PERPETUAL \square
TROUBLE SHOOTER'S MANUAL
Reg. U.S. Pat. Off.
volume \mathbf{Y}
\square by

JOHN F. RIDER

Published by
JOHN F. RIDER

ACRATEST PRODUCTS

MODEL 108 Schematic Layout

SOCKET LAYOUT

PAGE 5-4 ACRATEST

HODEL 247
 MODEL 739
 ACRATEST PRODUCTS

Schematic

White $=$ external ground, Red $=\mathrm{B}+90-135$, Yellow $=\mathrm{A}+3 \mathrm{~V}_{\mathrm{c}}, \mathrm{B}-$, Black $=\mathrm{A}-$ Terminals 1 \& $4=$ Photo $-c e l l$ or condenser microphone
" $1 \& 5=$ Crystal mic., high imp. pickup, or radio tuner

MODEL Atlas 5 Tube Universal All-Wave

AIR KING PRODUCTS CORP.

PAGE 5-4 AIR-KING

ALLIED RADIO CORP.

MODEL F~9511
Schematic, Alignmit

ALLIED RADIO CORP.

MODML F-9531, P-9591
Schematio,Alignmont

PAGE 5-6 ALLIED
MODEL F-9541
Schematic, Alignment

ALLIED RADIO CORP.

ALLIED RADIO CORP.

ANSLEY RADIO CORP.

PAGE 5-2 ANSLEY
MODEL U-3
Schematic
ANSLEY RADIO CORP.

If PeAK 175 KC.

ANSLEY RADIO CORP.

ATWATER-KENT MFG. CO.

MODHL 165-Q,525-Q
Sooket,Trimmer,Parts

R5 36430 Blue-yel., $5,000 \Omega, 1 / 3-$ W.

R6 30370 Green, 2 U, 1/3-W.
R7 31970 Red-yel., . 25 U, 1/3-W.
$\begin{array}{lll}\text { R8 } & 30340 & \text { Red-blue, } . ~ \\ \text { R9 } & \text { U, } 1 / 3-W\end{array}$
R9 30360 Gray-blue, 1 U, 1/3-W.
R11 36240* Wire wound, 1.03Ω
${ }_{*}$ A No. 37120 resistor ($1.03, \Omega$) is supplied with set for use with $3 . v$. dry "A." battery:

CONDENSERS
Code Part

27128 Magnet

27129 Magnet clamping plate
8188 8/32 hex. nut
9898 No. 6 lock washer 23318 No. 2 washer
27138 Clamping block top
27139 Clamping block bottom
27141 Adjusting screw, 6/32
27142 Cover plate
27143 Mounting bracket
27144 Sound unit assembly, less magnets
27145 Conehead assembly
27146 Coil
27147 Armature
27211 Mount. brackets, pair (525-Q)
27148 Spring
27149 Terminal
MODEL 525-Q
(For parts not listed below refer to Model $165-\mathrm{Q}$ parts list)

Part
No. 26565 Variable condenser assembly
27305 Knob shaft
37450 Osc. T (T3)
26719 Dial light socket
26722 Battery cable with resistor
26519 Dial assembly
26721 Dial lamp (air cell, 2-V., 60
MILS.)
26642 Base cover
26569 Knob (tuning and volume)
26571 Knob (tone)
36250* Wire wound, 1.15Ω (R11)
26669 Shipping container
26545 Escutcheon nameplate
25691 Escutcheon window
26718 Volume control, . 5 U
37490 Tone control switch
26573 Shaft and blade
** No. 37130 resistor ($1.15{ }^{\text {a }} \Omega$) is supplied with set for use with a $3 \cdot v$. dry " A " battery.

MODEL 425,665

Socket, Trimmer, Parts
ATWATER-KENT MFG. CO.

217 SPEAKER No. 36300

Part	
No.	Name of Part
21161	Diaphragm
18870	Field coil
21672	Output transformer
24206	Cone housing
23657	Choke coil
24064	Speaker mounting bracket
19469	Diaphragm
	(2 uselding
24161	Degment
	Dianhragm
	holding segment

MODELS 217, 427 AND 667 (1 used)

427-667 SPEAKER No. 33400
Parts not listed below will be found in Model 217 List.
Part
No.
1978 Diaphragm
19789 Cable and plug assembly
19469 Cone housing
19469 Diaphragm holding segment (3 used)

MODEL 667
Parts not listed below will be found in Model 217 List.
Part
No. Name of Part
25864 Escutcheon name plate
24677 Bottom cover
25737 Knob-dial and volume control
25738 Knob-frequency range and tone
24725 Shipping container

PAGE 5-4 A-K

MODEL 217D,427D,667D
Socket,Trimmer,Parts

ATWATER-KENT MFG. CO.

	In some Model 275 sets，the oscillator				
C7id trimmer A3 is not used．					
C7	28130	500 MMF，450－V．，IND．	27133	Trimmer mica	
C8	35790	Multiple $.05, .05, .05, .03$,	26323	T4 shield	
		.1 and .2 MF， $100-\mathrm{V}$.	21878	Shield disc	

 TRIMMER CONDENSERS Code Part Name of Part

 Name of Part 26284 Dial light socket

SPEAKER
Part \quad Name of Part
No．
 26501 Output transformer
26503 Choke coil（CK1）
Part
No． 26111 Socket（7 prong）
MISCELLANEOUS PARTS
Name of Part

Liz 웅

$\begin{array}{lc}\text { No．No．} & \text { Name of Part } \\ \text { R1．} 30350 & \text { Bl＇k－pur．，} 5 \text { U，} 1 / 3-W \text { ．}\end{array}$
合为家

3
 $\begin{array}{rrl}\text { R9 } & 31970 & \text { Red－yel．，．} 25 \text { U，} 1 / 3-W . \\ \text { R10 } & 30340 & R e d-b l u e, ~ \\ \text { R } & 1 / 3-W .\end{array}$
 $\begin{array}{lll}\text { R13 } & 30340 & \text { Red－blue，} 11 \mathrm{U}, 1 / 3 \\ \text { R14 } & 35820 & \text { Flexible，} 12 \Omega \\ \text { R15 } & 31690 & \text { Iron core，} 145 \Omega\end{array}$ Iron core， 145Ω
CONDENSERS

 Double $250 \mathrm{MMF}, 450-\mathrm{V}$ ．，
IND．

MODEL 275

Part Name of Part 25798 Volume control，． 5 U

26444 Cloth screen
25865 Escutcheon window
25936 Escutcheon name plate
6283 Dial plate
 SHTNYOESNV

Code Part Name of Part

PAGE 5-6 A-K
MODEL 310,510
Socket,Trimmer,Parts ATWATER-KENT MFG. CO.

PAGE 5-8 A-K
HODEL 145,325
Socket,Trimmer,Chassis ATWATER-KENT MFG. CO.

MODEL 165 (2nd), 185
and 525
Socket, Trimmer,Parts

 25226 Switch shaft and blade 24278 Knob volume and tuning 25145 Knob-tone
15404 Dial lamp, 2.5-V.

Code	Part		
No.	No.	Name of Part	
T1	33820	No. 1 R. F. T.	
T2	32440	No. 2 R. F. T.	
T3	32450	Osc. T.	
T4	32620	No. 1 I. F. T.	
T5	32630	No. 2 I. F. T.	
T6	21672	Output T.	
T7	25191	Power T.	
	RESISTORS		

R14 31860 Flexible, 1Ω

Code Part

C3 $25638 \quad 730 \mathrm{MMF}, 100-\mathrm{V}$.

TRANSFORMERS

Code	Part	
No.	No.	Name of Part
R1	30350	Bl'k-purple, $.5 \mathrm{U}, 1 / 3-\mathrm{W}$.
R2	33250	Blue, $2000 \Omega, 1 / 3-W$.

Flexible, 160Ω
R4 30380 Red-green, 3300Ω, 1/3-
$\begin{array}{lll}\text { R5 } & 20980 & \text { Red-blue, } 1 \\ \text { R6 } & 30340 & \text { Red-blue, } 1 \text { W. } \mathrm{W} . \\ 1 / 3-W\end{array}$
$\begin{array}{llll}\text { R6 } & 30340 & \text { Red-blue, } .1 \text { U, 1/3-W. } \\ \text { R7 } & 30370 & \text { Green, } 2 \text { U, } 1 / 3-W . \\ \text { R8 } & 30340 & \text { Red-blue, } .1 \text { U, } 1 / 3-W . \\ \text { R9 } & 31970 & \text { Red-yel., } 25 \text { U, } 1 / 3-W .\end{array}$
$\begin{array}{rll}\text { R9 } & 31970 & \text { Red-yel., . } 25 \mathrm{U}, 1 / 3-W . \\ \text { R10 } & 31970 & \text { Red-yel., } .25 \mathrm{U}, 1 / 3-\mathrm{W} .\end{array}$
$\begin{array}{llll}\text { R11 } & 32010 & \text { Blue-red-green, } 500 \Omega, \\ & 1-W .\end{array}$
$\begin{array}{llll}\text { R12 } & 30350 & \text { Bl'k-purple, } 5 \text { U, } 1 / 3-W \\ \text { R13 } & 30370 & \text { Green, } 2 \text { U, 1/3-W. }\end{array}$
$\begin{array}{lllrl}\text { R14 } & 31860 & \text { Flexible, } 1 \quad \Omega & 26709 & \text { Trimmer screw } \\ \text { R15 } & 34340 & \text { Yel.-bl'k-red, } 50,000 & \Omega, 27111 & \text { Trimmer washer }\end{array}$

Yel.-blue, $5000 \Omega, 1 / 3-$ W. 26671 Instruction and log card, F1109
CONDENSERS 25189 Shipping container
No. No. Name of Part
No. No. $33650 \quad 25 \mathrm{MMF}$ Name $500-\mathrm{V}$. Part
C2 33660 . $0022 \mathrm{MF}, 450-\mathrm{V}$., IND. No.
C3 $25638730 \mathrm{MMF}, 100-\mathrm{V}$. 18870 Field coil (2000
C5 32410 . 0022 MF , 450-V., IND. 21672 Output T.-(T6)
C5 $32410.05, .05$ and . 05 MF, 21161 Diaphragm
Name of Part
Code Part
A4 24495 Single I. F.
A5 24554 Single I. F. (includes I. F. shield) Single I. F.

SOCKETS

Part
No. Name of Part
25196 Speaker
24492 Rectifier
24494 Small 6 prong (3 used)
22733 Large 6 prong (1 used)
MISCELLANEOUS
Name of Part
Cloth screen
Cabinet feet
Power T. cover (2 used)
I. F. shield and trimmer, A5
$110-\mathrm{V}$. cable and plug
Dial assembly
Name decalcomania
Tone decalcomania
Vernier shaft
Vernier cap
Vall beap
Trimmer screw

165-185 SPEAKER No. 34100

Name of Part
$200-\mathrm{V}$. IND

PAGE 5-12 A-K
MODEU 185-A
Socket,Trinmer,Parts
ATWATER-KENT MFG. CO.

The $\mathbf{3 0 , 0 0 0} \mathrm{ohm}$ resistor (gray) in the center left-hand side of this chart is R16.

MODEL 185-A

R2	31980	Bl'k, 65,000 Ω, 1/3
R3	23120	Red-bl'k, 20,000 Ω, 1/2-W.
R4	30380	
R5	28950	Flexible, 160Ω
R6	30350	Bl'k-purple,
R7	30370	Green, 2 U, 1/
R8	30340	Red-blue, 11 U
R9	30370	Green, 2 U ,
R10	30340	Red-blue, 11 U ,
R11	31970	Red-yel., . $25 \mathrm{U}, 1 / 3-W$.
R12	30360	Blue-gray, 1 U, 1/3-W.
R13	32010	Blue-red-green, 500Ω, 1W.
R14	36430	Blue-xel., $5000 \Omega, 1 / 3-W$.
R15	28030	$\begin{aligned} & \text { Bl'k-red, }^{W} \quad 20,000 \Omega, \quad 11 / 2- \end{aligned}$
R16	20970	Gray, 30,000 Ω, 1/2-W.
R17	31860	Flexible (yel. cover 1.0Ω
		ONDENSERS
Code	Part	
No.	No.	Name of Part
C1	31530	. 1 MF, 100-V.. NI
C1A	38280	4 MMF, 500-V.
C2	38070	25 MMF, 500-V.
C3	25035	. $006 \mathrm{MF}, 450-\mathrm{V}$.
C4	29530	. 03 MF, 200-V., NI
C5	38060	$730 \mathrm{MMF}, 100-\mathrm{V}$.
C6	32390	$\begin{aligned} & .05, .05, .2 \mathrm{MF}, .200- \\ & \text { IND. } \end{aligned}$

C7 32410 Triple . 05 MF, 100-V.,
C8 33630 Double 250 MMF, $450-\mathrm{V}$., IND.
C9 33630 Double 250 MMF, 450-V.
C10 23250 .01 MF, 450-V.
C11 33660 . $0022 \mathrm{MF}, 450-\mathrm{V}$., IND.
C12 27630 . $01 \mathrm{MF}, 200-\mathrm{V}$., IND.
C13 $25379 \quad 10 \mathrm{MF}, 25-\mathrm{V}$.' (dry elec-
C14 36420 . $02 \mathrm{MF}, 200-\mathrm{V}$., IND.
$\begin{array}{lll}\mathrm{C} 14 & 36420 & .02 \mathrm{MF}, \\ \mathrm{C} 15 & 3200-\mathrm{V} . \\ \mathrm{C} & 3740 & .003 \mathrm{MF}, \\ 500-\mathrm{V} .\end{array}$
C16 $25168 \quad 8 \mathrm{MF}, \mathbf{4 7 5 - V}$. (electro-
C17 263818 MF, 8 450-V. (blue)
TRIMMER CONDENSERS
Code Part
No. No. Name of Part
A4, 532880 Double I. F.
A6 33080 . Single I. F.
A7 38180 Trap trimmer (used only in some models) CHOKES

Code Part \quad Name of Part No. No.

CK1 23657 Choke on speaker
CK2 27324 Trap choke (used only in some models)
SOCKETS
Part
No.
26111 Name of Part
25196 Speaker
24492 Rectifier
24494 Small 6 prong (2 used)
22733 Large 6 prong
MISCELLANEOUS

Part
 \section*{No.}

Name of Par
24327 Tone decalcomania
25056 Shield for T5
24323 Power T. cover (2 used)
24327 Wave trap shield (A7)
27182 Dial assembly
15404 Pilot lamp, 2.5-V.
27179 Tuning tag, F-1135
27113 Instruction folder, F-1134
26618 Shipping container
185-A SPEAKER No. 34100
Part
No. Name of Part
18870. Field coil (2000 Ω)

21672 Output T. (T6)
21161 Diaphragm
25179 Cable and plug
25308 Speaker plug (3 prong)
23657 Choke (CK1)
$\Omega=$ ohms. $\quad U=$ megohms. \quad IND. $=$ inductive. $\mathrm{N}==$ non-inductive. W. W =watt.

For Alignment See Index

PAGE 5-14 A-K
MODEL 206,376 (1st)
Socket,Trimmer,Parts ATWATER-KENT MFG. CO.

ATW ATER-KENT MFG. CO.
PARTS LIST

INSTRUCTIONS FOR CONNECTING DOUBLET ANTENNA TO RECEIVER

The Model "DT" doublet transformer has a convenient mounting bracket to permit mounting on the rear of cabinet. The transformer has four terminals which are clearly marked. The connections are shown in Fig. 3. Model "DT" transformer has a two-position switch. For short-wave broadcast reception, turn knob on this switch so the dot is at "SW" (short wave). For standard broadcast reception turn the knob so dot is at "BC" (broadcast).

IMPORTANT
 ratio of signal-to-noise may be obtained WITHOUT a ground connection to the receiver. Try it both ways, and if there is less electrical interference without the ground, leave the ground connection off. (Of course, this does not apply to the ground on the lightning arrestor, which must be connected as shown in the illustration.)

If the receiver is provided with doublet antenna connections (as on Atwater Kent Models 112, 318, 447, and 559), connect the transmission line as specified in the in wire which.) on there models remove the jumper wire which is used on these models minals. This jumper is required when using a plain antenna, but is not used with a doublet.

On the Atwater Kent models just mentioned, the fre-quency-range switch on the set automatically changes the doublet to a plain antenna on the standard broadcast and police bands.
DOUBLET TRANSFORMER
 antenna connections, it is necessary to use Atwater Kent Model "DT" Doublet Transformer, part No. 28083. This transformer is not included in the Atwater Kent Type doublet antenna kit, but can be purchased separately.

C-O

Fig. 3. For short-wave sets that are not

 shown in this drawing. The transformer has
bracket for attachment to the rear of
 from short-waves to standard broadcast.

A-K PAGE 5-17

PAGE 5-18 A-K
MODEL 387 Above 7873966
RODEL $427 Q$ Above 1948501
Socket,Trinmer, Parts

ATWATER-KENT MFG. CO.

This late type of Models 387 and $427-Q$ differs from the
early type by having a police-switch circuit which permits

Mespacc

2nd TYPE 387

(Above Serial No. 7873966)
2nd TYPE 427-Q
(Above Serial No. 1948501)
Part
No.
No. Name of Part
27054 Dial assembly
26721 Dial lamp (2-V., 60 MILS.)
37830 Tone control switch complete
26337 Cabinet complete (387)
26053 Screen
25686 Escutcheon
26031 Knob-volume and tone control
25811 Knob-dial
25692 Volume control, . 5 U
25704 Battery cable
23288 Dial plate
TRIMMERS
Code Part
No. No.

Name of Part

A6, 730110 Double I. F. trimmer
CONDENSERS
Code Part
No. No.
C1 $37840 \quad 1450$ Name of Part
C1 $37840 \quad 1450$ MMF. 100-V.

$\begin{array}{llll}\text { C2 } & 30580 & 775 \mathrm{MMF}, & 100-\mathrm{V} . \\ \mathrm{C} 3 & 35840 & 50 \mathrm{MMF} & 500-\mathrm{V}\end{array}$ C3A $36280 \quad 14 \mathrm{MMF}, 500-\mathrm{V}$. C4 26820 . 05 MF M $200-\mathrm{V}$., NI . C5 $22472 \quad 7 \mathrm{MF}, 200-\mathrm{V}$. , dry electro.
 $\begin{array}{llll}\mathrm{C} 6 & 27630 & .01,200-\mathrm{V} . \\ \mathrm{C} 7 & 27630 & 01,200-\mathrm{V}\end{array}$
 C8 33620 250 MMF. 450.V.. NI
 $\begin{array}{rrrl}\mathrm{C} 9 & 31510 & .5 & \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI} \\ \mathrm{C} 10 & 31510 & .5 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}\end{array}$
 34010 Multiple by-pass (J15)

TRANSFORMERS
Code Part
No. No.
T1 37920 Name of Par
$\begin{array}{lll}\text { T1 } & 37920 & \text { No. 1 R. F. T. } \\ \text { T2 } & 37930 & \text { No. 2 R. F. T. }\end{array}$
T3 37940 Oscillator T.
$\begin{array}{lll}\text { T4 } & 26068 & \text { No. 1 I. F. T. } \\ \text { T5 } & 26068 & \text { No. 2 I. F. T. }\end{array}$
T6 35030 Input T.
T7 23701 Output T.

SOCKETS

Part
 $\begin{array}{cc}\text { Part } & \\ \text { No. } & \text { Name of Part } \\ 20237 & 4 \text { prong }\end{array}$
 227336 prong
 21336 Speaker (4 prong)

RESISTORS

Code No.	Part No.	Name of Part
R1	30340	Red-blue, . $1 \mathrm{U}, 1 / 3-\mathrm{W}$.
R2	30390	Bl'k-red, $20,000 \Omega, 1 / 3$ \mathbf{W}.
R3	30380	
R4	30370	Green, 2 U, 1/3-W.
R5	31970	Red-yel., . $25 \mathrm{U}, 1 / 3-W$.
R6	30340	Red-blue, 1 U, 1/3-W.
R6A	30320	Maroon, $10,000 \Omega, 1 / 3$ W.
R7	30350	Bl'k-purple, . 5 U, 1/3-W
R8	30340	Red-blue, . $1 \mathrm{U}, 1 / 3-W$.
R9	36250*	Wire wound, 1.15Ω in 427-Q
R9	36	Wire wound, 1.03

R9 $36240 \dagger$ Wire wound, 1.03Ω in * A No 37130387

* 1 . 3730 resistor (1.15Ω) is supplied
 tith set for use with a $3 \cdot \mathrm{~V}$. dry "A" battery.

MISCELLANEOUS

Part

No. Name of Part
21877 I. F. T. shield
22678 R. F. T. shield
22654 I. F. T. shield cap
25735 Battery cable tag, F1082
25602 Instruction and log card, F1072
25804 Shipping container
15213 Tube shield
$38 \overline{7}$ SPEAKER No. 31700
Part
No.
9918 Magnet assembly
23701 Output transformer, less case
23764 Cable and plug
427-Q SPEAKER No. 36400
Part
No. Name of Part
23863 Speaker cable and plug assem.

ACTION OF ATWATER KENT Tune * O • Matic

A simple diagram of the Tune-O-Matic is shown on this page. It is NOT necessary to understand the circuit details in order to set up the Tune-O-Matic, but a few notes on the mechanical action are given below for your convenience.

The tuning motor is a shaded-pole induction type. The motor shaft rotates in only one direction, and the required forward and reverse drive for the variable condenser is secured by an ingenious and simple arrangement for tipping the motor, which is pivoted for this purpose. Tipping is accomplished by a solenoid and lever.

The motor drive shaft extends between two rubbertired wheels, one large, and one small. When the solenoid is not energized, the motor drive shaft rests against the small wheel and the resulting motion drives the variable condenser in the direction from 540 to 1600 K . C. When the solenoid is energized, the motor is tipped so that its drive shaft rests against the large wheel, and the variable condenser is then driven in the direction from 1600 to 540 K. C.

The current that energizes the solenoid is controlled by a switch (mounted above the top rear of the variable condenser). This switch opens at 1600 K . C. and closes at 540 K . C. The switch is operated by a cam on the shaft of the variable condenser.

Eight adjustable discs are mounted on the shaft of the variable condenser, which is extended out in back of the condenser. Each disc has a small insulated sector on the rim. Each disc is held by spring tension to the shaft. Normally, the discs do not move with respect to the shaft, but by holding the front gear of the variable condenser, and using a special wrench which is furnished with Model 511, each disc may be rotated on its shaft so that the insulated sector is in the desired position. Between adjacent disc there is a spacer which is keyed to the shaft. This prevents the movement of any disc other than the one moved with the wrench.

Eight contact fingers are mounted at one side of the discs, each finger contacting with the rim of its corresponding disc.

The electrical action is briefly as follows:
Assume that we have one lead of station " G " plugged in the $4: 30$ jack and the switch is set to automatic.

When the contact blade on the rear of the jack panel comes to the $4: 30$ jack, the electric circuit through the motor and solenoid is completed and the solenoid tips the motor shaft against the large rubber tired wheel. The motor turns the variable condenser from the automatic-off position, near 1600 K . C., across the dial to the frequency of station " G ".

When the motor reaches this point, the insulated sector of disc " G " has come under its contact finger and the circuit, from the finger through the disc to ground, is broken. This cuts the high-impedance relay into the motor circuit and reduces the current through the motor and solenoid to such a low value that the motor stops turning and the solenoid lever comes up, throwing the motor drive shaft against the small rubber-tired wheel which acts as a mechanical brake, bringing the motor to a dead stop on station "G" Simultaneously, the relay has completed the 110 -volt circuit to the set power transformer and the set, now tuned to station " G ", begins to operate.

Now plug one of the "off" leads into the $4: 45$ jack. When the contact finger moves off the $4: 30$ jack, the circuit through the relay is broken, the set is turned off, and the contact finger, now on the $4: 45$ jack, completes the circuit through the motor and solenoid, driving the condenser to $540^{\circ} \mathrm{K}$. C., where a cam on the shaft trips the
switch, thus cutting out the solenoid, and the motor tips back against the small rubber-tired wheel, driving the condenser back in the opposite direction to $1600 \mathrm{~K} . \mathrm{C}$.

Beyond the 1600 K . C. end of the dial, the cam on the variable condenser shaft again trips the switch, which opens, and the solenoid, being energized, tips the motor shaft against the large wheel, starting the condenser moving back. But at 1600 K. C. the insulated sector of the "off" disc comes under its contact finger, breaking the circuit and stopping the motor. In the off position, NO CURRENT IS DRAWN BY THE SET; the only current is the small amount required by the electric clock.

Inspection of the diagram will show that the jack panel is shorted out by the switch when the condenser is moving from 540 to 1600 K . C. For greatest accuracy all tuning is done while the condenser is moving from 1600 to 540 K . C.

The Tune-O-Matic mechanism should be adjusted by the dealer in his store, and not in the customer's house. If the customer indicates his choice of seven different stations, the dealer should adjust the Tune-O-Matic for these seven stations. If the choice is left to the dealer, he should select the seven strongest and most reliable stations. In any case, do not select a weak station, a station with pronounced fading habits, nor a station that has interference; such stations can be received better with manual tuning.

1. Make a list of the seven desired stations, listing them numerically by frequency, and mark the call letters of the seven stations on the station index plates at the front of the clock unit, beginning at the top of the left-hand row and working down the left hand row, then to the top of the right-hand row and working down the right-hand row. The bottom index plate on the right-hand row is marked "OFF". Each celluloid plate has two spring•return tip-jack leads. There are two leads for each of the seven stations and two "off" leads.
2. Remove the small cover at center rear of chassis. This cover is held by two screws and encloses eight adjustment discs and eight corresponding contact fingers. (The disc nearest the front of the set is the "off" disc and it is adjusted at the factory to a point beyond the 1600 K.C. end of the dial.
3. Turn the tone control extreme right (high pitch), and turn the on off switch to the "manual" position (right). Tune in the first station on the list; we will refer to this as station "A".
4. Without disturbing the tuning, firmly grasp the dial gear at front of variable condenser in one hand and move the rear disc, by means of special wrench furnished with set, until the rear contact finger is on the small insulated sector of the rear disc.

The wrench is designed to fit loosely on the rim of the disc in order that it may be moved easily to any desired point on the rim. In using the wrench to move the disc, it is necessary to press against the wrench in such a way that the wrench grips the rim of the disc, and then press slowly but firmly in moving the disc.

If you have not held the dial gear securely while turning the disc, the set may have detuned slightly. (Detuning is most readily noticed when the tone control is set at high pitch). In this case retune the station carefully and readjust the rear disc.
5. Plug one of the top left-hand pair of tip leads into the jack at which the HOUR hand points or has just passed.

Note that the clock is marked in 15 -minute intervals, not in minutes. Turn on the on-off switch to "automatic" (left) and tune off the station. This will cause the set to shut off and start the Tune-O-Matic motor. Allow the automatic mechanism to bring the pointer back to the station, at which point the motor will stop and the set will be turned on. After the tubes have heated and the station comes in, note whether the station is correctly tuned in. If the station is not tuned in correctly, a slight readjustment of the disc in the correct direction is necessary. Again throw the station off tune and repeat the procedure if necessary.
6. Proceed with the 2nd station as outlined in paragraphs numbered 4 and 5 , above, but adjust the 2nd disc from the rear and use one of the 2nd pair from the top left row of tip leads to plug into the jack at which the hour hand points.
7. Adjust for the remaining stations in the same way, noting that the adjustment discs and the corresponding pairs of tip leads shown on page 1 of customer's instructions are as follows:
Rear disc..................(Station "A").
2nd from rear disc (Station "B").
3rd from rear disc (Station "C").
4th from rear disc (Station "D").
5th from rear disc (Station "E").
6th from rear disc (Station "F").
7th from rear disc (Station "G").
Front disc (OFF). This is set at factory.

ADDITIONAL AUTOMATIC "OFF" POSITIONS

If more than two automatic "off" positions are required, it is possible to obtain two additional "off" positions by using one of the seven station discs for this purpose.

Use the 2nd disc from the front and adjust it so its insulated sector is in the same position as the front or regular "off" disc. Mark "OFF" on the index plate directly above the regular "off" plate.

This arrangement provides selection of six different stations with four automatic "OFF" positions.

ADDITIONAL STATION LEADS

If seven good stations are not continuously available, it is necessary to double up on the good stations. Use two adjacent discs for each good station, marking the index plates to correspond.

INSTALLING ATWATER KENT REMOTE CONTROL ON MODEL 511 Tune O © Matic

The Atwater Kent remote control consists of a small control box with a ten-point switch and illuminated switch dial. Seven of these ten points are used to select the seven different stations for which the Tune-O-Matic has been previously adjusted. There are two "off" points (one at each end of the switch movement), and one point marked "time" which restores the set to automatic time operation.
THE SWITCH ON THE CONTROL UNIT MUST BE PLACED IN THE "TIME" POSITION WHEN IT IS desired to have the set tune automat. ICALLY.

The remote control has 25 feet of cable so the control unit may be placed across the room or in an adjoining room from the set.

The other end of the remote control cable has a multiprong socket and plug. Attach the socket to the left-rear side of the cabinet by means of the two screws furnished with the unit.

Remove the plug of the Tune-O-Matic clock unit from the socket at top-left of chassis and insert it in the socket which you have just fastened to rear of cabinet. Then insert the plug at end of remote control unit into the socket on top of chassis.

This control unit does not have a volume control, but Model 511 has a super-automatic volume control circuit which ensures constant volume level from one station to another.

adjusting rear disc with set tuned to station "A"

ATWATER-KENT MFG. CO.

TUBUL

ATWATER-KENT MFG. CO. Schematic

PAGE 5-24. A-K
MODEL 534 (2nd)
Socket, Speaker, Parts
Trinmers

ATWATER-KENT MFG. CO.

MODEL 534

Part	Name of Part
No.	Namer
25655	Set container
25653	Container cover
25475	Wire screen
25482	Set mounting bolt, $21 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$
24486	Nut, $3 / 8^{\prime \prime}$

24485 Lockwasher, 3/8"
21143 Plug suppressor
21144 Distributor suppressor
23260 Generator condenser, 1 MF, 200-V.
25509 Shield for No. 1 R. F. T.
25441 Shielded grid lead and cap
25287 Variable condenser assembly
25406 Station selector clamp
25519 Antenna cable, 24"
21126 Control pulley
21127 Control pulley spring
25851 Spring centering ring
TRANSFORMERS
Code Part
Name of Part
T1 33710 No. 1 R. F. T.
T2 33720 Oscillator T.
$\begin{array}{llll}\text { T4 } & 33790 & \text { No. } 2 \text { I. F. T. T. } \\ \text { T5 } & 25371 & \text { Power T. }\end{array}$
$\begin{array}{lll}\text { T6 } & 25606 & \text { Output } \mathbf{T} \text {. }\end{array}$
RESISTORS

Code No.	Part No.	Name of Part
R1	30360	Blue-gray, 1 U, 1/3-W.
R2	30380	Red-green, $3300 \Omega, 1 / 3-$ W.
R3	30380	Red-green, $3300 \Omega, 1 / 3-$ W.
R4	15820	Flexible, 70Ω
R5	26160	White, 40,000 Ω, $1 / 2-W$.
R6	30340	Red-blue, 1 U, 1/3-W.
R7	30370	Green, 2 U, 1/3-W.
R8	31970	Red-yellow, 1/4 U, 1/3-W.
R9	30360	Blue-gray, 1 U, 1/3-W.
R10	20120	Flexible, 800Ω
R11	30350	Bl'k-purple, . 5 U, 1/3-W.
R12	30370	Green, 2 U, 1/3-W.
CONDENSERS		
Code	Part	
No.	No.	Name of Part
C1	30260	50 MMF, letter E stamped on washer, $450-\mathrm{V}$.
C2	31530	. $1 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C3	33680	290 MMF, 100-V.
C 4	33660	. $0022 \mathrm{MF}, 450-\mathrm{V}$., IND.
C5	31160	. 05 MF, 100-V., NI
C6	26820	. $05 \mathrm{MF}, 200-\mathrm{V}$. , NI
C7	33630	Double 250 MMF, 450- V., IND.
C9	31530	. $1 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C10	23250	. $01 \mathrm{MF}, 450-\mathrm{V}$.
C11	27630	. $01 \mathrm{MF}, 200-\mathrm{V}$., IND.
C12	28040	. $005 \mathrm{MF}, 200-\mathrm{V}$. . IND.

ATWATER-KENT MFG. CO.
MODEL 559
Schematic

PAGE 5-26 A-K

ATWATER-KENT MFG. CO.

ADJUSTING TRIMMER CONDENSERS (Contd.)

GENERAL NOTES.

1. Do not make any trimmer adjustments and do not disturb the dial gear or the dial indicator adjustments unless absolutely necessary.
2. With all-wave sets, it is very desirable to use a test oscillator that extends to $18 \mathrm{MC}(18,000 \mathrm{KC})$. If you attempt to use harmonics of a broadcast oscillator, you are likely to use the wrong harmonic and set the trimmers incorrectly.
3. When using a test oscillator, you will experience "doublespot" or image reception, particularly on the highest frequency range of the set. The double-spot point is twice the I. F. frequency below the correct point. For instance, if a set has an I. F. frequency of $4721 / 2$ kilocycles, and you are tuning in an 18 MC signal, the double-spot or image will be twice $4721 / 2$ or $945 \mathrm{KC}(.94 \mathrm{MC})$ below 18 . In such a case you will hear the signal at 18 MC and also at 17.06 MC . In properly aligned sets of six tubes or more, the image should be weaker than the desired signal.
4. Because of the facts mentioned in paragraphs 2 and 3 above, it is very desirable, wherever possible, first to check the short-wave dial calibration and determine how far, and in what direction, the readings are "off." This should be done on actual reception of short-wave stations of known frequency. This prechecking will assist you in selecting the correct harmonic (in case you are using a broadcast oscillator), and it will also minimize possibility of confusing the correct signal and the image signal.
5. On oscillator trimmers there may be two different settings at which the signal is received. Always use the first of these two positions as you screw the trimmer in from a loose or minimum-capacity position. THIS IS IMPORTANT.
6. On sets with a combined oscillator and 1 st-detector tube, tune the set to a quiet point near $1,000 \mathrm{KC}$ while adjusting the I. F. trimmers.

OSCILLATOR GOVERNS DIAL ACCURACY.

It is essential to understand definitely that in a super-heterodyne the dial calibration depends on the oscillator circuit of the set, providing that the I. F. trimmers are correctly aligned. The pre-selector (R. F. and 1st-detector) trimmers do not affect the dial calibration but simply affect sensitivity.

If the dial calibration of one or more of the frequency ranges of the set is "off", check the oscillator trimmer, the oscillator tracking condenser and tracking trimmer, and the oscillator transformer for the particular range or ranges in question.

The oscillator trimmer is used to adjust the high-frequency end of the particular range.

The oscillator tracking condenser adjusts the low-frequency end of the particular range.

In Atwater Kent sets the fixed tracking condenser on the broadcast range (and in some models also on the police range) is shunted with an adjustable tracking trimmer condenser. The adjustable tracking trimmer condenser is not used on the highfrequency ranges.

The adjustment of the trimmers for the high-frequency and low-frequency end of a particular range is slightly interlocking. For example, assume that the broadcast tange of a set is off calibration. First turn the tuning knob so the dial pointer is at 1500 KC and, using a 1500 KC signal, peak the broadcast oscillator trimmer. Then turn the set to 560 KC and, using a 560 KC signal, peak the oscillator broadcast tracking trimmer for maximum output. This adjustment will have slightly affected the previous adjustment at 1500 KC so it will be necessary to repeat the adjustment at 1500 KC and also possibly at 560 KC .

If adjustment of the oscillator trimmer and the oscillator tracking trimmer does not correct the dial readings, it may be necessary to replace the fixed oscillator tracking condenser or the oscillator transformer for that particular range.

Naturally,' the I. F. trimmers should be checked, and adjusted if necessary, before any attempt is made to align the R. F. or oscillator trimmers.

GENERAL PROCEDURE.

First check the I. F. trimmers. If reception is satisfactory and the dial calibration is correct on the broadcast range, it is safe to assume that the I. F. trimmers are correctly adjusted.
If the dial calibration is "off" (or the set is weak) on only one range, adjust the trimmers for that range only. If this does not correct the trouble, inspect the resistors, condensers, transformers, and switch contacts associated with that particular range.
In checking a set, do not disturb the position of the wiring any more than necessary.

MODELS 112 AND 559

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to $4721 / 2 \mathrm{KC}$. Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on full. Put tone control in 2nd-position from right.
Put balancing unit A (shown in Fig. 2) across trimmer A21 and peak A22.

Put unit A across A22 and peak A21.
Put unit A across A19 and peak A20.
Put unit A across A20 and peak A19.
Put one unit A across A17 and another unit A across A15; peak A18 and A16.
Put one unit A across A18 and another unit A across A16; peak A17 and A15.
In case of instability while adjusting A21 and A22, place an extra balancing unit A across A18.
Remove the I. F. coupling unit and the balancing units and seal the trimmer screws.

R. F. TRIMMERS.

Connect an R. F. oscillator to the antenna and ground terminals of the set. Use the weakest possible signal to give a reading on the output meter. Loosen the trimmer screws for the frequency range or ranges that are to be re-adjusted.
10 to 18 MC range. Tune oscillator exactly to 18 MC and turn tuning knob of set so indicator is at 18 MC mark. Adjust trimmers A14, A4 and A12 for peak output.
4 to 10 MC range. Tune oscillator exactly to 10 MC and turn set to 10 MC mark on the 4 to 10 MC range. Peak trimmers A13, A3 and A11.
1.5 to 4 MC range. Tune oscillator to 4 MC and turn set to the 4 MC mark on the 1.5 to 4 MC scale. Peak trimmers A7, A2 and A8. Tune oscillator to 1.5 MC and, with set at 1.5, peak A10. Repeat adjustments on A7 and A10 if necessary.

Broadcast range. Tune oscillator and set to 1500 KC . Peak trimmers A6, A1 and A9. Tune oscillator to 560 KC and turn set to the 560 KC mark. Peak A5. Repeat adjustments on A6 at 1500 and A5 at 560 if necessary.

MODELS 145 AND 325

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to 264 KC . Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on fuil. Turn the set to a quiet point near 1000 KC .
Peak trimmer A7, A6 and A5. Remove the I. F. coupling unit and seal the trimmer screws.

A-K PAGE 5-29

YODEL 318,447 Alignment, Trimmers

ATWATER-KENT MFG. CO.

MODEL 206,376 (18t) Alignment,Trimers

DIAL POINTER ADJUSTMENT.

With the variable condenser all the way in, the dial pointer should be set at 535 KC .

R. F. TRIMMERS.

Connect an R. F. test oscillator to the antenna and ground terminals of set. Use the weakest possible oscillator signal. Loosen the trimmer screws.
Short-wave range. Oscillator at 15 MC , and set turned to 15 MC mark, peak trimmer A3
Police range. There are no trimmer adjustments for this range.
Broadcast range. Oscillator at 1500 KC and dial pointer at 1500 KC mark, peak trimmers A8, A2 and A1. Tune oscillator and set to 560 KC . Peak A4. Repeat adjustments on A8 at $1500 \cdot \mathrm{KC}$ and A4 at 560 KC if necessary.

MODELS 206 AND 376 (1st type)

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust the oscillator to $4721 / 2 . \mathrm{KC}$. Use the weakest possible signal that will give a reading on the output meter with the radio volume control on full.
Turn the set to a quiet point near 1000 KC .
Peak trimmers A8, A7 and A6 for maximum output. Remove the I. F. coupling unit and seal the I. F. trimmers.

DIAL POINTER ADJUSTMENT.

With the variable condenser rotor completely meshed, the dial pointer should be set at 535 KC .

R. F. TRIMMERS.

Connect a suitable R. F. oscillator to the antenna and ground terminals of set.
Broadcast range. Oscillator at 1500 KC and dial pointer at

R. F. TRIMMERS ON MODELS 206 AND 376

	Short-Wave	Police Range	Broadcast Range
R. F.	A1	None	A2
1st-Detector	A4	None	A3
Oscillator	A10	None	A9
Tracking	None	None	A5

1500 KC mark, adjust trimmers A9, A2 and A3. Tune oscillator and set to 560 . Peak A5. Repeat adjustments on A9 at 1500 KC and A 5 at 560 KC if necessary.
Police range. There are no trimmer adjustments for this range.
Short-wave range. With oscillator at 15 MC and set turned to 15 MC , peak trimmers $\mathrm{A} 10, \mathrm{~A} 1$ and A 4 .

MODELS 318 AND 447

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1 st-detector tube by means of the I. F. coupling unit shown in Fig. 1. Adjust oscillator to $4721 / 2 \mathrm{KC}$. Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter with the radio volume control on full.
Put balancing unit A (shown in Fig. 2) across trimmer A19 and peak A20.

Put unit A across A20 and peak A 19.
Put unit A across A17 and peak A18.
Put unit A across A18 and peak A17.
Put unit A across A15 and peak A16.
Put unit A-across A16 and peak A15.
Remove the I. F. coupling unit and balancing unit and seal the I. F. trimmers.

R. F. TRIMMERS.

Connect an R. F. test oscillator to the antenna and ground terminals of set. Use the weakest possible oscillator signal that will give a reading on the output meter. Loosen the trimmer screws for the frequency range or ranges that are to be re-adjusted.

12 to 22.5 MC range. Oscillator at 18 MC , dial pointer at 18 MC , peak trimmers A13, A4 and A8.
4.6 to 12.2 MC range. Oscillator at 12 MC , dial pointer at 12 MC , peak trimmers A14, A2 and A6 for maximum output.

R. F. TRIMMERS ON MODELS 318 AND 447

	$\begin{gathered} \text { 12-22.5 MC } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { 4.6-12.2 MC } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { 1.6-4.6 MC } \\ \text { Range } \end{gathered}$	$\begin{gathered} 540-1600 \mathrm{KC} \\ \text { Range } \end{gathered}$
R. \mathbf{F}.	. A4	A2	A3	A1
1st-Detector	- A8	A6	A7	A5
Oscillator	. A13	A14	A12	A11
Tracking	. None	None	A10	A9
	F. trimimers	e Al5 to A20	inclusive.	

A'TWATER-KENT MFG. CO.

ADJUSTING TRIMMER CONDENSERS (Contd.)

1.6 to 4.6 MC range. Oscillator at 4 MC and dial pointer at 4 MC , peak trimmers A12, A3 and A7. Tune oscillator to 1.7 MC , and with dial pointer at 1.7 , peak A10. Repeat adjustments on A 12 at 4 MC and A 10 at 1.7 MC if necessary.

Broadcast range. Oscillator at 1500 KC and dial pointer at 1500 KC mark, peak trimmers A11, A1 and A5. Tune oscillator to 560 KC , turn dial pointer to 560 KC mark, and peak A9. Repeat adjustments on A11 at 1500 KC and A9 at 560 KC if necessary.

MODEL 944

I. F. TRIMMERS.

Connect an I. F. test oscillator to the 1st-detector-by means of the I. F. coupling unit shown in Fig. 1. Adjust the I. F. oscillator to 450 KC . Connect a sensitive output meter to the set. Use the weakest possible oscillator signal that will give a reading on the output meter, with the condenser A 5 turned well out in counter-clockwise direction (when facing rear of chassis). Peak the I. F. trimmers A3 and A4 for maximum output. Now turn the regenerative control condenser "in" (clockwise from rear of chassis) until a "squeal" or audio howl indicating oscillation of the I. F. stage, then back off about onequarter turn, or until the audio howl stops. The adjustments of the I. F. trimmers should again be checked for peak-i. e.,
the peaking procedure and adjustment of the regenerative condenser should be repeated until maximum output is obtained.

R. F. TRIMMERS.

Check the dial setting by turning the gang condenser to naximum position and observing, by means of steel scale held vertically over the condenser shaft axis, whether the 540 KC mark on the dial is perpendicular to a line along the top of the condenser frame in back of the dial. Connect an R. F. oscillator to the antenna and ground terminals of the set. Use the weakest possible signal to give a reading on the output meter. Loosen the trimmer screws. Tune the oscillator to 1500 KC and turn the tuning knob of the set to a dial mark half way between 140 and 150 and perpendicular to a line along the top of the condenser frame. (Determined as explained in setting dial at 540 KC .) Peak the trimmers A1 and A2 for maximum output. Retune oscillator and set to 1100 KC and check regenerative condenser A5 adjustment for maximum sen-sitivity-i. e., one-quarter turn below audio howl. If oscillation occurs at any other point on the dial after the above adjustments, it will be necessary to again turn back a fraction of a turn on the condenser A5.
Note.-1st-detector grid clip must be inside of shield can when adjusting the R. F. trimmers.

PARTS LIST

ATWATER-KENT MFG. CO.

MODEL 666 MOTOR CAR RADIO

PAGE 5-32 A-K

MODEL 666

Part
Shield for No. 1 R. F. T. (early short)

Set container complete, less lid

Set container lid
Rubber gasket
Tuning cable bushing
Inner plate for above
Bolt 2 $1 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$
Lockwasher $3 / 8^{\prime \prime}$
Nut 3/8"
Shield for No. 1 R. F. T. (early

26598 Cloth
26983 Wire screen
\ddagger In late 666 a No. 38270 tubular condenser is supplied.

TRANSFORMERS

Code Part
No. No.
Name of Part
T1* 38010
T2* 38020
No. 1 R. F. T. (late type)
T3 37890
T4* 27096 No. 1 I. F. T. (late type)
T5 26593 No. 2 I. F. T.
T6 26982 Output T.
7 26291 Power T.

* Below Serial No. 8148331 T1 is part No. 35580 , T2 is part No. 35690, T4 is part No. 26592.

RESISTORS

R1	20040	Flexible, 100Ω
R2	20970	Gray, 30,000 $\Omega, 1 / 2$-W.
R3	30340	Red-blue, $1 \quad \mathrm{U}, 1 / 3-\mathrm{W}$.
R4	31980	Bl'k, 65,000 $\Omega, 1 / 3-W$.
R5	31830	Flexible, 250Ω
R6	30390	Red-bl'k, $20,000 \Omega, 1 / 3-$
	W.	

R7 30380 Red-green, 3300Ω, $1 / 3$ W.
$\begin{array}{rclll}\text { R8 } & 19820 & \text { Flexible, } 48 \Omega \\ \text { R9 } & 30370 & \text { Green, } 2 \cup, 1 / 3-W . & \\ \text { R10 } & 30350 & \text { Bl'k-purple, } 5 \text { U, } 1 / 3-W . \\ \text { R11 } & 31480 & \text { Bl'k-red-blue, } 1100 & \Omega .\end{array}$ /3-W.
R12 36430 Yel.-blue, $5000 \Omega, 1 / 3-W$.
R13 30370 Green, 2 U, 1/3-W.
R14 30340 Red-blue, . 1 U, 1/3-W.
R15 30350 Bl'k-purple. . 5 ' $\mathcal{R}, 1 / 3-W$.
$\begin{array}{lll}\text { R16 } & 23780 & \text { Flexible, } 550 \Omega \\ \text { R17 } & 33250 & \text { Blue, } 2000 \Omega, 1 / 3-W .\end{array}$
R18 16840 Flexible, 22Ω

CONDENSERS

Code Part

| No. | No. | | Name of Part |
| :--- | :--- | :--- | :--- | :--- |
| C1 | 31160 | .05 | MF, 100-V., NI |
| C2 | 31530 | .1 | MF, 100-V., NI |
| C3 | 26820 | .05 | MF, 200-V., NI |
| C4 | 36460 | 600 | MMF, $100-$ V., |
| C5 | 36510 | 500 | MMF, $500-$ V. |

C6	36440	.1, .1, .05, 100-V.. I
C7	29530	. $03 \mathrm{MF}, 200-\mathrm{V}, \mathrm{NI}$
C8	31530	. 1 MF. 100-V.
C9	33670	250 MMF, 500-V.
C10	33670	250 MMF, 500-V.
C10A	26820	. 05 MF, 200-V., NI
C11	23250	. 01 MF, 450
C12	26660	. 1 MF, 200-V.. NI
C13	32810	.01, 450-V., NI
C13A	33660	. 0022 MF, 450-V., IND.
C14	25379	$10 \mathrm{MF}, 25-\mathrm{V}$.
C15	28040	. $005 \mathrm{MF}, 200-\mathrm{V}$. IND.
C16*	30270	.008, .015, . 03 MF (B16)
C17	26660	.1 MF, 200-V., NI
C18	26995	4 MF-8 MF. 300-V.
C19	36490	. 05 MF, 450-V., NI
C20	36490	. 05 MF, 4 ${ }^{\text {co-V., NI }}$
C21	31150	. $3 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C 22	31510	.5 MF. 100-V., NI
C23	36480	. $64 \mathrm{MF}, \mathrm{H} 52,200-\mathrm{V}$.
C24	37760	2.2 MF, 100-V., K9
C25	31150	. 3 MF. 100-V., NI
$* \ln$	late 666 Nos. 272	this condenser is No. 38160, using and 27209.

26827 Field coil, 6.5Ω 26559 Cable and plug assembly REMOTE CONTROL HEAD
(Same as used on Model 815
clamps Nos. 27208 and 27209.

TRIMMERS

Code Part

No. No.

$\begin{array}{cc}\text { A4, } 5 & 32880 \\ \text { A6 } & 365.70\end{array}$

Double I. F. trimmer

Single I. F. trimmer

CHOKES

Code Part
No. No. Name of Part
CK1 26594 2nd det. plate choke, 390Ω
CK2 27011 "B" filter choke, 100Ω
CK3 36630 " A " filter choke, 06Ω

SOCKETS

Part

No. Name of Part

244935 prong
244946 prong, 85 and 41
270236 prong, R. F. and I. F.
261117 prong
26572 Tip jack
POWER UNIT ASSEMBLY
(Miscellaneous parts)
Part

No.
 26986

26985

27005
 \section*{26997}

26761

25408

15648
26046

Name of Part

Vibrator socket (6 prong)
Rectifier socket (5 prong)
Vibrator

Container

Lid for above
Oval head screw
Filister head screw
Mounting bracket (T7)
MISCELLANEOUS
Part

Name of Part

Instruction folder F-1127

 Fuse 10A I. F. tube shield (short) 85 tube shield (long)SPEAKER

Part

No.
26851 Name of Part
26826 Cpeaker, less cable

1934 Set Mo Specificati		ATWATER－KENT MFG．CO．	
$\stackrel{\otimes}{ \pm}$		$\infty: \infty \times \infty$ N్No：	昆
¢ ¢		式長：：：：：	－
$\begin{array}{ll} \text { © } \\ \text { D } \\ \text { en } & 0 \\ \hline \end{array}$	at T anz		哭
\bigcirc O		이｜｜iopl｜	\％
$\begin{aligned} & \text { Q } \\ & \text { en ex ex } \\ & 0 \\ & 0 \end{aligned}$	Luad ang		剆感
$\stackrel{\rightharpoonup}{\mathrm{g}} \cdot \stackrel{0}{\mathrm{D}}$			$\stackrel{\square}{\square}$
¢ ${ }^{\text {a }}$	4 I		\％
础			
	golvtioso		
E	－jad usi		$\stackrel{\text { ® }}{ }$
		か® ：¢	－
			管 ${ }_{\text {¢ }}^{\text {¢ }}$
\％			$\begin{aligned} & \text { ed } \\ & \frac{0}{b} \\ & \hline \end{aligned}$
		8	）
天ij \％ó			$\stackrel{\square}{\square}$
			\＆ 5
唇	LNGWLSACGV DNIDNGHIS		俛
．${ }^{\circ}$			¢
¢．	MOVYHs		号 ${ }^{\text {a }}$
－\％．	тәขนум		琞昆
㐌			\cdots
边 ${ }_{\circ}^{\circ} \mathrm{O}$	gagyads ON Lavd		
	augavio ON $A d Y d$	 	
¢ \％	x\dans	O	郭 ${ }^{\circ}$
¢ \％\％	дяММ¢		
\％			
号			
．B		セobomex	
¢ ¢ ¢ ¢ ¢			
吕 0			
च 兂			
		한안 $\vdots \vdots \vdots$ ）	
$\underset{\sim}{\square}$	曷易		新 ${ }^{\text {a }}$
．\ddagger	镸嬖		\％${ }^{\circ}$
¢			
\cdots			
$\stackrel{\square}{0}$			
先			

MODEL 711

In late 711, the R. F. bias resistor R3 is grounded at the front ground lug (near C13) instead of as shown, in order to reduce tendency to oscillation.

PAGE 5-36 A-K
MODEH 711
Socket, Trimmers
Parts List
ATWATER-KENT MFG. CO.

Code Part
Name of Plate
A5 20190 Single I. F. trimmer A6, 732880 Double I. F. trimmer A8, 932880 Double I. F. trimmer A10, 1132880 Double I. F. trimmer

SOCKETS

Part
No.
22733
22685 prong, lower base
22689 Rectifier socket
227354 prong, lower base
21336 Speaker, 4 prong
18449 Fuse socket
244946 prong, upper base

MISCELLANEOUS

Part Name of Part No.

25059 I. F. T. shield cap (with hole)
25058 I. F. T. shield cap (without hole)
22865 Bottom plate
22683 Tube shield
26255 I. F. T. shield insulator
25056 I. F. T. shield
25906 Filter choke cover
25758 Power T. cover
26254 Power T. insulator
35380 Dial light socket and reflector
15404 Dial lamp (2.5-V.)
26793 Instruction folder, F1123
26237 Shipping container
26218 Shields for T1, 2, 6, 7
26217 Shields for T8, 9, 10
26216 Shields for T3, 4, 5
27072 Wave guide, F1131
23774 Fuse 3A
26934 Tuning inst. tag, F1124

711 SPEAKER No. 36700

Part
No. Name of Part
26243 Diaphragm
23668 Cable and plug
35080 Field coil (325 Ω)
15079 Speaker plug

Code Part
No. No. \quad Name of Part
R1 30340 Red-blue,. $1 \mathrm{v}, 1 / 3 \mathrm{~W}$.
R2 30340 Red-blue, 1 U, $1 / 3-W$,

A-K PAGE 5-37

PAGE 5-38 A-K
MODEL 788
Chassis Wiring
ATWATER-KENT MFG. CO.

ATWATER-KENT MFG. CO.
MODEL 808-A

푼

PAGE 5-42 A-K
MODEL 808-A
R.F.Transformers

Parts List

ATWATER-KENT MFG. CO.

PAGE 5-44 A-K
MODEL 816,926,936 (1st)
Socket,Trimmers,Parts, ATWATER-KENT MFG. CO. Power Unit Schematic

In late type sets, the " A " battery cable is brought out the top side, near the speaker plug.

1st TYPES OF
MODELS 816, 926 AND 936

Model 936 has a separate speaker which plugs into a three-prong socket on the inside of 11d of set container.

ATWATER-KEN'T MFG. CO.

MODEL 816
(Below Serial No. 1121818) Part
No.
Name of Part
26586* Set container complete, less lid
26496 Set container lid (bl'k)
26549 Tuning cable bushing
26036 Inner plate for above
26102 Polarity reversal cover
26096 Sound insulators (felt)
26452 Lid mounting bracket
26128 Thumbscrew
19455 Mounting washer
26462 Variable cond. assembly
25478 Grommet for var. cond.
26072 Shield for No. 1 I. F. T.
26538 Insulator for above shield
26589 Shield for No. 1 R. F. T.
26591 Shield for No. 2 R. F. T.
25818 Clamp for No. 36440 cond.
26505 Volume control, . 5 U
26033 Volume control bracket
26039 Volume control coupling
24540 Tone control switch
26127 Knob for above
13664 Sensitivity switch
21143 Plug suppressor
21144 Distributor suppressor
23260 Generator cond., 1 MF, 200-V.

* When ordering cabinet, specify brewn or black:

TRANSFORMERS

Code	Part	
No.	No.	Name of Part
T1	35680	No. 1 R .
T2	35690	No. 2 R. F. T.
T3	35710	Oscillator T.
T4	26592	No. 1 I. F. T.
T5	26593	No. 2 I. F. T.
T6	26606	Audio input T .
T7	26478	Audio output T.
T8	26291	Power T.
		RESISTORS
Code	Part	
No.	No.	Name of Part
R1	20040	Flexible, 100Ω
R2	20970	Gray, 30,000 $\Omega, 1 / 2-W$.
R3	30340	Red-blue, .1 U, 1/3-W.
R4	31830	Flexible. 250Ω
R5	30370	Green, $2 \mathrm{U}, 1 / 3$
R6	30350	Bl'k-purole. . $5 \mathrm{U}, 1 / 3-\mathrm{W}$.
R7	30320	Mar'n, $10.000 \Omega .1 / 3-W$.
R8	30370	Green. 2 U. 1/3-W.
R9	20120	Flexible. 800Ω
R10	31980	Bl'k, 65,000 $\Omega, 1 / 3-\mathrm{W}$.
R11	30390	Red-bl'k, $20,000 \Omega, 1 / 3$ W.
R12	30380	Red-green, 3300Ω, 1/3W.
R13	16840	Flexible, 22Ω
R14	33250	Blue, $2000 \Omega, 1 / 3-W$. CONDENSERS
Code	Part	
No.	No.	Name of Part
C1	31160	. $05 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C2	31530	. $1 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C3	36460	$600 \mathrm{MMF}, 100 \mathrm{~V}$. (mica)
C4	36510	$500 \mathrm{MMF}, 500-\mathrm{V}$. (mica)
C5	29530	. $03 \mathrm{MF}, 200-\mathrm{V} ., \mathrm{NI}$
C6	36440	.1. .05, . 1 MF, 100-V.. IND.
C7	33670	250 MMF, 500-V.
C8	33670	250 MMF, 500-V.
C9	36450	$\begin{aligned} & .05, .05, .005, .005 \mathrm{MF} \text {, } \\ & \text { 200-V., IND. } \end{aligned}$
C9A	33660	2200 MMF, 450 V., IND.
C10	23250	. 01 MF, 450-V.
C11	36480	. $64 \mathrm{MF}, \mathrm{H}-52,200-\mathrm{V}$.
C12	31150	. $3 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C13	31150	. $3 \mathrm{MF}, 100-\mathrm{V} ., \mathrm{NI}$
C14	36490	. $05 \mathrm{MF}, 450-\mathrm{V} ., \mathrm{NI}$
C15	36490	. $05 \mathrm{MF}, 450-\mathrm{V} ., \mathrm{NI}$
C16*	36490	. 05 MF 450-V., NI
C16A	29030	. $02 \mathrm{MF}, 450-\mathrm{V} ., \mathrm{NI}$
C17	26092	8 MF-8 MF, 300-V. (electrolytic)

C18**36880 .0? MF, 450-V., NI
C19 30270 Tone control cond. (B-16)

* C16 is $.02 \mathrm{MF}, 450-\mathrm{V}$., NI 29030 in some of
these sets. sets.

TRIMMERS
Code Part
Name of Part
No. No.
Double I. F. trimmer
A6 36570 Single I. F. trimmer
CHOKES
Code Part
Name of Part
No. No.
CK1 26594 2nd detector plate choke
CK2 36630 R. F. "A", filter choke
CK3 $3661 Q$ R. F. "A" filter choke
CK4 36610 R. F. "A" filter choke
CK5 36620 R. F. "B" filter choke
CK6 36620 R. F. "B" filter choke
CK7 25416 A. F. "B" filter choke

POWER UNIT ASSEMBLY

Part
No. Name of Part
26863 Vibrator
26854 Rubber (2)
26855 Rubber (1)
26061 Inside vibrator container
26062 Lid for above
2652' Grommet
2608: Tubular condenser clamp
26663 Middle container body
26091 Middle container lid
26136 Vibrator lid insulator
26664 Outer container body
26665 Outer container Iid
SPEAKER
Part
No. Name of Part
26851 Speaker less cable
26826 Cone head assembly
26827 Field coil, 6.5Ω
26559 Speaker cable and plug

MISCELLANEOUS PARTS

Part
No. Name of Part
21878 Disc shield, No. 2 I. F. T.
26578 Disc (insul.) for No. 2 I. F. T.
21406 Fuse, 10 amp .
REMOTE CONTROL HEAD
26646 Remote control head complete with mounting parts (less cables)
26893 Pointer gear (fibre)
26894 Spring washer
26108 Mounting strap and bushing
26884 Head assembly
26892 Pointer and shaft
26886 Screw No. 4-36 x 1/4
26888 Cork gasket
26889 Dial assembly
26891 Diffusing strip
26107 Mounting bracket
26528 Screw 1/4-20 x 1/2
26104 Assem. vol. cont. cable, 35 in .
26105 Assembled tuning cable, 31 in .
26109 Key
26887 Glass
27118 Lamp (6-8-V., I/8A), green
26895 Gear shaft assembly
26896 Tuning knob
27312 Tuning knob spring
26897 Key knob
26898 Screw No. 10-32 x 1/4 F. H. cup pt.
26899 Shielded wire (dial lite lead)
26901 Wire clamp
26531 Screw $1 / 4-20 \times 7 / 8$
24082 Wire tip
27059 Steering column mounting bracket assembly
26107 Mounting bracket type)
26531 Column clamp screw
26108 Column clamp

Parts List

21141 Lockwasher
26.528 Mounting screw

26943 Panel mounting bracket assem.
26944 Mounting bracket (panel type)
26945 Wing screws
26946 Flat head screws
26947 Felt pad
EXTRA LENGTH ASSEMBLED
CABLES
27114 Assem. vol. cont. cable, $31 / 2 \mathrm{ft}$.
27115 Assembled tuning cable, $31 / 2 \mathrm{ft}$.
27016 Assem. vol. cont. cable, 11 ft .
27017 Assembled tuning cable, 11 ft .
MODEL 926
(Below Serial No. 8276401)
Model 926 speaker and chassis is identical to Model 816, but the 926 uses a genemotor power unit

POWER UNIT
 MODELS 926 and 936

Part
Nort Name of Part
26093 Power unit container
26942 Lid for above
36610 R F "A" filter choke (CK8)
36620 R F "B" filter choke (CK9)
22359 A F "B" filter choke (CK10)
$268647 \mathrm{MF}, 300-\mathrm{V}$., dry electrolytic (C20)
35930 . 25 MF, 200-V., NI (C21) i
36420 . $02 \mathrm{MF}, 200-\mathrm{V} .$, IND. (C22)
GENEMOTOR No. 26734
Part

Part	Name of Part
No.	Norsembly
26964	Motor end bracket assembly
26965	Generator end bracket assembly.
26966	Generator brushes assembly
26967	Motor brushes assembly
26968	Field coils and field core assem-
	bly
26969	Field coils set
26971	Armature
26972	Ball bearing
26973	Motor mounting bracket
26974	Rubber bumpers
26975	Steel studs 45/8" x 8/32 thd.
26976	Hex. iron nuts-cadmium plated
26977	Ground lug
26978	$25 / 8^{\prime \prime}$ long-No. 18 extra flexible
bare ground lead	
27043	Field core assembly
27044	Shunt field (2 leads)
27045	Shunt and sqries field (4 leads)

(Below Serial No. 4542201)
Model 936 chassis is identical to Model 816, but the 936 uses a genemotor power unit (listed above), and a separate speaker (listed below).
Part
No.
26806 Lid
25196 Socket (3 prong)
26831 Cable and plug assembly (5 wire)
21963 Tone control knob
936 SPEAKER No. 38900

Part

No.
26822
30710 Field coil
26823 Cable and plug assembly (3 wire)

DATA FOR GURRENT MODELS

The last figure in the model number indicates the number of tubes; for instance, Model 145 has 5 tubes; Model 511 has 11 tubes, etc. The letter "Q" indicates battery operation; the letter " D " indicates D. C. operation; the letter " Z " indicates 32 -volt operation. All models listed below have tone control, and all models with exception of 465 Q and 655 Q have automatic volume control. All models have
dynamic speakers, with exception of battery sets, which have special magnetic speakers. TUBES
*Medel 511 has automatie turing. \dagger Has switch to tune in the 2400 viloeycle police band. ** "B" drain, $22 \mathrm{MA} . \quad \dagger \dagger$ " B " draln, 25 MA .

ATWATER-KENT MFG. CO.
Switch in Brosdoast position

For Alignment Data and Parts List, see Index

PAGE 5-48 A-K

ATWATER-KEN'T MFG. CO.

PAGE 5-50 A-K

AUDIOLA PAGE 5-1

AUDIOLA RADIO CO.

 Six Tube Auto RadioMODEH 346, B-6
Schematic, Socket Alignment

This receiver is a six tube superheterodyne using the most modern circuit design and tubes. Tubes used are: one 6D6 R.F. Amplifier; one 6A7 combination lst detector and oscillator; one 6D6 I.F. Amplifier; a 75 diode detector with delayed A.V.C. and one stage audio; one 41 power output tube; and one 84 rectifier tube.
In the installation of this receiver there are a few important fundamental principles to adhere to:
(1) Avoid having any battery wires in close relation to the high voltage spark coil or plug wires.
(2) The antenna must be routed over the most quiet location. Interference will often go through the antenna shielding if touching brake, accelerator, or steering column rods. The lead in must be shielded up to the antenna and the shield bonded to the set chassis. In many installations the antenna shield must also be bonded to the chassis of the car where the shield turns up to the top.
(3) If the chassis has to be removed from housing, be certain to tighten the three screws on the bottom when replacing the chassis.
(4) After installation is completed, adjust antenna trimmer on some distant station around 1400 to $1500 \mathrm{~K} . \mathrm{C}$. turn in either direction for loudest signal. The antenna trimmer is directly under the serial number on the top of the set. The front cover screws must always be tight.
(5) The gang condenser control. (tuning) must run very freely and have not less than 1/32 of an inch end play. 346

Shield antenna lead-in and bond the shield to frame at center post. If antenna comes
down front post, shield as high as possible and also ground the shield to dash. In case of antenna pick-up, use heavy "A" choke and double condenser as in diagram \#1. In case of chassis pick-up, separate primary and high tension ignition wires, shield and
ground the shield at both ends.
 In Ford ve shield primary and "A" lead to generator separately and ground shields to spark
plug housing brackets as in diagram ${ }^{* 2}$. In case of floating power, bond center bolt on Audiole set to motor block.

MODEL B-6 15 SAME AS 346, EXCEPT MODEL B-6 HAS NO TONE CONTROL

SPECIAL INSTRUCTIONS FOR ELIMINATING INTERFERENCE

PAGE 5-2 AUDIOLA

MODEL 347

Schematic,Socket
Alignment

AUDIOLA RADIO CO.

Seven Tube Auto Radio

This receiver is a seven tube superheterodyne using the most modern circuit design and tubes. Tubes used are: one 6D6 R.F. Amplifier; one 6A7 combination lst detector and oscilator; one 6D6 I.F. Amplifier; an 85 diode detector with delayed A.V.C. and one stage audio; two 41 power output tubes and one 84 rectifier tube.

In the installation of this receiver there are a few important fundamental principles to adhere to:
(1) Avoid having any battery wires in close relation to the high voltage spark coil or plug wires.
(2) The antenna must be routed over the most quiet location. Interference will often go through the antenna shielding if touching brake, accelerator, or steering column rods. The lead in must be shielded up to the antenna and the shield bonded to the set chassis. In many installations the antenna shield must alsc be bonded to the chassis of the car where the shield turns up to the top.
(3) If the chassis has to be removed from housing, be certain to tighten the three screws on the bottom when replacing the chassis.
(4) After installation is completed, adjust antenna trimmer on some distant station around 1400 to 1500 K.C. turn in either direction for loudest signal. The antenna trimmer is directly under the serial number on the top of the set. The front cover screws must always be tight.
(5) The gang condenser control (tuning) must run very freely and have not less than 1/32 of an inch end play. 347

AudiolA is first to develop an auto radio that aliminates motor moise without the use of spark plug suppressors.

This is an important engineering advancement in the auto radio art. We are pleased to have made this contribution to the radio industry.

It is important that you understand this new pioneering development.
We have successfully installed the AudiolA auto radio without spark plug suppressors, and eliminated all motor noise and other noise, from every car that we have tried. This has covered almost every make and model of automobile.

For Elimination of Interference data, see Model 346.

PAGE 5-4 ACDIOLA

MODEJ 13-T-5

Schematic, Socket
MODEL 33-S-5 (Revised)
AUDIOLA RADIO CO.
S chemat ic .

AUDIOLA RADIO CO.
1375

PAGE 5-6 AUDIOLA
MODEL 33-S-6B
Schematic, Socket
MODEL 34-C-5 AC-DC

AUDIOLA RADIO CO.

PAGE 5-8 AUDIOLA
MODEL 34-S5-LW
Sohematio
AUDIOLA RADIO CO.

AUTOCRAT RADIO CORP.

BALKEIT RADIO CO.

BALKEIT PAGE 5-3
MODEL 59
BALKEIT RADIO CO.
MODEL 69 Schematics

PAGE 5-4 BALKEIT
MODEI 60,70
Scheratic, Parts
BALKEI'T RADIO CO.

PART NO.	DESCRIPTION	LIST	PRICE
701	FILTER CONDENSER	2.40	EACH
702	. 1 BY-PASS CONDENSER	. 14	"
703	. 05 n n	. 14	n
704	.02 "	. 14	"
705	.25 "	. 18	"
706	. 5	. 35	"
707	. 00025 "	. 20	"
708	1-WATT RESISTOR	. 20	"
709.	MISCELLANEOUS RESISTORS(SPECIFY	VALUES)(SEE DIAGRAM. 20	n
717	350 OHM POWER RESISTOR	. 30	"
718	VOLIJME CONTROL	1.25	"
719	SHORT WAVE AND BROADCAST SWITC.H	. 75	"
720	OSCILLATOR COIL 456 KC	. 90	"
723	CORD AND PLUG	. 50	"
733	POWER TRANSFORMER	4.25	"
738	3-GANG CONDENSER	4.50	"
739	IST \| F TRANSFORMER	2.10	"
740	2ND I F TRANSFORMER	2.10	"
741	PRE SELECTOR COIL	1.25	"
745	PILOT LA.MP	. 25	"
749	TR IMMER	. 20	"
751	KNOB (LARGE)	. 20	"
751-A	KNOBS	. 15	"
754	PILOT LIGHT SOCKET	. 15	"
758	SPEAKER	6.00	"
758-A	SPIDER AND VOICE COIL	. 40	"
758-B	6" DIAPHRAM	. 30	"
762	S.W. OSCILLATOR COIL	. 60	"
763	ANTENNA S.W. OSCILLATOR COIL	. 60	"
767	DIAL DRTVE DISC	. 60	"
768	CELLULOID DRIVE DISC	. 50	"
769	DIAL FACE	. 60	"
777	DIAL POINTER	. 12	"
779	CONVEX DIAL CRYSTAL	. 30	"

BELMONT RADIO CORP.

HODEU 71-C
Schematic, Socket Alignment

BELMONT RADIO CORP.

Model 71 C . condenser only if necessary

IF PEAK 175 KC.

LEGEND

BELMONT RADIO CORP.

SERVICE MANUAL FOUR TUBE T.R.F. RBGEIVERS

105-115 Volts Alternating (any oyoles) or Direct Gurrent - 40 Watts

$$
530-1720 \text { Kilocycles }
$$

Both of the above models are four tube T.R.F., two gang reaeivers, the principle difference being that model 420 is equipped with a permanent magnet speaker and the model 430 with an electro dynamic speaker.

The tube complement of model 420 is as follewss
1 - Type 6D6 - remote out-off pentode an an R.F. amplifier.
1 - Type 76 - triode as a deteotor.
1 - Type 38 - pentode as an output tabe.
1 - Type 1223 - high vacuum reotifior.
The tube oomplement of model 430 is as follows
1 - Type 6D6 - remote out-off pentode as an R.F. amplifier.
1 - Type 76 - triode as a detector.
1 - Type 12A5 - pentode output tube.
1 - Type 1223 - high vacuus reotifier.

SERVICE NOTES

Should it ever become necessary to oheok a lignent or realign these receivers, the oorrect procedure is as follows

Before any adjustments are made, the ohassis must be removed froin the oabinet. To do this it is necessary to pull off the volme and seleotor knobs, remove the back of the cabinet and the four sorews which faston the chassis to the base of the cabinet.

FREQUENCY ALIGNMENT:

1. Disconnect antenna wire from lug on antenna coil to which it is attached and connect in its place, in series with a 50 mofd. condenser, a test osoillator. With this osoillator set at 1400 kilocyoles and the R.F. (front trimmer) opened as far as possible, trim the antenna (rear) trimmer to resonance with oscillator (maximum deflection on an output meter comnected across the two leads of the PM speaker on the model 420 and across the primary of the speaker input tranaformer on the model 430).
2. Cheok tracking at 1200-1000-800-600-530 kiloeyoles, bending plates only if absolutely necessary.
3. Re-set oscillator to 1712 kilocyoles, tuning osoillator by rotating variable condenser for a oheok to ascertain if receiver tunes to 1712.

NOTES:

If trouble is experienced in getting receiver tuned down to 1712, look for the followings

That the green grid and black ground wires connected to the antenna coil are well separated from each other and that both the green leads to the grid oap and the antenna are clear of the tube shield (this reduces to a minimua the external eapacity of the antenna coil).

BELMONT RADIO CORP.

BELMONT RADIO CORP.

105-115 Volts Alternating (any cycles) or Direct Current - 40 Matts.
530-1500 Kilooycles - 1500-L000 Kilocycles

SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct procedure is as follows s

BROADCAST BAND ALIGNMENT:

Remove chassis from cabinet by pulling off volume, selector and wave changing switch lenobs, removing back and four screws which hold chassis in cabinet, replace knobs and disconnect antenna wire from coil.

1. Set wave changing switch in broadcast position by rotating in clockwise (right) direction.
2. With gang condenser in its minimum capacity position, plates entirely out of mesh; extreme left of its rotation, and with volume control full on, make the following adjustments:
(a) Connect an oscillator set at 1500 kilocycles in series with a 50 mmfd . condenser to the antenna terminal. of the coil (from which antenna lead has been removed) and to ground (chassis), adjust both antenna and R.F, trimmers of the variable condenser to resonance (maximui: deflection on an output meter connected across the primary of the speaker input transformer).
(b) Reset oscillator to 1400 kilocycles, adjust variable condenser to pick up oscillator and realign antenna trimmer (rear section of variable condenser) to resonance.
(c) Check output at 1200-1000-800-600 kilocycles. Bend plates only at 1200 and 1000 kilooycles to increase output, and then only if necessary. No bending is necessary at 600 or 800 kilocycles.

SHORT WAVE BAND ALIGNMENT:

1. Set wave changing switch in counter-olockwise (left) position.
2. With oscillator adjusted to 3700 kilocyoles, adjust the condenser mounted on top of the antenna coil and consisting of a center piece of heavy enameled copper wire about which is wrapped a spiral of a smaller enameled copper wire, with your fingers sliding the spiral to and fro until maximum output is attained, as indicated by maximum deflection on the output meter.
3. Next reset osoillator to 1550 kilocycles and adjust slip coil at the bottom of antenna coil assembly until maximum output is obtained (this coil is wound on a paper tube which has been slipped over the dowel on which the other coils are wound). Seal this slip coil with wax after making adjustment.
4. Now reset oscillator to 3700 kilocycles and readjust the condenser previously adjusted, as explained in l. On completing this readjustment, seal the adjustment by dropping some wax in the hole of the terminal strip at the top of the antenna coil assembly where the spiral enameled wire passes through the strip. Do not put wax on the spiral wire, as this will change the capacity of this small condenser.

NOTES

When making these adjustments with the small condenser at the top of the coil and with the slip coil at the bottom of the antenna assembly, keep the receiver tuned to the generator at all times by gently rocking the variable condenser to and fro.

In order to replace pilot lights, it is necessary to remore the chassis. These lamps are connected in series, if one of them burns out the other one will not light. They are $6-8$ volt, .15 ampere lamps.

PAGE 5-8 BELMONT

MODEL 575

Schematic, Alignment

BELMONT RADIO CORP.

Service Notes

Voltages taken from different points of circuit to chassis are measured with volume control full on, using a voltmeter having a resistance of 1000 ohms per volt. These voltages are indicated on the schematic circuit diagram.

Part No. 145-2
$\begin{array}{lll}\text { Common Black to Brown } & -.003 \times 600 \text { Volts } \\ \text { Common Black to Green } & \text { 二.1 } \times 200 \text { Volts } \\ \text { Common Black to Red } & \text {-. } & \times 200 \text { Volts } \\ \text { Common Black to Orange } & \text {-. } 25 \times 200 \text { Volts } \\ \text { Blue to Blue } & -.05 \times 400 \text { Volts }\end{array}$
Part No. 145-3
Common Black to Brown -. 1×200 Volts Common Black to Green -. 05×200 Volts Common Black to Orange - 05×200 Volts Common Black to Yellow -. 05×200 Volts

Aligning I. F. Transformer

1. With volume control full on, at extreme right of its rotation, and with variable condenser at its maximum capacity position (extreme right of its rotation) make the following adjustments:
(a) Connect an external oscillator adjusted to 175 kilocycles, in series with a .1 mfd . condenser, to the control grid cap of the type 57 tube located between the R. F. coil (part numbers $109-10$) and the I. F. transformer (part number 108-11) and chassis.
(b) Adjust trimming condensers of I. F. transformer (part number 108-11) to resonance. See top view of chassis. Use as a resonance indicator an output meter connected across the primary of the speaker input transformer or between the plate and screen terminals of the type 2A5 tube, by means of an adapter. Maximum deflection of the meter indicates resonance. Care must be taken to use only enough signal to give a readily readable output, as excessive input will result in overload and a false resonance point.
NOTE: The two trimmer condensers which tune the primary and secondary of the I. F. transformer are adjusted by set screws accessible from the back of the chassis.

Aligning R. F. and Oscillator Circuits

1. Connect the external oscillator set at 1720 kilocycles and in series with a 200 Mfd . condenser, between the antenna (\tan) and ground (black) leads.
(a) With volume control full on and variable condenser plates in minimum capacity position, plates entirely out of mesh (extreme left of its rotation), adjust trimmer of rear oscillator section of variable condenser to resonance.
(b) Shift external oscillator frequency from 1720 to 1400 kilocycles, pick up signal by rotating variable condenser and peak R. F. (center) and antenna (front) section trimmers of variable condenser to resonance.
(c) Check tracking at $1500,1200,1000,800,600$ and 530 kilocycles by changing external oscillator frequency and rotating variable condenser to pick up signal. Adjust slotted end plates of R.F. (center) and antenna (front) sections to increase output, if necessary. DO NOT BEND OSCILLATOR PLATES.

MODEL 640

Alignment

BELMONT RADIO CORP.

SERVICE NOTES

Voltages taken from different points of the circuit are measured with a voltmeter having a resistanoe of 1000 ohms per volt and are made between the points indicated and the ohassis pan. These voltages are indicated on the oircuit diagram.

To oheok for open by-pass condensers, shunt each condenser with another condenser of the same oapacity and voltage rating, which is known to be good, until the defective unit is located.

Excessive hum, stuttering, low volume and a reduction in all D.C. voltages is usualiy caused by a shorted electrolytic condenser, open by-pass condensers frequently cause oscillation and distorted tone.

ALI GNMENT: 8

No aligning adjustments should be made until the set has been thoroughly ohecked for all other possible causes of trouble, such as poor installations, low line voltages, defeotive tubes, condensers and rosis. tors.

ALIGNING I.F. TRANSFORMERS:

1. With volume control full on, at extreme right of its rotation, and with wave changing switch in the long wave position, extreme left of its rotation, and with variable oondenser at its minimum capacity position, extreme left of its rotation, plates entirely out of mesh, adjust the I.F. transformers, parts number $108-15$ and 108-16, in the following manner:
(a) Conneot an external oscillator which has been adjusted to 370 kilocycies, in series with a ol mfd. condenser to the control grid cap of the type 57 first detector tube (see diagram and ohassis).
(b) Adjust triming condensers of both I.F. transformers (parts number 108-15 and 108-16) to resonance! Use as a resonance indicator an output meter connected across the primary of the speaker input transformer or by means of an adapter between plate and screen terminals of type 2A5E output tube Maximum defleotion of the meter indicates resonance. Care should be taken to use only enough signal to give a readily readable output.
Notes The two adjustments on each transformer are aocessible through holes in the transformer cans from the back of the chassis.

LONG WIAVE BAND ALIGNMENT:

1. Shift frequenoy of external osoillator to 1000 meters and connect in series with a 200 mmfd. condenser to the tan antenna whe and the black ground wire, set wave ohanging switch to extreme left of its rotation and variable condenser at its minimum capacity position, extreme left of its rotation, plates entirely out of mesh.
(a) Adjust long wave shunt trimmers of antenns. coil, part number 111-ily and oscillator coil, part number 110-11 to resonance (these adjustrinents are located nearest to the chassis and each of these coils are adjustable from side of the ohassis).
(b) Shift frequency of external oscillator to 2000 meters, rotate variable condenser to piek up signal,
(c) Adjust series trimer to resonance. This adiustment is accessible from top of the chassis between
the variable condenser and the power transformer and is marked "A" on top view of chassis.
BROADCAST BAND ALIGNMENT:
2. Set wave changing switoh in the broadoast, center, position and re-set external oscillator to 196 meters (1530 kilocyoies), set variable oondenser at its minimum capacity position, extreme left of its rotation (a) Adjust osoiliator shunt trimmer, upper adjustment part number llo-11, to resonance.
(b) Re-set external osoillator to 214 meters (1400 kilooyoles), rotate variable oondenser to piok up signal, adjust shunt trimmer of antenna coil, upper adjustinent part number 111-14, to resonanoe.
(o) Re-set external oscillator to 542 meters (550 kilocycles), rotate variable oondenser to pick up signal and adjust osoillator series trimer (between condenser and transformer, marked " B " on diagram) to resonance.

SHORT TWAVE BAND ALIGNMENT \&

1. Set wave changing switch in the short wave position, extreme right of its rotation, and ohange external osoillator frequency to 20 meters (15 megaoyoles), oonnect osoillator in series with a 300 ohm resistor to tan antenna wire and black ground wire.
(a) Adjust variable condenser with seleotor knob so that pointer is opposite the 20 meter oalie bration on the dial. Adjust center trimmers of oscillator coil, part numberllo-ll and antenna ooil part number lll-14, to resonanoe. These adjustments are aocessible from side of the chassis.

NOTES:

Should the planetary vernier dial drive mechanism fail to function properly, it will probably be found to be due to a craoked or broken compression spring." This drive may be dis-assembled by removing the two sorews which fasten it to the dial bracket. The part number of the compression spring is 112-31, All of the other dial parts are hardened and should cause no trouble.

MODEL 650

Socket,Alignment

BELMONT RADIO CORP.

Before attempting any adjustment, the chassis must be removed from the oabinet. This is accomplished by pulling off the volume and seleotor knobs, removing the baok and the four sorews which fasten the chassis to the cabinet.

I.F. ALIGMINT:

l. With volume control on full, at the extrame right of its rotation, and with variable oondenser at its maximum oapacity position (extreme left of its rotation) make the following adjustments:
(a) Canneot an oscillator set at 175 kilocyoles in series with a .1 mfd . condenser to the control grid (cap at top of type 6A7 oscillator first deteotor tube).
(b) Adjust trimming condensers of both input and output I.F. transformers, parts number 108-3 and 108-4, (see top view of chassis) to resonance. Use as a resonanoe indioator an output meter connected across the primary of the speaker input transformer. Maximum defbotion on the meter indicates resonance.

Note: Each I. F. transforner trimmer has two adjustments, one nut and one sorew, both of which are adjustable from the top.

FREQUENCY ALIGNMENTs

1. Disconnect antenna wire from lug on antenna coil to which it is attached and connect to this lug, in series with a 50 mmfd . condenser, an osoillator whioh has been set at 1720 kilooyoles.
2. Adjust trinmer oondenser of the oscillator section of variable condenser (the shaft end seotion) to resonance with oscillator (maximum deflection on an output meter).
3. Change input oscillator to 1400 kilocycles and piok up signal by rotating variable condenser, then adjust trinners of antenna and R.F. detector sections of variable condenser (oenter and rear respeotively) to resonance with oscillator.
4. Check tracking at $1200-1000-800-600-530$ kilocyoles by setting oscillator at these frequencies and picking it up by rotating variable condenser. Bend slotted plates of condenser only if necessary.

NOTES:

The pilot lights are conneoted in series. Should one burm out, the other will not light. To replace them it is neces sary to remove chassis from cabinet. The lamps used are 6-8 volts, .15 amperes.

Voltages from chassis to different points are indicated on the sohematic oircuit diagram and should be measured with a volt meter having a resistance of 1000 ohms per volt.

If receiver fails to function at the low frequencies, the trouble is apt to be a defeotive 6a7 tube. remedy of course, is to replace the 6A7. They sometimes fail to oscillate on the lower frequencies.

BELMONT RADIO CORP.

Vibrators oan be reconditioned at a cost of $\$ 3.00$ eaoh, if the old unit is returned.

BELMONT RADIO CORP.

Service Notes

ELIMINATION OF MOTOR NOISE: (Cont'd)

In some fow cases, such as Buicks, it is neoessary to use screw type suppressors. Cut lead about two inches from distributor and sorew one ond of suppressor into the wire attached to distributor, sorew wire from ooil into other end of suppressor.

Generator oapacitor, number $14 B-1$, is conneoted to generator side of outout. The ground side of oapacitor oan befastened to the generator housing under the same sorew that holds the relay housing to generatior. In some oases, an additional oapaoitor, number 148-1, (obtainable from your dealer) must be installed between the battery side of ignition ooil and the car frame.

If after oonneoting suppressors and condensers as outlined above there is still motor noise, make the following testsz

Shield high tension leads.
Bond flexible shaft leads, such as free wheeling, whioh run olose to distributor, radiating ignition interference whioh is pioked up by the antenna inside of car.

Cars using wooden floor boards, place a grounded oopper soreen under toe board.
Excessive gap betweon distributor rotor and high tension contaots, replace with a seoial radio rotor arm or build up end with solder and dress end with file so that its original shape is retained. The rotor should not brush or wipe the oontacts, but should just clear thera.

In some oases, suoh as V-B Ford, it is necessary to pull battery and primary leads out of special tube whioh houbes high tension leads, shield and ground these leads. Also on V-B Fords it is neoessary to install a oapaoitor at primary terminal of coil housing.

Additional suppressors oan be obtained from your dealer.
The ignition system of car must be kept in good condition.
Fouled plugs or plugs with improperly adjusted gaps will affect the operation of receiver as well as of the automobile. . Burned or poorly adjusted braker points will also impair the performance. It is advisable to advanoe the generator charging rate in order to compensate for the additional drain of the receiver on car storage battery.

It is sometimes neoessary to oonnect a condenser ($148-j$) between the hot side of the dome light switoh and ground.

BALANCING SET TO ANTENNA:

When this set has been installed and is ready for operation, it may be found neoessary (depending on antenna) to balanee set to this antenna. This is acoomplished as followss
With the reoeiver tuned to a very weak station, about 130 to 140 (1300 to 1400 kilocyoles) on the dial, adjust the antenna trimmer with a screw driver until maximun volume is attained. To reach the antenna trimmer remove the plug button from the top of the oase.

SERVICE NOTES

Should it ever be necessary or desirable to re-align this receiver, the proper method is as follows:
Adjustments oan be made with the reoeiver mounted in the cabinet, being neoessary only to remove the top cover.
I.F. ALIGNMENT:

1. With variable condenser at its maximum oapacity position and with volume control full on, conneot in series with a .1 mfd . condenser, an osoillator set at 175 ld looyoles to the grid cap of the 606 tube.
2. Adjust trimming condensers of both input and out put I.F. transformers, parts number 108-5 and 108-6 (see top viow of ohassis) to resonance with oscillator; as indioated on an output meter connected aoross the primary terminals of the speaker input transformer. Maximum deflection on the meter indicates res onanoe

Notes Bach I.F. transformer trimmer has two adjustments, one nut and one sorew, both of whioh are adjust able through the top of the oan.

FREQUENCY ALIGNMENT:

1. Attach oscillator conneoted in series with a 200 mufd. oondenser to the antenna lead and with the variable condenser at its minimum capacity position (extreme right of its rotation) and with an osoillator iable condenser at its minimum capacity position of osoillator seotion (shaft end) to resonanoe.
2. Resset oscillator to 1400 kilocycles, rotate variable condenser to piok up aigal, adjust antenna and R. F. trimmera to resonance.
3. Cheok allgnment at $1200-1000-300-600-530 \mathrm{kilocyoles}$ by setting oscillator to these frequencies and picking up signal by rotating condenser.
4. Bend slotted plates of antenna and R.F. seotions only if neoessary. UNDER NO CIRCUMSTANCES BEND PLATES OF OSCILLATOR SECTION. NOTES:

Voltages from ohassis to different points are indioated on sohematio oirouit diagram, and should be measured with a volt meter having a resistance of 1000 ohms per volt.

Failure to operate, noisy or weak reception, may be due to defective tubes or poor contaot between cap on top of tube and grid olip.
Tubes may be oheoked by replaoing with another tube whioh is know to be good.
If fuse blows out frequently, and insulating sleeve has been properly plaoed over fuse, the trouble probably is in the vibrator and vibrator should be replaced.
NEVER ATTEMPT TO ADJUST VIBRATOR POINTS.

BELMONT RADIO CORP.

SERVICE NOTES

Voltages taken from different points of the oircuit are measured with a voltmeter having a resistance of 1000 ohms per volt and are made between the points indicated and the ohassis pan. These voltages are indicated on the cirouit diagram.

To cheok for open by-pass condensers, shunt each condenser with another condenser of the same oapacity and voltage rating, which is known to be rood, until the defeotive unit is looated.

Excessive hum, stuttering, low volume and a reduction in all D.C. voltages is usually oaused by a shorted electrolytic condenser, open by-pass condensers frequently cause oscillation and distorted tone.

ALIGNMENT:

No aligning adjustments should be made until the set has been thoroughly cheoked for all other possible causes of trouble, such as poor installations, low line voltages, defeotive tubes, condensers and resistors.

ALIGNING I.F. TRANSFORMERS:

1. With volune control full on, at the extreme right of its rotation, and with wave selector switoh in the broadcast position, extreme left of its rotation, and with variable condenser at its minimum capacity position, extreme left of its rotation, plates entirely out of mesh, adjust the I.F. transform.ers (parts number 108-15 and 108-16) in the following manners
(a) Connect an external oscillator whioh has been adjusted to 370 kilocyoles, in series with a . 1 mf . condenser to the control grid cap of the type 57 first detector tube (see diagram and ohassis).
(b) Adjust trimaing condensers of both I.F. transformers (Parts number 108-15 and 108-16) to resonanoe. Use as a resonance indicator an output meter connected aoross the primary of the speaker input transformer or by means of an adapter between plate and soreen terminals of type 2A5 output tube. Naximum deflection of the meter indicates resonance: Care should be taken to use only enough signal to give a readily readable output.
Notes The two adjustments on each transformer are accessible through holes in the transformer cans from the back of the chassis.

BROADCAST BAND ALIGNMENT:

1. Shift frequency of external oscillator to 535 kilocycles and connect in series with a 200 mmfd. condenser to the tan antenna wire and the black ground wire.
(a) Set the variable condenser in its maximum capacity position, extreme right of its rotation.
(b) Adjust the broadcast oscillator series trimmer to resonance with oscillator. This trimmer is located between the gang oondenser and the power transformer (see top view).
2. Shift frequency of external oscillator to 1712 kilocycles and set variable condenser in its minimum capacity position, extreme left of its rotation, plates entirely out of mesh.
(a) Adjust the broadcast oscillator shunt trimmer to resonance. This adjustment is the top adjust. ment in the oscillator coil can, part number 110-8.

SHORT NAVE BAND ALIGMMENT:

1. Set the were changing switch in the short wave position, extreme right of its rotation, and change exterral oscillator frequency to 15 megacycles.
(a) Adjust variable cordenser with selector knob so that pointer is opposite the 15 megacyele colibration on the dial.
(b) Adjust the short wave oscillator shunt trimmer to resonance with the signal (use extreme care and rake certain that you do not adjust to resonance with the image instead of the signal). This trimmer is the bottom trinmer (clcsest to the chassis) on the oscillator coil, part number 110-6, and is accessible from the sice of the chassis.
(c) Adjust the short, wave antenna trimner to resonance (single trimerer in antenna can, part number 111-11, accessible from the side of the chassis, between type 27 and 57 tubes).

NOTES:

Should the planetary vernier dial drive mechanism fail to function properly, it will probably be found to be due to a cracked or broken compression spring. This drive may be dis-assembled by removing the two screws whioh fasten it to the dial bracket. The part number of the compression spring is 112-31, All of the other dial parts are hardened and should cause no trouble.

BELMONT RADIO CORP.

SERVICE NOTES

Should it ever become necessary or desirable to realign this receiver, prooedure is as follows:
Before making any adjustments, the chassis should be removed from the cabinet. This is accomplished by removing the four bolts which anchor it to the base of the oabinet and removing the knobs from the front of the cabinet, chassis oan then be slipped out.

To properly align this receiver, especially the short wave band, it is essential that the oscillator used have good stability and include an attenuator in addition to covering the frequencies required. An output meter must be used to indicate resonance. It may be connected across the primary of the speaker input transformer.

I.F. ALIGNMENTs

1. With volume control full on, at extreme right of its rotation, and with variable condenser at its maximum capacity position (plates entirely in mesh) and with band seleator switoh in broadoast position, left (oounter-olockwise), make the following adjustmentss
(a) Conneot an oscillator set at 370 kilooycles in series with a . 1 mfd. condenser to the control grid of the first detector (oap at top of 2A7 tube), and conneat the ground side of the test osoillator to the ground lead of the set (blaok wire).
(b) Adjust trimming condensers of all three I.F. transformers, part number 108-12 input I.F., 108-12 second I.F. and $108-14$ output I.F. to resonance.
2. Adjustments are provided on each transformer and are aocessible from the back of the chassis (see top view of chassis).

BROADCAST BAND FREQUENCY ALIGNMENT:

1. With wolume control full on and the gang condenser set to its minimum oapacitys
(a) Re-set test oscillator to 1712 kilocyolos.
(b) Adjust broadcast oscillator shunt trimer to resonanoe. This trimer is the one nearest the top of the oscillator coil and can assembly, part number 110-6.
(c) Re-set test oscillator to 1400 kilocyoles and shift the test oscillator lead from grid oap of the oscillator tube to the grid, cap of the R.F. tube (type 58).
(d) Tune the gang condenser to resonamce with the test signal (1400 k .0.)
(e) Adjust the R.F. tuned circuit to resonance by bending adjustable condenser plate of the R.F. (rear) section of the gang oondenser.
(f) Shift test oscillator lead to the antenna lead (tan wire) and substitute a 200 mmfd . oondenser for the . 1 mfd . condenser which is in series with the test lead.
(g) Adjust the antenna tuned circuit to resonance by bending the adjustable oondenser plate of the antenna (front) section of the gang oondenser.
(h) Turn the gang condenser to maximum capacity.
(i) Adjust the broadoast series trimmer (located to the left of the gang condenser and acoessible through the top of the chassis) to resonance with the test oscillator, with the test oscillator set at 535 kilocycles.
(j) Cheok alignment at 1400,1000 and 800 kllooycles , bending plates of the R.F. (roar) and antenna (front) sections of the variable oondenser if necessary. DO NOT BEND PLATES OF OSCILIATOR (CENTER) SECTION UNDER ANY CIRCUMSTANCES.

SHORT WAVE BAND FREQUENCY ALIGNMENT:

1. Turn the band selector switch to the short wave position, right (olookwise) position.
(a) Adjust input oscillator to 1.5 megaoyoles and attach to grid of first detector (oap at top of 2A7 tube).
(b) Adjust short wave oscillator shunt trimmer to the oscillator signal. Be oareful that you don't adjust it to the image. This adjustment is the one olosest to the ohassis on the side of the oscillator ooil and can assembly, part number 110-6.
(c) Move the signal generaitor slip to the grid of the first R.F. tube (type 58).
(d) Adjust short wave K. F. trimner to resonance. Adjusting screw is looated on side of R.F. ooil and can assembly, part number 109-8.
(e) Connect oscillator in series with a 200 mmfd . condenser to the tan antenna lead and black ground lead and adjust short wave antenna trimmer to resonance (adjustrnent on side of antenna coil and can assembly, part number 111-9).
(f) Cheok sensitivity at 6 megacyoles.

NOTES:

Should the planetary vernier dial drive mechanism fail to function properly, it will probably be found to be due to a oracked or broken oompression spring. This drive may be dis-assembled by removing the two sorews which fasten it to the dial bracket. The part number of the compression spring is 112-31. All of the other dial parts are hardened and should oause no trouble.

SERVICE MANUAL SEVEN TUBE SUPERHETERODYNE WITH A.V.C. AND SHORT WAVE
105-115 Volts Alternating Current, 50-60 Cycles, 80 Watts. 530-1720 Kilocycles - 1700-4500 Kilocycles. SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct proceedure is as follows:

1. Volume and tone controls on full during all alignment.
2. Squelch switch in "no squelch" position (counter-clockwise (left) rotation) during all slignment.
3. Adjust variable squeloh control on rear flange of chassis to maximum counter-clockwise (left) position.
4. Set variable condenser in minimum capacity position (plates open) at the start of all aligning.

I.F. ALIGNMENT

The intermediate frequency of model 750 is 175 kilocycles, and is aligned as follows:

1. Connect oscillator (set at 175 kilocycles) to I.F. grid (second 58 tube) and adjust both trimmers of second I.F. transformer (underneath chassis) to resonance (maximum deflection on an output meter connected across the primary of the speaker input transformer).
2. Connect oscillator output to converter grid (2A7 tube) and adjust both trimmers of first I.F. transformer to resonance. Under no conditions touch the trimmers of the second I.F. transformer after adjusting them (see No. l).

The four trimmers of the two I.F. transformers are all adjusted from the bottom of the chassis (one nut and one screw adjustment on each I.F. transformer trimmer).

BROADCAST BAND ALIGNMENT

Wave changing switch in clockwise (right) position.

1. Connect on oscillator in series with a 200 mmfd . condenser to the Tan (antenna) lead and Black (ground) lead. With the oscillator set at 1720 kilocycles and the variable condenser at its minimum position (extreme right of its rotation), adjust trimmer of oscillator (rear) section to resonance.
2. Change oscillator to 1400 kilocycles, rotate variable to this frequency and adjust R.F. and antenna trimers (center and front trimmers respectively) to resonance. Do not touch the oscillator trimmer.
3. Check tracking at the following points only: 1200-1000-800-600-534 kilocycles. NOTE: This receiver will be slightly out of track at 534 kilocyoles - do not bend plates in an attempt to track it at this frequency. Rotor plates of condensers should not be bent, except if absolutely necessary, and then only on the center and front sections.

SHORT WAVE BAND ALIGNMENT

Wave changing switch in counter-clockwise (left) position.

1. The frequency range of this short wave band is approximately 1700 to 4500 kilocycles.
2. Peak short wave antenna coil to resonance with oscillator set at 1720 kilocycles by slipping primary.
3. Check for sensitivity at the following frequencies only: 1720 and 3700 kilocycles - under no conditions touch trimmers or plates of variable condenser while checking short wave band. NOTES:

For failure to operate over both bands, check $2 A 7$ tube and connections to and contacts of wave changing switch.

Condenser shaft to which pointer is attached is rotated by means of a celluloid dial attached to the condenser shaft and a bronze friction drive assembly, to which is attached the selector knob. Should this drive ever slip or become rough, it can be adjusted for smooth operation by sliding the bronze washer drive assembly either closer to the variable shaft or farther away from it in the slot in which it is mounted, to insure smooth operation.

BELMONT RADIO CORP.

SERVICE MANUAL TEN TUBE SUPERHETERODYNE WITH A.V.C., SQUELCH AND SHORT WAVE
105-115 Volts Alternating Current, 50-60 Cycles, 105 Watts, 530-1720 Kilocycles - 1700-4500 Kilocycles:

SERVICE NOTES

Should it be at any time necessary to rebalance this set, the correct proceedure is as follows:

1. Volume and tone controls on full during all alignment.
2. Squelch switch in "no squelch" position (counter-clockwise (left) rotation) during all alignment.
3. Adjust variable squelch control on rear flange of chassis to maximum counter-clockwise (left) position. 4. Set variable condenser in minimum capacity position (plates open) at the start of all aligning.

I.F. ALIGNMENT

The intermediate frequency of model 1050 is 175 kilocycles, and is aligned as follows:

1. Connect oscillator (set at 175 kilocycles) to I.F. grid (second 58 tube) and adjust both trimmers of second I.F. transformer (underneath chassis) to resonance (maximum deflection on on output meter connected across the primary of the speaker input transformer).
2. Connect oscillator output to converter grid (2A7 tube) and adjust both trimmers of first I.F. transformer to resonance. Under no conditions touch the trimmers of the second I.F. transformer after adjusting them (see No. 1).

The four trimmers of the two I.F. transformers are all adjusted from the bottom of the chassis (one nut and one screw adjustment on each I.F. transformer trimmer).

BROADCAST BAND ALIGNMENT

Wave changing switch in clockwise (right) position.

1. Connect an oscillator in series with a 200 mmfd . condenser to the Tan (antenna) lead and Black (ground) lead. With the oscillator set at 1720 kilocycles and the variable condenser at its minimum position (extreme right of its rotation), adjust trimmer of oscillator (rear) section to resonance.
2. Change oscillator to 1400 kilocycles, rotate variable to this frequency and adjust R.F. and antenna trimmers (center and front trimmers respectively) to resonance. Do not touch the oscillator trimmer.
3. Check tracking at the following points only: 1200-1000-800-600-534 kilocycles. NOTE: This receiver will be slightly out of track at 534 kilocycles - do not bend plates in an attempt to track it at this frequency. Rotor plates of condensers should not be bent, except if absolutely necessary, and then only on the center and front sections. SHORT WAVE BAND ALIGNMENT
Wave changing switch in counter-clockwise (left) position.
4. The frequency range of this short wave band is approximately 1700 to 4500 kilooycles.
5. Peak short wave antenna coil to resonance with oscillator set at 1720 kilocycles by slipping primary.
6. Check for sensitivity at the following frequencies only: 1720 and 3700 kilocycles - under no conditions touch trimers or plates of variable condenser while checking short wave band.
Tun-a-lite. VISUAL TUNING CHECK
The visual tuning indicator (tun-a-liteptube) is mounted horizontally on the front ois the variable condenser assembly and its operation in this respect can be checked as follows:
7. Normally there will be a small continuous glow in the base of the tube when no signal is being received.
8. With a strong oscillator input at 1000 kilocycles, the tun-a-lite should glow to approximately the end of the bulb, varying sightly with different tun-a-lites. If the glow "travel" is short, or none at all, remove the tun-a-lite tube and check its socket connections and contacts. If the tube still fails to. indicate satisfactorily, replace the tube.
SQIELCH CHECK
The tun-a-lite tube is also used for noise suppression between atations. Its operation can be checked as follows:
9. Squelch switch adjusted to squelch (clockwise (right) position).
10. Disconnect oscillator, connect antenna, tune set to a position where no signal is received. Noise level at this position should be quite high.
11. Rotate set screw of squelch control on rear flange of chassis, and at some point the noise should cease and the set sound "dead", indicating that the tun-a-lite is squelching and eliminating between station noise.

NOTES: For failure to operate over both bands, check 2A7 tube and connections to and contacts of wave changing awitoh.
Condenser shaft to which poirter is attached is rotated by means of a celluloid dial attached to the condenser shaft and a bronze friction drive assembly, to which is attached the selector knob. Should this drive ever sIip or beoome rough, it can be adjusted for smooth operation by sliding the bronze washer drive assembly either closer to the variable shaft or farther away from it in the slot in which it is mounted, to insure smooth operation.

PAGE 5-2 BUICK
MODEL 980393
Voltage,Trimners
BUICK MOTOR

BUICK MOTOR Alignment

PEAKING ADJUSTABLE CONDENSERS

necessary for the proper aligning of the condensers on the U.M.S., S-D-P, and Chevrolet Radio Receivers. All of the adjustable condensers, commonly called trimmer con-
densers, are very accurately adjusted at the factory and will not need any further adjustment unless a coil or I. F. transfield.

DO NOT attempt to change the setting of any of the trimmer concensers untess it is definitely known that adjustment is necessary, and an accurate test oscillator and a screw driver
screw driver for this purpose wili not give accurate adjustment Proceed as follows:
A. Disconnect the antenna lead-in from the chassis.
B. Ground the antenna terminal on the chassis to the frame
of the chassis. of the chassis.
C. Set "test oscillator" to 262 kilocycles. Some oscillators are not equipped with a frequency of the second harmonic of 130 K.C., namely 260 K.C., may be used.
D. Connect the output leads of the test oscillator to the grid Leave grid cap in place.
E. Connect an output meter across the plates of the type 89
tubes. If the output meter is not protected, place a .1 mfd . condenser in series with the meter.
F. Turn the tuning condenser rotor to minimum capacity (rotor plates out of stator places).
G. Adjust I. F. Trimmers in the following order, in each case

Jeaving the trimmer set for maximum output as shown by the output meter.* (See note

C-4, Plate circuit of lst Det.
C-5, Grid circuit of I. F. Amp. C-6, Diode Input circuit.

See Fig 2. and 3 for location of condensers.

MODEL 980393
Test Data

BUICK MOTOR

Correct reading (in OHMS)	Part or parts probably causing incorrect voltage
Zero	Fuse or green lead
* Zero	Switch
Zero	Switch
\#0pen	C-15
6	Speaker field
Open	C-19; C-20
350	L-2
100,000	$\begin{aligned} & C-14 ; C-7-D ; C-7-B ; \\ & R-3 ; R-12 \end{aligned}$
$\begin{aligned} & 4,25 \\ & 225 \end{aligned}$	Output Trans. Pris.
Open	C-12
(A) Zero	Defective wiring
(B)	
(B) 500	R-I-C
(B) 500	R-1-C
9,500	L-3;T-5
1,800	R-1-B; R-1-D
500,000	R-11;T-4; $\mathrm{C}-9$
1,000,000	$\begin{aligned} & \mathrm{R}-7 ; \mathrm{R}-8 ; \mathrm{R}-1-\mathrm{B} ; \\ & \mathrm{R}-11 ; \mathrm{C}-2 ; \mathrm{C}-9 \end{aligned}$
1,800	$\begin{aligned} & \mathrm{R}-1-\mathrm{B} ; \mathrm{R}-1-\mathrm{D} ; \\ & \mathrm{C}-7-\mathrm{E} \end{aligned}$
52	T-4 Pri.
100,000	C-1-D; R-3; R-12
25,000	R-3
100,000	$\begin{aligned} & \mathrm{R}-3 ; \mathrm{R}-12 ; \mathrm{C}-1-\mathrm{D} ; \\ & \mathrm{C}-7-\mathrm{B} \end{aligned}$
250	R-2: C-7-A

LOCATING TROUBLES ISOLATED BY VOLTAGE TESTS

The voltmeter tests of the chassis merely serve to isolate the
defect in some particular stage of the circuit. The actual defect in some particular stage of the circuit. The actual fault must be located, in that stage; by means of a point-to-
point check of the resistance values of the defective stage.

NOTE: All tubes should be removed from the chassis before making these tests, unless they

BUICK MOTOR

SPECIAL TESTS

These tests cover all parts of the circuit which are not shown up as defective by the voltage tests

Correct Probable location of resistance trouble if incorrect in ohms reading is obtained

1. Ground (frame) 25
2. $236 \mathrm{RF} \# 6 \quad 26$
3. 236 sc. \#6 27
4. 236 0sc. \#6 Gid
5. 239 0sc. \#6 28
6. Ground 29
7. " 35
8. 85 Let. \#6 36
9. $28 \quad 37$
10. 85 Let. \#1 26
11. 85 bet. \#1 37
12. 37

Grad.
13. 33

36
14. 85 Let. \#7 Grad.
15. 89 AF \#' $^{\prime}$ (a) ard.
16. $89 \mathrm{AF} \# 7$ (b) and.
17. 36

38
18. 85 Let. \#1

85 Let. \#6
1,100,000
R-11; R-1-B;R-8;R-7
19. 39
(Tuning Lond.
(stator plates Open
CT
20. Voice coil lead Input trans. lead 2 Defective voice coil NOTE-Disconnect the voice coil lead at one of its terminals on the lower side of the input transformer and test from the end of the disconnected lead to the terminal from which it came

BULOVA PAGE 5-1

BULOVA WATCH COMPANY

READJUSTING TRIMMERS

Number 1 is the antenna trimmer.
Number 2 is the gang condenser trimmer tuning the grid of the Super-autodyne.

Number 3 is the gang condenser trimmer tuning the plate (or oscillator of the superautodyne).

Number 4 is the oscillator padding trimmer.

Number 5 is the Super-autodyne plate trimmer.

Number 6 is the I. F grid trimmer.
Number 7 is the second detector grid trimmer.

To readjust the trimmer, it will be necessary that a good design of 175 k . c. oscillator be employed, and that a dependable broadcast test oscillator be on hand so that stages handling intermediate frequency, and those handling radio frequency can be thoroughly ckiecked. It is advisable to use a bakelite screwdriver when making any of these adjustments.

First, connect the 175 k . c. oscillator output leads from the control grid cap of the superautodyne tube to ground. Do not remove any of the tubes from the sockets, and it is not. necessary to disconnect the grid cap clip from the tube. Reset trimmers numbers 5, 6 and 7 for maximum output. While this test oscillator is working into the intermediate fre-
quency stages, no adjustment of the tuning condenser on the receiver will have any effect, inasmuch as the intermediate frequency stage is fixed tuned.

If your test oscillator is properly designed, it will supply exactly 175 k . c., and when trimmers number 5,6 and 7 are set for maximum output, they will be correctly adjusted and should be sealed.

Next, disconnect the 175 k . c. test oscillator and connect to the antenna binding post of the receiver, the output lead from your broadcast test oscillator, or tune in a broadcast signal around 1400 k . c., then reset trimmers numbers 2 and 1 respectively for maximum output. This adjustment will track the super-autodyne grid circuit of the R. F. stage.

To check the calibration of the receiver. whether it be high or low, trimmer number 3 should be reset until a station of known nigh frequency is brought in on the correct dial marking with peak volume. If your broadcast test oscillator is accurately calibrated, it might be used in place of the broadcasting station signal. In this adjustment, a broadcast station or test oscillator signal at about 1400 k . c. should be chosen. The setting of the trimmer at 1400 k . c. is more critical than it would be at 600 k . c.; calibration, therefore more accurate.

The next adjustment is important and not easily explained in writing, so pay close attention to the following instruction. We will now balance the oscillator to the r. f. and first detector stages.

Tune the external broadcast test oscillator and the receiver both to 600 k.c., then slowly increase or decrease the capacity of No. 4 (oscillator padding trimmer), at the same time and continuously tuning back and forth across the signal with the receiver tuning condenser gang. The output meter needle will now be swinging up and down in step with the variation in tuning. Watch the peak of this swinging closely and readjust No. 4 trimmer until the swinging needle reaches its highest peak.

Retune the receiver and broadcast test oscillator to 1400 k.c. and re-check trimmer No. 3 to make sure that the adjustment of No. 4 has not thrown the receiver out of calibration. If it has, then readjust No. 3 until the calibration is correct, (as previously explained), and check on trimmers No. 2 and No. 1, to make sure that the adjustment of No. 4 has not reduced the sensitivity.

PAGE 5-2 CADILLAC

Fij. 6-Details of Flexible Drive Shaft Connections taken out to cut), it is necessary only to secure them
at the chassis end. Before attaching the shafts, see
if the set is in working order. Put the 8-prong
 In Fig. 6 is shown a cross.sectional view of the
flexible drive shaft conneetions at the chassis end.

na

 mounted vertically shif space doee not noterrmit their
being mounted horizontally, as is the case in some ${ }_{\text {cars. }}$ Atter the position of the speaker is decided on,
 is sunting boits. A template the the mo reciver The hole are arranged
in a rectangle. The centers of the holes, the small
 lock washers and two reenforcement plates are pro-
vided. The mounting bots are put through the rided. Fand the dash with the ehank extending into
rhe engine compartment. The reenf orcement
tates the engine compartment. The reenforcement plates
are then put on, one heing used for eech bracket, Attaching the Fl After the ohasis is temporarily mounted and the
opsition of the control unit is kown, the feribile
oafts may be attached. Remove the chasesis from

 The 9 " shaft is the tuning oondenser freerible shaft hown in Figs. 1 and 2 . The 12 " shaft is the volume control shaft. This s. . Tht bends upward from the
control unit, as shown in Fig. 2 . The distance between the instrument panel and
the dash varies in Cadile and Lam Solle, ears. In
some cars the flexible shaft lengths of $9^{\prime \prime}$ and $12^{\prime \prime}$

CADILLAC PAGE 5-3

MODEL OGF
Schematic, Socket Alignment

Battery Cable and Six Lead Cable

As shown in Figs. 1 and 2, the battery cable is brought down the dash, through a hole in the dash and thence over to the battery. It passes through the raised portion of the battery compartment cover.

The lug on the lead marked "positive" is connected to the positive side of the battery and the lug on the negatively marked lead is connected to the negative side of the battery. Ground the pigtail of the shield by screwing the No. 6 Parker Kalon screw through the end of the pigtail and through the hole in the lug which is grounded.

The six-lead cable between the chassis and the speaker-"B" eliminator is usually brought over along the dash as shown in Fig. 1.

Pilot Lamp

Before the control unit is permanently mounted, complete the pilot lamp connections. The pilot lamp cable is attached to the eight-prong socket. At the end of this cable is the pilot lamp socket and clip, the latter being attached to an angle bracket. This bracket is to be screwed to the pilot lamp plate which will be found in the bag of parts. A $1 / 4^{\prime \prime} 6-32$ binding head screw, nut and lockwasher are provided for this purpose. The bracket is put on the pilot lamp plate in such a way that the leads will come out at the back of the control unit. The pilot lamp plate is then screwed to the bottom of the control unit by means of the lug on each side of the plate.

Trying Out the Set and Adjusting

Fig. 7-Location of Tubes

After the wiring has all been completed and before the chassis is permanently installed, try out the set and adjust the antenna trimmer condenser.

To adjust the antenna trimmer, tune in a weak signal between 1200 and 1400 KC with the volume control about three-quarters on. On one end of the chassis box is a small metal plate. Remove the two screws which hold this plate in place. Directly under the hole in the chassis box is the antenna trimmer condenser screw. Turn this adjusting screw up or down until maximum output is obtained.

The location of the tubes is shown in Fig. 7.

MODEL O6N
 Parts List
 CADILLAC

 Replacement Parts for Series 06W Receivers

 Replacement Parts for Series 06W Receivers}"S" Type - Black Finish
'R" Type - Maroon Finish

CHASSIS PARTS

Part No.	Description
P-1763	No. 85 Tube Socket.
P-1761	No. 77 Tube Socket.
P-1762	No. 78 Tube Socket
P-1665	No. 41 Tube Socket.
P-1760	8 -Prong Male Plug.
P-50581	Tuned Impedance Transform
P. 20546	Pinion Compression Spring.
P-20544	Pinion Mtg. Bracket
P-20586	Cond. Drive Pinion
P-20585-A	Cond. Drive Gear.
P-1568-A	Tube Shield Assembly.
P-10263	$3 / 8$ Long Tube Bumper (Rubber)
P-10210	5/8 Long Tube Bumper (Rubber)
P-30417	Volume Control Coupling Unit.
P-5094	2nd I. F. Coil and Can Assembly Complete. . . .
P-5063	1st I. F. and Oscillator Coil and Can Assembly Complete
P-5069	Complete R. F. Coil and Can Assembly.......
P-5064	Antenna R. F. Transformer only.
P-5065	Interstage R. F. Transformer only.
P-20516	6-32 Wing Nuts for Chassis Cover-Black.
P-2073'7	6-32 Wing Nuts for Chassis Cover-Red

Resistors
(In Chassis)

Part No.	Code No.	Resistance	Type P-B90962
R1	260 ohm	Carbon	
P-A90948	R2	1 Megohm	Carbon
P-A90948	R3	1 Megohm	Carbon
P-A90941	R4	50,000 ohm	Carbon
P- 91061	R5	500,000 ohm	Volume Control
			and Switch
P-B91047	R7	30,000 ohm	Carbon
P-B90964	R8	800 ohm	Carbon
P-A90947	R9	4,000 ohm	Carbon
P-B91020	R10	15,000 ohm	Carbon
P-B90950	R11	20,000 ohm	Carbon

	(In Speaker-"B" Eliminator)		
P-98001	R12	6,000 ohm	Vit. Enamel
P-91013	R13	150,000 ohm	Tone Control

Condensers

		(In Chassis)		
Part No.	Code No.	Capacity	Voltage	Type
P-80946	C1	. 05	mfd. 200 V .	Tubular
P-80821	C3	. 001	mfd. 600 V .	Molded
P-80965	C6	4.0	mfd. 150 V :	Electroly

SPEAKER
 "B" ELIMINATOR PARTS

Part No.	Description
P-50582	Power Transformer Assembly
P-50583	"B" Choke Assembly-Iron Core
P-5089	"B" Choke-Air Core (2 Used)
P-5090	Dual "A" Choke-Air Core.
P-1765	Dual Vibrator Elkonode.
P-1766	Five-Prong Socket
P-1767	On-Off Relay
P-1768	Automatic Load Relay.
P-70737	"A" Cable and Lugs.
P-70748	Six-Lead Cable, Antenna Cable, Pilot Lamp Cable and Eight-Prong Socket Assembly, Complete
P-1624	10 Amp. Fuse-Size No. 3AG Fuse Block....
P-1771	6-Inch Speaker-S Type Set.
P-1772	8-Inch Speaker-R Type Set.
P-1790	5-Lug Terminal Strip.

CONTROL UNIT PARTS

Part No. Description	
P-20534	Dial Gear
P-20537	Dial Retaining Washer
P-30387-A	Worm Drive Gear.
P-30378	Anchor Bushing
P-30384	Anchor Bushing Clamping Nut.
P-30385	Anchor Bushing Hex. Nuts.
P-1848	Lock Assembly
P-30435	Keys
P-20724-A	Lever
P-20725	Ribbon Tension Spring
P-1562	Knobs-S Type Set.
P-1855	Knobs-R Type Set.
P-1610	Flexible Shaft 93/4 Inch
P-1611	Flexible Shaft 123/4 Inch
P-1849	Dial Strip
P-30437	Volume Control Drive Shaft.
P-30390	Drive Shaft
P-1563-A	6-8 Volt Pilot Lamp.
P-1871	Pilot Lamp .Socket and Clamp.

MODEL 2721 (072)
Voltage,Socket
Assembly Diagram

CADILLAC

CADILLAC PAGE 5-7

CADILLAC

Continuity rests

 For that reason, we are including in this supple-
ment the complete wiring diagram. After the chassis has been removed from the box
and before making the continuity tests, make a careful inspection of all exposed wiring and soldered connections. Then proceed to make continuity tests
through the various circuits, using as a guide the wiring diagram, Fig. 3. Make the continuity tests in an orderly manner,
starting with the R. F. and working through the I. F.
 which case, time may be saved by starting the tests
at the part or circuit in question. In "ringing through" the various circuits in the chassis, take into consideration the amount of re-
sistance in the circuit and also whether there is an
 ing ohmmeters as eontinuity meters sand in this way
check for cortinuity while at the same time deter-
 there is an external closed circuit, reference should
be made to the sehematic circuit diagram, in the in-
stallation mannal

When mgking continuity tests which are aeross the

Alignment of Tuning Condensers

 densers are out of aligument, the, receiver may tune
broadly, it may be low in volume all over the band, or a lack of volume on certain parts of the broad-
cast band nuay be noticed. Broad tuning is most frequently caused by mis-
aligment of the intermediate frequency tuning con alignment of the intermediate frequeney tuning con
densers. It may also be caused by mistracking be.
tween the osecillator and R. F. condensers. radically incorrect reading at any point will give a
clue as to where the trouble may lie. In the installaclue as to where
tion manual and in this suppplement there is a voltage
chart showing all of the voltages and plate currents: chars atated above, the bect place to check the volt-
As stal As stated above, therie shop bench, but as this
ages would be on a service
involves removal of the other unit and cables, it
will be quickest in most cases to make the readings

 to sagtisfactorily check the voltages at the sockets.
Thé procedure is as follows : The proeedure is as follows:
Turn off the lock switch.

Tare off the cable head by removing the five
 Take the chassis off of the mounting an w, wher-
the floor board, on a board, or on a wood box, ore ever is the most convenient. This car be done if
sufficients slack was left in the wiring cables at the Ime of installation.
In some instances, it will be necessary to disconnect the flexible drive shaft and easing at one end
in order to get the chassis out far enough. In other cases, it might be advisable to take off the control
unit entirely to get the chassis off far enough. II is advisable to take the chassis out of the box,
Ith ough this is not absolutely. necessary. If the although this is not absolutely. neeessary. In the
chassis is taken out, In inspection of the wring and
 is provided with a set analyzer, or the plug as de-
seribed below, will be necessary, In either case, reeinsert the multi-point plug in
the socket. Be sure to push. the plug all the way in, to insure cuntact on alll prongs.

AUTION-If the chassis is taken ont of the box,

 Two of the sockets are partially covered under the
chassis by the bypass condenser block. If the volt.

 five-prong tube base at the bottom and a five-prong
socket at the top. The five lines are then brought out
at the top to binding poosts or other terminals which

Turn on the lock switch.
Read the " A " voltage between terminals 6 and 7.
Read the " A " voltage between terminals 6 and 7 .
Read the " B " voltage between terminals 3 and 6 . using a high resistaice voltmeter.

CAUTION-In all of the above procedure great
care should be taken not to ground the. A+ or B+
to the car frame, chassis, cable, or any other ground.

to the car frame, chassis, cable, or any other grour gro

$$
\square
$$

 plied to the receiver as far as the multi-post socket. A very handy method of applying these resistors
to the multi-point socket ios sto mount them in an out and arranged in the shape of contacts three, six
and seven in the above diagram. This unit could then be plugged in the correet terminals very easily: TESTING AND REPAIRING CHASSIS If ail accessories are found, upon test, to be in
working order, it will be necessary for the service The most convenient place otor. test and repair a
Thassis is on a service shop bench. In the case of the
 anit, speaker, controì unit and cathles are installed
 set of parts are availa

Reading Voltages at Sockets
One of the first checesk to be madei is thano of read-
ing the voltages at the sockets. A good percentage
of all the circuits in the chassis are involved. and a

Power Units

 CAUTION - In the installation manuai post socket. The reason for this is that when the oce inductive surge caused by the speaker field may burn out the pilot lamp. ditions, a true epicture is not obtained of the actual Howerating vot, the service techniciian equipped with the head in accordance with the instructions as given
 If " A " or " B " voltages are not read at the multithe unit in question. If the "voltages at the "A"
 some. point. Disconnect the wiring from the " A " or
" B " unit and "ring through" the leads to the cable
 If the "B" eliminator and see if the tube is ilighted.
If the tube is not lighted, see if there is voltage at the " "A" supply terminal strip. Should there be no
voltage the the latter point, it may be due to the
俍 fact that the relay is not contacting thus causing
no power to be supplied to the " B " eliminator.:

To Read Power Supply Voltages at

Turn off the lock switch and remove the cable
head from the chassis.
The following parts are required:
3-Phone tips or prongs taken from an old tube 1- Resistor for the "A" circuit as indieated in 1-Resistor for the " B " circuit'as indicated in.
Fig. 1. Place these resistors in a wooden box or insuleads extending out oume the box. Note that the ground
leads of the to resistors are common. Solder the phone tips to the ends of the three leads. insert the tips in the multi-post socket as
Then
shown in Fig. 1.

PAGE 5－8．CADILLAC
MODEL 2721（072）
Parts List
MODEH 2721，2722
Trimmer Data CADILLAC

Lack of volume at certain points of the dial is
cenerally caused by mistracking between the R．F． Eenerally caused by mistracking between the R．F $n e$ high frequency end and may be corrected by ad－
ustment of the oscillator 1400 K ．C．trimmer con－ ustment of the oscillator 1400 K ．C．trimmer con－
lenser．In a few instances，lack of volume at certain parts of the dial may be caused by R．F．condenser
misalienment．If this occurs at the high frequency misalienment．If this occurs at the high frequencs nent of the R．F．trimmer condensers．If the set is
weak at both ends of the dial，mistracking between he R． F ．and oscillator condensers is generally the cause and may be corrected by adjustment of both
600 K ．C．and 1400 K ．C．trimmers，as explained噱 F．condenser misalignment． CAUTION－We do not recommend that realign－
ment be attempted unless other possible causes of

 perienced in the work is almost certain to get into

A local and accurately calibrated signal genera－家总

 The broad of $262 \mathrm{~K} . \mathrm{C}$ ．for the intermediate frequency． i：nust be accurately known，as the dial scale of the
receiver is calibrated in kilocycles．The intermediate frequency of the signal generator likewise must．be A non－metallie screwdriver is necessary As in the case of reading the voltages at the sock－ ots，the best place to realign Ho chassis avid re－ moval of the other units and cables，realignment may box，wood board，or other insulated location．The
chassis must be removed from the box． The complete procedure for realignment and re－
tracking is as follows： Aligning Intermediate Condensers－First align the intermediate condensers．The adjusting
serews of the first I．F．primary and secondary trimmer eondensers are on the porcelain base of
this assembly at the side of the＇39 I．F．socket．The adjusting screw of the second I．F．primary trimmer
is reached through the hole near the base of the
can of this assembly． One of the best ways of reading the output is by
means of a rectifier type meter．This meter，if of low ranke is connected across the secondary of the
cutput transformer in the speaker．If it is of high

． | ralue，it may be connected across the primary of |
| :--- |
| the transformer in series with a large condenser to |

No. 072A Series Receivers (41 Output)

The form 375J Installation Manual and foreroing service supplement cover the 072 Series (38 output) receivers. The copy in general is applicable to the 072 A Series (41 output) as the sets differ only in the audio amplifier.

In Fig. 4 is shown the schematic circuit diagram of the 072 A set. The sehematic circuit diagram of the 0.72 set is shown in Fig. 1 of the Form 375J Installation Manual. By looking at the two circuits the similarity as well as the points of difference can be noted.

On this page is given an explanation of the parts which are different in the 41 output set, a supplement to the chassis parts list covering the new parts used, and a complete voltage chart for the receiver.

Differences in 072A Chassis

In comparing the No. 072 Series (38 output) receivers with the No. 072-A Series (41 output) the following parts changes in the chassis have been made:

R-2 changed from 7,000 ohms to 6,000 ohms.
R12 changed from 50,000 ohms to 25,000 ohms.
R-13 changed fram 900 ohms to 800 ohms.
R-14, as shown in the old schematic circuit diagram (Fig 1 in the installation manual) is not used in the new receiver.

C-9 is changed from a .02 mfd . condenser to a .25 mfd. condenser.

The No. 38 sockets are changed to No. 41 sockets.
A new audio transformer is used.
No. "B" fuse is used with the No. 072-A series receiver.

Voltage Chart for 072A Receivers

$\begin{aligned} & \text { Type } \\ & \text { of } \end{aligned}$	Function	Across Heater	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\begin{gathered} \text { Screen } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\begin{gathered} \text { Normal } \\ \text { Plate } \end{gathered}$ $M A$
'39	R. F.	6.	177	80	3	3.6
'36	1st Det.	6.	173	76	6	. 7
'39	I. F.	6.	177	80	3	3.6
'37	2nd Det.	6.	0		0	0
'39	1st Audio	6.	88	88	4	3.0
'41	Output	6.	159	162	15	9

Note.-Read bias voltages from cathode to ground.

Supplementary Parts List for 072A Receivers

New Parts Used in the 072A (41 Output)

Part No .	Description
P-A-91029	R-2 - 6,000 ohm Carbon Resistor.
P-A-91038	R-12-25,000 ohm Carbon Resistor.
P-A-91023	R-13- 800 ohm Carbon Resistor.
P-50559	Audio Transformer
P-1665	No. 41 Sockets
P-80903-F	$\left\{\begin{array}{ll} \mathrm{C}-2-.1 & \text { mfd., } 200 \mathrm{~V} . \\ \mathrm{C}-4-.1 & \text { mfd.., } 200 \mathrm{~V} . \\ \mathrm{C}-5-.1 & \text { mfd., } 200 \mathrm{~V} . \\ \mathrm{C}-9-.25 & \text { mfd., } 600 \mathrm{~V} . \\ \mathrm{C}-7-.05 & \text { mfd., } 200 \mathrm{~V} . \end{array}\right\} \text { Bypass Cond. }$

Parts Shown in 072 List Not Used in 072A Series Receivers

Part No.	Description
P-A-90979	R-2 - 7,000 ohm Carbon Resistor.
P-A-90941	R-12-50,000 ohm Carbon Resistor.
P-A-91022	R-13- 900 ohm Carbon Resistor
P-A-90929	R-14-500,000 ohm Carbon Resistor.
P-50550	Audio Transformer
P-1530	No. 38 Socket
P-80903-D	$\left\{\begin{array}{lll}\mathrm{C}-2-.1 & \text { mfd., } & 200 \mathrm{~V} . \\ \mathrm{C}-4-.1 & \text { mfd., } 200 \mathrm{~V} . \\ \mathrm{C}-5-.1 & \text { mfd., } 200 \mathrm{~V} . \\ \mathrm{C}-9-.02 \text { mfd., } 600 \mathrm{~V} . \\ \mathrm{C}-7-.05 & \text { mfd., } 200 \mathrm{~V} .\end{array}\right\}$ Bypass Cond.

PAGE 5-10 CADILLAC
MODEL 2722 (O72-A)
Schematic
CADILLAC

PAGE 5-12 CADILLAC
MODEL 56V1
Sohematic
CADILLAC

CAPEHART PAGE 5-1

Schematic

CAPEHART CORPORATION

PAGE 5-4 CAPEHART
MODELS 400-B, 402-B
404-B Amplifier
CAPEHART CORPORATION
Schematic

CAPEHART PAGE 5-5
MODEL "Standard"
CAPEHART CORPORATION

Amplifier
Schematic

GENERAL NOTES ON ALIGNMENT

In the service notes on ALIGNMENT PROCEDURE, directions are to couple the test oscillator to the receiver. Since test oscillators of different makes vary considerably in their design and construotion, it is not possible to give specific instructions for coupling any particular test oscillator to the receiver. However, the following general method can be applied with practically any test oscillator.

Most test oscillators have two output leads. One of them is the "hot" lead and the other the ground lead. The ground lead should be connected directly to the receiver chassis, except in the case of $A C-D C$ receivers. The connection then should be made through a .l mfd condenser since the chassis of such receivers is above ground potential. If the test oscillator has only one lead, this information about the ground lead may be disregarded.

As mentioned in all of the service notes, for IF alignment the test oscillator should be connected through a .l mfd. condenser directly to the control grid cap of the IF or Translator tubes. It is important to leave the grid clip attached to the cap and to leave the tube shields in place. The oscillator tube of the receiver also should be in its socket.

For RF alignment, whether broadcast or short wave, the "hot" lead of the test oscillator should be coupled to tine antenna lead of the receiver. The exact means of coupling will depend upon several factors. Among them are the power of the test oscillator, the sensitivity of the receiver, and the extent to which the receiver is out of align-
ment. If the test oscillator is quite powerful and the receiver one of high sensitivity, merely placing the test oscillator lead parallel to, and several inches away from the receiver's antenna lead may provide sufficient coupling. In some cases it may be necessary to bring the leads very close to each othen, or it may even be necessary to twist the antenna lead and the oscillator lead together for several inches. (of course, the two leads must be separated by their insulation and not make metallic contact.) As the receiver is brought into alignment, thereby increasing its sensitivity, it will be possible to decrease the amount of coupling between the test oscillator lead and the antenna lead. (Move the leads further apart.) Always use the lowest amount of coupling that still will provide a signal strong enough for working purposes. If the test oscillator has a variable control for its power output, it is better to turn this control to its high position and decrease the signal input to the receiver by decreasing the amount of coupling between the test oscillator and the recelver's antenna lead. This procedure will insure the greatest possible a.c uracy in alignment.

When adjusting the oscillator trimmer condenser, set the variable condenser to the frequency or condenser position indicated in the Service Notes. Do not change this position while adjusting the trimmer. However, when adjusting the antenna or translator trimers, the proper method is to continually "rock" the variable condenser a degree or two both sides of the alignment frequency and, at the same time, adjust the trimmer.

PREVENTING ADJUSTMENT AT THE IMAGE FREQUENCY

When adjusting trimmers for short wave alignment, it sometimes will be found that a peak can be obtained at two different positions of the trimmer. Only one of these peaks is the correct one to use. The other is the image response. The proper procedure follows.

Oscillator Trimmer:

Screw the oscillator trimer all the way in (maximum capacity). Then reduce the capacity until a peak is reached. Now continue to reduce the capacity until a second peak is reached. Almost always, this second peak is con-
siderably louuer than the first one. The first peak is the image frequency adjustment, and must be avoided.

Antenna and Translator Trimmers:

Screw the trimmers all the way in and then reduce capacity until a peak is reached. If the capacity is reduced still further, a second peak will be obtained. However, the correct setting is the first one, the one using the greater amount of capacity. Note that this is exactly opposite to the procedure for the osciliator trinmer.

COLONIAL RADIO CORP.

SUPPLEMENTARY SERVICE NOTES

MODELS 150-164-182

MODEL 150

Certain improvements have been incorporated in the Model 150 auto receivers since the Instruction Booklets and Service Manuals for this model were printed. For the most part these improvements facilitate removal of the chassis from its case when necessary.

1. The permanently connected shielded antenna lead has been replaced with one using a bayonet and socket type of connection.

> 2. In order to eliminate the necessity for going through the operation of polarity changing in the field, some of the sets are shipped with the polarity connection correct for positive grounded batteries and others for negative
grounded batteries. The shipping cartons are stencilied to indicate the polarity connection of the set.
3. The vibrator unit has been improved and it is suggested that a couplo of them be carried in stock to replace any that may break down in service. Defective units should be returned to the Colonial Radio Corp., 254 Rano St., Buffalo, N.Y., for replacement. MODELS 164 AND 182

As mentioned on Page 138 of the Service Manual, drive cable grounding springs (Part \#R-10165), were supplied In later production of Model 164 and 182. When these springs are used, it makes no difference whether an insulated or an uninsulated tip drive cable is used for the tuning condenser, and two brass tip cables are supplied when the grounding springs are included in the original package. Accordingly, if the grounding springs are used, all reference to the insulated tip drive cable in the Instruo-
tion Leaflets and in previous Service Manuals may be disregarded.

Two types of speakers have been used on the Model 164. They can be told apart by the fact that one type has a patent notice sticker pasted under the output transformer. Should parts of this speaker need replacement, return the entire speaker. The list of replace ment parts for the other type speaker follows:

Part No.	Description	Price
S-9967-A	Speaker - Complete	$\$ 8.28$
S-9988-A	Speaker cone and voice coil	1.38
S-10152	Speaker field coil	1.65
S-9994	Speaker clamping ring	.05
S-9968	Speaker eyelets	Sper
S-10144-A	Speaker transformer	10

Two types of set screws for binding the flexible drive cables and casings have been used in the Model 164 and 182 remote controls. One is a $6 / 32 \times 1 / 8^{\prime \prime}$
other is $8 / 32 \times 3 / 16^{\prime \prime}$, Part \#R-6498, screw, Part \#R-5386, price - .01. The price -.02. It is suggested that a small stock of both of these screws be carried.

INTERFERENCE ELIMINATION

Occasionally a car is encountered in which the "dirt" at the ammeter is exceptionally great. To remedy a condition of this sort, solder a . 001 mfd mica condenser, (Part \#R-6759), from
the fuse container shell to a point about an inch away, on the ammeter end of the "A" lead. Wrap tape around the condenser and lead to protect them.

COLONIAL PAGE 5-3

PAGE 5-4 COLONIAL

COLONIAL RADIO CORP.

THE REMOTE CONTROL UNIT

As mentioned in the Instruction Booklet, the flexible drive shaft with the black, insulated tongue at its ond, MUST be used for the condenser drive. The insulation is to prevent ignition noise pick up by the cable from being fod into the tuning condenser. Failure to observe these instructions will result in motor noise.

The pilot light switch, in the remote control urit, works coincidentally with the set switch in the chassis. Flickering of the pilot licht may be due to poor contact between the phosphorbronze spring and the rotating drum. Bending of the spring and sandpapering of the drum will correct the condition.

To gain access to the switch, procede as follows:

1. Disconnect the flexible cables from the remote control unit and remove the unit from the steering column.
2. Remove the outer shell from the unit bv bending up the tabs.
3. Pull the pointer off of its shaft and then remove the dial.
4. Remove the three flat head screws holding the cover and remove the cover, exposing the mechenism.

The illustration shows how to replace the pointer drive cable. Note
that the end of the cable coming from the clamped end of the spring passes OVER the other end of the cable. Also note that when the large pulley is set into place, the spring is diametrically opposite the drive pulley.

When replacing the pointer, turn the Station Selector shaft clockwise to its limit and set the pointer one division to the right of the bottom center line. Then when the shaft is turned all the way counter clockwise, the pointer will stop one division to the left of the center line.

Failure of the set switch and the remote control switch and lock to coincide in their operation will be caused by movement of the cables or of the control unit, after the synchronizing adjustment has been made. To secure simultaneous action of the two switches again, it will be necessary to disconnect the cable, turn the set switch to its "Off" position with a screw driver, turn the Volume Control knob in the control unit to its "Off" position with the key out, and then securely tighten the cable coupling and set screws. If the control unit is not moved then, the operation of the two switches will remain in sunchronism.

The pilot light is accessible for replacement when the single screw at the back of the case is removed.

POWER SUPPLY UNIT

The plate supply unit is of the vibrating reed type with rectifier tube. No attempt should be made to repair the vibrator proper. Return it to vour distributor for repair or replacement. The unit can be pulled out of its case when the five terminal screws are loosened.

It is very important that the proper polarity connection be made. For cars with the negetive bettery terminal grounded, the blue lead should be connected to the terminal nearest the outside of the case. For cars with grounded positive terminal, the positions of the blue and black leads are interchanged so that the black lead is connected to the outside terminal. Failure to observe these instructions will cause damage to the vibrator in a very few
minutes of operation.
R17, R18, C22 and C23 are part of the assembly of the vibrator proper. 625, C26, C27, L6 and R19 are all mounted within the power supply case. R19 is a resistor whose value veries with the voltege applied to it. When the receivor is first turned on, the output voltage tends to become very high until the tubes heat sufficiently to draw their normal load. Under this condition, the value of Rl9 drops to a comparatively low velue, loading the transformer sufficiently to prevent damage. As the tubes become heated, tending further to lower the voltage, the resistance of R19 increases greatly so that it no longer ronstitutes a load on the power supply.

THE IF TUNING ADJUSTMENTS

When peaking the IF stages, use a low enough output from the test oscillator to render the AVC action inoperative.

The screw adjusts the primary tuning condenser; the nut adfusts the secondary, as shown in the illustrations.

THE RF TUNING ADIUSTMENTS

There are three holes at the back of the chassis through which the condenser trimmers are accessible. The unit neerest the control end of the chassis is the RF unit. The next one is the translator and the last one the oscillator.

Any trouble with oscillation will be due to proximity between grid and plete leads of the RF and IF stages. Moving the leads apart will correct the trouble.

COLONIAL RADIO CORP.

The following chart will be helpful for making tests of the power supply
unit. A continuity meter or ohmmeter may be used.

VIBRATOR UNIT ONLY

TEST
Between brass contact adjusting screws. (With
piece of paper inserted
between contact points.)
Grey lead to either red lead

Blue end bleck leads, (with
paper out.)

POWER SUPPLY (With Vinrator Disconnected)
Fahnstock clip to switch Reading

Approx. 5. ohms

84 cathode to ground
Approx. 75 M ohms

Fahnstock clip to ground
(With tubes out of sockets.)

Open transformer primary.
Open or shorted transformer secondary.

Contact points not making contact.

PROPER EFFECT

Reading

Approx. 400 ohms

Reading

PAGE 5-6 COLONIAL
MODEL 164
Sooket, Ass embly, Speaker COLONIAL RADIO CORP.

SERVICE NOTES

MODEL I64B

This manual applies to recefvers having a serial number above 50600 .

A different power supply unit is employed in these receivers, using a plug-in type of vibrator, making replacement of it very simple. Its construction is such that no attertion need be paid to polarity. Accordingly, pro-
vision for changing polarity is omitted from this model.

The schematic of the chassis is the same as that shown in Fig. 76, Page 136, for the Model 164. The revised schematic for the power supply unit is shown in Fig. 82.

PART NO.

R-6381
R-6381-AR
R-9705
R-9706
$\mathrm{R}-9707$
R-957クーA
R-. 9144
R-9743
$\mathrm{R}-9032$
R-8581
R-8286
$\mathrm{R}-8920$
R-7070
R-9776
R-6461
R-6759
R-6760
R-4592
R-8030
R-10025
R-9711
R-9710
R-9717
R-7688
R-9733
R-8870-A
R-9578-A
R-7228
R-6710
R-9777

DESCRIPTION

Clip - Grid
Clip - Gridwith shielded lead
Coil - Oscillator
Coil - Translator
Condenser - Variable
Condenser - 10 Mfd. 25 volt
Condenser - Electrolytic, dual 8 Mfd .
Condenser - . 5 Mfd .160 volt
Condenser - . 1 Mfd. 300 volt
Condenser - . 1 Mfd. 200 volt
Condenser - . 05 Mfd. 200 volt
Condenser -. .O1 Mfd. 600 volt
Condenser - . 01 MPd .800 volt
Condenser - . 003 Mfd .800 volt
Condenser -. 001 Mfd . Mica
Condenser - . 0005 Mfd . M1 Ca
Condenser - .00025 Mfd. Mica
Condenser - i Mfd. noise suppressor
Condenser - . 5 Mfd . noise suppressor
Control - Tone
Control - Volume
Connector - Fuse container
Fuse - 10 Amp.
Instruation leaflet
Lead - Antenna shielded
Lead - "A", with clip
Resistor - 500 M ohms, $1 / 3$ watt carbon
Resistor - 400 M ohms, $1 / 3$ watt carbon
Resistor - 300 M ohms, $1 / 3$ watt carbon

R-6638 R-7586 R-9725 R-6637 R-6640 R-7291 $\mathrm{R}-8972$ R-7441 $\mathrm{R}-7441$
$\mathrm{R}-6436$ R-6632 R-9745 R-9959 R-9589-A R-9591 R-9360 $\mathrm{R}-8253$ R-8092 R-8072 S-9718-A R1-8018 R2-8018 R-9720 R-9721-A R-9722-A R-9722 R-9723

Resistor - 200 M ohms, $1 / 3$ watt
Resistor - 100 M ohms, $1 / 3$ watt
Resistor - 60 M ohms, $1 / 2$ watt
Resistor - 50 M ohms, $1 / 3$ watt
Resistor - 20 M ohms, $1 / 3$ watt
Resistor - 15 M ohms, $1 / 2$ watt
Resistor - 3 M ohms, $1 / 3$ watt
Resistor - 800 ohms, $1 / 2$ watt
Resistor - 400 ohms, $1 / 2$ watt
Resistor - 50 ohms, $1 / 3$ watt
Resistor - 500 M Globar (R19)
Ring - Felt (speaker)
Shield - Ant. coil
Shield - Translator coil
Shield - Tube
Sociret - 5 Prong
Socket - 6 Prong
Sockst - 7 Prong
Speaker
Suppressor - Spark plug
Suppressor - Distributor
Switch - Sensitivity
Transformer - IF input
Transformer - IF output
Tube - Rubber, var. cond. mtg. Vibrator

R-9044-A	Choke (L4)
R-9044-B	Choke (L5)
R-9033	Choke (L6)
R-9708-A	Choke (L7)
R-9741	Clip - ${ }^{\text {N }}$ lead

The following chenges should entirely eliminate ignition interference
in instances where difficulty of this sort has been experienced.

SYORTENING THE SHIELD GROUNDING PIGTAIL

The Model 164 has a pigtail soldered to the " A " lead shield, with its other end clamped under one of the acorn nuts. The Model 182 has, in addition, a similar pigtall on the speaker cable shield. These pigtails should be removed and a shorter ground provided as follows:

Drill a hole in the case inmediately alongside the point where the shields come through the case. Fasten a large soldering lug ($\mathrm{R}-8311$) to the inside of the case by means of a nut and screw passed through the drilled holes and solder the shields to the lugs.

grounding the shield cables and antenna

To completely oliminate any pickup by the drive cables, grounding springs (Part Rlol65) are put between the collar on bot'? flexible cable couplings and the case. It will be necessary to scrape away the paint on the case, under the springs, so that they can make good contact with the case.

In cars having an intense interference field near the antenna shield, further improvement can be had by soldering an Antenna Shield Grounding Clip to the antenna shield. (Part No. R-101áb). The clip makes contact with the case at the point where the shield enters the case. Sandpaper the case to insure good contact.

INSIRUGTIONS FOR SHORTENING THE DRIVE CABLES

1. Remove the split sleeve from the chassis end of the cable casing.
2. Heat the chassis end of the cable until the solder melts, permitting removal of the brass sleeve. Then take the cable out of its casing.
3. Determine the point where the cable is to be cut and ciean it thoroughly with ifine sandpaper. Tin this point thoroughily.
4. Cut the casing $5 / 8^{\text {"shorter than }}$ the length desired for the cable. Re-
place the split sleeve.
5. Fut the cable back in the short ened casing. Slide the brass sleeve along the cable to the tinned portion and solder it there. Do rot let it bind against the end of the casing. Then cut the cable at the end of the sleeve with a fine toothed hacksaw.

If the cables are cut in the foregoing manner, there can be no difficulty from unravelifing of the strands since the soldered sleeve holds them.

MODEL 182

The COLONIAL Model 182 is a six tube superheterodyne automobile radio receiver. The circuit is shown in block form in Fig. 78 and schematically in Fig. 80.

A 78 RF tube feeds the incoming signal to the 6A7 translator-oscillator. The 175 kc output of this tube is ampli-
fied by the pentode portion of the $6 \mathrm{~F}^{7}$ tube and then fed to the 6B7. This tube provides AVC, diode detection ana, together with the triode portion of the 6 FH , furnishes audio amplification for input of the 41 push-pull output stege. The speaker is a separate $8^{\prime \prime}$ dynamic. A dynamotor furnishes the plate supply, drawing its power from the car's battery.

THE AVC AND SENSITIVITY CONTROL CIRCUITS

The 176 ke output of the 6F7 IF stage is impressed between the cathode and diode plates of the 6B7, in series with Rl2, Rl3, Rl4. The diode current flowing causes a voltege drop across these resistors. Only the drop across R12 is used for AVC. Since the grid returns of the $6 \mathrm{~A}^{\prime}, 78$ and 6 FF are connected to RI2, the negative bias across it is impressed upon the grids of these tubes. Increases in signal strength are offset by decreases in tube amplification resulting from this increased negative grid bias. The effect is to tend to maintein the output of the 6 F 7 IF at a constant value.

Residual bies for the tubes is furnished by R2. In addition, the residual bias and therefore the tube amplification is affected by the setting of the Local-Distance switch. When the switch lever is on contact \#2, the drop across Rl5, due to the olate current of the 6B7,
bucks the residual from Ri, decreasing the total negative bias and increasing tube amplification. In the "Local"position, contact \#l, only the residual from R2 is applied to the tube grids.

Be sure the sensitivity control is either FULL clockwise or FULL counter clockwise. If allowed to remain half way between the two positions, $R 15$ will be shorted, removing the 6B7 bies.

The volume control shunts Rl2 and Rl3 for audio frequencies. Accordingly, any desired amount of the audio component across R12 and Rl3 can be picked off by the moveable arm of the volume control and fed to the control grid of the pentode portion of the 6B7.

When peaking the IF transformers, use a low enough output from the test oscillator to render the AVC action insperstive.

THE RF TUNING ADJUSTMENTS.

There are three holes at the back of the chassis through which the condenser trimmers are accessible. The unit nearest the control end of the chassis
is the RF unit. The next one is the translator and the last one the oscillator.

THE 6F"7 PHASE CHANGER CIRCUIT

In any push-pull circuit, the instantaneous voltage on the grid of one of the tubes must be opposite in polarity to the voltage on the other tube's grid. Ordinarily, this polsrity difference or phase change is accomplished by the push-pull input transformer. In the Model 182,it is accomplished as follows:

At some perticular instant the polarity of the signal voltage on the $6 \mathrm{B7}$ plate will be negative. This negative voltage is coupled through Cl8 to the control grid of one of the 41's. This sipnal voltage on the 6B7 plate also
causes a drop (audio frequency) across C17, R16, R10, and C27, with the polarities becoming increasingly negetive toward C27. Accordingly, the control grid of the triode portion of the 6 FF is driven in a positive direction by the drop across R10 and C27. This. causes the plate current to increase, which is to say thet the plate becomes more positive. This positive potential is coupled through Cl9 to the grid of the other 41 tube. The result, then, is that the grid of one 41 is going in a positive direction while the other is going negative.

THE POWER SUPPLY UNIT

The plate supply unit is of the rotating dynamotor type. To remove it, take out the three Parker-Kalon screws at the bottom edge of the dynamotor housing and then take out the two screws holding the metal can type of condenser to the housing. The housing and dynamotor then can be loosened from the chassis. Unsoldering the leads under the dynamotor and removing the four screws that hold the dynamotor to the
housing case permits complete removal of the dynamotor. After considergble use, the dvnamotor commatator may need cleaning. Use the finest sandpaper. NEVER USE EMERY CLOTH.

If the receiver is set up on the bench, outside of its case, be sure to connect a wire from the speaker cable to the chassis, to complete the speaker field circuit.

PAGE 5-10 COLONIAL
MODEL 182
Schematic
Parts Layout

TUBE VOLTAGE AND CURRENT CHART

TUBE	$\begin{aligned} & \text { PLATE } \\ & \text { VOLTAGE } \end{aligned}$	SCREEN VOLTAGE	$\begin{aligned} & \text { PLATE } \\ & \text { M. A. } \end{aligned}$	$\begin{aligned} & \text { SCREEN } \\ & \text { M,A. } \end{aligned}$
78 - RF	200	95	8	2.25
6B7 - AVC-Det-AF	60	60	1.25	. 3
4*1- Output	205	208	14	2.5
6A7 - Osc-Transl.	Ig\#3\&\#5 $=3.5 \mathrm{ma}$;			
6F7 - IF \& AF	Ig\#3\&\#5alma.			

Care should be used when taking readings with a set analyzer as the capacity of the cables may cause circuits to oscillate, giving rise to erratic reedingse Usually, touching the finger to grid or plate is sufficient to stop oscillation. If an analyzer is not used, the voltage readings can be taken with a 1000 ohms per volt voltmeter, from the cathode to the respective elements of each tube. Ordinarily, a 20\% deviation from the chart value may be allowed.

COLONIAL RADIO CORP.

THE REMOTE CONTROL UNIT

> As mentioned in the Instruction Booklet, the flexible drive shaft with the black, insulated tongue at its end, MUST be used for the condenser drive. The insulation is to prevent ignition noise pick up by the cable from being fed into the tuning condenser. Failure to observe these instructions will result in motor noise.

> The pilot light switch, in the remote control unit, works coincidentally with the set switch in the chassis. Flickering of the pilot light may be due to poor contact between the phosphorbronze spring and the rotating drum. Bending of the spring and sandpapering of the drum will correct the condition.

To gain access to the switch, procede as follows:

1. Disconnect the flexible cables from the remote control unit and remove the unit from the ste日ring column.
2. Remove the outer shell from the unit by bending up the tabs.
3. Pull the pointer off of its shaft and then remove the dial.
4. Remove the three flat head serews holding the cover and remove the cover, exposing the mechanism.

The illustration shows how to replace the pointer drive cable. Note

that the end of the cable coming from the clamped end of the spring passes OVER the other end of the cable. Also note that when the large pulley is set into place, the spring is diemetrically opposite the drive pulley.

When replacing the pointer, turn the Station Selector shaft clockwise to its limit and set the pointer one dilvision to the right of the bottom center line. Then when the shaft is turned all the way counter clockwise, the pointer will stop one division to the left of the center line.

Failure of the set switch and the remote control switch and lock to coincide in their operation will be caused by movement of the cables or of the control unit, after the synchronizing adjustment has been made. To secure simultaneous action of the two switches again, it will be necessary to disconnect the cable, turn the set switch to its "Off" position with a screw driver, turn the Volume Control knob in the control unit to its "Off" position with the key. out, and then securely tighten the cable coupling and set screws. If the control unit is not moved then, the operation of the two switches will remain in synchronism.

The pilot light is accessible for replacement when the single screw at the back of the case is removed.
Genemotor ${ }^{\text {Grommet }}$ "

 Resistor - 500 M ohms, $1 / 3$ watt carbon Resistor - 400 M ohms, $1 / 3$ watt carbon

 Resistor - 500 ohms, $1 / 3$ watt carbon Resistor - 500 ohms, $1 / 3$ watt carbon Resistor - 50 ohms,
Resistor - 400 ohms, flexible Screw - Polarity changer
 0
0
1
0
0
0
0
0
0
0
0
号
0
0
 Speaker terminal boar
Speaker cable \& plug

 Speaker - Complete

SERVICE NOTES

MODEL 602

The COLONIAL Model 602 is a 12 tube, four wave band superheterodyne embodying such features as AVC, sensitivity control, tone control, neon visual tuning indicator, and twin speakers. The circuit is shown in block. form in Fig. 85 and schematically in Fig. 86.

A 56 tube is used in the oscillator circuit. A 6A7 serves as an electron coupled translator. Its 175 kc output is amplified by the two 78 IF stages and then fed to the 37 detector, which is used as a diode. Two 37 AF tubes comprise a push-puil input stage to drive the push-pull 2A3H output stage. A 6B7 tube is used in the AVC stage, a 6B7 in the neon visual tuning circuit, and an 83 V is the rectifier. The speakers are both moving coil dynamics. One is a. $12^{\prime \prime}$ and the other an $8^{\prime \prime}$.

The incoming signal is fed to the translator control grid through coils Ll and L2 for the broadcast range, L3 for the next range, L4 for the next and L5 for the highest frequency range. L6
is the broadcast oscillator coil. L7 is the oscillator for the next range. L8 is the next, and L9 the one for the highest frequency range. Cl is the broadcast antenna coil trinmer. C3 is the broadcast translator coil trimmer. C2 is the translator trimmer for the first high frequency range. 64 the one for the next range, and C5 is the translator trimmer for the highest frequency range. C6 is the broadcast range oscillator trimmer. $C 7$ is the trinmer for the first high frequency range, $C 8$ the one for the next range, and C9 is the trimmer for the highest frequency oscillator coil. ClO is the padder for the low frequency end of the broadcast range, Cll the one for the next range, Cl2 for the next and C13 is the padder for the highest frequency oscillator coil.

The location of the coils and condensers is shown in the Service Illustrations. The numbering and lettering corresponds to that used in the Schematic.

6B7 TUNING LIGHT CIRCUIT

The 6B7 tuning light circuit is shown schematically in Fig. 83. A portion of the IF signal voltage, that existing across condenser A, is stopped up and impressed on the diode part of the 6B7 by means of the sharply tuned transformer, T, which is wound with Litz wire. The rectified signal current flows through the 1 megohm resistor from point (1) to point (2) so that point (2) is negative with respect to point (1). The control grid of the $6 \mathrm{B7}$ is connected to point (2) and the cathode to point (1). As the signal is tuned in, the voltage across the 1 megohm resistor increases, increasing the negative control grid bias on the $6 \mathrm{~B}^{7}$, thereby cutting down
its plate current. The reduced plate current means a decreased voltage drop across the 130 M ohm resistor, making available a greater voltage across the neon tuning flasher. When the signal is properly tuned in, the plate current of the 6B7 is sufficiently decreased to permit the neon lamp to light. Until a signal is tuned in, the plate current of the 6B7 causes sufficient drop across the 130 M ohm resistor to prevent the neon bulb from lighting. The sharply tuned transformer insures that voltage is not applied to the diode part of the 6B7 until the station is accurately tuned in.

PAGE 5-14 COLONIAL

MODEL 602

Circuit Data
COLONIAL RADIO CORP.

The AVC circuit is shown schematically in Fig. 84.

If there were no plate current through the 6B7, its cathode would be negative with respect to diode plate (A) by the amount of the voltage drop across the 2500 ohm speaker field. However, because of the 6B7 plate current and consequent voltage drop across the 50 M ohm resistor, the cathode potential of the 6B7 is raised so that it is approximately 15 volts positive to diode plate (A).

A portion of the IF signal is fed through Cl to diode plate (B). The resulting current, flowing through Rl creates a voltage drop across it with point (l) positive with respect to point (2). This voltage is impressed through R2 onto the control grid of the 6B7. This increased negative control grid bias decreases the plate current and the voltage drop across R3. As a consequence, the cathode bias with respect to ground decreases. This is equivalent to saying that diode plate A becomes positive with respect to the cathode. Current therefore flows from diode plate (A) to the cathode, creating a voltage drop across R4 with point (3) positive with respect to point (4). Since the grid returns of the translator and IF stages are connected to point (4), the voltage drop across R4 is impressed on the control grids of these tubes. This negative bias, which varies in step with the strength of the signal, controls the amplification of these tubes. An in-
crease in signal strength is offset by a decrease in tube amplification so that the output of the IF stage tends to remain at a constant valie. Because the cathode is 15 volts positive with respect to diode plate (A) the AVC action is delayed until the received signal is strong enough to cause diode plate (A) to go positive with respect to the cathode. In this way the full sensitivity of the receiver is maintained for stations too weak to give full output from the receiver.

Residual bias for the first IF tube is supplied by the 15 M ohm variable cathode resistor, which serves as a sensitivity control. Set owners should be instructed not to increase the sensitivity any further than necessary for satisfactory reception. Unnecessarily high sensitivity will result in unwanted between-station-noise.

When peaking the IF stages, use a low enough output from the test oscillator to render the AVC action inoperative.

To peak the tuning flasher transformer, tune in a station whose strength is just about sufficient to operate the neon light. Then try retuning it very accurately by ear. If the flasher transformer is off calibration, the light will go out when the station is accurately tuned. With the station accurately tuned in, adjust the transformer tuning condensers until the neon bulb lights,

FIG. 84. THE AVC GIRCUIT - MODEL 602

PAGE 5-16 COLONIAL

HUM ADJUSTMENT

There is a hum adjustment to be turned with an insulated handle screwdriver, at the rear of the chassis, under the type 2A3H tubes. With the volume control all the way off, turn the hum adjustment to the point of minimum
hum. If this point appears to be beyond the end of the control, interchange the positions of the 2 A 3 H tubes. If a balance still cannot be had, the 2 A 3 H tubes must be replaced by ones more nearly matched in their characteristics.

ALIGNMENTP

BROADCAST

Disconnect the antenna and connect a . 00025 mfd . condenser between the sets antenna and ground leads, to take the place. of the normal antenna capacity. Adjust the test oscillator to a frequency near the high frequency end of the broadcast range and couple the oscillator to the receiver antenna lead. With the wave switch in the broadcast position, set the dial accurately to the test oscillator's frequency. Then peak Cl, C 3 , and C 6.

Retune the test oscillator and the receiver to a frequency near the low frequency end of the broadcast range. Peak Clo.

100 METER RANGE

Turn the wave switch to the first high frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Turn the
dial to this frequency and peak $C 7$ and C2. Then change the test oscillator's frequency to the low frequency end of the range and peak Cll.

40 METER RANGE

Turn the wave switch to the next high frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Turn the dial to this frequency and peak C8 and C4. Then change the test oscillator's frequency to the low frequency end of the range and peak C12.

20 METER RANGE

Turn the wave switch to the highest frequency range. Adjust the test oscillator to a frequency near the high frequency end of this range. Turn the dial to this frequency and peak C9 and C5. The padder for this range, Cl3, is fixed.

Readings taken with 1000 ohms per volt voltmeter, sensitivity control on full, no signal received. Care must be used if measurements are made with an analyzer since the capacity of the cables may cause circuits to oscillate, giving rise to erratic readings. Usually, touching the finger to grid or plate is sufficient to stop oscillation. If an analyzer is not used, voltage readings can be made from cathode to the respective elements of each tube. Ordinarily, a 20% deviation from the chart value may be allowed.

PAGE 5-18 COLONIAL

COLONIAL RADIO CORP.

PART NODESCRIPTION

R9315 Bezel - Sensitivity control
R5509A Board - Terminal
R8297A Board - Terminal, double
R8308A Board - Terminal, triple
R8900B Board - Terminal, 5 terminals
R9341 Cabinet
R9521 Card - Operating
R7.011A Clip - Antenna and ground leads
R6381 Clip - Grid
R9422 Coil - Antenna, broadcast
R9423 Coil - Translator, broadcast
R9437A Coil - Translator, short wave,
R9437B Coil - Translator, short wave,
R9438A Coil - Translator, short wave, 20 meter band
R9424 Coil - Oscillator, broadcast
R9438B Coil - Oscillator, short wave, 100 meter band
R9438C Coil - Oscillator, short wave, 40 meter band
R9438D Coil - Oscillator, short wave, 20 meter band
R8776A Coil - Choke
R9414 Condenser - Variable
R9494A Condenser - Variable, complete with drive assembly
and dial
R9425 Condenser - Padding, 700 mmf .
R9426 Condenser - Padding, 1200 mmf .
R9427 Condenser - Trimmer, 4 gang
R9428 Condenser - Trimmer, 25 mmf.
R6565 Condenser - Tuning, IF output trans
R8824 Condenser - IF tuning
R7236 Condenser - 14 mfd . electrolytic
R9344 Condenser - 8 mfd. 300 volts
R8748 Condenser - 8 mfd .200 volts
R8826 Condenser - . 5 mfd .300 volts
R8825 Condenser - . 5 mfd . 200 volts, dua
R6138 Condenser - . 1 mfd 300 volts
R6444 Condenser - . 1 mfd . 200 volts
R6761 Condenser - . 02 mfd. 600 volts
R9429 Condenser - . 01 mfd .600 volts
R7070 Condenser - . 01 mfd .600 volts
R6954 Condenser - . 005 mfd .600 volts
R9431 Condenser - . 0045 mfd. 600 volts
R6461 Condenser - . 003 mfd .800 volts
R6933 Condenser - . 002 mfd .600 volts
R6760 Condenser - . 005 mfd . mica
R6759 Condenser - . 001 mfd . mica
R4592 Condenser - . 00025 mfd . mica
R4303 Condenser - . 0001 mfd . mica
R8711 Condenser - . 000025 mfd . mica
R7240 Control - Sensitivity
R6570 Control - Tone and volume
R7566 Cord - Extension
R9433A Dial and indicator
R9412 Escutcheon
R9442 Instructions
R8520 Knob - Sensitivity control
R9314 Knob - Large
R9312 Knob - Small
R9443 Knob - Small with dot
R2288 Lamp - Pilot
R8830 Lamp - Neon flasher
R5346B Lead - Antenna
R5345D Lead - Ground

R6445 Resistor - 50 M ohm, $1 / 2$ watt carbon
R6152 Resistor - 10 M ohm, $1 / 2$ watt carbon
R6510 Resistor - $5 \mathrm{M} \mathrm{ohm}, 1 / 2$ watt carbon
R7226 Resistor - 5 M ohm, $1 / 3$ watt carbon
R8829 Resistor - $1500 \mathrm{ohm}, 1 / 2$ watt carbon
R6976 Resistor - $100 \mathrm{ohm}, 1 / 2$ watt carbon
R9081 Resistor - 50 ohm , i watt carbon
R9062 Resistor - 600 ohm, variable hum adjuster
R8886 Resistor - Candohm
R9484 Screw - Sensitivity control bezel mounting
R7359 Screw - Escutcheon
R6652A Shaft - Dial drive assembly
R7320 Shield - Bottom chassis
R9415A Shield - Coil
R7235 Shield - Eleotrolytic condenser
F8803A Shield-IF transformer
R5322 Shield - Tube top
R5323A Shield - Tube bottom
R8366 Socket - 4 prong
R8367 Socket - 5 prong
R8368 Socket - 6 prong
R8369 Socket - 7 prong
S8762C Speaker - 12", complete
S7606A Speaker 12" cone and voice coil
S8792 Speaker 12" field coil
S7416 Speaker plug
S8793A Speaker 12" transformer
S8763C Speaker - 8", complete
S7776C Speaker 8" cone and voice coil
S8569 Speaker $8^{\prime \prime}$ field coil
S7414 Speaker plug
S8798ACSpeaker $8^{\prime \prime}$ transformer
R9411 Sticker - License tube layout, 60 cycle
R6964 Switch - "Off-On"
R9435 Switch - Wave

TUBE VOLTAGE CHART
All readings are to be taken between the chassis and the respective element of each tube.

SREEN

PAGE 5-20 COLONIAL
MODEL 603
Socket Layout Trinmers
Alignment

COLONIAL RADIO CORP.

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the receiver chassis.
3. Connect the other lead of the test oscillator in series with a . 1 mf . condenser to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid of the 78 Translator tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.
A.lways use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Couple the test oscillator to the green antenna lead, leaving the antenns connected.
2. Set the test oscillator to 1660
kilocycles.
3. Screw the oscillator padder condenser to approximately three quarters of its maximum capacity.
4. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the translator trimer, mounted on the variable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degrae or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1660 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:

1. Leave the test oscillator coupled to the green antenna lead as for broadcast alignment.
2. Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer, mounted on the short wave translator coil, for maximum output.

PAGE 5-22 COLONIAL

MODEL 604

Voltage, Alignment

COLONIAL RADIO CORP.

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, through a .1 mfd condenser, to the control grid of the 78 IF tube. The grid clip should be left attached to the cap and the tube shield must be in place.
4. Set the test oscillator to 445 kc and tune the IF output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid cap of the 6A7 tube and tune the IF input transformer.
6. In order to secure greater accuracy repeat the adjustments, starting with the IF output transformer.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.
RF Alignment; Band "A" (Broadcast):

1. Couple the output of the test oscillator to the antenna lead of the set, with the antenna connected.
2. Set the test oscillator to 1520 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust. the \#l oscillator trimer for maximum output. The locations of all of the trimmers are shown in the Service Illustrations.
4. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the \#1 antenna trimmer and the \#1 translator trimmer for maximum output.
5. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same
time, adjust the \#l oscillator padder for maximum output.
6. Repeat the 1520 kc and 1400 kc adjustments for greater accuracy.
Band "B":
7. Leave the test oscillator coupled to the antenna lead as for broadcast band alignment.
8. Set the test oscillator to 4250 kilocycles.
9. Turn the variable condenser plates all the way out. Then adjust the \#2 oscillator trimmer for maximum output.
10. Set the test oscililator to 4000 kc and tune in its signal. Then adjust the \#2 antenna trimmer and the \#2 translator trimmer for maximim output.
11. If turns have been shifted, repeat the 10 megacycle and the 9 megacycle adjustments, since they will have been affected by shifting of the turns.

Band "D":

1. Set the test oscillator to 19 megacycles.
2. Turn the variable condenser plates all the way out. Then adjust the \#4 oscillator trimmer for maximum output.
3. Set the test oscillator to 18 megacycles and tune in its signal. Then adjust the \#4 antenna trimmer and the \#4 translator trimmer for maximum output.
4. Set the test oscillator to 9 megacycles and tune in its signal. If necessary, shift turns on the antenna and translator coils to secure maximum sensitivity. Be sure to cement the turns in place.
5. If turns have been shifted, repeat the 19 megacycle and 18 megacycle adjustments since they will have been affected by shifting of the turns.

TUBE VOLTAGE CHART

All readings are to be taken between the chassis and the respective element of each tube.

TUBE	PLATE	SCREEN	$\begin{gathered} \text { OSC. SECTION } \\ \hline \end{gathered}$	CATHODE
78-RF	220	90		3.1
6A7- Osc-Transl	220	90	160	2.6
78 - IF	235	90		3
75 - AVC-Det-AF	75			0
37 - Phase Changer	125			9
47.7 - output	230	235		16

COLONIAL PAGE 5-23

COLONIAL RADIO CORP.

PAGE 5-24 COLONIAL
MODEL 604
Parts List

COLONIAL RADIO CORP.

REPLACEMENT PARTS AND PRICE LIST

PART NO.	DESCRIPTION	PRICE
R8297A	Board - Terminal, double	. 04
R8308A	Board - Terminal, triple	. 05
R9446A	Board - Terminal, 4 terminals	. 06
R8900A	Board - Terminal, 5 terminals	. 08
R10741	Cabinet	23.33
R10765	Card - Operating	. 07
R7011A	Clip - Red and green antenna leads	. 04
R70118	Clip - Double, black ground lead	. 08
R11043	Clip - Grid	. 01
R10731	Coil - Antenna, broadcast	. 68
R10730	Coil - Oscillator, broadcast	. 35
R10732	Coil - Translator, broadcast	. 75
R10729	Coil - Choke	. 19
R6973K	Coil - Antenna, short wave, \#2 range	. 82
R10993A	Coil - Antenna, short wave, \#3 range	. 56
R10993D	Coil - Antenna, short wave, \#4 range	. 56
R6973M	Coil - Oscillator, short wave, \#2 range	. 75
R10993C	Coil - Oscillator, short wave, \#3 range	. 65
R10993F	Coil - Oscillator, short wave, \#4 range	. 64
R10993B	Coil - Translator, short wave, \#3 range	. 56
R10993E	Coil - Translator, short wave, \#4 range	. 42
R10735 R10735B	Condenser - Variable	4.04
R10735B	Condenser - Variable with drive assembly	6.20

 -

COLONIAL RADIO CORP.

Notes
 acity of the cables may cause circuits to oscillate, giving rise
 touching grid or plate with
 - peex 'pesn 7 ou st xezКtrux ue II ings should be made with a 1000 oh per volt voltmeter from cathode t the respective elements of each t Ordinarily, a 20% deviation from the chart values may be allowed.

PAGE 5-26 COLONIAL

PAGE 5-28 COLONIAL

Alignment, Trimmers

In order to prevent interference from code statims when the receiver is located near the coast, a wave trap is incorporated in the antenna cireuit. Although this trap is shown in the schematic as a coil with a series condenser, actually it consists of two multilayer coils wormad on top of each other with one end of each ooil left unconnected. The distributed capacity between the coils is the condenser shown in the schematic. The design of the coil is such that the combination of distributed capacity and inductance is resonant at about 600 meters which is the frequency used by ships and also is very near the IF frequency of the receiver.

The 75 AVC-Detector-AF Circuit:

The IF.signal existing $a t$ the IF output transformer secondary is impressed between the diode plates and the cathode of the 75 tube, in series with the 500 M ohms of the volume control and the 50 M ohm resistor. Diode current flows, creating a voltage drop across these resistances. Only the drop across the volume control resistance is used for AVC voltage. The control grid returns of the $6 A 7$ and 78 tubes are connected through filter resistors to one end of the volume control. This end is negative with respect to the other end of the control so that the voltage drop across it, due to the diode current, is impressed as negative bias on the control grids of the $6 A 7$ and 78 tubes. Any increase in signal strength increases the 75 diode current, increases the voltage drop across the volume control, and so increases the negative bias of the $6 A 7$ and 78 tubes with a resultant decrease in tube amplification. Since increases in signal strength are offset by decreases in tube amplification, the input to the detector tends to remain at a constant value.

Any desired portion of the audio component across the volume control may be picked up by the movable arm of the control and fed through the . 02 mfd. condenser to the triode section of the 75 tube. It is there amplified and then coupled to the 41 output tube.

The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a . 1 mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 480 kc and tuns the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test nscillator cannection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Aligmment: (Broadcast)

1. Couple the test oscillator to the green antenna lead, leaving the santema connected.
2. Set the test ascillator to exactly 1640 kc .
With the variable canclenser plates open all the way
3. Tum the dial pointer to exactly 1640 kc and adjust the broadcast oscillator trinmer for maximum output.
4. Set the test oscilletor to 1400 kc and tune in its signal. Then adjust the trimmer on the variable condenser for maximum output.
5. Set the test oscillator to 600 $k c$ and tune in its signal. Then slowly rotate the variable condenser back and fortin a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interscting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possinle.

Short Wiave Allgnment:
Set the test ascillator to 15 megacycies and tune in its signal. Then adjust the trimmer on the short wave translator coll for maximum output.

PAGE 5-30 COLONIAL

MODE 652

Socket Layout Trimer Data Alignment

COLONIAL RADIO CORP.

ALIGMMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the receiver chassis.
3. Connect the other lead of the test oscillator, in series with a 1 med. condenser, to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Couple the test oscillator to the green antenna lead, leaving the antenna connected.
2. Set the test oscillator to 1650 kilocycles.
3. Screw the oscillator padder condenser to approximately three quarters of its maximum capacity.
4. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the translator trimmer, mounted on the variable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1650 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:

1. Leave the test oscillator coupled to the green antenna lead as for broadcast alignment.
2. Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer, mounted on the short wave translator coil, for maximum output.

All readings are to be taken between the chassis and the respective element of each tube.

TUBE		PLATE	SCREEN	$\begin{aligned} & \text { OSC.SEC } \\ & \text { PLATE } \\ & \hline \end{aligned}$	$\begin{gathered} \text { OSC.SEC } \\ \text { GRID } \\ \hline \end{gathered}$	CATHODE
6A7- Osc-Transl	-	200	95	200	-. 3	2.2
78 - IF	-	200	95			2.2
37 - Detector	-	62				30
41 - output	-	190	200			0

PAGE 5-32 COLONIAL
KODET 653
Alignment, Socket COLONIAL RADIO CORP.
Parts List,Trimners

DESCRIPTION

 Condenser - Electrolytic 8 mfd .
Condenser - .1 mfd .200 volts

condenser 500 morb Resistor - 100 M ohms, $1 / 3$ watt carbon
Resistor - 50 M ohms, $1 / 3$ watt carbon Resistor - 20 M ohms, $1 / 2$ watt carbon
Resistor - 1 M ohms, $1 / 3$ watt carbon Resistor - 100 ohms, $1 / 3$ watt carbon Transformer - IF input

PART NO.

ALIGNMENT PROCEDURE
l. Connect the low scale of the
output meter across the loud speaker
voice coil.
2. Connect the ground lead of the
test oscillator to the chassis.
3. Connect the other lead of the
test oscillator, in series with a .
mfd. condenser, to the grid of the 78
IF tube, leaving the grid clip attached
to the cap.
4. Set the test oscillator to 480
 mounted on the IF output transformer two inches behind the variable condenser.

6. Repeat the adjustments to secure
greater accuracy.
l. Couple the test oscillator to
the green antenna lead, leaving the
antenna connected.
2. Set the test oscillator to 1750
3. Turn the variable condenser plates all trimer on the osciliator section of the variable condenser for maximum out-
 Service Illustration.

[^0]

PAGE 5-34 COLONIAL

MODEL 654

Alignment, Socket
Trinmers, Parts

COLONIAL RADIO CORP.

