 21. Loosen the push-offbar locking screw, shown in figure 21. Squeeze the push-off-bar ears toward each other to the point where the slider blade on the record shelf extends \(1 / 32^{\prime \prime}\) beyond the lips of the shelf. Tighten the hex-head locking screw.

Figure 16. Tone-Arm Lift Adjustment



Figure 17. Tone-Arm Vertical Timing Adjustment, Showing Lower Actuator Lever in Contact with Cam Gear

\section*{Uneven Turntable Speed (Wows)}

Uneven turntable speed (wows) may be caused by the following:

Dirt under and around the turntable or idler-wheel assembly. Remove the turntable and clean out the dirt. Be careful to lift the turntable straight up after removing the spindle first (see page 12). When replacing the turntable, be sure that the idler is behind the turntable rim before the turntable is fully lowered

Figure 19. Trip-Finger and Trip-Receiver Adjustments



Figure 18. Tone-Arm Horizontal Timing Adjustment, Showing Upper Actuator Lever in Contact with Cam Gear
(the spindle may be used to hold the idler back).
Flat or worn spots, or grease, on the rubber tire of the idler wheel.

Defective turntable shaft or bearing assembly.
Replace the defective parts as directed under REPLACEMENT OF PARTS AND ASSEMBLIES, page 12. If the \(33-1 / 3\) r.p.m. speed is incorrect, replace pulley belt, Part No. 45-6479 (remove idler wheel to replace belt).


Figure 20. Shelf Gauge, Shown in Correct Position on Record Shelf and Spindle


Figure 21. Push-Off Adjustment, Showing Push-Off Actuator in Contact with Roller on Cam Gear

\section*{REPLACEMENT OF PARTS AND ASSEMBLIES ON RECORD CHANGER}

The following procedures are recommended for correct replacement of parts and assemblies on the record changer. The part should be replaced by reversing the order of removal, and adjusted according to the directions given in the RECORD-CHANGER ADJUSTMENTS section of this manual.

When any part is to be removed, the REJ.-AUT.MAN. control should be in the AUT. position, and the changer should be out of cycle.
1. Needle, Part No. 45-1597

To remove needle, loosen knurled nut under crystal cartridge, and pull needle out.
2. Crystal-Pickup Cartridge, Part No. 35-2671-1
a. Bring tone arm toward center of turntable.
b. Remove the two screws, nuts, lock washers, and spacers which hold cartridge to tone arm.
c. Drop cartridge below tone arm sufficiently to allow removal of the two clips from cartridge, as shown in figure 22. If pickup leads are shielded, unsolder shield.

\section*{NOTE}

When mounting cartridge, be sure to insert long spacer in side toward spindle.
3. Spindle, Part No. 76-3926
a. Unhook both ends of spindle spring, Part No. 56-5644, from "U"-shaped bracket mounted under changer base plate (figure 21).
b. Uncoil ends of spring through spindle.
c. Pull out spindle.

\section*{4. Motor, Part No. 35-1371}
a. Push REJ.-AUT.-MAN. control to MAN. position.
b. Remove spindle as directed in paragraph 3 above.
c. Unsolder motor lead from mercury switch.
d. Disconnect second motor lead by unsoldering it at splice from switch lead. The motor assembly is shown in figure 23.
e. Remove ground lead from lug on motor.
f. Remove the three screws, washers, and bushings from motor frame (figure 23), and lift out motor.

\section*{5. Tone-Arm Assembly, Part No. 35-2663-2}
a. Unsolder tone-arm leads from terminal panel on underside of changer base plate.
b. Loosen clamp screw which holds trip arm to tone-arm shaft, Part No. 76-2983FA2 (figure 12). Lift out tone arm and shaft. The tone-arm assembly is shown in figure 22.

\section*{6. Bridge Assembly, Part No. 76-2978}
a. Remove the two hex-head screws from bridge plate.
b. Remove link rod, Part No. 56-4589FA3, from slider control bar. Complete assembly of bridge is shown in figure 24.

\section*{7. Trip Plate, Part No. 76-2990}
a. Remove bridge assembly, Part No. 76-2978, as directed in paragraph 6 above.
b. Slide trip plate, Part No. 76-2990, off cam-gear. spindle.


Figure 22. Record-Changer Tone-Arm Assembly, Part No. 35-2663-2

\section*{8. Cam-Gear Assembly, Part No. 76-2989}
a. Remove bridge assembly and trip plate as directed in paragraphs 6 and 7 above.
b. Remove ball-bearing assembly, Part No. 76-2991 (figure 18), by pulling it off.
c. Remove large "E"' washer, Part No. 1W60980FE5, from cam-gear spindle, and slide off cam washer, Part No. 1W52627.


Figure 23. Motor Assembly
d. Slide cam gear off spindle. The cam-gear assembly is shown in figure 25.
9. Tone-Arm-Actuator Levers, Part No. 76-2987
a. Remove "E" washer, Part No. 1W60980FE5, from actuator stud.
b. Disengage short link, Part No. 56-4607FA3, from link spring.


Figure 24. Bridge Assembly


Figure 25. Cam-Gear Assembly and Actuator Levers
c. Slide lower actuator lever from stud.
d. Disengage lifter link, Part No. 56-5990, from actuator lever.
e. Remove upper actuator lever from stud, and disengage long link, Part No. 56-4606FA3. The actuatorlever assembly is shown in figure 25.
10. Push-Off Actuator, Part No. 56-4588FA3
a. Remove selector lever, Part No. \(56-5985\), as directed on page 20 , paragraph 8.
b. Remove tone-arm actuator levers as directed in paragraph 9 above.
c. Press push-off rod, Part No. 56-4595FA3, and push-off hanger bar, Part No. 56-4596FA3 (figure 21), together and pull downward, to release the entire assembly.
d. Slide push-off actuator, Part No. 56-4588FA3, over, to align upturned ears with cut out in base plate. Slide actuator off stud.

Figure 26. Push-Off Assembly


\section*{NOTE}

After removing the push-off actuator and push-off-bar assembly, the slider blade on the record shelf may slide out of the assembly. When reassembling, this blade should be inserted in the record-shelf assembly, with the elongated hole toward the \(12^{\prime \prime}\) position of the record shelf. The push-off assembly is shown in figure 26.
11. Record-Shelf Assembly
a. Remove push-off assembly as directed in step c of paragraph 10 ,
b. Remove the two hex-head screws which hold recordं-shelf assembly to base plate.
c. Align ears on record-shelf assembly with cut out on base plate. Lift out record-shelf assembly. The record-shelf assembly is shown in figure 27.
12. REJ.-AUT.-MAN. Control Assembly, Part No. 54-4479-1
a. Remove flat spring, Part No. 56-4778FA38, by sliding it laterally through underside of button (figure 21).
b. Remove the two hex-head screws, and drop bridge assembly, Part No. 76-2978.
c. Disengage control link, Part No. 56-4589FA3, from underside of control button (figure 8). Lift out control button.
13. STD. PLAY-LONG PLAY Control, Part No. 54-4634
a. Remove flat spring, Part No. 56-4778FA38, by sliding it laterally through underside of button.
b. Remove selector lever, Part No. 56-5985, as directed in paragraph 8, page 20.
c. Disengage selector link, Part No. 56-5991, from selector lever (figure 8).
d. Lift out control button.

\section*{14. Trip-Arm Assembly}
a. Loosen clamp screw on trip arm, Part No. 76-4204 (figure 12).
b. Raise tone arm and shaft sufficiently to clear trip arm. Remove trip arm, and disengage link spring.

\section*{NOTE}

When assembling, maintain \(1 / 32^{\prime \prime}\) vertical play (clearance between trip arm and base plate) in tone-arm shaft.
15. Trip-Receiver Assembly, Part No. 56-6404
a. Remove the three screws, washers, and nuts from trip arm (figure 28).
b. Remove trip receiver.

\section*{16. Selector Assembly}

Remove cam gear as directed in paragraph 8. Remove feeler spring from attachment point on motor board. Tilt selector assembly, and remove from base plate.

\section*{NOTE}

When assembling selector assembly, be sure to maintain \(.005^{\prime \prime}\) clearance between selector hinge, Part No. 56-4617FA3, and washer, Part No. 2W53954. For correct assembly, refer to figure 29.


Figure 27. Record-Shelf Assembly


Figure 28. Trip-Arm and Trip-Receiver Assemblies


Figure 29. Selector Assembly

\title{
RECORD-PLAYER TESTING AND TROUBLE-SHOOTING PROCEDURE
}

\section*{Pick-Up and Needle Test}

Place a \(12^{\prime \prime}\) Columbia Long Playing Record on the turntable, lift the tone arm from the rest post, and place it on the starting groove of the record. Listen to the tone of the record. If distortion is noted, replace crystal cartridge as directed on page 12. If trouble persists, check for loose wiring, bad contact points, etc.

\section*{Shut-Off Test}

Place the tone arm in the finish groove of the record and observe the shut-off action. The record player should shut off within three revolutions of the turntable, after the pickup needle has entered the finish groove of the record. The trip adjustments are shown on page 9.

\section*{Clearance Test}

Remove the record from the turntable and place the tone arm over the base plate. Observe whether there is a minimum of \(1 / 16^{\prime \prime}\). clearance between the needle point and base plate. Refer to page 7 for adjustment.

\section*{Turntable and Motor Test}

Allow the motor to run for at least five minutes; then place a stroboscope, such as Philco Part No. 45-1614, on the turntable, and illuminate the disc with a lamp operating on 60 -cycle a.c. The dots in the row calibrated for \(331 / 3\) r.p.m. should appear to remain stationary or to drift very slowly, but smoothly, forward and backward. If the dots are moving in either direction very fast or with a jerky motion, refer to UNEVEN TURNTABLE SPEED (WOW.S), page 11.

\section*{RECORD-PLAYER ADJUSTMENTS}

\section*{Tone-Arm Needle Pressure and Vertical Friction}

Hold the Philco Gram Scale, Part No. 45-9531, on its side and set the pointer to the center line of the scale. This is the 0 point, and each small division on either side of 0 is equal to one gram. After the scale has been set to 0 , place it on the turntable with the guard on the scale in an open position, at right angles to the scale, as shown in figure 30 . Now set the needle of the tone arm into the hole at the end of the pointer and observe the reading on the scale. This reading is the needle pressure; the correct needle pressure is 6 to \(71 / 2\) grams.

To determine the vertical friction proceed as follows: Press down on the head of the pickup, then let it return to its normal position, and note the reading: Raise the pickup slightly, then gently lower it to the normal position, and again note the reading. The vertical friction is the difference between the two readings obtained. For example: if the scale reading is \(71 / 4\) grams after the pickup is depressed and released, and is \(63 / 4\) grams after the pickup is raised and lowered, the vertical friction is \(71 / 4\) minus \(63 / 4\) or \(1 / 2\) gram. The vertical friction should not exceed 2 grams.

\section*{Tone-Arm Horizontal Friction}

Hold the gram scale flat in the palm of the hand and set the pointer to " 0 ". Take the tone-arm off the rest post, and place a counterweight on top of the rear end until the tone arm is balanced in a horizontal position. Place the pointer of the scale against the side of the pickup head (figure 31) and move the pickup toward the center of the turntable. Then move the pickup outward, away from the center of the turntable. The horizontal friction is the average of the two readings taken, when the pickup is moved both inward and outward. At no time should it take more than 2 grams pressure on the pointer to move the tone arm.

\section*{Pickup Holder}

The pickup holder should be centrally spaced between the walls of the tone arm so that there is no binding or rubbing against the inside of the tone arm when the pickup cartridge is moved vertically. To obtain proper spacing, first remove the tone arm (see page 19); loosen the screw which holds the pickup bracket mounting. Move the mounting until it is centrally spaced between the walls of the tone arm, and maintain \(1 / 32^{\prime \prime}\) clearance between the tip of the ears on the holder and the inside surface at the front end of the tone arm, as shown in figure 33.


Figure 30. Measurement of Needle Pressure and Vertical Friction with Gram Scale

\section*{Pickup-Base-Plate Clearance and Height Adjustment}

With the tone arm off the rest post and resting over the base plate, the needle should be at least \(1 / 16^{\prime \prime}\) and not more than \(3 / 16^{\prime \prime}\) above the base plate, as shown in figure 34. To adjust, grasp the tone arm and raise or lower (whichever is required) with a little pressure


Figure 31. Measurement of Horizontal Pressure


Figure 32. Needle-Pressure Adjustment


Figure 33. Pickup-Holder Adjustment
to obtain the correct clearance. Then adjust the screw on the pivot assembly (figure 32) so that the tone arm will clear the rest hook on the stanchion, Part No. 56-5987.


Figure 34. Tone-Arm Height Adjustment

\section*{Trip-Switch Adjustments}

With the tone-arm on the rest post, the mercury switch attached to the bracket-and-clip assembly, Part No. 76-4195, should be in a horizontal or ON position, as shown in figure 8. To adjust, loosen the reset-trip-arm clamp screw (figure 35), and while holding the tone arm on the rest post, move the trip arm until the leg on the reset trip arm engages the bracket-and-clip ear, and at the same time, the long ear of the bracket and clip is approximately \(1 / 32^{\prime \prime}\) above the cut-out notch on the ratchet-plate assembly, Part No. 76-4197, as shown in figure 35.


Figure 35. Trip-Switch Adjustment

\section*{Trip-Finger Adjustments}

Place the tone-arm needle in the finish groove of a record, and observe the trip finger riding over the ratchet on the ratchet-plate assembly, Part No. 76-4197. The trip finger should assume an angle of \(25^{\circ}\) to \(30^{\circ}\) while riding over the ratchet, as shown in figure 7. Adjust the screw on the trip-arm receiver to obtain the proper angle.

\section*{Selector-Lever Stop Adjustment}

The selector-lever "throw" is adjusted by loosening the screw in the lock plate, Part No. 56-5986 (figure 11), and centering the lock plate so that when the STD. PLAY-LONG PLAY control is in either position, the shift lever on the motor will not bind against either side.


Figure 36. Record-Player Tone-Arm Assembly, Part No. 35-2686

\section*{REPLACEMENT OF PARTS AND ASSEMBLIES ON RECORD PLAYER}

\section*{1. Crystal-Cartridge Assembly, Part No. 45-1609}

To remove the crystal cartridge, grasp the crystal by its sides, and pull it down and out. When replacing the cartridge, push it up into the head of the tone arm, until it is seated in position.

\section*{2. Tone-Arm Assembly, Part No. 35-2686}
a. Unsolder tone-arm leads from terminal panel on underside of changer base plate. The tone-arm assembly is shown in figure 36.
b. Unhook pull cord, Part No. 76-2982-1, from spring and link assembly, Part No. 56-5990 (figure 9).
c. Loosen clamp screw which holds reset trip arm to tone-arm shaft.
d. Lift out tone arm.
3. Tone-Arm Thrust Bearing, Part No. 56-5916
a. Remove tone arm as directed in paragraph 2 above.


TP-6447
Figure 37. Model M-9C, Wiring Diagram
b. Remove "E" washer, Part No. 1W60977FE7, from bearing shaft (figure 8).
c. Lift bearing out of rubber grommet, Part No. 27-4099-3, mounted on tone-arm-shaft support.
4. Tone-Arm Stanchion, Part No. 56-5987
a. Remove tone arm as directed in paragraph 2 above.
b. Remove hex-head screw from each end of tonearm stanchion, under changer base plate.
c. Lift out stanchion (figure 7).
5. Tone-Arm Upper Bearing, Part No. 56-5903
a. Remove tone-arm stanchion, Part No. 56-5987, as directed in paragraph 4 above.
b. Remove "E" washer, Part No. 1W60981FE7, from bearing shaft mounted on tone-arm stanchion (figure 35).
c. Remove bearing from grommet, Part No. 54-4624, by sliding it out from underside of stanchion.
6. Ratchet Latch Plate, Part No. 76-4197
a. Remove "E" washer, Part No. 1W60977FE7, from switch bracket, Part No. 76-4196 (figure 32).
b. Slide ratchet plate off switch bracket.
7. Switch Bracket, Part No. 76-4196
a. Remove mercury switch, Part No. 76-2140-2, from clip.
b. Unhook pull-cord spring, Part No. 76-2982-1, from link.
c. Remove two hex-head screws which hold switch bracket to base plate.
d. Unhook link from actuator.

\section*{8. Selector Lever, Part No. 56-5985}
a. Remove "E" washer, Part No. 1W60977FE7, from stud which mounts selector lever, Part No. 56-5985, underneath base plate (figure 11).
b. Remove spring washer, Part No. 1W56306FE15, from stud.
c. Remove "U"-shaped spring, Part No. 56-5995, between selector lever and base plate.
d. Loosen lock-plate screw (figure 11).
e. Loosen motor-mounting screws and cock motor to one side.
f. Set STD. PLAY-LONG PLAY control to STD. PLAY position.
g. Align ears of selector lever with cut out on base plate, and pull out selector lever from stud on underside of base plate.
h. Disengage selector lever from control-button link.

\title{
REPLACEMENT PARTS LIST
}
\begin{tabular}{|c|c|c|c|}
\hline Service Part No. & Description & Service Part No. & Description \\
\hline 35-1371 & Motor & 56-4631FA15 & Pin, tone-arm lift \\
\hline 35-2663-2 & Tone-arm assembly, record changer & 56-4670FA38 & Spring, feeler (selector assembly) \\
\hline 35-2671-1 & Crystal, standard & 56-4774FA3 & Bar, push-off (rear) \\
\hline 35-2672FC55 & Tone-arm shell & 56-4778FA38 & Spring, control knob \\
\hline 35-2678 & Needle for special crystal & 56-4926 & Spacer, motor \\
\hline 35-2686 & Tone-arm assembly, record player & 56-5644 & Spring, spindle \\
\hline 35-3066-2 & Turntable & 56-5882 & Counterweight \\
\hline 41-3869-2 & Cable and plug & 56-5903 & Bearing, upper \\
\hline 42-1750-3 & Switch, motor & 56-5916 & Thrust bearing \\
\hline 42-1873 & Switch & 56-5981 & Trip receiver, record-player tone arm \\
\hline 45-1597 & Needle & 56-5985 & Lever, selector \\
\hline 45-1609 & Pickup-and-needle assembly & 56-5986 & Plate, lock \\
\hline 45-1610 & Tone-arm assembly (shell) & 56-5987 & Stanchion, record-changer tone arm \\
\hline 45-3031 & Nut, knurled & 56-5990 & Link, lifter \\
\hline 45-6479 & Pulley belt & 56-5991 & Link, selector \\
\hline 45-6481 & Idler wheel & 56-5995 & Spring, "U" ( selector lever) \\
\hline 54-4479-1 & Control, REJ.-AUT.-MAN. & 56-6404 & Trip receiver, record-player tone arm \\
\hline 54-4460 & Bumper & 76-2140-2 & Switch, mercury \\
\hline 54-4501 & Motor-mounting grommet & 76-2978 & Bridge assembly \\
\hline 54-4634 & Control, STD. PLAY-LONG PLAY & 76-2982 & Pull-cord assembly, record-changer \\
\hline 54-7613 & Trip finger & & \\
\hline 56-1880 & Cover, switch & 76-2982-1 & Pull-cord assembly, record-player
tone arm \\
\hline 56-2832FA3 & Clamp, cable & 76-2983FA2 & \\
\hline |56-4585FA3 & Index lever & & arm \\
\hline 56-4589FA3 & Link, control & 76-2984 & Push-off, cover \\
\hline 56-4593 & Plate, fulcrum & 76-2987 & Actuator lever, record-changer tone \\
\hline 56-4594FA37 & Plate, push-off slide & 76-2989 & Cam-gear assembly \\
\hline 56-4595FA3 & Rod, push-off & 76-2990 & Trip-plate assembly \\
\hline 56-4596FA3 & Hanger, push-off & 76-2991 & Bearing assembly \\
\hline 56-4597FA3 & Bar, push-off & 76-3926 & Spindle \\
\hline 56-4599FA3 & Slider, safety & 76-4086 & Bracket (pickup and hinge) \\
\hline 56-4600FA38 & Spring, return & 76-4192 & Base plate \\
\hline 56-4601-2 & Spacer & 76-4193 & Actuator, lift lever \\
\hline 56-4601-3 & Spacer & 76-4194 & Trip-switch assembly \\
\hline 56-4603FA38 & Index spring & 76-4195 & Bracket-and-clip assembly \\
\hline 56-4604FE15 & Pin, tone-arm pivot & 76-4196 & Switch-bracket assembly \\
\hline 56-4606FA3 & Link, long & 76-4197 & Ratchet latch plate \\
\hline 56-4607FA3 & Link, short & 76-4198 & Reset trip arm \\
\hline 56-4608FA38 & Spring & 76-4204 & Trip arm (subassembly) \\
\hline 56-4610 & Spring, "U" (bridge assembly) & 76-4204 & Trip arm (subassembly) \({ }^{\text {Pivot assembly, record-player tone arm }}\) \\
\hline 56-4613FA38 & Stop spring & 16-433 14460 FA44 & \\
\hline 56-4614 & Trip-arm stop & 1W36521FA3 & Screw ( \(3-48 x^{5} / 8^{\prime \prime}\) ), crystal mounting \\
\hline 56-4616FE15 & Feeler (selector assembly) & 1W36521FA3 & Pin, escutcheon \\
\hline 56-4617FA3 & Hinge (selector assembly) & 1W52627 & Cam-gear washer \\
\hline 56-4618FE15 & Selector & 1W56306FE15 & Spring washer, selector-lever assembly \\
\hline 56-4626-1FA7 & Record shelf & 1W57117 & Tubular clip \\
\hline 56-4627FA3 & Retainer, spring (record-shelf assem bly) & 1W60977FE7 & " E " washer (for selector lever, ratchet plate, and thrust bearing) \\
\hline 56-4628FA38 & Spring, ring & 1W60980FE5 & " E " washer (for cam and actuator stud) \\
\hline & Saddle, push-off (record-shelf assem-
bly) & 1W60981FE7 & "E" washer (for upper bearing) \\
\hline 56-4630FA38 & Spring, record shelf & 2W53954 & Washer, selector assembly \\
\hline
\end{tabular}


\section*{INTRODUCTION}
The Philco DeLuxe Automatic Record Changer and Record Player Combination, Model M-12C, is used in several Philco Radio-Phonograph combinations. It incorporates two tone arms. The changer tone arm is used with the recordchanger mechanism to play ten \(12^{\prime \prime}\) records or twelve \(10^{\prime \prime}\) records, automatically, at the standard speed of \(78 \mathrm{r} . \mathrm{p} . \mathrm{m}\). The long-play tone arm is used with the manual record player, which plays the new Columbia Long-Playing Records ( \(331 / 3\) r.p.m.). This tone arm employs the new Philco Balanced-Fidelity Reproducer, which applies the extremely low needle pressure of \(1 / 5\) ounce. The motor is shut off automatically at the end of the record.
by the trip-plate ear; the segment is released either manually, by pushing the OFF-MAN-AUT-REJ control to REJ, or automatically, when the changer tone arm follows the finish groove of a record; automatic tripping is initiated by the trip arm, which is attached to the tone-arm shaft, and which rides over the tripplate ratchet screw, causing the cam-gear segment to be released.