The COLONIAL Model 654 is a five tube, broadcast superheterodyne, designed for operation from either AC or DC power supply. The tubes and their functions are:
 ```6A7 - Oscillator-Translator \\ 78 - IF \\ 37 - Detector \\ 38- Output \\ IV - Rectifier```

Since the tube heaters are in series, if any one tube burns out, none will light. However, it is necessary to replace only the burned out tube. The others then will light. The full line voltage will appear across the heater prongs of a socket in which there is a burned out tube.

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the high scale (about 100 volts) of the output meter across the loud speaker terminals.
2. Connect the ground lead of the test oscillator to the chassis through a .l mfd. condenser.
3. Connect the other lead of the test oscillator, in series with a .l mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.

PART NO.	DESCRIPTION
R8297A	Board - Terminal, double
R8308A	Board - Terminal, triple
R10690	Cabinet
R11043	Clip - Grid
R10632	Coil - Antenna
R10633	Coil - Oscillator
R8960	Condenser - Variable
R10689	Condenser - Dry electrolytic
R10197	Condenser - Trimmer
R6444	Condenser - . 1 mfd. 200 volts
R9145	Condenser - . 05 mfd .600 volts
R6629	Condenser - . 02 mfd .200 volts
R10893	Condenser - . 006 mfd . 200 volts
R6759	Condenser - . 001 mfd . mica
R4592	Condenser - . 00025 mfd . mica
R8059	Control - Volume, 3 M ohms
R10685	Cord - Power supply
R10692	Escutcheon - Station selector
R8683	Escutcheon - Volume control
R10691	Instruction leaflet
R8664	Knob with pointer
R7228	Resistor - 500 M ohms, $1 / 3$ watt carbon
R7586	Resistor - 100 M ohms, $1 / 3$ watt carbon
R6637	Resistor - 50 M ohms, $1 / 3$ watt carbon
R6110	Resistor - 30 M ohms, $1 / 3$ watt carbon
R6640	Resistor - 20 M ohms, $1 / 3$ watt carbon
R5821	Resistor - 20 M ohms, $1 / 2$ watt carbon
R6073	Resistor - 2 M ohms, $1 / 2$ watt carbon
R8922	Resistor - 100 ohms, $1 / 3$ watt carbon
R8315	Socket - 4 prong
R8253	Socket - 5 prong
R8092	Socket - 6 prong
R8072	Socket - 7 prong
Sl0694	Speaker
R10687A	Transformer - IF input
R10631A	Transformer - IF output

PART NO.

Board - Terminal, double
Cabinet
Clip - Grid
Coil - Oscillator
Condenser - Variable
R10689 Condenser - Dry electrolytic
R10197
R6444
R6629
R10893
R 6759
R 4592
R8059
R10685
R10692
R10691
R8664
R7228
R6637
R6110 Resistor - 30 M ohms, $1 / 3$ watt carbon
R6640 Resistor - 20 M ohms, $1 / 3$ watt carbon
R5821 Resistor - 20 M ohms, $1 / 2$ watt carbon
R6073 Resistor - 2 M ohms, $1 / 2$ watt carbon
R8922 Resistor - 100 ohms, $1 / 3$ watt carbon
Rosls Socket - 4 prong
Socket - 5 prong
R8072 Socket - 7 prong
S10694 Speaker
RIO631A Transformer - IF output
4. Set the test oscillator to 480 kc. and tune the IF output transformer. This transformer is mounted under the chassis and has a single bakelite base tuning condenser mounted on its terminal board. There is but one tuning adjustment for this transformer, since only the transformer secondary is tuned.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
6. Repeat the adjustments to secure greater accuracy.

RF Alignment:

1. Couple the test oscillator to the green antenna lead, leaving the antenna connected.
2. Set the test oscillator to 1750 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust the trimmer on the oscillator section of the variable condenser for maximum output. The oscillator section is the one furthest from the dial, as shown in the Service Illustration.
4. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the trimmer on the translator section of the variable condenser for maximum output.

COLONIAL RADIO CORP.

from in order to prevent interference

:

PAGE 5-36 COLONIAL

COLONIAL RADIO CORP.

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a . 1 mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 480 $k c$ and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 78 translator tube and adjust the IF input transformen
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Screw the oscillator padding condenser to about three quarters of its maximum capacity.
2. Couple the test oscillator to the green antenna lead, leaving the antenna connected. Set the test oscillator to 1610 kc .
3. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output. Some of these sets have a trimmer on the oscillator section of the variable condenser as well as one mounted on the broadcast oscillator coil. In others, the adjusting.screw has been removed from the trimmer on the variable condenser and only the trimmer on the oscillator coil used. It will be found that in sets using both condensers, that maximum output cannot be reached even though one of the trinmers is screwed all the way in, making it necessary to use the other trimmer. In effect, both trimmers are in parallel when the Wave Switch is in the broadcast position.
4. Set the test oscillator to 1400 kc. and tune in its signal. Then adjust the trinmer on the translator section of the variable condenser for maximum output.
5. Set the test oscillator to 600 kc. and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interacting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:
Set the test oscillator to 15 megacycles and tune in its signal. Then adjust the trimmer on the short wave translator coil for maximum output.

TUBE VOLTAGE CHART

All readings are to be taken between the chassis and the respective element of each tube.

TUBE		PLATE	SCREEN	CATHODE
78 - Translator	-	160	60	2.5
41 - Oscillator	-	75	75	0
78 - IF	-	170	60	1
75 - AVC-Det-AF	-	70		.6
41 - Output	-	160	170	0
84 - Rectifier	-			170

COLONIAL RADIO CORP.

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a .1 mfd condenser, to the control grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 175 kc and tune the $I F$ output transformer. The locations of its tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 78 translator tube and tune the IF input transformer.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.
6. Repeat the procedure in order to secure greater accuracy.

RF Alignment (Broadcast Band):

1. Set the test oscillator to 1650 kilocycles.
2. Couple the output of the oscillator to the antenna lead of the set, with the antenna connected.
3. Turn the variable condenser plates all the way out. With the wave band selecting switch in position "A", tune the oscillator trimmer for maximum output. The position of this trimmer is shown in the Service Illustration.
4. Set the test oscillator to 1400 kc and adjust the antenna and translator trimmers. The antenna trimmer is the one on the variable condenser section nearest the dial. The translator trimmer is accessible through the hole in the top of the translator coil shield as shown in the Service Illustration.
5. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the broadcast oscillator padder for maximum output. The location of this padding condenser is shown in the Service Illustration.
6. Repeat the 1650 kc and 1400 kc operations. Then repeat the 600 kc padding operation.

Always use an output from the test oscillator low enough to render the AVC action inoperative.

Short Wave (Band "B") Alignment:

1. Leave the test oscillator coupled to the antenna lead as for broadcast alignment.
2. Set the test oscillator to 5000 kc. and tune in its signal. Screw the short wave (Band "B") antenna coil trimmer all the way in (maximum capacity). Then reduce the trimmer capacity until the output reaches a peak. A second peak may be obtained when the trimmer capacity is reduced still further. However, the correct position in which to leave the trimmer is the one using the maximum capacity, that is, with the trimmer condenser plates most nearly in a closed position.
3. Set the test oscillator to 1800 kc. and tune in its signal. If necessary, turns may be shifted on the short wave antenna coil to secure maximum output: If turns are shifted, it will be necessary to repeat the trimmer adjustment at 5000 kc .

Short Wave (Band "C") Alignment:

1. Leave the test oscillator coupled to the antenna lead as before.
2. Set the test oscillator to 15 megacycles.
3. With the wave band selecting
switch in position "C", tune the receiver to 15 megacycles.
4. Screw the short wave (Band "C") antenna coil trimmer all the way in (maximum capacity). Then reduce the trimmer capacity until the output reaches a peak. A second peak may be obtained, when the trimmer capacity is reduced still further. However, the correct position in which to leave the trimmer is the one using the maximum capacity, that is with the trimmer condenser plates most nearly in a closed position.
5. Set the test oscillator to 6 megacycles and tune in its signal. If necessary, turns may be shifted on the short wave (Band "C") antenna coil to secure maximum output. If turns are shifted. it will be necessary to repeat the trimmer adjustment at 15 megacycles.

As mentioned in the instructions for this receiver, either a conventional type antenna or a doublet can be used. If a doublet is used, the wave band selecting switch automatically changes connections on the broadcast band so that the doublet acts as a conventional antenna. Examination of the schematic will reveal that all three sections of the variable condenser are used only when the wave band selecting switch is In the BROADCAST position. In the short wave positions, ${ }^{B} B^{\prime}$ and " C ", the variable condenser section nearest the dial is disconnected.

The 500 M ohms of the volume control is used to supply AVC voltage by utilizing the drop across it, due to the diode current of the 75 tube.

R10656B	Transformer - IF input
R10657A	Transformer - IF output
R10643A	Transformer - Power
R8366	Socket - 4 prong, speaker
R8315	Socket - 4 prong
R8092	Socket - 6 prong
R10549	Socket - Pilot Iight
R10702	Speaker
R10655A	Switch - Wave

DESCRIPTION
Coil - Antenna, broadcast Coil - Oscillator, broadcest Co11 - Translator, broadcast Coil - Antenna, short wave, Band "B" ${ }^{n}$ Coil - Oscillator, short wave, Band "C" Collar - Stop, wave switch Condenser - Variable

Condenser - Variable, with drive assembly Condenser - Padding, 1200 nmf. Condenser - Trimmer, 25 mmf.

Cóndenser - 1 mfd .200 volts Condenser - . 1 mfd. 300 volts Condenser - . 01 mfd. 600 volts Condenser - . 01 mfd. 300 volts

Condenser - . 004 mfd. 600 volts
Condenser - $.003 \mathrm{mfd}$.800 volts, in metal case
Condenser -. $003 \mathrm{mfd}$.600 volts
Condenser - .003 mfd. 200 volts
Condenser. -.0005 mfd. mica
Board - Terminal, double
Board - Terminal, triple
Condenser - . $003 \mathrm{mfd}$.800 volts, in metal case
Condenser - .003 mfd. 600 volts
Condenser -. $003 \mathrm{mfd}$.200 volts
Condenser. - .0005 mfd. mica
Board - Terminal, double
Board - Terminal, triple
Condenser - . $003 \mathrm{mfd}$.800 volts, in metal case
Condenser - .003 mfd. 600 volts
Condenser -. $003 \mathrm{mfd}$.200 volts
Condenser. - .0005 mfd. mica
Board - Terminal, double
Board - Terminal, triple
Condenser - . $003 \mathrm{mfd}$.800 volts, in metal case
Condenser - .003 mfd. 600 volts
Condenser -. $003 \mathrm{mfd}$.200 volts
Condenser. - .0005 mfd. mica
Board - Terminal, double
Board - Terminal, triple Card - Operating

Clip - Red and green antenna leads
Clip - Black ground lead
Condenser - . 00025 mfd mica
Condenser pone, 500 m ohms with switch
Control - Volume, 500 M ohms
Resistor - 1 megohm, $1 / 3$ watt carbon
Resistor - 500 M ohm, $1 / 3$ watt carbon Resistor - 200 M ohm, $1 / 3$ watt carbon Resistor - 50 M ohm, $1 / 3$ watt carbon Resistor - $50 \mathrm{M} \circ \mathrm{hm}, 12$ wat caroon Resistor - 5 M ohm, $1 / 3$ watt carbon Resistor $-3 \mathrm{M} \mathrm{ohm}, 1 / 3$ watt carbon Resistor - 1 M ohm, $1 / 3$ watt carbon Resistor - $200 \mathrm{ohm}, 1 / 3$ wait carbon Resistor - 100 ohm , $1 / 3$ watt carbon

10638 ~近 \qquad ค \begin{tabular}{l}
0.8

0

4

\hline

18

88

4

\hline 1
\end{tabular}

 0
0
0
0
0 S
末
N
N

 거군 | ∞ |
| :--- |
| ${ }^{\infty}$ |
H
1

 $\infty \infty$
N
N
N
N

 응 R7227
R8922

PAGE 5-40 COLONLAL
MODEL 657
Schematic, Voltage
Trimners

COLONIAL RADIO CORP.

In order to prevent interference from code stations, when the receiver is located near the coast, a wave trap is incorporated in the antenna circuit. Although this trap is shown in the schematic as a coil with a series condenser, actually it consists of two multilayer coils wound on top of each other with one end of each coil left unconnected. The distributed capacity between the coils is represented by the condenser in the schematic. The design of the coil is such that the combination of distributed capacity and inductance is resonant at about 600 meters, which is the frequency used by ships and also is very near the IF frequency of the receiver.

The 75 AVC-Detector-AF Circuit:

The IF signal existing at the IF output transformer secondary is impressed between the diode plates and the cathode of the 75 tube, in series with the 500 M ohms of the Volume Control and the 50 M ohm resistor. Diode current flows, creating a voltage drop across these resistances. Only the drop across
the Volume Control resistance is uised for AVC voltage. The control grid returns of the 6A7 and 78 tubes are connected through filter resistances to one end of the Volume Control. This end is negative with respect to the other end of the control so that the voltage drop across it, due to the diode current, is impressed as negative bias on the control grids of the 6A7 and 78 tubes. Any increase in signal strength increases the 75 diode current, increases the voltage drop across the volume Control, and so increases the negative bias of the 6A7 and 78 tubes with resultant decrease in tube amplification. Since increases in signal strength are offset by decreases in tube amplification, the input to the detector tends to remain at a constant value.

Any desired portion of the auaio component across the volume Control may be picked off by the movable arm of the control and fed through the .01 mfd . condenser to the triode section of the 75 tube. It is there amplified and then coupled to the 43 output tube.

The IF Stages:

1. Connect the output meter (low scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series with a .l mfd. condenser, to the grid of the 78 IF tube, leaving the grid clip attached to the cap.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the 6A7 tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test osciilator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):

1. Couple the test oscillator to the green antenna lead, leaving the antenna connected.
2. Set the test oscillator to 1660 kilocycles.
3. Turn the variable condenser plates all the way out. Then adjust
the oscillator trimmer for maximum output. Some of these sets have a trimmer on the oscillator section of the variable condenser as well as one mounted on the broadcast oscillator coil. In others, the adjusting screw has been removed from the trimmer on the variable condenser and only the trimmer on the oscillator coil used. It will be found that in sets using both condensers, that maximum output cannot be reached even though one of the trimmers is screwed all the way in, making it necessary to use the other trinmer. In effect, both trimmers are in parallel when the Wave Switch is in the broadcast position.
4. Set the test oscillator to 1400 kc. and tune in its signal. Then adjust the trimmer on the translator section of the variable condenser for maximum output.
5. Set the test oscillator to 600 kc. and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
6. Since the adjustments are interacting to an extent, it is advisable to repeat the entire operation.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:
Set the test oscillator to 15 megacycles and tune in its sienal. Then adjust the trimer on the short wave translator coil for maximum output.

There is an Isolantite base con- With the set detuned and the volume There is an Isolantite base condenser mounted under the chassis
mediately below the volume control. This condenser is used to minimize hum.
control on full, adjust this condenser until the point affording minimum hum is found.

PAGE 5-42 COLONIAL

MODEL 657
Socket Layout
Trimners
Parts List

COLONIAL RADIO CORP.

REPLACEMENT PARTS AND PRICE LIST

PART NO.	DESCRIPTION	PRICE
R8297A	Board - Terminal, double	. 04
R8308A	Board - Terminal, triplo	. 05
R10859	Cabinet	5.58
R7011A	Cl1p - Antenna and ground leads	. 04
R11043	Clip - Grid	. 01
R10198	Coil - Antenna	.56
K10199	Coil - Oscillatior	. 35
R9565	Coil - Antenna wave trap	. 36
R9829D	Coil - Antenna, short wave	. 73
R9829C	Coil - Oscillator, short wave	1.01
R10605	Condenser - Variable	2.82
R10605A	Condenser - Variable, with pilot light bracket assembly	3.42
R10601	Condenser - Electrolytic, dry, block	3.89
R10197	Condenser - Trimmer, 25 nmf .	. 15
R9975	Condenser - Padding, 325 mmf .	. 37
R6444	Condenser - . 1 mfd. 200 volts	. 17
R8301	Condenser - . 1 mfd . dual, 200 volts	. 32
R6761	Condenser - . 02 mfd. 600 volts	18
R8432	Condenser - . 01 mfd . 200 volts	. 16
R7681	Condenser -. 003 mfd .600 volts	. 16
R6759	Condenser - . 001 mfd . miça	. 25
R6760	Condenser - . 0005 mfd . mica	. 20
R8621	Condenser - . 00005 mfd . mica	. 20
R7585	Resistor - 1 megohm, 1/3 watt carbon	. 18
R7226	Resistor - 500 M ohms, $1 / 3$ watt carbon	. 18
R6638	Resistor - 200 M ohms, $1 / 3$ watt carbon	. 18
R6637	Resistor - 50 M ohms, $1 / 3$ watt carbon	. 18
R6445	Resistor - 50 M ohms, $1 / 2$ watt carbon	. 20
R7587	Resistor - 10 M ohms, $1 / 3$ watt carbon	. 3.8
R7226	Resistor - 5 M ohms, $1 / 3$ watt carbon	. 18
R6634	Resistor - 2 M ohms, $1 / 3$ watt carbon	. 18
R7227	Resistor - 200 ohms, $1 / 3$ watt carbon	. 18
R8922	Resistor - 100 ohms, $1 / 3$ watt carbon	. 18
R8562	Resistor - 400 ohms, 3 watt, flexible	.21
R9360	Shield - Tube	. 09
R8366	Socket - 4 prong	.07
R8092	Socket - 6 prong	. 09
R8072	Socket - 7 prong	. 10
R8445	Socket - P110t light	. 19
R10600A	Speaker	5.37
R8076	Switch - AC-DC	. 93
R10207	Switch - Wave	. 59
R10208A	Transformer - IF input	1.51
R10209	Transformer - IF output	1.49

COLONIAL RADIO CORP.

All readings are to be taken between the chassis and the respective
element of each tube.
PLATE.
SCREEN CATHODE
85
100
85 $\boldsymbol{\infty}$ PRIMARY: Green. Black. RECTIFIER PLATE: Red. Blue. Slate, center tap. RECTIFIER FILAMENT: \#19 single cotton enamel with red tracer. HEATERS: \#19 single cotton enamel.
200 100 220 8 215
the
due
18 to the diode current of the 75 tube, is
used for AVC voltage.

MODEL 658

Alignment, Trimmers
Socket Layout
COLONIAL RADIO CORP.

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the low scale of the output meter across the loud speaker voice coll.
2. Connect the ground lead of the test oscillator to the receiver chassis.
3. Connect the other lead of the test oscillator, in series with a . 1 med. condenser, to the grid of the 78 IF tube. Leave the grid clip attached to the cap and the tube shield in place.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of the tuning adjustments are shown in the Service Illustration.
5. Change the test oscillator connection to the control grid of the 78 translator tube and adjust the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.

RF Alignment (Broadcast):
l. Couple the test oscillator to antenna connected.
2. Set the test oscillator to 1660 kilocycles.
3. Screw the oscillator padder condenser to approximately three quarters of its maximum capacity.
4. Tumn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output.
5. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the translator trimmer, mounted on the variable condenser section nearer the dial, for maximum output.
6. Set the test oscillator to 600 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the padder until maximum output is obtained.
7. Repeat the 1660 kc and 1400 kc adjustments.

Always use as low an output from the test oscillator as possible.

Short Wave Alignment:

1. Leave the test oscillator coupled to the green antenna lead as for broadcast alignment.
2. Set the test oscillator to 16 megacycles and tune in its signal. Then adjust the trimer condenser, mounted on the short wave translator coil, for maximum output.

In order to reduce the distributed capacity and thereby extend the high frequency limit of the receiver, the grid and plate leads to the osciliator coil and oscillator socket must be kept out in the open and as far removed from the metal of the chassis as possible.

TUBE REPLACEMETNT

There are two wood screws inside the cabinet, at the upper rear corners. These are used to secure the cabinet top, for shipping purposes only. They can be easily removed if the rear panel of the cabinet is taken off. Once removed, they need not be replaced. To remove the cabinet top then, for tube replacement, take out the single screw at the top center of the rear panel and push the top ap and off.

PAGE 5-46 COLONIAL
MODE 659
Alignment, Parts
Socket, Trimruers

COLONIAL RADIO CORP.

Model 103

Specifications

Model 103 is a five tube superheterodyne designed for operation from a six volt automobile storage battery. The " B " voltage is furnished by a Crosley Syncronode. The intermediate frequency used is 181.5 kc .

Tubes and Voltage Limits
The following are the tubes and voltages measured with the receiver in operating condition but with no signal to the antenna, and with a battery voltage of 6.3 volts. All voltages are measured from tube contact to chassis with a 300 volt D. C. voltmeter (1000 ohms per volt).

Tube	Position	Plate	Screen Grid	Cathode	Supp. Grid	Filament
78	R. F. Amplifier	210	100	2	2	6.3
78	Oscilatar Modulator	210	100	28	0	6.3
687	I. F. Amplifier and Diode Detector	210	100	2.5	6	2
78	Audio Amplifier	500	20	2.0	6	
41	Output	195	210	16.0	6.3	

Voltage limits are plus or minus 15% of values given.

PARTS LIST-MODEL 103
INSTRUCTIONS FOR ORDERING-Give part namber, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosleg Wholesale Distributors only. Cash

Qty.	Part No.	Description RECEIVER CRASSIS	Item	List Each	Qty.	Part No.	Deacription MODEL 409 SYNCRONODE		List Each
1	G48-28807	Seven Prong Socket 6B7....	48	.10	1	W-30367	Condenser . 25 Mfd...............	60	. 30
1	G22-28807	Six Prong Socket 41...........	47	. 10	1	W-30366	Condenser . 5 Mfd.	59	. 50
3	G39-28807	Six Prong Socket 78...........	48	. 10	1	W-23142	Condenser . 02 Mfd. (400 จ.)	61	. 20
1	W-27981	Tube Shield Base................		. 05	1	W-30884	Condenser . 02 Mfd. (800 v.)	69	. 30
1	W-27328	Tube Shield.........................		. 10	4	W-20314	Rubber Sleeve (to Mount		
1	G21-24985	Antenna Coil.........................	1	. 40			Sync.) 05
1	G25-24996	Oscillator Coil.........	3	. 40	1	W-20264	Terminal Board..................		. 15
1	G7-25968	Radio Frequency Coil.......	2	. 50			MODEL 353-3C SPEAKEER	45	
1	G1-25444	I. F. Transtormer (1st).....	4	. 75	1	G2-29529	Cone Assembly.....................		2.50
1	G3-25445	I. F. Transformer (2nd)......	5	. 75	1	W-29777	Field Coil..............................		1.00
4	W-25200	Coil Socket...........................		. 05	1	G4-24628	Transformer Assembly.......		1.40
3	W-25024	Coil Shield (Large)............		. 10			MISCELLANEOUS		
1	W-25025	Coll Shicld (Small)10	1	L-30452	Receiver Case......................		. 65
1	G1-29551	Coil Shield Assembly...........		. 15	1	C-30430	Cover 25
1	W-29263	Coil Bracket........................		. 05	1	C-30451	Bottom 25
5	W-24360	Insulating Washer..............		. 05	1	L-28034	Remote Control...................		4.11
5	W-21541B	Coil Itetaining Ring..........		. 05	1	W-28102A	Clamp Spring......................		. 15
1	L-29783	Variable Condenser Gang..	6, 7, 8	3.25	8	W-20070	Suppressor (Spark Plug)..		. 50
1	G1-29302	Coupling Assembly 40	1	W-20071	Suppressor (Dist. Head)..		. 50
1	W-30436	Yolume Control \& Switch..	40, 41	1.10	3	W-29754	Elim. Condenser....................		. 45
2	G2-25948	I. F. Trimmer Condenser..	0, 11	. 30	1	W-25784	Tennaflex		1,50
1	W-25008	1. F. Condenser Blade...	10	. 05	1	W-29323	Mounting Bolt.....................		. 10
1	W-25584	Mica		. 05	1	W-20324	Mounting Washer................		. 05
1	R-80	Screw		. 05	1	W961 ${ }^{\text {W } 29325}$	Mntg. Shakeproof Washer		. 05
1	${ }_{\text {W }}^{\mathrm{W}-24865}$	Washer		. 05	2	W-30739	No. 8x ${ }^{1 / 2}$ P. K...................		
1	W-25450B	Insulating Washer..............		. 05			(Top \& Bottom) 05
1	W-25007B	Insulating Washer..............		. 05	4	W-30739	No. $8 \times 1 / 2 \quad$ P. K. Screw		
1	W-25446	Bakelite Washe		. 05			(Chassis to case)..........		. 05
1	O-4	Flat Washer		. 05	30	W-31050	No. $8 \times 1 / 4$ P. K. Screw		
1	M-20	Rivet 05			(Case) 05
1	G4-28067	"A" Choke..............	49	. 35	4	W-31070	6-32x1/2 Screw (Speaker)....		. 05
2	21454	Resistor 1 megohm............	34, 35	.15	4	W-24074	Elastic Stop Nut (Speaker)		. 05
1	23785	Resistor 500,000 ohm...........	37	. 15	4	O-6	Flat Washer (Speaker)......		. 05
1	21875	Resistor 100,000 ohm...........	36	. 15	3	W-20800	Shakeproof Washer (Spr.)		. 05
2	22514	Resistor 750 ohm....	39, 68	. 15	1	W-4562	Solder Lug (Speaker).......		. 05
1	W-30127	Resistor 450 ohm................	28	. 15	1	G1-25891	Antenna Wire.....................		. 75
1	W-21237	Resistor 60,000 ohm............	31	. 15	1	W-28010	Antenna Wire Shield..........	42	. 25
1	W-25357	Resistor 750 ohm	33	. 10	1	W-31100	"A" Cable \& Fuse Assem.	72	. 55
1	W-21455	Resistor 300,000 ohm.	38	. 15	1	W-31102	Fuse Carrier only..............		. 10
1	31094	Resistor 4,500 ohm....	71	. 15	1	W-20106	Fuse Carrier Cap...............		. 05
2	W-21964	Resistor 165 ohm...............	27, 32	.15	1	W-20110	Spring 05
1	23616	Resistor 15,000 ohm............	30	. 15	2	W-20107	Washer 10
1	W-26571	Condenser . 005 Mfd.	21	. 15	$1{ }^{1 \prime}$	W-31103	10 Ampere Fuse...................		
1	W-23142	Condenser ${ }_{\text {Condenser }} \mathbf{8 - 8}$ Mfd..................	24, ${ }^{21}$.20 1.40	66"	W-31101	Wire08 Ft.
1	W-30419	$\begin{array}{ll}\text { Condenser } & \text { 8-8 Mfd............... } \\ \text { Condenser }\end{array}$	24, 23	1.40 .20	1	$W-31076$ $W-26156 A$	Lug ${ }_{\text {Switch }}$..		
1	W-23635	Condenser ${ }_{\text {Condenser }} .06 \mathrm{Mfd............}$.	${ }_{26,70}^{23}$. 20		W-26156A	Switch	58	
2	W-20389	Condenser ${ }_{\text {Condenser }} .00005 \mathrm{Mfd}$...............	26, 14	. 25	1	W-23191	Condenser ${ }^{\text {Grill Cloth }} \mathbf{}$...............................		. 15
1	W-23615	Condenser ${ }_{\text {Con }}^{\text {Condenser }}$. $\mathbf{1 - . 1}$ Mfd................	19, 20	. 15	1	W-29309	Grill Cloth 20
1	W-25438 W-24049A		17, 20	. 25	1	B-28309	Mounting Plate \qquad REMOTE CONTROL		. 20
2	W-24049A	Condenser . $\mathbf{0}$ C Mfd...............	16, 65	. 15	1	G8-25888	Drive Shaft Assem, (V. C.)		1.65
			66, 67	. 15	1	G9-25888	Drive Shaft Assem. (Dial)		1.65
		MODEL 409 SYNCRONODE	44		1	G1-28035	Strap Assembly 15
1	L-30424	Cover		. 50	1	W-28029B	Column Bracket		. 20
1	C-30455	Chassis 50	1	G4-26317	Bracket Assem.		. 30
1	L-29160	Vibrator Assembly..............	55	4.50	1	W-29316A	Gear Dial 30
1	G2-28067	"A" Choke Assembly.........	58	. 35	1	W-4907.	Spring Washer 06
1	G7-28065	Power Transformer............	54	2.25	1	G5-23472	Knob		. 10
1	G1-24234	R. F. Choke Assembly.......	63	. 15	1	G1-28036	Key Knob 20
1	G7-28069	Filter Choke.........................	64	1.45	1	B-26307D	Housing		E0
1	W-29808	Condenser 12 Mfd................	62	1.35	1	W-28025C	Cover 80

Model 169

Specifications

Model 169 is a four-tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 456 kc .

Tubes And Voltage Limits
The following are the tubes and voltages measured
with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts (235 for a 220 volt receiver). All voltages, except filament, are measured from tube contact to chassis with a 500 volt (1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position	Plate	Screen Grid	Cathode	Supp. Grid	Filament
58	Oscillator-modulator	165	82	22	0	2.5
6F7	I. F. Detector	165	82	2	0	2.5
2A5	Output	158	165	10	2.5	
80	Rectifier	295			4.9	

Voltage limits are plus or minus 10% of values given.

PARTS LIST-MODEL 169
INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

PAGE 5-4 CROSLEY
MODEL 169
Schematic
Socket Layout
CROSLEY RADIO CORP.

CROSLEY YAGE 5-5
MODET 119
Schematic,Socket
Parts List

PAGE 5-6 CROSLEY

Specifications

Model 179 is a seven tube superheterodyne designed for operation from AC electric circuits. The intermediate frequency used is 181.5 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-
ured -from tube contact to chassis with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts (235 volts for 220 volt receivers). All voltages, except filament, are measured with a 500 volt (1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position and Use	Plate	Screen Grid	$\begin{gathered} \text { Vol } \\ \text { Cathode } \end{gathered}$	Supp. Grid	Filament
58	RF Amplifier	260	125	3	3	2.5
58	Oscillator-modulator	260	125	34	0	2.5
58	IF Amplifier	260	125	4	4	2.5
56	Diode detector	0		0		2.5
56	AF Amplifier	50		4		2.5
2A5	Output	250	260	16.5		2.5
80	Rectifier	355				
Voltage limits are plus or minus 10% of values given.						

PARTS LIST-MODEL 179

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

Qty. 1	Part No.	Description	Item	List Each			Description	Item	List Frack
1	G7-24095.	Low, F Antenna Coil...........	2	. 60	1	13:31335A	Tube \& Cond. Shield.........		. 20
1	G14-24995	Hi F Antenna Coil.............	3	. 45	1	P1491A	Cable \& Plug......................	50	. 50
2	G1-29099	Ant. R. F. Coil Trimmer	10-11		1	W29594B	Tone Control \& Switch.....	34-35	1.10
		Cond.	12-13	. 20	1	W2J666B	Level Control (volume)......	44	. 90
1	G0-25968	Low IF. R. F. Coil..............	64	. 50	4	G1-23472	Knob 10
1	G5-25968	Hi F. R. F. Coil.................	5	. 55	1	W31157A	Knob (Moderne)..................		.10
1	G21-24096	Oscillator Coil....................	${ }^{6}$. 60	3	W31585A	Knob (Moderne)..................		. 10
1	G1-25444	1st I. F. Trans. Coil...........	${ }^{7}$. 75	1	W31463	Escutcheon)		. 25
1	G1-25948	1st I. F. Prim. 2nd I. F.	14-15		3	\$27	Escutch. Screws....(25 doz.)		. 05
		Prim. 2nd I. F. Sec. Trimmer Cond. Assem.....	16	. 60	1	W31009	Speaker Cord......................	61	. 15
1	W25008A	1st I. F. Sec. Trimmer Cond. Blade.	17	. 05	1	G17-23559	POWER TRANSFORMERS Power Trans. 60 Cy .110 V .	58	3.25
1	R80	Screw 05		G18-23559	Power Trans. 25 Cy . 110 V .	59	4.75
1	W26069B	Adjusting Nut.....................		. 05		G19-23559	Power Trans. 25-60 Cy.		
1	W24865	Metal Washer (round).......		. 05			220 Y.................................	60	4.75
1	W25446	Bakelite Washer (large)....		. 05					
1	W25450B	Insulating Washer (small)		. 05			FILTER \& BYPASS		
1	W25007	Insulating Washer (small)					CONDENSERS		
1	M20	Rivet 05	2	W27204	.02-. 02 Mfd. 200 Volt	18-1	. 25
1	W25584	Mica Insulator	8	. 05				20-21\|	
7	W6-25200	Coil Sockets........................	8	. 05	1	W25969A	.00017-.03 Mfd. 400 Volt	\| 24.25	. 25
5	W25024A	Coil Shield ($15 / 8 / \prime \prime$ high) 05	1	W.26194B	12. Mfd. 475 Volt	26	1.25
3	W25025A	Coil Shield (11/8' ${ }^{\prime \prime}$ high).....		. 10	1	W20150A	7.-6.-8. Mfd. 450-400-25	27-28\|	
7	W21541B	Retainer Ring.....(. 25 doz.)		. 05			Volt	29	2.60
4	W24360	Square Hole Ins. Washer		. 05	1	W250517A	.05-. 008 Mffd. 400 Volt	30-31	. 30
3	${ }_{\text {W }}{ }^{\text {W } 28891}$	Semi-Cir. Hole Ins. Wash.	9	.05 3.50	1	W27203	. 02 Mfd. 200 Volt	66	.15
1	${ }_{\text {G30727134 }}$	Var. Tun. Cond Gang.......	9	3.50 .15			. 01 Mfd. 400 Volt	67	. 20
1	G25-25751	Dial Assembly 90	3	W25937	275 Ohms	36-38	
1	B29787	Dial Cover (celluloid).........		. 30				65	. 15
1	B30569B	6 P. D. Tr. Switch.............	33	1.90	1	W26577	3 Megohm	39	. 15
1	LW-20264	Ant.-Gnd. Terminal.............	1	. 15	1	W21454	1 Megohm	40	. 15
1	G6-27456	-80 Socket............................	51	10	2	W23785	500000 Ohm	43-46	. 15
3	G24-27456	-58 Socket.............................	52-53	. 10	1	W23403 $\mathbf{W} 25521$	150000 Ohm ... 450 Ohm	45 47	. 15
2	G18-27456	-56 Socket............................	55-56	. 10		W31094	4500 Ohm	62	. 15
1	G43-27456	2A5 Socket...........................	57	. 10	1	W30127	450 Ohm	63	. 15
3	W26010	Tube Shield Base...............		. 05	1	W28471	8500-2500 Ohms (Canddem)	88-69	. 45
3	B26009C	Tube Shield.........................		. 10	1	C30719A	Chassis Bottom 50
		312	MA	NATOX S	EAK	R SPEC.			
$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	27307 29197			$\begin{aligned} & 3.00 \\ & 1.75 \end{aligned}$		29199	Transformer		1.75

PAGE 5-8 CROSLEY

Model 180

Specifications

Model 180 is a ten tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 181.5 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-
ured from tube contact to chassis with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts (235 for 220 volt receivers). All voltages, except filament, are measured with a 500 volt (1000 ohms per volt) d. c. voltmeter. Filament voltages are meas-s- ured with a low range a. c. voltmeter.

PARTS LIST-MODEL 180

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used If article wanted is not listed separately, them that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

PAGE 5-10 CROSLEY

Model 181

Specifications

Model 181 is a six tube superheterodyne designed for operation from AC electric circuits. The intermediate frequency used is 456 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas-
ured from tube contact to chassis with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts (235 volts for 220 volt receivers). All voltages, except filament, are measured with a 500 volt (1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position and Use	Plate	Voltages			
			Screen Grid		Supp. Grid	Filament
2 A 7	Oscillator	165		-9.5		
	Modulator	240	110	2.5		2.45
58	IF Amplifier	236	110	0		2.45
56	Diode Detector and AVC					2.45
58	AF Amplifier	52	27	0		2.45
$2 \mathrm{A5}$	Output	222	240	0		2.45
80	Rectifier	330				4.8

Chassis to B- 93 volts.
Bias voltages are obtained by a resistor divider shunting the speaker field which is in B- circuit, from rectifier to chassis.

IF Amplifier bias (Grid to B-) 28 volts.
AF Amplifier bias (Grid to B-) 12 volts.
Output bias (Grid to B-) 18 volts.
PARTS LIST-MODEL 181
INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

* Figures in 2nd last column refer to parts shown in diagram on page 18.										
$\left\|\begin{array}{r} \text { Qty. } \\ 1 \\ 1 \\ 2 \end{array}\right\|$	Part No. G23-24995 G28-24996 G7-29699	Description Antenna Coil. Oscillator Coil. \qquad Ant. and Oscillator Coil, Trimmer Condenser	$\left\{\begin{array}{c} \text { Item } \\ 1 \\ 2 \\ 11,12 \\ 5 \\ \mathbf{6 2} \end{array}\right.$	$\begin{gathered} \text { List Each } \\ .60 \\ .65 \end{gathered}$	$\left\|\begin{array}{c} \text { Qty. } \\ 2 \\ 2 \end{array}\right\|$	Part No.	$\begin{aligned} & \text { Kescription } \\ & \text { Knobs } \\ & \text { (large)......................... } \end{aligned}$		Item	List Bach
						W31224	Knobs (small)		10
					$\stackrel{2}{6}$	${ }_{\text {W }}^{\text {W }} \mathbf{\text { S7 }}$	Escutcheons 05
1	G2-30795			. 55	1	W31007	4 Lead Speak	cord.	58	. 15
1	G2-30795	Second I. F. Transformer..		. 55						
2	W30027	Coil Shield.........................		. 15			POWER TRAN	ORM		
2 4 4	W30802	Coil Socket...................................		. 15	1	G4-30745	Power Trans.	V. 60	61	3.50
4	W30028	Retainer Ring..		. 05	1	G2-30745	Power Trans. 11	$\mathrm{V}_{\mathbf{i}} 25 \mathrm{Cy}$	59	4.75
2	W30845	Insulating Washer..............		. 05	1	G3-30745	Power Trans. 2	V........	60	4.75
	${ }_{\text {W30877 }}^{\text {W30744 }}$	Insulating Washer.............		. 85						
1	$\begin{aligned} & \text { W30744A } \\ & \text { B30769A } \end{aligned}$	No. 3 P. D. T. Change Sw. Variable Tuning Condens-	4	. 85			CONDEN	ERS		
		er Assm..........................	3	2.35						
1	G4-27812	Dial Light Socket................		. 20	1	W30325	0.003 Mfd . 200	olt............		. 20
1	G9-25050	Dial Assembly...................		. 30	1	W27204	. 02.020 .02 Mfd .200	Volt......	13,14	
1 2	${ }_{\text {G14-25948 }}$	V. C. Dial Assembly...........	7,8	. 30	1	W 30741 $\mathbf{W} 25474$. $\mathbf{. 1}-1.1$ Mfd. 400 Mfd. 1000	Volt.....		. 40
1	W25008	Condenser Blade......................	57	. 05	1	W30059A	8.-8.-8. Mfd. 250	V.-450	23,24	
	R80	Screw 05			450 V		8.00
1	${ }_{W}^{W} \mathbf{W} 260688 \mathrm{~B}$	Adjusting Nut....................		. 05	2	W24049	.$_{02} \mathrm{Mfd} .200 \mathrm{Volt}$	-..........		. 15
1	${ }_{\text {W }}^{\text {W } 2545058}$	Insulating Washer.................		.05	1	W30321	1. Mifd. 160 vo			. 55
	W25007	Insulating Washer................		. 05	1	W25517	. 008 -. 05 Mfa . 40	Volt.	37,38	
1	W25446	Bakelite Washer...................		. 05	1	W 30805	. 01 Mfd .400 Vo	O.........		. 15
1	O-4	Fiat Washer...		. 05	2	${ }_{\mathbf{W} 26571}$.05 MPd .200 Vo	01t...........	${ }^{65}$. 15
1	G1-26719	A. G. Terminal....................	10	. 15						
2	G5-24234		56,64	. 15			RESIST			
2	G24-27975	58 Socket...	52	.10	1	W25937	275 Ohms...	15	. 12
1.	G43-27975	2 A 5 Socket.	53	. 10	3	W21875	100000 Ohms		7, 33	
1	G18-27975	56 Socket......	54 55	${ }^{10}$		W5370A	20000 Ohms.		${ }_{18}^{46}$. 24
4	${ }_{\text {W27981 }}$	Tube Shield Bas		. 05	1	W25970	15000-10000 Oh		21,22	. 40
	W 262318	Tube Shield10	1	W26577	3 Megohm	27	. 15
1	${ }_{\text {B26009C }}$	Tube Shield.		.10	1	W21237A	60000 Ohms...			. 15
2	${ }^{\text {B30375 }}$	AC Cord and Plug................		.45	4	W23785	500000 Ohms	32, 35	
1	W30836	Tone Control and Switch.. Level Control (volume).....	39,40	1.10					45,48	. 15
		Level Control					Onms.			
		avox 354-4		354-						
		pec.								
		27455								
		${ }_{27461}^{2455}$		${ }_{\text {G8-24628 }}$		Trans	rmer	1.25		

PAGE 5-12 CROSLEY
MODEU 181
Schematic
CROSLEY RADIO CORP.

Specifications
Model 182 is a five tube superheterodyne designed for operation from AC or DC electric circuits. The intermediate frequency used is 456 kc .

Tubes and Voltage Limits

The following are the tubes and voltages measured
from tube contact to negative line ($\mathrm{B}-$) with the receiver in operating condition but with no signal to the antenna circuit (antenna coiled up), and with a line voltage of 117.5 volts, 60 cycle a. c. All voltages except filament, are measured with a 500 volt (1000 ohms per volt) d. c. voltmeter. Filament voltages are measured with a low range AC voltmeter.
PARTS LIST-MODEL 182
INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped usual trade discounts, and are subject to change without notice.

PAGE 5-14 CROSLEY

Model 184

Specifications

Model 184 is a four-tube superheterodyne designed for operation from AC electric circuits. It uses an intermediate frequency of 456 kc .

Tubes and Voltage Limits
The following are the tubes and voltages meas
ured with the receiver in operating condition but with no signal to the antenna circuit, and with a line voltage of 117.5 volts (235 for a 220 volt receiver). All voltages, except filament , are measured from tube contact to chassis with a 500 volt (1000 ohms per volt) DC voltmeter. Filament voltages are measured with a low range AC voltmeter.

Tube	Position	Plate	Screen Grid	Cattrode	Supp. Grid:	Filament
58	Oscillator-modulator	165	82	22	0	2.5
6F7	I. F. \& Detector	165	82	2	0	2.5
2A5	Output	158	165	10		2.5
80	Rectifier	295				4.9

PARTS LIST-MODEL 184

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts; and are subject to change without notice.

Qty.				List Price Qtyo	Part No.	Description		List Pr
1	W20264	Ant.-Grd. Terminal	1	.15 1	W27328A	Tube Shield (6F7) 10
1	G28-24093	Antenna Coil	44	. 651	B26009C	Tube Shield (58) 10
1	G12-24990	Oscillator Coil	3	. 40 1	B21491B	A. C. Cable \& Plug	31	. 25
1	G7-25444	1st I. F. Transformer	4	. 60 1	W31009	Speaker Cable	43	. 25
1	G9-25445	2nd I. F. Traisformer	5	. 501	W26573B	Volume Control \& Switeh:.	40-41	1.00
1	W20024	Coil Shield (Large)10	G1-23472	Knobs 10
3	W25025	Coil Shield (Small)10 1.	G1-28500	Power Trans. 110 V. 60 Cy.	37	2.25
4	W25200	Coll Socket 05	G2-28500	Power Trans. 110 V. 25 Cy .	38	3.00
4	W20891	Insulating Washer 05	G3-28500	Power Transformer 220 V.	39	3.25
4	W21541B	Coil Retaining Ring 05				
1	${ }_{\text {G15-25050 }}$	Variable Condenser Gang....		2.75 .40		FILTER \& BY PASS CONDENSERS		
1	G2-25948	1st I. F. Prim. Trim. ${ }^{\text {a }}$. Cond.	7	. 30				
1	G10-25948	2nd I. F. Prim. Trim. Cond.	9	. 151	W27204	.02-.02 Mfd. 200 V. Cond.	12-13	. 25
1	W27548	1st I. F. Sec. Trim. Cond.	8	.051	W24049A	. 1 Mfd: 200 V. Condenser....	14.	. 15
		(Adjustable Blade Only)		1.	W23191A	. 01 Mfd. 400 V . Condenser....	15	. 25
1	W25584	Mica 05 1	W25537A	.001-.03 Mfd. 400 V. Cond.	16-17	.30
1	R80	Screw05 1	W29592A	. 003 Mfd. 400 V . Condenser..	18	. 20
1	W26069B	Adjusting Nut 05 25	W27203	.02. Mfd. 200 V. Condenser	10-11	. 15
1	W24865 W25450	Metal Washer 051	W29150A	7.-6.-8. Mfd. 450-400-25 V.	21	2.90
1	W25450B	Insulating Washer 05		Filter Condenser		2.90
1	W25446	Bakelite Washer (Large) 05		RESISTORS		
1.	04	Washer 051	W25937	275 Ohm Resistor	22	. 15
1	M20	Rivet 051	W31094	4500 Ohm Resistor	23	. 15
1	G24-27456	Socket -58	32	. 10 1	W24990	$2 \overline{5000}$ Ohm Resistor	24	. 20
1	G49-27456	Socket 6-F-7	33	. 10 1	W21454:	1 Megohm	25	. 15
1	G43-27456	Socket 2-A-5	34	$.10 \quad 1$	W28471	25000-8500 Ohm Resistor......	26-27	. 45
$\underline{1}$	G6-27456	Socket Tube Shield -	35	. $10 \sim 2$	W23785	500000 Ohm Resistor	28-30	. 15
2	W28010	Tube Shield Base 051	W25521	450 Ohm Resistor	29	. 15
			SP	FER PAR'	* 36			
		Magnavox 324-2M Spec. 1300		$\begin{gathered} \text { Jensen } \\ \text { 342-2J } \\ \text { Spee. } 2617 \end{gathered}$				
	1	28761			Cone	Voice Coil Assem.	2.00	
	1	28763		29436	Field		1.10	
	1	28764		29437.	Trans	rmer	1.25	

MODEL 184 WIRING DIAGRAM

MODEL 4A1
 Aligrment, Voltage

Alignment Procedure . . .

To align the receiver at intermediate frequency it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6 F 7 tube through an .02 mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment it is necessary that a standard $5 / 16^{\prime \prime}$ (across flat) hexagon socket wrench

Automatic Volume Control Circuit . .

Diode voltage is developed across resistor 34 which is the level control. This voltage is fed back through isolating resistor, part No. 26, to the grid return of the antenna coil, part No. 1, thereby exerting automatic volume control voltage on the pentode section of the 6F7 oscillator modulator. No AVC voltage is impressed on the 6B7 I. F. amplifier because in so doing serious distortion might result. AVC voltage is also impressed on the 6D6 A. F. amplifier by means of coupling resistor 57.

Method of Biasing ...

Both the pentode and triode section of the 6F7 oscillator modulator obtain their bias from the cathode resistor, part No. 22. The 6B7 I. F. amplifier section obtains its bias from the cathode resistor, part No. 25. Bias for the 6D6. A. F. amplifier is also obtained from resistor No. 25 , while the bias for the output type 42 is obtained from resistor part No. 30.

Type	Where Used
6F7	Osc. Mod.
6B7	I.F. and Diode
6D6	A.F.
42	Output

All voltages are plus or minus 10% and measured to chassis with 500 volt 1000 ohm per volt voltmeter. Battery voltage 6 volts.
be used for the upper condenser, and a small screw driver fitting inside of the nut hole for adjustment of the lower condenser. Always make this I. F. adjustment very carefully and go over the adjustment several times to be sure that the peak has been reached. To align a receiver at broadcast radio frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc. together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator shunt trimmer which is located on the front section of the gang condenser until

Analysis of Signal Channel...

The signal enters at the antenna lead-in terminal through the bayonet socket and then goes to the antenna coil, part No. 1. There is optionally offered a wave trap to be used with this receiver when it is operated in the neighborhood of commercial code stations using frequencies in the region of 456. This wave trap prevents these code stations from riding on through and being amplified by the intermediate frequency amplifier. The signal is tuned by the rear section of the gang condenser, part No. 3, and then impressed on the pentode grid of the 6F7. The 6F7 triode section is equipped with a conventional oscillator circuit tuned by the front section of the gang condenser, part No. 4. The oscillator output is impressed on the cathode of the 6F7 through a pickup coil. The output therefore of the 6F7 pentode section is intermediate frequency which is impressed on the first I. F. transformer, part No. 5. This I. F.
the signal is heard best. Without changing the gang condenser setting, adjust the antenna trimmer located on the rear section of the gang condenser. It is necessary that these adjustments be gone over several times until no further improvements can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator at approximately 600 Kc . The approximate sensitivity of the receiver may be checked here and it is possible that by slight bending of the gang condenser plates some improvement may be made. It is very essential, however, that this bending of plates be done with extreme care and by someone who is experienced in this operation.
transformer is double tuned. The signal is then fed to the grid of the pentode section of the 6B7 I. F. amplifier which tube has a double tuned output I. F. transformer, part No. 8, in its plate circuit. This amplified output is impressed on the two diodes of the 6B7 in parallel and diode voltage is developed across level control, part No. 34. The DC component of this voltage is fed forward through resistor 57 to the grid of the 6D6 A. F. amplifier, but the audio frequency component is fed from the level control contact arm through coupling condenser 56 to the grid of the 6D6 A. F. amplifier. In this way a bias depending on the strength of the signal is impressed on the grid of the 6 D 6 A . F. amplifier while the actual audio frequency voltage is determined by the setting of the level control. The amplified audio frequency output of the 6 D 6 is fed through coupling condenser No. 18 to the grid of the 42 output tube and is then amplified and fed to the speaker part No. 43. Condenser No. 19 serves to keep the impedance of the output system more nearly constant.

Ef	Ep	Eg	Ek	Esg	Eposc	Esup
6.0	230	0	8	100	60	-
6.0	230	0	3	100	-	-
6.0	60	0	3	25	-	3
6.0	220	0	16	230	-	-

CROSLEY RADIO CORP.

General Description .

Chassis 5M3 is used in the Fiver Jr. It is a low-priced but highly efficient 5 -tube superheterodyne receiver covering the frequency range
of $535-1750 \mathrm{Kc}$. The intermediate frequency is 456 Kc .

Tubes Used and Their Function . . .

The tubes used are 6D6 oscillator

MODEL Fiver Jr.(5M3)
Voltage, Notes Alignment

					Ek	Esg	Esup
Type	Where Used	Ef	Ep	Eg	Ek	120	0
6D6	Osc-Mod.	6.3	235	29	32	3	120
6D6	I.F.	6.3	235	0	10	3	
76	Detector	6.3	30	0	10	-	
42	Output	6.3	225	0	18	235	-
80	Rectifier	4.9	-	-	310	-	

All voltages are measured to chassis voltages and are plus or minus 10%. All DC are voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 50 watts, 110 volts, 60 cycles.

Method of Biasing . . .

Referring to the circuit diagram, it will be seen that the 6D6 oscillator modulator tube has a more or less complex biasing system. This is because resistor No. 22 in the cathode circuit creates a bias for the input section of the tube, while resistors 22 and 23 in series create the bias for the suppressor grid oscillator section. The 6D6 I. F. amplifier obtains its bias from the volume control, part No. 40. There is a fixed limiting resistance in this volume control so that at the full volume position there is still the bias indicated in the voltage chart, and as the volume is reduced, the bias on the 6D6 I. F. amplifier increases. The 76 detector obtains its bias from the cathode resistor, part No. 24, while the 42 output tube obtains its bias from its cathode resistor, part No. 29.

Volume Control Circuit . . .

As explained above, as the volume control is backed off of the maximum sensitivity position, cathode bias is inserted in the 6D6 I. F. am. plifier circuit. At the same time, resistor 40, being connected across the antenna and ground, tends to short circuit the antenna circuit. Thus, reduction in sensitivity is obtained simultaneously by reducing
the gain in the I. F. amplifier and reducing the effectiveness of the antenna.

Analysis of Signal

Channel . . .

Starting with the antenna, the signal is fed through the antenna coil, part No. 2, and tuned by the radio frequency section of the gang condenser, part No. 6. The signal is then impressed on the control grid of the 6D6 oscillator modulator. This tube is so connected that the combination cathode, suppressor grid, and plate of the 6D6 tube form a conventional triode oscillator. The oscillator frequency is determined by the setting of the gang condenser oscillator section, part No. 6 , in conjunction with oscillator coil, part No. 3. The plate shape of the oscillator section of the gang condenser is such that a constant I. F. frequency of 456 Kc . is present at the primary terminals of the first I. F. transformer, part No. 4. This I. F. transformer is double tuned and the I. F. signal is then impressed on the grid of the 6D6 I. F. amplifier. The amplified output of this tube is impressed on the second I. F. transformer, part No. 5, which is single tuned, with condenser part No. 9. To prevent overload being serious in the 76 detector circuit, resistor No. 25 is used so that when grid current is drawn the bias on the tube increases very rapidly. In the plate circuit of the 76 detector there is present in addition to the normal DC plate current, both intermediate frequency and audio frequency. The intermediate frequency is bypassed by condenser No. 16, while the audio
modulator, 6D6 I. F. amplifier, 76 detector, 42 output, and 80 rectifier. The tube voltages are shown in the table below:
frequency is passed on to the output tube grid through condenser No. 17. The grid circuit of the output tube is completed through resistor No. 28. The amplified audio output of the type 40 tube is, of course, fed to the speaker in the usual manner.

Power Supply System .

The power supply system consists of a transformer, part No. 37, for 110 -volts, 60 cycles, part No. 38 for 110 -volt 25 cycles, and part No. 39 for 220 volts, a type 80 rectifier tube, electrolytic condenser part No. 19, the speaker field as a filter choke, and electrolytic condenser part No. 20.

Alignment Procedure . . .

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator, so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6D6 oscillator modulator tube through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the three I. F. tuning condensers located on the top of the chassis for maximum signal output. To make this adjustment, it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used. The wrench is preferably insulated. Always make these adjustments very carefully and go over

CROSLEY RADIO CORP.

them several times to be sure that the peak has been reached.

To align the receiver at radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the modulated oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal
through a .0001 (dummy antenna) aligned at 1400 Kc . and by setting condenser and the low side to re- the modulated oscillator to 600 Kc ., ceiver chassis. Now, with dial set the set may be rechecked at this at 140 , adjust the gang condenser point. It will be sometimes found oscillator trimmer, which is in the that a slight bending of the gang rear section of the gang until the condenser plate will help the sensisignal is heard best. Then adjust tivity at 600 Kc . This operation the R. F. trimmer, which is in the should be done very carefully so front section of the gang condenser, that no short circuiting of the confor maximum signal. The set is now denser plates result.

PARTS LIST-MODEL 5M3

* Figures in 2nd last column refer to parts shown in wiring diagram of Model 5 M 3

Qty.	Part No.	Description	Item	List Each	Qty.	Part No.		Item	List Ea
1	G7-32000	Antenna Coil	2	. 35	1	G25-27456	42 Socket	34	. 10
1	G6-32002	Osc. Coil	3	. 40	1	G6-27456	80 Socket	35	. 10
1	G3-32004	1st I. F. Trans. Coil	4	. 55	2	W26010	Tube Shield Base (6D6)10
1	G4-32004	2nd I. F. Trans. Coil	5	. 55	2	B26009C	Tube Shield 05
4	W25200	Coil Socket 05	1	B21491C	Cable \& Plug	31	. 50
2	W25024A	Coil Shield 10	1	G5-28500	Power Trans. 60 cy . 110 V .	37	3.00
2	W25025A	Coil Shield 10		G6-28500	Power Trans. 25 cy. 110 V.	38	4.09
4	W26891	Insulating Washer 05		G7-28500	Power Trans. 25 cy. 220 V.	39	4.00
4	W21541B	Retaining Ring 05	1	LW-20264	Ant.-Gnd. Terminal	1	. 15
1	G3-33001	Tuning Condenser Gang	44	2.25					
1	G19-25050	Dial Assem.35			FILTER \& BY-PASS		
1	G12-27812	Dial Light Brkt Assm. 20			CONDENSERS		
1	G2-25948	Ist I. F. Primary Tuning	7	. 30	1	W25537A	0.001-0.03 Mfd. 400 V.-400 V	16-17	. 30
1	W27548	1st I. F. Sec. Tuning Cond.			1	W23191A	0.01 Mfd. 400 V.	18	. 25
		Adj. Blade	8	. 05	1	W30805	0.01 Mf.d. 400 V.	43	. 20
1	W25008A	2nd I. F. Sec. Tuning Cond.			1	W28622	0.1-0.1 Mfd. 200 V.-200 V.	45-46	. 25
		Adj. Blade	9	. 05	2	W28623	0.02-0.02 Mfd. 200 V.-	$47-48$ $49-50$	
$\stackrel{2}{2}$	W31472	First Blade 05			8.6 200 V.	49-50	25
$\stackrel{2}{2}$	W25584	Mica Insulator 05	1	W29100B	8.-6.-12. Mfd. 450 V.-450 . V.-	$19 \div 20$	
2	W25446	Bakelite Washer 05			20	21	. 60
2	W24865	Metal Washer 05			RESISTORS		
2	W25450B	Insulating W asher 05	1	W2ă937	275 Ohm	22	. 15
2	W25007B	Insulating Washer 05	1	31094	4500 Ohm	23	. 15
$\stackrel{2}{2}$	O-4	Flat Washer 05	1	21237 A	60000 Ohm	24	. 15
$\stackrel{2}{2}$	M-20	Rivet (.120x7/32) Tubular		.05	1	21454	1 Megohm	25	. 15
2	R80	$4-36 \times 3 / 4{ }^{3}$ Rd. Hd. Mach.			1	W27120	25000-8500 Ohm	26-27	.40
		Screw 05	1	23785	500000 Ohm	28	. 15
1	W26573B	Vol. Control \& Line Switch	40-41	1.10	1	W23907	750 Ohm	29	. 20
2	G75-27456	6D6 Socket	32	. 10	1	21455	300000 Ohm	30	. 15
1	G80-27456	76 Socket	33	. 10	2	W32352	Knob 10

General Description...
Chassis 5V1 is used in the DeLuxe Fiver and DeLuxe Fiver Lowboy. It is a 5 -tube 3 -gang automatic volume control dual band receiver. The frequency bands are 535 to 1720 Kc. and 1650 to 4500 Kc . The intermediate frequency is 181.5 Kc .,

Type	Where Used	Ef
6A7	Osc-Mod.	6.5
6D6	I. F.	6.5
6B7	Diode-AF	6.5
42	Output	6.5
80	Rectifier	5.1

All voltages are plus or minus 10%. All DC voltages are measured to chassis at 117.5 line with 1000 ohms per volt 250 -volt voltmeter. Power-demand is 50 watts at 110 volts 60 cycles.

Method of Biasing . . .

Referring to the circuit diagram, it will be seen that the input section of the 6A7 oscillator modulator obtains its bias from the cathode resistor, part No. 30, while the oscillator section of the same tube gets its bias from the grid leak and condenser combination, in which part No. 31 is the grid leak and part No. 12 is the grid condenser. Bias for the remainder of the tubes is obtained from the voltage divider network connected across the speaker field, which also is the filter choke. Resistors 41,42 and 43 form its voltage divider network, and the bias voltage applied to the 6D6 I. F. amplifier is that voltage drop across resistor 41. The audio frequency amplifier section of the 6B7 tube obtains its bias from the drop across resistor 41. The grid circuit is completed through volume control part No. 29. The output tube bias is the drop across the combined resistors 41 and 42, completed, of course, through resistors 39 and 56

Automatic Volume Control Circuit ...

Automatic volume control voltage. is generated across resistor 34 and is fed back through filter resistor 33 to the 6A7 control grid via the switch

CROSLEY RADIO CORP.
the use of which insures adequate selectivity.

Tubes Used and Their Function . . .

The tubes used are 6A7 oscillatormodulator, 6D6 I. F. amplifier, 6B7 diode and audio frequency amplifier, 42 output, and 80 rectifier. The tube voltages are shown in the table below:

Esup	Eg-osc	Ep-osc
0	-15	125
0	-	-
-	-	-
-	-	-

and second secondary in the preselector system. No automatic volume control is exerted on the I. F. amplifier stage, which is the 6D6, because in so doing there is a serious danger of introducing distortion.

Analysis of Signal Channel . . .

The signal enters at the antenna terminal and when the switch is thrown to the broadcast position flows through the antenna coil primary. In the first secondary circuit it is tuned by means of one section of the gang condenser, part No. 5, and then due to the inductive coupling between the first secondary and the second secondary, signal is fed over to this latter coil where it is tuned by another section of the gang condenser, part No. 5. This signal is impressed on the grid of the oscillator modulator tube. The oscillator section of this tube is tuned by the specially-shaped third section of the gang condenser, part No. 5, in conjunction with oscillator coil, part No. 2. The frequency of the oscillalator is such that a constant intermediate frequency of 181.5 kilocycles is present in the plate circuit of the first detector or oscillator-modulator tube. This intermediate frequency signal is fed to the first I. F. transformer, part No. 3; which transformor is double tuned. The signal is then fed to the grid of the 6D6 I. F. amplifier and then the amplified output is fed to the second I. F. transformer. part No. 4, which transformer is also double tuned. The I.
F. signal is then impressed on the diode plates in parallel. In this stage there is developed across resistor 34 a DC diode voltage, an audio frequency voltage, and some intermediate frequency. The audio frequency and intermediate frequency signals pass through coupling condenser, part No. 20, but the filter resistor, part No. 35, excludes most of the intermediate frequency so that mostly audio frequency is present across resistor 29 , the volume control. This audio frequency is then amplified through the pentode section of the 6 B 7 tube and the amplified audio output is fed through coupling condenser 18 to the grid of the output tube type 42 . The output of the type 42 tube is fed to the speaker in the conventional manner. Resistor 56 in the grid circuit of the output tube acts as a further filter for whatever intermediate frequency might still be present and also tends to suppress distortion at extremely loud volume. Condenser part No. 16 is connected across the speaker transformer and tends to hold the impedance of the speaker load more constant at the higher audio frequencies.
For the high frequency band the signal channel is slightly different in that the first section of the preselector is not used. Instead the signal is fed directly over to the second secondary through coupling condenser part No. 10. The switch is now connected into the tap on the second secondary so that part of this secondary acts as an antenna primary and the balance as the high fre-

MODEL Deluxe Fiver, L-B
(Chassis 5V1)
Schematic,Alignment
Socket Layout

CROSLEY RADIO CORP.

quency secondary. The oscillator coil is tapped in the usual manner simply to reduce inductance.

Power Supply System . . .

The power supply system consists of a transformer part No. 45 for 110 volts 60 -cycle, part No. 46 for 110 volts 25 -cycle, part No. 47 for for 220 volts, a rectifier tube type 80, the speaker field as the filter choke, and filter condensers parts 24 and 25 . In this circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminates the use of a large bypass condenser on the cathode of the output tube, type 42 . At the same time, better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit.

Alignment Procedure . . .

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator so that strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator, which has been adjusted to 181.5 Kc . to the control grid connection on the top of the $6 \AA 7$ tube, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F.
transformer condensers, three of which are located on top of the chassis and one in the rear of the chassis, for maximum signal output. To make this adjustment, it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used. This wrench should be insulated. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.
To align the receiver at broadcast frequencies it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0001 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator trimmer on the gang condenser (the oscillator section is in the rear of the gang) until the signal is heard best. Without changing the gang condenser setting, adjust the remaining two sections of the gang condenser. The gang con-
denser adjustment may be accomplished with an ordinary screwdriver. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. The performance of the receiver may now be checked at 600 Kc . by setting the modulated oscillator to 600 Kc . and the receiver dial to that point around 60 , which gives best reception. Sometimes it is possible to make a slight improvement in the performance at this point by bending some of the gang condenser plates slightly. This operation should be done very carefully so that no short circuiting of the condenser plates results.
The receiver may be checked in the higher frequency band if a modulated oscillator, capable of covering frequencies of 1700 to 4000 is available. It is not necessary, however, to align the receiver at these frequencies because if the receiver is properly aligned at broadcast frequencies it will be in alignment at the higher

CROSLEY RADIO CORP.

General Description . . .

Chassis 5 Hl is used in the Model Fifty and Model Fifty Lowboy. It is a 5 -tube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are 535 to

1750 Kc ., which is the normal broadcast band and the lower frequency police band, and 5700 to 15500 Kc ., which is the short wave or high frequency band. The intermediate frequency is 456 Kc . and while there is only one intermediate frequency stage, adequate selectivity is obtained through the use of very high effciency I.F. transformers, in addition to the three-gang condenser.

Tubes Used and Their Function . . .

The tubes used are 6F7 radio frequency amplifier and audio frequency amplifier, 6A7 oscillator ${ }_{\mathrm{r}}$ modulator, 6B7 intermediate frequency amplifier and diode detector, 42 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used
6F7	R.F.-A.F.
6A7	Osc.-Mod.
6B7	I.F.-Diode
42	Output
80	Rectifier

All voltages are plus or minus 10%. All D.C. voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 50 watts, 110 volts, 60 cycles.

Method of Biasing . . .

Referring to the circuit diagram attached, it will be seen that the bias for the pentode section of the 6F7 tube is obtained from the drop across resistor No. 52. Resistors Nos. 52,53 and 54 form a voltage divider network across the speaker field, which field also acts as a filter choke. The tap between resistors Nos. 52 and 53 may be followed through resistors Nos. 48 and 47 and thence to the grid return of the 6F7 pentode section. The cathode of the 6 F7 returns to the ground, as does also the lower end of resistor No. 52, therefore the drop across resistor No. 52 is impressed on the grid of the pentode section of the 6F7 tube. The grid of the pentode section of the 6 F 7 returns, of course, through the band change switch. The same condition exists for the grid section of the 6A7 tube. The 6A7 also obtains its bias from the drop across resistor No. 52 but in this case this voltage is fed through resistor No. 48 only and then to the grid return of the 6A7 tube. The oscillator section of the 6A7 obtains its bias, of course, from the grid leak and condenser combination, resistor No. 56 being the low frequency grid leak and resistor No. 57 being the high
frequency grid leak. The bias for the pentode section of the 6 B 7 tube is also obtained from the voltage drop across resistor No. 52 but in this case this voltage is not fed through any filter resistor. Now returning to the triode section of the 6 F 7 , which section is an audio amplifier, it will be found that the bias for this section is also obtained from the drop across resistor No. 52 and through volume control part No. 70. The bias for the output tube type 42 , must be greater than that for the other tubes and it is generated due to the drop across resistors 52 and 53 in series and is fed through the grid leak, part No. 51.

Automatic Volume Control Circuit . . .

Automatic volume control voltage is developed in the diode circuit across resistors 35,47 and 48. Since resistor 48 returns to the junction between resistors 52 and 53, a delay voltage is supplied and this voltage is equal to the drop across resistor 52 . The audio frequency diode resistor is part No. 49 and it will be noted that it returns directly to ground which is the same point that the low potential end of resistor 52 returns. Automatic volume control is exerted on the 6F7 pentode section which is the radio frequency stage. While the full diode voltage is that drop across resistors 35,47 and 48 in series, only the voltage across 47 and 48 is impressed on the radio fre-
quency amplifier. In a similar manner automatic volume control is exerted on the 6A7 control grid and this voltage is obtained from the drop across resistor 48. No automatic volume control is exerted on the intermediate frequency amplifier stage, which is the 6 B 7 , because in so doing there is serious danger of introducing distortion.

Analysis of Signal

Channel . . .

Starting with the antenna, the signal enters switch contacts, part No. 21, at which point, depending upon the position of the switch, it will flow either to the broadcast or short wave antenna coil primary, parts Nos. 1 and 2 respectively. Tuning is accomplished by the first section of the gang condenser, part No. 20, connected in the secondary circuit of the antenna coil. The signal is then impressed on the radio frequency pentode grid of the 6F7 tube and is amplified by the tube. The output of the 6F7 tube goes into the primary of the inter-stage radio frequency transformer, part Number 3 or 4, depending on whether the switch is connected to the low or high frequency position. The secondaries of the interstage coils are again tuned by another section of the gang condenser, part No. 20, and the signal is then impressed on the control grid of the 6A7 oscillator modulator tube. The oscillator section of the 6A7 tube uses the oscillator coils 5 and 6 for the low

Alignment, Notes
ana mign arequenty bands respectively, and the oscillator is tuned by the third section of the gang condenser, part No. 20. In this tube the frequency of the signal is changed from radio frequency to 456 Kc ., the intermediate frequency. The signal passes from the plate of the 6A7 tube to the first intermediate frequency transformer, part No. 7, and the primary and secondary of this transformer are both tuned to obtain maximum selectivity. The output of the secondary of the transformer is impressed on the control grid of the 6B7 tube in which the intermediate frequency signal is amplified and fed to the second intermediate frequency transformer, part No. 10 , which transformer is also tuned in both the primary and secondary circuits. The signal is now impressed directly on the audio frequency diode, in the 6B7 tube and through condenser No. 27 on the automatic control diode of the same tube. In the audio frequency diode the signal is converted from intermediate frequency to audio frequency which audio frequency is present across resistor 49 and condensor 46. There is also a direct current voltage and some intermediate frequency also present here. The audio frequency signal is separated from the direct current voltage by condenser 45 and whatever intermediate frequency there may be left in this circuit is filtered by resistor 50 and the remaining pure audio frequency voltage is impressed across volume control, part No. 70. Adusting the position of the arm of this volume control applies greater or less audio frequency voltage on the grid of the triode section of the 6F7. This triode is used as an audio frequency amplifier. The plate of this tube is connected to the audio coupling resistor, part No. 58, and the audio frequency voltage is coupled to the grid of the output tube, type 42, through condenser 32. The grid circuit of the output tube is completed through resistor 51. The amplified audio output is impressed across the speaker transformer in the speaker assembly, part No. 59.

Power Supply System ...

The power supply system consists of a transformer, part No. 67, for 110 -volt 60 -cycle, part No. 68 for 110 -volt 25 -cycle, and part No. 69 for 220 -volt $25-60$ cycle, a rectifier tube type 80 , the speaker field

CROSLEY RADIO CORP.

as a filter choke, wet electrolytic condenser part No. 39, and dry electrolytic condenser part No. 38. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser on the cathode of the output tube, type 42. At the same time, better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit.

Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 456 Kc . to the control grid connection on the top of the 6A7 tube through an .02 mfd . series condenser. The low side of the oscillator to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment it is necessary that a standard $5 / 16$ inch (across flats) hexagon socket wrench be used for the upper condenser, and a small screwdriver fitting inside of the nut hole for adjustment of the lower condenser. Always make this I.F. adjustment very carefully and go over your adjustment several times to be sure that the peak has been reached.
To align the receiver at broadcast radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna, be available. Set the oscillator at 1400 Kc ., and connect the high side of the oscillator to the receiver antenna terminal through a .0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer indicated on the diagram attached and located under the chassis until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers for maximum signal. It is necessary that these adjustments be gone over
several times until no further im. provements can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is obtained. Now readjust the oscillator series trimmer located on the side of the chassis as shown on the diagram attached for maximum signal. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater signal is obtainable.

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to $15,000 \mathrm{Kc}$. and the receiver dial to 15. Adust the oscillator shunt trimmer for the high frequency band to maximum signal. Now adjust the antenna and interstage R.F. trimmers for maximum signal, making sure to go over the adjustment several times so that no further improvement can be made. Now set the modulated oscillator to approximately 6000 Kc . and the receiver dial to 6. Readjust the modulated oscillator slightly for maximum signal and then adjust the oscillator series trimmer for the high frequency band for best signal, making whatever slight adjustments in the tuning control are necessary to bring in maximum signal.

Tuning Receiver In
 High Frequency Band . . .

Due to the tremendously greater number of transmitter channels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is received.

CROSLEY RADIO CORP.

PAGE 5-26 CROSLEY

MODEL 50,(5HI),51,(5C2)
 Parts List
 CROSLEY RADIO CORP.

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Crosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

PARTS LIST-MODEL 5C2

* Figures in 2nd last column refer to parts shown in wiring diagram of Model 5C2

Part No.	Description	Item	List Each	Qty.	Part No.	Description	Item	List Ea
G1-32000	Antenna Coil	2	1.10		W30323	0.01 Mfd. 200 V.	36	. 15
G2-32003	1st I. F. Trans. Coil	53	. 70	1	W28:31	0.02 Mfd. 200 V.	63	. 15
G1-32003	Diode Feeding Trans.	52	. 80	1	W28623	0.02-0.02 Mfd. 200 V.-200 V.	64-65	. 25
W25200A	Coil Socket 05	1	W29271A	0.02-0.02 Mfd. 400 V.-400 V.	66-67	. 25
W25024A	Coil Shield 10	1	W29910A	0.25 Mfd. 200 V.	68	. 20
W21541B	Retainer Ring 05					
W26891	Insulating Washer 05			RESISTORS		
G5-33002	Variable Tuning Condenser Gang	62	3.75	1	W28589	350 Ohms		10
W31812	Dial Pointer 05	1	W27503	1400 Ohms	7	. 10
G2-27817	Dial Light Bracket Assm.		. 15	1	W240537	60 Ohms ...	8	.10
G3-33006	1st I. F. Prim \& Sec. Trim-			1	W30539	26.7 Ohms	9	. 20
	mer Cond.	58-59	. 30	1	21237A	60000 Ohms	10	15
G4-33006	2nd I. F. Prim. \& Sec.			1	21454	$\frac{1}{5}$ Megohm	11	. 15
	Trimmer Cond.	60-61	. 50	1	26578	5 Megohm	12	. 15
W32242	Vol. Control \& Line Switch	50-51	1.00	2	2378 a	500000 Ohms	13-17	. 15
W31204	Vol. Control \& Line Switch	16-15	1.00	1	${ }_{2}^{23403}$	150000 Ohms	14	. 15
G49-27975	6F7 Socket	44	. 10	1	21455	300000 Ohms	18	. 15
G39-27975	78 Socket	45	. 10	1	W22514	750 Ohms	56	.15
G48-27975	6B7 Socket	46	. 10	1	24990	20000 Ohms	57	. 20
G30-27975	43 Socket	47	. 10					
G51-27975	25Z5 Socket	48	. 10					
W32360	Tube Shield Base 05			CABINET AND		
W31212	Tube Shield (Half')		. 05			SPEAKER		
W31213	Tube Shield (Shield Ring 05		4D	Cabinet Assembly		5.47
B30957B	Resistor Cable \& Plug (120			1	W33139	Dial Plate		5.47 .15
	Ohms)	19	. 70	1	W33140	Vol. Control Plate 15
W31765	Antenna	1	. 20	1	W28723	Bull's Eye 05
G2-28859	Filter Choke	41	1.25	1	W29023	Bezel 05
				1	W33164	Grille Cloth10
	FILTER \& BY-PASS CONDENSERS			1	W33167A	Baffle		. 10
				1	W33168	Back Cover 50
W31992	10.-8.-25.-16. Mfd 25 V.-125	37-38		1	W33143	Knob10
	$\mathrm{V}^{1}-125$ V.-100 V.	39-40	3.50	1	G5-31692	Speaker \& Plate Assm.		4.50
W30325	0.003 MItd. 200 V.	25	. 20	1	G1-29529	Cone \& Voice Coil		2.00
W25516	$0.25-0.25$ Mfd. $200 \mathrm{~V} .-200 \mathrm{~V}$.	30-31	. 40	1	G6-29535	Transformer		1.10
W27668 W30322A	0.0001 Mfd. $0.00017-0.006$ Mfd. 200 V.-	32	. 15	1 4	W31214 W 28742	Field Coil \qquad Speaker Mounting Screws		1.25
W30322A	$0.00017-0.006$ Mfd. 200 V.- 200 V.	34-35	. 30	4	W28742	Speaker Mounting Screws (Chrome) 05

* Figures in 2nd last column refer to parts shown in wiring diagram of Model $5 H 1$

Description
Antenna Coil (High Freq.)
H.
c. Coill (L. F.)
Osc. Coil (H. F.)
I. F. Trans. and Trim-
-
ond
L. F. \& H. F. Ant. Trim-
condensers ...w......
F. R. F. Trim-
F. Osc. Trimmer Cond.
F. \& H. F. Osc. Series
Variable Tuning Condenser
Dial Assm
Coil Shield Socket
Coil Shield
Coil Shield
Coil Shie
ulating Washer (L. F.
and R. F. \& Osc. Coils)
Retaining Ring
Dial Light Bracket Assm.
Tone Control \& Line Switch
Level Control (Volume)
6 Pole D. T. Switch
Cord \& Plug
-Gnd. Termin
6A7 Socket
6B7 Socket
Sock
Socket
Tube Shield Base
Tube Shield (6F7, 6A7, 6B7)

Description	Item	List Ea
Power Trans. 60 cy. 110 V.	67	3.75
Power Trans. $25 \mathrm{cy}$.110 V .	68	5.25
Power Trans. 25 cy. 220 V .	69	5.25
FILTER \& BY-PASS CONDENSERS		
8.-8.-8. Mfd. $4 ⿹ 勹$ V0 V.-450 V.-	37-38	
200 V .	39	2.8
12. Mf'd. 475 V .	40	1.25
1. Mfd. 160 V .	29	. 55
0.0014 Mfd. 300 V	24	. 30
0.05 Mfd. 200 V .	25	.20
0.02 Mfd .200 V .	26	. 15
0.0005 Mfd. 400 V .	27	.15
$0.01 \mathrm{Mfd}$.400 V .	28	. 20
0.01 Mfd. 400 V .	30	.15
$0.001-0.03 \mathrm{Mfd} .400 \mathrm{~V} .400 \mathrm{~V}$.	31-32	, 30
$0.008-0.05 \mathrm{Mfd}$.400 V .400 V .	33-34	.30
0.25 Mfd. 200 V.	36	. 20
$0.006-0.00017$ Mfd. 200 V.- 200 V.	45-46	. 30
RESISTORS		
3 Megohm	35-48	. 15
1 Megohm	47-49	. 15
8500-25000 Ohm	41-42	. 55
500000 Ohm	50-51	
	54	. 15
100000 Ohm	53	. 15
10000 Ohm	55	. 15
60000 Ohm .	56	. 15
40000 Ohm	57	. 15
150000 Ohm	58	. 15
7000 Ohm	71	. 20
25000 Ohm	72	. 20
Speaker Cord (4 Wire) 25
Knob 10
Knob10
Escutcheon 25
Escutcheon Screws (.10 doz.)		. 05

General Description...

Chassis 5C2 is used in the Model 51. It is a 5 -tube $A C-D C$ superheterodyne receiver employing a 3-gang condenser, Automatic Volume Control and electro-dynamic speaker. The frequency range is $535-1750 \mathrm{Kc}$.

The intermediate frequency is 181.5 . Use of this low intermediate frequency assures very good selectivity.

Tubes Used and
 Their Function . . .

The tubes used are 6F7, Oscillator-
modulator, 78 I. F. amplifier, 6B7 diode and audio frequency amplifier, 43 output, and 25 Z 5 rectifier. The tube voltages are shown in the table below:
Esg
100
100
15
100
-
Esup
$\frac{-}{3}$
$=$
-

Ep-osc
100
$=$
$=$

All voltages are plus or minus 10%. All DC voltages are measured to -B at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 50 watts, 110 volts, 60 cycles. Voltages on other frequencies and DC will vary slightly from the above table.

Method of Biasing .

Referring to the circuit diagram it will be seen that the 6F7 Pentode section obtains its bias from the cathode resistor part No. 5. The oscillator section obtains the major portion of its bias from the grid leak and condenser combination in which part No. 55 is the grid leak and 54 the grid condenser. The 78 I. F. amplifier obtains its bias from the cathode resistor, part No. 6. Bias for the 6B7 audio amplifier is obtained from cathode resistor part No. 7. The effect of this circuit is that a slight bucking bias is applied to the diode section, but a very weak signal soon overcomes this bias and the diode then acts as though there were no bias resistor. The pentode audio amplifier section, however, makes use of this initial bias in resistor No. 7 and after signal is applied, depending on the strength of the signal, a varying amount of bias will be applied to accommodate the signal from the AVC circuit. Bias for the output tube, type 43 , is obtained from the drop across the filter choke, part No. 41. and whatever hum component there is remaining is filtered through resistor 18 and bypass condenser 30.

Automatic Volume Control Circuit ...

Automatic volume control voltage is developed in the diode circuit across resistor 10 in series with volume control, parts No. 15 or 50. This voltage is fed back through filter resistor No. 11 to the control grid return of the 6F7 modulator section. No automatic volume control is exerted on the intermediate frequency amplifier, type 78 tube, because in so doing there is a serious danger of introducing distortion.

Analysis of Signal
 Channel . . .

Starting with the antenna, part No. 1, which is a self-attached reel of wire in the case of this receiver, the signal flows through condenser part No. 25. The purpose of this condenser is to insulate the antenna from the balance of the set, so that if it should touch any devices having voltage on them, neither the receiver nor the device will be burned out. The signal then feeds into the primary of the first preselector coil and is transferred to the first secondary and tuned with one section of the gang condenser, part No. 20. This first secondary coil is coupled inductively to the second secondary coil, which coil is tuned by another section of the gang condenser part No. 20. The output of this doubletuned preselector circuit is fed to the grid of the 6F7 modulator section. The oscillator section of the 6F7 is tuned with the third section of the gang condenser, part No. 20, in conjunction with coil part No. 2, all of
these coils bearing the same part number, since they are mounted on one continuous core. The shape of the oscillator section of the gang condenser is such that a constant intermediate frequency of 181.5 is generated when the signal is applied and this intermediate frequency is present across the primary of the first I. F. transformer, part No. 53. This I. F. transformer is double tuned by condensers 21 and 22 respectively, and the signal is then applied to the grid of the 78 I. F. amplifier. The amplified I. F. output is then fed to the second I. F. transformer, part No. 52, which transformer is also double tuned. This then goes to the diode plates connected in parallel. As mentioned above, the diode resistor is a combination of fixed resistor part No. 10 and the volume control part No. 15 or 50 . All of the diode voltage developed is used for automatic volume control, while only that portion of the combination DC diode voltage and audio frequency voltage across the volume control is fed to the grid of the 6B7 audio frequency amplifier. Due to the fact that some intermediate frequency is present in this circuit, and it is necessary to eliminate it, this is done in the plate circuit of the 6B7 amplifier with bypass condenser, part No. 34. The audio frequency voltage is fed over to the grid of the type 43 output tube thru coupling condenser 35 , while the grid circuit of this tube is completed thru resistors 17 and 18. The amplified output of this tube is, of course, fed to the speaker in the usual manner. A very important part of the audio frequency amplifier

CROSLEY RADIO CORP.

is resistor, part No. 13, connected between plate of the type 43 output tube and the screen of the type 6B7 audio amplifier. Naturally some audio frequency is fed through this resistor, as well as the direct current voltage which supplies the screen. However, at the screen of the 6B7 is located a bypass condenser, part No. 33 , so that the higher audio frequencies do not affect the screen of this tube, while the lower audio frequencies are not bypassed, and the effect, therefore, is a regenerative one so far as the lower audio frequencies are concerned. The result of this circuit is that in spite of the very small proportions of the cabinet and speaker a desirable amount of lower notes are reproduced by the set.

Power Supply System . . .

Since this is an AC-DC receiyer, no power transformer is used. To supply the filament of the tubes a series resistor, part No. 19, is used to drop the voltage to the required amount, while the plate voltage supply is obtained from the 25 Z 5 rectifier. This rectifier has two plates and two cathodes, all of which are separated from each other. It is therefore possible to use one plate and cathode to supply the plates of the remaining tubes and the other plate and cathode to supply the speaker field. In so doing much smoother operation is obtained and less hum results. The speaker field supply is filtered with condenser No.
38. The signal plate supply is filtered with condensers No. 39 and 40, in conjunction with choke, part No. 41.

Alignment Procedure . . .

To align the I. F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator, so that strength of the oscillator output can be regulated. Connect the high side of the output of the modulated oscillator, which has been adjusted to 181.5 Kc. to the receiver antenna wire, as close to where it enters the cabinet as possible, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. It will be found that the best way to make this connection to the antenna wire is with a sharp, pointed prod, so that the insulation on the antenna wire is not permanently damaged. The unused dead end portion of the antenna wire should be rolled up on its reel. With the oscillator set to a convenient level, adjust the four I. F. transformer tuning condenser adjustment nuts available through the front flange of the chassis for maximum signal output. To make these adjustments, it is neces. sary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nut. The wrench should be insulated. It may be neces-
for best results. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.

To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator, having frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and turn the tuning control of the receiver to 140 on the dial. Connect the high side of the oscillator to the receiver antenna through a .0001 Mfd . (dummy antenna) condenser. Now adjust the oscillator section trimmer on the gang condenser (the oscillator section is the rear-most section of the gang) until the signal is heard best. Then adjust the remaining two R.F. trimmers on top of the gang condenser for best signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible sig. nal from the modulated oscillator for best accuracy. The set is now aligned at 1400 Kc . and by adjusting the modulated oscillator to 600 , the set may be rechecked at this point. It will sometimes be found that a slight bending of the gang condenser plates will help the sensitivity at 600 Kc. This operation should be done with extreme care, however, so that no short circuiting of the condenser plates results.

CROSLEY PAGE 5-29

CROSLEY RADIO CORP.

CHASSIS 6V2

General Description ...

Chassis 6V2 is used in the Dual Sixty and Dual Sixty Lowboy. It is a 6-tube 3-gang automatic volume control dual range receiver. The chassis has a continuously variable tone control. The frequency bands
covered are 535 to 1700 , and 1650 to 4500 Kc . The intermediate frequency is 181.5 Kc ., the use of which insures adequate selectivity.
Tubes Used and
Their Function . . .
The tubes used are type 58 R. F.
amplifier, type 2A7 oscillator modulator, type 58 I. F. amplifier, type 55 diode and A. F. amplifier, type 2A5 output, and type 80 rectifier. The tube voltages are shown in the table below:

Esg	Ep-osc	Eg-osc
1120	$-\overline{175}$	-15
120	-	-
$\overline{120}$	-	-
$\overline{225}$	-	-

Automatic Volume Control Circuit
 \qquad

In the broadcast band automatic volume control is exerted on the 58 R.F. amplifier, but in the high frequency band automatic volume control is used on the 2A7 oscillator modulator. The automatic volume control voltage is developed across resistor 36 and fed back to filter resistor, part No. 37, directly to the grid return of the high frequency antenna coil, part No. 4, and then to a switch contact in the secondary circuit of the broadcast antenna coil. When the switch is thrown to the broadcast band (down in the circuit diagram) the automatic volume control voltage goes through the switch, part No. 4.5, to the grid of the R.F. amplifier through the antenna coil secondary, part No. 2. With the switch thrown in the high frequency position (up in the circuit diagram), the automatic volume control voltage is fed through the secondary of the high frequency antenna coil, part No. 4, and then to the switch, part No. 45, to the grid of the oscillator modulator tube, type 2A7.

Analysis of Signal
 Channel . . .

The signal enters at the antenna terminal and depending on the position of the switch, part No. 45, is transferred either to the broadcast antenna coil or the high frequency antenna coil, parts No. 2 and No. 4 respectively. In the broadcast band the signal is tuned with one section of the gang condenser, part No. 8,
and fed to the grid of the $58 \mathrm{R} . \mathrm{F}$. amplifier. The broadcast antenna coil is tapped, as indicated in the diagram, for the purpose of improving the image ratio. The effect of this tap is to produce an unsymmetrical selectivity characteristic, so that at the point of the normal image response, approximately 360 Kc . higher, this unsymmetrical selectivity curve tends to attenuate the image signal very materially. The amplified R.F. output of this tube is fed to the interstage transformer, part No. 3, the secondary of this transformer being tuned by another section of the gang condenser, part No. 8. The signal then goes to the control grid of the 2A7 oscillator modulator. The oscillator section of this tube is tuned by the third section of the gang condenser, which has specially-shaped plates, also indicated as part No. 8. The frequency of the oscillator is such that a constant intermediate frequency of 181.5 Kc . is present in the plate circuit of the 2A7 oscillator modulator tube. The I.F. output of the oscillator modulator tube is impressed on the first I.F. transformer, part No. 6, which transformer is double tuned. The output of this transformer is impressed on the grid of the type 58 I.F. amplifier. The amplified output of the type 58 I.F. amplifier is impressed on the second I.F. transformer, part No. 7, which transformer is also double-tuned. The I.F. signal is then impressed on the diode plates of the type 55 tube connected in parallel. In this stage there is developed across resistor 36 , a DC diode voltage, an audio fre-

CROSLEY RADIO CORP.

quency voltage, and some intermediate frequency. The audio and intermediate frequency signals pass through the coupling condenser, part No. 19 but the filter resistor, part No. 38, excludes most of the intermediate frequency remaining so that only audio frequency is present across the volume control, part No. 42. The audio frequency is amplified through the triode section of the 55 and then fed through coupling condenser 21 to the grid of the type 2A5 output tube. The slight amount of intermediate frequency remaining at this point is filtered through bypass condenser No. 20. The power audio output of the 2A5 is then fed to the speaker in a conventional manner. Condenser 22 is permanently connected across the speaker to hold its impedance at a more nearly constant value at higher audio frequency, while condenser 23 and variable resistor 43 form a tone control combination.

Power Supply System . . .

The power supply system consists of a transformer, part No. 51, for 110 volts, 60 cycles, part No. 52 for 110 volts 25 cycles, and part No. 53 for 220 volts, a type 80 rectifier tube, the speaker field as the filter choke, and the electrolytic filter condensers, part Nos. 25 and 26. In this circuit the filter choke (speaker field) is included in the negative leg of the power supply system, because in so doing it is posible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tube, type 2A5. At the same time, better audio quality for the lower
notes is obtained than with ordinary bypass condenser circuits.

Alignment Procedure...

To align the I.F. amplifier, it is necessary that there be available a suitable modulated oscillator capable of adjustment to 181.5 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 181.5 Kc . to the control grid connection on the top of the 2A7 tube, through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I.F. transformer tuning condenser, all four of which are accessible from the top of the chassis for maximum signal output. To make this adjustment it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used. The wrench is preferably insulated. Always make these I.F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached. To align the receiver at broadcast frequencies, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc., together with a suitable attenuator and dummy antenna be available. Set the oscillator to 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 Mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial and adjust the oscillator
trimmer on the top of the gang condenser as indicated in the diagram until the signal is heard best. Without changing the gang condenser setting, adjust the R.F. trimmer, which is also on top of the gang, and the antenna trimmer for the broadcast band, located as indicated in the diagram on the side of the chassis, for maximum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work. with the weakest possible signal from this modulated oscillator for best accuracy. The performance of the receiver may now be checked at 600 Kc . by setting the modulated oscillator to 600 and the receiver to that point around 60 which gives best reception. Sometimes it is possible to make a slight improvement in the performance at this point by bending some of the gang condenser plates slightly. This operation should be done very carefully so that no short circuiting of the condenser plates results.
To align the receiver in the higher frequency band it is necessary that a modulated oscillator, capable of adjustment to frequencies of 1700 and 4000 Kc . be available. Set the oscillator to 4000 Kc . and throw the wave change switch to the high frequency band. Adjust the receiver in the neighborhood of 4.0 on the dial until maximum signal is heard. Now adjust the short wave antenna trimmer located on the side of the chassis as indicated in the diagram for best signal. The receiver may now be re checked at 1700 Kc . by setting the oscillator at 1700 and the receiver dial at 1.7.

CROSLEY RADIO CORP．

\qquad
\qquad 744 1st I．F．Pri．Trimmer

1st I．F．Sec．Trimmer 2nd I．F．Pri．Trimmer 0：02 Mfd． 400 V ． 0.02 Mfd .400 V ． W－30324 | $\mathrm{W}-26571$ |
| :--- |
| $\mathrm{~W}-27203$ |
| -2484 | 0.05 Mfd .200 V

0.00017 Mfd .200 V. 0.006 Mfd .200 V ．

W－22537A $\left\{\begin{array}{l}0.001 \mathrm{Mfd} .400 \mathrm{~V} . \\ 0.03 \mathrm{Mfd} .600 \mathrm{~V} .\end{array}\right.$
0.004 Mfd .400 V ．
 0.01 Mfd .400 V 8 Mfd .450 V.
8 Mfd .450 V
8 Mfd.
250 V.

CHASSIS 6H2

General Description .

Chassis 6 H 2 is used in the Model Sixty-one and Model Sixty-one Lowboy. It is a 6 tube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high effciency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are

535 to 1750 Kc ., which is the normal broadcast band and the lower frequency police band, and 5700 to 15500 Kc ., which is the short wave or high frequency band. The intermediate frequency is 456 Kc . and while there is only one intermediate frequency stage, adequate selectivity is obtained through the use of very high efficiency I.F. transformers, in addition to the three-gang condenser.

Tubes Used and Their Function . . .

The tubes used are 6D6 radio frequency amplifier, 6A7 oscillator modulator, 6 B 7 intermediate frequency amplifier and diode detector, 76 audio frequency amplifier, 42 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used
6D6	R.F.
6A7	Osc.Mod.
6B7	I.F.-Diode
76	A.F.
42	Output
80	Rectifier

All voltages are plus or minus 10%. All D.C. voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 250 -volt voltmeter. Power demand 60 watts, 110 volts, 60 cycles.

Method of Biasing . . .

Referring to the circuit diagram attached it will be seen that the bias for the 6D6 R.F. tube is obtained from the drop across cathode resistor No. 45. The input section of the 6A7 also obtains its bias from the drop across cathode resistor No. 41. The oscillator section of the 6A7 obtains its bias, of course, from the grid leak and condenser combination, resistor No. 42 being the grid leak. The bias for the pentode section of the 6B7 tube is also obtained from the voltage drop across resistor No. 45 but is not fed through the filter resistor. The 76 audio amplifier bias is also obtained from the drop across resistor No. 45. The bias for the output tube type 42 , due to the drop across resistor 54 , is fed through the grid leak, part No. 50.

Automatic Volume Control Circuit . . .

Automatic volume control voltage is developed in the diode circuit across resistors 44 and 46. A delay voltage is supplied and this voltage is equal to the drop across resistor 45. The audio frequency diode resistor is part No. 47 and it will be noted that it returns directly to re-
sistor 45. Automatic volume control is exerted on the 6D6 which is the radio frequency stage. While the full diode voltage is that drop across resistors 44 and 46 in series, only the voltage across 46 is impressed on the radio frequency amplifier. In a similar manner automatic volume control is exerted on the 6A7 control grid and this voltage is obtained from the drop across resistor 46. No automatic volume control is exerted on the intermediate frequency amplifier stage, which is the 6B7, because in so doing there is serious danger of introducing distortion.

Analysis of Signal

 Channel . . .

 Channel . . .}The signal enters at terminals Al, A2, and G. These three terminals are provided to permit the use of a doublet antenna with transposed lead-in and no ground if desired. With such an antenna, the two lead-in wires are connected to A1 and A2 and the strap between A2 and G is open circuited. If it is desired to operate the receiver with simply a conventional antenna and ground, connect A2 and G together and to the ground wire. The conventional antenna is connected to the Al terminal.
The signal enters switch contacts, part No. 74, at which point, depending upon the position of the switch, it will flow either to the broadcast or short wave antenna coil primary,
parts Nos. 2 and 3 respectively. Tuning is accomplished by the first section of the gang condenser, part No. 10 , connected in the secondary circuit of the antenna coil. The signal is then impressed on the 6D6 tube and is amplified. The output of the 6D6 tube goes into the primary of the inter-stage radio frequency transformer, part Nos. 4 or 5, depending on whether the switch is connected to the low or high frequency position. The secondaries of the interstage coils are again tuned by another section of the gang condenser, part No. 10, and the signal is then impressed on the control grid of the 6A7 oscillator modulator tube. The oscillator section of the 6A7 tube uses the oscillator coils 6 and 7 for the low and high frequency bands respectively, and the oscillator is tuned by the third section of the gang condenser, part No. 10. In this tube the frequency of the signal is changed from radio frequency to 456 Kc ., the intermediate frequency. The signal passes from the plate of the 6A7 tube to the first intermediate frequency transformer, part No. 8, and the primary and secondary of this transformer are both tuned to obtain maximum selectivity. The output of the secondary of the transformer is impressed on the control grid of the 6B7 tube in which the intermediate frequency signal is amplified and fed to the second intermediate frequency transformer, part No. 9, which transformer is also tuned in both the pri-

CROSLEY RADIO CORP.

mary and secondary circuits. The signal is now impressed directly on the audio frequency diode, in the 6B7 tube and through condenser No. 40 on the automatic control diode of the same tube. In the audio frequency diode the signal is converted from intermediate frequency to audio frequency which audio frequency is present across resistor 47 and condenser 26. There is also a direct current voltage and some intermediate frequency present here. The audio frequency signal is separated from the direct current voltage by condenser 27 and whatever intermediate frequency there may be left in this circuit is filtered by resistor 48 and the remaining pure audio frequency voltage is impressed across volume control, part No. 58. Adjusting the position of the arm of this volume control applies greater or less audio frequency voltage on the grid of the 76. This triode is used as an audio frequency amplifier. The plate of this tube is connected to the audio coupling resistor, part No. 49, and the audio frequency voltage is coupled to the grid of the output tube, type 42, through condenser 29. The grid circuit of the output tube is completed through resistor 50. The amplified audio output is impressed across the speaker transformer in the speaker assembly, part No. 70.

Power Supply System . . .

The power supply system consists of a transformer, part No. 71, for 110 -volt 60 -cycle, part No. 72 for 110 -vole 25 -cycle, and part No. 73 for 220 -volt $25-60$ cycle, a rectifier tube type 80 , the speaker field as a filter choke, wet electrolytic condenser part No. 36, and dry electrolytic condenser Part No. 37. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser on the cathode of the output tube, type 42. At the same time, better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit.

Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be adjusted. Connect the high side of the output of the modulated oscillator which has been adjusted to 465 Kc . to the control grid connection on the top of the 6A7 tube through an .02 mfd . series condenser. The low side of the oscillator to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. To make this adjustment for I.F. transformers in a round shield it is necessary that a standard $5 / 16$ inch (across flats) hexagon socket wrench be used for the upper condenser, and a small screwdriver fitting inside of the nut hole for adjustment of the lower condenser. A screwdriver only will adjust the I.F. transformers in a square shield. Always make this I.F. adjustment very carefully and go over your adjustment several times to be sure that the peak has been reached.

To align the receiver at broadcast radio frequency it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna, be available. Set the oscillator at 1400 Kc ., and connect the high side of the oscillator to the receiver antenna terminal through a .0002 mfd . (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer indicated on the diagram and located under the chassis until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers for maximum signal. It is necessary that these adjustments be gone over several times until no further improvements can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the
dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the nodulated ,oscillator carefully until maximum response is obtained. Now adjust the oscillator series trimmer located on the side of the chassis as shown on the diagram attached for maxi, mum signal. It is sometimes advis،able to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater signal is obtainable.

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band except that ai 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to $15,000 \mathrm{Kc}$. and the dial to 15. Adjust the oscillator H.F. shunt trimmer until the signal is heard best. Now adjust the antenna and interstage H.F. trimmers for maximum signal, making sure to go over the adjustment several times so that no further improvement can be made. Now set the modulated oscillator to approximately 6000 Kc . and the receiver dial to 6 . Readjust the modulated oscillator slightly for maximum signal and then adjust the oscillator series trimmer for the high frequency band for best signal, making whatever slight adjustments in the tuning control are necessary to bring in maximum signal.

Tuning Receiver In High Frequency Band...

Due to the tremendously greater number of transmitter channels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is received.

PAGE 5-34 CROSLEY

CHASSIS 7H2

General Description ...

Chassis 7 H 2 is used in the Model 72 and 72 Lowboy. It is a seventube short wave and broadcast chassis employing the latest superheterodyne circuit, in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The frequency ranges covered are 535 to 1750 Kc ., which is the regular broadcast band and lower frequency police band, and 5700 to 15500 Kc .
which is the short wave or high frequency band. The intermediate frequency is 456 Kc . Two stages of I. F. are used to assure adequate selectivity. A special friction type 80:1 drive is used to make tuning as smooth and easy as possible. Instead of the customary tuning knob, a special fishing-reel type of crank is provided-so that the tuning can be spun quickly from one end of the dial to the other. With the high ratio drive employed, this would be
quite laborious if a conventional knob were used for tuning.

Tubes Used and Their Function . . .

The tubes used are type 58 R . F. amplifier, type 2A7 oscillator modulator, type 58 first I. F. amplifier, type 58 second I.F. amplifier, type 2B7 diode detector and audio amplifier, type 2A5 output tube and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used	Ef	Ep	Eg	Ek	Esg	Ep-osc.
58	RF	2.5	225	0	3	100	
2A7	Osc. Mod.	2.5	225	0	3	100	150
58	1st IF	2.5	225	0	4.5	100	
58	2nd IF	2.5	225	0	4.5	100	
2B7	Diode AF	2.5	50	0.5	0	22	
2A5	Output	2.5	215	2.0	0	225	
80	Rectifier	4.9	-	-	225	-	
Voltage	ss Speaker Field,						

All d. c. voltages are plus or minus ten percent. All voltages measured to chassis at 117.5 volt line with 1000 ohms per volt, 500 volt voltmeter. Power demand 75 watts at 110 volts 60 -cycle.

Method of Biasing ...

Referring to the circuit diagram attached, it will be seen that the bias for the first type 58 tube is obtained from the resistor, part No. 78, in the cathode circuit of this tube. Bias for the type 2A7 is obtained in a similar manner from cathode resistor, part No. 19. The oscillator section of the 2A7 obtains its bias, of course, from the grid leak and condenser combination, resistor 20 being for the broadcast or low frequency band and resistor 23 for the short wave or high frequency band. Bias for both I. F. tubes is obtained in the broadcast band from cathode resistor, part No. 34. In the high frequency band it is desired that the sensitivity of the set be improved, so bias resistor No. 31 is connected in shunt to resistor No. 34 so that the I. F. amplification is thereby increased when the set is switched to the short wave or high frequency band. The result of this circuit arrangement is that the set has substantially the same sensitivity in
both broadcast and short wave bands, in spite of the fact that the radio frequency coils in the short wave band cannot possibly be as efficient as they are in the broadcast band. The next two tubes employ shunt instead of self biasing. Resistors 55,56 and 57 form a voltage divider network connected across the speaker field, which also is the filter choke. The most negative point of this voltage divider network is the end of resistor 57 which connects to the speaker field, while the positive end of the network is that end of resistor 55 which connects to the type $2 B 7$ and 2A5 cathodes. It will therefore be seen that the negative grid bias for the type 2B7 audio frequency amplifier section is obtained at the junction point between resistors 55 and 56. The voltage obtained at this point has some hum present and it is therefore necesary that it be fed through the hum filter resistor, part No. 43, and thence through the grid circuit completing resistor, part No. 41, to the type 2B7 grid. Bias for the output tube, type 2A5 is obtained at the junction point between resistors 56 and 57 and fed through the grid circuit completing resistor to the grid of the 2A5 output tube. It is therefore seen that the bias fed
to the output tube is necessarily larger than that fed to the 2 B 7 , since it is the drop across two resistors, while that fed to the 2B7 is the drop across only one resistor.

Automatic Volume Control Circuit . . .

Automatic volume control is developed in the diode circuit across volume control resistor, part No. 39. This voltage is picked off at the junction between resistor 38 and the volume control, part No. 39, and fed through isolating resistor, part No. 75 , to the grid return circuit of the 2A7 tube. The same point is also fed to the grid return of the first type 58 I.F. amplifier. From this point there is connected an additional isolating resistor, part No. 27, and from there to the type 58 R.F. amplifier grid return. No automatic volume control is exerted on the second intermediate frequency amplifier type 58 tube because in so doing there is serious danger of introducing distortion.

Analysis of Signal Channel...

Starting with the antenna, the signal enters switch contact indicated as part No. l, and depending on

CROSLEY RADIO CORP.

which position the switch happens to be in, flows either to the short wave antenna coil primary or to the broadcast antenna coil primary, parts No. 2 and No. 3 respectively. It is to be noted that a resistor, part No. 77, is connected across the broadcast antenna coil primary for the purpose of securing better alignment. The secondary of the antenna coil is tuned with a section of the gang condenser, part No. 14, and the signal is then impressed on the grid of the type 58 R.F. amplifier. The amplified output of the tube follows through the switch and into the primary of broadcast or high frequency interstage coil, depending on the switch position. The output of the secondary of the interstage coil is tuned with another section of the gang condenser, part No. 14, and fed to the control grid of the type 2A7 modulator oscillator tube. The oscillator section of this tube is automatically connected at the same time the switch is thrown so that the frequency of the oscillator is controlled by the third section of the gang condenser, part No. 14, so as to give a constant intermediate frequency of 456 Kc . in the plate circuit of the type 2A7 modulator oscillator. This intermediate frequency is now fed into the primary of the first I.F. transformer, part No. 29, and thence to the secondary of the same transformer. This transformer is tuned in both primary and secondary circuits to obtain maximum selectivity. The output of transformer No. 29 is fed to the first type 58 I.F. amplifier and the output of this tube then goes to the second I.F. transformer, part No. 33, which I.F. transformer is also double tuned. The signal then follows to the grid of the second type 58 I.F. amplifier whose output is in turn fed to the primary of a single tuned diode type I.F. transformer, part No. 35. The tuned secondary circuit of the diode transformer feeds the two diode plates of the type 2B7 connected in parallel. The diode resistor is a combination of part No. 38 and volume control No. 39 connected in series, but only that portion of the diode voltage developed across part No. 39 is used. The reason for this connection is that smoother action is obtained without regeneration. Both audio frequency and direct current are present across resistor No. 39 and, to separate out the direct current, condenser, part No. 40, is used to couple the audio
frequency over to the grid of the type 2B7 audio frequency amplifier. Resistor No. 41 completes the grid circuit of this tube. The amplified audio frequency in the plate circuit of the 2B7 is fed through coupling condenser, part No. 47 into the grid of the type 2A5 output tube, which grid circuit is completed with resistor No. 48. The plate circuit of the output tube is connected to the speaker transformer in the customary manner. Condenser No. 50 is used to match the impedance of the output tube and speaker-more closely at higher audio friequencies, while condenser No. 51 and variable resistor No. 52 form the tone control.

Power Supply System . . .

The power supply system consists of a transformer, part No. 63, for 110 -volt 60 -cycle, part No. 64 for other uses, a rectifier tube type 80 , the speaker field as a filter choke, wet electrolytic condenser, part No. 60 , and dry electrolytic condenser, part No. 8. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tube, type 2A5. At the same time better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit. The Universal transformer, part No. 64, is a special transformer originally developed for export use, but because of its enthusiastic reception it has been incorporated in this chassis. The primary of the transformer is equipped with four voltage taps clearly marked so that the set can be made to operate from 90 to 265 volts in four steps. The transformer operates on any frequency from 25 to 100 cycles.

Alignment Procedure . . .

To align the I.F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the low frequency or broadcast band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc .
to the control grid connection on the top of the 2A7 tube through an . 02 Mfd. series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I.F. transformer condensers for maximum signal output. The first and second I.F. transformer tuning condensers are located on the left-hand side of the chassis, while the diode tuning condenser is located under the chassis as indicated in the diagram attached. To make these adjustments. it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nut. The wrench is preferably insulated. Always make this I.F. adjustment very carefully: and go over the adjustments several times to be sure that the peak has been reached.

To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator, and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer, indicated on the diagram as "oscillator trimmer condenser L.F. band" and located under the chassis, until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers, also located under the chassis and indicated in the diagram attached for maximum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trimmer for the low frequency band located under the chassis as shown in the diagram for maximum signal. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adustment if a still greater signal is obtainable.

MODEL 72,72 LB (7HR) Alignment, Parts $L_{\text {ist }}$

To align the set in the high frequency or short wave band, it is necessary that a modulated oscillator be available for frequencies of 6000 and 15000 Kc . The procedure for this band is similar to the broadcast band, except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the .0002 condenser. Set the modulated oscillator to 15000 Kc . and the receiver dial to 15. Adjust the oscillator trimmer condenser under the chassis to maximum signal. Now adjust the antenna and interstage trimmers for maximum signal, making sure to go
over the adjustment several times number of transmitter channels covso that no further improvement can ered in the high frequency band, the be made. Now set the modulated receiver is endowed with a much oscillator to approximately 6000 Kc . greater apparent selectivity. For this and the receiver to 6 . Readjust the modulated oscillator slightly for maximum signal and then adjust the high frequency band oscillator series trimmer for best signal, making whatever slight readjustments in the

Tuning Receiver In
 High Frequency Band . . .

reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adujstment of the receiver to the center of the carrier after a high frequency station is located and received.

INSTRUCTIONS FOR ORDERING-Give part number, description of part, and serial number of receiver on which part is to be used. If article wanted is not listed separately, then that part of complete assembly containing this article should be ordered. Goods shipped on open account to Ciosley Wholesale Distributors only. Cash must accompany Dealer and Consumer orders. Prices are subject to the usual trade discounts, and are subject to change without notice.

PARTS LIST-MODEL 7H2

Part No
G1-32002 G3-32000 G1-32001 G1-32001 G2-32001 G2-32002 G1-32002 G1-32004 G1-32004 G2-32004 W31386 W25200 W25025A G1-24064

W26891
W21541B
W30026
G1-33008
G1-33008
G2-33009
G7-33006
G6-33006 G1-33005
G13-33002
G1-32086
G4-27134
W32128A
W32244.
B32147A
W32062
W32063 G16-26719
G5-30745
G36-2066
G36-25669
G24-27975
G56-27975
G46-27975
G43-27975
G6-27975
W21981

* Figures in 2nd last column refer to parts shown in wiring diagram of Model \boldsymbol{y} (H2

PAGE 5-38 CROSLEY
MODEL 72,72 LB (7H2)
Schematic, Trimmers
Socket Layout

CHASSIS 7H3

General Description...

Chassis 7H3 is used in the Models 72 and 72 Lowboy. It is a 7 -tube, short-wave and broadcast chassis, employing the latest superheterodyne circuit in which has been incorporated a high efficiency tuned radio frequency stage for both short wave and broadcast. The major difference bewteen chassis 7 H 3 and its predecessor, chassis 7 H 2 , lies in the addition of a broad A.V.C. Circuit to chassis 7 H 3 and the further use of A.V.C. on the first audio amplifier. The frequency ranges covered are

535 to 1735 Kc ., which is the regular broadcast band and the lower frequency police band, and 5700 to $15,500 \mathrm{Kc}$., which is the short wave or high frequency band. The intermediate frequency is 456 Kc . Two stages of I.F. are used to assure adequate selectivity. A special frictiontype $80-1$ drive is used to make tuning as smooth and easy as possible. Instead of the customary tuning knob, a special fishing reel type of crank is provided so that the tuning can be spun quickly from one end of the dial to the other. With the
high ratio drive employed, this would be quite laborious if a conventional knob were used for tuning.

Tubes Used and
 Their Function...

The tubes used are-type 6D6 R.F. amplifier, type 6A7 oscillator modulator, type 6B7 first I.F. amplifier and AVC Diode, type 6D6 second I.F. amplifier, type 6F7 A.F. Diode and AVC A.F. amplifier, type 42 output, and type 80 rectifier. The tube voltages are shown in the table below:

Type	Where Used
6D6	R.F.
6A7	Osc.-Mod.
6B7	1st I.F. \& A.V.C. Diode
6D6	2nd I.F.
6F7	Diode \& I.F.
42	Output
80	Rectifier

Ef	Ep	Eg	Ek	Esg	Ep-Osc
6.5	225	-	0	100	-
6.5	225	-	$(10 \mathrm{LF})$	100	150
6.5	225	0.3	$(0 \mathrm{HF})$	0	100
6.5	225	-	2.0	100	-
6.5	30	.5	0	22	-
6.5	215	2.0	0	225	-
4.9	-	225	-	-	
105 volts across speaker field.					

All DC voltages are plus or minus 10%. All DC voltages are measured to chassis at 117.5 volt line, with 1000 ohms per volt, 500 volt voltmeter. Power demand is 75 watts at 110 volts 60 cycles.

Method of Biasing . . .

Referring to the circuit diagram it will be seen that the 6D6 R.F. amplifier obtains its bias from the voltage drop across resistor 55. Resistors 55,56 and 57 form a voltage divider network connected in shunt with the speaker field, which field is in the negative leg of the power supply system. The most positive point of the network is where resistor 55 is connected to chassis, and the most negative point on the network is where resistor 57 connects to the center tap on the power transformer secondary. The grid return of the 6D6 R.F. amplifier follows through isolating resistor part No. 27, and thence through a second group of resistors, parts Nos. 75, 78, 80, down to the junction point between resistors 55 and 56. The 6A7 input section obtains its bias through isolating resistor No. 7 and then through resistor 80 to the same point, namely the junction between resistors 55 and
56. The oscillator section of the 6A7 obtains its bias from the usual grid leak and condenser arrangement in which part No. 20 is the grid leak for the low frequency band and part No. 23 for the high frequency band. Bias for the 6B7 first amplifier, is obtained from the drop across resistor 55, while the bias for the 6D6 second I.F. amplifier is obtained at the same point but through resistors 75,78 and 80 . The 6 F7 pentode section, which is used as an audio amplifier, obtains its fixed bias from resistor 55, but there is also a varying bias, depending on the signal strength applied due to the diode voltage drop across the level control, part No. 39. In this case, resistors 65 and 41 form a voltage divider network so that the diode voltage developed is split up in their ratio. The type 42 output tube obtains its bias from the combined drop across resistors 55° and 56 in series, this circuit being completed through grid resistor No. 48.

Automatic Volume
 Control Circuit . . .

Automatic Volume Control voltage is generated in the diode of the 6B7 first I.F. amplifier. This diode is fed
from the second I.F. transformer and the A.V.C. voltage is developed across resistors 78 and 80, after the signal voltage has become sufficiently large to overcome the initial bias across resistor 55. Automatic volume control voltage is fed both forward and back in the circuit of this 7 H 3 receiver. The full voltage is fed to the 6D6 R.F. amplifier through isolating resistor 75 and 27 , while that part of the voltage developed across resistor 80 only is fed through isolating resistor No. 7 to the 6A7 input grid. The 6B7 pentode section does not have any AVC exerted on it because if this were done some distortion might result. The 6D6 second I.F. amplifier has the full voltage exerted on it through isolating resistor 75 . It will be noted that in this stage the AVC voltage is sent forward instead of back through the circuit. The first audio amplifier, type 6F7 also has AVC exerted on it. In this case, the grid and plate of the 6F7 triode section are used as a diode and diode voltage is developed across resistors 38 and 39 in series. Resistors 65 and 41 form a voltage divider network so that a portion of this diode voltage is fed onto the input grid of the 6F7 pentode section.

CROSLEY RADIO CORP.

Analysis of Signal Channel . . .

The signal enters at the terminals A1, A2 and G. These three terminals are provided to permit the use of a doublet antenna with transposed lead-ins and no ground connection, if desired. With such an antenna the two lead-in wires are connected to A1 and A2, and the wire strapped between A2 and G is open-circuited. If it is desired to operate the receiver with simply a conventional antèna and ground, connect A2 and G together and to the ground wire. The conventional antenna is connected to the Al terminal.
The signal flows either to the short wave antenna coil primary or to the broadcast antenna coil primary, parts No. 2 and No. 3 respectively. It is to be noted that a resistor, part No. 77, is connected across the broadcast antenna coil primary for the purpose of securing better alignment. The secondary of the antenna coil is tuned with a section of the gang condenser, part No. 14 , and the signal is then impressed on the grid of the type 6D6 R. F. amplifier. The amplified output of the tube follows through the switch and into the primary of broadcast or high frequency interstage coil. The output of the secondary of the interstage coil is tuned with another section of the gang condenser, part No. 14, and fed to the control grid of the type 6A7 modulator oscillator tube. The oscillator section of this tube is automatically connected at the same time the switch is thrown so that the frequency of the oscillator is controlled by the third section of the gang condenser, part No. 14, so as to give a constant intermediate frequency of 456 Kc . in the plate circuit of the type 6A7 modulator oscillator. This intermediate frequency is now fed into the primary of the first I. F. transformer, part No. 29, and thence to the secondary of the same transformer. This transformer is tuned in both primary and secondary circuits to obtain maximum selectivity. The output of transformer No. 29 is fed to the type 6B7 first I. F. amplifier and the output of this tube then goes to the second I. F. transformer, part No. 33, which I. F. transformer is also double tuned. The signal then follows to the grid of the type 6D6 second I. F. amplifier whose output is in turn fed to the primary of a double tuned diode type I. F. transformer, part No. 35. The tuned secondary circuit of the diode transformer feeds the triode grid and plate of the type 6F7 connected in
parallel. The diode resistor is a combination of part No. 38 and volume control No. 39 connected in series, but only that portion of the diode veltage developed across part No. 39 is used. The reason for this connection is that smoother action is obtained without regeneration. Both audio frequency and direct current are present across resistor No. 39. Condenser, part No. 40, is used to couple the audio frequency over to the pentode grid of the type 6F7 audio frequency amplifier. Resistor No. 41 completes the grid circuit of this tube. The amplified audio frequency in the plate circuit of the 6F7 is fed through coupling condenser, part No. 47 into the grid of the type 42 output tube, which grid circuit is completed with resistor No. 48. The plate circuit of the output tube is connected to the speaker transformer in the customary manner. Condenser No. 50 is used to match the impedance of the output tube and speaker more closely at higher audio frequencies, while condenser No. 51 and variable resistor No. 52 form the tone control.

Power Supply System .. .

The power supply system consists of a transformer, part No. 63, for 110 -volt 60 -cycle, part No. 64 for other uses, a rectifier tube type 80, the speaker field as a filter choke, wet electrolytic condenser, part No. 60, and dry electrolytic condenser, part No. 8. In this particular circuit the filter choke is included in the negative leg of the power supply system, because in so doing it is possible to use the drop across the filter choke for biasing, and eliminate the use of a large bypass condenser in the cathode of the output tube, type 42. At the same time better audio quality for the lower notes is obtained than with the ordinary bypass condenser circuit. The Universal transformer, part No. 64, is a special transformer originally developed for export use, but because of its enthusiastic reception it has been incorporated in this chassis. The primary of the transformer is equipped with four voltage taps clearly marked so that the set can be made to operate from 90 to 265 volts in four steps. The transformer operates on any frequency from 25 to 100 cycles.

Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator
should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the low frequency or broadcast band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the 6A7 tube through an .02 Mfd. series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. The first and second I. F. transformer tuning condensers are located on the left-hand side of the chassis, while the diode transformer tuning condensers are located on the top of the tall I. F. transformer as indi, cated in the diagram attached. To make these adjustments, it is necessary that a standard $1 / 4^{\prime \prime}$ (across flats) hexagon socket wrench be used for the adjustment nuts and a small screw driver for the slot. The tools are preferably insulated. Always make these I. F. adjustments very carefully and go over the adjustments several times to be sure that the peak has been reached.
To align the receiver at broadcast frequency, it is necessary that an adjustable oscillator having frequencies of 1400 and 600 Kc ., together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc. and connect the high side of the oscillator to the Al receiver antenna terminal through a .0002 (dummy antenna) condenser. Be sure that there is a connection between A2 and G. Turn the tuning control of the receiver to 140 on the dial. Now adjust the oscillator broadcast shunt trimmer, indicated on the diagram as "oscillator trimmer condenser L. F. band" and located under the chassis, until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers, also located under the chassis and indicated in the diagram attached for maximum signal. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trimmer for the low frequency band located

CROSLEY PAGE 5-41
MODEI 72,72 LE (7H3) Schenatic, Trimmers Socket Layout
CROSLEY RADIO CORP.

| | MODEI 72,72 LB (7H3) |
| :--- | :--- | :--- |
| CROSLEY RADIO CORP. | Schematic, Trimmers
 Socket Layout |

CROSLEY RADIO CORP.

under the chassis as shown in the dial to 15 . Adjust the oscillator diagram for maximum signal. It is trimmer condenser under the chassis sometimes advisable to move the to maximum signal. Now adjust the main dial back and forth slightly antenna and interstage trimmers for about 60 on the dial during the maximum signal, making sure to go course of this adjustment if a still over the adjustment several times greater signal is obtainable.

To align the set in the high fre- be made. Now set the modulated quency or short wave band, it is oscillator to approximately 6000 Kc . necessary that a modulated oscillator and the receiver to 6 . Readjust the be available for frequencies of 6000 modulated oscillator slightly for and 15000 Kc . The procedure for maximum signal and then adjust the this band is similar to the broadcast band, except that a 750 ohm midget carbon resistor is used for the dummy antenna instead of the . 0002 condenser. Set the modulated oscil- tuning control are necessary to bring lator to 15000 Kc . and the receiver in maximum signal.
high frequency band oscillator series trimmers for best signal, making whatever slight readjustments in the

Tuning Receiver In High Frequency Band . . .

Due to the tremendously greater number of transmitter channels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is located and receiver.

PARTS LIST-MODEL 7H3

* Figures in 2nd last column refer to parts shown in wiring diagram of Model 7 fH 3									
ty.	Part No.	Description	Item	List Each	Qty.	Part No.	Description	Item	List Ea
11	G1-32002	Antenna Coil (H. F.) 50	1	W32063	Tone Control \& Line Switch	52-53	1.20
1	G3-32000	Antenna Coil (L. F.)	3	. 45	1	B21491A	Cord \& Plug	66	. 50
1	G1-32001	R. F. Coil (H. F.)	11	. 65					
1	G2-32001	R. F. Coil (L. F.)	12	. 50			FILTER \& BY-PASS		
1	G2-32002	Osc. Coil (L. F.)	16	. 40			CONDENSERS		
1	G1-32002	Osc. Coil (H. F.)	$\stackrel{17}{29}$. 50	1	W29097C	8.-8.-8. Mfd. 450 V.-450 V.-	8-9	
1	G1-32004	2nd I. F. Trans.	33	. 50		W2007C	8.-8.80 V.	10	2.85
1	G6-32004	3rd I. F. Trans. (Diode) \&			1	W26194B	12. Mfd. 475 V.	60	1.25
		Trimmer Condensers	35-36	1.90	1	W30321	1. Mfd. 160 V.	49	. 55
1	W31386	Coil Shield Bracket 05	1	W32379	0.02 Mtd. 200 V	$1{ }^{1}$. 15
${ }_{3}^{6}$	W 205200	Coil Sockets 05	1	W 32380	0.05 Mfd. 200 V.	18	. 20
3	W30802	Coil Shield 15	1	W25435	0.003 Mfd. 400 V.	24	. 15
$\stackrel{2}{1}$	W2502อิA	Coil Shield ..		. 10	2	W27216	0.05 Mfd. 200 V.	30-47	.15
$\stackrel{1}{2}$	Wอ5024A	Coil Shield 10	1	W31937	0.0001 Mfd.	31	. 15
$\stackrel{1}{5}$	G1-24064	Coil Shield W........................	29-33	. 15	1	W27932	0.0001 Mfd. 200 V V.	37	. 15
3	W21541B	Retaining Ring ;	3-12-16	. 05	2	W24049	0.1 Mfd. 200 V.	42-44	.15
3	W30026	Retaining Ring -..................	11-2-17	. 05	1	W31052	0.004-0.05 Mfd. $400 \mathrm{~V} .-400 \mathrm{~V}$.	50-51	. 30
1	G1-33008	Ant. Trimmer Condenser	4	. 35	1	W30805	0.01 Mfd. 400 V.	62	. 20
1	G1-33008	R. F. Trimmer Condenser	13	. 35	1	W32304	0.0014 Mfd.	74	. 30
1	G14-33009	Osc. Trimmer Condenser	15	. 30					
	G12-33006	L. F. \& H. F. Osc. Trimmer Cond. (Series)	21-22	1.00			RESI		
	G6-33006	1st I. F. Trimmer Cond.	28	. 90	3	26577	3 Megohm	7-41-75	. 15
1	G6-33006	2nd I. F. Trimmer Cond.	32	. 90	1	W27503	1400 Ohm	19	. 10
1	G18-33002	Variable Tuning Condenser			1	21237 A	60000 Ohm	20	. 15
		Gang	14	4.00	1	21453	40000 Ohm	23	. 15
	G1-32086	Dial Drive Assm.	61	2.75 .20	1	$\stackrel{21455}{ }$		${ }_{27}^{25-26}$. 15
$\stackrel{2}{2}$	W 32128A	Light Diftuser 10	1	W25937	2750 Omm	34	. 15
\bigcirc	W32244	Light Diffuser Retainer 05	1	23403		38	. 15
2	G75-27975	6D6 Socket (R. F. \& 2nd I. F.)	67-70	. 10	3	21454	1 Megohm	$\begin{gathered} 43-57 \\ 78 \end{gathered}$	15
	G47-27975	647 Socket (Osc.)	68	. 10	2	23785	500000 Ohm	45-48	. 15
1	G48-27975	6B7 Socket (I. F. \& Diode)	69	. 10	1	21875	100000 Ohms	46	. 15
1	G49-27975	6 F7 Socket (Diode \& 1st			1	33390	30000 Ohms	55	. 15
		A. F.	71	. 10	1	23403	150000 Ohms	56	. 15
	G20-27975	42 Socket (Output)	72	. 10	1	W31361	7000-11000 Ohms	58-59	. 40
$\frac{1}{2}$	G6-27975	80 Socket (Rectifier)	73	. 10	1	26578	5 Megohm	65	. 15
5 3 3	W27981	Tube Shield Base ${ }^{\text {Tube }}$ Shield (6i........		. 10	1	31094 $\times 31007 \mathrm{~A}$		77	.15
?	B28009	Tube Shield (6A7-6B7-6F7)		:10		W31007A	Speaker Cord	76	. 25
1	G9-30745	Power Transformer 60 cy .			1	W32127A	Dial Glass		. 10
		${ }^{110} \mathrm{~V} . ~$	63	4.25	1	W32126A	Dial Glass Retainer 05
	G39-25669	Power Transformer $2 \overline{\mathrm{o}} \mathrm{cy}$.			1	B32125B	Escutcheon		1.00
		7 110-220 V.	64	9.00	3	W32352	Knob 10
1	$\underset{\text { G16-26719 }}{\text { B3214 }}$	7 P. D. T. Switch		1.35	1	G1-32067	Crank Assm. 10
	W32062	Level Control (Volume) 1			1	$\bigcirc{ }^{\text {b } 238808}$	Tube \& Cond. Shield 10
		Megohm	39		1	C32149	Bottom 25

TECHNICAL DATA PERTAINING TO CHASSIS 8Hl

General Description ...

Chassis $\mathbf{8 H l}$ is used in the Model 80-AW and Model 80-AW Lowboy. It is an 8 -tube all-wave receiver, covering the band of $540-24000 \mathrm{Kc}$., in four steps. Other features are an 80 to l ratio drive mechanism with special fishing reel type of control, airplane type dial, push-pull pentode output, doublet antenna terminals,
and tone control. Two stages of double-tuned I. F. amplification, making a total of six tuned I. F. circuits are used to insure adequate selectivity. A tuned radio frequency stage is used in all frequency bands. The automatic volume control is of the broad type to obtain smoothest possible operation.

Ef	Ep	Eg	Ek SW-BC	Esg	Epx	Egx
6.3	250	0	3	100	-	-
6.3	250	0	3	100	220	0 to -10
6.3	250	0	$7-21$	100	-	-
6.3	250	0	3	100	-	-
6.3	140	0	4	35	70	0
6.3	240	0	16	250	-	-
5.0	-	-	350	-	-	-

Tubes Used and Their Function ...

The tubes used are type 6D6 R. F. amplifier, type 6A7 oscillator modulator, type 6D6 first I. F. amplifier, type 6B7, second I. F. amplifier, AVC diode and AF diode, type 6F7 first AF pentode amplifier, and triode phase inverter, two type 42 pushpull output and type 80 rectifier. The normal tube voltages are as indicated in the table below:

All voltages are plus or minus 10%. All DC voltages are measured with 117.5 volts AC line and with a 500 -volt 1000 -ohms-per-volt DC voltmeter. Power demand is 100 watts.

Method of Biasing . . .

The type 6D6 R. F. amplifier obtains its normal bias from the cathode resistor, part No. 39. The bias for the input section of the 6A? oscillator modulator is obtained from the cathode resistor, part No. 40. The oscillator bias is obtained from the grid leak and condenser combination in which part No. 29 is the grid leak and part 50 the grid condenser. The type 6D6 first I. F. amplifier obtains its bias from the cathode resistor, part No. 41, for all bands except No. 4, the broadcast band. When the switch is thrown to the band No. 4 position, auxiliary resistor, part No. 95, is inserted in series with part No. 41. It is the purpose of this auxilary resistor to reduce the gain of the receiver at broadcast frequencies, because if full sensitivity were used the receiver would be entirely too sensitive in the broadcast band. The bias for the 6B7 second I. F. amplifier input section, is obtained from the cathode resistor, part No. 42, which resistor also furnishes the delay voltage for the AVC system. The variable mu
pentode AF amplifier and phase inverter, type 6F7, obtains its bias from resistor No. 36, while the output tubes obtain their bias from the resistor No. 43.

Automatic Volume Control Circuit. .

The automatic volume control diode in the 6B7 is fed from the plate of this tube through coupling condenser, part No. 51. Diode voltage is developed across resistors 32 and 33 after the signal has become sufficiently strong to overcome the initial bias generated in resistor 42. The voltage across resistor 32 is that part which is used for AVC purposes. Following the circuit diagram, it will be seen that the AVC voltage flows through isolating resistor No. 27 to the grid return of the high frequency interstage coil, part No. 8, and then to the input grid of the 6A7 oscillator modulator. In the other three bands, the AVC voltage is fed through the additional isolating resistor, part No. 26, to the grid return and then to the input grid of the 6A7. AVC voltage is also fed from resistor 27 through isolating resistor 24 to the grid return of the highest frequency antenna coil, part No. 4, and then to the grid of the 6D6 R. F. amplifier. For the other bands the AVC voltage is fed
through additional resistor 25 to the grid returns. At this point AVC voltage is also fed to the grid return of the 6D6 first I. F. amplifier. This receiver also has AVC on the audio system, but this AVC voltage is obtained from the audio diode, which diode is also in the 6B7 tube. In this case, the diode is fed from the secondary of the last I. F. transformer, part No. 20, and diode voltage is developed across resistors 28, 46 and 34 in series. That portion across resistors 34 and 46 is fed to the input grid of the pentode section of the 6 F 7 tube. This voltage will vary in magnitude, depending on the setting of the level control, part No. 46, but there is always a residual amount which is that voltage developed across resistor 34.

Analysis of Signal

Channel...

The signal enters at the terminals A1, A2 and G. These three terminals are provided so that it is possible to use either a doublet or a conventional type of antenna with the receiver. When a doublet antenna is used, connect the two lead-in wires to A1 and A2 respectively, and a ground may or may not be connected to the G terminal, as desired. With this connection it is important that the strap between A2 and G termin-
als be removed. In using a conventional type of antenna be sure that the strap is connected between terminals A2 and G. Connect the ground wire to either the A2 or G terminal and the antenna wire to the Al terminal.
The path of the signal then depends on the position of switch No. 14. It will be seen that the signal may be made to enter antenna coil primaries, part Nos. 1, 2, 3 and 4, for bands Nos. 4, 3, 2 and 1, respectively. The shunting resistor, part No. 23, across the broadcast antenna coil primary is for the purpose of producing better alignment. Each secondary is provided with a trimmer condenser, and the output of the secondary goes through the section of the switch indicated in the wiring diagram just above the gang condenser, part No. 13. The remaining coils not in use are short circuited by another section of the switch. It will also be seen that still another section of the switch is used to insert an additional bias resistor, part No. 95, in series, with part No. 41, so that the receiver operates with higher bias on the I. F. amplifier, type 6D6, when the switch is thrown to the broadcast band No. 4. After tuning with a section of the gang condenser, part No. 13, the signal is impressed on the grid of the 6D6 R. F. amplifier and the amplified output of this tube then gnes through another section of switch 14 to the primaries of the interstage coils designated as parts 5, 6, 7 and 8. Separate trimmer condensers are there provided for each of the secondaries and the signal flows through switch 14 to the grid of the 6A7 oscillator modulator tube after tuning with a section of the gang condenser, part No. 13. An additional section of the band change switch is used to short-aincuit the coils not in use. The oscillator coils are designated as parts $9,10,11$ and 12 respectively, they being provided with separate shunt trimmers for all bands and separate series trimmers for tracking in all bands except the highest frequency band No. 1, in which case the series condenser is fixed. Both the primary and secondary of the oscillator coils are switched with separate sections of the band change switch, and the unused secondaries are short-circuited with another section. In the 6A7 oscillator modulator the signal is converted into the I. F. frequency of 456 Kc ., and then fed to the primary of the first I. F. transformer, part No. 18. Here it is double-tuned and fed to the grid of the first I. F. amplifier, type 6D6. The output of this
tube goes to the second double-tuned I. F. transformer, No. 19, and then to the grid of the second I. F. amplifier, type 6B7. The output transformer for this tube, part No. 20, is double tuned. The voltage developed across the primary of this transformer is fed to one of the diodes through coupling condenser part No. 51 for AVC purposes. In this way the AVC channel is not quite as sharp as the signal channel and a very desirable stabilizing effect is produced. The tuned secondary output is fed to the other diode in the 6B7 tube and diode voltage is developed across the series combination of resistors 28,46 and 34 , of which part No. 46 is the level control. Since resistor 34 is bypassed there is no audio or intermediate frequency present across this resistor, it being used only for the purpose of furnishing a residual bias to the AF amplifier section of the 6F7 tube. To insure stability, that portion of the voltage across resistor 28 is not used. The audio voltage across part No. 46, however, is fed directly to the grid of the 6F7 pentode section. The audio frequency voltage is amplified and the amplified output of the 6F7 pentode section is present across resistor 35. It is fed through coupling condenser 64 to the grid of one of the type 42 output tubes. The grid circuit of this tube is completed through resistors 38 and 31 in series but that portion of the audio frequency voltage present across resistor 31 only is fed to the triode section of the 6F7. The output of this triode section is present across resistor 37. The characteristics of the tube and circuit constant are so adjusted that the voltage across resistor 35 and the voltage across resistor 37 are equal to each other but 180 degrees out of phase, so that when the output of the triode section is fed to the grid of the second push-pull output type 42 amplifier, which grid circuit is completed through resistor 38 , the output stage functions as a normal push-pull amplifier. The power output of the type 42 tubes is fed to the speaker transformer in the speaker assembly, part No. 77, in the conventional manner. Condenser 66 across the plates of the two output tubes serves to keep the impedance more constant at all frequencies, while the combination of rheostat 47 and condensers 65 and 92 make up the tone control.

Power Supply System . . .

80 , for 110 -volt 60 -cycle, and part
The power supply system is made up of a power transformer, part No.

No. 81 for other voltages and frequencies, a type 80 rectifier tube, first filter condenser part No. 67, filter choke part No. 79, second filter condenser part No. 68, second filter choke made up of the speaker field in assembly 77 and the third filter condenser part No. 69. This power supply system is conventional and requires no further explanation.

Alignment Procedure . . .

To align the I. F. amplifier it is necessary that there be available a suitable modulated oscillator capable of adjustment to 456 Kc . with good accuracy. This oscillator should have an attenuator so that the strength of the oscillator output can be regulated. Be sure that the band change switch is thrown to the high frequency or No. 1 band position. Connect the high side of the output of the modulated oscillator, which has been adjusted to 456 Kc . to the control grid connection on the top of the $6 A 7$ tube through an .02 Mfd . series condenser. The low side of the oscillator is to be connected to the receiver chassis. Set the output of the oscillator to a convenient level and adjust the I. F. transformer condensers for maximum signal output. These I. F. transformer condensers are accessible on the top of the three tall I. F. transformer cans. To make these adjustments it is necessary that a standard $5 / 16^{\prime \prime}$ (across flats) hexagon socket wrench be used for the upper condensers, and a small screwdriver fitting inside of the nut hole for the adjustment of the lower condenser. Always make these I. F. adjustments very carefully and go over them several times to be sure that the peak has been reached.
To align the receiver at broadcast frequencies, it is necessary that an adjustable oscillator having the frequencies of 1400 and 600 Kc . together with a suitable attenuator and dummy antenna be available. Set the oscillator at 1400 Kc . and connect the high side of the oscillator to the receiver antenna terminal through a .0002 (dummy antenna) condenser. Turn the tuning control of the receiver to 140 on the dial and throw the band change switch to range No. 4. Now adjust the oscillator broadcast shunt trimmer on the end of the coil assembly in the topmost front position as indicated on the diagram until the signal is heard best. Without changing the gang condenser setting, adjust the antenna and radio frequency broadcast trimmers in this same top row for maximum signal. Sometimes it is advisable to readjust the dial slightly because the oscilla-

CROSLEY RADIO CORP.
tor is somewhat affected by the R. F. adjustment. It is necessary that these adjustments be gone over several times until no further improvement can be made. Always work with the weakest possible signal from the modulated oscillator for best accuracy. Now rotate the dial until it reads 60 and set the modulated oscillator to approximately 600 Kc . Adjust the modulated oscillator carefully until maximum response is heard. Now adjust the oscillator series trimmer condenser for the broadcast band, located in the third hole from the front on the chassis end flange, indicated in the diagram, until maximum response is heard. It is sometimes advisable to move the main dial back and forth slightly about 60 on the dial during the course of this adjustment if a still greater signal is obtainable.

The same procedure is used for the remaining three bands except that the dummy antenna condenser is replaced by a 750 -ohm midget carbon resistor. The shunt padding condensers for band No. 3 are located in the middle row on the end of the coil assembly, while the series padding condenser for band No. 3 is the second from the front on the receiver end flange. To align the receiver in band No. 3 it is necessary that a modulated oscillator and suitable attenuator be available, with frequencies of 1700 and 4000 Kc . Set the dial at 4 and the modulated oscillator to 4000 Kc . Adjust the os: cillator shunt trimmer, which is the front condenser on the coil shield assembly in the middle row for max-
imum signal. Then adjust the remaining two condensers in the middle row for maximum signal, making what slight adjustments may be necessary if the oscillator is slightly detuned by the R. F. adjustment. Then set the modulated oscillator to approximately 1700 Kc ., and the receiver dial to 1.7. Adjust the modulated oscillator slightly until the signal is heard best and then adjust the oscillator series trimmer located on the receiver end flange (the second from the front) for maximum signal. Make whatever slight readjustments are necessary in the dial to bring this signal in best.

To align the receiver in band No. 2 , the bottom row of trimmer condensers on the coil shield assembly are used. An oscillator cảpable of adjustment to 4500 and $10,000 \mathrm{Kc}$. is necessary. Set the oscillator at approximately 10,000 and the receiver dial to 10. Adjust the oscillator shunt trimmer condenser, which is the front condenser in the lower row, for maximum signal. Then adjust the remaining two condensers in the lower row, making whatever slight readjustment of the dial is necessary to bring the signal in best. Set the dial of the receiver to 4.5 and the modulated oscillator to 4500 Kc . Now adjust the oscillator series trimmer condenser for this band, which is the frontmost one on the receiver on the chassis end flange, for maximum signal, making whatever slight dial readjustments are necessary.
The aligning condensers for band No. 1 are lacated directly under and
to the right of the gang condenser. To align the receiver in this band, it is necessary that a modulated oscillator and attenuator for a frequency of $22,000 \mathrm{Kc}$. be available. Set the modulated oscillator to 22,000 Kc. and the receiver dial to 22 . Adjust the oscillator shunt trimmer, which is the frontmost of the three trimmer condensers available from the top of the chassis, for maximum signal. Now adjust the remaining two trimmer condensers also available from the top of the chassis, and make whatever slight dial adjustments are necessary to bring the signal in best. There is no series trimmer condenser for this band but the alignment may be checked by setting the modulated oscillator to approximately $11,000 \mathrm{Kc}$. and tuning it in on the receiver dial. It should come in at about 11 on the dial.

Tuning Receiver In High Frequency Band...

Due to the tremendously greater number of transmitter channels covered in the high frequency band, the receiver is endowed with a much greater apparent selectivity. For this reason, if the receiver is tuned carelessly, many high frequency stations will be missed or passed over without hearing them. It is very necessary that the receiver be tuned slowly and that extreme care be exercised in final adjustment of the receiver to the center of the carrier after a high frequency station is located and received.

PAGE 5-46 CROSLEY
MODEI 80AN, 80AW IB
Sohematic (8HI)
Socket Layout
Parts List

*Figures in 2nd last column refer to parts shown in wiring diagram of Model 8 HL

Pert No

Qty. 1

Part No.
W26194B
W29017C
W32258
W30321
W30321
W30741
$W 3229$
W 32379
W 28621
W23035 W23191A
W231915
W31052
W32332A
W302.70

21435
23785
21875
21237 A
21237
$\begin{array}{r}21278 \\ \mathbf{2 1 8 7} \\ \hline 20127\end{array}$
W30127
W25937
W 22.51
W39301
W 328387

RESISTORS

4500 Ohms 300000 Ohms \qquad \qquad	23.15
	24-25
	26-27. 15
500000 Ohms	28-38
	93 . 15
100000 Ohms	29.15
7000 Ohms	30-91. 20
60000 Ohms	31-35 . 15
3 Megohms	32-33 . 15
10000 Ohms	34.15
450 Ohms (Flexible)	36-42 . 15
150000 Ohms	37 . 15
275 Ohms (Flex.)	39-40. 15
750 Ohms (Flex.)	41-96 . 15
920 Ohms	43 . 15
10000-15000 Ohms	44-45 . 45
10-10 Ohms	60.25
15000 Ohms	95.15

DETROLA PAGE 5-1

PAGE 5-2 DETROLA

MODEL "Roadmaster"
Sohematic.
DETROLA RADIO CORP.

DETROLA PAGE 5-3 MODEL 5 Tube Super Midget
DETROLA RADIO CORP. Schematic MODEL "Roadchief" Schematic

S chematic, Voltage Alignreent

DETROLA RADIO CORP.

SCHEMATIC DIAGRAM OF MODEL 503 RADIO

PROCEDURE FOR ALIGNMENT: Apply a modulated 456-kc. signal to modulator grid and align the four dual trimmers in the top of the I-F. cans for maximum output from the set.

Apply a 600 kc . signal at the antenna and track the oscillator by varying padding condenser until maximum res-
ponse is obtained, by rotating the dial. Disregard calibration when
making this adjustment.
At all steps in the above procedure
the output should be kept only as
high as is necessary for good align-

DETROLA PAGE 5-5
DETROLA RADIO CORP.

PAGE 5-6 DETROLA
MODEL 1200
Voltage
DETROLA RADIO CORP.
Alignment

1. Apply a modulated 175 Kilocycle signal to the grid of the modulator (lst detector) tube and align the four dual trimmer adjustments in the top of the IF transformer cans for maximum output from the receiver.
2. With the band switch knob in the 530-1500 Kilocycle or clockwise position, and the tuning dial set to 1400 Kilocycles, apply a 1400 Kilocycle signal at the antenna and adjust the three trimmer screws on the gana condenser for maximum output from the receiver.
3. Apply a 600 Kilocycle signal at the antenna and track the oscillator by varying the nut adjustment on the oscillator padding condenser and returning the dial until maximum response is obtained. This adjustment should be made disregarding calibration.
4. With the band switch in the short wave or counter-clockwise position and the dial set to 3.6 Megacycles, apply a 3600 Kilocycle signal at the antenna and align the three trimmers in the top of the short wave coil cans for maximum response.
5. Apply a 1600 Kilocycle signal at the antenna and track the oscillator as at 600 Kilocycles in the broadcast band by adjusting the slotted screw adjustment on the oscillator padding condenser.

Suitable harmonies of a broadcast oscillator may be used for alignment purposes in the short wave band.

At all steps in the aligning procedure, the output should be kept only as high as is necessary for good alignment but the output should always be lowered by decreasing the input to the receiver, never by reducing the volume control setting. The volume control should be at maximum setting during any adjustments of the RF and IF circuits. A suitable output meter should be connected across the speaker voice coil to indicate the correct adjustment for maximum response.

TABLE OF VOLTAGES
Line Voltage - 115 Volts - 60 Cycles $A C$
Interchannel Noise Suppressor Set for Maximum Sensitivity

Position	Tube	Plate	Screen	Cathode
RF	$6 D 6$	100	60	0
MOD	$6 D 6$	100	60	0
OSC	37	100		0
IF	$6 D 6$	100	100	0
DET	85	20	0	0
PHASE REVERSER	37	20	100	$1-2 V$
OUTPU	43		0	

Above voltage's measured with 0-250 V--1000 ohm per volt DC Voltmeter Drop ACROSS CHOKE - 18 Volts
Drop ACROSS SPEAKER FIELD -
When operated on 115 Volts $D C$ or 25 cycle $A C$ the above voltages will be slightly lower. FILAMENT VOLTAGES

2525	-	25	Volts		AC	or	DC
43	-	25	n	-	AC	"	DC
6D6	-	6.3		-	AC	"	DC
37	-	6.3	-	-	AC	"	DC
85	-	6.3	Volts.		AC		DC

DEWALD RADIO

DEWALD RADIO

DEWALD RADIO

PAGE 5-4 DeWALD
MODEL 58-L,59
Schematic
DEWALD RADIO

DEWALD RADIO

DEWALD RADIO

PAGE 5-12 DeWALD

DEWVALD RADIO

Socket Layout

DEWALD RADIO

PAGE 5-22 DeWALD
MODEL BAH-9, KRE, 501 503-4,553-4-S, 600-A, 601-A, 630, 811-A
Socket Layouts

FRONT

FRONT

FRONT

MODEL K.R.E.

FRONT

FRONT

FRONT

Model 128
To balance set, first remove chassis from cabinet; second, tune condenser to about 1720 kc and align trimmer condenser on detector stage, then do same to antenna stage until loudest noise level is obtained.

This set is designed to oscillate across a major portion of the broadcast band. This regeneration is controllable by reducing the volume of the set. Oscillation in a set of this type increases the sensitivity from ten to twenty times.

405 Escutche on Plate
406 Silvertone Pyralin Plate
407 Dual 3-40 mmf trimmer cond.
408 260-500 Padder condenser
409 Candohm
410 Knob \#XK 3444
451 Variable condenser
455 Power Transformer
OH

ECHO. PAGE 5-3

MODEL 143
Schomatic,Alignment Parts List

ECHOPHONE RADIO MFG. CO.

This set covers from 1720 KC to 540 KC regular broadcast including 1712 KC police and $15-55$ meters 5-17-34' Ar -M

No. 450 451

PARTS LIST

second detector and first audio;
1-2A5 power output and 1-80 rectifier.
To align receiver proceed as fol-
10W8:

1. Peak the two IF transformers, applying a 456 note at the 2A7 grid.
2. Turn variable condenser wide open, peaking oscillator stage at 1712 KC - then peak RF and antenna stage.
3. Adjust low frequency with gang tuned to 600 KC , to maximum peak.
4. Go back and check trimers on gang condenser at 1400 KC .

If radic stops playing turn off immediately - check tubes. ForHum - check for

Open resistor
Bad Filter condenser
Open by pass condenser
Defective tube or tubes.
Poor tone- check for
Bad resis tor
Voice coil in speaker rubbing
Defective by pass condenser
Defective filter condenger

452453454

455
456
Dynamic Speaker
Variable condenser Volume control w/switch Short wave switch Airplane Dial complete
Power Transformer
Set of coils-complete 456a RFE Antenna coil-S.W.
456b RFE Oscillator "
456c RF Antenna BC
457D 456 KC IF units
156884 mfd condenser
30710 mfd 25 v electrolytic
308 Terminal strip - 5 lug
310.0018 Mica condenaer
309.01 mfd 800 y cond. in can

108 Padder condenser 7 plate
158 Power cord \& plug Any tube socket
(state no.of prongs) any resistor
(state ohms \& watts)
Any by pass-not listed above(state capacity)

Weak - check for
Set out of balance
Defective coils
Bad resistor
Bad condenser

EDISON-BELL CO., INC.

ERLA PAGE 5-1 MODEI 603 Schematic

PAGE 5-2 ERLA
MODEL 603 Voltage, Alignment
Parts $L_{\text {ist }}$

ELECTRICAL RESEARCH LABS.

ALIGMART PROCEDURP: FOr properly aligning either the intermediate transformer or the variable condenser it ib neceasary that an accurately calibrated oacillator be used with some type of output measuring device.
INTERMEDIATE ALI GNMENT:

1. Connect the high side of the oscillator output to the control grid of the 6A7 tube leaving the control grid cap disconnected. connect the ground side of the oscillator to the receiver chassis.
2. Set the oscillator frequency at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning one of the trimmer acrews up and down until maximum reading is obtained on the output meter, and then adjust the other trimmer screw of the intermediate transformer for maximum sensitivity.
a. Adjust the second intermediate transformer in the same manner.

HOTE: Two types of intermediate transformer trimmers have been used in this model receivcr. one type has two parallel holes in the top of the shield, one for each trimmer. The other type has a brass hex nut for adjusting one intermediate trimmer, the other intermediate trimmer being.adjusted with the trimmer acrew 10cated inside of the brass hex nut. Regardless of which type trimner is used the procedure is the same.
TO ALIGN THE VARIABLS CONDRNSER: It is not necessary to remove the receiver chassis from the set housing to align the gang condenser. Regaraless of whether or not the receiver is or is not mounted in the set housing the alignment procedure is the same. Three holes are provided in the left hand side of the set housing for the gang condenser trimers and one in the front of the set housing for the 600 kilocycle padding condenser.

1. Properly connect the remote control head and shafts and adjust the dial needle on the dial face so that the dial calibration is correct.
2. Connect the high outnut side of the oscillator to the antenna and the ground to the receiver chassis.'
3. Tune the receiver to exactly 1400 kilocyclea on the dial and adjust the oscillator to this frequency. BRING IN THF 1400 KILOCYCLE SIGIAL TO MAXIMOM OJT PUT BY ADJUSTING THE OSCILLATOR GANG CONDENSER TRIMNER. Looking at the side of the receiver and resding from top to bottom the trimmer condensers are the antenna, R. F. and oscillator sections. Next, adjust the R. F. and antenna sections of the gane condenser for maximum sensitivity
4. Tune the receiver to approximately 600 kilocycles on the dial and set the opcillator to this frequency. Then adjust the 600 kilocycle padding condenser, which is located on and accessible through the hole in the front of the chassis for maximum output. Always rock the condenser alightly to the right and left when making this adjustment using the nosition of greatest output.

\#\# A. C. each plate
Totai "An current - 6.0 amperes
Read all voltages from socket to chassis

PART		LIST PRICE	PART NUASBFR		LIST PRICE
1226	Antenna Coil	\$1.77	9453	6A7 Tube Socket	\$.13
9496	Detector Coil	. 99	1255	Set Housing Back	. 25
1230	Oscillator	1.01	1284	Set Housing Cover	. 55
9498	lst I. F. Transformer	1.49	1223	Set Housing	3.52
1227	2nd I. F. Transformer	2.03	9581	10 Aupere Fuse	. 06
1236	Dynamic Speaker	7.00	1159	"A" Battery complete with	. 90
1158	Antenna Lead	. 34		Fuse and recoptacle	
1244	Set Cable	. 60	9063	Tube Shield Retainer Rase	. 05
9098	50,000 0hm 1/2 Watt Resistor	. 19	1361	Tube Shield	. 11
6943	25,000 0hm 1 Watt Resistor	. 21	1253	R. F. "A" choke	. 28
6984	500,000 0hm 1/3 Watt Resistor	.19	1229	Volume Control with Switch	1.22
8000	100,000 0hm 1/3 Watt Resistor	. 19	109	"B' Eliminator	15.00
9460	3,000 Ohm 1/3 Watt Resistor	. 19	1246	Vibrator Pubber Case	. 40
9544	500 Ohm 1 Watt Resistor	. 21	1245	Vibrator	5.50
6875	250 Ohm 1/3 Watt Resistor	. 19	9534	Power Transformer	2.75
8906	250,000 Ohm 1/3 Watt Resistor	. 19	9542	Pilter Choke	. 85
8907	25,000 0hm 1/3 Watt Resistor	. 19	9539	R. F. "A" Choke	. 40
1336	20,000 Ohm 1/2 Watt Resistor	. 19	1144	R. F. "B" choke	. 32
1232	Padding Condenser	. 55	1247	2x 8 Mfd. Condenser Block	2.75
1218	Three Gang Condenser	4.10	9531	.5 mfd. Bypass Condenser	. 58
9500	Bypass Condenser (1-.1, 1-.25,	1.29	9546	.01 ufd .600 volt condenser .005 Mfd .1000 volt Condenser	. 18
7860	. $01.14 \mathrm{d}$.400 volt Condenser	. 17	9559	. 0005 vfd. Moulded Condenser	. 21
9386	. 1 Mfd . 200 Volt Condenser	. 18	9529	Ho. 84 Tube Socket	. 13
6473	. 002 Mfd .400 Volt Condenser	.17	9513	"B" Eliminator Housing Case	. 55
9525	.2 Mfd. 200 Volt Condenscr	. 24	9514	"B" Eliminator Housing Case	. 35
9203	. 1 Mfd. 400 Volt Condenser	. 20		Cover	
1150	. 004 Mfd. 400 Volt Condenser	.18	1249	"B" Terminal Strid with Screws	3. 60
9328	Dry Electrolytic Condenser $(2-5 \text { Mfd.) }$	1.15	$\begin{aligned} & 1240 \\ & 1458 \end{aligned}$	Remote Control Complete Tuning Control Ring	$\begin{array}{r} 9.00 \\ .77 \end{array}$
9133	Generator . 5 Mfd . Condenser	. 55	1459	Volume Control Ring	.77
9597	Spark Plug Supiressor	. 55	1460	Dial Light. Assembly	. 44
9598	Distributor Suppressor	. 55	1460 A	Plot İght Buib	. 44
9600	Wood Mounting Block	.16	1461	Condenser Pulley Assembly	1.20
7717	Housing Carriage Bolt 3/8" x 3'	. 10	1462	Vol. Control pulley issembly	1.20 1.00
7718	Hex Nut for 3/8' Carriage Bolt	. 05	1463	Drive Cable Assembly	2.30
7716 9458	Younting Bolt Steel Vasher .0025 Mfd Mica Condenser	. 10	1464 1465	Dial alass \& Sticker Assembly	. 40
9458 9463	. 0025 Mfd. Mica Condenser	.17 .13	1465 St	Steering Post Clamp	.11
9422	Ho. 78 Tube Socket	. 13	1467	Kial Scale Assembly	. 17
9493	No. 41 Tube Socket	.13	1468 D	Dial Glass Retaining Ring	. 11
Prices	subject to change without notice			Part	No. 603

ERLA PAGE 5-3

PAGE 5-4 ERLA

ELEC'TRICAL RESEARCH LABS.

NOTE: It may be found that stations on the short wave band are received at a slightly different dial setting than formerly. received after changing the aerial dimensions. Using one of the antenna transmission systems designed for manmade static elimination may prove beneficial for very difficult locations. Care must be taken in using this type aerial system as an improperly designed transmission system will decrease the range of the receiver, particularly on short wave reception. Simply using a transmission system will not eliminate the noise unless the flat top of the aerial can be erected outside of the field of disturbance. A shielded lead-in is not recommended as the signal loss on short waves will be excessive. The antenna should be connected to the red lead coming out at the rear of the chassis and for best results it is recomended that a good ground be connected to the black lead coming out at the rear of the chassis.

BAND SEIECTOR SWITCH: TWO different frequency bands are available, the frequency range being:
1715 to 535 Kilocycles- 175 to 560.75 Meters
16 to 5.2 Negacycles- 18.7 to 57.7 Meters
Selection of the desired frequency band is made with the band selector switch knob, which is located on the lower right front of the cabinet. When the band selector awitch is placed in the maximum left hand position the receiver is operating on the 5.2 to 16 megacycle band. For operation on the 1715 to 535 kilocycle band place the band selector switch knob in the maximum right hand position. Both. bands are calibrated on a single dial, one section of which is calibrated in kilocycles, 1715 to 535 kilocycles, and the other section is calibrated in megacycles, 16 to 5.2 megacycles.

AIIGNENT PROCEDURE: Only when an IF transformer, antenna or oscillator coil is replaced should it ever be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is absolutely necessary that a good accurate calibrated oscillator be used with some type of output measuring device.

INTERMAEDIATE ALIGMMENT:

1. Connect the high side of the oscillator output to the control grid of the $2 A 7$ tube leaving the grid cap disconnected. The ground side of the oscillator should be connected to the receiver chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Alien the first intermediate transformer by turning the intermediate transformer brass hext adjusting nut located on top of the intermediate transformer can up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside the brass hex nut for maximum output.
4. Adjust the second I. F. transformer in the same manner as the first I. F. transformer.

VARIABIF CONDENSER ALIGNMENT: It is essential that the following instructions be carefully adhered to in the order given otherwise the receiver will be insensitive and the dial calibration will be inaccurate.

1. Connect the high side of the oscillator output to the set antenna lead and the oscillator ground to the receiver chassis.
2. Place the band selector switch for operation on the 16 to 5.2 megacycle band.
3. Set the oscillator frequency to exactly 15 megacycles and adjust the receiver dial to exactly 15 megacycles. Then BRING IN THE 15 MEGACYCLE SIGNAL TO MAXIMUM OUTPU'T BY ADJUSTING THE trimmer condenser of the oscillator gang condenser section. The oscillator trimner condenser is mounted on top of the rear section of the variable condenser. The front section of the variable condenser tunes the antenna stage.
4. Place the band selector switch for operation on the 1715 to 535 kilocycle band, set the oscillator to
exactly 1400 kilocycles and tune the receiver dial to 1400 kilocycles. BRIFG IN THIS 1400 KILOCYCLI SIGNAL BI ADJUSTIYG THE SIMAIN TRIMER CONDENSER which is located underneath near the center and towards the front of the chassis.
5. Hext adjust the antenna variable gang condenser section trimer condenser for maximum output (front section).
6. Leave the receiver operating on the same band and set the oscillator frequency to approximately 600 kilocycles and adjust the dial to approximately 600 kilocycles. Then while rocking the variable condenser alightly to the right and left, adjust the 600 kilocycle padding condenser which is located below the speaker and accessible through the front of the chassis for maximum output.
7. Recheck the 1400 kilocycle adjustment.
8. Place the band selector switch for operation on the 16 to 5.2 megacycle band and tune the dial to exactiy 15 megacycles and set the oscillator frequency to 15 megacycles. Then adjust the trimmer condenser which is located underneath and toward the center of the right hand side of the chassis for maximum output.

This completes the aligrment procedure and it is suggested that all the adjustments be rechecked.

ERLA PAGE 5-5

PAGE 5-6 ERLA

MODEL 6100

Voltage, Alignment
ELECTRICAL RESEARCH LABS. Parts List

		VOITAGE TABLE		SCREEN	CATHODE
		Line Voltag Volume Cont	$\begin{aligned} & 32 \text { Volts } \\ & \text { Full On } \end{aligned}$		
TUBE		FIL.	PLATE		
78	1st Detector	6.5	160	70	5
37	Oscillator	6.5	100		20
78	I.F.	6.5	160	70	25
77	2nd Detector	6.5	65*	25*	25
38	Output	6.5	150	160	15

Rectifier or 84 Rectifier

* Comparative voltage only.

Read voltage from socket to receiver chassis.

32 VOIT SIX TUBE SUPERHETERODYNE RECEIVER.

This receiver is designed to operate on 32 volt battery plants only and must not be u : 3 on 36 volt battery plants without a voltage regulator. Generally, it is not advisable to operate the receiver while the generator is charging the battery due to the fact that considerable radio interference (static nolse) may be encountered. This is not a reflection on the receiver, but is due to interference caused by the power plant generator, itself. Some generators have built-in traps to eliminate this interference and when so constructed this particular type of plant generator will not cause interference. If excessive static noise is encountered be sure that it is not caused by the 32 volt plant generator.
THIRTY-TWO VOLT POWER UNIT: Two power units have been furnished with the six tube 32 volt receiver, one unft utilizes a $25 z 5$ tube and the other an 84 tube. Diagrams for both of these units are shown on the receiver circuit diagram. It will be noted from the parts and price list that all parts with the exception of the power transformer and tube sockets are interchangeable. When ordering these parts be sure to order by part number.

NOTE: The dynamotor type unit supplied with the five tube 32 volt receiver cannot be used With the six tube receiver nor can the power units (utilizing the 84 or $25 Z 5$ tube) furnished with the six tube receiver be used with the five tube 32 volt set.

The 32 volt power unit is shipped unmounted and must be placed in the sound-proof celotex compartment. In the console models this is located below the receiver mounting board and in the table models it is located above the chassis. To install the power unit in the sound-proof box remove the wood screws which hold the celotex back to the box, then place the power unit on the rubber mounting blocks provided inside of this box so that the unit is floating free on these rubber insulators. It is very important that the unit does not touch the side of the box. If excessive vibration is noticed be sure to check the power unit installation, as excessive vibration will result if it is not properly nounted on all of the rubber supports or if it is permitted to touch the side of the celotex housing.

PILOT LIGHT: A type $T-3 \frac{1}{4} \# 406.3$ volt pilot light is used. The pilot light is readily accessible for removal from the rear of the cabinet.

ANTENNA AND GROUND: Under ordinary conditions an aerial from twenty-five to seventy-five feet in length including lead-in will prove ample. In some locations which are located a considerable distance from broadcast stations it may be necessary to use a longer aerial than this to obtain satisfactory daylight reception. Never place the aerial lead-in in close proximity to the 32 volt lighting lines, as considerable stetic noise may be picked up if the antenna lead-in is run parallel to the 32 volt power innes for any distance.

INTERMEDIATE ALIGNMENT: Only when an intermediate transformer has become defective due to an open or burned out winding should it be necessary to readjust the intermediate transformer. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with sorne type of output measuring device. To align the intermediate transformer:

1. Connect the high side of the oscillator output to the control grid of the \#36 modulator tube. The ground side of the oscillator should be connected to the ground lead.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning one of the intermediate transformer trimmer screws up and down until maximum reading is obtained on the output meter. Then adjust the other trimmer screw in the same manner.
4. The second I. F. transformer should next be adjusted in the same manner. The intermediate transformer trimmer acrews are accessible through the small hole in the top of the intermediate transformer shields.

To align the variable condenser:

1. Connect the high output side of the oscillator to the set antenna lead and the ground side of the oscillator to the ground lead.
2. Tune the receiver to 1400 kilocycles on the dial and set the oscillator to this frem quency.
3. Adjust the variable condenser trimmer screws for maximum output reading.
4. Tune the set to approximately 600 kilocycles on the dial and adjust the oscillator frequency to 600 kilocycles. Adjust the padding condenser located on the rear of the chassis adjacent to the antenna and ground leads and accessible through the hole in the chassis for maximum output reading.

When making this adjustment be sure to rock the variable condenser to the right and left using the position where the greatest reading is obtained.

ELECTRICAL RESEARCH LABS.

PAGE 5-8 ERLA

MODEL 6300,6315, 6317,6323

Alignment, Voltage

ELECTRICAL RESEARCH LABS.

SHORT WAVE TRINARR: A short wave trimmer control is incorporated in the receiver and is used for a fine tuning adjustment when tuning for short wave reception from 1.5 megacycles to 24 megacycles. The band selector switch knob consiats of two sections. The small front section knob is used for adjusting the short wave trimer and the large rear section is the band selector switch knob. When tuning for short wave reception always rotate the tuning control slowly until a station is heard with maximum volume. Don't hurriedly skim over the dial or pass up any weak signals. After adjusting the tuning control so as to bring the station in at its loudest point adjust the short wave trimmer control by turning the trimmer knob first in the clockwise and then in the counter-clockwise direction to the position of greatest volume. Occasionally after tuning in this manner still better results may be obtained by readjusting the tuning conmay be found that ther fine adjustment should be made with the short wave trimmer for maximum volume. It may be found that when adjusting the short wave trimmer that the signal will disappear, indicated by the elimination of signal, static and background noises. Rotating the short wave trimmer control slightly eibroadcast band ($1500 \mathrm{~K} . \mathrm{C}$. to $540 \mathrm{~K} . \mathrm{C}$.) the trimmer is inal in again. When operating the receiver on the broadcast band ($1500 \mathrm{~K} . \mathrm{C}$. to $540 \mathrm{~K} . \mathrm{C}$.) the trimmer is inoperative.

> Line Voltage: 115
> Volume Control: Full on

Wave Band: Broadcast

TUBE

Fil.	Plate	Screen	Cathode Volts	$\begin{aligned} & \text { Grid } \\ & \text { No. } 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { No. } 3 \& 5 \\ & \hline \end{aligned}$
2.45	220		2.2	3.5	200	90
2.45	220	90	6			
2.45	220	90	3.5			
2.45	120\#\#		1			
2.45	210	220				

$2 A 7$ Oscillator lst Detector
58 First I. F. Amplifier
58 Second I. F. Amplifier
$2 A 6$ Second Detector
2 A 5 Output
80 Rectifier

Line Voltage: ll5
Volume Control: Full on
Wave Band : Broadcast

\#\# Triode Plate, Comparative voltage only. The voltmeter is in series with a high resistance and is there fore not the true voltage applied. Read all voltages from socket to chassis unless otherwise specified.

ALIGNMENT PROCEDURE: Only when an atenna, oscillator or I. F. transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or variable condenser it is necessary that an oscillator be used with some type of output measuring device.

INTERMEDIATE ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the $2 A 7$ First Detector tube, leaving the grid clip disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and down until maximum reading is obtained on the output meter, then adjust the trim mer screw located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screwn are accessible through the small hole in the top of the intermediate transformer shields.
4. The second and third I. F. transformers should next be.adjusted in the same manner as the first I.F. transformer.

TO AIIGN THE VARIABLE CONDENSER: It is important when aligning the variable condenser and padding condensers to follow the procedure given carefully, otherwise the receiver will be insensitive and the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Place the band selector awitch for operation on the 1.5 to 4 megacycle band. Tune the receiver to exactly 1.7 megacycles onthe dial, set the short wave trimmer about half the distance between maximum clockwise and counter-clockwise rotation and adjust the oscillator frequency to exactly 1.7 megacycles.

Hext, bring this 1.7 megacycle signal in to maximum output by adjusting the padding condenser accessible through the hole in the right hand side and closest to the rear of the chassis.
3. Leave the band selector switch for operation on the 1.5 to 4 megacycle band and tune the receiver to exactly 3.4 megacycles on the dial.

Hext, set the test oscillator to exactly 3.4 megacycles and tune the signal in by adjusting the oscillator variable condenser trimer mounted on top of the variable condenser. The middle section of the variable condenser is the oscillator section. Recheck the 1.7 megacycle adjustment after making the adjustment at 4 megacycles. For best results it is always advisable to check each adjustmat several times. HOTE: This completes the short wave adjustment.
4. Adjust the band selector switch for operation on the broadcast band (1500 to 540 kilocycles) and twine the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Turn the receiver on end and bring this 1400 kilocycle signal in to maximum output by adjusting the trimmer screw on the small trimer, which is located adjacent to the short wave switch underneath the chassis.

Hext, adjust the antenna and preselector variable condenser section trimers mounted on top of the variable condenser for maximum signal output. (These are the front and rear gang sections).
5. Leave the band selector switch for operation on the broadcast band (1500 to 540 kilocycles) and tune the receiver and oscillator to approximately 600 kilocycles. Then adjust the 600 kilocycle padding condenser which is located on the right hand side and towards the front of the chassis for maximum output reading, This adjustment is quite critical and it is necessary to rock the condenser slightly to the right and left to obtain maximum sensitivity.

Always recheck the 1400 kilocycle alignment after making the adjustment at 600 kilocycles.

MODEL 6300,6315 6317,6323
 Parts List,Notes

ELECTRICAL RESEARCH LABS.

SIX TUBE SUPERHETERODYNE RECEI VER
24 Megacycles to 540 Kilocycles
Band No. 1 - from 10 Megacycles to 24 Megacycles
Band No. 2 - from
Megacycles to 10 Megacycles
Band No. $3-$ from 1.5 Megacycles to 4 Megacycles
Band No. 4 - from 1500 Kilocycles to 540 Kilocycles

Selection of the desired frequency band is made with the band selector switch knob (large rear knob of double knob) which is located on the lower right front of the cabinet below the tuning control knob. When the band selector switch is placed in the maximum left hand position the receiver is operating on Band No. 1, 10 megacycles to 24 megacycles. Rotating the band selector knob in the clockwise direction the three other positions are in the order named, Band No. 2, 4 megacycles to 10 megacycles, Band No. 3, 1.5 to 4 megacycles and Band No. 4, 1500 kilocycles to 540 kilocycles. All four frequency bands are calibrated on a single dial. The calibrated section of the dial for the band that the receiver is adjusted to operate on is indicated by the dial indicator which is automatically adjusted by the band selector switch knob.
SHORT WAVE RECEPTION: The usual careless tuning that is sufficient to bring in the long wave length regular broadcast stations will fail in tuning in short wave reception. In tuning for short wave stations, great care must be taken so that the stations are not passed over, as the tuning is very sharp and quite critical. Many times a lack of realts when tuning for short wave stations is due not only to the operator tuning the receiver incorrectly, but also to the operator trying to pick up foreign and North Anerican short wave stations when the stations are not broadcasting. An important consideration is the time difference between the United States and European Countries;ie., at 10:00 P. I工. Central Standard Time it is 4:00 A. M. in Fingland and 5:00 A. M. in most other countries in Furope and, as a rule, no stations are brosed casting at that time. While short wave reception presents a varied and more thrilling entertainment unen we have been accustomed to hearing on the broadcast band, the many peculiarities and difficulties of short wave reception have been minimized and the possibilities over-cmphasized, which has resulted in the erroneous belief that reception of foreign short wave stations is an easy accomplishment. To the contrary, short wave stations are not tuned in with the ease we have been accustomed to in tuning in local broadcast stations, but requires patience, extreme care in tuning, an understanding of the proper procedure and favorable conditions. Reception of short wave stations, as a rule, is not comparable to the clear, staticfree programs received from the local broadcast stations, but is more erratic and is generally accompanied by fading and static although occasionally reception may be as good as local programs.

Reception of short wave stations varies from season to season and between daylight and after sunset.
Band No. 4 (regular broadcast band) from 1500 to 540 kilocycles varies also in that the range of the station is materially increased after dark and fading of distant stations becomes more pronounced. In some locations stations that are received during daylight occasionally fade so badly after sundown that it is impossible to receive good reception after dark. Other stations which cannot be heard during daylight provide good reception after darkness.

Band No. 3, 1.5 to 4.0 megacycles permits reception of police calls and some amateur phone stations. The range of the stations broadcast within this band is increased after sundown.

Band No. 2 from 10.0 to 4.0 megacycles includes the 49 meter band, the 31 me ter band and some amateur stations. Stations broadcast within this band include many of the foreign short wave stations and North American Stations. Reception of stations transmi tting on the 49 meter band is most reliable during the Sumer months when located approximately 300 miles or more during daylight which increases to 1,500 miles or more when a large portion of the signal path lies in darkness. The Winter range is approximately 600 miles during daylight and 2,000 miles or more after sundown. Stations operating on the 31 meter band are most reliable when the receiver is located about 800 miles away during daylight in the Sumer months increasing to 2,500 miles after sundown.

Band No. 1 , from 24 megacycles to 10.0 megacycles includes the 25,19 and 16 meter bands. Reception of stations in the 25 meter band is best during daylight when the receiver and transmitter are located 1,000 miles or less than 2,000 miles apart. After sundown reception may be expected only from stations located a distance of 2,000 miles or more away from the receiver. Stations operating on the 19 meter band provide satisfactory reception generally during daylight hours only. After nightfall or when any appreciable portion of the transmission path is in darkness signals are rarely heard. Stations operating below la meters are generally useful only when transmitting during daylight and over a distance of $2,000 \mathrm{miles}$ or more. Ordinarily they cannot be received after sunset.
1039 Broadcast, Anterma, Preselec-tor \& Oscillator Coil 1083 Short Wave Oscillator Coil

Short Wial 9668
1092 Short Wave Antenna \& First Detector Coil
First I. F. Transformer
9835 Second I. F. Transformer
9662 Third I. F. Transformer
9800 R. F. Choke
10,000 0hm 1/3 Watt Resistor
1 Meg Ohm 1/3 Watt Resistor
250,000 Ohm 1/3 Watt Resiator
6,000 Ohm l/3 Watt Resistor
Short Wave Trimmer Disc. Assembly
9682 Short Wave Trimmer Worm Tuning Rod
1068

6786
9671

6786
8906
6880
9287
Padding Condenser
Padding Condenser
Trimer Condenser
Electrolytic Condenser Dual 8 Mfd.
Electrolytic Condenser 5 Nfd.
Tuning Meter
Wire Wound Resistor Strip
Pilot Lamp Socket
2.5 Volt Pilot' Lamp Bulb

Tube Shield
Tube Shield Cap

- 0005 Mfd. Moulded Condenser

1 Mfd. 100 Volt Condenser

- 1 Mfd. 400 Volt Condenser
.1 Mfd. 200 Volt Condenser
.05 Mfd. 400 Volt Condenser
.03 Mfd . \& . 004 Mfd. 400 Volt Condenser .0005 Hfd . \& . 05 Mifd. 400 Volt Condenser .001 Mfd. \& . 05 Kfd. 400 Volt Condenser
.2 Hfa. 400 Volt Condenser
.2 Mfd. 200 Volt Condenser
500,000 Ohm $1 / 3$ Watt Resistor
100,000 0 hm 1/3 Watt Resistor
$50,000 \mathrm{Ohm}$ 1/3 Watt Resistor
25,000 Ohm 1/3 Watt Resistor
250 Ohm 1/3 Watt Resistor
2;000 Ohm 1/3 Watt Resistor

NODEL SK Converter
Schematic

ELECTRICAL RESEARCH LABS.

ELECTRICAL RESEARCH LABS.

PART	NUNBER
1113	Antenna Coil
1114	Oscillator Coil
1298	lst I. F Transformer
9662	2nd I. F. Transformer
1331	Audio Transformer
1291	4 Mfd. Wet Electrolytic Condenser
1115	Dual . 1 Yfd. 200 Volt Condenser
7860	. 01 Mfd: 400 Volt Condenser
9032	. 2 xfd. 200 Volt Condenser
9459	. 0005 Mfd. Mica Kould Condenser
7934	. 0001 Mid. Mica Mould Condenser
1374	. 003 Mfd. Mica Mould Condenser
1332	Wire Wound Resistor Strip
7998	1 Meg Ohm 1/3 Watt Resistor
6984	500,000 Ohm 1/3 watt Resistor
8906	250,000 Ohm 1/3 Watt Resistor
6879	50,000 0hm 1/3 watt Resistor

IIST PRICE
$\$ 1.63$
1.63
2.05
2.05
1.40
.85
.35
.17
.23
.21
.21
.21
.35
.19
.19
.19
.19

PART	NUMBER	LIST PRICE
1333	18,000 0 bm 1/2 Watt Resistor	\$.19
9693	5,000 0hm $1 / 3$ watt Resistor	. 19
8907	25,000 ohm 1/3 watt Resistor	. 19
1292	6 Conductor Battery cable	. 68
1289	Volume control with D.P.S.T. Switch	1.24
1341	Tone control switch	. 40
1370	one Color Tuning Dial	. 30
1338	two Color Tuning Dial	. 35
1103	Two Gang Condenser	3.93
1361	Tube Shield	. 15
9988	Tube Shield	. 11
1053	padding Condenser	. 50
1054	padding Condenser	. 55
9799	trimmer Condenser	. 15
6-1	Voltage Regulatior Tube	3.00
1179	Knob, Large	. 15
1180	Knob, Small with Dot	.17
9758	Knob, Small	. 14

Prices are subject to change without notice.
PART NO.T700

SERVICE HOTRS

SRVEE TUBE BATTERY OPERERETERODYNE RECEIVER

ALIGMENT PROCEDURE: FOr properly aligning either the intermediate transformer or the gang condenser it is
INTERMEDIATE ALIGMMENT: disconnected. Connect the ground side of the oscillator to the receiver chassis.
2. Set the test oscillator frequency to 465 kilocycles (this must be accurate).
3. Align the first intermediate ansformer by turning one of the trimmer screws up and down until maximum reading is obtained o
maximum sensitivity.
4. Adjust the second intermediate transformer in the same manner. Yort: Two type intermediate transformer trimmers have been used in this receiver. one type has two parallel holes in the top of the shield, one for each trimmer. The other type has a brass hex nut for adjusting one
trinmer, the other intermediate trimmer being adjusted with the trimmer screw located inside of the brass hex nut. Regardless of which type trimer is used the procedure is the same.

TO ALIGA THE VARIABLE CONDENSER: It is important when allgning to follow the procedure carefully, otherwise the reciver whe lan sencitivy and the dilal calloration will be incorrect.
-
Connect the high output side of the oscillator to the receiver antenna lead and the ground to the chas-
Gt Кт7 OL IEGACYCLE SI GNAL BY ADJUSTING THE TRIMIER MOUNTED ON TOP OF THE OSCILLATOR SECTION OF THE GANG CONDENSER TO
MAXIMN OUTPUT.

Looking at the front of the receiver the oscillator section is the rear section of the gang condenser.
3. Set the band selector switch for operation on the broadcast band, adjust the test oscillator frequency SIGNAL TO MAXIMM OUTPUT BY ADJUSTING THF TRIMNFR LOCATED UNDEREEATH AND NEAR THE CEFTER FRONT OF THE CASSSIS.
4. After making this adjustment tune the dial to 1720 kilocycles and set theoscillator frequency to 1720
kilocycles. If the 1720 kilocycle signal cannot be received reduce the 1400 kilocycle trimer capacity until kthe 1720 kilocycle signal is brought in.
5. Fext, set the receiver dial and test oscillator to exactly 1400 kilocycles, and adjust the trimer loeated on the front section of the gang condenser for maximum sensitivity.
6. Leave the band selector gwitch for operation on the broadrest band, tune the receiver and set the oson and accessible through the small hole in the front of the chassis, for maximum sensitivity. As this adjustment is quite critical it is necessary to rock the condenser slightly to the right and left to find the
point of greatest sensitivity.
7. Place the band selector switch for operation on the short wave band, adjust the test oscillator frequency the dial up and adjust the trimmer, which is mounted on the top of the coil underneath and near the right hand side of the chassis, for maximum output. Be sure to rock the condenser slightly to the right and left when making this adjustment.

This comple tes the alignment procedure. It is recommended that all of the adjustments be gone over again
Gonerally it will be found that improved results can be obtained if this is done.

PAGE 5-2 EL. SP. EX.
MODEL 45 Schematic

ELECTRIC SPEC. EXPORT CORP.

0
0
0
0
0
0
0
0
0
0
2
\vdots
\vdots
1
\vdots $C_{2}-.1$
$C_{3}-10$
$C_{4}-.00015$ MFD
$C_{5}-.01$ MFD.
$C_{6}-10$
$C_{7}-.01$
$C_{8}-.01$
$C_{9}-12$
$C_{10}-8$
$C_{1}-.01$ MFO. CONDENSER
$C_{2}-1$
$C_{3}-10$

PAGE 5-4 EL. SP. EX.

PAGE 5-2 EMERSON

EMERSON RADIO AND PHONOGRAPH
Schematic, Voltage

MODEL $38,42(\mathrm{~J}-6 \mathrm{~m} \mathrm{D})$
 Parts $\mathrm{L}_{\text {ist, }}$ Alignment EMERSON RADIO AND PHONOGRAPH CORPORATION

Alignment procedure:

1. Short circuit oscillator stator of the variable condenser to ground.
2. Introduce the 456 kc signal on the grid of the 6D6 i-f tube.
3. Adjust the single tuned i-f transformer for maximum response on the output meter.
4. Remove the 456 kc signal from the 6 D 6 grid and put it on the 6 A 7 grid.
5. Adjust both trimmers on first i-f transformer for maximum response.
6. Remove 456 kc signal from 6A7 grid.
7. Remove the short circuit from the stator of the oscillator section of the gang condenser.
8. Set the range changing switch to the broadcast band.
9. Make sure that the needle on the dial reaches its extreme position at both ends of the broadcast band when the gang condenser is at maximum and minimum. If the needle does not do this, loosen the set-screw on the hub of the dial and rotate the gang condenser to maximum capacity. Then rotate the needle of the dial (by means of the selector knob) to its extreme position at the 550 kc end of the broadcast band. Tighten the set-screw securely and proceed to realign the set.
10. Set the needle on the dial to 1600 kc .
11. Introduce a 1600 kc signal into the antenna.
12. Adjust oscillator trimmer (the one farthest from the chassis on the oscillator coil) for maximum response.
13. Introduce a 600 kc signal into the antenna. Rock the gang condenser back and forth around the 600 kc dial reading and at the same time adjust the series padding condenser for maximum output. Leave the series padder set to the point of maximum sensitivity. The series padder is on the front of the chassis.
14. Check alignment on 1600 kc .
15. Now throw the range switch to short-wave position and introduce a 15 megacycle (mc) signal into the antenna.
16. Set the dial needle to 15 mc .
17. Adjust oscillator trimmer for maximum output. The short-wave oscillator trimmer is the one nearest the oscillator coil.
18. Connect the antenna to the set and adjust the interstage coil for maximum noise at 15 mc . The interstage coil is the one with only one trimmer on it. Before starting the adjustment turn the trimmer out so as to have minimum capacity and gradually increase it: A peak will be noticed and then as the capacity is increased the noise diminishes and disappears. When the capacity is increased further, the noise may increase again. The peak with the trimmer having less capacity than it has when the noise disappears is the proper peak.

Part No.
 Description

CCT-116
ССТ-117
CCT-118
CCT-119
KT-40
CCR-117
CCC-125
HC-32
CCC-126

Composite broadcast short-wave antenna coil CCC-124 Short-wave r-f interstage tuning choke \qquad BBC-121

Composite broadcast-short wave oscillator coil CCR-116

Double-tuned 456 kc first i-f transformer CCR-118
Double-tuned 456 kc second i-f transformer. CCD-15
Iron-core filter choke \qquad KL-6

Volume control with switch ..CCS-76
4-8-16 mf, 150 volt d.c., electrolytic filter condCCS-75 Dual 5 mf electrolytic condenser, 25 volts d-c .004 mfd . mica condenser

Two-gang variable condenser 250-500 mmf padding condenser Special ballast reșistor
450 ohm 1 watt wire-wound resistor Dial assembly
Pilot lamp, Mazda No. 40
Range-change switch
5" dynamic speaker

MODEL 39,59 (D-S5)
 Voltage
 Alignment
 EMERSON RADIO AND PHONOGRAPH CORPORATION

Line voltage 115 volts, A.C.-60 Cycles			
2A7 Oscillator	$\begin{gathered} \text { Plate } \\ \text { to ground } \\ \text {. } \quad 70 \end{gathered}$	Screen to ground 50	$\begin{gathered} \text { Cathode } \\ \text { to ground } \\ 6 \end{gathered}$
2A7 Modulator	90		
58	90	90	5.5
47	. 227	235	
2B7	. 115	53	3

ADJUSTMENTS

This instrument was carefully aligned and adjusted at the factory. No oǹe but an experienced serviceman should make an attempt at re-aligning the receiver. If it becomes necessary, the following procedure should be accurately executed: :

A good accurate oscillator should be used with frequencies of $456 \mathrm{k} . \mathrm{c} ., 600 \mathrm{k} . \mathrm{c}$., $1425 \mathrm{k} . \mathrm{c}$., and $15,000 \mathrm{k} . \mathrm{c}$. In addition, an output meter across the voice coil should be used for the precise results necessary.

Alignment procedure:

1. Short circuit oscillator stator of variable condenser to ground.
2. Introduce $456 \mathrm{k} . \mathrm{c}$. on the grid of the 58 tube.
3. Adjust the trimmer on the single tuned i.f. coil for maximum response on the output meter.
4. Adjust the two trimmers on the double tuned i.f. coil following the 58 tube.
5. Remove the oscillator signal from the 58 grid and introduce it on the grid of the 2 A 7 tube.
6. Adjust the two trimmers on the first i.f. coil.
7. Re-align all i.f. trimmers for maximum response on the output meter.
8. Remove the $456 \mathrm{k} . \mathrm{c}$. signal from the 2 A 7 grid. It will not be used again.
9. Remove the short circuit from the stator of the oscillator section of the condenser.
10. Rotate the range changing switch to the left for the short-wave range.
11. Make sure that the needle on the dial reaches its extreme position at both ends of the broadcast scale when the condenser is at maximum and minimum. If this condition is not obtained, loosen the setscrew on the hub of the dial and rotate the condenser plates to maximum capacity. Then rotate the needle of the dial (by means of the selector knob) to its extreme position at the $550 \mathrm{k} . \mathrm{c}$ end of the broadcast scale. Tighten the set-screw securely once again and re-alignment may proceed.
12. Set the pointer of the dial to a little above the higher wave length edge of the 19 -meter, brown segment, on the dial.
13. Introduce a strong $15,000 \mathrm{k} . \mathrm{c}$. signal into the antenna.
14. Adjust the short-wave oscillator trimmer, (the trimmer nearest the chassis on the oscillator coil), until the signal comes to maximum. Attenuate the signal.
15. Adjust the short-wave antenna trimmer (the one on the free end of the antenna coil) until the signal again comes to maximum. When these conditions are fulfilled the receiver is aligned on the short-wave range. Remove the 15,000 k.c. signal from the antenna.
16. Rotate the range switch to the right (broadcast position) and set the pointer of the dial to 1425.
17. Introduce the $1425 \mathrm{k.c}$. signal into the antenna. Adjust the oscillator trimmer (the trimmer on the oscillator coil, furthest from the edge of the chassis) for maximum response. Attenuate this signal.
18. Adjust the broadcast antenna trimmer for maximum response (the trimmer on the end of the antenna coil closest to the chassis). Remove the 1425 k.c. signal from the antenna.
19. Introduce $600 \mathrm{k.c}$. into the antenna. Rock the gang condenser back and forth around the $600 \mathrm{k} . \mathrm{c}$. dial reading, and at the same time, adjust the series padding condenser for maximum output. Leave the series padder set to the point of maximum sensitivity. (Series padder is on side of oscillator coil can). Broadcast alignment is now complete.

MODEM 45 (6BD) Alignment Voltage

EMERSON RADIO AND PHONOGRAPH CORPORATION

1. Short circuit oscillator stator of the variable condenser to ground.
2. Introduce the 456 kc signal on the grid of the 6D6 I-f tube.
3. Adjust both trimmers of the second stage I-f transformer for maximum response on the output meter.
4. Remove the 456 kc signal from the 6 D 6 grid and put it on the 6 A 7 grid.
5. Adjust both trimmers on first I-f transformer for maximum response.
6. Remove $\mathbf{4 5 6} \mathrm{kc}$ signal from 6 A 7 grid.
7. Remove the short circuit from the stator of the oscillator section of the gang condenser.
8. Set the range changing switch to the broadcast band.
9. Make sure that the needle on the dial reaches its extreme position at both ends of the broadcast band when the gang condenser is at maximum and minimum. If the needle does not do this, loosen the set-screw on the hub of the dial and rotate the gang condenser to maximum capacity. Then rotate the needle of the dial (by means of the selector knob) to its extreme position at the 550 kc end of the broadcast band. Tighten the set-screw securely and proceed to re-align the set.
10. Introduce a 1600 kc signal into the antenna.
11. Rock the gang condenser back and forth around the unmarked cardinal division at the bottom of the high frequency end of the dial and at the same time adjust oscillator trimmer (the one farthest from the chassis on the oscillator coil) for maximum response.
12. Introduce a 600 kc signal into the antenna. Rock the gang condenser back and forth around the 600 kc dial reading and at the same time adjust the series padding condenser for maximum output. Leave the series padder set to the point of maximum sensitivity. The series padder is on the front of the chassis.
13. Check alignment on 1600 kc .
14. Now throw the range switch to short-wave position and introduce a 15 megacycle (mc) signal into the antenna.
15. Set the dial needle to 15 mc .
16. Adjust oscillator trimmer for maximum output. The short-wave oscillator trimmer is the one nearest the chassis on the oscillator coil.
17. Connect the antenna to the set and adjust the interstage coil for maximum noise at 15 mc . The interstage coil is the one with only one trimmer on it. Before starting the adjustment turn the trimmer out so as to have minimum capacity and gradually increase it. A peak will be noticed and then as the capacity is increased the noise diminishes and disappears. When the capacity is increased further, the noise may increase again. The peak with the trimmer having less capacity than it has when the noise disappears is the proper peak.

Voltage Analysis:

Readings should be taken with a 1000 ohms per volt meter.
Voltages listed below are from the point indicated to ground. With volume control on full.

	Plate	Screen	Suppressor	Cathode
6D6 R-f.	100	45	3.0	3.0
6A7 Oscillator-Modulator	100	50	-	3.0
6D6 I-f.	250	80	4.0	4.0
75 A-f.	85	-	-	1.5
42 Output	230	250	-	0

The pilot lights used are Mazda No. 40, 6-8 volts and . 15 ampere.
Voltage across field 100 volts. Line voltage- 117.5 volts a.c.

MODEL 415, 416
 Revised Voltage, Sohematic
 EMERSON RADIO AND PHONOGRAPH Voltage Readings:

Readings should be taken with Volume Control fully on, Tuning Control set for 550 KC , and antenna outside of set. Use a D. C. voltmeter having a resistance of 1000 ohms per volt.

Chassis	To- Plate		Screen	
	$10-15$		$9-12$	
6C6-Dethode	$1-2$			
6D6-R.F. Amplifier	$105-115$		$105-115$	$2-3$
38-Output Pentode	$105-115$		$105-115$	-

Voltage across filter choke is "C" bias for 38 Tube $=10 \mathrm{v}$.
Readings will not change materially regardless of type of power supply.

Notes:

Due to the compact construction of this Model, in order to keep the heat out of the cabinet, the filament dropping resistor has been placed in the cord, thus dissipating the heat along a greater area. The cord will, therefore, become warm under normal operating conditions, without impairing the performance and without damage to the set. Allowing the heat to be radiated by the cord instead of in the set, assures more efficient operation of the set. The total heat and current drain is about the same as a 30 watt electric bulb. To insure normal heating of the cord during operation, stretch out to its full length.

Do not attempt to shorten cord by cutting out a section, as this will ruin the cord.

The antenna can be replaced in its compartment by winding the wire in a small coil. Start the winding close to the set so that the loose end of the wire forms the last coil. If the coil is begun with the end away from the set the wire will twist and kink as it is wound.

Tubes may be replaced by removing the back of the cabinet.
Instructions for Replacing Shielded Tubes:

1. Remove lead at top of tube.
2. Take firm hold of tube and shield and remove both (at the same time) from socket.
3. Slip off ring toward base of tube.
4. TO REPLACE SHIELD REVERSE ABOVE PROCEDURE.

EMERSON RADIO AND PHONOGRAPH CORPORATION

The other cable terminates in a clip，designed for connection to the ammeter binding post．Before attach－
this clip the remote control should be tested．See that the knob for the volume contro and sitch sion

The clip on the battery cable may now be attached．Squeeze the sides of the clip together so that the holes
are in line，then pussit it our the bottery posto to the ammeter and release．In uncertain as to which post tis on
the battery side of the ammeter convect the cip to
 is turned on and off．If when the set is on the ammeter shows discharge，turn off the set and move the clip to
the other post． At this point the antenna should be connected．Proceed as follows： Assuming that the car is already equipped with a suitable anteina，sce that the lead－in is shielded and
kept away from the motor compartment and high tension ignition wires． Check the antenna for a possible ground and if found satisfactory connect it to the inner wire extending
through and beyond the shield of the a atenna lead through and beyond the shield of the antenna lead on the receiver．Be careful to make a good splice，soldering
if possible．Make the splice close enough to both shields so that the portion of wire left unslielded will be short． Cover the splice with several layers of friction tape and then connect both shield together，again soldering
if possibe．Ground the shield at one or more points to the dash or car body． For installations in cars not equipped with built－in antennae，see the instructions given under＂Antenna＂， The installation of the receiver may now be considered complete，provided all the foregoing instructions
were faithully carried out．A preliminary test can now be made，after which the suppression of any motor noises were faithfully carried out．A preilim
that are present may be underaken．

Intermediate Frequency．

To align the intermediate frequency transformers use a good modulated oscillator set for 172.5 k. ．Set the volume control for maximum volume and short circuit the rear section of the variale Connect the oscillator output across the grid of the $6 A 7$ tube and ground．Connect an output meter across
the primary of the speaker transformer or across the voice coil．Using the smallest output from the testo ocsillator the primary of the speaker transtormer or across the voice cofil tesing the smalest output from the test osciliator
that will give a small reading on the meter，adjust the two i．f．transformers for the largest reading obtainable．Use
a non－metallic screw driver if possible．

Radio frequency and oscilletor stages．
 oscillator through a standard dummy antenna to the antenina lead and ground of the receiver．Set the test oscillator
sola
ane to some frequency between 1350 and 1450 k．c．Set the dial to the frequency selected，，following he pooter algnment
instructions on the red tag．Adjust the trimmers on the variable condenser，beginning with the oscillator trim－ mer．Reduce the output of the test oscillator and repeat．In the absence of an oscillator，the r．f．sections may be
aligned by tuning in a weak station between 1350 and 1450 k．c．and aligning as before．If an output meter is not available，adjust for maximum volume from the speaker． Voltage analysia：

Voltage across battery -6 voits．
Voltage across speaker field 6 volts scant．
Voltage across all heaters－ 6 volts scant． Voltage across all heaters－ 6 volts scant．

9
高㪯洜 \dot{m}
毞
 888
$\approx \boxed{ }$

After unpacking the receiver and before starting to install it，a careful check of the parts furnished should
be made．

be made．

following is a list of the ing ： Receiver montrol head．

Remo drive cables．
Seaker－ehminith plug． One distributor suppressor． One generator condenser．

Four screws and four lock washers for securing bracket to receiver．
1．Two examistion of the thes
that the grid caps are in place on the proper tubes．In order to do this it will bee necessary to remove the cap
nuts from the front cover plate and slide the rectiver out of its housing by pulling out on the cover plate． Mounting the receiver－while the receiver may be mounted in any available location，three recommended
positions are listed below－－

1．Mounted so that the control cables face right．

 오 รัต Hold the receiver．up against the dash in the desired location with the cables in the direction chosen．Markaround it with a pencil，and in the center of the area bounded by the pencil lines driill a $1 / 2$ hole through the dash．Mourt band lockwaess Put a lockasher the head of eunt the bracket on the receever using the four screws and liceswashers．Put a phe screws through the bracket woles and into the tapped holes in the case．Screw
up tightlv

Now lift the receiver into place，pushing the bracket bolt through the hole in the dash．On the engine Mount the control head on the stering column and connect the cables to control head，following instruc－
ater to the chuck on the receiter．Push the cable in ilightly while turning the right hand knob back and corth until the tongue on the
in the chuck enought to prẹvent turning or withdrawal of the cable＇housing．If the set screws are too tight the
cables will bind

Proceed in the same manner to connect the other drive cable，inserting the key or key knob into the key hole
at the left on the control head，and turning back and forth as before．On turning all the way to the left，the
（the pilo light leads to the control head，the black wire going to the insulated post．
Tie the control cables and pilot light lead to the steering column and the dash，using friction tape．Do this at as many points as is necessary to prevent swinging and vibration，aluwys bearing in mind the fact that smooth
operation of the controls depends on the manner in which the cables are run． Now line up the dial pointer，following the instructions furnished on the red tag．
mount the bracket，using the $2 / 8$ bolts．
Two cables extend from the speaker．On one of these cables is the female end of a detachable six prong
plug，the male end of which is on the receiver．Comnect the speaker to the receciver by means of this pluge，observing that the two large pins on the male half of the plug engage with the two large holes in the female half of the
plug．Do not try to force the plug together in any other manner．

A io a mpere fuse is located in a small tubular holder in the battery lead．To replace the fuse，remove the cap，
insert the fuse and replace the cap．The fuse is intended to protect the receiver，and in ro case should one larger
than 10 ampers be used．

MODEL 965 Voltage, Al hgment

EMERSON RADIO AND PHONOGRAPH CORPORATION

Tubes and their functions:
1-78 Radio frequency amplifier.
1-6A7 \{Electron coupled oscillator. (First detector.

1-78 Intermediate frequency amplifier.
Voltage Analysis:

$1-75 \quad$| $\left\{\begin{array}{l}\text { Diode second detector. } \\ \text { Audio frequency amplifier. } \\ \text { Automatic volume control. }\end{array}\right.$ |
| :--- |
| $1-41$ |\quad Output power tube.

$1-84$
1—Non-synchronous vibrator inverter. $\{$ Audio frequency amplifier. Automatic volume control.

1-41 Output power tube.
1-84 Full-wave rectifier.
1-Non-synchronous vibrator inverter.

Note: All " B " and " C " voltages should be measured on a high resistance voltmeter of 1000 ohms per volt or over.
The voltages are measured to ground from the points named. Ground the antenna to its shield when taking readings.

Battery volts- 6 . Volts across heaters- 6 scant. Volts across speaker field- 6 scant.

Tube	Plate	Screen	Cathode	Suppressor	Osc. plate
78	110.	110	6	6	
6 A 7	170.	110.	6	-..	. 170
75	110.	-	1.3	-	
78	110.	. 110.	. . 3.5	3.5	
41	210.	. 220..	. 15		

If the set fails to operate look for some minor cause which might be one of the following :-

1. No "A" supply-"A" lead to set not making contact with ammeter post. Fuse blown.
2. Low "A" supply-The car battery needs recharging.
3. Tubes not in place in their sockets.
4. Grid caps not in place.
5. Defective tubes.
6. Antenna lead shorted to shield at splice, or otherwise grounded.

A 10 -ampere fuse is located in a small tubular holder in the battery lead. To replace the fuse, unscrew the threaded cap, insert the fuse and replace the cap, screwing up firmly. The fuse is intended to protect the receiver and in no case should one larger than 10 amperes be used.

ADJUSTMENTS

Intermediate Transformers

To align the intermediate frequency transformers, use a good modulated oscillator set for $1721 / 2$ k.c. Set the volume control for maximum volume and turn the dial to a point where little or no signal is received; then ground the antenna.

Connect the oscillator output between the grid of the 6A7 tube and ground. Connect an output meter across the primary of the speaker transformer or across the voice coil. Using the smallest output from the test oscillator that will give a small reading on the meter, adjust the two I.F. transformers for the largest reading obtainable. Use a non-metallic screw driver if possible.

Radio Frequency and Oscillator

To align the R.F. and oscillator sections, couple the oscillator through a standard dummy antenna to the antenna lead and ground of the receiver. Set the test oscillator to some frequency between $1350-1450$ k.c. Set the dial to the frequency selected. Adjust trimmers on the variable condenser beginning with the oscillator trimmer. Reduce the output of the test oscillator and repeat. In the absence of an oscillator, the R.F. sections may be aligned on broadcast.

Tune in a weak station between 1350 and 1450 k.c. and align as before. If an output meter is not available, adjust for maximum volume, then reduce the input and repeat.

MODET 71 Schematic

PAGE 5-4 EMPIRE

PAGE 5-6 EMPIRE

EMPIRE ELECTRICAL PRODUCTS CO.

AGE 5-8 EMPIRE
KODEL 700 DC Schematic

EMPIRE ELECTRICAL PRODUCTS CO.

FADA PAGE 5-1 MODEJ $S, 26-36$
FADA RADIO \& ELECTRIC CORP. Schomatic

PAGE. 5-2 FADA

FADA RADIO \& ELECTRIC CORP. Alignment, Trimaners Socket Layout

COMPENSATING INSTRUCTIONS FOR KODELS 133, 134, 135 ETC.

HODEL 141,141-Z (NA)
Alignment, Trimmers FADA RADIO \& ELECTRIC CORP. Voltage, Socket Layout

FAIR.-MORSE PAGE 5-1
MODEU (52),5212, 5212-A, 5241 FAIRBANKS-MORSE HOME APP., INC. MODEL (51),5106, Schematics 5107,5108,5109,
5111,5112,5141,

Model 51

Model 52

PAGE 5-2 FAIR.-MORSE

```
MOD EL (58) 5312,
5312-A,5341 FAIRBANKS-MORSE HOME APP., INC.
Sohematic,Coil Data
```


FAIRBANKS-MORSE HOME APP., INC.
 MODE 51,52,53 Serios Allgament, Color Code, Notes

MODELS 51, 52, AND 53

THE CIRCUIT

Models 51, 52, and 53 are 5 tube superheterodynes. The circuits are very similar, the only differences being those made necessary in order to cover different wave bands. These sets are in many ways a radical departure from conventional design. Maximum performance with a minimum number of tubes is accomplished thru the use of new multi-purpose tubes and new type, high efficiency, I. F. transformers. Due to the use of a high impedance primary, a litz wire secondary; and a wave trap, very good pre-selection and high gain are obtained in the tuned antenna stage. The antenna circuit is fed into a 2A7 which serves the triple purpose of R.F. amplifier, electron coupled oscillator, and first detector. The I. F. output of this tube is fed into the double tuned, first I. F. transformer and from there into the 58 I . F. amplifier. The output of this tube is fed into the second, double tuned, I. F. transformer. The output of this transformer is fed into the $2 A 6$ where three functions are accomplished. Detection, automatic volume control, and audio amplification. The A. F. output of this tube is resistance coupled to the grid circuit of the 2A5, high gain, output tube from where it is transfered to the loudspeaker. A familiar type 80 rectifier is used in a conventional power supply circuit.

WAVE BANDS

The model 51 chassis is a standard broadcast receiver covering a frequency range of 540 to 1725 kilocycles. The model 52 is a dual band chassis covering frequency ranges of 540 to 1700 kilocycles and 1600 to 3500 kilocycles. The model 53 is a split band chassis covering frequency ranges of 540 to 1725 kilocycles and 5 to 16.5 megacycles.

SUGGESTED SERVICE PROCEDURE

If the set does not operate test all tubes. If no tube tester is available replace the tubes in the set, one by one, with tubes known to be good. A noisy tube cannot always be found by checking in a tube tester, however by sharply tapping each of the tubes in the set the bad tube can usually be located.

If, after replacing any defective tubes, the set is still inoperative follow the instructions given under Resistance and voltage analysis.

ALIGNMENT PROCEDURE

Proper adjustment of the tuned circuits will only be possible thru the use of a good service oscillator and output meter. The gang condenser plates are properly adjusted in the factory and under no condition should it be necessary to bend them.
All adjustments should be made with the volume control full "on'". The wave band switch on models 52 and 53 should be in the broadcast position.

1. Supply a 456 kilocycle signal to the grid of the $2 A 7$ thru a .00005 Mfd. condenser. Carefully adjust both trimmers on the first I. F. transformer. The center screw will peak the grid side and the hexagon nut will peak the plate side. Next adjust the second I. F. transformer in the same manner. Since these adjustments are very critical it is advisable to go back over them to make sure they are correct.
2. Turn the gang condenser until it is fully meshed. The dial should read 540 kilocycles, if it is incorrect loosen the set screw and move the dial until the reading is correct.
3. Supply a 1500 . kilocycle signal from the test oscillator to the antenna of the set. Tune the set until the dial reads 1500 kilocycles. Adjust the trimmer on the oscillator section of the gang condenser (front section) until the signal comes in at 1500 on the dial. Adjust the trimmer on the R. F. section, of the gang condenser, for maximum output with minimum input from the service oscillator. Some sets do not have a trimmer on the oscillator section and in this case it will only be necessary to adjust the R. F. trimmer for maximum output with the set tuned to the correct frequency reading.
4. On the model 53 a low frequency padding condenser will be found located on the front of the chassis. To adjust this condenser tune the set and the service oscillator to 600 kilocycles. Adjust the padding condenser for maximum output at the same time tune the set back and forth across the 600 kilocycle signal to make sure the correct peak is obtained.
5. If all adjustments have been carefully made the dial readings will be approximately correct on all frequencies If not it will be necessary to go over the entire procedure again.
6. On models 51 and 53 it will sometimes be necessary to make high frequency adjustments at 1200 kilocycles rather than 1500 in the event police calls do not come in properly after alignment
7. On the model 53 a small trimmer condenser will be found under the chassis and connected across the secondary of the short wave R. F. coil. This condenser should be peaked at 16 megacycles. Turn the band selector to the short wave position and tune the set to 16 megacycles. Supply a 16 megacycle signal to the antenna and adjust the trimmer for maximum output. If no oscillator, supplying a 16 megacycle signal, is available it may be possible to pick up the tenth harmonic of the 1500 kilocycle signal (15 megacycles) from a standard service oscillator. If neither is available it will be necessary to use the signal from a short wave station, near 16 megacycles, or adjust for maximum noise level.

COLOR CODES

SHORT WAVE COIL ASSEMBLY MODEL 53

ANTENNA COIL

White-Antenna Other End-Ground

OSC. PLATE COIL Blue Plate Red B Plus

OSC. GRID COIL
Green-Grid
Other End-Ground
RF GRID COIL
Green and White-Grid
Black and White-Grid Return

CONDENSER BY-PASS CAN ASSEMBLY

POWER TRANSFORMER FIRST I. F. TRANSFORMER

Black (two) 2.5 Volts
Brown (two) PRIMARY
Yellow (two) 5. Volts
Blue-P-2A7

Green (two) High Voltage
Red-B PLUS

Red C: T. High Voltage

SECOND I. F. TRANSFORMER

Blue-Plate
Red-B PLUS
Green-Diode Plates
Black and White-Diode Plate Return
The inner screw on the adjustment condenser is the grid adjustment. The outer hex nut is the plate adjustment.

STANDARD RMA
 RESISTOR AND CONDENSER COLOR CODE

0-Black 2-Red
1-Brown 3-Orange
4-Yellow 6-Blue
5-Green \quad 7-Purple
8-Grey

RESISTORS

The body color represents the first figure of the resistance value.
The end color represents the second figure of the resistance value.
The dot color represents the number of ciphers following the first two figures.

MICA CONDENSERS

The first dot on the condenser represents the first figure of the capacity.

The second dot on the condenser represents the second figure of the capacity.

The third dot on the condenser represents the number of ciphers following the first two figures.

PAGE. 5-4 FAIR.-MORSE

MODEL 51,52,53 Series

 VoltageFAIRBANKS-MORSE HOME APP., INC.

RESISTANCE AND VOLTAGE ANALYSIS

Abstract

The following chart gives detailed information regarding the resistance from various points to various other points on the chassis. The measured voltage from the various tube socket contacts to ground is also given. When this chart is faithfully followed little dificulty should be experienced in finding almost any fault that may develop.

Resistance Tests. These tests should be made with an accurate ohm-meter. The speaker should be connected. All tubes should be removed from the set. The volume and tone controls should be full "on". The A. C. line plug must be removed from the A. C. outlet

Voltage Tests. These readings should be taken with all tubes in their sockets. The volume and tone controls should be full "on". The antenna should be disconnected. Tune the set to a point where no signal is received.

RESISTANCE AND VOLTAGE ANALYSIS CHART

FROM	TO	MODEL	*VOLTS	1 +OHMS	POSSIBLE FAULTY UNITS
K-2A7	GND	51-52	2.5	150	C-16 R-3
		53	2.5	300	C-8 R-3
OSC G 2A7	K 2A7	51-52-53	...	50M	R-2
OSC P 2A7	GND /	51.52	135	95M	$\begin{array}{llll} \text { R-1 } & \text { R-4 } & \text { R-5 COIL } \\ \text { C-4 } & \text { C-11 } & \text { C-24 } & \text { C-25 } \end{array}$
		53	170	80M	$\begin{array}{l\|cccc} \hline \text { R-1 } & \text { R-4 } & \text { R-5 } & \text { COIL, } & \text { SWITCH, } \\ \text { C-4 } & \text { C-11 } & \text { C-24 } & \text { C-25 } & \text { C-27 } \end{array}$
CG-2A7	GND	51-52	0	1.5 MEG	$\begin{array}{lll} \hline \text { R-6 } & \text { R-9 } & \text { COIL (SWITCH 52) } \\ \text { C-5 } & \text { C-17 } & \text { C-18 } \end{array}$
		53	0	1.5 MEG	R-6 R-7 R-8 COIL, SWITCH, C-5 C-17 C-18
P 2A7	GND	51-52-53	205	70M	$\begin{aligned} & \text { R-1 R-5 COIL, C-4 C-11 } \\ & \text { C-24 C-25 C-27 } \end{aligned}$
SG 2A7	GND	51-52-53	85	50M	R-1 C-4
K 58	GND	51-52	2.5	150	C-16 R-3
		53	2.5	300	C-16 R-15
SG 58	GND	51-52-53	85	50M	R-1 C-4
CG 58	GND	51-52	0	1.5 MEG	$\begin{aligned} & \text { R-6 R-9 COIL, (SWITCH 52) } \\ & \text { C-5 C-17 C-18 } \end{aligned}$
		53	0	1.5 MEG	$\begin{array}{llll} \text { R-6 } & \text { R-7 } & \text { R-8 COIL, SWITCH, } \\ \text { C-5 } & \text { C-17 } & \text { C-18 } \end{array}$
P 58	GND	51-52-53	205	70M	$\begin{array}{llll} \text { R-1 R-5 COIL, C-4 C-11 } \\ \text { C-24 } & \text { C-25 C-27 } \end{array}$
DP 2A6	GND	51-52-53	500M	C-17 C-18 R-7 R-8
C 2A6	GND	51-52	0	500M	R-7 C-17 (VOLUME CONTROL "GN")
		53		500M	R-9 C-17 (VOLUME CONTROL "ON")
P 2A6	GND	51-52-53	$\begin{array}{r}85 \\ -\quad \\ \hline\end{array}$	320M	```R-1 R-5 R-10 C-4 C-19 C-24 C-25 C-27```
K 2A6	GND	51.52	. 8	5M	R-8 C-8
		53	. 125	300	R-8
P 2A6	G 2A5	51-52-53	\cdots	820M	C-20
K 2A5	GND	51-52-53	0	0
G 2A5	GND	51-52-53	0	500M	R-11 R-14 C-23
SG 2A5	GND	51-52-53	\bigcirc	70M	C-4 C-24 C-25 C-27 R-1 R-5
SG 2A5	P 2A5	51-52-53	...	600	C-21 PRI. OUTPUT TRANSFORMER
P 2A5	GND	51-52-53	195	70600	R-1 R-5 C-4 C-22 C-24 C-25 C-27 PRI. OUTPUT TRANSFORMER
F 80	GND	51-52-53	205	70M	R-1 R-5 C-4 C-24 C-25 C-27
P 80	GND	51-52-53	80	$\begin{aligned} & 2250 \\ & 2275 \end{aligned}$	CPEN H.V. SECONDARY, FIELD SHORTED. H.V. SECONDARY, FIELD
ANT	GND	51-52-53	\ldots	26	ANT. COIL PRIMARY
AC PLUG	GND	51-52-53	OPEN	C-26 (SWITCH "ON")

*VOLTAGE AS MEASURED WITH 1000 OHM PER VOLT WESTON METER.
*+VARIATIONS OF 10% PLUS OR MINUS ARE ALLOWABLE ON ALL READINGS.
\dagger IF SOME RESISTANCE READINGS ARE LOW TRY REVERSING POLARITY OF OHM-METER.

FAIR.-MORSE PAGE 5-7 MODEL (70),7014, FAIRBANKS-MORSE HOME APP., INC. 7040,7052 Schematic, Coil Date

[^1]FIGURE 2
Power Transformer
Primar
.Two White Leads
6.3 Volt Filament....................................Two Black Leads

4 Mfd. 300 Volt
Dry Electrolytic Condenser
(EL-18)

...................... Red and White

Black Lead
C.T. High Voltage. Green and Yellow

COIL RESISTANCE VALUES
(Refer to Figure 5 for reference point numbers)

COIL	FROM	TO	D. C. RESISTANCE
Antenna	Top Lug	$\cdot 3$. 13 Ohm
	3	, 2	. 02 Ohm
	2	4	.04 Ohm
	5	6	3.5 Ohms
	6	4	1. Ohm
	1	8	3. Ohms
	8	9	5.75 Ohms
R. F. First Detector	Top Lug	3	. 08 Ohm
	3	2	.03 Ohm
	2	7	. 025 Ohm
	7	4	. 025 Ohm
	5	6	3.6 Ohms
	6	4	1. Ohm
	1	9	19. Ohms
Oscillator	9	8	$6 \quad \mathrm{Ohm}$
	1	3	. 02 Ohm
	3	4	. 06 Ohm
	4	7	. 9 Okm
	7	5	4.5 Ohms

MISCELLANEOUS RESISTANCES

Power Transformer