The tone arm of the record changer is operated by two link assemblies (figure 12) attached to actuator levers, which are in contact with the cam surface of the cam gear. When the cam gear starts, the lower actuator lever is pushed outward first, and the short link assembly attached to it raises the tone arm off the record. (The same action also raises the long-play tone arm, at the end of a record, by means of the long link assembly, which is also attached to the lower actuator lever.) As the cam gear continues to turn, the upper actuator lever is pushed
 this instant, a roller on the cam gear makes contact with the push-off actuator (which is connected to the record-shelf assembly through a series of push-off bars), and operates the record-dropping mechanism.

\section*{TESTING AND TROUBLE-SHOOTING PROCEDURE}

The following series of operating tests is given to aid in localizing troubles. Each test should be performed with several good records before making any adjustments.

With both tone arms on their rest posts, set the record shelf to the \(10^{\prime \prime}\) position, and place a \(10^{\prime \prime}\) record over the spindle and onto the record shelf. Set the play control to ST'D PLAY, and push the OFF-MAN-AUT-REJ control knob to REJ. Observe the record-dropping action; the record should fall smoothly onto the turntable. The tone arm should rise from the rest post, and the needle should come down on the record at about \(1 / 8^{\prime \prime}\) from the outer edge. Play the record through, and observe the tripping action; the trip mechanism should operate within the first two or three revolutions after the needle has entered the eccentric finish groove of the record.

Remove the record from the turntable, turn the record shelf to the \(12^{\prime \prime}\) position, place a \(12^{\prime \prime}\) record on the spindle and record shelf, and repeat the above testing procedure.

During a change cycle, the lower edge of the tone arm should clear the top of the rest-post hook by a minimum of \(1 / 8^{\prime \prime}\)

Remove the record from the turntable, place the changer tone arm over the changer base plate, and observe the clearance between the needle point and the
 be no higher than the top of the turntable.



 assembly on the top of the record changer.



 s!प户 U! S! पכ! position, the motor circuit is controlled by the OFF-MAN-AUT-REJ control.

 assembly (figure 20 ); this ratchet plate hus a cutout, in which rests a protruding


 әәs) uо!̣! figure 2), thus opening the motor circuit and stcpping the turntable.

 of the record-shelf assembly on the top of the record changer. When the play control is set to ST'D PLAY, the idler wheel on the motor engages the motor shaft directly, driving the turntable at a speed of \(78 \mathrm{r} . \mathrm{p} . \mathrm{m}\). When the play control is set to LONG PLAY, a selector link, one end of which is attached to the base of the control under the changer, actuates a selector lever mounted on the
 motor (figure 3). A large pulley on the shift lever is connected to the motor shaft by means of a small rubber belt. The idler wheel engages this large pulley, driving the turntable at a speed of \(331 / 3\) r.p.m. The play control also actuates a




 is set to the ST'D PLAY position.

The changer mechanism of the record changer is brought into action when a
 the hub gear of the turntable shaft, causing the cam gear to be driven. While a record is playing, the retractable gear segment is held in the retracted position



COR R R C T I O N O F T R O U B L E S
Changer tone arm fails to rise off the rest post when the OFF-MAN-
AUT-REJ control is set to REJ.
Changer tone arm does not clear the top record when a full stack of
records (ten 12", or twelve 10") is on the turntable.
Check the tone-arm height and lift adjustments, as directed on page
15, and the tone-arm vertical and horizontal timing adjustments, as
directed



FIGURE (13) SPECIAL PHILCO RECORD-SHELF GAUGE, SHOWN IN CORRECT POSITION

"U"SPRING 56-5995
"E"WASHER IW60977 IW6097
MODEL M-12C PHILCO CORP.

RCD. CH. PAGE 19.-66 PHILCO


FIGURE (22) CHANGER TONE-ARM ASSEMBLY (35-2675)


FIGURE (23) LONG-PLAY TONE-ARM ASSEMBLY (35-2686)

MO.DEL M-12C PHILCO CORP.


FIGURE (24) MOTOR ASSEMBLY (35-1371)



FIGURE (26) PUSH-OFF ASSEMBLY


REPLACEMENT OF PARTS AND ASSEMBLIES
The following procedures are recommended for the correct removal of parts and assemblies. The parts should be replaced by reversing the order of removal. Adjustments should be made according to the directions given in the Adjustment section of the manual.
1. Needles

To remove the needle from the standard crystal on the changer tone arm, loosen the knurled nut under the crystal and pull the needle out.

To remove the needle from the special cartridge of the long-play tone arm, grasp the sides of the cartridge with the fingernails and pull it out; then pry out
 the keyway on the needle shaft with the slot in the chuck on the cartridge, then push the needle into the cartridge. Replace the cartridge by pushing it until it is firmly seated.

Crystal Cartridge, 35-2671-1
a. Bring changer tone arm toward center of turntable

Remove the two screws and lock washers that hold cartridge to tone arm.
c. Drop cartridge below tone arm sufficiently to allow the removal of the two clips from cartridge. Figure 22 shows the cartridge assembly.
3. Spindle, 76-3926
a. Unhook both ends of spindle spring, 56-5644, from the "U"-shaped bracket mounted under changer base. See figure 11.
b. Uncoil spring through spindle and remove spring.

Pull out spindle.
4. Changer-Tone-Arm Assembly, 35-2675
a. Unsolder tone-arm wires from terminal panel on under side of changer base plate.
b. Remove pull cord from link spring.
c. Loosen clamp screw that holds trip arm to tone-arm shaft (figure 12). d. Lift out tone arm. Figure 22 shows the tone-arm assembly.

Note: When the tone arm is replaced on the changer, be sure to maintain \(1 / 32^{\prime \prime}\) vertical end play between the trip arm and the changer base plate.

\author{
TRIP ADJUSTMENTS
} When of \(25^{\circ}\) to \(30^{\circ}\). To obtain the correct angle, adjust the screw shown in figure 20.
\(4 כ+!M S\) d!^」 on the reset trip arm, \(76-4198\), hold the pickup on the rest post, and move the reset trip arm outward until its protruding leg contacts the short ear on the bracket-and-clip ass \(1 / 32^{\prime \prime}\) clearance between the long ear on the bracket-and-clip assembly and the cutout shelf on the ratchet latch, 76-4197. See figure 21.

When tightening the clamp screw, maintain \(1 / 32^{\prime \prime}\) vertical end play in the tone-arm shaft.

Selector-Lever Throw
The lock plate, 56-5986 (figure 3), is adjusted by loosening the hex-head screw under the base plate and moving the lock plate so that, when cause the shift-speed lever on the motor to bind against the mechanical stop on the motor.

Uneven turntable speed can be caused by the following conditions: a. Dirt under and around the idler-wheel assembly. b. Idler-wheel spring loose or missing. c. Flat spot on idler-wheel tire.
(For the \(331 / 3\) r.p.m. speed, a loose or worn pulley belt can result in a slow speed. To replace the pulley belt, push the idler-wheel assembly aside.)
- John F. Rider


FIGURE (28) TRIP-ARM AND TRIP-RECEIVER ASSEMBLIES



\section*{REPLACEMENT OF PARTS AND ASSEMBLIES (Concluded)}
18. Long-Play-Tone-Arm Upper Bearing, 56-5903
a. Remove long-play-tone-arm stanchion, 56-5987, as directed in paragraph 17.
b. Remove "E" washer, lW60981, from upper-bearing shaft mounted on long-play-tone-arm stanchion (figure 19).
c. Remove upper bearing from rubber grommet mounted on long-play-tone-arm stanchion.
19. Selector Lever, 56-5985
a. Remove "E" washer, 1W60977, from stud which mounts selector lever on changer base plate. See figure 14.
b. Remove spring washer, 1W56306, from stud.
c. Remove "U"-shaped detent spring, \(56-5995\), between selector lever and changer base plate.
d. Loosen lock-plate screw.
e. Align ears of selector lever with cutout slots on changer base plate.
f. Remove selector lever from stud.
g. Disengage selector link, 56-5991, from selector lever


FIGURE (30) WIRING DIAGRAM OF MODEL M-I2C
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODEL M-12} & \multicolumn{3}{|l|}{C PHILCO CORP.} \\
\hline & \multicolumn{3}{|l|}{REPLACEMENT PARTS LIST} \\
\hline \begin{tabular}{l}
SERVICE \\
PART NO.
\end{tabular} & DESCRIPTION & SERVICE PART NO. & DESCRIPTION \\
\hline 35-1371 & Motor & 56-5754 & Pivot pin (changer tone arm) \\
\hline 35-2671-1 & Crystal pickup (changer) & 56-5755 & Counterweight (changer tone arm) \\
\hline 35-2675 & Tone-arm assembly (changer) & 56-5758 & Tone-arm shell (changer) \\
\hline 35-2686 & Tone-arm assembly (long play) & 56-5882 & Counterweight (long-play tone arm) \\
\hline 35-3066-1 & Turntable & 56-5903 & Bearing (long-play tone arm) \\
\hline 41-3869-2 & Cable and plug & 56-5912 & Stop (long-play tone arm) \\
\hline 42-1873 & Switch & 56-5916 & Bearing, thrust \\
\hline 45-1597 & Needle (changer) . & 56-5981 & Trip receiver (trip arm) \\
\hline 45-1609 & Pickup-and-needle assembly (long play) & \[
\begin{aligned}
& 56-5984 \mathrm{FJ} 6 \\
& 56-5985
\end{aligned}
\] & Saddle, push-off Lever, selector \\
\hline 45-1610 & Tone-arm shell (long play) & 56-5986 & Plate, lock \\
\hline 45-1612 & Pickup cartridge & 56-5987 & Stanchion (long-play tone arm) \\
\hline 45-1613 & Needle (long play) & 56-5990 & Link, lifter \\
\hline 45-3031 & Knurled thumb nut & 56-5991 & Link, selector \\
\hline 45-6479 & Pulley belt & 56-5995 & Spring, detent ("U" shaped) \\
\hline 45-6480 & Motor pulley & 56-6404 & Trip receiver (reset trip) \\
\hline 45-6481
\(54-4501\) & Idler wheel & 76-2140-2 & Switch, mercury \({ }^{\text {Pull-cord }}\) (chsember \\
\hline 54-4501
\(54-4592\) & Grommet, motor mtg. \({ }^{\text {Bumper ( }}\) (record-shelf hold-down) & 76-2982 & Pull-cord assembly (changer tone arm) \\
\hline 54-7613 & Trip finger & 76-2982-1 & Pull-cord assembly (long-play tone \\
\hline 56-2832FA3 & Cable clamp & & \\
\hline 56-4585FA3 & Lever, index & 76-2987 & Actuator assembly (changer tone arm) \\
\hline 56-4588FA3 & Actuator, push-off & 76-2990 & Trip plate \\
\hline 56-4589FA3 & Link, control & 76-2991 & Bearing assembly \\
\hline 56-4594 & Plate (push-off slide) & 76-3926 & Spindle \\
\hline 56-4595FA3 & Rod, push-off & 76-3993 & Control button \\
\hline 56-4596FA3 & Hanger, push-off & 76-3994 & Push-off cover (record shelf) \\
\hline 56-4597FA3 & Bar, push-off & 76-3995 & Cam gear \\
\hline 56-4599FA3 & Slider, safety & 76-3997 & Shaft and swivel (changer tone arm) \\
\hline 56-4600FA38 & Spring, return & 76-3998 & Bridge àssembly \\
\hline 56-4603FA38 & Spring, index & 76-4008 & Base-plate assembly \\
\hline 56-4606FA3 & Link, long & 76-4010 & Cover assembly (switch) \\
\hline 56-4607FA3 & Link, short & 76-4086 & Bracket (pickup and hinge) \\
\hline 56-4608FA38 & Spring & 76-4193 & Link, actuator \\
\hline 56-4613FA38 & Spring, stop & 76-4194 & Trip switch \\
\hline 56-4614 & Trip-arm stop & 76-4195 & Bracket-and-clip assembly \\
\hline 56-4616FE15 & Feeler ( selector assembly) & 76-4196 & Switch bracket \\
\hline 56-4617FA3 & Hinge, selector & 76-4197 & Latch assembly \\
\hline 56-4618FE15 & Selector & 76-4198 & Reset and trip \\
\hline 56-4627FA3 & Retainer, spring & 76-4201 & Base-plate assembly \\
\hline 56-4628FA38 & Spring ring & 76-4204 & Trip arm (subassembly) \\
\hline \({ }^{56-4630 F A 38}\) & Spring (record shelf) & \({ }^{76-4335}\) & Pivot assembly \\
\hline 56-4647 & Retainer, spring & 1W14460 & Screw, \(4-40 \times 1 / 4\), crystal mtg. \\
\hline 56-4670FA38 & Spring (feeler) & 1W36521FA3 & Pin (escutcheon) \\
\hline 56-4774FA3 & Bar, push-off (rear) & 1W52627 & Cam-gear washer \\
\hline 56-4926 & Spacer, motor mtg. & 1W56306 & Spring washer \\
\hline 56-5644 & Spring, spindle & 1W57117 & Tubular clip \\
\hline 56.5742 & Support (control button) & 1W60977 & "E" washer, small \\
\hline 56-5743 & Plate, fulcrum & 1W60980 & "E" washer, medium \\
\hline 56.5744 & Tone-arm rest ( changer) & 1W60981 & "E" washer, large \\
\hline 56-5753 & Push-off saddle & 2W53954 & Washer, selector assembly \\
\hline
\end{tabular}

\section*{DESCRIPTION OF OPERATION}

Power for the motor circuit is controlled by two mercury switches. These switches are inserted into clips; one of these clips is a part of a latch-plate-andclip assembly, Part No. 76-4237, and the other is a part of a reset-plate-and-clip assembly, Part No. 764238. These two plate-and-clip assemblies are mounted on a switch-bracket assembly, Part No. 76-4235, which is located underneath the base plate, as shown in figure 1.

The tipping of the mercury switches to the OFF and \(O N\) position is accomplished by the trip arm, which is attached to the tone-arm shaft, and therefore is controlled by the tone arm.

When the tone arm is pulled back and set on its rest post, a protruding leg on the trip arm contacts the reset-plate-and-clip assembly, Part No. 76-4238, and raises it upward and tips the mercury switch mounted on it to the OFF position, as shown in figure 1. By the same action, the reset plate contacts an ear on the latch-plate-and-clip assembly, Part No. 76-4237, and holds it in an up, or horizontal, position. This tips the mercury switch mounted on it to the ON position, as shown in figure 1.


Figure 1

The two mercury switches are electrically connected in series. Since one of them is in the OFF position when the tone arm is on the rest post, the motor circuit is open and no power is supplied to the motor. When the tone arm is taken off the rest post and placed on a record, the reset-plate-and-clip assembly is permitted to drop down, tipping its mercury switch to the ON position. See figure 2. The motor circuit is now closed, and the record player is turned on.

During the playing of a record, a trip finger mounted on the trip arm rides over a ratchet on the latch-and-bushing assembly, Part No. 76-4197; see figure 3. When the pick-up needle enters the eccen-
tric finish groove at the end of the record, the trip arm, which is connected to the tone arm through the tone-arm shaft, will oscillate in a forward and backward motion, causing the trip finger to trip the latch-and-bushing assembly, Part. No. 76-4197. This permits the latch-plate-and-clip assembly to drop down, and tip its mercury switch to the OFF position. The motor circuit is now open, and the record player is turned off.


Figure 2


Figure 3

\section*{TESTS}

\section*{STARTING}

With the tone arm on the rest post, place a 12 -inch Columbia Long Playing Record on the turntable, lift the tone arm from the rest post, and place it on the starting groove of the record. The turntable should start immediately after the tone arm is off the rest post. If not, refer to page for the adjustment of the switches.

\section*{PICKUP AND NEEDLE}

After the tone arm has been placed on the record, listen to its tone. If distortion is noted, replace the crystal cartridge as directed on page . If the trouble continues, check for loose wiring leads, bad contacts, etc.

\section*{SHUTOFF}

Place the tone arm in the finish groove of the record, and observe the shutoff action. The record player should shut off within three revolutions of the turntable, after the pickup needle has entered the finish groove of the record. Refer to page for trip-finger adjustments.

\section*{BASE-PLATE CLEARANCE}

Remove the record from the turntable, and place the tone arm over the base plate. Note whether there is a minimum of \(1 / 8\)-inch clearance between the needle point and the base plate. Refer to page for the base-plate-clearance adjustment.

\section*{TURNTABLE AND MOTOR}

Allow the motor to run for at least 10 minutes, then place a stroboscope disc such as Philco Part No. 45-9531 on the turntable, and illuminate the disc with a lamp operating on 60 -cycle a.c. The dots in the row calibrated for \(331 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}\). should appear to remain stationary or drift yery slowly, but smoothly, forward or backward. If the dots are moving in either direction very fast or in a jerky motion, refer to "Uneven Turntable Speed and Rumble,"

\section*{ADJUSTMENTS}

\section*{NEEDLE PRESSURE AND VERTICAL FRICTION}

Needle pressure and vertical friction can be measured by means of the Philco Gram Scale, Part No. 45-9532. The scale consists of a long, flat pointer spring set in a movable pivot. The end of the scale has a number of divisions, with each division equal to one gram. The center line is zero.
Hold the scale on its edge, with the setscrew up, and set the pointer spring to the midpoint, or zero, position. Lift the tone arm slightly off the rest post and place the needle point in the dimple in the pointer spring. Lift the tone arm approximately \(1 / 2\) inch with the scale, as shown in figure 4, and note the reading. Then lower the scale \(1 / 2\) inch again and note the reading; see figure 4 A . The midpoint between the two readings is the needle pressure, and the difference between the two readings is the vertical friction. The needle pressure should be not less than 5 grams and not more than 7 grams, and the vertical friction should be not more than 2 grams.


Figure 4


Figure 4A
Example:
With the scale attached and the tone arm raised \(1 / 2\) inch, the reading is 7 grams. With the tone arm lowered, the reading is \(61 / 4\) grams. The midpoint between the two readings, or the needle pressure, is approximately \(65 / 8\) grams. The differ-
ence between the two readings, or the vertical friction, is \(3 / 4 \mathrm{gram}\).
To obtain the correct needle pressure, bring the tone arm to the center of the turntable and unhook the spring, shown in figure 6 , from the notch of the pivot-and-shaft assembly, Part No. 76-4092. Place the spring in different notches until the correct needle pressure is obtained.

\section*{HORIZONTAL FRICTION}

Lay the Philco Gram Scale, Part No. 45-9532, flat with the scale divisions up, and set the pointer spring to the midpoint, or zero, position.

Take the tone arm off the rest post and place a weight on top of the back section of the tone arm. Move the weight until the tone arm is balanced in a horizontal position.

Hold the scale so that the pointer spring bears against the side of the tone-arm head as shown in
figure 5; move the tone arm with the spring toward the center of the turntable, and note the reading while the tone arm is being moved horizontally.

At no time should the reading be more than 3 grams.

\section*{PICKUP HOLDER}

The pickup holder should be centrally spaced between the walls of the tone arm so that the pickup cartridge does not bind or rub against the inside of the tone-arm wall when the cartridge is move vertically.

To obtain the proper spacing, first remove the tone arm (see page ); loosen the screw which holds the pickup-bracket mounting. Move the mounting until it is centrally spaced between the walls of the tone arm; maintain a \(1 / 32\)-inch clearance between the tip of the ears on the holder and the inside surface at the front end of the tone arm, as shown in figure 7.


Figure 5


Figure 6


Figure 7

\section*{TONE-ARM BASE-PLATE CLEARANCE}

With the tone arm off the rest post and lying over the base plate, as shown in figure 8, the needle should be at least \(1 / 8\)-inch, and not more than \(3 / 1 / 16\)-inch, above the base plate. If the clearance is incorrect, grasp the tone arm and raise or lower it, whichever is required) with a little pressure to obtain the correct clearance.


Figure 8

\section*{TRIP SWITCH}

With the tone arm on the rest post, both the resetplate switch, Part No. 76-4238, and the latch-plate switch, Part No. 76-4237, should be in a horizontal position, as shown in figure 1. To adjust, turn the record player around and, from the rear, loosen the trip-arm clamp screw. Hold the tone arm on the rest post, and move the trip arm until the trip-arm leg engages the reset-latch ear. At the same time, the latch-plate ear should be approximately \(1 / 32\) inch above the cut-out on the ratchet-plate-latch assembly, Part No. 76-4197. Refer to figure 9 for the correct position of the latch ears. After the adjustments are made, tighten the clamp screw on the trip arm.

Note: Before tightening the clamp screw, be sure to leave .010 -inch vertical clearance between the spacer in the trip arm and the tone-arm-shaft support.


Figure 9

\section*{TRIP FINGER}

Place the tone-arm needle in the finish groove of a record, and from underneath the rear of the record player observe the trip finger riding over the ratchet on the latch-bushing assembly. The trip finger should assume an angle of \(25^{\circ}\) to \(30^{\circ}\) while riding over the ratchet, as shown in figure 3. Adjust the screw on the trip arm to obtain the proper angle.

\section*{TRIP-FINGER CENTERING}

The trip-finger center line should be directly over the ratchet on the latch-and-bushing assembly when the tone-arm needle is in the finish groove of the record. To adjust, remove the mercury switches from their clips by pulling them out. Loosen the two nuts which hold the switch-assembly bracket, Part No. \(76-\) 4235, to the base plate. Move the switch bracket until the trip-finger center is directly over the ratchet. Tighten the switch-bracket nuts and insert the mercury switches, in the clips, in the correct positions.

Note: Be sure that sufficient clearance between the mercury switches is maintained, or they may bind against each other when tripped.

\section*{IDLER PULL CORD}

The idler wheel should be disengaged from the motor shaft when the tone arm is on the rest post. It should re-engage when the needle is approximately \(1 / 16\)-inch from the edge of a 12 -inch record. To. adjust, tighten or spread the loop of the pull cord attached to the trip arm. See figure 7.

\section*{UNEVEN TURNTABLE SPEED AND RUMBLE}

Remove the turntable by removing the E washer from the spindle and pulling the turntable up. Clean all dirt from the idler-wheel assembly and the inside rim of the turntable. Examine the idler wheel and the rim of the turntable for bumps. Replace the idler wheel or turntable if any bumps are found. Some rumble can be caused by looseness of one or more of
the motor mounting screws, or by hardening of the rubber grommets on the motor frame.

\section*{REPLACEMENT OF PARTS AND ASSEMBLIES}

The following procedures are recommended for the correct replacement of parts and assemblies. The part should be replaced by reversing the order of removal, and should be adjusted as directed in the "Adjustments" section of this manual.

\section*{CRYSTAL-CARTRIDGE ASSEMBLY, PART No. 45-1609}

To remove the crystal cartridge, grasp the crystal by its sides and pull it down and out. When replacing the cartridge, push it up into the head of the tone arm until it is completely seated.


Figure 10

\section*{MOTOR, PART No. 35-1359 OR 35-1361}
1. Remove E washer from spindle.
2. Lift out turntable.
3. Remove idler puill cord from idler bracket.
f. Unsolder motor leads.
5. Remove the three mounting screws.
6. Lift out motor.

TONE-ARM ASSEMBLY, PART No. 35-2681
1. Unsolder tone-arm lead wires from terminal panel on underside of record-player base plate.
2. Loosen clamp screw which holds trip arm to tonearm shaft.
3. Lift out tone arm. Be careful not to lose fiber spacer on tone-arm shaft. Refer to figure 10 for correct assembly of tone arm.

\section*{TONE-ARM THRUST BEARING, PART No. 56-5916}
1. Remove tone-arm assembly as directed under "Tone-Arm Assembly, Part No. 35-2681."
2. Remove E washer, Part No. 1W60977FE7, from bearing shaft; see figure 11.
3. Lift bearing out of grommet, Part No. 27-4099-3, mounted on tone-arm-shaft support, Part No. 565827.


Figure 11

TONE-ARM UPPER BEARING, PART No. 56-5903
1. Remove tone-arm assembly as directed under "Tone-Arm Assembly, Part No. 35-2681."
2. Remove E washer, Part No. 1W60981FE7, from upper bearing at top of tone-arm housing.
3. Lift out bearing from underneath base plate.

TONE-ARM-SHAFT SUPPORT, PART No. 56-5827
1. Remove tone-arm assembly as directed under "Tone-Arm Assembly, Part No. 35-2681."
2. Remove the two mounting screws from underneath base plate.

\section*{RESET-PLATE-AND-CLIP ASSEMBLY, PART No. 76-4238}
1. Remove mercury switch from clip.
2. Remove E washer, Part No. 1W60971FE7, from shaft of reset plate mounted on switch assembly; see figure 12.
3. Slide reset plate out of brass bushing from switch assembly.

\section*{LATCH-PLATE-AND-CLIP ASSEMBLY, PART No. 76-4237}
1. Remove reset plate, Part No. 76-4238, as directed in paragraph above.
2. Remove E washer, Part No. 1W60971FE7, from latch-plate shaft.
3. Slide latch plate out of brass bushing from switch assembly.

\section*{RATCHET-LATCH ASSEMBLY, PART No.} 76-4197
1. Remove E washer, Part No. 1W60977FE7; see figure 12.
2. Slide ratchet-latch assembly off switch assembly.

\section*{SWITCH ASSEMBLY, PART No. 76-4235}
1. Remove mercury switch from latch-plate clip.
2. Remove the two hex-head nuts which hold switch assembly to base plate.


Figure 12


Model M-15, Schematic Diagr m

\section*{REPLACEMENT PARTS LIST}
\begin{tabular}{ll}
\multicolumn{1}{c}{ Part No. } & \multicolumn{1}{c}{ Description } \\
10720 & Cabinet, less scale \\
10720A & Cabinet, less scale \\
\(27-4099-3\) & Grommet \\
\(28-2345\) & Cable clamp \\
\(28-2669\) FA43 & Plug (for FM Adaption) \\
\(35-1359\) & Motor (Alliance) \\
\(35-1361\) & Motor (G.I.) \\
\(35-2676-1\) FC66 & Tone-arm shell \\
\(35-2681\) & Tone arm \\
\(35-2683\) & Turntable (Alliance) \\
\(35-2685\) & Turntable (G.I.) \\
\(41-3821-6\) & Line cord \\
\(41-3869\) & Cable \\
\(45-1609\) & Pickup-and-needle assem- \\
\hline
\end{tabular} bly
\begin{tabular}{ll}
\(54-4604\) & Cabinet base \\
\(54-4605\) & Cabinet top \\
\(54-4624\) & Grommet \\
\(54-4638\) & Tone-arm rest \\
\(54-4645\) & Rubber foot \\
\(54-7665\) & Bottom cover \\
\(55-0890\) & Bumper \\
\(56-2832\) FA3 & Cable clamp, pickup \\
\(56-4584\) FA3 & Loop, cord \\
\(56-5827\) FA3 & Support, shaft \\
\(56-5882\) & Counterweight \\
\(56-5903\) & Bearing, upper \\
\(56-2912\) FA3 & Stop \\
\(56-5916\) & Thrust bearing \\
\(56-6295\) & Lid support \\
\(56-6296\) & Binder post \\
\(56-6305\) & Hinge
\end{tabular}



The basic RP168 mechanism includes the metal sub-panel and all necessary operating parts except the tone arm and trip lever assemblies. Instruments using the cabinet as the motor bcard will have additional items (other than the tone arm and trip lever assemblies) listed in the Service Data issued for the individual models.

RP-168-1: Record changer mechanism plus tone arm assembly RMP-129-1; instrument cabinet is used as record changer motor board. Used in Models 9JY and 9EY3.

RP-168A-1: Record changer mechanism plus tone arm assembly RMP-129-1 and metal motor board. Used in Models 9W101; 9W103, 9W105: 9TW333, 9TW390 and 9Y7.

Complete record changer parts listing (except output cable), included in this Service Data. Different tỳpes and lengths of output cables are used-listed in Service Data of Individual Instruments.

RP-168A-2: Record changer mechanism plus tone arm assembly RMP-130-1 and metal motor board. Used in Berkshire Models.

\section*{AUTOMATIC OPERATION}
1. Place \(\alpha\) stack of records over the center post; with the desired selections upward the last record to be played on top.
2. Apply power to drive motor.
3. Push the "start-reject" knob to "stari" and let go. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
4. To reject \(\alpha\) record being played push the "start-reject" knob to "reject."
5. At conclusion of playing and as the last record is being repeated, lift tone arm and place on rest. Push "on-off" knob to the "off" position.

\section*{SPECIFICATIONS}

This mechanism is designed to play automatically a series of eight new RCA seven-inch fine groove records.
KPM
Pickup
Crystal
Sapphire dia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0009 inches
Pickup voltage output ................................... . Medium
Pickup force ........................................... 5 grams.

\section*{CAUTION}
1. Avoid handling the tone arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turntable if the turntable is stopped in cycle.
4. Do not try to operate the mechanism if the separator knives protrude from the center post when the mechanism is out of cycle.
Turn Power control on. The turntable revolves. Press finger gently against protruding discs until they disappear inside the holder. Do not do this during a change cycle.

\section*{LUBRICATION}

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.

On all bearing surfaces, excepting the motor bearings, Houghton STA-PUT No. 320, or equivalent, should be used. On all other sliding surfaces, STA-PUT No. 512, or equivalent, is recommended. STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Philadelphia, Pa.
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil or grease, dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.

RCD. CH. PAGE 19-2 RCA
MODEL RP-168,
RADIO CORP. OF AMERICA
Series

CYCLE OF OPERATION RP-168




Tone arm moves out
1. The end (41E) of the director lever (41) contacts stud (58A) on trip lever (58), starting the tone arm on its outward movement.

2 The stud (58A) on trip lever contacts tone arm return lever (50), pushing it outward against the tension spring (51).
3. As the tone arm reaches its outermost position, it is locked in position by the latch (50A) clamping the stud (58A) on the end of the tone arm return lever.

© John F. Rider

Separator knives separate the lower record from the stack and allows the record to drop to the turntable


Tone arm moves in for landing

Tone arm lowers sapphire to the record
1. While the tone arm is moving outwdrd the end (41C) of the director lever (41) extending below the motor board, contacts and prevents the star wheel (62) from rotating.
2. Since the turntable continues to rotate and the star wheel and shaft remain stationary. The two small gears (5A and 6A) embedded in the upper section of the center post rotate around the gear (7A) on the upper end of the star wheè shaft (7).
3. The eccentric extending from the upper end of the twc embedded gears runs in \(\alpha\) slot in the separator shelves ( 5 and 6). This produces the necessary action which causes the shelves to move in against the tension of spring (4),
4. As the shelves recede the separator knives (5B and 6B mounted above each separator shelf, separate the lowel record of the stack and support the remaining stack while the lower record drops to the turntable.
1. As the locator lever (41) continues to move toward the out of cycle position the end of the locator lever (41E) retains "contact with the stud (58A) on the trip lever (58). This contact stabilizes the inward movement of the tone arm whict, is being pushed in by the tone arm return lever ( 50 ).
2. The inward movement of the tone arm is stopped directly above the landing position due to the stud (50B) on tone arm return lever coming in contact with the eccentric stud (45C).
1. The stud ( \(41 A\) ) on director lever (41) continues to contac! tone arm elevating lever (35) and lowers the sapphire on the start of the record.
2. As the turntable completes on revolution the stud (41B) on director lever is pulled through the slot in the cycling cam by the force produced by tension spring (42).
3. While the stud (41B) on director lever slides through the slot in the cam and assumes the out of cycle position, the end of the director lever (41D) contacts projection (50C) and unlatches the tone arm return lever ( 50 ).
4. The end (41C) of the director lever below the motor board moves away from the star wheel and opens muting switch.

Record plays


1 After the selection has been completed the sapphire moves into the tripping groove. At this time the trip lever (58) pushes the trip pawl (37) into position for engagement with the stud ( 8 A ) on the under side of the turntable.
2. This contact between stud (8A) and the trip pawl (37) starts another change cycle and the next record is moved into position for playing.

\section*{REPLACEMENT PARTS}


\section*{TRIPPING ADJUSTMENT}

The tripping should occur after the sapphire leaves the last playing groove. This point of tripping should be when the sapphire is \(13 / 8\) inches from the side of the centerpost. Bend end of trip pawl as required.


\section*{TIMING OF SEPARATOR KNIVES}
1. Make certain the two embedded gears (5 and 6) are meshed with gear ( \(7 \AA\) ) on the upper end of the star wheel shaft so the action of the separator knives are synchronized.
2. Loosen the two set screws (61) sufficiently to permit the star wheel to rotate without disturbing the shaft (7).
3. Position the separator knives as indicated in figure (3).
4. Push reject lever and rotate the turntable slowly by hand until the end (41C) of the director lever moves in far enough, so when the star wheel is rotated it contacts by the amount as indicated in figure (2).
5. Tighten the two set screws (61) and rotate the mechanism through a complete cycle.
The separator knives must rotate \(360^{\circ}\) and return to the starting position as indicated in figure (3).


Fig. 2

\section*{PICKUP LANDING ADJUSTMENT}
1. Assemble the tone arm and trip lever assemblies as shown in figure (4). Leave the clamping screw (57) loose enough to permit horizontal movement of the trip lever on the shaft. (Allow approx. . 010 inch vertical end play.)
2. Turn the eccentric landing adjustment stud (45C) to determine the inward and outward limit of adjustment, then turn. it to a setting half way between the limits. Fig. 6. (Screwdriver slot approx. \(30^{\circ}\) from parallel with front edge of subpanel, in a counter-clockwise direction.)
3. Place \(\alpha\) record on the turntable, push the reject lever and slowly rotate the turntable until the sapphire is just ready to set on the start of the record.
4. Hold the trip lever and move the tone arm by hand until sapphire is in position halfway between the music grooves and the edge of the record.
5. Tighten clamp screw (57), apply power and run the mechanism through cycle. (Note the sapphire landing position.)
6. The exact landing position of the sapphire can be adjusted by turning the eccentric landing adjustment screw (45C). (Do not attempt to correct a landing error of more than \(\pm\) \(1 / 32^{\prime \prime}\), with the eccentric screw driver adjustment stud.)

Sapphire landing position should be \(\left(25 / 8^{\prime \prime}\right) \pm 1 / 64\) " from the side of the center post as shown in figure (5).


MS 742-A1
Fig. 3


Fig. 4


Fig. 6


Fig. 7

\section*{OUT OF CYCLE HEIGHT OF TONE ARM}

Bend tone arm lug so the sapphire point is approximately \(1 / 16\) " above the motor board as shown in the sketch.


\section*{TONE ARM IN CYCLE HEIGHT ADJUSTMENT}

Set the mechanism in cycle. Turn the turntable by hand, until the tone arm has reached its maximum height. By means of \(\alpha\) screwdriver turn the height adjustment stud until the distance between the top of the turntable and the sapphire point is \(3 / 4^{\prime \prime}\). Turning the stud clockwise will raise the arm and counter-clockwise will lower the arm.


IMPROPER RECORD SEPARATION


STAR WHEEL OUT OF SYNG


To insure proper dropping of records and avoid tilting of stack. It is important that the separator shelves move in and out freely. It is therefore essential that the shelves be free from burrs, grease, grit or dirt in general.

\section*{FAILS TO TRIP}


FAILS TO GO INTO CYCLE


\section*{RADIO CORP. OF AMERICA} Series


RECORD DROP ON OR HIT TONE ARM


ERRATIC PICKUP LANDING



Fig. 10

A BENT SAPPHIRE SUPPORT CHIPPED SAPPHIRE SAPPHIRE TOUCHING TONE GUARD LINT OR FOREIGN MATERIAL IN GUARD
A CHIPPED SAPPHIRE MAY CAUSE MS 767 SKIPPING OF GROOVES
A CHIPPED SAPPHIRE MAY'CAUSE FAILURE TO TRIP


\section*{Specifications}

Tube Complement
1. RCA 12AV6 \(\qquad\) Amplifier
2. RCA 50 C 5 Output
3. RCA 35 W 4 Rectifier

\section*{Loudspeaker (92577-6W)}

Size and type \(\qquad\) 4 in. P.M. Voice coil impedance \(\qquad\) 3.2 ohms at 400 cycles

\section*{Dimensions (overall)}

Height, 75/8" Width, 911/16" Depth, 95/8"

\section*{Power Supply Rating}

115 volts, 60 cycles A.C.
45 watts
Power Output
Undistorted ...... 1.0 watt Maximum ...... 1.25 watts
Record Changer (RP-168-1)
Turntable speed 45 r.p.m.
Records used \(\qquad\) Long playing-7 in.
Record capacity \(\qquad\) 8 records
Pickup \(\qquad\) Crystal (medium output)

REPLACEMENT PARTS
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION \\
\hline \multirow[b]{3}{*}{39648} & \multirow[t]{3}{*}{AMPLIFIER ASSEMBLIES
RS-132
Capacitor-Mica, 680 mmf (Cl)} & & Resistor-Fixed, composition, 4.7 megohms \(\pm 20 \%\), \(1 / 2\) watt (R5) \\
\hline & & 73117 & Socket-Tube socket \\
\hline & & 36422 & Socket-3 contact socket for phono input cable \\
\hline 72839 & Capacitor-Moulded paper, . 002 mfd ., 400 volts (C4) & \multirow[t]{4}{*}{72535} & \multirow[t]{2}{*}{Transformer-Output transformer (Tl)} \\
\hline 73961 & Capacitor-Tubular, \(.003 \mathrm{mfd} ., 200\) volts (C2) & & \\
\hline 71923 & Capacitor-Tubular, 01 mfd., 200 volts (C3) & & SPEAKER ASSEMBLIES \\
\hline 56871 & Capacitor-Moulded paper, . 02 mfd., 400 volts (C6) & & 92577-6W-RL 108B4 \\
\hline 71702 & Capacitor-Moulded paper, \(.05 \mathrm{mfd} ., 400\) volts (C7, C8) & *74165 & Speaker-4" P.M. speaker complete with cone and voice coil \\
\hline 72281 & \multirow[t]{2}{*}{\begin{tabular}{l}
Capacitor-Electrolytic, comprising 1 section of 80 mfd., 150 volts; 1 section of \(40 \mathrm{mfd} ., 150\) volts; and 1 section of \(20 \mathrm{mfd} ., 25\) volts (C5A, C5B, C5C) \\
Control-Volume control and power switch (R3, S1)
\end{tabular}} & & \begin{tabular}{l}
voice coil \\
MISCELLANEOUS
\end{tabular} \\
\hline * 74133 & & * 74135 & Baffle-Speaker baffle \\
\hline 28451 & Cover-Insulating cover for electrolytic capacitor & *74134 & Bottom-Cabinet bottom cover \\
\hline *73693 & Grommet-Strain relief grommet (1 set) for power cord & *74137 & Bracket-Mounting bracket for reject button and shaft \\
\hline 70391 & Insulator-Phono input socket insulator & *74136 & Bracket-Speaker mounting bracket \\
\hline 30868 & Plug-2 contact female plug for motor cable & *74138 & Button-Reject button and shaft \\
\hline 73237 & Resistor-Wire wound, 33 ohms, \(150^{\circ} \mathrm{ma}\). (R11) & Y2071 & Cabinet-Plastic cabinet-maroon-less bottom cover \\
\hline \multirow[t]{10}{*}{72314} & \multirow[t]{2}{*}{\begin{tabular}{l}
Resistor-Wire wound, 120 ohms, 5 watts (R7) \\
Resistor-Fixed, composition, 150 ohms \(\pm 10 \%, 1 / 2\) watt (R9)
\end{tabular}} & *74190 & Cable-Shielded pickup cable complete with 3 prong male plug \\
\hline & & *74193 & Clamp-Spring clamp for reject button and shaft \\
\hline & \multirow[t]{2}{*}{Resistor-Fixed, composition, 2700 ohms \(\pm 10 \%\), \(1 / 2\) watt (Rlo)} & 73549 & Emblem-'"RCA-Victor" emblem \\
\hline & & 74087 & Grommet-Rubber grommet to mount record changer (3 required) \\
\hline & \multirow[t]{2}{*}{Resistor-Fixed, composition, 180,000 ohms \(\pm 10 \%\), \(1 / 2\) watt (R2)} & 73490 & Knob-Volume control and power switch knob-maroon \\
\hline & & *74192 & Plug-3 prong male plug for pickup cable \\
\hline & Resistor-Fixed, composition, 270,000 ohms \(\pm 10 \%\), \(1 / 2\) watt (R6) & *74191 & Spacer-Metal spacer (eyelet) to mount record changer (3 required) \\
\hline & Resistor-Fixed, composition, 470,000 ohms \(\pm 20 \%\), & 14270 & Spring--Retaining spring for knob \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
\(1 / 2\) watt (R8) \\
Resistor-Fixed, composition, 470,000 ohms \(\pm 10 \%\), \(1 / 2\) watt (R1)
\end{tabular}} & *74139 & Spring-Reject button and shaft return spring (.203" dia. \(\times 11^{1 / 2 \prime \prime}-21^{\prime \prime}\) turns) \\
\hline & & 2917 & Washer--'C'' washer for reject button and shaft \\
\hline
\end{tabular}

\footnotetext{
*This is the first time that this Stock No. has appeared in Service Data.
}


Schematic Diagram


\section*{Pickup Landing Adjustment "A"}

The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw " \(A\) " slightly clockwise. If pickup lands outside the starting grooves-turn screw "A" slightly counterclockwise.
Pickup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight records-turn screw " \(B\) " slightly clockwise. If pickup arm touches records on record supports-turn screw " B " slightly counterclockwise.


\section*{Specifications \\ Record Changer (RP-168-1) \\ \begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Turntable sp \\
Records us Record cap
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Power Supply Rating
115 volts, 60 cycles A.C.
15 watts
Dimensions (overall)
Height 65 \(\mathrm{B}^{\prime \prime}\) Width \(91 / \mathrm{s}^{\prime \prime} \quad\) Depth 67/8"
Record Separator
In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.
If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT of CYCLE.