```
Primary Winding .............. 6, Ohms
6.3 Volt Winding ................ . . . 12 Ohm 5. Volt Winding . ................ . . 14 Ohm
```


COILS AS SHOWN ON SCHEMATIC DIAGRAM

BOTTOM VIEW OF COILS IN SET.

FIGURE 5

PAGE 5-8 FAIR.-MORSE
MODEL (70),7014,
7040,7042
FAIRBANKS-MORSE HOME APP., INC.
Alignment, Parts

DISTORTIONLESS AUTOMATIC VOLUME CONTROL
Full automatic volume control. detection, and audio amplifica-
tion are obtained through the use of a 6B7 tube. The diode plates of the tube are connected together to form a half wave
rectifier. Due to the characteristics of this portion of the tube, rectifier. Due to the characteristics of this portion of the tube,
current flows from the cathode to the diode plates and through current flows from the cathode to the diode plates and through the secondary of the secord I.
 bias on the 6A7 and two of the 6D6 tubes to produce automatic
volume control. The magnitude of this voltage is dependent on the strength of the incoming signal carrier. This circuit has been carefully designed so that no delay is present. This avoids any possibility of audio distortion. $R-3$; $R-10 ;$ and $R-13$ are de-
coupling resistors. $C-7$; $C-9$; and $C-15$ are R. By -pass condensers, to provide a direct path to ground for signal currents. Resistor R-14 and condensers C-20 and C-22 form a filter circuit to remove extraneous noises from the rectified current.
The audio component of the voltage drop across resistor R-15
is taken off through condenser $\mathbf{C - 2 3}$ and is applied to the grid of is taken off through condenser C-23 and is applied to the grid of

ALIGNMENT PROCEDURE

To insure the performance this set is capable of delivering the following instructions should be car
Proper adjustment of the tuned circuits will only be possible through the use of a reliable, all wave, service oscillator and tested in our laboratories and found satisfactory for use in aligning the model 70. The new Clough-Brengle, continuously variable, Model OC manufactured by the Clough-Brengle Company, 1134 West Austin Avenue, Chicago, Illinois, was very sat isfactory. The Triumph Universal, Model 100 built by the
Triumph Manufacturing Co., 4017 West Lake Street, Chicago, Triumph Manufacturing Co., 4
"All adjustments should be made with the volume control full tained by adjusting the output of the service oscillator.

I. F. ALIGNMENT

All Intermediate Frequency alignment adjustments must be made with the band selector switch in the broadcast position (Band Number One).

1. Supply a 456 Kilocycle signal, from an accurate service oscillator, to the grid of the $6 A 7$ tube. A small condenser, about
00005 Mf . (50 Mmfd), should be connected in series with the oscillator lead to prevent the characteristics of the oscillator circuit from affecting the I. F. transformer.
2. Adjust the grid side (the certer screw, Figure 3) of the
first I. F. transformer, carefuliy, for maximum output with minimum input from the service oscillator.
3. Adjust the plate side (the hexagon nut, Figure 3) of the
first I. F. transformer, carefully, for maximum output with minimum input from the service oscillator.
4. Repeat steps 2 and 3 on the second I. F. transformer.
5. Much of the sensitivity and selectivity of the receiver depend upon the proper setting of these critical adjustments, for this reason it is
they are correct

ANTENNA, R.F. FIRST DETECTOR, AND OSCILLATOR
The adjustment condensers for the antenna, R.F. first detector, and oscillator stages are located in the same shields that house the coils for these stages. These coils are contained in the three large aluminum shield cans located to the right of the gang condenser, on the chassis. Four holes are located in the adjusting screw is accessible.
On each coil the upper screw is for band number one (5301500 (1500-4200 Kilocycles). The third screw, from the number two is for band number three (4.17-12 Megacycles). The fourth top, is for band number is the top, is for band number four ($9.5-24$ Megacycles).

The first shield, from the front of the chassis, contains the oscillator coil. The second shield, from the front of the chassis, contains the R.F. first de
contains the antenna coil. serve the same purpose as the small trimmers usually found on the gang condenser of a strictly broadcast receiver. Since this set covers four wave bands, four separate trimmers are necessary for each stage. A non-metanic t
ing adjustments on these condensers.

BAND NUMBER ONE

(530-1500 Kilocycles)

1. Supply a 1500 Kilocycle signal to the antenna of the set. Turn the gang condenser all the way out of mesh. Adith minioscillator input from the service oscillator.
2. Supply a 1400 Kilocycle signal to the antenna of the set. Tune the gang condenser maximum output with minimum input from the service oscillator. Adjust the antenna trimmer for maximum output with minimum input from the service maxillator.
3. Supply a 600 Kilocycle signal to the antenna of the set. Tune the gang condenser to 600 Kilocycles. Adjust the upper gection ($\mathrm{C}-47$, Figure 4) of the low frequency padding condenser for maximum output with minimum input from the sèrvice oscillator. At the same time rock the gang condenser back and forth across the signal to make sure the correct peak is the right front side of the chassis.

BAND NUMBER TWO

(1500-4200 Kilocycles)

1. Supply a 4200 Kilocycle signal to the antenna of the set. oscillator trimmer condenser for maximum output with minioscillator trimmer condenser for maxi
2. Supply a 3900 Kilocycle signal to the antenna of the set.
Tune the gang condenser to 3900 Kilocycles. Adjust the R.F. furst detector trimmer for maximum output with minimum input
Adjust the antenna trimmer for maximum output with minimum input from the service oscillator.
3. Supply a 1650 Kilocycle signal to the antenna of the set. mection (C-46, Figure 4) of the low frequenc. Adjust the lower for maximum output with minimum input from the service oscillator. At the same time rock the gang condenser back and forth across the signal to make sure the correct peak is obtained. front side of the chassis.

BAND NUMBER THREE

(4.17-12 Megacycles)

1. Supply a 12 Megacycle signal to the antenna of the set. Turn the gang condenser all the way out of mesh. Adjust the oscim input from the service oscillator.
2. Supply an 11 Megacycle signal to the antenna of the set. Tune the gang condenser to 11 Megacycles. Adjust the R.F. first detector trimmer for maxi
Adjust the antenna trimmer for maximum output with minimum input from the service oscillator.

BAND NUMBER FOUR

(9.5-24 Megacycles)

1. Supply a 24 Megacycle signal to the antenna of the get. oscillator trimmer condenser for maximum output with mini mum input from the service oscillator.
2. Supply a 22 Megacycle signal to the antenna of the set. detector trimmer for maximum output with minimum input from the service oscillator.
Adjust the antenna trimmer for maximum output with minimum input from the service oscillator.

GANG CONDENSER PLATES

 The adjustment of the various plates of the gang condenser isvery critical since it must be accurate on four bands. These adjustments are made in the factory with precision équipment and under no conding plates.

DIAL CALIBRATION
Tune in a weak station of known frequency, on the low frequency end of the broadcast band. If the reading on the dial scale is incorrect, loosen the set screw on the hub of the dial. This should be done in such a manner as not to disturb the set. ting of the gang condenser. After the station comes in at the correct frequency tighten the set screw. Part
Number
14516

Description

.1 Tubular Condenser (C-1, C-4, C-6, C-11, C-29)

C-305	.0002 Mica Condenser Wire Lead (C-20, C-22). . . . 20
C-310	. 00005 Mica Condenser Wire Lead (C-10)......... . 20
R-5004	Travelite Unit 50 Ohms (Wirewound) (R-24)........ . 50
V-6508	250 M Volume Control (R-15) 80
V-6509	
R-816	100 Ohm 1/4 Watt Resistor (R-6) 20
R-846	
R-1146	
R-1191	100M Ohm $1 / 4$ Watt Resistor (R-21) (R-4 Early ${ }_{\text {Sets) }}$
R-1236	250M Ohm $1 / 4$ Watt Resistor (R-15, R-22)......... . 20
R-1266	500M Ohm $1 / 4$ Watt Resistor (R-13, R-17, R-18)... . 20
R-1296	1 Megohm $1 / 4 / \begin{aligned} & \text { Watt Resistor (R-20).............. } 20\end{aligned}$
R-1311	
R-1491	1M Ohm 1/2 Watt Resistor (R-3, R-12).............. . 20
R-1656	10M Ohm $1 / 2$ Watt Resistor (R-8, R-11)........... . 20
R-1896	1 Megohm $1 / 2$ Watt Resistor (R-10)................. .20
R-2286	15M Ohm 1 Watt Resistor (R-7)................... . 20
R-2856	10M Ohm 3 Watt Resistor (R-8, R-1i)............. . 30
14527	Antenna Coil Assembly in Can.................... 3.50
14528	R. F. First Detector Coil Assembly in Can. 3.50
14529	Oscillator Coil Assembly in Can.................. 3.50
14548	Antenna Choke Coil. 50
14549	R. F. Primary Coil. 75
14550	Oscillator Choke Coil. 1.00
14530	8 Inch D-16 Speaker . 12.00
14531	10 Inch D-19 Speaker $\underset{\sim}{19}$. 16.00
K-565	Knobs, Small, Round 7/8" Diameter. Each . 20
K-569	Knobs, Large, Round 11/8".................... Each . 20.

FAIRBANKS-MORSE HOME APP., INC.
MODEL (70)
7040,7042,7014
Socket, Trimmers

Parts View

FIGURE 4
STANDARD

$\begin{array}{lll}2 & \text { Red } & 4 \text { Yellow } \\ 3 \text { Orange } & \quad 6 \text { Glue } \\ 5 & \text { Green } & 7 \text { Purple }\end{array}$ Resistors
 The and Coior represents the second igure of the resistance

The Dot Color represents the number of ciphers following thirst two figures.
ficher
Mica Condensers
(Capacity in Micro-Microfarads)
The First Dot on the condenser represents the
The Firss Dot on the condenser represents the first figure of
The Second Dot on the condenser represents the second figure The Third Dot on the condenser represents the number of The colors on the condensers should be read from left to right
with the condenser in an upright position.

HUM

A ground is made to the A. C. line through a . 01 Mfd. condenser, connected to the primary of the power transformer. If a hum is noted in the set the A. C. plug side of the line to the grounded side of the set. In most cases the line ground is some distance from the wall outlet to which the set is connected, for this reason an external ground should be used.

WAVE BANDS

 The counter-clockwise (530-1500 Kilocycles); turning in a clockwise direction. the next position is Band Number Three (4.17-12 Megacycles); One Megacycle is 1000 Kilocycles .
TUBES AND CIRCUIT

New multi-purpose tubes are employed thereby giving perTV

 Several unique features will be found in this chassis. The
most unusual is that two radio frequency amplifier stages are employed on both of the higher frequency bands. Special 10 W

VOLTAGE ANALYSIS CHART
Voltage readings should be taken with all tubes in their sockets. The volume and tone controls should be full "on". The antenna should be disconnected. The blue wire and the blue and black wire should be twisted to the black wire.

FROM GROUND	MEASURED VOLTAGES**				METER $\dagger \dagger$	
	$\begin{gathered} \text { Band 1 } \\ 530-1500 \\ \text { Kilocycles } \end{gathered}$	$\begin{gathered} \text { Band 2 } \\ \text { 1500-4200 } \\ \text { Kilocycles } \end{gathered}$	$\begin{gathered} \text { Band } 3 \\ 4.17-12 \\ \text { Megacycles } \end{gathered}$	$\begin{gathered} \text { Band 4 } \\ 9.5-24 \\ \text { Megacycles } \end{gathered}$	Range in Volts	Resistance of Range In Ohms
1. Cath 1. Cathode	17	16	2.5	2.5	30	30,000
2. Suppressor	17	16	2.5	2.5	30	30,000
3. Screen	100	100	85	85	300	300,000
4. Plate	225	225	210	210	300	300,000
5. Heater	0	0	0	0	\ldots
6. Heater	6.15 A. C.	6.15 A. C.	6.15 A. C.	6.15 A. C.	\ldots
7. Grid	0	0	0	0	\cdots	\cdots
8. Cathode 6D6 R. F. Stage	3	3	2.5	2.5	30	30,000
9. Suppressor	3	3	2.5	2.5	30	30,000
10. Screen	100	100	85	85	300	300,900
11. Plate	225	225	210	210	300	300,000
12. Heater	0	0	0	0
13. Heater	6.15 A. C.	6.15 A. C.	6.15 A. C.	6.15 A. C.	\ldots	\ldots
14. Grid	0	0	0	0	\cdots	\ldots
15. Catha7 Converter Cathode*	2.8	3	3.5	4	30	30,000
16. Osc. Grid G1*	-6.5	-3	2	2	30	30,000
17. Osc. Plate G2	180	175	150	130	300	300,000
18. Screen G3-G5	100	100	85	85	300	300,000
19. Plate	235	235	230	230	300	300,000
20. Heater	6.15 A. C.	6.15 A. C.	6.15 A. C.	6.15 A. C.
21. Heater	0	0	0	0	\ldots	\ldots
22. Grid	0	0	0	0	\cdots	\ldots
23. Cathode	2.5	2.5	2	2	30	30,000
24. Suppressor	2.5	2.5	2	2	30	30,000
25. Screen	100	100	85	85	300	300,000
26. Plate	235	235	230	230	300	300,000
27. Heater	6.15 A. C.	6.15 A. C.	6.15 A. C.	6.15 A. C.	\ldots	\ldots
28. Heater	0	0	0	0	\cdots
29. Grid	0	0	0	0	\cdots	\ldots
6B7 Det. and A. F. Cathode	0	0	0	0	\ldots	\ldots
31. Diode Plate	0	0	0	0
32. Diode Plate	0	0	0	0	\ldots
33. Screen	30	30	27.5	27.5	300	300,000
34. Plate	35	35	35	35	300	300,000
35. Heater	0	0	0	0	\ldots
36. Heater	6.15 A. C.	6.15 A. C.	6.15 A. C.	6.15 A. C.	\cdots	\ldots
37. Grid	\ldots	\ldots	\ldots
38. Cathode 42 Output	0	0	\% 0	0	\cdots
39. Grid	-1	-1	-1	-1	30	30,000
40. Screen	235	235	230	230	300	300,000
41. Plate	225	225	220	220	300	300,000
42. Heater	0	0	0	0	\ldots	\ldots
43. Heater	6.15 A. C	6.15 A. C	6.15 A. C.	6.15 A. C.	\ldots	\ldots
44. Plate ${ }^{80}$ Rectifier	-130	-130	-135	-135	300	300,000
45. Plate	-130	-130	-135	-135	300	300,000
46. Filament	235	235	230	230	300	300,000
47. Filament	235	235	230	230	300	300,000
	A. C. Line- 115 Volts					.

[^2]FAIR.-MORSE PAGE 5-11
FAIRBANKS-MORSE HOME APP., INC. RESISTANCE ANALYSIS CHART Voltage Data
These tests should be made with an accurate ohm-meter. The speaker must be connected. All tubes must be removed from the set. The volume and tone controls should be full "on"'

FROM \dagger	TO	Resistance In Ohms*	If Reading. Differs More Than 10% Plus or Minus From Stated Value Check These Parts
6D6 Ant. Stage 1. Cathode	Ground	300	C-1; R-1; Switch (switch must be on Band 3 or 4)
2. Suppressor	Ground	300	C-1; R-1; Switch (switch must be on Band 3 or 4)
3. Screen	Ground	15,000	C-4; C-16; C-52; C-28; C-30; C-26; C-27; C-17; C-18; C-12; R-7; R-11; R-12
4. Plate	Ground	26,000	C-5; C-8; C-17; C-18; C-28; C-30; C-16; C-4; C-52; R-12; R-11; R-7; Plate Choke
5. Heater	Ground	0	Open Ground
6. Heater	Ground	0	Filament Winding; Travelite
7. Grid	Ground	10	Antenna Choke; R. F. Primary
6D6 R. F. Stage 8. Cathode	Ground	300	C-6; R-2
9. Suppressor	Ground	300	C-6; R-2
10. Screen	Ground	15,000	C-4; C-16; C-52; C-28; C-30; C-26; C-27; C-17; C-18; C-12; R-7; R-11• R-12
11. Plate	Ground	26,000	C-5; C-8; C-17; C-18; C-28; C-30; C-16; C-4; C-32; R-12; R-11; R-7; Coil Primary
12. Heater	Ground	0	Open Ground
13. Heater	Ground	0	Filament Winding; Travelite
14. Grid	Ground	1.75 Meg.	C-7; C-9; C-15; C-22; R-3; R-10; R-13; R-15; Coil; Switch
6A7 Converter 15. Cathode	Ground	300	C-11; R-5
16. Osc. Grid G1	Ground	50,300	C-10; C-11; R-4; R-5 (100,000 on early production)
17. Osc. Plate G2	Ground	36,100	$\begin{gathered} \text { C-13; C-17; C-18; C-28; C-30; C-52; C-26; C-27; C-16; C-4; C-12; R-8; R-6; R-12; R } 11 \text {; } \\ \text { R-7; Coil; Choke; Switch } \end{gathered}$
18. Screen G3-G5	Ground	15,000	C-4; C-16; C-52; C-28; C-30; C-26; C-27; C-17; C-18; C-12; R-7; R-11; R-12
19. Plate	Ground	25,000	C-52; C-28; C-30; C-16; C-4; C-17; C-18; C-26; C-27; R-11; R-7; R-12; I. F. Primary
20. Heater	Ground	0	Filament Winding
21. Heater	Ground	0	Open Ground
22. Grid	Ground	1.75 Meg.	C-7; C-9; C-15; C-22; R-10; R-13; R-15; Coil; Switch
6D6 I. F. Stage 23. Cathode	Ground	300	C-14; R-9
24. Suppressor	Ground	300	C-14; R-9
25. Screen	Ground	15,000	C-4; C-16; C-52; C-28; C-30; C-26; C-27; C-17; C-18; C-12; R-7; R-11; R-12
26. Plate	Ground	25,000	C-52; C-28; C-30; C-16; C-4; C-17; C-18; C-26; C-27; R-11; R-7; R-12; I. F. Primary
27. Heater	Ground	0	Filament Winding; Travelite
28. Heater	Ground	0	Open Ground
29. Grid	Ground	750,000	C-15, C-22; R-13; R-15; I. F. Secondary
6B7 Det. and A. F. 30. Cathode	Ground	0	Connection
31. Diode Plate	Ground	300,000	C-20; C-22; C-23; R-14; R-15; I. F. Secondary
32. Diode Plate	Ground	300,000	C-20; C-22; C-23; R-14; R-15; I. F. Secondary
33. Screen	Ground	2 Meg .	C-21; R-16; R-12; R-11; R-7
34. Plate	Ground	526,000	C-24; C-5; C-8; C-17; C-18; C-28; C-30; C-16; C-4; C-32; R-17; R-12; R-11; R-7
35. Heater	Ground	0	Open Ground
36. Heater	Ground	0	Filament Winding; Travelite
37. Grid	Ground	1.1 Meg.	C-23; C-29; R-20; R-21
42 Output 38. Cathode	Ground	0	Connection
39. Grid	Ground	800,000	C-24; C-25; C-29; R-18; R-21; R-22; R-23; Field
40. Screen	Ground	25,000	C-30; C-28; C-52; C-16; C-4; C-26; C-27; C-17; C-18
41. Plate	Ground	25,450	C-26; C-27; C-30; C-28; C-52; C-16; C-4; C-17; C-18; Output Transformer
42. Heater	Ground	0	Open Ground
43. Heater	Ground	0	Filament Winding; Travelite
80 Reetifier 44. Plate	Ground	1,675	High Volgage Secondary; Field
45. Plate	Ground	1,675	High Voltage Secondary; Field
46. Filament	Ground	25,000	C-30; C-28; C-52; C-16; C-4; C-26; C-27; C-17; C-18
47. Filament	Ground	25,000	C-30; C-28; C-52; C-16; C-4; C-26; C-27; C-17; C-18
Miscellaneous 48. A. C. Line	Ground	Open	C-19; Primary; Switch
49. A. C: Line	Ground	Open	C-19; Primary; Switch
50. Ant. (Blue)	Ground	0	Antenna Choke; R. F. Primary
51. Doublet (Blue \& Black)	Ground	0	R. F. Primary
52. Ground (Black)	Ground	0	Connection
48. A. C. Line.	49. A. C. Line	6	Primary; Switch; A. C. Cord; Plug
44. Plate 80	45. Plate 80	350	High Voltage Secondary
46. Fil. 80	Fil. 80	0	Rectifier Filament Winding

PAGE 5-12 FAIR.-MORSE
MODEL 346,B-6
MODEL 347
Schematics, Voltage
Socket

VOLTAGE CHART

The following chart gives the voltages and plate currents of all the tubes when the set is in operating condition, but with no signal being received. A thousand ohm-per-volt meter of the $0-250$ volt type is used for all voltage readings.

Type of Tube	Function	Heater Voltage	Plate to Ground	Screen to Ground	Grid to Ground	Normal Plate M.A.
6D6	R. F:	6.1	230	100	1b	5
6A7	1st Det.		230			2.5
	and Osc.	6.1	230 a	100	1 l	5.5 a
6D6	I. F.	6.1	230	100	1b	5
75	2nd Det.					
	1st Audio	6.1	120			.3
41	Output	6.1	215	230	10 c	15

VOLTAGES

Tolerances of about 10% plus or minus are allowable on the following list of measured voltages. In the event all voltages are low try replacing the 2525 rectifier tube or vibrator. All measurements are made to ground except on filament voltage.

205	0	120
205	0	120
205	0	120
120	0	-
185	0	-
45	0	-
205	each	0
-	-	-
ALIGNMENT	PROCEDURE	

If the set is weak or broad it is possibly out of alignment and the following adjustments should be made.

1. A 177.5 kilocycle signal, from a good service ascillator, should be supplied to the grid of the 39 first detector tube thru a small condenser (. 00005 MFD). The trimmers on the first and second I. F. transformers should be adjusted for maximum output with minimum input from the service oscillator. The first I. F. transformer is located at the left of the chassis and the second I. F. at the right of the chassis, viewed from the front. These trimmers may be reached from the bottom of the chassis.
2. Supply a 1500 kilocycle signal to the antenna of the set. Tune the dial to 1500 kilocycles. Adjust the trimmer on the oscillator section of the gang condenser (the rear section) for maximum output with minimum input from the service oscillator.
3. Adjust the trimmers on the R. F. and first detector sections of the gang condenser for maximum output with minimum input from the service oscillator.

Part

Number
R-5005 10 Ohm Resistor Wire Wound R-5006 100 Ohm Resistor Wire Wound R-144.6 300 Ohm Resistor 1/2 Watt R-1506 1500 Ohm Resistor 1/2 Watt R-921 2000 Ohm Resistor 1/4 Watt R-1521 20000 hm Resistor $1 / 2$ Watt R-1581 5000 Ohm Resistor 1/2 Watt R-1746 50,000 0hm Resistor 1/2 Watt R-2346 50,000 Ohm Resistor 1 Watt $\mathrm{R}-1236$ 250,000 Ohm Resistor 1/4 W. R-1836 250,000 0hm Resistor 1/2 W. 14611 Dial Assembly Complete
V-6511 Volume Control
V-6512 Tone Control
SW-6102 Switch
$\begin{array}{ll}\frac{\text { PARTS LIST }}{\text { Part }} & \text { Description } \\ \text { Number } & \text { of Part }\end{array}$
of Part

R-1896 1 Megohm Resistor 1/2 Watt C-304 500 MIFD. Moulded Condenser C-311 EC-I EC-3 .02 MFD. Condenser Tubular 400 V . EC-4 .05 MFD. Condenser Tubular 400 V . EC-5 . 1 MFD. Condenser Tubular 300 V. EC-6 . 25 MFD. Condenser Tubular 400 V . EC-7 .25 MFD. Condenser Tubular 300 V . EL-6 5. MFD. Cond. Tub. Electrolyt. 25 V . EL-9 8. MFD. Cond. Tub. Electrolyt, 250V. 14601 Power Transformer 14602 Vibrator Assembly 14603 Filter Choke 14604 Antenna Coil

FEDERATED PAGE 5-1 MODEL 8ca
Schematic,Voltage MOD KL 7-A,13~A,24~A
Schematic, Voltage
FEDERATED PURCHASER

SOCKET VOLTAGE ANALYSIS OF MODEL 8-A
Line Voltage 110

TUBE	STAGE	$E p$	$E g$	$E k$	$E s g$	$E s u g$	$I p$	$E p-0$	$E g-0$	$I p-O$
$6 A 7$	Osc-Det.	105	2.4	20	38		1	92	1	3

78	I-F.	105	2.1	20	105	0	6.5
77	2 Det.	35	15	18	.6	1.4	.1

43 Output $100 \quad .3 \quad 1819$
25Z5 Rectif. 110* 110** 37*

* per plate ** per cathode Vol. Cont. E'ull On O-Oscillator

PAGE 5-2 FEDERATED
MODEI 6-A,12-A
Schematic
FEDERATED PURCHASER
MODEL 14-A

SOCKET	Line Voltage - 107 \%						
TUBE	STAGE	Ep	Eg	EFk	Esg	Esug	Ip
58	R-F	190	. 3	2.9	83	0	6
58	1 Det.	190	-3	7	78	0	2
56	Osc.	83	-3	0			4.5
58	I-F.	190	-3	2.9	83	0	5.5
55	Diode	36	-2	0	-2**		2
56	A-F.	198	. 2	10			5
53	Output	292*	0	0			12*
80	Rectif.	292*					37*
* per	plate	**Diode voltage			Vo.Cont.Full On		

FEDERATED PAGE 5-3

FEDERATED PURCHASER

MODEL 32-A,36-A

 Alignment, Voltage
FEDERATED PURCHASER

TABLE OF VOLTAGES
Line Voltage - 115 Volts - 60 Cycles AC Interchannel Noise Suppressor Set for Maximum Sensitivity

Position	Tube	Plate	Screen	Cathode
FF	$6 D 6$	100	60	0
MOD	$6 D 6$	100	60	0
OSC	37	100	0	
IF	6 D 6	100	100	0
DET	85	20		0
PHASE REVERSER	37	20	100	0
OUTPUT	43		$1-2 V$	

Above voltage's measured with 0-250 V--1000 ohm per volt DC Voltmeter Drop ACROSS CHOKE - 18 Volts Drop ACROSS SPEAKER FIELD -
When operated on 115 Volts $D C$ or 25 cycle $A C$ the above voltages will be slightly lower FILAMENT VOLTAGES

2575	-	25	Volts	-	AC	or	DC
43	-	25	"	-	AC	"	DC
6D6	-	6.3	"	-	AC	"	DC
37	-	6.3	"	-	AC	"	DC
85	-	6.3	Volts	-	AC	"	DC

ALIGNNENT PROCEDURE

Should it ever become necessary to realign the $R F$ and $I F$ circuits, the procedure outlined below should be followed.

1. Apply a modulated 175 Kilocycle signal to the grid of the modulator (lst detector) tube and align the four dual trimmer adjustments in the top of the IF transformer cans for maximum output from the receiver.
2. With the band switch knob in the 530-1500 Kilocycle or clockwise position, and the tuning dial set to 1400 Kilocycles, apply a 1400 Kilocycle signal at the antenna and adjust the three trimmer screws on the gana condenser for maximum output from the receiver.
3. Apply a 600 Kilocycle signal at the antenna and track the oscillator by varying the nut adjustment on the oscillator padding condenser and returning the dial until maximum response is obtained. This adjustment should be made disregarding calibration.
4. With the band switch in the short wave or counter-clockwise position and the dial set to 3.6 Megacycles, apply a 3600 Kilocycle signal at the antenna and align the three trimmers in the top of the short wave coil cans for maximum response.
5. Apply a 1600 Kilocycle signal at the antenna and track the oscillator as at 600 Kilocycles in the broadcast band by adjusting the slotted screw adjustment on the oscillator padding condenser.

Suitable harmonies of a broadcast oscillator may be used for alignment purposes in the short wave band.

At all steps in the aligning procedure, the output should be kept only as high as is necessary for good alignment but the output should always be lowered by decreasing the input to the receiver, never by reducing the volume control setting. The volume control should be at maximum setting during any adjustments of the RF and IF circuits. A suitable output meter should be connected across the speaker voice coil to indicate the correct adjustment for maximum response.

FEDERATED PURCHASER

ALIGNMENT PROCEDURE

1. Apply a modulated 456 KC . signal to the grid of the modulator tube and align the four dual trimmer adjustments in the top of the I-F. transformer cans for maximum output from the receiver.
2. Apply a 600 KC . signal at the Antenna and track the Oscillator by varying the nut adjustment on the Oscillator Padding Condenser and turning the dial until maximum response is obtained. This adjustment should be made disregarding calibration.

During the aligning procedure, the output should be kept only as high as is necessary for good alignment, but the output should ALWAYS BE LOWERED by decreasing the input to the receiver, NEVER by reducing the Volume Control setting. The Volume Control should be set at maximum during any adjustments of the R-F. and I-F. circuits. A suitable output meter should be connected across the speaker voice coil to indicate the correct adjustment for maximum response.

TABLE OF VOITAGTS

TUBE	FUNCTION	GRID	PLATE	SCREEN
58	Osc.lst Det.	-2.5	60	60
58	IF	-2.0	250	75
57	2nd Det.	-3.5	75	6
47	Output	-5.0	210	225

80 Rectifier Filament to Ground 325 wis.

Line:ll5 volts, 60 cycles

FILAMENT

2.5
2.5
2.5
2.5
5.0

PAGE 5-6 FEDERATED

MODEL 39-A,43-A,44-A, 86,87

Schematic, Voltage, Trimners,Socket

Alignment
IN ALL GANGING OPERATJONS USE THE WEAKEST SIGNAL THAT WILI, GIVE A SATISFACTORY INDICATION ON THE OUTPUT METER, AND TURN THE VOLUME 立 TONE CONTROLS TO THEIR MAXIMUM POSITIONS (clockwise).

The I.F. trimmer adjustments are carefully made at the factory and should not be tampered with unless a thorough investigation definitely proves the I.F. amplifier to be o.t fault, in that event:-
(1) Attach the output meter from plate to screen of $2 A 5$ tuhe.
(2) Feed the signal from the local oscillator tuned to exactly 485 kc . into the receiver at the control grid of the first detector, providing a D.C. path from the point to ground. (3) Adjust the I.F. trimmers to give maximum indication on the output meter. There are three I.F. transformers, each with two screw adjustments. On the early models these adjustments are on the bottom of the transformers, accessible from the under side of the chassis. On the later models these adjustments are on the top of the transformers.
(4) NEXT-feed the 485 kc . signal in at the anterna post, replacse the first detector grid cap, and adjust the ware trap condenser for MINIMUM indication on the output meter. This adjustment is a $\frac{1}{4}$ hex nut on a two plate trimmer under the chassis, below the gang condenser, near the band switch.
(1) Set the dial to the point where a station (or oscillator) of known frequency, about 1400 kc .,should come in.
(A) Set Band switch to band 1 (top scale).
(B) Adjust oscillator trimmer (screw adjustment, top-rear of gang condenser) until desired signal is heard. There will be two peaks in adjusting this trimmer. The peak obtained with the loosest trimmer setting is correct.
(2) Repeat operation 1 at, or near, 550 kc, , using band 1 .
(A) Adjust oscillator pad (fourth adjustment from right,
on rear of chassis pan) until desired signal is heard.
(3) Repeat operation 1 at, or near, $1450 \mathrm{kc} .$, using band 2.
(A) Adjust oscillator pad (third adjustment from right on rear of chassis pan) until the desired signal is heard. (4) Repeat operation 1 at, or near, $3500 \mathrm{kc} ., \mathrm{using}$ band 3. (A) Adjust oscillator pad (second adjustment from right on rear of chassis pan) until the desired signal is heard.
(5) Repeat operation 1 at, or near, $8500 \mathrm{kc} ., \mathrm{using}$ band 4. (A) Adjust oscillator pad (extreme right adjustment on rear of chassis pan) until the desired signal is hearde

TO ALIGN (or gang) THE R.F. CJRCUITS
(1) Sot the dial to $1400 \mathrm{ko} .$, using band 1.
(A) Attach oscillator, tuned to set, to antenna post.
(B) Attach output meter from screen to plate of 285 tube.
(C) Adjust R. F. trimmer (sorew adjustment, top-front-of
gang condenser) for maximum output. KEEP SIGNAL INPUT LOW!
(2) Set the dial to $3700 \mathrm{kc} .$, using band 2.
(A) Tune the oscillator to the reselver and adjust $R . F$. trimmer (extreme left adjustment on rear of ohassis pan) for maximum output. KEEP SIGNAL INPIT LOWd
(3) Set the dial to $9000 \mathrm{kc} .$, using band 3.
(A) Tune the osoillator to the roooiver and adjust R.F. trimmer (second adjustment from left on rear of chassis pan)
Note l-In case the loonl oscillator will not reach the higher alignment requencies, harmonios of lower frequencies may be used.

PAGE 5-8 FEDERATED
MODET 52~A
MODEL $53,54,58,59$
Schematic

FEDERATED PURCHASER

FEDERATED PURCHASER

IN ALL GANGING OPERATIONS USE THE WEAKEST SIGNAL THAY WILL GIVE A SATISFACTORY INDICATION ON THE OUTPUT METER, and TURN ALL CONTROLS TO THEIR MAXIMUM POSITIONS (CLOCKNISE).

The I. F. trimmer adjustments are carefully made at the factory and should not be tampered with unless a thorough investigation definitely proves the I. F. amplifier to be at fault. In that event:-
(1) Attach the output meter from plate to plate of the 46 tubes.
(2) Feed the signal from the local oscillator tuned to exactly 175 kc . into the receiver at the control grid of the 57 first detector, providing a D. C. path from this point to ground
(3) Adjust the I. F. trimmers to give maximum indication on the output meter. The 4 I. F. trimers are mounted under the chassis pan, adjustable through holes in the chassis pan under the gang condenser, accessible when the rotor plates of the gang condenser are completely engaged with the stator plates. The adjustments are $\frac{1}{4}{ }^{\prime \prime}$ hex nuts. A recheck of each adjustment to insure perfect alignment of the I. F. stages is recommended.
(1) Set the dial to the point where a station (or oscillator) of known frequency, about 1400 kce , should be received.
(A) Adjust the oscillator trimmer (screw adjustment, top front end of gang condenser) until desired signal is heard.
(2) Set the dial to the point where a station (or oscillator) of known frequency, about 1100 kc , should be received.
(A) Bend rotor plates of front section of gang condenser' to correct the calibration. If the dial reading for resonance with the desired signal is higher than the true frequency bend the rotor plates out, and vica versa.
(3) Repeat operation 2 at, or near, 750 kc .
(4) Repeat operation 2 at, or near, 600 kc .

This completes the elignment procedure, and this (front) section of the gang condenser is NOT TO BE DISTURBED during the alignment of the $R_{\text {. }} F_{\text {. circuits. }}$ TO ALIGN (or gang) THE R. F. CIRCUITS
(1) Set the dial to 1400 kc .
(A) Attach the output meter from plate to plate of the 46 tubes.
(B) Attach the local oscillator to the antenna post of the receiver and adjust to resonance with the receiver.
(C) Adjust the R. F. trimmers (screw adjustments, top of gang condenser, ALL EXCEPT FRONT SCREW, for maximum indication on the output meter. KEEP SIGNAL INPUT LOW!
(2) Set the dial to 1100 kc .
(A) Adjust local oscillator to resonance with receiver.
(B) Bend rotor plates on ALL EXCEPT FRONT SECTION for maximum indication on the output meter. KEEP SIGNAL INPUT LOW!
(3) Repeat operation 2 at 750 kc .
(4) Repeat operation 2 at 600 kc .

This completes the alignment of the R. F. oircuits.
The alignment operations involving plate bending should be performed with utmost care if maximum results are to be obtained.

FEDERATED PURCHASER

PAGE 5-12 FEDERATED

MODEL $93,94,96,97$ Schematic, Voltage
Socket Layout
Trimmers

FORD PAGE 5-1

FORD MOTOR CAR CO.

PAGE 5-2 FORD

MODEL Ford B-18805
Auto Radio Built by Grigsby-Grunow
Schematic

FORD MOTOR CAR CO.

Ford B-18805 Auto Radio Rfceiver with Motor-Generator "B" Supply

FORD PAGE 5-3

FORD MOTOR CAR CO.

MODEL Ford 40-18805 Glove Box Auto Radio Built by GrigsbyGrunow Schematic

PAGE 5-4 FORD
MODIL Fordmincoln
Auto Radio Built by
Zenith
FORD MOTOR CAR CO.
Schematic

FORDSON PAGE 5-1

PAGE 5-2 FORDSON
MODEL FP 32 V
(350001 up)
MODEL FR (189001 up)
Schomatic, Alignment

Schematic,Alignment

SERVICE NOTES 1934 Motorola Auto Radio Twin'8' -Dual ${ }^{2}$ '

To assist you in gaining an understanding of the operation and servicing of the Dual "6" and Twin "8" we are outilning herein a brief description of the circuits employed together with the function of various units. For general installation instructions see the sheet enclosed with each Motorola set.
TWIN "8" -.The signal is fed into the primary of *****
duced into its associated secondary circuit tuned by antenna coil, which is or the aperiodic type and is induced into its associated secondary circuit tuned by the lst gang of the variabie condenser. The signal is then fed to the 78 tube used as the first $R f^{f}$ amplifier.
Reference to the circuit diagram (Fig. 3) will show that the and RF stage is impedance coupled, feeding its energy into the grid of the 77 autodyne. In the aperiodic type of antenna coil the gain drops slightly near the $500 \mathrm{~K} . \mathrm{C}$. end, while in the impedance type coupling used in the zind RF coil rises slightiy at this point. It will be seen then that by using these two in combination an overall flat sensitivity curve is obtained.

The type 77 autodyne tube is used because of 1 ts simplicity, pepformance and ability to withstand the vibration to which an aute set is subjected. The use of the padder system in the oscillator is used to allow greater accuracy in dipl calibration.
In the 85 tube full wave rectification is used and A.V.C. bias is obtained by voltage drop across the 200M ohm resistance connecting the secondary of the diode feeder to grcund. Full A.V.C. voltage is applied to the grids of the RF stage and IF stage and to the grid of the 85 tube. The audio component is amplified in the triode section of the 85, wich is resistance coupled to the f37, znd audio used as a driver and is inpedance coupled to the L.A. tubes operating in Push-Pull Class A Prime.
 sufficient.

Reference to the circuit diagram (Fig. 4) will show that a $\neq 75$ is used as a diode detector resistance coupled to a single 42 output tube.
The manual volume control is in the grid of the 75 whereas in the Twin "8" it is in the grid circuit of the 37 tube.
Fixed bias is used on the 75 grid obtained through the voltage drop across the screen network.

* * * * * * *

sERvicing

In ahooting trouble in an auto radio it is mell to endeavor to isolate $\begin{array}{ll}\text { The set may be divided into rour parts for servicing, } & \text { (1) cuter hous- }\end{array}$
1ng. (2) rower supply. (0) speaker. (4) set cnassie The audio end of the chassis may be easily checked by removing the grid
cap of the 85 or 75 tube and, if normal, a loud hutm will occur.
Check the autodyne circuit by tuning the variable condensers to the minimum position and touching the oscillator stator plates, If a cilck 18 heard when touching them and also when renoving
dicates that the autodyne is oscillating properly.
aligintant of variable condensers
Secause of the necessity of aligning the variable condenserg with the
chassis out of the housing it is important to use a definite point. chassis out of the housing it is important to use a derinite point. Unless this is done the dial calibration will be incorrect when replacing the chassis in its housing. This point we may take as 1400 KC which
Connect the oscillator feeder to the antenns pin of the chassis and set the oscillator to 1400 .KC.
Carefully adjust the trimners of the oscillator and RF variable condensers for maximum reading of output meter.
Next set the service oscillator to 600 KC rotating the variable condensers to a point 155 degrees 30 min . fron minimum condenser setting.
djust the 600 KC padder condenser faccessible from the front of the chassis) for highest output reading.
The 600 KC setting may also be found by settins the service oscillator to 600 KC. Tune in the oscillator-aignal and rotate the variable cons highest reading of the output metar. the 600 KC trimuer condanser for how track perfectly and coincide with the dial calibration

ALIGNIDNT OF THE IF TRANSFOPMERS
The IF transformorg and diode feeder in the Twin "8" and Dual "6" should always be
signal generator.
Comnect the feeder from the oscillator to the orid of the 77 sutodyne tube. Remove the grid connection and connect a 500M olm resistor fram grid of the tube to the ground.
Rotateathe variable condensers to the fuill open position.
Sot the oseillator to a frequency of 262 KC and adjust the iF and diode feeder trimmers to obtain maximum reading on the output meter.

PaRT REPLACETBNTS

In the deaign of the Twin " 8 " and Dual " 6 " interchangeability of parts has been accomplished wherever possible. This greatly simplifies servalong with the RF oscillator, IF coils and variable condenser are interchangeable.

Volume Control - (1) Remove rear siet cover. (2) Disconnect volume control and switch leads. (3) Remove hex head screws holding volum control mounting plate and remove complete assembly. (4) Replace with control mounting plate and remove compl

By-Pase Condensers - (I) Disconnect condenser and push up-wards frat bottom of chassis. (2) insert new condenser fron bottom of chassis and reconnect.
Tube Sockets - (1) Misconnect all wires at socket contacts, insert tube in socket, presa down fimily and turn in counter-cloekwise direction until relassed. (2) Place new eocket on tube base, press it down
firmly into chaseis hole and turn in clockonise direction,

Coil and If Tranaformer - (I) Each coll may be removed without dis turbing any other units. (2) Remove mounting screws, disconnect its

GALVIN MFG. CO.

ADJUSTMENT OF MOTOROLA UNIVERSAL AIRPLANE TYPE CONTROL

The general construction of the control head is shown in the cut away view. (Fig. 6).

In connecting the flexible shafts to the control head:

1. Insert the volume control shaft into the control head to its limit then release the shaft housing about $1 / 32$ inch to relieve any binding. Tighten set screw (D) Fig. (7) against housing.
2. Insert condenser drive shaft into control head so that the shaft extends into the tuning knob. Tighten knob set screws A and B. Release shapt housing about $1 / 32$ inch to relieve binding. Tighten set screw (C) against housing. The tuning knobs may be removed by completely removing the set screws E and F,Fig. (7). This is necessary when mounting control in instrument panel.

To adjust indicator arrow, tune in a station of known frequency preferably between 1000 KC and 1300 KC , then insert screw driver in rear center of control head and adjust indicator to correct irequency setting.

Special lengths of flexible shafts may be secured from your Motorola distributor or from the factory.

Fig. 7

CONTINUITY OF TWIN "8" CHASSIS
Refer to circuit diagram Fig. (3)

TWIN "8"					
VOLTAGE AT BATTERY 6.2					
TUBE	PLATE	SCREEN	CATHODE	$\underset{\substack{\text { CONTROL } \\ \text { GRID }}}{ }$	FIL.
$\begin{gathered} 78 \\ \text { R.F. } \end{gathered}$	220	55	. 5	*	5.8
77 AUTODYNE	220	55	4.5	-	5.8
$\begin{gathered} 78 \\ \text { I. } F . \end{gathered}$	220	55	1.5	*	5.8
$\begin{gathered} 85 \\ \text { DIODE } \end{gathered}$	40			-	5.8
$\begin{gathered} 37 \\ \text { 1st AUDIO } \end{gathered}$	60			3.8**	5.8
$\begin{aligned} & \text { LA } \\ & \text { POWER } \end{aligned}$	222	220		-20**	5.8
* A.V.C. VOLTAGE APPLIED TO GRIDS. ** VOLTAGE MEASURED FROM GRID. RETURN TO GROUND.					

CONTINUITY OF TWIN "8" HOUSIING AND SPEAKER	
Readings taken from front of housing with chassis removed. Volume control full on position. "A" Battery disconnected. Speaker connected.	
TEST SHOULD TES	IF OTHER- WISE
$\left.\left.\begin{array}{l\|l}\text { Chassis rem } \\ \text { ceptacle } \\ \text { terminal . . }\end{array}\right\} \begin{array}{l}\text { Cl to Voice } \\ \text { Coil termi- } \\ \text { nal . . .Closed }\end{array}\right\}$	Loose connections.
Chassis re-ceptacleterminal . . $\|$to Power Pack \#4 . Closed	ose connections.
	Open fil choke.
Chassis re- ceptacle terminal . .$\|$to 4 to Power Pack \#2 . 8 ohm	Open R.F.
	Open volume control.
$\left.\begin{array}{l}\text { Chassis re- } \\ \text { ceptacle } \\ \text { terminal . . }\end{array}\right\}$re chassis recept. \#5 Open	Shorted . 02 coupling cond.
$\left.\left.\begin{array}{l}\text { Chassis re- } \\ \text { ceptacle } \\ \text { terminal . . }\end{array}\right\} \begin{array}{l}\# 7 \text { to Power } \\ \text { Pack Term. } \\ \# l . ~ . ~ . ~ . ~ \\ \# \text { orm }\end{array}\right\}$	Open R. choke.
$\left.\begin{array}{l}\text { Chassis rem } \\ \text { ceptacle } \\ \text { terminal • \#l to ground }\end{array}\right\}$	Open voice coil.
Power Packterminal . $\|$$\# 3$ to A Bat. terminal.Closed	$\left\{\begin{array}{l} \text { Derectrive } \\ \text { power } \\ \text { switch. } \end{array}\right.$
Power Pack terminal . . \#3 to ground $4 \frac{1}{2}$	speaker field.
$\begin{gathered} \text { Ant. re- } \\ \text { ceptacle . . To ground open } \end{gathered}$	

GALVIN MFG. CO.

Data

DUAL "6"					
TUBE	PLATE	SCREEN	CATHODE	CONTROL GRID	FIL.
78 R.F.	210	70	.6	$*$	5.8
77 AUTOD YNE	210	70	5.6	-	5.8
78 I.F.	210	70	2.5	$*$	5.8
75 DIODE	65		.6	-	5.8
42 POWER	200	205		-16	5.8
* A.V.C. VOLTAGE APPLIED TO GRIDS.					

PAGE 5-6 MOTOROLA

PAGE 5-8 MOTOROLA
MODEL 34
Schematic
GALVIN MFG. CO.

ADJUSTMENT OF TUNING CONDENSER GEAR

The tuning condenser gear may be adjusted against its drive pinion by simply turning the cam screw, reaching through a hole in the left side of front cover. This hole is covered by button, easily pried upward with screwdriver. Turn screw to the left until slight drag is felt on the station selector knob, then back off slightly until free movement is obtained. After adjustment has been made tighten small locking screw located on face of cam screw.

BALANCING THE SET TO THE ANTENNA

After the set is installed ready for operation, it may be necessary to balance the set to the antenna. This is done by adjustment of the antenna trimmer, located under a $3 / 8^{m}$ hole in the TOP of the set. This hole is covered by a button which is removed by simply prying upward with a screw driver.

In making this adjustment tune in a very weak station around 120 to 140 on the dial. Adjust the trimmer with a screw driver until the point of maximum volume is reached.

ADJUSTING THE STATION SELECTOR INDICATOR
 Tune in a station of known frequency preferably between 1000 KC

 and 1300 KC .Insert a screw driver in the center rear of the control head and adjust indicator to the frequency of the station being received. (See Fig. 4).

Fig. 4

6. 3700 K.C. Alignment
A - Throw Range Switch to
S.w. position.
B - Set oscillator in op-
eration at 3700 K.C.
C - Turn Dial pointer to
3700 K.c. or 3.7 M.C. Chassis 4 A

1. Equipment	value consistent with obtaining a
A- Test Oscillator	readable indication on out-put
meter.	

GENERAL HOUSEHOLD UTILITIES CO.

PAGE 5-2 GRUNOW

MODEL 450 (4A)
Temporary Schematic, Trimmers GENERAL HOUSEHOLD UTILITIES CO.

ALIGNMENT PROCEDURE CHASSIS 4B

1. Equipment

A - Test Oscillator
A - A modulated oscillator capable of producing signals at $455 \mathrm{~K} . \mathrm{C} ., 600 \mathrm{~K} . \mathrm{C} ., 1400$ K.C. and 1700 K.C. is necessary for alignment of the 4B Grunow Receivers.

B - Out-put Meter
This may be any of the standard output meters on the market but should be sufficiently sensitive to provide a good deflection at low signal strength, it should also incorporate an adjustable shunt so that extremely strong signals may be read.

C - Coupling Means
Coupling condensers of .25 Mfd , and 200 Mmf . should be used when coupling oscillator to receiver during alignment as specified in following paragraphs.

2. Dial Setting

Turn dial pointer until condensers are fully meshed. The dial pointer should be on the horizontal line of the dial.
3. I. F. Alignment

A - Connect signal lead of oscillator through . 25 Mfd . condenser to grid of 6A7 (list Detector Tube) located on front right hand corner of Chassis. Connect the ground lead to the Chassis.

B - Place oscillator in operation at $455 \mathrm{~K} . \mathrm{C}$. and turn receiver volume control to maximum. (Volume Control should remain at maximum during entire alignment procedure and signal should be attentuated at oscillator to lowest value consistent with obtaining a readable indication on out-put meter).

C - Align three I.F. trimmers (Al-A2A3) located on top of Chassis. Two on top of Ist I.F. Can and 1 on Chassis between 42 and 6F7 tube.

4. 1700 K.C. Alignment

A - Connect signal lead of oscillator to antenna lead, (the blue wire leading from rear of chassis) through 200 Mmf . Condenser.

B - Set dial pointer at 1700 K.C. and place oscillator in operation at 1700 K.C.

C - Align oscillator trimmer (A4)
which is the first of the two on the variable condenser.
5. 1400 K.C. Alignment

A - Place oscillator in operation at 1400 K.C.

B - Set dial pointer at 1400 K.C.
C - Align antenna trimmer (A5). This operation may require rocking the variable condenser back and forth through resonance. The object of this operation is to be sure that the receiver will reach 1712 K.C. and at the same time have maximum sensitivity on the rest of the broadcast band.

PAGE 5-4 : GRUNOW

MODEL 460 (4B)
Temporary Schematic\quad GENERAL HOUSEHOLD UTILITIES CO.

Trimmers

GENERAL HOUSEHOLD UTILITIES CO．
ALIGNMENT PROCEDURE CHASSIS 5B
CHASSIS $5 B$
MODEL $\quad 550$

Grille，Chromium Plated
Escut cheon Plate Knob，Selector or Volume
Control
Cabinet Insulator Assem－
bly Tube Socket -6 Prong
Tube Socket -7 Prong sulator Wood Screw－Cabinet Back
Chassis Nounting Screws Chassis Mounting Washer
Escutcheon Pin SPEAKKR PARTS Cone Head Assembly
Field Coil
Bucking Coil
Output Transformer

 $\stackrel{\circ}{\circ}$

 Grid Cap only
Resistor， 25,000 ohm，
Single
Resistor，
R Resistor， $10,000 \mathrm{ohm}$ ， Carbon，$\frac{1}{4}$ Watt
Resistor， 50,000
0 hm, Carbon，$\frac{1}{4}$ Watt 0 Insulated Terminal－－Double Insulated Terminal－－Double
Condenser， 250 Mnf．Mica
Oscillator Transformer Shield
I．F．Transformer Shield
Tube Shield Bese Tube Shield Base denser
Resistor， 100 ohm，Can－ Resistor，21－21 obm， Volume Control Volume Control
Filter Choke Assembly
Tuning Condenser Assembly Tuning Condenser Assembly
Volume Control Pilot
 Tuning Condenser Pilot
Lamp Socket
Oscillator Transformer Oscillator Transformer Trimner Condenser Assem－ bltachment Cord（Voltage Reducing）
Antenna Transformer
Selector Dial Assembly Selector Dial Assembly
Volume Control Dial As－ $\begin{gathered}\text { sembly } \\ \text { Resistor，}\end{gathered} 45$ ohm，Can－ Pilot Lamp，6－8 Volt
Ground Binding Post
\qquad
Part
No．

趷
23849

®.
$\stackrel{0}{8}$

\qquad罳

3．Dial Calibration capable of producing signals at \quad－When Chassis is removed

$$
\begin{aligned}
& \text { arket but should be sufficient- } \quad A-C o n n e c t ~ s i g n a l ~ l e a d ~ o f ~ \\
& y \text { sensitive to provide a good } \\
& \text { oscillator through } 200 \text { Mmf. Con }
\end{aligned}
$$

$$
\text { 5. } 600 \text { K.C. Alignment. }
$$ 27153 $\stackrel{\text { 另 }}{\text { た }}$求边边 $\stackrel{\sim}{\infty}$ 27182

27184
27785
27786
27188 27404

 meshed dial pointer should be
Jo peot โeusis 7oouuop - V
 is necessary for alignment of
the $5 B$ Chassis．
B - Out-put Meter deflection so that extremely
c - Coupling Means
B－Adjust $600 \mathrm{~K} . \mathrm{C}$ ．trimmerChassis directly under variable
condenser）in direction of signal
increase． rocedure and signal should be at－ tenuated at oscillator to lowest

$$
\begin{aligned}
& \text { from cabinet it will be necessary } \\
& \text { to simulate dial escutcheon which } \\
& \text { incorporates dial pointer. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { B - Turn dial to } 140 \text { (} 1400 \\
& \text { K.C.) and align 1400 K.C. osill- } \\
& \text { lator trimmer (A4). located for- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lator trimmer (A4), located } \\
& \text { ward on variable condenser. }
\end{aligned}
$$

(A5) which is the second Trimmer

$$
\begin{aligned}
& \text { through resonance un } \\
& \text { output is obtained. }
\end{aligned}
$$

2．I．F．AlignmentA－Connect signal leadcondenser to grid of 78 tube．
Slt Detector Tube）．The ground
lead to ground post on rear of
Chassis． meter）．
inc

$$
\text { 4. } 1400 \text { K.C. Alignment }
$$B－Place oscillator in

operation at $455 \mathrm{~K} . \mathrm{C}$ ．and turn re
ceiver volume controi to maximum．

[^3] Coils．
\[

$$
\begin{aligned}
& \text { (A5) which is the secon } \\
& \text { on variable condenser. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { A - Place oscillator in op- } \\
& \text { eration at } 600 \mathrm{~K} \text {. C. Tune in sig- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { eration at } 600 \text { K.c. Tune in sil } \\
& \text { nal (this does not have to be } \\
& \text { exactly on } 600 \text { Dial Setting). }
\end{aligned}
$$ 27992increase．Rocking dial knob

$$
\text { tion: } \begin{aligned}
& \text { C - Recheck dial calibra- } \\
& \text { Over several points on dial. }
\end{aligned}
$$

PAGE 5-6 GRUNOW
MODEU 550 (5B) T emporary Schematic

GENERAL HOUSEHOLD UTILITIES CO. Trimmers Nス \&ISNJONOJ

 nos minn

GENERAL HOUSEHOLD UTILITIES CO $\begin{gathered}\text { Alignment, Parts } \\ \text { Tamporary }\end{gathered}$

ALIGNMENT PROCEDURE CHASSIS 6A
dial pointer should be on the
horizontal line of the dial.
4. 3700 K.C. Alignment
position ${ }^{\text {A }} \mathrm{m}_{\mathrm{B}}$. . (Right) (Rwitch to
B-Connect signal lead of
test Oscillator to Antenna post
test Oscillator to Antenna post
on Chassis through 200 Mmf . Con-
denser.
$3700 \mathrm{~K} . \mathrm{C}$ - Turn dial pointer to D - Place Oscillator in
operation at $3700 \mathrm{~K} . \mathrm{C}$.
 5. 1400 K.C. Alignment
 $1400 \mathrm{~K} . \mathrm{C}$. - Turn Dial pointer to
C - Place Oscillator in
Qperation at $1400 \mathrm{~K} . \mathrm{C}$.

$$
\begin{aligned}
& \text { 6. } 600 \text { K.C. Alignment } \\
& \text { A - Place Oscilla } \\
& \text { operation at } 600 \text { K.C. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } 600 \text { K.C. Alignment } \\
& \text { A - Place Oscilla }
\end{aligned}
$$

$$
\text { operation at } 600 \mathrm{~K} . \mathrm{C} \text {. }
$$

$$
\begin{aligned}
& \text { B - Tune in } 600 \mathrm{~K} . \mathrm{C.} \text { sig- } \\
& \text { nal (this does not have to be } \\
& \text { exactly on } 600 \mathrm{~K} . C . \text { dial setting). }
\end{aligned}
$$

(A9), (locatidust on the front left

$$
\begin{aligned}
& \text { face of the Chassis, the upper of } \\
& \text { the two at this location), in dir- }
\end{aligned}
$$

ection of signal increase. At the

$$
\begin{aligned}
& \text { same time, rock the tuning conden- } \\
& \text { ser back and forth through reson- } \\
& \text { ance. Continue this procedure unti }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ance. Continue this procedure until } \\
& \text { maximum signal is obtained on output } \\
& \text { meter. }
\end{aligned}
$$

Kふo Mo
.

PAGE 5-8 GRUNOW
MODEL 650,651 (6A)
Temporary GENERAL HOUSEHOLD UTILITIES CO.
Schematic, Trimmers

4. $16 \mathrm{M} . \mathrm{C}$. ALIGNMENT
A - Connect signal lead of
test oscillator through 400 ohm
resistor to antenna binding post
of chassis.
B- Connect the ground lead
to ground terminal of chassis.
C - Set range switch to S.W.
range (clockwise position).
D- Place test oscillator in
operation at l6 M.C. and set dial
pointer on l6 M.C.
E- Adjust trimmer (A5) on
front section of variable conden-
ser (oscillator) --, trimmer (A6)
on top of detector coil and A7 on
top of the antenna coil - to maxi-
mum output - (the detector and an-
tenna coils are located on left-
hand side on top of the chassis).
F - On oscillator alignment
use the lower of the two images for
the oscillator alignment point. It
5. 1400 K.C. Alignment
A - Turn range switch
counter-clockwise to broadcast
 C - Place test oscillator
in operation at $1400 \mathrm{~K} . \mathrm{C}$. and set
dial pointer on $1400 \mathrm{~K} . \mathrm{C}$. dial pointer on 1400 K.C.
 pue sțsseyo jo puə quoxj 7JəT əप7 trimmers on 2nd (A8) and 3rd (A9) section of varia

will be noted that there are two

most capacity, that is, the setting
farthest in. While adjusting the
 rock the variable condensers back btained. PARTS LIST

Description
Resistor,
$\frac{1}{4}$ watt
25,000 Ohm, Carboñ,

 $\frac{1}{4}$ Watt
Resistor,
$\frac{1}{4}$ Watt
$\frac{1}{4}$ Wate
Nat

. Equipment

$$
\begin{aligned}
& \text { to de exa } \\
& \text { setting) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { B - Tune in signal to max- } \\
& \text { imum. (This point does not have } \\
& \text { to be exactly at } 600 \mathrm{~K} . \mathrm{C} \text {. dial } \\
& \text { setting) }
\end{aligned}
$$

สุצnagao
лоұетtioso pazetnpou \forall

0
\vdots
0
0
0

ェәұәพ 7 ndzno - - g

 sensitive to provide a good deand shourd also incorporate an
 C - Coupling Means
 esistor should be used when coupling test oscillator to refied in the following paragraphs.
suṭ77əs tefa •ד

C - Adjust the 600 K.C. padding condenser (AlO) (this is
the upper of the two trimmers located at the left front end of
chassis), in direction of signal chassis), in direction of signal the tuning condenser back and forth through resonance while ad-
justing padding condenser until
maximum output is obtained. D - Attenuate test oscillator output to lowest value con-
sistent with obtaining a readable
indication on output meter. E - Adjust the four I.F.
trimmers (Al-AZ-A3-A4) located on
the under-side of the chassis, un-
til maximum output is obtained.
During alignment maintain as low a
value of signal as will allow ob-
taining of accurate adjustment.

PAGE 5-10 GRUNOW

```
MODEL 660,661,662
    (6C)
Temporary
Schematic,Trimmers
```


GENERAL HOUSEHOLD UTILITIES CO $\underset{\text { Temporary }}{\text { Alignment }}$

Oscillator through 400 ohm resistor to
B - Connect the ground lead to
ground terminal of Chassis.

E - Adjust the following CCn range
trinnmers: oscillatior (Al3), Detector (A14), Antenna (Al5).

Trinner (A14) on the nding the Detector essary to rock the tuning condenser in a manner similar to that required when set-
ting the $600 \mathrm{~K} . \mathrm{C}$. Padding Condenser. G - When adjusting the Oscillator
Trimner on the Cr (r range with a 12 m.c. signal it will be noted that there are received. Ose the higher frequency set-
trinner screw is farthest out. On the

 is completed.

$$
\text { 8. } 21 \text { M.C. Aligument }
$$

A - Set Range Switch on range "D". B - Place test Oscillator in oper-
ation at 21 M.C.

C - Turn Dial Pointer to 21 M.C. D - Adjust the following MD range
trinmers: Oscillator (Al6), Detector

E - When adjusting the Detector Trimner. (Al7) on the "D" range it is necessary to rock the tuning condenser back
and forth through resonance in the same
manner as required when setting the 600 manner as required when setting the 600
K.c. Padding Condenser.

F - When adjusting the Oscillator trinner on the "D" range with a 21 M.C.
signal it will be noted that there are
 ring, that is, the setting at which the trimner screw is farthest in. On the "Dn
range the Oscillator operates at a lower
 consequently the trinner capacity will
be higher when adjustment is completed.

C - Attenuate test Oscillator out-
put to -1owest value consistent with ob-
taining a readable indication on output
meter.
D - Adjust five I.F. Trimners, (A1,
Trimners are on top of each transformer
and the fifth is at the lower side of the
lst I.F. transformer, (this is the Bi-
lst I.F. transformer, (this is the
put is obtained. During allegment, main-
tain as low a value of sigall as will al-
low obtaining of accurate adjustment.
4. 4500 K.C. Aligament
4. $4500 \mathrm{~K} . \mathrm{C}$.
A - Connect signal lead of test Os-
cillator through 200 Mmf. Condenser to
Antenna binding part.
B- Connect the test Oscillator
ground lead to the ground post of Chassis.

 Antenna (A8). 5. 1400 K.C. Aligmment tion at $1400 \mathrm{~K} . \mathrm{C}$.
 D- Adjust the following "A" range
trimers:
Oscillator (A9), Detector (AlO) trimners: Oscillator (A9), Detector (AlO) Antenna (All).

B - Tune in signal to maximum (this koint setting).

C - Adjust the 600 K.c. Padding Condenser, (A12) in direction of signal
crease. At same time rock the tuning concrease. At sanser forth through resonance maximum out put is obtained.
1-19૬1દ

TEMPORARY
SERVICE NOTES \& PARTS LIST

$$
\begin{aligned}
& \text { SPEAKER TYPES 8C6 IOAS } \\
& \text { GENERAL HOUSEHOLD UTILITIES CO. } \\
& \text { CHICAGO U.S.A. }
\end{aligned}
$$

Litho.u.s.A
ALIGNMENT PROCEDURE CHASSIS 6D

dard output meters on the market but
should be sufficiently sensitive to provide a good deflection at low signal strength, and should also incorporate an adjustable shunt so that ex-
tremely strong sigals may be read.

 fied in following paragraphs.
2. Dial Setting

Turn dial knob until conden-
sers are fully meshed. The dial pointer should be on the horizontal line of

3. I. F. Alignment

Connect signal lead of test
Oscillator to grid of the 6A7 (1st De-
tector Tube) through . 25 Mfa. Condenser Coctor rubect the ground lead to the Chassis. A - Set Dial pointer to 1400 K.c.
and range switch on position " ${ }^{\text {A }}$. (Broad-
cast). B - Place test Oscillator in op-
eration at $455 \mathrm{~K} . \mathrm{C}_{\text {. }}$ Turn receiver volume

 taining a readable indication on output

тиצancio
The Type 6D Chassis is used in
conjunction with the $8 C 6$ speaker in
in speaker in the model 671 receiver.

This Chassis is a 6 tube all
$(550$ to 21800 K.c.) superheterowave (550 to 2180 , tyne, using 1-6D6 as an R.F. tector and Oscillator, $1-6 D 6$ tube as a Bi-Selector I.F. Amplifier, 1-1 matic Volune Control and Audio Ampli-

fier, $1-42$ tube as the Audio Output n | The intermediate frequency is |
| :--- |
| |
| 5 K.c. An efficient range swit ch |
| the | controls the four ranges in which the

receiver operates.
alicmanem

```
MODEL 670,671 (6D)
Temporary
Scheratic
GENERAL HOUSEHOLD UTILITIES CO.
```


GENERAL HOUSEHOLD UTILITIES CO.

SERVICE DATA

\qquad
 These four radios are put into operation as deWhen on position "A" the short wave coils covering the range from 8,500 to 21,500 k.c. are receiver, one coil as an R.F. Transformer, one as the Detector Coupler, and one as the Oscilla-
tor Transformer. On position "B" the 4100 to 10,000 k.c. coils en "O" operation. 1500 to 4200 k.c. coils

 On both the "C" and "D" positions, four coil
sets are put into the circuit and the receiver operates as a four tuned circuit radio. On all four ranges the receiver works at maximum sensitivity and selectivity. All coils and condensers are of
ature changes have minimum effect. Each circuit is completely shielded from each
other, and the complete range switch and coil

PAGE 5-14 GRUNOW
MODEL 750,751,752
753 (7B) GENERAL HOUSEHOLD UTILITIES CO. Schematic, Voltage

GRUNOW PAGE 5-15 MODE 750,751,752
GENERAL HOUSEHOLD UTILITIES CO.

```
753 (7B)
```


753 (7B) GENERAL HOUSEHOLD UTILITIES CO. Alignment, Parts

PARTS AND PRICE LIST

o.	Description $\quad \begin{gathered}\text { No. }\end{gathered}$
22858	Resistor, 1 M
23284	Bakelite Washer, Trim. Con
23370	Resistor, 100,000 ohm Carbon, $1 / 4$ watt
23849	Resistor, 500,000 ohm Carbon, $1 / 4$ watt
23853	Resistor, 50,000 ohm Carbon, 1/4 watt
23998	Resistor, 250,000 ohm Carbon, $1 / 4 \mathrm{watt}$
24251	Condenser, 100 Mmf . Mica
24487	Condenser, 250 Mmf . Mica
27283	2nd I. F. Transformer Shield
27382	Trimmer Condenser Assemb
27388	Ist I. F. Transformer Shield
27455	Tube Shield (Tubular)-76
27490	Resistor, 1,000 ohm Carbon
28183	Resistor, 7500 ohm Carbon, I watt
28421	Resistor, 2000 ohm Carbon, $1 / 4$ watt
28717	Condenser, .002 Mfd ., 700 Volt, Tubular
28723	Condenser, . 05 Mfd . 400 Volt Tubular
2872	Condenser, .i Mfd., 400 Volt , Tubu
28928	Ist I. F. Transformer (includes 27388)
29011	Resistor, 40,000 ohm Carbon, I watt
29074	Condenser, 250-100 Mmf. Mica
29083	Condenser, 50 Mmf . Mica
29087	Tube Shield (Goat) 6A7, 6F7, 75
29414	Power Transformer, 115 Volt, 60 cycles only
29416	Power Transformer, 1.15 Volt, 25 to 50 cycles only
53	Condensers . 01 Mfd , 400 V Tub
29471	Dial Chart for General Instrument Condenser only-see 30033
496	Antenna Transformer, Broadca
29497	Bi-Selector Transformer, Broadcast
29498	Ist Detector Transformer, Broadcast
29499	Oscillator Transformer, Broadcast
29500	Antenna Transformer, Short Wave (Red)
29501	Ist Detector Transformer, Short Wave (Black)
29502	Oscillator Transformer, Short Wave (Green)
29508	Trimmer Condenser Assembly - includes 29989
29509	Range Switch and Coil Assembly
29515	Resistor Panel Assembly - includes 29518
29518	Condenser, . $02-02 \mathrm{Mfd}$. (small can)
29523	Condenser Mounting Bearing
29524	Cable Tension Spring
29526	Condenser Mounting Bracket Ass'bly
29530	2nd I. F. Transformer Assembly
29533	Resistor, 5000-37 Ohm, Candohm
29534	Condenser, .01 Mfd . (small can)
29536	Volume Control, 0-1 Megohm

ALICNMENT PROCEDURE
 Do not equipment. Alignment condensers are
$\begin{aligned} & \text { Fig. } 4 \text {. or variable condenser. It may be neces- } \\ & \text { shory } \\ & \text { shory in the accompanying ilustrations and are }\end{aligned}$
sor approximate adiustment of the other numbered in order

 B- Insulated screw driver-(All bakelite
or fibre) about 6 " long. or fibrel about 6 " long. C . Output Meter. Fig. 4, which is the efirst ood three located on top,
of Chassis on the right hand side as you face it. E-Adiust Ise Det. Trimmer AB Fig, A, which
is the second from front on top of variable eondenser. Adiust Bi selector F-Adiust Bi-siector trimmer AQ, Fig. 4 ,
which is the third from front on top of variable G-Adiust Antena Trimmer A10, Fig. 4
which is the fourth from the front on top of var-
-able condenser.
6. 600 K.C. ALIGNMENT. 6.- AOO K.C. ALIGNMENT.
K.C. Place test oscillator in operation at 600 B-Tune in signal to maximum (this point dooss
oot have to be exactly at 600 K.C. dial setting).

 rock the tuning condenser back and forth through . 10 M.C. ALIGNMENT. of test oscillateo A-Connect signal lead of test ossillator
through 40 Ohm resistor to Antenna binding

 E-Adjust set oscillator trimmer A12, Fig. 4,
Mocated on front face of chassis.

 C-Turn Dial Pointer to 20 M.C.
D-Adiust Set Oscillator trimer A 15 , Fig. 4 ,

Part No.	Description	No. used	List Price
30033	Dial Chart, for Reliance	Condenser	

.50
.50
.50
.25
.10
.10
.15
.15
.10

SPEAKER PARTS

Part No. Deserription	
20010	Speaker Pot \& Pole Piece Assembly\$1.15
20041	
20045	Terminal Strip Cover.
20047	Terminal Strip - - . . . 10
27240	Cone Gaskot -.................... 10
27591	Output Transformer -il 1.75
28755	Cone \& Voice Assemblyi. .-. . .-.... 3.30
29964	Field Coil Assembly........................ 3.30
29678 Speaker Complete 11.50	
	TYPE 8A4-USED ON MODEL No. 750
20003	Speaker pot \& pole piece assembly . 80
20040	Speaker Pot Clamp .. . 10
20045	Terminal Strip Cover - . 15
20047	Terminal Strip 10
29242	Field Coil Assembly 2.20
29673 Speaker Com	Speaker Complete 10.00
29705	Cone Mounting Gasket..................... $\$.10$
29732	Output Transformer 1.75
30058	Spider Clamp Ring $\quad .25$
31309	Cone \& Voice Coil Assembly $\quad 3.10$
	TYPE 8Ci-USED ON MODEL No. 750
	Speaker Pot Clamp 10
20045	minal Strip Cover …- - - - - - - 15
20047	Terminal Strip .a...).a............... 10
29677	Speaker Complate . ${ }^{\text {a }}$ - 10.00
29697	Speaker Field Coil Assembly 2.50
29699	Speaker Pot \& Pole Piece …-.....- 1.20
29705	Cone Mounting Gasket.............. - . 10
29732	Output Transformer 1.75
58	Spider Clamp Ring
	one \& Voice Assembly 3.10

GENERAL HOUSEHOLD UTILITIES CO.

Schematic

GENERAL HOUSEHOLD UTILITIES CO.

Temporary Parts

 Alignment

$\xrightarrow[\text { A - Test Oscillator }]{\text { A modulated oscillator capable }}$

B - Output Meter This may be any of the standard
output meters on the market but should
be sufficient ly senstive to provide a be sufficiently sensitive to provide a
good deflection at low signal strength, and should also incorporate an adjustable
shumt so that extremely strong signals may be read.
c - Coupling Means
Coupling Condensers of 200 Mmf .
 be used when coupling oscillator to re-
ceiver during alignont as specified in
following paragraphs.
2. Dial Setting. Turn dial kob unttl condensers
are fully meshed. The dial pointer
should be on the horizontal line of the
dial.
3. I. F. Aliggnent. oscillator to grid of the $6 A 7$ (1st Detector Tube) through . 25 Mrd . Condenser.
Connect the ground lead to the Chassis. A - Sot Dial pointer to 1400 K.C.
and range switch on position D. B - Place test Oscillator in op-
eration at 262 K.c. Turn receiver voilume control and tone control to maximum. C - Attenuste test osctulator out-
put to lowest valve consistent with ob-
taining a readable ind coqtion on out put meter.

D - Adjust four I.F. Trimners,
located on under side of chassis, until maximum output is obtained. During
all gmnent, naintain as low a value of si.gnal as will allow obtaining of accur-
ate adjustment.

[^4]GENERAL HOUSEHOLD UTILITIES CO $\begin{gathered}\text { Schematic }\end{gathered}$

GENERAL HOUSEHOLD UTILITIES CO.

GEN. MOTORS PAGE.5-1

GENERAL MOTORS RADIO CORP.

Changes

The grid return of the 10 tube Superhet chassis
has been changed on chassis beginning with serial
numbers approximately as follows:

Chassis model	Serial \#
S-3-A	3429
S-3-B	1069
S-4-A	1296
S-4-B	1001

Note:For original circuit
refer to:
Rider Manuals
Early $346-1$
Revised $2-11 \& 2-12$
Radiotron $1101-1102$

The change in the circuit also involves changes in parts numbers of two parts as follows:

Part \# below serial	Part \# above serial
listed above	Iistgd above.
1203535	1204162 or 1205971

245 bias resistor
Bypass cond.pack相
-
1205971
1204162 or 1205971
Note if it should be necessary to replace the bypass cond. pack on models which use the original circuit, use part \# 1205971.
if it should be necessary to replace bypass cond. pack on models which use the new circuit(shown above) with the tone control in the 2nd det. plate circuit, use part \# 120597 by cutting off the red lead. To replace bypass cond. pack on models naving revised circuit, as above, with tone control in 45 rlate circuit, use cond. pack part \# 1204162.
The two bypass cond. packs can be distinguished by the number of leads, as follows:
\# 1204162 $\equiv 7$ leads
\# 1205971
8 leads
The 245 bias resistors can be distinguished by their length, color and number of sections, as
shown on the diagram nere.

SERVICE DATA (SIX TUBE ALL-WAVE SUPER HETERODYNE 1934-1935)
SERVICE DATA EIGHT TUBE ALL-WAVE SUPER HETERODYNE 1934-1935)
All models have automatic volume control of the diode type, controlling the first detector as well as the high frequency amplifier tubes. This A.V.C. makes it impossible to service and rebalance without a meter of the type to be described. This meter will wark on any make or type of A.V.C., provided care is used. It can not be damaged by improper connection of the leads.

PARTS REQUIRED FOR VACUUM TUBE VOLT METER
1 -O to 1 or O to 1.5 milliampmeter. $1-2$ megohn grid leak.
1 -Bell ringing transformer with secondary of $6-10$ volts. 1-10 ohm rheostat.
1-5 5 prong socket.
45 volt B battery

USING VACUUM TUBE VOLT METER

The cathode clip is connected to the cathodes of the tubes controlled by the A.V.C. The buss clip is connected to the A.V.C. buss in front of the isolating resistor.

Adjust rheostat shunt until meter shows full scale reading.
All balancing is done with maximum peak indicated by the meter swing toward O. Sensitivity of various receivers can be checked by the swing of meter from a known station. Short Wave fading can be seen by tuning in the station with meter connected to set.

REBALANCING
Do not rebalance a set until you are sure it requires it. 99 per cent of the sets do not need it. We do not find one case in one hundred that really should be rebalanced.

INTERMEDIATES
Connect a $2621 / 2 \mathrm{~K}$. C. oscillator to the first detector grid (No. 2-A 7 tube) leaving grid cap in place. Set dial at 1400 K.C. Hook up vacuum tube meter as described and carefully adjust 3 screws on top of Intermediates for maximum gain (minimum reading of meter). Don't flat top any stages. Have all shields in place. Keep volume control at lowest level

> CONDENSER GANG

Set dial at 1400 K.C. when gang is at minimum position and tighten dial set screws. Tune in a station (or use an oscillator) to a known frequency signal around $1400 \mathrm{~K} . \mathrm{C}$. Carefully adjust oscillator section of gang until frequency is correct on dial.

If the intermediates are balanced on $2621 / 2$ K.C., the dial will now track within $5 \mathrm{~K} . \mathrm{C}$. over the entire dial.

Adjust first detector section for maximum gain and follow by adjusting band pass trimmers.

PAGE 5-2 GILFILLAN

MODEL 8C,8T,47,50
Schematic

GILFILLAN BROS., INC.

PAGE 5-4 GILFILLAN
MODEL 5X,34,55A,55B
Schematic, Socket
MODEL 6C,6T,8C,8T,47,50
Socket Layout
GILFILLAN BROS., INC.

M - TERMINAL CONNECTED TO ARMATURE

Schematic Diagram of Majestic Mooel 600 A.C.-D.C. Receiver

GULBRANSEN CO.

Change in Later Models

In the lirst models of this chassis, resistors R-1 anil R-3 were carbon resistors of the values as shown it Fig 1. Resistors R-12 and R-14, were in one vitreous enamel unit. The voltages for the sets with these resistors are shown III the voltage chart on l'age 4 at the left.
In later madels the four alove mentioned resistors were replaced by one armored wire wound resistor unt New values are used as follows

Code	Resistance
R-12	220 ohms
R-14	40 ohms
R-1	9.540 ohms
R 3	10,650 ohms

The voltages for the sets with the four-section wire wound resistor are shown in the second voltage chart on Page 4 at the right.

Twenty-five Cycle Receivers
The twenty-five cycle receiver differs from the sixty cycle recenver only th the fact that a different nower trans-- former and an additional filter condenser are used Also, , a slight change is made in the power unit wiring In The tuenty-five cyele set, condenser C-17 the dry electrolytic unit is put in paralle] with condenser C-14 An 8.0 mfd wet electrodytic condenser is put in place. of con denser C-17

The iwenty-fue cycte chassis can be operated satisfactority from a saxiy cycle power supply However, the ceverse is mot true that is the sixty eycle chasges cannot he operated frasu a iwenty-five cyile power supply

4 110-220 volt $+0-60$ cycte poinet trairsformer is 'also avarlable fur this model

PAGE 5-2 GULBRANSEN

MODEL 872

Alignment, Voltage

Parts Eist

GULBRANSEN CO.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at por tions or all-of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of 175 K.C. and accurately calibrated signals over the broadcast band, and an output indicating meter are necessary. The procedure is as follows:
Sei the signal generator for 175 K.C. Connect the signal lead from the signal generator tol the grid of the 1st detector tube througli a .05 mfd . condenser. Turn the tuning. condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. Then adjust the four intermediate frequency condensers for maximum output. The adjusting
screws for these condensers are reached from the bottoni of the chassis.

Next set the signal generator for a signial of exactly 1400 K.C. The antenna lead from the signal generator, is, in this instance, connected to the antemna lead of the receiver. Set the dial pointer on the 1400 K.C. mark on the dial scale and adjust the three trimmer condensers on the gang tuning condenser for maximum output, adjustiag the oscillator trimmer first.
Next set the signal generator for a signal of 600 K.C. and adjust the oscillator $600 \mathrm{~K} . \mathrm{C}$. trimmer. The adjusting screw for this condenser is reached from the top of the chassis and is between the I.F. and oscillator coil cans.
A non-metallic "screwdriver is necessary for this adjustment. Turn the tuning condensor rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the $600 \mathrm{~K} . \mathrm{C}$. trimmer screw until the highest output is obtained. Then set the signal generator again for a signat of 1400 K.C. \cdot and check the aḍustment of the tuning condenser trimmers at this frequency for maximum output.

Voltages at Sockets

LINE VOLTAGE 115-ANTENNA LEAD SHORTED TO GROUND-VOLUME CONTROL AT MAXIMUM

			For early Models with 2-section vitreous enamel resistor.				For later Models with 4-section armoured wirewound resistor. .			
$\begin{aligned} & \tau_{y p c} \\ & \tau_{u b b c}^{o f} \end{aligned}$	Function	Actoss Filament or Heater	Plate Cathode	Screen Cathode	$\begin{gathered} \text { Grid } \\ \text { tathode } \end{gathered}$	Normal Mlate		$\begin{gathered} \text { Scrcen } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\begin{gathered} \text { Grid } \\ \text { tathodc } \end{gathered}$	Normal. Plate M. A.
'58	R.F.	2.4	282	107	$4^{(1)}$	8.	258	106	$2.8{ }^{(1)}$	8.2
'57	1st Det.	2.4	270	100	5	. 4	250	103	5	. 4
'58	I.F. ${ }^{(2)}$	2.4	282	107	$4^{(1)}$	8.	258	106	$2.8{ }^{(1)}$	8.0
'57	A.V.C.	2.4	90	40	9.5	0	103.	45	10	0
'57	2nd Det.	2.4	207	98	6	. 15	190	101	: 6	. 15
'47	Audio	2.4	262	280	$24^{(3)}$	31	242	260	$17{ }^{(3)}$	30
'80	Rect.	4.8				$\begin{gathered} 30 \\ \text { per plate } \end{gathered}$				34 per plate

(1) Read Across R-14.
(2) If I.F, readings are made with a cord and plug, ground the control grid through a condenser to prevent oscillation.
(3) Read Across R12 and R14.

REPAIR PARTS LIST FOR 7 TUBE SUPERHETERODYNE RECEIVER

When ordering parts. the part number and the serial number of chassis must be given. If there is a spot of paint on the chassis be sure to give this color. If this information is not available return the old part to insure getting the correct part.

No. 57 Tube Socket \qquad No. 58 Tube Socket
No. 47 Tube Socket
No. 80 Tube Socket No. 80 Tube Socket
Speaker Socket Speaker Socket
Aluminum Tulbe Shield
Tube Shield Base
Aluminum Coil Shield-R....................... Coils.
Three-Lug Insulated Terminal Stríp
Eleven-Lug Insulat
'On.Off'" Switch
"On-Off" Sw
Rubjer Drive Pinion
Brass Bushing for Rubber Pinion.
Rubber Cushions for Channel Brackets.
Pilot Lamp 2.5 Volt.............
Antenna R.F. Transformer Assembly.
Interstage.R.F. Transformer Assembly
Oscilator Coil Assembly
2nd I.F. Transformer Assembly, complete with can.................
Output Transformer Assembly,
Power Transformer, 60 cycle, 110 volt.
Power Transformer, 25 cycle; 110 valt
Power Transformer, 40-60 cycle; 110 volt....
Pilot Light Bracket and Drive. Gear Assembly............... 8.00
Drive Bracket and Bearị̣g
Cellūloid Dial Strip CONDENSERS Prist
$\$ 1.15$ $\begin{array}{rr} \\ \ldots & \text { Pr } \\ \ldots & .15 \\ . & 15\end{array}$

Code Capacity Voltage
$\mathrm{c}_{\mathrm{c} .2}^{2} .25$ mid.

Type
Tubular
Tubular

List
Price
$\$.30$
[. $80886 . \mathrm{C}$
$I^{2} \cdot S 0867$
P.80872.13 P-80872-B P.80872-B
P-80864-D P-80887-B P. 80914 P-80891.B P.80891.B
P. 80890 B P-80894.B
P-80862-C
P-80862-C
P-1385-B
P.1385-B

Part No.
Part No.
P. 91003 .
P. 91003
P. 90954
P. 90954
-P .91002
P. P .91002
P .90916

P-90916
P- 90941
P. 90941
P. 90963

P. 90963

P. 90929
P-90930

P-909.05
P-90905
P-90954
P. 90956
P. 91040
P. 90993
P. 91041
P. 91041
P-90916
†P. 91048

Tubular

Electrolytic
Tubular
Elytic Block 2.8

(25 Cycle only)
600 K.C Trimmer Condenser
Three-Gang Condenser
RESISTORS
Code Resistance Wattage
Type

[^5]PAGE 5-2 HALSON
MODEL 520
Schematic, Socket
Alignment
HALSON RADIO CORP.

HALSON RADIO CORP．

－${ }^{\text {c／W＇W0ot－058 }}$	2 OnC3 SNICOYd	－011	os	\cdots	，	90．	\cdots	0＋01	$\boldsymbol{s t}$	＂	$"$
．$"$ ．		＂	6	2002	3＇W	$5 \cdot$	＂	1721	\star	\cdots	m000＇011
＂＂	－＂	＂	8	－		ois	＂	8601	$\varepsilon \varepsilon$	＂	mosw
N00t＂ 10	\cdots	1011	$\stackrel{\rightharpoonup}{4}$	＂		011	＂	2601	2ε	＂	m000＇018
＂＊＂	＂	＂	97	${ }^{*}$		00s2	＂	9601	1ε	＂	m001＇s
＂＂•	＂	＂	97	ทiw ：	3\％＇W	W922	yesmaoncs	6601	0ε	＂	m0012
＊＂ 1	＂	9801	＋							＂	＂
＂＂．	＂	＂	Ev	＂		011	\cdots	9L21	E2－9	НヲM	${ }^{\text {moswirl }}$
＊＊	＂	＂	27	LLYM		000＇01s	5 yolsisay		22	HVM ${ }^{\text {F }}$	m000＇s
＂ 52	，	E011	16			On7 ${ }^{\text {r }}$			$\left\{^{12}\right.$	＂	mols
＂．＂	＂	＂	ot			L21 3	3 NVISISJy		loz	＂	＂
＂	－${ }^{\text {c }}$		6ε				HMS 3 NIT ？	ota		＂	m0006092
${ }^{\prime \prime}$	＂＇	\cdots	日			000＇001	12 Nb －700		1	＂	m092
＂＂	＂＂	－	$L \varepsilon$	LI甘Mz		02	＂	6 cl	4	＂	
． 1002 ＇s＇w 90	desnainos	0601	9	LIHM ${ }_{\text {F }}$	F mo	000＇ors	5 80hsissy	9＋21	91	دVM \ddagger	m000＇t

$\frac{\text { TEM PARTNO．}}{1 \cdot 1242}$
1243
1165
1159
1245
1094
1032

（12 1246

MODEL "Comet Pro" AVC
Alignment, Sooket
HAMMARLUND MFG. CO.

ajt 10 the formers. Finally repeat this whole process, read justing each condenser a second tive to insure exactness of resonance.
After the i.f. stages are thus accurately lined up, turn
on the heterodyne-beat oscillator and set its top lever so that it points diagonally away from the rear right-hand corner of the chassis. Then adjust the bottom ad justment screw on this
transformer for exact zero beat. When this has been accomplished
the receiver is in accurate alignment.

HERBERT H. HORN

PAGE 5-2 HORN

MODEL 58,158
Schematic, Socket MODEL 156 Schematic, Socket MODEL 1934

HERBERT H. HORN
$247 \quad 58$
\square
$\frac{1}{7}$
$=1$

PAGE 5-2 HOWARD

NOTES

(1) One of the sections of the gang condenser is not used.
(2) The two lower pilot light bulbs may be changed when neoessary by loosening the screw holding the light bracket and it will pull out to the side. It is not necessary that the chassis be taken out of the cabinet.
(3) It is important that the ohessis is made to float as freely as possible within the oabinet.
(4) When adjusting the oscillator circuits be sure to start on the right signal. The best procedure is to turn the trimmer all the way out and then pick the strongest signal won tuning in. If the oscillator happens to he on the wrong side, the set will be very insensitive around the center of the band.
(5) Keep the input low from the signal generator when making the various adjustments, to prevent overloading.

The alignment of the I.F.'s; the intermediate frequency is 465 KC and the stages are airgned in the customary manner by adjusting the trimmers in the top of the IF cans for the maximum deflection with 465 KC input.

The Alignment of the Oscillator Circuits;
Beforc making any adjustments be sure that the hand is directly over the first line above 550 (which would be about 540) when the variable condenser is turned to maximum capacity.

I Starting with the list Short Wave Band (1.6 to 4 Megacycles)
(1) Set your signal generator to 4 MC .
(2) Set dial to 4 MC .
(3) Then peak oscillator Trimmer (lettered "F" on the pictorial diagram) to the signal.
(4) set generator to 1.6 MC .
(5) Set dial to 1.6 MC.
(6) Peak oscillator Padaing Condenser lettered "D" to signal.
(7) Reset generator and dial back to 4 MC and check any variation.
II Second (2) S.W.Band, 4 to 12 MC .
(1) Set Generator and dial to 12 MC . Peak Oscillator trimmer lettered "G" for 12 MC .
(2) Cut down the signal generator to a very weak input in to the set, and adjust the RF trimmer lettered "J" at 12 MG.

III The 3rd s.W.Band 10 to 22 MC.
(1) Set generator and dial to 20 MC .
(2) Peak oscillator trimmer lettered "H" at 20 MC .

IV The Broadcast band is aligned by;
(1) Adjusting trimmer "E" at 1400 KC .
(2) Peak Padding condenser "A" at 600 KC .
(3) Adjust trimmer "B" across secondary winding of RF coil to peak at 1400 KC .
V The wave trap (Trimmer "C") is adjusted to a minimum setting with 465 KC fed in to the Antenna.

PAGE 5-4 HOWARD

MODEL W
Schematic (1st)

HOWARD RADIO CO.

PAGE 5-6 HOWARD

PAGE 5-8 HOWARD MODEL W
Receiver
Socket Layout
Trimmers
Trimers

HOWARD RADIO CO.

In the top of the coil cen asaenbly in upper right hand corriar
facing rear of tuner) will be found an adjustment. This adjustment is
Watching voltmeter, set the above adjustment with insulated
screw driver until a maximum reading is obtained on voltmeter.
The AVC circuit has been fundamentally adjusted by the above
procedure and should be set for the locality in which set is to be operated, in accordance with adjustment number 8 .

B. AVC ADJUSTMENT FOR VARIOUS LOCALITIES

In order to properly make this adjustment, tune the receiver in
exact resonance with the most powerful station to be received. Then if right until this condition stops. Do not turn this control beyond this
point.

9. NEON TUNING INDICATOR

all shielded asseablies in ihe upper rjght han corner, will be found a small black knurj.ed knob. This knob is used to edjust the Neon resunarc
indicator. Due to. the fact that in some localities the signal strengin from certain stations varies somerhat, it is advantageous to be able to set this adjustment.

At the time of day during which the station signals are the
most pomerfull (usually in the evening) aajust the receiver dial to a fills powerful shation, then furn the nean adustment until the light just fills Should the light become more brillisant, leave the dial at point of highest brilliancy and again readjust neon indicator until it just fills the arrow opening.

A little practice vill enable the user to set this indicator
to moet the individual roquirements.
When once adjusted for the locality in which the recoiver is
to Do used, it should not have to be readjustod.
Sinoe the inter-station silent tuning system is a proportionel
function of the neon light, the inter-station silent tuning system will be correctly adjusted.

The neon light system is not intended to mork on the short
nave stations. Honever, on the more powerful signals it will generally
give an indication of resonones.

HOWARD RADIO CO.

2. THE BROADCAST BAND

It is necessary on the broadcest band only that a metal bottom not bo detuned when the regular bottom plate is screwed back on.
(b) Set dial to 1.4 and adjust trimmor No. 14 (see pietorial (d) Adjust RF and antenna stages. The RF is No, 7 , and the Antenna Trimmer consists of the knurled knob extending (e) Rotate dial to . 55 and adjust trimtner No. 10 for resonence
(f) Recheck the setting at 1400 and bend plates of variable reeding on dial. 3. THE FIRST SHORT WAVE BAND

> (a) Turn band indicator to 1.5 to 3.5 . (b) Set dial to 3.5

$$
\begin{aligned}
& \text { (b) Set dial to } 3.5 \\
& \text { (c) Feed in a } 3500 \mathrm{KC} \text { signal and adjust Trimmer No. } 13 \text { for } \\
& \text { resonance. } \\
& \text { (d) Adjust RF and Antenna stages, Trimmers Nos, } 3 \text { and } 6 \\
& \text { (e) Rotate dial to where the hand points to . } 55 \text { on the broed- } \\
& \text { cast band. The dial calibration may be found to be slightly } \\
& \text { off at this Dint and the } 55 \text { fieure cornesponds to latom }
\end{aligned}
$$ Trimmer No. 9 for Kesonance.

(f) Recheck setting at 3500 KC . Trimmer No. 9 for Kesonance.
(f) Recheck setting at 3500 KC .
 Feed in 8500 KC and ec.just Trimmer No. 12 for resonance (d) Adjust RF and Antenna stages ซith Trimmers Nos, 3 and 2 (f) Recheck setting at 8.5 (8.9).
5. THE THIRD SHORT WAVE BAND
5. THE (\bar{a}) Tuīn bañ Iñaicator to 9 to 21 4. THE SECOND SHORT WAVE BAND

 on the wrong side, the set will be very insensitive around the center of
ilal. The plates on the veriable condenser should be bent to make The plates on the variable condenser should be bent to make
the KC readings on the dial line up ONLY on the Broadcast Band. Before adjusting any band, make certain that the pointer of
the station indicator is set on the last black line when the dial is
turned all the way to the left on the broadcast band just above o 55
at this point the variable condenser should be all the way in to maximum
capacity.

(a) Turn the band indicator to .15 to . 35

(c) Feed 350 KC into the antenna post and adjust the terinmer in the long wave oscillator can for resonancs. The not green coded on the trimmer washer. (Refer to (d) Adjust RF and antenne stages. There is only one trimmer (e) Rotate dial to just above . 17 and adjust the oscillator (f) Recheck the 350 KC setting.

THE PROCEDURE TO ALIGN THE I.F. STAGFS

 when gaining the IF, RF or oscillator circuits.
 very carefully tuned to resonence as
greatly affeot the performance of the receiver.

The sensitivity of the IF stages should be between 10 and 20 Mic rovolts,
ALIGNING THE R. F3 AND OSOITJATOR CIRCUITS

After the IF's are aligned, the various oircuits may be aligned
in the order given below.
Keep the AVC adjustment all the way off to the left as before. It is not necessary that the oscillator be taken out of its
socket when aligning any of the RF circuits. cular band. Always adjust the oscillator stage before the RFin any parti-

1. THE IONG WAVE

$$
\begin{aligned}
& \text { off at this point and the } .55 \text { figure corresponds to l. } 5 \text { on } \\
& \text { the First short Kave Bend. Fead in } 1500 \mathrm{Kc} \text { and adjust }
\end{aligned}
$$

foreign reception is obtained, it ls advisable to turn the
dial to 12 on the thind band and readjust the Antenna coil
trimmer (No. 1) to peak at 12000 KC .

Part No.	Name	Amt. Per Unit	Price Ea.
2885	lst IF complete	1	\$ 2.10
2885	2nd IF complete	1	1.10
¢885	3rd IF complete	1	1.10
2891	Tri Coil Assembly complete -	1	1.10
SAll 10	Brondeast Antenna Coil complete	1	1.10
SAl141	Broadcast RF Coil complete	1	1.00
SAl142	Broadcast OSC Coil complete	1	1.10
SAl144	Short Mave \#l Band Antenna Coil	1	. 90
SAll 145	Short Wave \#l Band RF Coil	1	. 80
SAll46	Short \%ave \#1 Band OSC Coil	1	. 90
SAIL47	Short Wave Pend \#a Anterna Coil	1	. 90
SAIl48	Short Wave Band \#2 RF Coil	1	. 90
SAl149	Short Wave Band th OSC Coil	1	. 90
SAll50	Short Wave Banã \#3 Antenna Coil	1	. 85
SAI151	Short Wave Band \#3 RF Coil	1	. 85
SAl152	Short Wave Band \#3 OSC Coil	- 1	. 85
SA1154	Auxillary OSC Coil	1	$\cdot 75$
S. 2889	Long Wave Antenna Coil Assambly	1	1.10
SA2939	Iong Wave RF Coil Assembly	1	1.10
SA1143	Long Wave OSC Coil Assembly	1	1.20
2872	Two Plate Trimmer	12	- 25
2877	Seven Plate Trinmer	2	. 35
2879	Nine Plate Trimmer	1	. 35
2364	Oscillator Switoh	1	-30
2863	Volume Control 500,000 ohrs	1	. 75
2890	10,000 olm Noise suppressor	1	.75
2862	$500,000 \mathrm{Omm}$ tone control and switch	1	1.00

10. THE POWER ANPLIFIER information that is needed from a servicing standpoint. The tuner is coupled to the Audio by the 56 tube, resistance
coupled to two 56 drivers into the four push-pull parallel $2 \mathbf{2 S 5}$. The rectifior circult uses the 83v tube for the B Supply. additional rectifying circuit comprising the 56 tube and additional ohoke A12. FIItor.
(a) The adjustment of the uhite fabric drive belt is very holaing the idier pulley stud rhich is adjustable in the slot (see pletorial diagram). Pushing the stud upwara is no necessity for making this belt real tight, as the belt is under no load -- only the dial disc -- it
is advisable to just take out the slaok.
(b) $\frac{\text { dajustment of the rubber troad drum against the knurled }}{\text { arive shaft is }}$
 above after making this adjustment, since the changing of one will affect
the other. the other. The right tension betrieen the drum and the knurled shaft can be easily determined by turning the condenser to one extreme rotill the mand the much pressure will cause too much rork betreen the rubber ond shaft, resulting in slifprage result in slippage at any speod.
(c) For other drive adjustments, remove the Escutcheon Plate
three screns on top, five along bottom -- to adjust the drive disca, if noeessary.
11. NOTES:-

[^6](2) On some of the modols the ducl spoed is accomplishod by
use of a push-pull knob inetoad oif a doublo knob. 11 terminal (3) The first torminal lue nert to the ground torminal on the
(4) The reeistance value of the resistor marked "X" on the
pictorial diagram may be of different values, since it is placed there to reduce tendency of oscillations in tho Third Short Wave Band.

tho shielding.
(6 . Should the receiver blow fuses easily the $83 v$
becked the first thing.

ice Ea.	Part No,	Name	Amt. P Unit	Price Te.
. 25	2373	1,100 0hm 1/2 wati Resistor	1	. 15
. 25	2774	500 Ohm 1/5 watt Resistor	1	. 15
. 20	2206	$500 \mathrm{ohm} \mathrm{1/2} \mathrm{watt} \mathrm{Resistor}$	2	. 15
. 20	2761	300. Ohm 1/5 watt Resistor.	1	. 15
. 20	2871	Tro Gang Variable	1	2.50
. 20	2866	Three Gang Variable	1	3.00
	REPLACENENT PARTS LIST OF POWER ANPLIFIER			
. 20	Fart' ${ }^{\text {No. }}$	Narne	Ant. P9r Unit	Price Ea.
. 60	2856	Power Trensforner, 110 volt 60 eycle	1	\$7.50
. 60	2235	5 Amp. Fuse	1	. 10
. 25	2859	"B" Voltage Divider	1	. 70
. 20	2851	Filter Block 4: Sention	1	7.00
. 35	2850	Filter Condenser 2 Soction	1	2.00
. 20	2427	10 mid . Eleatroly tic Condenser	1	. 75
. 20	1926	Small "B" Choke	1	1.00
. 15	2858	Large "B" Choke	1	2.00
. 15	2758	$1 / 4 \mathrm{mfd}$. Condensor 400 volt	5	. 25
. 15	1827	30,000 0hm $\mathrm{l} . / 2$ watt Resistor	4	, 15
. 15	2423	25,000 $0 \mathrm{hm} 1 / 5$ watt Resistor	1	. 15
. 15	2768	2,000 $0 \mathrm{hm} \mathrm{1/5}$ watt Resistor	1	. 15
. 15	2339	3,500 0hm 1/2 watt Resistor	1	. 15
. 20	1897	200,000 $0 \mathrm{hm} \mathrm{1/5} \mathrm{watt} \mathrm{Resistor}$	1	. 15
. 15	1844	100,000 $0 \mathrm{hm} \mathrm{1/5} \mathrm{watt} \mathrm{Resistor}$	1	. 15
. 15	1843	$50,000 \mathrm{hmm} 1 / 5$ watt Resistor	2	. 15
. 15	2980-C	Speaker Cone for the "Ortho"	1	1.00
. 15	2980-T	Speaker Transfommer	1	2.00
. 15	2980-P	Speaker - 6 prong plug	1	. 25

PAGE 5-2 HUD-ROSS
MODEL 59
Schematic
HUDSON-ROSS, INC.

HUDSON-ROSS, INC.

PAGE 5-4 HUD-ROSS
MODEL 80
Schematic,Parts
HUDSON-ROSS, INC.

PART NO.		DESCRIPTION
701		FILTER CONDENSER
702		. 1 BY-PASS CONDENSER
703		. 05 "
704		. 02
705	,	. 25
706		.5 " "*
707		. 00025 "
708		1-WATT RESISTOR
709		MISCELLANEOUS RESISTORS(SPECIFY VALUES)
717		350 OHM POWER RESISTOR
718		VOLUME CONTROL
719		SHORT WAVE AND BROADCAST SWITCH
720		OSCILLATOR COIL 456 KC
723		CORD AND PLUG
733		POWER TRANSFORMER
738		3-GANG CONDENSER
739		1ST \| F TRANSFORMER
740		2ND I F TRANSFORMER
741		PRE SELECTOR COIL
745		PILOT LAMP
749		TRIMMER
751		KNOB (LARGE)
751-A		KNOBS
754		PILOT LIGHT SOCKET
758		SPEAKER
758-A		SPIDER AND VOICE COIL
758-B		$6{ }^{\prime \prime}$ DIAPHRAM
762		S:W. OSCILLATOR COIL
-763		ANTENNA S.W. OSCILLATOR COIL
767		DIAL DRIVE DISC
768		CELLULOID DRIVE DISC
769		DIAL FACE
777		DIAL POINTER
779		CONVEX DIAL CRYSTAL

PAGE 5-2 INSULINE
MODEL "Trans-Pacific" INSULINE CORP. OF AMERICA
Schematic,Socket

PAGE 5-4 INSULINE

INSULINE CORP. OF AMERICA

INTERNATIONAL RADIO CORP.

MODEL K-60 (K-6)
 INTERNATIONAL RADIO CORP.

TO REPLACE DIAL LIGHT

Dial light socket assembly may be pried out from the rear of control head by using a small screw driver or knife blade.

AVERAGE TUBE VOLTAGES:

Measurements made from indicated points to chassis. Battery voltage 6 volts.

Position	tube	Ef	Ek	Eg ${ }^{\text {a }}$	Eg ${ }^{3}$	Eg ${ }^{3}$	Ep
R. F. Amplifier	6D6	5.6	2	*	2	. 75	185
1st Det.-Osc.	6F7	5.6	3	$\begin{gathered} \text { Det. }{ }^{*} \\ \text { Osc. }{ }^{-1} \end{gathered}$	3	75	Det. 185 Osc. 75
I.F. Amplifier	6D6	5.6	2	*	2	75	185
2nd Det.-A.V.C.	75	5.6	2	0	0	-	75
Power Amp.	42	5.6	15	0	-	185	175
Rectifier	84	5.6	185	-	-	-	-

f -Filament; k-Cathode; g_{1}-Control Grid; g2-Suppressor Grid; gab Screen Grid; p-Plate; *-Depends on applied signal strength.

Balancing and Aligning

Each automobile radio is carefully balanced on accurate oscillators before leaving the factory. If it is necessary to rebalance because of part changes or other causes a good test oscillator capable of delivering modulated signals at $2621 / 2,1500$ and 600 Kc . will be needed. The customary audio out-put meter may be used IF the out-put of the test oscillator is weak enough to get below the A.V.C. action. Otherwise a microammeter will be needed to measure the A.V.C. voltage developed. It should be connected from ground to the junction of two 100 M resistors and one condenser in the center bottom of the chassis.

To balance the I.F. circuits, attach the antenna wire to the test oscillator. Short out the oscillator section of the tuning condenser in the radio by inserting a thin piece of metal between the plates. Set the test oscillator to $2621 / 2 \mathrm{Kc}$. and adjust the trimmers on the I.F. transformers for maximum output. Go over all four adjustments at least twice for accuracy.

Next set the test oscillator at 1500 Kc . and open the tuning condenser until it is tuned to the test signal as indicated by maximum output. Adjust the small trimmers on top of the condenser gang for maximum output.

Set the test oscillator at 600 Kc . and, while rocking the tuning condenser slowly back and rorth across this setting, adjust the padder condenser for maximum output. Go over the adjustments at least twice for accuracy.

INTERNATIONAL PAGE 5-3

INTERNATIONAL RADIO CORP.

For Balancing Data, Alignment Data
See Index

CHASSIS CM

To adjust IF units and align condensers follow these operations in the order given using an output meter connected across the speaker-Operations 1 (oscillator section of 2 gang condenser nearest rear of chassis), 2, 3 and 4.

Color Code Marking of Coils

$$
\begin{gathered}
\text { 1st IF——Red } \\
\text { Antenna-Red }
\end{gathered}
$$

$$
\begin{gathered}
\text { 2nd IF--Red } \\
\text { Oscillator--Red }
\end{gathered}
$$

Socket Voltages

Approximately normal tube voltages measured with a 0-300 volt, 1000 ohm per volt DC voltmeter with set operated on a 115 volt AC line. Volume control in FULL ON position. Measurements made from B negative (condenser frame) to socket prongs.

CHASSIS CM.
BOTTOM VIEW.

For Balancing Data, Alignment Data
see Index

CHASSIS DAC

To adjust units and align condensers follow these operations in the order given using microammeter or D. C. milliammeter connected as previously described-Operations 1 (oscillator section of 2 gang condenser nearest front of chassis), 2,3 , and 4.

Color Code Marking of Coils

$$
\begin{array}{cr}
\text { 1st IF-Red } & \text { 2nd IF-Green } \\
\text { Antenna-Green } & \text { Oscillator-Yellow }
\end{array}
$$

Socket Voltages

Approximate normal tube voltages measured with a $0-300$ volt, 1000 ohm per volt DC voltmeter with set operated on a 115 volt AC line. Volume control in FULL ON position. Measurements made from B negative (condenser frame) to socket prongs.

CHASSIS DAC.

PAGE 5-6 INTERNATIONAL

CHASSIS DAS

For
Balancing and Alignment Data, see Index

To adjust IF units and align condensers follow these operations in the order given using microammeter or D. C. milliammeter as previously des-cribed-Operations 1 (oscillator section of 2 gang condenser nearest front of chassis), 2, 3, and 4.

Aligning Short Wave on DAS Chassis

When properly adjusted for the broadcast band No Additional Adjustments Are Necessary on the Short Wave Band.

Color Code Marking of Coils

$$
\begin{array}{cc}
\text { 1st IF-Red } & \text { 2nd IF-Green } \\
\text { Antenna-Green } & \text { Oscillator-No mark }
\end{array}
$$

Approximate normal tube voltages measured with a $0-300 \mathrm{volt}, 1000 \mathrm{ohm}$ per volt DC voltmeter with set operated on a 115 volt AC line. Volume control in FULL ON position. Measurements made from B negative (condenser frame) to socket prongs.

CHAS SOTTOM IS SIEW. $S_{\text {S }}$.

For Balancing Data, Alignment Data
see Index

Color Code Marking of Coils

1st IF-Red
BC Antenna-Green
SW Antenna-Green

> 2nd IF-Green
> BC Oscillator-Green
> SW Oscillator-Green

Socket Voltages

Approximate normal tube voltages measured with a $0-300$ volt, 1000 ohm per volt DC voltmeter with set operated on a 115 volt AC line. Volume control in FULL ON position. Measurements made from B negative (condenser frame) to socket prongs.

$-160_{2525}^{0} 0$
BOTTOM VIEW.

PAGE 5-8 INTERNATIONAL

HODEL ES-19,ES-20 | Chassis ES |
| :--- |
| Sohematic |
| Alignment Data | INTERNATIONAL RADIO CORP.

Instructions for Balancing and Aligning
Adjustments have been carefully made at the factory and should not need to be changed unless it has been necessary to replace an IF transformer or coil or the adjustments have been tampered with. Later in this bulletin, when the different chassis are taken up one by one, reference will be made to the following operations.
Operation No. 1 Adjustment of IF transformers. When adjusting the IF units the oscillator section of the 2 gang variable condenser must be shorted out. This is easily accomplished by inserting a thin strip of metal between the plates. Set the test oscillator to $2621 / 2$ kilocycles and connect its output to the antenna wire of the set. Using a No. 4 fibre spintite socket wrench ad just the 4 nuts at the ends of the IF units until exact resonsnace is obtained. It is advisable to go over them more than once as when one nut is adjusted it may throw the adjustment on the other end of the unit, slightly out of resonance.

Operation No. 2. Adjusting trimmers on 2 gang condenser at 1500 kilo cycles. Set the test oscillator to 1500 kilocycles and connect its output to the antenna wire of the set. If the output of the oscillator is too strong connect through a very small fixed condenser or place the output wire of the oscillato near the antenna wire without making any direct connection. Open the vari able condenser until maximum signal is indicated by the meter. Then adjust the trimmer on the antenna section of the condenser until maximum signal is indicated on the meter. See "Recommended Service Department Equipment' for instructions regarding meter.

Operation No. 3. Aligning 2 gang condenser on 1000 kilocycles. Tes oscillator set at 1000 kilocycles and coupled to antenna wire of set. Insert a thin bakelite, celluloid or mica feeler strip between the plates of the variable condensers to determine whether the circuits are properly matched. The action is this-the dielectric constant of the celluloid feeler strip being higher than that of the air it displaces, results in an increase of capacity. Open the variable condenser just enough to indicate two or three points below maximum ignal. As the feeler is inserted the meter reading should indicate increasing signal and then decreasing as the feeler is inserted farther. This procedure should be followed on both sections.Should the meter fail to show an increase in signal as the strip is inserted in either section this indicates too great in signal as the strip is. inserted in either section this indicas too great capacity for that section. This may be corrected by bending the outside rotor

Operation No. 4 Aligning 2 gang condenser at 550 kilocycles. Instruc tions same as for operation 3 except test oscillator and set tuned at 550 kil ocycles.

INTEROCEAN RADIO CORP.
Schemetic

PAGE 5-2 INTEROCEAN
Voltage, Socket Parts List

INTEROCEAN RADIO CORP.

	PARTS AND PRIGRS MODEIS 520521 CHASSIS NO. 2035	
	Dial and Meter Assembly	
11-3	Dial Pulley String.....................................per ft.	\$. 25
26-38	Calibrated Dial Strip...	15
$80 \sim 69$	Dial Cord Tensi on Spring. 01
80-85	Volume and Tone Control Dial Tension Spring. 01
83-274	Volume Control Dial Strip	-10
83-275	Tone Control Dial Strip	. 10
100-18.	2.5 Volt Pilot Lamp	. 12
122-5	Shadorgraph Yeter...	2.00
	Condensers	
22-112	.1 mpd 300 Volt (Pilter)....	. 25
22-115	.1 " $200{ }^{\text {n }}$ (5 used, see footnote).......................	. 35
22-117	.5 " 300 ${ }^{\circ}$ (${ }^{\text {n }}$ (iltor)........	. 50
22-137	. 05 " 400 " (Oscillator Plate).............................	. 25
22-142	-4 ${ }^{\text {n }} 300{ }^{\text {m }}$ (Pilter, 25 Cyole Only).......................	. 40
22-147		. 20
22-161	Paddor	. 45
22-165	Three Gang Variable.	3.50
22-167	80.mpd 500 Volt (Filter)..	1.50
22-169	8. " 50 (2nd Detector Cathode, Drivor Cathode, and 1st Andio Cathode)..............................	.55
22-170		. 25
63-121	100M Ohm 1 Watt (2nd Detector Plate)...........................	. 25
63-135		. 25
63-137	250M ${ }^{\prime \prime}{ }^{\text {b }}{ }^{\text {n }}$ (Oacillator Grid).............................	. 25
63-140	$1 \mathrm{Kog}^{\prime \prime}$ - ${ }^{\text {c }}$ (A. V. C. Grid)	. 25
63-169	$400{ }^{\prime \prime}{ }^{\frac{1}{2}}{ }^{\prime \prime}$ (A. V. C. Plate)	. 25
63-231	Volume Control issambly..	1.25
63-232	Tone Control Assembly	-75
63-234	Sansitivity Control.	. 75
65-236	500 Ohmo.......(Power Bias) (Wide Motal)	. 25
63-237	1500 " -.......(Driver Bias)(Narrom Met	. 25
63-238	$1000{ }^{-1} \frac{1}{4}$ Vatt (lat Detector Cathodo)	. 25
63-239	24M ${ }^{\text {n }}$ - ${ }^{\text {n }}$ (Oscillator Plate).	. 25
63-240	1900 - ${ }^{\text {a }}$ (R.Pe,lat Detector \& I.F. Gr	. 25
63-242	$2500{ }^{\text {m }}$ - ${ }^{\text {a }}$ (1. V. C. Cathode)	-25
$63 \text {-245 }$	18Y ${ }^{\text {n }}$ (${ }^{\text {n (}}$ (1. V. C. Cathodo)	. 25
63-244	$500^{*} \frac{1}{4}{ }^{n}$ (Acoustic Filter).....................................	. 25
20-53	Antenna Coil.	-75
20-34	Oscillator Coil	. 85
20-35	Detactor Coil.	1.00
S-2252	2nd Detector Plate Choke and Bracke	. 50
95-133	1st I. F. Transformer (vith Grid Lead).........................	1.25
95-139	2nd I. F. Trans former (without Grid Lead).	1.25
*22-115	R. P., lat Detector, I. F. Grid Retarns, I. P. Cathode, and Acoustic Filter.	

VOLTAGE READINGS - MODELS 520521
Antenna Disconnected

Tube Type	Position	Fil. Volt.	Plate Volt.	Cath. Volt.	Soreen Volt.	Plate Current
Z-58	R.F.	2.5	220	0	100	5.2
Z-58	lst Det.	2.5	220	42	100	3.
Z-56	Osc.	2.5	120	0	0	4.
Z-58	I.F.	2.5	220	0	100	6.
Z-56	2nd Det.	2.5	120	20	0	.75
Z-57	A.V.C.	2.5	-40	-75	-2	0
Z-59	Driver	2.5	220	+25	220	8.2
Z-59	Power	2.5	230	-65	230	25.
Z-59	Power	2.5	230	-65	230	25.
Z-80	Rect.	5.0	400			62.5

Volume control maximum

Tube Position

INTEROCEAN RADIO CORP.
Schematic

[^7]voltage readings

99	－	－	－	09\％	$0 \cdot 9$	${ }^{708}$	08－Z
て	$96 T$	961	$0 L^{-}$	961	$\square^{\circ} \mathrm{C}$	$2 \mathrm{mog}^{\text {d }}$	69－2
\％	961	$96 T$	OL－	96T	$9^{\circ} \mathrm{C}$	ramod	69－2
El	061	06 t	02	06τ	$9^{\circ} \mathrm{z}$	İлfag	69－2
－	ह1	92	\＆t	0ε	G＊2		LG－2
－	98.	－	G8－	－	乐它	$0^{*} \Lambda^{*}{ }^{\text {a }}$	LG－2
8 \％	－	－	08	02 T	$9^{\circ} \mathrm{F}$	0 0¢Pn\％ $7{ }^{61}$	9G－Z
ε	－	－	01	Ott	9^{*} \％	－72d puz	99－2
$9^{\prime} g^{9}$	$\bar{\sigma}^{\text {\％}}$	96	$\mathrm{z}^{\circ} \mathrm{C}$	002	${ }_{9}{ }^{\circ}$		8S－2
$9^{1} \varepsilon$	－	－	0	001	$9 \cdot 2$	${ }^{260}$	9G－2
$\varepsilon^{\circ} \mathrm{C}$	$9 \cdot 7$	92	9．7	06 T	$9^{\circ} \mathrm{z}$	$7{ }^{790}{ }^{\text {7 }}$ T	8S－2
$4 \cdot \mathrm{G}$	$\mathrm{C}^{\circ} \mathrm{Z}$	91	$\mathrm{z}^{\circ} \mathrm{\square}$	92T	$9 \cdot 2$	$0^{\circ} 8^{8} 7^{81}$	8G－2
$\begin{aligned} & \text { 7uesing } \\ & \text { eqgid } \end{aligned}$	$\begin{aligned} & \cdot 7 \mathrm{TO} \Lambda \\ & \cdot{ }^{\mathrm{dd} \mathrm{~ns}} \end{aligned}$		$\begin{aligned} & \cdot 7[0 \Lambda \\ & \cdot 4780 \end{aligned}$		$\begin{aligned} & \cdot 7 T 0 \Lambda \\ &- 7 \% A \end{aligned}$	u017ticod	$\begin{aligned} & \text { ed } K_{\mathrm{I}} \\ & \text { } 2 q_{\mathrm{L}} \end{aligned}$
							unot

Line Voltage 115 （Reading to Ground）Volume control maximam
（All readings，with exception of heaters，taken from socket connections to ground．
Use 1,00 ohm per volt D ．C．meter．）
BALANCE I．F．frequency at $175 \mathrm{~K} . \mathrm{C}$ ．Condenser gang at $1500 \mathrm{~K} . \mathrm{C}$ ．and oscillator
padder at $600 \mathrm{~K} . \mathrm{C}$ ．

JACKSON-BELL CO., LTD.

FRENCH PAGE 5-1
JESSE FRENCH EXPORT CO.
MODEL 5X,6X,7X
Schematic

PAGE 5-2 FRENCH

```
MODEHL 5X,6X,7X
Socket,Voltage
Parts List
```


جٌ

(A11) readings, with exception of heaters, taiken from socket connections to ground.
(A11 readings, with oxception of heaters, taken from socket connections to ground.
Use 1,000 ohm per volt D. C. meter.).
BLLANCE I.F. frequency at $175 \mathrm{~K} . \mathrm{C}$. Condenser gang at $1500 \mathrm{~K} . \mathrm{c}$. and oscillator pad-
der at 600 K.c.

Dial and Moter Assombly
 Tuning Shart Pulley (large idier) Dial Drum Pulley Tension spring.

KINGSTON PAGE 5-1

PAGE 5-2 KINGSTON

MODEH 500-A,500
 Schematie

KINGSTON PRODUCTS CORP.

KINGSTON PRODUCTS CO.

PAGE 5-4 KINGSTON

KODEL 700,700-A
$700-\mathrm{B}$
Schematic

KINGSTON PRODUCTS CO.

LAFAYETTE RADIO \& TELEVISION CORP. Schematic,Parts $L_{i s t}$ MODEL AM-10 Schematic,Parts List

PAGE 5-2 LAFAYETTE
MODEL A $-7, \mathrm{M}-69, \mathrm{M}-70$
Schematic,Parts ListLAFAYETTE RADIO \& TELEVISION CORP. MODEL A-15

[^8]
LAFAYETTE RADIO \& TELEVISION CORP. Schematic, Parts List

 MODEL AM-2 6 Schematic, Perts List

307 . $0005 \begin{gathered}\text { MFD. Hica Diode Filter } \\ \text { Condenser }\end{gathered}$

 Antoma a prinimery 178 Turns \#38

ぎ

 \vdots
8
8
\vdots
\vdots
\vdots
 1
8
0
0

PAGE 5-4 LAFAYETTE
MODEL B-51,B-52
$B-53, B-54$ LAFAYETTE RADIO \& TELEVISION CORP.

b Triode plate to cathode

RESISTORS

LAFAYETTE PAGE 5-5

LAFAYETTE RADIO \& TELEVISION CORP Schemetic, Foltage Socket,Parts List

Antenna Shorted to Ground
Batteries Up to Rated Voltages. See Fig. 1 Voltages Read From Negative Filament Terminal

$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { Tube } \end{aligned}$	Function	Filament	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Cathode } \end{gathered}$	$\left\|\begin{array}{c} \text { Screen } \\ \text { to } \\ \text { Cathode } \end{array}\right\|$	Grid to Cathorle	$\begin{gathered} \text { Normal } \\ \text { Plate } \\ M, \boldsymbol{A} . \end{gathered}$
34	R.F.	2.0	135	65	$3.0{ }^{(1)}$	2.6
34	1st Det.	2.0	135	65	4.5 ${ }^{(1)}$	2.5
30	Osc.	2.0	90		2-4(2)	3.3
34	I.F.	2.0	135	90	$4.5{ }^{(1)}$	3.0
30	2nd Det.	2.0				
30	1st Audio	2.0	90		$9.0{ }^{(3)}$. 45
30	2nd Audio	2.0	130		$9.0{ }^{(4)}$	3.4
30	Output	2.0	135		10.5	2.5

(1) Computed figure-cannot be read because of high resistance circuit
(2) Varies with frequency setting. (4) As read at battery.
(3) Volume Control at minimum.

PAGE 5-6 LAFAYETTE

LAFAYETTE RADIO \& TELEVISION CORP.

Batteries

The batteries and voltages required are shown in Figs. 2 and 3.

The majority of potential complaints on. short "B" battery life can be prevented if proper instructions are given to the customer at the time the receiver is installed: The average "B" drain of this receiver under no signal conditions is 18 milliamperes. A milliammeter in the negative " B " line will quickly determine whether the " B " drain is excessive or normal.

Two factors directly affect the " B " battery consumption. One is the strength of the station signal. When the signal is weak, little or no automatic volume control action is obtained, and the 34 tubes draw high plate current. As the strength of the incoming signal increases, plate current in these tubes is reduced with a corresponding reduction in total " B " battery current. The other factor is the volume used. As the volume is increased, the " B " battery drain of the output tubes is increased.

As this receiver does not have a pilot lamp, it is easy to forget to turn it off. When this happens, the receiver may be on as long as 24 hours or more. A continuous drain of this kind for a long period will shorten the life of the "B" batteries considerably. Caution the customer regarding this.
The "A" Battery consists of any direct current power supply source delivering from 2 to 3 volts. An air cell, 3 volt dry cell bank, and 2 volt storage cell are some of the units which can be used. Caution-do not use a 6 volt storage battery.

For the "C" battery a special $221 / 2$ volt "C" battery with 9, $101 / 2$ and $161 / 2$ volt taps, as indicated in Fig. 2, may be used. If such a battery is not available, two standard $41 / 2$ volt " C " batteries and a standard $71 / 2$ volt "C" battery can be connected as shown in Fig. 3 to supply the necessary voltages.

If the receiver does not operate satisfactorily test the batteries "under load., A high resistance meter is required for the " B " and " C " voltages. If any of the batteries are considerably below their rated voltage, new ones should be used. When the " B " batteries are replaced the " C " batteries should also be replaced. The reason for this is that the " C " drain is such that the " C " batteries are run down in about the same time as the " B " batteries.

Tubes

The tubes used in this receiver are all of the 2 volt series. The 34's are R. F. Pentodes with the suppressor grid tied internally to the cathode. The 30 tube is a general purpose triode. All of these tubes are of the filament or directly heated cathode type. All of them have a 2 volt filament and should not be connected to a power supply not intended for this type of tube. The filaments of both types of tubes take 60 milliamperes at 2 volts and the total "A" drain is therefore 9 times .06 or .54 amperes. The average "B" drain of the receiver under no signal conditions is 18 milliamperes. The tube marked 10 AB is a voltage regulator which keeps the filament voltage within safe operating limits over a battery range of 2 to 3 volts.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of 175 K . C. and accurately calibrated signals over the broadcast band, and an output indicating meter are desirable. The procedure is as follows:

Set the signal generator for $175 \mathrm{~K} . \mathrm{C}$. Connect the signal lead from the signal generator to the grid of the 1st detector tube through a . 05 mfd . condenser. Turn the tuning condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. Then adjust the four intermediate frequency condensers for maximum output. The adjusting screws for these condensers are reached from the bottom of the chassis.

Next set the signal generator for a signal of exactly 1400 K . C. The antenna lead from the signal generator is, in this instance, connected to the antenna lead of the receiver. Set the dial pointer on the 1400 K . C. mark on the dial scale and adjust the three trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator trimmer first.

The tuning condensers are all adjusted at the factory for the correct relative capacity between the oscillator section and the other two sections. As a rule no adjustment other than at 1400 K . C., as mentioned above, is required. If, after the receiver has been aligned at 1400 K. C., the sensitivity is still low at some portion of the band, adjust the signal generator to that setting and tune for maximum output with the station selector knob on the receiver. Then, without readjusting the trimmers, bend the slotted rotor plates on the front two sections of the gang to obtain maximum output. Care should be taken not to bend these plates too far in an inward direction as the condenser may short as a result.
After any adjustment of this nature, set the signal generator again for a signal of 1400 K . C. and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.

REPAIR PARTS LIST FOR 10 TUBE BATTERY OPERATED SUPERHETERODYNE RECEIVER

When ordering parts be sure and give the part number. Also give the series number which will be found in the License Notice label. If there is a spot of paint on the chassis, give this color.

Part No.

LAFAYETTE RADIO \& TELEVISION CORP.

PAGE 5-8 LAFAYETTE
MODEK INT 10
Socket, Parts LAFAYETTE RADIO \& TELEVISION CORP. Aligmment

LAFAYETTE PAGE 5-9

LAFAYETTE RADIO \& TELEVISION CORP. MODEL $I-1, I-2$,
$L-3, L-4$ Schematic Voltage

Voltages at Sockets LINE VOLTAGE 115-ANTENNA SHORTED TO GROUND-NOISE SUPPRESSOR AT MAXIMUM CLOCKWISE POSITION						
$\begin{aligned} & \text { Type } \\ & \text { Tube } \end{aligned}$	Function	Across Filament or Heater			$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Cathode } \end{gathered}$	Normal Plate M. A.
58	R.F.	2.4	242	90	$4^{(1)}$	4
58	1st Det.	2.4	250	86	7(1)	2
56	Osc.	2.4	24		0	8
58	1st I.F. ${ }^{(2)}$	2.4	252	90	$4^{(1)}$	4
58	2nd I.F. ${ }^{(2)}$	2.4	254	91	3	5.7
56	2nd Det.	2.4	0		0	0
57	1st Audio	2.4	65	55	$4^{(3)}$. 4
57	NoiseSup.	2.4	55	20	$3^{(1)}$	0
56	2nd Audio	2.4	255		$14^{(4)}$	3.3
46	Power	2.4	260	260	34	23
82	Rectifier	2.4	880 vo	ts plate	to plate	$\begin{gathered} 53 \\ \text { per plate } \end{gathered}$
(1) Read from cathode to ground. -(2) If I.F. readings are made with a cord and plug, ground th control grid through a condenser to prevent oscillation and motor boating.						
(3)	Read across 30 ohm section of voltage divider.					
(4)	Read across $30 \cdot \mathrm{ohm}$ and 1.00 ohm section of voltage divider.					

PAGE 5-10 LAFAYETTE

MODHL L-11,I-12
Schematic,
Voltage
Socket
Trimers

Fig. 2-Tube Arrangement and Battery Connections

Voltages at Sockets						
"B" AND "C" BATTERIES UP TO RATED VOLT-AGE-FILAMENT CONTROL KNOB SET SO						
THAT FILAMENT VOLTAGE IS 2-ANTENNA LEAD SHORTENED TO GROUND-VOLTAGES READ FROM NEGATIVE FILAMENT LEG						
$\begin{gathered} \tau_{\text {cpe }}^{\text {of }} \end{gathered}$	Function	$\begin{aligned} & \text { Across } \\ & \text { Fillas } \end{aligned}$		$\begin{gathered} \text { Screcen } \\ \text { cathode } \\ \text { Catho } \end{gathered}$	$\begin{gathered} \text { Crid } \\ \text { chithode } \end{gathered}$	$\underset{\substack{\text { Normal } \\ \text { Plate } \\ M A}}{ }$
'34	R.F	2.0	125	65	$2.88{ }^{(7)}$	2.3
'34	1st Det.	2.0	130	65	7.5 (1)	1.4
'30	Osc.	2.0	67		4-15(2)	1.6-4 ${ }^{(2)}$
'34	I.F	2.0	120	65	$2.38{ }^{(1)}$	2:4
'30	2nd Det.	2.0	0		0	0
'30	1st Audio	2.0	85		7.512	. 5
'30	Driver	2.0	125		$7.5{ }^{(1)}$	4.0
'30	Output	2.0	130		10.	1.1

(I) Computed figure cannot be read with ordinary voltmeter because of high resista
(2) Subject to variation with dial setting.

LAFAYETTE RADIO \& TELEVISION CORP L-18, L-19
MODEL $\mathrm{L}-16, \mathrm{I}-17$
Schematic
Socket, Changes

Change in Later Models
In the hrst models of this chassis, resistors R-1 and R-3 were carbon resistors of the values as shown in Fig 1 Resistors R-12 and R-14, were in one vitreous enamel unit The voltages for the sets with these resistors are shown in the voltage chart on l'age 4 at the left.
In later models the four above mentioned resistors were replaced by one armored wire wound resistor untt Nen values are used as follows

Code	Resistance
R-12	220 ohms
$\mathrm{R}-1+$	40 ohms
$\mathrm{R}-1$	9,540 ohms
$\mathrm{R}-3$	10,650 ohms

The voltages for the sets with the four-section wire wound resistor are shown in the second voltage chart on Page 4 at the right.

Twenty-five Cycle Receivers

The iwellty-five cycle receiver differs from the sixty cycle receiver only in the fact that a different power transformer and an additional filter condenser are used Also, a slight change is made in the power unt wiring In the twenty-five cycle set, condenser C-17 the dry electrolytic unt is put in parallel with condenser C-14. An 8.0 mfl wet electrolytic condenser is put in place'of con denser C-17
The twenty-five cycle chassis can be operated satisfactority from a saxty cycle power supply However, the reverse is not true that is the sixty cycle chassts cannot se operaterl from a wenty-tive cyile power supply A $110-220$ volt to-60 eycle ponwer transformer is also avartalle for this model.

PAGE 5-12 LAFAYETTE

MODFK L-16,I-17
 Alignment, Parts
 Voltage
 EPAIR PARTS LIST FOR 7 TUBE SUPERHETERODYNE RECEIVER

L-18, $1-19$ LAFAYETTE RADIO \& TELEVISION CORP.

When ordering parts, the part number and the serial number of chassis must be given. If there is a spot of paint on the chassis be sure to give this color. If this information is not available return the old part to insure getting the correct part

Voltages at Sockets

LINE VOLTAGE 115-ANTENNA LEAD SHORTED TO GROUND-VOLUME CONTROL AT MAXIMUM

			For early Models with 2 -section vitreous enamel resistor.				For later Models with 4-section armoured wirewound resistor.			
$\begin{aligned} & \mathcal{T}_{\text {ype }} \\ & \mathcal{T}_{u b c}^{\text {ubc }} \end{aligned}$	Function	Across Filament or Heater	$\begin{gathered} \text { Plate } \\ \text { tothode } \end{gathered}$		Grid to. Cathode	Normal Plats M. A.	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { tathode } \end{gathered}$	$\begin{gathered} \text { Screen } \\ \text { Cathode } \end{gathered}$	$\begin{aligned} & \text { Grid: } \\ & \text { to to } \end{aligned}$	Normal Plate M. A.
'58	R.F.	2.4	282	107	4(1)	8.	258.	106	$2.8{ }^{(1)}$	8.2
'57	1st Det.	2.4	270	100	5	. 4	250	103	5	. 4
'58	I.F. ${ }^{(2)}$	2.4	282	107	4(1)	8.	258	106	2:8(1).	8.0
'57	A:V.C.	2.4	90	40	9.5	0	103.	45	10	0
'57	2nd Det.	2.4	207	98	6	. 15	190	101	6	. 15
'47	Audio	2.4	262	280	24(3)	31	242	260	$17^{(3)}$	30
'80	Rect.	4.8				$\begin{gathered} 30 \\ \text { per plate } \end{gathered}$				er plate

(1) Read Across R-14.
(2) If I.F. readings are made with a cord and plug, ground the control grid through a condenser ta prevent oscillation
(3) Read Açross R12 and R14.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of 175 K .C. and accurately calibrated signals over the broadcast band, and an output indicating meter are necessary. The procedure is as follows:

Set the signal generator for 175 K .C. Connect the signal lead from the signal generator to the grid of the 1st detector tube through a .05 mfd . condenser. Turn the tuning condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. Then adjust the four intermediate frequency condensers for maximum output. The adjusting.
screws for these condensers are reached from the bottom of the chassis.
Next set the signal generator for a signal of exactly 1400 K.C. The antenna lead from the signal generator, is, in this instance, connected to the antenna lead of the receiver. Set the dial pointer on the 1400 K .C. mark on the dial scale and adjust the three trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator trimmer first

Next set the signal generator for a signal of 600 K.C. and adjust the oscillator 600 K .C. trimmer. The adjusting screw for this condenser is reached from the top of the chassis and is between the I.F. and oscillator coil cans.
A non-metallic screwdriver is necessary for this adjustment. Turn the tuning condensor rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 600 K .C. trimmer screw until the highest output is obtained.
Then set the signal generator again for a signad of 1400 K.C. and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.

LAFAYETTE PAGE 5-13

MODEL L-30

Alignment

LAFAYETTE RADIO \& TELEVISION CORP.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignnient should not be attempted unless all other possible causes of the faulty operation have first been investigated and uniless the service technician has the proper equipment. A signal generator that will provide accurately -calibrated signals over the broadcast band and accurately calibrated signals at and around 262.5 K . C., the intermediate frequency and an output indicating meter are desirable.
Do not take the chassis out of the box. First set the signal generator at approximately 262.5 K . C. Connect the antenna lead from the generator to the control grid of the I. F. 78 tube, through a .05 mfd . condenser. The ground lead of the generator goes to the ground of the receiver. Turn the rotor plates of the tuning condenser completely out and keep the signal weak enough to prevent A. V. C. action. Note from Fig. 1 that the second I. F. transformer is self tuned and cannot be adjusted. Adjust the frequency of the signal generator until the output meter shows maximum output. The intermediate frequeticy setting of the generator is then correct, although it may be a very small percentage higher or lower than 262.5 K . C.
Next connect the signal lead from the signal generator to the grid of the 1 st detector tube through a .05 mfd . condenser. Do not change the signal generator setting. Then adjust the 1 st I. F. trimmer, condenser screws for maximum output. There are 2 holes at one end of the chassis box. The 2 trimmer screws can be reached through these holes. CAUTION-use an insulated screwdriver to prevent short circuiting to ground.
Now disconnect the signal generator and adjust it to exactly 1400 K . C. The antenna lead from the generator is then connected to the antenna lead of the receiver. Connect the tuning condenser flexible drive shaft to the chassis if it has been disconnected. Turn the station selector knob until the rotor plates are completely in mesh. Then with a screwdriver turn the calibration screw on the back of the control unit, until the pointer is at the lowest frequency mark. This is the large point. 5 points below the 55 mark. Then turn the station selector knob until the pointer on the dial scale is at 1400 K . C.

Then adjust the oscillator R. F. and antenna trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator section first. See Fig. 2.

Next, set the signal generator for a signal of $600 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator 600 K . C. trimmer. This condenser is mounted on the end of the gang condenser. See Fig. 2.

A non-metallic screwdriver is necessary for this adjustment. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 600 K . C. trimmer screw until the highest output is obtained.

Then set the signal generator again for a signal of 1400 K. C. and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.

If the control unit or flexible shaft is moved after the set has been aligned, the setting of the dial pointer may change. This can be adjusted by turning the control unit calibration screw until the pointer is at the correct setting.

Adjusting Antenna Trimmer

After the receiver is installed and the car antenna is connected it will be necessary to adjust the antenna trimmer. Tune in a weak signal between 1200 and 1400 K . C. with the volume control about three-fourths on. Remove the cover of he chassis box. The antenna trimmer is the trimmer cundenser closest to the terminal strip-see Fig.
2. Turn the adjusting screw of this condenser up or down until maximum output is obtained. CAUTION-Do not turn any of the other trimmer adjusting screws for this adjustment.

Removing "'B" Unit From Box

Disconnect the "A" and "B+" leads at the terminal strip. On the end of the box at which the " B " unit is located will be found 9 screws around the edge. Remove these 9 screws. The " B " unit and end plate can then be lifted out.

Replacing the Vibrator

Note that vibrator unit is of the plug-in type. This unit can be inserted and removed in the same manner as a tube.

Replacing Chassis Unit

In replacing the chassis unit be sure that the ground spring near the output transformer makes a good coatact with the chassis box. Reverse the procedure as given above for removing this unit.

Replacing ' B " Unit

When replacing the " B " unit be sure that the ground spring makes a good contact to the partition wall in the chassis box. Reverse the procedure as given above for removing this unit.

Removing Speaker

If service work is required on the chassis, it is advisable in some cases to remove the speaker, as this will permit ready access to all of the units and wiring.
The pot magnet is secured to the vertical walls of the chassis base by means of 3 screws, 2 on one side and 1 on the other. Remove these screws. Then carefully lift out the speaker as far as the leads will permit. The yellow field lead and the black secondary lead may then be unsoldered.

Trouble Shooting and Service

Vibrator Unit

When servicing this receiver a new vibrator unit should be tried out in the same manner as a new set of tubes would be tried out. These units are plugged in in the same manner as a tube. One or more vibrator units should be kept on hand for replacement purposes.

"B" Unit

In case of failure in the " B " unit try out a new vibrator. If this does not remedy the difficulty and the " B " unit cannot be repaired locally it is not necessary to return the entire chassis. Remove the "B" unit from the chassis box as per the instructions in this manual after which this unit may be carefully packed and returned separately.

Weak Reception

Defective Tubes-Try out a new set of tested tubes and note any difference in performance.

Poor Antenna-To try out the effectiveness of the antenna used, check the volume against the volume when using a straight length of wire about 15 feet long, run out of the car through one of the windows. If, upon test, the external wire is found to be much superior as far as volume is concerned, the antenna is not satisfactory and will have to be re-vamped or a new one installed. The antenna or lead-in may be too near grounded metal portions of the car frame or body resulting in a high capacity to ground. There may be grounded metal mesh in the car roof. There may 'be a poor soldered connection between the antenna, lead-in, or antenna lead from the set. The antenna system may be partially grounded at some point.

Antenna Trimmer not Adjusted-See Article "Adjusting Antenna Trimmer."

LAFAYETTE RAḊIO \& TELEVISION CORP. Schematic

MODEL S-17762

Socket

 Alignment Trimmers
LAFAYETTE RADIO \& TELEVISION CORP.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equip-

Fig. 12-Location of Trimmers
ment. A signal generator that will provide accurately calibrated signals over the broadcast band and accurately calibrated signals at and around 262 K.C., the intermediate frequency and an output indicating meter are desirable.

First set the signal generator at approximately 262 K.C. Connect the antenna lead from the generator to the control grid of the I.F. 78 tube, through a .05 mfd condenser. The ground lead of the generator goes to the ground of the receiver. Turn the rotor plates of the tuning condenser completely out
and keep the signar weak enough to prevent A.V.C. action. Note from Fig. 10 that the second I.F. transformer is self tuned and cannot be adjusted. Adjust the frequency of the signal generator until the output meter shows maximum output. The intermediate frequency setting of the generator is then correct, although it may be a very small percentage higher or lower than 262 K.C.
Next connect the signal lead from the signal generator to the grid of the 1st detector tube through a .05 mfd . condenser. Then adjust the two intermediate frequency condensers for maximum output. The location of the adjusting screws for these condensers is shown in Fig. 12.
Now set the signal generator for a signal of exactly 1400 K.C. The antenna lead from the generator is, in this instance, connected to the antenna lead of the receiver. Connect the flexible drive shaft to the chassis if it has been disconnected. As explained previously, the dial scale should be at the low frequency end stop when the rotor is completely in mesh. Then turn the station selector knob until the dial scale is at 1400 K.C.
Then adjust the three trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator section first (section farthest from drive gear).
Next set the signal generator for a signal of 600 K.C. and adjust the oscillator 600 K.C. trimmer. The location of this condenser is shown in Fig. 12.
A non-metallic screwdriver is necessary for this adjustment. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 600 K.C. trimmer screw until the highest output is obtained.
Then set the signal generator again for a signal of 1400 K.C. and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.

Condenser Block-Internal Wiring

Location of Tubes

Trying Out the Set and Adjusting

After the wiring has all been completed and before the chassis is permanently installed, try out the set and adjust the antenna trimmer condenser. The location of the tubes is shown in Fig. 8. Do not start the engine of the car yet.
To adjust the antenna trimmer, tune in a weak signal between 1200 and 1400 KC with the volume control about three-quarters on. On one end of the
chassis box is a small metal plate. Remove the two screws which hold this plate in place. Directly under the hole in the chassis box is the anteuna trimmer condenser screw. Turn this adjusting screw up or down until maximum output is obtained.
If the receiver fails to operate, check the items as given under the article by that name.

MODEL 503-US
Schematic, Alignment

LANG RADIO CORP. (New Co.)
MODEL UG-5B
Schematic,Alignment

To align the receiver, turn C3-4 out-with R2 fully on, apply 456 signal to grid of V3 and adiust L4-apply 456 signal to V1 and adjust L3-with antennae wire coiled up and capacitatively coupled to the signal. adjust trimmers on

540 K.C. to 1550 K.C.	STANDARD	ENT IS WITHOUT PHONOJACKS
V1-6A7 Tube 5,900 to 15,400 K.C.	C11-. 25 mfd . Cond.	R1-2-4-20,000 Ohm Resistor
V2-6D6 Tube	C12-18-10 mfd. Cond.	R3-205 Ohms in line cord
V3-6C6 Tube	C13-17-. 01 mfd . Cond. .	R5-4M Ohm Vol. Cont. 190 Ohm min.
V4-43 Tube	C14-. 0005 mfd . Cond.	R6-50,000 Ohms
V5-12Z3 Tube	C20-12 mfd. Cond.	R7-2 Meg Ohm Resistor
V6-6.3 Volt Pilot Light	C21-8 mfd. Cond.	R8-100,000 Ohm resistor
C1-6-. 002 mfd . Cond.	CH1-Choke	R9-10-500,000 Ohm resistor
C2-5-8-365 mmfd. Var. Cond.	CH2-3000 Ohm Speakerfield	R11-700 Ohm resistor
C3-4-23-24-25-40 mmfd. Trimmer	Ph.-Phono.	R12-25 Ohm resistor
C7-600 mmfd. Trimmer	T1-Speaker Transformer	L1-Antennae Coil
C9-. 00005 mfd . Cond.	S1-2-3-4-Band switch	L2-Oscillator Coil
C10-15-16-19-22-. 05 mfd Cond.	SW.-Switch on Volume control	L3-4-D.T. 470 K.C. I.F. Coil

To align the receiver : Turn band switch to shortwave-short C8-apply $470 \mathrm{~K} . \mathrm{C}$. to grid of V2 and adjust L4-apply $470 \mathrm{~K} . \mathrm{C}$. to grid of V1 and adjust L3-remove' short from C8-apply $15,000 \mathrm{~K} . \mathrm{C}$. to antennae and adjust C24 and C4-turn band switch to broadcast-apply 1,400 K.C. to antennae and adjust C3, C23, and C25-apply $600 \mathrm{~K} . \mathrm{C}$. and adjust C7-readjust C3, C23 and C25

PAGE 5-2 LANG
MODEL 502-US
Schematic, Alignment Parts List

LANG RADIO CORP. (New Co.)

This receiver is a five tube Universal dual wave receiver. One band covers the usual broadcasting 540 to 1550 kilocycles, and the other takes in the high frequency broadcasting 5900 to 15400 kilocycles. The high frequency range includes the important international broadcast bands 19 , 25, 31 and 49 meters. Tuning and selection of bands are facilitated by the use of colors on the dial. The broadcast band is calibrated in kilocycles, and the high frequency bands are indicated in tan, amateur in red, airplane in blue, and unclassified in white. 49 meter band is from 6.01 to 6.15 megacycles; 31 meter is from 9.5 to 9.6 megacycles; 25 meter is from 11.7 to 11.9 megacycles, and 19 meter is from 15.1 to 15.34 megacycles.

IF PEAK 175 KC.

V1-2A7 Tube
V3—58 Tube
V4-2A6 Tube
V4-2A5 Tube
V5-80 Tube
V6-2.5 Pilot Light
C1-2-3--365 mmfd. Var. Cond.
C4-10-. 0001 mfd. Cond.
C5-6-7-8-9-. 05 mfd . Cond.
C11-12-. 00025 mfd . Cond.
C13-15-18-19-. 01 mfd . Cond. '
C23-24-25 26-27-40 mmfd. Cond.
C28-. 1 mfd Cond.
C14-5 mfd Cond.
C17-. 25 mfd . Cond.
To align the receiver: Turn the band selector switch to broadcast-Short C3--Apply 175 K.C. to grid of V2 and adjust L6Apply 175K.C. to grid of V1 and adjust L5-Remove short from C3-Apply 1400 K.C. to antennae and adjust C27, C24, C26Apply $600 \mathrm{~K} . \mathrm{C}$. and adjust $\mathbf{C} 20$-Shift band switch to shortwave-Apply 15 megacycles and adjust C25 to low peak then adjust C23.

540 to 1550 K.C.

This receiver is a five tube A.C. dual wave receiver. One band covers the usual broadcasting 540 to 1550 K.C., and the other takes in the high frequency broadcasting 5500 to 17000 K .C. The high frequency range includes the important international broadcast bands 19, 25, 31, and 49 meters. Tuning and selection of bands are facilitated by the use of "Select-Ur-Band" dial. Movement of the selector switch automatically shifts the mask on dial, so that only proper band can be seen. The broadcast part is calibrated in kilocycles, and the high frequency in megacycles. Broadcast bands are indicated in tan, amateur in red, airplane in blue, and unclassified in white. 49 meter band is from 6.01 to 6.15 megacycles; 31 meter is from 9.5 to 9.6 megacycles; 25 meter is from 11.7 to 11.9 megacycles; and 19 meter is from 15.1 to 15.34 megacycles.

PAGE 5-4 LANG

MODEL 703-US Schematic, Parts Alignment
 LANG RADIO CORP. (New Co.)

V1-6A7 Tube
V2-6D6 Tube
V3-85 Tube
V4-43 Tube
V5-43 Tube
V6-12Z3 Tube
V7--12Z3 Tube
V8-6.3 Pilot Light
C1-. 002 mfd . condenser
C2-3-5-9-11- 40 mmfd . Trimmer
C4-6-7- 365 mmfd . Variable Cond
C8-14-. 0001 mfd . condenser
C10- $\mathbf{1 0 0 0}$ mmfd. Trimmer
C12-13-15-16-24-27-30-. 05 mfd . cond.
C17-. 00005 mfd . Cond.
C18-. 00025 mfd . Cond.
C19-001 mfd. Cond.

C20--5 mfd. Cond. C21-6 mfd. Cond. C22--. 25 mfd . Cond. C23-. 006 mfd . Cond. C25-28-8 mfd. Cond. C26-16 mfd. Cond. CH1- 370 Ohm Choke CH2-Speaker Chöke R1-5-8 1,000,000 Resistor R2-30,000 Ohm Resistor R3- $\mathbf{3 0 0}$ Ohm Resistor R4-20,000 Ohm Resistor R6--400 Ohm Resistor R7-12-250,000 Ohm Resistor R11-9-3000 Ohm Resistor R13-767 Ohm Resistor R14-86 Ohm Resistor

R10- $1 / 2$ Meg. Volume Control
PH-Phono
LI-Broadcast Ant. Coil
L2-Shortwave Ant. Coil L3-Shortwave Osc. Coil L4-Broadcast Osc. Coil L5-D. T. 175 K C I. F. Coil L6-S. T. 175 K C I. F. Coil T1-Audio Trasnformer T2-Speaker Transformer TC-Tone Control
S1-2-3-4-Band Selector Switch S5-Phono Switch on Volume Control SW-Power Switch on Tone Control SS-Speaker Socket SP-Speaker Plug

To align the receiver: Turn the band selector to broadcast-Short C7-apply 175 KC to grid of V2 and adjust L6-apply 175 KC to grid of VI and adjust L5-Remove short from C7-apply 1400 KC to antennae and adjust C3, 5, 11-apply 600 KC and adjust C10, Shift band switch to shortwave-apply 15 megacycles and adjust C9 to low peak, then adjust C2.

This receiver is a seven tube Universal dual wave receiver. One band covers the usual broadcasting 540 to 1550 K C , and the other takes in the high frequency broadcasting 5500 to $17000 \mathrm{~K} . \mathrm{C}$. The high frequency range includes the important international broadcast bands $19,25,31$, and 49 meters. Tuning and selection of bands are facilitated by the use of the "Select-Ur-Band" dial. Movement of the selector switch automatically shifts the mask on dial, so that only proper band can be seen. The broadcast part is calibrated in kilocycles, and the high frequency in megacycles. Broadcast bands are indicated in tan, amateur in red, airplane in blue, and unclassified in white. 49 meter band is from 6.01 to 6.15 megacycles, 31 meter is from 9.5 to 9.6 megacycles, 25 meter is from 11.7 to 11.9 megacycles and 19 meter is from 15.1 to 15.34 megacycles.

MODEL 88 Schematic MODEL 90
Schematic,Socket

IF PEAK 175 KC

PAGE 5-2 LARKIN
MODES 91
Schematic LARKIN CO., INC.

LEWOL MFG. CORP.
MODES LW ~ 4
Schematic, Voltage MODEI LW-4-DW Schematic, Voltage

PAGE 5-2 LEWOL
 in diagram.

Corresponding numbers will be found on base of tubes.

Plug on end of speaker cable should be inserted in "speaker" socket.

The cord which terminates in the wall plug will become warm during the
operation of the receiver. This should cause no concern as it is desi gned
to act in this fashion. Be very careful not to cut this cord or lengthen
it in any fashion as this will generally impair the operation of the re-
ceiver.
trial will dictate. connection may be tried and left connected or not as
STANCES ATTACH A GROUND WIRE TO THE GHASSIS DIRECT.

LEWOL PAGE 5-3

LEWOL MFG. CORP.

PAGE 5-4 LEWOL
MODEL 63
Alignment
Voltage

SERIES "63"
All Wave
TRACKING

Peak IF transformer at 262.5 kc .
Next, align condensor trimmers on broadcast range with switch turned all of the way to the left and dial set at 1500 kc ., with a signal of the same frequency. Turn dial to 550 kc ., and track with a signal of that frequency by means of a series pad for the broadcast range (inside screw on isolantite base at rear of set).

Turn the frequency change switch to the right one position and turn dial to 4000 kc . Put in a signal of approximately 4000 kc .and move di al, if necessary to maximum response. Adjust the RF and antenna trimmers to resonance for the second band. These are located as follows: with the set inverted and the rear of the chassis nearest the operator, the two trimmers in the furthest right-hand corner are for the antenna coil. The nearer one is for the second band and the further one for the third band. The RF coil trimmers are located toward the center of the rear of the chassis, the left one being the second band and the right being the third band. Oscillatar pad is tracked at 1750 kc . (external nut on isolantite base at rear of set).

Again turning the switch one more position to the right which is the third band, track the oscillator trimmer with the dial set at $14,000 \mathrm{kc}$. and a corresponding signal. Oheck the alignment at 6000 kc., and if necessary bend the tuning condensor plates slightly. No pad is used here.

TUBE SOOKET VOLTAGES

Type	Position	Heater	Oathode	Screen	Plate	Osc. Plate	$\begin{aligned} & \text { Osc. } \\ & \text { Grid. } \end{aligned}$	Diode	$\begin{aligned} & \text { Oont } \\ & \text { Grid } \end{aligned}$
78	RF	6.3 v.	3.0	100	250	--	--	--	0
6A7	lst Det. \& Osc.	6.3 V	4.5	100	260	100	-6 v.	. 0	0
78	IF	6.3 v.	3.0	100	250	--	--	--	0
85	2nd Det. \& Osc.	6.3 v .	0	--	50	--	--	-1 v	0
42	Output	6.3	0	260	255	--	--	--	-8v
80	Rectf.	5.0	260	--	--	--	--	--	--

The above readings taken with a 300 volt 1000 ohm per volt DC voltmeter.

Line voltage 115 volts, 60 cycles AO. All DO voltages taken with respect to chassis ground with switch in first position.

P: R. MALLORY \& CO.

Directions for Servicing 1932 Type Mallory 'Single-Reed' Elkonodes

The 1932 type Mallory Elkonode is a half-wave, single-reed converter used with a BR Raytheon tube for rectification. This Elkonode is supplied in six standard types-from 1 to 6 inclusive-and modifications are supplied for special requirements, such as S 101 , S102, S103, T112, and S111. 12-volt single-reed Elkonodes are supplied in types G1 to G6 inclusive, and 32-volt Elkonodes in types from F1 to F6 inclusive.

The mechanical construction of the single-reed Elkonode is the same in all types with the exception of the size and number of turns of wire on the Elkonode coil. Following is a table of characteristics indicating the output obtainable from these standard Elkonodes:

Milli-
$\begin{array}{llllllllllllllll}\text { Milli- } \\ \text { amperes } & 12 & 15 & 17 & 20 & 22 & 25 & 27 & 30 & 32 & 35 & 37 & 40 & 42 & 45 & 47\end{array}$
Volts

220	2	3	4	4	5	6	6							
210	2	3	3	4	5	5	6	6						
200	2	3	3	4	4	5	5	6						
190	2	3	3	4	4	5	5	6	6					
180	1	2	3	3	4	4	5	5	6	6				
170		2	3	3	4	4	5	5	6	6	6			
160	2	2	3	3	4	4	5	5	6	6				
150	2	2	3	3	4	4	4	5	5	6	6	6		
140	1	2	3	3	3	4	4	4	5	5	6	6	6	
135		1	2	2	3	3	3	4	4	5	5	5	6	6

The following reproductions picture the Mallory single-reed Elkonode in two positions:

No. I

1. Reed Assembly
2. Stop Post mnty. block

No. II
3. Stop Post lock
4. Stop-Post
5. Contact Spring Assm.
6. Cam-nut adjustment
(1) is a side view showing the Elkonode with cover and rubber cushion removed. (2) is a front view with can and cushion removed. Numbered arrows clearly indicate the position of the Elkonode parts involved in installing new contact spring assemblies and new reed assemblies.

Routine for Dismantling Elkonodes for the Purpose of Replacing Contact and Reed Springs

(a) Remove screws which fasten outer housing or can to base.
(b) Hold can in upright position and tamp gently against hand permitting base and rubber housing inside of can to drop out gently. (CAUTION: Do not attempt to remove Elkonode assemblies from cans by pulling on the base.)
(c) Remove rubber cushion from Elkonode assembly in the same manner as entire assembly was removed from can.

TO REMOVE SPRINGS:

(d) Remove contact spring assembly by extracting screws at point marked " A " on above diagram.
(e) Remove reed assembly by extracting screws at point marked " B " on above diagram.
(f) Install reed assembly, using care to insure that metal blocks in which this reed is mounted are squarely aligned. NOTE: Use only Kester Resin Core Solder.
(g) Install contact spring assembly using care to properly align metal blocks in which this spring assembly is mounted.
(h) Inspect alignment of contact points to insure that contacts on both reed and contact springs are in proper alignment, and that their surfaces engage squarely and evenly. Alignment of these points is controlled by the position of the springs, and the screws mounting these springs should not be tightened firmly until the points are in alignment.
(i) With points in proper alignment, the air-gap or clearance between pole-piece of the coil and reed should be adjusted to approximately $1 / 32$ inch. This adjustment is provided for by the cam nut and locking screw at point marked " 6 " in diagram 2. The reed should be in a perfectly perpendicular plane, and the surface of the pole-piece or core of the coil should be exactly parallel with surface of reed.

P. R. MALLORY \& CO.

(j) Loosen the locking screw of the stop post (identified at point 3, on diagram 1) and adjust the stop post (identified at point 4, diagram 1) so that the tip of contact spring assembly engages screw-side of stop post head, allowing contacts to meet with a light pressure. This stop post is easily adjusted by turning to left until head of contact post pulls contact on left, or contact spring, away from contact on right, or reed contact. Then turn stop post screw to right about $1 / 8$ to $1 / 4$ turn, until contact points meet the light pressure. At this point, stop post locking screw should be firmly tightened down to hold stop post in this position.
(k) If the foregoing mechanical adjustment has been carefully followed out the Elkonode is now ready for Electrical Tests. These tests should be conducted with a master Eliminator, into which the Elkonode can be inserted while the can and rubber cushion are still removed, and with a "dummy" load on the Eliminator which will require 180 volts at $35 \mathrm{~m} . \mathrm{a}$. for Elkonode types 6, S101, S102, S103, S111, and T112. The output of the Elkonode is adjusted by increasing or decreasing the air-gap clearance between pole-piece of coil and surface of the armature reed. A cam nut and locking screw arrangement provide a flexible adjustment which sometimes must be supplemented by inserting thin metal shims between coil and bracket. NB-Shims are required only where construction of the unit will not permit air-gap clearance being decreased to point required, by adjustment of cam nut.
(l) Electrical adjustment for other types of Elkonodes, from 1 to 5 inclusive, must be conducted with "dummy" load to equal maximum output available from whichever type Elkonode is involved per characteristics shown in the foregoing table.
(m) Extreme care must be exercised to insure that no dirt or foreign matter is allowed to accumulate on contact points and that entire Elkonode assembly is kept thoroughly dry.
(n) Excessive sparking usually results from improper pressure between and alignment of contact points. If it is found necessary to bend the reed to secure a flat alignment of points, this should be done very carefully, using a pair of thin flatnosed pliers, to grasp the reed firmly at the base where it is mounted. A very slight pressure at this point will be required to change the angle of contact for vibrator points. No sparking whatever results from improper adjustment of stop post, permitting contact springs to follow reed springs past the center of cycle of amplitude or arc of vibration. Contacts should be lightly touching when at rest so there is about .014 inch clearance between stop post and contact spring. Stop post will then break this contact at the center of cycle of amplitude.

If the foregoing instructions are followed carefully, and if reliable instruments are used to measure the output of the Elkonode when electrical adjustments are being completed, you should be able to install contact and reed spring assemblies without difficulty. When adjustments have been completed to your satisfaction, place vibrator assembly inside rubber cushion by holding cushion in inverted position, and allowing assembly to drop into place. Next, place entire assembly inside can, in same manner, and fasten can to base, using screws provided for that purpose.

Thorough instructions for servicing other parts of the Mallory Elkon "B" Eliminator are provided in the service and installation bulletin accompanying each unit,-copies of which may be had upon request.

The following equipment is recommended as being extremely useful in conducting repairs on MalloryElkon "B" Eliminators and Elkonodes:

1. High resistance volt-meter. Scale: 0 to 300. Resistance: Not less than 1000 ohms per volt.
2. One good quality milliammeter. Scale: 0 to 50 .
3. One set feeler gauges.
4. One small screw-driver.
5. One pair thin, flat-nosed pliers (duck-bill type).
6. One 1932 Mallory-Elkon " B " Eliminator chassis.
7. One variable resistor-"dummy" load arrangement to duplicate maximum load for which each of six standard types of Elkonodes is designed.

> Directions for Servicing 1933-34 Type Dual-Reed Mallory 'Self-Rectifying' Elkonodes

The 1933 Mallory Self-Rectifying Elkonode is a dual-reed converter which within itself sets up the essentially alternating current required, and likewise rectifies it to the form of direct current required for radio receiver plate supply. No rectifying tube is used with the 1933 Mallory Self-Rectifying Elkonode.

This Elkonode is supplied in five standard types-from 10 to 14 inclusive-and modifications are supplied for special requirements under such designations as Nos. 30, 31, 34, 35 (for Motorola Receivers), and Nos. 36 and 37. 12-volt types are supplied in types G10 to G14 inclusive, and 32 -volt types from F10 to F14 inclusive. The mechanical construction of the dual-reed Self-Rectifying Elkonode is the same in all types with the exception of size and number of turns of wire on Elkonode coil.

P. R. MALLORY \& CO.

Following is a table of characteristics indicating Routine for Dismantling Dual-Reed output obtainable from each standard Elkonode at storage battery terminal voltage of 6.6 , for the 6 -volt, 13.2 for 12-volt type.

ELKONODE RATING TABLE

$\begin{aligned} & \text { Elkonode } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \text { Output } \end{aligned}$	For Receivers Requiring the Following Current in Milliamperes in the B MinusLead at 200 V . on Signal		$\left\lvert\, \begin{gathered} \text { Elkonode } \\ \text { Rated } \\ \text { Output } \\ \text { Watts } \end{gathered}\right.$	$\begin{aligned} & \text { Storage } \\ & \text { Battery } \\ & \text { Drain in } \\ & \text { Amps. } \end{aligned}$
		Without Voltage Dividers in Elim.	$\begin{aligned} & \text { With } 2 \mathrm{M} . \mathrm{A} . \\ & \text { (100,000 } \mathrm{A} \text {) } \\ & \text { Voltage Divider } \\ & \text { in Elim. } \end{aligned}$		
10	200	40-45	38-43	8.4	2.1
11	200	35-40	33-38	7.4	1.9
12	200	30-35	28-33	6.4	1.6
13	200	25-30	23-28	5.4	1.4
14	200	20-25	18-23	4.4	1.2

(d) With internal assembly in view, displace condensers by

Current at which Phantom Load Relay should be adjusted

| Elkonode
 Type | No. 10 | No. 11 | No. 12 | No. 13 | No. 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Current | 20 M.A. | 17.5 M.A. | 15 M.A. | $12.5 \mathrm{M} . \mathrm{A}$. | 10 M.A. |

Special Types Should be Adjusted to SET MFRS. Specifications (See Paragraph " N ")
The following reproductions picture the Mallory dual-reed or self-rectifying Elkonode in two positions: (3) is a side view showing the Elkonode with cover and rubber cushion removed, and (4) is a front view with cover and cushion removed. Numbered arrows clearly indicate position of Elkonode parts involved in installing
new contact spring and new reed assemblies.
 Stirged stop post assembly

[^9]7. Coil mouno. IV
9. Soil
10. Position contact spring behind
11. Stop-post head

TO REMOVE SPRINGS AND REEDS:
(e) Remove contact spring assembly by extracting screws at point marked " A " on above diagram, No. III.
(f) Remove reed assembly by extracting screws at point marked " B " on above diagram No. III.
(g) Install reed assembly, using care to insure that metal brackets in which these reeds are mounted are squarely aligned with reeds. (NB-Use only Kester Rosin Core Solder.)
(h) Install contact spring assembly using care to properly align metal brackets and blocks with which this assembly is mounted.
(i) Inspect alignment of contact points to insure that contacts on reed and contacts on springs are in proper alignment. Their surfaces must engage squarely and evenly. Alignment of points is controlled by the position of the springs. Screws mounting these springs should not be tightened firmly until points are in alignment.
(j) With points in proper alignment, air-gap or clearance between pole-piece of coil and counter-weights on ends of reed assemblies should be adjusted to approximately $1 / 32$ inch, when reeds are pulled in to center position. This adjustment is provided for by removing or inserting shims between the Elkonode frame and coil, at top of coil.
(k) Loosen locking screw of stop posts (identified at point 3 , diagram III, above) so that tips of contact spring assembly engage screw-side of stop post head, allowing contacts to meet with contacts on reed assemblies at light pressure. Stop post is adjusted by turning to left until head of contact post pulls contact springs away from contact on reed assembly. Then turn stop post screw to right (about $1 / 8$ to $1 / 4$ turn) until contact points on both contact spring and reeds meet with light pressure. At this point, stop post locking screw should be firmly tightened to hold stop post in this position.

PAGE 5-4 MALLORY

MODEL 1933-34 Type

Dual Reed Elkonodes
Dismantling and
Adjustments
(l) It is extremely important, if secondary reed and contact spring assembly show any sign of having been burned as a result of "arcing," that condenser No. 16611, rated at .01 mfd. 1600 V ., used across the secondary side of the Elkonode be replaced with a new one.
(m) Elkonodes which have become inoperative through the breaking down of this condenser, or which show evidence of overload at contact points, should never be replaced in Eliminators or automotive radio receivers until the adjustment of the "phantom load" relay has been checked carefully. Following is an outline of the causes which may bring about Elkonode failure through no fault of the Elkonode, and the method for correcting them:
(n) Elkonode failure is usually the result of a "no load" operating condition, which ordinarily is due to (A) film of dirt between contact points of phantom load relay, (B) iron filings between core and clapper of phantom load relay, (C) insufficient tension in phantom load relay springs, (D) open phantom load resistor, (E) receiver output tube defective, (F) connections to output tube open.
Most prevalent of these difficulties are items (B) and (C) which invariably cause Elkonode failure through no fault of the Elkonode.

Conditions (A) and (B) are corrected by thorough cleaning with strips of paper. Condition (C) is corrected by inserting milliammeter in coil circuit of phantom load relay, or in $\mathrm{B}+$ lead to receiver, and adjusting spring tension so that relay clapper will pull to core when current is equivalent to current rating for that type of Elkonode, as indicated in foregoing table. Conditions (D) and (F) are detected by continuity checks, while Condition (E) is detected by means of a tube tester.
(o) A choke coil is mounted within the rubber cushion in the base of the Elkonode can, and the continuity of this choke coil should be checked by continuity tests between mounting prongs and soldering terminal of the secondary contact spring assembly.
(p) If the foregoing mechanical adjustments have been carefully followed out, the Elkonode is now ready for electrical tests. These tests should be conducted with a master Eliminator, into which the Elkonode can be inserted while the can and rubber cushion are still removed. A "dummy" load to equal the output characteristics of whichever type dual-reed selfrectifying Elkonode is involved should be imposed, and all tests should be conducted with a battery terminal voltage of 6.6. Special types of Elkonodes designed for so-called "allelectric" automotive receivers may best be tested in this same manner, or with a "dummy" resistor load to match the output characteristics of that Elkonode.
(q) Extreme care must be exercised to insure that no dirt or foreign matter is allowed to accumulate on contact points, and that the entire Elkonode assembly is kept thoroughly dry.
(r) "Excessive sparking" usually results from improper pressure between and alignment of contact points. If it is found necessary to bend reed assembly to secure flat alignment of points, this should be done by carefully grasping reed assembly at bracket where it is mounted with a pair of thin, flat-nosed pliers. A very slight pressure will be required to change the angle of contact for vibrator points. "No sparking" results from improper adjustment of stop post, permitting contact spring to follow reed spring past center of cycle of amplitude
or arc of vibration. Contacts should be lightly touching when at rest, so a clearance of approximately .012 exists between stop post head and contact spring on interrupter side and .002 to .006 on rectifier side. Stop post will then break these contacts at center of cycle of amplitude.

If the foregoing instructions are followed carefully, and if reliable instruments are used to measure output of Elkonodes when electrical adjustments are being completed, you should be able to install these contact spring and reed assemblies without difficulty. When adjustments have been completed to your satisfaction, place vibrator assembly inside rubber cushion by holding cushion in inverted position and allowing assembly to drop into place. Next, place entire assembly inside can, in the same manner, and fasten can to base.

Thorough instructions for servicing other parts of the Mallory-Elkon "B" Eliminator are provided in Service and Installation Bulletin accompanying each unit, copies of which may be had upon request. A circuit diagram of the entire Eliminator is shown herewith for your convenience in making continuity tests.

It is important that Elkonodes be used only with Eliminators having same type numbers, and that phantom load relays and resistors are matched to type of Elkonode and Eliminator involved. Correct types of phantom load relays and resistors are shown in the parts list.

The following equipment is recommended as being extremely useful in conducting repairs on MalloryElkon "B" Eliminators and Elkonodes:

1. High resistance volt-meter. Scale: 0 to 300 . Resistance: Not less than 1000 ohms per volt.
2. One good quality milliammeter. Scale: 0 to 50 .

3. One set feeler gauges.

4. One small screw-driver.

5. One pair thin, flat-nosed pliers (duck-bill type).
6. One 1933 type 10 Mallory-Elkon "B" Eliminator chassis, with one each proper phantom load relay and resistor for types 10, 11, 12, 13 and 14. (A test-board switching arrangement to cut in whichever type phantom load relay is required for the Elkonode being repaired will be valuable in conducting these tests.)

P. R. MALLORY \& CO.

Routine for Dismantling Elkonodes (m) Tighten the stack firmly without disturbing the adjustments. for the Purpose of Replacing Contact and Reed Springs
(a) Remove screws holding cover on can.
(b) Loosen cover from can and hold in upright position, prongs down; gently shake the rubber sock and Elkonode from the can.
(c) Closely observe the manner in which the leads from the prong base to the Elkonode are placed in the outer slots of the rubber sock. This is important for correct placement of wires when replacing assembly in can.
(d) Observe the location of the various parts, especially the position of the reed Armature (2) with respect to the coil pole shoe of the Elkonode. (1).
(e) Unsolder the three leads at the Elkonode terminals, noting that the top lead (with Elkonode held as in diagram) crosses over the ground lead to the center connection at the plug. Unsolder the coil wire at the spring terminal.
(f) Loosen lock nuts A, and A2 and turn the adjusting screws B, and B2 counter clockwise until the insulating bushings (5) are against the frame, then remove screws and slide out bushings.
(g) Loosen stack screws (3) and remove. Press on the under side of the bakelite stack and reed so as to move the assembly out from between the frame. Save the insulating bushings (5), stack screws (3), connector plate (4), adjusting screws, and the lock nuts. Remove the bakelite stack spacers and insulating tubes from the assembly.
ROUTINE FOR REBUILDING THE ELKONODE:
(h) Rebuild the stack assembly, making sure to use the thicker of the four bakelite spacers on either side of the reed.
(i) Since the Elkonode is largely magnetic in operation, extreme care must be taken to prevent particles or filings of iron from attaching themselves to the iron parts of the Elkonode. Clean the pole shoe, frame, and reed thoroughly.
(j) Hold the assembly with the reed in the position shown in the illustration, place the frame under the assembly, as shown also, and insert the assembly from the top. It may be necessary to spread the frame slightly in order to make the insertion. Inspect the stack screws for signs of weakening, and if satisfactory, replace with the connector plate and tighten slightly.
(k) The reed should stand approximately in the center of the frame at rest. The end of the reed should be parallel to the face of the pole shoe and from $.003^{\prime \prime}$ to $.005^{\prime \prime}$ distant from it when the reed is pulled down opposite its center. This distance should be accurately set by feeler gauges. The reed may be adjusted because of play in the mounting holes.
(l) Insert the insulating bushings in the slots in the ends of the springs, thread the adjusting screws into place, together with the lock nuts. Adjust the screws to place the contacts close to the reed contacts. The springs should be moved so as to allow the contacts to strike the reed contacts without overlapping. The contacts should be fairly flat in making contact, and still not bind on the insulated adjusting bushing.

Hold the reed over a piece of white paper in the vertical position shown in the illustration. The end edge of the reed, on the opposite side from the armature should rest from flush with the edge of the pole piece to $.003^{\prime \prime}$ above same. Any bending of the reed should be done at the extreme armature end, and only slight alterations should ever be necessary. Should the pole shoe not be parallel with the armature in a vertical direction, turn the pole shoe with a pair of long-nosed. pliers; do not attempt to twist the reed. Check the air-gap spacing and tightness of coil mounting screws, if such adjustments are made, then recheck alignment.
(n) Solder the leads back as before, with the ungrounded heater terminal lead to the reed tail. The connector plate is soldered to the reed tail also, at the same time, and the coil wire to the i near spring lug.
(o) Some method of exerting high pressure upon the stack end of the Elkonode while the final tightening of the clamping screws is taking place is essential. It is suggested that an arbor press, capable of exerting a total pressure of about 2000 pounds, be used. Pressure should be exerted directly over the stack, between the screws, while a large screw driver draws the screws down firmly. This prevents loosening of the stack in service and consequent failure.
(p) Turn the adjusting screw B-1 clockwise until the space between the contacts G and H is between $.003^{\prime \prime}$ and $.004^{\prime \prime}$, as measured carefully with a feeler gauge, with the lock nut A-1 tightened firmly. Proceed likewise with B-2 and A-2 until clearance between contacts E and F is between $.004^{\prime \prime}$ to $.006^{\prime \prime}$. Check lock nuts for tightness. The unit should then be ready for operation.
Following is a test circuit which may be set up for electrically testing and adjusting Elkonodes of the " 50 " Series. "Sound" tests may be obtained only with receiver in operation.

(Transformer should be the same as used in set from which the Elkonode was aken. The set itself may be used for test if an extension lead is made up. Do not expect quiet operation while set is open and unit is uncanned.)
(q) If test equipment is available, operate the Elkonode on this equipment before placing it in the Elkonode can. The unit should start operation at 4.4 volts (2 cells of 6 -volt battery on charge), should provide correct output at 6.6 volts and should operate satisfactorily at 8.8 volts (4 cells on charge). Should any adjustment be necessary, adjust screw B-2 only. A very slight movement of the screw should permit final adjustment.

CAUTION

(r) Do not attempt to bend contact springs.

Use only Kester Rosin Core Solder.
Keep moisture from all parts of the Elkonode.
Keep metallic particles out of Elkonode.
Keep dust, moisture, grease and liquid from the contact surfaces. Clean contact surfaces with a dry, clean piece of linen paper.

PAGE 5-6 MALLORY

P. R. MALLORY \& CO. (Continued)

(s) When inserting the Elkonode into the rubber sock, be very careful to turn the frame of the Elkonode parallel with the flat sides of the inside holes of the sock, so as to leave the air spaces at the open sides of the Elkonode. The single ground lead (from reed) is taken down the smaller of the two slots, while the other two leads are taken down the larger slots. Place the Elkonode in the sock, so that no wires need be bent to meet this arrangement. Draw the leads to the prong base, and fold under the lid. Insert the sock assembly into the can, with the large slot next to the seam of the can. Screw cover to can with screws provided.

"60-70-80"

The series 60,70 , and 80 Mallory Elkonodes are described as single-reed, full-wave inverters, with selfcontained synchronous rectifiers. These units within themselves supply the direct current, high voltage for radio receiver plate supply. No tube rectifiers are types 65,75 and 85 are for use on household battery required with these types. Inasmuch as the mechanical receivers, or similar applications where the battery is construction of all of the 60,70 and 80 series units is not on charge while the receiver is in operation. All the same, the following service information will apply to all such units:

The 60 series unit is no longer in production-having been replaced with the 70 series unit, and differs from the 70 series principally in that its self-contained point buffer condensers were of the wax impregnated paper type, rated at .008 mfd .1600 volts DC. The 70 series is supplied with an oil-impregnated and immersed paper condenser of .01 mfd . capacity, rated at 1600 volts DC, and whenever occasion arises to replace contact spring and reed assemblies in the 60 series unit, advantage should be taken of that opportunity to replace the old unreliable paper condensers with the new type, described as our part A-18237.

The 80 series Mallory Elkonodes are identical with the 60 and 70 series except that no internal point condensers are supplied. These units are to be used only in cases where the original point buffer condensers in the type 60 Elkonodes have been removed, and suitable condensers installed permanently at the Elkonode socket prong. In some special cases, a manufacturer may have used external secondary buffer condensers in place of the internal point condensers, but such cases will be rare.

As with all other types of Mallory Elkonodes, the prefix letter G denotes 12 -volt operation, and the prefix letter F denotes 32 -volt operation. Differences in wire size and in the number of turns of the Elkonode driver coil distinguish the 6 -, 12 -, and 32 -volt types, but the output ratings as set forth in the following table apply to 6-, 12-, and 32-volt types alike:

Elkonode Series No.	Maximum Watts Output
$60-70-80$	11
$60 \mathrm{~B}-70 \mathrm{~B}-80 \mathrm{~B}$	18
$61-71-81$	11
$63-73-83$	18
$65-75-83$	11

SERVICE EQUIPMENT REQUIRED

1. High resistance volt-meter. Scale: 0 to 300 and 0 to 600 . Resistance: Not less than 1000 ohms at 2 volts.
2. A good quality milliammeter. Scale: 0 to 50 and 0 to 100 .
3. One set feeler gauges.
4. One small screw driver and one large screw driver.
5. One pair thin long-nosed pliers.
6. One medium-sized arbor press.

Series Units

The reed of the Elkonode is grounded to the can, and the receiver circuit ground is necessary for all types but the $60,60 \mathrm{~B}, 70,70 \mathrm{~B}, 80$ and 80 B units, in which cases the ground returns through the A Battery. The receivers, or similar applications where the battery is ratings given are for operating battery voltages of 6.6 , 13.2 and 33 volts, for the standard 6 -volt, 12 -volt and 32 -volt series respectively. It is necessary that the Elkonodes be properly polarized in connecting the prong base and transformer, in order to prevent a reversal of output voltage.
The following reproduction pictures the Mallory type 80 Elkonode in both top and side views with covers and with point buffer condensers of course removed:

Explanation of Above Charts

A-A2	-Rectifier Lock Nut	1. Magnet Coil Pole Shoe
B1-B2	-Rectifier Adjusting Screw	2. Reed Armature
C1-C2	-Interrupter Lock Nut	3. Stack Clamping Screw
D1-D2 -Interrupter Adjusting Screw	4. Connector Plate	
E, F, G, H-Rectifier Contacts	5. Insulating Bushing	
E, F, G, H-Duplicate for Interrupter Side	6. Reed Tail	

P. R. MALLORY \& CO.

The 50 Series Mallory Elkonode is a single-reed fullwave inverter for use in supplying alternating-current voltage which in turn is rectified by a tube rectifier for supplying the high direct-current voltage needed for radio receiver plate supply.

This Elkonode is used in three standard types, Nos. 50,51 , and 53 , and in certain modified forms for special requirements. For 12 -volt operation, the type number is prefixed with the letter " G " to designate the change in construction. Likewise, for 32 -volt operation, the letter " F " is used. The mechanical construction for all types is the same except for a change in the driver-coil windings for the 12 -volt and again for the 32 -volt types. The types 50 and 51 Elkonodes are adjusted and intended to carry output loads up to 11 watts. The type 53 Elkonode is designed for loads from 11 to 18 watts. These types have an advantage over earlier types in not being limited to a narrow range of load conditions. Ratings are given, in every case, for operating battery voltages of $6.6,13.2$, and 33 volts, for the $50, \mathrm{G}-50$, and F-50 Series, respectively.

The following reproduction pictures the Mallory Type 50 Series Elkonode in a top view, with covers removed.

Instructions For Adjusting Contact Springs When Such Springs Do Not Require Replacement

As with automobile ignition contacts, the tungsten contact points in Elkonodes will show some evidence of wear after they have been in service for a long period of time. This wear progresses gradually, and as long as the Elkonode is capable of operation, any amount of wear at the contact points will have no influence whatever on the performance of the radio set or on the voltage supplied to the tubes. However, after a long period of service the Elkonode may refuse to start, and when this point is reached it should be taken as indicative of excessively worn contact points. The Elkonode has been designed with a generous reserve of tungsten in its contact points, and this reserve may be utilized to give the Elkonode extended life, providing one simple adjustment is made. This adjustment is outlined as follows:

1. Remove the Vibrator unit from the can and rubber sock, by following closely the directions covered by paragraphs A, B, C and D in the procedure for dismantling Elkonode. Use care to avoid bending wires at the soldered connections.
2. Place the Elkonode on a piece of white paper, so that when viewed from above it appears exactly as in drawing above.
3. Magnet coil pole shoe
4. Reed armature
5. Stack clamping screw
6. Connector plate
7. Insulating bushing
8. Reed foil

A-lock-nut. B-adjusting screw. E, F, G, H-contact points
3. Loosen lock nut (A2) and turn screw (B2) clockwise until $.005^{\prime \prime}$ of light can be seen between contacts (F) and (E). If the contact points are roughened, the light can not be seen across their entire diameter, even though they are correctly spaced (i. e., within $.005^{\prime \prime}$ of touching each other).
4. A check on the accuracy of the spacing adjustment is obtained by pressing lightly against the center of the reed with a small pointed metal instrument in the direction and location shown by arrow (K). When the reed is thus moved, so as to just close contacts F and E , the weight (2) on the free end of the reed should move $1 / 64$ inch from its "at rest" position. Check should be made after lock nut has been firmly tightened down.
5. DO NOT readjust spacing between contacts G and H, unless the tungsten is nearly all worn away. In this case, readjustment is obtained in exactly the same manner as for contacts F and E.
6. In reinserting the Elkonode into its rubber sock, be very careful to turn the "flats" of the sock hole so that they are in line with the lock-nuts. This provides ample space in the sock for the free movement of the reed. In reinserting the "socked" Elkonode into the can, be sure that the can seam lines up with the wider of the wire-carrying channels on the outside of the sock. This is important.

CAUTION: Inasmuch as the Elkonode mechanism is partially magnetic, extreme care should be observed while making adjustments to prevent iron filings or similar metallic matter from getting into the Elkonode.

MODEI 60,70,80 Series	
Elkonode Repair	P. R. MALLORY \& CO
"B' Eliminator Types	P. R. MALLORY a

Directions for Replacing Contact Spring
and Reed Assemblies in the 1933 and 1934

MISSION BELL RADIO MFG. CO., INC.
MISSION-BELL RADIO CO.
MODEL 11 AUTO-RADIO.

PAGE 5-2 MISSION-BELL
MODEL 14
Schematic
MISSION BELL RADIO MFG. CO., INC.

MISSION-BELL PAGE 5-3

MID-WEST RADIO CORP. Schematic

MONT.-WARD PAGE 5-1 MODEL 62-118 Schematic, Voltage Socket, Parts
MONTGOMERY-WARD \& CO.

MONTGOMERY-WARD \& CO.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself in broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide accurately calibrated signals over the broadcast band and accurately calibrated signals at and around 262.5 K . C., the intermediate frequency and an output indicating meter are desirable.

Do not take the chassis out of the box. First set the signal generator at approximately 262.5 K . C. Connect the antenna lead from the generator to the control grid of the I. F. 78 tube, through a .05 mfd . condenser. The ground lead of the generator goes to the ground of the receiver. Turn the rotor plates of the tuning condenser completely out and keep the signal weak enough to prevent A. V. C. action. Note from Fig. 1 that the second I. F. transformer is self tuned and cannot be adjusted. Adjust the frequency of the signal generator until the output meter shows maximum output. The intermediate frequency setting of the generator is then correct, although it may be a very small percentage higher or lower than 262.5 K . C.
Next connect the signal lead from the signal generator to the grid of the 1 st detector tube through a .05 mfd . condenser. Do not change the signal generator setting. Then adjust the 1st I. F. trimmer condenser screws for maximum output. There are 2 holes at one end of the chassis box. The 2 trimmer screws can be reached through these holes. CAUTION-use an insulated screwdriver to prevent short circuiting to ground.
Now disconnect the signal generator and adjust it to exactly 1400 K . C. The antenna lead from the generator is then connected to the antenna lead of the receiver. Connect the tuning condenser flexible drive shaft to the chassis if it has been disconnected. Turn the station selector knob until the rotor plates are completely in mesh. Then with a screwdriver turn the calibration screw on the back of the sontrol unit, until the pointer is at the lowest frequency mark. This is the large point. 5 points below the 55 mark. Then turn the station selector knob unt1l the pointer on the dial scale is at 1400 K . C.
Then adjust the oscillator, R. F., and antenna trimmer condensers on the gang tuning condenser for maximum output, adjusting the oscillator section first. See Fig. 2.
Next, set the signal generator for a signal of $600 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator 600 K . C. trimmer. This condenser is mounted on the end of the gang condenser. See Fig. 2.
A non-metallic screwdriver is necessary for this adjustment. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 600 K C . trimmer screw until the highest output is obtained.

Then set the signal generator again for a signal of 1400 K C. and check the adjustment of the tuning condenser trimmers at this frequency for maximum output.

If the control unit or flexible shaft is moved after the set has been aligned, the setting of the dial pointer may change: This can be adjusted by turning the control unit calibration screw until the pointer is at the correct setting.

Adjusting Antenna Trimmer

After the receiver is installed and the car antenna is connected it will be necessary to adjust the antenna trimmer. Tune in a weak signal between 1200 and 1400 K . C. with the volume control about three-fourths on. Remove the cover of the chassis box. The antenna trimmer is the trimmer condenser closest to the terminal strip-see Fig. 2. Turn the adjusting screw of this condenser up or down until maximum output is obtained. CAUTION-Do not turn any of the other trimmer adjusting screws for this adjustment.

Removing and Replacing Units From Chassis Box

 Removing Chassis Unit From Box

 Removing Chassis Unit From Box}Disconnect the flexible shafts, antenna cable and pilot lamp lead at the chassis box. Pull off the tone control knob and disconnect the battery cable at the fuse receptacle. Remove the cover of the box and take off the black lead on the cover screw. Disconnect the "A" and "B+" leads at the terminal strip. Pull the battery cable inside of the box.
Take out the 4 screws around the speaker grill. Then pull the chassis out by means of the "A" choke and condenser block. Do not pull the chassis out by means of the gang condenser as this might injure the cushion mounting.

Removing " B " Unit From Box

Disconnect the "A" and "B+" leads at the terminal strip. On the end of the box at which the " B " unit is located will be found 9 screws around the edge. Remove these 9 screws. The " B " unit and end plate can then be lifted out.

Replacing the Vibrator

Note that vibrator unit is of the plug-in type. This unit can be inserted and removed in the same manner as a tube.

Replacing Chassis Unit

In replacing the chassis unit be sure that the ground spring near the output transformer makes a good contact with the chassis box. Reverse the procedure as given above for removing this unit.

Replacing "B" Unit

When replacing the " B " unit be sure that the ground spring makes a good contact to the partition wall in the chassis box. Reverse the procedure as given above for removing this unit.

Removing Speaker

If service work is required on the chassis, it is advisable in some cases to remove the speaker, as this will permit ready access to all of the units and wiring.

The pot magnet is secured to the vertical walls of the chassis base by means of 3 screws, 2 on one side and 1 on the other. Remove these screws. Then carefully lift out the speaker as far as the leads will permit. The yellow field lead and the black secondary lead may then be unsoldered.

Trouble Shooting and Service

Vibrator Unit

When servicing this receiver a new vibrator unit should be tried out in the same manner as a new set of tubes would be tried out. These units are plugged in in the same manner as a tube. One or more vibrator units should be kept on hand for replacement purposes.

'B' Unit

In case of failure in the "B" unit try out a new vibrator. If this does not remedy the difficulty and the " B " unit cannot be repaired locally it is not necessary to return the entire chassis. Remove the " B " unit from the chassis box as per the instructions in this manual after which this unit may be carefully packed and returned separately.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself as broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide accurately calibrated signals over the broadcast band and at the intermediate frequency, and an output meter are required for indicating the effect of adjustments.

First set the signal generator to a frequency of 175 K. C. Connect the antenna lead of the signal generator to the grid of the 1 st detector thru a .05 mfd . condenser. The ground lead from the signal generator goes to the ground lead of the receiver. Adjust trimmer condenser C9 on the back panel of the chassis until maximum output is obtained. A non-metallic screw driver should be used in making this adjustment as the I. F. trimmer is at B+ potential.

Next set the signal generator for 1730 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Adjust the trimmer of the oscillator section of the 3 gang condenser until maximum output is obtained. The oscillator section is the one with the cut plate rotor.

Then set the signal generator for 1400 K. C. and turn the rotor until maximum output is obtained. Adjust the other two trimmers on the gang condenser for maximum output.

To obtain dial scale calibration tune in an 800 K . C. signal and set the dial pointer at that mark on the dial scale. When calibrated in this manner, the setting will be approximately correct at both ends of the scale.

Fig. 4-Using Voltage Regulator with 3 Volt "A" Battery
The use of the cut plate type of condenser eliminates the necessity of a 600 K . Ci. padder and no adjustment at this frequency, therefore. is required.

Low Volume
In a battery operated receiver the two most common causes of low volume are run down batteries and defective tubes.

Check the "B" and "C" batteries under load with a high resistance voltmeter. See if the filament voltage is low and if so, put in a new " A "' unit. A high resistance voltmeter is not necessary for testing the " A " batteriem.

The next most common cause of low volume is defective tubes. In any case of low volume, therefore, procure a new set of tubes that have been tested or have been operating satisfactorily in another receiver. Insert these in the chassis one at a time and note any difference in performance.

Altho a short inside antenna is sometimes satisfactory. a good outside antenna 100 to 150 ft . in length is recommended. If the antenna system is faulty or in a shielded location, the volume may be low on distant or weak stations. This is particularly true if the antenna is in or near a steel building. The antenna and lead-in should he inspected for poor connections and grounds. In a shielded location try a longer antenna in a different location.

Misaligning or mistracking of variable tuning condensers is another possible cause of low volume. Instructions for realigning are contained in this manual. Do not, however, attempt realignment unless other causes of low volume have first been investigated.

Other causes of low volume are defective speaker, and various opens, shorts and grounds in the receiver assembly.

Voltages

Check the voltages at the sockets to see if correct values are being delivered to the tubes. The antenna and ground should be disconnected and the antenna and ground leads from the set connected together. The

VOLTAGES AT SOCKETS
Volume Control at Maximum-Antenna Shorted to Ground B+135 Volts
Voltages to Chassis

Type of Tube	Function	Across Fila- ment	Plate to Cath.	Screen to Cath.	Grid to Cath.	Normal Plate M. A.
32	1st Det. $\&$ Osc.	2.0	135	67.5	$7.5^{(1)(2)}$	2.5
34	I. F.	2.0	135	67.5	$2.5^{(3)}$	2.8
34	2nd Det.	2.0	50	$40^{(1)}$	0	1.8
30	1st Audio	2.0	135		$9^{(4)}$	3.0
19	Output	2.0	135		6	1.8 Total

(1) With 250,000 ohm meter.
(2) Subject to variation due to oscillatory current.
(3) With 25,000 ohm meter.
(4) As read at "C" battery.
volume control should be turned to the right or maximum position.

All of the voltage readings as shown in the chart are read with a 1,000 ohm-per-volt meter. As high a range as possible should be used. In general, the higher the resistance of the meter, the more accurate the reading will be.

The voltage chart gives the voltages with all tubes in, the speaker connected and the set in operating condition. These voltages are typical of the sets but will vary slightly with variations in individual receivers, tubes, test equipment used and battery voltages.

Oscillation and Whistle

Should the set oscillate on being connected up, it may be due to tubes whose characteristics vary considerably from the standard. In case of oscillation, therefore, change the tubes around and try out some new ones.
See if the receiver is properly grounded and if it is, try out a new ground. See if any of the battery voltages are excessively high.
The tube shields must all be on and the control grid leads to the top grid connection tubes firmly in place. Otherwise oscillation may result.

An open bypass condenser or open leads to the bypass condensers are a common cause of oscillation. Check the bypass condensers for capacity and the leads to them for continuity of circuit. A quick way to check bypass condensers for opens is to take a good condenser with test leads attached to the terminals and connect the new condenser across the condenser in the chassis. Oscillation may also be caused by poor chassis ground connections and by poor tuning condenser ground contacts. A shorted "A" line choke would, in some instances, result in oscillation.

MONTGOMERY-WARD \& CO.
Schematic, Parts Coil Resistance

Fig. 1-Schematic Circuit Diagram

MONTGOMERY-WARD \& CO.

Condenser Alignment

Correct alignment is extremely important in connection obtained. This trimmer is on the tuning condenser and with all wave receivers. The receivers are all properly its location is shown in Fig. 2.
aligned at the factory with precision instruments and re- Then set the signal generator for 1500 K . C . Turn the alignment should not be attempted unless all other pos- rotor until maximum output is obtained. Loosen the set sible causes of the faulty operation have first been inves- screw in the pointer hub and set the pointer at the 1500 tigated and unless the service technician has the proper K. C. mark on the broadcast band scale. Retighten the equipment. A signal generator that will provide an ac- hub set screw. Then adjust the antenna and 1st detector curately calibrated signal of 456 K . C. and accurately broadcast trimmers until maximum output is obtained. calibrated signals over the broadcast and short wave Next set the signal generator for 600 K . C. and adjust bands, $530-1730 \mathrm{~K}$. C. and $5.8-16.0 \mathrm{M}$. C., is required. An the 600 K . C. trimmer. The adjusting screw is reached output indicating meter is also necessary. It will be through a hole in the front panel of the chassis as shown practically impossible to align the receiver if unsatisfac- in Fig. 3. Turn the tuning condenser rotor until maxitory apparatus is used.

Use a non-metallic serew driver for the adjustments.
The complete procedure is as follows:

Intermediate Frequency Adjustment

Set the signal generator for $456 \mathrm{~K} . \mathrm{C}$. Connect the antenna lead of the signal generator to the grid of the 1st mum output is obtained. Then turn the rotor slowly back and forth over this setting at the same time adjusting the 600 K . C. trimmer screw until the highest output is obtained.

Short Wave Band Adjustment

 detector through a 05 mfd condenser. Turn the tuning scriba

Fig. 3-Trimmer Locations
condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A. V. C. action is not obtained.
Then adjust the five I. F. trimmer condensers until maximum output is obtained. The adjusting screws for the 1 st and 2 nd trimmer condensers are reached from the top of the chassis and are in the round I. F. cans-See Fig. 2. The openings of these trimmer condensers are covered over by small cover plates which are held in position by screws. Loosen these screws until the cover plates can be swung around. CAUTION-Use an insulated screwdriver for adjusting trimmers to prevent short circuiting to ground. In the 3rd I. F. coil; only the primary has a variable trimmer condenser. This condenser is mounted on the back panel of the chassis as shown in Fig. 3 and the adjustment screw is reached through a hole in the back panel.

Broadcast Band Adjustment

The broadcast short wave switch should be in the broad-

Fig. 4-Optional ' C ' Battery Connections
cast position. Set the signal generator for 1730 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the signal so that A. V. C. action is not obtained. Adjust the oscillator broadcast trimmer until maximum output is

Fig. 5-Using Voltage Regulator with a 3 Volt "A" Battery ment of any of the broadcast band trimmers.

In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 K . C. apart. That is, if the receiver is tuned to $15,000 \mathrm{~K}$. C. a signal will be heard when the signal generator is set at $15,000 \mathrm{~K}$. C. and again at approximately $15,912 \mathrm{~K}$. C. This is due to image reception or the fact that a $456 \mathrm{~K} . \mathrm{C}$. beat is obtained when the signal is 456 K . C. lower than the receiver oscillator and also when the signal is 456 K . C. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies; at which a signal is heard, in order that the oscillator in the receiver will be 456 K . C. higher in frequency than the signal.

Turn the broadcast short wave switch to the short wave posit on. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A. V. C. action.

Next set the signal generator for $15,000 \mathrm{~K}$. C. Turn the rotor until maximum output is obtained. Then adjust the antenna and 1st detector short wave trimmers for maximum output.

Next set the signal generator for $6000^{\circ} \mathrm{K}$. C. and adjust the 6000 K . C. trimmer. This condenser is mounted on the front panel of the chassis as shown in Fig. 3 and is reached through a hole in the front panel. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 6000 K . C. trimmer screw until the highest output is obtained.

Changes in Early Models

The condenser, C26 was used only on the early models of this receiver. Another change was in the tone control circuit. In the early models K 8 was a $150,000 \mathrm{ohm}$ resistor paralleled by a $60,000 \mathrm{ohm}$ resistor. However, in the later models this arrangement was replaced by a single 45,000 ohm resistor to provide greater sensitivity in tone control

Fig. 6-Drive Cord Replacement

Replacing Drive Cord

Lift off the pilot light assembly.
Detach the large pointer by removing the center screw. Loosen the dial assembly by taking out the two screws which secure the bottom of this assembly to the chassis.

Then lay the complete dial assembly face downward in front of the chassis. It is not necessary to remove the volume control and tone control collars which hold the indicator cords of these two controls in position.

Turn the drive drum until the opening in this drum is approximately vertical and with the hole at the top as shown in Fig. 6.

Remove the tension spring and the old drive cord.
See that the eyelet is in the hole in the drive drum as shown in Fig. 6. Insert one end of the drive cord from the outside through the hole in the eyelet in the drive drum.

Tie the end of the cord which has been inserted in the hole to one end of the tension spring.

Wrap the cord in a clockwise direction (facing front of chassis) around the drive drum approximately one-half turn.

Then tilt the chassis up on its back panel and bring the cord mentioned in the previous paragraph down to the drive shaft. Wrap it two and one-half times around the drive shaft as shown in Fig. 6.

Then bring this cord up from the drive shaft and wrap it around the drive drum approximately one and one fifth turns in a clockwise direction until it is up to the hole in this drum as illustrated.

Insert the free end of the cord through the hole in the eyelet and tie it to the end of the tension spring. The end of the spring, when hanging free, should be approximately $3 / 4$ " from the flange of the drum as shown in Fig. 6. Cut off the surplus length of cord after it is knotted.

Then secure the other end of the tension spring over the spur on the drive drum.

Replace the dial assembly and pointer.
Replace the pilot light assembly.

Batteries

To prolong "B" battery life instruct the customer to keep the volume down as high volume increases the " B " Irain considerably. The average " B " drain is 23.5 milliamperes. The reception of weak signals also increases the "B" drain.

This receiver is designed to operate from .a 2 volt

Voltages at Sockets Antenna Shorted to Ground Batteries Up to Rated Voltages. See Fig. 1 Voltages Read from Negative Filament Terminal						
$\begin{gathered} \hline \hline \text { Type } \\ \text { of } \\ \text { Tube } \end{gathered}$	Function	$\left\lvert\, \begin{gathered} \text { Across } \\ \text { Fija- } \\ \text { ment } \end{gathered}\right.$	$\begin{aligned} & \text { Plate } \\ & \text { to Gnd. } \end{aligned}$	Control Grid to Ground	$\begin{array}{\|l} \text { Screen } \\ \text { to Gnd. } \end{array}$	Normal Plate M. A
34	R. F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	1st Det.	2.0	135	$4.5{ }^{(1)}$	80	3.0
30	Osc.	2.0	80			2.8
34	1st I. F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	2nd I. F.	2.0	135	4.5	80	2.8
30	2nd Det.	2.0				
30	1st Audio	2.0	95	$9.0^{(2)}$		0.35
30	2nd Audio	2.0	135	$9.0{ }^{(3)}$		3.0
19	Output	2.0	135	6.0		1.3

(1) Computed figure-cannot be read because of high resistance cir.
(2) Volume Control-at minimum.
(3) As read at battery.

Fig. 2-Arrangement of Tubes, Batteries and Controls
storage cell but can be operated from a 3 volt dry cell used in conjunction with the voltage regulator shown in Fig. 5. This device consists of a rheostat in series with the supply, for controlling the voltage and a voltmeter for measuring it.

The voltmeter should not indicate more than 2 volts when the above arrangement is used, an optimum setting being 1.9 to 2.0 volts.

For the grid bias a special $221 / 2$ volt "C" battery with $41 / 2,6,9$ and $161 / 2$ volt taps (Fig. 2) may be used. If not available, a standard $41 / 2$ volt "C" and a standard $221 / 2$ volt " C " battery can be connected as shown in Fig. 4.

PAGE 5-8 MONT.-WARD
MODFL 62-132,62-137 MONTGOMERY-WARD \& CO.
Sohematic,Parts

Condenser Alignment

Correct alignment is extremely important in connection with all wave receivers. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide an accurately calibrated signal of 456 K . C. and accurately calibrated signals over the broadcast and short wave bands, $530-1740 \mathrm{~K}$. C. and $5.8-18.3$ M. C., is required. An output indicating meter is also necessary. It will be practically impossible to align the receiver if unsatisfactory apparatus is used.
Use a non-metallic screw driver for the adjustments. The complete procedure is as follows:

Intermediate Frequency Adjustment

Set the signal generator for 456 K . C. Connect the antenna lead of the signal generator to the grid of the 1st detector through a 05 mfd condenser. Turn the turing condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A. V. C. action is not obtained.
Then adjust the five I. F. trimmer condensers until maximum output is obtained. The adjusting screws for the 1st and 2nd trimmer condensers are reached from the top of the chassis and are in the round I. F. cans - See Fig. 2. The openings to these trimnier condensers are covered over by small cover plates which are held in position by screws. Loosen these screws until the cover plates can be swung around. CAUTION - Use an insulated screwdriver for adjusting trimmers to prevent short circuiting to ground. In the 3rd I. F. coil, only the primary has a variable trimmer condenser. This condenser is mounted on the back panel of the chassis as shown in Fig. 2 and the adjustment screw is reached through a hole in the back panel.

Broadcast Band Adjustment

The broadcast short wave switch should be in the broadcast position. Set the signal generator for 1740 K . C. Turn the rotor to the full opent position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the signal so that A.
V. C. action is not obtained. Adjust the oscillator broadcast V . C. action is not obtained. Adjust the oscillator broadcast
trimmer until maximum output is obtained. This trimmer is on the tuning condenser and its location is shown in Fig. 2.
Then set the signal generator for 1500 K . C. Turn the rotor until maximum output is obtained. Loosen the set screw in the pointer hub and set the pointer at the 1500 K . C. mark on the broadcast band scale. Retighten the hub set screw. Then adjust the antenna and 1st detector broadcast trimmers until maximum output is obtained.
Next set the signal generator for 600 K . C. and adjust the $600 \mathrm{~K} . \mathrm{C}$. trimmer. The adjusting screw is reached through a hole in the front panel of the chassis as shown in Fig, 2. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting at the same time adjusting the $600 \mathrm{~K} . \mathrm{C}$. trimmer screw until the highest output is obtained.

Short Wave Band Adjustment

CAUTION-After the broadcast band alignment as described above has been made, do not change the adjustment of any of the broadcast band trimmers.
In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 K . C. apart. That is, if the receiver is tuned to $15,000 \mathrm{~K}$. C. a signal will be heard when the signal generator is set at $15,000 \mathrm{~K}$. C. and again at approximately $15,912 \mathrm{~K}$. C. This is due to image reception or the fact that a 456 K . C. beat is obtained when the signal is 456 K . C.
lower than the receiver oscillator and also when the signal is 456 K . C. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies at which a signal is heard, in order that the oscillator in the receiver will be $456 \mathrm{~K} . \mathrm{C}$. higher in frequency than the signal.
Turn the broadcast short wave switch to the short wave position. Turn the rotor to the full open position. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A V. C. action. Set the signal generator for $18,300 \mathrm{~K}$. C. Then adjust the oscillator short wave trimmer for maximum output. This trimmer is reached from undar the chassis and its position is shown in Fig. 2. If a maximum output peak cannot be reached, it may be due to the fact that the antenna and 1st detector short wave trimmers are screwed down tou far. Back off these two trimmer screws two or three turns and then adjust the oscillator short wave trimmer for maximum output.
Next set the signal generator for $15,000 \mathrm{~K}$. C. Turn the rotor until maximum output is obtained. Then adjust the antenna and 1st detector short wave trimmers for maxinưm output.
Next set the signal generator for 6000 K . C. and adjust the 6000 K . C. trimmer. This condenser is mounted on the front panel of the chassis as shown in Fig. 2 and is reached through a hole in the front panel. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the $6000 \mathrm{~K} . \mathrm{C}$. trimmer screw until the highest output is obtained.

Twenty-five Cycle Receivers

The twenty-five cycle receiver differs from the sixtycycle, receiver only in the fact that a different power transformer is used. The correct power transformer is shown in the parts list.
A 115-230 Volt, 40-60 cycle Power Transformer is also available for this model.

Phono Connections

Phonograph connections can be made as shown in Fig. 5. A single pole double throw switch and double pin jack are required. These should be mounted on the back panel of the chassis close to the 2nd detector. The connections are made by opening the diode circuit at the point shown in the illustration and completing the connections to the switch and pin jacks as indicated. A high impedance pickup should be used. If a low impedance pick-up is used a step-up transformer will be required for sufficient volume. The volume control of the set will regulate the phono volume.

Voltages at Sockets
 LINE VOLTAGE - 115

ANTENNA SHORTED TO GROUND

Type Tube	Functior	$\begin{aligned} & \hline \text { Across } \\ & \text { Fila. } \\ & \text { or } \\ & \text { Heater } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Cath. } \end{aligned}$	Screen to co Cath.	Cath. to Ground	Normal Plate M. A.
6D6	R. F.	6.3	95	95	2.8	7.0
6D6	1 st Det.	6.3	88	95	9.2	2.9
76	Osc.	6.3	110	-	-	5.0
6D6	1st I. F.	6.3	95	95	2.8	7.0
6D6	2nd I. F.	6.3	300	95	3.3	6.0
76	2nd Det.	6.3	-	-	-	-
76	1st Audio	6.3	160	-	9.0	4.0
45	Output	2.5	245	-	48.0	30.0
80	Rectifier	5.0	890 V. A. C. pl. to pl.			$\begin{array}{\|c\|} \hline 58.0^{-} \\ \text {per plate } \end{array}$

PAGE 5-10 MONT.-WARD

HODEL 62-132,62-137

Sooket, Trimmers
MONTGOMERY-WARD \& CO. Drive Cord Data

Replacing Drive Cord

Remove chassis from cabinet.
Take off the pilot light assembly by lifting off the two sockets and spring clips.
Detach the large pointer by removing the screw at the center of the dial.
Loosen the dial assembly by taking out the two screws which secure the bottom of this assembly to the chassis.
Then lay the complete dial assembly face downward in front of the chassis. It is not necessary to remove the volume control and tone control collars which hold the indicator cords of these two controls in position.
Turn the drive drum until the opening in this drum is approximately vertical and with the hole at the top as shown in Fig. 4.
Remove the tension spring and the old drive cord.
See that the eyelet is in the hole in the drive drum as shown in Fig. 4. Insert one end of the drive cord from the outside through the hole in the eyelet in the drive drum.
Tie the end of the cord which has been inserted in the hole to one end of the tension spring.
Wrap the cord in a clockwise direction (facing front of chassis) around the drive drum approximately one-half turn.
Then tilt the chassis up on its back panel and bring the cord mentioned in the previous paragraph down to the drive shaft. Wrap it two and one-half times around the drive shaft as shown in Fig. 4.

Then bring this cord up from the drive shaft and wrap it around the drive drum approximately one and one fifth

Fig. 4-Drive Cord Replacement
turns in a clockwise direction until it is up to the hole in this drum as illustrated.
Insert the free end of the cord through the hole in the eyelet and tie it to the end of the tension spring. The end of the spring, when hanging free, should be approximatelv $3 / 4$ " from the flange of the drum as shown in Fig. 4. Cut off the surplus length of cord after it is knotted.

Then secure the other end of the tension spring over the spur on the drive drum.
Replace the dial assembly and pointer.
Replace the pilot light assembly after which the chassis may be reinstalled in the cabinet.

Change in Early Models

In the early models of this receiver the side of the trimmer condenser C27 which is shown in Fig. 1 as connected to ground was connected to the B+ side of the 3rd I. F. coil primary.

MONTGOMERY-WARD \& CO.

Service Notes

Part No. 145-2

SERVICE SUGGESTIONS:

Make certaln of the forlowing: That all tubes are
pushed
firmly In thelr proper sockots and that the elips are securely fastened to the caps. That
the aerlal connection ls
good and not short-cir. good and not short-ili-
culted to ground. (Pilot Iights illuminate when set is turned on.)

PILOT LIGHT:

The pilot light used is 2.5 volt Mazda. replace, remove re- Common Black to Orange - 25×200 Volts ceptacle clipped to Blue to Blue $\quad-.05 \times 400$ Volts condenser:

Part No. 145-3
Common Black to Brown -. 1×200 Volts Common Black to Green - 0.05×200 Volts Common Black to Orange -. 05×200 Volts. Common Black to Yellow - $.05 \times 200$ Volts

Voltages taken from different points of circuit to chassis are Should any section of either of these blocks fait, it is not measured with volume control full on, using a voltmeter having necessary to replace the entire condenser. A small tubular a resistance of 1000 ohms per volt. These voltages are indicated condenser may be used to replace the defective section: on the schematic circuit diagram.

To check for open by-pass condensers, shunt each condenser with another condenser of similar capacity which is known to be in good condition, until the defective unit is located. Part numbers $145-2$ and $1.45-3$ are by-pass condenser blocks and

Excessive hum, low volume or reduction in all D. C. voltages is usually caused by open or shorted électrolytic filter condensers. Open by-pass condensers cause oscillation and distorted reproduction.

MODEL 62-140,62-140X
 62-148,62-148X
 Alignment, Parts List

25 Cycle Chassis

The 25 cycle model $62-148 \mathrm{X}$ chassis may be used on a power supply of from 105 to 125° volts, 60 cycles, but the 60 cycle model $62-148$ must not under any circumstances be operated on 25 cycles.

Alignment

The set should be thoroughly checked for all other possible causes of trouble, such as defective tubes, condensers, poor installations and low line voltages before any attempt is made at re-alignment.

Aligning I. F. Transformer

1. With volume control full on, at extreme right of its rotation, and with variable condenser at its maximum capacity position (extreme right of its rotation) make the following adjustments:
(a) Connect an external oscillator adjusted to 175 kilocycles, in series with a .1 mfd . condenser, to the control grid cap of the type 57 tube located between the R. F. coil (part numbers 109-10) and the I. F. transformer (part number 108.11) and chassis.
(b) Adjust trimming condensers of I. F. transformer (part number 108.11) to resonance. See top view of chassis. Use as a resonance indicator an output meter connected across the primary of the speaker input transformer or between the plate and screen terminals of the type 2A5 tube, by means of an adapter. Maximum deflection of the meter indicates resonance. Care must be taken to use only enough signal to give a readily readable output, as excessive input will result in overload and a false resonance point.
NOTE: The two trimmer condensers which tune the primary and secondary of the I. F. transformer are adjusted by set screws accessible from the back of the chassis.

Aligning R. F. and Oscillator Circuits

1. Connect the external oscillator set at 1720 kilocycle and in series with a 200 Mfd . condenser, between the antenna (tan) and ground (black) leads.
(a) With volume control full on and variable condenser plates in minimum capacity position, plates entirely out of mesh (extreme left of its rotation), adjust trimmer of rear oscillator section of variable condenser to resonance.
(b) Shift external oscillator frequency from 1720 to 1400 kilocycles, pick up signal by rotating variable condenser and peak R. F. (center) and antenna (front) section trimmers of variable condenser to resonance.
(c) Check tracking at $1500,1200,1000,800,600$ and 530 kilocycles by changing external oscillator frequency and rotating variable condenser to pick up signal. Adjust slotted end plates of R.F. (center) and antenna (front) sections to increase output, if necessary. DO NOT BEND OSCILLATOR PLATES.

Tubes

The tube complement of this chassis is as follows:
1 Type 58 remote cut-off pentode as an R. F. amplifier.
1 Type 57 pentode as an oscillator and first detector.
1 Type 57 pentode as second detector.
1 Type 2A5 pentode output A. F. amplifier.
1 Type 80 high vacuum rectifier.

All resistors are RMA color coded-specify value and/or esistor (per schematic diagram) and model number.
When ordering condensers, specify part number, model number and/or capacitor (per schematic diagram) and model number.
When ordering parts, always specify part and model number as well as serial-number of chassis.

$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	Description
101-10	Volume Control with Swit
BE 102.9	Three Gang Variable Condentser
BE 106-10	5,450 Ohm Metal Clad Resistor.
BE 108.11	I. F. Transformer Complete
BE 109-10	R. F. Coil Complete
BE 110.7	Oscillator Coil and Bra
BE 111-8	Antenna Coil Complet
BE 112-9	Dial Bracket Drive Compl
BE 112.12	Dial Scale
BE 112-15	Dial Glass
BE 112.17	Dial Drive Disc
BE 112.34	Pilot Light. Socket
BE 112.37	Bakelite Escutcheon Plate
BE 114-3	Dynamic Speaker
	Cabinet-Model 62.148
	Cabinet-Model 62-140
BE 115-15	Coil Cans
BE 115.22	Tube Shield-No. 01360.
BE 116-1	2.5 Volt Pilot Lamp-41-G31/2
BE 119.6	Dual 8 Mfd. Electrolytic Condenser
BE 129-1	. 001 Mica Condense
BE 130.5	300M Ohm-1/5 Watt Carbon Res.
BE 130-8	200M Ohm-1/5 Watt Carbon Res.
BE 130-11	$250 \mathrm{M} \mathrm{Ohm}-1 / 5$ Watt Carbon Res
BE 130-12	$50 \mathrm{M} \mathrm{Ohm}-1 / 5$ Watt Carbon Res.
BE 130-19	1 Meg Ohm-1/5 Watt Carbon Res.
BE 130-25	19M Ohm-1.2 Watt Carbon Res
BE 131-2	Bakelite Knobs (Inc. Springs)
BE 145-2	. 503 Mfd . By-Pass Block.
BE 145.3	. 25 Mfd. By-Pass Block
BE	Power Transformer-50.60 Cy
BE 1019	Six Foot Cord and Plug
	All Sockets
BE 104.5	Power Trans.-25

MODEL 10-A (2nd Type) Voltage,Test Data Coil Resistance

ARVIN PAGE 5-3

PAGE 5-4 ARVIN

Voltage,Test Data Coil Resistance

MODEL 15 SOCKET VOLTAGES

Make voltage tests with 1000 ohm per volt meter. Voltages given in table are only compar-

$$
\text { ative due to variance in battery voltage. Plus or minus } 20 \% \text { on all voltages is acceptable. }
$$

 MODEL 15 POINT TO POINT
All readings taken to ground unless otherwise specified. Readings taken with all tubes removed from set.

蕆

$6 A 7$ + Heater		

SGYVLIOA LHYDOS V*0Z THGON

Make voltage tests with 1000 ohm per volt meter. Voltages given in table are only compar-
ative due to variance in battery voltage. Plus or minus 20% on all voltages is acceptable.

NOBLITT SPARKS INDUSTRIES

SPECLAL INSTALEATION BULLETIN FOR THE MODEL 25 ARVIN CAR RADID

1934 Models Plymouth and Dodge

The model 25 Arvin Car Radio will install very satisfactorily on these model cars in an inverted position directly above the accelerator pedal, leaving the entire right hand side of the dash for mounting an Arvin Heater.

First: Disconnect the free wheeling cable at the bottom, drill another hole in the dash 5 or 6 inches to the right and relocate the cable back through this hole. Connect the freewheeling cable again, making sure that this is done correctly so that it will engage and disengage. The oil pressure gauge tube should be moved to the left by disconnecting it at both ends and relocating it through another hole 4 or 5 inches to the left of its present location. The water temperature gauge tube does not have to be moved. A groove should be cut in the dash insulation for this tube to run in and then the set can be mounted over this. Make sure, however, that the tube is not bent nor pinched by the mounting bracket when the set is pulled up tight.

Now, to mount the set upside down, the mounting bracket is inserted, with the two mounting bolts in place, in the horizontal tapered slots in the back of the case. This bracket will then be in a horizontal position on the bulkhead when the set is mounted.

Locate the set just to the left of the cowl vent lever and as high as it will go. The flexible shafts and Bowden wire then enter at the bottom of the set. The tubes will operate satisfactorily in an inverted position. A special socket prevents them from falling out.

1033 Models Plymouth and Dodge

The same installation as explained above may be used on the 1933 models Plymouth and Dodge cars in which case it will not be necessary to relocate the oil pressure gauge tube.

Another way to install the Arvin No. 25 on the 1933 Plymouth and Dodge is as follows:

Relocate the free wheeling cable to either side of its present location. Then attach the radio to the right hand side of the dash directly under (or just to the left of) the glove compartment. The set is mounted in normal position with remote control connections at the top.

This location of the radio leaves room for an Arvin Hot Water Heater just above and to the right of the brake pedal.

SPECIAL INSTALLATION BULLETIN FDR THE MODEL 15 ARVIN CAR RADID

Note: All parts of the model 15 Arvin Radio mentioned in this bulletin are fully described in the regular installation instruction sheet furnished with each set.

All Model V-8 Ford Cars

The model 15 Arvin Car Radio can be installed very satisfactorily on Ford V-8 Cars directly below the glove compartment on the right hand side of the dash.

Remove the glove compartment by taking out the six screws around its front edge and also remove the door by taking the two screws out of the hinges which hold it. Now, by means of a hammer and anvil, flatten out the turned up lip at the rear of the instrument panel flange so as to provide a wider flange on which to mount the front end of the radio. Bend up the ears on either side of the front mounting bracket to conform to the contour of the bottom of the instrument panel. Also spread this bracket apart so that it forms about a 105 degree angle instead of a 90 degree angle.

Now, hold the front mounting bracket up against the instrument panel flange with its shorter leg butting up against the flange, and the longer leg extending upward behind the dash. Locate this bracket so that the right hand edge of its longer leg is just to the left of the loop in the door spring, or in other words, so that this spring will just clear the radio when the door is shut.

Mark the location of the holes to be drilled in the flange by inserting a pencil through the tapped holes in the mounting bracket. Drill a $9 / 32^{\prime \prime}$ hole at each of these two points. Now lift the bracket into place with the shorter leg underneath and against the instrument
panel flange (the illustration in the model 15 installation instruction sheet erroneously shows this leg resting on top of the flange with the screw entering from the bottom) and insert the $1 / 4-20$ oval head screw from the top, first through the flange and then into the tapped holes in the bracket by reaching through the glove pocket door opening. Draw these screws up tight with a short screw driver.

Next remove the main mounting plate from the radio as explained in the regular installation instruction sheet and install the rear mounting bracket onto this plate with its longer leg extending horizontally to the rear. Insert the threaded studs extending from the front end of this plate through the oval shaped holes in the bracket just mounted and fasten with the proper washers and nuts.

The rear end of the set is supported by one carriage bolt through the square hole in the center of the rear mounting bracket and clamped to the step plate in the dash. Mark the location of this hole and drill one $11 / 32^{\prime \prime}$ hole. Insert the carriage bolt and draw up tight with the proper washers and nuts.

You are now ready to replace the glove compartment. This can be pushed through the door opening in the dash from the front and bolted into place in exactly the same manner as it came out. The lower front edge, of course, will have to be bent down around the top of the radio. However, this can be done without great difficulty. Now slip the radio chassis and outer cover, with speaker attached, up into place in the main mounting plate and complete the installation exactly as explained in the regular installation instruction sheet.

This procedure might appear to be a rather complicated and involved installation, however, it really is not at all difficult and in the end makes a very neat and workmanlike job.

PAGE 5-8 ARVIN
FODEL 25
Voltage,Test Data
Coil Resistance
NOBLITT SPARKS INDUSTRIES

PAGE 5-10 ARVIN
MODFH 30-A (3rd Type) Voltage,Test Data Coil Resistance

$\begin{array}{ccccc}\text { Heaters } & \text { Plate } & \text { Screen } & \text { Cathode } & \text { Suppressor } \\ 6.3 & 180 & 60 & 2.4 & \mathbf{2 . 4} \\ 6.3 & 180 & 60 & \mathbf{6} & 9 \\ 6.3 & 180 & 60 & 1.4 & 2.4 \\ 6.3 & 120 & 180 & 16.0 & - \\ 6.3 & 180 & - & 0 & - \\ 6.3 & & 700(\mathrm{AC}) & 190 & - \\ 6.3 & & \text { Measured with vacuum tube voltmeter only. } & & \end{array}$

MODEL 30-A POINT TO POINT RESISTANCE CHECK
All readings to ground unless otherwise specified. Readings taken with all tubes
removed from set and R. F. chassis and speaker disconnected from power pack unit.
41

MODEL 30-A SOCKET VOLTAGES-C SERIES
Make voltage tests with 1000 ohm per volt meter. Voltages given in table are only compar-
For Alignment See Index

TRANSFORMERS

 8 쿠쿵留 M゙
7
88
品
T1 Antenna T3 Oscillator Firg． lst Intermediate Freq．
2nd Intermediate Freq． Output ap Primary R． ＂B＂Radio Frequency滣

PAGE 5-14 ARVIN
MODEL $\begin{aligned} & 10-A, 20-A, 20-B, \\ & 30-A\end{aligned}$ Alignment
Note: All adjustments in the following instructions should be made with an output meter or some indicating device connected with the output of the radio receiver to insure maximum sensitivity and selectivity.
Remove the radio chassis from the case. Connect grounding wire from the radio chassis to the power pack. Connect the output of the oscillator to the grid cap of the 77 or 6A7 tube after removing the

 meter. Adjust with a Bakelite screwdriver the first and second I. F. transformer for a maximum output. Replace the grid clip, connect

 kilocycles. Rotate the variable condenser fully out of mesh, then back until the rotor plates begin to enter the stator. Adjust the oscillator padder condenser until the maximum signal is attained. Then readjust the oscillator input to 1400 kilocycles, rotate the variable condenser until the signal is again heard.
 at the peak. With the Model 10A, 20A and 30A Radios further ad-

PAGE 5-16 ARVIN

ARVIN PAGE 5-17

NOBLITT SPARKS INDUSTRIES

MODEL 45
Voltage,Test Data Coil Resistance
Notes

NOBLITT SPARKS INDUSTRIES

NOBLITT SPARKS INDUSTRIES

On all cars equipped with "Electrolock" it may be found necessary to remove the primary return wire from the switch to the coil and replace it with a new wire run through a piece of shielding loom grounded near the switch and also to the metal bulkhead on the motor side of the dash. This lead should be brought out through the dash as far as possible from the rest of the electrical wiring of the car.
It may be pointed out that loose connections anywhere in the electrical circuit of the car will cause motor noise or what appears to be motor noise. If this condition exists it is wise to check the entire electrical circuit of the car and make sure that all connections are tight before trying any other extreme methods of motor noise elimination.

Instrument Panel ${ }^{\prime}$?

The use of a choke and condenser at the ammeter with the 10 A has proven to be a great help in the elimination of motor noise. (See illustration above.)

When primary wires to the coil run through the same conduit as the secondary or spark plug wire run-remove this wire from the conduit and shield it if necessary, grounding the shielding at both ends to some part of the motor block or the bulkhead between the passenger's compartment and the motor.

Also, be sure when shielding the secondary lead from the coil to the distributor to ground both ends of this shield, either to the motor or to the bulkhead. On some few cars the hood over the engine appears to be ungrounded or at least is a very high resistance ground and should be grounded with pigtails of shielding cable soldered to both sides of the hood and also to the motor bulkhead or motor block.

On cars equipped with co-incidental lock on the steering post an extra generator condenser should be installed from one switch terminal to ground. The exact terminal on which to install this condenser can be determined only by experiment. The condenser body should be grounded to the dash or to the motor bulkhead. On some Ford V-8's it is necessary to install an extra generator condenser on the generator to the other terminal of the cutout relay, thus making
two condensers on the same relay-one on each terminal to ground.
On some Chevrolets, generally of the older models, it is necessary to install an extra condenser from the primary of the ignition coil to ground. The exact terminal to connect this condenser to can only be determined by experiment. Be sure that the grounding of this con-

PHONOGRAPH CONNECTION
INSTRUCTIONS FOR CONNECTING ELECTRIC PICKUP TO ALL MODEL RECEIVERS:

The use of jacks and switches for operation of electric phonograph pickups is unsatisfactory with the modern highly perfected radio
receivers. The electrical loss in the long leads used to connect the switch and jack into the circuit is enough to unbalance these highly
sensitive, long distance receivers and the full capabilities of the set are lost. For best radio and phonograph operation the rules below should
be followed. With the methods graphically shown, full efficiency of the radio and phonograph are utilized and the greatest satisfaction

Remove shield cover "C." Remove cap "A." Place cap "B, with attached clip, on top of 55 tube. Connect one
phonograph pickup wire to clip "B." Connect other phonograph wire to clip "D."" Phonograph will now play and volume control on radio
will control phonograph. Some pickups work better with a $41 / 2$ volt C battery in series with lead that connects to clip "D." $\left.(+)^{\prime}\right)$ to clip. (-) to pickup lead.

PAGE 5-2 PATTERSON

Schematic

Socket

PATTERSON RADIO CO.

To rebalance the receiver does not require any equipment. The meter will indicate the exact resonance point of the I.F. trimmers and also the condenser gang. Proceed as follows: Set band spread dial at " O," then tune in a station on the high frequency end of the Broadcast band (any station around 1400 K.C. is okay). Next, adjust the trimmer on the condenser section nearest the dial until the station reads exactly on its known K.C. Now, tune in a station in around 600 K.C. and be careful to be on the exact center of the carrier. All of the above operations must be made with the manual control in off pồsition. Next, turn the sensitivity control toward minimum so that the meter reads about R-9. Now, adjust each of the eight I.F. trimmers very carefully until the meter swings the farthest to the right. You probably will not be able to increase the gain more than 1.5-R. It should not be necessary to turn any trimmer more than $1 / 8$ of a turn.

CHRYSLER • DODGE • PLYMOUTH • CAR RADIO

The Model "CGD" is a custom built radio which is made exclusively for the Chrysler Corporation and its various car divisions and which is sold only through their dealer organizations.

The Receiver and controls are specially designed for installation in the 1934 Chrysler Six Models CA and CB, the Dodge Models DR and DS and the Plymouth Models PE and PF. Many of these cars will be equipped at the car factory with the Philco custom built radio. In many others, the installation will be made by you in your service stations.

Don't file this "Service Broadcast" in your Office. The men in your service station must know how to install and service these. radios if you expect to get your share of this profitable installation and service work.

Carefully unpack the cartons and check the contents with the material packing lists. Examine the parts and compare them with illustrations given in these instructions so that you may become familiar with them and thus make the installation easily and quickly.

Receiver and Speaker Installation

Refer to Figure 1, which gives detailed dimensions for the location and drilling of the holes in the dash. Remove the paint from the dash for $3 / 4^{\prime \prime}$ from around the holes to insure good ground contact after drilling. All dimensions are shown from the engine side of the dash. After drilling the holes, bolt the two (2) mounting brackets to the inside of the dash, using both the flat and the lockwashers under the nuts. The left-hand bracket (over the steering column) is for the speaker unit; the right-hand bracket is for the Receiver.
Remove the car wiring cable outlet grommet cap on the lefthand side of the dash, so that the battery cable can be installed. Push the metal fuse housing end of the cable through the grommet from the engine side, leaving just enough slack so that the cable enough slack so that the cannected and fastened in place as shown in Figure 4. Route the cable through the clip that holds the car wiring harness and along under the floor boards to the battery. Replace the grommet and cap, but do not
connect the cable terminal to the battery terminal at this time.
The Receiver mounting plate must be fastened to the Receiver housing, using the four (4) self-tapping screws. Four (4) holes are provided for these screws in the side of the housing. To fasten the speaker mounting plate to the speaker, first remove the four (4) hexhead machine screws from the back of the speaker. Use these same four (4) screws to fasten the mounting plate to the back of the speaker. Figures 2 and 3 show the correct positions of the brackets
and mounting plates. Hang the Receiver on its bracket and fasten it securely with the hex-head retaining screw at the bottom of the plate.

Before installing the speaker, remove the car wiring fuse on ammeter. To get the speaker in place turn it sideways with the back against the left front kick pad. Then slide it in between the kick pad

Figure 3 and the steering column. Push the clutch pedal down to get sufficient clearance and then turn the speaker around over the steering column with its back against the dash. Hang the speaker in place on its bracket and fasten it securely with the hex-head retaining screw at the bottom of the plate. The battery cable must be placed over top of speaker.
Connect the interconnecting cable to both the Receiver and the Speaker, the six (6) hole plug connecting to the Receiver and the four (4) hole plug to the Speaker. The shield terminals at the cable ends must be grounded under their respective ground terminal screws on the Receiver and Speaker housings, shown in Figures 2 and 3. Ground the pigtail in the center of the cable to the dash, using the hole that holds the dash lining retainer and the 8-32 screw.

The antenna lead branches out of the interconnecting cable near the Receiver. Place this lead over the top of the Receiver, splice, and tape it. to the antenna lead-in as close as possible to where the lead-in leaves the front right windshield pillar. Cut off excess car
lead-in. The shielding must be grounded to the cowl panel by drilling a $1 / 8^{n}$ hole where the hood overlaps and as close to the A pillar as possible, using the 8-32 bolt and nut supplied for this purpose. (See Figures 4 and 5.) Remove paint from around hole.
Place the fuse and fuse insulator in the metal fuse housing of the battery cable and connect it to the small fuse connector which branches out of the interconnecting cable close to the Speaker. The two (2) shield terminals at the fuse housing must be connected under the same terminal screw that is used to ground the speaker cable shield at the speaker. Figure 4 shows the general layout of the cables and connections.

Instrument Panel Control

Remove the ash receiver from the panel with an upward pull. Remove the ash receiver bezel from the panel by compressing the retaining tabs at the bottom of the bezel assembly. This can be done best by using a screw-driver and working from in back of the instrument panel. While pushing up on an end tab, pull the bezel forward and it will come out.

Loosen the two (2) screws which secure the instrument board brace to the instrument board flange. The cradle assembly can then be slid forward. Next, loosen the bolts on the brace in back of the instrument panel and remove the toggle spring. Slide the entire assembly forward and remove. Figure 6 gives the details of the ash receiver assembly, while Figure 7 gives an enlarged view of the Section A in Figure 6. Be sure to tighten all bolts and screws that were loosened for this operation. (See Note 1.)
Loosen the car lighting switch to permit more working space. While this operation is not absolutely necessary, it makes the following operation easier.
Push the flexible shafts of the control through the opening in the panel and install the control unit in this opening.
The "U" retaining clamp must be placed over the studs on the back of the control and the hex-

The set screws on the coupling bushings must be loosened sufficiently to allow the shaft housings and couplings to be properly seated. After the shafts have been coupled, tighten the set screws again.

Battery Connections

Connect the battery lead to the negative terminal of the storage battery. Be sure this connection is tight. The shield terminal must be connected to positive or ground terminal of the storage battery.
The black lead from the control unit must be connected to the pilot light terminal on the Speaker. (See Figure 3.)

Adjustment

Turn on the Receiver and tune in a station whose frequency in kilocycles is known. (The numbers on the dial represent channel numbers which, with the addition of a cipher, become the frequency numbers.) Pull the knob from the right-hand control shaft and loosen the set screw found there. (See Figure 8.), Turn the shaft until the indicator points to the correct number on the dial. Then tighten the set screw and replace the knob.

Figure 6

Motor Interference Suppression

Cut the elbow terminals from the spark plug cables and screw on the molded bakelite elbow suppressor terminals. Cut off the end of the distributor center lead cable and screw the straight molded resistor into the lead. Then plug this into the distributor cap. Install a one microfarad by-pass condenser on the generator. Mount it on the generator frame under the screw that holds the generator relay in place. Connect the condenser lead under the screw that connects the generator battery lead to the relay
nuts tightened to draw the control bezel flush with the instrument panel. (See Figure 8.) Replace and tighten the car lighting switch.

The flexible shafts must be placed around to the Receiver. The ends of the two (2) shafts are different so that they can only be installed in the proper couplings. The long shaft and housing is on the left of the control unit, while the short one is on the right.

Figure 5

Nore 1.-A hole large enough for the dash control has been provided in the center of the instrument panel in all standard Plymouth Model, Code PF.
This hole is covered with a special Plymouth plate which can be removed easily by forcing it out from the rear with the fingers or with a screw-driver.
(see Figure 4). Install a $1 / 2$ microfarad by-pass condenser, splicing and soldering it to the dome light lead as close as possible to the point where it enters the windshield pillar. The condenser must be fastened to the cowl panel in front of the hood line by drilling a $1 / 8^{\prime \prime}$ hole where the hood overlaps and as close to the pillar as possible, using the $8-32$ bolt and nut supplied for this purpose. (See Figures 4 and 5.) Remove paint from around hole. Replace the car lighting fuse-test the lights and horn.

There may be some interference caused by an excessive gap between the distributor rotor and the high tension contacts. This can be overcome by lengthening the contact end of the rotor.

The following procedure should

Figure 8 be carefúlly followed: Remove the distributor cap and chalk the inside faces of the stationary contacts. Remove the rotor and place the contact end on a small anvil or steel block. Peen or hammer the end carefully with a small machinists' hammer. Replace the rotor and the cap, then turn the engine over by hand. After a couple of revolutions, examine the distributor cap to see if the rotor has scraped or touched any of the stationary contacts in the cap. If so, dress lightly with a fine file. Repeat the above operation until the rotor just clears the contacts.
In some stubborn cases, it may be necessary to solder a bond to the control wires and tubes where they enter the dash, grounding them securely under one of the dash grommet cap screws. No. 14 stranded and tinned copper wire can be used for this purpose, a length of which is provided (see Figure 9). Be sure that all the high tension wires are properly seated in their sockets in the distributor cap.

REMOVE PAINT FROM

An additional $1 / 2$ microfarad condenser may at times be used to advantage. This condenser should be mounted on the bottom edge of the instrument board and connected to one of the terminals on the ignition switch directly behind the instrument panel.

I. F. Transformer and Padders

The new style I. F. transformer complete with padders is used in the Model G.

The padders are placed in the top of the shield can one above the other.
The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figures 10 and 11.)
The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Figure 1.
If replacements are ever necessary, replace oure wure the entire coil assembly 32-1236 for the first I. F. stage and 32-123.7 for the second I. F. I. F. stage and $32-123.7$ for the second I. F.
stage. Neither the coil nor the padders stage. Neither the coil nor the padders or ase $\mathcal{F} \cdot{ }^{\circ} I_{\text {esean - anvay }}$
 the above numbers.

Figure 10

Model G Adjustments

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.
The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.
Remove the lid from the Receiver. Remove the grid cap from the 6A7 tube (for location see Figure 11).
Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of the 6A7 tube. (See Figure 11.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.
The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (24) and (20) are adjusted first (Figures 11 and 12). Turn the adjusting screw (24) all the way in. A metal screw-driver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut (22) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (24) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (16) and (18).
After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid lead to the 6A7 tube. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead.

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Figure 11.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.

With the tuning condenser in this position adjust the high-frequency padder (9) until the maximum reading is obtained in the output meter. This is the true setting for 1500 K. C., 150 on the dial scale.

Next turn the condenser plates in mesh to 140 on the scale, 1400 K. C., and set the signal generator for 1400 K. C. The R. F. padder (8) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.
Turn the condenser plates in mesh to 60 on the scale, $600 \mathrm{~K} . \mathrm{C}$., and readjust the signal generator to this frequency. Adjust the lowfrequency padder (13 for the maximum meter reading.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

PHILCO RADIO \& TELEV. CORP.

(1) Antenna Transformer. 32-1220	
(3) 1st Padder (on tuning cond)	
	Condenser (.03 mfd .) 30-4025
	2nd Padder (on
(9) 3rd Padder (on tuning cond.). .	
(10) Resistor (51,000 ohms) 6098 (11) Oscillator Transformer.32-1222	
(12) Condenser (. 00025 mfd .). . . 3082 (18) Padder.31-6012	
(14) Resistor (15,000 ohms). . . . 6208	
(15) Padder (Prim. 1st I. F.) part of 32-1236 assembly.	
(16) I. F. Transformer (1st). . . .32-1236 (17) Resistor ($1,000,000$ ohms). . 33-1096	
(18) Padder (Secondary 1st I. F.) part of 32-1236 assembly........	
(19) Condenser (. 03 mfd) 30-4025 (20) Condenser (. 5 mfd .) 30-4018	
(21) Resistor (500 ohms) 6977	
	Resistor (500,000 ohms). . . . 60
(23) Condenser (.00011 mfd.). . .30-1006	
(24) Padder (Prim. 2nd I. F.) part of 32-1237 assembly.......	
(26) I. F. Transformer (2nd). ... 32-1237 (26) Padder (Secondary 2nd I. F.) part of 32-1237 assembly...... .	
Resistor (25,000 ohms)33-1013	
Condenser (.00011 mfd.) . . 30-1006	
(29) Condenser (006 mfd) $)$. . . .30-4125	
(30) Volume Control Assembly. . 33-5056	
(31) Resistor ($2,000,000$ ohms). . 33-1025	
(32) Resistor (250,000 ohms). . . .33-1097	
(33) Resistor (250,000 ohms). . . .33-1097	
(34) Condenser (.00011 mfd.). . .30-1006	
(35) Resistor ($250,000 \mathrm{ohms}$) . . . 33-1097	
(36) Resistor ($51,000 \mathrm{ohms}$) 6098	
(37) Condenser (.006 mfd.).30-4123	
(38) Condenser (20 mfd). 30-2063	
	Resistor (500,000 ohms). . . . 6097
(40) Resistor (700 ohms) 6443	
(41) Condenser (.006 mfd.) 30-4024	
(42) Output Transformer. 2598	
(43) Cone and Voice Coil. 36-3159	
(44) Field Coil Assembly. 36-3140	
(45) Tone Control.30-4127	
(46) Condenser ($.25, .25 \mathrm{mfd}$) . . 30-4126	
(47) Resistor (20,000 ohms) 5649	
(48) Condenser (05 mfd)30-4020	

(30)

	Condenser (5 mfd)	30-4018
(51)	Resistor (200 ohms)	7217
(52)	Condenser (. 01 mfd .)	30-4124
	Resistor (100 ohms)	33-3023
(5)	"A" Choke.	32-1312
(56)	Condenser (.5 mfd .)	30-4015
(56)	Vibrator Choke	32-1260
(57)	Condenser (. 5 mfd.$)$	015
	Condenser (.5 mfd .)	.30-4015
(59)	Vibrator Unit	38-5036
	Condenser (05 mfd .)	30-4039
(61)	Resistor (200 ohms)	7217
	Resistor (200 ohms)	7217
(6)	Power Tlransformer	.32-7110
	Condenser (006 mfl .	.30-4024
	Filter Condenser 8 mfd)	$30-2030$
	"B" Chokes	32-7118
	R. F. Choke	32-126

PHILCO RADIO \& TELEV. CORP.

MODEL 10 (Code 122) RECEIVER

The Model 10 (Code 122) represents the latest developments in single-unit automobile radio. Compact and easy to install, its performance is amazing.
A superheterodyne, using six of the latest tubes designed for automobile radio, it has a tremendous power output and is equipped with a full-size electro-dynamic speaker, the same type used in high-priced home radio Receivers.

Bass compensation gives full rounded tone at any volume. Four point tone control is provided to satisfy the individual preference. Greater sensitivity, a three-section tuning condenser giving improved selectivity and fidelity, inherently quiet circuits and all the other improvements, make this model the outstanding automobile radio.

The new interference filters and improvement in shielding, cut installation time to just a fraction of what it would be without these improvements. The ease of installation characteristic of this model (only one unit to install, one lead to the antenna and one lead to the ammeter) makes it the most desirable one to sell, install or own.

I. F. TRANSFORMER AND PADDERS

A new style I. F. transformer complete with padders is used in the Model 10. (Code 122.)

The padders are placed in the top of the shield can one above the other.
The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1236 for the first I. F. stage and 32-1237 for the second I. F. Stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

A new type first I. F. transformer is used, but retains the same part no. 32-1236.
This transformer can be distinguished from the old type, since the bottom fibre spacer is painted green.

MODEL 10 (Code 122) ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.
The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver and disconnect the antenna lead from the Receiver. Remove the grid cap from the 6A7 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of the 6A7 tube. (See Fig. 2.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (2) and (27) must be adjusted first. These padders should be adjusted to peak. (Figs. 2 and 3.) First adjust the screw, then the nut.

The padders (17) and (21) must be adjusted next. (Figs. 2 and 3.) Turn the adjusting screw (ii) all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately halfscale reading, adjust the nut (21) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (17) for maximum reading on the meter. This adjustment is critical. Note the maximum
reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid cap to the 6A7 tube. Connect the antenna lead to the Receiver. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead.
There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (1B) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C} ., 150$ on the dial scale.
Next turn the condenser plates in mesh to 140 on the scale, 1400 K . C., and set the signal generator for 1400 K. C. The R. F. padder (10) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.

Turn the condenser plates in mesh to 60 on the scale, 600 K . C., and readjust the signal generator to this frequency. Adjust the low-frequency padder (15) for the maximum meter reading.
Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

Fig. 2

PAGE 5－6 PHILCO
MODEH 10 （Code 122）
Schematic
Chassis，Parts List
PHILCO RADIO \＆TELEV．CORP．

PHILCO RADIO \& TELEVISION CORP.

MODEL 11 RECEIVER

The Philco auto radio Model 11 is a new Philco development in single-unit automobile radio. It is compact, easy to install and will give exceptional performance.
A superheterodyne, using six of the latest tubes designed for automobile radio, it has a genuine Philco electrodynamic speaker, the same type that is used in many of the larger home radio Receivers. A three-section tuning condenser giving improved selectivity, remarkable sensitivity and tone, inherently quiet circuits and other improvements make this model one of the outstanding and most popular automobile radios.

Added to this, the ease of installation characteristic of this model (only one unit to install, one lead to the antenna and one lead to the ammeter) and the handy, attractive steering-column control which makes this model universal in its use are additional features which make the Model 11 a very desirable one for the dealer and for the owner.

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 11.

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1329 for the first I. F. stage and 32-1237 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

Fig. 1

MODEL 11 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however; it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver. Remove the grid cap terminal from the 77 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of the 77 tube. (See Fig. 2.) The output meter must be connected.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.
The padders (23) and (24) are adjusted first (Figs. 2 and 3). Turn the adjusting screw (2) all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut ${ }^{(2)}$ with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (22) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (13) and (1b).

After padding the first I. F. stage, remove the generator lead from the 77 tube and reconnect the grid lead to the 77 tube. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead
There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (1) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C}$., 150 on the dial scale.
Next turn the condenser plates in mesh to 140 on the scale, 1400 K . C., and set the signal generator for 1400 K. C. The R. F. padder (8) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

PAGE 5-8 PHILCO

MODEL 11
 Schematic Chassis Layout Parts List

PHILCO PAGE 5-9

PHILCO RADIO \& TELEV. CORP.
 Model 18 (Code 124)

Model 18 (code 124) is an eight-tube superheterodyne receiver, for operation on alternating current (A.C.) The range of receivable frequencies is from 530 to 1720 kilocycles which includes standard broadcasts and police stations on the first (lowest) police band. The tubes used are: Type 78 R.F.; type 6A7 detector-oscillator; type 78 I.F.; type 75 2d detector, 1st A.F.; type 42 driver; two type 42 output tubes, and type 80 rectifier.' The intermediate frequency is 260 kilocycles.

Adjusting Compensating Condensers

The adjustment of the compensating or padding condensers in Model 18 (124) requires an accurate signal generator, such as the Philco Model 024, an output meter, and a special insulated hex wrench. The adjustments are made as follows:

1. I. F. (Intermediate Frequency). Remove the grid clip from the cap on the 6A7 tube and attach the shielded antenna lead from the signal generator to the grid cap of the 6A7. Set the switch of the signal generator at 260 K . C. (the I. F. of Model 18) and the dial of the set at 550. Turn on the set and signal generator. Adjust each of the three I. F. compensating condensers in turn to give maximum reading in the output meter (connected to primary of output transformer). If the needle on the meter goes off scale, turn down the attenuator adjustment on the signal generator. See Fig. 4 for locations of the I. F. compensating condensers. The first and 2d I. F.
primary condensers (21) and (23) are accessible through the two holes in the chassis sub-base directly over them. The 1st I. F. secondary (24) is accessible from the rear.
2. ANT. H. F., DET., and OSC. H. F. CONDENSERS-(5), (10), and (12.) These are located on top of the tuning condenser assembly and adjusted from above. (5) is mounted on the section nearest front of set. Replace the grid cap clip on the 6A7 and connect the antenna lead of signal generator direct to antenna post of set for these adjustments. Set signal generator at 1500 and dial of set at 1500 .
3. OSC., L. F.-This adjustment (15) is made from rear of chassis (see Fig. 4). Set Signal Generator and dial of set at 600. The tuning condenser assembly should be "rocked" while this adjustment is being made.

Replacement Parts for Model 18 (Code 124)

Tube Socket Voltages

Circuit	R. F.	Det. Osc.	I. F.	$\begin{aligned} & \text { 1st } \\ & \text { A. } \mathrm{F} . \end{aligned}$	Driver	$\begin{aligned} & \text { Output } \\ & \text { (Class " } A \text { ") } \end{aligned}$		Rectifier
Type Tube	78	6A7	78	75	42	42	42	80
Filament (F-F)......	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P-K).......	210	210	210	120	205	280	280	350
	80 .	$\begin{gathered} 3 \dot{5} \\ 130 \end{gathered}$	80	\cdots	200	300	300	\square
Cathode (K-F)......	2.8	2.8	5.3	0	0	0	0	.

(3)	Condenser (.01 Mfd. Bakelite Block)	3003-2	. 25
(3)	Resistor (1. Meg.) (Brown-Black-Green).	4409	. 25
(3)	Resistor (. 5 Meg) (Yellow-White-Yellow).	4517	. 25
(3)	Resistor ($\mathbf{1 0 , 0 0 0}$. ohms) (Brown-Black-Orange).	4412	. 25
(36)	Shadowmeter.	45-2028	2.50
(37)	Condenser (. 00011 Mica)	4519	. 35
(3)	Condenser (. 09 Mfd) (Bakelite Block).	4989-N	. 35
(39)	Resistor (50,000 ohms) (Green-Brown-Orange)	4518	. 25
(40)	Condenser (Electrolytic-1, 1, 2 Mfd).	30-2029	1.20
(4)	Reeistor (. 1 Meg.) (White-White-Orange)	4411	. 25
(42)	Resistor (. 5 Meg.$)$ (Yellow-White-Yellow).	4517	25
(3)	Condenser (015 Mfd . Bakelite).	3793AB	. 35
(4)	Condenser (. 006 Mfd. Tubular Paper).	30-4024	. 40
(45)	Input (Audio) Transformer.	32-7114	2.00
(4)	Resistor (10,000 ohms) (Brown-Black-Orange).	3524	. 25
(47)	Condenser (.01 Mfd. Bakelite Block).	3903-P	. 25
(18)	Output Transformer	32-7078	1.40
	Voice Coil and Cone Assembly\{ $\mathbf{H}-13$	02625	. 80
(4)	Voice Coil and Cone Assembly	36-3159	. 50
(50)	Field Coil and Pot. Assembly.	36-3104	2.70
(5)	Resistor (B) (6500 ohms Wire-wound)	33-3033	. 30
(32)	Resistor (Voltage Divider-9.5, 112, 84 ohms Wi)33-3034	\$0.20
(3)	Tone Control..	30-4073	. 75
(5)	Condensers (in Tone Control).	Inside (33)	
(3)	Resistor (32,000 ohms) (Orange-Red-Orange).	33-1026	. 35
(5)	Resistor (50,000 ohms) (Green-Brown-Orange).	4518	. 25
(57)	Condenser (Twin . 015 Mfd. Bakelite Block).	3793-R	. 40
(58)	Power Transformer.	32-7111	5.75
(59)	Condenser (Electrolytic 8 and 10 Mfd .)	30-2045	1.95
(6)	Condenser (Electrolytic 8 Mfd.).	30-2025	2.00
(1)	Condenser (. 25 Mfd. Bakelite Block).	6287-N	. 40
(6)	Filter Choke.	32-7115	1.80
(3)	On-Off Switch.	42-1064	. 40
(4)	Pilot Lamp (Station Selector).	6608	. 11
(6)	Pilot Lamp (Shadowmeter)....	Part of (36)	
(6)	Reaistor (2900 ohms) (Red-White-Red)	5309	. 25
	A. C. Cord and Plug Assembly	L-943A	. 60
	Tube Shield.	28-1107	. 10
	4 Prong Socket.	7544	. 10
	6 Prong Socket. 7 Prong Socket		
	7 Prong Socket.		. 11
	Knob (Large).,	27-4051	. 10
	Knob (Small).	27-4052	. 10
	Chassis Mfg. Screw	W-1345-A	2.75 C
	Chassis Mfg. Washer	29-2089	. 35 C
	Chassis Mfg. Foot (Rubber)	27-4116	. 05
	Chassis Mfg. Foot P	27-7497	.35C
	Dial Assembly.	31-1207	. 50
	Dial Scale...	27-5049	. 25

All the above values were obtained from the underside of the chassis, using test prods and leads with an A. C. voltmeter for filament voltages and a high-resistance multi-range D. C. voltmeter for all other values. The Philco Model 048 All-Purpose Set Tester is highly recommended for this use. Volume control at maximum and atation multi-range D. C. voltmeter for all other values. The Pher at 520 K . Readings obtained with a plug-in adaptor will NOT be satisfactory.

PAGE 5-10 PHILCO

NOTE: A resistor No. 5309 (2900 ohms) (red-white-red) is used, shunted across the shadowmeter. Not shown in Fig. 3 or Fig. 4.

Fig. 1-Socket Layout (Underneath)

Fig. 4-Bottom View of Chassis Showing Parts
Power Transformer Data

Terminal	A.C. Volts	Circuit	Color
$\mathbf{1 - 2}$	$105-125$	Primary	White
$3-5$	6.3	Filament	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	760	Plates of 80	Yellow
4	\ldots.	Center Tap of 3-5	Black-Yellow Tracer
9	\ldots	Canter Tap of 8-10	Yellow-Green Tracer

PHILCO RADIO \& TELEV. CORP.

For adjustment of compensating (padding) condensers in Model 28, an accurately calibrated signal generator, an output meter, and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Generator, which is accurately calibrated and easy to handle. Philco No. 3164 fibre wrench and No. 27-1159 fibre-handled screwdriver are also recommended. For the output meter either Philco Model 025 complete tester or Philco Model 012 shadow output meter is suggested.
The chassis must be removed from cabinet in order to make all adjustments.
Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6-A-7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.
Connect the output meter adapter leads to the plate and cathode prongs of the type 43 tube. Set the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the intermediate frequency of Model 28) and with the receiver and signal generator turned on, the wave band switch at left and dial at 600 K .C., adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible through a hole in the top of the coil shield. In the dual compen-

Fig. 1-Top View Showing Location of Compensating Fig. 1-Top View Showing Location.
No. on
Condensers.

PAGE 5-12 PHILCO

PHILCO RADIO \& TELEV. CORP.

On Line Voltage 120 A.C.
TUBE SOCKET VOLTAGES
On Line Voltage 120 D.G.

Type Tube	6-A-7	39-44	39-44	75	43	25-Z-5	6-A-7	39-44	39-44	75	43	25-Z-5
Plate (\mathbf{P} to K)	100	100	98	45	95	120	95	95	85	40	90	.
Screen Grid (SG to K)	$\begin{aligned} & \text { G1 }=-8 \\ & \text { G2 }=80 \\ & \text { G3\&5 }=60 \end{aligned}$	100	100	. ${ }^{\text {r }}$	100	. \cdot	$\begin{aligned} & \mathrm{G} 1=-10 \\ & \mathbf{G} 2=80 \\ & \mathbf{G} 3 \& 5=60 \end{aligned}$	95	95	.	95	..

Total Filament Voltage-75
Total Filament Voltage-83
Philco Model ${ }^{2} \mathbf{0} 5$ Circuit Tester is recommended for making the above voltage tests.

PHILCO RADIO \& TELEV. CORP.

Alignment Data
Voltage, Layouts
Philco Model 29 is a superheterodyne receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles and the right in megacycles. A two-position switch changes reception from standard to short-waves. This model is equipped with shadow tuning, three point tone control with fixed bass compensation, and automatic volume control. The output is 5 watts.

Model 29 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. tubes, type 75 2d detector, type 42 output tube, and type 80 rectifier. The power consumption is 70 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in Model 29, an accurately calibrated signal generator and a special insulated padding wrench and screwdriver are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument. Philco No. 3164 wrench and 27-1159 screwdriver are recommended in addition. Adjustments are made in the following order:-
ADJUSTMENT OF INTERMEDIATE FREQUENCYRemove the grid clip from the type 6-A-7 tube and connect the "ANT" output terminal on the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.
Connect the output meter to the primary terminals of the output transformer. Set the signal generator at 460 K .C. (the intermediate frequency of Model 29) turn wave-band switch of receiver to left and dial to $600 \mathrm{~K} . \mathrm{C}$. Turn receiver and Signal Generator "ON". Adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located, one pair at the top of each of the three I. F. transformer shields. These are the metal "Cans" near the rear of chassis. Each of these transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compen-

Tube Socket Voltages-(Line Voltage 115)

Function	Det. Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { Det. } \end{aligned}$	Output	Recti- fier
Type	6 A7	39/44	39/44	75	42	80
Filament (F to F)...........	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P to K).......	210	200	200	200	300	310
Screen (SG to K)...........	80	80	80	\cdots	315	.
Cathode (K to GND).	$4.8{ }^{-}$	4.8	4.8	0	0	. \cdot
6-A-7 Grid G1 to K.........	35	\cdots	\cdots	\cdots	\ldots	\cdots
6-A-7 Grid G2 to K.........	170	. \cdot	. \cdot	\cdots	\cdots	.

sators, the Primary circuit is adjusted by turning the screw; the secondary circuit is adjusted by turning the hex-head nut. ADJUSTMENT OF WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type $6-\mathrm{A}-7$). Connect the output leads from the Signal Generator directly to the antenna and ground terminals of the receiver. Set the wave-band switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency (540 K.C.) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K.C. Signal from signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, thru hole at right hand end of set base.

DETECTOR; AND OSCILLATOR - "HIGH" AND "LOW FREQUENCY" ADJUSTMENTS-The "Antenna" and "Oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.
Set the signal generator at 1500 K.C., tune in this signal on the set, and adjust the antenna compensator (7) (nearest tuning control), to give maximum reading in the output meter. Next adjust the oscillator H. F. condenser (11), located on the other section of tuning condenser, to maximum reading. Finally set the signal generator at 600, tune in this signal and adjust the oscillator L. F. condenser, located underneath chassis (©5) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left-hand end of chassis when facing rear).

Power Transformer Voltages

Terminals	A. C. Volts	Circuit	Color of Leads
$1-2$	120	Primary	White
$3-4$	5.0	Fil. of 80	Blae
$5-7$	746	Plates of 80	Yellow
$8-10$	6.3	Filaments	Black
6	\cdots	Center of 5-7	Black-Yellow Tracer
$9-$	\cdots	Center of 8-10	Yellow-Green Tracer

The above tests were made with an A. C. voltmeter for filament voltages and a high-resistance D. C. voltmeter for all others. Dial at $550 \mathrm{~K} . \mathrm{C}$. , wave-band switch to left, volume control at maximum. Tests made with test prods applied to sockets underneath chassis.

(43) (39) 63
(36) (37) (20)
(14)
(18)(10)

YPE:I.F
Fig. 1-Tube Socket Layout

PAGE 5-14 PHILCO

Model 16

Changes
Starting with run No. 14, all type Model 16 will use a different type tone control. This will be Part No. 30-4168 which replaces $30-4069$ formerly used. Condenser 7653-C (0n wiring diagram in Bulletin $165-\mathrm{B}$) is replaced by $3615-\mathrm{L}$.

The new tone control has fixed bass compensation, effective on all four positions, which helps subdue background noise and thus favorably affects short-wave reception.

Starting with Run No. 15, a No. 30-4125 tubular condenser, .006 mfd , will be added, connected between the plate of the 77 tube and the tone control. This gives a smoother variation in control and prevents too great a change in tone from one step to another.

Starting with Run No. 16, the tone control used on Model 16 will be part No. 30-4204, which replaces 30-4168. (See June 1st change notices.) At the same time, condenser $3615-\mathrm{L}$ replaces $\mathbf{3 6 1 5 - J}$, and external tone control condenser $\mathbf{3 0 - 4 1 2 5}$ is removed. This latter condenser is now built in as part of the new tone control, thus simplifying assembly of the set.

Model 18-124

Starting with Run No. 4, Resistor 23 on wiring diagram of Model 18-124 will be Part No. 5837 (1000 ohms) instead of No. 7775 (2500 ohms). There is a slight change in the antenna and oscillator transformers, the new ones being identified by a red paint mark on the bracket. No change in part number. Change to increase sensitivity.

Model 29 (Code 123-TK)

The differences between regular Model 29 and the TX type are that the latter has the following parts added:

$$
\begin{aligned}
& \text { Output transformer . } 3116 \\
& \text { Speaker switch (toggle) Type P-22 } \\
& \text { Speaker . }
\end{aligned}
$$

Model 29-TX also includes a furniture-type speaker, HR-2, which is connected to the receiver by a 25 -foot cable and plug assembly, part No. 36-3327, attached to the speaker cabinet.

The A. C. cord on 29-TX is a flat cable and contains an extra wire, which is for use as antenna lead by connecting the antenna to the binding post mounted on the side of the special flat A. C. plug used. However, the antenna may be connected to the regular antenna clip terminal on the receiver chassis if desired and more convenient.

The part numbur of this special cable and plug assembly is 41-3104.

Model 29

Effective July 1st, condenser (©4 in wiring diagram of Model 29 is changed from 4989 AM , (. 09 mfd .) to 3615 AW (. 05 mfd .). This improves the fixed bass compensation used in this model.

Starting with Run No. 8, the cathode resistor ((2) in wiring diagram of Model 29) will be changed from Part No. 6977 (500 ohms) to $33-3016$ (400 ohms). This will prevent variation in performance of sets due to considerable variation in 6A7 tubes.

Starting with Run No. 9, electrolytic condenser @ (on wiring diagram) will be a Part No. 30-2026 instead of $30-2020$. The new type is of a higher working voltage.

Models 29 \& 45

Effective July 1st, a new wave-trap will be used in this model. Part (1) on wiring diagram of Model 29 is changed from Part No. 38-5199 to 38-5995. The new wave trap uses an improved construction which facilitates production.

Effective July 1st, mica condenser (10) on wiring diagram of Model 29 was changed from Part No. 7301 to $30-1028$. No change in capacity; change to facilitate wiring only.

PHILCO RADIO \& TELEV. CORP.

Correcting Intermittent Operation

On some of the earlier models of the 89,19 and 38 , difficulty may occasionally be experienced with intermittent operation. This condition usually occurs during periods of humid weather, and is caused by stopping of the oscillator. In some cases, the radio may be completely dead and at other times this in-operative condition may exist over a portion of the dial only.

There are a number of possible causes for the difficulty and the necessary steps have been taken in later production to correct the condition. On a few of the earlier sets, however, it may be necessary to make one or more of the changes outlined below:

1. OSCILLATOR TUBE: In most cases, partial or complete failure of the oscillator circuit can be corrected by replacing the oscillator tube.
2. BATTERY VOLTAGE: In the Model 38, low voltage of the "A" or "B" battery may cause failure in oscillation.
3. CATHODE RESISTOR: In the Models 89 and 19, correct performance can usually be restored by changing the cathode resistor (10) in the wiring diagrams of service bulletins 146 and 146 A from 15,000 ohms to 10,000 ohms (Philco Part No. 4412). In the Model 38, the cathode resistor (13) in the wiring diagram of service bulletin 106 is changed from 6,000 ohms to 4,000 ohms (Philco Part No. 33-1040).
4. COMPENSATING CONDENSERS: The first I. F. compensating condensers in Models 89 and 19 (15) in service bulletin 146, (18) in service bulletin 146-A and (10) in service bulletin 166 have been changed from Part No. 04000-M to Part No. 31-6016. The new condenser has a larger insulating surface between the plates of the condenser and the mounting holes. The possibility of moisture absorption is thus eliminated. It is necessary to re-drill a hole in the chassis so that the condenser can be mounted correctly with respect to the opening in the chassis for the compensating condenser wrench.
5. BAKELITE WASHERS: In order to prevent moisture absorption with resulting drifting in the compensating condenser adjustment, a bakelite washer and a metal washer are now being used on top of the compensating condenser, in place of the fibre washers previously used. The part number of the bakelite washer is $27-4109$ and the metal washer (placed on top of the bakelite) is W-1331. These two replace the old fibre washer Part No. 3500.
6. MICA INSULATION: It was found on some sets that the mica which separates the leaves of the high frequency oscillator compensating condensers was extremely thin and would crack easily. Moisture absorption in the cracks was sufficient to stop oscillation. This condition was corrected by replacing the mica.
7. WIRE INSULATION: The wire which connects from the oscillator tuning condenser to the oscillator coil should be rubber-covered. Possible moisture absorption in the insulation of the cotton-covered wire may be sufficient to produce leakage to ground.
8. OSCILLATOR COIL IMPREGNATION: In some cases, it may be desirable to reimpregnate the oscillator coils in accordance with the present methods of production. The coil is dipped in hot paraffine for twenty seconds. The entire coil, including the terminals, is submerged; the only part which is out of the paraffine is a portion of the mounting lug, thus assuring a good ground connection. The coil and the paraffine both are allowed to cool until the paraffine becomes a considerably heavier consistency, at which time the coil is again dipped, thus allowing a fairly heavy covering over the entire coil. The coil is now entirely sealed and will not be affected by any moisture changes.
9. TUNING CONDENSER: A few tuning condensers of the 89 and 38 Models went out of the factory with a sanded surface on the bakelite between the stator and rotor plates. Moisture absorption at this point was sufficient to stop oscillation. Changing the tuning condenser to the type with smooth bakelite insulation will correct the trouble. In present production, these bakelite pieces are dipped in insulating varnish to seal all possible openings which might absorb moisture.
10. OSCILLATOR SOCKETS: In extreme cases it may be necessary to change the detectoroscillator tube socket. Moisture absorption occasionally takes place around the rough edges of the socket.

ELIMINATION OF NOISE INTERFERENCE CAUSED BY THE FARM LIGHTING SYSTEM

Fig. 8-Best Method of Antenna Installation for Model. 32
of filter chokes and condensers, and is connected directly in the output lines of the generator as per instructions supplied with this special unit. The unit may be obtained from your Philco Distributor.

It is generally advisable also to connect a $1 / 2 \mathrm{mfd}$. fixed condenser (Philco Part No. 30-4015) from each set of generator brushes to the frame of the generator (which should be grounded). The method of locating these condensers is indicated in Fig. 9 which shows a cut-away view of one end of a generator. These condensers help eliminate the whirring or crackling caused by the generator brushes.

To reduce the clicking noise caused by the ignition at the spark plug, a suppressor (Philco Part No. 4531) should be inserted in series between the terminal of the plug and the cable leading to it. See Fig. 10.

Fig. 9-Condensers Attached to Generator for Suppressing Interference

WODEL 32

Alignment Data
Layouts

PHILCO RADIO \& TELEV. CORP.

Model 32

Philco Model 32 is a superheterodyne radio receiver designed to operate directly from a 32 volt. D. C. (direct current) electric system, such as used on many farms for lighting purposes. In this model the filaments of the tubes (except the rectifier) are connected in series, while the necessary plate and grid voltages are secured from a special vibrator-

Fig. 1-Top View of Model 32
NOTE: In 32 -volt systems where the batteries are old, the voltage is high (40 volts) when generator is running (due to the higher internal resistance of the batteries). In such cases it will help conserve life of the tubes in the set if battery charging is done at
periods of the day when the radio is not in use. periods of the day when the radio is not in use.
and-rectifier unit, contained in a separate metal box mounted on a shelf of the radio cabinet. The rectifier tube is inside the vibrator-andrectifier unit box. It obtains its filament voltage from a secondary winding of the transformer which is also located in the vibrator-andrectifier unit box.
Model 32 uses the following tubes: R. F., type 39-44; DetectorOscillator, type 36; I. F., type 39-44; 2d detector, type 75; Output type 42; Rectifier, type 84.
The frequency range of the model 32 is 520 to 3260 kilocycles. The intermediate frequency (I. F.) is 260 K . C. The power consumption is 50 watts when the line voltage is 32 , and approximately 70 watts when the line voltage reaches 38 .

With a line voltage of 35 volts to the vibrator and an effective voltage of 28 at primary of power transformer (voltage from white lead to white-black-tracer), the A. C. voltage across secondary should be about 300 volts at 65 milliamperes. Secondary voltage measured from yellow lead to yellow-green-tracer. Voltage across 84 filament approximately 7 volts at .5 amperes. (Filament leads have blue insulation.)
Tube Socket Data Line Voltage 34 Volts

Circuit	RF	Det.Osc.	IF	AF	Output	Rect,
Type Tube	39-44	36	39-44	75	42	84
Filament Volts.	6.8	6.8	6.8	6.8	6.8	
Plate Volts..	205	200	235	155	220	300
Screen Grid Volts (SG to K)	85	83	85		240	
Cathode Volts (K to Gnd).	4	8.5	4	0	0	

The above voltage values were obtained with a high-resistance, multi-range D. C. voltmeter. The readings were taken from the underside of the chassis, with teat prods and leads. The PHILCO MODEL 048 ALL-PURPOSE SET TESTER is an ideal instrument for taking these readings, and is highly recommended for this purpose. When the above values were obtained, the Station Selector was set at
the low frequency (550 K . C.) end of the scale; the Volume Control was at maximum

42 Socket

84 Socket

Fig. 2-Terminal Arrangement of Tube Sockets Viewed from Under Side of Chassis

Fig. 3-Rear of Model 32 Chassis, showing location of I.F. Compensating Condensers. I.F. of Model 32 is 260 K . C.

Fig. 4-Top View of Chassis Showing Compensating Condensers Mounted on Tuning Condenser, also Low Frequency Compensating Condenser.

ADJUSTMENT OF MODEL 32

COMPENSATING CONDENSERS

These reseivers are adjusted accurately before they are shipped from the Factory. If re-adjustment is required, it is usually necessary to re-align only the intermediate frequency compensating condensers Fig. 3 shows the location of these compensating condensers. The intermediate frequency is 260 kilocycles.

An accurately calibrated signal generator is required for these adjustments. The PHILCO MODEL 024 is a precision signal generator supplying frequencies from
recommended for this work.
To adjust the I. F. condensers, remove the grid cap clip from the type 36 tube and connect the shielded antenna lead from the signal generator to the grid cap. Connect the ground lead from signal generator to ground post of set.

Connect the primary terminals of the output transformer to an output meter. Set the signal generator frequency switch at 260 K . C. turn it and the receiver "on" and adjust the attenuator of the signal generator so as to get a half scale deflection on the meter. Now with the fibre hex wrench, adjust each of the I. F. condensers in turn so as to obtain maximum reading in the meter.

If re-adjustment of the intermediate frequency circuits is not sufficient to restore sensitivity, the high frequency and low frequency compensating condensers are re-aligned as described in the following condensers.

When making these adjustments replace the grid clip on the 36 tube, and connect the antenna and ground leads from the signal generator direct to the antenna and ground posts of set.

The High Frequency compensating condenser is first adjusted. This adjustment is made with the signal generator set at 1400 kilocycles. Next the Detector and Antenna Condensers, located on the tuning condenser assembly, should be adjusted, with the signal generator still operating at 1400 . It may be necessary to readjust the
attenuator on the signal generator for these adjustments.

The last adjustment is that of the low frequency (LF) compensating condenser which is accessible from above through the hole in chassis alongside the tuning condenser assembly. This adjustment is made with the signal generator set to give a 700 K . C. signal.

PHILCO RADIO \& TELEV. CORP.

PHILCO RADIO \& TELEV. CORP.

Fig. 6-Bottom View of Chassis

Fig. 7-Bottom of Vibrator and Rectifier Unit

REPLACEMENT PARTS FOR MODEL 32

	an Fige. and Coseription	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(1)	Condenser ($.09 \mathrm{mfd} .-09 \mathrm{mfd}$.).	4989-G	\$0.40
(2)	Condenser (0025 mfd .) (mica).	7006	. 40
(3)	Resistor ($\mathbf{1 0 , 0 0 0}$ ohms-Brown-BlackOrange)		. 25
(4)	Antenna Transformer.	32-1062	. 70
(6)	Tuning Condenser Assembly	31-1059	5.00
(6)	Wave-band \& On-off Switch.	42-1017	1.00
(7)	Compensating Condenser (ant.)	Part of (5)	
(8)	Detector Transformer.	32-1063	. 50
(9)	Compensating Condenser (det.)	Part of (5)	
(10)	Condenser (.05 mfd . tubular)	30-4123	. 35
(11)	Oscillator Transformer.	06620	. 90
(12)	Compensating Condenser (osc. H. F.).	Part of (5)	
(13)	Compensating Condenser (1st I. F. pri.)	04000-M	. 20
(14)	Compensating Condenser (osc. L. F.)	04000-S	. 35
(15)	Condenser (0007 mfd .-mica).	5863	. 35
(18)	Resistor (15,000 ohms) (Brown-Green- Orange)..................................	6208	. 25
(17)		4518	. 25
(18)	Resistor (39,000 ohms) (Orange-White- Orange)..........................	33-1027	. 25
(19)	First I. F. Transformer	32-1289	. 60
(20)	Compensating Condenser (1st I. F. secondary)	04000-M	. 20
(2)	Second I. F. Transformer.	06622	1.20
(22)	Compensating Condenser (2d I. F. primary). .	04000-A	. 15
(23)	Resistor ($\mathbf{5 0 , 0 0 0}$ ohms) (Green-BrownOrange).	4518	. 25
(24)	Volume Control (350,000 ohms)	33-5085	1.00
(25)	Condenser (09 mfd . tubular).	30-4122	. 35
(28)	Resistor ($5,000 \mathrm{ohms}$) (Green-Black-Red).	3526	. 25
(27)	Resistor (2 meg. Red-Black-Green).	5872	. 25
(28)	Resistor (1 meg. Brown-Black-Green)	4409	. 25
(29)	Condenser (.00011 mfd .-mica).	30-1006	. 35
(30)	Condenser (00011 mfd .-mica).	30-1006	. 35
(11)	Condenser (.01 mfd . tubular).	30-4124	. 25
(32)	Condenser (.00025 mfd --mica).	3082	. 35
(33)	Condenser (.01 mfd . tubular)	30-4145	. 25
(3)	Resistor (. 5 meg.) (Yellow-White-Yellow)	4517	. 25
(3)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25

	on Figs. ${ }^{\text {and } 78}$ Description	Part No.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
(3)	Resistor ($70,000 \mathrm{ohms}$) (Violet-Black-Orange)	5385	\$0.25
(37)	Condenser (25 mfd . tubular)	30-4134	. 45
(38)	Resistor ($25,000 \mathrm{ohms}$) (Red-Green-Orange).	33-1013	. 25
(39)	Condenser (. 09 mfd .) (Bakelite block type).	4989-AL	. 35
(40)	Tone Control.	06764	. 50
(4)	Condensers.	Part of (40)	
(42)	Output Transformer (For K-26 spkr.).	32-7042	. 95
(43)	Voice Coil and Cone (For K-26 spkr.)	36-3174	. 40
(4)	Field Coil and Pot Assembly (K-26).	36-3306	2.85
(45)	Resistor (Pilot light) (27 ohms).	33-3132	. 20
(46)	Pilot Lamp.	4567	. 12
(47)	Line Fuses (Located in line plug) (3 amp.)	45-2046	ea. . 06
(18)	Filter Choke.	32-7213	1.60
(49)	Condenser (Electrolytic-8 mfd. wet)	30-2026	1.50
(50)	Condenser (Electrolytic-8 mfd. dry)	30-2014	1.70
(11)	Condenser (. 05 mfd tubular).	30-4020	. 35
(52)	B. C. Resistor ($235-32 \mathrm{ohms}$).	7998	. 20
(3)	Condenser (09 mfd . tubular).	30-4122	. 35
(6)	Resistor (. 25 meg .) (Red-Yellow-Yellow).	4410	. 25
(5)	Resistor (Flexible- 300 ohms)	33-3010	. 20
(30)	Condenser (.09 mfd. tubular).	30-4122	. 35
(57)	Condenser (.09 mfd . tubular)	30-4122	. 35
	Speaker Plug Socket. .	4957	. 10
	Line Plug Assembly with Cord (Less fuses)	L-1738	. 85

VIBRATOR AND RECTIFIER UNIT

(6)	R. F. Choke (Low voltage)	32-1375	\$0.40
(59)	R. F. Choke (High voltage)	32-1348	. 30
(6)	R. F. Choke (High voltage)	32-1348	. 30
(6)	Condenser (01 mfd . tubular)	30-4145	. 25
(62)	Condenser (. 05 mfd . tubular)	30-4020	. 35
(63)	Power Transformer.	32-7218	4.95
(44)	Condenser (5 mfd .- .5 mfd --metal case)	30-4155	. 85
(65)	Condenser (.05 mfd . tubular).	30-4020	. 35
(66)	Resistor (30 ohms flexible wire wound)	33-3119	. 25
(37)	Resistor (30 ohms flexible wire wound)	33-3119	. 25
(88)	Condenser (.05 mfd . tubular),	30-4020	. 35
(69)	Condenser (. 00041 mfd .-mica)	Inside 71	
(30)	Resistor (2,000 ohms).	Inside 71	
(7)	Vibrator Unit.	38-5640	6.00

PHILCO RADIO \& TELEVISION CORP.

PHILCO RADIO \& TELEVISION CORP.

FIG. 3-Tube Socket Layout (View of Underside)

Table 1-Tube Socket Data*

CIRCUIT	Det.- Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. } F . \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	2nd Det.	$\begin{aligned} & \text { 1st } \\ & A . F . \end{aligned}$	Driver	Output
TYPE TUBES	1 CB	34	34	30	32	30	19
Filament Volts.	1.9	1.9	1.9	1.9	1.9	1.9	1.9
Plate Volts.	$\begin{aligned} & \text { P-135 } \\ & \text { G2-120 } \end{aligned}$	135	135	..	40	135	135
Screen Grid Volts..	671/2	671/2	673/2	.	35	\cdots	.

*The above values were obtained from the underside of the chassis, using teat prods and leads, with a high-resistance multi-range D. C. voltmeter. The Philco Model 048 All 'Purpose Set Tester is highly recommended for all tests of this character. Receiver volume control at maximum; station selector at 520 kilocycles. Readings taken with a plug-in adapter will not be satisfactory.

ADJUSTING MODEL 34

The compensating condensers of Model 34 have been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low frequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condenser Assembly. These have been adjusted, and sealed, at the factory.
Philco Model 048 All-Purpose Set Tester, which incorporates a signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 crystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condensers in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 1C6 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at 460 K.C. (the intermediate frequency of Model 34) and adjust each of the I.F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I.F. compensating condensers is shown in Figure 2. Each of these transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 1C6). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (Range 1) and the Station Selector at the low frequency (520 K.C.) end. Adjust the Wave Trap (2) condenser to give MINIMUM response to a 460 K .C. signal from the signal generator. The Wave Trap (2) is located at rear and underneath the chassis, and is shown in Figures 2 and 5. It is reached from the rear of the chassis.

3-ADJUSTMENT OF THE DIAL FREQUENCIES -Model 34 has four separate frequency bands or ranges, each obtained by one of the four positions of the waveband switch. There is a compensating condenser for each
range, which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are:

```
Range 1
```

\qquad

``` .520 K.C. -1500 K.C.
Range 2. . . . . . . . . . . . 1.5 M.C.-4.0 M.C.
Range 3. . . . . . . . . . . . 4.0 M.C.-11.0 M.C.
Range \(4 .\). . . . . . . . . . \(11.0 \mathrm{M} . \mathrm{C} .-23.0 \mathrm{M} . \mathrm{C}\).
```

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the Wave-Band Switch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser (15) on Section 1 of Tuning Condenser for maximum response in the output of the receiver.

Turn the Wave-Band Switch to Range 3, and the Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (16) on Section 2 of Tuning Condenser for maximum response in the output of the receiver.
Turn the Wave-Band Switch to Range 2, and adjust the Station Selector to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12) to give maximum response in the output circuit. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 5.

This concludes adjustments requiring the Model 091 (or equivalent) high frequency signal generator.

The Model 048 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the Signal Generator at 1500 K.C. Make sure the "Antenna" connection between the Signal Generator and the Chassis has been restored. Adjust compensating condenser (10) located underneath the chassis, (Figure 5). Adjustment is made from the underside of the chassis.

Tune the Wave-Band Switch to Range 1 and the Station Selector to 1400 K.C. Set the Signal Generator at 1400 K.C. Adjust compensating condenser (11), which is located underneath the chassis. (See Figure 5). This adjustment is made from the underside of chassis.

Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K.C., set the Signal Generator at 520 K.C. and adjust compensating condenser (18) (Figure 5). This compensating condenser is also mounted underneath the chassis, and reached from below.

For proper and accurate adjustment of Model 34, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

FIG. 5-Bottom View of Chassis, Showing Parts, and Position of Compensating Condensers Reached from Below Chassis

MODEL 34 PARTS


```
MODEIS 32,34,38-122
    4 5
Changes
PHILCO RADIO & TELEV. CORP.
```


Model 32

Starting with Run No. 4, the antenna and ground Fahnestock clip terminals will be replaced with insulated wire leads. This is done to better meet Underwriters' requirements.

Abstract

Starting with Run No. 5, Model 32 will use a type 77 detector-oscillator tube instead of a type 36. This change gives more stable performance of the oscillator.

This change involves using a six-hole tube socket instead of the original five-hole socket used for type 36. It also requires making the following substitutions:

Part (10), No. 6208 resistor (15,000 ohms) is replaced by 33-1114 (8000 ohms)
Part (15), No. 5863 condenser (700 Mmfd) is replaced by 7007 (1400 Mmfd)
On page 3, correct Part No. of (24) Volume Control is 30-5063, instead of 30-5055.
(List price given ($\$ 1.00$) is correct.)

Mociel 34

Correct list price of Part © 3 , 36-3157 voice-coil and cone-assembly, KR-6 speaker, to read
Starting with Run No. 3, Model 34 will be equipped with a 4 -point tone control instead of a 2 -point. The part No. of the new control is 30-4168 which replaces 30-4152.

Model 38-122

This model will use a new output transformer, Part No. 32-7286. This replaces No. 2565 formerly used.

Referring to change notice of July 1st regarding ballast tube shunt resistor on Model 38-122, the correct part number of the 20 ohm resistor used will be 33-3043 instead of 33-3160.

A new ballast tube shunt resistor will be used in production effective this date. This will be part No. 33-3160, 20 ohms, instead of part No. 7155, 30 ohms. This gives a slight (desirable) increase in filament voltage. Model 45
Starting with Run No. 5, the cathode resistor on 6A7 tube, Part No. (3) on diagram will be changed from Part No. 6977 (500 ohms) to $33-3016$ (400 ohms). This is to prevent variation in output of sets due to variation in 6A7 tubes.

Starting with Run No. 6, electrolytic condenser (0) and (Part No. 30-2028) is replaced by No. 30-2079, same capacity but higher voltage rating.

Starting with Run No. 8, electrolytic condenser (see Service Bulletin 191) will be changed from part No. $\mathbf{3 0 - 2 0 2 0}$ to $\mathbf{3 0 - 2 0 2 6}$. Same capacity (6 mfd .), higher voltage rating.

Both Codes 121 and 122 on this model will now use bypass condenser 3615-W for part ©. This change was made to simplify assembly on this model and does not affect performance.

Models 45 © 29

Effective July 1st, mica condenser (1) on wiring diagram of Model 29 was changed from Part No. 7301 to $\mathbf{3 0 - 1 0 2 8}$. No change in capacity; ohange to facilitate wiring only.

Effective July 1st, a new wave-trap will be used in this model. Part (1) on wiring diagram of Model 29 is changed from Part No. 38-5199 to 38-5995. The new wave trap uses an improved construction which facilitates production.

PHILCO RADIO \& TELEV. CORP.

Model 45

Philco Model 45 is a six tube receiver operating on alternating current and capable of receiving either standard and police broadcasts between 540 and 1720 kilocycles, or short-wave stations between 4.2 and 13 megacycles. The left hand side of the dial is calibrated in kilocycles for standard reception and the right in megacycles for short-wave stations. A two-position switch changes reception from standard to short-waves.

Model 45 uses a type 6-A-7 detector-oscillator, two type 39-44 I. F. Tubes, type 75 2d detector, type 42 output tube, and type 80 rectifier. The power consumption is 65 watts. The intermediate frequency is $460 \mathrm{~K} . \mathrm{C}$.

Power Transformer Voltages

Terminals	Volts	Ciroult	Color Leads
1-2	120	Primary	White
3-4	5.0	Fil of 80	Blue
6-7	680	Plates of 80	Yellow
8-10	6.3	Filamenta	Black
6	\ldots	Center of 5-7	Yellow-Green tr.
9	\cdots	Center of 8-10	Black-Yellow tr.

Tube Socket Voltages

CIRCUIT	$\begin{aligned} & \text { Det. } \\ & \text { Ome. } \end{aligned}$	10	$\frac{24}{i F}$	Det.	Outout	Rect.
Type Tube	div	39-44	89-44	7	42	80
Filament (F to F).	6.3	6.3	6.3	6.3	6.3	5.0
Plate (P to K)	260	255	255	175	250	335
Screen Grid (SG to K)....	$\begin{aligned} & \text { G1-35 } \\ & \mathbf{G 2} 2135 \\ & \mathbf{G 3} \& 5-85 \end{aligned}$	75	75	\cdots	260	\cdots
Cathode (K to F).........	4.2	3.8	3.8	0	0	\cdots
The above tests were made with an AC voltmeter for filament voltagee and high resistance DC voltmeter for all others. Dial at 650 KC , volume control al maximuim. Teat made with test prods applied to socket terminalis underneath ehassis. Line voltage 115.						

Adjusting Compensating Condensers

For adjustment of compensating (padding) condensers in model 45. an accurately calibrated signal generator and a special insulated padding wrench are needed. We suggest the Philco Model 024 Signal Generator or the 048 Tester which includes a similar instrument.

The chassis must be removed from cabinet in order to make all adjustments.

Adjustments are made in the following order-
ADJUSTMENT OF THE INTERMEDIATE FRE-QUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect the output meter to the primary terminals of the output transformer. Set the signal generator at 460 K . C. (the intermediate frequency of Model 45) and with the receiver and signal generator turned on, the wave band switch at left and dial at $600 \mathrm{~K} . C$. , adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The three pairs of I. F. compensating condensers are located one pair at the top of each of the three I. F. transformer shields. These are the three metal "cans" near the rear of the chassis. Each of the transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (left hand position) and the Station Selector at the low frequency (540 K.C.) end. Adjust the Wave Trap condenser to give MINIMUM response to a 460 K.C. signal from the signal generator. The Wave Trap (1) is located at rear and underneath the chassis, and is shown in Figure 4. It is reached from the rear of the chassis, by inserting the fibre wrench thru the hole near right-hand rear corner of chassis.
DETECTOR, AND OSCILLATOR "HIGH"AND "LOW" FREQUENCY ADJUSTMENTS-The "antenna" and "oscillator H. F." compensators are located on top of the tuning condenser assembly, reached from above.
Set the signal generator at 1500 K.C., tune in this signal on the set and adjust the antenna compensator (7) (nearest tuning control) to give maximum reading in the output meter.
Next adjust the oscillator H. F. condenser (11) (located on the other section of tuning condenser) to maximum reading.

Finally set the signal generator at 600 , tune in this signal and adjust the oscillator "L. F. condenser", located underneath chassis ((15) in Fig. 4) to maximum reading. This adjustment is reached thru the hole in top of chassis, between the two electrolytic condensers (left hand end of chassis when facing rear).

PHILCO RADIO \& TELEV. CORP.
Socket Layout

Fig. 1-Tube Socket Layout (underside)

↔๑@

PHILCO RADIO \& TELEV. CORP.

 MODEL 49Alignment Data Parts List
Model 49 is a superheterodyne radio receiver designed for operation on 115 volts direct current (D. C.) only. Model 49 covers two bands of frequencies-from 530 to 1720 KC and from 4.2 to 12.0 megacycles. This gives either standard or short wave reception by turning the wave-band switch on the panel. The intermediate frequency (I. F.) of the set is 260 kilocycles. The power consumption of Model 49 is 50 watts. The receiver uses the following tubes: Type 6A7 detector-oscillator; type 78, R. F.; type 78, I. F.; type 85 2nd detector-1st A. F.; type 76 driver; two (2) type 43 output tubes.

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 49, an accurately calibrated signal generator covering the broadcast range of frequencies is required and also a crystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver. Figs. 1 and 2 show the locations of the various compensating condensers.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 49 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Signal Generator to the ground post of receiver. Connect the output meter adapter leads to the plates of the output tubes (type 43) in the receiver. Set the wave-band switch at the left position (standard broadcast).
Set the wave switch of the Signal Generator at 260 K. C., and the dial of the receiver at 550 . Turn on the set (volume full on), and the Signal Generator. Now adjust the 1st I. F. Primary and Secondary condensers (Nos. (21) and (23) in Fig. 2) and the 2d I. F. primary and secondary condensers (${ }^{(28)}$ and ${ }^{(28)}$) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I. F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Sigial Generator until a lower reading is obtained.
NOW REMOVE Antenna lead of signal generator from grid cap of 6A7 tube and reconnect it to antenna post of receiver. Replace cap on 6A7 tube.
ANTENNA, DETECTOR AND OSCILLLATQR H. F. (Broadcast)-These condensers Nos. (8), (12), and (14), are located on top of the tuning condenser gang (See Fig. 2) adjustment made by means of the fibre wrench. Set the signal generator at 1500 K . C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (8) is located on the section nearest the front and (12) on the center section.

OSCILLATOR-LOW FREQUENCY-This is condenser (17) (see Fig. 1) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum.

ANT. AND OSC. H. F.-SHORTWAVE-The crystal controlled signal generator is used for these adjustments. These are condensers (4) (Ant.) and (16) (Osc. H. F.) located underneath chassis. (4) is adjusted from underneath, and (15) from above, thru hole in sub-base directly behind tuning condenser assembly. The fundamental frequency of the Philco Model 091 crystal controlled signal generator is 3600 K. C. or 3.6 megacycles. The third harmonic of this is 10.8 M. C. Turn the wave-band switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonic should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

Nos. Dlagr	on lam Description	Part No.	List Price
(9)	Condenser (.05 Mfd. Tubular).	30-4020	. 35
(10)	Detector Transformer.	32-1427	. 90
(11)	Condenser (.000015 Mica)	30-1030	. 35
(12)	Compensating Condenser (Det.)	. . Part of (5))
(13)	Resistor (160,000 ohms) (Brown-Blue-Yellow).	5331	. 25
(14)	Compensating Condenser (Osc. H. F.).	Part of (5)	
(15)	Compensating Condenser (Osc. S. W.).	31-6016	. 15
(18)	Oscillator Transformer.	32-1428	. 70
(17)	Compensating Condenser (Osc. L. F.)	04000R	. 45
(18)	Condenser (. 003 Mfd . Mica)	30-1028	. 60
(19)	Condenser (.0008 Mfd. Mica).	6021	. 35
(20)	Resistor (10,000 ohms) (Brown-Black-Orange).	. 4412	. 25
(21)	Compensating Condenser (1st I. F. Primary).....	... Part of (22)	
(22)	First I. F. Transformer	32-1381	1.50
(2)	Compensating Condenser (1st I. F. Secondary).	. . Part of (22)	
(24)	Resistor 70,000 ohms (Violet-Black-Orange).	33-1115	. 25
(25)	Condenser (. 09 Mfd. Bakelite Block).	4989N	. 35
(26)	Compensating Condenser (2d I. F. Primary).	.. Part of (27))
(27)	2d I. F. Transformer.	32-1424	1.60
(28)	Compensating Condenser (2d I. F. Secondary)	. Part of (27)	
(29)	Condenser (. 00011 Twin Bakelite Block).	8035 E	. 25
(30)	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)	6098	. 25
(31)	Condenser (05 Mfd . Tubular).	30-4020	. 35
(32)	Resistor (250,000 ohms) (Red-Yellow-Yellow).	33-1097	. 25
(3)	Resistor (10,000 ohms) (Brown-Black-Orange).	33-1000	. 25
(34)	Condenser (. 09 Mfd . Bakelite Block).	4989-P	. 35
(35)	Volume Control and On-Off Switch.	33-5024	1.45
(36)	Condenser (05 Mfd. Bakelite Block)	3615-H	. 35
(37)	Resistor (1 Meg.) (Brown-Black-Green).	33-1096	. 25
(3)	Resistor (. 5 Meg.$)$ (Yellow-White-Yellow).	. 6097	. 25
(3)	Condenser (Metal Case Block) (.2-.75-.25-.05-.09).	30-4144	1.30
(40)	Resistor (200 ohms Flexible Wire-Wound)	7217	. 20
(4)	Condenser (. 09 Mfd. Bakelite Block).	4989P	. 35
(42)	Shadowmeter.	. 45-2042	2.50
(43)	Condenser (.00011 Mfd. Mica)	30-1006	. 35
(44)	Condenser (.05 Mfd. Bakelite Block).	3615AX	. 35
(45)	Resistor (.1 Meg) (White-White-Orange).	.. 6099	. 25
(4)	Resistor (.5 Meg.) (Yellow-White-Yellow).	.. 6097	. 25
(47)	Resistor ($25,000 \mathrm{ohms}$) (Red-Green-Orange).	. 33-1013	. 25
(48)	Resistor (.1 Meg.) (Yellow-White-Yellow).	. 6099	. 25
(49)	Tone Control. .	. 30-4043	. 75
(50)	Condensers in Tone Control.	. Part of (49)	
(51)	Audio Transformer.	32-7211	5.75
(52)	Condenser (. 006 Mfd. Bakelite Block).	7625-E	. 25
(38)	Output Transformer....	2550	1.75
(54)	Yoice Coil and Cone Assembly	H-10 02625	. 80
		K-13 36-3159	. 50
(56)	Field Coil and Pot Assembly.	. . 02745	\$4.25
(58)	Resistor (10,000 ohms) (Brown-Black-Orange).	. 4412	. 25
(57)	Resistor (50,000 ohms) (Green-Brown-Orange).	. 4518	. 25
(58)	Filter Choke.	.. 32-7213	1.60
(30)	Filter Choke...	. 32-7018	1.50
(6)	B. C. Resistor (Wirewound:, 5.1-10.2-27.0-10.8 ohms) 33-3128	. 25
(61)	Pilot Lamp (Dial)...	... 4567	. 09
(62)	Pilot Lamp (Shadowmeter).....	. . . Part of (42)	...
(6)	Condenser (2.0 Mfd. Metal Case).	. 30-4140	. 80
(64)	Condenser (1.0 Mfd. Metal Case)..	. 04357	. 75
(6)	Condenser (. 15 Mfd . Twin Bakelite Block).	. . 6287-T	. 40
(6)	Condenser (.09 Mfd . Twin Bakelite Block).	.. 4989AP	. 35
(67)	Resistor (2900 ohms) (Red-White-Red)..	.. 5309	. 25
(6)	Resistor (2 Meg.) (Red-Black-Green). 33-1025	. 25
	Dial Assembly. 31-1205	. 50
	Dial Scale.....	$\text { … } 27-5046$. 25
	Knob (large).	$\cdots 27-4051$. 10
	Knob (small).....	$\ldots 27-4052$. 10
	Five Prong Socket	. 7546	. 10
	Six Prong Socket.	. 7547	. 10
	Seven Prong Socket	. 27-6005	. 11
	Chassis Mtg. Screw.	. ${ }^{\text {W }}$-1358A	2.60 C .
	Chassis Mtg. Foot (Rubber)	. 27-4116	. 05
	Chassis Mtg. Foot Plate..	. 27-7497	.35 C .
	Chassis Mtg. Washer.	. 29-2089	.35 C .
	Speaker Socket.	. 4957	. 10
	Cord \& Plug Assembly .	. L-943A	. 60

PAGE 5-28 PHILCO

PHILCO RADIO \& TELEV. CORP.

Model 59

Philco Model 59 is a four-tube superheterodyne receiver operating on alternating current, capable of receiving standard broadcasts, and police calls on the first (lowest) police range. The tubes are as follows: Type 77 detector-oscillator, type 77 second detector, type 42 output and type 80 rectifier. The intermediate frequency is 460 K.C. The power consumption of model 59 is 52 watts.

Tube Socket Data-Line 115 Volts

Circuit	Det. Osc.	2nd Det.	Output	Rectifier
Type Tube	77	77	42	80
Filament Volts-F to F.................	6.3	6.3	6.3	4.8
Plate Volts-P to K......................	235	45	235	300
Screen Grid Volts-SG to K..............	110	35	250
Control Grid Volts-CG to K............	10.5	. 25	. 25	.
Cathode Volts-K to F.	25	15	15

Power Transformer Data

Terminal	A. C. Volts	Circult	Color
$1-2$	$105-125$	Primary	White
$3-5$	6.3	Filament	Black
$6-7$	5.0	Filament of 80	Blue
$8-10$	580	Plates of 80	Yellow
4	\ldots	Center Tap of 3-5	Black-Yellow Tracer
9	\ldots	Center Tap of 8-10	Yellow-Green Tracer

*All of the above readings were taken from the underside of the chassis, using test prods and leads with a suitable A. C. voltmeter for filament voltages and a high resistance multirange D. C. voltmeter for all other readings. Volume control at maximum and station selector turned to low frequency end. Readings taken with a plag-in adapter will NOT be satisfactory. The Philco Model 048 All-Purpose Set Teater is recommended for all tests of Model 59.

Fig. 1-Tube Socket Layout (Viewed from Bottom)

Fig. 2-Top Vlew of Chassis

Adjusting Compensating Condensers

In Model 59 the I. F. primary and secondary condensers and the "regeneration" compensating condenser are located at the rear of chassis' and accessible from the rear; the "ANT" and "OSC H. F." are located on the side of the tuning condenser gang.
Referring to Fig. 3, the I. F. primary and secondary condensers (8) and (15) should be adjusted first. Use an accurate signal generator such as the Philco Model 024. Remove the grid cap clip from the detector-oscillator tube and connect the antenna lead from the signal generator to the cap of this tube. Connect the ground lead from the signal generator to the ground terminal of the set. Connect the primary terminals of the output transformer to an output meter. Set the frequency switch of the signal generator at $460 \mathrm{~K} . \mathrm{C}$. (the I. F. of model 59), and turn the switches of the set and signal generator on. Turn volume control full on. Turn the dial pointer on the set to 600 , and then adjust the I. F. compensating condensers (8) and (16) by means of a fibre wrench so that maximum reading is obtained in the output meter. If the needle goes off scale, adjust the attenuator on the signal generator so that a lower reading is obtained.
Next adjust the ANT. and OSC. H. F. (high frequency) con-
densers (4) and (9) located on the tuning condenser gang. To adjust these condensers it is necessary to remove the chassis from the cabinet, necessitating removing back plate, base screws, knobs and pointers. Replace the grid clip on the 77 tube and connect the antenna and ground leads of the signal generator direct to the antenna and ground terminals of the set. Set the signal generator switch at 1400 , turn the tuning condenser shaft until the rotary plates barely start to mesh with the stationary ones. Tune in the 1400 K.C. signal here and adjust condensers (4) and (9) for maximum output meter reading. When replacing the dial pointer, be sure it is mounted exactly as it was removed.

Finally adjust the regeneration condenser (16). With the set connected to an antenna, turn the station selector to receive a station at about 130 on the dial. With a screw driver turn the small fibre hex-head screw (which operates the regeneration condenser) located at rear of chassis below antenna and ground terminals, clockwise until the set squeals or oscillates. Then turn the hex-screw $1 / 4$ of a turn back until the squealing stops. Tune in other stations on different points on the scale to make sure that the squealing is eliminated. It will be necessary to readjust this condenser if a different type 77 tube is used for second detector.

PAGE 5-30 PHILCO
MODFM 59
Schematic
Chassis, Parts List
PHILCO RADIO \& TELEV. CORP.

Model 66

Model 66 is a five-tube superheterodyne radio receiver, capable of receiving either standard broadcasts (and police calls up to $1720 \mathrm{~K} . \mathrm{C}$.), or short-wave stations within a frequency range of 5.5 to 16.0 megacycles. The frequency range on standard broadcast is $540-1720$ kilocycles.

The tubes used are: Type 6A7 detector-oscillator, type 78 intermediate frequency, type 75 2d detector, type 42 output and type 80 rectifier. The intermediate frequency of the Model 66 is 460 K.C. and the power consumption is 60 watts.

Adjusting Compensating Condensers

The adjustment of the compensating condensers in Model 66 Receiver requires the use of an accurate signal generator such as Philco Model 024, an efficient output meter (Philco Model 012 or Model 025 are recommended), and a suitable fibre hex wrench. Connect the output meter to the plate and cathode prongs of the 42 output tube.
Adjustments are made in the following order:
(1)-I. F. (Intermediate Frequency)-Remove grid clip from cap on 6A7 tube and connect antenna lead from signal generator to cap of tube. Connect ground lead to ground post on set. Turn on set and signal generator; set wave switch of latter to 460 K . C. (the I. F. of Model 66) and dial of set at 540, wave band switch to left. Adjust each of the four I. F. compensating condensers (17), (19), (3) and (22) in turn so that maximum reading is obtained in the output meter. If the meter reading goes off scale, adjust the attenuator on the signal generator so as to get a lower reading. These I. F. condensers (visible in Fig. 4) are adjusted by inserting the
hex wrench thru the holes in rear of chassis sub-base (except one to extreme left when facing rear of set). Two of the holes are covered by small metal buttons which can be removed temporarily by hand.
(2)-WAVE TRAP-Replace grid clip on cap of 6A7 tube and connect antenna lead from signal generator to antenna post on set. Set signal generator at 460 K . C. and adjust wave trap (1) so as to get MINIMUM reading in output meter.
(3)-ANT. and OSC. H. F.-These adjustments (7) and (11) are located on top of the tuning condenser assembly at right (facing front of set) and adjusted from above. The "ANT" (7) is nearest front of set. Set signal generator at 1700 and dial of set at 1700 and adjust these two condensers to get maximum output meter reading.
(4)-OSC. L. F.-This condenser (13) is located underneath chassis (see Fig. 4) and is reached from underneath. Set dial of set and signal generator switch at 600, and adjust for maximum reading.

Replacement Parts for Model 66

No. on Figs.	on Description	Part No.	List Price
(1) W	Wave Trap.	38-5199	\$0.30
(2) W	Wave-band Switch.	42-1066	. 90
(3) R	Resistor ($10,000 \mathrm{ohms}$) (Brown-Black-Orange)	33-1000	. 25
(4) A	Antenna Transformer	32-1412	. 85
(5) C	Condenser (. 000015 Mfd).	30-1030	. 35
(6) T	Tuning Condenser Assembly.	31-1231	3.65
(3)	Compensating Condenzer (ANT).	Part of (6)	
(8) R	Resistor (200 ohms Flexible) (Red-Black-Brown)	7217	. 20
(9)	Condenser (. 05 Mfd . Tubular).	30-4020	. 35
(10) R	Resistor ($50,000 \mathrm{ohms}$) (Green-Green-Orange).	6098	. 25
(11) C	Compensating Condenser (OSC. HF).	Part of (6)	
(12) C	Condenser (. 003 Mfd Mica).	30-1028	. 60
(13)	Compensating Condenser (Osc. I. F.)	04000-S	. 35
(14) C	Condenser (. 0008 Mfd . Mica).	5878	35
(15) R	Resistor (32,000 ohms) (Orange-Red-Orange)	5279	. 25
(18) 0	Oscillator Transformer	32-1413	. 60
(17) C	Compensating Condenser (1st I. F. Pri.)	04000M	. 20
(18) 1	1st I. F. Transformer.	32-1414	1.00
(19) C	Compensating Condenser (1st I. F. Secondary)	04000M	. 20
(20) R	Resistor (400 ohms Flexible).	33-3016	. 20
	Condenser (. 05 Mfd . Tubular).	30-4020	. 35
(22)	Compensating Condenser (2d I. F. Primary)	04000M	. 20
(23) 2	2d I. F Transformer.	32-1415	\$1.00
	Compensating Condenser (2d I. F. Secondary)	04000J	. 20
	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)	6098	. 25
(28)	Condenser (. 0001 Mfd. Twin Bakelite Block).	8035-B	. 25
		30-4170	$.35$

Tube Socket Voltages-Line Voltage 115

Tube	6A7	78	75	42	80
Circuit	Det. Osc.	I. F.	2d Det.	Output	Rect.
Filament (F-F) $\ldots \ldots \ldots \ldots \ldots$	6.3	6.3	6.3	6.3	5.0
Plate (P-K) $\ldots \ldots \ldots \ldots \ldots$	260	260	160	260	340
Screen (SG-K) $\ldots \ldots \ldots \ldots$	85	85	\ldots	260	
Cathode (K-H) $\ldots \ldots \ldots \ldots$	2.1	2.2	0	0	\ldots

No. on Figs.	Description	Part Ne.	List Price
(28)	Resistor (70,000 ohms) (Violet-Black-Orange)	33-1115	. 2
(2)	Resistor (70000 ohms) (Violet-Black-Orange).	33-1115	. 25
(3)	Condenser (. 00011 Mfd. Mica).	30-1006	. 35
(3)	Condenser (. 02 Mfd . Tubular).	30-4113	. 30
(32)	Resistor (500,000 ohms) (Yellow-White-Yellow)	6097	. 25
(33)	Tone Control..	30-4192	. 50
(3)	Condensers in Tone Control.	Inside (33)	
(35)	Output Transformer.	32-7019	1.25
(36)	Voice Coil \& Cone Assembly (S-12).	36-3014	. 60
(3)	Field Coil and Pot. Assembly (S-12).	36-3341	2.75
(3)	Resistor (2 Megohms) (Red-Black-Green).	33-1025	. 25
(39)	Volume Control and On-Off Switch.	33-5006	1.45
(40)	Condenser (01 Mfd.) (Bakelite Block).	$3903-\mathrm{AB}$. 25
(1)	Resistor (1 Megohm) (Brown-Black-Green).	33-1096	. 25
(12)	Condenser (. 1 Mfd.$)$. 30-4122	. 35
(43)	Resistor (. 1 Meg.$)$ (White-White-Orange).	6099	. 25
(4)	Resistor (B C. Wire-wound) (22-235 ohmis)	33-3037	. 20
(45)	Resistor (. 1 Meg.) (White-White-Orange).	6099	\$0.25
(16)	Condenser (. 05 Mfd . Tubular).	30-4123	. 35
(47)	Resistor ($37,000 \mathrm{ohms}$) (Orange-Violet-Orange)	33-1098	. 35
(4)	Fiter Choke.	32-7018	1.50
(49)	Condenser (Electrolytio-6 Mfd.).	30-2021	1.55
(50)	Condenser (Electrolytic-8-8 Mfd.).	30-2028	2.40
(3)	Condenser (. 09 Mfd. Bakelite Block).	4989-D	. 35
(32)	Power Transformer.	8046	3.45
(3)	Condenser (. 015 Mfd . Bakelite Block).	3793-W	. 35
(54)	Condenser (. 05 Mfd . Tubular).	30-4020	. 35
(5)	Dial Light..	6608	11
	Four Prong Socket.	7544	. 10
	Six Prong Socket.	7547	. 11
	Seven Prong Socket.	27-6005	. 11
	Tube Shield.	28-1107	. 10
	Chassis Mounting Screw.	W-567	3.00 C
	Chassis Mounting Washer (Metal).	W-315	.50C
	Chassis Mounting Washer (Rubber)	5189	. 04
	Knob (Large).	27-4051	. 10
	Knob (Small).	27-4052	. 10
	Dial Assembly.	31-1234	. 30
	Dial Scale.	27-5057	. 10

[^10]PAGE 5-32 PHILCO

Model 49

A change in the Shadowmeter Circuit on this model becomes effective with Run No. 4. This is in order to reduce the current thru the shadowmeter.

Referring to Figure 3 of Service Bulletin No. 199, the lead from the primary of (30) (2nd I. F. transformer) is removed from one side of the Shadowmeter (42) and connected to the other side. Resistor (0), Part No. 5309 is omitted.

In list of tubes for Model 49 (DC), correct to read 2 type 78 instead of 3.

Starting with Run No. 3, Part (10) , 3615AX By-Pass Condenser will be replaced with 3615BB. This change facilitates wiring in the factory.

Model 66

Starting with Run No. 9 the following changes in compensating condensers will be made, which will make padding adjustments less critical.

Replace condenser (17), 04000M with an 04000J, and condenser (10) 04000M with an 04000A.
Connect a mica condenser, Part No. 30-1029 (.00005 mfd.) across (1).

Effective July 1st, a new wave trap will be used. Part © in diagram will be Part No. 38-5994 instead of 38-5199 previously used. The new wave trap uses an improved construction which facilitates mounting.

Starting July 10th, a 70-ohm wire wound resistor Part No. 33-1129 will be added. Connected in series with condenser (14) on the oscillator coil side. This will prevent oscillation at extreme high frequency end of the short wave band.

The part number of the Tone Control on Model 66 will be 30-4212 instead of $30-4192$ previously used. No change in wiring needed. The new Tone Control gives a slight desirable increase in response to high notes.

Effective August 1st, a 50 Mmfd . Mica Condenser, Part No. 30-1029 was added across the secondary of the 2nd I. F. Transformer. This makes adjustment of the 2nd I. F. Padder smoother and easier.

At the same time a 20,000 Ohm Resistor, Part No. 6650 was added, connected between the arm of the wave-band switch and the grounded junction of (8) and (0) This corrects any tendency toward oscillation on the high end of the short-wave band.

A 70-Ohm flexible wire-wound resistor is also added, Part No. 33-3027, connected in series between condenser (14) and the upper end (on diagram) of the oscillator transformer plate winding.

CURRENT MODELS-IMPROVEMENT IN COMPENSATING CONDENSER

To prevent any tendency to "Frequency Drifting" in current models, a bakelite washer and a metal washer are now being used on top of the Compensating Condenser, in place of the fibre washer previously used.

Part No. of bakelite washer is 27-4109, and of the metal washer (placed on top of bakelite) is W-1331. These two replace the old fibre washer Part No. 3500.

PAGE 5-34 PHILCO

KODEL 118

Layout Change
MODEH 118 (Code 121)
MODEL 118 (Code 123-RX)
Changes

Correct price of dial scale, Part No. 27-5046 is $\$ 0.25$

Effective with Run No. 8 on Code 121 and Run No. 2 on Code 123 (RX), the following parts on Model 118 will be changed. These changes are made to facilitate wiring. Note that resistors are not changed in value, but in current rating only. New resistors are $1 / 3$ watt rating.

No. on Bulletin 194 Old Part No. New Part No. :

(9)	$3615-\mathrm{BK}$	$3615-\mathrm{AU}$
(18)	$3615-\mathrm{D}$	$3615-\mathrm{AP}$ (twin)
(4)	4517	6097
(6)	4412	$33-1000$
(10)	5385	$33-1115$
(20)	4518	6098
(10)	5872	$33-1025$

No. on Bulletin 194 Old Part No. Now Part No.

(3)	$\mathbf{4 5 1 7}$	$\mathbf{6 0 9 7}$
(3)	$\mathbf{4 4 0 9}$	$\mathbf{3 3 - 1 0 9 6}$
(4)	$\mathbf{4 4 1 0}$	$\mathbf{3 3 - 1 0 9 7}$
(10)	$\mathbf{4 4 1 1}$	$\mathbf{6 0 9 9}$
(3)	$\mathbf{4 5 1 9}$	$\mathbf{3 0 - 1 0 3 1}$
(10)	$\mathbf{3 0 - 4 0 2 0}$	Included in (16)

In the Model 118A (25 Cycle Model) the part numbers of parts which differ from the 60 Cycle Model are
(70) Power Transformer 32-7112 $\$ 8.00$ list price
(27) Condenser 30-4093 (1.0 Mfd .) 0.60 list price

Also add a condenser, . 1 Mfd . Tubular, Part No. 30-4122 connected across field coil of Speaker.

Model 118 (Code 123-RX)

Replacement parts on Model 118-RX which differ from other 118 models are as follows:

\quad No. on Bulletin 194	Model 118	118-RX
(34) Electrolytic condenser	$30-2025$	$30-2014$
(6) Tuning condenser	$31-1173$	$31-1242$
Dial assembly	$31-1205$	$31-1241$
Dial scale	$27-5046$	$27-5058$

Model 118-RX uses a type HR-2 speaker, which is equipped with a 25^{\prime} cable-and-plug assembly, part No. 36-3327.

The A. C. cord on Model $118-\mathrm{RX}$ is a flat cable and contains an extra wire, which is for use as an antenna lead by connecting the antenna to the binding post mounted on the side of the special flat A. C. plug used. However, the antenna may be connected to the regular antenna clip terminal on the receiver chassis if desired and more convenient.

The part number of this special cable and plug assembly is 41-3104.

Model 118

Phileo Model 118 is an eight tube superheterodyne radio receiver operating on altumating current (A. C.) and designed for reception on either the standard broadcast band (including police bands up to 1720 K . C.), or a major section of the short wave band.. A two-position switch changes reception from broadcast to short-wave. The frequency ranges are 540 to 1720 K . C. and 4.2 to 12 megacycles.

Model 118 is equipped with shadow-tuning, four point tone control with fixed bass compensation, and automatic volume control. The power consumption is 110 watts and the undistorted output of the Super Class "A" Amplifier is 10 watts. The intermediate frequency (I. F.) is 260 K . C.

Model 118 is, equipped with the following tubes:

R. $\mathrm{Pr}^{\text {. }}$	Type 78
Deteetor-Oscillator	Type 6A7
I. \mathbf{F}.	Type 78
$2 \mathrm{~d}^{\prime}$ Det. Ist A. F'.	Type 75
Driver.	Type 42
Output tubes (2) (Connected as triodes)	Type 42
Rectifier.	Type 80

Replacement Parts for Model 118

	on Description:	Part No.	List Price		om: Description	Part No.	Llet Price
(1)	Wave Trap.................	38-5740	. 45	(45)	Riesistor:(50,000 ohms) (Green-Brown-Orange).	4518	80.25
(2)	Compensating Condenser (Ant.-H. E.).	04000D	\$0.15	(46)	Condenser (Electrolytic 1, 1, 1, and 2 Mfd.).	30-2078	2.45
(3)	Resister (10;000 ohms) (Brown-Black-Orange)	33-1000	. 25	(47)	Resistor (.1 Meg.) (White-White-Orange).	4411	. 25
(4)	Antenna Transformer:	32-1378	1.00	(48)	Resistor ($5 . \mathrm{Megr}$) (Yellaw-Whitex Kellow).	4517	. 25
(3)	Wave Band Switch.	42-1046	80	(49)	Condenser (.015 Mfdi Bakelite:Block).	3793F	. 35
(6)	Tuning Condenser Assembly.	31-11/73!	6.25.	(50)	Condenser (:0001 Mfd. Mica):	4519	. 35
(7)	Compensating Condenser (Ant.-Broadcast) .	Part of:(6)	-0.	(1)	Tore Control:	30-4186	. 75
(8)	Resistor (400 ohms Flexible. Wire-Wound).	33-3016;	. 20	(52)	Condensers (In Tone Control)	Part of (11)	
(9)	Condenser (, 05 M Mfd.); (Bakelite Biocik).	3615BK	. 35	(53)	Condenser (.006 Mfd. Tubular)	30-4024	. 40
(10)	Resistor (70,000 ohms) (Violet-Black-Orange)	5385	. 25	(54).	Input Transformer.	32-7114	2.00
(11)	Condenser (.05 Mfd)) (Tubular)	30-4020	. 35	(55)	Resistor (10;000:ohms) (Brown-Black-Orange).	3524	. 25
(12)	Detiector Transformer..	32-1379	. 70	(56)	Coridenser (01 Mfd. Bakelite Block).	3903P	. 25
(13)	Condenser (.000015 Mfdi) (Mica).	$30-1030$. 35	(67).	Output.Transformer.	32-7078	1.40
(14)	Compensating Condenser (Det.)..	Part of (8)	-res	(58)	Voice Coil and Cone Assembl	H-13-02625	. 80
(15)	Resistor (2 Meg.) (Red-Black-Green).	5872	. 25			K-17-36-3020	. . 60
(16)	Condenser (05 Mfd .) (Bakelite Blockj).	3615D	. 35	(69)	Field Coil and Pot-Assembly.	36-3104	2.70
(17)	Condenser (.05 Mfd) (Tubular)..	30-4020	. 35	(60)	Resistor (Wire-Wound) (6500 ohms):	33-3033	. 30
(18)	Fiesistor (300 ohms Elexible. Wire-Wound).	33-3010.	. 20	61	Resistor (Wire-Wound) (9.5, 112, 84 ohms).	33-3034	. 20
(19)	Condenser (.05 Mfd.) (Tubular):	30-4020:	. 35	(62)	Volume Control and On-Off Switch.	33-5024	1.45
(20)	Resistor (50,000 ohms) (Green-Brown-Orange)..	4518	. 25	(63)	Condenser (. 05 Mfd . Tubular).	30-4020	. 35
(21)	Compensating Condenser (Osc. H., F.. Bdcet.)...	Part of (8)	(64)	Resistor (240,000.ohms) (Red-Yellow-Yellow)	4410	. 25
(22)	Compensating Condenser (Osc. H. F: Shortwave).	31-6016.	. 30	(65)	Resistor ($10,000 \mathrm{ohms}$) (Brown-Black-Orange).	4412	. 25
(23)	Oscillator Transformer.	32-1380	. 70	(66)	Condenser (. 025 Mfd. Bakelite Block).	7653D	. 35
(24)	Condenser (. 0008 Mfd. Mica).	5878	. 35	(67)	Resistor (32,000 ohms) (Orange-Red-Orange).	33-1020	. 35
(25)	Resistor (20,000 ohms) (Red-Black-Orange).	6650.	. 25.	(6)	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange).	4518	. 25
(28)	Resistor (20,000 ohms) (Red-Black-Orange).	6650	. 25	(99)	Condenser (.015.Mfd. Twin) (Bakelite Block).	3793R	. 40
(27)	Pilot Lamp (Station Selector).	6608.	. 11	(70)	Power Transformer:	32-7111	5.75
(28)	Compensating Condenser (Oac. Eid. F.)	04000R:	. 45	(71)	Filter Choke:	32-7115	1.80
(29)	Condenser (. 003 Mifd. Mica).	7.301	. 45	(72)	Condenser (. 25 Mfd.).	6287-R	. 40
(30)	Compensating Condenser (1st L. F. Pri.).	Part of (31)	\cdots	(73)	Condenser (Elec. 8 Mfd. 10 Mfd)	30-2045	1.95
(31)	1st I. . . Transformer.	32-1381	$1: 50$	(74)	Condenser (Elec. 8 Mfdi)	30-2025	2.00
(32)	Compensating Condenser (1st I. F. Sec.)...	Part of (31)	(75)	Compensating Condenser:(2d.I. F. Secondary).	Part of (38)	
(33)	Resistor (500 ahms Flexible Wire-Wound):.......	6977.	.20.	(76)	Resistor (2900 ohms) (Red-White-Red)....	5309	. 25
(3)	Condenser (.05 Mfd.) (Bakelite Block)	3615AU	. 35.		Chassis Mtg Screw. Chiossio Mte Washer	W-1345A	2.25C.
(35)	Shadowmeter:	$6497 \text {. }$	2.50		Chissis Mtg. Washer. Chassis,Mtg Foot (Rubber)	$\begin{aligned} & 29-2089 \\ & 27-4116 \end{aligned}$. 35 C .05
(36)	Shadowmeter Pilot Lamp.......	Parti of (35)	-1...		Chassis Mtg Eoot Plate:....	$27-7497$.35C.
(37)	Compensating Condenser (2d I. F. Prit) , ...	*04000A	. 15		Knob, Assembly (Iiarge): Knob; Assembly (Sinall).	$\begin{aligned} & 27-4051 \\ & 97 \end{aligned}$.10 10
(38)	2dil. Fr. Transformer (Early Prod. 32-1258)....	32-1424:	\cdots		KnobrAssembly (Small) Dial: Aissembly.	27-4052	. 10
(39)	Condenser (.00011 M1d. Twin) (Bakelite Block).	80355 K	.25)		Diall Scale....	27-5046	. 35 C .
(40)	Resistor (1 Meg.) (White-White-Orange);..	4411	. 25		Tube Shield.... 4 Prong Socket	28-1107	. 10
(41)	Condenser (.01 Mfd. Bakelite Black)......	3903\%	25		4 Prong Socket. . 6 Prong Soaketi	$\begin{aligned} & 7544 \\ & 7547 \end{aligned}$.10 .11
(42)	Reaistor (1 Meg.) (Brown-Black-Green)i.....	4409	. 25		7' Brong:Sooket:	$\begin{aligned} & 7547 \\ & 27-6005 \end{aligned}$. 11
(4)	Resistor (5.5 Meg) (I Cllow-White-Kellaw)	4517	. 25.		Speakers Socket.	4957	. 11
	Condenser (09 Mfd. Bakelite Block):.	4989.D.	. 35		A. C. Cord.and Plug.	L-943A	. 60
	Note belom Fig. 4. Noter Pant (3) , if a	\%			production: thiss part is		

PAGE 5-36 PHILCO
MODEL 118
Schematic
Socket Layout
PHILCO RADIO \& TELEV. CORP.

PHILCO RADIO \& TELEV. CORP.

Fig. 4. Base View

PHILCO RADIO \& TELEV. CORP.

Adjusting Compensating Condensers

For adjusting compensating or padding condensers in Model 118, an aceurately calibrated signal generator covering the broadeast range of frequencies is required and also a erystal controlled signal generator for the high frequency adjustments. For the former we suggest the Philco Model 024 Signal Generator and for the latter the Model 091, Crystal Controlled high frequency signal generator. The actual adjusting calls for a special insulated hex wrench and insulated screwdriver. Philco Part No. 3164 Fibre Wrench and No. 27-1159 Screwdriver are recommended. An output meter is also required, for connection to the receiver.
I. F. ADJUSTMENT-The I. F. (intermediate frequency) of Model 118 is 260 K . C.

Remove the grid clip from the top of the 6A7 tube and connect the shielded antenna lead from the Signal Generator to the cap of this tube. Connect the ground lead of the Sigmal Generator to the ground post of receiver. Connect the output meter to the primary terminals of the output transformer of receiver. Set the waveband switch at the left position (standard broadcast).

Set the wave switch on the Signal Generator at 260 K. C., and the dial of the receiver at 550. Turn on the set (volume full on), amd the Sigmal Generator. Now adjust the 1st I.'F.. Primary and Secondary condensers (Nos. (0) and (3) in Fig. 3) and the 2 d I. F. primary and secondary condensers (8 B and (73) to give maximum reading on the output meter. The I. F. primary condenser is adjusted by turning the screw on top of the I. F. transformer and the secondary is adjusted by turning the nut. The I. F. transformers are in the smaller metal "cans". The screw and nut are reached through the hole in top. If the needle on the output meter goes off the scale, turn down the "attenuator" on the Signal Generator until a lower reading is obtained.

Note: In early production the 1st I. F. compensating condensers only are adjusted as
deseribed above. Part (20) is not used. The 2d I. F. primary © is an 04000 A condenser reached and adjusted through hole in top of chassis near the 42 driver tube.

WAVE TRAP-Remove antenna lead from grid cap of 6A7 tube and attach it to antenna post on set. Replaee cap on 6A7 tube. With Signal Generator still operating at $260 \mathrm{~K} . \mathrm{C}$., adjust wave-trap condenser (© in Figs. 3 \& 4) so as to get MINIMUM reading in output meter. This adjustment is made from underneath the chassis.

ANTENNA, DETECTOR AND OSCILLLATOR H. F. (Broadcast)-These condensers Nos. (ㄱ), (1), and (3), are located on top of the tuning condenser gang, adjustment made by means of the fibre wrench. Set the signal generator at 1500 K. C., tune in the signal at 1500 on dial and adjust these condensers in the order given, to give maximum output reading. (7) is loeated on the section nearest the front and (1) on the center section.
OSCILLATOR-LOW FREQUENCY-This is condenser (8) (see Figs. 3-and 4) located underneath chassis and accessible from underneath. Use the fibre wrench. Set signal generator switch at 600 , tune in the signal at 600 on the dial and adjust condenser to maximum.

ANT. AND OSC. H. F--SHORTWAVEThe erystal controlled signal generator is used for these adjustments. These are condensers (2) (Ant. H. F.) and © (Osc. H. F.) located underneath chassis, and adjusted from underneath. The fundamental frequeney of the Philco Model 091 crystal controlled signal generator is 3600 K. C. or 3.6 megacycles. The third harmonic of this is 10.8 M . C. Turn the waveband switch of the set to the right and the dial to just below 11 M . C. The 10.8 harmonie should be picked up here and the two condensers should be adjusted to give maximum reading on the output meter, on this signal.

Tube Socket Voltages-Line Voltage 115

Funetion	R.F.	$\begin{aligned} & \text { Det- } \\ & \text { Oce. } \end{aligned}$	I.F.	Aif.	Driver	Output		Rect.
Type	78	6A7	78	75	42	42	42	80
Filament (F-F)......	6.3	6.3	6.3	6.3	6.3	6.3	6.3	5.0
Piate (P-K).........	180	180	200	125	195	280	280	315
Sereen (SG-K).......	80	175	80	\ldots	195	290	290	\ldots
Cathode (K to F)....	2.5	2.6	3.2	0	0	0	0	...
6A7- Ga to K........	26							
6A7- G2 to K........	150							

Power "Transformer Voltages

Terminals	A.C. Volts	CIncult	Color of Leads
1-2	120	Primary	White
3-5	6.3	Filaments	Black
6-7	3 :0	Filamert of 80	Blue
8-10	760	Plates of 80	Yellow
4	\ldots	Center Tap of 3-5	Black-Yellow Tracer
9	\ldots	Center 'Tap of 8-10	Yeillow-Green Tracer

The above tests were made with an A. C. voltmeter for filament voltagee and a 'high resistance D. C. voltmeter for all athers. Dial at 550 K. C., wave band switch to left, volume control at maximum. Tests.made with test prode applied to sodikets underneath chaseis. Thilco Mifodel O48. All-purpose Teater or Model 025 Circuit Tester are recommended for these tests. Use Fig. Minnmaking 'taeta given in left hand table aibove.

Model 60

Effective August 1st, resistors (10) and (38) in wiring diagram of Model 60, Bulletin No. 164 will be changed from Part No. 4518 ($1 / 2$ watt) to Part No. 6098 ($1 / 3$ watt). These changes are made to facilitate wiring in assembly.

Starting with Run No. 7, the following changes will be made. Note that a Wave Trap is added, necessitating several changes; other changes are to improve sensitivity.

Part No.
Remove
Add
(Fig. 3) \qquad

(3) 4989-Z Condenser

() 7217 Resistor

(2)	3656 (25,000 Ohms)
(3)	4412
(1)	4518 (5,000 Ohms) $1 / 2$ Watt
(6)	4517
(1)	04000M
(2)	$\begin{array}{r} 30-4063 \text { (.05-.09-.09-.5-.2) } \\ \quad(.2 \text { section not used }) \end{array}$

38-6073 Wave Trap

33-3010
(Bias Resistor, 300 Ohms, flex.)
33-3016
(Bias Resistor, 400 Ohms)
30-4020
(Condenser . 05 Mfd . Tubular
33-1027 (39,000 Ohms)

6099 (99,000 Ohms) 1/3 Watt 6097
04000J
30-4217
(.05-.09-.09-.5)

Moulel 89

Effective with Run No. 13 compensating condenser (B) on diagram (1st I. F. primary) will be a Part No. 31-6024 instead of 04000 M previously used.

The new condenser is of an improved construction which eliminates possibility of "frequency drift" or breakdown.

Starting with Run No. 14, Model 89 will use a type 77 tube as detector-oscillator instead of the type 36 tube previously used. This change results in more stable performance of the oscillator.

In addition to requiring the use of a six-hole socket for the detector oscillator tube instead of the 5 -hble previously used, the following changes are required:

Part (10), No. 6208 resistor (15,000 ohms) is replaced by No. 33-1114 (8,000 ohms).
Part (8), No. 8174-B condenser (. 09 and .0007 Mfd.) is replaced by No. 8322-B (. 09 and .0014).
Model 144
Effective with Run No. 6, electrolytic condenser (3) (see Bulletin No. 193) will be changed from part No. 30-2020 to 30-2026، Same capacity (6 mfd.), higher working voltage.

Starting with Run No. 7, Part *20 filter choke in Model 144 will be a $32-7018$ instead of No. 5930 which has been used. This change is to adjust factory material lists and does not affect value of choke or performance of set.

The part number of the Shadowmeter to be used on the Model 144 will be 45-1106 instead of 6497 as listed on Bulletin 193. Change to identify in production.

On Fig. 3 (Schematic) fixed condenser (${ }^{(8)}$ used in the bass compensation circuit, should be marked .02 Mfd . (Part No. 30-4113). The list of parts on Page 3 of Service Bulletin 193 gives this part number and value, which is correct.

PHILCO RADIO \& TELEV. CORP.

PHILCO RADIO \& TELEV. CORP.

Adjusting Compensating Condensers

The compensating condensers of Model 144 have been adjusted accurately before shipment. If later adjustment is required, in most cases only the intermediate frequency and low frequency compensating condensers should be done. Extreme care must be given the adjustment of the high frequency circuits, and the adjustment should NOT be undertaken unless the receiver is seriously out of alignment.

DO NOT ATTEMPT TO ADJUST the compensating condensers mounted upon sections numbered 3 and 4 of the Tuning Condenser Assembly (Fig. 5). These have been adjusted, and sealed, at the factory.

Philco Model 024, an accurately calibrated signal generator covering broadcast and police band frequencies, is recommended for the adjustment of the intermediate frequency and low frequency compensating condensers.

Philco Model 091 erystal-controlled Signal Generator is recommended for the high frequency adjustments. It gives an accurate and constant 3600 kilocycle (3.6 megacycle) signal, the harmonics of which include the necessary high frequencies for adjusting the compensating condensers in the high frequency circuits.

1-ADJUSTMENT OF THE INTERMEDIATE FREQUENCY-Remove the grid clip from the type 6A7 tube and connect the "ANT" output terminal of the signal generator to the grid cap of the tube. Connect the "GND" terminal of the signal generator to the "GND" terminal of the receiver chassis.

Connect an output meter to the primary terminals of the output transformer. Set the signal generator at 460 K.C. (the intermediate frequency of Model 144) and adjust each of the I. F. compensating condensers in turn, to give maximum response in the output of the receiver. The location of the I. F. compensating condensers is shown in Figure 5. Each of the I. F. transformers has a dual compensating condenser mounted at its top, and accessible thru a hole in the top of the coil shield. In the dual compensators, the Primary circuit is adjusted by turning the screw; the Secondary circuit is adjusted by turning the hex-head nut.

2-ADJUSTMENT OF THE WAVE TRAP-Replace the grid clip upon the Detector-Oscillator tube (Type 6A7). Connect the output leads from the signal generator directly to the antenna and ground terminals of the receiver. Set the Wave-Band Switch of the receiver to the standard broadcast band (extreme left) and the Station Selector at the low frequency ($520 \mathrm{~K} . \mathrm{C}$.) end. Adjust the Wave Trap (4) condenser to give MINIMUM response to a 460 K.C. signal from the signal generator. The Wave Trap (4) is located at rear and underneath the chassis, and is shown in Figures 4 and 5. It is reached from the rear of the chassis.

3-ADJUSTMENT OF THE DIAL FREQUENCIESModel 144 has four separate frequency bands or ranges, each obtained by one of the four positions of the wave-band switch. There is a compensating condenser for each range, which must now be adjusted. In the following procedure, the frequency ranges referred to, and obtained by the different positions of the switch are:

```
Range 1. . . . . . . . . . . . . }520\mathrm{ K.C.- }1500 K.C
    Range 2................ . . M.C.- 4.0 M.C.
    Range 3. . . . . . . . . . . . 4.0 M.C.-11.0 M.C.
    Range 3. . . . . . . . . . . . . . . . . . . . M.C.- - 23.0 M.C.
```

Connect the output terminals of the Model 091 or equivalent Signal Generator, to the "ANT" and "GND" terminals of the receiver chassis. Connect an output meter to the primary terminals of the Output Transformer of the receiver. Set the

Wave-Band Switch to Range 4, and the Station Selector at 21.6 M.C. The sixth harmonic of the 3.6 M.C. crystal in the Model 091 Signal Generator is picked up at this point. Adjust the compensating condenser 13) on Section 1 of Tuning Condenser for maximum response in the output of the receiver. Turn the Wave-Band Switch to Range 3, and the' Station Selector to 10.8 M.C. Here, the third harmonic of the 3.6 M.C. crystal will be heard. Adjust the compensating condenser (14) on Section 2 of Tuning Condenser for maximum response in the output of the receiver.
Turn the Wave-Band Switch to Range 2, and adjust the Station Seleetor to 3.6 M.C. The "Antenna" connection between the Signal Generator and the receiver chassis must be removed for this adjustment, otherwise the output of the Signal Generator will be too great. Adjust the compensating condenser (12) to give maximum response in the output meter. This compensating condenser is located underneath the chassis and is not accessible from above. See Figure 4.

This concludes adjustments requiring the Model 091 (or equivalent) high frequency signal generator.
The Model 024 or its equivalent is now used again. Turn the Wave-Band Switch of the set to Range 2 and the Station Selector to 1.5 M.C. Set the Signal Generator at 1500 K.C. Make sure the "Antenna" connection between the Signal Generator and the Chassis has been restored. Adjust compensating condenser (19) located underneath the chassis, (Figure 4). Adjustmentis madefrom the underside of the chassis.
Turn the Wave-Band Switch to Range 1 and the Station Selector to 1400 K.C. Set the Signal Generator at 1400 K.C. Adjust compensating condenser (18), which is located underneath the chassis. (See Figure 4). This adjustment is made from the underside of the chassis.
Finally, with Wave-Band Switch at Range 1, and Station Selector at 520 K.C., set the Signal Generator at 520 K.C. and adjust compensating condenser (18) (Figure 4). This compensating condenser is also mounted underneath the chassis, and reached from below.
For proper and accurate adjustment of Model 144, the procedure must be followed exactly in the order given. The adjustment should not be undertaken without proper equipment as mentioned above.

Model 144

Philco Model 144 is a six-tube superheterodyne receiver operating on alternating current (A. C.) and designed for reception of any frequency from 520 K.C. to 23,000 K.C. (23 megacycles). It is equipped with shadow-tuning, four-point tone-control with fixed bass compensation; Model 144 has 5 watts output. The intermediate frequency (I. F.) is 460 K.C. Tubes used are the following Philco high-efficiency types:-

Detector-Oscillator.	Type 6A7
1st I. F..	.Type 78
2nd I. F.	Type 78
2nd Detector 1st A.	.Type 75
Output.	Type 42
Rectifier.	Type 80

The power consumption of model 144 is 70 watts.

REPLACEMDNT PARTS - MODEL 144

	on ${ }^{\text {on }}$ Description	Part No.	List Price		on ram Description	Part No.	Llist Price
(1)	Wave-Band Switch.	42-1045	\$3.60	(46)	Resistcr (4,000 olms) (Yellow-Black-Red)	7832	\$0.25
(2)	Antenna Transformer (H. F. Bands)	32-1271	. 70	(47)	Resistor (1 Meg.) (Brown-Black-Green)	4409	. 25
(3)	Tuning Condenser Assembly	31-1175		(48)	Condenser (.05 Mfd . Bakelite Block).	3615-L	. 35
(4)	Wave Trap.	38-5487	. 55	(4)	Resistor (100,000 ohms) (White-White-Orange)	4411	. 25
(5)	Condenser (.00025 Mica)	3082	. 35	(30)	Resistor BC (283 ohms. 21 ohms, Wire-Wound).	33-3069	. 25
(6)	Compensating Condenser (Ant. H.F.)	Part of (3)		(51)	Resistor (32,000 ohms) (Orange-Red-Orange)	3525	. 25
(7)	Compensating Condenser (Ant. Broadcast).	Part of (3)		(32)	$\mathrm{R} 3 \mathrm{sistor} \mathrm{(32,000} \mathrm{ohms)} \mathrm{(} \mathrm{Orange-Red-Orange)}$.	3525	. 25
(8)	Antenna Transformer (Broadcast Band)..	32-1270	. 55	(3)	Resistor (70,000 ohms) (Violet-Black-Orange).	5385	. 25
(9)	Resistor (10,000 ohms) (Brown-Black-Orange)	33-1000	. 25	(54)	Rexistor (70,000 ohms) (Violet-Black-Orange).	5385	. 25
(10)	Condenser (. 0008 Mfd. Mica).	6021	. 35	(55)	Condenser ($\mathbf{2 5} \mathbf{~ M f d .) ~ (M e t a l ~ C a s e) . ~}$	4264	. 60
(11)	Oscillator Transformer (H. F. Bands).	32-1273	. 35	(56)	Rexistor (500,000 ohms) (Yellow-Wbite-Yellow).	4517	. 25
(12)	Compensating Condenser (Range 2).	04000C	. 15	(57)	Condenser (01 Mfd. Bakelite Block).	3903AN	. 25
(13)	Compensating Condenser (Osc. Range 4)	Part of (3)		(38)	Condenser (. 00025 Mfd. Mica).	30-1032	. 35
(14)	Compensating Condenser (Ose. Range 3).	Part of (3)		(5)	Condenser (0006 Mfd. Tubular)	30-4024	. 40
(18)	Oacillator Transformer (Broadcast).	32-1272	. 70	(30)	Output Transforme	32-7178	1.60
(16)	Compensating Condenser (Onc. Broadcast).	04000A	15			$\{(\mathrm{H}-16) 026$	$25 \quad .80$
(17)	Resistor (25,000 ohms) (Red-Green-Orange).	33-1013	. 25	(1)	Voice Coil \& Cone Assembly	$(\mathrm{K}-23) 36-$	3174.40
(18)	Compensating Condenser (Broadcast Series)	04000S	. 35			$\mathrm{H}-16(36-32$	18) 3.50
(19)	Compensating Condenser (Range 2; Series).	04000R	. 45	(6)	Field Coil \& Pot Assembly	$\mathrm{K}-23(36-3:$	39) 3.75
(20)	Condenser (0007 Mfd . Mica).	4520	. 35	(®)	Tone Control	30-4168	. 75
(21)	Condenser (.003 Mfd. Mica).	7301	. 45	(64)	Condensers (Inside 63)	Part of (63)	
(22)	Condenser (. 05 Mfd . Bakelite Block).	3615-L	. 35	(3)	Resistor (1,000 ohms) (Brown-Black-Red).	5837	. 25
(2)	Resistor ($\mathbf{1 0 0 , 0 0 0}$ ohms) (White-White-Orange)	4411	. 25	(6)	Resistor (50,000 ohms) (Green-Brown-Orange)	6098	. 25
(24)	Resistor (150 ohms Flexible Wire-Wound).	33-3140	. 20	(67)	Condenser-Electrolytic (8-8-10 Mfd.)	30-2073	3.45
(25)	Condenser (. 05 mfd tubular) (Used in Code 122	30-4123	. 35	(3)	Power Transformer.	32-7234	4.75
(28)	Condenser Block (.25, .25, . $25, .05, .05, .05, .05$)	30-4167	1.15	(69)	Condenser (015 Mfd . Twin)	3793-H	. 40
(27)	Compensating Condenser (1st I. F. pri.).	Part of (28)		(70)	Filter Choke.	5930	1.75
(28)	1st I. F. Transformer.	32-1369	1.50	(11)	Condenser (6 Mfd. Electrolytic).	30-2020	1.40
(29)	Compensating Condenser (1st l. F. Sec.)	Part of (28)		(72)	Resistor (20,000 ohms) (Red-Black-Orange).	6649	. 25
(30)	Resistor (300 ohms Flexible Wire-Wound).	33-3010	. 20	(73)	Resistor ($50,000 \mathrm{ohms}$) (Green-Brown-Orange)	5888	. 35
(3)	Pilot Lamp.	6608	. 11	(74)	Resistor (39,000 ohms) (Orange-White-Orange).	33-1027	. 25
(32)	Compensating Condenser (2d I. F. Pri.)	Part of (33)	\ldots	(75)	Resistor (10,000 ohms) (Brown-Black-Orange).	33-1000	. 25
(33)	2d I. F. Transformer.	32-1306	. 90	(76)	Condenser (.02 Mfd . Tubular).	30-4113	. 30
(34)	Compensating Condenser (2d I. F. Sec.)	Part of (33)			A. C. Cord and Plug Assembly.	L-943A	. 60
(35)	Resistor ($\mathbf{0 0 0}$ ohms Flexible Wire-Wound)	33-3010	. 20		Dial Assembly.	31-1206	1.25
(36)	Resistor (2 Megs.) (Red-Black-Green).	33-1025	. 25		Dial Scale.	27-5044	. 65
(37)	Compensating Condenser (3d I. F. Pri.).	Part of (38)			Chassis Mounting Screw.	W-1358A	2.60 C
(38)	3d I. F. Transformer.	32-1307	. 80		Chassis Mounting Foot (Rubber)	27-4116	. 05
(39)	Compensating Condenser (3d I. F. Sec.)	Part of (38)			Chassis Mounting Foot (Plate).	- $\begin{aligned} & 27-7497 \\ & 28.1107\end{aligned}$	
(40)	Condenser (. 0001 Mfd. Twin-Bakelite Block)	8035-L	. 25		4 Tube Shield....		.10
(4)	Pilot Lamp for Shadowmeter.	Part of (13)			6 Prong Tube Socket		. 11
(12)	Condenser (. 05 Mfd. Bakelite Block)	3615AB	. 35		7 Prong Tube Soc		${ }^{11}$
(13)	Shadowmeter.........	6497	2.50		Speaker Socket Knob (Large)	${ }_{27}{ }^{4957}$. 10
(44)	Volume Control \& On-Off Switeh.	33-5068	1.45		Knob (Small).	27-4052	10
(45)	Condenser (. 01 Mfd. Bakelite Block)	3903J	. 25		Knob (Station Selector).	27-4127	. 10

Above values were obtained by means of an A. C. voltmeter for filament voltages
and a high resistance D. C. voltmeter for all others. All values obtained from
underside of chassis with test prods. Positions of controls were: Volume Control-
maximum; Wave-Band Switch-extreme left (counter-clockwise); Dial at 520 K.C.
Phileo Model 048 All-Purpose Tester is recommended for making the above
tests. Use the illustration below (Fig. 1) as a guide to determine the points to be
voltage-tested.

Tube Socket Voltages-Line Voltage 115

Fig. 1-Tube Sockets (underside)

CIRCUIT	Det.Osc.	$\begin{aligned} & \text { 1st } \\ & \text { I. F. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { I. F. } \end{aligned}$	A. F.	Output	Rectifier
TUBE	6A7	78	78	75	42	80
Filament Volts (F-F)........	6.3	6.3	6.3	6.3	6.3	5.0
Plate Volts (P-K)...........	250	230	230	185	300	350
Sereen Grid Volts (SG-K)....	60	75	75	\ldots	310	\ldots
Cathode Volts (K-Gnd)......	1.4	2	2	0	0	\ldots
6A7-G2 to K..............	160	\ldots	\ldots	\ldots	\ldots	\ldots
6A7-G1 to K..............	20	..	\cdots	\ldots	\ldots	\ldots

Fig. 2-Chassis—Top View

TYPE 42
OUTPUT
(65)(38)(66)(76) (75) (40)
(12) (20) (19) (63) (15) (53)
(57) (48)

Fig. 4-(Base View) $\begin{gathered}\text { TYPE } 78 \\ \text { IST., I.F. }\end{gathered}$

Wiring Diagram - Philco Model 200-X

PHILCO RADIO \& TELEV. CORP.

ADJUSTING COMPENSATING

CONDENSERS IN MODEL 200-X

The quality performance of this receiver depends to a great extent upon providing a wide channel through the R. F. and I. F. stages to permit the passage of a broadcast signal without cutting of the side bands.

In ovider to produce this wide tuning band, the set must be carefully and accurately adjusted, These adjustments will be more critical than in the conventional radio, and the padding procedure will be considerably more complicated.

In making the adjustments, it is necessary to use an unmodulated signal generntor. The PHILCO Model 048 Set Tester or the Model 024 Signal Generator can be readily adapted for this purpose by the installation of a single-pole double-throw switch, and an additional grid leak resistor, as shown or an ummodulated signal.

Figurk 9
Figure 10
With an unmodulated signal, it is not possible to obtain an indication of output by means of the usual form of output meter. An indirect indication can be obtained, however, through the automatic volume control system by connecting a high resistance voltmeter having a scale reading of 0-5 or 0-10 volts across the R. F. cathode resistor, shown in the wiring diagram Fig. 8. This connection can be made conveniently through the use of leads equipped with test clips. With this arrangement, maximum output at the second detector will be indicated by a minimum reading of the meter, and vice versa. In other words, the action will be just the opposite of an output meter used to measure audio frequency voltage at the power output stage. With no signal applied to the receiver, the bias voltage indicated by the voltmeter, will be approximately s volts. This voltage will be reduced by the application of a signal to the R. F. or I. F. input circuits:

I. F. ADJUSTMENTS

After preparing the unmodulated signal generator and connecting the voltmeter an directed, proceed as follows:

1. Set the receiver tuning dial at its extreme low frequency position. Remove the grid clip from the cap of the 6-A-7 detector oscillator tube, and connect the signal generator antenna lead in its place. Connect the ground lead from the signal generator to the ground terminal of the chassis. Adjust the signal generator frequency to exactly 1.75 K . C. Turn the fidelity control of the receiver all the way to the left.
2. Adjust the 6 I. F. padding condensers (0), (3), (2), (3), (1) and (2) (see Fig. 10) in the tops of the 3 I. F. cans, for maximum output (minimum meter reading), starting with the padder at the front of (minimum meter reading), starting with the padser at the front of the set. During these adjustments, the output of the signal generator should be regalated to maintain a voltmeter reading of approximately 8 volts.
3. Connect a 250 Mmf . Condenser from the plate of the 2 nd I. F. tube to ground. This will increase the voltmeter reading to approximately 2.5 volts.
4. Readjust the 3d I. F. secondary padder (1) for maximum output. 5. Readjust the 8d I. F. primary padder (38) for maximum output. Do not touch the grid padder (1) again.
5. Tarn the fidelity selectivity control all the way to the right.
6. Adjast the 1st \& 2nd I. F. tertiary padders and for MINIMUM output (maximum voltmeter reading).
7. Leaving the fidelity selectivity control in the right hand position, it will be found, upon varying the frequency of the signal generator that two definite dips will appear in the voltmeter reading-one at $167 \mathrm{~K} . \mathrm{C}$. and another at 182 K . C. These dips in the voltmeter reading indicate peaks in the tuning carve. The amplitude of these peaks should be equal; that is, the same voltmeter reading should be obtained at both 167 K . C. and 182 K . C. Any variations in these two readings can be corrected by a slight readjustment of the
 the one at 182 K . C., the primary padder will have to be turned out. If the reverse is true, the capacity of this padder must be increased. In any case, the voltmeter readings must be made equal by dividing the differences through readjustment.

R. F. ADJUSTMENTS.

The R. F. portion of the receiver is adjusted as follows:
9. Replace the grid clip on the detector-oscillator tube and connect the antenna terminal of the signal generator to the antenna terminal of the chassis. Turn the fidelity selectivity control all the way to output indication is employed as in the I. F. adjustments.
10. Adjust the signal, generator for a frequency of $1,500 \mathrm{~K} . \mathrm{C}$, Adjust the "oscillator" padding condenser (10) and the "detector" padding condenser (1) for maximum output and in the order mentioned. Regulate the signal generator output control to maintain a voltmeter reading of 2 volts as before.
11. Turn in padder (© (R. F.) antil the voltmeter reads 2.5 volts and then adjust padder (8) (ANT.) for maximum output.
12. Readjust padder (o) for maximum output. Do not touch padder (2) again.
13. Set the receiver dial and the signal generator at $600 \mathrm{~K} . \mathrm{C}$. Adjust the "oscillator low frequency" padder -(0) for maximum output. As the R. F. tuning is rather broad, there will be a considerable range on the dial that will give about the same output when the oscillator L. F. padder is adjusted for maximum. The padder must be adjusted at the middle of this range. This point may be determined with accuracy in the following manner: Starting with the usual voltmeter reading of 2 volts, slowly turn the receiver dial usual voltmeter reading of 2 volts, slowly turn the receiver dial
toward the low frequency end and, at the same time, readjust the toward the low frequency end and, at the same-time, readjust the padder (30 for maximum output until a point is reached where the
maximum output is indicated by a voltmeter reading of 2.5 volts. maximum output is indicated by a voltmeter reading of 2.5 volts.
Note carefully the exact dial reading at this point. Follow the same Note carefully the exact dial reading at this point. Follow the same procedure while turning the dial in the opposite direction until the output reading decreases to the same value. Set the dial at the exact center of these two points and readjust padder , for maximam
output.
14. Adjust the 3d I. F. tertiary padder (6) to give minimum width in the shadow tuning meter in the receiver. This padder is reached from rear of chassis.

ADJUSTMENT OF 10 K . C. FILTER

The 10 K . C. filter in the audio eircuit will rarely require readjustment. As the proper adjustment of this padder (©) on diagram) requires an accurately calibrated audio oscillator, it should be reset only in the event that it hes been tampered with or in cases where it has become necessary to replace one of the elements of this filter. An emergency adjustment of this filter can be made in the following manner:
15. Connect the signal generator to the control grid of the type 6-A-7 tube, leaving the grid clip in place.
16. Disconnect the voltmeter from resistor (7) and connect an output meter to the plates of the power output tubes in the usual way.
17. Set the receiver dial at 550 K . C. At this point, the oscillator in the receiver will be tuned to 725 K . C. The adjustment of the signal generator (switch in unmodulated position) to approximately this same frequency will cause an audible beat note to be heard in the speaker. By means of the signal generator tuning control, reduce the frequency of this beat note until zero beat is reached, at which point the output meter rreading will decrease to 0 . Turning the receiver dial in either direction will gradually increase the frequency of the audible note so that at 540 or 560 K. C. a $10,000 \mathrm{~K}$. C. note will be heard. At either of these points, the padder © should be adjusted for minimum reading of the output meter.

MODEL 700 RECEIVER

The latest Philco development in single-unit automobile radio is the new Model 700. This Receiver is compact, easier to install than ever before and will give exceptional performance.
It is a six-tube super-heterodyne with a genuine full-size Philco electro-dynamic speaker-the same type that is used in many of the larger home radio Receivers. It has remarkable sensitivity, a three-section tuning condenser, giving improved selectivity-wonderful tone, with a three-point tone control, and inherently quiet circuits. Interference filters in the " A " lead and in the pilot light lead greatly simplify motor interference suppression. In most installations standard suppression is sufficient.

Added to this, the ease of installation characteristic of this model (only one unit to install-one lead to the antenna, one lead to the ammeter) and the convenient, attractive airplane type steering column control, which makes this model universal in its application, are additional features of the Model 700 which appeal to both the dealer and the public.

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 700.

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1329 for the first I. F. stage and 32-1237 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

2nd I. F. Trans former 32-1237

Fig. 1

MODEL 700 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver. Remove the grid cap terminal from the 77 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K. C. Connect the generator lead to the grid cap of
the 77 tube. (See Fig. 2.) The output meter must be connected.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (22) and (24) are adjusted first (Figs. 2 and 3). Turn the adjusting screw (22) all the way in. A metal screwdriver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut ${ }^{24}$ with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (27) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the condensers (11) and (1).
After padding the first I. F. stage, remove the generator lead from the 77 tube and reconnect the grid lead to the 77 tube. Set the generator to 1600 K . C. and then connect the generator lead to the antenna lead.
There are four holes in line, one in each of the sections

Fig. 4
of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (14) until the maximum reading is obtained in the output meter. This is the true setting for $1600 \mathrm{~K} . \mathrm{C} ., 160$ on the dial scale.
Next turn the condenser plates in mesh to 140 on the scale, 1400 K . C., and set the signal generator for 1400 K. C. The R. F. padder (9) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.
Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

MODEL 700 PARTS LIST

(1) Antenna Transformer...... 32-1331		
(3) 1st Padder (in tun. cond)......... (4) Resistor (70,000 ohms)33-1115		
(5) Condenser (.03 mfd) 30-4025		
(6) Condenser (.05 mfd .) 30-4020		
	Resistor (700 ohms)	
(8) R. F. Transformer 32-1332		
(9) 2nd Padder (in tun. cond.) (11) Resistor (10,000 ohms)33-1000		
(11) Condenser (. 0007 mfd .) . . . 5863		
(12) Padder (Pri. 1st I. F. Tran.). (13) Oscillator Transformer.32-1333		
(14) 3rd Padder (in tun. cond.)...		
(15) 1st I. F. Transformer...... .32-1329		
	Padder (Sec. 1st	
(17) Condenser (.03 mfd.$)$. 30-4025		
(18) Resistor (1500 ohms) 33-3047		
(19) Condenser (. 05 mfd .) 30-4020		
(20) Resistor (1,000,000 ohms). . 33-1096		
(21) Condenser (05 mfd) 30-4020		
(22) Padder (Pri. 2nd I. F. Tran.)		
	2nd I. F. Transforme	
(24) Padder (Sec. 2nd I. F. Tran.)		
(25) Condenser		
(25) Condenser		
(26) Resistor (25,000 ohms) 33-1013		
(27) Vol. Con. \& Switch Assm... .38-5534		
(28) Condenser (. 006 mfd .) 30-4125		
(29) Resistor (2,000,000 ohms) . . 33-1025		
(30) Resistor (5000 ohms) 6096		
(31) Condenser (. 25 mfd .) 30-4146		
(32) Resistor (32,00		
(33) Condenser .00		
(34)		
(35) Resistor (100,000 ohm		
(36) Resistor (500,000 ohms)		
(37) Condenser (. 006 mfd .)30-412		
(38) Condenser (. 10 mfd .)30-2072		
(39) Resistor (500 ohmas) 33-3031		
(40) Condenser (. 006 mfd .) . $:$. . . 30-4024		
(41) Output Transformer. 32-7214		
(42) Cone \& Voice Coil. 36-3157		
(43) Field Coil Assembly 36-3046		
(44) Pilot Lamp.34-2031		
(45) Resistor (7 ohms) 33-3035		

	"A" Choke. .	32-1268
(47)	Condenser (5 mfd .)	30-4147
(48)	Vibrator Choke	32-1235
(49)	Condenser (5 mfd .)	.30-4015
(50)	Vibrator	38-5036
	Condenser (. 05 mfd .)	.30-4039
(52)	Resistor (200 ohms)	7217
	Resistor (200 ohms)	7217
(54)	Condenser (.00125 mfd .	5886
(5)	Power Transformer..	32-7216
(56)	Condenser (. 01 mfd .)	30-4051
(57)	Condenser ($4-8 \mathrm{mfd}$.)	30-2072
(58)	"B" Choke.	32-7215
	R. F. Choke.	32-1281
(60)	Resistor (32,000 ohms)	3525
(11)	Resistor (25,000 ohms)	33-1013
(62)	Tone Control.	30-4180
(63)	Condenser (. 00005 mfd)	.30-1029
(64)	Condenser (.00005 mfd .	.30-1029
(65)	"A" Choke.	.32-1374
(6)	Condenser (1 mfd).	.30-4122
	Spark Plug Resistor.	33-1015
	Distributor Resistor.	33-1113E
	Interference Condenser	.30-4007
	Nuts (mounting).	W55A
	Battery Cable.	38-5296
	Acorn Nut.	W821
	Fuse.	7227
	Fuse Insulator	.27-7131
	Studs.	28-6036
	Bracket.	6035
	Strap.	04344
	Strap Pad.	6206
	Knob.	.27-4058
	Glass.	27-7325
	Gasket (for glass)	27-7509
	Pointer.	28-1957
	Face Assembly .	42-5189
	Control Housing Cover	29-7064
	Control Unit Assembly	42-5184
	Shaft.	.28-8206
	Antenna Lead.	38-5771
	4-Prong Socket.	27-6006
	5-Prong Socket.	.27-6014
	6-Prong Socket.	6417C

PHILCO PAGE 5-49

PAGE 5-50 PHILOOO

I. F. TRANSFORMER AND PADDERS

The new style I. F. transformer complete with padders is used in the Model 800 (Code 122).

The padders are placed in the top of the shield can one above the other.

The primary padder is adjusted by means of the screw slot, accessible through the hole in the top of the shield can. The secondary padder is adjusted by means of the small hex nut, also accessible through the hole in the top of the shield. (See Figs. 1 and 2.)

The coil windings terminate in leads instead of terminals or lugs. The color scheme of the leads is given in Fig. 1.

If replacements are ever necessary, replace the entire coil assembly 32-1471 for the first I. F. stage and 32-1449 for the second I. F. stage. Neither the coil nor the padders will be furnished separately. Order only by the above numbers.

Fig. 1

MODEL 800 ADJUSTMENTS

All adjustments have been carefully checked at the factory. If, however, it is found necessary to readjust the padding condensers, this procedure must be followed carefully. Do not attempt to make any adjustments until the procedure is clearly understood or without the use of a good oscillator or signal generator and output meter. The Philco Set Tester 048 is highly recommended for this procedure and for all service work.

The Receiver must be connected to a six-volt storage battery and turned on for operation. It is assumed that tubes have been checked and that the Receiver is in good condition except for the padding adjustments.

Remove the speaker lid from the Receiver and disconnect the antenna lead from the Receiver. Remove the grid cap from the 6A7 tube (for location see Fig. 2).

Set up the signal generator and adjust it to exactly 260 K . C. Connect the generator lead to the grid cap of the 6A7 tube, grounding the shield. (See Fig. 2.) The output meter must be connected by means of an adapter to the small prong of the speaker plug and to the chassis.

The Receiver volume control must be turned on to approximately full volume and the attenuator in the generator set for a half-scale reading of the output meter.

The padders (25) and (27) are adjusted first (Figs. 2 and 3). Turn the adjusting screw ${ }^{(26)}$ all the way in. A metal screw driver can be used for this. Then, with generator attenuator set so there is approximately half-scale reading, adjust the nut (27) with a fibre wrench for the maximum reading on the output meter.

Then adjust the screw (22) for maximum reading on the meter. This adjustment is critical. Note the maximum reading obtainable and then turn the screw in again and readjust, just bringing the adjustment up to the maximum reading. Do not pass it and then back off.

Repeat the above procedure with the first I. F. condensers, (16) and (10.

After padding the first I. F. stage, remove the generator lead from the 6A7 tube and reconnect the grid lead to the 6A7 tube. Connect the antenna lead to the Receiver. Set the generator to 1500 K . C. and then connect the generator lead to the antenna lead.

There are four holes in line, one in each of the sections of the tuning condenser housing. (See Fig. 2.) Place a nail of the size that fits snugly through the holes and then turn the condenser plates out of mesh until they strike against the nail.
With the tuning condenser in this position adjust the high-frequency padder (10) until the maximum reading is obtained in the output meter. This is the true setting for $1500 \mathrm{~K} . \mathrm{C} ., 150$ on the dial scale.

Next turn the condenser plates in mesh to 140 on the scale, $1400 \mathrm{~K} . \mathrm{C}$. and set the signal generator for 1400 K. C. The R. F. padder (9) and the antenna padder (3) are next adjusted for the maximum reading on the output meter.

Turn the condenser plates in mesh to 60 on the scale, $600 \mathrm{~K} . \mathrm{C}$., and readjust the signal generator to this frequency. Adjust the low-frequency padder (11) for the maximum meter reading.

Recheck the adjustments and then remove all test leads. If this procedure has been carefully followed and an accurately calibrated oscillator or signal generator used, the Receiver is adjusted properly.

REMOVAL OF CHASSIS FROM CABINET

To remove the chassis from the cabinet proceed as follows: Be certain that the line cord is not plugged in the power outlet socket. Dismount the Noise Suppression Control from the side of the cabinet. Remove the "slip-on" knobs and felt washers from the controls located at the front of the receiver.
Unfasten the four 10/32 mounting screws which support the chassis in the cabinet. They are located underneath the cabinet, one at each corner.
Remove the speaker plug from its socket at the rear of the chassis.

AD.JUSTMENT OF ALIGNMENT CAPACITORS

At the factory the receiver is carefully adjusted and aligned, and precautions are taken to maintain the accuracy of the adjustment. However, should the receiver ever require realignment the following procedure should be observed. In Fig. 2 the location and description of the various alignment capacitators are clearly illustrated. An External modulated oscillator with a frequency range sufficient to cover the requirements of the receiver should be used for obtaining best results.
Before connecting the chassis to the power line, reconnect the loudspeaker cable in its socket at the rear of the chassis. When aligning the Intermediate Amplifier the external oscillator must be set at 115 kilocycles which is the I.F. frequency of the receiver. The Frequency Range Selector Switch should be in the position marked B.C. when aligning the I.F. amplifier and the Broadcast range. For the various short wave ranges its position should correspond with aligning frequency selected from the external oscillator. Connect the antenna lead from the external oscillator to the control grid of the No. 58 tube in the I.F. amplifier stage. The alignment capacitators for the I.F. are located at top of the shielded I.F. transformers. When adjusting these units it is advisable to insulate the metal blade of the screwdriver so that short circuiting the B plus to the chassis will be avoided. Slowly rotate the adjusting screws of each of the capacitors until maximum output is noted in the loudspeaker output circuit. Use an output meter if one is available as a visual indication is likely to be more accurate than the audible method. With the completion of this operation, remove the external oscillator leads from the No. 58 I.F. amplifier tube and connect them in the same manner to the control grid of the No. 57 1st Detector tube. In a similar manner rotate each adjustor screw for maximum audio response in the speaker circuit.
CAUTION: Do not readjust the I.F. stage employing the No. 58 tube, when the external oscillator leads are connected to the No. 57 lst Detector control grid.
After the I.F. Amplifier has been completely realigned remove the external oscillator leads from control grid of the No. 57 tube and connect them to the Antenna and the Ground leads of the receiver. The BLACK wire at the rear of the chassis is the antenna connection; the YELLOW lead is for the ground. Set the frequency of the external oscillator at 1400 kilocycles.

Rotate the "FREQUENCY SELECTOR DIAL" to a position where the "shadow line indicator" of the dial light is in a position coincident with the 1400 kilocycle calibration of the dial scale. Adjust the oscillator trimmer of the broadcast range (See Fig. 2) until resonance is indicated by maximum audio response in the speaker output circuit. Proceed next to the lst Detector alignment capacitor which is located on the top of the gang condenser section of that circuit. The same procedure is followed in aligning the R.F. amplifier and the Preselector stages, the alignment capacitors of which are located also on top of their respective sections of the gang condenser. The correct positions are clearly illustrated in Fig. 2.

ALIGNMENT OF THE SHORT WAVE RANGES

Each of the Short Wave ranges has a separate aligning capacitor in its heterodyne circuit. The alignment frequencies for the various short wave ranges are:

Range No. 3.-. $\quad 3700$ kilocycles
Range No. 2,860 kilocycles
Range No. 1. 1
The antenna and ground leads of the external oscillator should be connected to the black and yellow wires respectively of the receiver. Adjust the external oscillator to the required frequency for the short wave range being aligned. Rotate the "frequency selector dial" until the signal is noted in the audio output. Turn the tuning condenser slowly from the left to right in the vicinity of the signal, at the same time adjusting the alignment capacitor until the maximum sig. nal response is noted in the loudspeaker output circuit. The signal voltage of the external oscillator should always be held constant while making alignment adjustments. The same alignment procedure should be followed on all of the short wave ranges.

REMOVAL OF FREQUENCY RANGE SELECTOR SWITCH ASSEMBLY

When removing this assembly great care must be exercised by the operator to avoid scratching or marking the coils. Remove the bottom plate and the side plate from the chassis. It is advisable to first unsolder the leads connecting the assembly to the main chassis. Remove the four $8 / 32$ nuts which support the assembly in the chassis. The switch assembly is then ready for removal.

In replacing the switch assembly the same precautions must be observed to avoid damage to the coils. Refasten the assembly firmly in the mounting provided for it. Resolder all connections well. Use only ROSIN CORE SOLDER. DO NOT USE SOLDERING PASTE OR ACID FLUXES OF ANY TYPE. Replace the bottom plate and the side plate. It is advisable to realign the receiver after the replacement of the assembly is completed.

PAGE 5-4 PILOT
MODET, 8,84,7,81
(Dragon A-TW. Super) PILOT RADIO CO. (New Co.)
Socket Layout
Voltage, Trimers

POWER SUPPLY
The operating voltage of the receiver is indicated on the label at the rear of the chassis. In the PILOT "DRAGON" receiver a special type of "universal" power transformer is used. Its design permits the receiver to be used on line voltages of 115, 125, 150, 220, or 240 volts ALTERNATING CURRENT from forty-five to sixty cycles. At the factory the transformer is connected for operation on voltages existing in the location where the receiver is to be used. If doubt exists regarding the voltage of the electric power in your locality consult the power company for advice. When certain that the receiver is connected for the proper operating voltage then plug in the line cord to the nearest outlet.

All plate voltages measured to cathode. Screen voltages measured to cathode.
All cathode voltages measured to chassis frame. Measurement at the $5 Z 3$ tube made from filament to center tap of power transformer high voltage center tap. Speaker Field Voltage 100 V .

PILOT RADIO CO. (New Co.)

PAGE 5-6 PILOT

MODEL 53

Schematic Socket Layout

PILOT RADIO CO. (New Co.)

ALIGNMENT OF INTERMEDIATE-FRERUENCY AMPLIFIER:

The I-F. peak frequency is 115 kc . Remove the chassis from the cabinet. To do this remove the slip-on knobs from the controls at the front of the receiver. Next remove the four screws which hold the chassis to the base of the cabinet. Set the signal generator at 115 kc . Connect the ground lead of the signal generator to the chassis of the receiver. Place the fixed condenser in series with the antenna lead fromi the signal generator (approzimately $.002 \mathrm{mf} \cdot$) and connect the antenna lead to the control grid of the GA7 tube. Adjust the intermediate-frequency capacitors of the I-F. unit No.l and No. 2 for maximum sensitivity. It is advisable to make these adjustments at least twice. Use a low input from the signal generator when aligning the receiver in order that greater accuracy may be obtained.

BROADCAST BAND ALIGNMENT:

Connect the antenna and ground leads of the signal generator to the antenna and ground leads of the chassis. Use a durmy antenna in place of the .002 mf • condenser, if one be available. Set the frequency range switch of the receiver in the broadcast position. Set the signal generator at 1400 kc . Rotate the tuning condenser of the receiver until the compess dial pointer coincides with the 1400 kc . calibration mark on the dial scale. Adjust the oscillator trimmer on the gang condenser until resonance is indicated in the loudspeaker circuit. Next adjust the heterodyne stage and preselector stage for maximum sensitivity. Next set the signal generator at a frequnecy of 1630 kc . Adjust the image suppression circuit condenser for minimum signal response, as noted in the loudspeaker circuit. When adjusting the inage suppression condenser, a strong R-F. signal should be applied to the receiver. Again set the signal generator to 1400 kc . and adjust the oscillator, heterodyne stage and preselector trimer condensers for maximum sensitivity. Next, set the signal generator at 600 kc . and rotate the tuning condenser on the chassis until resonance is noted in the loudspeaker output circuit. Adjust the 600 kc . alignment capacitor (padder) at the same time, slowly rocking the gang condenser to the right or left for maximum sensitivity. Again, set the signal generator at 1400 kc . Rotate the tuning condenser on the chassis until the compass dial pointer coincides with the 1400 kc . calibration mark on the dial scale. Readjust the oscillator, the heterodyne stage and the preselector circuit trimmer on the gang condenser. for maximum sensitivity. Check the sensitivity of the receiver at 1000 kc . and 600 kc .

SHORT-WAVE BAND NO. 2 ALIGNMENT:
Set the frequency range switch of the receiver on position Band No. 2 . Set the signal generator at 6100 kc . (49 meters.) Adjust the Band No. 2 alignment capacitor for maximum sensitivity. Set the signal generator at 2400 kc . Check the sensitivity of the receiver at this point also.

SHORT-MAVE BAND NO. 1 ALIGNMENT:
Set the signal generator at $17,800 \mathrm{kc}$. (16.85 meters). Rotate the tuning condenser until the signal is noted in the loudspeaker circuit. The compass dial pointer should then be approximately on the 17.8 megacycle mark on the dial scale. Adjust the Band No.l trinmer for maximum sensitivity. Set the signal generator at 7500 kc . and check the sensitivity of the set at this point.

When maling all adjustments, it is advisable to have the volume control and tone control turned on full in a clockwise direction.

HIGH BAND SECTION ALIGNMBNT:

Rotate the frequency range switch to the position marked "High Band". Set the signal generator at 300 kc . Rotate the tuning condenser until the 300 kc . signal is noted in the loudspeaker circuit. The signal should be observed when the dial pointer is on the 1000 meter calibration. Adjust the First Detector and the Preselector circuit alignment capacitors for maximum sensitivity. There is no oscillator capacitor adjustment at 1000 meters.

Set the signal generator at 155 kc . Rotate the tuning condenser until the signal is noted in the loudspeaker circuit at 1930 meters on the dial. Adjust the "High Band" padder condenser for maximum sensitivity. Realign the set at 1000 meters and check the sensitivity at 1500 meters (200 kc .).

PAGE 5-8 PILOT
MODEL 55
Schematic
PILOT RADIO CO. (New Co.)
Socket Layout

PILOT RADIO CO. (New Co.)

PAGE 5-10 PILOT
MODEL 93
Schematic
PILOT RADIO CO. (New Co.)

RCA PAGE 5-1

Figure B-Wiring Diagram

Voltage
Parts List

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating-
105-120 Volts, 25-133 Cycles A. C. or D. C.
Power Consumption \qquad 40 Watts
Frequency Range 540 K. C. -1712 K. C.
Type and Number of Radiotrons \qquad 1 RCA-36, 1 RCA-37, 1 RCA-38, 1 RCA-39-Total 4

This receiver is an A. C.-D. C. table model tuned R. F. broadcast receiver. Features such as universal operation of both A. C. and D. C., wide tuning range, excellent performance and compact construction characterize this instrument. Figures A and B show the schematic and wiring diagrams respectively. The voltage readings and replacement parts are given below.

RADIOTRON SOCKET VOLTAGES
Measured at Maximum Volume-115 Volt A. C. Line All Voltages on D. C. will be slightly lower

Radiotron No.	Cathode or Filament to Control Grid, Volts	Cathode or Filament to Screon Grid, Volts	Cathode or Filament to Plate, Volts	Plate Current M. A.	Filament or Heater Volts
1. RCA-39 R. F.	3.0	105	105	7.0	6.0
2. RCA-36 Det.	*0.75	11.0	*60	. 025	6.0
3. RCA-38 Output	11.0	100	95	5	6.0
4. RCA-37 Rect.	-	-	115	15	6.0

* Impossible to measure on ordinary voltmeter

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

${ }_{\substack{\text { Stock } \\ \text { No. }}}$	description	$\underset{\text { Price }}{\substack{\text { Lige }}}$	Stock No.	DESCRIPTION	$\xrightarrow{\text { List }}$
	RECEIVER ASSEMBLIES		4071	Capacitor-0.006 mfd. (C6).	\$0.42
3076	Resistor-1 megohm-Carbon type (R6)Package of 5 .	\$1.00	4073	$\begin{aligned} & \text { Resistor- } 350,000 \text { ohms_Carbon type-1/2 } \\ & \text { watt-(R8)-Package of } 5 \ldots \ldots \ldots \ldots \ldots . . \end{aligned}$	1.00
3537	Reactor-Filter reactor (L7)	1.10	6188	Resistor- 2 megohm-Carbon type- $1 / 2$ watt	
3542	Volume control-Complete with mounting nut (R2, S1)	1.18	6451	(R5)-Package of 5 Condenser- 2 -gang variable tuning con-	1.00
3559	Resistor-31,000 ohms-Carbon type-1/2 watt (R4)-Package of 5 .	1.00	6819	denser (C2, C3, C9, C10).................. Resistor-Filament resistor-Power cord315 ohms (R1)	2.04 1.00
3560	Resistor - 1,600 ohms - Carbon type - $1 / 2$ watt (R7)-Package of $5 \ldots \ldots . . .$.	1.00	6844	315 ohms (R1). Capacitor-Filter capacitor-Two 5.0 mfd. capacitors (C11, C12)	1.00 1.10
3567	Escutcheon - Station selector escutcheonPackage of 2.	. 42	6845	Capacitor-Filter capacitor-Two 4.0 mfd . (C4, C5)	1.18
3568	Escutcheon - Volume control escutcheonPackage of 2 .	. 42	7484	Socket-Radiotron socket-5-contact.	. 35
3569	Knob-Station selector or volume control knob-Package of 5 .	. 65	10820	Capacitor-100 mmfd. (Cl3).......... LOUDSPEAKER ASSEMBLIES	. 40
3713	Capacitor- 0.05 mfd ($\mathrm{C} 7, \mathrm{C} 8$) .	. 32		MAGNETIC TYPE	
3714	Coil-Detector coil (L4, L5, L6).	. 98	7594	Cone-Speaker cone-Package of 5.	5.00
3715	Coil-R. F. coil complete (L1, L2, L3)	1.08	7595 7596	Support-Cone support.	60
4007	Capacitor-2,400 mmfd. (C1, C14).	. 35	7596	Mechanism-Speaker mechanism complete with magnet (L8)..................................	3.00
4070	Capacitor - 0.004 mfd . (Cl5).	. 42	9426	Loudspeaker complete	4.38

Figure 1-Schematic Circuit Diagram

Figure 2-Wiring Diagram

PAGE 5-4 RCA
MODEL R-28-BW
Voltage
Parts List

RCA.VICTOR CO., INC. SERVICE DATA

Voltage Rating	5-125 Volts
Frequency Rating	50-60 Cycles
Power Consumptio	70 Watts
Number and Types 1 RCA-2A5, 1	$\text { .. } 1 \text { UX-280, }$
Undistorted Outp	75 Watts
Frequency Range.	o 1500 K. C.

This receiver is a five-tube Super-Heterodyne incorporating a Dynamic Loudspeaker as a part of the chassis; twopoint tone control; single heater type Pentode Output and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

The circuit consists of an R. F. stage, a combined oscillator and first detector in the RCA-2A7 tube, an intermediate stage consisting of a transformer only using two tuned circuits, a second detector, an output tube and a rectifier.

Service work in conjunction with this receiver will be similar to that of other Super-Heterodyne receivers of the small compact type construction. The line-up adjustments are made in conjunction with an external oscillator and an output meter. The line-up capacitors on the gang capacitor are adjusted for maximum output when the oscillator is coupled to the antenna and the set and oscillator are both set at 1400 K . C. The I. F. frequency is 175 K . C. and the two circuits that comprise it are adjusted for maximum output at 175 K. C.

RADIOTRON SOCKET VOLTAGES
 115 Volt A. C. Line
 MAXIMUM VOLUME CONTROL SETTING-NO SIGNAL

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
1. RCA-58 R. F. Amplifier	3.0	95	250	5.0	2.33
2. RCA-2A7 First Detector Oscillator	3.0	95	250	3.0	2.33
3. RCA-57 Second Detector	6.0	89	170	0.3	2.33
4. RCA-2A5 Power Amplifier	18.0	235	220	32.0	2.33
5. RCA-80 Rectifier	725 Volts PLATE TO PLATE-60 M. A. TOTAL.				4.82

TOTAL CATHODE CURRENT-11 M. A.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION .	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		3605	Capacitor-770 mmfd.	\$0.30
2747	Contact cap-Package of 5	\$0.50	3606	Capacitor-Comprising one 0.005 mfd . and one .025 mfd . capacitors.	. 40
2749	Capacitor-2,400 mmfd. .	1.50	6143		
3050	Resistor-14,000 ohms-Carbon type- 3 watts. Capacitor- 0.05 mfd .	.60 .44		of 5 .	2.00
3456 3459	Capacitor- 0.05 mfd . Capacitor- $\mathbf{8 0} \mathbf{~ m m f d . ~}$. 44	6228		2.50
3472	Capacitor- 0.0024 mfd .	. 32	6303	Resistor-20,000 ohms-Carbon type- $5 / 2$ watt-Package	
3514	Resistor- 250,000 ohms-Carbon type- $1 / 2$ watt-Package of 5 .	1.00	6306		2.50 2.50
3555	Capacitor-0.1 mfd.	. 36			2.50
3572	Socket-Radiotron 7 contact socket.	. 38	6443	Capacitor-10 mfd.	1.50
3573	Socket-Radiotron 4 contact socket.	. 32	6464	Transformer-I. F. transformer	1.88
3574	Coil-Choke coil. .	. 68	6470	Coil-Antenna coil.	1.08
3584	Ring-R. F. or oscillator coil retaining ring-Package of 5.	. 40	6471	Coil-Oscillator coil assembly	. 74
3586	Scale-Dial scale .	. 50	6472	Coil-R. F. coil assembly	. 94
3587	Socket-Dial lamp socket and bracket.	. 32	7485	Socket-Radiotron 6 contact socket	. 70
3588	Volume control-Complete with mounting nut	1.40	7487	Shield-Radiotron tube shield................ 50
3589	Switch-Tone control switch..	. 54	7589	Capacitor-Filter capacitor-Two 4.0 mfd . in container.	1.64
3592	Knob-Station selector, operating switch or volume control knob-Package of 5 .	. 80	7592 8985	Condenser-3 gang variable tuning condenser............ Transformer-Power transformer-105-125 volte-50-60	3.35
3593	Screw-Chassis mounting screw-Package of 10.....	. 30		cycles...	4.26
3594		1.00	8986 9002	Transformer - Power transformer - 200-250 volss - 60 cycles	4.38
3596	Capacitor-60 mmfd. .	1.00 .36	9002	Transformer-Power transformer-105-125 volts-25-50 cycles	6.00
3597	Capacitor- 0.25 mfd .	. 40			
3598	Capacitor-0.1 mfd.	. 36			
3601	Coil-Choke coil.	. 68		REPRODUCER ASSEMBLIES	
3602	Resistor- 60,000 ohms-Carbon type- $1 / 4$ watt-Package of 5 .	1.00	6467 8987	Transformer-Output transformer. . . . Cone-Reproducer cone-Package of 5.	$\begin{aligned} & 1.44 \\ & 5.00 \end{aligned}$
3603 3604	Resistor- 500 ohms-Carbon type-1 watt-Package of 5 . Capacitor- $\mathbf{4 0 0}$ mmfd.	1.10 .30	9004	Coil assembly-Comprising field coil, magnet and cone support	2.35

RCA PAGE 5-5

Figure 1-Schematic Circuit Diagram—Note—Sign lamps are connected across R. F. heater

Figure 2-Wiring Diagram—Note—Speaker is not mounted on chassis and sign lamps are connected to R. F. heater

PAGE 5-6 RCA

MODEL R-28-BWC

Voltage
Parts List

RCA-VICTOR CO., INC.

SERVICE DATA

Voltage Rating. 115 Volts
Frequency Rating
.25-40 Cycles and 50-60 Cycles
Power Consumption

Number and Typès of Radiotrons. \qquad 70 Watts

1 RCA-2A5, 1 RCA-58, 1 RCA-57, 1 RCA-2A7-Total,
Undistorted Output \qquad 1.75 Watts

Frequency Range. .540 K. C. to 1500 K. C.
This receiver is a five-tube Super-Heterodyne incorporating a Dynamic Loudspeaker, two-point tone control, single heater type Pentode Output and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

The circuit consists of an R. F. stage, a combined oscillator and first detector in the RCA-2A7 tube, an intermediate stage consisting of a transformer only using two tuned circuits, a second detector, an output tube and a rectifier.

Service work in conjunction with this receiver will be similar to that of other Super-Heterodyne receivers of the small compact type construction. The line-up adjustments are made in conjunction with an external oscillator and an output meter. The line-up capacitors on the gang capacitor are adjusted for maximum output when the oscillator is coupled to the antenna and the set and oscillator are both set at 1400 K . C. The I. F. frequency is 175 K . C. and the two circuits that comprise it are adjusted for maximum output at 175 K. C.

RADIOTRON SOCKET VOLTAGES
 115 Volt A. C. Line
 MAXIMUM VOLUME CONTROL SETTING-NO SIGNAL

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
1. RCA-58 R. F. Amplifier	3.0	95	250	5.0	2.33
2. RCA-2A7 First Detector Oscillator	3.0	95	250	3.0	2.33
3. RCA-57 Second Detector	6.0	89	170	0.3	2.33
4. RCA-2A5 Power Amplifier	18.0	235	220	32.0	2.33
5. RCA-80 Rectifier	725 Volts Plate to Plate- 60 M . A. TOTAL				4.82
TOTAL CATHODE CURRENT-11 M. A.					

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	DESCRIPTION	List Price	Stock No.	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		3739	Knob-Station selector or volume control knob-Package of 5	\$0.80
2269	Capacitor-720 mmfd.	\$0.75	3740	Knob-Operating switch knob-Package of 5 75
2747	Contact cap-Package of 5	. 50	3741 3742	Escutcheon-Station selector escutcheon......................	. 30
3050	Resistor-14,000 ohms-Carbon type-3 watts.	. 25	37	Screen-Ivony colored screen-Located behind front panel covering aperture "wings"- Package of 2	
3076	Resistor-l megohm-Carbon type-1/2 watt-Package of 5 .	1.00	6228		. 54
3456 3459	Capacitor-0.05 mfd. .	. 44	6228		1.00
3472 3514	Capacitor-0.0024 mfd. .	. 32	6303	Resistor-20,000 ohms-Carbon type- $1 / 2$ watt-Package	
3514	Resistor-250,000 ohms-Carbon type- $1 / 2$ watt-Package of 5 .	1.00	6306	Resistor-14,000 ohms-Carbon type-1 watt-Package	1.00
3555	Capacitor 0.1 mfd. 36			1.10
3572 3573	Socket-Radiotron 7 contact socket	. 38	6464 6470	$\underset{\text { Cransformer-i. }}{\text { Cil }}$ (rapsformer	1.88
3573 3574	Socket-Radiotron 4 contact socket Coil-Choke coil. 32	6471	Coil-Oscillator coil assembly	.74
3575	Socket-Dial lamp socket and bracket	. 34	6472	Coil-R. F. coil assembly .	. 94
3584	Ring-R. F. or oscillator coil retaining ring-Package of 5 .	. 40	6473	Scale-Dial scale 50
3588	Volume control-Complete with mounting nut	1440	7485	Socket-Radiotron 6 contact sock	. 40
3589	Switch-Tone control switch... io	. 54	7589	Capacitor-Filter capacitor- Two 4.0 mid. in container 2.64
3593 3594	Screw-Chassis mounting screw-Package of $10 \ldots$. 30	7590	Capacitor-10 mfd.. .	1.40
3594	Resistor-50,000 ohms-Carbon type-1/2 watt-Package of 5 .	1.00	7592	Condenser-3 gang variable tuning condenser.	3.35
3596	Capacitor 60 mmfd.	. 36	8986	Transformer - Power transformer - 200-250 volts - 60	
3597 3598	Capacitor-0.25 mfd.	. 40	9002		4.38
3598 3602	Resistor- $\mathbf{6 0 , 0 0 0} \mathrm{ohms}$-Carbon type-1/4 watt-Package of 5	.36 1.00	9025		6.00
3603	Resistor-500 ohms-Carbon type-i watt-Package of 5 .	1.10		cycles .	4.26
3604	Capacitor-400 mmfd.	. 30			
3605		. 30		REPRODUCER ASSEMBLIES	
3606.	Capacitor-Comprising one 0.005 mfd . and one .025 mfd . capacitors.	. 40	6467	Transformer-Output transformer	1.44
3623	Shield-Antenna or R. F. Coil Shield........................	. 30	8987 9004	Cone-Reproducer cone-Package of 5	5.00
3624	Socket-Lamp socket and bracket-Located behind aperture wings.	. 40	9004	. Coil assembly-Comprising field coil, magnet and cone support.	2.35

Figure 3-Schematic Circuit.

Figure 4-Chassis Wiring Diagram

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating . 105-125 Volts
Power Consumption. 100 Watts
Type and Number of Radiotrons...... 3 RCA-58, 1 RCA-56, 1 RCA-55, 2 RCA-247, 1 UX-280-Total, 8
Type of Circuit . Super-Heterodyne with A. V. C., tone control and push-pull Pentode Output Undistorted Output. . \qquad
\qquad
R. F. and Oscillator Alignment Frequency

600 K. C. and 1400 K. C.
Intermediate Frequency
.
This receiver is an eight tube Super-Heterodyne incorporating Automatic volume control, tone control and Push-Pull Pentode Output. Service Data will be found to be similar to that of other Super-Heterodyne receivers incorporating similar features.

Figure 5-I. F. Alignment Location

Line-up Adjustments

1. F. Tuning Adjustments-Two transformers comprising four tuned circtrits are used in the intermediate amplifier. These are tuned to 175 K . C. and the adjustraent screws are accessible from the rear of the chassis. See Figure 5 for location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver such as Stock No. 7065 and an output meter.
(b) Remove the oscillator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the 1st detector control grid and chassis groand. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K . C., a non-metallic screw driver such as Stock No. 7065 and an output meter.

Figure 6-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K. C. and connect the output meter across the cone coil. Adjust the oscillator output so that a slight deflection is obtained when the receiver volume control is at maximum.
(c) Adjust the three line-up capacitors accessible at the bottom of the receiver until maximam deflection is obtained in the output meter.
(d) Shift the oscillator frequency to 600 K . C. and tune the signal. Then adjust the $\mathbf{6 0 0} \mathrm{K}$. C. capacitor, accessible through the top, until maximum deflection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at $1400 \mathrm{~K} . \mathrm{C}$. This completes the adjustments.
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES

120 Volts, 60 Cycles A. C. Line-V. C. At Maximum and no Signal

Radiotron No.	Control Grid to Filament or Cathode Volts	Screen Grid to Filament or Cathode Volts	Plate to Filament or Cathode Volts	Plate Current M. A.	Heater or Filament Volts
1. R. F. RCA-58	4.5	100	165	6.0	2.37
2. 1st Det. RCA-58	11.0	95	155	1.5	2.37
3. Oscillator RCA-56	-	-	70	4.5	2.37
4. I. F. RCA-58	4.5	100	165	6.0	2.37
5. 2nd Det. RCA-55 and A.V.C.		-	55	4.7	2.37
6. Power RCA-247	19.0	235	225	20.0	2.37
7. Power RCA-247	19.0	235	225	20.0	2.37

OTHER IMPORTANT VOLTAGES

[^11]
REPLACEMENT PARTS

(Replacement parts may be purchased from authorized Distributors or Dealers Only)

Stock No.	DES	List Price	$\begin{aligned} & \text { Stock } \\ & \text { Nock } \end{aligned}$	DESCRIPTION	${ }_{\text {Lint }}^{\text {Lint }}$
	RECEIVER ASSEMBLIES		0	Tone control-Complete with mounting nut.	\$1.34
2746	Socket-Dial lamp so	\$0.50	7054	Cord-Power cord	1.00
2747	Cap-Contact cap-Package of 5	. 50	7062	Capacitor-Adjustable trimming capacitor	
2749	Capacitor - $2,400 \mathrm{mmfd}$. capacitor	1.50		-Capacity 15 to 70 mmfd...............	1.00
3003	Cushion-Sponge rubber chassis support cushions-Package of 4.	. 50	7065	Screw driver-Micarta screw driver for I. F., R. F. and oscillator condensers.	1.10
3048	Resistor-500,000 ohms-Carbon type-1/2 watt-Package of 5	2.50	7439 7440	Dram-Dial drum with 3 dial mounting nuts. Scale-Dial and dial scale.	. 50
3076	Resistor-1 megohm-Carbon type-1/2 watt -Package of 5 .	2.50	7481	Coil-Detector and oscillator coil complete with mounting bracket.	3.50
3077	Resistor- $\mathbf{3 0 , 0 0 0}$ ohms- $1 / 2$ watt-Carbon type-Package of 5.	2.50	7484 7485	Socket-UY type Radiotron socket. Socket-- 6 contact Radiotron socket	.65 .70
3252	Resistor-100,000 ohms-1/2 watt-Carbon type-Package of 5 .	2.75	7510	Shield - Radiotron tube shield - Maroon finish	. 50
3369	Resistor-4,500 ohms-Porcelain type-20 watts. .	1.00	7511	Shield-Radiotron tube shield top-Maroon finish	50
343	Knob-Noise suppressor knob	. 60	7549	Transformer-Interstage audio transforn	2.48
3449	Coil-Choke coil mounted on resistor board.	1.12	7550	Capacitor pack-Comprising two 10.0 mfd .,	
3450	Capacitor- $\mathbf{0 . 2} \mathrm{mfd}$. mounted on resistor board.	. 46		ne 8.0 mfd. , one 0.3 mfd. , two 1.0 mfd ., ne 0.5 mfd ., and three 0.1 mfd . capacitors	
3451	Bracket-Dial lamp bracket and indicatorPackage of 2	. 38	7551	in metal container-For 60 cycle operation. Transformer-Power transformer-105-125	7.40
3455	Capacitor- $\mathbf{0 . 0 1} \mathbf{~ m f d .}$. 44		volts-50-60 cycles.	6.4
3456	Capacitor- 0.05 mfd .	. 44	7552	Capacitor-3 gang variable tuning capacitor complete with mounting screws and	
3457	Resistor - Porcelain type - 3,665 ohms - Tapped at 365 ohms. 78		complete whe........................	4.52
3458		1.00	756	Transformer-Power transformer-105-125 volts- $25-50$ cycles.	8.5
3459	Capacitor-80 mmfd. capacito	. 44	75	Capacitor pack-Comprising two 10.0 mfd., two 8.0 mfd ., one 0.3 mfd ., one 4.0 mfd .,	
3460	Capacitor-1,200 mmfd. ca	. 54		one 0.5 mfd . and three 0.1 mfd . capacitors	
3468	Resistor-300 ohms-Flexible type-Pk. of 5.	. 60		in metal container-For 25 cycle operation.	7.24
6142	Resistor- 6,000 ohms- $1 / 2$ watt-Carbon type-Package of 5.	2.00	$\begin{aligned} & 7565 \\ & 7566 \end{aligned}$	Shield-Radiotron tube shield top-Red. Shield-Radiotron tube shield-Red. 36
6192	Spring-3 gang tuning capacitor drive cord tension spring-Package of 10 .	. 50			
6279	Resistor-15,000 ohms- $1 / 2$ watt-Carbon type-Package of 5.	2.50		REPRODUCER ASSEMBLIES	
6282	Resistor- 60,000 ohms-Carbon type- $1 / 2$ watt-Package of 5 .	2.50	323	Screw assembly-Comprising 4 screws, 8 nuts, 4 washers, and 4 eyelets-Package of 1 set.	. 50
6288	Knob--Station selector, tone control or volume control knob-Package of 5	1.50	6184	Board-Terminal board complete with 3	.50 1.90
6298	Cord-3 gang variable tuning capacitor drive cord-Package of 5 .	1.00	6371	terminals-Package of 5 Transformer-Output transformer. 50
6300	Socket-4 contact Radiotron soc	. 55	8920	Ring-Cone retaining ring.	
6301 6303		2.00	8935	Cone-Reproducer cone complete with voice	12.50
6303	$\text { type Package of } 5 \text {. }$	2.50		coil-Package of 5. Coil assembly-Comprising field coil, magnet	4.32
6308	Coil-R. F. coil complete with mounting bracket	1.90	9421	Coil assembly-Comprising field coil, magnet and cone support.	
6323	Shaft-Tuning condenser drive shaft with one flat washer and 2 " C " washers-Package of 2	. 85			
6367	Transformer-First intermediate frequency transformer	2.14			
6368	Transformer - Second intermediate fre-		7523	Escutcheon-Station selecto	
6369	Voluency transformer....................	2.14	X181	Cabinet-Complete less equipment	
	nut.	1.16	X182	Baffle board and grille cloth	

PAGE 5-10 RCA
MODEL R-75 (47s Output)
MODEL R-75 (2A5s Output) RCA-VICTOR CO., INC.
Parts Lists
NODES R-75

(Replacement parts may be purchesed from authorized Distributors or Dealers Only)

$\begin{aligned} & \text { E } \\ & \text { 䓒 } \end{aligned}$	
$3{ }^{3}$	
䉂	

RCA PAGE 5-11

Figure 4-Chassis Wiring Diagram

PAGE 5-12 RCA
MODEL R-75 (47s Output)

Alignment Data Voltage

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating. 105-125 Volts
Power Consumption. 100 Watts
Type and Number of Radiotrons...... 3 RCA-58, 1 RCA-56, 1 RCA-55, 2 RCA-247, 1 UX-280-Total, 8
Type of Circuit. Super-Heterodyne with A. V. C., tone control and push-pull Pentode Output Undistorted Output............... 3 Watts
R. F. and Oscillator Alignment Frequency

600 K. C. and 1400 K. C.
Intermediate Frequency \qquad
This receiver is an eight tube Super-Heterodyne incorporating Automatic volume control, tone control and Push-Pull Pentode Output. Service Data will be found to be similar to that of other Super-Heterodyne receivers incorporating similar features.

Figure 5-I. F. Alignment Location

Line-up Adjustments

I. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to $175 \mathrm{~K} . \mathrm{C}$. and the adjustment screws are accessible from the rear of the chassis. See Figure 5 for location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver such as Stock No. 7065 and an output meter.
(b) Remove the oscillator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the 1st detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K . C., a non-metallic screw driver such as Stock No. 7065 and an output meter.

Figure 6-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K. C. and connect the output meter across the cone coil. Adjust the oscillator output so that a slight deflection is obtained when the receiver volume control is at maximum.
(c) Adjust the three line-up capacitors accessible at the bottom of the receiver until maximum deflection is obtained in the output meter.
(d) Shift the oscillator frequency to 600 K . C. and tune the sigual. Then adjust the 600 K. C. capacitor, accessible through the top, until maximum deflection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at 1400 K. C. This completes the adjustments.
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES
120 Volts, 60 Cycles A. C. Line-V. C. At Maximum and No Signal

Radiotron No.	Control Grid to Filament or C.athode Volts	Screen Grid to Filament or Cathode Volts	Plate to Filament or Cathode Volts	Plate Current M. A.	Heater or Filament Volts
1. R. F. RCA-58	4.5	100	165	6.0	2.37
2. 1st Det. RCA-58	11.0	95	155	1.5	2.37
3. Oscillator RCA-56	-	-	70	4.5	2.37
4. I. F. RCA-58	4.5	100	165	6.0	2.37
5. 2nd Det. RCA-55 and A.V.C.	-	-	55	4.7	2.37
6. Power RCA-247	19.0	235	225	20.0	2.37
7. Power RCA-247	19.0	235	225	20.0	2.37

OTHER IMPORTANT VOLTAGES

PAGE 5-14 RCA
MODEL R-75 (2A5s Output) Alignment Data
Voltage

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications

Voltage Rating. 105-125 Volts
Power Consumption. 100 Watts
Type and Number of Radiotrons. 3 RCA-58, 1 RCA-56, 1 RCA-55, 2 RCA-2A5, 1 UX-280-Total, 8
Type of Circuit. .Super-Heterodyne with A.V.C., tone control and push-pull Universal Output Tubes Undistorted Output. \qquad R. F. and Oscillator Alignment Frequency

600 K. C., and 1400 K. C.
Intermediate Frequency
. 175 K. C.
This receiver is an eight tube Super-Heterodyne incorpor ating Automatic volume control, tone control and Universal Output tubes operated as a push-pull pentode stage, Service Data will be found to be similar to that of other SuperHeterodyne receivers incorporating similar features.

Figure C-I. F. Alignment Location

Line-up Adjustments

I. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to 175 K . C., and the adjustment screws are accessible from the rear of the chassis. See Figure C for location of the adjustment screws and proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screwdriver such as Stock, No. 7065 and an output meter.
(b) Remove the oscillator tube and connect a ground to the chassis.
(c) Connect the oscillator output between the 1st detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the secondary and then the primary of the second and then the first I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time as there is a slight interlocking of adjustments. This completes the I. F. Adjustments.
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible through the bottom cover and the 600 K . C. oscillator trimmer through the top of the chassis adjacent to the R. F. coil. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 K. C. and 600 K. C., a non-metallic screwdriver such as Stock No. 7065 and an output meter.

Figure D-Loudspeaker Wiring
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Check the dial at the extreme maximum position of the tuning capacitor. The indicator should be at the short line on the dial. Then set the dial at 1400 K . C., the oscillator at 1400 K. C. and connect the output meter across the cone coil. Adjust the oscillator output so thet a slight deflection is obtained when the receiver volume control is at maximum.
(c) Adjust the three line-up capacitors, accessible at the bottom of the receiver until maximum deflection is obtained in the output meter.
(d) Shift the oscillator frequency to 600 K . C. and tune the signal. Then adjust the $600 \mathrm{~K} . \mathrm{C}$. capacitor, accessible through the top, until maximum deflection is obtained. The main tuning capacitor must be rocked back and forth while making this adjustment.
(e) Then realign at 1400 K . C. This completes the adjustments.
When making buth the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.

RADIOTRON SOCKET VOLTAGES

120 Volts, 60 Cycles A. C. Line-V. C. at Maximum and No Signal

Radiotron No.	Control Grid to Cathode, Volts	Screen Grid to Filament or Cathode, Volts	Plate to Filament or Cathode, Volts	Plate Current, M. A.	Heater or Filament, Volts
1. R. F. RCA - 58	4.0	100	240	6.0	2.4
2. 1at Det. RCA. 58	10.0	90	230	2.0	2.4
3. Osc. RCA-56	-	-	75	4.5	2.4
4. I. F. RCA - 58	4.0	100	240	6.0	2.4
5. 2nd Det. RCA-55 and A.V.C.	5.8	-	100	4.0	2.4
6. PWR. RCA-2A5	19.0	230	220	20.0	2.4
7. PWR. RCA-2A5	19.0	230	220	20.0	2.4
Rectifier-370 Volts R.M.S. Each Plate					

RCA PAGE 5-15

Figure B—Wiring Diagram

PAGE 5-16 KCA
MODEU 91-B
Capacitor Adjustment

RCA-VICTOR CO., INC.

Voltage

Parts List

SERVICE DATA

"A" Battery Required Six-Volt Storage Battery
"B" Battery Required. Three 45-Volt Blocks
"A" Current. \qquad $\left\{\begin{array}{l}\text { (Maximum Volume) } 18 \text { M. A } \\ \text { (Minimum Volume) } 9 \text { M. A. }\end{array}\right.$
Type and Number of Radiotrons
1 RCA-78, 1 RCA-77, 1 RCA-38, Total 3
Undistorted Output. 0.2 Watts
Tuning Range. 540-1712 K. C.
Type of Loudspeaker. Magnetic
This battery type tuned \mathbf{R}. F. receiver incorporates excellent performance in conjunction with minimum cost and up-keep requirements. Service work consists principally of replacements and line-up adjustments. The proper method of aligning the receiver follows.

R. F. Line-up Capacitor Adjustments

Two adjustable capacitors are provided for adjusting the R. F. circuits to maximum electrical alignment. In order
to properly adjust the capacitors, a Stock No. 9050 Teat Oscillator and 7065 adjustment screwdriver are required. Also an output meter should be connected across or in place of the loudspeaker winding. Proceed as follows:
(A) Place the oscillator in operation at 1400 K. C. and connect its output to the antenna and ground of the receiver. Connect the output meter and place the receiver in operation.
(B) Tune in the signal from the oscillator and adjust the volume control and oscillator output until a deflec. tion is obtained in the output meter. Adjust each trimmer until maximum output is obtained. The proper adjustment is when a minimum value of trimmer capacity is used. Readjusting the dial may be necessary to arrive at such a condition. Then slightly reduce the setting of the detector trimmer by turning it clockwise. This compensates for a slight increase in the capacity of this circuit that occurs when the chassis is returned to its case. A little experimenting will disclose the proper amount of this reduction.

RADIOTRON SOCKET VOLTAGES

Maximum Volume Control Setting

Radiotrom Ne.	Cathodo to Control Grid, Volts	Cathode to Screen Grid, Volts	$\begin{gathered} \text { Cathode to Plate, } \\ \text { Volts } \end{gathered}$	Plate Current, M. A.	Filament or Hoater, Volts
1. RCA. 78 R. F.	2.5	95	132.5	7.0	6.0
2. RGA-77 Dotoetar	2.5*	27*	50*	0.135	6.0
3. RCA-38 Oatput	12.0	123	115	7.5	6.0

* Cannot be measured with ordinary voltmeter.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	List
	RECEIVER ASSEMBLIES		6114	Resistor-20,000 ohme-Carbon type-1 watt (R2)Package of 5 .	\$1.10
3546	Capacitor-150 mmfd. (C1)		6186	Resistor-500,000 ohms-Cirbon type-1/4 watt (R6)-	
3560	Reaistor- 1,600 ohms-Carbon type- $1 / 2$ watt (R8)Package of 5 .	1.00	6242	Package of 5. Resistor-2 megohms-Carbon type-1/4 watt (R5)-	1.00
3602	Resistor- 60,000 ohms-Carbon type- $1 / 4$ watt (R7)Package of 5 .	1.00	6516	Package of 5 Connector-	1.00 .16
3640	Capacitor 0.05 mfd . (C4)	. 25	6820	Coil-Antenna coil (L1, L2, L3)	. 86
3701	Capacitor-0.01 mfd. (C5, C11).	. 30	6821	Coil-Detector coil (L4, L5, L6) .	. 96
3748 3848	Fuse-0.5 ampere (F1)-Package of 5	.40 .30	6822	Condenser-2-gang variable tuning condenser (C2, C3,	
3848 3860	Capacitor- 300 mmfd. (C9) . . . Socket-5-contact Radiotron sock	. 30	6822	Condenser-2-gang variable tuning condenser (C2, C3,	2.34
3877	Capacitor-0.1 mfd. (C10).... .	. 32	6829	Volume control (R1)	1.05
3998	Resistor-15,000 ohms-Carbon type--1/4 watt (R4)-		6830	Cable-Battery cable	1.12
	Package of 5..............................	1.0	6831	Capacitor-Two 5.0 mfd ($\mathbf{C 8}, \mathrm{Cl2}$)	. 94
4070	Capacitor $\mathbf{0 . 0 0 4} \mathrm{mfd}$ ((C14)	. 42	6832	Capacitor-4.0 mfd. (C13).	85
4073	Resistor- $\mathbf{3 5 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt (R3)Package of 5.	1.00	7485	Sucket-6-contact Radiotron socket	. 40
4076	Escutcheon-Volume control escutcheon-Package of 2	. 26			
4077	Escutcheon-Station selector escutcheon-Package of 2	. 26		REPRODUCER ASSEMBLIES	
4078	Knob-Station selector knob-Pack	. 76	7712	Support-Cone support.	. 50
4079	Foot-Rubber foot-Package of 4.	. 22	7713	Mechanism-Speaker mechanism complete (L7)	3.72
4096 4097	Knob--Volume control knob-Package of 5.		9470	Reproducer-Complete. .	4.62
4097	(S1, S2)	. 94	9471	Cone-Speaker cone-Package of 5	3.50

PAGE 5-18 RCA
MODEL R-92 Recorder
Chassis Wiring

rCA Victor Model R-92 STORE RECORDER
 SERVICE DATA

Except for the replacement of defective Radiotrons, very little service work will be required in conjunction with this instrument. Figure 1 shows the schematic circuit diagram, Figure 2 the wiring diagram, and Figure 3 the various socket voltages. Figure 4 shows the assembly wiring diagram.

Service Data, on Magnetic Pickup

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequencyresponse characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure 6), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

PAGE 5－20 RCA

LODEL R－92 Recorder
Pickup Adjustments
Parts List

									罥						
					\％	\％		\％	̈ㅜㅇ			命	8		
	芽											Ni！̣	¢		
¢	最														
틏	${ }^{\text {a }}$														

 that it occupies the same position as that of the
old．Also ascertain that the block is in correct
vertical alignment with the armacure．It will vertical alignment with the armature．
be noted that the hole in the damping block is

 of contract
construced shown in Figure 7，will prove
desirable for fusing the block in place．The
 sides，but should not be applied long enough to
cause any bubbling．The pickup should then
be reassembled as described in the preceding section．
Only rosin core solder should be used for soldering Only rosin core solder should be used for soldering
the coil leads in the pickup．Also rosin core solder

 flux a water solution of zinc chloride（commonly ？䓂 called acid flux）．After tinning，dip the parts in water
to wash off the acid flux and thereby prevent serious
 as described under（e）above，the armature may now
be soldered in place in the mechanism by using rosin
 square with respect to the mechanism，or orherwise it
will be dificult if not impossible to center the armature
in the air gap as explained under（h）．

 （e）The coil or the front pivot rubber may now be remplace the rear pivot rubber，then the end of
rehe
the armarure soldered to the mechanism support
 removed．The rear pivor rubber now may be
replaced．After putting the pivor rubbers in

The mechanism should now be reassembled，

 breaking physical contact．，the ertire assembly
pole pieces on the manget，
sould be remagnetized thoroughly，being care－－ ul not to change the polarity obtained by the （g）After assembling to the mechanism，the entire B）After assembling to the mechanism，the entre
assembly should be fastened to the back plate the damping block is securely clamped．At
the same time，the mecal dust cover must be placed in postion．皆
 which way an adjustment is necessary to have
the armature centered properly．The adjust－－
ment is made by loosening screws A and B （Figure 6），and sliding the mechanism slightly
in relation to the pole pieces． The cover may be now replaced over the entire
assembly，and the pickup returned to the tone
arm． arm．
In assembling，it may be desirable to check the
armature air gap by means of a small Feeler Gauge． In assermbing，it may be desirable teeler Gauge．
armature air gap by means of a small Feat
This air gap should be ．009＂on each side of the in place will quickly disclose whether or not the
armature is centered． （4）Replacing the Damping Block

If it is desired to replace the damping block，it may
be done in the following manner：
（a）Disassemble the pickup as described under the （a）Disassemble the pickup as described under
preceding section．

RGA PAGE 5-21

RCA-VICTOR CO., INC

RCA VICTOR DUO JUNIOR MODEL R-93

service notes

Electrical Specifications

 Physical Specifications
11 Inches
.8 Inches
of che record groves so volage variations-a volume

 reproduction may be obatined zo desired by the west: lation. Figure 2 shows the proper connecions to be
made bewwen hhe pickup unit and the swich assembly.
 4 and 5 show the chassis and cable wiring diagrams
rupectively.
pectively.

Connecting Phonograph to the Radio Receiver
 Terpoduction. The 1929 Victor Receiver and
nummerous Stromberg-Carlson Recivers arc
 (2) connections. Succh connections are made in (3) Recaivers wing the 287 of 6 B7 Second De.

(4) Recevivers nor having any of he forigoing

PHONOGRAPH MOIOR SERVICE DATA

Excensive Vibration and Hum: A small amount of hum when starting, decreasing
to a negligible amount while running, is normal. If excessive vibibation occurs either at starting or running,
it may be due to one of the following: (1) Insufficient lubricant in outer bearing or any (2) Metal washer not above the leather washer at (2) Metal washer not above the leather washer at
the bootom of the main bearing. (3) Motor not properly supported from motor board. Unless che motor is properily supported
from the motor board, normal vibration will
be excessive. be excessive.
Removing Rotor from
The rooor which includes the turntable may be

 ratele in operation. Power Consumpliont
The motor consumes 4 watrs. It should never be
curned on when the rotor is turned on when the rotor is removed, ,ss in this con-
dition excessive current will be drawn with consequent
incerese in temperaure.

PAGE 5－22 RCA
（b）Remove the damping block from the armature on each side，and must be removed before any on each side，and must be removed beuld then be

Figure $9-$ Replacing Damping Block
 done by placing the pickup magnet on the magnetizery
and sliding oit onto the pole．pieces，after magnetizng
being careful not to break the magnetic circuit． being careful not to break the magnetic circuit．
\qquad Insert the armarure chrough the new block so
chat it occupies the same p osition as shat of the vertical alignment wich the armature．It will be vertical alignment with the armature．It will be somewhat smaller than the shaft diameter．
This is done so that a snug fit will be obtained．

 ヨコV7dヨy | Insist on genvine factory tested parts，which are | |
| :---: | :---: |
| $\begin{array}{c}\text { Sock } \\ \text { No．} \\ \text { No．}\end{array}$ | Descripton | －

\qquad for dissolving the old cement that holds seve may now be replaced and cemented in 2 similar position to that occupied be ene may
coil．Duco household or Ambroid cement may coil．wed to hold hese coil in place．Be cenefful to．
benter the coil with iss paper sleeve before cementing．Only rosin pore solder should be
used for soldering the coil leads in the pickup． （g）The pivor rubbers are replaced by loosening the
armature adjussing screw F and removing armature adjusting screw F and removing
screw G ，clamp H and washer I and removing the armature from its bracket．Damping
block J must be removed from the armature．
After putcting the new pivor rubbers in place After putcing the new pivor rubbers in place，
a new damping block should be fastened to he
armature as outlined in in instructions on replac－ ing the damping block．The rubbers can then
be removed by slipping them from each end of
the pivor shatt．

 instrument is or iew onsist of centering the armature
Service work will conse
and replacing the rubber pivos，damping block and replacing the magnet coil．

Disassembing the Pickup：
The pickup may be disassembled in the following （a）Unsolder the two cable connections to the （b）Remove the needle screw and screws＂A＂and （c）Remove the pickup assembly from the arm （d）Unsolder che two magnet coil leads attached． This will allow the removal of the ter－
（e）If centering the pickup armature is the only adjustenent required，such centering cal be be
done without removing the terminal board
indicated in（ 4 ． indicated in（d）．The armature is centered by
loosening screw F ，accessible through the hole shown，and holding the armature with the
finger an
 혼 manner removed，it it important that the
magnet be remagnetized while in place．

PICKUP UNIT SERVICE DATA

RCA PAGE 5－23

RCA－VICTOR CO．，INC．
 MODEL R－93 Phonograph Models Listing Connection Diagram

Figure 1－Typical Layout and Connections for Model R－93
rCA VIctor receivers－details of lead connections

$\begin{aligned} & \text { 品 } \end{aligned}$					告	葸		0	H	迺		－	哭	$\begin{array}{\|l\|l} \hline \text { 亳 } \\ \hline \end{array}$			㦹		$\begin{array}{\|l\|l\|l\|l\|} \hline \frac{y}{d} \\ \hline \end{array}$	$\frac{y}{y}$	$\begin{array}{\|l\|l} \hline \frac{n}{g} \\ \hline \end{array}$	$\begin{aligned} & \text { n } \\ & \frac{y}{y} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { 害 } \\ \hline \end{array}$	\|				d	－	｜
美			$\begin{aligned} & \text { 哥 } \\ & \frac{4}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 哥 } \\ & \stackrel{\rightharpoonup}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 䂞 } \\ & \text { 总 } \end{aligned}$				$\begin{aligned} & n \\ & \vdots \\ & \vdots \\ & \end{aligned}$		\|				$\left\lvert\, \begin{gathered} \infty \\ y_{n}^{n} \\ H \end{gathered}\right.$		$\begin{array}{\|l\|l\|} \hline ⿹ ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 ⿱ 口 一 心 ~ \end{array}$		\|	\|		$\begin{aligned} & \text { N } \\ & \stackrel{y}{6} \end{aligned}$		$\left\lvert\, \begin{aligned} & m \\ & \underset{H}{m} \\ & \stackrel{y}{n} \end{aligned}\right.$		边			N	
\％		晏	号	安	员	－	宸	宸	＂	号	茹	号	安	㞻	N			宸	号	$\frac{4}{4}$	号	－	耑	$$		咎	是	晏		（\％
苞			ر	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{y}{n} \end{aligned}\right.$		1			$: \begin{gathered} m \\ 0 \end{gathered}$			5		$\begin{array}{\|l\|} \substack{0 \\ 0 \\ 0 \\ 0 \\ 5} \end{array}$	n		號	0	$\left\{\begin{array}{l} 0 \\ 0 \\ y \end{array}\right.$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 5 \end{gathered}\right.$							\square	碞		
比			尔気		另		皆		（	謌										）	gity	－						군	\％	｜rin
																											끈	$\begin{array}{\|l\|l} \substack{0 \\ \\ \hline \\ \hline} \\ \hline \end{array}$		（10
$\begin{array}{\|l\|} \hline \stackrel{y y y y}{8} \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	鋮	¢	$\begin{array}{\|l\|l\|} \substack{\alpha \\ \dot{\mu}} \\ \hline \end{array}$		$\overrightarrow{a ̉ n}$	茫	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{\alpha} \\ \hline \end{gathered}\right.$	范	$\underset{\sim}{\tilde{\alpha}}$	$\begin{array}{\|l\|l} \\ \text { î } \\ \hline \end{array}$	$\tilde{\tilde{Z}}_{\substack{2}}$	発	$\begin{array}{\|l\|l} \infty \\ \stackrel{0}{2} \\ \stackrel{y}{c} \\ \hline \end{array}$			$\stackrel{\gtrless}{\mathfrak{m}}$		$\begin{array}{\|c} n \\ \\ \substack{n \\ i n} \\ \hline \end{array}$						$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$				운	枵

PAGE 5-24 RCA
MODEL R-93 Phonograph
Schematics
RCA-VICTOR CO., INC.

Figure 2-Connections from Pickup to Switch Unit

RCA-VICTOR CO., INC.

SERVICE DATA

Electrical Specifications
Voltage Rating. . 105-120 Voits, 25-133 Cycles A. C. or D. C. Power Consumption. 40 Watts
Frequency Range. \qquad .540 K. C.-1712 K. C. Type and Number of Radiotrons-

1 RCA-77, 1 RCA-37, 1 RCA-38, 1 RCA-78-Total 4 Undistorted Output
.0.18 Watts
This receiver is an A. C.-D. C. table model tuned R. F. broadcast receiver. Features such as universal operation on both A. C. and D. C., wide tuning range, excellent performance and compact construction characterize this instrument. Figures A and B show the schematic and wiring diagrams
respectively. The voltage readings and replacement parts are given below.

The receiver is aligned at 1400 K . C. by means of the two trimmer capacitors located on the main tuning capacitor. The proper alignment is made by adjusting the trimmers for maximum output after tuning in a 1400 K . C. signal. This adjustment should be made when they are near their extreme minimum position. After alignment a check to make sure that a 1712 K . C. signal can be heard when the main tuning capacitor is near its extreme minimum position should be made. Stock No. 9050 Test Oscillator and Stock No. 7065 non-metallic screwdriver are desirable for making this adjustment.

RADIOTRON SOCKET VOLTAGES

Measured at Maximum Volume-115 Volt A. C. Line All Voltages on D. C. will be slightly lower

Radiotron No.	Cathode or Filament to Control Grid Volts	Cathode or Filament to Screen Grid, Volts	Cathode or Filament to Plate, Volts	Plate Current M. A.	Filament or Heater Volte
1. RCA-78 R. F.	2.5	105	105	7.0	6.0
2. RCA-77 Det.	*2.0	17.0*	*40	0.1	6.0
3. RCA-38 Output	10.0	100	95	5.5	6.0
4. RCA-37 Rect.	-	-	115 RMS	16.0	6.0

* Impossible to measure on ordinary voltmeter.

Note-Above voltages will be approximately 5% lower on 115 volts D. C. except for heater voltages which will be the same.

$\underset{\text { Stock }}{\substack{\text { Not }}}$	DESCRIPTION	$\underset{\substack{\text { List } \\ \text { Price }}}{\text { ctict }}$	${ }_{\substack{\text { Stock } \\ \text { No. }}}$	DESCRIPTION	$\underset{\substack{\text { List } \\ \text { Price }}}{\text { cen }}$
	CHASSIS ASSEMBLIES		6819	Cord-Power cord-315 ohms (R8, P1)	\$1.00
2747	Cap-Contact Cap-Package of 5 .	\$0.50	6820	Coil-RF coil (L1, L2, L3).	. 86
3048	Resistor-500,000 ohms-Carbon type-i/2	\$0.50	6821 6822	Coil-Detector coil (L4, L5, L6) 96
3076		1.00		(C2, C3, C6, C7)	2.34
3076	(R6)-Package of 5 .	1.00	6823	Capacitor-Two 4. mfd. capacitors (C13,	
3537	Reactor-Filter reactor (L8)	1.10			1.14
3542	Volume control (R1, S1).	1.18	${ }_{7485}^{6824}$. 94
3713	Capacitor- 0.05 mfd ($\mathbf{C 4 , ~ C 5) ~}$. 32	7485	Socket-6-ontart Radiotron socket	. 40
3860	Socket-5-contact Radiotron socket	. 32		REPRODUCER ASSEMBLIES	
3932	Capacitor-2400 mmfd. (C10).	. 30			
3998	Resistor- 15,000 ohms-Carbon type- $1 / 4$ watt (R3)-Package of 5 .	1.00	$\begin{aligned} & 7712 \\ & 7713 \end{aligned}$	Support-Cone support. Mechanism-Speaker mechanism complete	50
4007	Capacitor-2400 mmfd. (Ci) 35		(L7)	372
4046	Resistor- 2 megohm-Carbon type-1/2 watt (R4)-Package of 5...	1.00	$\begin{aligned} & 9470 \\ & 9471 \end{aligned}$	Reproducer-Complete............ 5 Cone-Speaker cone-Package of 5	4.62 3.50
4068	Lead-Antenna lead......................	. 30		MISCELLANEOUS PARTS	
4069	Capacitor- 0.1 mfd . (C9)	. 36		Miscellaneous Paris	
4070	Capacitor- 0.004 mfd ($\mathrm{Cl2} 2)$. 42	4076	Escutcheon-Volume control escutcheon-	
4071	Capacitor-0.006 mfd. (C15).	. 42		Package of 2.	. 26
4072	Capacitor- $\mathbf{3 0 0}$ mmfd. (C16).........	. 26	4077	Escutcheon-Station selector escutcheon-	
4073	Resistor- $\mathbf{3 5 0 , 0 0 0}$ ohms--Carbon type- $1 / 2$ watt (R2)-Package of 5 .	1.00	4078	Package of 2......................... ${ }^{\text {a }}$. 26
4074	Resistor- 1700 ohms-Carbon type- 1 watt (R7)-Package of 5.	. 88	$\begin{aligned} & 4079 \\ & 4096 \end{aligned}$	Foot-Rubber foot-Package of 4.... Knob-Volume control knob-Package of 5	. 22

RCA-VICTOR CO., INC.
Alignment Data Voltage, Service Data
 shaft. In unch cases, the eshaft may be either rhort.
ened (as described under "Mounting of Units") or exchanged for one of proper length by the dealer. NOTE-Two support brackets are attached to
the receiver case, one on the rear surface and the the receiver case, one on the rear surface and the
other on the right--hand side viewing the loud speaker opening. The side bracket must be used.
when the unit is mounted at the extreme leftWhen the unit is mounted at the extreme fert-
hand end of the dash in order to avoid sharp phend
in the flexible shaft and resultant unsatisfactory operation.
As furnighed, the remote control unit is equipped
for attachment to the steering column of the car.
It actamp bracket is so designed that the driver may It clamp bracket is so designed that the divere may tions for maximum accesibibility. The associated bracket strap will be found to accommodate practically any diameter steering column. If considered
desirable, however, the remote control unit may be
supported upon the instrument panel by means of supported upon the instrument panel by means of
an accessory bracket procurable from the dealer.

Antenna: (a) Roof (Built-in) Type-Best results will be
obtained by use of a built-in roof antenna. The obtained by use of a built-in roor antenna. The
majority of modern autombiles (closed body types
only are already equiped with such an antenna only) are already equipped with such an antenna
installed at the factory, the lead-in wire from which
will wsull will uuaally be found coiled-up beneath the instry.
ment panel. Many other earlier cars employ a piece.
of
 antenna. NOTE-The presence of a top support screen
and of grounds in that screen may be determined
 한 ㅁ.

 head-lamp between either terminal of the auto-
mobile ammeter and the tool, re-insert the tool
through the head-lining and make contact with the sereen. If the lamp lights, however dimly, it
shall be assumed that the screen is grounded. In order to use an ungrounded support screen,
first release the head-lining at the front corner

 If the top support screen is grounded, or if no

	ent
Equipment Furnished:	
1. Receiver Package-Includes the receiver and remote control units joined by the wiring cable:	
(a) The receciver contains one each of the following Radio. 6 BR , $\mathrm{RCA} A-41$.	
(b) The remote control unit contains one dial lamp ($6-8$ (c) The wiring cable includes one fuse (20 amperes) installed in attached fuse receptacle.	
2. Outfit Package-Containing:	
(a) Flexille shaft ($33 / / \mathrm{inches}$ long).	
(b) Recciver unit mounting bolt (${ }^{\mathbf{6}}$ inch diameter), dash support plate, and nuts (2).	
(c) Self.tapping screws, washers and rubber bumpers (4each).	
(d) Steering column bracket for remote control unit with (e) Shield clamp for antenna lead-in wire with screw (1),	
(f) Key (1) and knob (1) for remote control unit and eye.	
(g) Ignition Interference Suppresion Equipment:	
6 Spark plug type suppresaors (additional obtain	
	1 Distributor
2 Capacitors.	
	natruction Book.

Location of Units

SERVICE DATA

 Undiatored Output...........................35 wate
 Thate Curren.......
 " B " Battery Eliminator

Line-up Capacitor Adjustments

 thided to poserenat tribratoror intereferenence.

RADIOTRON SOCKET VOLTAGES

Realatron N o.			Cublidiostue	Cutudoditit pite		Haterevolut
RCA.78. F .		4.4	${ }^{3}$	${ }_{22} 2$	5.5	6.0
${ }^{\text {rchi.647 }}$	From deat	4	${ }^{3}$	228	${ }^{1.0}$	6.0
	Oexiltaor	4.2	-	${ }^{23}$	Toul	,
		3.2	\because	218	5.5	6.0
		${ }_{13}^{130}$	${ }^{216}$	200	26.0	6.0

PAGE 5-28 RCA

	lead-in wire and the shield b loom
	Roof Antenna (Interior Type)-If an interior type antenna is used, the tead -in wire type antenna is uesed, the eead.in wire booud be brought down the outeide of that front pil. lar post nearest the receiver.
(c)	

 To asemble, sipip the abered oonductor through the
female portion of the connector und then through
 insulation enter the end of the cone conector. Bend
over and
spread the strands of the conductor

 ride good electrical contact as well as solid mechan-
ical support.

 peffer to Figure 3 expd proceed as of oflows: 1. Doterming tho minimum shaff leagth perminioble for

 Connections

Refer to Figure 1 and make connections as follows: Antenna to Receiver-For least ignition inter-
 whicice exine comp partment of the car thould be folly
thielded end cut to eliminate exeasive slack when

 (a) Roof Antenna (Buit-in Type)-The lead.in

 the lead.in wire and itt point of entrancevir
examination of the battery connectione and ascer-
taining which terminal is grounded (that it, con.
 required. However, if the opposite is tuee, the cover of the receiver case must be removed and
ed and
aren len leads
attached by bpade.type con.
 be reversed.

 ot the adjacent aase aurace. Then determine the
exact center of the area bounded by those four
 corners) and marik that position with a center-
punch. Next drill a $y / 3$ inch hole at the centerpunch. Next drill a $3 /$ inch hole at the center-
punch mark and insert the mouting bolt, The
support plate and the two nuts then ohould be support plate and the two nuts then ohould be
asembled upo the bol from the engine eide of the
dash as show but should not be tightened. Attach

 selected mounting gurface of the case. Finally hang
the receiver vor the bott head align sides vertically
and tighten the nuts in place.

Remote Control Unit-In attaching the remote
 Figure 1 1) thowing the asembly of itt mounting
bracket. Four mall

 liongon of additional hale if neceseary to accommo.
tate a 2 inch column.
dhe

Flexiblo Shart-Ineart that end of the flexible

 as posided end ond insulated from all metallic partu
frame of the car. The antenna
 attach the lead-in wire and replace the head-lining the car.
Note-
 replacing the top fabric materia, sich worl
should be alloted to a competent $"$ trim" man. (b) Roof (Inemior) Type The aceesory ynterior-

 (c) Plate Type-For those cases where the instal-

 antena.

Mounting of Units

Details, of monnting the various unite are ohown
in Figure e. The following procedurese are recom.
mended:
Receiver Unit-It is necessary first to determine
the eclectrical polarity of the storageg battery supply.
Chis may be done most conveniently by making an

Installation Details RCA-VICTOR CO., INC.

RCA PAGE 5-31

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
	RECEIVER ASSEMBLIES			CONTROL BOX ASSEMBLIES	
2240	Resistor-30,000 ohms-Carbon type-1 watt (R5)	\$0.22	3649	Key-Volu	30.18
2747	Cap-Contact cap-Package of 5.	. 50	3650	Screw-Self locking No. 10-32-18' fulldog point set screw	
3218	Resistor- $\mathbf{6 0 0}$ ohms-Carbon type- $1 / 4$ watt (R7)-Pack. age of 5 .	1.00	3651	-Package of 10 . Screw-Self locking No. 10-32-18' ${ }^{\prime \prime}$ cupped point set screw	32 32
3536	Capacitor-Comprising two 5.0 mfd . capacitors (C17, C22).	1.10	3652		2
3572	Socket-Radiotron 7-contact socket.......................	. 38	3652	-For flexible drive shaft-Package of 10................	. 32
3584	Ring-Antenna R. F. or oscillator coil retaining ringPackage of 5 .	. 40	3690	Strap and bracket assembly-Comprising one bracket, two serews, one lockwasher and one strap.	. 40
3602	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon typb-1/4 watt (R1, R4)Package of 5 .	1.00	$\begin{array}{r} 3718 \\ 3757 \end{array}$	Bracket-Control box dash mounting bracket.............. . Coupling-Slotted coupling for end of flexible drive shaft-	.25
3616	Capacitor-300 mmfd. (C15, C18)	. 34		Package of 5..	. 40
3617	Capacitor- 0.005 mfd ((C21)	. 38	3758	Connector-For control hox end of flexible drive shaft-	
3618	Capacitor 0.02 mfd ((C16)	.38	6161	Package of 5 . Knob-Station selector knob-Package of 5 .	. 68
3621	Coil-Choke coil-Located on resistor hoard (L17)	.35	6496	Shaft-Flexible drive ghaft complete with connectors-	. 9
3623	Shield-Antenna R. F. or oscillator coil shield.	.30		Approximately 24786' ${ }^{\prime \prime}$ long.	1.60
3632	Resistor- $\mathbf{5 0 0}$ ohms-Carbon type-1 watt (R11)-Package of 5 .	1.10	6497	Shaft-Fiexible drive shaft complete with connectorsStandard length-Approximately $3378^{\prime \prime}$ long.	1.75
3636	Transformer-First intermediate frequency transformer (L7, L8, C14)	1.74	6499	Volume control-Combination volume control and switch (R8).	1.36
3637	Transformer-Second intermediate frequency transformer (L9, L10, C19)	1.65	6500	Nut-Volume control and switch lock nut Shaft-Flexible drive shaft complete wit	. 24
3641	Capacitor-0.1 mfd. (C8)	. 35		Approximately 121/3' ${ }^{\text {cheng }}$. 85
3645	Knob-Tone control knob-Packa	. 90	6532	Shaft-Flexible drive shaft-Complete with connectorsApproximately $1878^{\prime \prime}$ long	1.24
3695	Capacitor-375 mmfd. (C24, C31)	. 22	6784	Approximately 187/8' long Scale-Dial scale.	1.25 .58
3696 3699	Capacitor-40 mmfd. (C9)	. 22	7695	Box-Control box comple	$\begin{array}{r}3.70 \\ \hline\end{array}$
3699 3744		.40 1.00	7698	Cover-Control box cover	-44
3745	Capacitor-745 mmfd. (C12)	. 34		MISCELLANEOUS PARTS	
3746	Capacitor-800 mmfd. (C32)	. 34	3466	Connector-Antenna lead-in connecto	. 60
3920	Capacitor-- 003 mfd ((C23)	. 25	36	Fuse- 20 amperes-Package of 5 .	40
3921	Mounting screws, washer and bushing assembly-For 3-gang variable taning condenser-Comprising three spacers, three screws, three washers and three lockwashers.	. 34	3647 3648 3689	Nut-Cap nut and lock washer-Package of 10. Screw-No. 10-32-if" cap screw and lockwasher-Package of 10 .. Bracket-Receiver monnting bracket, bolt and nut as-	.35 .32
3922	Resistor- $\mathbf{3 0 0 , 0 0 0}$ ohms-Carbon type-1/4 watt (R6, R9) -Package of 5 .	.34 1.00	3791	sembly-One set. Bushing and plate assembly-Flexible drive shaft bushing with plate, mounting screws, rubber bushings, and	. 30
4091	Resistor-80 ohms-Carbon type-1/4 watt (R3)Package of 5.	1.00	3827	washers-Located on main case . Cable-From fuse connector to ammeter	. 30
6192	Spring-Tuning condenser drive cord tension springPackage of 10.	.30	3856	Clip-Spring clip-Grounds receiver chassis to metal housing-Package of 10	.30
6242	Resistor-2 megohm-Carbon type-1/4 watt (R2)Package of 5 .	1.00	$\begin{aligned} & 3884 \\ & \mathbf{4 0 5 1} \end{aligned}$	 Bumper-Rubber bumper used in mounting receiver	. 20
6298	Cord-Tuning condenser drive cord-Package of 5	. 60	6151	chassis-Package of 4............. Suppressor-Spark plug suppressor	. 20
6471	Coil-Oscillator coil assembly (L5, L6)	. 74	6152	Suppressor-Distributor suppressor	. 56
6490	Tone control switch.	. 35	6175	Suppressor-Distributor splice-in suppress	. 56
6492	Capacitor-Comprising one 3.6 mfd . and one 1.0 mfd . capacitor (C4, C13).	1.08	6494	Capacitor-Ammeter capacitor- $0.5 \mathrm{mfd}$. Capacitor-Generator capacitor- 0.5 mfd. .	. 46
6493	Drum-Tuning condenser drive drum. 40	6670	Suppressor-Spark plag suppressor-"Elb Screw-driver-For R. F. and I. F. adjustme	. 56
6514	Capacitor-Comprising two 0.05 mfd . capacitors (C1, C5).	. 28	7621	Antenna-Roof antenna-Paper type (Brown)	.80 1.50
6515	Cable-Shiolded cable with antenna connector	. 32	7622	Antenna-Roof antenna-Paper type (Gray)	1.50
6516	Connector-Fuse connect	. 16	76	Housing-Front section of housing complete with mounting	
6517	Cable-Main cable complete with fuse connector	1.40	7689		3.48 7.84
6540	Coil-R. F. coil asaembly (L3, L4)	. 94	7699	Housing-Rear section of housing complete with mounting	
6731	Coil-Antenna coil (L1, L2).	. 88	9050	${ }^{\text {screwn }}$	1.92
6732	Transformer-Interstage audio transformer (T2)	2.00	9050	Oscillator-Test	33.50
7485	Socket-Radiotron 6-contact socket	. 40		REPRODUCER ASSEMBLIES	
7600	Filtor pack-Comprising one reactor, one choke coil, one 0.5 mid., two 4.0 mfd . and one 375 mmfd . capacitors (L13, L16, C25, C26, C29, C30).	4.06	$\begin{aligned} & 3688 \\ & 7607 \\ & 7608 \end{aligned}$	Transformer-Output transformer (T3) Screen-Metal screen.	1.50 .44
7601	Condenser-3-gang variable tuning condenser.	2.84		support (L14) .	2.40
9049	Transformer-Power transformer (T1)	3.75	9023	Cone-Reproducer cone complete (L11)-Package of 5....	5.00

RCA PAGE 5-33

RCA-VICTOR CO., INC.

PAGE 5-34 RCA

RCA-VICTOR CO., INC.

SERVICE DATA

(1) Removing Units from Chassis:

The three major units, the power unit, the loudspeaker and the receiver chassis, are easily removed independently without disturbing the other units not removed. To do this, the use of a screwdriver and soldering iron are the only tools required. Figure 2 shows the details of the screws and terminals to be removed in each individual case.

(2) Line-Up Capacitor Adjustments:

Adjustable capacitors are provided in the R. F. oscillator and intermediate frequency amplifier to provide a means of properly aligning the receiver. A modulated R. F. oscillator such as Full-Range Test Oscillator, type TMV-97-B (Stock No. 9050), a non-metallic screwdriver such as alignment wrench Stock No. 4160 and an output meter are required for properly aligning this receiver. Refer to Figure 3 for the location of the line-up capacitors.

I. F. Tuning Adjustments:

Two transformers comprising three tuned circuits (the secondary of the second transformer is untuned) are used in the intermediate amplifier. These are tuned to $175 \mathrm{~K} . \mathrm{C}$. and the adjustment screws are accessible from beneath the chassis as shown in Figure 3. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at $175 \mathrm{~K} . \mathrm{C}$. , a non-metallic screwdriver suich as Stock No. 4160 and an output meter.
(b) Short-circuit the antenna and ground leads and tune the receiver so that no signal is heard. Set the volume control at maximum and connect a ground to the chassis.
(c) Connect the oscillator output between the first detector control grid and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(d) Adjust the primary of thesecond, and the primary and secondary of the first I. F. transformers, until a maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times. Go over these adjustments a second time, as there is a slight interlocking of adjustments. This completes the I. F. adjustments.

R. F. and Oscillator Adjustments:

The three-gang capacitor trimmer screws are located
on the main tuning capacitor, accessible at the top of the chassis. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at $1400 \mathrm{~K} . \mathrm{C}$. and $600 \mathrm{~K} . \mathrm{C}$. , a non-metallic screwdriver such as Stock No. 4160 and an output meter.
(b) Connect the output of the oscillator to the antenna and ground lead of the receiver. Place the receiver in operation and attach the control box as in normal operation. Turn the tuning control until the tuning capacitors are fully meshed. Then set the indicator on the dial at the 530 K . C. reading. Turn the tuning control until the dial reads 1400 . Then set the oscillator at $1400 \mathrm{~K} . \mathrm{C}$. and connect the output meter across the cone coil. Adjust the threegang capacitor trimmer screws until maximum output is obtained. Be careful not to disturb the relation of the control box to the receiver after setting the dial.
(c) After making the 1400 K. C. adjustment, shift the oscillator to $600 \mathrm{~K} . \mathrm{C}$. and tune in the signal. Adjust the 600 K. C. trimmer, accessible from the side of the chassis for maximum output while rocking the gang-capacitor back and forth. Then again check the adjustment described in (b).
When making both the I. F. and R. F. adjustments, the important point to remember is that the receiver volume control must be at its maximum position and the minimum input signal necessary from the oscillator must be used.
(4) R. F. Interference from Vibrator with Shielded Lead-In Disconnected from Antenna:
In event R. F. interference originating with the vibrator inverter-rectifier unit is encountered, check the following points:
(a) Vibrator not properly seated. The vibrator must be pushed tighe against its socket at all times.
(b) The various by-pass capacitors, such as C-28, C-29 and C-30 and chokes L-13, L-14 and L-16, must be properly connected; and in operating condition. It is well to remember that some of the interference produced by the vibrator is of a frequency as high as one meter and any replacement of capacitors must always be made with one of similar mechanical as well as electrical construction.

MODEL M-107

Vibrator Data
Trimmer Locations
Socket Layout

(5) Voltage Readings:

The following voltages are those at the tube socket while the receiver is in operating condition. No allowance has been made for currents drawn by the meter and if low resistance meters are used, such allowances must be made.

(6) Vibrator Inverter:

The Vibrator Inverter unit used in this receiver is of advanced design and construction. It is adjusted by
means of special equipment at the factory and then sealed to prevent tampering. The unit is provided with a special plug-in base so that in event of suspected failure it may be easily interchanged with one of known condition.

With the seals unbroken, the Vibrator carries the standard ninety-day guarantee, which also applies to all parts of the receiver. Vibrator defects should be remedied by replacement, not by attempted adjustment.

Figure 3-Location of Line-Up Capacitors

Figure 4-Voltages at Individual Socket Contacts

RCA PAGE 5-37

RCA-VICTOR CO., INC.						RADIOTRON SOCKET VOLTAGES 6.3 Volt Battery-No Signal-Minimum Volume
Radiotron No.		Cathode to Ground Volts, D. C.	Screen Grid to Ground Volts, D. C.	Plate to Ground Volts, D. C.	Cathode Current, M. A.	$\begin{gathered} \text { Heater Volts, } \\ \text { D. C. } \end{gathered}$
RCA-6D6-R. F.		4.0	93	204	6.3	6.0
RCA-6A7	1st Det.	4.0	93	204	8.2	6.0
	Osc.	-	-	204		
RCA-6D6-I. F.		4.0	93	204	7.3	6.0
RCA-75-2nd Det.		1.2	-	153*	0.4	6.0
RCA-41-Pwr.		19.0	239	230	27.0	6.0
RCA-84-Rect.		253	-	-	49.0	6.0

* Voltage impossible to measure with ordinary voltmeter.

MODEL M－107
Parts List \quad RCA－VICTOR CO．，INC．

REPLACEMENT PARTS—Continued

号	
号	
号怱	戓 ¢ ¢ ¢ ¢ 鸷
2	
劳家	

Power Requirements
....................105-125 volt Power Consumption. . 115 Volts, 60 Cycles A. C.- 40 Watts, Battery-5.7 Amperes at 6.3 Volts Number and Types of Radiotrons. \qquad . RCA-78,
1 RCA-6A7, 1 RCA-6B7, 1 RCA-41, 1 RCA-1-V-Total 5 Maximum Undistorted Power Output. 1.8 Watts Maximum Output 3.6 Watts Type of Rectifier. C.-Radiotron RCA-1-V Tuning Frequency Range. 540 K. C.-1500 K. C.

This automobile receiver is of unique design and construction. Among its many features is its adaptability to either battery or 110 -volt alternating current operation. This is accomplished by having a separate power transformer and a

Figure C-Location of Line-up Capacitors
tube rectifier for alternating current, while the conventional vibrator inverter-rectifier with its associated transformer is used for battery operation.

Other important features include its compact portable size, full vision "airplane" type dial, tone control, sensitivity switch, electro-dynamic loudspeaker and the inherent sensitivity, selectivity and tone quality characteristic of the superheterodyne.

Figure A shows the schematic diagram, Figure B the wiring diagram, Figure C the location of the line-up capacitors and Figure D the wiring of the battery cable. A brief description of the circuit follows:

Radio Circuit-The radio circuit consists of four Radiotrons; namely, an RCA-78 R. F. stage, an RCA-6A7 first detector-oscillatór, an RCA-6B7 intermediate frequency amplifier, second detector and A. V. C. and an RCA-41 output amplifier.

Power Circuit-The power circuit for battery operation consists of a vibrator inverter-rectifier with its associated transformer and filter circuits. The heaters of the various Radiotrons are powered direct from the car storage battery. The operating switch is so arranged that at one position battery operation is obtained, while at the other position, proper connections are made for A. C. operation.

When the switch is at the A. C. position, the A. C. input current is connected to the primary of the A. C. transformer. Two secondaries are provided, one for furnishing power to the Radiotron heaters and the dial lamp, the other for plate supply to Rectifier RCA-1-V. The output of the rectifier is then filtered by the same filtering system as that used for battery operation. The loudspeaker field is used as a filter reactor.

Inverter-Rectifier Adjustments

This receiver uses a vibrator inverter-rectifier for supplying all plate and grid voltages when operated from a battery source. This unit is accurately adjusted and sealed at the factory and service adjustment should not be attempted.

Line-up Capacitor Adjustments

The three R. F. line-up capacitors and two I. F. tuning capacitors are accessible and may require adjustments. The R.F. adjustments are made at 1400 K . C. and the I. F. adjustments at 175 K . C. In order to make these adjustments, it is first necessary to remove the cover of the instrument. The following procedure should be used:

R. F. Adjustment :

(a) Check the position of the dial pointer. It should be aligned with the low-frequency end graduation, as indicated by the small arrow
marked "Max. Cap." when the tuning capacitor rotor is fully meshed with the stator.
(b) Procure a modulated oscillator giving a signal at 1400 K . C. (Stock No. 9050), a non-metallic screw driver (Stock No. 7065) and an output meter. Connect the output meter across the cone
coil of the loudspeaker.
(c) Couple the output of the oscillator from antenna to ground, set the dial at 140 , and the oscillator at 1400 K . C.
(d) Place the oscillator and receiver in operation and adjust the oscillator output so that a small deflection is obtained in the output lator output so that a smail defiection is obtained in the our
(e) Then adjust the three line-up capacitors until a maximum defiection in the output meter is obtained. Readjust these capacitors a second time, as there is a slight interlocking of adjustments.
I. F. Adjustments:
(a) Procure a modulated oscillator giving a signal at 175 K . C. (Stock No. 9050), a non-metallic serew driver (Stock No. 2065) and an output meter.
(b) Connect the oscillator between the control grid of the first detector and ground.
(c) Connect the output meter across the voice coil of the loudspeaker. Then connect the antenna lead to ground and adjust the tuning capacitor so that no signal except the I. F. oscillator is heard at maximum volume. With the volume control at maximum, roduce Unless this is done, the action of the A. V. C. will make it impossible to obtain correct adjustments.
(d) Each transformer has but one winding that is tuned by means of an adjustable capacitor, the other windings being untuned. The capacitors should be adjusted for maximum output. At the time I. F. adjustments are made it is good practice to follow this adjustment with the R. F. adjustments, due to the interlocking that always occurs. The reverse of this, however, is not always true.

RADIOTRON SOCKET VOLTAGES

115 Volts A.C. or 6.3 Volt Battery-No Signal-Max. Sensitivity

Radiotron No.	Cathode to Ground	Cathode to Screen Grid Volts	Cathode to Plate Volts	Cathode Current M. A.	Heater Volts
RCA-78 R. F.	4.2	86	216	5.5	5.9
RCA- First Detector	4.2	86	216	$\begin{gathered} 10.0 \\ \text { Total } \end{gathered}$	5.9
6A7 Oscillator		-	216		
RCA-6B7 Second Det.	2.7	87	207	4.5	5.9
RCA-41 Power	15.0	255	235	30.0	5.9
RCA-I-V	-	-	325 RMS	50.0	5.9

SOLID CONNECTIONS FOR
+A'GROUNDED. DDTTED
CONNECTIONS FOR-A' GROUNDED.

PAGE 5-40 RCA

MODEL M-116

Chassis Wiring
RCA-VICTOR CO., INC.

PAGE 5-42 RCA
MODEL M-116
Installation Notes Parts Loist

RCA-VICTOR CO., INC.

INSTALLATION

connect the cable lugs to the battery terminal
clamps as illustrated. The lug stamped "BATT.
 battery grounded to the car frame and the remaining lug (on lead with fuse receptacle) attached to the
supply side of the battery. Finally, replace the floor cover, notching the side of the opening if necessary to provide clearance for the battery cable.

Suppression of Ignition InterferenceFasten one spark-plug suppressor to the top of each plug and re-attach the wires to the free ends of the suppressors. These suppressors may be mounted
either in line with or at right angles to the plugs in order to avoid interference with metallic parts
2. If the distributor is of the plug-in type,
2. If the distributor is of the plug-in type,
disconnet the center wire from the head. Pugg
the distributor suppressor into the distributor hood the distributor supprestor into the distributor hoad NOTE-For cap-type distributors, exchange
the distributor suppressor at your dealer's for the distributor suppressor at your dealer. for
one of a special type. Cut the wire leading from
the distributor to the coil and scrow the sup. the distributor to
pressor into the end attached to the distributor.
Screw the other end of the wire heading to the coil) into the opposite end of the suppressor. 3. Clamp the generator capacitor against the
 Connect the capacitor lead to the terminal on the cases, however, less interference will be encountered with this lead connected to the opposite side of the
cutout; the most suitable position therefore should cutout; the most suitable position therefore should
be determined by trial.) 4. The ignition capacitor (unit with two leads)
must be connected between the battery terminal of must be connected between the battery terminal of
the ammeter and any convenient screw on the in-
strument panel. In certain cars, interference will strument panel. In certain cars, interference will
be reduced still further by connecting an additional be reduced still further by connecting an additional
capacitor (obtainable from your dealer) between the
battery side of the ignition coil and the car frame. Home Installation

The circular insert on the frontispiece illustrates
 circuit operation. Simply place the instrument apon
a table or other level surface, attach the antenna
leadin lead-in wire (using the smalc "onnector furnished)
and, with the power swith "off" (in " "UTO" position), connect the power cord to an electrical
outlet supplying alternating current at the voltage and frequency ay (cycles) specified on the rating label
inside the case.

A typical installation of this receiver in an auto is accomplished in the following manner: Lift the battery cable and antenna shielded lead-in wire in porition and then replace the seat.
where the automobile battery is mounted beneath that seat, however, it will be necessary to connect the subsequent paragraph entitled "Connection mount the receiver on the seat, attach the connector of the lead-in wire to the short (antenna) lead
extending from the rear of the instrument and, with the power switch "off" (in AC position),
insert the battery cable plug in the receptacle insert the battery cable plug in the receptacle
located adjacent to the antenna lead entrance. Connection to Antenna-Feed the antenna
lead-in wire beneath floor mat to the side of car nearest the wire extending from the antenna. The is brought down one of the front pillar posts and left in a coil behind the instrument panel. In such
cases, therefore, the lead-in wire after leaving the cases, therefore, the lead-in wire atter leaving the hen soldered to the wire extending from the antenna
at the lower end of the body pillar post, after cutting the necessary length from each wire to eliminate
excessive slack. Insulate the joint with tape and then solder or bons the pig.tail extension from the
lead-in shield braid to the car frame. lead-in shield braid to the car frame.

A similar procedure is followed when either
Iternative form of antenna ("interior" roof or plate type) is employed except that the lead-in wire probably will follow a different route in each
case. Such antennas should be mounted as far to the rear of the car as possible to insure minimum ignition interfence. The lead-in wire for the
interior type unit thus may be carried down the rear quarter of top and then behind the back cushion
of seat in open and convertible models or may be of seat in open and convertible models or may be
anchored to any convenient pillar post in closed models. With the plate antenna, the lead-in wire
should be fed through any opening in the floor

Connection to Battery-Since, in most cars, che storage battery is located, below the floor board
of the driving compartment, the battery cable has been made sufficiently long to reach the battery after passing beneath the driver's seat (see note
concerning longer cable available for rear seat peration-Equipment, "Battery Cable Package".).
Run the cable under the floor mat and through Run the cable under the floor mat and hrough
the floor opening provided above the battery and

RCA PAGE 5-43

PAGE 5-44 RCA

RCA PAGE 5-4.5
RCA-VICTOR CO., INC.

MODEH 118,211
Voltage
Sooket Layout
Loud Speaker Wiring

RADIOTRON SOCKET VOLTAGES

115-Volt, A. C. Line-Maximum Volume Control-No Signal

6A7	Detector	Cathode to Grid Volts	Screen Grid to Ground	Plate to Ground	Plate M.A.	Heater Volts
			105	265	3.5	
		6.0				6.3
	Oscillator		--	220	4.5	
6D6	I.F.	6.0	105	265	9.0	6.3
6B7	2nd Det. AVC	3.0	50*	90*	0.7	6.3
41	Povier Output	16.5	265	245	30.0	6.3
80	$\begin{aligned} & \text { Rectifier } \\ & *=\text { Voltage } \\ & * *=\text { Plate } \end{aligned}$	calculated plate	rom 265 v.	+ B^{690} **	64.0	5.0

Figure 7-Radiotron Socket Voltages

Figure 3-Table Model Loudspeaker Wiring

Figure 4-Console Model Loudspeaker Wiring