In some instruments: Black wire is omitted or \(\alpha\) shielded wire is used in place of the red-black-white cable.


Top and Side Views

\section*{FOR RECORD CHANGER SERVICE INFORMA. TION-REFER TO RP-168 SERIES SERVICE DATA.}

Pickup Landing Adjustment "A"
The pickup point should land hall-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw " A " slightly clockwise. If pickup lands outside the starting grooves-turn screw "A" slightly counterclockwise.

\section*{Pickup Height Adjustment " B "}

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight records-turn screw "B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

\section*{Schematic Diagram}

\section*{Record Changer Mounting}

The cabinet is used as the motorboard of the record changer. The record changer is attached with three screws and bushings. THE PICKUP ARM MUST BE REMOVED BEFORE THE RECORD CHANGER CAN BE REMOVED-REFER TO RP-168 SERIES SERVICE DATA.

REPLACEMENT PARTS
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\text { STOCK } \\
\text { No. }
\end{gathered}
\] & DESCRIPTION \\
\hline *74097 & Bottom-Cabinet bottom cover \\
\hline *74189 & Bushing-Shoulder bushing to mount record changer in cabinet ( 3 required) \\
\hline *74098 & Button-Reject button \\
\hline Y2062 & Cabinet-Moulded cabinet less bottom cover \\
\hline 39386 & Cable Shielded pickup cable complete with pin plug \\
\hline *74101 & Control-Volume control and power switch \\
\hline 73549 & Emblem-'RCA-Victor" emblem \\
\hline 31051 & Foot-Rubber foot (4 required) \\
\hline 73490 & Knob-Volume control and power switch knobmaroon \\
\hline 14270 & Spring-Retaining spring for knob \\
\hline
\end{tabular}
* This is the first time that this Stock No. has appeared in Service Data.

\section*{Connecting Record Changer Attachment to Radio Receivers}

RCA Radius with Phono Jack
Plug male connector on the end of the "Phono" lead into the female connector on the receiver chassis. If set is provided with a phono switch, push or turn the "Phono" switch to "Phono" position, and operate the Record Changer Attachment according to instructions. If no switch is provided, use maximum setting of volume control on attachment, and minimum setting of radio volume control which will give acceptable volume, and tune receiver off frequency from any very strong station. In some instances the radio volume control will have the effect of a tone control.

\section*{RCA Type No. 202W1 Record Player Selector}

This selector switch may be used for combined operation of two record players through one phono input jack. A choice of two types of input jacks and output cable plugs are provided.

\section*{Radio-Phonograph Combinations}

Most radio-phonograph combinations use resistors and/or capacitors for tone compensation in the phono input circuit.
Where unsatisfactory reproduction is obtained with Model gIY connected into the phono jack of such instruments, we suggest that Model 9IY be connected as indicated for radios which do not have a phono jack.

\section*{Radios Without Phono Jack}

Methods of connecting the Record Changer Attachment to various types of audio systems are given in the accompanying text and illustrations. The data given requires that an RCA Type No. 240X1 (Formerly Stock No. 240) Radio-Phono switch be used for switching from radio to phonograph, as desired. For ease in connecting the "phono" lead to the switch, the male plug on the end of the lead matches the phono jack on the switch.
In general, the Record Changer Attachment must be used with radio receivers having at least two stages of high-gain audio amplification. The output of the Record Changer Attachment should be connected to the input of the first audio tube, and at the same time the output of the radio receiver portion of the chassis should be shorted or opened, to prevent radio signals being heard while the Record Changer Attachment is in operation.

\section*{Installation of Switch}

Fasten the bracket to the cabinet in such a position that the switch may be easily reached. For wooden cabinets, a suggested place is the upper rear edge of the cabinet. If the radio has a plastic cabinet, the bracket may be fastened to the chassis by self-tapping screws or soldering. In the case of a.c.d.c sets, the bracket should not be fastened to the chassis. In such cases, a wooden block may be fastened to the chassis and the bracket screwed to the wooden block, care being exercised that there is no metallic path from the bracket to the chassis.
Connect the braided shield extension to the radio chassis by either soldering or placing the spade lug under a mounting screw.


On a.c.-d.c. sets it is necessary to isolate the cable shield from the chassis. This is best done by connecting the shield to the chassis through a .25 mid 300 -volt condenser. Care should be taken that the shield braiding and switch bracket do not come in contact with the chassis.

If the common-negative wiring in the a.c.-d.c. set is isolated from the set chassis, connect the cable shield, through a .25 mfd . capacitor, to the common-negative uiring, und not to the chassis.


For radio receivers in which the lst-audio tube has a top grid cap-see Fig. A:
1. Disconnect the grid lead from the first audio tube.
2. Connect the cap on the black lead to the clip on the grid lead, as shown above.
3. Connect the clip on the black-brown lead to the grid cap at the top of the first audio tube, bending the terminal if necessary to proper size for a metal tube cap.
4. Insert the plug on the end of the record player lead into the jack on the bracket.
5. Secure or position the connection cable assembly so that the cap and clip terminals are well separated from each other and other metal parts.

For radio receivers in which the lst-audio tube is type 6SQ7, 6SR7, 12SQ7 or 12SR7--see Fig. B:
1. Use adaptor plug RCA Stock No. 37798.
2. Remove the lst audio tube.
3. Solder the switch leads to the adaptor plug terminalsblack to bottom lug-black-brown to top lug.
4. Tape terminals to prevent short circuits when installed in set.
5. Insert the adaptor into the lst audio tube socket.
6. Insert the lst audio tube into the adaptor.
7. Insert the plug on the end of the record player lead into the jack on the bracket.


For other radio receivers in which the lat-audio tube does not have a grid cap; connection to volume control input-see Fig. C, connection to lst-audio tube control grid-see Fig. D:
1. Unsolder the lead from the volume control lug indicated in Fig. C or from the control grid pin indicated in Fig. D. it is usually necessary to remove the chassis from the cabinet to do this.
2. Solder the black-brown lead (remove clip) to the lug or pin disconnected in Step 1.
3. Solder the black lead (remove plug) to the lead disconnected in Slep 1. Tape the joint to prevent short circuits.
4. Insert the plug on the end of the record player lead into the jack on the bracket.


\section*{Manual Operation}
1. Rotate the record separator shelf clockwise for \(10-\) inch or counterclockwise for 12 -inch position (numerals 10 or 12 pointing towards center post).
2. Place the record to be played on the turntable and turn the power switch on.
3. Move the control knob to manual and to the on position.
4. Press down firmly but momentarily on the end of the tone arm and let go. The pickup will land automatically on the start of the record. When the selection is completed the pickup will ride the eccentric groove until the pickup is placed on the rest manually.
5. Turn power switch off manually.
6. Remove the record by raising straight up without tilting.

\section*{Automatic Operation}
1. With the power switch in the off position rotate the record support shelf as required for 10 - or 12 -inch records until the record size indicated on the support cover is pointing toward the center post. (Rotate clockwise for 10 -inch and counterclockwise for 12inch records).
2. Place the records to be played in a stack with desired selections upward and in proper sequence with the last record on top. Load them on the changer by placing them over the center post and resting on the record support shelf. Place record stabilizing clip on top of the record stack.
3. Push the control knob to automatic and to the on position.
4. Press down firmly but momentarily on the end of the tone arm and let go. The changer will continue to play one side of each record of the entire stack automatically.
The tone arm can be moved to the rest position any time the mechanism is not in cycle.
5. Turn the power switch off and remove the stack from the turntable by placing fingers of both hands directly opposite and under the stack. Then lift straight up-"don't tilt" or squeeze stack. Turning the support shelf one-fourth turn facilitates removal of records.

\section*{Cautions}
1. Avoid handling the tone arm or rotating record support assembly while mechanism is in cycle.
2. Never turn the power switch off, leaving the mechanism in cycle for an extended period of time.
3. Do not allow the records to remain on supports when not in use.
4. Do not allow oil or grease to come in contact with any rubber parts.
5. Do not install instrument near source of heat. Excessive heat may damage the pickup cartridge.


FIG. 2


FIG. 3


FIG. 4

\section*{FUNCTIONS OF PRINCIPAL PARTS}

\section*{Head Assembly-7, 7A, 7B, 7C}

Supports outer edge of record stack and pushes the record off notch in center post and allows it to drop to the tur'ntable while the mechanism is going through cycle.
Center Post-53
Supports the entire stack of records, and together with the offset notch and latch in the center post, provides a means for separating records.

\section*{Tone Arm Lift Assembly-16}

Couples tone arm to riser plate 36 through arm lift shaft 47 , thereby transferring the action for the vertical motion of the tone arm during change cycle.

\section*{Arm Control Assembly- 30}

Provides a tie between tube 30B, bracket 30 C and tone arm support bracket 18,' thereby directing the horizontal movement of the tone arm during change cycle. Arm control pin 30A slides along track in arm control plate 35 , and in so doing, determines the point of landing of the pickup and the point of trip of the mechanism. It also incorporates landing adjusting screw 31.
Arm Control Plate Assembly 35, 35A, 35B, 35C
Incorporates a track 35B which controls the pickup landing and the tripping of the mechanism.
Stop tab 35A functions as portion of the tripping device, stud 35C, contacting push-off cam 47A controls, the point of landing for both 10 - and 12 -inch records.



RCD. CH. PAGE 19-16 RCA


\section*{CYCLE OF OPERATION}

Turn record support to 10- or 12 -inch position as desired and place a stack of records on supports.
Start-reject button.

\section*{Record plays:}

Cycling starts.
1. Spring 49 pulls eccentric cam 48, causing rubber tire 48A to engage rotating knurled roller 61.
2. Eccentric cam 48 mounted on riser plate forces the riser plate assembly back along the guide rails 57A away from center post 53.
3. As riser plate moves, the push-off cam and shaft assembly 47 rides along the inclined track 36 C of the riser plate 36 .
4. This action results in the push-off cam and shaft assembly 47 being pulled down.
Tone arm raises and
moves out.
1. The tone arm lift 16 sliding on shaft 47 is pulled downward, contacting lift bearing pin 11C, and causing tone arm to raise and clear record.
2. The riser plate tab 36B contacting curved portion of arm control assembly 30, which is coupled to tone arm support bracket assembly, causes the tone arm to be moved outward away from, and clear of the edge of the records. Arm control plate is also being carried along by tab 36B contacting spring 33.
Record is separated and drops to turntable.

Tone arm is returned and is positioned for landing.
Pickup lands.
1. Turning the record support positions the push-off cam 47A through the linkage of push-off arm 4 and push-off shaft 47. In so doing it determines the amount of movement of control plate 35 which in turn governs pickup landing.
1. Press down on tone arm; this actuates button on which it is resting.
2. Start-reject button actuates reject lever.
3. Reject lever transfers action to reject latch 59A through coupling wire 42.
4. The unlatching of reject latch allows eccentric cam 48 to be pulled against rotating knurled roller 61 which starts cycle.
1. While the record is being played and the tone arm moves towards the center of the record, the arm control pin 30A on arm control assembly 30 moves along track 35B as designated by "P," fig. 13.
2. As pickup moves into trip groove on record, tone arm control pin 30A moves into recess in control plate 35 at point indicated by "T," fig. 13.
3. Trip spring 34 pulls arm control plate 35 towards center post 53 , and in so doing allows stop tab 35 A on arm control plate 35 to disengage stop catch 45 on eccentric arm 48. (In manual operation the manual lockout lever holds stud 35C thereby preventing arm control plate from moving forward and starting cycle.)
1. As riser plate 36 continues to travel further along guide rods 57 A , the riser plate motion bracket 36 A contacts and rotates the push-off cam and shaft assembly 47.
2. Push-off arm 3, being coupled to push-off cam and shaft assembly 47, is rotated, causing push plate 7C to push record off of projection on center-post and dropping it to the turntable.
Note: The small separator latch in the end of the center post functions as a thickness gauge, allowing only one record to be pushed off the projection at one time.
1. As eccentric cam 48 is returning to minimum diameter (out of cycle position), riser plate is being pushed back to normal position by recoil spring 37. At the same time, the push plate spring 8 is pushing the push plate 7C and push-off arm 4 back to normal position.
2. The portion of arm control assembly mounting the control pin, and the control bracket 30 C , are hinged on the plate forming part of assembly 30 . Since the pin 30 A has followed the track 35 B and the curved portion of bracket 30 C was forced out by motion of tab 36B, the tension of spring 26 is tending to pull them together as the riser plate is returning to normal position. The governing factor in determining how far the bracket will be pulled in, is the setting of the landing adjustment screw 31.
1. During part of the change cycle when riser plate is in the outermost position, and carrying arm control plate along by tab 36B contacting spring 33, the stud 35 C is stopped by cam 47A. This acts as a gauge to determine the point of contact of pin 30A on arm control track 35B.
This cam having two different radii will govern the distance arm control plate can travel since this is set when the record size change is made. If the smaller radius side of cam 47 A is toward stud 35C, the arm control pin 30A will ride portion of track 35B designated by "L," causing the pickup to land on 10 -inch records. On the other hand, if the larger radius portion of cam is toward the stud, the pin will ride along track designated by " S ," which determines landing point on 12 -inch records.


RCD. CH. PAGE 19-18. RCA MODEL 960276

RADIO CORP. OF AMERICA


PHOTOGRAPH OF PARTS

FIG. 15

CHANGER WILL NOT COMPLETE CYCLE


FIG. 16


FIG. 18

RECORDS DO NOT SEPARATE OR DROP PROPERLY


FIG. 20
FIG. 21

PICKUP REPEATS GROOVES


FIG. 22


FIG. 23


FIG. 24
"WOW" OR SLOW TURNTABLE SPEED


FIG. 26

FIG. 25

\section*{CONTINUOUS TRIPPING}


FIG. 27


FIG. 28


RCD. CH. RCA PAGE 19-21
RADIO CORP. OF AMERICA
MODEL 960276
IMPROPER PICKUP LANDING


FIG. 31
FIG. 30


FIG. 32
FAILURE TO TRIP OR GO INTO CYCLE


FIG. 34


FIG. 36


PREMATURE TRIPPING
FIG. 38


FIG. 40


FIG. 35


FIG. 37


FIG. 41


FIG. 42


FIG. 45


FIG. 43

TONE ARM
FAILS TO LEAVE REST
AUTOMATICALLY


FIG. 46

VOLUME CONTROL ADVANCED TOO FAR


FIG. 44
TOO POSITIVE A


FIG. 47

\section*{RECORD DAMAGE}

The spindle shelf and the top of spindle shaft should be free from burrs or rough edges to avoid scratching records or damaging record center holes. The record shelf edge should be smooth and be rounded only to a minute radius. Never round the bottom edge of the record separator latch.
A slight application of wax on the spindle shaft will prevent "squeal" of a stack of records.

\section*{LUBRICATION}

\section*{Motor}

Motor is lubricated at factory to provide normal operation for a long period of time.
If it becomes necessary to lubricate, use SAE \#10 motor oil to saturate the felt wicks on the motor bearings.
Main Bearing
Use STA-PUT \#512 or SAE \#30 motor oil.

\section*{Slides and Levers}

Use STA-PUT \#512.
STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Phila., Pa.


\footnotetext{
Caution: Never bend the sapphire support wire. Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal. Remove the two screws holding the sapphire guard in place and remove guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes free. Do not use force or the crystal may be broken. Insert threaded shaft of replacement sapphire holder through armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position. Take hold at the lower end of the shaft with a pair of pliers while tightening the nut, being very careful so as not to strip the threads or break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough (approx. .020) beyond the guard so that the guard will not strike the record. If necessary, bend the guard a
}


The Models \(101.211-1\) and 101.211-1 are designed to a utomatically changeas many as ten 12 -inch, twelve 10 -inch or ten intermixed records of standard commercial dimension with a minimum of record wear and to manually play any standard record up to twelve inches in diameter and to automatically shut off after last record has been played.
Model Differences:
Both Record Changersare similar, however, plastic parts on the 101.211-1 are finished in dark brown. Chassis 101.211-2 same as 101.211-1 except uses ungrounded Syntronic pickup cartridge in pickup arm with adapter plate.
101.211-3 - Chassís same as 101.211-1 except uses new style pickup arm with ungrounded Syntronic pickup cartridge.
101.211-4 - Chassis same as 101.211-3 except uses grounded Syntronic pickup cartridge.

\section*{Power Requirments}

These changers have been designed to operate on 110 Volt 60 Cycle A. C. current unless otherwise indicated.
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { LOCATION } \\
& \text { NUMBER } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { PART } \\
\text { NUMBER } \\
\hline
\end{gathered}
\] & DESCRIPTION \\
\hline 1 & R57700 & Enob - (101.211) \\
\hline 1 & R57786 & Knob - (101.211-1) \\
\hline 2 & R49655 & Russell Drive Theel Assembly \\
\hline 3 & R57701 & Record Support Assembly \\
\hline 4 & R57702 & Speed Nut \\
\hline 5 & R57703 & Turntable Assembly \\
\hline & R57704 & Turntable Washer \\
\hline & R57705 & Turntable Bearing \\
\hline & R57706 & Retainer Spring - Turntable \\
\hline 6 & R57707 & Shipping Bolt \\
\hline 7 Part of & Item 14 & Trip Lever \\
\hline 8 & R57708 & Adjusting Ring Spring \\
\hline 9 & R57709 & Set Screw \\
\hline 10 & R57710 & Adjusting Screw \\
\hline 11 & R57711 & Adjusting Ring \\
\hline 12 & R57712 & Hinge Pin \\
\hline 13 & R57713 & Lift Bed Screw \\
\hline 14 & R57714 & Hinge Body Assembly \\
\hline 15 Part of & Item 11 & Adjusting Screw \\
\hline 16 Part of & Item 14 & Catch \\
\hline 17 & R57715 & Catch Spring \\
\hline 18 Part of & Item 14 & Hinge Cam \\
\hline 19 & R57716 & Cable \& Clip Assembly \\
\hline
\end{tabular}

RCD. CH. PAGE 19-2 SEARS


\section*{RECORDS}

The mechanism will operate automatically on all standard records. In case of recoras not having the standard "trip groove" (a spiral groove near the center of record) when tone arm reaches end of record, turn control knob to 'REJ' to bring next record to playing position.

Warped, worn, disheu or dirty records will cause poor reproduction. Records should be stored away from heat in a record album or laid flat. Clean records periodically with a soft; lint-free cloth.

\section*{AUTOMATIC OPERATION}

Loading:
(1) Pull straight up on record support knob (1) until record support (3) clears spindle.
(2) Swing record support in either direction until pin in shaft drops into locating groove. As many as ten 12 -inch, twelve 10 -inch or ten intermixed records may be loaded at one time.
(3) Carefully place records on spindle and lower to offset shoulder.
(4) Steady records with one hand and replace record support over spindle. Gently press down on record support knob until records are held parallel with turntable.

Starting:
To start operation of record changer, turn control knob (25) clockwise to "REJ" and release. Changer will operate automatically until last record has been played. Control knob then turns to "OFF" position, pickup arm (21) returns to rest and machine automatically stops.

Reject:
To reject a record at any time while it is playing, turn control knob to "REJ" and release.
Manual Stopping:
To turn off changer before last record has been played, turn control knob to "OFF", lift pickup arm from record and replace on rest.

Unloading:
To remove records from turntable, lift up on record support knob and swing record support in either direction until pin in shaft drops in locating groove. Carefully lift entire stack of records straight up.
CAUTION: When loading or unloading changer, use care to prevent bending spindle. Records should never be left on the offset portion of the spindle as they may warp. If changer is turned off before all records, have been played, remove unplayed records from spindle or operate "Reject" until all records have dropped to turntable.

\section*{MANUAL OPERATION}

Starting:
(1) To play single records or home recordings, pull straight up on record support knob until record support clears spindle. Swing record support in either direction until pin in shaft drops into locating groove.
(2) Lower record to offset shoulder of spindle and tilt toward back of tone arm. Carefuliy work record past offset shoulder.
(3) Turn control knob to "ON" and push down on trip lever (51) located near back of tone arm. Machine will then operate independently of cycling mechanism - PROVIDED - tone arm is moved all the way in to the spindle, before it is returned to the rest after the record is played. When playing "inside out" records, move tone arm all the way in to spindle before setting it down on first playing grooves of the record.

Repeating:
(1) To repeat a 10 -inch record, remove any records remaining above offset shoulder of spindle.
(2) Pull straight up on record support knob until record support clears spindle.
(3) Swing record support in either direction until pin in shaft drops into locating groove.
(4) Carefully lift records from spindle. Do not replace record support over spindle. will repeat the record on the turntable until control knob is turned to "OFF".

\section*{LUBRICATION}

No lubrication should be necessary for the life of the changer, but in cases of unusual use
or high operating temperature, the changer should be lubricated as follows:
(1) Hinge bearing (97).
(2) Ratchet arm (102) and set down locater plate (101).
(3) Cam faces on lift arm (48), lift arm bearing, and lift arm cutoff rod bearings.
(4) Between lever spring (46) and cutoff rod (42).
(5) Heart shaped cam track on cam (51) and cam bearing (50).
(6) Spindle, between roller plunger (80) and roller spring housing (78) and between the roller spring housing and the spindle body.
(7) Turntable ball bearing (76).

Apply a small quantity of light machine oil to:
(1) Pickup arm locater assembly bearing (98) and ball bearing in pickup arm post (90).
(2) Ratchet pawl bearing (28).
(3) Trip rod bearings (30) and (61).
(4) Control lever bearing (35).

\section*{ADJUSTMENTS}

NEEDLE SET DOWN: The set down position of the needle is adjusted by means of the two adjusting screws (10) \& (15). If the needle is setting down too far out on the record, loosen the back screw (10) about \(1 / 4\) turn and tighten the front screw (15) to lock the adjustment in place. If the needle is setting down too far in on the record, loosen the front screw and tighten the back screw.

PICKUP ARM HEIGHT: The pickup arm height is adjusted by the screw (13) located on top of the tone arm lift rod. Turn the screw out or in until the underneath side of the tone arm clears the rest by \(1 / 8^{\prime \prime}\) to \(3 / 16^{\prime \prime}\).

\section*{SERVICE INFORMATION}

\section*{CONTROL KNOB CANNOT BE TURNED TO "ON" POSITION}

Machine stalled in cycle. Turn turntable carefully by hand until the control knob is free. TURNTABLE DOES NOT REVOLVE WHEN CONTROL KNOB IS TURNED TO "ON" POSITION:
1. Machine stalled in cycle. Turn turntable carefully by hand until it starts rotating under its own power.
2. No current at motor:
(a) Check to determine if current is reaching A. C. leads of changer.
(b) Check switch to determine if it is closing.
(c) Check wiring and soldered terminals in changer.
3. Motor defective:

Remove turntable to allow motor to operate without load. If current is reaching the motor and pulley does not rotate, the motor is defective. Repair or replace.
4. Motor idler wheel not engaging turntable rim.

If motor pulley is turning but turntable is not:
(a) Check motor idler assembly to determine if it is free to contact the motor pulley and the turntable.
(b) Wipe off the inside rim of the turntable to remove flock or if oily, clean turntable rim and rubber tire of idler wheel with carbon tetrachloride.
5. Turntable bearing tight:

Hold idler away from turntable or remove idler wheel and rotate turntable by hand to see if it is free. If binding occurs, remove turntable, clean out foreign matter and lubricate with light oil.

\section*{CHANGER DOES NOT CYCLE WHEN CONTROL KNOB IS TURNED TO "REJ" POSITION:}
1. Changer stalled or motor not driving turntable. See "TURNTABLE DOES NOT REVOLVE WHEN CONTROL KNOB IS TURNED TO "ON" POSITION".
2. Manual reject not actuating, trip:

Turn control knob to 'REJ' position, hold and see if leg on control lever (44) is contacting the stud on the bottom of the ratchet casting (34) and turning the trip rod (60) sufficiently to allow the trip rod to disengage the trip.
3. Trip not actuating clutch: When the trip rod (60) is turned, if the clutch pawl (63) does not move forward, engaging the pinion teeth, check for a loose pawl spring (49) or binding between the clutch pawl and the cam. If binding occurs, clean out foreign matter and check for freedom but do not oil.

\section*{RECORD DOES NOT DROP WHEN CHANGER CYCLES:}
1. Spindle pusher shaft broken:

If the pusher shaft (74) is broken, the roller assembly (78) will drop out of the spindle (70). To replace the roller assembly, loosen the spindle screw (77) and remove the spindle. Slip the pusher shaft return spring (85) over the pusher shaft and insert the roller assembly in the spindle. Turn the milled flat section at the top of the pusher shaft until it faces out of the milled opening in the spindle. Press up on the roller until it raises about \(1 / 8^{\prime \prime}\). Hook the pusher (71) around the pusher pin (72) and press the pusher back until it touches the spindle body. Push down and back on the pusher and slightly up on the bottom of the roller assembly until the pusher snaps into place.
2. Pusher in spindle not moving far enough forward to eject a record:

The pusher (71) should move up inside the spindle body, then move forward until it has reached a point flush with, or a maximum of \(.010^{\prime \prime}\) beyond the spindle body. To assure tha the pusher is all the way forward, the spindle roller should be raised high enough by the lift arm (48) at the top of the cam face to slightly compress the roller spring (81). See "TURNTABLE STALLS DURING CYCLE" - 7. If the roller spring is compressed and the pusher does not move far enough forward to eject a record, the spindle should be replaced. If a recordis not pushed completely off the ledge, it may hang up on the spindle momentarily, then drop on the pickup arm when it moves in over the turntable.
3. Lift arm screw loose:

Check screw (47) to determine if it is turned all the way in.
4. Pusher raises outside spindle body:

When the changer cycles, the pusher (71) should first rise up inside the spindle body, then move forward inside the center hole in the record. If the pusher rises outside the spindle body, it will raise the record instead of pushing it off the spindle ledge. Check the pusher shaft (74) to see if it is straight. If the shaft is bent, it will force the pusher forward prematurely.
5. Lift arm roller broken off:

If the lift arm roller (53) is broken off, the lift arm (48) will not turn when the cam (51) revolves.

\section*{TWO RECORDS DROP AT ONCE:}
1. Hole in record too large:

Check the diameter of the hole in the record. An oversize hole will cause two records to drop at once.
2. Spindle slide not fully down:

If the spindle slide is not all the way down, more than one record may be dropped at a time.
(a) Check the slide to be sure it is free and does not bind at any point. Clean out foreign. matter or straighten if necessary. Do not oil.
(b) When records are placed on the spindle, be sure the slide is all the way down. The slide will normally raise slightly as a record is being dropped but it should return to place immediately.
3. Record support binding on spindle or bent out of square with the shaft.

The record support must be able to slide freely by gravity down the spindle. If the support does not follow the records down as they are being ejected, two or more records may be ejected at once.
If binding occurs:
(a) Check the spindle to determine if it is straight. Bend carefully with the fingers if necessary.
(b) Straighten the record support (3) if it is not square with the record support shaft.
(c) If the hole in the record support is not centered over the spindle after checking (a) and (b), bend the support shaft post on the base plate until the hole in the record support is centered over the spindle.
(d) When the pin in the record support shaft has just entered the slot in the record support shaft post on the base plate, the play in the record support as it is swung from one side to the other should be equal on both sides of the spindle. To correct bent position, hold the support shaft and carefully force the record support into the proper position. If the support is loose on the shaft, remove the knob and re-stake with hammer and punch.
4. Record pusher defective:

The record pusher ( 71 ) may be deformed, etc. This may cause two records to drop at once, Replace the pusher.

\section*{RECORD HITS PICKUP ARM:}
1. Pusher in spindle not moving far enough forward to eject record. See "RECORD DOES NOT DROP WHEN CHANGER CYCLES". - 2.
2. Lift arm screw loose:

Tighten lift arm screw (47).
3. Pusher extending beyond outside diameter of spindle:

Cycle changer by hand until roller assembly (78) is at the top of its travel. Using new record as a gauge pass it over spindle to see if it binds at any point. File off high points on pusher (71) with a fine file until record will pass-freely over spindle.
4. Pickup arm not adjusted properly:

The adjustment procedure for the needle set down point is given under "ADJUSTMENTS" If the hinge bearing (97) has been removed or the hinge bearing set screw (9) has been loosened, the relationship between the hinge bearing and the pickup arm locater assembly (98) must be reset. The procedure is as follows:
Loosen the set screw (9) sufficiently to allow the hinge bearing to slide on the pickup arm locater assembly shaft. The set screw may be adjusted with an Allen wrench tirrough the hole in , the adjusting ring (11) located between the two adjusting screws (10) and (15). Place a \(1 / 32\) " shim "between the set down locater (101)and the ratchet arm (102). Turn the control knob to the "OFF" position. Place the pickup arm on the rest. In this position the arm extending from the set down locater should be engaged by the turned up leg on the control lever (44). Take up all the play between the parts by pressing up on the bottom of the ratchet arm and down on the top of the hinge bearing. Tighten the hinge body set screw (9) and remove the shim.

\section*{NEEDLE DOES NOT SET DOWN ON 10" RECORD IN PROPER POSITION:}
1. Pickup arm not adjusted properly;, See "RECORD HITS PICKUP ARM" - 4.
2. Hinge catch does not return to 10 ' record position when changer cycles.
(a) Stop the machine in mid cycle when the lift arm (48) has moved as far out as it will go and is about to move back to its starting position. Lift the pickup arm and see if there is a gap of at least \(1 / 64\) " between the end of the leg on the catch (16) and outside step on the adjusting ring (11). The catch should be free to allow it to be pulled forward against the stop at the end of the leg on the adjusting ring. If there is not enough gap, check the setting of the hinge body and the pickup arm locater, see "RECORD HI'SS PICKUP ARM ' \({ }^{\prime \prime}\) - 4. If the setting is correct, the cam face on the lift arm (48) which contacts the round stud on the bottom of the ratchet arm (26) may be bent. The ratchet arm should be forced around far enough to bring the pickup arm out until the stop on the bottom of the hinge casting meets the stop in the base plate; then, to assure that the pickup arm is out as far as it will go, the lift arm should move the ratchet arm a few degrees further around, which will slightly compress the safety spring (93) and hold the pickup arm out firmly against the stop.
(b) Lubricate the hinge bearing with lubriplate. Do not use heavy grease. If the bearing between the hinge bearing and hinge body binds, the safety spring will compress instead of bringing the hinge body around firmly against the stop.
3. Binding between safety spring and ratchet arm:

If the safety spring (93) binds against the ratchet arm and does not hold the casting on the bottom of the pickup arm locater assembly (98) against the stop inside the ratchet arm, irregular needle set down will result. Disassemble the pickup arm locater assembly (98) by removing the lift arm (48), loosening the hinge bearing set screw (9) and pulling the ratchet arm and pickup arm locater assemblies down from the bottom of the changer. Hold the pickup arm locater shaft in one hand, turn the ratchet arm assembly to slightly compress the safety spring, release, and see if the safety spring returns the pickup locater casting firmly against the stop surface in the ratchet arm assembly. If binding occurs, remove the safety spring, see if the pickup arm locater casting turns freely in the ratchet arm casting. Remove burrs or sharp edge on end of safety spring, stretch safety spring a little to increase tension and replace.
4. Hinge catch dọes not disengage from the hinge cam:

When the trip lever (7) has been depressed, it is held in the position until the catch (16) is disengaged, see "NEEDLE DOES NOT SET DOWN ON 12" RECORD IN PROPER POSTTION" - 6. When the cycle is completed, if the catch does not disengage from the hinge cam (18):
(a) Check to determine if the leg on the catch (16) is sliding down the incline, on the leg on the adjusting ring, (11), see 'NEEDLE DOES NOT SET DOWN ON 12" RECORD IN PROPER POSITION' \({ }^{\prime} 7\).
(b) The catch (16) and the hinge cam (18) are not disengaging when the catch leg is resting on the inside step on the adjusting ring. If this occurs, file the edge of the catch which contacts the hinge cam until the two parts have a clearance between them of about \(1 / 64\) " when the leg on the catch is on the inside step on the adjusting ring.



\section*{NEEDLE DOES NOT SET DOWN ON 12" RECORD IN PROPER POSITION:}
1. Diameter of \(12^{\prime \prime}\) record undersize:

The set down position of the needle, for \(12^{\prime \prime}\). records is determined by the edge of the record striking the trip lever (7). If a \(12^{\prime \prime}\) record has a diameter of less than the standard size of \(117 / 8^{8}\) plus or minus \(1 / 32^{7 \%}\), it may fail to depress the trip lever far enough.
2. Enlarged center hole in record:

An enlarged center hole might fail to set the trip lever because it could produce the same effect as a small record.
3. Pickup arm nbt adjusted properly:

See 'RECORD HITS PICKUP ARM" - 4.
4. Binding between safety spring and ratchet arm:

See 'NEEDLE DOES NOT SET DOWN ON 10"' RECORD IN PROPER POSITION" - 3.
5. Trip lever does not cock when 12" record drops:

Allow a \(12^{\prime \prime}\) record to drop to the turntable and shut off the changer just after it falls, before the pickup arm has a chance to move in over the record. The trip lever (7) should be forced down until the step on the hinge cam (18) passes the edge of the catch (16), preventing the hinge cam and the trip lever from returning to their original position. If the trip lever does not stay down in a depressed position:
(a) Check the catch (16) to see if it is free to move forward and engage the hinge cam.
(b) If the stop on the hinge body (14) is defective, it might allow the pickup arm to move too far out, thus moving the trip lever away from the spindle. This will produce the same effect as an undersized record.
6. Hinge catch does not go into inside step on adjusting ring when trip lever is depressed: When the trip lever (7) is tripped by a falling 12 " record, the leg on the catch (16) should be moved out over the incline between the inside and outside steps on the adjusting ring leg and held in that position by the shoulder on the hinge cam (18) until the pickup arm starts to move in over the record. When this occurs, the leg on the catch should contact the incline and be moved out as it slides down the incline until the catch is disengaged and the trip lever can snap back up to a horizontal position. If the leg on the catch is not moved out far enough to enable it to slide down the incline, file about the \(1 / 64^{\prime \prime}\) chamfer on the edge of the catch leg which contacts the incline.
Check for binding between hinge body (14) and hinge bearing (97). Burrs on the bearing surfaces or lack of lubrication may prevent the hinge bearing from turning freely.

\section*{NEEDLE DOES NOT TRACK ACROSS RECORD PROPERLY:}
1. Ratchet arm does not disengage from the set down locater when a cycle is completed.
(a) There should be a \(1 / 32\) gap between the ratchet arm and the set down locater when the machine is not in cycle. If the gap is small enough to allow the parts to touch and bind as the needle moves across the record, the hinge bearing must be reset. See 'RECORD HITS PICKUP ARM" - 4.
2. Hinge bearing binds.

Place a block under the back end of the tone arm to prevent the needle from touching the turntable. With sensitive gram scale, check the amount of force required to move the pickup arm across the turntable. The force required should not exceed 2 grams. If the pressure required is excessive:
(a) Check the ratchet arm and set down locater for binding. See 1, above.
(b) Check the bearing in the pickup arm post for binding. The bearing is located below the hinge bearing (97). To inspect it, loosen the set screw (9) in the hinge bearing. Un-solder the pickup leads and pull them out through the hole in the hinge bearing. Pull up on the hinge and pickup assemblies. Clean foreign matter or corrosion from the bearings; Lubricate with light oil. To reset position, see "RECORD HITS PICKUP ARM" - 4.

\section*{CHANGER TRIPS BEFORE NEEDLE REACHES END OF RECORD:}
1. Hole in record too large:

If hole in record is too large, the grooves may turn eccentric with the spindle and cause premature tripping.
2. Binding in trip rod bearings:

With the trip released; check the trip rod for play in the bearings. It should be free to turn without binding.

CHANGER DOES NOT CYCLE WHEN RECORD HAS BEEN PLAYED:
1. Binding in trip rod bearings. See "CHANGER TRIPS BEFORE NEEDLE REACHES END OF RECORD" - 4.
2. No eccentric trip groove on record:

All standard records made today have an eccentric trip groove, but some records made in the past did not have this groove. When records of this type are being played the control knob must be turned to "REJ'" at the end of the record.

RCD. CH. PAGE 19-10 SEARS
MODELS 101.211, SEARS, ROEBUCK \& CO. 101.211-1, 101.211-2,
101.211-3, 101.211-4


Figure 3
3. Ratchet pawl not engaging the ratchet sector: The ratchet pawl (29) must press against the ratchet sector forcing it back when the motion of the pickup arm is reversed. If the pawl does not contact the ratchet sector or slides over it:
(a) Check the pawl (29) for burrs around the hole.
(b) Be sure the pawl is free to turn on the bearing. If the drive pin (28) is driven down too far causing binding, the pin may be relieved by tapping up on the shank.
(c) Check the pawl spring (27) for insufficient tension.
(d) Check the point on the pawl. It should be sharp to enable it to dig into the ratchet teeth. Sharpen with stone if necessary.
4. Ratchet sector too far away from ratchet pawl:

If the ratchet sector (34) is too far away from the pawl (29), the eccentric motion required to operate the trip will be excessive. If necessary, bend the trip bracket slightly to reduce this distance. If the sector is too close to the pawl, excessive trip pressure will result.
5. Needle jumps out of eccentric groove in record:
(a) Check trip pressure, it should not exceed 8 grams for the trip shown in Fig. 2. If the pressure, is excessive, see "CHANGER TRIPS BEFORE NEEDLE REACHES END OF RECORD" - 4 above.
(b) The record may be defective. The trip groove is often too shallow. Check with a record which is known to be good.
(c) The point on the needle may be bad. Check for a worn point.
(d) There may be binding in the pickup bearing or ratchet arm, See 1 and 2, 'NEEDLE DOES NOT TRACK ACROSS RECORD PROPERLY".
6. Clutch pawl binding on cam face:

On the trip mechanism shown in Fig. 2 the clutch pawl (63) must be free to move forward and engage the pinion gear teeth when the trip rod releases it. Check for burrs or foreign matter lodged between the pawl and the cam. Do not oil as this might collect dirt and gum up the pawl.

\section*{PICKUP ARM STRIKES RECORDS ON SPINDLE WHEN IT RAISES OR PICKUP ARM REST WHEN IT MOVES OUT:}

Pickup arm height not adjusted properly. See instructions for adjusting the pickup arm height under "ADJUSTMENTS".

\section*{TURNTABLE SPEED TOO SLOW:}
1. Binding in turntable bearing: Check the turntable bearing for freedom. Hold the motor idler wheel (2) out of engagement with the turntable and spin the turntable by hand to see if it turns readily and coasts for a long time. Clean out the bearings to remove foreign matter and lubricate with light oil.
2. Motor pulley too small in diameter: Replace the motor pulley with one having a greater diameter.
3. Line voltage too low: The line voltage should not be less than 100 volts or the turntable may be too slow.
4. Operating temperature too low. If the machine has been stored in a cold place or operated in surroundings at a temperature of less than \(60^{\circ} \mathrm{F}\)., the turntable speed may be too slow.

\section*{TURNTABLE SPEED TOO FAST:}

Motor pulley too large in diameter. Replace the pulley with one having a smaller diameter or grind one or two thousandths off the pulley.

\section*{TURNTABLE STALLS DURING CYCLE:}
1. Motor idler not engaging turntable. See"'TURNTABLE DOES NOT REVOLVE WHEN CONTROL KNOB IS TURNED TO "ON" POSITION" - 4.
2. Turntable bearing, tight. See "'TURNTABLE DOES NOT REVOLVE WHEN CONTROL KNOB IS TURNED TO 'ON"' POSITION" - 5 .
3. Operating temperature too low. See "TURNTABLE SPEED TOO SLOW" - 4.
4. Line voltage too low: The line voltage should not be less than 100 volts.
5. Binding in drive mechanism:
(a) Remove lift arm (48) and hold idler (2) away from turntable or remove idler wheel. Cycle machine, turning turntable slowly by hand. The cam should turn freely for the complete revolution'without binding at any point. If binding occurs check for foreign matter in the gear teeth, a bent cam bearing or bent spindle bushing.
(b) Replace lift arm, loosen spindle screw (77) and raise spindle high enough to clear the lift arm cam when the machine cycles. Hold the pickup arm lift rod (94) up so the end of the lift rod does not contact the lift arm cam. Cycle the machine by hand. The entire cycle should be free, without binding at any point. If binding occurs, check the lift arm bearing for freedom and the lift arm roller to be sure it is not bent causing binding in the cam track.
6. Binding between pickup arm lift rod and lift arm cam face: Cycle machine stopping it halfway through the cycle just as the lint arm is about to return. Lift pickup arm and raise lift rod (94) by pulling up on the adjusting screw (13) as high as it will go. Feel the lift arm (48) for play. The lift rod may still touch the lift arm cam face, but it should not bind. If binding occurs, the lift arm bearing may be bent or the fiber washer (59) under the lift arm should be removed to lower the lift arm.
7. Spindle roller spring compressed too far. Cycle the changer and watch the relationship between the bottom of the roller spring housing (78) and the roller (79). Just before the top of the lift arm cam raise is reached, the roller, spring housing should stop its upward motion and the roller should continue up \(.005^{\prime \prime}\) to . \(047^{\prime \prime}\) more, slightly compressing the roller spring (81). If the spring compresses too much, the changer may stall on the shut off cycle. Check the lift arm bearing to determine if it is square with the base plate. It should be \(90^{\circ}\) to the base plate within \(174^{\circ}\). If it is bent, carefully pound into place with a soft mallet. If is straight and the roller spring is being compressed too much, remove the fiber washer (59) between the lift arm and the steel washer under it. The dimension on the spindle between the shoulder on which it rests and the bottom of the roller should be \(17 / 8^{\prime \prime}\) plus or minus . \(010^{\prime \prime}\). An oversize spindle could also cause a binding condition.
8. Motor weak. In cases where everything checks all right but the changer still stalls in cycle, the motor may be weak.


Figure 4

\section*{CHANGER CONTINUES TO CYCLE:}
1. Trip catch not engaging properly. See 2, "CHANGER TRIPS BEFORE NEEDLE REACHES END OF RECORD".
2. Insufficient tension on trip spring. See 3, same as above.
3. Binding in trip rod bearings. See 4, same as above.
4. Defective, trip catch. See 5 , "CHANGER DOES NOT CYCLE WHEN RECORD HAS BEEN PLAYED".
5. Reject control holding trip open. Check the control knob (25), control link (41), and control lever (44) for binding to determine if the control assembly is holding the trip in a disengaged position.
6. Trip rod not holding clutch pawl out of engagement with pinion teeth. On changers having the trip shown in Fig. 2, the end of the trip rod (60) should contact the bent up section of the clutch pawl (63) and push the pawl out of engagement with the pinion teeth. If the trip rod is not free to meet the clutch pawl, continuous cycling will result.
(a) See if the trip spring (62) is in place.
(b) Check the trip rod (60) for freedom in its bearings.