```
MODEL 118,211
Aligmment Data
Parts List
Parts List
```

RCA-VICTOR CO., INC.

DATA
 SERVICE

'uор! coils, designated as BC in Figure 6, until a maximum deflection is obtained in the output meter. Then shift the to 600 K . The trimmer capacitor, accessible from the top of the chassis, should now be adjusted for maximum output while rocking the main tuning capacitor back and
forth chrough the signal. Then repeat the (c) Now place the Range Switch at the "out" (c) Now place the Range Switch at He 18,000 wo trimmer capacitors designated as SW in Figure 5 for maximum output, beginning

 which uses the lower trimmer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator,
while the position that uses a higher capaci-

 back and forth through the signal. Boch of
these adjustments must be made as indicated irrespective of output.

The important points to remember are che need for
using the minimum oscillator output to obtain 2 deffection in the output meter with the volume con-
rol at its maximum position and the manner of obtaining the proper high frequency oscillator and
detector adjustmens.
(2) Radioton Socket Voltages: The following volages are those, at the various
cube sockers while the receiver is in operating condicion No. allowance has been made for currerts s drawn
by the meter, and if lower resistance meters are used, by the meter, and if lower resista
such allowances must be made:
(3) Power Transiomer Connections:

Models supplied for 220 -volt power supply, use a
power transformer having a tapped primary. The
 of $100-130$ volss or 195-250 volts. Figure 5 shows
che internal connections of the transformer and the voltages to be weed with che various taps. The taps are located on a terminal strip at the top of the
transformer so that necessary changes may be made
wishout removing the receiver from the cabinet.

1) Line. Up Capacitor Adjustments:

 modulated R. F. oscillator, such as Stock No. 9050 , an outrput indicator and an alignment tool (Stock No.1160) be available. Figure 5 shows the location of the various line-up capacitors.
I. F. Tuning Adjustments:
Two cransformers comprising four tuned circuits are used in the intermediate amplifier. These are
cuned to 460 K . C. and the adjustment screws are accessible as shown in Figure 6. Proceed as follows: nals and tune the receiver so that no signal
is heard. See the volume control at maximum and conpect a ground to the ground terminal. (b) Connect the test oscillator ourput between the Connect the output meter across the voice coil
of the loudspeaker and adjust the oscillator of the loudspeaker and adjust the oseilator output so that, with che receiver in in obtained in
at maximum, slight deflection is
the output meter.
(c) Adjust che secondary and primary of the first and then the second
maximum deflection is ob obained. Keep the
osillutor ourut at a low value so that only a oscillator output at a low value so that only a
sight deffection is obrained on the output meter at all times. Go over chese adjustments
a second time, as there is a slight interlocking a second time, as there is a slight interlocking
of adjustments. This completes the I. F.
adjustments. adjustments.
R. F. and Oscillator Adjustments: botrom of the coil assemblies instead of allar accessible
position on che gang capacitor. They are all a from the bottom of the chassis except the 600 K . C. he chassis. Proceed as follows:
(a) Connect the output of the oscillator to the antenna and ground cer the indicator pointer
Check the position of meshed. It should be coincident with the radial line adjacent to the dial reading of 540 .
Then set the Test Oscillator ac 1720 K. C., the dial indicator as 1720 and the oscillator output so that a slight defection will
obained in the output meter when the volume control is at its maximum position.

R．F．and Oscillator Adjurtments：（c）The various by－pass capacitors，such as $\mathrm{C}-29$ ， R．F．and Oscillator Adjustments：
The chree－gang capacitor screww are located on the
main cuning capacitor acessible at the top of the （a）Procure a modulated oscillator giving a signal
at $1400 \mathrm{~K} . \mathrm{C}$ ．and 600 K ． Procure a modulated oscillator giving a signal
at 1 100 K ． C and 60 K K． C ，a non－metalic
screwdriver such as Stock No ． 4160 and an （b）Countect the our （b）Connect the output of the oscillator to the the receiver ground lead of the receeciver．Place
trol box as in norman and otactact the con－
cond Turn the

 the output meter across the cone coil．Adjust管范 maximum output is obtained．Be careful not
to disurb the relation of the control box to
the receiver after setting the dial． （c）After making the 1400 K ．C．adjustment，
shift the oscillator to 600 K ．C．and tune in the sisnal．Adjust the 60 K ．C．trimmer，
accessingle from the side of the chassis for
maximum output while rocking the gang－ maximum output while rocking the the gang．
capacior back and forth．Then again check
the adjustment described in（b）． the adjustment described in（b）．
When making both the I．F．and R．F．adjustments，
the imporant point to remember is that the receiver
volume control must be at its maximum position and When making both the I．F．and R．F．adjustments，
the important point to remember is that the receiver
volume control must be be tits maximum position and
the minimum input signal necessary from the oscillator the minimum input signal necessary from the oscillator
must be used．
（4）R．F．Interference from Vibrator： （4）R．F．Interference from Vibrator：
In event R．F．interferencee originating with the
vibratoon inverter－cetifer unit is encountered，check
the following points． （a）Vibrator not

Vibrator not properly seated．The vibrator
musse be pushed tight against its socket at all
times．
（b）The clip from the top of the R ．F．tube shield
to the gang－capacitor must be in place． Aead secururely to to the side of case．This clamp is held by 5
5
0
0
0
0
0 the brake pedal or starter butuon．Whep making an
installation it is important to see chat this lead is installation it is important to see that this lead
securely clamped．
 contact with the worm，before being tightened． （8）Antenna Lead Clamp

$\begin{aligned} & \text { en } \\ & \stackrel{4}{0} \\ & \text { Pu } \\ & \text { n } \end{aligned}$	ง		ì		（2）	ำ ${ }^{\text {¢ }}$
	－		$\stackrel{n}{n}$	m_{i}	\％	n
	\％	O－	2	（2）	茾芜	$\stackrel{\sim}{\sim}$
	$\stackrel{\circ}{\circ}$	$\stackrel{1}{2}$		$\stackrel{\circ}{1} 1$	1	i
	9				$$	$\stackrel{\text { ® }}{ }{ }^{\circ}$

book accompanying the instrument describes the
 pletes the I．F．adjustments．
(2) Loose or Tight Tuning Action: using either right or left hand drives．However，

（3）Line－up Capacitor Adjustments： Adjustable capacitors are provided in the R ．F．
oscillator and intermediate frequency amplifier to provide a means of properly aligning the receiver．A modulated R．F．oscillator such as Full Range Test
Oscillator，Type TMV－97－B（Stock No．9050），a non－metallic screwdriver such as alignment wrench tock No． 4160 and an output meter are required for
properly aligning bhis receiver．Refer to Figure 3 for the location of the line－up capacitors．

I．F．Tuning Adjurtments：

Two transformers comprising three tuned circuits （the secondary of the second transformer is These are tuned to 175 K ． C ．and the adjusment screws are
the
（a）Procure a modulated oscillator giving a signal
at $175 \mathrm{~K} . \mathrm{C}$. ，a non－metallic screwdriver such （a）Procure a modulated os
 Short－circuit the antenna and ground lead
tune the receiver so chat no signal is heard．
Sete the volume control at maximum and con－ （c）Connect the oscillator output between the first detector control grid and chassis ground． ofnect the output meter across the voice coil output so that with the receever volume con－
rool at maximum，a slight deflection is ob－
（d）Adjust the primary of the second，and the secondary and primary of che frrst I．F．trans－
formers，until a maximum deflection is ob－ tained．Keep the oscillator output at a low
value so that only a slight deflection is obtained

An adjustment screw is provided at the worm An adjustment screw
dirive unitit so that proper tension may be provided
for the particular worm being used．The instruction
 Type and Number of Radiotrons Used－2 RCA－6D6，
1 RCA－6A7， 1 RCA－75， 1 RCA－41， 1 RCA－79 Battery Current（6．3 Volt Battery）：$\quad 135$ Speaker Field（Cold）．．．．．．．．．．．．．1．35 Amperes
Tubes
Ampers Tubes．．．．．．．．．．．．．．．．．．．．．1．15 Ampere
Dial Lamp

 Maximum Undistorted Output．．．．．．．．．．4．2 Watts Maximum Output．．．．．．．．．．．．．．．．．．．8 Watts
Line－up Frequencies．．．．．． 175 K．C．， 600 K． 1400 K．C． （1）Removing Units from Chassis： The three major uniss，the power unit，the loud－ speaker and the receiver chassis，are easily removed
independently without disturbing the other unis not removed．To do this，the use of a screwdriver is the
only tool required．Figure 2 shows the details of the screws and terminals to be removed in each individual
case．

PAGE 5-48 RCA
MODEL M-123
Schematic
Socket Layout

RCA-VICTOR CO., INC.

PAGE 5-50 RCA
MODEL M-123
Chassis Wiring RCA-VICTOR CO., INC.

RCA PAGE 5-51

RCA-VICTOR CO., INC.

Figure 6-Assembly Wiring Diagram

Figure 7-Vibrator Inverter-Rectifier Unit Wiring

replacement parts

REPLACEMENT PARTS—（Continued）

oz					
	$5-\mathrm{tes}$ put गुeris	scre			
	918	0stz			406
$\begin{aligned} & 9 \varepsilon \\ & 98 \end{aligned}$	yry	Scz			272
	 рй एгиo	ss7\％			
			001	2rem	
2ॄ	（equen				9859
		2598		K－	
				K-xidi uoqutio suyp	
		2str	$00 \cdot 1$		
		292\％			
s_{s}		L2z7			2098
${ }_{8}^{81}$		097\％	oor	\％	
${ }_{0}$					
st	res－1	1925			4
26				غเ7）	
	Eepp	6s	Oz＇		
	30003 y		0＊		
$\begin{aligned} & 2 \\ & 08 . \varepsilon \\ & \hline \end{aligned}$	prg x \times	${ }^{9669}$			$\varepsilon 669$
			08	（1）ह1）	9969
	，	¢969	2s	（97＇57）pio	9
58^{\prime}			OL	（27＇77）поо гииззч	5969
		2969			596
		0969	s¢	w＇ 500 omi 8 （sydumo－pped to	
		0269		sóo omi sug̣amo－9pa	源
os． 06.		6969	z₹＇		相
		269	s¢		เ59
se		zėz	$)^{\circ}$		10¢8
zz		9 ¢\％	st		
				（87）＇pJw s\％＇0－103prd	20¢
		¢¢て	＋$\underbrace{\text { g }}$	（827）＇pנwew 0001	$\stackrel{\text { Ľz }}{ }$
		£とて		（ம）	
				（12）P］wu 00¢－1010	
	$\begin{aligned} & \text { so } 10 \\ & \cdots 0 \end{aligned}$	દz9\％	${ }_{82}$	）	ε
	n，		0ヶ		ぃぃて
			56		
	边	85	¢80s		
${ }^{06}{ }^{\circ}$	55034	z26		）	
	วd／2 uoqure－suluo ooo＇			Saliawassy xaciajxy	
387		poos		Noluatrosal	

RGA-VICTOR CO., INC.

Alignment Data Voltage

SERVICE DATA

ELECTRICAL SPECIFICATIONS

Voltage Rating. 105-125 Volts Frequency Rating 25-60 and 50-60 Cycles Power Consumption... 60 Cycle 75 Watts, 25 Cycle 80 Watts Number and Types of Radiotrons................. 2 RCA-58,

1 RCA-2A7, 1 RCA-2B7, 1 RCA-2A5, 1 RCA-80-Total 6 Undistorted Output. 7.75 Watts Frequency Range. $540 \mathrm{~K} . \mathrm{C}$. to $1500 \mathrm{~K} . \mathrm{C}$.

This receiver is a six tube Superheterodyne incorporating features such as Dynamic Loudspeaker, automatic volume control, single heater type Pentode output tube, continuously variable type tone control and the inherent sensitivity. gelectivity and tone quality of the Superheterodyne.

A special feature is a Range Switch that allows reception of signals either of the broadcast band or higher frequencies. Figure A shows the schematic circuit, Figure B the wiring diagram and Figure C the loudspeaker wiring. With the switch in the broadcast band position, the frequency range is from 540 to 1500 K . C. At the higher frequency position, the receiver covers the 1400 to 2800 K. C. band.

Figure C-Loudspeaker Wiring
The circuit consists of an R. F. stage using Radiotron RCA58, a combined oscillator and first detector in the RCA-2A7 tube, an intermediate stage using Radiotron RCA-58, an RCA-2B7 functioning a combined second detector and automatic volume control, an output stage using the new heater Pentode RCA-2A5 and the RCA-80 functioning as a rectifier.

Service work in conjunction with this receiver will be similar to that of other Superheterodyne receivers incorporating a similar type automatic volume control.

LINE-UP ADJUSTMENTS

I. F. Tuning Adjustments-Two transformers comprising three tuned circuits (the secondary of the second transformer is untuned) are used in the intermediate amplifier.

These are tuned to 175 K. C. and the adjustment screws are accessible as shown in Figure D. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K . C., a nonmotallic scrow driver such as Stock No. 7065 and an outpnt motor.
(b) Short-circuit the antenna and ground terminals and tune the receiver so that no signal is heard. Set the volume control at maximum and connect a ground to the chassis.
(c) Connect the oscillator output between the first detector control grid and chassis ground. Connect the output moter across the voice coil of the loudspeaker and adjust the oscillator output so that with the receiver volume control
tion is obtained in the output meter.
(d) Adjust the primary of the second, and the secondary and primary of the first I. F. transformers nntil a maximum defiection is obtained. Keep the oscillator output at a low value so that only a alight deflection is obtained on the output meter at all times. interlocking of adjustments. This completes the I. F. adjustmente.

Figure D-Location of I. F. Line-up Adjustment Screws
R. F. and Oscillator Adjustments-The three gang capacitor screws are accessible at the bottom of the chassis. The high frequency capacitor screws are located on the Range Switch. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 1400 and 2440 K. C., a non-metallic serew driver such as Stock No. 7065 and an output meter.
(b) Connect the output of the oscillator to the antenna and ground terminals of the reeciver. Check the dial at the extromee maximum position of the tuning capacititr. The indicator should be opposite
the last division of the low fregnency end of scale with the indicator the last divesion of the low fequenency end of scale with the indiciator at itt center position. Then set the dial at 140, the oscillator at 1400
K . C and connect the output meter across the cone coil. Adjust K. C. and connect thy output meter acrosp the cone coil. Adjust
the oscillator output so that a slight deflection is obtainod whon the receiver volume control is at maximum.
(c) With the Range Switch at the counter-clockwise position, adjunt the three tuning condenser line-up capacitors until maximum defection is obtained in the ontput meter. Then shift the oscillator to 2440 K . C. the Range Switch to the clockwise position and the dial to 120 . The threo line-up capacitora located on the Rango Switch should then bee adjasted for maximum output.
When making both the I. F. and R. F. adjustments, the important points to remember are that the receiver volume control must be at its maximum position and that the input signal from the external oscillator must be no greater than necessary.

TUBE SOCKET VOLTAGES
115 Volts, A. C. Line-No Signal

PAGE 5-54 RCA

Figure A-Schematic Circuit Diagram

Figure B-Wiring Diagram

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { Prico }}{\text { List }}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	(1ist.
	RECEIVER ASSEMBLIES		4135	Socket-Dial lamp socket and bracket	\$0.25
2269	Capacitor-720 mmfd.	\$0.75	4140	Shield-Radiotron shield-1st detector	. 30
2747	Cap-Contact cap-Package of 5	. 50	4141	Shield-Radiotron shield-2nd detector	. 36
3047	$\begin{aligned} & \text { Resistor - } 1500 \text { ohms - Carbon type }-1 / 2 \\ & \text { watt }(\text { R } 7) \text {-Package of } 5 \ldots \ldots \ldots \ldots \ldots . . \end{aligned}$	1.00	6188	$\begin{array}{r} \text { Resistor }-2 \text { megohm }- \text { Carbon type }-1 / 2 \\ \text { watt }(\text { R1, R12 })-\text { Package of } 5 \ldots \ldots \ldots . . \end{array}$	1.00
3076	$\begin{aligned} & \text { Resistor - } 1 \text { megohm - Carbon type - } 1 / 2 \\ & \text { watt (R6)—Package of } 5 \ldots \ldots, \ldots \ldots . . \end{aligned}$	1.00	6282 6300	Resistor-60,000 ohms-Carbon type-1/2 watt (R8, R10, R15)—Package of 5...... Socket-Radiotron 4-contact socket.	1.00 .35
3252	$\begin{aligned} & \text { Resistor-100,000 ohms-Carbon type-1/2 } \\ & \text { watt (R5)-Package of } 5 \ldots \ldots \ldots \ldots . . . \end{aligned}$	1.00	6303	Resistor-20,000 ohms-Carbon type-1/2 watt (R9)-Package of 5 .	1.00
3358	Resistor - $\mathbf{3 , 0 0 0}$ ohms - Carbon type - $1 / 2$ watt (R13)-Package of $5 \ldots$.	1.00	6471	Coil-Oscillator coil (L5, L6) .	. 74
3459	Capacitor-80 mmfd. (C10)...............	. 44		Transformer-1st intermediate transformer (L7, L8, C15, C16) $\ldots \ldots \ldots .$.	1.84
3514		1.00	6484	Transformer-2nd intermediate frequency transformer (L9, L10, C18)	1.70
3572	Socket-Radiotron	. 38	6485	Volume control-With mounting nut (R11)..	1.20
3584	Ring-R. F. or oscillator coil retaining ringPackage of 5 .	. 40	6487		2.90
3594	Resistor- $\mathbf{5 0 , 0 0 0}$ ohms-Carbon type-1/2 watt (R14, R18)—Package of $5 \ldots \ldots . .$.	1.00	6527	Coil-Antenna coil (L1, L2) Coil-R. F. coil (L3, L4) . .	1.08 .94
3597	Capacitor-0.2	. 40	6534	Switch-Range switch (S2, S3, S4, S5, S6, C32, C34, C35)	
3598	Capacitor- 0.1 mfd -R. F. and I. F. by-pass (C5)	. 36	6598	C32, C34, C35) Condenser-3-gang variable tuning con-	1.25
3616	Cap	34		denser ($\mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 7, \mathrm{C}, \mathrm{C} 11, \mathrm{C} 12$)	3.00
3623	Sh	. 30	6619	Tone control with mounting nut	1.44
3626	Shield-Oscill	. 22	6620	Capacitor-Comprising one .005 and one .035 mfd (C28, C36).	. 50
3630		. 25	6851	Sc	1.22
3632	Resistor - watt (R19) --Package of $5 ~$	1.10	6853 7485	Escutcheon-Station selector escutcheon. Socket-Radiotron 6-contact socket.34 .40
3633	Ca	. 38	7590	Capacitor-10.0 mfd. (C29)	1.40
3634	Capac	. 34	9005	Transformer-Power transformer-105-125 volts, 50-60 cycles (T1)	
3639		. 25	9006	Transformer-Power transformer-200-250	4.80
3640	C	. 25		volts, 50-60 cycl	5.05
3641	C	. 35	9024	Transformer-Power transformer-105-125 volts, 25-40 cycles.	5.85
3721	$\begin{gathered} \text { Resistor }-1,000 \text { ohms }- \text { Carbon type }-1 / 2 \\ \text { watt }(\text { R3 })-P a c k a g e ~ o f ~ \\ 5 \ldots \ldots \ldots \ldots \ldots . . . \end{gathered}$	1.00		EPRODUCER ASSEMBLIES	
3783	Capacit		6476	Transformer-Output transformer (T2)	1.44
		. 50	6852	Cable-3-conductor reproducer cable	. 26
4103	Shield-Radiotron shield	. 20	9032	Coil assembly-Comprising coil, magnet and cone support (L12).	2.35
4133	Knob-Station selector, volume control, tone control or range switch knobPackage of 5 .	. 80	9428 9440	Cone-Reproducer cone (L11)—Package of 5 : Reproducer complete.	5.00 4.75

Chassis Wiring
RCA-VICTOR CO., ING.
Voltage

RCA PAGE 5-57
MODEL 126-B
Sohematic
Socket Layout
RCA-VICTOR CO., INC.

Figure 5-Socket Voltage Readings

RCA-VICTOR CO., INC.

(1) Important

Always disconnect the batteries before attempting to remove the chassis from the cabinet. Always turn the operating switch "off" before changing tubes, batteries or fuses.

Figure 3-Loudspeaker Wiring

(2) Line-up Capacitor Adjustments

Line-up capacitors are provided in the first detector, oscillator and intermediate amplifier to provide a means of properly aligning the receiver. A modulated R. F. oscillator, such as Full Range Test Oscillator, type TMV-97-B (Stock No. 9050), a non-metallic screw driver, such as alignment wrench (Stock No. 4160), and an output indicator are required for properly aligning this receiver. Refer to Figure 4 for the location of the line-up capacitors.

I. F. Adjustments

Two transformers comprising four circuits, two of which have trimmer capacitors, are used in the I. F. amplifier. Proceed as follows:
(a) Short-circuit the antenna and ground terminals and connect the output of the oscillator between the control grid cap of the first detector (RCA-1A6) and ground. Connect an output indicator across the voice coil leads of the loudspeaker. Place the oscillator in operation at 460 K . C. and adjust its output and
the receiver volume control until a deflection is obtained in the output indicator.
(b) Adjust the secondary and then the primary of the first I. F. transformer (see Figure 4) until a maximum deflection is obtained in the output indicator.

This completes the I. F. adjustments. It is good practice to always follow the I. F. adjustments with the detector and oscillator adjustment, as there is an interlocking of adjustments that always occurs.

Detector-Oscillator Adjustments

The two-gang capacitor trimmer screws are accessible at the top of chassis. The series (600 K . C.) trimmer is accessible from the rear. Proceed as follows:
(a) Connect the oscillator between the antenna and ground terminals of the receiver. Connect the output meter across the voice coil leads of the loudspeaker.
(b) Place the oscillator in operation at $1400 \mathrm{~K} . \mathrm{C}$., set the dial at 140 and adjust the oscillator output and receiver volume control until a deflection is obtained in the output indicator.
(c) Adjust each trimmer on the gang capacitor until a maximum deflection is obtained.
(d) Set the oscillator at $600 \mathrm{~K} . \mathrm{C}$. and tune in the signal on the receiver. Then adjust the series trimmer, located on the rear of the chassis, until maximum output is obtained. While making this adjustment, rock the tuning capacitor back and forth through the signal. Then again check the adjustments in (b).

(3) Voltage Readings

The following voltages are those at the tube sockets while the receiver is in operating condition. No allowance has been made for current drawn by the meter and if low resistance meters are used, such allowances must be made.

RADIOTRON SOCKET VOLTAGES

135-Volt "B" Supply-No Signal-Maximum Volume Control

Radiotron No.		Control Grid to Ground Volts, D. C.	Screen Grid to Ground Volts, D. C.	$\begin{aligned} & \text { Plate to } \\ & \text { Ground Volts, } \\ & \text { D. C. } \end{aligned}$	$\begin{aligned} & \text { Plate, } \\ & \text { M. A. } \end{aligned}$	Filament Volts, D. C.
RCA-1A6	1st Dec.	*3.0	67.5	135	1.7	2.0
	Osc.	-	-	135	1.8	
RCA-34-I. F.		*3.0	67.5	135	3.0	2.0
RCA-32-2nd Det.		*6.5	67.5	*95	0.4	2.0
RCA-30-Driver		*9.0	-	130	3.5	2.0
RCA-30-Output		12.0	-	135	1.0	2.0
RCA-30-Output		12.0	-	135	1.0	2.0

*These voltages cannot be measured with ordinary voltmeter, as they are obtained by means of high resistance bleeders across a $221 / 2-v o l t$ " C " batteay.

PAGE 5-60 RCA
RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

Stock No.	Description	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	Description	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
	RECEIVER ASSEMBLIES		6980	Socket-4-contact output (No. 5) Radiotron socket.	\$0.20
2747	Cap-Contact cap-Package of 5.	\$0.50	3859	Socket-4-contact output (No. 6) Radiotron	
4000	Capacitor-Adjustable trimmer capacitor (C8)	. 78		socket. .	. 30
4353	Capacitor-100 mmfd. (C12).	. 30	4232	Socket-6-contact-1st detector and oscil-	
4354	Capacitor-1500 mmfd. (C3)	. 36		lator-Radiotron socket	. 35
4352	Capacitor-300 mmfd. (C18, C19)	. 25	6669	Switch-Tone control switch (S5).	. 50
6512	Capacitor -0.005 mfd ((C23)	. 28	4347	Terminal strip-Engraved "ANT-GND".	. 25
3888	Capacitor-0.05 mfd. (C24)	. 25	6993	Transformer-First intermediate frequency	2.10
3701	Capacitor-0.01 mfd. (C1, C20)	. 30	6994	transformer (L5, L6, C14, C15).	2.10
3877	Capacitor- 0.1 mfd ($\mathrm{C} 2, \mathrm{C} 16, \mathrm{C} 17$)	. 32	6994	Transformer-Second intermediate frequency transformer (L7, L8)	1.05
4355	Capacitor pack - Comprising two 1200 mmfd. capacitors (C21, C22).............	. 26	6995	Volume control (R7)	1.10
4349	Capacitor and transformer pack-Comprising one 8.0 mfd ., one 0.5 , one 0.25 mfd .		4350	REPRODUCER ASSEMBLIES Cable-4-conductor-Reproducer cable.	. 54
	capacitor and driver transformer (C7, C6, C13, T1).	3.95	9428	Cone-Reproducer cone (L10)-Package of 5.	5.00
6992	Coil-Antenna coil (L1, L2, R1, C1)	. 98	9503	Housing-Cone housing and core assembly	2.70
4343	Coil-Choke coil (L9)	. 60	3949	Magnet.	1.40
6664	Coil-Oscillator coil (L3, L4)	. 94	9502	Reproducer assembly complete.	8.40
6660	Condenser-2-gang variable tuning condenser (C4, C5, C10, C11).	2.78	6996	Transformer-Output transformer (T2)	1.68
4356	Resistor- 0.7 ohm -Flexible type (R6)Package of 10 .	1.50		MISCELLANEOUS ASSEMBLIES	
4345	$\begin{aligned} & \text { Resistor }-3200 \text { ohms - Carbon type - } 1 / 4 \\ & \text { watt }(\text { R12)-Package of } 10 \ldots \end{aligned}$	2.00	4289 4357	Body-Fuse connector body-Package of 10. Cable-Battery cable-6-conductor.35 1.52
4346	$\begin{aligned} & \text { Resistor - } 3700 \text { ohms - Carbon type - } 1 / 4 \\ & \text { watt }(\mathrm{R} 13) \text {-Package of } 10 \ldots \ldots \end{aligned}$	2.00	4288	Cap-Fuse connector cap-Package of 10 Connector-Fuse connector complete. . .	. 36
4344	Resistor - 7500 ohms - Carbon type - $1 / 4$.		4468	Dial-Station selector dial	. 22
	watt (R8)-Package of 10	2.00	6176	Escutcheon-Operating switch escutcheon-	
6303	$\begin{aligned} & \text { Resistot } 20,000 \text { ohms-Carbon type-r/2 } \\ & \text { watt (R5)-Package of } 5 \ldots \end{aligned}$	1.00	4286	Package of 5 Ferrule-Fuse connector ferrule and bushing-	. 50
3114	$\begin{gathered} \text { Resistor-50,000 ohms-Carbon type-1/4 } \\ \text { watt (R2)-Package of } 5 \ldots \ldots \ldots \end{gathered}$	1.00	3748	Package of 10.................. Fuse-0.5 ampere (F1, F2)-Package of 5...	.38 .40
3118	$\begin{aligned} & \text { Resistor- }-100,000 \text { ohms-Carbon type-1/4 } \\ & \text { watt (R4)-Package of } 5 \ldots \end{aligned}$	1.00	4290	Insulator-Fuse connector insulator-Package of 10	. 35
3619	Resistor-400,000 ohms-Carbon type- $1 / 4$ watt (R10)-Package of 5.	1.00	3088	Knob-Operating switch knob-Package of 5 . Knob-Station selector knob and pointer-	. 50
6186	$\begin{aligned} & \text { Resistor-500,000 ohms-Carbon type-1/4 } \\ & \text { watt (R1, R3)-Package of } 5 \ldots \ldots \ldots . \end{aligned}$	1.00	4132	Package of $5 \ldots . ~$.60 .55
3033	Resistor- 1 megohm-Carbon type- $1 / 4$ watt (R11)-Package of 5	1.00	4348	switch knob-Package of 5 . Lamp-Dial lamp.	.55 .38
6242	Resistor- 2 megohm-Carbon type- $1 / 4$ watt (R9)-Package of 5.	1.00	9050	Oscillator-Test oscillator- 90 to 25,000 K.C. Reflector-Dial light reflector.	$\begin{gathered} 29.50 \dagger \\ .30 \end{gathered}$
3584	Ring-Oscillator coil retaining ring-Package of 5	.40	3238	Screw-Set screw for operating switch knob -Package of 10	. 25
3682	Shield-First detector and oscillator-Radiotron shield	. 22	4393	Screw-No. 8-32-5/6-inch headless set screw for knobs-Package of 10.	. 25
4351	Shield-I. F. Radiotron socket shield	. 25	4160	Screw driver-Combination insulated screw	
6665	Shield-Oscillator coil shield	. 34		driver and socket wrench for I. F. and R. F.	
3056	Shield-Second detector-Radiocron shieldPackage of 2	. 40	4284	adjustments............................. Spring-Fuse connector spring-Package of 10	1.00 .30
3858	Socket-Dial lamp socket.	. 26	4540	Switch-Operating switch (S1, S2, S3, S4) . .	2.28
6300	Socket-4-contact second detector-Radiotron socket.	. 35	4285	Washer--Fuse connector insulating washerPackage of 10	. 22

RCA PAGE 5-61

PAGE 5-62 RCA
MODEL 127
Chassis Wiring \quad RCA-VICTOR CO., INC.

RCA PAGE 5-63
MODEL 127
RCA-VICTOR CO., INC.
Socket Layout Voltage

The following voltages are those at the various. tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if lower resistance meters are used, such allowances must be made.

RADIOTRON SOCKET VOLTAGES
220-Volt, D. C. Line - No Signal

Radiotron No.		Cathode to B- Volts, D. C.	Screen Grid to B-Volts, D. C.	Plate to B- Volts, D. C.	Plate Current, M. A.	Heater Volts, A. C.
RCA-6D6 R. F.		3.0	90	200	6.0	6.4
RCA-6A7	1st Detector	4.0	90	200	2.6	6.4
	Oscillator	-	-	125	3.3	
RCA-6D6 I. F.		3.0	90	200	6.0	6.4
RCA-75 2nd Detector		1.5	-	200	0.7	6.4
RCA-41 Power		13.0	190	205	25.0	6.4
RCA-41 Power		13.0	190	205	25.0	6.4

REPLACEMENT PARTS Insist on genvine factory tested parts，which are readily identified and may be purchesed from authorized dealers

	Discaurion			Discent		CAUTION－This receiver operates on 220 －volt direct current without a transformer between the line and the various parts of the receiver，such as A．C． receivers use．It is therefore extremely important to use the utmost caution when operating the receiver outside of the cabinet．Also a knob must always be placed on the shaft of the main tuning capacitor，as under certain conditions the full line voltage is obtained between this point and ground． （1）Line－up Capacitor Adjustments To properly align this receiver，it is essential that a modulated R．F．oscillator，such as Stock No．9050， an output indicator and an alignment tool（Stock No． 4160 ）be available．Figure 4 shows the location of the various line－up capacitors． I．F．Tuning Adjustments Two transformers comprising four tuned circuits are used in the intermediate amplifier．These are tuned to $370 \mathrm{~K} . \mathrm{C}$ ．and the adjustment screws are accessible as shown in Figure 4．Proceed as follows： （a）Short－circuit the antenna and ground leads and tune the receiver so that no signal is heard． Set the volume control at maximum and connect a ground to the ground terminal． （b）Connect the test oscillator output between the first detector control grid and chassis ground， preferably through a series condenser．Con－ nect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that，with the receiver volume con－ trol at maximum，a slight deffection is obtained in the output meter． （c）Adjust the secondary and primary of the first and then the second I．F．transformers until a maximum deflection is obtained．Keep the oscillator output at a low value so that only a slight deflection is obtained on the output meter at all times．Go over these adjustments a second time，as there is a slight interlocking of adjusements．This completes the I．F． adjustments． R．F．ánd Oscillator Ádjustments The R．F．line－up capacitors are located at the botrom of the coil assemblies instead of their usual position on the gang capacitor．They are all accessible from the bottom of the chassis except the $600 \mathrm{~K} . \mathrm{C}$ ． series capacitor，which is accessible from the rear of Proceed as follows： （a）Connect the output of the oscillator to the antenna and ground terminals of the receiver． Check the position of the indicator pointer when the tuning capacitor plates are fully meshed：It should be coincident with the radial line adjacent to the dial reading of 54. Then set the Test Oscillator at $1400 \mathrm{~K} . \mathrm{C}$ ．， the dial indicator＇at 140 and the oscillator out－ put so that a slight deflection will be obtained in the output meter when the volume control is at its maximum position． （b）With the Range Switch at the＂in＂position， adjust the three trimmers under the three R．F． coils，designated as L in Figure 4，until 2 maximum deflection is obrained in the outpur meter．Then shift the Test Oscillator fie quency to 600 K ．C．The trimmer capacitor， accessible from the rear of the chassis，should now be adjusted for maximum ourpur while now be adjusted for maximum output while rocking the main tuning capacitor back and forth through the signal．Then repeat the 1400 K．C．adjustment． （c）Now place the Range Switch at the＂out＂ position，shift the Test Oscillator to 15,000 K．C．and set the dial at 150．Adjust the three trimmer capacitors designated as S in Figure 4 for maximum output，beginning with the oscillator trimmer．It will be noted that the oscillator and first detector trimmers will have two positions at which the signal will give maximum output．The position which uses the lower trimmer capacitance，obtained by turning the screw counter－clockwise，is the proper adjustment for the oscillator，while the position that uses a higher capacitance is cor－ rect for the detector．Both of these adjustments must be made as indicated irrespective of output．The R．F．is merely peaked．In con－ junction with the detector adjustment，it is necessary to rock the main tuning capacitor back and forth while making the adjustment． This completes the line－up adjustments． The important points to remember are the need for using the minimum oscillator output to obtain a deflection in the output meter with the volume control at ics maximum position and the manner of obtaining the proper high frequency oscillator and detector	
		80.2					
			3878				
	C23						
					． 25		
	Capacior－ 410 mmfd （（C20）．．．．．				． 64		
	Capacior－ 2700 mmidd（C1				． 64		
	cor						
	cito						
	Capacior－ 0.1 mfd ．（C8， C						
					． 32		
	Capacicor－ 8.0 m Capacior - Adju				.40.38		
	Ar	2.68					
	Coil－R．				4.50 1.20 1.20		
	Condenser－－－zang variable tuning condenser						
		1.75			$\begin{aligned} & 1.20 \\ & 1.20 \end{aligned}$		
	Drive	2.40.60					
					． 45		
					6．10		
					${ }^{.42}$		
	Resisor watt（R13）	2.00					
					． 65		
	Resistor－ 1000000 oh	1.00					
	Resistor -600000 ob watt R23）				29.50		
					2.12		
				Comprising four bushings，fout screws and Gour wisher Screwdriver－Combination insulaced screw－ 			
	62						

SERVICE DATA

CAUTION－This reciver operates on 220 －volt
direct current withoutt atransformer between the line
and the and the various parts of the receiver，such as A ．C． use the utmost caution when operating the receiver placed on the shaft of the main tuning capacitor，as placed on the shaft of the main tuning capacitor，as
under certain conditions the full line voltage is
obtained between this point and ground．

（1）Line－up Capacitor Adjustments

 modulated R．F．oscillator，such as Stock No． 9050 ， 2n output indicator and an alignment tool（Stock No． the various line－up capacitors．Two are used in the intermediate amplifer．These are accessible as shown in Figure 4．Proceed as follows， （a）Short－circuit che ancenna and growal is heard． Set the volume control at maximum and
connect a ground to the ground terminal． （b）Connect the test oscillator output between the preferably through a series condenser．Con－ of the loudspeaker and adjust the oscillator output so that，with the receiver volume con－
obained in the output meter．
（c）Adjust the secondary and primary of the firrt maximum deflection is obtained．Keep the

 of adjusements．This completes the I．F．

R．F．and Oscillator Adjustments
 the chassis．
the proper high frequency oscillator and detector
adjustments．

畧夆高畧
 $\stackrel{8}{i}$ $\stackrel{8}{4} 88 \underset{-1}{8}$

RCA PAGE 5-65

PAGE 5-66 RCA

Figure 2-Chassis Wiring Diagram

RCA-VICTOR CO., INC. Trimmer Layout Socket Layout Circuit Data

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector and automatic volume control and a single Pentode output stage. An RCA-80 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker. Figure 1 shows the schematic circuit diagram, Figure 2 the chassis wiring, and Figures 3 and 4 the loudspeaker wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gangcapacitor are used in this circuit.

Figure 6-Location of Line-up Capacitors

In conjunction with these three tuned circuits, it is well to point out that three different groups of tuned circuits are used, one for each tuning band. A threeposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to the absorption effects caused by the coils, the natural period of which, with tuning capacitor disconnected, fall in the next higher frequency band.

The output of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to $460 \mathrm{~K} . \mathrm{C}$.

The output of the I. F. amplifier is then applied to the diode electrodes of the RCA-6B7, which is a combined second detector, automatic volume control and A. F. amplifier. The direct current component of the rectififed signal produces a voltage drop across resistor

Figure 7-Tube Socket Voltages

RCA-VICTOR CO., INC.

R-12. The full voltage drop constitutes the automatic bias voltage for the R. F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F. first detector and I. F. give

Figure 3-Table Loudspeaker Wiring
the automatic volume control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA-6B7 and thereby regulates the audio output of the entire receiver.

The output of the RCA-6B7 is resistance coupled to the grid of the RCA-41 tube, which is the power output amplifier. This tube is operated as a Pentode and provides high audio gain and satisfactory output power. The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.

The tone control consists of a variable resistor and fixed capacitor connected in series across the primary of the output transformer. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

Plate and grid voltages for all tubes are supplied from the output of the rectifier-filter system. An RCA-80 is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Figure 4-Console Loudspeaker Wiring

Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this, it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced by a lowering of output when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 8. An example of the proper manner of using the tuning wand would be to assume the external oscillator were set at 1720 and the signal tuned in, and the output indicator should be connected across the voice coil of the loudspeaker. Then the tuning wand would be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in output when each end of the wand is inserted in each of the three transformers. If one end-for example, the iron end-when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

(2)
 I. F. TUNING CAPACITOR ADJUSTMENTS

Although this receiver has one I. F. stage, two transformers having four adjustable capacitors may require adjustment. The transformers are all peaked, being tuned to $460 \mathrm{~K} . \mathrm{C}$.

A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicator.
(c) Refer to Figure 6. Adjust each trimmer of the I. F. transformers until a maximum output is obtained. Go over the adjustments a second time.

This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F. and oscillator aajustments due to interlocking which always occurs.

R. F. OSCILLATOR AND FIRST DETECTOR ADJUSTMENTS

Four R. F., oscillator and first detector adjustments are required in band "A." Three are required in bands " B " and " C ."

To properly align the various bands, each band must be aligned individually in the order given. This is " A," " B " and " C." The preliminary set-up requires the external oscillator to be connected between the antenna and ground terminals of the receiver and the output indicator must be connected across the voice coil of the loudspeaker. The volume concrol must be at its maximum position and the input from the oscillator must be at the minimum value possible to get an output indication under these conditions. In the high frequency bands, it may be necessary to disconnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low input to the receiver.

The dial pointer must be properly set before starting any actual adjustments. This is done by turning the variable capacitor until it is at its maximum capacity position. One end of the pointer should point exactly at the horizontal line at the lowest frequency end of band " A," while the other end should point to within $1 / 4-$ inch of the horizontal line at the highest frequency.

Figure 8-Location of Coils in Shields
Figure 6 shows the location of the trimmers for each band. Care must be exercised to merely adjust the trimmers in the band under test.

[^12](d) Shift the external oscillator frequency to 600 K. C. Tune in the 600 K . C. signal, irrespective of scale calibration, and adjust the series trimmers, located on rear apron of chassis, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at $1,720 \mathrm{~K} . \mathrm{C}$. as described in (c).

Band " B "

(a) Set the Band Switch at "B."
(b) The detector and antenna trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4$ inch).
(c) Tune the external oscillator to $5,160 \mathrm{~K} . \mathrm{C}$. , set the pointer at $5,160 \mathrm{~K}$. C. Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal which should be received at approximately $4,240 \mathrm{~K}$. C. on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then aligned with the oscillator circuit and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the cuning capacitor, until the signal is peaked for maximum output.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.

Band "C"

(a) Set the Band Switch at "C."
(b) The detector and antenna trimmers should first be tightened to approximately $3 / 4$ maximum capacity (turned $3 / 4 \mathrm{in}$.)
(c) Tune the external oscillator to $18,000 \mathrm{~K} . \mathrm{C}$., set the pointer at 18 M . Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum to maximum.
(d) Check for the image signal, which should be received at approximately 17,080 on the dial. It may be necessary to increase the external oscillator output for this check.
(e) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then aligned with the oscillator circuit and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum output.
(f) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adiustment.

PAGE 5-70 RCA
REPLACEMENT PARTS

VOLTAGE READINGS
วqп2 sпо 115-Volt A. C. Line-No Signal-Volume Control Maximum

0's	0.02	$\begin{aligned} & \text { (SNY) } \\ & 069 \end{aligned}$	-	-	
ع'9	0'0¢	Sヶ2	S92	S.91	IMd-ir-wวy
$\varepsilon \cdot 9$	LO	. 06	OS	$0 \cdot \varepsilon$	102332a Puz-LG9-YJU
$\varepsilon{ }^{\prime \prime}$	0.6	592	SOT	$0 \cdot 9$	- I-9a9-ษวษ
$\varepsilon ¢$	S'\%	$0 z z$	-	-	LY9-yJy
	${ }^{\text {c }}$ ¢	592	SOT	$0 \cdot 9$	
$\varepsilon \cdot 9$	$0 \cdot 6$	S92	SOI	0.9	a $x-909-w ว 4$
	$\underset{\substack{\text { INaxañ } \\ \text { axvnd }}}{\text { U'W }}$		-ว'a 'sLion ol arag nazas		

*Voltage calculated from $265 \mathrm{~V} .+$ B.
REPLACEMENT PARTS

$\begin{gathered} \text { Scock } \\ \text { No. } \\ \hline \end{gathered}$	Discaiption	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	Discriftion	$\xrightarrow{\text { List }}$
9511	Transformer-Power transformer 105-125			REPRODUCER ASSEMBLY	

$\begin{array}{l}\text { TABLE MODEL } \\ \text { T- } \\ \text { T-conductor-Reproducer cable. }\end{array}$	$\$ 0.32$

REPRODUCER ASSEMBLY | 4.85 | | |
| :--- | :--- | ---: |
| 1.25 | | $\begin{array}{r}\text { REPRODUCER ASSEMBLY } \\ \text { CONSOLE MODEL }\end{array}$ |
| | 4473 | Coard—Terminal board assembly..... |

ํ.
ทั ธ ¢ ¢
8
-

RCA PAGE 5-71

PAGE 5-72 RCA
1WDEI 135-B,235-B
Socket Layout
Voltage
RCA-VICTOR CO., INC.

Figure 3-Loudspeaker Wiring

Volume Control at Maximum-No Signal-135 Volt "B" Battery-4.5 and 7.5-Volt Bias Batteries

Radiotron No.		Control Grid to Ground	Screen Grid to Ground	Plate to Ground	Plate, M. A.	Filament Volts
RCA-1C6	1st Detector	3.5*	67.5	135	0.6	2.0
	Oscillator	-	-	130	4.0	
RCA-34-I. F.		3.5*	67.5	135	2.3	2.0
RCA-34-I. F.		3.5*	67.5	135	2.3	2.0
RCA-30-Detector AVC		-	-	-	-	2.0
RCA-32-Audio		3.0*	30*	40*	0.3	2.0
RCA-30-Driver		7.5*	-	133	4.0	2.0
RCA-19-Power		3.0	-	135	3.0	2.0

*These voltages cannot be measured with ordinary voltmeter.

RCA PAGE 5-73

PAGE 5-74 RCA
MODET $135-\mathrm{B}, 235 \mathrm{~B}$ Alignment Data Parts List

RCA-VICTOR CO., INC.

coils, deignated as BC in Figure 4 , uncil a maximum defetcrion is obrained in the out-
put meter. Then shife the Test Oscilator tequency to 600 K . C. The trimmer capac. itot, accessible from the rop of the chassis,
should now be adiused for maximum outeShould now be adjusted for maximum outback and forrth chrough che signal. Then
tepact the 1720 K . C. adjuscment. repeac the 1720 K. C. adjusemenc.
(c) Now place the Range Switch act the "ouc" position, shiff the Test Oscillator to 18,000
K. C. and set the dial at 18 A. Adjust the
 Rigure 4 for maximum output, begining
with the oscillaror tuimmer: It will be noted witat he oscilatar trimmer. It will be noted will have ewo positions at which the signal will give maximum output. The position which wes the lower rimmer capaciance,
obatined by turing the screw countercocckeste, is the proper adjusemenct for che
 The deteceror trimmer must be ajjusced for maximum output while eotcking the mand
tuning cappactor back and forth hrough be be signal. Boch of these adjustments must be Trop Clreviit Aduutment

A trap circuit, tuned to the I. F. frequency (460

 are used and adjustenent may be made by mans of
either or boch. Proceed as follows: either or boch. Proceed as follows:
(a) Place che reeciver in operation and connect
the test osillacor outpur from the anemna to ground serminals of the receiver. Adjuse
the test osedlator frequency to 460 K . C. and
 coil of the reproducer.
(b) Adjust either or boch of che trap circuit
 form the erceicere is obaiane. The poipent of
minimum output sis he proper adjusmenc. It should be remembered that the trimmers provide an adjusemenc over a s mall range. However, in
evenct costant intefferace is experienced $a t$ a slighly
 to che frequency of the interference will materially
reduce is effect.
(1) Line. UP Capacior Adiustments

 4160, be availabel. Fikure e shows the location of
the various ine lip capacitors.

1. F. Tuning Adjuatments

The I. F. amplifer comprises swo stages which untuned so that only a tooal of fout tuned circuits is (a) Shor-difreuit the anterna and groond derminal and thine che rexeiveren so so that no signal is
heard, Set the volume control at maximum and connect a r round to co the ground eerminal. (b) Connect che eere oscillaror output between

 and then the sceond I. F. cransformers uncil
a maximum defection is obtained The The a maximum deflection is obtained.
third transformer is untuned and does not

 Go over these adjustments a second time, as
there is a slight incerlocking of adjustments.
This completes the I. F. adjustments. This completes the I. F. adjustments.
 pottom of the colt assemblies instead of their usual from the bottom of the chassis except the $600 \mathrm{~K} . \mathrm{C}$.
series capacitor, which is accessible from the top of
(a) Connect the outpur of the oscillator to the
 weshed. It should be toincidenc with the
met

 will be obeained in the output meter when
the volume control is at is maximum ${ }_{\text {Adjus the wo }}^{\text {por }}$ erimmers undet the two R. F.

RCA PAGE 5-75

RCA-VICTOR CO., INC. SERVICE DATA

MODEL 140,141,141-E. 240 Revised
Circuit Data Alignment Data

Electrical Specifications

Voltage Rating. 100-125 Volts and 200-250 Volts
Frequency Rating
25-60 (100-125 Volts Only) and 50-60 Cycles
Power Consumption. 110 Watts
Type and Number of Radiotrons
3 RCA-58, 1 RCA-2A7, 1 RCA-2B7, 1 RCA-56, 1 RCA-53, 1 RCA-80-Total, 8
Type of Circuit
Straight Super-Heterodyne for all frequencies with Class "B" Output Stage.
Undistorted Output. 6 Watts
This all-wave super-heterodyne receiver is of the continuous tuning type, utilizing a straight super-heterodyne circuit in all bands. The bands are as follows:

Selector Switch Position	Frequency Range (Kilocycles)	$\begin{aligned} & \text { Wave-Length } \\ & \text { Range } \\ & \text { (Meters) } \end{aligned}$
\mathbf{X}	150-410	2000-732
A	540-1500	555-200
B	1500-3900	200-77.0
C	3900-10000	77.0-300
D	8000-18000	37.5-16.7

This receiver will be supplied in two models, one including all bands and one with band X omitted. These instructions, however, will cover both types of the receiver. The variations in the wiring for the two models are plainly shown in the illustrations. Figures A, B and C show the schematic circuit and wiring diagrams.

The circuit consists of an R. F. stage using Radiotron RCA-58, a combined oscillator and first detector using Radiotron RCA-2A7, an I. F. stage using RCA-58, a second detector and A. V. C. using RCA-2B7, an A. F. driver using RCA-56, and a Class "B" output stage using an RCA-53. The RCA-80 functions as the rectifier in the power supply circuits.

The foregoing tubes and circuit functions apply to bands X, A, B and C only. In the case of band D, an additional R. F. stage utilizing an additional Radiotron RCA- 58 is used. This is to increase the sensitivity and image frequency selectivity and to reduce the interference caused by tube hiss and signals corresponding to the intermediate frequency.

The intermediate frequency is 445 K . C. The use of this frequency gives an especially good image frequency ratio and facilitates alignment of the osciliator at the higher frequency bands.

Mechanical Construction

The chassis consists of two major assemblies, which must be disassembled for certain repair work. These assemblies consist of the chassis proper, including the main frame, power transformer, etc., and the coil assembly. The coil assembly consists of'fifteen transformers supported upon individual tubular bakelite forms, each fastened to a separate porcelain strip upon which the coil terminals are mounted with their associate trimmer capacitor. This entire assembly, with the selector switch, is grouped in a shielded compartment which is mounted in the base of the main chassis assembly.

In order to remove this assembly it is necessary to remove the four nuts shown in Figure D and unsolder the connections of the fifteen leads shown in Figure C at the points where they connect to the main chassis. The leads should be ailowed to remain on the coil assembly. After this is done,
the coil assembly may be removed and repairs to it or to the main chassis may be easily made. If a coil or its associated trimmer is to be replaced, then only the bottom shield of the coil assembly must be removed. This is done by removing the four nuts that hold it to the chassis studs. This is shown in Figure D.

Line-Up Capacitor Adjustments

This receiver is aligned in a similar manner to that of a standard broadcast band receiver. That is, the three main tuning capacitors are aligned by means of three trimmers in each band and, on the three lowest frequency bands, a series trimmer is adjusted for aligning the oscillator circuit. The other two bands do not require this low-frequency trimmer, it being fixed in value. In the case of band D, it is necessary to adjust four trimmers, due to the additional \mathbf{F}. R. stage used.

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at $445 \mathrm{~K} . \mathrm{C}$. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 90 K . C. to $25,000 \mathrm{~K}$. C., continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 -ohm resistor, for use as a "dummy" antenna, a non-metallic screw-driver such as Stock No. 4160, and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.

To align the intermediate frequency circuits, connect the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with a $\mathbf{3 0 0}$-ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver. This is done by connecting the 300 -ohm resistor between the antenna and ground terminals of the receiver and attaching a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

PAGE 5-76 RCA

MODEL 140,141,141-E, 240 Revised

Voltage
Wave Band Data

Power Supply-The instruments in this series are supplied in either of two alternating current power supply ratings: (1) 100-125/200-250 volts, 50-60 cycles and (2) 100-125 volts, 25-60 cycles (see rating label inside cabinet). To insure correct Radiotron operating voltages, both types are equipped to permit rearrangement of the internal connections to conform with the actual voltage available. Thus, the 50-60 cycle models may be adapted for $100-115,115-125,200-230$ or $230-250$ volts; and the 25-60 cycle models for either 100-115 or 115-125 volts.

Of course, alignment correction at the high-frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low-frequency end of a tuning range, it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

RCA-VICTOR CO., INC.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure E for the location of the line-up capacitors.

Pickup Connections

A terminal board is provided at the rear of the chassis for attaching a magnetic pickup to this instrument. Such connections are shown in Figures F, G and H.

Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure J shows the proper manner of making the various connections possible for this transformer.

The 25-60 cycle transformer uses only one 100-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure I may be used for 100-115-volt lines.

TUBE SOCKET VOLTAGES

120 Volt A. C. Line

Radiotron No.	Control Grid to Cathode, Volts	Screen Grid to Cathode, Volts	Plate to Cathode Volts	Plate Current M. A.	Filament or Heater Volts
RCA-58, R. F.	**2.0	100	255	6.0	2.6
RCA-58, S. W. R. F.	**2.0	100	255	6.0 -	2.6
RCA-2A7, Det.-Osc.	**2.5	100	250	*5.0	2.6
RCA-58, I. F.	**2.0	100	255	6.0	2.6
RCA-2B7, 2nd Det.-AVC	**1.5	35	105	1.5	2.6
RCA-56, A. F. Driver	**12.0	-	245	6.0	2.6
RCA-53, Output	0	-	300	36.0	2.6
RCA-80, Rectifier	640 R. M. S. Plate to Plate			130 per Plate	5.0

* Voltages and current apply to detector portion of tube.
** These voltages cannot be measured because of the high resistance of the circuits.

External Oscillator Frequency	Dial Setting	Location of Line-Up Capacitors	Poaition of Selector Switch	Adjust for	Number of Adjustments To be Made
$445 \mathrm{~K} . \mathrm{C}$.	Any setting that does not bring in station.	At rear of chassis.	Any position that does not bring in station.	Maximum output.	4
370 K. C.	370 K. C.	Bottom of chassis.	X	Maximum output.	3
175 K. C.	Set for signal.	Top of chassis.	\mathbf{X}	Maximum output while rocking dial back and forth.	1
1400 K. C.	1400 K. C.	Bottom of chassis.	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial back and forth.	1
3900 K. C.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
$1710 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M.C}$.	$10 \mathrm{M} . \mathrm{C}$.	Bottom of chassis.	C	Maximum output. (See Note.)	3
15 or 18 M. C.	15 or 18 M. C.	Bottom and top.	D	Maximum output. (See Note.)	4

NOTE-It is important to note, when aligning bands C and D, that two peaks will be observed on the trimmers for the oscillator and for the first detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitance. It is' essential that the proper peak be chosen, as otherwise tracking and sensitivity will be very poor at other frequencies. When adjusting the detector trimmer, the tuning capacitor should be rocked, since there is a reaction on the oscillator tuning.

RCA PAGE 5-7\%
MODEH 140,141,141-E, 240 Revised Schernatic, Trimmers

PAGE 5-78 RCA
MODEH 140,141,141-E, 240 Revised
Chassis Wiring

RCA PAGE 5-79

PAGE 5-80 RCA

MODEI 140,141,141-E, 240 Revised
 RCA-VICTOR CO., INC.

Parts List

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		6631	Coil and capacitor assembly-Antenna coil and capacitor -150-410 kilocycles-5-band (L1, L6, C1)	\$2.16
2747 2816	Contact cap-Package of 5	\$0.50	6632	Coil and capacitor-R. F. coil and capacitor assembly-	2.10
	Resistor-1,0 Package of $5 . \ldots . ~$	1.00	6633	Coil and capacitor-Oscillator coil and capacitor assembly	
3056	Shield-Output Radiotron shield-Package of 2.	0		-150-410 kilocycles-5-band (L21, L26, C28)	1.40
3076	Resistor-1 megohm-Carbon type- $1 / 2$ watt (R19, R22, R23)-Package of 5.	1.00	6634	Coil and capacitor-Antenna coil and capacitor assembly -540-1,500 kilocycles-4- or 5-band (L2, L7, C2)	1.86
3114		1.00	6635	Coil and capacitor-R. F. coil and capacitor assembly-540-1,500 kilocycles-4- or 5-band (L12, L17, C18) : . . .	2.00
3118		1.00	6636	Coil and capacitor-Oscillator coil and capacitor assembly -540-1,500 kilocycles-4- or 5-band (L22, L27, C30) . .	1.40
3435		1.00	6637	Coil and capacitor-Antenna coil and capacitor assembly $-1,500-4,000$ kilocy cles-4- or 5 -band (L3, L8, C3)	1.56
3470	Resistor-6,500 ohms-Carbon typo-l watt (R6)Package of 5.	1.10	6638	Coil and capacitor-R. F. coil and capacitor assembly-1,500-4,000 kilocycles-4- or 5 -band (L13, L18, C19) ...	1.66
3526	Resistor-2,000 ohms-Carbon type-1/2 watt (R21)Package of 5.	1.00	6639	Coil and capacitor-Oscillator coil and capacitor assembly -1,500-4,000 kilocycles-4- or 5-band (L23, L28, C33).	1.4
3527	Resistor- $\mathbf{8 0 0}$ ohms-Carbon type-1/2 Watt (R16) Pkg. of 5.	$\begin{array}{r}1.00 \\ \hline 32\end{array}$	6640	Coil and capacitor-Antenna coil and capacitor assembly-	
3529	Socket-Dial lamp	. 32		$4,000-10,000$ kilocycles-4- or 5 -band (L4, L9, C4)	1.54
3555 3572	Capacitor- 0.1 mfd . (C26)...	. 36	6641	Coil and capacitor-R. F. coil and capacitor assembly-4,000-10,000 kilocycles-4- or 5-band (L14, L19, C20) . .	
3572	Socket-7-contact Radiotron socket-First detector and oscillator.	. 38	6642	Coil and capacitor-Oscillator coil and capacitor assembly -4,000-10,000 kilocycles-4- or 5-band (L24, L29, C36)	1.60 1.34
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt (R17, R18) -Package of 5 .	1.00	6643	Coil and capacitor-Antenna or R. F. coil and capacitor	1.34
3597 3602	Capacitor- 0.25 mfd . (C58) .	. 40		assembly-8,000-18,000 kilocycles-4. or 5-band (L5, L10, C5-L15, L20, C21)	1.52
3602	Resistor-60,000 ohms-Carbon type- $1 / 4$ watt (R14)Package of 5	1.00 34	6644	Coil and capacitor-Oscillator coil and capacitor assembly -8,000-18,000 kilocycles-4- or 5-band (L25, L30, C38)	1.52
3616 3622	Capacitor-300 mmfd. (C51).	. 34	6675	Shaft-Shaft for condenser drive assembly-Comprising	1.54
3641	Capacitor-0.1 mfd. (C10, C15, C25)	. 35	79	shaft, ball race with retainer and set screw.............	.35
3643	Capacitor-. 005 mfd . (C57)	. 25	6889	Capacitor-18. mfd. (C60)	1.55
3711	Capacitor-80 mmfd. (C55)	. 40	6890	Transformer-First intermediate frequency transformer	
3719	Socket-7-contact Radiotron sock	. 30		(L31, L32, C41, C42) .	2.40
3771 3845	Resistor-8,500 ohms-Carbon type-3	. 25	6891	Transformer-Second intermediate frequency transformer (L33, L34, C44, C45)	
3845	Capacitor-2,340 mmfd. (C39)	. 50		(L33, L34, C44, C45)	2.40
3846	Capacitor-2,250 mmfd. (C37)	. 50	6892	Tone control (R20)	1.50
3848	Capacitor-300 mmfd. (C31)	. 30	6955	Shield-Second R. F. Radiotron shie	. 25
3849	Capacitor-50 mmfd. (C16)	. 30	6956	Shield-Radiotron shield top.	. 15
3861	Capacitor-Adjustable trimmer (C29, C32, C35)	. 78	7065	Serewdriver-Combination insulated screwdriver and alli-	
3863	Resistor- 400 ohms-Carbon type- $1 / 2$ watt (R4, R10, R12)-Package of 5 .	1.00	7484	gator jaw end wrench for R. F. or I. F. adjustment Socket-5-contact Radiotron socket.	.80 .35
3864	Capacitor-300 mmfd. (C46)	. 30	7485	Socket-6-contact Radiotron socket	. 40
3865	Capacitor-160 mmfd. (C47)	. 30	9042	Transformer-Power transformer-105-250 volts-50-60	
3888	Capacitor-. 05 mfd (C6, C22, C23,	. 25		cycles (T1)............................	6.84
3901	Capacitor-. 05 mfd . (C48)	. 36	9046	Transformer-Power transformer-105-125 volts-25-40	
3931	Capacitor-45 mmfd. (C27).	. 30		Oscillator-Test oscillator-150 to $\mathbf{2 5 , 0 0 0} \mathrm{K}$.	${ }^{93.22}+$
3932	Capacitor-. 0024 mfd. (C11)30 .34	${ }_{10194}$	Ball-Steel ball for condenser drive assembly-Package	$33.50 \dagger$
3973	Capacitor- $\mathbf{1 , 0 0 0}$ mmfd. (C64,	. 34	10194	of 20	. 25
4019	Capacitor- $1,000 \mathrm{mmfd}$. (C3	. 34			. 25
4030	Bracket-Tone or volume control mou	. 10		MISCELLANEOUS	
4033	Capacitor-20 mmfd. (C61, C62, C63) 34		Knob--Volume control or tone control knob-Package of 5.	
4103	Shield-First detector and R. F. Radiotron	. 20	$\begin{aligned} & 3829 \\ & \mathbf{3 8 3 0} \end{aligned}$	Knob-Station selector knob-Package of 5 .	1.10
4104	Shield-I. F. Radiotron shield	. 20	3831		1.08 1.08
4205	Coil-Second detector choke (L41)	.50 .34	3831 3876		1.08 .60
4207	Capacitor- 0.1 mfd ((C13, C43)	. 34	38876	Cable-3-conductor for loudspeaker-4-band..............	60
6136	Resistor-3,500 ohms-Carbon type-1 watt (R7)-Package of 5	1.10	3878	Screws-No. 4-40-1 fastening station selector pointer--Package of $20 . \ldots$. . .	. 25
6188	Resistor-2 megohme-Carbon type-1/2 watt (R13)-		3952	Escutcheon-Volume control escutcheon.	.10
	Package of 5......................................	1.00	3953	Escutcheon-Range switch escutch	. 10
6300	Socket-4-contact Radiotron socket.	35	3992	Escutcheon-Range awitch escutcheon-4-ba	. 10
6303	Resistor-20,000 ohms-Carbon type- $1 / 2$ watt (R26)Package of 5 .	1.00	4160	Screwdriver-Combination insulated screwdriver and socket wrench for I. F. and R. F. adjustments..........	1.00
6512	Capacitor-. 005 mfd ($\mathbf{C 5 4}$)	. 28	6112	Cushions-Rubber cushions for chassis-Package of 4	. 25
6603	Condenser-4-gang variable tuning condenser (C7, C14, C24, C40)	3.80	$\begin{aligned} & 6614 \\ & 6615 \end{aligned}$	Glass-Station selector dial glass. Ring-Retaining ring for dial glase-Package of 5 .	.30 .34
- 6604	Capacitor-0.5 mfd. (C53)	. 50	6616	Bezel-Metal hezel for station selector dial (RCA).	. 50
6605	Transformer-Output trangformer	1.48	6671	Cable-2-conductor shielded for loudspeaker-5-band.	. 36
6606 6607	Reactor-Filter reactor (L37)...	1.66	6672	Screen-Translucent celluloid screen-For dial lamps-	
6607	Reactor-Tone control reactor (L3)	1.14 2.04		Package of 5 .	. 30
6608	Transformer-Audio driver transformer	2.04	6673	Pointer-Station selector pointer-Package of 5	. 64
6609	Capacitor-18. mfd. (C59)	1.10	6677	Dial-Station selector dial-5-band-Package of 5	1.42
6612	Volume control (R15).	1.20	6678	Dial-Station selector dial-4-band-Package of 5.	1.42
6613	Drive-Variable condenser drive assembly-Complete....	1.00	6756	Bezel-Metal bezel for station selector dial (Plain)	. 50
6626	Capacitor pack-Comprising one 4. mfd., and two 10. mfd., capacitors (C12, C49, C56) .	1.86		REPRODUCER ASSEMBLIES	
6628	Capacitor and coil-Antenna coil and capacitor assembly-$8,000-18,000$ kilocycles-4- or 5 - band (L39, L40, C8) . .	1.50	8969	Cone-Reproducer cone complete (L36)-Package of 5.	6.35
6629	Switch-5-band selector switch.	3.48	9438	Reproducer complete	6.88
6630	Switch-4-band selector swit	3.48	9439	Coil assembly-Field coil, magnet and cone support (L38)	5.22

rCA Victor Models 143 and 242

SERVICE NOTES

ELECTRICAL SPECIFICATIONS

PHYSICAL SPECIFICATIONS

Height.	Model 143 20\%/6 Inches	Model 242 411/2 Inches
Width.	.17\%/8 Inches	26 Inches
Depth.	141/2 Inches	14 Inches

This eight-tube, four-band Superheterodyne receiver is of the "all-wave" type, having a continuous tuning range extending from 140 K . C. to $18,000 \mathrm{~K}$. C., except for one break between 410 K. C. and 540 K. C. Such a tuning range permits the listener to receive all of the important broadcasting, police, aircraft and amateur call bands used throughout the world.

Excellent sensitivity, selectivity and tone quality,
together with a high output (4 watts undistorted), Class A amplifier gives the receiver outstanding performance. Operating features include an "airplane" type dial, a double-ratio vernier drive, a visual band indicator, and a special "second hand" on the dial for logging short-wave stations. Other important features include automatic volume control, sensitivity control, large loudspeaker unit and a terminal board for easily artaching a magnetic pickup.

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector and automatic volume control, a first audio stage and a push-pull Pentode output stage. An RCA-80 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes and field excitation for the loudspeaker. Figures 1 and 2 show the schematic diagrams, Figures 5 and 7 the chassis wiring, and Figures 3 and 4 the loudspeaker wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang capacitor.

Combined with the signal in the first detector is the local oscillator, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang capacitor are used in this circuit.
In conjunction with these three tuned circuits, it is well to point out that four different groups of tuned circuits are used, one for each tuning band. A fourposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to the absorption effects caused by the coils, the natural period of which, with the tuning capacitor disconnected, falls in the next higher frequency band.

RCA-VICTOR CO., INC.

Circuit Data
The output of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to $460 \mathrm{~K} . \mathrm{C}$.

Figure 3-Console Loudspeaker Wiring
The output of the I. F. amplifier is then applied to the diode electrodes of the RCA-75, which is a combined second detector, automatic volume control and A. F. amplifier. The ditect current component of the rectified signal produces a voitage drop across resistor R-32. The full voltage drop constitutes the automatic bias voltage for the R.F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F., first detector and I. F. give the automatic volume control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA-75 and thereby regulates the audio output of the entire receiver.

The output of the detector is resistance coupled to the grid of the RCA-76, first audio stage, which is transformer coupled to the push-pull output stage. On some models the grid coupling resistor between
the detector and audio stage is 1 megohm (R-21, Figure 1). Other models have two resistors, R-59, 400,000 ohms, and R-21, 2 megohms (Figure 2), with the band selector switch shorting out R-21 in bands B and C. The purpose of this latter type of connection is to reduce the low frequency output in bands B and C , thereby improving the performance of the receiver in these bands.
The output stage uses two RCA-42's, which give a low distortion, high audio output to the loudspeaker. A high frequency tone control, which consists of a variable resistor and capacitor, is connected across the grids of the output stage. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obrained.

Figure 4-Table Loudspeaker Wiring
The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.

Plate and grid voltages for all tubes are supplied from the output of the rectifier-filter system. An RCA-5Z3 is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

SERVICE DATA

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Equipment

To properly align this receiver, proper test equipment must be used. This consists of a modulated R. F. oscillator having proper frequency range, an output indicator, an alignment tool and a tuning wand.

These parts, which are shown on page 15, have been developed by the manufacturer of this receiver for use by service men to duplicate the original factory adjustments.

Checking With Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance,
 From this，it is seen that unless the crimmer ad
ustment for a particular coil is perfect at alignment requencies，inserting one end of the wand may
increase the output of a particular signal．A perfect
 The shields over the R．F．coil assembly have a hole at their top for entrance of the cuning wand．The
location of the various coils inside of the shield is n
0
0
 signal tuned in，and the output indicator connected
across the voice coil of the loudspeaker．Then the cuning wand should be inserted，first one end and then at the left of the R． F ．assembly，facing the front of

（2）I．F．TUNING CAPACITOR ADJUSTMENTS This receiver has one I．F．stage with two trans－
formers having four adjustable capacitors that may rommers adaving four adjustable capacitors that may
req 460 K ．C．

A detailed procedure for making this adjustment
 tuned to 460 K ．C．between the first detector
grid and ground．Connect the output indicator （b）Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$ ． Place the receiver in operation and adjust the
station selector until a point is reached（Band
A）where no signals are A）where no signals are heard and turn the
volume control to its maximum position volume control to its maximum position．
Reduce the oscillator input until a slight （c）Refer to Figure 8．Adjust each trimmer of the I．F．transformers uncil maximum output is
obained．Go over the adjustments a second time．

This completes the I．F．adjustmenss．However，
it is good practice to follow the I．Fadjustmensw with
the R．F．and oscillator adjustments due to interlock－ the R．F．and oscillator adjustments due to interlock－
ing which always occurs．
（3）R．F．，OSCILLATOR AND FIRST DETECTOR

$\begin{array}{ll}\text {（c）Check for the image signal，which should be } \\ \text { received at approximately } 4,240 \text { K．C．on the } & \text {（4）POWER TRANSFORMER CONNECTIONS }\end{array}$葛 volt lines．Figure 9 shows the schematic circuit of
the transformer and the proper voltage to be applied to the various taps．The taps are located on the power
ransfformer assembly and are accessible without re－ moving the chassis from the cabinet．
（5）MAGNETIC PICKUP CONNECTIONS
 tions that will be required for the different turntable

（6）VARIATIONS IN MODELS circuits of these receivers，which should be noted in event service work is necessary in the circuits that | Group 1－C -52 | 1120 mmfd ． |
| :--- | :--- | $\begin{array}{ll}\text { R－18 } & 10,0,00 \text { ohms } \\ \text { R－19 } & 100,000 \text { ohms } \\ 15,000 \text { ohms }\end{array}$ Group 2－C－52 200 mmfd ．

 10，000 ohms radiotron socket voltages 18．Volt A．C．Line－Maximum Volume ond Senitivity－No Sisnal

	\％	$\%$	$\%$	$\%$	$\stackrel{?}{6}$	$\stackrel{セ}{6}$	$\%$	i
	$\stackrel{n}{0}$	$\stackrel{\square}{ \pm}$	$\stackrel{n}{\sim}$	－	$\stackrel{\sim}{i}$	$\stackrel{n}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{\circ}{\square}$
	N	$\underset{\sim}{\sim}$	N	$\stackrel{\text { i }}{1}$	～	\％	－	
	안	9	알	$!$	1	$\stackrel{\text { à }}{\text { a }}$	吕	1
（	\％	$1 \stackrel{\circ}{\square}$	\％	\cong	\％	$\stackrel{\text { ® }}{ }$	ํㅜํ	1
							$\begin{array}{\|l} \hline y \\ \text { g } \\ \text { a } \\ \text { y } \\ \text { S } \\ \hline \end{array}$	

the antenna and ground terminals of the reciev
and
the output indicator across the voice coil and the oudpput indicarar The volume and sensitivity contrors must be at the maximum position and che
input from the oscillator must be at che minimum value possible to get an output indication under these conditions．In the hiigh frequency bands，it
may be necessary to disconnect the oscillator from the receiver and place it at a distance in order to get
i sufficiently low input to the receiver．

 point to within $1 / 64$ inch of the horizontal line at
the highess frequency end of Band＂A ．＂

Figure 8 shows the location of the trimmers for
each band．Care must be exercised to only adjust the trimmers in the band under test．
Band "X"
＝
maximum output．
（c）Shiff the external oscillator frequency to 175

 410 K．C．as described in＂（b）．

8
8
0
0
0
0
0.3
0

（a）Set the band switch at＂B．＂

PAGE 5-84 RCA

NODEL 143,242
Trimmer Layout
Alignment Data

Figure 6-Location of Coils in Shields

RCA-VICTOR CO., INC.

Group 3-R-28 and C-52 are removed from the resistor board inside of chassis and mounted externally on phonograph terminal board. No. 3 terminal has been added to terminal board. Electrically, this group is identical with Group 2, the schematic and wiring diagrams being shown in Figures 1 and 5.
Group 4-Resistor R-10 has been removed. Resistor R-59 has been added and Resistor R-21 has been changed to 2 megohms. Capacitors C-52 and C-43 have been changed to 1120 mmfd . Figures 2 and 7 show the schematic and wiring diagrams of the models having these changes.

(7) FIDELITY LINK

It will be noted that a small link is mounted on the rear apron of the chassis which is closed on table models and open on console models. The purpose of the link is to increase the low frequency output of the receiver when open.

(8) VOLTAGE READINGS

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if low-resistance meters are used, such allowances must be made.

Figure 8-Location of Trimmer Capacitors

RCA PAGE 5-85
ODEL 143,242 Schematic with Sensitivity Cont Change

PAGE 5-86 RCA
MODEL 143,242 Sohematio with Fidelity Change

RCA-VICTOR CO., INC.

RCA PAGE 5-87
MODEU 143,242
Socket Layout Parts Schematics

Figure 9-Universal Power Transformer Cannections

* cannot be measureo with oroinary volimeter

ALL VOLTAGES ARE TO GROUND

PAGE 5-88 RCA

RCA PAGE 5-89
MODEI 143,242
Chassis Wiring
with Sensitivity
Change

REPLACEMENT PARTS
REPLACEMENT PARTS

Electrical Specifications

Voltage Rating. .
100-125 Volt: Frequency Rating . $25-60$ and 50-60 Cycle

 Tuning Ranges. 540 K. C.-1500 K. C.- 5400 K. C. $-15,350$ K. C. Undistorted Output. 1.75 Watts

Figure C-Loudspeaker Wiring.
This receiver is a six-tube two-band A. C. operated Superheterodyne Receiver combining the standard and short-wave broadcasting bands The frequency rangos are selected by means of a two-position switch. Other features include a double reduction vernier drive ueing two concentric nobs giving a 10-1 and a 55-1 ratio of speed reduction, a continuously ariable tone congle Pentode output tube and the inherent sensitivity selectivity and tone quality of the Superheterodyne.

The chassis is of compact construction, affording unusual accessibility to all parts and adjustments. An "Airplane" type dial calibrated in frequency this instrument. Figure \mathbf{A} shows the schematic circuit, Figure \mathbf{B} the wiring diagram and Figure C the loudspeaker wiring.

Line-Up Capacitor Adjustments

In order to properly align this receiver, it is essential that Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K. C. to $20,000 \mathrm{~K}$. C. continuously, has good stability and includes an as Siuat 7065 and an output meter are required.. The output such as Stock No. 7065 and an output meter are required.. The output meter should of the cone coil of the loudspeaker.
I. F. Tuning Adjustments-Two transformers comprising fons tuned circuits are used in the intermediate amplifiar. These are tuned to 370 K . C. and the adjustment screws are accessible as shown in Figare D. ceed as follow
(a) Short-circuit the antenna and ground terminals and tune the receiver so that no signal is heard. Set the volume control at maxi-
mum and connect a ground to the chassis.
(b) Connect the test oscillator output between the first detector control grid and chassis ground. Connect the output meter across the that, with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(e) Adjust the secondary and primary of the first and then the second 1. F. transformers nntil a maximum deflection is obtained. Keep the oscillator output at a low value so that only a sight deflection is obtained on the ments. This completes the I. F. adjustments.
R. F. and Oscillator Adjustments-The F. F. tino-up capacitors aro located at the bottom of the coil assemblies instead of their usual
position on the gang capacitor. They are all accossible from the bottom of the chassis except the 600 K. C. series capacitor, which is accensible from the rear of the chassis. Proceed as follows:
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully meshed. It should be coincident with the radial line adjacent to the dial reading of 540 . 1400 and the oscillator our at 1400 K . C.i the dialindicator at obtained in the output meter when the volume control is at its
b) Warimum position.
b) With the Range Switch at the "in" position, adjust the three trimmers under the three R. F. coils, designated as L. W. in Figure Then shift the Test Oscillator frequency to 600 K C output meter. Then shift the Test Oscillator frequency to 600 K . C. The trinmer capacitor, accossible from the rear of the chassis, should now be adjusted for maximum output while rocking the main tuning 1400 K back and forth through the signal. Then repeat the
(c) Now K. C. adjustment.

Now place the Range Switch at the "out" position, shift the Test. Oscillator to $15,000 \mathrm{~K}$. C. and set the dial at 15 on the megacycle scale. Adjust the three trimmer capacitors designated as S. W. in Figure D for maximum output, beginning with the oscillator trimmer. It will be noted that the oseillator and first detector
trimmers will have two positions at which the signal will give maximum output. The position which uses the lower trimmer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator, while the position that uses a higher capacitance is correct for the detector. Both of these adjustments must be made as indicated irrespective of output. The R. F. is merely peaked. In conjunction with the detector adjustment, it is necessary o rock the main tuning capacitor baek and furth while making the adjustment. This completes the line-up adjustments.
The important points to remember are the need for using the minimum oscillator output to obtain a deflection in the output meter with the volume control at its maximum position and the manner of obtaining the proper high frequency oscillator and detector adjustments.

Power Transformer Connections

The power transformer used in this model bas a tapped primary winding. The transformer is normally connected for lines ranging in voltage from 110 to 125 volts. If for any reason the line is normally below 110 volts,

Figure D-Location of Line-Up Capacitors
the connections should be changed so the tap will be ased. This is done by unsoldering the black with red tracer transformer lead connected to the power awitch (on tone control) and substituting the red and black lead normally taped ap. The black with red tracer lead should then be carofully taped to prevent short-circuit.

115 Volts, A. C. Line-No Signal

Type No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Curront M. A.	Heater Volts
1. RCA-58 R. F.	3.0	100	265	6.0	2.42
2. RCA-2A7 lst Det. Osc.	3.0	100*	265*	2.0*	2.42
3. RCA-58 I. F.	3.0	100	265	6.0	2.42
4. RCA-2B7 2nd Det. A. V. C.	1.5	35	100	1.5	2.42
5. RCA-2A5 Power	16.0	255	240	35.0	2.42
6. RCA -80 Rectifier	725 Volts R. M. S.-75 M. A. Total Current				4.80

Figure B-Wiring Diagram

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\text { List }}{\text { Lice }}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\substack{\text { List } \\ \text { Price }}}{\text { cen }}$
	RECEIVER ASSEMBLIES		4032	Capacitor-390 mmfd. (C14)	
2240	Resistor - 30,000 ohms - Carbon type - 1		4075	Knob-Range switch or tone control knol. .	
2240	watt (R6)................................		4119	Screw-No. 8-32-1/4" headless cup point set screw for station selector knob.	
2747	Cap-Contact cap. .		4120	screw for station selector	
3056	Shield-2nd detector Radiotron shield.......		4120	Knob-Station selector knob.	
3076	Resistor- 1 megohm-Carbon type-1/2 watt (R10, R11).....................................		6188	Resistor-2 megohm-Carbon type-1/2watt	
3252			6282	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type-1/2 watt (R5, R8, R15)	
3470			6571		
3514	$\begin{aligned} & \text { Resistor- } \mathbf{2 5 0 , 0 0 0} \text { ohms—Carbon type-1/2 } \\ & \text { watt (R16) } \ldots \ldots \ldots \end{aligned}$		$\begin{aligned} & 6614 \\ & 6615 \end{aligned}$	Glass-Station selector dial glass. . Ring-Retaining ring for dial glass	
3529	Socket-Dial lamp socket		6620	Capacitor-Comprising one .005 mfd . and	
3572	Socket-7-contact Radiotron socket			one . 035 mfd . (C35, C36).	
3594			6676	Socket-6-contact Radiotron socket-Output.	
3631			6694	Condenser-3-gang variable tuning condenser (C4, C9, Cli). .	
3639	Capacitor- 02 mfd (C 34)		6695	Volume control (R9).	
3683	Shield-Radiotron shield top		6696	Switch-Range switch (S1, S2, S3, S4)	
3701	Capacitor-. 01 mfd ($\mathbf{C 6}$, C21)		6697	Transformer-First intermediate frequency transformer (L13, L14, C23, C24)	
3702	Capacitor-. 25 mfd ((C32).				
3768	Screw-Square head No. 6-32-1/4" set screw for condenser drive.		6698 6699	Transformer-Second intermediate frequency transformer (L15, L16, C26, C41)	
3796	Capacitor-4. mfd. (C28)		6699	Coil-R. F. coil (L5, L6, L7, L8, C7, C8).	
3849	Capacitor-50 mmfd. (C10).		6700	Coil-Oscillator coil (L9, L10, L11, L12, C12, C17).	
3859	Socket-4-contact Radiotron socket		6701	Coil-Antenna coil (L1, L2, L3, L4, C1, C2).	
3861	Capacitor-Adjustable capacitor (C13)..		6702	Drive-Variable tuning condenser drive	
3877 3878	Capacitor-. 1 mfd. (C5, C15, C25, C33).... . Screw-No. 4-40-sin screw for fastening			assembly complete......................	
3888	station selector pointer Capacitor- .05 mfd (C19, C27)		6703	Capacitor pack-Comprising one 8. mfd. and two 4. mfd. capacitors (C20, C22, C38).	
3892	Resistor- $\mathbf{6 0 0}$ ohms-Carbon type- $1 / 2$ watt $(\mathbf{R} 2, \mathbf{R} 4, \mathbf{R} 7) .$		6704	Shaft-Tuning condenser drive assembly shaft.	
3897	Resistor- $\mathbf{4 0 0}$ ohms-Carbon type- 1 watt (R18)		6705	Tone control complete (R22).. Dial-Station selector dial. . .	
3901	Capacitor-. 05 mfd ((C3, C16)...........		6842	Pointer-Station selector pointer	
3905	Screw-Chassis mounting screw assembly comprising 4 screws, 4 washers, and 4 cushions.		7485	Socket-6-contact Radiotron socket. . Shield-I. F. and R. F. amplifier Radiotron shield.	
3906	Mounting assembly - Variable condenser mounting assembly comprising 3 bushings, 3 lockwashers, 3 nuts, and 3 washers		9446	Transformer-Power transformer-105-125 volts 50-60 cycles (T1) Transformer-Power transformer-105-125	
3937	Capacitor-300 mmfd. (C30, C31).			volts 25-40 cycles.	
3938	Capacitor -9 mmfd. (C39).		10194	Ball-Steel ball for condenser drive assembly	
3939				REPRODUCER ASSEMBLIES	
3942	Shield-1st detector Radiotron shield .		6770	Transformer-Output transformer (T2)	
3943	Screen-Translucent screen for dial light.		6843	Cable-3-conductor reproducer cable.	
3944	Shield-Antenna, R. F. or oscillator coil shield		$\begin{aligned} & 8935 \\ & 9460 \end{aligned}$	Cone-Reproducer cone (L17) Coil-Field coil, Magnet and cone support	
3991	Resistor-10,000 ohms-Porcelain type (R19) .			(L18)...................................	
4031	Capacitor-2,700 mmfd. (C18, C29, C40)..		9461	Reproducer complete	

RCA－VICTOR CO．，INC

 switches are closed．Shorting of turns in the gridd coilsreduces their
 coupling capaciotos increases the coupening and thereby
the sensititity at the higher frequency position．The
trimmer capacitor on the oscillator circuit provides trimmer capacitior on the oscilator cos．
proper tracking with the R．F．circuits．
Line-up Adjuutments

Inoperation，poor tone quality，or lack of proper
sensitivity and selectivity are direct resulus of lack of
alignment．In event the receiver is to be aligned， means of small adjustable capacitors to $175 \mathrm{~K} . \mathrm{C}$ ．

い寝号
Radiotron RCA－6B7 is used as a diode second Radiotron RCA－6D6 is used in the I．F．stage． detector，automatic volume control and audio ampli－
fier．The D．C．compur on the second detector diode is used for automatic bias component of the rectified signal is applied to the pentode section of the RCA－6B7 for further amplifi－
cation at audio frequencies．

The output of che second detector is applied to the grid of Radiotron RCA－38，pentode output amplifier． Kesistance coupling is used between the detector and
the output tube while a step－down transformer serves as an impedance matching device between the plate
circuit of the RCA－38 and the voice coil of the repaken
 supply．Heater exciataion for the tubes described is
obtained by connecting them in series and placing the entire circuit across the 32 －vole line． Plate and grid voltages for all tubes are obtained
from a special plate supply unit which consists of a from a special lplate supply unit which consists of a
vibrator，a tube rectifier，a thermal voltage regulator
 vibrator interference to a négligible degree．The purpose
of the vibrator is to interrupt the direce current and apply if first in one direction and then in the opposite direction across individual sections of the primary of the power
transformer．The transformer steps the voltage up cransformer．The transformer steps the vortage up
several times and applies it to the plates of the full．
 voltage regulatanget tube．This reg the Ampang terite 5－16 main－
vins a constant current through the recififer filament voltage regulating tube．This regulating tube mating
tains a constant current hhrough the rectifier filament
over a wide variation of line voltages． over a wide variation of line voltages．
The range switch provides a quick means of shifting from one frequency band to the ofher．The regular
band covers from $540 \mathrm{~K} . \mathrm{C}$. to 1500 K ．C．，while the police band covers from 1400 K ．C．to 2800 K ．C．
This shift is accomplished in the following manner．

 rimmer capacitor is available for paralleling to the
main tuning condenser．The effect of chese various

223

service notes

Volage Rating．．．．．．．．．．．．．． $26-40$ Volts D． C ．
Power Consumption．．．．．． 60 Watts at 32 Volts

 Tuning Frequency Range．．．． 540 K ．C． C － 1500 K K．C． This reciver is is six－ctube， 32 －vole D ．C．．super－ heterodyne designed primarily for operation from 32. ．
volt farm lighing ircuits．
Exellent santitity and

 exparate power supply with a newly designed fileer

Figure1 1 shows sheschematic ciruuit diagram，Figures
 menct parts are given on page 9 ．

Description of Circuit The circuit of this receiver iserodyne，although the mong the differences is the use of a vibrator interrup－ ter for obtaining alternating current and a tube rectifier
for rectifying it at a higher voltage．

The R．F．stage use Radiocron RCA－6D6，which is The function of this stage is to select and oscillator－detector The next tube is a combined oscluhich provides
which is known as the RCA－6A7 and whis rocal signal and a detector for obtaining
frequency．The local oscillator，due to the bridge crequency．The local oscelite provides signal，that has a constant
cired
frequency difference from the incoming R．F．signal frequency difterence from the incoming R．F．signal
（175 K．C．higher）at all points throughout the tuning
． ange．The detector portion of the tube serves to
extract the beat frequency from the combined signals
． osccilator and signal）and apply it to the grid of the
I．

The plate circuit of the first detector and the grid
and plate circuits of the I．F．tube are all tuned by

PAGE 5-96 RCA
MODEL 223
Noise Suppression
RCA-VICTOR CO., INC. Assembly Wiring

Figure 5-Assembly Wiring Diagram
suppression of generator and ignition interference Operating this recciver while the 32 -vole generator Generator Capacitor:-A capacitor is connected from each
frame, which must be grounded. This reduces the inHrame, which must be gounded . . commuteator of the
terfernece caused by spakking at the
generacor. If excesive sparking occurs, it is very un-
 cienly. In this case, the commutator must be thor-
oughly cleaned and sanded and the brushes reseated. In bad casese it is usually best to clean the forerign meatref from between the commutatoro segments by means
of a three-cornered file, and then sand the commutaror by placing the sand-paper around a small block and
holding it squarely against the commutator while it is running. Never use emery cloth.

Cor Capacrior:-Some installations will require a
capacior connected from the battery side of the ignicapacitor connected from the battery side of the igni-
tion coil to ground. This reduces the interference caused by the primary breaker. GRounss:- - tc is important that the frame of the
generator be thoroughly grounded. A steel ground-
 it is imporatan that the ground be a good one. The

Figure 4-Typical Installation showing suppression equipment and proper antenna system

RCA PAGE 5-97
RCA-VICTOR CO., INC. Sohematic

PAGE 5-98 RCA

MODEI 223
Chassis Wiring

RCA-VICTOR CO., INC.

RCA PAGE 5-99

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	Description	List Price	Stock No.	Description	List Price
	RECEIVER ASSEMBLIES		6485	Volume control with mounting nut (R12)	\$1.20
2816	Resistor - 1,000 ohms - Carbon type - $1 / 2$		6527 6528	Coil-Antenna coil (L1, L2).	1.08
	watt (R18)-Package of $51 / 2$.	\$1.00	6528 6534		94
3047	Resistor - 1,500 ohms - Carbon type - $1 / 2$ watt (R7)-Package of 5.	1.00	6598		1.25
3076	Resistor-1 megohm-Carbon type-iviow watt	1.00	6598	Condenser- 3 -gang variable tuning condenser (C6, C7, C13, C14, C16, C17)	3.00
	(R6)-Package of 5..................	1.00	6622	Dial-Station selector dial scale and drive	3.00
3252	Resistor- 100,000 ohms-Carbon type- $1 / 2$ watt (R5)-Package of $5 \ldots \ldots . .$.	1.00			. 95
3358		1.00	6859	Capacitor-Comprising three 4 mfd . and one 10 mfd . capacitors (C8, C23, C28, C32).	2.85
3514	Resistor-250,000 ohms-Carbon type-1/2	1.00	6860	Tone control with mounting nut (R20).....	2.85 1.15 1.36
3514	watt (R17)-Package of 5............. .	1.00	$\begin{aligned} & 6851 \\ & 7484 \end{aligned}$	Transformer-Output transformer (T2). Socker-5-contact Radiorton socker	$\begin{aligned} & 1.36 \\ & \hline \end{aligned}$
3572	Socket-Contact Radiotron socket	. 38	7485	Socket-5-contact	. 40
3584	Ring-Antenna, R. F. or oscillator coil retaining ring-Package of 5 .	. 40	7485	Socket-6-contact	40
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$			VIBRATOR POWER UNIT ASSEMBLIES	
3597	watt (R14, R16)-Package of 5 Capacitor- 25 mfd . (C34)	1.00 .40	3765	Capacitor-. 025 mfd .	34
3602	Resistor-60,000 ohms- ${ }_{\text {Carbon }}$		3859	Socket-4-contact Radiotron socke	. 30
	watt (R8, R11)-Package of 5	1.00	3860	Socket-5-contact Radiotron socke	. 32
361	Capacitor-300 mmfd. (C30)	34	414	Shield-Radiotron shield-Rectifier ${ }_{\text {a }}$	30
3622	Shield-Antenna or R. F. coil shiel	. 36		Suspension assembly-Comprising one boit	
3624	Socket-Dial lamp socket and bracket	. 40		assembly, one "C washer, two cup washers,	. 40
3625	Scale-Volume indicator scale assembly	. 40	4150	Clamp assembly-Vibrator mounting clamp	. 40
3626 3630	Shield-Oscillator coil shield. 22		assembly.............................	22
3630	Resistor- 10,000 ohms-Carbon watt (R2, R3) 25	4186	Capacitor- 2400 mmild. (Ci49, C50)	. 28
3634		. 34	4187 6862	Capacitor- 745 mmfd . (C51, C52)..........	25
3639	Capacitor-. 02 mfd . (C35)	. 25	6862	Fitrer pack-Comprising one reactor and two	3.34
3750 3783	Capacitor-. 25 mfd . (C2) C .	. 36	6863	Capacitor-Comprising one 3.5 mfd and one	
3783 3877	Capacitor- 9 mmfd (C3, C10)-Package of 2.	. 32		. 5 mfd capacitors ($\mathrm{C} 45, \mathrm{C} 47$)...........	3.46
3877 3888	Capacitor- 11 mfd . (C9, C15, C36, C37)..	. 32	68	Tube-Regulator tube.	3.00
3888 3892	Capacitor- .05 mfd (C4, C11, C25, C27)... Resistor- 600 ohms-Carbon type- $1 / 2$ watt	. 25	. 6865	Shield-Regulator tube shiel	. 22
3892	Resistor- 600 ohms-Carbon type- $1 / 2$ watt (R4)-Package of 5.	1.00	6865	Coil-Line R. F. choke coil Coil-Line R. F. choke coil	. 96
3993	Screw-Set screw for volume control dial		6868	Coil-Line R. F. choke coil (Lio)	. 78
	Package of 10	. 25	6869	Capacitor-1.0 mfd. capacitor (C 41)	. 88
4046	Carbon type-1/2 watt (R1)-Package of 5 .	1.00	6870	Shield-Outer shield with felt pad for vibrator assembly	. 60
4142	Mounting assembly for receiver chassisComprising 8 cushions, 8 washers, 4		6871	Coil-Filter coil (Li8)	76
	Comprising 8 cushions, 8 washers, 4 spaicers, 4 lockwashers and 4 screws.	. 38	7734 7735	Transformer-Power transformer (Ti) . . .	3.60
4143	Capacitor-2400 mmfd. (C1)	. 25	7735	Vibrator complete (L13, L14, L19, L20, C40,	
4144	Clamp-Capacitor mounting clamp-Package of 5 ..	. 20			
4145	Shield-Radiocron shield. 30		REPRODUCER ASSEMBLIES	
4181	Capacitor-720 mmfd. (C19)	. 30	4149	Shield-Terminal board shield	20
4182	Capacitor-80 mmfd. (C18)	. 25	8935	Cone-Reproducer cone (L11) P	5.25
4183	Capacitor-400 mmfd. (C33)	. 26	9474	Reproducer complete.	7.10
4184	Capacitor pack-Comprising one .035 and one .005 mfd . capacitors (C38, C39)	. 30	9475	Coil-Field coil magnet and cone support (L12).	4.55
4185	Resistor-175 ohms-Wire wound (R19)	. 78			
6242	Resistor - 2 megohms - Carbon type - $1 / 4$ watt (R10)-Package of 5.	1.00		MISCELLANEOUS PARTS	
6282	Resistor-60,000 ohms-Carbon type- $1 / 2$ wart (R15)-Package of 5	1.00	3592	Knob-Station selector-Volume control or tone control knob--Package of 5	80
6303	Resistor-20,000 ohms-Carbon		3615	Knob-Range switch knob-Package of	60
	watt (R9)-Package of 5.	1.00	3881	Escutcheon-Station selector escutcheon	. 42
6471	Coil-Oscillator coil (L5, L6).	. 74	3899	Escutcheon-Volume control escutcl	42
6483	Transformer-First intermediate frequency		4292	Capacitor-Generator capacitor-. 5	. 90
	transformer (L7, L8, C21, C24)...........	1.84	6151	Suppressor-Spark plug suppressor .	. 56
6484	Transformer-Second intermediate frequency transformer (L9, L10, C26)...............	1.70	6152 6516	Suppressor-Distributor suppressor	. 56

RCA-VIC'TOR CO., INC. DESCRIPTION OF ELECTRICAL CIRCUIT

Circuit Data

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, and I. F. stage, a combined second detector and automatic volume control, an audio stage, a push-pull driver stage and a push-pull Pentode output stage. Plate and grid voltages are supplied by the RCA-5Z3 heavy duty rectifier combined with a suitable filtering stage, of which the loudspeaker field is a part. Figures 1 and 2 show the schematic circuit diagrams.
The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R.F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator signal, which is always at a 460 KC frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang-capacitor are used in the oscillator circuit.

In conjunction with these three tuned circuits it is well to point out that five different groups of tuned circuits are used, one group for each tuning band. A five-position selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to absorption effects caused by the coils, the natural period of which without the gang-capacitor connected falls in the next higher frequency band. This gang-switch also has additional contacts for changing the sensitivity in the various bands.

The sensitivity control in bands X and A controls the R. F. and first detector while in bands B, C and D it controls the R. F., first detector and I. F. stage. This is caused by the action of the selector switch. It should also be noted that the sensitivity control is paralleled with a 500 -ohm resistor ($\mathrm{R}-12$, Figure 1) in bands B, C and D.

The output of the first detector, which is the I. F. signal (460 KC), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to 460 KC .

The output of the I. F. amplifier is then applied to the grid of the RCA-76 second detector. The plate of this tube is connected to its cathode and the tube operated as a diode detector and automatic volume control. The direct current component of the rectified signal produces a voltage drop across resistors R-32 and R-17. The voltage drop across both resistors constitutes the automatic bias voltage for the R. F. stage, while the drop across R-17 alone constitutes
the bias voltage for the first detector and I. F. stage. These automatic bias voltages for the R. F., first detector and I. F. stages give the automatic volume control action of the receiver. It should be noted that resistor R-33 is connected in parallel across resistors R-32 and R-17. This reduces the total amount of resistance in the circuit to a proper value. Resistor R-34 and capacitor C-43, which are connected in series and from a tap on the volume control to ground, provide low frequency, low volume compensation.

The volume control selects the amount of audio voltage that is applied to the grid of the RCA-76 A. F. stage and thereby regulates the volume of the entire receiver. The first audio stage is coupled through a high and low frequency tone control system and cransformer to the grid circuit of the push-pull drive stage. It should be noted that a link has been provided in series with the cathode of this stage, so that phonograph connections may be easily made if required.

The driver stage is transformer coupled to the output stage, which consists of two Radiotrons, RCA-42, connected in push-pull. A feature of the output stage is the use of fixed bias, which reduces distortion and increases the available output. This is accomplished by the use of the drop across R-29, which carries the entire DC output from the rectifier. Naturally the output stage uses but a portion of the total rectified current and current variations in it have but little effect on the drop across the resistor.

The output of the power stage is coupled through a step-down transformer to the voice coil of the loudspeaker. A separate winding, which is shunted by a capacitor, has been provided in this transformer which gives a very sharp, high-frequency cut-off for the entire audio system. This greatly reduces the reproduction of any high-frequency interchannel interference or other disturbance of a high-frequency character which is outside of the useful musical range.

VARIATIONS IN MODELS

The preceding description of the electrical circuit applies to numerous models of this receiver. However, there are other models in which a change from the foregoing has been made. This change consists of using the section of the band selector switch that formerly changed the sensitivity control, for changing the fidelity in various bands, the sensitivity remaining the same in all bands. This permits the receiver to maintain the utmost fidelity in bands X and A while reducing the low frequency output in bands B, C and D. Such a change results in improved performance.

The sensitivity control in these models operates as formerly in bands X and A. That is, the sensitivity control adjusts the residual bias for the R. F. and first detector stages.

PAGE 5-102 RCA
MODEL 262
Schematic with
RCA-VICTOR CO., INC.

RCA PAGE 5-103

PAGE 5-104 RCA
MODEL 262
Chassis Wiring
with Senitivity

RCA PAGE 5-105 MODEL 262 Chassis Wiring with Fidelity
RCA-VIC'OR CO., INC. Change

PAGE 5-106 RCA

MODEL 262

RF Unit Wiring with
RCA-VICTOR CO., INC.
Sensitivity Change

RCA PAGE 5-107

RCA-VICTOR CO., INC.
MODEU 262
RF Unit Wiring with
Fidelity Change

PAGE 5-108 RCA
MODEL 262
Sooket and Trimmer Layouts RCA-VICTOR CO., INC.

Figure 3-Loudspeaker Wiring

Figure 7-Location of Trimmer Capacitors

RCA-VICTOR CO., INC.

yuvuy
 우융
 11,1 1
 yuvuy
 우우우웅양

requires she external sscillator to be connected between
the antenna and grond terminals of the receever and
the output indicaror must be connecered across the
vores

 lator trimmer for maximum output. The

 99 REAR OF CHASSIs
Figure $9-J_{u n i o r ~}^{\prime}$ "Duo" trimmer should be set at the first peak obtained
when increasing the trimmer capacity from

 (c) Reduce che capacity of the detector trimmer. is then aligned with the oscillatoo circuit. and
the RCA-6A7 tube is blocked. Then increse the capacity of the detector trimmer, while
rocking the tuning capacior, until the signal
is peaked for maximum output
(d) The antenna trimmer should now be peaked
for maximum output. It is not necessary to for maximum output. It is not necessary to
rock the main cuning capacitor while making
chis adjustment.

(5) VOLTAGE READINGS The following voltages are those at the various
tube sockess while the receiver is in operating condi-
 sin whicw theces vurious be made. Figures of the tube contacts
are show.
 Maximum Oupput.. 14 Watus to get an output indication under these conditions. In the high.frequunency bands, it may be necesasay to dis-
connect che oscillatar from trom receiver and place it to the recceiver.

The dial pointer must be property sec beforestarting

 band "A," while the other end slould point to within
$1 / 64$ inch of che horizonal line at the highest

Figure 7 shows the location of the crimmers for
eacat band. Care must e eexerisised to only adjuut
the trimmers in the band under test.
„X,, puog

 - " \forall "purg耍

苑

 tuning cappacior.
as described in (a).
 (a) Tunc ehe external oscillator to 5160 KC , and

 oscillator output for this check.

PAGE 5－110 RCA
MODEL 262 Voltage

RCA－VICTOR CO．，INC．
RADIOTRON SOCKET VOLTAGES
120－Volt A．C．Input－Volume and Sensitivity Controls Maximum－Band Switch at＂A＂－No Signal

－	\％	3		$\stackrel{\square}{6}$	$\stackrel{\square}{6}$	9	9	$\stackrel{\square}{6}$	\because	\％	$\stackrel{\circ}{\circ}$
	Nू	\＄		กั	－	\because	$\stackrel{\square}{\square}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{i}$	$\stackrel{\circ}{\text { i }}$	$\#$
¢	～～	\＃	\＃	※゙	।	$\stackrel{\text { ¢ }}{\text { ¢ }}$	A	今	\％	$\stackrel{\circ}{8}$	
	할	ت	1	ت	I	।	1	I	A	H	I
	～	$\stackrel{\infty}{\text { i }}$	1	～	－	กิ	$\stackrel{\square}{z}$	$\stackrel{\square}{j}$	－	－	1
		$\begin{array}{\|l\|l} \hline \stackrel{\circ}{8} \\ \text {. } \end{array}$							䓂		¢

REPLACEMENT PARTS

5	
2	
宮家	
牙或	
咅家	

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector stage, two I. F. stages, a combined second detector and automatic volume control, a push-pull audio driver stage and a push-pull Class A output stage. Plate and grid voltages are supplied by the RCA-5Z3 heavy duty rectifier combined with a suitable filtering system. In addition, a double channel A. V. C. stage is provided

Figure 3-Switching Arrangement of Automatic
which uses two additional tubes. Figure 1 shows the over-all schematic circuit diagram while Figure 2 shows the R. F. assembly wiring.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. tube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang-capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang-capacitor.

Combined with the signal in the first detector is the local oscillator signal, which is always at a 460 K . C. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gangcapacitor are used in the oscillator circuit.

In conjunction with these three tuned circuits it is well to point out that five different groups of tuned circuits are used, one group for each tuning band. A five-position selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to absorption effects caused by the coils, the natural period of which without the gang capacitor connected falls in the next higher
frequency band. This gang switch also has additional contacts for performing other functions which will be discussed.

The output of the first detector which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.) is fed directly through two tuned circuits to the grid of the automatic volume control I. F. amplifier stage. A coupling coil adjacent to the secondary of this transformer is connected directly to the signal I. F. stage, which is in effect parallel to the A. V. C., I. F. stage. Examining the signal amplifier further we find that the output of the first signal I. F. stage is applied through a transformer to the second I. F. stage and thence through a second transformer to the second detector. Both circuits of each transformer are accurately tuned to the I. F. signal, which is 460 K. C.

Further examining the A. V. C., I. F. stage it will be seen that the output of this stage is applied to the A. V. C. cube through an untuned I. F. transformer. The A. V. C. stage, which is an RCA-76, is operated as a scraight rectifier, its plate being grounded and only the grid being used. This tube is shielded in the usual manner. A small grid voltage, approximately 5.0 volts, is maintained so that rectification does not occur until the signal level exceeds this grid voleage. When this occurs, a portion of the rectified signal produces a voltage drop across resistors R-18 and R-19. The drop across both of these resistors constitutes the automatic bias voltage for the R. F. stage. The drop across R-19 alone gives the automatic bias voltage for the first detector and first I. F. stage on bands X and A.

Examining the second detector, the diode electrodes provide the detector action while the grid and plate give audio amplification. A portion of the rectified signal also gives a voltage drop across R-23 which is a second automatic volume control system for the receiver. The voltage drop is applied to the second I. F. stage in all bands and to the first detector and first I. F. stage in bands B and C. The change in

Figure 4-Sensitivity Control Switching Arrangement
automatic volume control systems is made by an additional group of contacts on the band selector switch. Figure 3 shows the switching arrangements for changing the A. V. C. system in the various bands.

PAGE 5-112 RCA

RCA PAGE 5-113

PAGE 5-114 RCA

RCA-VIC'TOR CO., INC.

Figure 2-R. F. Assembly Wiring Diagram

Figure 9-Location of Various Trimmer Capacitors

Figure 10-Radiotron Socket Voltages

 stage on all bands. This further flattens the ac
the double-channel system in bands X and A.

At this point it is welt to examine the sensitivity
control which also changes on different bands. The

The sensitivity control is changed so chat in bands
X and A ic concrols she R. F. and 1st detector while in
 1ss I. F. Fand 2nd I. F. stages. The reason for this is
that for a given degree of sensitivity in bands X and A
the residual bias will be considerably higher in the
 of these stages due to the high-signal strergoths encounteres in bands X and A. Also, in bands B, C,
and D, for a given degree of sensitivity the R. F. sage operates at a higher gain, which gives an improved
signal to noise ratio. This is caused by the paralleling signal to noise ratio. his is caused by the paralieling
of hes sensitivity control with an 850 -hm resistor in
these bands.

At this point, an explanation as to why iwo auto-
matic volume control systems are used and why the
sensitivity control is changed in different bands may
sensitivity control is changed in
be in order.
Two automatic volume contro

 to the use of an aurally compensated volume control,
a constant input to the second detector must be a constant input to the second detector must be
maintained. From this, it is evident that the double channel I. F. automatic volume control is ideal. It
maintains a constant input to the second detector and yet does not function on an extremely weak signal. In
the short-wave bands, however, conditions are differthe short-wave bands, however, conditions are differ-
ent. Signal strengths are always very low and fluctuate widely. For this reason it is important to
have some automatic volume control action below have some autornatic volume control action below
the level at which the double channel system works.
This is provided by the diode A. V. C. of the second This is provided by the diode A. V. C. of the second

-

 Checking with Tuning Wend

Before making any R. F., oscillator or first detector
adjustmens, the accuraray of the present adjustmenss
may be checked by means of the tuning wand (Scock
frequencies at low sound levels. A low and a high
frfequency tone contro enables shelisener ro alcer the
fidelity of the receiver to his individual taste.
The driver stage, which is a pair of RCA- 76 Radiog
0
0
0
0
0
0 A feature of the ourpurs stage is the suse of fixed bias,
which reduces distortion and increases the available which reduces istortion and increases the ver valiabop
output. This is accomplished by the use of the drop across. R -38 and R R-3, whict carries the entire D. C .
outpuf from the rectifier Naturally the outrut sage output from the rectifier. Naturalily the output stage
uses but a portion of the total trecififed current and
current variarions in in it will have but litete effect on current variations in it will
the drop across the resistor.

The outpur of the power stage is coupled through a
step-down transformer to the voice coil of the loud-step-down transformer to the voice coil of the loud-
speaker. A separate winding, which is shunted by a speaker. A separate winding, which is shunced by a
capacitor, has been provided in this transformer which gives a very sharp, highh-frequency cut-off for the entire
udio syscem. This greatly reduces the reproduction of udio system. This greatly reduces the reproduction of disurbance of a highterchannel interferencece or other
duside of the useful musial
dinge. outside of the useful musical range.

The loudspeaker used is of the large field cen-inch type. It is fully capable of handling the high-power,
high-quality output of the receiver and converting it into faithful sound reproduction.

Figure 5 shows che chassis witing while Figure 6
shows the loudspeaker wiring. -
(1) LINE-UP PROCEDURE

The line-up procedure of chis receiver is somewhac involved and it is important that chess instructions be
carefully followed when making adjusments. Properly aligned, this receiver has outsanding performance;
improperly aligned, it may be impossible to receive improperly aligned,
signals on all bands.

Equipment
To properly align echis receiver, the following
equipment must be used. This is a modulated R. F. 4
0
0
0
5
5
5
0 "dummy," Radiocron RCA-76. These parts, which
"de shown in Figure 8, have been deyeloped by the are shown in Figure 8, have been developed by to manufacturer of this receiver for use by service men to
duplicate the original factory adjustments. The

(5) VOLTAGE READINGS
The following voltages are those at the various

RADIOTRON SOCKET VOLTAGES

Maximum Sensitivity-No Signal-120-Volt A. C. Input

	\%	$\%$	$\stackrel{\square}{6}$	\%	${ }_{6}^{9}$	$\%$	\%	$\%$	$\stackrel{\square}{0}$	\%	6	is
	∞	\%	\cdots	\cdots	\%	-	$\underset{\sim}{\sim}$	n	n	-	$\stackrel{\circ}{\sim}$	\%
	$\vec{\sim}$	푸 ${ }^{\text {\% }}$	$\stackrel{\%}{\sim}$	$\stackrel{*}{3}$	$\stackrel{\square}{\sim}$	-	\%	$\stackrel{3}{3}$	\cdots	\%	\%	
	\%	\| $\%$	\%	\%	8	1	1	1	1	안	옻	1
	$\stackrel{\sim}{i}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{-}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{4}$	-	$\stackrel{+}{\square}$	$\stackrel{i}{-}$	-	\bigcirc	1
								$\begin{array}{\|l\|l} \text { u } \\ \text { d } \\ \text { d } \\ \underset{\sim}{む} \end{array}$		$\begin{aligned} & \stackrel{y}{3} \\ & \stackrel{y}{3} \\ & \text { y } \\ & \stackrel{4}{4} \\ & \hline \end{aligned}$		

K. C., Figure 9 , should be set ac about the center of ن.
(b) Tune the external oscillator to $1720 \mathrm{~K} . \mathrm{C}$., set detector and R. F. trimmers for maximum output. (c) Shift the external oscillator to 600 K . C. Tune
in the 600 K . . signal irrespective of scale calibration in the 600 K . C. signal irrespective of scale calibration
and adjust the series trimmer, marked $600 \mathrm{~K} . \mathrm{C}$. on and adjust the series trimmer, marked 600 K . C . on
Figure 9, for maximum output, at the same rocking the variable tuning capaci
it $1720 \mathrm{~K} . \mathrm{C}$. as described in (b):

(a) The detector and antenna trimmers should first
(b) Tune the external oscillator to 5160 K. C., and (b) Tune the external oscillator to 5160 K . C., and
set the pointer at 5160 K . C. Adjust the oscillator trimmer for maximum output. The trimmer should be
set at the first pak obtained when increasing the
trimmer capacitor from minimum to maximum. (c) Check for the image signal, which should be

for this check.
(d) Reduce the capacity of the detector trimmer,
while rocking the tuning capacitor, until the signal
disappears. The first detector circuit is then aligned

for maximum output. It is not necessary to rock the
main tuning capacitor while making this adjustment.
, „כ, puvg
 (b) Tune the external oscillator to $18,000 \mathrm{~K}$. C., and
set the pointer at 18 M . Adjust the oscillator trimmer

Figure 6-Loudspeaker Wiring

This completes the I. F. adjustments. However, it
good practice to follow the I. F, adjustments with is good practice to follow the I. F, adjustments with
the R. F. and Oscillator adjustments due to interlock-
ing which always occurs. ing which always occurs.
(3) R. F. OSCILLATOR AND FIRST DETECTOR

Four R. F., oscillator and first detector adjustments in bands " B " and " C " while none are required in band "D." Band "D" uses the second harmonic of the
oscillator while the detector and R. F. coils do not have trimmers.

| To properly align the various bands, each band must |
| :--- | be aligned individually in the order given. This is

" X, " "A," "B," " C," and "D." The preliminary setup requires the external oscillator to be connected be-
ween the antenna and ground terminals of the receiver. The output indicator must be connected across the voice coil of the loudspeaker while the
"dummy" RCA-76 must be placed in the A.V.C. socket. The sensitivity and volume controls muse be at their maximum position and the input from the
oscillator must be at the minimum value possible to oscillator must be output indication under these conditions. In
get an
the high-frequency bands, it may be necessary to dis-
 a distance
receiver.

The Dial Pointer must be properly set before starting any actual adjustments. This is done by turning the
variable capacitor until it is at its maximum capacity position. One end should point exactly at the horizontal line ar the lowest frequency end of band "A,", while the ocher end should point to within $1 /{ }_{l}$ " of the
horizontal line at the highest frequency end of band " A."

Figure 9 shows the location of the trimmers for each
band. Care must be exercised to only adjust the trimmers in the band under test.
 K. C., Figure 9 , is first tightened to near its maximum
capacity position (screwed "in").
(b) Tune the external oscillator to $410 \mathrm{~K} . \mathrm{C}$. , set
the pointer at $410 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator,

(c) Shift the external oscillator to 175 K . C. Tune
in che 175 K . C. signal irrespective of scale calibration and adjust the series trimmer marked 175 K . C. on
Figure 9 , for maximum output, at the same time

RCA-VICTOR CO., INC.

REPLACEMENT PARTS-(Continued)
Insist on genuine factory tested ports, which reie eedily y dentified ond moy be purchesed foom euthoized deolern

RCA PAGE 5-119

PAGE 5-120 RCA
MODEL 301
Voltage, Alignment
Pickup Data

RCA-VICTOR CO., INC. SERVICE DATA

Voltage Rating.
Frequency Rating.
lion....
25, $\mathbf{5 0}$. 105-125 Volts 60 Cycles
.. 45 Watts
Number and Types of Radiotrons-
Undistorted Output. 1 RCA, 1 RA-6F7, 1 RCA-41, 1 RCA-1-V

This table type combination instrument consists of a four tube superheterodyne chassis and a new compactly constructed motor board assembly. The receiver incorporates features such as wide tuning range, electroinherent sensitivity, selectivity and tone quality of the super-heterodyne.

The following description of the circuit describes several new design features which are incorporated in this receiver.

The first tube is a combined first detector and oscillator using Radiotron RCA-6A7. Separate tuned circuits are provided for each function. The detector coil is tapped so that the tuning range may be extended tapped, the high frequency range being obtained by use of its second harmonic instead of the fundamental for obtaining the I. F. frequency.

The next tube is a combined 1. F. stage and second detector using Radiotron RCA-6F7. It has two sets of elements, one being used as a screen grid I. F. amplifier and one as a triode detector. The I. F. frequency in this receiver is 460 K . C. The output stage is a single Pentode RCA-41.

The rectifier is an RCA-1-V used in a half-wave rectifying circuit. A feature of this circuit is that only one transformer secondary is used. This is accomplished by having a cathode type rectifier, a series arrangement of filaments and a tapped secondary winding.

Figure A shows the pickup details, Figure B the assembly wiring, Figure C the schematic circuit and Figure D the wiring diagram and Figure \mathbf{E} the loudspeaker wiring.

RADIOTRON SOCKET VOLTAGES
120 Volt, 60 Cycle Line-Maximum Volume Control Setting-No Signal

Radiotron No.	Cathode to Control Grid, Volts D. C.	Cathode to Screen Grid, Volts D. C.	Cathode to Plate, Volts D.C.	Plate Cur. rent, M.A.	Heater or Filament, Volts
RCA- First Detector	1.25	70	235	2.5	6.3
6A7 Oscillator	-		180	3.5	
RCA- I. F.	1.25	70	235	5.5	6.3
6F7 Second Det.	19	-	$145 *$	0.4	
RCA-41 Output	17	240	230	26.5	6.3
RCA-I-V Rectifier		-	335 RMS	50	6.3

* Actual voltage cannot be measured with ordinary voltmeter.

Line-Up Adjustments

The detector and oscillator line-up trimmer capacitors are adjusted by setting both the dial and an external oscillator first at 1400 K . C. and

adjusting the tuning capacitor trimmer capacitors for maximum output, then changing the oscillator frequency and dial setting to 600 K . C. and adjusting the submounted trimmer capacitor for maximum output. The I. F. adjustments are made by adjusting the two trimmer capacitors located on the first I. F. transformer for maximum output when a 460 K. C. signal is connected between the control grid of the first detector and ground. Be sure and set the station selector at a point where no signal is being received when making I. F. adjustments.

Pickup Service Data

The magnetic pickup and tone-arm assembly of this instrument is of new design and unique construction. Service work will consist of centering the armature, replacing the rubber pivots and replacing the magnet coil.

Disassembling the Pickup

The pickup may be disassembled in the following manner:
(a) Unsolder the two cable connections to the terminal strip.
(b) Remove the needle scraw aid screws "A" and "B."
(c) Remove the pickup asembly from the arm and housing.
(d) Unsolder the two magnet coil leads attached to the terminals and then remove screw E. This will allow the romoval of the fibre terminal board.
(e) If centering the pickup armature is the only adjustment required, such controring can be done without removing the fibre torminal board indicated in (d). The armature is centered by loosening screw F, accessible through the hole shown, and holding the
armature with the finger in armatere with the finger in proper position while screw F is
tightened.
it When centering, after work has been done or the mapnet remoris. it is important that the magnet be remagnetized while in place.
(f) If the coil or pivot rubbers are to be replaced, the pickup must be further disaseembled. This is done by removing the magnet and then removing screws C and D . The pole piece may now be removed a an the old coil and silecve disassembled. Acetone will be found helpful for dissolving the old cement that holds the coil in place. The new coil, with its sleeve, may now be replaced and cemented in a similar position to that occupied by the old coil. Duco household or Ambroid cement may be used to hold the coil in place. Be careful to center the coil with its paper
sleeve before cementing.
(g) The pivot rubbers are replaced by loosening the armature adjusting screw and removing the armature from its bracket. The rubbers can then be removed by slipping them from each end of the pivot shaft.
It is important to remember that in all operations after reassembling but before placing in the tone arm, the pickup should be magnetized and the armature centered after remagnetizing. Magnetizing should be done by placing the pickup magnet on the magnetizer and siding it magnetic circuit.

(2)

BOTTOM VIEW SHOWING DETAILS

RCA PAGE 5-121 MODEL 301 As sembly Wiring Phonograph Data

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		6669	Switch-Tone control switch (S2) .	\$0.50
2747	Contact cap-Package of 5	\$0.50	6832	Capacitor-4.0 mfd. (C10)	. 86
3047	Resistor-1500 ohms-Carbor type-1/2 watt (R7)Package of 5 .	1.00	9464	Transformer--Power transformer-105-125 volts-50-60 eycles (T1)	3.20
3076	Resistor-1 megohm-Carbon type- $1 / 2$ watt (R10)Package of 5.	1.00	9465		4.38
3118	Resintor- 100,000 ohms-Carbon type- $1 / 4$ watt (R1)Package of 5 .	1.00		REPRODUCER ASSEMBLIES	
3077	Resistor- $\mathbf{3 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt (R9)Package of 5 .	1.00	6788	Transformer-Output transformer (T2).	1.60
3459	Capacitor-80 mmfd. (C5)	1.00	8987	Cone-Reproducer cone complete (L9)-Package of 5 .	5.00
353	Capacitor-0.25 mfd. (C18)	. 40	9437	Coil assembly-Comprising field coil, magnet and cone support (L10)	2.72
3572	Socket-7-contact Radiotron so	. 38	9467	Reproducer complet	5.15
3584	Ring-Oscillator coil retaining ring-Packife	. 40			
3602	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type- $1 / 4$ watt (R2)Package of 5 .	1.00	3808	TURNTABLE AND MOTOR ASSEMBLIES Board-Motor terminal board. 20
3603	Resistor-500 ohms-Carbon type-1 watt (R11)Package of 5 .	1.10	4052	Spring-Package of 5.	. 40
3641	Capacitor-0.1 mfd. (C9)	. 35	3813	Motor suspension assembly-Comprising one screw, one metal bushing, two rubber bushings, one flat washer, one	
3682	Shield-Radiotron shield	.22-		lockwasher and one nut-3 sets 56
3701	Capacitor - 0.01 mfd ($\mathbf{C l}$)	. 30	4083	Washer-Leather washer-Package of 10	. 20
3713	Capacitor-0.05 mfd. (C17)	. 32	4084	Washer-Metal washer-Package of 10	. 26
3857	Coii-Detector choke coil (L8)	. 90	7651	Coil-Stator coil-60 cycle operation	. 48
3858	Socket-Dial lamp socket and brack	. 26	7652	Coil-Stator coil-50 cycle operation	. 48
3859	Socket-4-contact Radiotron socket	. 30	7653	Lamination-Stator laminations-Assembled-60 cycle	
3862	Screw-Chassis mounting screw and washer-Package of 4.	. 24		operation-110 or 220 volts...........................	. 66
3865	Capacitor-160 mmfd. (C16)	. 30	7654		. 66
3869	Resistor-170,000 ohms-Carbon type-1/2 watt (R8)Package of 5 .	1.00	7655	Lamination-Rotor lamination asse mbly-60 cycle operation.	1.00
3873	Capacitor-1500 mmfd. (C3)	. 30	7656	Lamination-Rotor lamination assembly-50 cycle opera-	
3877	Capacitor-0.1 mfd. (C14)	. 32			1.00
3886	Refloctor-Dial light reffecto	. 30	7657	Base-Motor base and bearing assembly	1.20
3887	Scal-Dial scale-Package of	. 60	7714	Lamination-Rotor laminations-Assembled- 60 cycles220 volts.	1.76
3889	Resistor-25,000 ohms-Carbon type-3	. 25	7715	Coil-Stator coil-60 cycles-220 volt	. 68
3917	Capacitor- 0.25 mfd ((C18)	. 40	9038	Mo	4.20
3932	Capacitor-2400 mmfd. (C15)	. 30	9039	Motor complete-105-125 volts-50	4.20
3933	Capacitor-630 mmfd. (C2)	. 32		Motor complete-105-125 voits-50 cycles. . .	4.20
4000	Capacitor-Adjustable capacit	. 78	9040	Turntable complete-With spindle for 50 or 60 cycle operation.	1.16
4018	Coil-Choke coil (L11)	. 90	10194	Ball-Stee	. 25
6676	Socket-6-cont act sock	. 40			
6787	Capacitor-Comprising one $\mathbf{. 0 0 5} \mathrm{mfd}$. and one .017 mfd . capacitors (C20, C21).	.30	3811	PICKUP AND ARM ASSEMBLIES	46
6114	Resistor-20.000 ohms-Carbon type-1 watt (R3, R5)-Package of 5 .	1.10	3812	Screw-Needie holding screw-Pack	. 36
6660	Condenser-2-gang variable condenser (C4, C6, C24, C25).	2.78	6825	Pickup and atm assembly complete	4.82
6661	Capacitor pack-Comprising two $\mathbf{5 . 0} \mathbf{~ m f d}$. and two 8.0 mfd. capacitors (C13, C19, C22, C23).	2.70	6826	Coil-Pickup coil (L12)	. 64
6662	Transformer-First intermediate frequency transformer (L4, L5, C11, C12)	2.34	3961	MISCELLANEOUS PARTS nob-Phonograph volume control knob-Package of 5...	. 60
6663	Transformer-Second intermediate frequency transformer (L6, L7)	1.06	4075	Knob-Range switch or volume control knob-Package of 5	1.00
6664	Coil-Oscilla	. 94	4086	Knob-Tone control switch knob-Package of	1.00
6665	Shield-Oscillator coil shield and mounting	. 34	4087	Screw and washer-Chassis mounting screw and washer	
6666	Coil-Antenna coil (Ll, Cl,	1.08		assembly-Package of 4	. 20
6667	Volume control (R6, S3)	1.58	6827	Volume control-Phonograph volume control (R12)	1.46
6668	Switch-Range switch (S1)	. 58	6828	Transformer-Phonograph input transformer (T3)	2.60

RCA•VICTOR CO., INC.

Electrical Specifications

Voltage Rating . 105-125 Volt Frequency Rating. 25,50 and 60 Cycles Power Consumption. . . 50 and 60 Cycle, 100 Watts; 25 Cycle 105 Watts Number and Type of Radiotrons 2 RCA-58 1 RCA-2A7 1-RCA-2B7 1 RCA-2A5 1 RCA-80-Total 6 Tuning Ranges 540 K. C. -1500 K. C. -5400 K. C. $-15,350$ K. C Undistorted Output . 1.75 Watts

Figure D-Loudspeaker Wiring
This "Selective Short-Wave" combination instrument utilizes the new six tube double band superheterodyne together with the standard twospeed motor board assembly. Excellent quality of record reproduction together with unusual radio performance characterize this instrument.

The receiver is a six-tube two-band A. C. operated Superheterodyne receiver combining the standard and short-wave broadcasting bands. The frequency ranges are selected by means of a two position switch. Other features include a double reduction vernier tuning drive using two concentric knobs giving a $10-1$ and a 55-1 ratio of speed reduction, a continuously variable tone control, six-inch electrodynamic loudspeaker, automatic volume control, single Pentode output tube and the inherent sensitivity, selectivity and tone quality of the Superheterodyne.
The chassis is of compact construction, a fording unusual accessibility to all parts and adjust ments. An "Airplane" type dial calibrated in frequency and showing the location of the short-wave bands is a special feature of this instrunient. Figure A shows the schematic circuit, Figure B the wiring diagram, Figure C the assembly wiring and Figure D the loudspeaker wiring. Service data on the magnetic pickup is given on one of the following pages.

Line-Up Capacitor Adjustments

In order to properly align this receiver it is essential that Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K. C. to $25,000 \mathrm{~K}$. C. continnously, has good stability and includes an attenuator. In addition to the oscillator, a non-metallic screwdriver such as Stock No. 7065 and an output meter are required. The output meter should be preferably a thermo-couple galvanometer connected across or in place of the cone coil of the loudspeaker.
I. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to 370 K . C. and the adjustment screws are accessible as shown in Figure D. Proceed as follows:
(a) Short-circuit the antenna and ground terminals and tune the receiver so that no signal is heard. Set the volume control at maximum and connect a ground to the chassis.
(b) Connect the test oscillator output between the first detector control grid, and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output so that, with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(c) Adjust the secondary and primary of the first and then the second I. F. transformers until a maximum deflection is obtained. Keep ise oscillator output at a low value so that only a slight defecions ments a second time, as there is a slight interlocking of adjustments. This completes the I. F. adjustments.
R. F. and Oscillator Adjustments-The R. F. line-up capacitors are located at the bottom of the coil assemblies instead of their usual
position on the gang capacitor. They are all accessible trom the bottom of the chassis except the 600 K . C. series capacitor, which is accessible from he rear of the chassis. Proceed as follows:
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully meshed. It should be coincident with the radial line adjacent to the dial reading of 54 . Then set the Test Oscillator at 1400 K . C., the dal indicator at pobained in the output meter when the volume control is at obtalned in
(b) With the Range

Wrim the Range Switch at the "in" position, adjust the three trimmers under the thiree R. F. coils designated as L. W. in Figure. Then shift the Test Oscillator frequency to 600 K . C. The trimmer capacitor accessible from the rear of the chassis should now be adjusted for maximum output while rocking the main tuning capacitor back and forth through the signal. Then repeat the 1400 K . C. adjustment.
(c) Now place the Range Switch at the "out" position, shift the Test Oscillator to $15,000 \mathrm{~K}$. C. and set the dial at 150 . Adjust the three trimmer capacitors designated as $S W$ in Figure D for a peak, beginning with the oscillator trimmer. It will be noted that the osciliater and first detertor trimmers will have two peaks. The position which uses the lower trimmer capacitance, obtained by the oscille screw connter-clockwise, is the proper adjustment corrert for the detector. Boih of these adjustments mus! be made as indicated irrespective of output. The R. F. is merely peaked. In conjunction with the detector adjustment. it is necessary to rock the main tuning capacitor back and forth while making the adjustment. This completes the line-up adjustments.
The important points to remember are the need for using the minimum oscillator ontput to obtain a deflection in the output meter with the volume control at its maximum position and the manner of obtaining the proper high frequency oscillator and detector adjustments.

Power Transformer Connections

The power transformer used in this model has a tapped primary winding. .The transformer is normally connected for lines ranging in voltage from 110 to 125 volts. If for any reason the line is normally below 110 volts.

Figure E-Location of Line-Up Capacitors
the connections should be changed so the tap will be used. This is done by unsoldering the black with red tracer transformer lead connected to the power switch (on tone control) and bstituting the red and black lead normally taped up. The black with red tracer lead should then be care normally taped to prevent short-circuit.

TUBE SOCKET VOLTAGES (RADIO OPERATION) 115 VOLTS, A. C. Line-No Signal

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current M. A.	Heater Volts
1. RCA-58 R. F.	3.0	100	265	6.0	2.32
2. RCA-2A7 lst Det. Osc.	3.0	100*	265*	2.0*	2.32
3. RCA-58 I. F.	3.0	100	265	6.0	2.32
4. RCA-2B7 2nd Det. A. V. C.	- 1.5	35	100	1.5	2.32
5. RCA-2A5 Power	16.0	255	240	35.0	2.32
6. RCA -80 Rectifier	725 Volts R. M. S.-75 M. A. Total Current				4.80
* The voltages and current refer to the detector part of the tube.					

PAGE 5-126 RCA
MODEL Duo 320
Assembly Wiring
RCA.VICTOR CO., INC.

Figure C-Assembly Wiring Diagram

SERVICE DATA FOR MAGNETIC PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an auchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure G), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnetland the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure \boldsymbol{F}
(d) Remove screws A and B, Figure G, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot-rubber; then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure G), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by-means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure G
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure H , will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure H
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

PAGE 5-128 RCA
MODEL Duo 320
Parts List
RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	List Price	Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		7485 7487	Socket-6-contact Radiotron socket . Shield-I F and R F amplifier Ra	\$0.40
2240	Resistor-30,000 ohms-Carbon type-1 watt (R6) Cap-Contact cap-Package of 5.	$\mathbf{8 0 . 2 2}$ $\mathbf{. 5 0}$	7487 9446		. 25
3056	Shield-Second detector Radiotron shield-Package of $2 .$.	. 40		cycles (T1) - ${ }_{\text {cower }}$	5.40
3076	Resistor-1 megohm-Carbon type- $1 / 2$ watt (R10, R11) Package of 5	1.00	9451	cycles...	5.40
3118		1.00	10194	Ball-Steel ball for condenser drive assembly-Pkg. of 20 . .	. 25
3470	Resistor-6,500 ohms-Carbon type-1 watt (R20)-,	1.10		PICKUP. PICKUP ARM ASSEMBLIES	
3514	Package of 5 Resistor-250,000 ohms-Carbon type-1/2 watt (R16)-	1.00	$\begin{aligned} & 3385 \\ & \mathbf{3 3 8 6} \end{aligned}$	Coil-Pickup coil Cover-Pickup cover.	. 50
3529	Package of 5 Socket-Dial lamp socket	1.00 .32	$\begin{aligned} & 3380 \\ & 3387 \end{aligned}$	Screw assembly-Pickup mounting serew assemblyComprising one screw, one nut and one washer-10 sets.	. 40
3572	Socket-7-contact Radiot	8	3388	Screw-Pickup needle holding screw-Pkg. of 10.........	. 60
3594	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt (R14, R17)-Package of 5 .	1.00	33389	Rod-Automatic brake trip rod with lock nut-Package of 5 .	. 60
3631	Resistor-850 ohms-Carbon type- $1 / 2$ watt (R13)Package of 5 .	1.00	3390	Escutcheon-Pickup arm escutcheon complete with mounting rivets.	6
36	Capacitor-0.02 mfd. (C34)	. 25	3417	Armature-Pickup armature. .	. 42
3683 3701	Shield-Radiotron shield top Capacitor -0.01 mfd. (C6, ${ }^{\text {a }}$ (. 30	3418	Cushions-Pickup rubber cushions-Comprising one	
3702	Capacitor- 0.25 mfd . (C32).	2		damper and two spacer cushions and one damper	1.10
3768	Screw-Square head No. 6-32-1/4" set screw for condenser drive-Package of 10	. 35	3419	Screw-Pickup cover mountin	1.10 .40
3796	drive-Package of 10 Capacitor- 4.0 mmfd . (C28) 60	6335 6346	Pickup-Pickup uni	4.00
3849	Capacitor- 50 mmfd. (C10).	. 30	6346 7693	Back-Pic	5
3859	Socket-4-contact Radiotron	. 78		pickup mounting screw, nut and washer................	0
3861	Capacitor-Adjustable capacitor (C13)	.78			
3877 3878	Capacitor-0.1 mfd., (C5, C15, C25, C33)	. 32		TURNTABLE ASSEMBLIES	
	pointer-Package of 20	. 25	3261	Bushing-Rubber bushing-Used on turntable spindle for	
38	Escutcheon-Volume control escutcheon	. 25		long-playing records-Package of 5.:................	. 40
3888	Capacitor-0.05 mfd. (C19, C27).	. 25	3338	Ring-Clamp ring assembly-Comprising spring, latch	
3892	Resistor- 600 ohms-Carbon type- $1 / 2$ wat -Package of 5 .	1.00	3340		. 56
3897	Resistor-400 ohms-Carbon type-1 watt (R18)-Pac.	1.10	$\begin{aligned} & 3341 \\ & 3342 \end{aligned}$	Pin-Groov-Pin-Package of 2 Spring-Latch spring-Located on clamping ring-Pack-	. 56
3899	Escutcheon	. 42			. 56
3901.	Capacitor-0.05 mfd. (C3, C16)	. 36	3343	Sleeve-Sleeve complete with ba	2.86
3902	Knob-Station selector knob complete. 44	3344 3346	Cover-Grease retainer cover-Package of 2...........	. 70
3903	Screw-No. 8-32-3" ${ }^{\prime \prime}$ headless cup point set screw for station selector knob-Package of 20.	36	3346 3347	Bushing-Speed shifter lever bushing-Package of 4.......	. 66
3904	Knob-Volurne control knob-Package of 5	88	3399	Lever-Speed shifter lever with mounting sc	. 50
3905	Screw-Chassis mounting screw assembly-Comprising 4 screws, 4 washers and 4 cushions.	. 46	7084 8948	Cover--Suede cover for turntab Turntable-Complete.40 5.50
3906	Mounting assembly-Variable condenser mounting as-sembly-Comprising 3 bushings, 3 lockwashers, 3 nuts and 3 washers	8		OR A	
3935	Capacitor-340 mmfd. (C14)	. 34	3599	Motor mounting washer assembly-Comprising one screw,	
3936	Capacitor-3,900 mmfd. (C18, C29	-68		One washer and one lockwasher-Package of 3 sets	${ }^{.} 30$
3937 3938	Capacitor- $\mathbf{3 0 0}$ mmfd. (C30, C31)	. 34	8989 8990	Motor-Motor complete-105-125 volts-60 cycles.......	18.52
3938 3939	Capacitor- 9 mmfd. (C39) Resistor-3,500 ohms-Carbon	. 25	8990 8991	Motor-Motor complete- $105-125$ volts- $\mathbf{4 0} 0 \mathrm{cy}$	${ }_{23.36}^{18.52}$
	Package of 5. .	1.00	8992	Motor-Motor complete - 105-125 volts-25 cycles	23.36
3940	Pointer-Station selector poin	. 50	8993	Rotor and shaft for 105-125 volts, 60 cycles motor	7.00
3941	Dial-Station selector dial-Packa	1.75	8994	Spindle-Turntable spindle with fibre gear for 60 cycles	
3942	Shield-First detector Radiotron shield.	. 18		Roter and	4.75
3943	Screen-Translucent screen for dial light-	. 18	88996	Rotor and shaft for 105-125 voits, 50 cycles motor.......	7.00
3944 3991	Shield-Antenna, R. F. or oscillator coil shield	. 68			4.75
6188	Resistor-2 megohm-Carbon type- $1 / 2$ watt (Ri2) Package of 5 .	1.00	$\begin{aligned} & 8997 \\ & 8998 \end{aligned}$	Rotor and shaft for 105-125 volts, 40 cycles motor........ Spindle-Turntable spindle with fibre gear for 40 cycles	8.00
6282	Resistor-60,000 ohms-Carbon type- $1 / 2$			motor	5.50
	R15)-Package of 5	1.00	8999	Rotor and shaft for 105-125 volts, 25 cycles motor.......	0
6571 6620	Capacitor-10 mmfd. (C37) . 0	1.20	9001	Spindle-Turntable spindle with fibre gear for 25 cycles motor.	50
6620	(C35, C36)	. 50			
6676	Socket-6-contact Radiotron socket-Outp	. 40		MISCELLAN EOUS PARTS	
6694	Condenser-3-gang variable tuning condenser (C4, C9, C11)	3.75	2947	Leather-Friction leather-Package of $20 \ldots$.	. 50
6695	Volume control (R9)	1.20	3322	Switch-Antomatic brake switch with mounting screws (S8)	
6696	Switch-Range switch (S1, S2, S3, S4)	2.24	3430	Box-Needile box with lid-Package	. 90
6697	Transformer-First intermediate frequency transformer (L13, L14, C23, C24)	1.80	3615	Knob-Tone control, range switch, or phonograph volume	
6698	Transformer-Second intermediate frequency transformer (L15, L16, C26)		3994	Cover-Motor starting switch cover	.60 .26
		1.78 2.44	6757	Volume control-Phonograph volume control (R23, ${ }_{\text {S }} 9$,	
6700	Coil-Oscillator coil'(L9, L10, L11, L12, C12, Cil7)	2.30			2.70 2.70
6701	Coil-Antenna coil (L1, L2, L3, L4, C1, C2).	2.64	${ }_{9050} 6$	Transformer-Phonograph input transformer (T3)........	2.70 33.50
6702	Drive-Variable tuning condenser drive assembly complete:	1.86	10174 10184	Springs Automatic brake springs-One set of 4 springs.....	. 50
6703	Capacitor pack-Comprising one 8.0 mmfd . and two 4.0 mmfd. capacitors (C20, C22, C38)	2.46	10184	Plate-Automatic brake latch trip plate with mounting screws-Package of 5 .	. 40
6704	Shaft-Tuning condenser	. 64			
6705	Tone control complete (R22)	1.20		REPRODUCER ASSEMBLIES	
670	Glass-Station selector dial glass.	. 20	6476	Transformer-Output transformer (T2).	1.44
6755	Bexel-Metal bezel for station selector	. 50	9449	Cone-Reproducer cone comple	5.20
7065	Screw driver-For I. F. and R.	. 80	9450	Coil-Field coil magnet and cone support (Li8)	2.80

RCA PAGE 5-129

RGA-VICTOR CO., INC. SERVICE DATA

Electrical Specifications

Voltage Rating .. 105-125 Volts
 Power Consumption. 30,50 and 60 Cycle, 105 Watts; 25 Cycle, 110 Watts
 Tuning Ranges. 540 K. C. -1500 K . C. and 5400 K . C. $-15,350 \mathrm{~K}$. C. Undistorted Output 1.75 Watts

This "Selective Short-W ave" combination instrument utilizes the new six tube double band superheterodyne together with the standard twospeed motor board assembly. Excellent quality of record reproduction together with unusual radio performance characterize this instrument.

The receiver is a six-tube two-band A. C. operated Superheterodyne receiver combining the standard and short-wave broadcasting bands. The frequency ranges are selected by means of a two position switch. Other features include a double reduction vernier tuning drive using two concentric knobs giving a 10-1 and a 55-1 ratio of speed reduction, a continuously variable tone control, eight-inch electrodynamic loudspeaker, automatic volume control, single $\begin{aligned} & \text { senty } \\ & \text { selone quality of the Superheterodyne. }\end{aligned}$

The chassis is of compact construction, affording unusual accessibility to all parts and adjustments. An "Airplane" type dial calibrated in frequency and showing the location of the short-wave bands is a special feature of this instrument. Figure A shows the schematic circuit, Figure B the wiring diagram, Figure C the assembly wiring and Figure D the location of the line-up capacitors. Service data on the magnetic pickup is given on one of the following pages.

Line-Up Capacitor Adjustments

In order to properly align this receiver it is essential that Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K. C. to $25,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a non-metallic screwdriver such as Stock No. 7065 and an output meter are required. The output meter should be preferably a thermo-couple galvanometer connected across or in place of the cone coil of the loudspeaker.
I. F. Tuning Adjustments-Two transformers comprising four tuned circuits are used in the intermediate amplifier. These are tuned to 370 K . C. and the adjustment screws are accessible as shown in Figure D. Proceed as follows:
(a) Short-circuit the antenna and ground terminals and tune the receiver so that no signal is heard. Set the volume control at maximum and connect a ground to the chassis.
(b) Connect the test oscillator output between the first detector control grid, and chassis ground. Connect the output meter across the voice coil of the loudspeaker and adjust the oscillator output 80 that, with the receiver volume control at maximum, a slight deflection is obtained in the output meter.
(c) Adjust the secondary and primary of the first and then the second I. F. transformers until a maximum deflection is obtained. Keep the oscillator output at a low value so that only a slight deflection the osciliator output at a low value so that only a slight defiection is obtained on the output meter at all times. Go over these adjust-
ments a second time, as there is a slight interlocking of adjustments a second time, as there is a slight int
ments. This completes the I. F. adjustments.
R. F. and Oscillator Adjustments-The R. F. line-up capacitors are located at the bottom of the coil assemblies instead of their usual are located at the bottom of the coil assemblies instead of their usual
position on the gang capacitor. They are all accessible from the hottom of position on the gang capacitor. They are all accessible from the bottom of
the chassis except the 600 K . C. series capacitor, which is accessible from the chassis except the 600 K . C. series cap
the rear of the chassis. Proceed as follows:
(a) Connect the output of the oscillator to the antenna and ground terminals of the receiver. Check the position of the indicator pointer when the tuning capacitor plates are fully meshed. It should be coincident with the radial line adjacent to the dial reading of 540 . Then set the Test Oscillator at 1400 K . C., the dial indicator at 1400 and the oscillator output so that a slight deflection will be obtained in the output meter when the volume control is at its maximum position.
(b) With the Range Switch at the "in" position, adjust the three trimmers under the three R. F. coils designated as L. W. in Figure D, until a maximum deflection is obtained in the output meter. Then shift the Test $\mathrm{O}_{\text {scillator }}$ frequency to 600 K . C. The trimmer capacitor accessible from the rear of the chassis should now be adjusted for maximum output while rocking the main tuning capacitor back and forth through the signal. Then repeat the capacitor back and for
$1400 \mathrm{~K} . \mathrm{C}$. adjustment.
(c) Now place the Range Switch at the "out" position, shift the Test Oscillator to $15,000 \mathrm{~K}$. C. and set the dial at 15 on megacycle scale, Adjust the three trimmer capacitors designated as S.W. in Figure D for a peak, beginning with the oscillator trimmer. It will be noted that the oscillator and first detector trimmers will have two peaks. The position which uses the lower trimmer capacitance, obtained by turning the screw counter-clockwise, is the proper adjustment for the oscillator while the position that uses a higher capacitance is correct for the detector. Both of these adjustments must be made as indicated irrespective of output. The R. F. is merely peaked. In conjunction with the detector adjustment, it is necessary to rock the main tuning capacitor back and forth while making the adjustment. This completes the line-up adjustments.
The important points to remember are the need for using the minimum oscillator output to obtain a deflection in the output meter with the volume control at its maximum position and the manner of obtaining the proper high frequency oscillator and detector adjustments.

Power Transformer Connections

The power transformer used in this model has a tapped primary winding. The transformer is normally connected for lines ranging in voltage from 110 to 125 volts. If for any reason the line is normally below 110 volts,

Figure D-Location of Line-UP Capacitors
the connections should be changed so the tap will be used. This is done by unsoldering the black with red tracer transformer lead connected to the power switch (on tone control) and substituting the red and black lead normally taped up. The black with red tracer lead should then be carefully taped to prevent short-circuit.

TUBE SOCKET VOLTAGES (RADIO OPERATION) 115 VOLTS, A. C. Line-No Signal

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screon Grid, Volts	Cathode to Plate, Volts	Plate Current M. A.	Heater Volts
1. RCA-58 R. F.	3.0	100	265	6.0	2.32
2. RCA-2A7 1st Det. Osc.	3.0	100*	265*	2.0*	2:32
3. RCA-58 I. F.	3.0	100	265	6.0	2:32
4. RCA-2B7 2nd Det. A. V. C.	1.5	35	100	1.5	2.32
5. RCA-2A5 Power	16.0	255	240	35.0	2,32
6. RCA-80 Rectifier	725 Volts R. M. S.-75 M. A. Total Current				4.80
* The voltages and current refer to the detector part of the tube.					

RCA-VICTOR CO., INC.

RCA PAGE 5-131

RCA-VICTOR CO., INC. Chassis Wiring

MODEL Duo 321

Assembly Wiring

RCA-VICTOR CO., INC.

Figure C-Assembly Wiring Diagram

RCA-VICTOR CO., INC.

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure F), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by puilling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure E
(d) Remove screws A and B, Figure F, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rabber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securcly clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure F), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure \boldsymbol{F}
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure G, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core sol?er should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure G
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

PAGE 5-134 RCA

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	List Price	Stock No.	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$
	RECEIVER ASSEMBLIES		3417	Armature-Pick	$\mathbf{8} 0.72$
2240	Resistor- 30,000 ohms-Carbon type-1 watt (R6)	\$0.22	3419	Screw-Cover mounting screw-Package of 10	40
2747	Cap-Contact cap-Package of 5............	. 50	35	Damper assembly-Comprising 1 upper and 1 lower	
3056 3076		40	3521	damper 1 upper and 1 lower bearing-For pickup base Cover-Pickup back cover.	. 14
	-Package of 5..................	1.00	3737	Damper-Viscoloid damping block-Package	. 65
3252	Resistor-100,000 ohms-Carbon type-1/2 watt (R1, R3)		6346	Back-Pickup housing back.	45
	-Package of 5 .	1.00	6601	Pickup-Magnetic pickun comp	4.54
3470			6602 7731	Coil-Pickup coil (L19) Arm-Pickup arm complete less pickup and escutcheon	$\begin{array}{r}.65 \\ \hline 5.40\end{array}$
3514	Package of 5 Resistor-250,000 ohms-Carbon type- $1 / 2$ watt (R16)Package of 5 .	1.10 1.00	7731	Arm-Pickup arm complete less pickup and escutch TURNTABLE ASSEMBLIES	5.40
3529	Socket-Dial lamp socket.	. 32		TURNTABLE ASSEMBLIES	
35	Socket-7-contact Radiotron so	. 38	3261	Bushing-Rubber bushing-Used on turntable spindle for	
	Resistor- 50,000 ohms-Carbon type- $1 / 2$ watt (R14, R17) -Package of 5 .	1.00	3338		50
3631		1.00	3340	lever and stud..................................	. 50
3639	Capacitor- 02 mfd ($\mathbf{C} 34$)	. 25	3341	Pin-Groov-Pin-Package of 2 .	56
3683	Shield-Radiotron sh	. 20	$33 \dot{4} 2$	Spring-Latch spring-Located on clamping ring-Pack-	
3701	Capacitor-. 01 mfd . (C6,	. 30		age of 2 .	. 56
3702	Capacitor-. 25 mfd . (C32)	. 42	3343	Sleeve-Sleeve complete with ball	2.86
3768	Screw-Square head No. 6-32-1/4" set screw for condenser		3334	Cover-Grease retainer cover-Package of 2	. 70
	drive-Package of 10	. 35	3346	Bushing-Speed shifter lever bushing-Package of	. 66
3796 3849		. 60	$\begin{aligned} & 3347 \\ & 3399 \end{aligned}$	Spring-Speed shifter lever spring-Package of 2. Lever-Speed shifter lever with mounting screws.	. 30
3859	Socket-4-contact Radiotron sock	. 30	8948	Turntable-Complete.	5.50
3861	Capacitor-Adjustable capacitor (C13)	. 78			
3877 3878	Capacitor- 1 mfd. (C5, C15, C25, C33).	. 32		MOTOR ASSEMBLIES	
3878	Screw-No. 4-40-3 ${ }^{\frac{3}{18}}{ }^{\prime \prime}$ screw for fastening station selector pointer-Package of 20	. 25	3398	Motor mounting assembly-Comprising 2 cup washers, 4	
3888	Capacitor- 05 mfd ($\mathbf{C 1 9 , ~ C 2 7) ~}$. 25		springs and 1 "C', washer	48
3892			$\begin{aligned} & 3817 \\ & 8989 \end{aligned}$	Stud-Motor mounting stud-Package of 3 . Motor-Motor complete-105-125 volts- 60	
3897	-Package of 5 .	1.00	8989 8990	Motor-Motor complete- $105-125$ volts- 60 Motor-Motor complete-105-125 volts- 50	18.52
	age of 5 .	1.10	8991	Motor-105-125 volts- 40 cycles.	23.36
3901	Capacitor-. 05 mfd (${ }^{\text {C3, Cl6 }}$)	. 36	8992	Motor-Motor complete-105-125 volts-25	23.36
3906	Mounting assembly-Variable condenser mounting assembly comprising 3 bushings, 3 lockwashers, 3 nuts, and 3		$\begin{aligned} & 8993 \\ & 8994 \end{aligned}$	Rotor and shaft for $105-125$ volts, 60 cycle motor Spindle-Turntable spindle with fibre gear for 60 cycle	7.00
3937	Waphers.	. 28	8995	motor. Rotor and	4.75 7.00
3938	Capacitor 9 mmfd. (C39)	.25	8996	Spindle-Turntable spindle with fibre gear for 50 cycle	
3939	Resistor-3,500 ohms-Carbon type-1/2 watt (R21)-			motor.	4.75
3942.	Package of 5	1.00	8997	Rotor and shaft for 105-125 volts-40 cycle motor	8.00
3943	Screen-Translucent screen for dial light-Pack	.18	8998	Spindle-Turntable spindle with fibre gear for 40 cycle	5
3944	Shield-Antenna, R. F. or oscillator coil shield	. 28	8999	Rotor and shaft for 105-125 volts- 25	8.00
3991	Resistor- 10,000 ohms-Porcelain ty pe	. 60	9001	Spindle-Turntable spindle with fibre gear for 25 cycle	
4031	Capacitor-2,700 mmfd. (C18, C29, ${ }^{\text {c }}$. 50		,	5.50
4032	Capacitor-390 mmfd. (C14)	. 34			
4119	Screw-No. 8-32-1/4" headless cup point set screw for station selector knob-Package of 20	. 38		MISCELLANEOUS PARTS	
6188	Resistor-2 megohm-Carbon type- $1 / 2$ watt (R12)-		2947	Leather-Friction leather-Package of 20.	. 50
		1.00	322	Switch-Automatic brake switch with mounting screws	
6282	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type-1/2 watt (R5, R8, R15)-Package of 5	1.00	3391	(S8) Suspension spring and washer assembly for motor board-	. 75
6571	Capacitor-10 mfd. (C37)	1.20	3391	Comprising one bolt, one top spring, one bottom spring.	
6620	Capacitor-Comprising one $\mathbf{. 0 0 5} \mathrm{mfd}$. and one $\mathbf{. 0 3 5} \mathrm{mfd}$.			2 cup washers, one "C" washer, and one nut	. 50
6676	(C35, C36) 40	3430	Box-Needle box with lid-Package of	90
6694		$\begin{array}{r}.45 \\ \hline\end{array}$	3994 4075	Cover-Automatic switch brake cover....	1.00
6695	Volume control (R9)	1.20	4120	Knob-Volume control knob-Package of	1.18
6696	Switch-Range switch (S1, S2, S3, S4)	2.24	4121	Knob-Station selector knob-Package of 5.	1.18
6697	Transformer-First intermediate frequency transformer (L13, L14, C23, C24)	1.80	4136	Screw-Chassis mounting screw assembly-Comprising	
6698	Transformer-Second intermediate frequency			four screws, four washers, eight cushions.	.62
	(L15, L16, C26, C41)	1.78	6615	Ring-Retaining ring for dial glass-Packag	.34
6699	Coil-R. F. coil (L5, L6, L7, L8, C7, C8)	2.44	6288	K ${ }^{\text {Rob-Phonograph, volume control knob-Packa }}$	1.00
6700	Coil-Oscillator coil (L9, L10, L11, L12, C12, C17)	2.30	6614	Glass-Station selector dial glass	. 30
6701	Coil-Antenna coil (L1, L2, L3, L4, C1, C2)	2.	6615	Ring-Retaining ring for dial glass-Package	. 34
6702	Drive-Variable tining condenser drive assembly com-	1.86	6766	Volume control-Phonograph volume control (R23,	2.28
6703	Capacitor pack-Comprising one 8. mfd. and two 4 . mfd. capacitors (C20, C22, C38) .	2.46	6855	Cable-3-conductor cable with spade terminals-Reproducer cable	. 44
6704	Shaft-Tuning condenser drive assemb	. 64	6856	Cable-3-conductor shielded with male section of con-	
6705	Tone control complete (R22)	1.20		Cabection plug-Phonograph volume control. .	. 85
6841	Dial-Station selector dial-Package	2.74 4	6857	Cable- $\mathbf{2}$-conductor motor cable	1.24
6842	Pointer-Station selector pointer-Package	.46	6858	Transformer-Phonograph input transformer-Compris-	
7485	Socket-6-contact Radiotron socket	. 25		ing one transformer, one reactor, one .01 mfd . and 0.1	
9446	Shield-I. F. and R. F. amplifier Radiotron			mfd. capacitors, one 5,000 and one $50,000 \mathrm{ohm}$ resistor	2.50
	cycles (T1)	5.40	10174	Spring-Automatic brake springs- ${ }^{\text {One set }}$ of	
9451	Transformer-Power transformer-105-125 volts-25-50				. 50
10194		5.40 .25	10184	Plate-Automatic brake latch trip plate with mounting screws-Package of 5 .	40
	PICKUP AND PICKUP ARM ASSEMBLIES			REPRODUCER ASSEMBLIES	
3386	Cover-Pickup cove	. 56	6770	Transformer-Output transformer (T2)	2.00
3387	Screw assembly-Pickup mounting screw assembly comprising one screw, one nut and one washer--Package of 10		8969 9460	Cone-Reproducer cone (L17)-Package of 5.............. Coil assembly-Comprising field coil magnet and cone	6.35
3388	prising one screw, one nut and one washer--Package of 10 . Screw-Pickup needle holding screw-Package of 10 .	. 60	9460	Coil assembly-Comprising field coil magnet and cone support (L18)	6.00
3389	Rod-Automatic brake trip rod-Package of 5	. 40	9473	Reproducer complete	8.00

RCA PAGE 5-135
RCA-VIC'OR CO., INC.

PAGE 5-136 RCA
HODEL 327
Chassis Wiring RCA-VICTOR CO., INC.

meshed. It should be coincident with che
radial line adjacent to the dial reading of 54. .
Then set the Test Occillator at 1400 K . C.,
the dial indicaor ar 140 and che oscillator out-
put so that a s slight deflection will be obtained maximum deflection is obtained in the outpur meter. Then shift the Test Oscillator fre-
quency to 600 K . C. The trimmer capacitor accessible from the rear of the chassis, should now be adjusted for maximum output while
rocking the main tunning capacior back and forth chrough the signal. Then repeat the 1400 (c) Now place the Range Switch at the "our" position, shift the Test Oscillator to 15,000
K. C. and set che dial ac 150. Adjust the chrce trimmer capaciors designated as S in Figure 4 for maximum output, beginning with the
oscillator trimmer. It will be noted that the oscillator and first detector trimmers will have
two positions at which the signal will give two positions at which the signal will give
maximum ouput. The position which sues
the lower timmer capacisace the lower trimmer capapacatance, obhained by
tuning the screw councer-lockwise, is the tuning the screw counter-clockwise, is the
proper
position chusment for the sescillator, while the
higherer capacitance is corposition that uses 2 higher capacitance is cor-
rect for the detector. Both of these adjustments rect for the detector. Both of these adjustments
must be made as in indicated irrespective of output. The R. F. is merely peaked. In con-
junction with che detector adjusmens, it is junction with the detector adjustmenss, it is
necessary to rock che main cuning capacior
back and forth while making the adjustment. back and forth while making the adjustmenc.
This completes the line-up adjusemenss. (3) Service Dotat on Megnetic Pickup
The Magneric Pickup sed in this
(3) The Magnetic Pickup used in this combination
instrumen

 are considerably different. It consists essentially of a
chromium steel magnee, two chin pole pieces, a mechanism support and bracket, a coil, and an
armature that is damped by means of an anchored
The use of the anchored damping block eliminates
 5,000 cycles.

CAUTION-This receiver operates on 220-volt
direct current without a transformer between the line
and the various parts of the receiver, such as A. C. receivers use. It is therefore extremely important to outside of the cabinet. Also a knob must always be placed on the shaft of the main tuning capacitor, as
under certain conditions the full line voltage is under certain conditions the full line voltage is
obtained between this point and ground. (1) Line-Up Capacitor Adjustments

To properly align this receiver, it is essential that a
modulated R. . oscillator such as Stock No. 9050 , mqdulated R. F. oscliliaror, Succh as stock No.
an output indicator (Sock No. ment tool (Stock No. 4160) be available. Figure 4
shows the location of the various line-up capacitors.
I. F. Tuning Adjustments Two transformers comprising four tuned circuits
are used in the intermediate amplifier. These are tuned to $370 \mathrm{~K} . \mathrm{C}$. and the adjustment screws are
accessible as shown in Figure 4. Proceed as follows: (a) Short-circuit the antenna and ground leads and tune the receiver so that no signal is heard.
Set the volume control at maximum and connect a ground to the ground terminal. (b) Connect the test oscillator output between the
first detector control grid and chassis ground, first detector control grid and chassis ground,
preferably through a series condenser. Connect the output meter across the voice coil
of the loudspeaker and adjust the oscillator of the loudspeaker and adjust the oscillator
output so that, with the receiver volume control at maximum, a slight deflection is
obtained in the output meter.
(c) Adjust the secondary and primary of the first
and then the second I. F. transformers until a
maximum deflection is obtained. Keep the oscillator output at a low value so that only
 a second time, as there is a slight interlocking
of adjustments. This completes the I. F. of adjustmen
adjustments.
 The R. F. line-up capacitors are located at the
bottom of the coil assemblies instead of their usual from the bottom of the chassis except the 600 K . C.
series capacitor, which is accessible from the rear of the chassis. Proceed as follows:
(a) Connect the ourpur of the oscillator to the antenna and ground terminals of the receiver.

RADIOTRON SOCKET VOLTAGES

The voltages at the right are those taken while the set is in operating condition. No allowance has been made for currents drawn by the meter, and if lower resistance meters are used. such allowances must be made.

220-Volt, D. C. Line-No Signal

* Radiotron No.		$\begin{gathered} \text { Cachode } \\ \text { so B- Volts, } \\ \text { D. C. } \end{gathered}$	$\begin{aligned} & \text { Screen Grid } \\ & \text { to B-V Volss, } \\ & \text { D. C. } \end{aligned}$	$\begin{aligned} & \text { Plate to B- } \\ & \text { Volts, D. C. } \end{aligned}$	Plate Current, M. A.	Heater Volts, A. C.
RCA-6D6 R. F.		3.0	90	200	6.0	6.4
RCA-6A7	1st Detector	4.0	90	200	2.6	6.4
	Oscillator	-	-	125	3.3	
RCA-6D6 I. F.		3.0	90	200	6.0	6.4
RCA-75 2nd Detector		1.5	-	200	0.7	6.4
RCA-41 Power		13.0	190	205	25.0	6.4
		13.0	190	205	25.0	6.4

Figure.3-Loudspeaker Wiring

(4) Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure 8), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws A and B, Figure 8, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivor rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block - removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mech-anism-with the pole pieces upward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is

Figure 4-Location of Line- U_{p} Capacitors Viewing bottom of chassis

ALL VOLTAGES ARE TO-B
Figure 5-Radiotron Socket Voltages
inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure 8), and sliding the mechanism slightly in relation to the pole pieces.

Figure 7
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.
In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be .009" on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

(5) Replacing the Damping Block

If it is desired to replace the damping block, it may be dcne in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is' in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip,
constructed as shown in Figure 9, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the

end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious

Figure 9
subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as explained under (h).
REPLACEMENT PARTS

	Dssautron	${ }_{\substack{\text { List } \\ \text { Price }}}^{\text {del }}$	Stock	Descaution	${ }_{\text {Lise }}^{\text {Price }}$	$\begin{aligned} & \begin{array}{l} \text { Sock } \\ \text { No. } \end{array} \end{aligned}$	Descurtion	$\underset{\text { Lixice }}{\text { Prem }}$	Stack	Dscaurtion	${ }_{\substack{\text { Lisice }}}^{\text {Price }}$
	CIVER ASSEMBLIES		6242	- Carbon type			MOTOR ASSEMBLIES			URNTABLE ASSEMBLIES	
10194				att (R11)-Package	s1.00	24	Bruh-Mơoror brush-Packa	30.60		ver-Turna	
	chage of 20.	\$0.25		istor-20,000 obrss-Carbon		3525	Cap-Brush holder cap for		7338	Turiable	2.15
2747 3938	$\mathrm{Cap}^{\text {caperanace ca }}$		4337	or-270 ohms-Carbon y (4598				miscellaneous assemblis	
3849	Capacitor-50 mmfd ((C25)	. 30		Package			capacioros (C52, C53	98	4677	Meal be	
6314	Capacitor- 160 mmfd ((C42)-Package of 5 .	2.00		Resistor $-20,000$ ohms -		4596	Esuucheon-Spred	${ }^{36}$		elector dial glas	. 56
4352	Capacior-300 mifd. ($C 37, \mathrm{C} 38$)...	. 25	4339	Resisor - 260		3487	Governor assembly-Co cwo sprines and cwo		4594	Box	30
4297	Capacior- $410 \mathrm{mmfd}$. (C 20)	. 30		hms (R14, R15).			woo spings and two balis-	00	4592		
4031 3701	Capacior-2700 mmfd (${ }^{\text {c }}$ 15, C23,	. 50	3991	$\underset{\substack{\text { Recsisor- } \\ \text { (R21) }}}{\mathbf{1 0 , 0 0 0} \text { ohms - Porcelain }}$. 60	3489	pointer-Speed indicator poi			lume control	2.25
	Capacitior -0.01 mfd Capacior 0.05 mdd	. 30	3943	Screen-Translucent celluloid sereen-			mplete, with mounting sxews and	1.65	6614	Glass-Station slectoot dia	
	${ }^{\text {cha }}$. 30			18	7823	Motor-220-volt D.		382	Knob-Phonograph volume control	
3901	Capacior-0.05 mfd. (C4, C13)	. 36	3878	s			M1).		5989	Knob-Range swicch or tone conctol kno	
3888 3877	Capacior $=0.05 \mathrm{mfd}$. $(C$,	.25 .32			. 25	488	Pin-Governor (30		Package of 5.	. 65
3877 3796	Capacior-0.1 Capacitor-4.0 a	. 32	3768	Screw-Scuare head No.		4597	-Motor		6991	Knob-Sation elcctor knob-Package of	15
6986	Capacior $\mathbf{8 . 0} \mathrm{mmfd}$. (C39).	1.60			${ }^{35}$		wash	. 22			1.15
	$\mathrm{Capazcoror}^{\text {Adjusable erim mer capacioo (C21) }}$. 78	${ }_{4145}$	Shafe-Tuning							
6985	Capacitor-Comprising two 4.0 mmfd			Shicle-mins	30					Osillator-Test oxillator	29.50
4373			4103	Shield-1. F.	20		Arm-Pickup arm complece, less and pickup	5.36		g-	
	and one 0.02 mfd .	. 30				3417	Armature-Pickup 2				
6983	Coll-Antenna coil	2.68	4215	Stield--Radioton shied to		6346	Back-Pickup housing back	. 45		for reproducer cable	. 56
	Coil-Oscillator coil (L2, L10, L11, L12, C18, C22)	2.30	352	Shicla--Scond detercor Rad	${ }^{32}$	3385	Coil-Pickup coil (L30).	. 50	4341	Resisor-Poocelain ty	
669	Coil-R. F. coil (LL, L6, L7, L8, C11, C12).	2.44	6676	Sock	${ }^{40}$	3386 3418	Cover-Picku	. 56			
6694	Condenser-3-3.zag variable uning condenser	3.75	7485	Socket-6-contect scoond de			Cushions-Pickup rubber cushions-Comprising one damper and cwo sppect cushions			of 5 . Ring-Retaining ring for dial glass-Package	. 34
6841	Disl-Station slector dial sale-Package		3572	Sock	. 38		one damper bushing	1.10	4342	Screw-Receiver mounting ser	
	.	2.74	6696	Swich-Range swich ($\mathbf{S 1}, \mathrm{S} 2, \mathrm{S3}, \mathrm{~S} 4$		339	Exsucheon-Pickup with mounting five			Comprishg four bushings, four serews and	. 30
4467	Drive-Variable tuning condenser drive assembly complete.		6697		2.24	6335	Pickup-Pickup unit comp	. 00	1591	Screw sesmbly-R	
	Lamp-Dial lamp-Package of 5 .	. 60		transformer (L13, L14, C27, C8).	1.80		Rod-Automatic brake trip rod with lock nut			screws, four washers and four spacers	${ }^{4}$
3906	Mounting assembly-- Variable condenser mouncing assembly-Comprising 3 bush- ings, 3 lock-washers, 3 nurs and 3 washers ings, 3 lock-washers, - Package of 1 xt.	28	6698	Transformer-Second intermediate frequency transformer (L15, L16, C32, C33) Transformer pack-Audio transformer pack	1.78	3387	Screw assembly-Pickup mounting screw assembly comprising one screw, one nut and ne washer-10 sets.		4160	Screwdriver-Combination insulated screwdriver and socket wrench for I. F. and R. F adjustments.	
	Pointer-Scation selector indicator-Package	50			4.50	338	Screw-Pickup needle holding screw-Pack age of 10.		4593		
3218	Resisor 6000		6695		1.20	3419	Scew-Pickup cover mounting screw-Pack	40	459	Socket-7-contact socket for phonograph	
	, R ,									put alie	
		2.00		UCER ASSEM						uspension spring and washer assembly-For motor board-Comprising one bolt, one	
3602	Resisor $-60,000$ ohms-Carbon evpe- $1 / 4$ wate (R5, R8, R16)-Package of $5 \ldots \ldots$	1.00	4600	Cable-Reproducer cable-4-conductor with male secrion of connector-From receiver			ver-Motor sw	. 26			. 50
3118	Resisor- 100,000 ohms-Carbon type-1/4 watt (R1, R3)-Package of 5.........	1.00	7825	to resistors and reproducer.			Plate-Automatic brake latch plate-Package of 5.		4603	ansformer - Input eransformer pack- Comptising one input transformer, one .	
3439					4.38	10174	-Automatic brike springs			(ente	
	watc (R23)-Package of 5..	1.00	8969	Cone-Reproducer cone (L19)-Packaze of 5 .	6.35					(33, L20, R11, R42, C50, C51).	4.65
3033	Resistor- 1 megohm-Carbon type- $1 / 4$ watt (R10, R12)-Package of 5 .	1.00	$\begin{aligned} & 7824 \\ & 4599 \end{aligned}$	Reproducer complece. Transformer-Outpur	$\begin{gathered} 8.00 \\ 1.34 \end{gathered}$	$\begin{aligned} & 6896 \\ & 3322 \end{aligned}$	Switch-Eccentric automatic switch complete Switch--Motor switch (S8).		459	Volume control - Phonograph volume trol (R40, S9, S10)	

RCA PAGE 5-141

PAGE 5-142 RCA

```
MODEL "All Wave Duo"
    340,340-E
RCA-VICTOR CO., INC.
```

Chassis Wiring

RCA PAGE 5-143

PAGE 5-144 RCA

RCA-VICTOR CO., INC.

MODEU "All Wave Duo" 340,340-E
 Aligmment Data

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at 445 K . C. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 90 K . C. to $25,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 -ohm resistor for use as a "dummy" antenna, a non-metallic screwdriver (such as Stock No. 4160), and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.

Figure F-Location of line-up capacitors

To align the intermediate frequency circuits, connect the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with a $\mathbf{3 0 0}$-ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to perinit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver. This is done by connecting the 300 -ohm resistor between the antenna and ground terminals of the receiver and attaching a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high-frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low-frequency end of a tuning range it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure F for the location of the line-up capacitors.

Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure H shows the proper manner of making the various connections possible for this transformer. Note: The transformer is normally connected for 115-125-volt lines, and a 100 -volt motor supplied. The 220 -volt connections must not be used unless the motor is also changed. However, 220 -volt operation of the standard equipment may be obtained by using the Stock No. 9034 step-down line transformer.

The 25-60 cycle transformer uses only one 105-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure G may be used for 100-115-volt lines.

External Oscillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustments to be Made
$445 \mathrm{~K} . \mathrm{C}$.	Any setting that does not bring in station.	At rear of chassis.	Any position that does not bring in station.	Maximum output.	4
370 K. C.	$370 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	X	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	\mathbf{X}	Maximum output while rocking dial back and forth.	1
1400 K. C.	1400 K. C.	Bottom of chassis.	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial back and forth.	1
3900 K. C.	$3900 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	B	Maximum output.	3
$1710 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M.C}$.	Bottom of chassis.	C	Maximum output. (See Note.)	3
15 or 18 M. C.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Maximum output. (See Note.)	4

NOTE-It is important to note, when aligning bands C and D, that two peaks will be observed on the trimmers for the oscillator and for the first detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitance. It is essential that the proper peak be chosen, as otherwise tracking and sensitivity will be very poor at
other frequencies. When adjusting the detector trimmer, the tuning capacitor should be rocked, since there is a reaction on the oscillator tuning.

PAGE 5-146 RCA

Figure G-100-115 Volt Connection of 25-60 Cycles Transformer

Controls

The four control knobs on the front panel of the cabinet serve the following purposes:
(1) Range Switch (Left-hand Knob)-This switch converts the receiver for operation within any of the tuning ranges provided. As indicated on the selector dial, the letters on the switch escutcheon signify:
X-Long-Wave Range- 150 to 410 kilocycles (2000 to 732 meters). This range is included only in certain models of the instrument (see "Introduction").
A-Standard Broadcast Band-540 to 1500 kilocycles (555 to 200 meters).
B-Police Band-1500 to 3900 kilocycles (200 to 77 meters). Services available within this band include police calls at 1574, 1712 and 2450 kilocycles, amateur radio "phone" communications between 1800 and 2000 kilocycles, and aviation communications (phone) between 2500 and 3500 kilocycles.
C-Short-Wave Range- 3900 to 10,000 kilocycles (77 to 30 meters). Within the limits of this range are included two of the internationally-assigned short-wave broadcast bands. These are known as the 49 and 31 meter bands. (The portion of this range from 8000 to 10,000 kilocycles, which includes the latter band, is preferably received on range D.)
D-Short-Wave Range - 8,000 to 18,000 kilocycles (37.5 to 16.7 meters). This range embraces four of the standardized short-wave broadcast bands located at 31, 25 , 19 and 16 meters, respectively.

Figure H-Power Transformer Connections (50-60 cycles)

SERVICE DATA ON

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure K), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure I
(d) Remove screws A and B, Figure J, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening serews A and B (Figure J), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assemby, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure J
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure K, will prove desirable tor fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both side, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure K
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

PAGE 5－148 RCA

MODEL＂All Wave Duo＂
340，340－E
Parts List

REPLACEMENT PARTS

58	
嵒	
晾號	
告	

\％${ }^{8}$	
䓂	
歲家	
\％${ }^{\circ}$	荅
砍	
	式壴 H

RCA.VICTOR CO., INC.
IF PEAK 445 KC.

PAGE 5-150 RCA

RCA PAGE 5-151

PAGE 5-152 RCA
MODEH 340,340-E Assembly Wiring
Voltage,Circuit Data

RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.

The accuracy of line-up of each band may be checked with-

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at $445 \mathrm{~K} . \mathrm{C}$. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 150 K . C. to $20,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 ohm resistor for use as a "dummy" antenna, a non-metallic screwdriver (such as Stock No. 7065), and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.

Figure F-Location of line-up capacitors.
To align the intermediate frequency circuits, connect the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillator output should be connected to the antenna and ground terminals of the receiver with the 300 ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver in the following manner: Connect the $\mathbf{3 0 0} \mathbf{o h m}$ resistor between the antenna and ground terminals of the receiver and attach a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.
out touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low frequency end of a tuning range it may be accomplished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure F for the location of the line-up capacitors.

External Oncillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustments To Be Made
445 K. C.	Any setting that does not bring in station.	At rear of chassis.	Any position that dues not bring in station.	Maximum output.	4
370 K. C.	$370 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	\mathbf{x}	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	X	Maximum output while rocking dial hack and forth.	1
$1400 \mathrm{~K} . \mathrm{C}$.	- 1400 K. C.	Bottom of chassis,	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of cbassis.	A	Maximum output while rocking dial back and forth.	1
3900 K. C.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
1710 K. C.	Set for signal.	Top of chassis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M} . \mathrm{C}$.	Bottom of chassis.	C	Maximum output. (See Note)	3
15 or 18 M. C.	15 or 18 M. C.	Bottom and top.	D	Maximum output. (See Note)	4

PAGE 5-154 RCA

Transformer Connections

The power transformer of the $\mathbf{5 0 - 6 0}$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure H shows the proper manner of making the various connections possible for this transformer. Note: The transformer is normally connected for 115-125-volt lines and a 110 -volt motor supplied. The 220 -volt connections must not be used unless the motor is also changed. However, 220 -volt operation of the standard equipment may be ob. tained by using the Stock No. 9034 step-down line transformer.

The 25-60 cycle transformer uses only one 105-125-volt winding, a tap being provided for the lower voltages. Normally the transformer is connected for 115-125-volt lines, but the connection shown in Figure \mathbf{G} may be used for 100-115. volt lines.

Figure H-Power Transformer Connections (50-60 cycles)

RCA-VICTOR CO., INC.

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance, it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to $\mathbf{5 , 0 0 0}$ cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure K), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure I
(d) Remove screws A and B, Figure J, and then remove the mechanism assembly, from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly shonld be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(b) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure J), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure J
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat-smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure K, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and canse a small bulge on both side, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure K
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as ex. plained under (h).

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

-	

RCA-VICTOR CO., INC.

PAGE 5-158 RCA

RCA-VICTOR CO., INC.

DESCRIPTION OF ELECTRICAL CIRCUIT

The general circuit arrangement consists of an R. F. stage, a combined oscillator and first detector, an I. F. stage, a combined second detector, A. F. amplifier and automatic volume control, a driver audio stage and a push-pull Pentode output stage. An RCA-5Z3 rectifier, together with a suitable filtering system, provides plate and grid voltages for all tubes. and field excitation for the loudspeaker. Figure 1 shows the schematic diagram, Figure 2 the chassis wiring, Figure 3 the loudspeaker wiring and Figure 4 the assembly wiring.
The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F. cube through the antenna coupling transformer. The secondary of this transformer is tuned to the signal frequency by means of one unit of the gang capacitor. The output of this stage is transformer coupled to the grid circuit of the first detector, which is also tuned to the signal frequency by a unit of the gang capacitor.
Combined with the signal in the first detector is the local oscillator, which is always at a $460 \mathrm{~K} . \mathrm{C}$. frequency difference (higher) from the signal frequency. A separate coil system and the third unit of the gang capacitor are used in ṭhis circuit.
In conjunction with these three tuned circuits, it is well to point out that four different groups of tuned circuits are used, one for each tuning band. A fourposition selector switch is provided for selecting the band in which the desired signal is located. In addition to selecting the desired coil system, additional groups of contacts are provided for short-circuiting the preceding lower frequency R. F. and detector coils and the two preceding oscillator coils. This is to prevent "dead" spots due to the absorption effects caused by the coils, the natural period of which, with the tuning capacitor disconnected,falls in the next higher frequency band.

The output of the first detector, which is the I. F. signal ($460 \mathrm{~K} . \mathrm{C}$.), is fed directly through two tuned circuits to the grid of the I. F. amplifier stage. The I. F. stage, which utilizes Radiotron RCA-6D6, uses two transformers, which consist of four tuned circuits, all of which are tuned to 460 K . C.

The output of the I. F. amplifier is then applied to the input electrodes of the RCA-75, which is a combined second detector, A. F. amplifier and automatic volume control. The direct current component of the rectified signal produces a voltage drop across resistor $\mathrm{R}-32$. The full voltage drop constitutes the automatic bias voltage for the R. F. while a tap is provided for the first detector and I. F. voltage. These automatic bias voltages for the R. F., first detector and I. F. give the automatic volume-control action of the receiver. The volume control selects the amount of audio voltage that is applied to the grid of the RCA 75 and thereby regulates the audio output of the entire receiver.

The output of the A. F. section of the RCA-75 is resistance coupled to the grid of the RCA-76, first audio stage, which is transformer coupled to the push-pull output stage.
The output stage uses two RCA-42's, which give a low distortion, high audio output to the loudspeaker. A high-frequency tone control, which consists of a variable resistor and capacitor, is connected across the grids of the output stage. At the minimum resistance position of the variable resistor, maximum attenuation of the high audio frequencies is obtained.

The plate circuit of the output stage is matched to the cone coil of the reproducer by means of a stepdown transformer.
Plate and grid voltages for all tubes are supplied from the output of the rectifier-filter system. An RCA-5Z3 is used as a rectifier and a suitable network of capacitors and resistors gives the necessary filtering and voltages. The loudspeaker field is used as a filter reactor.

RCA-VICTOR CO., INC. SERVICE DATA

A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$. Place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn the volume control to its maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicator.
(c) Refer to Figure 6. Adjust each trimmer of the I. F. transformers until maximum output is obtained. Go over the adjustments a second time.
This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F. and oscillator adjustments due to to interlocking which always occurs.

Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this, it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced by a lowering of output when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 5. An example of the proper manner of using the tuning wand would be to assume the external oscillator were set at $1720 \mathrm{~K} . \mathrm{C}$. and the signal tuned in, and the output indicator connected across the voice coil of the loudspeaker. Then the tuning wand should be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in output when each end of the wand is inserted in each of the three transformers. If one end-for example, the iron end -when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

(2) I. F. TUNING CAPACITOR ADJUSTMENTS

This receiver has one I. F. stage with two transformers having four adjustable capacitors that may require adjustment. The transformers are all peaked at 460 K . C.

Figure 3-Loudspeaker Wiring

Figure 5-Location of Coils in Shields

PAGE 5-162 RCA

RCA-VICTOR CO., INC.

(3) R. F. OSCILLATOR AND FIRST DETECTOR

ADJUSTMENTS
 required in Bands " B " and " C." " bands, each band
 the ancenna and ground terminals of the receive
 control must meater. at he maximume position and the
innut from the oscillator at the minimum value possible to get an ourpur indication under these conpossible to get an ourpur indication under these con-
ditions. In the high frequency bands, it may be and place it at a distance in order to get a suffciencly

The dial pooincer must be properly set before start-
 apacity position. One end of the pointer should requency end of Band " A ," while the other end should he highest frequency end of Band "A." Figure 6 shows the location of the trimmers for
each band.
Care must be exercised to only adjust = Band " A " "
(a) Set the band switch at "A."
(b) Tune the external oscillator to $1,720 \mathrm{~K} . \mathrm{C}$., set
 lator, detector
mum output. (c) Shift the external sosillator frequuncy to 600
 mum output, at the same time rocking the
variable tuning capaciort Then readjust at
1,720 K. C. as decrabed in (b). Band " B " (a) Set the band switch at "B."
(a) Tet the band swe exteral oscillator to 5.160 K . C. and
set the pointer at 5,160 K. C. Adjust the set the pointer at $5,160 \mathrm{~K}$. C. Adjust the
ossillator trimmer for maximum output. The
trimmer should be set at the first peak obasined rummer should be ser at the first peak obtained
when increasing the rummer capacitor from
minimum to maximum. (c) Check for the image signal, which should be reccived at approximeately $4,240 \mathrm{~K}$. . . on the
dial. It wipl be neege (d) The antenna and detector trimmers should now
be peaked for maximum output. (a) Set the band swich " ac "C."

(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.	
	fter remagnetizing, it is necessary to correctly ncer the armature. This may be done quite curately by feeling its play after the needle is serted. A little practice will quickly show hich way an adjusement is necessary to have e armature centered properly. The adjustent is made by loosening screws A and B Figure 10), and sliding the mechanism slighely relation to the pole pieces.
	replaced over the entire returned to the tone
In assembling, it may be desirable to check the rmature air gap by means of a small Feeler Gauge. This air gap should be .009" on each side of the rmature. However, a little practice with the needle in place will quickly disclose whether or not the rmature is centered.	
9)	ly rosin core solder should be used for soldering oil leads in the pickup. Also rosin core solder be satisfactory for resoldering the end of the in the hole in the mechanism, since both these have been previously tinned. In case the parts well tinned, it will be necessary to scrape the f the spring and the hole in the mechanism until These parts may now be tinned by using as a water solution of zinc chloride (commonly acid flux). After tinning, dip the parts in water ash off the acid flux and thereby prevent serious quent corrosion. After making sure that the rubbers and damping block are properly in place, acribed under (e) above, the armature may now dered in place in the mechanism by using rosin solder, since the parts are now tinned. Care be exercised to get the needle hole perfectly with respect to the mechanism, or otherwise it e difficult if not impossible to center the armature air gap as explained under (h), section (8). EPLACING THE DAMPING BLOCK
If it is desired to replace the damping block, it may be done in the following manner:	
	Disassemble the pickup as described under the preceding section.
	Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.

The above covers the proper manner of making dion. Of course, if any part is defective, it must be
tion
 it until the spring is tight a
It should unwind $4 / 4$ turns.

(10) AUTOMATIC RECORD CHANGER

The automatic record changer used in this instru-
ment is of simple design and fool-proof construction. Under normal operating conditions service difficulties should be negligible. However, in event adjustments
are required, a reference to Figure 12 will disclose the are required, a reference to Figure 12 will disclose the
(11) ADJUSTMENT OF DIAL VERNIER MECH.
 simple means of band spread. Under normal condi-
tions, adjusment of this mecthanism will not be
required. However, in event the inititial adjustment is required. However, in event the initial adjustment is
not satisfactory or adjustment is required because of oeplacement, the following procedure should be used: (a) Remove the chassis from the cabinet to a
(b) Check the tension on the vernier hand by pushing it in a clockwise direction. There should
be considerable tension against such a push be considerable tension against such a push.
If this tension does not exist, the action of the hand may be erratic and possibly fail to return
to the same position for a particular station.
(c) Pull off the long hand with a pair of long-nose

Scraighten the lugs that hold the dial in place.
Then remove the dial "vernier" hand and
 stem gear.

PHONOGRAPH

 impedance magnetic pickup with its associated inertia
type tone arm, a compensated volume control, the audio amplifier of the receiver and the loudspeaker of
the receiver. The radio receiver is made inoperative

 and fool-proof in operation.
(d) Insert the armature through the new block so that it occupies the same position as that of the
old. Also ascertain that the block is in correct vertical alignment with the armature. It will somewhat smaller than the diameter of the be obtained
e) After properly locating the damping block, a soldering iron should be applied to the a mmane
so that the block will melt slighty at its point of contact with the armature. A special tip, desirable for fusing the block in place. The ron should be applied long enough to slightly
melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then section.

Cl

 Figure 11-Special Soldering-Iron Tip (f) Turn the dial to each extreme and to its center position and check the backlash of the back gear (closest to reflector). There shouldbe definite backlash in each direction at each
(g) If this backlash is not obtained, loosen the nut on the back of the reflector which holds the the outer edge of the reflector. The hole is
-elongated to permic this adjuscment.
(h) After making sure there is backlash at the three check poins mentioned, turn the out-
side gear in a clockwise direction $11 / 2$ turns. Hold it at this position and replace the stem
(i) Turn the dial throughout its range. If the
gears become noisy, move ehe gear
toward the reflector edges described in (g). (j) Replace the dial scale, making sure the hole
(k) Replace the vernier hand. It should point ac (1) Replace the large hand. One end of tere ine at the lowest frequency end. of Band " A " when
ELECTRICAL SPECIFICATIONS
Voltage Rating．．．．．．．．．．．．．．．．．．．．．．．．．．．．105－125 Volss and 105－130／200－250 Volts（Double Range） Frequency Rating．
Power Consumptio

Line up Frequencies．．．．． 175 K．C．， 410 K．C．， 460 K．C．， 600 K．C．， 1720 K．C．， 5160 K．C．， 18,000 K．C． Maximum Undistorted Output．
Maximum Output．．．．．．．．． Type of Magnetic Phickup
Type of Record Changer．
 Such a tuning range permiss the listener to receive all
of he imporant broadcasting，police，a，ircraft and
amateur call bands throughout the world． amateur call bands throughout the world． Excellent sensititity，selectivity and tone quality，
together with a high oupput（4 warts undistorted），

 control and a large loudspeaker unit．
RADIOTRON SOCKET VOLTAGES
feus！s ${ }^{\circ} \mathrm{N}$－

$0 \cdot \mathrm{~s}$	oow		－	－	
¢я	s\％z	068	s6z	o．z\％	
¢9	Svz	062	562	ozz	${ }^{\text {دmod }} \boldsymbol{z 6}$－vכ\％
$\varepsilon 9$	8.7	zsz	－	0ヶ\％	
¢9	$\stackrel{0}{0}$	．0＜I	－	でィ	
$\varepsilon 9$	sor	zız	0 \％	で	－1999\％ 19
¢9	\downarrow	288.	оぃ	97	
		szz	－	－	${ }^{\text {1032ा1］so }}$
$\varepsilon 9$	sor	zız	оџ	2\％	
					－oN

RCA-VICTOR CO., INC.
MODEL 9-Tube General Purpose A-N. Schematic, Voltage

PAGE 5-166 RCA

MODFU 9-Tube General
Purpose A-W.
Chassis Wiring

RCA-VIC'IOR CO., INC.

MODEL 9-Tube General Purpose A.W. Alignment Data

SERVICE DATA

The circuit consists of an R. F. stage using Radiotron RCA-58, a combined oscillator and first detector using Radiotron RCA-2A7, an I. F. stage using RCA-58, a second detector and A. V. C. using RCA-2B7, an A. F. driver using RCA-56, and a Class "B" output stage using an RCA-53. The RCA-80 functions as the rectifier in the power supply circuits.

The foregoing Radiotrons and circuit tunctions apply to bands X, A, B and C only. In the case of band D, an additional R. F. stage utilizing an additional Radiotron RCA- 58 is used. This is to increase the sensitivity and image frequency selectivity and to reduce the interference caused by tube hiss and 445 K . C. signals or static.

The intermediate frequency is 445 K . C. The use of this frequency gives an especially good image frequency ratio and makes easier alignment of the oscillator at the higher frequency bands.

In order to receive pure $C W$ signals, an I. F. heterodyne oscillator has been provided. This oscillator is an RCA-56 that operates at a 1000 -cycle higher frequency than the I. F. An adjustable capacitor is provided so that the pitch of the heterodyne frequency may be varied throughout the audible range.

The intermediate frequency amplifier is aligned in a similar manner to that of standard broadcast receivers except that it is aligned at 445 K . C. In order to properly align the receiver, it is essential that the Stock No. 9050 Test Oscillator be used. This oscillator covers the frequencies of 90 K . C. to $25,000 \mathrm{~K}$. C. continuously, has good stability and includes an attenuator. In addition to the oscillator, a 300 ohm resistor for use as a "dummy" antenna, a non-metallic screwdriver (such as Stock No. 4160), and an output meter are required. The output meter should be preferably a thermocouple galvanometer connected either across or in place of the cone coil of the loudspeaker.

To align the intermediate frequency circuits, connect. the output of the external oscillator to the grid of the first detector. For the R. F. and oscillator adjustments, the oscillater output should be connected to the antenna and ground terminals of the receiver with a 300 ohm resistor inserted in series with the antenna lead. In many cases, however, the signal strength obtained with this direct connection will be too great to permit proper alignment, even at the minimum setting of the oscillator attenuator. When this is true, the external oscillator must be loose-coupled to the receiver. This is done by connecting the 300 ohm resistor between the antenna and ground terminals of the receiver and attaching a short length of wire to the antenna post. Lay the free end of this wire across the oscillator case, adjusting its position as necessary to obtain the degree of pickup required.

The output of the external oscillator should be at the minimum value necessary to obtain a deflection in the output
meter when the volume control is at its maximum position. All adjustments are made for a maximum deflection in the output meter.

The accuracy of line-up of each band may be checked without touching the trimmer condensers, by the use of the tuning wand, Stock No. 6679.

One end of the wand consists of a brass cylinder. When this is inserted in a coil the effective inductance of the coil is lowered.

The other end of the wand contains a special finely divided iron suitable for use at radio frequencies. When this is inserted in a coil the inductance is raised.

To use the tuning wand a signal is first tuned in at the frequency at which a check is desired on alignment. The wand is then inserted slowly in the Antenna and R. F. transformers, using first one end and then the other end of the wand. Unless the alignment is perfect, it will be found that the power output indicated by the meter will be increased to a peak for a critical position of the wand in the coils.

The end of the wand required indicates whether the coil is high or low.

Of course, alignment correction at the high frequency end of a tuning range should be accomplished by the use of the trimmer condenser. If alignment correction should be required at the low frequency end of a tuning range it may be accom. plished by sliding the end coil of the transformer. The winding farthest from the trimmer panel is pushed toward the trimmer panel to increase the inductance, and farther away to decrease the inductance. On band D coils, the last two or three turns may be pushed in a similar manner to obtain the proper inductance.

This adjustment should not be attempted unless a quite appreciable improvement will result (as shown by the tuning wand).

The following chart gives the details of all line-up adjustments. The receiver should be lined up in the order of the adjustments given on the chart. Refer to Figure E for the location of the line-up capacitors.

The CW oscillator beat frequency may be adjusted by means of the trimmer capacitor shown in Figure E. (It may be necessary to slightly loosen' the shielding cover to gain access to this screw.) A weak modulated or telephone signal should be accurately tuned-in with the oscillator "off" The oscillator should then be turned "On" and the trimmer screw adjusted until a 1000 cycle note is obtained.

Line-up Capacitor Adjustments

This receiver is aligned in a similar manner to that of a standard broadcast band receiver. That is, the three main tuning capacitors are aligned by means of three trimmers in each band and on the three lowest frequency bands a series trimmer is adjusted for aligning the oscillator circuit. The other two bands do not require this low frequency trimmer, it being fixed in value. In the case of band D, it is necessary to adjust four trimmerstue to the additional R. F. stage used.

External Oscillator Frequency	Dial Setting	Location of Line-Up Capacitors	Position of Selector Switch	Adjust for	Number of Adjustments To Be Made
$445 \mathrm{~K} . \mathrm{C}$.	Any setting that does not bring in station.	Top of chassis.	Any position that does not bring in station.	Maximum output.	4
$370 \mathrm{~K} . \mathrm{C}$.	$370 \mathrm{~K} . \mathrm{C}$.	Bottom of chassis.	\mathbf{X}	Maximum output.	3
$175 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	X	Maximum output while rocking dial back and forth.	1
$1400 \mathrm{~K} . \mathrm{C}$.	1400 K. C.	Bottom of chassis.	A	Maximum output.	3
$600 \mathrm{~K} . \mathrm{C}$.	Set for signal.	Top of chassis.	A	Maximum output while rocking dial back and forth.	1
$3900 \mathrm{~K} . \mathrm{C}$.	3900 K. C.	Bottom of chassis.	B	Maximum output.	3
1710 K. C.	Set for signal.	Top of chassis.	B	Maximum output while rocking dial back and forth.	1
$10 \mathrm{M} . \mathrm{C}$.	$10 \mathrm{M} . \mathrm{C}$.	Bottom of chassis.	C	Maximum output. (See Note)	3
15 or $18 \mathrm{M} . \mathrm{C}$.	15 or $18 \mathrm{M} . \mathrm{C}$.	Bottom and top.	D	Manimum output. (See Note)	4

NOTE-It is important to note, when aligning bands C and D, that two peaks will be observed on the trimmers for the oscillator and for the first detector. The correct oscillator peak is the one obtained using the lower trimmer capacitance, whereas the correct detector peak is the one obtained with the greater capacitance. It is essential that the proper peak be chosen, as otherwise tracking and sensitivity will be very poor at
other frequengies. When adjusting the detector trimmer, the tuning capacitor should be rocked, since there is reaction on the oscillator tuning.

RCA-VICTOR CO., INC.

Figure F-Power Transformer Connections (50-60 cycles)

Transformer Connections

The power transformer of the $50-60$ cycle receiver uses two tapped primary windings. By connecting them in parallel or in series, the receiver may be used either on 110 or 220 volt lines. Figure F shows the proper manner of making the various connections possible for this transformer.
(1) Range Switch (Upper Left-hand Knob)-This switch converts the receiver for operation within any of the tuning ranges provided. As indicated on the selector dial, the letters on the switch escutcheon signify:
X-Long-Wave Range- 150 to 410 kilocycles (2000 to 732 meters). Airport band.
A-Standard Broadcast Band-540 to 1500 kilocycles (555 to 200 meters).
B-Police Band-1500 to 3900 kilocycles (200 to 77 meters). Services available within this hand include police calls at 1574, 1712 and 2450 kilocycles, amateur radio "phone" communications between 1800 and 2000 kilocycles, and aviation communications (phone) between 2500 and 3500 kilocycles.
C-Short-Wave Range- 3900 to 10,000 kilocycles (77 to 30 meters). Within the limits of this range are included two of the internationally-assigned shortwave broadcast bands. These are known as the 49 and 31 meter bands. (The portion of this range from 8000 to 10,000 kilocycles, which includes the 31 meter band, is preferably received on range D.)
D-Shart-Wave Range- 8,000 to 18,000 kilocycles (37.5 to 16.7 meters), This range embraces four of the standardized short-wave broadcast bands located at $31,25,19$ and 16 meters, respectively.

For reception of CW signals, proceed as follows:
Turn AVC switch "Off", and CW switch "On." Procedure is the same as above except all references to volume control should refer to Radio Sensitivity Control and Audio Volume Control should be near the extreme clockwise position. Each station tuned in will be indicated by a whistle caused by the beating of the CW oscillator frequency with the signal frequency. This feature provides unmistakable signal indication and may also be used when tuning signals other than CW, noting the presence of the signal with the oscillator "On" and tuning the station in finally with the oscillator turned "Off."

Figure E-Location of line-up capacitors.

PAGE 5-170 RCA
MODEL 9-Tube General
Purpose A-W.
RCA-VICTOR CO., INC.

Parts List

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	Liat Price	Stock No.	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		6633	Coil and capacitor-Oscillator coil and capacitor assembly -150-410 kilocycles-5-band (L21, L26, C28)	\$1.40
2747 2816	Contact eap-Package of 5 Resistor-1,000 ohms-Carbon type-1/2 watt (iRii)-	\$0.50	6634	Coil and capacitor-Antenna coil and capacitor assembly	\$1.40
	Package of 5	. 00		C ${ }^{540-1,500}$ kilocycles-4- or 5 -hand (L2, L7, C2)....	1.86
3056 3076		40	6635	Coil and capacitor-R. F. coil and capacitor assembly-$540-1,500$ kilocycles-4- or 5 -band (L12, L17, C18)	2.00
	Resistor- 1 megohm-Carbon type- $1 / 2$ watt (R19, R22,	1.00	6636	Coil and capacitor-Oscillator coil and capacitor assembly	
3114	Resistor- 50,000 ohms-Carbon type- $1 / 4$ watt (R9)Package of 5 .	1.00	6637	Coil and capacitor-Antenna coil and capacitor assembly	0
3118	Resistor-100,000 ohms-Carbon type-1/4 watt (R3, R8)	1.00	6638	Coil $1,500-4,000$ kilocy cles-4- or 5 -band (L3,	1.56
3435		1.00	6638	Coil and capacitor-R. F. coil and capacitor assembly 1,500-4,000 kilocycles-44-or 5-band (L13, L18, C19).	1.66
		1.00	6639	Coil and capacitor-Oscillator coil and capacitor assembly	1.40
3470	Resistor-6,500 ohms-Carbon type-1 watt (R6) Package of 5	1.10	6640	Coil and capacitor-Anternna coil and capacitor assembly-.	1.40
3526	Resistor-2,000 ohmis-Carbon type-1/2 watt (R21) -			C 4,000-10,000 kilocycles-4-or 5-band (L4, L9, C4).	1.54
3527	Package of 5 Resistor- 800 ohms-Carbon type- $1 / 2$ watt (R16)-Pack-	1.00	6641	Coil and capacitor-R. F. coil and capacitor assembly-$4,000-10,000$ kilocycles-4- or 5 -band (L14, L19, C20).	1.60
	age of $\overline{5} \ldots \ldots .$.	1.00	6642	Coil and capacitor-Oscillator coil and capacitor assembly	1.34
3529 3555		.32 .36	6643	Coil and capacitor-Antenna or R R F. Fand coil and capacitor	1.34
3572	Socket-7-contact Radiotron socket-First detector and oscillator	.36 .38		assembly-8,000-18,000 kilocycles-4. or 5 -band (L5, L10, C5-L15, L20, C21)	1.52
3594		.38 1.00	6644	Coil and capacitor-Oscillator coil and capacitor assembly -8,000-18,000 kilocycles-4- or 5-band (L25, L30, C38)	1.54
3597	Capacitor -0.25 mfd . (C58)	. 40	6675	Shaft-Shaft for condenser drive assembly-Comprising	
3602	Resistor- 60,000 obms-Carbon type- $1 / 4$ watt (R14Package of 5	1.00	6679	Whaft, ball race with retainer and set screw.............	$\xrightarrow{.35}$
3616	Capacitor- 300 mmfd . (C'Si)	1.34	6889	Capacitor-18. mfd. (C60).... ${ }^{\text {a }}$	1.55
3622	Shield-Second detector Radio	. 36	6890	Transformer-First intermediate frequency transformer	
3641	Capacitor-0.1 mfd. ($\mathbf{C 1 0 , ~ C 1 5 , ~ C 2 5) ~}$. 35		(L31, L32, C41, C42) .	2.40
3643	Capacitor-. 005 mfd . (C57)	. 25	6891	Transformer-Second intermediate frequency transformer	
3711 3719	Capacitor- $\mathbf{8 0} \mathbf{m m f d}$. (C55)	.40 .30	6892	(L33, L34, C44, C45) Tone control (R20)	2.40 1.50
3771	Resistor-8,500 ohms-Carbon	. 25	6953	Volume control-Ra	1.25
3845	Capacitor-2,340 mmfd. (C39)	. 50	6955	Shield-Second R. F. Radiotron Shiold	.25
3846 3848	Capacitor-2,250 mmfd. (C37)	. 50	6956	Shield-Radiotron shield top.	. 80
3848 3819	Capacitor-300 mmfd. (C31)	. 30	7065	Screwdriver-For R. F. or I. F. ad	.80 .35
3849	Capacitor- 50 mmfd . (C16).	. 38	7484	Socket-5-contact Radiotron sock	. 40
3861 3863	Capacitor-Adjustable trimmor (C29, C32, C35) Resistor-400 ohms-Carbon type-1/2 watt (in	. 78	7485 9042	Socket-6-contact Radiotron socket. 	
		1.00			6.84
3864 3865	Capacitor-300 mmfd. (C46)	. 30	9046	Transformer-Power transformer-105-125 volts-25-40	
3865 3888	Capacitor-160 mmfd. (C47)	. 30	9050	Orciles.	${ }^{\mathbf{3 3 . 2 5}+\dagger}$
3901	Capacitor- 05 mmfd . (Ci88)	. 36	10194	Ball-Stecl ball for condenser' drive assembly- ${ }^{\text {arackage }}$	
3931	Capacitor-45 mmfd. (C27)	. 30			. 25
3932 3973	Capacitor-.0024 mfd. (C11)	. 30			
4019	Capacitor-1,000 mmmd. (C34)	. 34			
4030	Bracket-Tone or volume control moun	.10		MiScellaneous Parts	
4033	Capacitor- 20 mmfd ($\mathbf{C 6 1 , ~ C 6 2 , ~ C 6 3) ~}$. 34	4224	Bezel-Station selector dial beze	. 50
4103	Shield-First detector and R. F. Radio	. 20	4225	Ring-Dial glass retaining ring-Pa	. 95
4104	Shield-I. F. Radiotron	. 20	4226	Escutcheon - Engraved - "AVC-on-off"- "Radio Sen-	
4207	Capacitor-0.1 mfd. (C13, C43)	.34		- "CW-OSC-ofter" Tone-off-on"- "Speaker-Phone"	
4217	Switch-Single pole-Single throw-"CW-OSC'	1.15			. 85
4218	Switch-Double pole-Single throw-"AVC" (S9)	1.00	4227 4228	Escutcheon-Audio sensitivity control escutcheon : 75
4219	Switch-Single pole-Double throw-"Speaker-Phone" (S8)	O	$\begin{aligned} & 4228 \\ & 4229 \end{aligned}$	Escutcheon-Range switch escutcheon...................... Knob-Audio volume control tone control or radio sensitiv-	. 35
4220	Resistor- 200,000 ohme-Carbon type- 1 watt (R28)Package of 5	1.10		ity control knob-Package of 5 Knob-"AVC" - "CW-OSC" - ".........	1.15
6112	Package of 5 Cushion-Rubber cushions for chassis-Package of 4	1.10 .25	4230	Knob-"AVC"- "CW-OSC" - "Speaker-Phone" and range switch knob-Package of 5	1.15
6136	Resistor-3,500 ohms-Carbon type-1 watt (R7)-Pack-		4231	Knob-Station selector knob-Package of 5.........	1.15
		10	6614	Glass-Station selector dial gla	. 30
6188	Resistor-2 megohms-Carbon type- $1 / 2$ watt (R13)Package of 5.	1.00	6954	Adapter-5-prong adapter.	. 82
6278	Resistor-750.000 ohms-Carbon type-1/2 watt (R31)Package of 5 .				
6300	Socket-4-contact Radiotron socke	. 35		OSCILLATOR ASSEMBLIES	,
6303	Resistor-20,000 ohms-Carbon type- $1 / 2$ watt (R26) Package of 5 .		3118	Resistor-100,000 ohms-Carbon type- $1 / 4$ watt (R30)-	
6512	Capacitor-. 005 mfd ($\mathbf{C} 54$)	. 28			$\begin{array}{r}1.00 \\ .34 \\ \hline\end{array}$
6603	Condenser-4-gang variable tuning condenser (C7, C14, $\mathbf{C 2 4 , ~ C 4 0) ~}$	3.80	3634 3682	Capacitor-160 mmfd., (C70) Shield-Radiotron shield. .	. 34
6604	Capacitor-0.5 mfd. (C53)	. 50	4027	Capacitor-800 mmfd. (C72)	4
6605	Transformer-Output transformer	1.48	4221	Jack-Pinjack-Package of 2	45
6606 6607	Reactor-Filter reactor (Reactor-Tone control reactor	1.66 1.14	4222	Shield-Coil shield 28
6608 6609	Transformer-Audio driver transformer	2.04	6242	Reaistor-2 megohms-Carbon type-1/4 watt (R29)	
6609	Capacitor-18. mfd. (C59)	1.10		Package of 5................	1.00
6612	Volume control-Audio volume control (R15)	1.20	6700	Coil-Oscillator coil (L42, L43, C69)	2.30
6613 6626	Drive-Variable condenser drive assembly-Complete.....	1.00	6899	Capacitor-Adjustable capacitor-120-220 mmfd. (C71)	. 70
6626	Capacitor pack-Comprising one 4. mfd., and two 10. mfd., capacitors (C12, C49, C56)	1.86	6951 6952	Cable-3-conductor shielded cable, Cable-Single gonductor shielded.	.32 .24
6628	Capacitor and coil-Antenna coil and capacitor assembly-$8,000-18,000$ kilocycles-4- or 5 -band (L39, L40, C8).	1.86 1.50	6952 7484	Cabl--Single gonductor shielded	. 35
6629	Switch-5-band selector switch.	3.48			
6630	Switch-4-band selector switch	3.48		REPRODUCER ASSEMBLIES	
6631	Coil and capacitor assembly-Antenna coil and capacitor - $150-410$ kilocycles-5-band (L1, L6, C1)	2.16	8969	Cone-Reproducer cone complete (L36)-Package of 5....	6.35
6632	Coil and capacitor-R. F. coil and capacitor assembly-150-410 kilocycles-5-band (L11, L16, C17)	2.10	$\begin{aligned} & 9438 \\ & 9439 \end{aligned}$	Reproducer complete Coil assembly-Field coil, magnet and cone support (L38).	6.88 5.82
				Coil assembly-Field coll, magnet and cone support (L38)..	5.22

[^13]
Electrical Specifications

Voltage Rating.
105-125 Volts
Power Consumption (60 Cycle). 175 Watts
Type and Number of Radiotrons. 4 RCA-56, 4 RCA-58,
1 RCA-55, 2 RCA-59, 1 RCA-5Z3-Total 12
Frequency Range. 540 K.C.-1500 K.C.-1400 K.C.-2800 K.C.
Undistorted Output.
10.0 Watts

This combination instrument utilizes the new perfected automatic record changing mechanism and the twelve-tube Deluxe Super-Heterodyne receiver. Excellent fidelity on both radio and record reproduction is an inherent feature of this instrument. Other features include double tuning range (540 K. C. -1500 K. C. and 1400 K. C. -2800 K. C.), high and low frequency tone control, compensated volume control and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

Figure B-Location of Line-up Capacitors
Figure A shows the schematic circuit, Figure B the location of the adjustable capacitors, Figure C the chassis wiring, and Figure D the assembly wiring diagram. The Radiotron socket voltages, the line-up procedure and the replacement parts are given on the following pages.

R. F. and Oscillator Line-up Capacitor Adjustments

Four adjustable. capacitors are provided for aligning the R. F. circuits and adjusting the oscillator frequency so that the oscillator will maintain a constant frequency-175 K. C. -difference from that of the incoming signal. Poor quality, insensitivity, poor A. V. C. action and possible inoperation of the receiver may be caused by these capacitors being out of adjustment.

If the other adjustments have not been tampered withthe intermediate transformer tuning capacitors-the following procedure may be used for aligning these capacitors.
(a) Procure an R. F. Oscillator, such as Stock No. 9050, giving a modulated signal at $600 \mathrm{~K} . \mathrm{C}_{\text {. }} 1400 \mathrm{~K}$. C., and 2440 K . C. A
(b) An output meter is necessary. This should be a $\mathbf{0}-10$ milliamm
(b) An oitput meter is necessary. This should be a 0.10 milliammeter
(c) Adummy Radiotron RCA-56 is necessary to substitute for the one A dummy Radiotron RCA-56 is necessary to substitute for the one
normally used in the A. V. C. socket. This should be a tube that normally used in the A. V. C. socket. This should be a tube that removed. Insert this tube in the A. V. C. socket.
(d) First check the chassis and carefully ascertain that the dial pointer reads exactly at the first line on the scale when the tuning capacitor rotor plates are fully meshed with the stator plates.
(e) Place the oscillator in operation at exactly 1400 K . C. and couple its output to the antenna. Set the Range Switch counter-clock wise and the dial scale at exactly 1400 . Connect the output meter to
the set and place the volume control and suppressor control, if
noise level will permit, at its marimum position. Adjnat the oscillator input so that only a slight reduction in current is obtained
(f) With a suitable socke

With a suitable socket wrench-the nuts are at ground potential-
adjust the oscillator, first detector and R, F. $\mathrm{line-up}$ cspan adjust the oscillator, first detector and R, F. line-up capacitorn,
(g) The high frequency band is adjusted at 2440 K . C. This is
in a similar manner to the R. F. adjustments except is done in a similar manner to the R. F. adjustments except that the in the cluckwise position. The line-up capacitors on the Range Switeh are adjusted for minimum output at this frequency.
(h) Set the oscillator at 600 K . C. Tune in the signal with the receiver until a slight deflection is obsained in the output meter. Now adjust the 600 K . C. series capacitor, Figure B, until a minimum deflection is obtained in the output meter. Rock the tuning capacitor back and forth while making this adjustment. as the tuning capacitor and oscillator serics capacitor adjustments interlock.
(i) Change the frequency of the oscillator to 1400 K . C. and set the dial at 1400 . Again make the adjustments given under (f), (g). and then (h).
So adjusted, the R. F. circuits are properly aligned and the oscillator will maintain a constant frequency difference from the incoming R. F. signal.

I. F. Tuning Capacitor Adjustments

Although this receiver has two I. F. stages, one for the second detector and one for the A. Y. C., only two of the three I. F. transformers are tuned by adjustable capacitors and require adjustment. The stage used for the A. V. C. is broadly tuned and does not require any adjustment.

The transformers are all tuned to 175 K . C. and the circuits broadly peaked.

A detailed procedure for making this adjustment follows:
(a) Procure a modulated R. F. Oscillator, such as Stock No. 9050, that gives a modulated 175 K . C. signal. Also procute a non-motallic screw driver such as Stock No. 7065.
(b) An output meter is necessary. This should be a 0.10 milliammeter
(c) A dummy Radiotron RCA. 56 is necessary to the second detector.
(c) A dummy Radiotron RCA. 56 is necessary to substitute for the one
(d) Remove the oscillator tube C. socket.
(d) Remove the oscillator tube and make a good ground connection to the chassis. Place the oscillator in operation and couple its output from the control grid of the first detector to ground. Adjust the oscillator output, with the receiver volume control at maxinum,
until a slightly reduced deflection is obtained in the output meter.
(c) Refer to Figure B. Adjust the secondary and primary of the Recond and then the first I. F. transformer until a minimum do-
flection is obtained in the output meter. justments a second time, as a slight readjustment may be neceseary.
When the adjustments are made the set should perform at its maximum efficiency. However, due to the interlocking of adjustments, it is good practice to follow the I. F. adjustments with the R. F. and oscillator line-up capacitor adjustments. The correct method of doing this is given in the preceding section.

Antenna Connections-It will be noted that three antenna terminals are provided at the rear of the receiver chassis. Two of these will normally be used for the usual antenna and ground connections, while the third one is for use in connection with a shielded antenna system. The tap eliminates the need of the transformer usually used for coupling the shielded line to the radio receiver.

Stock No. 7717 shield kit, which comprises a lightning arrester, transformer assembly, a 200 mmfd . capacitor, and 100 feet of shielded wire, is recommended. When such an antenna system is used, it is necessary to connect the 200 mmfd. capacitor between terminals 1 and 2 . This prevents the first R. F. circuit from being detuned and results in maximum gain from the antenna. This capacitor is included with the Stoek No. 7717 Kit.

Automatic Record Changer-The automatic record changer used in this instrument is of simple design and excellent construction. The various adjustments that may be required are shown in Figure E. A point to remember with this instrument is that it must always be level, otherwise proper operation will not be obtained.

Radiotron No.	Cathode to Control Grid, Volts
RCA-58 R. F.	3.1
RCA-56 Osc.	-
RCA-58 1 8 Det.	9.5
RCA-58 I. F.	7.5
RCA-58 A. V. C.-I. F.	8.5
RCA-56 A. V. C.	12.0
RCA-55 2nd Det.	0
RCA-56 A. F. Driver	11.0
RCA-56 A. F. Driver	11.0
RCA-59 Power	0
RCA-59 Power	0
RCA-5Z3 Rect.	$990-495$ R. M. S.

$|$| Cathode to Sereen
 Grid, Volts |
| :---: |
97
91
93
92
-
-
-
-
-

$|$| Cathode to Plate,
 Volts |
| :---: |
| 212 |
| 100 |
| 206 |
| 208 |
207
74
205
205
394
394

Plate Current, M. A.	Heater Volts
7.5	2.5
6.0	-2.5
2.8	2.5
4.0	2.5
3.0	2.5
0	2.5
8.0	2.5
5.0	2.5
5.0	2.5
13.0	2.5
13.0	2.5
92 Total	5.0

OPERATION-PHONOGRAPH

Automatic Operation

Important Precautions-The following precautions must be observed during operation:

1. In loading the turntable, make certain that the first record inserted (last to be played) is flat-that is, essentially free from warpage.
2. Before starting the turntable, make certain that the reject pocket (at the left of the phonograph compartment) is either empty or sufficiently clear to permit proper disposal of records by the automatic mechanism.
3. Never restrain by force the normal motion of any part of the automatic mechanism while it is changing records.

Procedure-The phonograph operating controls are located on the front panel and in the playing compartment as shown in Figures 1 and 2. Proceed as follows:

1. Set the Transfer Switch counter-clockwise for record reproduction.
2. Apply power by turning the Radio Volume Control clockwise from the "of" position. Set the two Tone Controls for full-range reproduction (see paragraph 7 under "Operation-Radio").
3. With the Motor Switch in the "off" position (Record Volume Control fully counter-clockwise), load the turntable with records, as follows:
(a) Set the Index Lever at "Manual." Always do this before loading or unloading records.
(b) Place the electric pickup on the rubber rest.
(c) Raise the Record Ejector arm (very slowly, at first, until the internal weight has rolled to the rear of the arm, then as rapidly as desired) to its upper position of rest. Always raise the ejector arm in this manner.
(d) Select the records to be played. All records for one loading must be of the same diameter (either ten or twelve inches), close to standard thickness and operable at the same speed (either 78 or $331 / 3$ R. P. M.).
CAUTION-Do not use thin flexibletype records for automatic operation.
(e) Place the records, one at a time, on the turntable (see paragraph 1 under "Important Precautions"). The spindle should resume its normal height after each record is added. The turntable is fully loaded when the top surface of the uppermost record is nearly flush with the top of the spindle. (It should not be possible to slide off the top record without lifting its edge or depressing the spindle.)
(f) Lower the Record Ejector arm gently onto the spindle.
4. Insert a new needle in the pickup as far as it will go and tighten the needle screw. For long-playing ($331 / 3$ R. P. M.) records, use only the orange Chromium needle. For standard (78 R. P. M.) records, use the latter needle or, if preferred, either the green Chromium or the full volume (full tone) Tungstone needle. Transparent-faced (illustrated) records, however, should not be reproduced with Tungstone needles.

NOTE-With care, the orange Chromium needle should play 75, the green Chromium 100, and the Tungstone 100 to 150 records. Never re-insert in the pickup a Chromium needle which has been used (however slightly) as damage to the record grooves would result.
5. Place the pickup needle on the smooth outer rim of the record, near the first groove. Then move the Index Lever to the position (12 or 10) corresponding to the diameter (inches) of the records on the turntable. Be careful not to move the lever beyond the proper index hole. Push the index pin firmly into the hole.

CAUTION-Never attempt to move the Index Lever from the Manual position when the pickup is on the rubber rest.

6. Start the turntable by turning the Motor Switch clockwise; then set the Speed Shifter for the

speed (78 or $331 / 3$ R. P. M.) corresponding to the records on the turntable.

NOTE-The speed shifter should not be moved inward (from the 78 to the $331 / 3$ R. P. M. position) while the turntable is at rest.
7. Adjust the Record Volume Control to obtain the desired volume.
8. Close the cabinet doors to extinguish the compartment lamp and to render less prominent the mechanical noises incident to record playing and changing. If needle scratch reproduction (particularly noticeable with old records) is considered excessive, turn the treble Tone Control slightly counter-clockwise. For most faithful reproduction, however, both Tone Controls should be left in the positions which provide full illumination of the tone color indicator.

NOTE 1-When a record has been played, the ejector arm slides it off into the record pocket and the pickup moves to the outside of the next record. The records on the turntable are thus played consecutively until only one

RCA-VICTOR CO., INC.

SERVICE DATA FOR MAGNETIC PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any had peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to $\mathbf{5 , 0 0 0}$ cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure G), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure F
(d) Kemove screws A and B, Figure G, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism - with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mcchanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure G), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure G
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure H, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure H
acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h).

RCA PAGE 5-175
MODEL Duo 380
RCA-VICTOR CO., INC.
Chassis Wiring

RCA-VICTOR CO., INC.

Figure E-Automatic Record Changer Adjustments

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		6282	Resistor-60,000 ohms-Carbon type- $1 / 2$ watt (R22)Package of 5 .	\$1.00
2730	Resistor-18,000 ohms-Carbon type-1 watt (R24)Package of 5 .	\$1.10	6298	Cord-3-gang tuning condenser drive cord--Package of 5 ..	60
2747	Cap-Contact cap-Package of 5	. 50	6300	Socket-4-contact Radio	35
3024	Capacitor-9 mmfd. (C2)-Package of 2	. 50	6312	Capacitor-650 mmfd. (C15)-Package of 5	1.50
3047	Resistor-1,500 ohms-Carbon type- $1 / 2$ watt (R8)Package of 5 .	1.00	6316	Resistor-2,500 ohms-Carbon type- $1 / 2$ watt (R10)Package of 5 .	1.00
3085	Capacitor-400 mmfd. (C38)	. 30	6437	Coil-Oscillator coil (L5, L6, L7).	1.24
3118	Resistor- 100,000 ohms-Carbon type-1/4 watt (R5)Package of 5 .	1.00	6447	Volume control (R2b, S1)	1.92
3252	Resistor- 100,000 ohms-Carbon type- $1 / 2$ watt (R6, R7) -Package of 5.	1.00	6448	Tone control-Low frequency (R17) Tone control-High frequency (R21)	1.04
3376	Mount-Fuse mount	. 40	6450	Rheostat-Noise suppressor rheostat (R3)	1.24
3435	Resistor- 250 ohms-Carbon type- $1 / 2$ watt (R2)—Package of 5	1.00	6512	Capacitor-0.005 mfd. (C37)	. 28
3460	Capacitor - $\mathbf{1 , 2 0 0} \mathbf{m m f d}$. (C31)	. 30	6537	Switch-Range s	1.30
3526	Resistor- $\mathbf{2 , 0 0 0}$ ohms--Carbon type- $1 / 2$ watt (R4, R32) Package of 5 .	1.00	6539 6541	Coil-Detector coil (L3, L4) . Dial-Tuning condenser dial	1.44 .75
3527	Resistor-800 ohms-Carbon type-1/2 watt (R19)Package of 5 .	1.00	6561	Coil-Antenna coil (L1, L2, R1,	1.65
3528	Bracket-Noise suppressor or volume control lamp bracket.	. 18	6562	Transformer-Audio driver transformer (T3)	3.04
3529	Socket-Noise suppressor or volume control lamp socket. .	$\begin{array}{r}.32 \\ . \\ \hline 0\end{array}$	6564	Transformer-First intermediate frequency transformer (L8, L9, C20, C21, C24)	2.30
3533	Shutter-High frequency tone con	. 50	6565		2.30
3534	Shutter-Low frequency tone contro	. 50	6565	(L12, L13, C28, C29)	2.10
3535 3556	Socket-High or low frequency tone control lamp socket. Capacitor- 0.05 mfd .-Located on antenna coil (C3)......	. 32	6566	Transformer-Third intermediate frequency transformer (L10, L11)	
3558	Capacitor - 50 mmfd ((C19).	. 36	6567	Capacitor pack-Comprising one 0.17 mfd., and one 0.7	
3564	Bracket-Station. selector dial lamp-Moun	. 25	6567	mfd. capacitors (C35, C36) 95
35	Socket-Station selector dial lamp socket	. 50	6568	Transformer-Interstage audio transformer	3.10
3597	Capacitor-0.25 mfd. (C33, C45) 40	6571	Capacitor-10 mfd. (C43, C44).......	1.20
3640	Capacitor- 0.05 mfd ($\mathrm{C} 9, \mathrm{C} 22, \mathrm{C} 26$) . .	. 25			
3641 3643	Capacitor- 0.1 mfd ((C7, C13, C23, C25,	$\xrightarrow{.35}$	6572	Reactor-Tone control reactor (L14)	. 90
3643 3652	Capacitor-0.005 mfd. (C39)............................	. 25	6574	Capacitor pack-Comprising two 10.0 mfd . capacitors (C32, C41)	
3652 3719	Screw-No. 10-32-1/4 set screw for bracket and bushing assembly-Package of 10 .. Socket-7-contact Radiotron socket.	.32 .30	6578	(C32, C41) Reactor-Filter reactor (L18)	$\begin{aligned} & 1.80 \\ & 3.22 \end{aligned}$
3719	Socket-7-contact Radiotron bocket.........	. 30	6797	Capacitor-10.0 mfd. (C49)	1.04
3726	Arm-Range switch operating arm assembly-Comprising arm, link, studs and set screws.	. 45	6847	Shield-Rectifier socket shield and capacitor	. 65
3727	Shaft-Shaft and bushing assembly for range switch operating arm-Comprising two washers, shaft, bushing and nut .	. 30	7062	Càpacitor-Adjustable capacitor (C14)	. 50
3747	Capacitor-15 mmfd. (C8)	. 36	7439	Drum-Dial drum with set screw and three dial mounting nuts.	
3749	Capacitor-0.1 mfd. (C40).	3		nuts	.35
3765	Capacitor-0.025 mfd. (C34) 34	7484	Socket-5-contact Radio	.35
3774	Resistor- 7,400 ohms-Tapped at 3,800 and 500 ohms (R25, R26, R27)	. 80	7485	Socket-6-contact Radiotron socket.....................	. 40
3797 3798	Reactor-Volume control compensating reactor (L15)..... Resistor- 700 ohms-Carbon type-1/2 watt (R18)-	. 64	7700	Condenser-3-gang variable tuning condenser (C4, C5, C6, C10, C11, C12, C16, C17, C18, S2, S3, S4, S5, S6).	7.44
3798 3799	Resistor- 700 ohme-Carbon type- $1 / 2$ watt (R18)Package of 5 . Capacitor- $\mathbf{8 0}$ mmfd. (C30)	1.00 .70	9468	Transformer-Power transformer-105-125 volts-50-60 cycles (T1)	7.75
3883	Fuse-2-ampere (F1)-Package of 5	. 40	9469	Transformer-Power transformer-105-125 volts-25-40	
4035	Switch-Radio-Phonograph switch (S9)	2.10			11.75
4036	Shield-Low or high frequency tone control light	. 30		CABLE ASSEMBLIES	
4037 4038	Shield-Antenna, detector or oscillator sh Shield-Radiotron shield.55 .30	6793	Cable-2-conductor shielded-From radio volume control	
4038 4039	Shield-Radiotron shield. .	. 30		to Radio-Phonograph switch. 30
4040	Shield-Radiotron tube shield top	. 25	6794	Cable-Single conductor shielded-From Radio-Phonograph switch to Phonograph volume control (R31)...	. 38
4041	Cover-Fuse cover.	. 25	6795	Cable-Phonograph motor cable-3-conductor with female	
4042 4046	Reactor-Volume control series reactor (L16) Reesistor-2-megohm-Carbon type-1/2 watt (R33)-	1.20	6795	section of connector plug	1.10
4046		1.00	6796	Cable-2-conductor-Compartment lamp cable.	. 80
4129	Bracket-Bracket and bushing assembly for radio-phonograph switch shaft-Located on receiver chassis 28	6798	Cable-Compartment lamp and switch cable.............	2.85
4130	Shield-R. F. Radiotron shield.	. 30	6848	Cable-Tapped cable with two connectors--From Phonograph Motor connector to motor starting switch plug and	
5817	Resistor-20,000 ohms-Carbon type-3 watt (R15, R16).	. 25		Phonograph volume control..........................	2.12
6186 6192	Resistor- 500,000 ohms-Carbon type- $1 / 4$ watt-Located on antenna coil (R1)—Package of $5 \ldots \ldots$. Spring-3-gang tuning condenser drive cord tension spring	1.00	6849.	Cable-Single-conductor shielded cable with male section of connector-From Phonograph volume control to receiver chaseis.	
6192	Spring-3-gang tuning condenser drive cord tension spring -Package of 10	. 30		ceiver chassis	. 38
6228	Resistor-200,000 ohms-Carbon type- $1 / 2$ watt (R14)Package of 5 .	1.00	6850	Cable-Single-conductor shielded cable-From input transformer to terminal board	. 50
6277	Capacitor- 0.1 mfd .-Located on rectifier socket shield (C50)	. 35		MOTOR BOARD ASSEMBLIES	
6280	Resistor- $\mathbf{4 0 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt (R11, R12, R13)-Package of 5 . .	1.00	2893 2917	Spring-Trip lever latch tension spring-Package of $10 \ldots$ Washer-Spring washer, "U" type-Package of $10 \ldots .$. .	$\begin{aligned} & .30 \\ & .25 \end{aligned}$
6281		1.00	3654	Roller-Guide roller assembly-Comprising bracket roller and guide pin.	. 34

REPLACEMENT PARTS (Continued)

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers.

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\text { Priec }}{\text { List }}$
3666	Spring-Cable lever tension spring-Package of $10 \ldots$	\$0.44		PICKUP AND ARM ASSEMBLIES	
3670	Finger-Friction finger	. 32	3388	Screw-Pickup needie holding screw-Package of 10	\$0.60
3672	Pin-Manual index lever pin	. 42	3728	Coil--Pickup coil (L20).	. 50
3673	Screw-Manual index lever adjustment serew and nut--		3737	Damper-Package of 5.	. 65
	Package of 5....................................	. 20	40	Rod-Automatic brake trip rod. .	. 20
3676	Spring-Cam and gear pawl carrier tension spring-Package of 10 .	. 52	4063	Screw-Pickup mounting screw assembly-Comprising one screw, one nut, and one washer-Package of 10.........	. 54
3677	Lever-Cable lever assembly	. 40	406	Cable-Pickup arm cable-Package of 5................	0
4059	Screw-Trip lever clutch tension adjustment screw-Pack-		4128 6811	Armature-Pickup armature. Pickup-Pickup unit.complete 96
	age of 10 .	. 22	$\begin{aligned} & 6811 \\ & 6812 \end{aligned}$	Pickup-Pickup unit.complete Cover-Pickup cover	$\begin{gathered} 4.30 \\ .34 \end{gathered}$
4060	Escutcheon-M anual-12-10	. 28	6813	Back-Pickup housing back.	. 68
4061	Spring-Main spring	. 38	6814	Cover-Pickup back cover..	. 34
4124	Plate-Actuating plate assembly	. 50	6815	Escutcheon-Pickup arm escutcheon with mounting rivets.	. 64
4127	Spring-Actuating plate spring-Package	. 24	7707	Arm-Pickup arm completo, less escutcheon, pickup, pickup	
6502	Cam-Cam and gear assembly	1.18		mounting screw, nut and washer......................	4.12
6503	Pawl-Trip pawl assembly	. 40		TURNTABLE ASSEMBLIES	
6806	Lever-Manual index lever-Less pin	. 55	3340	Washer-Thrust washer-Package of 2	. 56
6807	Lever-Trip lever assembly	1.16	3341	Pin-Groov-pin-Package of 2........................	. 56
6808	Clutch-Trip lever friction clutch	. 30	3342	Spring-Latch spring-Located on clamping ring-Package of 2	. 56
6809	Finger-Manual index finger assembly	. 25	3344	Cover-Grease retainer cover-Package of	. 70
6810	Lever-Main spring lever	. 44	3347	Spring-Speed shifter lever spring--Package of $2 \ldots$. .	. 30
6846	Lever-Main lever and link assembly	1.45	$\begin{aligned} & 4065 \\ & 6816 \end{aligned}$	Bushing-Speed shifter lever bushing-Package of 4...... Ring-Clamp ring assembly-Comprising spring, latch	. 82
7710	Cover-Metal cover for trip lever and friction finger assemblies.	. 28	6817	lever, and stud. .	.42 2.25
			6818	Lever-Speed shifter lever.	. 38
	MOTOR ASSEMBLIES		7711	Turntable-Complete.	5.10
3777	Motor mounting spring washers and stud assembly-Comprising three upper and three lower springa, six cup washers, three spring washers, and three studs.	. 62	3638	MISCELLANEOUS PARTS Scale-Tuning meter scale-Package of 5... Motor mounting board spring, washer and stud assemb..	. 60
9011	Motor-Motor complete-105-125 volts-60 cycles. . . .	19.72		Comprising one bolt, two "C" washers, one botton	
9012	Motor-Motor complete-105-125 volts-25 cycles	24.16		spring, one top spring, two cup washers, one shakeproof	
9013	Motor-Motor complete-105-125 volts-40 cycles.	24.16	3780	Sliutter-Noise suppressor shutter	. 32
9014	Motor - Motor complete-105-125 volis-50 cycle	19.72	3781	Shutter-Volume control shutte	. 30
			4043	Switch-Operating switch (S7)	. 80
	EJECT ARM ASSEMBLIES		4044	Socket-Compartment lamp sock	1.28
3655	Retainer-Ball retainer with three ball bearings	.45	4045 4047	Shade-Compartment lamp shad Receptacle-Noedle receptacle. .	. 50
3656	Bearing-Ejector tip bearing	. 48	4066	Rest-Pickup rest.	. 14
3657	Tip-Ejector tip..	. 30	4080	Knob-Range switch knob-Package of 5 .	. 75
3658	Ball-Ball bearing-Package of 20.	. 30	4081	Knob-Station selector, volume control or noise suppressor	
3662	Plate-Ejector plate-Package of $5 . \ldots$.	. 95		knob-Package of 5 Knob-High or low frequency tone control, radio-phono-	1.08
3665	Serew-Eject arm horizontal adjustment screw and nutPackage of 5 .	. 25	4082	Knob-High or low frequency tone control, radio-phono- graph switch or phonograph . volume control knobPackage of 5 .	1.08
3729	Roller-Counter balance roller-Located inside of eject arm.	. 45	6456	Escutcheon-Volume control escutcheon and color screen.	. 50
3930	Cushion-Counter balance cushion and bracket--Located inside of eject arm.	. 18	6457 6458	Escutcheon-Noise suppressor escutcheon and color screen. Escutcheon-High and low frequency escutcheon and	. 50
4054	Bracket-Eject arm bracket assembly	1.35		color screen.	. 92
4055	Posi-Vertical adjustment post-Located on eject arm	. 30	6461	Meter-Tuning meter.	2.14
4056	Yoke-Eject arm yoke assembly	1.04	6547	Bezel-Tuning meter bezel.	. 45.
4057	Shaft and collar-For eject arm.	. 24	6799 6800	Volume control-Phonograph volume control (R31, S10). Transformer-Phonograph input transformer-Comprising	3.00
4058	Collar-Eject arm shaft collar.	. 18	6800	one transformer, one .008 mfd., one 0.06 mff., and one	
4067	Spring-Eject arm bracket spring-Package of 10.......	. 30		0.18 mfd. capacitors, one $50,000 \mathrm{ohm}$, one 4,000 ohm, and	
4125	Spring-Eject arm hórizontal action tension spring60 eycle operation-Package of 10	. 42		one 5,000 ohm resiztors, and one choke coil (R28, R29, R30, C46, C47, C48, L21, T5) ..	6.30
4126	Spring-Eject arm horizontal action tension spring-For 25 cycle operation-Package of 10	. 60	$\begin{aligned} & 6801 \\ & 6802 \end{aligned}$	Shaft-Flexible drive shaft for Radio-Phonograph switch.. Bearing and plate assembly-For Radio-Phonograph	1.15 .34
7708	Arm-Eject arm complet	7.74		switch shaft-Located on cabinet	. 34
7709	Cover-Eject arm cover.	1.38		REPRODUCER ASSEMBLIES	
	SWITCH ASSEMBLIES		4131	Mounting assombly for reproducer-Comprising two plates, two bolte, two nute, and two lockwashers........	. 44
3322	Switch-Motor switch (S8).	. 75	6569 6618		1.95
6805	Switch assembly-Automatic switch complete	1.90	8969	Cone-Reproducer cone (L17)-Package of 5	6.35
10174	Springs-Automatic brake spring-Package of 4.	. 50	9031	Coil-Field coil magnet and cone support (L19)	4.90 8.50
10184	Plate-Automatic brake latch plate-Package of 5	. 40	9472	Reproducer complete.	8.50

SERVICE DATA

Electrical Specifications

Voltage Rating. 105-125 Volts Power Consumption (60 Cycle) 175 Watts Type and Number of Radiotrons...... 4 RCA-56, 4 RCA-58, 1 RCA-55, 2 RCA-59, 1 RCA-5Z3-Total 12 Frequency Range. 540 K.C.-1500 K.C.-1400 K.C.-2800 K.C. Undistorted Output. \qquad
This combination home recording instrument utilizes the new perfected automatic record changing mechanism and the twelve-tube Deluxe Super-Heterodyne receiver. Excellent fidelity on both radio and record reproduction, together with facilities for recording either programs or voice are inherent features of this instrument. Other features include double tuning range ($540 \mathrm{~K} . \mathrm{C} .-1500 \mathrm{~K}$. C. and $1400 \mathrm{~K} . \mathrm{C} .-2800$ K. C.), high and low frequency tone control, compensated volume control and the inherent sensitivity, selectivity and tone quality of the Super-Heterodyne.

Figure D-Location of Line- Up Capacitors
Figure A shows the schematic circuit, Figure B the chassis wiring, and Figure C the assembly wiring diagram. The Radiotron socket voltages, the line-up procedure, special service hints and the replacement parts are given on the following pages.

R. F. and Oscillator Line-up Capacitor Adjustments
 Four adjustable capacitors are provided for aligning the

 R. F. circuits and adjusting the oscillator frequency so that the oscillator will maintain a constant frequency- 175 K . C. -difference from that of the incoming signal. Poor quality, insensitivity, poor A. V. C. action and possible inoperation of the receiver may be caused by these capacitors being out of adjustment.If the other adjustments have not been tampered withthe intermediate transformer tuning capacitors-the following procedure may be used for aligning these capacitors:
(a) Procure an R. F. Oscillator, such as Stock No. 9050, giving a modulated signal at 600 K . C, 1400 K . C., and 2440 K . C. Also procure a non-metallic screw driver such as Stock No. 7065.
(b) An output meter is necessary. This should be a $0-10$ milliammeter connected in series with the plate supply to the second detector.
(c) A dummy Radiotron RCA-56 is necessary to substitute for the one normally used in the A. V. C. socket. This should be a tube that is otherwise normal in all respects, but having one heater prong removed. Insert this tube in the A. V. C. socket.
(d) First chock the chassis and carefully ascertain that the dial pointer reads exactly at the first line on the scale when the tuning capacitor
rotor plates are fully meshed with the stator plates.
(c) Place the oscillator in operation at exactly 1400 K . C. and couple its output to the antenna. Set the Range Switch counter-clockwise the set and place the volume control and suppressor control, if
noise level will pernit, at its maximum position. Adjust the oscillator input so that only a slight reduction in current is obtained in the output meter.
(f) With a suitable socket wrench--the nuts are at ground potentialadjust the oscillator, first detector and R. F. line-up capacitors,
) The high frequency band is adjusted at 2440 K . C. This is
in a similar manner to the R. F. adjustments except that the in a similar manner to the R. Fial adustments except that the in the clockwise position. The line-up capacitors on the Range in the clockwise position. The line-up capacitors on the
(h) Set the oscillator at 600 K . C. Tune in the signal with the receiver until a slight deflection is obtained in the output meter. Now adjust the 600 K . C. series capacitor, Figure D, until a minimum deflection is obtained in the output meter. Rock the tuning capacitor back and forth while making this adjustment, as the tuning capacitor and oseillator series capacitor adjustments interlock.
(i) Change the frequency of the oscillator to 1400 K . C. and set the dial at 1400. Again make the adjustments given under (f), (g), and then (h).
So adjusted, the R. F. circuits are properly aligned and the oscillator will maintain a constant frequency difference from the incoming R.F. signal.

I. F. Tuning Capacitor Adjustments

Although this receiver has two I. F. stages, one for the second detector and one for the A. V. C., only two of the three I. F. transformers are tuned by adjustable capacitors and require adjustment. The stage used for the A. V. C. is broadly tuned and does not require any adjustment.

The transformers are all tuned to 175 K . C. and the circuits broadly peaked.

A detailed procedure for making this adjustment follows:
(a) Procure a modulated R. F. Oscillator, such as Stock No. 9050, that gives a modulated 175 K . C. : isignal. Also procure a non-metallic screw driver such as Stock No. 7065 .
(b) An output meter is necessary. This should be a $\mathbf{0 - 1 0}$ milliammeter
connected in series with the plate supply to the second detector.
(c) A dummy Radiotron RCA-56 is necessary to substitute for the one
normally used in the A. V. C. socket.
(d) Remove the oscillator tube and makea good ground connection to the chassis. Place the oscillator in operation and couple its output from the control grid of the first detector to ground. Adjust the oscillator output, with the receiver volume control at maximum,
antila a slightiy reduced deflection is obtained in the output meter.
(e) Refer to Figure D. Adjuqf the secondary and primary of the second and then the first . F. transformer until a minimum de-
flection is obtained in the output meter. $\mathbf{G o}$, through these justments a second time, as a slight readjustment may be necessary.
When these adjustments are made, the set should perform at its maximum efficiency. However, due to the interlocking of adjustments, it is good practice to repeat the R. F. and oscillator line-up capacitor adjustments after completing alignment of the I. F. system. The correct method of doing this is given in the preceding section.

Antenna Connections-It will be noted that three antenna terminals are provided at the rear of the receiver chassis. Two of these are used for the normal antenna and ground connections, while the third one is for use in connection with a shielded antenna system. The tap eliminates the need for the transformer usually used for coupling the shielded line to the radio receiver.

Stock No. 7717 shield kit, which comprises a lightning arrester, transformer assembly, a 200 mmfd . capacitor, and 100 feet of shielded wire, is recommended. When such an antenna system is used, it is necessary to connect the 200 mmfd. capacitor between terminals 1 and 2. This prevents the first R. F. circuit from being detuned and results in maximum gain from the antenna. This capacitor is included with the Stock No. 7717 Kit.

Automatic Record Changer--The automatic record changer used in this instrument is of simple design and excellent construction. The various adjustments that may be required are shown in Figure G. A point to remember with this instrument is that it must always be level, otherwise proper operation will not be obtained.

PAGE 5-180 RCA

PAGE 5-182 RCA
MODEL Duo 380-EHR
A-F. Circuits
RCA-VICTOR CO., INC.

Record Reproduction

Home Recording

RCA PAGE 5-18:3

Figure C-Assembly Wiring Diagram

RCA-VICTOR CO., INC.

SERVICE DATA ON MAGNETIC PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequency-response characteristic is substantially flat from 50 to 5,000 cycles.

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or the hardened pivot rubbers (see Figure J), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.

Figure I
(d) Remove screws A and B, Figure \boldsymbol{J}, and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized. After being magnetized, the mechanism-with the pole pieces up-ward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assemby should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B (Figure J), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.

In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.

Figure J
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is sbmewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure K, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called

Figure K

acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as explained under (h).

RCA-VICTOR CO., INC.

OPERATION—PHONOGRAPH
 1. In loading the turn table, make certain that the $\begin{aligned} & \text { CAOUTHN-Never attempt to move the Index } \\ & \text { trom the Manual position when the pickup is on the } \\ & \text { rubber rest. }\end{aligned}$
fret record inderted (last to be played) it fat-that is,
W. Start the turntable by turning the Motor Switch clock. R. P. M.) corresponding to the records on the tura

When using the home-recording facilities of this instru-
nent, the following precautions must be observed: ind Always place a fat (unwarped) 10 . or 12 -inch record
of the commercial variety beneath the home-recording 2. To prevent surface slippage, always record with the felt recording pad inserted between the homereceording and
otandard recorda. This pad need not ter emoved for Playing. back" purposes but must never be left on the turntable when
automatic operation is intended.
3. UJe ooly the special home-reoording neede (identified
by its yellow shank and blunt-point) for both recording and
 be For reording, the needle presesure on the record must be increased by placing the recording weight on the electric
pitkup. TTis weigit must te remod for
the home.recorded or ony Radio Recording

To record radio programs, refer to Figures 1 and 2 , and
proceed as followe: proceed as follows:

1. Tune the reciver for the desired radio program as

 2. Raise the Record Ejector arm to its upper position of
rest (foe paragraph 3 (c) under Procedure-Automatic
Operation-Phonograph"). 3. Place a blank home-recording record on the turntable范 4. Ineert a hame-recorting neealde in the elecetric pickup 5. Set the Transfer Switch for "Radio Reording." In
this poistion, the radio program should be heard at reduced
volume 6. Adjust the Radio Volume Control to obtain the correct
recording volume a a determined bboberving the fashing of

Manual Operation
 Con sor the electric pickup is on ite rubbe 3. Raiee the Record Ejector arm to the upper rest position
(sec paragraph 3 (c) under "Automatic Operation"). the pilace the record on the turntable and insert a neecele in

NOTE-Ordinary stel needles (full volume or full
tone) can be used with standard (78 R . P. M.) records, suognezadd su!prosay

7. Adjust the Record Volume Control to obtain the
desired volume.

 NOTE 1-When a record has been played, the e jector
arm olides it off into tore record pocket and the pickup
 the turatable are thus played consecutively until only one
record remaino on the turtable. This reord will he
played repeatedy until the motor is is topped by means

NoTE 2 Th.

 tion may be neceseary, tubsse (i) If the ne eedle fails to
enter the playing groove, the right-hand side of the

 9. Tor reject i irecord while playing, lift the p pickup arm and
move it to the extreme left. Hold the pick up lighty untilit it

provided a new needle is inserted for each elelection. Do
not use Tungstone needles with either thin fexible type or transparent-faceed (illustrated) recorde.
 6. Adjuas the B ene reord. . doors (sec paragraph 8 under "Automatic Operation"). 7. After the record has been played, , top the turnathe by
turning the Motor Switch to the "off"' position (motor stope
 8. When through operating, tura the power "off" and
close the cabinet doocre. OPERATION-RECORDING
7. Start the turntable by turning the Motor Switch "on,"
then set the e speed shifter for the desired turntable speed.

 and must of curse
8. Place the needele in the outer grove of the blank record
nd recording will procece automatitally. During this procese
 the program level. 9. Recording may be interrupted at any time by simply
 10. Upon completing a recording, lift the electric pickup
from the record, tura the Motor Switch "off and place the from the reocoromp,tetang the are Mocording, ift the electric pitckup
pickup on the rubber reat. Mierophone Recording
To record voice or musical entertainment originating in
home, the proceedure is essentially the same as for the
 cord connected) and place it in an upright position on a table
or any other horizontal surface convenienty near the soand For best results, special attention must be given to the For best realks, pecial attention must be given to the
location and dranagement of the person or persons preesting
the program. All sounds to be recorded muut be directed

 Suct conditions may be fulflilled easily in the ase of the
average adult (speaker or singer) by placing the microphoone
on the top of the eabionet. When recording speech, the microphone should be spaced

 type ' (wind or ftring), as well as the number of instruments
and may be from thriee to ten feet. In the case of \& emall

MODEL 380-HR

Phonograph Data

RCA-VICTOR CO., INC.

 Vol tageorchestra, it would be preferable to group the members in a semi-circle with the stringed instruments nearest the microphone and the horns at the rear.

Adjustment of Recording Volume-Before the actual recording is undertaken, it will be advisable to test for the proper volume as follows:

1. Set the Transfer Switch for "Home Recording."
2. Turn the power "on" (Radio Volume Control rotated slightly clockwise). As for radio recording, make certain that the Index Lever is at "Manual," that the electric pickup is on its rubber rest and that the Motor Switch is "off."
3. Raise the Record Ejector arm and load the turntable with a blank home-recording record, first inserting a standard record and the felt recording pad, then lower the Record Ejector arm.
4. Set the Record Volume Control fully clockwise (turntable now should be rotating) and commence the program which is to be recorded.
5. Regulate the distance between the sound source and the microphone, while observing the flashing action of the neon-lamp indicators at the front of the playing compartment, until both lamps are illuminated continuously or at approximately the same intervals.
6. Turn the Record Volume Control counter-clockwise until the right-hand lamp is either "off" or flashing infrequently; however, do not reduce the setting sufficiently to
change the action of the left-hand lamp. The instrument is now properly adjusted and the test program may be discontinued while making final preparations for recording.

Procedure-After the recording volume is adjusted, leave the Record Volume Control setting intact permitting the turntable to remain in rotation, and proceed as follows:

1. Insert a home-recording needle in the electric pickup and place the recording weight on the pickup head.
2. Set the Speed-Shifter for the desired turntable speed (see note in paragraph 7 under "Radio Recording").
3. Place the needle in the outer groove of the blank record and commence without delay the program to be recorded.
4. When the recording is complete (see paragraph 9 under "Radio Recording"), lift the electric pickup from the record, turn the Motor Switch "off" and place the pickup on its rubber rest.

Reproduction of Home Recordings

Home-recorded records (either radio or microphone recordings) may be reproduced in the manner described for manual operation of standard records under "OperationPhonograph." Such records, however, must not be employed with the automatic record changer and always must be reproduced with the special home-recording needle. Always make certain to remove the recording weight from the electric pickup when "playing-back" recordings.

GENERAL

Fuse-This instrument is protected by a fuse located at the rear of the chassis, under the metal cover marked "Caution: Remove Power Supply Before Removing Cover." If the fuse burns out, check the power supply connections and rating, and have all tubes tested by your dealer before installing a new fuse. This is a special fuse-obtain replacement fuses from your dealer-do not use any substitute for this fuse.

In districts where the line voltage is always below 115 (225 for 200-250 volt models), the fuse should be
set in the "110" position ("213" position for 200-250 volt models). Always disconnect the power cord from the a-c outlet before removing the fuse cover.

Maintenance-With normal use and handling, troublefree service is to be expected. The automatic phonograph mechanism and associated parts, however, should be kept clean and well-lubricated. To insure continued efficient operation, it is recommended that the entire instrument be thoroughly inspected and adjusted by an experienced service man once each vear.

RADIOTRON SOCKET VOLTAGES (RADIO OPERATION)
 120 Volt A. C. Line-Volume Control and Sensitivity Control at Maximum-No signal being received

Radiotron No.	Cathode to Control Grid, Volts	Cathode to Screen Grid, Volts	Cathode to Plate, Volts	Plate Current, M. A.	Heater Volts
RCA-58 R. F.	3.1	97	212	7.5	2.5
RCA-56 Osc.	-	-	100	6.0	2.5
RCA 58 1st Det.	9.5	91	206	2.8	2.5
RCA-58 I. F.	7.5	93	208	4.0	2.5
RCA-58 A. V. C.-I. F.	8.5	92	207	3.0	2.5
RCA-56 A. V. C.	12.0	-	-	0	2.5
RCA-55 2nd Det.	0	-	74	8.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA-56 A. F. Driver	11.0	-	205	5.0	2.5
RCA-59 Power	,	-	394	13.0	2.5
RCA-59 Power	0	-	394	13.0	2.5
RCA-5Z3 Rect.	990-495 R. M. S.			92 Total	5.0

RCA PAGE 5-187
MODEL 380-HR
Neon Lamp and Switching Data Record Changer Data

Figure H-Automatic Record Changer Adjustments

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	List Price
	RECEIVER ASSEMBLIES		6447	Volume control (R20, S1)	\$1.92
			6448	Tone control-Low frequency (Ri7)	1.04
2730	Resistor-18,000 ohms-Carbon type-1 watt (R24)-		6449	Tone control-High frequoncy (R21)	1.06 1.24
	Package of 5.........	\$1.10 .50	6450 6512		1.24 .28
2747 3024	Cap-Contact cap-Package of 5.	. 50	6512 6537	Cpacitor-Range switch.	1.30
3024 3047		. 50	6537 6539	Coil-Detector coil (L3, Li4)	1.44
304	Resistor- Package of 5	1.00	6541 6561	Dial-Tuning condenser dial and sca	1.75 1.65
3085	Capacitor- $\mathbf{4 0 0}$ mmfd. (C38)	. 30	6561 6562	Transformer-Audio driver transformer (T3)	3.04
3118		1.00	6564	Transformer-First intermiediate frequency transformer (L8, L9, R9, C20, C21, C24)	2.30
3252		1.00	6565	Transformer-Second intermediate frequency transformer (L12, L13, C28, C29)	2.10
3376	Mount-Fuse mount.	. 40	6566	Transformer-Third intermediate frequency transformer	
3435	Resistor- 250 ohms-Carbon type-1/2 watt (R2)—Pack age of 5	1.00	6567		1.72
3460	Capacitor-1,200 mmfd. (C31)	. 30		mfd. capacitors (C35, C36).	. 95
3526	Resistor-2,000 ohms-Carbon type- $1 / 2$ watt (R4, R32)-		6568	Transformer-Interstage audio transformer	3.10
	Package of 5...............	1.00	6571	Capacitor-10 mfd. ($\mathbf{C 4 3 , ~ C 4 4) .}$	1.20
3527		1.00	6572 6574	Reactor-Tone control reactor (L14) Capacitor pack-Comprising two 10.0 mfd. capacitors	. 90
3528	Bracket-Noise suppressor or volume control lamp bracket.	. 18	6574	Capacitor pack-Comprising two 10.0 mfd. capacitors (C32, C41)	1.80
3529	Socket-Noise suppressor or volume control lamp socket. .	. 32	6578	Reactor-Filter reactor (L18) .	3.22
3533	Shutter-High frequency tone control shutter	. 50	6797	Capacitor-10.0 mfd. (C49)	1.04
353	Shutter-Low frequency tone control shutter	. 50	6847	Shield-Rectifier socket shield and	. 65
35	Socket-High or low frequency tone control lamp socket	. 32	7062	Capacitor-Adjustable capacitor (C14).	. 50
35	Capacitor- 0.05 mfd .-Located on antenna coil (C3).	. 34	7439	Drum-Dial drum with set screw 'and three dial mounting	
3558	Capacitor- 50 mmfd (Cl 9$). .$.	. 36		nuts.35
3564	Bracket-Station selector dial lamp-Mounting b	. 25	7484	Socket-5-contact Radiotron so	. 35.
3565	Socket-Station selector dial lamp socket.	. 50	7485	Socket-6-contact Radiotron sock	. 40
3597	Capacitor- 0.25 mfd . (C33, C45).	. 40	7700	Condenser-3-gang variable tuning condenser (${ }^{\text {C4, }}$, C5, C6,	
364	Capacitor-0.05 mfd. (C9, C22, C26)	. 25		C10, C11, C12, C16, C17, C18, S2, S3, S4, S5, S6)	7.44
3641 3643	Capacitor-0.1 mfd. (C7, C13, C23, C25, C27)	. 35	9468	Transformer-Power transformer-105-125 volts-50-60 cycles (T1) .	7.75
3643 3652	Screw-No. 10-32-1/4 set screw for bracket and bushing assembly-Package of 10	. 25	9469		11.75
3719	Socket-7-contact Radiotron socket.	. 30		MOTOR BOARD ASSEMBLIES	
3726	Arm-Range switch operating arm assembly-Comprising arm, link, studs and set screws.	. 45	2893	Spring-Trip lever latch tension spring-Package of 10....	. 35
3727	Shaft-Shaft and bushing assembly for range switch operating arm-Comprising two washers, shaft, bushing and nut .	. 30	$\begin{aligned} & 2917 \\ & 3654 \end{aligned}$	Washer-Spring washer, "U" type-Package of $10 \ldots . .$. Roller-Guide roller assembly-Comprising bracket roller	. 25
3747	Capacitor-15 mmfd. (C8)................ 36		and guide pin..	. 34
3749	Capacitor-0.1 mfd. (C40)	. 30	3666	Spring-Cable lever tension spring-Package of 10........	. 44
3765	Capacitor- 0.025 mfd ((C34)	. 34	3670	Finger-Friction finger. .	. 32
3774	Resistor- $\mathbf{7 , 4 0 0}$ ohms-Tapped at 3,800 and 500 ohms (R25, R26, R27)	. 80	3672 3673	Pin-Manual index lever pin. Screw-Manual index lever adjustment screw and nut-	. 42
3797	Reactor-Volume control compensating reactor (L15) .	. 64			. 20
3798		1.00	3676	Spring-Cam and gear pawl carrier tension spring-Package of 10	. 52
3799	Capacitor-80 mmfd. (C30).	. 70	3677	Lever-Cable lever assembly.	. 40
3883	Fuse-2-ampere (F1)-Package of 5	. 40	4059	Screw-Trip lever clutch tension adjustment screw-Package of 10	
4013	Capacitor-200 mmfd (C1)	. 30			. 22
4035	Switch-Radio-Phonograph switch (S9) .	2.10	4060 4061		. 38
4036	Shield-Low or high frequency tone control light shield Shield-Antenna, detector or oscillator shield .	$\begin{array}{r}.30 \\ . \\ \hline 5\end{array}$	4061 4124	Spring-Main spring-Package of 10 Plate-Actuating plate assembly 38
4037	Shield-Antenna, detector or oscillator shield Shield-Radiotron shield.	. 55	4124 4127	Spring-Actuating plate spring-Package of 10	. 24
4039	Shield-Radiotron shield-Second detector	. 30	6502	Cam-Cam and gear assembly	1.18
4040	Shield-Radiotron tube shield top.	. 25	6503	Pawl-Trip pawl assembly.	. 40
4041	Cover-Fuse cover.	. 25	6806	Lever-Manual index lever-Less pin	. 55
4042	Reactor-Volume control series reactor (L16)	1.20	6807	Lever-Trip lever assembly.....	1.16
4129	Bracket-Bracket and bushing assembly for radio-phonograph switch shaft-Located on receiver chassis.	. 28	6808 6809	Clutch-Trip lever friction clutch..	. 30
4130	Shield-R. F. Radiotron shield. 30	6810	Lever-Main spring lever. 44
5817	Resistor-20,000 ohms-Carbon type-3 watt (R15, R16).	. 25	6846	Lever-Main lever and link assembly	1.45
6186	Resistor- $\mathbf{5 0 0}, 000$ ohms-Carbon type- $1 / 4$ watt-Located on antenna coil (R1)-Package of 5 .	. 1.00	7710	Cover-Metal cover fos trip lever and friction finger as. semblies.	. 28
6192	Spring-3-gang tuning condenser drive cord tension spring -Package of 10 .	. 30		MOTOR ASSEMBLIES	
6228	Resistor-200,000 ohms-Carbon type- $1 / 2$ watt (R14, R34, R35, R36)-Package of 5.	1.00	3777	Motor mounting spring washers and stud assembly-Comprising three upper and three lower springs, six cup wash-	
6277	Capacitor- 0.1 mfd -Located on rectifier socket shield (C50)	1.00 .35	9477	ers, three spring washers, and three studs................ Motor-Motor complete-105-125 volts-60 cycles	$\begin{array}{r}\text { 25.82 } \\ \hline 68\end{array}$
6280	Resistor- 400,000 ohms-Carbon type- $1 / 2$ watt (R11, R12, R13)-Package of 5.	1.00	9479 9478	Motor-Motor complete-105-125 volts- 25 cycles. Motor-Motor complete-105-125 volts- $\mathbf{5 0}$ cycles.	36.48 25.88
6281	Resistor-1,100 ohms-Carbon type-1/2 watt (R23)Package of 5 .	1.00		EJECT ARM ASSEMBLIES	
6282		1.00	3655	Retainer-Ball retainer with three ball bearings. Bearing-Ejector tip bearing.	. 45
6298	Cord-3-gang tuning condenser drive cord-Package of 5.	. 60	3657	Tip-Ejector tip...........	. 30
6300 6312	Socket-4-contact Radiotron socket........	.35 .	3658	Ball-Ball bearing-Package of 2	. 30
6312	Capacitor-650 mmfd. (C15)-Package of 5.............	1.50	3662	Plate-Ejector plate-Package of 5..................... .	. 95
6316	Resistor- 2,500 ohms-Carbon type- $1 / 2$ watt (R10)Package of 5	1.00	3665	Screw-Eject arm horizontal adjustment screw and nutPackage of 5	. 25
6437	Coil-Oscillator coil (L5, L6, L7)	1.24	3729	Roller-Counter balance roller--Located inside of eject arm .	. 45

RCA-VICTOR CO., INC.

PAGE 5-190 RCA

$\left\lvert\, \begin{array}{l}\text { MODEE Duo } 381 \\ \text { RF Assembly Wiring }\end{array}\right.$
RCA-VICTOR CO., INC.

RCA PAGE 5-191

RCA-VICTOR CO., INC.

Record Reproduction

Radio Recording

Home Recording

PAGE 5-194 RCA
MODEL Duo 381 Cirouit Data Record Changer Data

RCA-VICTOR CO., INC.

Figure 14-Automatic Record Changer Adjustments
DESCRIPTION OF ELECTRICAL CIRCUIT

 A. V. C.i. F. stage. Examining the signal ampliiier
furcher we find that the output of the first signal I. F stage is applied through a transformer to the second 1. Fstage and thence through a second transtormer
to the second detector. Both circuits of each rans-former are accurately tuned to the I. F. signal, which is
460 K . Further examining the A. V. C., I. F. stage it will
 ?
 imately 5.0 volss, is maintained so chat rectifcation
does not occur until the signal level exceeds this grid voltage. When this occurs, a portion of the
rectififd signal produces a voltage drop across resistors
 stage. The drop across R-19 alone gives the automatic
bias voltage for che first detector and first I. F. stage
on bands X and A.

Figure 4-Sensitivity Control Switching Arrangement
 signal also gives a vicaze drop across R-23, whith
a second autuatic volume control system for the receiver. The voltage drop is applied to the second
I. F. stage in all bands and to the first detector and
. first I. F. stage in bands B and C. The change in
automatic volume control systems is made by an automatic volume control systems is madd selector
additional group of contacts on che band
switch. Figure 3 shows the switching anrangemenss At chis pur, an exo auto At chis point, an explanation as to why two auto-
mataic volume control systems are used and why the
sensitivity control is changed in different bands may
be in ordec.

 mall 1 udio driver stage and a pubh--aull class A outhut
stage. Plate and grid voltages are supplied by the
 stage is provided whitch uses two owldditional tubes.
Figure 1 shows the over-all shematic dircuit diagram

Figure 3-Switching Arrangement of Automatic.

The signal enters the receiver through a shielded antenna lead and is applied to the grid of the R. F.
tube through the antenna coupling transformer. The secondary of this transformer is runed tor the signal
frequency by means of one unit of the gang-capacitor.
 gre signal frequency by a unit of the gang-capacitor. Combined with the signal in the first detector is the
local oscillator signal, which is always at a 460 K . C. Grequency difference (higher) from the signal frequency.
A separate coil system and the third unit of the gangcapacitor are used in the oscillator circuit. In conjunction with these ctrree tuned circuits it
well to point out that five different grouss of tuned diruits are used, one group for each cuning band.
five-position slector switch is
provided for selecting hddition to selecting the desired coil system, additional groups of contacasts are provided for shor-t-circuititing
the preceding lower frequency R. F. and detector coils the preceding lower frequency R. F. and detector cois
and the two precedin oscillator coils. This is so prevent "dead" spots due to absorption effects caused gang-capacitor cornected falls in the next higher
requency band. This gang switch also has additional requency band. This gang switch also has addititonal
contacts for performing ocher functions which will
be disused.

Two automatic volume control systems are used because of the different receiving conditions in the various bands. For example, in the broadcast and long-wave band (X and A) signal levels are very high. Also due to the use of an aurally compensated volume control, a constant input to the second detector must be maintained. From this it is evident that the double channel I. F. automatic volume control is ideal. It maintains a constant input to the second detector and yet does not function on an extremely weak signal. In the short-wave bands, however, conditions are different. Signal strengths are always very low and fluctuate widely. For this reason it is important to have some automatic volume control action below the level at which the double channel system works. This is provided by the tube marked 2nd detector and 1st A. F. which functions on the first detector and two I. F. stages on the short-wave bands. It should be noted that this action is present on the second I. F. stage on all bands. This further flattens the action of the double-channel system in bands X and A.

At this point it is well to examine the sensitivity control, which also changes on different bands. The sensitivity control adjusts the residual bias on the R. F. and first detector stages in bands X and A while it controls the R. F., 1st detector and both I. F. stages on bands B, C, and D. Figure 4 shows the switching arrangement used.

The sensitivity control is changed so that in bands X and A it controls the R. F. and 1st detector while in bands B, C, and D it controls the R. F., 1st detector, 1st I. F. and 2nd I. F. stages. The reason for this is that for a given degree of sensitivity in bands X and A the residual bias will be considerably higher in the R. F. and 1st detector stages than in the bands B, C, and D used. This is to prevent possible overloading of these stages due to the high-signal strengths encountered in bands X and A. Also, in bands B, C, and D, for a given degree of sensitivity the R. F. stage operates at a higher gain, which gives an improved signal to noise ratio. This is caused by the paralleling of the sensitivity control with an 850 -ohm resistor in these bands.

Returning to the second detector, we find its output circuit is coupled to the grid circuit of the driver stage through a compensated volume control system, tone control system and transformer. The volume control uses two stages of compensation, which serves to increase the high and low frequencies as the volume is reduced. This compensates for the natural loss in sensitivity of the human ear to the high and low frequencies at low sound levels. A low and a high frequency tone control enables the listener to alter the fidelity of the receiver to his individual taste.

The driver stage, which is a pair of RCA-76 Radiotrons connected in push-pull, is transformer coupled to a pair of RCA-42's which are the output stage. A feature of the output stage is the use of fixed bias, which reduces distortion and increases the available output. This is accomplished by the use of the drop
across R-38 and R-39, which carries the entire D. C. output from the rectifier. Naturally the output stage uses but a portion of the total rectified current and current variations in it will have but little effect on the drop across the resistor.

The output of the power stage is coupled through a step-down transformer to the voice coil of the loudspeaker. A separate winding, which is shunted by a capacitor, has been provided in this transformer which gives a very sharp, high-frequency cut-off for the entire

Figure 6-Loudspeaker Wiring
audio system. This greatly reduces the reproduction of any high-frequency interchannel interference or other disturbance of a high-frequency character which is outside of the useful musical range.

The loudspeaker used is of the large-field ten-inch type. It is fully capable of handling the high-power, high-quality output of the receiver and converting it into faithful sound reproduction.

Figure 6 shows the loudspeaker wiring while Figure 7 shows the chassis wiring diagram. Figure 9 shows the assembly wiring diagram.

PHONOGRAPH AND RECORDING

The record reproducing facilities consist of a low impedance magnetic pickup with its associated inertia type tone arm, a compensated volume control, the audio amplifier of the receiver and the loudspeaker of the receiver. The radio receiver is made inoperative by the switch used for changing to record reproduction.

The recording facilities use the audio amplifier of the radio receiver, the output of which is connected to the magnetic pickup instead of the voice coil of the loudspeaker. The input to the amplifier may be either from the microphone or from the radio receiver, depending on whether radio recording or home recording is desired. It should be noted that when radio recording is being used, the loudspeaker is connected across the output through a resistor so that the program being recorded may be monitored at the same time.

Figure 7 shows schematic circuit diagram of the audio circuits at each of the four selection switch positions.

RCA-VICTOR CO., INC.

SERVICE DATA

(1) LINE-UP PROCEDURE

The line-up procedure of this receiver is somewhat involved and it is important that these instructions be carefully followed when making adjustments. Properly aligned, this receiver has outstanding performance; improperly aligned, it may be impossible to receive signals on all bands.

Equipment

To properly align this receiver, the following equipment must be used. This is a modulated R. F. oscillator having proper frequency range, an output indicator, an alignment tool, a tuning wand, and a "dummy" Radiotron RCA-76. These parts, which are shown on page 20, have been developed by the

Figure 8-Location of Various Coils in Shields
manufacturer of this receiver for use by service men to duplicate the original factory adjustments. The "dummy" Radiotron, RCA-76, is obtained by removing one heater prong from an otherwise perfect tube.

Checking with Tuning Wand

Before making any R. F., oscillator or first detector adjustments, the accuracy of the present adjustments may be checked by means of the tuning wand (Stock No. 6679). The tuning wand consists of a bakelite rod having a brass cylinder at one end and a special finely divided iron insert at the other end. Inserting the cylinder into the center of a coil lowers its inductance, while inserting the iron end increases its inductance. From this it is seen that unless the trimmer adjustment for a particular coil is perfect at alignment frequencies, inserting one end of the wand may increase the output of a particular signal. A perfect adjustment is evidenced by a lowering of output when either end of the wand is inserted into a coil.

The shields over the R. F. coil assembly have a hole at their top for entrance of the tuning wand. The location of the various coils inside of the shield is shown in Figure 8. An example of the proper manner of using the tuning wand would be to assume the external oscillator were set at 1720 and the signal tuned in. The, A. V. C. tube would be replaced by the "dummy" RCA-76 and the output indicator connected across the voice coil of the loudspeaker. Then the tuning wand should be inserted, first one end and then the other end, into the top of the three transformers at the left of the R. F. assembly, facing the front of the chassis. A perfect adjustment of the trimmer would be evidenced by a reduction in output when each end of the wand is inserted in each of the three transformers. If one end-for example, the iron end-when inserted in one coil caused an increase in output, then that circuit is low. An increase in the trimmer capacitance would be the proper remedy.

(2) I. F. TUNING CAPACITOR ADJUSTMENTS

Although this receiver has three I. F. stages, two for the signal and one for the A. V. C., only three transformers having six adjustable capacitors require adjustment. The fourth transformer is in the A. V. C. circuit and is broadly tuned, not requiring adjustments. The transformers are all peaked, being tuned to 460 K. C.

A detailed procedure for making this adjustment follows:
(a) Connect the output of an external oscillator tuned to 460 K . C. between the first detector grid and ground. Connect the output indicator across the voice coil of the loudspeaker. Replace the A. V. C. tube in the receiver with the "dummy" RCA-76.
(b) Place the oscillator in operation at $460 \mathrm{~K} . \mathrm{C}$.; place the receiver in operation and adjust the station selector until a point is reached (Band A) where no signals are heard and turn both the volume and sensitivity controls to their maximum position. Reduce the oscillator input until a slight indication is obtained in the output indicator.
(c) Refer to Figure 10. Adjust each trimmer of the I. F. transformers until a maximum output is obtained. Go over the adjustments a second time.

This completes the I. F. adjustments. However, it is good practice to follow the I. F. adjustments with the R. F. and Oscillator adjustments due to interlocking which always occurs.

(3) R. F. OSCILLATOR AND FIRST DETECTOR ADJUSTMENTS

Four R. F., oscillator and first detector adjustments are required in bands " X " and " A." Three are required in bands " B " and " C " while none are required in band "D." Band "D" uses the second harmonic of the oscillator while the detector and R. F. coils do not have trimmers.

To properly align the various bands, each band must be aligned individually. The preliminary set-up requires the external oscillator to be connected between the antenna and ground terminals of the receiver. The output indicator must be connected across the voice coil of the loudspeaker while the "dummy" RCA-76 must be placed in the A. V. C. socket. The sensitivity and volume controls must be at their maximum position and the input from the oscillator must be at the minimum value possible to get an output indication under these conditions. In the highfrequency bands, it may be necessary to disconnect the oscillator from the receiver and place it at a distance in order to get a sufficiently low input to the receiver.

The Dial Pointer must be properly set before starting any actual adjustments. This is done by turning the variable capacitor until it is at its maximum capacity position. One end should point exactly at the horizontal line at the lowest frequency end of band "A," while the other end should point to within $1 / 6_{4}^{\prime \prime}$ of the horizontal line at the highest frequency end of band "A."

Figure 10 shows the location of the trimmers for each band. Care must be exercised to only adjust the trimmers in the band under test.

Band " X "

(a) Tune the external oscillator to $410 \mathrm{~K} . \mathrm{C}$., set the pointer at 410 K . C. and adjust the oscillator, detector and R. F. trimmers for maximum output.
(b) Shift the external oscillator to $175 \mathrm{~K} . \mathrm{C}$. Tune in the 175 K . C. signal irrespective of scale calibration and adjust the series trimmer marked 175 K . C. on Figure 10, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at 410 K . C. as described in (a).

Band "A"

(a) Tune the external oscillator to $1720 \mathrm{~K} . \mathrm{C}$., set the pointer at $1720 \mathrm{~K} . \mathrm{C}$. and adjust the oscillator, detector and R. F. trimmers for maximum ourput.
(b) Shift the external oscillator to 600 K . C. Tune in the 600 K . C. signal irrespective of scale calibration and adjust the series trimmer, marked 600 K . C. on Figure 10, for maximum output, at the same time rocking the variable tuning capacitor. Then readjust at 1720 K . C. as described in (a).

Band "B"

(a) Tune the external oscillator to $5160 \mathrm{~K} . \mathrm{C}$., and set the pointer at 5160 K . C. Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacitor from minimum, to maximum.
(b) Check for the image signal, which should be received at approximately 4240 on the dial. It will be necessary to increase the external oscillator output for this check.
(c) The antenna and detector trimmers should now be peaked for maximum output.

Band "C"

(a) Tune the external oscillator to $18,000 \mathrm{~K} . \mathrm{C}$., and set the pointer at 18 M . C. Adjust the oscillator trimmer for maximum output. The trimmer should be set at the first peak obtained when increasing the trimmer capacity from minimum to maximum.
(b) Check for the image signal, which should be received at approximately 17,080 on the dial. It may be necessary to increase the external oscillator output for this check.

Figure 10-Location of Various Trimmer Capacitors

Neon Lamp Test

 Voltage(c) Reduce the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal disappears. The first detector circuit is then at the oscillator frequency and the RCA-6A7 tube is blocked. Then increase the capacity of the detector trimmer, while rocking the tuning capacitor, until the signal is peaked for maximum output.
(d) The antenna trimmer should now be peaked for maximum output. It is not necessary to rock the main tuning capacitor while making this adjustment.

Band " D "
No adjustments are required for Band D.

(5) VOLTAGE READINGS

The following voltages are those at the various tube sockets while the receiver is in operating condition. No allowance has been made for currents drawn by the meter, and if low-resistance meters are used, such allowances must be made. Figure 13 shows the location and voltage at each socket contact.

(6) TESTING NEON LEVEL INDICATING LAMPS

Two Neon Level Indicating Lamps are provided so that a visual indication of the recording level may be obtained at all times. These lamps normally give long service without attention. However, if failure occurs, and all circuits have been checked and eliminated as possible source of failure, the lamps may be

Figure 11-Testing Circuit
easily checked as indicated in the circuit shown in Figure 11. The method for checking involves testing for lighting between certain voltages. The lamps must not light before 52 volts have been applied and must not require a voltage greater than 64 volts to cause them to light. Lamps requiring different voltages from these are defective and must not be used.

RADIOTRON SOCKET VOLTAGES
Maximum Sensitivity-No Signal-120-Volt A. C. Input

Radiotron No.		Cathode to Ground, Volss	Screen Grid to Ground, Volts	Plate to Ground, Volts	Cathode Current, M. A.	Heater Volts, A. C.
RCA-6D6-R. F.		2.3	100	231	8.8	6.3
RCA-6A7	Osc.	3.0	-	232	10.9	6.3
	Det.		100	238		
RCA-6D6-1st I. F.		7.0	100	236	3.5	6.3
RCA-6D6--2nd I. F.		7.0	100	236	3.5	6.3
RCA-6D6-A. V. C.-I. F.		6.0	100	236	4.0	6.3
RCA-76-A. V. C.		4.7	-	0	0	6.3
RCA-85-2nd Det.		0	-	60	7.2	6.3
RCA-76-A, F.		11.0	-	235	5.5	6.3
RCA-76-A. F.		11.0	-	235	5.5	6.3
RCA-42-Power		0	240	365	23.0	6.3
RCA-42-Power		0	240	365	23.0	6.3
RCA-5Z3-Rectifier		-	-	$\begin{gathered} \text { 768-384 } \\ \text { RMS } \end{gathered}$	104.0	5.0

Power Transformer connected to 120 -volt Tap.

(7) SERVICE DATA ON MAGNETIC PICKUP

The Magnetic Pickup used in this combination instrument is of a new design with an improved frequency range. While in physical appearance it is similar to that of the older type, details of construction are considerably different. It consists essentially of a

Figure 12-Details of Magnetic Pickup
chromium steel magnet, two thin pole pieces, a mechanism support and bracket, a coil, and an armature that is damped by means of an anchored damping block.

The use of the anchored damping block eliminates any bad peaks in the frequency range. The frequencyresponse characteristic is substantially flat from 50 to 5,000 cycles.

(8) REPLACING MAGNET COIL, PIVOT RUBBERS, ARMATURE OR DAMPING BLOCK

In order to replace a defective coil or the hardened pivot rubbers (see Figure 15), it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws A and B, Figure 15 and then remove the mechanism assembly from the pole pieces.
(e) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivor rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled, except for the magnet, which must be magnetized.' After being magnetized, the mech-anism-with the pole pieces upward-should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At

ALL VOLTAGES ARE TO GROUND
Figure 13-Radiotron Socket Voltages
the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center the armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have

Figure 15-Pickup Nomenclature
the armature centered properly. The adjustment is made by loosening screws A and B (Figure 15), and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover may be now replaced over the entire assembly, and the pickup returned to the tone arm.
In assembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be .009" on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

(9) REPLACING THE DAMPING BLOCK

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is
somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obrained.
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure 16, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be reassembled as described in the preceding section.
Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place,

Figure 16-Special Soldering-Iron Tip
as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the air gap as explained under (h), section (8).

(10)
 AUTOMATIC RECORD CHANGING MECHANISM

The automatic record changer used in this instrument is of simple design and fool-proof construction. Under normal operating conditions service difficulties should be negligible. However, in event adjustments are required, a reference to Figure 14 will disclose the proper method of making all adjustments.

RCA PAGE 5-201 MODEL Duo 381
RCA-VICTOR CO., INC.
REPLACEMENT PARTS-(Continued)
Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

PAGE 5-202 RCA
MODEL Duo 381
Parts List

RCA-VICTOR CO., INC.
REPLACEMENT PARTS-(Continued)

RCA PAGE 5-203
MODEU AR-1229
Schematic
Chassis Details

PAGE 5-204 RCA
MODEI AR-4229
Chassis Wiring

This four tube Superheterodyne Police Receiver is of compact construction and gives excellent performance. Features such as unit construction (one unit contains the receiver, "B" battery eliminator and loudspeaker), ease of installation, freedom from ignition noise and excellent sensitivity, selectivity and tone quality characterize this instrument.

"B" Battery Eliminator

This receiver uses a vibrator-type Inverter-Rectifier that provides a source of direct current voltage for use as plate and grid supply for all tubes. This unit is accurately adjusted and sealed at the factory and service adjustments should not be attempted.

Line-up Capacitor Adjustments

The three R. F. line-up capacitors and two I. F. tuning capacitors are accessible and may require adjustments. The R. F. adjustments are made at 2508 K , C. and the I. F. adjustments at 175 K . C. The R. F. adjustments can be made with the receiver in its case, access to the adjusting screws being obtained through a slot in the bottom of the case. For the I. F. adjustments, however, it is necessary to remove the rear cover in order to couple the oscillator to the first detector. The following procedure should be used for these adjustments:

R. F. Adjustment

A satisfactorily accurate and rapid adjustment of the three R. F. line-up capacitors can be made by ear; although, for optimum results, the use of an output meter connected across the loudspeaker voice coil is recommended. The latter method however, involves removal of the rear cover to connect the meter, thus in turn eliminating the shielding effect of the case. Temporary shielding for the bottom and tube sides of the chassis and for the transformer therefore must be provided to prevent vibrator interference.
(a) Procure a modulated oscillator giving a signal at 2508 K. C. and a non-metallic screw driver. Stock No. 9050 oscillator and 7065 screw driver are suitable.
(b) Couple the output of the oscillator from antenna to ground, set the dial at 97 , and the oscillator at $2508 \mathrm{~K} . \mathrm{C}$.
(c) Place the oscillator and receiver in operation and adjust the oscillator output so that a weak signal is obtained in the loudspeaker when the volume control is at its maximum position.
(d) Then adjust the three line-up capacitors until maximum sound in the speaker or maximum deflection of the output meter is obtained. Readjust these capacitors a second time as there is a slight interlocking of adjustments.

I. F. Adjustments

In order to make the I. F. adjustments, it is necessary to remove the rear cover, due to the fact that the external oscillator must be connected between the control grid of the first detector and ground. Proceed as follows:
(a) Procure a modulated oscillator giving a signal at 175 K. C., a non-metallic screw driver and an output meter.
(b) Remove the receiver from its case, shield the transformer and tubes as described under R. F. adjustments, place the receiver in operation and connect the oscillator output between the first detector and ground. Connect the output meter across the voice coil of the loudspeaker. Then connect the antenna lead to ground and adjust the tuning capacitor so that no signal except the I. F. oscillator is heard at maximum volume. With the volume control at maximum, reduce the external oscillator output until a small deflection is obtained. Unless this is done, the action of the A. V. C. will make it impossible to obtain correct adjustments.
(c) Each transformer has but one winding that is tuned by means of an adjustable capacitor, the other windings being untuned. The capacitors should be adjusted for maximum output.

At the time I. F. adjustments are made it is good practice to follow this adjustment with the R. F. adjustments, due to the interlocking that always occurs. The reverse of this, however, is not always true.

Practical Hints on Installation

The following suggestions may prove useful when making installations on the particular cars mentioned.

Chevrolet 1933-Mount chassis on left side, end against car bulkhead and use short flexible shaft. Use both capacitors, one on the ammeter and one on the generator. Use all suppressors. Place a copper screen under the toe board on right side, $10^{\prime \prime} \times 10^{\prime \prime}$ to prevent the body from radiating ignition interference which may be picked up by the antenna. This screen must be grounded.

Plymouth 1933-Mount chassis on left side, back against car bulkhead and use $337 /^{\prime \prime}$ flexible shaft. Use both capacitors, one on the ammeter and one on the generator. Use all suppressors.

Ford V-8 1932 or 1933-Mount chassis on left side, end against car frame and use short flexible shaft. Use one capacitor, connected to the generator. Install eight spark plug type suppressors only, no distributor suppressor being necessary.

The majority of cars will be found to be entirely free from ignition noise when the standard equipment is used. Usually mounting the chassis on the right side of the bulkhead will be found most desirable, although if a heater is used, the left side will be preferable.

TUBE SOCKET VOLTAGES

6.3 Volt Battery-No Signal

Tube No.	Cathode to Ground	Cathode to Screen Grid Volts	Cathode to Plate Volts	Cathode Current M. A.	Heater Volts
RCA-78 R. F.	4.42	83	222	5.25	6.0
RCA-6A7 ${ }^{\text {First Detector }}$	4.42	83	222	11.0 Total	6.0
. \quad Oscillator	4.42	-	223		
RCA-6B7 Second Detector	3.22	84	218	5.25	6.0 .
RCA-41 Power	13.0	214	200	26.0	6.0

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No } \end{aligned}$	DESCRIPTION	$\underset{\text { List }}{\text { Lise }}$	$\begin{aligned} & \text { Stock } \\ & \text { No } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEmblies		3652	Screw-Self locking No. 10-32-5/4' cupped point set scrow -For flexible drive shaft-Package of 10	80.32
2240	Resistor-30,000 ohms-Carbon type-1 watt (R5).	50.22	3690	Strap and bracket assembly-Compriaing one bracket, two	- 3.3
2747 3218	Cap-Contact cap-Package of $5 \ldots \ldots \ldots$.			Brerews, one lockwasker and one strap................	$\begin{array}{r}40 \\ \hline 25\end{array}$
32	Resietor- $\mathbf{6 0 0}$ ohms-Carbon typo-1/4 watt (R7)-Package of 5 .	1.00	$\begin{aligned} & 3718 \\ & 3757 \end{aligned}$	Bracket-Control box dash mounting bracket Coupling-Slotted coupling for end of flexible drive shaft-	25
35	Capacitor-Comprising two 5.0 mfd. capacitors (C17, C22).	1.10		Package of 5....................................	. 40
3572	Socket-Radiotron 7 -contact socket 38	3758	Connector-For control box end of flexible drive shaft-	
3584		. 40	G5021		. 68
3602		1.00	6496	Shaft-Flexible drive shaft complete with connectors-Approximately $241 / 8^{\prime \prime}$ long.	1.60
3616	Capacitor-300 mmfd. (C15, C18) 34	6497	Shaft-Flerible drive shaft complete with connectors-	
3617	Capacitor- 0.005 mfd . (C21)	. 38			1.75
3618	Capacitor -0.02 mfd . (C16).	. 38	6499	Volume control-Combination volume control and switch	
3621 3623	Coil-Choke coil-Located on reisior board (L1)	.35 .30	6500	(R8) $\mathrm{Nut-Volume} \mathrm{control} \mathrm{and} \mathrm{switch} \mathrm{lock} \mathrm{nut}$	1.36 .24
$\begin{aligned} & 3623 \\ & 3632 \end{aligned}$	Shield--Antenna R. F. or oscillator coil shield..............	. 30	6531	Shaft-Floxible drive shaft complete with connectors---	
	Reage of 5.................................	1.10			85
3636	Transformer-First intermediate frequency tranaformer (L7, L8, C14)	1.74	6532	Shat-Frioxible drive shaft-Comple	1.24
3637	Transformer-Second intermediate frequency transformer		6784	Scale-Dial se	.58 3.70
	(L9, L10, C19).	1.65	G7850	${ }_{\text {Box-Control box com }}$	3.70 .44
${ }_{3645}$	Capacitor-0.1 mfd. (${ }^{\text {C }}$).........	. 35			
3695	Capacitor-375 mmfd. (C24, C31)	. 22		miscellaneous parts	
369	Capacitor-40 mmfd. (C9)	. 22		miscellaneous parts	
3699 3744	Capacitor-720 mmfd. (C20).	. 40	3466	Connector-Antenna lead-in	. 60
3744	Resistor-250,000 ohms-Carbon		3646	Fuse-20 amperes-Package of 5	. 40
3745	Capacitor- $745 \mathrm{mmpd}$. ($\mathbf{C l} 12$)		3647	Nut-Cap nut and lock wasber-Pa	35
3746	Capacitor-800 mfd. (C-32).	. 34	3648	Screw-No. 10-32-5/6" cap screw and lockwasher-Pack-	. 32
3920	Capacitor-. 003 mfd. (C23).........................	. 25	3689	Bracket-Receiver mounting bracket, bolt and nut as-	
3921	Mounting screws, washer and bushing assembly-For 3-gang variable tuning condenser-Comprising three spacers, $\underset{\text { washers }}{ }$. 34	3791	sembly-One set. Bushing and plate assembly-Flexible drive shaft bushing with plate, mounting gcrews, rubber bushings, and washers-Located on main ease. . . .	30
3922	Resistor-300,000 ohms-Carbon type-1/4 watt (R6, R9)	1.00	3827	washers-Located on main case. Cable-From fuse connector to ammeter	.30 .10
6135		1.00	4051	Bumper-Rubber bumper used in mounting receiver chassie -Package of 4	20
6192		. 30	3856	Clip-Spring clip-Grounds receiver chassis to metal	
6242		1.00	3884	Clamp-Cable clamp-Package of	. 20
6298	Cord-Tuning condenser drive cord-P	. 60	G5046	Escutcheon-Metal label for central box-Package of 10	. 70
6471	Coil-Oscillator coil assembly (L5, L6)	. 74	G5047	Escutcheon-Metal label for receivor-Package	. 50
6490	Tone control switch.	. 35	6151	Suppressor-Spark plag suppressor.	. 56
6492	Capacitor-Comprising one 3.6 mfd . and one 1.0 mfd .	1.08	6152	Suppressor-Distributor suppressor	. 56
6493	Drum-Tuning condenser drive drum. .	. 40	6175	Suppressor-Distributor splice-in suppresso	56
6514	Capacitor-Comprising two 0.05 mfd . capacitors (C1, C5)	. 28	6494	Capacitor-Ammeter capacitor- $\mathbf{0 . 5} \mathbf{~ m f d .}$.	. 46
6515	Cable-Shielded cable with antenna connocto	. 32	${ }^{6495}$	Capacitor-Generator capacitor- 0.5 mfd .	. 72
6516	Connector-Fuse connector	. 16	6670	Suppressor-Spark plug suppressor-"Elbow ty	. 56
6517	Cable-Main cable complete with fuse connecto	1.40	7065	Screwdriver-For R. F. and I. F. adjustments.	. 80
6540	Coil-R. F. coil assembly (L3, L4)	. 98	7621	Antenna-Roof antenna-Paper type (Brown)	5
6731	Coil-Antenna coil (L1, L2)		7622	Antenna-Roof antenna-Paper type (Gray).	1.50
6732	Transformer-Interstage audio transiormer (T2)	2.0	7686	Housing-Front section of housing complete with mounting	
7600			7689		. 48
	0.5 mfd. ${ }^{\text {two }} 4.0 \mathrm{mfd}$. and one 375 mmfd capacitors (L13, L16, C25, C26, C29, C30)	4.06	2689	Wrator completo.	
76	Condenser-3-gang variable tuning cond	2.84			1.92
9049	Tranaformer-Power transformer (T1) .	3.75	G9050	Oscillator-Test oscillator-150 to 25,000 K. C.	33.50
	CONTROL BOX ASSEMBLIE			REPRODUCER ASSEMbLIES	
3649	Key-Volume control and switch	. 18	3688	Transformer-Output transformer (T3)	1.50
650			7607	Screen-Metal screen.	. 44
3651	-Package of 10.....................	. 32	760	Coil assembly-Comprising field coil, magnet and cone support (L14) .	
	-Package of 10..	. 32	9023	Cone-Reproducer cone complete (Lil)-Package of 5.	5.00

RCA-VICTOR CO., INC.

RADIOTRON SOCKET VOLTAGES

Radiotron No.	Cathode to Control Grid, Volts DC	Cathode to Screen Grid, Volts DC	Cathode to Plate, Volts DC	Plate Current M. A.	Heater Volts
RCA-78 R. F.	3.0	100	165	5.5	6.0
RCA-6A7 Oscillator 1st Detector	-	-	145	1.7	6.0
	3.0	100	145	2.5	--
RCA-77 2nd Detector	Plate and Bias Suprly 165 Volts			-	6.0
RCA-43 Power	21.0	140	130	35.0	25.0
RCA-12Z3 Rectifier	220 RMS			-	12.0

*Voltages with 220 Volts D. C. supply will be approximately 10 per cent less than tabulated values

RCA-VICTOR CO., INC.

Electrical Specifications

Voltage Rating .
(AC). . . \qquad 200-230 AC or DC Frequency Rating (AC) .50-60 Cycles Power Consumption. AC 60 Cycles-105 Watts-DC-85 Watts
 Undistorted Ount. Frequency Range.1 .5 Watts
$.540 \mathrm{KC}-1500 \mathrm{KC}$

Figure C-Location of Line-Up Capacitors
This receiver is a five-tube Super-Heterodyne designed to operate on AC or DC over the voltage and frequency range indicated. Features such as compact construction, dynamic speaker, single Pentode Output tube and the inherent sensitivity, selectivity and tone quality of the Super-Hetero-
dyne are included in this instrument.

The circuit consists of an R. F. stage using Radiotron RCA-78, a combined oscillator and first detector using Radiotron 6A7, an I. F. transformer using two tuned circuits, a second detector using Radiotron RCA-77 and a power stage using Radiotron RCA-43. The rectifier is Radiotron RCA-12Z3, which is used in a half-wave circuit.

Line-Up Capacitor Adjustments

The line-up capacitor adjustments for the I. F. stage and for the R. F. circuits should be made in the following manner:
(a) Procure a modulated oscillator giving a signal at 175 KC and 1400 KC . An output meter and non-motallic screw driver are also necessary. The Stock No. 9050 test oscillator and Stock No. 7065 screw driver are suitable for this purpose. Figure C shows the location of the I. F. capacitors.
(b) The I. F. line-up capacitors should be first adjusted. This is done by placing the oscillator in operation at 175 KC , coupling its output between the control grid of the first detector and ground, connecting the output meter across the cone coil of the loudspeaker and adjusting the two I. F. line-up capacitors until maximum output is obtained.
(c) After the I. F. circuits are aligned, the R. F. and oscillator circuits are adjusted at 1400 KC . Prior to making the adjustment, however, the dial should be checked. This is done by making sure the dial indicator reads 530 (indicator in center position) when the tuning capacitor rotor plates are fully meshed with the stator plates. The adjustments are then made in similar manner as that of the I. F. except that the oscillator is set at 1400 KC , its ontput is connected from antenna to ground of the receiver, and the dial is set at 140. The adjustment is made with the trimming capacitors located on top of the gang capacitor and each capacitor is adjusted for maximum output.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	List Price	Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$
	RECEIVER ASSEMBLIES		6228	Resistor-200,000 ohms--Carbon type- $1 / 2$ watt (R4)-	
2747	Cap-Contact cap-Package of 5	\$0.50	3700	Package of 5 Resistor-450,000 ohms-Carbon type-1/2 watt (R 6) -	\$1.00
3710 3711	Capacitor-60 mmfd. (C15)	. 36			1.00
3712	Capacitor -400 mmfd . (C14)	. 40	3632		10
3754 3701	Capacitor-1150 mmfd. (C8)	.50 .30	2963		1.10
3701 3888	Capacitor-0.01 mfd. (C19)	. 35			1.10
3916	Capacitor-0.05 mfd. (C20)	. 32	6114	Resistor-20,00 Package of 5	
3917	Capacitor-0.25 mfd. (C17).	. 40	3914		1.10 .28
3755	Capacitor-Comprieing two 0.1 mfd . and one 0.25 mfd . (C12, C13, C27)			Resistor-205 ohms-Porcelain type-(R15)	. 90
6621	Capacitor-Comprising one 0.05 and one 0.1 mfd . (CI,	. 60	3915 3584	Resistor-320 ohms-Porcelain type-(RR14).............	. 88
6728	C25)..	. 46		Ring-Antenna Package of 5 . F. . . . or oscillator coil retaining ring- .	. 40
6728	Capacitor-Comprising one 4.0 mfd ., one 10.0 mfd . and two 8.0 mfd (C18, C26, C28, C31).	2.94	3993	Screw-No. 6-32 square head set serew for condenser dial and drive assembly-Package of 10 .	.25
${ }_{6}^{6726}$	Coil-Choke coil (L9).	. 62	7065	Screwdriver-Insulated screwdriver and socket wrench-	
6519 6521	Coil-Antenna coil (L1, L2)	. 88		For I. F., R. F. and oscillator condenser adjustment.	1.00
6520	Coil-R. F. coil (L3, L4)	. 94	3623 3950	Shield--Antenna R. F. or oscillator coil	. 36
6723			4700	Socket-Dial lamp sock'et.	. 26
	C4, C5, C6, C7)	4.15	3859	Socket-4-contact Radiotron socket	. 30
4701 4703	Dial-Tuning condenser dial and drive assembly	1.50 .35	6676	Socket-6-contact Radiotron socket.	. 40
4703 449	Escutcheon-Station selector escutcheon...............	. 35	7485 6727	Socket-6-contact Radiotron socket-Second detector. . .	.40
3449		. 60	6727	Transformer-Intermediate frequency transformer (L7, L8, C10, C11)	
3602	Resistor-60,000 ohms-Carbon type- $1 / 4$ watt (R1)Package of 5 .	1.00	4702	Volume control (R12, S1).	1.30
3033	Resistor-1 megohm-Carbon type-1/4 watt (R2)-				
6250		1.00		REPRODUCER ASSEMBLIES	
	Package of	1.00			
6303	Resistor-20,000 ohms-Carbon type-1/2 watt	1.00	7845 9492	Coil-Field coil magnet and cone support (L11)	2.50
3594		1.00	78427	Cone-Reproducer cone (L10)-Pa	3.70 6.30
		1.00	7846	Transformer-Output transformer (Ti)	1.65

RCA-VICTOR CO., INC.

PAGE 5-210 RCA
Antenna Length
Chart
RCA-VICTOR CO., INC.

From the chart shown, it can be seen that a wide variation in signal strength can be obtained with varions length antennas. This data applies particularly to the six-tube receiver and in general to the eight-tube receivers but does not necessarily apply ample, the "good" sections give about four times as much sensitivity as the "poor" sections As this is also an equal gain exoise, proper choice of antenna length can often make the difference between satisfactory and unsatisfactory reception In conjunction with the question of the relative merits of a short or long antenna for the frequencies that fall in the ei sections of each, either length will be equally good, assuming that neither is shielded by buildings of metallic construction or other such objects. If, for example, part of the antenna or lead-in is shielded by the building, then the longer antenna will give better results. Also the longer antenna will give better results in the broadcast band. The solid black rectangular blocks indicate both the frequencies of, and the antenna lengths recommended particularly
for the short-wave broadcast bands.

(Lengths shown are overall, including Lead-in Wire to Receiver-Ground Wire not to exceed 15 feet.)

RCA PAGE 5-211

ALTERNATIVE ANTENNA ARRANGEMENTS

In certain installations, space limitations may prevent the use of the full antenna span--approximately 60 feet. Three alternative arrangements, listed in order of preference, are possible:
(a) Reduced overall length through the use of loading coils.
(b) Reduction of the horizontal angle from a straight line span (180 degrees) to any other of not less than 90 degrees.
(c) Vertical suspension.

The first arrangement (a), in which loading coils are inserted to replace lengths removed from the horizontal sections of the antenna as illustrated by Figure 2, is recommended as the preferred alternative. In this manner, the overall span is reduced to approximately 34 feet, without impairing the original tuning characteristics of the system except in the region of 31 meters. The loss encountered within the broadcast band at this wavelength, however, will not be serious.

Using the second alternative (b), the length of
the antenna span is decreased by reducing the horizontal angle between the halves of the system (as viewed from above), rather than by shortening the lengths of the horizontal sections. While loading coils are not required, a third support for the antenna at the crossover insulator must be provided, the installation therefore being usually more difficult than for either straight-line arrangement. The antenna efficiency naturally will be lowered as the angle is decreased, resulting in a signal-strength loss on all bands of approximately 30 percent at an angle of 90 degrees.

If vertical suspension (c) is employed, much less ground space than for any horizontal form of antenna is necessary. Although somewhat inferior in noise ratio to the horizontal type, the vertical system enjoys an additional advantage of being practically non-directional. Such an installation, however, is usually both difficult and expensive, but can be simplified to a large extent through the use of loading coils.

Figure 2

REPLACEMENT PARTS

Insist on genuine factory-tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
4324	Transformer (Coupling transformer and switch assembly) -For replacement purposes only; item to be replaced must be returned with order.	\$2.50	4327	Insulator (Crossover insulator) -For replacement purposes only; item to be replaced must be returned with order. Transmission line (special lead-in-110 feet long).	$\mathbf{\$ 0}$ $\mathbf{3 . 7 2}$
4325		1.00	4329	Transmission line (special lead-in-220 feet long)	7.44
4326	Wire (2 rolls stranded wire, each $461 / 2$ feet long)	1.16	4330	Transmission line (special lead-in- 330 feet long).	11.16

RCA PAGE 5-213

RCA-VICTOR CO., INC. SERVICE DATA

This instrument is a small portable type mechanical phonograph built into a cabinet resembling a small suitcase. Excellent quality, high output and good mechanical construction are features of this instrument.

LUBRICATION

Premature wear, noisy operation and failure of parts are direct results of failure to clean and lubricate the motor at necessary intervals. The various bearings and gears of the motor should be cleaned and lubricated at least once every six months. In addition to the regular lubrication, all motor parts should be covered with a light film of oil to prevent rusting. Use only Stock No. 7226 Motor Oil and Stock No. 7227 Motor Grease when lubricating this instrument.

Figure A-Lubrication Diagram

Motor. Figure A shows a view of the motor with the top plate cut away. Before lubricating the parts shown in this illustration, a thorough cleaning with carbon tetrachloride (Carbona) or gasoline is necessary. If necessary disassemble the entire motor for such cleaning.

Tone Arm. The joint between the taper tube and the sound chamber must be free to swing easily without play and be sealed with grease. This bearing is accessible when the three mounting screws are removed. Failure to seal this joint will result in poor quality. Unnecessary friction will cause undue record wear.

MOTOR

The motor used is of simple design and will give excellent performance. If kept clean and properly lubricated, little service attention will be required. The following points may prove useful when it is necessary to effect repairs. Before doing any work on the motor the machine must be allowed to run down completely.

Removing Motor from Cabinet. To remove the motor from the cabinet proceed as follows:
(a) Unscrew the spindle cap and remove the turntable.
(b) Remove the five screws that hold the motor board and lid-support to the cabinet and remove the motor-board assembly.
(c) Remove the speed-regulator lever.
(d) Remove the three machine screws that hold the motor in place. The motor may then be removed.

Changing Motor Springs. Should a spring break and require replacement the best method to make a repair is to replace the entire spring barrel. While the cost of the spring barrel is greater than that of the spring alone, the saving in labor will usually justify such replacement. Unless the serviceman is experienced in handling springs of this type, the following directions should be followed carefully:
(a) Disassemble the motor and remove the spring barrel. Remove the winding gear.
(b) Place the gear flat on a piece of metal and file off the ends of the six rivets. Remove the rivets and gear.
(c) Place the palm of the right hand over the closed end of the barrel, making sure that the fingers do not protrude beyond the open side. Firmly hold the barrel, open side downward, over a large can or barrel. With the left hand pull the center turns of the spring out. As soon as the spring starts, pull the left hand clear of the can, holding the spring barrel firmly until the spring is entirely clear.
(d) A new coiled spring may prove extremely dangerous if not properly handled. Read these instructions and work very carefully, especially if not experienced in work of this kind. The new spring is furnished coiled and with a heavy wire clamp holding the spring tightly wound. Pull out about one foot of the spring. Then with the spring flat on a table gently tap the ring until it comes to the edge. Do not push the clamp so close to the edge that it will not hold the spring.

Place the hook end of the spring over the barrel hook. Wind the exposed end into the barrel and then insert the entire spring in the barrel, allowing the clamp to be on the outer edge. Place a block over the entire spring and force the spring into the barrel, thereby releasing the clamp.
(f) Place a tablespoonful of spring lubricant between the spring leaves and in the center of the spring.
(g) Place the gear in position and rivet it with six rivets to the spring barrel. Use a small punch for flattening the ends of the rivets. Place the gear on a flat surface while re-riveting the barrel to it.
(h) Reassemble the motor in the reverse manner of that used to dismantle it.

Winding Shaft Binding. A heavy jar may cause the motor to shift slightly on the motor board and produce binding of the winding shaft against the motor board. Loosening the motor mounting screws and shifting the motor to its proper position (center of slot) will correct this condition.

RCA-VICTOR CO., INC.

REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{aligned} & \text { Stock } \\ & \text { No } \end{aligned}$	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	(tist
2872	Governor ball and spring assembly-Comprising ball, spring mounting screws, and washers-Package of 5...................	\$0.75	7214	Governor assembly - Comprising governor spindle, disc, sleeve, collar, governor balls and springs	\$2.50
2937	Gear-Winding gear and sleeve	. 75	7226	RCA Victor motor grease-1 pint can.	. 40
2947	Leather-Friction leather for brake-Package of 20 \qquad	. 50	7227	RCA Victor motor oil-1 pint can.........	. 50
	Brake-Turntable brake and bracket		7228	RCA Victor spring lubricant-1 pint can....	. 65
4107	Brake	. 55	7719	Board-Motor board with horn-Less hard-	
4108	Lever-Speed regulator lever	. 45		ware and motor-Gr	3.90
4109	Cup-Needle cup	. 22	7720	Arm-Tone arm assembly	3.26
4110	Holder-Needle holder	. 45	7721	Turntable-Green	1.20
4111	Cap-Turntable spindle cap	. 65	7722	Turntable-Blue	1.20
4112	Plate-Speed regulator plate	. 55	7723	Board-Motor board and horn-Less hard-	
4113	Bracket-Sound box rest bracket	. 50		ware and motor-Blue.	3.90
4114	Support-Lid support	. 25	7724	Cabinet-Complete with handle and catches -Blue.	12.40
4115	Screw and washer-Motor board mounting screw and washer-Package of 3 .	. 25	7725	Cabinet-Complete with handle and catches -Green	12.70
4116	Catch-Cabinet catch complete with mounting rivets-Package of 2 . \qquad	. 40	7726	-Green...........................	12.30 .98
4117	Strap-Record pocket strap assembly .	. 16	7727	Pocket-Record pocket-Green	. 98
4118	Screw-Needle holding screw-Package of 10	. 65	7729	Plate-Top plate assembly	3.96
6837	Key-Winding key	. 70	7730	Motor-Motor complete with spindle cap	10.40
6838	Handle-Carrying handle	. 82	8655	Barrel-Spring barrel assembly	2.64
6839	Extension-Winding shaft extension	. 45	8656	Spring-Mainspring.	1.15
6933	Sound box-Complete with needle screw	1.80	8657	Gear-Intermediate gear pinion and shaft	. 70
7210	Spindle-Turntable spindle with pins and ball bearing-Less gear. .	. 50	8658	Shaft - Winding shaft - Comprising shaft, collar, pin, ratchet, and washer-Less winding extension.	. 96
7211	Gear-Turntable spindle gear complete, with set screw \qquad	. 50	10116	Spring-Brake spring-Package of 10......	. 60

RCA PAGE 5-215

PAGE 5-216 RCA
MODEL TMV-97-A
Schematic
Pats RCA-VICTOR CO., INC.

Parts List

REPLACEMENT PARTS
Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

$\begin{gathered} \text { Stock } \\ \text { Sor } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\text { Price }}{\text { List }}$	$\begin{aligned} & \hline \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	(List
2039	Switch-Single pole, single throw toggle switch.	\$0.72	3979	Transformer-A. F. oscillation transformer (T1).	\$1.94
2744	Capacitor-4.5 mmfd. capacitor (C1)Package of 5 .	1.60	3980	Condenser-Tuning condenser (C3).	1.40
2932	Capacitor-5,000 mmfd. capacitor (C2). .	$\begin{array}{r}\text { r } \\ \hline 0\end{array}$	3981	Capacitor-300 mmfd. capacitor (C5)	. 30
3110	Resistor-25,000 ohm-1/4 watt carbon		3982	Handle-Carrying handle	. 60
	sistor (R3)-Package of 5.	1.00	3983	Switch-Range switch (S1,	3.94
3114	Resistor- 50,000 ohm- $1 / 4$ watt carbon resistor (R2)-Package of 5 .	1.00	3984	Knob-Moulded knob.	. 30
3640	Capacitor -.05 mfd . capacitor (C6).	. 25	3985	Scale-Range switch dial scale. 66
3765	Capacitor-. 025 mfd . capacitor (C7).	. 34	3986	Scale-Attenuator potentiometer dial scale. .	. 66
3794	Capacitor-100 mmfd. capacitor (C4)......	.30 1.38	3987	Potentiometer - Attenuator potentiometer (R1).	1.70
3975 3976	Coil-R. F. oscillation coil (L1, L2, L3, L4).	1.38 1.38			1.7 .32
3976	Coil-R. F. oscillation coil (L5, L6, L7, L8). Coil-R. F. oscillation coil (L9, L10, L11,	1.38	-3988	Post-Antenna-Ground binding po Dial-Tuning condenser vernier dial.	4.15
	$\begin{gathered} \mathrm{ol}-\mathrm{K} \end{gathered} \text {. }$	1.28	3990	Clip-Spring steel clip. 25
3978	Coil-R. F. oscillation coil (L13, L14)	1.28	63.00	Socket-Radiotron socke	. 35

RCA PAGE 5-2,17

Figure A-Schematic Circuit

Figure B-Amplifier Wiring

PAGE 5－218 RCA
MODEL CRD－9
Assembly Wiring
Parts List

RCA－VICTOR CO．，INC．

 5．When throrgh operating，set the Power Switch to the

DATA

7 3^{8}		\％¢
兄		
${ }_{\text {g }}^{\text {g }}$		
部憵		－
兑		

Figure $C-$ Assembly Wiring


```
INODHL PT-16~Al
    PT-16-A2
    RCA-VICTOR CO., INC.
Parts List
```


REPLACEMENT PARTS

Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized deàlers

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\underset{\substack{\text { Ligt } \\ \text { Price }}}{\text { cent }}$	Stock	DESCRIPTION	(1)List Price
	$\begin{aligned} & \text { TURNTABLE-MODEL PT-16A1 AND } \\ & \text { PT-16A2 } \\ & \text { TURNTABLE ASSEMBLIES } \end{aligned}$		3599	MOTOR ASSEMBLIES Screw-Motor mounting scréw and lock-washer-Package of 3 sets. \qquad	\$.30
3261	Bushing-Rubber bushing for turntable spindle-Package of 5.....................	\$0.40	8989 8990	Motor-105-125 volt-60 cycle motor. Motor-105-125 volt-50 cycle motor.	18.52 18.52
3338	Ring-Clamp ring assembly	. 50			
3340	Washer-Thrust washer-Packag	. 56	8993	Rotor-Rotor and shaft for motor 105-125 volt- $\mathbf{6 0}$ cycle.	7.00
3341	Pin-Groov pin-Package of 2	. 56	8994	Spindle-Spindle and gear for motor 105-	
3342	Spring-Latch spring on clamping ringPackage of 2 .	. 56		125 volt- $\mathbf{6 0}$ cycle.	4.75
3343	Sleeve-Sleeve complete with ball ra	2.86	8995	Rotor-Rotor and shaft for motor 105-125 volt- $\mathbf{5 0}$ cycle.	7.00
3344	Cover-Grease retainer cover-Package of 2	. 70	8996	Spindle-Spindle	
3346	Bushing-Speed shifter lever bushing Package of 4 .	. 66		volt-50 cycle	4.75
3347	Spring-Speed shifter lever spring-Package of 2	. 30		MOTOR BOARD ASSEMBLIES	
3838	Lever-Speed	. 70	2779		
7084	Cover-Suede cover for turnta	. 40		of 10.	. 50
8948	Turntable-Turntable comp	5.50	2947	Shoe-Leather brake shoe-Package of 20.	. 50
			3322	Switch-Automatic brake switc	. 75
	ASSEMBLIES		4098	Cord-Power cord and plug	1.00
3385	Coil-Pickup coil	. 50	4099	Cable-Shielded signal cable and plug	1.25
3386	Cover-Pickup cove	. 56	4100	Volume control-Turntable volume control	2.50
3387	Screw assembly--Pickup mounting screw, nut and washer. \qquad	. 40	4101	Switch-Single pole-double throw-toggle switch.	. 75
3388	Screw-Pickup needle holding	. 60	6247	Resistor-850 ohm-1/4 watt-Carbon type	
3389	Rod-Automatic brake trip rod.	. 40		resistor-Package of 5 .	1.00
3390	Escutcheon-Pickup arm escutcheon	. 46	6288	Knob-Volume control knob-Package of 5.	1.00
3417	Armature-Pickup armature	. 72	7387	Reactor-Tone compensating	. 85
3418	Cushions-Pickup rubber cushions.	1.10			
3419	Screw-Pickup cover mounting screw.	. 40	7691	Support-Pickup support	4.28
3516	Damper-Damper and bushing for pickup arm base \qquad	. 14	10174	Springs-Automatic brake springs--Package of 2 sets.	. 50
6335	Pickup-Pickup	4.00	10184	Plate-Automatic brake latch trip plate	
6346	Back-Pickup housing back	. 45		Package of 5	. 40
7593	Arm-Pickup arm less pickup	6.00	10241	Box-Needle box with lid-Package of 2 .	. 60

RCA-VICTOR CO., INC.

MODETS PT-16-A1,PT-16-A2
 PT-17-A1, PT-17-A2
 Pickup Data

SERVICE DATA

Voltage Rating . 105-125 Volts A. C.
Frequency Rating . 50 and 60 Cycles
Power Consumption. $\left\{\begin{aligned} 30 \\ \text { Watts Single Turntable }\end{aligned}\right.$ $\{60$ Watts Double Turntable

WIRING

The schematic and assembly wiring diagrams are shown in Figure C.

MAGNETIC PICKUP

Replacing Magnet Coil, Pivot Rubbers, Armature or Damping Block

In order to replace a defective coil or hardened pivot rubbers, it is necessary to proceed as follows:
(a) Remove the pickup cover by removing the center holding screw and needle screw.
(b) Remove the pickup magnet and the magnet clamp by pulling them forward.

Figure A
(c) Unsolder the coil leads and remove the mechanism assembly from the back plate by releasing the two mounting screws and the damping block clamping screw.
(d) Remove screws \mathbf{A} and B, Figure A, and then remove the mechanism assembly from the pole pieces.
(c) The coil or the front pivot rubber may now be removed and replaced. If it is desired to replace the rear pivot rubber, then the end of the armature soldered to the mechanism support must be unsoldered and the damping block removed. The rear pivot rubber now may be replaced. After putting the pivot rubbers in place a new damping block should be fastened to the armature as outlined in instructions on replacing the damping block.
(f) The mechanism should now be reassembled except for the magnet, which must be magnetized. After being magnetized the mechanism-with the pole pieces upward, should be placed so that the magnet may be slid from the magnetizer onto the pole pieces without breaking physical contact. After placing the pole pieces on the magnet, the entire assembly should be remagnetized thoroughly, being careful not to change the polarity obtained by the initial magnetization.
(g) After assembling to the mechanism, the entire assembly should be fastened to the back plate by means of the screws provided, making sure the damping block is securely clamped. At the same time, the metal dust cover must be placed in position.
(h) After remagnetizing, it is necessary to correctly center thé armature. This may be done quite accurately by feeling its play after the needle is inserted. A little practice will quickly show which way an adjustment is necessary to have the armature centered properly. The adjustment is made by loosening screws A and B, Figure A, and sliding the mechanism slightly in relation to the pole pieces.
(i) The cover now may be replaced over the entire assembly, and the pickup returned to the tone arm.
In reassembling, it may be desirable to check the armature air gap by means of a small Feeler Gauge. This air gap should be nine mils on each side of the armature. However, a little practice with the needle in place will quickly disclose whether or not the armature is centered.

Replacing the Damping Block

If it is desired to replace the damping block, it may be done in the following manner:
(a) Disassemble the pickup as described under the preceding section.
(b) Remove the armature entirely by unsoldering it at its joint with the mechanism support.
(c) Remove the damping block from the armature and clean the bushing for holding the damping block with emery paper.
(d) Insert the armature through the new block so that it occupies the same position as that of the old. Also ascertain that the block is in correct vertical alignment with the armature. It will be noted that the hole in the damping block is somewhat smaller than the diameter of the armature. This is done so that a snug fit will be obtained.

Figure B
(e) After properly locating the damping block, a soldering iron should be applied to the armature so that the block will melt slightly at its point of contact with the armature. A special tip, constructed as shown in Figure B, will prove desirable for fusing the block in place. The iron should be applied long enough to slightly melt the block and cause a small bulge on both sides, but should not be applied long enough to cause any bubbling. The pickup should then be assembled as described in the preceding section.

Only rosin core solder should be used for soldering the coil leads in the pickup. Also rosin core solder should be satisfactory for resoldering the end of the spring in the hole in the mechanism, since both these parts have been previously tinned. In case the parts are not well tinned, it will be necessary to scrape the end of the spring and the hole in the mechanism until bright. These parts may now be tinned by using as a flux a water solution of zinc chloride (commonly called acid flux). After tinning, dip the parts in water to wash off the acid flux and thereby prevent serious subsequent corrosion. After making sure that the pivot rubbers and damping block are properly in place, as described under (e) above, the armature may now be soldered in place in the mechanism by using rosin core solder, since the parts are now tinned. Care must be exercised to get the needle hole perfectly square with respect to the mechanism, or otherwise it will be difficult if not impossible to center the armature in the airgap as explained under (h) above.

PAGE 5-222 RCA
MODEU PT-17mA1
PT-17~A2
Schematic
Parts List

VOLTAGE AMPLIFIER PB23M1

REPLACEMENT OF INPUT TRANSFORMER

Should it become necessary to replace the input transformer in the first stage of the voltage amplifier, care must be used to replace it in such a position that maximum shielding is obtained. The position of the transformer with respect to the amplifier panel which gives minimum hum is the correct position for maximum shielding.

FIDELITY CHARACTERISTICS

In this voltage amplifier the low-frequency booster circuit is located in the plate circuit of the UY-224A, and the voice frequency filter in the cathode circuit of the RCA-56. The voltage amplifier is connected at the factory to operate with 50 -inch baffles. The response at 60 cycles is approximately 90% of the 1000 -cycle response and at 100 cycles the response is approximately 60 per cent. If it is desired to shift the lowfrequency peak either to a lower frequency or higher frequency, or to change the value of the frequency response, proceed as follows:
(a) To shift the peak to 50 cycles, remove the .02 mfd capacitor C-41 from the low-frequency booster circuit by disconnecting the jumper wire between terminals No. 16 and No. 18 on the capacitor pack. Place the .03 mfd capacitor $\mathrm{C}-40$ in the circuit by connecting a jumper between terminals No. 16 and No. 17.
(b) To shift the peak to 40 cycles, connect the capacitors C-40 (. 03 mfd) and C-41 (. 02 mfd) in parallel by connecting jumpers between terminals No. 16, No. 17 and No. 18 .
(c) If 27 -inch baffles or doublet baffles are used on the stage, it will be necessary to shift the low-frequency
peak to 80 cycles. To do this, disconnect the jumper wires between terminals No. 16, No. 17 and No. 18 on the capacitor pack. Connect a .02 mfd capacitor (Catalog No. 3639) externally between terminals No. 16 and No. 17 on the capacitor pack. This will connect the .02 mfd capacitor in series with the .03 mfd capacitor C-40 to give .012 mfd across L-30.
(d) To increase the value of response at any of the peak values used in the foregoing, remove the $100,000 \mathrm{ohm}$ resistor R-81 connected across reactor L-30, between terminals on the tube shelf connected to terminals No. 7 and No. 16 on the capacitor pack. If a still further increase, to a maximum of approximately 400 per cent, is desired, shunt the plate resistor R-18 (125,000 ohm) with the 100,000 ohm resistor.
(e) To increase the response at $\mathbf{1 0 0}$ cycles, decrease the value of the shunt resistor R-80, and if a decrease in response is desired increase the value of the shunt resistor R-80. If male voices sound boomy it will be necessary to increase the value of the shunt resistor.

RADIOTRON SOCKET VOLTAGES

120-Volt A. C. Line

Radio tron	Control Grid Volts	Screen Grid Volte	Plato Volts	Plate Current M. A.	Filament or Heater Volte
UY-224A	1.3	45	185	.7	2.5
RCA-56	6.0	-	130	2.3	2.5
UX-245	48.0	-	250	30.0	2.5
UX-245	48.0	-	250	30.0	2.5

REPLACEMENT PARTS

Stock No.	DESCRIPTION
20058	Screws-One set of two special thumb-screws for securing perforated panel
20096	Screws-One set of two thumb-screws for fastening input shiclds.
21630	Switch-Single pole, double throw toggle-type switchmounted on tube shelf.
21632	Cap-First stage Radiotron control grid cap....
	Connector- 2 -contact mal
22186 22195	Resistor- $\mathbf{7 6 0}$ ohm porcelain-type resistor....
22195 22868	Resistor- 500,000 ohm carbon type resistor- $1 / 2$ Resistor- $\mathbf{8 0 , 0 0 0}$ ohm carbon type resistor- $1 / 2$ wa
22932	Socket-UX type socket complete with two mounting screws, two lockwashers and two nuts.
23000	Capacitor- 550 mmfd . fixed capacitor.
23001	Resistor- 90,000 ohm carbon type resisto
23002	Capacitor- 950 mmfd . fixed capacito
23003	Resistor- $\mathbf{3 0 , 0 0 0}$ ohm carbon type resistor- $1 / 2$
2300	Resistor-40,000 ohm carbon type resistor-1/2 watt
23005	Resistor- $\mathbf{2 0 , 0 0 0}$ ohm carbon type resistor-
23006	Resistor-100,000 ohm carbon type resistor-1/2
23007	Resistor-120,000 ohm carbon type resistor- $1 / 2$ wat
23009	Resistor- 1,300 ohm carbon type resistor- $1 / 2$ watt .
23014	Potentiometer- $\mathbf{5 0}$ ohm hum control potentiometer complete with mounting nut.
23015	
23016	Capacitor- 05 mfd . fixed capacitor (CX 45)
23017	Socket-UY type socket complete with insulator, two mounting ecrews, two lockwashers, and two nuts.
23018	Knob-Volume control potentiometer push-on-type k
23019	Cable-Remote volume control contact swit
23118	Capacitor- 2 mfd . fixed capacitor (CX 75)
23122	Resistor- $2,000 \mathrm{ohm}$, $1 / 4$ watt, carbon resistor
23123	Resistor-1,300 ohm, $1 / 4$ watt, carbon resistor
25065	Reactor-Filter reactor in metal container complete with four mounting screws, four lockwashers, and four nuts (RT 77)
25376	Transformer-Output transformer in metal container complete with four mounting screws, four lockwashers, and four nuts (RT 165)
25377	Transformer-Interstage transformer in metal container complete with four mounting screws, four lock washers, and four nuts (RT 166).
25381	Cushion-One set of two sponge rubber cushions for input transformer $\left(1 / 4^{\prime \prime} \times 1^{\prime \prime} \times 338^{\prime \prime}\right)$.
25382	Cushion-One set of three rubber cushions for input traneformers (located in metal container)

List Price	Stock No.	DESCRIPTION	List Price
$\begin{array}{r} \mathbf{\$ 0 . 6 0} \\ 1.00 \end{array}$	25383	Board-Torminal board engraved "1, 2, 3, 4, 5," complete with five terminals, two mounting screws, two lockwashers, two washers, and two spacers (located under power transformer)	4.50
	25553	Resistor-200 ohm porcelain type resistor.	1.40
2.00 .75	25587	Transformer-Voltage amplifier input transformer-less container (RT 188)	12.95
.26 .90 .50 .50	27328	Capacitor pack-Capacitor pack comprising three 2 mfd. condensers and one 4 mfd . condenser in metal container complete with four mounting serews, four lockwashers, and four nuts (CP 31).	24.00
.50 .60	27459	Transformer-Power transformer ($50-60$ cycle) complete with four mounting screws, four lockwashers, and four nuts (RT 168)	50.00
1.20 .50 1.20	27514	Board-Terminal board complete with nine terminals, two mounting screws, two lockwashers, two washere, and two spacers (located under capacitor pack)	50.00 3.95
.50 .50 50	27515	Board-Terminal board complete with six terminals, two mounting screws, two lockwashers, two washers, and two	3.95 3.65
.50 .50 .50 .50	27576	spacers. Capacitor pack-Comprising four reactors, two 10 mfd . electrolytic condensers, one 2 mfd . capacitor, five $1 / 2 \mathrm{mfd}$., one .45 mfd. , one .03 mfd ., and one .02 mfd . capacitors in metal container complete with four mounting screws, four lockwashers, and four nuts.	3.65 45.00
2.50		VOLUME CONTROL POTENTIOMETER	
2.00	22869	Resistor-120,000 ohm, $1 / 4$ watt carbon type 50
	23123	Resistor-1,300 ohm, $1 / 4$ watt carbon type 20
. 1.10	23124	Resistor-700 ohm, $1 / 4 /$ watt, carbon type. .	. 20
3.00	23125		. 20
1.75	23127	Resistor-2,200 ohm, $1 / 4$ watt, carbon type. 20
. 20	23128	Resistor-2,900 ohm, $1 / 4$ watt, carbon type. 20
.20	23129 23130	Resistor-4,000 ohm, $1 / 4$ watt, carbon type. 20
	23130 23131	Resistor-5,300 ohm, $1 / 4 / 4$ watt, carbon type. 20
25.00	23132	Resistor-7,000 $\mathrm{ohm}, 1 / 4 \mathrm{watt}$, carbon type. Resistor- $9,400 \mathrm{ohm}$, $1 / 4$ watt, carbon typ	. 20
	23133	Resistor $-13,000 \mathrm{ohm}$, 1/4 watt, carbon typ	.20
	23134	Resistor-17,000 ohm, $1 / 4$ watt, carbon type.... 20
35.00	23135	Resistor-22,000 ohm, 1/4 watt, carbon type 20
	23136	Resistor-30,000 ohm, $1 / 4$ watt, carbon type. 20
	23137	Resistor-40,000 ohm, 1/4 watt, carbon type. 20
25.00	23138	Resistor-53,000 ohm, $1 / 4$ watt, carbon type. 20
	23139	Resistor-70,000 ohm, $1 / 4$ watt, carbon type	. 20
2.25	23140	Resistor-94,000 ohm, 1/4 watt, carbon type	.20
	23141	Resistor-2,100 ohm, $3 / 4$ watt, carbon type.	- 20
5.00	27534	Potentiometer-Volume control potentiometer complete...	16.25

Supplement No. 3 to RCA Victor Photophone Theatre Reproducing Equipment Type PG-59

(High Fidelity)

(1) PA83C1 AMPLIFIER RACK

The PA83C1 Amplifier rack is similar electrically to the PA83B2. The PA83C1 has heavier front panels than previous models of this amplifier type.
(2) PA83C3 AMPLIFIER RACK-PB82C1 AMPLIFIER UNIT

The frequency response characteristic is a modification of that obtained on previous models. The amplifier is connected at the factory so that more pronounced low frequency response is obtained with the 27 -inch baffles. The response is such that no loudspeaker filter is required in the loudspeaker voice coil circuit.

A fuse is connected in series with capacitor C-11 in the PK22 exciter lamp supply unit as a protection to the rectox rectifier and transformer.

Figure 1 shows the rack wiring and schematic diagram of the PA83C3 rack.

(3) FIDELITY CHARACTERISTICS-PB82C1

For 27-inch Baffle

The amplifier unit is connected at the factory so that the response is approximately 160 per cent at 80 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles and then drops off to approximately 40 per cent at 10,000 cycles.

To modify the frequency response characteristic, proceed as follows: See Figure 2.
(a) To reduce the frequency response between 100 cycles and 300 cycles, remove the short circuit which is connected across C-28 and R-40.
(b) Should the operation performed in (a) reduce the extreme low frequency response too much, remove the resistors $R-32$ and $R 33$ (2 megohms each).
(c) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C-27 which is shunted across C-3. Open up by-pass circuit on R-9.
(d) To reduce extreme low frequency response disconnect the resistors $R-32$ and $R-33$ (2 megohms each) and connect $R-41$ and $R-42$ ($1 / 2$ megohm each) in place of those removed.

For 50-inch Baffle

(a) If 50 -inch Baffles are used with the PG-59 equipment, disconnect the resistors R-32 and R-33 (2 megohms each) and also replace C-25 and C-26 (. 04 mfd each) by C-19 and C-20 (. 07 mfd each). The frequency response characteristic will then be approximately 160 per cent at 60 cycles, 64 per cent between 200 cycles and 300 cycles, 125 per cent between 2000 cycles and 4000 cycles, and 40 per cent at 10,000 cycles.
(b) To reduce the frequency response between 100 cycles and 300 cycles, remove the short circuit which is connected across C-28 and R-40.
(c) To increase the frequency response between 100 cycles and 300 cycles, remove the 0.1 mfd capacitor C-27 which parallels C-3. Open up the by-pass circuit on R-9.
(d) To reduce the extreme low frequency response, connect resistors R-32 and R-33 (2 megohms each) across the reactors in the grid circuit of the Radiotrons RCA-2A3.

(4) LOUDSPEAKER-PL52C2

The Model PL52C2 Loudspeaker mechanism has a new type of terminal board for the voice coil circuit as shown in Figure 3. The design of these terminals is such that they are more easily accessible for installation and service work.

RCA PAGE 5-229
MODEL PG-59
RCA-VICTOR CO., INC.

Figure 1-Pack Assembly Wiring (PA83C3)

RCA PAGE 5-231
RCA-VICTOR CO., INC.
Schematic
Voltage
Parts List

PRE-AMPLIFIER PA103A1

PRE-AMPLIFIER
For program pickup, or where the velocity microphone is used for any purpose except close talking, a pre-amplifier is required for each microphone. The overall gain of this preamplifier is 58 DB. The Radiotron voltages for this preamplifier are obtained from a PK24B1 power supply unit.

The pre-amplifier is designed to work from a 250 -ohm source and into a 250 -ohm line.

RADIOTRON SOCKET VOLTAGES
120 Volt, A. C. Line

Radiotron	Control Grid Volts	Screen Grid Volts	Plate Volts	Plate Current M. A.	Heater Volts
RCA-57	1.1	40	110	.63	2.5
RCA-59	22.5		245	25.5	2.5

REPLACEMENT PARTS

Stock No.	DESCRIPTION	$\begin{gathered} \text { List } \\ \text { Price } \end{gathered}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	DESCRIPTION	(${ }_{\text {List }}$
	MICROPHONE PRE-AMPLIFIER Model PA103AI		23178	Resistor- $\mathbf{1 1 0 , 0 0 0}$ ohm, $1 / 4$ watt carbon resistor (R4).	. 20
2747	Cap-Control grid cap	\$0.10	25532	Socket-6-contact Radiotron socket	. 40
3110	Resistor-25,000 ohm, 1/4 watt carbon re-		25626	Socket-7-contact Radiotron socket.	. 45
	sistor (R2)........................	. 20	25840	Board-Input terminal board complete with	
3634 3713	Capacitor-160 mmfd. fixed capacitor (C7) Capacitor -.05 mfd fixed capacitor (C6)...	.34 .32	25841	three terminals...................	1.62
3744	Resistor $-250,000$ ohm, $1 / 4$ watt carbon resistor (R6).	. 20	2584		2.00
3853		. 20	25842 27586	complete with three terminals.	1.56
6241	Resistor- 140,000 ohm, $1 / 4$ watt carbon resistor (R3).	. 20	27586	Transformer-Input transformer complete with three rubber cushions (RT-231).	9.34
23094	Latch-Male section of shield cover latch...	. 35	27587	Transformer-Output transformer (RT-232).	30.00
23176 23177	Resistor- 70,000 ohm, $1 / 4$ watt carbon resistor (R5) Resistor- 900 ohm, 1 watt carbon resistor (R7).	$\begin{array}{r} .20 \\ \$ 0.22 \end{array}$	27588	Capacitor pack-Comprising two 10 mfd ., one 8 mfd ., two . 5 mfd . capacitors, and one filter reactor in container ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, C4, C5, L1).	11.76

MODEL PA-103-A1
Panel Wiring RCA-VICTOR CO., INC.

RCA-VICTOR CO., INC.
MODEL PG-62-C Installation Data

PAGE 5-234 REA

Operating Notes RCA-VICTOR CO., INC.
2. The microphone shoold be located adjacent to the person talking and to one side of the loud.
speaker. It should preferably not be toeated either directly in front or at the rear of the loudspeaker
as acoustic feedback will result. Turning the microphone, with both volume controls at maximum, as acoustic feedback will result. Turning the microphone, with both volume controls at maximum,
until the position where the least sound is produced in the loudspeakers due to feedback, will allow best operation.

NOTE: The Universal Amplifier Assembly is equipped with a microphone selector switch
located on one end of the voltage amplifier. Set this switch in the "Velocity" position when a Velocity, Type on one end of the voltage amplifier. Set this switch in the velocity" position when a velocin"
position.

Set the Microphone Volume Control, located on the voltage amplifier, at its mid-position. Talk
into the microphone at a distance of ten to twenty inches and gradually rotate the Amplifier Volume

3. If voice only is to be picked up by the microphone, set the speech clarifying switch in the
3.

PART III-SPECIAL OPERATION
 PAKT IL-SFLGAL OREAKI

In some instances, it may be desirable or necessary to use two velocity microphones or more
than one power amplifier operated from one voltage amplifier. The following sections cover these
special uses of the equipment.

(1) TWO MICROPHONE OPERATION

In general, the use of more than one velocity microphone with either the PG-62 Equipment or Universal Amplifier is not recommended. This would presume a microphone mixer which is undesir-
able as the overall gain is insufficient to overcome the attenuation in the mixer. If it is necessary to use two microphones (not more than two) and keep both in the circuit at the
same time, using no fading or mixing arrangement. other than the volume controls on the voltage same time, using no fading or mixing arrangement, other than the volume controls on the voltage
amplifier, the connections and changes in the amplifier wiring are as follows:

PG-62 Equipment
(a) Disconnect and tape the two green leads between the microphone receptacle on the voltage (b) Connect the two yellow transformer leads (500 ohms) to the microphone receptacle. See
(c) Connect the two microphones in series to the mierophone plug as shown in Figure 5.
(a) Disconnect and tape the two green leads between the microphone selector switch on the
(b) Connect the two yellow transformer leads (500 ohms) to the microphone selector switch at
the points from which the two green leads were removed. See Figure 4.
(c) Connect the two microphones in series to the microphone plug as shown in Figure 5.
pleasing reproduction.
-
(2) MULTIPLE OPERATION OF POWER AMPLIFIERS The Type PB-88 Voltage Amplifier may be used to operate as many as three Type PB-89 Power
Amplifiers. The requirements for such operation are as follows:
(a) In each power amplifier, remove the resistor R-18 (50,000 ohms) and replace with a 100,000

Figure 5-Two microphones wired to one plug

(b) Conhect the power amplifiers to the voltage amplifier as shown in Figure 6. (c) If the Model PBB9A1 power amplifiers are used, connect a set of loudspeakers to each power
amplifier as shown in Figure 8 . If the Model PB8BB1, power amplifiers are used, connect a set of
loudspeakers to each power amplifier as shown in Figure 3 .
(d) Each power amplifier must be connected to a source of A. C. 110 volt, 60 cycle power. PART IV—SERVICE DATA ON AMPLIFIER EQUIPMENT
(1) ELECTRICAL DESCRIPTION OF CIRCUIT

The velocity microphone is coupled to the first stage of the voltage amplifier (RCA-57) by means former and the input transformer is of 250 ohms impedance. A potentiometer is provided in the grid
circuit of the RCA-57 to vary the input

The RCA-57 is resistance coupled to the RCA-56 in the second stage. Another potentiometer is provided in the grid circuit of this RCA- 56 to control the output volume of the entire equipment.
The RCA- 56 is in turn resistance coupled to the RCA- 56 in the third stage of the voltage amplifier. The RCA-56 is in turn resistance coupled to the RCA-56 in the third stage of the voltage anplififir.
The last stage of the voltage amplifir is coupled to the single RCA-59 which is the driver for two
Radiotrons RCA-59 in the Class " "B" output stage. The output stage supplies power to two loudspeakers through a step-down transformer. This transformer has an output impedance of 15 ohms with a tap at $7 / 2$ ohms.

RCA-VICTOR CO., INC.

RADIOTRON SOCKET VOLTAGES
 115 VOLT A. C. LINE-NO INPUT SIGNAL VOLTAGE

Radiotron ${ }^{\text {No. }}$	Control Grid to Cathode or Filament Volts	Screen Grid to Cathode or Filament Volts	Plate to Cathode or Filament Yolts	Plate Current M. A.	Filament or Heater Volts
1. RCA-57	1.0	80	145	. 25	2.5
2. RCA-56	3.5	-	120	1.2	2.5
3. RCA-56	4.0	--	165	1.6	2.5
4. RCA-59	2.8	-	242	23.0	2.5
5. RCA-59	0	-	390	13.0	2.5
6. RCA-59	0	-	390	13.0	2.5

CAUTION: Whenever the Radiotron RCA-83 rectifier is removed from or installed in its socket, the A. C. power control switch should be in the "off" position.

REPLACEMENT PARTS
Insist on genuine factory tested parts, which are readily identified and may be purchased from authorized dealers

Stock No.	DESCRIPTION	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Stock No.	DESCRIPTION	List Price
	PORTABLE AMPLIFIER ASSEMBLY		23115	Resistor- $\mathbf{6 0 , 0 0 0}$ ohms-Carbon type- $1 / 2$ watt	
	Power Amplifier		23116	Resistor-4,000 ohms-Carbon type- $1 / 2$ wa	. 50
	Models PB89A1 and PB89B1		23117	Resistor-100 obms-Carbon type-1/4 watt 50
2725		\$0.40	25531	Socket-Five-contact Radiotron socket	35
21581		. 50	25615	Transformer-Core and coil for input transformer	10.60
21623		. 50	25617	Capacitor- 0.05 mfd . capacitor.	1.25
22451		. 50	25618	Capacitor--0.005 mfd. capacitor.	1.40
22853		. 50	25619	Rheostat-100,000 ohms--Tone control rheostat.	3.70
23113	Resistor-1,200 ohms-Carbo	. 65	25620	Switch-Triple pole, double throw-Key type switch.	2.60
23119	Resistor-75 ohms-Carbon type-1 wa	. 50	25621	Receptacle-Three-contact female receptacle	3.60
23120	Resistor- $\mathbf{5 , 0 0 0}$ ohms porcelain resistor	2.00	25622	Jack-Phonograph input jack.	1.05
25536	Socket---Four-contact Radiotron sock	. 35	25623	Knob-Moulded knob and pointe	. 30
25626	Socket-Seven-contact Radiotron soc	. 45	25624	Cushion-One set of four rubher cushions for input transformer.	00
25627	Capacitor-4.0 mfd. filter capacitor	1.00	25625	Cable-Six-conductor braid covered interconnecting cable.	5.80
25628	Board-Terminal board complete with five termi	1.50	25778	Potentiometer-75,000 ohms-Microphone volume control	
25629	Capacitor- 0.003 mfd . capacitor	1.30		- potentiometer	1.35
25630	Capacitor pack-Comprising two 10.0 mfd . capacitors in container	9.30	25779	Potentiometer- $\mathbf{1 5 0 , 0 0 0}$ ohms-Amplifier volume control potentiometer	1.75
25631	Reactor-Filter reactor (for PB89A1)	6.15	25827	Socket-Six-contact Radiotron socket.	. 60
25633	Cord-Two-conductor power cord and plug	6.70	25828	Cushion-One set of two rubber cushions for socket	. 90
25634	Reactor-Double filter reactor (RT-200)	8.00	27529	Capacitor pack-Comprising four 4.0 mfd . capacitors in container.	8.35
27526	Transformer-Power transformer (RT-189)	12.30			
27527	Transformer-Audio transformer pack-Interstage and output transformers (RT-190)	15.30		VELOCITY MICROPHONE MODEL PB90A1	
	Voltage Amp		25782	Guard-Front and rear guard for microphone	11:00
	Models PB88A3 and PB88A4		25783	Transformer-Microphone transformer	18.00
3294	Resistor-15 ohms-Flexible type resistor (for PB88A4).	. 20	25784	Cable- $\mathbf{3 0}$ foot, two-conductor, rubber covered, shielded cable.	7.30
3471	Capacitor-0.025 mfd. capacitor	. 32	25785	Plug-Two-conductor male connector p	1.75
3555	Capacitor-0.1 mfd. capacit	. 36			
7487	Shield-Metal shield for Radio	. 25		LOUDSPEAKER-MODEL PL71A1	
7488	Cap-Radiotron shield cap for RCA-57 Radi	. 20	6184	Board-Terminal board complete with three terminals	. 10
21581	Resistor-50,000 ohms-Carbon type-1 wa	. 50	8969	Cone-Loudspeaker cone with voice coil.	1.27
21632	Cap-Control grid cap	:75	9421	Coil-Field coil-Comprising coil, cone housing and magnet.	4.32
22197	Resistor-2,500 ohms-Carbon type-1 watt.	. 50	25780	Cable-30 foot, four-conductor, rubher covered cable-	
22621	Resistor-200,000 ohms-Carbon type-1/2	. 50		Complete with four-contact plug.	7.30
22859	Switch-Single pole, single throw-Toggle switch.	. 65		LOUDSPEAKER-MODEL PL71B1	
23004	Resistor-40,000 ohms-Carbon type- $1 / 2$ watt.	. 50	6184	Board-Terminal board complete with three terminals. 10
23006	Resistor-100,000 ohms-Carbon type-1/2 watt	. 50	8969	Cone-Loudspeaker cone with voice coil	1.27
23007	Resistor-120,000 ohms-Carbon type- $1 / 2$ watt	. 50	9416	Coil-Field coil comprising coil, cone housing and maguet.	4.00
23008	Resistor-3,000 ohms-Carbon type- $1 / 2$ wat	. 50	25781	Cable-50 foot, three-conductor, rubber covered, cable-	
23011	Resistor- 50,000 ohms-Carbon type- $1 / 2$ wat	. 50		Complete with three-contact plug.	11.00

PAGE 5-238 RCA MODEL PG-62-C Chassis Wiring

RCA-VICTOR CO., INC.

Figure 8-Wiring Diagram-PG-62 Equipment

PAGE 5-240 RCA

Figure 10-Wiring Diagram—Universal Amplifier

PAGE 5-242 RCA
MODEL PG-65
Rack Assembly Wiring

Figure 1—Rack Assembly Wiring (PA96C1)

PAGE 5-244 RCA
Sealed Vibrator Test Data

Typical Bench Set-Up for Testing Vibrators


```
MODEL 951
Alignment
Voltage
```

These service notes pertain to two receivers which are identical with the exception that one model had Duola connections incorporated in it. These connections are shown in the schematic drawing by the dotted lines. Where Duola provisions are provided connections maried " $X^{\prime \prime}$ on the diagram are open. Receivers with Duola connections may be identified by the Duola switch and two tip jacks located on the back of the chassis. Receivers which do not have the Duola connections do not have the switch (Part 49566) or the tip jacks (Part \#9565) 。

ALIGMMENT: Only when an antenna, oscillator or IF transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.
INTERMEDIATE TRANSFORMER ALIGMMENT:

1. Connect the high side of the oscillator output to the control grid of the 6A7 tube leaving the grid clip disconnected. CONNECT A 50,000 OHM RESISTOR FROM THE CONTROL GRID OF THE GA7 TUBE TO THE ROTOR FRAME OF THE VARIABLE CONDENSER. The ground side of the test oscillator should be comected to the gang condenser frame and must not be otherwise grounded.
2. Set the oscillator at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screv located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer trimmer shields.
4. The second IF transformer should next be adjusted in the same manner as the first intermediate transformer.

TO ALIGN THE VARIABLE CONDENSEP:

1. Place the band selector switch for operation on the 1500-540 kilocycle band (right hand position) and-tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Next, adjust the trimmer screws of the oscillator and antenna section of the variable condenser to obtain maximum output reading. These trimmers are mounted on the top of thie variable condenser.
2. Tune the receiver and set the oscillator frequency to approximately 600 kilocycles. Adjust the 600 kilocycle padding condenser which is located on the reas of and accessiole through the small hole in the chassis for maximum output. Be sure to rock the variable condenser slightly to the right and left so as to obtain the position of greatest output.

HOTE: There is no short vave adjustmont. After alignment has been properly made in accordance with the instructions given, the dial calibration will be correct and the receiver will properly track on short wave band.

TYPE OF	VOLTAGE TABLE							
	POSITION OF TUBE	FILAMENT VOLTS	PLATE VOLTS	$\begin{aligned} & \text { SCREFRI } \\ & \text { VOLTS } \end{aligned}$	CATHODE VOLTS	$\begin{aligned} & \text { OSC. } \\ & \text { GRID } \end{aligned}$ $\text { NO. } 1$	ANODE GRID NO. 2	SCREEN GRID NO. 3 \& 5
647	Oscillator \& Modulator	5.2	128		2.00	1.5	125	76
78	Intermediate Frequency	5.1	128	128	2.25		125	76
75	2nd Detector Diode \& AVC	5.0	82.5*		2.00			
43	Output.	25	115	128	20\%			
2525	Rectifier	25						

\# Triode plate voltage. Comparative only is not the true voltage applied. The voltheter, when readings are taken at this point, is in series with a very high resistance.
WH Bias for the 43 output tube is obtained by the voltage drop across the filter choke. Read bias voltage from cathode to negative side of filter choke.

PARTS AND PRICE LIST

PART HOUBER		LIST PRICE
9755	BC Antenna, First Detector, Oscillator \& SW Oscillator Coil	\$2.14
9754	SII Antonna and First Detector Coil	. 74
9478	First IF Transformer	1.38
9479	Second IP Transformer	1.38
9756	Band Selector Switch	. 88
9465	Gang Condenser	2.69
9331	Volune Control	1.32
9062	Padding Condenser	. 50
9442	Dry Electrolytic Condenser	2.85
9438	Wire Found.Resistor Strip 1450 hms	. 60

RADOLEK CO.

PAGE 5-4 RADOLEK
MODEL 956
Alignment
RADOLEK CO.
Voltage
VOLTAGE TABLE:

		Iine Voltage Volume Control Wave Band	115 Full on Broadcast	.
TUBE	FIL。	PLATE	SCREEN	CATHODE YOLTS
57 Ist Detector	2.4	230	90	4.5
57 Oscillator	2.4	175	175	1.7
58 I. F.	2.4	230	90	4
2A6 2nd Detector	2.45	160*		3
2 A 5 A . F.	2.4	218	230	7\%
80 Rectifier	4.8	340 ea.plate		

* Comparative voltage only. The voltmeter, when readings are taken at this point, is in series with a high resistance and is therefore not the true voltage applied. Read all voltages from socket to chassis unless otherwise specified.
** Read from grid to chassis.
Only when the antenna, oscillator or I. F. transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.

INTERMEDIATE ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the type 57 modulator tube (lst detector) leaving the grid cap disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycies (this must be accurate) and adjust the output of the osciliator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimner up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside of the brass hex nut in the same manner The intermediate transformer trimmer screws are accessible through the small hole in the tof of the intermediate transformer shields.

NOTE: Some of the IF intermediate transformers used do. not have the brass hex nut and the Erimmer screw inside of the brass hex nut, but have two parallel trimmers which are likewise accessible through two holes provided in the top of the I. F. shield can.
4. The second I. F. transformer should next be adjusted in the same manner as the first I. F. transformer.

VARIABLE CONDENSER ALIGNMENT: It is important when aligning the variable condenser to follow the procedure given carefully, otherwise the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Tune the receiver to exactly 1400 kilocycles on the dial, adjust the band selector switch for operation on the broadcast band ($1500-540$ kilocycles) and set the oscillator to 1400 kilocycles. Then adjust the oscillator variable condenser section trimmer condenser TO BRING THIS SIGNAL IN (maximum output). The oscillator and antenna variable condenser trimmers are mounted on top of the variable condenser. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
3. Leave the band selector switch for operation on the same band, set the oscillator at 600 kilocycles and tune the receiver to approximately 600 kilocycies on the dial. Then adjust the 600 kilocyc le padding condenser which is the one located towards the front on the right hand side of the chassis and accessible through the small hole in the chassis for maximum output. It is necessary to rock the condenser slightly to the right and left to obtain the correct position. After aligning the $600 \mathrm{kilocyc} \mathrm{m}^{2} \mathrm{e}$ padding condenser be sure to recheck the 1400 kilocycle adjustment as the 600 kilocycle alignment may have changed the alignment at 1400 kilocycles.
4. Adjust the short wave switch for operation on 1500 kilocycle to 4500 kilocycle band. Sot the oscillator at 4 megacycles and the receiver to 4 megacycles on the dial. Turn the Peceiver on end and BRING THE 4 MEGACYCLE SIGNAL IN (TO KAXIMMM OUTPUT) BY ADJUSTING THE 4 MEGACYCLE TRIMMER located underneath the chassis and adjacent to the band selector switch. Hext, tune the receiver to 1600 kilocycles on the dial and set the osciljator trequency co 1600 kilocycles after which adjust the 1600 kilocycle padding condenser which is located on the rear right hand side and accessible through the hole in the chassis for maximum output. It is imperative that after making this adjustment at 1600 kilocycles that the alignment at 4 megacycles be rechecked, as the 1600 kilocycle adjustment may throw the receiver out at 4 megacycles.

RADOLEK CO.

TUBE EQUIPMENT: The receiver uses the following tubes:

One (1) type 57 First Detector
One (1) type 57 0 oscillator
One (1) type 58 I.F.Amplifier
One (1) type 2A6 Second Detector Diode Triode, AVC.
One (1) type 2A5 Output.

Only when an antenna, oscillator or IF transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or variable condenser it is necessary that an oscillator be used with some type of output measuring device.

INT ERMEDIATE ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the \#57 Modulator tube (lst detector), leaving the grid clip disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the lst intermediate transformer trimmer up and down until maximum reading is obtained on the output meter, then adjust the trimmer screw located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer shields.
4. The second I.F. transformer should next be adjusted in the same manner as the first I.F. transformer.

TO ALIGN THE VARIABLE CCNDENSER: It is important when aligning the variable condenser to follow the procedure given carefully, otherwise the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Tune the receiver to exactly 4 megacycles on the dial and adjust the band selector switch for operation on this band.

Set the short wave trimmer about one-half the distance between maximum clockwise and counter-clockwise rotation.

Next set the test oscillator to exactly four megacycles and tune the signal in by adjustingthe oscillator variable condenser trimmer mounted on top of the variable condenser. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
3. Leave the band selector switch for operation on the same band and tune the receiver to 1.6 megacycles on the dial.

Set the oscillator to exactly 1.6 megacycles.
Adjust the padding condenser accessible through the hole in the right hand side of the chassis and the closest to the rear of the chassis to obtain maximum output reading. After making this adjustment recheck the alignment at 4 megacycles. It is advisable to recheck the 1.6 and 4 megacycle adjustment several times.
4. Adjust the band selector switch for operation on the broadcast band.

Tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency.

Turn the receiver on end and adjust the trimmer screw on the small trimmer located adjacent to the short-wave switch underneath the chassis for maximum signal after which ad.just the antenna variable condenser trimmer mounted on top of the variable condenser for maximum signal strength.
5. Leave the band selector switch for operation on the broadcast band and tune the receiver to approximately 600 kilocycles and adjust the oscillator to this frequency. Then adiust the 600 kilocycle padding condenser which is located on the righthand side next to the 1.6 megacycle padding condenser for maximum output reading. As this adjustment is quite critical it is necessary to rock the condenser slightly to obtain maximum sensitivity.
NOTE: Always recheck the 1400 kilocycle alisnment after making the adjustment at 600 kilocycles and the 600 kilocycle adjustment after aligning at 1400 kilocycles. All short-wave bands are properly aligned ofter correctly aligning at 4 megacycles.

MODEL 10951

Aligrment, Voltage

RADOLEK CO.

These service notes pertain to two receivers which are identical with the exception that one model had Duola connections incorporated in it. These connections are shown in the schematic drawing by the dotted lines. Where Duola provisions are provided connections marked " $X^{\prime \prime}$ on the diagram are open. Receivers with Duola connections may be identified by the Duola switch and two tip jacks located on the back of the chassis. Receivers which do not have the Duola connections do not have the switch (Part \#9566) or the tip jacks (Part \#9565) 。
ALIGNMENT: Only when an antenna, oscillator or IF transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.

INTERMEDIATE TRANSFORMER ALIGNMENT:

1. Connect the high side of the oscillator output to the control grid of the 6A7 tube leaving the grid clip disconnected. CONNECT A 50,000 OHM RESISTOR FROM THE CONTROL GRID OF THE GA7 TUBE TO THE ROTOR FRAME OF THE FARIABLE CONDENSER. The ground side of the test oscillator should be connected to the gang condenser frame and must not be otherwise grounded.
2. Set the oscillator at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside of the brass hex nut in the same manner. The intermediate transformer trimmer screws are accessible through the smalil hole in the top of the intermediate transformer trimmer shields.
4. The second IF transformer should next be adjusted in the same manner as the first intermediate transformer.

TO ALIGN THE VARIABLE CONDENSER:

1. Place the band selector switch for operation on the 1500-540 kilocycle band (right hand position) and-tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Next, adjust the trimmer screvs of the oscillator and anteinna saction of the variable condenser to obtain maximum output reading. These trimmers are mounted on the top of the variable condenser.
2. Tune the receiver and set the oscillator frequency to approximately 600 kilocycles. Adjust the 600 kilocycle padding condenser which is located on the rear of and accessible through the small hole in the chassis for maximum output. Be sure to rock the variable condenser slightly to the right and 1 eft so as to obtain the position of greatest output.

NOTE: There is no short wave adjustment. After alignment has been properly made in accordance with the instructions given, the dial calibration, will be correct and the receiver will properly track on short wave band.

$\begin{aligned} & \text { TYPE OF } \\ & \text { TUBE } \end{aligned}$	POSITTION OF TUBE	VOIfIAGE TABLE			CATHODEVOLTS	OSC.	ANODE GRID NO. 2	SCREEN GRID
		FILAMENTS VOLTS	$\begin{aligned} & \text { PLATE } \\ & \text { VOITS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SCREFAN } \\ & \text { VOLTS } \end{aligned}$				
6 A7	Oscillator \& Modulator	5.2	128		2.00	1.5	125	76
78	Intermediate Frequency	5.1	128	128	2.25			
75	2nd Detector Diode \& AVC	5.0	82.5*		2.00			
43	Output	25	115	128	20\%\%			
$25 Z 5$	Rectifier	25						

*- Bias for the 43 output tube is obtained by the voltage drop across the filter choke. Read bias voltage from cathode to negative side of filter choke.

PARTS AND PRIGE IIST
PART NOMBER

9755
9754
9478
9479
9658
9465
9331
9062
9442
9023
9083
9569
9196
9459
. 001 Mfd. Moulded Condenser .00025 MPd . Moulded Condenser .01 Mfd. 400 Volt Condenser .I Mfd. 200 Volt Condenser . 2 Mfd. 200 Volt Condenser . 02 ufd. 400 Volt Condenser . 05 Mfd. 400 Volt Condenser .015 Mfd .400 Volt Condenser 200,000 Ohm 1/3 Watt Resistor 100,000 0 hm 1/3 Watt Resistor 25,000 0 hm 1/3 Watt Resistor
1 Meg Ohm 1/3 Watt Resistor 50,000 Ohm 1/3 Watt Resistor 25,000 Ohm 1/2 Watt Resistor

RADOLEK PAGE 5-9

PAGE 5-10 RADOLEK
TUBE
57
57
57
58
Ist Detector
$2 A 6$
$2 A 5$
2nd Detector
80
Aectifier

FIL.
2.4
2.4
2.4
2.45
2.4
4.8

PLATE	SCREEN
230	90
175	175
230	90
160*	
218	230
340 ea.plate	

CATHODE VOLTS

* Comparative voltage only. The voltmeter, when readings are taken ai this point, is in series with a high resistance and is therefore not the true voltage applied. Read all voltages from socket to chassis unless otherwise specified.
** Read from grid to chassis.
Only when the antenna, oscillator or I. F. transformer has become defective due to an open or shorted winding should it be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device.

INTHRMEDIATE ALIGNMBNT:

1. Connect the high side of the oscillator output to the control grid of the type 57 modulator tube (list detector) leaving the grid cap disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscililator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimner up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside of the brass hex nut in the same manner The intermediate transformer trimmer screws are accessible through the small hole in the tof of the intermediate transformer shields.

NOTE: Some of the IF intermediate transformers used do not have the brass hex nut and the Erimmer screw inside of the brass hex nut, but have two parallel trimmers which are likewise accessible through two holes provided in the top of the I. F. shield can.
4. The second I. F. transformer should next be adjusted in the same manner as the first I. F. transformer.

VARIABLE CONDENSER ALIGMENT: It is important when aligning the variable condenser to fallow the procedure given carefully, otherwise the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Tune the receiver to exactly 1400 kilocycles on the dial, adjust the band selector switch for operation on the broadcast band (1500-540 kilocycles) and set the oscillator to 1400 kilocycles. Then adjust the oscillator variable condenser section trimmer condenser TO BRING THIS SIGNAL IN (maximum output). The oscillator and antenna variable condenser trimmers are mounted on top of the variable condemser. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
3. Leave the band selector switch for operation on the same band, set the oscillator at 600 kilocycles and tune the receiver to approximately 600 kilocycles on the dial. Then adjust the 600 kilocycle padding condenser which is the one located towards the frant on the pight hand side of the chassis and accessible through the small hole in the chassis for maximum output. It is necessary to rock the condenser silghtly to the right and left to obtain the correct position. After aligning the 600 kilocycle padding condenser be sure to recheck the 1400 kilocycle adjustment as the 600 kilocycle alignment may have changed the alignment at 1400 kilocycles.
4. Adjust the short wave switch for operation on 1500 kilocycle to 4500 kilocycle band. set the oscillator at 4 megacycles and the receiver to 4 megacycles on the dial. Tum the Feceiver on end and BRING THE 4 MEGACYCLE SIGNAL IN (TO MAXIMUM OUTPUT) BY ADJUSTING THE MEGACYCLE TRIMMER located underneath the chassis and adjacent to the band selector switch.

Fext, tune the receiver to 1600 kilocycles on the dial and set the oscillator frequency to Fext, kilocycles after which adjust the 1600 kilocycle padding condenser which is located on the rear right hand side and accessible through the hole in the chassis for maximum output. the rear right hand imperative that after making this adjustment at 1600 kilocycles that the alignment at 4 megacycles be rechecked, as the 1600 kilocvcle adjustment may throw the receiver out at 4 4 megacycle
megacyctes.

9666	Volume Control	8980
9174	Tone Control	9083
9767	Dial	9386
9726	Two Gang Condenser	8961
9671	Pliot Light Socket	6590
9660	Power Transformer	7860
9659	2-8 Mfd. Electrolytic Cond	9690
8876	5 Mfd . Electrolytic Cond	9691
9673	Padding Condenser	9698
9799	Trimmer Condenser	6976
9672	Wire Wound Resistance Strip	9693
9642	No. 80 Tube Socket	8000
9643	Speaker Socket	8906
9644	2A5 Socket	6875
9645	2A6 Socket	6984
9646	58 Socket	9337
9647	57 Socket	9089
9063	Thue Shield Base	

Tube Shield Tube Shield Caps . 1 Kfd. 200 Volt Condenser .05 Mfd. 400 Volt Condenser .002 mfd .400 Volt Condenser .01 Mfd. 400 Volt Condenser 00025 Mfd . \& . 05 Mfd . Dual 400 Volt Cond .05 Mfd . \& . 001 Mfd. Dual 400 Volt Cond 1 Mfd . 100 Volt Condenser
$10,0000 \mathrm{hm} \mathrm{1/3}$ Watt Resistor 5,000 0hm l/3 Watt Resistor 100,000 $0 \mathrm{hm} \mathrm{1/3}$ Watt Resistor 250,000 0hm 1/3 Watt Resistor 250 Ohm 1/3 Watt Resistor 500,000 0hm 1/3 Watt Resistor 8,000 0hm l/3 Watt Resistor 500 0hm 1/3 Watt Resistor

RADOLEK PAGE 5-11

PAGE 5-12 RADOLEK

RADOLEK PAGE 5-13
RADOLEK CO.
MODK 10963 (60 Cycles)
MODF 10964 (25 Cycles)
100DEL 10968 (32 $7 \cdot$ DC.)
Schematic, Voltage
Alignment Data

PAGE 5-14 RADOLEK

RK LABS PAGE 5-1 MODE 4-Tube Schematic
RK RADIO LABORATORIES, INC.

PAGE 5-2 RK LABS NODEL RK-60 G Schematic

RK RADIO LABORATORIES, INC.

RK LABS PAGE 5-3 MODEL RK-60 L Schematic
RK RADIO LABORATORIES, INC.

REMLER COMPANY, LTD.

INSTALLATION:
This set is designed to operate from a 110 to 125 volt, 50 or 60 oycle alternating current supply.
An outdoor antenna should be used, having a length of from 60 to 100 reet. The antenna should be kept olear of all motal objects such as pipes and electric circuita. This also applies to the leadin wire. Shielded wire should not be used for the lead-in. Connect the lead-in to the red wire extending rrom the back or the set. The should be as short as possible and preferably connected to a cold waterpipe, scraped clean, and a ground clamp used.

Loosen the chassis hold-down screws one turn when installing the set.
The knob on the left controls the volume and also operates the ON and OFF switch.

The center knob controls the station selector, or tuning. This kno operates through a jual-Ratio reducing mechanism. When pressed in, the ratio is three and a half to one. This position may be used on the broadcast band, or when it is desired to turn quiokly from one to one is obtained. This position should be used for tuning on the short wave bands.

The dial is divided into three ranges. The outer range is from 540 to 1900 kilocycles, and is calibrated in tens of kilocycles, or broadcast channels. The bands included in this range are: the reg1534 to $1712 \mathrm{~K} . \mathrm{C} .$, and amateurs from 1715 to $1900 \mathrm{~K} . \mathrm{C}$. The middle range covers from 1900 to 6400 K.C. This range includes: emateurs 1900 to 2000 K.C., police stations 2308 to 2490 K.C., aviation 2608 to 3485 and 4110 to 5700 K.C., amateurs 3500 to $4000 \mathrm{~K} . \mathrm{C}_{\text {. , and short }}$ wave broadcast 6010 to 6150 K.C. This range is calibrated in hundreds of kilocycles.

The inner range covers the higher frequency bands, extending from 6 to 18 megacycles (6000 to 18,000 kilocycles).

The principal short wave broadcast ranges included are: 6 to 6.15 megacycles, 9.5 to 9.6 megacycles, 11.7 to 11.9 megacycles, 15.1 to 15.35 megacycles, and 17.7 to 17.8 megacycles. Amateur phone transmissions may be tuned in from 14 to 14.4 megacycles. This range on the knob on the right The knob on the right controls the range siditch and the pointer,

A continuous type tone control is adjustable from the back of the receiver. This may. be adjusted to modify the tone or to reduce noise or static disturbances.

SERVICE DATA:
This is a six tube superheterodyne receiver with automatic volume control. The following tubes.are used:

647 Converter (mixer-oscillator)
78 Super-control amplifier, ist I.F. stage
78 Super-control amplifier, znd I.F. stage
6B7 Diode detector - AF ampilifier, AV.C.
42 Power amplifier Full wave rectifior
Dial light $6-8$ volt Mazda 50

The oscillator, antenna, and mixer coils are wound on the same form for each band. The short wave coils are mounted directly on the switch together with the triramer capacities. A variablo series trimmer is provided for the broadcast band oscillator circuit. This is accessible from the bottom of the chassis, and is mounted near aluminum shields mounted on top of the chassis. the trimmers for these coils may be adjusted from the tops of the shields. The intermediate frequency is 450 kilocycles. Use a weak signal or oscillator input when adjusting the trimmers.
In removing the chassis from the cabinet, take the set screm, spring and brass pin from the tuning knob so that it may be removed from With a wooden screw driver with a piece of cardboard against. the cabinet.
voltage readings for servicing pur poses follow:
A. C. VOltagers:
Filaments - 6A7, 78s, 687 and 42
120 volts
Filamenta - 80
$6.3{ }^{n}$
5.2
D. C. VOLTAGES: (No signal)

From ground to:

80 Rectifier filament 42 plate	
	Screen grid
42	Grid
$6 \mathrm{B7}$	Plate
6B7	Screen grid
$6 \mathrm{B7}$	Grid
78	2nd 1.F. plate
78	2nd I.F. screen grid
78	2nd I.F. cathode
78	1st I.F. plate
78	lst L.F. screen grid
78	lat I.F. cathode
6 ± 7 Plate (mixer)	
6A7 Soreen grid	
647 Cathode	
	Plate (oacillator)

Due to current taken by voltmeter used, readings of 6B7 and 42 grid voltages will be less than those above

PAGE 5-2 REMLER
MODEL 21-4 Schematic
Voltage,Alignment

This radio receiver is of the superheterodyno type with automatic volume control.
TUBES:
2A7 - Converter (mixer - oscillator)
58 - I. F. amplifier
237 - Diode detector - audio amplifier
$2 \mathrm{A5}$ - Power amplifier 80 - Rectifier $\begin{gathered}\text { Dial light, }\end{gathered}$

Dial light, 3.8 volt
INSTALLATION:
This set is designed to operate from a power supply of 110 to 125 ivolts, 50 or 60 cycle alternating current.

Two antenna connections are provided. The red wire should be connected when the antenna is less than 100 feet in length, and the green wire should be used when the antenna is longer. A good ground connection to the black lead is necessary for best results.
CONTROLS :
The knob at left controls the volume and also operates the $O N$ and OFF switch.
The knob in the center is the station selector. The dial is calibrated in kilocycles for both broadcast and short wave bands. The tone control is operated by the knob on the right. The short weve switch is located on the back of the chassis. In the long wave or broadcast position the receiver covers a band from 540 to 1750 kilocycles. When the switch is moved to the right, or short wave position, the receiver covers from 1700 to 4500 kilocycles. This band includes police, amateur and a irport stations as indicated on the dial. The lower frequency band for police calls is from 1714
to 1500 kilocycles. This range is covered with the switch moved to to 1500 kilocycles. This range is cove
the left or normal broadcast position.
SERVICE DATA:
The antenna and mixer coils are in the aluminum shield nearest the back of the chassis. The trimmer condenser, adjustable through the top of the shield, is for trimming the high frequency end of the short wave position. Trimmers for the broadcast band are located on the variable condenser.

The shield nearest the Eront of the chassis contains the oscillator coil and first 1. F. transformer. The trimers for this transormer are at the top of this shield.
The second I.F. transformer is within the chassis and is trimmed by the condensers mounted thereon. The intermediate frequency is 450 kiloayoles.
A. C. VOLTAGES:

D. C. VOLTAGES:

From ground to:

80	Rectifier filament	- 250	volts
245	Plate	235	
245	Screen grid	250	n
245	Grid	19	\cdots
2B7	Plate	175	n
$2 \mathrm{B7}$	Screen grid	45	"
2B7	Grid	5	"
58	Plate	250	-
58	Screen grid	95	-
58	Cathode	5	\cdots
2A7	Plate	250	"
2 A 7	Screen grid	95	"
2 A 7	Cathode	5	\cdots
$2 A 7$	Triode plate	95	"
	Speaker field (red lead)	105	n

grid voltages will be less than values shown above.

REMLER PAGE 5-3

REMLER COMPANY, LTD.

MODEL 35 Auto

Schematic, Socket
Voltage, Installation
INSTALLATION:
The receiver unit is intended to be mounted on the bulkhead of the oar by the single mounting atud which requires the drililing of one 1/2 inch hole through the bulkhead. Whon locating the poaition of this hole consideration should be given to possi blo interfarence be: the aet with the position of control cables and other agparatud bi.th tween the dash and the bulkhead and also of the mounting aik the reapparatus on the motor side of the bulkhead. Prereraciy long oasy curres of the flexible control cables and a short lead connection to the antenna.

The location of antenal leads from factory installad antennas dew pends on the make and model of the car. Usually this lead is brought down one of the front body pillar posta and will be found lead from the receiver and tape the joint. Where the car is not factory equipped with antenna, a roof type or plate type may be installed with lead brought to a convenient place for connection to the set. The lead and antenna should be kept as far as possible from wiring circuits and the metal body.
The flexible control cables for the tuning and volume control are fitted with special ends to lock in the control head. Insert the cable with the slotted end into the left or volume control bushing, and the cable with keyed and into the right, or tuning control bushinge Be sure the oable housing extends into the head at least three-elghths or an the cables into the brackets and couplings on ings. Next. The volume control cable in the lower coupling and the tuning cable in the upper coupling, but do not tighten the set tuning cable in the upper coupling, but do not tightion the set
screfs on the sharts. Next clamp the control head to the steoring solumn, tape the control cables to the column bracket or some solid object under the dash and tighten the clamps on the cable housings at the set. Now turn the volume knob to the position where it is removable from the key slot, and turn the tuning knob to the left till the pointer is on the white line at the low frequency end of the dial. Hotate the couplings projecting from the sot to the left till the condenser is against the stop and the awitch on the volume control is in the off position. Now the set screws on the shaft couplings may be tightened.
Plug the dial light into the opening at the rear of the control head. Connect the battery wire, the shielded wire with fuse holder and terminal, to the battery side of the ammeter. This terminal on

IGNITION NOISE SUPPRESSION:
The spark plug suppressors should be connected in aeries with the plugs at each plug and the distributor suppressor should plugged into the central distributor connection in series with the lead running to this point. The generator condenser should be mounted on the goierator and the flexdble lead connected to the terminal at the catout where the wire from the generator is attached. Some cars require special work to further reduce noises due to pe-
culiarities of the wiring systems.

OPERATION:
The left hand knob on the control head operates both the power switch and the valume control. Turn the knob clockmise to increase
volume. The dial should become illuminated when the power is on.

Hotate the station selector, or tuning knob until the desired program is heard, reduce the volume, and readjust the selector to the position where quality is the best. The volume control may now be advanced to the desired volume level. 'dhe knob on the right side of the set is the tone control. 'his may be adjustied to madify the tone or to reduce noise and static disturbances.

SHORT WAVE:
The short ware switch is on the left of the speaker. then this knob 1s turned to the left the regular broadcast band is covered by the atation alector dial as well as the lower frequency police band as noted on the dial. When the switoh is turned to the right the a0lector dial covers. from a200 to 6500 K . C. The positions of the and the major airport and amateur bands are noted on the inner por tion or the dial. lany automobile antenna installations are not suitable for receirisg these short wave atations from any great distance. When botiter results or increased range is desired with the car parked, a fifty or sixty foot portable antenna wire, with the far end raised at least fifteon feet from the ground, may be used.

SERVICE DATA:
Tubes:

> 647 Converter (mixer-ogeillator) 78 Super-control amplifier, Ist I.F. stage 78 Super-control amplifier, 2nd I.F. stage 75 Diode-detector-A F amplifier, A.V.C. 41 Power ampliflor 84 Full waverectirier T-40 Dial light 6.3 V.

Whe antenna and mixer coila for the broadcast band are in the shield at the left side of the set. The short wave coils are mounted directly on the short wave switch with the oscillator coil for the in the aluminum shields adecent to the iransfars are 450 Ke by the trimers loceted ot tops of the shields. Use a meak aignal, or oscillator input, and an output meter when aligning the set.

The vibrator type interrupter and transformer are enclosed in the metal bor at the right of the receiver. After several hundred hours use the vibrator contacts may require a slight adjustment due to wear. The necessity of this adjustment will be indicated by a marked reduction in plate supply voltage. Vibrator servicing should be done only by a service man with instructions and experience in this work.
Voltages: To chassis - No signal.

$\begin{array}{ll}6 & \text { volts } \\ 250 & \prime \prime \\ 230 & \prime \prime \\ 220 & \prime \prime \\ 18 & \prime \prime \\ 125 & \prime \prime \\ 1.5 & \prime \prime \\ 230 & \prime \prime \\ 100 & \prime \prime \\ 3.5 & \prime \prime \\ 230 & \prime \prime \\ 100 & \prime \prime \\ 5 & \prime \prime \\ 230 & \prime \prime \\ 100 & \prime \prime \\ 200 & \prime \prime \\ 5 & \prime \prime\end{array}$
Battery current - 6 amperes

REPUBLIC PAGE 5-1
MODEL BP-5E
Schematic Voltage Socket Layout

REPCBLIC PAGE 5-3

SEARS-ROEBUCK \& CO.
MODEL 49-50 Schematic Voltage

GEMERAL HOTES-ON ALIGNIGNT

preventing apjustuent at the image frequency
When adjusting trimmers for short wave alignment, it
sometimes will be found that a peak can be obtained at two
different positions of the trimmer. Only one of these peaks is proper procedure follows:

Oscillator-Trimmer:

Screw the oscillator trimmer alf the way in (maximum
capacity). Then reduce the capacity until a peak is reached.
Now continue to reduce the capacity until a second peak is Now continue to reduce the capacity until a second peak is
reached. Almost always, this second peak is considerably reached. Almost always, this second peak is considerably
louder than the first one. The first peak is the image
frequency adjustment, and must be avoided.

Antenna and Translator. Trimmers:

Screw the trimers all the way in and then reduce capacity
until a peak is reached. If the capacity is reduced still further, a second peak. will be obtained. However, the correct
 ALIGNMENT PROCEDURE FOR RECEIVERS USING A WAVE TRAP

If a wave trap is used in Models 1821,1827 , 1828 , 1804 ,
1805 , 1820,1826 or 1840 , it must be disconnected before making
any RF alignment adjustments on the receiver. This can be done
as follows:
the wave trap. a jumper between the jellow and blue leads of
2. Disconnect the white lead of the trap. IN SOME TRAPS A
GREEN LEAD IS USED INSTEAD OF A WHITE ONE.

After the receiver has been aligned gs instructed in the
Service Manual for the particular model, reconnect the wave trap. Do not touch the alignment of the receiver after the trap
 ssiflators or different makes vary considerably in their
for coupling any particular test oscillator to the recelver. ically any test oscillator.

Most test oscillators have two output leads. One of them
 in the case of AC-DC receivers. The connection then should be made through a . I mpd condenser since the chassis of such recel-
vers is above ground potential. If the test oscillator has only one lead, the

As mentioned in all of the service notes, for IF allgnment
the test oscillator should be connected through a il mfd.
condenser directly to the control grid cap of the if or Trans-
to the cap and to leare the tube shields in place. The oscillator to the cap and to leave the tube shields in place.
tube of the receiver also should be in its socket.

For RF alignment, Whether broadcast or short wave, the "hot" of the receiver. The exact means of coupling will depend upon the sensitivity of the receiver, and the extent to which the powerful and the receiver one of high sensitivity, merely placing the test oscillator lead parallel to, and several inches away
from the receiver's antenna lead may provide sufficient coupling. In some cases it may be necessary to bring the leads very close to each and the oscillator lead together for several inches. (of course, the two leads must-be separated by their insulation and alignment, thereby increasing its sensitivity, it will be possible to decrease the amount of coupling. between the test apirt.) Always use the lowest amount of coupling that still the test oscillator has a variable control for its power output, it is better to turn this control to its high position and amount of coupling between the test oscillator and the receiver's accuracy in allgnment.

When adjusting the oscillator trimmer condenser, set the
veriable condenser to the frequency or condenser position

SEARS-ROEBUCK \& CO.

The IF Stages:
the loud anneaker the low voltage scale of the output meter acrose
2. Connect the ground lead of the test oscillator to the
3. Connect the other lead of the test oscillator, in serios Tube. Leave the cilp attached to the cap and the tube shield in place.
4. Set the test oscillator to 445 ko and tune the Tr output
transformer. The locations of 1 ts tuning adjustments are shown in the Service Illustration.

5 . Change the test oscillator connection to the control grid
cap of the $2 A 7$ and tune the IF input transformer.
-6. Repeat the adjustments in order to secure greater accuracy
Always use as low an output as posible from the test oscilliator, in order to render the AVC action of the receiver inoperative. RF Alignment (Broadcast):

1. Serew the padding condenser to about three quarters of
2. Set the test oscillator to 1700 kc and couple its output
to the green antenna lead of the recelver.

3. Set the test oscillator to 1400 kc and tune in 1 ts $s 1 \mathrm{gnal}$. Then ad just the trimmer on the translator section of the variade
4. Set the test oscillator to 600 kc , and tune in its signal. 5. Set the test oscillator to 600 kc . and tune in 1 ts signal
Then siowly rotate the variable condenser back and forth a degree
or two, and, at the same time, aduat the broadcast oscillator padding condenser for maximum output.
5. Repeat the 1700 ke and 1400 kc adjustments. Always use a
lovt onough output from the teat oscillator to render the AVC Short Wave Allgnment:
6. Leave the tost oscillator loosely coupled to the green
antenna lead as for broadcast alignment.
7. Set the test oscillator to $16,400 \mathrm{kc}$. Its signal should
be heard when the ondenser plates are all the way out. If the
test osillator cannot be tuned in wires must be moved to reduce test oscillator cannot be tuned in, wires must be moved to reduce
the capacity in the oscillator circuit until this frequency can be 3.
s1gnal.
output.
8. Set the test oscillator to $14,000 \mathrm{kc}$ and tune in its
signal. Then adjust the short wave translator trimmer for maximum
output.

SEARS PAGE 5-5

 foilowst moaking the osocillator and tranelator atago, procode as trimmera on the variable 2. Ro-sot tho tost osor111ator to 1400 ko, rotune the variable
conden sor to this froquency, and adjuat the tranolator trimor. denser: Tune to 600 ko and adjust the tsolentite base padaing con-

SEARS PAGE 5-9

SEARS-ROEBUCK \& CO.

PAGE 5-12 SEARS
FODEL 1724
Socket Layout SEARS-ROEBUCK \& CO.
Chassis

SEARS PAGE 5-13

ELIMINATION OF HUM
1n

MODELS 1720,1725 and 7065

 an additional section of filtering to the power supply.
l. Enlarge the hole in the chassis near the power
transformer to about $1 / 4^{\prime \prime}$ diameter, as indicated in the illustration.
 it is necessary first to remove the four nuts on the under
through the laminations. 'he tone control and switch will
transformer nuts.
3. Mount a Part \#RIO793A choke on top of the power Be
transformer in place of the original transformer cover. Be sure to mount the choke so that its leads can come down through bolts well, in order to prevent hum. Then remount the transformer and choke assembly on the chassis and remount the tone control.

 a new part, ${ }^{\text {a }}$, is milif, $1 s$ aded.

बंनariv STuyd

1-R10793A - Audio Ohoke

SPECIAL NOTIGS: - The filter syst em outlined above shoul d be necossary in
 trouble is caused by the center tap of the trensfo mer being offo only in ship this filtar system out "No Chargen, providing the quantity ordered is

In ordering, use F -\#14326 and mail to Dapto 657, chicago.

PAGE 5-16 SEARS
MODF 1726-X
Voltage
SEARS-ROEBUCK \& CO. Alignment Data
Parts List
When peaking the IF stages, use a signal from the test oscillator just strong enough to give an audible response from the speaker or readable deflection on an output meter.

The sensitivity control is connected only in the broadcast position. Current is bled through it and the movable arm picks off a portion of the voltage to bias the cathode of the 78 RF tube. The senaitivity control is mounted on the volume control shaft so that sensitivity is decreased at the same time volume is decreased. Without this dual control, the AVC action would make the receiver sensitivity increase to its maximum value when no station was tuned in. By reducing the sensitivity as well as the volume, this dual control keeps between-station-noise at a minimum.

There is a hum control on the rear of the chassis, under the 2A3 tubes. It should be adjusted to the point of minimum hum with the volume control off. In the event that the point for minimum hum appears to be beyond the limit of movement of the control, the balance still can not be had, the 2 AB tubes must be replaced by a pair more nearly matched in their characteristics.

In the event that coil replacement makes it necessary to readjust the trimmer condensers, proceed as follows: Tune in a high frequency station (broadcast) of known frequency. adjust the isolantite base oscillator trimmer condenser, mounted on the frequency selecting switch assembly, for maximum volume. Greater accuracy can be had if a weak station is selected, or use only a few feet of wire as the antenna with a . 00025 mf . condenser connected between the antenne and ground clips to take the place of the normal antenna capacity. Then tune in a short wave station at about $14,000 \mathrm{kc}$ and adjust the trimmer of the translator section of the ganged tuning condenser (the middie section). Next, tune in the broadcast station used previously and adjust the antenna trinmer on the ganged tuning condenser and the small bakelite base trimmer mounted on the frequency selecting switch. Then tune in a broadcast station at the low frequency end of the dial and adjust the . 0012 oscillator padding condenser for maximum volume. Follow this procedure oxactly and, having made the adjustment, do not readjust when changing from the broadcast to the short wave station or vice versa.

POSITION OF LUGS AS VIEWED FROM REAR frequency selecting switch r9505

R 8780 ELECTROLYTIC COND.

R-8446 R-8888 R-6974H R-6974J R-2288 R-8448 R-8448B

R-9513
R-8817
R-7137
R-6565
R-7236
R-8780 R-6138 R-6444 R-6761 R-7070 R-6954 R-6461 R-6933 R-4592 R-4303 R-8711 R-6570 R-9255 R-5823 R-6179 R-5822 R-5819 R-7586 R-6445 R-6156 $\mathrm{R}-6510$ R-6153 R-6154 R-8829 R-6436 R-6155 R-9081 R-8886 R-8901 R-8801 R-8802 R-8801A R-8801J R-8802L
R-9494A
R-9498A-R-8779A R-6235

SHORT WAVE ANTENNA-OSCILLATOR COILS MOUNTED UNDER CHASSIS. COIL NUMBERING a LETTERING CORRESPONDS TO SCHEMATIC.

GENERAL INFORMATION

This set is of the conventional tuned radio frequency type so designed to operate on 105-120 volts of either AC or DC.

To operate unreel built-in-antenna and lay on floor or throw out window, turn volume all the way up, if on DC reverse plug if set does not start playing in one minute.

The cord of this set, at normal operation of receiver, becomes quite warm which is a natural condition, as there is a rapid heat dissipating resistance in same.

To balance set, first remove chassis from cabinet; second, tune condenser to about 1720 kc and align trimmer condenser on detector stage, then do same to antenna stage until loudest noise level is obtained.

PARTS LIST
$\frac{\text { No - }}{60}$ Volume control
201 Cabinet
202 Dynamic Speaker
203 Variable condenser
204 Set of coils - complete
$204 a$ Antenna coil - only
204b R F coil - only
205 Electrolytic condenser
206 AC DC choke
207 Cord ohm 175 ohm
61 Antenna cord
208 Escutcheon-
Silvertone or Selector
73 Terminal strip- 3 lug
71 Knob
Any tube socket (state no. of prongs)
Any resistor (state ohms and watts)
Any bypass condenser (state capacity)

SEARS-ROEBUCK \& CO.

PAGE 5-20 SEARS
MODEF 1729
Socket Layout
SEARS-ROEBUCK \& CO.
Chassis View
Parts List

UNDER VIEW OF CHASSIS

PART NO.
S-9549A
R-9526
R-9527
R-9182
R-8801
R-8801G
R-8802
R-8802G
R-9325A
R-9526A

DESGRIPTION
Speaker - 2250 ohm, 6" dynamic
Sticker - Tube layout \& license - 60 cycle
Sticker - Tube layout \& license - 25 oycle
Sticker - Tub
Sticker - NRA
sticker - NRA
Transformer - IF input
Transformer - IF input complete, less shield
Transformer - IF out put
Transfarmer - IP output complete, less
shield
Transformer - 60 oycle power
Transformar - 25 cycle power

SEARS PAGE 5-21

PAGE 5-22 SEARS
MODEN 1730
Socket,Trimmers
SEARS-ROEBUCK \& CO.
Adjustments
Parts List

SPRCLAL NOTE

When peaking the IF transformers, use a low enough output.
from the test oscillator to render the avc action inoperative. THR RF TUEING ADJUSTMENTS
There are throe holes at the back of the chassis, giving
access to the variaio condenser trimmers. The hole nearest
the drive ond of the condonerr is for the HF section trimmor.
The next hole is for the translator, and the third one is for
the oscillator. OSCILLLATION
ny trouble from oscillation can be cured by connecting a. 1 Mrd. 200 volt

THE REMOTE CONTROL UNIT

A few of the first production remote control units used the type clamp shown in Fig. 3. Later production used the type illustrated in Fig. 4. Should trouble be experienced
with controls having the type clamp shown in Fig. 3, due to With controls having the type clamp shown in Fig. 3, due to the volume control cable is jumping out of the control hea
the type of clamp shown in Fig. 4 should be substituted,
(part \#R-10190). The following procedure will

Remove the volume control drum and turn the volume control counter clockwise to 1 ts orf position. Then turn 1t olockwise
just enough to take up all or the play, so that any further Just enough to take up all or the play, so that any rurther
rotation would tend to turn the switch on. Remove the key from the remote control unit and turn the volume control lonurled ring to its iocked position. Then turn it, as though to switch replace the volume control drum on the volume control shaft, maintaining a clockwise tension on the rotatabie portion of the drum and tighten the set screws. Study or this operation will in the mechanism in such a way the an an increased length of

號
It is of vibal importance that no twists occur in the
during the inatailation. Cereful inspection for this point is necessary because in a cable of this type twists are not very obvious. Also, bends should be as grapual as practic-
able. Sharp bends greatly increase the stiffness of operation

Ir, having followed the foregoing suggestions, trouble atill is experienced with the remote control, the unit should be considered derective Return the entire remote control unit, to the Colonial Radio Corp., 254 Rano St., Buffalo, N.Y.

ADJUSTING THE STATION SELECTOR DRTVE DRUK

1. Fully mesh the variable condenser plates:
2. Turn the Station Selector knuried ring to its low frequency limit.
3. Place the condenser drive drum on the variable condenser shaft and screw the binding strip to the condenser end plate. If
necessary, bend the binding strip in such a way that the driver cable runs in the binding strip in such a way that the drive the point whore it omerges from the chassis. from the drum to must be taken that the cable olamp doess not touch any part or the chassis. Should it do so, it would rendor the rubber
mounting of the variable condonser inoffoctive and microphonics
would result. Then tighten the drum sot acrews.
4. After the set has boen. installed, and the remote control mountod, the calibration can bo set more accurately in the following mannor. Tune in a station of known frequency. Homove the dial glass retaining spring and aot the dial pointer to the sure that the glass does not ahift during the operation.

THE GEN-E-KOTOR

The plate and scroen voltages for the rocolver, are supplied by a Gen-B-Motor. No attempt should be made to repair this unit.
It should be returned to the pioneer GonIt should St., Chicago, Ill. Roturn onily the unit itseif. Do Superior st, chicago, Ill, Return only the unit itseif. Do om 1ts housing, proceed as folloms.

1. Remove the two screws under the chassis, that mount the loud apeaker.
2. Romove the three Parker-Kalon screws from the bottom of the Gen-E-Motor housing, and the two screws that hoid the eloctrolytic condonser can to the housing. The Gen-E
its housing con then be tippod back from the chassis.
S. Unsolder the loads at the base of tho housing, so that chasais.
3. Romovel of the two scrows in oach side of the nousing, will permit the Gen-E-Motor to be taken from its housing.

PGLARITY CFANGIMG
The rocoivers are shipped with the polarity ohanging scrowi in the proper poition for oars having the nega-
tive battery a grounded pooitive torminal, the positions of the tro the oase, and as shom in fig. 5 .

FIG. 5

PAGE 5-24 SEARS
MODEL 1733
Voltage, Socket
Chassis, Parts List

SEARS-ROEBUCK \& CO.

GENERAI INFORMATION
Silvertone Model 1743A is a set so designed to get maximum efficiency from five tubes, and minimum trouble.

Model 1743A is a superheterodyne operating from 105-120 volts AC 60 cycles only- Also furnished for 25 cycle.

This set covers from 1720 KC to 540 KC regular broadcast including 1712 KC police and 15 - 55 meters short wave which covers major foreign stations.

The circuit uses 1-2A7 Ist detector and oscillator; 1-58 IF; 1-2A6 second detector and first audio; 1-2A5 power output and 1-80 rectifier To align receiver proceed as fol10W5:
l. Peak the two If transformers, applying a 456 note at the 2 A 7 grid .
2. Turn variable condenser wide open, peaking oscillator stage at 1712 KC - then peak RF and antenna stage.
3. Rdjust low frequency with gang tuned to 600 KC , to maximum peak.
4. Go back and check trimers on gang condenser at 1400 KC .

PARTS LIST-MODEL 1743A
No. 450 451 452
453
454
455
456
456a RFE Antenna coil-S.W.
456b RFE Oscillator "
456c RF Antenna BC
457D 456 KC IF units
156884 mfd condenser
307
308
310
309 108
158

Dynamic Speaker

Variable condenser
Volume control w/switch
Short wave switch
dirplane Dial complete
Power Transformer
Set of coils-complete

10 mfd 25 v electrolytic Terminal strip - 5 lug - 0018 Mica condenaer . 01 mfd 800 t cond. in can Padder condenser 7 plate Power cord \& plug Any tube socket (state no.of prongs) any resistor
(state ohms \& watts) any by pass-not listed above(state capacity)

SEARS-ROEBUCK \& CO.

MODEL 1760 (Type 2) Schematic Voltage

PAGE 5-28 SEARS
MODEL 1760
Socket Layout
Chassis
Parts List

GENERAL INFORMATION
This set is designed to operate on 105 to 120 volts AC - 50-60 cycles -

158
159
160
165

165a Antenna coil

165b Interstage coil
$30710 \mathrm{mfd}-25 \mathrm{v}$ electrolytic
3124 pole 2 position short wave switch
Any tube socket
(state no. of prongs)
Any resistor
(state ohms \& watts)
Any bypass condenser
(state capacity)

No.
73 Terminal strip -3 lug
105 Volume control
152 Dynamic Speaker
153 Variable condenser-2 gang
154 Power transformer
155 Dial scale unit
156 . 884 mfd electrolytic cond.

PAGE 5-30 SEARS
MODEL 1801
Schematic
SEARS-ROEBUCK \& CO.
Alignment
Parts List

SEARS PAGE 5-31