\section*{NOISE DURING PLAYING OF RECORD:}
1. Rumble:
(a) From motor: If a low pitched rumbling sound comes from the loud speaker while a record is being played, check the motor grommets (67) to be sure the motor is freely suspended on them. The motor lead wires should have slack to allow the motor to float. Motor rumble may also come from an out of balance motor rotor. In this case, the motor should be replaced.
(b) From bearings: Defective turntable bearings can cause rumble. Check for foreign matter in the bearings, defective balls, binding between balls and ball retainer. Rough surface on washers. Clean ball bearing, sleeve bearing and washers, lubricate with lubriplate or light oil.
2. Defective motor idler wheel:

A rapid thumping sound while the motor is running may indicate a flat spot on the motor idler wheel (2). Remove the turntable and check the rubber tire on the idler. If the surface of the rubber tire is not smooth and even, replace the idler.
3. Defective needle:

A bad needle will cause loud needle scratch or hiss through both the speaker and the air directly from the needle. For reduced needle scratch and 'needle talk" use a needle with high vertical compliance such as an offset "dog leg' type needle.
4. Defective record:

Worn or defective records cause needle scratch and distortion of the recorded sound. If the record is warped, it may slip on the other records causing "wow", a waver in the recorded sound. An enlarged hole in the record can also cause "wow".
5. Turntable scrapes:

If a scraping sound occurs as the turntable revolves, check:
(a) Turntable warped, causing outer rim to rise and fall.
(b) Motor idler (2) bent.
(c) Wires beneath turntable rubbing.
6. Squeaks:

Squeaking sound, as changer operates indicates lack of oil. Lubricate points indicated under "LUBRICATION".

\section*{NOISE DURING CYCLING:}
1. Squeaks: See "LUBRICATION".
2. Grinding sound indicates lack of lubrication or worn parts:

Lubricate spindle roller assembly in bearing between it and spindle body.
DISTORTION OF RECORDED SOUND:
1. Defective needle. See 3, "NOISE DURING PLAYING OF RECORD","
2. Defective record. See 4, "NOISE DURING PLAYING OF RECORD"'.
3. Defective pickup cartridge:

When the cartridge is defective, the recorded sound may be distorted, weak or stop entirely.
4. Defective amplifier:

Check phonograph, amplifier and speaker.
1. Defective cartridge. See 3, "DISTORTION OF RECORDED SOUND" - 4.
2. Defective wiring:

Check pickup leads for a shorted or open lead.
3. Defective amplifier. See 'DISTORTION OF RECORDED SOUND" - 4.

\section*{EXCESSIVE RECORD WEAR:}
1. Binding in pickuparm. See 1 and 2, "NEEDLE DOES NOT TRACK ACROSS RECORD PROPERLY". 2. Defective needle. See 3, "NOISE DURING PLAYING OF RECORD".
3. Excessive needle pressure:

The pickup arm is designed to give the proper needle pressure when an aluminum cased cartridge is used. If a cartridge with a die-cast housing is used, a compensating spring must be used to bring the needle pressure down to the usual standard of 1 oz . to \(1 \frac{1}{2} \mathrm{oz}\). If the needle pressure is too great on a compensating spring, bend the long end of the spring.

\section*{CHANGER DOES NOT SHUT OFF AFTER LAST RECORD HAS BEEN PLAYED:}
1. Record support binding on spindle:

The record support (3) must rest on the offset shoulder of the spindle or the changer will not shut off.
See 3, "TWO RECORDS DROP AT' ONCE".
2. Changer stalls during shut off cycle.

See TURNTABLE SECTIONS; under "SERVICE INFORMATION.
3. Cutoff rod not engaging shoulder on spindle roller spring housing.

On the shut off cycle, the end of the cutoff rod (42) should contact the shoulder on the bottom of the spindle roller spring housing (78) and turn the cutoff rod over \(90^{\circ}\). If the end of the cutoff rod passes under the roller spring housing as the machine cycles, on the shut off cycle, check:
(a) The record support to be sure it is resting on the spindle shoulder, see 1 , above.
(b) The spindle to see if it is being held down in place by the spindle screw (77).
(c) The lift arm screw (47) to be sure it is tight.
(d) The bent up end of the cutoff rod (42) may be short. Replace if necessary.

PICKUP ARM DOES NOT SET DOWN ON REST AFTER LAST RECORD HAS BEEN PLAYED:
Control lever does not engage set down locater.
On the shut off cycle, one leg of the control lever (44) should catch the set down locater (43) holding it to prevent the return spring (100) from pulling the pickup arm in. The pickup arm should be held against the stop in the base plate. In this position, the nest in the pickup arm should be directly above the pickup rest.

\section*{CHANGER SHUTS OFF PREMATURELY:}
1. Spindle roller spring compressed too far. See 7, "TURNTABLE STALLS DURING CYCLE".
2. Roller spring in spindle too weak:

When the bottom record of a stack of ten 12 " records is being ejected from the spindle ledge, the roller spring (81) should not compress until just before the roller reaches the top of the cam incline on the lift arm. If the roller spring is compressed under the load of a full stack of records it may cause premature shut off. Replace the roller assembly (78) if necessary.
3. Record too thick:

The changer is designed to play standard records. If an old style \(1 / 8\) ' thick record is used, the changer will shut off instead of dropping the record.
4. Cutoff rod not being reset:

After the shut off cycle, when the cutoff rod (42) has been turned to throw the switch to the 'OFF'" position, it should be returned to its original position the next time the machine cycles by the bent up end of the cutoff rod, contacting the round stud on one leg of the control lever (44). The flat spring (46) acting against the cutoff rod should throw the rod against its stop on the lift arm (48) and hold it there. If the cutoff rod is not fully, turned, the bent up end next to the spindle may stick up high enough to prematurely contact the shoulder on the roller spring housing (78).
(a) Check the lever spring (46) for tension. Remove and bend slightly to increase tension if necessary.
(b) Lubricate the cutoff rod bearings and around the lever spring with lubriplate or oil.
(c) Check the clearance between the end of the cutoff rod (42) which passes under the control lever (44) and the bottom of the round stud on the control lever. When the cutoff rod is in its normal operating position, it should not clear the bottom of the round stud by more than enough to completely turn the end of the cutoff rod from a vertical position back to a horizontal position.


\section*{MOTOR}

Connect the motor cord to a source of 105-115 volt 60 cycle current only. If it is desired to operate the changer on 50 cycle current, a special motor pulley (Part No. 17X412-11) must be used in place of the one supplied with the changer in order to drive the turntable at the required speed of 78 R.P.M.
Do not under any circumstances connect the motor to a source of direct current or alternating current of any other frequencies.

\section*{PICKUP}

The high impedance crystal cartridge supplied may be of the fixed permanent point or removable needle type. If it is the latter, use a needle which is not more than \(11 / 16\) inches long for most satisfactory results.
Some desirable qualities of a good needle are faithful reproduction, low surface scratch or hiss, long wearing qualities, minimum record wear and rugged construction.
The Webster-Chicago Nylon Needles are particularly adaptable for use with your Webster "156". The "Knee-action" of the nylon knee permits the needle to ride the record groove in a gentle, floating motion, protects valuable records
from unnecessary wear . . . virtually eliminates breakage of the sapphire tip if accidentally dropped . . . greatly lengthens needle life . . . produces a pleasing harmonious tonal balance and delivers remarkably authentic reproduction. DO NOT USE SINGLE PLAY OR CACTUS NEEDLES FOR AUTOMATIC OPERATION.

\section*{OPERATION - AUTOMATIC}
1. Turn the Record Selector Post to " 10 ", or " 12 " for ten or twelve inch records.
2. Turn the Selector Control (sleeve of ON button) to AUTOMATIC.
3. With the Record Ballast Weight turned back, place up to ten \(12^{\prime \prime}\) records, or twelve \(10^{\prime \prime}\) records on the spindle so that the bottom record rests on the step of the spindle and the shelf of the Record Selector Post.
4. Turn the Record Ballast Weight forward to rest on the top record.
5. Press the ON button.

To "reject" any record while playing in the AUTOMATIC position, press the ON button.
NOTE: The OFF button may be pressed during any portion of the change cycle. The Pickup Arm may be moved manually at any time without damage to the mechamism. However, after
the last record has been played, the Pickup Arm is automatically locked in position and should not be handled until it has come to rest on the OFF button.
6. After the last record has been played, the entire stack may be removed from the turntable at one time. The simplest procedure is as follows:
a. Turn the Record Ballast Weight out of position.
b. Place the fingers of both hands under opposite edges of the bottom record.
c. Do not apply pressure to the top record. (Keep your thumbs free.)
d. Lift the stack of records straight up, following the contours of the spindle. This permits the stack of records to follow the curve of the spindle without binding and greatly facilitates the removal of the stack.

\section*{OPERATION — MANUAL}
1. Turn the Record Selector Post to the 12 " posi-
tion. (This is not essential but permits more clearance in loading and unloading records.)
2. Turn the Selector Switch (sleeve of ON button) to MANUAL.
3. Place a record on the Turntable. It may facilitate this operation if the record is placed over the spindle at an angle, with the edge of the record held below the level of the Record Selector Post Shelf. Records may be removed in this same manner.
4. Press the ON button.
5. Place the needle gently on the edge of the record. Do not lift the Pickup Arm too high as this will cause it to catch in the Automatic Stop Lock position. Particular care should be exercised if your pickup has a sapphire point needle. Although the sapphire is very hard and long wearing, it is extremely brittle and may be fractured or chipped if dropped on the record.
6. To stop the mechanism at any time, press the OFF button.

\section*{SERVICE INFORMATION AND ADJUSTMENTS}

All units are accurately adjusted, lubricated and tested at the factory. However service repairs and adjustments sometimes become necessary. This bulletin should be studied carefully before making any adjustments or replacing parts.
Service parts are available from your WebsterChicago distributor. All parts must be ordered by piece part number and also record changer model and production number, stamped on the under side of the main plate.
The functions and most probably misadjustments of the main assemblies are as follows (reference numbers refer to the exploded view)

\section*{THE AUTOMATIC TRIP FAILS TO FUNCTION}

The Main Cam Assembly (38) and Actuating Gear (36) are the heart of the record changer. The Main Cam Assembly drives the mechanisms as-


Fig. 1
sociated with the action of the Pickup Arm (5) and the Record Selector assemblies. It, in turn, is driven by the gear train \((29,30,31)\) and the Turntable which is rim driven by the phonograph motor.
The Main Cam Assembly and Actuating Gear is put in motion or "tripped" by means of the "automatic" trip or by the manually operated "reject" trip. When the movement of the Pickup Arm toward the spindle is greater than \(1 / 8^{\prime \prime}\) in \(1 / 2\) revolution of the Turntable, the Automatic Trip Arm (33) trips the Velocity Trip and Roller Assembly (37). This releases the Actuating Pawl on the Main Cam Assembly (38), allowing it to engage the Main Cam Actuating Gear (36) and driving it through the change cycle. The pressure from the Automatic Trip Arm required to actuate the trip mechanism is negligible.


Fig. 2

The Automatic Trip Arm (33) follows the movement of the Pickup Arm through a weighted friction clutch (32). This clutch must be kept free of oil and grease. Should it become necessary. clean the clutch parts with carbon tetrachloride. This clutch should operate the trip mechanism without placing undue drag on the movement of the pickup arm.
Also check for:
1. Velocity Trip and Roller Assembly binding.
2. Slight burr on end of the actuating pawl or on the underside of the Velocity Trip hook.
3. Actuating Pawl stuck (part of Main Cam Assembly (38) engaged by the hook end of the Velocity Trip and Roller Assembly (37).
4. Automatic Trip Arm (33) bent and not hitting the Velocity Trip and Roller Assembly (37).
5. Automatic Trip Arm (33) fails to touch the Velocity Trip and Roller Assembly.
6. Velocity Trip and Roller Assembly (37) rubbing on the underside of the Main Cam Actuating Gear (36).
7. No velocity lead-in groove or eccentric groove in the center of record.
8. Foreign matter in record groove.
9. Badly worn record.
10. Badly bent or worn needle.

\section*{IF THE "REJECT" TRIP FAILS TO FUNCTION}

When the "On" button is pressed, the hair spring of the "reject" trip lever arm (65), actuates the Velocity Trip and Arm Assembly, putting the change mechanism in cycle.
Check for:
1. "Reject" trip hair spring of Lever (65) bent or broken.
2. Velocity Trip and Roller Assembly (37) binding.

adjust if necessary oy bending at point "d".
Fig. 3
3. Actuating Pawl (part of Main Cam Assembly 38) stuck.

\section*{IF THE MECHANISM CONTINUES TO CYCLE}

At the completion of the change cycle, the Actuating Pawl is disengaged from the Main Cam Assembly Actuating Gear (36) by the hook end of the Velocity Trip and Roller Assembly (37) which has been returned to its normal position by the reset points on the Main Cam Drive Gear (Fig. 3). This hook should be adjusted for about \(1 / 64^{\prime \prime}\) clearance from the bottom of the Main Cam Drive Gear (36), Fig. l. Greater clearance may permit the pawl to bounce past the hook and reengage, causing the mechanism to continue to cycle.
If the clearance between the lip on the Velocity Trip Lever and the edge of the Main Cam is too small, it will prevent the hook end of the Velocity Trip Lever from engaging the trigger. Adjust the clearance between the lip ( \(D\), Figs. 3 and 5) on the Velocity Trip Lever of the Main Cam to be within \(1 / 64\) " when the roller is contacting the point of one of the protrusions on the Actuating Gear.
Also check for:
1. Velocity Trip and Roller Assembly (37) rubbing on Main Cam Actuating Gear (36).
2. Manual Trip Lever (65) binding.
3. "Disengage Roller" broken on Velocity Trip and Roller Assembly (37).

\section*{PICKUP ARM LIFT TOO HIGH OR TOO LOW}

The vertical movement of the pickup arm is controlled by the angle of the Pickup Arm Raising Lever (40), Fig. 4. The needle should approach the top record of a full stack of \(10^{\prime \prime}\) records on the turntable with approximately \(1 / 8^{\prime \prime}\) clearance.


Fig. 4

To adjust:
1. Put a full stack of \(10^{\prime \prime}\) records ON THE TURNTABLE.
2. Press the "On" button and rotate the Turntable clockwise until the needle clears the top record of the stack by about \(1 / 8^{\prime \prime}\).
3. Be sure the notch in the Pickup Arm raising disc (34) engages the pickup arm raising lever (40).
4. If the needle does not clear the top record or if it raises too high, adjust by bending the pickup arm raising lever at the point indicated in Fig. 4.
CAUTION: All adjusting bends should be made slowly, using slight but firm, easy pressure.
Be sure the set screws of (A of Fig. 1) of the pickup arm raising disc are not loose and are properly positioned in the alignment holes as explained in the paragraph on Needle Setdown Indexing.

\section*{NEEDLE SET DOWN INDEXING INCORRECT}

The horizontal movement of the pickup arm (5) is controlled by the eccentric excursion of the Pickup Arm Raising Lever (40) moving the Pickup Arm Raising Disc (34) when actuated by the Main Cam Assembly (38). The eccentric screw (part of 6), accessible through the top of the pickup arm (5), should take care of any normal position adjustment. Turn this screw clockwise to index the needle in toward the spindle and counter-clockwise to index the needle out away from the spindle.
Should further adjustment be necessary, proceed as follows:
1. Set the eccentric screw, just mentioned, to \(\alpha\) middle position.
2. Set the Record Selector Post (42) to the \(10^{\prime \prime}\) position.
3. Operate the mechanism by revolving the Turntable manually until the needle drops to within \(1 / 8^{\prime \prime}\) of a \(10^{\prime \prime}\) record on the turntable.
4. Be sure the notch in the Pickup Arm Raising Disc (34) engages the Pickup Arm Raising Lever (40).
5. With a No. 8 Bristol wrench in each of the set screws of the Pickup Arm Raising Disc (35) as indicated in A, Fig. 1, alternately loosen one screw and tighten the other until the needle rests above the record lead-in groove at the desired point.
6. Complete the change cycle of the mechanism and position the Pickup Arm on the "off" button (10). If necessary, bend the tongue of the Pickup Arm Raising Disc closer to or away from the Base Plate Post until the Pickup Arm is correctly seated on the "off" button when the tongue is touching the Base Plate Post.
NOTE: All adjusting bends should be slight but firm, easy bends.
7. Be sure that both set screws are tight when this adjustment is completed.
8. Turn the Record Selector Post to \(12^{\prime \prime}\) and check the needle drop on a \(12^{\prime \prime}\) record. Make any additional adjustments with the eccentric screw mentioned previously.

\section*{PICKUP ARM DROPS OFF THE "OFF" BUTTON}

The upturned end of the pickup arm pivot shaft bracket (35) prevents the pickup arm from falling off the "off" button. There should be approximately \(1 / 64\) " clearance between the tongue of the Pickup Arm Raising Disc (34) and the bottom of the groove formed by the bracket and the Base Plate Post. Bend the Bracket end up or down to secure proper positioning of the disc tongue and the Pivot bracket. Be careful to bend the end only or the Bracket will bind on the Pickup Arm Pivot Shaft (7).
The Bracket should not be too high or the disc tongue will rub on it when the needle approaches the edge of a 12 " record, causing "glide in" on the first few grooves of the record.

\section*{CHANGE CYCLE STARTS BEFORE END OF RECORD}

If the trip assembly chatters while the changer is running, or if the changer cycles before the entire record is played, there is probably insufficient clearance between the hook end of the Velocity Trip and Roller Assembly (37) and the Actuating Gear (36). This clearance should be adjusted to be within \(1 / 32^{\prime \prime}\) to \(1 / 64\) " by bending the lever at point "C" shown in Fig. 5.


Fig. 5

\section*{MORE THAN ONE RECORD IS DROPPED DURING A CHANGE CYCLE}

The floating latch at the top of the Record Spindle is so spaced that only one record at a time can slide between the heel of the latch and the step of the spindle. The hole in the latch is elongated
so that the latch can slip into the spindle recess when records are being removed.
If more than one record is dropped at a time, it will be found to be due to:
1. Foreign matter in spindle recess causing the latch to stick.
2. Exceptionally thin records. Standard records are .075" - . \(090^{\prime \prime}\) thick.

\section*{RECORD DROPS ON PICKUP ARM}

As the change cycle is started, the first motion of the inclined outer bottom surface of the Main Cam (38) causes the Record Selector Post (42) to move toward the Spindle about \(3 / 32\) inch. This position is maintained until the Pickup Arm has made its full outward lateral excursion at which time the Record Selector Post again moves toward the spindle, causing the bottom record to drop into playing position.
If the Record Selector Post (42) has been bent back, away from the Record Spindle, it is possible for a standard record to rest on the spindle step with its edge just over the edge of the Record Selector Post shelf. Then as the change cycle is started, the record is pushed off the spindle by the initial movement of the Record Selector Post, so that it drops on the Pickup Arm.
To correct this condition, the Rocker Arm Assembly must be adjusted so that the Record Selector Post is brought nearer to the spindle. This adjustment is made in the following manner:
1. With the mechanism at rest, remove the Turntable and replace the Record Spindle. Set the Record Selector Post to the position for playing 12 -inch records and place a 12 -inch record on the Record Spindle.
2. Insert a short screwdriver through the motor-


Fig. 6
board opening into the screw slot as shown at " \(A\) " in Fig. 6. Clockwise rotation of the screw will increase the distance between the Record Spindle and the Record Selector Post; counterclockwise rotation will decrease it.
It is recommended that the distance between the edge of the record and the step of the Rcord Slector Post be held to just over \(1 / 32\) of an inch so that records with rough or sharply beveled edges will not catch on the outer edge of the Record Selector Post.
CAUTION: Be certain that \(\alpha\) standard size record is used in making this adjustment. A standard \(10^{\prime \prime}\) record measures \(97 / 8^{\prime \prime} \pm 1 / 32^{\prime \prime}\) diameter. A standard \(12^{\prime \prime}\) record measures \(117 / 8^{\prime \prime} \pm 1 / 32^{\prime \prime}\) diameter.

\section*{PUSH OFF POST ANGLE INCORRECT}

The Record Selector Post should be adjusted so that the curve of the shelf matches the curve of the record. See Fig. 7.
To adjust this angle:
1. Turn the Record Selector Post to the " 10 " position.
2. Place a ten-inch record on the Spindle in the normal position for automatic playing.
3. With a No. 8 Bristol wrench in each of the set screws (point A, Fig. 7), alternately loosen one and tighten the other until the Record Selector post angle is correct. Be sure that both set screws are tight at the completion of this adjustment.


Fig. 7

\section*{ERRATIC INDEXING}

Indexing in the \(10^{\prime \prime}\) or the \(12^{\prime \prime}\) position is controlled through the presence or absence of pressure from the Compression Spring (47A) on the Pickup Arm Raising Lever (40). The compression on this spring is changed as the Record Selector Post (42) is changed to the \(10^{\prime \prime}\) or \(12^{\prime \prime}\) position. Improper adjustment of the spring tension will result in erratic indexing. In the \(12^{\prime \prime}\) position, the spring should be just free. In the \(10^{\prime \prime}\) position, the compression of the spring holds the stud of the Pickup Arm Raising Lever (40) against the outside edge of the groove, forcing the stud to travel the inside edge or the outside edge of the groove in the bottom of the Main Cam (38).
To adjust:
Bend the slotted arm (part of 40) for proper tension and smooth clearance of the spring guide arm (47).

\section*{GLIDE IN ON 12" RECORDS}
1. Check tension of compression spring (47A) as explained above. Spring should be free in \(12^{\prime \prime}\) position.
2. Remove any cause of friction in Index Lever (47).
3. Tongue of Pickup Arm Raising Disc (34) should not touch beveled edge of pickup arm pivot shaft bracket (35) when the needle is on the edge of a 12 " record. Bend the end of the bracket if necessary.

\section*{"WOW"}

If the speed of the Turntable varies during each revolution, check:
1. Defective Idler wheel (24).
2. Dirt or foreign matter inside the rim of the Turntable.