```
150DEH 1802-A,1803-A,
    1807
SEARS-ROEBUCK & CO.
Voltage,Alignment,
Socket Layout
```


The IF Stages:

1. Cominect the low voltage scale of the outputmeter acrass the loud speaker voice coil.
2. Connect the groundiead of the test oscillator to the chassis.
3. Connect the other lad of the test oscillator, in aeries with a . 1 mft . condenser, to the control grid cap of the 58 IF tube. Leave the cllp attached to the cap and the tube sifold in place.
4. Set the test oscillator to 445 ke and tune the IF output transfo mer. The locations of its tuming adjustmente are chown in the Sorvico Illustration.
5. Change the test oscillator connection to the control grid cap of the $2 A 7$ and tano the IF input transformer.
6. Repet the edjustments in order to secure greater accuracy. Always use as low an output as possible fron the test osoillator, in orier to randor the AVC action of the receiver inoperative.

阬 M1 epment (brcadeast):

1. Sorem the padding condenser to about three quarters of its maximum capacity.
2. Sot the test oscillator to 1750 ke and couple its output to the grean ant enna 1 and of the rocolver.
3. open the variable condenser plates all the way and adjust the roadeast osc lllator coil trimer for maximum output meter reading
4. Set the test oscillator to 1400 kc and tune in its ignal. Then adjust the trimmer on the translator section of the Variable condenser for maximum output. The translator section is the one nearer the dial, as shown in the Service Illustration.
5. Repeat the 1750 kc and 1400 kc adjustments. Always use a low enough output from the test oscillator to render the AVC ineffective.

Short Wave Alignment:

1. Leave the test oscillator loosely coupled to the green antenna lead as for broadcast allgnment.
2. Set the test oscillator to 16000 kc . Its signal should be heard when the variable condenser plates are all the way out If the test oscillator cannot be tuned in, the grid and plate wires to the short wave oscillator coll and to the oscillator socket should be moved as far away as possible from the metal of the chassis to reduce distributed capecity.
3. Set the test oscillator to 14000 kc and tune in its signal. Then adjust the short wave translator trimmer for maximum output.

TUBE VOLTAGE CHART
All readings should be taken betiveen the chassis and the respective element of each tube.

TUBE	PLATE	SCREEN	OSC.SECTI ON PLATE
$2 A 7$ - OsC-Transl	-195	90	155
$58-$ IF -	-195	90	
$2 A 6-$ AVC-Det-AF	-115		
$2 A 5-$ Output	-185	195	

5. Set the test oscillator to 600 kc and tune in its
signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the broadcast osciliator padding condenser for maximum output

SEARS-ROEBUCK \& CO:
Schematic

PAGE 5-34 SEARS

MODEL 1804,1805,1820, 1826

SEARS-ROEBUCK \& CO.

Wavetrap Data, Voltage Alignment, Socket Layout Parts List

WAVE TRAP COMTECTIONS

In locations near the coast where code interference from ship stations may be experienced, a wave trap can be added.

Some of the receivers have the terminal board shown in Fig, 3 mounted at the rear of the chassis. The wave trap, which as ohown in $\mathrm{Hig} \cdot \mathrm{m}_{\text {. }}$. In recoivers not having this be connec.ted as shown in rig.. 0° In receivers not having thi

1. Unsolder both onds of the green wire which runs from the
2. Solder the yellow wire of the wave trap to the switch lug 1 plece of the original green wire
3. Connect the blue wire of the wave trap to the lug of the
4. Connect the white wire of the wave trap to the ohassis.

To adjust the wave trap, proceed as follows:

1. With the wave switah in the broadoast position, fully
the variable condenser plates.
2. If the interfering aignal can be picked up, adjuat the nal disappears.
3. If the frequency of the interfering signal is known, the test oscillator. Set the oscillator to the interfering frequenc and couple its output to the antenna lead. The oscillator should be adjusted to give high output. Then adjust the wave trap of the intierfering signal is very close to 500 ke and this frequency the service call.
The IF Stages:

ALIGNJENT PROCEDURE

1. Connect the low scale of the output meter across the lour speaker voice coil.
2.
3. Connect the other lead or the test oacillator through a The grid condenser to the control grid of the 78 se
4. Set the test oscillator to 480 kc and tune the IF output transfrormer in the Service Illustrations.
5. Change the test oscillator connection to the control grid cap of the 78 first IF tube and tune the if interstag
6. Change the test oscillator connection to the control gria cap
former.

aperations, starting with the IF output transformer. all of the RF Alignment (Broadcast):
7. Bet the test oscillator to 1785 kc .
8. Couple the output of the oscillator loosely to the antenna lead of the set, with the antenna connected.
9. Turn the variable condenser plates all the way out. Then adjust the oscillator trimmer for maximum output. This trimmer oscillator coil, as shown in the Service Illuatrations.
10. Set the test oscillator to 600 kc and tune in its signal. degen slowiy rotate the variable condenser back and cast oscillator padder for maximum output. The location of this pedding condenser is shown in the Service iliustrations.
11. Repeat the adjustment of the oscillator trimer at 1785 kilocycles.
12. Set the test oscillator to 1500 kc and tune in its signal. Then adjust the trimmer on the antenna section. of the variable trimmer has been removed from the variable condenser, in which case this step in the alignment procedure may be omitted. Short Wave Alignment:
13. Set the test oscillator to 16 megacycles, leaving it
lod the set's antenna lead as for broadcast alignment.
14. Turn the pre band switch to the short wave position and tune in the tesit oscillator signil. Then adjust the trimmer on the short wave antenna coil for maximum output.
15. Set the test oscillator to 6 megacycles and tune in its signal. If necessary, turns may be shifted on the short wave Should it beoome neoessary to shift turns, the translator trimmer will have to be readjusted at 16 megacycles arter the turns have been shifted. TUBE VOLTAGE CEART

All readings are to be taken
ective element of each tube.

TUBE		PLATE VOLTAGE	SCREEN VOLTAGE
78 - Translator	-	270	110
41 - Osoillator	-	100	100
78 - Pirst.IF	-	270	110
78 - Seoond IF	-	260	110
75 - AvC-Dot-AF	-	185	
47 - Outpat	-	260	270

SEARS PAGE 5-35

SEARS-ROEBUCK \& CO:

SEARS-ROEBUCK \& CO.

The IF Stages:

ALIGMMENT PROCEDURE

1. Connect the low scale of the output meter across the loud speaker volce coll.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the teat oscillator, through a il mfd condenser, to the control grid of the 78 IF tube. The grast be in place.
4. Set the test oscillator to 445 kc and tune the IF output transformer. The locations of its tuning adjustments are shown
in the Service Illustration.
5. Change the test oscillator connection to the control grid
6. In order to secure greater accuracy repeat the adjustments,

Always use as low an output as possible from the test oacillator in order to render the AVC action of the set inoperative. RF Allgmment; \#1 Band (Broadcast):

1. Couple the output of the test oscillator to the antenna of the set, with the antenna connected.
2. Set the test oscillator to 1520 kc .
3. Turn the variable condenser plates all the way out. Then adjust the \#l oscillator trimmer for maximum output. The location of the trimmers are shown in the Service Illustrations.
4. Set the test oscillator to 1400 kc and tune in its signal. Then adjust the \#l antenna trimmer and the \#l translator trimmer
5. Set the test oscillator to 600 kc and tune in its signal. Then slowiy rotate the variable condenser back and forth a degree or two and, at the same time, adjust the \#l oscillator padder for
maximum output.
6. Repeat the 1520 kc and 1400 kc adjustments for greater accuracy. TUBE VOLTAGE CHART

2TUBE		PLATE	SCREEN	$\underset{\text { PLATE }}{\text { OSC.SECTION }}$	CATHODE
78-RF	-	220	90		3.1
6A7-0sc-Transl	-	220	90	160	2.6
78-IF	-	235	90		3
75 - AVC-Det-AP	-	75			0
37 - Phase Changer	-	125			9
47 - Output	-	230	235		16

\#2 Band:

1. Leave the test oscillator coupled to the antenna lead as for broadcast band alignment.
2. Set the test oscillator to 4250 kc .
3. Turn the variable condenser plates all the way out. Then adjust the \#Z oscillator trimmer for maximum output.
4. Set the test oscillator to 4000 kc and tune in its signal. Then adjust the \#2
5. Set the test oscillator to 1700 kc and tune in its signal. Then slowly rotate the variable condenser back and forth a degree maximum output.
6. Repeat the 4250 kc and 4000 kc adjustments for greater

\#3 Band:

1. Set the test oscillator to 10 megacycles.
2. Turn the variable condenser plates all the way out. Then adjust the \#3 oscillator trimer for maximum output. As shown
in the Service Illustrations, this trimmer is mounted inside of in the Service Illustrations,
its ooil, under the chessis.
3. Set the test oscillator to 9 megacycles and tune in its signal. Then adjust the \#3 antenna trimmer and the \#3 translator signal. Then adjust the
trimmer for maximum output.
4. Sat the teat oscillator to 4.5 megacycles and tune in its signal. If necessary, shift turns on the antenna and translator ooils to secure maximum sensitivity. Be sure to cement the turns in place.
5. If turns have been shifted, repeat the 10 megacycle and the 9 megacycle adjustments, since they will have been affected by shifting of the turns.
\#4 Band:
6. Set the test oscillator to 19 megacycles.
7. Turn the variable condenser plates all the way out. Then adjust the \#4 oscillator trimer for maximum output.
8. Set the test oscillator to 18 megacycles and tune in its signal. Then adjust the \#4 antenna trimmer and the \#4 translator
britumer for maximum outbut.
9. Set the test oscillator to 9 megacycles and tune in its signal. If necessary, shift turns on the antenna and translator
coils to secure maximum sensitivity. Be sure to cement the turns in place.
10. If turns have been shifted, repeat the 19 megacycle and 18 megacycle adjustments since they will have been affected by shifting of the turns.

SEARS PAGE 5-37
SEARS-ROEBUCK \& CO.

ALIGNMENT PROCEDURE

The IF Stages:

1. Comect the lom scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator through a. mfd. condenser to the control grid of the ${ }^{\text {rid }}$ second.
4. Set the teat oscillator to 480 kc and tune the IF output transiorner, The locations of its tuning adjustments are shown
in the Sorvice Illustrations.
5. Change the test oscillator connection to the control gria cap of t
transformer.
6. Change the test oscillator connection to the control grid cap of the 78 translator tube and tune the IF input ansformer.
7. In order to seoure greater accuracy, repeat all of the operations, starting with the IF output transformer.

RF Allgnmont (Broadcast):

1. Set the test oscillator to 1785 kc .
2. Couple the output of the oscillator 100sely to the
3. Turn the variable condenser plates all the way out. Then adjust the oacillator trimeer for maximum output. This trimmer oscillator coil, ea ahown in the service Illustrations.
4. Set the test oscillator to 600 kc and tune in its algnal. Then slowly rotate the variable condenser back and cast oscililator padder for maximum output. The location of this padding condenser is shown in the Service Illustrations.
5. Repeat the adjustment of the oscillator trimmer at 1785 kilocycles.
6. Set the test oscillator to 1500 kc and tune in 1ts signal. Then adjust the trimmer on the antenna section of the variable condenser for maximum output. In some or the receivers this
trimmer has been removed from the variable condenser, in which case this step in the alignment procedure may be omitted. Short Wave Allgnment:
7. Set the test oscillator to 16 megacycles, leaving it coupled to the set s antenna lead as for broadcast allgnment.
8. Turn the wave band switch to the short wave position and tune in the test oscillator alignal. Then adjust the trinmer on the short wave antenna coil for maximum output.
9. Set the test oscillator to 6 megacycles and tune in its signal. If necessary, turns may be shifted on the short wave antenna coll to secure accurate alignment on this frequency.
should it become necessary to shift turns, the translator trimmer will have to be readjusted at 16 megacycles after the turns have been shifted.
tUBE VOLTAGE Chart
All readings are to be taken between the chassis and the respective element of each tube.
TUBES
78
41
78
78
37
85
37
37
47

SILVERTONE - MODELS 1821, 1827

Part No.	Description	$\begin{gathered} \text { Price } \\ \text { per } 100 \end{gathered}$
R8297A	Board - Terminal, double	1.34
R8308A	Board - Terminal, triple	1.78
R9446A	Board - Terminal, 4 terminals	2.15
R10468B	Transformer - IF input	47;61
R10469B	Transformer - IF interstage	47.70
R10470A	Transformer - IF output	46.44
R10451A	Transformer - Power, 60 cycles	223.86
R10452A	Transformer - Power, 25 cycles	359.69
R10446	Coil - Antenna	15.80
R10399	Coil - Oscillator	9.29
R9829F	Coil - Antenna, short wave	25.29
R9829G	Coil - Oscillator, short wave	20.70
R10453	Condenser - Variable	81.83
R10463A	Condenser - Variable with dial and drive	170.49
R7236	Condenser - Electroiytic, 14 mfd .	40.63
R8488	Condenser - Electrolytic, 8 mfa.	28.00
R10197	Condenser - Trimmer, 25 mmf.	3.59
R9975	Condenser - Padding, 350 mmf .	10,55
R6451	Condenser - . 5 mpd. 200 volts	10.24
R6138	Condenser - . 1 mfd. 300 volts	10.95
R6444	Condenser - . 1 mpd .200 volts	5.74

Condenser - . 05 mfa. 300 volts	4.74
	4.65
Condenser - . $03 \mathrm{mfd}$.	4.49
Condenser - . 02 mmd m 800 volts	5.81
Condenser - . 01 mfd. 300 volts	4.52
Condenser - . 003 mrd . 300 volts	3.44
Condenser - .0005 mfd. mica	4.56
Condenser - . 00005 mfd. mica	4.60
Condenser - . 000015 mrd , mica	4.56
Controi - Tone, 500 M ohms	20.69
Gontrol - Volume, 500 K ohms	28.01
Resistor - 1 megohm, $1 / 3$ watt carbon	5.91
Resistor - 500 M ohms, $1 / 3$ watt carbon	5.25
Resistor - 250 M ohms, $1 / 3$ watt carbon	
Resistor - 200 M ohms, $1 / 3$ watt carbon	5.91
Resistor - 100 M ohms, $1 / 3$ watt carbon	5.91
Resistor - 75 M ohms, $1 / 3$ watt carbon	5.25
Resistor - 50 M ohms, $1 / 3$ watt carbon	5.25
Resistor - 30 M ohms, 1 watt carbon	6.58
Resistor - 10 M ohms, 2 watt carbon	7.23
Reeistor - 50 ohms, $1 / 3$ watt carbon	5.25
Resistor - 5 M ohmis, $1 / 2$ watt carbon	6.58
Resistor - 1 M ohms, $1 / 3$ watt carbon	5.25
Resistor - 300 ohms, 1	5.91
Resistor - 50 ohms, $1 / 3$ watt carbon	6.05
Resistor - 10 olms, 1 watt, flexible	5.25

SEARS PAGE 5-39

SEARS-ROEBUCK \& CO.

To adjust the wave trap, proceed as follows:

1. With the wave switch in the broadcast position, fully mesh the variable condenser plates.
2. If the interfering signal can be picked up, adjust the two tuning condensers of the wave trap until the interfering signal disappears.
3. If the frequency of the interfering signal is known, the adjustment can be made more quickly and accurately by mean frequency and couple its output to the antenna lead. The oscil lator should be adjusted to give high output. Then adjust the Wave trap until the oscillator signal disappears. Uaually the
frequency of the interfering signal is very close to 500 kc and irequency of the interfering signal is very close to 500 kc and at the time of the service call.

ALIGNMENT PROCEDURE

The IF Stages :

1. Connect the low scale of the output meter across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis
3. Connect the other lead of the test oscillator through a . 1 mfd. condenser to the control grid of the 78 second I
tube. The grid clip should be left attached to the cap.
4. Set the test oscillator to 480 kc and tune the IF output transformer. The locations of
in the Service Illustrations.
5. Change the test oscillator connection to the control grid cap of the 78 first IF tube and tune the IF interstage
6. Change the test oscillator connection to the contro grid cap of the 78 translator tube and tune the IF input
transformer.
7. In order to secure greater accuracy, repeat all of the operations, starting with the IF output transformer.

RF Alignment (Broadcest):

1. Set the test oscillator to 1785 kc .
2. Couple the output of the oscillator loosely to the
antonna lead of the sot, with the antenna connected.
3. Tumn the variable condenser plates all the way out. Then ad broadcast oscillator coil, as shown in the Service Illustration.
4ignal. Set the test oscillator to 600 kc and tune in its forth a degree or two and at the same time, adjust the broadcast oscillator padder for maximum output. The location of this ing condenser is shown in the Service Illustration.
4. Repeat the adjustment of the oscillator trimmer at 1785 kilocycles.
5. Set the test oscillator to 1500 kc and tune in its signal. Then adjust the trimmer on the antenna section of the variable condenser for maximum output. In some of the receivers this trimmer has been removed from the variable condenser, in
which case this step in the aligrment procedure may be omitted. Short Wave Alignment:
6. Set the tëst oscillator to 16 mogacycles, leaving it
7. Turn the wave band switch to the short wave position and tune in the test oscillatior signal. Then adjust the trimer on the short wave antenna coil for maximum output.
8. Set the test oscillator to 6 megacycles and tune in its ignal. If necessary, turns may be shifted on the short wave antenna coil to secure accurate alignment on this frequency. will heve to be readjusted at 16 megacycles after the turna have boen shifted.

TUBE VOLTAGE CHART
All readings are to be taken between the chassis and the respect

PLATE VOLTAGE
SCREEN VOLTAGE
78
78
41
78
78
37
75
37
45

PAGE 5-42 SEARS
MODEL 1850,1851 Voltage,Alignment

SEARS-ROEBUCK \& CO. Socket, Parts List

ALIONHENT PROCEDURR

The IF Stages:

1. Conneat the output moter across the loud apeaker terminals. The high scale (about 100 volte) of the meter should be used
2. Connect the ground lead of the test oscillator to the
3. Connect the other lead of the test oscillator, in series nith e 1 mfd. condenser, the the control grid of the IF tube,
4. Set the test oselilatior to 480 kc . and tiune the $\overline{\mathrm{F}}$ output transformer. The 100ations of the tuning adjustmente are shom
5. Change the test oscillator connection to the grid of the translator tube and tune the IF input transformer.
6. Repeat the adjustments to secure greater accuracy. Alor inaya use as low on output as possible from the test oscilRF Allgnment: (Broadcast)
7. Set the test oscillator to exactly 1600 kc .
8. Couple the output of the oscillator to the anterina lead
of the set, with the antenna connected.
9. Turn the dial pointer to exactly 1600 ke . and adjust the oscillator trimmer for maximum output. The oscillator trimmer is on the variable condenser section furthest from the
10. Sot the test oscillator to 1400 kc . and tune in 1 ts signal. Then adjust the translator and antenna trimers for maximum output. The translator trimmer 1 a accessible through the hole in the top of the translator coil shield as shown in
the Service Illustration. The antenna trimmer is the one on the variable condenser section nearest the dial.
11. Set the test oscillator to 600 kc , and tune in 1 ts signal. Then slowly rotate the variable condenser back and and
12. Repeat the 1600 kc . and 1400 kc . adjustments.

Short Wave All gament:

1. Set the test oscillator to 15 megacycies and tune in its signal.
2. Adjust the short wave translator trimmer for maximum output.
3. If necessary, shift the end turns (onamelled wire) or the short wave tranilator coil to secure accurate alignment and maximum output

> 4. Re-adjust the translator trimmer at 15 megacycies. TUBE VOLTAGE CHART

TUBE	PLATE voltage	$\begin{aligned} & \text { SCREENS } \\ & \text { VOLTAGE } \end{aligned}$	control grid voltage
951- Pranslator	122	70	-. 1
230-0scillator	60		-. 6
951-IF	122	70	-. 8
232 - Dete-tor	22.5*	5*	-. 1
233-Output	115	122	-. 1

NOTE: All control grid readings are lower than the actual applied voltage due to high series resistance in the

* - Indicates low reading due to high series resistance in oircuit.

SILVERTONE MODELS 1850 and 1851
Part Mo. Description

R5509a	Board - Terminal, double
R10562	Bushing - Kubber, chassis mounting
R10719	Cable - Battery, model 1850
R10720	Cable - Rattery, model 1851
${ }_{\text {R8352 }}$	Card - Operating
${ }_{\text {R5841 }}$	Choke
R4715	Clemp - Anterna and ground leads
R7012A	Clip - Antenna and ground leads
R11043	C11p - Grid
810670	Coil - Antenna, broadcast
R10674	Coil - Oscillator, broadca
R10671	Coil - Translator, broadenst
R109312	Coil - Antenna, short wave
R109318	Coil- Oscillator, ahort wa
R10672 R10672A	Condenser - Variable Condenser - Variable, complete with dial and drive assembly
R10673	Condenser - Electrolytic, blook
${ }_{\text {R10197 }}^{\text {R9426 }}$	Condonser - Padding
${ }_{\text {R6380 }}^{\text {R10197 }}$	Condenser - Tr
${ }_{\text {R6444 }}$	
${ }_{\text {R6761 }}$	Condenser - . 02 mfd. 600
R7681	Condenser - . 003 mfd . 600 volts

[^14]SEARS PAGE 5-43
MODEL 1854
SEARS-ROEBU்CK \& CO.

PAGE 5-44 SEARS

MODEL 1854
Alignment, Voltage
Socicet Layout

SEARS-ROEBUCK \& CO.

The type 31 Bailast tube maintains the filament voltage ${ }^{\text {vol }}$ at its proper value (2 201 ts). This will be so whether a 2 vol air cell, a dry cell "A" block or a 6 volt storage battery is
used. It is important that the recelver be turned off before removing any tubes otherwise the voltage across the remaining

Although the receiver will afford good reception after the " ${ }^{\text {Bi }}$ batterios have fallen to a lower value, for best results they should be replaced when the total voltage, under load, falls to

TEE 230 AVC CIRCUIT

A portion of the IF signal at the plate of the second IF tube is impressed through the 000025 mfd. Condenser and the 400 M ohm resistor, upon the 230 AlC and During the positive haif cycies of the signal voltage, diode current flows through the 400 M ohm reaistor which 1 s ' connected between grid and plate of the 230 AVC tube, creating a voltage drop across it. This voltage is offectively in series with the nu" battery, being connected to it through the 1 mogohm Vies ${ }^{4}$ "istor which is in the circuit between the 230 grid and the current through the 230 AVC tube, increases the drop across the 400 M ohm resistor and therefore increases the total value of "C" bias. This increased "C" bias is Impressed upon the control grids of the transiator and. FF tubes, decreasing their amplifcecrean. ince increases in algnal strength are offset by tube tends to remain at a constant value.

ALIGMBENT PROCEDUBE
The IF Stages:
high scale (about 100 volts) across the loud speaker terminals. ${ }^{2}$. Connect the ground lead of the test oscillator to the
3. Connect the other lead of the test oscillator, in series With a. In mid. condenser, to the grid of the second $I F$ tube. Leave the grid clip attached to the cap.
4. Set the test oscillator to 175 kc and tune the IF output transformer. The looations of the tuning adjustments are shomm in the Sorvice Illustration.

5 . Change the teat oscillator connection to the grid of the P1rst IF tube and adjust the inter-stage tuning condenser. This of the chaseis alongside of the Candohm resistor
6. Change the tost oscillator connection to the grid of the translator tube and tune the IF input transformer.
7. Repeat all of the adjustments to secure greator accuracy.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoperative.
Broadcast (\#1 Band) Allgnment:

1. Set the test oscillator to exactly 1600 kc .
2. Couple the output of the oscillator loosely to the anterna lead of the set, with the antenna connected.
3. Turn the dial pointer to exactly 1600 kc and adjust the osciliator trimmer for maximum output. The oscillator trimmer is the bakelite base condenser mounted on the back of the
4. Set the test oscillator to 1500 kc and tune in 1ts signal. Then adjust the translator and antenna trimers for section of the variable condenser. The antenns trimer midale one on the variable condenser section nearest the dial.

5 . Set the test osolilator to 600 kc . Tune in its signal and slowly rotate the variable condenser back and forth a degree or two, and at the same time adjust the padder until condenser mounted on the end plate of the variable condenser.
6. Since the adjustments are inter-acting to an extent, it 1s advisable to repeat the entire operation. Always use as lo Short Wave (\#2 Band) Alignment:

1. Set the test oscillator to 4000 kc and couple it loosely to the set's antenna lead, with the antenna connected.
2. Turn the wave band awitch to the \#2 position and tune in the oscillator algnal. 3 . If the calibration is out, shift turns (enamelled wire)
on coil ${ }^{\text {NT }}$, until the proper calibration 1s obtained. The end
plate my be removed from the ohasais in order to gain access to plate may be removed from the ohassis in order to gain access to
3. The turns of coils " A " and " B " may be shifted, if necessary, to obtain allgnment and maximum output.
4. Check the calibration and allgnment at 2000 kc . If they are not correct at this frequency, the 4000 kc adjus tment two frequencies.
5. Cement the coil turns in place.

Short Wave (\#3 Band) Allgnment:

1. Set the test oscillator to 15 megacycles.
2. Couple its output loosely to the receiver's antenne lead,
the antenna connected. Turn the wave band switch to the \#3 with the antemna connected. Turn the wave band awitch to the \#3 position and tune in the oscillator signal.
 4. Tune the test oscillator and the hift turns on coosls "OGcilintor "nd the rece1ver to 6000 kc and and proper calibration are obtained.
3. Repeat operation \#3 at 15 megacyoles.

A loop of \#l4 wire with its ends soldered together to form a short circuited ring, fastened to a bakelite handle will prove useful for determining whether the end turns of the short wave sensitivity is increased when the loop of wire is siowly inserted inside of a short wave coil, it is an indication that the turns of the coil should be moved apart. If the sensitivity 18 , decreased, it indicates ofther that the coil adjustment is correct, or that the turns should be moved closor together.

tube voltage chart
All readings are to be taken between the chassis and the respective element of each tube.

TUBE	$\begin{gathered} \text { PLATE } \\ \text { VOLTAGE } \\ \hline \end{gathered}$	$\begin{aligned} & \text { SCRBEAN } \\ & \text { VOLTAGE } \end{aligned}$	CONTROL GRID VOLTAGE
951 Translator	120	58.5	-1.2
230 Oscillator	44		-2.35
951 lst IF	69	57	- . 3
951 2nd IF	120	57	. 3
230 Detector	Used	with no	d DC voltage.
230 AVc	Used	with no	d DC voltage.
230 1st Audio	120		*
950 Output	120	120	-15

* - Extremely low readings due to high series resistance in circuit.
Actual Translator control grid voltage is $\mathbf{- 4 . 5}$ volts.
Actual Translator control grid voltage is -4.5
Actual IF control grid voltage is -1.5 volts.

SEARS-ROEBUCK \& CO. •

PAGE 5-46 SEARS

SEARS-ROEBUCK \& CO.

Socket,Parts List

ALIGMMENT PROCEDURE

The IF Stages:

1. Connect the output mater across the Ioud speaker terminals The high scale (about 100 volts) of the meter should be used.
2. Connect the ground lead of the test osolilator to the chassis.
3. Conneot the other lead of the test oscillator, in series Fith a . 1 mpd. condenser, to the g.
4. Set the test oscillator to 480 kc . and tune the IF output transformer. The locations of the tuning adjustments are shomi in the Service Illustration.
5. Ohange the test oscillator connection to the grid of the translator tube and tune the IF input transformer.
6. Repeat the adjustments to secure greater accuracy.

Always use as low on output as possible from the test oscillator in order to rendier the AVC action of the set inoperative.
RF Allgnment:

1. Set the test oscillator to exactly 1750 kc . Couple the output of the oscillat.
2. Turn the dial to exactly 1750 kc . and adjuat the acille 1s the one
the dial.
3. Set the test oscillator to 1500 kc and tune in its ignal. Adjust the antenna trimmer for maximum output.

TUBE VOLTAGE CHART
All readings are to be taken between the chassis and the respective element of each tube. Supply voltage 32 volts.

TUBES	PLaTE	SORREN	$\begin{aligned} & \text { OSC. } \\ & \text { PLATE } \end{aligned}$	osc. GRID	$\begin{gathered} \text { CONTROL } \\ \text { GRID } \\ \hline \end{gathered}$
6A7-0sc-Transl -	165	85	165	-3.6	-. 4
78-IF	165	85			-. 4
6B7-AVC-Det-AF	75	20			-. 2
38-output	165	165			-.6*

\# - Extremely low readings due to high series resistance in circuit.
The cover of the power supply unit is fitted with contact fingers to insure good contact with the rest of the power supp
case. It is important that this cover makes tight electricai contact with the case to prevent noisy operation due to electrical disturbances from the vibrator.

The resistor marked "Globar", in the schematic, is a special resistor whose value varios with the voltage. When the recelver
1s first turned. on, the output voltage tends to become very high 18 first turned, on, the output voitage tends to become very high
until the tubes heat surficiently to draw their normal load. under the tube conditions, the Globar resistance drops to a comparatively low value, loading the tranaformer sufficiently to lower the voltage, the Globar resistance increases greatiy so that it no longer constitutes a load on the power supply.

Unlike the earlier Model 1733, the polarity of the power cord plug is not of importance.

The antenna coil is not grounded to the ohassis, so that the recelver depends entiroly upon the installation ground for its ground connection. Accordingly, the best ground possible The polarity of the speaker must be correct. The blue lead connects to the speaker terminal marked " P ". The black lead TEE 6B7 - AVC-Detector-AF
The 480 kc signal from the IF stage is impressed between the cathode and the diode plates of the 6 B7. in serios with the a voltage drop across the control with the grounded end positive with respect to the other end. Since the control grid returns of the 6A7 and 78 tubes are connected to the ungrounded ond of the volume control, the negative bias across it is impressed upon the oontrol grids of these tubes. Any increase in signal
strength increases the diode current and the drop across the volume control, increases the negative control grid bias and so reduces tube amplification. Since increases in signal strength tend to be offset by decreeses in tube amplification, the input to the detector remains substantially at a constant value.

The audio component across the volume control is picked of by the movable arm and fed to the control grid of the pentode portion
the 38.

RBPLACEMENT PARTS AND PRICE LIST

SILVERTONE MODEL 1855

Price

SILVERTONE MODEL 1855	
Description	$\begin{aligned} & \text { Price } \\ & \text { per } 100 \end{aligned}$
Board - Terminal, double	1.34
Board - Terminal, triple	1.78
Board - Fuse	5.85
Tranaformer - IF input	40.44
Transformer - IF output	39.80
Transformer - Power	00.56
Coil - Oscillator	9.33
Coil - Choke	5.74
Condenser - Variable	73.55
Condenser - Electrolytic, 8 mfd. 350 volts	28.00
Condenser - . 5 mid. 160 volts	8.04
Condenser - . 1 mid. 200 volts	5.74
Condenser - . 03 mmp . 800 voits	5.58
Condenser - . 03 mfd . 200 voits	4.49
Condenser - . 02 mpd . 300 volts	4.46
Condenser - . 006 mfd . 200 volts	3.38
Condenser - . 003 mfd .200 volts	3.25
Condenser - . 0005 mma mica	4.56
Condenser - . 0001 mfd . mice	7.97
Control - Tone	34.81
Control - Volume, 500 M ohms	23.60
Cord - Extension	15.75
Dial and indicator	12.87
Escutcheon	7.69
Fuse - 2in amp.	3.04
Insicator	4.40
Inob - Small	4.65
Knob - Smaill with dot	4.90
Knob - Yedium	4.75
Lead - Antenna	3.57
Lead - Ground	6.78
Load - Speaker, black	${ }_{3}^{3.36}$
Lead - Speaker, blue	3.36
Resistor - 1 megohm, $1 / 3$ watt carbon	5.91
Resistor - 500 M ohms, $1 / 3$ matt carbon	5.25
Resistor - 100 K ohms, $1 / 3$ watt carbon	5.91
Kesistor, ${ }_{\text {Resistor }}$	5.25
Resistor - 2500 Ofms, 3 watt	8.65
Resistor - 1000 ohms, flexible	5.25
Resistor - 120 ohms, 5 watt	8.65
Resistor - 4 ohms	9.04
Resistor - Globar, voltage regulating	10.60

SCHEMATIC - MODEL 1857

PAGE 5-48 SEARS

MODEL 1857

 Alignment, VoltageSEARS-ROEBUCK \& CO.

Parts List

The IF Stages:
Connect the output meter across the loud speaker terminals. The high scale (about 100 volts) of the meter should be used.

1. Connect one lead of the test oscillator to the chassis.
2. Connect the other lead of the test oscillator, in sories with a 1 mpd. condenser to the grid of the lst IF tube. Leave egrid clip attached to the cap.
3. Set the oscillator to 175 kc and tune the 2 nd IF output in the illustration.
4. Connect the oscillator, through the .1 mfd. condenser, to the grid of the translator tube and tune the IF input trans-
5. Repaet the adjustments for the IF output transformer and then for the IF input transformer.

Always use as low an output as possible from the test oscillator in order to render the AVC action of the set inoper-

Broadcast (\#1 Band) Alignment:

1. Set the test oscillator to exactly 1600 kc .
2. Couple the output of the oscillator loosely to the
antenna lead of the set, with the antenne connected.
3. Turn the dial pointer to exactly 1600 kc and adjust the oscillator trimmer for maximum output. The oscillator trimmer is the bakelite base condenser mounted on the back of the variable condenser end plate.
4. Set the test oscillator to 1500 kc and tune in 1ts signal. Then adjuat the translator and antenna trimmers for maximum output. The translator trimmer
section of the variable condenser. The antenna trimmer is the mide one on the variabie condenser section nearest the dial.
5. Set the test oscillator to 600 kc . Tune in its signal and slowly rotate the variable condenser back and forth a degree or two
maximum output is obtained. The padder is the is isolantite base condenser mounted on the end plate of the variable condenser.
6. Since the adjustments are inter-acting to an extent, it is advisable to repeat the entire operation. Al

Short Wave (\#2 Band) Allgnment:

1. Set the test oscillator to 4000 kc and couple it loosely
the set's antenna lead, with the antenna connected.
2. Turn the wave band switch to the \#2 position and tune
the oscillator signal. in
${ }^{3}$. If the callibration is out, shift turns (enamelled wire) on coil "E until the proper callibration is obtained. The end plate coils.
3. The turns of coils " A " and " B " may be shifted, if necessary, to obtain alignment and maximum output.
4. Repeat operations \#3 and \#4 at 2000 kc . If the alignment and calibration are not correct at this Prequency, the 4000 kc adjustment should be repeated to obtain a compromise adjustment.
5. Cement the coil turns in place.

Short Wave (\#3 Band) Allgnment:

1. Set the test oscillator to 15 megacycles.
2. couple its output loosely to the receiver's antenna lead, pith the antenna connected. Turn the wave
3. Obtain maximum output and proper calibration by shifting
leads of colls "C", "D" and ${ }^{\mathrm{F}} \mathrm{F}$.
4. Tune the test osciliator and the recelver to 6000 kc and and proper calibration are obtained.

5. Repeat operation \#3 at 15 megacycles.

A loop of \#14 wire with its ends soldered together to form a short circuited ring, fastened to a bakelite handle will prove useful for determining whether the end turns of the short wave
coils need to be moved toward or away from the other turns. If sensitivity is increased when the loop of wire is slowly inserted inside of a short wave coil, it is an indication that the turns of the coil should be moved apart. If the sensitivity is decreased, it indicates either that the coil adjust
or that the turns should be moved closer together.

All readings are to be taken between the chassis and the respective element of each tube.

TUBE		$\begin{gathered} \text { PLATE } \\ \text { VOLTAGE } \end{gathered}$	$\begin{array}{r} \text { SCREEN } \\ \text { VOLTAGE } \end{array}$	CONTROL GRID VOLTAGE
851 Translator	-	122	55	-1.2
230 Oscillator	-	45		-2.75
951 1st. IF	-	115	55	- . 3
951 2nd. IF	-	122	55	- . 2
951 Detector	-	*	*	-4.5
230 AVC	-	No applled DC voltage		
233 Output	-	120	122	*

* - Extremely low readings due to high series resistance in circuit

Actual 233 control grid voltage is approximately 13 volts. Actual IF control grid voltage is -1.5 volts.

REPLACEMENT PARTS AND PRICE LIST

FOR

	SILVERTONE MODEL 1857	
Part No.	Description	$\begin{gathered} \text { Price } \\ \text { per } 100 \end{gathered}$
R8297A	Board - Terminal, double	1.34
R8308A	Board - Terminal, triple	1.78
R9446A	Board - Terminal, 4 terminals	2.15
R7243	Bushing - Fibre, wave switch and volume contro	11.44
R10562	Bushing - Rubber, chassis mounting	1.71
R7067	Cable - Battery	21.69
R6415	Transformer - IF input	15.75
R6415S	Transformer - IF input, complete less shield	51.83
R6401F	Transformer - IF output, (Volume control)	56.34
R10697A	Transformer - Speaker	46.42
R4794	Washer - Insulating, tone control	. 76
R8088	Washer - Insulating, tone control	19
R8446	Coil - Antenna	19.25
R8447	Coil - Translator	15.44
R6993U	Coil - Oscillator	45.64
R10528	Coil - IP output transformer	10.94
R6973A	Coil - Antenna, intermediate range	16.53
R6973B	Coil - Antenna, high range	16.23
R6974D	Coil - Oscillator-translator, intermediate range	
R6974C	Coil - Oscillator-translator, high range	23.25
R6667	Collar - Stop, volume control	2.13
R11014	Collar - Stop, gang switch	1.71
R10545	Condenser - Variable	140.25
R10545A	Condenser - Variable, complete with dial and drive assembly	233.67
R7137	Condenser - . 0012 mfd . padding	16.25
$R 9513$	Condenser - Trimmer, bakelite base, mounted on variable condenser end plate	6.56
R10546	Condenser - Dry electrolytic	71.38
R6565	Condenser - IF input, tuning	17.20
R6139	Condenser - IF output, tuning	21.81
R6444	Condenser - . 1 mid. 200 volts	5.74
R6761	Condenser - . 02 mfd. 600 volts	5.06
R6954	Condenser - . 005 mfd .600 volts	5.38
R7681	Condenser - . 003 mfd .600 volts	4.63
R6952	Condenser - . 001 mfd .600 volts	4.38
R4592	Condenser - . 00025 mica	8.28
R4303	Condenser - . 0001 mica	7.97
R8711	Condenser - . 000025 mica	5.60
R10529	Control - Tone, 500 M ohms	37.25
R6401F	Control - Volume, (IF output transformer)	56.34
R7076	Resistor - Candohm	7.75
R8363	Resistor - 5 megohm, $1 / 2$ watt carbon	5.25
R6690	Resistor - 1 megohm, 1 watt carbon	5.90
R5823	Resistor - 1 megohm, $1 / 2$ watt carbon	8.54
R7228	Resistor - 500 M \%hms, $1 / 3$ watt carbon	5.25
R7586	Resistor - 100 M ohms, $1 / 3$ watt carbon	5.91
R6637	Resistor - 50 M ohms, $1 / 3$ watt carbon	5.25
R6115	Resistor - 40 M ohms, $1 / 3$ watt carbon	6.57
R6640	Resistor - 20 M ohms, $1 / 3$ watt carbon	5.625
R5821	Resistor - 20110 ll ohms, $1 / 2$ watt carbon	8.54
R7226	Resistor - 5 M ohms, $1 / 3$ watt carbon	5.25
R6636	Resistor - 140 ohms, $1 / 3$ watt carbon	5.25
R8364	Resistor - 700 ohms, $1 / 2$ watt carbon	5.25
R8922	Resistor - 100 ohms, $1 / 3$ watt carbon	5.25
K10505	Ring - Glass clamping	. 60
R10623	Ring - Felt -	. 94
R5085	Screw - Escutcheon	. 54
R10534A	Shaft - Volume control	2.55
R10535A	Shaft - Dial drive assembly	6.80
R6018A	Shield - Coil	6.05
R6573	Shield - IF transformer	4.24
R10442	Shield - Tube, base	. 89
R10440	Shield - Tube, top	2.65
${ }_{\text {R110441 }}$	Shield - Tube, cap	1.50
R11016	Spacer - Wood	. 50
R8366	Socket - 4 prong	2.19
$\begin{aligned} & \text { R8367 } \\ & \text { S6520B } \end{aligned}$	Socket - 5 prong	2.25
R10538	Speaker - Wave band selector	354.89
R10538B	```Switch - Mave band selector, complete with coil assembly```	52.50 237.78

SEARS PAGE 5-49
SEARS-ROEBUCK \& CO.

PAGE 5-50 SEARS
MODEH 1858 Alignment, Voltage

SEARS-ROEBUCK \& CO. Socket,Parts List
silvertone - - model 1858 * * *

The Silvertone Model 1858 is a five tube automobile radio receiver almost identical w1th the Model 1730 described in
Service Menual Supplement \#25. As an examination of the Service lenual supplement indily the only circuit difference is in the riltering of the denemotor. The chief mechanicel difference is that the pilot light lead of the Model 1858 is contained in the same covering as the drive cables. The 1730 mechanical and general information contained in the
manual will appiy equally as well to the Model 1858.

The tubes and their functions are:

$$
\begin{aligned}
& 78 \text { - BF } \\
& \text { 6A7 - Oscillator-Translator } \\
& 78 \text { - IF } \\
& 85 \text { - AVC-Detector-AF } \\
& 41 \text { - Output } \\
& \text { ALIGNMENT PROCELURE }
\end{aligned}
$$

The IF Steges:

1. Connect the output meter (low voltage scale) across the loud speaker voice coil.
2. Connect the ground lead of the teat oscillator to the ohassis.
3. Connect the other lead of the test oscillator, in seriea with a . 1 mfd . condenser, to the control grid cap of the 78 IF tube, leaving the grid cilp attached to the cap
4. Set the test oscillator to 175 ke and tune the IF output transformer. This transformer is mounted under the chassis. The location
5. Change the test oscillator connection to the grid of the translator tube and tune the IF input transformer.
6. Repeat the adjustments to secure greater accuracy Alwas use as low an output as possible from the test oscillator RF Allgnment:
a .0002 D $^{\text {Connect the test oscillator to the antenna lead through }}$ 2. Open the variable condenser plates to the point where the rotor plates just mesh with the stator plates.
7. Set the test oscillator. to exactly 1500 kc and adjust the oscillater trimmer for maximum output.
8. Set the test oscillator to 600 kc and tune in its signal. Thegree or two and at the same time adjust the padder until maximum output is obtained.
9. Repeat operations 1 to 4.
10. Set the test oscillator to 1400 kc and tune in its signal.
11. Adjust the antenna and translator trimers for maximum output.

TUBE VOLTAGE GHART

All readings are to be taken between the chassis and the respective element of each tube

SEARS PAGE 5-51
MODES 7043,7044
SEARS-ROEBUCK \& CO. Schematic, Socket Alignment Data

trol grid cap of the first detector tube, to ground. Do not remove any of the tubes from the sockets and it is not necessary to disconnect the grid cap clip ${ }^{*}$ from the first detector tube. Reset trinmers No. 5, No. 6, No. 7 and No. 8 for maximum output. While this test oscillator is working into the intermediate frequency stages, no adjustment of the tuning condenser on the receiver will have any, effect inasmuch as the intermediate irequency stage is fixed tuned.

If your test oscillator is properly designed, it will supply exactly $175 \mathrm{k} . \mathrm{c}$. and when trimmers No. 5, No. 6 , No. 7 and No. 8 are set and tuned for maximum output, they will be correctly adjusted.

Next, disconnect the 175 K.c. test oscillator and connect to the antenna binding post of the receiver, the output lead from your broadcast test oscillator or tune in a broadcast signal around $1400 \mathrm{k} . \mathrm{c} .$, then reset trimmer No. 2 and No. 1, respectively, for maximum output. This adjustment will track the first detector and r.f. stages.
To check the calibration of the receiver, whether it be high or low, trimmer No. 3 (oscillator) should be reset until a station of known high frequency is brought in at the correct dial marking with peak volume. If your broadcast test oscillator is accurately calibrated, it might be used in place of the broadcasting station signal. In this ad justment, a broadcast station or test oscillator signal, at about $1400 \mathrm{k} . \mathrm{c}$. , should be chosen, the setting of the trimmer at $.1400 \mathrm{k} . \mathrm{c}$. is more critical than it would be at $600 \mathrm{k} . \mathrm{c}$.
The next adjustment is important and not easily explained in writing so pay close attention to the following instructions We will now balance the oscillator to the r.f. and first dector stages.

Tune the external broadcast test oscillator and the rew ceiver both to $600 \mathrm{k} . \mathrm{c}$. then slowly increase or decrease the capacity of No. 4 (oscillator padding trimmer) at the same time and continuously tuning back and forth across the signal with the receiver tuning condenser gang. The output meter needle will now be swinging up and down in step with the variation in tuning. Watch the peak of this swinging closely and readjust No. 4 trimmer until the swinging needle reaches its highest peak.

Retune the receiver and broadcast test oscillator to 1400 k.c. and re-check trimmer No. 3 to make sure that the adjustment of No. 4 has not thrown the receiver out of calim bration. If it has, then readjust No. 3 until the calibration is correct, as previously explained, and check on bration is correct ${ }^{\text {n }}$ as previously explained, and check on
trimers No. 2 and N. 1 , to make sure that the adjustment of No. 4 has not reduced the sensitivity.

CIRCUIT RESISTANCE ANALYSIS
Model. 260 Socket to ground

Stage	Grid	$\begin{gathered} \text { Cath- } \\ \text { ode } \end{gathered}$	Heater	Plate	$\underset{G}{\text { Screen }}$	Suppr.	$\underset{G}{S p a c e}$
R. F.	$\underset{\text { ty }}{\operatorname{Inf}} \operatorname{in} 1-$	500	. 1	18,400	8,700
1st.Det.	4.0	10,000	. 1	18,800	8,700	. 08
$\begin{aligned} & \text { Oscil- } \\ & \text { lator } \end{aligned}$	100,000	. 08	. 1	8,700	\ldots	...	\cdots
I. F.	$\underset{\text { In }}{\text { Infini- }}$	510	1	18,600 \cdot	.
A.V.C. Det.	230,000	510	. 1	510
$\begin{aligned} & \text { A.V.C. } \\ & \text { Det. } \end{aligned}$	230,000	510	. 1	510
Audio	750,000	422	.1	110,000	.	. ${ }^{\text {. }}$
Output	275,000 1	19,000	18,800
Output	275,000. 1	19,000	18,800
Rect1fier			18,800	1,580

Note: Readings of one megohm and over are given as "infin-
bty". The first three significant figures, only are interpreted from the ohm meter in each reading; the individual resistance in the circuit can be readily checked upon removal of chassis.

P-1038
P-1106
P-1118 P-11253 $\mathrm{P}-1253$
P-1459
P-1472
P-1581
P-1595
P-1597
P-1682
P-1683
P-1692
P-1728
P-1728
P-1944
$\mathrm{P}-4037$
P-4047
P-4229
P-4246
P-4256
P-4259
P-4260
P-4262
P-4263
P-4269
P-4271
P-4292
P-4295
G-1269
G-1272
G-1311
G-1311
G-1415
$\mathrm{G}-148 \mathrm{~B}$
G-1483
G-1484
G-1488
G-1489
G-1490
G-1490A
G-1490B
G-1492 G-1492A
G-1493
G-1493
G-1494
G-1498
G-1499
G-1501

Dial light
1,000,000 resistor
Mounting washers
Fixed condenser (Green dot)
Tube shield base
Tube shield.
Mounting screws.
Tube sockets (type 80)
Tube sockets type 27
Tube sockets type 51)
100,000 ohm resistor
Fixed condenser (White do \dot{t})
Fixed condenser (White
250,000 ohm resistor
Knobs (Large).
Knobs (Small)
Antenna ground post.
Spkr. diaphragm.
Escutcheon plate
Tone control and switch
Tube sockets (type 56)
Tube sockets
Tube sockets type 56 type 57)
Tube sockets type 57).
10,000 ohm resistor. R. F. choke.

Pentode bias resistor Ant. Osc. and R. F. coil shieids R. F. coil (less shield) Osc. Coil (less shield)
lst I. F. transformer.
Filter choke
Output transformer
Speaker voice coll
Osc. trimmer condenser
Dial and scale assembly
Power trans., 110 V. 60 Cy
Power trans.,11io V. 60 Cy .
Power trans., 220 V .60 Cy .
Filter pack,ill V. 60 Cy
Filter pack,110 V. 25 Cy
Ant. coil (iess shield)
2nd I. F. transformer.
Bypass condenser (AF)
Bypass condenser

VOLTAGE ANALYSIS
Model 260

No.	Stage	Type Tube	$\left\|\begin{array}{c} \text { "A" } \\ \mid \text { Volts } \end{array}\right\|$	$\begin{gathered} \text { "B" } \\ \text { Volts } \end{gathered}$	Cont. Grid Volts	Cath. Volts	$\begin{array}{\|c} \text { Screen } \\ \text { Volts } \end{array}$	$\begin{array}{\|c\|} \hline \text { Ip } \\ \text { Norm. } \\ \hline \end{array}$	Misc.
1	R. F.	$\begin{array}{\|c\|} \hline 51 \\ 0 . .30 \\ \hline \end{array}$	2.15	250	. 4	4.	80	4.	- .
2	$\text { list } \mid$	57	2.25	137	4.5	5.	83	. 5	Sup-pressor Grid 4.5
3	Osc .	27	2.25	107	0	0	0	8.
4	I.F.	$\begin{gathered} 51 \\ \text { or } 35 \end{gathered}$	2.25	244	. 4	4.	76	1.7	.
5	$\left\|\begin{array}{l} \text { AVC } \\ \text { Det } \end{array}\right\|$	27	2.25	0	2.5	4.5	0	0
6	AVC Det	27	2.25	0	2.5	4.5	0	0
$7 .$.	$\begin{aligned} & \text { lst } \\ & \text { Audio } \end{aligned}$	56	2.25	178	2.	4.	0	1.5	.
8	Pentode.	47	2.25	235	16.	0	0	25.	Pentode Sp. Grid 24.5
9	Pentode	47	2.25	235	16.	0	0	25.	Pentode Sp. C Grid 245
10	Rect.	80	4.9	140	0	0	0	98. ${ }^{\text {a }}$

Vol. control "full on"
Tested with Weston model 565 analyzer.
Line: 115 Volts.

CONB REPLACEMENT of OUTSIDE TTPE SUSPENSION SPEAKERS (Fig.2).

1. Unsolder the voice ooil leads from their terminals.
Remove the suspension mounting sorews.
2. Drill out the cone mounting eyelets or out off the small mounting rings will not be damaged.

Remeve the cone and blow out any dirt or metal ohips fram the
air gap.
5. Re-assemble the oone, suspension, and oardboard mounting rings
in their original order. Leave the suspension mounting sorewe loose onough so that the suspension oan be shifted about.
6. Insert four strips about $3^{\prime \prime}$ long, $1 / 8^{\prime \prime}$. Wide and $.01^{\prime \prime}$ thick (out from a calling oard) between the inside of the voice coil and the can be obtained from the factory. Part No. S-9177 for $5^{\prime \prime}$ and 6^{n} speakers. Part NO. S-7391 for all other speakers.
7. Replace the eyelets around the edge of the oone, leaving
blank any holes that were originally left blank for speaker to baffle mounting screws.
No. R-8033).
8. Solder the voice coil leads to their terminals.
9. Tighten the suspension sorews.
10. Remove the four spacer strips.
11. If it should happen that the oone is not properly centered
after the replacement, loosen the suspension mounting sorevis and move the arter the replacement, loosen the sus pension mounting sorevis and move the
cone around until proper oentering is secured. Sometimes several attempts
are nesessary before proper oentering oan be had.

$$
\begin{aligned}
& \text { REPLACING THE FIELD COIL IN SPEAKERS HAVING } \\
& \text { THE POLE PLATE RIVETED TO THE YOKE (Fig.3). }
\end{aligned}
$$

1. It is always advisable to remove the oone first, as previously
outlined, to avoid damaging it and to facilitate the work of field coil
2. Make a sketoh of the ooil oonneotions, paying attention to the polarity, to particular terminal. This is important since incorrect polarity in to a partioular terminal. This is important since incorreat polarity in \quad ing
3. Drill out the pole-plate-to-yoke-rivets, or out off the small head in others steel. It probably will be easier to drill the steel ones than to out them off.
4. Dis-assemble the yoke and pale plate and replace the defective
coil. Be sure to replace any cardboard spacer rings in their original position.
5. Re-assemble the yoke and pole plate, using nuts and bolts instead
of the rivets used originally. 6. Replaoe the cone and voioe ooil as outlined previously.

REPLACING THE FIELD COIL IN SPEAKERS HAVING
The procedure is the same for this type of speaker as for the type with rivets removed. Be sure to keep the pole plate and yoke in the same relative
positions as they were in originally, so that the pole stem will remain positions as they were in originally,
properly centered in the pole plate. REPLACING THE FIEID COIL IN SPEAKERS
THE POLE PLATE WELDED TO THE YOKE.
 2. It will be neoessary to break thle welds with a cold ohisel and
hammer, but before doing so, drill four holes through the pole plate and yoke for the bolts and nuts which will replace the welds. Drilling the pass the bolts will insure proper centering of the pole stem in the pole plate.

SEARS-ROEBUCK \& CO.

aUTODYNE

It is advisable to use a bakelite screwdriver when making any of these adjustments.

First, connect the 175 k . c. oscillator output leads from the control grid cap of the superautodyne tube to ground. Do not remove any of the tubes from the. sockets, and it is not the tube. Reset trimmers numbers 5, 6 and 7 for maximum output. While this test oscillator is working into the intermediate frequency stages, no adjustment of the tuning condenser on the receiver will have any effect, inasmuch as the intermediate frequency
stage is fixed tuned stage is fixed tuned.
If your test oscillator is properly designed, will supply exactly 175 k . c., and when maximum output, they will be correctly adjusted and should be sealed.

Next, discomnect the 175 k. c. test oscillator and connect to the antenna binding post of the receiver, the output lead from your broadcast test oscillator, or tune in a broadcast signal around 1400 k . c., then rese trimmers numbers 2 and 1 respectively ror the super-autodyne grid circuit of the R. F. stage.

To check the calibration of the receiver whether it be high or low, trimmer number 3 should be reset. until a station of known high frequency is brought in on the correct dial marking with peak volume. If your broadcast test oscillator is accurately calibrated, it might be used in place of the broadcasting cast station or test oscillator signal at about 1400 k . c. should be chosen. The setting of 1400 k . c . Should be chosen. The setting of than it would be at 600 k . c.; calibration, therefore more accurate.

The next adjustment is important and not easily explained in writing, so pay close at tention to the following instruction. W will now balance the oscillator to the r. f. and first detector stages.
Tune the external broadcast test oscillator and the receiver both to 600 k.c., then slowly ncrease or decrease the capacity of No. 4 time and continuously tuning back and forth cross the signal with the receiver tuning cross the signal with the receiver tuning will now be swinging up and down in step with the variation in tuning. Watch the peak of this swinging closely and readjust No. 4 trimmer until the swinging needle reaches its highest peak.

Retune the receiver and broadcast test oscillator to 1400 k.c. and re-check trimmer No. 3 to make sure that the adjustment of No. 4 has not thrown the receiver out of calibra tion. If it has, then readjust No. 3 until the calibration is correct, (as previously explained), and check on trimmers No. 2 and No. 1, to make sure that the adjustment of No. 4 has not reduced the sensitivity.

-

PAGE 5-56 SEARS
MODEL 7049
Resistance Test Data SEARS-ROEBUCK \& CO.

SEARS-ROEBUCK \& CO.

RESISTANCE ANALYSIS

TUBE	STAGR	GRID	CATHODE	HEATER	PLATE	SCREEN	SUPPRESSOR
58	RF	Infinity	500	$\bullet 1$	6300	3000	500
57	1 Det.	$4 . C$	10,000	.1	6300	3000	10,000
56	Oscil.	100,000	0	$\cdot 1$	3000	-	-
58	IF	Infinity	500	$\cdot 1$	6300	3000	500
56	2 Det.AVC	250,000	500	.1	500	--	-
56	AF	750,000	300	.1	100,000	-	-
46	Driver	500,000	-	.1	7600	7600	-
46	Class "B"	2400	-	.1	6700	2400	-
46	Class "B"	2400	-	.1	6700	2400	-
80	Rectifier	$-\infty$	-	6500	2400	--	-

S.R. Ne 7110

4-20-134

GENERAL INFORMATION
This set is designed to operate on 105-120 volts AC or DC from 25 to 60 cycles. The cord of the set will become quite warm in operation. This is a normal condition, the voltage reducing resistor being an integral part of the line cord for rapid dissipation of heat.

The set is of the conventional tuned radio frequency type and is so developed as to give a minimum of trouble and a maximum of enjoyment.

It is recomended that the aerial be used that is supplied with the set. However, if a longer aerial is used, it is advisable to rebalance the antenna stage of the set to the aerial used. To accomplish this, remove the set from the cabinet and set the dial at about 20 on the scale. Turn the compensator screw on the rear section of the variable condenser back and forth until maximum signal strength is obtained.

This set is designed to oscillate across a major portion of the breadcast band. This regeneration is controllable by reducing the volume of the set. Oscillation in a set of this type increases the sensitivity from ten to twenty times.

PARTS LIST

No.
51 Magnetic speaker
52 Variable condenser 2 gang
53 Set of coils - complete
53a Antenna coil - only
53b R F Coil - only
54 Cabinet
55 Cordohm 285 ohm
60 Volume control
61 Antenna cords
70 Electrolytic condenser 71 Knob

Terminal strip- 3 lug Name Plate -

Silvertone or Selector Any tube socket (state no. of prongs)
Any resistor -(state ohms and watts)
Any bypass condenser (state capacity)

SEARS PAGE 5-50
MODE 7117,1859-A Schematic
Voltage

SEARS-ROEBUCK \& CO.

ALTGMAST PROCRDURR: It should rarely be necessary to realign the intermediate transformers or the variable condenser. As a nater of fact, this should only be necessary when an intermediate transf armer, oscillator or R. J. coil has become defective and require replacement. For properly aligning either the in termediate transformer or condenser it is necessary that an oscillator be used with some type of output mesвuring device.

IMTNRTIRDIATES ALTGMTENT:

1. Connect the high side of the oscillator output to the control grid of the GA7 tube leaving the control grid cap disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 370 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate trans former trimer which is accessible from the top of the I. F. transformer up and down until maximum reading is obtained on the meter, then adjust the trimmer screw located inside of the brass hex nut in the same manner.
4. The second I. F. transformer should next be adjusted in the same manner as the first I. F. transformer .

TO ALIGI THE VARIABLE CONDFASERR: To align the variable condenser and padding condenser it is necessary that the receiver chassis be removed from the set housing, After the receiver chassis has been removed connect the remote control flexible drive shafts in their respective couplers, and set the dial needle on the dial face so that the dial calibration is correct.

1. Connect the high output side of theoscillator to the antenna and the ground to the recei ver chassis.
2. Tune the receiver to exactly 1500 kilocycles on the dial and adjust the oscillator to this frequency. BRIMG IN THE 1500 KILOCYCLE SIGNAL (TO KAXIMNM OUTPUT) BY ADJUSTING THE OSCILLATOR VARIABLE CONIENSER TRIMYGR MOUNTED ON TOP OF THE VARIABIE CONDENSER. THEN ADJUST THE OTHER VARIABLE CONDENSER TRIMNTR FOR MAXIMOM OUTPUT. Looking at the front of the receiver the first section of the variable condenser is the oscillator section and the other section tunes the antenna coil.
3. Tune the receiver to approximately 600 kilocycles on the dial and set the oscillator to this frequency then adjust the 600 padding condenser which is located on the right hand side and accessible through the hole in the chassis for maximum output. Always rock the condenser slifhtly to the right and left when making this adjustment. using the position where greatest output is obtained.

Always determine the polarity of the car battery post which is grounded to the automobile chassis before installing the receiver. When shipped from the factory the receiver is properly connected as illustrated (Fig. 3) for installation in automobiles which hive the positive (+) battery post grounded to the car frame. If the negative (-) battery post is grounded, the position of the red and blue leads as shown on the terminal strip diagram must be reversed. As the terminal strip is located underneath and toward the right front corner of the recei ver chassis it is necessary to remove the chassis from the set housing to make this change. This is accomplished by removing the sheet metal screw that grounds the antenna shield lead to the housing top, the twelve (12) machine screws around the edge of the housing front, the single pachine screw on the bottom of the housing and then grasping the front panel of the housing and pulling outward. Using the receiver in an automobile with improper terminal atrip polarity connections will result in damage to the vibrator unit, transformer or electrolytic condenser.

PART RUTBRGR

1143	Antenna Coil
1146	Oscillator Coil
1141	First I. P. Transformer
1142	Second I . F. Transf ormer
1155	Dynamic Speaker
9673	Padding Condenser
1139	Two Gang Condenser
1145	Volume Control
9328	Electrolytic Condenser $2 \times 5 \mathrm{Mfd}$
9458	.00025 Mrd. Moulded Condenser
9459	. 0005 Mfd. Moulded Condenser
7934	. 0001 Mrd. Moulded Condenser
9445	. 1 MPd. 200 Volt Condenser
1148	. 5 Mfd. 200 Volt Condenser
9468	. 01 Mfd. 400 Volt Condenser
9546	. 01 Mfd. 600 Volt Condenser
1150	. 004 Mfd. 600 Volt Condenger
1151	.1 Mrd. 400 Volt Condenser
1167	. 02 Mfd. 200 Volt Condenser

1184
694368799385
9089
9089
1152 1152
68756875
9460
6786
69848906
11591140
1137
1138
1144

75 Ohm Wire Vound 1 Vatt Resistor
25,000 Ohm 1 Watt Resistor
50,000 0he 1/3 Watt Resistor
15,000 Ohe 1/3 Vatt Resistor
500 Ohm 1/3 Watt Resistor
400 0hm 1/3 Vatt Resistor
250 Ohm 1/3 Tatt Resistor
3,000 $0 \mathrm{hm} 1 / 3$ Watt Resistor
3,000 Ohm $1 / 3$ Watt Resistor
10,000 him $1 / 3$ Wett Resistor
500,000 0hm 1/3 Watt Resistor
$250.000 \mathrm{Ohm} 1 / 3$ Watt Resistor
10 Ampere Puse
"A" Battery Cable complete with fuse
Thbrator
Power Transformer
2×8 Mfd. Condenser Block
R. F. A" Choke
R. F. "A" Choke
${ }_{\cdot} .5$ yfd. Generator Condenser

SEARS PAGE 5-61

PAGE 5-62 SEARS
MODET T118,1708-A
Socket Layout
SEARS-ROEBUCK \& CO.
Chassis, Parts List

SEARS-ROEBUCK \& CO.

PAGE 5-64 SEARS
MODEL 7121
Schematic
SEARS-ROEBUCK \& CO.
Notes, Parts List

GENERAL INFORMATION

This set is designed to operate trimming condensers until loudest on 105-120 volts, 50-60 cycle, A.C. only.

The set is of conventional tuned tune to some weak signal at 1400 radio frequency type, developed to k.c. and check trimmers again. give best results with a minimum of trouble.

An antenna approximately 40' out-
PARTS LIST side is recommended, but it is possible to operate this set on 20-25' inside.

Below are listed a few suggestions as to services

1. Hum-
a. Defective filter condenser
b. Bad tubes
c. Defective bypass condenser
d. Open resistor
2. Weak -
a. Poor tubes
b. Set out of balance
c. Shorted bypass condenser
3. Poor tone -
a. Speaker off center or dirt in voice coil
b. Defective filter condenser
c. Poor or defective tubes

This set is designed to oscillate about one-third to half way up the band starting from the police signals - this can be controlled with the volume control.

To rebalance set - turn variable condenser all the way open and tune

SEARS PAGE 5-65

SEARS-ROEBUCK \& CO.

MODEL 7124
Schematic
Alignment,Parts

GENERAL INFORMATION
This set is designed to operate on 304 g " H Osc. " 105-120 volts, A.C. The regular band 305 dirplane Dial complete covers from $1712 \mathrm{KC}-550 \mathrm{KC}$ and short

256 Vol. control-500M ohm
wave from 15-55 meters.

To align set on broadcast, remove 56 oscillator tube, trim Intermediate Frequency Transformers at 456 KC from an oscillator, feeding same into 57,

306
261

158

307
108 first detectar grid. Secondly, open gang condenser wide open and adjust trimmer condensers on top to maximum 308 noise level, then adjust low frequency 309 padder at approximately 600 KC ; after doing this go back and recheck at 1700 KC .

To adjust short wave, turn switch left and tune gang condenser to 31 meters on dial and trim small padders underneath to maximum noise level or some station, checking oscillator coil padder with gang condenser tuned at different points.

PARTS LIST - MODEL SR 7124
No.
301
Dynamic speaker $8^{(10}$
302 Power Transformer
156884 Ele ctrolytic cond.
303 Variable condenser 3 gang
304 Set of coils complete
304aRF antenna coil only
304 b RF Int. " "
304c RF OSC. " "
304 d 456 KC IF N
304e SW \& BC Int. " "
304f " " n Ant. n n

Tone control-50M "W/s
A.C. Switch

Power cord \& plug
10 mfd 25 t Electrolytic Padder condenser 7 plate
Short wave switch Terminal strip-3 lug .01 mfd 600 v condenserin can - 0018 mica condenser Any tube socket (state No.of prongs) any resistor
(state ohms \& watts) Any by pass condenser (state capacity)

PAGE 5-66 SEARS
MODEJ 7126
Schematic, Parts
SEARS-ROEBUCK \& CO.
Service Notes

GENERAL INFORMATION
This set is designed to operate on 105-120 volts AC or DC from 25 to 60 cycles. The cord of the set will become quite warm in operation. This is a normal condition, the voltage reducing resistor being an integral part of the line cord for rapid dissipation of heat.

The set is of the conventional tuned radio frequency type and is so developed as to give a minimum of trouble and a maximum of enjoyment.

It is recommended that the aerial be used that is supplied with the set. However, if a longer aerial is used, it is advisable to rebalance the antenna stage of the set to the aerial used. To accomplish this, remove the set from the cabinet and set the dial to about 20 on the scale. Turn the compensator screw on the rear section of the variable condenser back and forth until maximum signal strength is obtained.

To align Short Wave, open variable condenser about half way and adjust the two short wave padders, one underneath and one on top of chassis, to maximum noise level.

This set is designed to oscillate across a major portion of the broadcast band. This regeneration is controllable by reducing the volume of the set. Oscillation in a set of this type increases the sensitivity from ten to twenty times.

SILVERTONE - MODEL 7128

The SILVERTONE Model 7128 is a six tube superheterodyne automobile radio receiver. It uses a full wave vibrator and tube rectifier to supply the " $B^{\prime \prime}$ voltage.

The tubes and their functions are:

$$
\begin{aligned}
& 78 \text { - RF } \\
& \text { 6A7 - Oscillator-Translator } \\
& 78 \text { - IF } \\
& 85 \text { - AVC-Det-AF } \\
& 41 \text { - Oitput } \\
& 84 \text { - Rectifier }
\end{aligned}
$$

The resistor marked "Globar" in the schematic, is a special voltage regulating resistor. Its value varies with the voltage applied to it. When the receiver is first turned on, the output the tubes heat sufficientiy to draw their normal ioad. Under these conditions, the Globar resistance drops to a comparatively low value, loading the transformer sufficiently to prevent damage. As the tubes become heated, tending further to lower no longer constitutés a load on the power supply.

The voltage drop across the volume control, due to the 85 diode current, is used for AVC voltage.
The general information given in Service Manual Supplement

ALIGNMENT PROCEDURE

The IF Stages:

1. Connect the output meter (low voltage scale) across the loud speaker voice coil.
2. Connect the ground lead of the test oscillator to the chassis.
3. Connect the other lead of the test oscillator, in series ith a I mfd. condenser, to the control grid cap of the 78 IF tube, leaving the grid cilp attached to the cap.
4. Set the test oscillator to 175 kc and tune the IF output transformer. This transformer is mounted under the chassis. The location of its tuning adjustments is shown in the Service Illustration.
5. Change the test oscillator connection to the grid of the translator tube and tune the IF input transformer
6. Repeat the adjustments to secure greater accuracy Always use as low an output as possible from the test oscillato In order to render the AVO action of the set inoperative

RF Alignment:

1. Connect the test oscillator to the antenna lead through a . 00025 mfd . condenser.
2. Set the test oscillator to exactly 1500 kc .
3. Turn the variable condenser plates all the way out. Then 11p a piece of card about the thickness of a postal card between the stator and the short end of the rotor plates in such a way that the plates cannot be meshed. Turn the rotor plates sufficiently to clamp the piece of paper between them and the stator. With the plates in this position, adjust the oscillator trimuer for maximum output.
4. Adjust the antenna and translator trimmers for maximum output.
5. Set the test oscillator to 600 kc and tune in 1ts signal. Then slowly rotate the variable condenser back and forth a degree or two and, at the same time, adjust the oscillator padder until maximum output is obtained
6. Repeat the trinmer adjustments at 1500 kc .

TUBE VOLTAGE CHART
All readings are to be taken between chassis and the respective element of each tube.

PAGE 5-2 SENTINEL

MODEL 114
 Alignment Data
 Voltage,Parts List

SENTINEL RADIO CORP.

POLTAGE TABLE

Mever check roltages until all tubes are fuliy warmed up to proper operating condition. The voltage table given below is taken at 115 volts line with a Nodel 547 reston set checker. it mist be remembered that the voltage readings taken vary direotiy as the 11

Tube Foltages

115 V. line Volume Control full on
*These readings are only oomparative and are not true voltages applied. The volt zeter, when the readings are taken at these poipts, is in series with a very high resistance.
**To read the 247 blas, read between 247 grid and ground.
ALIGMENNT OF RECEIVER:
beoause of the oonstruction and thorough impregnation of the intermodiate coils, the intermediate stages should rarely need rotracking. Only whon an internediate coil has become defective due to an open or burnod out winding, should it be necessary to readjust the intermediate trimers. Shocild this occur, it is necessary that an osciliator be used and the intermediate trimers be adjusted at lif kilocycles. To allgm the intermediate stages, conneot the high side of the osoillator output to the erid circuit of the idrst. detector, Whioh is done by disconnecting the grid cap of the 224 first detector end connecting the high side of the test oscillator to the oontrol grid of this tube. The ground side of the test osciliator should be oonneoted to the eround post on the chas:1s. Set the osciliator at 175 kilocycles and adjust the output of the oscillator so that convonient reading is obiained on the output meter. Be slire that the output from the osolllator is not so large that it vill overload the second detector. if during the alignment the meter goes off soale, reduce the output of the test oscillator or adjust the recelver volume control.

The trimmers of the intermediate coils are accessible through the small holes in the bot tom of the chassis. there are two trimaers to each intermediate coll. dilgn the grid trimiter of the rirst intermediate coil. After a maximun reading is obtained by adjusting the Erid trimmer on the first intermediate, adjust the primary for marimu reading and then reoheck the grid side to make certain the aligraent of the secordary has not been changed by the adjustment of the primary. The same procedure is followed in aligning the secced intermediate oolle. dfser both intermediate ooils are properiy aligned the adjustrent of the intermediate stage is complete and they ahould not be further disturbed.

Replace the grid cap on the pirat deteotor and conneot the osolliator output leads to the antenna and
 Eilocycles on the dial. It is important that the recelver be tuned to this point. If the receiver is out of the oabinet it will be necessary to use some temprary indicator so that the position 1435 kilocyles on the the dial may be accurately located. (This indicator should be set so that when the variable condencers are at the marimum oapacity stop the indicator points to the last line on the dial at the low frequenoy ond.) Then track the rariable condensers by adjusting the trimer condensers in the following order: osciliator, antenna and radio rre uency - (reading from the front of the recelver toward the back, the variable condenser sections are: oscillator, antenna and radio frecuency). dfter the variable condensers have been properly tracked at 1435 kilocycles, adjust the osoillator to 1295 kilooycles. Tune the reoeiver to this Erequency. check alignaent of the condensers at this point by bending the end plate of the rotors in and out, noting the change in reading on the output moter. If when the plates are bent in the reading is increased, it is an indication that that particular seotion requires more capaoity and the end plate should be permanentiy bent in at this point; or, if when the end plate is bent awaj the reading is inoreased, the end plate should be bent away permanentiy, as it is an indioation that that partioular seotion reguirea less capacity at that particular point. The variable oondensers should be ohecked in this manner at ises, 880 , 650 and 550 kilocycles. These points have been chosen so as to take advantage of the slots in the end plates of the variable condensers. This procedure of bending plates should rarely be necessary on the oscillator section, as the plates of the osolilator seotion are especially designed to properly track over the broadcast spectrum, providing the antenna and radio frequenoy stages are correotly aligned.
7269200 ohn blas resistor

Dynamic speaker

Power transformer for 110 V. Meter 25 cycle

Power transformer
8 mfd. elec. condenser
12 mfd. elec. oondenser
Filter choke
.1 ISd. oondenser
Bypass oondenser blook
Variable condenser

MODEH 118
Alignment Data Socket,Parts List

ALIGNRENT OF RECEIVFRR:

Because of the construction and thorough impregnation of the intermediate coils, the intermediate stages should rarely need retracking. Only when an intermediate coil has become defective due to an open or burned out winding, should it be necessary to readjust the intermeciate trimmers. Should this occur, it is necessary thet an osciliator be used and the intermediate trinmers be adjusted at lif kilocycles. To align the intermediate stages, connect the high side of tho oscillator output to the grid circuit of the first detector, which is done. by disconnecting the grid cap of the r24 first detector and conrecting the hifh side of the test oscillator to the control grid of this tube. The ground side of the test oscillator should be connected to the ground post on the chassis. Set the oscillator at lif kilocycles and adjust the output of the oscillator so thet a corvenient reading is obtained on the output meter. je sure that the output fram the osciliator 18 not so lerge that it will overlcad the second detector. If during the alignment the meter goes off scale, reduce the output of the test oscillator or adjust the receiver volume control.

The trimers of the intermediate coils are accessible through the small holes in the bottom of the chassis. There are two trimers to each intermediate coil. isilgn the grid trinmer of the first intermediate coil. After a maximum reading $1 s$ obtained by adjusting the grid trimer on the firgt intermediate, adjust the primary for maximum reading and then recheck the grid. side to make certain the aligmment of the secondary has not been changed by the edjustment of the primury. The same procecure is followed in aligning the second intermeciete coils. inter both intermediete coils are properly alipned the adjustment of the intermediate stage is complete end they should not be further disturted.
Replace the grid cap on the first detector and conneot the oscillator output leads to the antenna and eround posts of the receiver and set the oscillator at l435 kilocycles. Then tune the receiver to l435 kilocycles on the dial. It is important that the receiver be tuned to this point. If the receiver is out of the cabinet it will be necessary to use some temporary indicator so that the position lif3 kilocycles on the dial may be accurately located. (This indicator should be set so that when the variable condensers are at the maximum capacity stop the indicator points to the last line on the dial at the low frecuency end.) Then track the variable condensers by adjusting the trimmer condensers in the following order: osciliator, antenna and radio frequency - (reading from right to left the variable condenser sections are: oscillator, radio frequency and antenna). After the variable condensers have been properly tracked at l435 kilocycles, adfust the osciliator to 1295 kilocycles. Tune the receiver to this freruency. check alifinment of the condensers at this point by bending the end plate of the rotors in and out, noting the change in reading on the output meter. If when the plates are bent in the reading is increased, it is an indication that that particular section requires more capacity and the end plate should be permanentiy bent in at this point; or, if when the end plate is bent away the reading is increased, the end plate should be bent away permanentiy, as it is an indication that that particular section reruires less capacity at that partioular point. The variable condensers should be checked in this manner at 1295, 830, 650 and 500 kilocycles. These foints have been chosen so as to take advantage of the slots in the end plates of the variable condensers. This procedure of bending plates should rarely be necessary on the oscillator section, as the plates of the
 antenna and radio fre uency stages are correctiy aligned.

PAGE 5-6 SENTINEL

MODEL 261,521

Battery Data
Parts List
In the first models of the automobile radio the $B=$ and hot "A" leads were connec. ted as shown in diagram " $H^{\prime \prime}$. In the present model these leads are as shown in diagram "B". All other connections are identical, as shown on the schematic drawf ing. Connecting the black lead in the cable, designated as B- in the instruction sheet, to the hot 6 volt post of the eliminator will supply the hot 6 volts and provide an "off and on" switch for the B eliminator as well as the receiver itself In this way no other connection between the hot 6 volt lead of the eliminater and battery should be mado and no switch for the hot lead to the eliminator is necess: ary; the set switch controlling both the B eliminator and receiver.

When using B batteries, the black lead should be connected to the $B-$ of the batteries but under no circumstanco should a separate load from the B- terminal of the batteries be run to the chassis of the car or the shielded cable. In other words, do not ground the $B-t a r m i n a l$ of the B batteries.
The only difforence in the tube equipment betwoen the oarly and present models is the output tube. The first model utizized a $\|_{1} 41$ output tubo and tho present model. a \#89 tube. complete complement of tubes is:
One (1) Typo 36
One (1) Typo 85
Two (2) Type 39
Onc (1) Typo 89

DIAGRAM "B"

Blaci B- Cable - B- Batt. or B Unit Hot "A"

8982
8933
8927
8961
7934
6591
7860
8876
9032
9012
8983
8972
6880
9033
8065
6924
9018
. 005 MFD. 400 volt condenser
Padding condenser
. 05 MFD. 400 volt condenser
.0001 MFD. moulded condenser
. 0001 MFD. condenser 85 plate bypass
. 01 NFD. 400 volt coupling condensor
5 MFD. dry electrolytic cathode bypass
.25 kiFD. 200 volt cathode 7 scrien bypass
1 MFD. condenser
. 003 MFD . plate bypass condenser
2 megohm resistor 6000 ohm resistor 100,000 ohm 85 tube plate resistor 1,000 ohm 41 tubo cathode resistor 500,000 ohm rosistor 150 ohm cathode resistor $1 / 3$ watt

$\frac{\text { WIRING DIAGRAM }}{\text { RART }=20040}$

MODE 261,521 Alignment Data
 SENTINEL RADIO CORP.

The intermediate frequency transformers are tuned to 175 kilocyles. An oscillator which is accurately set to this frequency and which has an attenuator in its output to control the output can be used. It is of course best to start by retuning the intermediate stage before touching other adjustments. The outpnt of the intermedjate frequency generator is connected one side to the grid of the lst deteotor (236 tube) after removing the grid cap from this tube. The ground of the oscillator us comnected to the chassis base. With the frequenoy set et $175 \mathrm{~K} \cdot \mathrm{C}_{4}$ (accuratey y) the tuning adjustmonts of the Ist and 2nd I.F, transformers are adjusted to peak resonance. It is very important to use a long bakelite screw-drivor for these adjustments, In adjusting, the successite tuning condensers are gonomover several times readjusting the output of the osoillator or the rooeiveris rolume control as roquired. With the I.F. transformers propeily tuned and scaled, the R.F, and oscillator circuits may next be adjustied.

Tho grid oap of the lst detector is replaced and a generator or oscillator having frequencies of 1400 and 600 kilocyles is set up and connected to the aerial and ground of the receiver.

Do not attempt to align condenser without a shield. It is extremely important that a shield corresponding to the can be placed around the ontenna coil and gang condenser in making adjustments on the r.f. and oscillator circuits, otherwise due to the change in these circuits caused by this shielding a very inaccurate adjustmert will be obtained, This shielding may consist of a piece of steel bert to the shape of the corner of the can fitting around the edge of the bage from the speaker to the rear right hand corner and extending as high as the speaker with holes an it corresponding to the condenser trimmer locations or a regular san and cover with such holes provided. This shield or can and oover must be in secupe ard in proper location and not disturbed during these adjustments From this it is easily seen why if an attempt is made to check the alignment out of the can on this receiver a different or changed adjustment will be had as against the factory setting, which is made with the sitielding in place.

With the above shielding in place and tubes which are to be used in chassis, the procedure of cirouit alignment is as follows:

Set the generator frequency at $1400 \mathrm{~K} C$. Set the tuning dial to 15 on the scale, open trimers slightly on anterna (top) and lst detector (middle) sections of gang condenser. Then without disturbing dial setting adjust oscillator (bottomjtrimmer on gang to greatest signal. Aftor this has been properly sot adjust one at a time the antenna and lst detector trimmers for maximum signals.If tnese operations are properiy set as above, the receiver circuits are correct for the high frequency adjustment. Next chango the generator frequency to $600 \mathrm{kilo-}$ cyeles and turn tho taning dial of the reveiver to rosonato with this signal.. This wili come in around 82 on tho dial. When the 600 kilocyclo point is located on the dial next adjust the osoillator low froquency padding condenser, which is at the bottom rcar edge of chassis base in right correr. The screw on this condenser is adjusted in and out as the receiver dial is slowly moved across the $600 \mathrm{~K} . \mathrm{C}$. resonant point until greatest signal strength is obtained. The combination of the best padding condenser setting with the dial setting giving the greatest signal output is the correct padding condensor adjustment. No chang in the gang condensor trimmers adjustment should be made during the $600 \mathrm{~K} . C$. adjustment.
DIAL IIGHT. If the dial light burns out bo sure and replaco with one of same モype 6.3 volts 1000 hrs .

PAGE 5-10 SENTINEL

MODES 550

Voltage
Alignment Data

SENTINEL RADIO CORP.

FIVE TUBE AC-DC SUPERHETERODYNE

(110 V. AC-DC, 6 V. Storage Batteries \& $32 \mathrm{~V} . \mathrm{DC}$)
VOLTAGE TABLE: Never oheck voltages until all tubes are fully warmed up to proper operating condition. The voltage table \#l is taken at lif volts (AC) line with the volume control in the full on position. It must be remembered that the voltage readings vary direotly as the line voltage and also with the acouracy of the meters used. 1 variation of 10% plus or mimus is permissible. THE VOLTAGES WILL BE APPROXIMATELY AS GIVEN FOR EITHER DC OR AC OPERATION.

Type of Tube	Position of Tube	TUBE VOLTAGE Filament Volts	Plate Volts	Screen Volts	Table \#1 C Volts
36	Composite Oscillator \& Modulator	5.5	108	21*	2.5
39	Intermediate Frequency	5.6	108	108	2.5
36	Deteotor	5.7	27*	21*	2.5
38	Output	5.8	103	108	1.5*
2535	Reotifier	29.0	52.5 MA		

The voltage table \#2 is for 6 volt battery operation with a B eliminator which is especially designed for the model \#56l receiver. The voltages as given will be correct for 32 volt dC operation in conjunction with a B eliminator of the reoomended factory type. It will be found that orl certain types of eliminators which do not have sufficient output or a low 6 volt battery, the readings will be lower than that given in the voltage table.

TUBE VOLTAGES
Type of Tube
\quad Position of Tube
Composite 0solillator \&
Modulator
Intermediate Frequency
Detector
Output

Filament Volts	$\frac{\text { Plate Volts }}{112}$
5.8	112
5.8	28^{*}
5.8	108

Table \#2

36
put
2525
Rectifier
52.5 MA

* These readings for both Table and $\mathrm{H}_{\mathrm{f}} \mathrm{a}$ are only comparative and are not true voltages applied. The voltmeter, when readings are taken at these points, is in series with a very high resistance.

IMAGE SUPPRESSION: Occasionally in some locations interference in the form of whisties or stations which are tuned in on dial settings other than the station's frequenoy may be encountered. This is a rare occurrence and is called image interference oaused by two signals whase frequencies differ by twice the incormediate frequency. This should not be confused with heterodyne whistles whioh are caused by two \| stations being received whose frequencies are the same nor by local stations whose frequencies are close to some out-of-town stations frequency which might result in reception from both stations. To overcomel this possibility of image interference an image suppression circuit is incorporated in the receiver. The image adjusting condenser is mounted on the back of the chassis below the first IF transformer shield and is accessible through the hole in the chassis. If a whistle or interfering station is received on a frequency other than its fundamental, tune the reoeiver to this interference and adjust the image suppression condenser until the interference disappears or until the interference is at the minimum point. UNLESS THERE IS AN ACTUAL IMAGE INTERFERENCE DO NOT ATHEEMPT TO ADJUST THE IMAGE SUPPRESSION CIRCUIT.

INTERMEDIATE FRECUENCY ALIGNMENT: Only when an intermediate transformer has beoome defective, due to an open or burned out winding, should it be necessary to readjust the intermediate stages. Should this occur it is necessary that an oscillator be used with some type of output measuring device so as to correctiyl tune the transformers. To align the intermediate transformers connect the high side of the oscillator output to the control grid of the 36 osoillator modulator tube leaving the grid cap disconnected from the |l tube. The ground side of the test osciliator should be connected to the gang condenser frame and MUST NOT OTHERWISE BE GROUNDED. Set the oscillator at 265 kilocyoles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter. BE SURE THAT OUTPUT OF| THE OSCILLATOR IS NOT SO HIGH AS TO OVERLOAD THE DETECTOR. IF DURING THE ALIGNTENT THE DETECTOR OVERLOADS REDUCE THE OUTPUT OF THE OSCILLATOR. Align the first intermediate transformer by turning the intermediate. frequency trimmer screw up and down until maximura reading is obtained on the output motor. Both the primary and secondary trimmer sorews should be adjusted in this manner. It is always best to recheok thell grid side of the intermediate frequency transformer adjustment to make certain the alignment of the secondary has not been changed by the adjustment of the primary. The same procedure is followed in aligning the second intermediate transformer. After both intermediate transformers are adjusted the alignment of the intermediate stage is complete and the trimmer should not be further disturbed, and the grid cap should be connected to the grid of the 36 tube.

VARIABLE CONDENSER ALIGNNENT: If the intermediate frequenoy stage has been realigned or if an antenna or oscillator coil requires replacement it will be necessary to realign the variable oondenser. The front section of the variable condenser (looking at the front of the receiver) is the oscillator section, the other section tunes the antenna stage. Tune the receiver to 1720 kilocycles on the dial and set the oscillator at this frequency. BE SURE THAT OUTPUT OF THE OSCILLATOR IS NOT SO HIGH AS TO OVERLOAD THE DETECTOR. IF DURING THE ALIGNMENT THE DETECTOR OVERLOADS REDUCE THE OUTPUT OF THE OSCILLATOR. NEXT ad-
just the trimmer screws of the oscillator and antenna seotions which are mounted on top of the variable condensers so as to obtain maximum output reading. It will be found that the oscillator section trimmer condenser will in most cases have to be adjusted to minimum capacity and in some instances it may be necessary to remove the trimer screw entirely. Apter the trimers have been correctly adjusted, at this frequency, tune the receiver to 600 kilocycles and adjust the oscillator to $600 \mathrm{~K} . \mathrm{C}$. Next, adjust the oscillator padding condenser (which is located directiy below the variable condenser and accessible through the hole in the front of the chassis) to obtain maximum reading on the output meter. If the above is correctiy followed the receiver will now track correctly over the entire band from 1720 Kc to 550 KC . It is always advisable to align the receiver, whenever possible, with the tubes that are to be used in the set.
32 VOLT FARM LIGHTTNG SYSTEMS: When the current supply is DC, the 32 volt mains plug must be inserted oorrectly into the 32 volt DC mains receptacle, otherwise the set will not operate because or reversed polarity. If, after inserting the mains plug into the receptacle, the recef ver does not operate for approximately one minute or one and a half mimutes, remove the mains plug and turn it half way around and insert it into the reoeptacle. When operating the receiver on DC it will be found that in most instances the noise interference is greater than when the receiver is used on AC current. DC appliances such as anotors, fans, etc., as a general rule cause more interference than similar AC ecuipment. Jnfortunately this interference can only be eliminated at the source of the interference. Fhen operating the receiver on 32 volt DC and using a B eliminator, be sure to keep the set aerial wire as far away from the dC line as possible, to avoid noise pick up from the 32 volt DC line. By connecting the antenna wire to an outside aerial in the event the noise interference is excessive, the interference can generally be minimized, as the increased volume obtained with the longér aerial permits lower minimum volume control setting and a consequent apparent reduction in noise interference. It is not recommended that the 6 volt cable and 6 volt B eliminator be used on the 32 volt system by tapping in at 6 volt as the current consumption will be too large, nor is it reaommended that B batteries be used as the life of the battery will be limited. To reduce the drain on the batteries if they are used, it is recommended that only 90 volts of battery be connected to the receiver.

PAGE 5-12 SENTINEL

MODEW 550

Installation and Connection Details

NOTE: IF \dot{B} BATTERIES ARE USED INSTESD OC ' B 'ELIMINATOR, CONNECT DEM TO SET CABLE WIRES AS SHONN W DOTTED LINES WIGG. Zै. THE YELIOW ANB BLACK CABLE WIRES ARE CONNECED TO LINE COED A FUG
FOE 32 VCLT SOCKET CNWECION.

FG *3 SIETCH SHENTG CABLE CONECTIONS TO B

[^15]32 VOLT ADAPTER

PAGE 5-14 SENTINEL

MODEL 600 Auto
Schematic SENTINEL RADIO CORP.

SENTINEL RADIO CORP.

RECEIVER MOUNTING: The receiver, speaker and "B" eliminator are all contained in a single unft in one steel housing and requires the driling of but one hole in the bulkhead for mounting. The receiver should be so mounted that the remote control shaft will reach the steering post in as straight a line as possible so as to eliminate any unneoessary bend in the cable. Care should be exercised in choosing the receiver location to avoid interference with the foot pedal, hand brake, clutch pedal and possible interference with the le gs of the driver or passenger. A paper drililing template is provided to aid in finding the best location. When the location has been decided on, drill a $3 / 8^{\text {n }}$ to $7 / 16^{n}$ diameter hole in the motor buikhead after which the wooden spacer block should be placed on the set mounting bolt and the bolt pushed through the hole in the bulkhead with the wooden spacer block on the driving compartment side. (Fig. No. 1). Place the steel washer, lockwasher and mounting bolt nut (in the order named) on the mounting bolt drawing up the nut loosely. Next, lift the receiver in position so that the square head of the mounting bolt will silp into the lower slotted end of the set mounting plate. Gently lowering the receiver will force the mounting bolt head to the top of the mounting plate slot. The receiver and the mounting bolt will be rigidly locked in position by drawing the mounting bolt up tight. on some installations because of insufficient room under the bulkhead it may be necessary to push the square head of the mounting bolt to the top of the mounting plate and then push the boit through the hole drilled in the oulkhoad.

REMOTE CONTROL: The remote control head, the steering post strap and clamp, the volume control and tuning control shaft tubing and the cable guide brackets are shipped unassembled. No difficulty will be had in properly assembling if the proper procedure is followed in the order given.

1. Mount the two cable guide brackets which are held in position with the two self tapping sheet metal screws, placing the pilot light shield lead under the head of one of these screws (see Fig. 2).
Push the flexible shaft of the volume control tubing through the volume control guide bracket into the volume control coupler mounted on the set until it touches the stop.

Then tighten the two flexible shaft set screws in the volume control coupler firmly.
Next, place the volume control shaft tubing so that it extends about $1 / 4^{\prime \prime}$ beyond the guide bracket. Do not permit tubing to touch the coupler. After correctly locating, screv-the two gulde bracket coupler set screws firmly, but do not force these set screws too tightly otherwise the drive shaft will bind. The tuning control flexible shaft should be mountsd in the tuning coupler and the tuning control shaft tubing in the guide bracket in the same manner. Do not put the tuning control flexible shaft in the volume control coupler and vice-versa. Looking at the back of the remote control head the lefthand shaft tubing is the tuning control and the right hand one the volume control (Fig. 2). Looking at the side of the receiver the righthand coupler is the volume control and the lefthand coupler is the tuning control.
2. Loosen the two shaft tubing screws (Fig. 2) underneath the remote control head and insert the slotted end of each shaft tubing in their proper place in the remote control head, after which the set screw should be firmly tightened. If the shaft tubing is properiy spaced from,

SENTINEL RADIO CORP.

Part 2.

the couplers, the volume control and tuning control will move freely. If improperly spaced the shaft tubing may rub on the couplers or may rub in the remote control head thereby making the volume control and tuning control work hard.
3. The steering post clamp strap and clamp bracket should now be mounted on the steering post. The steering post clamp strap has four holes, one of which is threaded. The other three holes are provided so that the clamp may be used on any of the various size steering posts.

The remote control head may be located on the left or righthand side of the steering post column or on the dashboard by using the proper one of the three threaded clamp screw holes on the back of the remote control head. To mount on the lefthand side of the steering post use the lefthand threaded hole, for righthand mounting use the righthand threaded hole and for dashboard mounting the top threaded hole.

Form the clamp with the threaded stud on the inside by placing it around the steering post. Place the slotted end of the clamp against the clamp strap so that the hole in the clamp innes up with the two holes in the strap (Fig. 2.) Push the clamp strap through the hole in the clamp and screw the clamp screw into the threaded strap stud sufficiently tight so that it will be locked firmly in position. The remote control head may now be mounted on the steering post clamp by pushing the machine screw through the hole at the end of the clamp and screwing this machine screw through the threaded hole in the back of the remote control head.
4. The remote control drive is now completely mounted. It is possible that the dial calibration will not be correct. To properly align the dial turn the tuning control knob in the counter clockwise direction until the stop on the variable condenser is reached. This will be indicated by increased tension on the knob. Do not force the dial otherwise the dial needile will jump and the dial calibration will be inaccurate.

PILOT LIGHT: A six to eight volt Mazda type miniature size pilot light is used in the remote control head. The pilot light lead from the remote control head must be inserted in the pilot light receptacie located on the side of the set housing adjacent to the volume control shaft tubing guide bracket. The shielded lead of the pilot light lead should be connected underneath the head of one of the guide bracket mounting screws. To replace the pilot light remove the two control knobs by pulling outward on the knobs. Next, the three small head machine screws on the front of the remote control which hold the front cover of the control box in place should be removed. The cover of the remote control head may now be lifted off the control box and the pilot light socket then becomes accessible.

ANTENNA: A Good antenna is very important. An inefficient or insufficient aerial will resultin unsatisfactory reception. Most late model cars are factory equipped with an antenna built in the roof of the car. This is generally the most satisfactory type of aerial. If the car is not equipped with a roof type aerial, one may be installed or use may be made of the various aerial kits now available such as plates that are mounted underneath the running board or the strap type aerial which can be fastened between the front and rear axles. THF: CLOSER TO THE GROUND THE STRAP OR PLATE TYPE ANTENNA IS SUSPENDED THE GREATER ITS EFFICIENCY.
"B" ELIMINATOR: The "B" eliminator unit which contains the No. 84 rectifier tube is mounted below the receiver and is held in position in the set housing by three machine screws which are accessible from the bottom of the set housing. To replace the rectifies tube it is necesisary that the "B" unit be removed from the set housing. To do this unscrew the thiree "B unit machine screws in the bottom and the six screws that hold the small detachable plate on the lower back of the set housing. After this plate is removed, the set cable wires which are now accessible should be disconnected from the "B"eliminator terminal strip mounted on the eliminator unit, after which the eliminator may be pulled out of the set housing. Next, remove the cover of the eliminator by unscrawing the six machine screws which hold this in place. After the cover has been taken from the top.of the " $B^{\prime \prime}$ unit the complete mechanism of the " $B^{\prime \prime}$ eliminator can be lifted out of the eliminator housing and the set housing so that the set cable care should be taken when reinstalling the " $B^{\prime \prime}$ unit in the set housing so that the set cable wires are properly connected to the "B"eliminator terminal strip. Excessive vibration of the "B" unit may be corrected by substituting a new vibrator rubber cover. When changing the rubber cover be sure to place thevibrator unit back in the "B" unit with the vibrator leads toward the "Bn eliminator transformer. Continuous blowing of the fuse is indicative of a possible defective "B" unit transformer, a de fective vibrator or a defective No. 84 tube. UNDER NO CIRCUMSTANCES ATTEMPT TO ADJUST THE VIBRATOR UNIT. IF THE UNIT BECOMES DEFECTIVE IT SHOULD BE REPLACED WITH A GOOD ONE ONLY. R.F. hash indicated by a constant static-like background noise, which is apparent over the entire tuning range (with the set aerial disconnected) may be due to a defective No. 84 tube "or a loose "B" unit cover. If the set antenna lead is run in close proximity with the set "A" leads or the battery "A" hot lead, it is possible to pick up this form of interference. Rerouting the set antenna lead will correct this.
TUBES: The receiver utilizes the following tubes:
One (1) Type 78 - Amplifier Tube
One (1) Type 6A7 - Detector \& Oscillator Tube
One (1) Type 78 - T. F. Tube
One (1) Type 75 - Second Detector Diode \& AVC Tube
One (1) Type 41 - Output Tube
One (1) Type 84 - Rectifier Tube

The tube Iocations are shown in the diagram attached to the set housing cover. Always be sure that the tubes and their tube shields are firmly pressed down in their sockets. The tubes are readily accessible for removal or for checking by taking off the cover of the metal cabinet. To do this it is only necessary to unscrew the six machine screws which hold the cover to the cabinet and Ifft the cover off the cabinet. NOTE: In some installations, because of the location of the receiver it may be necessary to remove the set from the motor bulkhead to check the tubes. The tubes used are sturdily constructed and os. pecially designed for use in automobile receivers and under normal conditions will give satisfactory service for a long period of time. Occasionally a tube may become faulty shortly after being placed in service and is generaily indicated by low volume or distorted tones menever this condition exists the tubes should be tested and the defective tubes or tube replaced. If the receiver becomes microphonic it can generally be traced to the 6A7, 75 or

MODEL 603

SENTINEL RADIO CORP.

Parts List

1. Connect the nigh ${ }^{\text {E }}$ side of the oscillator output to the control grid of the $6 A 7$ tube leavine the control grid cap disconnected. Connect the ground side of the oscillator to the receiver chassis.
2. Set the oscillator frequency at 265 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning one of the trimmer screws up and down until maximum reading is obtained on the output meter, and then adjust the other trimmer screw of the intermediate transformer for maximum sensitivity.
4. Adjust the second intermediate transformer in the same manner.

HOTE: Two types of intermediate transformer trimmers have been used in this model receiver. one type has two parallel holes in the top of the shield, one for each trimer. The other type has a brass hex nut for adjusting one intermediate trimmer, the other intermediate trimmer being adjucted with the trimmer screw located inside of the brass hex nut. Regardless of which type trimmer is used the procedure is the same.

TO ALIGN THF VARIABLE CONDENSER: It is not necessary to remove the receiver chassis from the set housing to align the gang condenser. Regardless of whether or not the receiver is or is not mounted in the set housine the alignment procedure is the same. Three holes are provided in the left hand side of the set housing for the gang condenser trimmers and one in the front of the set housing for the 600 kilocycle padding condenser.

1. Properly connect the remote control head and shafts and adjust the dial needle on the dial face so that the dial calibration is correct.
2. Connect the high outnut side γf the oscillator to the antenna and the ground to the receiver chassis.
3. Tune the receiver to exactly 1400 kilocycles on the dial and adjust the oscillator to this frequency. BRING IN THE 1400 KILOCYCLE SIGNAL TO MAXIMUM OTJTPUT BY ADJUSTING THE OSCITTATOR GANG CONDENSER TRIMNER. Looking at the side of the receiver and reading from top to bottom the trimmer condensers are the antenna, R. F. and oscillator sections. Next, edjust the R. F. and antenna sections of the gang condenser for maximum sensitivity
4. Tune the receiver to approximately 600 kilocycles on the dial and set the oscillator to this frequency Then adjust the 600 kilocycle padding condenser, which is located on and accessible through the hole in the front of the chassis for maximum output. Always rock the condenser slightly to the right and left when making this adjustment using the nosition of greatest output.

$\begin{aligned} & \text { TYPF OF } \\ & \text { TUBE } \\ & \hline \end{aligned}$	POSI TION OF TUBE	FILAMENT VOI,TS	$\begin{aligned} & \text { TUBF V } \\ & \text { PLASTE } \\ & \text { VOT,TS } \end{aligned}$	$\begin{aligned} & \text { LTA GFS } \\ & \text { CATHODE } \\ & \text { VOLTS } \end{aligned}$	SCREN VOLTS	$\begin{aligned} & \text { GRID } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { No. } 5 \end{aligned}$
78	Radio Frequency	6	210	4	80				
6A7	Oscillator \& Modulator	6	210	4		35	140	80	80
78	Intermediate Frequency	6	210	4	80				
75	2nd Detector Diode \& AVC	6	100	1.5					
41	Output	6	200	8	210				
84	Rectifier	6	260\#\#	235					

\#\# A. C. each plate
Totai "An current - 6.0 amperes
Read all voltages from socket to chassis

PART		LIST PRICE	PART NOMBFR		LIST PRICE
1226	Antenna Coil	\$1.77	9453	6A7 Tube Socket	\$. 13
9496	Detector Coil	. 99	1255	Set Housing Back	. 25
1230	Oscillator	1.01	1284	Set Housing Cover	55
9498	lst I. F. Transformer	1.49	1223	Set Housing	3.52
1227	2nd I. F. Transformer	2.03	9581	10 Anpere Fuse	. 06
1236	Dynamic Speaker	7.00	1159	" $A^{\prime \prime}$ Bettery complete with	. 90
1158	Antenna Lead	. 34		Fuse and Feceptacle	
1244	Set cable	. 60	9063	Tube Shield Retainer Rase	. 05
9098	50,000 Ohm 1/2 Watt Resistor	. 19	1361	Tube Shield	. 11
6943	25,000 Ohm 1 Watt Resistor	- 21	1253	R. F. "A" Choke	28
6984	500,000 0hm 1/3 Watt Resistor	. 19	1229	Volume Control with Switch	1.22
8000	100,000 0hm 1/3 Watt Resistor	. 19	109	"B" Eliminator	15.00
9460	3,000 Ohm 1/3 Watt Resistor	. 19	1246	Vibrator Pubber Case	. 40
9544	500 Onm 1 Watt Resistor	. 21	1245	Vibrator	5.50
6875	250 Ohm 1/3 Watt Resistor	. 19	9534	Power Transformer	2.75
8906	250,000 0 hm 1/3 Watt Resistor	. 19	9542	Pilter Choke	. 85
8907	25,000 Ohm 1/3 Watt Resistor	. 19	9539	R. F. "A" Choke	. 40
1336	20,000 Ohm 1/2 Watt Resistor	. 19	1144	R. F.. "B" choke	. 32
1232	Padding Condenser	. 55	1247	2 x 8 mfd . Condenser Rlock	2.75
1218	Three Gang Condenser	4.10	9531	. 5 lffd. Bypass Condenser	. 58
9500	Bypess Condenser ($1-.1,1-.25$,	1.29	9546 1248	$.01 \mathrm{Mfd}$.600 Volt Condenser $.005 \mathrm{kfd}$.1000 volt Condenser	.18 .23
7860	. 01 ufd. 400 volt Condenser	.17	9559	. 0005 mfd . Moulded Condenser	. 21
9386	. 1 Mfd. 200 Volt Condenser	. 18	9529	No. 84 Tube Socket	. 13
6473	. 002 Mfd .400 Volt Condenser	.17	9513	"B" Eliminator Housing Case	. 55
9525	. 2 Mfd . 200 Volt Condenser	. 24	9514	" $B^{\prime \prime}$ Eliminator Housing Case	. 35
9203	. 1 Mfd. 400 Volt Condenser	. 20		Cover	
1150	. $004 \mathrm{Mfd}$.400 Volt Condenser	. 18	1249	"B" Terminal Strid with Screws	. 60
9328	Dry Electrolytic Condenser (2-5 Mfd.)	1.15	1240 1458	Remote Control Complete Tuning Control Ring	9.00 .77
9133	Generator . 5 mfd . Condenser	. 55	1459	Volume Control Ring	. 77
9597	Spark Plug Suppressor	. 55	1460	Dial Light Assembly	. 44
9598 9600	Distributor Sunnressor	. 55	1460 A 1461	Pilot Light Buib	. 44
7717	Housing Carriage Bolt 3/8" \times 3 ${ }^{\prime \prime}$. 16	1461	Condenser pulley Assembly	1.20
7718	Hex Nut for 3/8' Carriage Bolt	.05	1463	Vol. Control pulley Assembly Drive Cable Assembly	1.00 2.30

SENTINEL RADIO CORP.

PAGE 5-20 SENTINEL
MODEH 660
Alignment Data
Parts List
SENTINEL RADIO CORP.
Whenever this condition is encountered be sure to try other 32 and 34 tubes. Oscillation may also be encountered when the speaker leads come too close to the first detector tube or the antenna, or if the shielding on the I.F. grid leads is loose or pushed back. Sometimes with some tubes oscillation may occur if the pad condenser across the speaker is removed or open. Low battery voltages will be indicated by low volume, signal fading and also motorboating may occur. Motorboating may be corrected by bypassing the- "B" batteries from B plus to B minus with a 5 or 1 mfd. condenser. Be sure to use a condenser that has a DC continuous working rating of not less than 200 volts. An insufficient aerial will reduce the volume and range of the fecelver materially. If reception is weak and the tubes and batteries are good, try increasing the overall antenna length. Always keep the aerial as short as possible consistent with satisfactory reception.

INTERMEDIATE ALIGNMENT: Only when an intermediate transformer has become defective due to an open or burned outwinding should it be necessary to readjust the intermediate transformer. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device. To align the intermediate transformer:

1. Connect the high side of the oscillator output to the control grid of the No. 30 Modulator tube. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning one of the intermediate transformer trimmer screws up and down until maximum reading is obtained on the output meter. Then adjust the other trimer screw in the same manner.
4. The second I.F. transformer should next be adjusted in the same manner. The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer shields.

To align the variable condenser:

1. Connect the high output side of the oscillator to the set antenna lead and the ground side of the oscillator to the chassis.
2. Tune the receiver to 1400 kilocycles on the dial and set the oscillator to this frequency.
3. Adjust the variable condenser trimmer screws for maximum output reading.
4. Tune the set to approximately 600 kilocycles on the dial and adjust the oscillator frequency to 600 kilocycles. Adjust the padding condenser located on the rear of the chassis adjacent to the antenna and ground leads and accessible through the hole in the chassis for maximum output reading.

When making this adjustment be sure to rock the variable condenser slightly to the right and left using the position where the greatest output reading is obtained.

PART NOMBER	PARTS AND PRICE LIST	
		LIST PRICE
9870	No. 5El Tube Socket	\$. 11
9619	No. 30 Tube Socket	. 11
9620	No. 32 Tube Socket	. 11
9621	No. 34 Tube Socket	-11
9622	No. 33 Tube Socket	$\cdot 11$
9221	Tube Shield Base	. 20
9222	Tube Shield	. 19
9612	Two Gang Condenser	2.54
9615	Antenna, Detector \& Oscillator Coil	1.38
9616	1st I. F. Transformer	1.90
9617	2nd I. F. Transformer	1.90
9382	Padding Condenser	. 50
9614	Tuning Dial	. 55
9611	${ }^{\text {Volume }}$ Control	.91 1.40
9613	Battery Cable	1.02
9625	Wire Wound Resistor Strip	. 36
8906	250,000 $\mathrm{Ohm} 1 / 3$ Watt Resistor	-19
8907 8000	25,000 100,000 Ohm 1/3 1/3 Watt Resistor Wesistor	.19
7998	$1{ }_{1} \mathrm{Meg}$ Ohm $1 / 3$ Watt Resistor	. 19
6984	$500,000 \mathrm{Ohm} \mathrm{1/3'} \mathrm{Watt} \mathrm{Resistor}$. 19
9319	. 001 Mfd. Moulded Condenser	. 22
9459	.000. Mfd. Moulded Condenser	. 21
9386 6573	. 1 Mfd. 200 Mfd. 200 Volt Condenser	.17
9032	.2 mpd. 200 Volt Condenser	. 23
7862	. 004 Mfd. 400 Volt Condenser	-17
9718	Knob	-14
9717	Knob with arrow	-14

SENTINEL RADIO CORP. Schematic

PAGE 5-22 SENTINEL
MODEI 1040
Voltage
SENTINEL RADIO CORP.
Alignment Data
Line Voltage: 115
Volume Control: Full on
Sensitivity : Maximum Sensitivity
Band Selector: $1500 \mathrm{KC}-540 \mathrm{KC}$ Band
Switch Switch

TUBE	-	FII.	PLATE	SCREEN	CATHODE
58	RF	2.2	155*	80	4
58	1st Detector	2.2	155*	80	6
58	Ist IF	2.2	155*	80	7
$2 \mathrm{B7}$	2nd IF	2.25	155*	80	1
57	Oscillator	$2 \cdot 3$	150	150	
56	1st AP	2.3	185*		12
56	2nd AF	2.4	235		12
213	Pash-Pull Output	2.4	245		45**
243	Push-Pull Output	2.4	245		45\%4
523	Rectifier	5	573		

* Comparative voltage only. The voltmeter, when readings are taken at this point, is in ser ies with a high resistance and is therefore not the true voltage applied. Read all voltages from socket to chassis, unless othomwise specified.

** Read from grid to chassis.

INTEERMEDIATE ALIGNIEAT:

1. Connect the high side of the oscillator output to the control grid of the 58 first dem tector leaving the grid clip disconnected. The ground side of the oscillator should be connected to the chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut (accessible through the hole in top of IF transformer shield) of the first intermediate transformer trin mer acrew up and down until maximum reading is obtained on the output meter. The adjust the trimmer screw located inside of the brass hex nut in the same manner.

NOTE: Some receivers utilize the brass hex trimmer nut and inside trimmer screw whereas other receivers of the same type have two parallel trimmer screws accessible through the, two small holes in the top or the IP shields. In either case the procedure is the same. The second and third IF transformers are adjusted in the same manner as the first IF transformer.

TO AIIGN THE VARIABLE CONDENSER: It is important when aligning the variable condenser and padding condensers to follow the procedure given carefully, otherwise the receiver will be insensitive and the dial calibration will be incorrect. The varieble condenser sections reading from front to rear are: Antenna, RF \& Oscillator.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Place the band selector switch for operation on the 1.5 to 4 megacycle band. Tune the receiver to 3.4 megacycles on the dial and adjust the oscillator to tilis frequency. Bring the 3.4 aligning signal in (maximum output) by adjusting the oscillator section variable condenser trimmer.
3. Tune the receiver to exactly 1.7 on the dial and set the oscillator at this frequency. THE 1.7 MEGACYCLE SIGNAL MUST BE BROUGHT IN (TO MAXIMUM OUTPUT) BY ADJUSTING THE 1. 7 MEGACYCLE PADDING CONDEFSER VEICH IS LOCATED ON THE FRONT OF THE CHASSIS BELOT THE DIAL. After maing the 1.7 megacycle adjustment be sure to recheck the 3.4 megacycle adjustment. It is suggested that the 1.7 and 3.4 adjustments be rechecked several times.

NOTE: This completes the short mave adjustments. Should the dial calibration be too far off, the cause may be due to using the frong oscillator frequency or dial setting.
4. Set the oscillator to 1400 kilocycles, tune the receiver to 1400 kilocycles on the dial and place the band selector switch for operation on the 1500-540 kilocycle band. Tumn the receiver on its right side with the power transformer down and BRING IN (to maximum output) the 1400 kilocycle signal by adjusting the 1400 kilocycle trinmer which is mounted below the chassis on the short wave switch assembly. Next, adjust the antenna and RF variable condenser trimmers located on the top of the variable condenser for maximum output.
5. Leave the band selector switch for operation on the 1500 to 540 kilocycle band and set the oscillator frequency and tuning dial to approximately 600 kilocycles. Then while rocking the variable condenser slightly to the right and left adjust the 600 kilocycle padding condenser located towards the front on the left hand side of the chassis for maximum output. after which recheck the alignment at 1400 kilocycles and then the alignment at $600 \mathrm{kilo-}$ cycles.
Band \#l - Prom 24 Megacycles to 9.8 Megacycles
Band \#2 - from 9.8 Megacycles to 4 Megacycles 2
Band 沙 - from 4 Megacycles to 1.5 Megacycles
Band $\# 4$ - from 1500 Kilocjcles to 540 Kilocycles
PARTS \& PRICE LIST

PART NUNBER

9839 BC Antenna Coil
9838 BC R.F. Coil
9840 BC Oscillator Coil
9842 SW Oscillator Coil
9843 SW Antenna \& lst Detector Coil
9835 1st \& 2nd IF Transformer
9662 Third IF Transformer
9800 R.F. Choke
9812 Gang Condenser
9275 Tuning Dial \& Drive Complete
9986 Tuming Dial Wave Band Screen Disc Assembly
9806 Tuning Dial Wave Band Clock Spring
9688 Tuning Dial Wave Band Bronze Cord
9687 Tuning Dial Wave Band Drive Pulley (on band selector, 6590.002 Mfd. 200 Volt Condenser
9710110 Volt 50-60 Cycle Power Transformer 9203 . 1 Mf . 400 Volt Condenser
9747 Universal 115 to 230, 25-60 Cjcle Power Transformer 9709 Chblce

9312 Choke
9748 Audio Transformer
9746 Wire Found Resistor Strip
9195 Bypass Condenser (2-.1 Mrd.)
7843 Bypass Condenser (2-.25-.1 Mfd.)
9382 Padding Condenser
9062 Padding Condenser
9799 Trimmer Condenser
8979 Tube Shield Base
8980 Tube Shield
9080 Tube Shield Caps
9290 SW Trimmer Wor, Drive Tuning Rod
9287 SW Trimmer Disc Assembly
9279 Wave Switch
9296 Volume Control
9295 Tone Control

9834 Sensitivity Control
9845 Tune-A-IIte
9846 Tune-A-Lite Socket
6916 Pilot Lamp Socket
9738 Electrolytic Condenser (2-8 \& 2-10 Mfd.
9739 Wet Electrolytic Condenser (12 Mfd.)
99708000 Ohm Wire Wound Resistor
9459.0005 Moulded Condenser

9458 . 00025 Moulded Condenser
9698 I Mfd. 100 Volt Condenser
9032.2 Mfd . 200 Volt Condenser

9386 . 1 Mfd . 200 Volt Condenser
8961 . 05 Mfd. 400 Volt Condenser

7860 . 01 Mfd. 400 Volt Condenser 6979 10,000 Ohm 1 Watt Resistor 9460 3,000 0 hm 1/3 Watt Resistor 9346 25,000 0hm 1/2 Watt Resistor 8906 250,000 0hm 1/3 Watt Resistor $687950,000 \mathrm{Ohm}$ 1/3 Watt Resistor 6984500,000 Ohm 1/3 Watt Resistor 6769 15,000 0hm 1/2 Watt Resistor $9018 \quad 1500 \mathrm{hm}$ 1/3 Watt Resistor
9065 1,000 0hm 1/3 Watt Resistor 9693 5,000 Ohm 1/3 Watt Resistor $6875 \quad 2500 \mathrm{hm}$ 1/3 Watt Resistor 8000 100,000 0 hm 1/3 Watt Resistor 7997 . $2,000 \mathrm{hmm} 1 / 3$ Watt Resistor 9117 Knobs
9113 Knobs
9768 Triple Binding Post Strip (A-1, A-2, Gnd.)
6576 Phono Tip Jacks

PAGE 5-24 SENTINEL

SENTINEL RADIO CORP.

SENTINEL RADIO CORP.

Alignment Data

VOLTAGE TABLE

 Battery voitage - 6 Volt Volume Control - Pull on| $\begin{aligned} & \text { TYFE OF } \\ & \text { TUER } \end{aligned}$ | POSITION OF TUBE | FIL. VOLTS | $\begin{aligned} & \text { PLATE } \\ & \text { VOLTS } \end{aligned}$ | $\begin{aligned} & \text { CATHODE } \\ & \text { VOWTS } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SCREMEN } \\ & \text { VOLTS } \end{aligned}$ | $\begin{aligned} & \text { GRID } \\ & \text { NO. } 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { GRID } \\ & \text { NO. } 2 . \end{aligned}$ | $\begin{aligned} & \text { GRID } \\ & \text { NO. } 3 \\ & \hline \end{aligned}$ | 85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6A7 | Modulator \& Oscillator | 6 | 220 | 3 | 80 | 5 | 220 | 80 | |
| CD6 | I. F. Amplifier | 6 | 220 | 2.5 | 80 | | | | |
| 687 | Second Detector Diode | 6 | 35\% | 3. | 40 | | | | |
| | AVC \& lst Audio Triode | | | | | | | | |
| 41 | Output. | 6 | 215 | 13 | 220 | | | | |
| 84 | Rectifier | 6 | 460-AC | 230 | | | | | |

Triode Plate. Comparative voltage only. The voltmeter is in series with a high resistance and is theo fors not the true voltage applied. Read all voltages from socket to chassis unless otherwise specified.
 able condenser. Ase matter of fact, this should only be necessary when an intermediate transformer, oscillator or R. P. coil has become defective and require replacement. Por propely aligning either the intermediate transformer or condenser it is necessary that an oscillator be used with some type of output measuring device.

1. Connect the high side of the oscillator output to the control grid of the ba7 tube leaving the oontrol grid cap disconnected. The ground side of the oscillator should be connected to the chasis.
2. Set the oscillator at 370 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate tranaformer by turning the brass hex nut of the first intermediate transformer trimer which is accessible from the top of the I. F. transformer up and down until maximum reading is obtained on the meter, then adjust the trinmer screw located inside of the brass hex nut in the same manner.
4. The second I. F. transformer should next be adjusted in the same manner as the first I. F. transformer.
TO ALIGN THE VARIABLE CONDENSER: To align the variable condenser and padding condenser it is necessary that the receiver chassis be removed from the set housing. After the receiver chassis has been removed connect the remote control flexible drive shafts in their respective couplers, and set the dial needle on the dial face so that the dial calibration is correct.
5. Connect the high output side of the oscillator to the antenna and the ground to the receiver chassis.
6. Tune the receiver to exactly 1500 kilocycles on the dial and adjust the oscillator to this frequency. BRING IN THE 1500 KILOCYCLE SIGNAL (TO MAXIMUM OUTPUT) BY ADJUSTING THE OSCILLATOR VARIABLE CONDENSER TRIMKER MOUNTBD ON TOP OF THE VARIABLE CONDENSER. THEN ADJUST THE OTHER VARIABLE CONDENSER TRIMMER FOR MAXIMUM OU'TPUT. Looking at the front of the receiver the first section of the variable condenser is the oscillator eection and the other section tunes the antema coil.
7. Tune the receiver to approximateiy 600 kilocycles on the dial and set the oscillator to this frequency, then adjust the 600 padding condenser which is located on the right hand side and accessible through the dl hole in the chassis for maximum output. Always rock the condenser sli.
this adjustment, using the posi tion where greatest output is obtained.

1143 Antenna Coil
1146 Oscillator Coil
1141 First I. F. Transformer
1142 Second I. F. Transformer
1277 Dynamic Speaker
9673 Padding Condenser
1139 Two Gang Condenser
1145 Volume Control
1128 Set Housing
1127 Set Housing Front Cover
1156 Set Housing Front Cover Grille
1163 Wood Mounting Biock
7717 Carriage Bolt 3/8n
7708 Carriage Bolt Steel Washer
7716 Carriage Bolt Lock Washer
1171 Cable Guide Bracket Assembly
1158 Antemna Lead
1166 Tube Shield
9581 10 Ampere Puse
2159 "A" Battery Cable compete with fuse
1187 Vi brator
1137 Power Transformer
11882×8 yfd. Condenser Block
1276 R. F. "A" Choke
9598 . 5 tid. Generator Condenser
1212 Spart Plug Suppressor
1214 Drstributor Suppressor
1213 Six Cylinder Suppression Kit
1278 Remote Control Head Complete Assembly
9959 Remote Control Tuning Knob with Key
9958 Remote Control Volume Knob.

9954	Remote Control Head Clamp
9955	Remote Control Clamp Strap
1210	Remote Control Tuning Shaft Tubing 18"
1209	Remote Control Tubine Flexible Drive Shaft 18"
1210	Remote Control Volume Shaft Tubing 18'
1211	Remote Control Volume Flexible Drive Shaft 18"
9961	Remote Control Head Glass
9328	Flectrolytic Condenser 2×5 Mfd.
9458	. 00025 Mfd. Moulded Condenser
9459	. 0005 Mfd. Moulded Condenser
7934	. 0001 Mfd. Moulded Condenser
9445	. 1 Mfd. 200 Volt Condenser
1148	. 5 Mfd. 200 Volt Conde nser
9468	. 01 Mfd .400 Volt Condenser
1150	. 004 Mfd. 600 Volt Condenser
1151	. 1 Mfd. 400 Volt Condenser
2167	. 02 Mfd. 400 Volt Condenser
1219	. 2 Mfd. 400 Volt Condenser
1248	. $005 \mathrm{Mfd}$.1000 Volt Condenser
1184	75 Ohm Wire Wound 1 Watt Resistor
6943	25,000 Ohm 1 Watt Resistor
8000	100,000 Ohm 1/3 Watt Resistor
1280	35,000 Ohm 1/3 Watt Resistor
9089	500 Ohm 1/3 Watt Resiator
1152	400 Ohm 1/3 Watt Resistor
8907	$25,000 \mathrm{Ohm} 1 / 3$ Watt Resistor
9460	3,000 Ohm 1/3 Watt Resistor
6786	10,000 Ohm 1/3 Watt Resistor
6984	500,000 Ohm 1/3 Watt Resistor
6943	25,000 Ohm 1 Watt Resistor

SENTINEL PAGE 5-27

PAGE 5-28 SENTINEL

SENTINEL RADIO CORP.

ALIGNENT PROCEDURE: Only when an IF transformer, antenna or oscillator coil is replaced should it ever be necessary to realign the receiver. For aligning either the intermediate transformer or the variable condenser it is absolutely necessary that a good accurate calibrated oscillator be used with some type of output measuring device.

INTERMMEDATE ALIGMMENT:

1. Connect the high side of the oscillator output to the control grid of the $2 A 7$ tube leaving the.grid cap disconnected. The ground side of the oscillator should be connected to the receiver chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the intermediate trangformer brass hext adjusting nut located on top of the intermediate transformer can up and down until maximum reading is obtained on the output meter. Then adjust the trimmer screw located inside the brass hex nut for maximum output.
4. Adjust the second I. F. transformer in the same manner as the first I. F. transformer.

VARIABIS CONDENSER AIIGNAENT: It is essential that the followine instructions be carefully adhered to in the order given otherwise the receiver will be insensitive and the dial calibration will be inaccurate.

1. Connect the high side of the oscillator output to the set antenna lead and the oscillator ground to the receiver chassis.
2. Place the band selector switch for operation on the 16 to 5.2 megacycle band.
3. Set the oscillator frequency to exactly 15 megacycles and adjust the receiver dial to exactly 15 megacycles. Then BRING IN THE 15 MEGACYCTE SIGNAL TO KAXIMUM OUTPUT BY ADJUSTING THE trimmer condenser of the oscillator gang condenser section. The oscillator trimmer condenser is mounted on top of the rear section of the variable condenser. The front section of the variable condenser tunes the antenna stage.
4. Place the band selector switch for operation on the 1715 to 535 kilocycle band, set the oscillator to exactly 1400 kilocycles and tune the receiver dial to 1400 kilocycles. BRIMG IN THIS 1400 KIIOCYCLF SIGNAL BI ADJUSTING THE SMAIL TRIMGER CONDENSER which is located underneath near the center and towards the front of the chassis.
5. Hext adjust the antenna variable gang condenser section trimmer condenser for maximum output (front section).
6. Leave the receiver operating on the same band and set the oscillator frequency to approximately 600 kilocycles and adjust the dial to approximately 600 kilocycles. Then while rocking the variable condenser slightly to the right and left, adjust the 600 kilocycle padding condenser which is located below the speaker and accessible through the front of the chassis for maximum output.

7. Recheck the 1400 kilocycle adjustment.

8. Place the band selector switch for operation on the 16 to 5.2 megacycle band and tune the dial to exactly 15 megacycles and set the oscillator frequency to 15 megacycles. Then adjust the trimmer condenser which is located underneath and toward the center of the right hand side of the chassis for maximum output.

This completes the aligrment procedure and it is suggested that all the adjustments be rechecked.
BAND SEIECTOR SWITCH: TWO different frequency bands are available, the frequency range being:
1715 to 535 Kilocycles- 175 to 560.75 Meters
16 to 5.2 Megacycles- 18.7 to 57.7 Meters

PARTS \& PRICE IIST

PART NUMBER			
1113	Antenna Coil	6875	250 Ohm 1/3 Watt Resistor
1114	Oacillator Coil	9018	150 Ohm 1/3 Watt Resistor
1005	First I. F. Transformer	8907	25,000 Ohm 1/3 Watt Resistor
9862	Second I. F. Transformer	1176	10,000 0hm 1/3 Watt Resistor
1118	Wave Switch	9698	1 Mfd. 100 Volt Condensar.
1103	Gang Condenser	9386	. 1 Mfd. 200 Volt Condenser
1104	Volume Control	7862	. 004 Mfd. 400 Volt Condenser
9660	Power Transformer	7860	. 01 KPd. 400 Volt Condenser
9659	2-8 Mfd. Electrolytic Condenser	1115	2x. 1 Mfd. 200 Volt Condenser
9673	Padding Condenser	9691	. 05 Mfd. \& . $001 \mathrm{Mfd}$.400 Volt
9799	Trimmer Condenser	1108	2 Hfd. Dry Electrolytic Conden
9671	Pilot Ideght Socket	9307	. 005 Mfd. Youlded Condenser
6248	2.5 Volt Pilot Iight Socket	9458	. 00025 Mfd. Moulded Condenser
1104	Tuning Dial	7934	. 0001 Mfd. Moulded Condenser
1068	Wire Wound Resistor Strip	9459	. 0005 Mfd. Moulded Condenser
6984	500,000 Ohm 1/3 Watt Resistor	8980	Tube Shield
7997	1 Meg Ohm 1/3 Watt Resistor	1179	Iarge Knob
8000	100,000 Ohm 1/3 Watt Resistor	1180	Knob with dot
8906	250,000 Ohm 1/3 Watt Resistor	9759	Small Knob

PAGE 5-30 SENTINEL
HODFL 6101,6102
Service Notes Vol tage

SENTINEL RADIO CORP.

Alignment Data

This receiver is designed to operate on 32 volt battery plants only and must not be used on 36 volt battery plants without a voltage regulator. Generally, it is not advisable to operate the receiver while the generator is charging the battery due to the fact that considerable radio interference (static noise) may be encountered. This is not a reflection on the receiver, but is due to interference caused by the power plant generator, itself. Some generators have built-in traps to eliminate this interference and when so constructed this particular type of plant generator will not cause interference. If excessive static noise is encountered be sure that it is not caused by the 32 volt plant generator.

THIRTY-TWO VOLT POWER UNIT: Two power units have been furnished with the six tube 32 volt recelver, one unit utilizes a $25 Z 5$ tube and the other an 84 tube. Diagrams for both of these units are shown on the receiver circuit diagram. It will be noted from the parts and price list that all parts with the exception of the power transformer and tube sockets are interchangeable. When ordering these parts be sure to order by part number.
NOTE: The dynamotor type unit supplied with the five tube 32 volt receiver cannot be used $\overline{\text { With }}$ the six tube receiver nor can the power units (utilizing the 84 or 2525 tube) furnished with the six tube receiver be used with the five tube 32 volt set.

The 32 volt power unit is shipped unmounted and must be placed in the sound-proof celotex compartment. In the console models this is located below the receiver mounting board and in the table models it is located above the chassis. To install the power unit in the sound-proof box remove the wood screws which hold the celotex back to the box, then place the power unit on the rubber mounting blocks provided inside of this box so that the unit is floating free on these rubber insulators. It is very important that the unit does not touch the side of the box. If excessive vibration is noticed be sure to check the power unit installation, as excessive vibration will result if it is not properly mounted on all of the rubber supports or if it is permitted to touch the side of the celotex housing.

PILOT LIGHT: A type T-3 $\frac{1}{4} \# 406.3$ volt pilot light is used. The pilot light is readily accessible for removal from the rear of the cabinet.
ANPENNA AND GROUND: Under ordinary conditions an aerial from twenty-five to seventy-five feet in length including lead-in will prove ample. In some locations which are located a considerable distance from broadcast stations it may be necessary to use a longer aerial than this to obtain satisfactory daylight reception. Never place the aerial lead-in in close proximity to the 32 volt lighting lines, as considerable static noise may be picked up if the antenna lead-In is run parallel to the 32 volt power lines for any distance.
INTERMEDIATE ALIGNMENT: Only when an intermediate transformer has become defective due to an open or burned out winding should it be necessary to readjust the intermediate transformer. For aligning either the intermediate transformer or the variable condenser it is necessary that an oscillator be used with some type of output measuring device. To align nece intermediate transformer:

1. Connect the high side of the oscillator output to the control grid of the \#36 modulator tube. The ground side of the oscillator should be connected to the ground Iead.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning one of the intermediate transformer trimmer screws up and down until maximum reading is obtained on the output meter. Then adjust the other trimmer screw in the same manner.
4. The second I. F. transformer should next be adjusted in the same manner. The intermediate transformer trimmer screws are accessible through the small hole in the top of the intermediate transformer shields.

To align the variable condenser:

1. Connect the high output side of the oscillator to the set antenna lead and the ground side of the oscillator to the ground lead.
2. Tune the receiver to 1400 kilocycles on the dial and set the oscillator to this frequency.
3. Adjust the variable condenser trimmer screws for maximum output reading.
4. Tune the set to approximately 600 kilocycles on the dial and adjust the oscillator frequency to 600 kilecycles. Adjust the padding condenser located on the rear of the chassis adjacent to the antenna and ground leads and accessible through the hole in the chassis for maximum output reading.

When making this ad fustment be sure to rock the variable condenser to the right and left using the position where the greatest reading is obtained.

VOLTAGE TABLE
Line Voltage Volume Control:

TUBE

78	lst Detector
37	Oscillator
78	I.F.
77	2nd Detector
38	Output
$25 Z 5$	Rectifier or 84 Rectifier

$25 Z 5$ Rectifier or 84 Rectifier

* Comparative voltage only.

Read voltage from socket to receiver chassis.
PARTS LIST FOR MODE 6317

 Broadcast，Anterma，Preselector \＆Oscillator Coil Shart Wave Antenna \＆First Detector Coil Pirst I．P．Transformer Sec ond I．F ．Transformer Third I．F．Transformer Three Gang Condenser Wave Band Indicator Assembly Short Wave Trismer Disc．Assembly Short Wave Trimmer Worm Tuning Rod Padding Condenser Dynamic Speaker 8^{n} Volume Control Volume Contro
 Electrolytic Condenser Dual 8 Mfd ． Electrolytic Condenser 5 Mfd． Power Transformer Dynamic Speaker $6^{\prime \prime}$ Dyamic Speaker 8^{n} Tuning Meter Wire Wound Resistor Strip 2.5 Volt Pilot Lamp Bulb Tube Shield Cap i Mfd．ion Volt Condenser ． 1 Mfd． 400 Volt Condenser .05 Mfd ． 400 Volt Conden ser 03 Kfd ． .004 Mfd． 400 Volt .0005 Mfd ．\＆． $05 \mathrm{kfa}$. .2 Mfd． 400 Volt Condenser .2 yfd． 200 Volt Condenser 1／3 Watt Resistor $2,000 \mathrm{Ohm} 1 / 3$ Watt Resistor $10,000 \mathrm{hm} 1 / 3$ Watt Resistor $1, ~ Y e g ~ 0 \mathrm{hm}$ $1 / 3$ Watt Resistor 1 Yeg Ohm 1／3 Watt Resistor 250,000 Ohm $1 / 3$ Watt Resistor 6,000 Ohm 1／3 Watt Resistor Phonn Jacks S．P．D．T．Phono－Radio Switch Tuning Control Knob Short Wave Switch Control Knob Volume Control Knob Volume Control Knob Short Wave Trizmer Knob

\rightarrow

$+\underset{0}{4}$

 PART NUMBER
 LIST PRICE

勺io边令会品 Cable Socket Two Gang Condenser Tuning Dial
Pilot Light Socket

 .2 Mfd． 400 Volt Condenser

 .004 Mfd .400 Volt Condenser
.001 Mfd ．Moulded Condenser

 $6,0000 \mathrm{hm} 1 / 3$ Watt Resistor
15,000 hm l／3 Watt Resistor
 Three Conductor Power Cable with
Bottom Rubber Cushion
Side Rubber Cushion Bottom Rubber Cushion
Side Rubber Cushion
Celotex Housing
Vibrator
.5 Mfd．Condenser
$.02-02$ Mfd．Condenser Bottom Rubber Cushion
Side Rubber Cushion
Celotex Housing
Vibrator
.5 Mfd．Condenser
$.02-.02$ Mfd．Condenser Bottom Rubber Cushion
Side Rubber Cushion
Celotex Housing
Vibrator
.5 Mfd．Condenser
$.02-02$ Mfd．Condenser Bottom Rubber Cushion
Side Rubber Cushion
Celotex Housing
Vibrator
－5 Mfd．Condenser
O2－02 Mfd．Condenser
8 Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Onm Resistor $.02-02 \mathrm{Mfd}$ Condenser
8 Mf Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Ohm Resistor $.02-02 \mathrm{Mfd}$ Condenser
8 Mf Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Ohm Resistor $.02-02 \mathrm{Mfd}$ Condenser
8 Mf Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Ohm Resistor $.02-02 \mathrm{Mfd}$ Condenser
8 Mf Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Ohm Resistor

PARTS LIST FOR MODE 6101

Tpeaker Socket
Two Gang Cond enser
Tuning Dial
Pilot Light Socket Lesuepuoj 7T0 $00 Z$ •pJ

400 Volt Condenser	$\bullet 17$
400	$\bullet 17$

 Bottom Rubber Cushion
Side Rubber Cushion
Celotex Housing
Vibrator
.5 Mfd．Condenser
$.02-.02$ Mfd．Condenser $.02-02 \mathrm{Mfd}$ Condenser
8 Mf Mfd．Condenser
1 Mfd．Condenser
Cord \＆Plug
RF A Choke
Transformer used with $25 Z 5$ Tube
Transformer used with 84 Tube
5 Ohm Resistor

SENTINEL RADIO CORP．

PAGE 5-32 SENTINEL
MODEL 6315,6317,6321
Schematic
SENTINEL RADIO CORP.

SENTINEL RADIO CORP.

Voltage
Alignment Data

Abstract

BAND SELECTOR SWITCH: The receiver is designed for operation onfour different frequency bands. The frequency range of these bands are: | TUBE | Pil. | VOLTAGE TABLE | | | $\begin{aligned} & \text { Grid } \\ & \text { Ho. } 1 \end{aligned}$ | $\begin{aligned} & \text { Grid } \\ & \text { Ho. } 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Grid } \\ & \text { Fo. } 3 \text { \& } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Line Voltage : 115
 Volume Control: Full on
 Wave Band
 : Broadcast | | | | | |
| | | Plate | Screen | Cathode Volts | | | |
| $2 A^{7}$ Oscillator lst Dotector | 2.45 | 220 | | 2.2 | 3.5 | 200 | 90 |
| 58 First I. F. Amplifier | 2.45 | 220 | 90 | 6 | | | |
| 58 Second I. F. Amplifier | 2.45 | 220 | 90 | 3.5 | | | |
| 2A6 Second Detector | 2.45 | 120\#\# | | 1 | | | |
| 2 2 5 Output | 2.45 | 210 | 220 | | | | |

期 Triode Plate. Comparative voltage only. The voltmeter is in series with a high resistance and is therefore not the true voltage applied. Read all voltages from socket to chassis unless otherwise specified.

AITGMGENT PROCEDURE: Only when an atenna, oscillator or I. F. transformer has become defective due to an open or shorted winding ahould it be necessary to realign the receiver. For aligning either the intermediate transformer or variable condenser it is necessary that an oscillator be used with some type of output measuring device.

\section*{INTERIGEDIATE ATIGNOENT:}

1. Connect the high side of the oscillator output to the control grid of the $2 A 7$ girst Detector tube, leaving the grid clip disconnected. The ground side of the oscillator should be connected to the chassia.
2. Set the oscillator at 465 kilocycles (this must oe accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the brass hex nut of the first intermediate transformer trimmer up and down until maximum reading is obtained on the output meter, then adjust the trimmer screw located inside of the brass hex nut in the same manner. The intermediate transformer trimmer ecrews are accessible through the samall hole in the top of the intermediate transformer shields.
4. The second and third I. F. transformers should next be adusted in the mame manner as the first I.F. transformer.

TO ALIGX THE VARIABLE CONDFHSER: It is important when aligning the variable condenser and padding condensers to follow the procedure given carefuliy, otherviee the receiver will be insensitive and the dial callbration will be incorrect.

1. Connect the high output side of the oscillator to the antenna and the ground to the chassis.
2. Place the band selector switch for operation on the 1.5 to 4 megacycle band. Tune the receiver to exactly 1.7 megacycles onthe dial, set the short wave trimer about half the distance between maximum clockwise and counter-clockwise rotation and adjust the oscillator frequency to exactly 1.7 megacycles.
Hext, bring this 1.7 megacycle signal in to maximum output by adjusting the padding condenser accessible through the hole in the right hand side and closest to the rear of the chassis.
3. Leave the band selector switch for operation on the 1.5 to 4 megacycle band and tune the receiver to exactly 3.4 megacycles on the dial.
Next, set the test osciliator to exactly 3.4 megacycles and tune the signal in by adjusting the oscillator variable condenser trimer mounted on top of the variable condenser. The middle section of the variable condenser is the oscillator section. Recheck the 1.7 megacycle adjustment after making the adjustment at 4 megacycles. For best results it is always advisable to check each adjustmat several times. FoTE? This completes the short wave adjustment.
4. Adjust the band selector switch for operation on the broadcast band (1500 to 540 kilocycles) and tune the receiver to exactly 1400 kilocycles on the dial and set the oscillator to this frequency. Turn the receiver on end and bring this 1400 kilocycle signal in to maximum output by adjusting the trimer screw on the small trimer, which is located adjacent to the short wave switch underneath the chassis.
Hext, adjust the antenna and preselector variable condenser section trimmers mounted on top of the variable condenser for maximum signal output. (These are the front and rear gang sections).
5. Leare the band selector awitch for operation on the broadcast band (1500 to 540 kilocyclea) and tune the receiver and oscillator to approximately 600 kilocycles . Then adjust the 600 kilocycle padding condenser which is located on the right hand side and towards the front of the chassis for maximum output reading. This adjustment is quite critical and it is necessary to rock the condenser slightly to the right and left to obtain maximum sensitivity.

Always recheck the 1400 kilocycle alignment after making the adjustment at 600 kilocycles.

PAGE 5-34 SENTINEL
MODEX 6200,6234,6241 Schematic

SENTINEL RADIO CORP.

SENTINEL RADIO CORP.

PAGE 5-36 SENTINEL

MODEL 7700,7732,7741
Voltage, Parts List
SENTINEL RADIO CORP.
Alignment Data

1. Coinect the high aide of the oscillator output to the control grid of the lof tube leaving the grid cap disconnected. Connect the ground side, of the oscillator to the receiver chassis.
2. Set the test oscillator frequency to 4.65 rilocycles (this must be accurate).
3. Align the first intermediate ansformer by turning one of the trimmer screws up and down until maximum reading is obtained on the output meter, and then adjust the other trimmer screw of the same transformer for maximum sensitivity.
4. Adjust the second intermediate transformer in the same manner.

FOTE: Two type intermediate transformer trimmers have been used in this receiver. one type has two parallel holes in the top of the shield, one for each trimmer. The other type has a brass hex nut for adjusting one trimmer, the other intermediate trimmer being adjusted with the trimmer screw located inside of the brass hex nut. Regardless of which type trimmer is used the procedure is the same.

TO ALIGI THE VARIABLE CONDHESER: It is important when aligning to follow the procedure carefully, otherwise the receiver will lack sensitivity and the dial calibration will be incorrect.

1. Connect the high output side of the oscillator to the receiver antenna lead and the ground to the chassis.
2. Place the band selector switch for operation on the short wave band, tune the receiver to exactly 15 megacycles on the dial and set the test oscillator frequency to exactiy 15 megacycles. THFN TUNE IN THF 15 yggactele siginal by anjusting the trililer mounted on top of the oscilliator section of the gang condenser to Maximur oUt Put.
Looking at the front of the receiver the oscillator section is the rear section of the gang condenser.
3. Set the band selector switch for operation on the broadcast band, adjust the test oscillator frequency to 1400 kilocycles and set the receiver dial to exactly 1400 kilocycies. FISXI, BRING IN THE 1400 KILOCYCLE SIGNAL TO MAXIMOI OUTPUT BY ADJUSTING THE TRIMAFR LOCATED UNDERIEATH AND NEAR THE CEITIAR FRONT OF THE CHASSIS.
4. After making this adjustment tune the dial to 1720 kilocycles and set theoscillator frequency to 1720 kilocycles. If the 1720 kilocycle signal cannot be received reduce the 1400 kilocycle trinmer capacity until the 1720 kilocycle signal is brought in.
5. Fext, set the recaiver dial and test oscillator to exactly 1400 kilocycles, and adjust the trimer located on the front section of the gang condenser for maximam sensitivity.
6. Leave the band selector sultch for operation on the broadcast band, tune the receiver and set the oscillator to approximately 600 kilocycles. Then adjust the 600 lilocycle padding condenser, which is located on and accessible through the small hole in the front of the chassis, for maximum sensitivity. As this adjustment is quite critical it is necessary to rock the condenser slightly to the right and left to find the point of greatest sensitivity.
7. Flace the band selector switch for operation on the short wave band, adjust the test oscillator frequency to exactly 15 megacycles and set the receiver dial to 15 megacycles. Turn the receiver on its back with the dial up and adjust the trimmer, which is mounted on the top of the coil underneath and near the right hand side of the chassis, for maximum output. Be sure to rock the condenser slightly to the right and left when making this adjustment.

This completes the alignment procedire. It is recommended that all of the adjustments be gone over again Generally it will be found that improved results can be obtained if this is done.

VOLTAGE TABLE
"A" Battery - 3 VOLtDry cell

"C" Battery - 1 22 $\frac{1}{2}$ Volt Battery

TUBR	
1C6	Oscillator \& lst Detector
30	Second Detector
34	I. F.
32	1st Audio
30	Driver
19	Output

FIL.
2.1
2.1
2.7
2.1
2.1
2.1

* Comparative voltage only Read all voltages from socket to chassis

Total "B" Drain - . 023 Amperes
Total "A" Drain - . 620 Amperes

When making tube voltage checks use batteries that deliver full voltage with the receiver turned on.

RT MUMBIRR	
1113	Antenna Coil
1114	Oscillator Coil
1298	1st I. P Transformer
9662	2nd I. P. Transformer
1331	Audio Transformer
1291	4 yfd. Wet Flectrolytic Condenser
1115	Dual 11 Mfd. 200 Volt Condenser
7860	. 01 Mrd: 400 Volt Condenser
9032	. 2 Mfd. 200 Voit Condenser
9459	. 0005 Mrd. Mica Hould Condenser
7934	. 0001 MPd. Mica Moild Cendenser
1374	. 003 Mfd. Mica Mould Condenser
1332	Wire Wound Resistor Strip
7998	1 Heg Ohm $1 / 3$ Watt Resistor
6984	500,000 ohm 1/3 watt Resistor
8906	250,000 Ohm 1/3 Watt Resistor
6879	50,000 Ohm 1/3 watt Resistor

IIST PRICE
$\$ 1.63$
1.63
2.05
2.05
1.40
.85
.35
.17
.23
.21
.21
.21
.35
119
.19
.19
.19

PART	IUMBER	LIST PRICE
1333	18,000 ohm 1/2 Watt resistor	\$.19
9693	5,000 ohm 1/3 watt Resistor	. 19
8907	25,000 ohm $1 / 3$ watt Resistor	.19
1292	6 conductor Battery cable	. 68
1289	Volume control with D.P.S.T. Switch	1.24
1341	Tone control switch	. 40
1370	one Color tuning Dial	. 30
1338	Two Color Tuning Dial	. 35
1103	Two gang Condenser	3.93
1361	Tube Shield	. 15
9988	Tube Shield	. 11
1053	padding Condenaer	. 50
1054	padding Condenser	.55
9799	trimmer Condenser	. 15
6-1	Voltage Regulator Tube	3.00
1179	mob, Large	. 15
1180	Knob, Small with Dot	. 17

MODEH 53 AC-DC
Voltage
SPARKS-WITHINGTON CO.
Chassis Vief
(ORIGINAL) EFFECTIVE AUGUST 28, 1934

Sparton Model 53 A. C.-D. C. Superheterodyne Schematic Diagram and Voltage Resistance Chart

VOLTAGE-RESISTANCE CHART

Line Supply - A. C.
Position of Volume Control - Full with Antenna Disconnected
Line Voltage - $\underline{119}$

Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong Numbers on Schematic Diagram)							
		$\begin{gathered} \text { Measure- } \\ \text { ment } \end{gathered}$	Prong No. 1	Prong No. 2	Prong No. 3	Prong No. 4	Prong No. 5	Prong No. 6	Grid Cap
78	1st Detector-Oscillator	Volts	28	105	105	**	18	28	15
		Ohms	700	30,000	30,000	**	2500	700	2100
78	I-F Amplifier	Vol:s	28	105	105	3.7	3.7	28	**
		Ohms	700	30,000	30,000	350	350	700	1,000,000
75	2d Detector-A.V.C.	Volts	28	**	**	**	**	28	**
		Ohms	700	450,000	500,000	500.0ก?	100	700	500,000
43	Power Amplifier	Volts	28	98	105	**	**	28	-
		Ohms	700	25,000	25,000	500.000	0	700	-
25Z5	Rectifier	Volts	28	118	105	70	118	28	-
		Ohms	700	800	25,000	3500	750	700	-

NOTES: Voltage and resistance readings are for schematic diagram shown. See nute under schematic diagram. Allow $15 \%+$ or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer No. 665, Type 1.
${ }^{* *}$ Cannot be measured with Weston No. 665, Type 1.

MODELS 53 AND 57 CHASSIS
Note: Model 53 Chassis is not equipped with dial light assembly or band selector switch.

Detailed Alignment Instructions for SPARTON Models 53 and 57

PAGE 5-4 SPARTON
MODEL 57 AC-DC
Schematic
SPARKS-WITHINGTON CO.

SPARTON PAGE 5-5

Sparton Model 57 A. C.-D. C. Superheterodyne Schematic Drawing and Voltage-Resistance Chart

VOLTAGE-RESISTANCE CHART

Line Supply - A. C. Line Voltage - 119		Position of Volume Control - Full with Antenna Disconnected Position of Band Selector Switch - Short-Wave							
Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong Numbers an Schematic Diagram)							
		Measurement	Prong No. 1	$\begin{aligned} & \text { Prong } \\ & \text { No. } 2 \end{aligned}$	Prong No. 8	$\begin{aligned} & \text { Prong } \\ & \text { No. } 4 \end{aligned}$	$\begin{aligned} & \text { Prong } \\ & \text { No. } 5 \end{aligned}$	$\underset{\substack{\text { Prong } \\ \text { No. } \\ \hline}}{ }$ No.	$\begin{aligned} & \text { Grid } \\ & \text { Cap } \end{aligned}$
78	1st Detector-Oscillator	Volts	31	115	115	**	22	31	15
		Ohms	700	70.000	70.000	**	2500	700	2100
78	I-F Amplifier	Volts	31	115	115	4	4	31	**
		Ohms	700	50.000	50,000	300	300	700	1,000,000
75	2d Detector-A.V.C.	Volts	31	**	**	**	**	31	**
		Ohms	700	500,000	500,000	500.000	100	700	500.000
43	Power Amplifier	Volts	31	107	115	**	**	31	-
		Ohms	700	50.000	50,000	500.000	0	$\dot{7} 00$	-
25Z5	Rectifier	Volts	31	118	115	95	116	31	-
		Ohms	700	850	45,000	3500	900	700	-

NOTES: Voltage and resistance readings are for schematic diagram shown. See note under schematic diagram. Allow $15 \%+$ or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer No. 665, Type 1.
${ }^{* *}$ Cannot be measured with Weston No. 665, Type 1.

MODEL 57 CHASSIS

SPARKS-WITHINGTON CO.

(First Revision) Effective August 24, 1934

Chart of Special SPARTON Radio Tubes

Present Type Number	Replaces Discontinued Types or Type Numbers	USED IN SPARTON MODELS									
181	$\begin{aligned} & \mathrm{C}-1.71 \\ & \mathrm{C}-181 \end{aligned}$	AC-\%		-62	AC-63						
401	$\begin{gathered} \text { C-373 } \\ \text { C- }-401 \\ \text { Kellogg-401 } \end{gathered}$	AC-5	A	- 7	AC-62	A	-63				
482-A	C-182-A	$\begin{aligned} & \text { AC-7 } \\ & \text { AC-62 } \end{aligned}$	$\begin{array}{r} \mathrm{A} \\ 301 \end{array}$	DC	$\begin{aligned} & 600-\mathrm{DC} \\ & 610-\mathrm{DC} \end{aligned}$	$\begin{aligned} & 620 \\ & 740 \end{aligned}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & 750-\mathrm{D} \\ & 931-\mathrm{D} \end{aligned}$			
482-B	$\begin{gathered} 182-\mathrm{B} \\ \mathrm{C}-182 \end{gathered}$	591	59						-		
483	C-183	$\begin{aligned} & 235 \\ & 410 \end{aligned}$	42		$\begin{aligned} & 591 \\ & 593 \end{aligned}$	6		$\begin{aligned} & 620 \\ & 737 \end{aligned}$			
484-A	C-484-A	$\begin{aligned} & 301-\mathrm{DC} \\ & 600-\mathrm{DC} \end{aligned}$	$\begin{aligned} & 610 \\ & -\quad 620 \end{aligned}$	DC	$\begin{aligned} & 740-\mathrm{DC} \\ & 750-\mathrm{DC} \end{aligned}$	931	DC				
485	$\begin{array}{r} 484 \\ \text { C-484 } \\ C-485 \end{array}$	$\begin{aligned} & 69 \\ & 79 \\ & 79-\mathrm{A} \end{aligned}$	$\begin{aligned} & 89 \\ & 89-\mathrm{A} \\ & 99 \end{aligned}$	$\begin{aligned} & 101 \\ & 103 \\ & 109 \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \\ & 111-\mathrm{A} \end{aligned}$	$\begin{aligned} & 235 \\ & 301 \\ & 564 \end{aligned}$	$\begin{aligned} & 570 \\ & 574 \\ & 589 \end{aligned}$	$\begin{aligned} & 591 \\ & 593 \\ & 600 \end{aligned}$	$\begin{aligned} & 610 \\ & 620 \\ & 73 \% \end{aligned}$	$\begin{aligned} & 740 \\ & 750 \\ & 870 \end{aligned}$	$\begin{aligned} & 930 \\ & 931 \end{aligned}$
486	C-686					49					
$\begin{gathered} 50 \\ \text { (Standard } \\ \text { Type) } \end{gathered}$	$\begin{array}{r} 250 \\ 450 \\ 585 \\ 586 \\ \mathrm{C}-585 \\ \mathrm{C}-586 \end{array}$	$\begin{aligned} & 35 \\ & 69 \\ & 79 \\ & 79-\mathrm{A} \end{aligned}$	$\begin{aligned} & 89 \\ & 89-\mathrm{A} \\ & 99 \\ & 101 \end{aligned}$	$\begin{aligned} & 103 \\ & 109 \\ & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & 111-A \\ & 301 \\ & 564 \\ & 570 \end{aligned}$	$\begin{gathered} 574 \\ 740 \\ 750 \\ 870 \end{gathered}$	-				

IMPORTANT

SPARTON types $482-A, 482-B$ and 483 should not be replaced by type ' 45 . Difference in filament voltage will burn out type ' 45 .

SPARTON types $482-B$ and 483 should never be mixed in a power amplifier. Always use two type $482-$ B or two type 483 . These tubes should be used in SPARTON Models as listed in the above chart.

SPARTON types $484-\mathrm{A}$ and 485 should not be replaced by type ' 27 . Difference in characteristics causes overload on both transformer and tube.
NOTE: Best results with SPARTON Equasonne Models are obtained by mixing high and low reading type 485 tubes in the R-F Amplifier unit.

SPARTON PAGE 5-7
SPARKS-WITHINGTON CO.

Sparton Models 65 and 66 A. C.-D. C. Superheterodyne Schematic Diagram and Voltage-Resistance Chart

VOLTAGE-RESISTANCE CHART
Line Supply - A. C.
Line Voltage - $\underline{119}$

Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong Numbers on Schematic Diagram)							
		Measure- ment	Prong No. 1	Prong No. 2	Prong $\text { No. } 3$	Prong No.	Prong No. 5	Prong No. 6	Grid Cap
78	1st Detector-Oscillator	Volts	29	80	105	0	17.5	29	17.5
		Ohms	700	*	*	0	2500	700	2400
78	1st I-F Amplifier	Volts	29	105	105	7.5	7.5	29	0
		Ohms	700	*	*	1700	1700	700	800,000
	2nd I-F Amplifier	Volts	29	75	105	2.7	2.7	29	0
.		Ohms	700	*	350,000	250	250	700	800,000
75	2nd Det.-A.V.C.	Volts	29	**	**	**	. 64	29	0
		Ohms	700	500,000	500,000	500,000	100	700	250,000
43	Power Amplifier	Volts	29	95	105	**	**	29	----
		Ohms	700	*	*	750,000	0	700	--
25Z5	Rectifier	Volts	29	28	105	74	30	29	--
		Ohms	700	800	*	3000	800	700	-

NOTES: Voltage and resistance readings are for schematic diagram shown. See note under schematic diagram. Allow $15 \%+$ or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer No. 665, Type 1.
*Zero, provided correct meter polarity is used. **Cannot be measured with Weston No. 665, Type 1.

MODELS 65 AND 66 CHASSIS

SPARKS-WITHING'TON CO.

Detailed Alignment Instructions for SPARTON Models

 section of the two gang condenser may be bent if necessary to correct
dial readings. Note: An allowance of 20 kilocycles at 900 kilocycles and 15 kilocycles at 600 kilo-
cycles is permitted.

gnment of Short-
Wave Band.
(1) Adjust Band Selector Switch to Short
Wave Position. 2) Adjust test oscillator to obtain a wave
length of 20 meters (15 megacycles) and tune receiver to this wave length.
Adjust for resonAdjust for resonance with antenna $\begin{array}{cc}\text { tuning } & \text { condenser } \\ \left(\mathrm{C}_{\mathrm{A}}\right) . & \text { Calibration }\end{array}$ should check within $11 / 2$ meters. Push
or pull the wires or pull the wires
that are near the oscillator coil to correct any greater (3) Adjust test oscillalength of 50 meters (6 megacycles) and tune receiver to this wave length. ance with antenna $\underset{\left(\mathrm{C}_{\mathrm{A}}\right) .}{\text { tuning }} \quad \begin{gathered}\text { condenser } \\ \text { Calibration }\end{gathered}$ should check withthe error in calbra-
 -pe su!̣pəәə.ıd әчі justments.

65, 65-T, 66 and 66-T

Note: Models 65 and 66 are A. C.-D. C. re- and drum, then resetting the pointer, ceivers; Models $65-\mathrm{T}$ and $66-\mathrm{T}$ are equipped with and then tightening the nut. a power transformer and must be used on A. C. (2) Turn on receiver and test oscillator,
only.
Fore
service man should read carefully the informa- (3) Warning: Before connecting test bulletin, especially the paragraph pertaining to oscilor to receiver, be sure to.read the use of a test oscillator, an output meter, carefully the operating instructions method of adjusting the various trimming and Connect "antenna" of test oscillacondenser plate sections. \quad tor to grid cap of type 78 first detec-
tor oscillator tube, and "ground" of tor oscillator tube, and "ground" of ceiver.
(4) Tune test oscillator to obtain signal
(5) Turn volume control of receiver on full, and place Band Selector Switch
in Broadcast Position. Make sure condenser plates are turned all the way out.
(6) Adjust I-F condensers ($\mathrm{C}_{1}, \mathrm{C}_{2}$, and
C_{3}). See Fig. 6.
(7) Disconnect "antenna" leads of test
oscillator tube and connect to the an-
tenna terminal of the chassis.
(8) Tune test oscillator to obtain a signal
(9) Tune station select 1500 kilocycles.
(9) Tune station selector of receiver to
500 kilocycles. Also adjust antenna
uning condenser $\left(\mathrm{C}_{\mathrm{A}}\right)$.
Note: Do not disturb the 1500
kilater setting of either the test
scillator or the receiver.
(10) Adjust oscillator trimmer condenser
(C_{0}).
(11) Check calibration of receiver by set-
ting the test oscillator to obtain a ting the test oscillator to obtain a
signal of 172.5 kilocycles. Harmonics of this frequency should be picked
 and 1552.5 kilocycles.
Foreword: Before attempting to realign the
The use of quality test equipment is highly
recommended, and a good test oscillator becomes a virtual necessity when aligning the allwave type of receiver. Due to the fact that the ear cannot distinguish small changes in sound proper adjustment of the various condensers.
Unless otherwise specified, the adjusting of any condenser consists of turning the adjusting meter registers the greatest deflection. 1. EQUIPMENT REQUIRED.
A. Modulated test oscillator (crystal controlled or accurately calibrated) capable of 15,000 kilocycles
B. Output meter.
2. STEP BY STEP PROCEDURE FOR COM-
Note: For proper alignment of these
chassis, the procedure should be followed in the same order as given. Alignment of Broadcast Band.
(1) The dial pointer should be exactly
parallel with the horizontal lines on
the scale when the selector rotor plates are completely in mesh with
 ing the nut on the planetary drive

PAGE 5-10 SPARTON
MDDEI 67,68,691
Alignment Data

SPARKS-WITHING'TON CO.
(Original) Effective August 29, 1934
Detailed Alignment Instructions for SPARTON Models
(5) With the test osillator tuned to 20
(6) Tune the test oscillator to obtain a
wane length of 50 meters $(6$ mega-
cyyles and tune reeeviver to this
wave length for calibration check.
(7) Tune test oscillator to obtain a wave length of 33.3 meters 9 . megaceccles
and tue reter to this wave length
for calibration check. for calibration check.
(3) Tune test oscillator to obtain a wave lengt of reeivers to this wave length
and tune
for calibration check.
Note: All adjustments should be re-checked
to assure accuracy and stability of adjustment
and calibration.

da rang. Wave Band.
(1) Turn the Band Selector Switch to the (2) Tune the station selector to 1500 (3) Tune test oscillator to obtain a signal

Foreword: Before attempting to realign the Note: It is advisable to read carefully circuits of the above SPARTON models, the the operating instructions included with test (3) Tune test oscillator to obtain a signal (4) Turn the volume control of reeciver Switch in Broadcast Position.
(5) Adjust I. F. condensers C_{7} and C_{8}.
(6) The dial pointer should point to the
 scale (ialal division between if the dial poiter
horizontal line
reans incorrectly it it may be reset by reas incorrectiv, it may be reset by
first loosening the nut on the planetary drive and drum (back of the
Station Selector knob), then reset-
ting the pointer while holding the
rotor plates completely in mesh with
 Alignment of Bro B. Alignment of Broadcast Band.
 tor-oscillator tube and connect
the antenna
terminal of the chassis. (2) Tune test oscillator and receiver to (3) Adjust Condenser C ${ }_{6}$.
(5) Tune test oscillator and receiver to
(6) Adjust condenser C_{8} for maximum
Note: Slight readjustments of Note: Sight readjustments of $\mathrm{C}_{\boldsymbol{y}}$ may be required to obtain the
 permitted in this procedure.
(7) Check calibration of receiver by of this frequency should be picked
 and 1552.5 kilocycles.

SPARTON PAGE 5-11

PAGE 5-12 SPARTON
NODEH 67,68,691
Voltage
SPARKS-WITHINGTON CO.
Chassis View
(ORIGINAL) EFFECTIVE AUGUST 1, 1934

Sparton Models 67, 68, and 691 A. C. Superheterodyne Schematic Diagram and Voltage-Resistance Chart

VOLTAGE-RESISTANCE CHART

Line Voltage - 119 Position of Tone Control - Full				Position of Volume Control - Full with Antenna Disconnected Position of Band Selector Switch - Short-Wave						
Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong Numbers on Schematic Diagram)								
		$\begin{aligned} & \text { Measure- } \\ & \text { ment } \end{aligned}$	Prong No. 1	Prong No. 2	Prong No. 3	Prong No. 4	Prong No. 5	Prong No. 6	Prong No. 7	$\underset{\text { Cap }}{\text { Grid }}$
78	R-F Amplifier	Volts	6.1	275	135	6.3	6.3	0	-	**
		Ohms	0	23,000	20,000	650	650	0	-	1,000,000
6A7	1st Detector-Oscillator	Volts	6.1	275	135	135	**	6.4	0	**
		Ohms	0	28.000	20,000	60.000	55,000	650	0	1,000,000
78	I-F Amplifier	Volts	6.1	275	135	6.3	6.3	0	-	**
		Ohms	0	29,000	20,000	650	650	0	-	1.000,000
75	2d Detector-A.V.C.	Volts	6.1	120	0	0	1.6	0	-	**
		Ohms	0	500.000	600,000	600,000	270	0	-	250,000
42	Power Amplifier	Volts.	6.1	260	280	0	19.5	0	-	-
		Ohms	0	27,000	27,000	250,000	500	0	-	-
80	Rectifier	Volts	440	405	410	440	-	$\underline{\square}$	-	-
		Ohms	28,000	1,250	1,350	28,000	-	-	-	-

NOTES: Voltage and resistance readings are for schematic diagram shown. See note under schematic diagram. Allow 15% + or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer No. 665, Type 1.
${ }^{* *}$ Cannot be measured with Weston No. 665, Type 1.

MODELS 67, 68, AND 691 CHASSIS

CIRCUIT FOR PHONOGRAPH PICK-UP

Break connection between Condenser C7 and Volume Control R1 (see Schematic Diagram) and install toggle switch (SPARTON Part A-11561 may be used). Toggle switch may be mounted by drilling a $1 / 2^{\prime \prime}$ hole in the back of the chassis, 4 inches from the right hand side and 1 inch up from the bottom.
SCHEMATIC DIAGRAM
SPARTON MODELS $75 A-475 A-478$ A

PAGE 5-14 SPARTON
MODE 75A,475A,478A
Voltage
SPARKS-WITHINGTON CO.
Notes
(ORIGINAL) EFFECTIVE FEBRUARY 15, 1934

Sparton Models 75-A, 475-A and 478-A Superheterodyne Schematic Diagram, Voltage Analysis and Continuity Chart

VOLTAGE ANALYSIS AND CONTINUITY CHART

Line Voltage 120
Position of Volume Control-Full with Antenna Disconnected
Position of Inter-Station Noise Suppressor-Full Position of Band Selector Switch—Broadcast
Position of Tone Control-Full

Tube	Location	PLATE		Screen Grid Volts	ControlGridVolts	RESISTANCE TO GROUND (OHMS)			
		Volts	Ma.			Plate	Screen	C. Grid	Cathode
58	R-F Stage	245.	6.5	120.	-4.9	77,000	50,000	750,000	290
57	1st Detector	245.	-	52.	-1.9	77,000	100,000	12	200
56	Oscillator	105.	.- -	--	-1.9	100,000	-	50,000	200
58	1st I-F Stage	255.	5.0	52.	-1.0	75,000	100,000	750,000	200
58	2nd I-F Stage	255.	6.0	120.	-4.5	75,000	50,000	750,000	290
55	Diode Det.-A.V. C.	-	-	-	-	250,000	-	-	0
	Triode Audio	15.	0.75	-	-	375,000	-	250,000	
47	Power Stage	245.	21.0	255.	-20.0	75,000	75,000	1,000,000	7.5
80	Rectifier	$355 \dagger$	-	-	-	-	-	-	-

NOTES: Allow $15 \%+$ or - on all measurements.
All heater voltages: 7.5 , except 80 Rectifier filament: 5.0 volts.
\dagger As read on 800 volt scale of A-C meter in Jewell 444 Set Analyzer.

NOTE: SPARTON MODEL 475.A has Model 75-A chassis and Model 74 cabinet.
SPARTON MODEL 478-A has Model 75-A chassis and Model 478 cabinet.

NOTE: The 8,000 ohm Resistor ($\mathrm{B}_{5} 5458$-23) and .006 mfd . condenser (A -9916) are included in the Type 57 1st Detector circuit as above in all chassis having light brown color tuning scales. These receivers will have - 3.0 volts on Type 57 Control Grid instead of -1.9 and 8,000 ohms cathode resistance to ground instead of 200 ohms as shown in the above table.

SPARTON PAGE 5-15

PAGE 5-16 SPARTON
MODEL $80,83,84$, 85X,86X
Voltage, Chassis View
Service Notes
(ORIGINAL) EFFECTIVE AUGUST 10, 1934

Sparton Models 80, 83, 84, 85-X and 86-X Superheterodyne Schematic Diagram and Voltage-Resistance Chart

VOLTAGE-RESISTANCE CHART

Line Voltage - 120
Position of Tone Control - Full
Position of Viso-Glo Regulator - Full

Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong. Numbers on Schematic Diagram)								
		$\overline{\text { Measure- }}$	Prong No. 1	Prong No. 2	$\begin{aligned} & \hline \text { Prong } \\ & \text { No. } 3 \end{aligned}$	$\begin{aligned} & \text { Prong } \\ & \text { No. } 4 \end{aligned}$	$\begin{aligned} & \text { Prong } \\ & \text { No. } \end{aligned}$	Prong No. 6	Prong No. 7	Grid Cap
78	R-F Amplifier	Volts	*	220	110	0	2.5	*	-	0
		Ohms	0	40,000	25,000	0	400	0	-	500,000
6A7	Converter	Volts	*	220	110	3.8	**	3.8	*	0
		Ohms	0	40,000	25,000	45,000	45,000	900	0	500.000
76	Oscillator	Volts	*	175	**	0	6	*	-	-
		Ohms	0	55,000	45,000	, 0	0	0	-	-
78	1st_ I-F Amplifier	Volts	*	220	110	0	3.8	*	-	0
		Ohms	0	40.000	25,000	0	400	0	-	500,000
78	2d I-F Amplifier	Volts	*	280	110	0	3.3	*	--	0
		Ohms	0	40,000	25,000	0	400	0	-	0
85	2d Detector-A.V.C.	Volts	*	**	**	**	0	*	-	0
		Ohms	0	500.000	250,000	250,000	0	0	-	0
42	Power Amplifier	Volts	*	270	285	0	20	*	-	-
		Ohms	0	40,000	40,000	500,000	450	0	\square	\cdots
80	Rectifier	Volts	450	400	400	450	-	-	-	-
		Ohms	40,000	100	100	40,000	-	-	-	-

Position of Volume Control - Full with Antenna Disconnected Position of Band Selector Switch - Broadcast
Position of Inter-Station Noise Suppressor - Full

NOTES: Voltage and resistance readings are for schematic diagram shown. Allow $15 \%+$ or $-\quad$ on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer No. 665 , Type 1. 6A7 Tube) should read 6.0, and vice versa
${ }_{* *}$ Cannot be measured with Weston No. 665, Type 1.

MODELS 80, 83, 84, 85-X, AND 86-X CHASSIS

PAGE 5-18 SPARTON
MODELS $80,83,84,85 X$, $86 \mathrm{X}, 104$

SPARKS-WITHINGTON CO.

Trimmer Locations Frequency Tables

*Type 76 First Audio and Type 523 Rectifier are used on the ten-tube chassis (Model 104) only.
**Type 42 output tube is used in this position on the Model 104 only, and the type 80 rectifier is used on the eight-tube chassis only, and the type 80 rectifier is used
Models $80,83,84,85-X$ and $86-X$ only.

INTERMEDLATE-FREQUENCY ADJUSTABLE CONDENSERS

DIO-FREQUENCY INPUT TRIMMERS (ANTENNA TRIMMERS)
$\mathrm{C}_{4}-\mathrm{BAND}$ NO. 1. (ADJUST AT $\left.1350 \mathrm{~K} . \mathrm{C}.\right)$
C5 - BAND NO. 2. (ADJUST AT $3000 \mathrm{~K} . \mathrm{C}$.
C6 - BAND NO. 3. (ADJUST AT $7200 \mathrm{~K} . \mathrm{C}$.)

RADIO-FREQUENCY OUTPUT TRIMMERS (R. F. TRIMMERS)
$\begin{array}{ll}\text { Cs - BAND NO. 1. (ADJUST AT } & 1350 \\ \text { C9 K. C.) }\end{array}$
$\begin{array}{ll}\text { C9 - BAND NO. 2. (ADJUST AT } \\ \text { C10-BAND NO. 3. } & \text { (ADJUST AT } \\ 7200 & \mathrm{~K} . \mathrm{C} .) \\ \text { C.) }\end{array}$
C10-BAND NO. 3. (ADJUST AT
$\mathrm{C}_{11}-\mathrm{BAND}$ NO. 4. (ADJUST AT $\left.15000 \mathrm{~K} . \mathrm{C}.\right)$
OSCILLATOR TRIMMING CONDENSERS
C12-BAND NO. 1. (ADJUST AT $1350 \mathrm{~K} . \mathrm{C}$.
C13-BAND NO. 2. (ADJUST AT $3000 \mathrm{~K} . \mathrm{C}$.
C14-BAND NO. 3.
C15-BAND NO. 4. (ADJUST AT
AT
15000
K.
OSCILLATOR PADDING CONDENSERS
C16-BAND NO. 1. (ADJUST AT $600 \mathrm{~K} . \mathrm{C}$.
C17-BAND
$\mathrm{C}_{18}-\mathrm{NO}$
BAND
NO. 2. (ADJUST AT $1650 \mathrm{~K} . \mathrm{C}$.)

FIG. 8 CHASSIS DIAGRAM FOR SPARTON
MODELS 80, 83, 84, 85-X, 86-X AND 104

SPARKS-WITHINGTON CO.
SPARTON MODEL 104 SUPERHETERODYNE
INTERMEDIATE FREQUENCY 456 KILOCYCLES
(TOP VIEWS OF SOCKET CONNECTIONS SHOWN)

MODEL 104
Voltage
Chassis View,Notes
(ORIGINAL) EFFECTIVE SEPTEMBER 11, 1934

Sparton Model 104 A. C. Superheterodyne Schematic Diagram and Voltage-Resistance Chart VOLTAGE-RESISTANCE CHART

Line Voltage - 120
Position of Viso-Glo Regulator - Full
Position of Tone Control - Full

SPARKS-WITHING'TON CO.

Tube	Function	Voltage and Resistance of Each Socket Prong to Ground (See Prong Numbers on Schematic Diagram)								
		Measure- ment	Prong No. 1	Prong No. 2	Prong No. 3	Prong No.	Prong No. 5	Prong No. 6	$\begin{aligned} & \text { Prong } \\ & \text { No. } 7 \end{aligned}$	Grid
78	R. F. Amplifier	Volts	*	195	95	0	3.2	*	-	0
		Ohms	0	45,000	25,000	0	400	0	-	500,000
6A7	Converter	Volts	*	195	95	3.8	**	3.8	*	0
		Ohms	0	45.000	25,000	900	45.000	900	0	500,000
76	Oscillator	Volts	*	- 150	**	0	*	-	--	-
		Ohms	0	50,000	45,000	0	0	--	-	-
78	1st I. F. Amplifier	Volts	*	195	95	0	3.2	*	-	0
		Ohms	0	45,000	25,000	0	400	0	-	500,000
78	2nd I. F. Amplifier.	Volts	*	250	95	0	3.2	*	-	0
		Ohms	0	35,000	25,000	0	0	0	--	0
85	2nd Detector-A. V. U.	Volts	*	**	**	**	0	*	-	0
		Ohms	0	500,000	250,000	250,000	0	0	-	250,000
76	1st A. F. Amplifier	Volts	*	**	8.8	0	*	-	-	-
		Ohms	0	40,000	250,000	1,750	0	-	-	-
42	Power Amplifier	Volts	*	245	250	0	18	*	-	-
		Ohms	0	35,000	38,000	1200	250	0	-	-
42	Power Amplifier	Volts	*	245	250	0	18	*	-	-
		Ohms	0	35,000	38,000	1200	250	0	--	-
5Z3	Rectifier	Volts	365	330	330	365	-	-	-	-
		Ohms	3800	50	50	3800	-	-	-	-

NOTES: Voltage and resistance readings are for schematic diagram shown on back of sheet. Allow $15 \%+$ or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All measurements made with Weston Selective Analyzer. No. 665, Type 1.
*Zero or 5.8 volts, depending on twist of filament hook-up wire. If Prong No. 1 reads zero, Prong No. 6 (Prong No. 7 of Type $6 A 7$ or Prong No. 5 of Type 76) should read 5.8 volts, and vice versa.
${ }^{* *}$ Cannot be measured with Weston No. 665, Type 1.

MODEL 104 CHASSIS

DIAGRAM OF CONNECTIONS FOR PHÓNOGRAPH PICKUP
Parts required: 1 Toggle Switch (D. P. D. T.), Part A-11561; 1 Condenser (C23), Part A-10377, 10 MFD., $\underset{\text { watt. ; }}{ } 1$ Resistor (R-16), Part B-5458-16, 5000 ohms, $1 / 4$
Dotted line between R1 and L7 and dotted ground at Prong No. 5 of Type 85 tube indicate original connections. See schematic diagram on back of sheet. Toggle switch may be mounted by drilling $1 / 2^{\prime \prime}$ hole in back of chassis 4 inches from left hand side and 1 inch up from bottom.

STAR PAGE 5-1

PAGE 5-2 STAR

DODEL 6-U

 Schematic

STEWART - WARNER CORP.

MODEL 1171,1172

Voltage Data

 Alignment DataThe Stewart-Warner 6 Tube Superheterodyne Model No. R-117 Chassis is used in the Model 1171 and 1172 Auto Radio receivers. These two sets are identical with the exception of the remote control head and the flexible shafts.

The Model 1.171 remote control uses a key to operate the volume control and a knob for tuning while the 1172 control uses a different type of head with knobs for both the volume control and tuning. Sets with serial numbers below 15000 are Models 1171 's, while those above 15000 are 1172 's.
The only difference in the chassis used is the omission of the dial light dimming resistor (diagram No. 51) in the 1172 sets.

DIAL CALIBRATION

In the Model 1171 , the dial can be calibrated by tuning in a station of known frequency and then setting the pointer to give the correct reading by turning the adjusting screw which is located on the middle of the back of the remote control head. In the Model 1172, the dial is calibrated by turning the tuning knob after the pointer has stopped at the last dial division. Turning the knob in a clockwise direction, after the pointer reaches 15.4, will lower the dial reading, while turning it counter clockwise after the pointer is at 5.3 , will increase the dial reading.

CIRCUIT DESCRIPTION

In the R-117 Chassis, the incoming signal is tuned and amplified by the 78 R . F. amplifier tube and then it is further amplified and its frequency is converted to $177.5 \mathrm{~K}, \mathrm{C}$. in the 6 A 7 combination first detector and oscillator tube.

The 177.5 K . C. signal is amplified by the I. F. stage, using a 78 type tube and is then rectified by the diodes of the 75 second detector tube. The rectified current produces a modulated D. C. voltage drop across the diode load resistor No. 11. The audio frequency modulation is impressed across the 500,000 ohm volume control from where is goes to the triode section of the 75 which acts as an audio amplifier.

The modulated drop across resistor No. 11 is filtered and applied to the grids of the 78 and 6-A-7 tubes to provide A.V.C. action.

LOCAL-DISTANCE SWITCH

A local-distance switch is provided in the R. F. stage to reduce the sensitivity in locations where there is excessive noise in tuning between stations. When this switch is in the open or "local" position, a high bias is placed on the 78 R. F. tube by means of the 6000 ohm resistor No. 2. This resistor is shorted out when the switch is thrown to the distance position (with white dot showing) thus reducing the bias to its normal value.

POWER SUPPLY PROTECTIVE RESISTOR

The filter system and the rectifier tube are protected against breakdown during the warming-up period by the Globar resistor connected across the high voltage secondary of the power transformer (No. 21 in the circuit diagram). This resistor drops rapidly in resistance as the voltage across it rises, so that it acts as a load on the power transformer and keeps the voltage below the danger point until the tubes warm up and take their normal current. Because of its unique voltage characteristics, the Globar resistor cannot be tested with an ordinary ohmmeter, since it will show a resistance of several megohms.

ALIGNMENT

A good modulated oscillator and a sensitive output meter are necessary for proper alignment of the R. F. and I. F. stages of this receiver. The output of the oscillator must be adjustable to give a very weak signal which will not actuate the A. V. C. of the receiver. The output meter must be sensitive enough to give sufficient reading with such a weak signal.

The output meter should be connected from the 42 plate to ground through a .25 mfd . condenser or across the voice coil, depending upon its sensitivity. A convenient point to connect to the 42 plate is the terminal of the tone control which is wired to the speaker plug.

During all alignment adjustments, keep the volume control full on and the local-distance switch in the "distance" position.

7-1.8-34

MMPORTAVT: Use high resistance voltmeter of 1000 ohms per volt. Readings will vary depending upon range of meter. Make allowances for battery voltage variations.
NOTE. A: The oscillator grid voltage varies from 0 at 1500 K . . to -5.0 at 530 K . C.
NOTE B: The oscillator anode voltage may vary from 118 at 500 K . C. to 128 at 530 K . C.
NoTs e: must be measur on the grid of the 42 tube is - 15.5 filter choke terminal. Due to the high resistance of the grid fleak, the roltmeter will show only about -1 volt at the grid.

I. F. ALIGNMENT

The I. F. trimmers are located on the top of the I. F. transformers which may be reached by removing the front cover. The modulated oscillator should be set to exactly 177.5 K . C. and connected from the 6-A-7 control grid to ground. Adjust the oscillator output to give about half-scale reading of the output meter. Adjust all three I. F. trimmers to give maximum output reading.

The first I. F. transformer has a double trimmer consisting of a slotted screw for one trimmer and a hex nut around it for the other. In adjusting the second I. F. transformer single trimmer, it is desirable to use a bakelite screwdriver or one having only a small metal tip. After the I. F. trimmers have been aligned once, go back and repeat the procedure, since any adjustment of one will affect the others to some extent.

R. F. ALIGNMENT

The gang condenser trimmers can be reached by removing the back cover. Connect a .00025 mfd . mica condenser in series with the output of the test oscillator and the aerial lead of the receiver. This condenser is absolutely necessary to secure proper alignment of the antenna stage. Adjust the receiver to approximately $1400 \mathrm{~K} . \mathrm{C}$. and carefully tune the service oscillator to give maximum receiver output. Adjust the output of the oscillator to the minimum value which will give sufficient output meter deflection. Adjust the two trimmers nearest to the shaft end of the gang condenser to give maximum output meter reading. The trimmer on the other condenser section (oscillator section) should not be touched unless the set does not calibrate properly.

ALIGNING THE PADDING CIRCUIT

The low-frequency oscillator padding trimmer located on the side of the chassis does not require adjustment in most cases. However, if the set does not align properly at the low frequency end proceed as follows: Remove the chassis from the case. To do this it is necessary to unsolder the braided shield from the outside of the case at the antenna plug opening and then remove the screws holding the chassis to the case. Set the test oscillator to exactly 600 K . C. and tune the set to the signal. Adjust the padding trimmer which is mounted on the side of the chassis while turning the gang condenser back and forth over a small range. The correct setting is the one which gives maximum output. If the pointer is not exactly at $6.0(600 \mathrm{~K}$. C.) for maximum output, re-adjust the pointer calibration to get the proper reading. After adjusting the padding trimmer check up the alignment and calibration at 1400 K . C.

ADJUSTMENT OF OSCILLATOR TRIMMER

If the receiver is badly out of calibration, particularly at the high frequency end, the following procedure should be followed.

Set the test oscillator to exactly 1400 K . C. Turn the tuning knob until the dial pointer indicates 14.0 (1400 K . C.) and then adjust the oscillator trimmer (third one from shaft end of the variable condenser) until the signal is received with maximum output. Then adjust the other two gang condenser trimmers as directed under R. F. alignment.

SOCKET VOLTAGES

LOCAL-DISTANCE SWITCH IN DISTANCE POSITION BOTTOM VIEW OF CHASSIS

S-WARNER PAGE 5-3 MODELS 1231 to 1239 Chassis R-123 Schematic, Socket Parts List

This wave trap is designed to be used with any Stewart-Warner chassis using an intermediate frequency of 456 kilocycles. The trap will reduce or prevent code interference caused by powerful code stations which operate at or near this frequency.

It is made for easy installation by any service man. In the Model R-123, two holes for mounting it are provided on the rear of the chassis so that the wave trap may be attached by means of the two selfatapping screws which are included in the kit. These holes are normally coverod by the paper name plate, but they can easily be found by punching through the paper sticker with a point at the positions shown on the diagram.

On all other models, the trap should be sorewed to the inside of the cabinet near the receiver entenna lead.

After mounting the trap, connect the blue antenna wire from the set to one of the wave trap leads and connect the antenna lead-in to the other wave trap lead.

Usually the wave trap will not require adjustnent, but if some partioular code station continues to cause excessive interference after installing the trap, it can be adjusted to diminish the unwanted signal. To make this adjustment, turn the slotted screw extending from the back of the wave trap with a screwdriver. Turn it slowly, first in one direction and then in the other, until the interfering signal disappears or has minimum volume.

STEWART WARNER CORP．
STEWART－WARNER MODEL R－I25（HASSIS（REEEIVER MODELS I251 to 1259 ）

g4229 Broadcest Pre－Selector Coil Assembly（consists
of Mo． 84175 and 84178 coile）
84199
84200
84220
intenna Louplink condenser（ 20 manfd．）
$\begin{array}{lll} & & \text { Of Mo．} 84175 \text { and } 84178 \text { colle）} \\ \text { g4420 } & \text { Tone Control smitch }\end{array}$
B4404 Phonograph switch（D．P．D．f．）（R－125－X only）
各畄湢

RADIO SERVICE NOTES - MODEL R-125 CHASSIS (RECEIVER MODELS 1251 TO 1259)
NO. 3 - ALIGNMENT OF MODEL R-125 CHASSIS

Experience has definitely show that a selective radio chassis such as the Stewart-Warner Model. Rel25 cannot be properly aligned by ear or "on the air." An output meter and a high grade modulated service oscillator are absolutely essential. The oscillator should be capable of generating the frequencies of $456 \mathrm{~K} . \mathrm{C}_{\bullet}, 600 \mathrm{~K} . \mathrm{C} ., 1400 \mathrm{~K} . \mathrm{C}$. and a short mave range extending to $4000 \mathrm{~K}, \mathrm{C}$. or more. This oscillator must provide a wide range of signal output -- very weak for proper alignment of the various bands so that the $A . V . C$. circuit will not be actuated and very strong for use when the receiver is badly out of adjustinent or for shortwave alignment where harmonics are used.

When using your oscillator do not rely on calibration curves for frequency determination but check the frequencies by comparison with broadcast station signals.

PRELIMINARY STEPS.

To align the R-125 chassis, proceed as follows:

1. Remove the chassis from the cabinet.
2. Connect the output metal across the primary of the output transformer on the dynamic speaker. (Center and blue terminals)
3. Turn the volume control to maximum volume position.
4. For all adjustinents use an all-bakelite aligning tool which has only a small meter screvdriver tip.
5. At all times during alignment use the lowest output meter scale which will provide a steady reading and adjust the oscillator output so that the output moter reads near the center of the scale.
6. Refer to the diagran for the Iocation of trimer condensers.

VERY IMPORTANT: In aligning all but the I.F. stages it is absolutoly necessary to have a 400 to 500 ohn resistor in serios with the antenna lead to the ascillator Do not omit this resistor or the alignment will be incorrect!

I. F. ALIGNMENT

1. Set the test oscillator to exactly $456 \mathrm{~K} . \mathrm{C}_{\text {. }}$ Connect the output leads of osoillator from the 6A7 control grid to ground and set the range switch (right hand knob) to the broadcast position (clocivise). Carefully adjust the I.F. transformer trimmers No. $1,2,3$, and 4 for maximum output meter deflection. Repeat the four adjustments since the adjustment of each trimmer has some effect on the others.

LOCATION OF MODEL R-125

ALIGNING TRIMMERS

1) Ist I.F. transformer trinmers
2)
3) 2nd I.F. transtormer trimmers

5 Broadcast oscillator shunt trimmer 6 Broadcast detector shunt trimaer 7 Broadcast Pre-selector shunt trimmer 8 Broadcast oscillator padding trimner
9 Short Wave oscillator shunt trimer
10 Short Wave detector shunt trimer

BROADCAST BAND ALIGNMENT

1. Check tho position of the dial on the condenser shaft by pushing the rotor plates of the gang condonser to full mesh. The dial should then read $530 \mathrm{~K} . \mathrm{C}$. Please note that the plates should be pushed with the fingers and not turned by means of the dial for this check.
2. Turn the range switch (right hand knob) to the maximum clockwise position, which is the broadcast setting.
3. Whenever possible, use a broadcast station signal between 1300 and 1420 K.C. to calibrate the receiver dial. If no such station can be heard, you can use a $1400 \mathrm{~K} . \mathrm{C}$. signal from your oscillator provided that it is properly calibrated. To calibrate the set turn its dial to the ezact frequency setting of the signal (either a station or the oscillator) then carefully adjust trimmer No. 5 (broadcast oscillator shunt trimmer) until the signal is tuned in with maximum volume at its correct frequency setting.
4. Connect a 400 or 500 ohn, 1 watt carbon resistor in series with the test oscillator output and the receiver antenna lead. This resistor must remain connected for all broadcast and short wave adjustmonts in ordor to secure proper alignment of the antenna stage. Ground tho recoiver chassis and connoct the oscillator ground lead to the chassis.
5. Set the test oscillator to approximately $1400 \mathrm{~K} . \mathrm{C}$. and carefully tune the receiver to the signal. Adjust trimner No. 6 (broadcast detector shunt trimner) and trimner No. 7 (broadcast premselector shunt trimer) for maximum output meter reading. Retune the receiver and check the adjustments. Do not touch trimer No. 5 since this will change the calibration.
6. Set the test oscillator to approximately $600 \mathrm{~K} . \mathrm{C}$. and tune the recoiver to the signal. Adjust trimmer No, 8 (broadcast oscillator padding

MODELS 1251 to 1259
Chassis R-125 Series Alignment Data,Part 3

STEWART WARNER CORP.

trimmer) to get maximum output meter doflection. Retune the recoiver dial to a peak and readjust the trimmer. Continue this procedure of adjusting the trimmer and retuning the set until the output meter reading cannot be increased. This procedure must be followed or the receiver will not be properly alignod.
7. With a $1400 \mathrm{~K} . \mathrm{C}$. test oscillator signal, ohook alignment of trimmers No. 6 and 7.

SHORT WAVE BAND ALIGNMENT.

1. Turn the receiver range switch to the short wave band position (oounter-clockwise).
2. Set the test oscillator to give a $16,000 \mathrm{~K} . \mathrm{C}$. signal. If your oscillator cannot reach this frequency, use the 2 nd harmonic of 8,000 K.C., the third harmonic of $5333 \mathrm{~K} . \mathrm{C}$. , or the fourth harmonic of. $4000 \mathrm{K.C.}$, all of which will give a $16,000 \mathrm{~K} . \mathrm{C}$. signal.
3. To calibrate this point turn the receiver dial to 16 M.C. on the inner dial scale and adjust Trimmer No. 9 (shortwave oscillator shunt trimmer) to give maximum output. Generally two peaks will be found. Align on the peak secured with the trimmer screw farthest out. Then adjust trimmer No. 10 (shortwave detector shunt trimmer) to a peak. After this is done, try detuning No. 10 in either direction and retune the receiver dial. If this gives a higher output, continue detuning No. 10 and retuning the dial until the maximum output moter reading is reached. If this procedure results in a lower output, detune the trimmer in the opposite direotion and rotune the dial, etc.

IMPORTANT: The antenna coupling condenser marked "A" in the diagram is adjusted to a definite capacity at the factory and should not require any further adjustment. Therefore do not adjust trimmer "A" unless it is found that trimmer No. 10 will not peak or if maximum output is obtained with No. 10 either all the way out or all the way in. If it is necessary to adjust trimmer "A" turn its adjusting screw all the way in and then turn it out just far enough to give a satisfactory peak on No. 10 when trimner No. 10's adjusting sorew is almost all the way out.

Always readjust No. 10 after adjusting trimer "A".
4. Tune the roceiver to about 15.1 M.C. and chock for the image signal which should be weaker than the $16.0 \mathrm{M} . \mathrm{C}$. signal. If the image is as strong as the signal it shows that trimmer No. 10 is not properly adjusted. No signal at 15.1 M.C. but one at $16.9 \mathrm{M} . \mathrm{C}$. shows that trimer No. 9 is aligned on the image frequency and thus both No. 9 and 10 must be readjusted at the proper frequency.

Note: After completing the alignment, all of the trimers except the padding and I.F. trimmers should be locked in place with Ambroid or some similar type cement in order that they will not be jarred out of adjustment.

S-WARNER PAGE 5-9

PAGE 5-10 S-IX ARNER

MODELS 1261 to 1269 Chassis 126 Series Alignment Data.

STEWART WARNER CORP.

RADIO SERVICE NOTES - MODEL R-126 CHESSIS (RECEIVER MODELS 1261 TO 1269)

NO. 3 - ALIGNIENT OF RODEL R-126 CHASSIS

Abstract

Experience has definitely show that a selective radio chassis such as the Stewart-Warner Nodel R-126 cannot be properly aligned by ear or "on the air". An output meter and a high grade modulated service oscillator are absolutely essential. The oscillator should be capable of generating the frequencies of 456 K.C., $600 \mathrm{~K} . \mathrm{C}_{.}, 1400 \mathrm{~K} . \mathrm{C}$. and a short wave range extending to $4000 \mathrm{~K} . \mathrm{C}_{\text {. }}$. or more. This oscillator must provide a wide range of signal output -- very weak for proper alignment of the various bands so that the $A_{0} V_{0} C_{0}$ circuit will not be actuated and very strong for use when the receiver is badly out of adjustment or for short wave alignment where harionics are used.

When using your oscillator do not rely on calibration curves for frequency determination but check the frequencies by comparison with broadcast station signals.

PRELIMINARY STEPS

To align the R-126 chassis, proceed as follows:

1. Remove the chassis from the cabinet.
2. Connect the output meter across the primary of the output transformer on the dynamic speaker. (Center and blue terminals)
3. Turn the volume control to maximum volume position.
4. For all adjustments use an allmbakelite aligning tool which has only a small metal screw driver tip.
5. At all times during alignment use the lowest output meter scale which will provide a steady reading and adjust the oscillator output so thet output-meter reads near the center of the scale.
6. Refer to the diagram for location of trimener condensers.

VERY IMPORTANT: In aligning all but the I. F. stages it is absolutoly necossary to have a 400 to 500 ohm resistor in series with the antenna lead to the oscillator. Do not omit this rosistor or the alignmont will be incorrect

I.F. AEIGNMAENI

1. Set the test oscillator to exactly $456 \mathrm{~K} . \mathrm{C}$. Connect the output leads of oscillator from the $6 C 6$ control grid to ground and set the range switch (loyer center knob) to the broadcast position (dial pointer on black dial scale). Carefully adjust the I.F. transformer trimers No, $1,2,3,4,5$ and 6 for maximum output meter deflection. Repeat the six adjustments since the adjustment of each trimer has some offect on the others.

BROADCAST BAND ALIGNMENT

1. Check the position of the dial on the condenser shaft by pushing the rotor plates of the gang condenser to full mesh. The dial should then read $530 \mathrm{~K} . \mathrm{C}$. Please note that the plates should be pushed with the fingers and not turned by means of the dial for this check.
 trimer
13 lst. Shortwave Band oscillator padding 173 rd . Shortwave Band detector shunt

trimmer
 14 2nd. Shortwave Band oscillator shunt trimmer
 15 2nd, Shortwave Band detector shunt trinmer

 trimer183 rd . Shortwave Band oscillator padding trimmer
193 rd . Shortwave Band detector padding trimner
2. Turn the range switch (lower centor knob) to the maximum counterclockwise position, which is the broadcast setting.
3. Whenever possible, use a broadcast station signal between 1300 and $1420 \mathrm{~K} . \mathrm{C}$. to calibrate the receiver dial. If no such station can be heard; you can use a $1400 \mathrm{~K} . \mathrm{C}$. signal from your oscillator provided that it is properly calibrated. To calibrate the set, turn its dial pointer to the exact frequency setting of the signal (either a station or the osaillator). Carefully adjust trimmer No. 7 (broadcast oscillator shunt trimer) until the signal is tuned in with maximum volume at its correct frequency setting.
4. Connect a 400 or 500 ohul, 1 watt carbon resistor in serios with the test oscillator output and the receiver antenna lead. This resistor must remain connected for all broadcast and short wave adjustments in order to secure proper alignment of the antenna stage. Ground the receiver chassis and connect the oscillator ground lead to the chassis.
5. With the test oscillator adjusted to approximately $1400 \mathrm{~K} . \mathrm{C}$. carefully tune the receiver to the signal. Adjust trimer No. 8 (broadcast detector shunt trimner) and No. 9 (broadcast premselector shunt trimmer) for maxinum output meter reading. Retune the receiver and check the adjustments. Do not touch trimmer No. 7 since this will change the calibration.
6. Set the test oscillator to approximately $600 \mathrm{~K} . \mathrm{C}$. and tune the receiver to the signal. Adjust the broadcast oscillator padding trimner No. 10 to get maximum output meter deflection. Then retune the receiver dial to a peak and readjust the trimner. Continue this procedure of adjusting the trimner and retuning the set until the output meter reading cannot be increased. This procedure must be followed or the receiver will not be properly aligned.
7. With a $1400 \mathrm{~K} . \mathrm{C}$. test oscillator signal, check alignment of trimmers No. 8 and 9.

MODELS 1261 to 1269
Chassis R-126 Series STEWART WARNER CORP.
Alignment Data, Part 3

FIRST SHORT WAVE BAND ALIGMMENT

1. Turn receiver range switch to the first short wave band position (dial pointer on red dial scale).
2. Adjust the oscillator to exactly $4000 \mathrm{~K} . \mathrm{C}$.
3. To calibrate this point set the receiver dial pointer to $4000 \mathrm{~K} . \mathrm{C}$. on the red dial scale and adjust trimer No, 11 (first shortwave band oscillator shunt trimmer) to a peak. If there are two peaks, the proper one is the one with the trimer screw farthest out. Then tune trimmer No, 12 (first short wave band detector shunt trimor) to a poak. Try detuning No. 12 in either direction and rotune the rocciver dial. If this gives a higher output meter reading, continue detuning No, 12 and retuning the dial until the maximum output meter reading is reached. If this procedure results in a lower output detune the trimer in the opposite direction, retune the receiver, etc.
4. To chock the above adjustment, leave the test oscillator set at 4. 0 M.C. and increase its output. Then tune in the image signal at about 3.1 M.C. on the receiver dial. This image signal shoild be weak compared to the correct signal at $4.0 \mathrm{M} . \mathrm{C}_{\text {. }}$. If it is almost as strong as the $4.0 \mathrm{M} . \mathrm{C}$. signal, it is a sign that trimmer No, I2 is not properly adjusted and it will be necessary to repeat the procedure for aligning this trimer. If no signal can be heard at 3.1 $\mathrm{K}_{0} \mathrm{C}$. even with greatly increased oscillator output, tune the set at $4.9 \mathrm{M} . \mathrm{C}$. A signal heard at this point shows that trimmer No. 11 is aligned on the inage frequency and so both No. 11 and 12 must be readjusted at the proper signal frequency.
5. Set the test oscfllator to about $1750 \mathrm{~K} . \mathrm{C}$. and tune the receiver to the signal. Adjust trimmer No. 13 (first shortwave band oscillator padding trimer) for maximum output. Then retune the receiver dial to a peak and again adjust the trimner. Continue this procedure of adjusting the trimmer and retuning the set until the output meter reading cannot be increased.
6. Check the alignment of trimer I2 with a $4000 \mathrm{~K} . \mathrm{C}$. signal.

SECOND SHORT WAVE BAND ALIGMMENT

1. Turn the receiver range switch to the second short wave band position (dial pointer on green dial scale).
2. Adjust the test osoillator to exactly $12,000 \mathrm{~K} . \mathrm{C}$. If you cannot obtain this frequency on your oscillator, you may use the second harmonic of $6000 \mathrm{~K} . \mathrm{C}_{\text {. }}$, the third harmonic of $4000 \mathrm{~K} . \mathrm{C}_{.}$, or the fourth ham monic of $3000 \mathrm{~K} . \mathrm{C} .$, all of which will give a $12,000 \mathrm{~K} \cdot \mathrm{C}$. signal.
3. To calibrate, set the receiver dial pointer to $12 \mathrm{M}_{0} \mathrm{C}$. on the green dial scale and then adjust trimmer No. 14 (seoond shortwave band oscillator shunt trimmer) for maximum output. Generally two peaks will be found. Align on the one with the trimmer screw farthest out. Adjust trimmer No. 15 (second shortwave band detector trimmer) to a peak. After this is done, try to increase the output meter reading by detuning trimer No. 15 and retuning the dial.

S-WARNER PAGE 5-13
MODELS 1261 to 1269
STEWART WARNER CORP. Chassis R-126 Series Alignment Data, Part 4
4. Tune the receiver to about 11. $1 \mathrm{M}_{4} \mathrm{C}_{0}$ and check for reception of the image which should be weaker than the $12.0 \mathrm{M} . \mathrm{C}$. signal. If the image is almost as strong as the correct signal, it shows that trimer No. 15 has not been properly adjusted. If the signal cannot be heard at 11. 1 M. M_{9}, but can be received at $12.9 \mathrm{M}_{\mathrm{n}} \mathrm{C}_{3}$, then trimer $\mathrm{NO}_{\text {. }} 14$ is alignea on the image frequency and No. 14 and 15 must be realigned at the proper signal frequency.

THIRD SHORT WAVE BAND ALIGNMENT

1. Turn the receiver range switch to the third short wave band (pointer on purple dial scale).
2. Set the test oscillator to give a $20,000 \mathrm{~K} . \mathrm{C}$. signal. If your oscillator cannot reach this frequency, use the 2nd harmonic of 10,000 K. C_{4} the third harmonic of $6666 \mathrm{~K} . \mathrm{C}_{.}$, the fourth harmonic of $5000 \mathrm{~K} \cdot \mathrm{C}_{4}$, or the fifth harmonic of $4000 \mathrm{~K} . \mathrm{C}_{*}$, all of which will give a $20,000 \mathrm{~K}$. C_{4} signal.
3. To calibrate this point, turn the receiver dial pointer to $20 \mathrm{M} . \mathrm{C}$. on the purple dial scale and adjust trimmer No. 16 (third shortwave band oscillaton shunt trimmer) to give maximum output. If there are two peaks, align on the one with the trimmer screw farthest out. Then adjust trimmer No, 17 (third shortwave band detector shunt trimmer) to a peak. After this is done, try to increase the output meter reading by detuning No. 17 and retuning the receiver dial.
4. Tune the receiver to about $19.1 \mathrm{M}_{4} \mathrm{C}_{\text {. }}$ and check for the image signal which should be weaker than the $20.0 \mathrm{M} . \mathrm{C}$. signal. If the image is almost as strong as the signal, it indicates that trimer No. 17 has not been properly adjusted. No signal at 19.1 M.C. but one at $20.9 \mathrm{M} . \mathrm{C}$. shows that trimner $\mathrm{No}_{\mathrm{*}} 16$ is aligned on the image frequency and thus both No. 16 and 17 must be readjusted.
5. Adjust test oscillator to $12,000 \mathrm{~K} . \mathrm{C}_{0}$, or use the second hamonic of $6000 \mathrm{~K} . \mathrm{C}_{\text {. }}$, the third harmonic of $4000 \mathrm{~K} . \mathrm{C}_{0}$, or the fourth harmonic of $3000 \mathrm{~K} . \mathrm{C} .$, all of which will give a $12000 \mathrm{~K} . \mathrm{C}$. signal.

Calibrate this point by setting the dial pointer to $12.0 \mathrm{M} . \mathrm{C}$. on the purple scale and adjusting trimmer No. 18 (third shortwave band oscillator padding trimmor) to give maximum output. Retune the dial and then adjust trimmer No. 19 (third shortwave band detector padding trimner) to a peak. Retune the dial and readjust No. 19. Repeat this procedure of adjusting No. 19 and retuning the dial until it does not increase the output meter reading.
6. Check the reception of the image signal at $11.1 \mathrm{M}_{\mathrm{c}} \mathrm{C}$. If the image is almost as strong as the $12 \mathrm{M}_{0} \mathrm{C}_{\text {. }}$ signal but was found to bo satisfactory at 19.1 M.C. with a $20,000 \mathrm{~K} . \mathrm{C}$. signal, No. 18 or 19 are aligned on the wrong peak and should be readjusted.
7. Check adjustment of No, 17 with a $20,000 \mathrm{~K}$. C. signal.

NOTE: To prevent the trimmers from being jarred out of adjustment, use Ambroid or some similar cement to fasten the trimner screws in position after completing the alignment. This should be done to all adjusting screws except the padding and I. F. trimners.

RADIO SERVICE NOTES * MODEL RG127 CHASSIS (RECEIVER MODELS 1271 TO 1279)

NO. 3 - ALIGNMENT OF MODEL R-127 CHASSIS

Experience had deffinitely shown that a selective radio chassis such as the Stewart-Warner Model R-127 cannot be properly aligned by ear or "on the air". An output meter and a high grade modulated service-oscillator are absolutely essential. The oscillator should be capable of generating the frequencies of $456 \mathrm{~K} . \mathrm{C}_{.,} 60 \mathrm{C}^{\circ} \mathrm{K} . \mathrm{C}_{0}, 1400 \mathrm{~K} . \mathrm{C}_{0}$, and a short wave range extending to 4000 K.C. or more. This oscillator must provide a wide range of signal output -very weak for proper alignment of the various bands so that the A.V.C. circuit will not be actuated and very strong for use when the receiver is badly out of adjustment or for shortwave alignment where harmonics are used.

When using your oscillator do not rely on dalibration curves for frequency determination but check the fraquencies by comparison with broadcast station signals.

PRELIMMNARY STEPS

To align the R-127 chassis proceed as follows:

1. Remove the chassis from the cabinet.
2. Connect the output meter across the primary of the output
transformer on the dymanic speaker. (Center and blue terminals)
3. Turn the volume control to maximum volume position.
4. For all adjustments use an allmbakelite aligning tool which has only a small metal screw driver tip.
5. At all times during alignment use the lowest output meter scale which will provide a steady reading and adjust the oscillator output so that output meter reads near the center of the scale.
6. Refer to the diagram for the location of the trimmer condensers.

VERY IMPORTANT: In aligning all but the I. F. stages it is absolutely necessary to have a 400 to 500 ohm resistor in series with the antenna lead to the oscillator. Do not omit this rosistor or the alignment will bo incorrect

I.F. ALIGNMENT

1. Set the test oscillator to exactly $456 \mathrm{~K} . \mathrm{C}$. Connect the output loads of oscillator from the 6A7 control grid to ground and sot the range switch (right hand knob) to the broadcast position (fully clockwise). Carefully adjust the I.F. trans former trimners No. $1,2,3$, and 4 for maximum output meter deflection. Repeat the four adjustments since the adjustment of each trimmer has some effect on the others.

STEWART WARNER CORP. Alignment Data, Part 2

LOCATION OF MODEL B-EXX

1) ALIGNING TRIMMERS
2) Ist I.F. transformer trimers
3) 2nd I.F. transformer trimmers

5 Broadcast ascillator shunt trimer
6 Broadcast detector shunt trimmer
7 Broadcast Pro-selector shunt trimmer 8 Broadcast oscillator padding trimmer
9 Ist Short wave band oscillator shunt trimmer
10 list Short wave band detector shunt trimner
11 2nd Short wave band oscillator shunt trimmer
12 2nd Short wave band detector shunt trimmer
13 3rd Short wave band oscillator shunt trimmer

14 3rd Short wave band detector shunt trimmer
153 3rd Short wave band dotector padding trimmer BROADCAS' BAND ALIGNMENT

1. Check the position of the dial on the condenser shaft by pushent the rotor plates of the gang condenser to full mesh. The dial should then read 5.3 ($530 \mathrm{~K} . \mathrm{C}$.). Please note that the plates should be pushed with the fingers and not turned by means of the dial for this check.
2. Turn the range switch (right hand knob) to the maximum clockwise position, which is the broadcast setting.
3. Whenever possible, usc a broadcast station signal between 1300 and $1420 \mathrm{~K} . C$. to oalibrate the recoiver dial. If no such station can be heard, you can use a 1400 K.C. signal from your oscillator provided it is accurately calibratod. To calibrate the set, turn its dial to the exact frequency setting of the signal (either a station or the oscillator). Then carefully adjust trimer No. 5 (broadcast oscillator shunt trimmer) until the signal is tuned in with maximum volume at its correot frequency setting.
4. Connect a 400 or 500 ohn, l watt carbon resistor in series with the test oscillator output and the receiver antenna lead. This resistor mist remain connected for all broadcast and short wave adjustments in order to secure proper alignment of the antenna stage. Ground the receiver chassis and connect the oscillator ground lead to the chassis.
5. With the test oscillator adjusted to approximately $1400 \mathrm{~K} . \mathrm{C} .$, carefully tune the receiver to the signal. Adjust trimmer No. 6 (broadcast detector shunt trimmer) and No. 7 (broadcast premselector shunt trimmer) for maximum output meter reading. Retune the receiver and check the adjustments. Do not touch trimer No. 5 since this will change the calibration.
6. Set the test oscillator to approximately $600 \mathrm{~K} . \mathrm{C}$. and tune the receiver to the signal. Adjust trimer No. 8 (broadcast oscillator padding trimmer) to get maximum output meter deflection. Then retune the receiver dial to a peak and readjust the trimner. Continue this procedure of adjusting the trimer and retuning the set until the output meter reading cannot be increased. This procedure must be followed or the receiver will not be properly aligned.
7. With a $1400 \mathrm{~K} . \mathrm{C}$. test oscillator signal, check alignment of trimmers No. 6 and 7.

EIRST SHORT WAVE BAND ALIGNMENT

1. Turn receiver range switch to the first short wave band position, which is the third position of the right hand lonob when turning it in a clockwise direction.
2. Adjust the oscillator to exactly $4000 \mathrm{~K} . \mathrm{C}$.
3. To calibrate this point set the receiver dial to 4.0 megacycles on the red dial soale and adjust trimer No. 9 (first shortwave band oscillator shunt trimer) to a peak. If there are two peaks, the proper one is the one with the trimmer screw farthest out. Then tune No. IO (first shortwave band detector shunt trimer) to a peak. Try detuning No. 10 in either direction and retune the receiver dial. If this gives a higher output meter reading, continue detuning No. 10 and retuning the dial until the maximu output meter reading is reached. If this procedure results in a lower output detune the trimmer in the opposite direction and retune the receiver to secure the maximum output.
4. To check the above adjustment, leave the test oscillator set at 4. $0 \mathrm{M} . \mathrm{C}$. and inerease its output. Then tune in the image signal at about 3.1 M.C. on the receiver dial. This image signal should be weak compared to the correct signal at $4.0 \mathrm{M} . \mathrm{C}$. If it is alnost as strong as the $4.0 \mathrm{M} . \mathrm{C}$. signal, it is a sign that trinmer No. 10 is not properly adjusted and it will be necessary to repeat the procedure for aligning this trimmer. If no signal can be heard at 3.1 M.C. even with greatly increased oscillator output, tune the set to $4.9 \mathrm{M}_{0} \mathrm{C}$. A signal heard at this point, shows that trimmer No. 9 is aligned on the image frequency and so both No, 9 and 10 must be readjusted at the proper signal frequency.

SECOND SHORT WAVE BAND ALIGMMENT

1. Turn the reoeiver range switch to the socond short wave band position, which is the second position in a clockwise direction.
2. Adjust the test oscillator to exactly $12,000 \mathrm{~K} . \mathrm{C}$. If you cannot obtain this frequency on your oscillator, you may use the second harmonic of $6000 \mathrm{~K} . \mathrm{C}_{.}$, the third harmonic of $4000 \mathrm{~K} . \mathrm{C}_{\boldsymbol{\circ}}$, or the fourth harmonic of 3000 K.C., all of which will give a $12,000 \mathrm{~K} . \mathrm{C}_{\text {. }}$ signal.
3. To calibrate this point turn the roceiver dial to $12 \mathrm{M}_{0} \mathrm{C}$. on the green dial scale and then adjust trimmer No, 11 (second short wave band oscillator shunt trimmer). Generaily, there will be two peaks, so align on the one with the trimmer serew farthest out. Adjust trimmer No. I2 (second shortwave detector shunt trimmer) to a peak. After this is done, try to increase the output meter deflection by detuning trimer No. 12 and retuning the receiver dial. Continue detuning No. 12 and retuning the dial until the maximum output meter reading is reached.
4. Tune the receiver to about $11,1 \mathrm{M} . \mathrm{C}$. and check for reception of the image signal which should be weaker than the $12.0 \mathrm{M} \mathrm{M}_{0}$. signal. If the inage is almost as strong as the l2 M.C. signal, it shows that No. 12 is not adjusted properly. If the signal cannot be heard at $11.1 \mathrm{M} . \mathrm{C}_{\mathrm{c}}$, but can be received at $12.9 \mathrm{M} \cdot \mathrm{C} .$, then trimner No. 11 is aligned on the image frequency and No. 11 and 12 must be realigned at the proper signal frequency.

THIRD SHORT WAVE BAND ALIGNMENT

1. Turn the receiver range switch to the third shortwave band position, which is the furthest counter-clockwise position.
2. Set the test oscillator to give a $20,000 \mathrm{~K} . \mathrm{C}$. signal. If your oscillator cannot reach this frequency, use the 2nd harmonic of $10,000 \mathrm{~K} . \mathrm{C}$. , the third harmonic of $6666 \mathrm{~K} . \mathrm{C}_{.}$, the fourth harmonic of $5000 \mathrm{~K} . \mathrm{C}_{0}$, or the fifth harmonic of $4000 \mathrm{~K} . C_{0}$, all of which will give a $20,000 \mathrm{~K} . \mathrm{C}$. signal.
3. To calibrate this point turn the receiver dial to $20 \mathrm{M} \cdot \mathrm{C}_{0}$ on the purple dial scale and adjust Trimner No. 13 (third shortwave band oscillator shunt trimmer) to give maximum output. Generally there will be two peaks, so align on the one with the trimmer screw farthest out. Then adjust trimmer No. 14 (third short wave band detector shunt trimer) to a peak. After this is done, try to increase the output meter deflection by detuning No. 14 and retuning the receiver dial. Continue dotuning No. 14 and retuning the dial until the maximum output meter reading is reached.
4. Tune the receiver to about $19.1 \mathrm{M} . \mathrm{C}$. and check for the image signal which should be weaker than the $20.0 \mathrm{M} . \mathrm{C}$. Signal. If the image is almost as strong as the 20 M.C. signal, it shows that No. 14 is not adjusted correctly. No signal at 19.1 M.C. but one at 20.9 M.C. shows that trimmer No. 13 is aligned on the image frequency and thus both No. 13 and 14 must be readjusted.
5. Adjust test oscillator to 12,000 K.C., or use the second harmonic of $6000 \mathrm{~K} . \mathrm{C}$. , the third harmonic of $4000 \mathrm{~K} . \mathrm{C}$., or the fourth harmonic of $3000 \mathrm{~K} . \mathrm{C}$. , all of which will give a $12,000 \mathrm{~K}, \mathrm{C}_{\mathrm{c}}$ signal. Carefully tune the dial to the signal at about $12 \mathrm{M} . \mathrm{C}$. on the purple dial scale. Adjust trimmer No. 15 (third shortwave band detector padding trimmer) for maximum output. meter reading and then retune the dial. Repeat this procedure of adjusting the trimer and retuning the dial until it does not increasc the output meter reading.
6. Check reception of the inage signal at II.1 M.C. If the image is almost as strong as the $12 \mathrm{M}_{\mathbf{0}} \mathrm{C}$. signal, but was found to be satisfactory at 19.1 M.C. with a $20,000 \mathrm{~K} . \mathrm{C}_{\text {. }}$ signal, No. 15 should be readjusted.
7. Check the adjustment of No, 14 with a $20,000 \mathrm{~K} . \mathrm{C}$. signal.

NOTE: To prevent the trimmers from being jarred out of adjustment use Ambroid or some similar cement to fasten the trimmer screws in position after completing the alignment. This should be done to all trimners except the padding and I. F. trimers.

Stromberg-Carlson No. 60 Type Radio Receivers

ELECTRICAL SPECIFICATIONS

Type of Circuit \qquad Superheterodyne
Tuning Ranges \qquad $540-1570 \mathrm{k}$. c. and 5.5 to 15.5 mc .

Type and Number of Tubes.

 1 No. 6D6, 1 No. 6A7, 1 No. 6B7, 1 No. 37, 2 No. 41, 1 No. 80Voltage Rating 105-125 volts
Frequency Rating -50-60 Cycles
Power Consumption Rating 80 Watts

CIRCUIT DESCRIPTION

These receivers are seven tube A. C. operated Superheterodynes with two tuning ranges; standard broadcast and short-wave broadcast. See P- 24418 Instructions for Installation and Operation to details of controls, installation and operating procedure.

The No. 6D6 tube is used as the R. F. amplifier. The No. 6A7 tube is used for the oscillator-mixer. The No. 6B7 tube serves as the I. F. amplifier, A. V. C., and demodulator. The No. 37 tube is the first audio amplifier and the two No. 41 tubes function as the power output stage. The No. 80 is the rectifier in the power supply circuit.

NORMAL VOLTAGE READINGS

These voltage readings are obtained by measuring between the various tube socket contacts and the bases with the tubes and speaker plug in place. The set is therefore in operation when the measurements are made. Fig. 2 shows the terminal layout of the sockets with the proper terminal numbers. The terminals of each socket are numbered, starting with one heater or filament pin and proceeding around the pin circle clockwise to the other heater or filament pin. This is done looking at the bottom of the socket. Tune Receiver to 1500 k . c .

Voltages are given for a line voltage of 120 volts and allowance should be made for differences when the line voltage is higher or lower. A meter with a resistance of 1,000 ohms per volt should be used for measuring the D. C. voltages. The Volume Control should be set all "On" (clockwise) before measuring voltages. See page 2.

PAGEr 5-2 STROMBERG MODEL 60
Chassis Wiring STROMBERG-CARLSON TEL. MFG. CO.

PAGE 5-4 STROMBERG
MODEL 60
Socket Layout
STROMBERG-CARLSON TEL. MFG. CO.
Voltage
Parts List

Fig. 2. Terminal Layout for Voltage Measurement Chart.

Tube	Circuit	Cap.	Terminals of Sockets							Heater Voltages Between Terminal Nos.
			1	2	3	4	5	6	7	
6D6	R. F. Amp.	$\begin{gathered} \mathbf{G} \\ 0 \end{gathered}$	H 0	P 145	S 85	$\begin{aligned} & \text { Sup. } \\ & 5.5 \end{aligned}$	$\begin{gathered} \mathrm{K} \\ 5.5 \end{gathered}$	H 0	-	1-6-6.5 volts
6A7	Mixer-Osc.	$\overline{\mathrm{Mix} . \mathrm{G}}$	$\begin{aligned} & \mathrm{H} \\ & 0 \end{aligned}$	$\underset{\mathbf{M i x}_{14} \mathrm{P}}{ }$	$\underset{85}{\mathbf{S}}$	$\underset{175}{\substack{\text { Osc. P. }}}$	$\left\lvert\, \begin{gathered} \overline{\text { Osc. } G} \\ -20 \end{gathered}\right.$	$\begin{gathered} \mathrm{K} \\ 5.5 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	1-7-6.5 volts
6B7	I. F., Dem.	$\begin{gathered} \hline \mathrm{G} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	$\underset{145}{\mathrm{P}}$	$\underset{85}{\mathbf{S}}$	D 0	D 0	K	H 0	1-7-6.5 volts
37	1st Audio	-	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 140 \end{gathered}$	$\begin{aligned} & \bar{G} \\ & 0 \end{aligned}$	$\underset{8}{\mathrm{~K}}$	H 0	-	-	1-5-6.5 volts
41's	Output	-	$\begin{gathered} \hline \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 250 \end{gathered}$	$\underset{250}{\mathbf{S}}$	$\begin{gathered} \hline \mathrm{G} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 0 \end{gathered}$	-	1-6-6.5 volts
80	Rectifier	-	$\begin{gathered} \mathrm{F} \\ 270 \end{gathered}$	$\begin{gathered} \mathbf{P} \\ 299 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 298 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 270 \end{gathered}$	-	-	-	1-4-4.9 volts
Speaker Socket			245	145	270	270	250	245		

A. C. voltages are indicated by italics

REPLACEMENT PARTS

Engineering Data Stromberg-Carlson No. 68 All-Wave Radio Receiver

STROMBERG-CARLSON TELEPHONE MANUFACTURING COMPANY Rochester, New York

ELECTRICAL SPECIFICATIONS
Type of Circuit \qquad Superheterodyne Tuning Ranges \qquad A-520 to 1500 kc .; B- 1400 to 4200 kc .; C- 3.7 to 10.5 mc .; D- 8.9 to 25 mc . Type and Number of Tubes---------------_ No. 6D6, 1 No. 6A7, 1 No. 6B7, 1 No. 5Z3; 3 No. 42,1 No. 76, 1 No. 85 Voltage Rating 105-125 Volts Frequency Rating -50-60 Cycles
 Intermediate Frequency 370 kc .

CIRCUIT DESCRIPTION

This receiver is a ten tube A. C. operated all-wave superheterodyne having four tuning ranges. See P-24689, Installation and Operating Instructions, for installation and operating procedure.

One No. 6D6 tube is used as an R. F. amplifier, the No. 6A7 tube is used as a modulator, and the No. 76 acts as the oscillator in the Tuner Unit. In the Amplifier Chassis the other No. 6D6 acts as the I. F. amplifier. The No. 6B7 is in the A. V. C. circuit, while the No. 85 acts as demodulator and first audio amplifier. One No. 42 operates as a second or driver audio stage and the other two constitute the power output stage. The No. 5 ZZ is the rectifier in the power supply.

NORMAL VOLTAGE READINGS

These voltage readings are obtained by measuring between the various tube socket contacts and the bases with the tubes in place. The Receiver is therefore in operation when the measurements are made. Fig. 1 shows the terminal layout of the sockets with the proper terminal numbers. The terminals of each socket are numbered, starting with one heater or filament pin and proceeding around the pin circle clockwise to the other heater or filament pin. This is done looking at the bottom of the socket.

Voltages are given for a line voltage of 119 volts and allowance should be made for differences when the line voltage is higher or lower. A meter with a resistance of 1,000 ohms per volt should be used for measuring the D. C. voltages. See page 2.

$\begin{gathered} \text { Piece } \\ \text { Number } \end{gathered}$	Description of Part	Required Receiver	$\begin{aligned} & \text { List } \\ & \text { Price } \\ & \text { Each } \end{aligned}$	$\begin{gathered} \text { Piece } \\ \text { Number } \end{gathered}$	Description of Part	Required Per	List Price Each
24685	Capacitor Assembly ($\mathbf{2 5}$ to 60 cycle)	. 1	\$15.00	22871	Resistor-Type D, $\boldsymbol{2}$ Meg.	- 1	\$. 37
24558	Capacitor Assembly (50 to 60 cycle)	- 1	10.00	18696	Resistor-Type B, 1,000 Ohm	- 1	. 55
24676	Capacitor Assembly (By-Pass)	- 1	5.00	19614	Resistor-Type B,, ,000 Ohm	- 1	. 55
23970	Capacitor Assembly	1	1.60	22328	Resistor-Type C, 4,000 Ohm	1	. 37
23965	Transformer Assembly (Audio)	1	4.55	21521	Resistor-Type $\mathbf{C ,}, 2,000 \mathrm{Ohm}$	2	.37
24687	Power Transformer (25 to 60 cycle)	- 1	15.00	${ }_{2}^{22330}$	Resistor-Type $\mathbf{C , 1 0 , 0 0 0} \mathbf{O h m}$	1	${ }^{37}$
24422	Power Transformer (50 to 60 cycle)	- 1	10.00	-23568	Resistor-Type $\mathrm{D}, 4500 \mathrm{Ohm}$	1	.37
24424 24425	Transformer Assembly (iF) :	1	4.00 4.00	23844 $\mathbf{2 3 9 6 6}$	Resistor-Type D, ${ }^{\text {a }}$ (300 Ohm Resistor-Voltage	- $\begin{array}{r}3 \\ \hline\end{array}$	337 1.85
24426	Transformer Assembly (iF)	1	4.00	24340	Switch (Range)	1	7.00
24677	Transformer Assembly (IF)	1	4.00	24561	Capacitor 5 MMF	2	. 20
23959	Choke Assembly	1	2.50	24402		4	. 45
24025	Transficrmer Assembly (Audio)	- 1	2.40	24668	Coil Assembly $\mathbf{. 1 1 5}$ M. H.	1	. 60
23967	Transformer Assembly (Audio Output)	1	2.20	24460	Capacitor 0025 M. F.	1	3.75
23649 23648	Tube Socket (8 Prong)	2	.17	245795	Cable (Output) ${ }_{\text {Binding Post (Antenina and Ground) }}^{\text {(}}$	1 1	4.09 .40
23040	Tube Socket (6 Prong)	7	. 17	24423	Coil Assembly 1.5 M. H. - .	1	1.15
23039	Tube Socket (5 Prong)	1	. 17	24575	Capacitor .015 M. F.	1	1.25
23038	Tube Socket (4 Prong)	1	.17	24402	Capacitor 11 M. F.	${ }^{4}$.45
${ }_{23150}^{21984}$	Fuse Block ${ }^{\text {a }}$	1	. 12	${ }_{24560}$	Capacitor 25 MMF	1	.25
${ }_{24574}^{23150}$	Fuse 2- Ampere ${ }_{\text {Condenser }}$ (Illini) .0095 Mi . F.	1	1.00	24352	Capacitor (IF Tuning Condenser)	1	. 40
21334	Condenser (Illini) . 001 M. F.	1	. 60	24580	Capacitor (Electrolytic) .	1	1.40
22411	Capacitor Assembly . 04 M . F.	1	. 80	24346	Potentiometer (Volume Control)	1	1.40
21535	Capacitor Assembly .01 M. F.	1	. 80	22593	Potentiometer (Tone Control)	1	1.85
23819	Coil Assembly . 9 M. H.	3	. 60	24358	Bracket Assembly ${ }^{\text {a }}$	1	. 20
17350	Switch (Base Control)	1	. 75	24362	Dial Disc. Assembly	1	$\cdot 40$
24268	Cord (Power) - .	1	${ }^{.75}$	24366	Dial Plate	1	.45
24674 28289	Cable (Output) ${ }_{\text {Resistor } 6,500}$ O	1	1.37	24371	Dial .	1	. 75
18704	Resistor $15,000 \mathrm{ohm}$	1	. 37	24375	Dial Thrust Bearing	1	. 04
22334	Resistor $\mathbf{. 2 5}$ Meg.	1	. 37	24376	Tuning Meter	1	2.75
23571	Resistor $50,000 \mathrm{Ohm}$	1	. 37	24317	Pilot Lamp Sockets	7	.15
21073	Resistor $25,000 \mathrm{Ohm}$	1	.37	24505	Front Dial Lens (Glass)	1	.25
22333	Resistor-Type D, 1 Meg.	5	.37 .37	$\stackrel{24380}{24388}$	Dial Lens Clips	4	.02
$\underset{24316}{ }$		1	. 37	${ }_{24773}^{2488}$	${ }_{\text {Lial Pointer }}^{\text {Lpeaker }}{ }^{\text {co }}$	1	13.50

PAGE 5-6 STROMBERG

STROMBERG-CARLSON TEL. MFG. CO.

Fig. 5. Chassis Assembly of Selector

Fig. 1. Terminal Layout for Voltage Measurement Chart

PAGE 5-8 STROMBERG

MODEK 68

Chassis Wiring STROMBERG-CARLSON TEL. MFG. CO. • of Selector

Fig. 3. Wiring Diagram of Selector

Fig. 4. Wiring Diagram of Amplifier Chassis

PAGE 5-10 STROMBERG
MODE 68
Amplifier
Chassis Views
STROMBERG-CARLSON TEL. MFG. CO.

Fig. 6. Chassis Assembly of Amplifier

Stromberg-Carlson No. 69 All-Wave Selector

ELECTRICAL SPECIFICATIONS

Abstract

Type of Circuit \qquad Superheterodync Frequency Changer Type and Number of Tubes 1 No. 6D6 1 No. 6A7, 1 No. 76, 1 No. 84 Voltage Rating 105-125 Volts Frequency Rating _50-60 Cycles Power Consumption Rating 28 Watts Frequency of Signal Output to Receiver 545 Kc .

CIRCUIT DESCRIPTION

The No. 69 All-Wave Selector contains the frequency changer circuits of a superheterodyne system which connected to the input (Ant. and Gnd. connections) of a good standard broadcast receiver gives an extension of the tuning range from 1500 kilocycles to 25 megacycles. Thus all frequencies between 550 kilocycles and 25 megacycles can be readily tuned. See P-24692 Installation and Operating Instructions for details of controls, installation and operating procedures.

The No. 6D6 tube is used as the R. F. Amplifier. The No. 6A7 tube is used as the Modulator. The No. 76 tube is used as the Oseillator. The No. 84 tube is the Rectifier in the self-contained power supply.

NORMAL VOLTAGE READINGS

These voltage readings are obtained by measuring between the various tube socket contacts and the bases with the tubes in place. The Sclector is therefore in operation when the measurements are made. Fig. 2 shows the terminal layout of the sockets with the proper terminal numbers. The terminals of each socket are numbered, starting with one heater or filament pin and proceeding around the pin circle clockwise to the other heater or filament pin. This is done looking at the bottom of the socket.

Voltages are given for a line voltage of 120 volts and allowance should be made for differences when the line voltage is higher or lower. A meter with a resistance of $\mathbf{1 , 0 0 0}$ ohms per volt should be used for measuring the D. C. voltages. See page 2.

IF Praik 545 KC.

Fig. 1. Schematic Circuit

PAGE 5-12 STROMBERG

yomel 69 STROMBERG-CARLSON TEL. MFG. CO.
Chassis Wiring

Fig. 3. Wiring Diagram.

STROMBERG PAGE 5-13

Fig. 2. Terminal Layout for Voltage Measurement Chart.

Tube	Circuit	Cap.	Terminals of Socket						
			1	2	3	4	5	6	7
6D6	R. F. Amp.	$\begin{gathered} \mathrm{G} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathbf{0} \end{gathered}$	$\begin{gathered} \text { P } \\ 191 \end{gathered}$	$\begin{gathered} \hline S \\ 103 \end{gathered}$	$\begin{gathered} \hline \text { Sup. } \\ 2.9 \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 2.9 \end{gathered}$	H. $\substack{\text { C.3 } \\ \hline}$	-
6A7	Modulator	Mod. G 0		$\begin{array}{\|c} \hline \text { Mod. P } \\ 191 \end{array}$	$\begin{gathered} \hline S \\ 103 \end{gathered}$	G2 103	$\begin{gathered} \text { G1 } \\ \text { Approx. } \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 3.1 \end{gathered}$	H 0
76	Oscillator	-	$\begin{gathered} \hline \mathbf{H} \\ 0 \end{gathered}$	$\begin{gathered} P \\ 160 \end{gathered}$	$\begin{gathered} G \\ -14 \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 0 \end{gathered}$		-	-
84	Rectifier	-	$\begin{gathered} \mathrm{H} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { A. } \mathrm{C} . \\ \mathbf{1 7 8} \end{gathered}$	$\begin{gathered} \text { P. } \\ \text { A.C. } \\ \mathbf{1 7 8} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ 207 \end{gathered}$		-	-

Measured on Range B at 2400 Kc .-Line voltage 120 volts A. C. REPLACEMENT PARTS

Piece Number	Part	Required Receiver	List Price Each	$\begin{gathered} \text { Piece } \\ \text { Number } \end{gathered}$	Part	$\begin{gathered} \text { Required } \\ \text { per } \\ \text { Receiver } \end{gathered}$	List Price Each
24469	Switch Range	1	\$ 7.75	24380	Clips (Lens)	4	
24627	Coil Assembly (Antenna Range B)	1	2.00	3x ${ }^{1 / 4} 4^{\prime \prime}$	Serews (R. H. Br. Wood) (Clips)	4	. 01
24628	Coil Assembly (R. F. Range B) ${ }^{\text {c }}$)	- 1	2.00	22768	Transformer (Power) 60-cycle	1	4.25
$\stackrel{24629}{ }$	Coil Assembly (Osciliator Range B)	- 1	2.00	24567	Capacitor Electrolytic	1	3.00
24630	Coil Assembly (Antenna Range C)	1	2.00	24448	Choke Assembly ${ }^{\text {c }}$ -	1	2.00
${ }_{24632}$		1	2.00 2.00	${ }_{22973}^{21535}$	Capacitor Assembly ${ }_{\text {Tube Sockets (} 5 \text { prong) }}$ Rectifier 'Tubs	1	. 80
24633	Coil Assembly (Antenna Range D)	1	2.00	23039	Tube Socket (5 prong) Oscillator Tube	1	.17
24634	Coil Assembly (R. F. Range D)	- 1	2.00	23040	Tube Socket (6 prong) Amplifier Tube	1	. 17
24635	Coil Assembly (Oscillator Range D)	1	2.00	23648	Tube Socket (7 prong) Modulator Tube	1	. 17
24637	Capacitor 0017 MF	1	. 35	24466	Switch (On-Off)	- 1	. 60
${ }_{24561}$	Capacitor 5 MMF	1	. 20	24465	Binding Post (Antenna and Ground)	- 1	.40
24636	Capacitor 005 MF	1	. 60	24670	Coil Assembly . 7 MH	- 1	1.25
24402	Capacitor . 1 MF	2	.45	23819	Coil Assembly $\mathbf{.} 9 \mathrm{MH}$	1	. 60
24668	Coil Assembly 115 MH	1	. 60	24667	Cord Output	1	2.50
18704	Resistor 15,000 Ohms (${ }^{\text {d }}$)	1	. 52	22329	Resistor 6,500 Ohm	1	.37
24361	Variable Condenser (Only)	1	4.00	22334	Resistor 25 Megohm	1	. 37
${ }_{24366}$	Dial Disc Assembly	1	. 40	23571	Resistor 50,000 Ohm	- 1	. 35
${ }_{24367}$	Dial Reflector Assembly	1	2.00	24583	Resistor 10,000 Ohm	1	.37 .35
24669	Dial	1	. 75	24402	Capacitor 11 MF	1	. 45
24290	Bearing	1	. 03	24560	Capacitor 50 MMF	1	. 25
24474	Shaft Assembly	1	. 25	24166	Capacitor 25 MMF	1	. 25
24317	Piot Lamp Sockets	8	. 15	24351	Capacitor Aligner	- 2	1.00
${ }_{24388}^{1562}$	Dial Eyelets ${ }^{\text {D }}$ (8	. 01	24352	Capacitor Aligner	- 1	. 40
24505	Lenses (Glass)		. 25	24534	Capacitor 700 MMF	. 1	. 35

PAGE 5-14 STROMBERG

MODES 69

Chassis Views STROMBERG-CARLSON TEL. MFG. CO.

Fig. 4. Chassis Mssembly.

SUPREME INSTRUMENTS CORP.

Switch A Normality closed, open for 1225 Tube Switch B Normally closed, open for 12 A5 Tube

SUPREME INSTRUMENTS CORP.

SUPREME INSTRUMENTS CORP.

PAGE 5-4 SUPREME

SUPREME INSTRUMENTS CORP.

SUPREME PAGE 5-5
SUPREME INSTRUMENTS CORP.
1ODEW 145 Schermatic

SUPREME INSTRUMENTS CORP.

PAGE 5-8. SUPREME

[^16]
FODE L-74,N-74

 (Lieut.Governor \&Governor)
L. TATRO PRODUCTS CORP.

Schematic, Voltage

L. TATRO PRODUCTS CORP.

MODE 094
(Preaident)
Schematic, Vol tage

HODEL P-54

(Recorder)
Schematic, Vol tage
L. TATRO PRODUCTS CORP.

TCA PAGE 5-1

No.	Stage	Tube	Ef	Ep	Eg	Ek	Esg	Esug	Ip	Ep-0	Eg-0	Ip-0
1	Osc.- Det .	6A7	6	185	. 1	3	83		4.6	81	. 05	1.7
2	I. F.	78	6	185	. 1	3	102	0	7.5			
3	I. F. 2nd Det. Audio .	6B7	6	58	. 05	2.3	45		2.2	${ }^{\text {d }} .1$		
4	Output. . . .	89	6	190	. 05	0	194	0	18			
5	Rectifier . .	$6 \mathrm{Z4}$	6	p_{208}		185			p_{18}			
$\begin{aligned} & 0-1 \\ & \text { Vol } \\ & \text { Bat } \end{aligned}$	Oscillator. ume Control tery Voltage -	rull 6 Vo complet Hive and Transorna Mfd. Con Mount1 Condense g. Conde Condenser , Small . Conden Onm Res Ohm Resi 78. Condens Vibrator	on,		Head		p 	Per - Dio 	Plate e Pla cial Resi Condenser l... denser. uppressor rive set ing Ścrew ere ers spormer lded) acket iator $\dot{\text { coi }}$ p Nuts. tor .			

PAGE 5－2 TCA
NODEL 241
Schematic，socket TRANSFORMER CORP．OF AMERICA
∇ ． 5 r 250r．5r．240r．6r．250r

To ad just the trimmers，connect your 175 K ．C．oscillator to the first detector type 57 grid cap，and in the follow－ ing ordor：Readjust trimmers numbers，five，six，seven and eight for maximum output，next，disconnect the 175 K ．C． oscillator and connect to the antenna binding post of the recelver，the output lead from your broadcast test os－ cillator or tune in a broadcast signal from a known fre－ quency crystal controlled station at 1400 K ．C．，then re－ set trimmers，two and one respectively for maximum output． This adjustment will track the first detector and r ．f ． stage．

To check the calibration of the receiver，whether it be high or low；trimmer，number three（oscillator）should be reset until＇a station of known high frequency is brought in at the correct dial marking with peak volume．If your broadcast test oscillator is accurately calibrated，it might be used in place of the broadcast station signal． In this adjustment a signal at about 1400 K C ．should be chosen The setting of the trimers at 1400 K ．C．is more critical than it would be at 600 K ．C．，therefore more accurate．

The next adjustment is important and not easily explained in writing，so pay close attention to the following in－ structions：We now balance the oscillator to the r ．${ }^{\circ}$ ． and first detector stages．Tune the external broadcast test oscillator and the receiver both to 600 K ．C．，then slowly increase or decrease the capacity of No． 4 \}oscillator padding trimer）at the same time and continuously tuning back and forth across the signal with the receiver tuning condenser gang．The output meter needle will now E be swinging up and down in step with the variation in tun－ ing．Watch the peak of this swinging closely and read－ just No． 4 trimmer until the swinging needle reaches its 楕 highest peak．

Retune the receiver and broadcast test oscillator to 1400 ． K．C．and recheck trimmer No． 3 to make sure that the ad－ justment of No． 4 has not thrown the receiver out of call－ bration．If it has，then readjust No． 3 until the cali－ bration is correct，as previously explained，and check on trimers No． 2 and No． 1 to make sure that the adjustment of No． 4 has not reduced the sensitivity．

Model 241 Socket to ground

				:		！	\vdots	｜or	交
			8	：		：	：	：	：
	g 0 \mathscr{H}_{0} 0 0	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$			！		
	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \hline 8 \\ & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \stackrel{8}{1} \\ & \infty \\ & \end{aligned}$	$$	$\begin{aligned} & \hline \mathrm{O} \\ & \stackrel{1}{\mathrm{o}} \end{aligned}$	8	$\begin{aligned} & \hline 8 \\ & \hline \\ & \infty \\ & 7 \\ & \hline \end{aligned}$		－
	$$	$\stackrel{\infty}{\circ}$	\％	．${ }^{\text {o }}$	今	）．	今	5	\％ 0 0 0 \sim
	$\begin{aligned} & \frac{1}{4} 0 \\ & \frac{y}{0} 0 \\ & 0 \end{aligned}$	8	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	8	8	8	8	！	
	멍	$\begin{array}{\|l\|} \hline \frac{1}{\Xi} \\ \underset{y}{4} \vec{\Xi} \\ \vdots \\ \hline \end{array}$	$\stackrel{\sim}{3}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & 0 \\ & \hline-1 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \\ & 00 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{array}{r} \bullet \\ \dot{8} \\ \dot{8} \\ \text { in } \\ \text { in } \\ \hline \end{array}$	$\begin{aligned} & +\stackrel{+}{0} \\ & \stackrel{0}{0} \\ & \stackrel{+}{0} \\ & \underset{\sim}{n} \\ & \hat{i} \end{aligned}$			$\begin{aligned} & \hline \stackrel{+}{\otimes} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{array}{\|l\|} \hline \dot{\circ} \\ \hline \dot{4} \\ \dot{4} \\ \dot{4} \\ \hline 0 \end{array}$		

Note：Readings of one megohm and over are given as＂infini－ preted from the ohmneter in each reading；the individual re－ preted from the ohmmeter in each reading；the individual re－
sistance in the circuit can be readily checked upon removal

TCA PAGE 5-3

PAGE 5-4 TCA
MODEL 490
Schematic
TRANSFORMER CORP. OF AMERICA
Voltage,Parts List

VOLTA	E ARALYS	OF	MODEI	490	USING	A 1000	OHM P	R Volt	GETER
TUBE	STAGE	Ff	Ep	Eg	Ek	Esg	Esurg	Ip	
58	R.F.	2.3	190	. 3	2.9	83	0	6.	
58	lst DET.	2.3	190	. 3	7.	78	0	2.	
56	OSCILL.	2.3	83	. 3	0			4.5	
58	I.F.	2.3	190	. 3	2.9	83	0	5.5	*Per Plate
55	DIODE	2.3	36	. 2	0	-2**		2.	** Diode
56	A.F.	2.3	198	- 2	10			5.	Voltage
53	OUTPUT	2.5	292*	0	0			12.*	
80	RECT.	4.5	292*					37.*	
		LINE	VOLTA	10	volu	CONTRO	- F	UL ON	

P-1015
Pw1038
P-1100A
P-1381
P-1728
P-1860
P-14229
P-4262
P-4400
P-4485
P-4486
$\stackrel{P}{P}-4488$
P-4597
P-4640
$\stackrel{P}{P}-4640$
P-4646
P-4659
P-4663
$\stackrel{P}{\mathrm{P}-4663}$
P-4869
$\mathrm{P}-4910$
$\mathrm{P}-4935$
P-4961

P. 4965 P-4969 P-4970 P-4971 P-4972 P-4975 P-4976 $\mathrm{P}-4976$
$\mathrm{P}-4977$ $\mathrm{P}-4977$ P-4979 G-1274 $\mathrm{G}-1281$ $G-1282$
$G-1488$ G-1600 G-1709 G-1793 G-1794 G-1803 G-1805 $\mathrm{G}-1807$ G-1807 G-1812 G-1813 G-1844 G-1846 G-1847

TRANSFORMER CORP. OF AMERICA Schematic , Batt.Data Parts List

TRANSFORMER CORP. OF AMER. (New Co.)

Parts List

CLARION TC 30 TRANSFORMER CQRP OF AMERICA

CLARION TC 30

REPLACEIIENT PARTS

Stock No.	$\begin{gathered} \text { Part } \\ \text { No. } \end{gathered}$	Description of part	List price
TWR50010	R2-3-7	I megohm resistor	. 12
TWR50020	R4-5-6	500,000 resistor.	I2
TER50030	R8	100,000 resistor	12
Twor 50050	CI-4	. 0005 Fixed condenser	I6
TWR50060	C2-5-8	.I - 200 volt condensor	. 12
TWR50070	C3-7	. 25 - 200 volt condensor	. I6
TYR50080	C6	. 01 - 400 volt condensor	. 12
TWH50090	C9-IO	I2 x I6 filter condenser	I. 20
Twr 50100		220 ohm line cord	. 68
TWR50II0		Two gang condenser	2.00
TWR50I30		Antenna coil	. 40
TWR50I 20		R.F. coil	. 40
TWR501 40		Speaker	4.20
TWR5 OI50		Knobs	. 20
TWR50I60	RI	Volume control	. 96

AIIGNMENT- Connect a test oscillator to the antenna wire of the receiver and set the oscillator and receiver to I400 K.C. Adjust either trimmer on the tuning condenser for maximum output.

TCA PAGE 5-7
TRANSFORMER CORP. OF AMER. (New Co.Schematic, Voltage

TRANSFORMER CORP. OF AMER. (New Co.)

Parts List

AIIGNENT PROCEDURE: Only when an IF transformer, antenna or oscillator coil is replaced should it ever be necessary to realign the receiver. For aligning either the intermediate tranaformer or the variable condenser it is absolutely necessary that a good accurate calibrated oscillator be used with some type of output measuring device.

INTERMEDIATE ALIGMMEANT:

1. Connect the high side of the oscillator output to the control grid of the $2 A 7$ tube leaving the grij cap disconnected. The ground side of the oscillator should be connected to the receiver chassis.
2. Set the oscillator at 465 kilocycles (this must be accurate) and adjust the output of the oscillator so that a convenient reading is obtained on the output meter.
3. Align the first intermediate transformer by turning the intermediate transformer brass hext adjusting nut located on top of the intermediate transformer can up and down until maximun reading is obtained on the output meter. Then adjust the trinmer screw located inside the brass hex nut for maximum output.
4. Adjust the second I. F. transformer in the same manner as, the first I. F. transformer.

VARTABLE CONDENSER AIIGMAENT: It is essential that the following ingtructions be carefully adhered to in the order given otherwise the receiver will be insensitive and the dial calibration will be inaccurate.

1. Connect the high side of the oscillator output to the set antenna lead and the oscillator ground to the receiver chassis.
2. Place the band selector switch for operation on the 16 tc 5.2 megacycle band.
3. Set the oscillator frequency to exactly 15 megacycles and adjust the receiver dial to exactly 15 megacycles. Then BRING IN THE 15 MEGACYCIE SIGNAL TO MAXIMUM OUTPUT BY ADJUSTING THE trimmer condenser of trie oscillator gang condenser section. The oscillator trimmer condenser is mounted on top of the rear section of the variable condenser. The front section of the variable condenser tunes the antenna stage.
4. Place the band selector switch for operation on the 1715 to 535 kilocycle band, set the oscillator to exactly 1400 kilocycles and tune the receiver dial to 1400 kilocycles. BRING IN THIS 1400 KILOCYCLE SIGNAL BY ADJUSTING THE SMAIN TRIMARR CONDENSER which is located underneath near the center and towards the front of the chassis.
5. Next adjust the antenna variable gang condenser section trimer condenser for maximum output (front section).
6. Leave the receiver operating on the same band and set the oscillator frequency to approximately 600 kilocycles and adjust the dial to approximately 600 kilocycles. Then while rocking the variable condenser slightly to the right and left, sdjust the 600 kilocycle padding condenser which is located below the speaker and accessible through the front of the chassis for maximum output.
7. Recheck the 1400 kilocycle adjustment.
8. Place the band selector switch for operation on the 16 to 5.2 megacycle band and tune the dial to exactiy 15 megacycles and set the oscillator frequency to 15 megacycles. Then adjust the trimmer condenser which is iocated underneath and toward the center of the rient hand side of the chassis for maximum output.

This completes the aligrment procedure and it is suggestea that all the adjustments be rechecked.

PARTS \& PRICE LIST

PART NUSGER		LIST PRICE
1113	Antenna Coil	\$ 1.63
1114	Oscillator Coil	1.63
1005	Pirst I, F. Transformer	2.10
9862	Second I. F. Transformer	2.10
1118	Wave Switch	. 75
1103	Gang Condenser	3.02
9660	Power Transformer	1.24
9659	2-8 Mfd. Electrolytic Condenser	4.02
9673	Padding Condenser	2.80 .50
9799	Trimmer Condenser	15
9671	Pilot Iight Socket	. 09
6248	2.5 Volt Pilot Light Socket	17
1104	Tuning Dial	28
1068	Wire Wound Resistor Strip	. 96
6984		. 19
8000	$100.000 .0 \mathrm{hm} 1 / 3$ Watt Resistor	. 19
8906	250,000 $0 \mathrm{~km} 1 / 3$ watt Resistor	19
6875	250 Omm 1/3 Watt Resistor	19
9018	$1500 \mathrm{hm} 1 / 3$ Watt Resistor	19
8907	25,000 Ohm 1/3 Watt Resistor	. 19
1176	10,000 Ohm 1/3 Watt Resistor	. 19
9698 9386		. 56
7862	. 004 Mfd. 400 Volt Condenser	. 19
7860	. 01 KPd. 400 Volt Condenser	17
1115	2 x .1 urd. 200 Volt Condenser	35
9691	. 05 Mfd. \& . 001 Mfd. 400 Volt Condenser	39
1108	2 Mfd. Dry Electrolytic Condenser	99
9307	. 005 Mfd. Moulded Condenser	. 55
9458	. 00025 ufd. Moulded Condenser	21
7934	. 0001 Mfd. Moulded Condenser	. 21
9459	. 0005 Mfd. Moulded Condenser	. 21
8980	Tube Shield	. 21
1180	Knob with dot	. 17
9759	Small Knob	.14

PAGE 5-10 TCA

R-F. ADJUSTMENT: Remove chassis from case, couple the output of a modulated oscall ator from antenna to ground, set the dial at 1400 and the oscillator at $1400 \mathrm{KC}$.

Place the oscillator and receiver in operation and adjust the oscillator output so that a weak signal is heard in the loudspeaker when the volume control is at its maximam position.

Adjust trimming condensers, starting with C3, C2 and then Cl, until maximum output is obtained. Readjust a second time as there is a slight interiocking of adjustments. Greater accuracy can be obtained with an output meter.

I-F. ADJUSTIENT: The four I-F. trimming condensers are adjusted at 175 KC .
Connect a modulated oscillator set at 175 KC . between the first detector grid and ground. Connect output moter.

Adjust the tuning condenser so that no signal except the I-F. oscillator is heard at maximum volume, 而ith the volume control set at maximum, reduce the output of the oscillator until a small deflection is obteined. Unless this is done, the AVC action will make correct adjustments impossible.

Trim in order C4, C5, C6 and C7. Repeat adjustments and then follow with the R-F. adjustments.

TUBE	CATHODE-PLATE	SOCKET VOLTAGES CATHODE-SCREEN	CATHODE-GRND.	PLATE CUR.
R-F. 78	180	85	2	4 MA .
Det-Osc. 77	180	85	4	6.3
I-F. 78	180	85	2	4
2Det.AVC. 75	125	-	2	1
Output 41	175	180	15	17

PAGE 5-12 TCA
MODE TC-60 Alignment Data

TRANSFORMER CORP. OF AMER. (New Co.)
Parts Iist

The action of the A.V.C. Will defeat the purpose of an output meter if used in the normal manner. To obviate this, the oscillator output should be turned to as low a setting as will cause a reading on the output meter with the volume control on the set turned to maximum. This will allow the out meter to function correctly. Adjust the test oscillator to $456 \mathrm{~K} . \mathrm{C}$. and connect to the grid cap of the 6a7 tube and adjust the trimmers on the three I.F. stages. (There are two adjustments in each coil; a screw and a nut.)
R. F. ALIGNMENT-Connect oscillator to antenna wire on set and adjust oscillator to 1400 K.C. Set receiver dial to 1400 K.c. and wave band switch to the broadcast position. Adjust output of oscillator as outlined under I.F. alignment. Adjust trimmers on sections 1 and 2 for maximum output. Then adjust section 3 of the variable condenser for maximum output. The oscillator padder condenser is the center one of three located on the back of the chassis. In the event that the oscillator section does not track through the broadcast band; this trimmer should be adjusted.

No adjustments are necessary on the other wave bands. All the coils are correctly matched so that they will be in alignment if the above ad. justments are correctly made.

PART NO.	LIST PRICE PARTS LIST	PRICE
TCG-1001	3000 ohm $5^{\prime \prime}$ speaker single 43 trans	\$ 5.20
TGG-1002	BROADCAST Oscillator and I st I.F. coil	2.95
TGG-1003	Second I.F. Traneformer	1.95
TCG-1004	Third I.F. Transformer	1.05
TCG-1005	LONG wave oscillator loading coil	. 70
TCG-1006	Broadcast and long wave preselector	2.50
TCG-1007	S.W. antenna Coil 13-25 Meter band	- 55
TCG-1008		-
TCG-1010	S.F. Oscilator " 13-25 "	- 55
TGG-1011	S.N. " " $25-75$ "	. 55
TCG-1012	S.W. \quad. $\quad 175-200$ "	
TCG-1013	200 Filter choke	1.20
TCG-1014	3 gang variable condenser	3.60
TCG-1015	3000 ohm vol. cont. with switch	1.10
TCG-1016	100,000 tone control	. 75
TCG-1017	3 gang 6 circuit 5 position wave change switch	2.10
TCG-1018	$20-12 \mathrm{mfd}$. $100 \mathrm{w} . \mathrm{v}$. filter cond.	1.95
TCG-1019	4 mfd . 100 wv Filter cond.	. 88
TCG-1020	Dual 10 mfd . By-pass cond.	1.20
TCG-1021	. 25 mfd .200 V Tubular cond.	. 24
TCG-1022	, 1 mfd. 200V Tubular Cond.	. 16
TCG-1023	. 05	. 14
TCG-1024	. 02	. 13
TCG-1025	. $01{ }^{\prime \prime}$. 13
TCG-1026	. 006 - 400 V	. 13
TCG-1027	Moulded Mica cond. 000015,002, and . 0005 mfd .	. 20
TCG-1028	Trimmer cond. $3-30 \mathrm{mmf}$.	. 20
TCG-1029	Triple Padding cond. strip, 140-600-1500 mmf.	1.60
TCG-1030	Line resistor 155 ohms tapped at 20 ohms	1.20
TCG-1031	$500 \mathrm{ohm} 1 / 2$ watt Carbon Resistor	. 25
TCG-1032	1/3 Watt carbon resistor any value	.19

PAGE 5-2 TRIPLETT
MODF 1200
Tester
TRIPLETT ELECTRICAL INSTRUMENT CO.
Schematic

TROY 4 and 5 TUBE SUPERS

Socket Layouts
(2 Bands, 75-550 Meters)

PAGE 5-2 TROY

TROY RADIO MFG. CO.

TROY ALL WAVE SUPERS
(4 Bands, 15-550 Meters)
For Sooket Index

PAGE 5-4 TROY
HODE 4-Tube TRF
Schematic TROY RADIO MFG. CO.
VODELS 54,84
Socket Layouts

TURNER CO.

Grid............... Green

PAGE 5-2 BOSCH

MODEL 45-A,45-C

 Alignment DataUNITED AMERICAN BOSCH CORP.

All of the adjustable condensers, commonly called trimmer condensers, are very accurately adjusted at the factory and will not need any further adjustments unless a coil or I.F. transformer is changed, or the adjustments tampered with in the field. Therefore, DO NOT attempt to change the setting of any of the trimmer condensers unless it is definitely known that adjustment is necessary, and a test oscillator is available, then proceed as follows:

1. Connect output meter across voice coil of speaker terminals \#49 and \#5l (Fig. \#l).
2. Set test oscillator at 175 kilocycles (using . 1 mfd. antenna condenser).
3. Connect test oscillator lead to grid of the first I. F. tube.
4. Adjust condenser on primary of second I. F. transformer on top of set to peak on output meter.
5. Connect test oscillator lead to grid of first detector tube.
6. Adjust condenser on primary of first I. F. transformer (under set) to peak.
7. Adjust condenser on secondary of first I.F。transformer to peak. (There are two small holes on side of housing for adjustment \#6 and \#7.)

The above procedure lines up the I. F. stages properly and our attention can now be turned to the oscillator and R. F. adjustments, which are made as follows:

1. Set test-oscillator at 1500 kilocycles (using .l mfd. antenna condenser).
2. Connect test-oscillator lead to grid of first detector.
3. Set gang condenser at 1500 kilocycles as follows:
(a) Open gang to fullest extent.
(b) Close slowly to thickness of approximately .015".
4. Peak oscillator trimmer on end of condenser gang.
5. Set test-oscillator at 1400 kilocycles.
6. Connect test-oscillator to antenna lead (using . 0002 mfd . antenna condenser).
7. Peak other two condensers on gang.
8. Do not touch oscillator trimmer at 1400 kilocycles setting of gang.

This set should now be fully aligned and normal sensitivity prevail.

BOSCH PAGE 5-3

(d) SPEAKER: Check field supply with voltohmmeter at speaker, reading between points \#49 and \#50 (Fig. \#I) on speaker terminals (5.8 volts or over). Unsolder blue lead from speaker (\#5i) and test across terminals \#49 and \#51 for continuity of voice coil. (Reading full scale ohmmeter.)
(e) SECONDARY OUTPUT TRANSFORMER: After unsoldering blue lead from terminal (\#5J. Fig. \#l), test with ohmeter between blue lead and terminal \#49 (full scale reading - ohmmeter).
(f) CHASSIS: After checking the components listed above, test the voltages as they appear on voltage chart and Fig. \#4. The resistance measurements as found in "Resistance Chart" and Fig. \#5. If any particular reading obtained is very different from the chart reading, the trouble is located in the portion of the circuit associated with the points at which this discrepancy occurs. Referring to circuit diagram and location drawings (Figs. \#1, \#2, \#3), each part making up the circuit may be individually tested until the faulty part is specifically located.

RESISTORS

PAGE 5-4 BOSCH
MODEL 45-A,45-C Chassis Vier Data

UNITED AMERICAN BOSCH CORP.

The tubes employed in this circuit are as follows:
1 type 77 radio frequency amplifier.
1 type 77 detector osciliator.
1 type 78 intermediate frequency amplifier.
1 type 75 second detector, A.V.C. and audio amplifier.
1 type 41 output tube.

The antenna is coupled to the first stage by means of a transformer. The R.F. stage is coupled to the oscillator by means of a transformer. Resistance coupling is employed between the audio portion of the type 75 tube and the output tube. The first I.F. transformer is doubly tuned and the second I.F. transformer has a tuned primary.

Automatic volume control is provided by utilizing the potential drop in the collector circuit of the type 75 tube. The A.V.C. is made a part of the D.C. grid circuits of the R.F. amplifier and the I.F. amplifier. The intermediate frequency employed is 175 kilocycles.

An electro-dynamic speaker is used with this set. This speaker has a field fesistance of 4 ohms and a voice coil resistance of 3.9 ohms.

BOSCH PAGE 5-5

Figure \#4

PAGE 5-6 BOSCH

HODE 79-C

Chassis View UNITED AMERICAN BOSCH CORP.

IF PEAK 175 KC.

ELECTRICAL VALUES

C-19 10 mf . (450)
C-20 100 mmf . mica
c-21 100 mmf . mica
C-22 . 5 - 2 ply
C-23.001 mica
c-24 .5-2 ply
C-25 . 001 mica
c-26.1-3 ply
C-27. 001 mica
C-28 . 05 - 3 ply
C-29 100 mmf . mica
T-l Power Transformer
T-2 Output Transformer
L-l Filter Choke
I- 3 Filter Choke
L-4 Power Choke
L-5 Field Coil

Automatic volume control is provided by utilizing the potential drop in the collector circuit of the type 75 tube. The A.V.C. is made a part of the D.C. grid circuits of the R.F. and I.F. amplifiers.

An electro-dynamic speaker is used with this set. This speaker has a field resistance of 5.6 ohms and a voice coil resistance of approximately 3 ohms.

A tone control is provided in the plate circuit of the output tube. This consists of a condenser and variable resistor in series.

PAGE 5-8 EOSCH

TODE 79-C
Voltage Resistance Chart

UNITED AMERICAN BOSCH CORP.

Fig. \#3
42 Power
\#1 - Fil.
\#2 - Fil.
\#3 - Cathode
$\# 4$ - Grid
\#5 - Screen
$\# 6$ - Plate
75 2nd Det. AVC
$\# 7$ - Fil.
$\# 8$ - Fil.
$\# 9$ - Cathode
$\# 10$ - Di Plate
$\# 11$ - Di Plate
$\# 12$ - Plate

77 R. F.
\#25 - Suppressor
\#26 - Screen
\#27 - Plate
\#28)- Fil.
\#30 - Cathode
VOITAGE CHART
Voltage readings from ground to following points with Weston Model 564 Voltohmmeter (. 6 volt storage battery used).

42 A.F.

75 2nd Det.	78 I. F.
$\# 7-5.5$	$\# 13-5.5$
$\# 9-1.3$	$\# 15-3.0$
$\# 12-116$	$\# 17-81$.
	$\# 18-187$

77 Det. Osc.
$\# 20-81$
$\# 21-183$
$\# 23-5.5$
$\# 24-4$ to 6

RESISTANCE CHART
(All measurements made with ohmmeter)

UNITED AMERICAN BOSCH CORP.

ALIGNMENT INSTRUCTIONS

All the adjustable condensers, commonly called trimmer condensers, are very accurately adjusted at the factory and will not need any further adjustment unless a coil or I.F. transformer is changed, or the adjustments tampered with in the field. Therefore, Do NOT attempt to change the setting of any of the trimmer condensers unless it is definitely known that adjustment is necessary, and a test oscillator is available, then proceed as follows and refer to Fig. \#l.
(A) I.F. ADJUSTMENT
(Use . 1 mfd . antenna condenser)

1. Connect test oscillator to grid of lst I.F. (78) tube.
2. Adjust small I.F。 coil (between 78 and 75 tube) to maximum output.
3. Connect test oscillator to grid of lst detector (77) tube.
4. Adjust condenseris on coil in left hand corner of receiver for maximum output.
5. Repeat the above operations for accuracy.

(B) OSEILLATOR ADJUSTMENT

(Use . 1 mfd . condenser on grid - . 002 mfd . on antenna)

1. Connect test oscillator to grid of lst detector (77) tube. Set at l500 K.C.
2. Set gang to $1500 \mathrm{~K} . \mathrm{C}$. as follows:
(a) Open gang to fullest extent.
(b) Close sl owly to thickness of approximately . 015 of an inch.
3. Peak oscillator condenser on end of gang.
4. Connect test oscillator to antenna lead.
5. Peak other two condensers on gang.
6. Check sensitivity at several points on dial scale.

The set is now fully aligned and normal sensitivity prevails.

PAGE 5-10 BOSCH

MODEL 79-C

Parts List

UNITED AMERICAN BOSCH CORP.

Part NO.	Description	Part No	Description
CONIROL UNIT PARTS		COILS	
106541	Flexible volume control shaft	105824	Choke coil
106542	Flexible tuning shaft	106523	Oscillator coil assembly
107433	Knob for tuning	104580	I.F. coil assembly
107268	Control unit knob with key (volume control)	$\begin{aligned} & 107053 \\ & 106519 \end{aligned}$	Choke coil on base assembly Antenna coil assembly
106797	Control unit dial scale	106518	R.F. coil assembly
105627	Control unit dial glass	106713	Speaker field coil
107470	Control unit dial indicator	CONDENSERS	
107333	Control unit dial frame		
105597	Control unit mounting bracket		
106809	Dial lamp	105300	Suppressor condenser for generator Condenser (.008 plus or minus 10%)
107424	Dial light cable assembly (barrel type)	1068804	Condenser - .l - 3 ply Condenser - mica . 001
107550	```Dial light cable assembly (spring type)```	103775 102493	Condenser . 05 - 2 ply
105608	Spare key	106417	Condenser .000 mica Condenser and choke assembly
105607	Control unit mounting strap assembly	$\begin{array}{r} 106600 \\ 99650 \end{array}$	Condenser and choke assembly Condenser . 001 inica
		106536	Electrolytic condenser Condenser and clip assembly
	CABLE ASSEMBLIES	107001	Condenser for above .5-2 ply
107317	Battery cable assembly	106526	Condenser assembly (block)
106544	Dial light cable assembly	102497	Condenser . 25 - 2 ply
105432	Antenna cable assembly	1024	Condenser .05-3 ply
107320	Battery cable		Condenser .002-4 ply
107318	Battery cable (chassis end)	102496	Condenser .5-2 ply Condenser . 25-3 ply
	RESISTORS	103659	CondenserCondenser. $1-205-2 \mathrm{ply}$
	ResISIORS	102495	
	Ohms Body Tip Dot	102402	Condenser on speaker . $05-3 \mathrm{ply}$
106531	4,000 Yellow Black Red	106417	Condenser . 001 mfd . mica
105278	100,000 Brown Black Yellow		MISCELTANEOUS
105264	500 Green Black Brown		
105246	.5 meg . Green Black Yellow	105363	Spark plug nipple
105276	50,000 Green Black Orange	106807	Paper template (drilling)
105281	1 mig. Brown Black Green	107271	Housing assembly (front half)
105249	5,000 Green Black Red	106671	Bottom cover assembly
105279	1/4 meg. Red Green Orange	106546	Top cover and nameplate assembly
105247	7,500 Purple Green Red	107205	Screen and baffle assembly
105245	2,000 Red Black Brown	106517	Pin for variable condenser insulation bushing
105251	40,000 Yellow Black Orange		
105277	75,000 Purple Green Orange	106715	Tone control
SUPPRESSORS		106716	Tone control knob
		106510	Dust shield
106755	Spark plug suppiessorCoil suppressor	107060	Housing assembly (rear half)
106754		106573	Base assembly (power pack)
105300	Suppressor condenser for generator	106562	Vibrator unit Insulation plate assembly
		101856	
	TRA NSFORMERS	106545	Base assembly (chassis)
		106680	Variable condenser assembly
106801	Power transformer	106514	
106618	Speaker transformer	106524	
		106728	Tube shield cap assembly Insulation between oscillator coil and base
	TUBE SOCKETS \& IUBE SHIETDS	93965	Cover assembly (chassis end) insulation strip
103424	Tube shield	107181	Speaker screen
104615	Tube socket	106513	Speaker baffle
104616 103513	Tube s ocket - 5 prong	103423	Tube shield base
103513	Tube socket - 6 prong	106617	Diaphragm assembly, complete
		106498	Speaker housing Speaker insulation plate assembly
-	2UBES	101856	
		106492	Speaker core and frame assembly
ER 77	and Det., A.V.C. and A.F. amplifier	106508 106509	Variable condenser gear Variable condenser bracket assembly for drive
ER 42	Power output tube	106509	
ER 78	I.F. amplifier	106983	Fuse (25 amperes) in battery cable Antenna plate
FR 84	Rectifier	100730	
		105429	Battery cable fuse body
	BRACKETS, CLIPS AND CLAMPS	105425	Battery cable fuse body cap Fuse body insulator - battery cable
		105430	
100644	Cable clamp	105427	Volume control bracket
106564	Drive shaft bracket	106506	
106565	Drive shaft casing clamp	106495	Speaker transformer bracket
79381 99623	Clamp for power transformer leads	106684	Tone control bracket
100263	Grid clip		
100478	Terminal clip		

BOSCH PAGE 5-11

OPERATING VOLTAGES AND TUBE COMPLEMENT

Tube	Tube	Plate	Screen	Voltage	Heater
Type	Function	Voltage	Voltage	Cathode to Ground	Voltage
78	R.F. Amp.	45	95	2.3	6.0
6 A 7	Det., Osc.	170	95	2.3	6.0
78	I.F. Amp.	175	95	2.3	6.0
75	Det.,A.V.C	73		0.6	6.0
41	A.F. Amp. A.F. Amp.	165	175	13	6.0

NOTE: The above readings were taken from the various socket points to ground using a Weston Model 663 volt-ohmmeter which has a resistance as a voltmeter of 1000 ohms per volt full scale. For meters of other ratings, these vultages may not be as indicated.

UNITED AMERICAN BOSCH CORP.

INSTALLATION

In order to mount this receiver on a motorcycle, certain fittings are required. The fittings recormended are contained in a kit supplied by the Indian Motorcycle Company and known as the "Indian Radio Support and Antenna Kit Assembly" (\#92344).

Contained in this kit are complete instructions covering the mounting of this receiver on a motorcycle, using the parts in the kit.

When installing the receiver, the shielded cable must be passed in front of the handlebars, (this is very important), then downward past the front head lug and along the frame front tube under the tank to the battery. The cable should be attached to the tubes of the frame by clips.

CONNECTIONS

The power supply unit contained in the receiver is arranged for operation on a motorcycle where the negative side of the battery is grounded. In cases where the receiver is to be used on a motorcycle where the positive side of the battery is grounded, it will be necessary to reverse the red and black wires inside of the power supply unit. With the negative side of the storage battery grounded, the red wire should be connected to the "+" terminal and the black wire should be connected to the "-" terminal. With the positive side of the storage battery grounded, the red wire should be connected to the "-" terminal and the black wire should be connected to the "+" terminal.

The terminal of the battery cable marked "hot" should be connected to the ungrounded side of the storage battery. The other terminal should be connected to the grounded side of the storage battery. A fuse is contained in a spring-bayonet cartridge located in the battery cable near the receiver. The fuse is the standard type used for automotive purposes and is rated at 10 amperes. To replace the fuse, force the rubber tube covering the fuse container along the cable toward the receiver until the end of the fuse cartridge can be grasped and removed. The rubber tube should be held firmly to keep the cartridge from receding into the tube while the fuse is being replaced so that the two halves of the cartridge can be conveniently refitted.

All screws, nuts, and washers must be firmly set and all electrical connections are to be tight and clean even to the possible necesitty of removing a slight amount of paint to accomplish this.

"B" POWER SUPPLY UNIT

The "B" power for operation of the receiver is supplied by the American-Bosch magmotor. This magmotor unit is turned on and off simultaneously with the receiver and receives its energy from the storage battery of the motorcycle.
The magmotor is essentially a dynamotor, the armature having two windings, one to supply the driving force for rotating the armature and the other for generating the desired "B" power. The armature is fitted with a commutator at each end. The brushes which contact the commutators look alike, but the material of those operating at the 6volt end is quite different from that of those operating at the high voltage end. If, for any reas on, the brush holders are removed from the frame, they must be returned to their original positions when re-assembled. Failure to do this will cause shortened commatator life and improper operation of the magmotor unit.
The magmotor is provided with a permanent magnet, rather than field coils, for excitation. This makes possible the extreme compactness of the unit and also conserves the battery energy. Should it be necessary to remove the magnet during service operations, some marking should be made on adjacent sides of the frame and magnet so that the magnet can be returned to its original position and not inverted. If it is assembled in an inverted position, the polarity of the output will be reversed and the radio receiver will not function. A large soft iron "keeper" should be placed across the poles of the magnet when it is removed in order to conserve the magnetism. It is well to remagnetize the magnet after re-assembling the magmotor in order that it may give completely satisfactory service. If the magnet is not remagnetized, the output of the magmotor will be reduced.
The armature shaft rotates in ball bearings which are carried in the endplates. An oil cup is provided in the top edge of each of the endplates. Six (6) drops of Bosch $0 i 1$ US-506, or a light mineral oil should be put in each cup at the expiration of each 1000 hours use. The term "light mineral oil" applies to the so-called household oils sold in small spout cans by the large refiners of petroleum products. "This light mineral oil should not be confused with the light household oils of the "sperm" variety so widely advertised. These "sperm" oils must not be used on the light ball bearings of the magmotor - to do so will gum the bearings and cause unsatisfactory operation.

A mounting plate is provided for the receiver which fastens to the steering column with two large straps. This plate should be placed on the upper side of the steering column below the instrument panel with the large ends of the keyhole slots at the top. The nuts on the small carriage bolts fastening the straps to the mounting plate should be securely tightened so that the mounting plate will not slip on the steering column. The two screws in the bushings in the receiver housing should then be loosened and the $r e-$ ceiver placed on top of the mounting plate with the heads of the screws entering the keyhole slots in the mounting plate. The screws should be allowed to engage the narrow portions of the keyhole slots and the screws should then be tightened securely so that the receiver is held rigidly in place. (See Figure \#l).
For cases where mounting on the steering column is not feasible, a bulkhead mounting plate has been provided which is fastened to the bulkhead with three carriage bolts. The adapter plate which is provided for use in conjunction with the mounting plate should be attached with screws to the opposite side of the receiver housing from that through which the volune control shaft projects. It should be placed so that the small ends of the keyhole slots are at the top. The receiver should then be placed on the mounting plate so that the screws in the bushings on the mounting plate enter the keyhole slots in the adapter plate. When the screws engage the small portions of the keyhole slots they should be tightened so that the receiver unit will be held securely

MOUNTING THE MAGMOTOR

The magmotor or the "B" power supply unit is provided with a mounting plate which is fastened to the operator's side of the bulkhead with three carriage bolts. The two screws in the bushings in the mounting plate should be loosened and the power supply unit placed so that these screws enter the keyhole slots in the bracket fastened to the back of the housing. When the screws engage the small portions of the keyhole slots, they should be tightened so that the unit will be held securely in place.

MOUNTING THE SPEAKER
Two studs are provided on the speaker unit which fasten it to the bulkhead in a position where it will not interfere with the operation of the vehicle but where it will permit a good signal to be heard.

CONNECTIONS

The power supply unit, as provided, is arranged for operation in a motor car where the negative side of the battery is grounded. In cases where this unit is to be used in a motor car where the positive side of the battery is grounded, it will be necessary to reverse the red and black wires inside of the unit. With the negative side of the storage battery grounded, the red wire should be connected to the " black wire should be connected to the "-" terminal. With the positive side of the storage battery grounded, the red wire shouid be connected to the "-" terminal and the black wire should be connected to the "+ل" terminal.
A duplex cable is provided between the receiver and the power supply unit. The two sections of this cable should be connected together. A battery cable containing a fuse is provided. The terminal marked "hot" should be connected to the ungrounded side of the storage battery. The other terminal should be connected to the grounded side of the storage battery. The other shielded cable which enters the receiver housing at the same point as the battery cable and the power supply cable should be connected to the loud speaker. At the ather end of the receiver housing a black cotton covered cable is provided which should be connected to the antenna lead-in. Refer to Figure \#l for these cable connections. The antenna lead-in should be shielded and the shield soldered to the bayonet connection beyond the junction.

BOSCH PAGE 5-15
MODEH 139,149
UNITED AMERICAN BOSCH CORP.
Schematic Voltage

Frequency r ange:

IF PEAK 456 KC
Model 139 - 1500 to 1800 kilocycles
Model 149 - 2250 to 2500 kilocycles

ELECTRICAL VALUES

c-21 5 mfd. electrolytic
$\mathrm{C}-22.005 \mathrm{mfd} 3 \mathrm{ply}$
C-23 . 25 mfd .3 ply
C-24 . 25 mfd .2 ply
C-25 . 25 mfd .3 ply
C-26 . 0001 mfd.
C-27.001 mfd.
$\mathrm{C}-28.05 \mathrm{mfd} .3 \mathrm{ply}$
C-29 . 1 mfd. 2 piy
C-31 . 001 mfd .
c-32 4 mfd.
C-33 . 001 mfd .
C-34 4 mfd.
$\mathrm{C}-35.0004 \mathrm{mfd} . \mathrm{mica}$
C-38. 001 mfd .
L-1 Magmotor choke coil
L-2 . 15 milli-henry
L-3 200 ohms D.C.
L-4 Choke coil
SOCKET VOLTAGES
$\begin{array}{lc}\text { Tube } & \text { Tube } \\ \text { Type } & \text { Function }\end{array}$

78 RoF. Amp.

Det., Osc.
I。F. Amp.
Det., A.V.C., A.F. Amp.
A.F. Amp. 165

Plate
Voltage
45
170
175

Screen
Voltage

Voltage
Cathode to Ground

95

95
95
175

R-1 300 ohms 1/4 watt
R-2 20,000 ohms $1 / 2$ watt
R-3 100,000 ohms 1/4 watt
R-4 20,000 ohms 1/4 watt
R-5 100,000 ohms 1/4 watt
R-6 300 ohms l/4 watt
R-7 2,000 ohms 1/4 watt
R-8 300 ohms 1/4 watt
R-9 ----
R-10 . 5 meg. $1 / 4$ watt
R-11 . 5 meg. volume control
R-12 2 meg. $1 / 4$ watt
R-13 5,000 ohms 1/4 watt
R-14 1 meg. $1 / 4$ watt
R-15 . 25 meg. $1 / 4$ watt
R-16 . 5 meg. $1 / 4$ watt
R-17 750 ohms 1/4 watt
R-18 10,000 ohms 1/2 watt
R-19 100,000 ohms 1/2 watt

These readings were taken from the various socket points to ground using a Weston Model 663 volt-ohmeter which has a resistance as a voltmeter of 1000 ohms per volt full scale. For meters of other ratings, these voltages may not be as indicated.

PAGE 5-16 BOSCH

MODEF 139,149
 Testing Data

UNITED AMERICAN BOSCH CORP.

Fig. 4

Fig. 5

L-1 R.F. Choke \#105124
(a) ANTENNA: Substitute a piece of insulated wire 6 to 8 feet long and lay on ground: if reception is normal, the regular antenna is at fault and should be checked for grounds, opens, etc. (Somewhat better reception should be expected with wire antenna than with car antenna.)
(b) TUBES: Remove and test, or substitute known good tubes, one at a time.
(c) SPEAKER: Disconnect speaker cable from chassis by means of bayonet connector. Test across terminals of speaker with volt-ohmmeter for continuity of voice coil. Reading of 4.5 ohms should be obtained on ohmmeter.
(d) SECONDARY OF OUTPUT TRANSFORMER: With speaker cable disconnected, test with ohmmeter between terminal \#l and ground. Reading of 0.5 ohms should be obtained on ohmmeter.
(e) CHASSIS: After checking the components listed above, test the voltages as they appear on voltage chart and the resistance measurements as found in Chassis Resistance Chart". If any particular reading obtained is very different from the chart reading, the trouble is located in the portion of the circuit associated with the points at wich this discrepancy occurs. Referring to the circuit diagram and location drawings, each part making up the circuit may be individually tested until the faulty part is specifically located.
f) MAGMOTOR: See section giving complete magmotor service information.

UNITED AMERICAN BOSCH CORP.

Fig. 2

ALIGNMENT INSTRUCTIONS

All of the adjustable condensers, commonly called trimmer condensers, are very accurately adjusted at the factory and will not need any further adjustments unless an I.F. transformer is changed, or the adjustments tampered with in the field. Therefore, DO NOT attempt to change the setting of any of the trimmer condensers unless it is definitely known that adjustment is necessary, and a test oscillator is available, then proceed as follows: See Fig. \#2.

1. Connect output meter across terminals of speaker voice coil.
2. Set test oscillator at 456 kilocycles.
3. Connect test oscillator lead to grid of I.F. amplifier tube, type 78. (Point \#14).
4. Adjust condenser on primary of second I.F. transformer, (Point \#31) to peak on output meter.
5. Adjust condenser on secondary of second I.F. transformer, (Point \#32) to peak on output meter.
6. Connect test oscillator lead to grid of detector-oscillator tube, type 6A7 (Point \#6)
7. Adjust condenser on primary of first I. F. transformer (Point \#29) to peak on output meter.
8. Adjust condenser on secondary of first I. F. transformer, (Point \#30) to peak on output meter.

The above procedure lines up the I. F. stages properly, so that all that remains is to tune the oscillator and preselector circuits to the frequency of the station it is desired to receive. This has been covered in the section headed - TUNING

NODEL 139,149 Tunirig Data
 UNITED AMERICAN BOSCH CORP.

TUNING

The radio receiver as delivered will be tuned to the station frequency requested. Due to unavoidable difierences between the frequency adjustment made at the factory and that of the station, it will be necessary to realign the tuning condensers slightly. One of the following methods of procedure should be followed depending upon whether or not a tuning meter is available. The method of tuning using a tuning meter is preferable since more accurate adjustment is possible.

A. With Tuning Meter.

With the receiver in the motor car, and connected to the car antenna and battery, turn the recelver fully on and allow it to get into operation which will be indicated by a slight hum heard in the speaker. Plug the tuning meter into the jack in the receiver housing. If the station desired is not heard, drive the machine (with the radio set in operation), toward the broadcasting station. When the station is heard, stop the motor car and proceed as follows:
(a) Loosen the brass condenser lock nuts (which can be seen through the two holes in the top cover of the housing) using a $7 / 16^{\prime \prime}$ socket wrench. This operation must be observed or damage will be done to the tuning condensers when alignment is attempted with a screw driver.
(b) With a screw driver inserted into the slot in the shaft of the left hand condenser (when the receiver is in such a position that the volume control is toward the operator), adjust this condenser until maximum deflection of the tuning meter in the direction indicated by the arrow on the dial is obtained on the station being heard.
(c) Repeat operation "b" with the right hand condenser.
(d) Lock the condensers with the 7/16" socket wrench.
B. Without Tuning Meter.

With the receiver in the motor car, and connected to the car antenna and battery, turn the receiver fully on and allow it to get into operation which will be indicated by a slight hum heard in the speaker.
If the station desired is not heard, drive the machine (with radio set in operation) toward the broadcasting station. When the station is heard faintly, stop the motor car and proceed as follows:
(a) Loosen the brass condenser lock nuts (which can be seen through the two holes in the top cover of the housing) using a 7/16" socket wrench. This operation must be observed or damage will be done to the tuning condensers when alignment is attempted with a serew driver.
(b) With a screw driver inserted into the slot in the shaft of the left hand condenser, when the receiver is in a position such that the volume control knob is toward the operator, adjust this condenser until the station is heard loudest.
(c) Reduce the volume by rotating the volume control knob on the face of the receiver housing counter-clockwise.
(d) Repeat operations (b) and (c) with the right hand condenser.
(e) Lock the condensers with the 7/16" socket.wrench.

Alignment by the above operations will be only approximate. To attain the exact alignment required for successful operation proceed as follows:
(a) Drive the motor car (with radio operating with volume control on full) to a "dead" spot or to a place sufficiently remote from the transmitter to produce a weak signal. In such a location repeat operations "a", "b", "d"and "e". In this case under no circumstances should the volume of the signal be reduced by adjusting the volume control knob. Keep the volume control in. its maximum position. Do not neglect to lock the condensers with the socket wrench after alignment and before replacing cover plates.

Antenna Coil - Primary
Antenna Coil - Secondary
R.F. Choke Coil

Oscillator Coil - Primary (Grid)
Oscillator Coil - Secondary (Plate)
First I.F. Transformer - Primary
First I.F. Transformer - Secondary
Second I.F. Transformer - Primary
Second I.F.Transformer - Secondary
Output Transformer - Primary
$* R . F$. Amplifier - Type 78 - Cathode to Ground
Det.-Oscillator - Type 6A7 - Cathode to Ground
Det.-Oscillator - Type 6A7 - Osc. Grid to Ground
I.F. Amplifier - Type 78 - Cathode to Ground
I.F. Amplifier - Type 78 - Screen Grid to Ground

Second Det. \& Amp. - Type M5 - Cathode to Ground
Second Det., \& Amp.-Type 75-A.V.C. Collector to Ground.
Second Det., \& Amp.- Type 75 - Collector to Ground
Power Amplifier - Type 41 - Cathode to Ground
Power Amplifier - Type 41 - Grid to Ground
B+ Terminal to Ground

MEASURE
BETWEEN POINTS
OHMMETER READING

\#2 \& \#3	0.5 ohms
\#4 \& \#5	2 ohms
\#6 \& \#7	3 ohms
\#9 \& GND	1 ohms
\#10 \& \# 11	2 ohms
\#12 \& \#13	23 ohms
\#14 \& GND	23 ohms
\#15 \& \#16	23 ohms
\#17 \& \#18	23 ohms
\#19 \& \#16	580 ohms
\#20 \& GND	300 ohms
\#21 \& GND	300 ohms
\#22 \& GND	100,000 ohms
\#23 \& GND	300 ohms
\#24 \& GND	100,000 ohms
\#25 \& GND	5,000 ohms
\#26 \& GND	2,000,000 ohms
\#17 \& GND	500,000 ohms
\#27 \& GND	750 ohms
\#28 \& GND	500,000 ohms
\#16 \& GND	110,000 ohms

PAGE 5－20 BOSCH

UNITED AMERICAN BOSCH CORP．

The magnet should retain its original magnetic strength for an indefinite period but
there are factors that may cause dissipation of the magnetism as，for example，the re－ ate at a higher speed to deliver the same voltage which will result in a greatly re－ The unit chould be completely assembled when the magnetizing is done in order to obtain
析

 CORDENSERS AND GHOKE COITS

（reter to Figs． 4 and 5）
－
If the memeotar arraturo fallis to rotato Then the cable connoctions have boon made

All measurements made with weston Model 663 Volt－ohmmeter．（Refor to F1gs． $4 \& 5$ ） | MESUSTE |
| :---: |
| BETWESN POTNTS |

網気。

MACZOTOR SERVICE INFORMATION
The armature shaft rotates in ball bearings mhich are carried 1n the ond plates，An LUBRICATIOM

 bail bearings

The ball bearings are held in place by means of set scrons located in the top of each
end plate．
Thore are two set screws en each end plate，the top one locking the
lower

 the current drain should be approx．
removed when di smantiling the unit．

BRUSiES

The magmotor has four bruches，two in the input or motor end and two in the output or
 terchanged．The brushes should be roplaced artter sooo hours or operation．To use
the brushes more than 300 hours will reault in the tr woaring down to that they make

 1s vory 1 mportant that the proper grade of brushes are used and no bruehes should be
usod oxcept those furnishod by the United Amor ican Bosch Corporation． DISMANTLING AND ASSEMBLITG THE MAGMOTOR
 （a）Disconnect the red and black wires connocted to the polarity terminal plate and （b）Remove the filter asaembly mounted on the prass plate fastened to the top of the （c）Remove the other filtor asaemb2y fastend to the top of the magmotor by removing （d）Remove the filter assembly on the ond of the magmotor by removing the four ond （e）Romove the tro upper ball bearing set sorews and loosen the two lower set screws （f）Remove the end plate to which the filter assembly is attached． （1g）Withdraw the armature．parts of the power unit are now available for ingpection．

ADJUSTMEMI INSTRUCTIONS OF MODEL 260

I. F. Adjustmont - The intermediate frequency amplifier is tuned to 517.5 K . C. With this froquenoy suppliod from an apperoved standard signal generator, place the output terminals of the generator on the input to the 8rd I. F. omplifier tube, i. e. high aide on the grid eap and low side on motal frame of recelver. Tune the adjustment sorew of the diode transformer for maximani defleotion of the output meter (oonnected aoross the voice ooil terminals of the loud speakers). A sensitivity of approximately 50,000 mi orovolts should be indicated. Next, conneot the signal generator terminals to the 2nd I. F. tube. Tune the adjustment sorews of the 3rd I. F. tranaformer for maximum doflection of the output meter. A sensitivity of 3,000 miorovolts should be indicated. Next, connect the signal generator to the lst I. F. tube and tune the adjustmonts of the 2nd I. F. transformer for maximum. A sensitivity of 100 miorovolt: should be indioated. Hext, connect the signal generator to the ist detector tube and tune the first I. F. transformer. A sensitivity of 10 miorovolts should be indioated. Leaving signal generator on lst deteotor, recheok all the I. F. stages.

R. F. Adjustment - (a) Broadcast Band

Chook position of pointer to make sure it is at the marking line just beyond the 540 K . C. oalibration mark when variable oondenser plates are fully ongaged. Then adjust set to the $1400 \mathrm{~K} . \mathrm{C}$. mariking on scale. Adjust signal genorator to 1400 K . C. and oonneot its output terminals through a dunmy antenna to antenne and ground connoctions. With about 2,000 microvolts from signal generator (to make for ease of finding signal) adjust the breadoast oscillator trim oondenser (B. C. Ose. Coil - Trimmer) as indioated in Figure \#1. Reduce signal generator input as signal is tuned in so as to keep within a useful defleotion of the output meter. When signal is tuned in, adjust the sorews marked R. F. TRIMARR and ANT-TRIMMPR in Figuro \#1. These last two need not be touched throughout further adjurtments of the radio set. Next, plave the set at the 600 K . C. marking with signal generator likewise and adjust the sorew of the B. C. OSC. COIL LAGGING oondenser until the signal is trand in. Return the pointer to $1400 \mathrm{~K} . \mathrm{C} .$, the signal genarator likewise, and make the slight readjustmont of the B. C. OSC. TRIM oondenser for good soouracy of calibration.

Whon all the adjustments as deacribed are corrootly mide, the following sensitivity should be maintained for a standard output of 100 milliwatts on a oarrior input modulated 30% at 400 oyeles.

Frequenoy	(KC)	1400	1000	600
Senaitivity	(MF)	5	5	7

(b) Green Band ($1600-8500 \mathrm{~K}, \mathrm{C}$.

By means of waveohange switch, place pointer on this band. Plaoe pointer on 3.5 mark, sot the aignal generator to 3500 K . C. and with sufficient input to reoeiver from standard signal generator, tune the screw adjustment labelled GREEN BAND TRIMAER until the signal is maxinum. Then place pointer to the 1.6 MC mark, adjust gignal generator to 1600 K . C. and tune the sorew marked GREEN BAND LAGGING CONDENSER until the signal output is a maximum.

Return set and signal genorator to 3.5MC and readjust GREEN BAND TRIMERR the alight amount nooessary. Chook the sensitivity. The following readings should obtain for 100 millimatts output.
Frequenoy
Sonsitivity $\binom{$ KC }{KV}$\quad 3500 \quad 2400 \quad 1600$

NOTE: Each oscillator coil is provided with means of adjusting its inductance. This oomprises a oopper vane placed in the field of the coil and made movable by means of a screw adjustment. On the green, red and blue bands, the adjustiment may be made through holes in the side plate adjacent to the osoillator trimer condensers. While primarily a factory adjustment, these vanes may be used for adjustment in the field where it has beon found nocessary to make repairs to an osoillator coil. The mothod is as follows: Having gane through the adjustmont of the GREENS BAND ae desoribed above, it is found that the sensitivity, partioularly in mid-soale (2.4 megaoyoles) is not up to standards say, for example, it indioates a sonsitivity of 20 miorovolts.

PAGE 5-22 BOSCH
RODE 260
Alignment Data
Socket and
Trinmer Layout
Give the vane adjustment sorew two turns in a olockwise direotion and repeat the adjustments given above at $3.5 \mathrm{MC}, 1.6 \mathrm{MC}$, and back to 3.5 MC . Then tune set and signal gonerator to $2400 \mathrm{~K} . \mathrm{C}$. and observe sensitivity. If this has improved, the adjustment is in the correot direotion and a few more trials should be made exaotly as described until the correot sensitivity is obtainod. If on the other hand a pooror sensitivity is obtained at 2400 K . C., return setting two turns to its original position and repeat procedure maling vane adjust in counterolookwise direotion, until correot sensitivity is obtained.

It should be mentioned again that this tedious procedure is never necossary unless an osoillator coil has in some way beoome damagod. In the factory, special test equipo ment is provided whioh makes for quick adjustment of induotanoes to the correot value before the ooil is mounted in the radio sot.
(c) Red Band (4000 - 9000 K. C.)

Adjustmonts in this band are made exactly as desoribed for the green band oxcept that the appropriate trimer and lagging oondonsors are used. In Figure H_{1}, reforence is made to RED BAND TRIMMER and RED BAND LAGGING CONDENSER. Sensitivity should be in the noighborhood of 5 microvolts across the soale.
(d) Bliue Band $(10,000 \sim 20,000 \mathrm{~K} . \mathrm{C}$.

Adjustments in this band should be made starting at the highest frequenoy end, say 18 MC if obtainable on signal generator. A frequency not lower than 15 MC is desirable. At this highest frequency, set pointer on radio set to calibration and tune BLUE BAND TRIMMER until signal is correctly received. Then place the signal generator at 10 MC and tune radio set until signal is reoeived. If this tuning point deviates from the correot oalibration point, the vane'regulating the osoillatar coil induotance may be reset and the tuning prooess repeated until scale is adjusted to calibration and the correct sensitivity is obtained. Care should be taken to see that the adjustment ia made for the signal itself and not the image. That is, a 15 MC signal should be troned in at 15 on dial and its image, with more trpat from standard signal generator, at $14 \mathrm{MC}$. . Five miorovolts aoross soale corresponds to the correet sensitivity.

MODRL 260
Fig. 1
1.F. 517.5 KC

UNITED AMERICAN BOSCH CORP.

UNITED AMERICAN BOSCH CORP.

SERVICE INSTRUCTIONS FOR MODEL

RI - 100,000 ohms

- 20,000 ohms
- 100,000 ohms
- 1/2 megohm
- 1 megohm
- $1 / 2$ megohm
- 20,000 ohms
$-1 / 2 \mathrm{mog}$.
Velumo oontrol
R9 - $1 / 4$ megohn
R10-3,000 ohms
Ril - $1 / 2$ mog. .
Tone control
R12 - 10,000 ohms
R18 - $1 / 4$ megohm
R14 - 1,000 ohme
R15 - 12,000 ohms
R16 - 8,000 ohns
R17 - 6,000 ohms
R18 - $\quad 30$ ohens
RI9 - $\quad 70$ ohms