\section*{LAST RECORD CONTINUES TO PLAY}
1. Check the record spindle to be sure that it moves up and down freely.
2. With no records on the spindle, check the Automatic Shut Off Lock Lever (44). The lower hook end of this arm ("C") shoud catch the Pickup Arm Raising Disc (34) at the beginning of the cycle to prevent travel of the Pickup Arm, causing it to drop on the OFF button. With no records on the Spindle and with the mechanism at rest, this hook should clear the top of the Pickup Arm Raising Disc by \(1 / 32^{\prime \prime}\). Adjust, if necessary, by inserting a screw driver in the hole in the bottom base plate and bending
lip "D". Never attempt to move the Pickup Arm Raising Disc up or down.
3. The elevated hook " \(A\) " on the Automatic Shut Off Lock Lever will sometimes lock with the bracket " \(B\) " on the Record Selector Post (50) if the drop of the record is delayed. More clearance can be obtained by bending the elevated hook " \(A\) " away from the bracket.

\section*{LAST RECORD DOES NOT PLAY}

The weight of the records on the Spindle keeps the Automatic Shut Off Lock Lever (44) from dropping and engaging the Pickup Arm Raising Disc (38), thus permitting the mechanism to continue to cycle.
The Push Off Post (50) moves forward slightly at the beginning of each change cycle. The bracket " \(B\) " on this post is then underneath the elevated hook " \(A\) " on the Automatic Shut Off Lock Lever (44). This forward movement takes place before the last record drops so the change cycle should continue. However the dropping of the last record releases the Automatic Shut Off Lock Lever, permitting it to drop and shut off the mechanism when the change cycle starts after the last record.
If the last record does not play:
1. Bend the elevated hook "A", Fig. 8 forward so that it will overlap the Push Off Post bracket " H " about \(1 / 32\) " with a record on the spindle.


Fig. 8

\section*{MOTOR DOES NOT SHUT OFF}
1. OFF button stuck.
2. Defective switch.
3. OFF button Shaft Spring (62) has too much tension.
4. Roller on Switch Lever binding.
5. Switch Lever binding on switch frame.
6. Excessive counterbalancing on Pickup Ârm.

\section*{REPLACEMENT OF PARTS}

\section*{REPLACE PICKUP CARTRIDGE}
1. Press upward on the clip fastener at the forward end of the Pickup Mounting Bracket and
raise the Pickup Arm to \(\alpha\) vertical position.
2. Remove the screws holding the cartridge in place and replace the cartridge.

\section*{REPLACE PICKUP ARM}
1. Press upward on the clip fastener at the forward end of the Pickup Arm Mounting Bracket.
2. Raise arm to vertical position.
3. Remove screws holding arm and bracket.
4. After the new Pickup Arm has been installed, press the arm and the Mounting Bracket together until the clip latches.

\section*{REMOVE THE SUB-PLATE ASSEMBLY}

In the event that it becomes necessary to replace any of the major parts in the sub-plate assembly, the entire assembly should first be removed from the motorboard.
1. Remove the Record Spindle which is held in by a clip under the sub-plate.
2. Remove the Turntable.
3. Remove the Pickup Arm in the manner outlined previously.
4. Unhook the Rocker Arm Return spring.
5. Remove the Rocker Arm Pivot Pin.
6. Remove the five No. \(8-32 \times 3 / 4\) R.H. screws holding the sub-plate studs and the No. \(8-32 \times 3 / 8\) R.H. screw holding the center post to the motorboard. Note that one of the \(8-32 \times 1 / 4\) R.H. screws is accessible through the Pickup Arm hole in the Crescent Assembly.
It should not be necessary to remove the Crescent Assembly except for replacement or to remove the complete Rocker Arm Assembly.

\section*{REPLACING THE SUB-PLATE ASSEMBLY}
1. Reverse the above procedure making certain that all parts fall into their proper positions.
2. Particularly note the Selector Lever and Selector Lever Compression Spring to see that they are in position with the lever through the slot in the Pickup Arm Raising Lever Bracket.

\section*{REPLACE PICKUP ARM BRACKET AND SHAFT ASSEMBLY}
1. Loosen Bristol screws in Pickup Arm Raising Disc.
2. Remove Disc and Clutch parts by sliding them off the bottom of the Pickup Arm Shaft and pull shaft out of changer from. above.
To replace, reverse the procedure and adjust the Pickup Arm Raising Disc for proper operation.

\section*{REPLACE RECORD POST AND ROCKER ARM ASSEMBLY}
1. Remove the Pickup Arm Assembly.
2. Remove the four nuts under the main plate which hold the Crescent Assembly.
3. Unhook the Rocker Arm Return Spring.
4. Remove the Rocker Arm Pivot Pin.
5. Lift out the Record Selector Post, Rocker Arm and Crescent Assembly as a unit.
6. In replacing the Rocker Arm Assembly, note paragraph "Replacing the Sub-Plate Assembly."

\section*{LUBRICATION}

Model 156 Record Changers leave the factory completely oiled and lubricated. Under normal conditions this should be sufficient for approximately one year or 1,000 hours of operation. When operated under extreme conditions of dust or heat, this operation should be performed more frequently as required.
NOTE: AVOID EXCESSIVE LUBRICATION.
Do not permit any oil or grease to get on the rubber idler drive wheel or the Motor Sleeve (Illus. 11 and 21, Fig. 4), on turntable drive rim or on the automatic trip arm clutch. Any oil or grease on these points should be removed using carbon tetrachloride.
The recommonded lubricants and points of lubrication are as follows:

\section*{A- No. 10 OIL (Apply With Small Oil Can Or Medicine Dropper)}
1. Motor Bearings. Saturate top and bottom felts.
2. Pickup Arm Shaft (Illus. 22, Fig. 6). Apply one drop each to bottom bearing point, bracket hole and hole through Main Base Plate.
3. Ball Bearing Assembly (Illus. 7, Fig. 4).
4. Idler Wheel Felt (Illus. 13, Fig. 4).

\section*{B - LUBRIPLATE (Apply With Small Brush)}
1. Idler Wheel Link (Illus. 16, Fig. 4).
2. Turntable Shaft Stud.
3. Pickup Arm Hinge Pins.
4. Knife edge of Raising Lever (Illus. 33, Fig. 7).
5. Main Cam Bearing. (It is necessary to remove the sub-plate Assembly to lubriplate this bearing. See paragraph Mechanical Repairs "C" To Remove the Sub-Plate Assembly.)
C-STA-PUT (Apply With Small Brush)
1. Teeth of Main Cam Actuating Gear (Illus. 43, Fig. 7).
2. Track of Main Cam Gear (Illus. 42, Fig. 7).
3. Teeth of Large and Small idler gears (Illus. 9, Fig. 4).
4. Raising lever Bracket bearing surfaces (Illus. 33, Fig. 7).


RCD. CH. WEBSTER PAGE 19-9


RCD. CH. PAGE 19-10 WEBSTER
MODEL 156 WEBSTER CHICAGO CORP.

REPLACEMENT PARTS LIST
\begin{tabular}{|c|c|c|c|c|c|}
\hline Illustration No. & Part No. & Part Name and Description & Illustration No. & Part No. & Part Name and Description \\
\hline 1 & 49P074 & Record Stabilizor Weight & 28 & 41P333 & Shoulder Scrow \\
\hline & & & 29 & 47P024 & Lange Fibre Gear \\
\hline 2 & 46P126 & Stabilizor Woight Tonsion Spring & 30 & 47P023 & Small Fibre Gocr \\
\hline 3 & 45P464 & Stabilizor Spring Retaining Bracket & 31 & 45 P342 & Idler Gear Coupler \\
\hline & & & 32 & 41P576 & Clutch Tension Woight \\
\hline 4 & 49X029 & Record Selector (Pushofi) Poat & 33 & 46P568 & Automatic Trip Arm \\
\hline 5 & 49X068 & Pickup Arm Loss Hardware and Cartridge & 34 & \(11 \times 227\) & Pickup Arm Raising Disc and Rub Ameembly \\
\hline & \(21 \times 280\) & & 35 & 45 P 47 & Tone Arm Lift Stop Bracket \\
\hline 6 & \(21 \times 280\) & Pickup Arm Mouning Hinge & 36 & \(11 \times 032\) & Main Cam Actuating Goar \\
\hline 7 & 11×136 & Pickup Arm Base Shaft Ascombly & 37 & \(11 \times 047\) & Volocity Trip and Rollor Aneombly \\
\hline 8 & & Pickup Arm - Record Post Base Crescont Ascombly & 38 & \(11 \times 033\) & Main Cam Ancombly \\
\hline 8 & & Pickup Arm - Rocord Post Daso Croscont Aneombly & 39 & \(46 \mathrm{P044}\) & Racising Lovor Tonsion Spring \\
\hline 9 & 49 P 026 & "ON" Button & 40 & \(11 \times 046\) & Pickup Arm Raising Levor \\
\hline & & "OFF" Button & 41 & 46P139 & Pickup Arm Raising Lever Tension Spring \\
\hline 10 & 49 P 50 & 'OFF' Bution & 43 & 45P583 & Rocker Arm Lever Aseombly \\
\hline 11 & 11X139 & "Automatic - Manual" Rnob & 44 & \(11 \times 079\) & Automatic Shut-Off Lock Lever \\
\hline 12 & 24 P 014 & Rubber Noedle Set Down Pad & 45 & 41 P443 & Automatic Shut-Off Lock Lever Pin \\
\hline & & & 46 & 46 PO 012 & Automatic Shut-Off Lock Comprestion Spring \\
\hline 13 & 49 P 027 & Control Escutcheon & 47 & \(11 \times 049\) & Selector Lever and Collar Areombly \\
\hline & - & & 48 & \(11 \times 141\) & Rocker Arm Lover Aseombly \\
\hline 14 & & Main Base Plate & 49 & 46 PO 017 & Rocker Aism Lever Ascombly Compronsion Spring \\
\hline 15 & 113133 & Spindle Assembly Including Pawl & 50 & \(11 \times 142\) & Rocker Arm Lover Aseombly \\
\hline & 50P160 & & 51 & 41P421 & Rocker Arm Lever Aevembly Pin \\
\hline 16 & 50 P 160 & Spindle Retaining Clip & 52 & 50P125 & Rocker Arm Lover Ascombly Clip \\
\hline 17 & 118138 & Turntable Including Gear & 53 & 50P125 & Rocker Arm Lover Ascombly Clip \\
\hline 18 & 25P269 & Bearing Race Washer & 54 & \(50 \times 090\) & Motor Aseombly 60 Cycle, 105-120 Volt \\
\hline 18 & 25 P 26 & Bearing Race Washer & 54A & 17X412-11 & Motor Shatt Sloeve - 50 CYcle \\
\hline 19 & \(11 \times 058\) & Bearing Race Assembly & 55 & 25 P 363 & Rubber Shock Motor Mounts \\
\hline & 418414 & & 56 & 41 P592 & Motor Mounting Sloeve \\
\hline 20 & 419614 & Steel Turntable Bearing & 57 & 25P367 & Motor Mounting Warhor \\
\hline 21 & 26P687 & Turntable Bearing Nut & 58 & 26 P 312 & Motor Mounting Bolt \\
\hline 22 & 25P030 & Idler Wheol Folt Warher & 59 & \(11 \times 145\) & Switch Assombly Complete Less Buttons \\
\hline 22 & 25 P 30 & Idier Wheel Fell Washer & 60 & 41P444 & Switch Assombly "ON" Post \\
\hline 23 & 50P125 & Idler Retaining Clip & 61 & 41P588 & Switch Assombly "OFF' Poat \\
\hline 24 & \(11 \times 003\) & Idler Drive Wheel & 62 & 46 P 138 & Switch Assombly "OFF' Spring \\
\hline & & Ider Drive Wheol & 63 & 45P570 & Switch Aesombly Relocie Lover \\
\hline 25 & 25P046 & Fibre Idler Washer & 64 & \(46 \mathrm{Pl23}\) & Switch Aseembly "ON" Spring \\
\hline 26 & \(11 \times 068\) & Idler Link Assombly & 65 & \(11 \times 158\) & Trip Lover and Wire Aswombly \\
\hline & & & 66 & \(46 \mathrm{Pl17}\) & Trip Lover Tonsion Spring \\
\hline 27 & \(46 \mathrm{Pl12}\) & Idler Tension Spring & 67 & 32X039 & A. C. Switch Cover \\
\hline \({ }^{\text {- Not }}\) & or mervic & & 68 & 32X044 & A. C. Switch \\
\hline
\end{tabular}
\(\square\)

RCD. CH. WILCOX-GAY PAGE 19-1



\section*{ZENITH RADIO CORP. MODELS S-13675, S-14002, S-14006, S-14008}

\section*{GENERAL}

Service notes for models S-13675, S-14002, S-14006, and S-14008 have been combined in this manual. Except for slight mechanical, electrical and color variations, these models are alike. The adjustments that the serviceman will be called to make will be the same for all models.

Models S-13675 (maroon) and S-14006 (black) have the automatic shut-off feature and are identical mechanically. Models S-14002 (maroon) and S-1 4008 (black) have slight electrical differences.

For convenience, the Operating Instructions supplied with each Record Changer are summarized as follows: The Record Changer will automatically play up to fourteen 10 inch or twelve 12 inch records at one loading, or up to twelve 10 and 12 inch records intermixed. The Record

Stack rests on the Spindle and the Record Shelf. The Selector Sprocket drives the Ejector Cam which pushes the records off the Shelf and Spindle allowing them to drop on the Turntable. To load for automatic operation, swing the Pressure Bar to the right, place the stack of records on the Spindle, swing the Pressure Bar to the left until it rests on the record stack, set the OFF-MAN-AUTO switch to AUTO and press the Record Change button. Models S-1 4002 and S-1 4008 will play the entire selection of records and repeat the last record until turned off. Models S-13675 and S-14006 will automatically shut off after the last record is played.
For manual operation set the OFF-MAN-AUTO switch to MAN and play the records singly as on a non-automatic record player.


Fig. 1. Top View S-13675 and S-14006 Record Changers.

\section*{DESCRIPTION OF CYCLING}

The phono motor friction drives the idler wheel. The idler wheel rim drives the turntable, and the turntable shaft. To the turntable shaft is attached the segmented clutch drive plate. The pawl on the clutch drive sprocket assembly engages the drive plate, causing the sprocket to rotate. The pawl pusher lever on the clutch release arm assembly causes the clutch to engage or disengage.

Closing either the trip switch or the record change switch energizes the solenoid. The magnetic flux of the solenoid attracts the clutch release lever causing the mechanism to trip and move the pawl pusher lever away from the clutch pawl. This action allows the clutch pawl spring to pull the pawl into position for the drive plate segment to engage and star̂t the clutch sprocket rotating. The clutch sprocket is meshed with the chain drive sprocket and the chain drives the selector and timing sprockets.

The timing sprocket completes 7 functions through \(360^{\circ}\) rotation. These functions are as follows: 1. Applies the tone arm brake. The brake lever is actuated by the brake stud on the timing sprocket. The brake prevents coasting and erratic landing of the needle. 2. The inclined groove pushes the lift pin upward. The lift pin raises and lowers the tone arm. 3. The locating pin laterally swings the tone arm off the record stack. 4. The locating pin or bushing swings the tone arm over the starting groove of the record. With 12" records, the locating pin swings the tone arm in while the locating bushing swings the tone arm with \(10^{\prime \prime}\) records. The
locating bushing is pushed upward by the discriminator trip plate. 5. The reset stud resets the clutch trip mechanism and moves the pawl pusher lever in the path of the clutch pawl. 6. The lift pin lowers the tone arm over the starting groove of the record. 7. The brake stud releases the brake. When the clutch pawl hits the pawl pusher lever, the clutch is disengaged.

The selector sprocket actuates the record ejector cam, and must be timed with the timing sprocket to drop the records on the turntable when the tone arm is at its greatest outward swing. This occurs immediately after the No. 3 function of the timing sprocket.

As the record is played, the tone arm gradually moves toward the center. The ratchet on the tone arm control lever moves toward the pawl on the trip switch lever. As the ratchet comes in contact with the pawl; the oscillating action produced by the eccentric groove on the record causes the trip switch to close, complete the solenoid circuit and repeat the cycle. If the record does not have an eccentric groove, the position trip.will close the trip switch and start the next cycle.

Noise and microphonics are eliminated by muting the phono pre-amplifier during the record change cycle. The tone arm brake lever actuates the muting switch. When the contacts are closed, a low reactance capacitor is connected across the audio output making the amplifier inoperative during the change cycle.



©John F. Rider

RCD. CH. PAGE 19-6 ZENITH \(\quad\) ZENITH RADIO CORP. S-14006, S-14008


Sta-Put grease No. 512 llight grease of the vaseline type) and light machine oil of No. 10 consistency are used for lubrication throughout.

Figures 6 and 7 indicate the points to be lubricated and the type of lubricant to use. The Motor has two oil wicks, which should be saturated with oil. The Record Spindle Guide Bearing, Idler Wheel Bearing, Lower Drive Shaft Bearing, Drive Shaft Thrust Bearing and the Motor Bearings are of the OILITE type and require very little attention. If squeaks develop, be certain that they are not caused by friction between the Spindle and records on the Turntable. A thin coat of wax on the Spindle will remedy this condition

\section*{THEORY OF THE COBRARADIONIC PICKUP}


Fig. 8. Simplified Circuit of Oscillator.
The operation of the Cobra pickup is considerably different from Crystal and Dynamic pickups. These pickups generate audio power, while the Cobra controls power generated by a radio frequency oscillator. The triode tube is a modulated oscillator, detector and audio amplifier. The oscillator operates at a frequency of 2.5 Mc . Modulation is accomplished by changing the energy losses in a tuned circuit. These losses may be represented by an equivalent resistance in series with the reactance of the coil. The ratio of the resistance to the reactance determines the efficiency or \(Q\) of the coil. The amplitude of the RF voltage developed across this coil by the oscillator will vary with changes in Q.

The grid coil \(L_{1}\) and other components of the oscillator are mounted in the receiver chassis, while the plate coil \(\mathbf{L}_{2}\) is in the Needle Cartridge with the vane and needle assembly. The coil is fixed and has 40 turns of No. 40

\section*{1. Tone Arm Set Down Adjustment.}

The Tone Arm Set Down Adjustment determines the landing position of the needle on the starting groove of the record. The adjustment screw can be reached vith a screwdriver (Fig. 10). The tone arm must be held in the rest position while the adjustment is made. Clockwise rotation of the screw moves the tone arm in, while counter-clockwise rotation moves it out.

\section*{2. Tone Arm Height Adjustment.}

The Tone Arm vertical rise is governed by the Lift Pin. The Lift Pin is adjustable (see Fig. 9). Too long a Lift Pin will cause the Tone Arm to hit the underside of the records on the Spindle. If the Lift Pin is short, the needle will not clear fourteen records on the Turntable. To make the proper adjustment, trip the Clutch by hand and rotate the Turntable clockwise until the Tone Arm starts to swing toward the Spindle. Gently push the Tone Arm as close to the Spindle as it will go, place a record on the Spindle and observe the spacing between it and the Tone Arm. The spacing "A" (Fig. 11), should be approximately the thickness of a record.
wire (approximate DC resistance \(21 / 2\) ohms). The stainless steel vane, which is in the field of the coil, is spot welded to the osmium-iridium tipped stylus. Any movement of the stylus will cause a corresponding movemenit of the vane. As the stylus and vane follow the modulations in the record, changes in the mutual inductance between the vane and coil occur (see Fig. 8). In position 2 the vane is at rest, and a constant RF voltage appears across the plate coil. As the vane is set in motion and reaches position 1, it is at its greatest outward swing from the coil, resulting in low mutual inductance, low reflected resistance, higher \(Q\), and a higher RF voltage across the coil. In position 3 it is at its greatest inward swing; resulting in a high mutual inductance, high reflected resistance, lower \(Q\) and a lower RF voltage. It can be seen that the amplitude of the RF voltage which appears across the coil will vary with changes in \(Q\), satisfying the condition for amplitude modulation. The position of the vane changes both the \(Q\) and \(L\) of the coil. Changes in \(L\) shift the frequency slightly, and a certain amount of frequency modulation is present, but since there is no frequency discrimination it remains undetected.

Since the grid and plate coils are part of a single tuned circuit any variations of amplitude of the RF voltage brought about by the changes in \(Q\) across the plate coil will also appear across the grid Coil \(L_{1}\) causing a shift in the average plate current through the plate load resistor across which the audio output voltage is developed. Plate bend detection takes place since only the positive half of the grid swing causes an increase in the average plate current. These changes in the average plate current appear; as audio voltage across the plate load resistor.

The 2.5 Mc . RF voltage and the audio voltage both appear at the plate of the oscillator triode. \(R_{2}, C_{4}\) and \(C_{5}\) filter out the RF voltage allowing only the audio component to the grid of the pre-amplifier where it is amplified and reproduced by the loud-speaker.

\section*{MENTS}

If the spacing is incorrect, lift the Tone Arm, remove the Lift Pin, and adjust the Lift Pin to the proper length.

\section*{3. Trip Switch Adjustment.}

As the record is played, the ratchet on the tone arm pivot shaft engages the trip pawl. The oscillating action developed by the eccentric groove on the record closes the trip switch contacts and allows the solenoid to become energized. The magnetic flux attracts the trip lever which moves the pawl pusher lever from the path of the clutch pawl. This. allows the clutch to engage and start the next cycle.