```
R2O - 300 ohms
```

R2O - 300 ohms
R21 - 10,000 ohms
R21 - 10,000 ohms
R22 - 10,000 ohms (vari.)
R22 - 10,000 ohms (vari.)
R23 - 2 megohms
R23 - 2 megohms
R24 - 100,000 ohms
R24 - 100,000 ohms
R25 - 20,000 ohms
R25 - 20,000 ohms
C1)
C1)
C2) Variablo
C2) Variablo
C3) gang
C3) gang
C4) with
C4) with
C5) trimmers
C5) trimmers
C6)
C6)
c7 - .04-3 ply
c7 - .04-3 ply
C8 -.06 - 3 ply
C8 -.06 - 3 ply
C9 - 7-70 nmm
C9 - 7-70 nmm
ClO- 7-70 mmf
ClO- 7-70 mmf
C11- 7 - 70 mmf
C11- 7 - 70 mmf
C12-500 mmf
C12-500 mmf
C18- .05 - 3ply

```
C18- .05 - 3ply
```

$$
\begin{aligned}
& \text { C14-100 minf } \\
& \text { c15 - .05-2 ply } \\
& \text { Cl6 - } 200 \text { nmf" } \\
& \text { C17-100 mmf } \\
& \text { C18-.05-2 ply } \\
& \text { C19 - } 100 \text { mmf } \\
& \text { C20 - . } 252 \text { ply } \\
& \text { C21-8 mf - } 200 \mathrm{~V} \\
& \text { c22-. } 05 \text { - } 3 \mathrm{ply} \\
& \text { C23 - . 05-3 ply } \\
& \text { C24 - } 1 \text { mf - } 450 \text { V } \\
& \text { c25-.5-3ply } \\
& \text { C26 - } 100 \mathrm{mmf} \\
& \text { c27-. } 05 \text { - } 2 \text { ply } \\
& \text { c28-8 mfd) } \\
& \text { c29-8 mfd) } \\
& \text { c30-4 mfd) } \\
& \text { C31 - . } 01 \text { - } 4 \text { ply }
\end{aligned}
$$

RESISTOR COLOR CODE

1,000	ohms	Brown	Black
20,000 ohms	Red	Red	
100,000 ohms	Brown	Black	Orange
		Yellew	

| 3,000 ohms | Orange | Blaok | Red | 10,000 ohms | Brown | Blaok | Orange |
| ---: | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 300 ohms | Orange | Black | Brown | 12,000 ohms | Brown | Red | Orange |
| 8,000 ohms | Gray | Blaok | Brown | 6,000 ohms | Blue | Blaok | Red |

PAGE 5-26 BOSCH

MODEX 310-A

Socket, Voltage
UNITED AMERICAN BOSCH CORP.
Parts List
SOCKET VOLTAGES

	$\begin{aligned} & 080 . \\ & 56 \end{aligned}$	$\begin{aligned} & \text { lst Det. } \\ & 58 \end{aligned}$	$\begin{gathered} \text { 1st IF } \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} \text { 2nd IF } \\ 58 \\ \hline \end{gathered}$	$\begin{array}{r} \text { AVC } \\ 27 \\ \hline \end{array}$	$\text { 2nd }{ }_{27} \mathrm{D}_{\boldsymbol{e}} t_{0}$	$\begin{aligned} & \text { AF } \\ & 27 \end{aligned}$	$\begin{gathered} A F \\ 2 \sim 45 \end{gathered}$	$\begin{gathered} \text { Reot. } \\ 80 \end{gathered}$
Filament	2.48	2.49	2.50	2.50	2.50	2.50	2.52	2.52	5.1
Plate	100	\#110-180	\#110-180	280	44	-	210	290	-
Soreon	-	100	100	100	-	-	-	-	-
Cathode	-	4.2	-	-	-	-	28	49	-
\# Biag	-	5	3	3	-	* 0-12	-	-	-

* Dopending upon setting of noise control.
\# Due to high resistance in grid oircuit, this voltage oannot be measured at the soaket
therefore, readings shown here were taken at "C Stiok."
NOTE: These values are readings of a high resistance volt meter from eaoh sooket terminal to ground. The filament voltages are, of course, an exception. Cathode readings are given for those tubes having the grid at ground. The valves are only approximate and will vary with the line roltage and type of meter employed.

RESISTORS
1001962 mog . ohms 1008151 meg. ohma 100194500,000 ohme 100195 250,000 ohms 100813 20,000 ohms 100727 100,000 ohme
100825 10,000 ohms
1028213000 ohres
1008232000 ohms
99412 Mid Tap
104457 Volume oontrol
104443 Tone oontrol with switch
105054 Var. resistance (noise adjustment)
104418 Tapped resistor 104417 Tapped resistor

MATN ASSEMBLIES

105049 Chassis oomplete with tubes and shields
105078 Twin speakers with baffle bourd
105071 Speaker with output transformer 103731 Speaker only 105075 Cabinet

MISC. PARTS

104421 Power transformer
105055 Cable (speaker to ohassis)
104402 Knob
105074 Tuming lamp
104948 Dial plate
106985 Tuaning light plate

COILS
104439 2nd. I. F. 0011
104438 lst I. F. $00 i 1$
104440 Oscillator coil
104429 Ant. ooil
104441 Pre. Selector coil
103584 Choke ooil (small)
105053 Choke ooll (large)
105061 Input transformer
104442 Output transformer
CONDENSERS
104422 Filter condenser
1050461 mfd. 450 V
1030378 mfd. 200 V
102498.5 mfd. 3-ply
102949.04 mid. 3-ply
$102493.05 \mathrm{mfd} .2-\mathrm{ply}$
$102492.05 \mathrm{mfd} .3-\mathrm{ply}$
103695.01 mfd .4 -ply
100880.0005 Mica
101143.0001 Mica

102497 . 25 2-ply

UNITED AMERICAN BOSCH CORP.

.0001 Mica condenser
. $01-3$ ply condenser
9 Filter condenser assembly 8,6 \& 20 mfd .
1 Filter condenser assembly 8,6 \& 20 mf .
c32. 01 - 3 ply condenser

NOME NCLATURE

\#l Rectifier tube
\#2 Power pentode tube
\#3 2nd det. AVC \& AF tube \#4 I.F. trimmer condenser \#5 I.F. trimmer condenser \#6 I.F. tube
\#7 I. F. trimmer condenser \#8 I.F. trinmer condenser \#9 Det. osc. tube
\#l0 Osc. trimmer condenser \#ll Preselector trim con. \#l2 Antenna trim condenser \#13 S. W. osc. lag cond. \#l4. B. C. osc. lag cond. \#15 2nd I. F. transformer \#16 lst I. F. transformer

SOCKET VOLTAGES

Tube	Stage	Fil.	Plate	Screen	Cathode	Grid	
$2 A 7$	Ist Det.	2.4	75	30	0.8		Line voltage
	Osc.		60				Power in watts
58	I. F.	2.4	250	75	2.0		Bias 2A5 (across resistor)
$2 A 6$	2nd Det.	2.4	95		1.5		
$2 A 5$	Pentode volts	2.5	235	250	0	7.5	
80	Rectifier	4.7					

PAGE 5－28 BOSCH

MDDEL 352 Alignment Parts List

UNITED AMERICAN BOSCH CORP．

The American－Bosch Model 352 is a five－tube superheterodyne dual wave receiver．This
model is for 110 volt， 60 cycle operation． The tuning of this recoiver is divided between two 111 uminated scales．The BLack soale
 ALITENTNG

 1gnal．－ Before a trempting to all an a recoiver，the sorvice man should familiarize himeif with

ALidaning Thie I．F．（ 175 KC ）

1．Set volume control on full．
．Short circuit antenna and ground leads to prevent local staticas from interferring
4．Connect output meter across voice coil of loud spoaker（speakor 1 mpedence is 3.5
5．Set test oscillator to 175 KC and adjust 1 ts output to produce measurabie reading on
8．Aajust \＃4 and \＃5 to maximum output，reducing signal oscillator output as stage is
7．Connect test oscillatar to grid of $2 A 7$（\＃9）and adjust \＃7 and \＃8 to maximum output． ALIGNING B．G．osC．AND R．F．

1．Set wave change switch to broadceast or BLack scale position．

3．Set dial scale to maximum mark beyond 550 KC calibration point when gang 1 s entirely
4．Sot scale at 1400 KC and adjuat \＃10 to maximum output．Nors：fwo paaks will be
heard as trimmer condenser 1 ta tuned．
The second peak from maximum capacity should
5．Connect test osc111ator to antenne through 100 ．mmf．condenser and with scale still 6．Set scale and test osci11ator to 600 KC and adjust \＃14 slmultane ously ohanging this
 Tune receiver with left hand by moans of tuning knob and adjust \＃14 in oither
direction and then without chang ing 1 ti ，tune the receiver through a maximum．

 W1th test oscillator and soale set at 1400 KC readjust \＃10， 11 and 12 ，since pre－
v1ous operation may have alterec oscillator trimmer setting． B．Check sensitivity across bend．
aligning s．w．osc．
2．Set test oscillator to 1800 KC and adjust \＃13 and tuning control to a＂max－max＂as
per 1 nstructions given under Broadcast Band A11 gnment． 3．Check sensitivity across bana．

Part No．Description of Parts

 \＆
0.0
0
0
0
0箅告 O1 -4 ply condenser
Filter condenser as sembly 8,6 and 20 ind
$.01-3$
ply
condenser washers

105771

䁲
Ingulation washer for antenna
cable
 Volume control
Condenser
mounting Condenser mounting plain washer
\＃6 Shakeproor lock washor嗙

Trimmer condenser fastening

 sot screw for dial scale assem－
bit
Resistor strip fastening screw Resistor strip fastening screw
NOTS

 Hex nut for screvin 104387 PARTS LIST RS 354
dual wave -220 volts， 5 tube dual wave－ 220 volts， 25 cycles $\begin{array}{ll}106489 & \begin{array}{l}\text { Chass1s assembly } \\ \text { Pomer tranaformer }\end{array} \\ 106061\end{array}$

All other parts are the same as RS 352 ．

The adjustment of the receiver may be divided into five divisions: (1) adjustment of the I. F. amplifier (2) adjustment of the broadcast band (black) (3) adjustment of the $1500-4000 \mathrm{~K}$. C. band (green) (4) adjustment of the 3500-9000 K. C. band (red) and
(5) adjustment of the $8000-20,000$ band (blue).

The procedure is as follows:
(A) I. F. Adjustment
(1) Set signal generator to 478 K. C. with attenuator well ahead (20,000mv).
(2) Introduce signal to grid of second I. F. amplifier (see diagram).
(3) Adjust. small screws in front side of third I. F. transformer for loudest signal, reducing attentuator as required. Final sensitivity about 5000 microvolts.
(4) Decrease signal generator attenuator to about 1000 IIIV and introduce signal to grid of first I. F. amplifier.
(5) Adjust alignment screws of second I. F. transformer for loudest signal, reducing attenuator as stage is brought into resonance. Final sensitivity about 300 microvolta.
(6) Deorease signal generator attenuator to about 50 microvolt setting, and introduce signal to grid of first deteotor.
(7) Repeat alignment procedure on lst I. F. transformer (see diagram) until best adjustment is obtained. Sensitivity about 20 miorovolts.
(B) R. F.o Adjustment
(1) Set signal generator to 1500 K . C. with input from signal generator to grid of first detectcr. Place pointer of radio set to 1.5 mark on dial. Adjust screw of trim oondenser in top of right rear shield container until signal is tuned in. This screw is usually designated by a red color code. Having obtained tune at this point set signal generator to 600 K. C. and set pointer to .6 mark on station indicator and adjust other screw in the shield container until the signal is tuned in. Now return to the 1500 K . C. point with set and signal generator and make the slight resetting of the first named screw to obtain accurate adjustment to scale reading.
(2) Connect signal generator to antenra lead, making sure the antenna equivalent (200 mmf) is in the oirouit.
(3) Continue setting of $1500 \mathrm{~K}, \mathrm{C}$. Adjust alignment condensers on variable condenser gang (lst and 2nd sections from front of set) for loudest signal. Check sensitivity, and calibration at several points on dial. Set should come correctly to kilooycles settings of important brcadoasting stations, and its sensitivity on the signal generator should be within the limits specified here.

K. C. - -	1500	1000	600
M. V. - -	5	5	10

UNITED AMERICAN BOSCH CORP.

Having placed the broadcast band in correct setting, we are now ready to adjust the short wave bands. In order to attempt this a reliable signal generator is required Examples are the Ferris Instrument Co. type 10B, General Radio 603-A, R. C. A. type TMV-18. Do not try to make adjustments on the short wave bands by means of harmonic obtained from a set tester designed for use only on 500 to 1500 K . C. band. Such a procedure will usually end in getting so far off correct adjustment as to require factory service.
(C) Adjustment of the Green Band

Place signal generator on 3600 K . C. and pointer of radio set at the 3.6 mark on the dial.

Adjust trim condenser in right hand front shield container until signal is tuned in. This trim oondenser is usually red oolor coded. Place signal generator on $1600 \mathrm{~K} . \mathrm{C}$. and adjust dial soale pointer of set to 1.6 mark. Adjust opposite oondenser in shield container to best signal. Keturn to $3600 \mathrm{~K} . \mathrm{C}$. and repeat adjustment. In adjusting to the 3600 K . C. point it is possible to obtain two settings for different positions of the trim condenser in the shield container. This denotes merely the plus and minus fre-
quenoy between oscillator and signal generator which will give the correct I. F. frequency. The correct setting of the trim oondenser is the one wherein the sorew is turned furthest out. In any event, an incorrect setting will always be denoted by laok of sensitivity when the set and signal generator are tuned to $2500 \mathrm{~K} . \mathrm{C}$. (mid-band). This check is usually quite valuable. The sensitivities should be as follows:

K. C. -2	3600	2400	1600
M. V. - -	10	10	5

(D) Adjustment of the Rod Band

Place signal generator on 8000 K . C. marking and two receiver in region of 8.0 on seale. Note where signal is reoeived. Next place signal generator on its 4000 K . C. setting and tune set to 4.0 on scale. Adjust osoillator lag condenser (rear unit on right hand side plate) until signal is received. Return set and signal generator to 8000 K . C. and observe pointer setting and sensitivity. Slight deviations from calibration can be compensated by manipulating the stiff wires connesting the oscillator coil to the switch.

(E) Adjustment of the Blue Band

Place signal generator at $20,000 \mathrm{~K}$. C. or if this is not available, then adjust to highest possible frequency, which preferably should be at least $15,000 \mathrm{~K}$. C. Tune set to this frequency and note where signal generator is received on the dial scale. Then place signal generator on $10,000 \mathrm{~K}$. C. and adjust oscillator lag condenser (front unit on side plate) until signal generator is tuned in at 10 on dial soale. Now return both signal generator and radio set to the high frequency setting. Located on the under side of the base and adjacent to the switch and high frequency selector coils are two trim condensers which are used for correct adjustment at this high frequency. Increase setting of attenuator until signal generator can be tuned in at two points on dial (say 20 and 19). Then with set pointer at 20 adjust these trim condensers for best signal decreasing signal generator attenuator as signal becomes better tuned. At oorrect adjustment a very loud signal will be obtained at 20 while a feeble signal or none at all is observed at 19 . This is a practical illustration of the effectireness of pre-seleotion as outlined in the first part of this description.

The adjustment instruotions just given apply to a Model 360 receiver which is in reasonable operating condition, but in some manner has been throw out of adjustment. Obviously, before the radio teohnician can go thru with the adjustments given here, he must assure himself that defective tubes, injured parts, such as punctured oondensers, shorted variable condensers, open resistors, soratched high frequency coils, eto. are not suoh as to cause the set to be inoperative on one or more bands of frequencies.
SERVICE INSTRUCTIONS FOR ADJUSTMENT OF MODEL 370
Note: Signal generators may vary as much as 50% in accuracy of attenuation and to oorreot performance.
(4) Decrease aignal generator output to about 500 microvolts and connect aignal
generator to control grid cap of first i.f. amplifier tube (58).
(5) Adjust alignment screws of second i.f. transformer for loudest signal, reducment is made by using a small screw driver inserted thru the hole provided in the dial soale. Finsl sensitivity should be about 300 microvolts.
(6) Decrease signal generator output to about 50 microvolts and connect signel generator to control grid cap of first detector tube (2A7).
(7) Adjust a lignment screws of first i.f. trensformer until loudest signal is oband thirdi.f. transformer alignment sorews to assure perfect alignment of the ontire amplifier. This should be done without removing signal generator lad
from first detector Over-all sensitivity of the i.f. amplifier should be approximately 51 miorovolts.
(B) BROADCAST BAND ADJUSTMENT
(1) Rotste tuning control until gang condenser is fully closed. The pointer hould now be in line with the fine black mark approximately $1 / 8^{\prime \prime}$ beyond the 550 ko oalibration mark (5.5 on dial). The travel of the pointer from this mark to
the position which it oocupies when the condenser is fully open, should be $3-1 / 16$ inches. When the indicator mechanism is so adjusted that this travel is obtained alignment of preselector and oscillator circuits will then assure the best cali-
bration.
(2) Set signal generator to 1400 kc . With input connected to grid cathode of
first detector tube (2A7).
(3) Adjust tuning oontrol until point is at 1400 kc . calibration mark. Adjuat

(4) Conneot aignal generator to antenna ground terminal using an antenna eouiva-
lent of 200 mef. condenser in aeries with antenna lead to aignal generator.
(5) Adjust all trimmer sorews of the gang condenser to a maximum. Sensitivity
a hould be approximately 10 microvolts.
(6) Set aignal generator to 600 kc . with connections made to antenna and ground
terminala.
(7) Tune in aignal by means of tuning control and then adjust both tuning control

 The Model 370 is a 7 -tube superheterodyne receiver comprising a oombination firat rectification and automatic volume control, an audio amplifier tube on control by Selectivity is provided by a double tuned antenna selector and three double tuned Selectivity is provided by a double tuned antenna selector and three double cuita.
 oscillator and first detector
first intermediate freauency am socond intermediate frequency amplifier, detector and a.v.c.
controlled audio amplifier driver atage
push pull output atage
Type 83V, reotifier
The adjustment of the receiver will be desoribed under three headings - (A) inred).
Alignment procedure should always be in the order given belaw: (A) INTERMEDIATE FREQUENCY AMPLIFIER ADJUSTMENT
 ed to the control grid cap of the second i.f. (2B7).
(2) Set volume control at maximum volume position, tone control at bass and wave
change switch so that the black scale or broadoast band is in operation.
3) With signal generator conneated between frame of the receiver and grid cap of
the second i i.f. amplifier, adjust small sorews in front aide of their i.f. transthe second iof. amplifier, adjust small sorews in front side of their i.f. trans-
former for loudest aignal, adjusting attenuator of sigmal generator as required. Note: If calibrated output meter and aocurate signal generator are being used,
the sensitivity should be approximately 8000 miorovolt for on output voltage of the sensitivity should be approximately 8000 microvolts for on output voltage of

- volts measured across the moving ooil of the speaker. This corresponds to 100
milliwatt atandard output.

UNITED AMERICAN BOSCH CORP.

Tune receiver with left hand by means of tuning knob and adjust oscillator lag condenser with right hand. Make slight change in oscillator lag condenser in either direction and then, without changing it, tune the receiver thru a maximum noting the value of output meter reading obtained. Change oscillator lag condenser further in the same direction, retune receiver and note reading. If output drops with second adjustment, reverse direction of the adjustment of the oscillator lag condenser. Continue this type of trial and error adjustment until no improvement can be made when either tuning control or oscillator lag condenser are changed. While this procedure may appear difficult, facility can be easily acquired by practice and the operation required only a few moments.
(8) Recheck 1400 kc . adjustment since oscillator lagging procedure may have slightly dotuned oscillator. Check sensitivity at various settings along broadcast band. Sensitivity should be approximately 10 microvolts or less.

(C) SHORT WAVE ADJUSTMENT

(1) Set signal generator at 2400 kc . with output connected to antenna and ground terminals.
(2) Change wave band switch to red band, tune in signal at 2400 kc . and "max-max" oscillator as described above, using short-wave oscillator lagging condensers as shown on diagram.
(3) Check sensitivity of entire short-wave band whioh should be 50 microvolts or less.

TONE CONTROL AND SWITCH

WAVE BAND
SELECTOR

UNITED AMERICAN BOSCH CORP

SCHEMATIC DIAGRAM OF MODEL 376

UNITED AMERICAN BOSCH CORP
I.F. $=456$ K.C.

PAGE 5-36 BOSCH

HODEL 500

Voltage
Alignment Data

UNITED AMERICAN BOSCH CORP.

VOLTAGE READINGS

Note: Since no circuits are direotly connected to the metal chassis as in the usual A. C. radio sets, it is neoessary to measure voltages to the negative side of the oirouit designated as "A" on the wiring diagram. A high resistance voltmoter must be used or readings will be inaccurate.

The following voltage readings wore taken with the receiver supplied by 115 volts 60 oyole alternating ourrent. Voltage readings will be slightly lower when D. C. is used and will vary with the type of meter used.

The heater voltages may vary considerably beoause the series connection maintains oonstant ourrent rather than oonstant voltage.

> Alignment Instruotions - Model 500
> I. F. Adjustment $456 \mathrm{~K} \cdot \mathrm{C}$.

Note: The signal generator or alignment osoillator should have no external ground connection of the low potential side of its output either to ground or to the power line and the low potential output terminal may be connected to the frame of the receiver. An external ground of the receiver frame will result in a loud hum maiding alignment impossible.

1. Conneot volume indicator aoross moving ooil of speaker (speaker impedance is 4.5 ohms)
2. Set volume control at maxinum
3. Connect signal generator to grid of I. F. tube (78) and adjust the trim oondenser in the top of the small I. F. housing which is looated above the ohassis between the tubes, to maximusn output.
4. Connect signal generator to grid of list detectior and adjust both condensers to a maximm output. These adjustments are made by means of slotted sorews at the rear of the housing,at oenter of set.

> Osoillator and R. F. Ad Justment

1. Connect R. F. signal generator to antenna wire thru 100 mif mica oondenser. Antenna should be heaked.
2. Set dial scale to maximan maric beyond the 550 kcilooyole calibration point when gang is entirely olosed.
3. Trim both condenser sections to a maximm with the signal generator and soale set at 1500 kilooyoles.

BOSCH PAGE 5-39 MODEL 501 AC-DC Schematic Socket
UNITED AMERICAN BOSCH CORP.

ELECTRICAL VALUES

R13 R14	-130 $-\quad 28$
Cl	- . $005-3 \mathrm{Ply}$
C2	- . 05 Dual
C3	- .25-2 Ply
C4)	- 2 gang cond.
C5)	- With trim.
C6	. 0001 Mioz.
C7	- Mica. I. F.
C8	- Trimmers
C9	- $\quad 1$
	- .05-2 Ply

C11 - . 0001 Mica.
C12 - . $005-3$ Ply
Cl3 - . 0001 Mica.
C14 - . $005-3 \mathrm{Ply}$
C15 - . $25-2 \mathrm{Ply}$
Cl6-. 01 - 4 Ply
Cl7 - . $25-2 \mathrm{Ply}$
Cl8-. 01 - 4 Ply
C19 - 4 Med. 150 V

PAGE 5-40 BOTSCH
MODET 501 AC-DC
Voltage
Parts List
UNITED AMERICAN BOSCH CORP.

MODEL 501
I - A.C.MEASUREMENT

ESSENTIAL PARTS LIST

UNITED AMERICAN BOSCH CORP. Schematic Socket

ELECTRICAL VALUES

C6 . 0001 mica
C7)
C8) Mica I.F.
C9) Trimmers
C10 . 052 Ply
C11 . 0001 Mica
Cl2 . 0053 Ply
C13.0001 Mica
C14.005 3 Ply
C15 . 252 Ply
C16 . 014 Ply
Cl7 . 252 Ply
cl8.01 4 Ply
C19 4 M.F. 150 V.
C20 12 M.F. 150 V.
C21 8 M.F. 150 V .
G22 5 M.F. 25 V.
C5) with trimmers

PAGE 5-42 BOSCH

NODEL 502

 Vol tageUNITED AMERICAN BOSCH CORP. Parts List

I - A.C. MEASUREMENT

Stage	Tube	Fil	Plate	Screen	Cathode
1 Det.	6.57	6.0	115	115	12
Osc.			115		
I.F.	78	6.0	115	115	2.8
2 Det.	75	5.9.	30	-	0.7
Amp.					
Power	43	22	115	115	17
Rect.	2575	25	125	-	-
	Line Voltage.	115		Dynamic Field	108 Volts
	Power in Watts	47		Filter Choke Drop	8.8 Volts
	Dial Lamp Volts	6.0			
	Res. Strip Volts	47			

II - D.C. MEASUREMENT

To replace tubes it is necessary to remove the chassis from the oabinet. Remore the sorews which fasten the baok. Remove the knobs and the sorews holding the bottom of the chassis in place. The ohassis may then be moved back from the front of the oabinet until the tubes are acoessible.

CAUTION: Disconneot the reoeiver from the power supply before touohing the ohassis, tubes, or any metal parts inside the oabinet.

Reaistors

105260	300 ohms $\frac{1}{4}$ Watt
101211	600 ohms $\frac{1}{2}$ Watt
105272	10,000 ohms $\frac{1}{3}$ Watt
105276	50,000 ohms 4 Watt
105278	100,000 ohms
105268	1,500 ohms $\frac{1}{4}$ Watt
105246	$\frac{1}{2}$ meg. ohme
105281	1 meg. ohms
105308	Vol. Control \& Switch

Condensers
102493 . 05 - 2 P1y
105327 . 05 Dual
101143 . 0001 Mica
103659 . 005
103695 . 01 - 4 Ply
102497 . 25 - 2 Ply
105722 (Electrolytic)

Coils

105725 Antenna Coil
105721 I.F., Det., \& Osc. Co11
105318 2nd I.F. Coil
105724 Choke Coil Asmy.

Misc. Parts
105335 Knob
105321 Speaker Baffle
101869 Felt Feet
105334 Name Plate
106318 Dial Plate
105729 Chassis Assy.
106307 Cabinet
105726 Speaker
105732 Dial Scale Aasy.
95572 Dial Lamp
105336 Dial Lamp Socket Assy.
105723 Condenser Gang

UNITED AMERICAN BOSCH CORP.

UNITED AMERICAN BOSCH CORP.

SERVICE INSTRUCTIONS FOR AMERICAN-bOSCH VIBRO-POWER RECEIVER
I. volrage measurbients wien ustig 220 voir a. c. line

 iciver operationc
II. VOLTAGB uEASUREMENTS WHEN USINE 220 VOLT D. C. LINE

CaOriton, Disoonneot the reooiver from the power supply before touohing the ohasesis, tabon, or any motal parts inside the oabinet.

 Purther movement of the knob inoreases the volume to any desired point. mhen looating weak or
distant stations it is advisable to advanoe the oontrol to the "fuily on" position.
 thoo ond it." loud spoakor has absolutoly no baokground of sound, revor co the attachment plug in
the outlot.
Informition regarding your powor supply may bo obtained from your local electric iight company.
opgration
An 1aportant featurc of this reooiver is its extended tuning range (540 to $1,650 \mathrm{kilocyoloses}$).
This range inoludes not only the complete broadcast bend, but also many of the 1 important state This range ino iudes not onty
and oity poilee assigmmonts.
 Yo ground oonnootion 15 provided and ar oxternal ground from the ohassic muct not be used, as
this my result in damage to the reoeliver.

arrostor may bo oonnected botwoon any point on the "lead-1m" and any grounded objoot, such ar a

Whon unod with altornating ourront, to oomplote the inataliotion it is only nocoicary to inneort
the attachment plug in any oonvonient olootric 1 ight sockot or outiot.

UNITED MOTOR PAGE 5-1
UNITED MOTORS SERVICE

$\nabla_{\text {ANT. }}$

MODEL 4054 Alignment Voltage

R－5 RESISTOR ADJUSTMENT
 allgning at $1400 \mathrm{~K} . \mathrm{C}$ ．
 the oscillator at 1400 K．C．Feed the oscillator output into the antenna wire．This may be done by connecting the shielding on
the oscillator output lead to the chassis frame and by simply wrapping a few turns of the portion of the antenna wire nearest the chassis around the oscillation output lead．This will ordin－
arily provide sufficient coupling between the test oscillator and the antenna circuit of the set．A direct connection with the antenna wire ca
（c）Peak the oscillator trimmer condenser shown as C－1－B on figure the trimmer C－1－A located on the adjacent section of the gang condenser，making all adjustments for maximum deflection on the output meter scale．

NOTE：To avoid A．V．C．action and to insure sharp peaking
of all trimmers，reduce the oscillator output to the
lowest level that will give a reasonable deflection
on the output meter scale.

VOLTAGE CHART
All readings are taken from each of the tube socket connections to
（a）Connect the output of the oscillator to the grid cap of the 6A7
tube（leave 6 A 7 grid lead clip in place）and to the chassis frame．
（b）Turn the condenser gang until the plates are entirely out of mesh
（b）Turn the condenser gang until the plates are entirely out of mesh
（c）Set the oscillator on $262 \mathrm{~K} . \mathrm{C}$ ．and feed this signal through the I．F．stages of the set．
（d）Peak the I．F．trimmer located on the top of the lst I．F．Coil，
designated as＂D＂on figure 3．Then peak the trimmer located on the bottom of the same coil designated as＂C＂on figure 2．Due to the detuning effect the primary winding exerts over the secondary，
it will then be necessary to reset trimmer＂D＂for maximum output．

 trimmer NOTE：

O！｜
0001

＊ $0^{\text {n }}$

$\underbrace{\sim}_{0} 000$
 $\stackrel{\sim}{\infty}$ $\stackrel{\infty}{\sim 1}$

－-1 ロ

 Mッ～ウ四品
PEAKING

 sers are very accurately adjusted at the factory and will not need or a defective coil has been replaced．DO NOT attempt to change the setting of any trimmer condensers unless it is definitely known
 to the plate prong of one of the type 48 output tubes and to the series condenser to prevent the D ．C．from flowing through the meter circuit．If the meter is not protected，connect a $1 / 10 \mathrm{mfd}$ ．
 PEAKING I．F．STAGES AT 262 K．C．

$$
R-5-2
$$

 on the 6A7 and 6D6 tubes and must be carefully adjusted．Th1s may

CIRCUIT GROUND

 systems with positive grounds．
U. S. RADIO \& TELEVISION CORP.

$$
1 . F=455 \mathrm{~K} . C .
$$

WEBSTER PAGE 5-1
MODE PA-17
WEBSTER CO
MODES PA-42 Schematic

PA. 17

Pacer

WEBSTER CO.

PAGE 5-4 WEBSTER
MODE K-358-A
MODEL K-359-A
Schematic

WELLS-GARD PAGE 5-1
MODK O-C Series Schematic Parts List

PAGE 5-2 WELLS-GARD
MODEH O-C Seriee Socket, Voltage Alignment Data

Fig. 3-Optional "C" Battery Connections

PAGE 5-4 WELLS-GARD

Voltage
Alignment Data

Circuit

This receiver is designed to operate from a battery power supply the values of which are shown in Fig. 1. All of the tubes used are of the 2 volt type. The receiver is designed to operate at a very low current drain from
the batteries and still have a very satisfactory quality of output.

The circuit has a preselector stage incorporating 2 tuned circuits for image rejection. This couples into the type 32 first detector-oscillator tube through a combination of inductive coupling in T1 and capacitive coupling through C3. In Fig. 1 the two coils to the right of the 32 1st detector tube are the primary and secondary of the 1st I. F. transformer while below this tube are the oscillator coils. The oscillating circuit is tuned by the oscillator section of the gang condenser and is always resonant at a frequency of 175 K . C. above the frequency to which the R. F. circuit is tuned.

One stage of I. F. amplification is employed using a 34 tube. Fixed condensers tune the primary and secondary of the first I. F. transformer. A second I. F. unit of the impedance coupled type is provided in which the inductance L4 is tuned by a trimmer condenser C9. The volume control is of the variable antenna input and I. F. bias type. Referring to Fig 1 it will be noted that one end of the volume control strip is connected to the antenna and the other end is connected to resistor R9. Also note that the volume control strip is tapped. Bias voltage for the $\overline{3} 4$ I. F. tube is obtained from a potentiometer consisting of resistors R9, R10 and the $60 ; 000$ ohm section of the volume control R 8 which resistors are connected across the $221 / 2$ volt " C " battery.

As the slider of the volume control is moved away from the antenna end, the signal input to the antenna stage is increased. The bias voltage of the I. F. tube is not affected until the tap is reached. As the slider moves P-5187 from this point to the end of the strip the I. F. bias is decreased, thus increasing the sensitivity. When this P-5172 happens the plate current goes up and more battery current is.used.

A 34 tube is used as the 2nd detector or demodulatior.
Resistance coupling is used between the 2nd detector and the 1st audio stage which uses a 30 tube. The 1st audio stage is transformer coupled to the output stage. Class " B " amplification is employed in the output stage which uses a type 19 tube. This consists of two output tubes in one envelope. A magnetic reproducer is used.

A 3 pole switch controls all three sources of battery supply.

Condenser Alignment

Misalignment or mistracking of condensers generally manifests itself as broad tuning and lack of volume at portions or all of the broadcast band. The receivers are all properly aligned at the factory with precision instruments and realignment should not be attempted unless all other possible causes of the faulty operation have first been investigated and unless the service technician has the proper equipment. A signal generator that will provide accurately calibrated signals over the broadcast band and at the intermediate frequency, and an output meter are required for indicating the effect of adjustments.

First set the signal generator to a frequency of 175 K. C. Connect the antenna lead of the signal generator to the grid of the 1 st detector thru a .05 mfd. condenser. The ground lead from the signal generator goes to the ground lead of the receiver. Adjust trimmer condenser C9 on the back panel of the chassis until maximum output is obtained. A non-metallic screw driver should be used in making this adjustment as the I. F. trimmer is at $\mathrm{B}+$ potential.

Next set the signal generator for 1730 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Adjust the trimmer of the oscillator section of the 3 gang condenser until maximum output is obtained. The oscillator section is the one with the cut plate rotor. output.

Then set the signal generator for 1400 K . C. and turn the rotor until maximum output is obtained. Adjust the other two trimmers on the gang condenser for maximum

To obtain dial scale calibration tune in an 800 K . C. signal and set the dial pointer at that mark on the diat scale. When calibrated in this manner, the setting will be approximately correct at both ends of the scale.

Fig. 4-Using Voltage Regulator with 3 Volt "A" Battery
The use of the cut plate type of condenser eliminates the necessity of a 600 K . C. padder and no adjustment. at this frequency, therefore, is required.

D. C. Resistance of Windings

Following are the D.C. resistances of the various windings in the chassis.

Part No.

P-5199
P-50586-D
Item
Double Tuned Ant. Coil Pri.......................
Double Tuned Ant. Coil Sec. (Preselector) Code Double Tuned Ant. Coil Sec. (Preselector) Double Tuned Ant. Coil Sec. (1st Det.) 1st I.F. Coil Pri. 1st I.F. Coil Sec............
D. C. Resistance in Ohms 19.2 3.2 3.2 90.0 116.0 1010.

Audio Input Trans. Sec. Cent. Tap to outside end to inside end

Oscillator Coil Plate Winding
Double Filament Reactor Assem................. L1
Double Filament Reactor Assem............. L2
Single Filament Reactor Assem................ L3
2nd I.F. Reactor Coil.................................... L4
$6^{\prime \prime}$ Magnetic Speaker, Center Tap to outside end
6" Magnetic Speaker, Center Tap to inside end
P. 2125

VOLTAGES AT SOCKETS
Volumé Control at Maximum-Antenna Shorted to Ground B+135 Volts

$\begin{gathered} \hline \overline{\text { Type }} \\ \text { of } \\ \text { Tube } \end{gathered}$	Function	$\left\|\begin{array}{c} \text { Acrosss } \\ \text { Fila- } \\ \text { ment } \end{array}\right\|$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Cath. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Screen } \\ \text { to } \\ \text { Gath. } \end{gathered}\right.$	$\begin{gathered} \text { Grid } \\ \text { Grid } \\ \text { cath. } \end{gathered}$	Normal Plate M. A.
32	1st Det. \& Osc.	2.0	135	67.5	7.5 ${ }^{(1)}$ (2)	2.5
34	I. F.	2.0	135	67.5	$2.5{ }^{(3)}$	2.8
34	2nd Det.	2.0	50	$40^{(1)}$	0	1.8
30	1st Audio	2.0	135		$9{ }^{(4)}$	3.0
19	Output	2.0	135		6	1.8
$\begin{aligned} & (1) \\ & (2) \\ & (3) \end{aligned}$	With 250,000 ohm meter. Subject to variation due to oscillatory current. With 25,000 ohm meter.					

(3) With 25,000 ohm meter.

Voltages

Check the voltages at the sockets to see if correct values are being delivered to the tubes. The antenna and ground should be disconnected and the antenna and ground leads from the set connected together. The volume control should be turned to the right or maximum position.

The voltage chart gives the voltages with all tubes in, the speaker connected and the set in onerating condition. These voltages are typ:cal of the sets but will vary slightly with variations in individual receivers, tubes, test equipment used and battery voltages.

WELLS-GARD PAGE 5-5 MODE 6-U Series
WELLS-GARDNER \& CO., INC.

PAGE 5-6 WELLS-GARD

WELLS-GARDNER \& CO., INC.

Mounting the Chassis

The cliassis is mounted in back of the dash as
shown in Figs. 1 and 2. The first step is to inspect the dash to determine at which point there is space available. Lift the chassis box up and temporarily
hold it in the proposed position. In Figs. 1 and 2 hold it in the proposed position. In Figs. 1 and
is shown the position at which the chassis is penis shown the position at which the chassis is gen-
erally mounted. However, there are many other possible locations, depending on the considerations
as mentioned below and the space availe ble.
In general, the chassis will be mounted in the vertical position, that is, with the long dimensio vertical as illustrated and as mentioned above
since this method of mounting is the most conven ient. It may, however, be mounted horizontally. If mounted in this nuanuer, the speaker must face downward. Never install a chassis with the speaker facing upward due to the fact that dirt and water may get in and ruin the speaker.
Other points to consider in choosing the chassis kuch a way that the cover mayi be readily remove for inspection of tubes. Mourt the chassis lox as ligh as possible to avoid interference with the feet of the people in the frout compartment. If mounted at the extreme left or right of the dash, the speaker
should face inward for acoustical reasons. Mount the chassis box in such a way as to avoid interference with the car centrols, including pedals, gear shift lever, cool ventilator, etc. If there is a great deal of room available on the dash, consideration the tlexible shafts.
Next secare the dash mounting plate to the chassis box by means of the four screws provided. Note that there are six tapped holes on the chassis box for this purpose. For vertical mounting use
the four tapped holes which permit the slot at the the four tapper holes which, permit the stolo the mounting plate to extend below the chassis box-see Figs. 3 and 4 . For horizontal mounting the mounting plate ney be secured to the right hand set of four tapped nounting holes or the venient. As indicated in Fig. 3 , for vertical nount ing, holes " A " in dash mounting plate shall be used, and for horizontal monnting, holes " B " shall be used.
Now place the chassis box, with plate attached in position on the dash and with a center puncl the position in the slot as shown in Fig. 3. Then remove the box and by meaus of the template provided, or by using the dimensions shown in Fig. 3, locate the two upper moun
the three $1 / /^{\prime \prime}$ holes required
Three $\mathbf{4}^{\prime \prime}$ square head mounting bolts are sup
plied. Take two of these, which will be used for
the upper part of the mounting plate and screw
on nut " A " (gee Fig. 4). The nut should be just

Fig. 1-General Installation-Top Viow
far enough away from the head of the bolt to permit the bracket of the mounting plate to slip down as shown in the illustration. Then put on nut "B"
and the washer, after which the two bolts can be put through the dash, with the shanks extending into the engine compartment. as shown in Fig. 4. A washer, lockwasher, and nut are then put on these bolts from the front of the dash to hold them in place

Fig. 2-Gencral Inetallation-Side View
The distance " X " between nuts " A " and " B " determines how far out the chassis is mounted from the dash. When there is a lot of apparatus in back of the dash, such as wires, tubing, etc., the chassis
will have to set out far enough to clear it. However in most cars, there is no interfering apparatus and herefore the distance " X " will be zero.

Attaching the Flexible Drive Shafts

After the chassis is mounted and the control shafts may be sttached. Two $30^{\prime \prime}$ shafts are supplied unless otherwise specifled. These shafts may alao be had in $14^{\prime \prime}$ and $20^{\prime \prime}$ lengths. These shafts are provided uith special ends and caniot be out
to length.
....

The flexible drive shafts should alway be stalled with a minimum amount of bending. Always keep the radius of the bend as large as pos.
sible. The larger the radius of the bend, the easier the shaft will turn.

If the shafts are not already secured to the control unit proceed as follows: First loosen the set serew in the volume control shaft housing at the
back of the control unit. The volume control shaft back of the control unit. The volume control shaft
may be identified by a brass fitting at both ends. The longer of these two fittings has a key slot and is inserted into the control unit as shown in Fig. 5 (B). Insert the shaft far enough so that the key

Fig. 6-Details of rlexille Shaft Ittuchment

Fig. 5-Details of Consrol Unit Mounting
set screw in the housing at the back of the control unit is then tightened down on the shaft casing. To insert the tuning condenser shaft in the con-
trol unit, first remove the station selector knob. trol unit, first remove the station selector knob.
Then loosen the two set screws on the shank extending from the front of the control unit. Also loosen the set serew in the tuning shaft housing at the back of the control unit. Then insert the end of the flexible shaft with no fitting into the tuning
condenser shaft housing until the end of this sbaft is flush with the end of the shank and tighten the two set screws. The knob may then be replaced, the
the screws furnished and as shown in Fig. 6 of the screws furnished and as ahown in Fig. 6
Before tightening up the bracket screws, cente the opening through the clamp with the oopening
for the spade end of the shaft in the chassis. Then for the spade end of
Both shafts are provided with spade ends which re readily inserted into the slotted receptacles provided in the chassig-see Fig. 6. Before insert with fol' holes over the shaft casings. After the shafts are inserted the clamps are tightened down on the shaft casings by means of the clamp serew

Then put a washer on the third mounting bolt and put this bolt through the lower mounting hole with the head on the engine side of the dash, as shown in the illustration. Put on a washer, lock-
washer, and nut " D " and tighten it up. Then put washer, and nut " D " and tighten it up. Then put on nut " E " with a washer as shown. Nut " E " should when distance " X," as explained above, is zero.
All tubes and the vibrator (vibrator equippod sets) shoukd be in the sockets and the flexible drive haf brackets should be attached to the chassis box tachment of Flexible Shafts.
The dash mounting plate with chassis attached is slipped over the three mounting boits. The two upper "A" 'as shown in Fig. 4 and the slot at the bottom of the plate slips over the shank of the lower mounting bolt in back of nut "E." The plate will then hang with the bottom farther away from the dash than the top. A washer, lockwasher, and nut
"F" are then put on the lower mounting bolt. Nut " F " is serewed on until the mounting plate is tight up against the washer in back of nut "E." In this position, the bracket at the top of the mounting plate should butt up against nut "A" and be tight.
Also the mounting plate will be approximately parallel with the dash.

Mounting the Control Unit

The eontrol unit is mounted on the steering column under the steering wheel as shown in Figs.
1 and 2. It is generally mounted in the right hand 1 and 2. It is generally mounted in the right hand
position : s shown in Figs. 1 and 2. It may also be mounted in the left hand or top position at the preference of the customer, see Fig. 5 (A).
For right hand mounting the supporting arm is seresed to the back of the control unit as shown Fig. 5 (C). For left hand and top mounting ase the correct tapped hole as indicated in the

To attach the control unit, first remove the sup serew: see Fig. 5 (C). Now note that there are several holes in the strap. These are for differen izes of steering columns. Wrap the strap around the column and put the strap screw through the
strap nut as shown in Fig. 5 (C). Do not tighten up the screw until the flexible shafts are attached. Next attach the two flexible shafts to the control
nit as explained in the next article. Then reattach the supporting arm to the control anit proper

MODEL 062-A

Schematic
WELLS-GARDNER \& CO., INC.

PAGE 5-10 WELLS-GARD

MODEJ 7-D Series

Voltage, Parts List WELLS-GARDNER \& CO., INC. Circuit Changes
this setting at the same time adjusting the 600 K. C. trimmer
screw until the highest output is obtained.

WELLS-GARD PAGE 5-11 Schematic, Socket
WELLS-GARDNER \& CO., INC.

WELLS-GARDNER \& CO., INC.

Replacing Drive Cord

Lift off the pilot light assembly.
Detach the large pointer by removing the center screw. Loosen the dial assembly by taking out the two screws which secure the bottom of this assembly to the chassis.
Then lay the complete dial assembly face downwart in front of the chassis. It is not necessary to remove the volume control and tone control collars which hold the indicator cords of these two controls in position.
Turn the drive drum until the opening in this drum is approximately vertical and with the hole at the top as shown in Fig. 6.

Remove the tension spring and the old drive cord.
See that the eyelet is in the hole in the drive drum as shown in Fig. 6. Insert one end of the drive cord from the outside through the hole in the eyelet in the drive drum.

Tie the end of the cord which has been inserted in the hole to one end of the tension spring.

Wrap the cord in a clockwise direction (facing front of chassis) around the drive drum approximately one-half turn.

Then tilt the chassis up on its back panel and bring the cord mentioned in the previous paragraph down to the drive shaft. Wrap it two and one-half times around the drive shaft as shown in Fig. 6.

Then bring this cord up from the drive shaft and wrap it around the drive drum approximately one and one fifth turns in a clockwise direction until it is up to the hole in this drum as illustrated.

Insert the free end of the cord through the hole in the eyelet and tie it to the end of the tension spring. The end of the spring, when hanging free, should be approximately $3 / 4$ " from the flange of the drum as shown in Fig. 6. Cut off the surplus length of cord after it is knotted.
Then secure the other end of the tension spring over the spur on the drive drum.

Replace the dial assembly and pointer.
Replace the pilot light assembly.

Changes in Early Models

The condenser, C26 was used only on the early models of this receiver. Another change was in the tone control circuit. In the early models R8 was a 150,000 ohmr resistor paralleled by a $60,000 \mathrm{ohm}$ resistor. However, in the later models this arrangement was replaced by a single 45,000 ohm resistor to provide greater sensitivity in tone control.

Fig. 6-Drive Cord Replacement.

Circuit

This model is a broadcast and short wave receiver with a coverage of 530 to 1730 K . C. on the broadcast band and 5.8 to 16.0 M . C. on the short wave band. Dual band coverage is accomplished by means of dual sets of R. F. and oscillator coils and a 4 section three position selector switch. The various circuits made and broken, as this switch is thrown, are indicated in the schematic circuit diagram Fig. 1.
Referring to the antenna transformer in Fig. 1, T1 is the broadcast transformer and T2 the short wave transformer. The two primaries are connected in series. With the switch in the short wave position, the short wave secondary is connected to the grid circuit of the 34 R . F. amplifier tube and the broadcast secondary is short circuited. When the switch is in the broadcast position, the short wave secondary circuit is opened up and the broadcast secondary is connected to the grid circuit of the tube. The secondary being used is tuned by the R. F. section of the three gang condenser. A separate variable trimmer condenser C 2 is used for the short wave secondary.

Bias voltage for the 34 R. F. and 1st I. F. tubes is obtained from a high resistance potentiometer composed of resistors R2, R3 and R4, which are connected across the $161 / 2$ volt " C " battery and the 2 volt "A" source. See Fig. 1. The grid circuit of this tube is connected between resistors R2 and R3.

The output of the R. F. 34 tube is fed through another R. F. transformer with tuned secondary into a second 34 tube which functions as the first detector. The first detector section of the three gang condenser is used for tuning this circuit. This interstage R. F. transformer consists of two portions shown as T3 and T4 on the diagram. T4 is the short wave coupling coil and T3 is the broadcast transformer.

The short wave coupling coil is connected to the plate circuit of the 34 R. F. amplifier thru an interstage plate reactor, L5, in conjunction with a by-pass condenser, C6. The standard wave transformer, T3, functions as a simple R. F. coupling the same as that of T1. A separate trimmer condenser C7 is used for the short wave coil.

A type 30 tube is employed in a separate oscillatior circuit. Referring to the diagram, $T 8$ is the broadcast oscillator coil and T9 is the short wave oscillator coil. The coil being used is tuned by the oscillator section of the three gang condenser and these circuits are always resonant at $456 \mathrm{~K} . \mathrm{C}$. above the frequency to which the R. F. amplifier is tuned. When the switch is in the broadcast position, the connections are completed to the broadcast oscillator coil and the short wave oscillator coil is opened up. When the switch is in the short wave position, the connections are completed to the short waye .coil and the broadcast coil is connected between ground and the short tap in order to render it ineffective. A 600 K . C. padding condenser C15 is used in conjunction with the broadcast oscillator and a $6,000 \mathrm{~K}$. C. padder C17 is used for the short wave oscillator circuit.

REPAIR PARTS LIST FOR 9 TUBE BATTERY OPERATED BROADCAST AND SHORT WAVE SUPERHETERODYNE RECEIVER

When ordering parts be sure and give the part number. Also give the series number which will be found in the License Notice label. If there is a spot of paint on the chassis, give this color.

MISCELLANEGUS
 ITEM

Part No.
P-5176
P-5176
P-5236
P-5224
P-5186
P-40433
P-5179A
$\mathbf{P}-5185$
P-5185
P-5189
P-5 189
P-5235
P-5189
P-5189
$\mathrm{P}-5228$

Antenna R. F. Trans. T1, T2 less can
Interstage R. F. Trans. T3, T4 less can
Oscillator Coil T8, T9 less can
3rd I. F. Assembly T7............
cans for cuil and Can Assembly
2nd i F° Coil and Can
2nd I. F. Coil and Can Assembly T6.,
Filament Reactor L1...
Double Filament Reactor L3
Filament Reactor L4
S. W R. F. Interstage Plate Reactor L5

WELLS-GARDNER \& CO., INC.

Condenser Alignment

Use a non-metallic screw driver for the adjustments. The complete procedure is as follows:

Intermediate Frequency Adjustment

Set the signal generator for 456 K . C. Connect the antenna lead of the signal generator to the grid of the 1st detector through a .05 mfd . condenser. Turn the tuning condenser rotor until the plates are completely out. The ground lead from the signal generator goes to the ground lead of the receiver. The volume control should be at the maximum position. Reduce the signal so that A. V. C. action is not obtained.

Then adjust the five I. F. trimmer condensers until maximum output is obtained. The adjusting screws for the 1 st and 2 nd trimmer condensers are reached from the top of the chassis and are in the round I. F. cans-See Fig. 2. The openings of these trimmer condensers are covered over by small cover plates which are held in position by screws. Loosen these screws until the cover plates can be swung around. CAUTION-Use an insulated screwdriver for adjusting trimmers to prevent short circuiting to ground. In the 3rd I. F. coil, only the primary has a variable trimmer condenser. This condenser is mounted on the back panel of the chassis as shown in Fig. 3 and the adjustment screw is reached through a hole in the back panel.

Broadcast Band Adjustment

The broadcast short wave switch should be in the broadcast position. Set the signal generator for 1730 K . C. Turn the rotor to the full open position. The antenna lead from the signal generator is in this instance connected to the antenna lead of the receiver. Reduce the signal so that A. V. C. action is not obtained. Adjust the oscillator broadcast trimmer until maximum output is obtained. This trimmer is on the tuning condenser and its location is shown in Fig. 2.

Then set the signal generator for 1500 K . C. Turn the rotor until maximum output is obtained. Loosen the set screw in the pointer hub and set the pointer at the 1500 K. C. mark on the broadcast band scale. Retighten the hub set screw. Then adjust the antenna and 1st detector broadcast trimmers until maximum output is obtained.

Next set the signail generator for 600 K . C. and adjust the 600 K . C. trimmer. The adjusting screw is reached through a hole in the front panel of the chassis as shown in Fig. 3. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting at the same time adjusting the $600 \mathrm{~K}_{\mathrm{a}}$ C. trimmer screw until the highest output is obtained.

Short Wave Band Adjustment

CAUTION-After the broadcast band alignment as described above has been made, do not change the adjustment of any of the broadcast band trimmers.

In aligning the short wave band of the receiver, it will be noted that the signal will be heard with the signal generator set at two points 912 K . C. apart. That is, if the receiver is tuned to $15,000 \mathrm{~K}$. C. a signal will be heard when the signal generator is set at $15,000 \mathrm{~K}$. C. and again at approximately $15,912 \mathrm{~K}$. C. This is due to image reception or the fact that a 456 K . C. beat is obtained when the signal is 456 K . C. lower than the receiver oscillator and also when the signal is 456 K . C. higher than the receiver oscillator. Care should be taken to see that the receiver is tracked with the signal generator adjusted to the lower of the two frequencies at which a signal is heard, in order that the oscillator in the receiver will be 456 K . C. higher in frequency than the signal.

Turn the broadcast short wave switch to the short wave position. As explained above, the volume control should be at the maximum position and the signal should be reduced to prevent A. V. C. action.

Next set the signal generator for $15,000 \mathrm{~K}$. C. Turn the rotor until maximum output is obtained. Then adjust the antenna and 1st detector short wave trimmers for maximum output.

Next set the signal generator for $\mathbf{6 0 0 0} \mathrm{K}$. C. and adjust the 6000 K . C. trimmer. This condenser is mounted on the front panel of the chassis as shown in Fig. 3 and is reached through a hole in the front panel. Turn the tuning condenser rotor until maximum output is obtained. Then turn the rotor slowly back and forth over this setting, at the same time adjusting the 6000 K . C. trimmer screw until the highest output is obtained.

Voltages at Sockets

Antenna Shorted to Ground
Batteries Up to Rated Voltages. See Fig. 1 Voltages Read from Negative Filament Terminal

$\begin{aligned} & \hline \hline \text { Type } \\ & \text { of } \\ & \text { Tube } \end{aligned}$	Function	$\begin{gathered} \text { Across } \\ \text { Fila- } \\ \text { ment } \\ \hline \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { to Gnd. } \end{gathered}$	Control Grid to Ground	Screen to Gnd	$\begin{gathered} \text { Normal } \\ \text { Plate } \\ \text { M. A. } \end{gathered}$
34	R.F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	1st Det.	2.0	135	$4.5{ }^{(1)}$	80	3.0
30	Osc.	2.0	80			2.8
34	1st I. F.	2.0	135	$4.5{ }^{(1)}$	80	2.8
34	2nd I. F.	2.0	135	4.5	80	2.8
30	2nd Det.	2.0				
30	1st Audio	20	95	$9.0^{(2)}$		0.35
30	2nd Audio	2.0	135	$9.0^{(3)}$		3.0
19	Output	2.0	135	6.0		1.3

(1) Computed figure-cannot be read because of high resistance cir. (2) Volume Control at minimum.
(3) As read at battery.

D. C. Resistance of Windings

Following are the D. C. resistances of the various windings in the chassis. The values given below will vary slightly in different sets.

PAGE 5-14 WELLS-GARD
WiODEL 92,93 WELLS - GARDNER \& CO.

TURN THE VOLUME CONTROL ALL THE WAY ON, CONNECT THE ANTENNA AND GROUND

The .006 mfd . condenser connected from the plate ot the pentode tube to ground is there for two reasons,one, to prevent any I.F. or harmonic of the intermediate frequency from getting into the speaker and possibly coupling back into the antenna to cause a squeal; two, to put the proper amount of capacity across the speaker winding to produce a pleasing tone quality. This condenser may be varied to any value from .002 mifd, to .006 mfd . without losing its effectiveness in preventing the I.F. from getting into the speaker.

LEADS TOGETHER AND TURN THE GANG CON
DENSER PLATES ALL THE WAY OUT. CHECK BATTERY VOLTAGES.

WELLS - GARDNER \& CO.

SCHEMATIC WIRING DIAGRAM SERIES 40-4 60 \& 25 CYCLE

MODEL $40,40-\mathrm{A}$
 Alignment Data
 Socket, Voltage

WELLS - GARDNER \& CO.

A modulated test oscillator and an output meter MUST be used when aligning this receiver to insure accurate alignment. It is important that the oscillator deliver a signal at exactly 175 K .C. in addition to frequencies in the broadcast band.

The adjustable condensers which tune the primaries and secondaries of the I.F. transformers are adjusted by inserting a screw driver through the holes in the chassis base directly below the I.F. transformer assemblies.

A trimmer condenser is mounted over each section in the gang and is adjusted by turning the screw located under the hole in the top of the gang shield.

The oscillator 600 K.C. tracking condenser is on the back of the chassis near the "QUIET-POWER" switch.

Make each adjustment in the order given below or the receiver may be thrown further out of alignment and it will then be a difficult task to align it properly.

The receiver and test oscillator must be well grounded and the output kept within the range of the output meter at all times.
All shields must be in place when making the adjustments.

INTERMEDIATE CIRCUITS.-Tune the test oscillator to exactly $175 \mathrm{~K} . \mathrm{C}$., and connect its output to the grid of the first detector tube after removing the clip on the tip of the tube. Connect the output meter across the secondary of the speaker coupling transformer and then adjust all four condensers which tune the intermediate transformers, for the greatest deflection on the output meter. Check the settings of all four condensers to make certain the maximum output has been obtained.

When the above instructions have been followed remove the test oscillator coupling and replace the grid clip on the tip of the first detector tube.

GANG CONDENSERS.-Turn the gang condenser plates all the way in and see that the dial pointer is on the first dial division point below 550 K.C.

Tune the test oscillator to 1,400 K.C., turn the dial to read 1,400 K.C., and then adjust each gang condenser trimmer for maximum output.

OSCILLATOR.-Tune the test oscillator to 600 K.C., and tune the receiver to the signal. Disconnect the output meter and then rotate the adjusting screw on the oscillator 600 K.C. tracking condenser. Rock the gang condenser back and forth across the signal at the same time, and listen closely until the maximum volume is obtained. The tracking condenser is then properly adjusted and remains fixed thereafter.

The gang condenser trimmers only must then be adjusted again at $1,400 \mathrm{~K}$.C. for maximum output.
The receiver should be accurately aligned if the above instructions have been followed and no further adjustments need be made.

The blue lead on the filter block is commone for condensers C4, C5, and C18, and the black lead is common for condensers C3, C15, C16, and C17. The second detector plate filter choke is also contained in the block and is connected by two yellow leads, C8, (white-red leads) and C10 (red leads) are connected as shown in Fig. $\cdot 1$ schematic wiring diagram ${ }^{2}$

Voltages at Sockets

The voltages shown in the chart were taken with a 1,000 ohm per volt voltmeter; voltage measurements taken with a voltmeter having a different resistance will, of course, differ from those shown.
Turn the volume control all the way on, connect the antenna and ground leads together and turn the gang condenser plates all the way out. Check the line voltage.

Tube	Circuit	LINE VOLTAGE				
		$\begin{gathered} 90 \\ \text { V. } \end{gathered}$	$\begin{gathered} 100 \\ \text { V. } \end{gathered}$	$\begin{gathered} 110 \\ \text { V. } \end{gathered}$	$\begin{gathered} 120 \\ \mathrm{~V} . \end{gathered}$	$\begin{aligned} & 130 \\ & \mathrm{~V} . \end{aligned}$
${ }_{3}^{\mathrm{R} . \mathrm{F}}$	Screen-Grid Plate	$\begin{array}{r} 70 \\ 143 \end{array}$	$\begin{array}{r} 78 \\ 159 \end{array}$	$\begin{array}{r} 85 \\ 175 \end{array}$	$\begin{array}{r} 92 \\ 191 \end{array}$	$\begin{aligned} & 100 \\ & 207 \end{aligned}$
1st Det.	Screen-Grid Plate	$\begin{array}{r} 70 \\ 143 \end{array}$	$\begin{array}{r} 78 \\ 159 \end{array}$	$\begin{array}{r} 85 \\ 175 \end{array}$	$\begin{array}{r} 9 \\ 191 \end{array}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$
I. F.	Screen-Grid Plate	$\begin{array}{r} 70 \\ 1+3 \end{array}$	$\begin{array}{r} 78 \\ 159 \end{array}$	$\begin{array}{r} 85 \\ 175 \end{array}$	$\begin{array}{r} 9 \\ 191 \end{array}$	$\begin{aligned} & 100 \\ & 207 \end{aligned}$
Oscillator '27	Plate	70	78	85	92	100
$\underset{{ }_{2}^{24}}{2 n d} \text { Det. }$	Screen-Grid Plate	$\begin{array}{r} 66 \\ 127 \end{array}$	$\begin{array}{r} 73 \\ 134 \end{array}$	$\begin{array}{r} 80 \\ 141 \end{array}$	$\begin{array}{r} 97 \\ 148 \end{array}$	$\begin{array}{r} 94 \\ 155 \end{array}$
A. V. C.	Grid Screen-Grid	$\begin{aligned} & 14 \\ & 24 \end{aligned}$	$\begin{gathered} 15.5 \\ 26 \end{gathered}$	$\begin{aligned} & 17 \\ & 28 \end{aligned}$	$\begin{gathered} 18.5 \\ 30 \end{gathered}$	20 32
$\begin{aligned} & \text { Audio } \\ & { }^{\prime} 47 \end{aligned}$	Accelerating-Grid Plate	$\begin{aligned} & \hline 199 \\ & 171 \end{aligned}$	$\begin{aligned} & \hline 221 \\ & 190 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 244 \\ 210 \end{array} \end{aligned}$	$\begin{aligned} & 267 \\ & 230 \end{aligned}$	289 250
Rectifier '80	Current (both plates) Plate to Plate Volt.	$\begin{gathered} 67 \\ \text { M. }-1 \\ 512 \\ \hline \end{gathered}$	$\begin{gathered} 75 \\ M A \\ 569 \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ \text { MiA } \\ 625 \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ \text { MA } \\ 682 \\ \hline \end{gathered}$	96 MA 739

PAGE 5-2 TRUETONE
MODE 6-U Schematic

WESTERN AUTO SUPPLY CO.

PAGE 5-4 TRUETONE

MODEF Z6ZI Alignment

WESTERN AUTO SUPPLY CO.
Parts List

敋	

Universal Compact

Operates on either AC or DC 110-120 Volts, 25-60 Cycles
Adaptable for 220-Volt Current with use of 220-Volt Resistor

Voltage Readings:

Readings should be taken with Volume Control fully on, Tuning Control set for 550 KC ., and antenna outside of set. Use a D. C. voltmeter having a resistance of 1000 ohms per volt.

Chassis	To- Plate		Screes	Cathode
77-Detector	$10-15$	$9-12$	1-2	
78-R.F. Amplifier	$105-115$	$105-115$	$2-3$	
38-Output Pentode	$105-115$	$105-115$	-	

Voltage across filter choke is "C" bias for 38 Tube $=10$ v.
Readings will not change materially regardless of type of power supply.

Circuit Wiring Diagram

MODEL WR-21
 Schematic Socket, Vol tage

Voltage Readings:

Readings should be taken with Volume Control fully on. Tuning control set for 550 K.C., and antenna outside the set. Use a D.C. Voltmeter having a resistance of 1000 ohms per volt.

Using	300-volt scale Plate to Ground	$\begin{aligned} & \text { 300-volt } \\ & \text { scale } \\ & \text { Sercen to } \\ & \text { Ground } \end{aligned}$	30-volt scale Cathode to Ground	A.C.-D.C. . 100-135 Volts . $25-70$ Cycles Also Available for 220 Volts. Broadcast Short Wave	
78-Detector Oscillator	98	98	1.6	540-1500 Kilocycles	1500-3000 Kilocycles
78-I. F. Amplifier.	98	98	2.8	550-200 Meters	200-100 Meters
77-2nd Detector	35	25	1.5		
43-Power Amplifier	92	98	-•		
25Z5-Rectifier		.	98		

Voltage across speaker field 100 volt.
Bias for 43 tube is measured across filter choke and should be 15 to 18 volts.

$\stackrel{\square}{-}$
(c) aligning the and band

(D) ALIOMmg THE 3RD band

ADJUSTMENTS

The receiver was carefully adjusted and tested by experts at the factory, and should reach the customer in perfect condition. Under no circumstances should these adjustments be disturbed unless it is absolutely necessary as in the repairing of a damaged set. This should be done by an experienced Auto Radio Service man only.

Intermediate Transformers

To align the intermediate frequency transformers, use a good modulated oscillator set for $1721 / 2$ k.c. Set the volume control for maximum volume and turn the dial to a point where little or no signal is received; then ground the antenna.

Connect the oscillator output between the grid of the 6A7 tube and ground. Connect an output meter across the primary of the speaker transformer or across the voice coil. Using the smallest output from the test oscillator that will give a small reading on the meter, adjust the two I.F. transformers for the largest reading obtainable. Use a non-metallic screw driver if possible.

Radio Frequency and Oscillator

To align the R.F. and oscillator sections, couple the oscillator through a standard dummy antenna to the antenna lead and ground of the receiver. Set the test oscillator to some frequency between 1350-1450 k.c. Set the dial to the frequency selected. Adjust trimmers on the variable condenser beginning with the oscillator trimmer. Reduce the output of the test oscillator and repeat. In the absence of an oscillator, the R.F. sections may be aligned on broadcast.

Tune in a weak station between 1350 and 1450 k.c. and align as before. If an output meter is not available, adjust for maximum volume, then reduce the input and repeat.

Voltage Analysis:

Note: All "B" and "C" voltages should be measured on a high resistance voltmeter of 1000 ohms per volt or over.
The voltages are measured to ground from the points named. Ground the antenna to its shield when taking readings.

Battery volts- 6 . Volts across heaters- 6 scant. Volts across speaker field- 6 scant.

Tube	Plate	Screen	Cathode	Suppressor	Osc. plate
78	110.	110..	6	6	
6A7	170.	110.	6		170
75	110.		1.3.		
78	110.	110.	. 3.5	3.5	
41	210.	. 220..	15		

Part No. Description

ZT-92 Antenna Coil ZR-104
ZT-93 Interstage Coil
ZT-94 Composite I.F. and Oscillator Coil
ZT-95 Output I.F. Coil
ZT-99 Power Transformer
ZT-96 "B" Filter Choke
NT-53 " "B" R.F. Choke
ZT-98-A "A" R.F. Choke, multiple layer
ZC-123 Filter Condenser, $10 \times 6 \mathrm{mfd}$.
IC-43 5 Mfd . Electrolytic Condenser
EC-19 . 5 Mfd . Tubular Condenser

ZR-104 10,000 Ohm 2 Watt Wire Wound Resistor Any Carbon Resistor
Any Mica Condenser Any Socket
KL-6 Pilot Light Bulb
WR-92 Volume control, complete with switch
ZV-3 Vibrator
ZS-66 Speaker
NZ-54 Spark Plug Suppressor
NZ-54-A Distributor Suppressor
NZ-55 Generator Condenser

SERVICE INSTRUCTIONS WESTINGHOUSE MOTOR CAR RADIO MODEL WR. 26

ELECTRICAL VALUES

	.005 mfd .3
C15	. 5 mfd. 2 ply
C16	.5 mfa .
C17	. 02 mfa .4 ply
C18	6. mfd.
C19	10. mfd.
C20	10 mmfd. mica
C21	100 mmf . mica
C22	.05 mfd .3 ply
C23	. 001 mica
C24	.5 mfd . 2
	. 001 mica

R1	100,000 ohms 1/4
R2.	500 ohms 1/4 W.
R3	7500 ohms $1 / 4$
R5	40,000 ohms 1/4 W.
R6	75,000 ohms 1/4 W.
R7	50,000 ohms 1/4
R8	1/2 meg. Vol. Con
R9	5000 ohms $1 / 4 \mathrm{~W}$.
R10	1 meg . $1 / 4 \mathrm{~W}$.
R12	1/2 meg. 1/4
R13	100,000 ohms 1/4 W.

	MODEL WR-26 SOCKET VOLTAGES (Car Battery 6 Volts Under Load)					
Tube	Use	F11.	Plate	Screen	Cathode	Bias
77	RF	5.3	179	79	2.9	
77	Det. Osc.	5.3	178	79	4.3 to 8.4	
78	IF	5.3	179 .	79	2. 9	
75	2nd Det. AVC	5.3	113			
42	AF'	5.3	201	217	1.2	13.0

The above readings were taken from ground or metal of chassis to socket terminals and will vary slightly with different types of voltmeters used.

PAGE 5-8 WESTINGHOUSE
RODEF WR-26
Socket, Parts List WESTINGHOUSE ELEC. SUPPLY CO.

Alignmont Data

Fig. \#2

| \#1 RF Trimmer Condenser | \#8 2nd Det. AVC \& AF |
| :--- | :--- | :--- |
| \#2 lst Det. Trimmer Cond. | Amplifier |
| \#3 Osc. Trimmer Condenser | \#9 Power Output |
| \#4) lst IF Trimer Cond. | \#10 Rectifier |
| \#5) lil RF Amplifier | |
| \#6 IF Amplifier | \#l2 Det. and Osc. |
| \#7 2nd IF Trimmer Cond. | \#l3 lst IF \& Osc.Coil |

All of the adjustable condensers commonly called trimer condensers, are very accurately adjusted at the factory and will not need any further adjustments unless a coil or I. F. transformer is changed or the adjustments have been tampered with in the field. Therefore, DO NOT attempt to change the setting of any of the trimmer condensers unless it is definitely known that adjustment is necessary, and a high-grade test oscillator and output meter is available, then proceed as follows:

1. Connect output meter across voice coil of speaker.
2. Set volume control on full.
3. Set tone control to bass position.
4. Connect dial light.
(A) I. F. Adjustment
5. Connect a . 1 mfd. condenser in series with antenna lead of test oscillator.
6. Set test oscillator to 175 K . C.
7. Connect test oscillator to grid of lst I. F. tube \#6 (see Fig. \#2) and adjust \#7 to maximum output.
8. Connect test oscillator to grid of lst Det. \#12 and odjust condensers \#4 and 5 to maximum output.
9. Repeat the above adjustments for accuracy.

(B) Oscillator Adjustment

1. Set test oscillator to 1500 K. C.
2. Connect test oscillator leads to grid of lst Det. \#l2.
3. Set gang condenser to 1500 K . C. as follows: (a) Open gang to fullest extent.
(b) Close slowly to the thickness of a thin cardboard $s t r i p$ or approximately $.015^{\prime \prime}$.
4. Peak oscillatior condenser \#3 on end of gang.
(C) R. F. Adjustment
5. Set test oscillator to 1400 K . C.
6. Change antenna condenser in oscillator lead from . 1 mfd . to . 0002 mfd ., and connect test oscillator to antenna lead of set.
7. Set condenser gang at 1400 K . C.
8. Peak condensers \#1 and 2 on gang.
9. Do not touch oscillator trimmer \#3 at 1400 K. C. setting of gang.

SERVICE PARTS LIST WR-26 MOTOR CAR RADIO

	RESISTORS			
	Ohms	Body	Tip	Dot
WR-05277	75,000	Furple	Green	Orange
WR-05251	40,000	Yellow	Black	Orange
WR-05245	2,000	Red	Black	Red
WR-05247	7,500	Purple	Green	Red
WR-05279	250,000	Red	Green	Yellow
WR-05249	5,000	Green	Black	Green
WR-05281	1 meg .	Brown	Black	Green
WR-05278	100,000	Brown	Black	Yellow
WR-05276	50,000	Green	Black	Orange
WR-05246	500,000	Green	Black	Yellow
WR-05264	500	Green	Black	Brown
WR-06531	4,000	Yellow	Black	Red
WR-06527	Resistor strip as			
WR-06537	M1d tap r	esistor		

CONDENSERS

WR-06558 WR-06680 : F -06536 WR-06526 WR-06526 WR-06600 WR-02493 WR-06417 WR-06417 WR-03659

Electrolytic cond.-power pack. Variable condenser assembly... Condenser- power pack base ... Condenser assembly block Condenser in can Condenser \& choke assembly ... Condenser . 05 - 2 ply Condenser . 0001 mfd. mica Condenser, . 001 mfd. mica Condenser . 005 - 3 piy

Part No.	Description of Parts
WR-03852	Condenser . 0024 ply
WR-02497	Condenser .25 2 ply
WR-02499	Condenser . 52 ply
WR-02496	Condenser . 253 ply
WR-02495	Condenser . 12 ply
WR-03775	Condenser . 001 mica
WR-02492	Condenser . 053 ply - speaker
WR-06560	Condenser- power pack base
WR-03864	Condenser . 0024 ply .
WR-03660	Condenser . 0053 ply
WR-02303	Condenser . 05 3 ply
WR-02508	Condenser . 13 ply
WR-01883	Condenser . 252 ply
WR-02322	Condenser . 52 ply
WR-02386	Condenser . 253 ply
	COILS
WR-05824	Choke coil- power pack
WR-05452	R.F. choke coil - power pack.
WR-06523	Oscillator coil assembly
WR-04580	I. F. coil assembly-chassis ..
WR-06519	Antenna coil assembly
WR-06518	R.F. coil assembly
WR-06713	Speaker field coil
	TRANSFORMERS
WR-06535	Transformer- power pack
WR-06618	Output transformer
WR-07053	Iron core filter choke

PAGE 5-10 WESTINGHOUSE

MODEK WR-27

Schematic
WESTINGHOUSE ELEC. SUPPLY CO.
Voltage

VOL tage readings
Readings of voltages should be taken with the Volume Control turned on fully (all the way to the right). D-C, measurements mast be read with a high resistance voltmoter (1000 ohms per volt) and an A-C. voltmeter mast be used on the a-c. circuit readings.

The d-c. voltages are measured from the points indicated to
ground.

		ANODE	CONTRO	SCREEN	SUPPR.	
TUBE	PLATE	GRID	GRID	GRID	GRID	CATHODE
GA7	214	214	-	62	-	2
77	70	-	-	62	4	4
42	194	-	$-13 *$	215	-	-
80	-	-	-	-	-	-

* Measured from ground to tap on speaker field winding

Voltage across field, 100 volts d-c.
Voltage across ' 80 filament, 5 volts a-c.
Voltage across all other heaters or filaments, 6.2 volts a-c.
The above voltages, with minor variations, should be obtained with an a-c. line input of 117.5 volts.

Stage	Tube	Filament	Plate	Screen	Cathode
Rectifier	80	4.85	382		
Power Output	42	6.1	234	245	18
2nd Detector	75	6.1	126		0.87
Ist I.F.	6D6	6.1	245	99	5.6
2nd I.F.	6D6	6.1	245	96	5.6
Oscillator	$6 A^{7}$	6.1	236-136	87	4.7

Note: These values are readings of a high resistance voltmeter from each socket terminal to ground, with the exception of the filament voltages. The values are only approximate and will vary with the line voltage and the type of meter employed. Iine voltage = 112.

Figure \#l

CIRCUIT DESCRIPTION

The Models WR-28-29 are six tube, dual waveband receivers, designed to operate over the frequency ranges from 1570 to 540 kilocycles and 15,500 to $5,700 \mathrm{kilocycles}$. The circuits comprise an R. F. selector circuit, a combination first detector oscillator, two stages of intermediate frequency amplification (456 KC) with double tuned circuits coupling each stage, a combination second detector, A.V.C. and first audio stage, a power output stage and a rectifier tube.

The wave change switch serves to change the electrical circuits to the wave band desired and in addition operates to illuminate the particular dial scale in use.

ALIGNING THE CHASSIS

To properly align the Models WR-28-29. chassis, it is essential to use a high grade modulated oscillator and a sensitive output meter. The R. F. signal fed into the receiver must be very weak or it will cause the A. V. C. to function making correct alignment impossible. The sensitivity of the output meter must be sufficient to give satisfactory reading with a low signal.

Before attempting to align the chassis, the service man should familiarize himself with the general layout of the chassis, the location of the tubes and the various alignment condensers. A top view of the chassis is shown in Fig. \#l and should be carefully studied before the actual work is started.

A- I. F.ADJUSTMENT

1. Set test oscillator to 456 K . C.
2. Connect A. C. voltmeter (output meter) across voice coil of speaker.
\#l
I. F. trimmer condenser
$\# 2$ I. F. trimmer condenser screw)
3. Connect test oscillator to grid of 2nd I.F. tube (6D6 in rear of condenser gang) and frame of chassis.
4. Adjust \#1 and \#2 to maximum output on output meter.
5. Connect test oscillator to grid of lst I.F. tube (6D6 - rear right hand tube).
6. Adjust \#3 and \#4 to maximum output.
7. Connect test oscillator to grid of lst detector (6A7).
8. Adjust \#5 and \#6 to maximum output.

This completes the I. F. adjustment.

$\frac{B-R . F \cdot A D J U S T M E N T}{\text { (Broadcast Band) }}$

1. Connect test oscillator to antenna and ground leads. Set wave change switch to broadcast band position as indicated by the dial light. Set station selector to 540 K . C.
2. With test oscillator still adjusted to 456 K. C., increase signal strength of test oscillator until signal is heard in loud speaker.
3. Adjust \#7 (through small hole in right hand rear panel, of chassis) until signal disappears or goes through a null. If signal disappears, increase signal output from test oscillator and readjust \#7 until a definite minimum is obtained. The purpose of this adjustment is to correctly adjust a wave trap installed to block direct transmission of 456 K . C. (usualiy ship telegraph signals) from antenna to first detector.
4. Set test oscillator and station selector to 1400 K . C.

PAGE 5-12 WESTINGHOUSE

MODEL WR-28, WR-29

Schematic
WESTINGHOUSE ELEC. SUPPLY CO. Alignment,Fart 2
5. Adjust \#8 to maximum output.
6. Adjust \#9 to maximum output.
7. Set test oscillator and station selector to 600 K. C.
8. Adjust \#l0 to maximum output (top screw)
9. Set test oscillator and station selector to $1400 \mathrm{~K} . \mathrm{C}$. and readjust \#8 and \#9 for correct calibration.

C - R. F'. ADJUSTMENT

change switch to short wave band

1. Setwav position.
2. Set test oscillator and station selector to $15,000 \mathrm{~K} . \mathrm{C}$.
3. Adjust \#ll until signal is tuned in.
4. Adjust R. F. trimmer condenser (mounted underneath chassis on R.F. coil) to maximam output.
5. Set test oscillator and station selector to 6000 K. C.
6. Adjust \#l2 to maximum output (bottom screw)
7. Set test oscillator and station selector to $15,000 \mathrm{~K}$. C. and readjust \#ll and R. F. trimmer underneath chassis for correct calibration. This completes the lining up process.

C-1 Var. gang with trimmer
C-2 Var. gang with trimmer
C-3 Var. gang with trimmer
C-4 600 mmf . variable
$\mathrm{C}-5$. 05 mf - 2 ply
$\begin{array}{ll}\mathrm{C}-6 & .0001 \mathrm{mica} \\ \mathrm{C}-7 & .05-2 \mathrm{ply}\end{array}$
$\begin{array}{ll}C-7 & .05-2 ~ p l y \\ C-8 & .05-2\end{array}$
C-9 .05 - 3 ply
c-10 .02 - 3 ply
C-11 I.F. coil
C-12 I.F. coil
C-13 I.F. coil
C-14 I.F. coil
C-15 I.F. coil
C-16 I.F. coil
C-17.0001 mica
c-18 .05 - 2 ply
C-19 .05 - 2 ply

ELECTRICAL VALUES
c-24 . 0001 mica
$\begin{array}{ll}\mathrm{C}-24 & .0001 \mathrm{mica} \\ \mathrm{C}-25 & .5-2 \mathrm{ply}\end{array}$
C-26 •005 - 3 ply
C-27.001 - 4 ply
C-28 8 - electrolytic
C-29 4- electrolytic
C-30 20- electrolytic
C-31 8-electrolytic
C-32 . 005 - 3 ply
c-33.001 - 4 ply
C-34 . 01 - 4 ply
C-35 .01 - 4 ply
C-36. 425 mmf . variable
C-37 1500 mmf . mica
C-38 Irimmer condenser
C-38 Trimmex condenser
C-40 Trinmer condenser
C-41 . $05-3$ ply
C-42. 0001 - mica

C-42. 0001
$\mathrm{C}-43 \mathrm{minca}$

C-44 4-40 mmf. variable
R-1 5 .1 meg. 1/4 watt

> R-3 50,000 ohms 1/4 watt
> R-4 500 ohms 1/4 watt
> $\begin{array}{ll}\text { R-4 } & 500 \text { ohms l/4 watt } \\ \text { R-5 } & 20,000 \text { ohms } 1 / 2 \text { watt }\end{array}$
> $\begin{array}{ll}\text { R-5 } & 20,000 \text { ohms } 1 / 2 \text { watt } \\ \text { R-6 } & 1,000 \text { ohms 1/4 watt }\end{array}$
> R-7 5,000 ohms 1/4 watt
> R-8 1,000 ohms 1/4 watt
> $\begin{array}{lll}\text { R-8 } & 1,000 & \text { ohms } \\ R-9 & 1,000 \text { ohms } & 1 / 4 \text { watt }\end{array}$
> $\begin{array}{lll}\text { R-9 } & 1,000 \text { ohms } 1 / 4 \text { watt } \\ \text { R-10 } 5,000 \text { ohms } 1 / 4 \text { watt }\end{array}$
> R-11 11,200 ohms
> R-12 1,800 ohms
> R-13 12,000 ohms
> R-14 300 ohms
> R-15 1 meg - 1/4 watt
> R-16 50,000 ohms - 1/4 watt
> R-17 1 meg - 1/4 watt
> R-19 . 5 meg. variable
> R-20 2,000 ohms 1/4 watt
> R-21 1 meg. $1 / 4$ watt
> R-22 75,000 ohms - 1/4 watt
> $\begin{array}{ll}\text { R-22 } \\ \text { R-23 } 50,000 ~ o h m s ~-~ & 1 / 4 \\ \text { watt }\end{array}$
> R-24 . 25 meg. 1/4 watt
> R-25 . 25 meg. variable

SCHEMATIC WIRING DIAGRAM

ELECTRICAL VALUES

```
C-1 Variable condenser
C-2 Variable condenser
C-3 Variable condenser
C-4 Variable condenser
C-5 I.F. coil
C-6 I.F. col1 
C-7 I.F. coll
C-8 I.F. coll
C-9 I.F. coil
C-10 I.F. coil
C-11 7-70 nmf.
C-12 1000-2000 mmf.
C-13 500-1000 mmf.
C-14 400-800 mmf.
C-15 3-40 mmf.
C-16 270-600 mmf.
C-17 7-70 mmf.
C-18 100 mmf. mica
C-19 .05 - 2 ply
c-20.05-2 p1y
c-21.05-2 ply
c-22 .05 -. 2 ply
c-23 .05-2 ply
c-23 .05-2 ply 
C-25 .005-3 ply
C-26 .05 - 2 piy
C-27 .05-2 ply
c-28.05-3 ply
C-29 .005-3 ply
c-30 100 mmf. mica
C-31 100 mmf. mica
```

PAGE 5-14 WESTINGHOUSE

MODEL WR-30

Voltage, Socket Alignment Data Parts List

WESTINGHOUSE ELEC. SUPPLY CO.

SERVICE TECHPICAL DATA

諨

chasis and mounted on the sma11 co11s at the
extreme right end, to maximum output.
5. Set test oscillator and station selector to
1800 kc.
6. Rotate \#14 until signal is at maximum.
. Return test oscillator and station selector
3600 KC setting and read just \#13 for correct D - ADJUSTMENT OF 3rd BAND

. Set wave change switch to 3rd band position
 . Set set test oscillator and station selector to on bottom of chass1s fastened to the

 9000 KC . On bottom of chass1s fastened to the wire t tisted around a Groen and White wire will
be noticed. Th1 twist serves too make the so nht adjustment necessary to bring this band
sil correct callbration. If set is not on
to and
twist will serve to readust the callibration.
This adustment will serve for about one-half a scale div1sion elther way. 1 If set 1 s In1-
tially of more than this, $1 t$ 1 ndicates a
sentous fault in the oscillator circuit such as poor or incorrect connections, open resistor,
defective oscillator tube or other major fault. Assuming that the correction can be made, the

 2. Adjust test oscillator and station selector 3. Adjust 3rd band lagging condenser to maximum
output. Th1s condenger 18 180cated on the back
plate to the right of the 3rd band oscillator 4. Return to 9000 KC setting and check the pro-

 6. Set test oscillator and station selector to . Adjust \#12 to maximum output. 8. Return to 1400 KC setting and readjust \#10
for correct callbration. C - ADJUSTMENT OF 2nd BAND Adjust wave change switch to 2 nd band posi-
ion and set station selector to 3600 KC . 2. Set test oscillator to 3600 Kc . 3. Adjust \#13 (Green color coded) until algnal
1s tuned 1n.

WESTON ELECTRICAL INSTRUM'T CORP.

Type 3
Schematic

WESTON ELECTRICAL INSTRUM'T CORP.

WESTON ELECTRICAL INSTRUM'T CORP. NODEL 695 Schematics

INTERNAL CONNECTION DIAGRAM

OF

MODEL 665 TYPE 2 SELECTIVE ANALYZER

PROCEDURE FOR INCREASING RESISTANCE RANGE TO 10 MEGOHMS

PAGE 5-6 WESTON
MODEL 661,673
MODEL 694
WESTON ELECTRICAL INSTRUM'T CORP.
Schematics

WESTON PAGE 5-7 MODEL 540,Type 2 WESTON ELECTRICAL INSTRUM'T CORP. MODET 662,Type 2
Schematics

MODEL 672,Type 2 WESTON ELECTRICAL INSTRUM'T CORP.
Schematic

WESTON ELECTRICAL INSTRUM'T CORP.

"Cresedocreseses"

WESTON PAGE 5-11 MODF 676-R, 677-R, WESTON ELECTRICAL INSTRUM'T CORP. 678-R Schematic

PAGE 5-12 WESTON
MODEL 677,678
Schematic
WESTON ELECTRICAL INSTRUM'T CORP.

SCHEMATIC DIAGRAM LOOAING AT BAGK OF INSIRUMENT

PAGE 5-2 WILCOX-GAY

WILCOX-GAY PAGE 5-3

PAGE 5-4 WILCOX-GAY

 MODEL 4B6,Road Mate Schematic, Voltage Alignment

The three R. F. trimmine condensers are adjusted at $1400 \mathrm{~K} . \mathrm{C} . \mathrm{C}$ Proceed as follows: Procure a modulated oscillator giving a signal at 1400 K.C..

Remove the chassis from case, couple the output of the oscillator from antenna to ground, set the dial at 1400 and the oscillator at 1400 K.C..

Place the oscillator and receiver in operation and adjust the oscillator output so that a weak signal is heard in the loudspeaker when the volume control is at its maximum pos ition.

Then adjust the trimming condensers starting with C 3, C 2 and then C 1 until maximum output is obtained. Readjust a second time as there is a slight interlocking of adjustments

A more accurate adjustment can be made with an output meter.
I. F. Ad justment:

The four I. F. trimming condensers are adjusted at 175 K.C.. Proceed as follows:
Procure a modulated oscillator giving a signal at $175 \mathrm{~K} . \mathrm{C} ., \mathrm{a}$ non-metallic screw driver and an output meter.

Connect the oscillator output between the first detector grid and ground. Connect output meter.

PAGE 5-6 WILCOX-GAY
MODEL 4C5,4CB5 (BC \& SW)
MODEL 4CA5 (BC Only) WILCOX-GAY CORP.
Schematic, Voltage, Socket

PAGE 5-8 WILCOX-GAY

PAGE 5-10 WILCOX-GAY

WURLITZER PAGE 5-1

WURLITZER PAGE 5-3 MODFL 453 Amplifier Schematic, Socket Circuit Details

PAGE . 5-4 WURLITZER
MODEF 454
Schematic
THE RUDOLPH WURLITZER CO.

THE RUDOLPH WURLITZER CO.

and the chassis pan. The nut adjusts the primary trimmer.
(b) The second I.F. trimmers are mounted in the end of the second I.F. transformer, located under the chassis pan directly below the speaker field. The nut adjusts the primary trivmer.
entirely
(2) Set the dial pointer to the position where a station or (oscillator) of known frequency, about $1500 \mathrm{kc} .$, should be received and adjust oscillator trimmer (screw adjustment, top of gang condenser, inside end) until the desired (3) Set heard. pointer to the position where atation(or oscillator) of known frequency, about 1100 kc ., should be received and correct calibration (if necessary) by bending the rotor plates of the inside gang condenser section. (4) Repeat operation 3 at , or near, 850 kc . (5) Repeat operation 3 at, or near, 700 kc .
(6) Repeat operation 3 at, or near, 580 kc :

(1) Attach the output meter from screen to plate tube. (2) Attach the local oscillator to the antenna lead and
KEEP THE SIGNAL INPUT LT.
(3) With the receiver and oscillator tuned to resonance at, or near, 1500 kc . adjust the antenna and R.F trimmers (screw adjustments, top of gang condenser, outside and middle sections) until maximum output is obtained.
(4) With the recoiver and oscillator tuned to resonance at, or near, 1100 kc . bend the rotor plates of the outside and middle gang condenser sections to obtain maximum output. (5) Repeat operation 4 at, or near, 850 kc . (6) Repeat operation 4 at, or near, 700 kc .
(7) Repeat operation 4 at, or near, 580 kc .

NOTE--RE OPERATIOI 2, CALIBRATION PROCEDURE: If more then one position of the oscillator trimmer enables the desired signal to be received REDUCE THE INPUT TO THE RECEIVER unwill enable the desired signal to be received.
 self-contained, for operation from a 6 volt d.c. source. A cable drive remote control head is user, one cable operating the volume control and switch and the other cable operating the tuning condenser.
The circuit comprises a stage of R.F. amplification, an oscillator-modur, and a 6 G7 is used as a diode 175 k.., each orA.v.C. and first audio stage and a 41 is used in the audio output stage. The power supply, an integral part of the chassis, uses an 85 or a 674 as a full wave rectifier for the B supply. The filter choke is in the negaafter being filtered, furnished the C supply for the set. The pentode section of the $6 \mathrm{B7}$ is used as the first audio stago, resistance coupled into the 41. One of the diode the other diode plate is used in the diode A.V.C. circuit'. An inspection of Drawing W_{86} will indicate that under nosignal conditions, the cathode of the 6 . current will flow through the A.V.C. diode until the signal applied to this diode plate is greater than the bias on the 6B7 cathode. The advantage of the circuit is two--fold, greater volume on weak signals and more uniform volume on

IN ALL GANGING OPERATIONS USE THE WEAKEST SIGNAL THAT will give a satisfactory indication on the output meter and turn both the volume and torie controls to their maximum (TO THE I.F. CIRCUITS
(1) Attach the output meter from screen to plate of the 41 tube.
(2) Feed the signal from the local oscillator tuned to oscillator-modulator 6D6.
(3) Adjust the I.F. trimmers for maximum indication on the (a) The first I.F. trimmers are mounted in the ond of the first I.F. transformer located between the gang condenser

WURLITZER PAGE 5-7

PAGE 5-8 WURLİTZER
MODEL 471
Schematic THE RUDOLPH WURLITZER CO.

The only difference betweon the Lyric Models C-4 and M-4 is the placement of the volume control and gang condenser. On the Model C-4 the volume control is mounted on a right. On the Yodel M-4 the volume control is mounted below the gang condensor on the right. Hereinafter these models are referred to indiscriminately as kodel C/M-4. The later models have an additional short wave band, approximately 1500 to 4000 kc. , which is selected by toggle switch at the right rear of the chassis pan. There are no calibration or alignment adjustments to make on this band. For short wave reception the switch must bo thrown toward the end of the chassis pan. For Connect the output meter (when used) from screon to

volume control to its maximum position

 Advance the(clookwise).

In all ganging operations USE THE WEAKEST SIGNAL THAT WILL GIVE A SATISFACTORY INDICATION ON THE OUTPUT METER. Do this by reducing the input, NOT EY RETARDING THE VOLUME CONTROL.

The $\mathrm{C} / \mathrm{M}-4$ uses the 6 B 7 as a reflexed I.F.--M.F. amplifior, and the I.F. trimmer adjustments are very critical. For this reason, and because these adjustments are carefully made at the factory, the alignient of the I.F. trimmers definitely at fault-rthe following procedure should be followed:-
(1) Attach the output meter from soreen to plate of

43 tube.
(2) Attach antenna lead to local oscillator tuned to
$456 \mathrm{kc}$.
(5) KEEPING THE INPUT FROM THE LDCAL OSCILLATOR
AS LCW AS POSSIBLE, adjust the I.F. trimmers for

ALIGMENT PROGEDURE FOR LYRIC C-4 \& M-4 LYRIC C-4 \& M-4
maximum reading on the output meter. (A) The first iof. trimmer is located in the chassis pan, alour cont of the first I. F. transformer. The slot adjustment is the primary trimmer. The nut ($\frac{1}{4}$ hex) adjustmont is the secondary trimmer.
(B) The second I.F. trimmer is located under the chassis pan, adjustable through a hole in the chassis pan, left center, near volume control.
(1) Throw the toggle switch (if any) to the broadcast position.
(2) Set the gang condenser to the position where 1500 kc ., should be received.
(3) Adjust the oscillator trimmer (screw adjustment, top of gang condenser, front end) until desired signal is heard. The calibration of the rest of the dial will fall within reasonable limits without further adjustment.
(1) Throw the toggle switch (if any) to the broad-
(2) position. the output meter from screen to plate of the 43 tube.
(3) Turn condenser to approximately 1400 kc ., connect antenna lead to local oscillator tuhed to
(4) Adjust $\mathrm{R}_{\text {e }}$ Fo trimmer (screw adjustment, rear end, top of gang condenser) until output meter indicates maximum output. KEEP SIGNAL INPUT LOW. The alignment of the balance of the tuning range will fall within reasonable limits with no further

THE RUDOLPH WURLITZER CO.
(A) The first I. F. trimmer is a dual unit, located
 (B) The second I. Fe trimer is a dual unit located on the top of the chassis pan near the volume control. The nut adjustment is the primary trimmer. (4) Adjust the wave trap trimmer for MINIMMM indication (dip) on the output meter.
(A) This trimmer is a single unit at the extreme
left end, on the rear of the chassis pan.
(1) Set the condenser to the point where a station
(or oscillator) of known frequency, about 1400 kc ., should be receivad.
(2) Adjust the oscillator trimmer (screw adjust-
ment top, front of gang condenser) until desired signal is heard. The calibration will then fall within reasonable limits with no further edjustment.
to ALIGN (or gang) the r. F. CIRCUIT
(1) Attach output meter from screen to plate
the 43 tube.
(2) Turn condenser to 1400 kc .
(3) Attach antenna lead to local oscillator tuned to resonance with receiver,.
rear of gank condenser) for maximum indication on the output meter. The alignment of the R. F. stage will fall within reasonable limits with no further adjustments.

The Lyric Model P-5 is a five tube superheterodyne of the universal type with the heaters of the tubes connected in series. A 456 kc . I. F. amplifier is used and a series (accoptor) weve trap is shunted across the primary of the antenne coil to minimize the
petdnos uод70ete LY9 в 'sepntouf pesn fino. fo eप山
oscillator-first detector, and a 75 duplex diode hi-mu
triode in the second detector-first $A_{0} F_{0}$ circuit. Diode type A. V. C. is employed.

The first. I. F. transformer is fitted with an adjustable tickler to control the sensitivity of the receiver. the center, bottom, of the transformer and is connected between the cathode and suppressor of the 78 1. F. tube. To increase the sensitivity out on the dowel. To decrease the sensitivity of, (or to stabalize), this receiver, push the dowel in.

A socket is provided at which the autodaptor may be connected, thus enabling the P-5 to be operated from a 6 volt D. C. source.

IN ALL GANGING OPERATIONS USE THE WEAKFST SIGNAL THAT
DO THIS BY REDUCING THE INPUT, NOT BY RETARDING THE VOLTME CONTROL.

The I. F. trimmer adjustments are carefully made at
the factory and should not be tampered with unless a
thorough investigation definitely proves the I. F. amplifier to be at fault. In that event:-
(1) Attach the output meter from sereen to plate of the 43 tube.
(2) Attach the local oscillator, tuned to $456 \mathrm{kc} .$, to
the antenna lead.
(3) Adjust the I. F. trimmers for maximun indication
on the output meter.

THE RUDOLPH.WURLITZER CO.

The Model SA-5 is a 5 tube superheterodyne covering the broadcast band and utilising a band pass filter between the antenna and the first detector, a 2A7 electron coupled oscillator-first detector circuit, a 175 kcos , I_{0}. amplifier, and a $2 A 6$ duplex diode hi-mu triode second detector-first A. F. oircuit. Diode type A.V.C. is employed.

IN ALL GANGING OPERATIONS USE THE WEAKEST SIGNAL THAT WILL GIVE A SATISFACTORY INDICATION ON THE OUTPUT METER. DO THIS BY REISUCING THE INPUT, NOT BY RETARDING THE VOLUIE CONTROL.

The I. F. trimmers are carefully adjusted at the factory and should not be tampered with unless a thorough investigation definitely proves the I. F. amplifier to be at fault. In that event:-
(1) Attach the ouiput meter from soreon to plate of the 215 tube.
(2) Attach local oscillator tuned to exactly 175 ko. to the control grid of the 2A7, providing a D. C. from this point to ground.
(3) Adjust the I. F. trimmers for maximum indioation on the output meter. These $I_{\text {. }}$ F trimeners are mounted on 2 strip extending from near the $2 A 7$ socket toward the center of the chassis pan. A recheck of each trimmer adjustment, to insure perfect alignment of the I. F. stages, is recommended. TO CALIBRATE THE SA-5
(1) Set the dial to the point where a station (or oscillator) of known frequency, about 1400 kc , should be received. Adjust the oscillator trimmer (screw adjustment, top center of gang condenser) until desired signal is heard.
(2) Set the dial to the point where a station (or osoillator) of known frequency, about 1000 kc ., should be received and bend the rotor plates, when necessary, to correct the calibration.
(3) Repeat operation 2 at, or near, 800 ko.
(4) Repeat operation 2 at, or near, 600 kc . TO ALIGN (or gang) THE R. F. CIRCUITS
(1) Sot the dial to 1400 ko .
(A) Attach the output meter from screen to plate of the 245 tube.
(B) Attach local oscillator and tume to resonance with receiver.
(c) Adjust antenna trimmer (screw adjustment top, rear of gang condenser) for maximum indication on output meter.
(D) Adjust R. F. trimmer (screw adjustment top, front of gang condenser) for maximum indication on output moter.
(2) Sot dial to 1000 kc .
(A) Adjust local oscillator to resonance with reoeiver.
(B) Bend rotor plates (front and rear gang condensersections) for maximum indication on output meter.
(3) Repeat operation 2 at 800 ko .
(4) Repeat operation 2 at 600 kc 。

- In all ganging
operations USE THE WEAKEST SIGNAI THAT WILL GIVE A SATISFACTORY INDICATION ON THE OUTPUT METER. Do this by reducing the input, NOT BY RETARDING THE VOLIME CONTROL.

The I. F. trimer adjustments aro carefully made at the factory and should not be tampered with unless a thorough investigation definitely proves the I. F. amplifier to be at fault. In that events-

1. Feed the signal from the local oscillator tuned to exactly 175 kc . into the set at the control grid 2A7, using some type of coupling device that will provide D. C. path from control grid to ground.
2. Attach the output meter from screen to plate of the 2A5 tube.
S. KEEPING THE SIGNAL AS LOW AS POSSIBLE, adjust the I. F. trimmers to give a maximum indication on the output meter. These I. F. trimmers will be found under the chassis pan, mounted on a strip extending from near the 2A7 socket to the center of the chassis pan. After having carefully adjusted these trimmers for maximum output, a final check should be made by going over each adjustment a second time to insure perfect alignment.

TO CALIbRATE THE SA-6

1. Set the dial to the point where a station (or oscillator) of known frequency, about 1400 kc ., should come in. Adjust oscillator trimer (screvi adjustment top rear of gang condenser) until the desired signal is heard.
2. Set the dial to the point where a station (or oscillator) of known frequency, about 1000 kc . should come in. Then bend the rotor segments (about half engaged with the stator plates at this dial setting) to correct the calibration. If the dial reading is higher than the actual frequency, bend the segments away from the stator, and vicaversa,
3. Repeat operation two at, or near, 800 kc .
4. Repeat operation two at, or near, 600 kc .

This complates the calibration procedure.
TO ALIGN (or ganf) THE R. F. CIRCUIT

1. Set dial to 1400 kc .
(A) Attach the output meter from screen to plate of the $2 A 5$ tube.
(B) Attach the lead from local oscillator to the antenna post of the receiver, and adjust the oscillator to resonance with the receiver.
(c) KEEPING THE SIGNAL AS LOW AS POSSIBLE, adjust the anterma trimmer (screw adjustment, top of gang condenser, front end) for maximum indication on the output meter. Thenadjust the R. F. trimmer (screw adjustment, top center of gang condenser) for maximum indication on output meter.
2. Set dial to 1000 kc .
(A) Adjust the local oscillator for resonance with the receiver.
(B) Bend the segments of the rotor plates on the front and center sections of the gang condenser to give maximum indication on the output meter.
3. Repeat operation two at 800 kc .
4. Repeat operation two at 600 kc .

This completes the alignment procedure.

THE RUDOLPH WURLITZER CO.

BALANCING

Caution: When balancing radio frequency or IF circuits, be sure that the volume control is turned to the full "On" position and the output of the test oscillator adjusted to give a very weak signal. This is necessary to minimize the automatic volume control action and to permit the most accurate adjustment.

INTERMEDIATE FREQUENCY CIRCUITS
The intermediate frequency amplifier of this receiver operates at 175 kc . and an accurately calibrated test oscillator generating this frequency is necessary for ganging.

Current from the test oscillator should be fed into the set by removing the control grid cap on the type 57 detector modulator tube, and connecting the oscillator output terminals between the chassis pan and the control grid cap of this tube.

The IF transformers are tuned by adjusting the screws under the removable name plate on the rear of the chassis.

To align the RF circuits the test oscjllator should first be set to some known frequency between 1400 and 1500 kc . and the set tuned so that the dial pointer indicates this frequency. The trimmer condenser of the oscillator section of the variable condenser (front section) should then be tuned until the test signal is received with greatest output.

There are two possible adjustments on the trimmer condensers at which this signal may be received; the proper adjustment is that at which the trimmer is set to minimum capacity; that is, the adjustment at which the trimmer plate is farthest out. When this has been done the trimmer condensers of the second and third variable condensers are to be set to give maximum output.

The set should next be balanced at approximately 1250, 950, 700 and 550 kc. in the order mentioned as follows:

The test oscillator is set to some known frequency, approximately that recomended above, and the set adjusted for maximum output by bending the adjustable sections of the rotor end plates of the variable condensers. In doing this, the plates or the oscillator section should be bent first and those of the remaining sections bent after the oscillator is adjusted.

AUTOMATIC VOLUKB CONTROL

The detector and automatic gain control functions are performed by the diode section of the type 55 tube which rectifies the energy sent to it by the intermediate frequency anplifier. The DC component of this energy passes through a net work of high resistances and by-pass condensers to the control grids of the RF and IF tubes to control the amount of amplification in these stages.

An increase in signal strength results in an opposite action decreasing the amount of $R F$ and IP amplification. The audio component of the signal rectified by the diode, is passed through the manual volume control which also serves as a part of the diode resistance net work. The adjustment of this control sets the amount of energy passed on to the audio amplifier for furthar amplification.
The Model SU-5 is a dual wave superheterodyne receiver
(3) Adjust oscillator trimmer (scrow adjustment, top of gang condenser, front-dial-end) until desired signal is hoard.
The calibration of the rest of the dial will fall within reasonable AIts with no further adjustment. (1) Connect the output meter to the 43 tube.
(2) Set dial to approximately 1400 kc ., connect (2) Set dial to approximately 1400 kc. , connect anterna
lead to local oscillator tuned to set, and check settings of volume and tone controls. of volume and tone controls.
(3) Adjust R. F. trimmer (scr condenser, rear end) until output meter indicates maximum output. KEEP SIGNAL INPUT LOW! The alignment over the belance of the tuning range will fall within reasonable limits without further adjustment.
TO CAlibrate the short wave bandz-
(1) Turn the band switch to the short wave position (counter-clockwise).
(2) Set the dial pointer to the position where a station come in.
(3)Adjust the short wave oscillator trimmer (screw adjustment, under chassis pan-adjustable through hole in chassis pan top front, right corner near gang condenser) until dial will fall within reasonable limits without further adjustment.
TO ALIGN (or gang) THE SHORT WAVE BAND:-
(2) Set dial to approximately 3600 kc . (3.6 KC.), connect antenne lead to local oscillator tuned to set and check
(3) Adjust short wave R Fo trimmer (screw adjustment, raar of antenna coil mounting bracket, between 6A7 and 78 tubes) until the output meter indicates maximum output. KEEP THE SIGNAL INFUT LOW! The alignment over the balance of the tuning range will fall within reasonable limits without further adjustment.

to calibrate broadcast bandz-

> band switch to the broadcast position
> (1) Turn the (clockwise).
> (2) Set the dial pointer to the position where a station come in.
BE ADJUSTED.
EXTREME RIGHT REAR OF THE CHASSIS (usually marked with red)
Th
(1) Set the dial to the point where a station (or oscill- ator) of known frequency, about 1400 kc, ,should come in. (A) Set Band switch to band 1 (top scale). (B) Adjust oscillator trimmer (screw adjustment, top-rear
of ganf condenser) until desired signal is heard. There will be two peaks in adjusting this trimmer. The peak obtained with the loosest trimmer setting is correct. (2) Repeat operation 1 at, or near, 550 kc, , using band 1. (A) Adjust oscillator pad (fourth adjustment from right, (3) Repeat operation lat, or near, 1450 ko., using band 2. (A) Adjust oscillator pad (third adjustment from right on rear of chassis pan) until the desired signal is heard. (A) Adjust oscillator pad (second adjustment from right on rear of chassis pan) until the desired signal is heard. (5) Repeat operation 1 at, or near, 8500 kc. ,using band 4. (A) Adjust oscillator pad (extreme right adjustment on
rear of chassis pan) until the desired signal is heard.
 (1) Set the dial to 1400 kco . using band 1.
(A) Attach oscillator, tuned to set, to antenna post. (C) Adjust R. Fo trimmer (sorew adjustment, top-front-of gang condenser) for maximum output. KEEP SIGNAI. INPUT LOW! (2) Set the dial to $3700 \mathrm{kc} \cdot$, using band 2. (A) Tune the oscillator to the reoeiver and adjust R.F. trimmer (extreme left adjustment on rear of ohassis pan) for maximum output. KFEP SIGNAL INPIT' LOW
(A) Tune the osoillator to the receiver and adjust R.F. trimmer (second adjustment from left on rear of chassis
Note l-In case the loonl osofllator will not reach the higher alignment frequencies, harmonics of lower frequencies may be used.

[^17]
ALIGMMENT PROCEDURE FOR MODEL SW-88

(4) NEXT-feed the 485 kc . signal in at the antemme post, replace the first detector grid cap, and adjust the ware trap condenser

peufț
 200 m . Broadcast. Police Calls. Domestic Sow. Poreign S.W. This switoh illuminated. ing only the calibration of the band in use to be illuminated. whose output is inductively coupled into the cathode circuit of the first detector, two stages of I. F. amplification(at $485 \mathrm{kc}$.) using 58 tubes, a 56 diode second detector and A.V.C. tube, a 5 first audio, and a $2 A 5$ in the audio output stage. IN ALL GANGING OPERATIONS USE THE WEAKEST SIGNAL TKAT WILL,
GIVE A SATISFACTORY INDICATION ON THE OUTYUT METER, AND TURN THE

 ory and
event:(2) Feed the signal from the local oscillator tuned to exactly

485 kc . into the receiver at the control grid of the first detector, providing a D.C. path from the point to ground. (3) Adjust the I.F. trimmers to give maximum indication on the screw adjustments. On the early models these adjustments are on the bottom of the transformers, accessible from the under side of the chassis. On the later models these adjustments are on the top of the transformers. | 85.7 | 81.1 m |
| :--- | :--- |
| 83.3 m | | $\begin{array}{ll}85.7 & 33.3 \mathrm{~m} \\ 35.3 & 13.6 \mathrm{~m}\end{array}$

 switeh rounted dirsctly below the tuning control. This switoh 0q ofn uf purq ing only the calibration of the band in use to be illuminated $\begin{array}{llrrr}\text { list. } & \text { Scale } & 550 & 1500 & \mathrm{kc} . \\ \text { 2nd. } & \text { Scale } & 1450 & 3700 & \mathrm{kc} \\ \text { 3rd. } & \text { Scale } & 3500 & 9000 & \mathrm{kc} \\ \text { 4th. } & \text { Scele } & 8500 & 22000 & \mathrm{kc}\end{array}$ 4th. Scale 850022000 kc . ¢̧sep өч⿺ ory and should not bs tampered with unless a thorouph investiga-event:-event:--

THE RUDOLPH WURLITZER CO.

PAGE 5-18 WURLITZER
MODEL SA-133
Alignment Data
THE RUDOLPH WURLITZER CO.
TO CALIBRATE THE SA-133
(1) djjust the dial mechanism (if necessary) so that with (2) Slates entirely enmeshed the dial will indicate 525 ko, of known frequency, about $600 \mathrm{kc}$. , should be received and adjust the oscillator pad (screw adjustment under hole in chassis pan between oscillator section on gang condenser shields) until desired signal is heard.
(3) Set the dial to the point where a station(or oscillator)
of known frequency, about 1400 kc ., should be received and adjust the oscillator trimner (screw adjustment, top of gang condenser, third from front) until desired signal is heard. (4) Re-check operations $2 \& 3$.
(5) Check the calibration at, or near, 1200 kc . and correct
(if necessary) by bending outer oscillator section rotor plates.
(6) Repeat operation 5 at, or near, 950 kc .
(7) Repeat operation 5 at, or near, $650 \mathrm{kc}$.
(8) A thorough re-check of the forogoing 7 operations to insure perfect calibration is recommended. If the aljgnment calibration will be accurate to within 2 kc . at all points on

the output meter from plate to plate of the 205
(2) Attach the local oscillator to the antenna and tune to to set at oach test frequency.
(3) At $1400 \mathrm{kc}$. , adjust the antenna, link, and R.F trimmers for maximum indication on the output meter USIMG THE WEAKASI (4) At 1200 kc bend the plates of the antenna, link and R.R rotors to give maximum indication on the output meter. (5) Repeat operation 4 at 950 kc . (6) Repeat operation 4 at 650 kc . (8) Remeat operation operations 3-8 incl
(8) Re-aheck operations 3-8 inclusive to insure perfeot a lignment.
10) Remove the output meter and local oscillator, attach antenna, set dial to a point whero no signal is boing eceived and turn channel control counter-clockwise just far

The difficulty in correctly aligning the I.F. stages is a obtain a high degree of selectivity without sacrificing tone quality these transformers have been designed to provide a very narrow resonance curve with an essentially flat top. This is accomplished by over-coupling these transformers enough to get "double-bumps" the correct distance apart. With these transformers over-coupled it is impossible to correctly align them, therefore, it is necessary to decouple
 istor and aligning the other winding
In the event that the I.F. stages require realignment the following procedure should be followed. to pite of the 2A5 (2) Remove the silencing tube of the channel control circuit (3) Attach the local oscillator tuned to exactly 175 kc . to the control grid of the first detector, using some type of coupling device that provides a d.c. path to ground. IN ALL GANGING OPERATIONS USE THE WEAKEST SIGNAL THAT WILL GIVE A
(4) Attach a resistor across the secondary of the first I.F. transformer (by inserting the leads in holes 3 \& 4--See Figure 3, Drawing \#82-B) and adjust screw A for MAXIMNM indication on the output meter.
(5) Romove the resistor from the secondary of the first I.F. and adjust sorew (B) for MAXIMOM indication on the output
 THE ALIGNMENT PROCEDURE.
(6) With a second resistor repeat operation 4, (holes $7 \& 8$,
(7) With this second resistor repeat operation 5, (holes $5 \& 6$ screw (D).
(8) With a third
(8) With a third resistor repeat operation 4, (holes $11 \& 12$, sorew (E).
(9) With this third resistor repeat operation 5, (holes
$9 \& 10$, screw (F).
(10) Adjust the channel control pad (screw adjusting trimmer under chassis pan near third I.F. transformer, (adjustable through hole in chassis pan bottom cover) for MINIMUM (dip) indication on the output meter. This dip is not very propassed over without being noticed. Note--Be sure the re-
 transformers.

THE RUDOLPH WURLITZER CO.

PAGE 5-2 ZENITH
MODEL M-601 (P51)
Parts List

ZENITH RADIO CORP.

Variable Condenser Assembly
22-101 Three gang condenser
Sa861 Dial drum assembly
S-769 Pilot lamp bracket and sooket
100-18 2 $\frac{1}{2}$ volt lamp
1l-2 Fulley string
80~69 Dial string tension spring
Fixed Condensers
22.91 . 03 mfa . condenser (audio coupling)

S-392 Antenna series condenser
22-103 Five section bypass condenser
$\begin{array}{ccc}22-108 & .002 \mathrm{mfd} \\ 22-117 & \text { condenser } \\ \mathrm{n}\end{array}$
22-117 .5 " "
22-118 6. " "
22-119 6. " "
(electrolytic low voltage)
Resistors

$63-135$	$25 M$	ohm	resistor
$63-137$	$250 M$	$"$	$" 1$
$63-151$	$15 M$	$"$	$" 1$
$63-152$	$43 M$	$"$	$" 1$
$63-159$	$4 M$	$"$	$" 1$
$63-162$	100	$"$	$" 1$
$63-163$	320	$"$	$"$
$63-164$	Volume control		

63-164 Volume control
Coils

20-8 R.F.choke
Shields
126-59 R.F. coil shield can
126-68 Condenser shield
MS-163 Tube shield
S-771 Coil mounting base
Miscellancous
26-20 Calibrated dial strip
46-50 Knobs for switch \& volume control
46-51 Knob for dial
49-34 Dymamic speaker
57-269 Escutcheon plate
78-34 Four prong socket
78-35 Five " "
78-39 " " Pentode socket
83-226 Speaker terminal strip
85-29 Off \& On switch
95-91 Power transformer.
$\binom{60$ cycle }{25}

1. With variable condenser at its maximum capacity position and with volume control full on, connect in series with a .1 mfd . condenser, an oscillator set at 175 kilocycles to the grid cap of the 6C6 tube.
2. Adjust trimming condensers I. F. transformer, part number 7108-19 (see top view of chassis) to resonance with oscillator, as indicated on an output meter connected across the primary terminals of the speaker input transformer. Maximum deflection on the meter indicates resonance.
Note: The I. F. transformer has two trimmers, both of which are adjustable through the rear of the case.

FREQUENCY ALIGNMENT:

1. Attach oscillator connected in series with a 200 mmfd . condenser to the antenna lead and with the variable condenser at its minimum capacity position (extreme right of its rotation) and with an oscillator set at 1550 kilocycles, adjust concondenser trimmer of oscillator section (shaft end) to resonance.
2. Re-set oscillator to 1400 kilocycles, rotate variable condenser to pick up signal, adjust antenna and R. F. trimmers to resonance.
3. Check alignment at $1200-1000-800-600-530$ kilocycles by setting oscillator to these frequencies and picking up signal by rotating condenser.
4. Bend slotted plates of antenna and R. F. sections only if necessary. UNDER NO CIRCUMSTANCES BEND PLATES OF OSCILLATOR SECTION.

MODEL 701

MODEL 702
ZENITH RADIO CORP.
Schematic, Socket Alignment Data

Schematic circult diagram Model 701 AC-DC Superheterodyne, with automatic volume control Should it be neeessary, at any time, to rebalance this set the procedure is as follows: Attach a 456 kilocycle oselillator to the grid of the 6D6 tube in back of the variable condenser and adjust the trimming condensers of the F. Fransformers nected across the primary of the speaker input ransiormer. Whe
variable condenser should be at the maximum capacity position-at the extreme right of its rotation.

Next disconnect the antenna wire and connect an oscillator in series with a 75 mmf . condenser to the antenna coil. Rotate the condenser plates to the minimum capacity positionextreme left turn, and adjust the trimmer condenser of the rear section of the variable condenser to resonance with an oscillator set at 1725 kilocycies, then adjust the condenser of the cronisech of the variable condenser to resonance. Align at $1400-1200-1000-800-600-530$ kilocycles, bend slotted plates of varlable condenser if necessary.

[^18]
BROADCAST BAND ALIGNMENT

1. Disconneot antenna wire and conneot oscillator in series with a 75 mpd. condenser to the antenna coil. With the variable condenser set at its minimum oapaoity position, at the extreme right of its rotation, and with an oscillator output adjusted to 1720 kiloyyoles , adjust trimmer of osoillator seation of variable condenser (rear section) to resonanoe (maximum defleotion on an output meter connected across the primary of the speaker input transformer). Next adjust the trimmer oondenser of the front section of the variable condenser to resonance.
2. Cheok aligament at $1400-1200-1000-800-600-530$ kilooyoles, bending the slotted plates of the front seotion of the variable condenser only if absolutely neoessary.

PAGE 5-6 ZENITH

MODEL 805,845
 Schematic

Socket Layout
Vol tage, Alignment

ZENITH RADIO CORP.

PAGE 5-8 ZENITH
MODELS 806;807,
S847,850
ZENITH RADIO CORP.
Voltage, Socket Alignment Data

TUBE	POSITION	Ef	Ek	Egl	Eg2	Eg3	Ep
$6 A_{7} 7$	lst Det. Osc.	5.8	5.2	0	80	-	260
				.6	-	-	210
$6 \mathrm{D6}$	I.F.	5.8	5.2	0	80	5.2	260
75	2nd Det.	5.8	1.5	0	-	-	135
42	PWR.	5.8	0	-.7	260	-	245
80	RECT.	4.8	-	-	-	-	-

Line Voltage 112
Antenna and Ground Disconnected

All measurements taken from point indicated to ground, using a 1000 ohm per volt D.C. meter (except filaments).

F - Filament; K - Cathode; gl - Control Grid; g2 - Screen Grid; g3 - Suppressor Grid; p - Plate.

Alignment

1. Balance I.F. transformers at $252.5 \mathrm{~K} . \mathrm{C}$. with test oscillator connected to control grid of 6 A 7 and ground.
2. Connect test oscillator to antenna and ground leads.
3. Adjust broadcast padder (located nest to gang on top of chassis) for correct dial reading at $600 \mathrm{~K} . \mathrm{C}$.
4. Adjust trimmer on oscillator section of gang for correct dial reading at 15 M.C. Adjust detector trimmers (locsted between gang and coil shield on top of chassis) for maximum signal.
5. Adjust oscillator trimmer (located on right side underneath chassis) for correct dial reading at $1400 \mathrm{~K} . \mathrm{C}$. - also adjust preselector and detector trimmers on gang for maximum signal.
6. Readjust broadcast padder for correct dial setting.

PAGE 5-10 ZENITH
MODELS 808,809,
860,861
ZENITH RADIO CORP.
Voltage, Socket
Alignment Data.
5605

IUBE	POSITION	Ef	EEk	Egl	Eg2	Eg3	Ep
$6 \mathrm{D6}$	R.F.	5.6	2.4	0	70	2.4	200
$6 \mathrm{A7}$	lSt. Det.						
Osc.	5.6	3	0	70	-	250	
$6 \mathrm{D6}$	I.F.	5.6	2.6	0	-	-	230
75	2nd. Det. lst Audio	5.6	1.4	0	2.6	250	
42	PWR.	5.6	0	-.6	-	-	148
80	RECT.	4.6	-	-	250	-	250

Line Voltage 112
Antenna and Ground Di sc onnected
All measurements taken from point indicated to ground, using a 1000 ohm per volt D.C. meter (except heaters).

F-Filament; K - Cathode; gl - Control Grid; g2 - Screen Grid; g3 - Suppressor Grid; p - Plate.

Alignment

1. Balance intermediate transformers at $252.5 \mathrm{~K} . \mathrm{C}$. with oscillator connected to grid of first detector and ground.
2. Adjust wave trap padder (located underneath chassis at rear right side) for weakest signal with $252.5 \mathrm{~K} . C$. oscillator connected to aerial and ground.
$\overline{3 .}$ Thurn wave band switch clockwise to the highest frequency band. Connect $15,000 \mathrm{~K} . C$. oscillator to aerial and ground. Balance oscillator trimmer on three-gang condenser for correct dial reading at this frequency.
3. Turn wave band switch counter-clockwise to standard broadcast position. Adjust broadcast oscillator trimmer (located underneath chassis at right center) for correct dial reading at 1400 K.C. and balance R. F. and lst detector trimmers on three-gang condenser for loudest signal.
4. Adjust oscillator standard broadcast padder through hole in top center of chassis for correct dial reading at $600 \mathrm{~K} . \mathrm{C}$.

TUBE-POSITION

ZENITH PAGE 5-11
MODE 812
Schematic

PAGE 5-12 ZENITH
MODEL 812
Voltage, Socket
ZENITH RADIO CORP.
Alignment Data

TUBE	POSITION	Ef	Ek	Egl	Eg2	Eg3	Ep
6D6	R.F.	5.7	4.2	5	96	5	98
6 A7	lst Det.	5.7	2.3	2	50	-	96
	Osc.			0	-	-	96
6D6	I. T.	5.7	4.1	5	96	5	96
75	2nd Det.	5.7	1.1	5	-	-	25
43	PWR.	24	0	-5	96	-	90
2575	RECT.	24	$\underset{80}{\text { Spkr. }^{\prime} \mathrm{Fl}}$	-	-	-	-

Line Voltage 112
Antenna and Ground Di sconnected
All voltages measured from B-(negative side of Cl8) using a 1000 ohm per volt D.C. meter (except heaters).

F - Filament; K - Cathode; gl - Control Grid; g2 - Screen Grid; g3 - Suppressor Grid; p - Plate.

Alignment

1. Balance intermediate transformers at l25 K.C. with service oscillator connected to grid of first detector and chassis.
2. Rotate wave-band switch clockwise to the short-wave position. Connect service oscillator to antenna and ground leads and set for $18750 \mathrm{~K} . \mathrm{C}$. Balance oscillator trimmer on gang for correct dial reading at 16 meters.
3. Turn wave-band switch to center or standard broadccist position. Adjust padder condenser (located on top center of chassis next to gang) for correct dial reading at 500 meters ($600 \mathrm{~K} . \mathrm{C}$.).
4. Ealance oscillator trimmer (located underneath chassis at right center) for correct dial reading at 210 meters ($1440 \mathrm{~K} . \mathrm{C}$.). Balance R.F. and lst detector trimmers on gang to resonance
5. Turn switch counter-clockwise to long-wave position. Adjuat oscillator padder (located underneath chassis at rear right side) for correct dial reading at 2000 meters ($150 \mathrm{~K} . \mathrm{C}$.).
NOTE: If howls are encountered on short-wave band the oscillator trimmer on gang is too tight.

MODEL 812 Chassis 5608

Tube Position

ZENITH PAGE 5-13

PAGE 5-14 ZENITH

```
MODESS 825,827.
829,870
ZENITH RADIO CORP.
Voltage, Socket
Alignment Data
```

SOCK	OLTAGES					5701-2-3		CHASSIS
TYPE	POSITION	Ef	Ek	Egl	Eg2	Eg3	Ep	
6D6	R.F.	5.4	2.8	0	2.8	74	230	
6D6	1st. Det.	5.4	7.8	0	7.8	74	230	
37	Osc.	5.4	0	38	-	-	130	
6D6	I.T.	5.4	2.8	0	2.8	74	230	
74	2nd. Det.	5.4	1	0	-	-	125	
42	PWR.	5.4	0	4	0	230	215	
80	Rect.	4.2	-	-	-	-	235	

Line Voltage 112 V .
Aerial and Ground disconnected.

F - Filament	K - Cathode	G1 - Control Grid
G2 Suppressor Grid	G3 - Screen Grid	P - Plate

All measurements taken from points indicated to ground with 1000 ohms per volt D.C. meter (except filaments).

Balance I.F. transformers at 485 K.C., trimmers on condenser gang at 1500 K.C. and oscillator padder at $600 \mathrm{~K} . \mathrm{C}$.

The screw adjustment at the right hand rear of chassis is a wave trap for the elimination of code interference at the I.F. frequency. Connect $485 \mathrm{~K} . \mathrm{C}$. oscillator on antenna and adjust for weakest signal.

ZENITH RADIO CORP.

 Voltage, Socket, Alignment, NotesService Bulletin

off Callibration. Check for $100 s e$ set soress on dial assembly to condenser harifte binack pointer may be loose on shaft. Check aligament as outined in

Poor Tone. Dofective tabes in audio. One side of push-pull circuit raulty.
Insensitive. Out of alignment, meak tubes or defective by-pass condenser.
$\frac{\text { Shadongraph Inoparative. Neak } 76 \text { tube, burnt out shadowgraph, open resis stor }}{\text { in } 76 \text { plate oircuitit. }}$
Distortion at Xidiun. Volume. Defective 75 tube, defective volume oontrol.
Separat to green volume control-lead end speaker-lend close to grid of 42 tube
Insenstitive on Any Short iiave Band. Chect aligament, make sure R. F. circuit Is not ailgned to image frequanoy. Change 647 tabe. Change position or fixed condensers adjecent to rear section or vare chenge effect dial calibrotion and sensitivity, especially on the Blue Band.

A.V.C. Blocks. Shorted resistor on antenna choke. c-14 padder shorted.

 for open by-pasa condenser. 1 st I.F. or groumded to $600 \mathrm{~K} . \mathrm{c}$. padder. Check

Hoisy. Shorting plates in gang condenser. Poor contact in band switch. Loose shields or shiteld bases. Static ahields may be touching leads under gang condenser.
orerheate. Check pllot 11 ght and heater circuite for partial short or ground.
Mutters. Rearrange leads under chassis especially around 6A7.
oscillates on Short wiave zands. Wake sure bromn s.F. grid return lead is puahed away fron 617 socket. Check for ground on any A.v. C, lead. Open by-gass condenser.
Tone Control Inoperativo. Resin joint or poor contact on tone control avitch.渞e condensers in tone control circaits.
Continuous Audio inistie. Rearrange leads in audio circuit.

socker yaitags

TUBE	POSITIOEA	85	F	Rg 1	Eg2	283	Ep
6D6	B. P.	5.9	1.7	0	85	1.7	235
617	18t. Det.	5.9	2.5	0	95	-	235
	OSC.			-1	-	-	165
656	18t. I. F.	5,9	8	0	95	8	235
6D6	2nd. I. F.	5.9	8	0	95	8	230
75	End. Det. lst. Aud.	5.9	1.5	0	-	-	155
$\begin{aligned} & 37 \\ & 76 \end{aligned}$	$\begin{aligned} & \text { Shadow-Mot. } \\ & \substack{\text { tmp. } \\ \hline} \end{aligned}$	5.9	0	-1	-	-	98
42	2nd. Aud.	5.9	21	0	-	-	230
42	Prig.	5.9	53	0	-	-	340
42	P*R.	5.9	33	0	-	-	340
523	Heot.	4.5	-	-	-	-	-

f-filament; \mathbf{K} - cathode; gl - control grid; g 2 - screen grid; g3suppressor erid; p-plate.

Separate coils are used for each band. Mounted on the coils are individual rimers thet alikn esch band, independent of the other bands.

Connect 485 K.C. service oscillator to grid of 617 and chassla ground. Adjust I. F. trimmers on rear of I.F. tremeformers for stronest algnal.

Connect $485 \mathrm{~K} . \mathrm{C}$. service oscillator to antenne and ground. Turn dial to 540 .c. on broadcast band and adjust wave trap trimmer on right rear side of chasele for weakest sienal.

> Broadcast - Black Band

Set service ogcillator at $1400 \mathrm{~K} . \mathrm{K}$., remaining attached to antenna ground posts. Tarn dial to seme point and adjust il trimper (top one on oscillator coill to (through hole in chessis base) and band pass trimper (top front section of gangl all to resonance.
Set service 0 scillator at $600 \mathrm{~K} . \mathrm{C}$. Adjust padder (located in center rear of chassis) for correct disl reading

Recheck $1400 \mathrm{~K} . \mathrm{C}$. alignment.
 adjust trimerer \#2 (2nd from top) on oscillat or coll for correct dial reading (oenter hole through chassis) to resonance.
Brown 3and
Loosen \#3 detector trimener (top one on detector coll). Set service oscillator
 and \#3 detector trimerer (irear one through hole in top of chassis). Adjust *3 detector trimer on coil to resonance.

Blue Band
Tighten ${ }^{* 4}$ detector trimmer (bottom one on detector coil). Set service
 coil) for correct dial reading,
It is very easy to mistake the image frequency for the fundemental on this band. Rotate dial and if ghadomater nerrowe at any point, especially at 15 1..C., the band should be rebalanced.
There are no adjustments to be made on this band.

PAGE 5-2 MISC.
WODH A-31
Schematic
AIR CASTLE

CLIMAX

PAGE 5-6 MISC.
MODEL 23-T8-IW
Schematic
CRANE

$23 T 8 L W$
CRANE
AR ca cmenco
H 122732

MISC. PAGE 5-7
GENERAL ELECTRONICS CORP.

PAGE 5-8 MISC.
MODEL 447,J-104, 401-A JACKSON RADIO \& TELEVISION CO.
Schematic

LEAR-WUERFUL CO.

PAGE 5-12 MISC.
WODEL World-Wide Nine
Schematic
McMURDO SILVER, INC.
Socket

MODEL 4-Tube Midget
Schematic

PARAMOUNT RADIO CO.
EL-REY RADIO MFG. CO.

MISC. PAGE 5-15 MODEH 4-Tube Receiver Schematic

PAGE 5-16 MISC.

ROYAL

PAGE 5-18 MISC.
MODEL 062
Schematic
Voltage
Connections

VOLTAGE DATA

Tube	Plate	Screen	Grid	Plate $M A$.
R-F.	177	80	3	3.6
1st Det.	173	76	$7 *$	$.9^{*}$
1-F.	177	80	3	3.6
2nd Det.	0	0	0	0
1st A.F.	54	77	6	1.2
Output	159	165	15.5	10.0

[^19]

PAGE 5-22 MISC.

TRUEVALUE

[^0]: the variable condenser for maximum out-

[^1]: Second I.F. Transformer

 す
 0
 0
 \vdots
 \vdots
 \vdots
 \vdots
 \vdots
 0
 0
 0
 B
 0
 0

[^2]: The figures in the first column refer to the socket hole numbers shown on Figure 3.
 \dagger The is essential that a meter be used which is similar to the one indicated in the last two columns.
 *Allowable variation- 10% plus or minus on all readings.
 *Subject to large variations due to 6 A characteristics.

[^3]: C－Align three I．F．trim－
 mers（Al－AR－A3）located on under
 ide of Chassis at base of I．F．

[^4]: E - Turn the tone control clock-
 wise untile the beat oscillator switch
 snaps on.

[^5]: * Used in early models-in later models these resistors are replaced by
 sed in early. mode
 resistot $\mathrm{P}^{\mathrm{P}} \cdot 91048$:

[^6]: this manuci. The replacement parts list is given on the last shoet of

[^7]: R．F．lst Detector，I．F．Grid Returns，A．V．C．Plate，A．V．C．
 Cathode，let Detector Cathode，R．F．Cathode，and Acozstic Filter．

[^8]:

[^9]: No. III

 1. Air-gap
 2. Reed counter weights
 3. Stop-post Locking-screw
 4. Stop-post
 5. Reed Spring Assm.
 6. Contact Spring Assm.
[^10]: 6A7-G1:K: 20; 6A7-G2-K: 130.
 The above voltages were obtained by using a high resistance multi-range DC voltmeter, and an AC voltmeter for filaments. Tests made with test prods applied to tube sockets at underside of chassis (see Fig. 1). Volume control at maximum, dial at low frequency end of scale.

[^11]: 2nd Detectorand A.V.C. Cathode to Low Side of Field. 105 Volts Chassis to Low Side of Field

[^12]: Band " A "
 (a) Set the Band Switch at "A."
 (b) The oscillator series capacitor, located on the rear apron of the chassis, should be set at about the center of its range.
 (c) Tune the external oscillator to $1,720 \mathrm{~K} . \mathrm{C}$., set the pointer at $1,720 \mathrm{~K}$. C. and adjust the oscillator, detector and R..F. trimmers for maximum output.

[^13]: \dagger Full Discount not allowed.

[^14]: Part Ho. Description
 $\begin{array}{ll}\text { R6110 Resistor - } 30 \mathrm{M} \\ \text { R7291 } & \text { Rms, } 1 / 3 \text { watt carbon }\end{array}$
 R7291 Resistor - 15 M ohms, $1 / 2$ watt carbon
 R7441 Resistor - 5 M ohms, $1 / 3$ watt carbon
 R7
 $\begin{array}{ll}\text { R10598 } & \text { Resistor - } 18 \text { ohms, } 1 / 2 \text { watt, carbon } \\ \text { Rloses } & \text { Rlexible }\end{array}$
 R10445A
 $\begin{array}{ll}\text { R8395 } & \text { Shield - Tube, base } \\ \text { R10440 } & \text { Shield - Tube, top } \\ \text { RlO441 } & \text { Shield - Tube, }\end{array}$
 $\begin{array}{ll}\text { R10441 Shield } & \text { Stube, top } \\ \text { R10654 Shield } & \text { Tube; cap }\end{array}$
 $\begin{array}{ll}\text { R10654 Sh1eld = Coil; } \\ \text { R10653 Base } & \text { Shield - Coil; top }\end{array}$
 R10653
 R8315
 R8853
 S10120
 S10573A
 Sin
 R10718
 R10467

 ## R10716A R10717

 ${ }_{\text {R4303 }}$
 R10648
 R10712
 ${ }^{\text {R10530A }}$ B10503
 Sooket - 5 prong
 Speaker - for model 1850
 Soaket - for model 1850
 Speaker - for model 1851
 Speaker -
 peaker - for model 1851
 Switch - Filame
 Switch - Wave
 Transformer - If input
 Transformer - IF input
 Condenser - . 0001 mitput mica
 Condenser -. 00005 mra . mica
 Control - Tone
 Disk - Drive with bushing
 Escutcheon
 Folder - Short wave
 Glass - Escutcheon
 Indicator and mounting ring assembly
 Instruction leaflet
 R10769B
 R10479 Knob-Station Selector
 R10705
 Rilo27 Knob - With dot
 $\begin{array}{ll}\text { R11027 } & \text { Knob - With dot } \\ \text { R5346D } & \text { Lead - Antenna, green }\end{array}$
 R10499B
 Lead - Antenne, green
 Pointer
 Pointer
 Resistor
 Resistor - 5 megohm, $1 / 2$ watt carbon
 Resistor - 1 megohm, $1 / 2$ watt carbon
 Resistor - 1 megohm, $1 / 2$ watt carbon
 Reisitor 1 megohm, $1 / 3$ watt carbon
 R6637 Resistor - 50 M ohms, $1 / 3$ watt carbon

[^15]: (BLACK)

[^16]: C1, C2 and C3 tuning condensers; C8, C 0025 Mfd ; C5, C12 . 05 Mfd ; C6 100 MMfd ; 7 , C10, C11, C13 . 1 Mfd ; $\mathrm{C} 14.0005 \mathrm{Mfd} ; \mathrm{C} 15.025 \mathrm{Mfd} ; \mathrm{C} 1610 \mathrm{Mfd} 6$ volt electrolytic ; C17.005 Mfd. control ; R10 $5000 \mathrm{ohms} ; \mathrm{R} 11400 \mathrm{ohms} ; \mathrm{R} 12800 \mathrm{ohms} ; \mathrm{R} 13 \mathrm{l} / \mathrm{meg}$ tone control ; R14 200 ohms (10 watt); R15 25 ohms (10 watt).

[^17]: connocted to switch point 4 in the Model SW-88 Service 3 , and point 4 should be left open.

 CORRECTION-The $9000 \mathrm{kc}$. R.F. trimmer is erroneously
 Sohematic, Drawing No. 83. This trimmer should be wired to

[^18]: Schematic Cireuit Diagram and Aligning Instructions Model 702 AC-DC Superheterodyne
 Should it be necessary, at any time, to robalance this set the procedure is as follows: Attach a 456 kilocyele oseillator to the grid of the $6 A 7$ tube in back of the variable condenser and adjust the trimming condensers of the I. F. Transformers to maximum deflection on an output motor conneeted aeross the primary of the speaker input transformer. While adjusting these trimmers, the
 varlabie condenser should be at the maximum capacity position-at the extreme right of its rotation.

 With switch lever up in 200-600 meter position, disconnect the antenna wire and connect an oscillator in series with a 250 mfd. condenser to the antenna coil, rotate the condenser plates to and rear section of the variable to resonance with the oscillator set at 200 meters, adjust the front section to resonance at 215 meters, align at $250-300-400-500$ meters and bend slotted plates of variable condenser if necessary. To adjust long wave, 1000-2000-meters. with switch lever down, set variable at maximum eapacity, extreme right turn, and tune generator to tuning oscillator until maximum output is attained. Attach oscillator leads to grid of 6A7 ground set variable condenser at minimum capacity, extreme left turn, and adjust oscillator to resonance with set. Remove oscillator lead from grid of 6A7 and attach to antenna lead, then adjust long wave R.F. trimmer to maximum output (set serew adjustment of L. W. Padder). Do not disturb

[^19]: - Will vary with dial setting.