The gap between the trip switch contacts should be approximately \(1 / 16^{\prime \prime}\). If the spacing is incorrect, bend the contact spring. If the contact spring tension is too great, the needle may not follow the oscillating groove on the record. To adjust the spring tension, insert a screwdriver between the contact and guide springs and bend the contact spring (Fig. 10) until an approximate pressure of one ounce is necessary to move the contact spring from the guide spring. Be certain that the contact spring exerts some pressure on the guide spring after adjustment.

The spacing between the trip magnet and trip lever should be approximately \(3 / 32^{\prime \prime}\).

RCD. CH. PAGE 19-8 ZENITH


Fig. 10: Tone Arm Set Down, Position Trip and Trip Switch Adjustments.

\section*{4. Position Trip Adjustment.}

The Position Trip does not depend on an eccentric groove in the record to start the record change cycle, but will trip the mechanism whenever the needle comes within a pre-determined distance from the Spindle. Older type records that do not have an eccentric groove can in most cases be played automatically by the proper adjustment of the Position Trip. Under normal conditions with the needle approximately \(17 / 8^{\prime \prime}\) from the center of the Spindle, adiust the Position Trip Adjustment Screw (Fig. 10) until the Trip

Switch contacts close. This distance is generally satisfactory since no modern record will be cut off before it has completed its play, and none will fail to trip the mechanism at the end. In special cases, screw the Position Trip Adjustment Screw clockwise for earlier tripping and counter-clockwise for later tripping as the individual case may be.
It may be impossible to find an adjustment that will always trip.the mechanism and never cut off on all type records, and in these special cases the record must be played manually.


Fig. 11. Tone Arm Height Adjustment.


Fig. 12. Synchronization. Improper timing results in the records hitting the tone arm. The record changer is kept in time by the drive chain. If the chain is removed, the changer must be synchronized.

Fig. 12 indicates the correct position of the timing sprocket, selector sprocket and the clutch. To synchronize, study Fig. 12 and proceed as follows:
1. Reset the clutch trip lever.
2. Turn the timing sprocket until the reset stud is approximately \(1 / 16^{\prime \prime}\) from the reset lever (1). Turn the selector sprocket until the synchronizing mark lines up with the mark on the base plate (2). THESE POSITIONS MUST BE MAINTAINED DURING THE NEXT OPERATION.
3. Thread the chain over the timing sprocket, chain drive sprocket, adjustable idler, selector sprocket and set the adjustable idler for medium tension of the chain. Check the position of the synchronizing marks and the reset stud.
4. Remove the retaining washer and lift the chain drive sprocket until the gears disengage.
5. Turn the clutch until the clutch pawl touches the pawl pusher lever (3).
6. Lower the chain drive sprocket until it engages the clutch gears and reinsert the retaining washer.

\section*{REMOVING THE TURNTABLE}

Hold the clutch by inserting a wide blade screwdriver against the spindle bracket and a segment of the drive plate. Apply a twisting, pulling force to the turntable.

Before seating the turntable, be certain that the idler wheel is pushed inside the turntable rim.

\section*{REPLACING THE MOTOR}

When a replacement Motor is ordered, include the line voltage and frequency of the receiver.

To replace the Motor, unsolder the connecting leads, remove the Turntable, the three retaining washers and allow the Motor to drop out. When the Motor is installed do not draw the connecting leads tight as this will prevent the Motor from "floating" on its mounts. Be certain that the retaining washers are crimped and the leads securely soldered and taped.


Fig. 14. Replacing the Chain.
The chain may be removed by loosening the adjustable idler (Screws "D," Fig. 14), and opening one of the links (B). It will be noted that on some models the open ends of the links face inward while on others outward as in Fig. 14. The reason for this is to get the quietest operation. Normally the open ends of the links will face outward with all replacement chains.

After the chain is threaded in place, carefully close the open link and be certain that there is no stiffness in its action. Read the paragraph on Synchronization before the chain is permanently installed.

\section*{TROUBLE SHOOTING \\ SQUEAKS OR NOISES DURING PLA YING OF RECORDS.}
a. Friction between the records on the turntable and the spindle will occasionally cause squeaks. A thin coat of wax applied to the spindle will remedy this condition.
b. Check lubrication.

\section*{MECHANISM STARTS SLOWLY AND MOTOR GETS} HOT.
a. Check line voltage and frequency.
b. Check lubrication.
c. Motor windings damaged.
d. Room temperature abnormally low.

\section*{PRESSING RECORD CHANGE BUTTON ON RECEIVER PANEL DOES NOT START THE RECORD CHANGE CYCLE.}
d. See that the OFF-MAN-AUTO switch is set to AUTO.
b. Check Record Change Switch.
c. Check electrical continuity of solenoid circuit.
d. Check the solenoid energizing voltage.

MOTOR FAILS TO RUN EVEN WHEN IT IS DISCONNECTED FROM CHANGER AND PROPER VOLTAGE AND FREQUENCY APPLIED DIRECTLY TO THE TWO INPUT LEADS OF THE WINDING.
a. Open windings.
b. Damaged or frozen bearings.
c. Lower Bearing Support Bracket bent. Remove and straighten bracket-Re-center armature.
RUMBLE AND MICROPHONICS DURING REPRODUCTION.
a. Changer not "floated" properly. Loosen mounting bolts.
b. Motor retaining rings rubbing on the idler wheel.
c. Motor leads pulled too tight preventing motor from "floating" freely.
d. Noisy Phono Oscillator tube.
e. Impression on Idler Wheel.

NEEDLE SETS DOWN PROPERLY ON RECORD BUT SLIDES OVER THE RECORD GROOVES.
a. Cabinet tilted.
b. Badly worn or broken needle cartridge.

NEEDLE FAILS TO CLEAR MAXIMUM LOAD OF RECORDS ON THE TURNTABLE.
a. Check Tone Arm height adjustment. (Adjustment 2.)

CHANGER CYCLES WITH OFF-MAN-AUTO SWITCH ON MAN.
a. Check OFF-MAN-AUTO switch.
b. Reset stud does not engage clutch reset lever.

TONE ARM FALLS OFF RECORD.
a. Check Tone Arm set down adjustment. (Adjustment 1.)
b. Check Tone Arm Pivot Bracket.
c. Changer not level.

\section*{TONE ARM SET-DOWN POSITION VARIES.}
a. Check Tone Arm Brake and Spring.
b. Tight Tone Arm Connecting Leads.

\section*{RECORD IS NOT HEARD ALTHOUGH CHANGER} OPERATES.
a. See that the Phono Radio switch is on Phono.
b. Check receiver audio by listening to radio.
c. Check the phono oscillator tube.
d. Check Needle Cartridge.
e. Check Tone Arm Housing for broken leads.

TONE ARM SETS DOWN TOO FAR IN OR OUT ON RECORD.
a. Check Tone Arm set down adjustment. (Adjustment 1.)

\section*{CHANGER CONTINUES TO CYCLE.}
a. Check Trip switch adjustment. (Adjustment 3.)
b. Check Record Change switch.
c. Clutch release mechanism sticks.
d. Pawl pusher lever not reset by reset stud.

\section*{CHANGER WILL NOT CYCLE UPON COMPLETION OF RECORD.}
a. See that the OFF-MAN-AUTO switch is set to AUTO.
b. Be certain the record has an eccentric center groove.
c. Check Trip switch.

Fig. 15. Checking Spindle Centering.

\section*{RECORD CENTER HOLE WEAR.}
a. Record centers oversize.
b. A bent spindle will cause center hole wear due to impeded record injection. To check the spindle position, place a \(10^{\prime \prime}\) record as shown in Fig. 15. If the spindle is properly centered, a triangle will be formed with the metal ends of the record shelf plate.

\section*{SQUEAKS WHEN CHANGER IS IN CYCLE.}
a. Friction between Lift Pin and Timing Sprocket. Apply a thin coat of Sta-Put.

MOTOR RUNS BUT TURNTABLE SLIPS OR STOPS.
a. Turntable not fully seated. Tap gently.


Fig. 16. Needle Cartridge Socket Connection.
Fig. 16 shows how the leads are connected to the Needle Cartridge Socket. The lead and insulation are run through the hole in the contact and the lead is soldered with a light soldering iron. Great care must be exercised, and very little heat applied as the socket is made of lucite and will burn easily. The complete lead and socket are supplied as S-12633.

\section*{ZENITH RADIO CORP.}


Fig. 17: S-14002 Schematic Diagram.

PIN END VIEW OF PLUG


Fig. 18. S-14008 Schematic Diagram.
\begin{tabular}{|l} 
MODELS S-13675, \\
S-14006
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{12.1124} & \multirow[b]{2}{*}{Record Ejector Plate Mounting Bracket
(S-13675, S-14006)} & \[
\begin{gathered}
\text { P A R T S } \\
80-462
\end{gathered}
\] & LIS T Cam Spring \\
\hline & & 80-479 & Spring (Spindle Dog) \\
\hline 12.1216 & Tone Arm Pivot Bracket & 80-531 & Brake Spring \\
\hline 12.1340 & Record Ejector Plate Mounting Bracket (S-11674) & 80-538 & Landing Adjustment Spring (S-13902) \\
\hline 12-1390 & Solenoid Mounting Bracket & & Contact Spring \\
\hline 15.64 & Plug Cap and Insulator & 80-572 & Clutch Spring (S-13894) \\
\hline 19.88 & Cable Clip & 80-574 & Pawl Pusher Bracket Spring (S-13903) \\
\hline 19-150 & Housing Cover Clip & 80-582 & Pawl Spring (S-13901) \\
\hline 22.417 & . 1 Mfd. Paper Dielectric Capacitor 600 V. & 80-584 & Tone Arm Lift Pin Spring \\
\hline 22.1570
24.354 & .05 Mfd. Paper Dielectric Capacitor 400 V.
Record Ejector Housing Cover (S-14006, & 80-605 & Cobra Cartridge Socket Tension Spring (S-13675, S-14006) \\
\hline 24-354 & Record Ejector Housing Cover (S-14006, S-14008) & 80-649 & Shut-Off Lever Spring (S-13675, S-14006) \\
\hline \multirow[t]{2}{*}{24.432} & \multirow[t]{2}{*}{Record Ejector Housing Cover (S-13675, S-14002)} & 80-650 & Shut-Off Pawl Spring \\
\hline & & 80-653 & Trip Arm Spring (S-13903) \\
\hline 43-103 & Tone Arm Housing (S-14006, S-14008) & 83-343 & Three Lug Terminal Strip \\
\hline 43-147 & Record Ejector Housing (S-13675, S-14002) & 83-1106 & Two Lug Terminal Strip \\
\hline 43-148 & Tone Arm Housing (S-13675, S-14002) & 83-1301 & Two Lug Terminal Strip \\
\hline 43-156 & Tone Arm Support Housing (S-14006, S-14008) & 83-1349 & Tone Arm Shipping Strip \\
\hline 43-157 & Tone Arm Support Housing (S-13675, S-14002) & 83-1423 & Cobra Needle Guard Strip \\
\hline 43-164 & Record Ejector Housing (S-14006, S-14008) & 84-65 & Tone Arm Rest (S-14006, S-14008) \\
\hline 54-30 & No. 8-32 \(\times 5 / 16^{\prime \prime} \times 7 / 64^{\prime \prime}\) Hex Nut-Steel N.P. & 84-68 & Tone Arm Rest (S-13675, S-14002) \\
\hline 54-66 & No. 10-32 5 5/6" Hex Nut-Steel N.P. & 85-372 & Three Position Slide Switch (S-14002, S-14008) \\
\hline 54-246 & No. \(4-40 \times 3 / 6^{\prime \prime} \times 3 / 32^{\prime \prime}\) Hex Nut (S-13675, S-14006) & 85-405 & On-Off Switch (S-13675, S-14006) \\
\hline 56-146 & Spring Retaining Pin (Pressure Arm) & 85-40 & Auto-Man Switch (S-13675, S-14006) \\
\hline 56-226 & Tone Arm Lift Pin-Lower & & Shakeproof Terminal No. 2101-8 \\
\hline 56-227 & Tone Arm Lift Pin-Upper & \(86-190\)
93125 & Ferminal-Cinch No. 1483 \\
\hline 57-1290 & Switch Escutcheon (S-13675) & & No. 6 int. Shakeproof Lockwasher No. 1206 \\
\hline 57-1323 & Turntable Shaft Plate &  &  \\
\hline 57-1324 & Clutch Drive Plate & \(93-4\) & No. 6 Ext. Shakeproof Lockwasher \\
\hline 57-1355 & Switch Plate (S-14002, S-14008) & \(93-4\) & x .031 Steel*Washer \\
\hline 57-1397 & Switch Escutcheon (S-14006) & & Sprocket Shaft Retaining Washer \\
\hline 58-133 & Phono Plug (S-13675, S-1 4006, S-14008) & \[
93-655
\] & \begin{tabular}{l}
Sprocket Shaft Retaining Washer \\
\(012 \times 098 \times 9 / 32^{\prime \prime}\) Steel Washer NP.
\end{tabular} \\
\hline 58-169 & Phono Plug (S-14002) & \(93-672\) & \\
\hline 63-1744 & 100 Ohm Carbon Resistor \(1 / 2\) W. \(\pm 20 \%\) Insulated & 93-673 & Idler Wheel Stud Washer-Small \\
\hline 63-1779 & 680 Ohm Carbon Resistor 1/2 W. \(\pm 20 \%\) Insulated & \(93-677\)
\(93-678\) & Idler Wheel Stud Fishpaper Washer-Large Idler Wheel Stud Fishpaper Washer-Small \\
\hline 63-1954 & 10 Megohm Carbon Resistor \(1 / 2\) W. \(\pm 20 \%\) Insulated (S-13675, S-14006, S-14008) & 93.679
93.719 & Idler Wheel Stud Felt Washer \(7 / 16^{\prime \prime} \times 3 / 16^{\prime \prime} \times .031\) Flat Washer-Cad. \\
\hline 69-38 & No. \(8-32 \times 3 / 4 / 1\) R.H.M.S. - Stee \({ }^{\prime \prime}\) N.P. & 93-764 & Spring Washer-Shakeproof No. 3759-14 \\
\hline 69-43 & No. \(8-32 \times 3 / 8{ }^{\prime \prime}\) R.H.M.S.-Steel N.P. & 93-767. & Cam Spacer Washer (. \(020 \times .385 \times 5 / 8^{\prime \prime}\) Stee \\
\hline 69-217 & No. 4-40 \(\times 3 / 16^{\prime \prime}\) R.H.M.S. (S-13675; S-14006) & & -Cad. PI.) \\
\hline 69-238 & No. 4-40 \(\times 5 / 8^{\prime \prime}\) R.H.M.S.-Steel Cad. & 93-769 & Steel Washer-Cad. PI. \\
\hline \multirow[t]{2}{*}{71-70} & \multirow[t]{2}{*}{No. 6-32 \(\times 3 / 16^{\prime \prime}\) Phillips Flat Hd. M.S.-SteelBright N.P.} & 9.3-844 & No. 5 External Shakeproof Lockwasher \\
\hline & & 93.876 & Fibre Washer \\
\hline 71-71 & No. 6-32 \(\times 1 / 4\) " Phillips Flat Hd. M.S.-Steel N.P. & 93-900 & Fibre Washer \\
\hline 71-81 & No. \(8-32 \times 23 / 4^{\prime \prime}\) Flat Hd. M.S.-Steel N.P. & 93-903 & Steel Washer \\
\hline 73-99 & No. \(8-32 \times 1 / 4^{\prime \prime}\) Slab Hd. Set Screw-Steel- & 94-415 & Tone Arm Locating Bushing \\
\hline & Conepoint & 94-416 & Timing Sprocket Bushing \\
\hline 73-100 & No. 8-32 \(\times 1 / 2^{\prime \prime}\) Slab Hd. Set Screw—Steel— Conepoint & 112-56 & No. \(6 \times 1 / 4^{\prime \prime}\) Hex. Hd. Self Tapping ScrewType Z-Cadmium \\
\hline 80-368 & Idler Wheel Tension Spring & 112-483 & No. 6-32 \(\times\) 3/8" B.H.M.S.-Steel N.P. \\
\hline 80-418 & Tension Spring (Pressure Arm) & 112.576 & No. \(5-40 \times 1 / 4^{\prime \prime}\) Oval B.H.M.S.-Steel N.P. \\
\hline
\end{tabular}

\section*{NUMERICAL PARTS LIST-Continued}

112-581 No. \(6 \times 3 / 8^{\prime \prime}\) R.H. Self Tapping Screw -Shakeproof Type 25-Cadmium
112-585 No. \(6 \times 3 / \mathrm{g}^{\prime \prime}\) R.H. Self Tapping Screw-Type FZ-Cadmium
112-619 Cobra Tone Arm Housing Mounting Screws
112-637 No. \(4-40 \times 1 / 4 "\) B.H.M.S. -Steel N.P.
112-706 No. \(4-40 \times 3 / 16^{\prime \prime}\) R.H.M.S.—Steel N.P. (SEMS)
112-719 No. \(6 \times 3 / 8^{\prime \prime}\) Flat Hd. Self Tapping ScrewShakeproof Type 25-Steel Cad. PI.
114-88 No. 8-32 x \(1 / 2^{\prime \prime}\) Hex. Acorn 'Hd. M.S.—Steel N.P.

114-89 No. \(8-32 \times 5 / 16^{\prime \prime}\) Hex. Acorn Hd. M.S.-Steel N.P.

114-201 No. \(8 \times 5 / 6^{\prime \prime}\) Hex. Hd. Slotted Self. Tapping Screw-STAN-TAP_Cad. PI.
114-248 No. 6-20 5 5/6" Hex. Hd. Slotted Self Tapping Screw-Shakeproof Type 25-Steel Cad. PI.
114-262 No. \(8 \times 7 / 16^{\prime \prime}\) Hex. Hd. Slotted Self Tapping Screw-STAN-TAP_Cadmium
117-132 Shut-Off Switch Lever (S-13675, S-14006)
125-61 Rubber Grommet—Motor Mtg.
128-21 Record Ejector Cam (S-1 1668)
141-108 A.C. Phono Motor-60 Cycles
141-109 A.C. Phono Motor-60 Cycles (S-14002)
148-83 Cobra Tone Arm Housing (S-13675, S-14006)
148-51 Bakelite Housing
166-30 Rubber Bumper
166-41 Rubber Bumper
187-9 Push Rod (Automatic Stop S-13675, S-14006)
188-27 . Retaining Ring
188-32 Retaining Ring
188-52 Retaining Ring
214-4 Sprocket Drive Chain
S-10732 Idler Assembly
S-11111 Turntable Shaft and Bearing Assembly
S-11118 Idler Wheel Assembly
S-11473 Cobra Needle Cartridge
S-11657 Idler Wheel Stud and Washer Assembly
S-11668 Record Ejector Cam and Shaft Assembly
S-11671 Pressure Arm and Bracket Assembly
S-1 1672 Record Support Plate Assembly
S-1 1674 Record Support Plate Mounting Bracket Assembly
S-11675 Discriminator Mtg. Bkt. Assembly (S-14002, S-14006 and S-14008)
S-11683 Selector Sprocket and Bushing Assembly S-1 1983 Idler Wheel and Rübber Drive Ring Assembly Unless Specified, Parts Apply to All Models.

S-12038
Record Ejector Housing Cover Assembly (S-14006, S-14008)
S-12507 Record Spindle Assembly
S-12633 Needle Cartridge Socket and Cable Assembly
S-12686 Cam and Washer Assembly
S-1 2859 Discriminator Knob and Plate Assembly
S-13060 Cobra Tone Arm Hinge Plate and Swivel Bracket Assembly
S-13062 Cobra Tone Arm Hinge Plate, Swivel Bracket, Needle Cartridge Socket and Cable Assembly
S-13063 Cobra Tone Arm Assembly (S-1 4006, S-1 4008)
S-13423 Record Support Plate and Bracket Assembly (S-13675)
S-13426 Muting Switch Assembly (S-13675, S-14006, S-14008)
S-13430 Automatic Stop Switch Assembly (S-13675, S-14006).
S_13461 Record Ejector Housing Cover Assembly (S-13675, S-1 4002)
S-13466 Cobra Tone Arm Assembly (S-13675, S-14002)
S-13494 Record Support Plate Mounting Bracket Assembly (S-13675)
S-13496 Discriminator Mounting Bracket Assembly (S-13675)
S-13497 Bracket and Spring Assembly
S-13872 Trip Plate and Bushing Assembly
S-13894 Clutch Pawl Assembly
S-13895 Drive Sprocket and Bushing Assembly
S-13896 Turntable Drive Shaft Bearing Assembly
S-13900 Timing Sprocket Assembly
S-13901 Trip Switch Assembly
S-13902 Tone Arm Pivot Shaft and Bracket Assembly
S-13903 Clutch Release Arm Assembly
S-1 13904 Shut-Off Switch Assembly (S-13675, S-14006)
S-13913 . Magnet Assembly
S-13915 Cable Assembly (S-13675, S-14006, S-14008)
S-13929 Main Base Plate Assembly (S-13675)
S-13931 Turntable Assembly
S-14229 Cable Assembly (S-14002)
S-14312 Main Base Plate Assembly
S-14313 Muting Switch Assembly (S-14002)
S-14314 Main Base Plate Assembly (S-14008)
S-14581 Trip Lever Mounting Bracket Assembly
S-14582 Trip Lever and Pawl Assembly
S-14665 Main Base Plate Assembly (S-14006)
S-14666 Record Support Plate Mounting Bracket Assembly (S-14006)

\(\square\)```


[^0]:    - This is the first time that this Stock No. has appeared in Service Data

[^1]:    Tube and Trimmer Locations

[^2]:    - This is the first time that this Stock No. has appeared in Service Data.

[^3]:    *This is the first time that this Stock No. has appeared in Service Data. †Stock No. 72953 is a reel containing 250 feet of cord.

[^4]:    ＊AC Volts．
    ＊Cannot be

